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RENORMALIZATION GROUP METHODS IN APPLIED MATHEMATICAL PROBLEMS

Huseyin Merdan, Ph.D.

University of Pittsburgh, 2004

This work presents the application of the methods known as renormalization group (RG) and

scaling in the physics literature to applied mathematics problems after a brief review of the method-

ology.

The first part of the thesis involves an application to a class of nonlinear parabolic differential

equations. We consider equations of the form ut = 1
2uxx + εN(x, u, ux, uxx) where ε is a small

positive number and N is dimensionally consistent without additional dimensional constants. First,

RG methods are described for determining the key exponents related to the decay of solutions to

these equations. The determination of decay exponents is viewed as an asymptotically self-similar

process that facilitates an RG approach. These methods are extended to higher order in the small

coefficient of the nonlinearity. The RG calculations lead to the result that for large space and

time, the solution is characterized by u(x, t) ∼ t−
1
2
−αu∗(xt−1/2, 1) where the exponent α is a simple

function of the exponents of the terms in N . Finally, the RG results are verified in some cases by

rigorous proofs and other calculations.

In the second part, the application of renormalization technique to systems of equations de-

scribing interface problems are presented. The temporal evaluation of an interface separating two

phases is analyzed for large time. We study the standard sharp interface problem in the quasi-static

regime. The characteristic length, R(t), of a self-similar system that is the time dependent length

scale characterizing the pattern growth is calculated by implementing a renormalization procedure.

It behaves as tβ where β has values in the continuous spectrum [1/3, 1/2] when the dynamical

undercooling is non-zero, and β in [1/3,∞) when the undercooling is set at zero. The single value
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of β = 1 is extracted from this continuous spectrum as a consequence of boundary conditions that

impose a plane wave. It is also shown that in almost all of these cases, the capillarity length (arising

from surface tension) is irrelevant for the large time behavior even though it has a crucial role at

the early stage evolution of an interface.
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Introduction

Many of the important and challenging problems in Applied Mathematics involve describing a

complex system evolving in time (such as systems of equations describing the temporal evolution

of an unstable interface). A stochastic element in these problems enhances the importance of a

global understanding in addition to a complete and detailed large scale computation. A key goal

is the development of a calculation technique that is comparable to asymptotic analysis and linear

stability theory.

For many physical quantities the time evolution is described by nonlinear differential equations.

For most of these equations, obtaining a closed form solution is clearly a hopeless task. Therefore,

a deeper perspective is needed in order to understand the nature of solutions to these equations.

In particular, one tries to determine certain qualitative properties of the solution, such as its

existence and regularity for all times and then investigate its long-time asymptotics. It turns out

that, for certain equations, the long-time behavior can be predicted because the solution becomes

asymptotically scale-invariant; a simple example is given by the usual heat equation ut = uxx.

Many of the problems in applied mathematics are philosophically similar to those encountered

by physicists in the study of critical phenomena, where renormalization and scaling theory promote

an understanding of physical singularities and facilitate the computation of the relevant exponents.

A focus of recent research has been the adapting of this theory in order to understand large time

behavior as an asymptotic fixed point.

Renormalization group (RG) methods were originally developed for quantum field theory and

statistical mechanics and have provided a powerful tool for calculation of key exponents that are

otherwise extremely difficult to evaluate [22]. These methods have been broadened in recent years

to include a spectrum of problems such as fractals, random walk and difference equations [17]

and have evolved into a broad philosophy rather than a single technique, as each new application

1



often involves different methods. The application of RG to these problems illustrates the central

themes that provide insight into new problems [17]. The diversity of the problems that have

been understood through RG suggests that it has the potential to become a systematic tool of

applied mathematics. Since differential equations are central to much of applied mathematics, it

is important to examine RG in this context, particularly within classes of equations for which we

can verify some of the results independently.

There are several aspects of differential equations in which self-similarity is exhibited at an

asymptotic fixed point. These include (i) decay of solutions for large time and space, (ii) finite

time blow-up of solutions; and (iii) finite time extinction of solutions. In particular a key question

involves the exponent that characterizes decay, blow-up or extinction. For systems of equations

describing interface problems an interesting issue is (iv) the large time evolution of the interface,

and, for example, the exponent that characterizes the length of the interface as a function of time.

The purpose of this work is to adapt this methodology to problems in applied mathematics, to

make it a tool that could be used for a broad spectrum of problems, and to show that it yields new

mathematical results.

Thesis description

The outline of the thesis is as follows.

Chapter 1 is dedicated to a brief review of renormalization group (RG) methods and scaling.

First, we begin introducing the general notion of these methods in Physics. Second, the methods

are briefly described for the two examples in Applied Mathematics: random walk and fractals. It

is followed by introducing the preliminary applications to nonlinear differential equations.

In Chapter 2 using RG methods we calculate the anomalous exponent related to decay of

solutions to nonlinear heat equation of the form ut = 1
2uxx + εN(x, u, ux, uxx) where ε is a small

parameter and N is dimensionally consistent without additional dimensional constants. We begin

describing RG methods and compute the exponent and scaling form of the leading term of the

decay arising from a narrowly peaked Gaussian (of width l) as an initial condition, and extend

these methods for the higher order (in ε). The methodology involves two basic parts. First, we

obtain an asymptotic expression for leading order behavior in l−1 of the form

u(x, t′; ε, l) ∼ u0(x, t′; l) + εu1(x, t′; l) + ε2u2(x, t′; l) + ε3u3(x, t′; l) + · · · (1)
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where t′ is the original time variable (which is rescaled as t := 2Dt′ in the analysis). The asymptotic

expression (1) is not an approximation to entire function but rather to most singular term in l.

Thus, for example, u2 is the part of the O(ε2) term that will dominate simultaneous expansions

involving small values of ε, l, 1/t and 1/x.

Second, the information in (1) is utilized along the lines of renormalization group approach by

writing u(x, t′; ε, l) (suppressing l and ε dependence) as

u(x, t′) = Zr(b)−1u(b1/2x, bt′)

=: Rb,1/2u(x, t′) (2)

for a suitable function Zr, for all b > 1. Iterating this transformation n times and taking the limit

as n →∞ yields a fixed point (if it exists) only if

u∗r(x, t′) := lim
n→∞Zr(b)−nu(bn/2x, bnt′) (3)

is well defined. This relation then leads to the anomalous exponent α through the relation

lim
n→∞

[
Zr

((
bnt′

Q2
1/D

)1/n
)]n

∼ constant× (bnt′)−
1
2
−α (4)

and also u∗r.

Finally, we resolve rigorously and exactly the exponent for some nonlinearities verifying RG

results and present alternative methods in order to calculate the exponent. In addition we produce

an iterative expansion leading the solution involving close form integrals. Using shooting methods

we also prove a theorem that confirms RG results in [12] in Appendix A.

The work presented in this chapter resulted in two papers that have recently been published [38], [37].

Chapter 3 addresses the application of RG methods to interface problems. The chapter is

started presenting the preliminary results that were obtained by adapting these methods. It follows

the study of temporal evolution of an interface separating two phases for its large time behavior

by (once again) implementing the RG methods. The late stage growth issue is examined in the

context of a general geometry and more general conditions on the degree of undercooling.

In this chapter, we consider a sharp interface model in the quasi-static regime, i.e. the heat
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equation ut = ∆u is replaced by Laplace’s equation ∆u = 0, in order to calculate the characteristic

length, R(t), that is the time dependent length scale characterizing the evolution of the pattern.

The calculations are based upon very general assumption on the initial conditions. The main

physical assumption is that the pattern evolves self-similarly with a single scale. The asymptotic

large scale growth is within the context of the statistical set of interfaces that evolve from a set of

initial condition.

The methodology basically involves rewriting the basic equations in terms of a Green’s function

identity after introducing a phase function. The RG analysis then proceeds in several steps as the

equations are transformed and then converted them back into their original form with renormalized

physical parameters.

We examine two cases, namely that the dynamical undercooling is (i) nonzero and (ii) zero, i.e.

α 6= 0 and α = 0. The main result is that without reference to a plane wave the characteristic

length, R(t), varies as t−1/λ, where λ ∈ [−3,−2], when the dynamical undercooling is nonzero, i.e.

α 6= 0. For the case α = 0, the spectrum is [−3, 0). The single value of λ = −1 that was obtained

in [31] is selected by imposing a plane wave through boundary conditions.

The analysis also indicates that in almost all of these cases, the capillarity length, which is the

length scale associated with the surface tension, is not relevant for the large time behavior of an

interface. This is in sharp contrast to its role in the linear stability theory for short time.

The work above resulted in the papers [39], [40].
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Chapter 1

Renormalization Group Methods and Scaling

1.1 Renormalization and Scaling in Physics

Renormalization group and scaling methods originated as part of an effort to understand the

cooperative behavior of a large number of molecules or spins that leads to the divergence of some

measurable quantity with a characteristic exponent (see for example Wilson and Kogut [55], and

Fisher [20] and references contained therein) . Pioneered by Kenneth Wilson in the 1970’s, the

basic ansatz of the methodology is that averaging the detailed interactions between the individual

members of a complex system cannot change the basic characteristics of measurables near a critical

point, which is a point on the phase plane where the length scales diverge. If one performs some

type of averaging repeatedly, the resulting physical quantity is likely to be zero or infinity unless

one also transforms the magnitude of the interactions properly. On the other hand if one does

understand how these should transform, then the nature of the transformation should permit the

calculation of the critical exponent directly. The successful implementation of this ansatz allowed

simple calculation of these divergence exponents that had previously been prohibitively difficult,

and led to Wilson’s Nobel Prize, as well as thousands of papers in statistical mechanics (see [17]

and [22]).

Before we present its application to the problems in Applied Mathematics, we first try to

formulate a general notion of an RG below. Although RG transformations on parameter space

do not actually comprise a mathematical group, there is often a type of invariance principle at

work. For example, in the example of Random Walk (RW) to be considered presently, the RG is

constructed in such a way as to keep the root mean square (RMS) length of the RW invariant.

RG calculations basically involves two steps. In the first step, which is called coarse graining,

one averages out a subset of the degrees of freedom of the system that vary on small scales. The

motivation behind of it is that at the critical point the behavior of the system is dominated by the

fluctuations on very large scales. The second step of the RG transformation is called rescaling and
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involves the redefinition of the unit of length. The scale factor, which is generally denoted by b, is

the ratio of the coarse grained unit of length to the original unit of length.

As a result of these two operations, the parameters of the system will be renormalized and one

will obtain the RG equations that yield the relation between the new renormalized parameters, θ′n,

and the old parameters, θn, and may be formally expressed, for n = 1, 2, · · · , as

θ′n = Rn(θn).

Under the repeated application of the RG, the renormalized parameters tend to a fixed point θn
∗

at which the system and its renormalized copy are identical. Recaling that the unit of length has

been rescaled by a factor b in the RG one sees that the system is in fact self-similar at a fixed point

of the RG (see [17] for further details).

After this short review of the RG notion in Physics, we now review below the application of

RG methods to applied mathematics problems.

1.2 Renormalization Group Methods in Applied Mathematics

The RG methods that were very successful in resolving delicate issues of statistical mechan-

ics, such as critical exponents, have been applied to a broad spectrum of problems in applied

mathematics. In particular, in the subsequent decades after 70’s, interest in problems exhibiting

self-similarity has increased dramatically and posed the question of whether RG can be applied

to such problems. A particularly illuminating text by Creswick, Farach and Poole [17] describes

a number of such applications, such as self-avoiding walk, fractals, etc.,. For example, suppose a

random walk consists of n steps each in a random direction. Typically, we are interested in the

large-scale properties, so that it makes sense to average out the small-scale details, or coarse grain.

One can accomplish this by starting with the probability distribution, p(r), for each step, given by

a Gaussian, for example, as

p(r) := (2πσ2
0)
−d/2 exp{−|r|2/(2σ2

0)} (1.1)
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where σ0 is the width of the Gaussian. Defining r′ =
∑n

i=1 ri as the rescaled step, one has a new

random walk with the new random variable r′. By performing the integration over the old variables,

one can show (p. 15 of [17]) that the new coarse-grained probability distribution is

P (r′) := (2πnσ2
0)
−d/2exp{−|r′|2/(2nσ2

0)}. (1.2)

We now observe that the two expressions above differ only in that the parameter σ0 has changed,

i.e., the coarse-grained σ is σ′ := n1/2σ0. The second step in the RG procedure is to rescale by

redefining the unit of length by defining r′ = n1/2r′′, so that the original form of the probability

distribution (1.1) is recovered in terms of r′′. Now we would like to calculate the RMS distance

R(M) covered by a walk of M steps of average length σ. Since σ is the only length scale in the

problem, dimensional analysis implies that R(M) = σMν where ν is the scaling exponent. By

rescaling in terms of n steps we can write

σMν = n1/2σ(M/n)ν (1.3)

and conclude that ν = 1/2. Obtaining this classical result through the modern RG methodology is

an illustration of this perspective that can be appreciated without extensive statistical mechanics

or quantum field theory.

Using similar methods one can calculate the fractal or Hausdorf dimension of geometric struc-

tures, defined as the number D such that N(a) is the minimum number of (d-dimensional) balls

needed to cover object, where N(a) ∼ a−D as a → 0. Applying RG to the Cantor set, defined by

taking a line segment [0, 1] and removing the middle third at each step, we can use N(a) = 2n line

segments of length a = 3−n. With some algebraic simplification this leads to

N(a) = a− ln 2/ ln 3. (1.4)

Note that this relationship can be obtained from a RG perspective by examining the ratio of N(a)

for different magnitudes. In particular, the geometry implies that the transformation must have

the form N(a) = 2N(3a) for all a > 0. So substituting N(a) ∼ a−D implies the same relation 1.4,

thereby establishing the fractal dimension D = ln 2/ ln 3 ≈ 0.63.
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The application of RG methods to differential equations is particularly important since so many

applications can be addressed. Recently, the RG philosophy has been directed toward understand-

ing some basic aspects of nonlinear differential equations. As with critical exponents in statistical

mechanics, the potential of this research direction lies in the capability to determine a characteris-

tic scaling exponent with a relatively simple calculation upon understanding a transformation that

relates two parameters. In the case of critical exponents the dependent parameter is the thermody-

namic quantity which diverges while the independent parameter, e.g. temperature, is a measure of

the distance from the singularity at the critical temperature, i.e. Tc. In the case of blow-up in dif-

ferential equations (see Berger and Kohn [4], Giga and Kohn [27], Galaktionov and Posashkov [26]

and references within) the solution u(x, t) diverges as t → tc where tc is the critical value. Bric-

mont and Kupianen [9] have provided rigorous proofs of the existence of infinitely many profiles

around the blow-up point using related methods. Bertozzi, Brenner, Dupont and Kadanoff [5] have

applied the concept of similarity solutions for the onset of singularities in problems involving flow

through thin films. Topological transformation and singularities in viscous flows have been studied

by Goldstein at al [28].

The justification for the renormalization group method in both problems can be made in terms

of the asymptotic self-similarity of the solution (or thermodynamic variable) as the critical value

is approached. More explicitly the profile of the physical quantity u appears to be nearly identical

as one zooms in on the critical value tc, provided that u (and x in the blow-up case) is scaled

appropriately. In this case of critical phenomena, real-space renormalization has its origin in the

intuition of the underlying physical interactions (see [55]). However, in the case of parabolic differ-

ential equations, one can obtain the leading behavior of the singularity by observing simple scaling

rules that govern the key transformations, and then applying a methodology similar to asymptotic

analysis. In other words, the differential equations, by virtue of their scaling properties, already

incorporate the essential information on the cooperative behavior in the physical system.

A problem that is seemingly unrelated to blow-up is the large time delay in a nonlinear parabolic

equation and the associated nonclassical exponents. However, the renormalization group techniques

apply in a similar way to these problems due to the asymptotic self-similarity as the horizontal axis

is approached. In terms of analytic geometry this problem is analogous to the inverse of the blow-up
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problem. An asymptotic delay of the form

u(x, t) ∼ t−
1+α

2 u∗(xt−1/2, 1) (1.5)

(for large time and space, see [12]) can be regarded as an expression for time in terms of u and

x/
√

t,

t ∼
[

u(x, t)
u∗(xt−1/2, 1)

]−2/(1+α)

, (1.6)

so that t exhibits a divergence as u goes to zero with x scaled appropriately. Thus the self-similarity

arises in much the same way as in blow-up problems. Given a profile of u as a function of t with x

scaled appropriately, one can rescale t and the profile would look almost identical provided the size

of u is reduced by appropriate factor. The self-similarity is asymptotic in that the transformation is

only approximate for any finite t, but the error vanishes in the limit t →∞. It is in this sense that

the classical applied mathematical techniques of asymptotic methods (involving small 1/t) can be

used in conjunction with modern physical methods of renormalization to provide a powerful tool

for analytic computation.

Calculation of nonclassical exponents in the absence of stochastic using RG methods was first

done for the porous medium equation (also called Barenblatt’s Equation)

ut − 1
2
uxx =

ε

2
H(−uxx)uxx,

H(θ) :=
1
2

{
θ + |θ|
|θ|

}
ε > 0 (1.7)

by Goldenfeld et al. [23]. These methods were extended by Caginalp [12] in order to study the large

time behavior of solutions to nonlinear parabolic differential equations ,which include (i) decay of

solutions for large time and space, (ii) finite time blow-up of solutions; and (iii) finite time extinction

of solutions [13]. These methods were also applied to systems of parabolic equations. The higher

order extension of RG calculations including proofs that confirm these calculations for some special

cases were studied by Merdan and Caginalp [37]. Some existence proof has also been obtained for

nonlinear parabolic equations using the RG methods by Bricmont, Kupianen and Lin [10].

