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APPLICATIONS OF EFFICIENT IMPORTANCE SAMPLING TO
STOCHASTIC VOLATILITY MODELS

Serda Selin Ozturk, PhD

University of Pittsburgh, 2009

First chapter of my dissertation uses an EGARCH method and a Stochastic Volatility
(SV) method which relies upon Markov Chain Monte Carlo (MCMC) framework based on
Efficient Importance Sampling (EIS) to model inflation volatility of Turkey. The strength
of SV model lies in its success in explaining time varying and persistence volatility. This
chapter uses the CPI index of Turkey as the inflation measure. The inflation series suffer
from four exchange rate crisis in Turkey during this period. Therefore two different models
are estimated for both EGARCH and SV models; with crisis dummies and without dummies.
Comparison of different model results for EGARCH and SV models indicate the robustness
problem for EGARCH and that SV model is far more robust than EGARCH.

Stochastic Volatility (SV) models typically exhibit short-term dynamics with high per-
sistence. It follows that volatility is conceptually predictable. Since, however, it is not
observable; the validation of SV forecasts raises non-trivial issues. In second chapter I pro-
pose a new test statistics to evaluate the validity of one-step-ahead forecasts of returns
unconditionally on volatility. Specifically, I construct a Kolmogorov-Smirnov test statistic
for the null hypothesis that the predicted cumulative distribution of return evaluated at ob-
served values is uniform. Estimation of the SV model is based upon an Efficient Importance
Sampling procedure. Applications of this test statistic to quarterly data for inflation in the

U.S. and Turkey fully support the validity of one-step-ahead SV forecasts of inflation.

The basic SV model assumes that volatility is just explained by its first order lag. In
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the last chapter of my dissertation (coauthored with Jean-Francois Richard) we show that
the difference between return and monthly moving average do granger-cause volatility. 35
S&P500 stock return applications from six different industries show that the difference para-
meter is both significant and addition of this variable to volatility equation affects both the
persistence parameter and the standard deviation of volatility. Persistence increases with
the inclusion of difference variable. Furthermore standard deviation of volatility decreases
which is the indication of Granger-Causality. Likelihood-ratio (LR) test results also prove

that the model improves when the difference variable is added.
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1.0 MODELLING INFLATION OF TURKEY: A COMPARISON OF
EGARCH AND STOCHASTIC VOLATILITY MODELS

1.1 INTRODUCTION

Financial econometricians have shown increasing interest in the study of volatility mod-
els during the last two decades. Many papers compare the performance of different volatility
models, and most concentrate on the estimation of phenomena such as stock returns, ex-
change rates, or interest rates. In this paper I compare the performance of EGARCH and
SV models on the estimation of inflation volatility, using the case of Turkey.

Turkey provides a case study that is well suited to a comparison of the performance of
EGARCH and SV models because the researcher can examine the Turkish economy’s long
horizon of high and variable inflation rates. Moreover, Turkey’s four major exchange rate
crises caused big jumps in the inflation rate. Within those events, a researcher can expect
to find several outliers in the data set that will affect estimation results. The comparison of
EGARCH and SV models on the inflation volatility of Turkey thus enables the researcher to
examine the robustness of both models against outliers.

Policymakers generally agree that inflation is detrimental to economic growth. Friedman
[17]states that inflation-uncertainty distorts relative prices and risks in nominal contracts.
As inflation volatility becomes more unpredictable, investment and economic growth slow
down. Because of such harmful effects, the estimating of inflation volatility is very important
to the creation and implementation of government economic policies.

The original ARCH work by Nobel Laureate Robert Engel [14] concentrated on the
estimation of inflation volatility in the United Kingdom. Researchers have also examined

inflation volatility in order to understand the relationship between inflation and inflation



uncertainty. Engel [15], Baillie et al. [3] and Berument and Dincer [5] all conducted notable
studies of inflation uncertainty. Moreover, most research on inflation volatility explores a
relationship between inflation and other economic phenomena such as labor market vari-
ables, output, or growth. For example, Rich and Tracy [34] examine the effect of inflation
volatility on labor contracts. Nonetheless, even among the many studies focused on inflation
uncertainty, research on the estimation of pure inflation volatility is limited. Thus, while
examining the comparative strengths of leading methods of modeling inflation, this paper

also offers a contribution to the literature on inflation volatility.

The key difference between the EGARCH and SV models is that the EGARCH model
presents volatility as a deterministic process while SV models volatility as a random process.
In the presence of outliers, EGARCH must adjust the coefficients to produce larger variances
while the SV model needs only to increase the variance of errors in the volatility equation.
Hence, it is easier for the SV model to deal with outliers. Even so, the estimation of
the stochastic volatility model is not straightforward because volatility enters the inflation
equation nonlinearly. It needs to be integrated from the likelihood function. This problem
can easily be solved by using highly developed integrating techniques. In this paper, I use
Efficient Importance Sampling, which was developed by Richard and Zhang [37]. T use two
different model specifications for both EGARCH and SV models in order to examine the
effects of outliers on estimation: a model with crisis dummies in the inflation equation as

well as a model without crisis dummies.

Research that compares EGARCH and SV models shows that results from the two models
in the absence of outliers are similar. In this paper, I investigate whether this similarity of
results remains true when outliers occur in the data set. Comparison of results for each
model under different specifications enables us to determine which model is more robust
against outliers. Results from EGARCH model with Generalized Error Distribution (GED)
of Nelson [33] indicates that there is a robustness problem for the EGARCH model when
outliers occur. Based on these results, I also estimate EGARCH by using Student-t for error
terms. Student-t distribution has fat tails, and fat tails provide greater flexibility in handling
outliers. For these reasons, I compare SV to EGARCH with Student-t distribution when

outliers are suspected. Although student-t distribution deals with outliers more successfully,



the results still suggest that SV is more robust against outliers than the EGARCH model.
I organize this paper as follows. Section II presents the insights of the data. Section III,

describes the EGARCH model. Section IV discusses estimation results for the EGARCH

model. Section V introduces the SV model. Section VI presents estimation results for the

SV model. Finally, Section VII concludes the discussion of the research for this paper.

1.2 INSIGHTS OF THE DATA

I use Turkey’s monthly CPI index for the period from February 1982 to August 2005.
The inflation series are obtained by using (n(cpi;/cpi;—1). Figure 1 in the Appendix B
presents the inflation series. The graph indicates that the data set suffers from a trend prob-
lem. T also test for seasonality before eliminating the trend component. I do this by regressing
the inflation series on its first order lag and 12 monthly dummies. Table 1 in Appendix B
represents the estimation results for the seasonality test. Estimation results indicate that
monthly dummies for January, May, June, July, September and October are significant at
the 1% level. These results are reasonable and reflect the Turkish government’s pattern of
policy-making. The government launches its economic program in January. Announcements
of agricultural sector prices are made in June and July. Finally, the government announces
increases in spending for education in September and October.

In order to eliminate both the trend component and the seasonality factor, I use the
following procedure. I let x = t/T so that x lies in (0,1) interval. The trend polynomial
phi(l)requires the properties of two extremums in (0,1) bound to capture an initial small
positive trend followed by a small negative trend, then a positive trend, and finally a negative
trend as well as a smooth landing for x = 1, which requires phi(l) = phi(l)/ = 0. One such
polynomial is the fifth degree detrending polynomial, phi(z) = a*(x—1)?+bx(x—1)3+cx(x—
1)*+dx(z—1)5. Therefore, in order to eliminate both the trend component and seasonality, T
regress the inflation series on twelve monthly dummies and (z—1)%, (z—1)3, (z—1)%, (x —1)5.
The estimation results are given in Table 2 in Appendix B. Figure 2 also represents the final
series after trend and seasonality are eliminated.

Four peak points remain in the data set: April 1984, December 1987, April 1994, and



March 2001. These peak points correspond to large increases in inflation caused by Turkey’s
four major exchange rate crises. In order to represent the effects of these peak points on
EGARCH and SV model estimation, two models; one with crisis dummies in inflation equa-
tion and on without crisis dummies will be estimated. As we shall see, EGARCH model
appears to be sensitive to these outliers when errors are assumed to be GED. On the other

hand, SV model is more robust against outliers.

1.3 EGARCH

1.3.1 The Model

The EGARCH model, proposed by Nelson [33], allows for asymmetry in the responsive-
ness of inflation to inflation shocks and does not impose any non-negativity constraints.

The basic EGARCH model is formulated as follows:

In(h) =w+ Y g () + Y _v;In(hey) (1.1)

=1 Jj=1

where

9(z) = Oz + || — E|2]] (1.2)

N

Zt =

In this model h; is the conditional variance and ¢; is the error term.

EGARCH models are commonly used in the literature to explain the volatility dynamics
of interest rates, stock returns and exchange rates. Some well known papers are Brunner
and Simon [9], Hu, Jiang and Tsoukalas [25] and Tse and Booth [42].

