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IMMUNE ENHANCEMENT MECHANISMS BY THE COMPLEMENT 
PROTEIN C3d 

 

Franklin Ramiro Toapanta, M.D. Ph.D. 

University of Pittsburgh, 2006 

The final degradation product of the third (C3) component of complement, C3d, is 
a natural adjuvant. The adjuvant properties of this protein have been studied using several 
antigens fused to C3d. To determine the ability of this protein to enhance the humoral 
immune response in mice with different genetic backgrounds, inbred and outbred mice 
were immunized with C3d conjugated antigens. C3d induced enhanced immune 
responses that were comparable in all mouse strains. Analysis of the isotype class switch 
suggested that C3d favored the development of humoral immune responses. The classic 
mechanism of enhancement of the immune response involves interaction of C3d with its 
natural ligand, complement receptor 2 (CR2). This molecule is expressed mainly by 
follicular dendritic cells and B-cells. Simultaneous interaction of the antigen and C3d 
with the surface immunoglobulin M (sIgM) and CR2 on the surface of B-cells triggers 
two signaling pathways that cross-talk and synergize in cell activation. Most previous 
studies stressed the importance of the C3d-CR2 interaction for the adjuvant effect. 
However, the data supporting this hypothesis was derived from in vitro studies.  To 
determine the importance of the C3d-CR2 interaction for enhancement of the immune 
response in vivo, mice deficient in CR2 (CR2-/-) were immunized with antigens fused to 
C3d. Contrary to the predicted, CR2-/- mice immunized with antigens fused to C3d, 
developed almost similar humoral immune responses than wild-type mice. These results 
suggested that C3d enhances the immune responses by CR2-dependent and CR2-
independent mechanisms. Finally, the ability of C3d to emulate the antigenic redundancy 
of T-cell independent antigens and thus induce class switch in the absence of CD4+ T-
cells was explored in a MHC type II knock-out mouse model (MHC II-/-). A soluble form 
of hemagglutinin (sHA) fused to C3d inefficiently induced IgG class switch in MHC II-/- 
mice. This demonstrated that C3d requires CD4+ T-cells to optimally enhance the 
immune responses. However, despite of the mild secondary immune responses, MHC II-/- 
sHA-C3d3-vaccinated mice had reduced morbidity and enhanced survival following a 
lethal virus challenge, suggesting that besides B-cells, C3d activates other immune cells 
and that the final enhancement effect is the accumulation of various mechanisms. 
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I.A. Vaccines 

 

The term vaccine is derived from Edward Jenner’s use of cowpox (“vacca” derived from 

Latin, which means “cow”) in humans. In 1796, during the smallpox epidemic in Europe, 

Edward Jenner realized that milkmaids that occasionally catched cowpox, were 

“resistant” (immune) to smallpox. Jenner extracted infectious fluid from the pustules of 

one hand of a maid infected with cowpox. The fluid was injected into the arm of an 8 

year-old boy (“vaccination”), James Phipps, who developed symptoms of cowpox. Forty-

eight days latter, when Phipps was fully recovered, Jenner injected smallpox matter into 

the arm of the boy. Phipps, did not develop smallpox, demonstrating that cowpox 

derivatives induced protection against smallpox. Jenner’s experiments were a variation of 

practices that started around the year 200 B.C. in China or India.  In these countries a 

practice known as “variolation” involved the collection and grinding of drying pustules 

from people suffering from mild cases of smallpox. The powder produced was inserted 

into small autoinflicted skin abrasions or in the person’s nose to help prevent smallpox 

(1, 2). 

 

Vaccines are antigenic preparations that produce active immunity that intends to prevent 

or ameliorate the effects of infections by infectious agents. Vaccines are considered to be 

one of the most successful medical interventions against infectious diseases (3, 4). 

Vaccines have traditionally been used to prevent infectious diseases; however, the 
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“vaccinology” field has expanded and there is active research on vaccines intended to 

prevent different kinds of cancer (5, 6). 

 

Vaccines have contributed to the improvement of public health worldwide. In 1979, after 

a successful vaccination campaign the World Health Organization (WHO) declared 

eradication of smallpox (1). Furthermore, in the 1980’s all the countries suspended 

smallpox vaccinations. The morbidity and mortality of diseases such as rubella, polio, 

measles, mumps and chickenpox have been reduced due to vaccination campaigns. “Herd 

immunity” is part of the vaccine success. Herd immunity is a phenomenon in which a 

large portion of the population is vaccinated and this limits the spread of the disease to 

non-vaccinated people.  

 

I.A.1.  Types of Vaccines 
 

There are four types of traditional vaccines: 1) live attenuated, 2) inactivated 3) toxoids, 

and 4) subunit vaccines. New technologies have been developed such as, 1) conjugated, 

2) DNA, 3) viral delivery vectors and 4) virus-like particles vaccines. 

 

I.A.1.a. Live Attenuated Vaccines 
 

Live attenuated vaccines are composed of microorganisms that have been grown under 

conditions that reduce or disable their virulent properties. These microorganisms are still 

able to infect their target cells. However, infection is inefficient (mild) and there are 

limitations in the replication of the microorganisms. Because these vaccines cause a mild 
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infection, the immune responses induced are strong and long lasting. These vaccines 

stimulate both, humoral and cellular immune responses. The disadvantages of these 

vaccines involve: 1) development of mild symptoms that resemble the disease, caused by 

mild infection of the target cells, 2) potential reversion of the virulent properties of the 

microorganism that could cause a disease, 3) can not be used in immunocompromised 

patients, 4) difficulty of development, as not all microorganism can be attenuated. 

Examples of these vaccines include: yellow fever, tuberculosis (Bacillus Calmette-Guerin 

–BCG-) measles, mumps and rubella (MMR), smallpox (vaccinia virus), and the recently 

approved Live Attenuated Influenza Vaccine (LAIV) (1, 7-9). 

 

I.A.1.b. Inactivated Vaccines 
 

Inactivated vaccines are composed of microorganism that have been killed (inactivated) 

with chemicals (i.e. formalin) or heat. Since these microorganisms are not able to infect 

their target cells, they induce incomplete, short-lived immune responses that usually 

require booster shots. Furthermore, these vaccines only stimulate humoral immune 

responses. These vaccines induce small side effects. Examples of these vaccines include: 

trivalent inactivated influenza vaccine (TIV), cholera, bubonic plague and hepatitis A 

vaccines. (1, 10, 11) 
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I.A.1.c.  Toxoids 
 

Some microorganisms produce toxic compounds that are the responsible for causing the 

disease (i.e. tetanus toxin and diphtheria toxin). Toxoids are inactivated forms of these 

toxic compounds. Examples of toxoid-based vaccines include tetanus and diphtheria (12, 

13). 

 

I.A.1.d.  Subunit Vaccines 
 

Subunit vaccines involve inoculation of purified, soluble protein (antigen) that induces 

mainly a humoral immune response. These vaccines have benefited from the recombinant 

DNA technology that allows introducing foreign genes into yeast or bacteria expression 

systems. These microorganisms produce large amounts of the antigen, which is then 

purified. The recombinant protein produced is used as the vaccine. These vaccines induce 

short-lived immune responses that require several boosts to achieve protection.  The 

vaccine against Hepatitis B Virus is the only subunit vaccine that has been approved by 

the Food and Drug Administration (FDA) for human use. There is active research for the 

development of subunit vaccines for other microorganisms such as HIV-1 (9, 14-16). 

 

I.A.1.e. Conjugated Vaccines 
 

The cell wall of certain bacteria, e.i. Streptococcus pneumoniae, is composed of 

polysaccharides that are poorly immunogenic, especially in children under 2 years of age. 

In order to improve the immunogenicity, these polysaccharides have been conjugated to 
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proteins (e.g. tetanus toxid). This conjugation step improves antigen presentation, as well 

as immunological memory formation, hence improving the immunogenic properties of 

the polysaccharides. The classic example of this kind of vaccine is the Pneumococcal 

conjugated vaccine (17, 18). 

 

I.A.1.f. Viral-Vector Vaccines 
 

Viral-vector or live-vectored vaccines have taken a proven safe and efficacious vaccine 

virus, such as vaccinia, and modifying its genome to include genes encoding for 

immunogenic proteins from other pathogens.  An ideal viral vector should be safe and 

enable efficient presentation of required pathogen-specific antigen to the immune system. 

It should also exhibit low intrinsic immunogenicity to allow for its re-administration in 

order to boost relevant specific immune responses. Furthermore, the vector system must 

meet criteria that enable its production on a large scale basis. The success of the WHO’s 

small pox eradication program through the use of vaccinia virus, opened the door for the 

use of this virus as a viral vector (19, 20). However, many other viruses are under 

investigation as potential vectors for vaccines such as adenoviruses (21, 22), alphaviruses 

(23), and polioviruses (24). Virus-derived vectors offer several advantages over 

traditional vaccine technologies. These include 1) high-level production of protein 

antigens directly within the cells of the immunized host; therefore, these proteins may 

elicit humoral and cellular immune responses, 2) potential adjuvant effects of the viral 

delivery system itself, and 3) the possibility of efficient delivery of the antigen directly to 

component of the immune system, such as antigen presenting cells (APC) (2). 

 6



 

I.A.1.g.  DNA Vaccines 
 

DNA (genetic) vaccination delivers the gene encoding for a protein rather the proteins or 

peptides themselves into a host. These genes are usually expressed from eukaryotic 

expression vectors, which use the transcriptional and translational machinery of the 

transfected eukaryotic cell to produce the associated protein. Plasmids (circular ds DNA) 

usually contain a eukaryotic promoter and poly adenylation signal for efficient 

transcription of the vaccine gene insert. In addition, most plasmids include a bacterial 

origin of replication and an antibiotic resistance gene for amplification and selection in 

media. The gene of interest is molecularly cloned into the expression vector at the 

multiple cloning site (MCS), which is located between the promoter and poly adenylation 

signal.  

 

DNA vaccines can be inoculated into animals by various routes. Intramuscular (I.M.) 

(needle injection) and intradermal (I.D.)/gene gun (G.G.) inoculations are the two most 

common routes of DNA immunization. The primary cell type that expresses the DNA 

vaccine is different in these two systems. Muscle cells are the primary cell that express 

the DNA following intramuscular inoculation of DNA vaccines (25). Additionally, few 

immune cells such as dendritic cells (DCs) and macrophages are transfected by the 

inoculated DNA (26). However, the transfection of these cells is not efficient by I.M. 

DNA immunization. Muscle cells are not professional antigen-presenting cells (APCs), 

hence their main function is to produce protein in large quantities. The proteins are then 

 7



engulfed by APCs, which transport the immunogen to the regional-draining lymph nodes 

where the immune response is initiated (See Sections I.A.2.a. and I.A.2.b.) (27, 28). 

Macrophages, can also be transfected  

 

In contrast, gene gun inoculation results in direct and efficient transfection of DCs. 

Proteins are expressed in these transfected cells and presented on MHC class I molecules. 

In addition, proteins may also be engulfed by other untransfected APCs and presented on 

MHC class II molecules. Both types of inoculation lead to cellular and humoral immune 

responses.  

 

Several methods have been implemented to increase the immunogenicity of DNA 

vaccines: 1) the addition of strong transcription and translation enhancers into the vaccine 

vector (29), 2) codon optimization of gene sequences (30-32), and 3) the use of adjuvants 

(interleukin (IL) 12 (IL-12), RANTES, IL-2) (33-36).  

 

I.A.1.h. Virus-like Particles Vaccines 
 

Virus-like particles (VLPs) or “pseudovirions” are defined as self-assembling, non-

replicating, non-pathogenic, genomeless particles that are similar in size and 

conformation to intact virions (37). The development of VLP has been possible thanks to 

a deep understanding of the microorganism, their structural proteins and the 

immunogenicity of each antigen. A major advantage of a VLP approach compared to 

live-attenuated virus is that VLP expresses multiple viral epitopes in their native 
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conformational form. These epitopes stimulate a diverse set of immune responses without 

many of the deleterious effects of a live-attenuated virus. VLPs have the potential for 

activating both the endogenous and exogenous antigen pathways leading to the 

presentation of viral peptides by MHC class I and class II molecules. Furthermore, these 

multi-epitope vaccines are more likely than their single component (subunit vaccines) 

counterparts to generate a broad-based immune response. This is mainly because the 

antigens are in their native form and thus are able to induce neutralizing antibodies more 

efficiently. Currently, there is active research in the development of VLPs for Human 

Papillomavirus (HPV) and HIV-1. HPV VLPs, which consist of the major capsid protein 

L-1 (HPV16 L1 VLP), are highly immunogenic, well tolerated and have shown 100% 

effective in preventing HPV infection un humans (38, 39). HIV-1 VLPs are in active 

development and several animal trial are currently being performed.  

 

I.A.2.  Immune Responses to Vaccines 
 

The design of effective vaccines requires several elements to be taken into account. First, 

the antigen against which a memory immune response needs to be targeted. It is 

important to choose the most immunogenic molecule from the pathogen. Maintenance of 

the tertiary structure of the antigen is important for eliciting neutralizing antibodies. 

Second, vaccines need to stimulate the innate, as well as the adaptive immune responses. 

The innate immune responses react quickly (within minutes) to molecular patterns found 

in microbes, while the acquired immune responses develop slowly (over days to weeks) 

(40). Innate immune responses, among their many effects, lead to a rapid burst of 

inflammatory cytokines and activation of antigen-presenting cells (APCs) such as 
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macrophages and DCs. These non-clonal responses also lead to a conditioning of the 

immune system for subsequent development of specific adaptive immune responses (41). 

Adaptive immunity uses selection and clonal expansion of immune cells harboring made-

to-order somatically rearranged receptor genes (T- and B-cell receptors) recognizing 

antigens from the pathogen, thereby providing specificity and long-lasting immunological 

memory (42). 

 

I.A.2.a.  Innate Immune Responses and Vaccines 
 

Innate immune responses have been classically described as non specific, present at birth 

and limited in diversity. The innate immune system involves: physical barriers (e.g. skin 

and mucosal surfaces), the complement system and a vast array of phagocytic, 

granulocytic and immune cells (e.g. macrophages, eosinophiles, basophiles and natural 

killer cell). It has been considered that the system does not develop immunological 

memory; however, there is new evidence suggesting the contrary.  

 

To distinguish pathogens from self-components, the innate immune system uses a wide 

variety of relatively invariable receptors that detect evolutionarily conserved signatures 

from pathogens (pathogen-associated molecular patterns (PAMPs) (43). PAMPs are 

recognized by pattern-recognition receptors (PRRs), which are differentially expressed on 

a wide variety of immune cells, including neutrophils, macrophages, dendritic cells, 

natural killer cells, B cells and some nonimmune cells such as epithelial and endothelial 

cells. Engagement of PRRs leads to the activation of some of these cells and their 
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secretion of cytokines and chemokines, as well as maturation and migration of other 

cells. PRRs consist of 1) non-phagocytic receptors, such as Toll-like receptors (TLRs) 

and nucleotide-binding oligomerization domain (NOD) proteins, and 2) receptors that 

induce phagocytosis like scavenger receptors, mannose receptors and β-glucan receptors 

(44). 

  

Non-phagocytic receptors (TLRs and NOD) lead to an elaborate signal transduction 

cascade that activates transcription factors (e.g. nuclear factor – κB (NF-κB) and 

interferon regulatory factor 3 (IRF-3)) resulting in expression of inflammatory cytokines 

and other cellular activation events. The NF-κB pathway controls expression of 

proinflammatory cytokines like interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α). 

IRF-3 controls the pathway that leads to the production of antiviral type I interferons 

(IFN-α and IFN-β). Activation of PRR signaling by PAMPs results mainly in the 

activation of transcription factors such as NF-κB and IRF-3, which ultimately provide the 

inflammatory context for the rapid activation of host defenses. The NF-κB pathway 

controls the expression of proinflammatory cytokines such as IL-1 and TNF-α. 

Meanwhile, the IRF3 pathway leads to the production of IFN-α and INF-β (45). 

 

Receptors that induce phagocytosis recognize ligands on the surface of pathogenic 

microbes and lead to: 1) engulfment of the microorganism into phagocytic cells like 

macrophages, and 2) activation of the complement system (lectin pathway). In the lectin 

pathway (Figure 1), a protein known as mannan-binding lectin (MBL) binds to mannose 

residues present on the surface of microorganisms. Binding of MBL to the surface of 
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pathogens exposes residues that collect MBL-associated proteins (MASP) -1 and -2, 

which subsequently activate complement proteins 4 and 2 (C4 and C2), leading to the 

formation of C3 convertases. C3 convertases cleave C3, which products are involved in 

opsonization of microorganisms, the formation of anaphylotoxins and activation of the 

pathway that leads to assembly of the membrane attach complex (MAC).  Some of the C3 

products involved in opsonization of pathogens, like C3b, iC3b and C3d, are recognized 

by complement receptors 1 and 2 (CR1 and CR2). CR1 and CR2 are present on the 

surface of various immune cells like phagocytes (CR1), B-cells (CR2) and FDC (CR2). 

Complement proteins facilitate the recognition of microorganism by the immune cells 

and thus bridges the innate with the acquired immune responses. Furthermore, some 

products like C3d, when interact with CR2 on the surface of B-cells, activate a pathway 

that enhance B-cell activation and reduce the amount of antigen needed to trigger an 

immune response (Sections I.C.3 - I.C.6) (46-48) 

 

The inflammatory cytokine environment produced by activation of TLRs, NODs, and the 

activation of phagocytic cells generated an appropriate setting for the development of 

adaptive immune responses (Section I.A.2.b). For this reason, various experimental 

vaccines have introduced in their formulations elements (e.g. CpG motifs and LPS) that 

stimulate the innate immune responses. 

 

 

 

 12



I.A.2.b. Adaptive Immune Responses and Vaccines 
 

After parenteral inoculation, the antigenic portions of the vaccine are recruited to the 

draining lymph node (LN). The recruitment is performed via the afferent lymphatic 

channel. The antigen can reach the lymph node in free form or after being uptaken by 

antigen-presenting cells (APC). Macrophages, B-cells and dendritic cells (DC) are APCs; 

however, DCs are considered the most efficient ones. DCs are located in the peripheral 

tissues as sentinels in a quiescent state sampling for antigens. When an antigen is 

encountered, it is internalized and processed to peptide fragments. These peptides are 

then bound to MHC class I (recognized by CD8+ T-cells) or class II (recognized by 

CD4+ T-cells) molecules that are presented on the cell surface. DCs are known to be one 

of the most important cell types for initiating the priming of naive CD4+ T-helper-cells 

(CD4+ Th) and for inducing CD8+ T cell differentiation into killer cells (49). At least 

three different subsets of DCs  have been described based on their origins (derived from 

myeloid, lymphoid and Langerhans cells) and phenotypic characteristics, which include 

expression of different TLRs repertoires (50). In this way, activation of different DCs has 

the potential to induce qualitatively distinct immune responses. For example, lymphoid 

DCs have the preponderance to secrete IL-12. DC activated CD4+ T-cells in the presence 

of IL-12 can become CD4+ Th1 cells, which produce IL-2, TNF-β and IFN-γ. INF-γ is 

especially important for macrophage activation and thus in the development of “cellular” 

immune responses. On the other hand, activation of myeloid DCs may lead to the 

development of Th2-like immune responses. CD4+ Th2 cells produce mainly IL-4, IL-5 

and IL-10, which activate B-cells, thus helping in the development of “humoral” immune 

responses. (51). TLR signaling also has an important role in determining the quality of 
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these helper T cell responses. For example, TLR2 engagement by its ligand Pam3Cys 

leads to a preferential production of Th2 cytokines, whereas lipopolysaccharide, which is 

a TLR4 ligand, leads to Th1 responses (51, 52). DCs not only initiate the priming of 

naïve CD4+ helper T-cells, but also induce CD8+ T-cell differentiation into killer cells 

(53).  

For a wide rage of infectious diseases, neutralizing antibodies are the key immunological 

parameter relevant for vaccination-induced immune responses (54). The part of the 

immune response that leads to the production of antibodies is known as “humoral” 

immune response. Most antibody responses that intend to induce high affinity IgG 

molecules are dependent on help from CD4+ helper T-cells (Th2), which receive their 

activation signals from APCs. Activation and maturation of B cells and differentiation 

into memory and plasma cells initially requires direct recognition of antigen by 

membrane bound surface IgM (sIgM) receptors. This recognition also occurs in 

secondary lymphoid tissues. B-cells that recognize antigens through the IgM receptor, 

internalize and process the antigen. The processed antigen is then presented in MHC 

molecules to activated CD4+ T-helper-cells, which stimulate B-cells through surface 

proteins (e.g. CD40 ligand) and soluble factors (e.g. IL-4 and IL-5) that induce B-cell 

proliferation, antibody production and differentiation into plasma cells. Some antigens, 

especially highly ordered, repetitive structures are able to cross-link these B cell receptors 

and with help of co-ligating complement-derived CD21 ligand are able to activate and 

mature B cells in the absence of T cell help (55).  
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Once activated by DCs, CD8+ T cells become cytotoxic (killer) T-cells, which scan and 

kill target cells that display peptide fragments of cytosolic pathogens on MHC class I 

molecules. MHC class I molecules are expressed ubiquitously and present molecules that 

come from the destruction of self-proteins and intracellular microorganisms like viruses 

and bacterias (e.g. Mycobacterium tuberculosis). Cytotoxic T-cells activity is initiated 

through effector molecules such as perforin, granzymes and Fas ligand. Perforin is a 

molecule that creates holes in the target cell membrane. Granzymes are proteases that act 

intracellularly to trigger apoptosis. Fas-ligand is a membrane bound molecule whose 

interaction with Fas-bearing cells activates apoptosis. Cytotoxic T-cells are also able to 

produce cytokines such as IFN-γ, TNF-α and TNF-β.  

 

T and B cells critically depend on the amount of antigen being able to reach the cognate 

T and B cells in lymph nodes and the duration of its presence before being denatured 

(56). For this reason, for a vaccine to be effective, its antigen requires to be present in 

sufficient quantity and for a certain period of time in the draining lymph node.  

 

 

 

I.B. Adjuvants 

 

The goal of vaccination is the generation of a strong immune response able to provide 

long-term protection against infection. Live-attenuated vaccines, which produce an 

active, though minor infection, are considered the gold standard in vaccine immune 
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response induction. However, these vaccines have many inconveniencies such as 1) 

important side effects, 2) attenuated microorganisms can potentially revert to a 

pathogenic form, 3) can not be used in people with immune impairments (elderly, young-

children), 4) require a cold chain, and 5) difficult to develop, as not all microorganisms 

can be attenuated. Advances in the understanding of the microorganisms, as well as the 

immune system, have lead to the development of “intelligently designed” vaccines, like 

subunit, DNA, viral-delivery-vectors and VLP vaccines (See Section I.A.1). These 

vaccines are able to induce immune responses; however, these are far less immunogenic 

than live-attenuated vaccines. In order to improve the immunogenicity of these vaccines 

several kind of adjuvats have been developed. 

 

Adjuvants are compounds that enhance the specific immune response against co-

inoculated antigens. The word adjuvant comes from the Latin word adjuvare, which 

means “to help” or “to enhance”. The idea and concept of adjuvants arose in the 1920s 

from observations such as those of Ramon et al. who noted that horses that developed an 

abscess at the inoculation site of diphtheria toxoid generated higher specific antibody 

titers (57, 58). The adjuvant properties of aluminium compounds were initially 

demonstrated by Glenny et al. in 1926 with diphtheria toxoid absorbed to alum. 

Currently, aluminium-based compounds (principally aluminium phosphate or hydroxide) 

remain as the predominant adjuvants for human use. In 1936, Freund developed an 

emulsion of water and mineral oil containing killed mycobacteria, thereby creating one of 

the most potent known adjuvants, Freund's complete adjuvant (FCA) (59). Despite being 

the gold standard adjuvant, FCA causes severe local reactions and is considered too toxic 
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for human use. The oil in water emulsion without added mycobacteria is known as 

Freund's incomplete adjuvant (FIA). FIA is less toxic and thus, has been used in human 

vaccine formulations (60). In the 1950s, it was found that lipopolysaccharides (LPS) from 

Gram-negative bacteria exhibited adjuvant activity and detoxified LPS or related 

compounds such as lipid A have since been used as adjuvants in human studies (61, 62). 

In 1974, muramyldipeptide (MDP) was identified as a mycobacterial component with 

adjuvant activity contained in FCA. Bacterial components are often potent immune 

activators; however, these are commonly associated with toxicity, for example, bacterial 

DNA with immunostimulatory CpG motifs is one of the most potent cellular adjuvants. 

Immunostimulatory CpG are unmethylated cytosine-guanine dinucleotides found in 

bacterial DNA, but absent in mammalian DNA (63, 64). In general, several hundred 

natural and synthetic compounds have been shown to have adjuvant activity. The 

mechanism of enhancement of the immune response is different for each kind of 

adjuvant. Several of these compounds are more potent than aluminum; however, more 

toxic at the same time, which has limited their use in humans. 

 

Adjuvants are mainly used to 1) enhance the immunogenicity of highly purified or 

recombinant antigens, 2) reduce the amount of antigen or the number of immunizations 

needed for protective immunity, and 3) improve the efficacy of vaccines in newborns or 

immunocompromised persons.  
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I.B.1.  Adjuvant Classification 
 

Adjuvants can be classified according to their source, mechanism of action or 

physicochemical properties. Edelman classified adjuvants into three groups: 1) active 

immunostimulants, which are substances that increase the immune response to the 

antigen; 2) carriers, being immunogenic proteins that provide T-cell help; and 3) vehicle 

adjuvants, which are oil emulsions or liposomes that serve as a matrix for antigens as 

well as stimulating the immune response (65). A more recently proposed system of 

classification divides adjuvants into the following major groups: mineral-salt, tensoactive 

agents, bacteria derived, oil emulsions, liposomes, human protein-based and carbohydrate 

adjuvants (Table 1).  

 

I.B.1.a.  Mineral Salt Adjuvants 
 

I.B.1.a.1.  Alum-Based Adjuvants  
 

Alum salts, principally aluminium phosphate or hydroxide, remain as the most widely 

used adjuvants in human. Unfortunately, alum salts are relatively weak adjuvants and 

rarely induce cellular immune responses (66). Several studies suggest alum salts work by 

causing the formation of an antigen depot at the inoculation site from where antigen is 

released slowly. The trapping of soluble antigen in the alum gel may also increase the 

duration of antigen interaction with the immune system. Other mechanisms of action 

involve complement, eosinophil and macrophage, activation and increased efficiency of 
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antigen uptake by APCs cells  (67). Alum-based vaccines are usually well tolerated. 

However, granulomas are common when the subcutaneous or intradermal route is used 

rather than intramuscular injection. Other specific limitations of alum adjuvants are 

increased IgE production, allergenicity and neurotoxicity. Low doses of aluminium are 

normally secreted by the kidney. In conditions such as reduced renal function, however, 

aluminium can accumulate till toxic levels that affect the brain, bone tissue (63).  

 

I.B.1.a.2. Other Mineral Salt Adjuvants  
 

Calcium phosphate has similar properties than alum salts; however, has the advantage 

that it is a natural compound to the human body and is therefore exceptionally well 

tolerated. Calcium phosphate has been used, in particular, for diphtheria-tetanus-pertussis 

vaccines (68). The salts of iron and zirconium have also been used to adsorb antigens; 

however, to a lower extent than alum salts. 

 

I.B.1.b. Tensoactive Adjuvants 
 

Quil A is a saponin derived from an aqueous extract from the bark of Quillaja saponaria. 

Fractions purified from this extract by reverse phase chromatography, mainly QS-21, 

have been studied as alternatives to alum when strong cellular responses are required for 

a particular vaccine (69, 70). Saponins are tensoactive glycosides which induce a strong 

adjuvant effect to T-dependent as well as T-independent antigens. Saponins also induce 

strong cytotoxic CD8+ lymphocyte responses and potentiate the response to mucosal 
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antigens (69). Quil A has been used successfully for veterinary applications; however is 

generally considered too toxic for human use.  

 

I.B.1.c.  Bacteria-derived Adjuvants 
 

Bacteria-derived substances constitute a major potential source of adjuvants because of 

their potent immunostimulatory capacity. Cell wall peptidoglycan or lipopolysaccharide 

(LPS) of Gram-negative bacteria, enhance the immune response against co-administered 

antigens despite themselves not being very immunogenic. This adjuvant activity is 

mediated by activation of Toll-like receptors that mediate the danger signals activating 

the host immune defence system (71). Different species of bacteria have been used as a 

source of adjuvants, for example Mycobacterium spp., Corynebacterium parvum, C. 

granulosum, Bordetella pertussis and Neisseria meningitidis. The adjunvanticity of these 

bacteria is mediated by N-acetyl muramyl-L-alanyl-D-isoglutamine (MDP). Furthermore, 

the adjuvanticity of MDP depends on the administration conditions. For example, in 

saline, it mainly enhances humoral immunity, while, when incorporated into liposomes or 

mixed with glycerol, it induces strong cellular immunity (63). MDP activates many 

different cell types including macrophages, leucocytes, mastocytes, endothelial cells and 

fibroblasts inducing the secretion of cytokines such as IL-1, B-cell grow factor and 

fibroblast activating factor.  

 

LPS is a potent B-cell mitogen, but it also activates T-cells to produce IFN-γ and TNF 

and therefore enhances cellular immune responses. The major structural element 
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responsible for the toxicity and adjuvant effect is lipid A. In low acid conditions, lipid A 

can be hydrolysed to obtain monophosphoryl lipid A, a compound which retains the 

adjuvant activity of Lipid A with reduced toxicity (72).  

 

The demonstration that mycobacterial DNA had adjuvant activity, led to the discovery 

that the adjuvant activity correlated with a higher content of CpG motifs present in 

bacterial nucleic acids. DNA containing CpG motifs is one of the most potent cellular 

adjuvants (73, 74). 

 

I.B.1.d. Adjuvant Emulsions 
 

This class includes oil in water or water in oil emulsions such as FIA, Montanide, 

Adjuvant 65, and Lipovant. The mechanism of action of adjuvant emulsions includes the 

formation of a depot at the injection site, enabling the slow release of antigen and the 

stimulation of antibody producing plasma cells (63, 71). In general, these adjuvants are 

too toxic for routine human prophylactic vaccine use, although they may be suitable for 

use in terminal conditions such as cancer where there is a greater tolerance of side-

effects. Frequent side-effects of emulsions include inflammatory reactions, granulomas 

and ulcers at the injection site.  
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I.B.1.e. Liposome Adjuvants 
 

Liposomes are synthetic spheres consisting of lipid layers that can encapsulate antigens 

and act as both a vaccine delivery vehicle and adjuvant. Liposomes have been used 

widely in experimental vaccines. The potency of liposomes depends on the number of 

lipid layers, electric charge, composition and method of preparation. Liposomes enhance 

both humoral and cellular immunity to protein and polysaccharide antigens. Liposomes 

help extend the half-life of antigens in blood ensuring a higher antigen exposure to 

antigen presenting cells after vaccination (75-77) 

 

I.B.1.f. Human Protein-Based Immunomodulators 
 

Cytokines are included in the modern classification of adjuvants. IFN-γ is a pleiotropic 

cytokine able to enhance cellular immune responses through a variety of mechanisms 

(78). Granulocyte-macrophage colony stimulating factor (GM-CSF) enhances the 

primary immune response by activating and recruiting APCs (79). The practical 

application of GM-CSF as an adjuvant has been limited by the requirement for multiple 

doses, toxicity and the immunogenicity of heterologous cytokines. Cytokines as 

adjuvants have potential in DNA vaccines, where the cytokine can be expressed by the 

same vector as the antigen or co-inoculated in separate DNA plasmids (80).  There is also 

active research on ILs as adjuvants. Currently, IL-1, IL-2, IL4, IL-12, IL-15 and IL-18 

are being tested in DNA and subunit vaccines (64). Co-stimulatory molecules such as 

CD80, CD86 and MHC molecules have been incorporated into live vectors and cells in 

order to enhance the immune responses (81). 
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Products derived from the complement system have also been used as adjuvants. C3b and 

C3d are degradation products of the third component of complement (Section I.C.1.). 

C3b as well as C3d have been fused to different antigens and the chimera proteins 

generated, enhance mainly humoral immune responses. Of these molecules, C3d has been 

extensively studied using several antigens derived from infectious pathogens (82-85) 

(Section I.C.6.).  

 

I.B.1.g. Carbohydrate Adjuvants 
 

I.B.1.g.1.  Inulin-derived Adjuvants  
 

Various carbohydrates of natural origin stimulate cells from the immune system. For 

example, Gamma inulin, a carbohydrate derived from plant roots of the Compositae 

family, is a potent humoral and cellular immune adjuvant. Gamma inulin is a potent 

alternate complement pathway activator increasing production of activated C3 and 

thereby activating macrophages. Gamma inulin is effective at boosting cellular immune 

responses without the toxicity exhibited by other adjuvants such as FCA. Inulin-based 

adjuvants have successfully been tested in multiple animal models in combination with 

such antigens as diphtheria and tetanus toxoid, respiratory syncytial virus, the E7 protein 

from the human papilloma virus, herpes simplex virus-2 glycoprotein D, hepatitis B 

surface antigen, influenza haemagglutinin, Haemophilus influenzae antigens and antigens 

from Plasmodium falciparum. Major advantages of inulin-derived adjuvants are that they 
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induce both Th1 and Th2 immune responses unlike alum do not induce IgE, and are not 

associated with any significant local or systemic toxicity (86).  Inulin is metabolizable 

into simple sugars fructose and glucose.  

 

I.B.1.g.2. Other carbohydrate Adjuvants  
 

Some polysaccharides based on glucose and mannose have adjuvant action. These 

polysaccharides include glucans, dextrans, lentinans, glucomannans and galactomannans. 

Levans and xylans also have immuno-enhancing activity. Macrophages have glucan and 

mannan receptors, activation of which stimulates phagocytosis and cytokine secretion 

plus release of leukotrienes and prostaglandins. Polysaccharides have been used for 

immune stimulation in patients with cancer. In vitro, mannan activates monocytes and 

macrophages to secrete IFN, TNF, GM-CSF, IL-1 and IL-6 (87).  

 

I.B.2.  Adjuvant Formulations 
 

New adjuvant formulations have resulted from the mixture of different adjuvants in the 

same formulation. As a general rule, two or more adjuvants with different mechanisms of 

action are combined to enhance the potency and type of the immune response to the 

vaccine antigen. For example, alum salts can be formulated in combination with other 

adjuvants such as Lipid A to increase immunogenicity. Saponins such as Quil A have 

also been used as a part of immunostimulatory complexes (ISCOMS). ISCOMS are 

spheric particles of 30–40 nm and dodecahedric structure, composed by Quil A, lipids 
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and cholesterol. Antigens can be inserted in the membrane or encapsulated. A wide 

variety of proteins have been inserted in these cage-like structures (88, 89). 

  

In conclusion, the goal of a vaccine is to generate a strong immune response against the 

administered antigen. This immune response needs to be strong enough to provide long-

term protection against the infection. The majority of the newly designed vaccines do not 

induce strong enough immune responses and this has opened the door for the 

development and use of adjuvants. Adjuvants have become a crucial portion of the 

formulation of new vaccines. With the use of appropriate adjuvants, the immune 

responses can be modulated either for the humoral or cellular side. Despite the hundreds 

of molecules with adjuvant properties that have been isolated, only few are used in 

humans; aluminium salts are the most common. The limited use of adjuvants in human is 

due to the extensive side effects caused by most adjuvants.  

 

The derivatives of complement system, like C3d, have become part of the adjunvants 

studied with potential use for different kinds of vaccines. In DNA, as well as protein 

immunizations, C3d enhanced vaccines are efficient and safe. No side effects have been 

reported in small animal studies and every day a larger number of antigens are tested. 

C3d is considered a “natural” adjuvant (See Section I.C.6.) because one of its roles in a 

normal immune response. C3d opsonizes pathogens and through interaction with its 

receptor CR2, enhances antigen uptake, processing and presentation (90). Furthermore, 

C3d reduces the amount of antigen needed to activate the B-cell (47). Hence, the use of 
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this molecule exploits normally occurring events that lead to a natural enhancement of 

the immune response and therefore lowers the chance to develop undesired side effects. 
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Table 1. Adjuvant Classification 

 

Adjuvant Class Examples 

Mineral-Salt 
(Gel-type) 

Aluminium hydroxide (alum) 
Aluminium/Calcium phosphate 
Iron and zirconium salts 

Tensoactive Quil A 
QS-21 

Bacteria Derived 

Bacterial DNA (CpG) 
BCG 
Inactivated Mycobacterium vaccae 
Bordetella pertussis 
Mycobacterial cell wall skeleton and Monophosphoryl lipid 
A (MPL) 
Genetically-attenuated cholera toxin (CT) and E. coli heat-
labile toxin (LT)  
Muramyl di- and tripeptide (MDP/MTP) and derivatives 
Streptococcal cell wall 
Tetanus toxoid (TT),  
Diphtheria toxoid (DT) and other bacterial protein carriers 
of T-cell help 

Emulsions 
Freund’s incomplete adjuvant 
MF-59  
Syntex Adjuvant Formulation (SAF) 

Liposomes and 
Particulates 

Immune-stimulating complexes (ISCOMs) 
Liposomes 
Virosomes 
Poly(lactic-co-glycolic) (PLGA) microspheres 

Human Protein-Based 
Immunomodulators 

Interferon-gamma (IFN-γ) 
Interleukin (IL)-1, IL-2, IL-4, IL-12, IL-15 IL-18 
Granulocyte-macrophage colony-stimulating factor (GM-
CSF) 
C3d  
Costimulatory (CD80; CD86) and MHC molecules for 
incorporation into live vectors and cells 

Carbohydrate 

Gamma inulin 
Glucans, dextrans, lentinans, glucomannans and 
galactomannans 
Levans and xylans 
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I.C. The Complement System 

 

The complement system, which was first identified as a heat-labile principle in serum that 

“complemented” antibodies in bacteria killing, is composed of more than 30 soluble 

serum proteins that are present as zymogens and activated in cascade. These proteins are 

classically cataloged as part of the innate immune system. However, there is a large body 

of information indicating that this system bridges the innate and acquired immune 

responses. The main proteins in the bridging function are the products derived from the 

cleavage of the third component of complement (C3): C3b, iC3b and C3d. Additionally, 

there is accumulating information that demonstrates that C5a may play a similar role 

(91).  