RG methods have also been applied to stochastic differential equations by Glimm, Zhang and
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Sharp for chaotic, mixing of interfaces [25], Zhang for random velocity field [57], Avellaneda and

Majda for Stochastic and turbulent transport [2] and references contained therein.

Another application of RG methods involves the understanding of large time behavior of the

systems of equations describing interface problems. Using the RG methods the study of these

equations has been considered by Jasnow and Vinals [31], Caginalp [15], Merdan and Caginalp [39]

and references contained therein.

Using renormalization and scaling techniques structural stability problems of propagating fronts

have been investigated by Paquette and Oono [49] and Paquette at al [48].

Renormalization group techniques have also been utilized in other dynamical differential equa-

tion problems (see, for example, [32], [35], [41] and references therein).
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Chapter 2

Decay of Solutions to Nonlinear Parabolic Equations:

Renormalization and Rigorous Results

2.1 Introduction

Since differential equations are central to much of applied mathematics, it is important to

examine RG in this context, particularly within classes of equations for which we can verify some

of the results independently. There are several aspects of differential equations in which self-

similarity is exhibited at an asymptotic fixed point. These include (i) decay of solutions for large

time and space, (ii) finite time blow-up of solutions; and (iii) finite time extinction of solutions. In

particular a key question involves the exponent that characterizes decay, blow-up or extinction.

Decay problems using renormalization group techniques were studied by Goldenfeld, Martin,

Oono and Liu [23], Bricmont, Kupiainen and Lin [10], Caginalp [12], and Merdan and Cagi-

nalp [38] [37](see other references therein). In particular, Goldenfeld et. al. used RG to calculate

the decay exponent for the porous medium equation having a small nonlinear term, and showed

that it differed from the classical heat equation.

An important set of goals has been to (a) render RG methods more systematic within the context

of applied mathematical methods, (b) define large classes of differential equations for which these

methods lead to simple rules for asymptotic decay of solutions, (c) understand these classes of

equations in terms of universality classes whereby different equations have similar behavior, (d)

determine whether the methods can be implemented for higher order in ε, (e) verify the exponent

results of RG methods through different types of calculations, (f) prove the RG results rigorously,

(g) verify the exponents numerically.

For the goals above (particularly (a)-(c)), a first step was undertaken in [12] where the equation

ut =
1
2
uxx + εF (x, u, ux, uxx) (2.1)

in an infinite domain, where F (x, u, ux, uxx) is of the form xmunup
xuq

xx, ε is a small parameter. The
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parameters (m,n, p, q) are constrained by dimensionality so that the nonlinear term has the same

physical dimensions as uxx, i.e. they satisfy the following constraints:

n + p + q = 1 and p + 2q −m = 2. (2.2)

The large time decay (up to O(ε)) was found to be of the following form:

u(x, t) ∼ t−
1
2
−αu∗(xt−1/2, 1)

where α = εA is a simple function of the powers of x, u, ux, and uxx in F . Note that standard

dimensional analysis cannot be used to calculate the exponent α.

In many cases such exponents arise as a result of a limit of vanishing length (or other) scale that

is a singular rather that a regular perturbation (see [3]). Above the dimensionless small number ε

appears to provide the correction to the classical exponent. These results were also generalized to

systems of parabolic equations [13].

Equations of the form (2.1) arise in a broad range of diffusion problems in detailed physics is

taken into account (see [47]). The discussion about the limitations of the linear theory of diffusion

and also derivation a number of key nonlinearities of the form of (2.1) from basic thermodynamics

can be found in [50]. From a macroscopic perspective, a basic source of nonlinearities involves

inhomogeneities in the diffusion coefficient in the flux or variable dependent potentials in Fick’s laws

(see p.5 and p.25 in [53]). Particular examples involve (1) temperature dependent heat conduction,

(2) compressible fluid flow equations [36], (3) phase transitions involving alloys [11], (4) magnetic

fields with permeability depending upon field strength [29], (5) heat diffusion and phase transition

problems in which (temperature)−1 dependence is considered [50] and many other applications [33].

In the first chapter, we focus on some of the key issues outlined above (particularly (d)-(f))

with two general goals for the case q = 0. First, we want to extend the RG analysis, particularly

to examine terms of O(ε2) and higher. We also show that the RG process can be used to establish

upper bounds for decay exponents. In particular, we determine the transform operators and perform

an RG calculation that yields higher order terms beyond O(ε). In fact this is an infinite series that

can be summed to yield exact exponents in some cases. In other cases, if the O(ε2) term is negative,

12



one can bound the exponent from above.

Second, we want to resolve rigorously and exactly the exponents for some nonlinearities de-

scribed above. As part of this process we prove in some cases that the exponents obtained in

Caginalp [12] above are, in fact, the first terms of a convergent expansion in ε. In addition to the

renormalization and rigorous calculations, we produce an iterative expansion. In particular, we

transform the equations so that the exponent can be calculated exactly by solving iteratively a set

of ordinary differential equations. The solution involves closed form integrals that can be evaluated

in terms of error functions.

A subset of the exponents obtained in [12] using RG methods are proved rigorously using

shooting methods. The rigorous and exact calculations confirming the results further bolster the

observation that dimensionality expressed in (2.2) above is a key feature that governs the decay

of solutions. The dimensionality criteria establishes large classes of equations with similar decay

properties.

This chapter is organized as follows. In section 2.2 we rewrite the equation (2.1) in terms of the

fundamental solution, treating the nonlinear term as a source term. We apply asymptotic analysis

in order to write the solution in terms of an integral that is in the appropriate form for the RG

treatment. In section 2.3 we write the RG transformation for arbitrary order in ε. In section 2.4

we present alternative methods for calculating exponents that demonstrate agreement with the RG

methods. The result are summarized in the conclusion (Section 2.5). A proof of a theorem that

confirms earlier RG results is presented in Appendix A.

The methodology presented in this chapter is useful not only for exact calculation of large

time profiles, but also in establishing equivalence classes in nonlinearities, since the exponents are

determined by a simple formula. This also makes possible additional criteria for deciding on models

that agree with experiment.

Decay of exponents to solutions of nonlinear equations have also been studied by related self-

similarity methods in [6]-[8], [34], [54].

13



2.2 Renormalization group calculations

Let ε be a small, positive, dimensionless number and consider the diffusion equation with the

nonlinearity of the form

Cput′ = K{uxx + 2εF [x, u, ux,uxx]} (2.3)

where Cp and K are constants (with D := K/Cp) and the nonlinear term, F , is a linear sum of the

terms of the form xmunup
xuq

xx where the integers m, n, p, q satisfy (2.2). Defining t := 2Dt′ (which

has units of (length)2 = area) we simplify notation and use (2.3) of the form

ut =
1
2
uxx + εF [x, u, ux, uxx] (2.4)

for the remainder of the paper. We consider

u(x, 0; l) := g(x, l) =
Q0

(2πl2)1/2
exp

(−x2

2l2

)
(2.5)

as the initial condition in which l is a small parameter in order to study the decay from a sharply

peaked Gaussian and Q0 := T0Q1 with T0 having temperature units and Q1 length units. Our

procedure is to extract, for each order in ε, the leading order behavior in l−1, so that only positive

contributions to the decay are significant in the O(ε2) and higher. A key step in this process is to

obtain a transformation that rescales variables. While RG methods usually involve an identity in

this transformation, we utilize the basic ideas by using an identity up to a particular order in ε.

Asymptotics of the heat equation with small nonlinearity. In the following we obtain

a basic solution for the equation (2.4) with the initial condition (2.5). Using the Green’s Function

G(x, t) :=
1

(2πt)1/2
exp

(−x2

2t

)
(2.6)

and taking the nonlinearity F as a source term one can express the solution of (2.4) and (2.5) as

u(x, t) =
∫ ∞

−∞
G(x− y, t)g(y)dy + ε

∫ t

0

∫ ∞

−∞
G(x− y, t− s)F [y, u(y, s), ...]dyds. (2.7)
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We solve (2.7) using an asymptotic expansion for small ε and write the formal sum as

u(x, t; ε, l) = u0(x, t; l) + εu1(x, t; l) + ε2u2(x, t; l) + ε3u3(x, t; l) + · · · (2.8)

so that l is not yet treated as a small number in comparison with ε here. Following [12] we write

u0(x, t; l) =
Q0

[2π(t + l2)]1/2
exp

( −x2

2(t + l2)

)
, (2.9)

∂u0

∂x
=

( −x

t + l2

)
u0, (2.10)

u1(x, t; l) =
Q0

(2π)1/2
t−1/2e−x2/(2t){(−1)p(1 · 3 · · · |2p− 3|)} log

(
t + l2

l2

)
(2.11)

for p ≥ 1 and q := 0, and

u1(x, t; l) =
Q0

(2π)1/2
t−1/2e−x2/(2t)

×




q∑

j=0

(−1)j+p(1 · 3 · · · |2p + 4q − 2j − 3|)


 log

(
t + l2

l2

)
(2.12)

for q 6= 0. The derivative of u1 is given by ∂u1
∂x =

(−x
t

)
u1 and we rewrite it as

∂u1

∂x
=

( −x

t + l2

)
u1 +

( −x

t + l2

)(
l2

t

)
u1 (2.13)

using the equality (
x

t + l2

)
−

(x

t

)
=

( −x

t + l2

)(
l2

t

)
. (2.14)

We proceed by using u0 and u1 to generate the next term of (2.8), namely u2, and by using u0,

u1 and u2 to generate the u3 term, and so on. The nonlinear term is taken as xmunup
xuq

xx subject

to (2.2) for the simplicity of the calculations as in [12]. In this work, we consider the case q = 0

only, so that the nonlinearity will be completely specified by p ≥ 1, as n = 1 − p and m = p − 2

(see (2.2)), and the nonlinear term is given by F [x, u, ux, uxx] := xp−2u1−pup
x. We should also

mention here that p will be taken as p ≥ 1 and p ∈ Z+ throughout the paper. In addition, in the
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subsequent analysis the calculations are formally valid for

εA log(t/l2) << 1.

In other words, for a given small ε the expansion is valid in some intermediate region of large t.

Continuity arguments may be used to conjecture that the decay exponents obtained remain valid

for arbitrarily large time. This has been confirmed in terms of the examples for which we have

rigorous theorems or exact calculations. For the problem under consideration the result can be

stated as follows:

Proposition 2.2.1. Consider the equation (2.4) with the initial condition (2.5). One has to leading

order in l within O (εr) the solution

u(x, t; ε, l) =
Q0√
2π

t−1/2e−x2/(2t)
r∑

j=0

1
j!

[
εA log(t/l2)

]j (2.15)

for p ≥ 1 and q := 0, where A := A(p) := (−1)p(1 · 3 · · · |2p − 3|), where only non-negative terms

contribute for O
(
ε2

)
and beyond.

Verification. The derivation is done by induction. We first calculate the term u2 and then use

induction (on k for k ≥ 3) in order the calculate the remaining terms in (2.8), i.e. u3,...,uk etc. In

the calculation of each term, we first state the estimates, then calculate the term, and finally prove

the lemmas.

2.2.1 The calculation of the u2 term.

I. The estimates. We have the following:

Lemma 2.2.1. We state the result (see [1], p. 302, 7.4.4) as follow. Let

L :=
∫ ∞

−∞
y2(p−1)e−y2/(2t)dy. (2.16)

It follows that L =
√

2π{1 · 3 · · · |2p− 3|}tp− 1
2 .

Lemma 2.2.2. Let

L2,1 :=
∫ t

0
(s + l2)−psp−1 log

(
s + l2

l2

)
ds. (2.17)
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We then have the following bounds

C
(1)
2,1

(
t

l2

)p+1

≤ L2,1 < C
(2)
2,1

(
t

l2

)p+1

for t ≤ l2 (2.18)

1
2!

[
log

(
t

l2

)]2

+ C
(3)
2,1 < L2,1

<
1
2!

[
log

(
t + l2

l2

)]2

+ C
(4)
2,1 for t > l2 (2.19)

where C
(i)
2,1 is a constant depending on p for i = 1, 2, 3, 4.

Lemma 2.2.3. Let

L2,2 :=
∫ t

0
pl2(s + l2)−psp−2 log

(
s + l2

l2

)
ds. (2.20)

We then have the following bounds

0 ≤ L2,2 < C
(1)
2,2

(
t

l2

)p

for t ≤ l2 (2.21)

0 < L2,2 < C
(2)
2,2 for t > l2 (2.22)

where C
(i)
2,2 is a constant depending on p for i = 1, 2.

We prove Lemma 2.2.2 and Lemma 2.2.3 after the calculation of u2 (see III. Proofs of lemmas).

II. The calculation of the u2 term. Using u0 and u1 we will calculate the u2 term in (2.8).

In order to do this, we need to substitute u := u0 + εu1 into (2.7) so that we first need to find

(u0 + εu1)(1−p)(u0 + εu1)
p
x. Using (2.10) and (2.13) one has

(u0 + εu1)x =
( −x

t + l2

)
(u0 + εu1) +

( −x

t + l2

)(
l2

t

)
(εu1). (2.23)

Applying now the Binomial Formula to this we obtain

(u0 + εu1)(1−p)(u0 + εu1)p
x =

( −x

t + l2

)p

(u0 + εu1) + λ1

( −x

t + l2

)p (
l2

t

)
(εu1)

+
p∑

n=2

λn

( −x

t + l2

)p (
l2

t

)n (εu1)n

(u0 + εu1)n−1
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∼=
( −x

t + l2

)p

(u0 + εu1) + λ1

( −x

t + l2

)p (
l2

t

)
(εu1)

+
p∑

n=2

λn

( −x

t + l2

)n (
l2

t

)n
εnu1

n

u0
n−1

(2.24)

where λn :=
(

p
n

)
= p!

(p−n)!n! . Substituting (2.24) into (2.8) and retaining up to O(ε2) terms lead to

the expression

u2(x, t; l) := I + J (2.25)

where

I :=
∫ t

0

∫ ∞

−∞
G(x− y, t− s)y2(p−1)(−1)p(s + l2)−pu1(y, s)dyds (2.26)

J :=
∫ t

0

∫ ∞

−∞
G(x− y, t− s)y2(p−1)(−1)p(s + l2)−pλ1l

2s−1u1(y, s)dyds. (2.27)

i. Evaluation of I integral. Using (2.6) and (2.11) we write (2.26) as

I :=
∫ t

0

∫ ∞

−∞

(t− s)−1/2

(2π)1/2
exp

(−(x− y)2

2(t− s)

)
y2(p−1)(−1)p(s + l2)−p

× Q0

(2π)1/2
s−1/2e−y2/(2s){(−1)p(1 · 3 · · · |2p− 3|)} log

(
s + l2

l2

)
dyds

∼= Q0

2π
t−1/2e−x2/(2t){(−1)2p(1 · 3 · · · |2p− 3|)}

×
∫ t

0
ds(s + l2)−p log

(
s + l2

l2

)
s−1/2

∫ ∞

−∞
y2(p−1)e−y2/(2s)dy. (2.28)

The approximations involve replacing t− s by t, and x− y by x to obtain the t−1/2e−x2/(2t) term

above. The justification (see [12], p. 9-12) is based on the Laplace’s method for integrals, since

the main contribution to the integral must arise from the regions near y = 0 and s = 0 for small l.

Letting now

γ := γ(x, t) :=
Q0√
2π

t−1/2e−x2/(2t) (2.29)

A := A(p) := (−1)p(1 · 3 · · · |2p− 3|) (2.30)
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and applying Lemma 2.2.1 to (2.28) one has

I ∼= γA2

∫ t

0
(s + l2)−psp−1 log

(
s + l2

l2

)
ds =: γA2L2,1(s; l, p). (2.31)

Now using Lemma 2.2.2 we have the following bounds for the first integral:

γA2

{
1
2!

[
log

(
t

l2

)]2

+ C
(3)
2,1

}
< I < γA2

{
1
2!

[
log

(
t + l2

l2

)]2

+ C
(4)
2,1

}
. (2.32)

ii. Evaluation of J integral. Similarly, following the procedure in the previous calculation one

writes (2.27) as

J ∼= γA2

∫ t

0
λ1l

2(s + l2)−psp−2 log
(

s + l2

l2

)
ds =: γA2L2,2(s; l, p). (2.33)

Using now Lemma 2.2.3 one has the following bounds for the integral J

0 < J < γA2C(p), (2.34)

where C (p) is a constant depending on p. Combining (2.25), (2.32) and (2.34) one has

γA2

{
1
2!

[
log

(
t

l2

)]2

+ C1

}
< u2(x, t; l) < γA2

{
1
2!