In this paper, in order to capture the effect outliers in the inflation series of Turkey, I use
two different formulations for the inflation equation. In the first model inflation is explained

by its first order lag.

Ty = Zamt,i + &4 (13)
i=1



where 7; is the inflation at time t and &; is the error term at time ¢,¢ : 1 — T. First-order
lag is chosen based on Akaike Information Criterion (AIC).
In the second model, inflation is explained by its first order lag and four crisis dummies

which is given by

T o= Y oimi+ MDUMMY1+ A DUMMY2+ \sDUMMY3 (1.4)
=1
+A4DUMMY4 + &

where DUMMY1 represents the dummy variable for the crisis in April 1984, DUMMY?2 is
the dummy variable for the crisis in December 1987, DUMMY3 is the dummy variable for
the crisis in April 1994, and DUMMY4 is the dummy variable for the crisis in March 2001.

I assume two different distributions for ¢;. Following Nelson [33], the first distribution is
a general error distribution (GED) with mean zero and variance h;?. Because there are four
outliers in the data set and fat tail distributions deal with the outliers more successfully, I
also use a Student-t distribution with 3 degrees of freedom.

The specific conditional version of Equation (1) for both models is given by

et

hi—2

et

ln(hg) = /80 + /81 ht—l

+ 0y + B3 Z:ll + ByIn(hi_,) (1.5)

In this specification 3, represents the persistence parameter. Furthermore, 35 is the
leverage parameter. If it is significant, its sign characterizes the asymmetry of the conditional

variance of inflation.

1.3.2 The Results

Two different sets of results are obtained for the EGARCH model. The first set rep-
resents the results under GED specification for the error term, ;. Table 3 in Appendix B
presents the results for EGARCH(2,1) model without crisis dummies under GED specifica-
tion. A second-order GARCH component and a first-order moving average ARCH term are
chosen based on ARCH-LM statistics.

The results show that the persistence parameter, (3,, is significant at the 1% significance

level and equal to 0.891. This indicates that volatility is highly persistent. Furthermore, the



leverage parameter, (35, is not significant, and this reflects the absence of asymmetry in the
conditional variance of inflation. All other volatility equation parameters except 3, are not

significant.

Table 4 in Appendix B represents the results for the EGARCH model with crisis dummies
under GED specification for ;. Results suggest that crisis dummies for April 1994, and
March 2001 are significant at the 1% significance level. On the other hand, estimation results
for volatility-equation parameters indicate a robustness problem for the EGARCH model
against outliers. The persistence parameter of the EGARCH model with crisis dummies
is negative and not significant. Furthermore, all other volatility equation parameters are
insignificant when crisis dummies are added to the model. Comparison of log-likelihood
values from both models (with and without crisis dummies) shows that adding crisis dummies

improves the model.

The second sets of results for EGARCH(2,1) model is obtained by assuming a Student-t
distribution with 3 degrees of freedom for the error term. Table 5 in Appendix B presents
the results for the model without crisis dummies. Based on the results, the persistence
parameter is equal to 0.888 and significant at the 1% significance level. Furthermore, the
leverage parameter, 33, is not significant. All other parameters except (3, are insignificant.
The log-likelihood value is larger than the log-likelihood value of EGARCH model without

crisis dummies under GED assumption.

Table 6 in Appendix B represents the results for the model with crisis dummies. Es-
timation results indicate that all crisis dummies, except March 2001, are significant at the
5%-significance level. Moreover, the persistence parameter increases to 0.908 when crisis
dummies are added to the model. However, [3; becomes insignificant when inflation is also
a function of crisis dummies. In terms of log-likelihood values, the model improves when
crisis dummies are added to the inflation equation. Because this distribution has fat tails
and deals with outliers more successfully, these results show that EGARCH is more robust

against outliers when we assume Student-t distribution for error term.



1.4 STOCHASTIC VOLATILITY

1.4.1 The Model

The SV model was first introduced by Taylor [40], [41]. It arises from the mixture-of-
distributions hypothesis in which it is assumed that the unobservable flow of price-relevant
information drives volatility. Stochastic Volatility models account for time-varying and per-
sistent volatility as well as for leptokurtosis in financial-return analysis. On the other hand,
efficient estimation is less straightforward because of the nonlinearity of the latent-volatility
process. The literature examines a variety of estimation procedures, including among others
the Generalized Method of Moments (GMM) by Melino and Turnball [32], Quasi Maximum
Likelihood (QML) by Harvey et al. [22], Markov Chain Monte Carlo (MCMC) by Jacquier
et al. [26].

The basic SV model is given by

A
o= e (3 (16)
A= 7+ 0N+

where 7 is return on day t : 1 — 7. The {&} and {n,} are mutually independent iid.
Gaussian random variables with mean zero and unit variances. {v,d, v} are parameters to
be estimated. ¢ is the persistence of the log volatility and if |§| < 1, we say that the returns
are strictly stationary. The v parameter is the standard deviation of the volatility shocks.
A second model for SV is also estimated by adding the crisis dummies into the inflation

equation. The model is given by

re = o DUMMY1+4 aoaDUMMY?2+ asDUMMY 3+ ayDUMMY 4 (1.7)

()
+exp E on

)‘t = 7 + 5)\15_1 + v,

where {ay, s, a3, ay} are coefficients of dummy variables.



In order to deal with the nonlinearity of the model and its serial dependence, I used the
Efficient Importance Sampling (hereafter EIS) procedure proposed by Richard and Zhang
[37]. The EIS procedure is a Monte Carlo (MC) technique used for the evaluation of high-
dimensional integrals. It relies upon a sequence of low-dimensional regressions to construct
an auxiliary MC sampler, which produces highly accurate MC estimates of the likelihood.

I programmed the same procedure that Liesenfeld and Richard [31] used to estimate the
SV model for daily data of IBM stock prices, S&P 500 price indexes, and the exchange rate
for the US Dollar and the Deutsche Mark. The procedure is summarized below.

Let r,t: 1 — T is an n-dimensional vector of observable random variables and \; is
a g-dimensional vector of latent variables. The ML procedure is based on the marginalized

likelihood function
L(@;R):/f(R,A;G)dA (1.8)

where R = {r;}_, , A = {\}, and 0 is an unknown parameter vector. Equation (8) can

be factorized as follows
T
L(O;R) = /Hf(rt, M | Ay_1, Ri_y, 0)dA (1.9)
=1

where R, = {r;}L_; and A, = {\;}L_; .The model implicitly assumes that r;, is independent
of A;_; conditional on (A, R;—1) with a density of g(r; | A\, Ri—1,6) and that \; has the

conditional density of p(A\; | Ay_1, Ri—1,0). Whence, the likelihood can be written as

T
L(0: R) /Hg(m A Bt 0pOh | Ap s Re s, 0)dA (1.10)
t=1

The EIS procedure constructs a sequence of samplers that exploits the sample infor-
mation on the \;s as conveyed by ris. Let, {m()\; | Ar—1,a;)} denotes such a sequence of
auxiliary samplers indexed by the auxiliary parameters A = {a;}1, . Let {X:)(at) T | de-
notes a trajectory drawn from the sequence of auxiliary samplers. Let a1y = {as}'_]. The
corresponding MC estimate of the likelihood can be written as

. ~() ~(0)

T . 1 flre, A (ar) | At—la(tfl)aRt—lae)
Ly(0; R, A) = Nz 1T O NG (1.11)
=1 m(A, (ar) | At—la(t—l)ﬂt)




Obviously if TI;m(N\, | Ay_1,a;) were proportional to II,f(ry, Ay | Ay_1, Ri—1,6) then
the MC sampling variance would be equal to zero. More generally, EIS constructs den-
sity kernels k(A ay) for m(A; | Ay_1,a;) which are global approximation for f(r;, A; |
Ay 1, Ri1,0).x(Ai_1, a;). The relationship between m and k is given by

k(A aq
m(A | At_l,at)—ﬁ
where x(Ay_1,a;) = /k(/\t;at)d)\t

(1.12)

Since y(A;_1;a;) does not depend on ) , the EIS problem turns into that of solving a

simple back-recursive sequence of low-dimensional least-square problems of the form

. & ~E) ()
a(0) = argminy {In[f(r;, A, (0) | A1(0) Rior,6) (1.13)
=1

AR (0); e (0))] — o — Ink(R, (8); )

for t : 1 — T, with x(Ar;a,1) = 1. The ¢,s are unknown log-proportionality constants
to be estimated jointly with a}s. EIS likelihood estimates are then obtained by replacing
{a;}L,in equation 10 with {cALt(G)}thl. A small number of EIS iterations are needed to obtain
maximally efficient importance samplers only. Typically, Common Random Samplers(CRN)
technique is used to provide the convergence to the fixed auxiliary parameter glt.

Finally, the estimates of 6 are obtained by maximizing Equation (11) with respect to 6.
The use of CRN technique also ensures the smoothness of the MC functional approximation
in Equation (10).

