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University of Pittsburgh, 2004

Stability of the Internet today depends largely on cooperation between hosts employing TCP
(Transmission Control Protocol) in the transport layer and network routers along an end-to-end
path. However, in the past several years, the incidence of various types of non-TCP traffic over the
Internet, including streaming media applications, has increased. These traffic flows typically are
based on UDP (User Datagram Protocol), and they usually do not employ end-to-end congestion
or flow control mechanisms. Such applications can unfairly consume greater amount of bandwidth
than competing, responsive TCP traffic. In this manner, the unfairness problem and congestion
collapse can occur. To avoid substantial memory requirements and computational complexity, fair
Active Queue Management (AQM) schemes requiring no (or partial) flow state information have
been proposed over the past several years to solve these problems. However, these schemes have

several problems under different circumstances.

This dissertation presents two fair AQM mechanisms, BLACK and AFC, that overcome the
problems and the limitations of the existing schemes. Both BLACK and AFC need to store only
a small amount of state information in order to maintain and use their fairness mechanisms. Ex-
tensive simulation studies show that both of these schemes outperform other schemes in terms
of throughput fairness in a large number of scenarios. Not only are they able to handle multiple
flows of unresponsive traffic, but they also improve fairness among TCP connections with different
round trip delays. AFC, with little more overhead than BLACK, provides additional advantages,
including an ability to achieve good fairness in conditions of different-sized and bursty traffic and

to provide smoother transfer rates for unresponsive flows, which are usually transmitting real-time



traffic.

This research also includes a comparative study of the existing techniques for estimating the
number of active flows, a crucial component of some fair AQM schemes, including BLACK and
AFC. A further contribution of this dissertation is the first comprehensive evaluation of fair AQM

schemes in the presence of various types of TCP-friendly traffic.
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1.0 INTRODUCTION

1.1 BACKGROUND

The Internet is a vast network that connects many millions of computers used by a large, widespread
population. A majority of the Internet traffic today, including traffic from world wide web (HTTP),
file transfer (FTP), TELNET, and email (SMTP) processes, is carried by T&Rgmission Con-
trol Protocol), a transport layer protocol. A key to the success of TCP’s deployment has been its
Congestion Avoidancalgorithm, introduced by V. Jacobson in 19&3]. This mechanism helps
an end host to determine the amount of available on the network so that its transmission rate can be
adjusted accordingly. Basically, this approach aims to have the source gradually increase its con-
gestion window, reflecting the amount of data allowed for transmission on the network at a given
time, until congestion is indicated by one or more packet drops. In response, the TCP source backs
off the amount of transmitting data by reducing the congestion window by half or more. This re-
sponsive mechanism, referred to as the additive increase/multiplicative decrease algorithm, keeps
the network from being overloaded. It has become a critically important factor in maintaining the
robustness and stability of the Internet.

Today, various types of traffic are increasingly deployed over the Internet. Traffic caused by
streaming media applications usually relies on UDRdr Datagram Protocg! UDP typically
does not employs either end-to-end congestion or flow control mechanisms; if these mechanisms
are employed, it is on a very limited basis.. Rather, the sending rate is chosen based on the value
appropriated for the applications, and no consideration is given to network congestion during the
transmission. The lack of end-to-end congestion control on the flows from these applications
can results in two serious problemsnfairnessandcongestion collapseAn unfairness problem

occurs when traffic with no end-to-end congestion control unfairly consumes a greater amount of



bandwidth than competing responsive flows, such as TCP traffic. In some situations, responsive
flows may even be shut down due to excessive reduction of traffic. A congestion collapse problem
occurs when a large amount of bandwidth is wasted by packets that are discarded before reaching
their destination because they were transmitted by a source with no congestion control. Both
unfairness and congestion collapse can trouble the current Internet. These problems are discussed

in greater detail below.

1.2 PROBLEM OF UNFAIRNESS

An unfairness problem occurs when unresponsive and responsive traffic share the same network
and compete for scarce bandwidth. Unresponsive applications do not have congestion control
mechanisms and, therefore, have no way of detecting and reacting to network congestion properly.
When they are competing with responsive applications for bandwidth , the packets from both types
of traffic may be dropped at the onset of congestion. All responsive flows, including TCP, reduce
their transmission rates to alleviate the congestion, while unresponsive flows continue tosend their
data at the original rate. As a result, a large proportion of the bandwidth can be consumed by the
unresponsive flows unfairly.

The danger of the unfairness problem is illustrated in Figuf@5]. Under FIFO (First-In
First-Out) scheduling, UDP flow (S2 to S4) share the same bottleneck link with three TCP flows
(S1to S3). As shown in the simulation, only when the arrival rate of UDP traffic is low can TCP
traffic flows grasp the portion of bandwidth they deserve. As the arrival rate of UDP increases, the
UDP flow begins to receive a larger proportion of the bandwidth than the combined bandwidth of
the three TCP flows. Eventually, as UDP’s arrival rate approaches the bottleneck link bandwidth,
this situation almost effectively shuts down responsive TCP traffic.

The unfairness problem occurs even with traffic that has implemented some level of congestion
control, but is not TCP-compatible. An example is RTP (Real-Time Transport Protocol). RTP
employs an adaptive algorithm to control the amount of outgoing data in a manner similar to the
additive increase/multiplicative decrease algorithm used to determine the congestion window in
TCP’s congestion control. However, although feedback information for the RTP adaptive data

control mechanism is provided at a minimum of 5-second intervals, this is much longer than the
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time required for the TCP sender to be informed of congestion by a packet drop. As a result, while
TCP sources lower their transmission rates, RTP connections continue to transmit at a higher rate
and, eventually, they consume most of the bandwidth on the shared®ihk [

One well-known solution to an unfairness problem is the per-flow fair scheduling mechanism
[14, 60]. Because the bandwidth is allocated almost equally to all different flows passing through
a router, per-flow scheduling eliminates the unfairness problem effectively. This merit, however,
comes with the cost of increased state maintenance and greater complexity in the routers. This
can result in a scalability problem at very high speeds, especially for a high-speed backbone router
serving thousands of traffic flows. In addition, that the literature shows that most of the traffic flows
on the Internet are short-lived. (I think you need to have reference numbers here.) A fair queueing
mechanism that requires a router to maintain a separate queue for every passing connection, even
the small flows which together comprise the majority of network traffic, is not intended to be

widely implemented.

1.3 PROBLEM OF CONGESTION COLLAPSE

The congestion collapse problem arises when senders continue to transmit packets that will be
dropped downstream before reaching their final destinations, resulting in wasted bandwidth from
undelivered packets. The primary factor behind this problem is the increasing deployment of ap-
plications without end-to-end congestion control. When packets are dropped in these applications,
they do not reduce their sending rate. Thus, the network bandwidth can be continuously consumed
by undelivered packets due to the unresponsive behavior even if per-flow scheduling is deployed.
This situation is illustrated in Figure Figugd67].

The available bandwidth for each of the links in the figure is 8 Mbps, with the exception of the
link from router R1 to node S4, which has 2 Mbps of bandwidth. Two flows, each with a constant
rate of 6 Mbps, traverse from node S1 to node S3 and from node S2 to node S4, respectively.
Assuming that router R1 uses per-flow fair scheduling, each flow receives 4 Mbps of bandwidth
on the R1-R2 link. Since the final link of flow 2 has an available bandwidth of just 2 Mbps, about
half of the packets from flow 2 are dropped at R2. Hence, the throughput of flow 2 is limited to 2

Mbps while the throughput of flow 1 remains at 4 Mbps. In this case, the flow 2 packets that are



Figure 2:Example of congestion collapséf].

discarded before reaching their destination node (S4) block the throughput of flow 1 to 4 Mbps,
which causes congestion in spite of per-flow scheduling.

The impact of congestion collapse could be more severe if there were more unresponsive traffic
flows in the same scenario, as demonstrated by Floyd and Fall's simula&iprijsing the same
topology as Figurd, with the R2-S4 link bandwidth now set to 128 kbps, ten flows traverse from
the left nodes to the right nodes of the network. TCP traffic flows from node S1 to node S3, and
a number of UDP flows move from node S2 to node S4. The result is shown in RHgurke
x-axis shows the number of UDP flows as a fraction of the total flows from 1 to 9; the y-axis shows
the aggregate goodput of TCP flows as a fraction of the bandwidth on the R1-R2 link. The Figure
provides evidence that a congestion collapse problem worsens as the number of unresponsive UDP

flows increases, regardless of scheduling type.

0.2 0.4 0.6 0.8

Number of UDP Flows (as a Fraction of Total Flows).
Dotted Line: FIFO Scheduling; Solid Line; WRR Scheduling

Figure 3:Congestion collapse as the number of UDP flows incred¥gs [



Consequently, scheduling type is not the key factor for either the congestion collapse or the
bandwidth use; rather, the absence of end-to-end congestion control for unresponsive traffic is the
key. To date, the current Internet paradism has been without an effective approach to regulating
unresponsive flow applications and prevent the congestion collapse pr@&ferAdpwever, Floyd
and Fall R5] propose that penalizing unresponsive high bandwidth flows would be a concrete
incentive for users to implement end-to-end congestion controls that would solve unfairness and

congestion problems.

1.4 OTHER CAUSES OF UNFAIRNESS PROBLEM

The unfairness problem is not only caused by long-lived, high-bandwidth applications lacking
proper end-to-end congestion control mechanisms. Responsive traffic flows such as TCP connec-
tions with round-trip timesR7'T") can also lead to problems of unfairness. A TCP connection with

a small round-trip time can secure a large portion of bandwidth since it tends to receive acknowl-
edgement packets faster, resulting in rapid congestion window increases. Ott&ahd Padhye

et al. B0] separately illustrate this fact in their models of TCP congestion control behavior, which
show that the achievable throughput of TCP is inversely proportional t&THE. Hence, fairness
among TCP connections can deteriorate as a result of different round-trip times. A related problem
is a flash crowd, which can occur even when traffic flows are transmitted over a responsive TCP
protocol. A flash crowd is a large surge in the amount of traffic to a particular server (e.g., HTTP
requests for breaking news), which cause an immense increase in the traffic load of the server or
routers along the path. During a flash event, a large number of packets from other connections may
be dropped because they are not protected from the flash crowds that compete for the bandwidth
to access the same server.

Some types of short-lived traffic can also introduce unfairness. One such type is a short-
lived UDP traffic flow that is transmitted at a very high peak rate. An example of this is a short
duration of video traffic that is later canceled. Another example is any traffic from a source that
intentionally transmits unresponsive data in a series of short-lived bursts to avoid detection by a
router’s fairness mechanism and at a very high peak rate to grasp as much bandwidth as possible.

A UDP pulse will show up at the router for a short period of time, then leave. Most routers do



not respond quickly enough to be able to manage this type of traffic. Once detected, this traffic
pulse may already cease after a short period of time. As a result, the connection can gain a large
amount of bandwidth without being effectively controlled by a router. During the time that the
traffic dominates a buffer space, packets from low-bandwidth or responsive flows can potentially be
dropped in a large numbers. The situation can be even worse if there are multiple non-responsive
UDP flows that, together, arrive at a router for a briefly before leaving; in this case, a number
of responsive flows could be totally shut down. Even routers with some existing active queue
management (AQM) mechanisms to combat the unfairness problem are unable to cope well with

this type of traffic, as described in Chap&R

1.5 THE PROBLEM STATEMENT

Today'’s Internet architecture is vulnerable to the unfairness and congestion collapse problems be-
cause of traffic without conformant end-to-end congestion control. This misbehaving traffic can
consume large amounts of bandwidth, resulting in inferior service to responsive users or instability
of network operations. Although most of the current Internet traffic is TCP, there is clear evidence
of an increasing number of real time and streaming media applications based on UDP protocol that
have no congestion control mechanism or are unresponsive in nature. The negative impact of these
unresponsive traffic flows could range from a mild effect to an extreme danger, as discussed in this
chapter.

One major challenge in mitigating the unfairness problem is that most mechanisms, such as
fair scheduling 14, 60] or per-flow active queue management schend8s45, 4] usually involve
some form of per-flow state information at routers along a network path. The merit of these mech-
anisms thus comes at the expense of memory resources and increased complexity; these aspects
can prevent them from being widely implemented, especially for core network routers that carry
thousands of traffic flows. In response, several newer fairness mechanisms, such as GBOKe [
Stochastic Fair Blue (SFB)LLP], and CApture-REcapture (CARE$|[have been proposed. These
mechanisms, which will be covered in Chap2e?, either have unique, less complex active queue
management mechanisms that require no per-flow state information, or they have a small data

structure to hold partial per-flow state information. However, these less complex AQM schemes



still have many limitations in solving the unfairness problem.

The goal of this research is to develop a router mechanism that requires no per-flow or only
partial state information and aims to solve the problem of unfairness caused by unresponsive appli-
cations. The scheme is designed in light of the additional challenge of minimizing complexity to
enable practical employment. Therefore, per-flow state information maintained for all active flows
passing through the router should be kept minimal. The use of a preferential dropping mechanism
is considered as an approach for a penalizing scheme that could be operated in a FIFO scheduling
scenario, the simplest queueing discipline widely implemented in the Internet.

The remainder of this thesis is organized as follows. Chapterovides a background of
the Internet’'s congestion control concept. The chapter also discusses the well-known fair AQM
schemes that contain no or partial state information, as well as their merits and limitations. The first
scheme to combat the problem of unfairness, BLACK, is proposed and compared to other schemes,
in Chapter3. At the end of the chapter, the limitations of BLACK are discussed. Chdputetails
approaches to solve one of the limitations - the estimation of the number of active flows. Then,
AFC, the second scheme to combat the problems with some advantages over BLACK, is proposed
in Chapter5. A comparative evaluation of AFC, BLACK, and the other fair AQM schemes in an
extended range of scenarios is made in this chapter. Conclusions of the research are presented in
Chapter 6. A discussion of alternatives for controlling traffic in best-effort IP networks is provided

in Appendix B.



2.0 LITERATURE REVIEW

This chapter is a review of the literature about existing solutions to the problem of unfairness.
While there are several strategies for approaching the problem, the scope of this dissertation is
limited to the router-based AQM approach. The first part of this chapter provides background
information and focuses on the well-known congestion control mechanisms currently employed in
the Internet. The second part of this chapter classifies existing solutions to the unfairness problem
and discusses the router-based AQM approach, its design issues and its goals. The remainder
of the chapter, which motivates most of the work in this dissertation, reviews and compares the
most important router-based AQM mechanisms, giving special consideration to the limitations and

problems of these schemes.

2.1 CONGESTION CONTROL MECHANISMS IN THE INTERNET

The Internet was originally designed to connect heterogeneous, time-sharing systems at several
locations (e.g., universities and military systems) using a connectionless, packet-switching tech-
nique. Packet-switching technology is both flexible and fault-tolerant, as data can be routed in
more than one direction, and it can be re-routed, as the need arises. The network can continue to
operate even when some parts fail or when it is faced with a military attack or a disaster. Infor-
mation sent as a message across the Internet may be broken up into several small chunks of data
packets, called datagrams. Each datagram is attached to the header of the message, which contains
information about where the packet is from, where it should be routed to, and other control details.
Each packet may be individually routed across a different sub-network before it reaches its ultimate

destination, where it is reunited with other packets and reassembled into a single message.



Despite the advantages of connectionless, packet-switching technology, the network must be
well designed if it is to deliver good performance under high-load circumstances. If bandwidth
demands exceed available network resources, network performance will decline as packets are
dropped or delayed. Lost packets may require retransmission, especially for traffic under the con-
trol of a reliable transport protocol, such as TCP; this causes congestion from additional traffic on
the network. Figuret depicts the problem of congestion. When the network load is light, most
packets will be delivered to their destinations properly, and the number of delivered packets will be
almost proportional to the number of packets sent from the senders. However, when the network
traffic load increases beyond a certain level, the number of delivered packets drops towards zero,

indicating that some network queues may be loaded with traffic beyond their capacity.

Perfect
Maximum carrying
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capacity of subnet v\
Desirable

— Congested

FdCKELS ueliveieu

Packet sent

Figure 4: When too much traffic occurs, congestion happens and performance degrades sharply

[69].

Unlike a telephone network, a best-effort network such as the Internet does not reserve network
resources such as bandwidth or buffer space prior to data transmission. It is not economically fea-
sible for a best-effort network to avoid congestion by over-dimensioning the network, especially
when traffic tends to be sporadic in nature. Therefore, the network can experience congestion
when many senders simultaneously transmit data at rates exceeding the network’s capacity. The
Internet’s congestion problem poses particular challenges due to the users’ widespread locations

the difficulty in observing the entire network, and the inability of end hosts to control the network.
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Based on the current congestion control paradigm, the network must provide some sort of feed-
back to its users in order to indicate that congestion has developed somewhere in the network.
In response, users should adjust their transmission rates appropriately. This feedback mechanism
is a fundamental concept of Internet congestion control architecture and has been the subject of
intense research study. A number of techniques have been proposed in the literature, and some
of them have became Internet standards. The following section presents major congestion control

mechanisms in the current Internet.

2.1.1 TCP congestion control mechanism

Transmission Control Protocol (TCP), the de facto standard reliable transport protocol, is designed
to provide reliable, in-order, connection-oriented communication between a pair of hosts, through
reliable and unreliable internetworks.

The TCP congestion control mechanism was developed by V. Jacobson in33)884{ that
time, a source could transmit as much data as advertised by the receiver, calétV¢nised
window without considering the network’s condition. However, use of an advertised window
alone is not enough to prevent a source from sending too much data into the network. Thus, a TCP
source was intentionally designed to have an ability to determine the network’s available capacity
and to use that information to limit its data transmission.

In this manner, the sender must maintainamgestion windowcwnd), which is the amount
of data that can be transmitted at a given time according to the network congestion level. The
maximum window size, indicating the maximum number of bytes of unacknowledged segments at
any given time, is then set to be a figure betweercthreggestion windowand theadvertised window
which reflects both the network capacity and the receiver capacity, respectively.

Generally, there is no direct way for the TCP source to have knowledge about a network.
Therefore, the sender slowly probes the network by setting a series of congestion windows until
either a timeout occurs or the advertised window is reached. During the exponentially increasing
period orslow-startphase, a source increases its window by 1 every time it receives an acknowl-
edgment packet (ACK) and sends two packets. In effect, the source doubles the congestion window

size with each round trip timeR{I'T"). Before or after a congestion window reaches the advertised
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window value, a packet may be lost and a timeout might occur. If the underlying links are reliable,
this is an implicit sign that congestion has occurred. In this instance, since the severity of the con-
gestion is unknown, a conservative approach dictates that the congestion window be set back to 1
segment and the slow-start phase be restarted.

In some situations, congestion may take a long time to resolve. In this case, the exponential
growth of the congestion window immediately after congestion has been detected may be overly
aggressive and may worsen the condition. Therefore, Jacobson proposed a new algorithm for
handling congestion. This algorithm begins with the slow-start phase, which is followed by a
linear or congestion-avoidancphase, in which the sender increases its congestion window by
1/(current congestion windopyeach time it receives an ACK. Once congestion occurs,the source
sets itsslow-start threshold/alue to be half of the current congestion window, sets the congestion
window to a value of 1, and restarts the slow-start phase. When the congestion window reaches
the threshold value, the source switches to the linear phase, in which the congestion window is

increased linearly, as illustrated in Figus¢65].
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Figure 5:TCP slow-start and congestion-avoidance phaSgls [

2.1.1.1 Adaptive retransmission timer As described in sectio®.1.], a traditional TCP imple-

mentation uses a timeout mechanism to alert the TCP sender to the loss of data packets. After each
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packet is transmitted, the sender waits for an ACK from the receiver. If the ACK is not received
within aretransmission timeoRTO) interval, the sent packet is considered to have been lost and,
therefore, to be in need of retransmission. The key factor here is the length of the RTO interval.
If the interval is set too long the sender may end up wasting time waiting for lost packets. If the
interval is too short, the packet may be retransmitted unnecessarily while its ACK is still in transit.
This situation implies that timeout interval is related to RTT; thus TCP utilizes a smoothed round
trip time (SRTT) to estimate a round trip delay time as:

In a traditional TCP implementation, TCP sender detects the loss of the packets using a timeout
mechanism. After transmitting each packet, the sender waits for an ACK from the receiver. If the
ACK is not received within aetransmission timeoutRTO) interval, a corresponding packet is
considered as a lost packet and hence needed to be retransmitted. The key factor here is the length
of RTO. If the value is too large, the sender may end up wasting time waiting for the lost packet.
If the interval is too small, the packet may be retransmitted unnecessary as its ACK may still be in
transit. This concern implies that timeout interval is related to RTT, thus TCP implements a SRTT
(smoothed round trip time) to estimate a round trip delay time as:

SRTT(K +1) = éSRTT(K) + ;RTT(K +1) (2.1)

In the original implementation of TCP, the RTO timer is simply a multiplication of SRTT
and a constant value. However, this approach can result in poor network performance because a
connection may have a relatively high RTT variance. In a low variance environment, the RTO may
be too high, and in a high variance environment, it may not be able to guard against unnecessary
retransmissions. Taking into account RTT variance, Jacobson proposed a more effective approach

for estimating RTO. This approach, based on a mean deviation of the RTT, is as follows

SDEV(K +1) = i | RTT(K +1) — SRTT(K) | +i x SDEV(K)
RTO(K+1) = SRTT(K+1)+4x SDEV(K +1) (2.2)

In this equation, the standard deviation of RTT is approximated by the mean deviation of the

RTT samples (SDEV). In addition, if the ACK of the retransmitted packet fails to arrive within the
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timeout interval, the TCP sender will double the RTO value every time it tries to retransmit the

packet. This technique is referred to as a binary exponential back-off.

2.1.1.2 Variants of TCP To date, there are three well-known variants of TCP, narfahoe
RenoandVegas TCP Tahoe, first implemented in 1988, has all the features of traditional TCP,
including a refined timeout calculation and thast Retransmissioalgorithm [B4] that helps to
expedite the retransmission process. Specifically, Fast Retransmission ensures that when a receiver
gets an out-of-order packet, it issues an ACK for the last in-order packet it received. Then, it
continues transmitting the ACK with the same sequence number for each incoming packet, until
an expected packet arrives. When the sender receives a duplicate ACK, it is able to assume that
an unacknowledged packet was either delayed or lost. To ensure that the packet was actually
lost rather than simply delayed, a sender may wait until it receives three duplicate ACKs, before
retransmitting the missing packet. Since the RTO timer is typically set to a much higher value than
around trip time, it is likely Fast Retransmission speeds up retransmission efficiently.

TCP Reno, first implemented in 1990, behaves in much the same way as TCP Tahoe, but
it acts more aggressively with tHéast Recovenalgorithm. For fast recovery at the onset of
congestion, instead of reducing the congestion window to 1 and beginning a slow-start phase, the
sender cuts the congestion window to half of its current value and uses incoming duplicate ACKs
to send subsequent outgoing packets. The sender then proceeds with the linear growth congestion-
avoidance phase, without wasting time exponentially increasing the congestion window again.

TCP Vegas enhances the congestion avoidance of TCP Reno by adjusting the congestion win-
dow not only according to packet loss but also according to observation of RTTs of packets that
have been sent before. Larger RTTs indicate a congested network which results in a decreased
window size. On the other hand, smaller RTTs indicate a reduction in network congestion and sig-
nal that a traffic source can increase its congestion window size. Theoretically, congestion window

size will eventually converge on an appropriate value.

2.1.1.3 Mathematical models of TCP congestion control mechanismSeveral variants of
TCP have been proposed during the past decade, and most of these preserve two fundamental

components of the congestion control mechanid |
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1. The TCP source uses a dropped packet as an indication of network congestion and responds
by decreasing the congestion window by at least half. This decrease is meant to reduce the
effective sending rate, thereby relieving network congestion.

2. In the congestion-avoidance phase, the TCP sender increases the congestion window by, at

most, one packet per round trip time.

TCP variants may differ in their responsiveness to congestion and aggressiveness in obtaining
available bandwidth. For example, TCP Tahoe decreases the congestion window down to one,
rather than by half as TCP Reno does. Some TCP variants send an ACK packet for every two data
packets, increasing the congestion window by less than one packet per round trip time during the
congestion avoidance phase. Nevertheless, these two components usually enable the determination
of the upper limit for the sending rate of TCP.

Several TCP models have been developed to explain TCP’s flow and congestion control mech-
anisms §19, 51, 3, 72, 61]. The simplest oneThe Stationary Behavior of Ideal TCP Congestion
Avoidancd49], has been used as a fundamental concept in the development of several mechanisms

addressing the unfairness problem. This model assumes the following:

e Only a single packet is dropped when the congestion window reatheackets.

e Uniform (non-bursty) average packet drop rateof

e TCP segments are siZ¢bytes.

e TCP runs over a path with sufficient bandwidth and a fairly constant round trip time of RTT
seconds.

e The sender always has data to transmit and the receiver has infinite buffers.

e The details of TCP data recovery and retransmission are neglected.

Under these assumptions the congestion window has a periodic saw-tooth shape, as shown in
Figure®6.

As shown in the figure, once the congestion window reaétigsackets, it is reduced by the
sender to half1{//2). If every segment is acknowledged, the congestion window increases by
one packet per round trip; therefore each cycle of the saw-tooth shape 8gtiafeund trips or
RTT * W/2 seconds. The total data delivered is depicted as the area under the saw-tooth, equal to

(X)2+1()2 = 2172 packets per cycle. An alternate way to calculate this number is by accepting
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Figure 6:TCP congestion window behavior in steady state of a simplified model.

that, in each cycle, the congestion window startd’a2 and increases by at most one per round trip
time until it reache$V’. Therefore, the sender transmits at leéist (& +1) + (% +2)+...+ W =
§W2 packets per cycle. Hence, the fractipiof the packets that are dropped is then bounded by

8
W < \/;. (2.3)

As Equation (2.3) demonstrates the upper bound of a congestion windo¥or a TCP con-

p < 5= Which yields:

nection in which single packets are dropped; in this situation, the maximum throughput over a

single cycle of the steady-state model then equals:

_ Data per cycle B« 2W? B/p 1.5\/2/3* B
—_— p— W = =
Time per cycle RIT x5 RTT \/% RTT % \/p

(2.4)

Padhye, et al.q1], use stochastic analysis in their proposal of a more precise model of TCP
congestion control behavior in steady state, including the effects of timeouts and retransmissions

as shown below:

Wmax 1
T ~ min , = = (2.5)
RTT RTT,\/252 + Ty min(1, 3\/252)p(1 + 32p2)

16



In this casel; is a retransmission timeout, ahd,,,,. is the maximum congestion window as
limited by the receiver’s buffer size.

In a TCP connection with delayed acknowledgments, in which the receiver sends only one
ACK for every two received packets, the sender’s congestion window increases more slowly. Since
the ACK triggers the sender to increase its window and, in a delated-ACK situation, the sender
receives ACK packets at a slower rate, then there is a slower rate of congestion window increase.

In this case, the fractiop of the sender’s packet drop rate is:

1 1
PSS Wa T2 BAW?
Applying the same method to the throughput equation from Equati§rihe upper bound for

(2.6)

the arrival rate when the receiver uses delayed-ACK is:

1.5,/1/3 % B
T=———— (2.7)
RTT * \/p

These models provide a way to calculate the theoretical throughput of a TCP connection for
a particular set of assumptions and compare it against the actual throughput of a specific flow as
measured to draw conclusions about its friendliness to TCP. Therefore, these formulas have been
used in the design of TCP-friendly protocols for streaming media applicatd&i 7] as well
as the development of router-based mechanisms that provide fairness between TCP and non-TCP

traffic.

