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ABSTRACT 

Learning Stoichiometry: A Comparison of Text and Multimedia Instructional Formats 

Karen L. Evans, Ph.D. 

University of Pittsburgh, 2007

 

Background: The current mode of stoichiometry instruction employs a passive pedagogy that 
consists of students reading, listening, watching, and memorizing disembodied facts, procedures, 
and principles in preparation for future application. But chemistry students are often 
subsequently unable to apply this stoichiometry knowledge in equilibrium and acid-base 
chemistry problem solving. Cognitive research findings suggest that for learning to be 
meaningful, learners need to actively construct their own knowledge by integrating new 
information into, and reorganizing, their prior understandings. Scaffolded inquiry in which facts, 
procedures, and principles are introduced as needed within the context of authentic problem 
solving may provide the practice and encoding opportunities necessary for construction of a 
memorable and usable knowledge base. The dynamic and interactive capabilities of online 
technology may facilitate stoichiometry instruction that promotes this meaningful learning.  

 
Purpose: To compare students’ performance after studying one of two cognitively informed sets 
of stoichiometry instructional materials in order to determine if the dynamic and interactive 
capabilities of online technology promote greater learning outcomes than studying from text-
based materials alone. 
 
Setting: Requests for volunteers, collection of background data, treatment assignment, and a 
post-treatment assessment were all delivered online. A second parallel assessment one-week 
post-treatment was administered in a proctored classroom on the Carnegie Mellon University 
(CMU) campus. 
 
Participants: Volunteers of at least 18 years of age were solicited from incoming CMU freshman 
affiliated with either the Mellon College of Science (MCS) or the Carnegie Institute of 
Technology (CIT). Forty-five (out of 426 solicited) participants completed one of two sets of 
stoichiometry instructional materials within a six-week period in July and August, 2005.  
 
Intervention: Volunteers were randomly assigned to one of two treatments--a text-only or 
technology-rich, dynamic and interactive stoichiometry review course. 
 
Research Design: Randomized posttest-only controlled trial. 
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Data Collection and Analysis: Background data included participants’ SAT scores, number of 
chemistry courses taken, and gender. Parallel posttests of stoichiometry concepts and procedures 
were administered two times post-treatment--upon completion of study materials and one week 
later. Participants’ interactions with the technology-rich treatment were recorded in log files. 
Exploratory data analysis was performed to look for patterns in the data. Modeling of the data 
was executed by single regressions of posttest scores on treatment, background characteristics, 
and log files to determine the contribution of each variable to learning. A multiple regression of 
posttest scores on the variables significantly correlated with them revealed what proportion of 
the variability in posttest scores could be attributed to specific variables or interactions among 
them.   
 
Findings: SAT scores and gender were stronger predictors of posttest performance than either 
treatment. Examination of the statistically significant correlation between SAT score and gender 
revealed a differential in the SAT scores of females and males admitted to MCS and CIT with 
males having higher scores overall. The mean SAT score for female volunteers was significantly 
lower than that for the female population. There was no such discrepancy between male 
volunteers and the male population. Within the technology-rich treatment group, participant 
interaction with the Virtual Lab simulation, but not SAT scores, is related to posttest 
performance. Whether this interactivity can offset possible gender effects is uncertain because of 
the small number of females in the technology-rich treatment group. 
 
Conclusions: Future users of the online course should be encouraged to engage with the 
problem-solving opportunities provided by the Virtual Lab simulation through either explicit 
instruction and/or implementation of some level of program control within the course’s 
navigational features. The variability of students’ prior knowledge levels in quantitative areas 
points to a need for rigorous support systems during first-year courses in order to curtail poor 
performance that could result in increased attrition rates. One type of support system could be 
supplemental instruction grounded in findings from the learning sciences and facilitated by the 
dynamic and interactive features of online technology.  
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1.0  INTRODUCTION 

Chemistry traditionally has been defined as the systematic study of matter and the changes it 

undergoes. This definition may have been adequate until the mid-part of the 20th century when 

natural science seemed to be clearly divisible between the physical (e.g., chemistry, physics, 

geology, astronomy) and biological (e.g., botany, zoology) sciences. Now, however, chemistry’s 

“methods, concepts, and practices [have penetrated] virtually every nook and cranny of science 

and technology” (Amato, 1991, p. 1212). Modern day chemists’ fields of study are often of a 

hyphenated nature (astro-chemistry, bio-chemistry, geo-chemistry) that reflects the emergence of 

new investigative arenas and the blurring of the lines of demarcation among the domains. Many 

of today’s professions, such as medicine, engineering, dietetics, and pharmacy, rely on chemical 

principles and procedures. Even endeavors such as art restoration, patent law, culinary arts, and 

oenology are enhanced by chemical literacy. A 21st-century definition of modern chemistry is 

nearly impossible to derive; but an operational characterization of what chemists do may help to 

inform instruction for meaningful learning in this complex network of domains. 

The practice of chemistry can be described by the valued work in which its practitioners 

engage. An analysis of the past 50 years’ Nobel Prize citations, the ultimate recognition for work 

in chemistry, reveals that chemists explain phenomena, analyze substances, and synthesize new 

materials. News reports of chemical research support the prevalence of these three major 

endeavors (Evans, Leinhardt, Karabinos, & Yaron, 2006).  In order to undertake their work, 

chemists employ a toolbox of qualitative and quantitative models and representations. However, 

an analysis of popular chemistry textbooks (the dominant vehicles for formal education in 
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chemistry) reveals that nearly half the objectives address the contents of the toolbox. Although 

the remaining objectives can be categorized as explaining phenomena, nearly all involve the 

discussion of theories presented as established facts rather than as testable hypotheses, a problem 

that Schwab (1962) described as a rhetoric of conclusions. By not revealing the domain’s 

exciting experimental work at the frontier of new knowledge development, these textbooks fail 

to reflect the authentic practice of chemistry (Evans et al., 2006). Clearly there is a disconnect 

between what is taught about chemistry in the classroom and how its practitioners work in the 

field. This disconnect may be responsible in part for the dearth of students that undertake its 

formal study after high school (Breslow, 2001) even though chemistry knowledge supports 

multiple 21st century career opportunities. Chemistry is often the gatekeeper course that filters 

out all but the brightest (and most tenacious) students.  Chemistry content that more accurately 

represents the excitement of the valued activities of the domain, especially in introductory 

courses, may serve to encourage its pursuit as well as the development of a generative 

knowledge base. 

1.1 STOICHIOMETRY 

As one of the major tools in the chemistry toolbox, stoichiometry is a major focus of high school 

chemistry. Stoichiometry represents what is hard about learning chemistry. It is the chemical 

algebra that connects the macroscopic features with the submicroscopic interactions of the 

domain by using a set of abstract symbols and relying on the formal reasoning of proportional 

analysis. Stoichiometry usually is taught as a collection of procedural competencies disconnected 

from their applications and as preparation for use in other content areas, such as equilibrium and 
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acid-base chemistry, that may or may not be addressed in the high school course. It is no wonder 

that stoichiometry is one of the least attractive and more difficult areas in high school chemistry.  

 Stoichiometry content commonly is reviewed early in the first semester of an 

introductory college chemistry two-course sequence. Although some professors provide direct 

instruction in stoichiometry, others require that students self-review. The need for a flexible and 

fluid use of stoichiometric concepts and procedures does not end with introductory college 

chemistry.  Problem solving in the advanced coursework of physical chemistry and biochemistry 

also requires the application of this major tool of the chemistry toolbox. As such, stoichiometry 

can serve as a location for initiating pedagogical reform that links chemistry’s disciplinary 

practice with the instruction and learning of one of its major tools. 

1.2 INFORMING INSTRUCTIONAL DESIGN 

Stoichiometry is taught during the high school years and reviewed early during the first college 

chemistry course as a collection of procedures, but it requires both procedural and conceptual 

applications in subsequent studies of equilibrium and acid-base chemistry problem solving.  In 

order for a learner to develop the highly interconnected knowledge framework necessary for this 

complex chemistry problem solving, the topic of stoichiometry must move from being simply a 

collection of tools to being those tools in use (Evans et al., 2006). Much of the understanding of 

how new information is processed into such a framework comes from research into the learning 

of physics, algebra, and computer programming--areas whose natures are similar to 

stoichiometry in that they are rich in formal mathematical procedures undergirded by an abstract 

conceptual base. 
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 Three findings from this research on learning are particularly appropriate to consider 

when designing instruction to promote fluid and flexible use of stoichiometric concepts and 

procedures. First, students construct their own understanding by actively processing incoming 

information in the service of reorganizing their prior knowledge. Second, this active processing 

is limited by a cognitive structure with a finite capacity for processing but essentially an infinite 

capacity for storage. As a result of this active processing, new information is encoded into long-

term memory. Third, the context in which the new information is encoded and rehearsed 

influences its future retrieval and application. This chapter briefly examines the evidence for 

considering construction, cognitive capacity, and context when designing instruction. Chapter 2 

reviews how this evidence has informed specific instructional practices in other areas of science 

instruction, practices that may be adapted for stoichiometry instruction. 

1.2.1 Construction 

The theory that knowledge is not passively received but actively constructed by learners 

from their experiences was first formalized by Piaget (1954).  Piaget’s ideas have been expanded 

and tested so that our current understanding is the following: During the process of learning the 

learners’ prior knowledge both filters what is seen or heard and serves a framework for 

restructuring what is already known. The value of constructivist instruction lies in what it causes 

the student to do (Simon, 2000; Wheatley, 1991). Studies of students’ alternative conceptions 

and expert-novice performance point to a constructivist theory of knowledge acquisition. The 

tenacity of students’ alternative conceptions supports the claim that learning involves the 

unpacking of what is taught and a repacking with regard to the learner’s prior knowledge, rather 

than simply the transmission of knowledge in final form from the mind of the teacher to the mind 

 4 



of the student (Ausubel, Novak, & Hanesian, 1978). For example, after completing a calculus-

based physics course, nearly 66% of the students were unable to apply the concept of 

acceleration to a real-world situation (Trowbridge & McDermott, 1981). Without active 

integration into their own cognitive structures students seemed to maintain two parallel 

conceptual frameworks---one for solving exercises in physics class and one for explaining real-

world phenomena. Similarly, Clement (1983) documented how students used F=ma in the 

classroom simultaneously with the idea that motion implies force in describing their real world 

experiences.  

Evidence from expert-novice studies also supports a constructivist theory of knowledge 

acquisition. Experts in a number of fields, such as chess (De Groot, 1965), physics (Chi, 

Feltovich, & Glaser, 1981), and computer programming (Ehrlich & Soloway, 1984), work with 

new information in their respective domains differently than do novices. This differential 

information use is a function of both the amount and organization of domain-specific knowledge 

that an individual brings to a given situation. Experts have developed conceptual frameworks or 

schemas that organize information into meaningful patterns. (Rumelhart & Norman, 1981). 

These schemas, or conceptual frameworks, facilitate both recall and the interpretation of 

environmental events including problem solving  (Chase & Simon, 1973; Glaser & Chi, 1988; 

Simon & Chase, 1973). When these schemas are well rehearsed as the result of thousands of 

hours of deliberate practice, they can be processed automatically without conscious effort, 

thereby freeing up cognitive resources for processing further information yet to be learned 

(Ericsson, Krampe, & Tesch-Romer, 1993). 

Students have experienced the effects of stoichiometry in their everyday lives--from 

adjusting a motorcycle’s carburetor to produce the optimal mix of air and fuel for peak 
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performance to modifying the ingredients in a cookie recipe to yield chewier or crunchier 

morsels. What makes stoichiometry so difficult to learn and to understand is that these 

macroscopic features (peak performance, texture) are emergent properties resulting from actions 

at the atomic or molecular level (Chi, 2005; Chi & Roscoe, 2002; Penner, 2000). These 

submicroscopic actions operate at a non-human scale and are unable to be directly manipulated 

or experienced. Therefore, developing an intuition for connecting these macroscopic features 

with submicroscopic interactions is difficult (Yaron, Leinhardt, & Karabinos, 2004). Still another 

learning challenge is the mastery of the representational system of symbols, formulas, equations, 

and mathematical manipulations used to describe and explain these unseen submicroscopic 

interactions that give rise to the macroscopic features. Expert chemists move freely among these 

three levels as they pursue their work, including that of instruction (Johnstone, 2000). Yet 

students, whose knowledge framework is rudimentary at best, have great difficulty 

understanding their teachers when explanations move away from the macroscopic level with 

which they have everyday experience. When stoichiometry instruction occurs only at the abstract 

representational level with no opportunity for learners to build connections to concrete 

experiences, learning is memorable only for the frustration caused. Effective stoichiometric 

instruction would promote student exploration and development of cognitive connections among 

the macroscopic, submicroscopic, and representational aspects of stoichiometric tools. 

Multimedia simulation is an instructional method that may successfully support such cognitive 

exploration and development.    
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1.2.2 Cognitive structure 

Although learning requires the active processing of information, the amount of information that 

can be consciously processed at any given time is limited to about five to seven elements or 

chunks (Miller, 1956; Simon, 1974). What constitutes an element or chunk of information is 

affected by the organization of the prior knowledge (i.e., schemas) of the processing individual. 

The learner’s cognitive load is limited to the total number of chunks that can be consciously 

processed at any given time. On the other hand, the capacity to store automated schemas is 

practically unlimited. Therefore, development and storage of schemas is a major goal of learning 

for problem solving, since schemas can increase the amount of information that can be actively 

processed simultaneously by effectively coalescing multiple elements into a single chunk. Well-

developed schemas can be processed automatically without conscious effort and thereby can free 

processing space for other activities. Limited processing capacity and schema development can 

explain the expert-novice differential in memory and problem-solving performance. In physics 

problem solving, experts’ schemas permit classification of problems into categories based upon a 

solution process. Novices’ lack of functional schemas results in the learners’ attending to surface 

descriptive features of a problem, which does little to ameliorate the cognitive load of means-end 

analysis during the solution process (Chi, Glaser, & Rees, 1982). 

 Although the amount of information that can be processed at a given time is limited, 

independent auditory and visual channels can simultaneously process two modes of input 

(Baddeley, 1986) and build referential connections between them. Tasker and Dalton’s (2006) 

audiovisual information-processing model is a blend of Johnstone’s (1997) information-

processing model of chemistry learning and Mayer’s (1997) multimedia model of instructional 

explanations in science. According to this composite model, verbal and visual stimuli are 
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perceived in separate parts of sensory memory; selected, integrated, and processed within a 

limited working space; and encoded into long-term memory for efficient retrieval and transfer to 

new situations. Research on the implications for presentation of audiovisual information has 

provided evidence that working memory capacity can be expanded slightly by mixing the senses 

during instruction (Moreno & Mayer, 2000; Sweller, 1994).  Specifically, learners may be able to 

process information more easily when part is presented visually and part is presented 

acoustically rather than all being conveyed through a single sense. This structure of the active-

processing component of memory (working memory) suggests that a multimedia design for 

stoichiometry instruction may be especially useful. 

1.2.3 Context 

Active processing results in the encoding of new information that stimulates the restructuring of 

the learner’s conceptual framework. Well-designed practice events provide encoding 

opportunities. Because each encoding opportunity can result in more (stronger) connections 

within existing knowledge in long-term memory, practice and long-term retention are 

interconnected. Development of expertise is strongly related to the amount of deliberate practice 

during which a continuous monitoring of performance occurs (Ericsson & Charness, 1994; 

Ericsson, Krampe, & Tesch-Rome, 1993). For encoded knowledge to be used, however, it must 

be retrieved and transferred back to active processing as needed. This transfer is maximized 

when the context of retrieval and encoding match (Tulving & Thomson, 1973). The traditional 

introduction of a principle or theory before its application does not appear to promote encoding 

since the abstract ideas are disconnected from use. Likewise, rote or memorization practice does 

not stimulate encoding of new information within the learner’s prior knowledge base. The 
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absence of retrieval cues can result in inert knowledge (Whitehead, 1929) that is easily forgotten 

and is unavailable for future application. Furthermore, the use of knowledge across contexts is 

difficult when information is processed in only a single context (Bjork & Richardson-Klavhen, 

1989). In order for knowledge to be flexible and to be applicable in multiple situations, there is a 

need for the kind of practice that incorporates opportunities for encoding of concepts and 

procedures in a variety of contexts that will promote more highly integrated connections within 

the learner’s knowledge base (Gick & Holyoak, 1983). When abstract stoichiometry procedures 

are taught divorced from their use in real-world chemical contexts such as equilibrium or acid-

base problem solving, minimal opportunity for encoding (to promote subsequent recall or 

application) is provided for the learner. In a similar fashion, the rote practice of these 

stoichiometric procedures in order to pass a mastery test may do little to promote the retention 

and retrieval of this knowledge for use in future instantiations of chemistry problem solving.  

To develop a memorable and usable knowledge base, instruction should employ an 

approach in which stoichiometry concepts and procedures are introduced as needed within the 

context of solving an authentic real-world problem. This type of approach would connect the 

learning of stoichiometric tools to their intellectual and practical use, thereby providing the 

student with multiple opportunities for encoding and practice. But such authentic inquiry is 

complex and time consuming. Novices rarely, if ever, can undertake this process alone but rather 

need to work as apprentices supported by more knowledgeable members of a particular 

community. A simulated reality of an authentic problem-solving situation that allows learner-

imposed sequencing of actions that are scaffolded with feedback, including generalized hints and 

goal reminders, can provide both the interaction and engagement necessary for successful 

learning in a manner approaching that of one-on-one tutoring (Bloom, 1984). 
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1.3 USING TECHNOLOGY TO FACILITATE INSTRUCTION 

The findings from research on cognition can inform instructional design to make stoichiometry 

easier and more interesting to learn. Any well-designed instruction’s delivery must also promote 

the active construction of knowledge, be mindful of the processing capacity of the learner, and 

provide multiple opportunities for encoding. The traditional explain-apply pedagogy, by which 

stoichiometry is presented as a collection of procedures to be memorized and held in abeyance 

for future use, is not working. Even after participating in multiple learning opportunities (high 

school courses, review for college mastery tests), college chemistry students do not exhibit fluid 

and flexible use of stoichiometric competencies in equilibrium and acid-base problem solving. 

Although instructional technology (i.e., the tools and methods of instruction) has been used to 

deliver instruction for some time, it is not the technology that is most important but rather the 

activity it enables (Oblinger, 2005). The optimum use of technology can facilitate learning but 

under certain conditions technology may be superfluous and even impede learning. 

1.3.1 Technology: Facilitating or superfluous?  

Scientific discovery is in essence original learning. The relationship between technology and 

scientific discovery is vividly portrayed by the work of Robert Boyle, a 17th-century natural 

philosopher. Often considered as one of the fathers of modern chemistry, he was the first 

prominent scientist to perform controlled experiments and publish his work complete with 

detailed methods, materials, and quantitative data. Boyle’s empirical study of the physical 

properties of gases would not have been possible without the technological developments of 

specially blown glass vessels that could withstand high pressures as well as a vacuum pump of 
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his own design (Hall, 1967). His discovery of the inverse relationship between gas pressure and 

volume (k=PV) is familiar to every chemistry student as Boyle’s Law. It was not the special 

glassware or vacuum pump that led to discovery of this law but rather how these tools facilitated 

an activity (measurement) that revealed a relationship between the pressure and volume of a gas. 

 A cursory inventory of school lab equipment may include pan balances with sets of brass 

weights, pH paper, test tubes, and thermometers. Due to cost constraints, this level of 

instrumentation in classroom labs hardly matches that found in modern chemistry laboratories 

but is rather characteristic of a 1950’s venue. When instruction uses the traditional explain-apply 

pedagogy in which students read, listen, and/or watch before memorizing sets of procedures and 

principles, such technology may be sufficient to supplement, by confirmatory activities, what has 

already been explained. Even if cost were not a factor and school chemistry labs were equipped 

in a manner comparable to those at leading research facilities, the complexity of the domain’s 

structure along with the need for practiced kinesthetic skills to extract quality data preclude the 

ability of novice students to infer the logical framework of 21st-century chemistry. 

The acquisition of new chemical knowledge has advanced rapidly since the time of Boyle 

due to the development of tools such as nuclear magnetic resonance spectrophotometers and 

methodologies such as DNA profiling. There is no doubt that the pace of this research has 

increased by orders of magnitude in recent decades due to the development and implementation 

of digital and electronic technology. Boyle’s glass bottles and vacuum pump aided in the 

legitimizing of chemistry as an empirical science (as opposed to the mysticism of alchemy) in 

the 17th century. In an analogous fashion, learning research has provided evidence for developing 

instructional pedagogy that cognitively activates the learner through methods such as authentic 

inquiry. Just as digital and electronic equipment have facilitated the ways in which 21st-century 
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chemists can acquire knowledge about their domain, so too may the affordances of online 

technology be able to support the way in which 21st-century students learn about the domain. 

1.3.2 Technology to support the learning of stoichiometry 

An extensive array of technological tools has evolved over the last two decades to support 

instruction in math and science. Programmable electronic calculators have done much to enhance 

problem solving in mathematics and other quantitative domains such as chemistry by supporting 

the user in complex data analysis. The communications technology of the World Wide Web 

supports classroom instruction with programs such as WebAssign (North Carolina State 

University) that deliver homework problems to students, grade their responses, provide them 

with immediate feedback, and maintain a grade book for the instructor. Just-in-Time Teaching 

(Novak, Patterson, Gavrin, & Christian, 1999) uses web-based preparatory assignments to 

engage students actively in learning before coming to lecture as well as to inform the instructor 

of their state of prior knowledge so that lectures can be adapted appropriately. By reading student 

submissions prior to the start of classes, faculty can adjust classroom lessons just in time to suit 

the students’ needs.  

 Modern computer hardware and software along with the World Wide Web are capable of 

providing an environment for the generation of meaningful inquiry, the collection of data and its 

analysis, as well as timely and appropriate support and feedback.  A multimedia delivery system 

(i.e., text, sound, images, movies, simulations, etc.) allows presentation of concepts that are 

difficult to explain in a static text-only format whether on the chalkboard or in textbook. Links in 

hypertext and images encourage branched (non-linear) instruction to support individual learners’ 

needs as opposed to the one-size-fits-all mode of traditional content delivery. Other opportunities 

 12 



for interaction include immediate and explicit feedback to student responses in problem solving 

as well as implicit feedback from their manipulations of dynamic learning objects. Furthermore, 

technology does not limit learning to a specific time or place but allows it to occur at any time or 

in any place. Development of communities of learners may be facilitated through email or 

message boards via synchronous or asynchronous (threaded discussion) communications. With 

these various capabilities, modern electronic technology via the World Wide Web or CD-ROMs 

may offer students an educational venue capable of facilitating the goal of meaningful learning 

(Ausubel et al., 1978) without regard to inequalities in local social, financial, structural, or 

intellectual resources. 

 In a rapidly changing, knowledge-based society it is easy to be lured into believing that 

the bells and whistles of modern digital electronic technology along with access to the World 

Wide Web will produce the type of learning needed for intuiting stoichiometry’s use in complex 

problem-solving situations. It is true that technology provides the tools to create interactions 

(e.g., simulations, feedback, tutorials, etc.) that may facilitate a learner’s construction of a fluid 

and flexible knowledge framework. It is also true that the World Wide Web provides quick 

access to a vast repository of information (content)--a virtual library. But to exploit the unique 

capabilities of these media fully, they must be manipulated by instructional designers in ways 

that effectively promote learning. It is the methods developed from the findings of learning 

research, not the media through which they are delivered, that are the keys to effective 

instruction (Clark & Mayer, 2003). 
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1.4 SUMMARY 

As a central science, chemistry may be a good location from which to design instruction that 

promotes meaningful learning. Chemistry is challenging to learn since its explanatory power lies 

with entities and processes occurring at a scale below that of human perception 

(submicroscopic). Observations, including measurements, however, occur at a macroscopic 

level. The ability to make a connection between these two levels is further complicated by the 

mathematical modeling and descriptive representations of the domain (Johnstone, 2000; Yaron et 

al., 2004). Traditional chemistry instruction employs an explain-apply pedagogy consisting of 

students reading, listening, watching, and then memorizing disembodied facts, procedures, and 

principles in preparation for future study and participation in the domain. On the other hand, 

practitioners of chemistry work at analyzing substances, synthesizing new materials, and 

explaining phenomena. During these activities they implement a collection of mathematical tools 

and symbols as needed. This disconnect between the practice of the classroom and in the field 

does little to guarantee memorable learning (Evans et al., 2006). The difficulty that most students 

have in developing stoichiometric competencies that can be intuited for use in the study of 

subsequent chemistry topics such as equilibrium and acid-base chemistry epitomizes the problem 

with the current mode of instruction.  

The development of digital electronic technology and the vast information accessibility 

of the World Wide Web hold the promise of a medium that can provide tools to facilitate the 

development of interactive learning environments in the service of promoting the type of 

learning needed for fluid and flexible use of the chemistry toolbox.  Yet more than 50 years of 

content-delivery-technology research has shown that it is not the medium but rather the methods 

of instruction that affect learning. To exploit the unique capabilities of a “technology-rich 
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learning environment” (Lajoie & Azevedo, 2006), a consideration of the findings from 

behavioral, information-processing, and sociocultural aspects of learning research may support 

the most effective instruction. Designers should consider that learners actively construct meaning 

through integration of new information and subsequent reorganization of prior knowledge, that 

human cognitive architecture controls what and how much information can be processed, and 

that attention to the context of instruction presents opportunities for developing the flexible 

knowledge base needed for effective problem solving. 

1.5 PURPOSE OF THE STUDY 

The purpose of this study is to compare student performance on a test of stoichiometry topics 

after studying one of two cognitively informed sets of instructional materials in order to 

determine if dynamic expositions, immediate supportive feedback, and an overarching cover 

story facilitated through online technologies promote greater learning outcomes than does 

studying text-based materials alone. The study focuses on students’ development of the 

stoichiometry competencies needed for participation in equilibrium and acid-base chemistry 

problem solving. These topics are grounded in the flexible use of a set of stoichiometry tools 

taught during a high school course and reviewed in some manner during the first semester of an 

introductory college chemistry course. The study also seeks to determine if cognitively informed 

instruction enhanced by the affordances of multimedia technology can match or exceed the effect 

of students’ prior knowledge of chemistry and/or mathematics as exhibited by performance on 

standardized examinations. Finally, the study seeks to determine if there are specific study 

practices facilitated by online technologies that are related to learning stoichiometry. 
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 The candidate course for this study was designed and developed collaboratively by 

experts in chemistry content, educational psychology, instructional design, and multimedia 

technology in order to produce a product that optimally integrated chemistry knowledge with its 

methods and medium for instruction. The candidate course was compared to several other 

available online courses of similar content to ascertain the degree to which the instruction was 

cognitively guided. A set of text-based study materials used as an alternative treatment included 

the same content and instructional methods but not the delivery capabilities of a technology-rich 

online learning environment. 

1.6 RESEARCH QUESTIONS 

The study aimed to answer the following questions: 

1. To what extent does receiving instruction in a technology-rich learning 

 environment that incorporates a dynamic interface, timely and informative 

 feedback, and an overarching storyline, influence the learning of stoichiometry? 

2. How are background experiences and characteristics related to the learning of 

 stoichiometry? 

a. How is the degree of prior knowledge of math and chemistry related to the 

 learning of stoichiometry? 

b. How is the demographic of gender related to the learning of 

 stoichiometry? 
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3. To what extent do a technology-rich environment and student background 

 experiences and characteristics work together to influence the learning of 

 stoichiometry? 

4. How are learning practices that are facilitated by a technology-rich environment 

 related to the learning of stoichiometry? 

1.7 CONTRIBUTION TO THE FIELD 

This study contributes to several fields of research and practice. In a very specific sense it 

advances chemistry education research at the interface between the high school and the 

university by developing and testing the effectiveness of a review course for stoichiometry, one 

of the most important yet difficult sets of tools needed for the study of topics such as equilibrium 

and acid-base chemistry during the freshman introductory chemistry course. The development of 

the instructional materials was informed by the acknowledged difficulties in the learning of 

chemistry due to the domain’s tripartite logical structure (Johnstone, 2000; Yaron et al., 2004) as 

well as by the desire to situate instruction within an authentic activity of chemists (Evans et al., 

2006). Another contribution of this work is to the research on teaching and learning in 

technology-rich environments (Lajoie & Azevedo, 2006). By using contrast groups to compare 

learning outcomes from cognitively informed instruction both within and in the absence of a 

dynamic and interactive environment, this research can lay the groundwork for further 

investigation into specifically which aspects of technology-rich environments optimize the 

learning process. Finally, the results from this research may serve to guide reform instruction in 

chemistry in the service of developing scientific literacy for all citizens. Instructional methods 
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informed by the findings of learning research and delivered through technology-rich 

environments accessible through the Internet or CD-ROM may be the means by which access to 

high quality education is not limited by the lack of local financial, social, structural, or 

intellectual resources. 

1.8 LIMITATIONS OF THIS STUDY 

The study is limited by two factors related to the sample. First, the study was conducted with 

participants from a single upper-level university (Carnegie Mellon University) and results may 

differ with participants from other environments. Second, the sample turned out to be smaller 

than expected. The study was run during the summer with incoming university freshmen. 

Although equivalency of groups was generated through random assignment of solicited 

volunteers from a population of about 400 students, only 45 completed the study. Another 

limitation may be the nature of the posttest questions. These questions were developed from 

national standardized exams and consisted of both procedural and conceptual items that would 

be addressed by a traditional course. Authentic, ill-structured, real-world problems that require 

an intuitive approach were not tested even though it may be that type of problem solving that 

working with simulations and other affordances of a technology-rich environment supports. 
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2.0  REVIEW OF THE LITERATURE 

This chapter reviews of the literature pertinent to the study.  First, the research on the particular 

difficulties of learning chemistry with special emphasis on stoichiometry is summarized. Second, 

a review of tested and effective, research-informed science instruction is presented. Third, 

literature on the ways in which online technology may be able to deliver effective instruction is 

reviewed. Finally, a comparison of several online chemistry courses is reviewed to ascertain the 

degree to which (a) instruction was cognitively guided, and (b) features of online technology 

were implemented in the service of learning. 

2.1 CHALLENGE OF LEARNING CHEMISTRY 

Chemistry is difficult to learn because of the intrinsic load, or complexity, of its logical structure 

as well as the extraneous load imposed by the methods of its instruction (Sweller, Van 

Merrienboer, & Paas, 1998). Problem solving in chemistry requires a flexible manipulation and 

integration of the concrete and abstract levels of the domain’s structure. Instruction that fails to 

consider the psychological characteristics of the learner will not succeed in promoting the 

development of such a generative knowledge base. 
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2.1.1 Structural challenges to learning 

To appreciate the complexity of learning chemistry, consider the following situation. The 

contents of two test tubes, each containing clear solutions, are mixed together in a third test tube. 

The contents of the third test tube appear as a clear solution with a bright yellow substance that 

precipitates (falls) to the bottom. The reaction is represented by the following equation: 

Pb(NO3)2(aq)   +   2 KI(aq)      PbI2(s)  +   2 KNO3(aq) 

This chemical equation is itself a dense expression to comprehend. Each single uppercase letter 

or uppercase letter followed immediately by a lowercase letter is an element’s symbol. Groups of 

these symbols represent formulas of compounds. Lowercase letters enclosed in parentheses 

indicate the physical state of the substance immediately preceding it (e.g., aq indicates the 

compound is dissolved in water). The numerals have a dual function in this chemical equation. 

Subscripts represent the ratio of elements in specific compounds. The subscripts outside of 

parentheses are distributive in nature and apply to each element inside.  Subscripts inside 

parentheses refer to the adjacent element only. Coefficients immediately preceding formulas 

represent the ratios of substances reacting and formed. For all of these functions, the numeral 1 is 

not represented but is understood. All chemical equations obey the Law of Conservation of 

Matter so that the same number of each element’s atoms must appear on both sides of the yield 

sign (arrow). The learner must know the notational system and how ratios operate in order to 

interpret the chemical equation correctly. 

