Bluth, Jessica Keri
(2004)
Syn-eruptive incision of Koko Crater, Oahu, Hawaii by condensed steam and hot cohesive debris flows: a re-interpretation of the type locality of "surge-eroded U-shaped channels".
Master's Thesis, University of Pittsburgh.
(Unpublished)
Abstract
Phreatomagmatic fall, low-concentration PDC deposits and remobilized equivalents dominate the products of craters (tuff cones/rings) of Koko fissure, south-east Oahu. At Koko crater, Fisher (1977) described "U-shaped" channels, which he interpreted as due to erosion by low-concentration PDCs (surges), with minor modification by stream and debris flows. Similar channels on tuff cones and rings elsewhere in the world have been interpreted as "surge-eroded" by subsequent authors. However, no evidence for erosion by PDCs was observed during recent fieldwork, which suggested rather the following model. An important observation is that initial incision is always correlated with the emplacement of vesiculated ash layers (derived from Hanauma Bay), and is only very rarely associated with other facies. Incision of the vesiculated ash by run-off generated an initial and widespread network of sinuous, narrow (<15 cm) and shallow (<15 cm) rills. The strong correlation of rills with vesiculated ash and the lack of obvious water-escape structures in these ashes implies that run-off was mostly derived from associated steam-rich plumes. Initial steam and rain-fed incision was probably also enhanced in these very fine-grained cohesive deposits as a consequence of lowered infiltration rates. The rill network developed locally into deeper channels (i.e. gullies) during steam and rain-fed run-off, and by significant erosion during emplacement of vesiculated (hot) debris flows, derived from remobilized vesiculated ash. Pyroclastic density currents from Hanuama Bay traveling laterally across the flank of Koko Crater, perpendicular to the gully axes, provided the bulk of the gully fills, but gave rise to little or no modification of their margins. Rill and gully development by rainfall alone could explain similar examples of incision of low-concentration PDC deposits elsewhere in the world, but the possibility of steam-fed rills and erosion by hot debris flows should be considered. Low-concentration PDCs do not seem to be able to erode their substrate in all cases.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Item Type: |
University of Pittsburgh ETD
|
Status: |
Unpublished |
Creators/Authors: |
|
ETD Committee: |
|
Date: |
5 October 2004 |
Date Type: |
Completion |
Defense Date: |
25 June 2004 |
Approval Date: |
5 October 2004 |
Submission Date: |
28 July 2004 |
Access Restriction: |
No restriction; Release the ETD for access worldwide immediately. |
Institution: |
University of Pittsburgh |
Schools and Programs: |
Dietrich School of Arts and Sciences > Geology and Planetary Science |
Degree: |
MS - Master of Science |
Thesis Type: |
Master's Thesis |
Refereed: |
Yes |
Uncontrolled Keywords: |
Hawaii; incision; Koko Crater; pyroclastic surges; tuff cones; U-shaped channels |
Other ID: |
http://etd.library.pitt.edu/ETD/available/etd-07282004-140556/, etd-07282004-140556 |
Date Deposited: |
10 Nov 2011 19:54 |
Last Modified: |
15 Nov 2016 13:47 |
URI: |
http://d-scholarship.pitt.edu/id/eprint/8675 |
Metrics
Monthly Views for the past 3 years
Plum Analytics
Actions (login required)
|
View Item |