2.1.2 Active Queue Management

Traditionally, the Internet router uses drop-tail queueing to manage network traffic by accepting
packets until the queue is full, then dropping any additional arriving packets until there is available
space in the queue again. However, a disadvantage of drop-tail queueing is that a full queue is
sustained most of the time and feedback about congestion is sent to the end host (via a packet
drop) very late. Since packet dropping happens only once the queue is full, end hosts have no
opportunity reduce their transmission rate before congestion seriously develops. It is also possible
that packets from several sources are dropped at the same time when the queue overflows. These

traffic sources then reduce their transmission rates simultaneously, which could lead to periods
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of extreme link under-utilization alternating with periods of congestion. This phenorgkries|
synchronizationis a serious problem of drop-tail queueing.

Active queue management is designed to solve this problem by detecting congestion before
the buffer overflows and providing feedback about congestion to the end hosts before a serious
problem occurs. Typical active queue management mechanisms mainly focus on reducing packet
transfer delay, keeping the steady state buffer size at low levels, and avoiding global synchroniza-
tion problem.

Random Early Detection (RED) is the most well-known active queue management. RED, de-
signed to detect the onset of congestion as indicated by average queue size, also aims to maintain
a low average queue size. RED requires no state information concerning bandwidth usage of in-
dividual flow. Arriving packets are randomly dropped, or marked, when the potential of a buffer
overflow is determined to exist according to monitoring of the average queue size. The dropping
of packets is a means of notifying the transport-level user about the impending congestion. RED
mechanisms also prevent a global synchronization problem by detecting congestion early and ran-
domly dropping the packets of various users. Since congestion is likely be caused by a burst of
traffic from one or few sources, the dropping of arriving packets by drop-tail queueing is biased
against bursty traffic over non-bursty traffic having the same average rate. RED avoids this bias.

To achieve these goals, the RED router must maintains two threshalds, andmin,,, with
a weighted moving average formula that estimates the average queua 8iZ&) detect the onset
of congestion, the average queue size is compared to two thresholds, as shown irY Fifjtive
average queue size is below the minimum threshold, minth, congestion is assumed to be minimal
and all packets are accepted. If the average queue size is greater than the maximum threshold,
maxyy,, congestion is assumed to be serious and all incoming packets are discarded. If the average
queue size is between the two thresholds, it might indicate developing congestion. In this case, the
arriving packets are discarded with a probabilily and accepted with probability — P,. This

probability depends on two factors:

e The dropping probability increases as the average queue size approaches the maximum thresh-
old, maxyy,.
¢ When the average queue size is between the two thresholds, a caunteis incremented ev-

ery time an arriving packet is queued. The higher the valuewtt, the higher the probability
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of a packet being discard.

Determining dropping probability?, begins with the calculation of a temporary probability

P,, where

Py = Ppaz(avg — ming,)/(maxy, — ming,) (2.8)

This value increases linearly from 0, when the average queue size is equahiQ to a
maximum value ofP,,,, when the average queue size isratz,,. The final dropping probability

P, is given as

P, = P,/(1 — count - Py) (2.9)

All incoming packets have the same dropping probability; thus, RED drops packets in propor-
tion to the connections’ share of the bandwidth. Through random dropping, RED is able to avoid
the global synchronization problem.

The average queue size is used to filter out transient congestion that may occur at the router.
The average queue sizevg) can be calculated using a weighted moving average formuja=
(1 — w,)avg + w, * g, Wheregq is an instantaneous queue size andis a weight to determine
how fast the algorithm will respond to changes in the queue size, i$ set too high, RED may
not filter out the transient congestion.udf, is too low,avg may respond too slowly to changes in
average queue size. Then,, should be set to a considerably large value if the incoming traffic

is bursty, in order to maintain high link utilization.
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2.1.3 Explicit Feedback Schemes

With TCP congestion control mechanism, the congestion is implicitly indicated to the source
through packet drops at the router. This model works well with best-effort traffic that requires

no delay or loss restriction. However, some applications, such as Telnet, are delay-sensitive, while
some applications, such as voice and video transfer, are loss-sensitive. In some situations, unnec-
essary packet drops may result in retransmissions and cause increasing delays for the users. This
could have a negative effect on both loss-sensitive and delay-sensitive applications. Consequently,
several explicit feedback schemes have been developed so that routers can detect incipient conges-
tion and provide explicit feedback to the source rather than just begin droping packets. In this way,
the delay-sensitive or loss-sensitive sender can adapt to network conditions without experiencing
the impact of dropped packets or delay from retransmissiobis Examples of such mechanisms
include ICMP (Internet Control Message Protocol) Source Quench messages, DECbit congestion

avoidance schemé&#], and ECN (Explicit Congestion Notification2], 55].

ICMP Source Quench messages were initially designed to inform data sources that they were
sending packets too fast to be processed. As the buffer at the router fills up, further arriving packets
are dropped and a source quench message is returned to the source. The source then slows down
its transmission rate. However, this technique is rarely used because the Source Quench messages

themselves consume addition bandwidth, thus increasing network congéglfiion [

In the DECDbit scheme5f], the router sends a congestion-indication bit in the packet header
to inform the sender about network congestion. When the packet arrives at the router, the router
computes the mean aggregate queue length of all sources. If the average queue size exceeds a
certain threshold, the router sends the bit in the packet header. The receiver copies the congestion-
notification bit into the header of its acknowledgment packet and sends it to the source, as illus-
trated in Figures. In contrast to the ICMP Source Quench message, the amount of feedback caused
by congestion notification in the DECbit scheme is minimal. The sources use window flow control
in which the window size is adjusted dynamically according to the series of congestion-indication

bits it receives.

Based on the DECbit scheme, Explicit Congestion Notification (ECN) was introduced in 1994
[21] and proposed as RFC 2481 in 19%%]. ECN scheme mandates that routers provide conges-
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tion indication for incipient congestion prior to the buffer overflows, such as is done by the RED
mechanism. Two bits of ECN data are needed in the IP headdeGNeCapable TranspofECT)

bit, to indicate whether the end-points of the transport protocol are ECN-capable, aborites-

tion Experienced CE) bit, set by the router to notify the end nodes about incipient congestion.
The arriving packet can be either marked by setting a CE bit or dropped at the router in response
to the congestion. ECN, however, requires support from the transport protocol. At the present
time, the proposal defines new mechanisms for ECN operation only for TCP protocol and leaves
the modification of ECN for other transport protocols to further research. In ECN mechanisms
for TCP, the two endpoints have to verify that they are both ECN-capable during the connection
setup phase. In the TCP header, an ECN-Echo flag is reserved for the receiver to use when inform-
ing the source about congestion when a CE packet has been received. In addition, a Congestion
Window Reduced (CWR) flag is reserved to inform the receiver when the congestion window has
been reduced. Congestion is indicated by a single packet drop in non-ECN-Capable TCP. ECN
mechanisms have been tested and shown to improve throughput over NON-ECN Reno TCP for

bulk transfer as well as transactional transt&]| due to the need for fewer retransmissions.
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2.2 ROUTER-BASED AQM MECHANISMS TO SOLVE THE UNFAIRNESS
PROBLEM

2.2.1 Taxonomy

During the past several years, a number of mechanisms have been proposed to solve the problem
of unfairness. Some of these mechanisms aim at solving the problem from inside the network, and
some focus on developing a responsive or TCP-congestion-control-compatible protocol for use at
traffic sources and destinations. These mechanisms can be classified in several possible ways. In
this research, the algorithms are classified as eithger-basedor end-system-basefased on

their implementation placement.

Router-based algorithms are deployed inside networks (i.e., in the routers) to regulate the traf-
fic flow that causes the unfairness problem. Some of these schemes introduce a level of pun-
ishment that provides an incentive for a protocol implementer to deploy end-to-end congestion
control mechanisms, a crucial factor in solving the congestion collapse problem. End-system-
based algorithms are aimed at defining the end-to-end flow and congestion control mechanism to
be implemented by the end systems. In either case, if the protocol is designed to be compatible
with TCP, it is called a TCP-friendly protocol. Although both of these approaches are important,
having the Internet relying purely on end users’ decisions about flow and congestion control would
be a potential risk to network performance, at least in terms of the unfairness problem. Therefore,
development of a router-based mechanism which addresses a fairness problem becomes a crucial

and necessary task and is the main focus of this research.

Many different protocols and algorithms have been based on each approach. Several TCP-
friendly end-system-based solutions have been developed; these typically use Equdto2ss
to adjust the sender’s transmission rate or rely on other strategies to increase or deciczasgethie
tion windowof TCP. Some of the most important rate-based examples of TCP-friendly transport
layer protocols are TCP-Friendly Rate Control Protocol (TFRX),[Rate Adaptation Protocol
(RAP) [57], Loss-Delay Based Adaptation Algorithm (LDAPJ], and TCP Emulation At Re-
ceivers (TEAR)RS].

The main goal of each of these protocols is to transmit data smoothly in a TCP-friendly manner
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so that users of streaming applications perceive the handling of network traffic to be more effective
than when they are using TCP. Windows-based TCP-friendly end-to-end protocols have also been
devised, such as the family of Binomial algorithms, including Inverse-Increase/Additive-Decrease
(IIAD) and SQRT [], and the General Additive Increase Multiplicative Decrease (GAIMD) [37]
algorithm. These generalize the same TCP protocol using different values for the pararmaetbrs
b that define the increase and decrease stratdgyr a detailed description of these schemes, the
reader is directed to the references cited and survey papers that already exits in the topic, such as
has been written by Widmer and colleaguég]|

Router-based mechanisms are presented in a greater detail in this €hapterfollowing
two sections address the main issues to consider when designing such algorithms and the most
important available schemes. In particuleGP Model-based Identification Sche[2é], Longest
Queue Drop (LQDJ]68], Fair Random Early Detection (FRED#5], Balanced RED (BREDY],
Stabilized RED (SREOX¥8], CHOose and Keep for responsive flows (CHOK&], Stochastic
Fair Blue (SFB)[19], andCApture-REcapture (CARKESJ] are discussed.

2.2.2 Main Design Issues and Goals

One of the most important aspects of a router-based scheme is its ability to achieve fairness among
competing flows, particularly when unresponsive high-bandwidth flows share the bottleneck link.
For instance, these flows can be identified and some sort of preferential dropping policy or similar
active queue management scheme applied, or another unique technique may be employed, as will
be discussed in the following section. Some schemes provide a restriction or punishment for
identified unresponsive flows that consume more bandwidth than their fair share, either at the time
of congestion or during light loads, as a mean of promoting the use of end-to-end congestion
control mechanisms. From this discussion, it can be inferred that two important issues are the
identification of unresponsive flows and the calculation of fair share. Routers have to accurately
identify which flows should be regulated so that they do not accidentally punish well-behaved
flows; once identified, the flows in need of regulation should be penalized fairly. These and other

important issues to consider during router-based mechanism design are explained below.

1For TCP,a = 1 (additive increase) and= 0.5 (multiplicative decrease).
2Most of the materials in this section are to be published . [
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e Ability to identify and regulate unresponsive flows. Identification of unresponsive flows

may or may not be necessary to solving the unfairness problem. Nonetheless, the identifica-
tion of traffic that is harmful to other traffic provides extra flexibility and, usually, better results
than when such identification does not occur. For example, a router may want to punish unre-
sponsive traffic as an incentive for a well-behaved end-to-end congestion control, and it may
wish not to punish well-behaved flows at all. As another example, one may want to arrange
flows in a less priority queue and to restrict them based on flow or another method so that they
can co-exist with good-behaved flows. Flow identification is not for free, though, and care

must be taken to make the identification scheme both simple and scalable.

e Fairness.Although fairness is a desirable goal for all of the schemes of this kind, its meaning
need not be as strict and complex as that of a fair scheduling mechanism. Since flows with
no end-to-end congestion control could gain increasing amounts of bandwidth and might even
completely shut down all responsive flows on the link, placing some regulation or preferential
dropping on these flows may be enough to limit the effect of this problem. This could be done
without using any complex scheduling algorithm. In other words, the degree of fairness could
be relaxed, allowing unresponsive flows that need more bandwidth to obtain the resources they

need as long as they are not harmful to other flows and the network is not congested.

¢ Need to estimate the number of active flowsSeveral schemes require a good estimate of the
number of active flows traversing the router without a large amount of memory space required
in order to calculate the fair share and achieve other goals. This is an important area of active
research closely related to router-based schemes. In Ch@dorief overview of the most
important mechanisms for estimating the number of active flows and an evaluation scheme are

provided.

e Simplicity of Operation. One approach to solving the unfairness problem is to use per-flow
scheduling mechanisms that separately regulate the bandwidth of each flow, as stated by Ke-
shav B7]. However, as demonstrated through a series of simulations conducted by Floyd
and Fall R5], while this mechanism may alleviate the problem of unfairness, the congestion
collapse problem can still occur, regardless of the scheduling type. Per-flow scheduling also
introduces a high cost in terms of state information and complexity in order to achieve fairness.

A simple, yet effective mechanism, rather than a computationally complex one, becomes one
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of the most important goals in a router-based approach. This is one of the main reasons why

most schemes still use FCFS (First-Come First-Serve) as the scheduling discipline.

e Scalability. Scalability is another important issue. Since these schemes are part of the packet
forwarding process and core routers handle thousands or even millions of flows, the mecha-
nisms must scale well. For instance, the complexity of the algorithm and the use of router
resources should not be proportional to the number of flows. Simplicity and scalability are

related and important issues to consider when implementing the algorithms in practice.

2.2.3 Description of the Most Important Schemes

Router-based AQM schemes can be categorized into schemes that need full per-flow state infor-
mation and schemes that do not need full per-flow state information. The latter can require no
per-flow state information, or they can require only partial state information. At the same time, the
schemes that need no per-flow state information can be further divided in two groups depending
on whether or not they need to estimate the number of active flows. Fgsig@diagram showing

this classification. This research focuses on those mechanisms that do not need full state informa-
tion, primarily for scalability reasons. Even though the state-full AQM schemes usually have less
computational complexity than fair scheduling mechanisms, they still have high space complexity.

As a result, these mechanisms have rarely been implemented in high speed or backbone routers.

Note that there is another mechanism, called Core-Stateless Fair Queueing (G6F®naf
aims at providing fairness without maintaining full per-flow state information at the core routers.
However, the edge routers under this scheme need to calculate the arrival rate of every passing
flow and append this value to the header of every packet such that the core routers could provide
fairness based on this information. Because CSFQ’s implementation is much different from the
other schemes, i.e. the need for a tight coordination between edge routers and core routers, and
additional overhead in packet headers, which turn to be its drawbacks, CSFQ is thus not included

in this section.

The rest of this chapter provides a description of each of these AQM schemesl patedes

a qualitative comparison of the main design issues discussed previously.
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Figure 9:Classification of router-based solutions.

2.2.3.1 TCP Model-based Identification Scheme Floyd and Fall's 'Promoting the Use of
End-to-End Congestion Control in the Interne?5] is well-known for its extensive demonstra-

tion of the danger of unfairness and congestion collapse. The authors propose a router-based
solution to identify unresponsive flows and punish them by limiting their rates or putting them in a
low priority queue. Unresponsive flows are identified by comparing the flow’s arrival rate with the
throughput ) obtained from Equatio.10 which represents an approximation of the throughput

that a TCP connection would have received under the same circumstances as the considered flow.

1.5,/2/3 % B
P S —

RTT x \/p
This equation is derived from a simple TCP model that captures the behavior of the TCP

(2.10)

congestion window in steady state, as shown in FigUm9] and previously discussed in Section
2.1.1.3 The variabldV in the picture represents the size of the congestion window when a packet
is dropped with probabilityy. Notice that, in order to determine the TCP throughput from this
equation, the flow’s round-trip timeR{I"'T"), packet size B), and dropping probability) should

be known. If the flow’s arrival rate, as estimated from RED’s packet drop history, is greater than

that obtained from the equation, the flow is identified as being unresponsive, and it should be
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punished by putting it into another class of queue. In this case, the authors suggest Class Based
Queue (CBQ) as a method of partitioning the buffer space into a queue for responsive traffic and
a queue for unresponsive traffic. The flow’s rate restriction is then removed once the flow’s arrival
rate decreases to less tha@2 3 /(RT'T * ,/p) for a new packet drop probability.

This mechanism is quite simple and can successfully identify unresponsive flows if the router
has accurate values for all parameters. Since monitoring all flows’ arrival rates may incur an ex-
cessive CPU processing overhead, the estimation of an arrival rate using RED packet drop history
is suggested4]. This estimation results in a rough approximation that may be somewhat higher
or lower than the actual flow’s arrival rate. In addition, a router has no easy way to determine the
flow’s round trip time; hence, it is unlikely to determine expected throughput precisely. In many
circumstances, this leads to misidentification of unresponsive flows. Overall, the TCP model itself

is overly simplified and unrealistic for actual implementation.

2.2.3.2 Longest Queue Drop (LQD) Suter et al. propose Longest Queue Drop (LQD), a buffer
management scheme to solve the unfairness prol#€mnThe basic concept of this scheme is that

the flow with the largest number of packets that is waiting in the queue should be the first flow
to be penalized or dropped. In LQD, buffer space is partitioned so that each flow has the same
normalized buffer in an effort to achieve a fair bandwidth share. If the size of the entire buffer is
noted asB, each connection has a nominal buffer allocatian, which can be thought of as the
connection’s guaranteed buffer size. Initially; is set toB/n for all 4, in whichn is the number

of backlogged connections.

When a connection needs more thah; buffers, two scenarios are possible. First, if the
global buffer occupancy is less thdh the connection is allocated part of the available buffer
space, as long as the new global buffer occupancy does not ekcegetond, if the global buffer
occupancy at that time is equal #» and the connectionhas a current occupangy that is less
thanb;, LQD makes room for the incoming packet by dropping the front packet from a connection
with a current occupancy exceeding its allocation. The packets are dropped from the front instead
of the back because this triggers TCP’s retransmit/recovery mechanisms faster, helping TCP to
increase its throughputtB]. Three methods are proposed for selecting which connection packets

should be dropped from:
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1. Longest Queue Drop (LQD) This option selects the connection that uses the higher share of
the bandwidth. This can be done by choosing connegtiaith the largest value ofgf — b,).
This method offers the router some level of isolation and protection, as if there is only one
misbehaving flow then it should experience a higher loss rate.

2. Dynamic Soft Partitioning with Random Drop (RND): This option selects a connection at
random from amongst the connections for whgm- b,. The goal of this scheme is to reduce
the amount of bursty loss, as some TCP versions (e.g., TCP Reno), are known to behave badly
in these circumstances.

3. Approximated Longest Queue Drop (ALQD): One drawback of the LQD method is that it
requires a search operation be run on the backlogged queues in order for the connection with
the longest queue to be identified. ALQD improves LQD by maintaining information about

the length and identity of the longest queue.

Simulation has shown that LQD performs quite well in terms of flow isolation even when TCP
flows have different round trip delays. Its drawback is that a router needs to keep state information
for every backlogged flow, otherwise a searching procedure must be performed on the entire buffer
space very time a push-out decision is necessary.

Although the ALQD method was designed to reduce this cost, it may lead to bursty loss since
it tends to drop packets only from the flow with the longest queue. In addition, LQD drops pack-
ets only when the global buffer is full. This results in a lack of early congestion notification, a

prominent feature of active queue management schemes such as RED and its derivations.

2.2.3.3 Fair Random Early Detection (FRED) Even though RED active queue management
has the ability to drop packets from connections in proportion to their bandwidth, the scheme does
not guarantee fair bandwidth sharing among multiple connections, nor does it have a mechanism
for handling unresponsive flow competing with adaptive flows such as TCPs. Fair Random Early
Detection (FRED)45], a modification of RED, also aims to solve the unfairness issue. Essentially,
FRED operates similarly to RED but with additional features, explained below.

In FRED, two global parametersyin, andmazx,, maintain the minimum and maximum num-
bers of packets that may comprise each flow in a queue, respectively. For each active flow, two

variables must be maintained on a per-flow basis: the number of packets in the ddafi¢aad the
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number of times the flow has failed to respond to congestion notificatietk¢). Additionally,
FRED has an extra global variable, average per-flow queueizeq).

FRED guarantees a minimum buffer spaeeirq) to protect flows from having low-speed
connection. An arriving packet is buffered if the connection has fewer pacKets thanmin,
and if the average buffer size is less thanz,,. In order to manage a non-adaptive flow, FRED
enforces a per-flow queueing limit. The flow buffer occupancy is maintained at a maximum leve
(max,) and the number of times each flow tries to go beyondt, is noted as atrike variable.
The buffered packets from flows with higitrike values are not allowed to be more than average
per-flow queue sizeaf gcq), and this prevents unresponsive flows from consistently dominating
the entire buffer space.

Overall, FRED could achieve fairness in many situations as a result of its minimal differences
from RED. However, a main drawback of the scheme is the need to track per-flow information for

every active flow passing through the router, which is both costly and undesirable.

2.2.3.4 Balanced-RED (BRED) The fundamental idea of Balanced-RED or BRELD if to

provide fairness through a RED-like mechanism acting upon each active flow that passes through
the router. BRED maintaingen; as the number of packets of each active fiamithin the global

buffer of sizeB, and it maintainsVactive as the number of total active flows. Three thresholds

are determined for the size of eagllan; in order to perform their dropping policy as follows:

¢ /;: The minimum number of packets that may comprise a flow in the buffer before its packets

start being dropped with a probability pf.

e /. The number of packets that may comprise a flow in the buffer before its packets start being

dropped with a probability of,, wherep, > p;.
e W,,: The maximum number of packets that may comprise the flow in in the buffer.
If the flow state from each arriving packet is not present, it is initialized with; = 0, and the
number of active flowsN active) is incremented by one. If the information of this flow is already

in memory, then preferential dropping is applied to the arriving packet according to the number of

the flow’s packets already in the queuge(:;), as shown above. For any departing packets from
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flow 7, theglen; is decremented by one packetglén, reaches zero, the number of active flows is
decreased by one.

BRED has a well-demonstrated ability to isolate unresponsive flows from responsive flows.
However, unresponsive flows are still able to claim much higher bandwidth than responsive flows.
This effect is significant when the buffer size is insufficient for making the effective buffer size
of each flow less than its bandwidth-delay product. There are many parameters that may ef-
fect the performance of BRED as they do RED. However, Anjum and Tassiulas did not explore
whether or not those parameters would have a significant impact on the different types of scenarios.
Lastly, BRED also requires per-flow state information to make decisions about which packet to be

dropped.

2.2.3.5 Stabilized RED (SRED) Stabilized RED (SRED)8] aims to stabilize the occupancy
of an FCFS buffer, independently of the number of active flows. Therefore, the dropping probabil-
ity depends on both the buffer occupancy and the estimated number of active flows.

The TCP bandwidth equation (EquatigriQ shows that

cwnd ~ p*% (2.11)

wherecwnd is the flow’s congestion window angdis the packet drop probability. With
flows, the sum of theV congestion windows is in the order 8f x Pz (MSSs, assuming all flows
have the same Maximum Segment Size). Ott and colleagues argue that the target buffer occupation,
o, must be of the same magnitude/as< p*%, and they assum@, = N x p*% MSSs. Therefore,

p must be in the order a¥2. This becomes part of SRED’s dropping policy, as follows:

1
zap — Psre in(1, 2.12
Pzap = Psred(q) X mln( (256 « (P(t))2) ( )
with
Dmaz if B <q<B,
Dsred(q) = % X Pmaz if %B S q < %B’
0 if0<qg< %B.

wherel/P(t) is an estimate of the number of active flows in the time shortly before the arrival

of packett, B is the buffer size, and is the instantaneous buffer occupancy. According to the
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SRED dropping policy, as long as the number of active floiwvdoes not exceed 256 (an arbitrary
number), the dropping probability is also dependent upon the number of active flows to maintain

the target buffer occupancy. That is

_ Psred 1 Psred

2
Pzap = 553 X (PIOE "~ 65,536 x (number of flow$".

OnceN exceeds 256, the dropping probability is equabiQ, only in order to prevent TCP
sources from spending a great deal of time in a time-out status due to excessive dropping probabil-
ity.

Rather than maintaining per-flow state data, in order to estimate the number of active flows,
SRED maintains Zombie Listwhich includes thel/ recently seen flows. Each flow in the list
containsCount, a variable that represents how often its packets arrive. If the Zombie List is full,
it's a packet’s flow identifier is added to the list as it arrives andihent is set to zero. Then, the

packet is compared with a randomly chosen item in the Zombie List:

e If they match, theC'ount of that flow in the list is increased by one. This event is callétita

¢ If they don’t match, the flow identifier that was randomly picked from the list is replaced with
that of the arriving packet, and tliéount is reset to zero, with a probability f This event is
called aNo Hit.

When packet arrives, let

0 if nohit,
Hit(t) =
1 if hit

andP(t) be an estimate for the hit frequency around the time of arrival of-thegpacket at the

buffer, according to

P(t) = (1—a)P(t — 1) + aHit(t) (2.13)

with 0 < a < 1. Finally, according to Ott et al., the number of active flaWss estimated by
1/P(t).
This estimation is based on the assumption that an arriving packet belongs toiliblva

probability of r; and that a zombie represents flowith a probability ofr;. So, for each arriving

packet, the probability of causing a li(¢) is >-,72. For N flows with identical traffic intensity
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T = . for1 <i < N, this means thaP(t) = >>;77 = <. In general, this estimation is accurate
if all flows have the same traffic intensity %sg Zf\il 2 < 1.
One of the drawbacks of SRED is that it assumes tha¥ dllbws have the same traffic intensity.
In reality, this is not the case. In addition, although the SRED scheme can use its hit mechanism to

identify unresponsive flows, it does not provide an effective penalty.

2.2.3.6 CHOKe A design goal of CHOKe@HOose and Keep for responsive flows, CHOose
and Kill for unresponsive flowyg52] is to offer a simple mechanism for controlling unresponsive
flows. To achieve this goal, a small modification is made to the plain FCFS queue with RED active
gueue management. The CHOKe algorithm is illustrated in FigQre which extra functions of

CHOKe are shown in gray while RED functions are shown in white.

Arriving packet

Admit new packet Draw a packet at
random from queue

End
Both packets n
y from same flow?
Drop both packets y AvgQsize <= Max,, ?

Admit new packet with
End i~
a probability p

‘ Drop the new packet ‘

End End

Figure 10:The CHOKe algorithm%2)].

When a packet arrives, if the average queue size is greatenthap, CHOKe draws a packet
randomly from the bufferdrop candidatgand compares it to the arriving packet. If they are from
the same flow, then both are dropped; otherwise, the arriving packet is accepted into the queue with
a drop probability that is computed by RED. The basic idea behind CHOKe is that a FIFO queue
is more likely to have packets that belong to unresponsive flows than are other non-FIFO queues,

and they are more likely to be chosen for comparison. Therefore, packets from unresponsive flows
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are likely to be dropped more often.