 The chemical equation written above does not represent a one-to-one-to-one 

correspondence of the three levels at which chemistry operates. Integrating this submicroscopic 

representation with the macroscopic observation in the third test tube is not straightforward. The 

amount of precipitate (PbI2) produced is reported in macroscopic units--grams. But there is no 
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simple connection between these units and the ratios of individual particles specified by the 

balanced chemical equation. Atoms and molecules react as individual entities; chemists measure 

them with mass units. To relate these two phenomena, a special amount of substance is needed. 

The mole is this amount of substance and it represents an extremely large number (≈ 6.02 x 1023, 

or 602 sextillion) of these submicroscopic entities, a quantity that can be measured in 

macroscopic units (e.g., grams). When working with chemical reactions students must move 

back and forth between the submicroscopic and macroscopic levels as well as work with 

representations of single entities that are measured by the masses of collections of them. 

 The balanced equation is a model of interaction at the submicroscopic level. This model 

does not account for unused materials. At the macroscopic level, however, the chemist rarely has 

masses of reactants whose molecular composition is exactly in the ratio specified by the 

chemical equation. Something is always unreacted and therefore left over. Students have 

difficulty relating this unreacted material at the macroscopic level to the abstract representations 

at the submicroscopic level. They may be able to determine mathematically which reactant limits 

how much product ultimately is produced, but often are unable to diagram the final composition 

of a reaction mixture (that includes unreacted material) at the submicroscopic level. They simply 

include this unreacted material on the product side of the chemical equation (Nurrenbern & 

Pickering, 1987; Sanger, 2005; Sawrey, 1990). 

2.1.2 Instructional challenges to learning 

The manner in which chemistry content, including that of stoichiometry, is explicated to students 

often presents another challenge to their learning. Divorced from its use in the field or from what 

is familiar to students, stoichiometry is taught as a collection of procedural competencies to be 
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learned as preparation for use in future course content areas.  Success in high school chemistry 

involves the ability to execute multistep abstract algebraic exercises rapidly and accurately. For 

more than 50 years chemical educators have been seeking explanations and solutions for the 

difficulty that many students exhibit with this aspect of chemistry instruction. Proficiency with 

these exercises appears to be related to proportional reasoning ability (Ward & Herron, 1980). 

Yet when proportional reasoning ability is assessed with instruments such as TOLT1, only 50% 

of high school students are deemed to be capable of formal operations such as proportional 

reasoning.  

 In an effort to aid students in overcoming this handicap, chemistry instructors have 

developed a procedure known as dimensional analysis, or the factor-label method. Dimensional 

analysis supports proportional reasoning skills by showing how the units of measure are assigned 

and transformed during the arithmetic computation of ratios and proportions. However, this way 

of thinking through chemistry problems has itself become yet another routine to be memorized 

(Herron, 1975; Robinson, 2003; Wheeler & Kass, 1977). Such a mechanistic approach to 

stoichiometry problem solving results in knowledge that is fragmented or inert--able to be 

remembered in similar problem-solving situations (e.g., a unit test) but not available for use in 

new venues such as equilibrium applications (Brown, Collins, & Duguid, 1989; Whitehead, 

1929). Mechanistic learning of this type also tends to block reflective competence on the part of 

the students, leaving them unable to learn from the problems they have done (Hiebert, 1992; 

Hiebert & Wearne, 1985). The stoichiometric problem-solving ability of students with high math 

anxiety (in addition to low proportional reasoning capabilities) does not improve with instruction 

of dimensional analysis techniques (Gabel & Sherwood, 1983). This finding is not surprising 
                                                 

1 Test of Logical Thinking 
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considering that social transmission through interactive, rather than passive, processes is 

necessary for the development of mental structures such as proportional reasoning ability 

(Piaget, 1964). Robinson and Niaz (1991) found that students in an interactive discussion 

(teacher-facilitated) treatment group performed significantly better on the class examination than 

did the control lecture group even though the treatment group had addressed fewer example 

problems. Actively involving students in the learning process whether in lecture or small group 

discussion improves performance (Gabel & Bunce, 1994). Furthermore, instruction that employs 

strategies such as diagrams and analogies as opposed to multiple examples using dimensional 

analysis is significantly more effective for students with high math anxiety probably because 

such an approach efficiently makes use of both the visual and verbal components of their 

memory structure (Gabel & Sherwood, 1983). 

Instruction that leads to proficiency with solving algorithmic exercises does not translate 

to the learning of chemical concepts (Nakhleh, 1993; Nakhleh & Mitchell, 1993; Nurrenbern & 

Pickering; Sawrey, 1990). Consistent with Ausubel’s meaningful learning theory (Ausubel et al., 

1978), conceptual knowledge is a significant predictor of problem-solving ability in chemistry 

(Ashmore, Frazer, & Cassey, 1979; Frazer, 1982). Although requisite concepts are necessary, 

they are not sufficient for successful problem solving in chemistry. An inability to recognize 

relationships among chemical concepts prevents students from applying their knowledge in new 

problem situations (Sumfleth, 1988). 

Kempa & Nicholls (1983) found that the cognitive structures of good chemistry problem 

solvers were more highly networked than those of less successful problem solvers. Furthermore, 

with poor problem solvers the networking of abstract concepts was particularly lacking, a serious 

deficiency in that two of the three levels of chemistry knowledge (submicroscopic and symbolic) 

 23 



deal with abstractions. Gabel and Bunce (1994) suggest that it is this networking of concepts in 

long-term memory and the subsequent ease of transferability to working memory that determines 

success in chemistry problem solving. Integration of concepts is particularly difficult in 

chemistry because of the tripartite (macroscopic, submicroscopic, symbolic) nature of the 

domain that often requires movement among all three levels when solving a chemistry problem. 

Students must be explicitly taught, for instance, how to convert a symbol to the meaningful 

information that it represents (Johnstone, 1991). When achievement of students explicitly taught 

the conceptual underpinnings of stoichiometry is compared to that of students taught in the 

traditional algorithmic manner, the former significantly outperform the latter on a developer-

based test (Dori & Hameiri, 2003). Unfortunately, teachers in introductory courses often only 

provide algorithmic formulas for solving these problems rather than requiring students to apply 

conceptual reasoning before executing a computation. When chemical knowledge is acquired in 

only one context (e.g., traditional textbook algorithmic exposition), the number of associations 

constructed may not be sufficient to provide the flexibility and accessibility for application of the 

knowledge in a different context. 

 Without the integration of the three levels of chemistry knowledge in long-term memory, 

working memory will be overloaded at the outset of the problem solving process (Reid & Yang, 

2002). Simultaneous introduction of all three levels (what took over a hundred years in the 

chemistry community to develop) truly will overload processing capacity. Learners cope 

cognitively by constructing alternative frameworks (sometimes misconceptions) or by trying to 

store the information separately and unattached. Integration of the three levels of chemistry 

knowledge should be a gradual process that begins with a familiar context so that there are 

already anchors in long-term memory on which to attach new knowledge (Johnstone, 2000).  

 24 



2.1.3 Summary 

Chemistry, as exemplified by stoichiometry, is hard to learn. The difficulty with the content is in 

large part due to the conceptual movement among macroscopic, submicroscopic, and symbolic 

levels of knowing on one hand and the underlying mathematical requirements of proportional 

reasoning on the other. In an effort to simplify learning of the routine stoichiometry problems 

addressed in high school chemistry, instruction has focused on algorithmic execution of 

procedures with little or no emphasis on conceptual understanding or variable contexts. Students’ 

success with these algorithmic procedures, however, does not promote their conceptual 

understanding. The inability to recognize relationships among concepts prevents them from 

intuiting stoichiometry’s application to college chemistry topics such as equilibrium or authentic 

real-world problem solving. Engaging students in interactive problem solving as well as 

employing visual and verbal strategies to explicate example problems have been shown to be 

effective in promoting meaningful stoichiometry learning. 

2.2 INFORMING STOICHIOMETRY INSTRUCTION 

Chemistry is hard to learn because of the domain’s structure and the use of instructional 

strategies that fail to consider the psychological nature of the learner. Research findings from the 

science of learning during the past half century have produced theories that help to explain the 

processes of human cognition. We have examined the evidence supporting the consideration of 

construction, cognitive capacity, and context when designing instruction. The creation and 

testing of instructional practices based on this evidence would be a systematic way of developing 

 25 



strategies for stoichiometry instruction. When principles of good instruction are based upon an 

integration and application of tested theories of learning from behavioral, information-

processing, and sociocultural research, teaching itself becomes a scientific endeavor 

(Handelsman et al., 2004).  This section discusses tested pedagogical methodologies that respond 

to the need for active engagement by the student in constructing knowledge, the need to manage 

a limited processing capacity, and the need for context to provide encoding opportunities. 

2.2.1 Active engagement by the student 

Chemistry classes traditionally have relied on transmission of content through lectures and 

confirmatory cookbook-style laboratory exercises, neither of which are effective in producing the 

fluid and flexible use of the domain’s concepts and procedures. This view of chemistry, or any 

other science domain, as a static codified body of knowledge to be taught to students contrasts 

with the practicing chemists’ goal of generating solutions to real-world problems through active 

construction of relationships and patterns. Large introductory science classes in universities as 

well as instructors’ perceived need to prepare students for advanced coursework both in high 

school and at the university level have worked to maintain the transmission status quo of 

explain-apply pedagogy.   

Instantiations of “scientific teaching” (Handelsman et al., 2004), on the other hand, 

include active participation in lectures and discovery-based laboratories that have been 

implemented and quantitatively evaluated in a variety of science courses throughout academia. 

Three well-developed methodologies that are based upon active student engagement with the 

subject matter include the Learning Cycle Approach (Karplus & Their, 1967), Peer Instruction 

(Mazur, 1996), and Just-in-Time Teaching (Novak et al., 1999).  
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The Learning Cycle Approach (Karplus & Their, 1967) was an outgrowth of the post-

Sputnik reforms in elementary science education at a time when Piaget’s developmental stages 

were interpreted by educators as constraints on what could be taught about science to young 

children. The approach emphasized exploration (concrete) before concept introduction (abstract) 

and application (use). This pedagogical development was somewhat serendipitous as it was 

motivated by what we now take as a misinterpretation of intellectual development. The active 

approach of the learning cycle in science instruction at the high school and college level in 

chemistry and biology has resulted in greater achievement and retention, improved reasoning 

ability, and superior process skills when compared to the traditional lecture approach (Abraham 

& Renner, 1986; Ebert-May, Brewer, & Allred, 1997).  

Peer Instruction (PI) (Mazur, 1996) intersperses lectures with conceptual questions 

(ConcepTests) that are designed to expose difficulties students are having with understanding the 

material. In PI, students are asked to think for one or two minutes about the posed question and 

then formulate a written answer. They then spend three or four minutes discussing their answers 

with three or four neighbors and try to reach consensus through discussion. Students are engaged 

as they think through the various arguments presented by their peers. Instructors are able to 

formatively assess understanding of concepts in a timely fashion and thereby modify 

instruction to fit with the current knowledge state. Data from ten years of teaching both calculus-

based and algebra-based introductory physics have shown increased student mastery of both 

conceptual reasoning and quantitative problem solving with the use of PI (Crouch & Mazur, 

2001). To support PI for chemistry education, the University of Wisconsin maintains a website 

(http://www.jce.divched.org/JCEDLib/QBank/collection/ConcepTests) of ConcepTests for 

chemistry.  
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Just-in-Time Teaching (JiTT) (Novak et al., 1999) uses web–based preparatory 

assignments to engage students actively in learning before coming to lecture as well as to inform 

the instructor of their state of prior knowledge so that lectures can be adapted appropriately. The 

essence of JiTT is feedback. By reading students’ submissions prior to class, faculty can adjust 

classroom lessons just in time to suit the students’ needs. A comparison of traditional physics 

lecture courses with those that employ JiTT shows a 40% decrease in student attrition (dropout) 

rates as well as increased performance on the Force Concepts Inventory for the JiTT classes 

(Hake, 1998). Similar positive results have been documented for JiTT in biology, chemistry, and 

engineering courses (Marrs, Blake, & Gavrin, 2003; Marrs & Novak, 2004). 

Lectures are not the only site available for transformation from a passive to active 

environment. Both laboratory and homework experiences also can present opportunities for 

helping the learner construct an integrated overview of the discipline under study. When 

cookbook-type labs are modified to reflect higher level intellectual demands such as hypothesis 

generation and testing with both individual and collaborative responsibilities, and when these 

open-ended inquiry experiences are integrated with, instead of detached from, lecture topics, the 

resulting conceptual change of the students is significantly greater than that of students from a 

traditional course  (Udovic, Morris, Dickman, Postlethwait, & Wetherwax, 2002). When open-

ended homework assignments in which students interact with web-based simulations to solve 

real-world problems replace some of the standard back-of-the-book exercises, learning outcomes 

are no longer highly correlated to students’ prior experience with the material (Cuadros, 

Leinhardt, & Yaron, 2007). 

Schema acquisition and automation are facilitated by instructional strategies that promote 

active engagement rather than passive absorption. Methodologies such as the Learning Cycle 
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Approach, Peer Instruction, Just-in-Time Teaching, and open-ended inquiry labs and homework 

assignments have increased student performance in science courses. Yet students’ cognitive 

architecture also has significant implications for instructional design. 

2.2.2 Cognitive structure 

The fact that humans have limited processing space should be considered when designing 

instruction so that cognitive overload does not interfere with learning. Traditional instruction that 

follows the explain-apply format may actually contribute to cognitive overload when students are 

asked to solve novel practice problems for which they have not yet developed schemas that 

chunk and/or automatize the multiple elements needed for the generation of solutions. 

Stoichiometry problems that rely on symbolic representations of abstract entities which give rise 

to macroscopic measurements are classic examples of this potential for cognitive overload. 

Although a means-end strategy may result eventually in a solution for a particular problem, the 

need for repeated extraction of differences between problem state and goal state during problem 

solving along with the search for operators to reduce or eliminate those differences far exceeds 

the cognitive capacity of novices. Therefore, these actions do not promote the development of 

schemas let alone their smooth, quick, and effortless execution during problem solving--

important goals of the learning process (Sweller, 1994). Yet frequent practice with problems 

germane to a domain is necessary for the consolidation and restructuring of schemas in the 

manner of domain experts (Anderson, 1993). 

Zhu & Simon (1987) actively engaged students by having them study worked examples 

of algebra problems and then solve practice exercises. Protocol analysis revealed that students 

did not work mechanically from the examples to the exercises but rather extracted appropriate 
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principles from studying the examples that guided their solutions to the practice exercises. Using 

the method of learning from examples, students were able to complete a three-year mathematics 

course in two years. High performance on a retention test one year later supported the hypothesis 

that the learning was not only efficient but also meaningful. In a serendipitous manner, active 

engagement with worked examples can also reduce cognitive load since the learner needs to 

attend only to each step (or problem state) and the specific move needed for transformation to the 

next step.   

A comparison of students learning geometry from worked examples combined with 

practice problems versus only from practice problems found that those students in the worked 

examples group learned faster, scored higher on a test with similar problems, and outscored the 

traditional problem-solving group on transfer problems that required application of the principles 

that had been taught (Paas, 1992). Trafton & Reiser (1993) determined that alternating worked 

examples and practice problems was an effective way to facilitate learning since having a similar 

problem (worked example) immediately available in memory supported its application to a new 

problem. Together these findings support the hypothesis that actively studying worked examples 

is superior to traditional problem-solving practice for schema acquisition. 

The use of worked examples and practice problems does not guarantee the construction 

of a well-integrated knowledge base. It is the active engagement with the worked examples 

through reflective consideration of the solution process rationale that serves to connect new 

information to learners’ existing knowledge in long-term memory. Students who self-explain 

worked examples learn more than those who tend to them in a more cursory manner (Chi, 

Bassok, Lewis, Reimann, & Glaser, 1989). Since most students do not spontaneously provide 

effective self-explanations when studying worked examples, instruction should provide prompts 
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for eliciting them so that the freed processing capacity is effectively used (Renkl, 1997; Renkl, 

Stark, Gruber, & Mandl, 1998).  Self-explanation of worked examples has been shown to be 

beneficial in initial skill acquisition but practice with solving problems is necessary to develop 

fluidity and accuracy. Therefore, after an initial knowledge base has been developed through 

self-explaining worked examples, support should be faded gradually from the use of 

incompletely worked examples to independent problem solving. Renkl & Atkinson (2003) have 

found that a backward fading process (starting with last step of a worked example’s solution) 

along with prompts for self-explanations did not result in cognitive overload and fostered both 

near- and far-transfer performance. 

Skills that are practiced are skills that are learned even if what is learned is in error and 

not the specified goal of instruction (Lovett & Greenhouse, 2000). Therefore, feedback is an 

important tool in instructional design. The exceptional learning gains documented from studying 

with human tutors have been attributed to the rich and timely feedback that they give (Bloom, 

1984). Although rare, delayed, and usually occurring as part of a summative evaluation in most 

traditional classrooms, feedback can formatively enhance learning through a complex interaction 

of its timing, its specificity, and the type of learner responses. Most research findings point to the 

value of feedback that is immediate, verifies whether a response is correct or incorrect, and 

provides cues to guide the learner in formulating a correct solution (Kulik & Kulik, 1988; Mason 

& Bruning, 2001).  

Although many of these instructional applications were developed in appreciation of 

students’ limited capacities for processing new information during their learning process, the 

availability of both auditory and visual information channels may enable a greater number of 

chunks to be effectively processed. Research findings from instantiations of this multimedia 
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principle have suggested that appropriately designed web instruction is superior to traditional 

text-based formats (Clark & Mayer, 2003). 

2.2.3 Context 

One of the critical tasks of chemistry instruction is the transformation of the domain’s knowledge 

for learning. In the service of this goal, instructional explanations function to clarify and connect 

concepts with procedures and thereby help learners develop and use their acquired knowledge in 

flexible ways during problem solving. Instructional explanations model the types of questions 

posed in a domain such as chemistry as well as model the ways in which these queries are 

answered (Leinhardt, 2001). Instructional explanations are important since doing them well 

promotes learning and doing them poorly interferes with learning (Eisenhart et al., 1993). 

Therefore, the design of instructional explanations, whether published in a textbook, facilitated 

by a classroom teacher, or delivered online, should reflect a practice informed by research. 

 The context-dependent nature of cognition suggests that for newly learned knowledge to 

be functional it needs to be processed within its authentic context of use. Practice with hitting 

stationary balls at a driving range may effectively improve your golf score, but it does not 

transfer to returning a slice serve on the tennis court. Likewise, trying to teach students to use 

general, context-independent cognitive strategies has no clear benefits outside of the specific 

domains in which those strategies are taught (Pressley, Snyder, & Cariglia-Bull, 1987). As 

concrete instantiations of abstract concepts, examples serve as core components of instructional 

explanations. Examples can introduce a concept by allowing learners to connect their prior 

knowledge with the new information, can function as boundaries of concepts, can serve as 

templates for organizing domain knowledge, and can afford the bases for inductive 
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generalization (Rissland, 1991). For newly learned concepts and procedures to be flexible—that 

is, able to be applied to multiple situations within the domain of study--students need experience 

with multiple and variable examples in different contexts from which they can extract the critical 

underlying principle(s) (Perkins & Salomon, 1989; Quilici & Mayer, 1996). The resultant 

multiple encodings serve to strengthen a given problem schema resulting in more generally 

applicable knowledge and skills (Paas & Van Merrienboer, 1991; Ranzijin, 1991). 

 Analogies are another explanatory tool that can be used to familiarize learners with new 

information. An analogy compares similar features of two concepts, one familiar and one 

unfamiliar, as opposed to an example that is a concrete instance of a given unfamiliar concept. 

When more than one example is used as part of an instructional explanation, however, the 

association between them and the given concept includes comparisons. By portraying the 

underlying principle of the concept, these examples stand in an analogical relation. 

 Research on the instructional use of analogies has shown that visualization of abstract 

principles can be facilitated by pointing out similarities in the real world through consideration of 

students’ prior knowledge. However, since an analogy is never an exact fit, differing features 

between the target (unfamiliar concept) and the analog (familiar concept) can mislead. For 

example, Gentner and Gentner (1983) found that two different analogies for electric current 

produced different performances by the students exposed to them. Students presented with a 

flowing waters analogy did better on battery problems whereas those presented with a teeming 

crowds analogy did better on resistor problems. The specificity of support by these analogies 

suggests the need for multiple analogies during instructional explanations to avoid the possibility 

of analogy-induced misconceptions (Spiro, Feltovich, Coulson, & Anderson, 1989).  
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 Although students may access analogies by surface similarities of the target and analog, it 

is only the deep structural aspects that have inferential power (Duit, 1991). The successful use of 

analogies in learning situations has been shown to require considerable guidance (Gick & 

Holyoak, 1980). Instructor-designed analogies for stoichiometry problem solving are more 

effective for students of lower formal reasoning ability than for more capable students (Gabel & 

Sherwood, 1980). Working in the same content area, Sutala and Krajcik (1988) found that 

students with high cognitive abilities benefited more from creating their own analogical 

connections whereas students with lower abilities benefited more from having the teacher make 

them.  

2.2.4 Summary 

Pedagogical methodologies that encourage the active engagement of the learner, consider the 

learner’s cognitive structure, and provide multiple encoding opportunities for the development of 

a flexible knowledge base have been shown to be effective tools for promoting the meaningful 

stoichiometry learning needed for application to problem solving in equilibrium and acid-base 

chemistry. The instructional and learning challenges of the stoichiometry toolbox are ones that 

online technology may be equipped to address. A multimedia platform, which includes 

interactive simulations by which the invisible can be made visible as well as provisions for 

scaffolding of, and timely feedback for, student problem solving, should be able to support 

learning in a complex and abstract domain such as chemistry. 
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2.3 USING ONLINE TECHNOLOGY TO DELIVER INSTRUCTION 

Online technology as a medium for instructional delivery can support the learning and/or review 

of stoichiometry concepts and procedures. The rapid expansion of the Internet across regional, 

social, and technological barriers now provides the accessibility, convenience, flexibility, and 

affordability of the World Wide Web’s vast library of resources to enhance the quality, 

individualization, and egalitarianism of instruction.  Recent advances in multimedia and 

communications technology enable levels of interactivity and knowledge construction 

unencumbered by time and location constraints, a feature particularly amenable to personal 

review of previously learned content such as stoichiometry. These technological tools can create 

the interactions (e.g., simulations, feedback, explanations, etc.) that may enhance learners’ 

construction of their knowledge frameworks. But it is the findings from research on learning, 

whether facilitated by technology or not, that must guide the development of online learning 

environments. For example, to learn from a simulation, the students must understand what they 

should accomplish and must be scaffolded and coached appropriately in achieving their goals. 

An informed instructional design can individualize online courseware in a way that optimizes the 

development of a fluid and flexible stoichiometry framework for learners independent of their 

level of prior knowledge. Three features of online technology that have been shown to support 

meaningful learning are dynamic explanations through multimedia, supported practice 

opportunities with feedback, and simulations for developing inquiry. 
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2.3.1 Multimedia to facilitate dynamic explanations 

The Multimedia Principle asserts that instruction that incorporates words and graphics 

encourages learners to engage in active learning by making connections between the verbal and 

pictorial representations (Clark & Mayer, 2003). In contrast, using only text-based instruction 

may encourage shallow learning in that learners may not actively connect words to their other 

knowledge. Explication of stoichiometric procedures using videos accompanied by voice over 

narration allows the explanations to include not only the how but also the why of the procedures. 

Furthermore, a multimedia format allows learners to employ both their visual and auditory 

channels in processing new information and perhaps avoid cognitive overload (Moreno & 

Mayer, 2000; Sweller, 1994).  Learning to move effortlessly within the complex tripartite 

structure of chemistry (macroscopic, submicroscopic, symbolic) can be facilitated by dynamic 

simulations that point out relationships among these three levels both visually and verbally. 

Obviously, a multimedia format facilitates learning only if the target of the effort is the difficult 

part of what is to be learned. 

2.3.2 Tutorials to facilitate fluency from interactive practice 

Development of expertise is strongly related to practice. In the information-processing model of 

knowledge acquisition, practice affords opportunities for integration of new knowledge into the 

learners’ cognitive frameworks. The more that learners practice (up to a point), the better they 

get at problem solving, regardless of initial talent and ability (Ericsson & Charness, 1994); the 

more encoding opportunities that are accessed, the more connections that are made, resulting in a 

greater probability of retrieving the new knowledge when needed for subsequent problem-
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solving situations. Variations in practice opportunities can be provided in online environments 

through parameterized problems in which the learner continues to practice a specific procedure 

until fluency is achieved. Online technology can enhance practice opportunities by incorporating 

immediate feedback in the form of hints and confirmations not unlike those interactions with a 

human tutor that have been shown to result in significant learning gains (Bloom, 1984). 

2.3.3 Simulations to facilitate inquiry 

The body of definitional knowledge that students acquire through expository explain-apply 

regimens is often inert--unusable out of the context in which it was taught, namely within the 

carefully organized structure and content of classroom notes. The ability to both understand and 

develop solutions to complex problems requires an intuitive knowledge base. This knowledge 

base may best be developed through the practice of authentic inquiry activities that require the 

planning and executing of experiments as well as interpretation of data. Authentic activity in 

chemistry is often too dangerous, too time consuming, or too obscured by the interaction of 

multiple variables to be of cognitive value to the learner. Furthermore, without the practiced 

kinesthetic skills needed for laboratory work, the quality of data from which inferences are made 

is questionable. Multimedia technology has been able to use mathematical or logical algorithms 

to reproduce selected characteristics of chemical systems such that the effect of changing 

individual variables’ values can be observed (Pence, 1997). Such a feature of online technology 

can provide an instructional tool that enables chemical systems to be explored rapidly and 

effectively. Without the challenges and obstacles of working in a natural environment, students’ 

interactions with simulations may promote the development of the intuitive knowledge base 

needed for complex problem solving. 
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The design of a simulation may be stripped down to highlight only those variables 

directly involved with a given concept or procedure. For example, a simulation of limiting 

reagents, a difficult but necessary stoichiometry concept needed for success in freshman college 

chemistry, may focus only on a graphical representation of changing amounts of substances in a 

chemical equation. Such a simulation may support initial concept development of limiting 

reagents. A more complex simulation may incorporate a virtual laboratory with glassware, 

instrumentation, and solutions to use in the service of solving authentic problems such as 

removing arsenic from a water supply. Such a simulation can provide multiple encoding 

opportunities for more advanced learners, a process that aids in the development of an intuitive 

understanding of chemical processes. 

A review of research studies that have evaluated learning from simulations shows that 

without instructional support gains are often unclear, disappointing, or both. Students who are 

unfamiliar with a domain benefit from program-controlled, sequenced assignments when first 

interacting with a simulation (Swaak & De Jong, in press). On the other hand, students who are 

familiar with the domain at hand (such as in a review course for stoichiometry) are better served 

by learner-controlled support provided through a series of hints that may remind them of the goal 

of the activity and give some general advice on how to approach a solution (Clark & Mayer, 

2003). 

2.3.4 Summary 

A decade ago Osin and Lesgold (1996) proposed that intelligent computer systems coupled with 

domain simulations might facilitate a cognitive apprenticeship model of learning by which 

novices (students) are supported by experts (in this case, the computer) as they solve authentic, 
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albeit difficult, tasks in the process of developing competency in the domain. The distinctive 

features of online instruction include abilities to dynamically explicate abstract information, to 

provide timely feedback for practice, and to scaffold the execution of complex tasks so that 

learners focus on knowledge relationships rather than individual bits of information. These 

interactive opportunities support a constructivist environment through active engagement of the 

learners in revision of and building on their current understandings through exploration and 

reflection. The development of a stoichiometry course that uses online technology to support 

cognitively informed instruction that provides dynamic explanations along with coached and 

scaffolded practice with interactive simulations in the service of authentic problem solving is 

described in the Methods section. Such a course may enhance subsequent instruction in 

chemistry by moving the topic of stoichiometry from being a collection of tools (Evans et al., 

2006) to being tools in use. It was chosen for this study after careful analysis of several online 

candidate courses.  

2.4 REVIEW OF ONLINE CHEMISTRY COURSES 

The need for students’ independent review of stoichiometry concepts and procedures in an 

introductory college chemistry course precipitated a search for online instructional resources. 

This search was conducted on the World Wide Web because of its accessibility to individual 

learners as well as the its potential for dynamic and interactive instruction. The search 

investigated courseware that integrated and applied tested theories of learning from information-

processing, sociocultural, and behavioral perspectives. The search looked for coursework that 

was grounded in a cognitive analysis of the domain and that promoted schema construction. 
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Another goal of the search was to find courses whose instructional materials reflected a 

sociocultural understanding of the practices of chemistry—that is, teaching how chemists use the 

tools of the domain rather than teaching the tools in isolation. Finally courses were examined for 

their incorporation of feedback and fading in support of knowledge development. A complete 

report of this review of online chemistry courses is located in Appendix A. Included in this 

section is a summary of the methods and results of the analysis. 

2.4.1 The courses 

The five courses that were selected for review came from a variety of sources, such as course 

websites or commercial ventures (e.g., textbook companion websites and stand-alone CD-ROM 

courses).  Each of the following sets of online materials was accessible through either a MAC or 

a PC platform, addressed the conceptually difficult stoichiometry competences necessary for 

success in subsequent coursework, provided explanations of content with worked examples of 

procedures and practice tasks, and was amenable to self-study without the intervention of an 

instructor. 

1. OSU: Grandinetti’s General Chemistry Lectures (http://www.chemistry.ohio-
state.edu/~grandinetti/teaching/Chem121/lectures/) 

 
2. NORTON: Student website for Chemistry: The Science in Context 

(http://www.wwnorton.com/chemistry/home.htm) 
 

3. THINKWELL: Thinkwell Chemistry (www.thinkwell.com) 
 

4. GENCHEM: General Chemistry Interactive CD-ROM, Version 3.0 (ISBN: 0-03-
035319-X) 

 
5. OLI: Open Learning Initiative Chemistry 

(http://www.cmu.edu/oli/courses/enter_chemistry.html) 
 

 40 

http://www.chemistry.ohio-state.edu/%7Egrandinetti/teaching/Chem121/lectures/
http://www.chemistry.ohio-state.edu/%7Egrandinetti/teaching/Chem121/lectures/
http://www.wwnorton.com/chemistry/home.htm
http://www.thinkwell.com
http://www.cmu.edu/oli/courses/enter_chemistry.html


2.4.2 Analysis 

In each course the same three stoichiometry target topics were selected for review based upon 

their disciplinary applications in equilibrium and acid-base chemistry as well as their conceptual 

difficulty for beginning chemistry students: limiting reagents, molarity, and dilution. Course 

segments corresponding to these topics were analyzed in terms of the quality and quantity of 

examples and tasks, as well as the pedagogical implementation of online resources (e.g., 

dynamic representations and interactive opportunities). 

2.4.2.1 Examples For the purpose of this analysis, an example was defined as a specific 

illustration of a concept or a procedure. The quality of examples examined ranged in cognitive 

demand from the cursory application of a procedure to its authentic use in a real-world scenario. 

Five types of examples were identified as either cognitively simple or cognitively complex. The 

number of different examples for each target topic in each course was counted in order to 

determine whether students would have sufficient opportunity to distinguish relevant from 

incidental features of specific problem types. For each course the total number of each type of 

example across the three target topics also was tabulated. Since both the quality and quantity of 

examples are important conditions for learning from them, each course was ranked according to 

both criteria. A complexity index was calculated based upon the proportion of each course’s total 

number of examples that were identified as cognitively complex (i.e., demanding). For each 

course the mean number of examples across topics was plotted against this complexity index. 

2.4.2.2 Tasks For the purpose of this analysis, a task was defined as a specific activity that must 

be completed by the learner in the service of practice and/or knowledge assessment. The quality 
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of tasks ranged in cognitive demand from the simple recall of facts or definitions to real-world 

problems with no defined solution path. Five types of tasks were identified as either cognitively 

simple or cognitively complex. Multiple practice opportunities that address a range of situations 

have been shown to be necessary for improved performance in problem solving by promoting 

efficiency and proficiency (Clark & Mayer, 2003; Rosenbaum, Carlson, & Gilmore, 2001). 

