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ABSTRACT 
Background 

 Birth-weight and infant mortality are both important indicators of the health of populations. 

Unfortunately, these measures have not been studied to a great extent in India, where high rates of 

both birth-weight and infant mortality persist. This is, in part due to a dearth of quality data from 

India and lack of methods to adjust the existing data for digit preference (“heaping”). Beyond that, 

while there has been extensive study of the birth-weight to infant mortality relationship in the 

developed world, this topic has remained basically unexplored in India. In order to develop methods 

to reduce the high rates of IM in India and better understand the role of birth-weight as a 

determinant of infant mortality, population specific studies are needed. 

Methodology 

 Using data from a cohort in rural South India, we developed a method of adjusting BW data to 

account for heaping. Using data from a nationally representative survey of all of India, and US vital 

statistics, we compared characteristics of the BW to IM relationship in India and the United States. 

Finally, we analyzed data from rural India to identify predictors of very small birth-weight and infant 

mortailty in that specific population. 

Results 

 Our method of adjusting birth-weight data to account for heaping using modified statistical 

calibration and multiple imputation produced imputed birth-weight data sets that reduced heaping 

and preserved known associations. After comparing the US and India, we found that the relative 

contribution of birth-weight to infant mortality in India is reduced. We also found differences 

between the US and Indian birth-weight distributions and infant mortality curves. Finally, we 

determined that measures of sanitation and hygiene, acting as surrogates for infectious disease 

exposure, were significant predictors of both lower birth-weight and infant mortality in a rural 

population in South India. 

STUDIES OF BIRTH WEIGHT AND INFANT MORTALITY IN INDIA 

Rachel Margaret Whelan, PhD 

University of Pittsburgh, 2011
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Conclusions 

While birth-weight and infant mortality have not been studied to a great extend in the 

developing world due to issues with data quality and sources, statistical methods can be used to 

address these issues. Being able to adjust birth-weight data and study it and infant mortality in an 

Indian population showed that characteristics of these measures are not the same across countries. 

Also, birth-weight may not be as important a factor in determining infant mortality in India as it is in 

the US. Therefore, finding other causes of infant mortality is extremely important to address this 

problem. To that end, we found that sanitation and hygiene are strongly associated with the high 

rates of infant mortality in a rural Indian population. 

Public Health Significance 

 The methods developed here can be used and applied to study birth-weight data in other 

developing country populations. The comparison of the US and India highlighted the fact that current 

policies to reduce infant mortality in India may be misguided. Finally, our data suggest that an 

intervention to improve sanitation and hygiene in order to reduce infant mortality could be successful 

and could also be used in other populations with high rates of infant death. 
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1.0 SPECIFIC AIMS 
 

 

 

 

Birth-weight (BW) and infant mortality (IM) are two of the most studied variables in 

epidemiology and health research. A search of PubMed shows almost 70,000 references to BW, 

more than 80,000 references to IM and hundreds of articles are released each year that study 

these variables. IM is a key measure of a population’s overall health, but it is a rare event and 

often difficult to study as an outcome. BW is the measure most closely associated with IM and 

is often used as a surrogate for this variable. However, for all that BW and IM have been 

studied so extensively, there are still holes in the literature, especially when it comes to 

studying these measures in the developing world. We will address three topics relating to BW 

and IM, including how to adjust heaping in BW data from India, how an Indian population 

compares to a US population in terms of characteristics of BW distributions and the BW-IM 

relationship, and predictors of IM in a rural Indian cohort. 

 

BW data are an important source of information about the health of mothers and 

children in the developing world. However, few data sets exist that capture BWs that have been 

reliably measured and recorded from the developing world. Some of the biases seen in these 

types of data are from measurement error using crude tools like analog scales, operator bias 

when health care workers round the weight to the nearest 100 or 500 grams, or recall bias 

when mothers are asked to remember the BW of their baby.  

 

Specific Aim 1: To develop a method to adjust the continuous variable BW to account for bias 

and heaping due to measurement error and operator error. 

• We hypothesize that, using a modified statistical calibration and multiple 

imputation, we will be able to adjust heaped BW data from Indian surveys and 

create new data-sets that are closer to the actual BW distribution in this 

population. 
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While BW is often viewed as an outcome unto itself and correlates or causes of low BW 

(LBW) are the focus of research, one of the major values of BW lies in its extremely strong 

association with IM. BW is often treated as a categorical variable (Low BW <2.5kg and Normal 

BW ≥2.5kg) for purposes of analysis and policy. LBW babies have a reportedly 20 times higher 

risk of death than normal NBW babies. Unfortunately, due to many of the issues with collecting 

quality BW data from developing countries, our understanding of characteristics of BW 

distributions and the relationship between BW and IM comes primarily from studies that have 

been conducted in populations in developed countries. These studies have resulted in a set of 

accepted characteristics of both BW distributions and the BW – IM relationship. Our goal for 

this aim is to assess whether these characteristics are applicable to an Indian population. 

 

Specific Aim 2: To compare the BW distribution and the BW–IM relationship in an Indian 

population, from the Indian National Family Health Survey, to a US population, from US vital 

statistics.  

• We hypothesize that the BW distributions from both India and the United States 

will be essentially normal distributions but with extended lower tails 

• We hypothesize that the relationship between BW and IM in the Indian cohort 

will be different from the relationship seen in the US  population and that, in 

particular, the relative contribution of BW to risk of infant death will be less in the 

Indian population 

• We hypothesize that this analysis will provide a possible alternative cut-point for 

LBW and NBW than the arbitrarily derived 2.5kg cut-point for LBW 

 

Efforts in developed countries have succeeded in steeply reducing the rates of LBW and 

IM. These efforts focused on known correlates of BW and IM that were specific to these 

populations. With the methods described in Aims 1 and 2, we can now analyze data taken from 

a rural Indian population in Andhra Pradesh and assess correlates and potential causes of LBW 

and IM specific to this community. We can also determine whether these data support the 

placement of BW on the causal pathway to IM 
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Specific Aim 3: To identify correlates of BW and IM in this rural Indian population while 

applying the Modified Calibration-Multiple Imputation (MCMI) technique to adjust the BW 

data in the REACH dataset  

• We hypothesize that we will confirm the known association between BW and IM in this 

population 

• We hypothesize that sanitation and hygiene measures, acting as surrogates for exposure 

to infectious disease, will be significantly associated with IM, independent of BW 

• We also hypothesize that that these data and results will support the idea that BW, 

while related to IM, is not on the causal pathway to IM in this population in rural India  
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2.0 BACKGROUND AND SIGNIFICANCE 
 
 

 

 

2.1 SPECIFIC AIM 1: BACKGROUND AND SIGNIFICANCE 

 
Birth-weight has become a very important variable for research and study, not only 

from a clinical or research perspective, but from a policy perspective as well. The United 

Nations has focused on BW in its “A World Fit for Children” program and the Millennium 

Development Goals.1,2 Weight at birth is an indicator of a baby’s chances for survival, growth, 

long-term health and development. Low BW, defined as <2500 grams, has been linked not only 

to infant death and childhood diseases, but to adult morbidity and mortality as well. 3-18  

Typically, BW data are very useful because BW is easily measured and reliably 

recorded.19 However, this assertion is only true in developed countries where mothers deliver 

in institutions and a system is in place for collecting vital statistics. For developing countries 

where there is no nationwide system of data collection for BW or other vital statistics, BW data 

comes from various sources, many of them biased.3,10 The main source of BW data is health 

care facilities. However, these data are subject to selection bias, because in many developing 

countries not all women give birth in an institution and those that do tend to be from a group 

that is not representative of the whole population.20-22 Nationally representative household 

surveys are another source of information on BW. However, a paper by Boerma et al. from 

1996 showed that mothers in developing countries are often unable to report numerical BWs 

for their babies, often because the baby was not weighed at delivery. Boerma et al. also found 

that rates of LBW were systematically under-estimated by these types of surveys.21 A similar 

paper by Robles et al. supports these findings.22 

A 2005 paper by Blanc and Wardlaw examined the quality of BW data from these types 

of surveys and identified biases in them. They also hoped to develop a method for adjusting BW 

data to account for some of these biases. They studied BW survey data from 62 sources in 

developing countries and found that numerical BW data exhibits “heaping” on digits that are 

multiples of 500 grams. “Heaping refers to a pattern of misreporting in which the distribution of 
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a number reported by respondents, such as age or BW, shows implausibly large frequencies of 

particular values, usually values ending in 0 or 5.” This heaping effect was seen in all of the 

survey data and a typical example of it is shown Figure 2.1.20 

 
 

2.1.1 Methods for adjusting BW data from developing countries 

 In response to the poor quality of BW data from developing countries, several methods 

have been proposed that could be used to adjust this data and glean some meaning from it. 

Boerma et al. proposed a method that took into account not only the reported numerical BW, 

but also the mother’s answer to a question about the relative size of her baby. Many of the 

population surveys being used in developing countries included the following series of 

questions, or something similar: 

• When (NAME) was born was he/she very large, larger than average, average, 

smaller than average, or very small? 

• Was (NAME) weighed at birth? 

• (IF YES) How much did (NAME) weigh? 

Boerma and colleagues thought that combining the mother’s response on relative weight with 

the reported numerical weight would allow them to better deduce the true proportion of LBW 

babies in a population. However, only the “very small” category had a high sensitivity and 

specificity for predicting LBW and many of the LBW babies were missed when looking at only 

the “very small” category.21 

 Blanc and Wardlaw also proposed an adjustment method to account for the heaping of 

babies at 500 gram intervals and, in particular, the heap at 2500 grams, which was throwing off 

the categorization of LBW and normal BW (NBW) babies. Their adjustment was based on 62 

Department of Health surveys between 1990 and 2000 from 42 developing countries, which 

included altogether 433,967 recorded births. The end result was a recommendation that 25% of 

those babies heaped at 2500 grams be re-classified as LBW. This method involved counting the 

number of babies between 2000 and 2500 grams (non-inclusive) and the number of babies 

between 2500 and 3000 grams (non-inclusive). The authors suggested that one could make a 

ratio of 2000-2500 g babies over the total number of babies between 2000 and 3000 grams, 
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excluding those listed as exactly 2500 g. This ration is then multiplied by the number of babies 

listed as exactly 2500 grams. The resulting number of babies listed at exactly 2500 grams 

(classified as NBW) would be moved into the LBW category (see graphical representation of 

adjustment method in Figure 2.2).20  

 This method, while giving a correction for the under-reporting of LBW babies in a 

population, does not allow for any further analysis. Also, by focusing exclusively on the 

dichotomized version of LBW, they have lost much of the power of the continuous BW variable. 

Finally, when this method was applied to data from our cohort in India with a known gold 

standard, the 25% adjustment did not produce the correct proportion of LBW infants. The true 

proportion of LBW infants in our dataset, who were weighed using a digital scale by a trained 

research nurse, was 29.5%. When the Blanc and Wardlaw 25% adjustment was applied to a set 

of BW data with biases from measurement error and operator error, the proportion of LBW 

infants was only 26.4%. For this data set, the Blanc and Wardlaw method for adjusting biased 

BW data corrected only a portion of the mis-classified babies.23 

 Though not necessarily developed in relation to BW, other methods exist to adjust for 

bias. Fox and Lash developed an automated and elegant method referred to as probabalistic 

bias analysis. This is a multiple imputation method that uses known sensitivity and specificity of 

the data to impute new data sets that are corrected for misclassified categorical variables. 

While this method was appealing in that it produces imputed data sets that would be available 

for further analysis, the method of adjustment is designed for categorical variables and does 

not apply to a continuous variable that is biased or mis-measured.24-26 Fox and Lash’s use of 

multiple imputation after the adjustment is applicable to other data sets, including ours, 

because the reconstructed data set represents only one possible association that could have 

occurred after correcting for misclassification. The range of association coming from the 

combination of the imputed data sets comes closer to the true association, were there not 

error in the data.24,25 

 Various other methods exist to adjust data that have been mis-measured or are known 

to have biases. Carroll, Ruppert and Stefanski developed a method (the CRS method) whereby 

the “gold standard” measure is regressed on the mismeasured, “proxy” covariate as well as on 
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other covariates in the dataset that were not subject to measurement error. The regression 

model coefficients are then used to estimate the predicted value for the “gold standard” for 

each observation in the main study. Then, in the main study, the outcome is regressed on the 

estimated “gold standard” and on covariates measured without error. The measurement error 

model is then used to correct the coefficients and their variances for bias due to covariate 

measurement error. Standard errors are obtained from bootstrapping or other resampling 

methods, or asymptotic standard errors can be obtained using the sandwich method.27-31 

Rosner, Willett and Spiegelman also developed a method (the RSW method) using 

statistical calibration to adjust for the bias resulting when one or more regression model 

covariates are measured with error. The RSW method regresses the outcome on the “proxy” 

covariates and on the covariates measured without error in the main study and then bias-

corrects the regression coefficients using estimated coefficients from the validation data 

regression. They adjusted for measurement error by regressing the outcome on the “proxy” 

measure and then adjusting the variances. Standard errors from this method are found using 

the delta method.30-35 

 The CRS and RSW methods were shown to give identical adjustments for the 

coefficients and their asymptotic variance when the validation set was strictly internal 

validation data.30 When looking at studies with “hybrid” validation data, where the validation 

set is a combination of internal and external validation data, the estimates are the same, but 

the RSW method is shown to have an asymptotically smaller variance than the other 

methods.31 

There are several characteristics of these methods that are important to note. They 

assume that other covariates measured without error are available in both the main and 

validation studies. They use a classical type of statistical calibration, which assumes a normal 

error distribution. And, they have only been applied to covariates/predictors, not outcomes. 

These methods provided valuable direction for the development of our own adjustment 

method to correct for heaping in the outcome variable BW.  
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2.2 SPECIFIC AIM 2: BACKGROUND AND SIGNIFICANCE 

 

2.2.1 The BW distribution 

 

In large population studies conducted in Western countries, the frequency distribution 

of BW has been found to be Normal with an extended lower tail.11,36-38 (See Figure 2.3) The 

“predominant” distribution has been defined as that part of the curve that falls within the 

Normal curve. The vast majority of births fall within this predominant distribution. In Figure 2.3 

the predominant distribution is indicated by the area below the line with triangle markers. The 

“residual” distribution is the remainder of the BW distribution that falls outside of the Normal 

curve. In a typical population, 2 to 5% of births are in the residual distribution. In Figure 2.3, the 

residual distribution is indicated by square markers. 

 The births that fall in the predominant distribution correspond to the distribution of 

term births (≥37 weeks gestation). Logically then, almost all those births in the residual 

distribution are preterm. However, some of the preterm births still end up in the predominant 

distribution of BW. The preterm births that do end up in the residual distribution tend to be 

those that are the smallest and thus those with the highest risk of mortality. 

The predominant and residual distributions of BW are independent of one another. 

Therefore, an exposure that affects fetal growth does not necessarily affect the risk of preterm 

delivery. Also, the mean of the predominant distribution can change without affecting the 

percent of births in the residual distribution. Conversely, a factor that increases the risk of 

preterm delivery would not necessarily change the average weight of babies that are delivered 

at term, greater than 37 weeks gestation. Thus, the percentage in the residual distribution can 

change without affecting the predominant distribution.11,37-40  

 This construct of looking at BW distributions from the perspective of the predominant 

and residual distributions is particularly useful because it provides indirect information about 

gestational age without actually requiring data on gestational age of each infant. Term births 

are found in the predominant distribution while the residual distribution estimates the 
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percentage of both small and preterm births.11,37-41 Automated methods for calculating the 

predominant and residual distributions are now available through the NIH.38,42 

2.2.2 BW and IM Relationship 

 

 BW predicts a newborn’s survival better than any other characteristic that has been 

studied. In general, the lower weight at birth, the higher the risk of IM. This has also been 

observed on a population level where groups with lower mean BWs (i.e. smokers, African-

Americans) often have higher rates of IM.8,11,19,37,43-45 

 Studies in large, developed countries typically show a very typical pattern of BW specific 

neonatal mortality. Risk approaches 100% for the smallest babies and declines to less than 1% 

in the middle of the range, which is close to the mean BW for that population. Risk increases 

slightly for the heaviest babies. The same pattern is seen within each gestational-age stratum, 

indicating that this is not simply a reflection of preterm births at the lowest weights. (Figure 

2.4) 37,40,41 

 While the association between BW and IM is certainly extremely strong (LBW babies are 

20 times more likely to die than NBW babies18) BW is not the best indicator for risk of perinatal 

mortality. If it were, then variations in BW among populations would match changes in risk. So, 

an exposure that reduced fetal growth would be predicted to increase risk. However, this is not 

seen when comparing groups with and without these types of exposures. As the BW 

distribution shifts due to different population characteristics or exposures, the mortality curve 

moves with it. This phenomenon lead to the description of several “paradoxes” related to BW.19 

 

2.2.3 Birth-weight Paradoxes 

 

 When studying BW in populations, several paradoxes have been described in the 

literature. An excess of LBW in a population does not necessarily mean higher rates of IM in 

that population. Another paradox of the BW – IM relationship is that if one compares LBW 

babies from two different populations, it is often the case that the LBW babies with a lower risk 
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of mortality are from the group that has higher mortality overall. This was noted among 

smoking mothers, who have babies with higher mortality overall, but the LBW babies of 

smoking mothers have better survival than the LBW babies of non-smoking mothers. 11,19,41,46-49 

 Based on these paradoxes and other studies of the BW to IM relationship, Allen J. 

Wilcox and Ian T. Russell developed a hypothesis to explain this paradoxical relationship and 

the true nature of the interplay between BW and IM.50 They debunked the usual assumption 

that a change in BW directly affects perinatal survival. Instead, they hypothesized that, on a 

population level, BW is not on the causal pathway to mortality. They acknowledged that a 

change in BW is often strongly associated with a change in infant health. However, they 

postulated that it is not through the change in BW that the change in health (or increase in risk 

of IM) occurs. Instead, they suggested that that BW and IM can change together because a 

single factor (or group of factors) affects them both. 

 To support this theory, they studied many examples of populations where IM rates are 

similar but the BW distributions are slightly different. For instance, at high altitudes, babies are 

smaller and the BW distribution of a high altitude population is shifted to the left (lower mean 

BW). They found that, when comparing a high altitude population to a normal altitude 

population, the weight-specific IM curves intersect. For babies weighing less than the optimum 

weight, this shift gives the appearance of lower mortality at any given BW. For babies heavier 

than the optimum weight, the shift gives the appearance of higher mortality. In other words, 

mortality rates are lower at high altitudes for small babies and higher for large babies. There is 

no obvious biological explanation for this.  

 However, using a method of adjusting both the BW distribution and the IM curve to a z-

scale with mean of zero and standard deviation of one, the two BW distributions correspond 

nearly exactly, as do the two mortality curves. The explanation for this is that altitude affects 

BW, but not mortality. While the BW distribution and the accompanying mortality curve shifts 

for populations at higher altitudes, there is no change in the survival of individual babies. In this 

example, lower BW on the population level has no effect on IM. 

 This method of comparing BW and IM at the population level using the z-scale 

adjustment has been applied to many populations in the developed world, but not to 
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developing world populations to see if these theories are supported. In fact, Wilcox 

acknowledges the gap in the literature when it comes to this type of reproductive epidemiology 

and the developing world: 

“…my perspective (and the perspective of most researchers in this field) 

is overwhelmingly First World. One of the ironies of epidemiology is that 

our data are best where the problems are least. This is certainly true for 

reproductive epidemiology. Those of us privileged enough to work in 

developed countries tend to focus on the small problems close to us and 

neglect the huge problems elsewhere…”50 

 

2.2.4 Low Birth-Weight and 2500 grams 

 

 At the First World Health Assembly in 1948, the World Health Organization endorsed 

the international definition of prematurity as being a BW less than 2500 grams. Prematurity and 

LBW were considered to be synonymous until 1961 when the WHO recommended that LBW no 

longer be used as the definition of prematurity. 10,11 However, this tendency to dichotomize BW 

has persisted with the understanding that babies born less than 2500 grams are a higher risk for 

mortality than babies 2500 grams and larger. 

