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APPLICATIONS OF EFFICIENT IMPORTANCE SAMPLING TO

STOCHASTIC VOLATILITY MODELS

Serda Selin Ozturk, PhD

University of Pittsburgh, 2009

First chapter of my dissertation uses an EGARCH method and a Stochastic Volatility

(SV) method which relies upon Markov Chain Monte Carlo (MCMC) framework based on

E¢ cient Importance Sampling (EIS) to model in�ation volatility of Turkey. The strength

of SV model lies in its success in explaining time varying and persistence volatility. This

chapter uses the CPI index of Turkey as the in�ation measure. The in�ation series su¤er

from four exchange rate crisis in Turkey during this period. Therefore two di¤erent models

are estimated for both EGARCH and SV models; with crisis dummies and without dummies.

Comparison of di¤erent model results for EGARCH and SV models indicate the robustness

problem for EGARCH and that SV model is far more robust than EGARCH.

Stochastic Volatility (SV) models typically exhibit short-term dynamics with high per-

sistence. It follows that volatility is conceptually predictable. Since, however, it is not

observable; the validation of SV forecasts raises non-trivial issues. In second chapter I pro-

pose a new test statistics to evaluate the validity of one-step-ahead forecasts of returns

unconditionally on volatility. Speci�cally, I construct a Kolmogorov-Smirnov test statistic

for the null hypothesis that the predicted cumulative distribution of return evaluated at ob-

served values is uniform. Estimation of the SV model is based upon an E¢ cient Importance

Sampling procedure. Applications of this test statistic to quarterly data for in�ation in the

U.S. and Turkey fully support the validity of one-step-ahead SV forecasts of in�ation.

The basic SV model assumes that volatility is just explained by its �rst order lag. In
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the last chapter of my dissertation (coauthored with Jean-Francois Richard) we show that

the di¤erence between return and monthly moving average do granger-cause volatility. 35

S&P500 stock return applications from six di¤erent industries show that the di¤erence para-

meter is both signi�cant and addition of this variable to volatility equation a¤ects both the

persistence parameter and the standard deviation of volatility. Persistence increases with

the inclusion of di¤erence variable. Furthermore standard deviation of volatility decreases

which is the indication of Granger-Causality. Likelihood-ratio (LR) test results also prove

that the model improves when the di¤erence variable is added.

iv



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1.0 MODELLING INFLATIONOFTURKEY: ACOMPARISONOF EGARCH

AND STOCHASTIC VOLATILITY MODELS . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Insights of The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 EGARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 The Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Stochastic Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 The Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.0 FORECASTING INFLATIONVOLATILITY: A STOCHASTICVOLATIL-

ITY APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Stochastic Volatility and EIS . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 One Step Ahead Forecasting Method . . . . . . . . . . . . . . . . . . 22

2.2 U.S. In�ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Turkish In�ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.0 DO RETURNS GRANGER-CAUSE VOLATILITY? . . . . . . . . . . . 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Stochastic Volatility Model and Methodology . . . . . . . . . . . . . . . . . 33

3.2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 E¢ cient Importance Sampling . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 The Return Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

APPENDIXA. IMPLEMENTATIONOF EIS FOR STOCHASTICVOLATIL-

ITY MODEL WITH DIFFERENCE PARAMETER . . . . . . . . . . . 47

APPENDIX B. FIGURES AND TABLES OF CHAPTER 1 . . . . . . . . . 50

APPENDIX C. FIGURES AND TABLES OF CHAPTER 2 . . . . . . . . . 60

APPENDIX D. FIGURES AND TABLES OF CHAPTER 3 . . . . . . . . . 68

vi



LIST OF TABLES

1 Regression of Turkey�s In�ation on Monthly Dummies before Seasonal Adjust-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2 Regression of In�ation Series of Turkey on Monthly Dummies after Seasonal

Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 EGARCH (GED) Results without Dummy Variables . . . . . . . . . . . . . . 56

4 EGARCH (GED)Results with Dummy Variables . . . . . . . . . . . . . . . . 56

5 EGARCH Results without Dummy Variables . . . . . . . . . . . . . . . . . . 57

6 EGARCH Results with Dummy Variables . . . . . . . . . . . . . . . . . . . . 57

7 SV Model Results without Dummy Variables . . . . . . . . . . . . . . . . . . 58

8 SV Model Results with Dummy Variables . . . . . . . . . . . . . . . . . . . . 58

9 Results for Diagnostic Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

10 Initial SV Model Estimation Results for U.S . . . . . . . . . . . . . . . . . . 64

11 Final SV Model Estimation Results for U.S . . . . . . . . . . . . . . . . . . . 65

12 Regression of Turkey�s In�ation on Monthly Dummies before Seasonal Adjust-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

13 Regression of Turkey�s In�ation on Monthly Dummies after Seasonal Adjustment 66

14 Intial SV Model Estimation Results for Turkey . . . . . . . . . . . . . . . . . 66

15 Final SV Model Estimation Results for Turkey . . . . . . . . . . . . . . . . . 67

16 Estimation Results of Residual Regression for CocaCola . . . . . . . . . . . . 69

17 Estimation Results of Residual Regression for American Express . . . . . . . 70

18 Estimation Results of Residual Regression for Bristol-Squibb-Myers . . . . . . 70

19 Estimation Results for Consumer Staples Sector . . . . . . . . . . . . . . . . 70

vii



20 Estimation Results for Energy Sector . . . . . . . . . . . . . . . . . . . . . . 71

21 Estimation Results for Finance Sector . . . . . . . . . . . . . . . . . . . . . . 71

22 Estimation Results for Health Sector . . . . . . . . . . . . . . . . . . . . . . . 72

23 Estimation Results for Industrials Sector . . . . . . . . . . . . . . . . . . . . 73

24 Estimation Results for Information Technology Sector . . . . . . . . . . . . . 74

25 Log-likelihood Values for Consumer Staples Sector . . . . . . . . . . . . . . . 74

26 Log-likelihood Values for Energy Sector . . . . . . . . . . . . . . . . . . . . . 75

27 Log-likelihood Values for Finance Sector . . . . . . . . . . . . . . . . . . . . . 75

28 Log-likelihood Values for Health Sector . . . . . . . . . . . . . . . . . . . . . 75

29 Log-likelihood Values for Industrials Sector . . . . . . . . . . . . . . . . . . . 76

30 Log-likelihood Values for Information Technology Sector . . . . . . . . . . . . 76

31 Variance-Covariance Matrix of Model Parameters . . . . . . . . . . . . . . . . 77

viii



LIST OF FIGURES

1 In�ation Series of Turkey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2 The Detrended and Deseasonalized In�ation Series of Turkey. . . . . . . . . . 51

3 Filtered Volatilities from EGARCH Model (GED) without Dummies . . . . . 51

4 Filtered Volatilities tiwh EGARCH Model without dummies . . . . . . . . . . 52

5 Filtered Volatilities with SV Model without Dummies . . . . . . . . . . . . . 52

6 Filtered Volatilitilies from EGARCH (GED) Model with Dummies . . . . . . 53

7 Filtered Volatilities from EGARCH Model with Dummies . . . . . . . . . . . 53

8 Filtered Volatilities from SV Model with Dummies . . . . . . . . . . . . . . . 54

9 U.S In�ation Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10 Final Graph of U.S In�ation Series . . . . . . . . . . . . . . . . . . . . . . . . 61

11 Cumulative Empricial Distribution Graph for U.S. . . . . . . . . . . . . . . . 61

12 In�ation Series of Turkey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

13 The Detrended In�ation Series of Turkey . . . . . . . . . . . . . . . . . . . . 62

14 In�ation Series of Turkey after Seasonal Adjustment . . . . . . . . . . . . . . 63

15 Final Graph of In�ation Series of Turkey . . . . . . . . . . . . . . . . . . . . 63

16 Cumulative Empricial Distribution Graph for Turkey. . . . . . . . . . . . . . 64

17 Cumluatie Distribution Graph for Simulated Series . . . . . . . . . . . . . . . 64

18 Filtered Volatility Series for CocaCola . . . . . . . . . . . . . . . . . . . . . . 68

19 Filtered Volatility Series for Bristol-Squibb-Myers. . . . . . . . . . . . . . . . 69

20 Bivariate Plot of Delta and Beta for 35 Stocks . . . . . . . . . . . . . . . . . 69

ix



PREFACE

I am deeply grateful to my advisor Jean-Francois Richard for his guidance and encour-

agement throughout my graduate career. His assistance went beyond providing the advice

usually associated with dissertation advisors. He provided all the support and guidance that

enabled me to complete my dissertation. He taught me everything that I learned through

my graduate carrer. He answered all my endless questions. He also suggested ideas for my

dissertation which led to my graduation. He was always and still is more than an advisor. He

still continues to support me. I am also thankful for all the advice and help I have received

from Roman Liesenfeld. He also gave me the Gauss codes which he had written for his own

research. Whenever I had problems with these codes he patiently answered my questions.

Thanks to him I learned to program complex algorithms in Gauss. I am grateful for all his

help and support.

I would also like to thank David N. Dejong and Irina Murtazashvili, other committee

members, for their very valuable intellectual inputs at various stages of writing this disser-

tation. I am grateful for all their critics and inputs on my dissertation.

I also thank all University of Pittsburgh Department of Economics administrative sta¤

and the rest of this family who o¤ered more than administrative support and helped me to

complete my dissertation in a timely manner.

Finally I would also like to thank my whole family, especially my mother Nihal Ozturk

and my father Necdet Ozturk, for their support and deepest patience towards me throughout

my life. It was impossible to be at this point without their love and support. They always

provided me everything I need to become successful in my education. Furthermore, I am also

grateful for the support from my other family, which I have been a member of at the �rst

minute I arrived Pittsburgh. Two special people of this family, my husband Ali Ozuer and

x



my other mother Tulin Ayla, I will have the deepest gratitude and love for you throughout

my whole life.

The least I can do, I want to dedicate this dissertation to everyone who has been a part

of my life and provided me the support and love which have made it more joyful.

x



1.0 MODELLING INFLATION OF TURKEY: A COMPARISON OF

EGARCH AND STOCHASTIC VOLATILITY MODELS

1.1 INTRODUCTION

Financial econometricians have shown increasing interest in the study of volatility mod-

els during the last two decades. Many papers compare the performance of di¤erent volatility

models, and most concentrate on the estimation of phenomena such as stock returns, ex-

change rates, or interest rates. In this paper I compare the performance of EGARCH and

SV models on the estimation of in�ation volatility, using the case of Turkey.

Turkey provides a case study that is well suited to a comparison of the performance of

EGARCH and SV models because the researcher can examine the Turkish economy�s long

horizon of high and variable in�ation rates. Moreover, Turkey�s four major exchange rate

crises caused big jumps in the in�ation rate. Within those events, a researcher can expect

to �nd several outliers in the data set that will a¤ect estimation results. The comparison of

EGARCH and SV models on the in�ation volatility of Turkey thus enables the researcher to

examine the robustness of both models against outliers.

Policymakers generally agree that in�ation is detrimental to economic growth. Friedman

[17]states that in�ation-uncertainty distorts relative prices and risks in nominal contracts.

As in�ation volatility becomes more unpredictable, investment and economic growth slow

down. Because of such harmful e¤ects, the estimating of in�ation volatility is very important

to the creation and implementation of government economic policies.

The original ARCH work by Nobel Laureate Robert Engel [14] concentrated on the

estimation of in�ation volatility in the United Kingdom. Researchers have also examined

in�ation volatility in order to understand the relationship between in�ation and in�ation
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uncertainty. Engel [15], Baillie et al. [3] and Berument and Dincer [5] all conducted notable

studies of in�ation uncertainty. Moreover, most research on in�ation volatility explores a

relationship between in�ation and other economic phenomena such as labor market vari-

ables, output, or growth. For example, Rich and Tracy [34] examine the e¤ect of in�ation

volatility on labor contracts. Nonetheless, even among the many studies focused on in�ation

uncertainty, research on the estimation of pure in�ation volatility is limited. Thus, while

examining the comparative strengths of leading methods of modeling in�ation, this paper

also o¤ers a contribution to the literature on in�ation volatility.

The key di¤erence between the EGARCH and SV models is that the EGARCH model

presents volatility as a deterministic process while SV models volatility as a random process.

In the presence of outliers, EGARCH must adjust the coe¢ cients to produce larger variances

while the SV model needs only to increase the variance of errors in the volatility equation.

Hence, it is easier for the SV model to deal with outliers. Even so, the estimation of

the stochastic volatility model is not straightforward because volatility enters the in�ation

equation nonlinearly. It needs to be integrated from the likelihood function. This problem

can easily be solved by using highly developed integrating techniques. In this paper, I use

E¢ cient Importance Sampling, which was developed by Richard and Zhang [37]. I use two

di¤erent model speci�cations for both EGARCH and SV models in order to examine the

e¤ects of outliers on estimation: a model with crisis dummies in the in�ation equation as

well as a model without crisis dummies.

Research that compares EGARCH and SVmodels shows that results from the two models

in the absence of outliers are similar. In this paper, I investigate whether this similarity of

results remains true when outliers occur in the data set. Comparison of results for each

model under di¤erent speci�cations enables us to determine which model is more robust

against outliers. Results from EGARCH model with Generalized Error Distribution (GED)

of Nelson [33] indicates that there is a robustness problem for the EGARCH model when

outliers occur. Based on these results, I also estimate EGARCH by using Student-t for error

terms. Student-t distribution has fat tails, and fat tails provide greater �exibility in handling

outliers. For these reasons, I compare SV to EGARCH with Student-t distribution when

outliers are suspected. Although student-t distribution deals with outliers more successfully,
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the results still suggest that SV is more robust against outliers than the EGARCH model.

