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NONPARAMETRIC METHODS IN COMPARING TWO CORRELATED ROC 
CURVES 

Andriy Bandos, PhD 

University of Pittsburgh, 2005 

Receiver Operating Characteristic (ROC) analysis is one of the most widely used methods for 

summarizing intrinsic properties of a diagnostic system, and is often used in evaluation and 

comparison of diagnostic technologies, practices or systems. These methods play an important 

role in public health since they enable researchers to achieve a greater insight into the properties 

of diagnostic tests and eventually to identify a more appropriate and beneficial procedure for 

diagnosing or screening for a specific disease or condition. The topic of this dissertation is the 

nonparametric testing of hypotheses about ROC curves in a paired design setting. Presently only 

a few nonparametric tests are available for the task of comparing two correlated ROC curves. 

Thus we focus on this basic problem leaving the extensions to more complex settings for future 

research. In this work, we study the small-sample properties of the conventional nonparametric 

method presented by DeLong et al. and develop three novel nonparametric approaches for 

comparing diagnostic systems using the area under the ROC curve. The permutation approach 

that we present enables conducting an exact test and allows for an easy-to-use asymptotic 

approximation. Next, we derive a closed-form bootstrap-variance, construct an asymptotic test, 

and compare them to the existing competitors. Finally, exploiting the idea of “discordances” we 

develop a conceptually new conditional approach that offers advantages in certain types of 

studies. 
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I. INTRODUCTION 

The performance of a diagnostic system is frequently characterized by its ability to discriminate 

between subjects with and without an abnormality of interest. A Receiver Operating 

Characteristic (ROC) curve is one of the most commonly used methods for summarizing the 

intrinsic discriminative abilities of a diagnostic system. Additionally ROC analysis is often used 

in the evaluation and comparison of diagnostic technologies, practices or systems (often termed 

as modalities) [1,2,3,4,5,6]. 

As a simplification to considering the entire curve, a variety of summary indices have been 

proposed [1,2,3,4,7,8]. One of the most common measures used for summarizing the overall 

performance of diagnostic modalities is the Area Under the ROC Curve (AUC). The AUC 

measure is conveniently interpretable as the probability of correct discrimination between 

“abnormal” (with the condition) and “normal” (without the condition) subjects [1,2,13]. The 

AUC as well as other indices derived from the ROC curve can be estimated using both 

parametric [2,4,10,11] and nonparametric [13,14,16,20,19] approaches. 

The comparison of diagnostic systems is often performed by comparing various ROC 

indices. To control for additional sources of variability a paired design, in which a selected 

population of subjects is evaluated by both modalities being compared, is often implemented. 

This type of design, however, leads to correlated estimates which then require an appropriate 

analysis. A number of parametric, semi-parametric, and completely nonparametric approaches 

have been developed to compare diagnostic modalities under a paired design 

[17,18,19,20,21,23]. The relative benefit of a paired design compared to an unpaired design 

depends on the correlation between the observations for the two modalities being compared. In a 

review of a large number of experimental studies to compare different imaging modalities 

Rockette et al. [27] found that the average correlation between two modalities in paired 

experiments ranged from 0.35 to 0.59 depending on the specific abnormality in question. 
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Appropriate use of a paired design also requires that the experimenter has adequately controlled 

in the design for the effects of order of the administration of the two diagnostic systems being 

compared. Finally, if the number of normal and abnormal cases is fixed, as we have assumed 

here, then careful attention must be given to the purpose of the study and potential biases that 

might result due to the selection process. 

A. OBJECTIVES 

The primary purpose of this dissertation is to improve upon existing methods of comparing two 

ROC curves in a paired design setting. Although the approaches we develop appear to be 

extendable to analysis of more general problems such as comparing more than two modalities, 

using multiple readers [27,35,38,37] or comparing partial areas [20,28] we consider these more 

complex problems to be beyond the scope of this dissertation. 

1. Properties of the conventional nonparametric AUC test 

The test proposed by DeLong et al. [19] is the conventional nonparametric procedure for 

comparing correlated AUCs. It uses a consistent variance estimator and relies on asymptotic 

normality of the AUC estimator. Although it is generally recognized that convergence to the 

asymptotic properties depends on the underlying parameters, and several Monte Carlo studies 

include the conventional procedure in their investigation [38,39,40], there have not been 

extensive simulations characterizing the effects of relevant parameters on the small-sample 

properties of the this procedure. 

We study the behavior of the type I error and the statistical power of the conventional 

nonparametric test for comparing two AUCs over a wide range of relevant parameters and 

against various alternatives. These investigations provide useful information in regard to how 

and to what extent various underlying parameters affect small-sample statistical inferences. Part 

of the results of this investigation was presented at the Medical Image Perception Society 

conference X [31]. 
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2. A permutation test for comparing diagnostic modalities 

Using the permutation scheme previously employed in the paper by Venkatraman and Begg [24] 

we construct a permutation test for detecting differences between two AUCs in a paired design 

setting. Such a permutation procedure not only provides an exact (suitable for small samples) 

and powerful test for detecting differences in overall performances but also permits developing a 

precise and easy-to-apply approximation. The availability of a simple and precise approximation 

to the permutation test is a desirable property since with increasing sample size exact 

permutation tests quickly become very demanding computationally. The properties of the 

nonparametric AUC estimator permit the derivation of the exact variance in the permutation 

space and therefore facilitate the development of a precise approximation. We also conduct 

simulations to investigate properties of the new procedure. This part of the dissertation was 

accepted for publication in Statistics in Medicine [32]. 

3. Bootstrap-variance, asymptotic test and their properties 

The bootstrap is a powerful nonparametric approach [41] and the ideas of exploiting the 

bootstrap procedure in ROC analysis have been previously proposed [39,37,43]. Unfortunately, 

the intensity of the computations required to create all bootstrap-samples or an additional error 

associated with incomplete sampling of the bootstrap-space reduce the attractiveness of the 

approach. 

The conventional procedure for comparing correlated AUCs developed by DeLong et al. [19] 

is equivalent to the two-sample jackknife procedure [22]. Since the bootstrap approach is usually 

considered to be superior to the jackknife [42], it is reasonable to investigate the properties of the 

asymptotic bootstrap test compared to the conventional test. For a specific statistic such as the 

nonparametric estimator of the AUC, the closed-form bootstrap-variance can be derived allowing 

one to construct an easy-to-compute asymptotic test. We compare the properties of the variance 

estimators and the corresponding asymptotic procedures based on jackknife and bootstrap 

approaches using computer simulations. 
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4. Conditioning on discordances between two diagnostic modalities 

When comparing the AUCs in a paired design setting, each pair of normal and abnormal cases 

can be classified based on whether the two modalities agreed in regard to the relative orderings 

between normal and abnormal subjects’ ratings (concordant) or whether the two modalities had 

different relative orderings for the normal-abnormal pair (discordant). While the orderings of 

ratings that are the same in both modalities (“concordant” orderings) are important for assessing 

performance of each modality separately, these could mask the true difference between two 

modalities in a paired design. The orderings that differ in two modalities (“discordant” orderings) 

on contrary contain information about the discrepancies between the performances of diagnostic 

systems. 

We develop a novel approach for statistical comparison of the overall performance of the two 

modalities in a paired design setting. The difference between the overall performances of two 

modalities is assessed by the fraction of the discordant orderings observed in favor of one of 

them. The corresponding statistical test is similar in spirit to McNemar’s procedure [44] which 

conducts the analysis only on discordant pairs. Simulations are conducted to verify the small-

samples properties of the conditional test. This portion of the research is published in Academic 

Radiology [33]. 
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II. ROC METHODOLOGY 

Many statistical problems address binary outcomes that are associated with an ordinal variable. 

ROC curves represent one of the most popular and powerful tools in the analysis of the 

relationship between two such variables. 

Although ROC analysis is applicable to a variety of disciplines one of its most common uses 

is in the area of diagnostic test evaluation. In this field, the binary outcome usually indicates 

presence or absence of a specific abnormality where the status is determined based on an 

accepted “gold standard”. The ordinal variable associated with such a binary outcome can 

represent a continuous measure based on a quantitative clinical test or the confidence of a rater in 

the subject’s abnormality based on the result of a diagnostic test. 

A. CONVENTIONS AND DEFINITIONS 

We will treat the binary outcome as the indicator of presence or absence of an abnormality 

(sometimes called “true status”) and assume that it is uniquely determined and known for each 

subject. Hence the population of subjects can be divided into normal and abnormal 

subpopulations according to the true status of each subject. We will designate the ordinal 

variable related to the presence of abnormality as the rating of the subject and denote X and Y as 

ratings for normal and abnormal subjects correspondingly. Furthermore, without loss of 

generality, we assume that higher values of ratings are associated with higher probabilities of the 

presence of abnormality. 

For any real-valued threshold, c, the population of subjects can be classified into the two 

groups according to their ratings being greater or less than c. If a diagnostic procedure is 

reasonable then the group with higher ratings will include proportionally more abnormal than 
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normal subjects. The agreement between the classification obtained and the real status of the 

subjects can be characterized using two quantities: sensitivity (True Positive Fraction) and 

specificity (True Negative Fraction) defined as follows: 

)cY(P)c(TPF)c(sens >==  

)cX(P)c(TNF)c(spec ≤== . 

 

Figure II.1 Distribution of ratings 

The Receiver Operating Characteristic (ROC) approach allows considering the agreement 

between ratings and the presence of abnormality for all thresholds simultaneously. The ROC 

curve is the plot of sensitivity versus 1-specificity where each point on the graph corresponds to a 

specific threshold c. (See Figure II.2)  
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Figure II.2 “Binormal” ROC curve 

Note that for every distribution of ratings in the groups of normal and abnormal subjects 

there is a unique ROC curve. However, a single ROC curve corresponds to an infinite class of 

bivariate distributions any two of which are monotonically transformable to each other. In other 

words, an ROC curve is invariant to any monotone transformation of the underlying bivariate 

distribution. 

An ROC curve is useful in many tasks related to accuracy of diagnostic tests such as 

selecting an optimal threshold for a diagnostic procedure or in determining which diagnostic 

procedure is better on average or at a particular operating point [1,2,3,4]. Although the ROC 

curve is employed in describing a diagnostic test there is frequently a desire to have a simple 

sum

f a diagnostic procedure and has 

a n  

 

 a pair of normal and abnormal subjects the “rater” has to 

select the abnormal subject. The probability of a correct decision in a 2AFC experiment equals 

the AUC of the diagnostic procedure. In the presence of an ordinal variable (rating) representing 

mary index. In diagnostic radiology as well as in many other fields one of the most useful 

measures derived from the ROC curve is the area under the ROC curve (AUC).  

The AUC index reflects the inherent discriminative ability o

ice interpretation of the probability of correct discrimination between randomly chosen

normal and abnormal subjects [13]. To illustrate this concept consider the 2-Alternative Forced

Choice (2AFC) experiment in which for
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the confidence of abnormality the selection is guided by the value of the rating. Namely if ratings 

ubjects do differ then the subject with greater rating is declared abnormal; otherwise 

when both have equal ratings, any of two subjects can be diagnosed as abnormal with equal 

pro

of two s

bability. Hence the area under the ROC curve can be expressed in the following way: 

( ) ( )YXPYXPA 1
2 =+<=  

As the formula indicates, the AUC can be interpreted as the probability that a randomly 

abnormal subject has greater rating than a randomly selected normal subject plus half of 

the probability of equality of the ratings for the pair of subjects. 

ughout this work we will denote 

selected 

Thro { }N
i

r
ix 1=  and { }M

j
r
jy

1=
 as the ratings observed for the N 

normal and M abnormal subjects in the rth modality (r=1,..,K). In these notations the unbiased 

estimator of AUC in the rth modality is given by: 
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In the completely paired design the difference between two nonparametric AUC estimators 

derived from the same cases c e w gle AUC, namely: 
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where wij is a “joint order indicator” and is defined as:  
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B. METHODS OF ANALYSIS 

1. 

ximated by a monotone transformation of a binormal distribution. One of the best known 

parametric approaches to the analysis of the ROC curves is the maximum likelihood approach 

orfman and Alf Jr. [10]. C. Metz et al. have developed computer software 

ROCKIT that implements the original [10] and a modified [11] maximum likelihood estimation 

h curve [1,6,12,13,14]. The m

 

abo

sly mentioned, one of the most popul is the Area Under the 

ROC Curve (AUC). The nonparametric estimate of the AUC is easy to compute and its 

numerical value is equal to the actual area under the estimated ROC curve where empirical 

points are connected by straight lines [13]. If 

General 

Several different methods have been developed for the analysis of ROC curves. The parametric 

methods usually model the ROC curves by assuming a particular underlying distribution of 

subject ratings (usually assuming that a bivariate distribution of ratings is transformable to a 

binormal). The “binormal” ROC curves were shown to be quite robust for a wide class of curves 

encountered in practice [9], a property that is in part due to variety of distributions that can be 

appro

introduced by D

approaches. The software permits the analysis of two ROC curve in the presence of categorical 

or continuous ratings data. 

Nonparametric methods utilize empirical ROC points by connecting them with straight lines, 

step functions or sometimes by fitting a smoot ain advantage of 

nonparametric methods compared to parametric ones is the absence of specific assumptions

ut the shape of the curve or the underlying distribution of ratings. Furthermore, unlike many 

parametric procedures, iterative algorithms are not needed for implementation of most 

nonparametric methods. A wide family of nonparametric statistics is described by Wieand et al. 

[20]. 