This scheme works well if there is only one unresponsive flow in the network. Therefore, Pan,
et al. proposed a modification that would deal with multiple unresponsive flows. In their modifica-
tion, m > 1 packets are randomly chosen from the queue per each packet arrival. To minimize the
complexity of multiple random samplings per each packet arrival, the buffer is partitioned between
ming, andmaxy, into k regions, and the number of drop candidat@$ {0 be randomly chosen
from the buffer is sett@ - i(: = 1...k) according to the region of the average buffer occupancy

CHOKe is very simple to implement, maintains minimum state information and controls unre-
sponsive flows. However, it can control unresponsive flows only if there are enough packets from
the flows in the buffer at the time of congestion. Pan,et al. demonstrate in their simulation study
[52] that with CHOKe, the high-bandwidth UDP flows still consume much greater bandwidth than
do TCP flows. In addition, CHOKe operates on a per-packet basis; therefore, in some scenarios, a

flow with twice the packet size can consume almost twice the bandwidth of other Bdjvs [

2.2.3.7 Stochastic Fair Blue (SFB) The main novelty of the Stochastic Fair Blue (SFBY|
scheme is that it attempts to manage unresponsive flows without relying on queue occupancy statis-
tics. SFB maintains a set @f hash tables that detail different hash functions, Wititems in each
table. Each item, referred to as a bin, tracks both the number of times flows are hashed into that
item and a dropping probability,,. Each arriving packet is hashed, according to a string such as
the flow ID, into one of theV bins in each ofl. hash tables, and the number of packets stored in
that bin is increased by one. If the number of packets in a particular bin is higher than a certain
number, the dropping probability,) for the bin increases by a certain amount. On the other
hand,p,, is decreased when the number of packets in a bin drops to zero. In the SFB scheme, for
each flow, there aré values ofp,, from the L tables to which it is hashed. The final dropping
probability is, however, determined as the minimum value of thgse

According to this algorithm, an unresponsive flow consuming high bandwidth would ramp up
pm t0 1 in all of the bins ofL tables. In this way, the flow is then identified as a high-bandwidth
unresponsive flow that should be penalized with rate limitations. Because The use of multiple hash
tables makes it unlikely that two different flows would be hashed into the same items on every

table. In other words, a perfect hashing for every active flow that passes through the router is not
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Figure 11:Example of SFB19].

required. Consequently, the possibility of penalizing a responsive flow that hashed into the same

item as any unresponsive flow is reduced.

Even with multiple hash tables, however, SFB can incorrectly identify a responsive flow as
an unresponsive one, if there are many unresponsive flows at the router. In this instance, the flow
would be continually penalized without being reclassified. In addition, an identified unresponsive
flow that later become responsive would also be penalized without being reclassified. To correct
these problems, Feng et al. propose that SFB have a moving hash in which the hash function is
changed and reset at regular intervals (e.g., every two seconds). The authors also suggest the use
of double sets of tables that work at different times, so that one set can warm up a mechanism
before another set is reset. This prevents unresponsive flows from getting more bandwidth during

the time after the reset.

Nonetheless, the size of the tables should be carefully pre-determined because the higher the
number of unresponsive flows, the higher the probability of misidentification. Also, the higher the
number of responsive flows - even short-lived ones - the higher the number of responsive flows
being hashed into the same bins as unresponsive flows and, therefore, penalized. In addition, the
identified unresponsive flows are punished by rate limits where the maximum rate allowed must be
manually determined and static. Since the mechanism is independent of queue occupancy, some

unresponsive flows could still be punished despite an ample amount of available buffer space.
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2.2.3.8 CApture-REcapture (CARE) CARE [8]is based onthe Capture-Recapture (CR) model
that has been used widely by ecologists and biologists to estimate the number of animals in a
population and by software developers to estimate the number of defects in software during the
inspection process. The model is applied here to estimate the arrival rate of traffic flows and the
number of active flows using th&l, CR model and thé/;, CR model, respectively.

The basic idea of thé/, model is that the proportion of the number of packets from flow
(m2) amongt captured packets is the same as the proportion of the number of packets from flow
i (n2) in a buffer of sizeB. If CARE captures incoming packets, the incoming rate of flaw
can be estimated using the equati®r m,/t. On the other hand, th&/, model is more suitable
to a scenario in which the captured probabilities are different among flows; thus, it is used for
estimating the number of active flowd’]. For this task, CARE uses thlackknife estimatoto
estimate/N. Because the derivation of the Jackknife estimator is difficult, the estimation of the

number of active flows is briefly summarized as follows:

1. Capture an incoming packet with probability,, and store it in thecapture list which can

storet packets.

2. After capturingt packets, construct the capture frequency to see how many unique flows have

been seen oncd), twice (f»), and more, up to times (f;).

3. Based on these capture frequencies, use the Jackknife estimator to estimate the number of

active flows (V) using the following equation:

Ny = (l(t, K)1f1 + a(t, K)2f2 + ...+ (l(t, K)tft (214)

wherea(t, K); are the coefficients in terms of the number of capture occasigrend the
order of estimationX). An optimum value of’ must be determined becauselasncreases,
the bias ofN;x decreases while the variance 8 ; increases. To determine the optinig

the coefficients fork’ = 1 to K = 5 must be derived. Then, combined with frequency data,
Ny, Nys, ..., Nj5 are calculated. Next, an interpolated estimator betweenl andm, where

m is the first order of estimation for the significance le¥&] > 0.05 is computed. Ifin = 1,
thenN;, can be taken as the estimator; otherwise, the interpolation betWggn ) andN ;,,,

is used to estimate the number of active flows.
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Once the number of active flows has been estimated, CARE can drop packets from the flows
that consume more than a fair share of bandwidth with a dropping probability ef (¢/(N,x -
ma)).

CARE has several drawbacks. First, in order for the estimate to be more accurate, the model
must make a large number of capturésqompared to the number of flows. This has a direct
impact on the scalability and simplicity of the scheme’s operation. The need for many captures
means running the capture procesimes, building a capture frequency table of up t@lues, and
calculating the coefficients to apply Equatidri4and find the estimated number of flows. This
might require a great deal of CPU processing power, making CARE unsuitable for high-speed
routers. Second, there is no mechanism described by Chan and Hirtalréduce the size of
the capture list, which can grow to the number of flows (not a scalable solution). Finally, that the
number of flows is considerably larger than the size of the capture list is assumed and no evaluation
is provided to assess CARE’s performance. In other words, CARE works well when the memory
space available is adequate, although it does not require full per-flow state information. Otherwise,
the estimate of the number of active flows could be inaccurate. Further discussion about estimating

the number of active flows is provided in Chapier

2.2.4 Summary

The characteristics of the existing router-based mechanisms presented in this chapter are summa-

rized in Tablel based on their design criteria.

Given the widespread nature of the current Internet architecture, deploying a router-based
mechanism that requires per-flow state information is impractical, since it would require exces-
sive memory resources and CPU processing overhead. In addition, it has been demonstrated that
a large amount of traffic is actually carried by a small number of connections, and the many re-
maining connections are short-lived or low-bandwidth flo28, [38, 12]. Generally, short-lived
flows may be idle most of the time, and some flows may transmit only a few bytes of data. Holding
per-flow information to provide a fair share of bandwidth for every active flow (e.g., such as would
be done by LQD, FRED, and BRED), may result in wasted memory resources and unnecessary

CPU processes.
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Several schemes recently proposed focus instead on regulating only high-bandwidth flows so
as not to harm small or short-lived flows which are the majority of the Internet traffic. TCP model-
based identification schemes and CHOKe are examples of such schemes. In comparison, SRED,
SFB, and CARE attempt to solve the unfairness problem by using a data structure that holds partial
information about the flows and is used to identify unresponsive flows at the time of congestion.
However, as discussed in this section, these schemes have certain limitations.

To this end, none of the schemes presented offer a well-round solution, and a thorough research

investigation still is needed in this area.
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3.0 BLACK: ANEW FAIRNESS BUFFER MANAGEMENT SCHEME

As discussed in the previous chapter, when examined in light of the main design issues and goals of
router-based solutions provided in sectidr2.2, the existing buffer management or AQM schemes
either fail to solve the unfairness problem, or they suffer from serious limitations, especially in
terms of scalability and simplicity. Several per-flow packet scheduling mechanisms originally
proposed to ensure fairness of network service have the same problem. These have not been
employed widely in high speed networks, but have been limited to premium services, as a result of

both the need to maintain per-flow state information and the computational complexity.

Packet dropping through AQM mechanisms such as those discussed in the previous chapter is
a more practical approach, as they are rather less complex and thus becomes a main research in
this field. Early fair AQM techniques such as LQD, FRED, and BRED alleviated the unfairness
problem effectively, but not efficiently; the techniques still required per-flow accounting of buffer

usage for every single active flow.

Rather than monitoring every active flow, several newer packet dropping schemes focus only
on high-bandwidth or misbehaving flows, tracking and regulating them to ensure that they do
not steal bandwidth or shut down small and short-lived flows. TCP Model-based Identification,
CHOKe and CARE are the examples of such schemes. Other packet dropping schemes, such as
SRED, SFB and CARE, hold partial information of traffic flows and rely on that information to
penalize unresponsive flows when congestion occurs. However, all of these schemes have several
limitations, such as penalizing misidentified flows, lacking protection for small flows, or needing
a high amount of memory and CPU processing power. Moreover, none of these schemes has
achieved fairness in handling TCP flows with varied implementations or round trip delay. These

limitations are discussed in Secti@r
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The purpose of this chapter is to introduce BLAE & novel AQM mechanism that ensures
throughput fairness while keeping memory resource low by holding only partial per-flow state
information. In addition, BLACK eliminates all of the problems faced by the existing light-weight
fair AQM schemes. This discussion presents the basic idea of the new scheme, then explains the
structure and each component of the scheme in greater detail. A thorough evaluation comparing the
new scheme with existing schemes is also provided. The limitations of BLACK are summarized

at the end of this chapter.

3.1 PRELIMINARIES

The goal of the new scheme is to avoid holding per-flow state information for every passing flow.
However, tracking and penalizing flows that consume more resources than their fair share may
necessitate that partial flow state information be maintained. In order to manage memory resources
more efficiently, the proposed scheme is designed to keep only partial information about each
flow’s share of resource, such as its buffer occupancy information, and it is designed to keep this
information only for those flows that consume more than their fair share. When congestion occurs,
packets from these flows are subjected to preferential dropping, according to the proportion of
their consumed resource. Furthermore, according to this scheme, packet dropping occurs only
when necessary; the probability that dropping will occurs increases with the buffer size since the
latter is an indicator of the amount of network congestion that exists. As a result, not only do large
flows gain enough bandwidth when the network’s traffic load is light, but most of the small flows
are also protected. It is expected that managing the queue according strategie of fairly sharing
available buffer space reduces the bias against round trip time for TCP traffic. On the other hand,
those traffic flows that consume less buffer space than their fair share and are usually carried by a
responsive protocol like TCP are handled by a global active queue management, such as RED, that
is able to control the queue size and, thus, the delay. This active queue management function also
provides early notification of congestion to responsive TCP sources.

One concern about keeping limited per-flow state information relates to how the router deter-

mines the fair share that each flow should be granted. This research addresses the question as it

IMost of the materials in this chapter were publisheddin [
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seeks a mechanism to approximate each flow’s fair share at the time of congestion. One way this
is done is by estimating the number of active flows. With this information, a theoretical dropping

policy functioning at the router is developed to achieve fairness among active flows.

3.2 BLACK

The idea of a new fairness scheme that reduces use of memory space by holding data only for large
flows results from several studies which show that most of the bytes of Internet traffic are actually
carried by a small number of connections and that the remaining large number of connections
are low-bandwidth flows. This phenomenon is referred tonae and elephantswith the mice

being the small flows and the elephants being the large flows that contribute the most bytes to the
network. Using data collected from OC-12 links in the core of the Sprints Tier-1 IP backbone
network, Papagiannaki et al. find that the proportion of large flows to total flows is approximately
60% [53]. These findings are shown in Figui@€. Kim’s analysis of 20 traces of length 60-120
seconds shows that 50% of all flows are single packet flows and 80% of the flows contain less than
20 packets38], and this conclusion is similar to that of other studi2g, 30]. Figure13shows the
cumulative sum of per flow throughput where the top three flows total 50% of all bytes counted
and the top 12 flows produce 67% of all bytes counted. Kim also suggests that the amount of
memory space allocated to control the congestion could be greatly reduced by accounting for this
phenomenondsg].

From these results, only few large flows contribute to most portions of bytes in the network and
they are usually a cause of congestion. In addition, several streaming media applications usually
consume large amount of bandwidth while providing no end-to-end congestion control mechanism,
or very limited, and become the main factor of unfairness problem because they do not reduce the
transmission rate on the advent of congestion. Therefore, dropping the packets from these types of
flows at the router could reduce the level of congestion more effectively than dropping the small
flows. And because those large flows are small in number, the number of per-flow state information
could be greatly reduced by keeping track of and control only this type of flows that feed a larger
portion of traffic to the queue. When the congestion occurs, these flows should be more responsible

and thus their packets should be dropped first. On the other hand, small flows usually come from
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the delay sensitive applications like HTTP or Telnet, where packet dropping is not preferable.
These types of flows are also typically not the main factor of the congestion and should not be
the first priority to be dropped. The idea of blacklisting and control those unresponsive or high-
bandwidth flows becomes a name of the new fairness schd8h&€EK (Blacklisting unresponsive

flows)

These results show that only a few large flows contribute most of the bytes in the network
and that they are usually the cause of congestion. In addition, several streaming media applica-
tions usually consume a large amount of bandwidth while providing no - or limited - end-to-end
congestion control mechanism, and these applications become the main cause of the unfairness
problem because they do not reduce their transmission rates on the onset of congestion. Therefore,
the router’s dropping of packets from these types of flows could reduce the level of congestion
more effectively than dropping packets from the small flows. In addition, because there are few
large flows, the amount of per-flow state information could be reduced greatly by tracking and
controlling data for only the flows that feed a large proportion of traffic into the queue. When con-
gestion occurs, these flows are likely more responsible; thus, their packets should be dropped first.
Also, small flows usually come from delay-sensitive applications like HTTP or Telnet, in which
packet dropping is not preferable. Since these types of flows are typically not the main cause of
congestion, they should not be the first priority to be dropped. The strategy of blacklisting and
controlling unresponsive and high-bandwidth flows is the source of the name of the new fairness

schemeBLACK (Blacklisting unresponsive flows)

The basic approach of BLACK is to provide a fair bandwidth allocation mechanism that aims

to achieve fairness among responsive and unresponsive flows as well as among responsive TCP
flows with different round trip delays. It does this by tracking and controlling high bandwidth
flows. The information BLACK keeps includes the amount of buffer consumed by these flows, or

a buffer occupancy fraction, as an indicator of a flow's bandwidth share at a network link. Suter
et al. and Laksham and Madhow have shown that, at a FIFO router, the bandwidth allotted to
different active connections is roughly proportional to their share of buffer space. Hence, if the
router allocates the buffer evenly among all active flows, fair bandwidth allocation can be achieved

at a high degreesp, 42].

In one of our the pilot studies, five constant-bit-rate (CBR) traffic flows with arrival rates of
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1 Mbps, 2 Mbps, 3 Mbps, 4 Mbps, and 5 Mbps were fed into a single link with a bandwidth of

5 Mbps. The queueing discipline applied was a modified version of tail dropping. In this case,
the router kept track of all five traffic flows and controlled them so as not to allow any one flow

to consume more buffer space than its fair share according to the buffer occupancy fraction. Even
though the arrival rates of these five flows were different and the sum of the arrival rates was
much greater than the bottleneck link bandwidth, the throughput achieved by these flows was well
controlled at the fair rate at 1 Mbps, as shown in Figide An intuitive reason for this result is

that, under a FIFO system in which no packets in the queue are dropped, the amount of the packets
gueued in the buffer is the amount of the packets that would be served eventually, if the queue
were never empty. Therefore, the fair amount of buffer occupancy indicates the fair amount of

achievable throughput.
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Figure 14:Simulation result showing fair throughput achieved by controlling the fair buffer occu-

pancy fraction.

However, instead of directly counting the exact amount of packets that enter and leave the
gueue for all the flows, a sampling technique should be used to approximate a buffer occupancy
fraction for the flows that are recorded. This information of only high bandwidth flows are man-

aged to be stored, using some memory management, in a limited cache memor{i&4lledche
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memory The packets from the flows that occupy more than their fair share of buffer space should
be dropped according to the proportion of buffer space they consume relative to their fair share.
Furthermore, packet dropping should be performed only when necessary, such as with the increase
of dropping probability according to the buffer size. In this way, large flows gain additional band-
width when the network has a light load and most of the small flows are also protected. When
the queue is managed according to fair share of buffer space, it is expected that the bias against
round-trip time experienced by TCP traffic also is reduced, too.

In addition, to keep both the average queue size and the queueing delay low, while provid-
ing early congestion notification to responsive traffic sources, a global active queue management
scheme should work in conjunction with BLACK. RER{] is a good choice for this task since
it is one of the most well-known schemes and has been implemented by a large number of router
manufacturers already. In this scenario, all packets pass through the preferential packet dropping
policy of BLACK before going to the RED function for the benefits discussed above.

The design of BLACK then requires four components as shown in the Figur&hese will

be discussed in detail in the following sections.

1. Buffer occupancy fraction approximation.
2. Packet dropping function.
3. HBF cache memory management.

4. Estimation of the number of active flows.

3.2.1 Buffer occupancy fraction approximation

It is desirable to keep as few per-flow states as possible. Therefore, only an approximation of what
fraction of buffer space each flow occupies or a list of possible high-bandwidth flows is needed.
To meet this goal, a sampling technique has been developed.

When each packet arrives, if the queue size exceeds a certain threshold, the router randomly

selects one packet from the queue. A flow?Df the randomly chosen packet is recorded. When

2A flow ID could be a combination of source and destination address, source port and destination port, or only a
FlowlID field for an IPv6 packet.
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Figure 15:Components of BLACK.

this happens, Hlit (1) for that flow is declared. Next time, if the randomly selected packet is from

the same flow, the value of ifsis increased by one.

After m packet samplings, the router checks a numbetlios or 4 for each recorded flow
ID. For flow i, a result of the number afdivided bym is called aHitFraction (H;), which is an
approximation of the average flow’s buffer occupancy fraction.

To reduce an approximation error £f, an exponential weighted moving average can be used

to smooth out the value df; for flow ¢ over multiple sampling periods as

~

H; = (ax H)+ (1 —a)* H; (3.1)
wherea < 1 andH; is an instantaneous value idft Fraction on the last sampling period. A
flow that has a largeitFraction than a fair buffer occupancy fractiod®¢) is considered to be a
possible high-bandwidth flow.
The advantage of thElitFraction method is that it is simple enough to identify the buffer
occupancy fraction of multiple high-bandwidth flows throughrandom packet selections. In
addition, because packets from high-bandwidth flows in the queue are more likely to be picked up,

partial information can be collected and there is no need to maintain per-flow states for all active

flows. This protects small or short-lived flows from being penalized as well.

46



Di

0 |
t t+1 +2 +3 1+4 Period

Figure 16:Example of oscillation in dropping probability according to Equaan

3.2.2 Packet dropping function to control high-bandwidth flows

Once buffer occupancy fraction information is obtained, the flows WitRractions greater than
their fair buffer fraction B;) are subject to dropping. The dropping probability is set to the per-

centage of extra buffer space that each flow consumes in excéss which is

pi= min (1, %52) if H; > By

0 if H, < By (3.2)

However, if the dropping probability is set according to the EquaBdhfor the entire next
sampling period, it may result in an oscillation of the flow’s achievable throughput.

For example, assume that unresponsive flowith an arrival rate that is much greater than its
fair share, is fed into the queue using a dropping policy according to the Eqa#ioAt the end
of the current sampling periadthe queue would have information about buffer occupancy of flow
i, or H;, which is much greater thaBi;, and the dropping probability calculated using Equation
3.2is set to 1. In the next period,+ 1, no packets from flow are allowed to get into the queue
due to their high dropping probability. This blocking is in effect for the entire periedl. As a
result, the probability; at the end of period + 1 would be zero, leading to no packet dropping
in periodt + 2, and this fluctuation would repeat endlessly as long as flavaintains its traffic

stream. This problem is illustrated in Figuteé.
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3.2.3 Fine tuning buffer occupancy approximation for adaptive packet dropping

The oscillation of achievable throughput may occur because the dropping probability is set purely
according to buffer occupancy information in the past and does not reflect an instantaneous fraction
from the current period.

To minimize the oscillation, the dropping probability should be adjusted periodically so that
rather than being constant after each sampling period, it is dynamically adjusted according to the
current buffer occupancy fraction. Instead of usingtig-raction parameter as calculated based
on past information alone, the numbertit (%2,) collected in the current period also can be used
to calculate the dropping probability through the averdg€raction (H,) that accounts for both
past and current information, as follows:

= he + (H; % m)

H =" "t""77 .
(=TI (3:3)

wherem, is the number of sampling packets so far in the current periodpane m. In
this manner, iff; is higher than the fair buffer fraction, then this packet will be dropped with a

probability of

pi= min (1, 22E0) if A, > By

0 if 7, < By (3.4)

This strategy is used in place of Equati®2. Note that the term/; «m) in Equation3.3is the
average number dfit (1) from the past sampling periods. A mathematical derivation confirming

the correctness of Equati@3is provided in an Appendix A.

3.2.4 HBF cache memory management

HBF cache memory is designed to hold only information about some connections that are likely
to consume more bandwidth than their fair share. Thus, BLACK needs some mechanism to keep
only large flows in the limited cache memory size. In this way, it does not need to hold the per-flow
state information of every single passing flow. The HBF cache memory management is adapted

from the LRU mechanisn3g, 39] as follows.
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This type of memory management is based on a web-caching technique in which frequently
accessed web objects are stored in cache memory so as to be more accessible to web clients in the
future. In general, if the web clients request those objects that are in the cache memory, they have
shorter delays because the objects are sent from the memory rather than from a web server further
away. The key mechanism of web-caching is web cache replacement which determines which
objects should stay in the memory for future access and which objects should be swapped out of
this limited memory. Least Recently Used (LRU) mechanism is one of the simplest and widely
used web cache replacement strategies. LRU is based on the assumption that the least recently
used objects are not likely to be used again in the near future and, therefore, should be swapped

out of the memaory.

HBF Cache memory

 If match, move to top.

Sampled
packet

Buffer

O —

Figure 17:HBF cache memory management.

The modified LRU mechanism provided by Kim and, separately, Kim and Whang is adapted
from the LRU web cache replacement mechanism in order to identify and track long-lived high
bandwidth flows using a limited cache memoB8[ 39]. Having analyzed the traffic trace, the
authors found that most bytes were from only 1-2% of all flows. In addition, they determined that
once a flow’'s packet arrives at the router, there is a very high probability that the next packets from
the same flow will reach the router in the near future. These results show a good situation for
web caching to be used as a mechanism for tracking long-lived high bandwidth traffic. With this

approach, a flow ID, rather than a web object, may be kept in the memory. Once a flow’s packet
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arrives at the queue, the router looks through the cache, arranged as a linked list, to determine if
the flow ID has been recorded. If a match is found, a counter tracking the number of packets from
this flow is increased by one and the item is moved to the top of the cache. If no record of this
flow exists in the memory, the item’s counter which had been set to zero is replaced with a flow
ID of the incoming packet’s flow. However, if no match is found and no item has a counter set to
zero, then the last item will be replaced, since it is the one that was least recently seen. If a counter
exceeds a certain threshold, the flow associated with that counter is declared to be a long-term
high-bandwidth flow.

HBF cache memory management in BLACK is adapted from the above operation to track the
approximation of the buffer occupancy fraction. For each packet arrival, one packet is sampled
from the queue and the router looks up in the cache to determine if the packet’s flow ID has been
recorded. If a match is found, ifit value will be increased by one and the item will be moved to
the top of the cache. If no record of the flow is found, then the last item will be replaced with the
record of the incoming packet and this will be moved to the top of the cache. However, in order
to prevent the record of a large flow being removed from memory, such a replacement will occur
only if the Hit Fraction of the last item is less théty.

In addition, as described by Kim, to improve accuracy by filtering out small flows, or which
previously refferred to as mice flow, a random decimator is ad@8{ |f the cache size is full
and no match is found, the last item in the cache is replaced by the incoming packet with a prob-
ability of p,.. A small value, such as 0.05, is suggestedyforthis implies that only about one of
twenty packets would be able to make a replacement. Hence, it is more difficult for short flows
to overwhelm the cache. As Kim explains, use of this random decimator increases the accuracy
of identifying long-lived high bandwidth flows, or elephant flows, from 76.36% and 48.67% to
92.55% and 81.73%, respectively, in two experimeB8.[In BLACK, the last item is replaced
with the probabilityp, only if the last item has &litFraction of less than Bf.

3.2.5 Estimation of the number of active flows

One of the parameters necessary for networks to provide fair service is the value of each flow’s

fair share of network resource. In BLACK, the buffer occupancy fraction is kept in the HBF
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cache memory and used by the preferential packet dropping function. Therefore, the fair buffer
occupancy fraction is estimated. One estimate of the fair fraction is based on the number of active
flows (Vact). In other words, the fair fractiony) is simply1/Nact.

Because per-flow state information should be minimized, an exact count of the number of
active flows passing through the router is both undesirable and impossible, especially for high
speed routers. BLACK estimates the number of active flows using a simple operation based on the
information provided by the packet sampled during the first stage, as follows.

Upon a packet’s arrival, BLACK compares its flow ID to that of a packet randomly sampled
from the buffer. If the arriving packet and the sampled packet are from the same flow,rttegoha
is declared.

AssumingN flows arrive at the router, labeled as flows numbelrg] ..., N. Let P, ; be the
probability that an arriving packet belongs to floyand let it be equal ta;. If the incoming flows

have the same traffic intensity, then= % foralll <¢ < N.

SO

TCP
Sources

TCP
Sinks

R1 R2
10 Mbps

W
S0

Figure 18: Simulation topology for pilot experiment on the estimation of the number of active

flows.

Let P, ; be the probability that a randomly chosen packet from the buffer belongs ta.flow
a similar manner t@&, ;, P;; is approximatelyr; = % Based on the definition of matchevent,

the probability that anatchwill occur for an arriving packet from flow, P41, is then equal to

Pmatch,i = Pa,i X Ps,i
1 1
fr—y — X —
T T
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Figure 19:Results from a pilot study of BLACK’s estimation of the number of active flows.

(3.5)

%‘ — f]m‘ [

given thatP, ; and P, ; are independent of each other. As a result, that probability threttah
will occur for an arriving packet from any of th& flows, P,,.:.., if the N flows have the same
traffic intensity, is

Praten = Z Pmatch,i = (36)

i=1 i=1 NTN
Form arrival packets, a probabilit¥,,.;., can be estimated by simply counting the number of

matchesvents overn packet arrivals. Hence the estimated number of active flows is

1 m
Nact = F|N|=F = 3.7
“ V] {Pmatch] (a number ofmatchevents) 3.7

during them arriving packets interval.
In a pilot study, BLACK's estimation of the number of active flows was tested in a simulation

based on the topology shown in Figur& Two sets of experiments were conducted with 25 TCP
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flows and 50 TCP flows, respectively. The results are plotted in the Fifuaed show a close
approximation of the actual number of passing flows.

One of the problems encountered by the above simplified method is a decrease in accuracy
when traffic intensity varies greatly. To relieve this effect, this estimation must be performed after
the packet dropping function. Since the queue accepts packets from active connections in a rather
fair manner through the dropping policy, it is expected that variance of the traffic intensity can be

minimized.

3.3 COMPARATIVE EVALUATION OF BLACK

In this section, several scenarios are used to evaluate BLACK and some of the other important
AQM schemes listed in Chapt@r2 The mechanisms that require full per-flow state information

are not included here because of the practical limitations posed by scalability problems, as is espe-
cially the case for high-speed routers handling several thousands of flows. Specifically, CHOKe,
SFB, BLACK and CARE, are evaluated. SRED and the TCP Model-based Identification mecha-
nism are not evaluated because, although both could identify misbehaving flows, SRED does not
provide a mechanism to control them and the TCP Model-based Identification requires an addi-
tional mechanism (e.g., a separate CBQ queue) to handle them. For cpmparative purposes, RED is

included, since it is the most widely used AQM scheme.