I organize this paper as follows. Section II presents the insights of the data. Section III,

describes the EGARCH model. Section IV discusses estimation results for the EGARCH

model. Section V introduces the SV model. Section VI presents estimation results for the

SV model. Finally, Section VII concludes the discussion of the research for this paper.

1.2 INSIGHTS OF THE DATA

I use Turkey�s monthly CPI index for the period from February 1982 to August 2005.

The in�ation series are obtained by using ln(cpit=cpit�1). Figure 1 in the Appendix B

presents the in�ation series. The graph indicates that the data set su¤ers from a trend prob-

lem. I also test for seasonality before eliminating the trend component. I do this by regressing

the in�ation series on its �rst order lag and 12 monthly dummies. Table 1 in Appendix B

represents the estimation results for the seasonality test. Estimation results indicate that

monthly dummies for January, May, June, July, September and October are signi�cant at

the 1% level. These results are reasonable and re�ect the Turkish government�s pattern of

policy-making. The government launches its economic program in January. Announcements

of agricultural sector prices are made in June and July. Finally, the government announces

increases in spending for education in September and October.

In order to eliminate both the trend component and the seasonality factor, I use the

following procedure. I let x = t=T so that x lies in (0; 1) interval. The trend polynomial

phi(l)requires the properties of two extremums in (0; 1) bound to capture an initial small

positive trend followed by a small negative trend, then a positive trend, and �nally a negative

trend as well as a smooth landing for x = 1, which requires phi(l) = phi(l)0 = 0. One such

polynomial is the �fth degree detrending polynomial, phi(x) = a�(x�1)2+b�(x�1)3+c�(x�

1)4+d�(x�1)5. Therefore, in order to eliminate both the trend component and seasonality, I

regress the in�ation series on twelve monthly dummies and (x�1)2; (x�1)3; (x�1)4; (x�1)5.

The estimation results are given in Table 2 in Appendix B. Figure 2 also represents the �nal

series after trend and seasonality are eliminated.

Four peak points remain in the data set: April 1984, December 1987, April 1994, and
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March 2001. These peak points correspond to large increases in in�ation caused by Turkey�s

four major exchange rate crises. In order to represent the e¤ects of these peak points on

EGARCH and SV model estimation, two models; one with crisis dummies in in�ation equa-

tion and on without crisis dummies will be estimated. As we shall see, EGARCH model

appears to be sensitive to these outliers when errors are assumed to be GED. On the other

hand, SV model is more robust against outliers.

1.3 EGARCH

1.3.1 The Model

The EGARCH model, proposed by Nelson [33], allows for asymmetry in the responsive-

ness of in�ation to in�ation shocks and does not impose any non-negativity constraints.

The basic EGARCH model is formulated as follows:

ln(ht) = ! +

qX
i=1

�ig (zt�i) +

pX
j=1


j ln(ht�j) (1.1)

where

g(zt) = �zt + [jztj � E jztj] (1.2)

zt =
"tp
ht

In this model ht is the conditional variance and "t is the error term.

EGARCH models are commonly used in the literature to explain the volatility dynamics

of interest rates, stock returns and exchange rates. Some well known papers are Brunner

and Simon [9], Hu, Jiang and Tsoukalas [25] and Tse and Booth [42].

In this paper, in order to capture the e¤ect outliers in the in�ation series of Turkey, I use

two di¤erent formulations for the in�ation equation. In the �rst model in�ation is explained

by its �rst order lag.

�t =

nX
i=1

�i�t�i + "t (1.3)
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where �t is the in�ation at time t and "t is the error term at time t; t : 1 ! T . First-order

lag is chosen based on Akaike Information Criterion (AIC).

In the second model, in�ation is explained by its �rst order lag and four crisis dummies

which is given by

�t =
nX
i=1

�i�t�i + �1DUMMY 1 + �2DUMMY 2 + �3DUMMY 3 (1.4)

+�4DUMMY 4 + "t

where DUMMY1 represents the dummy variable for the crisis in April 1984, DUMMY2 is

the dummy variable for the crisis in December 1987, DUMMY3 is the dummy variable for

the crisis in April 1994, and DUMMY4 is the dummy variable for the crisis in March 2001.

I assume two di¤erent distributions for "t. Following Nelson [33], the �rst distribution is

a general error distribution (GED) with mean zero and variance ht2. Because there are four

outliers in the data set and fat tail distributions deal with the outliers more successfully, I

also use a Student-t distribution with 3 degrees of freedom.

The speci�c conditional version of Equation (1) for both models is given by

ln(h2t ) = �0 + �1
j"t�1j
ht�1

+ �2
j"t�2j
ht�2

+ �3
"t�1
ht�1

+ �4 ln(h
2
t�1) (1.5)

In this speci�cation �4 represents the persistence parameter. Furthermore, �3 is the

leverage parameter. If it is signi�cant, its sign characterizes the asymmetry of the conditional

variance of in�ation.

1.3.2 The Results

Two di¤erent sets of results are obtained for the EGARCH model. The �rst set rep-

resents the results under GED speci�cation for the error term, "t. Table 3 in Appendix B

presents the results for EGARCH(2,1) model without crisis dummies under GED speci�ca-

tion. A second-order GARCH component and a �rst-order moving average ARCH term are

chosen based on ARCH-LM statistics.

The results show that the persistence parameter, �4, is signi�cant at the 1% signi�cance

level and equal to 0.891. This indicates that volatility is highly persistent. Furthermore, the
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leverage parameter, �3, is not signi�cant, and this re�ects the absence of asymmetry in the

conditional variance of in�ation. All other volatility equation parameters except �1 are not

signi�cant.

Table 4 in Appendix B represents the results for the EGARCHmodel with crisis dummies

under GED speci�cation for "t. Results suggest that crisis dummies for April 1994, and

March 2001 are signi�cant at the 1% signi�cance level. On the other hand, estimation results

for volatility-equation parameters indicate a robustness problem for the EGARCH model

against outliers. The persistence parameter of the EGARCH model with crisis dummies

is negative and not signi�cant. Furthermore, all other volatility equation parameters are

insigni�cant when crisis dummies are added to the model. Comparison of log-likelihood

values from both models (with and without crisis dummies) shows that adding crisis dummies

improves the model.

The second sets of results for EGARCH(2,1) model is obtained by assuming a Student-t

distribution with 3 degrees of freedom for the error term. Table 5 in Appendix B presents

the results for the model without crisis dummies. Based on the results, the persistence

parameter is equal to 0.888 and signi�cant at the 1% signi�cance level. Furthermore, the

leverage parameter, �3, is not signi�cant. All other parameters except �1 are insigni�cant.

The log-likelihood value is larger than the log-likelihood value of EGARCH model without

crisis dummies under GED assumption.

Table 6 in Appendix B represents the results for the model with crisis dummies. Es-

timation results indicate that all crisis dummies, except March 2001, are signi�cant at the

5%-signi�cance level. Moreover, the persistence parameter increases to 0.908 when crisis

dummies are added to the model. However, �1 becomes insigni�cant when in�ation is also

a function of crisis dummies. In terms of log-likelihood values, the model improves when

crisis dummies are added to the in�ation equation. Because this distribution has fat tails

and deals with outliers more successfully, these results show that EGARCH is more robust

against outliers when we assume Student-t distribution for error term.
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1.4 STOCHASTIC VOLATILITY

1.4.1 The Model

The SV model was �rst introduced by Taylor [40], [41]. It arises from the mixture-of-

distributions hypothesis in which it is assumed that the unobservable �ow of price-relevant

information drives volatility. Stochastic Volatility models account for time-varying and per-

sistent volatility as well as for leptokurtosis in �nancial-return analysis. On the other hand,

e¢ cient estimation is less straightforward because of the nonlinearity of the latent-volatility

process. The literature examines a variety of estimation procedures, including among others

the Generalized Method of Moments (GMM) by Melino and Turnball [32], Quasi Maximum

Likelihood (QML) by Harvey et al. [22], Markov Chain Monte Carlo (MCMC) by Jacquier

et al. [26].

The basic SV model is given by

rt = exp

�
�t
2

�
"t (1.6)

�t = 
 + ��t�1 + ��t

where rt is return on day t : 1 ! T: The f"tg and f�tg are mutually independent iid.

Gaussian random variables with mean zero and unit variances. f
; �; �g are parameters to

be estimated. � is the persistence of the log volatility and if j�j < 1, we say that the returns

are strictly stationary. The � parameter is the standard deviation of the volatility shocks.

A second model for SV is also estimated by adding the crisis dummies into the in�ation

equation. The model is given by

rt = �1DUMMY 1 + �2DUMMY 2 + �3DUMMY 3 + �4DUMMY 4 (1.7)

+exp

�
�t
2

�
"t

�t = 
 + ��t�1 + ��t

where f�1; �2; �3; �4g are coe¢ cients of dummy variables.
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In order to deal with the nonlinearity of the model and its serial dependence, I used the

E¢ cient Importance Sampling (hereafter EIS) procedure proposed by Richard and Zhang

[37]. The EIS procedure is a Monte Carlo (MC) technique used for the evaluation of high-

dimensional integrals. It relies upon a sequence of low-dimensional regressions to construct

an auxiliary MC sampler, which produces highly accurate MC estimates of the likelihood.

I programmed the same procedure that Liesenfeld and Richard [31] used to estimate the

SV model for daily data of IBM stock prices, S&P 500 price indexes, and the exchange rate

for the US Dollar and the Deutsche Mark. The procedure is summarized below.

Let rt; t : 1! T is an n-dimensional vector of observable random variables and �t is

a q-dimensional vector of latent variables. The ML procedure is based on the marginalized

likelihood function

L(�;R) =

Z
f(R;�; �)d� (1.8)

where R = frtgTt=1 , � = f�tgTt=1 and � is an unknown parameter vector. Equation (8) can

be factorized as follows

L(�;R) =

Z TY
t=1

f(rt; �t j �t�1; Rt�1; �)d� (1.9)

where Rt = fr�gt�=1 and �t = f��gt�=1 .The model implicitly assumes that rt is independent

of �t�1 conditional on (�t; Rt�1) with a density of g(rt j �t; Rt�1; �) and that �t has the

conditional density of p(�t j �t�1; Rt�1; �). Whence, the likelihood can be written as

L(�;R) =

Z TY
t=1

g(rt j �t; Rt�1; �)p(�t j �t�1; Rt�1; �)d� (1.10)

The EIS procedure constructs a sequence of samplers that exploits the sample infor-

mation on the �0ts as conveyed by r
0
ts. Let, fm(�t j �t�1; at)g denotes such a sequence of

auxiliary samplers indexed by the auxiliary parameters A = fatgTt=1 . Let f
�
�
(i)

t (at)gTt=1 de-

notes a trajectory drawn from the sequence of auxiliary samplers. Let a(t�1) = fasgt�1s=1: The

corresponding MC estimate of the likelihood can be written as

�
LN(�;R;A) =

1

N

X8<:
TY
t=1

f(rt;
�
�
(i)

t (at) j
�
�
(i)

t�1a(t�1); Rt�1; �)

m(
�
�
(i)

t (at) j
�
�
(i)

t�1a(t�1); at)

9=; (1.11)
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Obviously if �tm(�t j �t�1; at) were proportional to �tf(rt; �t j �t�1; Rt�1; �) then

the MC sampling variance would be equal to zero. More generally, EIS constructs den-

sity kernels k(�t; at) for m(�t j �t�1; at) which are global approximation for f(rt; �t j

�t�1; Rt�1; �):�(�t�1; at):The relationship between m and k is given by

m(�t j �t�1; at) =
k(�t; at)

�(�t�1; at)
(1.12)

where �(�t�1; at) =

Z
k(�t; at)d�t

Since �(�t�1; at) does not depend on �t , the EIS problem turns into that of solving a

simple back-recursive sequence of low-dimensional least-square problems of the form

^
at(�) = argmin

at

NX
f

i=1

ln[f(rt;
�
�
(i)

t (�) j
�
�
(i)

t�1(�); Rt�1; �) (1.13)

:�(
�
�
(i)

t�1(�);
^
at+1(�))]� ct � ln k(

�
�
(i)

t (�); at)g2

for t : 1 ! T; with �(�T ; at+1) � 1: The c0ts are unknown log-proportionality constants

to be estimated jointly with a0ts. EIS likelihood estimates are then obtained by replacing

fatgTt=1in equation 10 with f
^
at(�)gTt=1: A small number of EIS iterations are needed to obtain

maximally e¢ cient importance samplers only. Typically, Common Random Samplers(CRN)

technique is used to provide the convergence to the �xed auxiliary parameter
^
at:

Finally, the estimates of � are obtained by maximizing Equation (11) with respect to �.

The use of CRN technique also ensures the smoothness of the MC functional approximation

in Equation (10).