Therefore, the number of different tasks for each target topic was counted. For each course the 

total number of each type of task across the three target topics was also tabulated. Since both the 

quality and quantity of tasks are important conditions for learning from them, each course was 

ranked according to both criteria. Complex tasks provide more opportunities for engagement and 

encoding than simple recall or procedural tasks. Therefore a complexity index was calculated 

based upon the proportion of each course’s tasks that were identified as cognitively complex 

(e.g., exhibited complex procedures, conceptual reasoning, or authentic problem solving). For 

each course the mean number of tasks across topics was plotted against this complexity index. 

2.4.2.3 Online resources A distinctive feature of online technology is the ability to provide 

dynamic explication of abstract information and interactive opportunities to support exploration 

and reflection by learners in the service of revising and building upon current levels of 

understanding. An estimation of the level of pedagogical implementation of online resources 

among the selected courses was made: by counting the different types of dynamic and interactive 

learning objects; by identifying the location, control, and type of feedback opportunities; by 

comparing the types of scaffolded practice in problem solving; and by evaluating the use of 

simulations as exploratory learning objects. 
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2.4.3 Results  

Of the five courses analyzed the OLI course provides the highest degree of cognitive complexity 

among examples and tasks. More than 70% of both its examples and its tasks are of an authentic 

problem-solving or conceptual nature. The availability of these cognitively demanding 

instructional aids in the OLI course can provide the learner with more opportunities for 

engagement and encoding than can those examples or tasks that are of a simple procedural 

nature. OLI’s actual number of examples and tasks, however, is the lowest (less than two 

examples and five tasks per topic) among all the courses reviewed. This low number of examples 

and tasks may not be sufficient to promote the deep processing needed for developing the 

flexibility and fluency required for intuiting solutions to equilibrium and acid-base problems. 

The other courses offer more examples and tasks (up to an average of six examples and nine 

tasks per topic per course). Yet less than 50% (and as few as 10%) of the examples and tasks in 

those courses are of an authentic or conceptual nature, emphasizing instead the execution of 

simple procedures. 

The interactive learning objects made available by the various courses that were 

examined range from simply providing quiz results to providing rich virtual environments that 

can be explored. OSU offers a single type of dynamic learning object, specifically quizzes with 

feedback. NORTON, THINKWELL, and GENCHEM support students in complex problem 

solving by relieving them of hand computations through applets that automatically calculate 

quantities such as molar mass from chemical formulas. These three courses also centralize 

needed atomic data within an interactive periodic table. NORTON, GENCHEM, and OLI offer 

tutorial objects that incorporate both feedback and coaching in the service of developing student 

proficiency with specific, albeit simple, procedures. Only GENCHEM and OLI provide 
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exploratory environments in which students can freely change parameters and note the systemic 

changes. Coordination of these two activities may promote development of conceptual 

connections between two or more of the different levels (macroscopic, submicroscopic, and 

symbolic) of the domain’s structure.  

Just as the complexity and frequency of examples and tasks vary among the courses, so to 

do the pedagogical affordances of the interactive learning objects (e.g., tutorials and simulations) 

vary. Tutorials across the three courses that offer them (NORTON, GENCHEM, OLI) all 

provide feedback in the form of hints and confirmations. The tasks in NORTON’s and 

GENCHEM’s tutorials are predominantly of a simple procedural nature that function as 

exercises in algebraic manipulations, albeit with vocabulary and variables rooted in chemistry. 

The OLI tutorial design, however, situates the algebraic manipulations of stoichiometry in the 

context of a real-world use for analytical chemistry. Such a tutorial located in an authentic 

practice of chemistry may both promote efficiency with the algebraic procedures as well as foster 

the development of a conceptual understanding by encoding knowledge in use. 

GENCHEM and OLI are the only two courses examined that provide simulated 

environments as interactive learning objects. Both of the courses’ simulations allow for 

exploratory actions by the student in addition to the courses’ stipulated tasks. GENCHEM’s 

simulations superimpose an ordering of actions for the learner, accompanied by confirmatory 

and procedural feedback, within a basic symbolic interface. The simulated reality of OLI’s 

Virtual Lab allows learner-imposed sequencing of actions that are scaffolded through 

generalized hints and goal reminders. Since the OLI course was developed specifically as a 

stoichiometry review, the content would be somewhat familiar to the users and therefore this 
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less-structured approach to working with the simulation is appropriate (Swaak & De Jong, in 

press). 

2.4.4 Conclusions 

GENCHEM and OLI are two courses examined that provide cognitively informed instruction 

and that pedagogically implement the dynamic and interactive features of online technology. The 

other courses (OSU, NORTON, THINKWELL), although content valid, appear to be lacking 

significant input to their design from application of theories of learning or pedagogical 

implementation of online affordances. OSU is essentially a compilation of a professor’s lecture 

notes delivered online as text. There are no visualizations or interactions except navigating 

throughout the website and responding to quiz questions. THINKWELL consists of videotaped 

lectures with colorful visuals and supplementary notes as downloadable PDF files. Opportunities 

for interaction are limited to responding to quiz questions and navigating throughout the 

program. NORTON provides rudimentary tutorials with minimal scaffolding as well as multiple 

examples and tasks, yet the majority are cognitively simple in nature with no instantiations of 

authentic problem solving.  

 Each course, other than OLI, treats the topic of stoichiometry as an end to itself rather 

than a tool in use. This approach to chemistry in which the domain is decomposed into a 

multitude of skills to be mastered before getting to the good stuff, is characteristic of the 

traditional chemistry curriculum with its attendant problems for memorable learning (Evans et 

al., 2006). Introductory college chemistry students who have previously studied stoichiometry 

within the context of a traditional chemistry curriculum, for example, have difficulty intuiting its 

use in the context of equilibrium and acid-base problem solving (D. Yaron, personal 

 45 



communication, May 19, 2004). OLI situates stoichiometry instruction within the context of an 

analytical problem, the measurement and remediation of arsenic in groundwater. This design 

principle of an overarching real-world story to model chemistry in use may serve to both 

motivate learners and support their integration of knowledge.  

 In addition to the real-world context, the OLI course incorporates design principles based 

upon the findings from both the cognitive and behavioral perspectives of learning research: the 

use of an exploratory virtual laboratory in support of conceptualizing and practicing 

competencies; the relevance of a variety practice contexts; the importance of a variety of 

feedback experiences as students practice problems, from being able to track the effects of 

certain actions to getting responses to their submitted answers. In addition, the course works 

from a principle of explanation and example-based learning. For these reasons OLI was chosen 

as the technology-rich treatment for this investigation. 
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3.0  METHODS 

In this chapter the design of the materials and methods of data collection and analysis used in 

this study are described. The first section describes the purpose for studying alternative delivery 

formats for learning stoichiometry by entering university freshmen. The second section describes 

the design of the study with special detail given to the motivation for, and process of, 

development of the treatment conditions and assessment instruments. The third section describes 

how the data were analyzed in the service of answering each of the research questions. 

3.1 PURPOSE OF THE STUDY 

The purpose of this study was to try to understand the nature of learning stoichiometry by 

entering university freshmen who plan to pursue science or engineering degrees. Although 

stoichiometry is addressed in most high school courses, college instructors have noticed that 

students do not seem to be able to make flexible, fluid, and accurate use of this central tool for 

chemistry work even if the content is reviewed early during a freshman chemistry course by 

direct instruction or self-study. Even science majors find the notational and mathematical 

reasoning features of stoichiometry challenging to master using traditional text-based materials. 

Perhaps the affordances of online technology could reduce the effort required to learn 

stoichiometry concepts and procedures.  Therefore, this research endeavor was undertaken to 
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answer four questions about learning stoichiometry with regard to the design and delivery of its 

instruction as well as the influence of student background characteristic and study practices: 

1. To what extent does receiving instruction in a technology-rich learning environment that 

incorporates a dynamic interface, timely and informative feedback, and an overarching 

storyline, influence the learning of stoichiometry? 

2. How are background experiences and characteristics related to the learning of 

stoichiometry? 

a. How is the degree of prior knowledge of math and chemistry related to the 

learning of stoichiometry? 

b. How is the demographic of gender related to the learning of stoichiometry? 

3. To what extent do a technology-rich environment and student background experiences 

and characteristics work together to influence the learning of stoichiometry? 

4. How are learning practices that are facilitated by a technology-rich environment related 

to the learning of stoichiometry? 

Specifically, the goal of this research was to ascertain whether the affordances of dynamic and 

interactive online technology along with an overarching real-world story would promote 

stoichiometry learning to a greater degree than a static, text-only format that provided the same 

content and utilized the same cognitively informed pedagogical principles. Learning was 

assessed by student performance on posttests designed to measure the attainment of the 

stoichiometry competencies necessary for success in the second semester introductory chemistry 

course. 
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3.2 DESIGN OF THE STUDY 

The study design was a random assignment of entering volunteer students from Carnegie Mellon 

University (CMU) to either a dynamic and interactive online course or a text-only set of guided 

self-study course materials before the students arrived on campus for the 2005 Freshman 

Orientation Week in late August. The entire study took place during the last week in July and the 

first three weeks of August, 2005, sometime after students had graduated from high school but 

before they began their university courses. This timing was important for several reasons. First, 

the content addressed by the study materials would be helpful as a review and/or preparation for 

forthcoming college coursework. Second, the students were recruited by individual emails in 

locations distributed across a large geographic area, a practice that lowered the probability of 

introducing a student-student interaction variable had they already been on campus. Finally, by 

offering the study toward the end of summer when students were not enrolled in other classes but 

were likely finished with vacation travel, there was a greater chance that students would have 

time to complete the materials than they would have had were they already on campus, since the 

students had approximately three weeks before the start of school to cover about 20-30 hours of 

instruction on their own. Upon completion of either the dynamic and interactive course or the 

text-only materials, students completed an online test (posttest-1) followed by an in-person exam 

on campus (posttest-2) on the same material approximately five days later. A subset of the 

participating students completed a follow-up exam (posttest-3) five months later during the first 

class of the second semester introductory chemistry course. 
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3.2.1 Population 

Volunteers, who were at least 18 years of age and whose residences were identified as being in 

the United States, were solicited by email from the 2005 incoming CMU freshman class. Email 

solicitations were limited to students identified with the Mellon College of Science (MCS) and 

the Carnegie Institute of Technology (CIT) because the vast majority of CMU students who 

study introductory chemistry are registered in those colleges. Students whose residences were 

not identified as being in the United States were excluded because of the strong chance of 

computer incompatibility. 

 Students were solicited by email with a promise of payment ($50) and the possibility of 

placing out of a required test of stoichiometric knowledge (Appendix B). A total of 426 students 

were contacted. Seventy students initially responded positively; 50 students started one of the 

two courses and 45 completed one of the two treatment conditions. The sample of 45 students 

included 27 males and 18 females. First semester introductory chemistry courses at CMU require 

that students pass a mastery examination on stoichiometric problem solving. Students are not 

taught the material and are expected to self-review for this examination since the faculty 

considers the material to have been previously addressed by the high school chemistry 

curriculum. In the past students were found to need up to six tries on the mastery test to pass it; 

the majority of students fail the first attempt (D. Yaron, personal communication, May 19, 2004). 

Participants in this study were permitted to use a passing grade on the study’s proctored posttest 

as evidence of mastery of the required stoichiometric problem solving skills for first semester 

introductory chemistry. Upon completion of the materials and the posttests, volunteers were 

reimbursed 50 dollars.  
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3.2.2 Treatments 

There were two treatment conditions in the study. Each addressed the same specific 

stoichiometry topics that undergird the aqueous solution equilibrium principles and procedures 

introduced during a second semester introductory college chemistry course: 

• Assigning and identifying the number of significant figures 

• Using dimensional analysis to convert units of measurement 

• Calculating molecular weight 

• Using the mole and molecular weight to mathematically convert between the 

macroscopic and molecular world 

• Identifying mole relationships in chemical formulas 

• Determining the percent composition of a compound from its formula 

• Using molarity to express the concentration of a solution 

• Calculating molarity of diluted solutions 

• Determining the empirical formula of a compound from its molecular formula 

• Determining the empirical formula of a compound from its mass composition 

• Using stoichiometric ratios in reactions to determine the mass amounts of reactants 

needed 

• Calculating the theoretical and percent yield of reactions 

• Identifying the limiting reagent in a chemical reaction 

• Using titration to determine solution concentration 

• Analyzing the composition of mixtures using stoichiometric ratios of reactions 

 51 



Each treatment condition also was designed for students who had completed a high school 

chemistry course and were familiar with chemical formula notation such as H2O and with 

chemical reaction notation such as 2Mg + O2 → 2MgO. Students were expected to have heard of 

the mole but not to fully understand its utility in quantitative chemistry activities. 

3.2.2.1 Dynamic and interactive treatment The motivation for development of this treatment 

condition was that college chemistry faculty both at CMU and other institutions have found that 

students regularly are unable to use stoichiometric routines and procedures with flexibility and 

skill. Since stoichiometry is an important base of knowledge for introductory college chemistry, 

lack of competence with its concepts and procedures remains a barrier to success for many 

students throughout the first year introductory course. An online course may be a useful way to 

provide an opportunity for students to learn the material before or during the early portion of a 

college chemistry course. With support from the William and Flora Hewlett Foundation through 

the Open Learning Initiative (OLI) at CMU, a collaborative team of content area experts, 

educational psychologists, instructional designers, and multimedia specialists developed an 

online stoichiometry review course based upon the following design principles: a belief in the 

power of an overarching real-world story or context to both motivate and integrate ideas; the use 

of an exploratory virtual laboratory in support of conceptualizing and practicing competencies; 

the relevance of a variety of practice contexts; the importance of a variety of feedback 

experiences as students practice problems, from being able to track the effects of certain actions 

to getting responses to their submitted answers. In addition, the course works from a principle of 

explanation and example-based learning. 

The cover story that was chosen as the real world context for this online course was 

arsenic contamination of the drinking water in Bangladesh. The amount of arsenic present in 

 52 



ground water is an issue that suggests problems that get to the heart of stoichiometry. The 

contextual setting of groundwater contamination operates at the macroscopic (e.g., concrete, 

tangible) level from which interpretations can be made at the submicroscopic level and then 

recorded using symbolic notation. By embedding stoichiometric knowledge in a real-world 

setting that highlights its utility, students can learn and practice concepts in an appropriate 

context and thus establish a coherent cognitive framework.   

A second design principle was the use of the Virtual Laboratory simulation that provides 

a manipulative and exploratory environment that enables a new type of interaction with chemical 

phenomena (Yaron, Freeland, Lange, Karabinos, Milton, & Belford, 2001).  The Virtual Lab 

supports the connection of mathematical procedures and representations of stoichiometry to the 

macroscopic context of authentic chemistry. Unlike a physical laboratory in which students can 

see only the macroscopic results of chemical interactions, the Virtual Lab additionally provides a 

simultaneous quantitative representation of the abstract and invisible chemical species present. 

These responsive representations serve to link mathematical computations and actual chemical 

phenomena during problem solving and thereby promote development of a flexible knowledge 

base.  

A third design principle was the use of feedback with practice exercises. Feedback 

supports learning by providing opportunities for revision and improvement of students’ thinking. 

The stoichiometry review course provides several levels of immediate feedback in response to 

student interactions with the course. In addition to feedback about responses being correct or 

incorrect, cognitive support in the form of hints and step-by-step tutorials encourages the 

formation of explicit connections between a student’s existing knowledge state and new 
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information. The interactive nature of an online delivery system facilitates the immediate and 

structural feature of the feedback available in the technology-rich OLI course. 

For each learning module of material there is a thorough explanation of stoichiometric 

tasks as well as the procedures by which these tasks can be accomplished.  The description is 

multimedia based and supports both a sequence of steps and their rationale. 

The course is divided into two units, each with multiple modules. A drop-down syllabus 

allows students to navigate to any module at will. Within each module are previous and next 

buttons for linear navigation throughout the program. The first unit develops the context of 

arsenic contamination, explains the use of the Virtual Lab and other interactive features, reviews 

basic measurement skills, and addresses basic compound and solution stoichiometry. The second 

unit develops the use of stoichiometric tools within chemical reaction analysis.  The course 

requires an estimated 20-25 hours to complete. Most topics are described via voice-over video 

explanations or animations. An optional text-only format also is available. Movies and still 

pictures of the context (Bangladesh: geography, people, water supply) are interspersed 

throughout the course in the service of explicating certain stoichiometric concepts. Following 

each topic presentation are practice questions and problems, all of which provide immediate 

feedback and hints at the student’s request. Practice exercises are provided in various formats, 

including multiple choice, short answer, and extended response from Virtual Lab activities. 

Online tutors help students learn the more complex stoichiometric calculations. Parameterization 

of these tutors provides a variety of instances comparable to the variation found among the end-

of-chapter problems in a textbook. Each of the two units ends with a recap module for review of, 

reflection upon, and extension of, the concepts addressed. The course was accessed through a 

secure website. 
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As an example of the content and context provided by the OLI course, Figure 1 illustrates 

through screenshots the multiple dynamic learning objects available to the student in the 

Titration Module located in the second unit of the course. It is this unit that develops the use of 

stoichiometric tools within the real-world application of chemical reaction analysis. Titration is 

an example of a quantitative analysis technique that is explained in the context of efficiently, 

effectively, and inexpensively determining the amount of arsenic in the water supply. Figure 

1(A) depicts a voiceover movie that includes a thorough explanation of the titration procedure as 

it used to accomplish a real-world task. Beneath the screen is a link to a text version of the same 

lesson. Figure 1(B) shows one of the interactive questions that immediately follow the titration 

lesson.  This type of question provides hints (from 3-6 per response) to guide a student through a 

calculation, with the last hint being a bottom-out hint that provides the answer. Figure 1(C) is a 

collection of four screen shots from a parameterized tutor within the Virtual Lab. The student is 

given the opportunity to first solve the problem (C-1), for which hints and feedback that check 

for common errors are provided (C-2). Students may request the tutor mode, which assists them 

by providing sub-goals to be solved in a step-by-step fashion. Hints and feedback are available 

for each sub-goal if requested by the student.  
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Figure 1: Screenshots of Titration Module activities from Unit 2 of the OLI course. See text for detail. 
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3.2.2.2  Static text-only treatment This treatment condition was designed as a study guide for 

reviewing the same stoichiometry content as that addressed by the dynamic and interactive 

treatment condition of the technology-rich OLI course. It incorporated pedagogical principles in 

text-only format that were adequate for content presentation and review. Each lesson included a 

brief explanation in the direct service of a specific problem type, a worked example problem 

with all moves explained as to purpose, a worked example problem with no explanation, and 

three practice problems for which no solutions (feedback) were available. The format of these 

materials was similar to that found in a textbook, except that in a textbook not all the topics 

addressed by the OLI course would be found as a cohesive unit. By developing text-like contrast 

materials, identical content would be accessed by participants from both treatment conditions. If 

performance differences were found between the two groups, they could be attributed to the 

design principles and their execution (context, dynamics, feedback), not to the content. This 

static, text-only study guide was an improvement over the traditional practice at CMU that 

consisted of posting problems to be learned and providing testing situations. 

 The text-only, self-study guide is composed of sixteen lessons that mirror the topics in 

the technology-rich course. Each lesson is designed in the same way and incorporates the 

aforementioned pedagogical principles. Students can skip sections but there are no branches to 

other topics. There is no overarching cover story to provide connections among the topics or 

instantiations of stoichiometric knowledge in real-world use. There are no dynamic learning 

objects such as multimedia explanations, exploratory simulations, or feedback. The complete 

study guide was posted as a PDF file on a secure website. 

Figure 2 shows the titration lesson from the self-study guide as an example of the 

instructional design used in the static, text-only condition. This lesson addresses the same 
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content as the Titration Module found in the second unit of the OLI course and illustrated in 

Figure 1. First the student reads a brief description of the topic. Then an example problem is 

presented (Explained Problem). When possible, as in the case of this lesson on titration, the most 

difficult problem from the parallel OLI module is used as a worked example in which both 

condition and action descriptions are presented. This worked example is followed by another 

worked problem in which only actions are shown (Worked Example). Finally, three practice 

problems (Practice Problems) are presented for the students to solve. Whenever possible, the 

example and practice problems that were used in the text-only condition were drawn from the 

OLI course. The study guide was developed by the author of this dissertation and was reviewed 

by content experts for accuracy. 

 

Figure 2: Titration lesson from the text-only treatment. See text for description. 
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3.2.2.3  Assig omplete an 

electronic educational background survey (Appendix C). The survey requested educational data 

 the study 

tu ween July 25 and August 19, 2005. Communication between 

participants and the experimenter was entirely by email and/or designated websites. Volunteers 

nment of volunteers Each volunteer was directed to a website to c

regarding SAT scores and completed math and science courses as well as general background 

information so that possible relationships of prior knowledge and/or demographics to 

performance could be analyzed. Volunteers also downloaded, signed, and mailed an informed 

consent document to the study office (Appendix D). Upon receipt of a completed survey and the 

informed consent document, a volunteer was randomly assigned to either the technology-rich 

course or the text-only study guide. Participants assigned to the technology-rich condition were 

given a password to access the OLI course website. Participants assigned to the text-only 

condition were given a password to access a different website containing study materials in the 

form of PDF files. 

3.2.3 Duration of

The s dy was conducted bet

were accepted into the study only between July 25 and August 9, 2005, in order to allow 

sufficient time for them to complete the instructional materials before the end of the study on 

August 19. During the period between their enrollment and the end of the study, weekly emails 

were sent to participants encouraging them to complete the materials before the end date. 

Individual questions from the participants were answered by email within 24 hours. Those 

questions and responses with general applicability either to the study overall or to a specific 

treatment group were emailed as well to the other appropriate participants (Appendix E). 
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3.2.4 Assessment 

The purpose of assessment was to determine if the mode of instruction (dynamic, interactive, and 

t versus text-only format) was related to the learning of stoichiometry as 

measured by student performance on a test of its concepts and procedures. Two parallel tests that 

context-based forma

incorporated all of the desired stoichiometric competencies (see section 3.3.2) were constructed. 

Parallel items were developed by changing cover stories along with the values of given variables. 

Parallel items may also differ as to which of the related variables the students are asked to 

determine. The following example illustrates this method of creating parallel items for the online 

(posttest-1) and campus (posttest-2) exams: 

 Online exam item: The molecular weight of Compound X is three times the molecular 

 weight of Compound Y. What mass of X will have the same number of molecules as 21 g 

 of Y? 

 Campus exam item: The atomic weight of element A is twice the atomic weight of 

 element B. What mass of B will have the same number of atoms as 32 grams of A? 

 The first test (posttest-1) was delivered online at the student’s request as soon as the 

tation 

participant had completed the assigned treatment condition (Appendix F). The second test 

(posttest-2) was administered to all the participants simultaneously during Freshman Orien

Week at CMU (Appendix G). Both posttests were estimated to require 60-90 minutes for 

completion but students were allotted up to two hours for each test to insure that time was not a 

limiting factor in their performance. The majority of items were open-ended in that they required 

students to develop solutions for problems or write explanations to support their responses. 

When a multiple-choice item was used, at least two of the provided response choices were 
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correct. The following item is an example of a multiple-choice question. The correct responses 

are underlined. 

 Laughing gas, N2O is a weak anesthetic that has been used in dentistry since the late 18th 

 century. The formula, N2O, means that in a sample of laughing gas (circle all that apply): 

  (A) For every 100 atoms of oxygen (O), there are 200 atoms of nitrogen (N).

  (B) For every atom of nitrogen, there are 2 atoms of oxygen. 

  (C) For every 2 grams of nitrogen, there is one gram of oxygen. 

  (D) The compound is 36% oxygen by mass. 

  (E) The compound is 64% nitrogen by mass.

To receive full credit (5 points) for the item, a student must select all of the correct responses. 

se. A complete scoring key for 

e Figure 3). Test items were developed from this blueprint in several ways. Whenever 

Partial credit of one point is assigned for each correct respon

posttest-1 can be found in Appendix I; a complete scoring key for posttest-2 can be found in 

Appendix J. The exams were designed to test application of procedures and higher reasoning 

abilities rather than simple recall of facts. A third parallel, albeit shorter, test (posttest-3) was 

designed for completion in 30-45 minutes (Appendix H). Posttest-3 was administered during a 

50-minute class period at the beginning of the second semester introductory chemistry course. It 

was scored (Appendix K) against criteria similar to those used for scoring posttest-1 and posttest-

2. 

 A table of specifications was constructed relating content to desired learning objectives 

(se

possible, standardized items from the American Chemical Society (ACS) or Advanced 

Placement (AP) Chemistry exams were used and converted into open-ended response items. For 
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example, the following ACS item tests procedural knowledge about the qualitative analysis of 

pure substances (see Figure 3). 

 A compound of sodium, sulfur, and oxygen contains 29.08% Na, 40.56% S, and 30.36% 

a2S2O3, (D) Na2S2O8, (E) Na2S4O6

esponses provided but 

ined in a 

 

 O. Which formula is correct?  

 (A) Na2SO3, (B) Na2SO4, (C) N

The first sentence of this item was used exactly as written, without the r

with a request for students to show all work. If an item for a desired objective was not available 

from a standardized source, then a task for that objective was developed jointly by chemistry 

professor Jordi Cuadros, (Institut Químic de Sarrià, Universitat Ramon Llull) and the author of 

this dissertation who is a former high school chemistry teacher. For example, no items from 

either the ACS or AP Chemistry exams test the procedural knowledge needed for determining 

the molarity of a mixture of solutions (see Figure 3) so the following item was created:  

The contents (A, B, C) of three different bottles of fructose solutions were comb

1000-mL volumetric flask. The flask was then filled to capacity with distilled water. 

 Solution A was 74 mL of 0.527 M fructose, solution B was 632 mL of 0.872 M fructose, 

 and solution C was 139 mL of 1.166 M fructose. What was the final concentration of the 

 fructose in the volumetric flask? Please show all your work. 
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Figure 3: Table of specifications for constructing items for posttest assessments. The content outline includes 
a summary of the time allocation given to each major topic as well as the corresponding number of questions 
on each posttest. The objectives include both the number and proportion of conceptual versus procedural 
items within each content strand. 
  

 
 The online version of the posttest (posttest-1) was available to all the participants from 

August 11-19, 2005. Participants requested the posttest by sending an email in which they were 

required to state the estimated time (ranging from a minimum of two hours to a maximum of 22 

hours) that they had spent studying the instructional materials.  Posttest-1 was emailed to them as 

a downloadable PDF file (Appendix F). At the same time, their access to the instructional 

materials website was closed. Participants downloaded, completed, and then faxed or mailed 

posttest-1 to the study office. They were directed to spend no more than two hours on this exam. 

A second, proctored, classroom exam (posttest-2) was administered at CMU on August 22, 2005 
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(Appendix G). Successful performance on a subset of the posttest-2 questions qualified a student 

for exemption from the mastery examination requirement for Introductory Chemistry2. Posttest-1 

was used by the researchers to screen for any potential problems but analyses were based upon 

posttest-2 scores for security reasons, assuming that any potential cheating that might have 

occurred among students responding remotely would not occur during the on-campus 

administration of the test. An additional delayed exam (posttest-3) was administered on January 

16, 2006, five months after the original study’s completion date, to determine retention rates 

(Appendix H). Twenty of the 45 original participants completed posttest-3. 

Scoring criteria for the posttest items were developed jointly by Jordi Cuadros and the 

author. Each item was allocated five points. In scoring procedural items, researchers deducted 

one point for a significant figures or arithmetical/units error. Scoring for conceptual items was 

not standardized but was dependent upon the nature of the question. The author scored all of the 

items for posttest-1 and posttest-2. Five items each from both posttest-1 and posttest-2 

(approximately 15% of the tests) were scored by Jordi Cuadros. Reliability was 100%. Posttest-3 

was administered to all of the enrolled students (>100) on the first day of the second semester 

introductory chemistry course and scored with the same methods used for posttest-1 and posttest-

2. A second scorer who is a chemistry graduate also scored a 20-test sample. The few 

disagreements between that scorer and this author in scoring particular items were resolved 

through discussion. The scoring key for each posttest can be found in Appendices I-K. Posttest 

scores were converted to percentages to facilitate comparisons among them. Missing data from 

Posttest-1 and Posttest-2 were estimated with the expectation maximization algorithms (EM 

                                                 

 2 The professor who taught the introductory chemistry course approved a subset of five questions from the 
second posttest as equivalent to his mastery examination. Participants who attained a score of 85% or higher on this 
subset were excused from the in class mastery examination. Analyses in this dissertation are based upon total 
posttest scores and not this designated subset of questions. 

 64 



algorithms) from SPSS Missing Value Analysis 14.0 module. Less than three percent of the data 

used for analysis was generated in this fashion. 

3.3 DATA ANALYSIS 

Data analysis proceeded in two phases. In Phase 1, exploratory data analysis using box plots or 

scatter plots was undertaken to get a feel for the data by answering several questions: Is a given 

factor significant? Does location differ between subgroups? Does variation differ between 

subgroups? Are there outliers present? In Phase 2, computations of descriptive and inferential 

statistics were undertaken. Means and standard deviations of posttest scores and SAT scores for 

different subgroups were calculated as a way of summarizing the data with regard to measures of 

central tendency and variation. Correlations among posttest scores, treatments, background 

characteristics, and study practices were inspected to determine possible relationships. Modeling 

of the data was executed by single regressions of posttest scores on treatment, background 

characteristics, and study practices to determine the contribution of each variable to learning.   

Log files from the technology-rich treatment condition were examined to determine the 

frequency of the OLI participants’ interaction with simulations.3 Each of the following 

subsections describes how data were analyzed in the service of addressing a specific research 

question. 

                                                 

 3We requested that the text-only participants bring their study materials with them when they arrived on 
campus for the posttest-2 session. Since only four of the 24 participants complied with this request we were unable 
to analyze the level of engagement for this group.  
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3.3.1 Influence of instructional materials 

Exploratory data analysis of posttest scores from the two treatment groups included the 

generation of box-and-whisker plots and stem-and-leaf displays to detect patterns and/or gaps in 

the performances of the text-only and technology-rich treatment groups. Since assignment to 

treatment group was a randomized process, there was little concern about introducing bias into 

the results by engaging in data cleansing of outliers (e.g., through trimming, Winsorizing, or 

deletion) so these refined data were used in subsequent analyses of background, demographics, 

and study practices. Means and standard deviations were calculated to describe the centrality and 

variability of the posttest data from the two treatment groups. Regression of the posttest scores 

on treatment was used to determine the contribution of treatment to the variability in posttest 

data.   

Since both procedural fluency with, and conceptual understanding of, stoichiometric 

principles are essential for success in the second semester of the introductory chemistry course, 

posttests were examined for possible performance differences on procedural and conceptual 

items related to treatment group. In addition to analysis of procedural and conceptual score 

totals, comparison of the volunteers’ performance on selected paired procedural and conceptual 

items was undertaken to determine if either treatment promoted both fluency and understanding. 

In a similar fashion, incorrect responses from the paired conceptual and procedural items were 

compared to determine if either treatment was related to specific error types. 
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3.3.2 Influence of background experiences and characteristics 

Prior knowledge and gender have both been associated with chemistry performance (Boli, Allen, 

& Payne, 1985; Ozsogomonyan & Loftus, 1979; Shibley, Milakofsky, Bender, & Patterson, 

2003; Spencer, 1996). Therefore the composition of the two treatment groups was checked with 

regard to indicators of the volunteers’ prior knowledge (participation in AP or other advanced 

chemistry coursework and performance on the SAT) and gender. To ascertain whether the 

backgrounds of the sample of participants were representative of the population from which they 

came, the participants’ SAT scores and gender composition were compared to the entire 

population of incoming MCS and CIT freshmen. Comparisons of advanced chemistry 

coursework between study participants and other freshmen in those colleges were not possible 

since no data were available from the general population. 