2. AUC index 

As previou ar and convenient indices 

{ }N
iix 1=  and { }M

jjy
1=
 are the ratings observed for the 

samples of N nor al and M abnormal subjects then the estimate of the AUC is given in (II.A.1) m
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The nonparametric AUC estimator as presented in (II.A.1) is a generalized U-statistic and 

therefore is approximately normally distributed under quite general assumptions [26]. Hence, 

knowing the variance of the estimator is essential for constructing simple asymptotic procedures. 

The nonparametric AUC estimator is related to the Mann-Whitney two-sample test statistic 

[16,13] and many of the nonparametric approaches to variance derivation are related to the 

formula derived by Noether [15] for the Wilcoxon statistic. Using previously introduced 

notation, the formula of Noether when applied to the AUC can be written as follows: 

(II.B.2.1) 110110
111)ˆ( ξξξ MNAVar +

NM NMNM
−

+
−

= , 

[ ] [ ]AEYXEA ji
ˆ),( == ψ  

[ ] [ YX ×ψψ ] ljAYXEYXYXCov lijiliji ≠−== ,),(),(),(),,( 2
10 ψψξ  

] kiAYXYXYv jkjij ≠−× ,),(),( 2ψψ  and [ ] [EYXXCo jki == ),(),,(01 ψψξ

[ ] [ ] 2A  2
11 ),(),( YXEYXVar jiji −== ψψξ

timator that is based on expressing unknown 

expectations using probabilities which can be estimated by proportions. Hanley and McNeil [17] 

used the parametric assumption to estimate certain variance elements. The consistent, completely 

tric estimators of the covariance matrix for several nonparam tric AUC estimators 

were developed by Wieand et al. [18] in 1983 and by DeLong et al. [19] in 1988. 

to compute, i.e.: 

pute the X- and Y-components: 

Bamber [16] proposed an unbiased variance es

nonparame e

The conventional variance estimator proposed by DeLong et al. [19] can also be shown to be 

equivalent to the two-sample jackknife estimator of the variance [22]. Because of the structure of 

the nonparametric estimator of AUC its variance estimator is easy 

a) Com

∑• =
M

=
jii yx ),(1 ψ ∑

=
• =

N

i
jij yx

N 1
),(1 ψψ  

jM 1

ψ ,  

b) The components 10ξ  and 01ξ  are estimated as: 
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c) The consistent estimator of the variance is: 

(II.B.3.1) 
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The estimation approach employed by Wieand et al. [18] when implemented for a single 

tors that are equivalent to that proposed by 

Bamber [16]. In our notations the unbiased estimator has the following form (both estimators are 

AUC produces the biased and unbiased estima

shown in the Appendix C in application to AUC difference): 

(II.B.3.2) 
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3. Comparing diagnostic modalities 

To 

agin e

evaluated by all modalities and the ratings obtained in such a way are used for the analysis. The 

e subjects can be substantial [27] and should be 

accounted for in the analysis.  

4. Comparing ROC curves in a paired design 

One

. The test they proposed is designed to compare two correlated 

ROC curves at every operating point using the specially developed measure denoted as E. The 

significance of the observed difference is then evaluated using the permutation space. Namely 

the E-index is calculated for every permutation and the p-value is calculated as the proportion of 

tim

simplify the discussion we will use the term modality to designate a diagnostic system, 

practice or technology. The between subject heterogeneity is recognized as substantial in the 

field of diagnostic im g as w ll as in many other fields. Hence, the paired design is often used 

to improve the precision of the analysis. In a paired design each subject is independently 

correlation between the ratings for the sam

 of the nonparametric procedures for comparing ROC curves is a permutation test developed 

by Venkatraman and Begg [24]

es when more extreme values than the E-index computed from the observed data are 

obtained. 
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The E-statistic is composed of so called “em  errors” [24]. The “error” indicators are 

def

pirical

ined for each empirical operating point and for every normal and abnormal subject using 

ranks. Namely, if { }N
i

r
ix 1=  and { }M

j
r
jy

1=
 are the ratings observed for the N normal and M abnormal 

subjects in the rth modality and { }N
i

r
ixrank 1)( =  and { }Mryrank )(  are corresponding ranks then the 

“errors” indicators are defined as follows: 

 
⎪

⎪
⎨
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≤>−
>≤

=
otherwise

kxrankandkxrankif
kxrankandkxrankif

xe ii
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ik )()(1
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)( 21
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21
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otherwise
kyrankrankifye jjk

0
)(1)( 2  

Using computed “errors” indicators, the measure of “closeness” of two ROC curves at the kth 

operating point is computed as: 

∑∑
== j

jk
i

ikk yexee
11

. )()(  

Finally the E-statistic which provides a measure of “closeness” over all operating points is 

defined as: 

+=
M

∑
−+

=1k

 1s. The 

set of all such vectors can be used to enumerate all 2 permutations. In the tth permutation of 

ined using the qt vector. 

For instance the ratings of the ith normal subject in the tth permutation of the data are: 

=
1MN

k.eE  

As was indicated previously, the significance of the observed difference between two ROC 

curves is assessed by the significance of the computed E-statistic in the permutation space. The 

permutation space is created by permuting the ratings assigned to the same subjects for the 

different modalities. Namely, consider the vector ),...,( 1
t

MN
tt qqq += consisting of 0s and

N+M 

the original data the values of the ratings for each subject can be determ

211 )1( i
t
ii

t
i

t
i xqxqX −+=  212 )1( i

t
ii

t
i

t
i xqxqX +−=  
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Since t
iq  is either 0 or 1, the vector )X,X( t2

i
t1

i  equals either ),( 21
ii xx  or ),( 12

ii xx . If all the 

permutations are equally likely then the values of the E-statistics computed for all permutations 

constitute the “reference” distribution of the E-statistic. The constructed permutations are equally 

like

sted to be uniformly broken). 

n and

ey found, that compared to the nonparametric “area test”  proposed 

by DeLong et al. [19], their procedure possesses more power against alternatives of crossing 

ROC curves with equal AUC but less power against alternatives of difference in AUCs. 

5. 

Both parametric and nonparametric methods for comparing correlated AUC indices are 

available. The parametric analysis assuming the binormal model was developed by Dorfman and 

Alf d further deve  Metz et al. [11]. Hanley and McNeil 

[17] suggested using the binormal assumption only for estimation of the covariance between two 

area estimators. 

e eneral class of nonparametric statistics 

for comparison of two diagnostic m erage of sensitivities. Earlier, 

Wieand, Gail and Hanley developed a nonparametric procedure for comparing diagnostic tests 

with paired or unpaired data [18]. DeLong et al. [19] developed a consistent nonparametric 

estimator of the covariance matrix for several AUC estimators in a paired design. This method, 

whi

ly under the null hypothesis of equality of the ROC curves and the additional assumption of 

exchangeability. 

To make the procedure appropriate for comparing modalities with different underlying scales 

(when ratings are not directly exchangeable even under the null hypothesis), the rank 

transformation is suggested. If the transformation is applied then the permutations are conducted 

on the rank of the ratings instead of raw ratings (the ties that appeared during the process of 

permutation of the ranks are sugge

Venkatrama  Begg evaluated operating characteristics of their procedure on simulated 

datasets. Due to the computational burden, the p-values were evaluated by sampling from a 

permutation distribution. Th

Comparing AUCs with paired data 

 Jr. [10] and later implemented an loped by

Wi and, Gail, James B and James K [20] described a g

arkers based on a weighted av

ch is described below, is a natural extension to K-samples of the formulas given in Section 

II.2. 
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Let  and  be the ratings assigned by the rth modality (r=1,..,K) to N normal and 

M abnormal subjects. Then the vector of the AUC estimators can be computed as a simple 

average of the order indicators, i.e.: 

{ }N
i

r
ix 1= { }M

j
r
jy

1=

( )KKAA ••••= ψψ ,...,)ˆ,...,ˆ(
11  

The covariance matrix for a vector the estimators )Â,...,Â( K1  can be computed as follows: 

a) Compute the X and Y components of the rth modality, 

∑
=

• =
M

j

r
j

r
i

r
i yx

M 1
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c) A consistent estimator of the covariance matrix is: 

M
S

N
S

AAvoC K 01101 )ˆ,...,ˆ(ˆ +=  the (r,s)th element of which is 

[ ] [ ] [ ] [ ]
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Using our notation, the unbiased estimator proposed by Wieand et al. [18] takes the 

following form: 

[ ] [ ] [ ] [ ]
−
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−×−
+

−
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Note that in a completely paired design, the variance of the difference between the 

nonparametric estimators of AUC can be found using formulas (II.B.3.1-2) but employing the 

difference of the order indicators  (II.A.3) instead of the original indicators 

(Appendix C). 

21
ijijijw ψψ −=
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III. PROPERTIES OF THE CONVENTIONAL NONPARAMETRIC TEST 

The conventional nonparametric test for comparing correlated AUCs proposed by DeLong et al. 

[19] uses a consistent variance estimator and relies on asymptotic normality of the AUC 

estimator. Although it is generally recognized that convergence to the asymptotic properties 

depends on the underlying parameters, and several Monte Carlo studies include the conventional 

procedure in their investigation [38,39,40], there have not been extensive simulations 

characterizing the effects of relevant parameters on the small-sample properties of the this 

procedure. 

We study the behavior of the type I error and the statistical power of the conventional 

nonparametric test for comparing two AUCs over a wide range of relevant parameters and 

against various alternatives. These investigations provide useful information on the effect of 

selected underlying parameters on small-sample statistical inferences. Part of the results of this 

investigation was presented at the MIPS conference [31]. 

A. GENERAL SIMULATION DESCRIPTION 

To model the ratings assigned to a sample of subjects by two diagnostic modalities we simulate 

the data from two correlated bivariate (normal and abnormal subjects’) distributions. For our 

simulations we use the “binormal” ROC model because of its simplicity and robustness [9] Thus, 

within the rth modality, subjects’ ratings are generated from binormal distributions namely, 

, for the ratings of the normal subjects and ),(~
...

r
Y

r
Y

dii
NY σµ , for the ratings of 

the abnormal subjects. Furthermore, to model a paired data structure a correlation of magnitude, 

ρ, is induced for the ratings of the same sub

),(~
...

r
X

r
X

dii
r
i NX σµ r

j

ject in different modalities 
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( ρ== ),(),( 2121 YYCovXXCov ). Note that the use of the binormal distribution to model 

subjects’ ratings provides considerable flexibility since the ROC curve and ROC techniques that 

we consider are invariant with respect to order-preserving transformation of the data. 

The binormal ROC curve corresponding to the distribution of ratings within the rth modality 

can be parameterized using the following quantities: 

( )rrr - the Area Under the ROC Curve, and YXPA <=  

r
Y

r
X

rb
σ
σ

=  - the shape-parameter 

By varying the parameters of the distributions of the ratings we model various patterns of the 

correlation between the ratings of the same subjects (ρ), average of two AUCs (A), difference 

between two areas (∆) and shapes of the ROC curve (b). The scenario of non-crossing ROC 

curves is modeled by setting b=1 for both modalities while crossing ROC curves were simulated 

by setting b<1 (corresponds to a greater variability among ratings of abnormal subjects) for one 

of the modalities. We also considered different values of the total number of normal and 

abnormal subjects (T=N+M) and of the proportion of subjects with an abnormality 

(p=M/(N+M)). For each considered scenario 10,000 datasets were simulated. 

B. SIMULATION STUDY 

The effects of the selected parameters on the type I error of the conventional test for comparing 

correlated AUCs are summarized in Figure III.1 and Table III.1. Figure III.2 and Table III.2 

depict the effect of selected parameters on the statistical power of the procedure. Each figure is 

only able to summarize the trend in the rejection rate for two parameters and therefore the other 

parameters are kept fixed at what is considered reasonable values. Specifically, when the value 

of a parameter is not specified on the graph it is set to one of the following: sample size (T) of 

80, an average AUC (A) of 0.85, a correlation between ratings (ρ) of 0.4, a shape parameter (b) 

of 1 in both modalities and “prevalence” of the abnormal subjects (p) of ½. 
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All graphs in Figure III.1 demonstrate the substantial effect of the underlying AUC on the 

false rejection rate of the conventional test. Namely, the type I error decreases with increasing 

average AUC (A) shifting from being slightly elevated above the nominal level to being 

sub

tistical test 

(Fi

ed sample is depicted on Figure 

III.1.c. It can be noted that imbalance of the selected sample affects the behavior of the type I 

error by strengthening its dependence on the underlying AUC. 

stantially lower. Although other parameters can slightly change the rate of the relationship the 

general decreasing pattern remains the same. 

From the Figure III.1.a, one can note a moderate but distinct effect of the correlation 

(adjusted for the effect of AUC). The graph suggests that increasing correlation may decrease the 

type I error independently from the AUC. The difference in shapes of the ROC curves that have 

equal AUCs does not greatly affect the false rejection rate (type I error) of the sta

gure III.1.b). However the complete results of our investigation of the type I error (Table 

III.1) suggests a small increase of the false rejection rate when the ROC curves cross. 

The effect of prevalence of abnormal subjects in a select
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Figure III.1 Effects of the selected parameters (type I error) 
a). Different levels of the correlation ( sample size T=80, shape parameters b1:b2=1:1, prevalence p=1/
Difference in shapes indicated by the ratio of the shape parameters b of the two ROC curves (sample size T=8
correlation ρ=0.4, prevalence p=1/2); c). The prevalence of the abnormal subjects in the sample indicated
proportion (sample size T=80, shape parameters b1:b2=1, correlation ρ=0.4) 

Table III.1 includes the estimates of the type I error over the complete range of param

we considered. From presented estimates, it can be seen that for a sample size as larg

subjects, the type I error of the conventional procedure can vary from 0.027 to 0.067 depending 

on underlying parameters. 