Under our assumptions, the conditional density of rt and �t are given by

g(rt j �t; �) / exp
�
�1
2

�
r2t exp(��t) + �t

��
(1.14)

p(�t j �t�1; �) / exp
�
� 1

2�2
(�t � 
 � ��t�1)2

�
The next step is to parametrize the density kernel. Liesenfeld and Richard [31] suggests

the following parametrization

k(�t; at) = p(�t j �t�1; �)�(�t; at) (1.15)
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where �(�t; at) is also a Gaussian density kernel. This speci�cation o¤ers the advantage

that it eliminates p from the EIS auxiliary regressions. Since g only depends on �t , an

appropriate choice for � is given by �(�t; at) = exp(a1;t�t + a2;t�
2
t ):Whence, k is given by

k(�t; at) / expf�1
2
[

�

 + ��t�1

�

�2
� 2

�

 + ��t�1

�2
+ a1;t

�
�t (1.16)

+

�
1

�2
� 2a2;t

�
�2t ]g

The conditional mean and variance of �t on m are given by

�t = �2t

�

 + ��t�1

�2
+ a1;t

�
(1.17)

�2t =
�2

1� 2�2a2;t

1.4.2 The Results

Table 7 in Appendix B presents the results for SV model without crisis dummies based

on EIS.

Asymptotic errors are obtained from a numerical approximation to the Hessian and MC

standard errors are computed from 10 ML-EIS estimations conducted under di¤erent sets

of CRNs. These MC standard errors measure the numerical accuracy of the coe¢ cient esti-

mates, and the MC standard errors indicate that our results are numerically very accurate.

The persistence parameter � is highly signi�cant and equal to 0.816.

For the second SV model with crisis dummies, Table 8 in Appendix B represents the

estimation results.

The estimation results for volatility equation parameters are very similar to estimation

results from the �rst model. The persistence parameter is a little higher than the persistence

parameter of the �rst estimation and equal to 0.853. Moreover, the standard deviation of

volatility decreases when dummy variables are added to the in�ation equation. All crisis-

dummy parameters are signi�cant except the crisis dummies for March 2001. Finally, de-

creases in the log-likelihood value indicate that the model is improved when dummy variables

are added to estimation. Moreover, the log-likelihood values are larger than log-likelihood

values for all EGARCH models and the SV model without crisis dummies.
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Filtering enables us to compute a sequence of standardized residuals . By checking the

distributional properties of the standardized residuals, we can check whether our model is

correctly speci�ed. The standardized residuals are of the form:

zt = [rt � E(rt j Rt�1)]V ar(rt j Rt�1)�
1
2 (1.18)

For our basic SV model, the mean and standard deviation of rt conditional on Rt�1 are

zero and E[exp(�t) j Rt�1]�1=2 , respectively. The model is correctly speci�ed if zt has zero

mean and unit variance and is uncorrelated in the �rst and second order moments.

Furthermore, to check for the distributional properties of rt, I applied an approach used

by Liesenfeld and Richard [31]. This approach requires computing ut = Pr(rt � r�t j Rt�1)

in which r�t is the actual observed return. If the model is correctly speci�ed, ut is a serially

independent random variable and follows a uniform distribution on [0; 1]. Thus, we can

map ut into a standard normal distribution by using the inverse of the standard normal

distribution function. Therefore, we have

z�t = F
�1
N (ut) (1.19)

Correct speci�cation requires z�t to be serially independent standardized normal random

variables.

Table 9 in Appendix B represents the results for the diagnostic checks.

According to the Kolmogorov-Smirnov statistic, we cannot reject the null hypothesis

of normality. Furthermore, because the kurtosis of the z�t is not considerably higher than

3, which is the benchmark for normality, normality cannot be rejected. From the Ljung-

Box statistics for the squared residuals including 30 lags, we can conclude that the model

successfully accounts for the autocorrelation in the in�ation series. On the other hand,

the Ljung-Box statistics for the residuals implies the need for including an autoregressive

component in the return function of the SV model. All in all, these results suggest in general

that the SV model accounts for the distributional properties of the in�ation series.

A further analysis can be performed by comparing �ltered volatility graphs of EGARCH

and SV models under the two di¤erent settings. Filtered volatility is the mean of volatility

computed by using information available on in�ation up to time t-1. Figures 3, 4 and
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5 represent the �ltered volatility graphs of respectively the EGARCH model with GED,

student-t distribution assumptions for error term, and the SV models when no crisis dummies

exist in the in�ation equation. In contrast, Figures 6, 7 and 8 show the volatility graphs

for EGARCH and SV models respectively when dummy variables are added to the in�ation

equation. Filtered volatility graphs for both the EGARCH model under di¤erent error-term

distributions and the SV model are similar for the model without dummies. Volatility during

the April 1994 crisis has a stronger peak in the EGARCH model. For the model with crisis

dummies, the �ltered volatility graphs for the EGARCH model with Student-t distribution

and the SV model are almost the same. On the other hand, the �ltered volatility graph for

the EGARCH model with the GED assumption represents the robustness problem against

outliers.

1.5 CONCLUSION

This paper represents research results from a comparison of EGARCH and SV models

for Turkey�s in�ation volatility. We use di¤erent error-term speci�cations for the EGARCH

model of in�ation volatility. Overall results suggest that the SV model is more robust than

EGARCH models against outliers, which are the crisis dummies.

The main �ndings of the paper are as follows.

First, in�ation data for Turkey su¤ers from trend and monthly-seasonality problems.

Second, after these problems are eliminated, the results of EGARCH estimation without

exchange-market crisis dummies under error-term distribution assumptions are quite similar.

In terms of SV model results, persistence is smaller than EGARCH models.

Third, when dummies are included in the model, EGARCH results under GED speci�-

cation indicate a robustness problem against outliers. Furthermore, under Student-t distrib-

ution for error-terms, the robustness problem still remains because �1 becomes insigni�cant

when dummy variables are added.

Fourth, when we use the SV model with crisis dummies, persistence increases and stan-

dard deviation of volatility decreases. The volatility constant remains almost the same.

Therefore, the SV model is more robust than both EGARCH speci�cations. Furthermore,
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log-likelihood values indicate that the SV model with crisis dummies is better than all other

model speci�cations.

Finally, when the distributional properties of �ltered values from the SV model are

examined, the results show that the model successfully accounts for the serial correlation in

the volatility of in�ation and that inclusion of an autoregressive component in the return

function might be needed.

The comparison of the estimation results from two models, EGARCH and SV, under

two di¤erent settings clearly indicates that SV is more robust than EGARCH. With or

without dummy variables, SV has a higher log-likelihood value than EGARCH. Furthermore,

persistence parameter estimates are more plausible under SV model than EGARCH models.
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2.0 FORECASTING INFLATION VOLATILITY: A STOCHASTIC

VOLATILITY APPROACH

2.1 INTRODUCTION

As highlighted by the recent instability of world �nancial markets, volatility is a fun-

damental component of asset allocation. Speci�cally, investors need carefully to assess rates

of return and volatility when making �nancial decisions. Much research in �nancial econo-

metrics focuses on understanding the relationship between volatility or risk and return while

often emphasizing volatility estimation. However, sound investment decisions require more

than estimation. Investors also must analyze whether estimated relationships remain con-

stant over time or instead change their dynamics. In spite of the growing need for such

analysis, research into the forecasting of volatility, which is the primary focus of this paper,

lags well behind many other topics that have a less direct bearing on investors�portfolios.

In general, most studies of volatility focus on �rst modeling and then forecasting its e¤ects

on speci�c economic phenomena, such as stock returns, exchange rates, etc. Researchers use

a number of di¤erent approaches and methods in volatility modeling. The class of models

known as Autoregressive Conditional Heteroscedastic (ARCH) models, invented by Nobel

Laureate Robert Engel [15], remains the most widely used. The ARCH model characterizes

the distribution of stochastic errors that are conditional on the realized values of a set of

variables. Because this model can create problems in the higher order of the polynomials,

researchers developed di¤erent extensions to the ARCH model. The Generalized ARCH

(GARCH) model, which was developed by Bollerslev [8] and Taylor [40], de�nes volatility as

a combination of polynomials in auto-correlated errors and polynomials in moving average

term. This de�nition of the volatility structure resolves the shortcoming of the original
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ARCH model in higher order polynomials. However, empirical analysis demonstrates that

these models still possess shortcomings. The continued manifestation of such shortcomings

motivated researchers to develop other extensions for the ARCH models. As one example,

both ARCH and GARCH models assume that there is symmetry between the e¤ects of

positive and negative shocks to the return on volatility. However, in practice, this symmetry

is violated because negative shocks have a greater e¤ect than positive shocks. Noting this

anomaly, several researchers tried to overcome it by allowing a leverage e¤ect in the GARCH

model, an e¤ect which implies that volatility reacts asymmetrically to the negativity and

positivity of the shocks. Among several extensions of GARCH models that allow asymmetry,

the Exponential GARCH (EGARCH) model introduced by Nelson [33] is the most famous

and widely used.

In addition to the ARCH family, an analyst can turn to several other tools for the mod-

eling of volatility, including models of Implied Volatility, Historical Volatility and Stochastic

Volatility. This paper examines the Stochastic Volatility Model, which Taylor [40], [41] �rst

introduced. Researchers have given it attention in recent years because of its �exibility in

modeling volatility.

The �exibility of the SV model �nds most of its expression in the model�s allowance for

noise in the volatility function. The model does not force the innovations to have fat tails, in

other words, to have more outliers, or require volatility persistence to be close to the value 1

in order to allow simultaneous occurrences of both high kurtosis and small autocorrelation.

The existence of these additional error terms in the volatility equation permits the SV Model

to be more �exible than ARCH family models.

Nonetheless, the estimation of the SV model is not a straightforward calculation. Be-

cause of the nonlinearity of latent or unobservable variables in the SV model, an estimation

problem arises. In turn, that problem results in a likelihood function that depends upon

high-dimensional integrals which I cannot evaluate with straightforward mathematical tools.

Researchers use di¤erent methods to overcome this problem such as Generalized Method of

Moments (GMM), the Quasi-Maximum Likelihood (QML) and the Markov Chain Monte

Carlo (MCMC). My research employs the Maximum Likelihood (ML) based on E¢ cient

Importance Sampling (EIS) by Richard and Zhang [37]. The EIS has numerous attractive
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features. One of its most important features is success in producing highly accurate Monte

Carlo (MC) estimates. Furthermore, because it is used to evaluate the likelihood function

itself, it can also be used for a full range of likelihood-based inference techniques, such as

estimation, testing and Bayesian inference. Equally important, since its basic structure does

not depend upon a speci�c model, changes in the model can be easily accommodated by

minor changes in the algorithm. These characteristics of EIS make it attractive for the SV

analysis.

The main goal of this paper is to forecast volatility, not to model it. As noted earlier,

researchers use several di¤erent methods to estimate and forecast volatility, and numerous

papers compare the performance in estimating and forecasting volatility among many types

of models. When comparing forecasting accuracy, the main focus has been on ARCH and

Implied Volatility models. Akgiray [1] states that forecasts based on the GARCH model are

superior. Yet his conclusion appears to be outweighed by the greater number of research

�ndings that favor the Implied Volatility model, as, for example, Day and Lewis [12] and

Fleming [16]. I use the SV model based on EIS because of the �exibility and numerical

accuracy of the method and the indication of its success in forecasting volatility as reported

by several investigators. Bluhm and Yu [7] argue that SV should be used to forecast volatility

of option prices. Furthermore, Hol and Koopman [24] state that the SV model outperforms

the GARCH model when there is an absence of intraday volatility information. However, the

amount of research supporting these assertions is limited. Although several commentators

state that SV performs better than other volatility models, it remains di¢ cult to conclude

that the SV model provides the most accurate forecasts due to the limited amount of work

on forecasting based on the SV model.

Application of the tool to real world data and the accuracy of the results are important

parts of volatility research. The model gains its importance due to its success in application.

Most research that came from the application of the SV and ARCH models focused on

the forecasting of volatility of stock prices, currency exchange rates and other valuations of

investments. Engel provided the original ARCH Model to equip analysts with a tool for

measuring the dynamics of in�ation. While preparing to investigate the performance of the

SV model, I noted a dearth of work on in�ation volatility. To address this issue, when seeking
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to test the model, I decided to direct my work to the forecasting of in�ation volatility as a

way of also widening the window of research on this important topic.

Most published research about forecasting in�ation volatility investigates the relationship

of the volatility to other economic phenomena, such as labor market variables and forecast

outputs, as can be seen in the work of Giordani and Soderlind [21] and Rich and Tracy [34].

My work develops a discussion around the value of this analytical tool in forecasting the

core phenomenon of in�ation. Thus I focused research for this discussion on the value of the

SV function as a tool that warrants attention for its success in forecasting the volatility of

in�ation. Although the primary emphasis of this paper rests upon the value of the SV Model

based on EIS as a tool for forecasting in�ation volatility, the search for a tool to validate the

forecasting method drew my attention to the limited availability of such tools in the case of

in�ation.

In general, when assessing forecasting performances, researchers use Root Mean Squared

Error (RMSE) or other similar measures, which work relatively well when applied to high-

frequency data such as stock returns. The RMSE is de�ned as the distance of a data point

from the �tted line, which, in this case, is the distance of realized volatility from the forecasted

volatility point. The need for a realized volatility arises because volatility is not observable.

Moreover, while unobservable, volatility can only be calculated for high-frequency data sets.

Further complicating this analysis, points of measurement for in�ation occur at a very low

frequency �once a month as compared to several times a minute or thousands of times a

month in the case of prices for transactions in �nancial markets. Therefore it is not possible

to calculate a measure of realized volatility for in�ation. This limitation represented a

signi�cant problem for assessing the validity of the forecasting method. Therefore, I proposed

another method based on the empirical distribution of forecasted errors, extending earlier

contributions by Liesenfeld and Richard [31], [30].

