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USE OF AREA UNDER THE CURVE (AUC) FROM PROPENSITY 
MODEL TO ESTIMATE ACCURACY OF THE ESTIMATED EFFECT 

OF EXPOSURE  
 

Zhijiang Zhang, M.S. 

University of Pittsburgh, 2007

Andriy Bandos, PhD 

 

Objective: To investigate the relationship between the area under the Receiver Operating 

Characteristic curve (AUC) of the propensity model for exposure and the accuracy of the 

estimated effect of the exposure on the outcome of interest. 

Methods: A Monte Carlo simulation study was performed where multiple realizations of 

three binary variables: outcome, exposure of interest and a covariate were repeatedly generated 

from the distribution determined by the parameters of the “propensity” and “main” models and 

the prevalence of the exposure. “Propensity” model was a logistic regression with the exposure 

of interest as a dependent variable and a single covariate as an “independent” variable. “Main” 

model was a logistic regression with outcome as a dependent variable, exposure of interest and 

covariate as “independent” variables. A total of 500 simulations were performed for each 

considered combination of the model parameters and the prevalence of the exposure. AUC was 

estimated from the probabilities predicted by the propensity score model. The accuracy of the 

estimated effect of exposure was primarily assessed with the square root of Mean Square Error 

(RMSE); the fifth and ninety-fifth percentile of the empirical distribution of the estimator were 

used to illustrate a range of not unlikely deviations from the true value. 
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Results:  The square root of Mean Square Error of the estimated effect of exposure 

increases as AUC increases from 0.6 to 0.9. Varying values for parameters of the propensity 

score model or the main effect model does not change the direction of this trend. As the 

proportion of exposed subjects changes away from 0.5 the RMSE increases, but the effect of 

AUC on RMSE remains approximately the same. Similarly, as sample size changes from 50 to 

100 or 200, the RMSE of effect estimate decreases on average, but the effect of AUC on RMSE 

remains approximately the same. Also, the rate of change in RMSE increases with increasing 

AUC; the rate is   the lowest when AUC changes from 0.6 to 0.7 and is highest when AUC 

changes from 0.8 to 0.9. 

Conclusions: The AUC of the propensity score model for exposure provides a single, 

relatively easy to compute, and suitable for various kind of data statistic, which can be used as an 

important indicator of the accuracy of the estimated effect of exposure on the outcome of 

interest. The public health importance is that it can be considered as an alternative to the 

previously suggested (Rubin, 2001) simultaneous consideration of the conditions of closeness of 

means and variances of the propensity scores in the different exposure groups. Our simulations 

indicate that the estimated effect of exposure is highly unreliable if AUC of the propensity model 

is larger than 0.8; at the same time AUCs of less than 0.7 are not associated with any substantial 

increase of inaccuracy of the estimated effect of exposure. 
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1.0  INTRODUCTION 

In observational studies, other risk factors may be correlated with the exposure of interest due to 

lack of randomization [1, 2]. Multivariable modeling attempts to solve this problem by putting 

the exposure of interest together with other measured covariates in the model. The adjustment 

works well under many circumstances. However, when the exposure of interest is highly 

correlated with other covariates, the estimated effect of exposure on outcome may become 

inaccurate [3, 4]. A strong association between the exposure of interest and other covariates can 

reveal itself through different phenomena such as collinearity, quasicomplete separation, or zero 

cells.  

While there are specific techniques to flag the problems of collinearity, quasicomplete 

separation and zero cells, one can try to identify directly the underlying problem of a strong 

association. Perhaps one of the best approaches to determine the degree of the association 

between the exposure and other covariates in the collected data is to fit a regression model with 

the exposure as dependent variable and other covariates as independent variables. Under such an 

approach the degree of the association between the exposure of interest and other covariates is 

directly related to the ability of the model to “predict” the exposure based on the values of the 

other covariates.  

A model of the probability of exposure (or specific treatment assignment) via other 

covariates is often used in observational studies and it typically terms as “propensity model”. 
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Usually logistic regression is used as a propensity model, and we will term the probabilities 

predicted by the propensity model as estimated propensity scores. The distribution of the 

propensity scores determines the ability of the propensity model to “predict” the exposure of 

interest, and hence characterizes the degree of the association between the exposure of interest 

and other covariates. Since the degree of such an association is closely related to the 

trustworthiness (accuracy) of the estimated relationship between the exposure and the outcome 

of interest, certain criteria have been suggested to assess the adequacy of the estimated effect of 

the exposure based on the estimated propensity scores (Rubin, 2001). However, these criteria 

imply normal distributions. On the other hand area under the curve (AUC) is an index that 

reflects the discrimination ability of the logistic model regardless of the distribution of the 

predicted probabilities. In this work we investigate how well the AUC of the propensity model 

reflects the trustworthiness of effect estimator for the exposure of interest in the main effect 

model.  

1.1 COLLINEARITY AND QUASICOMPLETE SEPARATION 

One of the components of the association of other covariates with the exposure of interest is 

known as collinearity or near-collinearity. In general, near-collinearity occurs when two or more 

confounders and/or exposure are highly correlated with each other, sometimes even to the extent 

when it is difficult or even impossible to distinguish their individual influence on the outcome 

[5]. Collinearity can be defined for any two sets of continuous covariates. But here we are more 

interested in the situation when near collinearity exists between the exposure of interest and other 

covariates in an observational study.  There are several approaches to flag near-collinearity at the 
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analysis stage. When near-collinearity exists, the regression coefficients are likely to change 

dramatically in either magnitude or sign according to whether the other confounders are included 

or not; the standard errors of the regression coefficients may become substantially higher, or 

nonsignificant despite a high R2. In logistic regression, one can look for estimated coefficients of 

unreasonable magnitude or with estimated standard error which is much larger than expected [6]. 

Ridge logistic regression or principal components logistic regression are alternatives to standard 

logistic regression when near-collinearity exists [3, 4]. The simplest way to check collinearity 

between continuous covariates is pairwise correlation analysis. However, this method does not 

necessarily detect multicollinearity. A better approach is to fit regression model with each 

covariate as dependent variable and the other variable as independent variable. In practice VIF 

(variance inflation factor) is also used, which is defined as (1- R2)-1. It is suggested that largest 

VIF>10 or mean VIF>1 indicate collinearity problem. In present study, we are primarily 

interested in the collinearity between covariates and binary exposure on accuracy of effect 

measure for exposure. 