 

 

2.3 SPECIFIC AIM 3: BACKGROUND AND SIGNIFICANCE 

 
Rates of IM are extremely high in India. In 2009, it was 50.3 per 1,000 live births, more 

than seven times the IM rate in the United States (6.8/1000) and more than 20 times the IM 

rate in Sweden (2.3/1000).51 Infant deaths in India account for a very large portion of the total 

infant deaths world-wide and India contributes a quarter of the world total for newborn 

deaths.52 Despite efforts to reduce the numbers of infant deaths through social welfare 

programs and other interventions,53 IM rates remain unacceptably high in India. 
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IM has been studied in many different populations and methods have been developed 

that have successfully reduced the numbers of infant deaths in certain populations, primarily in 

developed countries.54-56 Globally, rates of child mortality are half of what they once were 

several decades ago. However, the rate of IM remains high in India and, in recent years, there 

has been a slowing decline in IM rates.57 

A few studies have attempted to identify causes of IM in India. A mortality survey by 

Bassani, et al identified three causes that accounted for 78% of all neonatal deaths: 

prematurity/LBW, neonatal infections and birth asphyxia/birth trauma. For children ages 1 to 

59 months, they found that pneumonia and diarrheal diseases accounted for half the deaths.58 

A report from the Indian National Family Health Survey 2 (1992-1993) identifies SES and 

demographic factors like mother’s age, birth order, literacy, toilet facilities, rural residence and 

the use of unclean cooking fuel as being associated with higher risk of infant death.59 A recent 

literature review of causes of child death in India supports these findings.60 

Any study of IM must focus to some extent on BW as it is the strongest recorded 

predictor of IM. Babies weighing less than 1,500 g have a mortality risk at least 100-fold higher 

than babies at the optimum weight (the weight associated with the lowest mortality). This 

association is seen at both the individual and population level. BW is extremely predictive of an 

individual baby’s survival. Also, groups with lower mean BW often have higher IM.11,41,48 

However, the true nature of the relationship between BW and IM is controversial. Researchers 

are divided over whether or not IM is caused directly by BW and if so, what the biological 

mechanism is. This is a particularly important question in India where efforts to reduce IM have 

focused on increasing BW.57,61,62 However, this approach, which assumes that risk of IM is 

programmed from birth (in the infant’s BW), does not address insults after the baby is born that 

could be contributing significantly to IM. Researchers have suggested that the same causal 

factors are affecting both BW and IM, and that this explains the strong association between BW 

and IM. 

LBW, defined as less than 2500 grams, is a complex phenomenon with multiple causes 

and correlates. Some of these have been studied and addressed, such as quality of pre-natal 

care,63-67  maternal nutrition,68,69 anemia,70-73 maternal thyroid function,74-77 and maternal 
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infections.69,78-84 In India, studies have been completed that assess factors associated with BW 

as well. These studies have identified socioeconomic factors,85 maternal nutrition,6,85-91 

maternal activity,6,92 anemia,85,86 and parity,85 among others, as being associated with risk for 

having a LBW baby. Each year, approximately 11.7 million babies in developing countries are 

born with LBW.93 In India, approximately 30% of babies are born with LBW.94  

 With so many possible causes of and contributors to IM, it is clear that a single solution 

is not going to fix this problem across the developing world or even across India. However, 

identifying population specific predictors of IM will provide an opportunity for interventions at 

a local level to combat these problems of infant health and survival in an effective way. 

   

2.3.1 The Rural Effective Affordable Comprehensive Healthcare (REACH) Project 

 
The REACH Project is a working model of healthcare delivery to rural populations that 

has been providing health education, immunizations, antenatal care, and primary and tertiary 

care since 1999 for a population of 43,270 people in 43 villages in the Ranga Reddy District on 

the northern outskirts of Hyderabad in  the state of Andhra Pradesh in South India. In each of 

the villages in the mandal (county), a Community Health Volunteer (CHV) has been recruited to 

visit each family one time each month. These CHVs focus especially on fertile woman in the 

village to ascertain pregnancy (by interview) and to educate and encourage the women to seek 

regular antenatal care, and other health care services. REACH has enumerated all households 

and household members in these communities and mapped each dwelling by GIS. With each 

visit, CHVs conduct interviews to collect and update information on demographics, household 

details, whether a woman is pregnant and receiving ante-natal care and other variables. Since 

2004, CHVs have been collecting data on infant deaths and BWs in the population. A detailed 

database is maintained that contains all these data.  
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2.4 TABLES AND FIGURES 

 
 

 
 
 

Figure 2.1: Heaping of reported birth-weights on multiples of .5 kg, Indian National Family 
Health Survey 3 2005-2006 
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Figure 2.2: Application of Blanc and Wardlaw’s method for adjustment of heaped birth-
weights 
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Figure 2.3 Birth-weight distribution with Predominant and Residual distributions 
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Figure 2.4: Weight-specific neonatal mortality and the distribution of weights for live births, 
USA, 199811 
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3.1 ABSTRACT 

 

3.1.1 Background 

Birth-weight (BW) is an important indicator of a baby’s chances for survival, growth, and 

development. Few data sets capture BWs that have been reliably measured and recorded from 

the developing world. Biases in these data include measurement error, operator error, recall 

bias and heaping. No adequate method exists to correct these data and estimate accurate rates 

of low BW (LBW), defined as less than 2500 g. Our goal was to develop such a method. 

3.1.2 Methodology 

From October 2009 to May 2010, we weighed every baby born at MediCiti Hospital, 

Andhra Pradesh, India (n=859). Each baby was weighed by the usual method (analog scale, 

labor and delivery nurse), and then weighed by the gold standard (10-gram sensitive digital 

scale, trained research nurse). Head circumference (HC) and baby length (BL) were recorded.  

We developed a method to correct the analog BW data using a modified statistical 

calibration and multiple imputation. Calibration is based on analog values from the calibration 



19 
 

data set.  Multiple imputed data sets were combined using Rubin’s Rules. Data were analyzed 

using Microsoft Excel, SAS 9.2 and MATLAB 7.11 R2010B. 

3.1.3 Results 

Rates of LBW for the original and calibrated/imputed data were analog (22%), digital 

(28%), and imputed (30% on average with a range of 28% - 33%).   

Using logistic regression, we estimated the associations between BW and BL, and BW 

and HC. The association between the analog BW data and these variables differs from that of 

the digital BW data. The results from the calibrated/imputed data most closely matched the 

digital BW data (gold standard). 

3.1.4 Conclusions 

 Regression calibration plus imputation produces adjusted analog weight data that 

accurately reflect the gold standard. This approach could be applied to other data sets in India, 

or other parts of the developing world, to more accurately estimate rates of LBW ascertained 

from analog weights. 

 

 

3.2 INTRODUCTION 

 

 Birth-weight (BW) has become a very important variable for research and study, not 

only from a clinical or research perspective, but from a policy perspective as well. The United 

Nations has focused on BW in its “A World Fit for Children” program and the Millennium 

Development Goals.1,2 Weight at birth is an indicator of a baby’s chances for survival, growth, 

long-term health and development. Low BW (LBW) has been linked not only to infant death and 

childhood diseases, but to adult morbidity and mortality as well. 3-18  

Typically, BW data are very useful because BW is easily measured and reliably 

recorded.19 However, this assertion is only true in developed countries where mothers deliver 

in institutions and there is a system in place for collecting vital statistics. In developing 

countries, where there is no nationwide system of data collection for BW or other vital 
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statistics, BW data come from various sources, many of them biased.3,10 A common form of 

error seen in BW data from surveys or health facilities in developing countries is “heaping” or 

digit preference. “Heaping refers to a pattern of misreporting in which the distribution of a 

number reported by respondents, such as age or BW, shows implausibly large frequencies of 

particular values, usually values ending in 0 or 5.”20 In a study of 62 surveys from 41 developing 

countries, this heaping effect of BW data was seen throughout and a typical example of it is 

shown in Figure 3.1.20 

 

3.2.1 Current methods for adjusting BW data from developing countries 

 In response to the poor quality of BW data from developing countries, several methods 

have been proposed to adjust the data. Boerma et al. proposed a method that took into 

account not only the reported numerical BW, but also the mother’s answer to a question about 

the relative size of her baby. However, this method underestimates the proportion of LBW 

babies.21 

 Blanc and Wardlaw also proposed an adjustment method to account for heaping, in 

particular, the heap at 2500 grams, which alters the categorization of LBW and normal BW 

(NBW) babies, where NBW is defined as ≥ 2500 g. The end result was a recommendation that 

25% of those babies heaped at 2500 grams be re-classified as LBW. 20 This method, while giving 

a correction for the under-reporting of LBW babies in a population, does not allow for any 

further analysis. Also, by focusing exclusively on the dichotomized version of LBW, much of the 

power of the continuous BW variable is lost. Finally, when this method was applied to data 

from our cohort in India with a known gold standard, the 25% adjustment did not produce an 

accurate estimate of the proportion of LBW infants.23 

 Though not necessarily developed in relation to BW, other methods exist to adjust for 

bias in a dataset. Fox and Lash developed probabalistic bias analysis, a multiple imputation 

method that uses known sensitivity and specificity to impute new data sets that are corrected 

for misclassified categorical variables. While this method is appealing in that it results in 

imputed data sets that would be available for further analysis, the method is designed for 
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categorical variables and does not apply to a continuous variable that is biased or mis-

measured.24-26  

 Various other methods also exist to adjust data that have been mis-measured or are 

known to have biases. Carroll, Ruppert and Stefanski developed a method (CRS method) 

whereby the “gold standard” measure is regressed on the mismeasured, “proxy” covariate as 

well as on covariates that were not subject to measurement error. The regression coefficients 

are then used to estimate the predicted value for the “gold standard” for each observation in 

the main study. Then, in the main study, the outcome is regressed on the estimated “gold 

standard” and on covariates measured without error. The measurement error model is then 

used to correct the coefficients and their variances for bias due to covariate measurement 

error. Standard errors are obtained from bootstrapping or other resampling methods, or 

asymptotic standard errors can be obtained using a sandwich estimator.27-31 

Rosner, Willett and Spiegelman also developed a method (the RSW method) using 

statistical calibration to adjust for the bias resulting when one or more regression model 

covariates are measured with error. The RSW method regresses the outcome on the “proxy” 

covariates and on the covariates measured without error in the main study, and then bias-

corrects the regression coefficients using estimated coefficients from the validation data 

regression. They adjusted for measurement error by regressing the outcome on the “proxy” 

measure and then adjusting the variances. Standard errors from this method are found using 

the delta method.30-35 

 The CRS and RSW methods have been shown to give identical adjustments for the 

coefficients and their asymptotic variances when the validation set was strictly internal 

validation data.30 In studies with “hybrid” validation data, where the validation set is a 

combination of internal and external validation data, the estimates are the same but the RSW 

method is shown to have an asymptotically smaller variance than the other methods.31 

There are several features of these methods that are important to note. They assume 

that other covariates measured without error are available in both the main and validation 

studies. They use a classical type of statistical calibration, which assumes a normal error 

distribution. And, they have only been applied to covariates/predictors, not outcomes. These 



22 
 

methods provided valuable direction for the development of our own adjust method to correct 

for biases in the outcome variable BW. 

 

 

3.3 EXPERIMENTAL DESIGN AND METHODS 

 

3.3.1 The Rekha Data Set  

From October 2009 through February 2010, data were collected from every birth that 

took place at MediCiti Hospital, a rural hospital in Andhra Pradesh, India. Each baby was 

weighed as usual by a labor and delivery nurse on a 50-gram graduated analog scale and their 

BWs were recorded. These “analog birth-weights” have measurement error from the inexact 

analog scale and also error from the nurses who weigh the babies and tend to round the 

weights to whole numbers. Second, each baby was weighed by a trained research nurse on a 

SECA 354 10-gram sensitive digital scale and their weights were recorded. These “digital birth-

weights” are considered to be the true BWs. We now have a data set that includes 913 births 

and 859 sets of complete data where both the analog and digital weights were recorded.  

MediCiti Hospital serves two counties (mandals) in rural Andhra Pradesh: Medchal 

Mandal and Shameerpet Mandal. The two counties have similar populations (about 50,000 

people in each) and the births that take place in the hospital are divided between women from 

each of the two counties.  

The analog BW data collected by Dr. Rekha per standard procedure by obstetric ward 

nurses on the analog scale is shown in Figure 3.2. This is a standard method of recording BW in 

hospitals in developing countries like India and is subject to measurement and information bias 

because of the use of analog scales and reader error/rounding that leads to heaping at round 

numbers. After being weighed by the standard method, each baby was weighed on a ten-gram 

sensitive digital scale by a trained research nurse. This is considered to be the gold standard. 

(Figure 3.3) 
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3.3.2 Method to adjust the analog birth-weight data using the digital birth-weight data as a 

gold standard 

By plotting the digital versus the analog weights, one can begin to get a sense of the 

measurement and information error present in BW data collected by the standard method, as 

compared to the gold standard (Figure 3.4). The diagonal dotted line shows where all the points 

would be if the analog and digital weights were equal. Distance from the line indicates error. 

This figure also shows the misclassification that would occur from this type of measurement 

error if the weights were classified dichotomously as LBW and normal BW (NBW). The lower 

right quadrant holds the weights of all the babies that would be misclassified as LBW using the 

standard measuring technique when they were actually NBW by the gold standard. The upper 

left quadrant holds the weights of the babies that would be classified as NBW when they were 

actually LBW. 

 Figure 3.4 also illustrates the heaping that occurs at 500 g intervals from rounding and 

other operator error using the standard measuring technique with the analog scale. The 

number and spread of points on the 2.0, 2.5 and 3.0 marks from the analog scale show the 

number of BWs that are heaped on these round numbers as well as the spread of true digital 

BWs these rounded analog weights actually represent.   

 Using these data, our goal is to develop a model that relates the analog weights to the 

digital weights. This model can then be used to impute a dataset with statistics that more 

accurately represent the population. Once developed, this method can be applied to larger 

datasets from the same or similar populations to adjust for bias due to heaping. 

 The approach we have chosen to achieve this is to use a modified statistical calibration 

followed by multiple imputation. The calibration will allow us to adjust the analog data based 

on the known true BWs. Multiple imputation will allow us to appropriately impute new data 

sets and then perform regression analysis on these sets. 

 

3.3.3 Statistical Calibration 

Statistical calibration, often referred to as Inverse Regression, is a method used to 

estimate the value of one measurement (x) by some other measurement(s) (y) using a 
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regression model. This method is used when the quantity to be calibrated is harder, or more 

expensive to measure or when the value was not recorded and cannot be retrieved.95 In our 

case, x represents the true digital weight that we wish to estimate based on the available 

analog weight, y. Here, all three reasons for using statistical calibration apply. The true BWs 

from this population are both harder and more expensive to measure, not to mention 

logistically very difficult to collect. Also, in national surveys from India, true BWs are often not 

recorded; instead, a mother may be asked the weight of her child at birth, or the weight may be 

copied off of a medical record that a mother has in the home.  

 Absolute calibration is a form of this method wherein x is assumed to be measured 

without error. In our study, we are assuming that the recorded weights that were obtained 

from a SECA model 354, ten-gram sensitive digital scale and recorded by a trained research 

nurse are without error. Therefore, this approach can be considered an Absolute Calibration. 

 There are two stages to statistical calibration. The first is the calibration stage, where 

one must estimate a regression function that establishes the relationship between x and y. The 

second stage is the inverse prediction stage, where the regression model is used to estimate 

the unknown x0 in a new sample. 

 To begin the calibration stage, we consider a calibration data set consisting of n analog 

and digital measurement pairs.  We will denote the analog and digital weights of the ith pair as 

Yi and Xi respectively. We assume that each analog weight record is equal to the true 

measurement according to the analog scale plus random error resulting from operator error, 

rounding and recording error 

  𝑌𝑖 = 𝑖𝑡ℎ 𝑎𝑛𝑎𝑙𝑜𝑔 𝑤𝑒𝑖𝑔ℎ𝑡 
𝑌𝑖 =  𝑦𝑖 +  𝜀𝑖           (1) 

𝑦𝑖 = the true measurement from analog scale (approximately equal to 
average after multiple readings) 
𝜀𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑟𝑟𝑜𝑟 

 
We assume that the error for each digital weight record is negligible. Therefore, each recorded 

digital record is taken to be the true record from the digital scale 
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𝑋𝑖 =  𝑥𝑖 + 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 𝑒𝑟𝑟𝑜𝑟       (2) 
𝑋𝑖 = 𝑖𝑡ℎ 𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 
xi = true digital weight 
 

Next, we account for the bias in the analog scale by assuming that the true measurements of 

the analog scale vary as a linear function of the digital weights: 

 

 𝑦𝑖 =  𝛽0 +  𝛽1𝑥𝑖       (3) 
  
Substituting (3) into (1) yields the following calibration function: 
 

𝑌𝑖 =  𝛽0 𝑌|𝑋 +  𝛽1 𝑌|𝑋𝑋𝑖 +  𝜀𝑖        (4) 
 
Where 𝛽0 𝑌|𝑋 denotes the expected value of y given x. The calibration function shows that each 

recorded analog weight, Yi, is equal to a linear function of the true digital weight, plus a random 

error, εi.  The values of the coefficients, 𝛽0 𝑌|𝑋 and 𝛽1 𝑌|𝑋, and the error function, εi, can be 

estimated from the calibration data set.  This process is discussed in detail in the following 

sections.  Once 𝛽0 𝑌|𝑋, 𝛽1 𝑌|𝑋, and εi are estimated, equation (4) can then be applied to the 

Inverse Prediction Stage. 

 

For the Inverse Prediction Stage, we invert the calibration function, (4), to obtain the 

following expression for the digital weight, Xi: 

 

𝑋�𝑖 =   𝑌𝑖−𝛽0 𝑌|𝑋− 𝜀𝑖
𝛽1 𝑌|𝑋

        (5) 

 
When x is not observed, we can use the coefficient from the calibration to estimate the digital 

weight (𝑋�𝑖). We can use this equation to estimate the digital weight of subsequent analog 

records when an actual digital measurement is unavailable. 

 

3.3.4 Estimating the Regression Calibration Coefficients 

We wish to estimate the linear coefficients, 𝛽0 𝑌|𝑋 and 𝛽1 𝑌|𝑋 , from (4).  To do so, it is 

useful to take advantage of the principle of Mathematical Expectation, whereby the error term, 
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Ɛi, can be taken out of equation (4) in expectation because the error is centered around a mean 

of zero.  Therefore, equations (4) and (5) can be expressed as 

 

E(Yi)= �̂�0 𝑌|𝑋+ �̂�1 𝑌|𝑋𝑋𝑖       (6) 

𝑋�𝑖 = 𝐸(𝑌𝑖)− 𝛽�0 𝑌|𝑋

 𝛽�1 𝑌|𝑋𝑋𝑖
        (7) 

 
Equation (7) shows that each unique analog weight and the mean of the corresponding digital 

weights are linearly related by expectation.  This forms the basis of a linear regression to 

estimate 𝛽0 𝑌|𝑋 and 𝛽1 𝑌|𝑋. 

 The weighting parameter for each sample is taken to be the number of records used to 

calculate the sample mean. Thus, means that are better defined are given greater weight. This 

weighted regression can be expressed based on equation (7) above for distinct values of Y 

where we weight nj observations at a value of Y’j. 

 

∑ 𝑋𝑗
𝐽
𝑗=1 = ∑ �

�𝑌𝑗
′�− 𝛽�0 𝑌|𝑋

 𝛽�1 𝑌|𝑋𝑋𝑖
�𝐽

𝑗=1        (8) 

 
Regrouping the terms yields the following expression with a weighting factor of nj 
 

∑ 𝑛𝑗𝑋𝑗
𝐽
𝑗=1 = ∑ �𝑛𝑗  �

�𝑌𝑗
′�− 𝛽�0 𝑌|𝑋

 𝛽�1 𝑌|𝑋𝑋𝑖
��𝐽

𝑗=1       (9) 

   
 

Consider Figure 3.5. The grey diamonds show the analog weight of each record versus 

its digital weight. For each unique analog weight, we selected all of the corresponding records 

and estimated the mean of their digital weights.  These sample means are shown on Figure 3.5 

as black circles. The relative size of each black circle relates to the number of records used to 

estimate that mean; thus, the regression is weighted. Larger black circles indicate that more 

data were available, and thus its value better reflects the true population mean than a small 

circle. Notice that the sample means vary linearly with analog weight. We then performed a 

weighted linear regression on the sample means and their corresponding analog weights. The 
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best-fit line is shown in black on Figure 3.5. Based on the weighted regression, β0 = -0.111 and 

β1 = 1.05. 

 

3.3.5 Estimating the random error function (εi)  

In certain cases, there is actually no need to estimate the random error function. 

Instead, we could use the actual residual distribution from the data in place of an estimated 

error function. The advantage of this approach is that it reduces overall error to use the true 

residual distribution as opposed to an estimated one. However, it is not appropriate to use the 

actual residual distribution in all cases. In order to generalize this approach to other 

populations, it is necessary to develop a method of modeling the error that could be applied to 

any calibration data set for any population. Also, as was the case here, we assumed that the 

true residual distribution in the population varied smoothly, as opposed to the residual 

distribution we see from this sample population. Therefore, depending on the data source, size 

of the calibration data set, representativeness of the sample and parameters of the actual 

residual distribution, one must decide whether to use a modeled error function or the actual 

residual distribution as the error function.    

In standard statistical calibration, the random error (εi) is assumed to be a normal 

distribution with a mean of zero and a standard deviation that is constant across the range of 

records, in this case the range of BWs. However, as demonstrated below, the error in these 

data is not normally distributed.  Furthermore, we do not wish to assume, a priori, that the 

distribution parameters are constant for all weight ranges.  Therefore, a more flexible approach 

is used to estimate the appropriate error function based on the calibration data. 