Individual analyses of the relationship between posttest scores and students’ advanced 

chemistry coursework, SAT performance, and gender were conducted to detect any patterns or 

gaps related to background. Means and standard deviations were calculated to describe the 

centrality and variability of the posttest scores as they related to prior chemistry coursework, 

SAT performance, and gender. Regression of the posttest scores on each background 

characteristic was used to determine its contribution to the variability in posttest data. 

Correlations among the background variables were inspected to ascertain the possibility of 

interactions among the independent variables. 
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3.3.3 Influence of multiple factors 

To develop a model for the influence of multiple factors and/or their interactions on posttest 

performance, posttest scores were regressed stepwise on treatment, background characteristics, 

and possible interactions among variables. Prior to this regression analysis, the values for the 

independent variables were centered (Aiken & West, 1991; DeCoster, 2004) to reduce any 

possible collinearity between the main effect(s) and the interaction(s). 

3.3.4 Influence of learning practices in the technology-rich group 

Log files of the volunteers in the technology-rich treatment group were analyzed for insight into 

possible relationships between learning practices and posttest performance. Estimations of time 

spent working in the OLI course was provided by the participants. These estimations were 

compared with log-file times of the course in use. Log files of time spent in, and specific 

interactions with (clicks), simulation activities were analyzed with regard to posttest 

performance. Single regressions of posttest scores on log files of time in use and on the number 

of interactions were conducted to ascertain whether there was a relationship of either factor to 

performance. Multiple regression of posttest scores on log file data and background 

characteristics were executed to determine the relationship of any or all factors, or interaction of 

factors, on posttest performance within the technology-rich group. Factors were centered prior to 

regression analysis to minimize possible multicollinearity of main effects and any possible 

interactions. 

 

 68 



4.0  RESULTS 

The aim of this study was to try to understand the nature of learning of stoichiometry with regard 

to the design and delivery of its instruction as well as the influence of student background 

characteristics and study practices. Pre-college student volunteers who were planning to study 

science or engineering were randomly assigned to either a text-based or technology-rich 

stoichiometry review course. Their subsequent performance on posttests of stoichiometric 

concepts and procedures was compared. This research was guided by the following four research 

questions:4

1. To what extent does receiving instruction in a technology-rich learning environment that 

incorporates a dynamic interface, timely and informative feedback, and an overarching 

storyline, influence the learning of stoichiometry? 

2. How are background experiences and characteristics related to the learning of 

stoichiometry? 

a. How is the degree of prior knowledge of math and chemistry related to the 

learning of stoichiometry? 

b. How is the demographic of gender related to the learning of stoichiometry? 

                                                 

4 An additional question guided the research: To what extent does instruction received via a technology-
rich learning environment that includes a dynamic interface, timely and informative feedback, and an overarching 
storyline influence the retention of stoichiometry competencies over a five-month period? Less than half (n=20) of 
the original participants (n=45) completed the delayed posttest (posttest-3). The results were inconclusive. 

 69 



3. To what extent do a technology-rich environment and student background experiences 

and characteristics work together to influence the learning of stoichiometry? 

4. How are learning practices that are facilitated by a technology-rich environment related 

to the learning of stoichiometry? 

 Participant scores from two posttests administered immediately or shortly after the 

completion of the interventions were analyzed to address the questions posed in this dissertation. 

To help decide which test or combinations of tests to use we first examined the similarities and 

differences between them. Students completed posttest-1 individually in unsupervised 

environments of their own choice after they finished their study materials. All students 

completed posttest-2, an exam parallel to posttest-1, under proctored conditions no less than five 

days and no more than ten days later. Serious challenges exist for interpreting the results from 

both test situations. In the unsupervised tests (posttest-1) students may have cheated; in the 

supervised test (posttest-2) students may have exhibited substantial test-retest improvement. To 

investigate these issues, comparisons between the results of the two administrations were made. 

A comparison of posttest-1 scores (mean=70, SD=17) and posttest-2 scores (mean=69, SD=21) 

showed no significant differences and a positive correlation (r=.80, p=.01). These findings 

suggest that participants did not cheat on posttest-1 by consulting outside help or by using 

extended time during testing because there is no inflation in the scores from the at-home tests 

compared to those on campus. The results also indicate no major test-retest gains. Therefore, 

because of the greater control and consistency of conditions in the administration of posttest-2, 

the remainder of the analyses of post-treatment performance was conducted with the scores from 

that posttest. 
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To answer the first three research questions, exploratory data analyses and regressions 

were performed on data obtained from posttest-2 scores and background surveys of all the 

volunteers. To answer the fourth research question, exploratory data analyses and regressions 

were performed on data obtained from posttest-2 scores, background surveys, and log files of the 

participants assigned to the technology-rich treatment group.  

4.1 EFFECT OF TREATMENT 

 

In order to determine the extent to which stoichiometry learning is influenced by receiving 

instruction in a technology-rich environment, the distribution of posttest-2 scores in the text-only 

treatment group (mean=65, SD=21) was compared to the distribution of scores in the 

technology-rich (OLI) treatment group (mean=74, SD=21). A single outlier score of 17 in the 

technology-rich treatment group is nearly three standard deviations below the group mean. When 

posttest-2 scores are regressed on treatment, only two percent (adj. R2=.02) of the variability in 

scores is explained by treatment (β=.21, p=.17). Figure 4 displays box-and-whisker plots of 

posttest-2 scores by treatment group. The accompanying stem-and-leaf display of scores from 

the technology-rich treatment group denotes the single outlier score with an asterisk (*). 

 In order to reduce the sensitivity of the data to the presence of the single outlier score in 

the technology-rich treatment group, the means of both treatment groups’ posttest-2 scores first 

were trimmed by removing the highest and lowest scores. Then the means were Winsorized by 

replacing the highest and lowest scores with adjacent scores. Neither adjustment resulted in 

additional explanation of variability due to treatment. However, when the single outlier score 

 71 



from the technology-rich treatment group is removed from the analysis,5 treatment explains six 

percent (adj. R2=.06) of the variability in performance (p=.05). Table 2 summarizes the analyses 

with both trimmed and Winsorized means as well as with the deletion of the outlier score. 
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Figure 4: Box-and-whisker plots showing the distribution of posttest-2 scores by treatment group (A). Stem-
and-leaf display (B) of posttest-2 scores from the technology-rich (OLI) treatment group. The outlier score 
(17*) is nearly three standard deviations below the mean score (mean=74, SD=21). 

 

Table 1: Descriptive statistics and regression coefficients for different measures of location for posttest-2 
scores from the text-only and technology-rich (OLI) treatment groups. For trimmed means, the single highest 
and lowest scores were removed from each treatment group. For Winsorized means, the single highest and 
lowest scores from each treatment group were replaced with adjacent scores.  For the deleted mean, the 
outlier score from the technology-rich treatment group was removed; no scores were removed from the text-
only treatment group. 
_____________________________________________________________________________  
Measure         text-only  OLI  adj. R2  SE  β       p    
_____________________________________________________________________________ 
 
Sample mean          65   74     .02             21           .21      .17 
 SD  21   21 
 n  24   21 
 
Trimmed mean 66   76   .06             18           .28      .07 
 SD  19   16 
 n  22   19 

                                                 

 5Dr. Kevin Kim, University of Pittsburgh Department of Psychology in Education, personal 
communication, March 12, 2007. 
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Winsorized mean        65   75   .04             19           .26      .09 
 SD  21   17 
 n  24   21 
 
Deleted  mean  65   76   .06  19           .29      .05
 SD  21   16
 n  24   20

 

4.1.1 Procedural and conceptual scores 

Participation in the technology-rich treatment group appears to explain very little of the variation 

in learning as measured by posttest-2 scores. Therefore a finer-grained analysis of these scores 

was undertaken to examine possible differences in performance on procedural and conceptual 

items. The distribution of procedural and conceptual scores for each treatment group was 

compared (see Figure 5)6. The technology-rich group appears to outperform the text-only group 

on conceptual items (technology-rich: mean=82, SD=16; text-only: mean=71, SD=20) but the 

difference between the two treatment conditions is not statistically significant (p=.09). Since both 

procedural fluency with, and conceptual understanding of, stoichiometric principles is necessary 

for success in second semester chemistry, a comparison of performance on paired procedural and 

conceptual items was undertaken to determine if either treatment promoted both fluency and 

understanding. In particular, the two stoichiometric competencies of major importance to second 

semester success in solution chemistry are those of dilution and limiting reagents. The ability to 

manipulate the algebraic expressions of the dilution and limiting reagents procedures, however, 

                                                 

 6For this and subsequent analyses, the outlier score from the OLI treatment group was deleted. 
Furthermore, three volunteers from the OLI treatment group and one volunteer from the text-only treatment group 
did not take posttest-2. These missing overall scores were estimated as described in Chapter 3 but scores for 
individual items are not available. 
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has not been shown to insure the conceptual understanding needed for application of these 

procedures to new venues such as equilibrium and acid-base chemistry (Nakhleh, 1993; Nakhleh 

& Mitchell, 1993; Nurrenbern & Pickering, 1987; Sawrey, 1990), thus the distinction between 

procedural and conceptual competence of students in this study may be informative. Results of 

comparisons between scores on paired items pertaining to this set of skills are reported in the 

following sections.  
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Figure 5: Box-and-whisker plots showing the distribution of procedural and conceptual scores from posttest-
2 by treatment group. 

4.1.2 Paired conceptual and procedural items: dilution and limiting reagents 

The two sets of paired procedural and conceptual items examined were item 12 and item 5 for 

dilution and item 4 and item 10 for limiting reagents. Each of the procedural items required 

algebraic manipulations that included conversions between macroscopic-level quantities (grams, 

liters) and submicroscopic-level quantities (moles). Each of the conceptual items required 

drawing representations of submicroscopic-level structures (atoms, molecules). 
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4.1.2.1 Dilution problems Item 12 from posttest-2 is a procedural dilution problem. Students 

must calculate the concentration of a solution made by mixing three solutions of differing 

concentrations of the same substance (fructose) and then adding enough water to the mixture to 

make a final solution of 1 L (1000 mL). The solution to this problem requires the manipulation 

of the formula for molarity (molarity = 
 1 liter
number of moles ) in order to determine the number of 

moles of fructose contributed by each of the initial solutions to the final solution. Figure 6 shows 

item 12 and its solution.  

 
 
The contents (A, B, and C) of three different bottles of fructose solutions were combined in a 1000-
mL volumetric flask.  The flask was then filled to capacity with distilled water. Solution A was 74 
mL of 0.527 M fructose, solution B was 632 mL of 0.872 M fructose, and solution C was 139 mL 
of 1.16 M fructose.  What was the final concentration of fructose in the volumetric flask? 
 
 
Solution: Calculate the number of moles (mol) of fructose in each solution and add them together. 
Then divide the total number of moles of fructose by 1-L to determine the molarity (concentration) 
of the final solution. Since molarity is moles per liter, volumes given in mL (milliliters) must first be 
converted to L (liters). 
 

M = 
  
mol
L

; mol = M x L 

 
Moles in solution A = (0.527 M) x (0.074 L) = 0.038998 mol 
Moles in solution B = (0.872 M) x (0.632 L) = 0.551104 mol 
Moles in solution C =  (1.16 M) x (0.139 L) =  0.16124 mol 
Total number of moles = 0.751342 mol 
Total volume = 1-L 
M ≈ 0.751 
 
  

Figure 6: Item 12 from posttest-2, a procedural dilution problem. 

 

Item 5 from posttest-2 is a conceptual dilution problem. The student must draw the actual 

number of particles (e.g., molecules, atoms) in a given volume of a new solution when two 

different solutions are combined (see Figure 7). The solution to this problem requires an 

understanding that the combination process results in the dilution of each of the original 

solutions so that the final solution contains fewer original particles per unit volume and that the 
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number of these particles is a function of both the original solutions’ volumes and the final 

solution’s volume. Therefore, since the contents of the initial 2-L solution become distributed 

throughout three liters in total, the concentration of small black squares will be reduced from 

three to two per unit volume (represented by the circle) in the final solution. Since the contents of 

the initial 1-L solution become distributed throughout three liters in total, the concentration of 

small clear circles will be reduced from six to two per unit volume in the final solution.  

  

2 liters 1 liter 

The contents of the two beakers below are poured into a third
beaker. Draw the view of molecules in the magnification
circle provided for the third beaker.

 

Figure 7: Item 5 from posttest-2, a conceptual dilution problem showing the correct solution. 

 
The number of students in each treatment group that correctly answered both types of 

dilution problems was tallied.  Table 2 displays a comparison of the results. Although a greater 
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percentage of students in the technology-rich (OLI) treatment group than in the text-only group 

consistently answered the procedural, conceptual, or both type of questions correctly, the 

differences between the two treatment groups are not significant. 

 
Table 2: Comparison by treatment group of the number of correct responses on procedural (item 12) and 
conceptual (item 5) dilution questions from posttest-2. 
_____________________________________________________________________________ 
       Correct Responses by Treatment Group 
                 __________________________________________ 
Dilution Items            Text-Only (n=23)       OLI (n=17)______ 

Procedural         13(57%)           12(71%)  

Conceptual          9(39%)          11(65%) 

Both           5(22%)            8(47%) 

4.1.2.2 Limiting reagents problems Item 4 from posttest-2 is a procedural limiting reagents 

problem. Students must determine what remains when given masses of aluminum (Al) and 

oxygen (O2) react to form aluminum oxide (Al2O3) as the only product. The solution to this 

problem requires the balancing of the equation for the chemical reaction and the conversion of 

the masses of the given reactants (reagents) to moles. Errors in either of these sub-procedures 

will result in an incorrect solution to the problem since both the mole ratios in the equation and 

the numbers of moles of reactants available are used to calculate which reactant runs out first and 

therefore how much product can be made. Students must then determine how much of which 

reactant remains. Figure 8 shows item 4 and its solution. 
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Figure 8: Item 4 from posttest-2, a procedural limiting reagents problem. 
 

Item 10(A) from posttest-2 is a conceptual limiting reagents problem. The students are 

asked to draw the number of various molecules of substances remaining after a reaction takes 

place. The solution to this problem requires that the students understand that all the substances in 

the initial condition are accounted for in the final condition (Law of Conservation of Mass) and 

that no extra materials are added. Un-reacted materials as well as products must be displayed 

since the question requests that substances remaining after the reaction be shown. Figure 9 

shows item 10(A) with the correct response. All of the chlorine is consumed and is therefore 

considered to be the limiting reagent since it limits how much product (ICl3) can be synthesized. 
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Cl2 

I2 

(X) (Y) 

Chlorine (Cl2) and iodine (I2) react to give ICl3.  (X) is a mixture of chlorine and iodine. Draw the 
resultant substances in (Y) after the reaction goes to completion. 

 

Figure 9: Item 10 from posttest-2, a conceptual limiting reagents problem showing the correct solution. 

 
The number of students in each treatment group that correctly answered both types of 

limiting reagents problems was tallied.  Table 3 displays a comparison of the results. Although a 

greater percentage of students in the technology-rich (OLI) treatment group than in the text-only 

group correctly answered the procedural or both types of questions, the differences between the 

two treatment groups are not significant. However, the percentage of OLI participants with the 

correct response to the conceptual limiting reagents problem is significantly greater than the 

percentage of text-only participants with the correct response (Pearson’s Chi Square, p = .05).   
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Table 3: Comparison by treatment group of the number of correct responses to procedural (item 4) and 
conceptual (item 10A) limiting reagents questions from posttest-2. 
_____________________________________________________________________________ 

       Correct Responses by Treatment Group 
       _______________________________________________ 
Limiting Reagents Items          Text-only (n=23)       OLI (n=17)______ 

Procedural       7(30%)           7(41%)   

Conceptual      12(52%)                    14(82%)* 

Both               5(22%)           7(41%) 

*Pearson’s Chi Square, p=.05. 

4.1.3 Procedural and conceptual errors  

Although the trend is for participants in the technology-rich treatment group to outperform those 

in the text-only group, the variability of performance within the two treatment groups on 

procedural and conceptual items precludes any definitive conclusions (other than with the 

conceptual limiting reagents item). Therefore an examination of the errors was undertaken to 

determine whether one treatment tended to produce more of a significant misunderstanding than 

did the other treatment.  

4.1.3.1 Errors with dilution problems Fourteen of the 40 participants exhibited errors when 

responding to the procedural dilution question in which three different fructose solutions are 

combined (see Figure 6). The most frequent error was applying the incorrect volume in 

determining the molarity (concentration) of the final solution.  Eleven (79%) of the participants 

in error summed the volumes of the combining solutions (845 mL or 0.845 L) to determine the 

final volume rather than using the final volume provided in the question (1 L). At first glance this 
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type of error appears to be shallow in nature since the participants do apply the correct overall 

procedure and realize that molarity depends upon both the number of moles and the volume of 

solution in which they are contained. Perhaps the error was due to not carefully reading the 

problem statement. In order to support this explanation of error, these participants’ responses to 

the paired conceptual dilution item (see Figure 7) were examined. Four of the paired conceptual 

responses (out of the 11 possible) were correct. This proportion of correct responses is 

significantly different (p=.01) from 11 possible correct conceptual responses.  Therefore, the 

procedural error  (for total volume) may be indicative overall of inert knowledge of dilution from 

rote execution of a procedure without a conceptual understanding of the process itself.  

Furthermore, the text-only group exhibited six of the procedural errors (out of 11) for which only 

one participant correctly responded to the paired conceptual item (17%) whereas the technology-

rich group exhibited five of the procedural errors for which three participants correctly 

responded to the paired conceptual item (60%). Although the trend favors the technology-rich 

group for shallowness (versus depth or severity) of the procedural error, the differences in 

proportions of procedural error accompanied by conceptual understanding between the two 

treatments are not significant. The remaining three errors (out of 14 total) exhibited with the 

procedural dilution problem involved the use of an incorrect procedure for determining molarity. 

These three errors all originated within the text-only group. Two of these participants did answer 

the paired conceptual problem correctly suggesting that although the concept of dilution is 

understood, this knowledge is not translated to procedural implementation. Table 4 summarizes 

the error analysis by treatment group of the procedural dilution item from posttest-2. 
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Table 4: Type and frequencies of errors with procedural dilution problem by treatment group. Numbers in 
parentheses are the correct number of responses to the paired conceptual item.    
     
______________________________________________________________________________ 

        Treatment Group 
     ________________________________________________ 
Error Types         Text-only (n=23)        OLI (n=17)______ 

Volume                         6(1)     5(3) 

Formula          3(2)     0 

Total           9(3)     5(3) 

 

 A greater percentage of participants exhibited errors with the conceptual dilution item 

(50%) than with the procedural dilution problem (38%) but the difference is not significant 

overall or between the text-only and technology-rich treatment groups. These conceptual errors 

are distributed nearly equally between two types: (1) the dilution process is evident but the 

resulting concentration is incorrect, or (2) the dilution process is absent and an additive process is 

used. A third type of error that occurred twice within the text-only group indicates a reaction 

among the shapes resulting in a new product since the diagram of the final solution contains 

triangles instead of the original circles or squares. However, since there is no accompanying 

explanation of the reaction process by any participant, it is impossible to determine if the final 

concentration of triangles shown is the result of dilution or addition. Figure 10 displays a correct 

response as well as the three types of errors from the conceptual dilution problem. Only one 

participant (from the text-only group) exhibited an error with both the procedural and conceptual 

dilution problems. The conceptual error was additive in nature and the procedural error involved 

an incorrect procedure for determining molarity. 
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 Figure 10: Correct response and examples of the major error types exhibited by participants 
 for the conceptual dilution item. 

4.1.3.2 Errors with limiting reagents problems Twenty-one of the 40 participants exhibited 

errors when responding to the procedural limiting reagents question in which aluminum and 

oxygen combine to produce aluminum oxide (see Figure 8). Half of the incorrect responses (10) 

made no mention of the mass of aluminum oxide formed although this product certainly would 

be among the substances remaining after the reaction stops, due to the limiting reagent being 

used up. The same number of participants from each treatment group exhibited this error. At first 

glance one could conclude that this error results from an oversight on the part of the participant 

or even an interpretation of the term remains in the question to mean what is leftover from the 

original reaction mixture (aluminum and oxygen) and not what is newly produced. Therefore a 

comparison was made between these responses and those responses to the paired limiting 

reagents conceptual question (see Figure 9). Six (out of 10) of the responses to the conceptual 

question were correct, and again the same number of participants from each treatment group 

answered correctly.  

A second type of error exhibited with the procedural problem’s solution involved 

correctly balancing the equation for the reaction but failing to execute the procedure correctly 

due to the use of incorrect molar masses (even though molar masses were provided in an 
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information sheet attached to the posttest) or to interpret the results of a mathematical operation 

(i.e., identifying what is used up as what is left over or vice versa).  Seven participants from the 

text-only group and two participants from the OLI group produced this type of error. Since an 

execution error may reflect a weak conceptualization of limiting reagents, a comparison of these 

execution error responses to the performance on the conceptual limiting reagents problem was 

made. Two (out of seven) of the participants from the text-only group provided correct responses 

to the conceptual limiting reagents problem whereas one of the two participants from the 

technology-rich group did. These results suggest that errors with limiting reagents procedures are 

related to a weak conceptual understanding of the topic, especially by the text-only group. A 

multistep calculation may be difficult to execute from memory without the ability to reason 

about the purpose of each step. Any differences between the two treatment groups are 

inconclusive.  

The third and final error type exhibited by one participant from each treatment group 

involved the incorrect balancing of the reaction equation but the correct execution of the 

mathematical calculations, albeit resulting in an incorrect solution. Both of these participants 

correctly answered the conceptual limiting reactants problem suggesting that the error in the 

equation balancing may have been a careless mistake.  Table 5 summarizes the error analysis by 

treatment group of the procedural limiting reagents item from posttest-2. There are no significant 

differences in the total number or types of errors between treatment groups. Furthermore, there 

are no significant differences in the proportion of procedural errors accompanied by correct 

conceptual responses between treatment groups. 

 

 

 

 84 



Table 5: Type and frequency of errors with the procedural limiting reagents problem by treatment group. 
Numbers in parentheses indicate the number of correct responses to the paired conceptual item. 
____________________________________________________________________________ 

        Treatment Group 
     _______________________________________________ 

Error Types          Text-only (n=23)         OLI (n=17)_____ 

No product “remains”                        5(3)     5(3) 

Execution errors         7(2)     2(1) 

Unbalanced equation         1(1)     1(1) 

Total          13(6)    8(5) 

 

 Fewer participants (14 vs. 21) overall exhibited errors with the conceptual limiting 

reagents problem (see Figure 9) than with its paired procedural problem (see Figure 8).  

However, only three of these participants were from the technology-rich group. This difference 

in proportion of error per treatment group is significant (p =.05) and favors the technology-rich 

treatment. One third of these conceptual errors (5 total: 2 in technology-rich group, 3 in text-only 

group) exhibited the correct amount of product but no excess reagent. The remaining errors (9) 

were different for each individual and ranged from no response to varying amounts of reagents 

or product specified by the problem to even representations of substances not specified by the 

problem. Figure 11 displays the correct response as well as examples of error types for the 

conceptual limiting reagents problem. Although the concept of limiting reagents and the 

procedural execution of this type of problem have not been mastered by a large segment of the 

study’s participants, the data support an advantage for the technology-rich group. 
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Figure 11: Correct solution and examples of the major error types exhibited by participants in response to 
the conceptual limiting reagents item. 

 

4.1.4 Summary of findings for the effect of treatment 

Performance by the OLI treatment group exceeded that of text-only group. However, treatment 

condition explained little of the variability (6%) in posttest-2 scores. Therefore a closer 

examination was made of overall performance on procedural and conceptual items. Although the 

OLI group consistently outperformed the text-only group, the differences in performance on 

procedural and conceptual items, both within and between groups, were not significant. Close 

examination of paired procedural and conceptual items for dilution and limiting reagents showed 

a similar pattern of favoring OLI treatment. Participants in the OLI group proportionally made 

both fewer procedural and fewer conceptual errors than did the participants in the text-only 

group. 
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4.2 EFFECT OF BACKGROUND EXPERIENCES AND CHARACTERISTICS 

The findings to this point suggest only a small advantage for the carefully designed technology-

rich chemistry course. Certain background experiences and characteristics may be more closely 

related to stoichiometry posttest performance than participation in a brief review course. In order 

to address the question of the relationship between participant background experiences and 

characteristics and the learning of stoichiometry, the distribution of posttest-2 scores with regard 

to prior knowledge and gender was explored. Sources of data for prior knowledge included 

advanced high school chemistry coursework and SAT scores. AP chemistry is a second course 

offered at the high school level; it is modeled after a general introductory college chemistry 

course. Participants who have completed the AP chemistry course or a similar advanced course 

in high school would have had more experience with stoichiometry than those who had only 

completed the general high school course. Therefore posttest-2 scores were analyzed with regard 

to AP course completion across treatment groups. Science performance in general, and chemistry 

performance in particular, is strongly influenced by mathematical and general verbal 

competence; an estimate of that competence is available from scores on the math and verbal 

SAT. Therefore posttest-2 scores were analyzed with regard to SAT scores across treatment 

groups. Gender differences in learning science content have been documented and are of concern 

because they imply future inequities. Therefore posttest-2 scores were analyzed with regard to 

gender across treatment groups.   

As a check of the randomization process in creating equivalent groups with regard to 

background attributes, each treatment group was examined with respect to AP completion, SAT 

scores, and gender composition. Although there were small variations in SAT scores and in the 

percentage of males, with both favoring the technology-rich (OLI) treatment group, there were 
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no significant differences between treatment groups with regard to the proportion of participants 

completing AP (or a comparable second chemistry course), the mean SAT score, or the 

proportion of males. Table 6 summarizes the background composition of the two treatment 

groups.  

Table 6: Background attributes of treatment groups. 
______________________________________________________________________________ 

        Treatment Group 
     ________________________________________________ 
Background attributes         Text-only (n=24)        OLI (n=21) 

AP completion         16 (67%)                    9 (43%) 

SAT scores (mean ± SD)               1369 ± 101         1389 ± 104 

Number (proportion) of males                 13 (54%)                    14 (67%) 

4.2.1 Background experience: AP Chemistry 

Students who complete a second chemistry course in high school, such as AP, are afforded the 

opportunity to apply and practice stoichiometry concepts and procedures in advanced topics such 

as equilibrium and acid-base chemistry, whereas most first-year high school chemistry courses 

only present the stoichiometric procedures divorced from their use in the domain. It is reasonable 

to expect that those participants with AP experience will outperform those with no AP 

experience on the posttest.  Therefore a comparison of posttest-2 scores between those 

participants with (mean=74, SD=17) and without AP (mean=67, SD=22) experience across 

treatment groups was made.7  Exploratory analysis suggests that participation in an AP 

                                                 

 7This and all subsequent analyses were completed after deleting the outlier score detected during the 
exploratory analysis for the effect of treatment (see section 4.1).   
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chemistry course in high school is not related to performance on the study’s posttest. When 

posttest-2 scores are regressed on AP, less than one percent of the variability in scores is 

explained by the completion of an AP course and the standardized coefficient (β=.18) is not 

significant (p=.25). Previous analyses of the effect of AP on college performance have found that 

while student performance on AP examinations (grade of 3 or higher) is strongly related to 

college performance, merely participating in AP or other honors-level courses in high school is 

not a valid predictor of superior performance in college (Geiser & Santelices, 2004). Therefore 

the lack of a relationship between taking AP chemistry and performance on the posttest is not 

surprising.  

4.2.2 Background experience: SAT 

Since chemistry performance has been linked to mathematical and verbal competence, 

participants’ SAT scores were used as indicators of prior knowledge in these areas. These scores 

ranged from 1160 to 1590 (mean=1382; SD=100). Posttest-2 scores ranged from 288 to 97 

(mean=70; SD=20). Figure 12 shows box-and-whisker plots of the posttest-2 scores and SAT 

scores. Although the distribution of SAT scores is symmetrical, the distribution of posttest-2 

scores is slightly negatively skewed.  

 

                                                 

8 Recall that the outlier score of 17 detected in the treatment analysis has been deleted from further analysis 
(see section 4.1). 
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Figure 12: Box-and-whisker plots showing the distribution of participants’ posttest-2 scores (left) and SAT 
scores (right). 

 

A scatter plot of posttest-2 and SAT scores does indicate a significant positive correlation (r=.56, 

p=.001) between the two variables (see Figure 13). When posttest-2 scores are regressed on SAT 

scores, β=.51 (p=.001) and 25% of the variability (adj. R2) in the posttest-2 scores is explained 

by the SAT scores. These results support the previous findings of a positive relationship between 

SAT scores and chemistry performance (Ozsogomonyan & Loftus, 1979; Spencer, 1996).  
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  Figure 13: Scatter plot of SAT scores and posttest-2 scores including regression line: 
  Posttest-2 score = 0.10 (total SAT) – 70.17 
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4.2.3 Demographics: gender 

Since documented gender inequities in science performance are a concern (Grigg, Lauko, & 

Brockway, 2006), a comparison was made between male and female posttest-2 scores across 

treatment groups. Figure 14(A) displays box-and-whisker plots of posttest-2 scores by gender. 

This exploratory data analysis suggests that posttest-2 performance is related to gender, with 

males having the advantage (r=.49, p=.001), even with the presence of a male outlier score (28) 

nearly three standard deviations below the male mean score (mean=78; SD=17) (see Figure 

14[B]).  When posttest-2 scores are regressed on gender, 22% of the variability in scores (adj. 

R2) is explained by gender with β=.49 (p=.001).  
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Figure 14: (A) Box-and-whisker plots showing the distribution of posttest-2 scores by gender. Males 
(mean=78, SD=17) significantly outperform females (mean=58, SD=18). (B) Stem-and-leaf display of male 
posttest-2 scores. The outlier score (28*) is nearly three standard deviations below the mean male score. 
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4.2.4 SAT scores and gender 

The trend in performance results by gender is similar to that by SAT scores: males and higher 

SAT scores are associated with higher posttest-2 scores whereas females and lower SAT scores 

are associated with lower posttest-2 scores. Figure 15 displays box-and-whisker plots of SAT 

scores by gender. This exploratory data analysis suggests that SAT performance is related to 

gender (r=.47, p=.001), with males (mean=1419; SD=84) significantly (p=.001) outperforming 

females (mean=1324; SD=98). When SAT scores are regressed on gender, 20% of the variability 

(adj. R2) in scores is explained by gender, with β=.47 (p=.001). 
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Figure 15: Box-and-whisker plots displaying the distribution of SAT scores by gender. 

4.2.5 Summary of findings for the effect of background  

Prior knowledge and gender have been documented as predictors of performance in chemistry. 

Although participation in a second (advanced) high school chemistry course was not related to 

posttest-2 performance, both SAT scores and gender were correlated with                        

performance and individually explained about a quarter of the variability in the posttest-2 scores. 

 92 



The similarity of the relationship of SAT performance and gender individually with posttest-2 

scores invited a subsequent investigation of the relationship between SAT scores and gender. 

4.3 EFFECT OF COMBINED FACTORS 

Within the context of this study, the learning of stoichiometry appears to be related significantly 

to participants’ background characteristics and to be little affected by treatment condition.  

Individually, both SAT scores (25%) and gender (22%) explain more of the variability in 

posttest-2 scores than does treatment condition (6%).  Therefore each of these variables was 

systematically added (stepwise) to the regression equation to determine a model that best 

explains the participants’ posttest-2 performance (see Table 7). SAT and gender together explain 

nearly one third of the variability in performance on posttest-2, with high scorers on the SAT and 

males having the advantage.  

To determine if any interactions between or among variables (such as gender and SAT) 

were related to posttest-2 performance, each variable (treatment, SAT, gender) and all possible 

interaction variables (gender-SAT, gender-treatment, SAT-treatment, gender-SAT-treatment) 

were systematically added (stepwise) to the regression equation. The same two models resulted, 

with no explanation of variability due to any interaction variable or to treatment. 