3.3.1 Simulation setup

NS-2 [1] is used as a simulation tool with the dumbbell topology shown in Figor® assess the
performance of RED, SFB, CHOKe, BLACK and CARE under four different scenarios. The first
scenario is a comparison of the effectiveness of the AQM schemes in achieving fairness when TCP
sources compete with one unresponsive flow. In the second scenario, the first scenario is repeated
but includes multiple unresponsive flows. In the third set of simulations, only TCP sources are
considered but with different round-trip times. The fourth scenario compares the effect of the
AQM mechanisms on TCP-friendly protocols. Common simulation settings are as follows.

Constant-bit-rate UDP flows compete against a number of TCP flows over a 5-Mbps R1-R2
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Figure 20:Simulation topology for an evaluation of BLACK.

link with a propagation delay of 10 ms. End nodes are connected to the routers at 100 Mbps with
2 ms delay. Both UDP and TCP flows transmit data with a packet size of 1 Kbyte. The maximum
buffer space at the router R1 is set to 300 packets. Each experiment lasts for 200 seconds of
simulation time, and it is repeated 20 times. The statistics are collected from 50 seconds to 200

seconds of simulation time.

SFB is set with a default configuration of two levels of hash functions of 23 bins with double
set of hash tables for moving hash functions (totall®fx 2 bins) using the NS code provided
by [2]. The miny, andmaz,, threshold settings for BLACK, CHOKe, and RED are 50 and 150
packets respectively which are the Gentle RED parame2&fsior the case of CARE, the number
of capture occasions)(is 200, where 50 out of 200 can be used for the estimation of the number
of flows, and the probability,,, is 0.04 according tod]. BLACK uses the sample sizen() of
3,000 packets and the size of HBF cache memory of 20. The choice of BLACK parameters are

discussed in SectioB.3.5and3.3.6 The parameter settings are summarized in Table
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RED miny, = 50 packetsynax;, = 150 packets.

CHOKe miny, = 50 packetsynax, = 150 packets.

SFB Two levels of hash functions of 23 bins with double set of hash

tables for moving hash functions (total 4 x 2 bins).

CARE Capture occasiont) = 200 with 50 of this value is used for the

estimation of the number of active flows

BLACK ming, = 50 packetsynaz,, = 150 packets, sample sizei) =
3,000 packets, HBF cache size = 20.

Common parameters | Maximum buffer size = 300 packets.

Table 2:Parameters of different queues for the evaluation of BLACK.

3.3.2 Single unresponsive flow

In the first experiment, only one UDP source transmits packets at the rate of 5 Mbps from node N5
to S5. The R1-R2 link is set with a low rate of 5 Mbps with 10 ms delay. When the UDP’s arrival
rate is equal to the R1-R2 link bandwidth, the R1-R2 link becomes a severe bottleneck link. An
amount of 100 TCP traffic is randomly selected to originate from one of the source nodes NO - N4
and flow to one of the respective sink nodes SO - S4. The transmission delay of the access links
are setto 10 ms. BLACK queue is equipped at the router R1 with the HBF cache size of 20, a size
roughly equal to only 1/5 of the number of long-lived flows. For SFB, according according Feng
et al. [19], the suggested mechanism for handling misbehaving flow is to limit the rate so that it
would not exceed a certain defined level. Thus, three rate limit thresholds for SFB are set — twice
the fair rate, half of the fair rate, and at the fair rate.

The individual throughput of each of the 100 TCP traffic and UDP traffic under RED, CHOKe,
SFB, and CARE are summarized in TaBle

As shown in the Table, for RED, the unresponsive UDP flow grasps almost all of the band-
width leaving the remaining TCP connections with an extremely low throughput of 5.046 Kbps,
compared to the fair share of 49.5 Kbps (5 Mbps divided by 101 as the number of flows). The result

is not unexpected. Although RED is designed to drop packets from the flows in proportion to their
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Average UDP | Average TCP | Jain’s fairness
throughput throughput | index among
(Kbps) (Kbps) TCP flows
RED 4,374.82 5.046 0.5551
CHOKe 1187.301 38.160 0.9842
SFB, rate limitx 98.99 49.046 0.9836
twice the fair rate
SFB, rate limitx 49.57 49.538 0.9826
fair rate
SFB, rate limitx 24.95 49.78 0.9817
half the fair rate
BLACK 74.04 49.033 0.9871
CARE 172.66 48.307 0.9862

Table 3: Results from the single unresponsive flow scenario. Bottleneck link speed of 5 Mbps.

UDP has a constant bit rate of 5 Mbps and competes with 100 TCP flows.
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arrival rates, it can only deal with responsive traffic according to its dropping policy. Traffic flows
that do not back off in response to the packet drops continue to pass through the queue with a very
small drop rate until the queue is full or the average queue length reaches the maximum threshold.
This is why RED could not prevent high bandwidth unresponsive traffic from consuming almost
all of the bandwidth and leaving only a small portion for responsive traffic.

CHOKe, although it utilizes RED as a core mechanism, uses its own packet matching and
dropping mechanism to provide better throughput for those TCP flows than does RED, by reducing
the bandwidth of unresponsive UDP traffic. However, with a UDP throughput of 1187.301 Kbps,
CHOKe still fails to achieve fair sharing since there are not enough packet matches to control the
unresponsive flows effectively.

CARE is another mechanism that provides better fairness than both RED and CHOKe. How-
ever, the estimation of the number of active flows was not as good in the scenario with a high
bandwidth UDP sourcée Therefore, the UDP throughput is still relatively higher than the fair
share of bandwidth in this case with high bandwidth UDP traffic. In addition, CARE needs more
memory resources and computational complexity than the other schemes. Smaller capture size
would affect the performance of CARE as demonstrated using the experimental setup above and
shown in Figure23, plotted with 95% confidence interval.

For SFB, the UDP connection receives a fair throughput only with a good adjustment of the
rate limiting threshold. Note that, in practice, an inability to automatically set the fair rate limit is
a big disadvantage of SFB. In addition, with the simulation code provided by the authors of SFB
[19], the rate limiting is performed through a single parameter that controls how long the packets
from the unresponsive flows are prevented from getting into the queue once detected. Setting up
this parameter to achieve the fair rate, which is assumed to be known, is difficult since the flow’s
arrival rate was not known in advance.

The effect of the UDP arrival rate on the performance of these schemes is illustrated in Fig-
ure 22. RED has almost no control over UDP throughput when the bandwidth allotted to the
connection is about the same as the arrival rate. CHOKe has better control of UDP throughput, but
clearly is still far from the fair share of 49.5 Kbps. BLACK has the best overall control over UDP

traffic even when its arrival rate is twice as much the bottleneck link. CARE also provides good

3A detail analysis of different methods to estimate the number of active flows will be discussed in Ghapter
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fairness when the portion of UDP traffic is low, but its performance is not prolonged under a high
load of UDP traffic due to the inaccuracy of the estimation of the number of active flows under this
condition.

On the other hand, BLACK provides the UDP’s with throughput that much closer to their
fair share of 49.5 Kbps. In addition, while it provides more than adequate bandwidth to the TCP
connections, the UDP throughput is bounded at some level regardless of its arrival rate, as shown
in the Figure21 (plotting with 95% confidence interval). For comparison, this figure is replotted
with RED, CHOKe, and CARE as Figu.

For calculating fairness of TCP connections, Jain’s fairness inglgxq used as an indicator

with the following formula:

n N2
Fairness = (ni:nlx;; (3.8)

=1

wherez; is the effective throughput of the- th TCP flow andn is the number of connections,
where the scheme with better fairness would have a fairness index closer to 1. From the results
in the table for this scenario, the fairness among TCP connections for CHOKe, SFB, BLACK,
and CARE are about the same under this symmetric topology with a little impact from single
unresponsive UDP flow. In the case of SFB, the result also indicates that setting the rate limit to
different value does not interfere with the fairness of TCP throughput.

Another experiment is conducted to see the comparative performance of BLACK in a high
speed network under single unresponsive scenario. The same topology in ZFigsrased but
with a bottleneck link rate of 45 Mbps. Single CBR traffic is generated from node UDP1 to node
UDP-s1 with an arrival rate of 10 Mbps. Hundred TCP traffic are configured in the same way in
the previous experiment. The maximum buffer size is set to 800 packets, wherertheand
mazxy, are set to 200 packets and 400 packets respectively according to Gentle RED parameters
setting. The result is shown in Table

Even with a CBR rate of roughly 22% of the bottleneck link rate, the results is having the
same trend as those obtained in the previous experiment shown in3faleh SFB (with fair
rate limit), and BLACK, both UDP and TCP traffic gain the bandwidth of almost equal to the fair
share of 445 Kbps. CARE could control UDP at some level where the UDP connection obtains

the throughput of less than twice the fair share. However, for CHOKE and RED, each TCP traffic
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Average UDP | Average TCP | Jain’s fairness
throughput throughput index among
(Kbps) (Kbps) TCP flows
RED 9,768.23 352.77 0.9952
CHOKe 6,632.55 384.12 0.9964
SFB, rate limitx~ 909.85 450.37 0.9792
twice the fair rate
SFB, rate limitx 454.92 445.91 0.9815
fair rate
SFB, rate limitx 222.39 448.15 0.9807
half the fair rate
BLACK 426.21 446.19 0.9948
CARE 825.80 442.19 0.9944

Table 4: Results from the single unresponsive flow scenario. Bottleneck link speed of 45 Mbps.

UDP has a constant bit rate of 10 Mbps and competes with 100 TCP flows.
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achieve only 86% and 79% respectively of what they should have been obtained based on the fair
share (a lost of about 100 Kbps and 70 Kbps), leaving the bandwidth of 21.9 and 14.9 times the

fair share to the UDP connection.

3.3.3 Multiple unresponsive flows

To demonstrate how well each different scheme could handle multiple unresponsive flows which
is more similar to a real word scenario, the experiments with multiple CBR traffic are conducted
based on the same simulation topology from FigeBeFive unresponsive UDP flows are fed into
network through the bottleneck R1-R2 link which has the capacity of 5 Mbps. Two experiments
are arranged for high bandwidth CBRs and low bandwidth CBRs where each of five UDP traffic
has a constant bit rate of 500 Kbps and 5 Mbps respectively. In addition, CHOKe is implemented
with its self adjusting mechanista handle multiple unresponsive flows. With this mechanism, the
region between the minimum threshotd#:,,) and the maximum thresholdz,;) are divided

into 8 subregionsk) and the number of packet matching in CHOKe’s dropping policy performs

2 x 1 times per each packet arrival where- 1..k is the region where the current average queue

size is falling into.

The results are tabulated in the TaBl&8.3and Table3.3.3 The average throughput shown in
each column is average per-flow throughput. Both CHOKe and RED clearly show an inability to
protect responsive TCP flows in either case. For the case of low bandwidth CBRs, each of the TCP
connections gains only 71% and 60% of the fair share of 48 Kbps. In the case with high bandwidth
CBR traffic, TCP traffic are completely shut out in the case of RED and receive only 5.1 Kbps per
connection in the case of CHOKe. These results show that even CHOKe is equipped with the self
adjusting mechanism, with the expense of up to eight packet samplings and matchings per single
packet arrival, it could reduce the UDP throughput at some level and still hardly achieve fairness.

For the rest of the schemes, SFB, BLACK, and CARE still perform well under the scenario
with low bandwidth CBRs. Although the average per-flow throughput of UDP connection is higher
than the fair share of 48 Kbps, it is bounded to some small value leaving enough bandwidth for
each of the TCP connections that receive around 97%. This performance, however, is no longer

achieved with CARE under multiple high bandwidth CBRs case. The data from the simulation
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(not shown) indicates that the precision of CARE’s estimation of the number of active flows is
altered by a heavy load of multiple unresponsive flows. On the other hand, BLACK still maintain

a good performance under the heavy load from these unresponsive flows, even with a small HBF
cache memory size of only 20. The Jain fairness index shown in the third column of the table also
demonstrates that the fairness among TCP connections is unaltered under this extreme condition

in the BLACK scheme.

3.3.4 TCP with different round-trip times

It is well known that even with cooperation among TCP sources exercising congestion control
mechanism, fairness among TCP can be deteriorate when the connections have different round-trip
times (R7T's). A TCP connection with a smaller round-trip time can grasp larger portion of band-
width because it usually receives acknowledgment packets faster which results in an increasing of
congestion window more rapidly4¥, 50] illustrate this fact through a model of TCP congestion
control behavior, which shows that the achievable throughput of TCP is inversely proportional to
RTT.

It is expected that the use of BLACK would reduce unfairness among TCP connections even
without full per-flow state information. Connections with smaller round-trip times consume larger
portions of buffer space, but they are more likely to be captured by the HBF cache memory and
have a higher probability of being dropped, so they do leave some buffer space for smaller con-
nections. In this manner, bias against connections with shorter round-trip times can be reduced.
Figure24 shows a simulation topology illustrating this advantage of BLACK, with different values
of propagation delay denoted. In this experiment, two hundred TCP traffic flows were randomly
selected to originate from nodes NO, N1, N2, N3 or N4 and traverse through a 45-Mbps link to
randomly selected sink nodes SO, S1, S2, S3 and S4.

To conduct a fair comparison with SFB maintaining two levels of hash function of 23 bins, the
BLACK scheme is configured at router R1 with a cache siz23ok 2 or 46, and CARE is still
set with a capture size of 200. The results are shown in Figéikeith plotting at 95% confident

interval. As shown, BLACK achieves better fairness than do RED, SFB, CHOKe, and CARE.

Table7 shows the standard deviation and Jain’s fairness in@Bxgchieved by each of the

63



Average UDP | Average TCP | Jain’s fairness
throughput throughput index among
(Kbps) (Kbps) TCP flows

RED 420.32 29.021 0.9565
CHOKe 318.52 34.107 0.9836
SFB, rate limit~ 100.01 45.032 0.8863
twice the fair rate

SFB, rate limitx 42.23 47.920 0.8595
fair rate

SFB, rate limit~ 17.66 49.150 0.8611
half rate

BLACK 67.60 46.653 0.9901
CARE 107.92 44.241 0.9852

Table 5:Results from the multiple unresponsive flow scenario. Bottleneck link speed of 5 Mbps.

Each of the five UDPs has a constant bit rate of 500 Kbps and compete with 100 TCP flows.
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Average UDP | Average TCP | Jain’s fairness
throughput throughput index among

(Kbps) (Kbps) TCP flows
RED 1000.00 0.000 N/A
CHOKe 841.29 5.092 0.1108
SFB, rate limit~ 95.29 45.285 0.9594
twice the fair rate
SFB, rate limitx 47.84 47.658 0.9611
fair rate
SFB, rate limit~ 22.94 48.903 0.9593
half rate
BLACK 65.02 46.378 0.9967
CARE 1000.00 0.000 N/A

5S5ms\1 ms
(2 10w
R1

15 ms
N3
@ 20 ms

Table 6:Results from the multiple unresponsive flow scenario. Bottleneck link speed of 5 Mbps.

Each of the five UDPs has a constant bit rate of 5 Mbps and compete with 100 TCP flows.

Figure 24:Simulation topology for TCP with different round-trip times.
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four schemes. These standard deviation values are also plotted with 95% confidence interval over
multiple runs in Figure5. It can be seen that the BLACK scheme presented better fairness results
than the other schemes, with a smaller standard deviation and higher fairness index. Note that SFB

did not provide the good fairness for TCP traffic flows that was stated by Feng &8l. |

3.3.5 Effect of the sample size

The sample sizen{) or the number of packets to be sampled during each period effects how well
BLACK can estimate the flows’ buffer occupancy fractions. If the sample size is too small, not
enough data is captured for a precise estimate to be made. In S8Qi@nthe flow’s buffer
occupancy fraction is modeled as a binomial proportion wittrials of packet samplings. In this
way, the minimum value ofn can be chosen to b#)0(1 — «) percent confident that the error is

less than a specified valug through

m=H(1 - H) [Z(O‘E/Z)] 2 (3.9)

whereH is the buffer occupancy fraction. The valueféfcan vary from a very small fraction
up to as large as 1 depending on the proportion of the flow's sampled packets over the number
of total sampled packets in the period. Based on the fact that the vald¢lof- H) reaches a
maximum wherH = 0.5, the value off = 0.05 can then be used to obtain the upper bounahof
Therefore, if we want to be 95% confident that the error in udihgo estimate the buffer

occupancy fraction is less thdt, the required sample sizeWj is

m = H(1— H) lZ(OgQ)r

1.967°
02
— (0.5)(1—0.5) [1E96r

— HO-H)|

The required sizent) under this condition according to the different valuegtois shown in
Table8. For100(1 — )% confidence, whera = 0.01, 0.05, and 0.1, the required sample size is

plotted as a function of errdr, as shown in Figur@?.
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Flow throughput (Kbps) | RED | CHOKe | SFB | BLACK | CARE

Standard deviation 43.725| 38.268 | 41.996| 22.054 | 30.194
Jain’s fairness index 0.9769| 0.9721 | 0.9665| 0.9905 | 0.9815

Table 7:TCP connections in the different round-trip times scenario.

As shown in Table, if we want to be 95% confident that the error in usiiigo estimate the
buffer occupancy fraction is less than 0.02, the sample size should be at least 2,401. An experiment
using the same simulation setting as is described at the end of S8c&was conducted to
visualize what accuracy the estimation of the buffer occupancy fraction could achieve at different
sample sizes. Results for sample sizes of 100, 600, 2,000, and 4,000 are depicted i@&agatre
29.

The sample size in all of the experiments described in this chapter was chosen to be 3,000
because this was more than the minimum sample size required to be 95% confident that the error
of the estimation would be less than 0.02, a reasonable range of tolerable error. As an example,
another experiment was performed using the simulation settings for a single CBR traffic flow as is
described in Sectio.3.2and the same topology as is shown in Figée The performance of
BLACK was measured for two scenarios of 1-Mbps and 5-Mbps CBR arrival rates. The results in
Figure30 show clearly that when the sample size is small, BLACK does not have enough data to
perform good bandwidth control on CBR traffic as well as it does when the sample size is at least

3,000 packets.

3.3.6 Determining the size of HBF cache memory

The size of HBF cache memory should be large enough to ensure that the records of high band-
width flows are contained in the memory according to the LRU operation. Two approaches are
possible.

The first approch is a probabilistic approach based on an observation of measured data. Sup-
pose the proportion of the rate of unresponsive flow over an aggregate arrival rate is knpwn as

then the probability that any arrival packet is from the unresponsive flowTferefore, the cache
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size should be approximately~. In practice;y could be observed from measured data in advance

by a network operator to determine an appropriate cache size.

To demonstrate this strategy, a simulation is set up with one CBR traffic competing with 100
TCP traffic over a 5-Mbps link. Three experiments are conducted for three different arrival rates
of CBR traffic — 200 Kbps, 500 Kbps, and 1 Mbps. The result is illustrated in Figlrd-or 1-

Mbps traffic, the arrival rate is roughly around 1/4 of the aggregate arrival rate, thefeforg/ 4.
Consequently, a cache size of abaduty or 4 would be enough to regulate the 1-Mbps traffic
effectively. From the figure, even a size of three is enough to make BLACK performed as designed.
On the other hand, with the same calculation, a cache size of three is not enough for 200-Kbps and

500-Kbps traffic and CBR traffic gain much higher bandwidth than the fair share (dashed line).

For a second approch to set the size of HBF cache, if the memory is not scarce, the size could
be dynamically allocated using to the number of long-lived active flows. Note that in this manner
the cache size is still small comparing to the total number of active flows due to the fact that
most bytes from the Internet is from only the small number of flow&; B8, 29, 30] and BLACK

only manages to regulate those elephant (large) flows rather than mice (small) flows, according
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Figure 28:The effect of sample sizesi) on approximation of the buffer occupancy fraction.
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Figure 29: The effect of sample sizesn( on approximation of the buffer occupancy fraction
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to mice and elephanhodel described in Sectiah2 In this way, it is still scalable and practical
to dynamically allocate the cache size equals to the number of large flows. In addition, not only
unresponsive traffic is regulated, fairness among long-lived TCP connections with different round-

trip delays would be improved.

3.4 LIMITATIONS OF BLACK

Throughout the series of simulation experiments described in this chapter, BLACK has shown an
ability to both protect responsive TCP traffic from high bandwidth unresponsive flows and improve
fairness among TCP connections with different round-trip times. It requires a very small amount
of per-flow state information and is relatively less computationally complex than other schemes.
Upon the arrival of each packet, BLACK samples a packet from the queue and updates some
information in an HBF cache, which could be a high speed memory. Less frequently, it calculates
the buffer occupancy fraction and number of active flows. Only a packet from a flow that is
consuming more buffer space than its fair share is subjected to dropping, as shown in Egdation

However, BLACK still has some limitations, as described below.

1. BLACK's estimation of the number of active flows could be inaccurate in some scenarios, such
as when the size of the queue buffer is small or when the intensity of traffic is largely unequal.
high bandwidth unresponsive traffic could be out of control if BLACK underestimated the
number of active flows.

This problem implies that BLACK needs a better estimation of the number of active flows.
This problem is analyzed in greater detail and alternative methods for estimating the number

of active flows are discussed in the following chapter.

2. BLACK could not perform well in the scenario in which different packet sizes are injected
into the queue from different flows. Two problems could occur. The first problem is with
the way BLACK estimates the number of active flows when the estimation assumes equal
traffic intensity. Different packet sizes from incoming traffic flows imply different possibilities
of matchevents for flows. In this way, two connections with different packet sizes could be

perceived as having different traffic intensities, and this estimation would be inaccurate.
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The second problem could occur because BLACK collects information about each sample
packet through &it variable without accounting for the packet size. Smaller packets have a
higher possibility of being sampled than do larger packets, which may appear to have a higher
buffer occupancy fraction even through the number of bytes from these connections are the
same. As a result, BLACK could over-penalize a traffic flow whose packets have a higher
tendency to be sampled from the queue because of their small packet sizes. The inferiority of
fairness performance due to different packet sizes is not unique to BLACK; itis also a problem
for CHOKe and CARE. For CHOKe, it is clear that a flow with smaller packet sizes would
have more packet matches than a flow with larger packet sizes, assuming the same arrival rate.
A flow with more packet matches would be penalized more. For CARE, the mechanism only
accounts for the number of packets, regardless of the packet sizes.

This problem could be illustrated by the same simulation experiment as discussed in Sec-
tion 3.3.2 However, instead of one CBR traffic flow, two 2.5-Mbps CBRs with packet sizes of
500 bytes and 1,000 bytes are fed to the queue. The results, plotted in B&yahow that the

CBR traffic with 500-byte packet size receives about only half of the bandwidth gained by the
CBR traffic with 1000-byte packet size even through they have the same arrival rate.

3. 3. CBR throughput fluctuates more after passing through a BLACK queue. This occurs even if
the arrival rate of CBR is not very high. Adapting the simulation setting described in Section
3.3.2s0 that the CBR arrival rate is only 1 Mbps (20% of total bandwidth), the throughput of
CBR over time is shown to have a lot of fluctuation in Fig@82 This behavior is not less than

preferable, especially for media applications.

Despite these limitations, BLACK exhibits superior fairness performance with low overhead
and is preferable to the other lightweight fair AQM schemes in various environments. However, the
problem of the estimation of the number of active flows may significantly degrade the performance
of BLACK in some scenarios. In the next chapter, this problem is addressed in greater detail and

alternate mechanisms that could replace BLACK'’s original estimation mechanism are discussed.
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Figure 32:Average throughput of two CBR traffic flows with packet sizes of 500 bytes and 1,000
bytes, under CHOKe, BLACK, and CARE.
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Figure 33:Fluctuation of CBR throughput after passing through BLACK queue.
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4.0 THE ESTIMATION OF THE NUMBER OF ACTIVE FLOWS

The estimation of the number of active flows is an important component of BLACK in order to
effectively provide a fair share of bandwidth. As shown through a pilot experiment in SEc#idn
and a series of simulation experiments in the previous chapter, BLACK’s estimation of the number
of active flows has shown the promising results in several scenarios. However, there are some sit-
uations, which are not rare, that the mechanism could not produce an accurate estimation. This in-
accuracy could lead to an inferior performance of BLACK as it might under-punish or over-punish
the misbehaving traffic or even a responsive traffic. A degree of performance penalty depends on
the inaccuracy obtained the estimation.

The problems of the mechanism that BLACK incorporates to estimate of the number of active
flows are covered in great details in the following section. Then, the alternative mechanisms to
estimate the number of the active flows available in the literatures are reviewed and discussed in

the rest of this chaptér

4.1 PROBLEMS OF BLACK’'S ESTIMATION OF THE NUMBER OF ACTIVE FLOWS

An inaccuracy of BLACK’s mechanism to estimate the number of active flows could occur in a

number of situations which is basically a result of two fundamental factors below:

1. Small buffer size: An inaccuracy occurs when a buffer size is not large enough, comparing to
a bandwidth-delay product, where there could be a correlation between a sampled packet and
an incoming packet. Under this circumstance, at a given instantaneous time, packets from one

or few connections may occupy large portion of a buffer space due to a relatively large pipe

1Some parts of the materials in this chapter are to be publishédjin [
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of transmission line, giving a higher chance that the sampled packet from the buffer and an
incoming packet are from the same connection.
2. Unequal traffic intensity: The estimation model assumes the same traffic intensity for those

N flows, an inaccuracy can occur when the traffic intensity is very different.

Both factors are discussed along with the supporting simulation results as follows.

4.1.1 Problem of small buffer size

The problem of small buffer size can demonstrated through a following experiment. Using a ten-
node dumbbell topology as shown in Figud4, A hundred TCP traffic are randomly assigned to
originated from one of the five source nodes on the left associated with one of the five destination
nodes on the right. These TCP connections inject the packets, each of 1,000 bytes in size, to a

bottleneck link @1 — R2) of 5 Mbps with 5 ms delay. All the access links have 2 ms delay.

R1 R2

W
Sonds

Figure 34:Ten-node dumbbell Topology.

With a setting for a maximum buffer size of 300 packets, it is more than enough to get an
estimation that comes close to the actual number of active flows, for the pipe of 1G\Hops—
6.25 packets in bandwidth-delay product, as shown in Fig&re

Now, when the bandwidth-delay product of the link is increased with the link bandwidth of
45 Mbps and a delay of 20 ms, the same buffer space of 300 packets becomes too small for an
accurate estimation. In this scenario, a bandwidth-delay product becomes 45«\Ni0pss =

112.5 packets. With a buffer size of at most 300 packets and a larger burst of traffic at high speed
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Figure 35:BLACK’s estimated number of active flows for 100 TCP flows over a 10-Mbps link

with 5ms delay. Maximum buffer size of 300 packets.

in nature, it provides a higher chance of having a correlation between a sampled packet and an
incoming packet. Consequently, a probabiliéy,.;., is higher than the actual value. With an
estimated number of active flowact that is proportional td / P,,,..., according to EquatioB.7,

the result is then underestimated as shown in Figére

To relief this problem, the maximum buffer size should be set with a higher value to cope with
a higher bandwidth-delay product. With a new setting of 3000 packets of maximum buffer size,
the estimation provides a much more accurate value of the number of active flows. This new result

is illustrated in Figure37.