The analog weights are clustered into only 69 unique values, and each unique analog 

value appears in multiple data records.  Consider figure 3.6, which shows the digital weight 

versus the analog weight of each record.  The plot is zoomed in around 2.5kg, and the data 

points with an analog weight of 2.5kg are shown in black.  The clustering of analog weights is 

clearly visible.   Notice that the data with an analog weight of 2.5kg has digital values that range 

from 1.7 to 3.5 kg.  Therefore, these data naturally lend themselves to considering the scatter 

distribution in the digital weights for a given analog weight. 
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However, the error function we wish to define, Ɛi, characterizes the inverse quantity.  As 

shown in equation (4), it describes the scatter in the recorded analog weight for a given digital 

weight.    Therefore, we will establish a relationship between these two error quantities for the 

calibration data.  Consider the inverse prediction equations (5) and (6): 

 

𝑋�𝑖 =   𝑌𝑖−𝛽0 𝑌|𝑋− 𝜀𝑖
𝛽1 𝑌|𝑋

        (5) 

 

∑ 𝑋𝑖 𝑛
𝑖=1 = ∑ �

(𝑌𝑖)− 𝛽�0 𝑌|𝑋− 𝜀𝑖
 𝛽�1 𝑌|𝑋𝑋𝑖

�𝑛
𝑖=1       (6) 

 
Regrouping the terms yields the following expressions for one observation and all the 

observations, respectively: 

 

𝑋𝑖 =  �−𝛽0 𝑌|𝑋

𝛽1 𝑌|𝑋
� + � 1

𝛽1 𝑌|𝑋
� 𝑌𝑖 + � −𝜀𝑖

𝛽1 𝑌|𝑋
�      (10) 

 

∑ 𝑛𝑗𝑋𝑗
𝐽
𝑗=1 = ∑ �𝑛𝑗 ��𝑌𝑗𝑘�− 𝛽�0 𝑌|𝑋

 𝛽�1 𝑌|𝑋𝑋𝑖
�
∑  𝜀𝑗𝑘
𝑛𝑗
𝑘=1
𝛽�1 𝑌|𝑋

�𝐽
𝑗=1      (11) 

 
This can be expressed in simplified form as  
 

𝑋𝑖 =  𝛽0′ + 𝛽1 
′ 𝑌𝑖 +  𝜀𝑖′       (12) 

  Where  𝛽0′ =  �−𝛽0 𝑌|𝑋 

𝛽1 𝑌|𝑋
�        (12a) 

   𝛽1′ =  � 1
𝛽1 𝑌|𝑋

�      (12b) 

   𝜀𝑖′ =  � −𝜀1
𝛽1 𝑌|𝑋

�          (12c) 

 

Here, Ɛi' is the error function that describes the scatter in the digital weights which correspond 

to a given analog weight.  This is the error quantity which can be most readily estimated from 

the data.  Once the equation for Ɛi' is established, we will relate it back to Ɛi through equation 

(12c) to complete the calibration function. 

 

Rearranging the terms in equation (12) yields the following equation for Ɛi': 
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𝜀𝑖′ =  𝑋𝑖 −  𝛽0′ −  𝛽1′𝑌𝑖       (13) 
 

 
To begin the process of determining the function of Ɛ', we use (13) to estimate the value of Ɛi' 

for each record.  Physically, this error is the discrepancy of each digital weight from the 

estimated value based on the calibration model.  Figure 3.7a shows the analog and digital 

weights of each record and the linear regression fit line.  Subtracting the estimated weighted 

regression value from each digital weight results in the error, Ɛi', as shown in figure 3.7b. 

First, we looked at the errors associated with those analog weights listed as exactly 2.5 

kg. There were enough data points at this specific analog weight to create a distribution and 2.5 

kg is important because it marks the boundary between NBW and LBW.  Figure 3.8 shows the 

distribution of error, εi', for the records with an analog weight of 2.5 kg.  

 Using the statistical software MATLAB (Natick, MA), a best fit curve was generated for 

the data. (Figure 3.9) The t location-scale distribution was found to match the data most 

closely. Figure 3.9 shows an overlay of the best fit t-distribution curve on the histogram. For 

comparison, we have included an overlay of the normal distribution curve, which does not 

accurately model the data. 

The t location-scale distribution has the density function: 

 

Γ�𝜐+12 �

𝜎√𝜐𝜋Γ�𝜐2�
�
𝜐+ �𝑥−𝜇𝜎 �

2

𝜐
�
−�𝜐+12 �

       (14) 

 
 
 
With location parameter μ, scale parameter σ > 0, and shape parameter ν > 0. If x has a t 

location-scale distribution, with parameters μ, σ, and ν, then 

 

𝑥−𝜇
𝜎

          (15) 
 

has a Student’s t distribution with ν degrees of freedom. 
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 We see from this process that the error for the records with an analog weight of 2.5 kg 

is well modeled by a student’s t distribution and that the model parameters for the best fit 

distribution can be estimated.  In theory, the method described above could be applied to each 

unique analog weight, resulting in a custom fit error function for each analog weight.  However, 

in practice many unique analog weights do not have enough records to generate a distribution. 

So, to apply the above concept across the whole range of BWs, we applied several methods to 

estimate the error functions across the full range of BWs without assuming that they would be 

the same. The conclusion of these analyses was that the distribution of digital weights is 

uniform for all analog values. This characteristic is beneficial because it means that to adjust the 

analog BW data, we will not have to rely on separate error distributions from different places in 

the range of BWs. Instead, a single error distribution can be derived which applies to all analog 

weights. For a full description of this process, please see Appendix A.  

 

 

 

Having shown that a single error distribution was appropriate to use across the range of 

BWs, a single distribution was fit to all the error shown in Figure 3.10.  The resulting best-fit 

Student’s T distribution is shown in Figure 3.11. The distribution parameters are as follows: 

location (μ) = 0.00279609 
 scale (σ) = 0.061233 
 shape (ν) = 1.96115  
 
 Now that that random error distribution (εi) has been estimated, we can return to the 

calibration function and inverse prediction phase. As shown in function (4) the appropriate 

calibration function for these data would be: 

 
𝑌𝑖 =  𝛽0 𝑌|𝑋 +  𝛽1 𝑌|𝑋𝑋𝑖 +  𝜀𝑖        (4) 

 
 We have now established that the most appropriate function for error (εi') is the 

student’s T-shape distribution, described above 
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𝜀𝑖′ =
Γ�𝜐+12 �

𝜎√𝜐𝜋Γ�𝜐2�
�
𝜐+ �𝑥−𝜇𝜎 �

2

𝜐
�
−�𝜐+12 �

      (16) 

 
 
 Where the parameters for εi' are: 

  location (μ) = 0.00279609 

   scale (σ) = 0.061233 

   shape (ν) = 1.96115  

 

Using the relationship between εi' and εi from equation (12c), we find that  

 

𝜀i =  𝛽1 � 
Γ�𝜐+12 �

𝜎√𝜐𝜋Γ�𝜐2�
�
𝜐+ �𝑥−𝜇𝜎 �

2

𝜐
�
−�𝜐+12 �

�      (17) 

 
 

Therefore, the final calibration function would be  
 

𝑌𝑖 =  𝛽0 𝑌|𝑋 +  𝛽1 𝑌|𝑋𝑋𝑖 +  𝛽1  �
Γ�𝜐+12 �

𝜎√𝜐𝜋Γ�𝜐2�
�
𝜐+ �𝑥−𝜇𝜎 �

2

𝜐
�
−�𝜐+12 �

�   (18) 

 
 

 With the function parameters of  

 location (μ) = 0.00279609 

scale (σ) = 0.061233 

shape (ν) = 1.96115 

β0 = -0.111 

β1 = 1.049 

 

 For the inverse prediction phase, discussed above and in equations (5) and (6), the final 

functions would be  
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𝑋𝑖 =   

𝑌𝑖−𝛽0 𝑌|𝑋−𝛽1 

⎣
⎢
⎢
⎢
⎡
Γ�𝜐+12 �

𝜎√𝜐𝜋Γ�𝜐2�
�
𝜐+ �𝑥−𝜇𝜎 �

2

𝜐 �

−�𝜐+12 �

⎦
⎥
⎥
⎥
⎤

𝛽1 𝑌|𝑋
     (19) 

 

∑ 𝑋𝑖 𝑛
𝑖=1 = ∑

⎣
⎢
⎢
⎢
⎢
⎡

(𝑌𝑖)− 𝛽�0 𝑌|𝑋− 𝛽1 

⎣
⎢
⎢
⎢
⎡
Γ�𝜐+12 �

𝜎√𝜐𝜋Γ�𝜐2�
�
𝜐+ �𝑥−𝜇𝜎 �

2

𝜐 �

−�𝜐+12 �

⎦
⎥
⎥
⎥
⎤

 𝛽�1 𝑌|𝑋𝑋𝑖

⎦
⎥
⎥
⎥
⎥
⎤

𝑛
𝑖=1    (20) 

 
 

 The surface in Figure 3.12 is a visual representation of the calibration/prediction 

functions described above. For each analog weight in the data set, the appropriate distribution 

is chosen from the surface distribution for that analog weight. In the example in Figure 3.13, 

the appropriate distribution is drawn from the surface for an analog weight record of 1.5 kg. 

The mean (μ) of the distribution is derived from the regression function described above. 

 

3.3.6 Imputation of multiple data sets 

Once the appropriate distribution is available for each analog BW record, a new dataset 

is imputed by drawing random numbers from within the Student’s T distribution with the 

appropriate parameters for that analog data record. This will then create a new dataset that is 

adjusted and no longer contains the biases that were present in the original (in this case analog) 

BW data set. (Figure 3.14) The imputed data set can be compared to the digital weights in the 

calibration data set. Figure 3.14 shows that the imputed weights are quite similar to the digital 

weights, the known gold standard. 

A single imputed data set using this method will be only one estimate of the “true” data 

set, had there not been measurement or information error. Repeated imputations would result 

in multiple, slightly different data sets. In order to combine the results from the analysis of 

multiple imputed data sets, one must apply Rubin’s Rules. 

To obtain a standard error, one must calculate the between-imputation variance 
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(𝐵 = (𝑚 − 1)−1 ∑(𝑄�𝑙 −𝑄�)2) and the within-imputation variance (𝑈 =  𝑚−1 ∑𝑈(𝑙)). 𝑄 denotes 

the odds ratio to be estimated and 𝑚 denotes the number of number of simulated imputations. 

The estimated total variance is  𝑇 = (𝑙 + 𝑚−1)𝐵 + 𝑈�. The total combined variance can be used to 

estimate confidence intervals or perform significance tests.96 (Figure 3.15) 

 

3.4 RESULTS 

 

3.4.1 Comparing the proportion of LBW babies in original versus imputed data sets 

 The first measure used to assess the success of imputing data using this method was the 

percentage of babies that are LBW in the digital, analog and imputed data sets. The analog BW 

data shows that 22% of the babies are LBW. The digital BW data show that 28% are LBW and 

the imputed data from 10 imputed data sets shows that 30% are LBW, with a range of 28% - 

33%. 

 

3.4.2 Comparing the association of head circumference and baby length with BW in the 

original versus imputed data sets 

 The Rekha dataset also includes measurements for head circumference and length of 

the baby at birth. While these variables are not significantly associated with BW as a continuous 

variable, they are associated with BW as a categorical variable (NBW vs. LBW) by logistic 

regression analysis. As you can see in Figures 3.16 and 3.17, the imputed data (from 10 data 

sets), matches the curve for the digital data most closely and is different from the analog data.  

3.4.3 Applying this method to an external data source – the Indian National Family Health 

Survey 3 

The modified statistical calibration and multiple imputation method was applied to an 

external dataset for validation. We used the Indian National Family Health Survey 3 (2005-

2006), a large representative sample from across India that includes data on 56,437 births and 

19,237 recorded BWs. These data were collected through surveys where mothers across India 

were asked the BWs of all children born in the previous five years. Almost all recorded BWs 
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(85.7%) came from maternal memory, as opposed to a written record or health record. As a 

result, we expected significant heaping in these data. 

As seen in the Normal Q-Q graph of the raw NFHS data (Figure 3.18a) the observed BW 

data does not produce a straight line that matches the reference line. Had the distribution of 

BWs been normal, as expected for a large population, the observed value would overlie the 

reference line. Here, the small segments indicate heaping or binning of data at certain intervals. 

After applying the modified statistical calibration method outlined above and imputing new 

data sets, the majority of the data overlies the reference line (Figure 3.18b) indicating that 

heaping has been reduced and the data now form a normal distribution 
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3.5 DISCUSSION 

 

These results suggest that the adjustment method outlined here is successful at 

imputing data sets that match the gold standard and have reduced bias due to heaping 

compared to the analog BW data sets. Using this multiple imputation method, a pooled 

association coming from the combination of the imputed data sets comes closer to the true 

association, were there not error in the data. The imputed rate of LBW babies matches the 

“true” rate and the imputed association between BW and length or BW and head 

circumference matches the association between these variables and the “true” BWs in the 

calibration data set. 

This adjustment method is quite conservative given the bias often found in BW data 

from the developing world. This method corrects for bias from measurement error with an 

analog scale and operator error, such as rounding to the nearest 100 g. This method does not 

correct for other types of biases often found in BW data from the developing world – namely 

recall bias when mothers are asked to remember the BW of their baby. However, even given 

this conservative approach, when applied to an external dataset with heaping due to biases 

besides measurement error, heaping is reduced and the method results in normally distributed 

BW data. 

BW data are typically considered particularly useful because they are readily and 

accurately collected through systems of vital statistics. However, in the developing world this is 

not the case; BW data are only collected through survey data or health care facility data, both 

biased sources. Given the current lack of available methods to adjust these BW data and 

produce useable datasets for further analysis, the study of BW from developing countries has 

been sorely neglected.  

With the method developed here, a significant portion of the bias of these survey-

collected BW data can be adjusted and the use of multiple imputation makes it possible to 

study the adjusted BW data in imputed data sets and as a continuous variable. Researchers 

could use our methods directly in similar populations or replicate what we have done and 

collect a gold standard calibration set to develop function parameters and error distributions 
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that are specific to their own population of interest. Or, if that is not possible, our calibration 

function could be applied to other data sets from the developing world in order to reduce the 

heaping of BW data to some extent. However, this method might be applied and used, it 

provides a novel method for adjusting BW data and creating datasets that can be used to study 

this subject in the developing world countries where it is most needed. 
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3.6 TABLES AND FIGURES 

 
 

 
 
 

Figure 3.1: Heaping of reported birth-weights on multiples of .5 kg, Indian National Family 
Health Survey 3 2005-2006 
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Figure 3.2: Rekha Data – Frequency of Analog Weights 
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Figure 3.3: Rekha Data – Frequency of Digital Weights (gold standard) 
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Figure 3.4: Digital versus Analog Weights 
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Figure 3.5: Weighted Calibration Regression 
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Figure 3.6: Digital versus Analog Weights, Zoom in at 2.5 kg 
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Figure 3.7a: Error in each digital record from the regression fit. Analog versus digital weight 
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Figure 3.7b. Analog versus Error (Digital weight – best fit regression line) 
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Figure 3.8: Distribution of error (εi') for the records that are listed as 2.5 kg by the analog 
scale  
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Figure 3.9: Distribution of error (εi')  for weights at 2.5kg with best fit curve(s) 
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Figure 3.10: Analog weight versus Error (Ɛi')  
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Figure 3.11: Error distribution 
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Figure 3.12: Surface representation of inverse prediction function 
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Figure 3.13: Derivation of unique distribution for adjustment of individual analog weight 
record (Analog weight = 1.5 kg) 
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Figure 3.14: Imputation of adjusted data sets 
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Figure 3.15: Analysis of multiple data sets from multiple imputation 
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Figure 3.16: Baby’s Length versus Probability of Normal Birth-Weight (NBW) – digital, analog 
and multiply imputed data 
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Figure 3.17: Baby’s Head Circumference versus Probability of NBW – digital, analog and 
multiply imputed data 
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Figure 3.18a: Normal Q-Q Plot of NFHS Birth-weight data – Unadjusted data 
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Figure 3.18b: Normal Q-Q Plot of NFHS Birth-weight data – Adjusted using modified statistical 
calibration and multiple imputation  



57 
 

4.0 MANUSCRIPT 2: CHARACTERISTICS OF BIRTH-WEIGHT DISTRIBUTIONS AND THE BIRTH-
WEIGHT – INFANT MORTALITY RELATIONSHIP: A COMPARISON OF INDIA AND THE UNITED 

STATES 
 
 

 
Manuscript in Preparation 

 
 

R. Margaret Whelan,* Drew Feiner,† 
* University of Pittsburgh, Graduate School of Public Health, Department of Epidemiology 

† Blade Diagnostics Corporation, Pittsburgh, PA 
 

 

 

 

4.1 ABSTRACT 

 

4.1.1 Background 

Birth-weight (BW) distributions possess certain characteristics across populations: a 

“predominant” Gaussian distribution & a “residual” distribution representing small, preterm 

babies in the lower tail. The BW-IM relationship is characterized by a J-shaped curve: risk of IM 

approaching 100% at lowest BWs, lowest risk in the middle of the range. We seek to confirm 

these characteristics in an Indian population. 

4.1.2 Methodology 

BW and IM data were taken from the Indian National Family Health Survey III (2005-

2006). Indian BW data were statistically adjusted to account for heaping. US vital statistics 

include linked BW-IM data for the 2004 birth cohort. 

4.1.3  Results 

Among Indian births (n=20,947), the mean (SD) of the predominant distribution was 

2842g (645g). 1.2% of births are in the residual distribution. Among US births (n=2,134,535), the 

mean (SD) is 3358g (496g) and 3.9% of births are in the residual distribution. Indian and US IM 

curves have nadirs at 3,152g BW (IM rate 19.8/1000) and 4,016g (IM rate 2.68/1000) 
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respectively. At 2500 grams (cut-off for low BW), Indian and US rates of IM were 23.8/1000 and 

10.6/1000 respectively. 

4.1.4 Conclusions 

Much higher rates of IM exist in the Indian population, even in the best case (optimum 

BW, nadir of curve). The rates of IM at the 2500 grams LBW cutoff are not equivalent in India 

and the United States. Given these higher IM rates in India, the residual distribution should be 

larger in the Indian population, but it is not, suggesting the typical characteristics of the BW-IM 

relationship do not hold true. These results question the accepted meaning and use of BW 

distributions and the LBW cutoff when looking at data from India. 

 

4.2 INTRODUCTION 

 

 BW is an exceptionally strong predictor of IM, morbidity and longer term health and 

development.3-18 Whether BW is causally related to infant death is currently being 

debated.11,42,47,48,50 However, these two variables have been studied extensively and have 

produced interesting insights into the defining characteristics of the BW distribution and the 

nature of the BW to IM relationship.  

 The BW distribution is normal with an extended lower tail.11,36-38  It can be divided into 

two separate distributions: a predominant distribution, which represents the normally 

distributed births born at or after term (37 weeks). The residual distribution represents the 

small and pre-term babies in the distribution. These distributions are defined by specific 

parameters, namely mean, standard deviation, percentage in the residual distribution and the 

upper bound of the residual distribution. The predominant and residual distributions are 

independent of one another; the mean of the predominant distribution can change without 

affecting the percentage of babies in the residual distribution.11,37-40 

 Studies of BW and IM have shown an extremely strong association between the two 

measures. In general, the lower the weight at birth, the higher the risk of IM. This has also been 

observed on a population level where groups with lower mean BWs (i.e. smokers, African-

Americans) often have higher rates of IM.8,11,19,37,43-45 There is a typical pattern of BW specific 
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neonatal mortality. Risk approaches 100% for the smallest babies and declines to less than 1% 

in the middle of the range, which is close to the mean BW for that population. Then, risk 

increases slightly for the heaviest babies. The same pattern is seen within each gestational-age 

stratum, indicating that this is not simply a reflection of preterm births at the lowest weights. 

This pattern of risk invariably produces an IM curve in the shape of an inverse J. 37,40,41  The 

relationship of these two curves, the BW distribution and weight-specific IM curve, is at the 

heart of the debate over whether BW is actually on the causal pathway to IM. 

 In recent years, theoretical evidence has mounted to support the notion that BW is not 

a causal factor for IM, but that weight and mortality can change together because a common 

set of factors affects both. This has been supported by evidence that in many populations, as 

mean BW changes, the weight-specific IM curve changes by equivalent amounts.11,41-43,47,48,97,98 

While BW and IM have been studied extensively and produced a body of literature 

defining the nature of the BW to IM relationship, there are few examples of these variables 

being studied in the developing world.99-103 This is in large part due to the fact that many 

developing nations do not routinely record BW as part of a system of vital statistics. In these 

situations, BW data may be biased if it comes from health care facilities or survey data. In India, 

a country where BW and IM are issues of chief concern, the major source of BW data is the 

Indian National Family Health Survey, a representative demographic and health survey of the 

entire country. Using a statistical method to adjust for some of the biases in this survey data, 

we have attmepted to compare BW and IM in India and the United States to determine 

whether these characteristics and assumptions about the relationship of BW to IM hold true. 