 
Table 7: Stepwise multiple regression analysis using treatment, SAT score, and gender to explain 
performance on posttest-2.  
______________________________________________________________________________ 
Model       adj. R2  SE  β       p   
______________________________________________________________________________ 
SAT       .25  17.1  .51    .001 

SAT + Gender      .31  16.4        .36, .32     .02, .03 
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4.4 THE CMU EFFECT 

To ascertain whether male SAT scores differ from female SAT scores in the general population 

from which the sample under study originated, a comparison of SAT scores by gender from the 

Mellon College of Science (MCS) and the Carnegie Institute of Technology (CIT) was made.  

Table 8 is a summary of the findings. In each group, males outperform females on both the 

verbal and math sections of the SAT. The differences (.54 SD) between genders are significant 

for the overall population on the math section (p=.0001). Since freshman success as well as 

science performance has been linked to SAT performance, females in MCS and CIT may be at a 

distinct disadvantage during the introductory chemistry course. This difference in performance 

between genders is even more pronounced within the sample of students from MCS and CIT 

who participated in the study: a 0.66 standard deviation difference in SAT verbal scores and a 

1.3 standard deviation difference in SAT math scores. Furthermore, there are no significant 

differences in verbal or math scores between male participants and male non-participants but 

there are significant (p=.01) differences in math scores between female participants and female 

non-participants. Female participants’ math scores are significantly lower (.69 SD), a finding that 

may suggest an underlying difference in motivation between the males and females who agreed 

to participate in the study. Female participants may have chosen to prep themselves prior to 

beginning their studies of college science courses. 

 
Table 8: Comparison of mean SAT scores from MCS and CIT freshmen. 

______________________________________________________________________________
           SAT Section 
     ________________________________________________ 
Group          Verbal Mean(SD)   Math Mean(SD)____ 

Participants 
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 Females (n=18)          636(77)          682(43)   

 Males (n=27)           683(65)          735(39) 

Non-participants 

 Females (n=182)          653(76)          715(53) 

 Males (n=401)           660(72)               740(48) 

Overall 

 Females (n=200)          651(76)          712(53) 

 Males (n=427)           662(72)          739(47) 

4.5 LEARNING PRACTICES IN THE TECHNOLOGY-RICH ENVIRONMENT 

Participants in the technology-rich group self-reported spending significantly (p=.01) more 

minutes working (mean=625; SD=297) with their study materials than the participants in the 

text-only treatment group (mean=381; SD=295). Log files generated by the actions of the 

technology-rich participants both supported their self-report times and also enabled a closer 

examination of specific study practices of the OLI participants. 

4.5.1 Time engaged with study materials 

To explore whether time engaged with the study materials was related to performance on 

posttest-2 within the technology-rich treatment group, a scatter plot of the data was generated 

(see Figure 16). There is no significant correlation between time engaged with the materials and 

posttest-2 performance (r=-.01, p=.98). Although log files accurately report when the OLI 
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program is on, students may not be engaged during that entire period. They may step away from 

the computer to answer the phone or grab a snack. In addition, study time itself may not be an 

optimal indicator of learning since some learners require more time on task than others to 

achieve the same level of understanding (Bloom, 1974; Carroll, 1963; Cooley & Leinhardt, 

1980; Gettinger, 1984). A better gauge may be one that measures what the learner is doing 

during the time engaged with the study materials.  Even though the chemistry content of the text-

only and technology-rich treatments was designed to be comparable, the instructional delivery of 

the OLI course also included multiple opportunities for interactive problem solving and 

exploration with feedback. Therefore an analysis of whether the level of engagement with these 

interactive opportunities that provide feedback was related to posttest performance within the 

OLI treatment group was undertaken.  
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Figure 16: Scatter plot of time engaged with OLI study materials and posttest-2 scores. 

4.5.2 Interaction with the Virtual Lab 

The technology-rich OLI course features the Virtual Lab, an interactive interface that provides 

students with both support and feedback when solving stoichiometry problems. Support is 
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provided through visualizations of submicroscopic and macroscopic interactions of chemical 

entities, which can aid in the connection and integration of the multiple levels of chemical 

knowledge. In addition, problems based in the Virtual Lab provide hints that may be requested 

by the users as well as feedback to their proposed solutions.  Yet measuring time spent in Virtual 

Lab activities is subject to the same questions of engagement as arose from the measure of time 

spent overall in the course. An exploration of the participants’ actual number of interactions with 

the Virtual Lab may be a more accurate measure of engagement with the study materials. Each 

time a participant’s mouse clicks in the Virtual Lab interface it is recorded as an event in the 

user’s log file. A scatter plot showing the distribution of the posttest-2 scores and the total 

number of Virtual Lab events for each participant reveals a positive correlation (r=.43, p=.06); 

but the wide range (0-5000) of the number of Virtual Lab events across participants suggests a 

scale issue (see Figure 17).  
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Figure 17: Scatter plot of the relationship between Virtual Lab events and posttest-2 scores by the OLI group. 

To address the scale issue, a scatter plot was constructed of the posttest-2 scores and the 

log10 of the numbers of Virtual Lab events. As shown in Figure 18 there is a strong and 

statistically significant correlation (r=.65, p=.02) between these two variables. When posttest-2 

scores are regressed on the log10 of the numbers of Virtual Lab events, 39% of the variability in 

 97 



scores (β=.65, p=.002) is explained by the level of participant interaction with Virtual Lab 

learning activities.  These results suggest that the degree to which students take advantage of the 

instructional interaction afforded by the technology-rich treatment, not just being assigned to the 

treatment, is highly related to learning as measured by posttest-2 scores.  
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 Figure 18: Scatter plot of logarithms (base 10) of numbers of Virtual Lab events and posttest-2 scores 
 including the regression line: posttest-2 score = 9.98 + 22.55 (log10 number of Virtual Lab events). 

 

Stepwise regression of posttest-2 scores on the log10 of the numbers of Virtual Lab 

events, gender, and SAT scores yields two explanatory models for performance in the 

technology-rich treatment group. Both models attribute a high proportion of the variability in 

performance to the level of engagement with the Virtual Lab. These models suggest that 

engagement with an interactive resource may overcome deficiencies in prior knowledge and 

gender inequities (see Table 9). To determine if any interactions between or among variables 

(such as gender and Virtual Lab interactivity) were related to posttest-2 performance, each 

variable (gender, Virtual Lab interactivity, SAT) and all possible interaction variables (gender-

SAT, gender-Virtual Lab interactivity SAT-Virtual Lab interactivity, gender-SAT-Virtual Lab 

interactivity) were systematically added (stepwise) to the regression equation. The same two 
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models resulted with no explanation of variability due to any interaction variable. Care should be 

taken in drawing conclusions from the second model (Log10 Virtual Lab events + gender), 

however. The small size (n=20) of the technology-rich treatment group together with its low 

number of female participants (six out of 20) calls into question the conclusiveness of this 

particular model.  

 
Table 9: Regression models for posttest-2 performance in the OLI treatment group. Log10 of the number of 
Virtual Lab events, gender, and SAT scores were added stepwise to the regression equation. 
______________________________________________________________________________ 
Model     Adj. R2   β  SE  p  
Log10 Virtual Lab events     .39            .65  12.8           .002 

Log10 Virtual Lab events + gender    .58         .49, .47  10.6         .01, .01 

 

4.6 SUMMARY OF FINDINGS 

A review of the performance of the participants on posttest-2 indicates that prior knowledge and 

gender are stronger predictors of success than assignment to either treatment group. Gender and 

SAT score are highly correlated for the participants for this study, but there is no interaction 

between these two variables that explains any of the variability in performance. The correlation 

of SAT score and gender forced a closer look at the volunteer pool and the population from 

which it was drawn. This examination revealed a differential in the SAT scores of females and 

males who had matriculated in MCS and CIT.  Although the mean SAT score for the male 

volunteers was no different from the overall male population, the mean SAT score for the female 

volunteers was significantly lower than that for the overall female population. These 
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observations suggest that females with lower SAT scores may have self-selected for the study as 

a means of prepping themselves for future coursework in which they perceived they might 

struggle.  

 When the performance of those participants in the technology-rich group is examined, the 

level of interactivity with the Virtual Lab appears to compensate for deficiencies in prior 

knowledge as measured by the SAT but not for gender. Although there is no statistically 

significant correlation (r=.33, p=.16) of Virtual Lab interactivity with gender (which may be due 

to only six out of the 20 OLI participants being female), a system that encourages interactivity 

with the Virtual Lab when working with the study materials from the OLI course may promote 

performance with stoichiometric competencies.  
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5.0  DISCUSSION 

This study was motivated by the desire to provide incoming freshman college students with a 

learning experience that would result in their fluid and flexible use of the stoichiometric 

competencies needed for the complex demands of solution chemistry problem solving. Although 

stoichiometry is addressed in most high school courses, college instructors have noticed that 

students do not have command of this central tool for chemistry work even if the content is 

reviewed early during a freshman chemistry course by direct instruction or self-study (D. Yaron, 

personal communication, May 19, 2004.). Volunteers were assigned randomly to one of two 

cognitively informed sets of stoichiometry instructional materials. A comparison of student 

performance on a posttest of stoichiometry topics was made in order to determine if dynamic 

expositions, immediate supportive feedback, and an overarching cover story all facilitated 

through online technologies promoted greater learning outcomes than studying only from text-

based resources. In addition to treatment condition, posttest performance was analyzed with 

regard to the participants’ background characteristics and demographics, study practices, and 

interactions among any of these variables.   
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5.1 TREATMENT CONDITION 

There were two major findings from comparing posttest performance between the technology-

rich and the text-only treatment group. First, even after multiple instructional opportunities, 

students overall did not have a firm grasp of stoichiometry concepts or procedures. The mean 

posttest score overall was 69%, a failing mark on most grading scales.9 Second, although the 

performance of the technology rich group (mean=76, SD=16) statistically exceeded that of the 

text-only group (mean=65, SD=21), the difference was small and the variability in both groups 

was high. Closer examination of performance on specific conceptual items did reveal a 

significant difference between the two treatments for supporting a conceptual understanding of 

limiting reagents and a strong tendency to support dilution comprehension that favored the 

technology-rich group. Since both the flexible use of stoichiometric concepts and fluid use of 

stoichiometric procedures are foundational to solution chemistry (acid-base, equilibrium) 

problem solving, the online learning experiences could be enhanced by providing more examples 

and tasks for each topic, and/or by revising the example and task format to encourage greater 

engagement of the participants. 

                                                 

 9Six participants scored high enough on the subset of problems identified for the mastery requirement 
described earlier (See Section 3.2.4) There were no significant differences in the proportion of participants from 
either treatment group or in the proportion of males or females that achieved mastery status.  
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5.1.1 Increasing the number of examples and tasks 

When compared to four other online chemistry courses, the OLI course used as the technology-

rich treatment in this study provided the highest degree of cognitive complexity10 among, but the 

fewest number of, examples and tasks for each stoichiometric topic (Appendix A). Perhaps the 

developers felt that, since this course served as a review, the content was already familiar to the 

users and therefore the need for numerous examples and tasks was not as important as it would 

have been if the content were new. Even so, the OLI course only provided an average of two 

examples and less than five tasks per topic. Considering that the quantity and variety of examples 

are important for students to be able to compare and to distinguish relevant from incidental 

features for specific problem types, the explication of only two examples may not have been 

sufficient for meaningful learning. Likewise, the practice opportunities provided by less than five 

tasks per topic may not be sufficient for development of any degree of fluidity or accuracy with 

stoichiometric procedures.  

5.1.2 Revising the structure of examples and tasks 

The relationship between conceptual understanding of, and procedural fluency with, 

stoichiometry competencies is not a simple one due at least in part to the tripartite nature of 

chemistry knowledge. The limiting reagents and dilution conceptual items from the study’s 

posttest required that a participant work with only one (submicroscopic) of the three levels of 

                                                 

 10Tasks that support incorporation of new knowledge into, reorganization of, and strengthening of 
connections within, the learner’s cognitive structure are deemed to be cognitively complex. These tasks may require 
the integration of two or more procedures, reasoning without algorithmic procedures, or be situated within the 
context of the laboratory or real life for which there is no defined solution path. Cognitively simple tasks, on the 
other hand, only require the recall of information from memory or the execution of a simple procedure. 
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chemistry knowledge whereas the corresponding limiting reagents and dilution procedural items 

required the participant to integrate all three levels (macroscopic, submicroscopic, and 

symbolic). This act of integrating the three levels of chemistry knowledge is a conceptual task 

itself, albeit embedded within a stoichiometric procedural task.  In an effort to aid participants in 

working with proportional reasoning across these three levels, dimensional analysis was taught. 

Dimensional analysis supports proportional reasoning skills by showing how the units of 

measure are assigned and transformed during the arithmetic computation of ratios and 

proportions. But this numerical manipulation is simply a routine to be memorized rather than a 

way of reasoning through the multiple knowledge levels required by a stoichiometric task. 

Mechanistic learning of this type has been shown to block reflective competence on the part of 

the students, leaving them unable to learn from the problems they have done (Hiebert, 1992; 

Hiebert & Wearne, 1985). Stoichiometry is taught at the pre-college level as a set of tools 

divorced from use and through the procedure of dimensional analysis. As evidenced by the 

posttest results, simply re-teaching the dimensional analysis procedure through direct instruction 

was not effective in promoting stoichiometric procedural competence. Students need to be 

cognitively engaged with the solution process rationale in order for any possibility of transfer to 

new situations. 

 The work of Chi, Bassok, Lewis, Reimann, & Glaser (1989) demonstrated that students 

who self-explain worked examples learn more than those who tend to them in a more cursory 

manner. Since most students do not spontaneously provide effective self-explanations when 

studying worked examples, instruction needs to provide prompts for eliciting them (Renkl, 1997; 

Renkl, Stark, Gruber, & Mandl, 1998). The explanations should focus on the conceptual 

understanding of the tripartite nature of chemistry knowledge, not just the process of dimensional 
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analysis.  Practice with actual tasks would still be necessary to develop fluidity and accuracy. 

Therefore, after cognitively engaging students with self-explanations of worked examples, 

support could be faded gradually from the use of incompletely worked examples to independent 

problem solving. Renkl and Atkinson (2003) have found that such a backward fading process 

(starting with last step of a worked example’s solution) along with prompts for self-explanations 

fostered both near and far transfer performance. 

5.2 BACKGROUND EXPERIENCES AND CHARACTERISTICS 

The fact that gender and SAT scores together (although not their interaction) explained a third of 

the variability in posttest performance as well as subsumed any treatment effect serves to 

emphasize the challenge that even instructors at selective institutions face in promoting the 

learning of chemistry. Furthermore, this relationship between gender and SAT scores may have 

been recognized by the females in the population with lower SAT scores, as evidenced by their 

self-selection into this study.  

The finding of a relationship between SAT score and gender in the population from 

which this study’s participants were drawn is a complex one that requires further investigation. 

Although the difference between male and female math SAT scores has declined since 1974, 

significant differences still exist in math and science content areas at selective institutions. 

Specifically, female performance exceeds that of males in computational skills but the opposite 

is true with problem-solving skills (Linn & Hyde, 1989). Very high scores on the math SAT 

require solving word problems quickly with rapid, intelligent guesses not lengthy computations. 

The ability to devise or revise procedures depending upon a problem’s context, not to mindlessly 
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apply algorithms, also is needed to attain a very high score. In problem-solving courses such as 

introductory chemistry, gender may be linked indirectly to performance through the math SAT 

scores. Introductory chemistry courses, as they are traditionally taught, with emphasis on 

problem solving-skills but reliance on procedural executions such as dimensional analysis, may 

indeed serve to filter out those students without strong mathematics backgrounds (as measured 

by the SAT), especially at historically scientific and professional institutions such as CMU (Boli, 

Allen, & Payne, 1985; Hyde, Fennema, & Lamon, 1990; Linn & Hyde, 1989).11 As the central 

science, chemistry in turn serves as the gatekeeper for future study in many other science 

domains. One way of temporarily supporting students in developing the necessary problem-

solving skills would be to encourage their self-study of the OLI course revised with the types of 

examples and tasks described in section 5.1.2. 

5.3 STUDY PRACTICES 

Time spent by the participants with the study materials, be they text-based or technology-rich, 

was not a predictor of stoichiometry learning as measured by posttest performance. Self-

allocated time may not have been sufficient for mastery of the procedures and concepts, or 

simply may not have reflected a continuous engagement of participants with the subject matter. 

A more helpful consideration may be how to encourage students to optimize what they are doing 

during their study time.  

                                                 

 11Tai, Sadler, & Loehr (2005) have found that when male and female testing history is similar, gender is not 
a factor that influences success in introductory college chemistry. 
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 The literature on identifying predictors for introductory college chemistry success has 

uncovered both direct and indirect relations to study times. Krajcik and Yager (1987) compared 

the achievement of high ability students in AP chemistry between those who had completed a 

year of high school chemistry and those who had not. Although those students who had 

completed high school chemistry scored higher on the pretest, the two groups performed 

similarly on the posttest. However, the group without previous chemistry coursework experience 

spent significantly more hours with tutors to assist with their study of chemistry. The students in 

this group had to work harder (i.e., spend more time) to perform satisfactorily. Tai, Ward, and 

Sadler (2006) looked for characteristics of the high school chemistry experience that were 

associated with student success in introductory college chemistry. Stoichiometry was the only 

chemistry topic that was an important predictor of college chemistry performance. Those 

students who experienced stoichiometry as a recurring theme throughout their high school course 

significantly outperformed those who studied stoichiometry for just a few weeks as an isolated 

topic. A heavy time emphasis on stoichiometry in the high school course served to support 

students in the college course in which stoichiometry topics had to be mastered within the first 

few weeks. Tai et al. (2006) also found that high school calculus, in addition to SAT 

performance, was even a stronger predictor of college chemistry performance, even though 

calculus is not utilized in the introductory college chemistry course. This finding points to an 

indirect effect of study time. Studying calculus in high school increases the likelihood that 

students possess fluency in algebraic manipulations, the very skills that are necessary for 

understanding most introductory chemistry lectures and solving the assigned homework 

problems. 
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Analysis of the log file data for the technology-rich treatment group has revealed a clue 

for optimizing the use of allocated study time in the OLI course. Although overall time spent in 

the course was not related to learning outcomes, nearly 40% of the variability in posttest-2 scores 

from the technology-rich treatment was related to the degree of participant interaction with the 

Virtual Lab. Furthermore, the relationship between SAT and posttest-2 scores was subsumed by 

participant interaction with the Virtual Lab. This finding suggests an opportunity for 

mathematically less-advantaged chemistry students similar to that of inexperienced chemistry 

students utilizing tutoring hours in the aforementioned study by Krajcik and Yager (1987). 

Online chemistry students could be advised that interacting with the Virtual Lab can lead to 

increased learning by including in the OLI course’s instructions what this research effort has 

discovered.  What remains unanswered by this study, however, is how the interactions with the 

Virtual Lab work to increase participants’ learning. Are increased interactions a sign of more 

practice with solving stoichiometric problems? Or do increased interactions indicate a 

participant’s deeper engagement within a problem such as looking back and forth between a 

macroscopic flask on the Workbench and the submicroscopic entities and symbolic notations of 

the Solution Information Table? Or do the interactions reflect exploratory actions by learners as 

they generate and test self-developed hypotheses? 

5.4 CONCLUSIONS  

Although most students come to college with remarkable skills for accessing and downloading 

music from the Internet, few have had experience with using online technologies to optimize 

their learning in academic areas such as chemistry. The most important finding from this 
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research is that studying stoichiometry through the OLI course is related to increased learning 

outcomes when its main interactive instructional strategy (Virtual Lab) is accessed and utilized. 

The instructions for the OLI course could share this research finding with potential users in order 

to encourage their engagement with the Virtual Lab’s problem-solving activities. Furthermore, 

default navigation options (e.g., continue buttons) within the course could lead to Virtual Lab 

practice. If users choose to bypass this default option, a pop-up reminder message of the benefits 

of interactive engagement with the Virtual Lab simulation could be displayed.  

This study also uncovered a diversity in the level of mathematics preparation of incoming 

university freshmen at a historically scientific and professional institution. Students with less 

developed background knowledge will need to be supported temporarily in their early 

quantitative coursework. One way to provide support would be through online courses or 

tutorials that focus on foundational skills specific to introductory coursework in quantitative 

areas such as chemistry. All students should be invited to take advantage of these enrichment 

opportunities, a technique that may be more effective in promoting their acceptance and use 

since those in greatest need would not subjected to the stigmatization of assignment to remedial 

work (Seymour & Hewitt, 1997). 

 The fact that average posttest scores were mediocre at best suggests the need to both 

modify and increase the number of the instructional locations (e.g., examples and tasks) in order 

to promote fluency and flexibility with stoichiometric procedures. Restructuring examples to 

elicit self-explanations would encourage learners’ deeper processing of concepts related to these 

procedures. This pedagogical move may help to promote the cognitive flexibility needed for 

transfer to both near (posttest) and far (equilibrium and acid-base chemistry) problem-solving 

situations. Increasing the number of tasks would support the development of fluency and 
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accuracy by providing more opportunities for practice.  Implementation of a backward fading 

(Renkl & Atkinson, 2003) instructional approach--beginning with incompletely worked 

examples along with prompts for self-explanation and gradually progressing to independent 

problem-solving activities--may promote development of both a fluid and flexible knowledge 

base. Integrating these pedagogical strategies with the dynamic and interactive capabilities of the 

OLI course may be able to support student learning more effectively than studying from static 

text-only materials. 

The massification of tertiary education during the latter half of the past century has 

resulted in an increased need to support a diverse population of students. The dynamic features 

of Internet technology can facilitate a pedagogical paradigm shift from the passive dissemination 

of content (e.g., through textbooks, videos, lectures) to the active support of these learners (e.g., 

through immediate informative feedback and exploratory environments) as they transform 

information into meaningful knowledge. Instructors may choose to implement online courseware 

along with--or even instead of--traditional textbooks as a way of fulfilling this need. But just as 

textbook review is based on criteria such as content and organization, so to will online courses 

need to be systematically evaluated to determine if the full potential of the individualized 

learning resources (e.g., interactive and exploratory environments) has been exploited. The 

framework developed for analyzing online chemistry courses (Appendix A) in support of 

answering this study’s research questions contributes to such a genre of online course analysis. 

Central to this framework is an examination of the extent to which the dynamic and interactive 

features of online technology are implemented in the service of engaging learners as they 

connect new information to prior knowledge and of scaffolding them as they execute complex 

tasks, all for the purpose of constructing a flexible and fluent knowledge base.  
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APPENDIX A 

REVIEW OF ONLINE CHEMISTRY COURSES 

General chemistry knowledge is a core component of scientific literacy. In addition to being a long-

established prerequisite for most of the traditional science, engineering, and medical fields, general chemistry 

knowledge is a foundation for many modern interdisciplinary pursuits such as forensics, environmental studies, and 

patent law. A basic chemical understanding also can assist everyday citizens with their personal choices as well as 

their participation in public policy decisions (e.g., regarding pharmaceuticals, nutrition, waste disposal). Chemistry’s 

ubiquitous presence in so many facets of modern society (Amato, 1991) suggests a need for its instruction to be both 

learnable and accessible. 

General chemistry instruction at the college level typically employs a large lecture format in which the 

professor defines terms and works through problems while the students take notes. Student questions and 

investigations are relegated to other time periods such as recitation hours and laboratory periods that may or may not 

be conducted by the course instructor. More often than not, what is taught does not reflect the valued work of the 

domain but consists of a compilation of facts and procedures to be learned as preparation for subsequent chemistry 

coursework, most of which is not pursued except by chemistry majors (Breslow, 2001; Evans, Leinhardt, Karabinos, 

& Yaron, 2006). This traditional instructivist (DiSessa, 2000) paradigm of delivery is incompatible with recent 

understanding about the constructivist nature of cognition. According to research findings from the learning 

sciences, students construct their own understanding by actively processing incoming information in the service of 

reorganizing their prior knowledge. This active processing is limited by a cognitive structure that has a finite 

capacity for processing but a near infinite capacity for storage. During processing, new information is encoded into 

long-term memory. The context in which this new information is encoded and rehearsed influences its future 

retrieval and application (Bransford, Brown, & Cocking, 1999). Online instructional delivery systems have the 

potential to overcome the limitations of traditional classroom lectures by providing students with opportunities for 

their active engagement and support in the learning process through self-pacing, dynamic expositions, interactive 

problem solving, and open ended or scaffolded explorations of new information. Online environments can also 
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provide increased access to college-level chemistry education for populations heretofore excluded due to the 

constraints of time, distance, goals, or money.   

The rapid expansion of the World Wide Web across regional, social, and technological barriers positions 

the Internet to provide both an environment for enhanced undergraduate education and a venue to meet the increased 

demand for lifelong learning in a global, information-based society. Online courseware promotes a democratization 

of learning by increasing access to higher education by populations otherwise excluded, broadening the range of 

people served by elite institutions, and supporting those students who need additional learning opportunities to keep 

on track (Larreamendy-Joerns & Leinhardt, 2006). The unregulated and unstructured nature of the Web, however, 

means that users will need to decide which opportunities are appropriate to access, that is, to identify which online 

courses will optimize their learning experiences. 

A variety of online instructional materials for chemistry has been developed and disseminated by chemistry 

professors, high school teachers, textbook publishers, museums, and even chemistry students. Several of these 

resources can serve as stand-alone general chemistry courses that are equivalent in content coverage to that found in 

an introductory college chemistry textbook, the traditional foundation of general chemistry instruction. What is 

needed, however, is a framework by which users can ascertain the effectiveness of a given online chemistry course. 

The goal of this paper is severalfold: to build upon and refine a framework for analyzing online courses; to test this 

framework’s utility by analyzing online chemistry courses; and to contribute to our understanding of online 

chemistry instruction. 

Existing Frameworks 

Other researchers have endeavored to examine and evaluate online instruction. Nachmias and his associates 

(Mioduser, Nachmias, Lahav, & Oren, 2000; Nachmias & Tuvi, 2001; Tuvi & Nachmias, 2001; Tuvi-Arad & 

Nachmias, 2003) have created a taxonomy consisting of five dimensions of pedagogical and technological 

characteristics, such as how knowledge is represented, communication and navigation methods, and the scope of 

content. Using this classification scheme they analyzed 95 atomic structure websites and found that the overall 

chemistry content presented was reliable. Graphical tools or advanced communication means rarely were 

incorporated into the courseware, however, so that the content delivery of the websites resembled online versions of 

textbooks rather than interactive learning environments. The descriptive, categorical nature of this five-part 

taxonomy facilitates its application to areas other than chemistry. What is missing, however, is an analytic tool that 

measures the cognitive quality of instructional materials—the features of course design that promote meaningful 

learning. 

Another approach to analyzing Web-based instruction was developed by Larreamendy-Joerns, Leinhardt, 

and Corredor (2005) who extended Cobb’s (1987) evaluative framework of statistics textbooks to online 

instructional materials for statistics. Like Cobb, they focused on the quality of explanations as exemplified by the 

extent to which instruction relied upon formulas versus underlying principles, and on the quality of practice 

opportunities in terms of authenticity and cognitive demand levels.  In addition, they examined and evaluated the 

quality of interactivity afforded by current technologies--dynamic representation and feedback. Their analysis found 

that there was a concerted effort by most courses to support conceptual understanding as well as procedural practice 
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through visualizations and carefully unpacked explanations. Although some courses had come a long way from 

traditional textbooks through extensive use of hyperlinks and enhanced representation, there was still an inadequate 

level of adaptive feedback and scaffolding to meet individual users’ needs. Unlike the descriptive nature of the 

Nachmias taxonomy, however, this analytical framework provides a tool by which to compare the cognitive quality 

of online courses.  

Analyzing Online Chemistry Courses 

This paper reports on the development and testing of a framework for analyzing online chemistry courses. 

Chemistry was chosen as a domain for examination because chemistry knowledge is foundational to many of the 

socioeconomic concerns of a modern society (e.g., pollution, pharmaceutical therapies, genetic engineering) and 

because many aspects of chemistry are hard to learn. What makes chemistry hard to learn? As with other sciences it 

has a unique and specialized language and relies on mathematical manipulations. But students see enactments of 

chemistry happening all around them--fireworks explode to produce colorful and noisy displays on summer nights, 

water freezes creating both perilous footing and exciting arenas for competitive sports, fermenting vats of grain 

produce beverages to enliven social encounters as well as to fuel the vehicles bringing the partygoers together. What 

makes chemistry hard to learn and to understand is that these macroscopic features that the students experience are 

emergent properties resulting from actions at an atomic or molecular level (Chi, 2005; Chi & Roscoe, 2002; Penner, 

2000). These submicroscopic actions operate at a non-human scale and are unable to be directly manipulated. As a 

result, developing an intuition for connecting the macroscopic features with submicroscopic actions is difficult 

(Yaron, Leinhardt, & Karabinos, 2004). Still another challenge for learners is mastery of the representational system 

of symbols, formulas, equations, and mathematical manipulations used to describe and explain the submicroscopic 

interactions that give rise to the macroscopic features. Expert chemists move freely among the three levels 

(macroscopic, submicroscopic, and representational) as they pursue their work, including that of instruction 

(Johnstone, 2000). But students, whose knowledge framework is rudimentary at best, have great difficulty 

understanding their teachers when explanations move away from the macroscopic level with which they have 

everyday experience. Level-specific explanations for the same phenomenon can be frustrating to students as well as 

interfere with their learning (Scerri, 2000). 

The integration of multiple levels of knowing and subsequent difficulty in learning chemistry presents an 

instructional challenge that online technology may be well equipped to address. A multimedia platform, which 

includes interactive simulations by which the invisible can be made visible as well as provisions for scaffolding of 

and timely feedback for student problem solving, should be able to support active learning in a complex and abstract 

domain such as chemistry. An effective analytical framework to assess the quality of such online chemistry 

instruction would ascertain whether a given online course integrates the distinctive features of modern technology 

with instructional strategies informed by research on the constructivist nature of cognition. 

Selection of an Instructional Topic 

An important consideration for the examination of online chemistry courses is the selection of an 

instructional focus as the location for analysis. The chosen topic should be one that finds frequent application 

throughout the domain as well as in related areas for which general chemistry is a prerequisite. Furthermore, this 
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topic should be challenging for students to learn and preferably a locus of previous educational research. 

Stoichiometry is such a topic. It is taught during the high-school chemistry course as a collection of procedures but 

requires both procedural and conceptual applications in subsequent studies of solution equilibrium in college 

chemistry, materials and energy balance in engineering, and biogeochemical interactions of ecosystem processes. 

Stoichiometry embodies what it is about chemistry that is hard to learn. Stoichiometry is the chemical algebra that 

connects the macroscopic features with the submicroscopic interactions of the domain by using a set of abstract 

symbols and relying on the formal reasoning of proportional analysis. For more than 50 years chemical educators 

have been seeking explanations and solutions for the difficulty that many students exhibit with this aspect of 

chemistry instruction (Gabel & Bunce, 1994).  

Selection of Instructional Locations 

Much of the understanding that we have about how new information is processed by learners comes from 

research in areas that are rich in formal mathematical procedures undergirded by an abstract conceptual base: 

physics, algebra, computer programming. Since stoichiometry is of a similar nature, findings from that research is 

helpful in guiding the development of a framework for examination and evaluation of online chemistry courses. 

Specifically, the analysis uses a framework that focuses on the examples, tasks, and distinctive features provided by 

online chemistry courses.  

Examples are essential elements of instructional explanations. Examples can introduce a concept by 

allowing the learners to connect their prior knowledge to the new information, can function as boundaries of 

concepts, can serve as templates for organizing domain knowledge, and can afford the bases for inductive 

generalization (Rissland, 1991). For newly learned concepts and procedures to be flexible, that is, able to be applied 

to multiple situations within the domain of study, students need experience with multiple and varied examples in 

different contexts from which they can extract the critical underlying principle(s) (Perkins & Salomon, 1989; Quilici 

& Mayer, 1996). 

Tasks provide another location for knowledge construction. Multiple practice opportunities with tasks that 

cover a range of situations are necessary for improved performance in problem solving (Rosenbaum, Carlson, & 

Gilmore, 2000). Practice enables learners to become proficient at completing tasks by increasing their speed and 

accuracy (Anderson, 1993). Practice with authentic tasks (Chinn & Malhotra, 2002) supports the construction of 

meaningful connections within the learners’ chemistry knowledge base  (Clark & Mayer, 2003). Together with 

authentic examples, authentic tasks elaborate the problems and issues that matter to the discipline and provide 

students with a vision of what it means to do chemistry. 