[
log

(
t + l2

l2

)]2

+ C2

}
(2.35)

where C1 and C2 are constants. Furthermore, combining (2.25), (2.31) and (2.34) one can express

u2(x, t; l) as

u2(x, t; l) ∼= γA2[L2,1(s; l, p) + L2,2(s; l, p)]. (2.36)

so that using (2.14) one obtains the derivative of u2 of the form:

∂u2

∂x
=

( −x

t + l2

)
u2 +

( −x

t + l2

)(
l2

t

)
u2. (2.37)

III. Proofs of lemmas.

Proof of Lemma 2.2.2. We begin by labelling some basic inequalities:

0 < log(1 + z) < z for z > 0 (2.38)
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z

2c
≤ log(1 + z) for 0 ≤ z < 1 ≤ c (2.39)

log(z) < log(1 + z) for z > 0. (2.40)

Letting z := s/l2 we write (2.17) as

L2,1 :=
∫ t

0
l−2p(1 +

s

l2
)−psp−1 log

(
s + l2

l2

)
ds

=
∫ t/l2

0
(1 + z)−pzp−1 log(1 + z)dz. (2.41)

Upper and lower bounds for t ≤ l2: Using the inequality (1 + z)−p ≤ 1 and (2.38) one has

L2,1 <

∫ t/l2

0
zp−1zdz =

1
p + 1

(
t

l2

)p+1

. (2.42)

Note that (1 + z)−p ≥ 2−p for z ≤ 1 (since t ≤ l2). Using then this inequality and (2.39) one has

L2,1 ≥
∫ t/l2

0
2−pzp−1 z

2
dz =

1
2p+1(p + 1)

(
t

l2

)p+1

. (2.43)

Upper and lower bounds for t > l2: In this case, we split the integral (2.41) into two parts as

follows:

L2,1 =
∫ 1

0
(1 + z)−pzp−1 log(1 + z)dz +

∫ t/l2

1
(1 + z)−pzp−1 log(1 + z)dz

=: L
(1)
2,1 + L

(2)
2,1 (2.44)

so that using (2.42) and (2.43) we have

0 <
1

2p+1(p + 1)
≤ L

(1)
2,1 <

1
p + 1

. (2.45)

Next we obtain an upper bound and a lower bound for L(2)
2,1. Using the inequality zp−1 ≤ (1+ z)p−1
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for z ≥ 0 we have

L
(2)
2,1 ≤

∫ t/l2

1
(1 + z)−1 log(1 + z)dz

=
1
2!

[
log

(
t + l2

l2

)]2

+ constant. (2.46)

Using the infinite series

1
1 + z

=
1
z

1
1 + 1

z

=
1
z
(1− 1

z
+

1
z2
− · · · ) for z > 1 (2.47)

one obtains

(1 + z)−p = z−p(1 +
ν1(p)

z
+

ν2(p)
z2

+ · · · ). (2.48)

Using now (2.48) and (2.40) one has

L
(2)
2,1 >

∫ t/l2

1
z−1(1 +

ν1(p)
z

+
ν2(p)
z2

+ · · · ) log(z)dz

=
∫ t/l2

1
z−1 log(z)dz +

∞∑

j=1

∫ t/l2

1
νj(p)z−1−j log(z)dz (2.49)

>
1
2!

[
log

(
t

l2

)]2

+ C(p),

where C(p) is a constant. ¤

Proof of Lemma 2.2.3. Following the proof of Lemma 2.2.2 one writes (2.20) as

L2,2 =
∫ t/l2

0
p(1 + z)−pzp−2 log(1 + z)dz (2.50)

so that for t ≤ l2 one has

0 ≤ L2,2 <

∫ t/l2

0
zp−2zdz =

(
t

l2

)p

. (2.51)

For the large t/l2, one similarly splits the integral into two parts as follows:

L2,2 =
∫ 1

0
(1 + z)−pzp−2 log(1 + z)dz +

∫ t/l2

1
(1 + z)−pzp−2 log(1 + z)dz

=: L
(1)
2,2 + L

(2)
2,2
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so that utilizing (2.51) one has

0 ≤ L
(1)
2,2 < 1. (2.52)

For the second part of the integral, namely L
(2)
2,2, using the inequality (1 + z)−p < z−p for z > 1 (in

order to obtain the following upper bound) one has

0 < L
(2)
2,2 =

∫ t/l2

1
z−2 log(1 + z)dz

<

∫ ∞

1
z−2 log(1 + z)dz < constant. (2.53)

¤

We use induction (on k for k ≥ 3) below to calculate the rest of terms in (2.8).

2.2.2 The calculation of the u3 term

I. The estimates. We have the following:

Lemma 2.2.4. Let

L3,1 :=
∫ t

0
(s + l2)−psp−1{L2,1 + L2,2}ds (2.54)

where L2,1and L2,2 are as defined in Lemma 2.2.2 and in Lemma 2.2.3, respectively. We then have

the following bounds

C
(1)
3,1

(
t

l2

)2p+1

≤ L3,1 < C
(2)
3,1

(
t

l2

)2p+1

+ C
(3)
3,1

(
t

l2

)2p

for t ≤ l2 (2.55)

1
3!

[
log

(
t

l2

)]3

+ O

(
log

(
t

l2

))
< L2,1

<
1
3!

[
log

(
t + l2

l2

)]3

+ O

(
log

(
t + l2

l2

))
for t > l2 (2.56)

where C
(j)
3,1 is a constant depending on p for j = 1, 2, 3.

Lemma 2.2.5. Let

L3,2 :=
∫ t

0
λ1l

2(s + l2)−psp−1{L2,1 + L2,2}ds (2.57)

22



where L2,1 and L2,2 are as in Lemma 2.2.4. We then have the following bounds

0 ≤ L3,2 < C
(1)
3,2

(
t

l2

)2p

+ C
(2)
3,2

(
t

l2

)2p−1

for t ≤ l2 (2.58)

0 ≤ L3,2 < C
(3)
3,2 (p) for t > l2 (2.59)

where C
(i)
3,2 is a constant depending on p for i = 1, 2, 3.

Lemma 2.2.6. Let

Lk :=
∫ t

0
λnl2n(s + l2)−p+(n−1

2
)sp−( 3n+1

2
)

[
log

(
s + l2

l2

)]n

ds (2.60)

for p ≥ 2, n ≥ 2, p ≥ n and p, n ∈ Z+. We then have the following bounds

0 ≤ Lk < C
(1)
k (p, n)

(
t

l2

)p−n
2
+ 1

2

for t ≤ l2 (2.61)

0 ≤ Lk < C
(2)
k (p, n) for t > l2 (2.62)

where C
(1)
k and C

(2)
k are constants depending on p and n.

The lemmas above are proved in Appendix B.

II. The calculation of the u3 term. Following a similar procedure in the calculation of the

u2 term we calculate u3 so that we first need to find (u0 + εu1 + ε2u2)(1−p)(u0 + εu1 + ε2u2)
p
x.

Using (2.23) with together (2.37) we write (u0 + εu1 + ε2u2)x as

(u0 + εu1 + ε2u2)x =
( −x

t + l2

)
(u0 + εu1 + ε2u2) +

( −x

t + l2

)(
l2

t

)
(εu1 + ε2u2). (2.63)

Similarly, applying the Binomial Formula we obtain

(u0 + εu1 + ε2u2)(1−p)(u0 + εu1 + ε2u2)p
x
∼=

( −x

t + l2

)p

(u0 + εu1 + ε2u2)

+λ1

( −x

t + l2

)p (
l2

t

)
(εu1 + ε2u2) (2.64)

+
p∑

n=2

λn

( −x

t + l2

)p (
l2

t

)n
εnu1

n

u0
n−1

.
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Substituting (2.64) into (2.8) and retaining up to O(ε3) terms yield the expression

u3(x, t; l) := M + N + Q (2.65)

where

M :=
∫ t

0

∫ ∞

−∞
G(x− y, t− s)y2(p−1)(−1)p(s + l2)−pu2(y, s)dyds (2.66)

N :=
∫ t

0

∫ ∞

−∞
G(x− y, t− s)y2(p−1)(−1)p(s + l2)−pλ1l

2s−1u2(y, s)dyds (2.67)

Q :=
∫ t

0

∫ ∞

−∞
G(x− y, t− s)y2(p−1)(−1)p(s + l2)−pλ2l

4s−2 (u1(y, s))2

u0(y, s)
dyds. (2.68)

i. Evaluation of M integral. Using (2.6) and (2.36) we write (2.66) as

M :=
∫ t

0

∫ ∞

−∞

(t− s)−1/2

(2π)1/2
exp

(−(x− y)2

2(t− s)

)
y2(p−1)(−1)p(s + l2)−p

× Q0

(2π)1/2
s−1/2e−y2/(2s){(−1)p(1 · 3 · · · |2p− 3|)}2[L2,1(s; l, p) + L2,2(s; l, p)]dyds

∼= Q0

2π
t−1/2e−x2/(2t){(−1)3p(1 · 3 · · · |2p− 3|)2}

×
∫ t

0
ds(s + l2)−p[L2,1(s; l, p) + L2,2(s; l, p)]s−1/2

∫ ∞

−∞
y2(p−1)e−y2/(2s)dy. (2.69)

As done in the previous calculation, we approximate t−1/2e−x2/(2t) by replacing t−s by t, and x−y

by x (see (2.28)). Applying now Lemma 2.2.1 to (2.69) and using (2.29) and (2.30) we have

M ∼= γA3

∫ t

0
(s + l2)−psp−1[L2,1(s; l, p) + L2,2(s; l, p)]ds =: γA3L3,1(s; l, p). (2.70)

Using now Lemma 2.2.4 we have the following bounds for the first integral:

γA3

{
1
3!

[
log

(
t

l2

)]3

+ O

(
log

(
t

l2

))}
< M

< γA3

{
1
3!

[
log

(
t + l2

l2

)]3

+ O

(
log

(
t + l2

l2

))}
. (2.71)
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ii. Evaluation of N integral. Following a similar procedure in (i) one writes (2.67) as

N ∼= γA3

∫ t

0
λ1l

2(s + l2)−psp−2[L2,1(s; l, p) + L2,2(s; l, p)]ds =: γA3L3,2(s; l, p) (2.72)

so that applying Lemma 2.2.5 yields the following bounds for the second integral

0 ≤ N < γA3C(p), (2.73)

where C (p) is a constant depending on p.

iii. Evaluation of Q integral. Using (2.6), (2.9) and (2.11) we first write (2.68) as

Q :=
∫ t

0

∫ ∞

−∞

(t− s)−1/2

(2π)1/2
exp

(−(x− y)2

2(t− s)

)
y2(p−1)(−1)p(s + l2)−pλ2l

4s−2

× Q0

(2π)1/2
{(−1)p(1 · 3 · · · |2p− 3|)}2s−1(s + l2)1/2 (2.74)

×
[
log

(
s + l2

l2

)]2

e−2y2/(2s)ey2/(2(s+l2))dyds

and applying then Laplace’s method for integrals (see (2.28)) we obtain

Q ∼= Q0

2π
t−1/2e−x2/(2t){(−1)3p(1 · 3 · · · |2p− 3|)2}

×
∫ t

0
dsλ2l

4(s + l2)−p+ 1
2

[
log

(
s + l2

l2

)]2

s−3 (2.75)

×
∫ ∞

−∞
y2(p−1)e−2y2/(2s)ey2/(2(s+l2))dy.

Letting now, for n ≥ 2,

L̂n :=
∫ t

0
dsλnl2n(s + l2)−p+(n−1

2
)

[
log

(
s + l2

l2

)]2

s−3n/2

×
∫ ∞

−∞
y2(p−1) exp(−ny2/(2s)) exp((n− 1)y2/(2(s + l2)))dy (2.76)

and using (2.29) and (2.30) we rewrite (2.75) as

Q ∼=: γA2(−1)p(2π)−1/2L̂3(s, l; p). (2.77)
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Now consider, for n ≥ 2,

L
(n)

k :=
∫ ∞

−∞
y2(p−1) exp

(−ny2

2s

)
exp

(
(n− 1)y2

2(s + l2)

)
dy

=
∫ ∞

−∞
y2(p−1) exp

(−y2

2s

)
exp

(−(n− 1)y2

2s

)
exp

(
(n− 1)y2

2(s + l2)

)
dy (2.78)

so that

L
(n)

k ≤
∫ ∞

−∞
y2(p−1) exp

(−y2

2s

)
dy

since exp
(−(n−1)y2

2s

)
exp

(
(n−1)y2

2(s+l2)

)
≤ 1. Thus, applying Lemma 2.2.1 one has

L
(n)

k ≤ (2π)1/2{1 · 3 · · · |2p− 3|}sp− 1
2 . (2.79)

Using (2.78) and (2.79) (with n=2), and (2.29) and (2.30) we rewrite (2.75) as

Q ≤ γA3

∫ t

0
λ2l

4(s + l2)−p+ 1
2 sp− 7

2

[
log

(
s + l2

l2

)]2

ds =: γA3L3(s; l, p) (2.80)

so that applying Lemma 2.2.6 ( (2.62) with n = 2) we obtain the following bounds for the third

integral

0 ≤ Q < γA3C(p, n), (2.81)

where C is a constant depending on p and n. Once again, combining (2.65), (2.71), (2.73),

and (2.81) yields the following bounds for u3:

γA3{
{

1
3!

[
log

(
t

l2

)]2

+ O

(
log

(
t

l2

))}
< u3(x, t; l)

< γA3

{
1
3!

[
log

(
t + l2

l2

)]3

+ O

(
log

(
t + l2

l2

))}
. (2.82)

As done before (see (2.36)), one can also express u3 as

u3(x, t; l) := γA3L3,1(s; l, p) + γA3L3,2(s; l, p) + γA2(−1)p(2π)−1/2L̂3(s, l; p) (2.83)

that can be used to obtain the derivative of u3 in order to calculate the next term in (2.8). Thus,
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the derivative of u3 has of the form

∂u3

∂x
=

( −x

t + l2

)
u3 +

( −x

t + l2

)(
l2

t

)
u3. (2.84)

Suppose that the claim is true for k− 1. We next prove the claim for k as follows. To calculate

the general term uk in (2.8) we will follow a similar procedure in the calculation of the terms above.

2.2.3 The calculation of the uk term

I. The estimates. In the following lemmas Lk−1,v is as in the induction hypothesis for v =

1, 2, 3, 4, respectively, and L̂k−1 is given by (2.76). In addition, Lk−1,3 and Lk−1,4 are taken as

Lk−1,3 = Lk−1,4 = 0 when k ≤ 3 for the notational convenience.

Lemma 2.2.7. Let

Lk,1 :=
∫ t

0
(s + l2)−psp−1{Lk−1,1 + Lk−1,2}ds. (2.85)

We then have the following bounds

C
(1)
k,1

(
t

l2

)(k−1)p+1

≤ Lk,1 < C
(2)
k,1

(
t

l2

)(k−1)p+1

+ O

(
t

l2

)
for t ≤ l2 (2.86)

1
k!

[
log

(
t

l2

)]k

+ O

(
log

(
t

l2

))
< Lk,1

<
1
k!

[
log

(
t + l2

l2

)]k

+ O

(
log

(
t + l2

l2

))
for t > l2 (2.87)

where C
(1)
k,1 and C

(2)
k,1 are constants depending on p.

Lemma 2.2.8. Let

Lk,2 :=
∫ t

0
λ1l

2(s + l2)−psp−2{Lk−1,1 + Lk−1,2}ds. (2.88)

We then have the following bounds

0 ≤ Lk,2 < C
(1)
k,2

(
t

l2

)(k−1)p

+ O

(
t

l2

)
for t ≤ l2 (2.89)
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0 ≤ Lk,2 < C
(2)
k,2(p) for t > l2 (2.90)

where C
(1)
k,2 and C

(2)
k,2 are constants depending on p.

Lemma 2.2.9. Let

Lk,3 :=
∫ t

0
(s + l2)−psp−1{Lk−1,3 + Lk−1,4 + L̂k−1}ds. (2.91)

We then have the following bounds

0 ≤ Lk,3 < C
(1)
k,3

(
t

l2

)(k−2)p− 1
2

+ O

(
t

l2

)
for t ≤ l2 (2.92)

0 < Lk,3 < C
(2)
k,3

[
log

(
t + l2

l2

)]k−3

+ O

(
log

(
t + l2

l2

))
for t > l2 (2.93)

where C
(1)
k,3 and C

(2)
k,3 are constants depending on p.

Lemma 2.2.10. Let

Lk,4 :=
∫ t

0
λ1l

2(s + l2)−psp−2{Lk−1,3 + Lk−1,4 + L̂k−1}ds. (2.94)

We then have the following bounds

0 ≤ Lk,4 < C
(1)
k,4

(
t

l2

)(k−2)p− 3
2

+ O

(
t

l2

)
for t ≤ l2 (2.95)

0 < Lk,4 < C
(2)
k,4 for t > l2 (2.96)

where C
(1)
k,4 and C

(2)
k,4 are constants depending on p.

The proofs of lemmas are given in Appendix C.

II. The calculation of the uk term. Using u0, . . . , uk−1 we will calculate uk so that we should

first begin calculating the term (u0 + εu1 + · · · + εk−1uk−1)(1−p)(u0 + εu1 + · · · + εk−1uk−1)
p
x. By

28



the induction hypothesis (u0 + εu1 + · · ·+ εk−1uk−1)x is expressed as

(u0 + εu1 + · · ·+ εk−1uk−1)x =
( −x

t + l2

)
(u0 + εu1 + · · ·+ εk−1uk−1)

+
( −x

t + l2

)(
l2

t

)
(εu1 + ε2u2 · · ·+ εk−1uk−1). (2.97)

Let (· · · ) and [· · · ] denote (u0 + εu1 + · · · + εk−1uk−1) and [εu1 + · · · + εk−1uk−1], respectively.