 

4.3 METHODS 

 

 We obtained linked BW and IM data for the United States through the CDC’s National 

Center for Health Statistics, where they are publically available. The most recent dataset for 

linked births and deaths is the 2004 birth cohort. We downloaded these data from the CDC’s 

National Center for Health Statistics website.104 The denominator data included all births in the 

United States in 2004; these did not include US citizens born outside of the United States or 
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births to foreign citizens that occurred within the United States. The numerator data consisted 

of deaths of infants born in 2004 linked to their corresponding birth certificates, whether the 

death occurred in 2004 or 2005. 98.9% of all infant deaths were linked to the infant’s birth 

certificate, even if birth and death occurred in different states.  For the 2004 cohort, 1.1% of all 

infant death records could not be linked to their corresponding birth certificate. There are 

differences in the percentage linked by variables such as state and infant age at death. 

However, there is no way to know if there is a difference in percentage linked by BW and no 

method to correct for this potential bias. 

In order to reduce potential bias in the computation of BW-specific IM rates, the 

researchers at the National Center for Health Statistics added an imputation for not-recorded 

BW. If BW was not recorded and the period of gestation was known, a value for BW was 

assigned taken from the previous record with the same period of gestation, race, sex, and 

plurality. This imputation reduced the percent of not-recorded responses, reducing (though not 

eliminating) the potential for underestimation when computing BW-specific IM rates.105 

We analyzed these US data in comparison to data from the 2005-2006 Indian National 

Family Health Survey (NFHS-3), a large-scale survey conducted in a representative sample of 

households throughout India. Three rounds of the survey have been conducted since the first 

survey in 1992-93. The survey provides state and national information for India on fertility, 

infant and child mortality, maternal and child health, reproductive health, birth outcomes and 

other variables. The NFHS was coordinated by the Indian Ministry of Health and Family Welfare. 

The 2005-2006 Survey (NFHS-3) was the third such survey conducted in India. NFHS-3 asked all 

women age 15-49 to provide a complete history of their births including the sex, month and 

year of birth, BW, survival status, and age at the time of the survey for each live birth occurring 

in the previous five years, up to six births. Data on BW were collected by two methods – from 

mother’s memory and from health records in the home. Data were classified based on their 

source. Survey researchers in India produced weighting variables using the sample selection 

probabilities of each household and the response rates, and we were able to apply these 

weighting variables to all the NFHS data. A significant portion of the BW data were missing in 

NFHS-3. So, we developed a further weighting variable based on the missing data within each 
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sampling unit and then applied the weighting variable to those recorded BWs to make this a 

representative sample of BWs from the period. 

 Due to heaping of BW at intervals of 500 grams, a phenomenon commonly seen in 

survey BW data from developing countries, the NFHS data was adjusted using a modified 

statistical calibration and multiple imputation method that has been developed for this purpose 

using gold-standard data from rural India.106  

 BW and IM data from US Vital Statistics were compared with NFHS BW and IM data in 

the following ways. Using software from the Wilcox group at the National Institute of 

Environmental Health Sciences,38,42 parameters describing the BW frequency distribution were 

calculated and compared for both the US and India. The software identified the “predominant” 

and “residual” BW distributions (described further below) and calculated key parameters for 

each distribution. This technique is based on an underlying multinomial sampling distribution 

and involved estimating parameters in a mixture model for the multinomial bin probabilities 

after having chosen the support of the residual distribution with a model selection criterion.  

There are two components of any BW distribution, with a total of four parameters. The 

“predominant” distribution is Gaussian (normal), with the parameters mean and standard 

deviation. The “residual” distribution is a portion lying outside the lower tail of the 

“predominant” distribution, which can be summarized as a percent of the whole population. 

One can also look at the optimum truncation point, or upper bound of the residual distribution. 

Births in the “predominant” distribution can be interpreted as term births while births in the 

“residual” distribution are both small and preterm and thus at highest risk of death. Therefore, 

mean and standard deviation of the “predominant” distribution as well as the percent in the 

“residual” distribution were compared for Indian and US BW distributions. 

 US and Indian BW and IM data were also be compared based on basic parameters of the 

BW distribution and IM curve including mean BW, standard deviation of the BW distribution, 

lowest rate of IM, optimal BW (BW at the lowest rate of IM), and difference between mean BW 

and optimal BW. Normality of both curves was assessed using a Q-Q normality plot and best-fit 

software available in the MATHLAB software. The two weight distributions were adjusted to a 

standard z-scale (with means set to zero and standard deviations to 1) and the weight-specific 
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mortality rates were adjusted to the z-scale as well. Weight distributions and IM curves were 

then further compared based on this adjusted scale. 

 Two thousand five hundred grams has been recognized as a relatively arbitrary cut-off 

for dichotomization of BW data, but it is still used very regularly in research and policy-making. 

We assessed the risk of IM at 2500 grams in these two populations and determined if the risk of 

death for Indian infants born below 2500 grams is different from the risk of death for LBW 

babies in the US cohort.  

 

4.4 RESULTS 

 

In the US birth cohort from 2004, 4,118,348 births were recorded. This represents the 

complete birth cohort of babies born in the United States to US Citizens in 2004. Births were 

linked to deaths via birth and death certificates. There were 27,642 infant deaths in the United 

States in the 2004 birth cohort, resulting in an IM rate of 6.71 per 1000 live births. The mean 

BW was 3,281 grams with a standard deviation of 602.9 grams. (Table 4.1) 

In NFHS-3, 56,437 births were recorded across India in the five years preceding the 

survey. A BW was recorded for 34 percent of babies born in the five years preceding the survey; 

this BW came either from a BW recorded on a health card or from the mother’s memory 

(recall). The great majority (85.7%) of BWs recorded came from maternal recall. The proportion 

of births with a reported BW is 60 percent in urban areas and 25 percent in rural areas. 

Response rates were not the same across all the sampling units. Therefore, a unique weighting 

factor was available within the NFHS dataset that we applied to each case based on the 

sampling unit and response rate. We also applied a second weighting factor to adjust for the 

missing BW data within each sampling unit. There was significant heaping in the raw NFHS BW 

data (Figure 4.1a), which was adjusted using a modified statistical calibration and a new data 

set was imputed (Figure 4.1b).   

There were 615 infant deaths in the NFHS 3 data, resulting in a rate of 31.97 infant 

deaths per 1000 live births in India from 2000-2006. This rate is approximately four and a half 
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times higher than the IM rate in the United States for 2004. The mean of the BW distribution 

was 2,769 grams with a standard deviation of 739.1 grams. (Table 4.1) 

 The first characteristic of interest under discussion here are the US and Indian BW 

distributions. The normality of both these distributions was assessed using a Q-Q normality plot 

(Figure 4.2). Both plots demonstrate that the theoretical normal distribution fits the BW 

measurements. The US data from 2004 shows the measurements dipping below the reference 

line at the lowest BWs and rising above the reference line at the highest BWs. This can be 

interpreted to mean that there is a longer tail to the left (smaller BWs) and a shortened tail of 

the distribution to the right. This is to be expected of BW distributions. The data from India 

follow the reference line for the majority of the measurements. The largest BWs rise above the 

reference line, suggesting a shortened tail to the right of the distribution. In general, both plots 

suggest that assuming an overall normal distribution for both Indian and US BW data is 

appropriate. 

 The next analysis produced figures and parameters for the predominant and residual 

BW distributions. The US predominant distribution is bell shaped with a mean of 3,357g and a 

standard deviation of 489g. The residual distribution for the US holds 4.3% of the births. The 

“optimum truncation point” or upper bound of the residual distribution is 2,500 grams. The 

biological interpretation of the residual distribution is that it holds the small and preterm births, 

those babies at highest risk of death. (Figure 4.3, Table 4.2) 

 The Indian predominant and residual distributions are different from the pattern seen in 

the United States. Compared to the US, the Indian predominant distribution is left-shifted and 

wider due to a lower mean of 2,910 g and a larger standard deviation of 645 g. The portion of 

babies in the residual distribution is smaller with only 1.6% of births. The optimum truncation 

point for the residual distribution is 1,700 g. (Figure 4.4, Table 4.2). 

 Having analyzed the BW distributions alone, we next looked at the BW distribution as it 

compares to the weight specific IM curve in each population. In the US birth cohort, the IM 

curve has an inverse J-shape. The mean of the BW distribution is 3,281 g and the corresponding 

IM at the mean BW is 2.00 per 1,000 live births. The lowest rate of IM in the US was 1.42 deaths 

per 1,000 live births and this corresponded to a BW of 4,020 g (the optimum BW). The 
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difference, in grams, between the mean and optimum BW was 739 grams. (Table 4.1, Figure 

4.5a) 

 For the Indian population of births, the BW distribution is again left-shifted and wider 

with a mean BW of 2,769 grams. The weight-specific IM curve has a different shape from the US 

cohort’s J-shaped curve; it is more U-shaped. The rate of IM that corresponds to the mean BW 

in the Indian cohort is 23.69 per 1,000 live births. The lowest rate of IM is 23.58 per 1,000 live 

births and this corresponds to a BW of 2,934 grams (the optimum BW). The difference, in 

grams, between the mean and optimum BW was 147 grams. (Table 4.1, Figure 4.5b) 

 When both BW distributions (using frequency percent for the y-axis) and weight-specific 

IM curves are plotted together, the higher rates of IM become clear. The IM curves intersect at 

a BW of 1,304 grams suggesting that the risk of IM for US babies weighing less than this is 

higher than the risk of IM for these very small Indian babies. (Figure 4.6). 

 However, when both the BW distributions and weight-specific IM curves are adjusted to 

a z-scale, with a mean of zero and standard deviation of one, the relationship is clarified (Figure 

4.7). Through this technique, when the BW distributions are forced to over-lie one another, the 

relationship of the IM curves is clear. The rate of IM in India is higher than in the United States 

across the whole range of BWs. However, the two IM curves have different shapes. The US IM 

curve is steeper in shape while the Indian curve has a much flatter slope across the majority of 

the range of BWs. This means that the difference in rates of IM between India and the US 

increases as one moves towards the middle of the range of BWs. While the rate of IM gets 

markedly lower for US babies near the mean BW, the rate of IM does not decrease nearly as 

much for the Indian cohort. (Figure 4.7) 

 

 

4.5 DISCUSSION 

 From the outset, these data and analyses suggest that there are significant differences 

between the US and Indian cohorts in terms of the BW to IM relationship. While essentially 

normal in shape, the Indian BW distribution is left shifted and wider when compared with the 
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US cohort. The mean Indian BW is 500g less than the mean US BW. While this difference is not 

unexpected, the results from the analysis of the predominant and residual distributions are. 

 From previous studies of this type, one expects to see about 2-7% of babies in the 

residual distribution.39 With only 1.6% of babies from the Indian cohort falling in this 

distribution, this is outside of the normal range. And, given that the residual distribution 

represents small, pre-term babies, those at highest risk for death, one would expect that a 

population with such high rates of IM would have a large proportion in the residual distribution. 

Especially in comparison to the 4.3% of babies in the US residual distribution, this result from 

the Indian cohort is counter-intuitive.  

 We must acknowledge that these results could be due to mechanical error of some sort. 

Perhaps because the Indian BW distribution is so left-shifted and encroaches so much more 

onto the residual distribution, the software, which was developed using data from the 

developed world, may not be able to accurately determine the parameters of interest. 

However, there is nothing in the statistics or assumptions of the analysis to suggest that this 

type of analysis must be restricted to BW distributions with particular characteristics. 

Another interpretation of these results is that in India, BW does not play quite as large a 

role in the risk of IM. Rates of IM in the US have decreased substantially over the years, in large 

part due to a reduction in infectious and environmental insults that could kill a newborn. These 

insults, like vaccine preventable illnesses, diarrheal diseases and acute respiratory infections are 

still highly prevalent in India. So, these data may be suggesting that, in the face of so many 

other factors that increase the risk of IM, BW contributes less to the total risk of IM and 

produces results like those shown above. 

 Other results to note from this analysis are the values for the optimum truncation 

points. This parameter is the upper bound of the residual distribution. In the US cohort the 

optimum truncation point is 2,500 grams, the cut-off for the designation LBW. In India, the 

optimum truncation point is 1,700 grams, fully 700 grams lower. While these numbers do not 

relate directly to the cut-off point for LBW, they may lend some insight into what an equivalent 

cut-off point in India might be.  
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 The second analysis of the relationship between the BW distribution and weight-specific 

IM rates also had some interesting results. These data show much lower rates of IM across the 

whole range of weights in the US cohort compared to India. However, the IM curve in India is U-

shaped, which is different from the expected J-shaped curve that can be seen in the US data.  

Another difference is apparent when looking at the optimum BW versus the mean BW 

in both populations. While the biologic mechanism underlying this phenomenon is not 

understood, it is common in most populations to see a difference between the optimum BW 

and the mean BW in a population. Researchers have postulated that this may indicate a 

biological struggle between the fetus, which is trying to grow, and the mother, who has to 

deliver the fetus and needs it to remain reasonably small. The difference between mean and 

optimum BWs in India is very small (147 grams). We do not believe that this means there is no 

fetal-maternal struggle for size of the baby. Rather, we interpret this result to show that, once 

again, BW is not contributing to risk of IM in this Indian population in the same way it does in 

the US population. In India, across the range of BWs from 2,000 grams to 3,500 grams, the rate 

of IM varies very little. Because the optimal BW is determined by the lowest rate of IM, the 

separation between mean and optimal BWs is very small. Around the mean, there simply is not 

much variation in rates of IM. 

With the combined US and Indian data (Figure 4.6), one can clearly see the shift of the 

Indian BW distribution to the left. The intersection of the two IM curves is striking in these 

results. These types of crossing IM curves have confounded researchers for many years and led 

to what is commonly called the “Low Birth-weight Paradox,” wherein the intersection is 

interpreted to mean that for the smallest babies, they are better off being born to the group 

with the higher overall IM. In this case, the intersection could be interpreted to mean that, for 

babies born less than 1300 grams, it is better to be born in India because the rate of IM for 

those tiny babies is smaller than it is in the United States. This interpretation of intersecting IM 

lines has now been contradicted46,107-109 and the method of using a z-scale adjustment gives us 

a way to look at two IM curves that are actually comparable when the BW distributions are 

forced to a fit where the mean is zero and the standard deviation is one. 
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This z-scale adjustment removes the intersection of the IM curves, but it does not 

produce results seen in other populations. In populations which typically have higher rates of 

IM and lower overall BW, like smokers, people at high altitude or the general US population 

from 50 years ago, the z-scale adjustment shows IM curves of the same shape that either 

overlap or are parallel, in the case of higher IM rates across the range of BWs. When this same 

technique is applied to the Indian and US data, the IM curves do not converge. Instead, this 

method further illustrates the different shapes of the IM curves and highlights the increasing 

difference in IM rate as the curves approach their respective nadirs and the fact that the 

change in IM across BWs is not as great in India as it is in the US. This again suggests that BW is 

not as great a contributor or indicator of IM in the Indian cohort as it is in the United States 

cohort. 

 Together, these results present an interesting picture of the nature of the relationship 

of BW to IM in India as compared to the United States. These results suggest the BW-IM 

relationship is different in India than the US. BW does not appear to contribute as much to the 

risk of IM in India, as shown through the relatively small changes in IM rate across most of the 

range of BWs. We have hypothesized that this may be the case because highly prevalent 

environmental and infectious insults to the infant are driving the high IM rates and that 

programmed characteristics, like BW, simply do not play as large a role in determining the 

infant’s survival. 

 Wilcox and Russell have suggested that, on a population level, BW is not on the causal 

pathway to IM. They support this hypothesis with evidence that, while a change in BW may be 

associated with increased risk of IM or a change in perinatal health, it is not through the change 

in BW that the health effect occurs. They suggest that BW and IM change together and are 

highly associated because the same causal factors are affecting them both. They also show that 

BW can change without an effect on mortality. (Figure 4.8) 

 These data lend support to this hypothesis to some extent. The small variation in rate of 

IM across the middle of the range of BWs supports the notion that BW is not causing IM in this 

population. It is also appropriate to reason that similar causal factors may lead to the BW and 

IM found in this population. However, the decrease in IM variation across the BWs suggests 
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that IM is not responding to the common causal factor to the same extent that BW is 

responding. If we could measure that actual causal factor, the strength of the associations 

would be quite different to result in this differential response from the BW distribution and IM 

curve. 

 Most of the information we have as researchers about BW and IM comes from 

populations in developed countries, like the United States and Norway. To our knowledge, 

there is no study in the literature that discusses BW distributions and the BW-IM relationship in 

India. Likewise, to our knowledge there is no published study that seeks to confirm the 

published characteristics of BW and IM in an Indian population. Since there are significant 

differences between the US and Indian BW distributions and BW-IM relationship, this analysis  

provides an interesting addition to the literature and raises important questions about the 

importance of BW is as an indicator of IM risk and population health in India and perhaps in 

other developing countries. 

 From a larger, policy perspective, these data and results challenge the current practices 

and policies of the Indian government which seek to reduce rates of IM by increasing BW 

through maternal feeding campaigns. These data suggest that scarce resources should instead 

be devoted to interventions to help the infants after they are born as opposed to attempting to 

increase their BWs. 
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4.6 TABLES AND FIGURES 

 
 

Table 4.1: Cohort Characteristics 
 

 US Vital Statistics 2004 Indian NFHS 3‡  
Number of births 4,118,348 56,437 
 Births with recorded BWs   19,237 (34.1%) 
 BWs from maternal recall n(%)  16,482 (85.7%) 
Number of infant deaths 27,642 615  
Overall IM rate (per 1000) 6.71 31.97 
BW distribution mean (SD) 3,281 (602.9) 2,769 (739.1) 
IM at mean BW (per 1000 births) 2.00 23.69 
Lowest IM rate (per 1000 births) 1.42 23.58 
Optimal BW (lowest IM rate) 4,020 g 2,934 g 
Difference of BW distribution mean and 
optimal BW 

739 g 147 g 

IM rate at 2500 g BW (per 1000 births) 5.45 25.23 
‡ Reported statistics are based on the weighted sample cohort  
*Cases where BWs were not recorded in US Vital Statistics were imputed, resulting in a 
complete set of 4,118,348 births in the cohort 
 
 

Table 4.2: Characteristics of BW distributions 
 

 US Vital Statistics 2004 Indian NFHS 3‡  
Predominant Distribution Mean (SD) 3,357 g (489 g) 2,910 g (645 g) 
Residual Distribution Percentage 4.3% 1.6% 
Optimum Truncation Point 2,500 g 1,700 g 
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Figure 4.1a: BW Distribution for raw and imputed NFHS Data - Raw NFHS Data  
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Figure 4.1b: BW Distribution for raw and imputed NFHS Data - Imputed NFHS Data 
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Figure 4.2a: Normal Q-Q Plots of Birth-weight for India (NFHS 3) and the United States (2004) 
- United States 
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Figure 4.2b: Normal Q-Q Plots of Birth-weight for India (NFHS 3) and the United States (2004) 
- India, NFHS 3, 2005-2006 
 
 
  



74 
 

 
 
 

Figure 4.3 United States Birth-weight Distribution 
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Figure 4.4 Indian Birth-weight distribution 
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Figure 4.5a: Frequency distribution of birthweight and weight specific neonatal mortality for 
India and the United States – United States 
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Figure 4.5b: Frequency distribution of birthweight and weight specific neonatal mortality for 
India and the United States – India 
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Figure 4.6: Frequency distribution of birthweight and weight specific neonatal mortality for 
India and the United States 
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Figure 4.7: Frequency distribution of birthweight and weight specific neonatal mortality for 
India and the United States after adjustment to a z-scale of birthweight 
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Usual assumption: BW on the causal pathway 
 
 
 
 
 
Wilcox-Russel Hypothesis: BW not on causal pathway, common causal factor responsible for 
changes in BW and IM 
 
 
 
 
 
 
 
 
 

Figure 4.8: Directed Acyclic Graphs of the BW – IM relationship 
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5.1 ABSTRACT 

5.1.1 Background 

Rates of infant mortality (IM) are extremely high in India (50.3 per 1,000 live births), 

seven times the rate in the United States and 20 times the rate in Sweden. Birth-weight (BW) 

has been shown to be an extremely strong predictor of IM in all populations, but it is also in 

question whether BW is on the causal pathway to IM. Studying a cohort in rural South India, we 

sought to identify factors associated with IM apart from BW that could provide opportunities 

for intervention to reduce the high rates of infant death. 

5.1.2 Methodology 

Since 2004, residents of Medchal Mandal (county) in the Ranga Reddy district north of 

Hyderabad, Andhra Pradesh, India have been followed and data collected on births, deaths, 

demographic factors and other measures related to general and reproductive health. In 2009 a 

more in-depth, cross-sectional survey of the families in the Mandal was completed. Using data 

from both these sources, we analyzed the associations of certain SES, demographic and 

sanitation/hygiene factors with the outcomes IM and very small BW (<1.7 kg).  
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5.1.3 Results 

Some SES and demographic variables, including maternal age, sex of the child, place of 

birth, year of birth, family type, parents’ education and caste, were significantly associated with 

very small BW and IM. Sanitation/hygiene factors, including facilities for human waste disposal, 

source of drinking water, sewage disposal, cooking fuel and garbage disposal were also 

significantly associated with very small BW and IM. After controlling for the significant SES and 

demographic factors, the associations between sanitation and BW and sanitation and IM 

persisted. The association of sanitation to IM persisted after controlling for BW. 

