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TURBULENCE MODELING AS AN ILL-POSED PROBLEM

Iuliana Stanculescu, PhD

University of Pittsburgh, 2008

This thesis is concerned with the derivation and mathematical analysis of new turbulence

models, based on methods for solving ill-posed problems.

Turbulence causes the formation of eddies of many different length scales. Small, un-

resolved scales have deterministic roles in the statistics of the resolved scales. The main

problem of computational turbulence is to accurately represent the effect of the unknown

small scales upon the observable large scales. This is really just another ill-posed problem

and the work in this thesis shows that excellent turbulence models do come from standard

methods for ill-posed problems. Large Eddy Simulation (LES) exploits this decoupling of

scales in a turbulent flow: the larger unsteady turbulent motions are directly represented,

while the effects of the smaller scale motions are modeled. This is achieved by introducing a

filtering operation, which depends on a chosen averaging radius. Once an averaging radius

and a filtering process is selected, an LES model can be developed and then solved numer-

ically. One of the most interesting approaches to generate LES models is via approximate

deconvolution or approximate/asymptotic inverse of the filtering operator.

Herein, we develop an abstract approach to modeling the motion of large eddies in a

turbulent flow and postulate conditions on a general deconvolution operator that guarantee

the existence and uniqueness of strong solutions of Approximate Deconvolution Models. We

also introduce new deconvolution operators which fit in this abstract theory. The Accelerated

van Cittert algorithm and the Tikhonov regularization process are two methods for solving

ill-posed problems that we adapt to turbulence. We study the mathematical properties of

the resulting deconvolution operators.
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We also study a new family of turbulence models, the Leray-Tikhonov deconvolution

models, which is based on a modification (consistent with the large scales) of the Tikhonov

regularization process. We perform rigorous numerical analysis of a computational attractive

algorithm for the considered family of models. Numerical experiments that support our

theoretical results are presented.
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1.0 INTRODUCTION

1.0.1 Turbulence Ahead!

Turbulence is everywhere and all the time. Turbulence and fluid motion play an im-

portant role in our existence. Basically, almost every aspect of our everyday life (work,

relaxation, body care, nourishment) involves fluid motion in one way or another. Air flows

into our lungs and blood moves through our vessels in our bodies. Equally important for

our existence is the fluid motion in many engineering applications. The complex flow in

furnaces, chemical reactors, heat exchangers, as well as fluid flows around cars and airplanes

are turbulent. An understanding of turbulence is also necessary to understand (and predict)

meteorological phenomena or environmental hazards. All these are just very few examples

of how turbulence affects our life, makes it possible, easier or sometimes harder. Because of

these broad range of applications, turbulence has been the object of study of many great sci-

entists. Unfortunately (or fortunately), the study of turbulence proved to be equally difficult

and challenging as it is important.

But, what exactly is turbulence? While the above examples from our everyday life

may be illuminating, scientifically there is not a broadly accepted definition of turbulence.

However, the literature agrees with the description of turbulence by listing its characteristic

features. Between them, chaotic and irregular are the keywords, [5]. From mathematical

point of view, the Navier-Stokes equations (NSE) probably contain all of turbulence. Derived

directly from Newton’s laws of motion, the NSE, defined precisely below, are considered an

exact model for the flow of a viscous, incompressible fluid, [24]. To this point, except for a

few simple flows, an analytic solution of NSE is not known. Thus, the theory of NSE is also
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of great interest in a purely mathematical sense. The Clay Mathematics Institute considers

the NSE to be one of the seven most important open problems in mathematics. “Although

these equations were written down in the 19th Century, our understanding of them remains

minimal. The challenge is to make substantial progress toward a mathematical theory which

will unlock the secrets hidden in the Navier-Stokes equations.”

Computational Fluid Dynamics (CFD) aims to provide both a qualitative and quantita-

tive prediction of fluid flows. In CFD, computers are used to solve the NSE (or simplified

version of the NSE) and perform all the calculations (often millions) that are necessary to

simulate the fluid flow. In many cases, only approximate solutions can be achieved. “It must

be admitted that the problems are too vast to solve by a direct computational attack!” These

are the words of J. von Neumann and, 60 years later, they are still so very true. They also

provide a strong motivation for the development of turbulence models.

The challenge in turbulence modeling is to accurately predict averages of flow variables

(velocity and pressure) and obtain tractable theory that can be used to calculate quantities

of practical importance, [57]. A good turbulence model is one which:

• has a mathematical justification: its solution will be close in some sense to a solution of

NSE.

• is inexpensive: since numerical methods are used eventually to solve numerically the

model, this process should be doable and require reasonable computer time and power.

• has a large range of applicability: a model is applicable to a flow if the model equations

are well-posed.

• is accurate: this is the most desirable attribute of any model and it is determined by small

discrepancies in the boundary conditions and small (numerical, measurement) errors.

Large Eddy Simulation (LES) has emerged as one of the most promising approaches in

simulation of turbulent flows. Even though LES is a highly developed field in the engineer-

ing and geophysics communities, its mathematical foundations are still to be strengthened.

Compared to Direct Numerical Simulations (DNS, which the direct approach in solving nu-

merically the NSE), LES is less expensive and the results are not much worse. In fact, LES

is considered a “logical compromise” by providing accurate solutions at affordable cost.
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In LES, the larger unsteady turbulent motions are directly represented, while the ef-

fects of the smaller scale motions are modeled. This is achieved by applying a space filter-

ing/averaging operation to the NSE. Typically, these averages are defined by convolution,

u(x, t) := (gδ ? u)(x, t), or through the differential filter u := (−δ24 + 1)−1u. The famous

closure problem in LES arises because the average of a product is not the product of the

averages, i.e. uu 6= u u. Solving the closure problem means finding useful approximations

of u. One way to find such approximation is via deconvolution and is developed in detail in

the body of this thesis.

1.0.2 The Navier-Stokes Equations

The Navier-Stokes equations (NSE) are the “governing laws” of turbulence. The NSE

describe the motion of any incompressible, newtonian fluid in a bounded domain. Let the

velocity u(x,t)=uj(x1, x2, x3, t), (j=1,2,3) and pressure p(x,t)=p(x1, x2, x3, t) be solutions of

the underlying NSE:

ut + u · ∇u− ν4u +∇p = f in Ω

∇ · u = 0 in Ω, (1.0.1)

where ν = µ/ρ is the kinematic viscosity, f is the body force, and Ω is a bounded and regular

flow domain in Rn (n = 2 or 3). The NSE are supplemented by the initial condition and the

usual pressure normalization condition (to ensure uniqueness of pressure)

u(x, 0) = u0(x) and

∫

Ω

p dx = 0.

The Reynolds number, Re, is the inverse of the viscosity and it represents the only control

parameter that makes the difference between laminar flows (low Re) and turbulent flows

(high Re). A beautiful and complete mathematical description of the NSE is presented in

Galdi [24].
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1.0.3 Is Turbulence just another ill-posed problem?

Turbulence causes the formation of eddies of many different length scales. Small, un-

resolved scales have deterministic roles in the statistics of the resolved scales. The main

problem of computational turbulence is to accurately represent the effect of the unknown

small scales upon the observable large scales. This is really just another ill-posed problem

and excellent turbulence models do come from standard methods for ill-posed problems.

However the challenges of turbulence are complex and an understanding of Fluid Mechanics

is still indispensable in validating analytically model prediction.

LES exploits this decoupling of scales. One of the most interesting approaches to gener-

ate LES models is via approximate deconvolution or approximate/asymptotic inverse of the

filtering operator. Approximate Deconvolution Models (ADM) have remarkable mathemati-

cal properties and perform well in computations. The approximate deconvolution framework

can be thought of as viewing turbulence as an ill-posed problem and adapting to flow prob-

lems the extensive parallel development of methods for the approximate solution of ill-posed

problems.

The forward problem is: given u find u. This is a well-posed problem. The inverse is

given u find u. This is the ill-posed deconvolution problem. An approximate deconvolution

operator D is a bounded linear operator which is an approximate filter inverse

D(u) = approximation of u,

where u represents the filtered quantity of u. This is an ill posed problem, for which there are

many methods. Any deconvolution operator yields a closure approximation to the filtered

nonlinear term in the NSE by

uu ' D(u)D(u).

This closure approximation results in a large eddy structure whose solutions are intended to

approximate the true flow averages, w ≈ u and q ≈ p.
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In Chapter 2, we present an abstract approach to modeling the motion of large eddies

in a turbulent flow and answer the question: Which methods yield a good model of turbu-

lence? Developing this idea, we adapt methods for ill-posed to turbulence to obtain new,

more accurate turbulence models. In Chapters 3 and 4 we study two new deconvolution

operators. The Accelerated van Cittert algorithm and the Tikhonov regularization process

are two methods for solving ill-posed problems that we adapt to turbulence. We study the

mathematical properties of the resulting deconvolution operators.

1.0.4 Consistency Error of Turbulence Models

In general, suppose u satisfies Ntrue(u) = f and w, an approximation to u, satisfies the

approximate reduced model

NReduced(w) = f . (1.0.2)

The true equation can be rewritten as Ntrue(u) = f or

NReduced(u) = f −
[
Ntrue(u)−NReduced(u)

]
. (1.0.3)

If the bracketed term on the RHS is exactly zero, this reduces to (1.0.2). Thus, the size of

the bracketed term is a rough measure of the deviation of the solution of (1.0.2) from the

flow averages.

Definition 1.0.1. The modeling error is e = u − w while the reduced model’s consistency

error or residual stress is the residual of u in the approximate reduced model:

τ (u) = Ntrue(u)−NReduced(u).

We wish to have small errors (u − w), but can only act on residuals τ (u) in deriving

models. The coupling between errors and residuals is thus central. Comparing (1.0.3) to

(1.0.2), the deviation of u from w is driven by the consistency error/residual stress τ (u). If
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an appropriate setting is selected for (1.0.2) and (1.0.3) under which the operators involved

are C1 and N ′ is the Fréchet derivative of N , the error e = u−w satisfies

∫ 1

0

N ′
Reduced(su + (1− s)w)e ds = τ (u).

The error is thus driven by the turbulence model’s consistency error and the error’s size is

related to the stability properties of the linearization of the reduced model. From either

point of view, a small modeling error depends on a reduced model (1.0.2) with

(i) small consistency error, and

(ii)a sufficiently stable linearization.

When this framework is specialized to LES models of turbulence, the consistency error

is often called the residual stress, [47], and, for LES-ADM, is derived next.

Given an approximate deconvolution operator, the associated base ADM is

wt +∇ ·D(w) D(w)− ν4w +∇q = f and ∇ ·w = 0. (1.0.4)

The model’s error u −w is driven by the error in the deconvolution process itself. Indeed,

the exact SFNSE can be rewritten as:

ut +∇ · (D(u) D(u))− ν4u +∇p = f +∇ · τ . (1.0.5)

Definition 1.0.2. The error in the model (1.0.4) is e = u − w. The consistency error of

this model, τ (u), and the deconvolution error, e(u), are defined as:

τ (u) = D(u) D(u)− u u,

e(u) = u−D(u).
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Comparing the exact SFNSE (1.0.5) to the LES model (1.0.4), exactly as in (1.0.2) to

(1.0.3), the model’s consistency error τ drives the deviation of the true flow averages from

the model’s solution. Further, the model’s error, e = u−w satisfies

et +∇ ·
(
D(u) D(e) + D(e) D(w)

)
− ν4e +∇(p− q) = ∇ · τ , (1.0.6)

which gives a direct link between e and τ . Consider therefore τ . By rearrangement, τ

satisfies

τ = −D(u)e(u)− e(u)u. (1.0.7)

By (1.0.6) minimizing the error in an LES-ADM depends on minimizing the model’s consis-

tency error τ (u). By (1.0.7), minimizing a model’s consistency error hinges upon minimizing

the deconvolution error e(u) = u−D(u). In Chapter 3 we address and solve this optimization

problem, which leads to a considerable increase in models’ accuracy.

1.0.5 NSE vs. Regularizations of NSE

Numerical simulation of complex flows present many challenges. Often, simulations are

based on various regularizations of the NSE, rather than the NSE themselves, [28], [39], [59].

The resulting models have remarkable and positive effects on computation results: errors

are observed to be much better over much larger time intervals and the transition from one

type of flow to another is not retarded.

Two critical features of any regularization model are

(i) its solutions must faithfully represent the qualitative properties of solutions of the NSE,

and

(ii) it must be amenable to efficient numerical simulation with robust methods.
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The oldest example was proposed by Leray in 1934, [54]:

vt + v · ∇v − ν4v +∇p = f , in Ω

∇ · v = 0, in Ω (1.0.8)

where v is a smoothed/averaged velocity. This combination is sometimes called the Leray-

alpha regularization, [10], [8], [29]. The Leray regularization’s solution is smoother, more

stable, and possesses (marginally) fewer scales than the NSE’s solution. Still, the resulting er-

ror, even with a high accuracy numerical method, cannot be better than the error committed

in the first step, replacing v by v in (1.0.8). With the differential filter, v := (−δ24+1)−1v,

the error is v − v = O(δ2) at best. Experiments in [49] have shown that, due to its low

accuracy, (1.0.8) with the above filter can have catastrophic error growth and not adequately

conserve physically important integral invariants. The experiments in [49] also indicate that

the increase in accuracy resulting from using deconvolution models (replacing v with Dv)

decreases error growth and improves conservation properties.

Continuing Leray’s idea, new regularization models can be derived every time a suitable

regularization operator is chosen. In Chapter 4, we develop and study a new family of

turbulence models: Leray-Tikhonov deconvolution models. This family of models is based

on a modification (consistent with the large scales) of the Tikhonov regularization method.

The Leray-Tikhonov deconvolution models have high accuracy, appropriate conservation of

properties and physical fidelity.

1.0.6 Chapter Description

In Chapter 2 we study an abstract approach to modeling the motion of large eddies in a

turbulent flow. If the Navier-Stokes equations are averaged with a local, spacial convolution

8



type filter, φ = gδ ∗ φ, the resulting system is not closed due to the filtered nonlinear term

uu. An approximate deconvolution operator D is a bounded linear operator which satisfies

u = D(u) + O(δα), (1.0.9)

where δ is the filter width and α ≥ 2. Using a deconvolution operator as an approximate

filter inverse, yields the closure

uu = D(u)D(u) + O(δα).

Averaging the Navier-Stokes equations using the above closure, possible including a time

relaxation term to damp unresolved scales, yields the ADM

wt +∇ ·D(w) D(w)− ν4w +∇q + χw∗ = f and ∇ ·w = 0. (1.0.10)

Here w ' u, χ ≥ 0, and w∗ is a generalized fluctuation, defined by a positive semi-definite

operator. Assuming periodic boundary conditions, we develop an abstract theory of the LES

model (1.0.10).

Theorem 1.0.1. Let T > 0 and D be a deconvolution operator satisfying the properties:

P1. D is a bounded linear operator on L2(Q) that is one-to-one and onto,

P2. D is self-adjoint and positive definite,

P3. D commutes with differentiation.

For w0 ∈ H1(Q) ∩ L2(Q) and f ∈ L2(0, T ; L2(Q)), there exists a weak solution w ∈
L2 (0, T ; H2(Q)) ∩ L∞(0, T ; L2(Q)) of (1.0.10). Moreover, for any t ∈ (0, T ], the following

stability bound holds:

1

2
||w(t)||2 +

1

2
δ2||∇w(t)||2 + ν

∫ t

0

( ||∇w(τ)||2 + δ2||4w(τ)||2 )
dτ

≤ C (

∣∣∣∣
∫ t

0

( f(τ), D(w(τ)) )dτ

∣∣∣∣ + ||w(0)||2 + δ2||∇w(0)||2 ).
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Using techniques from functional analysis and the theory of weak solutions of PDEs, [23],

we show that the weak solution is a unique strong solution and satisfies an energy equality:

(2.3.6) of Theorem 2.3.2. Moreover, this energy equality implies the stability bound given

in Theorem 1.0.1 above..

In Chapter 3, we derive new methods to solve the ill-posed problem (1.0.9). This method

satisfies the necessary conditions developed in Chapter 2 and minimizes the consistency

error/residual stress of many turbulence models such as Leray deconvolution model, [54],

[49], the time relaxation regularization model, [62], [50], and ADM, [3], [19], [5].

The van Cittert deconvolution algorithm approximates u using N steps of fixed point

iteration. Its main cost is the filtering step. Thus, relaxation parameters can be introduced

into the van Cittert algorithm with negligible increase in computational effort. Doing this,

we obtain the Accelerated van Cittert algorithm: choosing u0 = u and ω0, ω1, ...., ωN−1, for

n = 0, 1, 2, ..., N − 1, perform

un+1 = un + ωn{u−Gun}.

Let Dω
N be the resulting deconvolution operator. The goal is to find the values of relax-

ation parameters ωi which minimize the deconvolution error u−Dω
N(u). We are led to the

optimization problem: Find minωi
maxu FN(ω0, ..., ωN−1), where

FN(ω0, ..., ωN−1) =
∑

k

∑

|k|=k

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
)2(1− 1

δ2k2 + 1
)2|û(k, t)|2.

One immediate question is: What is the right optimization problem? It is natural either to

optimize over a general velocity field or over a velocity field with the typical energy spectrum

of E(k) ∼ αε2/3k−5/3 of homogeneous, isotropic turbulence. Both cases are interesting and

we consider them in Chapter 3.

We introduce the Accelerated van Cittert deconvolution operator Dω
N and study its math-

ematical properties. For general velocity fields, we solve the problem: Find ωi to minimize

max
u∈L2(Q)

FN(ω0, ..., ωN−1).

Using Chebyshev polynomials, we solve the above optimization problem. We derive:
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• the values of this optimal parameters and

• the reduction in the model consistency error that results in their use. This gives an

exponential increase in accuracy for zero additional cost :

‖u−Dω
N(u)‖ ≤ 2.16 α ε2/3 δ2/3 π

L

4

e1.24N
.

For homogeneous, isotropic turbulence, we also compute the values of the relaxation param-

eters ωi by solving the N ×N system (N=1,...,6):

(
∂FN

∂ω0

, ...,
∂FN

∂ωN−1

)
= 0.

With both sets of parameters, we perform extensive computational tests. First, we choose

a known velocity and calculate ‖u−Dω
N(u)‖. The computations are in accord with the

theory: when the velocity is smooth, the regular van Cittert is more accurate, when the

velocity oscillates faster, both versions of the Accelerated van Cittert are more competitive.

For qualitative results, we consider a second example. We study an under-resolved flow with

recirculation, the flow across a step with N = 1. Behind the step, the flow simulation, using

both the optimal parameters and the usual van Cittert (ωi = 1), correctly develops vortices

separate from the step (see Figure 5 below).

In Chapter 4 we develop and study a Tikhonov regularization based Leray Regularization

of the NSE. This family of models is based on a modification (consistent with the large scales)

of Tikhonov-Lavrentiev deconvolution. Without this modification, the Tikhonov-Lavrentiev

process leads to a less accurate solution of (1.0.9). One way to see this is by plotting the

transfer functions of exact and Tikhonov-Lavrentiev deconvolution (see Figure 6). The figure

shows a separation between the graphs for wave numbers near 0 (which means that the large

scales are not accurately recovered).

With the modified Tikhonov-Lavrentiev deconvolution process, we obtain an approxima-

tion of the unfiltered solution by one filtering step. Let 0 < µ < 1. Given u, an approximate

solution of the deconvolution problem (1.0.9) is given by

uµ = ( (1− µ)G + µI )−1 u. (1.0.11)

11



The operator Dµ, 0 ≤ µ ≤ 1, is a Tikhonov-Lavrentiev regularization of the formal filter

inverse adapted to turbulence, i.e. designed to accurately capture the large scales of a flow,

while modeling the small (or under-resolved) scales (and truncating).

We prove that the operator Dµ satisfies the conditions we derived in Chapter 2 and

has consistency error u = Dµ(u) + O(µδ2). We are presenting computational comparisons

and rigorous numerical analysis of a computational attractive algorithm for the family of

Tikhonov-Leray regularization with time relaxation models

wt + Dµ(w) · ∇w − ν4w +∇p + χ(w −Dµ(w)) = f and ∇ ·w = 0.

Algorithm 1.0.2. Let ∆t > 0, (w0, q0) ∈ (Xh, Qh), f ∈ X∗ and T := M ∆t as M is an

integer. For n = 0, 1, 2, · · · ,M − 1, find (wh
n+1, q

h
n+1) ∈ (Xh, Qh) satisfying

1

∆t
(wh

n+1 −wh
n,vh) + b∗(Dh

µw
h
n+1/2

h
,wh

n+1/2,v
h)− (qh

n+1/2,∇ · vh) + ν(∇wh
n+1/2,∇vh)

+χ(wh
n+1/2 −Dh

µw
h
n+1/2

h
,vh) = (fn+1/2,v

h), ∀ vh ∈ Xh

(∇ ·wh
n+1,φ

h) = 0, ∀φh ∈ Qh

We prove that, at each time step, there exists a solution of the above scheme, the scheme is

unconditionally stable and satisfies an á priori bound. We also perform a convergence analysis

of the scheme, when δ, µ, h → 0. Numerical experiments that support our theoretical results

are presented.
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2.0 EXISTENCE THEORY OF ABSTRACT APPROXIMATE

DECONVOLUTION MODELS OF TURBULENCE

Many approaches have been used to simulate turbulent flows. In LES the evolution of

averages is sought. These averages are defined through a local spatial averaging process

associated with an averaging radius δ. Once an averaging radius and a filtering process is

selected, an LES model can be developed and then solved numerically. One of the most

interesting approaches to generate LES models is via approximate deconvolution or approx-

imate/asymptotic inverse of the filtering operator. Approximate deconvolution models are

systematic (rather than ad hoc). They can achieve high theoretical accuracy and shine in

practical tests; they contain few or no fitting/tuning parameters. The ADM approach has

thus proven itself to be very promising. However, among the very many known approximate

deconvolution operators from image processing, e.g. [4], so far only two have been studied

for LES modeling, the van Cittert deconvolution operator and Geurts’ approximate inverse

filter. Their success suggests that it is time to develop a general theory of LES-ADM as

a guide to development of models based on other, possibly better, deconvolution operators

and refinement of existing ones.

Two basic requirements of an acceptable ADM are that a unique, strong solution exists

and that the model’s global energy balance be close in some sense to that of the NSE. In this

chapter, we consider these two important questions. We find conditions on the approximate

deconvolution operator D that guarantee that the ADM has a unique strong solution. We also

derive the model’s energy balance and show that under these conditions on the deconvolution

operator the model correctly captures the global energy balance of the large scales.
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Recall the Navier-Stokes equations:

ut + u · ∇u− ν4u +∇p = f and ∇ · u = 0 in Rn,

where Rn ( n = 2 or 3) is the flow domain. We consider L-periodic boundary conditions to

separate the interior closure problem from other important problems associated with filtering

through a boundary, [16], and finding boundary conditions for local averages (near wall laws),

[41],

u(x + Lej, t) = u(x, t), j = 1, ..., n.

The NSE are supplemented by the initial condition, the usual normalization condition in

the periodic case of zero mean velocity and pressure, and the assumption that all data are

square integrable with zero mean

u(x, 0) = u0(x) and

∫

Q

u dx =

∫

Q

p dx = 0,

∫

Q

|u0(x, t)|2dx < ∞,

∫

Q

|f(x, t)|2dx < ∞, and

∫

Q

f(x, t)dx = 0, for 0 ≤ t, (2.0.1)

where Q = (0, L)n. Let overbar denote a local, spatial averaging operator, such as averaging

by convolution, that is linear and commutes with differentiation. Averaging the NSE, the

(non-closed) equations for u and p, known as the Space Filtered Navier-Stokes equations

(SFNSE), are

ut +∇ · (u u)− ν4u +∇p = f and ∇ · u = 0. (2.0.2)

Since in general uu 6= u u, the closure problem is to replace uu by a tensor S(u,u) depending

only on u, not on u. If we denote filtering by u = Gu and D is an approximate inverse of

G (so u ∼= Du), then the variant of approximate deconvolution model we consider herein

approximates

uu ∼= D(u)D(u) =: S(u,u).

The deconvolution problem is central in image processing, [4]. Thus many algorithms

can be adapted to give a possible LES closure model. The goal of deconvolution in LES is

14



to recover accurately the resolved scales asymptotically as δ → 0. The resulting LES model

should have a lucid 1 energy balance and favorable properties for its approximate solution. As

an example, the N th van Cittert approximate deconvolution operator DN , defined precisely

in Section 2.4, see also [3], [19], [45], is an easy-to-construct bounded linear operator on

L2(Q) satisfying

φ = DN(φ) + O(δ2N+2), for smooth φ.