Another problem related to the association of the exposure with the other covariates of 

interest is “quasicomplete separation”, or “not adequately overlapping covariates”. This problem 

happens when a third covariate, other than exposure of interest and outcome, have a distribution 

across the exposure/treatment groups without or with little overlapping [6]. For continuous 

covariates, it implies that the values are greatly different in one group than in the other group. 

For example, subjects in one group can be mostly below 20 years of age, while in the other group 

they are mostly over 35 years of age. For categorical covariates, one exposure group can include 

subjects of almost exclusively one category, such as male; while the other exposure group 

includes subjects almost exclusively from the other categories, such as female. Naturally, this 
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problem of “not adequately overlapping” is more likely to happen when the sample size is small, 

the proportion of exposure or treatment is far from 0.5, or the number of covariates is large [6].  

Near-collinearity, quasi-complete separation and zero cells are interconnected but have 

distinct features when considered in the relationship to the two sets of multi-categorical (e.g. 

continuous) variables. In application to the binary exposure level and a set of covariates, the 

distinctions fade away and it becomes easier to refer to the corresponding problem collectively as 

a degree of association between level of the exposure and other covariates.  

In the presence of a strong association between the exposure of interest and other 

covariates it is difficult to compare the exposure groups. If the effects of the covariates are 

ignored, the estimated effect of exposure might be highly inaccurate due to incorporation of the 

effects of unaccounted covariates. For example, when there are much more old people in one 

exposure group than in the other exposure group, the difference of the outcome between 

exposure groups can be attributed to either exposure or age or both. Or, when one exposure 

group is consisted of substantially more male subjects, while the other exposure group is 

consisted of substantially more female subjects, the difference of the outcome between exposure 

groups can be either the result of different exposure or the result of gender effect. Unfortunately, 

in the presence of mentioned near-collinearity analytical adjustments do not eliminate the 

problem completely. Because of the binary nature of the exposure considered in this woek, both 

problem can be classified simultaneously as near-collinearity and quasi-complete separation.  

There are several different approaches to diagnosing the problems of strong association, 

such as large estimates in the target model, or severe imbalance in a univariate analyses. 

Propensity score modeling can be viewed as a mechanism to model such association directly, 
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and thus, provides yet another, and perhaps more natural, approach for diagnosing potential 

problems related to strong association.  

 

1.2 PROPENSITY SCORES 

Propensity score modeling was proposed by Rosenbaum and Rubin in 1983 [7]. The propensity 

score is the conditional probability of “being assigned” to a particular exposure, given a set of 

observed characteristics. It can be estimated from a logistic regression, with the exposure as the 

dependent variable and the potential confounders as “independent” variables [8]. Patients with 

the same propensity score have equal estimated probabilities to “be assigned” to each exposure 

group and the same conditional distribution of the observed characteristics [7, 9, 10]. Therefore, 

it is akin to randomized clinical trials, which achieve balance of confounders between the 

exposure groups through the process of randomization [11]. However, propensity score can not 

control for unknown or unobserved confounders, whereas randomization can stochastically 

balance both observed and unobserved confounders [11, 12]. Some researchers have suggested 

methods to evaluate sensitivity of the propensity model to unknown confounders [13].  

The technique using propensity score for adjustments can be classified into three types: 

matching, subclassfication, and weighting. Matching is the paring of exposed units and 

unexposed units with similar values of the propensity score. All unmatched units will be 

discarded. One-one Mahalanobis metric matching within propensity score calipers is the most 

popular method, but one treated unit matching multiple unexposed units is also proposed [12]. 

Subclassification creates subclasses of exposed or unexposed units with similar values of 
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propensity score. First rank all units by their propensity score values and then use boundaries to 

create five or six subclasses, within which there are approximately the same total number of units 

[12].  Weighting methods weight each exposed unit with the inverse of propensity score, and 

weight each unexposed unit with the inverse of one minus the propensity score [12]. All these 

methods do not involve outcome variables, so these efforts will not affect the effect estimator on 

outcome, analogous to the way randomization works for clinical trial. Matching results in well-

balanced but smaller groups for comparison. Subclassification retains a larger sample size, but 

the exposure groups are more heterogeneous within each subclass. Another application of 

propensity score is the use as a covariate for adjustment in a multivariate regression model, with 

or without inclusion of other potential confounders.  

In addition to using propensity scores for the adjustment there is another very important 

utility of the propensity scores, specifically on the initial stages of analysis they can be used  to 

diagnose if successful balance has been achieved for important confounders [12]; If the balance 

can not be achieved on very important confounders, then it is better to revise the design to 

account for such imbalance. Rubin (2001) has suggested three basic distributional conditions 

which must be simultaneously satisfied in a well balanced data. (1) The mean propensity score in 

the two groups being compared should be similar, e.g. the difference between means should be 

less than half of a standard deviation; (2) The variance of the propensity score in the two groups 

should be similar, e.g. less than ½ or greater than 2 are too extreme; (3) The variances of the 

residuals of the covariates after adjusting for the propensity score should be similar, e.g. less than 

½ or greater than 2 are too extreme [12].  

Here we are interested in the second utility of the propensity scores, namely in the 

properties of the distribution of propensity scores to predict “trustworthiness” or accuracy of the 
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effect of exposure estimated from a given data. Two out of the three criteria presented by Rubin 

(2001) reflect direct discrepancies between the distributions of propensity scores for the two 

exposure levels. Indeed the degree of inequality of the distribution of the propensity scores for 

the exposure level is naturally related to the degree of association between the levels of exposure 

and other covariates, and hence affects the accuracy of the estimation exposure effect. One of the 

limitation of the Rubin’s criteria is their suitable mostly for normal distributions. 

1.3 AREA UNDER ROC CURVE 

Receiver Operating Characteristic (ROC) curve is a plot of “sensitivity” versus “false positive 

rate” (or fraction) [14]. In general, the area under the ROC curve (AUC) computed for a 

predictive model is often termed as a measure of overall predictive accuracy, or discriminative 

ability of the model. It describes how well the predicted probabilities from the binary model, 

typically logistic regression model, classify patients into their actual class (e.g. exposed or non-

exposed) or discriminate patients from the two different classes [14]. Here we will consider the 

AUC of the propensity model. 