5.1.4 Conclusions 

These results suggest that sanitation/hygiene factors are associated with very small BW 

and IM in this rural Indian population. We believe that sanitation and hygiene factors are acting 

as surrogates for exposure to infectious disease in this case and that interventions to improve 

sanitation and hygiene in this population could reduce the high rates of IM. 

 

 

5.2 INTRODUCTION 

 

In 2009, the rate of IM in India was 50.3 per 1,000 live births, more than seven times the 

IM rate in the United States (6.8/1000) and more than 20 times the IM rate in Sweden 

(2.3/1000).51 Despite efforts to reduce the numbers of infant deaths through social welfare 

programs and other interventions,53 IM rates remain unacceptably high in India. 

IM has been studied in many different populations and methods have been developed 

to reduce the numbers of infant deaths, primarily in developed countries.54-56 However, given 

such high rates of infant deaths, surprisingly few studies have undertaken to determine what is 

responsible for these deaths in India, and particularly in rural India. 

BW is the strongest recorded predictor of IM. Babies weighing less than 1,500 g have a 

mortality risk at least 100-fold higher than babies at the optimum weight (the weight associated 

with the lowest mortality). This association is seen at both the individual and population level. 

BW is extremely predictive of an individual baby’s survival. Also, groups with lower mean BW 
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often have higher IM. 3-18,41,48 However, the true nature of the relationship between BW and IM 

is controversial. Researchers are divided over whether or not IM is caused directly by BW and if 

so, what the biological mechanism is. This is a particularly important question in India where 

efforts to reduce IM have focused on increasing BW.57,61 However, this approach, which 

assumes that risk of IM is programmed from birth (in the infant’s BW), does not address insults 

after the baby is born which could be contributing significantly to IM. 

With this study, we are interested in the role of factors other than BW and their 

contribution to IM in a rural Indian population. It has been established that risk for IM is 

increased in lower SES and rural populations in India and has also been closely linked to 

nutrition.57,59,61,89,110  Studies of cause specific IM in India identify infectious diseases as the 

leading direct cause of infant death.58,60,110  Nutrition as a risk factor for lower BW in India has 

been studied at length.58,85,90,111-113  Other determinants of BW in India are less well defined, 

but include lower SES,85,114 maternal age,85 pesticide exposure,115 and maternal co-

morbidities.116-118 

In this study, we hypothesize that infectious disease plays a role in the high rates of IM 

and lower BW in this rural Indian cohort and that household sanitation and hygiene are 

surrogate markers of these infectious diseases. Household sanitation measures like toilet 

facilities and cooking fuel are viewed here as stand-ins for exposures to diarrheal diseases and 

pathogens causing upper respiratory infections. We also believe that studying these 

sanitation/hygiene factors and their associations with both IM and BW will provide insight into 

the BW-IM relationship in this population.  

 

 

5.3  EXPERIMENTAL DESIGN AND METHODS 

 

5.3.1 Study Setting and Design: The Rural Effective Affordable Comprehensive Healthcare 

(REACH) Project 

 The REACH Project is a working model of healthcare delivery to rural populations that 

provides health education, immunizations, access to antenatal care and access to primary and 
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tertiary care for a population of 43,270 people in 41 villages in the Medchal Mandal in the 

Ranga Reddy District on the northern outskirts of Hyderabad, Andhra Pradesh, India. REACH has 

enumerated all households and household members in these communities and mapped each 

dwelling by GIS. 

In each of the villages in the catchment, a Community Health Volunteer (CHV) has been 

recruited to visit each family in the village and conduct monthly interviews. In this way, a 

detailed database is maintained, which contains information on family make-up, births, deaths, 

marriages, pregnancies, health, socioeconomic and demographic factors. (For a complete list of 

collected measures, see Table 1.) This database has been continually updated since 2004. 

In 2009, a more in-depth survey was completed in all the households in the REACH 

catchment area. This Medchal Family Health Survey (MFHS) provides cross-sectional data that is 

more detailed in regards to health issues like birth histories, disease exposures and health care 

utilization. (For a complete list of collected measures, see Table 1.) The cross section data from 

the MFHS was linked to the REACH database using a common identifying variable.  

For this study, we have used primarily data from the REACH database with a few 

additional measures taken from the MFHS. The outcomes of interest are BW and IM and the 

exposures of interest are sanitation and hygiene variables.  

 

5.3.2 Methods 

 A previous study of BW distribution in this population and other survey collected BW 

data in India revealed heaping (also called digit preference), a pattern of misreporting in which 

the distribution of a number reported by respondents shows implausibly large frequencies of 

particular values.20,23,106,119 In this case, the reported BWs showed large heaps at 100 and 500 

gram intervals.  

To adjust for heaping, the REACH BW data was adjusted using a modified calibration and 

multiple imputation (MCMI) technique developed specifically for this purpose.106  This method 

is particularly appropriate because the validation data set that forms the basis for the MCMI 

technique is taken, in part, from births to women in the REACH catchment area. All calculations 



85 
 

involving BW were completed using three imputed data sets and the resulting statistics were 

combined using Rubin’s rules for combining the results of multiple imputation.96,120 

The key outcomes of interest were BW and IM. BW was considered in three forms: first, 

as a continuous variable, second as a dichotomous variable (LBW <2.5kg and NBW ≥ 2.5kg). 

Finally we divided BW into four categories based on parameters from the BW distribution 

previously described (Manuscript 2). The category Very Small BW (<1.7kg) was based on the 

truncation point of the residual BW distribution; the categories Small BW [1.7kg – 2.5kg), 

Optimum BW [2.5kg – 3.36kg) and large BW (≥ 3.36kg) were based on the optimum BW (lowest 

risk of IM: 2,934kg) and standard deviation (739.1g) of the BW distribution.  

The covariates of interest, those measures related to sanitation and hygiene, were 

assessed to determine if they could be combined into relevant scales representing overall level 

of sanitation/hygiene. Exploratory factor analysis was used to determine if valid scales could be 

created and used. Chronbach’s alpha was used to determine levels of reliability for any 

potential scales. 

For categorical variables, a reference category was set for comparison in the statistical 

analysis. The demographer (K. Balasubramanian) who designed the data collection tools used 

for REACH and the MFHS ranked the response items from worst to best. The best option was 

set as the reference category and tested. In certain instances the reference category had to be 

changed when there were too few records to estimate an effect. All analyses of categorical 

variables were conducted in comparison to these “best response” reference categories.  

First, the association between BW and IM was confirmed in this population using logistic 

regression. We then considered BW and  IM as outcomes. We analyzed the outcome variables 

using univariate analysis with each of the demographic, socioeconomic (SES) and 

sanitation/hygiene variables of interest. In all cases, measures from the REACH database were 

given preference over measures from the cross-sectional Medchal Family Health Survey. We cross-

tabulated the categorical independent variables using Pearson’s χ2 test or the Fisher exact test 

where appropriate. 

Generalized linear models were used to analyze the univariate relationship between 

categorical dependent variables and the continuous outcome of BW. Logistic regression was used 



86 
 

to analyze associations between categorical dependent variables and the categorical BW and IM 

outcomes. Pearson’s rho was used to assess co-linearity between continuous dependent variables 

and a correlation matrix was used to insure limited co-linearity between continuous or 

ordinal/scalar variables. We assessed overlap and confounding in the categorical variables using 

cross tabulation and logistic regression analysis. Special attention was paid to missing data, 

especially from the MFHS. Missing values are noted in the results tables and we also included the 

missing values as a separate response category (unknown missing response) in the models. 

 Using the above method, we identified sanitation/hygiene variables as potentially 

significant predictors and demographic/SES variables as potentially significant confounders based 

on a p-value of 0.20 or less. For each of the sanitation/hygiene predictors of interest we created 

separate models using linear and logistic regression where appropriate to predict BW and IM while 

controlling for demographic and SES variables. Finally, for those sanitation/hygiene-IM models 

showing significant associations, we controlled for BW to see if this addition to the models 

changed the significance, direction or strength of the associations. 

 Every analysis that involved BW (continuous, dichotomous or categorical) as a predictor or 

outcome was completed three times using each of three imputed data sets. The resulting odds 

ratios, confidence intervals and p-values resulting from the three data sets were combined using 

Rubin’s Rules.96,120 The overall estimate (odds ratio) is the average of the three computed 

estimates. Based on the standard errors and estimates from each imputation we calculated the 

within-imputation variance and the between-imputation variance to estimate a total variance. The 

overall standard error was derived from the total variance and was then used to calculate the 

overall confidence intervals. A significance test of the null hypothesis was performed using the 

overall estimates and total variance and resulted in p-values for each estimate.  

 

5.4 RESULTS 

 

5.4.1 Population Characteristics 

 A total of 5,270 births were recorded in the REACH catchment population between 2004 

and 2010. There were 222 infant deaths during this time and the average age at death was 40.3 
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days. A numerical BW was recorded for 4,060 (77.0%) of the births and, after adjustment for 

heaping, showed a mean of 2.7kg (SD=0.4kg). 1,214 (29.9%) babies were categorized as LBW 

because imputed weight was less than 2.5kg at birth. 66 (1.6%) of babies were in the Very Small 

category, weighing less than 1.7 kg and 1,148 (283%) were in the Small category. The majority, 

2,617 (64.5%) were in the Optimal BW category, weighing between 2.5 and 3.4kg. 229 (5.6%) of 

babies were in the Large BW category. (Table 5.2) 

 Data were collected from babies born in 41 villages in the catchment area. The average 

age of their mothers was 25.8 years old (SD=3.8 years) and 68.4% of them had only a middle 

school education or lower. The large majority, 92.1% were Hindus and 82.4% belonged to a 

caste of lower social status (Backward Caste, Scheduled Caste, Scheduled Tribe). 87.7% of 

participants held government ration cards and received government-subsidized food and social 

welfare. (Table 5.2) 

 Three thousand, seven hundred and sixty-six (71.5%) families reported having tap water 

in their homes. Just over half (52. 9%) reported closed drainage sewage disposal and the 

minority (27.4%) reported having a toilet facility in the house. (Table 5.2) 

 

5.4.2 Birth-weight association with infant mortality 

 Using exploratory factor analysis and reliability testing, we assessed the covariates of 

interest (sanitation and hygiene, demographic and SES variables). While we were able to 

identify underlying factors in each of these three realms, none of the resulting scales was 

reliable enough to use. 

 We first confirmed the strong association between BW and IM (Table 5.3). This 

association held true for all the specifications of BW. In an unadjusted model we found that 

odds of IM increased by 4.9 times for every 1kg decrease in BW. In a model that controlled for 

the possible confounders maternal age, place of birth, delivery type, family type, mother’s 

education, father's education and caste we found that the odds of IM increased to 5.0 times for 

every 1kg reduction in BW. The unadjusted odds of IM for babies born weighing less than 2.5kg 

was 2.6 times higher than for those babies weighing at least 2.5kg at birth. The categorical 

examination of BW demonstrated that those increased odds of IM for LBW babies are mostly 
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due to the increased odds of IM for babies weighing less than 1.7kg (adjusted OR=20.9, 95% 

CI=9.7-45.1). Meanwhile, the odds of IM for Small babies (1.7 to 2.5kg) was 2.1 times higher 

than for babies in the optimum range of BW (2.5-3.36kg). The association between BW and IM 

was significant for each BW variable and adjustment with relevant confounders increased the 

strength of the association in every case. (Table 5.3) 

 

5.4.3 Demographics and SES association with IM and BW 

 IM was analyzed in relation to demographic and SES factors hypothesized to have 

significant associations. Those demographic factors that we found were not associated with IM 

included religion, dietary practices, the father’s age and the mother’s occupation (data not 

presented). Those SES factors that we found were not associated with IM included home 

ownership, land ownership, house type, welfare status (ration card), stated family income, 

goods ownership (car, computer, television, refrigerator, etc.), electricity in home, and literacy 

(data not presented). Some reproductive health variables that we tested and found to have no 

association included number of prenatal care visits and history of previous child death (data not 

presented). 

 Demographic variables that we found were significantly associated with IM included 

maternal age, place of birth, delivery type (vaginal delivery vs. caesarean section) and family 

type. Compared to babies born in a private hospital, odds of death for babies born at home 

were increased by 2.85 times (CI:1.86-4.37). Caesarean section appeared to be protective for 

IM (OR=0.68 CI: 0.49-0.92) (Table 5.4), though we believed this association was actually 

indicative of the role of access to health care and we found that the association was no longer 

significant when we controlled for place of birth (data not presented).  

 SES factors that were associated with IM included the parents’ education levels, and 

their caste. When the father and mother had no school education the odds of IM increased by 

1.94 and 1.81 times respectively when compared to secondary school educated parents. The 

odds of IM increased by 2.10 times for babies born to mothers in Scheduled Tribes, the caste of 

lowest social status. (Table 5.4). 
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 Demographic variables that were associated with Very Small BW (<1.7kg) included sex 

of the baby, delivery type, and year of birth. Female babies were 1.29 (CI: 1.161-1.423) times 

more likely to be Very Small compared to Male babies. Year of birth was shown to be slightly 

protective against the odds of being born Very Small (OR=0.94 CI:0.90-0.99). Babies in this 

cohort were born between 2004 and 2010 and those born closer to the present had a 

decreased odds of Very Small BW. Caesarean section was shown to be protective against Very 

Small BW (OR=0.70 CI:0.60-0.82). However, as with the IM association, we reasoned that this 

association was indicative of access to health care and we found that when we controlled for 

place of birth that this association became non-significant. (Data not presented).  

 SES factors that were associated with Very Small BW were the parents’ education levels 

and caste. Babies born to uneducated fathers and mothers were respectively 1.33 and 1.37 

times more likely to be born less than 1.7kg. The odds of having a Very Small baby were 

increased by 1.77 times for members of Scheduled Tribes when compared to the caste of 

highest social status. (Table 5.4) 

 

5.4.4 Sanitation/Hygiene association with IM and BW 

 Variables for poor sanitation/hygiene including human waste disposal, drinking water 

source, cooking fuel and trash disposal were associated with increased odds of IM. Risk of 

infant death for babies born in households using a shared community toilet was 5.42 times 

higher (CI: 1.77-16.59) when compared to households with their own toilet facility. Risk of 

infant death was increased by 2.22 times for families that used a shared community tap and 

increased by 20.8 times when the water source was a tanker trunk as opposed to using bottled 

water for drinking. Risk of IM was increased by 1.37 times in homes that used an unclean 

cooking fuel like dung cakes or fire wood. Risk of IM was increased for less desirable forms of 

garbage disposal such as field disposal (OR=1.86 CI:1.04-3.31) and dumping (OR=2.06 CI:1.17-

3.62). (Table 5.5). 

 Poor sanitation and hygiene were also associated with Very Small BW. Sewage disposal 

and unclean drinking water were associated with BW less than 1.7kg. The odds of Very Small 

BW for babies born in houses with a soakage pit for sewage disposal were increased by 1.938 
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times (CI: 1.331-2.545). The odds of being Very Small BW for babies born to families whose 

drinking water came from a tanker truck were 9.7 times higher (CI: 1.14-46.43). 

 

5.4.5 Adjusted associations with IM and BW 

 For the sanitation-IM relationship, we determined the potential demographic and SES 

confounders were maternal age, place of birth, delivery type, family type, mother’s education, 

father’s education and caste. We did not find any significant interaction among variables 

hypothesized to be related such as place of birth and delivery type and the parents’ education 

level and caste. With both place of birth and delivery type in the model, delivery type became 

insignificant and was removed.  

 The adjusted models showed that human waste disposal, drinking water source and 

trash disposal maintained a significant association with IM. Risk of IM for babies born to 

households using a community toilet was increased by 8.18 times (CI: 2.46-27.13) Risk of IM for 

babies where drinking water came from a community tap or tanker truck were increased by 

1.78 and 31.87 times respectively. All forms of trash disposal that were less sanitary than the 

reference option (composting) increased the odds of IM. (Table 5.6) 

 For the sanitation-BW relationship, we included the possible confounders maternal age, 

sex of the child, place of birth, delivery type, year of birth, mother’s education, father’s 

education and caste in the model. Again, we tested for possible interaction among the 

confounders and found none. We did find that, with the inclusion of both place of birth and 

delivery type that delivery type became insignificant and that variable was removed from the 

model. 

 The adjusted models showed that human waste disposal, sewage disposal and drinking 

water source were associated with an increased odds of Very Small BW. Using a community 

toilet increased the odds of Very Small BW by 2.96 times (CI:0.86-10.25), though this 

association was not statistically significant (p=0.086). Open drainage sewage disposal increased 

the odds of Very Small BW by 1.312 times (CI:1.02-1.68) and using a tanker truck for drinking 

water increased the odds by 12.86 times (CI:1.12-148.3). (Table 5.8) 
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5.4.6 Sanitation-IM associations and the effect of BW 

 After adding BW to the model, we found that the significant associations between poor 

sanitation and odds of IM held true except for one case. The association between water from a 

tanker truck and IM was no longer significant when we included BW in the model. However, the 

associations between human waste disposal in a community toilet, drinking water from a 

community tap and less sanitary forms of garbage disposal all remained significant. (Table 5.7) 

 

5.4.7 Model Precision 

 Several of the associations seen in our final predictive models had very wide confidence 

intervals, especially the association of human waste disposal in a community toilet with IM, 

with and without BW included in the model. (Table 5.6, 5.7, 5.8). These wide confidence 

intervals indicate a lack of precision that is due to the high number of missing values in this data 

set as well as the very small numbers of people who are practicing the behavior like using a 

community toilet (n=21), using open drainage for sewage disposal (n=106) and burning garbage 

(n=54). (Table 5.5)     

5.5 DISCUSSION 

 

 These results speak to several important phenomena in this rural Indian population. 

First, these results confirm the strong association between BW and IM. The highest odds of IM 

were found in the smallest BW category; the IM rate for the Very Small BW category was 318 

per 1,000 live births. These results confirm that BW is strongly associated with IM, though they 

do not speak to the question of BW causing IM. 

 Second, these results clearly identify factors that are significantly associated with both 

IM and small BW: poor sanitation and hygiene. We believe that, in this population, sanitation 

and hygiene measures are surrogates for exposure to infectious disease. A shared community 

toilet is not the direct cause of IM, rather it is the increased opportunity for fecal-oral transfer 

of pathogens that comes from a community toilet that is contributing to IM. Dirty cooking fuel 

like dung cakes are surrogates for exposure to pathogens that cause upper respiratory 

infections, a leading cause of infant death.51,52 The significant associations of these measures of 
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sanitation with IM, independent of BW, suggest that it is these infectious insults after the baby 

is born that are contributing in large part to IM in this rural Indian population. 

 Third, these results address the belief held by many researchers121-125 that increased risk 

of IM is primarily the result of socioeconomic status and that, as wealth increases, so too will 

IM decrease. These results suggest that certain measures of SES are significantly associated 

with IM. However, if SES were the primary driving factor behind IM, then the strength of the 

associations with sanitation/hygiene factors would decrease, if not disappear completely, when 

SES is added to the models as a confounder. We have shown here that the association between 

sanitation/hygiene remains significant, and in fact becomes stronger, after adding SES variables 

to the models. Therefore, while SES may play a role in IM and even be associated with poor 

sanitation and hygiene in its own right, these results show that low SES does not fully explain 

the high rates of IM in this population. 

 Finally, these results challenge the contention that small BW causes IM. If BW is not on 

the causal pathway to IM, its relationship with IM would have to be explained by factors that 

both decrease BW and increase mortality. These sanitation measures are significantly 

associated with both a decrease in BW and an increase in IM. Human waste disposal, sewage 

disposal and drinking water were all significantly associated with increased odds of having a 

very small baby (<1.7kg). These associations shed light on whether BW falls on the causal 

pathway to IM. Our results suggest BW is not on the causal pathway to IM and that instead, 

both BW and IM are affected by a similar set of causal factors. (Figure 1) This has been 

previously hypothesized by Wilcox and others.11,42,47,48,126 Sanitation and hygiene, or infectious 

exposures that directly affect the risk of IM are probably also affecting maternal health and 

pregnancy. Diarrheal diseases and the resulting anemia and malnutrition and other types of 

infections during pregnancy have been shown to have ill effects on pregnancy outcomes, 

including BW.69,78-81 Our data support that notion that sanitation and hygiene are strongly 

associated with both lower BW and increased IM, though the associations are not exactly the 

same. These results lend themselves more to the second interpretation of the BW-IM 

relationship shown in Figure 5.1. Namely, while both BW and IM are affected by the same 
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causal factors, BW does not relate directly to IM. The strong association between BW and IM is 

then explained by the strong associations of BW and IM to the same causal factors. 

 The major weakness of this analysis is the missing data. Unfortunately, those variables 

taken from the Medchal Family Health Survey had a very high percentage of missing data 

because for many of the families in the MFHS we were not able to link them back to the REACH 

database. The missing data limited the types of analysis we were able to perform with this data 

set. For example, we were unable to test a regression model that included all the 

sanitation/hygiene variables as predictors of IM and BW because the cases were spread too 

thin amidst the many variables and missing data. (Table 5.9) However, for all that there are 

missing data, this data set is unique in that it represents a successful longitudinal data collection 

in rural India. And, while there are missing data from the MFHS, the REACH data are very 

complete and the analysis of these datasets shows interesting and statistically significant 

associations with IM and BW in this population. 