 

I.C.1. Complement System Pathways 
 

Activation of complement system can occur via three distinct pathways: the classical, 

alternative, and lectin pathways (Figure 1). The classical pathways is activated by 1) 

immune complexes containing antigen and IgM or IgG (IgG complement fixing 

isotypes), 2) C reactive protein (CRP) - bound microbial pathogens, 3) serum amyloid P 

(SAP) – bound microorganisms, and 4) apoptotic bodies (92). The lectin pathway is 

initiated by binding of the mannan binding lectin (MBL) to 1) mannose residues present 

on the surface of invading microorganism, 2) ficolins (93) or 3) immune complexes 

containing IgA (94). Binding of MBL to the surface of pathogens exposes residues that 

collect MBL-associated proteins (MASP) -1 and -2, which subsequently activate 

complement proteins 4 and 2 (C4 and C2), leading to the formation of C3 convertases. 
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Finally, the alternative pathway is activated by 1) foreign microorganisms, 2) immune-

complexes containing IgA, 3) nephritic factors, which are autoantibodies that stabilize C3 

activating enzymes, and 4) the “amplification loop”, where C3b that is deposited on 

targets either by the classical or lectin pathways binds Factor B and results in activation 

of the alternative pathway.  

 

Each pathway that activates the complement system leads to the formation of C3 

convertases (C4b2a, classical; C3bBb, alternative), which cleave C3 (Figure 1). This step 

is critical because leads to the downstream effector functions of complement: 1) 

formation of anaphylotoxins (C3a, and C5a), 2) lysis of pathogens through the membrane 

attack complex (MAC) (C5b-9) and 3) opsonization of pathogens (C3b, iC3b and C3d) 

(95, 96).  

 

C3 cleavage by C3-convertases generates C3a and C3b. C3b binds to C4b (classic 

pathway) or C3bBb (alternative pathway) and generates C5-convetases, which cleaves 

C5 thereby releasing C5a and C5b. C3a and C5a are known as anaphylotoxins because of 

their role in the development of anaphylactic allergic reactions. Even though C5a maybe 

more potent than C3a, both proteins display powerful biological activities that stimulate 

inflammatory sequelae. Anaphylotoxins are strong chemoattractants and are involved in 

the recruitment of inflammatory cells, such as, neutrophils, eosinophils, monocytes, and 

T lymphocytes. They also activate phagocytic cells and release granule-based enzymes 

and generate oxidants, all of which contributes to innate immune functions or tissue 

damage. On the other hand, C5b generates C5b6 complexes, which interact with C7, C8 
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and multiple C9 molecules. This large molecular complex C5b-9 (MAC) acts as a 

transmembrane pore and can cause cell death (95-97). These functions, dedicated to the 

eradication of infections, have been known for decades and initially cataloged the 

complement as part of the innate immune system. 

 

I.C.2.  Complement Bridges the Innate and Acquired Immune Responses 
 

In the recent years, it has become clear that the complement system not only plays a role 

in the innate immune system, but importantly bridges the innate with the acquired 

immune responses. The main proteins in this bridging function are the products derived 

from the cleavage of C3. As previously indicated, cleavage of C3 (by C3-convertases) 

generates C3a and C3b. Activated C3b, in addition to the formation of C5-convertases, 

can covalently attach to available protein amine groups or to hydroxyl groups present on 

carbohydrate-containing glycoproteins of invading microorganisms. This covalent 

interaction is mediated by the presence of a highly reactive internal thiol ester group in 

C3b. C3b attaches to the surface of microorganisms, interacts with complement receptor 

1 (CR1 / CD35) and is converted to iC3b by fluid phase factor I and H. This fragment is 

subsequently cleaved to C3d(g) by factor I, and CR1 as a cofactor (Figure 1). This 

results in C3d-tagged microorganisms that have the capacity to bind to complement 

receptor 2 (CR2 / CD21) (98). The interaction of C3 derived products with receptors 

(CR1 and CR2) present on the surface immune cells that are part of the adaptive immune 

response, bridges the innate with the acquired immune responses.  
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I.C.3. Complement Receptors 1 (CR1/CD35) and 2 (CR2/CD21) 
 

In mice CR1 (CD35) and CR2 (CD21) are encoded by the same gene. Each protein is 

expressed by alternative splicing of the mRNA (99, 100). In contrast, in humans, CR1 

and CR2 are encoded by two separate genes (101, 102). CR1 (molecular weigth 190 kDa) 

binds activated products from C3 (i.e.C3b, iC3b, C3d,g and C3d) and C4 (i.e. C4b and 

iC4b). CR1 is assembled from 21 repeat units (also known as short consensus repeats –

SCR-), each one consisting of 60-70 amino acids, a transmembrane region and a 

cytoplasmic of 35 amino acids (103, 104). Besides binding to C3 and C4 activated 

products, CR1 works as a cofactor in the inactivation and cleavage of C3b by factor I. 

CR2 (molecular weight 150 kDa) is composed of 15 SCRs and is almost identical to 

CR1, except for the absence of six SCRs at the N-terminal region (105). CR2 binds the 

same ligands that CR1, but C3b and C4b. CR2 is present on the surface of follicular 

dendritic cells (FDC), B-cells and some T-cells (101, 106-110).  

 

I.C.4.  CR2 and Follicular Dendritic Cells 
 

FDC are located in the germinal center of lymphatic nodes and play an important role in 

antigen presentation, which is not dependent on MHC class I or II molecules, but on Fc 

receptors γII (FcRγII) (111). These receptors collect and maintain antigens coated 

(opsonized) with immunoglobulins (Igs) (Figure 2) (112, 113). The antigen is retained by 

FDC in these tissues for long periods of time. Therefore, FDCs also play a role in the 

maintenance of immunological memory. The role of CR2 on the surface of FDC appears 

to be similar to FcRγII. Microorganisms coated with C3d can interact with CR2 and thus 
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help in antigen presentation, as well as in maintenance of memory (Figure 2). 

Additionally, CR2 bound immune complexes facilitate important signaling events that 

are required for the survival of maturing B-cells, as well as for the selection of high 

affinity B-cells (90, 114-117)  

 

I.C.5.  CR2, CD19 and the B-cell Signaling Complex 
 

On B-cells, CR2 enhances cell activation. B-cells are usually activated when antigens 

bind to the surface IgM (sIgM), which triggers a cascade of events that activates the cell. 

Binding of C3d to CR2 aggregates CD19, CD81 (TAPA-1) and Leu-13. CD19 has a long 

intracellular domain that also participates in signaling for cell activation (46). Thus, co-

binding of sIgM and CR2 activates pathways that crosstalk, enhances cell activation, 

reduces the amount of antigen needed to activate the cell, reduces inhibitory signals and 

prevent apoptosis (Figure 3) (101, 118-123). Additionally, sIgM-CR2 co-ligation 

enhances antigen uptake (124) and improves its presentation by selective trafficking to 

MHC II molecules (125). 

 

I.C.6. C3d as Natural Adjuvant – Enhancement of Secondary Humoral Immune 
Responses to Different Antigens 

 
 
Since co-ligation of sIgM-CR2 can enhance B-cell activation, antigen presentation and 

consequently antibody production, it was hypothesized that C3d could be used as a 

molecular adjuvant ( 
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Figure 4). Dempsey et al. was the first report the use of C3d as adjuvant. This study 

demonstrated that the conjugation of hen egg lysozime (HEL) to two or three tandem 

copies of murine C3d enhanced the secondary immune responses by as much as 1,000 

and 10,000 fold, respectively (126). Similar results were achieved conjugating C3d to 

viral, bacterial, parasitic and cellular (self) antigens. Different mechanisms to conjugate 

C3d to antigens have been used, such as gene fusions that produce antigen-C3d chimera 

proteins (83-85, 127), covalent conjugation (128), and biotinylation of C3d (129-131).  

 

Several antigens derived from infectious microorganisms have been used to further 

explore the adjuvant properties of C3d. DNA plasmids expressing the HIV-1 envelope 

(Env) gp120 gene fused to two or three copies of murine C3d were constructed  and used 

to immunize mice (132). Intradermal immunizations of these DNAs via gene gun in 

various mouse strains demonstrated the ability of C3d to enhance not only secondary 

humoral immune responses (IgG), but also the maturation of antibody avidity, the ability 

of the antibody to neutralize infection, as well as stimulate B-cell proliferation (85, 132, 

133). Three repeats of C3d conjugated to a soluble trimeric form of the HIV-1 Env was 

more effective at inducing neutralizing antibodies to primary isolates than plasmids 

encoding for non-C3d conjugated Env glycoproteins (134). Codon-optimizing the gene 

insert to use the most prevalent codons found in mammalian cells also enhances anti-Env 

antibodies. Fusing C3d to these codon-optimized genes allowed for even a greater 

reduction of the dose of DNA by 100-fold and demonstrated that C3d and codon-

optimization enhance the immune response by two distinct and non-synergistic 

mechanisms (83, 135). Immunizations of modified HIV-1 Env gp120 proteins 
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(gp120∆C1/C5-C3d2) in physiological solutions (PBS) also enhanced anti-Env immune 

responses. However, the C3d enhancement was not synergized following immunizations 

performed in the emulsified adjuvant, Ribi, as both gp120∆C1/C5 and gp120∆C1/C5-

C3d2 induced similar antibody titers (136).     

 

A soluble form of hemagglutinin (sHA) from the influenza virus [A/PuertoRico/8/34 

(H1N1)] has also been conjugated to three tandem copies of C3d. Mice immunized with 

sHA-C3d3 induced anti-HA antibody titers similar to those induced by the highly 

immunogenic transmembrane HA (tmHA). Even though, both DNAs induced similar 

total antibody titers, only sHA-C3d3 enhanced antibody avidity maturation and 

hemagglutinin inhibition activity, which correlated with a more rapid appearance of 

protective immunity following lethal virus challenge (84). C3d conjugated to sHA also 

induced antibodies able to protect mice from heterologous virus challenge (A/Aichi/2/68-

x31 – H3N2) and a stronger production of IL-4 than sHA or tmHA DNA vaccines alone 

(127). In a different approach, Watanabe et al. performed protein intranasal 

immunizations with tmHA, sHA or sHA-C3d3. These immunizations were performed 

either in the presence or absence of cholera toxin B subunit with a trace of holotoxin 

(CTB-H) as an adjuvant. All these vaccines induced nasal IgA and serum IgG antibodies 

against viral HA, which protected from lethal virus challenge, when inoculated with 

CTB-H. However, in the absence of CTB-H, only sHA-C3d3 induced locally secreted 

IgA and serum IgG that protected from lethal virus challenge (137). Finally, a soluble 

form of hemagglutinin from measles virus (sHMV) fused to C3d (sHMV-C3d3) 
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generated a more rapid appearance and higher levels of neutralizing antibody activity 

against measles virus than DNA expressing sHMV alone (138).  

 

E2 glycoprotein from type 2 bovine viral diarrhea virus (BVDV) is an important target of 

neutralizing antibody in BVDV-infected cattle. Purified E2 proteins fused to murine 

C3d3 were 10,000 more immunogenic than E2 alone and anti-E2 antibodies neutralized 

virus infection (139). Similar results were observed when the  bovine homolog of C3d 

was fused to E2 (140).  

 

T-cell independent antigens, such as the capsular polysaccharide of serotype 14 

Streptococcus pneumoniae (PPS14) conjugated to C3d, induced a significant increase in 

serum anti-PPS14 concentrations compared to native PPS14 or control PPS14-glycine 

conjugates (128). Furthermore, class switch from IgM to IgG was detected and IgG1 was 

the main isotype induced. Even though, the primary antibody responses to PPS14-

ovalbumion (OVA) were higher than those induced by PPS14-C3d, a second 

immunization with PPS14-C3d induced almost similar serum anti-PPS14 responses than 

a boost of PPS14-OVA (128). This study also suggested that T-cells are not required for 

enhancement of primary immune responses, but necessary for enhancement of the 

memory responses after a second immunization with PPS14-C3d conjugates (128). In a 

follow up study, the “quality” of the IgG antibodies induced after the second 

immunization of either PPS14-C3d or PPs14-OVA were evaluated and the results 

indicated that OVA induced antibodies with higher avidity and enhanced opsonization 
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functions than C3d (141). This suggests that at least with T-cell independent antigens, 

C3d is not as effective as T-dependent carrier proteins. 

 

In a recent study, the self-antigen collagen type II (CII) was conjugated to C3d and 

inoculated into a mouse model for collagen-induced arthritis. Animals that received 

heterologous CII conjugated to C3d developed rheumatoid arthritis (RA) in the absence 

of Complete Freund’s Adjuvant (CFA), while mice that received CII alone did not 

develop RA, unless inoculated with CFA (131). CFA is necessary for the development of 

autoimmune disease in several animal models because it causes local inflammation, 

enhances antigen uptake and promotes TLR-dependent cytokine release. Thus, the 

adjuvant effect of C3d bypassed the need for the broad immunostimulatory effect induced 

by CFA. This report was the first to demonstrate that C3d can induce pathogenic 

autoantibodies and thus suggests that C3d may be involved in the development of other 

B-cell dependent antoimmune diseases. However, it also suggests that C3d can break the 

natural tolerance to self proteins and thus could be used to induce immune responses to 

some kinds of tumor antigens, which may broaden the uses of C3d as a vaccine adjuvant. 

 

I.C.7.  The Complexity of the C3d-CR2 Interaction and Its Relevance for the In vivo 
Adjuvant Effect.  

 

The proposed mechanism for the enhancement of the immune response by C3d involves 

binding and signal transduction via CR2 on the surface of B-cells. However, some 

aspects of this interaction remain unclear. Initial studies based on synthetic mimetic 

peptides reported that the minimal CR2-binding region of C3d was located between 

 36



residues 1199-1210 (mature C3 numbering) (142). A polymeric synthetic peptide (P28) 

that included this region (1187-KFLTTAKDKNRWEDPFKQLYNVEATSKYA-1214), 

not only bound to CR2 on Raji cells, but also stimulated cell proliferation (143, 144). 

However, a study by Diefenbach et al. demonstrated that extensive mutagenesis of the 

segment 1199-1210 of human C3 reduced binding of iC3b or C3d(g) to CR2 by less than 

20% (145). X-ray crystallography indicated that the structure of C3d has a negatively 

charged (acidic) pocket on the concave side of the molecule, which was proposed to be 

the site of interaction with CR2 (146). Replacement of two clusters of negatively charged 

residues on the opposite site of the pocket led to severe inhibition of the interaction with 

CR2 and thus supported this hypothesis (147). Surface plasmon resonance technology 

was used to analyze the kinetics of the interaction between iC3b, C3d and P28 to CR2 

and the results suggested the possibility of more than one interacting region (148).  

However, when the X-ray crystal structure of CR2 [short consensus repeats (SCR) 1 and 

2] complexed to C3d was revealed, many unexpected features were exposed such as 1) 

only SCR2 contacts C3d and not SCR1, 2) extensive SCR1-SCR2  side-by-side packing 

in a folded back structure,  3) extensive main-chain, rather than side-chain interactions 

between C3d and CR2, 4) receptor contact sites on C3d that were not previously 

predicted by mutagenesis, which also disproved the hypothesis that the acidic pocket was 

the binding region of C3d and 5) formation of CR2-CR2 dimers by interaction of the 

SCR1 domain of each molecule (149, 150). A model based on theoretical electrostatic 

potential and pKa calculations tried to reconcile the controversial results and suggested 

that the association of C3d with CR2 is predominantly electrostatic in nature and involves 

the whole molecule and not only the limited association sites that were previously 

 37



studied. This model suggests that recognition and binding is due to electrostatic attraction 

(controlling Kon rates) and that van del Waals and hydrogen bonding interactions are 

responsible for making the two molecules stick together (controlling Koff rates). In 

particular, charged residues in regions of C3d that are remote to the association site 

appear to affect CR2 binding and this may help to explain the  previous mutagenesis 

results (151).  

 

Despite all the information gained from X-ray crystal structures, mutational analysis and 

theoretical models, we still do not have a complete understanding of the C3d and CR2 

interaction and its consequences for in vivo models. This lack of understanding is most 

likely because the crystal structures involve just the first two SCRs of CR2 and not the 

full length molecule, which is composed of 14-16 SCRs.  Interactions between C3d and 

the remaining SCRs may influence binding as suggested by surface plasmon resonance 

studies that demonstrate that although the binding affinity of SCR1-SCR2 and SCR1-

SCR15 (full length CR2) for C3d were the same, association and dissociation rates of 

SCR1-15 were approximately 10-fold slower that SCR1-2 (149, 152).  Dimerization of 

CR2 also remains to be clarified as monomeric or dimeric complexes could have 

different outcomes in the cells.  

 

I.C.8. A C3d Minimal Binding Domain and the Enhancement of the Immune 
Response 

 

Based on 1) the importance the C3d-CR2 interaction for the enhancement of the immune 

response and 2) surface plasmon studies that demonstrates P28 binding to CR2 (148), our 
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laboratory designed DNA vaccines that use four copies of this molecule as adjuvant. P28 

was almost as immunogenic as C3d since mice immunized with DNA plasmids 

expressing HIV-1 Env gp120-(P28)4 elicited similar antibody titers than mice vaccinated 

with Env gp120-C3d3. Furthermore, similar numbers of IFN-γ and IL-4 secreting 

splenocytes were elicited by both vaccines (153). Also, fusion of the hepatitis B virus 

(HBV)-preS2/S antigen to four copies of P28 enhanced anti-preS2/B titers, as well as the 

maturation of high avidity antibodies (154). 

 

I.C.9.  C3d and Impairment of the Immune Response 
 

Although several studies have reported enhancement of the immune response by C3d, 

other reports indicated that C3d fusion proteins inhibited immune responses. Antibodies 

specific to the non-toxic diphtheria toxin fragment B (DT), human chorionic 

gonadotropin, bovine rotavirus VP7, bovine herpes virus type 1 plycoprotein D and 

malaria circumsporozite protein were inhibited by conjugating to C3d (118, 155-157). 

The dose and individual immune properties of each antigen appear important for either 

inhibiting or enhancing immune responses by C3d. Low doses of an antigen fused to 

three copies of C3d enhance the immune responses, but high doses inhibit (158). 

Bergmann-Leitner et al. reported that the individual characteristic of an antigen is 

important for C3d adjuvanticity. Fusing C3d to the malaria circumsporozite protein 

(CSP) inhibited anti-CSP immune responses most likely because the immunogenic 

epitopes in the carboxy-terminus of CSP were covered by C3d (155).  
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Figure 1. The Complement System 

 
The complement system can be activated by the classical, lectin and alternative pathways, 
which lead to the formation of C3 convertases (C4bC2a, classical and C3bBb, 
alternative).  Cleavage of C3 is a critical step that leads to the effector branches of the 
complement system: 1) recruitment of inflammatory cells by anaphylotoxins, 2) lysis and 
death of microorhanisms by formation of the membrane attach complex, and 3) 
opsonization of pathogens.  C3d is formed from the subsequent cleavage of C3 into C3b 
and iC3b by factors I, H and CR1 as cofactor.  
MBL: Mannan Binding Lectin. MASPs: MBL-associated proteins 
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Figure 2. CR2 and Follicular Dendritic Cells 
 
Follicular dendritic cells (FDCs) bind microorganisms through FcRγII and CR2. These 
antigens remain attached for long periods of time, hence helping in antigen presentation 
and maintenance of memory.   
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Figure 3. C3d: A Natural Adjuvant 

 
 
Invading microorganisms coated with C3d interact with B-cells through the surface IgM 
(sIgM) and CR2. Co-ligation of these two receptors activate pathways that cross-talk and 
lead to activation of the cell. 
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Figure 4. C3d: A molecular Adjuvant 
 
 
Ag-C3d3 fusion proteins bind the sIgM, as well as several copies of CR2. This redundant 
interaction activates a signaling cascade that results in B-cell activation. In addition, this 
mechanism reduces the amounts of antigen needed to activate the cell.   
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I.D. Antigens 

 

Antigens are the portion of a vaccine against which an immune response is desired. There 

are several kinds of model and experimental antigens. These are used as tools for the 

study of the development of immune responses and mechanism of action of adjuvants.  In 

order to study the mechanism of enhancement of the immune responses by C3d, three 

different antigens were selected: 1) the gp120 subunit of the envelope glycoprotein 

(Envgp120) from the human immunodeficiency virus (HIV-1), 2) a soluble form of 

hemagglutinin (sHA) from influenza virus A/PR/8/34 (H1N1) and 3) streptavidin (SA). 

The first two proteins are medically relevant antigens derived from microorganisms that 

induce chronic and acute infections in large portions of the human population. The last 

one represents a model antigen used in the study of the development of immune 

responses. These three antigens will be described, including a brief review of the 

microorganism from where they are derived. 

 

I.D.1.  Human Immunodeficiency Virus (HIV-1)  
 

I.D.1.a. HIV-1 General Aspects 
 

The human immunodeficiency virus (HIV-1) is the causative agent of the Acquired 

Immune Deficiency Syndrome (AIDS). HIV-1 was isolated in the early 80’s (159-161). 

The virus was simultaneously identified by several laboratories and as result, each 

laboratory gave each isolate a different name: i.e. 1) lymphadenopathy-associated virus 
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(LAV), 2) human T-cell lymphotropic virus type III (HTLV-III), and 3) AIDS-associated 

retrovirus (ARV). It was not until 1986, that the International Committee on Taxonomy 

of Viruses officially named this virus as HIV-1.  

 

HIV-1 is part of the Retroviridae family, which is characterized by an RNA genome that 

is converted into a DNA form by reverse transcription and integrates into the 

chromosomal DNA of the host (proviral genome). Simple and complex retroviruses have 

been described. Simple retroviruses (i.e. alpharetroviruses, betaretroviruses, 

gammaretroviruses) contain only the genes that encode for Gag, reverse transcriptase 

(RT), protease (PR) and envelope (Env) proteins. On the other hand, complex 

retroviruses (i.e. deltaretroviruses, epsilonretroviruses, lentiviruses, spumaviruses) 

contain the genes for these four proteins and an assortment of regulatory and accessory 

genes. HIV-1 is a complex virus member of the Lentivirus genus.  

 

The envelope of HIV-1 virus is composed of a lipid bilayer that is derived from the host 

cell membrane and acquired during the budding process. The envelope is embedded with 

multimeric envelope (Env) glycoproteins that are composed of two domains: 1) a 

globular surface domain (gp120) and 2) a transmembrane domain (gp41). Env 

glycoproteins associate to form trimeric structures that spike on the surface of the virion.  

The matrix (MA, p17) protein lines the inner surface of the viral envelope and surrounds 

the capsid. The capsid (CA, p24) layer contains approximately 2,000 molecules and 

encases the nucleocapsid (NC, p9), which surrounds the viral genome and associated 

viral proteins (Figure 5A).  
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I.D.1.b. HIV-1 Groups, Strains and Clades 
 

Based on the genetic sequence, HIV-1 has been divided in three distinct major groups: 

major (M), outlier (O), and non-M/non-O (N). The strains of HIV-1 that infect most 

humans worldwide are part of the M group. The group M has evolved into several 

different clades (~10) (A, B, C, D, F, G, H and J) and 13 different circulating 

recombinant forms (CRF) (394, 470).  

 

The genetic diversity of HIV-1 has been analyzed in various group M viruses (393, 394, 

622). The genetic diversity of the HIV-1 population can vary from 6-10% within an 

infected individual. Moreover, intraclade nucleotide diversity can vary 15% (Gag) or up 

to 30% (Envgp120), whereas interclade variability may range between 30-40% depending 

on the gene examined.  

 

I.D.1.c. Epidemiology  
 

As of December of 2005, between 36 million and 45 million people were estimated to be 

living with HIV infection, of which 17.6 million were women and 2.2 million were 

children. Approximately half of the infected population was between 15 and 24 years of 

age (162). An estimated 4.9 million new HIV infections occurred in 2005, including 4.2 

million new infections in adults and 700,000 new infections in children less than 15 years 

of age (163). The highest prevalence of HIV infection is observed in sub-Saharan Africa, 
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especially in Botswana, South Africa, and Lesotho, Namibia, and Swaziland, where as 

much as 30-40% of pregnant women are infected. Three fifths of individuals with HIV 

infection reside in sub-Saharan Africa.  

 

It is estimated that one-fourth of the one million United States (U.S.) residents living with 

HIV are unaware that they are infected (164). In addition, half of the 400,000 newly 

infected individuals are younger than 25 years of age each year in the U.S. (70% men, 

30% women) (165). HIV/AIDS is the leading cause of death in Africa and the fourth 

leading cause of death worldwide. 

 

I.D.1.d. Disease Course and Immune Response to HIV-1 in Humans 
 

There are four major modes of HIV-1 transmission: 1) sexual intercourse, 2) blood 

products, 3) contaminated needles from intravenous drug use and 4) mother-to-child 

during the perinatal period (166). Many immunological and viral hallmarks are observed 

during the course of infection of HIV-1 (167, 168). The timeline for disease progression 

from infection with HIV-1 to the development of AIDS varies between individuals. In 

general, the first symptoms of clinical AIDS become evident 8-15 years after infection. 

HIV infection typically follows an established course: 1) primary acute infection often 

with a mononucleosis-like disease, 2) a prolonged period without obvious, visible 

symptoms and 3) a severe immunodeficiency that results in the development of 

opportunistic infections and tumors that lead to the major causes of death in AIDS 

 47



patients (169). The rate of progression through these phases varies among infected 

individuals.  

 

In the first days after infection, the acute phase is characterized by high levels of viral 

replication in activated lymphocytes located in the lymph nodes (lymphadenopathy). 

Individuals generally experience flu-like symptoms during this phase of HIV-1 disease 

(6-12 weeks). During this time, the viral population is relatively macrophage-tropic (M-

tropic). M-tropic HIV-1 isolates, seen during the early stage of infection, infect cells 

expressing the chemokine receptor, CCR5. The activation of cytotoxic T cells (CTL) and 

induction of anti-HIV antibodies result in containment of the initial viremia. An increase 

in CD8+
 
cytotoxic T lymphocytes is seen in the acute phase, but autologous neutralizing 

antibodies are not detected until 6 months after infection. CD4+
 
T lymphocytes decrease 

during this phase but return to near normal levels after six months. The levels of CD4+ T-

cells do not always return to normal levels. In some cases the levels remain low and the 

patients rapidly progress to the symptomatic or AIDS phase. 

 

The asymptomatic phase occurs approximately 3-4 months after infection. Minimal viral 

replication occurs during this stage, and the level of HIV detected in the blood remains 

relatively stable for many years. The amount of virus in the blood (viral load) decreases 

to a setpoint (steady state level of virus) and is prognostic for the course of infection and 

disease; higher setpoints correlate with a more rapid disease progression. Viral load set 

points of < 103 
copies of viral RNA/mm3 

of plasma generally are associated with a slower 

progression to AIDS (170, 171). During the asymptomatic phase, patients experience 
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mild symptoms that may include fatigue, weight loss and shingles. Despite the immune 

response to HIV-1, virus replication continues at a low rate. At the beginning of the 

asymptomatic phase, the viral population consists mainly of M-tropic strains. However, 

the viral population becomes more heterogeneous (M-tropic, dual tropic and T cell tropic 

(T-tropic) HIV-1 strains) towards the end of the asymptomatic stage.  

 

The symptomatic or AIDS phase is the end stage of HIV-1 disease and is characterized 

by a dramatic drop in CD4+
 
T lymphocyte population (<200 cells/mm3 

of blood) and is 

associated with a rise in viremia. Normal healthy adults usually have greater than 1 x 103 

CD4+
 
T cells per mm3 

of blood (166, 170, 171). In the lymph nodes, HIV-1 replication 

increases and lymphoid cells and tissue are destroyed. In the last phase, the virus 

population becomes more heterogeneous with the emergence of the virulent, T-tropic 

viruses. T-tropic HIV-1 isolates appear later in the course of HIV infection and infect 

cells expressing the chemokine receptor, CXCR4. The mechanism by which CD4+
 
T 

cells are depleted remains to be identified. Different mechanisms for the destruction of 

CD4+
 
and CD8+

 
T cells have been proposed: 1) direct infection of the cell, 2) the 

induction of apoptosis 3) syncytium formation of healthy T cells with infected T cells, 

and 4) bystander killing by some viral proteins (e.g. nef) (172). AIDS is characterized by 

a state of immunodeficiency that allows for the development of secondary, opportunistic 

infections. During this stage, opportunistic infections develop and eventually the patient 

succumbs to an AIDS-related illness. Some of the most prevalent opportunistic infections 

of AIDS are Pneumocystis carinii, Cryptosporidium, Toxoplasma, Mycobacterium 

avium/tuberculosis and Salmonella (173-175). Tumors usually associated with HIV 
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infection are Kaposi’s sarcoma (skin), non-Hodgkin’s lymphoma (lymphatic tissues) and 

primary lymphoma of the brain (176).  

 

I.D.1.e. Replication Cycle of HIV-1 
 

The HIV replication cycle occurs in an orderly fashion. HIV-1 entry into target cells is 

mediated through a complex interaction between the viral envelope glycoprotein and 

specific cell surface receptors. HIV-1 infects susceptible cells by binding to CD4 on the 

CCR5 and CXCR4. After coreceptor binding, a subsequent conformational change 

exposes the fusion domain in Envgp41 
and results in fusion of the viral and plasma 

membranes. This process culminates in viral entry and release of the viral core into the 

cytoplasm of the cell (177, 178). The HIV single stranded (ss) RNA genome is 

transcribed into double stranded (ds) DNA by the virally encoded reverse transcriptase 

upon successful entry into the target cell (179). After translocation of the preinfectious 

complex (PIC) to the nucleus, the viral DNA is integrated randomly into the host 

chromosomal DNA via the viral integrase and long terminal repeats (LTRs) (180). At this 

stage, the viral genome is called the provirus. The integrated provirus is flanked by repeat 

sequences known as LTRs, which are important for integration. In addition, the 5’ LTR 

contains the promoter/enhancer elements necessary for viral gene expression (180). Upon 

cellular activation by environmental and cellular transcription factors as well as the HIV 

transactivator protein, Tat, transcription of the proviral genome is initiated. Using host 

cell proteins and machinery three different viral mRNAs are produced: 1) multiply-

spliced, 2) singly-spliced and 3) unspliced mRNAs (181). Initially, the multiply-spliced 

 50



mRNAs are transcribed during the early phase of HIV-1 transcription (Tat, Rev and Nef). 

The singly-spliced mRNAs encode for Env, Vpu, Vif and Vpr. Unspliced mRNAs are 

transcribed in the late phase of HIV-1 transcription (Gag, Gag-Pol, and genomic RNA). 

Nuclear export of singly and unspliced viral mRNAs is provided by the viral protein, Rev 

along with cellular proteins and machinery. Once in the cytoplasm, these mRNAs are 

then translated into viral proteins. The envelope proteins are synthesized, glycosylated 

and processed in the endoplasmic reticulum and Golgi apparatus. Following cleavage by 

furin, the envelope proteins form multimers (trimers) that migrate to the cell surface 

(182). The structural gene products accumulate at the cell surface and assemble into an 

immature viral particle, which encapsidates two copies of the viral genome along with the 

associated proteins. The virus undergoes budding and is released from the infected cell 

(183). In addition to HIV-1 Env, the viral membrane contains host-derived proteins, such 

as MHC class I. The particle undergoes a maturation process that involves the proteolytic 

processing of the Gag and Gag-Pol polyproteins by the viral protease. Gagp55 is processed 

to yield the MA, CA, NC and p6, while Gag-Polp160 is cleaved to produce the Gag gene 

products plus PR, RT and IN (184). 

I.D.1.f. Proviral HIV-1 Genome and Its products 
 

The HIV-1 proviral genome [double-stranded DNA (dsDNA)] contains nine open reading 

frames that encode for 15 viral proteins (185)
 
(Figure 5B and Table 2). Like all 

retroviruses, HIV-1 contains three major genes (gag, pol and env), which encode 

precursor polyproteins that are cleaved to produce the core structural (CA, MA, NC), 

enzymatic (PR, RT, IN) and envelope (gp120, gp41) proteins, respectively. The HIV-1 
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genome also contains two regulatory genes (tat and rev) and 4 accessory genes (nef, vif, 

vpu, and vpr) that are required for efficient virion replication and maturation (Table 2). 

The proviral DNA genome also contains two long terminal repeat (LTRs) which flank 

both the 5' and 3' ends. The 5’ LTR contains the HIV-1 promoter and enhancer sequences 

that regulate gene expression.  

 

Only the products of the major structural and enzymatic genes are described in the text. 

Regulatory and accessory proteins are described in (Table 2) 

 

I.D.1.f.1.  Products of the gag Gene: Gag, Matrix, Capsid and Nucleocapsid 
 

The group associated antigen (gag) gene encodes a 55 kDa precursor protein (Gagp55), 

which is expressed from the unspliced viral messenger RNA (mRNA). The precursor 

protein is proteolytically cleaved into three main structural gene products that are 

incorporated into mature virions: matrix (MA), capsid (CA) and nucleocapsid (NC). 

Assembly and maturation of HIV particles is dependent on the Gag gene products.  

 

The MA (p17) protein undergoes post-translational myristylation at the N-terminus, 

promotes attachment of Gagp55 
to the cell membrane and forms the submembrane layer of 

the virion. Two distinct features of MA are involved in membrane targeting: 1) N-

terminal myristate group and 2) basic residues found within the first 50 amino acids 

(together known as the “membrane-binding” or “M” domain). Trimeric MA associates 

with the cell membrane by insertion of the 3 myristate groups into the lipid bilayer 
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located directly above the trimer, and the interaction occurs between the basic residues on 

MA and bilayer phospholipid head groups. In addition to Gag/Gag-Pol membrane 

targeting, MA assists in Env incorporation into the virions by association with the 

cytoplasmic tail of Env (186, 187).  

 

The CA (p24) protein is the most abundant viral protein found in the virus and is required 

for Gag-Gag multimerization. CA is composed of two domains: 1) N-terminal region or 

core domain (virion maturation and incorporation of cyclophilin A (CypA)), and 2) C-

terminal “dimerization” domain (Gag-Gag interactions). CA is also required for the 

incorporation of Gag-Pol polyprotein into virions, which is essential for the recruitment 

of PR, RT and IN into the virus particle (188).  

 

NC is located within the capsid layer and is responsible for packaging of the viral RNA 

genome (189). NC contain 2 zinc-finger motifs found in many cellular DNA binding 

proteins (190). NC is tightly associated with the viral RNA in virions by binding to the 

packaging signal, psi (ψ), located near the major splice donor site (immediately 5’ of 

gag) (191, 192). The interaction between NC and ψ requires intact zinc fingers and the 

flanking basic residues (193, 194). In addition to RNA binding and encapsidation, NC 

plays a role in: 1) RNA dimerization (195), 2) Gag-Gag interactions, 3) virus assembly 

(196), 4) tRNA incorporation and annealing to the primer binding site (pbs)/strand 

transfer during RT (188, 197), and 3) stability of the PIC (198).  
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I.D.1.f.2.  Products of the pol Gene: Protease, Reverse Transcriptase and Integrase 
 

The pol gene encodes for three viral enzymes: protease (PR), reverse transcriptase (RT), 

and integrase (IN) (Table 2). The pol gene products are derived from the Gag-Polp160 

precursor, which is generated by a ribosomal frameshifting during translation of Gagp55. 

The frameshift only occurs 5-10% of the time, which ensures that pol gene products are 

expressed at low levels (compared to Gag gene products). The three enzymes are 

associated with the viral genome.  

 

PR is responsible for the proteolytic processing of the Gag-Polp160 
and Gagp55 

precursor 

polyproteins and thus plays a critical role in the maturation of the virion. HIV-1 PR uses 

two apposed Asp residues at the active site to direct a water molecule that catalyzes the 

hydrolysis of a peptide bond in the target protein. HIV-1 PR functions as a dimer (199, 

200) and the substrate binding site is located within a cleft formed between the two 

monomers. The first cleavage event in all retroviral Gag-Pol polyproteins is the autolytic 

processing of PR. Following its release, PR forms a dimer and cleaves a number of sites 

in the Gag and Gag-Pol precursors. Gag processing by PR occurs at junctions between 

MA/CA, CA/p2, p2/NC, NC/p1 and p1/p6, but each site is cleaved at different rates. 

Proteolytic cleavage of Gag/Gag-Pol precursors results in a dramatic change in the 

morphology of the particle, which is known as maturation.  
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RT converts the viral ssRNA genome into the double-stranded (ds) DNA form known as 

the provirus (201). Although each virus contains two strands of RNA, only one provirus 

is made (202). The mature RT holoenzyme is a heterodimer (p51/p66; 250 molecules per 

virion) and has three enzymatic functions: 1) RNA-directed DNA polymerization (minus-

strand DNA synthesis), 2) RNaseH activity (degradation of the tRNA primer and 

genomic RNA in the DNA/RNA hybrid intermediates) and 3) DNA-directed DNA 

polymerization (plus-strand DNA synthesis). The final product of reverse transcription is 

a ds DNA molecule that can integrate into the host chromosomal DNA. The high 

mutation rate of HIV-1 is largely due to the error-prone nature of RT, which lacks 

proofreading activity and frequently switches templates (203).  

 

IN (p32) mediates the integration of the viral DNA into host cell chromosomes during the 

replication cycle. Retroviral INs are comprised of 3 structural/functional domains: 1) N-

terminal zinc-finger-containing domain, 2) core domain and 3) the relatively conserved 

C-terminal domain. Integration of all retroviruses follow the same series of events (204, 

205). IN removes 2-3 nucleotides from the blunt 3’ terminus of both strands of full-

length, ds DNA forming the pre-integration substrate. Randomly, IN catalyzes a 

staggered cleavage of the cellular target sequence once inside the nuclease. The 3’ 

recessive ends of viral DNA are joined to the 5’ ends of the cleaved cellular DNA (strand 

transfer). Host cell repair machinery fills in the gaps thus completing the integration 

process (204, 206). The integrated viral DNA (provirus) is flanked by a 5 bp direct repeat 

(5’-TG, CA-3’).  
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I.D.1.f.3.  Products of the env gene: Envgp120 and Envgp41 
 

The env gene encodes for glycoproteins that are important in receptor binding and entry 

(Figure 5 and Table 2) (182, 207). The env gene is expressed as a polyprotein precursor, 

Envgp160. Envgp160 
is cleaved by the cellular protease furin in the two Env glycoproteins: 

gp120 and gp41. Envgp120 
and Envgp41 

associate through noncovalent interaction to form a 

multimeric structure (trimer) on the surface of the virion (208-210). Envgp41 
forms the 

transmembrane domain of the Env complex, while Envgp120 
is presented on the surface of 

infected cells or virions. Envgp120 
has five hypervariable (V) (V1-V5) and five constant 

(C) (C1-C5) regions. The amino acid sequence in the variable loops can vary greatly 

among HIV-1 isolates (211-215). One of these regions, the V3 loop, is an important 

determinant in cell tropism for HIV-1 and contains the chemokine receptor binding 

domain (214, 215). Envgp120 
as well as Envgp41 

mediate entry of the virus into host cells. 

Initially, Envgp120 
binds to human CD4 (hCD4) on the surface of target cells (177, 216). 