In other words, DN is an asymptotic (as δ → 0) approximate inverse of G. With the van

Cittert approximate deconvolution operator, the closure problem in (2.0.2) can be solved

approximately, but systematically, by:

u u ' DN(u) DN(u) + O(δ2N+2), for smooth u.

More generally and beyond the van Cittert operator, there is little analytical guidance as

to the properties needed of a deconvolution operator to produce a reliable LES model. Since

inverting a filter is an ill-posed problem, a deconvolution operator can also be generated by

any method for solving approximately ill-posed problems. Thus, there are many possible

choices of D available. Once D is selected, we define the higher order fluctuation w∗ =

w − D(w), if I −DG is symmetric positive semi-definite and w∗ = (I −DG)∗(I −DG)w

otherwise.

In general, any approximate deconvolution operator D, used as a closure approximation,

leads to the approximate deconvolution LES model

wt +∇ ·D(w) D(w)− ν4w +∇q + χw∗ = f

∇ ·w = 0 (2.0.3)

w|t=0 = u0∫

Q

qdx = 0.

1“Lucid” here is used to mean physically lucid. The energy balance should connect the mathematical
theory to the physics of turbulence.
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Remark 2.0.1. [On the definition of the time relaxation term w∗] The time relaxation term

χw∗, where χ ≥ 0 is a model parameter, is often included in the ADM to damp marginally

unresolved scales, see [62] and [50], so we include it in our analysis. The time relaxation

term’s intent is to dissipate energy around the length scale l ' δ. Energy is only dissipated

if the term χ(w∗,w) is positive. Thus, when I −DG is not symmetric positive definite, the

definition of w∗ is modified to ensure this. The modification does alter the scaling of w∗.

If D is a symmetric positive definite operator then it induces a deconvolution weighted

L2 inner product and norm defined by (u,v)D :=
∫

Q
u · D(v)dx and ||v||2D = (v,v)D. For

specificity, we select the filtering operation v := (I − δ24)−1v.

In Section 2.2 we show that if the deconvolution operator D : L2(Q) → L2(Q) is a one-

to-one and onto, bounded, self adjoint and positive definite operator that commutes with

differentiation, then a weak solution exists for the deconvolution model (2.0.3). In Section 2.3

we show that the weak solution is a unique strong solution and satisfies the energy equality:

1

2
||w(t)||2D +

δ2

2
||∇w(t)||2D +

∫ t

0

(
ν||∇w||2D + νδ2||4w||2D + χ(w∗, (I − δ24)w)D

)
dτ

=

∫ t

0

(f ,w)Ddτ +
1

2

(||w(0)||2D + δ2||∇w(0)||2D
)
. (2.0.4)

Remark 2.0.2. [ An Important Difference Between Deconvolution Models ] The SFNSE can

be rewritten as

ut + u · ∇u− ν4u +∇p +∇ · (uu− u u) = f .

Another possible deconvolution LES model approximates

uu− u u = D(u) D(u)−D(u) D(u).

In the simplest case (D = I) this is the Bardina model

wt + w · ∇w − ν4w +∇q +∇ · (ww −w w) = f . (2.0.5)

This common approach is NOT covered by the theory herein. In fact, we believe (but can-

not prove yet) that this approach can be unstable, unless sufficient ad hoc eddy viscosity is

added (thereby destroying the high accuracy of the ADM approach). We therefore have a

strong preference for the simpler, accurate, and unconditionally stable model (2.0.3) over the

similarity type deconvolution model (2.0.5).
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2.1 PRELIMINARIES, NOTATIONS, AND FUNCTION SPACES

We begin by briefly reviewing the concept of averaging/filtering in LES and define the

function spaces and the norms needed for the variational formulation of the scale similarity

model.

2.1.1 Averaging operators used in LES

The idea of LES is to split the velocity into u = u + u′ a local, spatial average u and

a fluctuation about the mean u′. It is widely believed that given the random and chaotic

character of the fluctuations, their average effects on the mean motion can successfully be

modeled and thus the mean can be predicted accurately. The mean is defined by filtering or

mollification (convolution with an approximate identity). The goal is to predict the mean

accurately. Let g(·) denote a filter, such as the Gaussian filter g(x) = 6
π
e−6|x|2 , and let δ

denote the selected averaging radius. Define gδ(x) := δ−3g(x/δ). Averages are defined by

convolution with the kernel g(·). Given a velocity u, its mean u and fluctuation u′ are

defined by u = Gu and u′ = u− u when

u(x) :=

∫

R3

gδ(x− x′)u(x′)dx′. (2.1.1)

Typical choices used in LES include the top-hat filter, sharp spectral cut-off, the Gaussian

filter and differential filters, defined next, which also fit into the convolution formalism.

Definition 2.1.1. [ Differential Filter ] Let A := −δ24 + I and let ϕ denote the unique

L-periodic solution in H2(Q) of:

Aϕ := −δ24ϕ + ϕ = ϕ. (2.1.2)

Remark 2.1.1. Under periodic boundary conditions and for constant δ both (2.1.1) and

(2.1.2) commute with differentiation, preserve incompressibility, and can be written as con-

volution with approximate identity.
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Differential filters are well-established in LES, starting with the work of Germano [27]

and continuing with [26], [59]. They have many connections to regularization processes such

as the Yoshida regularization of semigroups and the very interesting work of Foias, Holm,

Titi [22] (and others) on Lagrange averaging of the Navier-Stokes equations.

The mean u(x) is the weighted average of u about the point x. As δ → 0, the points

near x are weighted more and more heavily, so intuitively we expect that u → u as δ → 0.

This is known for convolution filters. For differential filters, it is also not difficult to show.

Remark 2.1.2. Expanding the velocity u in Fourier series we obtain

u(x) =
∑

k

û(k)eik·x,

where k is the wave number vector and k = 2πn
L

, for n ∈ Z3. Let k = |k| =
√

k2
1 + k2

2 + k2
3

be its magnitude. The Fourier coefficients are

û(k) =
1

L3

∫

Q

u(x)e−ik·xdx.

Parseval’s equality leads to

1

L3

∫

Q

|u(x)|2dx =
∑

k

|û(k)|2 =
∑

k

∑

|k|=k

|û(k)|2.

Lemma 2.1.1. Let u = (−δ24+ I)−1u. Then, for any u ∈ L2(Q), we have

u → u in L2(Q) as δ → 0.

Proof. Given ε > 0, we show that ||u−u|| < ε, for δ small enough. Indeed, using Parseval’s

equality and (2.1.2), we obtain

||u− u||2 =
∑

k

∑

|k|=k

(
δ2k2

1 + δ2k2

)
|û(k)|2.

For any positive integer M we can write

||u− u||2 =
∑

0<k≤M

∑

|k|=k

(
δ2k2

1 + δ2k2

)
|û(k)|2 +

∑

k>M

∑

|k|=k

(
δ2k2

1 + δ2k2

)
|û(k)|2.
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We have

∑

|k|=k

(
δ2k2

1 + δ2k2

)
|û(k)|2 ≤

∑

|k|=k

|û(k)|2.

Thus, for M large enough

∑

k>M

∑

|k|=k

(
δ2k2

1 + δ2k2

)
|û(k)|2 <

ε

2
(2.1.3)

and for this M we have

∑

0<k≤M

∑

|k|=k

(
δ2k2

1 + δ2k2

)
|û(k)|2 ≤ δ2M2

1 + δ2M2
||u||2 <

ε

2
, (2.1.4)

for some δ = δ(M). From (2.1.3) and (2.1.4) the conclusion follows.

2.1.2 Function Spaces, Weak and Strong Solution

The notation we are using follows Temam [64] and Layton and Lewandowski [46]. Let ||·||
and (·, ·) be the L2 norm and inner product respectively. The space Hk represents the

Sobolev space W k
2 (Q) and || · ||k denotes the norm in Hk. For k ≥ 1, let V k

#(Q) denote the

space of all [0, L]3-periodic functions with restriction on the cell Q = (0, L)3 in the space

Hk(Q). Thus

V k
#(Q) =

{
u ∈ Hk

loc(Q)| u is L-periodic
}

.

On V k
#(Q) we define the associated norm || · ||V k

#(Q) given by:

||u||V k
#
(Q) =

k∑
j=0

(∫

Q

|∇ju(x)|2dx

)1/2

, for all u ∈ V k
#(Q).

For the variational formulation of the approximate deconvolution model (following, for ex-

ample, Galdi [23]), we consider the spaces of periodic, divergence-free functions:

V
k

#(Q) =
{

u ∈ V k
#(Q)| ∇ · u = 0

}
,

H =
{

u ∈ L2(Q)| u is L-periodic and ∇ · u = 0
}

,
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and

V =
{

u ∈ H1(Q)| ∇ · u = 0
}

.

Further, let QT = Q× [0, T ) and define

D(Q) = { ψ ∈ C∞(Q)| ψ is L-periodic, has compact support,

∇ ·ψ = 0 and

∫

Q

ψdx = 0 }
D(QT ) = { ψ ∈ C∞ (QT ) | ψ(·, t) is L-periodic, has compact support,

∇ ·ψ = 0 and

∫

Q

ψdx = 0 }.

Definition 2.1.2. Let D be a symmetric, positive definite and bounded operator on L2(Q).

The D inner product and norm on L2(Q) are (φ,ψ)D :=
∫

Q
φ ·D(ψ)dx and

||φ||2D = (φ,φ)D, for every φ ∈ L2(Q).

Definition 2.1.3. Let D and G be bounded operators on L2(Q). We define

φ∗ :=





(I −DG) φ, if I −DG is symmetric positive semi-definite

(I −DG)∗(I −DG) φ, otherwise.

The ∗ semi-inner product and semi-norm on L2(Q) are (φ,ψ)∗ := (φ∗,ψ) and

||φ||2∗ := (φ,φ)∗, for every φ ∈ L2(Q).

To make progress in the mathematical understanding of an LES model the key idea is

the notion of weak solution. For the NSE, the notion of weak solution was introduced by

Leray, [54]. We now introduce the notion of weak solution for the ADM (2.0.3).

Definition 2.1.4. Let f ∈ L2(0, T ; L2(Q)) and w0 ∈ V
1

#(Q). A function w : Q×[0, T ] → Rn

is a weak solution of (2.0.3) if w ∈ L2
(
0, T ; V

2

#(Q)
)
∩ L∞ (0, T ; H) and

( w(T ),ϕ(T ) )−
∫ T

0

(
(w,

∂ϕ

∂t
) − ν (∇w,∇ϕ)− (∇ ·D(w)D(w),ϕ) − χ(w∗,ϕ)

)
dt

=

∫ T

0

( f ,ϕ )dt + (w0,ϕ(0)) , (2.1.5)

for all ϕ ∈ D(QT ).
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To obtain the weak formulation (2.1.5), we multiply the first equation of (2.0.3) by

ϕ ∈ D(QT ) and integrate over Q. Integration by parts gives that (∇q, ϕ) = 0. Now,

integrating between 0 and T we obtain the claimed formulation. Following Galdi [23], we

define below a strong solution of the ADM (2.0.3).

Definition 2.1.5. The pair (w, q) is a strong solution of the deconvolution model (2.0.3) if

w and q satisfy all the equations of (2.0.3), where

w ∈ V
2

#(Q) ∩H, for a.e. t ∈ [0, T ]

w ∈ H1([0, T ]), for a.e. x ∈ Q (2.1.6)

q ∈ V
1

#(Q) ∩ L2
0(Q), for a.e. t ∈ (0, T ].

2.1.3 The Stokes Operator

Recall the Stokes problem

− ν4u +∇p = f and ∇ · u = 0 in Q, (2.1.7)

where f ∈ L2(Q) and ν > 0. We say that u ∈ V is a weak solution of the Stokes problem if

ν(∇u,∇v) = (f ,v), ∀v ∈ D(Q).

Since 4u ∈ L2(Q), by the Helmholtz-Weyl decomposition (see for example Galdi [23] pag.

6), we have that 4u = ψ + ψ⊥, for unique ψ ∈ H and ψ⊥ ∈ H⊥. Since (ψ⊥,v) = 0 for

all v ∈ D(Q), it means that (4u,v) = (ψ,v), for all v ∈ D(Q). Thus, (2.1.7) is equivalent

with

−ν(P (4u),v) = (P f ,v), ∀v ∈ D(Q),

where P is the orthogonal projection P : L2(Q) → H.

Definition 2.1.6. The Stokes operator A : H2(Q) ∩H → H is defined by

A = −P4, i. e. Au = P (−4u), ∀u ∈ H2(Q) ∩H.
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Theorem 2.1.1.

(i) The Stokes operator is symmetric and self-adjoint.

(ii) The inverse of the Stokes operator, A−1, is a bounded compact operator in H.

Proof. For the proof see [13] (pag.31-32).

Since A−1 is compact and self-adjoint (since A is self-adjoint), there exists an orthonormal

basis of H consisting of eigenfunctions of the Stokes operator. Let {ψj}j be this basis.

Following [13] we have that, under periodic boundary conditions, P and4 commute (Remark

4.13, pag. 43). Proposition 4.6 in [13] also gives that {ψj}j ⊂ D(Q) ⊂ H.

2.2 EXISTENCE OF WEAK SOLUTIONS OF ADM

Due to the nonlinearity in (2.0.3) small changes in the deconvolution operator can yield

significant (positive or negative) changes in the solution of the induced model. The aver-

aging/convolution operator G is bounded, self-adjoint, positive definite and commutes with

differentiation. We thus postulate that the deconvolution operator D, its approximate in-

verse, is also bounded, self-adjoint, positive definite and commutes with differentiation. We

postulate the following properties of the deconvolution operator D:

P1. D is a bounded linear operator on L2(Q) that is one-to-one and onto,

P2. D is self-adjoint and positive definite,

P3. D commutes with differentiation.

Note that the Open Mapping Theorem, P1, and P2 imply, that there exist positive constants

C1 and C2 such that

C1||ϕ|| ≤ ||ϕ||D ≤ C2||ϕ||, for all ϕ ∈ L2(Q).

There are many operators D satisfying conditions P1 through P3; e.g., see Propositions

2.4.2 and 4.1.1.
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Remark 2.2.1. Let {ψj} be eigenfunctions of the Stokes operator in H. Then, due to

periodic boundary conditions, span{ψj}j is invariant under the Stokes operator and any

other constant coefficient differential operators. By P3, it is also invariant under D.

Under postulates P1, P2, and P3 on the deconvolution operator D, we prove that the ADM

model (2.0.3) admits weak solutions, in the sense of the Definition 2.1.4. We follow the

exposition on the existence of the weak solutions of the NSE, in Galdi [23]. The analysis

is for the case χ = 0 of no time relaxation. It extends immediately to χ > 0, when w∗ is

defined as in either cases of Remark 2.0.1.

Theorem 2.2.1. Let T > 0, χ = 0, and D be a deconvolution operator satisfying the

properties P1, P2, and P3. For w0 ∈ V
1

#(Q) ∩ H and f ∈ L2(0, T ; L2(Q)), there exists a

weak solution w ∈ L2
(
0, T ; V

2

#(Q)
)
∩ L∞(0, T ; H) of (2.0.3) in the sense of the Definition

2.1.4. Moreover, for any t ∈ (0, T ], the following stability bound holds:

1

2
‖w(t)‖2 +

1

2
δ2 ‖∇w(t)‖2 + ν

∫ t

0

(‖∇w(τ)‖2 + δ2 ‖4w(τ)‖2) dτ

≤ C

( ∣∣∣∣
∫ t

0

( f(τ), D(w(τ)) ) dτ

∣∣∣∣ + ‖u0‖2

)
. (2.2.1)

Existence also holds if χ > 0, (w, D Aw∗) ≥ 0, and w → w∗ is a bounded operator on

L2(Q).

Proof. Let {ψj} ∈ D(Q) be an orthonormal basis of H consisting of eigenfunctions of the

Stokes operator. We are looking for Galerkin approximate solutions of the form:

wk(x, t) =
k∑

r=1

ηkr(t) ψr(x), for k ∈ N. (2.2.2)

We require that the functions {wk}k satisfy the system of ordinary differential equations

(
∂wk

∂t
,ψj ) + ν( ∇wk,∇ψj ) + ( ∇ ·D(wk)D(wk),ψj ) =

(
f ,ψj

)
(2.2.3)

( wk(0),ψj ) = ( w0,ψj ), (2.2.4)
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for all j = 1, ..., k. Using (2.2.2) in (2.2.3) and (2.2.4), we obtain

k∑
r=1

∂ηkr

∂t
(ψr,ψj) + ν

k∑
r=1

ηkr (∇ψr,∇ψj)

+
k∑

r,i=1

ηkrηki ( ∇ ·D(ψr)D(ψi),ψj ) = (f ,ψj) (2.2.5)

k∑
r=1

ηkr(0) (ψr,ψj) = (w0, ψj), (2.2.6)

for all j = 1, ..., k. For simplification, let arj = (∇ψr,∇ψj), arij = (∇ · D(ψr)D(ψi),ψj),

fj = ( f ,ψj) and c0j = (w0,ψj). Since (ψi,ψj) = δij, equations (2.2.5) and (2.2.6) become

∂ηkj

∂t
+ ν

k∑
r=1

arjηkr +
k∑

r,i=1

arijηkrηki = fj (2.2.7)

ηkj(0) = c0j, (2.2.8)

for j = 1, ..., k. Since fj ∈ L2(0, T ), for all j, from the theory of ODEs we know that the

problem (2.2.7)–(2.2.8) has a unique solution ηkj ∈ W 1,2(0, Tk), for a small enough time

Tk ≤ T .

Because w0 ∈ V
1

#(Q) ∩H, there exists u0 ∈ H such that u0 = w0 and:

(w0,ψj) = (u0,ψj), for j = 1, ..., k. (2.2.9)

From Remark 2.2.1, span{ψj}j is invariant under the Stokes and differential operators. In

particular, span{ψj}j is invariant under the deconvolution operator D and (−δ24 + I).

Since D(wk) is a linear combination of {ψj} we deduce that D(wk) ∈ span {ψj}j and

(−δ24+ I)wk(0) ∈ span{ψj}j. So, we can use (−δ24+ I) wk(0) as test function in (2.2.9).

We have

(
wk(0), (−δ24+ I)wk(0)

)
=

(
u0, (−δ24+ I)wk(0)

)
= (u0,wk(0)). (2.2.10)

Cauchy-Schwarz and Young’s inequalities in the right hand side lead to the following à priori

estimate
1

2
||wk(0)||2 + δ2||∇wk(0)||2 ≤ 1

2
||u0||2. (2.2.11)
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Further, in (2.2.3) we can replace ψj by (−δ24+ I)D(wk) ∈ span{ψj}j. Since (−δ24+ I)

is symmetric, the nonlinear term vanishes:

( ∇ ·D(wk)D(wk),
(−δ24+ I

)
D(wk) ) = ( ∇ ·D(wk)D(wk), D(wk) ) = 0.

Thus, (2.2.3) becomes

(
∂wk

∂t
, (−δ24+ I)D(wk)) + ν (∇wk,∇(−δ24+ I)D(wk)) = (f , D(wk)).

Applying properties P1, P2, and P3 of D, and integrating between 0 and t we obtain

1

2
||wk(t)||2D +

1

2
δ2||∇wk(t)||2D + ν

∫ t

0

( ||∇wk(τ)||2D + δ2||4wk(τ)||2D )dτ

=

∫ t

0

(f , D(wk(τ)))dτ +
1

2
||wk(0)||2D +

1

2
δ2||∇wk(0)||2D. (2.2.12)

Moreover, since the D-norm and the L2-norm are equivalent on L2(Q) there exists a constant

C such that

1

2
||wk(t)||2 +

1

2
δ2||∇wk(t)||2 + ν

∫ t

0

(||∇wk(τ)||2 + δ2||4wk(τ)||2) dτ

≤ C (

∫ t

0

||f ||2dτ +

∫ t

0

||wk(τ)||2dτ + ||wk(0)||2 + δ2||∇wk(0)||2 ). (2.2.13)

Gronwall’s inequality in (2.2.13) implies that for all t ∈ (0, T ]

1

2
||wk(t)||2 +

1

2
δ2||∇wk(t)||2 + ν

∫ t

0

( ||∇wk(τ)||2 + δ2||4wk(τ)||2 )dτ

≤ CeCt (

∫ t

0

||f ||2dτ + ||wk(0)||2 + δ2||∇wk(0)||2 ). (2.2.14)

Also, for all t ∈ (0, T ] we have

CeCt(

∫ t

0

||f ||2dτ+||wk(0)||2+δ2||∇wk(0)||2 ) ≤ CeCT (

∫ T

0

||f ||2dτ+||wk(0)||2+δ2||∇wk(0)||2 ).

Let M := max{2, 2/δ} eC T (
∫ T

0
‖f‖2 dτ + ‖u0‖2), so that M is a constant independent of t

and k. In particular, from (2.2.14) we deduce

||wk(t)|| ≤ M1/2 and ||∇wk(t)|| ≤ M1/2. (2.2.15)
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We also get ||wk(t)||2 = (wk(t),wk(t)) =
∑k

r=1 η2
kr(t) and thus |ηkr(t)| is bounded,

|ηkr(t)| ≤ (
k∑

r=1

η2
kr(t) )1/2 ≤ M1/2.

We already know that Tk ≤ T . The à priori bound (2.2.15) and standard results on ordinary

differential equations, [14], imply that, in fact, Tk = T , for all k ∈ N.

We also note that estimate (2.2.14) implies that for δ > 0

4wk ∈ L2(0, T ; L2(Q))

∇wk ∈ L∞(0, T ; L2(Q)), (2.2.16)

uniformly in k, i.e., the indicated norms are bounded uniformly in k.

Next, we investigate the properties of convergence of {wk} as k → ∞. To begin, let j

be fixed, but arbitrary. Define the sequence
{

N
(j)
k (t)

}
k
, where

N
(j)
k (t) = (wk(t), ψj), for t ∈ (0, T ].

We shall first show that the sequence so defined satisfies the properties

1.
{

N
(j)
k (t)

}
k

is uniformly bounded,

2.
{

N
(j)
k (t)

}
k

is equicontinuous.

The first property follows from ||ψj|| = 1, the Cauchy- Schwarz inequality, and (2.2.15).

Indeed,

|N (j)
k (t)| ≤ ||wk(t)|| ||ψj|| ≤ M1/2.

To prove the second, let us note that for every t and s in (0, T ) we have

|N (j)
k (t)−N

(j)
k (s)| = | (wk(t)−wk(s),ψj) | = |

k∑
r=1

(ηkr(t)− ηkr(s))(ψr,ψj)|.

We may suppose that t ≥ s. Integrating between 0 and t in (2.2.7) we first obtain that the

coefficients ηkr satisfy the equation

ηkj(t) = ηkj(0) +

∫ t

0

(fj − ν

k∑
r=1

arjηkr −
k∑

r,i=1

arijηkrηki) dτ (2.2.17)
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and thus

|N (j)
k (t)−N

(j)
k (s)| ≤

∫ t

s

|( f , ψj)|dτ + ν

∫ t

s

|(∇wk,∇ψj)|dτ +

∫ t

s

|(∇ ·D(wk)D(wk),ψj)|dτ.

(2.2.18)

Definition 2.1.1 leads to ||f || ≤ ||f ||. Using the Cauchy-Schwarz inequality and the orthogo-

nality of
{
ψj

}
, we can bound each term in (3.2.23)

|(f ,ψj)| ≤ ||f || ||ψj|| ≤ ||f ||
|(∇wk,∇ψj)| ≤ M1/2 ||∇ψj|| and

|(∇ ·D(wk)D(wk), ψj)| ≤ C(||D||) ‖ψj‖L∞(Q) ||wk|| ||∇wk||
≤ C(||D||) ‖ψj‖L∞(Q) M1/2M1/2.

Putting everything together and letting K1 = ν||∇ψj|| and K2 = C(||D||)‖ψj‖L∞(Q) we

have

|N (j)
k (t)−N

(j)
k (s)| ≤

∫ t

s

( ||f ||+ K1M
1/2 + K2M ) dτ. (2.2.19)

Furthermore, the Cauchy-Schwarz inequality in time gives:

|N (j)
k (t)−N

(j)
k (s)| ≤

√
|t− s| ||f ||L2(s,t;L2(Q)) + (K1 M1/2 + K2 M) |t− s|.