 These findings have important implications for public health and health policy. The 

current government approach to reducing IM in India involves social welfare and feeding 

programs for mothers with the explicit goal of increasing BW and thereby reducing IM. These 

results support the notion that a focus on increasing BW is not appropriate and that resources 

should be devoted to exposures to babies during infancy, such as diarrheal and respiratory 

diseases. These results also contradict the idea that IM is simply a result of socio-economic 

status. Our findings show that IM is linked to sanitary conditions independent of their 

association with SES factors.  

 Finally, these findings provide an opportunity for tailored, appropriate interventions to 

combat the determinants of IM in this rural Indian population. Because of our low numbers and 

missing data for some variables, these data should be confirmed to determine the scope of the 

public health impact of potential interventions. However, improving sanitation and hygiene and 

reducing exposure to infectious disease is a feasible goal for an intervention at the population 

level and, based on this study, would help reduce the rates of IM in this population. 
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5.6 TABLES AND FIGURES 

 
 

 
 
 

Figure 5.1: Directed Acyclic Graphs representing possible constructions of the BW-IM 
relationship 
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Table 5.1: Measures collected through REACH and the Medchal Family Health Survey 
 
REACH Database 
Household 
Demographics 

Village 
Religion  
Dietary practice 
Age 

Family members 
Family type 
House type 
Electricity 

Media sources 
Occupation 
Possessions 

Reproduction Births 
Sex of child 
Age of child now 
Year of birth 
Birth-weight 

Date of Birth of baby 
Gestation Length 
Infant Death 
Child Death 
Age at Death 

Place of birth 
Delivery Type 
# of Prenatal visits 
Sterilization 

Socioeconomic Caste Family Income Education level 
Sanitation/ 
Hygiene 

Cooking place 
Human waste disposal 

Trash Disposal 
Sewage Disposal 

Water source 

Medchal Family Health Survey 
Household 
Demographics 

Religion 
Caste 
# Members 
Ages 
Relationships 
Marital Status 
Education level 

Social services used 
Possessions in house 
Type of house 
Number of rooms 
Land ownership 
Home ownership 
Nutrition 

Income 
Welfare recipient 
Animals owned 
Cosangiuinous 
marriage 
Occupation 

Health Asthma 
Goiter 
Thyroid 
Diabetes 

Malaria 
Tuberculosis  
Jaundice 
Alcohol 

Tobacco 
Health facility used 
Vaccination records 
Current illness 

Sanitation / 
Hygiene 

Drinking water 
Cooking water 
Toilet facility 

Water treatment 
Cooking facility 
Chimney 

Cooking fuel 
Hand washing 

Reproductive 
health 

Births history 
Birth-weight 
Child/infant deaths 
Place of delivery 
Complications 
Health care for baby 
Previous child death 

Prenatal vitamins 
Current pregnancy 
Contraception method 
Breastfeeding 
Child feeding 
Child illnesses 
Repro health care 

Family planning  
Pre-natal care 
Pregnancy 
complications 
Vaccinations 
HIV knowledge 
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Table 5.2: Population Characteristics  
 
Participant Characteristics n (%) 
Births recorded 5,270  
Infant Deaths 222  (4.21) 
 Days old at death (mean, SD) 40.30  (80.77) 
BW recorded 4,060  (77.04) 
Mean, SD of BW distribution 2.71  (0.42) 
Low BW (<2.5 kg) 1214  (29.89) 
BW in four categories   
 Very small BW (1.7 kg) 66  (1.62) 
 Small BW [1.7-2.5kg) 1148  (28.27) 
 Optimal BW [2.5-3.36 kg) 2617  (64.47) 
 Large BW (>3.36 kg) 229  (5.64) 
Demographic and Socioeconomic   
Number of villages 41  
Mother’s age at time of birth (mean, SD) 25.76  (3.81) 
Father’s age at time of birth (mean, SD) 31.37  (4.99) 
Mother’s Education, less than high school 3194         (68.39) 
Father’s Education, less than high school 2,577         (51.02) 
Religion   
 Hindu 4852  (92.07) 
 Muslim 297  (5.64) 
 Christian 119  (2.26) 
 Other 2  (0.04) 
Caste   
 Forward Caste 479  (9.26) 
 Backward Caste  973  (18.82) 
 Scheduled Caste  2708  (52.38) 
 Scheduled Tribe 579  (11.20) 
 Other  43  (0.83) 
 Don’t know 388  (7.50) 
Ration card holders (social welfare) 1926  (87.70) 
Sanitation and Hygiene   
Water, tap water in home 3,766        (71.49) 
Sewage disposal, closed drainage 2,786        (52.89) 
Human waste disposal, household facilities 1,441        (27.35) 
All data presented as No. (%) unless otherwise indicated 
All statistics based on models that included BW as an outcome or predictor variable were calculated for each of three imputed data 
sets and the results combined using Rubin’s Rules to produce an estimated combined OR, confidence interval and p-value 
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Table 5.3: Birth-weight association with Infant Mortality  
 

Birth-weight – infant mortality association 
 n n of IM OR 95% CI p Adj. OR Adj. 95% CI  Adj. p 
BW, continuous (1kg  
increase) 

 
4060 

 
142 4.91 3.35-7.20 <0.0001 4.99 3.24-7.72 <0.0001 

LBW (<2.5kg vs. ≥2.5kg) 1214 73 2.64 1.69-4.13 0.0003 2.67 1.63-4.38 0.0006 
BW, categorical         
 Very small (<1.7kg) 66 21 19.16 9.39-39.12 <0.0001 20.89 9.68-45.10 <0.0001 
 Small [1.7kg, 2.5kg) 1148 53 1.99 1.23-3.22 0.0073 2.07 1.24-3.47 0.0075 
 Optimal [2.5kg, 3.36) 2617 62 Reference 
 Large (≥3.36) 229 6 1.09 0.40-2.92 0.8646 1.28 0.41-4.07 0.6610 

IM = Infant Mortality BW= Birth-weight OR = Odds Ratio Adj. = Adjusted 
For Adjusted OR, all variables adjusted for maternal age, place of birth, delivery type, family type, mother’s education, father's 
education and caste 
All statistics based on models that included BW as an outcome or predictor variable were calculated for each of three imputed 
data sets and the results combined using Rubin’s Rules to produce an estimated combined OR, confidence interval and p-value 
  



98 
 

Table 5.4: Demographic/Socioeconomic variables’ association with Infant Mortality (IM) and 
Very Small (VS) birth-weight babies (less than 1.7kg) 
 

 INFANT MORTALITY BIRTH-WEIGHT 

 n 
n of 
M 

n of 
IM 

OR (CI) or χ2 value 
of Infant Mortality 

p-value n of 
VS 

OR (CI) or χ2 value of 
VS 

p-value 

DEMOGRAPHIC VARIABLES         
Maternal age 5270 0 222 1.04 (1.01-1.08) 0.0150 65 0.987 (0.971-1.004) 0.1252 
Sex of Child  0       
 Male 2665  122 Reference 26 Reference  
 Female 2605  100 1.20(0.92-1.57) 0.1823 39 1.292 (1.136-1.471) 0.0001 
Place of birth  0       
 Private Hospital 2927  118 Reference 32 Reference  
 Government Hospital 579   25 1.07(0.69-1.67) 0.7503 5 1.254 (0.739-2.128) 0.3208 
 Rural Health Center 1493  50 0.83(0.59-1.16) 0.2624 26 1.161 (0.550-2.451) 0.5694 
 Home 271  29 2.85(1.86-4.37) <.0001 2 1.306 (0.575-2.969) 0.3767 
Delivery Type  0       
 Vaginal delivery 3617  169 Reference 46 Reference  
 Ceasarean Section 1653  53 0.68(0.49-0.92) 0.0145 19 0.701 (0.603-0.815) <.0001 
Year of Birth  0  0.96(0.88-1.03) 0.2459  0.941 (0.896-0.988) 0.0160 
Family type  0       
 Nuclear Family 771  21 Reference 9 Reference  
 Joined Hindu Family 4499  201 1.67 (1.06-2.64) <.0001 56 1.084 (0.845-1.390) 0.5088 
SOCIOECONOMIC FACTORS         
Father’s education  219       
 Post-graduate 11  2 6.80(1.44-32.02) 0.0154 0 1.418 (0.255-7.869) 0.6747 
 Graduate 189  11  1.89(0.98-3.63) 0.0559 2 0.761 (0.500-1.157) 0.1955 
 High School 2274  72 Reference 23 Reference  
 Middle School 814   30 1.17(0.759-1.81) 0.4773 14 1.111 (0.893-1.382) 0.3364 
 Primary School 859  40 1.49(1.01-2.22) 0.0463 13 1.185 (0.901-1.559) 0.1970 
 Uneducated 904  54 1.94(1.35-2.79) 0.0003 9 1.333 (1.091-1.630) 0.0053 
Mother’s education  600       
 Graduate 93  4 1.21(0.43-3.42) 0.7232 2 0.726 (0.439-1.199) 0.2105 
 High School 1365  49 Reference 15 Reference  
 Middle School 1777  79 1.25(0.87-1.80) 0.2298 22 1.214 (1.017-1.450) 0.0323 
 Primary School 594  23 1.08(0.65-1.79) 0.7602 10 1.351 (1.070-1.706) 0.0116 
 Uneducated 823  52 1.81(1.21-2.70) 0.0036 6 1.366 (1.099-1.697) 0.0049 
Caste  488       
 Forward Caste 579  21 Reference 5 Reference  
 Backward Caste 2708  94 0.96(0.59-1.55) 0.8531 39   1.573 (1.191-2.077) 0.0028 
 Scheduled Caste 973  53  1.53(0.91-2.56) 0.1060 9  1.469 (0.979-2.203) 0.0604 
 Scheduled Tribe 479  35  2.10(1.20-3.65) 0.0090 7     1.769 (1.210-2.587) 0.0055 

  M=Missing Data IM= Infant Mortality VS= Very small birth-weight category (<1.7kg) OR= Odds Ratio CI= Confidence Interval χ2 = Chi-squared  
Categories with case numbers too small to estimate an effect were removed (Mother’s Education: Post Graduate) 
Dichotomous categorical independent variables were cross-tabulated with the categorical outcome variables using Pearson’s χ2 test or the Fisher exact 
test. Categorical variables with >2 categories were assessed using logistic regression analysis. Continuous dependent variables were assessed using 
logistic regression analysis. 
All statistics based on models that included birth-weight as an outcome or predictor variable were calculated for each of three imputed data sets and the 
results combined using Rubin’s Rules to produce an estimated combined OR, confidence interval and p-value 
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Table 5.5: Sanitation/Hygiene variables’ association with Infant Mortality (IM) and Very Small 
(VS) birth-weight babies (less than 1.7kg) 
 

 INFANT MORTALITY BIRTH-WEIGHT 

 n n of 
M 

n of 
IM 

OR (CI) or χ2 value 
of IM 

p-value n of 
VS 

OR (CI) or χ2 value of 
VS 

p-value 

Human waste disposal  4       
 Household toilet  1441  60     Reference 14 Reference  
 No facility, open field 3802  158 1.00 (0.74-1.35) 0.990 51 1.134 (0.979-1.312) 0.0934 
 Community toilet 21  4 5.42 (1.77-16.59) 0.003 0 1.794 (0.547-5.882) 0.3252 
Sewage Disposal  4       
 Closed Drainage 2786  119 Reference 40 Reference  
 Kitchen Garden 180  11 1.46(0.77-2.76) 0.245 2    1.065 (0.725-1.566) 0.7425 
 Open Drainage 2194  91 0.97(0.73-1.28) 0.829 22   1.196 (0.973-1.471) 0.0813 
 Soakage Pit 106  1 0.21(0.03-1.54) 0.126 1   1.934 (1.221-3.062) 0.0055 
*Drinking water  3078       
 Bottled water 747  26 Reference 7 Reference  
 Piped into home 421  19 1.31 (0.72-2.40) 0.3800 4 1.063 (0.739-1.530) 0.7274 
 Piped into yard 428  17 1.15 (0.62-2.14) 0.6662 1 1.121 (0.819-1.534) 0.4708 
 Shared community tap 459  34 2.22 (1.31-3.75) 0.0029 7 1.175 (0.788-1.752) 0.3947 
 Tube well 121  5  1.20 (0.45-3.18) 0.7204 4 1.173 (0.661-2.082) 0.5739 
*Cooking Fuel  3086       
 “Clean”** Fuel  1134  60 Reference 15 Reference  
 “Unclean” Fuel  1050  44 1.37 (1.01-1.86) 0.042 10 0.970 (0.250-3.763) 0.9314 
Trash Disposal  2       
 Composting 651  16 Reference 10 Reference  
 Field Disposal 1050  47 1.86 (1.04-3.31) 0.0347 17 0.918 (0.680-1.240) 0.5546 
 Dumping 1115  55 2.06 (1.17-3.62) 0.0123 10 0.846 (0.656-1.090) 0.1924 
 Burning 54  3 2.34(0.66-8.28) 0.1892 1 0.884 (0.395-1.978) 0.7495 
 Municipal trash collect. 2398  101 1.74 (1.02-2.98) 0.0412 27 0.862 (0.650-1.142) 0.2726 

  M=Missing Data IM= Infant Mortality VS= Very small birth-weight category (<1.7kg) OR= Odds Ratio CI= Confidence Interval χ2 = Chi-squared  
* indicates the variable is taken from the MFHS, not the REACH database. % missing data is much greater in MFHS. 
Categories with case numbers too small to estimate an effect were removed (Drinking water: tanker truck, protected spring, protected dug well) 
Dichotomous categorical independent variables were cross-tabulated with the categorical outcome variables using Pearson’s χ2 test or the Fisher exact 
test. Categorical variables with >2 categories were assessed using logistic regression analysis. Continuous dependent variables were assessed using 
logistic regression analysis. 
All statistics based on models that included birth-weight as an outcome or predictor variable were calculated for each of three imputed data sets and the 
results combined using Rubin’s Rules to produce an estimated combined OR, confidence interval and p-value 
**Clean fuel sources include kerosene, charcoal, coal/Lignite, biogas, natural gas, electricity.  Unclean fuel sources include dung cakes, fire wood, 
straw/shrubs/grass, agricultural crop waste. 
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Table 5.6: Sanitation/Hygiene variables’ association with Infant Mortality while adjusting for 
potential confounders (separate models for each predictor) 
Model Adjusted OR 95% CI p 
1. Human waste disposal, community toilet 8.18       2.46-27.13 0.0006 
2. Drinking water, community tap 1.780        1.02-3.17 0.0482 
3. Trash Disposal, dumping 2.109        1.16-3.85 0.0151 
4. Trash Disposal, field disposal 2.452        1.30-4.61 0.0054 
5. Trash Disposal, municipal trash collect. 2.306        1.30-4.09 0.0043 
M=Missing Data IM= Infant Mortality OR= Odds Ratio CI= Confidence Interval  
All variables adjusted for maternal age, place of birth, family type, mother’s education, father’s education and caste.  
All categorical variables compared against reference variables listed in tables 5.4 and 5.5 
 
 
 
 
 
 
 

Table 5.7: Sanitation/Hygiene variables association with Infant mortality, while adjusting for 
potential confounders, including birth-weight (separate models for each predictor) 
 
Model Adjusted OR 95% CI p 
1. Human waste disposal, community toilet 10.631 2.488-45.423 0.0014 
2. Drinking water, community tap 1.935 1.245-3.008 0.0036 
3. Trash Disposal, dumping 2.605 1.229-5.521 0.0125 
4. Trash Disposal, field disposal 2.277 1.110-4.673 0.0248 
5. Trash Disposal, municipal trash collect. 2.041 0.912-4.569 0.0827 
OR= Odds Ratio CI= Confidence Interval 
All variables adjusted for maternal age, place of birth, family type, mother’s education, father’s education, caste and BW.  
All categorical variables compared against reference variables listed in tables 5.4 and 5.5 
BW included as a continuous variable, adjusted for functional form of BW 
All statistics based on models that included BW as an outcome or predictor variable were calculated for each of three imputed data 
sets and the results combined using Rubin’s Rules to produce an estimated combined OR, confidence interval and p-value 
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Table 5.8: Sanitation/Hygiene variables association with Very Small Birth-weight, while 
adjusting for potential confounders (separate models for each predictor) 
 
Model Adjusted OR 95% CI p 
1. Human waste disposal, community toilet 2.964 0.857-10.255 0.0858 
2. Sewage disposal, open drainage 1.312 1.025-1.679 0.0315 
OR= Odds Ratio CI= Confidence Interval 
All variables adjusted for sex of the child, place of birth, delivery type, year of birth, mother’s education, father’s education and 
caste 
All categorical variables compared against reference variables listed in tables 5.4 and 5.5 
All statistics based on models that included BW as an outcome or predictor variable were calculated for each of three imputed data 
sets and the results combined using Rubin’s Rules to produce an estimated combined OR, confidence interval and p-value. 
 
 
 
 
 

Table 5.9: Overlap of significant IM determinants when compared against one another using 
cross-tabulation 
 

  Human Waste Disposal 
  Household Toilet Community Toilet 

Source of 
Drinking 
Water 

Bottled water 

Composting 
15 

Dumping 
40 

Composting 
0 

Dumping 
2 

Field 
89 

Municipal 
100 

Field 
1 

Municipal 
2 

Community Tap 

Composting 
8 

Dumping 
16 

Composting 
0 

Dumping 
0 

Field 
46 

Municipal 
47 

Field 
0 

Municipal 
1 

  Trash Disposal 
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6.0 CONCLUSION / PUBLIC HEALTH IMPACT 
 

 

 

 

 While BW data has been extensively studied over the years, it remains one of the most 

powerful and interesting variables for providing insight and information about the health and 

well-being of babies as they are born and grow. While there is controversy about this variables 

and its meaning, particularly in relation to IM, it is still worthwhile to continue to try to discover 

what BW means and predicts for the newborn. 

 From our perspective, with a focus on maternal and child health in rural India, there are 

two major holes in the literature and knowledge related to BW. The first is that there are no 

published BW data from India that are representative of the population and accurately 

measured. While India has one of the highest reported rates of LBW,127 representative data are 

not available to study or address this phenomenon. Developing a method to correct for two of 

the most common biases found in survey-collected BW data is an important step towards being 

able to truly study this indicator of child health and development.  

 It is also important to note that this method is generalizable to other populations in 

several ways. Ideally, researchers would collect a subset of gold standard data that can be used 

as the calibration set to develop a calibration function specific to the population of interest, as 

we have done here. However, for cases where collecting a calibration set is impossible, our 

method could be used directly to adjust BW data from other developing country populations. 

Our method can help make survey BW data from the developing world accessible for study 

when it has not been useable before.  

 Secondly, while plenty of analyses have been completed in developing countries 

regarding the nature of BW distributions and characteristics of the relationship between BW 

and IM, for the reasons listed above, very few of these studies includes BW data collected in 

the developing world and we have not been able to find any published accounts of data from 

India. Therefore, these characteristics, while accepted as fact, have not actually been verified in 

a large, representative sample taken from a developing country. As we have shown, there are 
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differences between the US and India in terms of the relationship between BW and IM and 

these differences could have policy implications. It appears that BW does not contribute to IM 

to the same degree in India as it does in the US population and the relationship we 

demonstrate contradicts some of the current focus to combat IM in India by increasing BW 

through programs to feed mothers. The results of our comparison between the US and India 

beg the question of what is really causing IM in India and what can be done to effectively 

reduce infant death in this population. 

 Through studying a small population in rural South India, we have highlighted some of 

the determinants of IM that are independent of BW. We have shown that sanitation and 

hygiene, which we believe to be surrogates of infectious diseases, are significantly associated 

with IM and very small BW in this population. These results provide an opportunity for 

designing interventions to combat IM that would be specific to the community and feasible. 

 Altogether, these papers provide new methods, insight and conclusions regarding BW 

and IM in India. The deaths of babies in their first year of life is a tragedy that afflicts South Asia 

and India more than any other part of the world. In studying these topics we have had the great 

opportunity to gain new understanding and knowledge that will hopefully aid in reducing the 

tragedy of IM in India in the future. 
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APPENDIX A: DETAILS OF DEVELOPMENT OF MODIFIED STATISTICAL CALIBRATION AND MULTIPLE 
IMPUTATION METHOD 

 

At the start of this analysis, we did not want to assume, a priori that the distribution of 

error in the calibration set was either the same across the range of BWs or normally distributed 

(as is the assumption in standard calibration methods). To discover the nature of the error 

function, we first divided the full range of BWs into “bands,” whereby weights within 250 grams 

of one another are grouped in the same band. 

The 250g range was selected for convenience because it is relatively narrow, yet large 

enough that the majority of the resulting bands contain enough samples to find a best fit 

distribution. For each band that contained at least 10 samples, a best fit distribution was 

estimated. For each band, the best-fit software estimated that the best-fit distribution follows 

the Student’s T distribution with adjustment for centering. The band distributions parameters 

and confidence intervals are shown in Table 7.1.  