The distinctive features of online technology include abilities to dynamically represent abstract 

information, to provide timely feedback, and to scaffold the execution of complex tasks. Representations support 

instructional explanations (Leinhardt, 2001) in that they help learners to visualize knowledge relationships rather 

than to focus on individual pieces of information (Larkin & Simon, 1987). Dynamic representations with interactive 

capabilities can provide timely feedback (implicit or explicit), a critical component of effective learning 

environments (Bangert-Drowns, Kulik, & Kulik, 1988). Other interactive learning objects such as simulations and 

cognitive tutors can scaffold the high cognitive loads inherent to complex problem solving (Van Merrienboer, 
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Kirschner, & Kester, 2003). Dynamic representations and interactive opportunities support a constructivist 

environment by engaging learners in revision of and building on their current understandings through participation 

in authentic disciplinary activities, exploration, and reflection.   

   

Method 

Selection of Online Courses 

An Internet search of available online courseware to find a suitable sample was guided by several criteria. 

First, the chosen courses needed to be supported by both MAC and PC platforms so that they were accessible to vast 

audiences. Second, the courses needed to address those stoichiometry competencies that were of conceptual 

difficulty to beginning chemistry students and of disciplinary importance to the understanding of chemical 

equilibrium, a major focus of second-semester introductory college chemistry. The following three topics met those 

criteria: limiting reagents (or reactants); molarity; and dilution. Third, at a minimum for each of the aforementioned 

topics, the courses needed to include explanations of the content with worked examples of procedures and practice 

tasks. Fourth, the courses had to be amenable to self-study without requiring the intervention of an instructor. 

Courses that met these four criteria were sought from a variety of sources: general support websites and specific 

course companion websites as well as commercial ventures such as textbook companion websites or stand- alone 

CD-ROM courses not specifically affiliated with a textbook or institutional class. The following online materials 

were selected: 

1. Grandinetti’s General Chemistry Lectures 
(http://www.chemistry.ohiostate.edu/~grandinetti/teaching/Chem121/lectures/) 

 
2. Student Website for Chemistry: The Science in Context (http://www.wwnorton.com/chemistry/home.htm) 

3. Thinkwell Chemistry (www.thinkwell.com) 

4. General Chemistry Interactive CD-ROM, Version 3.0 (ISBN: 0-03-035319-X) 

5. Open Learning Initiative Chemistry (http://www.cmu.edu/oli/courses/enter_chemistry.html) 

Course Descriptions 

Grandinetti’s General Chemistry Lectures (OSU) is authored by Philip Grandinetti, Professor of Chemistry 

at Ohio State University, Columbus, OH. He created this website for Chemistry 121, the first general chemistry 

course for science and engineering majors. In addition to lecture notes the site includes PDF files of old quizzes and 

exams as well as links to related science websites such as periodic tables. Each lecture presents explanations and 

worked examples in text format. Practice problems are located at the end of each topic presentation via a link to the 

Ohio State University Undergraduate Chemistry website (http://lrc-srvr.mps.ohio-state.edu/). Stoichiometry topics 

specified by our selection criteria were found in Lecture 6 within the topics of Limiting Reagents and Solution 

Concentration and Stoichiometry. The website is free of charge and can be accessed on both PC and Mac OSX 

platforms. 

The Student Website for Chemistry: The Science in Context (NORTON) is produced by April Lange, the 

science media editor at W.W. Norton & Company. The company created this website as an online resource for the 

college textbook, Chemistry: The Science in Context (Gilbert, Kirss, & Davies, 2003) that it publishes.  Organized 

http://www.chemistry.ohiostate.edu/%7Egrandinetti/teaching/Chem121/lectures/
http://www.wwnorton.com/chemistry/home.htm
http://www.thinkwell.com
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by corresponding textbook chapters, the website offers summaries of the chemical principles introduced, worked 

examples of key equations and concepts, animated tutorials that include practice exercises with hinting and 

feedback, crossword puzzles of new vocabulary, and multiple-choice quizzes with answer feedback. Stoichiometry 

topics specified by our selection criteria were found in Chapter 4 (Stoichiometry and the Formation of the Earth) 

and in Chapter 5 (Solution Chemistry and the Hydrosphere). The website is free of charge and can be accessed on 

both PC and Mac OSX platforms. 

Thinkwell Chemistry (Fall, 2001 edition) (THINKWELL) is produced by the Thinkwell Corporation, 

Austin, Texas. Chemistry professors Dean Harman (University of Virginia), Tarek Sammakia (University of 

Colorado), and Gordon Yee (Virginia Tech) have authored and provided first-year college chemistry lectures 

accompanied by graphics and animations on ten CDs. A password-protected companion website offers transcripts of 

the lectures, companion notes, interactive quizzes with feedback, and external links to related chemistry websites. 

Stoichiometry topics specified by our selection criteria were found in Chapter 3 (Stoichiometry) and in Chapter 4 

(Reactions in Aqueous Solutions). The cost is $101.95 which includes the CD’s, access to the companion website, 

and shipping. To run the CDs. the minimum system requirements for a PC are a Pentium (166 MHz or faster) 

processor with Windows 95, 98, NT 4.0 or later. Minimum requirements for a Macintosh are a Power PC (120 MHz 

or faster) processor with Mac OS 8.1 or later, and 32 MB RAM. It should be noted that Classic Mode must be 

installed on OSX machines. 

General Chemistry Interactive CD-Rom (Version 3.0) (GENCHEM) is distributed by Thomson Learning, 

Stamford, Connecticut. Co-authors are chemistry professors William J. Vining (University of Massachusetts, 

Amherst) and John C. Kotz (State University of New York, Oneonta), along with Patrick Harman. General 

Chemistry Interactive is an all-inclusive stand-alone first year college chemistry course (virtual textbook) delivered 

on two CDs. Each chapter consists of multiple topics assigned to a screen. The screens are made up of multiple 

layers that at a minimum include an outline or overview layer and a description layer. The description layer gives a 

multimedia presentation of the screen topic using video and animation. There are other layers that may be included: 

exercises, which are movie clips or detailed graphic images along with questions in support of detailed examination 

of what is presented; simulations, which are models of a theoretical system or experiment accompanied by a series 

of questions to help the learner navigate through the simulation; or tutorials, which are interactive question-and-

answer sessions in support of a particular problem solving procedure(s). Topics specified by our selection criteria 

were found in Chapter 4 (Chemical Equations and Stoichiometry) and Chapter 5 (Reactions in Aqueous Solution). 

The price is $37.76 plus $6.20 shipping from Thomson Learning (www.thomson.com). Minimum system 

requirements for a PC are a Pentium Class processor with Windows 98/NT, 64 MB RAM/8x, 16-Bit color (800 x 

600). Minimum requirements for a Macintosh are OS 8.5.1+ Power Mac with 64 MB RAM/8x with thousands of 

colors (800 x 600). It should be noted that Classic Mode must be installed on OSX machines. 

Open Learning Initiative Chemistry (OLI) is one of several introductory college courses developed by 

Carnegie Mellon University’s Open Learning Initiative (http://www.cmu.edu/oli/index.html), a collaboration of 

cognitive scientists, experts in human computer interaction, and content area faculty. The project is funded by a 

grant from The William and Flora Hewlett Foundation. Chemistry professor David Yaron is the lead developer of 
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the OLI Chemistry course that is designed for review of stoichiometry principles. Course features are based upon 

well-confirmed principles of cognitive theory that include learning environments to engage the students in active 

learning practice with frequent opportunities for feedback, mental scaffolding that supports students’ knowledge 

construction, and the integration of contextual knowledge to enhance transfer of learning to contexts outside of the 

teaching environment. The OLI Chemistry course is situated in the real-world problem of arsenic contamination in 

Bangladesh’s water supply.  The course offers a variety of learning experiences including video expositions, text, 

simulation activities in the Virtual Lab, and tutors to support the integration of declarative and procedural 

knowledge. Topics specified by our selection criteria were found in Module 5 (The Basic Tools of Stoichiometry), 

Module 6 (Testing Water for Arsenic Contamination), Module 7 (Using Density to Check Arsenic Contamination), 

Module 8 (Arsenic Remediation), and Module 12 (Limiting Reagents). All of the Open Learning Initiative courses, 

including chemistry, are openly available and free to the public. Academic credit is available only through academic 

institutions. The chemistry course can be run on both PC and Mac OSX platforms. 

Tabulation of Course Resources 

Computers provide a multitude of possibilities for captivating students, as evidenced by their fascination 

with computer games, Web-surfing, and even hacking. What is so promising about online courses are not the 

technological resources per se, but the engagement and interaction they enable (DiSessa, 2000). Just as calculators 

are an improvement over slide rules for ease, speed, and scope of problem solving they facilitate, so too can the 

dynamic resources of online delivery activate the information heretofore relayed through static textbooks or passive 

lectures. Therefore the online course resources were classified according to function: organization, content delivery, 

practice, and interactivity. Organizational resources support learners in managing their learning activities. For 

example, a course map facilitates non-linear navigation. Content delivery resources include the modes by which 

information is represented. For example, students may be able to access verbal explanations either through text or 

audio. Practice resources refer to the type of responses solicited from the student in the execution of tasks and are 

reflective of cognitive engagement. For example, students may be asked to either select (multiple choice) or to 

construct (short answer) a response. Interactive resources are those learning opportunities, such as feedback, 

specifically facilitated by computer technology. For example, feedback to a practice opportunity may involve a 

simple confirmation of accuracy, a series of supportive hints, or an extensive explanation of the worked-out solution. 

Because the nature and extent of course resources may influence what gets explained and how it is explained, we 

counted the types and number of resources for each course. 

Coding and Analysis of Instructional Locations 

Segments from each of the five courses that addressed the stoichiometry areas of limiting reagents, 

molarity, and dilution were analyzed. These stoichiometry areas were selected for review based upon their 

disciplinary applications in equilibrium chemistry and their conceptual difficulty for beginning chemistry students.  

The level of cognitive effectiveness among these courses was compared by examining the quality and quantity of 

examples, the quality and quantity of tasks, and the implementation of online features such as visualization and 

interactivity. 
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Examples 

Coding. For coding purposes an example was defined as a specific illustration of a concept or procedure. 

We identified five categories of examples that ranged in cognitive demand from the cursory application of a 

procedure to its authentic use in real-world scenarios. Cognitively shallow examples were those in which a cover 

story was minimal or lacking, a chemical formula or equation was presented along with given quantities, a single 

outcome was required, and the calculation process was emphasized. Two categories of examples reflected this 

approach: cryptic procedural (CRP) and alternative procedural (ALP). An example was coded as CRP if one 

solution path to the outcome was explicated. If more than one solution path was explicated, the example was coded 

as ALP. The following CRP example is from OSU (Lecture 6): 

 
The following ALP example is from NORTON (Chapter 5). 

 
In contrast to these two cognitively shallow example types, three categories of examples were considered to 

be cognitively deep since they may serve to facilitate knowledge organization by the learner: connected to everyday 

(COE), connected to chemistry (COC), and authentic problems (AUP). An example coded as COE attempts to 

connect stoichiometry concepts and/or procedures to students’ everyday experiences, as reflected in the following 

transcript of a lecture movie from THINKWELL (Chapter 4). Note that cranberry juice is an everyday example of a 

solution for which the concentration of a particular solute, sugar, can be described numerically. 
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An example coded as COC related the current topic under study to previously or to-be-learned concepts or 

procedures as reflected in the following example from NORTON (Chapter 5). The process of titration (heretofore 

unaddressed) was used in this example to determine the molarity of an unknown solution. Molarity is the 

stoichiometric topic being explicated. The topic of titration will be studied in depth when acid-base chemistry is 

addressed later in the course. 
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An example coded as AUP was situated in laboratory work or in a real world scenario. A reasonable description of 

the setting makes the example both understandable and engaging to the learner who must reason from presented 

data. The following AUP example from GENCHEM (Chapter 5) describes an authentic activity in a chemistry 

laboratory, the making of a solution of specified molarity. An audiovideo clip of the process was an integral part of 

this example. 

 
Analysis. Both the quantity and variety of examples are important since comparison of multiple examples 

enables students to distinguish relevant from incidental features of specific problem types. The total number of 

examples in each course for each target topic were counted as were the number of each type of example (e.g., CRP, 

ALP, COE, COC, AUP) across the target topics for each course. A random selection of 25% of the examples was 

coded for reliability by an independent coder. Overall reliability was 100%. Example-type frequencies were 

transformed to percentages relative to the total number of examples for each course across target topics. Since both 

the quantity and quality of examples are important conditions for learning from them, we ranked each course 

according to both criteria. The mean number of examples per course across target topics was calculated. Since 

complex examples provide more opportunities for engagement and encoding than algorithmic-type examples, a 

complexity index was calculated based upon the proportion of each course’s examples that were coded as either 

connected to chemistry (COC) or authentic problems (AUP). We did not include connected to everyday (COE) 

examples in the measure of complexity because in the few instances in which they were used, they were not fully 

unpacked, focusing more on surface rather than underlying features of the concept being explicated. For each course 

the mean number of examples across topics was plotted against its complexity index. 

Tasks 

Coding. For coding purposes, a task was identified as a specific activity that must be completed by the 

learner in the service of practice and/or knowledge assessment. We identified five categories of tasks that ranged in 

cognitive demand from simple recall of facts or definitions to real-world problems with no defined solution path. 

Cognitively simple tasks were those in which students needed to recall (REC) information from memory or to 



 121 

execute a simple procedure (SPR). The following REC task is from NORTON (Chapter 4). The task requires that 

the student select the definition of a limiting reactant from several choices. 

 
The following SPR task, from OSU (Lecture 6), requires that the student apply a well-rehearsed procedure removed 

from the context of any real problem situation for which the procedure would have meaning. 

 
In contrast to these two cognitively simple task types, three types of tasks were considered to be cognitively 

complex since they may support incorporation of new knowledge into, reorganization of, and strengthening of 

connections within, the learner’s cognitive structure: complex procedural (CPR), conceptual (CON), and authentic 

problem solving (AUT). A task coded as CPR required the integration of two or more procedures. At least one of 

these procedures would have been taught at a different time during the course or would have been addressed in a 

previous course. The following CPR task from GENCHEM (Chapter 5) requires that the students apply their prior 

knowledge of a compound’s elements ratio to the calculation of an individual element’s molarity in a solution of the 

compound. 

 
A task coded as CON involved reasoning without algorithmic procedures. The task itself may or may not use 

numerical data as reflected by the following two tasks: The first task is from NORTON (Chapter 5). It was coded as 

CON because it required students to reason about the submicroscopic principles on which the concept of molarity is 

based—that is, that atoms react on a collective, not mass, basis. The second task is from THINKWELL (Chapter 4). 

It was coded as CON (even though numerical quantities are given) because it required the coordination of the ratio 

of elements in a chemical formula with their relative concentration in a solution. The given mass quantity is a 

distractor. 
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A task coded as AUT was situated within the context of the laboratory or real life; such a task may not have a set 

solution path.  An AUT task may include questions in support of reasoning about a simulation activity or a movie 

demonstration.1 The following task from OLI (Unit 1, Module 6) was coded as AUT since the cover story is a real-

world problem for which necessary stoichiometry tools have been explicated but a solution path not defined. 

Furthermore, students must make an evaluation after completing the necessary calculations. 

 
Analysis. Multiple opportunities for practice with a variety of tasks can support the development of the 

fluidity and flexibility needed for problem solving. The total number of tasks in each course for each target topic 

were counted as were the number of each type of task (e.g., REC, SPR, CPR, CON, AUT) across the target topics 

for each course. A random sample of 25% of the tasks was coded for reliability by an independent coder. Overall 

reliability was 90%. Task-type frequencies were transformed to percentages relative to the total number of tasks for 

each course across target topics. Since both the quantity and quality of tasks are important conditions for learning 

from them, each course was ranked according to both criteria. The mean number of tasks per course across target 

topics was calculated.  Since complex tasks provide more opportunities for engagement and encoding than simple 

recall or algorithmic tasks, a complexity index was calculated based upon the proportion of each course’s tasks that 

exhibited complex procedures (CPR), conceptual reasoning (CON), or authentic problem solving (AUT). For each 

course, the mean number of tasks across topics was plotted against its complexity index. 

Online features 

Coding. The types of dynamic and interactive learning objects within an online course are an indicator of 

its cognitive potential. Web-based resources can promote engagement and interaction and multimedia resources 

allow for the construction of complex meaning independent of text (DiSessa, 2000). Learning objects were classified 

according to their function: computation, information retrieval, assessment, tutorial, or exploration. Computational 

                                                 

 1When simulations are exploratory in nature learners are able to design their own tasks unbounded by 
performance standards. Specific consideration of exploratory opportunities is addressed in the Results and 
Discussion section (Exploratory Environments). 
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objects simplify algorithmic procedures and thus reduce cognitive load during complex tasks. An example of a 

computational object from GENCHEM is the molar mass calculator where students enter the correct formula of a 

compound and the applet performs the addition of the appropriate atomic weights of the compound’s constituent 

elements. Information retrieval objects serve as repositories of facts and data. An example of an informational 

object from NORTON is the interactive periodic table where students click on a given element to obtain its physical 

and chemical data. Assessment objects include tasks such as multiple-choice or short-answer questions that provide 

feedback to learners regarding their current knowledge state. Tutorial objects incorporate feedback and coaching in 

the practice of specific procedures. An exploratory object, or simulation, is a model of a real or theoretical system 

that contains information on how the system behaves. By changing parameters to test how a change of input affects 

output, learners may build conceptual understanding of complex processes. An example of such an exploratory 

object from OLI is the Virtual Lab in which students manipulate a macroscopic substance on the simulated 

workbench and observe the effects on the substance’s submicroscopic molecular composition by its mathematical 

representation on the solution information table.  

Interaction with dynamic learning objects without the benefit of feedback is unproductive for students. 

Immediate feedback both supports thought processes and minimizes the time wasted exploring incorrect paths or 

recovering from errors (Anderson, Boyle, & Reiser, 1985). Confirmatory feedback encourages desired performance. 

However, the results of studies of the effect of elaborative feedback (e.g., explanations for correct or incorrect 

answers, location and type of errors, Socratic questioning) on learning are inconsistent (Mason & Bruning, 2001; 

Mory, 1996). It may be that characteristics of learners such as self-efficacy and motivation interact with the type of 

feedback presented or that too much feedback results in cognitive overload. What may be critical to learning from 

feedback, then, is how the learners use it rather than the specific properties of the feedback itself. Informative 

feedback provides strategic information such as hints and adaptive measures for the purpose of guiding learners 

through successful task completion much like human tutors who provide a correct response only when learners 

cannot be supported otherwise (Narciss, 2004). Whether or not learners can make the appropriate decision to access 

feedback appears to be related to their prior knowledge of the topic at hand. Lee and Lee (1991) compared the 

learning outcomes from program and learner control in an online chemistry lesson. They found that program control 

was more effective during initial stages of learning and learner control was more effective at later stages. Since the 

location, type, and control of feedback in a course are indicators of its cognitive quality, we coded feedback in each 

course as to its location (activities), type (confirmatory, elaborative, informative), and control (program or learner). 

As a computerized model of a system that can be explored by changing the values of input variables and 

observing the change in values of output variables, a simulation affords learners opportunities to discover 

relationships among phenomena whereas hypertext and/or illustrations (static or dynamic) expose these relationships 

already formed. As a cognitive tool, a simulation facilitates discovery learning by grounding conceptual 

understanding in the action of a situation. De Jong and Van Joolingen (1998) have reviewed the research on 

discovery learning with simulations. Studies that compare exploratory with expository teaching provide evidence 

that discovery-learning results in deeply processed knowledge that is more intuitive and qualitative in nature. Other 

studies suggest that successful discovery learning is related to the prior knowledge base of the learners with regard 
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to general skills such as hypothesis generation and adaptation based upon data gathered, as well as domain-specific 

skills. These findings suggest that simulations as exploratory opportunities may need to provide instructional support 

to guide the learners’ discovery processes. Therefore we described the exploratory learning objects’ design features 

as having (1) a directed focus on a singular operation resulting in a simple outcome representation or, (2) a non-

directed focus on authentic operations resulting in multiple types of data representations. 

Analysis. The level of pedagogical implementation of online technology among the courses was estimated 

by counting the different types of dynamic and interactive learning objects; by identifying the location, control, and 

type of feedback opportunities; by comparing the types of scaffolded practice in problem solving; and by evaluating 

the use of simulations as exploratory learning objects. 

 

Results and Discussion 

Course Resources 

Table 1 summarizes the resources available in each course. The resources are grouped according to their 

function: organization, content delivery, practice, and interactivity. Overall, OSU has the fewest number of 

resources and THINKWELL provides the most. All of the courses include a course map for navigation and some 

sort of text delivery of content.  All but OSU provide interactivity through applets and two types of feedback.  

Surprisingly, none of the courses provides learning objectives to inform the users of the scope and expectation of 

performance upon completion of the course. Although objectives may have been formulated by the course designers 

in order to guide the development process, making users aware of them is important so that students can monitor the 

state of their learning. Explicit learning objectives play an especially crucial role in online instruction since a human 

teacher is not available to provide them. The cognitive quality of the content, the practice, and the interactive 

resources will be addressed in the following sections on examples, tasks, and online features. 

 

Table 1 
Available Online Resources per Course 
___________________________________________________________________________________________ 

           Course             
        __________________________________________________________________ 

      Resources          OSU NORTON THINKWELL       GENCHEM  OLI 
___________________________________________________________________________________________ 

     
Organizational   
 Learning objectives   
 Course map            x                    x          x   x             x 
 Record keeping             x    
 Periodic table                      x          x   x 
 Calculator             x          x5   x5 
 
Content delivery 

Text              x                    x          x   x             x 
Static visuals                     x          x   x              x 
Videos              x   x             x 
Audio              x   x             x 
Glossary             x          x 
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External links   x           x   
 
Practice opportunities 

Qualitative MC1             x   x             x 
Quantitative MC  x          x          x                x 

Qualitative SA2            x          x 
Quantitative SA            x     x             x 

 
Interactivity 

Applets             x          x   x            x 
Simple feedback3   x          x          x   x            x 

     Complex feedback4                         x          x   x     x           
___________________________________________________________________________________________ 
1 Multiple-choice format 
2 Short-answer format 
3 Correct/Incorrect and/or correct answer only 
4 Hints, worked out solutions and/or explanations 
5 Not an all purpose calculator but one that calculates molar mass and molarity when given a formula 

 

Examples 

For examples to serve as effective learning supports they need to span a range of conditions and there needs 

to be more than one of them (Gick & Holyoak, 1980, 1983; Quilici & Mayer, 1996). Since construction of structure-

based problem schema has been shown to be a fundamental component of mathematical problem-solving expertise 

(Chi, Feltovich, & Glaser, 1981), exposing students to multiple examples may be necessary for construction of 

schemas for solving limiting reagent, molarity, and dilution problems. Developing a competency for handling 

unique or unusual problems also requires the opportunity to see a rich variety of examples. Table 2 displays the 

number of examples by target topic for each course. Both OSU and THINKWELL provide only one example for 

dilution and OLI provides only one example for limiting reagent.  NORTON provides the most examples overall. 

 

Table 2  
Number of Examples by Topic and Course 
___________________________________________________________________________________________ 

           Course             
        __________________________________________________________________ 

      Topics          OSU NORTON THINKWELL       GENCHEM  OLI 
___________________________________________________________________________________________ 

     
Limiting reactants          2       6           3   5                 1 
 
Molarity              3       8           2   2                 2 
 
Dilution               1       4           1   2                 2  
___________________________________________________________________________________________ 
Total            6                   18           6   9                 5 
___________________________________________________________________________________________ 
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Figure 1 shows the frequency of examples in each level of cognitive demand for each course summed 

across the three topics analyzed. More than half of the examples for OSU and NORTON are cognitively simple 

(coded as cryptic procedural or alternative procedural). Cognitively simple examples do not show knowledge in use 

and are likely to promote memorization of procedures detached from their conceptual underpinnings. In contrast, the 

majority of the GENCHEM and OLI examples are cognitively complex (coded as connected to chemistry or 

authentic problem). Half of the THINKWELL examples are cognitively complex in nature. All of THINKWELL’s 

cognitively complex examples are identified as authentic problems (AUP); none is identified as simply connected to 

chemistry (COC). A COC example explicitly relates the current topic under study to previously or to-be-learned 

concepts or procedures, but not in the service of solving a real world problem.  Since an AUP example is situated in 

the real world or laboratory, by definition it relies upon the integration of multiple concepts and procedures during 

solution implementation. For example, in a THINKWELL lesson (Chapter 4), an AUP example describes the 

creation of a 200-milliliter Na2SO4 (sodium sulfate) solution from 26.42 grams of sodium sulfate and water. The role 

of formula weight and significant figures in this process is highlighted. After the solution is created, its molarity 

(concentration) is computed. Then the concentration of each ion (Na+1 and SO4
-2) is determined by using these ions’ 

stoichiometric ratio in the solute. In a subsequent AUP example the program explicates how to determine the 

volume of this same solution needed to make 250 milliliters of a specified dilution. Creating and diluting stock 

solutions are activities common in chemistry laboratories. Not only are these two AUP examples connected to each 

other but also within each of them there are several connections made explicitly to  previous chemistry knowledge. 

 

 

Figure 1. Distribution of example types by course. The numbers in parentheses are the total number 
             of examples across the target topics of limiting reagents, molarity, and dilution for each course. 
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Except for OLI, each course has several examples coded as connected to everyday (COE). Although these 

examples are meant to serve as connections between the familiar and abstract chemical phenomena, often the 

courses do not unpack the analogical relationship. Recall the sample example coded as COE from the Methods 

section. In this example from THINKWELL, a surface comparison is made between a concentration unit (grams per 

ounce) representing a mass quantity per unit volume with a concentration unit (molarity) representing a number 

quantity (moles) per unit volume (liter). Such an instructional move actually may promote the formation of a 

misconception about the meaning of molarity in the mind of the learner. Grams and moles do not have an intuitive 

relationship. For example, one mole of table sugar (sucrose) dissolved in one liter of solution and one mole of grape 

sugar (glucose) dissolved in one liter of solution each produce a solution whose concentration is 1 M (one mole per 

liter). However, since the mass of a sucrose molecule is nearly twice the mass of a glucose molecule, the 

concentration of the sucrose solution reported as grams per ounce would be nearly twice that of the glucose solution 

reported in grams per ounce. 

Figure 2 relates the mean number of examples per topic to the complexity index, the percentage of 

examples in the connected to chemistry and authentic problem categories. Although NORTON has the greatest 

mean number of examples per target topic (six), the majority of these examples are cognitively simple as indicated 

by the relatively low complexity index score (< 30). On the other hand, OLI ranks high on the complexity index (80) 

but the mean number of examples per topic is less than two. None of the courses examined here combined both the 

quantity and quality of examples that might be needed to promote learning. However, it is likely that improving 

courses by increasing the quantity of examples is easier than increasing the complexity of them. Furthermore, 

because OSU and NORTON are supplemental websites for traditional courses, users of these websites may be able 

to access examples of higher cognitive quality elsewhere (lectures, textbook, recitation sections). Since 

THINKWELL, GENCHEM, and OLI are stand-alone courses, they should incorporate more examples into their 

lessons. 
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Figure 2. Mean number of examples and complexity index per target topic and course. Vertical lines mark 

 the range of number of examples over the target topics (limiting reagents, molarity, dilution). 
 

Tasks 

Table 3 displays the number of tasks by target topic for each course. There is considerable variation in the 

format and content of these tasks. OSU and THINKWELL provide only multiple-choice tasks that immediately 

follow a topic’s exposition. OSU’s tasks are formatted as three-item quizzes randomly generated from a quiz bank. 

Each time a quiz on a target topic is selected by a given user, different items are presented. THINKWELL’s tasks 

are formatted as a ten-question exercise that does not change each time the exercise is selected. NORTON provides 

multiple-choice tasks in quiz format at the end of each chapter. Each chapter has a bank of about 40 items. Students 

can select quizzes ranging in size from five to 40 or more items. NORTON also provides practice problems that, 

along with OLI and GENCHEM, are not in a quiz format. OLI and GENCHEM do not provide quizzes at all. As can 

be seen from Table 3, most of the courses provide at least six tasks per target topic. NORTON provides about nine 

although only two are devoted to dilution. GENCHEM and OLI provide supported tasks (tutorials2) that present new 

data each time the task is opened. However, these tutorials basically consist of procedural practice with either no, or 

an unchanging, cover story. 

 

 

 

                                                 

2Additional discussion of tutorials is included in the Online Features section 
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Table 3  
Number of Tasks by Topic and Course 
___________________________________________________________________________________________ 

           Course             
        __________________________________________________________________ 

     Topics          OSU NORTON THINKWELL       GENCHEM  OLI 
___________________________________________________________________________________________ 

     
Limiting reactants          3       13           10   9                 4 
 
Molarity              9       12            5   6                 7 
 
Dilution               6        2            2   5                 5  
___________________________________________________________________________________________ 
Total           18                    27           17               20                16 
___________________________________________________________________________________________ 
 
 

Figure 3 shows the frequency of tasks in each level of cognitive demand for each course summed across the 

three topics (limiting reagents, molarity, dilution) analyzed. Cognitively simple tasks include those that require the 

recall (REC) of information from memory or the execution of a simple procedure (SPR). Cognitively complex tasks 

include those that require students to integrate two or more procedures (CPR), reason conceptually (CON) without 

algorithmic procedures, and solve problems that may not have a set solution path and are situated within the context 

of the laboratory or real life (AUT).  All of the courses except OSU offer opportunities for practice at multiple levels 

of cognitive complexity. Nearly all of OSU’s tasks emphasize the drill of simple procedures. Such computational 

rehearsal does serve to promote speed and accuracy. But without practice with complex problems in which these 

procedures are necessary but not sufficient for solution, the procedures may be quickly forgotten or learners may be 

unable to intuit their use in a new problem context. NORTON and OLI provide tasks in which students must 

combine two or more procedures. These activities can aid learners in interconnecting their chemistry knowledge 

framework, a move that promotes both fluency and flexibility. GENCHEM and OLI offer practice opportunities for 

simple procedures but also provide authentic tasks to which they can be applied. As with studying authentic 

examples, practice with authentic tasks promotes encoding opportunities (hooks) in the learners’ cognitive 

framework thereby facilitating retention and future transfer.  
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Figure 3. Distribution of task types by course. The numbers in parentheses are the total number 

              of tasks across the target topics of limiting reagents, molarity, and dilution for each course. 
 
 
Figure 4 relates the mean number of tasks per topic to the complexity index, the percentage of all tasks in 

the complex procedural, conceptual, and authentic problem categories. At one extreme is the OSU course that offers 

fairly simple tasks. At the other extreme is OLI that offers a preponderance of complex tasks. The remaining three 

courses are clustered around the 50% level of cognitive complexity but with NORTON having nearly 50% more 

practice opportunities than the other courses. However, NORTON does not provide any authentic practice so that 

students can experience knowledge in use.  
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 Figure 4. Mean number of tasks and complexity index per target topic and course. Vertical lines mark the 
 range of number of tasks over the target topics (limiting reagents, molarity, dilution). 

 

Online Features 

Interactive Learning Objects 

Unlike static textbooks, online courses can engage learners with interactive learning objects that range from 

providing quiz results to exploring virtual environments. Table 4 summarizes the types of interactive learning 

objects provided by each course. OSU provides only one type of dynamic learning object, specifically assessments 

in (the form of quizzes) with feedback, whereas GENCHEM offers a full range of interactive opportunities. 