Finally, since f ∈ L2(0, T ; L2(Q)), our argument is over and
{

N
(j)
k (t)

}
k

is equicontinuous.

By the Arzela-Ascoli Theorem, from {N (j)
k (t)} we may select a subsequence, which we

redenote by {N (j)
k (t)}, uniformly convergent to a continuous function N (j)(t), i.e.:

(wk(t),ψj) −→
k

N (j)(t) uniformly in t. (2.2.20)

We remark that the selected sequence (and subsequence) may depend on j. Using the Cantor

diagonalization method, we end up with a sequence redenoted by {N (j)
k (t)}, convergent to

N (j)(t), for all j, uniformly in t.

To proceed, fix t ∈ (0, T ]. From estimate (2.2.15), we obtain that {wk(t)} is a bounded

sequence in H. The weak compactness of closed bounded subsets of H together with (2.2.20)
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give that there exists a subsequence of {wk(t)}, again denoted by {wk(t)}, weakly convergent

to w(t) ∈ H. Since t was arbitrarily fixed, applying (2.2.20) we obtain

(wk(t),ψj) −→
k

(w(t), ψj) uniformly in t. (2.2.21)

Now, fix t ∈ (0, T ] and let v ∈ H, where v =
∑∞

i=1 viψi. We have

|(wk(t)−w(t),v)| ≤ |(wk(t)−w(t),
N∑

i=1

viψi)|+ |(wk(t)−w(t),
∞∑

i=N

viψi)|,

for all N ≥ 1. We note that the RHS of the above inequality approaches 0 as k → ∞.

Indeed, let v ∈ H be fixed but arbitrary. Then, as above, v =
∑∞

i=1 viψi with vi := (v,ψi).

Since H ⊂ L2(Q) is a Hilbert space,
∑∞

i=1 viψi converges. Thus by the Cauchy-Schwarz

inequality and (2.2.15), for any ε > 0, we can choose N = N(t) independent of k and large

enough so that |(wk(t) − w(t),
∑∞

i=N viψi)| < ε/2. By (2.2.21) we can choose k(ε) so that

|(wk(t)−w(t),
∑N

i=1 viψi)| < ε/2, for all k ≥ k(ε). With these, we obtain that, in fact,

(wk(t),v) −→
k

(w(t),v), ∀ v ∈ H. (2.2.22)

For all v ∈ H, for each k, the scalar-valued function (wk(t),v) is measurable on [0, T ].

Hence, for all v ∈ H, the function (w(t),v) is measurable on [0, T ]. Consequently, applying

[15] (Chapter 2, Theorem 2: Pettis measurability theorem), w is measurable (in the usual

sense) on [0,T]. Estimate (2.2.15) gives:

‖w(t)‖ ≤ lim inf
k→∞

‖wk(t)‖ ≤ M1/2.

The above estimate is independent of t; and thus, we can conclude that w ∈ L∞(0, T ; H).

By (2.2.16), {wk} is a bounded sequence in L2(0, T ; V
2

#(Q)). The weak compactness of

closed bounded subsets of L2(0, T ; V
2

#(Q)) implies that there exists a convergent subsequence

of {wk} in L2(0, T ; V
2

#(Q)). Again, we redenote the convergent subsequence by {wk}. Then

there exists w′(t) ∈ L2(0, T ; V
2

#(Q)) such that

∫ T

0

< wk(t),v
?(t) > dτ −→

k

∫ T

0

< w′(t),v?(t) > dτ,

for all v? ∈ L2(0, T ; (V
2

#(Q))?). However, V
2

#(Q) ⊂ H ≡ H? ⊂ (V
2

#(Q))?.
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Following Temam [64] (pag. 168), we have that the scalar product in H of χ ∈ H and

u ∈ H is the same as the scalar product of χ and u in the duality between V
2

#(Q) and

(V
2

#(Q))?, i.e.,

< χ,u >= (χ,u) =

∫

Q

χ(x) · u(x) dx , ∀χ ∈ V
2

#(Q) and u ∈ H.

Thus, we can conclude that

∫ T

0

(wk(t),v(t))dτ −→
k

∫ T

0

(w′(t),v(t))dτ, (2.2.23)

for all v ∈ L2(0, T ; L2(Q)).

Re-examining our derivation of (2.2.22) above, and the paragraph immediately following

(2.2.22), we see that k(ε) can be chosen independently of t ∈ [0, T ] and ‖w(t)‖ ≤ M1/2, for

all t ∈ [0, T ]. Consequently, for all v ∈ H,

(wk(t),v)−→
k

(w(t),v), uniformly in t.

Now, fix an arbitrary v = v(x) ∈ H. Next, fix an arbitrary scalar-valued function q = q(t) ∈
L2(0, T ). We define the H-valued function u = u(t) by

(u(t))(x) = u(x, t) := q(t)v(x), for all x ∈ Q and ∀ t ∈ [0, T ].

It is straightforward to check that u ∈ L2(0, T ; H), with

‖u‖L2(0,T ;H) = ‖q‖L2(0,T ), ‖v‖L2(Q).

Replacing v(t) in (2.2.23) by u(t), we see that

∫ T

0

(wk(t),v) q(t) dt −→
k

∫ T

0

(w′(t),v) q(t) dt.

By (2.2.15) and its consequences, the scalar-valued function (w(t),v) ∈ L2(0, T ), and

(wk(t),v) ∈ L2(0, T ), for all k ∈ N. Since q ∈ L2(0, T ) ⊆ L1(0, T ), the uniform conver-

gence on [0, T ] discussed above implies that

∫ T

0

(wk(t),v) q(t) dt −→
k

∫ T

0

(w(t),v) q(t) dt.
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It is also easy to check that (w′(t),v) ∈ L2(0, T ). Since q ∈ L2(0, T ) is arbitrary, we see that

(wk(t),v) −→
k

(w′(t),v) weakly in L2(0, T ), and

(wk(t),v) −→
k

(w(t),v) weakly in L2(0, T ).

By uniqueness of weak limits,

(w′(t),v) = (w(t),v).

But v ∈ H is arbitrary. Hence,

w′(t) = w(t) on [0, T ]; i.e., w′ = w.

Consequently, w ∈ L2(0, T ; V
2

#(Q))∩L∞(0, T ; H). Moreover, along a subsequence (also

denoted by {wk}, as usual), we have

wk −→
k

w weakly in L2(0, T ; L2(Q));

i.e., for all u = u(t) ∈ L2(0, T ; L2(Q)),

∫ T

0

(wk(t),u(t)) dt −→
k

∫ T

0

(w(t),u(t)) dt.

From above, we also have

wk −→
k

w weakly in L2(0, T ; V
2

#(Q));

i.e., for all u? = u?(t) ∈ L2(0, T ; (V
2

#(Q))?),

∫ T

0

< wk(t),u
?(t) > dt −→

k

∫ T

0

< w(t),u?(t) > dt.

We next wish to complete our proof that w is a weak solution of (2.0.3) by showing that

it satisfies (2.1.5) of Definition 2.1.4 (with χ = 0). Fix an arbitrary function ϕ = ϕ(t) ∈
D(QT ). Note that for all t ∈ [0, T ] and for all x ∈ Q,

(ϕ(t))(x) = ϕ(x, t) =
∞∑

j=1

γj(t) ψj(x),
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where for fixed t, the convergence is in the norm of L2(Q). In particular, for all t ∈ [0, T ],

∞∑
j=1

|γj(t)|2 < ∞.

Also,
∂ϕ

∂t
∈ D(QT ), and for all t ∈ [0, T ] and for all x ∈ Q,

∂ϕ

∂t
(x, t) =

∞∑
j=1

γ′j(t) ψj(x),

and, for all t ∈ [0, T ],
∞∑

j=1

|γ′j(t)|2 < ∞.

For all m ∈ N, we define the function ϕm ∈ D(QT ) by

ϕm(x, t) :=
m∑

j=1

γj(t) ψj(x), for all x ∈ Q and t ∈ [0, T ].

Fix an arbitrary m ∈ N. Note that

‖ϕ−ϕm‖2
L2(0,T ;L2(Q))

∫ T

0

‖ϕ(·, t)−ϕm(·, t)‖2
L2(Q) dt.

Now, for each t ∈ [0, T ],

ηm(t) := ‖ϕ(·, t)−ϕm(·, t)‖2
L2(Q) =

∞∑
j=m+1

|γj(t)|2 −→
m

0.

Further, we have that for all m ∈ N and for each t ∈ [0, T ],

|ηm(t)| =
∞∑

j=m+1

|γj(t)|2 ≤
∞∑

j=1

|γj(t)|2 = ‖ϕ(·, t)‖2
L2(Q) =: η(t).

But the function ϕ ∈ D(QT ), and so ϕ : QT −→ Rn (n = 2 or 3) is continuous. Therefore,

η ∈ L1(0, T ). Consequently, by Lebesgue’s Dominated Convergence Theorem,

‖ϕ−ϕm‖2
L2(0,T ;L2(Q)) =

∫ T

0

‖ϕ(·, t)−ϕm(·, t)‖2
L2(Q) dt

=

∫ T

0

ηm(t) dt −→
m

0.
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Similarly, we can show that

∥∥∥∥
∂ϕ

∂t
− ∂ϕm

∂t

∥∥∥∥
2

L2(0,T ;L2(Q))

−→
m

0.

In order to show that w satisfies (2.1.5) of Definition 2.1.4, with χ = 0, for our fixed but

arbitrary function ϕ ∈ D(QT ), we claim it is sufficient to show that for all m ∈ N,

(w(T ), ϕm(T ))−
∫ T

0

(
(w,

∂ϕm

∂t
) − ν (∇w,∇ϕm)− (∇ ·D(w)D(w),ϕm)

)
dt

=

∫ T

0

(f , ϕm) dt + (w0,ϕm(0)) .

Indeed, suppose we have done this. Fix ε > 0. Let δm := ϕ − ϕm, for all m ∈ N. Choose

m ∈ N so large that

‖δm‖L2(0,T ;L2(Q)) < ε,

∥∥∥∥
∂δm

∂t

∥∥∥∥
L2(0,T ;L2(Q))

< ε, ‖δm(T )‖ < ε and ‖δm(0)‖ < ε.

Then

|(w(T ), δm(T ))| ≤ ‖w(T )‖ ‖δm(T )‖ < M1/2 ε and

|(w0, δm(0))| ≤ ‖w0‖ ‖δm(0)‖ < ‖w0‖ ε.

Further,

∣∣∣∣
∫ T

0

(
w,

∂δm

∂t

)
dt

∣∣∣∣ ≤ ‖w‖L2(0,T ;L2(Q))

∥∥∥∥
∂δm

∂t

∥∥∥∥
L2(0,T ;L2(Q))

< M1/2 T 1/2 ε,

∣∣∣∣
∫ T

0

(f , δm) dt

∣∣∣∣ ≤ ‖f‖L2(0,T ;L2(Q)) ‖δm‖L2(0,T ;L2(Q))

≤ ‖f‖L2(0,T ;L2(Q)) ε, and

∣∣∣∣
∫ T

0

ν (∇w,∇δm) dt

∣∣∣∣ =

∣∣∣∣
∫ T

0

ν (4w, δm) dt

∣∣∣∣
≤ ν ‖4w‖L2(0,T ;L2(Q)) ‖δm‖L2(0,T ;L2(Q))

< ν ‖4w‖L2(0,T ;L2(Q)) ε.

Fix an arbitrary t ∈ [0, T ]. Then by the argument above, from (2.2.12) through (2.2.15),

(by passing to a subsequence if necessary) we can show that {wk(t)}k converges weakly in
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V
1

#(Q), this weak limit must be w(t) and (by the weak lower semicontinuity of the semi-norm

‖∇(·)‖ on V
1

#(Q))

‖∇w(t)‖ ≤ M1/2.

Lastly, by the Ladyzhenskaya inequalities [43],

∣∣∣∣
∫ T

0

(∇ ·D(w)D(w), δm) dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

(∇ ·D(w)D(w), δm) dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

(D(w) · ∇D(w), δm) dt

∣∣∣∣

≤
∫ T

0

∣∣(D(w) · ∇D(w), δm)
∣∣ dt

≤ C1

∫ T

0

‖D(w)‖L3(Q) ‖∇D(w)‖L2(Q) ‖δm‖L6(Q) dt

≤ C2

∫ T

0

‖D(w)‖1/2

L2(Q) ‖∇D(w)‖1/2

L2(Q) ‖D(∇w)‖L2(Q) ‖∇δm‖L2(Q) dt

≤ C2 ‖D‖2

∫ T

0

‖w‖1/2

L2(Q) ‖∇w‖1/2

L2(Q) ‖∇w‖L2(Q) C3(δ) ‖δm‖L2(Q) dt

≤ C2 ‖D‖2 M C3(δ)

∫ T

0

‖δm(t)‖L2(Q) dt

≤ C2 ‖D‖2 M C3(δ) T 1/2 ‖δm‖L2(0,T ;L2(Q))

< C2 ‖D‖2 M C3(δ) T 1/2 ε.

Consequently, since ε > 0 is arbitrary, it follows that

(w(T ),ϕ(T ))−
∫ T

0

((
w,

∂ϕ

∂t

)
− ν (∇w,∇ϕ)− (∇ ·D(w)D(w), ϕ)

)
dt

=

∫ T

0

(f ,ϕ) dt + (w0,ϕ(0)) .

It remains to show that for all m ∈ N,

(w(T ),ϕm(T ))−
∫ T

0

((
w,

∂ϕm

∂t

)
− ν (∇w,∇ϕm)− (∇ ·D(w)D(w),ϕm)

)
dt

=

∫ T

0

(f ,ϕm) dt + (w0,ϕm(0)) .
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Again fix an arbitrary m ∈ N. Recall that for each k ∈ N, {wk} has been constructed in

such a way that it satisfies equations (2.2.3) and (2.2.4), for all j = 1, . . . , k. Fix k ≥ m. For

every j ∈ {1, . . . , k}, multiply equation (2.2.3) through by γj(t); and then sum both sides

from j = 1 to m. Finally, integrate both sides from 0 to T , with respect to t. From this we

get that for all k ≥ m,

(wk(T ), ϕm(T ))−
∫ T

0

(
wk,

∂ϕm

∂t

)
dt + ν

∫ T

0

(∇wk,∇ϕm) dt

+

∫ T

0

(∇ ·D(wk)D(wk),ϕm) dt =

∫ T

0

(f ,ϕm) dt + (w0,ϕm(0)) .

From the convergence properties of {wk}k that we have discovered so far,

(wk(T ),ϕm(T )) −→
k

(w(T ),ϕm(T )), and

∫ T

0

(
wk,

∂ϕm

∂t

)
dt −→

k

∫ T

0

(
w,

∂ϕm

∂t

)
dt.

Also, for all h = (h1,h2,h3) we define h̃ ∈ (V
2

#(Q))?, by

h̃(q) :=< q, h̃ >:= (∇q,h) :=
n∑

l=1

(∇ql,hl), for all q ∈ V
2

#(Q).

Next, we define u? : [0, T ] −→ (V
2

#(Q))? by

u?(t) := ˜(∇ϕm(·, t)), for all t ∈ [0, T ].

It is easy to check that u? ∈ L2(0, T ; (V
2

#(Q))?). Hence,

∫ T

0

(∇wk,∇ϕm) dt =

∫ T

0

(∇wk(·, t),∇ϕm(·, t)) dt

=

∫ T

0

< wk(·, t),u?(t) > dt

−→
k

∫ T

0

< w(·, t),u?(t) > dt

=

∫ T

0

(∇w,∇ϕm) dt.
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Further,

∣∣∣∣
∫ T

0

(∇ ·D(wk)D(wk),ϕm) dt−
∫ T

0

(∇ ·D(w)D(w),ϕm) dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

(∇ ·D(wk)D(wk),ϕm) dt−
∫ T

0

(∇ ·D(w)D(w),ϕm) dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

(D(wk) · ∇D(wk),ϕm) dt−
∫ T

0

(D(w) · ∇D(w),ϕm) dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

(D(wk) · ∇D(wk)−D(w) · ∇D(w),ϕm) dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

((D(wk)−D(w)) · ∇D(wk) + D(w) · (∇D(wk)−∇D(w)),ϕm) dt

∣∣∣∣

≤
∫ T

0

|((D(wk)−D(w)) · ∇D(wk),ϕm)| dt

+

∣∣∣∣
∫ T

0

(D(w) · (∇D(wk)−∇D(w)),ϕm) dt

∣∣∣∣ .

Applying the Ladyzhenskaya inequalities [43] again, we get that

∫ T

0

|((D(wk)−D(w)) · ∇D(wk),ϕm)| dt

≤ C1

∫ T

0

‖D(wk)−D(w)‖1/2 ‖∇(D(wk)−D(w))‖1/2 ‖∇D(wk)‖ ‖∇ϕm‖ dt

≤ C2 ‖D‖2

∫ T

0

‖wk(t)−w(t)‖1/2 ‖∇wk(t)−∇w(t)‖1/2 ‖∇wk(t)‖ ‖ϕm(·, t)‖ dt

≤ C2 ‖D‖2 M ‖wk −w‖1/2

L2(0,T ;L2(Q)) ‖∇wk −∇w‖1/2

L2(0,T ;L2(Q)) ‖ϕm‖L2(0,T ;L2(Q))

≤ C3 ‖wk −w‖1/2

L2(0,T ;L2(Q)) (M1/2 T 1/2 + ‖∇w‖L2(0,T ;L2(Q)))
1/2 ‖ϕm‖L2(0,T ;L2(Q)).

So, in order to show that w is a weak solution it remains for us to verify that

‖wk −w‖L2(0,T ;L2(Q)) −→
k

0, and

∣∣∣∣
∫ T

0

(D(w) · (∇D(wk)−∇D(w)), ϕm) dt

∣∣∣∣ −→k 0.

Here n = 2 or 3, the space dimension of our fluid flow and recall that Q = [0, L]n. We

introduce a key lemma of Friedrichs (1933), following Galdi [25], Lemma 4.2, page 53. We

subdivide Q into N smaller cubes Ci of equal size, each having side-length α = L/N1/n, so
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that N = (L/α)n, for some α > 0 such that N1/n = L/α ∈ N. For all i ∈ {1, . . . , N}, define

the function γi by

γi(x) := 2

(
L

N1/n

)−n/2

χCi
(x), for all x ∈ Q,

where χCi
denotes the characteristic function of the sub-cube Ci. Then, by Friedrichs’

Lemma, we have that for all scalar-valued functions u : Q −→ R with u ∈ W 1,2(Q),

‖u‖2
L2(Q) ≤

N∑
i=1

∣∣∣∣
∫

Q

u(x) γi(x) dx

∣∣∣∣
2

+
(2 nL)2

N2/n
‖∇u‖2

L2(Q).

Fix k ∈ N with k ≥ m, and fix N ∈ N as described above. Let ηk := wk − w. Then

ηk = (ηk,l)
n
l=1, where each scalar-valued coordinate function ηk,l is such that for all t ∈ [0, T ],

ηk,l(·, t) ∈ W 2,2(Q) ⊆ W 1,2(Q). Thus,

‖wk −w‖L2(0,T ;L2(Q)) = ‖ηk‖L2(0,T ;L2(Q))

=

∫ T

0

‖ηk(·, t)‖2
L2(Q) dt

=
n∑

l=1

∫ T

0

‖ηk,l(·, t)‖2
L2(Q) dt

≤
n∑

l=1

∫ T

0

(
N∑

i=1

∣∣∣∣
∫

Q

ηk,l(x, t) γi(x) dx

∣∣∣∣
2

+
(2 nL)2

N2/n
‖∇ηk,l(·, t)‖2

L2(Q)

)
dt

=
n∑

l=1

∫ T

0

N∑
i=1

∣∣∣∣
∫

Q

ηk,l(x, t) γi(x) dx

∣∣∣∣
2

dt +
(2 nL)2

N2/n

∫ T

0

n∑

l=1

‖∇ηk,l(·, t)‖2
L2(Q) dt

=
n∑

l=1

∫ T

0

N∑
i=1

∣∣∣∣
∫

Q

ηk,l(x, t) γi(x) dx

∣∣∣∣
2

dt +
(2 nL)2

N2/n

∫ T

0

‖∇ηk(·, t)‖2
L2(Q) dt

≤
n∑

l=1

∫ T

0

N∑
i=1

∣∣∣∣
∫

Q

ηk,l(x, t) γi(x) dx

∣∣∣∣
2

dt

+
(2 nL)2

N2/n

∫ T

0

(‖∇wk(·, t)‖L2(Q) + ‖∇w(·, t)‖L2(Q))
2 dt

≤
n∑

l=1

∫ T

0

N∑
i=1

∣∣∣∣
∫

Q

ηk,l(x, t) γi(x) dx

∣∣∣∣
2

dt +
(2 nL)2

N2/n
2 (M T + ‖w‖2

L2(0,T ;L2(Q)).

Now, fix ε > 0. Clearly, we can choose an N that is independent of k and so large that

‖wk −w‖L2(0,T ;L2(Q)) ≤
n∑

l=1

∫ T

0

N∑
i=1

∣∣∣∣
∫

Q

ηk,l(x, t) γi(x) dx

∣∣∣∣
2

dt +
ε

2
.
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For definiteness (and without loss of generality), we will henceforth suppose that n = 3. For

all i ∈ {1, . . . , N}, for every x ∈ Q, define

γi,1(x) := (γi(x), 0, 0) , γi,2(x) := (0, γi(x), 0) and γi,3(x) := (0, 0, γi(x)).

Each function γi,l : Q −→ R3 belongs to L2(Q). Moreover,

‖wk −w‖L2(0,T ;L2(Q)) ≤
n∑

l=1

∫ T

0

N∑
i=1

∣∣∣∣
∫

Q

ηk,l(x, t) γi(x) dx

∣∣∣∣
2

dt +
ε

2

=
3∑

l=1

N∑
i=1

∫ T

0

∣∣∣∣
∫

Q

ηk(x, t) · γi,l(x) dx

∣∣∣∣
2

dt +
ε

2

=
3∑

l=1

N∑
i=1

∫ T

0

∣∣(ηk(·, t), γi,l)
∣∣2 dt +

ε

2
.

Recall that for all v ∈ H,

(wk(t),v)−→
k

(w(t),v), uniformly in t ∈ [0, T ].

But, each wk(t) ∈ H and w(t) ∈ H; and so, for all v ∈ L2(Q),

(ηk(·, t),v)(wk(·, t)−w(·, t),v) −→
k

0, uniformly in t ∈ [0, T ].

When we apply this fact to each of the finitely many v ∈ {γi,l : 1 ≤ i ≤ N and 1 ≤ l ≤ 3},
we see that there exists k(ε) ∈ N so that for all k ≥ k(ε),

‖wk −w‖L2(0,T ;L2(Q)) ≤
3∑

l=1

N∑
i=1

∫ T

0

∣∣(ηk(·, t),γi,l)
∣∣2 dt +

ε

2
<

ε

2
+

ε

2
= ε.

Thus, we now know that

‖wk −w‖L2(0,T ;L2(Q)) −→
k

0.

The last fact we will establish in detail is that

∣∣∣∣
∫ T

0

(D(w) · (∇D(wk)−∇D(w)),ϕm) dt

∣∣∣∣ −→k 0.