This interaction results in a conformational change in Envgp120, which exposes the 

chemokine receptor-binding domain. Binding of the virus to the chemokine receptor 

leads to another conformational change in Envgp120 
that exposes the fusogenic domain in 

Envgp41. This domain instigates entry of the viral core by fusing the viral and host cell 

membranes (217, 218).  
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I.D.1.g. Env as Antigen for Vaccine Design 
 

Env is the only realistic target for neutralizing antibodies against HIV-1, because it is the 

only viral protein found on the outer surface of the virion and mediates entry of the virus 

into susceptible cells. For this reason, several experimental vaccines have targeted this 

molecule. In early Env subunit vaccine studies in mice and non-human primates, 

neutralizing antibodies were enhanced (219-221)
 
and some (not all) chimpanzees were 

protected from infection following challenge with HIV (14, 222). Based on these results, 

recombinant Envgp120 
was evaluated for safety and immunogenicity in humans. 

Antibodies to Env were detected in almost all vaccinees, and neutralizing antibodies were 

detected in the majority of recipients (223, 224). It later became evident that these 

neutralizing antibodies were transient and limited to homologous, laboratory-adapted 

HIV strains (225, 226). HIV Env subunit vaccines do not generally induce significant 

CTL responses against Env (227, 228), nor do they neutralize primary isolates (225, 229). 

In order to improve Env based vaccines researcher developed strategies that may produce 

more immunologically relevant antibodies to the native structure of Env such as 

oligomeric gp140 and particle based-vaccines. Various approaches to construct soluble, 

trimeric forms of Env that more closely mimic the native Envgp160 
on the surface of 

virions have been employed. Some of these include stabilized Envgp120/gp41 
subunits (230), 

Envgp160 
and Envgp140 

oligomers (210, 231)
 
and trimeric Env (232). Soluble, trimerized 

Envgp140, unstablized or stabilized with domains (GCN4, T4 bacteriophage fibritin motifs 

or by additional disulfide bonding (SOS)), elicited modest levels of enhancement of 

neutralizing antibody compared to antibody elicited by monomeric forms of Env (233) 

(234). Furthermore, several DNA vaccine approaches have been developed for Env. One 
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of the advantages of DNA vaccines over subunit vaccines is the potential to induce 

humoral as well as cellular immune responses (See Section I.A.1.g).  Initial studies using 

wild-type Envgp120 sequences concluded that these genes were not immunogenic enough 

due to the poor expression in mammalian cells. In order to enhance the immunogenicity 

of the env gene, several approaches have been taken, such as the use of molecular 

adjuvants (cytokines and complement derived C3d) (81, 85, 132, 235) and codon 

optimization of the gene sequence for optimal expression in mammalian cells (135, 172).  

 

The extensive use of Env in the development of HIV-1 vaccines has provided a large 

body of knowledge about this antigen. Several immune assays to measure the anti-Env 

immune response in small as well large animals, including humans, have been created. 

Furthermore, the array of reagents available for the study of Env is extensive and can be 

easily accessed. All this, has made HIV-1 Env a good model antigen for the study of 

adjuvants. 

I.D.1.h. Antiretroviral Therapy 
  

Currently, highly active anti-retroviral therapy (HAART) is a treatment regimen widely 

used by physicians. HAART involves using an assortment of antiretroviral drugs to 

reduce or prevent viral replication (usually inhibitors of HIV-1 PR and RT). A 

combination of two or more antiretroviral medications is generally more effective than 

using just one of these medications (monotherapy) for treating HIV infection. The 

regimen usually consists of one protease inhibitor (e.g. lamivudine) and one or more 

reverse transcriptase inhibitors (e.g. zidovudine or stavudine) and results in reduced 
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levels of virus (<50 copies of viral RNA/mm3 
blood) after one year of treatment in 

approximately 60-80% of patients (236). The use of HAART has enhanced both the 

longevity and quality of life for infected individuals by controlling viral replication (236, 

237). Some of the advantages of combination antiretroviral drug therapy for the treatment 

of HIV are: 1) minimal incidence of HIV-related complications, 2) decrease in viral 

loads/induction of lower viral setpoints, 3) lessened severity and delayed onset of 

symptoms and 4) prolonged survival of infected individuals (269, 498). Despite the 

effectiveness of HAART, several drawbacks are accompanied with this treatment that 

limit its worldwide use (particularly in developing nations). First, HAART does not 

protect patients against initial infection nor does HAART clear viral infection. Other 

disadvantages include: toxicity, non-adherence, lack of efficacy, interactions with other 

drugs and food, unfavorable pharmacokinetics, transportation and storage, high 

production cost and drug resistance (238).  
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gure 5. Representation of HIV-1 Virion and Proviral Genome.  

 The mature HIV-1 virion contains multiple viral gene products. Gag and Env are the 
in structural proteins that form the spherical shape with spiked glycoproteins 

otruding from the outer surface. The gag gene products include the capsid (Gagp24), 
trix (Gagp17), and nucleocapsid (Gagp6) proteins. The env gene products include 

rface (Envgp120) and transmembrane (Envgp41) glycoproteins. The Env glycoproteins 
 inserted in the lipid bilayer, which is derived from the host cell membrane during the 
dding process. In addition, there are 2 enzymatic (RT and IN) and 3 accessory (Vif, 
r, Nef) proteins found in the mature virion. HIV-1 contains 2 copies of its single 
anded RNA genome (ssRNA).  
 The proviral genome is flanked by 2 long terminal repeats (LTRs). Transcription of 
al genes is initiated from the promoter found in the 5’LTR. In the HIV-1 genome, 
re are 9 open reading frames, which generate 15 different gene products. The Gag-Pol 

ecursor polypeptide is cleaved into gag and pol  gene products. The Env/Vpu mRNA is 
gly spliced to produce Vpu or the env gene precursor (Envgp160) that is processed to 
vgp120 and Envgp41. Regulatory (Tat and Rev) and accessory (Vif, Vpr, Nef) 

oteins are generated by multiply splicing of the Gag-Pol precursor mRNA  
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Table 2.  HIV-1 Proteins and Their Main Function 
 
 

Type of 
Protein Protein Main Function 

Structural Gag (CA, MA, NC) Forms sphere of virion.  
Encapsidation of vRNA 

Structural Env (Envgp120 and 
Envgp41) 

Virus binding and entry into susceptible cells 

Enzymatic Pol-IN Directs proviral integration into host 
chromosome 

Enzymatic Pol-RT Converts genomic viral RNA to proviral DNA 

Enzymatic Pol-PR Cleaves Gag-Pol pr55 into 7 gene products 

Regulatory Tat  Promoting and enhancing viral transcription  

Regulatory Rev  Nuclear export of unspliced and singly spliced 
vRNAs  

Accessory Nef  Downregulation of CD4 and MHC I, increases 
infectivity  

Accessory Vpu  Downregulation of CD4 and enhances virus 
release 

Accessory Vpr  Nuclear localization of PIC, cell cycle arrest 
(G2)  

Accessory Vif  Required for replication in vivo, enhances 
infectivity  
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I.D.2. Influenza Virus 
 

I.D.2.a. Influenza Virus – General Aspects 
 

Influenza viruses are the causative agents of an acute febrile respiratory disease called 

influenza (commonly known as “flu”). Influenza is one of the most prevalent and 

significant viral infections worldwide. There are even descriptions of influenza epidemics 

(local dissemination of influenza) that occurred in ancient times. Probably the most 

famous influenza pandemic (wordwide dissemination of influenza) is the one that swept 

the world in 1918 and 1919 (Spanish flu), killing around 20 million people. Several other 

pandemics have occurred since then in 1947, 1957, 1968 and the last one in 1977.  New 

virus strains have been detected since the last pandemic, including a limited outbreak in 

Honk Kong in 1997 (chicken flu). 

 

Influenza is caused by Influenza virus, which is a member of the Orthomixoviridae 

family. There are three types of Influenza viruses; however, only influenza A and B can 

cause significant human disease. Orthomixoviruses possess segmented, negative stranded 

RNA genomes (vRNA) and are enveloped, usually spherical and bud from the plasma 

membrane (more specifically, the apical plasma membrane of polarized epithelial cells). 

Complete virus particles, therefore, are not found inside infected cells. Virus particles 

consist of three major subviral components, namely the viral envelope, matrix protein 

(M1), and core (viral ribonucleocapsid [vRNP]) (Figure 6). The viral envelope 

surrounding the vRNP consists of a lipid bilayer containing spikes composed of viral 
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glycoproteins (HA, NA, and M2) on the outer side and M1 on the inner side. Viral lipids, 

derived from the host plasma membrane, are selectively enriched in cholesterol and 

glycosphingolipids (239). M1 forms the bridge between the viral envelope and the core. 

The viral core consists of helical vRNP containing vRNA (minus strand) and NP along 

with minor amounts of NEP and polymerase complex (PA, PB1, and PB2). For viral 

morphogenesis to occur, all three viral components, namely the viral envelope 

(containing lipids and transmembrane proteins), M1, and the vRNP must be brought to 

the assembly site, i.e. the apical plasma membrane in polarized epithelial cells. Finally, 

buds must be formed at the assembly site and virus particles released with the closure of 

buds (240) (Figure 6). 

 

The segmented genome of these viruses facilitates the development of new strains 

through the mutation and reassortment of the gene segments among different human and 

animal strains of virus. This genetic instability is responsible for the annual epidemics 

and periodic pandemics in influenza infection worldwide (241).  

 

I.D.2.b.  Influenza Types, Subtypes and Strains 
 

There are three types of influenza viruses: A, B, and C. The members of each type are 

serologically cross-reactive with each other but not with members of the other types. This 

serological cross-reactivity is primarily attributable to antibodies to the major internal 

structural proteins, the matrix (M1) and nucleocapsid (NP). These antibodies are detected 

by complement fixation or ELISA assays and are useful for diagnosis, but do not confer 
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protection against infection. Only influenza A viruses are further classified by subtype on 

the basis of the two main surface glycoproteins hemagglutinin (HA) and neuraminidase 

(NA) (e.g. H1N1). Influenza A subtypes and B viruses are further classified by 

strains(242). 

 

I.D.2.b.1. Influenza Type A and Its Subtypes 
 

Influenza type A viruses can infect people, birds, pigs, horses, and other animals, but 

wild birds are the natural hosts for these viruses. Influenza type A viruses are divided into 

subtypes and named on the basis of two proteins on the surface of the virus: 

hemagglutinin (HA) and neuraminidase (NA). For example, an “H7N2 virus” designates 

an influenza A subtype that has an HA 7 protein and an NA 2 protein. There are 16 

known HA subtypes and 9 known NA subtypes. Many different combinations of HA and 

NA proteins are possible. Only some influenza A subtypes (i.e., H1N1 and H3N2) are 

currently in general circulation among people. Other subtypes are found most commonly 

in other animal species. For example, H7N7 and H3N8 viruses cause illness in horses, 

and H3N8 also has recently been shown to cause illness in dogs.  

 

Only influenza A viruses infect birds, and all known subtypes of influenza A viruses can 

infect birds. However, there are substantial genetic differences between the influenza A 

subtypes that typically infect birds and those that infect both people and birds. Three 

prominent subtypes of the avian influenza A viruses that are known to infect both birds 

and people are:  
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Influenza A H5 

 

Nine potential subtypes of H5 are known. H5 infections, such as the high pathogenic 

avian influenza (HPAI) H5N1 viruses currently circulating in Asia and Europe, have 

been documented among humans and sometimes cause severe illness or death.  

 

Influenza A H7 

 

Nine potential subtypes of H7 are known. H7 infection in humans is rare but can occur 

among persons who have direct contact with infected birds. Symptoms may include 

conjunctivitis and/or upper respiratory symptoms. H7 viruses have been associated with 

both LPAI (e.g., H7N2, H7N7) and HPAI (e.g., H7N3, H7N7), and have caused mild to 

severe and fatal illness in humans.  

 

Influenza A H9 

 

Nine potential subtypes of H9 are known; influenza A H9 has rarely been reported to 

infect humans. However, this subtype has been documented only in a low pathogenic 

form.  
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Influenza A Strains 

 

Different strains of influenza A virus are classified by the next 4 characteristics: 1) Type 

(A, B and C), 2) place of original isolation, 3) date of original isolation, and 4) antigen 

HA and NA. For example, a strain of virus can be designated as A/Bangkok/1/79 

(H3N2), meaning that was first isolated in Bangkok in January 1979 and contains HA 

(H3) and NA (N2) antigens. New strains of influenza viruses appear and replace older 

strains. This process occurs through antigenic drift. When a new strain of human 

influenza virus emerges, antibody protection that may have developed after infection or 

vaccination with an older strain may not provide protection against the new strain. 

Therefore, the influenza vaccine is updated on a yearly basis to keep up with the changes 

in influenza viruses(242). 

 

I.D.2.b.2. Influenza Type B 
 

Influenza B viruses are usually found only in humans. Unlike influenza A viruses, these 

viruses are not classified according to subtype. Influenza B viruses can cause morbidity 

and mortality among humans, but in general are associated with less severe epidemics 

than influenza A viruses. Although influenza type B viruses can cause human epidemics, 

they have not caused pandemics.  

 

I.D.2.b.3. Influenza Type C 
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Influenza type C viruses cause mild illness in humans and do not cause epidemics or 

pandemics. These viruses are not classified according to subtype.  

 

I.D.2.c. Human Influenza Viruses and Avian Influenza A Viruses 
 

Humans can be infected with influenza types A, B, and C viruses. Subtypes of influenza 

A that are currently circulating among people worldwide include H1N1 and H3N2 

viruses.  

 

Wild birds are the natural host for all known subtypes of influenza A viruses. Typically, 

wild birds do not become sick when they are infected with avian influenza A viruses. 

However, domestic poultry, such as turkeys and chickens, can become very sick and die 

from avian influenza, and some avian influenza A viruses also can cause serious disease 

and death in wild birds.  

 

I.D.2.c.1. Low Pathogenic versus Highly Pathogenic Avian Influenza A Viruses 
 

Avian influenza A virus strains are further classified as low pathogenic (LPAI) or highly 

pathogenic (HPAI) on the basis of specific molecular genetic and pathogenesis criteria 

that require specific testing. Most avian influenza A viruses are LPAI viruses that are 

usually associated with mild disease in poultry. In contrast, HPAI viruses can cause 

severe illness and high mortality in poultry. More recently, some HPAI viruses (e.g., 

H5N1) have been found to cause no illness in some poultry, such as ducks. LPAI viruses 
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have the potential to evolve into HPAI viruses and this has been documented in some 

poultry outbreaks. Avian influenza A viruses of the subtypes H5 and H7, including 

H5N1, H7N7, and H7N3 viruses, have been associated with HPAI, and human infection 

with these viruses have ranged from mild (H7N3, H7N7) to severe and fatal disease 

(H7N7, H5N1). Human illness due to infection with LPAI viruses has been documented, 

including very mild symptoms (e.g., conjunctivitis) to influenza-like illness. Examples of 

LPAI viruses that have infected humans include H7N7, H9N2, and H7N2. 

 

In general, direct human infection with avian influenza viruses occurs very infrequently, 

and has been associated with direct contact (e.g., touching) infected sick or dead infected 

birds (domestic poultry). 

 

I.D.2.d. Antigenic Drift and Shift 
 

New strains of influenza A are generated through mutation and reassortment. The genetic 

diversity of influenza A is fostered by its segmented genomic structure and ability to 

infect and replicate in humans and many animal species (zoonose), including birds and 

pigs. Hybrid viruses are created by co-infection of a cell with different strains of 

influenza A virus, allowing the genomic segments to randomly associate into new 

virions. An exchange of the HA glycoproteins may generate new virus that can infect an 

immunologically naïve population. For example, an H1N1 bird virus and an H3N2 

human virus infected pigs, reassortants were isolated from the pig, and the resulting virus 

was able to infect humans. This type of reassortment is proposed to be the source of 
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pathogenic human strains.  Minor antigenic changes resulting from mutation of the HA 

and NA genes are called “antigenic drift”. This process occurs every 2-3 years, and is 

responsible for local outbreaks (epidemics) of influenza A infection. Antigenic drift 

apperars to involve the selection under antibody pressure of antigenic mutants with the 

ability to reinfect at least a proportion of the population. The precise mechanism of this 

selective process, however, remains unknown (243). Major antigenic changes, known as 

“antigenic shift”, result from the reassortment of genomes among different strains, 

including animal strains. Antigenic shift is associated with the occurrence of major 

pandemics (wordwide dissemination of influenza). The mechanism of antigenic shift 

involves simultaneous infection of an individual with two different influenza viruses (e.g. 

H2N2 and H3N1). Reassortment of the RNA segments of these different viruses results 

in the production of a completely new virus (e.g. H3N2) (243). Antigenic drift occurs 

both in influenza A and B viruses, while antigenic shift occurs only in influenza A virus. 

Antigenic shifts occur infrequently, taking place on average every 10-15 years. In 1947, 

the prevalent influenza A virus was the H1N1 subtype. By 1957, there was a shift in both 

antigens, which resulted in the H2N2 subtype. The H3N2 subtype appeared in 1968 and 

the in 1977 the H1N1 reappeared (241, 242).  

 

I.D.2.e. Epidemiology 
 

Influenza causes both endemic and epidemic disease. In both the Northern and Southern 

hemispheres, disease is largely seen during the winter months. In the Northern 

hemisphere, the season runs from November to March; in the Southern hemisphere the 
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season runs from April to October. In equatorial regions, the incidence is relatively even. 

The mechanisms for seasonal variation are unknown. Each year, influenza occurs in 

distinct outbreaks of varying severity. Some years, disease can be relatively insignificant, 

but then have major consequences in other years. This epidemiologic pattern reflects the 

antigenic changes undergone by the envelope glycoproteins, hemagglutinin and 

neuraminidase, and the subsequent susceptibility of the population (Section I.D.2.d.). 

Factors that determine the extent and severity of outbreaks are not fully understood, but 

are determined in part by the prevalence of antibodies to the circulating virus, and the 

intrinsic virulence of the virus (e.g., efficiency of transmission, ability to cause 

symptomatic infection etc.). 

 

An outbreak of influenza A virus typically begins abruptly, peaks over a 2-3 week period, 

and last for 2-3 months. In most outbreaks, an increase in febrile respiratory illness in 

children, followed by an increase in influenza-like illnesses in adults is the earliest 

indicatory of influenza activity. During most outbreaks, the attack rate is between 10-

20% of the susceptible population, but can exceed 50% during pandemics. Outbreaks 

caused by influenza B virus are generally less extensive and associated with less severe 

disease, but influenza B can still be lethal. 

 

Due to high attack rates, influenza has great social impact. It is the major cause of work 

and school absenteeism. During an interpandemic year, 75 million work days and greater 

than 50 million school days are lost. During an interpandemic year, there are more than 

110,000 excess hospitalizations. During a pandemic, that number can rise to 200,000 to 
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greater than 300,000. Mortality associated with influenza and associated pneumonia 

occurs largely in adults, especially those with underlying disease that puts them at high 

risk for complications. However, during pandemics, approximately 50% of the deaths 

have occurred in those less than 65 years old. 

 

 

I.D.2.f. Influenza Virus Genome and Its Proteins 
 

Influenza, which possesses segmented, negative stranded RNA genomes (vRNA), is an 

enveloped virus that buds from apical plasma membrane of polarized cells. Virus 

particles (usually spherical ~100 nm in diameter) consist of three major subviral 

components, namely the viral envelope, matrix protein (M1), and core (viral 

ribonucleocapsid [vRNP]) (Figure 6). The viral envelope surrounding the vRNP consists 

of a lipid bilayer containing spikes composed of viral glycoproteins (HA, NA, and M2) 

on the outer side and M1 on the inner side. Viral lipids, derived from the host plasma 

membrane, are selectively enriched in cholesterol and glycosphingolipids (239). M1 

forms the bridge between the viral envelope and the core. The viral core consists of 

helical vRNP containing vRNA (minus strand) and NP along with minor amounts of NEP 

and polymerase complex (PA, PB1, and PB2). The products of the influenza gene 

segments are summarized in Table 3. 

 

The genomic segments of the influenza A virus range from 890 to 2340 bases. All the 

proteins are encoded on separate segments, with the exception of the nonstructural 
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proteins (NS1 and NS2 [now known as nuclear export protein –NEP-]) and the M1 and 

M2 proteins, which are transcribed from one segment each (Table 3). The most relevant 

gene products are briefly described. 

 

 

 

I.D.2.f.1.  Hemagglutinin (HA) 
 

Hemagglutinin (HA), a type I transmembrane, is the major envelope protein (~ 80%). HA 

forms a spike-shaped homotrimer (Figure 6) (244). Each unit is activated by a protease 

and cleaved into two subunits that are held together by a disulfide bond. Influenza HA 

has several functions: 1) HA is the viral attachment protein (binding to sialic acid [N-

acetyl-neuraminic acid] on epithelial cell surface receptors); 2) promotes fusion of the 

envelope to the cell membrane; 3) hemmaglutinates (binds and aggregates) human, 

chicken and guinea pig red blood cells; and 4) elicits the protective neutralizing responses 

(245). 

 

The actual sialic acid binding site is a very small part of the large HA trimer protein.  

This allows HA to change antigenically under selective pressure from the immune system 

while preserving a functional binding site. Mutation derived changes in HA are 

responsible for the minor (drift) and major (shift) changes in antigenicity. Shifts occur 

only in influenza A virus and are designated H1, H2 and so on (246). 

 

 72



In order to be infectious, the HA polypeptide must be cleaved by a host cell serine 

protease. If the cleavage is not performed, HA can still attach to a host cell, but the virus 

cannot enter it. Antibodies against HA are the most important for anti-flu immunity, since 

they are able to prevent infection. However, antibodies to neuraminidase have also been 

shown to confer protection (247).  

 

HA is one of the major influenza viral antigens. An efficient immune response to this 

protein confers protection against infection (247). HA is part of the current anti-flu 

vaccines used in humans and has been used as a model antigen for the development of 

new vaccines technologies (84, 127, 248, 249). One of the advantages of using HA in 

vaccine studies is the availability of well characterized small animal models that can be 

infected by adapted influenza virus strains. These adapted influenza virus strains cause 

morbidity (illness) and/or mortality of the animals. Hence, the immune response induced 

by an experimental vaccine can be readily evaluated by a lethal virus challenge. For these 

reasons, HA from influenza virus is an antigen than can also be used in the study of 

adjuvants. 

 

I.D.2.f.2. Neuraminidase (NA) 
 

Neuraminidase (NA), a type II transmembrane glycoprotein, is present as a homotetramer 

on the viral envelope (Figure 6). NA has enzyme activity. NA cleaves the sialic acid on 

glycoproteins, including the cell receptor. Cleavage of sialic acid on glycoproteins 

prevents clumping and facilitates the release of virus from infected cells. NA also 
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hydrolyzes mucoproteins in nasal secretions, which may help to spread the virus. 

Antibodies against NA help to prevent cell to cell spread, thus decreasing the severity of 

the illness.  NA is the target of two antiviral drugs: zanamivir and oseltamivir (250, 251). 

NA of influenza virus also undergoes antigenic changes and major differences acquire 

designations N1, N2 and so on. 

 

I.D.2.f.3. . Matrix (M1) and Membrane (M2) proteins  
 

Matrix (M1), membrane (M2) and nucleoprotein (NP) proteins are type-specific and are 

therefore used to differentiate among influenza A, B and C viruses.  

 

M1 and M2 proteins encoded in the same gene segment and are products of alternative 

spliced mRNA.  M1 proteins line the inside of the virion, promote assembly and have a 

role in the budding process. M2, a type III transmembrane protein, is a minor protein 

component of the viral envelope (only 16-20 molecules/virion) (Figure 6). M2 is a 

homotetramer, functions as an ion channel (252, 253), and is crucial during uncoating for 

dissociating the vRNP from M1 in the early phase of the infectious cycle. M2 protein of 

influenza A virus is the target for influenza drugs amantadine and rimantadine (250, 251). 

 

I.D.2.f.4. . Nucleoprotein (NP) 
 

Influenza A virus RNA segment 5 encodes for the nucleoprotein NP (a polypeptide of 

498 amino acids in length), which is rich in arginine, glycine and serine residues. 

 74



Suggestions that NP contains kinase activity have not been confirmed and it is not certain 

that the protein possesses an enzymatic function. NP binds ssRNA and is able to self-

associate to form large oligomeric complexes. It also binds the PB1 and PB2 subunits of 

the polymerase complex and the matrix protein M1. NP has also been shown to interact 

with at least four cellular polypeptide families: nuclear import receptors of the importin 

class, filamentous (F) actin, the nuclear export receptor CRM1 and a DEAD-box helicase 

BAT1/UAP56. (254). 

 

NP is part of the viral core, which consist of 1) helical ribonucleocapsids containing 

vRNA, 2) minor amounts of the nuclear export protein (NEP), and 3) three polymerase 

proteins (PB1, PB2 and PA) which form the viral RNA polymerase complex (3P 

complex) (254).  

 

I.D.2.g.  Replication Cycle of Influenza Virus 
  

Influenza replication cycle begins with the binding of HA to sialic acid structures on cell 

surface glycoproteins. The virus is then internalized into a coated vesicle and transferred 

to an endosome. Acidification of the endosome causes HA to bend over and expose 

hydrophobic fusion–promoting regions of the protein. The viral envelope then fuses with 

the endosome membrane (245). Cleavage of HA is an absolute requirement for infectivity 

and the nature of the HA cleavage site is an important virulence determinant for influenza 

viruses. Cleavage efficiency of HA varies depending on the presence of single or multiple 

basic residues at the cleavage site of HA1 and HA2 and the plasminogen binding ability 
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of NA. Viruses containing HA with a single positive charge at the cleavage site can be 

cleaved by specific enzymes such as tryptase Clara present in the lungs, whereas HA 

containing multiple basic residues at the cleavage site are cleaved ubiquitously by 

proteases (255). In the acid pH of the endosome, the cleaved HA undergoes 

conformational changes releasing the NH2 terminal fusion peptide of HA2 and causing 

fusion of viral and endosomal membranes (256). Virus particles containing uncleaved 

HA can bind and be endocytosed but cannot undergo fusion and are therefore non-

infectious. The M2 protein promotes acidification of the envelope contents to break the 

interaction between M1 protein and the vRNP to allow uncoating and delivery of the 

nucleocapsid into the cytoplasm. The nucleocapsid travels to the nucleous where it is 

transcribed into messenger RNA (mRNA) (257). 

 

The influenza transcriptase (PA, PB1, PB2) (polymerase complex) (Table 3) uses host 

cell mRNA as a primer for viral mRNA synthesis. Therefore, it steals the methylated cap 

region of the RNA, which is the sequence required for efficient binding to ribosomes. All 

the genomic segments are then transcribed into 5’ capped, 3’ polyadenilated (poly A) 

mRNA for individual proteins, except the segment for the M and NS proteins. These 

segments are differentially spliced, using cellular enzymes, to produce two different 

mRNAs. The mRNAs are translated into proteins in the cytoplasm. The HA and NA 

glycoproteins are processed by the endoplasmic reticulum and Golgi apparatus. The M2 

protein inserts into cellular membranes. Its proton channel prevents acidification of Golgi 

and other vesicles, thus preventing acid-induced folding and inactivation of the HA 

within the cell. HA and NA are then transported to the cell surface (240). 
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Positive-sense RNA templates for each segment are produced and the negative-sense 

RNA genome is replicated in the nucleus. The genomic segments are then transported to 

the cytoplasm and associated with polymerase and NP proteins to form nucleocapsids, 

which interact with the M1 protein lining plasma membrane sections containing M2, HA 

and NA. The genomic segments are enveloped in a random manner, with 11 segments per 

virion. This process produces a small number of virions with a complete genome and 

numerous defective particles. The particles are antigenic and can cause interference, 

which may limit the progression of the infection. The virus buds selectively from the 

apical surface of the cell as a result of the preferential insertion of the HA in this 

membrane. Virus is released about 8 hours after infection (240). 

 

I.D.2.h. Pathology of the Disease and Clinical Course 
 

Influenza is an acute febrile illness that is usually self-limited. However, significant 

mortality results from complications following an influenza infection. The virus is 

transmitted by airborne droplets and enters the nasopharynx. Influenza virus infects 

ciliated epithelial cells of the respiratory tract. Nasal and bronchial biopsies of patients 

with acute uncomplicated influenza show desquamation of the ciliated columnar 

epithelial cells of the bronchi. At the beginning of the second week of infection, patients 

begin to develop neutralizing antibodies against HA and NA. Protection from new 

infections is mediated by antibodies to HA and NA. However, cell mediated immunity is 

important for clearance of infection and recovery (258).  
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Depending on the degree of immunity to the infecting strain of virus and other factors, 

infection may range from asymptomatic to severe. Patients with underlying 

cardiorespiratory disease, people with immune deficiency (even that associated with 

pregnancy), and smokers are susceptible for a severe case of the flu. Risk of serious 

complications include: 1) people over the age of 65 years (people over the age of 50 years 

require a flu shot); 2) people of any age with chronic medical conditions, such as chronic 

obstructive pulmonary disease (COPD), diabetes and cardiopulmonary disease; 3) very 

young children, and 4) pregnant women. These individuals should receive a yearly 

vaccination, as should all healthcare providers (258-261). 

 

After an incubation period of 1 to 4 days, the “flu syndrome” begins with a brief 

prodrome of malaise and headache lasting a few hours. The prodrome is followed by the 

additional abrupt onset of fever, severe myalgia and usually a non-productive cough. The 

illness persist for approximately 3 days and unless a complication occurs, recovery is 

complete within 7-10 days. Complications of influenza include bacterial pneumonia, 

myositis and Reye’s syndrome (262). Influenza can directly cause pneumonia, but it more 

commonly promotes a secondary bacterial superinfection that leads to bronchitis or 

pneumonia. The tissue damage caused by progressive influenza virus infection of alveoli 

can be extensive, leading to hypoxia and bilateral pneumonia. Secondary bacterial 

infections usually involve Streptococcus pneumoniae, Haemophilus influenzae or 

Staphylococcus aureus (258, 263) 
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I.D.2.i.  Immunology 
 

Influenza immunity is usually measured as serum IgG antibodies to the HA and NA 

antigens of the circulating influenza A and B viruses and high titers typically correlate 

with a lower attack rate for infection and less severe influenza disease (247). While 

convenient, this approach does not evaluate other immune mechanisms, such as mucosal 

antibodies and cell-mediated immunity. The higher susceptibility of the host to serious 

influenza at the extremes of age is likely to reflect diminished capacities of the innate and 

adaptive immune system in the very young and the elderly (258). Young children are 

often immunologically naïve hosts and may also have intrinsic limitations in immune cell 

function. On the other hand, immunosenescence in the elderly is characterized by poor 

responses to infection or vaccination, despite repeated priming of memory immunity. 

While HA antibodies in serum provide a correlate of protection (247, 248, 264, 265), 

influenza protection is likely to depend on a repertoire of effector mechanisms provided 

by innate responses, as well as effector and memory B- and T-cells. Such responses at 

both mucosal and systemic sites are presumed to be necessary for natural and vaccine-

induced protection, but the immune mechanisms and relative importance of each 

component in the exposed or infected host is not known. Memory CD4+ and CD8+ T-

cells that recognize influenza virus particles and antigens are detectable by cytokine flow 

cytometry methods (266). In addition to HA, cytotoxic T cells can recognize the 

nucleoprotein (NP), matrix protein (M1), nonstructural protein 1 (NS1), and polymerases 

(PB1 and PB2). Although these T cell responses are detected, their role in the control of 

acute influenza infection or in protecting the human host against re-infection is not well 

defined. Little is known about influenza-specific B cells at the single cell level or the 
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homing of effector T or B cells to the respiratory tract and the contribution of NK cells is 

poorly understood. Recent experiments demonstrated IFN-γ production by peripheral 

blood NK cell subsets, as well as by influenza A-specific memory CD8 T cells after 

exposure to influenza A virus; IL-2 production by T cells was required for the IFN-γ 

response of NK cells, indicating that memory T cells enhance innate NK-mediated 

antiviral immunity (267). 

 

I.D.2.j.  Antiviral Agents Used in the Treatment of Influenza 
 

There are several antiviral drugs that can be used to treat influenza. Briefly, amantadine 

and rimantadine are approved for the treatment and prophylaxis of influenza type A 

(268). These drugs target M2, which limits the formation of the proton channel and thus 

inhibiting infection of the cell. Zanamivir and oseltamivir are neuraminidase inhibitors 

that are active against both influenza type A and type B viruses (250).  Zanamivir is 

approved for treatment of influenza in patients over 7 years old.  Oseltamivir is approved 

for both treatment (18 years and older) and prophylaxis (13 years and older) of influenza. 

 

I.D.2.k. Influenza Vaccines 
 

Inactivated influenza vaccines have been used for 50 years and provide substantial, 

although not complete protection in pediatric and adult populations; levels of protection 

appear to be lower in the elderly. The standard influenza vaccine is a trivalent inactivated 

(TIV) preparation, given by intramuscular injection, which has generally been very 
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effective except in the elderly and during annual epidemics when components of TIV do 

not match the circulating influenza strain. Experience with TIV efficacy in young 

children is also more limited than in adults. The major immunogenic components of 

standard TIV vaccines consist of HA and NA proteins from circulating flu strains that are 

partially purified from detergent extracted, inactivated virions and administered by 

intramuscular injection (11)  

 

A new live attenuated influenza (LAIV) vaccine that is administered intranasally was 

licensed in 2002 (7) with the intent of providing an alternative approach to influenza 

vaccination. LAIV is made using cold-adapted A/Ann Arbor/6/60 and B/Ann Arbor/1/66 

strains as the genetic ‘backbone’ into which HA and NA genes from circulating strains 

are inserted by gene reassortment; the genetic stability of the attenuation phenotype of the 

vaccine viruses results from changes in several of the ‘backbone’ genes that reduce 

virulence (269, 270). LAIV is given as a large particle intranasal spray. Although LAIV 

was licensed recently, vaccines derived from this ‘backbone’ have been evaluated for 

more than 25 years (R.B. Belshe, Current status of live attenuated influenza virus vaccine 

in the US, Virus Res. 103 (2004) (1–2), pp. 177–185.). Several clinical studies carried out 

over the past 10 years have documented LAIV safety and capacity to induce protective 

immunity in children and healthy adults. In addition, several studies have provided data 

to suggest that LAIV induces considerable heterosubtypic immunity in recipients. Studies 

are in progress to compare the efficacy and safety of LAIV and TIV in young children 

less than 5 years of age and the relative capacity of the two vaccine preparations to 
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protect when one or more of the vaccine components is mismatched with circulating 

influenza strains.  

 

HA antibodies provide a good correlate of protection after TIV immunization, but this 

correlation is not as definitive after LAIV immunization, suggesting differences in the 

mechanisms of protective immunity. Both vaccines induce neutralizing antibodies, but 

the extent to which TIV and LAIV induce T cell and mucosal immunity and whether the 

profiles of cell-mediated and mucosal responses depend upon the vaccine characteristics, 

the age of the vaccine recipient, or both is not known. Protection following TIV 

correlates with circulating antibody levels to HA 3–4 weeks after immunization while 

immunity following natural infection or LAIV seems to correlate better with mucosal IgA 

and anti-HA antibodies. However, cellular immune correlates have not been thoroughly 

examined. Some subjects given LAIV appear to have protection without detectable serum 

or even nasal antibody responses (271). Whether protection is mediated by T cells or by 

B cell responses that are not measured by current serologic assays is not known. 

Recipients of LAIV also have evidence of protection even when the circulating virus 

differs from vaccine strain (8, 271, 272). 
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Figure 6. Influenza Virus and Gene Segments 

 
 
Influenza virions have segmented, negative stranded RNA genomes (vRNA). Virus 
particles consist of three major subviral components, namely the viral envelope, matrix 
protein (M1), and core (viral ribonucleocapsid [RNP]). The viral envelope is derived 
from the host cell and consists of a lipid bilayer containing spikes composed of viral 
glycoproteins: hemagglutinin (HA), neuraminidase (NA) and M2. M1 is a structural 
protein that forms the matrix. M1 forms the bridge between the viral envelope and the 
core. The viral core consists of helical RNP containing vRNA (minus strand) and 
nucleoprotein (NP) along with minor amounts of the nuclear export protein (NEP) and 
the polymerase complex (PA, PB1, and PB2). 
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Table 3. Products of Influenza Gene Segments 
 
 

Segment† Protein Function 

1 PB2 Polymerase component 

2 PB1 Polymerase component 

3 PA Polymerase component 

4 HA 

Hemagglutinin  
Viral attachment protein: binds to Sialic Acid 
Fusion protein 
Target of neutralizing antibodies 

5 NP Nucleocapsid 

6 NA Neuraminidase 
Cleaves Sialic acid and promotes viral release 

M1 

Matrix Protein 
Viral structural protein 
Interacts with nucleocapsid and envelope 
Promotes assembly 7* 

M2 
Membrane protein  
Forms membrane ionic channel 
Facilitates uncoating and HA production 

NS1 Non-structural protein 
Inhibits cellular messenger RNA translation 

8* 
NEP (NS2) 

Nuclear export protein (formerly known as non-
structural protein 2) 
Help in the export of the vRNPs from the nucleous 

 
† Listed in decreasing order size 
* Encodes two messenger RNAs 
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I.D.3. Streptavidin 
 

Streptavidin is a tetrameric protein from Streptomyces avidinii that binds very tightly to 

the vitamin biotin. The binding constant for this interaction is very high and has made the 

streptavidin/biotin system the focus of a number of studies aimed at determining what 

particular intermolecular interactions give rise to the tight binding (273, 274). On the 

other hand, streptavidin has been used as an antigen in some vaccine studies (275). This 

molecule is a relatively poor immunogen, which makes it perfect for the study of 

adjuvants. 
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II. Chapter 2:  Materials and Methods 
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II.A. DNA Plasmids 

 

The plasmids used are outlined in Table 1. Digestion (Section II.A.1), ligation (Section 

II.A.2) bacterial transformation and amplification (Section II.A.3), extraction and 

purification from agarose gels (Section II.A.4), and PCR (Section II.A.5) were all 

performed as described. The plasmids were stored at 4°C (short term) or –20°C (long 

term).  

 

II.A.1.  DNA Digestion with Restriction Enzymes. 
 

Plasmid DNA was digested in a 1.5 ml centrifuge tube in the following reaction: 500 ng 

(vector plasmids) or 1 µg (insert plasmid) of plasmid DNA, 2 µl of enzyme buffer (final 

concentration, 1X) and 1 µl of each restriction enzyme in a final volume of 20 µl. The 

samples were placed in a water bath at 37°C for 1-4 h (1 h for diagnostics and 2-4 h for 

molecular cloning). The digested DNA was analyzed by agarose gel electrophoresis. 