Applying the Binomial Formula to (2.97) one obtains

(· · · )(1−p)[· · · ]px ∼=
( −x

t + l2

)p

(· · · ) + λ1

( −x

t + l2

)p (
l2

t

)
[· · · ]

+
p∑

n=2

λn

( −x

t + l2

)p (
l2

t

)n
εnu1

n

u0
n−1

. (2.98)

Substituting (2.98) into (2.8) and retaining up to O(εk) terms leads to the expression

uk(x, t; l) := V + W + Z (2.99)

where

V :=
∫ t

0
ds

∫ ∞

−∞
dyG(x− y, t− s)y2(p−1)(−1)p(s + l2)−puk−1(y, s) (2.100)

W :=
∫ t

0
ds

∫ ∞

−∞
dyG(x− y, t− s)y2(p−1)(−1)p(s + l2)−pλ1l

2s−1uk−1(y, s) (2.101)

Z :=
∫ t

0
ds

∫ ∞

−∞
dyG(x− y, t− s)y2(p−1)(−1)p(s + l2)−pλk−1l

2(k−1)s−(k−1) u1(y, s)k−1

u0(y, s)k−2
. (2.102)

i. Evaluation of V integral. Using (2.6) and the induction hypothesis we write (2.100) as

V :=
∫ t

0
ds

∫ ∞

−∞
dy

(t− s)−1/2

(2π)1/2
exp

(−(x− y)2

2(t− s)

)
y2(p−1)(−1)p(s + l2)−p

×





[
Q0

(2π)1/2 s−1/2e−y2/(2s){(−1)p(1 · 3 · · · |2p− 3|)}k−1[Lk−1,1(s; l, p) + Lk−1,2(s; l, p)]
]

+




Q0

2π s−1/2e−y2/(2s)(−1)p{(−1)p(1 · 3 · · · |2p− 3|)}k−2

×[Lk−1,3(s; l, p) + Lk−1,4(s; l, p) + L̂k−1(s; l, p)]







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∼= Q0

2π
t−1/2e−x2/(2t){(−1)kp(1 · 3 · · · |2p− 3|)k−1}

×
[∫ t

0
ds(s + l2)−p[Lk−1,1(s; l, p) + Lk−1,2(s; l, p)]s−1/2

∫ ∞

−∞
dyy2(p−1)e−y2/(2s)

]
(2.103)

+
Q0

(2π)3/2
t−1/2e−x2/(2t){(−1)kp(1 · 3 · · · |2p− 3|)k−2}

×
[∫ t

0
ds(s + l2)−p[Lk−1,3(s; l, p) + Lk−1,4(s; l, p) + L̂k−1(s; l, p)]s−1/2

∫ ∞

−∞
dyy2(p−1)e−y2/(2s)

]
.

The approximations involve replacing t− s by t, and x− y by x to obtain the t−1/2e−x2/(2t) term

using the Laplace’s method for integrals (as in (2.28)) so that applying Lemma 2.2.1 to (2.103) and

using (2.29) and (2.30) we have

V ∼= γAk

∫ t

0
ds(s + l2)−psp−1[Lk−1,1(s; l, p) + Lk−1,2(s; l, p)]

+γAk−1(−1)p(2π)−1/2

∫ t

0
ds(s + l2)−psp−1[Lk−1,3(s; l, p) + Lk−1,4(s; l, p) + L̂k−1(s; l, p)]

=: γAkLk,1(s; l, p) + γAk−1(−1)p(2π)−1/2Lk,3(s; l, p). (2.104)

Now using Lemma 2.2.7 and Lemma 2.2.8 we have the following bounds for the integral V:

γAk

{
1
k!

[
log

(
t

l2

)]k

+ O

(
log

(
t

l2

))}
< V

< γAk

{
1
k!

[
log

(
t + l2

l2

)]k

+ O

(
log

(
t + l2

l2

))}
. (2.105)

ii. Evaluation of W integral. Following the procedure in the previous calculation one writes (2.101)

as

W ∼= γAk

∫ t

0
ds(s + l2)−psp−2[Lk−1,1(s; l, p) + Lk−1,2(s; l, p)]

+γAk−1(−1)p(2π)−1/2

∫ t

0
ds(s + l2)−psp−2[Lk−1,3(s; l, p) + Lk−1,4(s; l, p) + L̂k−1(s; l, p)]

=: γAkLk,2(s; l, p) + γAk−1(−1)p(2π)−1/2Lk,4(s; l, p). (2.106)

Applying Lemma 2.2.9 and Lemma 2.2.10 one has the following bounds for the second integral

0 ≤ W < γAkC(p) (2.107)
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where C (p) is a constant depending on p.

iii. Evaluation of Z integral. Using (2.6), (2.9) and (2.11) we write (2.102) as

Z :=
∫ t

0
ds

∫ ∞

−∞
dy

(t− s)−1/2

(2π)1/2
exp

(−(x− y)2

2(t− s)

)
y2(p−1)(−1)p(s + l2)−pλk−1l

2(k−1)s−(k−1)

× Q0

(2π)1/2
{(−1)p(1 · 3 · · · |2p− 3|)}k−1s−(k−1)/2(s + l2)(k−2)/2

[
log

(
s + l2

l2

)]k−1

× exp
(−(k − 1)y2

2s

)
exp

(
(k − 2)y2

2(s + l2)

)
. (2.108)

Applying Laplace’s methods for integrals to this and using (2.78) one can show

Z ∼= Q0

2π
t−1/2e−x2/(2t){(−1)kp(1 · 3 · · · |2p− 3|)k−1}

×
∫ t

0
dsλk−1l

2(k−1)(s + l2)−p+
(k−2)

2

[
log

(
s + l2

l2

)]k−1

s
−3(k−1)

2 L
(k−1)
k (2.109)

so that using (2.76) Z can be expressed as

Z ∼=: γAk−1(−1)p(2π)−1/2L̂k(s, l; p). (2.110)

Now using (2.79) one has

Z ≤ γAk

∫ t

0
dsλk−1l

2(k−1)(s + l2)−p+
(k−2)

2 sp−( 3k−2
2

)

[
log

(
t + l2

l2

)]k−1

=: γAkLk(s; l, p). (2.111)

We then have the following bounds for the third integral

0 ≤ Z < γAkC(p, k) (2.112)

applying Lemma 2.2.6 (for n = k − 1), where C is a constant depending on p and n. Thus,

combining (2.99), (2.105), (2.107) and (2.112) one has

γAk

{
1
k!

[
log

(
t

l2

)]k

+ O

(
log

(
t

l2

))}
< uk(x, t; l)
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< γAk

{
1
k!

[
log

(
t + l2

l2

)]k

+ O

(
log

(
t + l2

l2

))}
. (2.113)

Note that using (2.99), (2.104), (2.106) and (2.110) the term uk can be expressed as

uk(x, t; l) := γAk[Lk,1(s; l, p) + Lk,2(s; l, p)]

+γAk−1(−1)p(2π)−1/2[Lk,3(s; l, p) + Lk,4(s; l, p) + L̂k(s; l, p)] (2.114)

so that using (2.14) one obtains the derivative of uk as

∂uk

∂x
=

( −x

t + l2

)
uk +

( −x

t + l2

) (
l2

t

)
uk. (2.115)

Combining now (2.113) with (2.9), (2.11), (2.35), (2.42) in (2.8) one has to leading order in ε and

to leading order in l within O
(
εk

)
the solution (2.15).

2.3 The renormalization group transformations

If one has an asymptotic relation such as (2.15), one can then calculate the anomalous exponent

explicitly and obtain the similarity solution for large time and space. The arguments below are

within the context of formal applied analysis without reference to numerical procedures or physical

analogies. We follow the methodology in [12] and [38] that was motivated by [23]. For the problem

under consideration, we state the result as follows using true dimensions:

Proposition 2.3.1. Suppose u can be expressed as

u(x, t′; ε, l) =
T0

2π1/2

(
t′

Q2
1/D

)−1/2

e−x2/(4Dt′)
r∑

j=0

1
j!

[
εA log(2Dt′/l2)

]j (2.116)

where A is independent of x, t′, ε and l and only positive terms contribute to singularity. Then, to

leading order in εr, u can be expressed as

u(x, t′; ε, l) =
(

t′

Q2
1/D

)− 1
2
+εA

u∗r

(
x

(
Dt′/Q2

1

)1/2
,
Q2

1

D

)
(2.117)

so that the anomalous exponent is given by only εA. The fixed point function u∗r has the following
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form

u∗r (ξ, τ) =
T0

2π1/2
exp

(
− ξ2

4Dτ

) r∑

j=0

1
j!

[
εA log

(
2D

l2
τ

)]j

. (2.118)

Verification. We first verify the claim for r = 2, and then generalize it for arbitrary r ∈ Z+

below by dividing the derivation into five stages. Particular, the verification was done for r = 1

in [12].

2.3.1 The verification for r = 2

Stage 1. One needs to obtain an identity (up to O(ε2)) of the form

u(bφx, bt′) = Z2(b)u(x, t′) (2.119)

which is valid for a particular choice of Z2 and φ and all b > 1. Notice that the exponential term

in (2.116) forces φ = 1
2 for each r. Rewriting (2.116) up to O(ε2) one has

u(b1/2x, bt′) =
T0

2π1/2

(
t′

Q2
1/D

)−1/2

e−
x2

4Dt′
{

1 + εA log(2Dt′/l2) +
1
2!

[
εA log(2Dt′/l2)

]2
}

×b−1/2

{
1 + εA log(b) +

1
2!

[εA log(b)]2
}

(2.120)

so that (2.117) is satisfied with φ = 1
2 and

Z2(b) := b−1/2

{
1 + εA log(b) +

1
2!

[εA log(b)]2
}

. (2.121)

One then defines the operator (see [17] and [12])

Rb,φu(x, t′) :=
1

Z2(b)
u(b1/2x, bt′). (2.122)

Stage 2. By iteration one obtains (suppressing ε and l and ignoring O(ε3) terms)

u(bk/2x, bkt′) = Z2(b)ku(x, t′) (2.123)
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and a fixed point of this iteration will exist only if

u∗2(x, t′) := lim
k→∞

Z2(b)−ku(bk/2x, bkt′) (2.124)

is well defined. Now assuming the existence of a fixed point in this formal derivation we rewrite (2.124)

for large but finite k as

u(bk/2x, bkt′) ∼= Z2(b)ku∗2(x, t′). (2.125)

Note that b > 1 was necessary for considering large time and space, and in fact for the assumption

of approximate self-similarity that underlies the existence of the fixed point u∗2. Letting x := bk/2x

and t := bkt′ one has (for large k)

u(x, t) ∼= [Z2 (b)]k u∗2
(
xb−k/2, tb−k

)
. (2.126)

This means that for any large t one can determine the u profile by setting bk := t/(Q2
1/D), so that

the second argument remains unchanged as one examines different values of t. Letting t1 := Dt/Q2
1

we can then write (2.126) as

u(x, t1) ∼=
[
Z2

(
t1

1/k
)]k

u∗2
(
xt
−1/2
1 , Q2

1/D
)

. (2.127)

Stage 3. The scaling exponent will be determined by the limit

lim
k→∞

[
Z2

(
t1

1/k
)]k

= lim
k→∞

t
−1/2
1

{
1 +

εA log(t1)
k

+
1
2!

[
εA log(t1)

k

]2
}k

(2.128)

if it exists. To calculate this we first let

y :=
εA log(t1)

k
(2.129)

so that

1 +
εA log(t1)

k
+

1
2!

[
εA log(t1)

k

]2

=
[
1 +

1
(1 + i)

y

] [
1 +

1
(1− i)

y

]
. (2.130)
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Utilizing now the asymptotic expansion eδ ∼= 1 + δ for small δ one has

{
1 +

εA log(t1)
k

+
1
2!

[
εA log(t1)

k

]2
}k

∼= exp
{

εA

(1 + i)
log(t1)

}
exp

{
εA

(1− i)
log(t1)

}
= tεA1 .

(2.131)

We then have, from (2.128),

lim
k→∞

[
Z2

(
t1

1/k
)]k

= t
− 1

2
+εA

1 . (2.132)

Stage 4. Using (2.132) in (2.127) and dropping superbar since (2.127) is valid for arbitrary large t

we have

u(x, t′) =
(
Dt′/Q2

1

)− 1
2
+εA

u∗2
(
x

(
Dt′/Q2

1

)−1/2
, Q2

1/D
)

(2.133)

so that the anomalous exponent or ”dimension” is α = −εA.

Stage 5. Explicit evaluation of u∗2 is possible by writing (2.116) as

u(x, t′; ε, l) =
T0

2π1/2

(
t′

Q2
1/D

)−1/2

e−x2/(4Dt′)

{
1 + εA log

(
Dt′

Q2
1

)
+

1
2!

[
εA log

(
Dt′

Q2
1

)]2
}

×
{

1 + εA log
(

2Q2
1

l2

)
+

1
2!

[
εA log

(
2Q2

1

l2

)]2
}

. (2.134)

Utilizing (2.131) again we can show that

{
1 + εA log

(
Dt′

Q2
1

)
+

1
2!

[
εA log

(
Dt′

Q2
1

)]2
}
∼= exp

{
εA

(1 + i)
log

(
Dt′

Q2
1

)}
exp

{
εA

(1− i)
log

(
Dt′

Q2
1

)}

=
(

Dt′

Q2
1

)εA

=
(

t′

Q2
1/D

)εA

. (2.135)

Using now this we rewrite (2.134) as

u(x, t′; ε, l) =
T0

2π1/2

(
Dt′

Q2
1

)− 1
2
+εA

e−x2/(4Dt′)

{
1 + εA log

(
2Q2

1

l2

)
+

1
2!

[
εA log

(
2Q2

1

l2

)]2
}

.

(2.136)
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Comparison of (2.136) with (2.133) leads to the evaluation of u∗2 as

u∗2

(
x

(Dt′/Q2
1)1/2

,
Q2

1

D

)
=

T0

2π1/2
exp


−

(
x

(Dt′/Q2
1)1/2

)2

4D
(
Q2

1/D
)




×
{

1 + εA log
(

2Q2
1

l2

)
+

1
2!

[
εA log

(
2Q2

1

l2

)]2
}

. (2.137)

2.3.2 The verification for arbitrary r ∈ Z+

Stage 1. We first need to find an identity (up to O(εr)) of the form

u(bφx, bt′) = Zr(b)u(x, t′) (2.138)

which is valid for a particular choice of Zr and φ and all b > 1. Once again, one can easily see that

the exponential term in (2.116) yields φ = 1
2 . We next rewrite (2.116) up to O(εr) as

u(b1/2x, bt′) =
T0

2π1/2

(
t′

Q2
1/D

)−1/2

e−
x2

4Dt′





r∑

j=0

1
j!

[
εA log(2Dt′/l2)

]j



 (2.139)

×b−1/2





r∑

j=0

1
j!

[εA log(b)]j





that leads to the expression

Zr(b) := b−1/2





r∑

j=0

1
j!

[εA log(b)]j



 . (2.140)

Note that Zr does not depend upon l.

Following [38] and [12] we now define the operator as

Rb,φu(x, t′) :=
1

Zr(b)
u(b1/2x, bt′). (2.141)

Stage 2. By iteration we have (suppressing ε and l and ignoring O(εr+1) terms)

u(bk/2x, bkt′) = Zr(b)ku(x, t′). (2.142)
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A fixed point of this iteration will exist only if

u∗r(x, t′) := lim
k→∞

Zr(b)−ku(bk/2x, bkt′) (2.143)

is well defined. Under the assumption of the existence of a fixed point in this formal derivation, we

rewrite this for large but finite k as

u(bk/2x, bkt′) ∼= Zr(b)ku∗r(x, t′). (2.144)

Letting now x := bk/2x and t := bkt′ one rewrites the last equation so that one has (for large k)

u(x, t) ∼= [Zr (b)]k u∗r
(
xb−k/2, tb−k

)
. (2.145)

This means that for any large t we can determine the u profile by setting bk := t/(Q2
1/D) (so that

the second argument does not change as t varies), and write (2.145) as

u(x, t1) ∼=
[
Zr

(
t1

1/k
)]k

u∗r
(
xt
−1/2
1 , Q2

1/D
)

(2.146)

by letting t1 := Dt/Q2
1.

Stage 3. The limit below (if it exists)

lim
k→∞

[
Zr

(
t1

1/k
)]k

= lim
k→∞

t
−1/2
1





r∑

j=0

1
j!

[
εA log(t1)

k

]j




k

(2.147)

will determine the scaling exponent. Letting y := εA log(t1)
k one can show that

r∑

j=0

1
j!

[
εA log(t1)

k

]j

=
1
r!

r∑

j=0

r!
(r − j)!

yr−j

=
1
r!

r∏

j=1

(y + βj) =
β1β2 · · ·βr

r!

r∏

j=1

(
1 +

y

βj

)
(2.148)

where β1, β2, · · · , βr are roots of the polynomial
r∏

j=1
(y + βj) such that β1β2···βr

r! = 1, and
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r∑
j=1

(1/βj) = 1 (see [38] for r = 2). Utilizing now the asymptotic expansion ex ∼= 1 + x for small x

we have 



r∑

j=0

1
j!

[
εA log(t1)

k

]j




k

∼=
r∏

j=1

exp
[
εA

βj
log(t1)

]
= tεA1 . (2.149)

that yields the result

lim
k→∞

[
Zr

(
t1

1/k
)]k

= t
− 1

2
+εA

1 . (2.150)

Stage 4. We first substitute (2.150) into (2.146), and then drop the superbar since (2.146) is valid

for arbitrary large t. This yields the identity

u(x, t′) =
(
Dt′/Q2

1

)− 1
2
+εA

u∗r
(
x

(
Dt′/Q2

1

)−1/2
, Q2

1/D
)

(2.151)

so that the anomalous exponent is α = −εA.

Stage 5. To obtain u∗r we first rewrite (2.116) as

u(x, t′; ε, l) =
T0

2π1/2

(
t′

Q2
1/D

)−1/2

e−
x2

4Dt′





r∑

j=0

1
j!

[
εA log

(
Dt′

Q2
1

)]j




×




r∑

j=0

1
j!

[
εA log

(
2Q2

1

l2

)]j


 . (2.152)

Following a procedure similar to (2.148) - (2.149) one can show

r∑

j=0

1
j!