Theoretical value of the AUC could range from 0 to 1, corresponding to the cases when 

exposed subjects have propensity to be exposure always less (0) or always greater (1) than non-

exposed subjects. However, it can be immediately seen that for the propensity scores or for any 

reasonable predictive model or diagnostic test the AUC does not assume values below 0.5 since 

if that had been the case, it would have violated the definition of the predictive probability or 

propensity score(a simple switching labels “exposed”, “non-exposed” would produce a 

reasonable system with AUC greater than 0.5). Thus, in reasonable scenarios when the 
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propensity score  is independent from the level of exposure, the true AUC is 0.5 and when the 

distributions of the propensity scores for the two levels of exposure has no overlap, the true AUC 

is 1.  For the logistic models Hosmer and Lemeshow suggest a general rule: (1) 0.5≤AUC<0.7 

suggests poor discrimination; (2) 0.7≤AUC<0.8 suggests an acceptable discrimination; (3) 

0.8≤AUC<0.9 suggests an excellent discrimination; (4) AUC≥0.9 suggests outstanding 

discrimination [6]. 

Being an estimate of a stochastic dominance of one of the distributions of propensity 

scores, AUC from the propensity model is a reflection of the covariates distribution among the 

exposure levels, hence, it reflects the degree of the association between covariates and exposure 

of interest. Generally speaking, the closer AUC is to 0.5the less strong the association is. The 

AUC of greater than 0.9 usually suggests complete nonoverlapping of the covariates across 

exposure groups and hence a strong association between the exposure of interest and other 

covariates. 

The criteria suggested by Rubin, which reflect two specific differences between the 

distributions of the propensity scores, are most appropriate for the normally distributed data. For 

not necessarily normally distributed data another measure of the differences between the 

distributions is often used. This measure is the Wilcoxon statistic or a summary of the stochastic 

dominance of one of the distributions of the propensity scores, say corresponding to the exposed 

subjects, over the other distribution. In terms of the Receiver Operating Characteristic analysis 

this measure is equivalent to the area under the ROC curve. Although the AUC or c-statistic has 

been considered as an important index to report with the propensity model (typically logistic 

regression) [6, 15] to our knowledge it has not been used to characterize the trustworthiness of 

the estimated effect of exposure on the outcome of interest. 
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In relationship to the true propensity scores which are continuous (probability of a ties is 

zero), the area under the ROC curve can be interpreted as a probability that for a randomly 

selected exposed subject the propensity score would be higher than for a randomly selected 

unexposed subject. In the case when the ties in the propensity score are possible, the AUC is the 

above probability plus half of the probability of a tie – reflecting the principle that a forced 

binary (two exposure levels) discrimination between the two subjects with the same propensity 

score has a 1/2 chance to be correct. 

Thus, area under ROC curve (AUC) provides a scalar statistics which quantifies the 

difference in the distributions of the propensity scores and has a potential to be an important 

predictor of the ability to obtain trustworthy inferences about effect of exposure with a given 

data. In this study we carry out a preliminary investigation of the relationship between the AUC 

of the propensity scores for exposure and the accuracy of the estimated effect of the exposure on 

the outcome of interest.  
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2.0  METHODS 

The “main” model considered in this work is a logistic regression with outcome, y, as a 

dependent variable, and “independent” variables including the exposure of interest, x, and other 

covariates arranged in the vector z. We assume that there is no interaction between the exposure 

and other covariates. 

Y|X, Z ~ bin(1, py|xz) 
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As a propensity model we consider a logistic regression with the exposure of interest, x, 

as dependent variable, the other covariates, z, as independent variables. 

X|Z~ bin (1, px|z) 
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The propensity score (Rosenbaum and Rubin, 1983) is the probability to be exposed 

given the values of the other observed covariates, i.e.  
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 ( ) ( ) ( )( ) 1

|1| 1x ze Z P X Z p e α
−

− + ×= = = = + X|Zβ ` z  (3) 

Being dependent on the random Z, the propensity score has its own probability 

distribution. The distribution of the propensity scores among the exposed (x=1) and unexposed 

(x=0) people are denoted as follows: 

 ( ) ( ) ( ) ( )0 0 1
0 1| ~ |X Xe Z e Z F e Z e Z F= == = 1~  (4) 

Then, the ability of the propensity score to discriminate between the two exposure levels 

can be comprehensively characterized by the ROC curve, which is the plot of True Positive 

Fraction (TPF, or sensitivity) versus False Positive Fraction (FPF, or 1-specificity), where the 

TPF and FPF are defined as follows: 
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1

)
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where t is a threshold which can be used to partition subjects into the two groups according to 

their propensity scores. When the propensity score is continuous (no ties possible) the area under 

the ROC curve can be written as: 

 ( ) ( ) 0 1A TPF t dFPF t P e e⎡ ⎤= = <⎣ ⎦∫  (6) 
For non-continuous distribution of the propensity scores the expression becomes more 

complicated, i.e.: 

 0 1 0 10.5A P e e P e e⎡ ⎤ ⎡= < + × = ⎤⎣ ⎦ ⎣ ⎦  (7) 

For the case where the propensity score assumes only two values (e.g. z is a single binary 

covariate), there is only one diagnostic threshold t  which allows for nontrivial dichotomization 

of the propensity scores (trivial dichotomizations assign empty set to one of the groups). In this 

case we can drop the argument, t, for the True Positive and False Positive Fractions. The ROC 
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curve, in this case, consists of two straight-line segments connecting points (0, 0), (FPFz|x, 

TPFz|x) and (1, 1) respectively; and we can express AUC in a more simple form, i.e.: 

 
2
1 ||

|
xzxz
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FPFTPF
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where 

 TPFz|x=P(z=1|x=1)    FPFz|x=P(z=1|x=0) (9) 

The estimate of the AUC can be obtained using empirical estimator of the FPFz|x and 

TPFz|x, or equivalently as a proportion of the times the estimated propensity score for exposed 

people was higher than that for unexposed, plus half of the proportion when the propensity 

scores are equal) i.e: 
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where n0, n1 are the number of unexposed and exposed subjects correspondingly. 