 Figures 7.2 and 7.3 show a graphical representation of the range of the scale (σ) and 

shape (ν) parameters, respectively. These figures support our contention that, within the 

confidence intervals, these parameters are equal across all bands. 

From this point, one approach would be to define the error function to be a Student’s T 

distribution whose parameters are a function of the analog weight.  Thus, one would first 

estimate which band a particular analog record falls within, and then that band’s corresponding 

distribution parameters would be applied to the error function for that record.   

However, as seen in Table 7.1 and Figures 7.2 and 7.3, the scale and shape parameters 

of the best-fit distributions for the different bands are actually the same within the confidence 
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intervals. Therefore, the scale and shape of the distribution remain constant across the bands. 

We can make use of this consistency to improve the model parameter estimation.  

 The implication of the banded analysis described above is that the distribution of digital 

weights is uniform for all analog values. This characteristic is beneficial because it means that to 

adjust the analog BW data, we will not have to rely on separate error distributions from the 

bands. Instead, a single error distribution can be derived which applies to all analog weights.  

This has several advantages. First, it allows us to define probability distributions to 

adjust data that lies in the bands with too few records to estimate a best-fit distribution. Next, 

it establishes a separate probability distribution for each unique analog weight, and thus avoids 

the artificial clustering introduced by the bands. Furthermore, we can fit a single distribution to 

all 759 records, with the advantage of tighter confidence intervals on the distribution 

parameters. 
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APPENDIX A TABLES AND FIGURES 

 

 

 
 

Figure 7.1: Analog weight versus Error (εi') with “bands” (horizontal lines = “bands”) 
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Table 7.1: Parameters for the distribution within each band 
 

Band Bounds  
(kg) 

n 
samples 
in Band 

Location 
Parameter 

(μ_bar) 

μ_bar CI Scale 
Parameter 

(σ_bar) 
 

σ_bar  CI Shape 
Parameter 

(ν_bar) 

ν_bar CI 

min max min max min max 
(1.50 - 1.75]  13 0.007 0.002 -0.0196 -0.0249 1.000 0.036 1.000 0.010 1.000 
(1.75 – 2.00] 20 0.045 0.022 -0.0202 -0.0425 5.000 0.089 5.000 0.000 23.00 
(2.00 - 2.25] 42 0.060 0.034 0.0104 -0.0140 1.514 0.106 1.514 0.314 2.713 
(2.25 - 2.50] 66 0.055 0.041 0.0113 -0.0059 2.181 0.073 2.181 0.929 3.433 
(2.50 - 2.75] 147 0.052 0.042 0.0153 0.0045 2.227 0.065 2.227 1.276 3.178 
(2.75 – 3.00] 113 0.063 0.052 0.0097 -0.0048 3.131 0.078 3.131 1.471 4.791 
(3.00 - 3.25] 111 0.064 0.051 -0.0009 -0.0160 2.945 0.080 2.945 1.334 4.557 
(3.25 - 3.50] 53 0.076 0.054 0.0189 -0.0084 2.304 0.107 2.304 0.710 3.898 
(3.50 - 3.75] 16 0.037 0.017 0.0318 0.0070 1.339 0.081 1.339 0.010 2.716 
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Figure 7.2: Band center versus Scale Parameter (σ) 
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Figure 7.3: Band centers versus Shape Parameter (ν) 
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APPENDIX B: ANALYSIS CODE 
 

Manuscript 1: Modified Statistical Calibration and Multiple Imputation 

 
MATLAB 7.11 R2010B  
 
function imputed = generateimputed(analogBW,pd,muBeta,muDig,sigmaDig,nImputedSets) 
% GENERATEIMPUTED - generates an imputed data set 
% imputed = generateimputed(analagBW,pd,muBeta,muDig,sigmaDig,nImputedSets) 
% 
% Inputs: 
% analogBW: vector of analog birth weights to be corrected 
% pd: t-location scale probability distribution object describing the 
%     distribution of the recentered calibration set 
% muBeta: 2-by-1 vector of linear regression parameters, beta, defining 
%     analog weight as a fn of digital weight. (muBeta(1) is y-intercept, 
%     muBeta(2) is slope) 
% muDig: scalar value of mean digital weight of calibration set 
% sigmaDig: scalar value of stdev of digital weight in calibration set 
% nImputedSets: scaler, number of imputed data sets to generate 
% 
% Outputs: 
% imputed: matrix of imputed data sets.  each column is an imputed set. 
  
  
% get number of birthweight samples 
nSamples = length(analogBW); 
  
% allocate memory for imputed data 
imputed = zeros(nSamples,nImputedSets); 
  
% find set of unique analog weights 
[uniqueAnalogWeight, im, in] = unique(analogBW); 
  
% define min and max allowable values for BW 
maxVal = muDig+10*sigmaDig; 
minVal = 0; 
  
  
h = waitbar(0); 
nSamplesEvaluated = 0; 
% loop through all unique analog BW values 
for j = 1:length(uniqueAnalogWeight) 



111 
 

    % construct distribution object for jth analog weight 
    xcenter = (uniqueAnalogWeight(j)-muBeta(1))/muBeta(2); 
    pd_iter = ProbDistUnivParam('tlocationscale', [pd.mu+xcenter,pd.sigma,pd.nu]); 
     
    % impute values for all records with jth analog weight 
    iVal = find(analogBW == uniqueAnalogWeight(j)); 
    y = rand(length(iVal),nImputedSets); 
    imputed(iVal,:) = icdf(pd_iter,y); 
     
    % re-impute those values that are too small 
    while 1 
        iTooSmall = find(imputed(iVal,:)<minVal); 
        if isempty(iTooSmall) 
            break 
        end 
        [a,b]=ind2sub(size(imputed(iVal,:)),iTooSmall); 
        y = rand(length(a),length(b)); 
        imputed(iVal(a),b) = icdf(pd_iter,y); 
    end 
    % re-impute those values that are too large 
    while 1 
        iTooLarge = find(imputed(iVal,:)>maxVal); 
        if isempty(iTooLarge) 
            break 
        end 
        [a,b]=ind2sub(size(imputed(iVal,:)),iTooLarge); 
        y = rand(length(a),length(b)); 
        imputed(iVal(a),b) = icdf(pd_iter,y); 
    end 
     
    % update waitbar 
    nSamplesEvaluated = nSamplesEvaluated + length(iVal); 
    waitbar(nSamplesEvaluated/nSamples,h); 
end 
close(h) 
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Manuscript 2: Plotting birth-weight frequency distributions and weight specific infant 

mortality curves 

 
MATLAB 7.11 R2010B  
 
function [xMin,yMin,y2500,yAtPDFmax,frequencyAtxMin] = 
stackedplot(weightbins,birthfreq,mortality,bw) 
  
% fit normal curve to bw data 
[muo,sigma]=normfit(bw); 
Y = normpdf(weightbins,muo,sigma); 
  
% fit 3rd-order polynomial to mortality curve 
logy = log(mortality); 
I = find(logy>0); 
[p,S,mu] = polyfit(weightbins(I),logy(I),3); 
xFit = linspace(min(weightbins),max(weightbins),1001); 
yFit = polyval(p,xFit,S,mu); 
  
figure; 
% plot mortality curve 
h(1) = subplot(2,1,1); 
semilogy(weightbins,mortality,'.','linewidth',2,'markersize',20,'color',[.5 0 0]) 
set(gca,'fontsize',12); 
set(h(1),'xTickLabel',''); 
  
% underlay polyfit to mortality curve 
hold on; 
semilogy(xFit,exp(yFit),'linewidth',2); 
hh = get(gca,'Children'); 
set(gca,'Children',hh(2:-1:1)); 
  
  
% plot birthweight hist 
h(2) = subplot(2,1,2); 
hb = bar(weightbins,birthfreq/1000); 
set(gca,'fontsize',12); 
set(hb,'FaceColor',[.5 0 0]) 
xlabel('Birthweight (g)'); 
  
% calculate enclosed area of histogram 
xd = get(hb,'Xdata'); 
nbins = length(weightbins); 



113 
 

n = sum(birthfreq); 
rangex = max(xd(:)) - min(xd(:)); 
binwidth = rangex/nbins;          
area = n * binwidth; 
  
% overlay pdf on histogram 
hold on 
plot(weightbins,area*Y/1000,'linewidth',2) 
  
% link axes 
linkaxes(h,'x') 
  
% bring axes in contact with eachother 
p1 = get(h(1),'position'); 
p2 = get(h(2),'position'); 
 top = p1(4)+p1(2); 
bottom = p2(2); 
height = (top-bottom)/2; 
  
p2(4) = height; 
p1(4) = height; 
  
set(h(2),'position',p2); 
set(h(1),'position',[p1(1) p2(2)+p2(4) p1(3:4)]) 
  
  
yTicLabel = get(h(2),'ytickLabel'); 
yTicNum = double(yTicLabel); 
[nRows,nCols] = size(yTicNum); 
for j=1:nCols 
    yTicNum(nRows,j) = 32; 
end 
yTicLabel = char(yTicNum); 
set(h(2),'ytickLabel',yTicLabel); 
  
% adjust yaxis of mortality curve 
set(gcf,'CurrentAxes',h(1)); 
ca = axis; 
iOver1 = find(mortality>=1); 
mortalityMin = min(mortality(iOver1)); 
pwr = 0; 
while 10^pwr<mortalityMin 
    pwr = pwr+.5; 
end 
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pwr = pwr-.5; 
axis([ca(1:2) 10^pwr ca(4)]); 
  
% calculate parameters 
y2500 = exp(polyval(p,2500,S,mu)); 
[yMin,iMin] = min(yFit); 
yMin = exp(yMin); 
  
xMin = xFit(iMin); 
  
  
yAtPDFmax = exp(polyval(p,muo,S,mu)); 
frequencyAtxMin = normpdf(xMin,muo,sigma)*area/1000; 
  
  
% add min line 
set(gcf,'CurrentAxes',h(1)); 
ca = axis; 
plot([xMin xMin],[ca(3) yMin],'--k'); 
plot([ca(1) xMin],[yMin yMin],'--k'); 
  
set(gcf,'CurrentAxes',h(2)); 
ca = axis; 
plot([xMin xMin],ca(3:4),'--k'); 
%plot([ca(1) xMin],[frequencyAtxMin frequencyAtxMin],'--k'); 
 
% read birthweight intervals, frequencies, and mortality rates from excel 
% file 
data = xlsread('NFHS Birthweight and IM freq per 100g.xlsx','Sheet1','A2:D60'); 
wi = data(:,1); 
mortality = data(:,3); 
birthfreq = data(:,4); 
  
% read raw birthweight data 
bw = xlsread('NFHS Birthweight Data w intervals of 100g.xls','NFHS Birthweight Data w 
interva','E2:E20947'); 
  
% throw out all records greater than 7000 grams 
I = find(bw>7000); 
bw(I) = []; 
  
  
% generate stacked plots, and return values of interest 
[xMin,yMin,y2500,yAtPDFmax,frequencyAtxMin] = stackedplot(wi,birthfreq,mortality,bw); 
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%% load data 
data = xlsread('BW and IM freq per 100g.xlsx','Sheet1','A2:D60'); 
wi = data(:,1); 
birthfreq = data(:,4); 
mortality = data(:,3); 
  
bw = load('nat2004us.txt'); 
bw = bw(:,1); 
I = find(bw>7000); 
bw(I) = []; 
  
%% plot 
figure(1);clf; 
  
h(1) = subplot(2,1,1); 
semilogy(wi,mortality,'.','linewidth',2,'markersize',20,'color',[.5 0 0]) 
set(gca,'fontsize',12); 
set(h(1),'xTickLabel',''); 
  
  
h(2) = subplot(2,1,2); 
hb = bar(wi,birthfreq/1000); 
set(gca,'fontsize',12); 
set(hb,'FaceColor',[.5 0 0]) 
xlabel('Birthweight (g)'); 
[mu,sigma]=normfit(bw); 
Y = normpdf(wi,mu,sigma); 
muo = mu; 
  
xd = get(hb,'Xdata'); 
nbins = length(wi); 
n = sum(birthfreq); 
rangex = max(xd(:)) - min(xd(:)); 
binwidth = rangex/nbins;          
area = n * binwidth; 
  
hold on 
plot(wi,area*Y/1000,'linewidth',2) 
  
linkaxes(h,'x') 
  
ca = axis; 
axis([ca(1:3) 250]); 



116 
 

yTicLabel = get(h(2),'ytickLabel'); 
yTicNum = double(yTicLabel); 
yTicNum(6,:) = [32 32 32]; 
yTicLabel = char(yTicNum); 
set(h(2),'ytickLabel',yTicLabel); 
  
p1 = get(h(1),'position'); 
p2 = get(h(2),'position'); 
 top = p1(4)+p1(2); 
bottom = p2(2); 
height = (top-bottom)/2; 
  
p2(4) = height; 
p1(4) = height; 
  
set(h(2),'position',p2); 
set(h(1),'position',[p1(1) p2(2)+p2(4) p1(3:4)]) 
  
logy = log(mortality); 
I = find(logy>0); 
[p,S,mu] = polyfit(wi(I),logy(I),3); 
xFit = linspace(min(wi),max(wi),1001); 
yFit = polyval(p,xFit,S,mu); 
  
y2500 = exp(polyval(p,2500,S,mu)); 
  
set(gcf,'CurrentAxes',h(1)); 
hold on; 
semilogy(xFit,exp(yFit),'linewidth',2); 
hh = get(gca,'Children'); 
set(gca,'Children',hh(2:-1:1)); 
  
figure(2);clf; 
plot(wi,logy,xFit,yFit); 
  
[yMin,iMin] = min(yFit); 
xMin = xFit(iMin) 
hold on 
  
plot(xMin,yMin,'or') 
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Manuscript 3: General Descriptive Analysis 

SAS 9.2 
 
 
PROC IMPORT OUT= WORK.REACH 
            DATAFILE= "D:\My Documents\GSPH-Dissertation\REACH LBW paper\Spring 2010 
Analysis\REACH DATA2004-2009.xls"  
            DBMS=EXCEL2000 REPLACE; 
     SHEET="'data'";  
     GETNAMES=YES; 
RUN; 
 
proc print data=work.REACH (obs=10); 
run; 
 
/**CREATING/ALTERING VARIABLES**/ 
DATA REACH; 
set work.REACH; 
if NumberANCVisits ge 3 then ANC=1; 
if NumberANCVisits lt 3 then ANC=0; 
run; 
DATA REACH; 
set work.REACH;  
if BW = ' ' then LBW = '.' ; 
if BW lt 2.5 then LBW=1; 
if BW ge 2.5 then LBW=0; 
run; 
DATA REACH; 
set work.REACH;  
if BW = 2.5 then BW25 = 1; 
run; 
DATA REACH; 
set work.REACH; 
if DOBLMP lt 259 then preterm=1; 
if DOBLMP ge 259 then preterm=0; 
if DOBLMP = ' ' then preterm= ' '; 
run; 
DATA REACH; 
set work.REACH; 
MothersAgeAtBirth = MothersAge - (2010 - Yearofbirth); 
run; 
DATA REACH; 
set work.REACH; 
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if YearOfBirth lt 2007 then y2007 = 0 ; 
if YearOfBirth ge 2007 then y2007 = 1 ; 
run; 
 
/**GENERAL FREQUENCIES**/ 
proc means data=REACH; var BW; run; 
proc freq data=REACH; table BW; run; 
proc freq data=REACH; table BW25; run; 
proc freq data=REACH; table isthereabirthweightrecord; run;  
proc freq data=REACH; table ANC; run; 
proc freq data=REACH; table infantdeath childdeath; run; 
proc means data=REACH; var AgeAtDeathDays; run; 
proc freq data=REACH; table LBW; run; 
 
proc freq data = REACH; 
where IsThereABirthWeightRecord = 'YES'; 
table LBW preterm PretermBirthWeeks sexofchild yearofbirth InfantDeath ChildDeath 
placeofbirth deliverytype familytype religion caste dietary Motherseducation Fatherseducation 
Cosanguinous_marriage111 Marriage_relation112 literate116 religion121 cast122 
Mother_occupation128 Previous_child_death206 Asthma diabetes ANC; 
run; 
 
proc freq data = REACH; 
where IsThereABirthWeightRecord = 'YES'; 
table thyroid malaria jaundice panmasala alcohol smoke TB_19 TB_Symptoms_21 
Drinking_H2O_23 cooking_H2O_24 H2O_source_location_25 Treat_H2O_28 toilet30 
religion33 caste34 scheduled_caste35 cookf37a cookt38 cookc39 HOUSE_TYPE42 
own_house44 own_land45 ration_Card49 salt52 ANC; 
run; 
 
proc means data=REACH; 
where IsThereABirthWeightRecord='YES'; 
var BW MothersAge DOBLMP AgeAtDeathDays NumberANCvisits FamilyIncomeInformation 
Mother_education114 Father_education124 Birthweight435 rooms43 acres_owned462 
 agri471; 
run; 
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Manuscript 3: Outcome Analysis 

Birth-weight as a continuous variable 

PROC GLM DATA=REACHDATA; 
 CLASS EXCRETA_RECODE; 
 MODEL IMPUTEDBW = EXCRETA_RECODE / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS EXCRETA'; 
RUN; 
QUIT; 
PROC GLM DATA=REACHDATA; 
 CLASS REFUSE_RECODE; 
 MODEL IMPUTEDBW = REFUSE_RECODE / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS REFUSE'; 
RUN; 
QUIT; 
PROC GLM DATA=REACHDATA; 
 CLASS SEWAGE_RECODE; 
 MODEL IMPUTEDBW = SEWAGE_RECODE / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS SEWAGE'; 
RUN; 
QUIT; 
PROC GLM DATA=REACHDATA; 
 CLASS WATER_RECODE; 
 MODEL IMPUTEDBW = WATER_RECODE / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS WATER'; 
RUN; 
QUIT; 
PROC GLM DATA=REACHDATA; 
 CLASS COOKING_RECODE; 
 MODEL IMPUTEDBW = COOKING_RECODE / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS COOKING'; 
RUN; 
QUIT; 
PROC GLM DATA=REACHDATA; 
 CLASS DRINKINGH20_RECODE; 
 MODEL IMPUTEDBW = DRINKINGH20_RECODE / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS DRINKING WATER'; 
RUN; 
QUIT; 
PROC REG DATA=REACHDATA; 
 MODEL IMPUTEDBW = DRINK_IMP; 
 TITLE 'BW CONTINOUS VS DRINKING WATER DICHOTOMIZED'; 
RUN; 
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QUIT; 
PROC GLM DATA=REACHDATA; 
 CLASS TOILET_RECODE; 
 MODEL IMPUTEDBW = TOILET_RECODE / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS TOILET'; 
RUN; 
QUIT; 
PROC REG DATA=REACHDATA; 
 MODEL IMPUTEDBW = TOILET_IMP; 
 TITLE 'BW CONTINOUS VS TOILET DICHOTOMIZED'; 
RUN; 
QUIT; 
PROC GLM DATA=REACHDATA; 
 CLASS COOKINGH20_RECODE; 
 MODEL IMPUTEDBW = COOKINGH20_RECODE / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS COOKING WATER'; 
RUN; 
QUIT; 
PROC REG DATA=REACHDATA; 
 MODEL IMPUTEDBW = COOK_IMP; 
 TITLE 'BW CONTINOUS VS COOKING WATER DICHOTOMIZED'; 
RUN; 
QUIT; 
PROC GLM DATA=REACHDATA; 
 CLASS COOKTYPE_RECODE; 
 MODEL IMPUTEDBW = COOKTYPE_RECODE / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS COOK TYPE'; 
RUN; 
QUIT; 
PROC GLM DATA=REACHDATA; 
 CLASS COOKFUEL_RECODE; 
 MODEL IMPUTEDBW = COOKFUEL_RECODE / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS COOKING FUEL'; 
RUN; 
QUIT; 
PROC REG DATA=REACHDATA; 
 MODEL IMPUTEDBW = COOK_CLEAN; 
 TITLE 'BW CONTINOUS VS COOKING FUEL DICHOTOMIZED'; 
RUN; 
QUIT; 
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*UNIVARIATE ASSOCIATIONS WITH VARIABLES OTHER THAN SANITATION VARIABLES; 
PROC REG DATA=REACHDATA; 
 MODEL IMPUTEDBW = OWN_HOUSE44; 
 TITLE 'BW CONTINOUS VS HOME OWNERSHIP'; 
RUN; 
QUIT; 
PROC REG DATA=REACHDATA; 
 MODEL IMPUTEDBW = OWN_LAND45; 
 TITLE 'BW CONTINOUS VS LAND OWNDERSHIP'; 
RUN; 
QUIT; 
PROC REG DATA=REACHDATA; 
 MODEL IMPUTEDBW = SEXOFCHILD; 
 TITLE 'BW CONTINOUS VS SEX OF CHILD'; 
RUN; 
QUIT; 
PROC REG DATA=REACHDATA; 
 MODEL IMPUTEDBW = YEAROFBIRTH; 
 TITLE 'BW CONTINOUS VS YEAR OF BIRTH'; 
RUN; 
QUIT; 
PROC REG DATA=REACHDATA; 
 MODEL IMPUTEDBW = NUMBERANCVISITS; 
 TITLE 'BW CONTINOUS VS NUMBER OF ANC VISITS'; 
RUN; 
QUIT; 
PROC GLM DATA=REACHDATA; 
 CLASS PLACEOFBIRTH; 
 MODEL IMPUTEDBW = PLACEOFBIRTH / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS PLACEOFBIRTH'; 
RUN; 
QUIT; 
PROC GLM DATA=REACHDATA; 
 CLASS DELIVERYTYPE; 
 MODEL IMPUTEDBW = DELIVERYTYPE / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS DELIVERYTYPE'; 
RUN; 
QUIT; 
PROC REG DATA=REACHDATA; 
 MODEL IMPUTEDBW = FAMILYTYPE; 
 TITLE 'BW CONTINOUS VS FAMILYTYPE'; 
RUN; 
QUIT; 
PROC GLM DATA=REACHDATA; 
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 CLASS RELIGION; 
 MODEL IMPUTEDBW = RELIGION / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS RELIGION'; 
RUN; 
QUIT; 
PROC GLM DATA=REACHDATA; 
 CLASS CASTE; 
 MODEL IMPUTEDBW = CASTE / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS CASTE'; 
RUN; 
QUIT; 
PROC GLM DATA=REACHDATA; 
 CLASS DIETARY; 
 MODEL IMPUTEDBW = DIETARY / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS DIETARY'; 
RUN; 
QUIT; 
PROC GLM DATA=REACHDATA; 
 CLASS MOTHERSEDUCATION; 
 MODEL IMPUTEDBW = MOTHERSEDUCATION / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS MOTHERSEDUCATION'; 
RUN; 
QUIT; 
PROC GLM DATA=REACHDATA; 
 CLASS FATHERSEDUCATION; 
 MODEL IMPUTEDBW = FATHERSEDUCATION / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS FATHERSEDUCATION'; 
RUN; 
QUIT; 
PROC GLM DATA=REACHDATA; 
 CLASS HTYPE; 
 MODEL IMPUTEDBW = HTYPE / SOLUTION SS3; 
 TITLE 'BW CONTINUOUS VS HOUSE TYPE'; 
RUN; 
QUIT; 
PROC REG DATA=REACHDATA; 
 MODEL IMPUTEDBW = RATION_POOR; 
 TITLE 'BW CONTINOUS VS RATION_POOR'; 
RUN; 
QUIT; 
PROC REG DATA=REACHDATA; 
 MODEL IMPUTEDBW = familyincomeinformation; 
 TITLE 'BW CONTINOUS VS familyincomeinformation'; 
RUN; 
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QUIT; 
PROC REG DATA=REACHDATA; 
 MODEL IMPUTEDBW = mothersage; 
 TITLE 'BW CONTINOUS VS mothersage'; 
RUN; 
QUIT; 
 