37



Fix t ∈ [0, T ]. Let α := D(w), β := D(wk)−D(w) = Dηk and γ := ϕm. Then

(D(w) · (∇D(wk)−∇D(w)),ϕm)(t)

=

∫

Q

(D(w) · ∇(D(wk)−D(w)))(x, t) ·ϕm(x, t) dx

=

∫

Q

(α · ∇β)(x, t) · γ(x, t) dx =

∫

Q

(α · ∇β) · γ dx

=

∫

Q

(
3∑

l=1

αl
∂β1

∂xl

,

3∑

l=1

αl
∂β2

∂xl

,

3∑

l=1

αl
∂β3

∂xl

)
· (γ1, γ2, γ3) dx

=

∫

Q

3∑
s=1

3∑

l=1

αl
∂βs

∂xl

γs dx =
3∑

l=1

∫

Q

3∑
s=1

∂βs

∂xl

αl γs dx

=
3∑

l=1

∫

Q

(
∂β

∂xl

)
(x, t) · (αl γ)(x, t) dx

=
3∑

l=1

(
∂β

∂xl

(·, t),vl(·, t)
)

,

where

vl(x, t) := αl(x, t) γ(x, t) = (D(w))l(x, t) ϕm(x, t) , for all (x, t) ∈ QT ;

for all l ∈ {1, 2, 3}. Now, ϕm ∈ D(QT ) ⊆ L∞(QT ) and D(w) ∈ L2(0, T ; L2(Q)). It is

therefore easy to check that vl ∈ L2(0, T ; L2(Q)), for all l ∈ {1, 2, 3}.
Consequently,

(D(w) · (∇D(wk)−∇D(w)),ϕm)(t)

=
3∑

l=1

(
∂β

∂xl

(·, t),vl(·, t)
)

=
3∑

l=1

(
∂(Dηk)

∂xl

(·, t),vl(·, t)
)

=
3∑

l=1

(
D

∂ηk

∂xl

(·, t),vl(·, t)
)

=
3∑

l=1

(
∂ηk

∂xl

(·, t), D vl(·, t)
)

=
3∑

l=1

(
∂ηk

∂xl

(·, t),σl(·, t)
)

,

where σl := D(vl) ∈ L2(0, T ; L2(Q)), for all l ∈ {1, 2, 3}.
Fix an arbitrary l ∈ {1, 2, 3}. For every h ∈ L2(Q), we define h(l) ∈ (V

2

#(Q))?, by

h(l)(q) :=< q,h(l) >:=

(
∂q

∂xl

,h

)
, for all q ∈ V

2

#(Q).
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Next, we define u?(l) : [0, T ] −→ (V
2

#(Q))? by

u?(l)(t) := (σl(·, t))(l), for all t ∈ [0, T ].

It is easy to check that u?(l) ∈ L2(0, T ; (V
2

#(Q))?). Also, recall that each ηk := wk − w ∈
L2(0, T ; V

2

#(Q)). Hence,

∫ T

0

(D(w) · (∇D(wk)−∇D(w)), ϕm)(t) dt

=
3∑

l=1

∫ T

0

(
∂ηk

∂xl

(·, t),σl(·, t)
)

dt

=
3∑

l=1

∫ T

0

< ηk(·, t),u?(l)(t) > dt

=
3∑

l=1

∫ T

0

< (wk −w)(·, t),u?(l)(t) > dt

=
3∑

l=1

(∫ T

0

< wk(·, t),u?(l)(t) > dt−
∫ T

0

< w(·, t),u?(l)(t) > dt

)
−→

k
0.

So, at last, we have completed our proof that w is a weak solution of (2.0.3); i.e., w satisfies

(2.1.5) of Definition 2.1.4 (with χ = 0), for all ϕ ∈ D(QT ).

We now prove the stability bound (2.2.1). Fix an arbitrary t ∈ [0, T ]. Then by the

argument above, from (2.2.12) through (2.2.15), (by passing to a subsequence if necessary)

we can show that {wk(t)}k converges weakly in V
1

#(Q), this weak limit must be w(t) and

1

2
‖wk(t)‖2 +

1

2
δ2 ‖∇wk(t)‖2 + ν

∫ t

0

(‖∇wk(τ)‖2 + δ2 ‖4wk(τ)‖2) dτ

≤ C

( ∣∣∣∣
∫ t

0

( f(τ), D(wk(τ)) ) dτ

∣∣∣∣ + ‖u0‖2

)
,

for all k ∈ N. Moreover, {wk}k converges weakly to w in L2(0, t; V
2

#(Q)). By the weak lower

semicontinuity of the norms in V
1

#(Q) and L2(0, t; V
2

#(Q)), it follows that

1

2
‖w(t)‖2 +

1

2
δ2 ‖∇w(t)‖2 + ν

∫ t

0

(‖∇w(τ)‖2 + δ2 ‖4w(τ)‖2) dτ

≤ C

( ∣∣∣∣
∫ t

0

( f(τ), D(w(τ)) ) dτ

∣∣∣∣ + ‖u0‖2

)
.
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This concludes our proof when χ = 0. The proof for χ > 0 follows in the same way.

Indeed, the á priori bound is uneffected since χ(w∗, A Dw) = χ(A Dw∗,w) ≥ 0. Further,

extracting the limit as k →∞ follows by an analogous argument.

Proposition 2.2.1. Let w be a weak solution of the model (2.0.3); i.e., w satisfies Definition

2.1.4. Let’s define the linear functional Λ on D(QT ) by

Λ(ϕ) := (w(T ),ϕ(T ))− (w0,ϕ(0))−
∫ T

0

(
w,

∂ϕ

∂t

)
dt,

for all ϕ ∈ D(QT ). Then Λ is a continuous linear functional on D(QT ) endowed with the

L2(0, T ; L2(Q))-norm. Consequently, Λ extends uniquely to a continuous linear functional on

L2(0, T ; H) and there exists a unique u ∈ L2(0, T ; H) such that Λ(v) =< u,v >L2(0,T ;L2(Q)):=∫ T

0
(u(τ),v(τ)) dτ, for all v ∈ L2(0, T ; H). We denote u by

u = wt =
∂w

∂t
∈ L2(0, T ; H). (2.2.24)

Proof. Fix an arbitrary function ϕ ∈ D(QT ). By equation (2.1.5) of Definition 2.1.4 and our

definition of Λ,

Λ(ϕ) =

∫ T

0

(
−ν (∇w,∇ϕ)− (∇ ·D(w)D(w),ϕ)− χ (w∗, ϕ)

)
dt +

∫ T

0

(f ,ϕ) dt.

In an analogous manner to part of the proof of Theorem 2.2.1 above, we can show that there

exists a positive real constant C = C(δ, χ, ‖I−DG‖, ‖D‖,M, ‖4w‖L2(0,T ;L2(Q))), independent

of ϕ, such that

|Λ(ϕ)| ≤ C ‖ϕ‖L2(0,T ;L2(Q)).

Thus, Λ is a continuous linear functional on D(QT ) endowed with the L2(0, T ; L2(Q))-norm.

But D(QT ) is norm dense in L2(0, T ; H). Consequently, Λ extends uniquely to a continuous

linear functional, also denoted by Λ, on L2(0, T ; H). By the Riesz Representation Theorem

in the Hilbert space L2(0, T ; H), there exists a unique u ∈ L2(0, T ; H) such that

Λ(v) =< u,v >L2(0,T ;L2(Q)):=

∫ T

0

(u(τ),v(τ)) dτ,

for all v ∈ L2(0, T ; H); which we denote by u = wt.
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Remark 2.2.2. Let w be a weak solution of the model (2.0.3); i.e., w satisfies Definition

2.1.4. Let < ·, · > denote the usual inner product on L2(0, T ; L2(Q)).

An important consequence of Proposition 2.2.1 is that

< wt +∇ ·D(w)D(w)− ν4w +∇q + χw∗ − f ,v >= 0,

for all v ∈ L2(0, T ; H). Therefore, in the Hilbert space L2(0, T ; H),

wt +∇ ·D(w)D(w)− ν4w +∇q + χw∗ − f = 0.

It follows that (w, q) is a strong solution of the deconvolution model (2.0.3) (as described in

Definition 2.1.5).

2.3 ADM ENERGY BALANCE AND UNIQUENESS

In this section we prove that the weak solution of the ADM (2.0.3) is a unique strong

solution. We also show that the model satisfies an energy equality rather than inequality.

In our proofs we include the case when I −DG is symmetric positive semi-definite and thus

φ∗ := (I −DG)φ. First we prove uniqueness.

Theorem 2.3.1. Assume that w0 ∈ V
1

#(Q) ∩ H, f ∈ L2(0, T ; V ′), and χ ≥ 0. The strong

solution of (2.0.3) is unique.

Proof. By contradiction, assume that there exist two solutions (w1, q1) and (w2, q2) of (2.0.3).

Let φ := w2 − w1 (thus φ∗ := w∗
2 − w∗

1) and r := q2 − q1. Then, subtracting the weak

formulations of (w1, q1) and (w2, q2), it follows that (φ, r) is a weak solution of the problem

φt +∇ · (D(w2)D(w2)−D(w1)D(w1))− ν4φ +∇r + χφ∗ = 0

∇ · φ = 0 (2.3.1)

φ(0) = 0,
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subject to periodic boundary condition and zero mean. From Remark 2.2.2, we can multiply

the first equation of (2.3.1) by (I − δ24)D(φ) ∈ L2(0, T ; L2(Q)). After algebraic manipula-

tion and integration by parts, the nonlinear term becomes:

(∇ · (D(w2)D(w2)−D(w1)D(w1)), (I − δ24)D(φ))dx = −
∫

Q

D(φ) · ∇D(φ) ·D(w1)dx.

Since both I −DG and D are symmetric, positive semi-definite and positive definite respec-

tively, and all operators commute, the higher order fluctuation term is non-negative

χ (φ∗, (I − δ24)D(φ)) = χ (ψ∗,ψ) + χ ((∇ψ)∗, (∇ψ)) ≥ 0, (2.3.2)

where ψ = D1/2(φ). The other terms are

(φt, (I − δ24)D(φ) ) =
1

2

d

dt
( ||φ||2D + δ2||∇φ||2D )

−ν (4φ, (I − δ24)D(φ) ) = ν ( ||∇φ||2D + δ2||4φ||2D ) (2.3.3)

(∇r, (I − δ24)D(φ) ) = −(r, (I − δ24)D(∇ · φ) ) = 0.

Thus, we obtain

1

2

d

dt
( ||φ||2D + δ2||∇φ||2D ) + ν ( ||∇φ||2D + δ2||4φ||2D )

≤
∫

Q

D(φ) · ∇(Dφ) ·D(w1)dx. (2.3.4)

Next, we apply the Cauchy-Schwarz inequality in the right hand side

|
∫

Q

D(φ) · ∇D(φ) ·D(w1)dx | ≤ ||D(w1)||L4(Q) ||D(φ)||L4(Q) ||∇D(φ)||.

The Sobolev embedding theorem and an inequality of Ladyzhenskaya give that there exists

C = C(Q, f ,w1, ||D||) such that

|
∫

Q

D(φ) · ∇D(φ) ·D(w1)dx | ≤ C ||∇φ||2.
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Moreover, using the equivalence of the D-norm and the L2-norm, there is a constant C ′ =

C ′(δ) such that

||∇φ||2 ≤ C ′ ( ||φ||2 + δ2||∇φ||2 ).

Putting everything together, (2.3.4) implies

1

2

d

dt
( ||φ||2D + δ2||∇φ||2D ) ≤ C ′ ( ||φ||2 + δ2||∇φ||2 ). (2.3.5)

But, φ(0) = 0. Gronwall’s Lemma implies that φ vanishes everywhere for all t. Hence,

uniqueness follows.

Lemma 2.3.1. The LES-ADM model (2.0.3) has a unique strong solution.

Proof. This follows from Theorem 2.2.1, Remark 2.2.2 and Theorem 2.3.1.

Theorem 2.3.2. Let w be the unique strong solution of (2.0.3) and let χ ≥ 0. Then w

satisfies the energy equality:

1

2

(||w(t)||2D + δ2||∇w(t)||2D
)

+ ν

∫ t

0

(||∇w(τ)||2D + δ2||4w(τ)||2D
)
dτ

+χ

∫ t

0

(
w∗(τ), (−δ24+ I)Dw(τ)

)
dτ =

∫ t

0

(f ,w(τ))Ddτ

+
1

2

(||w(0)||2D + δ2||∇w(0)||2D
)
, (2.3.6)

for all t ∈ (0, T ].

Proof. Multiply the first equation of (2.0.3) by the test function (−δ24 + I)D(w). The

nonlinear term vanishes because:

( ∇ ·D(w)D(w), (−δ24+ I)D(w) ) = ( ∇ ·D(w)D(w), D(w) ) = 0

Rewriting, we obtain:

( wt, (−δ24+ I)D(w) )− ν ( 4w, (−δ24+ I)D(w) ) + χ ( w∗, (−δ24+ I)D(w) )

= ( f , (−δ24+ I)D(w) ). (2.3.7)

The first two terms in the right hand side are handled as in (2.3.3). We also have

( f , (−δ24+ I)D(w) ) = (f , D(w) ). (2.3.8)

Finally, integration between 0 and t leads to (2.3.6), for all t ∈ (0, T ].
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Remark 2.3.1. In Theorem 2.3.2,

the kinetic energy of the model =
1

2
( ||w(t)||2D + δ2||∇w(t)||2D ),

total energy dissipation =∫ t

0

(
ν( ||∇w(τ)||2D + δ2||4w(τ)||2D ) + χ ( w∗(τ), (−δ24+ I)w(τ) )D

)
dτ,

the initial kinetic energy of the model =
1

2
( ||w(0)||2D + δ2||∇w(0)||2D ),

total energy input by the body force f =

∫ t

0

(f ,w(τ))Ddτ.

Thus Theorem 2.3.2 means that the kinetic energy of the model + total energy dissipation =

the initial kinetic energy of the model + total energy input by the body force f .

2.4 EXAMPLES OF DECONVOLUTION OPERATORS

The basic problem in deconvolution is: given u+noise find u approximately. In other words

given u solve Gu = u for u. (2.4.1)

Many averaging operators G are symmetric and positive semi-definite. If the averaging

operator is smoothing, the deconvolution problem will be not stably invertible due to small

divisor problems. With these constraints in mind we review a few examples of deconvolution

operators and their properties. In this section we consider the filtering operation be given

by (2.1.1).

1. The van Cittert deconvolution operator.

The van Cittert method of approximate deconvolution, see [4], constructs a family DN

of inverses to G using N steps of fixed point iterations.

Algorithm 2.4.1. [van Cittert Algorithm]: Choose

u0 = u.
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For n = 0, 1, 2, ..., N − 1 perform

un+1 = un + {u−Gun}.

Set DNu := uN .

A very detailed mathematical theory of the van Cittert deconvolution operator and

resulting approximate deconvolution models are already known, see [3], [5], [47], [18]

and [19]. We point out the following lemma, proved in [19], concerned with properties

of the approximate deconvolution operator DN .

Lemma 2.4.1. The operator DN : L2(Q) → L2(Q) is bounded, symmetric and positive

definite.

Proof. For the proof see [[19], Lemma 2.1].

2. The Accelerated van Cittert deconvolution operator.

In our second example, approximations to u are obtained via the algorithm defined below.

Algorithm 2.4.2. [Accelerated van Cittert Algorithm]: Given relaxation parameters ωn,

choose

u0 = u.

For n = 0, 1, 2, ..., N − 1 perform

un+1 = un + ωn{u−Gun}.

Set Dω
Nu := uN .

Proposition 2.4.1. Let the averaging operator be the differential filter Gϕ := (−δ24+

I)−1ϕ. If the relaxation parameters ωi are positive, for i = 0, 1, ..., N , then the Accelerated

van Cittert deconvolution operator Dω
N : L2(Q) → L2(Q) is symmetric positive definite.

Proof. The proof follows from [[51], Lemma 3.2].
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3. Tichonov regularization deconvolution operator.

Our third example is the Tichonov regularization deconvolution operator. More precisely,

since G := (−δ24 + I)−1 is symmetric positive-definite, given u and µ > 0 small,

an approximate solution to the deconvolution problem (2.4.1) can be calculated as the

unique minimizer in L2(Q) of the functional

Fµ(v) =
1

2
(Gv,v)− (u,v) +

µ

2
(v,v).

The resulting family of Tichonov regularization deconvolution operators is

Dµ = (G + µI)−1 (2.4.2)

and the approximate solution of (2.4.1) is uµ = (G + µI)−1u. The family of operators

Dµ has the following properties, see [4]

1. for any µ > 0, Dµ is a bounded linear operator,

2. limµ→0 Dµϕ = ϕ for all ϕ ∈ L2(Q).

Proposition 2.4.2. Let the averaging operator be the differential filter Gϕ := (−δ24+

I)−1ϕ. Let µ > 0 be fixed. The operator Dµ : L2(Q) → L2(Q) is one-to-one and onto,

bounded, self-adjoint and positive definite.

Proof. We remark that G is a linear, self-adjoint positive definite operator, with spec-

trum contained in [0, 1]. Thus the spectrum of G + µ I is contained in [µ, 1 + µ], and

consequently, the spectrum of Dµ = (G+µ I)−1 is a subset of the interval [(1+µ)−1, µ−1].

Consequently, we have that Dµ is one-to-one and onto, bounded, self-adjoint and positive

definite.

4. Geurts’ approximate filter inverse.

One of the first studies of deconvolution as a basis for LES models was done by Geurts

in [30]. Let φ be the top hat filter, φ(x) = 1
2δ

∫ x+δ

x−δ
φ(x′)dx′. Briefly, he developed

approximate inverse of the top-hat convolution filter,

Dφ :=

∫ x+δ

x−δ

d (x− x′) φ(x′)dx′,

based on exactness of polynomials of degree ≤ µ.
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If Πµ = {p(x) : p(x) = a0 + a1x + ... + aµx
µ} the criteria that determined the deconvo-

lution kernel d was

DGφ = φ, for all φ ∈ Πµ. (2.4.3)

In 1D (in multiple dimension extension is by tensor product), the top-hat filter, g(·) has

the special property that

g ? { polynomial of degree ≤ µ} = { polynomial of degree ≤ µ}.

Using this property, for L ≥ 0, let

d(x) =





d0 + d1x + ... + d2Lx2L, if |x| ≤ 2π

0, if |x| > 2π.

On [−π, π] the coefficients d0, d1, ..., d2L are uniquely determined by exactness of polyno-

mials of degree ≤ 2L + 1.

d ? g ? xl = xl, l = 0, 1, ..., 2L+1. (2.4.4)

The deconvolution operator Dφ = d?φ is self adjoint, commutes with G. The theoretical

development in [30] and associated test suggests that D satisfies:

||DGφ− φ|| ≤ C(φ)δ2L+1 for smooth φ

||D||L(L2→L2) ≤ C(δ, L) < ∞.

The deconvolution operator DL are tabulated for L = 0, 1, 2, 3 in Geurts [[30], Table 1].

The top-hat filter, and thus the associated deconvolution operator, is important in many

applications, but it is not clear if or how the theory developed herein could be extended

to it. This is because ĝ(k) = sin(kδ/2)/(kδ/2), both changes sign and has zeros. At

this point it appears to be an interesting and important open question to extend Geurts

construction to the other filters, such as the Gaussian. (Extension to dynamic inverse

models has been done in [42].)
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5. A variation of the Geurts’ Approximate Filter Inverse, [30].

The construction of Geurts [30], can be modified so as to fit in the theory herein. Indeed,

first we shall interpret the construction in wave number space. With the differential filter

ĝ(δk) = 1
δ2|k|2+1

we have |ĝ(k)| → 0 as |k| → ∞, since the filtering is smoothing. High

order accuracy on the large scales means exactness on the high degree polynomials on

x, (i.e. Guerts condition (3.2.22)) and, equivalently, high order contact of d̂(k) to 1bg(k)
at

k = 0. Since the convolution should be a bounded operator and d̂(0) = 1 we can pose

the problem seeking a rational deconvolution kernel

d̂(k) =
1 + n1k + ... + nlk

l

1 + b1k + ... + blkl
, bl 6= 0.

Then the accuracy conditions are

d̂(0) = 1 satisfied by the choice of the 0th coefficients n0 and b0

dm

dkm
d̂(k)

∣∣∣∣
k=0

=
dm

dkm

1

â(k)

∣∣∣∣
k=0

, m = 1, 2, ..., µ.

If, additionally,

1 + b1k + ... + blk
l 6= 0, for all k ∈ R

d̂(k) > 0, for all k ∈ R,

then the deconvolution operator satisfies the conditions of the theory.

6. Not all deconvolution operators used in image processing satisfy P1,P2, and P3 above.

Direct deconvolution, D = −δ24 + I is not bounded and thus not satisfying P1.

The Accelerated van Cittert with negative relaxation parameters is not posi-

tive definite, violating P2. The resulting deconvolution operator is not positive definite.

Furthermore, there are very many iterative methods, such as steepest descent and the

conjugate gradient method, that can be truncated to give deconvolution operators. How-

ever these often produce approximations to u which depend nonlinearly on u. Thus, the

resulting approximate deconvolution operators are nonlinear, violating P1 .
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2.5 EXTENSION TO OTHER FILTERS

When developing a mathematical foundation of an LES model, the first analytical problem

that arises is existence of solutions of the model. We developed a general theory about

existence of solutions of deconvolution models. The averaging operator chosen was a specific

differential filter. More generally, if the filter G satisfies ĝ(k) 6= 0 for all k, then the exact

filter inverse A can be defined as an unbounded operator with dense domain and closed

range. If additionally, |ĝ(k)| → 0 as k → ∞ with O( 1
|k|2 ) (or faster) then the existence

theory developed herein can be extended to the filter G. This includes the Gaussian filter,

for example, but excludes the top filter and sharp spectral cutoff.

One main result of this work is finding near minimal conditions on the deconvolution

operator that guarantee existence and uniqueness of the strong solution of a deconvolution

model. We also proved that under P1,P2, and P3 the models satisfy an energy equality,

which describes the evolution of the kinetic energy in a fluid’s flow. It is important to

remark that there are many possible deconvolution operators that don’t satisfy the conditions

P1,P2, and P3.
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3.0 CHEBYCHEV OPTIMIZED APPROXIMATE DECONVOLUTION

MODELS OF TURBULENCE

Most turbulent flows are heterogeneous mixes of laminar flows, transitional flows, large

coherent structures, fully developed turbulent flows and boundary layer flows. Ultimately,

turbulence models are used in simulations and one central issue is to use the available degrees

of freedom in the simulation effectively. This suggests that the “building block” flows which

have universal features should be modelled with high precision in a continuum turbulence

model so that available degrees of freedom in the simulation are retained for other flow

aspects. Building block flows with universal features include turbulent boundary layers and

homogeneous, isotropic turbulence, considered herein.

Various turbulence models are used for simulations seeking to predict flow statistics or

averages. In LES the evolution of local, spatial averages is sought. The accuracy of a model

measured in a chosen norm, || · ||, i.e.

||averaged NSE solution− LES solution||,

can be assessed in several experimental and analytical ways. One important analytical

approach is to optimize the model’s consistency error/residual stress as a function of the

averaging radius δ and the Reynolds number Re and, most importantly, model parameters.

One approach is to optimize model parameters for special flows, such as boundary layers

or homogeneous, isotropic turbulence (considered herein). The complement (also considered

herein) is to optimize over general velocity fields with finite kinetic energy. We analyze the

residual stress in the model and give an analytic and numerical comparison of the deconvo-

lution error of two different optimization strategies: for special vs. general velocities. With a
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very efficient LES solver, optimization can also be studied computationally by wrapping the

solver in an optimization routine. This has been done in Hickel, Adams and Domaradski,

[37] and Adams, Hickel and Franz, [1] and produces the exactly optimal parameters for a

particular flow as guidance to automatic parameter selection. Model optimization should

ultimately be done self-adaptively inside a simulation. However, until each approach is de-

veloped individually, comparison is not possible and it will not be easy to find the correct

way to automate model optimization.

Numerical simulation of complex flows presents many challenges. Often, simulations are

based on various regularizations of the NSE rather than the NSE themselves, [28], [39], [59].

The oldest example was proposed by Leray in 1934, [54]:

vt + v · ∇v − ν4v +∇p = f , and ∇ · v = 0, (3.0.1)

where v = Gv is a smoothed/averaged velocity. Herein, we select the differential filter of v,

introduced by Germano, [27], and given by G = (−δ24+ I)−1, i.e.

−δ24v + v = v. (3.0.2)

This combination is sometimes called the Leray-alpha regularization, [10], [8], [29]. The

Leray regularization’s solution is smoother, more stable, and possesses (marginally) fewer

scales than the NSE’s solution. Still, the resulting error, even with a high accuracy numerical

method, cannot be better than the error committed in the first step, replacing v by v in

(3.0.1). From (3.0.2) the error is v − v = O(δ2) at best. Experiments in [49] have shown

that, due to its low accuracy, (3.0.1) with the filter (3.0.2) can have catastrophic error growth

and not adequately conserve physically important integral invariants. The experiments in

[49] also indicate that the increase in accuracy resulting from using deconvolution models

(replacing (3.0.1) with (3.0.3)) decreases error growth and improves conservation properties.

Approximate deconvolution operators, D : L2(Ω) → L2(Ω), have the property that

D(v) = higher order approximation of v.
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The van Cittert deconvolution procedure gives a family (D = DN , where N=0,1,2,...) of

deconvolution operators with accuracy

e(u) := u−DN(u) = O(δ2N+2), for smooth u.