Digested DNA was mixed with 1X blue sucrose loading dye (Invitrogen Life 

Technologies, Carlsbad, CA, USA) and loaded onto a 1% agarose gel (1% agarose in 

TAE buffer (40mM Tris acetate, 2mM Na2 EDTA (pH 8.0) in distilled water) along with 

a 1kb ladder (Invitrogen Life Technologies, Carlsbad, CA, USA). The samples were 

electrophoresed (~80V) for 45-60 min. Digested DNA was analyzed for fragment size 

using a Transiluminator ultraviolet light (Fisher Scientific, Pittsburgh, PA, USA) and a 

Photo-Documentation Camera (Fisher Scientific, Pittsburgh, PA, USA). 
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Table 4. DNA Plasmids 
 
 

Plasmids † Description 

pEnvgp120(IIIB) Wild type HIV-1 envelope gp120, isolate IIIB 

pEnvgp120 (IIIB)-C3d3
Wild type HIV-1 envelope gp120, isolate IIIB, fused to 
three tandem copies of murine C3d 

pcoEnvgp120(YU2) Codon optimized HIV-1 envelope gp120, isolate YU2 

pco-6(X)His-Envgp120(YU2)
Codon optimized HIV-1 envelope gp120, isolate YU2, with 
a 6(X)-Histidine Tag at the 5’ end 

pcoEnvgp120(YU2) -C3d3
Codon optimized HIV-1 envelope gp120, isolate YU2, 
fused to three tandem copies of murine C3d 

psHA Soluble wild type influenza virus hemagglutinin, isolate 
A/PR/8/34 (H1N1) 

psHA-6(X)-His Soluble wild type influenza virus hemagglutinin, isolate 
A/PR/8/34 (H1N1), with a 6(X)-Histidine Tag at the 3’ end  

psHA-10(X)-His-C3d3

Soluble wild type influenza virus hemagglutinin, isolate 
A/PR/8/34 (H1N1), with a 10(X)-Histidine Tag at the 3’ 
end, fused to three tandem copies of murine C3d  

 
 
† TR600 is the base vector in all these plasmids 
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Table 5. Polymerase Chain Reaction Cycling Parameters.  
 
 
 
 

1. Start 1 cycle Hot Start 95 ºC 1 min 

Melting 95 ºC 1 min 

Annealing 55 ºC 1 min 2. Extension 30 cycles 

Polymerizing 72 ºC 1 min per 1kb 

3. End 1 cycle  72 ºC 15 min 

 
 
Each PRC reaction contained 200 ng of plasmid DNA, 5 µl of 10X reaction buffer 
(100mM Tris-HCl, pH 8.3 (at 42°C) 500mM KCl, 25mM MgCl2, 0.01% gelatin), 50mM 
of dNTP (12.5mM dATP, 12.5mM dCTP, 12.5mM dGTP, 12.5 mM dTTP, neutralized at 
pH 8.0 in water), 1 µg of each oligonucleotide primer, 1 U of Taq DNA polymerase (1 
U/µl) (Stratagene Cloning System, La Jolla, CA, USA) and distilled water added to final 
volume of 50µl. 
 
 

 

 

 

 

 

 

 89



 

 

II.A.2.  Ligation of DNA Fragments.  
 

Plasmid DNA was digested and purified as described in Sections II.A.1 and II.A.4. DNA 

fragments were ligated using the following reaction: vector and insert fragments (vector 

to insert ratios: 1:1, 1:3 and 1:6) were added to 1 µl of 10X T4 DNA ligation buffer, 1 µl 

(1 U/µl) of T4 DNA ligase (Invitrogen Life Technologies, Carlsbad, CA, USA) in a total 

volume of 10 µl of distilled water. The samples were incubated at 16° C for 4 h and 

followed by transformation into E. coli XL-gold cells (see Section II.A.3).  

 

II.A.3.  DNA Amplification and Purification from Bacteria  
 

II.A.3.a. . Competent cells  
 

Bacterial transformation was used to introduce plasmid DNA into competent bacterial 

cells. The bacterial cells used for transformation, chemically competent XL10-Gold cells, 

were derived from XL10-Gold ultracompetent cells (Invitrogen Life Technologies, 

Carlsbad, CA, USA). XL10-Gold ultracompetent cells (50 µl) were gently thawed on ice 

for approximately 10 min. The cells were added to 200 ml of sterile Luria Broth (LB) 

(EZmix: enzymatic casein digest 10 g/L, yeast extract 5 g/L, NaCl 5 g/L, and inert binder 

0.6 g/L) (Sigma, St. Louis, MO, USA) and incubated for 16 h at 37°C (shaking at 225 

rpm). 2.5% of the overnight culture was added to 200 ml of fresh LB and incubated at 

37°C with shaking until the O.D. reading at 550 nm was 0.3 using a BioMate 3 
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spectrophotometer (Thermo Spectronics, Rochester, NY, USA). LB alone was used as 

the blank. The bacterial culture was then placed into four 50 ml conical tubes (U.S.A. 

Scientific, Ocala, FL, USA) and incubated on ice for 15 min. The cells were pelleted by 

centrifugation (3,000 rpm for 5 min) at 4°C using a RC5 centrifuge (Sorvall Instruments, 

Newtown, CT, USA). The supernatants were decanted, and each pellet was resuspended 

in 16 ml of Transformation Buffer #1 (99.3M RbCl, 48.5M MnCl2, 1M KOAc, 10.2M 

CaCl2, 15% glycerol, pH 5.8). The samples were mixed thoroughly, and the cells were 

pelleted by centrifugation (3,000 rpm for 5 min) at 4°C. The supernatants were decanted, 

and each pellet was resuspended in 4 ml of Transformation Buffer #2 (0.5M MOPS (pH, 

6.8), 19.9M RbCl, 150M CaCl2, 30% glycerol) and pooled together. The sample was 

mixed thoroughly and placed into 1.5 ml centrifuge tubes (200µl each). Finally, the cells 

were flash-frozen in an ethanol-dry ice bath for 1 min and stored at -80°C. 

 

II.A.3.b. Bacterial Transformation and DNA Amplification  

 

Plasmid DNA (50-250 ng) was mixed with 20 µl (~1.0 x 106
 cells) of chemically 

competent XL10-Gold cells in a 17x100 mm culture tube (USA Scientific, Woodland, 

CA, USA). The mixture was incubated on ice for 20 min, and then incubated in a 42 º C 

water bath for 45 sec. The mixture was returned to ice for an additional 5 min. 80 µl of 

sterile LB was added to the mixture. The mixture was incubated at 37° C with shaking at 

225 rpm for 1 h. The entire mixture was then transferred onto a pre-warmed (37 ºC), 

antibiotic agar plate (ampicillin or kanamycin) (Sigma, St. Louis, MO, USA) (50 µg/µl). 

Sterile glass beads (10-12 beads per plate) (Fischer Scientific, Middletown, VA, USA) 
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were added onto the plate and used to spread the mixture evenly by shaking the plate 

back and forth several times. The plate was inverted and incubated in at 37°C in a 

bacterial incubator (Precision, Winchester, VA, USA) for 18 h. A bacterial colony was 

picked from the plate and used to inoculate 5 ml of sterile LB containing 0.01µg/µl 

antibiotic (kanamycin or ampicillin). The culture was incubated at 37°C with shaking at 

225 rpm for 8 h. 1 ml of the culture was then added to 200 ml of LB containing 0.01 

µg/µl antibiotic. The culture was then incubated at 37°C with shaking at 225 rpm for 15-

18 h. 

 

II.A.3.c. Plasmid DNA Purification from Bacterial Cultures  

 

Plasmid DNA was purified from bacterial cultures using a Qiagen Plasmid Midi Kit 

(Qiangen Inc., Valencia, CA, USA), following the recommendations of the manufacturer. 

Briefly, bacterial cells were harvested by centrifugation at 6,000 rpm for 20 min at 4°C in 

a 250 ml polyclear centrifuge tube (Nalgene, Rochester, NY, USA) using a RC5C 

centrifuge (Sorvall Instruments, Newtown, CT, USA). The supernatant was removed and 

the bacterial pellet resuspended in 4 ml of Qiagen Buffer P1 (50 mM Tris-Cl, pH 8.0, 10 

mM EDTA, and 100 µl/ml RNase A) (Quiagen Inc, Valencia, CA, USA). The 

resuspended bacteria were transferred to a 50 ml round centrifuge tube (Nalgene, 

Rochested, NY, USA) and 4 ml of Qiagen Buffer P2 (200 mM NaOH and 1% SDS) were 

added to lyse the cells. The solution was mixed by gently inverting the tube 4-6 times and 

incubated at room temperature for 5 min. Lysis was neutralized by adding 6 ml of pre-

chilled Qiagen Buffer P3 (3.0 M potassium acetate, pH 5.5). The solution was gently 
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mixed by inverting the tube 4-6 times and incubated on ice for 20 min. The sample was 

centrifuged at 20,000 rpm for 30 min at 4°C. The supernatant containing plasmid DNA 

was decanted into a new round centrifuge tube. The sample was then centrifuged at 

20,000 rpm for an additional 15 min at 4°C. A Qiagen-tip 100 column was equilibrated 

by applying 4 ml of Qiagen Buffer QBT (750mM NaCl, 50mM MOPS, pH 7.0, 15% 

isopropanol, 0.15% Triton X-100). The column was allowed to drain by gravity flow. 

The supernatant containing the plasmid DNA was then applied to the column and 

allowed to drain by gravity flow. The column was washed two times with 10 ml of 

Qiagen Wash Buffer QC (1.0M NaCl, 50mM MOPS, pH 7.0, 15% isopropanol). The 

plasmid DNA was eluted with 5 ml of Qiagen Buffer QF (1.25 M NaCl, 50mM Tris-Cl, 

pH 8.5, 15% isopropanol) into a new round centrifuge tube. The plasmid DNA was 

precipitated by adding 3.5 ml of room temperature isopropanol to the 5 ml of eluted 

DNA. The sample was immediately mixed and centrifuged at 15,000 rpm for 30 min at 

4°C. The supernatant was carefully discarded, not disturbing the DNA pellet. The 

plasmid DNA pellet was washed with 2 ml of 70% ethanol and centrifuged at 15,000 rpm 

for 10 min at 4°C. The supernatant was carefully discarded and the pellet was air-dried 

for 1 hour at 37°C. The plasmid DNA pellet was resuspended in distilled water. A sample 

of each DNA was diluted 1:200 (5 µl of DNA in 995 µl of distilled water) and the DNA 

concentration was determined using a BioMate 3 spectrophotometer (Thermo 

Spectronics, Rochester, NY, USA). The optical density (wavelength, 260/280 nm) of the 

diluted DNA sample was measured by the spectrophotometer. The optical density of non-

DNA containing distilled water was subtracted from the recorded optical density of the 

diluted DNA to calculate the final optical density. The concentration of DNA was 
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determined by the following: DNA concentration (C, µg/µl) = [A260/ 0.020 (µg/ml)-1] x (1 

ml/1000µl).  

 

II.A.4.  Extraction and Purification of DNA from Standard Agarose Gels  
 

Restriction enzyme-digested DNA was extracted and purified from 1% agarose gels. This 

DNA was used for the construction of the various molecular clones described in Table 1. 

The restriction enzyme-digested DNA was electrophoresed until the DNA bands were 

clearly separated. The DNA band of interest was removed from the agarose gel (1% 

agarose in TAE, 40 mM Tris Acetate, 2 mM Na2EDTA (pH 8.0) in distilled water) 

(Cambrex Bio Science Rockland, Inc., Rockland, ME, USA) by cutting the segment of 

agarose that contained the DNA with a razor blade and placed in a 1.5 ml microcentrifuge 

tube and weighed. DNA fragments were separated from the agarose using a QIAquick gel 

extraction kit (QIAGEN Inc, Valencia, CA, USA) according to the manufacturer’s 

recommended protocol. Briefly, three volumes of Buffer QG (proprietary compound 

mixture, 50-100% guanidinium thiocyanate, pH indicator) were added to one volume of 

agarose gel. For example, 300 µl of Buffer QG was added to 100 mg of gel. The 

microcentrifuge tube was incubated at 50°C for 10 min or until the agarose was 

completely dissolved. The tube was vortexed every three minutes to help dissolve the gel. 

One volume of isopropanol (in example 100 µl) (Sigma, St. Louis, MO, USA) was then 

added to one volume of gel. The dissolved mixture was overlaid into a QIAquick ion-

exchange spin column was placed in a collection tube and centrifuged for 1 min at 10,000 

rpm. The flow-through was discarded, and the QIAquick spin column was placed back in 

the same collection tube. The sample was washed with 750 µl of Buffer PE (proprietary 
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compound mixture, 44.4% ethanol) and centrifuged for 1 min at 10,000 rpm. The flow-

through was discarded and the QIAquick spin column was placed back in the same 

collection tube. The QIAquick spin column was centrifuged for an additional 1 min at 

10,000 rpm and the flow-through was discarded. The QIAquick spin column was placed 

in a new 1.5 µl microcentrifuge tube. The DNA was eluted by adding 40 µl of distilled 

water to the center of the QIAquick membrane and incubated at room temperature for 2 

minutes. The sample was then centrifuged for 2 min at 10,000 rpm, the spin column was 

then discarded, and the eluted DNA was stored at 4°C if used within 24 hours. 

Alternatively, the samples were stored at -20°C for long term use.  

 

II.A.5.  Polymerase Chain Reaction (PCR) and cloning into TOPO 2.1 
 

In vitro polymerase chain reaction was used to amplify gene products. Plasmid DNA (50 

ng) with the sequence of interest was added to a microcentrifuge tube with 2 synthetic 

oligonucleotide primers (1 µg/µl), 25-80 nucleotides in length. Each reaction mixture 

(Table 5) was placed in a Robocycler® Gradient 96 thermal cycler (Stratagene, La Jolla, 

CA, USA). A DNA fragment was amplified using a three step reaction cycle (Table 5). 

The amplified product was cloned into pCR2.1-TOPO plasmid vector using the TOPO 

TA Cloning Kit® (Invitrogen Life Sciences, Carlsbad, CA, USA), following the 

manufacturer’s recommendations. Briefly, each amplified fragment (3 µl) was incubated 

in a 1.5 ml centrifuge tube in the following conditions: 1 µl of salt solution (1.2 M NaCl, 

0.06 M MgCl2), 1 µl of pCR2.1-TOPO vector (10 ng/µl plasmid are in: 50% glycerol, 50 

mM Tris-HCl, pH 7.4 (25°C), 1 mM EDTA, 1 mM DTT, 0.1% Triton-X 100, 100 µg/ml 

BSA, phenol red), and 1 µl of distilled water for 5-20 minutes at 25°C. 2 µl of the 
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ligation reaction was then incubated in 50 µl One Shot® TOP10 Competent Cells (E. coli, 

F- mcrA ∆(mrr-hsdRMS-mcrBC) φ80lacZ∆M15 ∆lacX74 recA1 araD139 ∆(ara-

leu)7697 galU galK rpsL (StrR) endA1 nupG) (Invitrogen Life Sciences, Carlsbad, CA, 

USA) on ice for 20 min. The samples were heat-shocked for 45 sec at 42°C and then 

returned to ice for 3 min. S.O.C. medium (2% Tryptone, 0.5% Yeast Extract, 10 mM 

NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose) (250 µl) was added 

to the competent cell mixture. The mixture was incubated at 37°C for 1 h with shaking 

(200 rpm). The samples were spread using glass beads onto pre-warmed (37°C) antibiotic 

selective agar plates (ampicillin or kanamycin), and incubated for 16-18 h at 37°C.  

 

II.B. DNA Microcarriers 

 

II.B.1.  DNA Gold Bullets Preparation 
  

II.B.1.a. DNA/Gold Mixture Preparation 
 

Plasmid DNA (Table 1) was purified, resuspended in distilled water, and the 

concentration determined by spectrophotometry as described in Section II.A.3. 

Approximately, 60 bullets of 1µg DNA per 0.5 mg of gold were prepared for each 

plasmid. DNA was resuspended at a concentration of 1µg/µl (if the DNA concentration 

was not the required, the samples were either diluted of concentrated using an Eppendorf 

Vacufuge™ concentrator (Eppendorf AG, Hamburgh, Germany)) and 90 µl this DNA 

were used. 45 mg of 1µm gold beads (Bio-Rad, Hercules, CA, USA) were weighted out 

in 1.5 ml microcentrifuge tube. The gold was weighted directly in the centrifuge tube to 
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reduce gold loss.  100 µl of freshly prepared 0.05 M spermidine (Sigma, St. Louis, MO, 

USA) were added to the gold beads and this mixture was sonicated using a Sonic Cleaner 

water bath (Fisher Scientific, Fair Lawn, NJ, USA) for ~5 sec. Subsequently, the plasmid 

DNA (90 µg) was added to the gold/spermidine mixture and the sample was vortexed 

briefly. Following the addition of plasmid DNA, 100 µl of freshly prepared 1M CaCl2 

were added dropwise. After each CaCl2 drop, the sample was carefully vortexed. The 

plasmid DNA was then allowed to precipitate by incubating the gold beads for 5 minutes 

at room temperature. The tube was briefly (~ 20 sec) centrifuged at 12,000 rpm and the 

supernatant discarded.  

 

II.B.1.b. Slurry preparation 
 

500 µl of fresh, never opened before, stored at -20°C, 100% ethanol (Pharmco, 

Brookfield, CT, USA) were added to the gold/plasmid DNA pellet. The microcentrifuge 

tube was then vortexed, centrifuged (~20 sec, 12,000 rpm) and the supernatant discarded.  

This procedure was repeated twice. 5.3 ml of 100% ethanol were added to a 15 ml 

conical tube (USA Scientific, Woodland, CA, USA). The gold/plasmid DNA pellet was 

resuspended in 300 µl of 100% ethanol taken from the 15 ml conical tube. The 

gold/plasmid DNA pellet was then briefly vortexed, sonicated (5-10 sec) and carefully 

transferred, using a 1 ml pipette, to the 15 ml conical tube. This process was repeated as 

many times as necessary to remove all the gold from the microcentrifuge tube. The 

gold/plasmid DNA/ethanol mixture, known as slurry, was stored at -20°C in the 15 ml 
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tube, sealed with Parafilm® (Pechiney Plastic Packing, Menasha, WI, USA), until 

needed. 

 

II.B.1.c. . Tubing Coating 
 

The slurry was used to coat Tefzel tubing (Bio-Rad, Hercules, CA, USA). Initially, the 

Tefzel tubing was slid into the tube turner of a Tubing Prep Station (Bio-Rad, Hercules, 

CA, USA), which was attached to a nitrogen gas tank. One end of the Tefzel tubing was 

in contact with a hose that delivered nitrogen gas, while the other allowed evacuation of 

the gas. The tubing was cut leaving 2 extra inches on the side of nitrogen evacuation. The 

Tefzel tubing was purged with nitrogen gas for 15-20 min (0.4-0.5 liters per min) to 

remove moisture. Meanwhile, the slurry was vortexed and then sonicated for 5-10 sec or 

until gold clumps were no longer present. The Tefzel tubing was removed from the 

Tubing Prep Station and connected to a 10 ml syringe using a silicone adapter tube. 

Using the syringe, the votexed and sonicated slurry was drawn up into the Tefzel tubing 

and then slid back into the tube turner. The slurry was allowed to settle for 5 minutes.  

Following 5 min incubation, the ethanol was carefully drawn off by slowly pulling on the 

attached syringe (~1 inch per sec). The syringe silicone tube adapter was then removed 

and the Tefzel tubing was rotated in the tube turner (20 rpm) for ~45 sec, which allowed 

an even smear of the gold. The tubing was then dried for 5 min using nitrogen gas (0.35-

0.4 liter per min), while still rotating. The tubing was inspected for even coating and then 

sectioned in ~1 cm (~0.4 inches) pieces (DNA bullets) using a tube cutter (Bio-Rad, 

Hercules, CA, USA). The areas of uneven coat were discarded. The DNA bullets were 
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stored at 4°C into tightly closed and Parafilm® sealed 50 ml conical tubes containing 

desiccant capsules (IMPAK, Los Angeles, CA, USA). Approximately 60 bullets of 1 µg 

DNA per 0.5 mg gold were prepared for each 90 µg of initial DNA. 

 

II.C. Cell Culture  

 

II.C.1.  Human Embryonic Kidney (HEK) 293T Cells 
 

 The human (Homo sapiens) embryonic kidney 293 (HEK 293) cell line is adherent. HEK 

293 cells are transformed with adenovirus 5 DNA (39768) and require Biosafety Level 2 

facilities. HEK 293T is a highly transfectable derivative of the 293 cell line (American 

Type Culture Collection, (ATCC), CRL-1573), in which cells the temperature sensitive 

gene for simian virus 40 (SV40) T-antigen was inserted (276, 277). The cells were 

maintained according to the American Type Culture Collection (ATCC) recommended 

growth conditions in complete Dulbecco’s Modified Eagle Medium (DMEM) (cDMEM) 

[DMEM supplemented to contain 10% heat-inactivated fetal bovine serum (FBS) (1 h at 

56° C) (Atlanta Biologicals, Atlanta, GA, USA), 4 mM L-glutamine (Invitrogen Life 

Technologies, Carlsbad, CA, USA), and 0.4 mg/L gentamicin (Gibco, Grand Island, NY, 

USA)] at 37° C in a humidified 5% CO2 incubator. 
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II.C.2.  Transfections  
 

II.C.2.a. . Cell Viability  
 

The efficient expression of each plasmid was determined by transient transfection of 

plasmid DNA into the HEK 293T cell line (described in Section II.C.1.). HEK 293T cells 

were plated at a concentration of approximately 5 X 105 cells per well in 6-well plates (35 

mm2) (Becton Dickinson, Piscataway, NJ, USA). Cell viability was determined by trypan 

blue exclusion cell counting. Cells were detached from 75 cm2 tissue culture flasks 

(Corning Inc, Corning, NY, USA) using 3ml of 1X trypsin (0.05% trypsin, 0.4% 

EDTA•4Na) (Gibco, Grand Island, NY, USA) for 3-5 min at RT. The cells were 

triturated with 7 ml of cDMEM and placed in a 50 ml conical tube. Following careful 

mixing, 10 µl of the cell suspension was incubated for 3 min with 10 µl of 0.4% Trypan 

Blue solution (Gibco, Grand Island, NY, USA) and half of the solution was added to each 

side of a hemacytometer (VWR, Bridgeport, NJ, USA). Within the hemacytometer, the 

cells within the four outer quadrants were counted using a light microscope (100X 

power) (Fryer Company, Inc, Huntley, IL, USA). Only the cells that did not uptake the 

blue dye were counted and the average of the four quadrants was recorded. The number 

of viable cells was determined with the following equation: # viable cells (cells/ml) = 

(average number of cells in 4 quadrants) X dilution factor for size of quadrant (i.e. 

10,000) X dilution factor for addition of trypan blue. Each sample was counted per 

duplicate to accurately determine the cell number. Cell counts within 10% of each other 

were considered accurate. The total number of cells within the flask was determined by 

the following equation: Total cells in flask = cells/ml X # ml in flask.  
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II.C.2.b. . DNA Transfection  
 

After the cell count was determined, the cells were seeded (5 X 105
 cells/well, 6-well 

plate), allowed to attach and acclimate for 24 hours at 37° C plus 5% CO2. Cell health 

and confluency (~90%) were determined by inspection, using a light microscope (100X 

power) (Fryer Company, Inc, Huntley, IL, USA). The medium was then removed by 

aspiration. The cells were transfected with the plasmid DNA listed in Table 1. Three µg 

of plasmid DNA were mixed with 1990 µl of Opti-MEM I reduced serum media 

(Invitrogen Life Technologies, Carlsbad, CA, USA) in a 1.5ml microcentrifuge tube 

(Tube A). In a separate 1.5ml microcentrifuge tube (Tube B), 5 µl of Lipofectamine™ 

2000 reagent (1 mg/ml) (Invitrogen Life Technologies, Carlsbad, CA, USA) were 

incubated with 190µl of Opti-MEM I reduced serum media and incubated at room 

temperature for 5 minutes. Tubes A and B were mixed (Master Mix) and incubated at 

room temperature for 30 minutes. 1.6 ml of warmed (37°C) Opti-MEM I reduced serum 

media were added to each well, followed by the Master Mix (~400 µl). Plates were 

carefully rocked back and forth to achieve an even distribution of the Master Mix and 

incubated for 72 h at 37°C in a humidified 5% CO2 incubator (ThermoForma, Waltham, 

MA, USA). Seventy-two hours post-transfection, the supernatants were harvested and 

placed into 1.5 ml centrifuge tubes. The supernatant was clarified by centrifugation (1 

min for 12,000 rpm) and transferred to a new 1.5 ml centrifuge tube and stored at -80° C. 

The cells were incubated with either 500 µl of distilled water or 1 % Triton-X 100 

(Sigma, St. Louis, MO, USA) until the cells completely detached from the plate. The 
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samples were incubated at -80° C for 5-10 min and then thawed at 37°C 1 min. 

Freeze/thawing was repeated three times. Cell lysate samples were centrifuged (1 min at 

12,000 rpm), the supernatants transferred to a new 1.5 ml centrifuge tube and stored at -

80°C. 

 

II.D. Protein Expression 

 

II.D.1.  Western Blot  
 

Supernatants and cell lysates from transfected HEK 293T cells (Section II.C.2) were 

analyzed for protein expression by Western Blot. Briefly, cell lysates (2%, 10 µl) or 

supernatants (1%, 20 µl) were diluted (1:2) in sodium dodecyl sulfate (SDS) Laemmil 

sample buffer (1M Tris-Cl pH 6.8, 20% SDS, 3.3 % Glycerol, 0.006 M bromophenol 

blue and 0.05 M beta-mercaptoethanol) (Bio-Rad, Hercules, CA, USA) and the mixture 

was boiled for 5 min. The sample mixtures and a pre-stained molecular weight ladder 

(Bio-Rad, Hercules, CA, USA) were loaded onto a 5-10% SDS-polyacrylamide gel 

(Stacking Gel: 30% acrylamide:bis, 10% SDS, 10% ammonium persulfate, 1% TEMED, 

0.5 M Tris-HCl pH 6.8 or Resolving Gel: 1.5 M Tris-HCl, pH 8.8). The proteins were 

separated by electrophoresis at 100 V for 20 min followed by 200 V for 1-2 h in running 

buffer (25 M Tris base, 192 M glycine, 0.1% SDS, pH 8.3). The resolved proteins from 

the SDS-PAGE were transfered to a Immobilon™ nitrocellulose membrane (Millipore, 

Bedford, MA, USA) in transfer buffer (25 mM Tris, 192 mM glycine, and 20% v/v 

methanol, pH 8.3) using the transfer apparatus (Mini Trans-Blot, Bio-Rad, Hercules, CA, 

USA) for 1 h at 200 mA. The nitrocellulose membrane was then removed and placed in 
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blocking solution (5% dry non-fat milk, 0.05% Tween 20, PBS) overnight at 4° C with 

gentle rocking.  

 

The blocking solution was removed and the transferred proteins were detected either with 

human polyclonal antiserum (HIV Ig) (NIH ARRRP, (278) Germantown, MD, USA) 

(1:10,000 in PBS containing 0.05% Tween 20 and 5% non-fat dry milk) or rabbit 

polyclonal anti-influenza virus serum (1:5,000 in PBS containing 0.05% Tween 20 and 

5% non-fat dry milk). The nitrocellulose membranes were incubated with the 

corresponding antisera for 1 hour at room temperature on a shaker.  The nitrocellulose 

membrane was then washed 3 times for 10 min each in 15 ml of PBS supplemented with 

0.05% Tween 20 (PBS-T) on a shaker at room temperature. The membranes were then 

incubated either with goat anti-human IgG conjugated to horseradish peroxidase (HRP) 

(Bio-Rad Laboratories, Hercules, CA, USA) (1:10,000 in PBS-T and 5% non-fat dry 

milk) or goat anti-rabbit IgG conjugated to HRP (Southern Biotechnology Associates, 

Inc., Birmingham, AL, USA) (1:7,000 in PBS-T and 5% non-fat dry milk) on a shaker for 

1 h. The membrane was then washed 3 times for 10 min each in 15 ml of PBS-T on a 

shaker at room temperature. The membranes were then incubated with 1 ml of stable 

peroxide solution and 1 ml of lumino/enhancer solution (Amersham, Buckinghamshire, 

UK) and manually rocked for 3 min. The membranes were briefly dried, wrapped in 

cellophane, and exposed to CL-X Posure™ film (Pierce, Rockford, IL, USA) for 3 sec to 

1 min.  
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II.D.2.  Protein Purification 
 

II.D.2.a. . DNA Transfections in T-75 Flasks 
 

In order to purify proteins, transfections of HEK 293T cells were up-scaled to 75 cm2 

tissue culture flask (Corning, Inc, Corning, NY, USA). Briefly, HEK 293T-cells were 

grown in cDMEM until 90% confluency. DNA plasmids containing a Histidine-Tag 

(Table 4) were then  transfected using Lipofectamine™ 2000 reagent (1 mg/ml) 

(Invitrogen Life Technologies, Carlsbad, CA, USA) in Opti-MEM I reduced serum media 

(Invitrogen Life Technologies, Carlsbad, CA, USA). The transfection mixture was 

prepared by adding 500 µl of Opti-MEM I reduced serum media and 20 µl of  

Lipofectamine™ 2000 reagent (1 mg/ml) into a 1.5 ml microcentrifuge tube (Tube A) 

and incubated at room temperature for 5 min. In another microcentrifuge tube (Tube B), 

500 µl of Opti-MEM I reduced serum media were mixed with 8µg of plasmid DNA. 

Tubes A and B were mixed (Master Mix) and incubated at 25 °C for 30 minutes. 

cDMEM was removed from HEK 293T cells by aspiration and 5 ml of warmed (37 °C) 

Opti-MEM I reduced serum media were added. Following 30 min incubation, the Master 

Mix was added to the HEK 293T cells and the flask was carefully rocked back and forth 

to evenly distribute the transfection mixture. The flaks were incubated at 37° C in a 

humidified 5% CO2 incubator. Four hours later, 5 ml extra of warmed (37 °C) Opti-MEM 

I reduced serum media were added to the cells. The flasks were then incubated for 72 h 

(37 °C - 5% CO2). Following 72 h incubation, supernatants were harvested and a protease 

inhibitor cocktail for purification of Histidine-tagged proteins was added (2.5 µl/ml) 
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(Sigma, St. Louis, MO, USA). Supernatants were stored at -80°C until protein 

purification.  

 

II.D.2.b. Affinity Chromatography 
 

Histidine-tagged proteins were purified by affinity chromatography, at 4°C, using 5 ml 

HiTrap chelating nickel columns (Amersham Biosciences, Piscataway, NJ, USA). A 

peristaltic pump (Econo-Pump) (Bio-Rad, Hercules, CA, USA) at a flow rate of 5ml/min 

was used for the procedure. A general over view of the protein purification method is 

outlined in Figure 7. The Storing Solution (20% ethanol in distilled water) of the HiTrap 

chelating nickel column was removed. The HiTrap column was then washed with 15 ml 

of distilled water. The column was loaded with 5 ml of 0.1 M NiSO4 (Fisher Scientific, 

Fair Lawn, NJ, USA) and subsequently washed with 15 ml of distilled water. The HiTrap 

column was equilibrated with 30 ml of Binding Buffer (20 mM phosphate, 0.5 M NaCl  

and 10 mM imidazole (Sigma, St Louis, MO, USA)). Supernatants containing Histidine-

tagged proteins were gently thawed, pooled and loaded in the equilibrated HiTrap column 

at a flow rate of 5 ml/min. The column was then washed with 30 ml of Binding Buffer. 

Subsequently, the proteins were eluted using 15 ml of Elution Buffer (20mM phosphate, 

0.5 M NaCl and 500 mM imidazole). The eluted fraction, containing the purified protein, 

was concentrated immediately (see below). The column was washed with 30 ml of 

Binding Buffer and the nickel ions were removed using 25 ml of Cleaning Solution 

(20mM sodium phosphate, 0.5 M NaCl, 0.05 M EDTA (Merk, Darmstadt, Germany), pH 

7.4). Finally, HiTrap columns were filled with Store Solution and kept at 4°C. Samples of 
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all the protein purification fractions were collected and analyzed by western blot as 

described in Section II.C.2 

 

II.D.2.c. . Concentration 
 

The fraction containing the purified protein was concentrated using 30,000 to 100,000 

molecular weight cut-off columns (MWCO) (Vivascience, Hannover, Germany). Briefly, 

the sample was loaded in the concentration columns and centrifuged for 30-45 min (3,000 

g, 14°C) (Sorvall, Asheville, NC, USA). The flow-trough was decanted and the protein 

was washed twice with 15 ml of PBS (buffer exchange). The final volume in which the 

protein was resuspended was ~1.5 ml. The purified, concentrated and buffer exchanged 

protein was stored at -80°C. 

 

II.D.3. BCA Protein Assay  
 

The protein concentration was determined using a Micro (Bicinchoninic acid) BCA™ 

Protein Assay Reagent Kit (Pierce, Rockford, IL, USA). A protein standard (2 mg/ml of 

bovine serum albumin (BSA) in a solution of 0.9% saline and 0.05% sodium azide) was 

used to produce a standard curve. The assay was performed following the 

recommendations of the manufacturer. Briefly, standard protein concentrations or test 

samples (150 µl) and 150 µl of the working reagent [52% Micro BCA Reagent A 

(sodium carbonate, sodium bicarbonate and sodium tartrate in 0.2N NaOH), 48 % Micro 

BCA Reagent B (4% bicinchoninic acid in water), 2% Micro BCA Reagent C (4% cupric 

sulfate, pentahydrate in water)] were pipetted into the wells of a 96 well plate (Corning, 
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Corning, NY, USA). The plates were covered and placed on a shaker for 2 h at 37°C. The 

samples were analyzed for a colorimetric change measured as the optical density (O.D.) 

at 540nm by a spectrophotometer (Dynex Technologies, Chantilly, VA, USA). Tests 

were performed in duplicate at two different dilutions, whereas the standard samples 

were analyzed in triplicate. The O.D. of each sample was compared to the standard curve, 

and the concentration of the protein was extrapolated from the standard curve. 

 

II.D.4.  Silver Stain 
 

The purified proteins (Section II.D.2.) were verified by silver staining (279) using a 

ProteoSilver Stain Kit (Sigma, St. Louis, MO, USA), following the manufacturer’s 

protocol. Samples were prepared and electrophoresed as described in Section II.D.1. 

After electrophoresis of the proteins by SDS-PAGE, the gel was placed in a clean tray 

with 100 ml of Fixing Solution (50% ethanol, 10% acetic acid in ultrapure water) for 1h. 

The Fixing Solution was removed and the gel was washed with 100 ml of Ethanol 

Solution (30% ethanol in ultrapure water) for 10 min. The Ethanol Solution was decanted 

and the gel was washed twice (10 min) with 200 ml of ultrapure water. The gel was then 

incubated for 10 min with 100 ml of Sensitization Solution (1% ProteoSilver Sensitizer in 

ultrapure water). Following removal of the sensitizing solution, the gel was washed twice 

(10 min) with 200 ml of ultrapure water. The water was decanted and 100 ml of Silver 

Equilibration Solution (1% ProteoSilver Silver solution in ultrapure water) was added to 

the gel for 10 min. After the Silver Equilibration Solution was removed, the gel was 

washed for 1 min with 200 ml of ultrapure water. The water was decanted and 100 ml of 

Developer Solution (5% of Proteo Silver Developer 1, 0.1% of ProteoSilver Developer 2 
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in ultrapure water) were added to the gel. The gel was carefully rocked back and forth for 

3-7 min until the desired staining intensity was observed. 5 ml of the ProteoSilver Stop 

Solution was added to the Developer Solution to stop the reaction (5 min). Finally, the 

Developer / ProteoSilver Stop solution was decanted and the gel was washed with 200 ml 

of ultrapure water for 15 minutes.  

 
Figure 7. Histidine-Tagged Protein Purification.  

 
 
HEK 293T cells were transferred using Lipofectamine 2000 reagent. The supernatants 
were harvested and clarified by centrifugation. Protease inhibitors were added. The 
proteins were purified by affinity chromatography using nickel columns. The fractions 
containing the purified protein were concentrated and buffer exchanged (PBS) using 
30,000 to 100,000 MWCO columns 
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II.E. Mice 

 

II.E.1.  Husbandry and Anesthesia 
 

Six to 8 weeks-old mice were used for vaccination studies. The mice were housed (5 

mice per cage, free access to food and water, cages cleaned weekly) in compliance with 

the U.S. Department of Agriculture (USDA) regulations. Mice were anesthetized based 

on their weight with xylazine (Phoenix Pharmaceutical, Inc, St. Joseph, MO, USA) (20 

mg/ml) and ketamine (Phoenix Pharmaceutical, Inc, St. Joseph, MO, USA) (100 mg/ml) 

administered subcutaneously (50 mg ketamine and 5 mg xylazine per kilogram of body 

weight, average 20 g) (Ketamine/Xylazine) in the abdomen prior to blood collection, 

intravenous immunization, or virus challenge. Mice were sacrificed by CO2 (100%) 

inhalation.  

 

II.E.2.  Mouse Strains 
 

II.E.2.a. . BALB/c Mice  
 

BALB/c is a general purpose, white coat, inbred mouse strain. MacDonell started 

inbreeding these mice in 1923. The mice were then transferred to Snell in 1932, who 

transferred them to Andervont. Andervont, at F32, transferred the mice to the NIH in 

1987 (280). The NIH has provided the different supplier companies with breeder mice 

that have been used to create colonies that are maintained in gnobiotic isolators. Coat 
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color loci include: A, b, c, D. Other loci of known importance include:  Car-2b, Ce-2a, Cs-

1a, Es-1b, Es-3a, Es-10a, Gpd-1b, Gpi-1a, Gusa, Hbab, Hbbd, Hc1, Idh-1a, Lyb-2b, Ly-1b, 

Ly-2b, Ly-3b, Lva, Mod-1a, Mup-1a, Pep-3a, Pgm-1a, Thy-1b, Tlac, Trfb, H-2Dd and H-2Kd 

(280). Six to 8 weeks-old BALB/c mice (Harlan Sprangue-Dawley, Indianapolis, IN, 

USA) were used in the vaccine studies and housed in compliance with the USDA 

regulations.  

 

II.E.2.b. . C57BL/ 6 Mice 
 

The black coated, inbred, C57BL/6 mouse strain is widely used as the genetic 

background for transgenic and mutant mice and is popular in the research applications of 

oncology, immunology and toxicology. This mouse strain was developed by C.C. Little 

in 1921, from a mating of Miss Abby Lathrop’s stock that also gave rise to strains 

C57BR and C57L. Strains 6 and 10 were separated about 1937. These mice were 

transferred to Jackson laboratories in 1948 from Hall and then in 1951 to the NIH at F32. 