As a primary measure of the accuracy of the estimated effect of exposure in this work we 

use a mean squared error which is defined as follows: 

 ( ) ( )2

| | |
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 (11) 

From the data the MSE was estimated according to the following expression: 
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m: number of simulations with converged logistic regression 

βY|X: the true value of coefficient in the logistic regression (fixed and used to determine 

the distribution for generating the observations) 
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β̂ Y|X: the estimated value of the coefficient in the logistic regression (using a dataset 

generated from the specified distribution) 

The investigation was performed using a Monte Carlo simulation study. The simulation 

algorithm is shown in Figure 1. The possible scenarios when fitting the Propensity Model and 

Main Model are shown in Figure 2.  

Main model parameter

Data Set
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Main model parameter 
estimators

Estimates of accuracy of 
estimators 

Bias: 

Precision: 

True AUC (X-Z)
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Parameters of joint 
distribution of x and z
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Coefficients of propensity 
score model
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Model-based Estimated 
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2 ˆ,ˆ,ˆ ZYXY ββα

ZXP |
ˆ

ZXZX
m

ZYXYZYXY AA |||||| ,ˆ,ˆ,ˆ,ˆ,,, ββαββα

 

Figure 1  Simulation Algorithm 
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Data set (Y, X, Z)

Propensity Model

Nonconvergence

Convergence
, MSE, P5, P95

Main Model

Nonconvergence

Convergence

p̂

Â

 

Figure 2  Chart of Possible Scenario when Fitting the Two Models 

 

The considered values of the parameters of the propensity model and the prevalence of 

the exposure are listed in Table1. The considered values of the parameters of the main model are 

shown in Table 2. 

The exposure of interest, x, was generated from a Bernoulli distributions with marginal 

probability of exposure (prevalence of exposure) px=P(x=1) of 0.2, 0.5 and 0.8. The degree of 

the association between the exposure, x, and the covariate, z, was determined by area under ROC 

curve (AUC) with values of 0.6, 0.7, 0.8, and 0.9 (which together with the prevalence of 
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exposure determine the complete joint distribution of x and z). The values for TPFz|x and FPFz|x  

(eq. 9) shown in Table 1 were restricted to the following pattern: TPFz|x+FPFz|x=1.1. In our study 

the effect of exposure of interest on outcome ranged from moderate negative to moderate 

positive. Independently from the direction of the exposure effect, the effect of covariate on 

outcome also ranged from moderately negative to moderately positive with the absolute value 

similar that of the exposure effect. Thus, we model the scenario when the direction of the 

covariate effect was either same (enhancing the effect of the exposure in a univariate model) as 

or opposite (compensating for the effect of the exposure in a univariate model) to the effect of 

exposure of interest.  

The sample size for a single simulated dataset was 50, 100, and 200 respectively. Peduzzi 

et al. found that standard asymptotic approximations are poor when sample size is smaller than 

ten times the number of parameter [17]. There are two parameters in our study, exposure of 

interest and one covariate. Therefore, a sample size of 50 was considered reasonable for this 

preliminary investigation (50>10*2). Finally, the total number of simulated dataset was 500. 
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Table 1  Parameter Values of Propensity Model Considered in the Simulations 

p(x=1) AUC p(z=1|x=1) βx|z α 
0.2 0.6 0.65 0.82 -2.21 
0.2 0.7 0.75 0.90 -2.29 
0.2 0.8 0.85 1.12 -2.51 
0.2 0.9 0.95 1.85 -3.24 
0.5 0.6 0.65 0.82 -0.82 
0.5 0.7 0.75 0.90 -0.90 
0.5 0.8 0.85 1.12 -1.12 
0.5 0.9 0.95 1.85 -1.85 
0.8 0.6 0.65 0.82   0.57 
0.8 0.7 0.75 0.90   0.49 
0.8 0.8 0.85 1.12   0.27 
0.8 0.9 0.95 1.85 -0.46 

    

Table 2  Parameter Values of Main Model Considered in the Simulations 

βY|X βY|Z α 

-1 -0.95 
0 

-1                      0 
0 

-1 0.95 
0 

0 -0.05 
0 

0                      0 
0 

0 0.05 
0 

1 -1.05 
0 

1                      0 
0 

1 1.05 
0 

 

The simulations were implemented using SAS v.9.1. The primary measure of interest in 

this study was mean square error (MSE), and the fifth and ninety-fifth percentile of the 

distribution of the estimated effect of exposure. 

  16



3.0  RESULTS 

Table 3, 4 and 5 display the square root of the MSE (RMSE), and the 5th and 95th percentile of 

the empirical distribution of the estimator of the exposure effect for the sample size of 50, 100 

and 200 correspondingly. The considered scenarios are indexed by specific values of the 

prevalence of the exposure (px), the AUC of the propensity model, and the parameters of the 

main model (βY|X, βY|Z). 

The square root of MSE (RMSE) can be interpreted as the absolute distance between the 

true parameter value and the estimated parameter value. As AUC increases from 0.6 to 0.9, the 

RMSE increases for all considered values of other parameters (Tables 3, 4, 5). This trend can be 

seen clearly when plotting the square root of the MSE versus AUC (Figure 3, 4, 5). In the tables 

the relevance of the observed magnitude of the RMSE is illustrated with the ratio between the 

most extreme among not unlikely values (between 5th and 95th percentile) of the estimated odds 

ratio and the true odds ratio of the exposure. For example, for the sample size of 50, and AUC of 

0.6 the estimate of the exposure effect is not unlikely to be as high as 13 times greater than the 

true effect, and when AUC increases to 0.8 this ratio become as high as 18. Naturally, the 

increasing sample size decreases the magnitude of the error and alleviates the effect of increasing 

AUC, for instance, the increase of the sample size to 200 does limit the not unlikely over- or 

under-estimated effect of exposure to being from 6 to 9 times (compared to 13-18) far from the 

true value depending on the AUC.  
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 The results in Table 3, 4, 5 also demonstrate that the square root of MSE is the lowest 

when the prevalence of exposure is 0.5 and it increases when the prevalence changes away from 

0.5 (to 0.2 or to 0.8). For example, for the prevalence of the exposure of 0.5 not unlikely 

estimates of the exposure effect can be up to 10.58 times lower/greater than the true effect, while 

for the prevalence of 0.2 or 0.8 it can be up to 14.29 times lower/greater (Table 4). The 

prevalence does not seem to substantially modify the effect of AUC on RMSE (Figure 6). 