Under our assumptions, the conditional density of r, and \; are given by

glry | A, 0) xxexp {—% [rtz exp(—X\;) + )\t] } (1.14)

1
p(Ae | Ai1,0) o< exp {—W (Ao —7— 5)\15—1)2}

The next step is to parametrize the density kernel. Liesenfeld and Richard [31] suggests

the following parametrization

k(A ar) = p(Ae | Ai—1, 0)C( A, ar) (1.15)



where ((\;,a;) is also a Gaussian density kernel. This specification offers the advantage
that it eliminates p from the EIS auxiliary regressions. Since g only depends on ); , an

appropriate choice for ¢ is given by ((\, a;) = exp(a; A + az A7).Whence, k is given by

1 (v +6 1)\’ o .V
P R S T e

1
+ (ﬁ — 2&2775) )\f]}

The conditional mean and variance of \; on m are given by

+ al,t) )\t (]_]_6)

+ O
e = o (% +a17t> (1.17)
2
o} = ——
1 —2v2ay,

1.4.2 The Results

Table 7 in Appendix B presents the results for SV model without crisis dummies based
on EIS.

Asymptotic errors are obtained from a numerical approximation to the Hessian and MC
standard errors are computed from 10 ML-EIS estimations conducted under different sets
of CRNs. These MC standard errors measure the numerical accuracy of the coefficient esti-
mates, and the MC standard errors indicate that our results are numerically very accurate.
The persistence parameter 0 is highly significant and equal to 0.816.

For the second SV model with crisis dummies, Table 8 in Appendix B represents the
estimation results.

The estimation results for volatility equation parameters are very similar to estimation
results from the first model. The persistence parameter is a little higher than the persistence
parameter of the first estimation and equal to 0.853. Moreover, the standard deviation of
volatility decreases when dummy variables are added to the inflation equation. All crisis-
dummy parameters are significant except the crisis dummies for March 2001. Finally, de-
creases in the log-likelihood value indicate that the model is improved when dummy variables
are added to estimation. Moreover, the log-likelihood values are larger than log-likelihood

values for all EGARCH models and the SV model without crisis dummies.
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Filtering enables us to compute a sequence of standardized residuals . By checking the
distributional properties of the standardized residuals, we can check whether our model is

correctly specified. The standardized residuals are of the form:

2 =[re— E(ry | R_))|Var(ry | Ri_i) "2 (1.18)

For our basic SV model, the mean and standard deviation of r; conditional on R;_; are
zero and Elexp(\;) | Ri_1]~'/? , respectively. The model is correctly specified if z; has zero
mean and unit variance and is uncorrelated in the first and second order moments.

Furthermore, to check for the distributional properties of r;, I applied an approach used
by Liesenfeld and Richard [31]. This approach requires computing u; = Pr(r; < ;| Ri_1)
in which r; is the actual observed return. If the model is correctly specified, u; is a serially
independent random variable and follows a uniform distribution on [0,1]. Thus, we can
map u; into a standard normal distribution by using the inverse of the standard normal

distribution function. Therefore, we have
2= Fyt (uy) (1.19)

Correct specification requires z; to be serially independent standardized normal random
variables.

Table 9 in Appendix B represents the results for the diagnostic checks.

According to the Kolmogorov-Smirnov statistic, we cannot reject the null hypothesis
of normality. Furthermore, because the kurtosis of the z; is not considerably higher than
3, which is the benchmark for normality, normality cannot be rejected. From the Ljung-
Box statistics for the squared residuals including 30 lags, we can conclude that the model
successfully accounts for the autocorrelation in the inflation series. On the other hand,
the Ljung-Box statistics for the residuals implies the need for including an autoregressive
component in the return function of the SV model. All in all, these results suggest in general
that the SV model accounts for the distributional properties of the inflation series.

A further analysis can be performed by comparing filtered volatility graphs of EGARCH
and SV models under the two different settings. Filtered volatility is the mean of volatility

computed by using information available on inflation up to time t-1. Figures 3, 4 and
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5 represent the filtered volatility graphs of respectively the EGARCH model with GED,
student-t distribution assumptions for error term, and the SV models when no crisis dummies
exist in the inflation equation. In contrast, Figures 6, 7 and 8 show the volatility graphs
for EGARCH and SV models respectively when dummy variables are added to the inflation
equation. Filtered volatility graphs for both the EGARCH model under different error-term
distributions and the SV model are similar for the model without dummies. Volatility during
the April 1994 crisis has a stronger peak in the EGARCH model. For the model with crisis
dummies, the filtered volatility graphs for the EGARCH model with Student-t distribution
and the SV model are almost the same. On the other hand, the filtered volatility graph for
the EGARCH model with the GED assumption represents the robustness problem against

outliers.

1.5 CONCLUSION

This paper represents research results from a comparison of EGARCH and SV models
for Turkey’s inflation volatility. We use different error-term specifications for the EGARCH
model of inflation volatility. Overall results suggest that the SV model is more robust than
EGARCH models against outliers, which are the crisis dummies.

The main findings of the paper are as follows.

First, inflation data for Turkey suffers from trend and monthly-seasonality problems.

Second, after these problems are eliminated, the results of EGARCH estimation without
exchange-market crisis dummies under error-term distribution assumptions are quite similar.
In terms of SV model results, persistence is smaller than EGARCH models.

Third, when dummies are included in the model, EGARCH results under GED specifi-
cation indicate a robustness problem against outliers. Furthermore, under Student-t distrib-
ution for error-terms, the robustness problem still remains because ; becomes insignificant
when dummy variables are added.

Fourth, when we use the SV model with crisis dummies, persistence increases and stan-
dard deviation of volatility decreases. The volatility constant remains almost the same.

Therefore, the SV model is more robust than both EGARCH specifications. Furthermore,
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log-likelihood values indicate that the SV model with crisis dummies is better than all other
model specifications.

Finally, when the distributional properties of filtered values from the SV model are
examined, the results show that the model successfully accounts for the serial correlation in
the volatility of inflation and that inclusion of an autoregressive component in the return
function might be needed.

The comparison of the estimation results from two models, EGARCH and SV, under
two different settings clearly indicates that SV is more robust than EGARCH. With or
without dummy variables, SV has a higher log-likelihood value than EGARCH. Furthermore,

persistence parameter estimates are more plausible under SV model than EGARCH models.
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2.0 FORECASTING INFLATION VOLATILITY: A STOCHASTIC
VOLATILITY APPROACH

2.1 INTRODUCTION

As highlighted by the recent instability of world financial markets, volatility is a fun-
damental component of asset allocation. Specifically, investors need carefully to assess rates
of return and volatility when making financial decisions. Much research in financial econo-
metrics focuses on understanding the relationship between volatility or risk and return while
often emphasizing volatility estimation. However, sound investment decisions require more
than estimation. Investors also must analyze whether estimated relationships remain con-
stant over time or instead change their dynamics. In spite of the growing need for such
analysis, research into the forecasting of volatility, which is the primary focus of this paper,
lags well behind many other topics that have a less direct bearing on investors’ portfolios.

In general, most studies of volatility focus on first modeling and then forecasting its effects
on specific economic phenomena, such as stock returns, exchange rates, etc. Researchers use
a number of different approaches and methods in volatility modeling. The class of models
known as Autoregressive Conditional Heteroscedastic (ARCH) models, invented by Nobel
Laureate Robert Engel [15], remains the most widely used. The ARCH model characterizes
the distribution of stochastic errors that are conditional on the realized values of a set of
variables. Because this model can create problems in the higher order of the polynomials,
researchers developed different extensions to the ARCH model. The Generalized ARCH
(GARCH) model, which was developed by Bollerslev [8] and Taylor [40], defines volatility as
a combination of polynomials in auto-correlated errors and polynomials in moving average

term. This definition of the volatility structure resolves the shortcoming of the original
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ARCH model in higher order polynomials. However, empirical analysis demonstrates that
these models still possess shortcomings. The continued manifestation of such shortcomings
motivated researchers to develop other extensions for the ARCH models. As one example,
both ARCH and GARCH models assume that there is symmetry between the effects of
positive and negative shocks to the return on volatility. However, in practice, this symmetry
is violated because negative shocks have a greater effect than positive shocks. Noting this
anomaly, several researchers tried to overcome it by allowing a leverage effect in the GARCH
model, an effect which implies that volatility reacts asymmetrically to the negativity and
positivity of the shocks. Among several extensions of GARCH models that allow asymmetry,
the Exponential GARCH (EGARCH) model introduced by Nelson [33] is the most famous

and widely used.

In addition to the ARCH family, an analyst can turn to several other tools for the mod-
eling of volatility, including models of Implied Volatility, Historical Volatility and Stochastic
Volatility. This paper examines the Stochastic Volatility Model, which Taylor [40], [41] first
introduced. Researchers have given it attention in recent years because of its flexibility in

modeling volatility.