The coat color loci include a, B, C and D. Other loci described include:  Car-2a, Ce-2 a, 

Cs-1g, Es-1a, Es-3a, Es-10 a, Gpd-1a, Gpi-1 b, Gusb, Hba a, Hbbs, Hc1, Idh-1a, Lvb, Lyb-2b, 

Ly-1b, Ly-2 b, Ly-3 b,Mod-1 b, Mup-1b, Pep-3 a, Pgm-1a, Trf b, Thy-1b, Tlac, H-2D b and 

H-2Kb ((280, 281). C57BL/6 mice used in the vaccine studies were obtained from Harlan 

Sprangue-Dawley laboratories (Harlan Sprangue-Dawley, Indianapolis, IN, USA). All 

mice were housed in compliance with the USDA regulations. 
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II.E.2.c. . C3H/He Mice 
 

The inbred, black agouti coated, C3H mouse strain is widely used as a model for drug 

treatments of neurologic disorders with applications in toxicology and oncology. This 

mouse line was established by Strong in 1920 by crossing a Bagg albino female with a 

Dilute Brown /Non-Agouti (DBA) male. The mouse line was transferred to Andervont in 

1930, and then to Heston at F35. The NIH received the mouse strain in 1951 from Heston 

at F57. The coat color loci include: A, B, C, and D. Other loci described include: Car-2b, 

Ce-2 b, Es-1b, Es-3 c, Es-10b, Gpd-1 b, Gpi-1b, Gus b, Hc1, Hbbd, Idh-1 a, Lva, Lyb-2 b, Ly-

1a, Ly-2 a, Ly-3b, Mod-1 a, Mup-1a, Pep-3 b, Pgm-1b, Trf b, Thy-1b, Tla b, H-2Dk and H-

2Kk. Six to 8 weeks-old C3H/He mice used in the vaccine studies were acquired from 

Harlan Sprangue-Dawley laboratories and housed in compliance with the USDA 

regulations. 

  

II.E.2.d. . CD1 Mice  
 

The white coated, non-inbred (outbred) CD1 mouse strain was developed in the 

laboratory of Dr Coulon (Centre Anticancereux Romand, Lausanne, Switzerland). The 

original group of mice that served as progenitors consisted of two male and seven female 

albino mice. CD1 mice were imported to the USA by Dr. Clara Lynch (Rockefeller 

Institute) in 1926. The Hauschka Ha/ICR stock was initiated in 1948 at the Institute of 

Cancer Research (ICR) in Philadelphia from the “Swiss” mice of Rockefeller origin. The 

mice where then transferred to Dr. Edward Mirand of the Roswell Park Memorial 

Insitute. In 1959 the mice were acquired by Charles River Laboratories (281). CD1 mice 
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used in the vaccine studies were 6-8 weeks-old and acquired from Charles River 

Laboratories (Charles River Laboratories Inc, Wilmington, MD, USA). Mice were 

housed in compliance with the USAD regulations. 

  

II.E.2.e. . CD21/CD35 Knock-out Mice  
 

CD21/CD35 knock-out (CD21/CD35-/- or CR2-/-) mice were developed by Haas, et al. 

(130) at Duke University. Briefly, CD21/35−/− mice were generated using a targeting 

construct with the 5′ promoter region of the Cr2 gene deleted. Homologous 

recombination in embryonic stem (ES) cells replaced the Cr2 promoter region and exon 

encoding the transcription initiation and signal sequence of the CD21/35 protein product 

with a Neomycin resistance cassette that terminated translation. Transmission of the 

mutation was verified by Southern blot and PCR analysis. Mice heterozygous for the 

targeted allele were mated to generate wild-type, CD21/35+/−, and CD21/35−/− littermates. 

Mice were confirmed homozygous for the neo-disrupted Cr2 locus by southernblot or 

PCR analysis of genomic tail DNA (130). CD21/CD35-/- mice used in the vaccine studies 

were housed in strict pathogen free conditions at the animal facility of Duke University 

and in compliance with the USDA regulations.  

 

II.E.2.f. MHC class II Knock-out Mice 
 

Six to eight weeks-old MHC class II Knock-out mice (MHCII-/-) were acquired from 

Taconic (Taconic, Hudson, NY, USA). These mice exhibit a depletion of CD4+ T-cells 
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through the disruption of the H2-Ab1 gene. The MHCII-/- mouse model is useful for 

research in transplantation, gene therapy and immunological diseases. This mouse model 

was developed by Grusby, et al. (282), at Harvard University. The mouse strain was 

received at Taconic in December 1991 from Tufts University (V. Papaioannou) at N4 

onto the C57BL/6 from the (129/Sv x C57BL/6J) chimera. Male mutant mice were used 

in each backcross while at Tufts. At Taconic, the line was backcrossed 5 generations to 

C57BL/6NTac and cesarean derived in February 1992. Mice from the N5 colony were 

backcrossed 7 additional generations (N12) to C57BL/6NTac mice, and intercrossed to 

produce homozygous animals. The colony is maintained by brother x sister mating of 

homozygotes (280).  MHCII-/- mice used in the vaccine studies were housed at the 

University of Pittsburgh animal facility in strict pathogen free conditions and in 

compliance with the USDA regulations. 

 

II.E.3.  Gene Gun Immunization 
 

DNA immunizations were performed by intradermal bombardment of gold particles 

coated with plasmid DNA (DNA Bullets, described in Section II.B). DNA vaccinations 

were performed using a Bio-Rad handheld DNA deliver system (gene gun) (Bio-Rad, 

Hercules, CA, USA). Briefly, ~ 1 inch of abdominal fur of the animals to be immunized 

was shaved with a handheld Single-Speed clipper (Oster, McMinnville, TN, USA) using 

a size 40 blade. The gene gun was loaded with the corresponding DNA bullets and then 

connected to a Helium tank. The gas regulator pressure was adjusted at 400 psi and mice 

were immunized in two separate spots (2 µg total DNA per immunization) of the 
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abdominal shaved area. Mice were followed for tenderness or adverse reaction in the 

immunization area for three days. 

  

II.E.4.  Intravenous (I.V.) Immunization 
 

Tail vein (I.V.) immunizations were performed in mice anesthetized with a mixture of 

Ketamine / Xylazine. Tail vessels were dilated using a heat lamp. A 1 ml tuberculin 

syringe with a 30G1/2 needle (Becton Dickinson and Co, Franklin Lakes, NJ, USA) was 

loaded with the injectate. Air bubbles were removed from the syringe and the mouse tail 

was inspected to verify dilation of the vessels. The mouse was placed on a restrainer 

(Braintree Scientific Inc., Braintree, MA, USA) and the tail swabbed with 70% ethanol. 

The tail was immobilized with gentle retraction. The lateral tail vein was visualized and 

the needle (with the bevel facing up) was inserted parallel to the vein 2 to 4 mm into the 

lumen. The fluid was injected slowly and when finished, the needle was gently 

withdrawn. Hemostasis was achieved applying digital pressure in the area of 

immunization. Immunizations were performed as close as possible to the tip of the tail. 

 

II.E.5.  Blood Sample Collection  
 

Blood samples were collected by retro-orbital plexus puncture using a heparinized 

capillary tube (Drummond Scientific Company, Broomall, PA, USA) and a 1.5 ml 

centrifuge tube on anesthetized mice and incubated (4° C for 4 h) to allow coagulation of 

the red blood cells. Serum was separated from the red blood cells by centrifugation 

(5,000 rpm for 10 min). Collected serum was stored in at -20° C.  
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II.E.6.  Cell Isolation from Spleens and Lungs  
 

Spleens were exposed and removed by making an incision in the abdominal cavity from 

the rib cage to the tail using sterile scissors and tweezers. Similarly, lungs were exposed 

and removed by making an incision in the midline of the chest cavity using sterile 

scissors and tweezers. The lungs were carefully removed, avoiding contamination with 

thymic tissue. Both, lungs and spleens were carefully rinsed with sterile PBS. The 

removed spleens or lungs were then placed in a cell strainer (BD Biosciences, Bedford, 

MA, USA) over a 60 x 15 mm dish (U.S.A. Scientific, Ocala, FL, USA). The spleen or 

lungs were manipulated into a single cell suspension using the rubber stopper end of a 5 

ml syringe plunger (Becton Dickinson & Co., Franklin Lakes, NJ, USA). The cell strainer 

was then rinsed with a total of 4 ml of sterile PBS and the cell suspension transferred to a 

15 ml conical tube. The cells were centrifuged at 1200 rpm (5 min at 4°C) and the 

supernatants discarded. The cells were gently resuspended in 9 ml of distilled water, the 

tube was capped and carefully mixed for 3 sec. Immediately, 1ml of 10X PBS was added, 

the cells suspension gently mixed and centrifuged at 1200 rpm (5 min at 4°C). The 

supernatants were discarded, and the cells were then resuspended in 3 ml of PBS. In 

order to count the cells, 50 µl of the cell suspension were mixed with 450 µl of Trypan 

Blue solution (Gibco, Grand Island, NY, USA) in a microcentrifuge tube (1:10 dilution) 

and incubated for 3 min. 10 µl of this suspension was loaded in each side of a 

hematocytometer (VWR, Bridgeport, NJ, USA) and the cells within the four outer 

quadrants were counted using a light microscope (100X power) (Fryer Company, Inc, 
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Huntley, IL, USA). The number of viable cells (cells/ml) was determined using the same 

equation described in Section II.C.2.  

 

II.E.7. Cell isolation from the bone marrow 
 

The skin of the mouse was peeled from the top of each hind leg and down over the foot. 

The foot with the skin was cut off and discarded. The hind legs were then cut off and 

placed in a 60 x 15 mm dish (U.S.A. Scientific, Ocala, FL, USA) containing sterile PBS. 

The excess of muscle from the legs was removed by holding the end of bone with 

forceps. Following excess of muscle removal, the bones were severed between the joints. 

A 25 ml syringe was attached to a 26G needle (Becton Dickinson and Co, Franklin 

Lakes, NJ, USA) and filled with PBS. The needle was then inserted into the bone marrow 

cavity of femur or tibia and gently flushed with 2-5 ml of PBS or until bone cavity 

appeared white. The flushed PBS containing bone marrow cells was collected in a 15 ml 

conical tube (USA Scientific, Woodland, CA, USA) kept on ice. The 15 ml conical tube 

was centrifuged for 5 min, 4 °C, 1200 rpm (Sorvall Instruments, Newtown, CT, USA). 

The supernatant was decanted and the cell pellet was resuspended in 9 ml of distilled 

water. The tube was then capped, carefully mixed for 3 sec, and immediately 1ml of 10X 

PBS was added. The cells suspension was gently mixed and centrifuged at 1200 rpm (5 

min at 4°C). The supernatants were discarded, and the cells were then resuspended in 3 

ml of PBS 3. The cells were counted as described in Section II.E.6 and the number of 

viable cells determined as described in Section II.C.2. These cells were then resuspended 

at the appropriate concentration in RPMI [RPMI 1640 (Gibco, Grand Island, NY, USA), 

containing 10% FCS (Atlanta Biologicals, Atlanta, GA, USA), 10 mM glutamine 
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(Invitrogen Life Technologies, Carlsbad, CA, USA), 100 U/ml penicillin/streptomycin 

(Gibco, Grand Island, NY, USA) and 55 µM 2-ME)] and used in assays described in 

Section II.F.3.   

 

II.E.8.  Intranasal Influenza Virus Challenge 
 

Different dilutions (1:1000, 1:500, 1:250 and 1:100) of live, mouse adapted influenza 

virus A/Puerto Rico /8/34 (A/PR/8/34) (H1N1) were tested in BALB/c and C57/BL/6 

wild-type mice to determine the lethal dose 100 (LD100). LD100 was defined as the viral 

dose able to cause morbidity in 100% of the mice challenged. Morbidity was defined as 

body weight loss of more than 20%. Mice with more than 25% of body weight loss were 

sacrificed for humanitarian reasons (mortality). Virus challenge was performed in mice 

anesthetized (Ketamine/Xylazine as described in Section II.E.1.) via intranasal instillation 

of 50 µl of allantoic fluid diluted in PBS to contain the above mentioned virus dilutions. 

Morbidity and mortality were recorded daily for two weeks in the virus challenged mice.  

LD100 for BALB/c mice was 1:1000, while for C57BL/6 mice was 1:100. The LD100 

determined for each mouse strain was used in the subsequent vaccine/ challenge studies. 

 

II.F. Immunological Assays  

 

II.F.1.  Enzyme-Linked Immunosorbent Assay (ELISA)  
 

Sera samples were individually collected and tested for antibody responses to the 

immunizing antigens (HIV-1 Envgp120 (IIIB), Envgp120 (YU2) or sHA) by ELISA. Each well of 
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a 96-well plate (Corning, Corning, NY, USA) was coated either with either 1) 

recombinant HIV-1 Env gp120 (IIIB) (NIH ARRRP, Germantown, MD, USA) (30-50 ng), 2) 

culture supernatant from HEK 293T cells transfected with DNA expressing Envgp120 (YU2)  

from genes codon optimized for mammalian cells (pcoEnvgp120(YU2)) (~50 ng) or 3) 

culture supernatant from HEK 293T cells transfected with DNA expressing sHA (psHA) 

(~100 ng).  The coating was performed in a total volume of 100 µl / well of PBS and the 

96-well plate was incubated overnight at 4°C in a humid chamber. Plates were blocked 

(25°C for 2 h) with PBS (200 µl) containing Tween 20 (0.05%) and non-fat dry milk 

(5%). The blocking buffer was removed and 100 µl of serially diluted sera samples were 

added to each well (25° C for 2 h). Following thorough washing (3X) in PBS-(0.05%) 

Tween 20 (PBS-T), samples were incubated (25° C for 1 h) with 100 µl of goat anti-

mouse IgG conjugated to horseradish peroxidase (HRP) (1:5,000) (Southern 

Biotechnology Associates, Inc., Birmingham, AL) diluted in PBS-T containing 5% non-

fat dry milk. The unbound antibody was removed, and the wells were washed (3X) with 

PBS-T. 100 µl of TMB substrate (1 TMB tablet per 10 ml of phosphate-citrate pH 5.0 

buffer; 2 µl 30% H202) (Sigma, St Louis, MO, USA) were added to each well (25°C for 

30 min). Following 30 min incubation, the reaction was stopped with 50 µl / well of 2N 

Sulfuric Acid. The colorimetric change was measured as the O.D. at 450 nm using a 

spectrophotometer (Dynex Technologies, Chantilly, VA, USA). Results were recorded as 

the arithmetic mean plus the standard deviation (S.D.) after the value of naïve sera was 

subtracted from the test samples.  
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In order to measure the levels of HIV-1 Envgp120 and sHA IgG subtypes, a modification to 

the above protocol included the use of biotinylated goat anti-mouse IgG1, IgG2a, IgG2b, 

IgG3 and IgM antibodies (1:5,000) (Southern Biotechnology Associates, Inc., 

Birmingham, AL) to detect antigen-antibody complexes in place of the goat anti-mouse 

IgG-HRP conjugated. Biotinylated IgG isotype antibodies were detected by Streptavidin-

HRP conjugated (1:7000) in PBS-Tween 20 (1h, 25°C). Developing was performed as 

described above. 

 

In order to detect specific anti-SA antibodies a similar ELISA protocol was used. The 

next modifications were included. Plates were coated with ~500 ng/well of purified SA in 

a total volume of 100 µl of PBS. IgM, IgG and IgG subtypes (IgG1, IgG2a, IgG2b, IgG3) 

were detected using antibodies conjugated to alkaline phosphatase (AP) (Southern 

Biotechnology Associates, Inc., Birmingham, AL, USA). The substrate used was p-

nitrophenyl phosphate (Southern Biotechnology Associates, Inc., Birmingham, AL, 

USA) and the colorimetric change was measured as the O.D. at 405 nm. 

 

II.F.2.  Displacement (Avidity) ELISA 
 

Antibody affinity maturation was assessed by disrupting the antigen-antibody interaction 

with increasing concentrations of the chaotropic agent sodium thiocyanate (NaSCN). A 

fresh 5M stock solution of NaSCN (Sigma, St. Louis, MO, USA) was prepared in PBS-T. 

This stock solution was used to prepare 5 ml the working dilutions: 0.5M, 1.0M, 1.5M, 

2.0M, 2.5M, 3.0M and 3.5M.  The sera sample dilution to be used was based on 

crossover O.D. readings (from ELISA results) between the samples to be compared. The 
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appropriate dilution of each sample was prepared in PBS-T and (5%) non-fat milk. The 

assay was performed on 96-well plates coated with 50 ng/well of purified recombinant 

HIV-1 Envgp120 (IIIB) protein (NIH ARRRP, Germantown, MD, USA) in carbonate buffer 

(pH 9.6) similar to the procedure described in Section II.F.1. Unbound protein was 

removed from the 96-well plate followed by blocking (2 h, 25°C) with PBS-T with (5%) 

non-fat milk (200 µl/well). The blocking buffer was removed and the plate was then 

washed (4X) with PBS-T. 100 µl of each sera sample at the determined dilution was 

added in 8 wells. The samples were incubated for 1 h at 25°C. Unbound antibody was 

then removed from the plate and washed (4X) with PBS-T. 100 µl of the different 

NaSCN dilutions (0M, 0.5M, 1.0M, 1.5M, 2.0M, 2.5M, 3.0M and 3.5M) were added in 

the corresponding wells. In 0M well, 100 µl of PBS-T was added. The plate was 

incubated for 15 min at 25°C. Following the incubation time, NaSCN was removed and 

the plates washed (4X) with PBS-T. 100 µl of a 1:5000 dilution of goat anti-mouse IgG-

HRP antibody (Southern Biotechnology Associates, Inc., Birmingham, AL, USA) were 

added to each well (1h, 25°C). Unbound antibody was removed and washed (4X) with 

PBS-T. 100 µl of TMB substrate (1 TMB tablet per 10 ml of phosphate-citrate pH 5.0 

buffer; 2 µl 30% H202) (Sigma, St Louis, MO, USA) were added to each well (25°C for 

30 min). The colorimetric change was measured as the O.D. at 450 nm by a 

spectrophotometer (Dynex Technologies, Chantilly, VA, USA). The concentration of 

NaSCN required to to disrupt 50% of the initial O.D. value for each sample was 

determined. The percent of initial IgG was calculated as the initial O.D.   

 

 

 120



II.F.3.  Enzyme-Linked Immuno-Spot (ELISPOT) Assay for Detection of Antibody 
Forming Cell 

 

The frequency of antibody-forming cells (AFC) was determined in cells isolated from the 

spleen (Section II.E.6) and bone marrow (Section II.E.7). The PVDF membrane on 

Immobilon-P Multiscreen 96-well plates (Millipore, Bedford, MA, USA) was activated 

with 50 µl per well of Methanol (1 min). The methanol was removed by flicking the 96-

well plate and then it was washed once with 200 µl of sterile PBS. The plate was coated 

with 100 µl/well of the antigen of interest (5 µg/ml in PBS) and incubated overnight at 4 

°C in a humid chamber. Next morning the plate was washed twice with 200 µl of sterile 

PBS. Following the wash with PBS, the plate was blocked for 1 h (25°C) with 200 

ul/well of RPMI culture medium (RPMI 1640 containing 10% FCS, 10 mM glutamine, 

100 U/ml penicillin/streptomycin, and 55 µM 2-ME).  Bone marrow and spleen cells were 

plated at 104, 105, or 106 cells per well in 100 µl of RPMI culture medium for 18 h at 

37°C in a CO2 incubator. Following 18 h incubation, the plate was washed three times 

with Tris-Buffered Saline Tween-20 (20 mM Tris pH 7.5, 150 mM NaCl, 0.1% Tween-

20) (TBS-T). Subsequently, the plate was incubated with 100 µl/well (1:1000 dilution) of 

polyclonal alkaline phosphatase-conjugated goat anti-mouse IgG antibodies (Southern 

Biotechnology Associates, Inc., Birmingham, AL, USA) for 2 h at room temperature. The 

polyclonal antibody was removed by dumping the supernatant and the plate was washed 

(4X) with TBS-T. The plate was developed for 30 min using nitroblue tetrazolium/5-

bromo-4-chloro-3-indolyl phosphate substrate (70 µl/well) (Sigma, St. Louis, MO, USA). 

Spots were counted by an ImmunoSpot ELISPOT reader (Cellular Technology Ltd., 

Cleveland, OH, USA). The number of spots per 1 X 106
 cells was recorded after 
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subtracting the background values (naïve mice). The arithmetic mean ± the S.D. was 

determined for each group after the appropriate background values were subtracted from 

the test samples.  

 

II.F.4.  In vitro Cell Proliferation 
 

Splenocytes from vaccinated mice were harvested (described in Section II.E.6) and 

resuspended (1 X 107 cells/ml) in FACs buffer [1X PBS (without calcium or 

magnesium), 3% newborn calf serum (Atlanta Biologicals, Atlanta, GA, USA), 0.02% 

Sodium Azide (Fisher Scientific, Fair Lawn, NJ, USA) and 1mM EDTA, pH 7.5].  The 

splenocytes (1 ml) were then incubated and stained with the lipophilic carbocyanine 

fluorescent dye dioctadecyl oxycarbocyanin (SP-DiOC18, 2 µM) (Molecular Probes, 

Eugene, OR, USA) for 5 min at 37 °C. The samples were later incubated at 4 °C, 

protected from light, for 15 min. Following incubation at 4°C, the cells were gently 

centrifuged (1200 rpm, 5 min, 4°C) and resuspended in RPMI culture media. SP-DiOC18 

stained splenocytes (6 X 106 cells) were analyzed on a FACSVantage cytometer (Becton-

Dickinson, Mountain View, CA, USA) and sorted by fluorescent intensity. The middle 

10-15% of cell stained with the highest fluorescent intensity (~106 cells) were collected 

and resuspended in RPMI culture media. The sorted cells were then plated in 24-well 

plates (5 X 105 cells / ml) and incubated with the proliferation stimulant protein (4 µg/ml) 

for 5 days at 37°C, 5% CO2. Stimulant protein was the same DNA product used for 

immunizations. For example, if mice were vaccinated with DNA encoding for HIV-1 

Envgp120 IIIB, the stimulant was recombinant purified HIV-1 Envgp120 IIIB protein. Control 

wells received PBS as stimulant.  Following 5 days incubation, the cells were analyzed 
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for proliferative responses by measuring the fluorescent intensity of stained cells by 

FACScan and analyzed by Cell Quest software (Becton-Dickinson, Mountain View, CA, 

USA). SP-DiOC18 is a lipohilic carbocyanine fluorescent dye that integrates into the cell 

membrane. Fluorescent intensity reduces as the cell divides as a part of the dye is passed 

to the cell membrane of the daughter cells. A reduction in the fluorescent peak intensity, 

following stimulation, was considered significant for proliferation.  

 

II.F.5.  Splenocyte cytokine secretion 
 

Isolated splenocytes (Section II.E.6.), from vaccinated mice, were assessed for cytokine 

production (mIL-4 and mIFN-γ) by ELISA (Biosource International, Carmillo, CA, 

USA). Briefly, isolated splenocytes were resuspended RPMI culture media (1 X 107 cell / 

ml) and 1 X 106 cells / well (100 µl) were plated in a 24-wells plate, in a total volume of 

1 ml. The cells were then stimulated with the appropriate stimulant protein (4 ug/ml) (i.e. 

recombinant HIV-1 Envgp120 IIIB protein). Control wells received PBS. The plate was then 

incubated for 90 h at 37°C, 5% CO2. Following 90 h incubation, supernatants were 

harvested and stored in a 1.5 ml microcentrifuge tube at -20 °C until assayed. The cell 

culture supernatants were assayed in 96-well plates pre-coated with monoclonal anti-

mIL-4 or anti-mIFN-γ antibodies (Biosource International, Carmillo, CA, USA). 

Standard curves were prepared using the controls (recombinant mIL-4 and mIFN-γ) 

provided by the manufacturer (Biosource International, Carmillo, CA, USA). 100 ul / 

well of cell supernatant and standards were incubated for 1 h at room temperature. The 

supernatants were then removed and the plate was thoroughly washed with PBS-T.  

Captured cytokines were then detected using a 1:250 dilution (in PBS-T) of biotinylated 
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polyclonal anti-mIL-4 or anti-mIFN-γ antibodies (100µl /well) (1h, room temperature). 

The plate was washed 3 times with PBS-T and antigen-antibody complexes were detected 

by streptavidin-conjugated to horseradish peroxidase (HRP) (1:250 dilution) (1h, room 

temperature). The plate was then read on an Anthos Labtec 2001 ELISA reader at 

405 nm. The O.D. of each sample was compared to the standard curve and the 

concentration of the cytokines was extrapolated from the standard curve.  

 

II.G. Statistical Analysis  

 

Sample size calculation for t test was determined using the following parameters: power 

= 90, alpha = 0.05 and confidence interval = 90 using the delta-sigma approach. All 

statistical analysis was done using the Student’s t test in STATA (STATA Corp, College 

Station, TX, USA) or SPSS (SPSS Inc, Chicago, IL, USA) software packages. 
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III. Chapter 3: Specific Aims 
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III.A. Rationale of Research 

 

The goal of a vaccine is to induce an immune response strong enough to prevent the 

development of an infectious disease. Live-attenuated vaccines, which use 

microorganisms with impaired virulence, remain as the gold standard in immune 

induction. Nevertheless, the important side effects, the difficulty in attenuation of the 

microorganisms, the limitations of their use in immune compromised patients and the 

need of a cold chain of these vaccines, have pushed the development of new kinds of 

vaccine technologies and adjuvants.  

 

New vaccine technologies, such as protein (subunit), DNA, and virus like-particles (VLP) 

are safer than traditional live-attenuated vaccines; however, the immune responses 

induced are limited, requiring large doses and several boosts. In order to increase the 

immunogenicity of these vaccines and hence, reduce the dose and number boosts, 

different kinds of adjuvants have been developed. Adjuvants are substances that enhance 

the immune responses to different kinds of antigens. Several substances with adjuvant 

activity have been described (Section I.B) (Table 1) and despite the large number of 

experimental adjuvants alum remains as the primary licensed adjuvant used in humans. 

Some adjuvants are efficient inducers of the immune responses; however, their important 

side effects have limited their use. 
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III.A.1. Antigens and their immunization route 
 

In order to study the properties of an adjuvant, it is necessary the use of antigens. Careful 

selection of antigens and the route of immunization is important as these can influence 

the type of immune responses elicited. For the study of the adjuvant properties of C3d 

(see Section III.A.3), HIV-1 Envgp120, a soluble form of hemagglutinnin (sHA) from 

influenza virus (A/PR/8/34) and streptavidin were selected. The first two represent 

antigens from infectious agents that affect large portion of the population and thus, have 

been extensively studied. This has allowed the development of several assays and animal 

models to evaluate the immune response. Streptavidin, on the other hand, represents a 

novel, non-conventional and poorly immunogenic antigen used to evaluate the immune 

response. Different routes of immunization (e.g. intradermal, intramuscular or 

intravenous) stimulate different sets of immune cells, thus the immune response elicited 

can be different. DNA and protein immunizations were selected to evaluate the adjuvant 

effects of C3d.  

 

DNA immunization is a novel vaccine technology that uses plasmids encoding for the 

antigen of interest. This vaccination strategy has the advantage of inducing both, humoral 

as well as cellular immune responses (See Section I.A.1.d). However, initial promising 

results have been limited, in some cases due to the poor immune properties of the 

antigens. Such is the case of wild-type gene sequences of HIV-1 Envgp120 from the 

various isolates (e.g. IIIB and YU2). The extensive study of HIV-1 and the efforts to 

develop a vaccine have helped to increase the methods to evaluate the immune response. 
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Furthermore, a large amount of reagents have become available, making this protein an 

ideal antigen for the study of adjuvants.  

 

Protein immunizations, elicit mainly humoral immune responses. These immunizations, 

however, are usually more immunogenic than their DNA counterpart. This facilitated the 

study of adjuvants in immunodeficient mouse models. Furthermore, protein 

immunizations allow the normalization of the immunogenic molecule, which is difficult 

to achieve when using DNA vaccines.  

 

Even though there is an influenza vaccine available (Trivalent inactivated influenza 

vaccine or TIV), this is not 100% efficient. Furthermore, due to the influenza antigenic 

drift (Section I.D.2.d), the vaccine needs to be updated continuously. Moreover, the 

continuous risk of a gene reassortment and the generation of a highly infectious influenza 

virus with the subsequent risk of a pandemia, has allowed the permanent development of 

influenza vaccines. As a consequence, several animal models (e.g. mice and ferrets) and 

species adapted influenza virus strains (e.g. mouse adapted A/PR/8/34 (H1N1)) have 

become available. sHA from influenza virus, which a poorly immunogenic molecule is a 

model antigen for the study of adjuvants, because 1) allows the evaluation of the adjuvant 

effect; and 2) the protective effect of the immune response elicited can be evaluated in 

live-virus challenge animal models.  
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III.A.2. Animal Models 
  

Different animal models have become available for the study of the immune system. 

Inbred animals such as BALB/c and C57BL/6 have been widely used for vaccine studies; 

however, these are considered artificial systems because of the limited genetic variation 

(homozygocity - especially in MHC alleles) they posses. The limited genetic variation of 

inbred mouse strains is caused by many homozygous recessive mutations that may be 

detrimental to the organism and as a consequence have negative effects on the immune 

response to foreign antigens. Furthermore, the results obtained from vaccine studies in a 

particular inbred mouse strain may not be similar to those obtained from a different one 

due to the differences in MHC alleles. Moreover, some of the vaccine results obtained 

from inbred mouse strains may not translate into higher animals or humans, because these 

are not inbred populations. In most natural populations of animals, high levels of genetic 

variation are the norm and outbred mouse strains resemble this high level of genetic 

variation. Thus, outbred mice are considered a more “real life” animal model for initial 

evaluation of vaccines. In order to be potentially useful, an adjuvant has to enhance the 

immune responses similarly both in inbred as well as in outbred populations. Hence, one 

of the aims of this thesis was to evaluate the adjuvant properties of C3d in different 

inbred and outbred mouse strains (See Section III.B.).  

 

The limited number of MHC alleles in inbred mice has some advantages for scientists. 

For example, inbred mice have made easier the characterization of the immune responses 

in specific mouse strains. Furthermore, inbred animals, especially C57BL/6 mice have 

become the base for the development of several knock-out and transgenic models, which 
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allowed dissecting the role of different cells and molecules in the immune response. A 

mouse strains that lacks CR2 is one example of these knock-out models. This model was 

used to explore the mechanism of enhancement of the immune response by C3d (See 

Section III.C.). Another mouse model which lacks MHC class II molecules (MHCII-/-), 

and as a consequence CD4+ T-cells, was used to explore the adjuvant properties of C3d 

independently of T-cell help (Section III.D.).  

 

In summary, both inbred and outbred animals are important for the study of vaccines and 

adjuvants. Each model contributes with different characteristics to the understanding of 

the immune response.  

 

III.A.3.  C3d as an adjuvants and its mechanism of work 
 

C3d, which is the final degradation product of the third component of complement (C3), 

has been used as an adjuvant. In the development of a normal immune response, 

activation of the complement system (See Section I.C.1 and Figure 1) leads to the 

formation of C3d. This molecule is able to bind and coat the invading microorganisms. 

Once coated with C3d, the microorganisms are able to interact with immune cells that 

bear complement receptor 2 (CR2), such as follicular dendritic cells (FDCs) and B-cells. 

In this way, C3d enhances antigen uptake, processing and also induces B-cell activation 

(through CR2-CD19 signaling – Section I.C.5). Thus, C3d not only bridges the innate 

with the acquired immune responses but also acts as a natural adjuvant. CR2 has been 

considered the natural ligand of C3d and as consequence its signaling pathway has been 

implicated as the sole mechanism by which C3d performs its adjuvant effect. However, 
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the interaction between these molecules has remained conflictive and there is not 

consensus on the nature of the interaction and the interacting regions, and as a 

consequence the pathway(s) activated. This suggests that besides the assumed mechanism 

of enhancement of the immune response by the CR2 pathway, there could be other 

mechanisms by which this molecule could exert its job.  Therefore, one aim of this thesis 

project was to explore the enhancement of the immune response in the absence of CR2, 

using a knock-out mouse model.   

 

The classic mechanism by which C3d enhances the immune response involves co-

binding of the surface IgM (sIgM) by an antigen in conjunction with C3d interacting with 

its receptor, CR2.  Cross-linking of these molecules activates two pathways that cross-

talk and result in the common endpoint of B-cell activation.  As a consequence, ligation 

of multiple CR2 molecules by C3d allows for a reduction in the amount of antigen 

needed to activate B cells, because of redundant B-cell activation signaling. Most 

antigens require T-cell priming, activation and collaboration with B-cells in order to 

mount a proper humoral immune response (T-dependent antigens - TD). However, there 

is a group of antigens known as T-cell independent (TI), which can induce a proper 

immune response in the absence of T-cells. One of the main characteristics of these 

antigens is the redundancy of their structure, which allows them to bind simultaneously 

several sIgM molecules on the B-cells surface. The ligation of several sIgM molecules, 

redundantly signals through the pathway that activates B-cells and thus induces cell 

proliferation and antibody production. The ability of multiple copies of C3d fused to a T-

cell dependent antigen (sHA) in reproducing the redundant signaling and thus activation 
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of B-cells in the absence of T-cells (resembling TI antigens) was explored in a T-cell 

knock-out mouse model (MHCII-/- – Section III.D.) (Section II.E.2.f)  

 

III.B.  Specific Aim I 

 

Goal: To determine if C3d enhances immune responses in mice with different genetic 

backgrounds. 

Hypothesis: C3d will similarly enhance the immune responses in mice from different 

genetic background 

Summary: Previous studies have shown the ability of C3d to function as a molecular 

adjuvant with different antigens in BALB/c mice. However, it has been suggested that the 

immune responses to different immunogens can vary depending on the mouse strain 

used. Furthermore, in AIM 2 (see below) a mouse strain deficient in the CR2 receptor 

was proposed to be used. These mice have the C57BL/6 genetic background, thus it was 

important to determine the ability of C3d to enhance the immune response in mice with 

different H-2 haplotypes. It was hypothesized that C3d was able to enhance the immune 

response in mice from different genetic background. In order to test this hypothesis, three 

inbred [BALB/c (H2d), C57BL/6 (H2b), and C3H/He (H2k)] and one outbred (CD-1 

Swiss) mouse strain were selected. Mice were intradermally immunized with 2 µg of 

DNA per immunization (Primed at day 1 and boosted at weeks 4 and 8) using a gene gun 

delivery system.  Immunizations were performed with DNA constructs that expressed the 

HIV-1 envelope gp120 (Envgp120) from the isolate IIIB alone (pEnvgp120(IIIB))or coupled to 

two or three copies of C3d (pEnvgp120(IIIB)-C3d3) . Blood samples were collected every 
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two weeks, serum isolated and stored at -80 ºC. Sera samples were used to determine 

total IgG antibody titers as well as the main IgG isotypes (IgG1 and IgG2a) by endpoint 

dilution ELISA. At week 12, splenocytes were harvested and used to perform 

proliferation and cytokine production assays upon specific protein stimulation. The 

results showed that after three intradermal DNA immunizations Env fused to various 

copies of C3d induced similar high titer anti-Env antibodies and enhanced affinity 

maturation in all mouse strain tested. The main IgG isotype class induced in inbred mice 

was IgG1, in contrast to outbred mice which showed a mixed IgG class switch (IgG1 and 

IgG2a). Moreover, harvested splenocytes stimulated with recombinant Envgp120 showed 

that all mouse strains immunized with Envgp120-C3d2-3 had a high level of anti-Env 

specific proliferation. Cytokine assays demonstrated that inbred mice produced mainly 

IL-4 while outbred mice produced both IL-4 and IFN-γ, suggesting humoral and mixed 

(humoral and cellular) immune responses, respectively.   

Conclusion: Three copies of C3d were able to similarly enhance the immune response 

both in inbred and outbred mouse strains. However, some minor differences between 

inbred and outbred mice were detected, the overall enhancement of the immune response 

was similar.  

 

III.C.  Specific Aim II 

 
Goal: To determine if C3d can enhance the IR in the absence of CR2 

Hypothesis:  C3d will not enhance the immune responses in the absence of CR2 

Summary: C3d is proposed to function as a molecular adjuvant by efficiently targeting 

antigens to CR2, which interacts with CD19 to regulate transmembrane signals during B 
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cell activation. However, a direct role for CR2 in this process has not been demonstrated, 

therefore, the importance of CR2 engagement in mediating the immunostimulatory 

effects of C3d was proposed for evaluation in mice completely deficient in CR2 

expression.  It has been reported that B-cells from CR2-/- are not able to bind streptavidin 

(rSA-C3dg) tetramers. However, C3dg tetramers bind efficiently to CR2 in wild-type 

mice and show functional activity on normal, but not in CR2-/- B-cells. In order to explore 

the role that C3d/CR2 interactions play in the adjuvant effect of C3d conjugated antigens, 

CR2-/- mice were immunized with recombinant (r)SA or HIV-1 rEnvgp120(IIIB) alone or 

coupled to C3d. Additionally, plasmid DNA immunizations using similar constructs to 

those described in AIM1 (pEnvgp120(IIIB)±C3d2-3) were performed. Interestingly, both 

primary and secondary antibody responses to rSA and rEnvgp120(IIIB) were significantly 

higher in the CR2-/- mice when these proteins were complexed to C3d. Additionally, an 

ELISPOT assay to detect frequencies of antibody-forming cells (AFC) in isolated bone 

marrow and spleen cells corroborated that CR2-/- mice immunized with rSA-C3d had a 

significantly higher frequency of AFC than those immunized with rSA alone. 

Furthermore, the adjuvant properties of C3d were compared to a model adjuvant that 

does not require the CR2 pathway, the carrier protein chicken gamma globulin (CGG). 

These results showed that C3d and CGG induced similar IgM and IgG antibody titers in 

CR2-/- mice.  On the other hand, CR2-/- mice that were DNA immunized with 

pEnvgp120(IIIB)-C3d2 or pEnvgp120(IIIB)-C3d3 did not show statistically significant 

differences compared to Envgp120(IIIB) alone, however, the tendency was to develop higher 

antibody titers in the presence of C3d. The inability of C3d to induce similar results 

between protein and DNA immunizations in CR2-/- mice could be explained by 1) the 
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low level of protein expression achieved by wild-type genes, like Envgp120(IIIB), in DNA 

immunizations; and 2) the fact that CR2-/- mice are an immunodeficient mouse model and 

require higher amounts of antibody to trigger an immune response. 

Conclusion: C3d enhances the immune response even in the absence of its natural ligand 

(CR2), which suggest that additional mechanisms or receptors not yet described are 

involved in the adjuvant effect.  

 

III.D.  Specific Aim III 

 
Goal: To determine if C3d enhances humoral immune responses independently of CD4+ 

T-cell help 

Hypothesis: Antigens fused to C3d are able to mimic the antigenic redundancy of T-cell 

independent antigens and thus induce secondary humoral immune responses (IgG) in the 

absence of CD4+ T-cells. 