Although this problem could be resolved by using a large buffer size, the solution introduces a
higher queueing delay. As a large buffer size becomes a requirement of BLACK’s estimation of the
number of active flows, it is not advised to use this method when queueing delay is a critical factor.
One way to overcome this buffer space requirement is to employ a virtual buffer that records a flow
ID of the packets that have been queued in the actual buffer, where a virtual buffer size is much
larger than an actual buffer, as depicted in Figd8elf the virtual buffer is full, the packet at the

head of the virtual buffer will be discarded leaving one available slot at the end for a new record.
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Figure 36:BLACK’s estimated number of active flows for 100 TCP flows over a 45-Mbps link

with 20ms delay. Maximum buffer size of 300 packets.

In this way, a small buffer space problem should be kept minimized, given that memory space is

not scarce.

4.1.2 Problem of unequal traffic intensity

Even with a large buffer size, BLACK’s estimation method could still be suffered when the traffic
intensity is much different. This problem could occur when the round trip delay are largely dif-
ferent among TCP connections or when packet sizes are different which would bias the value of
P, .- Ps;, where flow: is a flow with smaller packet size. The effect of this problem becomes more
compelling when high-bandwidth UDP connections co-exist with TCP traffic. This situation can
be demonstrated through a simulation as described below.

Using the same symmetric topology in Figudé with the bottleneck link of 20MBps band-
width and 20ms delay, 100 TCP traffic are now competing with 10 UDP traffic with aggregate
arrival rate equal to half of a bottleneck link bandwidth. UDP traffic starts at 300 seconds of sim-
ulation time. The buffer size is set to 3,000 packets to avoid the problem of small buffer size.

Without any bandwidth fairness control mechanism, the estimation is shown to be largely distorted
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Figure 37:BLACK’s estimated number of active flows for 100 TCP flows over a 45-Mbps link

with 20ms delay. Maximum buffer size of 3,000 packets.

in Figure39.

Without any queueing mechanism or dropping policy for traffic rate control, traffic with dis-
tinctively higher intensity such as UDP traffic in this scenario would have a higher chance of being
sampled from the buffer; ;) as well as a higher chance of arriving at the buffér,j at any given
time. SincePuien = SN, P,; - P;,; and estimated number of active flowSdct) is proportional
to 1/ Paien, Nact would be underestimated and approach a value of one as the proportion of bot-

tleneck bandwidth consumed by UDP traffic approaches 100%. This phenomenon is illustrated

Virtual buffer

Q — Incoming traffic

Actual buffer T

Figure 38:BLACK with virtual buffer to resolve small buffer problem.
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Figure 39:BLACK’s estimated number of active flows for 100 TCP flows and 10 UDP flow over a
10-Mbps link with 20ms delay. UDP traffic start at 300 seconds and consume half of the bottleneck
link bandwidth.

in Figure40 through the same simulation settings but with varying UDP arrival rate, plotted with
95% confidence interval.
Consequently, an alternative method to improve the accuracy of estimation with no requirement

of huge buffer space and equal traffic intensity is advised.

4.2 ALTERNATIVE METHODS TO ESTIMATE THE NUMBER OF ACTIVE FLOWS

In this section, two alternative approaches for estimating the number of active flows are discussed
and evaluated 1) Bitmap Approach [15, 16] and (2) Capture-Recapture (CR) model ap-
proach [8].

Bitmap approach replies on a probabilistic algorithm in conjunction with hashing at bit level.
As a flow ID of an incoming packet hashes into only a single bit of memory size combined with
its own hashing technique to reduce a size of hash table, Bitmap approach is claimed to be able to

estimate the number of active flows with relatively small amount of memory space requirement.
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Figure 40:BLACK’s estimated number of active flows for 100 TCP flows and 10 UDP flow over
a 10-Mbps link with 20ms delay. UDP arrival rate varies from 10% to 100% of bottleneck link
bandwidth.
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The simplest form of bitmap scheme is known Risect Bitmaptechnique is included in this
section.

On the other hand, CR model approach borrows an estimation technique from Capture-Recapture
model that is widely used to estimate the number of animals in a population by ecologists and to
estimate the number of defects in software inspection process. By constructing a frequency his-
togram containing which flow IDs have been seen once, twice, and upr@s, after capturing
a certain amount of incoming packefsckknife Estimatof7] can then be used as an estimator to
calculate an approximated number of active flows for this CR model. CR model with Jackknife
Estimator is the estimation mechanism that is utilized by CARE as discussed in S22tid8

In addition, according to an evaluation of different estimators for CR modé&kijn &part from
Jackknife estimatortirst-order Sample Coveragend Second-order Sample Coverag#] are
shown to have superior performance in their estimation of number of females yellowstone grizzly
bear population. Therefore, in this section, both Sample Coverage techniques will be applied to
the problem of estimating the number of active flows through a CR model and compare with the
other schemes.

Therefore, the following four estimating techniques will be discussed in details below and

evaluated through a series of simulation in Sectidh
e Direct Bitmap
e CR model with Jackknife estimator

¢ CR model with First-order Sample Coverage

¢ CR model with Second-order Sample Coverage

4.2.1 Direct Bitmap

Direct Bitmap [L5, 16] is the simplest form of Bitmap approach to estimate the number of active
flows that are passing through to a network node. The idea of Direct Bitmap is to probabilistically
count the number of bits that are hashed according to the flow ID, and calculate the number of
active flows at the end of a measurement interval according to the formula developed from the

probability that the hashed collisions would occur.
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Direct Bitmap begins with resetting all the bits in a bitmap of dizats to zero. For each
incoming packet, a hash function is applied on the flow ID to map each flow to a bit of the bitmap.
In this way, once a packet arrives, a bit that the flow ID hashes to is set to 1. Note that the method
assumes that the hash function distributes the flows randomly.

At the end of a measurement interval, an estimation of the number of active flows during that
period is calculated using a formula that takes into account collisions from hashing. For a bitmap
of sizeb bits, the probability that a given flow hashes to a particular bjt is 1/b. Assuming
that V is an actual number of the number of active flows, the probability that no flow hashes to a
particular bit is therefore, = (1 — p)™ ~ (1/e)"/*. Then, the expected number of bits not set in
the bitmap at the end of the measurement interval can be calculatB:by= bp, = b(1/e)N/.

Here,z is the number otero bits found in the hash table during the interval. Finally, the estimated

number of active flowsV is then equal to

- b
N =bIn <)labeleq s directbitmap 4.1)

z
The advantage of this scheme, apart from using only small amount of memory space, is that
the estimation is not effected by the intensity of incoming traffic as all packets belonging to the
same flow map to the same bit.
There are several variants of Direct Bitmayirtual Bitmap Multiresolution BitmapAdaptive
Bitmap andTriggered Bitmap- that require much less memory space. However, the fundamental
concepts of these variants are basically the same as Direct Bitmap, thus only Direct Bitmap is

included for evaluation.

4.2.2 CR model with Jackknife estimator

CR model has been widely used to estimate the number of animals in a population by ecologists
and biologists, and to estimate the number of defects in software inspection process. Later it has
been adapted to estimate the number of active flows having their packets in a 8judinebasic

idea of CR model, in terms of estimating the number of animal population, begins with an inspector
randomly captures a small amount of animals from its habitat. Then he counts the number of these

captured animals, marks and releases them. Later, he captures a small amount of animals again,
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and counts the number of captured animal and the marked animals that are recaptured. Finally,
using these capture-recapture data, an estimated number of animals is calculated.

Three basic models provided in capture-recapture method are (1) Mfdelssume that the
probabilities of capture among animals vary with the behavioral response of these animals, (2)
Model M,,: allow the variance of the probability of capture for individual animals, and (3) Model
M,: assume that the probabilities of capture varies by time. In this mamfemodel is suitable
to estimate the number of active flows where the capture probability are different among traffic
flows.

Becauséell;, model can have as manyas- 1 parametersN andp, ps, ..., p,, Wherep; is the
capture probability for an individual floivand N is the actual number of active flows, whilé is
the only value needed to be known, the authors]rs{iggest thedackknife estimatoas a method
to estimateV without having to estimate all the [7].

For simplicity, the algorithm of\/;, model will be shown through an example of estimating the

number of animals in a population as follows:

1. Suppose animals are captured in 18 days with one capture occasion per day, so there are total
18 capture occasions)(

2. Construct a capture frequencj)for these animals as shown in the table below. In this table,
i represents the number of times an animal has been (re)captured during these 18 days, while
fi represents the number of animal for eachn this case, there are 43 animals that have been

captured only once, 16 animals that have been captured twice, etc.

1111 2]3/4/5/6|7|8

fi143]16/8|6|0(2|1|0

3. Then, based on these capture frequencies, use a Jackknife estimator to estimate the number of

total population using the following equations:

NJK = a(t, K)lfl + CL(t, K)sz + ...+ a(t, K)tft (42)

wherea(t, K); are the coefficients in terms of the number of capture occasigremd the
order of estimation ). An optimum value ofi” has to determined because/dsncreases,

the bias ofV;x will decrease while the variance 6f; will increase. An estimated number of

86



animals in population along with a method to choose an optiriuane shown in the following

procedure:

a. CalculateN, i for K = 1 — 5, based on the capture frequencies in Table 1, using these

equations
S = Zfz
=1
Np = S+t;1f1
_ 2t — 3 (t —2)?
Npz = S+ — fl_t(t—l)f2
3t—6 3t2 — 15t + 19
NJ3 = S"i'Tfl_Wfé
(t—3)°
t(t—l)(t—2)f3
4t — 10 6t2 — 36t + 55
Npy = S+ ; fi— {E—1) fo
4¢3 — 42t + 148t — 175 (t —4)%)
tt—1)(t—2) f3_t(t—1)(t—2)(t—3)f4
Ny — S+5t;15f1_10t2t—(t7£)t;)t 125f2
10t3 — 1202 + 485t — 660 (t—4)° — (t—5)5
tt—1)(t—2) f3_t(t—1)(t—2)(t—3)f4
(t—5)°
+t(t—1)(t—2)(t—3)(t—4)f5

In this example, calculatedy;x for K =1 to 5 are tabulated below.

Order(K) | Jackknife estimatorX ;)
S 76
N 116.6
Ny 141.5
Nys 158.6
Ny, 170.3
Nys 176.5
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b. Compute an interpolated estimator betweer- 1 andm, wherem + 1 is the first order
that the significance levét,, > 0.05. This calculation begins with calculating the statistic
NJm+1 - NJm

T, — (4.3)
var (N yms1 — Nym/S)?

where

NJm+1 - ‘Nva)2
S

/U&T(NJm—i-l - NJm/S) = (44)

5
S—1]¢

e,
()" fi —

=1

andb; = a(t,m + 1); — a(t,m), - T,,,. Then each of these statistit,() will be evaluated

at o = 0.05 usingP,, values determined from the standard normal distribution. For the

first indexm that the significance levaP,, > 0.05, if m = 1, N is then taken as the

estimator of the number of active flows.sif > 1, then compute an interpolated estimator

betweenn — 1 andm asN; = cNy, + (1 — ¢)N -1y, Where

¢=(0.05— P,_1)/(1 — Py) (4.5)

In this examplem is calculated as three, such that the interpolation is performed;on

and N ;3 with the resultant estimator of 142.

The example above df/;,, model can be adapted to estimate the number of active flows. Instead
of capturingn packets for each capture occasion (out oapture occasions), only one packet is
captured for each capture occasion for simplicity. Note that the accuracy then deperads:da

reduced to one. The estimation process is as follows:

1. Capturet packets from a queue buffer.
2. Construct a set of capture frequency data by observing the flow ID of the captured packets.

3. Estimate the total number of active flows in the buffer using the Jackknife estimator.

The authors further modify the algorithm so that the capture is performed on the incoming
packets instead of the packets from the buffer. Now assume that the estimation is performed on
the number of flows having their packets in a virtual buffer of gizeo each incoming packet is

captured with a probability af.,,, for the total oft packets and store in a linked-list calleapture
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list. Hence, in this case,,, = t/B and the size of the liked-list can be reduced to dnlystead

of B. The modified procedure is as follows.

1. Capture an incoming packet with the probability, and store the packet in tloapture list

2. Construct a set of capture frequency data by observing the flow ID of the captured packets in

thecapture list

3. Estimate the total number of active flows in the buffer using the jackknife estimator.

Note that the accuracy of the estimation decreases with the decrgagg of

4.2.3 CR model with First-order and Second-order Sample Coverage

Sample coverage estimatd] 13] is an alternative estimator to the Jackknife estimator which can

be used in\/;,, model to estimate the number of active flows. Both First-order and Second-order
Sample Coverage begins with the same technique to capture packets and construct frequency data
as in Sectiom.2.2 After obtaining the frequency data, instead of using the Jackknife estimator,

the estimation of number of active flowSgc; and Nsc», however continue with these equations:

e First-order sample coverage:

A S + ~9
NSCl = ﬂ (46)
Ch
whereCy = 1 — & and
~ S iG = 1) f;
2 J
4% = max | — === 0. (4.7)
4 jZQ tt—1)
e Second-order sample coverage:
A S + ~9
Nsc2 = Afw 4.8)
Cy
where(, = 1 — Ui=22/(=1) gpg
S 54U =DJ;
A2 ]
4% = max | = — = 0]. (4.9)
Cy ]ZQ t(t—1)



4.3 EVALUATION OF ALTERNATIVE METHODS

Alternative methods for an estimation of the number of active flows are evaluated through a simu-
lation as described in this section.

A simulation is setup with a ten-node dumbbell topology as shown in Figdird here aren
TCP flows competing for the bandwidth of 10-Mbps bottleneck bandwidth. All the access links
are 2ms and the bottleneck link is 5ms in delay. The queueing discipline is simply tail dropping.

Four alternative methods for an estimation of the number of active flows are compared:

. Direct Bitmap
. CR Model with Jackknife estimator

. CR Model with First-order Sample Coverage

A W DN P

. CR Model with Second-order Sample Coverage

with BLACK estimation also shown in the results for comparison.
Due to the fluctuation of the estimation using CR-model as shown in Fityrthe estimated
number of active flows is further averaged over time with a factor of 0.3 to smooth out these values.

At the end, computation complexities of these methods are briefly discussed.

Estimated number of active flows
160

T T
CR with Jackknife estimator —+—

I CR 2nd-order sample coverage ---:---
140 [ Direct Bitmap &

Estimated number of active flows

0 100 200 300 400 500 600
Time (sec.)

Figure 41:Estimated number of active flows for the experiment with 30, 90, and 60 flows over 600

seconds.
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4.3.1 Different number of TCP flows with about the same traffic intensity

In this sectionp, TCP flows with very large received window are competing for the bandwidth at
the bottleneck link. At the simulation time from 0 - 200 seconds, only 1/3 of total connections are
active. For 200 - 400 seconds, all of theconnections are active. And from 400 - 600 seconds
of simulation time, 1/3 of the total connections are terminated leaving 2/3 of connections being
active.

Memory space for CR model estimation are set+0l00 capture records. For Direct Bitmap,
b = 100 bits are reserved as a bit map for the estimation.

The performance of the estimation methods are evaluated édless than 100, higher than
100, and much higher than 100 as shown in T&ble

Set| Number of TCP flows at simulation time
0-200, 200-400, 400-600 seconds

1 30, 90, 60
2 60, 180, 120
3 150, 450, 300

Table 9:Number of TCP traffic in different simulation sets.

The results from Figurd2, 43, and44 show that all of these methods perform well, when the
number of actual flows are not much larger than the required memory space — that is when
andb < n. The estimation begins to be unstable whemdb are larger tham, and the results are
unpredictable wheh < n andb < n. Several other sets of simulations were also conducted and
show a similar trend.

The result of Direct Bitmap is consistent withd, 16] that Direct Bitmap requires a bitmap size
(b) that scales almost linearly with the number of flow$ ih order to get an accurate estimation
of number of active flowsr(), where the average error is bounded to Standard Deviatjgn =
(v/b/n)ven/b — 1. This bound is tighter with large which implies a much lower estimation error
when the number of flows is large, wheof about the same order of magnitudernas

For CR model, there is no significant different between the Jackknife estimator and Sample

Coverage in this case, where both estimators require lafgeaccurate estimation. A series of
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Figure 42:Estimated number of active flows for the experiment with 30, 90, and 60 TCP flows

over 600 seconds.
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Black Estimator CR model with Jackknife estimator
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Figure 43:Estimated number of active flows for the experiment with 60, 180, and 120 TCP flows

over 600 seconds.
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Figure 44:Estimated number of active flows for the experiment with 150, 450, and 300 TCP flows

over 600 seconds.
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extensive experiment irBp] also shows that a performance could be improved with higheand
recommends to be relatively large compared o As a result, the memory required is quite high
to have an accurate estimation.

If ¢ < n, the performance is unpredictable and this also happens with Direct Bitmap. However,
CR model needs more memory space than Direct Bitmap as each captured record stores a flow ID
which could be a combination of source address, destination addresses, source port and destination

port, while Direct Bitmap needs only one bit for an incoming flow to hash into.

4.3.2 Different number of TCP flows with different round-trip delay

To see any effect as a result of TCP with different round-trip delay to the accuracy of estimation,

the topology in Figuré5is used instead. The set of experiment is the same as shown inJliable

Sms!Ims lms!Sms
M M

R1 R2

15 ms 10 Mbps 15 ms
N3 5 ms S3
@ 20 ms 20 ms @

Figure 45:Ten-node dumbbell Topology with different access links’ delay.

the previous section.

As can be seen from Figu#, 47, and48, when then is not much larger thanor b all of these
methods produce quite a good estimation. More variance is more noticeableWwbeomes much
larger thart in the case of CR model. With appropriate size @indn, both Direct Bitmap and
CR model show no problem with different traffic intensity as BLACK estimation as demonstrated
in Section4.1.2

4.3.3 Different number of TCP flows with large UDP flow

A big difference in estimation accuracy appears when UDP traffic is presented. For comparison,

the ten-node topology with 10-Mbps bottleneck link as used in Sedt®4d, or as shown in Figure
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Black Estimator CR model with Jackknife estimator
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Figure 46: Estimated number of active flows for the experiment with 30, 90, and 60 TCP flows

with different RTT over 600 seconds.

96



200

100

Estimated number of active flows

200

150

100

50

Estimated number of active flows

Black Estimator

507"

CR model with Jackknife estimator

Ble‘xck Estimat()‘r ‘ CR model‘with Jackkr‘nifeestimam‘r =
Ideal ------ 200 Ideal ~-~-~
S Dm g B o
‘ 2 s Po om a8 g
T T Al =
W v g w0 o
= a
\ 2 100
2 o
B
SRS z i oPed PR, o
Ao paen E o= s
]
o
0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (sec.) Time (sec.)
CR model with First-order Sample Coverage CR model with Second-order Sample Coverage
CR moéel with Fir;t-order Samble Coveragé = ‘ CR model‘wilh Secon&-order Sam‘ple Coverag‘e =
r Ideal ~----- 200 eal -
@
z
2
2 150
o 3]
. S ~a
=a] 5
8, e 2 100 e
=1
) = in]
3
Pt O ey £ s P e S ey
o Z o
o
0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (sec.) Time (sec.)
Direct Bitmap
Direct Bitmab =
200 Ideal -~
;
=
£ 150
B
P
=}
o}
£ 100
=
=
=
2
£ 50
73
wm
0
100 200 300 400 500 600
Time (sec.)

Figure 47:Estimated number of active flows for the experiment with 60, 180, and 120 TCP flows

with different RTT over 600 seconds.
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with different RTT over 600 seconds.
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34, is maintained but with UDP running as a background traffic. Because the effect of UDP traffic
is the only concern, so the number of TCP traffic is set not to be too large=<$on00 records
in CR model and = 100 bits in Direct Bitmap, with two different arrival rates of UDP traffic as

shown in Tablel0. UDP traffic start at 300 seconds of simulation time.

Set Number of TCP flows UDP arrival rate
at simulation time
0-200, 200-400, 400-600 seconds

1 30, 90, 60 33% of bottleneck link bandwidth
2 30, 90, 60 66% of bottleneck link bandwidth

Table 10:Number of TCP traffic and UDP arrival rate in two simulation sets.

In Figure49, even when UDP arrival rate is equal to 33% of the bottleneck link bandwidth,
Sample Coverage show an extreme over-estimation of the number of active flows at after 300 sec-
onds, which is contrasting to an extreme under-estimation from BLACK as explained in Section
4.1.2 On the other hand, both Jackknife estimator and Direct Bitmap are torelant to the interfer-
ence of UDP background traffic.

For Sample Coveragg;order Sample Coverage estimat¥ds

\ m fl ~92
Nscj = = + 57
TG G

;g=1o0r2

Wherem/éj is an initial estimator that assumesflows with equal traffic intensity. A bias
correction terr‘r‘(fﬂQ/C‘j) that increases with heterogeneity is added for a more accuracy when
traffic intensity are unequal. In fac; is an estimated coefficient of variation (C.0.V.) of the
probabilityp = (p1, p2, ps, ---, Pn), Wherep; is a probability that flowi’s packet being caught. The
estimationNgc; works well with small actual C.O.V. and provides less error than the Jackknife
estimation as reported id4]. However, when C.O.V. becomes large an inaccuracy appears and
increases with C.0.V, as can be observed from Equa&tidand4.9that4 is calculated based on
>j-17(j — 1)f;. In this experimental environment, C.O.V. pfis very large, i.e. 6.3335 for 60
identical TCP traffic and one UDP traffic consuming 33% of bottleneck link bandwidth, resulting

in a large margin of error.
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For another set of experiment, once the UDP arrival rate becomes 66% of the bottleneck link
bandwidth, the Jackknife estimator can no longer provide an accurate estimation as illustrated in
Figure50. However, a better estimation from the Jackknife estimator can be obtained anly if
is larger, however. Besides, in practice, it is a very rare chance that any one or two traffic would
consume as much as 66% of an actual link bandwidth. On the other hand, direct Bitmap shows a
superior performance even with a presence of large UDP traffic because a bit that a flow hashes to

is irrelevant to the number of packets injected to the network by this flow.

4.3.4 Presence of short-lived background traffic

Performance of different estimation methods under a scenario with a presence of short-lived back-
ground traffic are evaluated through the same ten-node topology with 10-Mbps bottleneck link in
Figure 34, but with five web-client and web-server nodes. Total of 250 HTTP sessions are setup
as background traffic according to a parameter setting . Number of (long-term) TCP traffic are set
according to set 1 in Tabl&0— 30 flows at 0 - 200 seconds, 90 flows at 200 - 400 seconds, and 60
flows at 400 - 600 seconds of simulation time.

The results in Figur&1 show fairly good estimation for the number of long-term TCP traffic
for the Jackknife estimator and both Sample Coverage methods. However, Direct Bitmap does not
perform as well because it was designed to estimate the numbéraaitive flows including even
a flow with one packet arrived at the queue during the estimating period. Besides, additional error
is also contributed from a small bitmap sizavhich is set to 100, comparing to the number of all
traffic (TCP and short-lived background traffic).

The problem of Direct Bitmap in estimating the number of long-term traffic can be solved with
a trade off of larger memory space required. Instead of arranging a memory space as a bitmap of
sizeb bits, a modified version of this scheme arranged memory spack fwaish items, where each

of them holds one small-size integer as a counter. Two alternative methods can be applied:

¢ Direct Bitmap with low-pass filter: A flow ID of an incoming packet hashes into an item in
this memory space and increase its integer value by one. In this way, each hash item records
the number of packets from a flow during the estimating period. Those short-lived flows can be

filtered out by setting a minimum threshold épackets on each counter. After an estimating
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Figure 49: Estimated number of active flows for the experiment with 30, 90, and 60 TCP flows
over 600 seconds, with UDP traffic consuming 33% of bottleneck link bandwidth starting at 300

seconds.
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Figure 50: Estimated number of active flows for the experiment with 30, 90, and 60 TCP flows

over 600 seconds, with UDP traffic consuming 66% of bottleneck link bandwidth starting at 300

seconds.
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Figure 51: Estimated number of active flows for the experiment with 30, 90, and 60 TCP flows

over 600 seconds, with 250 HTTP sessions as background traffic.
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period, 2/, the number of hash items that holds the number of packets morelthaokets,

is counted. The value of is nearly equivalent to the number of 1 bits in the original Direct

Bitmap method. Therefore,is simplyb minus byz’, and the estimated number of active flows

can be determined using the same equatiom|2).

e Direct Bitmap with packet removals: In the same way, a flow ID of an incoming packet
hashes into a hash item and increase its counter by one. However, when a packet is removed
from the queue, the counter is decremented. If a queue is empty, all counters hold a value of
zero. In this manner, the flows that have their life time shorter than an estimating period would
be filtered out automatically. Only the zero bits are counted asd the estimated number of
active flows is simply ln(g) as the other methods. This approach is an extended version by
the authors from the original Direct Bitmap pap#5,[16)].

The results for both methods, illustrated in Fig@2and 53 respectively, show a huge im-
provement as opposed to the performance of original Direct Bitmap in this circumstance shown in
Figure51. Although setting a threshold dfpackets to decide which flows are long-lived traffic is
somehow not difficult, Direct Bitmap with packet removals is easier to deploy because it involves
no additional parameter tuning. However, the packet removals approach may have a little higher
variance due to the backlogging packets in the queue from short-lived traffic at the time of estima-
tion, especially when the queue is large as shown in FigdréNonetheless, this problem should
be minimized if a router is equipped with an active queue management that is usually designed to

keep an average queue size low to achieve low delay.

4.3.5 Algorithm complexity

Since all of the estimation methods perform an estimation periodically, algorithm complexity can

be considered based on per-packet arrival processing and estimation processing.

1. Direct Bitmap: For each incoming packet, perform a flow ID hashing to a bitmap. At the
end of estimating period, count the number of zero hifa6d determine the number of active
flows frombn(b/z).

2. CR Model: For each incoming packet, record a flow ID with a probabiity,. After ¢ flow

ID have been recorded, construct frequency data (how many distinct flow IDs have seen once,
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Figure 52:Estimated number of active flows using Direct Bitmap with low-pass filter for the ex-
periment with 30, 90, and 60 TCP flows over 600 seconds, with 250 HTTP sessions as background

traffic.
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Figure 53: Estimated number of active flows Direct Bitmap with packet removals for the exper-
iment with 30, 90, and 60 TCP flows over 600 seconds, with 250 HTTP sessions as background

traffic. Max. buffer size = 300 packets.
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twice, and up tof times). Then perform a series of calculation using either the Jackknife

estimator or Sample coverage as discussed in SettibRand4.2.3

It is clear that CR model consumes much higher processing power since the first step of con-
structing frequency data. This complexity increases as a size of capturg ligcpomes larger,
which is needed if the number of actual flows is large. Although the estimation can be performed
as a background task, it is still not as suitable as Direct Bitmap for a high speed router with very

large number of flows passing through.