The flexibility of the SV model finds most of its expression in the model’s allowance for
noise in the volatility function. The model does not force the innovations to have fat tails, in
other words, to have more outliers, or require volatility persistence to be close to the value 1
in order to allow simultaneous occurrences of both high kurtosis and small autocorrelation.
The existence of these additional error terms in the volatility equation permits the SV Model

to be more flexible than ARCH family models.

Nonetheless, the estimation of the SV model is not a straightforward calculation. Be-
cause of the nonlinearity of latent or unobservable variables in the SV model, an estimation
problem arises. In turn, that problem results in a likelihood function that depends upon
high-dimensional integrals which I cannot evaluate with straightforward mathematical tools.
Researchers use different methods to overcome this problem such as Generalized Method of
Moments (GMM), the Quasi-Maximum Likelihood (QML) and the Markov Chain Monte
Carlo (MCMC). My research employs the Maximum Likelihood (ML) based on Efficient
Importance Sampling (EIS) by Richard and Zhang [37]. The EIS has numerous attractive
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features. One of its most important features is success in producing highly accurate Monte
Carlo (MC) estimates. Furthermore, because it is used to evaluate the likelihood function
itself, it can also be used for a full range of likelihood-based inference techniques, such as
estimation, testing and Bayesian inference. Equally important, since its basic structure does
not depend upon a specific model, changes in the model can be easily accommodated by
minor changes in the algorithm. These characteristics of EIS make it attractive for the SV

analysis.

The main goal of this paper is to forecast volatility, not to model it. As noted earlier,
researchers use several different methods to estimate and forecast volatility, and numerous
papers compare the performance in estimating and forecasting volatility among many types
of models. When comparing forecasting accuracy, the main focus has been on ARCH and
Implied Volatility models. Akgiray [1] states that forecasts based on the GARCH model are
superior. Yet his conclusion appears to be outweighed by the greater number of research
findings that favor the Implied Volatility model, as, for example, Day and Lewis [12] and
Fleming [16]. I use the SV model based on EIS because of the flexibility and numerical
accuracy of the method and the indication of its success in forecasting volatility as reported
by several investigators. Bluhm and Yu [7] argue that SV should be used to forecast volatility
of option prices. Furthermore, Hol and Koopman [24] state that the SV model outperforms
the GARCH model when there is an absence of intraday volatility information. However, the
amount of research supporting these assertions is limited. Although several commentators
state that SV performs better than other volatility models, it remains difficult to conclude
that the SV model provides the most accurate forecasts due to the limited amount of work

on forecasting based on the SV model.

Application of the tool to real world data and the accuracy of the results are important
parts of volatility research. The model gains its importance due to its success in application.
Most research that came from the application of the SV and ARCH models focused on
the forecasting of volatility of stock prices, currency exchange rates and other valuations of
investments. Engel provided the original ARCH Model to equip analysts with a tool for
measuring the dynamics of inflation. While preparing to investigate the performance of the

SV model, I noted a dearth of work on inflation volatility. To address this issue, when seeking
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to test the model, I decided to direct my work to the forecasting of inflation volatility as a

way of also widening the window of research on this important topic.

Most published research about forecasting inflation volatility investigates the relationship
of the volatility to other economic phenomena, such as labor market variables and forecast
outputs, as can be seen in the work of Giordani and Soderlind [21] and Rich and Tracy [34].
My work develops a discussion around the value of this analytical tool in forecasting the
core phenomenon of inflation. Thus I focused research for this discussion on the value of the
SV function as a tool that warrants attention for its success in forecasting the volatility of
inflation. Although the primary emphasis of this paper rests upon the value of the SV Model
based on EIS as a tool for forecasting inflation volatility, the search for a tool to validate the
forecasting method drew my attention to the limited availability of such tools in the case of

inflation.

In general, when assessing forecasting performances, researchers use Root Mean Squared
Error (RMSE) or other similar measures, which work relatively well when applied to high-
frequency data such as stock returns. The RMSE is defined as the distance of a data point
from the fitted line, which, in this case, is the distance of realized volatility from the forecasted
volatility point. The need for a realized volatility arises because volatility is not observable.
Moreover, while unobservable, volatility can only be calculated for high-frequency data sets.
Further complicating this analysis, points of measurement for inflation occur at a very low
frequency — once a month as compared to several times a minute or thousands of times a
month in the case of prices for transactions in financial markets. Therefore it is not possible
to calculate a measure of realized volatility for inflation. This limitation represented a
significant problem for assessing the validity of the forecasting method. Therefore, I proposed
another method based on the empirical distribution of forecasted errors, extending earlier

contributions by Liesenfeld and Richard [31], [30].

This paper is an empirical analysis of the SV model based on EIS when used for forecast-
ing inflation volatility. The analysis uses a new tool for assessing the validity of the method
for forecasting volatility and owes a special debt of gratitude to the work of Liesenfeld and
Richard [31], [30]. The remainder of the paper is organized as follows. In Section II, T present
the SV model and EIS method. In Section III, I explain the one-step ahead forecasting pro-
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cedure. Then, I talk about U.S. data and results and Turkish data and results in Section IV

and V, respectively. Finally, in Section VI, I offer a conclusion.

2.1.1 Stochastic Volatility and EIS

The basic SV model by Taylor [40], [41] is given by

re = exp(A/2)e (2.1)

A= 7+ 0N+

where 7 is the return on day ¢t : 1 — T. (7, d,v) are the parameters to be estimated and
the processes {¢;} and {7,} are mutually independent iid Gaussian random variables with
zero means and unit variances. The unobserved log volatility A; follows an AR(1) process
with the unobservable persistence parameter 6. If |§| < 1, the returns are strictly stationary.
Finally, the standard deviation of volatility shocks is measured by v > 0.

In order to evaluate the likelihood associated with the returns, I need to integrate out
the latent variable {\;} from the joint density of the observed and latent variables. The )\,
latent variables are serially dependent and enter the model nonlinearly. Therefore, standard
numerical integration techniques are not applicable to this high dimensional non-Gaussian
integration problem. To overcome this problem, different methods are used in the literature,
including, for example, the "Generalized Method of Moments" (GMM) by Melino and Turn-
bull [32], the "Quasi-Maximum Likelihood" (QML) by Harvey et al [22], "Markov Chain
Monte Carlo" (MCMC) by Jacquier at al [26] and Kim et al [28].

In this paper, I use EIS to evaluate the likelihood function itself which is then used for
inference and forecasting. The EIS procedure is a Monte Carlo (MC) technique which is used
for efficient evaluation of high-dimensional integrals. See Richard and Zhang [37] for details.
The procedure basically relies upon a sequence of low-dimensional regressions to construct
an auxiliary MC sampler which produces highly accurate MC estimates of the likelihood.

The procedure is summarized below.
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Let 7, denote an n-dimensional vector of observable random variables and let A; denote
a g-dimensional vector of latent variables, ¢t : 1 — T. The ML procedure is based on the

marginalized likelihood function
L(0: R) = / F(R, A; 0)dA (2.2)

where R = {r;}_, , A = {\}, and 0 is an unknown parameter vector. Equation (21) can

be factorized as follows
T
L(0: R) / T10 A | Avv, R, 0)dA (2.3)
=1

where R, = {r,}._; and A; = {\.}._, .The joint density of A, 7¢|A;_1, R;_1 is then factorized
into the product of the density of r;|A;, R;_1 and that of \;|A;_1, R;_1. It is then assumed

that 7, is independent of A, ; given (), R;_1). Whence, the likelihood can be written as

T
L(O;R) = /Hg(rt | Ay Ri—1, 0)p(Ns | Ay—y, Ry_y, 0)dA (2.4)
t=1

The EIS procedure constructs a sequence of samplers that exploits the sample information
on the \;s as conveyed by rjs. Let, {m()\; | A;_1,a;)} denotes such a sequence of auxiliary
samplers indexed by the auxiliary parameters A = {a;}L_, . Here, a; is implicitly a function
of (6, R). While R is fixed, a new value of a; will have to be computed for each 6 . Let
{Aii)}tT:l denote a trajectory drawn from a particular sequence of auxiliary samplers. The

corresponding MC estimate of the likelihood can be written as

~(

DA R
L (9 RA) Z Hf rt; t | i(sz)a t—1, ) (25)

m( | A ay)

Obviously if TIym(A; | Ay_1,a;) were proportional to I, f(ry, Ay | Ay_1, Ri—1,0) then the
MC sampling variance of IT;V would be equal to zero. More generally, f(ry, \i|Ay_1, Ri_1,0)
is a function of A; whose integral w.r.t. A; is unknown. Hence I can not expect it to be
approximated by a density my (M| Ai—1, ar).