Summary: Some viruses are able to induce T-cell independent (TI) immune responses 

(e.g. Polyomaviruses, Vesicular stomatitis virus, coxsackie virus) in animals deficient in 

CD4+ T-cells. Virus infection in these deficient mice leads not only to secretion of IgM, 

but also an immunoglobulin (Ig) class switch to IgG/IgA and in some models results in 

protection from lethal virus challenges. TI viral antigens have a repetitive, highly 

organized antigenic structure, which allows extensive cross-linking of B-cell receptors 

(surface immunoglobulin M –sIgM-) thereby delivering a strong activating signal to B-

cells.  During influenza virus infections, TI humoral immune responses are important in 

resolving primary infections and prevention of re-infections in mice deficient in CD4+ T-

cells.  Live, as well as inactivated influenza viral particles, induce TI immune responses, 
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induce secretion of IgM, and stimulate an immunoglobulin class switch to IgG and IgA in 

the absence of CD4+ T-cells. One C3d-adjuvant mechanism involves the cross-linking of 

the sIgM to an antigen in conjunction with C3d binding to its receptor, CR2.  Cross-

linking of these molecules activates two pathways that cross-talk and result in the 

common endpoint of B-cell activation.  As a consequence, ligation of multiple CR2 

molecules by C3d allows for a reduction in the amount of antigen needed to activate B 

cells. In order to investigate the ability of antigens fused to C3d3 to mimic the redundancy 

of TI antigens and thus induce Ig class switch in the absence of CD4+ T-cells, a soluble 

form of recombinant hemagglutinin (sHA) was fused to three tandem copies of C3d and 

used to immunize animals deficient in CD4+ T-cells (MHC II-/-). MHC II-/- as well as 

C57/BL6 wild type mice were immunized (I.V.) with 20 µg of sHA alone or fused to 

C3d3. Immunizations were normalized for the immunogenic portion (sHA) and 

performed at weeks 0, 5 and 9. Mice were challenged with a lethal dose of the mouse 

adapted influenza virus strain A/PR/8/34 at week 10. Morbidity (weight loss) and 

mortality were monitored for 2 weeks. The results in wild type mice showed that, C3d 

induced a significant enhancement of the secondary humoral immune responses after the 

second and third immunizations (P<0.05). This correlated with a reduced morbidity 

(weight loss) and higher survival in the sHA-C3d3 vaccinated group, following virus 

challenge. The IgG isotype profile induced pre and post- virus challenge was similar, 

with IgG1 as the main isotype, suggesting a dominant Th2 immune response. The results 

in MHC II-/- mice showed twenty percent of mice immunized with sHA-C3d3 developed 

a significant IgG class switch, while none of the mice that received sHA. The main 

isotype induced by C3d was IgG2b, suggesting an environment rich in TGF-β. Following 
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virus challenge IgG was detected (mainly IgG3) in all MHC II-/- mice challenged with 

A/PR/8/34; however, sHA-C3d3 mice had a higher, but not statistically significant, titer. 

Despite this, weight loss was delayed and mortality was lower in mice vaccinated with 

sHA-C3d3 compared to mice that received sHA alone. This suggests that C3d stimulates 

other immune factors (e.g. innate cells) besides B-cell and the enhanced survival is the 

result of collaboration between all these factors. 

Conclusions: sHA-C3d3 vaccinations induced mild secondary immune responses in the 

absence of CD4+ T-cells. However, these weak secondary immune responses, possibly in 

conjunction with other innate immune responses stimulated by C3d enhanced protection 

in mice to the virus challenge. 
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IV. Chapter 4: Specific Aim I 
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IV.A.  Introduction 

 

Previous studies have shown that DNA vaccinations effectively induce both humoral and 

cellular immune responses to immunogens from diverse infectious agents (for reviews, 

see (283-287)). DNA vaccines provide a promising future for the development of new 

vaccination strategies. These genetic vaccinations consist of eukaryotic expression 

plasmids that are inoculated into target cells and translated into proteins (283, 284). 

Animal studies have shown that DNA vaccinations induce protective immunity against a 

variety of infectious agents. DNA vaccines are comparatively easy to develop and 

manufacture and are likely to not require a cold chain for worldwide distribution. 

However, DNA vaccines have been less effective at eliciting immune responses to the 

gp120 subunit of human immunodeficiency virus (HIV)-1 envelope (Env) (33, 288-290). 

In addition, these vaccines have been less successful at generating neutralizing antibodies 

against HIV-1 (16, 33, 289, 291, 292). This inability to elicit high titer, cross-clade 

antibodies may be due to the long period of maturation that is required for Env-specific 

antibodies (292).  

 

Recent studies in our laboratory have utilized a component of the complement system, 

the murine C3d (mC3d), conjugated to viral immunogens to enhance the immune 

responses directed against the fused antigen (84, 85, 127, 132, 138). Using C3d as a 

molecular adjuvant provides promising alternatives to administration of exogenous 

adjuvants. Mice vaccinated with DNA expressing a soluble form of the poorly 
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immunogenic gp120 fused to three copies of mC3d accelerated both the onset and the 

avidity maturation of antibody and enhanced neutralizing antibody titers compared to 

mice vaccinated with antigen alone (85, 132). In the natural immune response, C3d 

serves as a regulator of several B cell functions, including antibody production, antigen 

uptake, processing and presentation, and inducing B cell memory response (120, 124, 

293, 294). The most likely mechanisms by which C3d serves as a molecular adjuvant is 

by binding of C3d to CD21 (CR2) on the surface of B cells and thereby enhancing 

signaling through CD19 and the IgG binding receptor CD32 (FcγRIIb). C3d bound 

antigens can directly stimulate antibody producing B cells, leading to the expansion of 

antigen specific B cells (120, 294).  

 

Our laboratory and others have demonstrated that C3d enhances the immunogenicity to a 

variety of other antigens, however the level of immune responsiveness varies (84, 85, 

126-128, 132, 135, 138, 156). These variable responses may be dependent on the antigen, 

the dose of inoculum, the route of inoculation, the method of vaccination, or the mouse 

strain used for the study. In order to examine the effects of MHC haplotype on 

immunoresponsiveness by DNA plasmids expressing C3d conjugated antigens, three 

inbred strains, BALB/c (H-2d), C57BL/6 (H-2b) and C3H/He (H-2k), and one outbred 

strain, CD-1 Swiss, were vaccinated with DNA expressing Env gp120 (Envgp120) (isolate 

IIIB) fused to multiple copies of murine C3d (mC3d). All Envgp120(IIIB)-C3d-DNA 

vaccinated mice had an enhanced anti-Env antibodies compared to mice vaccinated with 

DNA expressing Envgp120(IIIB). However, Envgp120(IIIB)-C3d-DNA elicited both Th1- and 
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Th2-mediated responses in outbred mice that correlated with enhanced avidity maturation 

of the anti-Env IgG response.  

 

IV.B.  Materials and Methods 

 

IV.B.1.  Plasmid DNA 
 

pTR600, a eukaryotic expression vector, has been described previously (138). Briefly, the 

vector was constructed to contain the cytomegalovirus immediate-early promoter (CMV-

IE) plus intron A (IA) for initiating transcription of eukaryotic inserts and the bovine 

growth hormone polyadenylation signal (BGH poly A) for termination of transcription. 

The vector contains the Col E1 origin of replication for prokaryotic replication and the 

kanamycin resistance gene (Kanr) for selection in antibiotic media (Figure 8A).  

 

A soluble for of Envgp120(IIIB) was constructed by PCR amplification of a fragment 

representing the gp120 portion from the gene that encodes for Envgp160(IIIB) (Figure 8B). 

Each construct has the first 32 amino acids deleted from the N-terminus of each IIIB Env 

and replaced with a leader sequence from the trypsin plasminogen activator (tpA). The 

Envgp120(IIIB) gene was subsequently fused to two or three copies of murine C3d (Figure 

8B). Linkers composed of two repeats of four glycines and a serine [(G4S)2] were fused 

at the junctures of Env and C3d and between each C3d repeat.  

 

The plasmids were amplified in Escherichia coli strain-DH5α, purified using an 

endotoxin-free, anion-exchange resin columns (Qiagen, Valencia, CA) and stored at 
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−20 °C in dH2O. Plasmids were verified by appropriate restriction enzyme digestion and 

gel electrophoresis. Purity of DNA preparations was determined by optical density 

reading at 260 and 280 nm.  

 

IV.B.2.  In vitro Expression of DNA Vaccines 
 

The human embryonic kidney cell line, 293T (HEK 293T), (5×105 cells/transfection) was 

transfected with 2 µg of DNA using 12% lipofectamine (Life Technologies, Grand 

Island, NY) according to the manufacture’s guidelines. Supernatant was collected and 

1.5% of supernatant was diluted 1:2 in SDS sample buffer (Bio-Rad, Hercules, CA) and 

loaded onto a 10% polyacrylamide/SDS gel. The resolved proteins were transferred onto 

a nitrocellulose membrane (Bio-Rad) and incubated with a 1:3000 dilution of polyclonal 

human HIV-infected patient antisera in PBS containing 0.05% Tween-20 and 5% fetal 

calf serum. After extensive washing, bound human antibodies were detected using a 

1:5000 dilution of horseradish peroxidase-conjugated goat anti-human antiserum and 

enhanced chemiluminescence (Amersham, Buckinghamshire, UK).  

 

IV.B.3. Animals and Immunizations 
 

Three inbred strains of 6–8-week-old female mice [C57BL/6 (H-2b), BALB/c (H-2d), and 

C3H/He (H-2k)] (Harlan Sprague–Dawley, Indianapolis, IN) and one outbred strain of 

female [CD-1 Swiss] (Charles River) were used for inoculations. Mice, housed with free 

access to food and water, were cared for under USDA guidelines for laboratory animals. 

Mice were anesthetized with 0.03–0.04 ml of a mixture of 5 ml ketamine HCl 
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(100 mg/ml) and 1 ml xylazine (20 mg/ml). Gene gun (G.G.) immunizations were 

performed on shaved abdominal skin using the hand held Bio-Rad® gene delivery system 

as described previously (295-297). Mice were immunized with two gene gun doses 

containing 1 µg of DNA per 0.5 mg of approximately 1 µm gold beads (Bio-Rad, 

Hercules, CA) at a helium pressure setting of 400 psi.  

 

IV.B.4. Immunological Assays 
 

IV.B.4.a.   ELISA for Detection of Anti-Env Antibodies 
 

An endpoint ELISA was performed to assess the titers of anti-Env IgG in immune serum 

using recombinant HIV-1 Envgp120(IIIB) to coat plates as described (298). Briefly, plates 

were coated with recombinant Envgp120(IIIB) (over night) and then probed with antisera 

from vaccinated mice (1 h). Subsequently, the primary antiserum was detected by anti-

mouse IgG conjugated to horseradish peroxidase. The reaction was detected using TMB 

substrate and measured on a Anthos Labtec 2001 ELISA reader at 405 nm. Endpoint 

titers that were two fold higher than age-matched, naïve sera were considered positive.  

 

Avidity ELISAs were performed similarly to serum antibody determination ELISAs up to 

the addition of samples and standards (292, 299-303). Samples were diluted to give 

similar concentrations of specific IgG by O.D. Plates were washed three times with 

0.05% PBS–Tween-20. Different concentrations of the chaotropic agent, sodium 

thiocyanate (NaSCN) in PBS, were then added (0, 1, 1.5, 2, 2.5, 3, and 3.5 M NaSCN). 

Plates were allowed to stand at room temperature for 15 min and then washed six times 
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with PBS–Tween (0.05%)-20 (PBS-T). Subsequent steps were performed similarly to the 

serum antibody determination ELISA. Percent of initial IgG calculated as a percent of the 

initial O.D. All assays were done in triplicate.  

 

IV.B.4.b.  In vitro proliferation and FACS analysis 
 

Splenocytes from vaccinated mice were harvested and resuspended (107 cells/ml) in 

FACS Buffer (2% FCS in PBS). In order to determine anti-Env specific immune cells 

elicited in vaccinated mice, splenocytes were incubated and stained with dioctadecyl 

oxycarbocyanin (SP-DiOC18, 2 µM) (Molecular Probes, Eugene, OR, USA) for 5 min at 

37 °C, followed by incubating at 4 °C for 15 min. Cells were gently centrifuged 

(2000 rpm) and resuspended in RPMI with 10% FCS plus supplements. SP-DiOC18 

stained splenocytes (6×106 cells) were analyzed on a FACSVantage cytometer (Becton-

Dickinson, Mountain View, CA, USA) and sorted by fluorescent intensity. The middle 

15% of cell stained with the highest fluorescent intensity (~106 cells) were collected, 

resuspended in RPMI with 10% FCS plus supplements and were plated in 24-well plates 

(5×105 cells/ml). Sorted splenocytes were immediately incubated with recombinant HIV-

1 Envgp120(IIIB) (4 µg/ml) for 5 days and then analyzed for proliferative responses by 

measuring the fluorescent intensity of stained cells from Envgp120(IIIB)-stimulated and 

unstimulated cells by FACScan and analyzed by Cell Quest software (Becton-

Dickinson). An induction of proliferation was determined by measuring the peak 

intensity of stained cells before and after stimulation of cells.  
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IV.B.4.c.  Splenocyte cytokine secretion 
 

In order to determine the cytokine secretion by Envgp120(IIIB)-stimulated cells, aliquots of 

cell culture supernatant was collected and analyzed for murine interleukin-4 (mIL-4) or 

murine interferon-gamma (mINF-γ) by ELISA (Biosource International, Carmillo, CA, 

USA) and by ELISpot (R&D Systems, Minneapolis, MN, USA). Harvested splenocytes 

from vaccinated mice were stimulated with recombinant HIV-1 Envgp120(IIIB) (4 µg/ml) for 

90 h. Cell culture supernatants were incubated onto pre-coated monoclonal anti-mIL-4 or 

anti-mINF-γ ELISA wells for 1 h. Captured cytokines were detected using a biotinylated 

polyclonal anti-mIL-4 or anti-mINF-γ. Antigen-antibody complex was detected by 

streptavidin-conjugated horseradish peroxidase and read on an Anthos Labtec 2001 

ELISA reader at 405 nm according to the manufacture’s directions.  

 

IV.B.5.  Statistics 
 

For statistical analysis, a Student’s t test was employed. The difference between DNA 

vaccines expressing Envgp120(IIIB) fused to multiple copies of murine C3d was compared to 

DNA expressing Envgp120(IIIB) alone. Differences in titer were considered statistically 

significant when p-value was less than 0.05.  
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IV.C.  Results 

 

IV.C.1. . Expression of plasmids 
 

Vaccine plasmids, expressing a secreted form of Env (Envgp120(IIIB)), were constructed 

using the previously described pTR600 vector (85). Vaccine plasmids expressing the 

soluble gp120 from the HIV-1 isolate IIIB (Envgp120(IIIB)) Env or fused to two 

(Envgp120(IIIB)-C3d2), or three (Envgp120(IIIB)-C3d3) copies of the murine homologue of C3d 

have been previously described (Figure 8B). The molecularly cloned gp120 region 

represented the entire surface domain of Env, but excluded the oligomerization and 

transmembrane domains and the cytoplasmic regions. The Envgp120(IIIB)-C3d fusion 

proteins were generated by cloning tandem repeats of the murine C3d (293) in frame with 

the soluble gp120 gene. The proteolytic cleavage sites, found at the junction between 

each C3d molecule as well as the junction between the gp120 protein and the first C3d 

coding region, were destroyed by mutagenesis.  

 

Overall, Env was expressed at similar levels by plasmids containing each secreted form 

of the antigen, however expression was lowered by two- to four-fold with plasmids 

expressing C3d fused forms of Env (data not shown). HEK 293T cells were transiently 

transfected with 2 µg of plasmid and both supernatants and cell lysates were assayed for 

Envgp120(IIIB) using an antigen capture ELISA. As observed previously (85), 

approximately 90% of the Env protein was present in the supernatant for both 

Envgp120(IIIB) and Envgp120(IIIB)-C3d3-DNA transfected cells.  
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Western blot analyses revealed Envgp120(IIIB) and Envgp120(IIIB)-C3d proteins of the 

expected sizes (Fig. IV.1.C). Using human patient polyclonal antisera (HIV-Ig), western 

blot analysis showed the expected broad band of 115–120 kDa corresponding to 

Envgp120(IIIB) (Fig. IV.1.C). A higher molecular weight band was seen for each of the 

sgp120-mC3d fusion proteins (Fig. IV.1.C). Consistent with the antigen-capture assay, 

intense protein bands were present in the supernatants of cells transfected with 

Envgp120(IIIB)-DNA. No evidence for the proteolytic cleavage of the Envgp120(IIIB)-C3d 

fusion protein was seen by western analysis.  

 

IV.C.2.  Antibody response to Env gp120 fused with mC3d DNA immunizations 
 

Three different inbred strains of female mice [C57BL/6 (H-2b), BALB/c (H-2d), and 

C3H/H3 (H-2k) and one outbred strain [CD-1 Swiss] were vaccinated with DNA coated 

gold particles via gene gun with a 1 µg dose per inoculum. Mice received a total of 2 µg 

of DNA per immunization. Mice were vaccinated at day 1 and then boosted at week 4 

and 8. Specific anti-Env antibodies were elicited in all strains of DNA immunized mice 

(Fig IV.2). DNA plasmids expressing Envgp120(IIIB) fused to multiple copies of murine 

C3d (Envgp120(IIIB)-C3d2 or Envgp120(IIIB)-C3d3) raised higher titers of ELISA antibody than 

the Envgp120(IIIB) (Fig. IV.2). In addition, the titers of elicited anti-Env antibodies were 

similar in all four mice strains. As observed in our previous mouse studies using BALB/c 

mice (85, 132), the temporal pattern for the appearance of anti-Env antibodies in 

C57BL/6 and CD-1 Swiss mice revealed titers that were boosted after each inoculation 

with DNA expressing Envgp120(IIIB)-C3d2 or Envgp120(IIIB)-mC3d3.  
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Antisera were typed for both the immunoglobulin class and isotype of IgG elicited by 

vaccination (Table 6). Our previous studies using BALB/c mice indicated that the 

predominant class of immunoglobulin after three DNA inoculations was IgG and to a 

lesser extent IgE in mice vaccinated with Envgp120(IIIB) fused to two or three copies of 

murine C3d (132). In contrast to the overall antibody titer, the isotype of elicited antibody 

differed between the inbred and outbred strains. Inbred mice vaccinated via gene gun 

with DNA expressing Envgp120(IIIB)-C3d2 or Envgp120(IIIB)-C3d3 had an almost exclusive 

IgG1 bias. However, outbred CD-1 Swiss mice vaccinated with the same DNA plasmids 

elicited a more mixed response with similar titers of IgG2a and IgG1 isotypes (Table 6). 

There was no detectable IgA or IgM after the third DNA vaccination at week 10, 

however, low levels of anti-Env IgM antibodies were observed early in the inoculation 

schedule (week 4) (data not shown). These same three mouse strains were vaccinated 

with the same DNA vaccines via intramuscular (I.M.) injection and similar IgG isotype 

responses were observed as in mice vaccinated via gene gun. (data not shown). 

Therefore, the three inbred mice strains elicited a predominately IgG1 anti-Env antibody 

after vaccination with Envgp120(IIIB)-C3d-DNA, however, outbred mice elicited a more 

mixed response with a significant anti-Env IgG2a antibody titer.  
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Figure 8. Schematic representation of vector DNA vaccine constructs and 
expression of vaccine constructs in vitro.  
A) Schematic representation of TR600. This expression vector was constructed to contain 
the cytomegalovirus immediate-early promoter (CMV-IE) plus intron A (IA) for 
initiating transcription of eukaryotic inserts and the bovine growth hormone 
polyadenylation signal (BGH poly A) for termination of transcription. The vector 
contains the Col E1 origin of replication for prokaryotic replication and the kanamycin 
resistance gene (Kanr) for selection in antibiotic media. 
B) HIV-1 Env gene inserts from the isolate IIIB were cloned into pTR600 using the NheI 
and BamHI restriction endonuclease sites directly 3′ to the tissue plasminogen activator 
(tpA) sequence. The first schematic on the right represents the wild-type, transmembrane 
form of the Env protein (Envgp160(IIIB)). The second schematic represents the secreted 
gp120 form of the Env (Envgp120(IIIB)). The third schematic represents the secreted 
Envgp120(IIIB)-C3d2 construct used as a vaccine insert. The fourth schematic represents the 
secreted Envgp120(IIIB)-C3d3 construct used as a vaccine insert. Linkers composed of two 
repeats of four glycines and a serine [(G4S)2] were fused at the junctures of Env and C3d 
and between each C3d repeat.  
C) HEK 293T cells, were transfected with 2 µg of each vaccine plasmid. Supernatant was 
collected and 1.5% of total volume was electrophoresed on a 10% polyacrylamide gel. 
Lane 1: molecular weight marker; lane 2: secreted Envgp120(IIIB); lane 3: secreted 
Envgp120(IIIB)-C3d2; and lane 4: secreted Envgp120(IIIB)-C3d3. 
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Figure 9. Anti-Env IgG Raised by Gene Gun DNA Immunizations 

 
 
Mice were intradermally immunized with 2µg of DNA (arrows) at weeks 0, 4 and 8. 
Immunizations were performed using a gene gun handheld delivery system. Sera samples 
were collected from mice at weeks 0, 4, 6, 8 and 10. Mice (CD-1Swiss, BALB/c, 
C57BL/6 and C3H/He) received plasmid DNA encoding eirther Env gp120(IIIB) (Red 
rhomboid symbol), Env gp120(IIIB)-C3d2 (Blue Square), Env gp120(IIIB)-C3d3 (Black triangle) 
or an empty vector (Naïve) (White circle). Sera collected a the indicated times from each 
mouse was assayed for specific IgG levels by ELISA. 96-well plates were coated with 
recombinant gp120 protein derived from Chinese haster ovary (CHO) cells expressing 
HIV-1 isolate IIIB. Data are presented as the average of five mice. Preimmune sera has 
not detectable specific IgG. Endpoint dilution titers were conducted by diluting the sera 
until O.D. valued reached background. 
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IV.C.3.   Avidity of anti-Env antiserum 
 

Sodium thiocyanate (NaSCN) displacement ELISAs demonstrated that the avidity of the 

antibody generated with Envgp120(IIIB)-C3d3 expressing DNA was consistently higher than 

that from Envgp120(IIIB)-DNA vaccinated mice (Table 7). The avidity of specific antibodies 

to Env was compared by using graded concentrations NaSCN, a chaotropic agent, to 

disrupt antigen-antibody interaction (304). The binding of antibodies with less avidity to 

the antigen is disrupted at lower concentrations of NaSCN than that of antibodies with 

greater avidity to the antigen. In vaccinated BALB/c mice, the effective concentration of 

NaSCN required to release 50% of antiserum (ED50) collected at week 10, after three 

inoculations of the Envgp120(IIIB)-C3d3-DNA vaccine, was ~2.2 M (Table 7) and was 

significantly higher than C57BL/6 or C3H/HE mice vaccinated with Envgp120(IIIB)-C3d3-

DNA (~0.8–1.25 M). Inbred mice vaccinated with Envgp120(IIIB)-C3d2-DNA had lower 

ED50 values (~0.5–0.75 M). In contrast, outbred CD-1 mice vaccinated with DNA 

expressing Envgp120(IIIB) conjugated to two or three copies of murine C3d elicited high 

avidity antibodies after three inoculations. The effective concentration of NaSCN 

required to release 50% of antiserum collected from mice vaccinated with Envgp120(IIIB)-

C3d3-DNA was >3.5 M (Table 7). These results indicate that the antibody from 

Envgp120(IIIB)-C3d3-DNA vaccinated outbred CD-1 mice had undergone more rapid 

avidity maturation than antibody from vaccinated inbred mice strains.  
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Table 6. Anti-Env antibody titers and induction of T-cell cytokine profiles 

 

CD-1 Swiss BALB/c C57BL/6 C3H/He 
Vaccine† 

IgG isotype Cytokine IgG isotype Cytokine IgG isotype Cytokine IgG isotype Cytokine 

Envgp120(IIIB) IgG1 IL-4 IgG1 IL-4 IgG1 IL-4 IgG1 N.D. 

Envgp120(IIIB)-C3d2 IgG1/IgG2a IL-4/IFN-γ IgG1 IL-4 IgG1 IL-4 IgG1 N.D. 

Envgp120(IIIB)-C3d3 IgG1/IgG2a IL-4/IFN-γ IgG1 IL-4 IgG1 IL-4 IgG1 N.D. 

†Mice were unvaccinated or vaccinated with DNA expressing the indicated vaccine 

 

 

Table 7. Affinity Maturation of Anti-Env Antibody 

 

Vaccine† CD1-1 Swiss BALB/c C57BL/6 C3H/He 

Envgp120(IIIB)-C3d2 2.50* 0.75 NT** 0.50 

Envgp120(IIIB)-C3d3 3.50 2.25 0.80 1.25 

† Assays used polled serum samples from each mouse group at a dilution with similar 
O.D. Data are representative of two independent experiments. 

* Activity of the anti-Env IgG raised by the Env DNA vaccines (isolate IIIB). Sera were 
analyzed from week 10 collection in an Env-specific NaSCN-displacement ELISA. 
Plates were coated with recombinant Envgp120(IIIB). 

** NT: Not tested. 
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Table 8. Splenocyte Proliferation 

 

CD-1 Swiss BALB/c C57BL/6 
Vaccine† 

Unstim Stim* Unstim Stim Unstim Stim 

Naive 27.0 29.5 34.1 38.4 33.2 33.2 

Envgp120(IIIB) 28.2 45.2 35.6 50.2 33.1 50.6 

Envgp120(IIIB)-C3d2 30.8 58.1 39.9 62.9 36.3 59.4 

Envgp120(IIIB)-C3d3 35.9 72.6 45.7 78.0 40.2 68.9 
 
† Mice were unvaccinated to vaccinated with DNA expressing the indicated vaccine. 
 
* Splenocytes were stimulated with 4 µg/ml of ecombinant Envgp120(IIIB) for 5 days 
 
 
 
IV.C.4.   Splenocyte proliferation 
 

All strains of mice vaccinated with DNA expressing Envgp120(IIIB)-C3d had significantly 

more anti-Env splenocytes than mice vaccinated with DNA expressing Envgp120(IIIB)  

(Table 8). After three inoculations (week 10), mice vaccinated with DNA expressing 

Envgp120(IIIB)-C3d3 had ~40% reduction of fluorescent intensity after 5 days for in vitro 

recombinant Envgp120(IIIB) stimulation indicating a high level of anti-Env specific 

splenocyte proliferation (Table 8). In contrast, splenocytes from mice vaccinated with 

Envgp120(IIIB)-DNA had significantly fewer cells proliferate in response to Env stimulation. 

Unstimulated splenocytes or splenocytes stimulated with influenza HA had little to no 

proliferation.  
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Supernatants were collected from each set of Env-stimulated splenocytes and were 

examined for the secretion of IL-4 (an indicator of a Th2 response) and INF-γ (an 

indicator of a Th1 response). Splenocytes from inbred mice vaccinated with Envgp120(IIIB) 

conjugated to two or three copies of C3d elicited higher levels IL-4 compared to inbred 

mice vaccinated with Envgp120(IIIB)-DNA (Table 6). Little, if any, INF-γ was detected in 

the supernatant from Env-stimulated splenocytes collected from inbred mice vaccinated 

with any of the DNA vaccines. In contrast, splenocytes from outbred mice, vaccinated 

with Envgp120(IIIB)-C3d-DNA, secreted both IL-4 and INF-γ (Table 6). However, the 

splenocytes from outbred mice vaccinated with Envgp120(IIIB)-DNA secreted 

predominately IL-4. Similar to the immunoglobulin subclass, inbred mice vaccinated 

with these Envgp120(IIIB)-DNA vaccines elicited primarily a Th2 response and that was 

enhanced by conjugating C3d to Envgp120(IIIB). In contrast, outbred mice vaccinated with 

Envgp120(IIIB)-C3d-DNA elicited a mixed T helper response. 

 

IV.D.  Discussion 

 

The use of DNA vaccines has the potential to revolutionize commercial vaccinology. 

However in several cases, DNA vaccines have not been as effective as live-attenuated 

vaccines (283-285). In order to improve the efficacy of DNA vaccination, previous 

studies from our laboratory have shown that the complement protein, C3d, when 

conjugated to an immunogen, can elicit high titer antibodies (84, 85, 127, 132, 138). Mice 

(BALB/c) vaccinated with DNA expressing Envgp120(IIIB) coupled to multiple copies of 

murine or human C3d elicit specific antibody titers 1–2 logs higher than mice vaccinated 
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with Envgp120(IIIB)-DNA (124, 132). Recently, Suradhat et al. (156) reported that two 

copies of murine C3d fused to bovine rotavirus (BRV) VP7 or bovine herpesvirus type 1 

(BHV-1) glycoprotein D (gD) did not enhance antibody titers to either antigen in 

C57BL/6 mice. Previously, our laboratory and others have used BALB/c mice to test the 

ability of C3d, conjugated to an antigen, to enhance of immune responses (84, 85, 128, 

135). Therefore, we tested whether mice with different H-2 haplotypes affected the 

ability of C3d to enhance immune responses.  

 

In this study, one outbred and three inbred strains of mice were vaccinated with DNA 

plasmids expressing the sgp120 protein of HIV-1 fused to murine C3d. All four mouse 

strains that were inoculated with DNA plasmids expressing Envgp120(IIIB)-C3d2 or 

Envgp120(IIIB)-C3d3 elicited similar high titer anti-Env antibodies (Figure 9). After three 

inoculations (week 10), the anti-Env titers ranged between 1:800 and 1:6400. Mice 

vaccinated with DNA plasmids expressing Envgp120(IIIB) had significantly lower anti-Env 

titers (<1:100 to 1:400).  

 

Even though the titer of anti-Env antibodies elicited by Envgp120(IIIB)-C3d-DNA in each of 

the four mouse strains tested was similar, IgG1 was the primary antibody isotype elicited 

by DNA expressing C3d conjugated vaccines in the inbred mice (Table 6). IgM was 

detected after the first vaccination, however, by week 6, after the second inoculation, the 

immunoglobulin class switched to almost exclusively IgG1 (data not shown). A similar 

immunoglobulin class switch was observed using vaccines expressing C3d conjugated to 

PPS14 from serotype 14 Streptococcus pneumoniae (128). In contrast to inbred mice, 
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outbred CD-1 mice vaccinated with Envgp120(IIIB)-C3d-DNA elicited similar levels of IgG1 

and IgG2a antibodies, indicating a mixed Th1/Th2 response (Table 6).  

 

In most natural populations of animals, high levels of genetic variation are the norm. 

Outbred populations have advantages over inbred organisms due to the heterozygosity of 

immune alleles. The genetic variation of inbred mouse strains is caused by many 

homozygous recessive mutations that may be detrimental to the organism, but do little 

harm when in an organism with heterozygous alleles. Therefore, mice with homozygous 

recessive alleles can have a detrimental effect on the immune response to a foreign 

antigen. Outbred mice vaccinated with DNA expressing Envgp120(IIIB) conjugated to 

multiple copies of C3d elicited higher avidity and different IgG isotypes compared to 

inbred mice. Previous reports have demonstrated that differences in antibody response 

induced by DNA vaccination depends on the H-2 haplotype of the mouse strain (305). In 

addition, antibody responses to vaccination are differentially regulated in aged mice from 

different genetic backgrounds (306). Also, outbred mice vaccinated with Envgp120(IIIB)-

C3d-DNA had splenocytes that proliferated more robustly and secreted both IL-4 and 

INF-γ in response to Env stimulation. Splenocytes from vaccinated inbred mice secreted 

primarily IL-4 and had a reduced proliferative response to in vitro Env stimulation. These 

results were consistent with higher levels of IL-4 observed in mice vaccinated with sHA-

C3d and S. pneumoniae PPS14-C3d (127, 128).  

 

The C3d receptor, CD21 or CR2, is located primarily on B-cells and follicular dendritic 

cells, however, reports have indicated that this receptor can be expressed on thymocytes, 
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subsets of CD4+ and CD8+ peripheral T cells, basophils, mast cells, keratinocytes, and 

epithelial cells (149). CR2 acts as a co-receptor for antigen receptor mediated signal 

transduction. On the surface of B-cells, binding of CR2 covalently links complexes of 

antigen with C3d ligand and results in a variety of enhanced immune outcomes, including 

the release of intracellular calcium and the proliferation and/or activation of mitogen-

activated protein kinases (120, 126, 307-309). Direct stimulation of B-cells by C3d fused 

antigens may lead to antigen-specific cellular proliferation and thereby directly leads to 

the enhancement of antibody production (120, 126, 307-309). In this study, DNA 

expressing Envgp120(IIIB)-C3d3 is likely to have supported the height of antibody responses 

by stimulating antibody production by B cells and expanding the pool of anti-Env 

specific B-cells (309). In addition, C3d conjugated antigen could lower both the 

concentration threshold and the affinity threshold for B-cell activation (120, 122) or C3d 

could have reduced B-cell apoptosis (121, 123).  

 

One of the more interesting results from this study was the enhancement of avidity 

maturation of anti-Env specific antibody by C3d in outbred mice compared to inbred 

mice (Table 7). Immunization with DNA expressing Envgp120(IIIB) coupled to multiple 

copies of murine C3d resulted in enhanced avidity maturation of anti-Env antibody. 

Previous studies have described the lengthy evolution of antibody responses to HIV 

infection (292, 310). Antibodies gradually mature over a period of months from low 

avidity to a higher avidity levels (292, 310). Avidity maturation occurs in germinal 

centers where the somatic hypermutation of immunoglobulin results in a large repertoire 

of Ag-specific B cells that undergo selection for high affinity B cell receptors. CR2-null 

 157



mice have impaired humoral immunity, including decreased affinity/avidity maturation 

and germinal center development (304). C3d may enhance the avidity of the anti-Env 

response by binding to CR2 on follicular dendritic cells (FDCs) and thereby aiding the 

entry of B cells producing anti-Env antibody into germinal centers. Prior studies on the 

avidity of DNA-raised, anti-Env antibodies have also revealed low avidity anti-Env 

antibodies (292). The heavily glycosylated Envgp120 protein allows for the protein to 

remain "non-immunogenic" in response to immune pressure during chronic HIV 

infection (311, 312). The formation of germinal centers, which are critical for antibody 

maturation, could be impeded by the glycosylation of Env (312). C3d may help Env 

overcome this limitation by directing Envgp120(IIIB)-C3d immunogens to FDC and enhance 

germinal center formation leading to enhanced avidity maturation. Outbred mice may 

have a genetic background that allows for C3d to enhance the maturation of antibodies 

elicited to C3d conjugated antigens compared to inbred mice. C3d may also assist in 

trafficking fused antigens to sites in the spleen where germinal centers form by binding to 

CD21 on FDC. Additional studies will be required to address the mechanisms of C3d 

enhancement and determine if C3d is advancing germinal center formation in these 

vaccinated mice.  

 

Recently, our laboratory and others have demonstrated that C3d can enhance antibody 

responses directed towards a specific antigen by a DNA vaccine (84, 85, 126-128, 132, 

135, 138, 156). DNA vaccines expressing secreted HA molecules from either influenza 

or measles virus or the HIV-1 envelope fused murine C3d3 achieved an earlier and more 

efficient immune response compared to non-C3d fused antigens (84, 127). In this report, 
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we demonstrated that the outbred mouse strain, CD-1 Swiss, vaccinated with DNA 

expressing C3d conjugated to sgp120 elicited similar titers of anti-Env antibodies as 

vaccinated inbred strains. However, a mixed T helper immune response was elicited in 

the outbred mice vaccinated with DNA expressing C3d conjugated to Envgp120(IIIB) and a 

Th2 biased response was elicited in all three inbred strains. In addition, the avidity of the 

elicited antibody in the outbred strain was enhanced compared to inbred strains. These 

results may have implications for the use C3d conjugated vaccines in outbred primate 

populations.  
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C3d functions as a molecular adjuvant in the absence of CD21/35 expression 
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V.A. Introduction 

 

Complement is a key component of the innate immune system that can also influence 

humoral immune responses. Upon activation, C3 cleavage products form covalent bonds 

with foreign antigens, thereby generating ligands such as C3dg and C3d (a proteolytic 

fragment of C3dg) that engage CD21/CD35 complement receptors expressed by mature 

B-cells and follicular dendritic cells (FDCs). Deficiencies in either C3 or the common 

gene that generates leukocyte complement receptors 1 (CD35) and 2 (CD21) result in 

impaired antibody responses in mice (130, 313-318). Moreover, covalently linking C3d 

fragments to antigens results in a potent adjuvant effect. In the first demonstration of this, 

fusing multiple copies of C3d to hen egg lysozyme (HEL) lowered the dose of antigen 

required for antibody responses by at least 1000-fold in transgenic mice expressing B-cell 

antigen receptors (BCR) specific for HEL (126). Likewise, immunization of wild-type 

mice with DNA-based vaccines encoding HIV-1 Envgp120 fused to multiple copies of C3d 

results in higher antibody responses with enhanced avidity maturation when compared 

with Envgp120 immunization alone (85, 132). Mice immunized with either influenza or 

measles virus hemagglutinin fused to multiple copies of C3d also generate more rapid 

antibody responses and higher neutralizing titers (as high as 8-fold greater) than mice 

immunized with either antigen alone (84, 127, 138). Finally, antibody titers and isotype 

switching in response to pneumococcal capsular polysaccharide type 14 are enhanced 

when pneumococcal capsular polysaccharide type 14 is conjugated to C3d (128). C3d is 

 161



therefore an effective molecular adjuvant that appears safe and acceptable for use in 

vaccines.  

 

C3d is proposed to function as a molecular adjuvant by efficiently targeting antigens to 

CR2 (CD21), which interacts with CD19 to regulate transmembrane signals during B cell 

activation (48, 319). Because a direct role for CR2 in this process has never been 

demonstrated, the importance of CR2 receptor engagement in mediating the 

immunostimulatory effects of C3d was assessed in mice completely deficient in CR2 

(CR2-/-) expression (130, 320). Notably, B cells from CR2-/- mice do not bind streptavidin 

(SA)-C3dg tetramers, which are formed by the attachment of four mono-biotinylated 

C3dg molecules to SA (129, 130). However, C3dg tetramers effectively reveal CR2 

ligand binding in wild-type mice and exhibit functional activity on normal, but not CR2-/- 

B-cells, including augmentation of anti-IgM-mediated intracellular Ca2+ flux and 

activation of p38 mitogen-activated protein kinase (129, 130). To investigate the role that 

C3d-CR2 interactions play in humoral responses to C3d-antigen conjugates, CR2-/- mice 

were immunized with SA and recombinant HIV-1 envelope glycoprotein gp120 (isolate 

IIIB) (Envgp120(IIIB)), either alone or complexed to C3d. Unexpectedly, antibody responses 

to SA and Envgp120(IIIB) were significantly augmented in CR2-/- mice when these proteins 

were complexed with C3d in comparison to antigen alone. Thus, C3d can function as a 

molecular adjuvant through CR2 receptor-independent pathways.  
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V.B. Materials and Methods 

 

V.B.1.  SA-C3dg and SA-Chicken -Globulin (CGG) Formation  
 

Biotinylated C3dg was produced and purified as described (129). Purified C3dg was 

treated with polymyxin B-agarose (Sigma-Aldrich, St. Louis, MO). Endotoxin 

contamination was determined to be <0.028 endotoxin U/µg of C3dg (Pyrogent Plus; 

BioWhittaker, Walkersville, MD; Lineberger Comprehensive Cancer Center Cell Culture 

Facility, Chapel Hill, NC). To form SA-C3dg tetramers and SA-CGG complexes for 

injections, 40 µg of biotinylated C3dg or CGG (Sigma-Aldrich) was incubated with 10 

µg of SA (Sigma-Aldrich) in 200 µl of PBS for 45 min at room temperature.  