2); b). 
0, 

 by the 

eters 

e as 80 
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Table III.1 Conventional test: type I error  

            Total sample size (T) 
      40 subjects 80 subjects 120 subjects 

Prevalence  Correlation  AUC  The same ROC Crossing ROCs The same ROC  Crossing ROCs The same ROC Crossing ROCs
      (b1=b2=1)  

   
(b1=1,b2=1/2) (b1=b2=1)  (b1=1,b2=1/2) (b1=b2=1)

 
(b1=1,b2=1/2) 

           
 
 

ρ=0.0  0.65         
        

         
        

          
        
        

         
        

          
        
        

         
        

           
        
        

         
        

          
        
        

         
        

          
        
        

         

0.061 0.060 0.057 0.056 0.054 0.054
 0.75 0.062 0.060 0.056 0.058 0.054 0.054
 0.85 0.051 0.054 0.052 0.051 0.053 0.053

  0.95 
 

0.021 0.023 0.038 0.041 0.043 0.047
 

 
 

ρ=0.4  0.65 0.056 0.060 0.056 0.054 0.053 0.053
 0.75 0.054 0.056 0.053 0.055 0.053 0.050
 0.85 0.045 0.047 0.051 0.050 0.051 0.049

  0.95 
 

0.015 0.017 0.035 0.039 0.039 0.043
 

 
 

ρ=0.6  0.65 0.050 0.054 0.053 0.053 0.051 0.053
 0.75 0.051 0.053 0.054 0.055 0.051 0.051
 0.85 0.039 0.042 0.049 0.049 0.046 0.049

p=0.5 

  0.95 
 

0.012 0.014 0.033 0.035 0.036 0.041
 

 
 

ρ=0.0  0.65 0.062 0.071 0.063 0.067 0.059 0.057
 0.75 0.061 0.073 0.060 0.065 0.056 0.057
 0.85 0.054 0.070 0.056 0.065 0.053 0.057

  0.95 
 

0.017 0.022 0.039 0.052 0.042 0.060
 

 
 

ρ=0.4  0.65 0.058 0.064 0.058 0.063 0.056 0.055
 0.75 0.056 0.067 0.054 0.062 0.056 0.057
 0.85 0.044 0.055 0.051 0.064 0.053 0.058

  0.95 
 

0.012 0.019 0.031 0.048 0.038 0.058
 

 ρ=0.6  0.65 0.051 0.062 0.053 0.059 0.055 0.054
    0.75 0.052 0.059 0.052 0.060 0.055 0.054

 0.85 0.037 0.048 0.049 0.060 0.052 0.056

p=0.25 
  

  0.95   0.012 0.022 0.027  0.045 0.036 0.059 



The effects of the selected parameters on the statistical power of the conventional test are 

summarized in Figure III.2 and Table III.2. The relative order of the effects of the parameters 

remains similar to that observed for the type I error with the average AUC having the largest 

effect and the difference in shapes of the ROC curves having the smallest effect. However the 

direction of the relationships does differ. Namely increasing the average AUC or correlation tend 

increase the statistical power of the conventional test for large AUC differences in contrast to 

decreasing its type I error (Figure III.2.a,d). Increasing balance between the numbers of subjects 

in the selected sample not only improves the rate of false rejection (type I error) of the statistical 

test making it closer to the nominal level but also tend to increase the rate of its true rejections 

(power) for large AUC differences. 
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 selected parameters ( statistical power) Figure III.2 Effects of the
a). Different levels of the correlation (sample size T=80, average AUC A=0.85, shape parameters b1:b2=1:1, 
prevalence p=1/2); b). Difference in shapes indicated by the ratio of the shape parameters b of the two ROC curves 
(sample size T=80, average AUC A=0.85, correlation ρ=0.4, prevalence p=1/2); c). The prevalence of the 
abnormal subjects in the sample is indicated by the proportion (sample size T=80, average AUC A=0.85, 
correlation ρ=0.4, shape parameters b1:b2=1:1); d). Magnitudes of the underlying average AUC (sample size T=80, 
correlation ρ=0.4, shape parameters b1:b2=1:1,prevalence  p=1/2) 
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Table III.2 Conventional test: statistical power 

               Total sample size (T) 
       40 subjects 80 subjects  120 subjects 

Prevalence  Correlation  Average  AUC  
The same 

ROC 
Crossing 

ROCs 
The same 

ROC 
Crossing 

ROCs  The same 
ROC 

Crossing 
ROCs 

      AUC  difference (b1=b2=1) (b1=1,b2=1/2) (b1=b2=1) (b1=1,b2=1/2)  (b1=b2=1) (b1=1,b2=1/2)

  0.75  0.025 0.064 0.066 0.065 0.066  0.070 0.069
    0.050 0.082 0.085 0.103 0.101  0.125 0.127
    0.075 0.112 0.114 0.166 0.160  0.226 0.220
  0.85  0.025 0.060 0.068 0.070 0.071  0.078 0.079
    0.050 0.085 0.095 0.129 0.130  0.172 0.171
    0.075 0.132 0.142 0.234 0.231  0.331 0.320
  0.95  0.025 0.037 0.047 0.096 0.120  0.144 0.156
    0.050 0.104 0.121 0.317 0.325  0.479 0.469
 

ρ=0.0 

   0.075 0.247 0.264 0.684 0.675  0.888 0.855
  0.75  0.025 0.063 0.065 0.070 0.071  0.081 0.077
    0.050 0.088 0.090 0.128 0.120  0.167 0.164
    0.075 0.131 0.132 0.229 0.212  0.325 0.301
  0.85  0.025 0.058 0.063 0.077 0.081  0.091 0.090
    0.050 0.096 0.105 0.164 0.158  0.235 0.220
    0.075 0.161 0.165 0.321 0.301  0.465 0.429
  0.95  0.025 0.037 0.042 0.110 0.131  0.176 0.181
    0.050 0.109 0.125 0.393 0.393  0.602 0.569
 

ρ=0.4 

   0.075 0.277 0.284 0.787 0.755  0.953 0.918
  0.75  0.025 0.061 0.061 0.075 0.075  0.091 0.085
    0.050 0.098 0.095 0.157 0.144  0.224 0.202
    0.075 0.159 0.151 0.301 0.266  0.436 0.385
  0.85  0.025 0.058 0.062 0.086 0.086  0.107 0.103
    0.050 0.109 0.114 0.207 0.191  0.310 0.276
    0.075 0.195 0.193 0.421 0.374  0.600 0.531
  0.95  0.025 0.036 0.044 0.131 0.150  0.223 0.216
    0.050 0.126 0.135 0.487 0.463  0.727 0.657

p=0.5 

 

ρ=0.6 

   0.075 0.317 0.312 0.868 0.821  0.983 0.956
  0.75  0.025 0.067 0.085 0.068 0.076  0.071 0.073
    0.050 0.079 0.099 0.095 0.104  0.115 0.115
    0.075 0.106 0.124 0.149 0.152  0.187 0.179
  0.85  0.025 0.061 0.087 0.071 0.090  0.076 0.089
    0.050 0.082 0.115 0.118 0.136  0.148 0.155
    0.075 0.116 0.153 0.198 0.215  0.271 0.257
  0.95  0.025 0.030 0.044 0.083 0.131  0.121 0.176
    0.050 0.068 0.087 0.239 0.301  0.384 0.413
 

ρ=0.0 

   0.075 0.150 0.175 0.549 0.582  0.777 0.738
  0.75  0.025 0.062 0.078 0.069 0.079  0.079 0.079
    0.050 0.084 0.102 0.111 0.123  0.145 0.136
    0.075 0.121 0.138 0.192 0.191  0.260 0.228
  0.85  0.025 0.054 0.079 0.074 0.099  0.088 0.096
    0.050 0.085 0.119 0.142 0.163  0.193 0.191
    0.075 0.136 0.168 0.261 0.261  0.368 0.338
  0.95  0.025 0.025 0.041 0.088 0.145  0.145 0.207
    0.050 0.069 0.089 0.296 0.350  0.484 0.488
 

ρ=0.4 

   0.075 0.167 0.185 0.643 0.647  0.869 0.818
  0.75  0.025 0.060 0.076 0.073 0.084  0.083 0.085
    0.050 0.089 0.108 0.137 0.142  0.182 0.165
    0.075 0.135 0.153 0.249 0.229  0.347 0.291
  0.85  0.025 0.050 0.076 0.079 0.107  0.099 0.111
    0.050 0.089 0.120 0.174 0.191  0.247 0.231
    0.075 0.161 0.189 0.340 0.318  0.483 0.414
  0.95  0.025 0.023 0.041 0.097 0.155  0.177 0.237
    0.050 0.079 0.099 0.359 0.399  0.591 0.564

p=0.25 
  

  

ρ=0.6 

      0.075 0.189 0.200 0.726 0.709  0.931 0.880
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C. SUMMARY 

Using the conventional nonparametric procedure for comparing correlated AUCs developed by 

DeLong et al. [19], we attempted to characterize the effects of various parameters on the 

statistical inferences with small samples. The parameter with the greatest effect on both the type 

I error and power of the conventional nonparametric test was found to be the average AUC (A). 

When A increases, the type I error decreases making the test overly conservative for large AUCs. 

However, for small AUCs the type I error of the conventional procedure is elevated above the 

nominal level. Thus, while the conventional test might be underpowered for large AUCs, it may 

be inappropriate if the average AUC and sample size are small. This effect can be partially 

explained by the non-normality of the distribution of the nonparametric estimator of the area. 

However the decrease of the type I error and hence, potential reduction in the statistical power of 

the test might also be in part attributed to the increasing bias (with increasing AUC) of the 

conventional variance estimator (Chapter V Section B). 

The correlation between the ratings of the same subjects (ρ) also appears to have a distinct 

effect on the type I error and power of the conventional test. The direction of the effect of this 

parameter is similar to that of the average AUC, however the magnitude of the influence is not as 

large over the considered range of scenarios. 

The balance between the number of subjects with and without the abnormality was also 

shown to be relevant for small-sample inferences. We observed that for the considered ranges of 

parameters, increasing the balance of the sample improves properties of the conventional 

statistical test. Namely, the type I error is closer to the nominal level and the statistical power to 

detect large AUC differences tends to be larger in more balanced (prevalence closer to 0.5) than 

in less balanced samples. 

The difference in shapes of the ROC curves (difference in b’s) has little effect on the 

statistical power or the type I error of the conventional test, although there is some indication that 

increasing the discrepancy between shapes of two ROC curves slightly elevates the type I error. 
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IV. PERMUTATION TEST 

In this chapter we develop the permutation test for detecting differences between two AUCs in a 

paired design setting. Such a permutation procedure not only provides an exact (suitable for 

small samples) and powerful test for detecting differences in overall performances but also 

permits developing a precise and easy-to-apply approximation. The availability of a simple and 

precise approximation to the permutation test is a desirable property since, with increasing 

sample size the exact permutation tests quickly become very demanding computationally. We 

also conduct simulations to investigate properties of the new procedure. The material in this 

chapter is accepted for publication in Statistics in Medicine [32]. 

A. EXACT PERMUTATION TEST 

In order to compare the AUCs of the two correlated ROC Curves we propose a permutation test 

in which the values of the estimator of the AUC difference computed from all possible 

permutations constitute the distribution of the estimator under the null hypothesis. If the two 

modalities had the same underlying scale of ratings we could justify directly permuting the actual 

ratings for each subject. However, since the ROC curves are invariant with respect to monotone 

transformations of the data, without loss of generality we can permute the rank of the ratings (or 

appropriate monotonic transformation of the ratings) as if they were actual ratings on the same 

underlying scale. Hence the use of the transformed ratings allows us to compare the modalities 

with different underlying scales as well. We will refer to monotonically transformed ratings or 

ranks of the ratings as rank-ratings. 

The proposed test is conducted by permuting the subject specific rank-ratings between the 

two modalities within the structure of given pairs. The 2N+M permutations are created by 
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exchanging the rank-rating observed for each subject for the two modalities, and permutations 

for different subjects are done independently of each other. Thus if for the ith normal subject (Xi) 

and jth abnormal subject (Yj) the rank-ratings observed in first and second  modality are 

 respectively then all possible permutations that can be performed with those two 

subjects are as follows: 

2
j

1
j

2
i

1
i yandy,x,x

(IV.A.1) 

changedexs'Y,changedexs'X)y,x()y,x(

changedexs'Y,changedexnots'X)y,x()y,x(

changedexnots'Y,changedexs'X)y,x()y,x(

changedexnots'Y,changedexnots'X)y,x()y,x(

2
j

1
i

1
j

2
i

2
j

2
i

1
j

1
i

−

−−

modIImod

−

metric with respect to its arguments 

(separately for the normal and abnormal subjects) [24]. The exchangeability assumption is a 

stricter assumption than the equality of the ROC curves. We consider our procedure to have as a 

null hypothesis equality of ROC curves under the assumption of exchangeability. The 

 

utations α/2 and 1-α/2 

percentile values. The two-sided p-value can be defined as: 

I

1
j

1
i

2
j

2
i

1
j

2
i

2
j

1
i

−−

−−
 

where the pairs in the first column are assumed to be observed for the first modality and the pairs 

in the second column are assumed to be observed for the second modality. 

To justify equal probability of all permutations under the null hypothesis, we assume the 

exchangeability of the subject specific rank-ratings between the two modalities. Exchangeability 

means that the joint distribution of the rank-ratings is sym

distribution of the differences in the estimated Areas under the ROC Curves over all

perm  is readily obtained and the rejection region can be selected based on 

MN
MN
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where 2N+M is the total number of all possible permutations, 2
0

1
0 ÂÂ −  - is the observed AUC 

difference and 2
t

1
t ÂÂ −  is the AUC difference computed from the tth permutation. 