EIS approximations are based upon density kernels rather than densities. Let k;(\;; a;)

denote such a kernel for m;(A;|A;_1, a;). The relationship between k; and m; is given by
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kt()\t;at)
my(Ae|Ai_1, a = — 2.6
t( t| t—1 t) Xt(At—laat> ( )

where Xt (Atfl, at) = / kt()\ta at)d)\t

Kernels are to be selected in a such a way that y, has a known analytical expression.
Note that x; (Ao, a1) = x;(a1).Because x(A;_1; a;) does not depend on \; it can be transferred

back into the ¢t — 1 integral. Hence Equation (24) is rewritten as

. ~()

~ (%) ~
~ 1 A A R, 0) X (AD)
Ln(8; R, A) = xy(a1).~ Z Hf(rt e Ay i(ll) ) Xep1 (A7, ari1) (2.7)
N t=1 kt(/\t ;CLt)

The EIS problem becomes a matter of solving a simple back-recursive sequence of low-
dimensional least-square problems of the form

. =l ~(0)  ~ ()
ag = argn(llinZ{ln[f(rt,)\t | A,_1, Ri1,0) (2.8)
i=1

NAOIP ~(@
Xes1(Ae 5 01)] — e — Ink(A, SCLt)}2

fort : 1 — T, with x(Ar;ary1) = 1. The ;s are unknown log-proportionality constants
to be estimated jointly with a;s. EIS likelihood estimates are then obtained by replacing

AN
{a;}]_,in Equation (5) with {a;(#)}7,. Since {A(’)} themselves are draws from the EIS

samplers, EIS fixed iterations are needed to obtain m;_xlimally efficient importance samplers.
See Richard and Zhang [37] for details. Common Random Samplers(CRN) are used to
smooth the convergence to the fixed auxiliary parameter a;.

Finally, the estimates of 6 are obtained by maximizing Equation (26) with respect to 6.
The use of CRN technique also ensures the smoothness of the MC functional approximation

in Equation (26). Next, I discuss the application of EIS to the SV model as defined in
Equation (20).
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Under our assumptions, the conditional density of r; and \; are given by

g(re| A, 0) o< exp {—% [Tf exp(—A) + /\t} } , (2.9)

1
PN A_1,0) x exp {—ﬁ (N —ry — 5)\t_1)2} :

respectively. The next step is to parametrize the density kernel. Since the class of Gaussian
densities is closed under multiplication, Liesenfeld and Richard [31] suggests the following
parameterization

k(A ar) = p(A | M1, 0)C( Mg,y ay) (2.10)

where ((\;,a;) is also a Gaussian density kernel. This specification offers the advantage
that it eliminates p from the EIS auxiliary regressions. Since g only depends on )\; , an

appropriate choice for ¢ is given by ¢(\;, a;) = exp(ai A — ag A7) Hence,

1 A1)’ SAi—
]ﬂ(At, at) XX exp{—i[(u> -2 (L;l + al,t) )\t (211)

14 v

1
+ (ﬁ — 2a2,t) A}

The conditional mean and variance of A, on m are given by

+ O

My = O'? (% + al,t) (212)

2

9 v
= 2.13
ot 1 —212a9, ( )

and Yy, is given by
2 2
p (v +6M-1)

X()\tfl, at) X exp {27‘1;2 — T (214)
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2.1.2 One Step Ahead Forecasting Method

The forecasting procedure I use in this paper is based on the idea of filtering, whereby
forecasts for period ¢t + 1 are based on observations from 1 to t. Hence I start estimation
with a fixed number of observations and then increase the number of observations by one at
a time. Because the EIS procedure runs backward, the model needs to be fully re-estimated
each time new observations are added. Reruns of EIS under added dimensions are very fast
because I use the previously computed EIS sampler as an initial sampler and augment it by
initial samplers for the added dimensions. The forecasts which are calculated in the previous
steps provide these initial samplers for the added dimensions.

The forecasting algorithm starts with the estimation of inflation by an AR(1) process
given by
T =+ Bri_1 + & (2.15)

where m; is the inflation at time ¢. The corresponding OLS residuals ;s ,which are cen-

tered around their sample mean, are then standardized in order to produce stationary series

ry = (%) 5 (2.16)

where o is the estimated standard deviation of &;s.

(assuming |f| < 1)

After the model is estimated, the forecasts for the volatility are given by

N =7+ 0N_1 +7m, (2.17)

Because volatility is an unobservable process, I use the latent variables produced by the
EIS procedure as an approximation of the filtered distribution of volatility at time ¢ — 1.
Using the same CRN as in the estimation procedure allows the analyst to compute a set of
volatility forecasts, which provide a distribution for volatility at time t. Because the returns
are products of the error terms by volatility, it is possible to construct a forecast of r; as

follows

7 = exp(\/2)er, (2.18)

using standardized Gaussian draws for ¢;.
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Each time an observation is added the procedure starts over by reestimating the AR(1)
process and the &;s.
Because the volatility cannot be observed, an evaluation of the forecasting performance

requires special care. To address this limitation, I devised a new method for checking the

—

validity of forecasts. This approach requires computing ; = F(rt\rt_l,g), t:1 —-— T
where /6 denotes the forecasted distribution function and 7T, the initial forecasting period.
If the forecasts are correctly distributed, the u}s follow a uniform distribution which implies
a linear graph for their cumulative distribution.

Furthermore, I can compute the u, by using the probability that forecasted return is

lower than observed return. Conditionally on \;, this probability is given by:

. i\ N
w = Pr(ry <rdM, Ri_1,0) =Pr (exp (Et) € < Tt|/\t,0) (2.19)

= O (rt exp (—%) |)\t,/9\)

where r; denotes forecasted return for ¢t : T, — T° and ® is the cumulative distribution of

the standardized normal. Then I have:

o~ ~ ~ A ~
U = PI'(?"t < rt\Rt,l,H) = /q) (T’t exXp (_Et) ‘)\t> f()\t|)\t71;9) (220)

FvaYior, 0)dAd Ay

1 %
t
N;(I) <’f’t exp (—7)>

This probability gives us another representation for the u terms. Therefore, if the fore-

12

casts are valid the graph should be uniform again.

In order to provide a formal test of forecast validity, I compute the Kolmogorov-Smirnov
statistic (KS) for the {ﬁt}tT:TO relative to the uniform distribution and rely upon Monte
Carlo simulation to calibrate it. Specifically, I create 200 hundred fictitious data sets for
each application based on the estimated coefficients for the whole sample. The fictitious

data sets are simulated according to the Equation (20). The calibration process requires
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computing the Kolmogorov-Smirnov statistics of the fictitious data sets. The procedure
follows as:

1) I rerun the estimation and forecasting procedure for each data set.

2) I compute {f[t}tT:TO for each estimation.

3) I calculate the Kolmogorov-Smirnov statistics for {@};‘F:TO for each of the 200
fictitious data set and find the 5% critical value.

4) 1T compare the Kolmogorov-Smirnov statistic of my application and the critical
value.

If my forecasts are valid, the Kolmogorov-Smirnov statistic of the application should

be lower than the critical value (with probability 0.95).

2.2 U.S. INFLATION

2.2.1 Data

I use two different data sets to test the model. The first one is the U.S. inflation for the
period January 1914-December 2006. Figure 8 in the Appendix C represents the graph of
the U.S. inflation series. The data shows no apparent trend but the return for the current
period is clearly highly correlated to the prior period’s return. Autocorrelation is eliminated
by the AR(1) estimation described above. Figure 9 in the Appendix C presents the graph

of the corresponding &}s .

2.2.2 Results

In total, there are 1,115 data points for the U.S. inflation series. For the analysis, I
have divided this data set into two segments. I use the first 799 points for the estimation
of the volatility. Then I use the remaining 316 data points for filtered forecasts (Ty =
800, 7" = 1115). Table 10 in the Appendix C presents the results for the first estimation.
Asymptotic errors are obtained from a numerical approximation to the Hessian and MC
standard errors are computed from 10 ML-EIS estimations conducted under different sets

of CRNs. These MC standard errors measure the numerical accuracy of the coefficient
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estimates and indicates that our results are numerically very accurate. The results show
that the persistence parameter ¢ is very close to 1, which implies that volatility is highly
persistent. Table 11 in Appendix C represents the results with 1,114 data points. The result
for the persistence ¢ is similar to the first persistence parameter. This second result, using
1,114 data points, also indicates high persistence. Note that, when the number of data points
increases, the volatility intercept v becomes smaller and the variance v? becomes higher. The

volatility in the graph is measured by the following formula;

E |:e)\t:| — eE()\t)“r%l/Q (221)

This function equals 16.48 for the first half of the data set. It equals 0.85 for the second
half. These results are consistent with the shape of the inflation series in the graph.

As mentioned above, if the forecasting procedure is valid, one would expect the graph
of ]*{(E) to be linear. Figure 10 in Appendix C represents the graph for {Et}tT:TO which are
computed according to Equation (39). This graph shows that SV model based on EIS is
successful in out-of-sample forecasting of U.S. inflation volatility.

For the validity test based on the KS statistics, the critical value is equal to 0.113. The

KS statistic for the application is 0.065 which is obviously smaller than the critical value.