 

V.B.2.  Envgp120(IIIB) DNA Constructs, Protein Expression, and Purification  
 

DNA plasmids encoding soluble Envgp120(IIIB) and Envgp120(IIIB) fused to three copies of 

murine C3d (Envgp120(IIIB)-C3d3) were expressed in HEK 293T cells as described (85). 

Recombinant Envgp120 proteins were purified using a HiTrap chelating nickel column 

using the N-terminal (6X)-Histidine tag (Amersham Biosciences, Piscataway, NJ). DNA 

vaccine plasmids encoding soluble Envgp120(IIIB) alone or fused to two or three copies of 

murine C3d (Envgp120(IIIB)-C3d2–3) for use in DNA immunizations were as described (85).  

 

V.B.3. Mice  
 

CR2-/- (CD21/35-/-) mice were as described (130). Eight- to 10-week-old CR2-/- and wild-

type littermates on a mixed B6/129 background were used in SA immunizations. 
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C57BL/6 wild-type mice and CR2-/- mice backcrossed six to seven times onto the 

C57BL/6J background were used in Envgp120(IIIB) protein and DNA immunizations. Mice 

were housed under specific pathogen-free conditions. All procedures conformed to Duke 

University Animal Care, Use Committee guidelines and USDA. 

 

V.B.4.  Immunizations  
 

SA (10 µg) was administered alone or complexed with either biotinylated C3dg (129) or 

biotinylated CGG intravenously (IV) in 200 µl of PBS. For Envgp120 protein 

immunizations, recombinant Envgp120 (50 µg) was administered alone or fused with 

murine C3d3 IV in 200 µl of PBS. DNA immunizations were performed on shaved 

abdominal skin using the hand-held Bio-Rad (Hercules, CA) Gene Delivery System as 

described (85). Mice received two immunizations at each time point, each containing 1 

µg of DNA plasmid encoding soluble Envgp120(IIIB), Envgp120(IIIB)-C3d2, or Envgp120(IIIB)-

C3d3 per 0.5 mg of 1-µm gold beads (Bio-Rad) at a helium pressure setting of 400 psi.  

 

V.B.5. ELISAs  
 

SA or Envgp120(IIIB)-specific antibodies were quantified by coating 96-well plates with SA 

(5 µg/ml; 100 µl/well) or recombinant Envgp120(IIIB) (0.3 µg/ml; 100 µl/well) in 0.1 M 

borate buffered saline overnight at 4°C. Plates were washed in TBS and blocked with 

TBS containing 1% gelatin/2% BSA for 90 min at 37°C. Sera were diluted 1/250 in TBS 

containing 1% BSA and incubated in duplicate wells at room temperature for 90 min. 

Plates were washed using TBST and incubated with alkaline phosphatase-conjugated 
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polyclonal goat anti-mouse IgG, IgG1, IgG2a, IgG2b, IgG3, or IgM antibodies (Southern 

Biotechnology Associates, Birmingham, AL) for 1 h at room temperature. Plates were 

developed using p-nitrophenyl phosphate substrate (Southern Biotechnology Associates) 

with O.D. 405 values determined.  

 

End-point titers of anti-SA IgG antibodies were determined using 3-fold serial dilutions 

of serum samples. End-point titers were determined as the reciprocal dilution of sera 

yielding an O.D. 405 value that was 3-fold higher than background O.D. values where 

sera was omitted. End-point anti- Envgp120 IgG titers were assessed using recombinant 

Envgp120 as described (85, 132). Briefly, plates were coated with Envgp120(IIIB) (0.3 µg/ml) 

overnight at 4°C, blocked with 5% non-fat dry milk in PBS containing 0.05% Tween 20 

for 1 h at 25°C, and washed with PBS containing 0.05% Tween 20. Plates were incubated 

with 2-fold serial dilutions of sera for 1 h, washed, and incubated with biotinylated anti-

mouse IgG antibodies followed by SA-conjugated HRP (Southern Biotechnology 

Associates). Plates were developed using tetramethylbenzidine substrate (Sigma-

Aldrich). End-point titers were determined as the reciprocal dilution of sera yielding an 

O.D. value that was 2-fold higher than O.D. values measured for serum samples from 

control mice immunized with vector alone.  

 

V.B.6.  ELISPOT Assays  
 

Immobilon-P Multiscreen 96-well plates (Millipore, Bedford, MA) were precoated with 

SA (5 µg/ml). Bone marrow and spleen cells were plated at 104, 105, or 106 cells per well 

in 100 µl of culture medium (RPMI 1640 containing 10% FCS, 10 mM glutamine, 100 
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U/ml penicillin/streptomycin, and 55 µM 2-ME) for 18 h at 37°C in a CO2 incubator. 

The plates were washed three times with TBST, incubated with polyclonal alkaline 

phosphatase-conjugated goat anti-mouse IgG antibodies for 2 h at room temperature, 

washed, and developed for 30 min using nitroblue tetrazolium/5-bromo-4-chloro-3-

indolyl phosphate substrate (Sigma-Aldrich).  

 

V.B.7.  Statistical Analysis  
 

Data are shown as means ± SEM. Student’s t test was used to identify significant 

differences between sample means.  

 

V.C. Results 

 

V.C.1. C3d Augments Primary and Secondary Antibody Responses to SA in CR2-/-Mice  
 

CR2-/- and wild-type littermates were immunized with 10 µg of SA protein, either alone 

or complexed with biotinylated C3dg. SA immunization resulted in modest IgM and IgG 

responses in both CR2-/- and wild-type littermates (Figure 10A). By comparison, SA-

C3dg induced significant IgM and IgG anti-SA antibody responses in both CR2-/- and 

wild-type littermates (Fig. 1A), without inducing anti-C3dg antibody responses (data not 

shown). Seven days after SA-C3dg immunization, SA-specific IgM responses were 

significantly higher in both CR2-/- and wild-type mice (p < 0.05). IgG responses were 

also significantly higher in both CR2-/- and wild-type littermates at days 14–28 following 

SA-C3dg immunization relative to SA-immunized mice (p < 0.05). An analysis of serum 

 166



antibody titers generated similar conclusions: SA-specific IgG responses were 50-fold 

higher in CR2-/- and wild-type littermates receiving SA-C3dg compared with SA alone 

(Figure 10A). Although CR2-/- mice responded well to SA-C3dg immunization, they had 

lower mean SA-specific IgM and IgG titers than wild-type littermates (Figure 10A). 

Thus, CD21/35 deficiency impairs humoral immune responses to soluble protein Ags as 

described (130, 313, 314). Despite this, C3dg functioned as a molecular adjuvant in the 

absence of CR2-/- expression.  

 

Whether SA-C3dg immunization augmented secondary anti-SA antibody responses was 

assessed in CR2-/- and wild-type littermates that had been immunized with SA alone or 

SA-C3dg on day 0. Mice immunized and boosted with SA on days 0 and 120, 

respectively, did not generate significant IgM or IgG responses (Figure 10B). By 

contrast, both CR2-/- and wild-type littermates first immunized with SA-C3dg generated 

significantly higher secondary IgM and IgG responses following the SA boost (p < 0.05) 

than mice first immunized with SA alone. IgM antibody responses following SA boosting 

were lower (p < 0.05) in CR2-/- mice compared with their wild-type littermates, although 

IgG responses were similar. In fact, CR2-/- and wild-type littermates immunized with SA-

C3dg at day 0 had IgG titers on day 128 that were >2,500-fold higher than those of mice 

immunized and boosted with SA alone (Figure 10). Likewise, the frequencies of SA-

specific IgG-secreting cells were 10-fold higher in spleens of CR2-/- and wild-type 

littermates immunized with SA-C3dg compared with mice receiving SA alone (Figure 

10C). SA-specific IgG-secreting cell frequencies were also 3- to 6-fold higher in the bone 

marrow of SA-C3dg-immunized CR2-/- and wild-type littermates, respectively. In 
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summary, administration of C3dg-antigen complexes during primary immunization 

elicited long-lasting antigen-specific IgG production during the primary response and 

significantly enhanced the secondary antibody response to antigen alone. However, C3d 

enhancement of the antibody response to SA occurred through a pathway that was largely 

independent of CR2 expression.  
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Figure 10. C3d Enhances Humoral Responses in CD21/35–/– and Wild-Type Mice. 
 
A) CR2-/- and wild-type (WT) littermates were immunized with SA protein (10 µg) either 
alone or complexed with biotinylated C3dg (SA-C3dg) on day 0, with serum SA-specific 
IgM and IgG antibody levels quantified by ELISA. In the right panel, SA-specific IgG 
titers are shown for pooled sera harvested 21 days postimmunization. 
B) Secondary SA-specific antibody responses by CR2-/- and wild-type littermates. Mice 
immunized with SA alone or SA-C3dg on day 0, were boosted at day 120 with 10 µg of 
SA alone. SA-specific IgG titers are shown for pooled serum samples harvested 7 days 
after the SA boost. A and B values represent the mean O.D. (±SEM) from four to five 
mice per group. *, Significant differences (p < 0.05) between CR2-/- and wild-type 
littermates immunized with SA-C3dg. #, Significant differences (p < 0.05) between mice 
of the same genotype immunized with SA-C3dg compared with SA alone.  
C) Antibody-forming cell (AFC) frequencies in naive and immunized CR2-/- and wild-
type littermates 7 days after a SA boost on day 120. 
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Figure 11. HIV Envgp120(IIIB)-specific Antibody Responses of CR2-/- and Wild-Type 
(WT) Mice Following Immunization with Envgp120(IIIB) Alone or Envgp120(IIIB)-C3d2–3.  

 
A) Mice were immunized on days 0 and 28 with Envgp120(IIIB) protein (50 µg) either alone 
or with three attached copies of C3d. Serum Envgp120(IIIB)-specific IgM and IgG antibodies 
were quantified by ELISA. Values represent the mean O.D. (±SEM) from four to five 
mice per group.  
B) IgG titers of serum from the CR2-/- and wild-type mice shown in A.  
C) HIV Envgp120(IIIB)-specific antibody responses of CR2-/- and wild-type mice following 
immunization with DNA encoding Envgp120(IIIB) alone, Envgp120(IIIB)-C3d2, or Envgp120(IIIB)-
C3d3. Mice were immunized with plasmid DNA at week 0, 4, and 8. Values represent 
mean IgG titers (±SEM) obtained for four to five mice per group at week 10. Titers 
determined to be at or below a dilution of 1/100 are indicated as <100. *, Significant 
differences (p < 0.05) between means of CD21/35–/– and wild-type mice immunized 
with gp120-C3d3. #, Significant differences (p < 0.05) between means for mice of the 
same genotype immunized with gp120-C3d2–3 compared with gp120 alone. 
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V.C.2. C3d Augments Humoral Responses to Envgp120(IIIB) in CR2-/- Mice  
 

CR2-/- and wild-type mice were immunized with 50 µg of Envgp120(IIIB) protein, either 

alone or fused with three copies of murine C3d in tandem at the C terminus (85, 132). 

Wild-type mice immunized with either Envgp120(IIIB)-C3d3 or Envgp120(IIIB) generated 

similar primary and secondary IgM and IgG responses (Figure 11 A and B). Because the 

effectiveness of C3d as a molecular adjuvant is dependent on the nature of the antigen 

itself, the dose of antigen, and the route of immunization (84, 127), it was not surprising 

that Envgp120(IIIB)-specific responses were similar in wild-type mice immunized with 

Envgp120(IIIB)-C3d3 and Envgp120(IIIB) proteins. By contrast, Envgp120(IIIB) immunization 

generated low primary IgM and IgG responses in CR2-/- mice, although Envgp120(IIIB)-

C3d3 immunization generated elevated titers of gp120-specific IgG in CR2-/- mice by day 

28 (Figure 11 B). However, secondary Envgp120(IIIB)-specific IgG responses were near 

wild-type levels in CR2-/- mice immunized with Envgp120(IIIB)-C3d3 (Figure 11 A). In 

fact, secondary Envgp120(IIIB)-specific IgG end-point titers were at least 150-fold higher in 

CR2-/- mice immunized with Envgp120(IIIB)-C3d3 compared with Envgp120(IIIB) alone (Figure 

11 B). Anti-C3d antibody responses were not detected in Envgp120(IIIB)-C3d3-immunized 

mice (data not shown). Immunization of mice with DNA-based vaccines encoding 

Envgp120(IIIB)-C3d2 or Envgp120(IIIB)-C3d3 also resulted in increased Envgp120(IIIB)-specific 

antibody responses compared with immunization with Envgp120(IIIB) alone in both wild-

type (by ~8-fold; p < 0.05) and CR2-/- (by ~1.5- to 2-fold; NS) mice (Figure 11 C). 

However, Envgp120(IIIB)-specific responses were much weaker than those obtained with 

direct protein immunizations (Figure 11 B vs C). Nonetheless, C3d enhanced 
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Envgp120(IIIB)-specific IgG responses in CR2-/- mice despite their impaired primary and 

secondary antibody responses to Envgp120(IIIB).  

 

V.C.3. CGG Augments Humoral Responses to SA in CR2-/- Mice  
 

To compare the effect of C3dg on the immune response to SA to that resulting from 

complexing SA to a well-characterized immunogenic carrier protein, CR2-/- and wild-

type mice were immunized with SA-CGG complexes. SA-C3d tetramers significantly 

augmented SA-specific IgM and IgG antibody responses in both wild-type and CR2-/- 

mice to levels similar to those elicited by SA-CGG complexes (Figure 12), although 

differences in anti-SA-specific antibody isotypes were observed. Thus, C3dg and CGG 

similarly augment the overall magnitude of antibody responses in both the presence and 

absence of CR2 expression.  

 

V.D. Discussion 

 

This study confirms that C3d can function as a molecular adjuvant during humoral 

immune responses to Ags administered either directly as proteins (SA and Envgp120) or as 

DNA vaccines (Envgp120). Unexpectedly, C3d could also function as an effective adjuvant 

in the absence of CR2 expression. Antibody responses to SA and Envgp120 were 

significantly impaired in CR2-/- mice, confirming the importance of CR2 expression in 

antibody responses to antigens administered in the absence of adjuvants (130, 313, 314). 

However, IgG antibody responses to SA-C3dg and Envgp120(IIIB)-C3d were significantly 

augmented in CR2-/- mice in comparison to these antigens given without C3d. These 
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effects were also reflected in the enhanced frequencies of SA-specific antibody-

producing cells in CR2-/- mice immunized with SA-C3dg tetramers compared with mice 

immunized with SA alone (Fig. 1C). Thus, C3d can function as an adjuvant through 

pathways that are independent of CR2 receptor expression.  

 

C3d can function as a natural adjuvant for a number of physiologically important 

immunogens, including HIV Envgp120, viral hemagglutinin, and pneumococcal 

polysaccharide (84, 85, 127, 128, 132, 138). In all cases, C3d has been postulated to 

augment humoral responses by targeting antigen complexes to B cells and follicular 

dendritic cells that express CR2-/-. On B cells, coligation of the BCR and the CD19/CR2 

(CD21) complex by C3d-antigen complexes is proposed to lower the signaling threshold 

required for B cell activation and expansion (120, 321, 322). Although Dempsey et al. 

(126) originally proposed that the adjuvant effect of C3d bound to antigen was mediated 

through coligation of the CD19/CR2 complex with a HEL-specific BCR, the only direct 

evidence supporting this conclusion was that pretreatment of mice with an antibody 

against CR2 suppressed the effect elicited by C3d. However, although anti-CR2 mAb 

treatment is known to inhibit humoral immune responses to a variety of Ags (323-325), 

anti-CR2 monoclonal antibody treatment may have effects on B-cell function beyond 

blocking C3d binding (326). In the current study, the importance of CR2 expression in 

mediating C3d effects was examined using CR2-/- mice (130), whereas the study by 

Dempsey et al. (126) used transgenic mice where all B-cells expressed high-affinity 

antigen-specific BCRs. Thus, differences in conclusions between our current study and 

those of Dempsey et al. may be explained by differences in experimental approach. 
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Moreover, our data do not discount the model first proposed by van Noesel et al. (327) 

and evoked by Dempsey et al. (126) for CR2 function, because CR2 expression is 

important for optimal humoral immune responses, and immunization with C3d-

conjugated antigens did not always restore immune responses of CR2-/- mice to wild-type 

levels (Figure 10 and Figure 11). Thus, there may be CR2-dependent pathways through 

which C3d functions, in addition to the CR2-independent pathways revealed in the 

current study.  

 

Although the precise mechanisms through which C3d functions as a molecular adjuvant 

remain to be elucidated, several hypotheses can be offered. First, C3d interacts with 

numerous serum proteins, cell surface receptors, and membrane-associated regulatory 

proteins (328-332). Thus, C3d aggregates may bind antigen complexes to proteins that 

are distinct from CR2 to enhance humoral responses. Alternatively, attachment of C3d to 

antigens could prolong the in vivo half-life of antigen, perhaps by forming molecular 

aggregates or facilitating molecular interactions. Finally, C3d could function as a simple 

protein carrier. In support of this, OVA functions as an adjuvant for pneumococcal 

polysaccharide in a manner similar to C3d (128). Similarly, SA-C3d tetramers or SA-

CGG complexes significantly augmented anti-SA antibody responses in both wild-type 

and CR2-/- mice to similar levels (Figure 12). However, C3d was not immunogenic and 

did not elicit anti-C3d antibody production, unlike CGG. Thus, although both C3dg and 

CGG were effective adjuvants in CR2-/- and wild-type mice, they may function through 

distinct pathways. Given the unexpected finding that C3d augments humoral immune 

responses through CR2-independent pathways, understanding the mechanisms of C3d 
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action may provide important insight into the identity of other molecules with adjuvant 

activity that will allow the design of even more potent vaccines.  

 
 

 
 
 
 
 

Figure 12. C3d and CGG Enhance Humoral Responses in CR2-/- and Wild-Type 
Mice. 
  
CR2-/- and wild-type (WT) littermates were immunized with SA protein (10 µg) either 
alone or as SA-C3dg or SA-CGG, with serum SA-specific IgM (day 7) and IgG or IgG 
isotype (day 21) antibody levels quantified by ELISA. Values represent the mean O.D. 
(±SEM) from three to five mice per group. *, Significant differences (p < 0.05) between 
mice of the same genotype immunized with SA-C3dg or SA-CGG compared with SA 
alone. 
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VI. Chapter 6: Specific Aim III 
 

 

 

 

 

 

 

 

Mild enhancement of secondary humoral immune responses by C3d reduces 

morbidity and mortality in CD4+ T-cell deficient mice 
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VI.A.  Introduction 

 

It is generally accepted that T cell-dependent (TD) humoral immune responses play an 

important role in the clearance of several virus infections. Furthermore, these immune 

responses are important for preventing disease upon secondary infection. In contrast, the 

role of T-cell independent (TI) immune responses has not been clearly explored. TD 

immune responses require the critical interaction of antigen-specific TRCαβ+ CD4+ T-

cells [CD4+ helper T-cells (Th)] with activated B-cells (333). The “help” provided by 

CD4+ helper T-cell includes signaling through surface molecules (CD40 ligand and 

CD28, on the surface of the T-cell; CD40 and B7 on the surface of B-cells) and the 

production of multiple cytokines (e.g. IL-4, IFN-γ, TGF-β, TNF-α, IL-5, IL-13, etc) 

(334). The consequences of this “help” include antibody production, induction of class 

switch recombination (IgG, IgA and IgE) and differentiation into plasma B-cells. On the 

other hand, T-cell independent (TI) antigens can stimulate B-cells in the absence of 

CD4+ helper T-cells (335, 336). These antigens are large molecules with repetitive 

antigenic structures that bind and stimulate several surface immunoglobulin (Ig) M 

(sIgM) molecules, which redundantly trigger the B-cell activation. Consequently, TI 

antigens induce Ig production, class switch and secretion in the absence of CD4+ T-cell 

help. The antibodies produced by TI are not as efficient as those induced by TD antigens; 

however, their importance for prevention of primary viral infection and resolution has 

been proven in various animal models (337, 338). TI immune response can be optimized 

by T-cells and other immune cells, such as NK, NK-T cells or γ/δ T-cells, which produce 
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cytokines (e.g. IFN-γ, TGF-β, IL-5) in the presence of TI antigens (339, 340). The 

cytokines produced by the latter cells may be the dominant ones in TI immune response 

induction. 

 

It has been reported that some viruses induce TI immune responses (e.g. polyomavirus, 

rotavirus, vesicular stomatitis virus) in animal models deficient in CD4+ T-cells. Virus 

infection of these mice has lead not only to secretion of IgM, but also to Ig class switch 

(IgG and IgA). Furthermore, in some models of disease these antibodies mediate 

protection from lethal virus challenge (337, 341, 342). The structure of these viral 

antigens shows high repetitiveness, which resembles that of classic bacterial TI antigens. 

However, it seems that the whole viral structure is needed to induce class switch 

recombination as protein (subunit) or virus-like particles immunizations using these viral 

antigens did not induce class switch (342). Recent studies demonstrated the importance 

of TI humoral immune responses in influenza virus infections since these immune 

responses helped in the resolution of primary infections and prevented reinfections  

(338). In the case of influenza, live as well as inactivated viral particles, are able to 

induce TI immune responses. Both were able to induce IgM secretion and Ig class switch 

recombination to IgG and IgA (338, 343). Furthermore, infection of CD4+ T-cell 

deficient mice with a sublethal dose of influenza virus (A/PR/8/34 –H1N1) induced the 

production of not only specific IgG antibodies, but also protected mice from a subsequent 

lethal challenge (344). 
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The final degradation product of the third component of complement, C3d, acts as an 

adjuvant to enhance immune responses to several viral antigens (e.g. hemagglutinin from 

influenza virus and envelope from HIV-1). Chimera proteins expressing viral antigens to 

three tandem copies of C3d have been generated and used in DNA or protein 

immunizations (84, 85, 127, 132, 133, 135, 138, 275). The receptor for C3d, complement 

receptor 2 (CR2/CD21), is present on the surface of follicular dendritic cells (FDC), B-

cells and in some subsets of T-cells (108, 109, 115, 119, 322). C3d conjugated antigens 

stimulate B-cells by co-ligating sIgM and CR2 resulting in activation of two cross-talking 

signaling pathways that synergize cell activation (46, 48, 105, 119, 124, 308, 345). As a 

consequence, C3d reduces the amount of antigen needed to activate the B-cell and 

enhances the amount of antibodies secreted (90). 

 

TI antigens, with their repetitive antigenic structure, stimulate several sIgM molecules 

and thus redundantly trigger B-cell activation. In contrast, antigens fused to C3d co-ligate 

the sIgM and several CR2 molecules, which activate signaling pathways that cross-talk 

and activate the B-cell. Therefore, in the present study, a soluble form of hemagglutinin 

from influenza virus was fused to three tandem copies of C3d (sHA-C3d3). These 

proteins were evaluated in their ability to 1) mimic the repetitiveness of TI antigens and 

thus induce an Ig class switch, and 2) protect mice from a lethal virus challenge, in the 

absence of CD4+ T-cells. The results indicated that sHA-C3d3 induced IgG class switch 

only in 20% of the immunized animals. However, these weak secondary humoral 

immune responses, possibly in conjunction with other innate immune responses 

stimulated by C3d, reduced morbidity and mortality following lethal virus challenge. 
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VI.B. Materials and Methods 

 

VI.B.1.   Plasmids 
 
A soluble form of hemagglutinin (sHA) (A/PR/8/34 –H1N1) with a 6X(His) tag at the 3’ 

end was engineered by PRC amplification from a DNA copy of this gene. The PCR 

products were cloned in a transition vector, Topo 2.1 (Invitrogen Life Technologies, 

Carlsbad, CA, USA) following the recommendations of the manufacturer (Invitrogen 

Life Technologies, Carlsbad, CA, USA).  Later, the gene sHA-6X(His) was cloned into 

the expression vector TR600 (84, 133), in frame with its tPA leader sequence, using the 

unique restriction sites NheI/BamHI, generating the plasmid psHA-6(X)-His (Table 4). 

 

A second Topo 2.1 plasmid encoding sHA-10X(His) was generated as described above. 

This gene was later cloned in front of 3 copies of C3d and in frame with the tPA leader 

sequence of a TR600 vector that encodes for these elements. The unique restriction sites 

used were NheI/BamHI and this generated the plasmid psHA-10(X)-His-C3d3 (Table 4).  

 

DNA Plasmids were amplified in Escherichia coli DH5-α; purified by using endotoxin-

free, anion-exchange resin columns (Qiagen, Valencia, CA, USA); resuspended in 

distilled water and stored at -20 C. Purity of DNA preparations were determined based on 

the optical density (O.D.) using 260 and 280 nm ultraviolet wavelength. 
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psHA-6(X)-His and psHA-10(X)-His-C3d3 were assayed for expression by transfecting 

HEK 293T cells.  Transfections were performed in six-well plates (~ 500,000 cells/well) 

using Lipofectamine 2000 reagent (Invitrogen Life Technologies, Carlsbad, CA, USA) 

and Opti-MEM I reduced serum media (Gibco, Grand Island, NY, USA), following the 

recommendations of the manufacturers. Supernatants and cells lysates were collected 72 

hours later and analyzed by westernblot. 

 

Supernatants (1%) and cell lysates (2%) were diluted in SDS sample buffer and loaded 

onto SDS-polyacrylamide gels (5% stacking; 10% resolving) and run for 2 hours (100 

Volts). The resolved proteins were transferred onto PVDF membranes (Millipore, 

Bedford, MA, USA) (0.2 mA, 2 hours) and incubated with rabbit anti-A/PR/8/34 sera 

1:5000 (2 hours). Bound rabbit antibodies were detected using goat anti-rabbit IgG 

antisera conjugated to HRP (1:7000) (1hour) (Southern Biotechnology, Birmingham, AL, 

USA), followed by enhanced chemiluminiscence (Pierce Biotechnology, Rockford, IL, 

USA). 

 

VI.B.2. Protein Purification 
 

In order to purify proteins, transfections of HEK 293T cells were up-scaled to T-75 

flasks. Briefly, HEK 293T-cells were grown in complete Dubelcco’s Modified Media 

(cDMEM) [DMEM supplemented to contain 10% heat-inactivated fetal bovine serum 

(FBS) (Atlanta Biologicals, Atlanta, GA, USA), 4 mM L-glutamine (Invitrogen Life 

Technologies, Carlsbad, CA, USA), and 0.4 mg/L gentamicine (Gibco, Grand Island, 

NY, USA)] until 90% confluency. psHA-6(X)-His and psHA-10(X)-His-C3d3 were then  
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transfected using Lipofectamine 2000 reagent (Invitrogen Life Technologies, Carlsbad, 

CA, USA) and Opti-MEM I reduced serum media (Gibco, Grand Island, NY, USA). In 

one reaction (Tube A), 500 ul of Opti-MEM I reduced serum media were mixed with 20 

µl of Lipofectamine 2000 and incubated for 5 minutes at room temperature. In a second 

reaction (Tube B), 500 µl of Opti-MEM I reduced serum media were mixed with 8 µg of 

plasmid DNA.  Tubes A and B were mixed (Master Mix) and incubated at room 

temperature for 25 minutes. Media was removed from HEK 293T cells and 5 ml of fresh, 

warmed Opti-MEM I reduced serum media were added, followed by the Master Mix. 

Cells were incubated for 6 hours at 37 C/ 5% CO2 and 5 ml extra of fresh, warmed Opti-

MEM I reduced serum media were added. Flasks were incubated for 72 hours (37 C/ 5% 

CO2) and supernatants were harvested. A protease inhibitor cocktail for purification of 

His-tagged proteins was added (2.5 µl/ml) (Sigma, St. Louis, MO, USA). Supernatants 

were stored at -80 °C until protein purification. 

 

Supernatants were pooled and proteins (sHA and sHA-C3d3) were purified at 4 °C using 

a 5 ml HiTrap chelating nickel column (Amersham Biosciences, Piscataway, NJ, USA). 

A peristaltic pump (Econo-Pump) (Bio-Rad, Hercules, CA, USA) at a flow rate of 5 

ml/min was used for the procedure. The Storing Solution (20% ethanol in distilled water) 

of the HiTrap column was removed. The column was loaded with 5 ml of 0.1 M NiSO4 

(Fisher Scientific, Fair Lawn, NJ, USA) and subsequently washed with 15 ml of distilled 

water. The HiTrap column was equilibrated with 30 ml of Binding Buffer (20mM 

phosphate, 0.5 M NaCl and 10 mM imidazole (Sigma, St. Louis, MO, USA)). 

Supernatants containing His-tagged proteins were gently thawed, pooled and loaded in th 
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equilibrated HiTrap column at a rate of 5ml/min. The column was then washed with 30 

ml of Binding Buffer.  Subsequently the proteins were eluted using 15 ml of Elution 

Buffer (20 mM phosphate, 0.5 M NaCl and 500 mM imidazole). The eluted fraction, 

containing the purified protein, was concentrated immediately. The column was washed 

with 30 ml of Binding Buffer and the nickel ions were removed using 25 ml of Cleaning 

Solution (20mM sodium phosphate, 0.5 M NaCl, 0.05 M EDTA (Merk, Darmstadt, 

Germany), pH 7.4). Finally, HiTrap columns were filled with Store Solution and kept at 

4°C. Samples of all the protein purification fractions were collected and analyzed by 

western blot. 

 

The fraction containing the purified protein was concentrated using 30,000 to 100,000 

molecular weight cut-off columns (MWCO) (Vivascience, Hannover, Germany). Briefly, 

the sample was loaded in the concentration columns and centrifuged for 30-45 min (3,000 

g, 14°C) (Sorvall, Asheville, NC, USA). The flow-trough was decanted and the protein 

was washed twice with 15 ml of PBS (buffer exchange). The final volume in which the 

protein was resuspended was ~1.5 ml. The purified, concentrated and buffer exchanged 

protein was stored at -80°C. 

 

VI.B.3.  Animals and immunizations 
 

A MHC class II knock-out (MHC II-/-) mouse model that results in absence of CD4+ T-

cells was selected (282) (Taconic, Hudson, NY, USA). Eight to ten week-old females 

MHC-/- mice were immunized by tail vein (I.V.) injection with a 20 µg of sHA in a total 

volume of 100 µl. sHA-C3d3 immunizations were normalized for the immunogenic 
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portion (20 µg of sHA). Animals were primed at day 0 and boosted at weeks 4 and 9. 

Mice were housed according to the regulation of the IACUC of the University of 

Pittsburgh and the USDA. Food and water were provided ad lividum.  Sera samples were 

collected every two weeks by retro-orbital plexus puncture in mice anesthetized with 

0.05-0.08 ml of a mixture of ketamine-HCl (100 mg/ ml) and xylazine (20 mg/ ml) 

[ketamine/xylazine].  Collected samples were stored at -20 ºC. 

 

VI.B.4.  ELISA 
 

Antigen-specific antibody titers were determined by endpoint dilution ELISA.  To 

determine anti-sHA antibodies, microtiter plates (96-well) were coated with sHA 

(A/PR/8/34) containing supernatants from transiently transfected HEK 293T cells.  Plates 

were incubated overnight at 4 ºC and then blocked with 5 % nonfat dry milk in 1X 

PBS/0.05% Tween (PBS-T) (2 h).  After extensive washing with PBS-T, antiserum 

collected from vaccinated mice was serially diluted (initial dilution 1:50) in 5 % nonfat 

dry milk in PBS-T.  Serum was allowed to bind to antigen coated plates (2 h), followed 

by thorough washing with PBS-T.  The plates were then incubated (25° C for 1 h) with 

100 µl of goat anti-mouse IgG conjugated to horseradish peroxidase (HRP) (1:5,000) 

(Southern Biotechnology Associates, Inc., Birmingham, AL) diluted in PBS-T containing 

5% non-fat dry milk. The unbound antibody was removed, and the wells were washed 

(3X) with PBS-T. 100 µl of TMB substrate (1 TMB tablet per 10 ml of phosphate-citrate 

pH 5.0 buffer; 2 µl 30% H202) (Sigma, St Louis, MO, USA) were added to each well 

(25°C for 30 min). Following 30 min incubation, the reaction was stopped with 50 µl / 
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well of 2N Sulfuric Acid. The colorimetric change was measured as the O.D. at 450 nm 

using a spectrophotometer (Dynex Technologies, Chantilly, VA, USA). 

 

In order to determine anti-sHA IgG subtypes and IgM, a modification to the above 

protocol included the use of biotinylated goat anti-mouse IgG1, IgG2a, IgG2b, IgG3 and 

IgM antibodies (1:5,000) (Southern Biotechnology Associates, Inc., Birmingham, AL) to 

detect antigen-antibody complexes in place of the goat anti-mouse IgG-HRP conjugated. 

Biotinylated IgG isotype antibodies were detected by Streptavidin-HRP conjugated 

(1:7000) in PBS-Tween 20 (1h, 25°C). Developing was performed as described above. 

 

VI.B.5. Virus Challenge 
 

Different dilutions (1:1000, 1:500, 1:250 and 1:100) of live, mouse adapted influenza 

virus A/PR/8/34 were tested in C57/BL/6 wild type mice to determine the lethal dose 100 

(LD100). Challenge was performed in mice anesthetized (ketamine/xylazine) via 

intranasal instillation of 50ul of allantoic fluid diluted in 1X PBS to contain the above 

mentioned dilutions. Following administration, mice were monitored for weight loss 

(morbidity) and survival for 2 weeks. LD100 induced 20% or more weight loss in all 

mice/group by days 8-10 post-challenge. Mice that lost more than 25% of body weight 

were sacrificed (mortality). The determined LD100 (1:250), was used to challenge wild-

type and MHCII-/- mice 4-5 days after the second boost (week 10). Virus challenge, as 

well as morbidity and mortality were monitored as described above. Following sacrifice, 

lungs were harvested, rinsed with 1X PBS, finely chopped, and transferred to a fresh 1.5 

ml centrifuge tube. Two hundred ul of 1X PBS were added to the samples and spin down 
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(12,500 rpm / 3 min). The supernatants were transferred to a fresh centrifuge tube, stored 

at -80 C and used to determine IgG antibody titers.  

 

VI.C.  Results 

 

VI.C.1.  C3d enhances secondary humoral immune responses in wild-type mice and 
protects from lethal virus challenge 

 

Wild-type mice (C57BL/6) were immunized (I.V.) with either purified sHA or sHA-C3d3 

at day 0 and boosted at weeks 4 and 9. Mice that received sHA-C3d3 developed higher 

anti-HA antibody titers than mice immunized with sHA alone. Futhermore, sHA-C3d3 

vaccinated mice required only two vaccinations to elicit high sustained anti-HA antibody 

titers, while sHA required three vaccinations (Figure 13 A). Even though, the antibody 

titer difference between sHA-C3d3 and sHA immunized mice was reduced following the 

third immunization, sHA-C3d3 mice consistently had at least 1 log higher antibody titers 

of anti-HA and this difference was statistically significant (p<0.05) (Figure 13 B). 

Furthermore, anti-sHA antibody titers were higher in the lungs of sHA-C3d3 vaccinated 

mice, following virus challenge (Figure 13 C).  

 

Following the third immunization, wild-type mice were challenged with influenza virus. 

Mice were monitored for weight loss as a sign of morbidity (Figure 14 A) and survival 

(Figure 14 B). Unvaccinated mice challenged with influenza [Naïve (A/PR)] had a 

steady decline in weight (Figure 14 A) and between days 8-10 post-challenge, all mice 

had lost greater than 20-25% of their original body and were sacrificed (0% survival) 
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(Figure 14 A and B). On the other hand, mock challenged naïve mice [Naïve (PBS)] did 

not lose weight (100% survival) (Figure 14 A and B). Mice immunized with sHA alone 

and virus challenged [sHA (A/PR)], had a similar weight loss as Naïve (A/PR) at day 4 

post-challenge and on day 6, ~20% of the mice had died (81% survival). The surviving 

mice continued to lose weight and by day 8, 45% of the mice had died (55% survival). 

Mice that did not lose more than 25% of their original body weight, started to recover 

(Figure 14 A). In contrast, mice vaccinated with sHA-C3d3 and challenged with 

influenza virus [sHA-C3d3 (A/PR)], had minimum loss of body weight and by day 10, 

only 12% of the mice had died (88% survival) (Figure 14 A and B).  These mice began 

to recover weight by day 10 and at the end of the experiment had recovered their original 

weight (Figure 14 A). 

 

VI.C.2.  C3d induced low titer secondary humoral immune responses in the absence of 
CD4+ T-cells and reduces morbidity in mice challenged with a lethal dose of 
influenza virus 

 

The ability of C3d to stimulate Ig class switch in the absence of CD4+ T-cells was 

examined in MHCII-/- mice. We hypothesized that C3d would mimic the structural 

antigenic redundancy of TI antigens when fused to TD antigens. Following the second 

immunization (week 6), the only mice that developed a class switch from IgM to IgG, 

were those vaccinated with sHA-C3d3 (20%) (Figure 15 A and C). None of the sHA 

vaccinated mice switched to IgG. However, in contrast to wild-type mice, these anti-HA 

antibody titers did not sustain and by week 8 (4 weeks post boost) had dropped below the 

level of detection (Figure 13 A vs Figure 15 A). Following the third immunization, mice 

were challenged with influenza. Virus challenge was effective at inducing class switch to 
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IgG in mice previously vaccinated with sHA or sHA-C3d3 and in naïve mice (Figure 16 

D). Development of an immunoglobulin class switch by live influenza virus has 

previously been reported (338, 343, 344). However, mice that received previously sHA-

C3d3 had higher, even though not significant, titers (Figure 15 D). sHA-C3d3 induced 

IgG titers were significant only compared to naïve mice that received a mock (PBS) 

[Naïve (PBS)] challenge (p<0.05). sHA-C3d3 immunized mice also had higher IgG titers 

in the lungs; however, not statistically significant compared to the other mouse groups 

(Figure 15 B). 

 

MHC II-/- mice were challenged 5 days after the third immunization. sHA and naïve 

challenged mice [Naïve(A/PR)] started to lose weight and between day 8-10 100% of the 

mice had died. Mice immunized with sHA-C3d3 also started to lose weight by day 4; 

however, the weight loss was delayed and less extreme than sHA or Naïve(A/PR) groups. 