This paper is an empirical analysis of the SV model based on EIS when used for forecast-

ing in�ation volatility. The analysis uses a new tool for assessing the validity of the method

for forecasting volatility and owes a special debt of gratitude to the work of Liesenfeld and

Richard [31], [30]. The remainder of the paper is organized as follows. In Section II, I present

the SV model and EIS method. In Section III, I explain the one-step ahead forecasting pro-
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cedure. Then, I talk about U.S. data and results and Turkish data and results in Section IV

and V, respectively. Finally, in Section VI, I o¤er a conclusion.

2.1.1 Stochastic Volatility and EIS

The basic SV model by Taylor [40], [41] is given by

rt = exp(�t=2)�t (2.1)

�t = 
 + ��t�1 + ��t

where rt is the return on day t : 1 ! T . (
; �; �) are the parameters to be estimated and

the processes f"tg and f�tg are mutually independent iid Gaussian random variables with

zero means and unit variances. The unobserved log volatility �t follows an AR(1) process

with the unobservable persistence parameter �. If j�j < 1; the returns are strictly stationary.

Finally, the standard deviation of volatility shocks is measured by � > 0.

In order to evaluate the likelihood associated with the returns, I need to integrate out

the latent variable f�tg from the joint density of the observed and latent variables. The �t

latent variables are serially dependent and enter the model nonlinearly. Therefore, standard

numerical integration techniques are not applicable to this high dimensional non-Gaussian

integration problem. To overcome this problem, di¤erent methods are used in the literature,

including, for example, the "Generalized Method of Moments" (GMM) by Melino and Turn-

bull [32], the "Quasi-Maximum Likelihood" (QML) by Harvey et al [22], "Markov Chain

Monte Carlo" (MCMC) by Jacquier at al [26] and Kim et al [28].

In this paper, I use EIS to evaluate the likelihood function itself which is then used for

inference and forecasting. The EIS procedure is a Monte Carlo (MC) technique which is used

for e¢ cient evaluation of high-dimensional integrals. See Richard and Zhang [37] for details.

The procedure basically relies upon a sequence of low-dimensional regressions to construct

an auxiliary MC sampler which produces highly accurate MC estimates of the likelihood.

The procedure is summarized below.
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Let rt denote an n-dimensional vector of observable random variables and let �t denote

a q-dimensional vector of latent variables, t : 1 ! T . The ML procedure is based on the

marginalized likelihood function

L(�;R) =

Z
f(R;�; �)d� (2.2)

where R = frtgTt=1 , � = f�tgTt=1 and � is an unknown parameter vector. Equation (21) can

be factorized as follows

L(�;R) =

Z TY
t=1

f(rt; �t j �t�1; Rt�1; �)d� (2.3)

where Rt = fr�gt�=1 and �t = f��gt�=1 .The joint density of �t; rtj�t�1; Rt�1 is then factorized

into the product of the density of rtj�t; Rt�1 and that of �tj�t�1; Rt�1. It is then assumed

that rt is independent of �t�1 given (�t; Rt�1). Whence, the likelihood can be written as

L(�;R) =

Z TY
t=1

g(rt j �t; Rt�1; �)p(�t j �t�1; Rt�1; �)d� (2.4)

The EIS procedure constructs a sequence of samplers that exploits the sample information

on the �0ts as conveyed by r
0
ts. Let, fm(�t j �t�1; at)g denotes such a sequence of auxiliary

samplers indexed by the auxiliary parameters A = fatgTt=1 . Here, at is implicitly a function

of (�;R). While R is �xed, a new value of at will have to be computed for each � . Let

fe�(i)t gTt=1 denote a trajectory drawn from a particular sequence of auxiliary samplers. The

corresponding MC estimate of the likelihood can be written as

�
LN(�;R;A) =

1

N

X8<:
TY
t=1

f(rt;
�
�
(i)

t j
�
�
(i)

t�1; Rt�1; �)

m(
�
�
(i)

t j
�
�
(i)

t�1; at)

9=; (2.5)

Obviously if �tm(�t j �t�1; at) were proportional to �tf(rt; �t j �t�1; Rt�1; �) then the

MC sampling variance of fLN would be equal to zero. More generally, f(rt; �tj�t�1; Rt�1; �)
is a function of �t whose integral w.r.t. �t is unknown. Hence I can not expect it to be

approximated by a density mt(�tj�t�1; at):

EIS approximations are based upon density kernels rather than densities. Let kt(�t; at)

denote such a kernel for mt(�tj�t�1; at): The relationship between kt and mt is given by
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mt(�tj�t�1; at) =
kt(�t; at)

�t(�t�1; at)
(2.6)

where �t(�t�1; at) =

Z
kt(�t; at)d�t

Kernels are to be selected in a such a way that �t has a known analytical expression.

Note that �1(�0; a1) = �1(a1):Because �(�t�1; at) does not depend on �t it can be transferred

back into the t� 1 integral. Hence Equation (24) is rewritten as

�
LN(�;R;A) = �1(a1):

1

N

X8<:
TY
t=1

f(rt;
�
�
(i)

t j
�
�
(i)

t�1; Rt�1; �):�t+1(
e�(i)t ; at+1)

kt(e�(i)t ; at)
9=; (2.7)

The EIS problem becomes a matter of solving a simple back-recursive sequence of low-

dimensional least-square problems of the form

^
at = argmin

at

NX
f

i=1

ln[f(rt;
�
�
(i)

t j
�
�
(i)

t�1; Rt�1; �) (2.8)

:�t+1( e�t(i);bat+1)]� ct � ln k(��(i)t ; at)g2
for t : 1 ! T; with �(�T ; at+1) � 1: The c0ts are unknown log-proportionality constants

to be estimated jointly with a0ts. EIS likelihood estimates are then obtained by replacing

fatgTt=1in Equation (5) with fbat(�)gTt=1: Since ne�(i)oN
i=1

themselves are draws from the EIS

samplers, EIS �xed iterations are needed to obtain maximally e¢ cient importance samplers.

See Richard and Zhang [37] for details. Common Random Samplers(CRN) are used to

smooth the convergence to the �xed auxiliary parameter bat:
Finally, the estimates of � are obtained by maximizing Equation (26) with respect to �.

The use of CRN technique also ensures the smoothness of the MC functional approximation

in Equation (26). Next, I discuss the application of EIS to the SV model as de�ned in

Equation (20).
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Under our assumptions, the conditional density of rt and �t are given by

g(rtj�t; �) / exp

�
�1
2

�
r2t exp(��t) + �t

��
; (2.9)

p(�tj�t�1; �) / exp

�
� 1

2�2
(�t � 
 � ��t�1)2

�
;

respectively. The next step is to parametrize the density kernel. Since the class of Gaussian

densities is closed under multiplication, Liesenfeld and Richard [31] suggests the following

parameterization

k(�t; at) = p(�t j �t�1; �)�(�t; at) (2.10)

where �(�t; at) is also a Gaussian density kernel. This speci�cation o¤ers the advantage

that it eliminates p from the EIS auxiliary regressions. Since g only depends on �t , an

appropriate choice for � is given by �(�t; at) = exp(a1;t�t � a2;t�2t ):Hence,

k(�t; at) / expf�1
2
[

�

 + ��t�1

�

�2
� 2

�

 + ��t�1

�2
+ a1;t

�
�t (2.11)

+

�
1

�2
� 2a2;t

�
�2t ]g

The conditional mean and variance of �t on m are given by

�t = �
2
t

�

 + ��t�1

�2
+ a1;t

�
(2.12)

�2t =
�2

1� 2�2a2;t
(2.13)

and �t is given by

�(�t�1; at) / exp
�
�2t
2�2t

� (
 + ��t�1)
2

2�2

�
(2.14)
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2.1.2 One Step Ahead Forecasting Method

The forecasting procedure I use in this paper is based on the idea of �ltering, whereby

forecasts for period t + 1 are based on observations from 1 to t. Hence I start estimation

with a �xed number of observations and then increase the number of observations by one at

a time. Because the EIS procedure runs backward, the model needs to be fully re-estimated

each time new observations are added. Reruns of EIS under added dimensions are very fast

because I use the previously computed EIS sampler as an initial sampler and augment it by

initial samplers for the added dimensions. The forecasts which are calculated in the previous

steps provide these initial samplers for the added dimensions.

The forecasting algorithm starts with the estimation of in�ation by an AR(1) process

given by

�t = �+ ��t�1 + "t (2.15)

where �t is the in�ation at time t. The corresponding OLS residuals
^
"ts ,which are cen-

tered around their sample mean, are then standardized in order to produce stationary series

(assuming j�j < 1)

rt =

�
1b�
� b"t (2.16)

where b� is the estimated standard deviation of b"ts:
After the model is estimated, the forecasts for the volatility are given by

b�t = b
 + b��t�1 + b��t (2.17)

Because volatility is an unobservable process, I use the latent variables produced by the

EIS procedure as an approximation of the �ltered distribution of volatility at time t � 1.

Using the same CRN as in the estimation procedure allows the analyst to compute a set of

volatility forecasts, which provide a distribution for volatility at time t. Because the returns

are products of the error terms by volatility, it is possible to construct a forecast of rt as

follows brt = exp(b�t=2)�t; (2.18)

using standardized Gaussian draws for �t:
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Each time an observation is added the procedure starts over by reestimating the AR(1)

process and the b"ts:
Because the volatility cannot be observed, an evaluation of the forecasting performance

requires special care. To address this limitation, I devised a new method for checking the

validity of forecasts. This approach requires computing but = \
F (rtjrt�1;b�); t : 1 !! T

wheredF () denotes the forecasted distribution function and To the initial forecasting period.
If the forecasts are correctly distributed, the bu0ts follow a uniform distribution which implies
a linear graph for their cumulative distribution.

Furthermore, I can compute the bu0t by using the probability that forecasted return is
lower than observed return. Conditionally on �t, this probability is given by:

but = Pr(brt < rtj�t; Rt�1;b�) = Pr�exp��t
2

�
�t < rtj�t;b�� (2.19)

= �

�
rt exp

�
��t
2

�
j�t;b��

where brt denotes forecasted return for t : To ! T and � is the cumulative distribution of

the standardized normal. Then I have:

but = Pr(brt < rtjRt�1;b�) = Z �

�
rt exp

�
��t
2

�
j�t
�
f(�tj�t�1;b�) (2.20)

f(�t�1jYt�1;b�)d�td�t�1
' 1

N

NX
i=1

�

 
rt exp

 
�
e�ti
2

!!

This probability gives us another representation for the u terms. Therefore, if the fore-

casts are valid the graph should be uniform again.

In order to provide a formal test of forecast validity, I compute the Kolmogorov-Smirnov

statistic (KS) for the fbutgTt=T0 relative to the uniform distribution and rely upon Monte

Carlo simulation to calibrate it. Speci�cally, I create 200 hundred �ctitious data sets for

each application based on the estimated coe¢ cients for the whole sample. The �ctitious

data sets are simulated according to the Equation (20). The calibration process requires
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computing the Kolmogorov-Smirnov statistics of the �ctitious data sets. The procedure

follows as:

1) I rerun the estimation and forecasting procedure for each data set.

2) I compute fbutgTt=T0 for each estimation.
3) I calculate the Kolmogorov-Smirnov statistics for fbutgTt=T0 for each of the 200

�ctitious data set and �nd the 5% critical value.

4) I compare the Kolmogorov-Smirnov statistic of my application and the critical

value.

If my forecasts are valid, the Kolmogorov-Smirnov statistic of the application should

be lower than the critical value (with probability 0.95).

2.2 U.S. INFLATION

2.2.1 Data

I use two di¤erent data sets to test the model. The �rst one is the U.S. in�ation for the

period January 1914-December 2006. Figure 8 in the Appendix C represents the graph of

the U.S. in�ation series. The data shows no apparent trend but the return for the current

period is clearly highly correlated to the prior period�s return. Autocorrelation is eliminated

by the AR(1) estimation described above. Figure 9 in the Appendix C presents the graph

of the corresponding b"0ts .
2.2.2 Results

In total, there are 1,115 data points for the U.S. in�ation series. For the analysis, I

have divided this data set into two segments. I use the �rst 799 points for the estimation

of the volatility. Then I use the remaining 316 data points for �ltered forecasts (T0 =

800; T = 1115). Table 10 in the Appendix C presents the results for the �rst estimation.

Asymptotic errors are obtained from a numerical approximation to the Hessian and MC

standard errors are computed from 10 ML-EIS estimations conducted under di¤erent sets

of CRNs. These MC standard errors measure the numerical accuracy of the coe¢ cient
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estimates and indicates that our results are numerically very accurate. The results show

that the persistence parameter � is very close to 1, which implies that volatility is highly

persistent. Table 11 in Appendix C represents the results with 1,114 data points. The result

for the persistence � is similar to the �rst persistence parameter. This second result, using

1,114 data points, also indicates high persistence. Note that, when the number of data points

increases, the volatility intercept 
 becomes smaller and the variance �2 becomes higher. The

volatility in the graph is measured by the following formula;

E
�
e�t
�
= eE(�t)+

1
2
�2 (2.21)

This function equals 16.48 for the �rst half of the data set. It equals 0.85 for the second

half. These results are consistent with the shape of the in�ation series in the graph.

As mentioned above, if the forecasting procedure is valid, one would expect the graph

of [F (rt) to be linear. Figure 10 in Appendix C represents the graph for fbutgTt=T0 which are
computed according to Equation (39). This graph shows that SV model based on EIS is

successful in out-of-sample forecasting of U.S. in�ation volatility.