2.3 TURKISH INFLATION

2.3.1 Data

I use the inflation series for Turkey between February 1982 and August 2005 for my
second application. Figure 11 in Appendix C graphs the series. The shape of the graph
indicates that the inflation series suffers from a trend problem. To eliminate the trend, I use

the following approach. I assume a 4th order polynomial function for the trend component

T = a+ Br + er® + 62 +ext + g (2.22)
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where z = % Because I do not want to extrapolate the trend beyond ¢ = T, I impose the
condition that the trend and its derivative are zero at = 1. The corresponding restrictions

are given by

at+fB+o+d+e = 0 (2.23)

B+20+30+4 = 0

I use these restrictions to eliminate a and /3 in Equation (42), which is then rewritten as

m=p[@*=1)=2@-1)]+6[(2°-1)=3@x—-1)] +e[(z* 1) —4(z - 1)] +& (2.24)

Next, I estimate this equation and subtract the estimated values for 7; from the actual
values in order to obtain a detrended inflation series. Figure 12 in Appendix C shows the
graph for the series after detrending.

The second step is to check for seasonality in the data set. I achieve this by regressing
inflation on its first-order lag and 12 monthly dummies. Table 12 in Appendix C presents
the results for this estimation. Monthly dummies for January, April, June, July, September
and October are significant at the 5% significance level based on the p-values. These results
are reasonable and reflect the pattern of government economic policymaking, which affects
prices. The Turkish government launches its economic program in January, agricultural
sector prices start to be announced during June and July and educational spending increases
in September and October.

In order to eliminate seasonality, I regressed the series on these six monthly dummies
and obtained the error terms from this regression. I checked whether this method succeeded
in eliminating seasonality by regressing the seasonally adjusted inflation series on its first
order lag and 12 monthly dummies. Table 13 in Appendix C presents the results, which
indicate that seasonality is eliminated. The graph of the seasonally adjusted inflation series
is presented in Figure 13 in Appendix C. There remain four peak points in this graph; April
1984, December 1987, April 1994 and March 2001. These spikes correspond to large increases
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in inflation caused by major exchange rate crises in Turkey. I used the following procedure
to eliminate these peak points.
I introduce a dummy variable d; for each peak points i (i = 1,2,3,4) and construct the

following auxiliary regression:

yi =y —d; (2.25)
yi = a+By—1+e

Y1 = a+ By, +em

I rewrite Equation (44) as

(ye — o+ By +di)* = & (2.26)

(Y1 —a+ By — di)) = 5§+1

Given (o, 3), I minimize the sum of ¢ and ¢7,, with respect to d;. The corresponding

estimate of d; is given by

1
L7

Since d; depends on (a, 3), I implement the following fixed point procedure: Given d;,

(e — a = Byt — Byrr + Bo+ Byy] (2.27)

i

compute y;; then regress y; on y,_1 to obtain (a,B) and compute a new value for d;. I
iterate this procedure until convergence. In the present case, two iterations suffice to achieve
convergence.

Finally, the adjusted inflation series for Turkey suffers from the same autocorrelation
problem as the U.S. inflation series. I eliminate the autocorrelation in the series by AR(1)
estimation in the forecasting procedure. Figure 14 in Appendix C represents the graph of

the final &, for the Turkish data series.

27



2.3.2 Results

I first estimate the model by using the first 199 data points. Table 14 in Appendix C
represents the results for this estimation. The estimation results for the Turkish data set
are noticeably different from the results for the U.S. data set. The persistence parameter is
lower, the volatility intercept 7 is negative and the volatility variance v? is higher. Table
15 in Appendix C presents the results with 281 data points. The persistence parameter 0 is
higher than the persistence parameter with 199 data points. Also, the constant parameter
and the variance of the volatility are smaller. I can explain the estimation results by the
increased stability of Turkish economy in recent years. The exchange rate crises from which
Turkey suffered in the past caused Turkey’s economy to be unstable, and this condition is
evident in the inflation data. Since 2001 and the change in government, Turkey’s economy
became more stable with lower rates of unemployment and inflation. These changes in the

Turkish economy are reflected in my results.

The estimation has two explicit results: when observations are added one at-the-time
the persistence parameter ¢ increases while both the volatility intercept v and the volatility
variance 2 decreases. Forecasting results also reflect the varying stability of the Turkish
economy. Figure 15 in Appendix C represents the graph for ;s which are computed accord-
ing to Equation (39). It is less linear than that for the U.S. case. Nevertheless, the figure
implies that out-of-sample forecasting by the SV model based on the EIS is successful.

The critical value of the KS statistic is equal to 0.234. The KS statistic for the application

is 0.126 which is obviously much smaller than the critical value.

Furthermore, in order to investigate the power of KS-test I simulate return series with fat
tails by using the filtered volatilities for Turkey. Before starting to simulate the data series
I first of all recover the filtered volatilities of whole data set for Turkey. Then I simulate
error terms of return equation by using Student-t distribution with 3,6 and 9 degrees of
freedoms. Finally when we combine the filtered volatility series and error terms based on SV
model formula, this provides new return series which has the same first and second moment
with inflation series of Turkey but with fat tails. Next, I run the estimation and forecasting

procedure for the simulated series and calculate the KS-statistics. If KS-test is a powerful
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tool for measuring the forecasting validity, we expect that the cumulative distribution graph
for simulated series should mostly deviate from a straight line at both ends and also KS-
statistics should be greater than KS-critical value. Furthermore, in order to calculate the
probability of rejection, we create 200 different fat-tailed series for each degrees of freedom
and apply this procedure for each one. Figure 16 in Appendix C represents the cumulative
distribution for first fatter tailed series with 3 degrees of freedom. The graph deviates from
a straight line at both ends as we expect. Moreover, the KS-statistics for the same series is
equal to 0.256 which is greater than KS-critical value of 0.234. The probability of rejection for
KS-test for 3, 6 and 9 degrees of freedom are 0.91, 0.80 and 0.67, respectively. Since fat-tails
start to disappear and Student-t distribution converges to normal distribution when degrees
of freedom increases, one shall expect the probability of ejection decrease when the degrees
of freedom increases. Results reflect this expectation. Therefore, KS-test is a powerful tool

for measuring the forecasting validity.

2.3.3 Conclusion

This paper presents research focused on forecasting inflation volatility by using the
standard Stochastic Volatility model based on Efficient Importance Sampling. The main
purpose of this paper is to evaluate the validity of the SV model for forecasting inflation
volatility. Because inflation data is not a high frequency data set, it is not possible to
calculate the realized volatility for inflation. Therefore I cannot compute a mean square
error measure for inflation volatility. This paper represents an alternative procedure based

on the forecasted error structure of the returns.

I used inflation data sets for the United States and Turkey to evaluate empirically the
performance of the method. I summarize the contribution of this paper under three headings.
First of all, this work validates the SV model as a tool for forecasting inflation volatility.
Second, although inflation dynamics were the main concern of Engel’s Nobel Prize-winning
research, the actual use of volatility models to forecast inflation has captured very little
attention among econometric researchers. This paper aims at filling this gap. Finally, I

develop a validation procedure for volatility forecasting applied to low-frequency data sets,
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as an extension of work by Richard & Liesenfeld [31], [30].

The empirical results based upon the monthly inflation series of the U.S. and Turkey can
be summarized as follows:

For the U.S. inflation series, the persistence parameter is very close to 1 both for 799 and
1,114 data points. Moreover, the volatility intercept decreases while variance of volatility
increases as observations are added. In terms of forecasting results, my forecasting validity
tests show that the SV model is successful in out-of-sample forecasting of inflation volatility
of U.S.. For the Turkish data set, the persistence parameter is lower when the data set is
smaller. Furthermore, the volatility intercept and volatility variance decrease when the data
set grows larger. Although the forecasting results are not as strong as the results for U.S.
inflation, the test results still support the validity of the SV model based on the EIS for

forecasting inflation volatility.

30



3.0 DO RETURNS GRANGER-CAUSE VOLATILITY?

3.1 INTRODUCTION

Modeling volatility has been the focus of financial econometrics for the last two decades.
The ARCH-family models, which were developed by Nobel Laureate Robert Engel [15], repre-
sent one well-known approach to volatility modeling. These models assume that conditional
variance is a function of the squares of previous observations and past variations.

An important alternative to this framework, which is also the main focus of this paper,
is the Stochastic Volatility (SV) model. This model was first introduced by Taylor[39], [41].
The SV model allows the conditional mean and the variance to be characterized by separate
stochastic processes. The basic discrete SV model assumes that return is an exponential
function of volatility and that volatility is an AR(1) process.