4.4 SUMMARY

According to the evaluation results through a series of simulation experiment, with a considera-
tion of algorithm complexity, it is clear that Direct Bitmap requires least memory space with low
computational complexity. For CR model, the Jackknife estimator is more robust than Sample
Coverage in different scenarios, especially when a C.O.V. is high. Direct Bitmap does not suffer
with a presence of large UDP traffic but may have a problem when there is a large number of short-
lived background traffic as all of these flows are taken into account instead of only those long-lived
ones. In this case, Direct Bitmap with low-pass filter or Direct Bitmap with packet removals can be
used to filter out those small flows from the estimation, with the expense of higher memory usage.
In the present days, however, memory becomes cheaper. Thus, the memory requirement of both
modified versions of Direct Bitmap would not be a problem. In some cases that memory might be
scarce, the amount of memory required can be dramatically reduced with variants of Direct Bitmap

such as Virtual Bitmap, Multiresolution Bitmap, Adaptive Bitmap, and Triggered Bitmap.
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Figure 54: Estimated number of active flows Direct Bitmap with packet removals for the exper-
iment with 30, 90, and 60 TCP flows over 600 seconds, with 250 HTTP sessions as background
traffic. Max. buffer size = 1000 packets.
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5.0 AFC: ACHIEVING FAIRNESS USING A CREDIT-BASED MECHANISM

At the end of ChapteB.3, the limitations of BLACK mechanism were addressed — unfairness
due to inaccuracies in the estimation of the number of active flows, unfairness when packets are
of different sizes, and fluctuations (high variance) in the throughput of the flows. These prob-
lems, which might cause a serious degradation of fairness performance in some circumstances,
lead to a development of new a scheme proposed in this chapter A&l@dAchieving Fairness

using a Credit-based mechanismlthough sharing several conceptual ideas as BLACK, AFC
contains several newly designed components. Apart from using Direct Bitmap, a more accurate
method to estimate the number of active flows discussed in Ch&pA&iC includes a new design

of HitFraction approximation, dropping function, and a nesedit-based mechanismAFC not

only overcomes these limitations but also provides a better fairness performance in a wide rage of
scenarios, however, with some overhead expense over BLACK.

Also included in this chapter is the comparative evaluation of AFC, for its fairness performance
and robustness, with the other fair AQM schemes appeared in ClaaipteRED, CHOKe, SFB,
CARE, and BLACK. The simulation scenarios are expanded to new cases with traffic with different
packet sizes, short-flows, and TCP-friendly traffic. In these experiments, BLACK is also equipped
with Direct Bitmap rather than its original estimation of the number of active flows, for a fair
comparison. The performance metrics are average per-flow UDP and TCP throughput and fairness
among TCP traffic. At the end, complexity of these schemes are briefly discussed which shows
that AFC has a higher overhead than BLACK and it is a choice of a network operator to choose
BLACK or AFC for implementation.

This chapter is organized as follows. The first half of this chapter, covered in Sécfion
reviews the limitations of BLACK and discusses the solutions proposed by AFC along with its

components. Then, the performance evaluation of AFC along with the other fair AQM schemes
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are given in Sectiob.2 The chapter summary is provided in Secttoa.

5.1 AFC MECHANISM

Although BLACK has shown the promising results through a series of simulation experiments
in providing throughput fairness in Chapt8r3, there are still some limitations of BLACK as
described in SectioB.4as summarized below. In addition, because these limitations are not unique

to BLACK, the AQM schemes that contain similar limitations are also discussed here.

1. Inaccuracy in the estimation of the number of active floWsis problem comes from the fact
that simplistic assumptions are made to compromise the performance of the algorithms. For
example, this is the case of BLACK, which bases the estimation on a simple probability model
that assumes an equal traffic intensity of the incoming flows. As a result, the estimation could
be inaccurate and high bandwidth unresponsive flows could be out of control. The estimation
mechanism utilized in CARE, even with a complex model, has also been found to fail under
certain scenarios especially with a presence of a traffic whose arrival rate is relatively large

comparing to a link bandwidth.

2. Unfairness due to traffic with different packet sizédost performance evaluations of fair

AQM schemes have been performed assuming packets of equal sizes and several schemes fail
to achieve their promised goals otherwise. For instance, this is the case of BLACK, CHOKe
and CARE. BLACK collects the information of each sample packet at packet level, not byte
level. Smaller packets have a higher possibility to be sampled from the queue than larger
packets, which may appear to have higher buffer occupancy fraction even through the number
of bytes are equal, and over-penalizing could occur. In the case of CHOKe, it is clear that a
flow with smaller packet sizes would have more number of packet matchings than a flow with
larger packet sizes, given that they have the same arrival rate, and would be penalized more.
Also for CARE, the mechanism only takes into account the number of packets regardless of

the packet sizes and thus fairness in this case would not occur.

3. Throughput fluctuationNo performance evaluation of fair AQM schemes has looked at the

traffic characteristics of the flows after passing through the scheme. Not only BLACK, as

109



it will be shown later, most schemes make the throughput of CBR flows to fluctuate more
after passing through them. This behavior is not preferable especially by streaming media

applications.

As a result, AFC, a new fair AQM scheme that addresses the limitations of the well-known
schemes listed above is proposed, and discussed in the following sections. Although AFC shares
similar conceptual idea as BLACK, it contains several newly designed components and incorpo-
rates a new concepgredit-based Mechanismvhich would enhance the fairness achieved by the

scheme. These components are explained as follows.

5.1.1 The estimation of the number of active flows

The solution for the first problem has been addressed along with the comparative evaluation in
the previous chapter wheiirect Bitmapis chosen as the mechanism to estimate the number of
active flows due to its computational simplicity and very small amount of memory requirement.
The simulation results in various types of scenarios show that Direct Bitmap provides a high accu-
racy for the estimation with the computational complexity that is far less than the other schemes.
There are also several variants of Direct Bitmap suckidsal Bitmap Multiresolution Bitmap
Adaptive BitmapandTriggered Bitmapvhich require much less memory space while keeping low
estimating error; for example 2 Kbytes of memory is needed for Adaptive Bitmap to estimate the
number of active flows up to 100 million flows with an average error of less than1BYd f|.
However, only Direct Bitmap is used because of its lower complexity. The other variants are left
as a choice of the service providers if smaller amounts of memory are preferred at the expense of

a little higher complexity.

5.1.2 Handling traffic with different packet sizes

Most fair AQM schemes fail to provide fairness when flows send packets of different sizes. For
example, this is the case of BLACK since it computes a flow’s buffer fraction based on the number
of packets of that flow over the number of total sampled packets, rather than a byte count. To
solve this problem, instead of counting the number of packets for the candidate flows in the cache

memory, the information is updated with the size of the sampled packet.
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In details, rather than increasing thit variable by one each time the flow ID of the sampled
packet is found in the HBF cache memory, tHet variable ) is updated with the size of the
sampled packet. Furthermore, the total number of bytes are counted in each period rather than the
number of packets being sampled)( In this way, bothi andm have a unit of byte. At the end
of a sampling period, thelitFraction of a flow is calculated by: (in bytes) divided by the number
of bytes being sampledi{ in bytes). TheHitFraction obtained using the byte count then has no
problem even when the passing traffic have different packet sizes.

Note that CHOKe cannot prevent this problem without breaking a large packet into smaller
packets about the same size as suggested by the authors of CHOK&. ilA\f CHOKe relies
purely on packets matching, between a packet that is sampled from the queue and the arriving
packet, a flow that has smaller packet size would be penalized more with the higher probability of

matching.

5.1.3 Reducing throughput fluctuation

The trace of the results from the experimentation set in Chap&indicates that throughput
fluctuation under BLACK occurs mainly from a dropping function and adds up by a sampling
error. A sampling error causes an inaccuracyHiit F'raction approximation and thus over- or
under-penalization of high-bandwidth unresponsive flows from time to time. This issue will be
explained in this section while the throughput fluctuation due to a dropping function will be covered
in the next section.

In BLACK, packets are sampled from a queue buffer, using packet arrival as a trigger event for
each sampling. Aftem sampled packets, we can estimate a fraction of packets from a particular
flow occupying a buffer space, which referred tofag F'raction. However, it is possible that a
sample sizer) could be greater than a maximum buffer siz8 (o collect enough statistics for
the estimation. In this way, &t Fraction could be interpreted as a fraction of packets occupied
in a virtual buffer of sizen, as shown in Figuré5.

However, the way BLACK samples packets does not always resemble the idea of a sampling
from a virtual queue. BLACK samples one packet as triggered by an arrival of a packet, no matter

whether that arriving packet will be dropped or enqueued. At the advent of congestion, an ag-
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gregate arrival rate might be high, and so a high level of packet drops, which is different from a
serving rate. While packets are backlogging in the buffer, it is possible that the high sampling rate,

due to high packet arrival rate, may cause the same packet(s) to be sampled more than once.

To reduce this possible error, AFC directly collects th& F'raction statistics from the packets
that are enqueued and tread them in the same way as sampled packets in BLACK. After a sampling
period, aH it Fraction of each flow could be determined using the same idea of sampling packets
from a virtual queue. Furthermore, since the statistics is now collected in byte according to Sec-
tion 5.1.2 the variablen becomes the aggregate byte count of all packets entering the queue. In
BLACK, a guide line of the value of is 3,000 in a unit of packets for a single period. Thus, for
AFC, the value ofn becomes3, 000 x B whereB is an average packet size in byte. The average
packet sizeB is normally between 576 bytes - 1,500 bytes for the connections that tend to generate
long term traffic or most bytes to the network. It is, however, up to the service providers to choose
a value ofB as they can directly measure an average packet size for the traffic that pass through

their network.

In this manner, the components of AFC along with a flow path of packets that pass through the

queue is illustrated in Figures.

In addition, this new sampling method decreases the complexity in two ways. First, randomly
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sampling packet from the queue is no longer required as the information is directly collected from
the packet that is enqueued. Second, the update frequency tends to be less because AFC collects the
statistics only when there is a packet enqueued excluding those dropped packets, unlike BLACK

that the statistics are collected per each packet arrival.

5.1.4 Dropping function

In BLACK, packets are dropped by the percentage of an extra buffer space the flow occupying

more than a fair share, or as shown in a form of

HitFraction — FairFraction

Pdrop = (5 1)

FairFraction

according to Equatio.2

Thorough experiments show that even though the exact number of active flows is known, which
yields a perfect value of &air F'raction, unresponsive flows could still achieve somewhat higher
bandwidth than a fair share. This problem could be explained through a following example.

For simplicity, assume an unresponsive flois a CBR traffic feeding its packets to the queue.

If the currentHit Fraction of this flow (HitFraction;) is about the same aséair Fraction,
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according to Equatioh.1 the dropping probability is zero. Now, if thHit F'raction; becomes
1.25 x Fair Fraction, the dropping probability turns to be 0.25. That means 25% of the incoming
packets from flowi would be dropped. When thEit F'raction; becomed.5 x Fair Fraction,

half of the incoming packets would be dropped. And when fheéF'raction; becomes twice

the Fair F'raction or more, all of the incoming packets are dropped. This behavior is illustrated

through a dropping probability showing in Figuse.

@ 120 T T T
g

g 100 |

]

— 80 r

2>

o 60 r

:

N 40 +

2

o

o

5 0 | |

0.5 1 15 2 25

HitFraction/FairFraction

Figure 57:Dropping probability as a function df it F'raction/ Fair Fraction of BLACK.

Now, suppose thélit Fraction; is 1.5 x Fair Fraction, which means that flowis currently
having more number of packets occupying the (virtual) queue than a fair share by as much as 50%.
Intuitively, packets from flowi should be prevented from entering the queue for a while so that
the queue could drain these extra 50% packets. However, because BLACK drops new incoming
packets with a dropping probability of 0.5, at least 50% of the incoming packets would still occupy
the buffer, whether or not the queue has drained the extra packets from the previous sample period
yet.

If the queue is not capable of draining the old extra packets and the new extra packets, the
new HitFraction; would go beyondl.5 x FairFraction iteratively and end up at twice the
FairFraction. At this point, no more packets are allowed to be enqueued, and the real draining
of the cumulative extra packets occurs here. After a short whileHthté'raction; would come

down to about thé'air F'raction, and a new period of this fluctuation will continue.
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It could be observed that this fluctuating behavior results in

1. By average, unresponsive CBR could gain more bandwidth than a fair share periodically, de-
pending on the value of thH it Fraction;, from the extra packets that the dropping function

lets them pass through the queue.

2. The throughput of CBR at the destination may be highly fluctuated.

Therefore, the dropping function should be more aggressive to the unresponsive traffic. Ideally,
once theHit Fraction; is higher than theé air Fraction, no more incoming packets from flow
7 should be enqueued, which implies a dropping probability of one, until the extra packets are
drained and thé{it F'raction; becomes lower than thEair Fraction. This approach requires
that the mechanism should be able to keep track oftid ' raction; fast enough so that the flow
with higher Hit Fraction than theFair Fraction would not be penalized longer than necessary.
Since, aHit F'raction is dynamically adjusted with a mechanism that takes into account both past
and current information according to Equati®3, so the queue does not have to wait for the end
of the sampling period to update th&t F'raction and the new dropping policy should contain no
problem in terms of responsive action.

However, dropping all the packets whe#/at F'raction becomes higher thanféair F'raction
might have a problem with responsive traffic like TCP traffic that backs off when its packets are
dropped. As a demonstration, once tHet F'raction of TCP traffic reaches &'air Fraction,
its incoming packets are dropped which triggers a back-off period at a TCP source. After a
short while, as the queue has drained some packetsHih&raction becomes lower than a
FairFraction once again and incoming packets are allowed to get in. However, the TCP source
may still be backing off its data transmission, thus no or only few packets would arrive at the
gueue causing it&l it F'raction to be even lower. Later, after the TCP source expands its conges-
tion window, a burst of packets once again arrives at the queue anditti&-action eventually
reaches th& air F'raction again. In other words, th€'air F'raction becomes an upper limit of
the Hit F'raction of TCP traffic which has a sawtooth behavior, giving the averdgd raction
to be less than th&air Fraction, as roughly illustrated to aid this explanation in Figb&

From the figure, it is clear that the averafét F'raction over time could be lower than the

FairFraction which should be the target for a long tetit F'raction. Under this circumstance,
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Figure 58:Simplified Hit F'raction behavior of responsive traffic under AFC dropping policy with

no credit-based mechanism.

an underutilization of the responsive traffic and the queue could occur if the HBF cache size is
large comparing to the number of active flowedct).

To prevent this problem, aredit-based mechanisims introduced in AFC, so that a flow’s
HitFraction can be higher than thBair Fraction if it has a credit available, e.g. a credit from a
back-off period of responsive flows. Note that AFC’s credit-based mechanism has no relationship
with a large number of papers in the literature about credit-based flow control in ATM network

such as that appeared ihl|.

5.1.5 Credit-based mechanism

The idea of &redit-based mechanisimAFC is to allow aH it Fraction to go beyond & air Fraction
if a flow has a credit available, so that an averab@F'raction over time is about the same as a
FairFraction. Here, a credit is defined as an area underHl&'raction curve above or below
the Fair F'raction in Figure58, which is referred to aa\ A. Precisely, a credit of any given flow

can be approximated every timd#&t F'raction is updated according to

AA = AA- + [(HitFractiont — FairFraction;)  (t — t‘)} ) (5.2)

as roughly illustrated in Figurg9, wheret indicates a current update time atidindicates a
previous update time. Obviously, the value®d4; should be kept as close to zero as possible.

However, when a responsive flow is backing off, there is usually not enough packets to fill up
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Figure 59:Simplified Hit Fraction behavior of responsive traffic under new AFC dropping policy.

the queue to raise it it Fraction to be as much as Aair F'raction, and thus itsA.A; would
become negative. The negative value®ofl, means that this flow have this amount of credit for
AFC to allow the packets of this flow to enter the queue even if its cudd@nt'raction is greater
than theFair Fraction. This dropping policy is contrast to the refined dropping function intro-
duced in the previous section where the packets are dropped wHetfaaction is greater than

a Fair Fraction only. By allowing aHitFraction of a flow to be higher than &air Fraction

if it has available credit, e.g. from its previous back-off period that catissésto be negative, an

underutilization of a responsive flow such as that in Figi8&s prevented.

A simulation is setup, to see the evolution offat F'raction over time, with the same settings
of 200 TCP traffic and the asymmetric topology in SecBadi4except that the HBF cache is large
enough to hold every passing flow and the number of active flows is assumed to be known. The
result in Figure60 shows that thedit F'raction of this sample flow could swing above or below
the Fair Fraction, as its upper bound is not restricted to their F'raction when the method
described in the previous section is used or that shown in Fig@irdNevertheless, the fairness
among these TCP connections with different round trip delays is also achieved with a standard

deviation of only 6.17 Kbps around the average throughput of 225 Kbps, in this ideal case.
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Figure 60:Evolution of Hit Fraction over time of a sample flow under AFC with a credit-based

mechanism.

5.2 PERFORMANCE EVALUATION

In this section, an evaluation of AFC begins with the same set of experiments conducted in Chap-
ter 3.3 which is composed of (1) single unresponsive flow scenario, (2) multiple unresponsive
flows scenario, and (3) TCP with different round-trip delays scenario. Because one of the design
goals of AFC is to solve the problem of throughput fluctuation in BLACK, not only the throughput
fairness is used as a performance metric but the instantaneous throughput over time of CBR traffic
is also considered and compared with BLACK. Then, the more diverse scenarios are conducted to
examine fairness and robustness of the fair AQM schemes, including a scenario with traffic with
different packet sizes, a scenario with short-lived and bursty traffic, and a scenario when TCP-
friendly traffic and TCP traffic sharing the same bottleneck link. In general, the scenarios could be
categorized into four parts according to the types of traffic in consideration — long-lived unrespon-
sive traffic, TCP with different round-trip timésshort-lived traffic, and TCP-friendly traffic — as

shown in Tablell In addition, at the end of this section, the complexities of these schemes are

1This is the only category that only TCP traffic with the same settings are sharing the same bottleneck link.
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also discussed.

Long-lived unresponsive traffic
e Single unresponsive flow versus TCP traffic
e Multiple unresponsive flows versus TCP traffic

o Traffic with different packet sizes

TCP traffic with different round-trip times

Short-lived traffic
¢ Effect of short-lived responsive traffic in backgroupd

e Bursty unresponsive traffic

TCP-friendly traffic versus TCP traffic

Table 11:Simulation scenarios.

Network Simulator 2 (NS-2)1] is again used as a simulation tool. BLACK queue is re-
evaluated usin@irect Bitmapas the estimation algorithm of the number of active flows. The
results of RED, CHOKe, SFB, and CARE from Cha®e3are shown or replotted for comparison
purposes. All the parameters are set according to the respective experiments in Gl3apteich
are resummarized in each of the sections. Because AFC contain the same parameters as BLACK,
all the settings are the same as BLACK, as previously discussed in S8ci&and3.3.6 Each
experiment runs for 200 sec. and it is repeated 20 times. The statistics are collected from 50 sec.
to 200 sec. of the simulation time. The analysis of the other AQM schemes, except AFC, are not

repeated in this chapter unless necessary.

5.2.1 Single unresponsive flow

A single unresponsive flow experiment utilizes the symmetric dumbbell topology shown in Fig-
ure 20. A large unresponsive CBR traffic shares the same bottleneck link with 100 TCP traffic.
Two experiments were set up — (1) 5-Mbps bottleneck link rate with 5-Mbps CBR traffic (2) 45-
Mbps bottleneck link rate with 10-Mbps CBR traffic. All the access links are 100 Mbps. The

parameters of different queue types are set according to T@blehe results of the simulation are

119



RED miny, = 50 packetsynax;, = 150 packets.

CHOKe miny, = 50 packetsynax, = 150 packets.

SFB Two levels of hash functions of 23 bins with double set of hash

tables for moving hash functions (total 4 x 2 bins).

CARE Capture occasiont) = 200 with 50 of this value is used for the

estimation of the number of active flows

BLACK and AFC ming, = 50 packetsynaz,, = 150 packets, sample sizei) =
3,000 packets, HBF cache size = 20.

Common parameters | Maximum buffer size = 300 packets.

Table 12:Parameters of different queues in the single unresponsive flow experiment.

tabulated in Tablé3 and14 for both experiments respectively.

The last row of Tablel3 shows the per-flow throughput of different flows under AFC, in
comparison to the per-flow throughput obtained from the other schemes in the upper rows. AFC
is, not only better than BLACK in terms of per-flow throughput fairness, but also better than
the other schemes and very close to SFB with the rate limit being set to the fair rate. In another
experiment with varying CBR arrival rate, AFC still showing a superior performance in controlling
unresponsive traffic be close to the fair throughput, even with the arrival rate of twice the bottleneck
link rate, as shown with BLACK in Figuré1 and shown with the other schemessiad Note that
although it is unlikely to have the unresponsive flows that consume this large portion of a link
bandwidth for high-speed core routers, however it is possible that similar situation could happen
on one of the end-to-end links that the traffic traverse through. The second experiment with the
bottleneck link speed of 45 Mbps fed with 10-Mbps CBR and 100 TCP traffic also exhibits the
same trend as shown in Taldld. Under AFC, per-flow throughput of both CBR and TCP traffic
are about the fair rate, comparing to the other schemes, while the fairness among TCP traffic is not

distorted as shown through Jain’s fairness index in the third column.

In addition, in terms of CBR’s throughput fluctuation that occurs with BLACK, this phe-
nomenon is greatly reduced under AFC, as shown in Fig8feom the first experiment (5-Mbps

CBR with 5-Mbps link) which illustrates the throughput over time of the CBR traffic. Because of
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Average UDP | Average TCP | Jain’s fairness
throughput throughput index among
(Kbps) (Kbps) TCP flows
RED 4,374.82 5.046 0.5551
CHOKe 1187.301 38.160 0.9842
SFB, rate limit~ 98.99 49.046 0.9836
twice the fair rate
SFB, rate limitx 49.57 49.538 0.9826
fair rate
SFB, rate limit~ 24.95 49.78 0.9817
half the fair rate
CARE 172.66 48.307 0.9862
BLACK 73.20 49.301 0.9918
AFC 50.46 49.529 0.9925

Table 13:Results from the single unresponsive flow scenario including AFC. Bottleneck link speed

of 5 Mbps. UDP has a constant bit rate of 5 Mbps competing with 100 TCP flows.
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Figure 62: UDP throughput vs. arrival rate for RED, CHOKe, CARE, BLACK and AFC; Each

point is an average value over 20 runs.
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a large difference in UDP throughput obtained from different schemes, the UDP throughput over
time of CHOKGe is plotted on different vertical (throughput) scale. The figure clearly shows that
CBR throughput is much smoother under AFC. Only SFB provides smooth throughput comparable
to AFC, while the other schemes result in highly fluctuated throughput. For the second experiment
with 10-Mbps CBR with 45-Mbps link, because of a high difference among CBR throughput under
different schemes, only CBR throughput of BLACK and AFC are illustrated in Figdte show

the improvement of AFC in providing smoother transfer rates for the unresponsive flows.

Average UDP | Average TCP | Jain’s fairness
throughput throughput index among
(Kbps) (Kbps) TCP flows
RED 9,768.23 352.77 0.9952
CHOKe 6,632.55 384.12 0.9964
SFB, rate limit~ 909.85 450.37 0.9792
twice the fair rate
SFB, rate limitx 454.92 44591 0.9815
fair rate
SFB, rate limitx 222.39 448.15 0.9807
half the fair rate
CARE 825.80 442.19 0.9944
BLACK 426.21 446.19 0.9948
BLACK 511.45 445.24 0.9945
AFC 445.54 445.99 0.9956

Table 14:Results from the single unresponsive flow scenario including AFC. Bottleneck link speed

of 45 Mbps. UDP has a constant bit rate of 10 Mbps competing with 100 TCP flows.
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Figure 63:CBR throughput over time after passing through different fair AQM schemes. Bottle-
neck link rate is 5 Mbps and CBR arrival rate is 5 Mbps.
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Figure 64: CBR throughput over time after passing through BLACK and AFC. Bottleneck link
rate is 45 Mbps and CBR arrival rate is 10 Mbps.
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5.2.2 Multiple unresponsive flows

In this section, the experiments with multiple unresponsive flows, which are closer to a real world
scenario, are set up using the same topology with 5-Mbps and 10-ms delay of the bottleneck link
as in the first experiment in the previous section. Two sets of experiments are conducted — (1) five
CBRs (each of 500 Kbps) sharing the link with 100 TCP traffic, and (2) five CBRs (each of 5 Mbps)
sharing the link with 100 TCP traffic. All the queue parameters are the same as those shown in
Table12 except that CHOKe is now equipped with éslif adjusting mechanista handle multiple

unresponsive flows as discussed in Sec8dh3

Average UDP | Average TCP | Jain’s fairness
throughput throughput index among
(Kbps) (Kbps) TCP flows
RED 420.32 29.021 0.9565
CHOKe 318.52 34.107 0.9836
SFB, rate limit ~ 100.01 45.032 0.8863
twice the fair rate
SFB, rate limit~ 42.23 47.920 0.8595
fair rate
SFB, rate limit ~ 17.66 49.150 0.8611
half rate
CARE 107.92 44.241 0.9852
BLACK 66.34 46.716 0.9904
AFC 49.33 47.567 0.9908

Table 15: Results from the multiple unresponsive flow scenario including AFC. Bottleneck link
speed of 5 Mbps. Each of five UDP has a constant bit rate of 500 Kbps competing with 100 TCP

flows.

The results of the two experiments with different CBR arrival rates in Tablend17 show a

superior fairness performance of AFC over the other schemes. Here, although SFB also achieves
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CBR per-flow throughput (Kbps)

Queue type flow O | flow 1 | flow 2 | flow 3 | flow 4
SFB, rate limit~ | 18.08 | 96.90 | 16.37 | 104.69| 6.61

fair rate

AFC 47.08 | 48.05| 48.74| 48.00 | 47.52

Table 16:A sample result from a single run comparing per-flow throughput of CBR traffic under
SFB and AFC. Each CBR arrival rate is 500 Kbps. Bottleneck link is 5 Mbps with 100 TCP traffic

in background.

about the same level of fairness, a network operator needs to manually set a rate limit threshold
as SFB has no prior knowledge of a fair throughput nor the number of active flows. Besides,
without a special per-flow treatment or a separate queue to serve the unresponsive flows, although
the average per-flow throughput of unresponsive traffic is limited to about the rate limit threshold,
SFB cannot guarantee fairness among these unresponsive flows. With the code for NS simulator
provided by the authors of SFB§], all the misbehaving traffic, once detected with its hashing
technique, are prevented from entering the queue for a certain period of tinhelbtimé to

achieve a desired throughput. Basically, a concept of hold time has been introduced since its
predecessor, BLUE2[)], in a form of time interval between the updates of a dropping probability.

In one of the simulations of SFB under this scenario, even through the average per-flow throughput
of the five CBR traffic is about the about the fair share, the individual throughput are extremely
varied as shown in comparison with AFC in Talilé This result indicates that the SFB’s double
moving hash function alone is not enough to provide fairness, but a special per-flow treatment is

needed in order to improve its fairness performance.

Again, even with multiple large unresponsive flows, AFC still provide very small fluctuation
of CBR throughput. Figuré5 show the results from one of the run in the multiple unresponsive

flows experiment with CBR arrival rate of 5 Mbps each.
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Table 17:Results from the multiple unresponsive flow scenario including AFC. Bottleneck link

speed of 5 Mbps. Each of five UDP has a constant bit rate of 5 Mbps competing with 100 TCP

flows.

Average UDP | Average TCP | Jain’s fairness
throughput throughput index among

(Kbps) (Kbps) TCP flows
RED 1,000.00 0.000 N/A
CHOKe 841.29 5.092 0.1108
SFB, rate limit~ 95.29 45.285 0.9594
twice the fair rate
SFB, rate limit= 47.84 47.658 0.9611
fair rate
SFB, rate limit~ 22.94 48.903 0.9593
half rate
CARE 1,000.00 0.000 N/A
BLACK 77.04 46.181 0.9903
AFC 48.81 47.609 0.9972
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Figure 65:CBR throughput over time after passing through AFC. Bottleneck link rate is 5 Mbps

and CBR arrival rate is 5 Mbps each.
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5.2.3 Traffic with different packet sizes

As described with the pilot study in Secti@ at the end of Chapte3.3, most fair AQM schemes
were not designed to provide fairness for traffic with different packet sizes. Some schemes such
as CHOKe currently has no better solution rather than breaking a large packet into few smaller
packets of the same size to handle this situatiofi.[ AFC is designed to solve this problem
by having a byte count, as opposed té/& count in BLACK, to provide a better fair share of
throughput under this circumstance.