[
εA log

(
Dt′

Q2
1

)]j
∼=

r∏

j=1

exp
[
εA

βj
log

(
Dt′

Q2
1

)]
=

(
Dt′

Q2
1

)εA

(2.153)

so that one has

u(x, t′; ε, l) =
T0

2π1/2

(
Dt′

Q2
1

)−1/2+εA

exp
(
− x2

4Dt′

) 



r∑

j=0

1
j!

[
εA log

(
2Q2

1

l2

)]j


 . (2.154)
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Comparison of (2.154) with (2.151) yields u∗r as

u∗r

(
x

(Dt′/Q2
1)1/2

,
Q2

1

D

)
=

T0

2π1/2
exp


−

(
x

(Dt′/Q2
1)1/2

)2

4D
(
Q2

1/D
)




×




r∑

j=0

1
j!

[
εA log

(
2Q2

1

l2

)]j




which is (2.118).

2.4 Exact results

In this section we consider exact solutions to some special cases of (2.4) subject to con-

straints (2.2) with the aim of checking the RG calculations. In each of the calculations below

we transform (2.4) into

ϕτ =
1
2

[
ϕξξ + ξϕξ + ϕ2

ξ

]
+ εF

[
ξ, 1, ϕξ, ϕξξ + ϕ2

ξ

]
(2.155)

using the change of variables

u(x, t) := eϕ(ξ,τ), τ := log(t + t0) and ξ := x(t + t0)−1/2 (2.156)

where F is taken as in section 2.2. This transformation will be utilized in order to determine exact

solutions for the following two cases:

2.4.1 Examples

Example 1. Using the transformation above we rewrite the equation

ut =
1
2
uxx + εx−1ux (2.157)

as

ϕτ =
1
2

[
ϕξξ + ϕ2

ξ + ξϕξ

]
+ εξ−1ϕξ. (2.158)
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We seek a non-negative exact solution to the equation (2.158) of the form

ϕ(ξ, τ) = σξ2 + ατ, (2.159)

where σ, α ∈ R, so that the solution to the equation (2.157) has the form

u (x, t− t0) = t−α exp
(

σx2

t

)
. (2.160)

The substitutions yield that the equation (2.157) has the exact (non-negative) solution

u (x, t− t0) = t−
1
2
−εe

−x2

2t . (2.161)

Examples 2. Following a similar procedure in Example 1 we find that the non-linear equation

ut =
1
2
uxx + εu−1u2

x (2.162)

has the exact (non-negative) solution

u (x, t− t0) = t
−1

2(1−2ε) exp
( −x2

(1− 2ε)2t

)
. (2.163)

Remark 2.1. Letting u(x, t) = [w(x, t)]
1

(1−2ε) , where ε 6= 1
2 , one can transform the equation (2.162)

into linear (diffusion equation) form, i.e. wt = 1
2wxx. Hence, the exact (non-negative) solu-

tion (2.163) can be obtained by using the fundamental solution to linear equation, namely Γ(x, t) =

1√
2πt

exp
(
−x2

2t

)
.

These examples confirm the RG results (see [12] and Section 2.3).

2.4.2 Series-integral solutions

We describe briefly an additional asymptotic method for equations of the form (2.155) in order

to calculate the decay exponents [38]. This procedure involves using the formal expansion for the

special variables,

ϕ (ξ, τ ; ε) = φ0 (ξ, τ) + εφ1 (ξ, τ) + ε2φ2 (ξ, τ) + · · · (2.164)
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in equation (2.155). Substituting this expansion into equation (2.155) we obtain a hierarchy of

equations in terms of order in ε. The zeroth order equation is the nonlinear equation

φ0τ =
1
2

[
φ0ξξ + ξφ0ξ + φ2

0ξ

]
(2.165)

while the remaining equations involve the linear operator

Lφ =
1
2

[φξξ − ξφξ] . (2.166)

In particular, the first order equation is

φ1τ − Lφ1 = Ω0 (ξ) (2.167)

where

Ω0 (ξ) := F
[
ξ, 1, φ0ξ, φ0ξξ + φ2

0ξ

]
. (2.168)

One can verify that the zeroth order nonlinear equation has the solution

φo (ξ, τ) = −1
2
ξ2 − 1

2
τ . (2.169)

The coefficient of τ yields the leading (classical) exponent α0 = 1/2, i.e., t−1/2. The linear equations

can be solved with the constraints imposed by the boundary conditions. The analysis yields the

next term in the exponent

α1 = −
∫∞
0 Ω0 (η) e−η2/2dη∫∞

0 e−η2/2dη
(2.170)

that provides the correction to the classical decay, i.e., t−1/2 and agrees with the RG calculations.

Similarly, higher order corrections can be generated by analyzing successive linear equations.
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2.4.3 Self-similar solutions

Another method for calculating these exponents involves self-similarity methods. We consider

the case q = 0 so that we write (2.155) as

ϕτ =
1
2

[
ϕξξ + ϕ2

ξ + ξϕξ

]
+ εξp−2ϕp

ξ . (2.171)

One seeks an exact solution to (2.171) of the form

ϕ(ξ, τ ; ε) = φ(ξ; ε)− α(ε)τ , (2.172)

where (α, φ) ∈ R1 × C2(R) is the unknown, so that

u (x, t− t0) = t−αeφ(x/
√

t). (2.173)

It is then equivalent to solve

φ̈ + φ̇2 + ξφ̇ + 2εξp−2φ̇p + 2α = 0 on (−Ξ, Ξ)

lim
ξ→±Ξ

eφ(ξ;ε) = 0, lim
ξ→±Ξ

φ̇eφ = 0 (2.174)

where Ξ is either finite or infinite and · := d
dξ . Note that if Ξ is finite, then u = ux ≡ 0 for |x| ≥ Ξ

√
t

and we have a compactly supported self similar solution to (2.4).

Suppose we are looking for an even solution, i.e., φ(−ξ) = φ(ξ). Setting w(ξ; ε) = φ̇(ξ; ε) one

now has

ẇ + ξw + w2 + 2εξp−2wp + 2α = 0 on (0, Ξ)

w(0) = 0, lim
ξ→Ξ

w = −∞, lim
ξ→Ξ

we
∫ ξ
0 w(η)dη = 0. (2.175)

Using shooting methods one can show the existence of a unique solution (α, φ) (see Appendix A).

Introducing the expansion

α(ε) = α0 + εα1 + ε2α2 + · · · (2.176)

w(ξ; ε) = w0(ξ) + εw1(ξ) + ε2w2(ξ) + · · · (2.177)
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one has a sequence of IVP’s:

ẇ0 = −2α0 − ξw0 − w2
0, w0(0) = 0 (2.178)

ẇ1 = −2α1 − ξw1 − 2w0w1 − 2ξp−2wp
0, w1(0) = 0 (2.179)

ẇ2 = −2α2 − ξw2 − (w2
1 + 2w0w2)− 2pξp−2wp−1

0 w1, w2(0) = 0 (2.180)

ẇk = −2αk + ξwk + θ (ξ, w0, · · · , wk−1; p) , wk(0) = 0 for k ≥ 3 (2.181)

where θ is a known function of these variables.

Note that the initial conditions in (2.178)-(2.181) ensure (through the expansion (2.177) for w)

the first of the three conditions in (2.175). The second condition can be guaranteed by imposing it

on w0 alone, since the remaining terms are of the lower order in ε. The third condition in (2.175)

can be written as

(w0(ξ) + εw1(ξ) + · · · )e
∫ ξ
0 w0(η)dηeε

∫ ξ
0 w1(η)dη+ε2

∫ ξ
0 w2(η)dη+··· → 0 (2.182)

and can be ensured by imposing the condition

lim
ξ→Ξ

wie
∫ ξ
0 w(η)dη = 0 for i = 0, 1, 2, . . . . (2.183)

With this additional condition we proceed to solve (2.178)-(2.181) for wi and αi. Note that the

first of these is nonlinear while all of the others are linear in terms of the differentiated function.

Accordingly the treatment differs in the two cases. One can easily verify that equation (2.178),

subject to the limiting condition above, has a solution

α0 =
1
2

and w0(ξ) = −ξ ⇒ φ0(ξ) = −1
2
ξ2. (2.184)

Further discussion of nonlinear equations of this type can be found in Appendix A.

The remaining equations (2.179)-(2.181) can be solved successively by multiplying by the inte-
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grating factor. In particular, upon multiplication by e−ξ2/2, (2.179) has the form

d

dξ

[
e−ξ2/2w1(ξ)

]
= e−ξ2/2

[−2α1 − 2(−1)pξp−2
]

(2.185)

so that integration on [0,∞) and utilizing the condition (2.183)( lim
ξ→Ξ

w1e
−ξ2/2 = 0 ) yields the value

α1 =
(−1)p+1

∫∞
0 η2p−2e−η2/2dη∫∞

0 e−η2/2dη
= (−1)p+1 (1 · 3 · · · · · |2p− 3|) . (2.186)

Thus, this result yields the same exponent as the formal RG calculation (Caginalp [12]).

One needs to find a solution of (2.185) to obtain the next term α2, which is important in

determining the most singular term in the anomalous exponent for nonlinear diffusion, and also to

compare the results obtained by the RG methods. Substituting the value above for α1 (as well as

w0(ξ) = −ξ) into (2.179) we obtain a first order linear IVP with variable coefficients that can be

solved by standard methods. Thus , a solution to (2.185) is given by

w1(ξ) = 0 for p = 1 (2.187)

w1(ξ) =
p−1∑

k=1

(−1)p2 (1 · 3 · · · · · |2p− 3|)
(1 · 3 · · · · · |2k − 1|) ξ2k−1 for p ≥ 2. (2.188)

Next, we substitute these expressions for w0 and w1 into (2.180), and utilize the same methods

to obtain the value of α2 as

α2 =
(−1)p p

∫∞
0 η2p−3w1(η)e−η2/2dη − 1

2

∫∞
0 w2

1(η)e−η2/2dη∫∞
0 e−η2/2dη

. (2.189)

Evaluating these integrals yields the following values:

α2 = 0 for p = 1 (2.190)
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α2 = 2p (1 · 3 · · · · · |2p− 3|)
p−1∑

k=1

(1 · 3 · · · · · |2(k + p)− 5|)
(1 · 3 · · · · · |2k − 1|)

−2 (1 · 3 · · · · · |2p− 3|)2 (2.191)

×
p−1∑

r=1

p−1∑

j=1

(1 · 3 · · · · · |2(r + j)− 3|)
(1 · 3 · · · · · |2r − 1|) (1 · 3 · · · · · |2j − 1|) for p ≥ 2

Note that the sign of α2 would depend on that of the nonlinear term F . In addition, following the

similar procedure above one can calculate αk for k ≥ 3.

Remark 2.2. Note that for p = 1 one has α1 = 1 and α2 = 0. These yield the nonclassical

exponent as α(ε) = 1
2 + ε that agrees with (2.161).

2.5 Conclusions

We have developed the renormalization group ideas to higher order in ε by deriving the operator

Z in (2.138) that allows us to write expressions such as (2.117). Our procedure is to extract, for

each order in ε, the leading order behavior in l−1, in a large but finite interval, so that only positive

contributions to the decay are significant in O(ε2) and higher. A key step in this process is to

obtain a transformation that rescales variables. While RG methods usually involve an identity in

this transformation, we utilize the basic ideas by using an identity up to a particular order in ε.

For example, the equation

ut =
1
2
uxx + εx−1ux

is characterized by the large time behavior

u(x, t) ∼ t−
1
2
−ε

since we can characterize all of the higher order terms as an exponential that is the sum of a

convergent infinite series. The exponential with logarithmic terms as arguments can then be written

as t−ε.

The methodology presented in this paper can be expected to be useful in other problems in which

there is an asymptotically self-similar structure. Examples of other such situations are finite-time

blow up and extinction of solutions to nonlinear differential equations.
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The rigorous results presented in this paper confirm that some of the earlier RG calculations

are in fact valid for arbitrarily large time and space.
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Chapter 3

Renormalization Group Methods and Regimes in

Interface Problems

3.1 Introduction

Spatial pattern formation arising from a variety of non-equilibrium growth phenomena has

attracted much attention. A number of mathematical methods such as analytical methods, linear

stability theory and large scale computations have been used to study these problems. In many

cases, the pattern arises through the motion of an interface separating two phases or liquids [18].

Early studies of pattern formation generally focused on the existence, the nature of steady states and

their stability, etc., for example, the onset of stability for fluids, alloys, and Stefan-like supercooled

solidification (see [52], [43], [44], and [45]). Analytical methods and linear stability have been a

valuable tool to answer such key questions. In particular, the latter has been used to study the

evolution of the interface for its small time behavior.

From a practical standpoint, the large time evolution has been of great interest in a number of

problems such as dendritic growth, directional solidification in binary alloys, and fluids. In many

problems, this is the key issue in the interfacial phenomena and merits analysis. For example, in

solidification of a binary alloy, a key issue involves the deposition of the impurities as the late-stage

dendrites involve into fully solidified material. The pattern of impurities in the solid has a strong

bearing on the mechanical properties such as brittleness.

A first aim along these lines has been the development of an analytical method, analogous to

linear stability theory, that can be used to determine the characteristic length, R(t), as a func-

tion of time if the pattern is self-similar. Progress toward this goal was made by Jasnow and

Vinals [30], [31], and Caginalp [14], [15] who adapt renormalization group (RG) and scaling theory

to study the large time behavior of an interface.

The characteristic length, R(t), is the time dependent length scale governing the morphology

of late stage pattern growth. For example, it may be the radius of a circle which contains the
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Figure 3.1. The viscous-fingering pattern.

pattern evolving self-similarly in time [see Figure 3.1]. Jasnow and Yeung [32] describe a possible

characteristic length as the radius of gyration of pattern in the study of asymptotic behavior of

viscous-fingering patterns in a circular Hele-Shaw cell. In their work, R(t) characterizes the fractal

pattern growth which evolves linearly in time in the constant flux mode [see FIG.1 in [32]]. A

key issue is whether R(t) ∼ A(t)1/2, where R(t) := A(t)1/D, D is the fractal dimension, in which

case the pattern is compact (non-fractal). In other words, the pattern ”fills space” as t → ∞. If

the exponent is greater than 1/2 (in two dimensional space) then pattern is fractal. While some

experiments [51] have suggested D ' 1.79, Jasnow and Yeung’s numerical computations lead to

their conclusion.

We summarize now some results obtained for complex interface problems that arise frequently

in applications. Using the terminology of thermal problems we write the sharp interface problem as

follows. We consider a material occupying a spatial region, Ω, in d-dimensional space that can be

in either of two phases, which we call liquid and solid. Mathematical model consists of determining
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the temperature, T (x, t), and the interface, Γ(t), in the system of equations:

CTt = K∆T in Ω (3.1)

lvn = −K[∇T · n̂]+− on Γ (3.2)

T =
−σ0

[s]eq
(κ + αυn) on Γ. (3.3)

Here, C is the specific heat per unit volume, K is the thermal conductivity (so that one defines

that D := K/C), l is the latent heat per unit volume, σ0 is the surface tension, [s]eq is the

entropy difference per unit volume between phases, α is the dynamical undercooling and [...]+− is

the difference in the limiting values between the two sides of the interface. The variables υn and

κ denote the (normal) velocity and the sum of the principle curvatures at a point on the interface,

respectively. In addition, + denotes the phase with the higher internal energy, i.e., liquid and –

denotes the phase with the lower internal energy, i.e., solid.

Jasnow and Vinals utilized the following conditions: (i) the dynamical undercooling was set to

zero (α = 0); (ii) one of the two phases was suppressed so that the equations involved one of the

phases; (iii) the quasi-static limit was considered by suppressing the time dependence in (3.1) (i.e.,

CTt = 0); (iv) a plane wave solution was utilized (through flux conditions) and subtracted from

the solutions. Under these conditions they found that the characteristic length, R(t), of a system

with single scale self-similarity must have the large time behavior R(t) ∼ t.

Subsequently, Caginalp examined the problem above under the conditions (i) α 6= 0; (ii) two-

phases are present; (iii) the fully-dynamic case is considered (CTt 6= 0); (iv) both with a particular

plane wave and without. Under these conditions RG led to the conclusion that R(t) ∼ t1/2 assuming

R is nonsingular as d0 approaches zero.

This suggests the following questions. (a) What feature of the equations is responsible for the

difference in the scaling exponents? (b) How is the transition made between the different regimes?

(c) What insights can we obtain for other problems involving nonlinear dynamics?

There is also another issue that is illuminated by the RG process. As we will see in the

next section the RG methodology also distinguishes between those physical parameters that are

”relevant” and those that are ”irrelevant.” An irrelevant variable (in terms of large time behavior)

is one whose value can be set to some value (zero in this case) without influencing the scaling
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exponent (i.e., 1 or 1/2 in the two cases above). Both of the analyses above, as well as the analysis

we present show that the capillarity length (which is the length scale associated with the surface

tension, σ0) is irrelevant for large time in most cases even though the difference in the exponents of

the characteristic length suggests that there is an important difference between in the two regimes..

This is in sharp contrast with the crucial role it has for stability in short time where it essentially

determines the nature of the interface evolution. A large capillarity length means that the interface

seeks to minimize the curvature, making the interface more rounded. Consequently, the irrelevance

of the capillarity length is one of the key surprises presented by the RG analysis.