More accurate regularization of the NSE, which surpass (3.0.1) and related models for

numerical simulations include:

1. The Leray deconvolution family [48], [49]:

vt + D(v) · ∇v − ν4v +∇p = f and ∇ · v = 0. (3.0.3)

2. The time relaxation regularization of Stolz, Adam, and Kleiser [62], [61], [50]:

vt + v · ∇v − ν4v +∇p + χ(I −DG)2v = f and ∇ · v = 0. (3.0.4)

3. The deconvolution α-regularization [58] (enhancing NS-α accuracy, e.g [10], [8], [29]):

vt + (∇× v)×D(v)− ν4v +∇P = f and ∇ · v = 0. (3.0.5)

4. The Approximate Deconvolution LES Models [61], [5], [47], [19]:

vt + D(v) · ∇D(v)− ν4v +∇p + χ(I −DG)v = f and ∇ · v = 0. (3.0.6)

5. The NS-omega deconvolution models [53]:

vt + v ×∇D(v)− ν4v +∇P = f and ∇ · v = 0. (3.0.7)
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For all these (and others as well) the modelling error is dominated by the deconvolution error

e(u) := u−D(u).

This chapter considers minimizations of the deconvolution error for general (non-smooth)

velocity fields u. Since these (and other) models exist only to be used on a basis for numerical

simulations of under-resolved flows, we minimize the deconvolution error over the resolved

scales (i.e. over the scales that can be represented on a computational mesh). We begin by

reviewing the van Cittert deconvolution operator, in Section 3.1, and give, for completeness,

a convergent result as δ → 0 for fixed N (standard). Section 3.1 also considers convergence

as N →∞ for fixed δ, a highly singular limit since van Cittert is an asymptotic rather than

convergent approximation. We prove an ergodic theorem for the deconvolution iterates for

a general filter: the large scales of the averages of iterates converge as N →∞. In Sections

3.2 and 3.3, we show how to optimize the van Cittert procedure to substantially increase

its accuracy with no increase in computational cost. Section 3.2 reduces optimization to a

Chebychev optimization problem. From this reduction we recover the optimal van Cittert

parameters and show that the model’s error is O(δ2/3e−1.24N), Section 3.3. Section 3.0.2

below considers, as an example, one of the above regularizations and gives the analysis of

the model error in terms of the deconvolution error (addressed in Section 3.2). Finally,

Section 3.4 closes with a few illustrations of the optimized method.

3.0.1 The Formulation

Underlying all regularizations (3.0.3) - (3.0.7) are the true Navier-Stokes equations, (1.0.1).

We consider the case of L-periodic boundary conditions

u(x + Lej, t) = u(x, t), j = 1, ..., n.

The Navier-Stokes equations are supplemented by the initial condition, the usual normaliza-

tion condition in the periodic case of zero mean velocity and pressure, and the assumption

that all data are square integrable with zero mean
∫

Q

|u0(x, t)|2dx < ∞,

∫

Q

|f(x, t)|2dx < ∞, and

∫

Q

f(x, t)dx = 0, for 0 ≤ t. (3.0.8)
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3.0.2 The Connection Between Deconvolution Error and Model Error

Consider, as an example, the time relaxation regularization (3.0.4). The true NSE can be

rewritten as ∇ · u = 0 and

ut + u · ∇u− ν4u +∇p + χ(I −DG)2u = f + χ(I −DG)2u. (3.0.9)

An equation for the model error is

emodel = uNSE − vmodel, (3.0.10)

The model’s error is driven by the deconvolution error, χ(I −DG)2u and is obtained by

subtracting the model (3.0.4) from (3.0.9)

∂

∂t
emodel + u · ∇u− v · ∇v − ν4emodel

+∇(p− pmodel) + χ(I −DG)2emodel = χ(I −DG)2u (3.0.11)

emodel(0) = 0.

From (3.0.11) it is clear that zero deconvolution error trivially implies zero model error. It

is thus reasonable to hope that small deconvolution error (i.e. small ‖χ(I −DG)2u‖ on the

RHS) translates to small model error. For strong solutions this is indeed the case.

Proposition 3.0.1. Consider the Navier-Stokes equations with periodic boundary conditions.

If ∇u ∈ L4(0, T ; L2(Ω)), then the error in the time relaxation regularization model (3.0.4)

satisfies

sup
[0,T ]

‖emodel‖2 +

∫ T

0

(
ν ‖∇emodel‖2 + χ

∥∥(I −DG)2emodel

∥∥2
)

dt

≤ eC(u)ν−3T

∫ T

0

χ
∥∥(I −DG)2u

∥∥2
dt.
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Proof. Taking the inner product of (3.0.11) with emodel gives

1

2

d

dt
‖emodel‖2 + (u · ∇u− v · ∇v, emodel) + ν ‖∇emodel‖2 + χ ‖emodel −D(emodel)‖2

= χ(u−D(u), emodel −D(emodel)). (3.0.12)

The standard splitting

(u · ∇u− v · ∇v, emodel) = (emodel · ∇u, emodel) + (v · ∇emodel, emodel)

= (emodel · ∇u, emodel) (3.0.13)

and the Cauchy Schwarz inequality give

1

2

d

dt
‖emodel‖2 + ν ‖∇emodel‖2 +

χ

2
‖emodel −D(emodel)‖2

≤ −(emodel · ∇u, emodel) +
χ

2
‖u−D(u)‖2 . (3.0.14)

We have

|(emodel · ∇u, emodel)| ≤ ‖emodel‖1/2 ‖∇emodel‖3/2 ||∇u||
≤ ν

2
‖∇emodel‖2 + Cν−3 ‖∇u‖4 ‖emodel‖2 .

Using this in the RHS of (3.0.14) and then applying Gronwall’s inequality we deduce

sup
[0,T ]

‖emodel‖2 +

∫ T

0

(
ν ‖∇emodel‖2 + χ

∥∥(I −DG)2emodel

∥∥2
)

dt

≤ eC(‖∇u‖)ν−3T

∫ T

0

χ
∥∥(I −DG)2u

∥∥2
dt.

The model’s error is bounded by the deconvolution error e = u−D(u) evaluated at the

true solution of the NSE. Since analogous bounds can be proven for the regularizations and

models (3.0.3) through (3.0.7) we consider, we turn to minimizing the deconvolution error.
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3.1 APPROXIMATE DECONVOLUTION METHODS

The basic problem in deconvolution is to find u from u, in other words:

given u ( + noise) solve Gu = u, for u. (3.1.1)

If the averaging operator is smoothing, the deconvolution problem will be not stably invert-

ible due to small divisor problems.

This section considers the van Cittert approximate deconvolution algorithm, [4]. The

approximation DN(u), for the operator equation (3.1.1), is computed by N steps of first

order Richardson iteration. Each step of van Cittert requires only one filtering step.

Algorithm 3.1.1. [The van Cittert Algorithm]: Choose

u0 = u.

For n = 0, 1, 2, ..., N − 1, perform

un+1 = un + {u−Gun}.

Set DN(u) := uN .

For example, for N=0, 1, and 2 the deconvolution operator DN is

D0(u) = u, u ' D0(u) + O(δ2),

D1(u) = 2u− u, u ' D1(u) + O(δ4),

D2(u) = 3u− 3u + u, u ' D2(u) + O(δ6).

For the Cauchy problem, Ω = Rn, the transfer function of DN (for N = 0, 1, 2) is

D̂0(k) = 1, D̂1(k) = 2− 1

k2 + 1
=

2k2 + 1

k2 + 1
and D̂2(k) = 1 +

1

k2 + 1
+

(
k2

k2 + 1

)2

.

These three and the transfer function of exact deconvolution (k2 + 1) are plotted in Figure

1. The graphs of the transfer functions have high order contact near 0. Thus DN leads to a

very accurate solution of the deconvolution problem.

There are two convergence issues that arise immediately:

1. Convergence as δ → 0 for fixed N and general u ∈ L2(Ω) (see Theorem 3.1.2).
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Figure 1: Exact and van Cittert Approximate Deconvolution Operators (N=0,1,2)

2. Convergence as N →∞ for δ fixed (possibly true for some specific filters, but likely not

true in general, see Theorem 3.1.3 and [47]).

Theorem 3.1.2. [Convergence as δ → 0 for general velocities ] Suppose that u → u in

L2(Ω) as δ → 0, for all u ∈ L2(Ω). Then, for N fixed, we have DN(u) → u in L2(Ω) as δ →
0.

Proof. As δ → 0, we have u0 = u → u and thus

u1 = u0 + {u− u0} → u + {u− u} = u.

Similarly, each un → u and DN(u) → u.

Since the deconvolution problem is ill-posed, convergence of DN(u) to u as N → ∞ is

not expected. Nevertheless, it is possible to prove a type of ergodic theorem for averages
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predicted by the van Cittert algorithm for very general operators G. Sharper convergence

theorems depend upon specific choices of the averaging operator G, see [48] for an example.

Theorem 3.1.3. [Convergence as N → ∞] Let X be a Hilbert space and suppose that the

averaging operator G : X → X is a bounded linear operator with ‖I −G‖L(X→X) ≤ 1. For

u ∈ X, consider the van Cittert iteration

u0 = Gu, un+1 = un + {Gu−Gun}.

Let

vN =
u0 + u1 + ... + uN

N + 1
.

Then G2(u− vN) → 0 in X as N →∞, specifically,

sup
u∈X

||G2(u− vN)||
||Gu|| ≤ 2

N + 1
.

Proof. Let B = I −G. Then,

GuN = Gu−BN+1Gu or GeN = BN+1Gu,

where eN = u − uN = u − DN(u). Consider G(u − vN) . A similar algebraic calculation

gives

G2(u− vN) =
1

N + 1
G2(e0 + e1 + · · ·+ eN) =

=
1

N + 1
G

N∑
n=0

Bn+1Gu =

=
1

N + 1
{BGu−BN+2Gu} → 0.

as N →∞, since ‖B‖ ≤ 1. Taking norms of both sides completes the proof.

For LES, convergence of the van Cittert approximation DN(u) to u as N → ∞ is not

as significant as convergence of DN(u) to u as δ → 0 and the asymptotic order of accuracy

as δ → 0 for fixed N . When the averaging is given by a differential filter, the accuracy of

DN(u) as an approximation to u for smooth functions was addressed by Stolz and Adams

[61], Dunca [18], Dunca and Epshteyn [19].
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Lemma 3.1.1. Let the averaging operator be given by the differential filter Gv := (−δ24+

I)−1v. For any v ∈ L2(Ω),

v −DN(v) = (−1)N+1δ2N+24N+1GN+1v.

Thus, if 42N+2v ∈ L2(Ω) we have

‖v −DN(v)‖ ≤ δ2N+2
∥∥42N+2v

∥∥ .

Proof. For the proof, see for example [19].

The use of van Cittert as an asymptotic, rather than iterative, approximation of an ill-

posed, rather than non-singular, linear problem as well as the associated convergence theory

is very different than that of first order Richardson. However, the form of the iteration is

the same. Exploiting this algorithmic similarity, relaxation parameters can be introduced at

no additional computational cost. We shall optimize these parameters, for deconvolution of

fluid velocities, in Section 3. In Algorithm 3.1.1 it is also clear that, at no extra cost, the

parameters can be chosen to have different values in different regions. In fact, we expect

different optimal values near walls (still an open problem), away from walls in free turbulence

and for general velocities (considered herein).

Algorithm 3.1.4. [Accelerated van Cittert Algorithm]: Given relaxation parameters ωn,

choose

u0 = u.

For n = 0, 1, 2, ..., N − 1 perform

un+1 = un + ωn{u−Gun}.

Set Dω
N(u) := uN .

The operator Dω
N is the Accelerated van Cittert deconvolution operator. The key to opti-

mization is the following recursion formula for the operator Dω
N .
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Lemma 3.1.2. For N=0, 1, 2, ... , we have:

Dω
N+1 = Dω

N + ωN(I −Dω
NG). (3.1.2)

Proof. First, we note that Dω
0 = I on L2(Ω) and Dω

1 is a linear combination of the identity

and G. It follows that Dω
1 commutes with differentiation, since both I and G do. Using an

induction argument we deduce that Dω
N commutes with G for N=0,1,2,... . Furthermore,

for any positive integer N we have

Dω
N+1(u) = uN+1 = uN + ωN{u−GuN}

= Dω
N(u) + ωN { u−GDω

N(u) }
= ( Dω

N + ωN (I −Dω
NG) )u.

Thus, Dω
N+1 = Dω

N + ωN (I −Dω
NG) for every positive integer N.

Next, we analyze in more detail properties of the Accelerated van Cittert deconvolution

operator, Dω
N .

Lemma 3.1.3. Let the averaging operator be the differential filter Gv := (−δ24 + I)−1v.

If the relaxation parameters ωi, i = 0, 1, ..., N , are positive, then the Accelerated van Cittert

deconvolution operator Dω
N : L2(Ω) → L2(Ω) is symmetric positive definite.

Proof. The operator G is bounded, compact and self adjoint. Indeed, multiplying (3.0.2) by

v and integrating over Ω we get

0 ≤ ‖Gv‖2 ≤ ‖v‖2 .

This shows that G is bounded and ‖G‖ ≤ 1. To show G is self-adjoint and positive definite,

note that for every v ∈ ÃL2(Ω) we have

0 ≤ δ2 ‖∇v‖2 + ‖v‖2 = (v,v) = (v, Gv).
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Both Dω
0 and Dω

1 are symmetric, as linear combinations of I and G. Proceeding by mathe-

matical induction, assume Dω
n is symmetric, for a positive integer n. From Lemma 3.1.2, we

know

Dω
n+1 = Dω

n + ωn(I −Dω
nG).

Thus Dω
n+1 is symmetric as linear combination of symmetric operators I, G, and Dω

n . To

show Dω
1 is bounded, we apply the Spectral Mapping Theorem. We have

‖Dω
1 ‖ = λ(Dω

1 ) = λ( Dω
0 + ω0(I −Dω

0 G) ) = 1 + ω0(1− λ(G)).

Since ‖G‖ ≤ 1, we deduce that

1 ≤ ‖Dω
1 ‖ ≤ 1 + ω0.

Proceeding by induction, it is easy to see that for every positive integer n we have

1 ≤ ‖Dω
n‖ ≤ 1 +

n−1∑
i=0

ωi.

This concludes the proof.

3.2 CHEBYCHEV OPTIMIZED DECONVOLUTION

This section calculates relaxation parameters ωi which minimize the deconvolution error

eN = u−Dω
N(u),

for general (non-smooth) velocity fields u. To begin, we give a recursion formula for the

deconvolution error eN .

Lemma 3.2.1. The deconvolution error eN , satisfies e0 = u−u and for all positive integers

N we have

u−Dω
Nu =

N−1∏
i=0

(I − ωiG)e0. (3.2.1)
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Proof. We will use mathematical induction. Note that the conclusion holds true for N = 1:

e1 = (I − ω0G)u− (I − ω0G)u = (I − ω0G)e0,

since u = Gu. Assuming en =
∏n−1

i=0 (I − ωiG)e0 for any integer n ≥ 1, let us prove

en+1 =
n∏

i=0

(I − ωiG)e0.

Since en+1 can be rewritten as en+1 = (I − ωnG)u − (I − ωnG)un, applying the induction

hypothesis we obtain

en+1 =
n∏

i=0

(I − ωiG)e0, for all integers n ≥ 1. (3.2.2)

Therefore (3.2.1) holds true.

Expand the velocity field u(x, t) in Fourier series

u(x, t) =
∑

k

∑

|k|=k

û(k, t)eik·x, where û(k, t) =
1

L3

∫

Ω

u(x, t)e−ik·xdx (3.2.3)

and k = 2π
L
n (n ∈ Z3) is the wave number.

Definition 3.2.1. Let δ be the filter’s averaging radius. The resolved scales are span{eik·x | |k| ≤
π/δ}. If u is given by (3.2.3), its projection onto the resolved scales, PRSu, is

PRSu =
∑

k≤π/δ

∑

|k|=k

û(k, t)eik·x. (3.2.4)

We denote by kmin, and kmax the smallest and the largest wave number of PRSu

0 < kmin ≤ k ≤ kmax = π/δ < ∞.

The total kinetic energy at point x in space and at time t is E(u)(t). Using Parceval’s

equality, we deduce Ê(k, t), the kinetic energy at wave number k, and also

E(PRSu)(t) =
2π

L

∑

k≤π/δ

Ê(k, t), where Ê(k, t) =
L

2π

∑

|k|=k

1

2
|û(k, t)|2. (3.2.5)
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Lemma 3.2.2. Let u ∈ L2(Ω). For any positive integer N , the deconvolution error eN =

u−Dω
Nu satisfies

‖PRS(u−Dω
Nu)‖2 =

∑

k≤π/δ

∑

|k|=k

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
)2(1− 1

δ2k2 + 1
)2|û(k, t)|2. (3.2.6)

Proof. From (3.0.2) and (3.2.3) we deduce

û(k, t) =
1

1 + δ2k2
û(k, t). (3.2.7)

With this, using Parceval’s equality and Lemma 3.2.1, we have

‖PRS(u−Dω
1 u)‖2 =

∑

k≤π/δ

∑

|k|=k

(1− ωi
1

δ2k2 + 1
)2(1− 1

δ2k2 + 1
)2|û(k, t)|2 .

Using mathematical induction, we prove (3.2.6), for any positive integer N .

With Lemma 3.2.2, the optimization problem reduces to minimizing the expression:

∑

kmin≤k≤π/δ

∑

|k|=k

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
)2(1− 1

δ2k2 + 1
)2|û(k, t)|2. (3.2.8)

Consider thus the function FN : RN
+ → R+, where

FN(ω0, ..., ωN−1) =
∑

kmin≤k≤π/δ

∑

|k|=k

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
)2(1− 1

δ2k2 + 1
)2|û(k, t)|2. (3.2.9)

We are seeking for relaxation parameters ωi to minimize the error in deconvolution. In other

words, we want to find minωi
FN(ω0, ..., ωN−1). We have

min
ωi

FN(ω0, ..., ωN−1) ≤ min
ωi

max
kmin≤k≤kmax

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
)2

∑

kmin≤k≤π/δ

∑

|k|=k

(1− 1

δ2k2 + 1
)2|û(k, t)|2.

Thus, minimizing the deconvolution error for a general velocity field leads to the problem of

minimizing, with respect to ωi, the expression

min
ωi

max
kmin≤k≤kmax

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
). (3.2.10)
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The change of variable, x ← 1
δ2k2+1

gives that for kmin ≤ k ≤ kmax we have

0 < a :=
1

δ2k2
max + 1

=
1

π2 + 1
≤ x ≤ 1

δ2k2
min + 1

=: b < 1.

Then, (3.2.10) leads to

min
ωi

max
kmin≤k≤kmax

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
) ≤ min

ωi

max
a≤x≤b

N−1∏
i=0

(1− ωix). (3.2.11)

To proceed, we denote by Π1
N , the set of all polynomial functions of degree less than or equal

to N , which are 1 at the origin, i.e.

Π1
N = {p(x)|p(0) = 1} .

Note that
∏N−1

i=0 (1− ωix) ∈ Π1
N and thus

min
ωi

max
a≤x≤b

|
N−1∏
i=0

(1− ωix)| ≤ min
Π1

N

max
x1≤x≤x2

|
N−1∏
i=0

(1− ωix)|. (3.2.12)

It is well known, see for example Axelsson, [2] (page 180), that the least maximum is achieved

by the Chebychev polynomials, namely

min
Π1

N

max
a≤x≤b

|
N−1∏
i=0

(1− ωix)| = max
a≤x≤b

TN

(
b+a−2x

b−a

)

TN

(
b+a
b−a

) =
1

TN

(
b+a
b−a

) , (3.2.13)

where TN(x) = cosh
(
N cosh−1(x)

)
is the N th Chebychev polynomial, for all x ≥ 1.

Remark 3.2.1. Following [2], further calculations in (3.2.13) show that

min
Π1

N

max
a≤x≤b

|
N−1∏
i=0

(1− ωix)| = 2
σN

1 + σ2N
, where σ =

1−
√

a/ b

1 +
√

a/ b
. (3.2.14)

Corollary 3.2.1. For u ∈ L2(Ω) we have

‖PRS(u−Dω
1 u)‖2 ≤ 1

T 2
N

(
b+a
b−a

)
∑

kmin≤k≤π/δ

∑

|k|=k

(1− 1

δ2k2 + 1
)2|û(k, t)|2. (3.2.15)

Proof. This follows easily from Lemma 3.2.2 and (3.2.13).

64



Proposition 3.2.1. The parameters ωj solving the min-max (3.2.10) problem are given by

ωj =
1

b−a
2

cos
(

2j+1
2N

π
)

+ b+a
2

, (3.2.16)

for all positive integers N and j = 0, 1, ..., N − 1.

Proof. From (3.2.13), the optimal parameters for the optimization problem are given by the

inverses of the zeros of TN . So, (3.2.16) holds true.

Further useful progress depends on a > 0, i.e. on either kmax < ∞ or on restricting to

the error in the resolved scales (for which kmax = π/δ).

3.2.1 Expected accuracy increase for turbulent flows

The ωi in (3.2.16) optimize deconvolution models over general velocities fields. It is useful to

compare the resulting errors to the case when ωi are optimized over special velocities with a

k−5/3 energy spectrum. If the comparison is done for velocities with a k−5/3 energy spectrum,

it can be done exactly analytically (and will be most favorable for the latter case).

We shall assume that the turbulent flow is persistent, statistically stationary, homoge-

neous and isotropic so that time averaging is an appropriate tool. The most important

components of the K-41 theory are the time (or ensemble) averaged energy dissipation rate,

ε and the distribution of the flow’s kinetic energy across wave numbers, E(k). Let < · >

denote time averaging

< φ > (x) := lim
T→∞

1

T

∫ T

0

φ(x, t)dt. (3.2.17)

Given the velocity field of a particular flow, u(x, t), the (time averaged) energy dissipation

rate of that flow is defined to be

ε := lim
T→∞

1

T

∫ T

0

1

L3

∫

R3

ν|∇u(x, t)|2dx dt, (3.2.18)

where |∇u(x, t)|2 = ∂ui

∂xj
(x, t) · ∂ui

∂xj
(x, t).
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Let U be a representative (large scale) velocity (herein we take U :=< L−3||u||2L2(Ω) >1/2).

The K-41 theory states that at high enough Reynolds numbers there is a range of wave

numbers

0 < Uν−1 ' kmin ≤ k ≤ kmax ' ε
1
4 ν−

3
4 < ∞, (3.2.19)

known as the inertial range, beyond which the kinetic energy in u is negligible, and in this

range

E(k)
.
= αε

2
3 k−

5
3 , (3.2.20)

where α (in the range 1.4 to 1.7) is the universal Kolmogorov constant, k is the wave number,

and ε is the particular flow’s energy dissipation rate. The energy dissipation rate ε is the only

parameter which differs from one flow to another. For wave numbers larger than the inertial

range (i.e. the dissipative range) the kinetic energy in the small scales decays exponentially.

Thus, E(k) ≤ αε
2
3 k−

5
3 since E(k) ' 0 for k ≥ kmax and E(k) ≤ E(kmin) for k ≤ kmin.

Consider Chebychev optimized deconvolution. Time averaging (3.2.6) and using Parce-

val’s equality, we obtain

<
1

L3
‖PRS(u−Dω

Nu)‖2 >= 2
2π

L

∑

kmin<k<π/δ

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
)2(1− 1

δ2k2 + 1
)2Ê(k).