Furthermore, 40% of these mice survived four days longer than Naïve (A/PR) mice and 

20% survived until the end of the experiment (day 14). Control mice negative for 

infection [Naïve (PBS)] did not loose weight and 100% of them survived (Figure 16 A 

and B). 
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A 

 

B 

C 

 

Figure 13. Anti-HA Antibody Titer in Wild-Type Mice 

 
A) Time course of anti-sHA antibody titer development. Wild-type mice were IV 
immunized (black arrows) with sHA (white rhomboid), sHA-C3d3 (black square) or PBS 
(Naïve) (white triangle) at day 0 and weeks 4 and 9. Virus challenge [A/PR/8/34 (H1N1)] 
was performed at week 10 (white arrow). Blood samples were collected every two weeks 
by retroorbital puncture, the sera (1:400) isolated and used anti-sHA antibodies were 
detected by ELISA.  
B) Anti-sHA endpoint dilution titer. Total anti-sHA IgG was detected post-virus 
challenge. Mouse serum was diluted until it reached the same O.D. reading that naïve 
mice. sHA-C3d3 mice developed higher total anti-sHA antibodies than sHA or naïve 
mice and this difference was statistically significant (* p<0.05).  
C) Anti-sHA IgG in lungs. Supernatants of harvested lungs (1:400 dilution) were tested 
for the presence of anti-sHA IgG. sHA-C3d3 mice consistently had higher anti-sHA 
antibodies in the lungs (p<0.05). The type of challenge (live A/PR/8/34 or PBS) is 
indicated in parenthesis. 
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Figure 14. Virus Challenge in Wild-Type Mice 

 
 
A) Wild-type mice were challenged (week 10) with a LD100 of the mouse adapted strain 
of influenza virus A/PR/8/34 (H1N1), following the last immunization. Positive and 
negative control groups for infection included naïve mice challenged with PBS (negative 
control) (white triangles) and naïve mice challenges with A/PR/8/34 (positive control) 
(white circles). sHA (white rhomboid) and sHA-C3d3 (black square) mice received 
A/PR/8/34. Weight loss (morbidity) is reported as percentage of original weight. The 
cross (┼) indicates that 100% mice died from that group.   
 
B) Survival following virus challenge in the groups is reported as percentage. The type of 
challenge received (A/PR/8/34 or PBS) is indicated in parenthesis. 
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Figure 15. Secondary Humoral Immune Responses in MHC II-/- Mice 

 
A) Anti-sHA IgG titer was determined by ELISA in sera (1:50 dilution) from MHCII-/- 
mice. Immunizations (I.V.) are indicated by the black arrows. Blood samples from sHA 
(white romboinds), sHA-C3d3 (black squares) and Naïve mice (white triangle) were 
collected every two weeks by retroorbital puncture. Panel A shows a time course of the 
development of anti-IgG following each immunization. Five days after the final 
immunization, mice were virus challenged (white arrow).  
B) Anti-sHA IgG was determined in the supernatants (1:50 dilution) of lungs harvested at 
the end of the virus challenge. The type of challenge received (A/PR/8/34 or PBS) is 
indicated in parenthesis. 
C) Anti-sHA IgG determined in sera (1:50 dilution) by ELISA in individual mice at week 
six, following the second immunization and previous to virus challenge. Each white dot 
represents an individual mouse and the bar indicated the arithmetic mean in each group. 
D) Anti-sHA IgG determined in sera (1:50 dilution) by ELISA in individual mice at week 
12, following the third immunization and virus challenge. Each dot represents an 
individual mouse and the bar indicates the arithmetic mean in each group. The type of 
challenge in indicated in parenthesis. 

 191



A 

 

B 

 

Figure 16. Virus Challenge in MHCII-/- mice 

 
A) MHCII-/- mice were challenged (week 10) with a LD100 of the mouse adapted strain of 
influenza virus A/PR/8/34 (H1N1), 5 days following the last immunization. Positive and 
negative control groups for infection included naïve mice challenged with PBS (negative 
control) (white triangles) and naïve mice challenges with A/PR/8/34 (positive control) 
(white circles). sHA (white rhomboid) and sHA-C3d3 (black square) mice received 
A/PR/8/34. Weight loss (morbidity) is reported as percentage of original weight. The 
cross (┼) indicates that 100% mice died from that group.   
 
B) Survival following virus challenge in the groups is reported as percentage. The type of 
challenge received (A/PR/8/34 or PBS) is indicated in parenthesis. 
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VI.C.3.  Different IgG isotype class switch following virus challenge in wild-type and 
MHCII-/- mice 

 

Once B-cells are activated and start to secrete antibodies, these Igs class switch, from 

IgM to IgG, IgE or IgA. Several isotypes (subtypes) of IgG have been described, each 

one with a different function(s), the result of a different cytokine environment and 

consequently the result of different cell priming or activation. Thus, analysis of the 

different IgG class switch helps to understand if the same set of cells are stimulated by 

the vaccines (pre-challenge) and live virus (post-challenge) in wild-type and MHCII-/- 

mice.  

 

IgG isotype class switch was analyzed in wild-type and MHCII-/- mice previous to virus 

challenge and post-challenge (weeks 6 and 12, respectively). Wild-type mice vaccinated 

with sHA-C3d3, had significantly higher IgG1, IgG2a and IgG2b than sHA vaccinated mice 

(p<0.001), previous to the virus challenge (Figure 17 A). IgG1 was significantly higher 

that IgG2b and IgG2a (p<0.001 and p<0.0001, respectively), in the sHA-C3d3 mice, 

suggesting a dominant Th2 (humoral) immune response and thus an environment rich in 

IL-4 (346). Finally, IgG2b was significantly higher that IgG2a (p<0.005).  Following virus 

challenge, sHA, as well as sHA-C3d3 vaccinated mice, developed higher titers of anti-HA 

antibody; however, sHA-C3d3 mice still showed a more robust immune response 

(p<0.05) (Figure 17 B). The IgG class switch profile developed by sHA mice was similar 

to sHA-C3d3 with IgG1 as the main isotype induced. Anti-HA IgG1 in the sHA-C3d3-

vaccinated group was significantly higher than IgG2a (p<0.001) and IgG2b (P<0.05). The 

same isotype was also significantly higher in the sHA-vaccinated group when compared 
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to IgG2a (p<0.05) and IgG2b (p<0.001). IgG2a and IgG2b were not statistically different in 

sHA-C3d3 (p=0.09) or sHA (p=0.06) vaccinated groups (Figure 17 B). 

 

Only MHC II-/- mice that received sHA-C3d3 (20%) developed IgG class switch. The 

main isotype developed in these mice was IgG2b, suggesting the presence of TGF-β 

(347) (Figure 8 A). As suggested by Snapper, this class switch may indicate B-cell 

activation and autocrine production of TGF-β (348), which might be the predominant 

cytokine in these mice. Interestingly, also lower titers of anti-HA specific IgG1 and IgG2a 

were detected, suggesting the presence of lower concentrations of IL-4 and IFN-γ. The 

IgG2b class switch was significantly higher than IgG1 (p<0.05) and IgG2a (p<0.001). 

Following virus challenge, however, there was a shift in the IgG isotype profile and IgG3 

became the dominant isotype (Figure 18 B). sHA-vaccinated mice had higher IgG3 titers 

than sHA-C3d3 immunized animals (p<0.001) or Naïve(A/PR) mice (p<0.0001). 

Immunoglobulin class switch to IgG3 has been suggested to be independent of cytokines, 

since B-cells stimulated only with LPS (T-cell independent B-cell stimulator) induce γ3 

germline transcripts and the cells switch to this isotype (349-351). However, a different 

T-cell independent B-cell stimulant (dextran conjugated anti-IgD antibody - αδ-dex -) is 

also able to induce this class switch; nevertheless, requires IFN-γ and IL-5 (352). Thus, 

either no cytokine or a combination of IFN-γ and IL-5 may be responsible for the 

presence of IgG3. Since IgG isotype class switch is dependent on the cytokine 

environment and this depends on the cells stimulated, the change in isotype profile in 

MHC II-/- mice from pre- to post-virus challenge suggests different mechanisms by which 

sHA-C3d3 and live influenza virus stimulate B-cells and other immune cells. 
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Furthermore, despite, the higher IgG3 levels on sHA vaccinated mice, the total IgG titer 

was higher in sHA-C3d3 mice; although not statistically significant. Thus, the less 

pronounced weight loss and enhanced survival are probably the result of the interaction 

of various immune mechanisms stimulated by C3d. 

 

VI.D.  Discussion 

 

The current study intended to evaluate the ability of C3d to induce a secondary humoral 

immune response in the absence of CD4+ T-cell. Only few mice (20%) deficient in 

CD4+ T-cell (MHC II-/-) class switched to IgG, following immunizations with sHA-C3d3. 

However, after virus challenge, IgG was detected in all groups that received live 

influenza virus [A/PR/8/34 (H1N1)] (Figure 16). The IgG levels were higher in sHA-

C3d3 vaccinated mice than in mice vaccinated with sHA; although, not statistically 

significant.  Despite the small difference in IgG titers, mice vaccinated with sHA-C3d3 

had a less pronounced decline in weight and a prolonged survival compared to sHA-

vaccinated mice. Analysis of the elicited IgG isotype pre- and post-challenge suggested 

that different pools of immune cells were stimulated. Thus, C3d, delayed morbidity and 

enhanced survival of CD4+ T-cell deficient mice by directly stimulating B-cells and 

possibly in collaboration with other immune cells. 
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B 

Figure 17. IgG Isotype Class Switch in Wild-Type Mice 

 
A) IgG isotype class switch was determined by ELISA in pooled sera (1:400) from wild-
type mice, following the second immunization (week 6 - pre-challenge). The bars 
represent the summary of three individual experiments. From higher to lower, the IgG 
isotypes induced by sHA-C3d3 were IgG1, IgG2b and IgG2a.  
 
B) The IgG isotypes induced following virus challenge were determined by ELISA in 
pooled sera (1:400 dilution). From higher to lower the IgG isotypes induced by C3d were 
IgG1, IgG2b and IgG2a, which is the same profile induced pre-challenge. On the other 
hand, in the sHA group, from higher to lower, virus challenge induced IgG1, IgG2a and 
IgG2b. 
 
# Statistical significance (p<0.001) when sHA-C3d3 vs sHA groups compared 
* Statistical significance (p<0.05) when sHA-C3d3 vs sHA groups compared 
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Figure 18. IgG Isotype Class switch in MHC-/- Mice 

 
A) IgG isotype class switch was determined by ELISA in pooled sera (1:50) from 
MHCII-/- mice, following the second immunization (week 6 - pre-challenge). From 
higher to lower, the IgG isotypes induced by sHA-C3d3 were IgG2b, IgG1 and IgG2a. 
The bars represent the summary of three individual experiments. 
 
B) The IgG isotypes induced following virus challenge (week 12) were determined by 
ELISA in pooled sera (1:50 dilution). From higher to lower the IgG isotypes induced by 
sHA-C3d were IgG3 and IgG2b. In the sHA group, from higher to lower, virus challenge 
induced the same profile; however, IgG3 was significantly higher than in sHA-C3d 
vaccinated mice. 
 
* Statistical significance (p<0.001) when sHA-C3d3 vs sHA groups compared 
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Figure 19. Isotype Class Switch Recombinantion 
Isotype switching involves recombination between specific switching signals. 
A)  Illustration of the heavy chain (CH) genes segments. Each CH gene segment (e.g. Cµ 
or Cγ1) have a switching (S) region (e.g. Sµ or Sγ1), which is immediately in front of the 
CH gene, except for Cδ. 
B) Under the proper cytokine stimulation, two S regions come in close proximity, 
looping out DNA segment between them. In the illustration, the cytokine environment 
has stimulated Sµ and Sγ3 to come in close proximity and loop out the DNA segment 
containing the CH genes Cµ and Cδ.  
C) Recombination of the Sµ or Sγ3 gene regions causes deletion of the previously looped 
DNA segment. Thus this cell is unable to produce IgM or IgD anymore. 
D and F) Represent looping out and class switch from IgM to IgG2b. In this case a larger 
DNA segments has been deleted and the cell has lost its ability to produce IgM, IgD, 
IgG3 and IgG1. 
F) A cell that has class switched to IgG3 still can produce IgG2b under the proper 
stimulus as new looping and recombination events can occur.   

 198



Wild-type (C57BL/6) mice that received sHA-C3d3 developed an enhanced anti-HA 

antibody titer compared to mice vaccinated with sHA alone. Furthermore, only two 

vaccinations of sHA-C3d3 were required to induce significant anti-HA antibody titers, 

while three immunizations were necessary to elicit similar anti-HA titers using sHA. 

(Figure 13 A and B). The enhancement of the immune response by C3d involves CR2-

dependent and –independent mechanisms (275). The CR2 dependent mechanism has 

been more widely studied, especially in B-cells. Co-binding of the sIgM and CR2 by the 

antigen and C3d triggers signaling pathways that synergize and lead to B-cell activation. 

Furthermore, reducing the antigenic threshold required to activate the cell (47, 105, 293, 

308, 353). In contrast, CR2-independent mechanisms are largely unknown and may 

involve interaction(s) with other receptor(s) on non-B-cells (329-331). 

 

There is a direct correlation between anti-flu antibody titers and protection against 

influenza virus infection (248, 264, 265). In this, study, wild-type mice vaccinated with 

sHA-C3d3 had high titer anti-HA antibodies and a reduced morbidity and mortality 

following a lethal virus challenge (Figure 14 .A and B). The virus challenge did not 

further increase the anti-sHA antibody titers levels, suggesting that the B-cells in these 

mice were fully activated. The enhanced antibody titers by sHA-C3d3 were not only 

detected in the sera, but also in the supernants of harvested lungs following virus 

challenge (Figure 13 C).  

 

Recombinantion of Ig variable gene segments (VDJ) results in expression of a new 

downstream heavy chain constant region (CH) gene (e.g. Cγ1, Cγ2b, Cε) (Figure 19A). Ig 
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class switching is effected by a deletional recombination that occurs between switching 

region (S) sequences (e.g. Sγ1, Sγ2b, Sε)  located upstream of each one of the CH genes, 

except Cδ (Figure 19 A). Class switch recombinantion is directed to a particular CH gene 

by cytokines that induce transcription from germ-line CH genes before switch 

recombinantion to the same CH gene. This recombination occurs via deletional 

recombinantion and excision of the intervening DNA between the two S regions as a 

switch circle (loop) (Figure 19 B and C). In summary, class switch recombination is the 

result of the cytokine environment that surrounds the B-cell. The cytokine environment at 

the same time, depends on the immune cells stimulated by the antigen.  

 

As previously reported, in wild-type mice, C3d enhances both Th1 and Th2 cytokines 

(133), but usually there is an enhanced development of T helper 2 (Th2) cells (secrete 

IL4, IL-5 and IL-13), which stimulate class switch to the IgG1 isotype. Consistent with 

this, IgG1 was the main isotype induced in sHA-C3d3 wild-type vaccinated mice 

previous to virus challenge (Figure 17 A). IgG1 was significantly higher that IgG2b and 

IgG2a (p<0.001 and p<0.0001, respectively). Furthermore, IgG2b was significantly higher 

that IgG2a (p<0.005). This suggests that the cytokine environment was principally 

composed of IL-4 (induce IgG1); however TGF-β (induce IgG2b) was also present and 

this was higher than IFN-γ (induce IgG2a). Virus challenge induced important anti-HA 

titers in sHA-vaccinated mice; however the immune response in sHA-C3d3 mice 

remained significantly higher (p<0.05). The IgG isotype profile induced in sHA and 

sHA-C3d3 was similar with IgG1 as the main statistically significant isotype, followed by 

IgG2a and IgG2b. These last isotypes were not significantly different. Hence, in the sHA-
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C3d3 group from pre- to post-challenge there is a difference as IgG2b is no longer higher 

than IgG2a, suggesting that the environment pre-challenge was richer in TGF-β. 

Therefore, C3d induces an environment richer in TGF-β previous to virus challenge 

(347). The sources of TGF-β include T-cells, B-cells, macrophages, and platelets (354-

358), all of which could potentially interact with C3d through CR2 or non-CR2 receptors 

(329). However, as suggested by the data from MHC II-/- mice a good portion of this 

TGF-β may be B-cell derived (348). Considering that natural infections with influenza 

virus induce significant amounts of IFN-γ (267, 333, 359), it is not surprising that live 

virus challenge increased IFN-γ levels and enhanced class switch to IgG2a, reducing the 

gap with IgG2b. 

 

Only a few MHC II-/- mice vaccinated with sHA-C3d3 developed an IgG class switch 

following the second immunization (pre-virus challenge) (Figure 15 A and C). However, 

in those mice that did class switch to IgG, C3d most likely activated B-cells. The chimera 

proteins used in this study comprise three tandem copies of C3d fused to sHA, which 

enables the binding of three CR2 molecules and one sIgM on the surface of the B-cell. 

Thus, there is redundant triggering in the pathways that activate B-cells. This redundant 

activation may resemble that induced by TI antigens, which are large molecules with 

repetitive antigenic subunits that bind several sIgM molecules and trigger B-cell 

activation. One of the molecules activated and involved in the cross-talk of these 

signaling pathways is the Bruton’s tyrosine kinase (Btk) (Figure 3). Interestingly, as 

recently described, Btk is also activated in the CD40 signaling pathway through the 

protein kinase µ (PKD) / tumor necrosis factor receptor-associated factor (TRAF)-2 
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molecules (360). Furthermore, co-engagement of sIgM and CD40 is also implicated in a 

synergistic effect in the activation of the B-cells (360) and the CD40L/CD40 pathway is 

known for its importance in class switching from IgM to IgG, IgA and IgE (361-363). 

Thus, the signaling triggered by C3d can cross-talk with the CD40 pathway, through Btk, 

and in this way activate B-cells and induce IgG class switch without CD4+ T-cell help. 

Further evidence of a direct activation of B-cells by C3d comes from the elicited IgG 

isotype induced prior to virus challenge in MHC II-/- mice. The induction of IgG2a 

suggests an environment rich in TGF-β and possibly the result of autocrine production by 

the B-cell.  

 

Following virus challenge all MHC II-/- mice that were infected with influenza developed 

different degrees of IgG class switch (Figure 15 D). This is concordant with previous 

studies that have demonstrated that live (338, 342),  as well inactivated influenza viruses 

(343) induce IgG class switch in the absence of CD4+ T cells. However, mice previously 

vaccinated with sHA-C3d3 had slightly higher anti-HA IgG antibody titers in sera, as well 

as in lungs, compared to sHA-vaccinated mice (Figure 15 B and C). This enhanced anti-

HA antibody titer may indicate that C3d primed B-cells and thus when these cells 

encountered a stronger stimulus, such as live virus, cells that already initiated class 

switching (cytokine expression induced without deletion recombination) could continue 

(deletion recombination). The enhanced IgG antibody titers could also be a consequence 

of a richer cytokine environment. As previously described, C3d is able to interact 

primarily with B-cell, follicular dendritic cells and T-cells (CD4+ and CD8+), through 

CR2 (105, 106, 111, 115, 364). Using other surface molecules, not yet completely 
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characterized, C3d is able to interact with monocytes, neutrophils and platelets (328-331). 

All these cells have the potential to produce cytokines and thus may induce a richer and 

more varied cytokine profile that may enable a stronger IgG class switch.   

 

One of the most interesting findings of this study was the difference in the IgG isotype 

profile pre- and post-virus challenge in MHC II-/- mice (Figure 18 A and B). Previous to 

virus challenge, only mice vaccinated with sHA-C3d3 class switched to produce IgG and 

even though not all mice class switched, the mice that did, had IgG2b as the predominant 

isotype (p<0.05 compared to IgG1; p<0.001 compared to IgG2a). The presence of this 

isotype (IgG2b) suggests a microenvironment rich in TGF-β. TGF-β is released by 

numerous cell types including B-cells, T-cells, macrophages and platelets (354-358). Of 

these cells, B-cells are the most likely producers of this cytokine because co-interaction 

of sHA-C3d3 with sIgM and CR2 on the surface can activate B-cells and induce release 

of TGF-β (355, 365). Furthermore, B-cell production of TGF-β has been shown to have 

an autocrine role (348, 366, 367). The possibility that CD8+ T-cells could be involved in 

the production of TGF-β is low as 90% of this cytokine produced in T-cells comes from 

CD4+ T-cells (368), which are absent in MHCII-/- mice.  

 

Virus challenge was more effective at inducing an isotype class switch from IgM to IgG 

in MHC II-/- mice (Figure 15 D). sHA-C3d3 mice had slightly higher total anti-HA IgG 

titer than sHA alone vaccinated mice, both in sera and lungs (Figure 15 B and D). 

However, when the IgG isotype profile was compared to pre-challenge, there where 

noticeable differences. Post-challenge, IgG3 was the predominant isotype in both sHA 
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and sHA-C3d3 vaccinated mice. IgG3 is an unusual isotype, which is mainly induced by 

TI type 2 antigens (352, 369). Ig class switch to IgG3 was initially suggested to be 

independent of cytokines, as B-cells stimulated with LPS (TI B-cell stimulant) alone 

produced γ3 germline transcripts and switched to this isotype (349-351). More recent 

studies have provided evidence suggesting that IFN-γ (along with IL-5) may also be 

responsible for this kind of Ig class switch (352). However, the latter experiments utilized 

a different type of model antigen, dextran-conjugated anti-IgD antibody (αδ-dex)(model 

TI type 2 B-cell stimulant). Thus, the nature of the stimulant or B-cell activator (e.g. LPS 

or αδ-dex) and the mechanism of interaction with the B-cell has an important role in 

determining the cytokine directed-isotype profile (e.g. LPS + no cytokine induces = IgG3 

or αδ-dex + IFN-γ (IL-5) = IgG3).  IFN-γ usually stimulates IgG2a isotype in the presence 

of LPS; however, in these experiments IgG3 class switch was inhibited (370). In the 

presence of αδ-dex and IL-5, IFN-γ, induces IgG3 (352), reinforcing the idea that the 

nature of the B-cell activator later defines the cytokine profile and thus the isotype class 

switch. The concentration of the cytokines induced also plays an important role as αδ-dex 

+ IL-5 + IFN-γ (1 U/ml) induced significant IgG3 without IgG2a. However, when the 

IFN-γ concentration was increased to 10 U/ml, IgG3, as well as IgG2a, were induced 

(352). Hence, in this study post-virus challenge, there are probably moderate amounts of 

IFN-γ and IL-5. The most likely candidate cells to produce these cytokines are CD8+ T-

cells (371), which are present in  MHC II-/- mice. Furthermore, these cells alone have an 

important role in clearing influenza virus infection (372); however, their function is not 

optimal in the absence of CD4+ T-cells (373). The non-optimal function of CD8+ T-cells 

may result in moderate levels of cytokines production, thus inducing only IgG3 (but not 
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IgG2a) class switch. Other candidates to consider are γ/δ T-cells, which are also able to 

produce these cytokines. Moreover, γ/δ T-cells are mainly confined (but not solely) to the 

CD8+ subset and present in epithelial and mucosal surfaces (340), which are the primary 

site of encounter with influenza virus. Finally, cell combinations, such as natural killer 

(NK) (374), which produce IFN-γ,  but not IL-5, could be potential candidates along with 

CD8+ T-cells, which may secrete the IL-5.  

 

Post-challenge the total IgG levels in sHA-C3d3 MHC II-/- vaccinated mice were slightly 

higher than in sHA mice; however not statistically significant.  Nevertheless, when the 

IgG isotype was analyzed, the level of IgG3 seemed to be higher in sHA mice than in the 

sHA-C3d3 group. This may be explained by the class switch induced by sHA-C3d3 

vaccinations prior to challenge. The CH gene segment that encodes for Cγ3 is located 

upstream of Cγ2b (Figure 19 A). Initial class switch does not require deletion of the gene 

segments, but only transcription induction of determined CH gene (e.g. Cγ2b), by 

cytokines (e.g. TGF-β). However, at a later time, there is going to be excision of the 

intervening DNA between the two switching regions (Sµ and Sγ2b in the example) 

(Figure 19 D and E). As the Cγ2b region is located downstream of Cγ3, once the gene 

segment has been deleted, there is not possibility that the cells can produce IgG3 again. 

On the other hand, if a cell class switches initially to IgG3 (Figure 19 B and C), the Cγ2b 

region is still present and consequently the cell still has the potential to produce IgG2b, 

under the proper cytokine stimulation (Figure 19 F and E). Five days after the third 

immunization, MHC II-/- mice were virus challenged. If the main isotype induced by 

sHA-C3d3 (following vaccination) was IgG2b and the pool of B-cells is limited in MHC 
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II-/- mice (without proper stimulation, B-cells do not proliferate), then the cells that are 

producing IgG2b would be unable to produce IgG3, even under the proper cytokine 

stimulus. Furthermore, the pool of naïve B-cell in these mice may be smaller because 

some cells already class switched to IgG2b. On the other hand, it seems that sHA 

vaccination induced low levels of B-cell activation, as the total IgG titer is similar to 

naïve(A/PR) mice (Figure 15 D). Thus, when sHA vaccinated mice encountered the 

strong viral stimulus, the naïve B-cell population was probably a larger percentage of the 

total B lymphocyte pool compared to sHA-C3d3 vaccinated mice and predisposed to IgG3 

class switch (probable effect of sHA alone vaccination). So, even if the virus challenge 

induced a similar cytokine profile in sHA- and sHA-C3d3-vaccinated mice, the larger 

naïve population in the sHA group may be responsible for the higher IgG3 titers. In 

contrast, the reduced naïve population is responsible for lower IgG3 in sHA-C3d3 mice. 

Furthermore, the previously class switched IgG2b B-cell population may stop producing 

antibodies due to the absence of the proper cytokine environment. 

 

Despite of the higher IgG3 class switch (post-challenge) in MHC II-/- mice vaccinated 

with sHA (p<0.001 compared to sHA-C3d3), the total IgG titer was slightly higher in the 

sHA-C3d3 group (Figure 17 B). This slightly higher total IgG titer was not statistically 

significant; however, the weight loss was reduced and the survival was better in this 

group (Figure 16 B). This suggests that protection against live virus was not only 

dependent on anti-HA antibodies, but is also on other immune cells or factors, which 

were possibly activated by C3d. C3d not only stimulates B-cells, but also collaborates in 

the activation of non-B-cells such as monocytes, neutrophils and platelets, which bear 
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non-CR2 C3d-binding proteins on their surface (328-331, 375). All these cells produce 

cytokines when activated and thus collaborate in the development on immune responses. 

Furthermore, it has been known for years that T-cells bear CR2 on their surface (106, 

107, 376-378); however, the role of this receptor on these cells has been elusive. Recent 

data demonstrate that C3 derivatives promote migration and priming of T-cells (CD4+ 

and CD8+) into the lungs during influenza infection (379, 380), thus it can be speculated 

that in MHC II-/- mice, C3d helped in CD8+ T-cell migration and activation.  The reduced 

weight loss and enhanced survival on MHC II-/- is probably the result of the addition of 

various immune factors stimulated by C3d and may involve 1) activation, antibody 

production and cytokine secretion of B-cells (CR2 dependent and independent); 2) 

activation, migration and cytokine production of CD8+ T-cells (CR2 dependent and 

possibly CR2 independent); and 3) activation and cytokine production of innate cells, 

such as neutrophis and monocytes (CR2 independent). 

 

In summary, C3d is able to induce a mild enhancement of the secondary humoral 

immune responses in the absence of CD4+ T-cells. These mild secondary immune 

responses, possibly in collaboration with other innate and acquired immune cells, 

stimulated by C3d are able to reduce morbidity and mortality in MHC II-/- mice. 
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VII.  Chapter 7: Conclusions and Future Directions 
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VII.A.  Conclusions 

 

C3d is the final degradation product of the third component of complement (C3). This 

small molecule plays an important role during natural infections by coating invading 

microorganisms and thus enabling their interaction with immune cells that bear CR2 on 

their surface (Figure 3). In this way C3d links the innate with the adaptive immunity. 

The main cells that express CR2 are FDCs, B-cells and T-cells (106, 108, 115, 116, 378, 

381). C3d interaction with CR2 on FDCs has been implicated in antigen presentation and 

maintenance of immune memory (Section I.C.4) (Figure 2) (115). On B-cells, cross-

linking of the sIgM and CR2 by the antigen and C3d, triggers pathways that cross-talk 

and synergize in the activation of B-cells (Figure 3) (48, 124, 319, 381). The role of CR2 

on T-cells remains elusive; however, cell activation and triggering of signaling pathways 

that influence cytokine secretion can be speculated. Therefore, C3d is a natural adjuvant 

with properties that have the potential to be beneficial for the development of vaccines. 

The adjuvant properties of C3d have been explored using several model antigens (e.g. 

hen egg losozyme (126)), microorganism-derived (e.g. HIV-1 envelope, measles and 

influenza hemagglutinins (85, 127, 132, 138), PS14 for Streptococcus pneumoniae (128)) 

and self-antigens (e.g. heterologus type II collagen(131)).  

 

The enhancement of the immune response has been extensively studied in B-cells, which 

provided the first light on the classic mechanism(s) by which C3d functions. Initially, it 

was discovered that C3d interacts with CR2 (CD21) and that this molecule later binds 
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and stimulates CD19, which initiates a signaling pathway (Vav, Lyn, Fyn, IP3K, Btk) 

that activates the B-cell (46, 48). At the same time, it was known that the B-cell receptor 

(BCR or sIgM) was activated by antigens and triggered a signaling pathway that involved 

Src, which interacts with Lyn (CR2 pathway) amplifying the signaling provided by Src. 

Furthermore, both pathways stimulate Btk, downstream. Thus, these two pathways cross-

talk and converge at an activation intermediate in the B-cell. Initial experiments co-

ligated CR2 and sIgM with monoclonal antibodies and this provided evidence of a 

synergistic effect in B-cell activation (120, 307, 308, 321). Later, injection of chimera 

proteins of hen egg lysozyme (HEL) and two or three copies of C3d (HEL-C3d2 and 

HEL-C3d3) into HEL-transgenic mouse models reduced the amount of antigen needed to 

trigger optimal humoral immune responses (126). Furthermore, antigens conjugated to 

C3d bound inefficiently to B-cells derived from CR2-/- mice and cell activation was 

reduced in vitro (130). Hence, there was evidence to support that the main mechanism of 

enhancement of the immune response was dependent on CR2. However, there were 

reports indicating that other non-CR2 receptors were present in various immune cells, 

such as monocytes, neutrophils, and platelets (329-331). Furthermore, there was evidence 

that C3 products were important for T-cell migration and activation, suggesting that more 

than one mechanism could be implicated in the enhancement of the immune response by 

C3d (379). 

 

Mechanisms of immune enhancement that are independent of CR2 are presented in this 

thesis using mice deficient for this receptor. Contrary to earlier reports, CR2-/- mice 

immunized with antigens fused to C3d mounted efficient humoral immune responses. 
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These responses were almost comparable to those induced in wild-type mice. 

Furthermore, this enhancement was proven to be independent of CR2 since the immune 

responses were comparable to that induced by chicken gamma globulin (CGG) in CR2-/- 

mice. CGG is a well known carrier protein that does not use CR2 for its mechanism of 

adjuvanticity. These results, however, suggested that C3d might work as a carrier protein 

(275). Nevertheless,  Mitsuyoshi et al  (382) later proved this theory as incorrect, using a 

TI type II antigen (PP14 from Pneumococcus) conjugated to OVA (known carrier 

protein) or C3d.  These antigens were used to immunize CBA/N xid mice, which do not 

mount humoral immune responses to TI type II antigens. Following the third 

immunization PPS14-OVA mice developed IgM and IgG, while PPS14-C3d did not, 

demonstrating that PPS14 retained the TI type II characteristics when fused to C3d but 

acquired TD properties when conjugated to OVA. Thus, C3d does not function as a 

carrier protein and antigens fused to this molecule retain their characteristics. In 

summary, immunization of CR2-/- mice with antigens fused to C3d demonstrated that 

C3d can enhance the immune response by CR2-dependent and –independent 

mechanisms. This has opened the door to explore new pathways by which C3d enhances 

the immune response in B-cells and other immune cells.  

 

Evidence that C3d enhances the immune responses in more than one cell type was 

provided from immunizations of mice deficient in CD4+ T-cells (MHC II-/-). C3d was 

able to induce IgG class switch in the absence of CD4+ T-cells, a phenomenon attributed 

only to T-cell independent (TI) antigens. Despite that IgG induction was not efficient; 

mice that developed class switch demonstrated that it was the result of B-cell activation 
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by C3d, but also the result of activation of other immune cells. Evidence that B-cells 

were the main cells activated came from the IgG isotype induced, C3d induced class 

switch recombination mainly to IgG2b, which is dependent on TGF-β. The main cell 

producers of TGF-β are B-cells, T-cells, monocytes and platelets. Among T-cells, CD4+ 

T-cells are responsible for 90% of the TGF-β produced, which are absent in MHCII-/- 

mice. Monocytes and platelets account for a small portion of the TGF-β produced; 

however, need to be considered because both have the potential to interact with C3d 

through non-CR2 surface receptors. It has been demonstrated that TGF-β is produced by 

B-cells upon activation and this cytokine has an autocrine role (367). Since C3d induces 

B-cells to IgG class switch in the absence of T-cells, it can be speculated that B-cells are 

activated by C3d inducing TGF-β production, which will ultimately be the responsible 

for the dominant IgG2b isotype. Evidence for activation of other immune cells came from 

the other IgG isotypes induced in MHC II-/- mice prior to virus challenge. These mice 

also class switched to IgG1 and IgG2a, which are induced mainly by IL-4 (along with IL-5 

and IL-13) and IFN-γ. These cytokines can be produced by CD8+ T-cells, which can 

interact with C3d through CR2. Other cells that can potentially be involved in the 

production of one these cytokines are NK, NKT and γ/δ T-cell (267, 340, 383); however, 

there is not a direct link between C3d and these cells, as neither CR2 nor non-CR2 

receptors have been identified. Finally, the last line of evidence that C3d induces 

activation of more than one cell comes from the results following virus challenge in 

MHC II-/-. It is well known that live influenza virus is able to induce class switch to IgG 

in mice deficient in CD4+ T-cells. Consistent with this, MHC II-/- mice that received 

A/PR/8/34 class switched to IgG. The anti-sHA IgG level was slightly higher in the sHA-
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C3d3 than in sHA group; however, not statistically significant. Despite of the small 

difference in antibody titer, sHA-C3d3 mice had reduced weight loss (morbidity) and 

prolonged survival. This suggested that antibody was not the only factor involved in the 

protection against live virus challenge, but other immune factors were also involved. The 

principal cells that might have a role include: CD8+ T-cells, monocytes/macrophages, 

neutrophiles and platelets. It is known that T-cells express CR2 (106-108, 378), thus 

CD8+ T-cells may be activated by C3d. Furthermore, C3 derived factors are implicated 

in lung migration and activation of T-cells to the lungs during influenza infection, 

implying another role of C3d in CD8+ T-cells (379, 380). C3d can also interact with 

monocytes, macrophages, neutrophils and plateles through non-CR2 receptors, which are 

involved in cell activation or cytokine secretion (375). A summary of the different cells 

that can interact with C3d through CR and non-CR2 receptor is described in Figure 20. 

 

The outcome on the immune response by antigens conjugated to C3d depends on the 

characteristics of the antigen and the way by which it interacts with the B-cell or other 

cells. Thus, some antigens fused to C3d might benefit more than others because of their 

intrinsic properties and abilities to interact with the immune cells. Hence, more antigens 

need to be explored in order to have a complete understanding of how C3d benefits 

different antigens. Special focus should receive diseases known to require antibodies for 

their prevention, as C3d enhances mainly the humoral immune responses. It also remains 

to be explored the consequences of using other adjuvants in conjunction with C3d. For 

example, CpG ODNs could be co-inoculated with chimera C3d proteins or antigen-C3d 

proteins could be encapsulated in liposome particles. 
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Overall, C3d is a safe adjuvant that enhances mainly the humoral immune responses by 

interacting with CR2 and non-CR2 receptors. The final adjuvant outcome seems to be an 

additive effect of the interaction with several cells, of which B-cell seem to play a major 

but not unique role. 

 

VII.B. Future Directions  

 

Given that one of the most studied mechanisms by which C3d works depends on CR2, a 

deeper understanding of this controversial interaction will help in the improvement of 

C3d as an adjuvant. 

 

The C3d-CR2 interaction is complex. Several models, based on the crystal structure, as 

well as mutational analysis, have been described; however, there was not a consensus and 

some data is contradictory (142, 143, 145-147, 149, 152, 384). Recently, a new model 

based on theoretical electrostatic potential and pKa calculations tried to reconcile the 

controversial results and suggested that the association of C3d with CR2 is predominantly 

electrostatic in nature and involves the whole molecule and not only the limited 

association sites that were previously studied (151). Hence, this model clarifies why 

mutations in completely opposite regions impaired the C3d-CR2 interaction. Until now, 

several mutations that impair the C3d-CR2 mutation have been described. However, only 

one mutation that increases the affinity of C3d for CR2 has been identified. Considering 

that the C3d-CR2 interaction is probably the main mechanism responsible for the 
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enhancement of the immune response, increasing the affinity of C3d for CR2 will also 

further increase the enhancement effect. One of the future studies will address this 

question and several C3d mutants will be generated. Mutations that impair as well as the 

mutation that enhances the immune response will be introduced. These mutant molecules 

will be tested using surface plasmon resonance technology (Biacore) to determine the 

affinity of C3d for CR2. One important consideration in these experiments will be the use 

of the full length CR2 molecule (16 short consensus repeats), versus the two first 

consensus repeats that are normally used. It has been suspected that more than only the 

first two short consensus repeats are involved in the C3d-CR2 interaction, thus the use of 

the full length molecule would provide data more relevant for the subsequent experiments 

in animal models. Following the in vitro interaction experiments, three tandem copies of 

the C3d mutants will be cloned with antigenic molecules and used to immunize animals. 

It will be expected that C3d mutants that enhance the affinity for CR2, will also enhance 

the immune response in wild-type animals. Later, the enhancement effect on non-CR2 

receptors will be initially investigated in mice deficient for CR2.  

 

Given that the C3d- non-CR2 receptor interactions also contribute to the enhancement 

effect, it will also be important to characterize these effects. These effects, however, 

involve more cells and the non-CR2 receptor(s) has not been isolated making more 

difficult the characterization. Initial studies will require in vitro work, where highly 

purified B-cell, monocyte, macrophages, neutrophils and platelets would require being 

isolated from wild type as well as a various knock-out mice such as CR2-/-, CD4-/-, MHC 

II-/-, etc. These cells would require stimulation with C3d conjugated to different 
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molecules including LPS and other antigens and determine 1) binding to the surface 2) 

activation of the cell 3) signaling inside the cell 4) possible outcome of the signaling, 

such as protein production (e.g. cytokines) or increase of mRNA. Some of this analysis 

could be benefited from the use of proteomics assays to detect specific protein 

production. 

 

The role of C3d in NK, NKT and γ/δ T-cells is suspected; however, neither CR2 nor non-

CR2 receptors have been described. Thus, initial experiment intending to identify 

possible interactions between C3d and these cells in vitro would be required. Depending 

on the results, further studies using specific knock-out mice and reconstitutions 

experiments to identify the in vivo role of these cells would be required. 
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Figure 20. Cells that interact with C3d fused antigens and their possible outcome 
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