In this chapter, we consider the full two-phase interface problem in the quasi-static regime in

a d-dimensional space where d > 2. The growth process for sufficiently long time is analyzed in

the context of a general geometry and more general conditions on the degree of undercooling. The

quasi-static regime is important since it is a good approximation for many materials with common

boundary conditions, as the temperature quickly approaches a solution to Laplace’s equation. Thus,

a key difference in long term behavior between quasi-static and fully dynamic would be significant

in theoretical and practical terms. The main result of our work is that without reference to a

plane wave the characteristic length, R(t), varies as t−1/λ where λ ∈ [−3,−2], under the single

scale self similarity assumption when the dynamical undercooling is non-zero (α 6= 0). For α = 0

the spectrum is [−3, 0) so that the single value of λ = −1 is selected by the plane wave imposed

through the boundary conditions by Jasnow and Vinals [31]. This work indicates that the pattern

evolves with different forms as λ varies in a continuous spectrum and extends the earlier results

and those of Jasnow and Vinals who obtained a single growth form for the interface problem in the

same regime [see Figure 3.2]. Analogous results are also obtained for other interface models [see

Figure 3.2 and Figure 3.3].

Furthermore, the results confirm, as in [31] and [15], that for almost all values of λ the capillarity

length, d0, which is the length scale associated with the surface tension, is not relevant to the scaling

of the large scale behavior of an interface. This is an intriguing consequence since we know that the

surface tension plays the stabilizing role in the early stage growth so that it has a critical influence

for short time. Indeed, while large capillarity length tends to suppress instabilities small capillarity

length permits it. The only exception arises at the value λ = −3 (so that R(t) ∼ t1/3) for which

the capillarity length, d0, is invariant.
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The methodology we use is similar to that in Caginalp [15], and basically utilizes RG transfor-

mations that are identities involving Green’s function representation for Poisson’s equation. The

outline of the chapter is as follows: In Section 3.2, we first rewrite, for the case α 6= 0, the basic

equations in terms of a Green’s function representation by introducing a phase parameter (in Sec-

tion 3.2.1). In Section 3.2.2, the RG analysis is implemented in several steps so that the equations

are first transformed and then converted back into the original form by renormalizing physical

parameters. In Section 3.3, the case α = 0 is studied.

3.2 The RG analysis in the quasi-static regime

We address the question of isolating the factors behind the different scaling regimes. In partic-

ular we begin by using (3.1)-(3.3) with CTt = 0, i.e., the quasi-static regime. Without reference

to a plane wave we find that the scaling exponent in R(t) ∼ t−1/λ is given by λ ∈ [−3,−2] if α 6= 0,

and λ ∈ [−3, 0) if α = 0. In the latter case, the continuous spectrum includes the value λ = −1

obtained by Jasnow and Vinals [31] for the plane wave subtraction. Hence the plane wave selects

the particular value from the spectrum.

The basic steps in the RG process can be presented as follows. In this section, the dynamical

undercooling is nonzero, i.e. α 6= 0.

3.2.1 The model and Green’s function representation

We begin the calculations by writing equations (3.1) and (3.2) as a single equation. In order

to do this, we utilize the heat equation

CTt = K∆T (3.4)

where C is the specific heat per unit volume and K is the thermal conductivity and D := K/C.

Following Caginalp [15], the equations (3.4) and (3.2) can be reformulated and written as a single

equation by defining locally a signed distance, r (defined a sufficiently small distance from the

interface), which is positive on the liquid phase, and introducing a phase variable ϕ (r, t) that is a
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step function having the value –1 in the solid phase and +1 in the liquid phase. One then has

CTt −K∆T = − l

2
ϕt. (3.5)

This formulation is known as Oleinik formulation that is related to a continuously varying function

ϕ in the phase field equation (see Caginalp [14] [15] and Oleinik [46] for more details). Multiplying

the two sides of the equation (3.5) by 1/K and setting CTt = 0 we obtain

∆T =
l

2K
ϕt. (3.6)

Treating the phase change as a source term with support along the interface, Γ(t), and using the

Green’s formulation one can express the solution of (3.6) as

T (x) =
∫

Ω
ddy G(~x− ~y)

(
l

2K
ϕt(~y, t)

)
+

∫

∂Ω

(
T (~y)

∂G

∂ν
(~x− ~y) + G(~x− ~y)

∂T

∂ν
(~y)

)
dd−1σy (3.7)

where the Green’s function that we use is

G(~x− ~y) =





1
2(2−d)ωd

|~x− ~y|2−d if d > 2,

1
2π log |~x− ~y| if d = 2.

(3.8)

Here, the simplest Green’s function for infinite domains is implemented. Since we are interested

in very large domains, this is a good approximation.

We now examine the region near the interface to evaluate the first integral
(
i.e

∫
Ω ...

)
in (3.7).

Following Caginalp [15], let z = h(X, t), X ∈ Rd−1, denote the displacement of the interface from

~z = 0 which is in the original stationary units. Then dh/dt will be the velocity in the k̂, or z,

direction where k̂ is the unit normal. Thus, assuming the interface is sufficiently smooth, one can

write the normal velocity of the interface as

υn = k̂ · n̂dh

dt
(3.9)

where n̂ is the unit normal in direction from solid to liquid.

Let ϕ̃ (x, t) be a smoothing of the step function ϕ (x, t) where the transition from –1 to +1
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appears on a small distance scale. In order to perform the integral, we use local coordinates (~r, ~σ)

which are the signed normal and the tangential to the interface, respectively. We consider a suitable

local neighborhood of the interface in order to eliminate problems such as the uniqueness of the

signed normal. To leading order, the smoothing function ϕ̃ (x, t) and its derivatives are functions

of r − υnt. By defining a variable φ as a function r − υnt, to leading order we have

ϕ (x, t) = ϕ̃ (x, t) = φ(r − υnt). (3.10)

If the interface is sufficiently smooth and the thickness of the interface is sufficiently small, then

the transition region will be in this local region and this approximation can be used in order to

compute the integration across the interface in (3.7). In particular, one has

ϕt (x, t) = −υnφr(r − υnt) (3.11)

and also, for enough small δ, ∫ δ

−δ
φr(r − υnt)dr = 2. (3.12)

Using then these new definitions, (3.7) is rewritten as

T (x) =
∫

Ω
ddy G(~x− ~y)

(
l

2K

)(
−

(
k̂ · n̂dh

dt

)
φr~y

(
r −

(
k̂ · n̂dh

dt

)
t

))
+ BI (3.13)

where BI denotes the integral that is taken over the boundary of the domain in (3.7). Since the

derivatives of φ vanish just outside of the interfacial region, we can perform the integral in the

normal direction thereby reducing the integral over Ω to one over Γ, with the result,

T (x) =
∫

Γ(t)
dd−1σy G(~x− ~y)

(
l

2K

)(
−2k̂ · n̂dh

dt

)
+ BI. (3.14)

For the points on the interface, one can combine (3.14) and (3.3). Recalling D = K/C and

neglecting BI term since it is far away from the interface one then has

−σ0

[s]eq

(
κ + αk̂ · n̂dh (~x, t)

dt

)
=

l

C

1
D

∫

Γ(t)
dd−1σy G(~x− ~y)

(
−k̂ · n̂dh (~y, t)

dt

)
. (3.15)
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Following [15] we now define the standard capillarity length to be

d0 :=
σ0/ [s]eq

l/C
(3.16)

and rewrite (3.15) as

d0

(
κ + αk̂ · n̂dh (~x, t)

dt

)
=

1
D

∫

Γ(t)
dd−1σy G(~x− ~y)

(
k̂ · n̂dh (~y, t)

dt

)
. (3.17)

Dividing the variables in the equation above by appropriate reference length, L0, and time,

T0, scales etc., we convert all constants and variables in (3.17) to their dimensionless counterparts

(see [15] for further details), and write the equation entirely in dimensionless variables in order to

compare pure numbers after a RG procedure. Using the dimensionless units, replacing ~η in the

place of ~x for the points on the interface and recalling also that υn = k̂ · n̂ · (dh/dt) (see (3.9)) one

writes the equation (3.17) as

d0 {κ(~η, t) + αυn (~η, t)} =
1
D

∫

Γ(t)
dd−1σy G(~η − ~y)υn (~y, t) . (3.18)

3.2.2 Renormalization group analysis of the interface equation

We now implement a renormalization procedure as follows [see [31], [14] and [15]].

Step 1. The first step is to make the algebraic substitutions

b~η for ~η and b−λt for t (3.19)

into (3.18) for any b > 0 and λ ∈ R, which will be determined later, so that one has

d0

{
κ(b~η, b−λt) + αυn(b~η, b−λt)

}
=

1
D

∫

Γ(b−λt)
dd−1σy G(b~η − ~y)υn(~y, b−λt). (3.20)

Next we define new variables

~y′ = y/b and σy′ = σy/b (3.21)
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in order to rescale space. These two substitutions into (3.20) yield

d0

{
κ(b~η, b−λt) + α υn(b~η, b−λt)

}
=

1
D

∫

by′∈Γ(b−λt)
bd−1dd−1σy′ G(b~η − b~y′)υn(b~y′, b−λt). (3.22)

Note that the surface integral in (3.22) is over those points for which y ∈ Γ(b−λt) which is

identical (algebraically) to by′ ∈ Γ(b−λt). The latter will be equivalent to y′ ∈ Γ(b−λt) upon

assuming single scale self similarity in (3.24) below.

Step 2. The second step involves the examination of the scaling of individual terms. Purely

algebraic transformation for the Green’s function, for d ≥ 3, leads to the result

G(b~η − b~y′) = b2−dG(~η − ~y′). (3.23)

We assume the single scale self similarity for the scaling of the physical quantities involving

length in this work. That is, it is assumed that all physical lengths and all physical time measure-

ments in the problem scale as

ξ(b~η, b−λt) = bξ(~η, t); (3.24)

T
(
b~η, b−λt

)
= b−λT(~η, t) , (3.25)

respectively, (see [15] and [31]). Note that (3.24) implies by′ ∈ Γ(b−λt) ⇔ y′ ∈ Γ(t). One interpre-

tation of the first relation, for example, is that if one rescales the position on the interface, Γ (t), by

b, and the time by b−λ, then the position in the z-direction, which is ξ := h/L0 in the calculation

above, will change by a factor of b. In other words if ξ(~η, t) is the value for the height at time t,

then that at time b−λt can be obtained by multiplying it by b.

As a result of these assumptions, i.e. (3.24) and (3.25), one can obtain the scaling relations for

the (normal) velocity, υn, and the curvature, κ, which has units of 1/length, as

υn

(
b~η, b−λt

)
= b1+λυn (~η, t) , (3.26)

bκ (~η, t) = κ(b~η, b−λt). (3.27)

Substituting the relations above into (3.22) and simplifying the terms lead to the new interface
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equation below that can be compared with the original equation (3.17), after the physical param-

eters are renormalized

d0

b3+λ

{
κ(~η, t) +

α

b−2−λ
υn (~η, t)

}
=

1
D

∫

y′∈Γ(t)
dd−1σy′ G(~η − ~y′)υn

(
~y′, t

)
. (3.28)

Step 3. At this stage in the renormalization process, we rescale the physical parameters in order

that the new equation has the same form as the original equation. The key observation here is that

the new equation (3.28) is identical to the original (3.17) upon replacing

d0 → d0

b3+λ
and α → α

b−2−λ
. (3.29)

In summary , the process of algebraic substitutions (i.e. b~η → ~η and b−λt → t), as done in Step

1, the (single scale) self-similarity assumption together with the scaling of the physical parameters

(3.29) allow us transform the new interface equation back into its original form.

Since it is assumed that the system evolves in a self-similar manner with a single length scale,

all physical quantities having units of length must grow at a rate proportional to a characteristic

length, R (t), that depends on (t; α, d0). Hence, R must satisfy the same relationship as the length

ξ does (see (3.24)) so that one has the following self-similarity relation

R
(
b−λt; α, d0

)
= bR

(
t;α/b−2−λ, d0/b3+λ

)
. (3.30)

The equality (3.30) expresses the relation between the characteristic lengths of two systems

with different parameters and at different times and also describes the necessary changes in the

physical parameters, (α, d0). The algebraic substitution t = bλt1 into scaling equation (3.30) yields

R (t1; α, d0) = bR
(
bλt1; α/b−2−λ, d0/b3+λ

)
. (3.31)

Step 4. Recalling that the calculations are valid for any b > 0 and any real valued parameter

λ that was to be determined (see Step 1). One then chooses b = t
−1/λ
1 , (so that bλt1 = 1), and
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rewrites the identity (3.31), omitting the subscript 1 on t1, as

R (t; α, d0) = t−1/λR
(
1;α/t(2+λ)/λ, d0/t−(3+λ)/λ

)
. (3.32)

We now examine this new identity in terms of its implications for the parameter λ.

Analysis of the parameter λ. The value of λ clearly determines the long time asymptotics of the

characteristic length, R(t) assuming that R is not singular in d0 as d0 → 0. Both the cases λ < −3

and λ > 0 lead to the result that d0 approaches ∞ as t → ∞. These, however, yield fixed points

that are physically not meaningful. Similarly, if λ ∈ (−2, 0), then α approaches ∞ for large t, while

d0 approaches 0 which yield also the nonphysical fixed points. Hence, any possible value for λ which

yields the nontrivial fixed point lies in the interval [−3,−2]. This indicates that the characteristic

length, R(t), increases as t−1/λ as λ varies in the continuous spectrum [−3,−2].

The result also confirms, once again, for λ ∈ (−3,−2] that the capillarity length, d0, is essen-

tially irrelevant for large time, which is sharp contrast with its stabilizing role for short times (see

references [43], [44] and [45]). The only exception is the value λ = −3 (i.e. R(t) ∼ t1/3) for which

the capillarity length, d0, is invariant for large time. In this case, the scaling does not depend on

the non-singularity of R as a function of d0.

3.3 The case α = 0

In this section, we set α = 0 in the equation (3.3) so that it becomes

T =
−σ0

[s]eq
κ (3.33)

and examine the large time characteristic of the characteristic length, R(t), corresponding to the

system of equations (3.1), (3.2) and (3.33). Following Section 3.2.1 one rewrites the equations of

the form

d0κ =
1
D

∫

Γ(t)
dd−1σy G(~x− ~y)υn(~y, t). (3.34)
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The RG analysis, following Section 3.2.2, yields the identity

R (t;α, d0) = t−1/λR
(
1; d0/t−(3+λ)/λ

)
. (3.35)

Analysis of the parameter λ, once again, determines the large time characteristic of the char-

acteristic length, R(t). Since we expect a positive growth, λ must be negative, i.e λ < 0. On the

other hand, if λ < −3, then d0 approaches ∞ as t →∞ that leads to the physically irrelevant fixed

points. The values of λ which are physically relevant stay in the continuous spectrum, [−3, 0). The

single value of λ = −1 is selected from this spectrum by the plane wave imposed by Jasnow and

Vinals [31].

Similarly, the result also shows, for λ ∈ (−3, 0), that the capillarity length, d0, is essentially

irrelevant for large time. Once again, the exceptional case arises for the value of λ = −3 at which

the capillarity length, d0, is unchanged during the scaling of the large scale behavior. This yields

R(t) ∼ t1/3 with no assumption of non-singularity of R. Moreover, the only scaling which d0 is

invariant has t1/3 behavior.

3.4 Conclusions

We have performed a RG analysis for the large scale dynamical behavior of the full-two phase

interface problem, defined by the system of equations (3.1)-(3.3) in the quasi-static regime. The

calculations involve the implementation of renormalization group methods once a Green’s function

representation is introduced for the equations. Two cases were considered for the coefficient of

the dynamical undercooling: α = 0 and α 6= 0. The latter condition includes the effect of a lower

temperature on the interface that is associated with motion. We assume that the system evolves

self-similarly with a single length scale and find that the characteristic length R (t), evolves as

t−1/λ without reference a plane wave. For the case α 6= 0 we find that a continuous spectrum of

λ is possible, namely, λ ∈ [−3,−2]. The case α = 0 corresponds to the completely quasi-static

case as the dynamical undercooling effect is suppressed. Here the single length scale self-similarity

implies the continuous spectrum λ ∈ [−3, 0). When a particular plane wave is imposed [31] a single

value, namely, λ = −1, is selected from this spectrum. The difference in the exponents of the
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characteristic length suggests that there is an important difference between the fully dynamic and

static regimes.

Another important conclusion resulting from this and prior works is that in almost all of these

cases, the capillarity length, d0, associated with the surface tension is irrelevant for the large time

behavior. This is a very important consequence since we know that the capillarity length is a crucial

factor for the initial velocity and the linear stability of an interface. An interesting question is how

the role of the capillarity length changes from the early stage growth to the late stage growth.

The study of the late stage interface behavior using RG provides a complement to the systematic

approach provided by linear stability theory. As methodology is developed for these two regimes,

the most challenging problem may be the understanding of the transition between the short term

and the long term asymptotics and crossover behaviors.
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Chapter 4

Conclusions, Discussion and Future Direction

The scaling and renormalization group (RG) methods originally introduced for statistical me-

chanics and quantum field theory can be adapted to applied mathematical problems such as random

walk and fractals [17]. Application of these methods to differential equations is an important facet

that can lead to an understanding of large time behavior in many applied problems.

Historically, RG methods were developed and understood in the context of equilibrium problems

such as the divergence of exponents of physical measurables in statistical mechanics. The general-

ization of this methodology to dynamic problems would be of significance in a broad spectrum of

applied mathematical problems. A focus of recent research has been the adapting of these methods

in order to understand large time behavior as an asymptotic fixed point.

In this thesis we have implemented these methods in order the study two applied mathematics

problems: decay of solutions to a class of nonlinear parabolic equations and the large time behavior

of an unstable interface.

Chapter 2 has studied parabolic equations with a small nonlinear term and calculated the decay

exponents adapting scaling and RG methods. The determination of decay exponents is viewed as

an asymptotically self similar process that facilitates an RG approach. These RG methods are

extended to higher order in the small coefficient of the nonlinearity. The RG results were verified

in some cases by rigorous proofs and other calculational methods.