The size of a sample has a significant effect on the RMSE on average but does not seem 

to substantially modify the effect of AUC on RMSE (Figure 8). On average the RMSE decreases 

as the sample size changes from 50 to 100, 200. Not unlikely estimates of the exposure effect can 

be up to 20 times far from the truth for the sample size 50 and up to 8.3 times for sample size of 

200. However, for all considered  sample sizes, the AUC increasing from 0.6 to 0.9 increases the 

maximum ratio between the true and not unlikely estimates of the odds ratio by approximately 

1.5 (20/13 for 50, 11/7 for 100, 9/6 for 200). 

In summary, the results of the conducted simulation study indicate that the inaccuracy of 

the estimated effect of the exposure substantially increases with the increasing area under the 

ROC curve (AUC). The rate of change of the RMSE is the highest for AUC>0.8 and the lowest 

for AUCs<0.7. Other parameters, such as px, βY|X, βY|Z and sample size, do not exert substantial 

effect on the general shape of the observed trend. However, the height of the trend curves (or 

average RMSE) is affected by both sample size and prevalence of exposure. 

 



Table 3 Square root of MSE, 5th and 95th percentile of the estimated exposure effect (sample size=50) 

AUC=0.6   AUC=0.7   AUC=0.8   AUC=0.9        
px 

  
by_x 

  
by_z   P5 P95 *Ratio   P5 P95 *Ratio   P5 P95 *Ratio   P5 P95 *Ratio 

0.2      -1 -0.95 0.857 -1.106 1.588 13.30 0.898 -1.043 1.699 14.86 0.98 -1.187 1.906 18.28 0.974 -1.332 1.74 15.48 
0.2      

       
        
       
         
            
            
             
    
      
       
         
      
            
             
            
            
     
      
        
          
           
            
             
          
             

-1 0 0.843 -1.389 1.47 11.82 0.853 -1.377 1.386 10.87 0.955 -1.579 1.574 13.11 1.015 -1.708 1.801 16.46 
0.2 -1

 
0.95 0.883 -1.612 1.446 11.54 0.87 -1.518 1.357 10.55 0.94 -1.596 1.623 13.77 0.953 -1.325 1.693 14.77 

0.2 0 -0.05
 

0.842
 

-1.354 1.44 4.22 0.822 -1.269 1.504 4.50 0.97 -1.584 1.694 5.44 1.067 -1.832 1.56 6.25^(-1)
0.2 0 0 0.84 -1.356 1.44 4.22 0.822 -1.248 1.516 4.55 0.974 -1.63 1.675 5.34 1.054 -1.792 1.56 5.88^(-1)
0.2 0 0.05 0.835 -1.354 1.393 4.03 0.829 -1.237 1.516 4.56 0.968 -1.606 1.714 5.55 1.042

 
 -1.792 1.56 5.88^(-1)

 0.2 1 -1.05
 

0.905 -1.341 1.781 10^(-1) 0.899 -1.32 1.708 10^(-1) 0.966 -1.56 1.718 12.5^(-1) 1.05 -1.931 1.485 20^(-1)
0.2 1 0 0.811 -1.274 1.328 10^(-1) 0.843 -1.186 1.484 9.09^(-1) 1.003 -1.537 1.746 12.5^(-1) 1.031 -1.827 1.708 16.67^(-1)
0.2 1 1.05 0.847 -1.494 1.066 12.5^(-1)

 
0.848 -1.603 0.945 14.29^(-1) 

 
0.901 -1.693 1.041 14.29^(-1) 

 
0.881 -1.602 1.079 14.29^(-1)

0.5 -1 -0.95
 

0.788 -1.459 1.141 8.51 0.87 -1.436 1.352 10.51 0.935 -1.51 1.542 12.70 1.051 -1.944 1.436 11.42 
0.5 -1 0 0.718 -1.311 1 7.39 0.779 -1.392 1.174 8.79 0.854 -1.416 1.442 11.49 0.921 -1.456 1.598 13.43 
0.5 -1

 
0.95 0.668 -1.342 0.875 6.52 0.73 -1.434 1.023 7.56 0.76 -1.344 1.188 8.91 0.809 -0.902 1.575 13.13 

0.5 0 -0.05
 

0.608
 

-1.049 0.966 2.86^(-1) 0.718 -1.18 1.176 3.23^(-1) 
 

0.843 -1.438 1.491 4.44 0.859 -1.405 1.478 4.38 
0.5 0 0 0.61 -1.059 0.977 2.86^(-1) 0.721 -1.187 1.195 3.30 0.843 -1.429 1.471 4.35 0.878 -1.39 1.5 4.48 
0.5 0 0.05 0.604 -1.044 0.972 2.86^(-1) 0.717 -1.175 1.229 3.42 0.839 -1.387 1.356 4^(-1) 0.872 -1.367 1.478 4.38 
0.5 1 -1.05

 
0.667 -1.027 1.251 7.69^(-1) 0.757 -1.043 1.506 7.69^(-1) 0.797 -1.244 1.307 9.09^(-1) 0.868 -1.744 0.941 16.67^(-1)

0.5 1 0 0.665 -0.99 1.185 7.14^(-1) 0.762
 

-1.139 1.412 8.33^(-1) 
 

0.876 -1.432 1.487 11.11^(-1) 
 

0.909 -1.436 1.519 11.11^(-1)
0.5 1 1.05 0.722 -1.026 1.354 7.69^(-1)

 
0.8 -1.254 1.495 10^(-1) 0.947 -1.531 1.625 12.5^(-1)

 
1.002 -1.447 1.755 11.11^(-1)

0.8 -1 -0.95
 

0.968 -1.788 1.379 10.79 0.956 -1.744 1.525 12.49 1.03 -1.726 1.768 15.92 1.072 -1.702 1.818 16.74 
0.8 -1 0 0.932 -1.773 1.247 9.46 0.953 -1.707 1.441 11.48 0.958 -1.621 1.654 14.20 0.974 -1.154 1.915 18.44 
0.8 -1