For the validity test based on the KS statistics, the critical value is equal to 0.113. The

KS statistic for the application is 0.065 which is obviously smaller than the critical value.

2.3 TURKISH INFLATION

2.3.1 Data

I use the in�ation series for Turkey between February 1982 and August 2005 for my

second application. Figure 11 in Appendix C graphs the series. The shape of the graph

indicates that the in�ation series su¤ers from a trend problem. To eliminate the trend, I use

the following approach. I assume a 4th order polynomial function for the trend component

�t = �+ �x+ 'x
2 + �x3 + �x4 + "t (2.22)
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where x = t
T
: Because I do not want to extrapolate the trend beyond t = T , I impose the

condition that the trend and its derivative are zero at x = 1. The corresponding restrictions

are given by

�+ � + '+ � + � = 0 (2.23)

� + 2'+ 3� + 4� = 0

I use these restrictions to eliminate � and � in Equation (42), which is then rewritten as

�t = '
�
(x2 � 1)� 2(x� 1)

�
+ �

�
(x3 � 1)� 3(x� 1)

�
+ �
�
(x4 � 1)� 4(x� 1)

�
+ "t (2.24)

Next, I estimate this equation and subtract the estimated values for �t from the actual

values in order to obtain a detrended in�ation series. Figure 12 in Appendix C shows the

graph for the series after detrending.

The second step is to check for seasonality in the data set. I achieve this by regressing

in�ation on its �rst-order lag and 12 monthly dummies. Table 12 in Appendix C presents

the results for this estimation. Monthly dummies for January, April, June, July, September

and October are signi�cant at the 5% signi�cance level based on the p-values. These results

are reasonable and re�ect the pattern of government economic policymaking, which a¤ects

prices. The Turkish government launches its economic program in January, agricultural

sector prices start to be announced during June and July and educational spending increases

in September and October.

In order to eliminate seasonality, I regressed the series on these six monthly dummies

and obtained the error terms from this regression. I checked whether this method succeeded

in eliminating seasonality by regressing the seasonally adjusted in�ation series on its �rst

order lag and 12 monthly dummies. Table 13 in Appendix C presents the results, which

indicate that seasonality is eliminated. The graph of the seasonally adjusted in�ation series

is presented in Figure 13 in Appendix C. There remain four peak points in this graph; April

1984, December 1987, April 1994 and March 2001. These spikes correspond to large increases
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in in�ation caused by major exchange rate crises in Turkey. I used the following procedure

to eliminate these peak points.

I introduce a dummy variable di for each peak points i (i = 1; 2; 3; 4) and construct the

following auxiliary regression:

y�t = yt � di (2.25)

y�t = �+ �yt�1 + "t

yt+1 = �+ �y�t + "t+1

I rewrite Equation (44) as

(yt � �+ �yt�1 + di)2 = "2t (2.26)

(yt+1 � �+ �(yt � di)) = "2t+1

Given (�; �), I minimize the sum of "2t and "
2
t+1 with respect to di. The corresponding

estimate of di is given by

^

di =
1

1 + �2
�
yt � �� �yt�1 � �yt+1 + �� + �2yt

�
(2.27)

Since di depends on (�; �), I implement the following �xed point procedure: Given di,

compute y�t ; then regress y
�
t on yt�1 to obtain (b�; b�) and compute a new value for di: I

iterate this procedure until convergence. In the present case, two iterations su¢ ce to achieve

convergence.

Finally, the adjusted in�ation series for Turkey su¤ers from the same autocorrelation

problem as the U.S. in�ation series. I eliminate the autocorrelation in the series by AR(1)

estimation in the forecasting procedure. Figure 14 in Appendix C represents the graph of

the �nal b"t for the Turkish data series.
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2.3.2 Results

I �rst estimate the model by using the �rst 199 data points. Table 14 in Appendix C

represents the results for this estimation. The estimation results for the Turkish data set

are noticeably di¤erent from the results for the U.S. data set. The persistence parameter is

lower, the volatility intercept 
 is negative and the volatility variance �2 is higher. Table

15 in Appendix C presents the results with 281 data points. The persistence parameter � is

higher than the persistence parameter with 199 data points. Also, the constant parameter

and the variance of the volatility are smaller. I can explain the estimation results by the

increased stability of Turkish economy in recent years. The exchange rate crises from which

Turkey su¤ered in the past caused Turkey�s economy to be unstable, and this condition is

evident in the in�ation data. Since 2001 and the change in government, Turkey�s economy

became more stable with lower rates of unemployment and in�ation. These changes in the

Turkish economy are re�ected in my results.

The estimation has two explicit results: when observations are added one at-the-time

the persistence parameter � increases while both the volatility intercept 
 and the volatility

variance �2 decreases. Forecasting results also re�ect the varying stability of the Turkish

economy. Figure 15 in Appendix C represents the graph for bu0ts which are computed accord-
ing to Equation (39). It is less linear than that for the U.S. case. Nevertheless, the �gure

implies that out-of-sample forecasting by the SV model based on the EIS is successful.

The critical value of the KS statistic is equal to 0.234. The KS statistic for the application

is 0.126 which is obviously much smaller than the critical value.

Furthermore, in order to investigate the power of KS-test I simulate return series with fat

tails by using the �ltered volatilities for Turkey. Before starting to simulate the data series

I �rst of all recover the �ltered volatilities of whole data set for Turkey. Then I simulate

error terms of return equation by using Student-t distribution with 3,6 and 9 degrees of

freedoms. Finally when we combine the �ltered volatility series and error terms based on SV

model formula, this provides new return series which has the same �rst and second moment

with in�ation series of Turkey but with fat tails. Next, I run the estimation and forecasting

procedure for the simulated series and calculate the KS-statistics. If KS-test is a powerful
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tool for measuring the forecasting validity, we expect that the cumulative distribution graph

for simulated series should mostly deviate from a straight line at both ends and also KS-

statistics should be greater than KS-critical value. Furthermore, in order to calculate the

probability of rejection, we create 200 di¤erent fat-tailed series for each degrees of freedom

and apply this procedure for each one. Figure 16 in Appendix C represents the cumulative

distribution for �rst fatter tailed series with 3 degrees of freedom. The graph deviates from

a straight line at both ends as we expect. Moreover, the KS-statistics for the same series is

equal to 0.256 which is greater than KS-critical value of 0.234. The probability of rejection for

KS-test for 3, 6 and 9 degrees of freedom are 0.91, 0.80 and 0.67, respectively. Since fat-tails

start to disappear and Student-t distribution converges to normal distribution when degrees

of freedom increases, one shall expect the probability of ejection decrease when the degrees

of freedom increases. Results re�ect this expectation. Therefore, KS-test is a powerful tool

for measuring the forecasting validity.

2.3.3 Conclusion

This paper presents research focused on forecasting in�ation volatility by using the

standard Stochastic Volatility model based on E¢ cient Importance Sampling. The main

purpose of this paper is to evaluate the validity of the SV model for forecasting in�ation

volatility. Because in�ation data is not a high frequency data set, it is not possible to

calculate the realized volatility for in�ation. Therefore I cannot compute a mean square

error measure for in�ation volatility. This paper represents an alternative procedure based

on the forecasted error structure of the returns.

I used in�ation data sets for the United States and Turkey to evaluate empirically the

performance of the method. I summarize the contribution of this paper under three headings.

First of all, this work validates the SV model as a tool for forecasting in�ation volatility.

Second, although in�ation dynamics were the main concern of Engel�s Nobel Prize-winning

research, the actual use of volatility models to forecast in�ation has captured very little

attention among econometric researchers. This paper aims at �lling this gap. Finally, I

develop a validation procedure for volatility forecasting applied to low-frequency data sets,
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as an extension of work by Richard & Liesenfeld [31], [30].

The empirical results based upon the monthly in�ation series of the U.S. and Turkey can

be summarized as follows:

For the U.S. in�ation series, the persistence parameter is very close to 1 both for 799 and

1,114 data points. Moreover, the volatility intercept decreases while variance of volatility

increases as observations are added. In terms of forecasting results, my forecasting validity

tests show that the SV model is successful in out-of-sample forecasting of in�ation volatility

of U.S.. For the Turkish data set, the persistence parameter is lower when the data set is

smaller. Furthermore, the volatility intercept and volatility variance decrease when the data

set grows larger. Although the forecasting results are not as strong as the results for U.S.

in�ation, the test results still support the validity of the SV model based on the EIS for

forecasting in�ation volatility.
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3.0 DO RETURNS GRANGER-CAUSE VOLATILITY?

3.1 INTRODUCTION

Modeling volatility has been the focus of �nancial econometrics for the last two decades.

The ARCH-family models, which were developed by Nobel Laureate Robert Engel [15], repre-

sent one well-known approach to volatility modeling. These models assume that conditional

variance is a function of the squares of previous observations and past variations.

An important alternative to this framework, which is also the main focus of this paper,

is the Stochastic Volatility (SV) model. This model was �rst introduced by Taylor[39], [41].

The SV model allows the conditional mean and the variance to be characterized by separate

stochastic processes. The basic discrete SV model assumes that return is an exponential

function of volatility and that volatility is an AR(1) process.

The SVmodel is more �exible than ARCH-family models because it allows for noise in the

volatility function. As a result, the model does not force persistence to be close to 1 in order

to allow simultaneous occurrences of small autocorrelation and high kurtosis. On the other

hand, the basic SV model sometimes requires extensions or modi�cations in order to capture

the properties of a return series better. For example, the conditional distribution of return

does not need to be normal as assumed by the standard model. It also may be fat-tailed or

skewed. Geweke [19] shows that SV performs poorly under a normality assumption when

there are large outliers. This problem can be solved by allowing conditional distribution to

have fat-tails. Furthermore, the standard SV model also assumes that volatility is only a

function of its past values. In this paper we show that past values of return also have an

impact on values of volatility at time t. There are some examples of models in volatility

literature which suggest that return should be a part of the volatility equation. For example,
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in the standard GARCH(1,1) model the volatility is formulated as:

�t = a+ b � (rt�1 � �)2 + c � �t�1 (3.1)

where �t denotes the variance of return at time t; rt�1 is return at time t � 1 and � is the

mean of return. This standard GARCH(1,1) model has been proven quite useful in �nance.

The key di¤erences between the SV model used for this paper and the standard GARCH(1,1)

model is: First, we replace � by a moving average of return allowing for adjustment over

time. And, then, second, we do not square the di¤erence. Nevertheless, the success of the

standard GARCH(1,1) model provides a motivation to explore the causality of returns on

volatility in a traditional SV formulation. Furthermore, another model by Danielsson [11]

also examines the causality between return and volatility. In his paper, the volatility equation

of the SV model is also a function of lagged values of logged asset prices and absolute values

of asset prices. He shows that the parameters of an asset price in the volatility function are

signi�cant. And these two papers provide a motivation to examine the Granger Causality

between returns and volatility. In order to investigate this causality, we create a new model

under the SV setting by adding an extra di¤erence variable to the volatility equation.

As a result of the nonlinearity of latent variables the estimation of the SV model is not

straightforward. However, several di¤erent methods overcome this problem. The methods

are the Generalized Method of Moments (GMM) by Melino and Turnbull [32], the Quasi-

Maximum Likelihood (QML) by Harvey et al. [22], the E¢ cient Method of Moments (EMM)

applied by Gallant et al. [18] and the Markov Chain Monte Carlo (MCMC) procedure by

Jacquier et al. [26] and Kim et al. [28]. A detailed survey and comparison of these methods

can be found in Ghysels et al. [20] and Anderson et al. [2].

In this paper, we use a Maximum Likelihood (ML) approach based upon the E¢ cient

Importance Sampling (EIS) procedure by Richard and Zhang [37] to estimate the SV model

with a modi�cation in volatility equation. EIS is a Monte Carlo (MC) technique that is

mainly used for e¢ cient evaluation of high dimensional integrals. It is ideally suited for the

computation of likelihood in the SV model. This technique depends upon a sequence of

simple low-dimensional regression, which, in turn, provides a global approximation of the

integrand. Finally, the MC sampler provided by this approximation produces highly accurate
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MC likelihood estimates. Furthermore, because the EIS procedure is generic, it is easy to

adapt it to modi�cations in the SV model. Thus, we adapt it to the modi�cation of the SV

model in this paper.

The rest of the paper is organized as follows. In Section 2, we brie�y review the basic

version of the SV model, introduce the SV model with the return variable, and also explain

the EIS procedure. In Section 3, we explain how the return variable is chosen and how it is

formulated. Section 4 shows the application results on 35 di¤erent S&P 500 stock returns.

Finally, in Section 5, we summarize our results and conclusions.

3.2 STOCHASTIC VOLATILITY MODEL AND METHODOLOGY

3.2.1 The Model

The standard SV model by Taylor is formulated as

rit = exp(�it=2)"it (3.2)

�it = 
i + �i�it�1 + �i�it

where rt represents the return on day t : 1! T . f"itg and f�itg are mutually independent iid

Gaussian random variables with mean zero and unit variances. f
i; �i; �ig are the parameters

to be estimated.

The unobserved log-volatility �it follows an AR(1) process with persistence parameter �i.

The returns are strictly stationary if j�ij < 1:Finally, �i represents the standard deviation of

volatility shocks and �i > 0:

The model assumes that volatility is a latent or unobservable process. In other words,

unobservable events on the same day explain volatility.

In this paper, we are looking for Granger-type causality where addition of an extra vari-

able, which is the return variable, provides a reduction in the standard deviation of volatility.