 
 

25



Properties of the difference between two nonparametric AUC estimators allow for the 

construction of a simple asymptotic procedure. As a member of the class of U-statistics the 

par

estimator of the AUC is unbiased, 

the expectation of the AUC difference is 0 when the two AUCs are equal and this fact is also 

illustrated in the permutation space Ω  under the stricter assumption of exchangeability (see 

Ap

tion space as sh

Hence, under the assumption of asymptotic normality of the U-statistic and the additional 

k-ratings: 

ametric estimator of the AUC difference is known to be asymptotically normally distributed 

under quite general conditions [26]. Since the nonparametric 

pendix A). The exchangeability assumption also allows a simple calculation of the exact 

variance of the AUC difference in the permuta own in Appendix A.  

assumption of exchangeability of within subject ran

( ) )1,0(
ˆˆ

ˆˆ
21

21

N
AAVar

AA d⎯→⎯
−

−

Ω

. 

Thus, a test of the hypothesis of equality of ROC curves that is sensitive to the differences in 

AUCs can be conducted using the statistic ( )21

2
0

1
0

ˆˆ

ˆˆ

AAVar

AA

−

−

Ω

, where the exact variance in the 

denominator is obtained as shown in Appendix A. 

B. SIMULATION STUDY 

c both 

con

We performed extensive computer simulations to investigate the type I error and the statistical 

power of the asymptotic procedure for different underlying AUCs, correlations between subject 

ratings across modalities and different sample sizes. In our simulations we assume equal 

orrelation across modalities for the ratings of normal and abnormal subjects rated on 

tinuous and discrete scales and consider scenarios with non-crossing as well as crossing ROC 

curves. 

The general protocol of simulations follows the approach described in Chapter II, Section A. 

In addition to simulations of continuous datasets, we also investigated the rejection rate of the 

proposed procedure in the discrete case. The discrete ratings were simulated by grouping the 
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ed here are limited to small sample sizes. However, even with these small samples there 

ent between the exact and approximate test. The simulations in Table IV.1 show 

that even for six normal and six abnormal subjects the asymptotic test is adequate. (In general we 

found that it is feasible to conduct the exact test with the sample size as large as fifteen normal 

and fifteen abnormal subjects without using a large amount of computer time.) Thus, for the 

larger sample sizes as presented in subsequent tables we simulate only the operating 

characteristics of the asymptotic test since the results for the exact test should be essentially the 

same. 

 

binormal data into 5 categories. The parameters of each pair of binormal distributions (A, b and 

ρ) were selected to produce predetermined parameters in the resultant discrete distributions. 

Table IV.1 compares the type I error and the statistical power of the exact permutation test to 

its normal approximation. Note that the rejection rate formally corresponds to the Type I error of 

the proposed procedure in cases of equal ROC curves (non-crossing ROC curves with 0 AUC 

difference) and to the power in all other cases considered. Due to the relatively large 

computational time required for the implementation of the exact procedure the comparisons 

present

is a good agreem
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Table IV.1 Exact procedure vs. its approximation: rejection rate 

    Non-crossing ROC curves  (b1=b2=1) Crossing ROC curves  (b1=1,b2=1/2) 
  ρ=0.0 ρ=0.4 ρ=0.6 ρ=0.0 ρ=0.4 ρ=0.6 Average 

AUC 
 

AUC 
difference 

 Asymptotic Exact      Asymptotic Exact Asymptotic Exact Asymptotic Exact Asymptotic Exact Asymptotic Exact

0.70
 

               
              

               
               
               

               
              

               
               
               

               
              

               
               
               

      0.027         
              

               
               
               

               
              

               
               

               
            

0.00  0.045 0.047 0.044 0.048 0.045 0.050 0.047 0.051 0.049 0.054 0.047 0.053
0.05  0.048 0.051 0.051 0.055 0.051 0.057 0.051 0.055 0.055 0.060 0.056 0.062
0.10  0.064 0.066 0.069 0.076 0.080 0.086 0.068 0.069 0.074 0.081 0.081 0.092
0.15  0.089 0.093 0.108 0.114 0.133 0.143 0.093 0.098 0.110 0.121 0.130 0.144
0.20  0.123 0.128 0.161 0.169 0.205 0.222 0.130 0.133 0.165 0.176 0.202 0.220

0.75
 

0.00  0.037 0.040 0.039 0.044 0.039 0.043 0.039 0.043 0.039 0.046 0.039 0.046
0.05  0.046 0.047 0.046 0.050 0.046 0.051 0.046 0.048 0.045 0.051 0.048 0.056
0.10  0.060 0.063 0.065 0.070 0.074 0.082 0.063 0.066 0.069 0.077 0.076 0.085
0.15  0.084 0.087 0.103 0.111 0.125 0.137 0.090 0.095 0.107 0.117 0.128 0.143
0.20  0.121 0.127 0.160 0.172 0.202 0.224 0.130 0.139 0.165 0.181 0.201 0.228

0.80
 

0.00  0.031 0.033 0.030 0.035 0.031 0.034 0.033 0.037 0.032 0.039 0.033 0.041
0.05  0.035 0.037 0.037 0.042 0.038 0.045 0.038 0.041 0.038 0.046 0.043 0.049
0.10  0.051 0.054 0.057 0.065 0.066 0.077 0.055 0.060 0.061 0.072 0.070 0.081
0.15  0.076 0.081 0.097 0.109 0.124 0.140 0.083 0.088 0.101 0.114 0.123 0.142
0.20  0.116 0.124 0.159 0.178 0.208 0.233 0.122 0.130 0.164 0.184 0.204 0.236

0.85
 

0.00  0.020 0.023 0.024 0.022 0.025 0.022 0.027 0.023 0.029 0.025 0.029
0.05  0.025 0.027 0.030 0.034 0.031 0.034 0.027 0.029 0.031 0.037 0.035 0.039
0.10  0.039 0.041 0.051 0.057 0.063 0.070 0.042 0.045 0.054 0.062 0.063 0.074
0.15  0.064 0.068 0.091 0.102 0.117 0.135 0.069 0.074 0.093 0.107 0.117 0.141
0.20  0.109 0.116 0.155 0.176 0.203 0.237 0.113 0.123 0.160 0.182 0.203 0.238

0.90
 

0.00  0.010 0.012 0.012 0.013 0.014 0.015 0.010 0.012 0.015 0.017 0.016 0.018
0.05  0.012 0.015 0.020 0.021 0.023 0.024 0.015 0.017 0.021 0.023 0.026 0.028
0.10  0.027 0.030 0.044 0.047 0.059 0.063 0.029 0.033 0.047 0.052 0.061 0.067
0.15  0.055 0.060 0.087 0.098 0.118 0.137 0.057 0.062 0.092 0.102 0.121 0.138

0.95 0.00  0.002 0.002 0.004 0.003 0.007 0.005 0.003 0.002 0.004 0.004 0.007 0.005
    0.05   0.005 0.005 0.013 0.011 0.017 0.015 0.005 0.005 0.014 0.012 0.018 0.016

Simulated samples consist of 6 normal and 6 abnormal subjects 
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We compared the rejection rate of the proposed asymptotic test to that of the conventional 

nonparametric procedure developed by DeLong et al. [19]. The estimates are presented in Table 

IV.2  for continuous data and Table IV.3  for discrete data. Note that in these tables the rejection 

rate provides the estimates of the type I error of the conventional procedure for all combinations 

of parameters we considered. However, since the null hypothesis of the proposed procedure is 

formally the equality of ROC curves subject to exchangeability, in situations of crossing ROC 

curves the rejection rate is the statistical power. For moderate sample sizes and for the scenario 

where non-crossing ROC curves have equal and large AUC that are at least moderately 

correlated between modalities, the proposed permutation test demonstrates a type I error that is 

less conservative than the conventional test. This effect is especially evident with smaller sample 

sizes. 

For equal AUCs arising from crossing ROC curves the rejection rate of the permutation test 

(power) is very close to that of the conventional nonparametric area test (type I error). The 

practical relevance of this finding is that the proposed procedure should not be used to detect 

crossing ROC curves with the same AUCs. However, the closeness of the rejection rate to the 

nominal significance level suggests that even though the proposed procedure is formally a test 

for equality of ROC curves it provides an approximate test of equality of AUCs. As such, it is 

useful to compare the power of the proposed procedure to that of the conventional method of 

DeLong et al. [19]. 

For non-crossing ROC curves with a correlation ρ≥0.4 and an average AUC A≥0.80 the 

power of the proposed test is greater than that of the conventional procedure (Table IV.4). This 

power increase is expected because the proposed test is less conservative in this range of 

parameters. For lower correlations and smaller average AUCs, DeLong et al.’s procedure has 

slightly greater power. However, this is a region where the type I error of the conventional test is 

slightly elevated. With increasing sample size the operating characteristics of the two procedures 

approach each other. For crossing ROC curves (Table IV.5), the pattern is similar.  Specifically, 

for higher correlations and higher average areas the rejection rate for the proposed test is higher. 

 



Table IV.2 Permutation vs. conventional test: rejection rate (continuous data) 

    N=20 normal and M=20 abnormal 
subjects   N=40 normal and M=40 abnormal 

subjects   N=60 normal and M=60 abnormal 
subjects 

  
The same 

ROC 
(b1=b2=1) 

 
Crossing 

ROCs 
 (b1=1, b2=1/2) 

 
The same 

ROC 
(b1=b2=1) 

 
Crossing 

ROCs 
 (b1=1, b2=1/2) 

 
The same 

ROC 
(b1=b2=1) 

 
Crossing 

ROCs 
 (b1=1, b2=1/2) 

Correlation 

 

Average 
AUC 

            D A D A D A D A D A D A

ρ=0.0                     
                    

                    
                    
                    
                    

0.70 0.057 0.050 0.058 0.055 0.053 0.050 0.056 0.055 0.052 0.051 0.054 0.054
0.75  0.053 0.049 0.056 0.053 0.051 0.049 0.055 0.054 0.052 0.050 0.054 0.053

 0.80 0.051 0.047 0.054 0.052 0.051 0.049 0.054 0.054 0.052 0.050 0.053 0.054
0.85  0.047 0.045 0.051 0.049 0.049 0.047 0.053 0.053 0.051 0.050 0.053 0.053
0.90  0.040 0.041 0.043 0.044 0.045 0.045 0.052 0.052 0.049 0.048 0.050 0.051
0.95  0.020 0.027 0.021 0.027 0.037 0.041 0.043 0.045 0.044 0.046 0.046 0.048

ρ=0.2                     
                    

                    
                    
                    
                    

0.70 0.054 0.050 0.055 0.053 0.053 0.051 0.055 0.056 0.054 0.053 0.053 0.055
0.75  0.053 0.050 0.055 0.054 0.052 0.051 0.054 0.055 0.051 0.049 0.054 0.055

 0.80 0.049 0.048 0.052 0.052 0.050 0.049 0.052 0.054 0.051 0.051 0.052 0.053
0.85  0.045 0.046 0.049 0.051 0.048 0.048 0.052 0.053 0.051 0.051 0.051 0.054
0.90  0.036 0.042 0.041 0.045 0.045 0.046 0.050 0.052 0.048 0.049 0.049 0.051
0.95  0.017 0.028 0.017 0.029 0.036 0.041 0.040 0.047 0.044 0.046 0.047 0.051

ρ=0.4                     
                    

                    
                    
                    
                    

0.70 0.052 0.051 0.054 0.057 0.051 0.051 0.053 0.056 0.052 0.051 0.053 0.056
0.75  0.049 0.049 0.053 0.055 0.051 0.051 0.052 0.056 0.050 0.051 0.052 0.058

 0.80 0.046 0.048 0.050 0.054 0.050 0.051 0.053 0.056 0.051 0.052 0.051 0.055
0.85  0.042 0.047 0.045 0.050 0.048 0.050 0.049 0.053 0.051 0.052 0.050 0.054
0.90  0.032 0.042 0.037 0.045 0.043 0.048 0.049 0.054 0.046 0.048 0.048 0.052
0.95  0.014 0.028 0.015 0.030 0.032 0.042 0.040 0.048 0.040 0.046 0.043 0.050

ρ=0.6                     
                    

                    
                    
                    

                 

0.70 0.047 0.052 0.049 0.058 0.048 0.050 0.050 0.060 0.050 0.050 0.051 0.062
0.75  0.046 0.050 0.047 0.057 0.047 0.051 0.049 0.059 0.049 0.051 0.050 0.060

 0.80 0.042 0.048 0.045 0.056 0.048 0.052 0.049 0.058 0.049 0.051 0.050 0.057
0.85  0.037 0.047 0.040 0.051 0.049 0.054 0.050 0.058 0.048 0.051 0.048 0.055
0.90  0.026 0.042 0.031 0.047 0.042 0.048 0.048 0.058 0.044 0.049 0.046 0.053

    0.95   0.010 0.029  0.011 0.031  0.030 0.042  0.036 0.050  0.040 0.047  0.042 0.051

D- conventional procedure (DeLong et al.); A-approximation to permutation test 
AUCs of two modalities are the same (∆=0) 
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Table IV.3 Permutation vs. conventional test: rejection rate (discrete data) 

    N=20 normal and M=20 abnormal 
subjects  N=40 normal and M=40 abnormal 

subjects  N=60 normal and M=60 abnormal 
subjects 

  The same ROC 
(b1=b2=1) 