 
0.95 0.897

 
-1.867 1.161 8.68 0.9 -1.674 1.28 9.77 0.879 -1.397 1.41 11.13 0.965 -0.966 1.981 19.70 

0.8 0 -0.05
 

0.87 -1.546 1.325 4.76^(-1) 0.908 -1.557 1.487 4.76^(-1) 
 

0.963 -1.679 1.571 5.26^(-1) 0.937 -1.438 1.65 5.21 
0.8 0 0 0.874 -1.537 1.325 4.55^(-1) 0.909 -1.629 1.403 5^(-1) 0.955 -1.679 1.571 5.26^(-1) 0.933 -1.438 1.674 5.33 
0.8 0 0.05 0.877 -1.537 1.287 4.55^(-1) 0.909 -1.581 1.435 4.76^(-1) 

 
0.959 -1.693 1.594 5.56^(-1) 0.929 -1.453 1.636 5.14 

0.8 1 -1.05
 

0.869 -1.375 1.529 11.11^(-1) 0.863 -1.323 1.41 10^(-1) 0.923 -1.677 1.37 14.29^(-1) 0.978 -1.833 0.827 16.67^(-1)
 0.8 1 0 0.872 -1.362 1.474 11.11^(-1) 0.904 -1.444 1.6 11.11^(-1) 0.952 -1.679 1.443 14.29^(-1) 0.995 -2.064 1.168 20^(-1)

0.8 1 1.05 0.932 -1.459 1.637 11.11^(-1) 0.965 -1.615 1.672 14.29^(-1) 1.072 -1.752 1.724 16.67^(-1) 1.125 -2.01 1.883 20^(-1)

MSE MSE MSE MSE

*: True OR/OR 5th, or True OR/OR 95th, whichever is farther from 1. 
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Table 4 Square root of MSE, 5th and 95th percentile of the estimated exposure effect (sample size=100) 

px       by_x by_z AUC=0.6 AUC=0.7 AUC=0.8 AUC=0.9
        P5 P95 *Ratio   P5 P95 *Ratio   P5 P95 *Ratio   P5 P95 *Ratio 
0.2              -1 -0.95 0.667 -1.223 0.971 7.18 0.676 -1.256 0.958 7.08 0.711 -1.262 1.079 7.99 0.853 -1.398 1.403 11.06 
0.2              

              
               
           
            
               
            
            
              
              
              
               
            
            
               
            
            
              
          
              
              
           
           
               
            
            

-1 0 0.625 -1.281 0.906 6.73 0.616 -1.113 0.913 6.77 0.712 -1.24 1.038 7.67 0.811 -1.565 1.182 8.86 
0.2 -1 0.95 0.571 -1.033 0.863 6.44 0.574 -0.956 0.913 6.77 0.684 -1.289 0.952 7.04 0.798 -1.485 1.117 8.30 
0.2 0 -0.05

 
0.549 -0.912 0.851 2.5^(-1)

 
0.556 -0.867 0.919 2.51 0.643 -1.044 1.028 2.86^(-1) 0.797 -1.416 1.273 4.17^(-1)

0.2 0 0 0.542 -0.914 0.834 2.5^(-1) 0.552 -0.9 0.944 2.57 0.636 -1.037 1.003 2.78^(-1) 0.778 -1.416 1.18 4.17^(-1)
0.2 0 0.05 0.535 -0.914 0.838 2.5^(-1) 0.552 -0.83 0.948 2.58 0.636 -0.999 1.036 2.82 0.781 -1.361 1.198 3.85^(-1)
0.2 1 -1.05

 
0.585 -0.919 0.997 6.67^(-1) 0.599 -0.895 1.084 6.67^(-1) 0.719 -0.965 1.305 7.14^(-1) 0.791 -1.201 1.398 9.09^(-1)

0.2 1 0 0.619 -0.883 1.2 6.67^(-1) 0.642 -0.877 1.279 6.67^(-1) 0.71 -0.993 1.412 7.14^(-1) 0.806 -1.227 1.398 9.09^(-1)
0.2 1 1.05 0.703 -1.077 1.301 7.69^(-1) 0.707 -1.065 1.359 7.69^(-1) 0.77 -1.16 1.325 8.33^(-1) 0.884 -1.603 1.351 14.29^(-1)
0.5 -1 -0.95 0.528 -0.961 0.803 6.07 0.556 -0.978 0.891 6.62 0.63 -1.074 1.046 7.74 0.85 -1.505 1.36 10.58 
0.5 -1 0 0.493 -0.875 0.708 5.52 0.526 -0.977 0.702 5.48 0.598 -1.062 0.904 6.71 0.787 -1.327 1.212 9.13 
0.5 -1 0.95 0.481 -0.879 0.669 5.31 0.53 -0.982 0.645 5.18 0.596 -1.156 0.82 6.17 0.688 -1.234 1.037 7.67 
0.5 0 -0.05

 
0.437 -0.722 0.69 2.04^(-1) 0.489 -0.817 0.711 2.27^(-1) 0.577 -0.969 0.926 2.63^(-1) 0.761 -1.345 1.253 3.85^(-1)

0.5 0 0 0.436 -0.733 0.691 2.08^(-1) 0.49 -0.834 0.734 2.33^(-1) 0.574 -0.938 0.909 2.56^(-1) 0.766 -1.315 1.282 3.7^(-1)
0.5 0 0.05 0.435 -0.721 0.695 2.04^(-1) 0.489 -0.852 0.727 2.33^(-1) 0.567 -0.947 0.922 2.56^(-1) 0.768 -1.345 1.254 3.85^(-1)
0.5 1 -1.05

 
0.458 -0.728 

 
0.755 6.25^(-1) 0.511 -0.755 0.877 5.88^(-1) 0.594 -0.885 1.04 6.67^(-1) 0.718 -1.154 1.228 8.33^(-1)