An experiment was set up with the same symmetric topology shown in F2§uwéh a bottle-
neck link of 5 Mbps and 10-ms delay. One hundred TCP traffic are competing with three 1-Mbps
CBR traffic. However, these three CBR traffic have different packet sizes where CBR1 has a packet
size of 100 bytes, CBR2 has a packet size of 500 bytes, and CBR3 has a packet size of 1,000 bytes.
The average per-flow throughput of CBR traffic under different fair mechanisms are plotted along
with a fair share of bandwidth in Figu&5. The figure clearly shows much superior fairness per-
formance of AFC over the other schemes where the per-flow throughput of three CBR with totally

different sizes of packets are provided in a fair manner.

CBR1 = 1-Mbps CBR with packet size of 100 bytes
CBR2 = 1-Mbps CBR with packet size of 500 bytes
CBR3 = 1-Mbps CBR with packet size of 1000 bytes
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Figure 66:Average per-flow throughput of CBR traffic with different packet sizes.
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5.2.4 TCP with different round-trip times

With the same simulation settings as in Sect®®.4 200 TCP traffic are randomly assigned to
originate from node NO, N1, N2, N3 or N4 which are linked to the randomly selected sink node
S0, S1, S2, S3 and S4 with the asymmetric topology in Figdrélhe cache size of BLACK and

AFC is 46 which is the same as SFB, or only a quarter of the number of these long-lived TCP
traffic. The result of the simulation under AFC is presented in Fig8ren this figure, the results

from the other schemes are repeated for a purpose of comparison. The standard deviation values
and Jain’s fairness indexes from these this same experiment are tabulated ihS[atide these
standard deviations are also separately plotted with 95% confidence interval over multiple runs in
Figure67. It is clear that AFC still achieves good fairness performance among TCP connection
with different round-trip times, apart from providing fairness when unresponsive traffic exist. SFB
shows much larger standard deviation among TCP throughput, which is about double of those
under BLACK and AFC. The reason is that SFB provides rate limit only on those flows that are
detected as unresponsive traffic, or when the dropping probability in all the bins that these flows
hashed to reach one. All the other flows would be controlled by a dropping function similar to its

predecessor, BLUE[J)], which provides no fairness guarantee.

Flow throughput RED | CHOKe | SFB | CARE | BLACK | AFC
(Kbps)
Standard deviation | 43.725| 38.268 | 41.996| 30.194| 20.308 | 16.149
Jain’s fairness index 0.9769| 0.9721 | 0.9665| 0.9815| 0.9917 | 0.9948

Table 18:TCP connections with different round-trip time scenario.

5.2.5 Effect of short-lived traffic

In all of the previous experiments in this Chapter and in Chaptehe fairness performance is
evaluated under the ideal scenarios where all of the sources transmit only long-lived traffic. In this

section, short-lived traffic are introduced in two different types of scenario — (1) low-bandwidth
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short-lived traffic such as web traffic (2) bursty traffic or high-bandwidth short-lived traffic such
as a malicious traffic that aims to saturate a link by sending an impulse of traffic to escape a fair
mechanism of an AQM scheme. A number of experiments are set up to see whether these short-

lived traffic have any negative effect on the fairness performance of the AQM schemes.

5.2.5.1 Low bandwidth short-lived traffic The first set of experiments are conducted to eval-
uate how well the AQM scheme could still provide fairness when there are a different loads of web
traffic in background (or mice flows according to mice and elephants model discussed in Section
3.2). The same dumbbell topology in Figu28is set up with a bottleneck link of 10 Mbps and 10

ms delay. Five CBR traffic of 2.5 Mbps each and 100 TCP traffic are sharing the same bottleneck
link along withw sessions of web traffic. Each web session contains default parameters recom-
mended in the NS2 script] where the traffic model is based ohi7]. A Pareto distribution is used

for flow lengths of web traffic where the average number of packets per flow is 15 with a shape
parameter of 1.2. Starting time of eachuofveb sessions are randomly set during 250 seconds of
simulation time. With a fixed simulation time, largeimplies high web traffic load scenarios or
more number of web traffic that would arrive at the queue than simalh this experiments, the
number of web sessions)) are set to 0, 2,500, 5,000, 7,500 and 10,000 sessions to be generated
during this 250 seconds of simulation time. CHOKe, SFB (with rate limit set to the fair fraction),
CARE, and AFC are evaluated whether their fairness performance is interfered with different web
traffic loads.

The results of this experiment are shown in Fig@gan a form of an average per-flow CBR
throughput over an average per-flow TCP throughput. The average per-flow CBR throughput is an
average over five CBR traffic and over 20 runs of simulations. Ideally, an average CBR throughput
over an average TCP throughput should be close to one to ensure fairness among CBR traffic and
long-lived TCP traffic. The upper image in Figu® shows that AFC, CARE, and SFB could
achieve their fairness performance with minimal interference from different web traffic loads. In
this case, average CBR throughput under CARE is higher than AFC and SFB because of multiple
CBR traffic with a high arrival rate that causes an underestimation of the number of active flows,
however the average CBR throughput comparing to average TCP throughput is only slightly higher

with more number of background web sessions. On the other hand, CHOKe shows a different

134



=
o

<

g’ T T T T T

2 7t SFB =——= -
E CARE ==

O BLACK

® 5¢ -
o

<

=

a

£ 3f :
>

o

£

%

o 17 I
2

E 0 2500 5000 7500 10000
<

Number of web sessions
(a) AFC, CARE, and SFB

5
o
e
(@)]
>
@]
E T T T T T
o 80r CHOKe == ] A
O
|_
QJ —
g
T _
< 60 i
=
=
o
=
[@)]
>
o
e
r 40 .
m
O
]
g’ 0 2500 5000 7500 10000
3: Number of web sessions
(b) CHOKe
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20 runs) at different background web traffic loads.

135



g

= 1

E o098}

a 0.96 | [ S |
ol L

B

2 092 |

2 oot T |

S Tl

5 08} b |

& o086 AFC ——

2 el BLACK - 2

g ° CARE -

€ osmf B 1

= CHOKe -------

< 08 ' ' ' '

5 0 2000 4000 6000 8000 10000

Number of web sessions
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result in the lower image of Figu@9. When there is no background web traffic exists, the average
per-flow CBR throughput is about 50 times the average long-lived TCP throughput. However,
the average CBR throughput are getting significantly higher than the average TCP throughput
as the number of web sessions increases, or approximately 80 times higher when the number of
web sessions becomes 10,000 sessions. The rationale behind this poorer performance of CHOKe
under high a load situation is that when more number of packets from the web traffic get in to
the queue, with the average length that is controlled by underlying RED mechanism, less number
of packets from the same CBR connection are in the queue at the same time which leads to less
chance of a packet matching and less control of unresponsive traffic. On the other hand, in terms
of the fairness among only long-lived TCP connections, AFC, BLACK, and CARE (top three lines
respectively) perform well regardless of the web traffic load according to Jain’s fairness index
showing in Figure70. SFB provides less fairness to long-lived TCP traffic, and this value is
degraded as more number of web sessions turn on. For CHOKe, fairness on TCP traffic is highly

interfered with higher load of background web traffic.
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5.2.5.2 High bandwidth short-lived traffic or bursty traffic  Although several fair AQM
mechanisms achieve average long-term fairness in different scenarios, none has been evaluated
in terms of their performance to detect and control short-lived misbehaving traffic or bursty traffic.
In a real network, not all of high bandwidth traffic are CBR, which have been used as a misbe-
having traffic in all of the previous experiments. There are a number of media applications that
feed traffic that is bursty to a network. Providing an average long-term fairness for bursty traffic or
high bandwidth short-lived traffic may not be perfect for the light-weighted fair AQM schemes that
do not maintain flows state information and might not have enough long term information about
average arrival rate. Some AQM schemes need some amount of time to collect some information
before identifying and controlling misbehaving traffic, and may erase those information after a
short while. Although not common, it is possible that some bad people may use this fundamental
knowledge to generate high-bandwidth short-lived traffic that might escape a fair AQM mechanism
to saturate a link by pumping high speed impulse traffic. A key question here is how well the fair

AQM schemes can detect and control these types of traffic.

A series of experiment are set up with the misbehaving traffic are represented by a very high-
bandwidth short-lived UDP traffic with fixed ON and OFF periods or bursty traffic with ON and
OFF periods are drawn from exponential distribution. Again, 100 long-lived TCP traffic are pass-
ing through the same bottleneck link of 10 Mbps. Different settings of short-lived traffic are shown
in Table19. Two types of ON and OFF periods are tested — (1) traffic with equal mean ON and
OFF period, and (2) traffic with longer OFF period. A purpose of the latter type is to see if there is
any different fairness performance when a traffic is paused for a longer period of time. Peak rate
during an ON period also comes with two settings — 1 Mbps and 10 Mbps. A 1-Mbps peak rate
is used in an environment with low bandwidth bursty traffic. A peak rate of 10 Mbps is used to
simulate a scenario with an attack of short-lived high bandwidth traffic.

Because the results of fixed ON-OFF traffic and exponential ON-OFF traffic are very similar,
only those obtained from the experiments with exponential ON-OFF traffic are exhibited. The
results under different queue types are separately tabulated inZ@lag&, 22, 23, 24, and25, for
RED, CHOKe, CARE, BLACK, and AFC respectively.

Even through the average per-flow throughput of both CBR and TCP traffic are shown, the

fairness performance could be compared by the average per-flow throughput of TCP traffic alone
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Peak rate 10 Mbps 1 Mbps

Mean ON/OFF period | =1 sec./1 sec. =2 sec./4 sec. =1 sec./1 sec| = 2 sec./4 sec|
Number of UDP traffic 5 15 5 15 5 15 5 15

Table 19:A combination of the experiments on high-bandwidth short-lived traffic. These bursty

traffic share the same bottleneck link with 100 long-lived TCP traffic.

as it indicates how well the AQM schemes could protect responsive flows. As a guideline, a fair
throughput under the scenarios with 5 bursty traffic is 95.2 Kbps, and a fair throughput under the
scenarios with 15 bursty traffic is 86.9 Kbps.

For bursty traffic with 10-Mbps peak rate, RED mechanism, a scheme that provides least fair-
ness, obviously cannot protect TCP traffic at all in all the scenarios that the peak rate of bursty
traffic is 10 Mbps (Tabl€0). All TCP connections receive about 10 Kbps, or even shut out in two
cases of fifteen 10-Mbps bursty traffic. CHOKe (TaBly and CARE (Table€23) could provide
some protection when there are five bursty flows, but cannot prevent fifteen 10-Mbps bursty traffic
from grasping almost all of the bandwidth. It is not unexpected for CHOKe as the results in the
previous experiments so far show that CHOKe does worse in providing fairness under a higher
number of unresponsive flows. CARE, however, is a little worse than CHOKe and the reason be-
hind this behavior is its inability to estimate the number of active flows correctly with a presence
of unresponsive traffic with higher rate. BLACK could provide some level of protection as it could
reserve about 60% - 70% of a fair throughput to each TCP connection by average (column 1 and
3), when there are five 10-Mbps bursty traffic. A trace file indicates that BLACK's HitFraction
mechanism, that randomly samples packets from the queue, could not perform as well as when
the unresponsive traffic is non-bursty. On the other hand, AFC which utilizes a direct counting of
HitFraction provides much better fairness as each TCP connection gains more than 92% of the fair
share. However, both BLACK and AFC performance are degraded when there are fifteen 10-Mbps
bursty traffic coming to the queue because of the cache size of only 20. In this case, bursty traffic
does have an impact on the mechanism of BLACK and AFC. When the number of bursty traffic is

comparable to the cache size, those traffic could be replaced easily during the OFF period of the
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traffic. So their HitFraction statistics has to be restarted once the traffic is in the ON period again.
BLACK turns to be largely distorted as each TCP connection receives only around 30% - 40% of
the fair share (column 2 and 4). AFC, however, is still far better as each TCP connection gains 72%
- 90% of the fair share. On the other hand, SFB performs very well in these scenarios (Column 1-4
of Table22, but with a fine tuning of the rate limit threshold given that the arrival rates of bursty

traffic must be known in advance.

For a low-bandwidth bursty traffic case (column 5-8), although all of the schemes leave the
bandwidth to each bursty traffic at least 1.8 - 3 times the fair share, all of the schemes still provide
some level of protection to TCP connections, particularly when there are less number of bursty
traffic. However, when there are fifteen bursty traffic, RED, as the based line for a comparison,
clearly provides least fairness as all bursty traffic altogether take up to 60% of total bandwidth and
leave each TCP connection with a bandwidth equals to only about half of the fair throughput. Note
that there are 100 long-lived TCP connections sharing the portion of the bandwidth left from UDP,
and if there are less number of TCP connections, a proportion of per-flow TCP throughput to a
fair share would be even less. CHOKe (TaBIH also provides similar fairness performance to
RED even with lower-bandwidth bursty traffic. CARE, BLACK and AFC (TaBg& 24, and25)
achieve better fairness than RED and SFB on both five bursty flows case and fifteen bursty flows
case. Here, CARE estimates the number of active flows much better when the bursty traffic has a
peak rate of 1 Mbps, as opposed to 10 Mbps. Nevertheless, even with the best case of AFC, CBR
still grasp 1.8 times the fair share of bandwidth. SFB case (T2B)lés different from the other
schemes because SFB needs to know a rate limit threshold in advance which should be manually
configured. Using the same setting that achieves very good fairness performance in the 10-Mbps
peak rate case (column 1-4), SFB turns to provide poor fairness performance in 1-Mbps peak rate
case (column 5-8). This result shows that although SFB could detect unresponsive traffic, it cannot

use the same setting to provide fairness for different scenarios.

5.2.6 Fair AQM schemes with TCP-friendly traffic

In this section, the problem is moved from the fairness between TCP traffic and the traffic that is

not responsive or non-TCP-friendly traffic, to the fairness between TCP traffic and TCP-friendly
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Peak rate 10 Mbps 1 Mbps

Mean ON/OFF =1sec./1sec| =2sec./4sec| =1sec./1sec, =2 sec./4secC.
Number of UDP 5 15 5 15 5 15 5 15
Average UDP 1698.9| 666.3| 1651.5| 665.9| 456.9| 405.0| 297.6| 287.4
throughput (Kbps)

Average TCP 9.8 | = 0.0 13.3| ~0.0| 77.2| 39.4| 85.1| 56.9
throughput (Kbps)

Jain fairness 0.975 | 0.895| 0.937 | 0.788| 0.993| 0.978| 0.976| 0.971
index for UDP

Jain fairness 0.849 | 0.221| 0.461 | 0.168| 0.990| 0.883 | 0.992| 0.977
index for TCP

Table 20:A result of high-bandwidth short-lived UDP traffic sharing a link with 100 TCP traffic
under RED.

Peak rate 10 Mbps 1 Mbps

Mean ON/OFF = 1sec./1sec. =2sec./4 sec| =1sec./1sec, =2sec./4sec
Number of UDP 5 15 5 15 5 15 5 15

Average UDP 893.9| 653.3 | 880.3| 645.0| 385.2| 364.4| 254.3| 245.16
throughput (Kbps)

Average TCP 55.3 19| 56.0 3.3| 80.8| 455| 87.3| 63.2
throughput (Kbps)

Jain fairness 0.987| 0.980| 0.976| 0.967 | 0.996| 0.979| 0.975| 0.970
index for UDP

Jain fairness 0.962| 0.364 | 0.963| 0.353 | 0.992| 0.928| 0.992| 0.986
index for TCP

Table 21:A result of high-bandwidth short-lived UDP traffic sharing a link with 100 TCP traffic
under CHOKe.
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Peak rate 10 Mbps 1 Mbps

Mean ON/OFF = 1sec./1sec. =2 sec./4 sec|. =1 sec./1sec|. =2 sec./4 sec|
Number of UDP 5 15 5 15 5 15 5 15
Average UDP 86.1 | 115.6| 86.0 | 102.4| 321.1| 375.6| 206.9| 232.6
throughput (Kbps)

Average TCP 95.7 | 82.7| 95.7 | 84.7| 84.0| 43.8| 89.7| 65.1
throughput (Kbps)

Jain fairness 0.984| 0.958| 0.984| 0.969| 0.993| 0.978| 0.974| 0.966
index for UDP

Jain fairness 0.969| 0.808| 0.974| 0.854| 0.943| 0.682| 0.964| 0.889
index for TCP

Table 22:A result of high-bandwidth short-lived UDP traffic sharing a link with 100 TCP traffic
under SFB.

Peak rate 10 Mbps 1 Mbps

Mean ON/OFF = 1sec./1sec| =2sec./4 sec, =1sec./1sec,. =2 sec./4sec.
Number of UDP 5 15 5 15 5 15 5 15
Average UDP 1098.7| 666.4| 995.8| 664.8| 213.0| 264.8| 182.0| 189.5
throughput (Kbps)

Average TCP 444 ~0.0| 495 ~0.0| 89.4| 604 | 909| 716
throughput (Kbps)

Jain fairness 0.989 | 0.925| 0.981| 0.868 | 0.994| 0.986| 0.984| 0.981
index for UDP

Jain fairness 0.989 | 0.235| 0.888| 0.235| 0.990| 0.973| 0.989| 0.990
index for TCP

Table 23:A result of high-bandwidth short-lived UDP traffic sharing a link with 100 TCP traffic
under CARE.
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Peak rate 10 Mbps 1 Mbps

Mean ON/OFF = 1sec./1sec. =2 sec./4 sec|. =1 sec./1sec|. =2 sec./4 sec|
Number of UDP 5 15 5 15 5 15 5 15
Average UDP 595.7| 385.7 | 774.8| 452.5| 257.1| 264.2| 220.1| 214.1
throughput (Kbps)

Average TCP 68.9| 37.2| 594| 26.1| 87.2| 60.5| 89.0| 67.9
throughput (Kbps)

Jain fairness 0.760| 0.572| 0.753| 0.775| 0.924| 0.835| 0.937| 0.921
index for UDP

Jain fairness 0.928| 0.540| 0.890| 0.617| 0.968| 0.925| 0.963| 0.962
index for TCP

Table 24:A result of high-bandwidth short-lived UDP traffic sharing a link with 100 TCP traffic
under BLACK.

Peak rate 10 Mbps 1 Mbps

Mean ON/OFF = 1sec./1sec. =2 sec./4 sec. =1 sec./1sec|. =2 sec./4 sec,
Number of UDP 5 15 5 15 5 15 5 15
Average UDP 231.4| 191.1| 150.2| 130.9| 265.7| 245.1| 170.8| 156.4
throughput (Kbps)

Average TCP 87.7| 68.4| 921| 78.7| 86.7| 63.4| 91.5| 76.5
throughput (Kbps)

Jain fairness 0.981| 0.963| 0.960| 0.939| 0.986| 0.959 | 0.972| 0.968
index for UDP

Jain fairness 0.989| 0.971| 0.991| 0.981| 0.992| 0.956 | 0.993| 0.991
index for TCP

Table 25:A result of high-bandwidth short-lived UDP traffic sharing a link with 100 TCP traffic
under AFC.
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traffic2. As previously discussed in secti@r?, TCP-friendly protocol or TCP-compatible protocol

is an end-system-based approach which is an alternative way to combat the unfairness problem,
given that all of the end users would eventually deploy these protocols. These TCP-friendly proto-
cols have been recently proposed as alternative protocols that are responsive to network congestion
and more suitable for media applications as they provide much smoother traffic, but are also aimed
to achieve the same long term throughput as TCP. Because these TCP-friendly protocols are rather
new, the fair AQM mechanisms that have been focused in this chapter so far have never been eval-
uated in scenarios with TCP traffic and TCP-friendly protocols, which utilize different back-off
mechanisms to cope with network congestion. For example, because TCP-friendly protocols are
designed to provide a smoother congestion control, they usually react in a less responsive manner
to individual packet drops. Unfairness has been reported in a number of scenarios such as IIAD
versus TCP but using drop-tail queueir@. [Furthermore, these TCP-friendly protocols may get
penalized unfairly by the various AQM schemes and sometimes may even impose a negative im-
pact in terms of fairness; however, this aspect has not been studied yet.

However, the key question considered in this section is therefore whether the fair AQM mecha-
nisms, which fall under a router-based approach in solving the unfairness problem, actually provide
fairness when different variants of TCP compete with TCP-friendly traffic.

Well known TCP-compatible protocols include GAIMB]], Binomial Algorithms [], and
TFRC [27]. These protocols are used for evaluation of the fair AQM mechanisms in this section,

and are briefly described as follows.

e GAIMD or Generalized AIMD is based on the same additive increase multiplicative decrease
(AIMD) window-based mechanism of TCP provided in sect?oh.1 However, the congestion
window is adjusted through an increase parameterd a decrease parameigand denoted as
AIMD( a,b). Under no packet loss conditions, the congestion window increasesftrooil +
a packets per round-trip time. On the other hand, in response to a packet loss, the congestion
window decreases fro’ to (1 — b)1¥. With this notation, current TCP implementations can
be referred to as AIMD(1,1/2). Since TCP’s halving of the congestion window as a result of a
single packet drop is not suitable for media applications, GAIMD variants has been proposed

to provide a smoother change in the sending rate through a decreasing pareohétes than

2Most of the materials in this section are to be published.ii} [
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1/2 such as GAIMD(1/5,1/8) or GAIMD(1,1/8).

The family of Binomial algorithms are TCP variants that use nonlinear congestion control
by means of four control parametesi/,a andb. Both £ and! are additional parameters
introduced to express TCP-compatible congestion control such that the congestion window is
increased fromV to W + a/W* and decreased froi’ to W — bW in the case of no loss

and a single loss respectively. It has been shown that as lokgtag = 1, all Binomial
algorithms will achieve fairness with competing TCP. Two Binomial algorithm examples that
are well-suited to multimedia applications are IAD+£ 1,/ = 0) and SQRT E = [ = 0.5).

TFRC (TCP Friendly Rate Control), a rate-based TCP-compatible protocol, utilizes TCP’s
throughput equation to adjust the sender’s rate based on feedback from the receiver. TFRC
changes the sender’s rate in a much smoother manner than TCP. Upon detecting a packet loss,
the receiver estimates and sends back a loss event rate back to the sender. With this information
combined with the calculated round-trip timg)( TCP retransmission timeout valug:{o),

and the packet size the sender can adjust the transmission rate according to the steady-state

TCP bandwidth equatioff = s/(R/2p/3 + trro(34/3p/8)p(1 + 32p?)) [51].

2ms!1ms 1ms!2ms
% w

R1 R2
4 ms 15 Mbps 4 ms

C o S ©)

@ 5 ms 5 ms @

Figure 71:Simulation topology for TCP-friendly traffic experiment.

For a simulation setting to evaluate fairness performance of the fair AQM mechanisms when

TCP variants compete with these TCP-compatible traffic, an asymmetric topology shown in Figure

71 has a bottleneck link has a bandwidth of 15 Mbps with a propagation delay of 20 ms. All the

traffic, with 1-Kbyte packets, are originated randomly from one of the source nodes NO - N4 to

one of the sink nodes SO - S4. All of the access links are connected to the routers R1 and R2 at 100

Mbps with the delay denoted in the figure. Maximum buffer space at the router R1 is set to 300
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packets. A simulation script and the settings are adapted f&dinhich evaluates TFRC with
TCP traffic under RED queue.

The AQM mechanisms under evaluation are RED, CHOKe, SFB, CARE, BLACK and AFC.
Drop Tail scheme is also included as a baseline case for comparison. SFB is configured with double
sets of two levels of hash functions, each of 23 bins, which comes to a total of 46 bins. BLACK
and AFC are equipped with a cache size of 46. #tie;, andmax,, threshold settings for RED,
CHOKe, BLACK, and AFC are 50 and 150 packets respectivelgHOKe is implemented with
its self adjusting mechanism, where the region between,, andmaz,, are divided intok=8
subregions and the number of drop candidates is sgtijo= 2 - i (: = 1..k).

The TCP-friendly protocols included in the evaluation are TFRC, representing the case of rate-
based TCP-friendly protocols, and the window-based protocols IIAD, SQRT, and GAIMD. Since
the fair AQM schemes are designed to combat unfairness, our experiments then focus on a less
responsive GAIMD(1,1/8), which has been reported to achieve about 2.23 times the bandwidth of
competing TCP flowsZ6]. In this experiment, variants of TCP, i.e. Tahoe, Reno, Newreno, and
Sack TCP are included, to see an interaction between several types responsive traffic.

From the total combination of the experiments, the most important results are illustrated as

follows.

5.2.6.1 TCP vs. aggressive TCP-friendly protocol Figure 72 shows simulations of. Sack

TCP traffic competing witlm GAIMD(1,1/8) under the different AQM mechanisms. The graphs
illustrate the flows’ throughput over the last 60 seconds of the total simulation time. Each mark
on the graph represents the throughput of one flow normalized to the value of the fair share of the
bottleneck link. As both types of traffic have an equal number of flows on each set run, the x-axis
only shows the number of flows for each type of traffic.

The results with Drop Tail and RED show that GAIMD(1,1/8) receives much higher band-
width than SACK. Under CHOKe, BLACK, and AFC fair AQMs, both the mean and the variance
of the normalized throughput among flows are narrower indicating a better fairness over RED.
The reason behind this observable performance is from the fact these AQMs drop packets from

large flows according to the buffer space occupied by these flows. As GAIMD(1,1/8) reduces its

3These are the Gentle RED paramet@3.[

145



window size at a much slower pace on each packet drop (to smooth the congestion control for me-
dia applications) than TCP(1,1/2), GAIMD(1,1/8) tends to feed more packets into the buffer than
TCP, and thus faces higher packet drop probability. However, GAIMD(1,1/8) still gains a slightly
higher share of the bandwidth than competing TCP flows even under CHOKe or BLACK, due to
the lack of complete knowledge of per-flow information. In one of the experiments (not shown
here) when BLACK is assumed to have a large enough cache size to maintain state of every flow,
almost perfect long-term fairness between GAIMD(1,1/8) and TCP can be achieved.

An interesting point is the fairness performance of SFB. Although the mean normalized through-
put of both types of traffic under SFB are close to 1.0, the variance among all flows are spread out
rather widely. One observation we found was that, even though SFB can attain fairness among the
same type of TCP traffic with or without unresponsive flodd|[ it is very difficult to tune SFB’s
parameters to achieve close-to-fairness among different TCP-congestion control flows. The results
shown in Figure§2, 73, and74 were obtained using the suggested parameter settin@s 118][

A better tuning of the parameters that updates the dropping probability more rapidly provides bet-
ter results as shown in the last image in FigidBe However, this difficulty occurs in the entire

set of our simulation experiments. Therefore, we do not recommend using SFB without having a
sensitivity analysis on the tunable parameters of the environment under consideration.

In addition, because SFB was designed to provide fairness by controlling high-bandwidth un-
responsive traffic, we could not expect to see a high degree of fairness among different type of
responsive flows. According to the SFB mechanidsj,[it is rare that any responsive flow would
be classified as a misbehaving traffic. In this way, the fairness performance of TCP-friendly traffic
and TCP variants under SFB falls under the control of the packet dropping function and the hashing

which does not guarantee fairness.

5.2.6.2 TCP vs. comparable TCP-friendly protocol In contrast to an aggressive protocol,
TCP achieves about the same long-term throughput than the Binomial protocols IIAD and SQRT.
In Figure 73, it is shown that with the exception of Drop Tail and SFB, TCP and comparable
TCP-friendly protocols receive their fair share no matter the AQM scheme utilized.