Crossing ROCs 
(b1=1,b2=1/2) 

The same ROC 
(b1=b2=1) 

Crossing ROCs 
(b1=1,b2=1/2) 

The same ROC 
(b1=b2=1) 

Crossing ROCs 
(b1=1,b2=1/2) 

Correlation 

 

AUC 

 D A      D A D A D A D A D A

ρ=0.0 
 

               
              
               

               
               
               

0.70 0.057 0.049 0.059 0.049 0.054 0.050 0.056 0.053 0.054 0.051 0.054 0.052
0.75  0.055 0.047 0.055 0.048 0.053 0.049 0.054 0.050 0.054 0.052 0.054 0.050

 0.80 0.054 0.048 0.054 0.047 0.052 0.049 0.054 0.051 0.055 0.053 0.054 0.049
0.85  0.052 0.047 0.054 0.045 0.052 0.049 0.054 0.048 0.052 0.050 0.054 0.049
0.90  0.046 0.045 0.051 0.044 0.049 0.046 0.054 0.047 0.048 0.049 0.050 0.045
0.95  0.023 0.033 0.032 0.041 0.044 0.046 0.050 0.045 0.047 0.047 0.050 0.043

ρ=0.2 
 

               
              
               

               
               
               

0.70 0.056 0.048 0.057 0.049 0.052 0.049 0.056 0.051 0.056 0.053 0.055 0.053
0.75  0.055 0.049 0.056 0.047 0.052 0.049 0.053 0.048 0.053 0.050 0.053 0.049

 0.80 0.053 0.048 0.052 0.043 0.054 0.051 0.051 0.047 0.053 0.052 0.053 0.049
0.85  0.049 0.046 0.050 0.041 0.052 0.050 0.053 0.046 0.053 0.051 0.051 0.045
0.90  0.042 0.044 0.047 0.041 0.047 0.046 0.052 0.043 0.049 0.048 0.050 0.044
0.95  0.016 0.028 0.028 0.039 0.040 0.043 0.049 0.043 0.048 0.048 0.046 0.039

ρ=0.4 
 

               
              
               

               
               
               

0.70 0.055 0.049 0.055 0.048 0.052 0.049 0.055 0.051 0.054 0.052 0.055 0.052
0.75  0.055 0.049 0.052 0.045 0.054 0.053 0.055 0.050 0.054 0.053 0.054 0.052

 0.80 0.052 0.048 0.048 0.039 0.053 0.052 0.051 0.046 0.052 0.049 0.054 0.048
0.85  0.047 0.046 0.048 0.040 0.053 0.051 0.050 0.044 0.052 0.052 0.051 0.044
0.90  0.037 0.040 0.042 0.036 0.047 0.048 0.050 0.042 0.048 0.048 0.045 0.039
0.95  0.014 0.028 0.024 0.042 0.037 0.040 0.049 0.043 0.047 0.048 0.048 0.037

ρ=0.6 
 

               
              
               

               
               
               

0.70 0.053 0.049 0.053 0.047 0.054 0.052 0.053 0.051 0.052 0.050 0.054 0.051
0.75  0.051 0.049 0.050 0.046 0.053 0.052 0.056 0.049 0.052 0.052 0.052 0.049

 0.80 0.045 0.045 0.046 0.040 0.054 0.054 0.053 0.046 0.051 0.050 0.053 0.048
0.85  0.044 0.047 0.047 0.039 0.050 0.050 0.049 0.041 0.051 0.049 0.049 0.039
0.90  0.034 0.040 0.036 0.036 0.045 0.046 0.048 0.037 0.047 0.047 0.045 0.033
0.95  0.011 0.025 0.018 0.044 0.031 0.037 0.044 0.039 0.043 0.043 0.047 0.034

D- conventional procedure (DeLong et al.); A-approximation to permutation test 
AUCs of two modalities are the same (∆=0) 
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Table IV.4 Permutation vs. conventional test: statistical power (non-crossing ROCs)  

    N=20 normal and M=20 abnormal subjects  N=40 normal and M=40 abnormal subjects  N=60 normal and M=60 abnormal subjects 
  ρ=0.0  ρ=0.4 ρ=0.6 ρ=0.0 ρ=0.4  ρ=0.6 ρ=0.0 ρ=0.4 ρ=0.6 
    

A
ve

ra
ge

 
A

U
C

 

 

A
U

C
 

di
ff

er
en

ce
 

 
D                  A

 
D A D A D A D A

 
D A D A D A D A

0.70  0.05  0.077 0.069  0.082 0.082 0.089 0.094 0.101 0.096 0.122 0.121  0.151 0.155 0.118 0.114 0.155 0.153 0.200 0.202
   
   
  

 
  

   
  

 
  

   
  

 
  

   
  

 
  

   

  0.164

0.10  0.143 0.130  0.185 0.181 0.240 0.245 0.237 0.230 0.334 0.332  0.446 0.450 0.321 0.315 0.466 0.464 0.613 0.614
0.15  0.262 0.246  0.361 0.353 0.470 0.476 0.453 0.443 0.632 0.628  0.783 0.784 0.617 0.610 0.806 0.805 0.921 0.922

 0.20  0.415 0.393  0.569 0.563 0.712 0.716 0.698 0.688 0.864 0.863  0.956 0.956 0.858 0.855 0.967 0.966 0.996 0.996

0.75  0.05  0.077 0.072  0.082 0.083 0.092 0.097 0.105 0.100 0.132 0.131  0.162 0.166 0.127 0.124 0.167 0.167 0.220 0.223
 0.10  0.154 0.140  0.200 0.199 0.257 0.264 0.266 0.260 0.370 0.367  0.492 0.497 0.360 0.354 0.518 0.517 0.667 0.669

0.15  0.289 0.271  0.394 0.390 0.511 0.520 0.510 0.501 0.691 0.688  0.827 0.831 0.679 0.673 0.857 0.855 0.953 0.953
 0.20  0.467 0.447  0.620 0.617 0.768 0.772 0.757 0.750 0.906 0.904  0.977 0.978 0.909 0.906 0.983 0.983 0.998 0.998

0.80  0.05  0.078 0.071  0.085 0.090 0.097 0.108 0.117 0.112 0.143 0.144  0.179 0.186 0.143 0.140 0.192 0.193 0.253 0.257
 0.10  0.170 0.160  0.227 0.231 0.285 0.301 0.309 0.302 0.429 0.429  0.558 0.567 0.427 0.422 0.594 0.595 0.746 0.749

0.15  0.331 0.316  0.451 0.451 0.573 0.590 0.592 0.583 0.767 0.767  0.888 0.890 0.769 0.765 0.915 0.915 0.979 0.980
 0.20  0.547 0.528  0.703 0.703 0.829 0.840 0.843 0.837 0.955 0.956  0.992 0.993 0.959 0.958 0.995 0.996 0.999 0.999

0.85  0.05  0.083 0.079  0.092 0.098 0.103 0.121 0.132 0.130 0.167 0.171  0.215 0.225 0.174 0.171 0.231 0.234 0.310 0.317
 0.10  0.206 0.196  0.264 0.273 0.337 0.365 0.391 0.384 0.527 0.532  0.661 0.673 0.543 0.537 0.713 0.716 0.846 0.850

0.15  0.422 0.409  0.548 0.557 0.667 0.693 0.726 0.720 0.872 0.874  0.955 0.957 0.891 0.889 0.971 0.972 0.997 0.997
 0.20  0.687 0.673  0.821 0.827 0.907 0.920 0.948 0.946 0.991 0.992  0.999 0.999 0.995 0.994 1.000 1.000 1.000 1.000

0.90  0.05  0.092 0.091  0.105 0.120 0.118 0.150 0.176 0.176 0.225 0.235  0.286 0.303 0.243 0.242 0.319 0.327 0.420 0.435
 0.10  0.278 0.273  0.345 0.374 0.427 0.488 0.559 0.556 0.704 0.714  0.827 0.843 0.749 0.749 0.884 0.888 0.956 0.960

0.15  0.611 0.610  0.718 0.752 0.799 0.847 0.929 0.928 0.981 0.984  0.997 0.997 0.991 0.991 0.999 0.999 1.000 1.000

0.95  0.05   0.104 0.117   0.114  0.130 0.218  0.325 0.331  0.401 0.435   0.493 0.545  0.482 0.488  0.609 0.629  0.732 0.757

D- conventional procedure (DeLong et al.) 
A-approximation to permutation test 
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Table IV.5 Permutation vs. conventional test: statistical power (crossing ROCs) 

    N=20 normal and M=20 abnormal subjects  N=40 normal and M=40 abnormal subjects  N=60 normal and M=60 abnormal subjects 
  ρ=0.0  ρ=0.4 ρ=0.6 ρ=0.0 ρ=0.4  ρ=0.6 ρ=0.0 ρ=0.4 ρ=0.6 
    

A
ve

ra
ge

 
A

U
C

 

 

A
U

C
 

di
ff

er
en

ce
 

 
D                  A

 
D A D A D A D A

 
D A D A D A D A

0.70
 

  

 
 

   

 
 

   

 
 

   

 
 

   

1.000 1.000

0.95  0.05  0.119 0.138  0.127 0.187 0.137 0.233 0.340 0.351 0.401 0.439  0.471 0.528 0.478 0.488 0.569 0.596 0.666 0.701

0.05  0.077 0.072  0.083 0.087 0.091 0.103 0.100 0.098 0.119 0.126  0.139 0.155 0.116 0.116 0.147 0.156 0.181 0.201
 0.10  0.143 0.136  0.180 0.184 0.215 0.237 0.230 0.227 0.313 0.322  0.396 0.422 0.310 0.309 0.431 0.445 0.545 0.576
 0.15  0.252 0.241  0.333 0.340 0.423 0.450 0.439 0.436 0.588 0.599  0.721 0.742 0.597 0.596 0.765 0.775 0.880 0.895
 0.20  0.403 0.388  0.536 0.542 0.657 0.682 0.669 0.666 0.831 0.839  0.925 0.936 0.841 0.841 0.952 0.954 0.988 0.990

0.75
 

0.05  0.080 0.077  0.088 0.091 0.093 0.107 0.106 0.105 0.128 0.137  0.151 0.168 0.124 0.123 0.159 0.168 0.198 0.216
 0.10  0.155 0.146  0.195 0.202 0.234 0.258 0.255 0.253 0.346 0.360  0.438 0.468 0.351 0.349 0.476 0.491 0.594 0.625
 0.15  0.278 0.268  0.367 0.376 0.460 0.491 0.489 0.486 0.648 0.658  0.769 0.789 0.656 0.656 0.819 0.829 0.916 0.928
 0.20  0.453 0.438  0.588 0.596 0.707 0.731 0.736 0.733 0.875 0.881  0.951 0.958 0.893 0.893 0.970 0.972 0.994 0.995

0.80
 

0.05  0.085 0.081  0.094 0.101 0.102 0.119 0.115 0.115 0.141 0.148  0.166 0.185 0.140 0.140 0.182 0.191 0.226 0.247
 0.10  0.175 0.168  0.220 0.228 0.266 0.295 0.301 0.298 0.397 0.410  0.501 0.531 0.410 0.410 0.546 0.559 0.669 0.693
 0.15  0.323 0.314  0.424 0.437 0.523 0.554 0.572 0.571 0.726 0.735  0.835 0.852 0.747 0.748 0.888 0.896 0.954 0.961
 0.20  0.533 0.519  0.668 0.679 0.775 0.800 0.825 0.823 0.931 0.935  0.979 0.983 0.947 0.948 0.989 0.991 0.999 0.999

0.85
 

0.05  0.092 0.089  0.103 0.114 0.107 0.133 0.135 0.134 0.166 0.174  0.195 0.217 0.175 0.176 0.222 0.234 0.275 0.299
 0.10  0.206 0.201  0.260 0.275 0.323 0.361 0.377 0.378 0.488 0.503  0.596 0.630 0.516 0.518 0.661 0.675 0.778 0.800
 0.15  0.412 0.402  0.521 0.542 0.615 0.659 0.699 0.698 0.832 0.841  0.910 0.925 0.866 0.867 0.952 0.956 0.986 0.989
 0.20  0.672 0.664  0.794 0.808 0.868 0.892 0.930 0.931 0.982 0.984  0.995 0.997 0.990 0.990 0.999 0.999 1.000 1.000

0.90
 

0.05  0.106 0.105  0.116 0.136 0.126 0.163 0.179 0.180 0.222 0.235  0.268 0.296 0.239 0.242 0.305 0.320 0.374
0.915

0.406
0.927 0.10

0.15 
  0.286 

 0.612 
0.288  0.351 
0.614  0.697 0.737

0.387 0.411
0.765

0.482
0.823

0.538
0.905

0.541
0.906

0.661
0.961

0.679
0.967

 0.763 
 0.986 0.990

0.790 0.718
0.983

0.721
0.984

0.836
0.997

0.847
0.998  

D- conventional procedure (DeLong et al.) 
A-approximation to permutation test 

 



In summary, our simulations demonstrate close agreement of the type I error of the proposed 

permutation test and the nominal value with reasonably small sample sizes. Furthermore, for 

moderate correlation between modalities, large average AUC and small sample sizes the test 

possesses better operating characteristics than the conventional nonparametric AUC test 

developed by DeLong et al. Finally, within the considered range of parameters, the power of the 

proposed test to detect crossing ROC curves with equal AUCs is close to the nominal 

significance level suggesting that a rejection of the null hypothesis is unlikely to occur unless 

there is a difference in the AUCs of the two curves. 