0.5 1 0 0.467 -0.74 0.834 6.25^(-1) 0.516 -0.837 0.853 6.25^(-1) 0.594 -0.889 0.997 6.67^(-1) 0.769 -1.241 1.419 9.09^(-1)
0.5 1 1.05 0.526 -0.818 0.928 6.25^(-1) 0.58 -0.936 0.954 7.14^(-1) 0.66 -1.105 1.049 8.33^(-1) 0.838 -1.339 1.483 10^(-1)
0.8 -1 -0.95

 
0.626

 
-1.073 1.002 7.40 0.618 -1.036 0.986 7.28 0.74 -1.365 1.095 8.13 0.886 -1.573 1.47 11.82 

0.8 -1 0 0.62 -1.057 0.876 6.53 0.624 -1.184 0.902 6.70 0.749 -1.385 1.05 7.77 0.869 -1.38 1.505 12.24 
0.8 -1 0.95 0.619 -1.184 0.784 5.95 0.629 -1.197 0.861 6.43 0.753 -1.516 0.97 7.17 0.768 -1.199 1.412 11.15 
0.8 0 -0.05

 
0.594 -1.043 0.879 2.86^(-1) 0.6 -1.041 1.005 2.86^(-1) 0.732 -1.303 1.16 3.70^(-1) 0.944 -1.588 1.747 5.74 

0.8 0 0 0.596 -1.068 0.847 2.94^(-1) 0.595 -1.031 0.944 2.78^(-1) 0.728 -1.312 1.159 3.70^(-1) 0.936 -1.593 1.768 5.86 
0.8 0 0.05 0.596 -1.077 0.864 2.94^(-1) 0.595 -1.062 0.953 2.86^(-1) 0.725 -1.306 1.117 3.70^(-1) 0.933 -1.533 1.768 5.86 
0.8 1 -1.05

 
0.617 -0.923 1.155 6.67^(-1) 0.62 -0.939 1.152 7.14^(-1) 0.739 -1.129 1.376 1.46 0.841 -1.444 1.217 11.11^(-1)

0.8 1 0 0.597 -0.974 1.017 7.14^(-1) 0.622 -0.999 0.964 7.14^(-1) 0.752 -1.119 1.282 1.33 0.918 -1.63 1.493 14.29^(-1)
0.8 1 1.05 0.674 -1.115 0.968 8.33^(-1) 0.681 -1.213 1.147 9.09^(-1) 0.8 -1.359 1.243 1.27 1.023 -1.649 1.796 14.29^(-1)

MSE MSE MSE MSE

*: True OR/OR 5th, or True OR/OR 95th, whichever is farther from 1. 
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Table 5 Square root of MSE, 5th and 95th percentile of the estimated exposure effect (sample size=200) 

px by_x by_z AUC=0.6 AUC=0.7 AUC=0.8 AUC=0.9
        P5            P95 *Ratio   P5 P95 *Ratio   P5 P95 *Ratio   P5 P95 *Ratio
0.2             -1 -0.95 0.501 -0.905 0.753 5.77 0.52 -0.896 0.784 5.95 0.571 -1.039 0.781 5.94 0.67 -1.165 1.034 7.64 
0.2         

        
              
          
          
            
      
            
             
         
          
          
          
           
         
       
         
             
         
          
          
          
           
            
         
            

-1 0 0.431 -0.74 0.639 5.15 0.439 -0.736 0.675 5.34 0.482 -0.839 0.707 5.51 0.563 -1.024 0.828 6.22 
0.2 -1 0.95 0.412 -0.737 0.679 5.36 0.4 -0.631 0.692 5.43 0.447 -0.788 0.668 5.30 0.559 -1.044 0.808 6.10 
0.2 0 -0.05

 
0.39 -0.655 0.655 1.93 0.379 -0.577 0.675 1.97 0.423 -0.653 0.735 2.09 0.533 -0.842 0.888 2.43 

0.2 0 0 0.388 -0.648 0.642 1.92^(-1) 0.378 -0.579 0.685 1.98 0.418 -0.653 0.721 2.06 0.524 -0.829 0.853 2.35 
0.2 0 0.05 0.382 -0.625 0.639 1.89 0.37 -0.565 0.654 1.92 0.412 -0.632 0.704 2.02 0.521 -0.869 0.857 2.38^(-1)
0.2 1 -1.05

 
 0.417 -0.674 0.698 5.26^(-1)

 
0.433 -0.637 0.795 5.26^(-1)

 
0.49 -0.691 0.922 5.56^(-1) 0.594 -0.787 1.125 5.88^(-1)

0.2 1 0 0.424 -0.628 0.775 5^(-1) 0.453 -0.614 0.822 5^(-1) 0.485 -0.681 0.821 5.26^(-1) 0.547 -0.817 0.938 6.25^(-1)
0.2 1 1.05 0.543 -0.753 1.054 5.88^(-1) 0.598 -0.732 1.23 5.56^(-1) 0.627 -0.83 1.262 6.25^(-1) 0.706 -1.033 1.229 7.69^(-1)
0.5 -1 -0.95

 
0.356 -0.612 0.553 4.73 0.379 -0.657 0.603 4.96 0.439 -0.725 0.715 5.56 0.596 -0.962 1.027 7.59 

0.5 -1 0 0.324 -0.594 0.479 4.39 0.359 -0.643 0.569 4.80 0.406 -0.693 0.631 5.11 0.561 -0.924 0.904 6.71 
0.5 -1 0.95 0.335 -0.619 0.489 4.43 0.365 -0.72 0.514 4.54 0.428 -0.812 0.612 5.01 0.557 -0.972 0.722 5.60 
0.5 0 -0.05

 
 0.308 -0.529 0.488 1.69^(-1) 0.34 -0.578 0.551 1.79^(-1) 0.399 -0.665 0.676 1.97 0.539 -0.795 0.899 2.46 

0.5 0 0 0.306 -0.546 0.474 1.72^(-1) 0.335 -0.59 0.517 1.82^(-1) 0.393 -0.627 0.644 1.90 0.537 -0.859 0.93 2.54 
0.5 0 0.05 0.303 -0.529 0.466 1.69^(-1) 0.331 -0.607 0.521 1.82^(-1)

 
0.387 -0.619 0.62 1.86 0.524 -0.901 0.866 2.44^(-1)

0.5 1 -1.05
 

 0.326 -0.531 0.546 4.55^(-1) 0.353 -0.592 0.619 5^(-1) 0.436 -0.644 0.722 5.26^(-1)
 