A gueue with a fair AQM mechanism usually allows similar flows to experience similar drop

rates, which is the basic assumption for the TCP equation model at steady state. Hence, TCP and
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Figure 73:Normalized throughput under the scenario of Sack vs. 1IAD, with drop-tail queueing,
RED (first row), CHOKe, SFB (second row), SFB with tuned parameters and CARE (third row),

BLACK and AFC (fourth row) where x-axis shows the equal number of flows for each type of

traffic.
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Binomial protocols can share the same bottleneck link in a fair manner as expected. From the
figure, it can be seen how CHOKe, BLACK and AFC improve fairness over Drop Tail and RED.

SFB however can provide good fairness only if its parameters are well tuned, otherwise a poor
fairness performance close to Drop Tail could occur. In the case of the rate-based TFRC protocol,
TCP variants receive about the same bandwidth share as TFRC under RED, CHOKe and BLACK

AQM schemes, except some cases of Reno TCP which will be explained in the following section.

5.2.6.3 Negative impact of AQM’s aggressive dropping Although fair AQM schemes could
provide fairness when responsive TCP traffic compete for the bandwidth with unresponsive traffic,
some of these schemes could provide a much inferior results when some TCP variants share a
bottleneck link with TCP-friendly traffic.

Itis well known that TCP Reno typically suffers performance problems when multiple packets
are dropped from the same window of da22]] AQM mechanisms using aggressive dropping
policies may introduce multiple packet drops which will deteriorate TCP Reno’s performance.
The simulation results shown in Figuré show that CHOKe, although gaining better fairness than
RED in various scenarios, can lead us back to the unfairness problem when Reno competes with
some TCP-friendly traffic. This degraded performance occurs because CHOKebatbihe
incoming packet and the sampled packet from the buffer if they are from the same flow, therefore
resulting in a higher tendency of multiple packet drops from a single window, and eventually
timeouts. In Figuré7 when Reno TCP is replaced with Sack, although the problem of CHOKE
exists but the effect is not as negative as in the case of Reno TCP.

Figure75illustrates this problem comparing the congestion window behavior of a sample Reno
TCP connection under RED, CHOKe and CARE during 40 - 60 seconds of simulation time. Al-
though increasing the number of sampled packets (drop candidates) per each packet arrival provide
a better handling of multiple unresponsive flows as suggestéjni{ does the opposite for TCP
Reno. Another experiment, as shown in Figdfg confirms that unfairness between TCP Reno
and TFRC increases with the number of drop candidates. This behavior also occurs even under
Sack TCP vs. TFRC, but with much less degree of severity.

CARE faces another problem as TFRC increases and decreases its data rate at much slower

pace than TCP traffic. CARE performs the calculation of flows’ arrival rate and set a dropping
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probability only at the end of a measuring period (after the capture list is full). If a flow consumes
more bandwidth than a fair share, a high dropping probability is set for that flow for a whole next
measuring period. On the other hand, if a flow consumes the bandwidth that is less than a fair
share, almost all of its packets could enter the queue in the whole next measuring period. TFRC
has no problem with this behavior as it decreases and increases its data rate in a slower pace, and it
considers a burst of packet drops as a single loss event. However, TCP is not only more responsive
and more sensitive to a burst of packet drops. For example, from the Reno-TFRC experiment,
if Reno TCP has an arrival rate that is greater than a fair share calculated through the Jackknife
estimator, a high dropping probability is set for this flow for the next whole measuring period.
Because of the high drop probability, a congestion window of the flow in the figure is dropped
sharply after 45 seconds. During this period, new packets from this flow could hardly get into
the queue becuase the high dropping probability is set constantly during the whole period of time,
causing a decline of TCP throughput. After this period, the number of packets from this flow
collected in the capture list would be small, resulting in a very low dropping probability calculated
for the next period. Consequently, the congestion window is expanded until the queue is full or a

new dropping probability is set, as shown in the period of 48 - 56 seconds, and the cycle repeats.

On the other hand, BLACK drops packets less aggressively and the dropping probability is
dynamically adjusted according to a flow’s HitFraction. This type of performance degradation does
not occur under BLACK, except in the case of BLACK mechanism when it highly overestimates
the number of active flows and over-punishes multiple packets. However, with the modification that
incorporates Direct Bitmap, AFC controls the fairness performance very well. AFC also achieves

similar fairness performance in this case because of the dynamically adjusted dropping function.

In conclusion, the results in this TCP-friendly section show the better performance of CHOKe,
BLACK and AFC even when traffic with less responsive congestion control such as GAIMD
(1,1/8) co-exist with TCP, despite the fact that GAIMD still gains a slightly larger portion of the
bandwidth. For TCP-friendly protocols with congestion control comparable to TCP, the fair AQM
mechanisms provide only a small improvement over RED if at all, in a number of cases. This
shows that RED is sufficient to maintain adequate fairness for a number of TCP-compatible pro-

tocols. However, with little extra complexity, better fairness is obtained by deploying CHOKe,
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where x-axis shows the equal number of flows for each type of traffic.
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BLACK, and AFC, especially in the case of the less responsive AIMD protocol. In addition, these
AQM mechanisms shield the system against unresponsive traffic. Care should be taken in those
scenarios where TCP variants sensitive to a burst of losses are used, such as TCP Reno. CHOKe
and CARE are found to be too aggressive in dropping packets, since it drops multiple packets at
the same time, and introduces bursts of losses. Lastly, the fairness performance obtained with SFB
is sensitive to the parameters chosen. Without proper parameter tuning, SFB produces unexpected
inferior results, even in a scenario with TCP-friendly protocols with congestion control comparable

to TCP. The results in this section indicate that an AQM scheme must be chosen not only based on
its performance or capability to deal with unresponsive flows as usually done but also considering

its performance when other types of flows are included, such as TCP-friendly sources.

5.2.7 Complexity

In terms of space complexity, although AFC requires additional fields to store credit information
and more memory to store byte values rather than packet values, overall it still needs only small
size of a HBF cache memory to hold the candidates of high bandwidth unresponsive flows, in
a similar way as BLACK. The experiments show that with a small memory, enough to hold the
information of 20 long-lived flows, AFC could achieve very good fairness performance even with
the presence of 10,000 web sessions in background (Sécfidn)).

Computational complexity is also not high and practical to be deployed. Rather than searching
through the HBF cache memory to access any recorded item, the cache memory can be imple-
mented as a linked list with a hash table as an external index. In this manner the complexity to
access the item in the cache memory would be only O(1). All the computation&it.eraction
and a dropping probability, are only performed once per an arrival of a ptekatnly are from a
flow whose record is stored in the cache memadityis could be less complex than multiple hash-
ing with different functions of SFB and significantly less complex than the calculation of CARE.
For AFC, it requires one extra computation for the credit information according to Equaton
However, because the calculation is only needed for those flows that have their information stored
in the HBF cache memory which is, in general, merely a fraction of the total number of active

flows in the real network.
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Besides, with the Direct Bitmap method, the number of active flows is calculated with small
amount of memory as previous described in Chagtand low CPU overhead using one simple
equation (Equatio??) once after each period.

For SFB, substantial amount of memory is required, although relatively low, as not only mul-
tiple levels of hash tables are required, double moving hash function that prevents high-bandwidth
traffic from being classified as misbehaving traffic forever would double the amount of memaory.
SFB also requires a search through multiple levels of hash tables for the minimum dropping prob-
ability to be dropped for each flow. On the other hand, CARE is the most complex scheme. As
discussed in the previous chapter, CARE requires a large amount of memory (large capture size)
to store enough information in order to have an accurate estimation of the number of active flows.
In addition, a large capture size implies a much higher complexity in order to build the capture fre-

guency table and calculate the coefficients with complex equations using the Jackknife estimator.

5.3 MULTI-HOP FAIRNESS

This section provides a brief discussion that BLACK or AFC not only provide per-hop fairness
discussed in all of the previous sections, but also provide fairness in multi-hop scenario. Multi-hop
fairness is to ensure that when different traffic flows are from different sources and to different
destinations, a fair AQM scheme does not blindly regulate traffic flows to a fair share while re-
sources may be plentiful in some link of the end-to-end paths associated to those flows. A parking
lot scenario according to RIAS (Ring Ingress-Aggregated with Spatial Reuse) fairness reference
model 0] can be used to demonstrate multi-hop fairness.

A parallel parking lot scenario is shown in Figur8. The flows in dash line share the band-
width of the same bottleneck link from node 4 to node 5, thus each of them receive an equal share
or 25% of the link bandwidth. Since one of these flows to node 5 is originated from node 1, it
shares the link connecting node 1 and node 2 with the traffic showing in a solid line flowing from
node 1 to node 2. If node 1 strictly provides fairness to these two flows (one from node 1 to node
5 and another one from node 1 to node 2) without considering the available resource, the flow in a
solid line should also receive only 25% of the 1-2 link bandwidth. However, providing fairness in

that way would only result in a link underutilization. Ideally, a flow in a solid line should receive
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Figure 78:Parallel parking lot scenario.

75% of a link bandwidth.

BLACK'’s and AFC’s operation fit well in this scenario as both of them only exercise their
fairness mechanism only when congestion occurs; no packets are dropped if the link is not fully
utilized or with empty queue. To support this statement, a simulation is set up using the parking
lot scenario showing in Figuré8, where the links’ bandwidth are set to 10 Mbps. A flow from
node 1 to 5 has an arrival rate of 2.5 Mbps, or 25% of the link bandwidth. A flow from node 1
to 2 has an arrival rate of 10 Mbps or 100% of the link bandwidth. The result in Figisbows
that with AFC, the flow from node 1 to 2 receive a bandwidth of approximately 7.5 Mbps, or 75%,
according to the ideal case described aBovhis experiment is to show that BLACK and AFC

could perform effectively, not only in terms of per-hop fairness, but also multi-hop fairness.

5.4 SUMMARY

In this chapter, AFC is proposed as an alternative fair AQM solution apart from BLACK scheme
previously discussed in Chaptér AFC aims to provide better fairness and overcome the limita-
tions of BLACK, and the other schemes, by including several newly designed components. First,
AFC collects the packet size information so a byte count is performed rather tHah @unt,

so that the unresponsive flows with different packet sizes would receive an equal amount of band-
width. Second, Direct Bitmap or its variants, an alternative light-weighted estimator for the num-
ber of active flows discussed in Chaptgiis used to improve the estimation accuracy. Third, the

buffer occupancy fraction approximation is improved by collectthg F'raction statistics when

4BLACK achieves the same result as AFC, so only the result of AFC is shown here.
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Figure 79:Simulation result of the parallel parking lot scenario; showing the throughput obtained

by the flow from node 1 to node 2 (10 Mbps) and the flow from node 1 to node 5 (2.5 Mbps).

the packets enter the queue, rather than sampled from the queue. Lastly, a new dropping policy
using a credit-based mechanism is introduced to provide a better fairness. With the credit-based
mechanism, the packets are allowed to enter the queue eveHiffaraction is higher than a
FairFraction, if a flow has available credit left, such as from a previous back-off period of a re-
sponsive traffic. In this way, responsive flows would not be over-penalized with a more aggressive

dropping function, while fairness is achieved.

The second half of this chapter presents the the simulation study on the performance of AFC
comparing to the other AQM schemes including RED, CHOKe, SFB, CARE, and BLACK. Here,
BLACK is modified such that the estimation of the number of active flows is replaced with Direct
Bitmap, for a fair comparison with AFC. The comparison was conducted under different scenarios

and the results can be summarized as follows.

In a scenario with streaming unresponsive traffic, AFC outperforms all the other AQM schemes
in providing throughput fairness when high-bandwidth unresponsive traffic compete with long-
lived TCP traffic over a bottleneck link. Even when the queue is attacked by multiple high-

bandwidth unresponsive traffic, AFC still protect TCP traffic from being shut down and in fact
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give each TCP connection a bandwidth approximately equal to a fair throughput. CHOKe and
CARE could only provide some level of fairness when the arrival rate of unresponsive is mild or
moderate. CARE’s estimation of a number of active flows is inaccurate when an arrival rate of
unresponsive traffic is high comparing to the aggregate arrival rate. SFB, on the other hand, could
achieve fairness only when its rate limit threshold is well adjusted which could only be done man-
ually, or a separate queue is needed to treat the detected misbehaving traffic. Although BLACK
provides similar fairness performance as AFC, its dropping policy usually causes detected flows
to gain somewhat more than a fair share of bandwidth. In contrast, AFC provides better fairness
and does not introduce high throughput fluctuation to streaming traffic, particularly CBR traffic.
Besides, AFC is the only scheme that could provide fairness when different unresponsive traffic

come with different packet sizes.

For the unfairness problem among TCP connections with different round-trip delay, BLACK
and AFC help reducing per-flow throughput difference among flows. However, SFB does the
opposite because its mechanism provides a rate limit only to those flows that are detected as being
unresponsive. Undetected flows would be controlled by a dropping function that does not guarantee

fairness.

For a short-lived traffic scenario, SFB, CARE, BLACK and AFC fairness performance are not
interfered with different web traffic loads in the background. In other words, different elephant
(large) flows (both unresponsive and responsive flows) receive equal share of bandwidth without
any interference from mice (small) flows, according to mice and elephants model previously dis-
cussed in SectioB.2 CHOKe, on the other hand, has inferior performance as not only CBR
traffic gain higher throughput with more web traffic load, but fairness among TCP traffic are also
significantly degraded. The results for high-bandwidth short-lived traffic show that all of these
schemes cannot keep the bursty traffic down to a fair share because of their limited memory space
and the way they keep flow information. However, these AQM schemes could still protect TCP
traffic by providing adequate amount of bandwidth if the arrival rate of the bursty traffic is not very
high. This experiment also confirms the problems of CARE and SFB — CARE'’s estimation of the
number of active flows is inaccurate when the arrival rate of unresponsive traffic is high, and SFB
needs a manual adjustment of a rate limit threshold for each scenario, which is more difficult for

bursty traffic, in order to provide a good fairness performance.
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In the last section of experiment, many TCP-friendly protocols which aims to achieve about the
same amount throughput as TCP connection, while providing less throughput fluctuation for media
applications, the fair AQM schemes work well in their design environment such as under RED or
Tail Dropping. But under some schemes, fairness between TCP-friendly traffic and TCP traffic
may not be achieved. SFB has a problem selecting an appropriate setting for its parameters under
different scenarios to provide good fairness. CHOKe and CARE have found to be too aggressive
for some sensitive TCP variants such as Reno TCP, and thus TCP-friendly traffic which is usually
more robust gain much higher bandwidth under these AQM schemes.

In summary, BLACK with Direct Bitmap and AFC are the best overall fair AQM schemes
that provide throughput fairness in a large number of different scenarios, both per-hop and multi-
hop case. Comparing to BLACK, AFC provides better fairness in almost all scenarios, much less
throughput fluctuation, and an ability to handle bursty traffic and traffic with different packet sizes.
Nevertheless, AFC requires higher overhead than BLACK as it needs to calculate a flow’s credit
and needs an additional field to hold this information for the flows that are stored in the HBF
cache. An implementer has a choice to deploy BLACK or AFC based on the trade-off between the

advantages of AFC and its overhead.
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6.0 CONCLUSIONS

6.1 CONTRIBUTIONS

In this dissertation, the Internet’s current problems of potential bandwidth unfairness and conges-
tion collapse have considered. Without any network mechanism to prevent it, unresponsive traffic
can gain much more bandwidth than is a fair share, and it could even shut down responsive traffic
sharing the same bottleneck link. To avoid high complexity and memory consumption, Active
Queue Management (AQM) with no or partial state information is considered. Existing fair AQM
schemes of this type have limitations which could be problematic for the provision of fairness in
any of several scenarios or if widely deployed. To address the drawbacks of these mechanisms,
two AQM schemes are proposed — BLACK and AFC. Both of them utilize only a small amount

of memory to handle high-bandwidth unresponsive flows and keep their bandwidth usage to about
a fair share. The superiorit of the two schemes have been demonstrated through a wide range of

simulation experiments. Specifically, the major contributions of this dissertation are as follows:

e This paper provides an investigation of the existing fair AQM schemes that combat the un-
fairness problem using no or partial state information. These schemes provide some level of
fairness in some scenarios, but they fail to achieve anything close to fairness in others. Both
qualitative and quantitative information are provided in this examination of their limitations
[10].

e This paper develops a novel fair AQM mechanism, called BLACKIisting unresponsive flows
(BLACK). This mechanism aims to provide fairness by enabling equitable sharing of buffer
space by the active flows. Based on the fact that most Internet traffic is carried by a small num-

ber of flows, BLACK uses only a small amount of memory to detect and control unresponsive
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traffic as well as to achieve better fairness among TCP traffic flows with different round-trip
delays pJ.

e This paper presents a comparative study of the means of estimating the number of active flows.
This estimation is crucial for some fair AQM schemes, including BLACK. In a large number
of simulation experiments performed for several estimation algorithms, Direct Bitmap utilizes
the lowest amount of memory with very low computational complexity. The results of this
study could apply not only to a fair AQM scheme; it would also benefit other applications that
operate with low memory resource and CPU overhdal |

e This paper develops the Achieve Fairness using a Credit-based (AFC) mechanism. While AFC
shares some of the concepts of BLACK, it has several newer components that overcome draw-
backs and limitations of existing schemes including BLACK. Not only does AFC handle heavy
unresponsive flows better, it also improves fairness of network bandwidth distribution among
TCP connections through different round-trip delays. It achieves good fairness even under con-
ditions of bursty traffic and when handling traffic with different packet sizes. In addition, AFC
provides smoother transfer rates for unresponsive flows that are usually transmitting real-time
traffic.

e This paper presents the first comprehensive performance evaluation of the fairness of different
fair AQM schemes for TCP-compatible protocols and TCP variants. We found that several
AQM schemes that provide good fairness performance when unresponsive traffic co-exists
with TCP traffic might cause inferior fairness performance when TCP-friendly traffic designed
to fairly share the bandwidth with TCP traffic are includéd][

6.2 SUMMARY

At present, TCP is the de facto standard protocol that is widely deployed on the Internet due to
the success of its congestion control mechanism which enables end hosts to cooperatively adjust
their transmission rates according to network conditions and, thus, share the available bandwidth
fairly among a large number of users. However, streaming media traffic is experiencing tremendous
growth. Real-time applications using the UDP protocol are typically considereduaresponsive

traffic because UDP provides no end-to-end congestion control. These applications tend not only to

161



generate more traffic, but they also do not back off in response to network congestion. As a result,
when TCP and UDP-based applications share the same bottleneck link, the unfairness problem

may arise. In a severe case, a congestion collapse problem can 2fcur [

Recently, a wide variety of applications and congestion control mechanisms have emerged, and
these may create an uncooperative environment for end hosts. As a result, the Internet’s reliance
on end-host mechanisms to prevent unfairness and congestion is potentially risky for network per-
formance and stability. Consequently, router-based mechanisms that address the fairness problem

have been widely investigated over the past several years.

Several mechanisms have been proposed to ensure fair shares of bandwidth to competing flows.
Among the most important ones are fair scheduling mechanisms or fair per-flow packet dropping
techniques such as Longest Queue Drop (LQE3),[Fair Random Early Detection (FRED3 9,
and Balanced-RED (BREDX]. These schemes are based on per-flow information. However, they
usually require a considerable amount of memory and CPU processing power; these demands have

prevented them from being widely deployed due to scalability and complexity concerns.

Instead, recent trends to solve the unfairness problems focus on fair active queue management
(FAQM) schemes that maintain no or partial state information in order to track and regulate high-
bandwidth or misbehaving flows. Keeping only partial state information is possible due to the fact
that most of the Internet traffic is carried by only a small number of connections, while the remain-
ing large number of connections are low bandwidth flo28 B8]. Recently, several lightweight
fair AQM schemes have been proposed. These have low computational and space complexity,
and they don’t need extra cooperation from the devices at the edges of the network in order to
achieve long-term fairness. These schemes include CH6¥geS$tochastic Fair Blue (SFB)f,
and CARE B]. Although the literature suggests that most of these schemes provide good fairness,

they still present several problems in different scenarios.

BLACK is the first AQM scheme proposed in this research that provides good fairness perfor-
mance using a small amount of memory, while overcoming the limitations of the existing schemes.
As explained separately by Suter et ab8][and Laksham and Madhowi ], by controlling the
share of buffer space used by the active flows, throughput fairness can be achieved through a FIFO
gueueing discipline using a memory management mechanism similar to LRU tech8&juén|[

the BLACK scheme, only large flows such as those that usually cause congestion are tracked. The
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fraction of buffer space used by these flows, referred t&/ &§'raction, is monitored. If a flow
utilizes a more than a fair share of, the packets of the flow are dropped according to how much extra
buffer space is occupied by the flow. A fair proportion of the bandwidth is an inverse value of the
number of active flows calculated by the estimation and this is determined by one of the modules in
the BLACK scheme. The results from the simulation experiments show that BLACK outperforms
the other schemes (i.e. CHOKe, SFB, and CARE) in terms of throughput fairness performance,
especially in a scenario in which unresponsive traffic has a high arrival rate compared to the link
bandwidth. BLACK also reduces unfairness among TCP connections with different round-trip

delays.

Nevertheless, BLACK still has some limitations of achieving fairness in some scenarios, such
as unfairness due to an inaccuracy in the estimation of the number of active flows, unfairness when
packets are of different sizes, and high variance in the throughput of the flows. These problems,
which are not unique to BLACK but also the other schemes, might cause a degradation of their
fairness performance. These issues lead to an alternative mechanism to estimate the number of

active flows and a development of another fair AQM scheme, AFC.

BLACK’s original estimation of the number of active flows is derived from a false assumption
that all incoming traffic is of similar intensity. Besides, small buffer size could add up more inaccu-
racy. Two alternative approaches were recently proposed in the literature: the bitmap approach and
the CR-model approach. In extensive experiments that have been conducted, the bitmap approach
has been shown to be reliable under a wider range of scenarios than the CR-model approach, which
is used by the CARE mechanism. In addition, the bitmap approach is far less complex and uses

much less memory space than the CR-model approach.

AFC, Achieve Fairness using a Credit-based mechanism, has been developed to overcome the
limitations of BLACK and the other schemes while requiring only a little more overhead than
BLACK. AFC includesDirect Bitmap a simple bitmap approach to estimating the number of ac-
tive flows, and it is enhanced with other new components, such asddé-based mechanism
This mechanism helps AFC provide better fairness in a wide range of scenarios without being
overly aggressive to responsive traffic. Simulation results show that AFC not only provide better
fairness than other schemes, even when handling multiple high-bandwidth traffic. AFC also pro-

vides smoother transfer rates for unresponsive flows that are usually transmitting real-time traffic.
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While the other schemes cannot achieve fairness for traffic flows with different packet sizes, AFC
approaches the problem collectiafyt F'raction statistics at byte level rather than at packet level.
Another experiment shows that AFC and BLACK can also reduce the unfairness among long-lived
TCP connections with different round-trip delays. Other schemes, such as SFB, provide good fair-
ness with unresponsive traffic when there is a well-tuned rate limit, but fail to reach good fairness
performance in this case. In a realistic scenario, a variety of web traffic in the background does not
interfere with the fairness performance of AFC and BLACK, but it does significantly degrade the
performance of CHOKe. In the case of bursty traffic, although these AQM schemes may not be
able to provide perfect service since they do not maintain long-term state information, AFC still
manages to provide a reasonably fair share of bandwidth, even in this case. Overall, AFC has been
shown to be the most effective fair AQM scheme in terms of providing fairness under a wide range

of scenarios.

This research is also the first comprehensive performance evaluation of the fairness of different
fair AQM schemes in the presence of TCP-compatible protocols and TCP variants. While aggres-
sive TCP-compatible traffic flows obtain substantially higher bandwidth than TCP traffic flows
when they co-exist under RED or droptail, the shares of bandwidth are much more equal under
BLACK and AFC than under other fair AQM schemes. For TCP-friendly protocols with conges-
tion control mechanisms comparable to TCP, the fair AQM mechanisms provide, at best, only a
small improvement over RED in a number of cases. Inferior fairness performance can occur for
CHOKe, CARE, and SFB. CHOKe has been found to be too aggresive in dropping packets, since
it drops multiple packets at the same time and might create more unfairness for responsive traffic
flows that are sensitive to multiple drops. CARE has a similar problem. Without a proper parameter
tuning, SFB produces unexpectedly inferior results, even in a scenario with TCP-friendly protocols
with congestion control comparable to TCP. In other words, some fair AQM schemes might cause
even poorer fairness performance than RED or droptail in the presence of TCP-friendly traffic
flows that were originally designed to share bandwidth with TCP traffic in a fair manner. However,
with little extra complexity, much better fairness is obtained with BLACK or AFC. In conclusion,
an AQM scheme must be chosen not only based on its performance or capability to deal with un-
responsive flows, but also based on its performance when other types of flows are included, such

as TCP-friendly sources.
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In addition, Appendix B includes a brief discussion of an alternative method of controlling
traffic in a best-effort IP network. BLACK with a little modification is shown to be capable of
providing service with a different policy - such as lower packet drops - to high-bandwidth traffic

flows given that they do not utilize a bandwidth over a certain threshold.

6.3 FUTURE RESEARCH

In this dissertation, BLACK and AFC have demonstrated superior performance over existing non-
perflow fair AQM schemes in a large number of scenarios. However, it would be interesting to
find out if further performance improvement is possible. For example, these fair AQM schemes
cannot achieve the same level of fairness with bursty traffic flows as they can with the other types
of traffic. An additional mechanism might be needed to better detect bursty traffic flows; alterna-
tively, keeping the flows in a cache memory may be a smarter way to handle the difficult ON-OFF
behavior of this type of traffic.

Underlying AQM mechanisms of BLACK and AFC could also be replaced by a scheme bet-
ter than RED. RED has several advantages over the drop-tail mechanism in its ability to signal
congestion to responsive sources at an early stage, thus preventing a problem of global synchro-
nization and keeping the average queue size low. However, the way RED estimates the average
gueue size can cause instability in the network, as detailed by Arce dé]alTHese drawbacks
could be overcome either by a technique in the authors sudgjestpy replacing the underlying
RED queue with another AQM scheme, such as PI Contrd#t fhat provides better control of
gueue lengths. The performance of BLACK and AFC with new underlying AQM mechanism may
or may not be better because the characteristics of the traffic after passing through their dropping
policies could be much different than the traffic model assumed by control-theoretical based AQM
schemes such as PI Controller.

It would also be interesting to apply BLACK or AFC to a best-effort class in a DiffServ net-
work. Even though DiffServ architecture provides guarantee services in EF and AF classes and
non-guaranteed service in a best-effort class, a network operator may not want to leave a best-
effort service entirely unregulated. As traffic flows in AF class have higher priority for gaining

available bandwidth, congestion can easily occur in a best-effort class. In this circumstance, high

165



bandwidth unresponsive traffic can still gain a high proportion of bandwidth, leaving responsive
traffic to suffer with even more severe congestion. Thus, the problem of unfairness could occur
in a best effort class. Some side problems are also possible. For example, with the incentive that
unresponsive traffic could gain as much bandwidth as possible and the ability of newer streaming
media applications to adapt to network congestion, some traffic flows that should be in AF class
may class themselves in a best-effort class in order to grasp most of the bandwidth and avoid pos-
sible higher billing cost in AF class. These problems of unfairness, and whether or not BLACK

and AFC could be good answers to them, should be further investigated.
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