C. SUMMARY AND DISCUSSION 

The proposed procedure offers a useful supplement to existing methods for comparing 

performances of diagnostic systems in a paired design setting. It provides the ability to conduct 

the exact test and allows for an easy-to-implement approximation when the sample size is large. 

This test has enhanced power against the alternatives of a difference in AUCs and its null 

hypothesis is equality of ROC curves under the additional assumption of exchangeability of the 

within subject’s rank-ratings for modalities with equal ROC curves. In experiments with small to 

moderate sample sizes (≤ 60 normal and 60 abnormal subjects) when the average of two 

correlated AUCs is at least moderate (>0.80) and correlation within subject’s ratings is not low 

(≥0.4) the presented test possesses more appropriate type I error and a greater statistical power as 

compared to the conventional nonparametric test by DeLong et al. [19]. Despite the fact that the 

conventional test has greater statistical power than the permutation test for small average AUC or 

low correlation between modalities, these situations are less likely to be encountered when 

evaluating diagnostic imaging technologies or practices. Furthermore, part of the observed 

superiority of the conventional procedure for low AUC might be attributed to its elevated type I 

error. For larger sample sizes the proposed test and the method of DeLong produce similar type I 

error and statistical power. 

The simulations performed by Venkatraman and Begg [24] showed that for ROC curves that 

do not cross their procedure for the nonparametric comparison has lower power than the 
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conventional nonparametric test of DeLong et al. This is expected because the procedure is 

designed to detect differences in ROC curves rather than detecting differences in AUCs only, as 

does the conventional nonparametric AUC test. The procedure presented here, although formally 

a test of difference in ROC curves, is constructed to detect differences in AUCs. Our 

investigations show that it has comparable power to the conventional nonparametric AUC test 

and for some ranges of the parameters of practical interest has superior operating characteristics. 

Alternatively, if the primary interest of the investigator is to detect differences in ROC curves at 

every operating point, even if these have similar AUCs, then the method of Venkatraman and 

Begg should be used.  

The derived formula for the exact variance of the difference between correlated AUC 

estimators in the permutation space (Ω) enables one to construct a normal approximation to the 

exact procedure that is precise even for small samples. The availability of an asymptotic 

procedure that provides a simple and precise approximation to the permutation test is a desirable 

property since with increasing sample size the exact permutation tests quickly become very 

demanding computationally. Also, the approach demonstrated in the Appendix A can be 

relatively easily adapted to different permutation schemes. For example, following the steps 

described in the Appendix A, one can derive the exact variance of the difference in 

nonparametric AUC estimators in the permutation space where ties between the permuted rank-

ratings are uniformly broken, or alternatively in the permutation space where the rank-ratings are 

permuted within the groups of normal and abnormal subjects. The latter permutation scheme can 

be used to develop a procedure for an unpaired design [25]. 
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V. BOOTSTRAP-VARIANCE AND ASYMPTOTIC TEST 

The bootstrap is a powerful nonparametric approach [41] and the ideas of exploiting the 

bootstrap procedure in ROC analysis have been previously proposed [43,39,37]. Unfortunately 

the intensity of the computations required to create all bootstrap-samples or an additional error 

associated with incomplete sampling of the bootstrap-space reduce the attractiveness of the 

approach. 

The conventional procedure for comparing correlated AUCs developed by DeLong et al. [19] 

is equivalent to the two-sample jackknife procedure [22]. Since the bootstrap approach is usually 

considered to be superior to the jackknife, it is reasonable to investigate the properties of the 

asymptotic bootstrap test compared to the conventional test. For a specific statistic such as the 

nonparametric estimator of the AUC, the closed-form bootstrap-variance can be derived allowing 

one to construct an easy-to-compute asymptotic test. We compare the properties of the variance 

estimators and the corresponding asymptotic procedures based on jackknife and bootstrap 

approaches using computer simulations. 

A. EXACT VARIANCE 

The essence of the bootstrap approach is to construct a space of equally-probable bootstrap-

samples created from a single random sample observed originally. Each bootstrap-sample has the 

same size as the original sample and each data point in the bootstrap-sample is one of the 

original data points. (In other words the bootstrap-sample is a random sample of predetermined 

size that is drawn with replacement from the originally observed data.) The values of the primary 

statistic calculated from each bootstrap-sample constitute the bootstrap-distribution of that 

statistic and can be used for inferential purposes. We are interested only in one parameter of such 
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a bootstrap-distribution, namely in its variance. Since the nonparametric estimator of the AUC 

(or AUC difference) has a relatively simple form its variance is straightforward to express 

(II.B.2.2) and its bootstrap-variance can be computed exactly without creating all possible 

samples. 

In the specific problem that we consider, the data is assumed to be based on a random sample 

of subjects; hence the subjects are appropriate units for bootstrap re-sampling. The sample of 

subjects is composed from the two independent samples of normal and abnormal subjects; 

therefore we resample within corresponding sub-samples (normal subjects separately from 

abnormal). Under the nonparametric bootstrap approach [41] that we adopt, a normal (abnormal) 

subject drawn for a bootstrap-sample can with equal probability be one of the normal (abnormal) 

subjects present in the original data.  

As defined previously (Chapter II Section A), let ( ){ }N
iii xx 1

21 , =  be normal subjects’ ratings and 

 be abnormal subjects’ ratings. Then a normal (abnormal) subject from a bootstrap-

sample of subjects can, with equal probability, have one of the pairs of ratings observed in 

original data for normal (abnormal) subjects i.e. the pair of ratings in a bootstrap-sample is 

uniformly distributed over the discrete set of pairs of ratings present in the original dataset. We 

denote this as: 
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Every bootstrap-sample is taken with replacement from the original sample, therefore ratings 

of the subjects in a bootstrap-sample can be viewed as simultaneous realizations of identically 

and independently distributed (i.i.d.) random ratings, namely: 
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After a bootstrap-sample is drawn it is used to compute the value of the primary statistic - 

nonparametric estimator of the AUC difference. This statistic depends on the ratings via the joint 

order indicators denoted by w and defined in II.A.3. The wij provides information on the 

difference in relative orders assigned to the pair of ith normal and jth abnormal subjects by two 
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modalities. The value of wij in a bootstrap-sample is uniformly distributed over all values of joint 

order indicators observed in the original data, i.e.: 

{ }[ ]MN
jiijji wUniformW ,

1,1`` ~
==

 

In contrast to the random pairs of ratings, two random joint-order-indicators are not 

independent unless based on different subjects. However, covariances of two W’s can be easily 

computed from the initially observed NxM values (see derivations in Appendix B). Since the 

variance of the AUC difference can be expressed in terms of the covariances between two 

random joint-order-indicators (II.A.1) its exact variance in the bootstrap-space can be easily 

computed (Appendix B) resulting in the following formula: 
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The asymptotic bootstrap procedure for testing the difference between two AUCs in a paired 

design setting can be performed using the Z- statistic: 
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ˆˆ
21
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−
=  

Its approximate normality (with mean 0 and variance 1) follows from the asymptotic normality 

of the nonparametric AUC estimator and the consistency of the bootstrap-variance. 

B. SIMULATION STUDY 

Using the derived formula for the bootstrap-variance we compare it to other estimators of the 

variance of nonparametric AUC difference. While some relationships between the various 

variance estimators are apparent from the formulas (Appendix C), the comparison between the 

bootstrap and jackknife variance estimators has to be done numerically. We performed 

simulations to investigate the properties of the bootstrap-variance and corresponding asymptotic 

test. The estimators of the variance compared include the two-sample jackknife (VJ2) which is 
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equivalent to that proposed by DeLong et al. [19], the one-sample jackknife (VJ1) which ignores 

the distinction between normal and abnormal subjects; and biased (VWb) and unbiased (VW) 

estimators suggested by Wieand et al. [18]. The simulations follow the general approach 

described in Chapter III Section A. All figures illustrate the estimates computed for samples of 

size of 40 normal and 40 abnormal subjects, correlation between ratings (ρ) of 0.4, shape 

parameter (b) of 1 in both modalities. In addition, for Figure V.3.b the AUC of each modality is 

set equal to 0.85. 

Figure V.1 illustrates the average variance estimates and their relative biases (percent of 

deviation from the empirical variance). The graph in Figure V.1.a indicates a strong decreasing 

relationship between the variance and average AUC 

 

Figure V.1 Expectations of the variance estimators 
Types of the variance estimators: Wb- Wieand (biased); W-Wieand (unbiased); J2-two-sample jackknife; J1-one-
sample jackknife; B-bootstrap. Graph a): Average estimates of the variance; Graph b): Estimated relative bias of 
the estimates (percent of deviation from the empirical variance) 

Figure V.1.b indicates that the bootstrap-variance (VB) has an upward bias that increases with 

increasing underlying AUC. The commonly used two-sample-jackknife-variance (VJ2) 

demonstrates similar properties and the trend in upward bias is less sharp than the trend for the 
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bootstrap-variance. On average, however, the bootstrap-variance is much closer to the 

conventional estimator than to any other. 

 

Figure V.2 Efficiency of the variance estimators 
Types of the variance estimators: Wb- Wieand (biased); W- Wieand  (unbiased); J2-two-sample jackknife; J1-one-
sample jackknife; B-bootstrap. Graph a): Relative variability of the estimates (relative to the bootstrap); Graph b): 
Relative efficiency of the estimates (relative to bootstrap) 

Figure V.2.a illustrates how variance estimators differ with respect to their variability. From 

this graph it can be seen that the variability of the bootstrap-variance (VB) is quite small and 

uniformly superior to both jackknife estimators. The biased estimator (VWb) proposed by Wieand 

et al. has uniformly lower variance than the bootstrap estimator and the unbiased estimator (VW) 

has lower variance when AUC>85. 

Since four out of five variance estimators demonstrate bias for some values of AUC we 

compare their efficiencies by considering the ratio of the “mean squared errors” (MSEs). Figure 

V.2.b demonstrates efficiencies of the estimators relative to that produced by the bootstrap 

approach. The bootstrap-variance (VB) has the mean squared error that is lower than that of the 

unbiased estimator (VW) when AUC is less than 0.85 and lower than that of the biased estimator 

(VWb) proposed by Wieand et al. when AUC is less than 0.8. The efficiency of the bootstrap-

variance is consistently better than that of the conventional variance estimator (VJ2). 
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The results presented in Figure V.1 and Figure V.2 indicate an average superiority of the 

bootstrap-variance over the conventional two-sample jackknife estimator in terms of their 

proximity to the truth. We now directly compare the rejection rates of those statistical tests. 

Figure V.3, Table V.1 and Table V.2 illustrates the results of this part of the investigation. Graph 

a) and Table V.1 illustrate the relationship between the estimates of the type I error of different 

procedures and Graph b) and Table V.2 depict the statistical power. There appears to be little 

practical difference in the rejection rate of the asymptotic bootstrap and conventional tests, with 

discrepancies being consistent with those observed for variance estimators. 

 

Figure V.3 
Types of the variance estimators: Wb- Wieand (biase knife; J1-one-
sample jackknife; B-bootstrap. 

Rejection rates of asymptotic tests 
d); W-Wieand (unbiased); J2-two-sample jack
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Table V.1 Bootstrap asymptotic test: type I error  

        Sample size 

    
N=20 normal M=20 abnormal 

subjects  
N=40 normal M=40 abnormal 

subjects  
N=60 normal M=60 abnormal 

subjects 

Correlation  AUC  
The same 

ROC  
Crossing 

ROCs  
The same 

ROC  
Crossing 

ROCs  
The same 

ROC  
Crossing 

ROCs 
    (b1=b2=1)  (b1=1,b2=1/2)  (b1=b2=1)  (b1=1,b2=1/2)  (b1=b2=1)  (b1=1,b2=1/2) 

    J2 B  J2 B  J2 B  J2 B  J2 B  J2 B 
                                   

ρ=0.0  0.65  0.056 0.059  0.056 0.059  0.053 0.054  0.053 0.054  0.054 0.054  0.053 0.054 
  0.75  0.052 0.054  0.057 0.062  0.051 0.052  0.052 0.053  0.051 0.052  0.051 0.052 
  0.85  0.048 0.050  0.051 0.052  0.047 0.047  0.050 0.051  0.049 0.050  0.048 0.049 

0.95  0.018 0.019  0.020 0.020  0.038 0.037  0.043 0.043  0.044 0.043  0.046 0.046 
                     

ρ=0.4  0.65  0.054 0.055  0.054 0.056  0.051 0.052  0.053 0.055  0.054 0.054  0.053 0.054 
  0.75  0.048 0.049  0.052 0.053  0.051 0.052  0.049 0.050  0.051 0.051  0.050 0.051 
  0.85  0.038 0.039  0.044 0.045  0.050 0.049  0.050 0.050  0.053 0.053  0.045 0.046 
  0.95  0.015 0.014  0.017 0.016  0.034 0.032  0.035 0.034  0.045 0.043  0.044 0.043 
                     

ρ=0.6  0.65  0.046 0.046  0.051 0.051  0.045 0.045  0.051 0.050  0.049 0.049  0.053 0.053 
  0.75  0.046 0.046  0.047 0.047  0.053 0.053  0.049 0.049  0.054 0.054  0.045 0.045 
  0.85  0.042 0.040  0.041 0.040  0.044 0.042  0.049 0.049  0.050 0.049  0.054 0.054 
  0.95  0.011 0.009  0.015 0.014  0.030 0.027  0.036 0.034  0.037 0.035  0.048 0.046 

                                          

  

Types of the variance-estimators: J2-two-sample jackknife; B-bootstrap. 
 