0.574
 

-0.795 
 

1.046 5.88^(-1)
0.5 1 0 0.325 -0.508 0.565 4.55^(-1)

 
0.353 -0.586 0.583 5^(-1) 0.413 -0.614 0.712 5^(-1) 0.56 -0.83 0.92 6.25^(-1)

0.5 1 1.05 0.378 -0.629 0.659 5^(-1) 0.404 -0.653 0.695 5.26^(-1) 0.468 -0.713 0.764 5.56^(-1) 0.622 -1.013 0.908 7.69^(-1)
0.8 -1 -0.95

 
0.419 -0.696 0.668 5.30 0.432 -0.731 0.684 5.38 0.494 -0.838 0.806 6.08 0.697 -1.155 1.153 8.61 

0.8 -1 0 0.404 -0.675 0.628 5.09 0.417 -0.69 0.602 4.96 0.489 -0.784 0.835 6.26 0.695 -1.245 1.029 7.60 
0.8 -1 0.95 0.415 -0.745 0.563 4.77 0.442 -0.823 0.621 5.05 0.523 -0.982 0.721 5.59 0.665 -1.187 1.016 7.51 
0.8 0 -0.05

 
 0.399 -0.677 0.597 1.96^(-1)

 
0.405 -0.687 0.639 2^(-1) 0.478 -0.816 0.791 2.27^(-1) 0.678 -1.233 1.075 3.45^(-1)

0.8 0 0 0.399 -0.698 0.6 2^(-1) 0.403 -0.717 0.632 2.04^(-1) 0.476 -0.792 0.792 2.22^(-1) 0.681 -1.234 1.075 3.45^(-1)
0.8 0 0.05 0.391 -0.684 0.583 1.96^(-1) 0.401 -0.697 0.628 2^(-1) 0.476 -0.787 0.8 2.23 0.676 -1.215 1.077 3.33^(-1)
0.8 1 -1.05

 
 0.401
 

 -0.655 0.657 5.26^(-1)
 

0.417 -0.656 0.699 5.26^(-1) 0.493 -0.738 0.866 5.56^(-1) 0.7 -0.98 1.337 7.14^(-1)
0.8 1 0 0.39 -0.628 0.64 5^(-1) 0.402 -0.668 0.678 5.26^(-1) 0.47 -0.703 0.806 5.56^(-1) 0.715 -1.108 1.297 8.33^(-1)
0.8 1 1.05 0.435 -0.748 0.669 5.88^(-1) 0.45 -0.803 0.688 6.25^(-1) 0.508 -0.882 0.883 6.67^(-1) 0.736 -1.159 1.211 8.33^(-1)

MSE

  

MSE

*: True OR/OR 5th, or True OR/OR 95th, whichever is farther from 1. 

MSEMSE



Square Root of MSE vs AUC (px=0.2)
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Figure 3 Square Root of MSE vs. AUC (exposure prevalence px= 0.2, sample size=100) 
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Figure 4  Square Root of MSE vs. AUC (exposure prevalence px= 0.5, sample size=100) 



Square Root of MSE vs AUC (px=0.8)
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Figure 5  Square Root of MSE vs. AUC (exposure prevalence px=0.8, sample size=100) 
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Figure 6   Square Root of MSE vs. AUC (sample size = 100) 
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Effect of Sample Size on Square Root of MSE
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Figure 7  Effect of Sample Size on Square Root of MSE 
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Figure 8  Square Root of MSE vs. AUC 
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4.0  DISCUSSION 

We conducted a Monte Carlo simulation study to investigate the relationship between the area 

under the ROC curve (AUC) of the propensity model for the exposure and the estimated effect of 

exposure on the outcome of interest. We demonstrated that AUC provides a single, a relatively 

easy to compute, and suitable for various kinds of data statistic which could be used as an 

important indicator of the trustworthiness of the estimated effect of exposure. Our simulation 

results indicate that when AUC of the propensity model is larger than 0.8 the estimated effect of 

the exposure is highly inaccurate, at the same time the AUCs of less than 0.7 are not associated 

with any substantial increase of the inaccuracy. 

Because of the limitations of the conducted simulation study the above recommendations 

have only a preliminary nature. In a real-world medical research, there are almost always 

multiple risk factors for the outcome of interest, thus multiple covariates need to be included 

with the exposure of interest in the model. Thus, the simple case of a single binary covariate 

considered in this work merely enables an identification of some of the trends which, if later 

confirmed to be general, may help in developing a more detailed procedure for using AUC of the 

propensity scores for diagnoses of the potential trustworthiness of the estimated exposure effect.  

In addition to considering only a single binary covariate, our simulation study has other 

limitations. Namely, the values of TPFz|x and FPFz|x were designed to be in a specific relationship 

to each other. Also we have not investigated the relationship of the proposed approach with the 



known indicators of inaccuracy of the estimated effect of exposure (e.g. large point or variance 

estimates). 

The future work in this direction may include more general investigation involving 

multiple continuous and categorical covariates and eliminating the above mentioned deficiencies. 

Furthermore, since as many other measures of classification accuracy, the AUC computed from 

the probabilities predicted by the model overestimates the true AUC [16]. Hence the observed 

(“apparent”) estimate of AUC might provide a poor estimation of the true AUC although the 

overestimation is mostly evident for the smaller values of AUC which are of less concern. In 

cases when the knowledge of the true underlying AUC is of interest the standard adjustment 

techniques, such as for instance cross-validation, can be used for obtaining a more accurate 

estimator. 
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5.0  CONCLUSION 

The AUC of the propensity score model for exposure provides a single, relatively easy to 

compute, and suitable for various kind of data statistic, which can be used as an important 

indicator of the accuracy of the estimated effect of exposure on the outcome of interest. The 

public health importance is that it can be considered as an alternative to the previously suggested 

(Rubin, 2001) simultaneous consideration of the conditions of closeness of means and variances 

of the propensity scores in the different exposure groups. Our simulations indicate that the 

estimated effect of exposure is highly unreliable if AUC of the propensity model is larger than 

0.8; at the same time AUCs of less than 0.7 are not associated with any substantial increase of 

inaccuracy of the estimated effect of exposure. 
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