Because volatility is a latent process in a SV model (and standard Granger Causality tests
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require both variables to be observed), testing the causality between return and volatility

is not possible with a standard Granger Causality test. For this reason, we use a di¤erent

approach to test the causality between return and volatility. In this approach we estimate

the standard SV model �rst. Then we introduce the return variable to the volatility equa-

tion in the SV model and estimate it. If the coe¢ cient of the return variable is signi�cant,

the addition of the return variable reduces the standard deviation of volatility. And, if the

Likelihood-ratio test results are signi�cant, then we conclude that return �Granger-causes�

volatility.

The methodology of this paper requires adding a new return variable to the volatility

equation to see whether return does Granger-cause volatility. We modify the basic SV model

by adding �rst lag of the return variable to the volatility equation. Then our model is given

by

rit = exp(�it=2)"it (3.3)

�it = 
i + �i�it�1 + �ixit�1 + �i�it

where the parameters to be estimated are (
i; �i; �i; �i) : If this new variable, the return vari-

able, does Granger-cause volatility, then coe¢ cient � should be signi�cant and the standard

deviation of volatility � should decrease.

3.2.2 E¢ cient Importance Sampling

The evaluation of likelihood of the observed return rit�s require us to integrate out latent

or unobservable variable �t�s. However the integration problem is not straightforward. It

cannot be solved by standard integration techniques because �t is serially dependent. It

enters into the model nonlinearly. As noted in the introduction, we use the EIS technique

to overcome this problem
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Let f (Ri;�i; �i) represent the joint density of Ri = fritgTt=1 and �i = f�itg
T
t=1, indexed

by unknown parameter vector �i: Then the likelihood function associated with this joint

density is given by

L (�i; Ri) =
R
f (Ri;�i; �i) d�i (3.4)

where L is Txq dimensional integral.

This integral can be factorized into sequence of conditional density functions f(�) for

(rit; �it) given (Rit�1;�it�1) : We can rewrite the likelihood function as

L (�i; Ri) =
R TQ
t=1

f (rit; �itjRit�1;�it�1; �i) d�i (3.5)

based upon the factorization.

Furthermore, we can rewrite the joint density as a function of conditional density g (�)

of rit and conditional density p (�) of �it given (�it�1; Rit�1) as

f (rit; �itjRit�1;�it�1; �i) = g (ritj�it; Rit�1; �i) p (�itj�it�1; Rit�1; �i) (3.6)

Under the standard SV model g (�) is a conditional Gaussian density and p (�) is the

density for the Gaussian AR process of volatility.

A natural MC technique ignores that the observation of Ri conveys critical information

about underlying latent process �i since trajectories are just drawn from process p (�). This

causes high ine¢ ciency of MC estimator. To resolve this problem, EIS searches for samplers

that exploits the sample information �it�s as conveyed by rit�s. Let, fm (�itj�it�1; ait)gTt=1
denote a sequence of auxiliary samplers which is indexed by auxiliary parameters Ai =

faitgTt=1 :

Then the likelihood function can be written as

L (�i;Ri) =
R TQ
t=1

f (rit; �itjRit�1;�it�1; �i)
m (�itj�it�1; ait)

TQ
t=1

m (�itj�it�1; ait) d�i (3.7)
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which produces the corresponding importance sampling estimate of likelihood as

fLN (�i;Ri; Ai) = 1

N

NX
j=1

8>><>>:
TQ
t=1

f

�
rit;f�it(j)(ait)jRit�1;]�it�1(j)(ait�1); �i�
m

�f�it(j)(ait)j]�it�1(j)(ait�1); ait�
9>>=>>; (3.8)

where
�f�it(j)(ait)�T

t=1

denotes a trajectory drawn from the auxiliary samplers m (�) :

EIS aims at selecting values of faitgTt=1 which provides a good match between the de-

nominator and nominator in Equation 7 which will minimize the MC sampling variance offLN . To achieve the minimization, EIS constructs a functional approximation k (�it; ait)

for the conditional joint density which is analytically integrable with respect to �it: Then

m (�itj�it�1; ait) is given by

m (�itj�it�1; ait) =
k (�it; ait)

� (�it�1; ait)
(3.9)

where � (�it�1; ait) =
R
k (�it; ait) d�it. Since � (�it�1; ait) does not depend on �it it can be

transferred back into the period t-1 minimization subproblem. Therefore, the problem turns

back into solving a simple back-recursive sequence of low-dimensional least squares problem

of the form

bat(�) = argmin
at

NX
j=1

[(ln f

�
rit;f�it(j)(�)jRit�1;]�it�1(j)(�); �i� (3.10)

:�
�f�it(j);bait+1�]� cit � ln k �f�it(j);bait�)2

for t : T ! 1, with � (�iT ; aiT+1) � 1 and cit�s are unknown constants to be estimated jointly

with the ait�s.

Nevertheless, in order to produce maximally e¢ cient importance samplers just a small

number of EIS iterations is required. To provide the convergence of auxiliary parameters bait,
we apply Common Random Numbers (CRNs) technique.

Finally, the ML-EIS estimates of � are obtained by maximizing Equation 7 with respect

to �:
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A detailed implementation of EIS for the SV model in Section 4 is given in Appendix.

3.2.3 The Return Variable

As mentioned earlier, in this paper we use 35 di¤erent S&P 500 stock returns from six

di¤erent sectors. We investigated the e¤ect of lagged values of di¤erent return variables on

volatility. For example, we tried the �rst lag of the deviation of return from its mean to

the volatility equation. Moreover, we tried using the deviation of return from its monthly

moving average as well as its absolute value. To compare the e¤ect of these variables on the

model, we utilized the following procedures for each di¤erent extra variable candidate

1) We regress the �ltered volatilities of an individual stock return on its �rst-order

lag and calculated the residuals for this estimation.

2) We regress the �rst lag-of-return variable on the �rst-order lag of the �ltered

volatilities and calculated the residuals from this regression.

3) We regress the residuals from the �rst estimation on the residuals from the second

regression.

These estimation results could provide the coe¢ cients of the di¤erence parameter. How-

ever, they would be based on a mis-speci�ed model because the �ltered volatilities are ob-

tained by using the standard SV model.

The comparison of these estimation results for di¤erent return-variable candidates sug-

gests that the deviation of return from its monthly moving average, which we call the di¤er-

ence variable, has the highest e¤ect on volatility. Tables 16, 17 and 18 show the estimation

results of the �nal regression of residuals for Coca-Cola, American Express, and Bristol-

Myers Squibb. Regression results represent that estimated coe¢ cients of �nal regression are

signi�cant. This indicates a relationship between the di¤erence variable and the volatility.

Furthermore, if we compare these initial results with the results of ML estimation, we see

that the results are close to each other in the standard deviations as well as the point esti-

mates. Therefore, these initial estimation results were useful to the investigation before I ran

the full EIS-ML. Furthermore, this similarity between initial estimation and �nal EIS-ML

results is true for all 35 stocks.
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Next, we formulate the return variable before adding it to the volatility equation. This

return variable is formulated as

xit = rit � rit (3.11)

where rit is stock return i : 1! 35 and t : 1! T: rit represents the monthly moving average

of return i at time t:We do not calculate the moving averages by using the standard moving

average calculation which uses observations from t�11 to t+11. Because our moving average

should depend on past values, we use observations from t-22 up to t. Furthermore, by using

the moving instead of the mean average (which is used in the standard GARCH(1,1) model),

we allow the mean to vary over time. Because we also tested the deviation of return from its

mean when choosing the return variable, the comparison of the deviation of return from both

its mean and its monthly moving average, as additional variables to the volatility equation,

suggests that deviation from the monthly moving average has a stronger impact on volatility.

3.3 APPLICATIONS

For the application of the model, we use 35 di¤erent daily S&P 500 stock prices form six

di¤erent sectors between January 2nd 1990 and October 31st 2008. The model is estimated

for Coca-Cola, Hershey, Proctor & Gamble and Walmart from the consumer staples sector;

Chevron, Sunoco, ConocoPhillips and Exxon from the energy sector; American Express,

Bank of America, CitiBank, JP Morgan and Wells Fargo from the �nance sector; Abbott,

Amgen, Bristol-Myers Squibb, Johnson & Johnson, Merck, P�zer, Schering & Plough and

Wyeth from the health sector; 3M, Boeing, Caterpillar, GE, Masco and Southwest Airlines

from the industrials sector; and Apple, Hewlett Packard, Intel, IBM, Micron, Motorola,

Oracle and Java from the information technologies sector.

Stock returns are calculated by using formula

rit = 100: ln(sit=sit�1) (3.12)
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where sit is daily stock return for return i : 1! 35 andt : 1! 4750.

Table 19 through 24 in Appendix C presents the estimation results under the standard

SV model and SV model with the di¤erence variable for each industry. Numbers in paren-

theses represent the asymptotic standard deviations. Mean and standard deviation are the

parameters�means and standard deviations respectively.

For the consumer staples sector, the � parameter changes between -0.02 and -0.073 and

is signi�cant for all stock returns except Hershey. Furthermore, persistence parameter �

increases and the standard deviation of volatility � decreases when the di¤erence variable is

added and signi�cant.

For the energy sector, the di¤erence parameter changes between -0.043 and -0.102. It

is signi�cant for all returns. Persistence parameter � increases and standard deviation of

volatility � decreases under the proposed model.

For the �nance sector, the di¤erence parameter � has the range of (-0.048,-0.068) and is

signi�cant for all returns. In terms of the persistence parameter and the standard deviation

of volatility respectively, results again indicate increase and decrease.

For the health sector, the range of di¤erence parameter is similar to the energy sector,

which is between -0.027 and -0.110. The di¤erence parameter is signi�cant for all stocks.

The persistence parameter increases when the di¤erence variable is added. In terms of the

standard deviation of volatility, there is a decrease, except in the case of Merck.

For the industrials sector, the di¤erence parameter range is again similar to the energy

and health sectors. It changes between -0.019 and -0.110. This sector has two stocks with

insigni�cant di¤erence parameters, 3M and Masco. The persistence parameter � increases

and the standard deviation of volatility � decreases when the di¤erence variable is added for

all stocks except Masco.

Finally, among all sectors, the information technology sector has the widest di¤erence in

parameter range. The � parameter changes between -0.004 and -0.135 and it is not signi�cant

for Apple. Furthermore, adding the di¤erence variable into the volatility equation causes

an increase and decrease in the persistence parameter and standard deviation of volatility,

respectively.

Almost all individual estimation results indicate that the di¤erence parameter is signif-
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icant, which shows that return does �Granger-cause� volatility. Moreover, when we add

the di¤erence variable into the volatility equation, persistence increases and the standard

deviation of volatility decreases.

To represent the e¤ect of new variables on persistence, we draw the �ltered volatility

graphs of Coca-Cola and Bristol-Myers Squibb. They are obtained by standard SV model

estimation and the SV model with the di¤erence variable estimation (for a small period

after we observe a large xt�1, which is the di¤erence variable). Filtered volatility is the mean

of volatility at time t computed by using information available on the returns up to time

t-1. For Coca-Cola we observe that the 145th observation is large enough to examine the

di¤erence between two �ltered volatility series from the two models. Figure 17 in Appendix D

shows the �ltered volatility series of 14 points after the large di¤erence variable is observed

at 145th point for Coca-Cola. For Bristol-Squibb-Myers we observe the large xt�1 at the

1892nd observation. Figure 18 in Appendix D also represents the �ltered volatility series of

13 points after the 1892nd point by using respectively the standard SV model and the SV

model with the di¤erence variable for Bristol- Myers Squibb..

Since the coe¢ cient of di¤erence variable is negative when there is a large positive xt�1 we

should expect that �ltered volatilities from the SV model with the di¤erence variable should

be lower than �ltered volatilities from the standard SV model. As noted for Coca-Cola, we

observe a large positive xt�1 at the 145th and the 1892nd observations for Bristol-Squibb-

Myers. Starting one point ahead of these observation points, the �ltered volatilities graphs

clearly represent that �ltered volatilities are lower when the di¤erence variable is added to

the model.

In order to summarize the e¤ects of the di¤erence variable on volatility, we compare

likelihood values under two di¤erent models for each return series as a �nal test. We use

a LR-test to examine if there is an improvement in the model when we add the di¤erence

variable to the volatility equation. Tables 25 through 30 in Appendix D represent the

likelihood values for each return series among sectors for the two models and the LR-test

results. The results suggest that the model is improved and that there is causality between

return and volatility except for those stocks with an insigni�cant di¤erence parameter.

Table 31 in Appendix D shows the variance-covariance structure between parameters
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among the returns for all 35 stocks. This table represents the common feedback structure of

SV model parameters among 35 stocks. Furthermore, the bivariate plot of � and �, Figure 19

in Appendix D, also re�ects that, when the di¤erence parameter � is added, the persistence

parameter � increases.