The SV model is more flexible than ARCH-family models because it allows for noise in the
volatility function. As a result, the model does not force persistence to be close to 1 in order
to allow simultaneous occurrences of small autocorrelation and high kurtosis. On the other
hand, the basic SV model sometimes requires extensions or modifications in order to capture
the properties of a return series better. For example, the conditional distribution of return
does not need to be normal as assumed by the standard model. It also may be fat-tailed or
skewed. Geweke [19] shows that SV performs poorly under a normality assumption when
there are large outliers. This problem can be solved by allowing conditional distribution to
have fat-tails. Furthermore, the standard SV model also assumes that volatility is only a
function of its past values. In this paper we show that past values of return also have an
impact on values of volatility at time t. There are some examples of models in volatility

literature which suggest that return should be a part of the volatility equation. For example,
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in the standard GARCH(1,1) model the volatility is formulated as:

AN=a+bx(ri1—p)?+cxy (3.1)

where \; denotes the variance of return at time t,r;_; is return at time ¢t — 1 and u is the
mean of return. This standard GARCH(1,1) model has been proven quite useful in finance.
The key differences between the SV model used for this paper and the standard GARCH(1,1)
model is: First, we replace p by a moving average of return allowing for adjustment over
time. And, then, second, we do not square the difference. Nevertheless, the success of the
standard GARCH(1,1) model provides a motivation to explore the causality of returns on
volatility in a traditional SV formulation. Furthermore, another model by Danielsson [11]
also examines the causality between return and volatility. In his paper, the volatility equation
of the SV model is also a function of lagged values of logged asset prices and absolute values
of asset prices. He shows that the parameters of an asset price in the volatility function are
significant. And these two papers provide a motivation to examine the Granger Causality
between returns and volatility. In order to investigate this causality, we create a new model
under the SV setting by adding an extra difference variable to the volatility equation.

As a result of the nonlinearity of latent variables the estimation of the SV model is not
straightforward. However, several different methods overcome this problem. The methods
are the Generalized Method of Moments (GMM) by Melino and Turnbull [32], the Quasi-
Maximum Likelihood (QML) by Harvey et al. [22], the Efficient Method of Moments (EMM)
applied by Gallant et al. [18] and the Markov Chain Monte Carlo (MCMC) procedure by
Jacquier et al. [26] and Kim et al. [28]. A detailed survey and comparison of these methods
can be found in Ghysels et al. [20] and Anderson et al. [2].

In this paper, we use a Maximum Likelihood (ML) approach based upon the Efficient
Importance Sampling (EIS) procedure by Richard and Zhang [37] to estimate the SV model
with a modification in volatility equation. EIS is a Monte Carlo (MC) technique that is
mainly used for efficient evaluation of high dimensional integrals. It is ideally suited for the
computation of likelihood in the SV model. This technique depends upon a sequence of
simple low-dimensional regression, which, in turn, provides a global approximation of the

integrand. Finally, the MC sampler provided by this approximation produces highly accurate
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MC likelihood estimates. Furthermore, because the EIS procedure is generic, it is easy to
adapt it to modifications in the SV model. Thus, we adapt it to the modification of the SV
model in this paper.

The rest of the paper is organized as follows. In Section 2, we briefly review the basic
version of the SV model, introduce the SV model with the return variable, and also explain
the EIS procedure. In Section 3, we explain how the return variable is chosen and how it is
formulated. Section 4 shows the application results on 35 different S&P 500 stock returns.

Finally, in Section 5, we summarize our results and conclusions.

3.2 STOCHASTIC VOLATILITY MODEL AND METHODOLOGY

3.2.1 The Model

The standard SV model by Taylor is formulated as

rie = exp(N\i/2)ey (3.2)

Ait = 7+ 0iNi—1 + ving

where 7; represents the returnonday ¢ : 1 — T'. {e;;} and {»;,} are mutually independent iid

Gaussian random variables with mean zero and unit variances. {v,,0;, v;} are the parameters
to be estimated.

The unobserved log-volatility \;; follows an AR(1) process with persistence parameter §;.
The returns are strictly stationary if |§;| < 1.Finally, v; represents the standard deviation of
volatility shocks and v; > 0.

The model assumes that volatility is a latent or unobservable process. In other words,
unobservable events on the same day explain volatility.

In this paper, we are looking for Granger-type causality where addition of an extra vari-
able, which is the return variable, provides a reduction in the standard deviation of volatility.

Because volatility is a latent process in a SV model (and standard Granger Causality tests
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require both variables to be observed), testing the causality between return and volatility
is not possible with a standard Granger Causality test. For this reason, we use a different
approach to test the causality between return and volatility. In this approach we estimate
the standard SV model first. Then we introduce the return variable to the volatility equa-
tion in the SV model and estimate it. If the coefficient of the return variable is significant,
the addition of the return variable reduces the standard deviation of volatility. And, if the
Likelihood-ratio test results are significant, then we conclude that return “Granger-causes”
volatility.

The methodology of this paper requires adding a new return variable to the volatility
equation to see whether return does Granger-cause volatility. We modify the basic SV model

by adding first lag of the return variable to the volatility equation. Then our model is given

by

rie = exp(A\i/2)ey (3.3)

it = 7+ 0iNii—1 + BiTi—1 + ving

where the parameters to be estimated are (v,, d;, 5;, ;) . If this new variable, the return vari-
able, does Granger-cause volatility, then coefficient 5 should be significant and the standard

deviation of volatility v should decrease.

3.2.2 Efficient Importance Sampling

The evaluation of likelihood of the observed return r;;’s require us to integrate out latent
or unobservable variable \;’s. However the integration problem is not straightforward. It
cannot be solved by standard integration techniques because \; is serially dependent. It
enters into the model nonlinearly. As noted in the introduction, we use the EIS technique

to overcome this problem
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Let f(R;, A;;0;) represent the joint density of R; = {rit}thl and A; = {/\Z-t}thl, indexed
by unknown parameter vector 6;. Then the likelihood function associated with this joint

density is given by

L(0;,R) = [ f(Ri,\i;0;)dA; (3.4)

where L is T'xq dimensional integral.

This integral can be factorized into sequence of conditional density functions f(-) for

(7, Air) given (Ry—1,Aj—1). We can rewrite the likelihood function as

T
L(Qi,Ri) = f H f(rita)\it’RitflaAitfl;ei) dA; (3-5)

t=1
based upon the factorization.

Furthermore, we can rewrite the joint density as a function of conditional density g ()

of r; and conditional density p(-) of A;; given (Ay_1, Riy—1) as

f(Tita)\it|Rz‘t—1>Az‘t—1§9‘) —g(ml&t,Rn 15 ) ( zt|A7,t 1, R 1,‘9@‘) (3-6)

Under the standard SV model g (-) is a conditional Gaussian density and p(-) is the
density for the Gaussian AR process of volatility.

A natural MC technique ignores that the observation of R; conveys critical information
about underlying latent process A; since trajectories are just drawn from process p (-). This
causes high inefficiency of MC estimator. To resolve this problem, EIS searches for samplers
that exploits the sample information \;’s as conveyed by r;’s. Let, {m (Ay|Ai—1, ait)}thl
denote a sequence of auxiliary samplers which is indexed by auxiliary parameters A; =
{ait}tT:l :

Then the likelihood function can be written as

f (Tit, )\it|Rit—1a Ai_1; 91‘)

m (/\it|Ait—17 az‘t)

T T
L (91'; Rz’) = ftljl tl:[1m (>\it|Az’t—laait) dA; (3~7)
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which produces the corresponding importance sampling estimate of likelihood as

() — )

T f(ritaxi/t (ait)‘RitflaAitfl (aitl);gi)

0:; Ri, A;) 3.8
( NZ =1 — ) — (3:8)
m Nie (i) | Nig—1 (aie—1), @it
~0) g
where {)\it (ait)} denotes a trajectory drawn from the auxiliary samplers m (-).
t=1

EIS aims at selecting values of {ait}tT:l which provides a good match between the de-
nominator and nominator in Equation 7 which will minimize the MC sampling variance of
Ez/\/ . To achieve the minimization, EIS constructs a functional approximation k (A;;a;)
for the conditional joint density which is analytically integrable with respect to A;;. Then

m (Nit| Aie—1, air) is given by

k (Az’t; ait)

X (Ait—1§ ait) (3.9)

m (/\it|Ait717 ait) =

where x (Aj—1;air) = [k (Ait; i) dhip. Since x (Aj—1; air) does not depend on \; it can be
transferred back into the period t-1 minimization subproblem. Therefore, the problem turns
back into solving a simple back-recursive sequence of low-dimensional least squares problem

of the form

N X .
@(6) = argmind_((n f(rit,/\Z-t(j)(é)|R,»t_1,Ait_lm(e);Qi) (3.10)
j=1

~ ) - ~ () <
X (Ait ;Git+1>] —ciy —Ink (Ait ;Git> )2

fort: T — 1, with x (Ay7; air+1) = 1 and ¢;’s are unknown constants to be estimated jointly
with the a;’s.

Nevertheless, in order to produce maximally efficient importance samplers just a small
number of EIS iterations is required. To provide the convergence of auxiliary parameters a;;,
we apply Common Random Numbers (CRNs) technique.