Chapter 3 has shown that the prototype sharp interface model (3.1)-(3.3) can be analyzed for

large time behavior using RG methods (see Figure 3.2 and Figure 3.3). The use of RG techniques

has led to a calculation of the characteristic length of an interface between two phases (with surface

tension and kinetics) evolving self-similarly. One of the surprising conclusions that have arisen

from almost all of these analyses is that the capillarity length associated with surface tension is

essentially irrelevant for large time behavior of the interface. This differs significantly from its role

for short time, where linear stability stipulates a smoothing and stabilizing effect due to larger

capillarity lengths. It would be interesting to investigate quantitatively how the role role of the
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surface tension evolves from a crucial role at the initial stage to an irrelevant one at the late stage.

Many problems in materials science have been simplified through the use of quasi-static for-

malisms such as replacing the heat equation, ut = ∆u, by Laplace’s equation, ∆u = 0. In many

cases this appears to be justified due to the very rapid heat conduction (particularly in metals such

as aluminium) that leads to a very small ut term shortly after the introduction of a constant heat

source. These ideas have potential application to other materials science and applied mathematical

problems in which the quasi-static approximation is of practical and/or theoretical importance.

The variety of models for phase transitions offers an opportunity to examine the connection

between the static (for which most of renormalization group theory in physics has been devel-

oped) and the dynamic. Understanding renormalization group calculations for dynamic and static

problems and their relationships remains a central issue for the theory as a whole.

Our RG analysis indicates that the large time behavior of the quasi static solution may differ

significantly from the fully dynamical system. The different scaling regimes exhibited by the quasi-

static and the dynamic pose an interesting question about the nature of the transition between the

two regimes. This problem can be studied by using expansion techniques in conjunction with RG

methods. The crux of the transition in the exponent of the large time behavior of the interface can

be understood in terms of the distinguished limit of the Green’s function for the elliptic equation

through the fundamental solution to the parabolic equation.

The central aspect of the problem in mathematical terms is the relationship between the basic

solutions of the parabolic problem to those of the elliptic problem (specifically in this case, the heat

equation and Laplace’s equation). In particular the key is to understand the relationship between

the RG scalings of these formalisms.

As methodology is developed for these two regimes, the most challenging problem may be the

understanding of the transition between the short term asymptotics that have been treated by linear

stability theory and the long term asymptotics that have been studied through a RG approach and

crossover behaviors.

Beyond interface problems, these RG methods offer the possibility to perform manageable

calculations on complex systems of equations. Large scale computer calculations in three dimensions

are still difficult for realistic systems of equations with many variables. The RG techniques can be

utilized on such systems in a manner similar to those discussed in this thesis. Furthermore, there is
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an additional salient feature in that RG methodology yields answers that are very easy to interpret.

The stochastic element involved in many large scale computations means that the resulting interface

behavior could be difficult to reduce to simpler terms. In this way, the RG methods can be an

important complement to large scale computations and linear stability in problems exhibiting self-

similarity in either a stochastic or asymptotic form. The latter is the case for the decay, blow-up

and extinction of solutions to nonlinear problems.
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Appendix A

Theorem A.1. Suppose that F (x, u, p, q) is independent of q, that F/p2 is smooth such that it and

its first derivative are uniformly bounded. Then there exists a unique positive number, α(ε), such

that the equation (2.4) has a solution of the form

u(x, t, ε) = t−α(ε)eφ(xt−1/2,ε), (A.1)

where α and φ have the limiting properties

lim
ε→0

α(ε) =
1
2
, lim

ε→0
φ(ξ, ε) = −1

4
ξ2. (A.2)

Proof: We let Ψ be defined by

F (1, 1, p, q) = Ψ(p)p2 (A.3)

and assume that the Ψ and Ψ′ are bounded by 1 in absolute value, since the larger constants

can be absorbed into ε in (2.4). We use a shooting argument to prove the existence of a solution

of self-similar type, i.e., (A.1 above). We look for even solutions φ, i.e., φ(−ξ) = φ(ξ), and set

w(ξ) = φ′(ξ). Hence it is equivalent to the equation,

w′ + w2 +
1
2
ξw + εF (ξ, 1, w, w′ + w2) + α = 0 (A.4)

for all ξ ∈ (0,Ξ), where (0, Ξ) is the maximal existence interval, subject to [see (2.175)]

w(0) = 0, lim
ξ→Ξ

w = −∞, lim
ξ→Ξ

we
∫ ξ
0 w(η)dη = 0. (A.5)
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Proposition A.0.1. For all α ∈ R and ξ ∈ [0, Ξ(α)) one has the inequality

∂w

∂α
< 0. (A.6)

Proof: The ODE for w is an initial value problem with smooth coefficients and so there is a unique

solution for each α. Suppose that α1 < α2. We show that the corresponding solutions, w1 and w2,

cannot intersect. Initially, the right hand side of (A.4) implies w1 > w2 since w1(0) = w2(0) = 0.

Suppose for the purpose of contradiction that for some ξ0 one has w1(ξ0) = w2(ξ0). Then w1 and

w2 satisfy the respective equations

w′1 = −α1 − w2
1 (1 + εΨ(ξ0w1)− 1

2
ξw1, (A.7)

w′2 = −α2 − w2
2 (1 + εΨ(ξ0w2)− 1

2
ξw2. (A.8)

Hence, w′1(ξ0)− w′2(ξ0) = −α1 + α2 > 0, so that w′1 dominates w′2 at this point so that w1 cannot

cross below w2. We can write this inequality for any α and α∗ as

w(ξ;α)− w(ξ; α∗)
α− α∗

≤ 0, (A.9)

so that taking the limit as α → α∗ we obtain the bound for the derivative

∂w

∂α
= lim

α→α∗
w(ξ; α)− w(ξ; α∗)

α− α∗
≤ 0. (A.10)

Proposition A.0.2. If α > 1
2 + C2ε for sufficiently large C ∈ R+ then Ξ(α) < ∞. Furthermore,

limξ→Ξ(α)we
∫ ξ
0 w(η)dη = −1.

Proof: Suppose α ≥ 1
2 + C2ε for some large C ∈ R+.. Let z = −w. Then for any ξ we can write

{
z −

(
1
2

+
C2

2
ε

)
ξ

}′
≥ C2ε

2
+ (1− ε)z

{
z − 1

1− ε

ξ

2

}
. (A.11)

Using 1 + C2ε > (1− ε)−1 in the left hand side one can rewrite this as

{
z − 1

1− ε

ξ

2

}′
≥ C2

2
ε + (1− ε)z

{
z − 1

1− ε

ξ

2

}
. (A.12)
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Let Z(ξ) := z− 1
1−ε

ξ
2 . Since the initial condition implies Z(0) = 0, then clearly Z is initially positive

in the equation above. For comparison we consider the equation

Y ′ =
C2

2
ε + (1− ε)Y 2 (A.13)

which has solutions

Y (ξ) = C

(
ε

1− ε

)1/2

tan
{

C
√

ε(1− ε)(ξ + C1)
}

. (A.14)

Since tan diverges for finite values of its argument, Y (ξ) diverges for finite ξ. Comparing Y (ξ) with

Z(ξ) for the same initial conditions we see that Z (and hence z) also diverge for finite ξ.

Proposition A.0.3. If α < 1
2−C2ε for sufficiently large C ∈ R then Ξ(α) = ∞ and limξ→∞w = 0.

Furthermore, one has limξ→∞we
∫ ξ
0 w(η)dη = 0.

Proof: Again using z = −w one has

(
z − 1

2
ξ

)′
= −C2ε + z(z − 1

2
ξ) + εz2Ψ(−ξz). (A.15)

As a consequence of the initial condition z(0) = 0 and the inequality z′(0) = 1
2 − C2ε > 0 one has

z(ξ) > 0 at least for some interval (0, ξ0). If at some point ξ1, one has z(ξ1) = 0 then the middle

terms vanish and one obtains

z′(ξ1) =
1
2
− C2ε > 0. (A.16)

Consequently, one has the result that z(ξ) > 0 for all ξ. Next, we prove that z(ξ) < ξ/2 for all ξ.

We first prove that this is the case at least when ξ < 2C. Initially, (z− 1
2ξ) |ξ=0= 0 and (z− 1

2ξ)′ < 0

so that z − 1
2ξ < 0 at least for some maximal interval (0, ξ1). Suppose that z(ξ1) = 1

2ξ1. Then we

have

(z − 1
2
ξ)′ |ξ=ξ1= −C2ε + ε(

1
2
ξ1)2Ψ < 0 (A.17)

if ξ1 < 2C. Consequently, z − 1
2ξ < 0 on this interval.

Proposition A.0.4. Suppose ξ0 is such that z(ξ0) < (2ε)−
1
2 . Then one cannot have a neighborhood

of ξ0 such that in this neighborhood, ξ < ξ0 implies z′(ξ0) < 0 while ξ > ξ0 implies z′(ξ0) > 0.
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Proof: From (A.15) we have for all ξ,

z′′ = z′(z − 1
2
ξ) + z(z′ − 1

2
)+

2εzz′Ψ + εz2Ψ′(−z − ξz′). (A.18)

If z′ = 0 then this becomes

z′′ = −1
2
z − εz3Ψ′. (A.19)

Since | Ψ′ |≤ 1 one has that z′′ < 0 so long as εz3 < z/2, i.e.,

z < (2ε)−1/2. (A.20)

Hence, z′ cannot change sign from negative to positive so long as z satisfies this inequality.

Proposition A.0.5. At ξ = C/2 one has

z(C/2)− 1
2
(C/2) ≤ −(

1
2
− 1

96
)C3ε. (A.21)

Proof: Consider the interval 0 ≤ ξ ≤ C/2 in which z < ξ/2. Then the original ODE for z implies

(z − 1
2
ξ)′ ≤ −C2ε + z(z − 1

2
ξ) + εz2

≤ −C2ε + εz2 (A.22)

so that integrating this expression results in the inequality

∫ C/2

0
(z − 1

2
ξ)′dξ ≤

∫ C/2

0

{−C2ε + εz2
}

≤ −(
1
2
− 1

96
)C3ε (A.23)

from which the conclusion follows.
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In view of the estimates obtained above, we can write, for some small | γ |, the inequality

(z − 1
2
ξ)′ = −C2ε + z

{
(1 + εΨ)z − 1

2
ξ

}

≤ −C2ε− ξz

2 + γ
. (A.24)

We compare z satisfying this inequality with solutions of the equation for y below:

y′ = C0 − ξy

2 + γ
(A.25)

subject to the initial condition y(C/2) := z(C/2) with C0 := 1
2 − C2ε. Solutions to this equation

have the form

y(ξ) = C0e
−ξ2/(2+γ)2

∫
es2/(2+γ)2ds + C1e

−ξ2/(2+γ)2 . (A.26)

Note that both terms on the right hand side approach zero with the first term dominating as it

diminishes as 1/ξ. Hence one has the bound

0 < z(ξ) < y(ξ) (A.27)

so that z(ξ) → 0 as ξ → ∞. By standard degree theory arguments we obtain the conclusion that

for some α = α(ε) satisfies
1
2
− C2ε < α(ε) <

1
2

+ C2ε (A.28)

and the boundary conditions. The conclusion of Theorem A.1 follows.

Theorem A.1 thus proves rigorously (for the subset of nonlinearities defined by the hypothesis)

the RG calculations of the decay exponents. The results are compatible with the decay exponents

obtained using RG.
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Appendix B

Proof of lemmas in section 2.2.2

Proof of Lemma 2.2.4. We first find an upper and a lower bound for the case t ≤ l2. We first

set z := s/l2. Using (2.18) and (2.21) we write (2.54) as

L3,1 <

∫ t/l2

0
(1 + z)−pzp−1{C(2)

2,1zp+1 + C
(1)
2,2zp}dz

=
C

(2)
2,1

2p + 1

(
t

l2

)2p+1

+
C

(1)
2,2

2p

(
t

l2

)2p

(B.1)

since (1+z)−p ≤ 1. Similarly, using (2.19), (2.22), and also the inequality (1+z)−p ≥ 2−p for z ≤ 1

we obtain the following lower bound

L3,1 ≥
∫ t/l2

0
(1 + z)−pzp−1{C(1)

2,1zp+1}dz

=
C

(1)
2,1

2p(2p + 1)

(
t

l2

)2p+1

. (B.2)

For the case t > l2, we first split the integral (2.54) into two parts as follows:

L3,1 :=
∫ l2

0
(s + l2)−psp−1{ L2,1 + L2,2}ds +

∫ t

l2
(s + l2)−psp−1{L2,1 + L2,2}ds

=: L
(1)
3,1 + L

(2)
3,1 (B.3)

so that one has, from (B.1) and (B.2),

C
(1)
2,1

2p(2p + 1)
≤ L

(1)
3,1 <

C
(2)
2,1

2p + 1
+

C
(1)
2,2

2p
. (B.4)

To find an upper bound and a lower bound for L(2)
3,1 we apply Lemma 2.2.2 and Lemma 2.2.3 so
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that L(2)
3,1 is bounded above by

L
(2)
3,1 <

∫ t/l2

1
(1 + z)−pzp−1{ 1

2!
[log(1 + z)]2}dz + (C(4)

2,1 + C
(2)
2,2 )

∫ t/l2

1
(1 + z)−pzp−1dz

=
1
3!

[
log

(
t + l2

l2

)]3

+ (C(4)
2,1 + C

(2)
2,2 )

[
log

(
t + l2

l2

)]
+ C(p) (B.5)

by using the inequality zp−1 ≤ (1 + z)p−1 for z > 1. Similarly, utilizing (2.47) and (2.48) L(2)
3,1 is

bounded below by

L
(2)
3,1 >

∫ t/l2

1
(1 + z)−pzp−1{ 1

2!
[log(z)]2}dz + C

(3)
2,1

∫ t/l2

1
(1 + z)−pzp−1dz

=
1
3!

[
log

(
t

l2

)]3

+ C
(3)
2,1

[
log

(
t

l2

)]
+ C(p), (B.6)

where C (p) is a constant depending on p. ¤

Proof of Lemma 2.2.5. Following the previous proof, for the case t ≤ l2 one can show

L3,2 <

∫ t/l2

0
λ1(1 + z)−pzp−2{C(2)

2,1zp+1 + C
(1)
2,2zp}dz

=
λ1C

(2)
2,1

2p

(
t

l2

)2p

+
λ1C

(1)
2,2

2p− 1

(
t

l2

)2p−1

(B.7)

and

L3,2 ≥
∫ t/l2

0
λ1(1 + z)−pzp−2{C(1)

2,1zp+1}dz

=
λ1C

(1)
2,1

2p+1p

(
t

l2

)2p

≥ 0. (B.8)

Similarly, for the case t > l2 one first splits the integral (2.57) into two parts as follows:

L3,2 :=
∫ l2

0
λ1(s + l2)−psp−2{L2,1 + L2,2}ds +

∫ t

l2
λ1(s + l2)−psp−2{ L2,1 + L2,2}ds

=: L
(1)
3,2 + L

(2)
3,2. (B.9)
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A similar procedure above yields the following bounds:

λ1C
(1)
2,1

2p+1p
≤ L

(1)
3,2 <

λ1C
(2)
2,1

2p
+

λ1C
(1)
2,2

2p− 1
, (B.10)

L
(2)
3,2 < λ1

∫ t/l2

1
z−2{ 1

2!
[log(1 + z)]2}dz

+(C(4)
2,1 + C

(2)
2,2 )λ1

∫ t/l2

1
z−2dz (B.11)

< constant

and

L
(2)
3,2 >

∫ t/l2

1
λ1(1 + z)−pzp−2{ 1

2!
[log(z)]2}dz

+C
(3)
2,1

∫ t/l2

1
λ1(1 + z)−pzp−2dz (B.12)

≥ C(p)

where C (p) is a constant depending on p. ¤

Proof of Lemma 2.2.6. We first write (2.60) as

Lk :=
∫ t/l2

0
λn(1 + z)−p+(n−1

2
)zp−( 3n+1

2
)[log(1 + z)]ndz. (B.13)

We use (2.38) with the inequality (1 + z)−p+(n−1
2

) ≤ 1 (since −p + n
2 − 1

2 < −p + n − 1
2 < 0 for

p ≥ 2, n ≥ 2, p ≥ n and n, p ∈ Z+) so that for t ≤ l2 we have the following bounds for Lk

0 ≤ Lk <

∫ t/l2

0
λnzp−( 3n+1

2
)zndz =

λn

p− n
2 + 1

2

(
t

l2

)p−n
2
+ 1

2

. (B.14)

Note that p − (3n+1
2 ) + n = p

2 + p
2 − n

2 − 1
2 > 0 for p ≥ 2, n ≥ 2, p ≥ n and n, p ∈ Z+. Thus, for
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the large t/l2 we first split the integral into two parts as

Lk =
∫ 1

0
λn(1 + z)−p+(n−1

2
)zp−( 3n+1

2
)[log(1 + z)]ndz

+
∫ t/l2

1
λn(1 + z)−p+(n−1

2
)zp−( 3n+1

2
)[log(1 + z)]ndz (B.15)

=: L
(1)
k + L

(2)
k

so that utilizing (B.4) we have

0 ≤ L
(1)
k <

λn

p− n
2 + 1

2

. (B.16)

For the second part of the integral, namely L
(2)
k , we use the inequality (1 + z)−p+(n−1

2
) <

z−p+(n−1
2

) in order to obtain the following upper bound

0 < L
(2)
k =

∫ t/l2

1
z−n−1[log(1 + z)]ndz

<

∫ ∞

1
z−n−1[log(1 + z)]ndz < constant. (B.17)

¤
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Appendix C

Proof of lemmas in section 2.2.3

Proof of Lemma 2.2.7.