NORTON, THINKWELL, and GENCHEM support students in complex problem solving by relieving them of hand 

computations through applets that automatically calculate quantities such as molar mass (molecular weight) from 

chemical formulas. These three courses also centralize needed atomic data within an interactive periodic table 

(information retrieval).  NORTON, GENCHEM, and OLI offer tutorial objects that incorporate both feedback and 

coaching in the service of developing student proficiency with specific, albeit complex, procedures. Only 

GENCHEM and OLI provide exploratory environments in which students can freely change parameters and note the 

systemic changes. Coordination of these two activities may promote development of conceptual connections 

between two or more of the different levels of the domain’s structure (i.e., macroscopic, submicroscopic, and 

symbolic). The use of feedback, tutorials, and exploratory environments will be described and discussed in greater 

detail in the following sections. 
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Table 4 
Types of Interactive Learning Objects in Each Course 
_____________________________________________________________________________________________ 

         Courses 
  _______________________________________________________________________ 

Interactive Objects     OSU  NORTON THINKWELL      GENCHEM  OLI 
_____________________________________________________________________________________________ 

 
Computational           x        x                x 

Information Retrieval          x        x                x 

Assessment          x      x        x                x      x     

Tutorial             x                  x      x 

Exploratory                      x      x  

_____________________________________________________________________________________________ 
 
 
Feedback 

Table 5 summarizes the feedback features of each course. OSU provides the least variety and degree of 

feedback--learner-controlled, confirmatory feedback for quizzes. NORTON and OLI place control with the learner 

or program depending upon the activity. NORTON’s quizzes and OLI’s exercises have feedback under program 

control. The feedback for both NORTON’s and OLI’s tutorials as well as OLI’s simulations is under learner control. 

The differentiation of the locus of control across these contexts correlates well with the function of the activity. 

OLI’s exercises and NORTON’s quizzes serve as knowledge assessments in which feedback encourages students to 

monitor their performance. On the other hand, tutorials and simulations serve as supports for knowledge acquisition 

by the learner who may not need automatic feedback in the form of confirmation or hints at every step in the 

process. Across all the courses other than OSU, informative feedback is predominantly in the form of hints. In 

addition to hints, GENCHEM and OLI also have partially adaptive feedback in their tutorials. This adaptive 

feedback is in the form of step-by-step directions that are automatically generated after one or two unsuccessful 

attempts at solution. 

 
Table 5 
Feedback Features of Each Course 
______________________________________________________________________________ 

  Courses 
  ____________________________________________________________ 

Feedback Features     OSU  NORTON THINKWELL       GENCHEM              OLI 
_____________________________________________________________________________________________ 

 
Location 
 Quizzes               x       x         x 
 Exercises           x  x 
 Tutorials        x        x  x 
 Simulations                  x  x 
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Control 
 Program              x       x 
 Learner                x          x          x      x  x 
 
Type 
 Confirmatory1       x       x         x      x  x 
 Elaborative2        x         x      x  x 
 Informative3        x         x      x  x 
    
______________________________________________________________________________ 
1Feedback indicates whether response is correct or incorrect. 
2Feedback explains correct solution and/or points out errors. 
3Feedback gives hints, strategic clues, or adapts the activity based upon a learner’s response. 

 

Tutorials 

NORTON, GENCHEM, and OLI all provide tutorials, or scaffolded practice, of stoichiometric procedures 

that have been explicated by text and/or videos. Each of the three courses provides support somewhat differently 

with regard to the specificity of hints and feedback. Figure 5 shows an example of general supported practice from 

NORTON where a simple procedural problem is presented for the learners to solve (see Figure 5A). After entering a 

response, the students may request feedback by clicking on the check answer box. If the answer is correct, 

confirmatory feedback is given with an option to choose elaborative feedback (view solution). If the entered answer 

is incorrect (see Figure 5B), a review option returns the student to the initial explication, which could be considered 

a hint or informative feedback, albeit opaque to the learner. Two other options include try again or view solution 

(elaborative feedback). This tutorial seems to assume that students will be able to induce the solution process 

through repeated reading of the initial explanation. On the other hand, the availability of the complete solution may 

result in students simply memorizing the steps to achieve the answer. Each time the student opens this tutorial, the 

same set of problems is presented, a situation that precludes the opportunity for practice with another set of variable 

values. The support provided by such a tutorial is minimal: confirmatory feedback, referral to the original 

explanation for review, and elaboration of the solution process. Similar tutorials are available for molarity, but not 

dilution, tasks. 

 

 
 

 Figure 5. Excerpt of the Limiting Reactant tutorial from NORTON: A task as it appears 
 to students (left) and the feedback options when an incorrect (or no) answer is entered and  
 the check answer button is chosen (right). 
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Figure 6 displays an example of a tutorial from GENCHEM. As with the NORTON tutorials, the task is of 

a simple procedural nature. However, the scaffolding provided by GENCHEM is more specific than that of 

NORTON. The task is accompanied by a problem map that decomposes the solution process into a series of 

subgoals (see Figure 6A). Students enter an answer by clicking on submit. A correct answer results in a confirmatory 

message. An incorrect answer results in a sequence of subtasks to guide students through the solution process. An 

incorrect response to a subtask results in elaborative feedback that includes a procedure for the subtask but not its 

correct answer (see Figure 6B). In order to proceed to the next subtask, the students must enter the correct answer. 

At no time are the correct answers to the original problem or to any of the subtasks provided (i.e., no bottom-out 

hint). Students may choose to retry the original problem at any time or to work out each subtask until arriving at the 

final solution. Extensive support is available in this tutorial but students can choose at anytime to use it or return to 

the original problem. The tutorial is parameterized so that each time it opens, new values for the variables are 

presented. Such parameterization provides some variation in practice opportunities similar to that found in different 

end-of-the chapter textbook problems. Students can continue to practice the procedure with different variable values 

until they are able to solve the specific problem type without any support. Tutorials are available for molarity and 

dilution, but not limiting reagents, tasks. 

 

 

 
Figure 6. Excerpt of the Molarity tutorial from GENCHEM. (A) shows a task as it first appears  
to students. (B) shows the feedback produced by entering an incorrect answer to a subgoal. 
               

OLI provides two types of tutorials. One type (see Figure 7A) is similar to those from NORTON in that it is 

not parameterized. Like GENCHEM’s tutorials, scaffolding includes a solution path with feedback. Unlike 

GENCHEM’s tutorials, however, each subtask includes a bottom-out hint (i.e., the correct answer). A correct 

response turns green. This confirmation is accompanied by elaborated feedback that includes a brief explanation of 

why the response is correct. An incorrect response turns red and is accompanied by an error message. A series of 

hints can be invoked by clicking on the hint button at any time. The first hint reminds the learners of the goal of the 
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particular problem. Succeeding hints give more detail on how to carry out a particular step. The last hint is a bottom-

out hint, an explicit explanation of how to do that step. The second type of OLI tutorial (see Figure 7B) 

contextualizes the use of stoichiometry in a real-world problem, the elimination of arsenic from drinking water via a 

chemical reaction. This particular tutorial supplies encoding opportunities for learners in that the algebraic 

calculations of a limiting-reagents task are used in the service of solving a real-world problem. This OLI tutorial 

differs from those of NORTON and GENCHEM since it provides instantiations of knowledge in use. Unlike the 

previously described OLI tutorial, students may attempt the entire problem before viewing a step-by-step scaffolded 

procedure of subtasks that includes hints and feedback. After three incorrect attempts at solving the problem, 

however, students must reload a new problem before proceeding. At this point students may choose to make use of 

the scaffolding to guide the solution process. Once the scaffolding is initiated, learners may not attempt the original 

task on their own and must complete all of the subgoals provided by the tutorial. Such a restriction on the students’ 

synthesis of a solution may actually promote rote learning of the procedure rather than its integration. Although OLI 

does not provide tutorials for molarity and dilution problems, individual tasks for these topics are accompanied by 

confirmatory feedback and hints.  

(A)
(B)  

 

Figure 7. Two types of tutorials for limiting reagents from OLI. (A) decomposes a procedural task into subgoals for 
learners to solve. (B) provides a real world problem for which subgoals are provided upon request. 

 

Tutorials across the three courses that offered them (NORTON, GENCHEM, OLI) are similar in that they 

all provide feedback in the form of hints and confirmations. The tasks are predominantly of a simple procedural 

nature that function as exercises of algebraic manipulations, albeit with vocabulary and variables rooted in 

chemistry.  The one exception is the OLI tutorial whose design situates the algebraic manipulations of stoichiometry 

in the context of a real-world use for analytical chemistry. Such a tutorial may both promote proficiency with the 

algebraic procedures and foster conceptual understanding by encoding knowledge in use. 
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Exploratory Environments 

GENCHEM and OLI are the only courses that provide simulations as dynamic learning objects (see Figure 

8). Although the simulations are accompanied by goal-directed activities, the applets also provide environments for 

exploration. GENCHEM provides a graphical simulation of limiting reagents for multiple chemical reactions (see 

Figure 8A). Students select a reaction and an initial mass for one of the reactants. Additional increments (one or ten 

grams at a time) of another reactant can then be added. The graphical display shows the proportion of each 

substance (in grams) in the reaction mixture. This simulation may aid learners in realizing that the ratio of 

substances represented by the chemical equation is not equivalent to the ratio of grams of substances in the reaction 

mixture. (Recall that chemical species react with each other on a numerical basis but chemists measure these species 

by their mass.) By stripping away the paraphernalia of a lab bench, this simulation focuses the students’ attention on 

the mathematical (proportionality) aspects of limiting reagents. OLI’s simulation, the Virtual Lab (see Figure 8B), 

includes representations of the macroscopic tools of the lab bench (workbench) in addition to revealing the 

submicroscopic characteristics of the tools’ contents in tabular as well as graphical form (solution information 

panel). The Virtual Lab is a simulated environment for authentic solution chemistry activities that employ the 

stoichiometric topics of molarity and dilution. Students can mix substances from the stockroom and observe the 

subsequent changes in concentration of the species involved. OLI provides real-world problems for students to solve 

using the Virtual Lab, such as determining whether the concentration of arsenic in a water sample exceeds the World 

Health Organization’s recommendations or how much of a particular adsorbent will remove all of the arsenic in a 

water sample. By simulating an actual laboratory environment and posing real-world chemistry problems, OLI may 

provide multiple encoding opportunities for learners to develop an intuitive understanding of chemical processes. By 

making the invisible (submicroscopic species) visible (via the solution information panel), the Virtual Lab helps 

students form connections among the three levels of chemistry knowledge (macroscopic, submicroscopic, 

symbolic). 

The GENCHEM and OLI simulations provide different types of interfaces and different levels of 

scaffolding for the learner. GENCHEM’s interface can be considered stripped down since it highlights only those 

variables directly involved with the concept of limiting reagents. Such a design immediately focuses the learners’ 

attention on the basic proportional relationships. GENCHEM then leads learners through a series of superimposed 

actions designed to point out these relationships within a given chemical reaction. A review of research studies that 

have evaluated learning from simulations shows that without instructional support gains are often unclear, 

disappointing, or both. Students who are unfamiliar with a domain benefit from sequenced assignments when first 

interacting with a simulation (Swaak & De Jong, in press). Unlike GENCHEM, the interface for OLI’s Virtual Lab 

is modeled after an actual chemistry lab bench and includes simulated glassware, instrumentation, and solutions. 

Students are presented with an authentic problem to solve using the simulation. Scaffolding is provided through a 

series of hints that are available if the student requests. These hints are not procedural in nature but rather remind 

students of the goal of the activity and give some general advice on how to approach a solution. The explicit 

feedback provided to students’ answers responds to both correctness and error type if appropriate. After three failed 

attempts at solving a problem with the simulation, the system gives the student the correct answer and then requires 
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the student to reload the problem, which comes with new random parameters. Students are free to manipulate 

objects in the Virtual Lab in a goal-free manner as well. In this exploratory mode, feedback is implicit via the 

solution information panel of the Virtual Lab (see Figure 8B). Since the OLI course is a review of stoichiometry, the 

material is somewhat familiar to the users so a less-structured approach to working with the simulation is 

appropriate. In order to encourage exploration, OLI’s developers may want to consider adding more substances to 

the stockroom (other than those present in the service of achieving the predefined specified goal). 

 

 

Figure 8. Screen shots of simulations from (A) GENCHEM and (B) OLI. 

Summary  

The proposed framework for examination and evaluation of online chemistry courses combines a 

descriptive taxonomy of online resources with a functional analysis of examples, tasks, and interactive features 

created to promote learners’ active engagement with authentic inquiry in the discipline of chemistry. Results of the 

investigation show that the courses that were examined differ considerably along several dimensions (e.g., 

implementation of online resources, quantity and quality of examples and tasks, opportunities for authentic inquiry 

and exploration). Although OLI provides the highest degree of cognitive complexity among examples and tasks 

(>70%), its actual number of examples and tasks is the lowest among all the courses (less than two examples per 

topic and less than five tasks per topic on average). Each course provides some degree of immediate feedback. The 

level of feedback ranges from the simple confirmation of quiz responses (OSU) to the scaffolding of complex 

problem solving through specific and/or general hints (GENCHEM, OLI).  NORTON, GENCHEM, and OLI 

provide interactive tutorials for supported practice of simple procedures. All three courses respond to student 

answers with confirmatory feedback. GENCHEM and OLI provide an additional level of informative feedback that 

may directly aid in student problem solving. They are the only courses that provide exploratory opportunities 
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through simulated learning objects. GENCHEM’s simulations impose an ordering of actions on the learner, 

accompanied by confirmatory and procedural feedback, within a basic symbolic interface. The simulated reality of 

OLI’s Virtual Lab allows learner-imposed sequencing of actions that are scaffolded through generalized hints and 

goal reminders. Both types of simulations allow for exploratory actions by the student in addition to the courses’ 

prescribed tasks. This wide variability in the level of cognitively-informed instructional strategies and 

implementation of interactive features suggests that with regard to online instruction, the goal of promoting the 

development of a fluid and flexible command of chemistry via active construction of knowledge frameworks and 

development of inquiry skills is not uniformly shared within this educational community.  

 

Conclusions 

The traditional goals of chemistry education were for students to assimilate and reproduce facts and 

procedures by means of explicit products, namely tests. Texts and courses were in essence a rhetoric of conclusions 

in which knowledge was conveyed through didactic instruction as a collection of irrevocable truths (Schwab, 1962). 

Such a body of definitional knowledge is often inert, unusable out of the context in which it was taught, namely 

within the carefully organized structure and content of classroom notes. The ability to both understand and work on 

complex or ill-defined problems, however, requires an intuitive knowledge base. This level of intellectual 

sophistication may best be developed through authentic inquiry in which tools such as stoichiometry are developed 

as needed in the planning and executing of experiments as well as the interpretation of data. But authentic activity in 

chemistry is often too dangerous, or too time consuming, or too obscured by the interaction of multiple variables to 

be of cognitive value to learners. Furthermore, without the practiced kinesthetic skills needed for laboratory work, 

the quality of data from which inferences are made is questionable. A decade ago Osin and Lesgold (1996) proposed 

that intelligent computer systems coupled with domain simulations might facilitate a cognitive apprenticeship model 

of learning by which novices (the students) would be supported by experts (in this case, the computer) as they solve 

authentic, albeit difficult, tasks in the process of developing competency in a domain. 

In the early days of educational technology some viewed its development as sort of a magic bullet that 

would transform instruction, perhaps even replace teachers. Technology alone, however, is not sufficient for 

creating the type of instruction that supports the meaningful learning needed for complex problem solving within the 

chemistry laboratory or related to the socioeconomic decisions confronting a 21st-century way of life. Assuming that 

the World Wide Web can support such learning is unfounded since it was not designed to teach anything. Rather, it 

provides quick access to a vast repository of information--a virtual library. Technology, then, is a necessary but not 

sufficient condition for transforming learning environments. Technology provides the tools to create the interactions 

(e.g., simulations, feedback, tutorials, etc.) that can facilitate learners’ construction of their knowledge frameworks. 

But it is the findings from learning science, whether facilitated by technology or not, that must guide the 

development of online courseware. For example, to learn from a simulation, the students must both understand what 

they should accomplish as well as be scaffolded and coached appropriately in achieving their goals. Such informed 

instructional design may serve to individualize online courseware in a way that optimizes learning among diverse 

groups of students. 



 139 

Development of effective online courses will require a joint effort among experts in content, psychology, 

pedagogy, and instructional design--a distributed expertise. A review of chemistry online courses supports this 

assertion. GENCHEM and OLI are two courses that stand out as cognitively, pedagogically, and technologically 

informed, albeit with room for improvement. Both of these courses were developed by collaboration among experts 

in chemistry, learning sciences, and computer technology. The other courses, although content valid, appear to be 

lacking significant input to their designs from one or more of the other areas of expertise.  THINKWELL consists of 

videotaped traditional lectures with colorful visuals and supplementary notes. Opportunities for interaction are 

limited to responding to quiz questions and navigating through the program. OSU is essentially a professor’s lecture 

notes delivered online as text. There are no visualizations or interactions except the act of navigating throughout the 

website and responding to quiz questions. NORTON provides rudimentary tutorials with minimal scaffolding as 

well as multiple examples and tasks, the majority of which are cognitively simple in nature. Furthermore, each 

course other than OLI treats the topic of stoichiometry as an end to itself rather than knowledge in use. Such a 

bottom-up approach to chemistry in which the domain is decomposed into a multitude of skills to be mastered 

before getting to the good stuff, is characteristic of traditional chemistry instruction with its attendant problems for 

memorable learning (Evans et al., 2006). OLI situates stoichiometry instruction within the context of an analytical 

problem, the measurement and remediation of arsenic in groundwater. Perhaps it is through such instantiations of 

authentic inquiry facilitated by online technology that meaningful learning through the development of an intuitive 

knowledgebase--unencumbered by time, distance, intellectual, or socioeconomic constraints--can be realized. 

 

 

 

 

 

 



APPENDIX B 

SOLICITATION LETTER 

DEAR “STUDENT”: 

Welcome to Carnegie Mellon University.  As you look forward to your freshman year we wish you well in your 
academic endeavors.  I am writing to tell you about an opportunity to participate in a study being conducted by my 
research group in the chemistry department that we anticipate will help you in your studies.   

 
Many entering students register for Introductory Modern Chemistry I (CHEM105) during their freshman year.  To 
ensure that all students who have registered for the course have a solid understanding of the same basic chemistry 
content, this course requires students to take and pass a test on basic chemistry content.  The test is given during the 
first week of the course.  Students who fail the test may retake the test up to five additional times during the course 
one their own time. A passing score is not part of the final grade but is a requirement for completing the course 
successfully. 
  
The responsibility for learning the material traditionally has rested with the student alone. To better serve and 
support students our chemistry group has designed a special set of materials that can help you study for this required 
test.  As instructional designers, we are interested in learning about the instructional efficacy of these materials. 
Should you choose to become a part of our research, the materials will be made available for your use online during 
several weeks in July and August. After using the materials to learn and study, you will be asked to complete two 
tests.  The first test will be completed by you before arriving on campus.  The second test will be administered in a 
classroom setting at a specified time during Orientation Week. 
  
The faculty responsible for Introductory Modern Chemistry I (CHEM105) have agreed to waive the normal test 
requirement for this material for the course for those students who participate and pass the test. In addition, those 
students who complete the study will receive: $10 upon completion of the self-study materials, $10 upon completion 
of the first test delivered online, and $30 upon completion of the second test during Orientation Week. 
 
We are able to accept only the first 200 students that respond to this opportunity. Therefore, if you would like to be 
part of this research study, please email me as soon as possible at chemstudy@cmu.edu. Your participation is 
completely voluntary. 
 
If you have any questions regarding this research study, please email me at chemstudy@cmu.edu. 
 
Thank you for considering this opportunity that we believe will help you with CHEM105’s requirements. 

 
Sincerely, 
David Yaron, Ph.D. 
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APPENDIX C 

BACKGROUND SURVEY 

NAME _______________________________________________________________ 

 (LAST)   (FIRST)   (MIDDLE INITIAL) 

Thank you for answering the following questions about your high school educational experiences.  

Science Coursework: Please check all that apply. 

    High  Advanced  International 

   School  Placement Baccalaureate      Other (Please explain) 

CHEMISTRY  ______   _______     ________ _________________________ 

BIOLOGY  ______   _______     ________ _________________________ 

PHYSICS  ______   _______     ________ _________________________ 

COMPUTER SCIENCE ______   _______      ________ _________________________ 

 
Math Coursework: Please check all that apply. 

PRE-CALCULUS ______  AP CALCULUS (AB)  ______ 

CALCULUS  ______  AP CALCULUS (BC)  ______ 

 
Exams: Please report your scores for any of the following exams you may have taken. 

     Advanced  International 

   SAT II  Placement Baccalaureate     Other (Please explain) 

CHEMISTRY  ______   _______     ________ _________________________ 
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BIOLOGY  ______   _______     ________ _________________________ 

PHYSICS  ______   _______     ________ _________________________ 

COMPUTER SCIENCE ______   _______     ________ _________________________ 

MATHEMATICS ______   _______     ________ _________________________ 

 
SAT I SCORES:  MATH  ______  VERBAL ______ 

ACT SCORES:  MATH  ______  COMPOSITE ______  
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APPENDIX D 

INFORMED CONSENT 

Study Title: The Assessment and Evaluation of Online Study Materials for Introductory Chemistry 

 

PRINCIPAL INVESTIGATOR: David Yaron, Ph.D. 

 
The purpose of this study is to evaluate online learning materials for introductory chemistry. To ascertain the 
effectiveness of these materials we will assess student learning. As a participant in this study, you will be asked to 
complete a background survey about your previous educational experience and a series of chemistry lessons online. 
As soon as you have completed the lessons, you will be asked to take an online test about the material in the lessons. 
You will be asked to take a second test on the content in a classroom setting on the Carnegie Mellon University 
campus during Orientation Week. 

  
There are no foreseeable risks or discomforts associated with this study.  As a participant you may benefit from 
learning a challenging subject matter from carefully designed instructional environments. Attainment of a passing 
score on the second test will exempt you from the required mastery test on the content materials in CHEM105.  
 
There will be no cost to you if you participate in this study. 

Your participation is voluntary.  Refusal to participate or withdrawal of your consent or discontinued participation in 
the study will not result in any penalty or loss of benefits or rights to which you might otherwise be entitled.  
  
You will receive up to $50 for participating in this study: $10 upon completion of the background information 
survey and self-study materials, $10 upon completion (before Orientation Week) of the online test, and $30 upon 
completion of a second test during Orientation Week. This is for your time and personal cost of participation. 
  
Your anonymity will be maintained during data analysis and publication/ presentation of results by any or all of the 
following means: (1) You will be assigned a number and names will not be recorded. (2) The researchers will save 
the data file records by number, not by name. (3) Only members of the research group will view collected data in 
detail.  (4) Any files will be stored in a secured location accessed only by authorized researchers. 
  
If you have any questions about this Study, you should feel free to ask them now or anytime throughout the Study 
by contacting: 
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 Professor David Yaron 
 Department of Chemistry 

4400 Fifth Avenue 
Pittsburgh, PA 15213 
(412) 268-1351 
Email: yaron@cmu.edu

  
If you have any questions pertaining to your rights as a research participant; or to report objections to this Study, you 
should contact: 
 IRB Chair 

Regulatory Compliance Administration 
Carnegie Mellon University 
5000 Forbes Avenue 
Warner Hall, 4th Floor 
Pittsburgh, PA 15213 
Email: irb-review@andrew.cmu.edu
(412) 268-1901 or (412) 268-4727 
 

The Carnegie Mellon University Institutional Review Board (IRB) has approved the use of human participants for 
this Study. 
 
This Study is funded by the National Science Foundation and the William and Flora Hewlett Foundation, which are 
supporting the costs of this research.  Neither Carnegie Mellon University (CMU), nor David Yaron will receive any 
financial benefit based on the results of the Study. 
 
I understand the nature of this Study and agree to participate.  I received a signed copy of my consent.  I give the 
Principal Investigator, and his associates, permission to present this work in written and/or oral form for teaching or 
presentations to advance the knowledge of science and/or academia, without further permission from me provided 
that my image or identity is not disclosed. 
 
 
________________________________________________  __________________ 
PARTICIPANT SIGNATURE     DATE 
 
 
________________________________________________ 
PARTICIPANT NAME (please print) 
 
 

 144 

mailto:yaron@cmu.edu
mailto:irb-review@andrew.cmu.edu


APPENDIX E 

SAMPLE EMAIL COMMUNICATIONS WITH PARTICIPANTS 

1.  Response to students interested in participating in study: 
 

Thank you for your interest in our chemistry research study. Please go to 
http://www.andrew.cmu.edu/org/chemstudy in order to read the informed consent document and the 
background survey. Directions for completing and sending us these forms also will be found at the website. 
Once we have received the documents, we will send you the directions for accessing the course materials.  
If you have any questions, you may email us at chemstudy@cmu.edu and we will get back to you within 24 
hours. 

 
2. Technology-rich treatment assignment: 
 

Thank you for agreeing to participate in our research study. We hope that your experience will be both 
enjoyable and helpful as you review some important chemical concepts and procedures. 

 
To get started, please download and read the attached PDF file which contains directions for accessing the 
study materials. 

 
Because you are part of a controlled research study, please do not share the course website or its contents 
with anyone. You are free to consult appropriate additional references, if needed, but the study materials 
have been developed to be self-contained. If you have any questions, please contact us at 
chemstudy@cmu.edu and we will get back to you within 24 hours. It should be noted that dial up internet 
connections will not be sufficient for the activities in this course.  

 
Again, thank you for agreeing to participate in this study and good luck! 
 

3. Text-only treatment assignment: 
 

Thank you for agreeing to participate in our research study. We hope that your experience will be both 
enjoyable and helpful as you review some important chemical concepts and procedures. 

 
To get started, please go to http://www.andrew.cmu.edu/org/chemstudy/cc.html

 
Because this is a controlled study, please do not share this website or its contents with anyone. You are free 
to consult appropriate additional references, if needed, but the materials have been developed to be self-
contained. If you have any questions, please contact us at chemstudy@cmu.edu and we will get back to you 
within 24 hours. 
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Again, thank you for agreeing to participate in this study and good luck! 

 
4. Request for participant progress update: 
 

Thank you for participating in our chemistry study. We hope your experience so far has been both 
informative and enjoyable as you review stoichiometry concepts and operations. 

 
We would like to know (1) which sections of the course you have completed by Thursday, August 4, and, (2) 
how much time you estimate that you have spent working on these materials. Please email this information 
to chemstudy@cmu.edu. 

 
The first test will be available online from August 11-18. Please give yourself sufficient time for review and 
practice before requesting this test. When you are ready, email us at chemstudy@cmu.edu and we will send 
the directions for accessing the test. You will need about two hours of uninterrupted time to complete the 
test. 

 
Thank you for your continued interest and hard work. 
 

5. Announcement of online posttest availability: 
 

Thank you for working so hard on the stoichiometry study materials. The online testing period begins 
today, August 11, and will continue through August 18. When you have completed the study materials, 
please take some time to review and practice with them before requesting the online test. Once you have 
received the test, please do not refer back to the materials until you have completed and returned the test to 
us.  

 
When you send us a request for the test, please give us a time estimate, in total, that you have spent 
working with the materials.  Then we will email the test to you as a PDF attachment. Please open the 
document and read the first page of directions carefully before downloading test. It is important to our 
research that you treat this test as one you would take in a classroom setting. You may use a calculator but 
no other resource materials. Please allow yourself a quiet, uninterrupted two-hour time period for taking 
the test. 

 
We will grade these tests as “pass” or “fail” according to the criteria set for mastery by the chemistry 
faculty. You will be informed of your performance on the online test before the classroom test given during 
Orientation Week. 

 
Thank you again for your continued participation in our research. 

 
6. Announcement of campus posttest date and time: 
 

In a few short days Orientation Week begins. We wish for you all the best as you begin your university 
career at Carnegie Mellon. 

 
The last part of the chemistry study, the campus test, has been scheduled for Tuesday, August 23. The test 
will take place in Doherty Hall, Room 2315. Please arrive anytime between 2 PM and 3 PM. You may have 
up to 1.5 hours to complete the test in this classroom setting. Following the test you will be reimbursed for 
your contribution to our research efforts according to the schedule outlined in the invitation to join the 
study. 

 
We are looking forward to meeting you next Tuesday on campus. 
 

7. Sample response to a technology-rich treatment group participant who reported an error in the course. 
Relevant details were posted on Blackboard for other participants in this treatment.  
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 Thank you so much for your comments. Please send us any other errors you may find. 
 

You are completely correct regarding the hint box for the problem in "stoichiometric 
proportions of reactants." Furthermore, if you carry all the significant figures 
through the entire calculation and round at the very end, then the correct answer 
would be 0.658 g! 

 
For the problem about Ca3(PO4)2: This problem reminds us that the significant figure 
"rules" are really only guidelines for considering the error in measurements, and 
when there is a question, one should always report on the "conservative" side. Let 
me explain: 
 
The atomic weight of Ca has 5 sigfigs (40.078). When multiplying by 3, stay at 5 sig 
figs (120.23) because of the multiplication rule for determining sigfigs. Now the 
total value for calcium mass has only 2 decimal places and is the fewest number of 
all the elements' masses so when adding the contributions of each element to 
determine the total molar mass, rounding is done to reflect the least number of 
decimal places (2). 

 
Another view would be of not rounding any values until the end of the calculation. 
Therefore the contribution of calcium would be 120.234 g. When adding the masses 
of all the elements, the adding rule for sigfigs says to round to the fewest 
number of decimal places (3) so the final answer for the molecular weight of 
Ca3(PO4)2 would have 3 decimal places reported. 
Now, since we are going with the more conservative value, the course reports a 
molecular weight with 2 decimal places. 

 
I hope this explanation helps. Thank you again for your careful attention to the 
course details. We appreciate your diligence! It will help us improve the next 
version.  

 
8. Sample response to a participant from the text-only treatment group who reported an error in the study 

materials. When the error was corrected, revised materials with an explanation were sent to all participants 
in this treatment group via email. 

 
I do apologize for the error and a quite serious one at that. I will have it corrected and reposted. The 
correct MW of AsO2

- is 106.9204 g/mol. 
 
Please work through the problem using this MW which, of course, will change the 
initial moles of AsO2

- to 0.01131683 mol. I am sending you a PDF of the revised 
calculation for you to check against your own! 
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APPENDIX F 

POSTTEST-1 

DIRECTIONS: Please read all of these directions before beginning the test. 
 
1. Make two copies of this test. 
 
2. Print your name and CMU e-mail on each page. 
 
3. On the first copy of the test, complete all the problems that you are able in one hour. We would prefer that 

you work from beginning to end.  You may skip a problem and return to it within the 1-hour time frame. 
 
4. When 1 hour has elapsed, continue your work on the second copy of the test. You may work as long as you 

wish up to one additional hour. Do not transfer what you completed on the first copy to the second copy of 
the test.  Please write at the top of the second copy of the test how long you spent on the second copy of the 
test. If you do not need any time past the first hour, simply write the time you spent in total on the first copy 
of the test. 

 
5. Show all your work for each problem. Please report solutions using the appropriate number of significant 

figures. 
 
6. Treat this test as any other test you would take. Do not consult notes or other sources for help. You may use 

a calculator. Work uninterrupted for the entire test. 
 

 
Thank you for your continued interest and support. Good luck! 
 
David Yaron 
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1. Laughing gas, N2O, is a weak anesthetic that has been used in dentistry since the late 18th century.  The 

formula, N2O, means that in a sample of laughing gas (circle all that apply): 
(A) For every 100 atoms of oxygen (O), there are 200 atoms of nitrogen (N) 
(B) For every atom of nitrogen, there are 2 atoms of oxygen 
(C) For every 2 grams of nitrogen, there is 1 gram of oxygen 
(D) The compound is 36% oxygen by mass 
(E) The compound is 64% nitrogen by mass 

 
2. A 10.00-g sample of ore contains 3.76 x 1022 atoms of molybdenum (Mo). The molecular weight of the ore 

is 160.07 g/mol. What is the percent by mass of molybdenum in the sample? 
 
3. Figure (A) represents a mixture of S atoms and O2 molecules in a closed container.  

S atom 

O atom 

      (A)         (B) 
 
Assuming the reaction goes to completion (2 S + 3 O2  2 SO3), draw what the product mixture looks like 
in Figure (B). 