The �nal step of this paper is a joint EIS-ML estimation. Here the parameters for

each stock are assumed to be iid draws from a common four-dimensional distribution. We

introduce a re-parameterization in order to avoid the problem of ��s being no larger than

one, produce a more reasonable joint distribution, simplify the correlation structure, and

produce neater bivariate graphs. This re-parametrization is given by

�� =
�

1� � (3.13)

�� = ln(
1� �
�
)

�� = �

�� =
�p
1� �2

As we noted above, this re-parameterization will simplify the correlation structure and

simplify the common four-dimensional distribution

3.4 CONCLUSION

The standard SV model assumes that volatility is explained only by its �rst order

lag. This paper presents research focused on examining the causality between return and

volatility in the SV model. The causality is given by adding a return variable to the equation,

which modi�es the volatility equation in the standard SV model. The choice of this return

variable is carried out by examining the partial correlation between the �rst-order lag of

�ltered volatilities and �rst-order lag of return variables. The examination of di¤erent return

variables suggests that using the �rst-order lag of the di¤erence between return and its past

monthly moving average as the return variable provides the greatest improvement in the

model.
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After analyzing 35 di¤erent S&P 500 stock returns from six di¤erent sectors (consumer

staples, �nance, energy, health, industrials, and information technology), the empirical re-

sults obtained in this paper can be summarized as follows:

First, the estimation results indicate that for more than 30 stocks, the di¤erence pa-

rameter is signi�cant. Furthermore, when the di¤erence variable is added to the volatility

equation, the persistence parameter increases and, more importantly, the standard deviation

of volatility decreases. The reduction in the standard deviation of volatility and the signi�-

cant di¤erence parameter together prove the existence of Granger-causality between return

and volatility.

Second, the examination of �ltered volatility graphs from the SV model with the di¤er-

ence variable also shows that �ltered volatilities decrease after a high and positive observation

for the di¤erence variable.

Finally, the LR-test results represent that the model is improved for stocks except Her-

shey, 3M, Masco, P�zer, and Apple. The �nal investigation will also be done by a joint

EIS-ML estimation, where the parameters for each stock are assumed to be iid draws from a

common four-dimensional distribution. In order to simplify the correlation structure between

parameters, a re-parameterization will be introduced.
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APPENDIX A

IMPLEMENTATION OF EIS FOR STOCHASTIC VOLATILITY MODEL

WITH DIFFERENCE PARAMETER

This appendix represents the functional forms of EIS implementation for the SV model

with extra di¤erence parameter in the volatility equation given by Equation .(4):

Let the integrating constant of kt (�it; �it�1;bait) w.r.t. �it be formulated as
�t+1 (�it;bait+1) = exp�12(pit+1�2it � 2qit+1�it + rit+1) (A.1)

where (pt+1; qt+1; rt+1) are the appropriate functions of the EIS auxiliary parameter bait+1
which will be obtained by backward recursions.�T+1 = 1; values of pi; qi and ri at T + 1

are equal to 0. Let the EIS approximation for the product of density function of return be

denoted as:

k1t (�it;bait) = exp�12(bbit�2it � 2bcit�it) (A.2)

The EIS auxiliary parameter bait is describes as bait = �bbit;bcit�. Then the EIS kernel can
be represented as

kt(�it; �it�1; ait) = k
1
t (�it;bait)p (�itj�it�1; Rit�1; �i)�t+1 (�it;bait+1) (A.3)

Furthermore, the conditional densities for return and volatility are de�ned as:

g (ritj�it; Rit�1; �i) � exp�
1

2

�
�it + r

2
it exp(�it)

�
(A.5)
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p (�itj�it�1; Rit�1; �i) =
1p
2vi

exp�1
2

�
(�it � 
i � �i�it�1 � �ixit�1)

2 =�2i
�

(A.6)

If we combine together,A.1, A.2. and A.5. we have

� 2 ln k1t (�it; �it�1;bait) = �2it

�bbit + 1=�2i�� 2�it �bcit + (
i + �i�it�1 + �ixit�1)=�2i �(A.7)
+(
2i + �

2
i�
2
it�1 + �

2
ix
2
it�1 + 2�it�1 (
i�i + �i�ixit�1)

+2
i�ixit�1)=�
2
i

+pit+1�
2
it � 2qit+1�it + rit+1

I we rewrite the equation as follows

� 2 ln k1t (�it; �it�1;bait) = �2itAit � 2�itBit + (
2i + �2i�2it�1 + �2ix2it�1) (A.8)

+2�it�1 (
i�i + �i�ixit�1)

+2
i�ixit�1)=�
2
i

+pit+1�
2
it � 2qit+1�it + rit+1

Ait = bbit + 1=�2i (A.9)

Bit = bcit + (
i + �i�it�1 + �ixit�1)=�2i (A.10)

It immediately follows that the EIS sampler for �itj�it�1 is given by

mt (�itj�it�1;bait) � N �A�1it Bit; A�1it � (A.11)

We can obtain the log-integrating constant by re-grouping all the remaining factors in

A.5 and is therefore in form introduced in A.1 together with

pit = �
2
i =�

2
i � Ait�2 (A.12)
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qit = (
i�i + �i�ixit�1) =�
2
i � Ait(bcit + 
i + �ixit�1) (A.13)

rit = (
2i + 2
i�ixit�1 + �
2
ix
2
it�1)=�

2
i (A.14)

�(bcit + 
i + �ixit�1)Ait(bcit + 
i + �ixit�1)

Hence equations (A.9)-(A.10) and (A.12)-(A.14) fully characterize the EIS recursion

whereby the coe¢ cients (pt+1; qt+1; rt+1) are combined with the period t EIS coe¢ cients�bbit;bcit� in order to produce (back recursively) the coe¢ cients (Ait;Bit) characterizing the
EIS-sampling densities.

Based on these the EIS steps can be described as follows:

Step 1. Generate N independent trajectories from the initial samplerm
�
�itj�it�1; a(0)t

�
.

Such a sequence can be found by e.g. using a Taylor Series Approximation (TSA) in �it for

conditional density of return around its mean which is equal to zero. Replacing the resulting

TSA values with
�bbit;bcit� in equations (A.9) and (A.10) provides the initial samplers together

with the recursions described above.

Step 2. Now we can use these trajectories for solving the back recursive LS problem

de�ned in Equation 12. This requires to run for each period t the following linear regression

ln g

�
ritjf�it(i)� = constant� 1

2
bite�(i)2it + cite�(i)it + �(i)it (15)

where �(i)it represents the regression error term.

Step 3. Use the LS estimates bbit and bcit obtained in Step 2 to construct back-recursively
the sequence of EIS-sampling densities as given by Equation (A.11) together with the recur-

sions (A.9)-(A.10) and (A.12)-(A.14).

Step 4. Use N independent trajectories from auxiliary samplers constructed in Step 3

and then repeat Step 2 and 3 to compute EIS-MC estimate of the likelihood function.
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APPENDIX B

FIGURES AND TABLES OF CHAPTER 1

Turkey's Inflation

­5

0

5

10

15

20

25

30

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273

Number of Observations

In
fla

tio
n 

Ra
te

Figure 1: In�ation Series of Turkey
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Detrended Turkey's Inflation
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Figure 2: The Detrended and Deseasonalized In�ation Series of Turkey.

Figure 3: Filtered Volatilities from EGARCH Model (GED) without Dummies
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Figure 4: Filtered Volatilities tiwh EGARCH Model without dummies

Figure 5: Filtered Volatilities with SV Model without Dummies
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Figure 6: Filtered Volatilitilies from EGARCH (GED) Model with Dummies

Figure 7: Filtered Volatilities from EGARCH Model with Dummies
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Figure 8: Filtered Volatilities from SV Model with Dummies

Coe¢ cients t-statistics P-value

In�ation(-1) 0:341 7:720 0:000

January 1:146 3:966 0:000

February �0:694 �2:376 0:018

March 0:161 0:571 0:568

April 0:445 1:542 0:124

May �0:994 �3:452 0:000

June �1:775 �6:358 0:000

July �1:061 �3:589 0:000

August �0:324 �1:108 0:268

September 1:546 5:296 0:000

October 1:471 5:011 0:000

November 0:023 0:076 0:939

December �0:584 �2:014 0:045

R-squared 0:623

Table 1: Regression of Turkey�s In�ation on Monthly Dummies before Seasonal Adjustment
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Coe¢ cients t-statistics P-value

In�ation(-1) 0:361 8:344 0:000

January �0:093 �0:348 0:727

February �0:325 �1:215 0:225

March �0:141 �0:539 0:590

April 0:187 0:698 0:485

May �0:293 �1:108 0:268

June �0:134 �0:511 0:609

July �0:111 �0:423 0:672

August �0:052 �0:198 0:842

September 0:081 0:304 0:761

October �0:011 �0:042 0:966

November �0:112 �0:418 0:675

December 0:369 1:377 0:169

R-squared 0:510

Table 2: Regression of In�ation Series of Turkey on Monthly Dummies after Seasonal Ad-

justment
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Coe¢ cients P-value

In�ation(-1) 0:4716 0:000

�0 �0:1888 0:071

�1 0:5083 0:018

�2 �0:1452 0:042

�3 �0:0902 0:043

�4 0:8912 0:000

Log-likelihood �441:27

Table 3: EGARCH (GED) Results without Dummy Variables

Coe¢ cients P-value

In�ation(-1) 0:319 0:000

DUMMY1 4:608 0:625

DUMMY2 8:009 0:033

DUMMY3 18:515 0:000

DUMMY4 1:514 0:010

�0 0:032 0:917

�1 0:257 0:182

�2 0:082 0:708

�3 0:191 0:112

�4 �0:497 0:230

Log-likelihood �413:03

Table 4: EGARCH (GED)Results with Dummy Variables
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Coe¢ cients P-value

In�ation(-1) 0:4818 0:000

�0 �0:1610 0:070

�1 0:4530 0:012

�2 �0:1094 0:511

�3 �0:0753 0:396

�4 0:8883 0:000

Log-likelihood �436:56

Table 5: EGARCH Results without Dummy Variables

Coe¢ cients P-value

In�ation(-1) 0:392 0:000

DUMMY1 4:848 0:007

DUMMY2 7:820 0:041

DUMMY3 18:797 0:000

DUMMY4 3:387 0:069

�0 �0:076 0:427

�1 0:324 0:153

�2 �0:110 0:640

�3 �0:105 0:290

�4 0:908 0:000

Log-likelihood �396:02

Table 6: EGARCH Results with Dummy Variables
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Coe¢ cients Asympt. stand. err. MC stand. err.


 �0:0465 0:03 0:0005

� 0:8160 0:05 0:0007

� 0:4506 0:09 0:0023

Log-likelihood �380:53 0:0640

Table 7: SV Model Results without Dummy Variables

Coe¢ cients Asympt stand. err. MC stand. err.

�1 3:8465 1:05 0:0002

�2 0:1554 0:82 0:0002

�3 0:0859 1:26 0:0001

�4 2:2106 0:87 0:0004


 �0:0569 �0:05 0:0005

� 0:8531 0:85 0:0006

� 0:4357 0:43 0:0021

Log-likelihood �374:95 0:053

Table 8: SV Model Results with Dummy Variables
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In�ation

Skewness 0:3486

Kurtosis 3:1956

KS(z�) 0:0505
(0:23)

Q30(z
�) 183:56

(0:00)

Q30(z) 160:13
(0:00)

Q30(z
�2) 3:15

(1:00)

Q30(z
2) 26:226

(0:66)

Table 9: Results for Diagnostic Checks
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APPENDIX C

FIGURES AND TABLES OF CHAPTER 2
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Figure 9: U.S. In�ation Series
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US Inflation After AR(1)
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Figure 10: Graph of U.S In�ation Series after Autocorrelation is Eliminated

Cumulative Distribution for US

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316

Number of Observations

P
ro

ba
bi

lit
y

Figure 11: Cumulative Empricial Distribution Graph for U.S.

61



Turkey's Inflation
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Figure 12: In�ation Series of Turkey
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Figure 13: The Detrended In�ation Series of Turkey.
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After Seasonal Adjusment
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Figure 14: In�ation Series of Turkey after Seasonal Adjustment.
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Figure 15: In�ation Series of Turkey after Autocorrelation is Eliminated.
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Cumulative Distribution for Turkey
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Figure 16: Cumulative Empricial Distribution Graph for Turkey.
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Figure 17: Cumulative Distribution Graph for the First Simulated Series by Using Student-t

Distribution.

Coe¢ cients Asymptotic Std. Err. MC Std. Err.


 0:0012 0:004 0:0001

� 0:9911 0:005 0:0004

� 0:1986 0:042 0:0021

Table 10: Initial SV Model Estimation Results for U.S
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Coe¢ cients Asymptotic Std. Err. MC Std. Err.


 0:0007 0:003 0:0001

� 0:9918 0:004 0:0003

� 0:2108 0:035 0:0018

Table 11: Final SV Model Estimation Results for U.S

Coe¢ cients t-statistics p-value

In�ation(-1) 0:357 6:290 0:000

January 1:173 3:118 0:002

February �0:691 �1:816 0:070

March 0:210 0:572 0:567

April 1:283 3:490 0:000

May �0:972 �2:591 0:013

June �1:726 �4:679 0:000

July �0:990 �2:583 0:000

August �0:258 �0:679 0:497

September 1:587 4:184 0:000

October 1:476 3:861 0:000

November 0:016 0:040 0:967

December �0:573 �1:518 0:130

R-squared 0:369

Table 12: Regression of Turkey�s In�ation on Monthly Dummies before Seasonal Adjustment
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Coe¢ cients t-statistics p-value

In�ation(-1) 0:101 1:682 0:093

January �0:071 �0:178 0:858

February �0:280 �0:699 0:485

March 0:050 �0:126 0:899

April 0:021 0:054 0:956

May �0:510 �1:302 0:194

June 0:000 0:000 0:999

July 0:050 0:128 0:897

August �0:855 �2:184 0:029

September 0:004 0:011 0:091

October 0:094 0:234 0:814

November 0:704 1:760 0:79

December �0:321 �0:803 0:422

R-squared 0:045

Table 13: Regression of Turkey�s In�ation on Monthly Dummies after Seasonal Adjustment

Coe¢ cients Asymptotic Std. Err. MC Std. Err.