For turbulent velocity fields, the problem becomes

<
1

L3
‖PRS(u−Dω

Nu)‖2 >, subject to Ê(k) ' αε2/3k−5/3. (3.2.21)

With (3.2.15) we calculate the deconvolution error as

<
1

L3
‖PRS(u−Dω

Nu)‖2 >≤ 4π

L

∑

0<k≤π/δ

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
)2(

δ2k2

δ2k2 + 1
)2Ê(k).(3.2.22)

Additionally, using (3.2.13), for Chebychev optimized deconvolution, we obtain

<
1

L3
‖PRS(u−Dω

Nu)‖2 > ≤ ( min
ωi

max
0≤ k≤π

δ

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
) )2

α ε2/3 4π

L

∑

0<k≤π/δ

(
δ2k2

δ2k2 + 1
)2k−5/3

≤ 1

cosh2(0.62 N)
α ε2/3 4π

L

∫ π
δ

0

(
δ2k2

δ2k2 + 1
)2k−5/3dk

=
1

cosh2(0.62 N)
α ε2/3 δ2/3 4π

L
0.54. (3.2.23)
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Since 1
cosh(x)

≤ e−x, for x ≥ 0, we obtain the bound for the time average deconvolution error

<
1

L3
‖PRS(u−Dω

Nu)‖2 > ≤ 2.16 α ε2/3 δ2/3 π

L
e−1.24N . (3.2.24)

Remark 3.2.2. The unoptimized case of ωi ≡ 1 was studied in [47] with result

<
1

L3
||u−DNu||2 >≤ (

3

2
+

1

4N + 10
3

) α ε2/3 δ2/3. (3.2.25)

3.2.2 K-41 Direct Optimization

There is also a second approach to solving the minimization problem (3.2.10). In this section

we give a direct calculation of the optimal parameters for velocities with the power/energy

spectrum E(k) ∼ αε2/3k−5/3 of homogeneous, isotropic turbulence. We minimize FN in RN

by solving the N ×N system:

(
∂FN

∂ω0

, ...,
∂FN

∂ωN−1

)
= 0. (3.2.26)

We solved the above system for N = 1, ..., 5. The resulting K-41 optimized relaxation

parameters are given in Table 1.

N ω0 ω1 ω2 ω3 ω4

1 2.10 - - - -

2 2.02 2.02 - - -

3 1.44 4.91 1.44 - -

4 1.49 1.49 5.83 1.49 -

5 1.53 1.53 6.52 1.53 1.53

Table 1: Direct optimized parameters
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3.3 COMPARISON OF ATTAINED ACCURACY

There are three versions of van Cittert to be compared: unoptimized, Chebychev-optimized

for a general flow field (herein), and K-41 direct optimized (for this last case, the optimality

problem was formulated for special velocity fields with the exact energy spectrum Ê(k) ∼
k−5/3).

To compare the three, we consider the case of velocity fields with energy spectrum of

k−5/3. Using (3.2.16), we first compute the values of the Chebychev parameters.

N ω0 ω1 ω2 ω3 ω4

1 1.83 - - - -

2 1.15 4.44 - - -

3 1.06 1.83 6.54 - -

4 1.03 1.38 2.68 7.90 -

5 1.02 1.23 1.83 3.58 8.75

Table 2: Chebychev optimized parameters

With these values, we plot the transfer functions of the Accelerated van Cittert deconvo-

lution operator for N=0,1,2,3. The high order contact of the graphs near 0 reveals the high

order of accuracy of Dω
N .

Because of the form of the RHS of estimates (3.2.24) and (3.2.25), we normalize the

errors calculated by α ε2/3 δ2/3. Thus, using Lemma 3.2.2, we give in Table 3

< 1
L3 ‖PRS(u−Dω

Nu)‖2 >

α ε2/3 δ2/3
, when N = 0, 1, 2, 3, 4, 5

for the three cases ωi ≡ 1, ωi from Table 1, and ωi from Table 2. Table 3 shows that both

optimizations reduce the error over standard van Cittert significantly. Figure 3 gives a plot of

(normalized) deconvolution error vs. wave number, for N = 2 for all three cases of standard
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Figure 2: Exact and Accelerated van Cittert Approximate Deconvolution (N=0,1,2)

van Cittert, K-41 optimized and Chebychev optimized van Cittert. Figure 3 shows that both

optimized van Citter improve the error in deconvolution for irregular velocities, while the

unoptimized van Cittert is more accurate for very smooth velocity fields.

3.4 TWO ILLUSTRATIONS

To begin, we test the deconvolution error when both filtering and deconvolution are done

discretely using a finite element approximation of the Laplace operator in (3.0.2). The

computations were performed with the software FreeFem++, see [20]. We choose u =
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N K-41 optimized ωi Chebychev optimized ωi ωi = 1

1 0.150 0.157 0.258

2 0.068 0.066 0.155

3 0.017 0.022 0.101

4 0.007 0.006 0.070

5 0.003 0.002 0.049

Table 3: Normalized deconvolution error

Figure 3: Deconvolution Error (N=2)

(sin(ky), sin(kx)) a known, divergence free velocity and calculate

[
1

|Ω|
∫

Ω

|u−Dω
Nu|2dx

] 1
2

,

where Ω = (0, 2π)2. P2 elements were used in the discretization, i.e. the velocity is ap-

proximated by continuous piecewise quadratics. For each value of N deconvolution involves
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the solution of N+1 discrete Poisson problems. We solve the resulting linear system with

GMRES. For these calculations, we consider the meshwidth h = 1/10, 1/20, 1/30, 1/40 and

N=1, 2, 3. We fix δ = 0.1 and k = 1 and 8. The case k = 1 is very smooth and the theory

predicts regular van Cittert to be more accurate. The case k = 8 oscillates faster and the

theory predicts both Accelerated van Cittert to be more competitive.

Comparing tables 4, 5, and 6 we see that for a very smooth u (the case k=1) unoptimized

van Cittert (ωi = 1) is indeed more accurate, as expected. In this case, Chebychev optimized

is superior to K-41 optimized. This result is not expected since the Chebychev is for a general

L2 field while K-41 optimized is for fields that are slightly more regular.

h ‖(I −D1G)u‖ ‖(I −D2G)u‖ ‖(I −D3G)u‖
1/10 0.000385707 0.000157297 0.000067544

1/20 0.000454801 0.000238021 0.000129238

1/30 0.000469269 0.000265614 0.000153671

1/40 0.000471633 0.000273757 0.000163838

Table 4: Unoptimized Deconvolution Error: k = 1, δ = 0.1

h ‖(I −Dω
1 G)u‖ ‖(I −Dω

2 G)u‖ ‖(I −Dω
3 G)u‖

1/10 0.0102168 0.00862918 0.00590472

1/20 0.0102158 0.00862688 0.00590488

1/30 0.0102158 0.00862691 0.00590513

1/40 0.0102158 0.00862699 0.00590512

Table 5: K-41 Optimized Deconvolution Error: k = 1, δ = 0.1

Next we consider the case a velocity field which is highly oscillatory with respect to the

chosen filter radius, k = 8 and δ = 0.1. We see in tables 7, 8, and 9 that, for rougher velocity

fields, both optimized van Cittert are superior to unoptimized van Cittert, in accord with

the predictions of the theory.
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h ‖(I −Dω
1 G)u‖ ‖(I −Dω

2 G)u‖ ‖(I −Dω
3 G)u‖

1/10 0.00757131 0.00426287 0.00190707

1/20 0.00757049 0.0042709 0.00191

1/30 0.00757075 0.00427072 0.00191063

1/40 0.00757091 0.0042705 0.00191061

Table 6: Chebychev Optimized Deconvolution Error: k = 1, δ = 0.1

h ‖(I −D1G)u‖ ‖(I −D2G)u‖ ‖(I −D3G)u‖
1/10 0.166844 0.0797244 0.040896

1/20 0.154312 0.0200043 0.028794

1/30 0.152509 0.0191031 0.027441

1/40 0.15215 0.0186714 0.027323

Table 7: Unoptimized Deconvolution Error: k = 8, δ = 0.1

h ‖(I −Dω
1 G)u‖ ‖(I −Dω

2 G)u‖ ‖(I −Dω
3 G)u‖

1/10 0.026368 0.027578 0.0372458

1/20 0.095817 0.028730 0.0200043

1/30 0.102346 0.027441 0.0191031

1/40 0.103715 0.027323 0.0186714

Table 8: K-41 Optimized Deconvolution Error: k = 8, δ = 0.1

Note that, Table 9 shows that for the rougher velocity corresponding to k=8, Dω
2 leads

to a worst deconvolution error than Dω
1 , Dω

3 . While this is a anomaly, Figure 4 shows that

for the specific k = 8 and δ = 0.1 (δk = 0.8), the case N = 1 is more accurate. Nevertheless,

it is clear that in general the deconvolution error improves with the order of deconvolution.
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h ‖(I −Dω
1 G)u‖ ‖(I −Dω

2 G)u‖ ‖(I −Dω
3 G)u‖

1/10 0.0359071 0.170887 0.0331716

1/20 0.0357505 0.195504 0.0383042

1/30 0.0398032 0.195824 0.0435825

1/40 0.0408305 0.195785 0.0446767

Table 9: Chebychev Optimized Deconvolution Error: k = 8, δ = 0.1

Figure 4: Deconvolution Error (N=1,2,3)

There is a secondary, but still interesting question, of whether a given model will over-

damp large flow structures. The general ADM (3.0.6) is a dispersive regularization rather

than a dissipative one, but the time relaxation regularization (usually added to it) is dissi-

pative. We therefore consider:

wt + w · ∇w − ν∆w +∇q + χ (I −DNG)2 w = f

∇ ·w = 0. (3.4.1)
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The 2D forward-backward step for parameters values just above those for which eddies

behind the step detach is a simple (not turbulent) flow, but one which can be difficult to

simulate effectively on coarse meshes. Stabilization like (3.4.1) often cause the simulation

to approach a non-physical equilibrium with a single attached eddy. Our illustration below,

which is not a systematic test, indicates that the optimized DN in (3.4.1) behaves no worse

than the usual van Cittert.

In (3.4.1), we study an under-resolved flow with recirculation, the flow across a step with

N = 1. It is known that a particularity of this flow is a recirculating vortex behind the step,

which detaches between ν−1 = 500 and ν−1 = 700. The parabolic inflow profile is given by

u = (u1, u2)
T , with u1 = y(10− y)/25 and u2 = 0, no-slip boundary conditions are imposed

on the top and bottom boundaries, and the ”do nothing” boundary condition is used for the

outflow.

The computations were also performed with the software FreeFem++, see [20]. The

models were discretized in time with the implicit second order Crank-Nicolson scheme and

in space with the Taylor Hood finite element method, i.e. the velocity was approximated by

continuous piecewise quadratics and the pressure by continuous piecewise linears. Behind

the step the flow simulation using both the optimal parameters (Figure 5 below) and the

usual van Cittert (ωi = 1) (figures not included) correctly develop vortices separate from the

step. Figure 5 shows the results at T = 10, 20, 30, 40 for ν−1 = 500, χ = 0.001, dt = 0.005,

δ = 1.5.

We conclude by remarking that the use of optimal parameters requires no extra compu-

tational effort. Two main results of this work are: the values of the optimal parameters (in

Section 3.3) and the reduction in the model consistency error that results in their use is is at

least 50%, (see Table 3). Interestingly, in all cases (N= 1,2,3,4,5) the Chebychev optimized

parameters resulted in comparable or better errors to K-41 optimization. Since Chebychev

optimization give parameter values good for all flow fields and the latter only for special

ones, this suggests that Chebychev optimized deconvolution is to be strongly preferred.
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Figure 5: Accelerated van Cittert ADM: Flow field at T = 10, 20, 30, 40.
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4.0 NUMERICAL ANALYSIS OF LERAY-TIKHONOV

DECONVOLUTION MODELS OF FLUID MOTION

The Navier-Stokes equations, given by (1.0.1), are an exact model for the flow of a

viscous, incompressible fluid, [24]. At higher Reynolds number, their solution contains so

much information that they become impractical for many problems within typical time

and resource limitations. Various models and tools have been developed seeking to give a

reasonable treatment of this richness of information. The key is to capture all the relevant

information with less (computational) work than that involved in solving the NSE. One of

the ideas is to use regularizations of (1.0.1). Leray, [54], see also [7, 9, 38, 66], proposed the

following:

ut + u · ∇u− ν∆u +∇p = f and ∇ · u = 0 , in Ω× (0, T ), (4.0.1)

where u = Gu is a smooth/averaged velocity. He selected G to be the Gaussian filter

associated with a length scale δ. He proved existence and uniqueness of strong solutions to

(4.0.1) and showed that a subsequence uδj
converges to a weak solution of the NSE as δj → 0.

If that weak solution is a smooth, strong solution it is not difficult to prove additionally that

||uNSE − uLerayModel|| = O(δ2) using only ||u− u|| = O(δ2).

Continuing his idea, new regularization models can be derived every time a suitable

regularization operator is chosen. One modification is to replace the Gaussian filter by a

differential filter, u := (−δ2∆ + 1)−1u . Properties of the resulting Leray-α model (4.0.1) are

derived by Geurts and Holm [32, 31] together with some tests in turbulent flow simulations

and by Dunca [17] in a shape design problem.
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The deconvolution problem is central in image processing, [4] and many algorithms can

be adapted to give possible better regularizations of the NSE. The van Cittert deconvolution

algorithm, see [17, 47, 62] is one such example. It is time to explore other operators, which

can lead to possibly more accurate models. Based on the theory of inverse problems, we

study a new, modified Tikhonov regularization operator, defined precisely in (4.1.21):

Dµ(u) = approximation of u.

The operator Dµ, 0 ≤ µ ≤ 1, is a modification of the Tikhonov-Lavrentiev regularization

of the formal filter inverse adapted to turbulence, i.e. designed to accurately capture the

large scales of a flow, while modeling the small (or under-resolved) scales (and truncating).

The case µ = 0, would result in Dµ(u) = u (no regularization), whereas µ = 1, leads

to Dµ(u) = u (the Leray/Leray-α model (4.0.1)). For smooth velocity fields u, we have

Dµ(u) = u + O(µ δ2).

Replacing u by Dµ(u) in (4.0.1), we study the following Leray-Tikhonov model with time

relaxation:

ut + Dµ(u) · ∇ u− ν4u +∇q + χ(u−Dµ(u)) = f

∇ · u = 0 (4.0.2)

u|t=0 = u0.

The term χ(u−Dµ(u)) is included to damp unresolved fluctuations over time, where χ ≥ 0

is the time relaxation parameter. It is a generalized fluctuation term, often included in

Approximate Deconvolution Models of turbulence to damp marginally unresolved scales, see

[62] and [50].

Our goal is to perform a convergence analysis of a discretization of (4.0.2), when µ, δ, h →
0. The discretization consists of the finite element method in space, combined with the

Crank-Nicolson algorithm in time. The notation and definitions necessary for the scheme

and for the numerical analysis are in Section 4.1, where we also give a detailed mathematical

theory of the Modified Tikhonov deconvolution operator. Section 4.2 develops the theory for

the scheme, showing stability, existence of solutions, and analysis of convergence. Numerical

experiments are presented in Section 4.3.
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4.1 NOTATION AND PRELIMINARIES

Throughout this chapter we use standard notation for Lebesgue and Sobolev spaces and

their norms. Let ‖·‖ and (·, ·) be the L2 norm and inner product respectively. The Lp(Ω)

norm and the Sobolev W k
p (Ω) norm are denoted by ‖ · ‖Lp and ‖ · ‖W k

p
. The semi-norm in

W k
p (Ω) is denoted by | · |W k

p
. The space Hk represents the Sobolev space W k

2 (Ω) and ‖ · ‖k

denotes the norm in Hk. For time dependent functions v(x, t), with t ∈ (0, T ), we define the

norm

‖v(x, t)‖m,k =





(∫ T

0
‖v(·, t)‖m

k dt
)1/m

, if 1 ≤ m < ∞
ess sup0<t<T ‖v(·, t)‖k , if m = ∞.

The flow domain Ω is a regular, bounded, polyhedral domain in Rn. The pressure and

velocity spaces are

Q = L2
0(Ω),

X = H1
0 (Ω).

The dual space of X is X? and the corresponding norm is ‖·‖?. For the variational formulation

we define the space of divergence free functions

V := {v ∈ X, (∇ · v, q) = 0 ∀q ∈ Q} .

The velocity-pressure finite element spaces Xh ⊂ X, Qh ⊂ Q are assumed to be conforming

and satisfy the discrete inf-sup condition. Taylor-Hood elements are one common example

of such a choice for (Xh, Qh) (see [30] and [34]). The discretely divergence free subspace of

Xh is defined as

Vh = {vh ∈ Xh, (∇ · vh, qh) = 0 ∀qh ∈ Qh} .

For the convective term, we consider the following trilinear form.

Definition 4.1.1. [The skew symmetric operator b∗] The skew-symmetric trilinear form b∗ :

X ×X ×X → R is defined as

b∗(u,v,w) :=
1

2
(u · ∇v,w)− 1

2
(u · ∇w,v). (4.1.1)
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Lemma 4.1.1. Let u,v,w ∈ X such that v ∈ L∞(Ω) and ∇v ∈ L∞(Ω), where indicated.

The trilinear term b∗(u,v,w) can be bounded in the following ways

|b∗(u,v,w)| ≤ 1

2
(‖u‖ ‖∇v‖∞ ‖w‖+ ‖u‖ ‖v‖∞ ‖∇w‖) (4.1.2)

|b∗(u,v,w)| ≤ C0(Ω) ‖∇u‖ ‖∇v‖ ‖∇w‖ (4.1.3)

|b∗(u,v,w)| ≤ C0(Ω) ‖u‖1/2 ‖∇u‖1/2 ‖∇v‖ ‖∇w‖ . (4.1.4)

Proof. For the proof see [44].

We also use the following approximation properties, see [6]:

inf
v∈Xh

‖u− v‖ ≤ Chk+1‖u‖k+1, u ∈ Hk+1(Ω)d,

inf
v∈Xh

‖u− v‖1 ≤ Chk‖u‖k+1, u ∈ Hk+1(Ω)d, (4.1.5)

inf
r∈Qh

‖p− r‖ ≤ Chs+1‖p‖s+1, p ∈ Hs+1(Ω).

We often use some well known inequalities:

• Cauchy-Schwarz inequality: |(f, g)| ≤ ‖f‖ ‖g‖, for all f and g ∈ L2(Ω),

• Young’s inequality: ab ≤ ε
p

ap + ε−q/p

q
bq, where 1 < p, q < ∞, 1

p
+ 1

q
= 1, ε > 0 and

a, b ≥ 0,

• Poincaré-Friedrich’s inequality: ‖v‖ ≤ CPF ‖∇v‖, for all v ∈ X.

4.1.1 Differential Filters

In our analysis we use differential filters, already introduced in Chapter 2. To begin, we

recall the following definition.

Definition 4.1.2. [Continuous differential filter] For φ ∈ L2(Ω) and δ > 0 fixed, denote the

filtering operation on φ by φ, where φ is the unique solution (in X) of

−δ2∆φ + φ = φ. (4.1.6)

Set A := −δ2∆ + I, thus φ := A−1φ.

Following Manica and Kaya Merdan [55], at this point, we define the discrete counterpart

of the above differential filter.
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Definition 4.1.3. [Discrete differential filter] Given v ∈ L2(Ω), for a given filtering radius

δ > 0, vh = A−1
h v is the unique solution in Xh of

δ2(∇vh,∇χ) + (vh,χ) = (v,χ) ∀χ ∈ Xh. (4.1.7)

Definition 4.1.4. The L2 projection Πh : L2(Ω) → Xh and discrete Laplacian operator

∆h : X → Xh are defined by

(Πhv − v, χ) = 0 , (∆hv,χ) = −(∇v,∇χ) ∀χ ∈ Xh. (4.1.8)

Remark 4.1.1. The extension from Xh to X in the definition of ∆h is the extension by

zero on the orthogonal complement of Xh w.r.t. (∇·,∇·). With ∆h, we can rewrite vh =

(−δ2∆h + Πh)
−1v and Ah = (−δ2∆h + Πh).

4.1.2 Why a modification of Tikhonov-Lavrentiev is needed?

The deconvolution problem is central in image processing, see [4]. The basic problem in

deconvolution is: given u solve for u the following equation

Gu = u. (4.1.9)

Due to small divisor problems G is not invertible and exact deconvolution is typically ill-

posed.

Throughout the years, many approaches have been used to address and answer questions

concerning ill-posed problems. Some were based on constrained least-square solutions, oth-

ers determined the smoothest approximate solution compatible with the data within a given

noise level. Tikhonov proposed a general approach, called regularization, which is a unifica-

tion of the these two methods, [65]. The basic idea of regularization consists of constructing

a family of approximate solutions depending on a positive regularization parameter, µ. Us-

ing Tikhonov regularization, we compute a family of approximate solutions to the ill-posed

deconvolution problem (4.1.9) as

uµ = arg min
u

[||Gu− u||2 + µ||u||2] .
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The main property of regularization is that, for a non-zero value of µ, one can obtain an

optimal approximation of the exact solution of the problem (4.1.9). Lavrentiev adapted

Tikhonov’s idea to symmetric positive definite (SPD) operators G. In this case the regular-

ization process is called Tikhonov-Lavrentiev and leads to a family of approximate solutions

given by

uµ = arg min
u

[
1

2
(Gu,u)− (u,u) +

µ

2
(u,u)

]
.

Remark 4.1.2. The Tikhonov-Lavrentiev regularization process gives an approximate solu-

tion to the deconvolution problem as follows: let µ > 0 and let G be SPD. Then,

uµ = (G + µI)−1u (4.1.10)

solves (4.1.9) approximately as µ → 0.

Lemma 4.1.2. [ Error in Tikhonov-Lavrentiev approximation ] With the differential filter

(4.1.6), we have

‖u− uµ‖ ≤ µ(δ2 ‖4u‖+ ‖u‖). (4.1.11)

Proof. Note that u,4u ∈ L2(Ω). Also, G = (−δ24+ I)−1 and A = −δ24+ I. Now,

u− uµ = u− (G + µ I)−1 Gu = u− (A−1 + µ I)−1 A−1u

= u− (A(A−1 + µ I))−1u = u− (I + µA)−1u

= (I + µ A)−1 ((I + µA)− I)u = µ (I + µA)−1 Au .

Thus,

‖u− uµ‖ = µ ‖(I + µA)−1 Au‖
≤ µ ‖(I + µA)−1‖ ‖Au‖ .

All of our operators are self-adjoint. The spectrum of I +µA is contained in the interval

[1 + µ,∞); and so the spectrum of (I + µA)−1 is contained in the interval (0, (1 + µ)−1].

Hence,

‖u− uµ‖ ≤ µ

1 + µ
‖Au‖ ≤ µ ‖(−δ24+ I)u‖

≤ µ (δ2 ‖4u‖+ ‖u‖) .
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Figure 6: Tikhonov-Lavrentiev and Exact Deconvolution

With the differential filter (4.1.6), the transfer function of exact deconvolution is Ĝ(k) =

1/(1 + δ2k2), where k is the wave number. Then, the transfer function of (G + µI)−1 is

̂(G + µI)−1(k) =
1

µ + Ĝ(k)
. (4.1.12)

This (for µ = 0.1 and 0.01) and exact deconvolution are plotted in Figure 6. It is clear that,

for large scales (small wave number k), the operator (G+µI)−1 is not a good approximation

of the inverse of G. Thus, it is sensible to consider a modified Tikhonov-Lavrentiev operator,

which is more consistent for large scales. With this, we obtain a new approximation of u

and improve (4.1.11).

Definition 4.1.5. [ Modified Tikhonov Approximate Deconvolution Operator] Let G be a

symmetric positive-definite operator and let 0 < µ < 1. Given u, an approximate solution to

the deconvolution problem (4.1.9) is given by

uµ = ((1− µ)G + µI)−1u. (4.1.13)
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Figure 7: Modified Tikhonov and Exact Deconvolution

Set Dµ = ((1 − µ)G + µI)−1. The operator Dµ is the modified Tikhonov deconvolution

operator.

Remark 4.1.3. With the differential filter (4.1.6), the modified Tikhonov deconvolution

operator can be defined variationally as: given φ ∈ X, for a given filtering radius δ > 0 and

0 < µ < 1, ψ = Dµφ is the unique solution in X of the problem

µδ2(∇ψ,∇χ) + (ψ, χ) = (φ,χ), ∀χ ∈ X, (4.1.14)

where φ and φ satisfy φ = A−1φ in X, i.e. δ2(∇φ,∇χ) + (φ, χ) = (φ,χ).

With the differential filter (4.1.6), the transfer function of Dµ is

D̂µ(k) =
1

µ + (1− µ)Ĝ(k)
. (4.1.15)

Exact deconvolution and D̂µ (for µ = 0.1 and 0.01) are plotted in Figure 7. The figure

reflects a high order contact of the graphs for wave numbers near 0. Thus, Dµ leads to a

very accurate solution of the deconvolution problem.
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4.1.3 Continuous and Discrete Modified Tikhonov Deconvolution Operator

In this section we analyze in more detail properties of the modified Tikhonov deconvolution

operator. In particular, we prove that it is a bounded, self adjoint, and positive definite

operator. We also introduce and study a discrete version of the modified Tikhonov operator.