Finally, the ML-EIS estimates of # are obtained by maximizing Equation 7 with respect
to 6.

36



A detailed implementation of EIS for the SV model in Section 4 is given in Appendix.

3.2.3 The Return Variable

As mentioned earlier, in this paper we use 35 different S&P 500 stock returns from six
different sectors. We investigated the effect of lagged values of different return variables on
volatility. For example, we tried the first lag of the deviation of return from its mean to
the volatility equation. Moreover, we tried using the deviation of return from its monthly
moving average as well as its absolute value. To compare the effect of these variables on the
model, we utilized the following procedures for each different extra variable candidate

1) We regress the filtered volatilities of an individual stock return on its first-order
lag and calculated the residuals for this estimation.

2) We regress the first lag-of-return variable on the first-order lag of the filtered
volatilities and calculated the residuals from this regression.

3) We regress the residuals from the first estimation on the residuals from the second
regression.

These estimation results could provide the coefficients of the difference parameter. How-
ever, they would be based on a mis-specified model because the filtered volatilities are ob-
tained by using the standard SV model.

The comparison of these estimation results for different return-variable candidates sug-
gests that the deviation of return from its monthly moving average, which we call the differ-
ence variable, has the highest effect on volatility. Tables 16, 17 and 18 show the estimation
results of the final regression of residuals for Coca-Cola, American Express, and Bristol-
Myers Squibb. Regression results represent that estimated coefficients of final regression are
significant. This indicates a relationship between the difference variable and the volatility.
Furthermore, if we compare these initial results with the results of ML estimation, we see
that the results are close to each other in the standard deviations as well as the point esti-
mates. Therefore, these initial estimation results were useful to the investigation before I ran
the full EIS-ML. Furthermore, this similarity between initial estimation and final EIS-ML

results is true for all 35 stocks.
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Next, we formulate the return variable before adding it to the volatility equation. This

return variable is formulated as

Tig = Tyt — Tit (3.11)

where 7;; is stock return ¢ : 1 — 35 and ¢ : 1 — T T represents the monthly moving average
of return ¢ at time £.We do not calculate the moving averages by using the standard moving
average calculation which uses observations from ¢ —11 to t+11. Because our moving average
should depend on past values, we use observations from t-22 up to t. Furthermore, by using
the moving instead of the mean average (which is used in the standard GARCH(1,1) model),
we allow the mean to vary over time. Because we also tested the deviation of return from its
mean when choosing the return variable, the comparison of the deviation of return from both
its mean and its monthly moving average, as additional variables to the volatility equation,

suggests that deviation from the monthly moving average has a stronger impact on volatility.

3.3 APPLICATIONS

For the application of the model, we use 35 different daily S&P 500 stock prices form six
different sectors between January 2nd 1990 and October 31st 2008. The model is estimated
for Coca-Cola, Hershey, Proctor & Gamble and Walmart from the consumer staples sector;
Chevron, Sunoco, ConocoPhillips and Exxon from the energy sector; American Express,
Bank of America, CitiBank, JP Morgan and Wells Fargo from the finance sector; Abbott,
Amgen, Bristol-Myers Squibb, Johnson & Johnson, Merck, Pfizer, Schering & Plough and
Wyeth from the health sector; 3M, Boeing, Caterpillar, GE, Masco and Southwest Airlines
from the industrials sector; and Apple, Hewlett Packard, Intel, IBM, Micron, Motorola,
Oracle and Java from the information technologies sector.

Stock returns are calculated by using formula

rie = 100.1n(s5/Si-1) (3.12)
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where s;; is daily stock return for return ¢ : 1 — 35 andt : 1 — 4750.

Table 19 through 24 in Appendix C presents the estimation results under the standard
SV model and SV model with the difference variable for each industry. Numbers in paren-
theses represent the asymptotic standard deviations. Mean and standard deviation are the
parameters’ means and standard deviations respectively.

For the consumer staples sector, the 8 parameter changes between -0.02 and -0.073 and
is significant for all stock returns except Hershey. Furthermore, persistence parameter o
increases and the standard deviation of volatility v decreases when the difference variable is
added and significant.

For the energy sector, the difference parameter changes between -0.043 and -0.102. It
is significant for all returns. Persistence parameter § increases and standard deviation of
volatility v decreases under the proposed model.

For the finance sector, the difference parameter $ has the range of (-0.048,-0.068) and is
significant for all returns. In terms of the persistence parameter and the standard deviation
of volatility respectively, results again indicate increase and decrease.

For the health sector, the range of difference parameter is similar to the energy sector,
which is between -0.027 and -0.110. The difference parameter is significant for all stocks.
The persistence parameter increases when the difference variable is added. In terms of the
standard deviation of volatility, there is a decrease, except in the case of Merck.

For the industrials sector, the difference parameter range is again similar to the energy
and health sectors. It changes between -0.019 and -0.110. This sector has two stocks with
insignificant difference parameters, 3M and Masco. The persistence parameter ¢ increases
and the standard deviation of volatility v decreases when the difference variable is added for
all stocks except Masco.

Finally, among all sectors, the information technology sector has the widest difference in
parameter range. The [ parameter changes between -0.004 and -0.135 and it is not significant
for Apple. Furthermore, adding the difference variable into the volatility equation causes
an increase and decrease in the persistence parameter and standard deviation of volatility,
respectively.

Almost all individual estimation results indicate that the difference parameter is signif-
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icant, which shows that return does “Granger-cause” volatility. Moreover, when we add
the difference variable into the volatility equation, persistence increases and the standard

deviation of volatility decreases.

To represent the effect of new variables on persistence, we draw the filtered volatility
graphs of Coca-Cola and Bristol-Myers Squibb. They are obtained by standard SV model
estimation and the SV model with the difference variable estimation (for a small period
after we observe a large x; 1, which is the difference variable). Filtered volatility is the mean
of volatility at time t computed by using information available on the returns up to time
t-1. For Coca-Cola we observe that the 145th observation is large enough to examine the
difference between two filtered volatility series from the two models. Figure 17 in Appendix D
shows the filtered volatility series of 14 points after the large difference variable is observed
at 145th point for Coca-Cola. For Bristol-Squibb-Myers we observe the large x;_; at the
1892nd observation. Figure 18 in Appendix D also represents the filtered volatility series of
13 points after the 1892nd point by using respectively the standard SV model and the SV
model with the difference variable for Bristol- Myers Squibb..

Since the coefficient of difference variable is negative when there is a large positive z;_; we
should expect that filtered volatilities from the SV model with the difference variable should
be lower than filtered volatilities from the standard SV model. As noted for Coca-Cola, we
observe a large positive z;_; at the 145th and the 1892nd observations for Bristol-Squibb-
Myers. Starting one point ahead of these observation points, the filtered volatilities graphs
clearly represent that filtered volatilities are lower when the difference variable is added to
the model.

In order to summarize the effects of the difference variable on volatility, we compare
likelihood values under two different models for each return series as a final test. We use
a LR-test to examine if there is an improvement in the model when we add the difference
variable to the volatility equation. Tables 25 through 30 in Appendix D represent the
likelihood values for each return series among sectors for the two models and the LR-test
results. The results suggest that the model is improved and that there is causality between

return and volatility except for those stocks with an insignificant difference parameter.

Table 31 in Appendix D shows the variance-covariance structure between parameters
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among the returns for all 35 stocks. This table represents the common feedback structure of
SV model parameters among 35 stocks. Furthermore, the bivariate plot of ¢ and 3, Figure 19
in Appendix D, also reflects that, when the difference parameter 5 is added, the persistence
parameter 0 increases.

The final step of this paper is a joint EIS-ML estimation. Here the parameters for
each stock are assumed to be iid draws from a common four-dimensional distribution. We
introduce a re-parameterization in order to avoid the problem of ¢’s being no larger than
one, produce a more reasonable joint distribution, simplify the correlation structure, and

produce neater bivariate graphs. This re-parametrization is given by

o @
af = 15 (3.13)
5 = 1n(1;5>
g = p
1%

V1=462

As we noted above, this re-parameterization will simplify the correlation structure and

simplify the common four-dimensional distribution

3.4 CONCLUSION

The standard SV model assumes that volatility is explained only by its first order
lag. This paper presents research focused on examining the causality between return and
volatility in the SV model. The causality is given by adding a return variable to the equation,
which modifies the volatility equation in the standard SV model. The choice of this return
variable is carried out by examining the partial correlation between the first-order lag of
filtered volatilities and first-order lag of return variables. The examination of different return
variables suggests that using the first-order lag of the difference between return and its past
monthly moving average as the return variable provides the greatest improvement in the

model.
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After analyzing 35 different S&P 500 stock returns from six different sectors (consumer
staples, finance, energy, health, industrials, and information technology), the empirical re-
sults obtained in this paper can be summarized as follows:

First, the estimation results indicate that for m