Upper and lower bounds for t ≤ l2: Using the induction hypothesis with together (2.41) and the

inequality (1 + z)−p ≤ 1 we write (2.85) as

Lk,1 <

∫ t/l2

0
(1 + z)−pzp−1{C(2)

k−1,1z
(k−2)p+1 + O(z)}dz

=
C

(2)
k−1,1

(k − 1)p + 1

(
t

l2

)(k−1)p+1

+ O

(
t

l2

)
. (C.1)

Similarly, using the induction hypothesis with together (2.41) and the inequality (1+z)−p ≥ 2−p

(for z ≤ 1) one obtains the following lower bound:

Lk,1 ≥
∫ t/l2

0
(1 + z)−pzp−1{C(1)

k−1,1z
(k−2)p+1}dz

=
C

(1)
k−1,1

2p((k − 1)p + 1)

(
t

l2

)(k−1)p+1

. (C.2)

Upper and lower bounds for t > l2: As done before, we first split the integral in (2.85) into two

parts as follows:

Lk,1 :=
∫ l2

0
(s + l2)−psp−1{Lk−1,1 + Lk−1,2}ds +

∫ t

l2
(s + l2)−psp−1{Lk−1,1 + Lk−1,2}ds

=: L
(1)
k,1 + L

(2)
k,1 (C.3)

so that using first (2.41) and then using (C.1) with together (C.2), we have

C
(1)
k−1,1

2p((k − 1)p + 1)
≤ L

(1)
k,1 <

C
(2)
k−1,1

2p((k − 1)p + 1)
. (C.4)
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To obtain an upper bound and a lower bound for L(2)
k,1, one can use induction hypothesis with

together (2.41) again so that L(2)
k,1 is bounded above by

L
(2)
k,1 <

∫ t/l2

1
(1 + z)−pzp−1

{
1

(k − 1)!
[log(1 + z)]k−1 + O(log(1 + z)

}
dz

=
1
k!

[
log

(
t + l2

l2

)]k

+ O

(
log

(
t + l2

l2

))
(C.5)

by using the inequality zp−1 ≤ (1 + z)p−1and is bounded below by

L
(2)
k,1 >

∫ t/l2

1
(1 + z)−pzp−1

{
1

(k − 1)!
[log(z)]k−1 + O(log(z))

}
dz

=
1
k!

[
log

(
t

l2

)]k

+ O

(
log

(
t

l2

))
(C.6)

by using (2.47) and (2.48). ¤

Proof of Lemma 2.2.8.

Following the proof of Lemma 2.2.7, one has, for t ≤ l2, the following bounds:

Lk,2 <

∫ t/l2

0
λ1(1 + z)−pzp−2{C(2)

k−1,1z
(k−2)p+1 + O(z)}dz

=
λ1C

(2)
k−1,1

(k − 1)p

(
t

l2

)(k−1)p

+ O

(
t

l2

)
(C.7)

and

Lk,2 ≥
∫ t/l2

0
λ1(1 + z)−pzp−2{C(1)

k−1,1z
(k−2)p+1}dz

=
λ1C

(1)
k−1,1

2p(k − 1)p

(
t

l2

)(k−1)p

≥ 0. (C.8)

In the case t > l2, one first splits the integral in (2.88) into two parts as follow:

Lk,2 :=
∫ l2

0
λ1(s + l2)−psp−2{Lk−1,1 + Lk−1,2}ds

+
∫ t

l2
λ1(s + l2)−psp−2{Lk−1,1 + Lk−1,2}ds (C.9)

=: L
(1)
k,2 + L

(2)
k,2
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so that, following the same procedure as done before, one has

0 ≤ L
(1)
k,2 <

λ1C
(2)
k−1,1

(k − 1)p
, (C.10)

L
(2)
k,2 <

∫ t/l2

1
λ1(1 + z)−pzp−2

{
1

(k − 1)!
[log(1 + z)]k−1 + O(log(1 + z)

}
dz

< λ1

∫ ∞

1
z−2

{
1

(k − 1)!
[log(1 + z)]k−1 + O(log(1 + z)

}
(C.11)

< constant

and

L
(2)
k,2 >

∫ t/l2

1
λ1(1 + z)−pzp−2

{
1

(k − 1)!
[log(z)]k−1 + O(log(z))

}

≥ C(p, k) (C.12)

where C is a constant depending on p and k. ¤

Proof of Lemma 2.2.9.

Upper and lower bounds for t ≤ l2: Using induction hypothesis and (2.41), Lk,3 is bounded by

0 ≤ Lk,3 <

∫ t/l2

0
(1 + z)−pzp−1{C(1)

k−1,3z
(k−3)p− 1

2 + O(z)}dz (C.13)

=
C

(1)
k−1,3

(k − 2)p− 1
2

(
t

l2

)(k−2)p− 1
2

+ O

(
t

l2

)

since (1 + z)−p ≤ 1.

Upper and lower bounds for t > l2: As in the proof of Lemma 2.2.7, we first split the integral (2.91)

into two parts as follow

Lk,3 :=
∫ l2

0
(s + l2)−psp−1{Lk−1,3 + Lk−1,4 + L̂k−1}ds

+
∫ t

l2
(s + l2)−psp−1{Lk−1,3 + Lk−1,4 + L̂k−1}ds (C.14)

=: L
(1)
k,3 + L

(2)
k,3
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so that using (2.41) and (C.13) we have

0 ≤ L
(1)
k,3 <

C
(1)
k−1,3

(k − 2)p− 1
2

. (C.15)

Using again the induction hypothesis with together (2.41) one can show that L(2)
k,3 is bounded by

0 < L
(2)
k,3 <

∫ t/l2

1
(1 + z)−pzp−1

{
C

(1)
k−1,3[log(1 + z)]k−4 + O(log(1 + z)

}
dz

=
C

(1)
k−1,3

(k − 3)!

[
log

(
t + l2

l2

)]k−3

+ O

(
log

(
t + l2

l2

))
(C.16)

by using the inequality zp−1 ≤ (1 + z)p−1for z > 1. ¤

Proof of Lemma 2.2.10.

Following a similar procedure one has, for t ≤ l2,

0 ≤ Lk,4 <

∫ t/l2

0
λ1(1 + z)−pzp−2{C(1)

k−1,3z
(k−3)p− 1

2 + O(z)}dz

=
λ1C

(1)
k−1,3

(k − 2)p− 3
2

(
t

l2

)(k−2)p− 3
2

+ O

(
t

l2

)
. (C.17)

For the large t/l2, one first splits the integral in (2.94) into two parts as follow

Lk,4 :=
∫ l2

0
λ1(s + l2)−psp−2{Lk−1,3 + Lk−1,4 + L̂k−1}ds

+
∫ t

l2
λ1(s + l2)−psp−2{Lk−1,3 + Lk−1,4 + L̂k−1}ds (C.18)

=: L
(1)
k,4 + L

(2)
k,4

and one has

0 ≤ L
(1)
k,4 <

λ1C
(1)
k−1,3

((k − 2)p− 3
2)

, (C.19)
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and

0 < L
(2)
k,4 <

∫ t/l2

1
λ1(1 + z)−pzp−2

{
C

(1)
k−1,3[log(1 + z)]k−4 + O(log(1 + z)

}
dz

= λ1

∫ ∞

1
z−2

{
C

(1)
k−1,3[log(1 + z)]k−4 + O(log(1 + z)

}
dz (C.20)

≤ constant.

¤

78



Bibliography

1. Abramowitz M., Stegun I.A., Handbook of Mathematical Functions with formulas, graphs, and
mathematical tables, Dover, New York (1972).

2. Avallaneda M., Majda A., Simple examples with features of renormalization for turbulent trans-
port, Phil. Trans. R. Soc. London 346, 205-233 (1994).

3. Barenblatt G.I., Similarity, Self-Similarity and Intermadiate Asymptotics, Consultants Bureau,
New York (1979).

4. Berger M., Kohn R., A rescaling algorithm for the numerical calculation of blowing-up solutions,
Comm. Pure Appl. Math. 41, 841-863 (1988).

5. Bertozzi, A.L., Brenner, M.P., Dupont T.F., Kadanoff L., Singularities and similarities in
interface flows in Trends and Perspective in Applied Mathematics,(ed) Sirovich L., Springer,
Berlin, 155-208 (1994).

6. Bona J.L., Dougalis V.A., Karakashian O.A., McKinney W.R., Computations of blow-up and
decay for periodic solutions of the generalized Korteweg-de Vries-Burgers equation, Applied
Numerical Mathematics 10, 335-355 (1990).

7. Bona J.L., Promislow K.S., Wayne C.E., Higher order asymtotics of decaying solutions fo some
nonlinear dispersive, dissipative wave-equations, Nonlinearity 8, 1179-1209 (1995).

8. Bona J.L., Weissler F.B., Similarity solutions of the generalized Korteweg-de Vries equation,
Math. Proc. Cambridge Philos. Soc. 127, 323-351 (1999).

9. Bricmont J., Kupiainen A., Universality in blow-up for nonlinear heat equations, Nonlinearity
7, 539-575 (1994).

10. Bricmont J., Kupiainen A., Lin G., Renormalization group and asymptotics of solutions of
nonlinear parabolic equations, Comm. Pure. Appl. Math. 47, 893-921 (1994).

11. Caginalp G., Jones J., A derivation and analysis of phase field models of thermal alloys, Annals
of Physics 237, 66-107 (1995).

12. Caginalp G., A renormalization group calculation of anomalous exponents for nonlinear diffu-
sion, Phys. Rev. E 53, 66-73 (1996).

13. Caginalp G., Renormalization and scaling methods for nonlinear parabolic systems, Nonlinearity
10, 217-1229 (1997).

79



14. Caginalp G., A dynamical renormalization group calculation of a two-phase sharp interface
model, Phys. Rev. E 60, 6267-6270 (1999).

15. Caginalp G., Renormalization group calculation of late stage interface dynamics, SIAM J. Appl.
Math. 62, 424-432 (2001).

16. Crank J., Free and Moving Boundary Problems, Clarendon Press, Oxford (1984).

17. Creswick R.J., Farach H.A., Poole C.P., Introduction to Renormalization Group Methods in
Physics, Wiley, New York (1992).

18. Cross M.C., Hohenberg P.C., Pattern formation outside of equilibrium, Rev. Mod. Phys. 65,
851-1112 (1993).

19. Erdelyi A., Asymptotic Expansions, Dover, New York (1956).

20. Fisher M.E., The renormalization group in the theory of critical behavior, Rev. Mod. Phys. 46,
597-616 (1974).

21. Gebhart B., Heat Conduction and Mass Transfer, McGraw-Hill, New York (1993).

22. Goldenfeld N., Lectures on Phase Transitions and the Renormalization Group, Addison-Wesley,
Reading, MA (1992).

23. Goldenfeld N., Martin O., Oono Y., Liu F., Anomalous dimensions and the renormalization
group in a nonlinear diffusion process, Phys. Rev. Lett. 64, 1361-1364 (1990).

24. Goldenfeld N., Martin O., Oono Y., Proc. NATO Advanced Research Workshop (La Jolla-
January), Plenum, New York (1991).

25. Glimm, J., Zhang, Q., Sharp D.H., The renormalization group dynamics of chaotic mixing of
unstable interfaces, Phys. Fluids A 3, 1333-1335 (1991).

26. Galaktionov, V.A., Posashkov S.A., Application of new comparison theorems to the investiga-
tion of unbounded solutions of nonlinear parabolic equations, Differ. Uravnen. 22, 1165-1173
(in Russian) (1986).

27. Giga Y., Kohn R., Asymptotically self-similar blow-up of semilinear heat eqautions, Comm.
Pure Appl. Math. 38, 297-319 (1985).

28. Goldstein R.E., Pesci A.I., Shelley M.J., Topological transitions and singularities in viscous
flows, Phys. Rev. Lett. 70, 3043-3046 (1993).

29. Jackson J.D., Classical Electrodynamics, Wiley, New York (1962).

30. Jasnow D., Vinals J., Dynamical scaling during interfacial growth following a morphological
instability, Phys. Rev. A 40 , 3864-3870 (1989).

31. Jasnow D., Vinals V., Dynamical scaling during interfacial growth in a one-sided model, Phys-
ical Review A 41, 6910-6921 (1990).

32. Jasnow D., Yeung C., Asymptotic behavior of viscous-fingering patterns in circular geometry,
Phys.Rev. E 47, 1087-1093 (1993).

80



33. Johnson W. et al (Eds.), Solid → Solid Phase Transformations, Minerals, Metals and Mining
Society, Warrendale, PA (1994).

34. King J.R., Self-similar behaviour for the equation of fast nonlinear diffusion, Phil. Trans. Roy.
Soc. London Sec. A 343, 337-375 (1993).

35. Koch H., On the renormalization of Hamiltonian flows, and critical invariant tori, Discrete
Contin. Dyn. Syst., 8, 633-64 (2002).

36. McComb W.D., The Physics of Fluid Turbulence, Oxford, UK (1992).

37. Merdan H., Caginalp G., Decay of solutions to nonlinear parabolic equations:renormalization
and rigorous results, Discrete Contin. Dyn. Syst. 3, 565-588 (2003).

38. Merdan H., Caginalp G., Renormalization group methods for nonlinear parabolic equations,
Applied Math. Lett. 17, 123-243 (2004).

39. Merdan H., Caginalp G., Renormalization group methods for quasi-static interface problems,
Preprint (2004).

40. Merdan H., Caginalp G., Renormalization methods and interface problems, Proc. of the Con-
ference on Computational Modeling of Free and Moving Boundary Problems, Santa Fe, NM,
149-159 (2003).

41. Moise I., Temam R., Renormalization group method. Applications to partial differential equa-
tions, J. Dynam. Diff. Eqns. 13, 275-321 (2001).

42. Muscat M., The flow of Homegenous Fluids through Porous Media, Edwards (1946).

43. Mullins W.W., Sekarka R., Morphological stability of a particle growing by diffusion or heat
flow, J. Appl. Phys. 34, 323-329 (1963).

44. Mullins W.W., Sekarka R., Stability of a planar interface during solidification of a dilute binary
alloy, J. Appl. Phys. 35, 444-451 (1964).

45. Ockendon, J.R., Linear and non-linear stability of a class of moving boundary problems, in Free
Boundary Problems, Vol. II, Ist. Naz. Alta Mat. Francesco Severi, Rome, 443-478 (1980).

46. Oleinik O.A., A method of solution of the general Stefan problem, Sov. Math. Dokl. 1, 1350-1354
(1960).

47. Ozisik M.N., Heat Conduction, 2nd Edition, Wiley, New York (1993).

48. Paquette G.C., Chen, L.Y., Goldenfeld N., Oono Y., Structural stability and renormalization
group for propagating fronts, Phys. Rev. Let., 72, 76-79 (1994).

49. Paquette G.C., Oono Y., Structural stability and selection of propagating fronts in semilinear
parabolic differential eqautions, Phys. Rev. E, 49, 2368-2388 (1994).

50. Prigogine I., Introduction to Thermodynamics of Irreversible Processes, Wiley, New York
(1967).

51. Rauseo S.N., Interfacial Fingering Instabilities in Simple Two-component Systems, Ph.D. The-
sis, University of Pittsburgh, Pittsburgh (1986).

81



52. Saffman P.G., Taylor G.I., The penetration of a fluid into a prous medium or Hele-Shaw cell
containing a more viscous liquid, Proc. R. Soc. London Ser. A 245, 312-329 (1958).

53. Shewmon P.G., Diffusion in Solids, Williams, Jenk, OK (1983).

54. Snoussi S., Tayachi S., Weissler F.B., Asymptotically self-similar global solutions of a semilinear
parabolic equation with a nonlinear gradient term, Proc. Royal Soc. Edinburgh A-Mathematics
129, 1291-1307 (1999).

55. Wilson K.G., Kogut J., The renormalization group and the ε-expansion, Phys. Rep. 12, 77-199
(1974).

56. Wilson K.G., Fisher M.E., Critical exponents in 3.99 dimensions, Phys. Rev. Let. 28, 240-243
(1972).

57. Zhang Q., The asymptotic scaling behavior of mixing induced by a random velocity field, Ad-
vances in Applied Mathematics 16, 23-58 (1995).

58. Zhang Q., Graham M.J., Scaling laws for unstable interfaces driven by strong shocks in cylin-
drical geometry, Phys. Rev. Lett. 79, 2674-2677 (1997).

82


	Title Page
	Committee Membership Page
	Abstract
	Dedication Page
	Acknowledgments
	Table of Contents
	List of Figures
	The quasi-static model
	The fully dynamic model
	The viscous-fingering pattern

	Introduction
	Thesis description

	Chapter 1
	Renormalization Group Methods and Scaling
	Renormalization and scaling in Physics
	RG methods in Applied Mathematics

	Chapter 2
	Decay of Solutions to Nonlinear Prabolic Equations
	Introduction
	Renormalization group calculations
	The calculation of u2 term
	The calculation of u3 term
	The calculation of uk term

	The renormalization group transformations
	The verification for r = 2
	The verification for arbitrary r in Z+

	Exact results
	Examples
	Series-integral solutions
	Self-similar solutions

	Conclusions
	Chapter 3
	RG Methods and Regimes in Interface Problems
	Intoduction
	The RG analysis in the quasi-static regime
	The model and Green's function representation
	RG analysis of the interface equation

	The case alpha=0
	Conslusions
	Chapter 4
	Conclusions, Discussion and Future Direction
	Appendix A
	Appendix B
	Appendix C
	Bibliography