 

Birth-weight as a categorical variable 

*1. Sanitation 
 
 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS EXCRETA_DISP (REF='HOUSEHOLD') / PARAM=REF; 
 MODEL BW_CAT (EVENT='1')= EXCRETA_DISP / LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS REFUSE_DISP (REF='COMPOSTING') / PARAM=REF; 
 MODEL BW_CAT (EVENT='1')=REFUSE_DISP / LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS SWATER_DISP (REF='CLOSED DRIANAGE') / PARAM=REF; 
 MODEL BW_CAT (EVENT='1')=SWATER_DISP / LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS WATER (REF='HOUSEHOLD SUPPLY') / PARAM=REF; 
 MODEL BW_CAT (EVENT='1')=WATER / LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS COOKING (REF='ELECTRIC') / PARAM=REF; 
 MODEL BW_CAT (EVENT='1')=COOKING / LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS DRINK_IMP (REF='1') / PARAM=REF; 
 MODEL BW_CAT (EVENT='1')=DRINK_IMP / LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS DRINKINGH20_RECODE (REF='Bottled water') / PARAM=REF; 
 MODEL BW_CAT (EVENT='1')=DRINKINGH20_RECODE / LINK=CLOGIT; 
RUN; 
proc freq data=reachdata; 
 table cookf37a; 
run; 
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PROC LOGISTIC DATA=REACHDATA; 
 CLASS COOKF37A  (REF='Coal Lignite') / PARAM=REF; 
 MODEL BW_CAT (EVENT='1')=COOKF37A  / LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS COOK_CLEAN (REF='1') / PARAM=REF; 
 MODEL BW_CAT (EVENT='1')=COOK_CLEAN / LINK=CLOGIT; 
RUN; 
 
*UNIVARIATE ASSOCIATIONS WITH VARIABLES OTHER THAN SANITATION VARIABLES; 
PROC FREQ DATA=REACHDATA; 
TABLE BW_CAT*SEXOFCHILD / CHISQ; 
TITLE 'IM VS SEX OF CHILD'; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
CLASS SEXOFCHILD (REF='MALE') / PARAM=REF; 
MODEL BW_CAT (EVENT='1') = SEXOFCHILD / LINK=CLOGIT; 
TITLE 'BW_CAT VS SEX OF CHILD'; 
RUN; 
* 
PROC LOGISTIC DATA=REACHDATA; 
MODEL BW_CAT (EVENT='1') = YEAROFBIRTH / LINK=CLOGIT; 
TITLE 'BW_CAT VS YEAR OF BIRTH'; 
RUN; 
*  
proc logistic data=REACHDATA; 
class PLACEOFBIRTH(ref='PVT') / param=ref; 
model BW_CAT(event='1')= PLACEOFBIRTH / LINK=CLOGIT; 
title 'BW_CAT vs PLACE OF BIRTH'; 
RUN; 
* 
proc logistic data=REACHDATA; 
class DELIVERYTYPE (ref='NORMAL') / param=ref; 
model BW_CAT(event='1')= DELIVERYTYPE / LINK=CLOGIT; 
TITLE 'BW_CAT VS DELIVERY TYPE'; 
RUN; 
PROC FREQ DATA=REACHDATA; 
TABLE BW_CAT*DELIVERYTYPE / CHISQ; 
TITLE 'BW_CAT VS DELIVERY TYPE'; 
RUN; 
* 
PROC FREQ DATA=REACHDATA; 
TABLE BW_CAT*FAMILYTYPE / CHISQ; 
TITLE 'BW_CAT VS FAMILY TYPE'; 
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RUN; 
PROC LOGISTIC DATA=REACHDATA; 
CLASS FAMILYTYPE (REF='NUCLEAR FAMILY') / PARAM=REF; 
MODEL BW_CAT(EVEN='1')=FAMILYTYPE / LINK=CLOGIT; 
TITLE 'BW_CAT VS FAMILY TYPE'; 
RUN; 
*    
proc logistic data=REACHDATA; 
class Caste (ref='FORWARD CASTE') / param=ref; 
model BW_CAT(event='1')= CASTE / LINK=CLOGIT; 
title 'BW_CAT vs CASTE'; 
RUN; 
*   
proc logistic data=REACHDATA; 
class MOTHERSEDUCATION (ref='HIGH SCHOOL') / param=ref; 
model BW_CAT(event='1')= MOTHERSEDUCATION / LINK=CLOGIT; 
title 'BW_CAT vs MOTHERS EDUCATION'; 
RUN; 
PROC FREQ DATA=REACHDATA; 
TABLE BW_CAT*MOTHERSEDUCATION / CHISQ; 
TITLE 'BW_CAT VS MOTHERS EDUCATION TABLE'; 
RUN; 
* 
proc logistic data=REACHDATA; 
class FATHERSEDUCATION (ref='HIGH SCHOOL') / param=ref; 
model BW_CAT(event='1')= FATHERSEDUCATION / LINK=CLOGIT; 
title 'BW_CAT vs FATHERS EDUCATION'; 
RUN; 
*  
 
*  
PROC FREQ DATA=REACHDATA; 
TABLE BW_CAT*REL_OCCU / CHISQ; 
TITLE 'BW VS OCCUPATION'; 
RUN; 
PROC FREQ DATA=REACHDATA; 
TABLE BW_CAT*VILLAGE / CHISQ; 
TITLE 'BW VS VILLAGE'; 
RUN; 
*  
PROC FREQ DATA=REACHDATA; 
TABLE BW_CAT*RELIGION33 / CHISQ; 
TITLE 'BW VS RELIGION33'; 
RUN; 



126 
 

PROC LOGISTIC DATA=REACHDATA; 
CLASS RELIGION33 (REF='1') / PARAM=REF; 
MODEL BW_CAT=RELIGION33 / LINK=CLOGIT; 
RUN; 
*  
PROC FREQ DATA=REACHDATA; 
TABLE BW_CAT*scheduled_caste35 / CHISQ; 
TITLE 'BW VS scheduled_caste35'; 
RUN; 
* 
 
*Multivariate logistic regression for sginificant correlates 
Human waste disposal, community toilet 
Drinking water, community tap 
Unclean Cooking Fuel 
BIRTH-WEIGHT 
Birth-weight, continuous 
Birth-weight, dichotomous (<2.5kg) 
Birth-weight, categorical, very small (<1.7kg); 
*Adjusted models for BW_CAT as the outcome and sanitation variables predicting; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS EXCRETA_DISP (REF='HOUSEHOLD') / PARAM=REF; 
 MODEL BW_CAT3 (EVENT='1') = EXCRETA_DISP MOTHERSAGE SEXOFCHILD POB_HOME 
POB_GOVT  
  YEAROFBIRTH MOTHED_UNED MOTHED_PRIM MOTHED_MS FATHED_UNED 
FATHED_PRIM CASTE_ST CASTE_BC CASTE_SC/ LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS SWATER_DISP (REF='CLOSED DRIANAGE') / PARAM=REF; 
 MODEL BW_CAT1 (EVENT='1') = SWATER_DISP MOTHERSAGE SEXOFCHILD POB_HOME 
POB_GOVT  
  YEAROFBIRTH MOTHED_UNED MOTHED_PRIM MOTHED_MS FATHED_UNED 
FATHED_PRIM CASTE_ST CASTE_BC CASTE_SC/ LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS DRINKINGH20_RECODE (REF='Bottled water') / PARAM=REF; 
 MODEL BW_CAT1 (EVENT='1')=DRINKINGH20_RECODE MOTHERSAGE SEXOFCHILD 
POB_HOME POB_GOVT  
  YEAROFBIRTH MOTHED_UNED MOTHED_PRIM MOTHED_MS FATHED_UNED 
FATHED_PRIM CASTE_ST CASTE_BC CASTE_SC/ LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS DRINK_IMP (REF='2.00') / PARAM=REF; 



127 
 

 MODEL BW_CAT1 (EVENT='1')=DRINK_IMP MOTHERSAGE SEXOFCHILD POB_HOME 
POB_GOVT  
  YEAROFBIRTH MOTHED_UNED MOTHED_PRIM MOTHED_MS FATHED_UNED 
FATHED_PRIM CASTE_ST CASTE_BC CASTE_SC/ LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS COOK_CLEAN (REF='1.00') / PARAM=REF; 
 MODEL BW_CAT1 (EVENT='1')=COOK_CLEAN MOTHERSAGE SEXOFCHILD POB_HOME 
POB_GOVT  
  YEAROFBIRTH MOTHED_UNED MOTHED_PRIM MOTHED_MS FATHED_UNED 
FATHED_PRIM CASTE_ST CASTE_BC CASTE_SC/ LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS REFUSE_DISP (REF='COMPOSTING') / PARAM=REF; 
 MODEL BW_CAT1 (EVENT='1')=REFUSE_DISP MOTHERSAGE SEXOFCHILD POB_HOME 
POB_GOVT  
  YEAROFBIRTH MOTHED_UNED MOTHED_PRIM MOTHED_MS FATHED_UNED 
FATHED_PRIM CASTE_ST CASTE_BC CASTE_SC/ LINK=CLOGIT; 
RUN; 
 

Infant mortality outcome 

*Showing relationship between continuous BW variable and IM; 
proc logistic data=REACHdata descending; 
 model infantdeath (event='no')=IMPUTED1 / link=clogit; 
run; 
*categorized BW variables vs IM; 
PROC LOGISTIC DATA=REACHDATA; 
 MODEL INFANTDEATH (EVENT='no')= LBW/ LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS BW_CAT1 (REF='3') / PARAM=REF; 
 MODEL INFANTDEATH (EVEN='YES') = BW_CAT1 / LINK=CLOGIT; 
RUN; 
 
proc freq data=reachdata; 
table LBW1*infantdeath; 
table LBW2*infantdeath; 
table LBW3*infantdeath; 
table BW_CAT1*infantdeath; 
table BW_CAT2*infantdeath; 
table BW_CAT3*infantdeath; 
run; 
proc means data=reachdata; 
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var imputed1 imputed2 imputed3; 
run; 
 
*proc logistic data = hsb2 ; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS EXCRETA_DISP (REF='HOUSEHOLD') / PARAM=REF; 
 MODEL INFANTDEATH (EVENT='YES')= EXCRETA_DISP / LINK=CLOGIT; 
RUN; 
*  
PROC LOGISTIC DATA=REACHDATA; 
 CLASS REFUSE_DISP (REF='COMPOSTING') / PARAM=REF; 
 MODEL INFANTDEATH (EVENT='YES')=REFUSE_DISP / LINK=CLOGIT; 
RUN; 
* 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS SWATER_DISP (REF='CLOSED DRIANAGE') / PARAM=REF; 
 MODEL INFANTDEATH (EVENT='YES')=SWATER_DISP / LINK=CLOGIT; 
RUN; 
* 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS WATER (REF='HOUSEHOLD SUPPLY') / PARAM=REF; 
 MODEL INFANTDEATH (EVENT='YES')=WATER  / LINK=CLOGIT; 
RUN; 
*  
PROC LOGISTIC DATA=REACHDATA; 
 CLASS DRINK_IMP (REF='1') / PARAM=REF; 
 MODEL INFANTDEATH (EVENT='YES')=DRINK_IMP  / LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS DRINKINGH20_RECODE (REF='Bottled water') / PARAM=REF; 
 MODEL INFANTDEATH (EVENT='YES')=DRINKINGH20_RECODE / LINK=CLOGIT; 
RUN; 
PROC FREQ DATA=REACHDATA; 
TABLE DRINKINGH20_RECODE; 
TABLE INFANTDEATH*DRINKINGH20_RECODE; 
TABLE BW_CAT1*DRINKINGH20_RECODE; 
RUN; 
*  
RUN; 
 
 
*UNIVARIATE ASSOCIATIONS WITH VARIABLES OTHER THAN SANITATION VARIABLES; 
proc logistic data=REACHDATA; 
class PLACEOFBIRTH(ref='PVT') / param=ref; 
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model infantdeath(event='YES')= PLACEOFBIRTH / LINK=CLOGIT; 
title 'IM vs PLACE OF BIRTH'; 
RUN; 
*  
proc logistic data=work.REACH; 
class DELIVERYTYPE (ref='NORMAL') / param=ref; 
model infantdeath(event='YES')= DELIVERYTYPE / LINK=CLOGIT; 
TITLE 'IM VS DELIVERY TYPE'; 
RUN; 
PROC FREQ DATA=REACHDATA; 
TABLE INFANTDEATH*DELIVERYTYPE / CHISQ; 
TITLE 'IM VS DELIVERY TYPE'; 
RUN; 
 
PROC FREQ DATA=REACHDATA; 
TABLE infantdeath*FAMILYTYPE / CHISQ; 
TITLE 'IM VS FAMILY TYPE'; 
RUN; 
proc logistic data=reachdata; 
class familytype (ref='NUCLEAR FAMILY') / param=ref; 
model infantdeath(event='yes')=familytype / link=clogit; 
title 'IM vs family type'; 
run; 
*  
proc logistic data=REACHDATA; 
class Caste (ref='FORWARD CASTE') / param=ref; 
model infantdeath(event='YES')= CASTE / LINK=CLOGIT; 
title 'IM vs CASTE'; 
RUN; 
*   
proc logistic data=REACHDATA; 
class MOTHERSEDUCATION (ref='HIGH SCHOOL') / param=ref; 
model infantdeath(event='YES')= MOTHERSEDUCATION / LINK=CLOGIT; 
title 'IM vs MOTHERS EDUCATION'; 
RUN; 
proc logistic data=REACHDATA; 
class FATHERSEDUCATION (ref='HIGH SCHOOL') / param=ref; 
model infantdeath(event='YES')= FATHERSEDUCATION / LINK=CLOGIT; 
title 'IM vs FATHERS EDUCATION'; 
RUN; 
 
proc logistic data=REACHdata descending; 
 model infantdeath (event='YES')= mothersage / link=clogit; 
 title 'IM vs mothers age'; 
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run; 
*   
PROC FREQ DATA=REACHDATA; 
TABLE infantdeath*REL_OCCU / CHISQ; 
TITLE 'IM VS OCCUPATION'; 
RUN; 
*Significant by chisquare, but can't make any sense of it; 
PROC FREQ DATA=REACHDATA; 
TABLE infantdeath*Isthereabirthweightrecord / CHISQ; 
TITLE 'IM VS Isthereabirthweightrecord'; 
RUN; 
*  
 
*Multivariate logistic regression for sginificant correlates 
Human waste disposal, community toilet 
Drinking water, community tap 
Unclean Cooking Fuel 
BIRTH-WEIGHT 
Birth-weight, continuous 
Birth-weight, dichotomous (<2.5kg) 
Birth-weight, categorical, very small (<1.7kg) 
; 
 
*Adjusted models for IM as the outcome and sanitation variables predicting; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS EXCRETA_DISP (REF='HOUSEHOLD') / PARAM=REF; 
 MODEL INFANTDEATH (EVENT='YES') = EXCRETA_DISP MOTHERSAGE 
POB_HOME*DELIVERYTYPE FAMILYTYPE MOTHED_UNED FATHED_UNED  
  FATHED_PRIM CASTE_ST BW_CAT1/ LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS SWATER_DISP (REF='CLOSED DRIANAGE') / PARAM=REF; 
 MODEL INFANTDEATH (EVENT='YES') = SWATER_DISP MOTHERSAGE POB_HOME 
DELIVERYTYPE FAMILYTYPE MOTHED_UNED FATHED_UNED  
  FATHED_PRIM CASTE_ST BW_CAT/ LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS DRINKINGH20_RECODE (REF='Bottled water') / PARAM=REF; 
 MODEL INFANTDEATH (EVENT='YES')=DRINKINGH20_RECODE MOTHERSAGE 
POB_HOME FAMILYTYPE MOTHED_UNED FATHED_UNED  
  FATHED_PRIM CASTE_ST BW_CAT3/ LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS DRINK_IMP (REF='1') / PARAM=REF; 
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 MODEL INFANTDEATH (EVENT='YES')=DRINK_IMP MOTHERSAGE POB_HOME 
DELIVERYTYPE FAMILYTYPE MOTHED_UNED FATHED_UNED  
  FATHED_PRIM CASTE_ST BW_CAT/ LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS COOK_CLEAN (REF='1') / PARAM=REF; 
 MODEL INFANTDEATH (EVENT='YES')=COOK_CLEAN MOTHERSAGE POB_HOME 
DELIVERYTYPE FAMILYTYPE MOTHED_UNED FATHED_UNED  
  FATHED_PRIM CASTE_ST BW_CAT/ LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS REFUSE_DISP (REF='COMPOSTING') / PARAM=REF; 
 MODEL INFANTDEATH (EVENT='YES')=REFUSE_DISP MOTHERSAGE POB_HOME 
DELIVERYTYPE FAMILYTYPE MOTHED_UNED FATHED_UNED  
  FATHED_PRIM CASTE_ST BW_CAT/ LINK=CLOGIT; 
RUN; 
 
 
 
*BW VS IM, ALL THE DIFF BW VARIABLES; 
proc logistic data=REACHdata descending; 
 model infantdeath (event='no')=IMPUTED1 MOTHERSAGE POB_HOME DELIVERYTYPE 
FAMILYTYPE MOTHED_UNED FATHED_UNED  
  FATHED_PRIM CASTE_ST / link=clogit; 
run; 
*categorized BW variables vs IM; 
PROC LOGISTIC DATA=REACHDATA; 
 MODEL INFANTDEATH (EVENT='no')= LBW MOTHERSAGE POB_HOME DELIVERYTYPE 
FAMILYTYPE MOTHED_UNED FATHED_UNED  
  FATHED_PRIM CASTE_ST / LINK=CLOGIT; 
RUN; 
PROC LOGISTIC DATA=REACHDATA; 
 CLASS BW_CAT (REF='3') / PARAM=REF; 
 MODEL INFANTDEATH (EVENT='YES') = BW_CAT MOTHERSAGE POB_HOME 
DELIVERYTYPE FAMILYTYPE MOTHED_UNED FATHED_UNED  
  FATHED_PRIM CASTE_ST / LINK=CLOGIT; 
RUN; 
 
proc freq data=REACHDATA; 
 table Drinking_H2O_23; 
 table BW_cat; 
 table EXCRETA_DISP; 
 table caste*Drinking_H2O_23; 
run;   
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