Table V.2 Bootstrap asymptotic test: statistical power  

            Sample size 

Correlation  Average 
AUC  AUC 

difference  

N=20 normal 
and  M=20 
abnormal 
subjects 

 

N=40 normal 
and  M=40 
abnormal 
subjects 

 

N=60 normal 
and  M=60 
abnormal 
subjects 

         J2 B  J2 B  J2 B 

ρ=0.0  0.65  0.025  0.064 0.066  0.061 0.062  0.066 0.067 
    0.050  0.068 0.071  0.086 0.088  0.113 0.114 
    0.075  0.102 0.106  0.145 0.147  0.196 0.198 

  0.75  0.025  0.059 0.062  0.064 0.065  0.070 0.070 
    0.050  0.077 0.081  0.104 0.106  0.124 0.125 
    0.075  0.113 0.116  0.161 0.163  0.225 0.227 

  0.85  0.025  0.056 0.058  0.070 0.071  0.079 0.080 
    0.050  0.086 0.089  0.128 0.129  0.165 0.166 
    0.075  0.135 0.140  0.239 0.241  0.336 0.339 

  0.95  0.025  0.038 0.038  0.100 0.099  0.150 0.147 
    0.050  0.106 0.106  0.316 0.314  0.486 0.484 
    0.075  0.244 0.244  0.690 0.686  0.887 0.885 

ρ=0.4  0.65  0.025  0.055 0.057  0.065 0.065  0.076 0.077 
    0.050  0.083 0.086  0.115 0.116  0.147 0.148 
    0.075  0.119 0.122  0.192 0.194  0.269 0.270 

  0.75  0.025  0.058 0.058  0.069 0.069  0.080 0.080 
    0.050  0.081 0.083  0.131 0.131  0.173 0.173 
    0.075  0.133 0.135  0.227 0.227  0.321 0.322 

  0.85  0.025  0.057 0.057  0.073 0.072  0.092 0.092 
    0.050  0.094 0.094  0.168 0.168  0.237 0.236 
    0.075  0.161 0.162  0.319 0.318  0.460 0.459 

  0.95  0.025  0.033 0.033  0.115 0.111  0.181 0.176 
    0.050  0.112 0.111  0.399 0.393  0.614 0.609 
    0.075  0.280 0.278  0.789 0.784  0.950 0.949 

ρ=0.6  0.65  0.025  0.060 0.059  0.073 0.073  0.086 0.085 
    0.050  0.090 0.091  0.143 0.142  0.188 0.188 
    0.075  0.139 0.139  0.251 0.250  0.362 0.361 

  0.75  0.025  0.056 0.055  0.077 0.076  0.090 0.089 
    0.050  0.096 0.094  0.156 0.155  0.214 0.213 
    0.075  0.162 0.161  0.307 0.306  0.438 0.437 

  0.85  0.025  0.055 0.054  0.080 0.079  0.108 0.107 
    0.050  0.101 0.099  0.213 0.209  0.307 0.303 
    0.075  0.203 0.199  0.431 0.426  0.601 0.598 

  0.95  0.025  0.031 0.028  0.138 0.132  0.223 0.216 
    0.050  0.120 0.113  0.495 0.481  0.735 0.728 
        0.075   0.324 0.317   0.870 0.863   0.983 0.982 

Types of the variance-estimators: J2-two-sample jackknife; B-bootstrap. 
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C. SUMMARY AND DISCUSSION 

We have derived a closed-form solution for the bootstrap-variance of the nonparametric 

estimator of AUC difference. Availability of such an estimator allows for construction of an 

easy-to-implement asymptotic bootstrap test as well as alleviating the computational burden. 

The results of our simulation study indicate that the bootstrap-variance provides a good 

estimate of the true variability. Among the estimators we considered it is the most efficient for 

AUCs lower than 0.8 but less efficient than both estimators proposed by Wieand et al. [18] for 

larger AUCs. The bootstrap estimator also has an upward bias which increases with increasing 

average AUC. Compared to the conventional two-sample-jackknife [19] the bootstrap estimator 

of the variance is more efficient but has greater bias for large AUCs (>0.85). Both estimators 

proposed by Wieand et al. [18] perform well. The biased estimator has lower mean squared error 

(MSE) than that of the bootstrap-variance for AUC>0.80 and the unbiased version of the 

estimator has lower MSE for AUC>0.85 (the low MSE of the biased estimator is perhaps due to 

its low variance). 

For small AUCs the asymptotic bootstrap test, compared to the conventional procedure, has 

even more elevated type I error and, perhaps because of that, is slightly more powerful. For large 

AUCs the bootstrap-based test is more conservative than the conventional test implying even 

greater potential for the loss of the statistical power. Thus, although the bootstrap might offer a 

better way to estimate the variability than the conventional two-sample jackknife approach it 

leads to an asymptotic test with slightly inferior small-sample properties. However, our 

simulations indicate no practical difference between bootstrap and conventional test. 
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VI. CONDITIONAL TEST 

In this chapter we develop a novel approach for statistical comparison of the overall performance 

of the two modalities in a paired design setting. The motivation for this approach was dependent 

on two factors. First, the AUC can be viewed as a simple function of the relative orderings of all 

pairs of normal and abnormal subjects. Secondly, the difference in the AUCs for two modalities 

in a paired design depends only on those pairs where the relative orderings of normal and 

abnormal cases differ. The corresponding statistical test is similar in spirit to McNemar’s 

procedure [44] which conducts the analysis only on discordant pairs. Simulations are conducted 

to verify the small-samples properties of the conditional test. This part of the research is 

published in Academic Radiology [33]. 

A. CONDITIONAL APPROACH 

In general, the ratings assigned to a randomly selected pair of normal and abnormal cases can 

only be in one of three possible orderings: YX < , YX = , YX >  (i.e. normal case having score 

lower than, equal to, or higher than the score for the abnormal case). Each of these possibilities 

represents different degrees to which a modality (including the observer) can distinguish between 

a given set of actually positive and actually negative findings, namely: 

  -  the modality correctly discriminates between given cases;  YX <

  -  the modality does not discriminate between given cases; YX =

YX >   -  the modality incorrectly discriminates the between given cases. 

In a paired design when the same cases are evaluated by two modalities the nine possible 

joint orderings between the ratings of the normal and abnormal cases can be classified as 

follows: 
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(VI.A.1) 

In the table above, the ‘+’ indicates a combination of orderings implying the 1st modality is 

superior to the 2nd, ‘-’ indicates a combination of orderings implying the 2nd modality is superior 

to the 1st modality, and “0” indicates a combination of orderings suggesting equivalence between 

the two modalities with respect to their ability to correctly discriminate between cases with and 

without the abnormality. In this work the orderings (‘+’ or ‘-’) that contribute to the 

determination of which modality is superior are naturally termed “discordant” orderings while 

the others (‘0’) are termed “concordant”. 

The overall ability of the modality to identify the abnormality can be viewed as the AUC.  

The difference between the overall performance levels of two modalities can therefore be 

summarized as the difference between two AUCs: 

(VI.A.2) 
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The estimator of the difference above is written in terms of probabilities of “marginal” 

orderings (orderings that corresponds to rows and columns of table VI.A.1). Alternatively, in a 

paired design setting we can express this difference in terms of probabilities of discordant joint 

orderings. Namely, by replacing each probability of the “marginal” ordering in VI.A.2 with the 

sum of joint probabilities (probabilities of corresponding cells in table VI.A.1) and canceling 

common terms, one obtains the following expression directly: 

(VI.A.3)
( ) ( ) ( )
( ) ( ) ( )1122

2
11122

2
11122

2211
2
12211

2
1221121

,,,

,,,

YXYXPYXYXPYXYXP

YXYXPYXYXPYXYXPAA

>=−=<−><−

>=+=<+><=−
 

In any given dataset, the probabilities of the joint discordant orderings contain all the needed 

information in order to quantify the differences in the area under the two ROC curves orderings. 

Motivated by this observation we construct a statistical test conditional on the pairs of cases with 

observed discordant orderings. 

Note that for truly continuous ratings (i.e. when no ties are possible) the difference between 

two AUC in a paired design can be equivalently written as:  

( ) ( )1122221121 ,, YXYXPYXYXPAA ><−><=−  

Since, in the continuous case:  
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and the hypothesis of equality between two AUCs is equivalent to the hypothesis: 

( ) 2
111 ),(| =∈< DYXYXP . 

B. CONDITIONAL PERMUTATION TEST 

The test we propose makes use of a nonparametric estimator of the AUC difference and is based 

on the concept of estimating the variability of the sum of discordant order indicators (structural 

elements of the nonparametric AUC difference estimator). Namely, in the underlying sample 

space the initial discordant orderings may correspond to a different “degree” (level) of 

superiority of one of the modalities. In this sample space we estimate the variability of the sum 

of discordant ordering indicators: 

(VI.B.1) ∑
≠
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WW  

Note that the quantity Wij as defined in (II.A.3) differentiates the possible orderings for the 

pair of ith normal and jth abnormal cases (VI.A.1) in the following manner: 

(VI.B.2) 
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We propose conditioning on the set of discordant orderings, D. (non-zero Wij in the data 

remain non-zero for all permutations). The variance of W can be expressed through the variances 

of each of the Wij and the covariances between any pair of these. Thus, to compute the variance 

of the W we need moments of the joint distribution of any pair of{ }ijW . To obtain these moments 

we model the marginal joint distribution of any pair of { }ijW . 
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{ }ijWAlthough, in general the joint distribution of any pair of  is difficult to derive, the use of 

the permutation test provides a direct way to estimate the needed distributions [32]. Following 

the approach used in [24] the rank-ratings (ranks of the rating) are used to generalize the 

inferences to a situation where the two modalities may have different underlying rating scales. If 

the two modalities are assumed to have the same underlying scales the actual ratings (not the 

rank ratings) should be used. The basic permutation space Ω is created by permuting the case-

specific rank-ratings between the two modalities within the structure of given pairs. 

Thus, if for the pair consisting of the ith normal case and the jth abnormal case we observe 

rank-ratings of xi
1 and yj

1 for the first modality and xi
2 yj

2 for the second modality then the four 

permutations within this paired structure are: 

where the first pair is assumed to be observed for the first modality and the second pair is 

assumed to be observed for the second modality. We are assuming that under the null hypothesis 

the ranks for normal (abnormal) cases satisfy the statistical assumption of exchangeability 

implying that each of these four situations is equally likely. Let 
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 be the score as 

assigned in II.A.3 for each of the four possible permutations as th normal and jth 

abnormal pair of cases. The value  represents the value of Wij associated with the observed 

data. A superscript of p=2 (q=2) corresponds to a permutation where the normal (abnormal) 

rank-ratings of the two modalities are interchanged. 

Assuming equal probability of each permutation under the null hypothesis, each Wij is 

uniformly distributed over the values 
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possess the anti-symmetric property: . 

The pairs of normal and abnormal cases with initially observed discordant order of ratings 

are distinguished by the condition  and the random quantity in VI.B.1 can be written as: 
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Constraining the discordant orderings to remain discordant (i.e. conditioning on D) results in 

Wij that are uniformly distributed over non-zero values from{ } 2,2
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The set of values  can be obtained by determining the relative orderings 

al case and then taking the differences in a 

manner consistent with II.A.3. The moments of the 
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values  using the formulae shown in the Appendix D. Finally, to implement the 

lity of AUC between two modalities in a paired design we propose 

comp
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conditional test of equa

aring the statistic 
( )DWVar

W
|Ω

 to the pre-specified normal percentile. 

C. SIMULATION STUDY 

To verify the validity of the proposed test we performed simulations to investigate its type I error 

for different underlying AUCs, correlations between case ratings across modalities and different 

sample sizes. In our simulations we assume equal correlation across modalities for the ratings of 

normal and abnormal cases and consider scenarios with non-crossing as well as crossing ROC 

curves. 

The general protocol of simulations follows the general approach described in Chapter II, 

Section A. In addition to simulations of conventional datasets, we conducted simulations where 

the samples from the binormal distribution (“typical” cases) were enriched with “easy” and 

“difficult” cases. Such enrichment has the practical effect of increasing the number of concordant 

pairs (i.e. pairs where there is an agreement for both modalities). When the concordance level is 

high the method by DeLong et al. has been shown to have a below nominal level (0.05) type I 

error [Chapter III,31]. Hence in these situations the conventional nonparametric test may have 

unnecessarily low statistical power.  
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The ratings of “easy” and “difficult” cases were defined relative to the ratings of cases in the 

other groups. Namely, “easy” normal cases are rated by both modalities below that of any 

“typical” abnormal cases but might be higher than some of the “difficult” abnormal cases; the 

“difficult” normal cases are those rated by both modalities higher than the “typical” abnormal 

cases but might be rated lower than “easy” abnormal cases; and the “typical” normal and 

abnormal cases have generally overlapping range of ratings. The fixed number of cases of each 

type was simulated from normal distributions in a manner that easy normal/abnormal cases had 

the same distributions as difficult abnormal/normal cases (e.g. completely missed abnormal cases 

were considered to be rated similar to easy normal cases). The distributions of easy and difficult 

cases were sufficiently different than the distribution for typical cases to prevent overlapping. 