Theorem 4.1.1. Let G be SPD and 0 < µ < 1. Given u, the solution of (4.1.13) is given

by the unique minimizer in L2(Ω) of the functional

Fµ(u) =
1

2
(Gu,u)− (u,u) +

µ

2
(u−Gu,u). (4.1.16)

Proof. The unique minimizer in L2(Ω) of the functional (4.1.16) is calculated as the mini-

mum, when t = 0, of the function

Fµ(u+tw) =
1

2
(G(u+tw),u+tw)−(u,u+tw)+

µ

2
(u+tw−G(u+tw),u+tw), ∀w ∈ L2(Ω).

(4.1.17)

Differentiating and setting d
dt

Fµ(u + tw)
∣∣
t=0

= 0 we obtain

((1− µ)Gu + µu,w) = (u,w), ∀w ∈ L2(Ω). (4.1.18)

Thus, if u is a solution of (4.1.18), then u is also a solution of (4.1.13).

Proposition 4.1.1. Let the averaging operator be the differential filter Gu := (−δ24 +

I)−1u. Let 0 < µ < 1 be fixed. The operator Dµ : L2(Ω) → L2(Ω) is one-to-one and onto,

bounded, self-adjoint and positive definite.

Proof. We first recall that G is a linear, self-adjoint positive definite operator, with spec-

trum contained in [0, 1]. Thus the spectrum of (1 − µ) G + µ I is contained in [µ, 1], and

consequently, the spectrum of Dµ = ((1 − µ) G + µ I)−1 is a subset of the interval [1, µ−1].

Consequently, we have that Dµ is one-to-one and onto, bounded, self-adjoint and positive

definite.

Remark 4.1.4. Both A−1 := (−δ24 + I)−1, given by Definition 4.1.2, and Dµ are linear

combinations of the Laplace operator. Thus, they commute with the Laplace operator and

with each other.
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Lemma 4.1.3. With the differential filter given by Definition 4.1.2 and for smooth u we

have

‖Dµ4u‖ ≤ ‖4u‖ . (4.1.19)

Proof. We have that

Dµ G = ((1− µ) A−1 + µ I)−1 A−1

= (A ((1− µ) A−1 + µ I))−1 = ((1− µ) I + µA))−1 .

The spectrum of A is contained in [1,∞), and thus the spectrum of (1 − µ) I + µ A is a

subset of [(1 − µ) + µ,∞) = [1,∞), too. Hence, the spectrum of the self-adjoint operator

Dµ G is contained in the interval (0, 1]; which implies that ‖Dµ G‖ ≤ 1.

Using Remark 4.1.4 and the Cauchy-Schwarz inequality, it follows that

‖Dµ4u‖ = ‖Dµ G4u‖ ≤ ‖Dµ G‖ ‖4u‖ ≤ ‖4u‖.

Lemma 4.1.4. [ Error in Approximate deconvolution ] Consider the differential filter given

by Definition 4.1.2. Then, for smooth u

‖u−Dµu‖ ≤ µδ2 ‖4u‖ . (4.1.20)

Proof. Indeed, by algebraic manipulation, we have:

u−Dµu = (I −DµA
−1)u

= Dµ(D−1
µ − A−1 )u

= µDµ(I − A−1)u.

But, (I − A−1)u = u− u = −δ24u. Thus,

u−Dµu = −µδ2Dµ4u.

Using the proof of Lemma 4.1.3 and taking the L2 norm of both sides we obtain the desired

result.
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With the discrete filter (4.1.7), we define the discrete modified Tikhonov deconvolution

operator.

Definition 4.1.6. [ Discrete Modified Tikhonov Deconvolution Operator ] For a given filter-

ing radius δ > 0 and 0 < µ < 1, the discrete counterpart of Dµ is denoted by Dh
µ, and is

defined by

Dh
µ =

(
(1− µ)A−1

h + µI
)−1

.

With the discrete differential filter 4.1.3 we define Dh
µ precisely. Given Ψ ∈ X, ψh = Dh

µΨ
h

is the solution in Xh of the problem

µδ2(∇ψh,∇χ) + (ψh, χ) = δ2(∇Ψ
h
,∇χ) + (Ψ

h
, χ), ∀χ ∈ Xh, (4.1.21)

where Ψ and Ψ
h

satisfy δ2(∇Ψ
h
,∇χ) + (Ψ

h
,χ) = (Ψ,χ).

Proposition 4.1.2. The operator Dh
µ is bounded self-adjoint and positive definite on Xh.

Proof. The operator Dh
µ is the inverse of a convex combination of A−1

h and I. Both these

operators are SPD on Xh. Thus, so is Dh
µ.

Lemma 4.1.5. For v ∈ X, we have the following bounds for the discretely filtered and

approximately deconvolved v

∥∥vh
∥∥ ≤ ‖v‖ , (4.1.22)

∥∥∇vh
∥∥ ≤ ‖∇v‖ , (4.1.23)

∥∥Dh
µv

h
∥∥ ≤ ‖v‖ , (4.1.24)

∥∥∇Dh
µv

h
∥∥ ≤ ‖∇v‖ . (4.1.25)
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Proof. Let χ = vh in (4.1.7) and apply the Cauchy-Schwarz inequality in the right hand

side. We have

δ2
∥∥∇vh

∥∥2
+

∥∥vh
∥∥2 ≤

∥∥vh
∥∥ ‖v‖ .

Thus

∥∥vh
∥∥2 ≤ ∥∥vh

∥∥ ‖v‖

and (4.1.22) follows. For the proof of (4.1.23) we proceed in a similar way, we set χ = 4hv
h

in (4.1.7) and obtain

δ2
∥∥4hv

h
∥∥2

+
∥∥∇vh

∥∥2 ≤
∥∥∇vh

∥∥ ‖∇v‖ .

To prove (4.1.24), let Ψ = v and χ = Dh
µv

h in (4.1.21). Definition 4.1.3 and the Cauchy-

Schwarz inequality give

µδ2
∥∥∇Dh

µv
h
∥∥2

+
∥∥Dh

µv
h
∥∥2 ≤ ‖v‖

∥∥Dh
µv

h
∥∥ , (4.1.26)

proving (4.1.24). The proof of (4.1.25) is similar. Let Ψ = v and χ = 4hD
h
µv

h in (4.1.21).

The definition of 4h and Cauchy-Schwarz inequality give

µδ2
∥∥4hD

h
µv

h
∥∥2

+
∥∥∇Dh

µv
h
∥∥2 ≤ ‖∇v‖

∥∥∇Dh
µv

h
∥∥ . (4.1.27)

Now the conclusion follows.

Theorem 4.1.2. Let v∗h := v −Dh
µv

h, where v ∈ X. Then, we have

(v∗h,v) > 0. (4.1.28)

Proof. Let v ∈ X. Poincaré’s inequality together with (4.1.26) gives

∥∥Dh
µv

h
∥∥2 ≤ 1

(C2
PF µδ2 + 1)

‖v‖2 , (4.1.29)

which leads to

(
v −Dh

µv
h,v

) ≥ C2
PF µδ2

1 + C2
PF µδ2

‖v‖2 . (4.1.30)

and (4.1.28) follows for all v ∈ X.

87



Lemma 4.1.6. Let v ∈ X. Then

(v∗h, χh) ≤ µδ2 ‖∇v‖ ‖∇χh‖ , ∀χh ∈ Xh. (4.1.31)

Proof. Definition 4.1.6 leads to

(v∗h, χh) = µδ2(∇Dh
µv

h,∇χh), ∀χh ∈ Xh.

Applying the Cauchy-Schwarz inequality and Lemma 4.1.5 in the RHS, we obtain (4.1.31).

From Theorem 4.1.2 follows that I − Dh
µA−1

h is SPD. Fundamental in deriving energy

estimates for the scheme outlined in the next section is the norm of v∗h defined as

‖v∗h‖2 := (v∗h,v) . (4.1.32)

Lemma 4.1.7. For all v ∈ X with 4v ∈ L2(Ω), we have

∥∥v −Dh
µv

h
∥∥ ≤ µδ2 ‖v‖2 + C (δhk + hk+1) ‖v‖k+1 + (µ1/2δhk + hk+1) ‖Dµv‖k+1 .(4.1.33)

Proof. Applying the triangle inequality, we obtain

∥∥v −Dh
µv

h
∥∥ ≤ ‖v −Dµv‖+

∥∥Dµv −Dh
µv

∥∥ +
∥∥Dh

µv −Dh
µv

h
∥∥ . (4.1.34)

We now look at each term in the right hand side separately. Lemma 4.1.4 gives

‖v −Dµv‖ ≤ µδ2 ‖v‖2 . (4.1.35)

For the second term, let χ ∈ Xh in (4.1.14) and subtract it from (4.1.21). Let e := Dµv −
Dh

µv = Dµv − vh −Dh
µv + vh for all vh ∈ Xh. Using Galerkin orthogonality, we obtain

µδ2
∥∥∇Dµv −∇Dh

µv
∥∥2

+
∥∥Dµv −Dh

µv
∥∥2 ≤ inf

vh∈Xh

(µδ2
∥∥∇(Dµv − vh)

∥∥2
+

∥∥Dµv − vh
∥∥2

).

The approximation results (4.1.5) lead to

∥∥Dµv −Dh
µv

∥∥ ≤ (µ1/2δhk + hk+1) ‖Dµv‖k+1 . (4.1.36)
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To bound the last term we first apply Lemma 4.1.5

∥∥Dh
µv −Dh

µv
h
∥∥ ≤

∥∥v − vh
∥∥ .

From Definitions 4.1.2 and 4.1.3, Galerkin orthogonality and then using the approximation

results (4.1.5) we get

∥∥Dµv −Dµv
h
∥∥ ≤ C (δhk + hk+1) ‖v‖k+1 . (4.1.37)

The final conclusion then follows from (4.1.35), (4.1.36), and (4.1.37).

In the next section we study a Crank-Nicolson Finite Element Scheme for the Modified

Tikhonov Approximate Deconvolution Model (1.3).”

4.2 CONVERGENCE OF THE DISCRETE MODEL

To begin, we define the scheme and show that its solutions are well defined, unconditionally

stable, and optimally convergent to solutions of the NSE.

A strong solution of the Navier-Stokes equations satisfies u ∈ L2(0, T ; X)∩L∞(0, T ; L2(Ω))∩
L4(0, T ; X), p ∈ L2(0, T ; Q) with ut ∈ L2(0, T ; X∗) such that

(ut,v) + (u · ∇u,v) − (p,∇ · v) + ν(∇u,∇v) = (f ,v) , ∀v ∈ X , (4.2.1)

(q,∇ · u) = 0 , ∀q ∈ Q . (4.2.2)

Throughout the analysis we use the following notation v(tn+1/2) := v((tn + tn+1)/2)

for the continuous variables and vn+1/2 := (vn + vn+1)/2 for both, continuous and discrete

variables.
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Algorithm 4.2.1. [Crank-Nicolson Finite Element Scheme for Leray-Tikhonov deconvolu-

tion model] Let ∆t > 0, (w0, q0) ∈ (Xh, Qh), f ∈ X∗ and T := M ∆t as M is an integer. For

n = 0, 1, 2, · · · ,M − 1, find (wh
n+1, q

h
n+1) ∈ (Xh, Qh) satisfying

1

∆t
(wh

n+1 −wh
n,vh) + b∗(Dh

µw
h
n+1/2

h
,wh

n+1/2,v
h)− (qh

n+1/2,∇ · vh) + ν(∇wh
n+1/2,∇vh)

+χ(wh
n+1/2 −Dh

µw
h
n+1/2

h
,vh) = (fn+1/2,v

h), ∀ vh ∈ Xh

(4.2.3)

(∇ ·wh
n+1,φ

h) = 0, ∀φh ∈ Qh.

(4.2.4)

Remark 4.2.1. Since (Xh, Qh) satisfies the discrete inf-sup condition, (4.2.3)-(4.2.4) is

equivalent to

1

∆t
(wh

n+1 −wh
n,vh) + b∗(Dh

Nwh
n+1/2

h
,wh

n+1/2,v
h) + ν(∇wh

n+1/2,∇vh)

+ χ(wh
n+1/2 −Dh

µw
h
n+1/2

h
,vh) = (fn+1/2,v

h), ∀ vh ∈ Vh. (4.2.5)

In the error analysis we use of the following lemmas and notation.

Lemma 4.2.1. Assume u ∈ C0(tn, tn+1; L
2(Ω)). If u is twice differentiable in time and

utt ∈ L2((tn, tn+1)× Ω) then

∥∥un+1/2 − u(tn+1/2)
∥∥2 ≤ 1

48
(∆t)3

∫ tn+1

tn

‖utt‖2 dt . (4.2.6)

If ut ∈ C0(tn, tn+1; L
2(Ω)) and uttt ∈ L2((tn, tn+1)× Ω) then

∥∥∥∥
un+1 − un

∆t
− ut(tn+1/2)

∥∥∥∥
2

≤ 1

1280
(∆t)3

∫ tn+1

tn

‖uttt‖2 dt . (4.2.7)

If ∇u ∈ C0(tn, tn+1; L
2(Ω)) and ∇utt ∈ L2((tn, tn+1)× Ω) then

∥∥∇(un+1/2 − u(tn+1/2))
∥∥2 ≤ (∆t)3

48

∫ tn+1

tn

‖∇utt‖2 dt . (4.2.8)

Proof. The proof is based on the Taylor expansion with remainder.
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Lemma 4.2.2. [ Discrete Gronwall Lemma ] Let ∆t, H, and an, bn, cn, dn (for integers n ≥
0) be nonnegative numbers such that

al + ∆t

l∑
n=0

bn ≤ ∆t

l∑
n=0

dnan + ∆t

l∑
n=0

cn + H for l ≥ 0. (4.2.9)

Suppose that ∆tdn < 1 ∀n. Then,

al + ∆t

l∑
n=0

bn ≤ exp

(
∆t

l∑
n=0

dn

1−∆tdn

)(
∆t

l∑
n=0

cn + H

)
for l ≥ 0. (4.2.10)

Proof. The proof follows from [36].

In the discrete case we use the analogous norms:

‖|v|‖∞,k := max
0≤n≤M−1

‖vn‖k , ‖|v1/2|‖∞,k := max
1≤n≤M−1

‖vn+1/2‖k ,

‖|v|‖m,k :=

(
M−1∑
n=0

‖vn‖m
k 4t

)1/m

, ‖|v1/2|‖m,k :=

(
M−1∑
n=1

‖vn+1/2‖m
k 4t

)1/m

.

Lemma 4.2.3. [ Existence of Solutions and Stability of the Scheme ] At each time step, there

exists a solution of the approximation scheme (4.2.5). Also, the scheme is unconditionally

stable and satisfies the following á priori bound:

∥∥wh
n

∥∥2
+ ν∆t

n−1∑

k=0

∥∥∇wh
k+1/2

∥∥2
+ χ

n−1∑

k=0

∥∥∥wh
k+1/2

∗∥∥∥
2

≤
∥∥wh

0

∥∥2
+

∆t

ν

n−1∑

k=0

∥∥fk+1/2

∥∥2

∗ , (4.2.11)

for all integers 1 ≤ n ≤ M .
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Proof. We begin by proving the à priori estimate (4.2.11). In (4.2.5), set vh = wh
k+1/2.

Applying Young’s inequality, we obtain

1

∆t
(
∥∥wh

k+1

∥∥2−
∥∥wh

k

∥∥2
)+ν

∥∥∇wh
k+1/2

∥∥2
+χ

∥∥∥wh
k+1/2

∗∥∥∥
2

≤ 1

ν

∥∥fk+1/2

∥∥2

∗ , for every k. (4.2.12)

Summing from k = 0 to n, where n is an integer, 1 ≤ n ≤ M , we obtain the desired result.

The existence of a solution wh
k+1 to (4.2.5) follows from the Leray-Schauder Principle,

[67]. We reformulate (4.2.5) as a fixed point problem, insert a parameter λ and adapt the

proof of the à priori bound to give a bound uniform in λ. To do this, we define the operator

T : X
′ → Vh, by T (y) := z, where

(y,v) := 4t ν(∇
(

z + wh
k

2

)
,∇v) +4t χ(

z + wh
k

2
−Dh

µ

(z + wh
k)

h

2
,v), for all v ∈ Vh.

The bilinear form on the above right hand side is coercive. Then, by the Lax-Milgram

theorem, the operator T exists and is bounded. Note that T is also linear. We also define

the nonlinear operator N : Vh → X
′
, via the Riesz Representation theorem,

(N(z),v) = −4t b∗(Dh
µ

(z + wh
k)

h

2
,
z + wh

k

2
,v) + (wh

k − z,v) +4t(fk+1/2,v) for all v ∈ Vh.

Since Vh is finite dimensional, the operator N is trivially bounded and continuous. Finally,

we define F : Vh → Vh, by F (z) = T (N(z)). Then, z is a solution of (4.2.5) if and only if it

is a fixed point of F .

To show that F has a fixed point in Vh, we apply the Leray-Schauder Principle. We

first note that the operator F is algebraic, hence continuous. Since dim Vh < ∞, F is also

compact. By the Leray-Schauder Principle, we need to show that any solution uλ of the

fixed point problem z = λF (z), where 0 ≤ λ < 1, satisfies ‖uλ‖X ≤ γ, where γ does not

depend on λ. We have

4t ν(∇
(

uλ + wh
k

2

)
,∇v) +4t χ(

uλ + wh
k

2
−Dh

µ

(uλ + wh
k)

h

2
,v)

= −λ4t b∗(Dh
µ

(uλ + λwh
k)

h

2
,
uλ + wh

k

2
,v) + λ(uλ −wh

k ,v)

+λ4t(fk+1/2,v), for all v ∈ Vh. (4.2.13)
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Now, set v =
uλ+wh

k

2
. Since 0 ≤ λ < 1, proceeding as in the à priori estimate bounded we

obtain the desired bound for ‖∇uλ‖. It means that a solution of (4.2.5) exists at each time

step.

Remark 4.2.2. The same argument works in the infinite dimensional case, when (4.2.5) is

posed in X instead of Xh. The only modification is that compactness of F (which holds) is

verified separately using the Raleigh Lemma.

4.2.1 Convergence Analysis

We now state and prove our main convergence estimate.

Theorem 4.2.2. Let (u(t), p(t)) be a sufficiently smooth, strong solution of the NSE satisfy-

ing periodic with zero-mean boundary conditions. Suppose (wh(0), qh(0)) are approximations

of (u(0), p(0)) to the accuracy of (4.1.5), respectively. Then there is a constant C = C(u, p)

such that

‖|u − wh|‖∞,0 ≤ F (4t, h, δ) + Chk+1‖|u|‖∞,k+1 ,

(4.2.14)
(

ν4t

M−1∑
n=0

‖∇(un+1/2 − (wh
n+1 + wh

n)/2)‖2

)1/2

≤ F (4t, h, δ) + Cν1/2(4t)2‖∇utt‖2,0

+Chk‖|u|‖2,k+1,

(4.2.15)

where

F (4t, h, µ, δ) = C∗hk+1 (ν−1/2 + χ)( ‖Dµu‖2,k+1 +
∥∥un+1/2

∥∥
k+1

)

+ν−1/2 hk+1/2
(‖|u|‖2

4,k+1 + ‖|∇u|‖2
4,0

)

+ν−1/2hk
(‖|u|‖2

4,k+1 + ν−1/2(‖wh
0‖+ ν−1‖|f |‖2,?)

)

+δhk(ν−1/2 + χ)
(
µ ‖Dµu‖2,k+1 + ‖u‖2,k+1

)

ν−1/2hs+1‖|p1/2|‖2,s+1 + (ν−1/2 + χ)µδ2 ‖u‖2,2

+ (∆t)2
(‖uttt‖2,0 + ‖ftt‖2,0 + ν−1/2‖ptt‖2,0

+ν−1/2‖∇utt‖2
4,0 +ν−1/2‖|∇u|‖2

4,0 + ν−1/2‖|∇u1/2|‖2
4,0

)
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Proof. First, we note that at time tn+1/2, u given by (4.2.1)-(4.2.2) satisfies

(
un+1 − un

∆t
,vh) + b∗(Dh

µun+1/2
h,un+1/2,v

h) + ν(∇un+1/2,∇vh)− (pn+1/2,∇ · vh)

+χ(un+1/2 −Dh
µun+1/2

h,vh) = (fn+1/2,v
h) + Intp(un, pn;vh),

(4.2.16)

for all vh ∈ Xh, where Intp(un, pn;vh), representing the interpolating error, denotes

Intp(un, pn;vh) =

(
un+1 − un

∆t
− ut(tn+1/2),v

h

)
+ ν(∇un+1/2 − ∇u(tn+1/2),∇vh)

+b∗(un+1/2,un+1/2,v
h)− b∗(u(tn+1/2),u(tn+1/2),v

h)

−b∗(un+1/2 −Dh
µun+1/2

h,un+1/2,v
h)

+χ(un+1/2 −Dh
µun+1/2

h,vh)− (pn+1/2 − p(tn+1/2),∇ · vh)

+(f(tn+1/2)− fn+1/2,v
h) . (4.2.17)

Subtracting (4.2.3) from (4.2.16) and letting en = un −wh
n we have

1

∆t
(en+1 − en,v

h) + b∗(Dh
µun+1/2

h,un+1/2,v
h)− b∗(Dh

µw
h
n+1/2

h
,wh

n+1/2,v
h)

+ ν(∇en+1/2,∇vh) + χ(en+1/2 −Dh
µen+1/2

h,vh)

= (pn+1/2 − q,∇ · vh) + Intp(un, pn;vh), ∀vh ∈ Xh. (4.2.18)

Let en = (un − Un) − (wh
n − Un) := ηn − φh

n where φh
n ∈ Xh and U represents the L2

projection of u in Xh. Setting vh = φh
n+1/2 in (4.2.18) and using (q,∇ · φn+1/2) = 0 for all

q ∈ Xh we obtain

(φh
n+1 − φh

n,φh
n+1/2) + ∆tν‖∇φh

n+1/2‖2 + ∆tb∗(Dh
µw

h
n+1/2

h
, en+1/2,φ

h
n+1/2)

+ ∆tb∗(Dh
µen+1/2

h,un+1/2,φ
h
n+1/2) + ∆tχ

∥∥∥φh
n+1/2

∗∥∥∥
2

= ∆t(ηn+1 − ηn,φh
n+1/2) + ∆tν(∇ηn+1/2,∇φh

n+1/2)

+ ∆tχ(ηn+1/2 −Dh
µηn+1/2

h,φh
n+1/2)

+ ∆t(pn+1/2 − q,∇ · φh
n+1/2)−∆t Intp(un, pn; φh

n+1/2) . (4.2.19)
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Because of our choice of U , we have (ηn+1 − ηn,φh
n+1/2) = 0 and we can rewrite

1

2
(‖φh

n+1‖2 − ‖φh
n‖2) + ∆tν‖∇φh

n+1/2‖2 + ∆tχ
∥∥∥φh

n+1/2

∗∥∥∥
2

= ∆tν(∇ηn+1/2,∇φh
n+1/2)−∆tb∗(Dh

µηn+1/2
h,un+1/2,φ

h
n+1/2)

+ ∆tb∗(Dh
µφh

n+1/2

h
,un+1/2,φ

h
n+1/2)

−∆tb∗(Dh
µw

h
n+1/2

h
,ηn+1/2, φ

h
n+1/2)

+ ∆tχ(ηn+1/2 −Dh
µηn+1/2

h,φh
n+1/2)

+ ∆t(pn+1/2 − q,∇ · φh
n+1/2) + ∆t Intp(un, pn; φh

n+1/2) . (4.2.20)

We now estimate the terms on the right hand side of (4.2.20) separately.