 
4. How many grams of LiCl are needed to make 2.00 L of a 0.250 M solution? 
 
5. Three moles of carbon (C) are mixed with eight moles of sulfur (S) and after reacting the reaction mixture 

contains three moles of carbon disulfide (CS2) and two moles of sulfur.  Write a balanced equation for this 
reaction. 

 
6. The molecular weight (molar mass) of Compound X is three times the molecular weight of Compound Y.  

What mass of X will have the same number of molecules as 21 g of Y? 
 
7. A 25.0-mL sample of an acetic acid (C2H4O2) solution (vinegar) is titrated with a 0.500 M NaOH solution.  

If 30.0 mL of the NaOH solution are required to reach the endpoint of the titration, how many grams of 
acetic acid (C2H4O2) did the vinegar sample contain? Remember to show all your work. 

 
C2H4O2 + NaOH ⇐ NaC2H3O2 + H2O 

 
8. The reaction of Element X (λ) with Element Y ( ) is represented below.  
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 Write the equation that describes this reaction: 
 
9. For each of the following solutions’ manipulations, please show all your work: 
 

(A) When 55.0 mL of a 0.25 M solution of maltose is diluted by adding 125.0 mL of water, what is the 
molarity of maltose in the final solution? 

 
(B) If 257 mL of a 0.75 M solution of maltose is reduced by evaporation to 195 mL, what is the 

molarity of the new solution? 
 
(C) If you combine 132 mL of a 0.85 M solution of maltose with 457 mL of a 0.24 M solution of 

maltose, what is the volume and molarity of the final solution? 
  
10. When you mix 0.945 g of Sn and 1.834 g of I2 in an appropriate solvent, 1.935 g of SnI4, an orange solid, is 

formed.  What are the theoretical and percent yields of SnI4? Please show all your work. 
  
11. Given that the white element weighs twice as much as the striped one, rank (from greatest to least) the 

percentage compositions of the black element in the molecules below. Please show all your work. 

a

b

c

d

 
 
12. Assume that the reaction of rubidium (Rb) with these three acids takes place as shown and goes to 

completion. 
(A) 2 Rb + 2 H2O ⇐ 2 RbOH + H2 
(B) 2 Rb + H2C2O4 ⇐ Rb2C2O4 + H2 
(C) 6 Rb + 2 H3AsO4 ⇐ 2 Rb3AsO4 + 3 H2 

 
If an equal mass of rubidium (Rb) reacts with each acid, compare the yields of hydrogen (H2) produced in 
each reaction. 

 
13. A 2.000 g sample of a Ni-Tl-Zn (nickel-thallium-zinc) alloy is dissolved in nitric acid.  After the addition 

of excess HI (hydroiodic acid) to this solution, 1.750 g of TlI (thallium iodide), the only solid produced, is 
separated from the solution.  Calculate the percentage of Tl (thallium) in the alloy. Please show all your 
work. 
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14. Solution S represents a 1.0 L sugar solution.  The dots in the magnification circle represent the sugar 

molecules. To simplify the diagram, the water molecules are not shown.  
 

1.0 L

2.0 L

   Solution S           Solution X 
 

(A) Solution X results from adding 1.0 L of water to Solution S. Draw the view of sugar molecules in 
the magnification circle for Solution X. 

(B) A fresh 1.0-L batch of Solution S is evaporated until only 0.50 L remains (Solution Y). Draw the 
view of sugar molecules in the magnification circle for Solution Y.   

0.50 L
LLL L

              Solution Y 
(C) Solution Z was created by mixing Solution Y (0.50 L) with a fresh batch of Solution S (1.0 L). 

Draw the view of sugar molecules in the magnification circle for Solution Z. 

1.50 L
LLL L

            Solution Z 
 
15. What is the empirical formula of citric acid, a sample of which contains 37.51% C, 4.20% H, and 58.29% 

O? Please show all your work. 
  
16. A 6.80-g coin was dissolved in nitric acid. Excess NaCl was added and 6.21 g of solid AgCl was produced. 

Calculate the mass percentage of silver in the coin. Remember to show all your work. 
 

Ag+(aq) + Cl-(aq)  ⇐ AgCl(s) 
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Additional Information 

 
Element Atomic Weight (grams/mole) 

Ag 107.8682  
As 74.92160 
C 12.0107  
Cl 35.453  
H 1.00794  
I 126.90447 

Li 6.941 
Mo 95.94 
N 14.0067 
Na 22.989770 
Ni 58.6934 
O 15.9994  
Rb 85.4678 
S 32.065 

Sn 118.71 
Tl 204.3833 
Zn 65.39 

 
 

Compound Molecular Weight (grams/mole) 
C2H4O2 60.0520 

CS2 76.141 
fructose 180.1559 

H2O 18.0153 
H3AsO4 141.9430 
H2C2O4 90.0349 

HI 127.91241 
NaC2H3O2 82.0338 

NaCl 58.443 
NaOH 39.9971 
N2O 44.0128 

Rb3AsO4 395.3226 
Rb2 C2O4 258.9546 

RbOH 102.4751 
SnI4 626.33 
SO3 80.063 
TlI 331.2878 

 
Avogadro’s number = 6.02 x 1023     1000 milligrams = 1 gram 
 
1000 milliliters = 1 liter      1000 millimeters = 1 meter 
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APPENDIX G 

POSTTEST-2 

DIRECTIONS: Please read all of these directions before beginning the test. 
 
1. Print your name and CMU email on both sides of each page. 
 
2. For each question or problem, show all your work. Please report your answers in the appropriate number of 

significant figures. 
 
3. You may use a calculator. Any additional information you may need is on the back of this page. 
 
4. You have up to 1.5 hours to complete test. There is no need to rush.  
 
5. When you have completed the test, please bring it to one of the proctors.  You will then be remunerated and 

asked to sign a receipt list. 
 
6. Thank you for all of your hard work on behalf of this chemical education research study. 
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1. An amino acid has a molecular weight (molar mass) of 776.9 grams/mole and contains 65.34% iodine by 

mass.  What is the number of iodine atoms per molecule of this amino acid?  
 
2. What is the molarity of a 15.0 mL solution that contains 89.3 milligrams KBr?  
 
3. A 25.0-milliliter sample of HNO3 was titrated with standard 0.100 M NaOH solution. The endpoint was 

reached after 20.0 milliliters of the NaOH solution was added. How many grams of HNO3 did the sample 
contain?  

HNO3 + NaOH    NaNO3  +  H2O 
 
4. What masses of what substances remain after 54 grams of aluminum (Al) and 32 grams of oxygen (O2) 

react to produce aluminum oxide (Al2O3) as the only product? Remember to show all of your work. 
 
5. The contents of the two beakers below are poured into a third beaker. Draw the view of molecules in the 

magnification circle provided for the third beaker. 
  
 
 

2 liters 1 liter
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6. A 6.16-gram sample of CCl4 reacted with excess oxygen to form 3.4 grams of COCl2 as the only carbon-

containing compound. What was the percent yield of that product? Please show all your work. 
 
7. The formula for methane is CH4. This means that, in methane, (circle all that apply) 

A. for every 100 atoms of hydrogen there are 400 atoms of carbon 
B. for every atom of carbon there are 4 atoms of hydrogen 
C. for every gram of hydrogen there are 12 grams carbon 
D. the compound is 25% hydrogen by mass 
E. the compound is 80% hydrogen by ma 

 
8. Assume the reaction of magnesium (Mg) with these three acids takes place as shown and goes to 

completion. 
 (1) Mg + 2HCl  MgCl2 + H2

(2) Mg + H2SO4  MgSO4 + H2
(3) 3Mg + 2H3PO4  Mg3(PO4)2 + 3 H2

 
If an equal mass of magnesium reacts with each acid, compare the yields of hydrogen produced in each 
reaction. 

 
9. The atomic weight of element A is twice the atomic weight of element B.  What mass of B will have the 

same number of atoms as 32 grams of A? Please explain your answer. 
 

10. Chlorine (Cl2)          and iodine (I2)           react to give ICl3.  (X) is a mixture of chlorine and iodine.  
 

(A) Draw the resultant substance(s) in (Y) after the reaction goes to completion. 
 
 
 
 
 
 
 

      
 

 (X)            (Y) 
 
  (B) Write the balanced equation that describes this reaction: 
 
11. A compound of sodium, sulfur, and oxygen contains 29.08% Na, 40.56% S, and 30.46% O.  What is the 

correct empirical formula consistent with the precision of the data? Remember to show all your work. 
                 
12. The contents (A, B, and C) of three different bottles of fructose solutions were combined in a 1000-mL 

volumetric flask. The flask was then filled to capacity with distilled water. Solution A was 74 mL of 0.527 
M fructose, solution B was 632 mL of 0.872 M fructose, and solution C was 139 mL of 1.16 M fructose. 
What was the final concentration of fructose in the volumetric flask? Please show all your work.  

 
13. A sample that contains only SrCO3 and BaCO3 weighs 0.800 g. When it is dissolved in excess acid, 0.211 g 

of carbon dioxide (CO2) is liberated by the acid. What percentage of SrCO3 did the sample contain by 
mass? Assume that all carbon in the original mixture is converted to carbon dioxide. Remember to show all 
of your work. 
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14. A 2.00 g mixture of NaCl and NaNO3 dissolved in water required 90.0 milliliters of 0.100 M AgNO3 to 
react with all the chloride to form AgCl. What is the mass percentage of NaCl in the original sample?  
Please show all your work. 

 
Ag+(aq) + Cl-(aq)  ⇐ AgCl(s) 

 
 

Additional Information 
 

Element Atomic Weight (grams/mole) 
Ag 107.8682  
Al 26.981538  
Ba 137.327 
Br 79.904  
C 12.0107  
Cl 35.453  
H 1.00794  
I 126.90447 
K 39.0983 

Mg 24.3050 
N 14.0067 
Na 22.989770 
O 15.9994  
P 30.973761 
S 32.065 
Sr 87.62 

 
 

Compound Molecular Weight (grams/mole) 
AgNO3 169.8731 
BaCO3 197.336 
CCl4 153.823 
CO2 44.0095 

COCl2 98.916  
fructose 180.1559 
HNO3 63.0128 
H2O 18.0153 

H3PO4 97.9952 
H2SO4 98.078 

methane 16.0425  
MgCl2 95.211 

Mg3(PO4)2 262.8577 
MgSO4 120.368 
NaOH 39.9971 
NaNO3 84.9947 
SrCO3 147.63 

 
 

Avogadro’s number = 6.02 x 1023     1000 milligrams = 1 gram 
 
1000 milliliters = 1 liter      1000 millimeters = 1 meter 
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APPENDIX H 

POSTTEST-3 

General Chemistry 09-105 last term? (please circle):  YES NO 
 
 
Answer each of the questions to the best of your ability. Don’t worry if you don’t know the complete answers. 
Write whatever you can about each question. Remember: This is only an ungraded survey of your prior 
knowledge of chemistry.  
 
 
 
1. The molecular weight (molar mass) of Compound A is four times the molecular weight of compound B. 

What mass of B will have the same number of molecules as 20 grams of A? Please show your work and 
explain your answer. 

 
 
2. The mass of a sulfur atom is twice that of an oxygen atom.  The formula, SO2, means that in a sample of 

sulfur dioxide (circle all that apply): 
 

(A) The compound is 33% sulfur by mass. 
(B) For every 100 atoms of sulfur, there are 200 atoms of oxygen. 
(C) The compound is 50% oxygen by mass. 
(D) For every 2 grams of oxygen, there is 1 gram of sulfur. 
(E) For every atom of oxygen, there are two atoms of sulfur. 

 
 
3. The mass of a mole of molybdenum (Mo) atoms is eight times that of a mole of oxygen (O) atoms. Arrange 

the following oxides of molybdenum in order from least to greatest percentage by mass of molybdenum. 
Please show all your work. 

 
MoO2
MoO3
Mo2O3
Mo2O5
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4. The reaction of Element W ( ) with Element D (λ) is represented below. 
 
 
  

 
 
 
 
 
Write the balanced equation that describes this reaction. 

 
 
5. You are mixing the contents of a bottle of Coke with the contents of nine bottles of water of equal volume. 

The concentration of sucrose in the Coke is 1 M. What is the final concentration of sucrose in the beaker? 
Explain how you determined your answer. 

 
 
   
  
 
 
 
 
 
 
6. Calcium carbonate (chalk, limestone) reacts with acid to form a calcium salt, carbon dioxide, and water. 

Assume that the reaction of calcium carbonate with these three acids takes place as shown and goes to 
completion. 

 
(A) CaCO3 + 2HCl  CaCl2 + CO2 + H2O 
(B) CaCO3 + H2SO4  CaSO4 + CO2 + H2O 
(C) 3CaCO3 + 2H3PO4  Ca3(PO4)2 + 3CO2 + 3H2O 

 
If an equal mass of calcium carbonate (CaCO3) reacts with excess amounts each acid, compare the yields of 
carbon dioxide (CO2) produced by each reaction. 

 
 
7. Figure (A) represents a mixture of iridium atoms and bromine molecules in a closed container. Assuming 

the reaction goes to completion (2Ir + 3Br2  2IrBr3), draw what the mixture looks like in Figure (B) after 
reacting. 

Br2

Ir

          (A)         (B) 
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8. Hydrochloric acid and potassium hydroxide react to form potassium chloride and water:  
 

HCl + KOH  KCl + H2O 
 

If the molarity of an HCl solution is twice the concentration of a KOH solution, compare the volumes of 
each solution needed to react completely. Please show all your work. 

 
 
9. Magnesium nitrate and potassium hydroxide react to form magnesium hydroxide and potassium nitrate 

according to the following chemical equation: 
 

Mg(NO3)2  +  2KOH  Mg(OH)2  +  2KNO3
 

Assuming the reaction goes to completion, determine the number of moles of each substance remaining 
when 2 moles of magnesium nitrate and 2 moles of potassium hydroxide are mixed in a closed reaction 
vessel. Please show all your work. 
 

10. Two different non-reacting sugar solutions are mixed: 100 mL of 1.0 M glucose and 400 mL of 0.1 M 
fructose. What is the molarity of each sugar in the final solution? Please show all your work. 
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APPENDIX I 

POSTTEST-1 SCORING KEY 

POSTTEST-1 SCORING KEY 

1. Laughing gas, N2O, is a weak anesthetic that has been used in dentistry since the late 18th century.  The 
formula, N2O, means that in a sample of laughing gas (circle all that apply): 
(A) For every 100 atoms of oxygen (O), there are 200 atoms of nitrogen (N) 
(B) For every atom of nitrogen, there are 2 atoms of oxygen 
(C) For every 2 grams of nitrogen, there is 1 gram of oxygen 
(D) The compound is 36% oxygen by mass 
(E) The compound is 64% nitrogen by mass 
 
SCORING: 1 pt. each for (A), (D), (E). 5 pts. for all; no credit for any other response 
 

2. A 10.00-g sample of ore contains 3.76 x 1022 atoms of molybdenum (Mo). The molecular weight of the ore 
is 160.07 g/mol. What is the percent by mass of molybdenum in the sample? 

 
SCORING: (-1) pt. for significant figures error; (-1) pt. for arithmetic/units error; no credit for conceptual 
error or not answering question 
 

3. Figure (A) represents a mixture of S atoms and O2 molecules in a closed container.  

 
    (A)         (B) 

S atom 

O atom 

 
 
 
 
 
 
Assuming the reaction goes to completion (2 S + 3 O2  2 SO3), draw what the product mixture looks like 
in Figure (B). 
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SCORING:  1 pt. for each substance’s correct amount; 5 pts. if all substance amounts correct 
 

4. How many grams of LiCl are needed to make 2.00 L of a 0.250 M solution? 

SCORING: (-1) pt. for significant figures error; (-1) pt. for arithmetic/units error; no credit for conceptual 
error or not answering question 

  
5. Three moles of carbon (C) are mixed with eight moles of sulfur (S) and after reacting the reaction mixture 

contains three moles of carbon disulfide (CS2) and two moles of sulfur.  Write a balanced equation for this 
reaction. 

 
 SCORING: (-3) pts. if excess reactant treated as product; (-1)  pt. if equation balanced but not in lowest 

terms; (-1) pt. if reactant or product formula incorrect; no points for unbalanced equation 
 
6. The molecular weight (molar mass) of Compound X is three times the molecular weight of Compound Y.  

What mass of X will have the same number of molecules as 21 g of Y? 
 

 SCORING: 3 pts. for correct answer; 2 pts. for explanation (via words or work) 
  

7. A 25.0-mL sample of an acetic acid (C2H4O2) solution (vinegar) is titrated with a 0.500 M NaOH solution.  
If 30.0 mL of the NaOH solution are required to reach the endpoint of the titration, how many grams of 
acetic acid (C2H4O2) did the vinegar sample contain? Remember to show all your work. 

 
C2H4O2 + NaOH ⇐ NaC2H3O2 + H2O 

 
SCORING: (-1) pt. for significant figures error; (-1) pt. for arithmetic/units error; no credit for conceptual 
error or not answering question 
 

8. The reaction of Element X (λ) with Element Y ( ) is represented below.  

 

Write the equation that describes this reaction: 

 SCORING: (-3) pts. if excess reactant treated as product; (-1)  pt. if equation balanced but not in lowest 
terms; (-1) pt. if reactant or product formula incorrect; no points for unbalanced equation 
 

9. For each of the following solutions’ manipulations, please show all your work: (SCORE each part as one 
question=5pts.) 

 
(A) When 55.0 mL of a 0.25 M solution of maltose is diluted by adding 125.0 mL of water, what is the 

molarity of maltose in the final solution? 
 
SCORING: (-1) pt. for significant figures error; (-1) pt. for arithmetic/units error; no credit for 
conceptual error or not answering question 

 
(B) If 257 mL of a 0.75 M solution of maltose is reduced by evaporation to 195 mL, what is the 

molarity of the new solution? 
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SCORING: (-1) pt. for significant figures error; (-1) pt. for arithmetic/units error; no credit for 
conceptual error or not answering question 

 
(C) If you combine 132 mL of a 0.85 M solution of maltose with 457 mL of a 0.24 M solution of 

maltose, what is the volume and molarity of the final solution? 
  

SCORING: (-1) pt. for significant figures error; (-1) pt. for arithmetic/units error; no credit for 
conceptual error or not answering question 

 

10. When you mix 0.945 g of Sn and 1.834 g of I2 in an appropriate solvent, 1.935 g of SnI4, an orange solid, is 
formed.  What are the theoretical and percent yields of SnI4? Please show all your work. (SCORE 5 pts. for 
theoretical yield, 5 pts. for percent yield) 
 
SCORING: (-1) pt. for significant figures error; (-1) pt. for arithmetic/units error; no credit for conceptual 
error or not answering question 
 

11. Given that the white element weighs twice as much as the striped one, rank (from greatest to least) the 
percentage compositions of the black element in the molecules below. Please show all your work. 
   
SCORING: 1 pt. each for c>a, a>d, d>b; 5 pts. for all correct 

a

b

c

d

 

12. Assume that the reaction of rubidium (Rb) with these three acids takes place as shown and goes to 
completion. 
(D) 2 Rb + 2 H2O ⇐ 2 RbOH + H2 
(E) 2 Rb + H2C2O4 ⇐ Rb2C2O4 + H2 
(F) 6 Rb + 2 H3AsO4 ⇐ 2 Rb3AsO4 + 3 H2 
 
If an equal mass of rubidium (Rb) reacts with each acid, compare the yields of hydrogen (H2) produced in 
each reaction. 

 
 SCORING: 1 pt. for each equality (all are equal); 5 pts. for all equalities 
 
13. A 2.000 g sample of a Ni-Tl-Zn (nickel-thallium-zinc) alloy is dissolved in nitric acid.  After the addition 

of excess HI (hydroiodic acid) to this solution, 1.750 g of TlI (thallium iodide), the only solid produced, is 
separated from the solution.  Calculate the percentage of Tl (thallium) in the alloy. Please show all your 
work. 
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SCORING: (-1) pt. for significant figures error; (-1) pt. for arithmetic/units error; no credit for conceptual 
error or not answering question 

 

 

14. Solution S represents a 1.0 L sugar solution.  The dots in the magnification circle represent the sugar 
molecules. To simplify the diagram, the water molecules are not shown.  

1.0 L

2.0 L

    Solution S           Solution X 
 

(A) Solution X results from adding 1.0 L of water to Solution S. Draw the view of sugar molecules in 

Solution Y 

the magnification circle for Solution X.  SCORING: 1 pt. 

 
) A fresh 1.0-L batch of Solution S is evaporated until only 0.50 L remains (Solution Y). Draw the 

                
(C) olution  c ated by  Y (0.50 L) with a fresh batch of Solution S (1.0 L). 

 
15. ric acid, a sample of which contains 37.51% C, 4.20% H, and 58.29% 

r each correct subscript; 1 pt. for correct formula format; 5 points for both format and 
subscripts correct 

0.50 L
LLL L

(B
view of sugar molecules in the magnification circle for Solution Y.  SCORING: 2 pts.  

S  Z was re  mixing Solution

1.50 L
LLL L

    Solution Z 

Draw the view of sugar molecules in the magnification circle for Solution Z.  SCORING: 2 pts. 
   

What is the empirical formula of cit
O? Please show all your work. 
  
SCORING: 1 pt. fo

 163 



 
16. dissolved in nitric acid. Excess NaCl was added and 6.21 g of solid AgCl was produced. 

Calculate the mass percentage of silver in the coin. Remember to show all your work. 

SCORING: (-1) pt. for significan etic/units error; no credit for conceptual 
rror or not answering question 

 

A 6.80-g coin was 

Ag+(aq) + Cl-(aq)  ⇐ AgCl(s) 
 

t figures error; (-1) pt. for arithm
e
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APPENDIX J 

POSTTEST-2 SCORING KEY 

1. An amino acid has a molecular weight (molar mass) of 776.9 grams/mole and contains 65.34% iodine by 
mass.  What is the number of iodine atoms per molecule of this amino acid?  

 
SCORING: (-1) pt. for significant figures error; (-1) pt. for arithmetic/units error; no credit for conceptual 
error or not answering question 

 
2. What is the molarity of a 15.0 mL solution that contains 89.3 milligrams KBr?  
 

SCORING: (-1) pt. for significant figures error; (-1) pt. for arithmetic/units error; no credit for conceptual 
error or not answering question 

 
3. A 25.0-milliliter sample of HNO3 was titrated with standard 0.100 M NaOH solution. The endpoint was 

reached after 20.0 milliliters of the NaOH solution was added. How many grams of HNO3 did the sample 
contain?  

HNO3 + NaOH    NaNO3  +  H2O 
 

SCORING: (-1) pt. for significant figures error; (-1) pt. for arithmetic/units error; no credit for conceptual 
error or not answering question 

 
4. What masses of what substances remain after 54 grams of aluminum (Al) and 32 grams of oxygen (O2) 

react to produce aluminum oxide (Al2O3) as the only product? Remember to show all of your work. 
 

SCORING: (-1) pt. for significant figures error; (-1) pt. for arithmetic/units error; no credit for conceptual 
error or not answering question 
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5. The contents of the two beakers below are poured into a third beaker. Draw the view of molecules in the 

magnification circle provided for the third beaker. 
  

SCORING: 2 pts. for each number of correct shapes; 5 pts. if both numbers of correct shapes 
 
 

2 liters 1 liter

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. A 6.16-gram sample of CCl4 reacted with excess oxygen to form 3.4 grams of COCl2 as the only carbon-

containing compound. What was the percent yield of that product? Please show all your work. 
 

SCORING: (-1) pt. for significant figures error; (-1) pt. for arithmetic/units error; no credit for conceptual 
error or not answering question 

 
7. The formula for methane is CH4. This means that, in methane, (circle all that apply) 

A. for every 100 atoms of hydrogen there are 400 atoms of carbon 
B. for every atom of carbon there are 4 atoms of hydrogen 
C. for every gram of hydrogen there are 12 grams carbon 
D. the compound is 25% hydrogen by mass 
E. the compound is 80% hydrogen by mass 

 
SCORING: 1 pt. for (B); 1 pt. for (D); 5 points for both (B) & (D); no credit for other choices 
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8. Assume the reaction of magnesium (Mg) with these three acids takes place as shown and goes to 
completion. 

 (1) Mg + 2HCl  MgCl2 + H2
(2) Mg + H2SO4  MgSO4 + H2
(3) 3Mg + 2H3PO4  Mg3(PO4)2 + 3 H2

 
If an equal mass of magnesium reacts with each acid, compare the yields of hydrogen produced in each 
reaction. 

 
SCORING: 1 pt. for each equality (all are equal); 5 pts. for all equalities 

 
9. The atomic weight of element A is twice the atomic weight of element B.  What mass of B will have the 

same number of atoms as 32 grams of A? Please explain your answer. 
 
 SCORING: 3 pts. for correct answer; 2 pts. for explanation (via words or work) 

  
10. Chlorine (Cl2)          and iodine (I2)           react to give ICl3.  (X) is a mixture of chlorine and iodine. 

(SCORING: Part A and Part B each worth 5 pts.) 
 
(A) Draw the resultant substance(s) in (Y) after the reaction goes to completion. 
 
 
 
 
 
 
 

    (X)            (Y) 
 

 SCORING:  1 pt. for each substance’s correct amount; 5 pts. if all substance amounts correct 
 

 
(B) Write the balanced equation that describes this reaction: 
 

 SCORING: (-3) pts. if excess reactant treated as product; (-1)  pt. if equation balanced but not in lowest 
terms; (-1) pt. if reactant or product formula incorrect; no points for unbalanced equation 

 
11. A compound of sodium, sulfur, and oxygen contains 29.08% Na, 40.56% S, and 30.46% O.  What is the 

correct empirical formula consistent with the precision of the data? Remember to show all your work. 
                 

SCORING: 1 pt. for each correct subscript; 1 pt. for correct formula format; 5 points for both format and 
subscripts correct 
 

12. The contents (A, B, and C) of three different bottles of fructose solutions were combined in a 1000-mL 
volumetric flask. The flask was then filled to capacity with distilled water. Solution A was 74 mL of 0.527 
M fructose, solution B was 632 mL of 0.872 M fructose, and solution C was 139 mL of 1.16 M fructose. 
What was the final concentration of fructose in the volumetric flask? Please show all your work.  
 
SCORING: (-1) pt. for significant figures error; (-1) pt. for arithmetic/units error; (-2) pts. if did not dilute 
to 1000 mL; no credit for conceptual error or not answering question 
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13. A sample that contains only SrCO3 and BaCO3 weighs 0.800 g. When it is dissolved in excess acid, 0.211 g 
of carbon dioxide (CO2) is liberated by the acid. What percentage of SrCO3 did the sample contain by 
mass? Assume that all carbon in the original mixture is converted to carbon dioxide. Remember to show all 
of your work. 
 
SCORING: (-1) pt. for significant figures error; (-1) pt. for arithmetic/units error; no credit for conceptual 
error or not answering question 

 
14. A 2.00 g mixture of NaCl and NaNO3 dissolved in water required 90.0 milliliters of 0.100 M AgNO3 to 

react with all the chloride to form AgCl. What is the mass percentage of NaCl in the original sample?  
Please show all your work. 

 
Ag+(aq) + Cl-(aq)  ⇐ AgCl(s) 

 
SCORING: (-1) pt. for significant figures error; (-1) pt. for arithmetic/units error; no credit for conceptual 
error or not answering question 
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APPENDIX K 

POSTTEST-3 SCORING KEY 

1. The molecular weight (molar mass) of Compound A is four times the molecular weight of compound B. 
What mass of B will have the same number of molecules as 20 grams of A? Please show your work and 
explain your answer. 
SCORING: 3 pts. for correct answer; 2 pts. for explanation (via words or work) 

 
2. The mass of a sulfur atom is twice that of an oxygen atom.  The formula, SO2, means that in a sample of 

sulfur dioxide (circle all that apply): 
 

A. The compound is 33% sulfur by mass. 
B. For every 100 atoms of sulfur, there are 200 atoms of oxygen. 
C. The compound is 50% oxygen by mass. 
D. For every 2 grams of oxygen, there is 1 gram of sulfur. 
E. For every atom of oxygen, there are two atoms of sulfur. 

SCORING: 1 pt. for (B); 1 pt. for (C); 5 pts. for both (B) & (C); no pts. for any other responses 
 
3. The mass of a mole of molybdenum (Mo) atoms is eight times that of a mole of oxygen (O) atoms. Arrange 

the following oxides of molybdenum in order from least to greatest percentage by mass of molybdenum. 
Please show all your work. 

MoO2
MoO3
Mo2O3
Mo2O 

SCORING: 1 pt. for each oxide in the correct order (MoO3< Mo2O< MoO2< Mo2O3); 5 pts. for all correct 
 
4. The reaction of Element W ( ) with Element D (λ) is represented below. 
 
 
  

 
 

 
 
Write the balanced equation that describes this reaction. 
SCORING: (-1) pt. if reactant or product formula incorrect; (-1) pt. for not in lowest terms; (-3) pts for 
excess reactant on product side; no points for unbalanced equation 
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5. You are mixing the contents of a bottle of Coke with the contents of nine bottles of water of equal volume. 

The concentration of sucrose in the Coke is 1 M. What is the final concentration of sucrose in the beaker? 
Explain how you determined your answer. 

 
 
   
  
 
 
 
 
 

SCORING: 1 pt. for units in “M”; 1 pt. for “1” in numerator; 3 pts. for “10” in denominator (total final 
volume is 1 bottle + 9 bottles=10 bottles) 

 
6. Calcium carbonate (chalk, limestone) reacts with acid to form a calcium salt, carbon dioxide, and water. 

Assume that the reaction of calcium carbonate with these three acids takes place as shown and goes to 
completion. 

 
(A) CaCO3 + 2HCl  CaCl2 + CO2 + H2O 
(B) CaCO3 + H2SO4  CaSO4 + CO2 + H2O 
(C) 3CaCO3 + 2H3PO4  Ca3(PO4)2 + 3CO2 + 3H2O 

 
If an equal mass of calcium carbonate (CaCO3) reacts with excess amounts each acid, compare the yields of 
carbon dioxide (CO2) produced by each reaction. 

 
 SCORING: 1 pt. for each equality (all are equal); 5 pts. for all equalities 
 
7. Figure (A) represents a mixture of iridium atoms and bromine molecules in a closed container. Assuming 

the reaction goes to completion (2Ir + 3Br2  2IrBr3), draw what the mixture looks like in Figure (B) after 
reacting. 

Br2

Ir

 
      (A)        (B) 

 
 SCORING:  1 pt. for each substance’s correct amount; 5 pts. if all substance amounts correct 
 
8. Hydrochloric acid and potassium hydroxide react to form potassium chloride and water:  
 

HCl + KOH  KCl + H2O 
 

If the molarity of an HCl solution is twice the concentration of a KOH solution, compare the volumes of 
each solution needed to react completely. Please show all your work. 

 
SCORING: 3 pts. for correct answer (need 2x vol of HCl); 2 pts. for explaining or showing inverse 
relationship) 
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9. Magnesium nitrate and potassium hydroxide react to form magnesium hydroxide and potassium nitrate 

according to the following chemical equation: 
 

Mg(NO3)2  +  2KOH  Mg(OH)2  +  2KNO3
 

Assuming the reaction goes to completion, determine the number of moles of each substance remaining 
when 2 moles of magnesium nitrate and 2 moles of potassium hydroxide are mixed in a closed reaction 
vessel. Please show all your work. 
 
SCORING: 1 pt. for correct amount of each substance; 4 pts. if all correct; 1 pt. for mentioning or showing 
limiting reactant by work 

 
10. Two different non-reacting sugar solutions are mixed: 100 mL of 1.0 M glucose and 400 mL of 0.1 M 

fructose. What is the molarity of each sugar in the final solution? Please show all your work. 
 

SCORING: 2 pts. for correct answers (1 each for glucose and fructose); 2 pts. for correct setup for each 
sugar; 1 pt. for total final volume of 500 mL 
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