Table VI.1 illustrates that the rejection rate of the proposed procedure is generally close to 

the nominal level of 0.05 while being conservative for small sample sizes, large AUCs, and high 

correlation between ratings of the same case. 
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Table VI.1 Conditional test: rejection rate  

    N=20 normal and M=20 abnormal 
subjects  N=40 normal and M=40 abnormal 

subjects  N=60 normal and M=60 abnormal 
subjects   

 
AUC 

 ρ=0.0 ρ=0.2 ρ=0.4 ρ=0.6 ρ=0.0 ρ=0.2 ρ=0.4  ρ=0.6 ρ=0.0 ρ=0.2 ρ=0.4 ρ=0.6 

 0.60  0.042 0.041 0.041 0.038 0.045 0.043 0.046  0.045 0.049 0.050 0.049 0.048 
 0.65  0.043 0.040 0.040 0.039 0.046 0.046 0.046  0.044 0.050 0.050 0.049 0.049 
 0.70  0.042 0.041 0.040 0.038 0.046 0.046 0.046  0.043 0.047 0.049 0.048 0.048 
 0.75  0.041 0.038 0.038 0.036 0.046 0.046 0.045  0.043 0.047 0.046 0.046 0.046 
 0.80  0.040 0.038 0.036 0.034 0.046 0.046 0.045  0.044 0.048 0.048 0.047 0.044 
 0.85  0.036 0.036 0.034 0.030 0.043 0.043 0.043  0.045 0.047 0.047 0.048 0.045 
 0.90  0.033 0.031 0.029 0.025 0.042 0.041 0.040  0.040 0.046 0.045 0.045 0.043 

The same 
ROC 

(b1=b2=1) 

 0.95  0.018 0.017 0.015 0.015 0.036 0.036 0.033  0.033 0.043 0.043 0.040 0.040 

 0.60  0.047 0.047 0.045 0.043 0.051 0.051 0.050  0.050 0.052 0.050 0.051 0.052 
 0.65  0.047 0.044 0.043 0.043 0.050 0.049 0.049  0.048 0.051 0.051 0.052 0.053 
 0.70  0.047 0.044 0.042 0.041 0.051 0.051 0.050  0.049 0.052 0.051 0.052 0.052 
 0.75  0.046 0.043 0.044 0.039 0.051 0.049 0.049  0.048 0.052 0.052 0.052 0.051 
 0.80  0.044 0.041 0.040 0.038 0.050 0.048 0.050  0.049 0.052 0.051 0.049 0.050 
 0.85  0.041 0.039 0.037 0.035 0.050 0.048 0.048  0.049 0.051 0.050 0.049 0.049 
 0.90  0.035 0.034 0.030 0.028 0.048 0.048 0.047  0.048 0.049 0.049 0.047 0.046 

Crossing 
 ROC 

 ( b1=1, b2=1/2) 

 0.95  0.018 0.017 0.016 0.015 0.040 0.040 0.040  0.040 0.045 0.046 0.044 0.043 

 

 



We also compared the power of the proposed conditional procedure to that of the 

conventional nonparametric procedure developed by DeLong et al. [19]. For the binormal 

(“typical” cases only) datasets the conventional AUC test is somewhat more powerful than the 

conditional procedure. For example, for 20 normal and 20 abnormal cases that form non-crossing 

ROC curves with  AUCs of 0.75 and 0.85, and a correlation of 0.4 between ratings on the same 

cases, the conventional AUC test has power and type I error correspondingly of 0.223 and 0.046 

as compared with 0.191 and 0.036 for the conditional procedure proposed here. However, the 

presence of small number of “easy” and “difficult” cases may result in an advantage for the 

proposed conditional test in datasets with 20 “typical” normal and 20 “typical” abnormal cases. 

The estimates of the power for the two procedures in “enriched” datasets are presented in Table 

VI.2. 

Table VI.2 Conditional test: statistical power in the “enriched” datasets  

    ρ=0.0  ρ=0.2  ρ=0.4   ρ=0.6 Average 
AUC  

AUC 
difference  DeLong  Conditional DeLong Conditional DeLong Conditional  DeLong  Conditional

0.75  0.1  0.118  0.122 0.129 0.136 0.151 0.162  0.191  0.209 
  0.2  0.380  0.394 0.436 0.454 0.526 0.545  0.658  0.685 

0.8  0.1  0.128  0.135 0.143 0.153 0.167 0.181  0.208  0.233 
  0.2  0.441  0.463 0.503 0.527 0.583 0.611  0.712  0.742 

0.85  0.1  0.148  0.161 0.165 0.181 0.189 0.211  0.244  0.275 
  0.2  0.537  0.576 0.597 0.634 0.671 0.713  0.773  0.816 

“Enriched” datasets include: 20” typical” normal + 20 “typical” abnormal, 10 “easy” normal + 10 “easy” 
abnormal and 3 “difficult” normal +3“difficult” abnormal subjects. 

D. SUMMARY AND DISCUSSION 

The proposed procedure illustrates a conceptually new approach to testing the equality of overall 

diagnostic performances between two modalities in a paired design setting. Using the nature of a 

paired design and relative orderings we introduced the idea of concordances and discordances in 

the task of comparing overall performances of diagnostic systems. Conditioning on the 

discordant order indicators resulted in a test similar in spirit to McNemar’s test. However the 
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complex correlation structure of the discordant order indicators prevents construction of an exact 

procedure and greatly complicates the process of developing an asymptotic test. The estimator of 

the variance used in our method is derived using the assumption of exchangeability of the case-

specific rank-ratings under the null hypothesis. The condition of exchangeability is stricter than 

the condition of equality of AUCs and implies an equality of the two ROC curves. However, our 

computer simulations indicate that the rejection rate of the proposed test remains close to 

nominal significance level even in cases of substantially crossing ROC curves (b1=1, b2=1/2), at 

least for moderate sample sizes, hence rejection of the null hypothesis is unlikely to occur unless 

there is a difference in the AUCs. 

A substantial number of concordances may occur in a screening population where there may 

be a substantial number of “easy” or “difficult” cases or in laboratory experiments where the 

method of selection of cases could result in a higher level of concordance. In datasets with 

ratings that can be monotonically transformed to a binormal distribution the number of 

“concordant” orderings increases with increasing AUC and correlation between ratings in 

different modalities. This may explain in part the conservative behavior of the conventional 

nonparametric AUC test [19]. It should be noted however that the impact of “concordant” 

orderings on the efficiency of the conditional procedure is most evident for reasonably small 

sample sizes (less than 60 normal and 60 abnormal). 

In conclusion, we presented a conceptually new approach to the assessment of differences 

between two diagnostic modalities in a paired design. This method, which is conditioned on 

discordances in discrimination between normal and abnormal cases in the two modalities, may 

provide advantages in relatively small studies where the selection of cases results in a high level 

of concordance. 
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VII. CONCLUSIONS AND DISCUSSION 

In this work we investigated the effects of various parameters on the small-sample properties of 

the conventional nonparametric procedure for comparing correlated AUCs and developed three 

novel nonparametric approaches for comparing two diagnostic modalities in a paired design 

setting. The conducted research provides important information and methods that can be useful 

for study design and choice of an appropriate statistical method for analysis. Also the proposed 

statistical approaches create a solid foundation for further development of nonparametric 

methods and the results of simulation studies may offer guidelines for more complex scenarios. 

In our study of the properties of the conventional procedure for nonparametric comparison of 

the correlated AUCs we attempted to characterize the effect of various parameters on the 

statistical hypothesis testing with small samples. For each parameter we described the direction 

and relative magnitude of the effect on the type I error and power of a statistical test. The 

parameters we identified as having an effect are (in decreasing order of influence): average AUC 

(A), correlation between modalities (ρ), and the prevalence of abnormal subjects in the selected 

sample (p). 

The proposed permutation procedure for comparing two diagnostic systems provides the 

ability to perform the exact test for small samples and the asymptotic test for larger ones. The 

easy-to-implement asymptotic test offers an excellent approximation of the exact procedure even 

for sample sizes as low as 6 normal and 6 abnormal subjects. The quality of approximation can 

be attributed in part to the exact nature of the variance-estimator used in the construction of the 

asymptotic test and to the symmetry of the permutation distribution of the nonparametric 

estimator of AUC difference. The developed procedure is based on all permutations of the 

subject specific rank ratings and is formally a test for equality of ROC curves that is sensitive to 

the alternatives of AUC difference. For small samples and for underlying parameters that are 

common in experimental studies in the field of diagnostic test evaluation (AUC of more than 
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0.75, correlation of more than 0.4) the permutation test possesses good operating characteristics 

and is more powerful than the conventional nonparametric procedure for AUC comparisons. 

Exploiting the properties of the nonparametric estimator of AUC difference we derived a 

closed-form solution for the bootstrap-variance and constructed an easy-to-implement 

asymptotic test. The results of our simulation study indicate that the bootstrap-variance is 

uniformly more efficient than the conventional two-sample-jackknife estimator; however it has a 

higher bias for large AUCs. Also for small AUCs the bootstrap-variance was shown to have a 

relatively small bias and the best efficiency among considered estimators. It is worth noting that 

we measure the efficiency by the “mean squared error” (MSE) what induces a specific type of 

tradeoff between bias and variability; hence it is possible that under a different measure (for 

instance absolute instead of squared distance) the relative efficiencies of the estimators will 

change. Despite its good properties the bootstrap variance leads to an asymptotic test with small-

sample properties slightly inferior to that of the conventional procedure developed by DeLong et 

al. [19]. In conclusion, for the nonparametric estimator of the AUC difference, the bootstrap 

approach might offer a better estimator of the variability than the conventional two-sample 

jackknife procedure; however it does not produce a better asymptotic test. 

Using the relationship of the AUC difference to the relative orderings of the ratings assigned 

to pairs of normal and abnormal subjects by two modalities we introduced the concept of 

concordances and discordances in the task of comparing overall performances of diagnostic 

systems with paired data. Conditioning on the discordant order indicators resulted in a test 

similar in spirit to McNemar’s test. However the complex correlation structure of the discordant 

order indicators prevents construction of an exact procedure and greatly complicates the process 

of developing an asymptotic test. The problem of constructing the asymptotic test was solved 

with the help of the previously developed permutation test. The type I error of the procedure for 

small samples was verified using computer simulations. The conditional nonparametric test 

presented here is an alternative approach to existing unconditional procedures and may offer 

statistical advantages in the presence of highly concordant data. 

In developing the permutation approach we have restricted our attention to comparing two 

diagnostic modalities with paired data where the primary summary statistic is the area under the 

ROC curve. As mentioned previously the permutation approach can be applied to the comparison 
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of two diagnostic systems evaluated on independent datasets as well. Furthermore, if the data is 

paired but incomplete, our test could be modified using an approach similar to the one proposed 

by Zhou and Gatsonis [29] for correcting the conventional approach of DeLong et al. [19]. The 

permutation approach can also be applied either when different methods of estimating the area 

under the ROC curve are employed or when different summary statistics are used [7,8,14,24]. 

Although the permutation test might be used with various test statistics the computation time for 

the exact test might increase for some of them. Furthermore it may be impossible to derive exact 

permutation moments as was done for the nonparametric estimator of the difference in AUCs 

and thus there may be no simple approximation to the exact test. 

An alternative summary statistic that is often used is the partial area under the ROC curve 

[20,28]. In theory, the permutation approach could be applied to this summary statistic although 

several issues need to be addressed. Some of these issues are discussed in [28] where the authors 

attempted to compare the partial areas under two ROC curves by modifying the conventional 

approach of DeLong et al. [19]. 

The permutation approach we have used might be also applicable to a more general approach 

of comparing diagnostic systems than ROC curve analysis. Bunch et al. [45] proposed a Free-

response Receiver Operating Characteristic (FROC) curve which describes the task of detection 

and localization of multiple abnormalities per image. Although some work has been done 

addressing the comparison of FROC curves [46,47], the statistical methodology has been much 

less developed than for ROC curves. The permutation approach could circumvent some of the 

problems encountered in FROC analysis such as potential correlation between the multiple 

observations per image. 

Other directions of future research include extension of the proposed procedures to 

accommodate the “multiple-reader” setting – a commonly used design in which several readers 

evaluate selected cases using different modalities. The random effects models in the multiple-

reader settings offer another area of possible development [34,35,36,37]. 
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APPENDIX A 

PERMUTATION TEST: EXACT VARIANCE 

In the permutation sample space, Ω, the exact mean and variance of the distribution of the 

difference between two AUC can be found. To simplify the derivations, consider the distribution 

of the random variables  defined over the set of all permutations by definition II.A.3. 

Assuming equal probability of all permutations the random variable  is uniformly 

distributed over the four possible values 
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Note also that the set  naturally possesses certain anti-symmetric properties, 

namely: 
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obtained by comparing each available rank-rating for a normal subject with the rank-ratings of 

every abnormal one using II.A.3. 
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APPENDIX B 

EXACT BOOTSTRAP-VARIANCE 

The nonparametric estimator of AUC difference: 
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Using the derived moments the bootstrap-variance of the nonparametric estimator of AUC 

difference can be computed in closed form: 
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APPENDIX C 

VARIANCE ESTIMATORS OF THE AUC DIFFERENCE 

Bootstrap-variance: 
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Certain deterministic relationships exist between considered variance-estimators: 

(C.1) 

These inequalities can be proved by the following observations: 
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Finally the inequality between the bootstrap-variance (VB) and biased estimator developed by 

Wieand et al. (VWB) can be established in a following way: 
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The estimator VW proposed by Wieand et al. [18] is unbiased, allowing determination of the 

direction of the biases for other estimators. Namely, the relationship (C.1) indicates that two- and 

one- sample jackknife variance estimators (VJ2 and VJ1) are biased upwards while biased 

estimator (VWb) is biased downwards. 
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ONE-SAMPLE JACKKNIFE (variance derivation) 

The nonparametric estimator of AUC difference (later referred to as estimator): 
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The one-sample jackknife-estimator (average of the pseudovalues): 
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APPENDIX D 

CONDITIONAL TEST: VARIANCE ESTIMATOR 
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In the above equations I(x) designates the indicator function. 
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