Using Cauchy-Schwarz and Young’s inequalities we have

ν4t(∇ηn+1/2,∇φh
n+1/2) ≤ ν4t‖∇ηn+1/2‖ ‖∇φh

n+1/2‖
≤ ν∆t

12

∥∥∇φh
n+1/2

∥∥2
+ Cν∆t

∥∥∇ηn+1/2

∥∥2
. (4.2.21)

4t(pn+1/2 − q,∇ · φh
n+1/2) ≤ C4t‖pn+1/2 − q‖ ‖∇φh

n+1/2‖
≤ ν∆t

12

∥∥∇φh
n+1/2

∥∥2
+ C4tν−1‖pn+1/2 − q‖2 . (4.2.22)

Lemmas 4.1.1 and 4.1.5 and standard inequalities give

4t b∗(Dh
µηn+1/2

h,un+1/2,φ
h
n+1/2)

≤ C∆t‖Dh
µηn+1/2

h‖1/2 ‖∇Dh
µηn+1/2

h‖1/2 ‖∇un+1/2‖ ‖∇φh
n+1/2‖

≤ ν4t

12
‖∇φh

n+1/2‖2 + C4t ν−1‖ηn+1/2‖ ‖∇ηn+1/2‖‖∇un+1/2‖2 . (4.2.23)

4t b∗(Dh
µφh

n+1/2

h
,un+1/2,φ

h
n+1/2)

≤ C4t‖Dh
µφh

n+1/2

h‖1/2 ‖∇Dh
µφh

n+1/2

h‖1/2 ‖∇un+1/2‖ ‖∇φh
n+1/2‖

≤ C4t‖φh
n+1/2‖1/2 ‖∇φh

n+1/2‖3/2 ‖∇un+1/2‖
≤ ν4t

12
‖∇φh

n+1/2‖2 + C4t ν−3‖φh
n+1/2‖2 ‖∇un+1/2‖4 . (4.2.24)
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4t b∗(Dh
µw

h
n+1/2

h
,ηn+1/2,φ

h
n+1/2)

≤ C‖Dh
µw

h
n+1/2

h‖1/2 ‖∇Dh
µw

h
n+1/2

h‖1/2 ‖∇ηn+1/2‖ ‖∇φh
n+1/2‖

≤ ν4t

12
‖∇φh

n+1/2‖2 + C4t ν−1‖wh
n+1/2‖ ‖∇wh

n+1/2‖ ‖∇ηn+1/2‖2 . (4.2.25)

Lemma 4.1.6 and Young’s inequality give

∆tχ(ηn+1/2 −Dh
µηn+1/2

h,φh
n+1/2) ≤ ν4t

12
‖∇φh

n+1/2‖2 + C4t ν−1 χ2µ2δ4
∥∥∇ηn+1/2

∥∥2
.

(4.2.26)

Substituting (4.2.21)-(4.2.25) into (4.2.20) and summing from n = 0 to M −1 (assuming

that ‖φh
0‖ = 0) we get

‖φh
M‖2 + ν4t

M−1∑
n=0

‖∇φh
n+1/2‖2 + χ4t

M−1∑
n=0

‖φh
n+1/2

∗‖2

≤ 4t

M−1∑
n=0

Cν−3‖∇un+1/2‖4 ‖φh
n+1/2‖2 +4t

M−1∑
n=0

Cν‖∇ηn+1/2‖2

+4t

M−1∑
n=0

Cν−1‖ηn+1/2‖ ‖∇ηn+1/2‖‖∇un+1/2‖2

+4t

M−1∑
n=0

Cν−1‖wh
n+1/2‖ ‖∇wh

n+1/2‖ ‖∇ηn+1/2‖2

+4t

M−1∑
n=0

C ν−1 χ2µ2δ4
∥∥∇ηn+1/2

∥∥2
+4t

M−1∑
n=0

Cν−1‖pn+1/2 − q‖2

+4t

M−1∑
n=0

|Intp(un, pn; φh
n+1/2)| . (4.2.27)

We now bound each term in the right hand side of (4.2.27).

4t

M−1∑
n=0

Cν‖∇ηn+1/2‖2 ≤ 4tCν

M∑
n=0

‖∇ηn‖2 ≤ 4tCν

M∑
n=0

h2k|un|2k+1

≤ Cνh2k‖|u|‖2
2,k+1 . (4.2.28)
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Next, we consider the term

4t

M−1∑
n=0

Cν−1‖ηn+1/2‖ ‖∇ηn+1/2‖ ‖∇un+1/2‖2

≤ Cν−14t

M−1∑
n=0

(‖ηn+1‖ ‖∇ηn+1‖+ ‖ηn‖ ‖∇ηn‖

+ ‖ηn‖ ‖∇ηn+1‖+ ‖ηn+1‖ ‖∇ηn‖
) ‖∇un+1/2‖2

≤ C ν−1 h2k+1

(
4t

M−1∑
n=0

|un+1|2k+1 ‖∇un+1/2‖2 +4t

M−1∑
n=0

|un+1|k+1|un|k+1 ‖∇un+1/2‖2

+ 4t

M−1∑
n=0

|un|2k+1 ‖∇un+1/2‖2

)

≤ Cν−1 h2k+1

(
4t

M∑
n=0

|un|4k+1 +4t

M∑
n=0

‖∇un‖4

)

= Cν−1 h2k+1
(‖|u|‖4

4,k+1 + ‖|∇u|‖4
4,0

)
. (4.2.29)

Using (4.2.11), we have

4t

M−1∑
n=0

Cν−1
(‖wh

n+1/2‖ ‖∇wh
n+1/2‖ ‖∇ηn+1/2‖2

)

≤ Cν−14t

M−1∑
n=0

‖∇wh
n+1/2‖ ‖∇ηn+1/2‖2

≤ Cν−14t

M−1∑
n=0

(‖∇ηn+1‖2 + ‖∇ηn‖2
) ‖∇wh

n+1/2‖

≤ Cν−1h2k4t

M−1∑
n=0

(|un+1|2k+1 + |un|2k+1

) ‖∇wh
n+1/2‖

≤ Cν−1h2k

(
4t

M∑
n=0

|un|4k+1 +4t

M∑
n=0

‖∇wh
n+1/2‖2

)

≤ Cν−1h2k
( ‖|u|‖4

4,k+1 + ν−1(‖wh
0‖2 + ν−1‖|f |‖2

2,?)
)

. (4.2.30)
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Lemma 4.2.1 and (4.1.5) give

4t

M−1∑
n=0

Cν−1‖pn+1/2 − q‖2 ≤ 4tCν−1

M−1∑
n=0

( ‖p(tn+1/2)− q‖2 + ‖pn+1/2 − p(tn+1/2)‖2 )

≤ Cν−1 (h2s+24t

M−1∑
n=0

‖p(tn+1/2)‖2
s+1

+4t

M−1∑
n=0

1

48
(4t)3

∫ tn+1

tn

‖ptt‖2 dt

≤ Cν−1(h2s+2‖|p1/2|‖2
2,s+1 + (4t)4‖ptt‖2

2,0). (4.2.31)

Next, we bound the time relaxation term

4t

M−1∑
n=0

ν−1 χ2µ2δ4
∥∥∇ηh

n+1/2

∥∥2 ≤ ν−1 χ2µ2δ4 h2k‖|u|‖2
2,k+1 . (4.2.32)

We now bound the terms in Intp(un, pn; φh
n+1/2). Using Cauchy-Schwarz and Young’s

inequalities, Taylor’s theorem, and Lemma 4.1.7,

(
un+1 − un

∆t
− ut(tn+1/2),φ

h
n+1/2

)

≤ 1

2
‖φh

n+1/2‖2 +
1

2
‖u

n+1 − un

∆t
− ut(tn+1/2)‖2

≤ 1

2
‖φh

n+1‖2 +
1

2
‖φh

n‖2 +
1

2

(∆t)3

1280

∫ tn+1

tn

‖uttt‖2 dt , (4.2.33)

(pn+1/2 − p(tn+1/2),∇ · φh
n+1/2)

≤ ε1ν‖∇φh
n+1/2‖2 + C ν−1‖pn+1/2 − p(tn+1/2)‖2

≤ ε1ν‖∇φh
n+1/2‖2 + C ν−1 (∆t)3

48

∫ tn+1

tn

‖ptt‖2 dt , (4.2.34)

(f(tn+1/2)− fn+1/2,φ
h
n+1/2)

≤ 1

2
‖φh

n+1/2‖2 +
1

2
‖f(tn+1/2)− fn+1/2‖2

≤ 1

2
‖φh

n+1‖2 +
1

2
‖φh

n‖2 +
(∆t)3

48

∫ tn+1

tn

‖ftt‖2 dt , (4.2.35)
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(∇un+1/2 − ∇u(tn+1/2),∇φh
n+1/2)

≤ ε2ν ‖∇φh
n+1/2‖2 + C ν‖∇un+1/2 − ∇u(tn+1/2)‖2

≤ ε2ν ‖∇φh
n+1/2‖2 + C ν

(∆t)3

48

∫ tn+1

tn

‖∇utt‖2 dt , (4.2.36)

b∗(un+1/2,un+1/2,φ
h
n+1/2)− b∗(u(tn+1/2),u(tn+1/2),φ

h
n+1/2)

= b∗(un+1/2 − u(tn+1/2),un+1/2, φ
h
n+1/2) + b∗(u(tn+1/2),un+1/2 − u(tn+1/2), φ

h
n+1/2)

≤ C ‖∇(un+1/2 − u(tn+1/2))‖ ‖∇φh
n+1/2‖

(‖∇un+1/2‖ + ‖∇u(tn+1/2)‖
)

≤ C ν−1
(‖∇un+1/2‖2 + ‖∇u(tn+1/2)‖2

) (∆t)3

48

∫ tn+1

tn

‖∇utt‖2 dt + ε3ν‖∇φh
n+1/2‖2

≤ C ν−1 (∆t)3

48

(∫ tn+1

tn

2(‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4) dt

+

∫ tn+1

tn

‖∇utt‖4 dt

)
+ ε3ν‖∇φh

n+1/2‖2

≤ C ν−1 (∆t)4(‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4)

+C ν−1 (∆t)3

∫ tn+1

tn

‖∇utt‖4 dt + ε3ν‖∇φh
n+1/2‖2 . (4.2.37)

b∗(un+1/2 −Dh
µun+1/2

h,un+1/2,φ
h
n+1/2)

≤ 1

2

(‖un+1/2 −Dh
µun+1/2

h‖ ‖∇un+1/2‖∞ ‖φh
n+1/2‖

+ ‖un+1/2 −Dh
µun+1/2

h‖ ‖un+1/2‖∞ ‖∇φh
n+1/2‖

)

≤ C ‖un+1/2 −Dh
µun+1/2

h‖ ‖∇φh
n+1/2‖

≤ ε4ν‖∇φh
n+1/2‖2 + Cν−1‖un+1/2 −Dh

µun+1/2
h‖2

≤ ε4ν‖∇φh
n+1/2‖2 + Cν−1

(
(µδ2h2k + h2k+2)

∥∥Dµun+1/2

∥∥2

k+1

+ (δ2h2k + h2k+2)
∥∥un+1/2

∥∥2

k+1
+ µ2δ4

∥∥un+1/2

∥∥2

2

)
. (4.2.38)

χ(un+1/2 −Dh
µun+1/2

h, φh
n+1/2) ≤ χ

∥∥φh
n+1/2

∥∥ ∥∥un+1/2 −Dh
µun+1/2

h
∥∥

≤ 1

2
‖φh

n+1‖2 +
1

2
‖φh

n‖2 + χ2C
(

(µδ2h2k + h2k+2)
∥∥Dµun+1/2

∥∥2

k+1

+ (δ2h2k + h2k+2)
∥∥un+1/2

∥∥2

k+1
+ µ2δ4

∥∥un+1/2

∥∥2

2

)
. (4.2.39)
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Combine (4.2.33)-(4.2.39) to obtain

M−1∑
n=0

∆t|Intp(un, pn; φh
n+1/2)| ≤

M−1∑
n=0

[ ∆t C‖φh
n+1‖2

+(ε1 + ε2 + ε3 + ε4)∆t ν‖∇φh
n+1/2‖2

+Cν−1
(

(µδ2h2k + h2k+2)
∥∥Dµun+1/2

∥∥2

k+1

+ (δ2h2k + h2k+2)
∥∥un+1/2

∥∥2

k+1
+ µ2δ4

∥∥un+1/2

∥∥2

2

)

+Cχ2
(

(µδ2h2k + h2k+2)
∥∥Dµun+1/2

∥∥2

k+1

+ (δ2h2k + h2k+2)
∥∥un+1/2

∥∥2

k+1
+ µ2δ4

∥∥un+1/2

∥∥2

2

)
]

+ C(∆t)4
(‖uttt‖2

2,0 + ν−1‖ptt‖2
2,0 + ‖ftt‖2

2,0

+ν‖∇utt‖2
2,0 + ν−1‖∇utt‖4

4,0

+ν−1‖|∇u|‖4
4,0 + ν−1‖|∇u1/2|‖4

4,0

)
. (4.2.40)

Let ε1 = ε2 = ε3 = ε4 = 1/12 and putting everything together, from (4.2.27) we obtain

‖φh
M‖2 + ν4t

M−1∑
n=0

‖∇φh
n+1/2‖2 + χ4t

M−1∑
n=0

‖φh
n+1/2

∗‖2

≤ 4t

M−1∑
n=0

C (ν−3
∥∥∇un+1/2

∥∥4
+ 1)

∥∥φh
n+1/2

∥∥2

+ C ν h2k ‖|u|‖2
2,k+1 + C ν−1 h2k+1

( ‖|u|‖4
4,k+1 + ‖|∇u|‖4

4,0

)

+ C ν−1h2k
( ‖|u|‖4

4,k+1 + ν−1(‖wh
0‖2 + ν−1‖|f |‖2

2,?)
)

+ C ν−1
(

h2s+2‖|p1/2|‖2
2,s+1 + (4t)4‖ptt‖2

2,0

)
+ C ν−1χ2µ2δ4 h2k‖|u|‖2

2,k+1

+ C (ν−1 + χ2)
(

(µδ2h2k + h2k+2) ‖Dµu‖2
2,k+1

+ (δ2h2k + h2k+2) ‖u‖2
2,k+1 + µ2δ4 ‖u‖2

2,2

)

+ C(∆t)4
(‖uttt‖2

2,0 + ‖ftt‖2
2,0 + ν‖∇utt‖2

2,0

+ ν−1‖∇utt‖4
4,0 +ν−1‖|∇u|‖4

4,0 + ν−1‖|∇u1/2|‖4
4,0

)
. (4.2.41)
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Hence, with 4t sufficiently small, i.e. 4t < C(ν−3‖|∇u|‖4
∞,0 + 1)−1, from Gronwall’s

Lemma (see Lemma 4.2.2), we have

‖φh
M‖2 + ν4t

M−1∑
n=0

‖∇φh
n+1/2‖2 + χ4t

M−1∑
n=0

‖φh
n+1/2

∗‖2

≤ C∗ { h2k+2 (ν−1 + χ2)( ‖Dµu‖2
k+1 + ‖u‖2

k+1 )

+ν−1 h2k+1
(‖|u|‖4

4,k+1 + ‖|∇u|‖4
4,0

)
+ h2k(ν + ν−1 χ2µ2δ4 )‖|u|‖2

2,k+1

+ν−1h2k
(‖|u|‖4

4,k+1 + ν−1(‖wh
0‖2 + ν−1‖|f |‖2

2,?)
)

+δ2h2k(ν−1 + χ2)
(
µ ‖Dµu‖2

2,k+1 + ‖u‖2
2,k+1

)

ν−1h2s+2‖|p1/2|‖2
2,s+1 + (ν−1 + χ2)µ2δ4 ‖u‖2

2,2

+ (∆t)4
(‖uttt‖2

2,0 + ν−1‖ptt‖2
2,0 + ‖ftt‖2

2,0 + ν‖∇utt‖2
2,0

+ν−1‖∇utt‖4
4,0 +ν−1‖|∇u|‖4

4,0 + ν−1‖|∇u1/2|‖4
4,0

) } (4.2.42)

where C∗ = C exp(Cν−3T ).

Estimate (4.2.14) then follows from the triangle inequality and (4.2.42).

To obtain (4.2.15), we use (4.2.42) and

‖∇ (
u(tn+1/2)− (wh

n+1 + wh
n)/2

) ‖2

≤ ‖∇(u(tn+1/2)− un+1/2)‖2 + ‖∇ηn+1/2‖2 + ‖∇φh
n+1/2‖2

≤ (4t)3

48

∫ tn+1

tn

‖∇utt‖2 dt + Ch2k||un+1||2k+1 + Ch2k||un||2k+1 + ‖∇φh
n+1/2‖2 .

4.3 NUMERICAL ILLUSTRATIONS

In this section, we present two numerical experiments. Our first test confirms the predicted

rates of convergence. In our second experiment, we study a simple, under-resolved flow with

recirculation: the flow across a step. The computations were performed with the software

FreeFem++, see [20].
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4.3.1 Convergence Rate Verification

To test the predicted convergence rates, we consider the Chorin vortex decay problem, [11,

40, 63]. The prescribed solution in Ω = (0, 1)× (0, 1) is

u1(x, y, t) = − cos(nπx) sin(nπy)e−2n2π2t/τ

u2(x, y, t) = sin(nπx) cos(nπy)e−2n2π2t/τ

p = −1

4
(cos(nπx) + cos(nπy))e−2n2π2t/τ .

When the relaxation time τ = Re, the pair (u, p) defined above is a solution of the NSE

with f = 0. This solution consists of an n× n array of oppositely signed vortices that decay

as t →∞.

The model was discretized in time with the implicit second order Crank-Nicolson scheme

and in space with the Taylor-Hood finite element method, i.e. the velocity was approximated

by continuous piecewise quadratics and the pressure by continuous piecewise linears. The-

orem 4.2.2 shows that under sufficient regularity of the solution of the variational problem,

the error ||∇(u−wh)||2,0 is of O(h2). This experiment suggests that it might be possible to

establish an upper bound for the error ||u−wh||2,0 as follows

||u−wh||2,0 ≤ C h ||∇(u−wh)||2,0,

i.e., ||u − wh||2,0 ' O(h3). Generally, Nitsche’s duality trick is employed to derive error

estimates for L2 norms. This is often referred to as the L2 lift, [6]. In our test, we choose

n = 1, dt = 0.005, T = 0.5, µ = 1/m, χ = 0.1, δ =
√

1/m and h = 1/m, where m is

the number of subdivisions of the interval (0, 1). We performed the same test for different

Reynolds numbers. The results are in Tables 10 and 11 below. In both cases, Re = 1 and

Re = 104, the convergence rate approaches the second order predicted for ||∇(u −wh)||2,0.

For Re = 104 we also see what appears to be an L2 lift for
∥∥u−wh

∥∥
2,0

.

Note that the error plateau around 10−5 already on coarse mesh. This is likely related to

the stopping criteria (uresidual < 10−5) or the O(10−5) stabilization used in the (2,2) block

of the linear Stokes system for the solver used.
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mesh ||u−wh||2,0 ratio ||∇(u−wh)||2,0 ratio

10× 10 0.000316786 - 0.00461599 -

20× 20 6.66405 · 10−5 2.25 0.00116309 1.98

30× 30 5.31594 · 10−5 0.6 0.000522003 1.97

40× 40 5.16375 · 10−5 0.1 0.000300615 1.91

Table 10: Errors and convergence rates for the Leray-Tikhonov model at Re = 1

mesh ||u−wh||2,0 ratio ||∇(u−wh)||2,0 ratio

10× 10 0.0226085 - 1.35783 -

20× 20 0.00428244 2.40 0.502447 1.43

30× 30 0.00131237 2.91 0.23989 1.82

40× 40 0.000531236 3.14 0.131774 2.08

Table 11: Errors and convergence rates for the Leray-Tikhonov model at Re = 104

4.3.2 Step Problem

In our second test, we consider a flow in transition via shedding of eddies behind the step.

At a critical Reynolds number, for which the flow should be time dependent, some models

are not able to capture the correct (non stationary) physical properties of the flow, e.g., [41].

Herein, we present results for a parabolic inflow profile, which is given by u = (u1, u2)
T , with

u1 = y(10 − y) = 25 and u2 = 0. No-slip boundary condition is prescribed on the top and

bottom boundary as well as on the step. At the outflow we have “do nothing” boundary

condition, an accepted outflow condition in CFD. The model was discretized in time with the

Crank-Nicolson and in space with the Taylor Hood finite-element method. Figure 8 shows

that expected behavior of the flow: behind the step the flow simulation correctly develops

vortices separate from the step. Figure 8 shows the results for a course mesh (4585 degrees

of freedom) at T = 10, 20, 30, 40, for ν−1 = 750, χ = 0.01, µ = 0.01, dt = 0.0025, δ = 1.5.
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Figure 8: Leray-Tikhonov deconvolution model: Flow field at T = 10, 20, 30, 40.
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5.0 CONCLUSIONS

Turbulence has been a long standing challenge for human mind. The Navier-Stokes

equations probably contain all of turbulence. They describe every detail of the turbulent

velocity field from the largest to the smallest length and time scales. Much progress was

made throughout the years in studying the NSE, but the main problems, like existence and

uniqueness of strong solutions, are still open. Thus various turbulence models are sought to

better predict flow statistics and averages. Considering the diversity and complexity of fluid

flows, every contribution in this field is important.

The main contribution of this thesis was the derivation of new such turbulence models

and the analysis of their mathematical and numerical properties. The central idea was to

adapt “off-the-shelf” methods for ill-posed problems to turbulence and use them to obtain

new (or improve existing) models. In Chapters 2 and 3 we have focused on LES models, in

particular, ADM, while in Chapter 4 we studied a new regularization model of the NSE.

In Chapter 2 we found near minimal conditions on the deconvolution operator that

guarantee existence of weak solutions of a deconvolution model. Using techniques from

functional analysis and the theory of weak solutions of PDEs, [23], we show that the weak

solution is a unique strong solution and satisfies an energy equality. The averaging operator

chosen was a specific differential filter. More generally, if the filter G satisfies ĝ(k) 6= 0 for

all k, then the exact filter inverse A can be defined as an unbounded operator with dense

domain and closed range. If additionally, |ĝ(k)| → 0 as k →∞ with O( 1
|k|2 ) (or faster) then

the existence theory developed in Chapter 2 can be extended to the filter G.

In Chapter 3, we derived deconvolution operators which minimize the deconvolution error

for velocity fields with finite kinetic energy.
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For a LES with deconvolution model to be feasible, the model’s consistency error must

be small for large radii δ, which are large with respect to the problems inherent length scales

(which correspond to computationally attainable meshwidths). Thus, selection of parameters

to minimize the model’s consistency error increases the problems for which LES is feasible,

and increases the reduction in computational effort obtainable when using LES.

The use of optimal parameters requires no extra computational effort. Two main results

of Chapter 3 are:

1. the values of the optimal parameters (in Section 3.3) and

2. the reduction in the model consistency error that results in their use is is at least 50%,

(see Table 3).

We found two sets of parameters: Chebychev optimized (when the deconvolution error was

optimized over a general, finite velocity field) and K-41 optimized (for special velocities, with

a k−5/3 energy spectrum).

To determine the resulting increase in accuracy, we considered the three versions of van

Cittert, unoptimized, Chebychev optimized and K-41 optimized and compute the resulting

deconvolution error in the case of velocity fields with energy spectrum of k−5/3. Interestingly,

in all cases (N= 1,2,3,4,5) the Chebychev optimized parameters resulted in comparable or

better errors than K-41 optimization. Since Chebychev optimization gives parameter values

good for all flow fields and the latter only for special ones, this suggests that Chebychev

optimized deconvolution is to be strongly preferred. It is important to note that the relative

increase in accuracy obtained using optimal parameters itself increases with the order of the

model.

In Chapter 4, we developed and studied a new family of NSE-regularizations, based on

a modification of Tikhonov-Lavrentiev regularization process for ill-posed problems.

Often, numerical simulations of complex flows are based on various regularizations of

the NSE, rather than the NSE themselves. The resulting models often have positive effects

on computation results, e.g. errors are observed to be much better over much larger time

intervals. The main negative effects sometimes observed in regularizations are overdamping

and delayed transitions. In the method presented in Chapter 4, the transition from one type
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of flow to another is not retarded. With this method, we obtained an approximation to

the unfiltered solution by one filtering step. Using the differential filter (4.1.7), the error in

approximation is u − Dµu = O(µδ2). We studied a fully discrete algorithm for the model,

Crank-Nicolson in time and finite element in space. We have given a numerical analysis for

the scheme and included proofs of unconditional stability and solvability. We have also given

a convergence analysis which was also verified in our numerical computations.

Our analytical studies in Chapters 3 and 4 will be enhanced with more computational

experiments. The work plan incudes:

• adapt other methods for solving ill-posed problems to turbulence and obtain new, more

accurate turbulence models;

• optimize model parameters for special flows, such as boundary layers or homogeneous,

isotropic turbulence;

• more numerical experiments with the discrete and exact Tikhonov Deconvolution Oper-

ator;

• extension of the theory in Chapter 2 to other filters;

• using the Accelerated van Cittert deconvolution operator, I would like to connect the work

studying (2.0.3) as a continuum model with computational experiments by a numerical

analysis of discretization of (2.0.3).
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