 �0:0402 0:031 0:0007

� 0:7655 0:052 0:0009

� 0:4939 0:091 0:0035

Table 14: Intial SV Model Estimation Results for Turkey
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Coe¢ cients Asymptotic Std. Err. MC Std. Err.


 �0:0572 0:025 0:0006

� 0:8792 0:036 0:0007

� 0:4457 0:077 0:0031

Table 15: Final SV Model Estimation Results for Turkey
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APPENDIX D

FIGURES AND TABLES OF CHAPTER 3

CocaCola

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Data point

F
ilt

er
ed

 V
o

la
ti

lit
y

SV with diff.param. Standard SV

Figure 18: Filtered Volatility Series for CocaCola
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Bristol&Squibb&Myers
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Figure 19: Filtered Volatility Series for Bristol-Squibb-Myers.
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Figure 20: Bivariate Plot of Delta and Beta for 35 Stocks

Results for Final Regression

Coe¢ cient Standard Dev.

residuals-reg2 �0:021 0:003

R-squared 0:153

Table 16: Estimation Results of Residual Regression for CocaCola
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Results for Final Regression

Coe¢ cient Standard Dev.

residuals-reg2 �0:010 0:002

R-squared 0:181

Table 17: Estimation Results of Residual Regression for American Express

Results for Final Regression

Coe¢ cient Standard Dev.

residuals-reg2 �0:019 0:004

R-squared 0:194

Table 18: Estimation Results of Residual Regression for Bristol-Squibb-Myers

Standard SV Model SV Model with Di¤erence Var.

Stocks 
 � � 
 � � �

CocaCola �0:009
(0:003)

0:982
(0:0045)

0:166
(0:0176)

�0:007
(0:0030)

0:986
(0:0041)

�0:073
(0:0126)

0:146
(0:0175)

Hershey �0:057
(0:011)

0:904
(0:0152)

0:381
(0:0325)

�0:058
(0:0108)

0:904
(0:0152)

�0:020
(0:0182)

0:382
(00319)

Proctor & Gamble �0:015
(0:004)

0:973
(0:0064)

0:196
(0:0215)

�0:014
(0:0049)

0:976
(0:0066)

�0:059
(0:0149)

0:182
(0:0240)

Walmart �0:001
(0:001)

0:990
(0:0031)

0:104
(0:0142)

0:000
(0:0013)

0:993
(0:0025)

�0:054
(0:0101)

0:089
(0:0123)

Mean �0:020 0:962 0:212 �0:020 0:965 �0:062 0:199

Standard Deviation 0:025 0:039 0:119 0:026 0:039 0:020 0:119

Table 19: Estimation Results for Consumer Staples Sector
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Standard SV Model SV Model with Di¤erence Var.

Stocks 
 � � 
 � � �

Chevron �0:015
(0:0050)

0:980
(0:0058)

0:126
(0:0159)

�0:012
(0:0041)

0:984
(0:0047)

�0:096
(0:0141)

0:107
(0:0137)

Sunoco �0:009
(0:0039)

0:966
(0:0086)

0:192
(0:0252)

�0:007
(0:0034)

0:973
(0:0077)

�0:043
(0:0121)

0:170
(0:0250)

ConocoPhillips �0:012
(0:0041)

0:973
(0:0086)

0:137
(0:0187)

�0:010
(0:0035)

0:976
(0:0063)

�0:067
(0:0126)

0:125
(0:0162)

Exxon �0:014
(0:0049)

0:983
(0:0050)

0:129
(0:0161)

�0:011
(0:0041)

0:986
(0:0042)

�0:102
(0:0145)

0:113
(0:0142)

Mean -0:020 0:962 0:211 �0:019 0:980 �0:077 0:129

Standard Deviation 0:025 0:039 0:119 0:026 0:006 0:027 0:028

Table 20: Estimation Results for Energy Sector

Standard SV Model SV Model with Di¤erence Var.

Stocks 
 � � 
 � � �

American Express �0:003
(0:0024)

0:986
(0:0034)

0:154
(0:0164)

�0:002
(0:0022)

0:989
(0:0031)

�0:053
(0:0115)

0:138
(0:0158)

Bank of America �0:006
(0:0030)

0:986
(0:0035)

0:178
(0:0166)

�0:005
(0:0032)

0:989
(0:0036)

�0:050
(0:0104)

0:167
(0:0166)

CitiBank �0:006
(0:0028)

0:989
(0:0031)

0:147
(0:0157)

�0:002
(0:0018)

0:995
(0:0010)

�0:069
(0:0127)

0:122
(0:0145)

JP Morgan �0:003
(0:0022)

0:988
(0:0033)

0:155
(0:0167)

�0:001
(0:0022)

0:992
(0:0032)

�0:049
(0:0099)

0:139
(0:0159)

Wells Fargo 0:000
(0:0015)

0:993
(0:0026)

0:124
(0:0140)

0:000
(0:0012)

0:996
(0:0012)

�0:052
(0:0098)

0:110
(0:0119)

Mean �0:004 0:988 0:152 �0:002 0:992 �0:054 0:135

Standard Deviation 0:003 0:003 0:019 0:002 0:003 0:008 0:021

Table 21: Estimation Results for Finance Sector
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Standard SV Model SV Model with Di¤erence Var.

Stocks 
 � � 
 � � �

Abbott �0:019
(0:0054)

0:968
(0:0079)

0:182
(0:0222)

�0:017
(0:0054)

0:969
(0:0076)

�0:045
(0:0159)

0:179
(0:0220)

Amgen 0:004
(0:0034)

0:965
(0:0069)

0:227
(0:0210)

0:001
(0:0037)

0:966
(0:0066)

�0:048
(0:0117)

0:224
(0:0205)

Bristol&Squibb&Myers �0:018
(0:0052)

0:970
(0:0062)

0:213
(0:0207)

�0:017
(0:0052)

0:972
(0:0063)

�0:062
(0:0159)

0:207
(0:0215)

Johnson&Johnson �0:017
(0:0049)

0:980
(0:0045)

0:165
(0:0167)

�0:014
(0:0046)

0:985
(0:0040)

�0:110
(0:0158)

0:147
(0:0159)

Merck �0:072
(0:0140)

0:874
(0:0201)

0:392
(0:0322)

�0:072
(0:0013)

0:875
(0:0178)

�0:038
(0:0173)

0:392
(0:0318)

P�zer �0:002
(0:0026)

0:970
(0:0063)

0:178
(0:0182)

�0:001
(0:0027)

0:972
(0:0064)

�0:028
(0:0119)

0:174
(0:0186)

Schering&Plough �0:011
(0:0041)

0:963
(0:0074)

0:226
(0:0216)

�0:010
(0:0043)

0:966
(0:0074)

�0:046
(0:0131)

0:216
(0:0236)

Wyeth �0:018
(0:0051)

0:968
(0:0069)

0:231
(0:0235)

�0:015
(0:0051)

0:971
(0:0067)

�0:047
(0:0151)

0:223
(0:0237)

Mean �0:019 0:957 0:226 �0:018 0:960 �0:053 0:220

Standard Deviation 0:023 0:034 0:071 0:023 0:035 0:048 0:075

Table 22: Estimation Results for Health Sector
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Standard SV Model SV Model with Di¤erence Var..

Stocks 
 � � 
 � � �

3M �0:092
(0:0173)

0:906
(0:0161)

0:348
(0:0330)

�0:089
(0:0164)

0:909
(0:0154)

�0:027
(0:0226)

0:343
(0:0312)

Boeing �0:022
(0:0066)

0:946
(0:0109)

0:262
(0:0293)

�0:018
(0:0062)

0:956
(0:0108)

�0:059
(0:0142)

0:233
(0:0293)

Caterpillar �0:028
(0:0073)

0:903
(0:0174)

0:313
(0:0320)

�0:026
(0:0068)

0:911
(0:0172)

�0:036
(0:0151)

0:300
(0:0303)

GE �0:073
(0:0064)

0:991
(0:0071)

0:134
(0:0150)

�0:004
(0:0023)

0:994
(0:0023)

�0:110
(0:0128)

0:096
(0:0124)

Masco �0:031
(0:0084)

0:913
(0:0154)

0:363
(0:0340)

�0:031
(0:0079)

0:913
(0:0137)

�0:020
(0:0158)

0:364
(0:0335)

Southwest Airlines 0:007
(0:0037)

0:933
(0:0119)

0:262
(0:0262)

0:006
(0:0040)

0:934
(0:0122)

�0:041
(0:0124)

0:260
(0:0260)

Mean �0:040 0:932 0:280 �0:027 0:936 �0:049 0:266

Standard Deviation 0:036 0:033 0:083 0:033 0:034 0:033 0:097

Table 23: Estimation Results for Industrials Sector
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Standard SV Model SV Model with Di¤erence Var.

Stocks 
 � � 
 � � �

Apple �0:083
(0:0158)

0:831
(0:0260)

0:460
(0:0411)

�0:083
(0:0154)

0:830
(0:0232)

�0:004
(0:0172)

0:461
(0:0339)

Hewlett Packard �0:055
(0:0110)

0:941
(0:0102)

0:298
(0:0264)

�0:054
(0:0104)

0:943
(0:0093)

�0:061
(0:0206)

0:294
(0:0243)

Intel �0:014
(0:0042)

0:982
(0:0050)

0:143
(0:0175)

�0:011
(0:0038)

0:984
(0:0044)

�0:075
(0:0144)

0:130
(0:0168)

IBM �0:055
(0:0119)

0:964
(0:0072)

0:242
(0:0229)

�0:045
(0:0106)

0:970
(0:0063)

�0:136
(0:0236)

0:222
(0:0217)

Micron �0:001
(0:0012)

0:992
(0:0011)

0:121
(0:0213)

0:000
(0:0012)

0:994
(0:0024)

�0:018
(0:0089)

0:081
(0:0118)

Motorola �0:041
(0:0091)

0:950
(0:0094)

0:278
(0:0258)

�0:038
(0:0083)

0:953
(0:0086)

�0:064
(0:0181)

0:269
(0:0246)

Oracle �0:009
(0:0041)

0:974
(0:0060)

0:222
(0:0227)

�0:007
(0:0036)

0:980
(0:0051)

�0:084
(0:0132)

0:193
(0:0217)

Java �0:013
(0:0050)

0:948
(0:0104)

0:258
(0:0275)

�0:011
(0:0048)

0:953
(0:0099)

�0:042
(0:0141)

0:245
(0:0262)

Mean �0:034 0:948 0:253 �0:031 0:951 �0:060 0:237

Standard Deviation 0:029 0:050 0:104 0:029 0:052 0:041 0:115

Table 24: Estimation Results for Information Technology Sector

Stocks LL-standard SV LL-SV with di¤. variable. LR-test

CocaCola �5702:28 �5686:27 32:02

Hershey �5707:99 �5707:82 0:34

Proctor & Gamble �5569:58 �5561:93 15:30

Walmart �6676:04 �6661:91 28:26

Table 25: Log-likelihood Values for Consumer Staples Sector
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Stocks LL-standard SV LL-SV with di¤. variable LR-test

Chevron �4995:70 �4976:32 38:76

Sunoco �6309:99 �6304:99 10:00

ConocoPhillips �5794:81 �5780:93 27:76

Exxon �4800:30 �4783:99 32:62

Table 26: Log-likelihood Values for Energy Sector

Stocks LL-standard SV LL-SV with di¤. variable LR-test

American Express �6315:69 �6305:30 20:78

Bank of America �5741:38 �5731:06 20:64

CitiBank �5380:22 �5365:51 29:42

JP Morgan �6496:49 �6484:86 23:26

Wells Fargo �6373:22 �6359:97 26:50

Table 27: Log-likelihood Values for Finance Sector

Stocks LL-standard SV LL-SV with di¤. variable LR-test

Abbott �5589:03 �5576:97 24:12

Amgen �7105:79 �7089:53 32:52

Bristol-Squibb-Myers �5488:35 �5480:90 14:9

Johnson & Johnson �4739:49 �4718:44 42:1

Merck �5757:24 �5745:73 23:02

P�zer �6770:65 �6769:82 1:66

Schering & Plough �6276:21 �6267:47 17:48

Wyeth �5735:63 �5729:87 11:52

Table 28: Log-likelihood Values for Health Sector
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Stocks LL-standard SV LL-SV with di¤. variable LR-test

3M �4760:24 �4760:26 0:04

Boeing �6020:08 �6011:91 16:34

Caterpillar �6356:55 �6344:68 23:74

GE �5083:66 �5050:75 65:82

Masco �6287:67 �6287:64 0:06

Southwest Airlines �7232:27 �7225:22 14:1

Table 29: Log-likelihood Values for Industrials Sector

Stocks LL-standard SV LL-SV with di¤. variable LR-test

Apple �6018:50 �6018:76 0:52

Hewlett Packard �4826:30 �4822:72 7:16

Intel �5154:83 �5146:88 15:9

IBM �3351:23 �3338:70 25:06

Micron �7021:04 �7001:44 39:2

Motorola �5126:90 �5120:51 12:78

Oracle �6098:83 �6080:89 35:88

Java �6437:10 �6424:80 24:6

Table 30: Log-likelihood Values for Information Technology Sector
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� � � �

� 0:00065

� 0:00065 0:00140

� �0:00011 �0:00058 0:00079

� �0:00158 �0:00335 0:00137 0:00889

Table 31: Variance-Covariance Matrix of Model Parameters
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