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Wan-chen Lo, M.S. 
 

University of Pittsburgh, 2008 
 

ABSTRACT 

Study of multiple drug usage is common in chemotherapy.  Many research studies examine the 

effect multiple usage of these anticancer drugs.   The study of these drugs together could help 

clarify the biological effects of agents that affect microtubules.  This could guide future cancer 

treatment for patients especially these with breast cancer, an important public health issue.  The 

main purpose of this paper is to apply and compare methods for examining the combined 

effects of anticancer drugs.  We focus on Paclitaxel and Discodermolide.  While in the process of 

modeling the single drug effect, we noticed that these anticancer drugs may be unable to kill all 

the cells even at high concentration, or that, some subpopulation is far less sensitive:  there may 

be a mixed population of two types of cells with very different sensitivities.  According to this 

description, one population of cell is very sensitive to the drug and the other one is nearly 

resistant to the drug.  This model is difficult to fit.  One approach is to fit the low-concentration 

and high-concentration portion of the dose-response curve separately, and then combine them.  

We constructed a simple method to predict the combined drug effects while adjusting for the 

assumption of mixed cell populations.  We will summarize the commonly used methods for 

evaluating drug combination.  Two models are commonly used as reference models to test the 

drug additive effect, which are dose-additive models and effect-additive models.  For effect-

additive models, we focus on the “mutually exclusive” and “mutually non-exclusive” additive 

effect models, and another additive effect model based on a population log kill mixture model. 
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1.0 INTRODUCTION 

 

1.1 PURPOSE OF STUDY 

One possible cause for super-additivity could be heterogeneity in drug sensitivity.  We 

wish to develop a general statistical method to study for drug interaction while taking into 

account the factors of plateau of drugs or a mixed population of cells that other traditional 

methods may not consider.  

The cell heterogeneity assumption is that within each well of the experiment plate, there 

are four kinds of cell population.  These four populations include, the population of cells that 

are sensitive to both drug A and drug B, the population of cells that are ONLY sensitive to drug 

A or drug B; and the population of cells that is resistant to both drug A and drug B.  The 

proportions that are according to these four cell population are giving labels as PAB , PA , PB , RAB , 

respectively. 

One paper has recognized the importance of issue of cell heterogeneity when one wants 

to estimate the effect of chemotherapy on the tumor cell lines.[1] This heterogeneity may create 

a problem when fitting standard model to estimate the affected fraction.  The dose response 

curve may flatten or even reach a plateau at high dose.  However, we cannot be sure if this 
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plateau is  an experiment artifact or if there truly exists a plateau for drug effect.  The model we 

present here is based on the working assumption that a plateau truly exists.     

Some pairs of drugs may have already been discovered to have a super-additive effect 

when they are combined in chemotherapy. Paclitaxel and Discodermolide would be an example. 

[2] This paper will only focus on Discodermolide and Paclitaxel.  We performed analysis on the 

Paclitaxel and Discodermolide while adjusting for the mixed cell population assumption to 

verify if the apparent non-additivity still holds and construct a model for predicting the 

combined drug effect.   

To develop a simple way to fit this cell heterogeneity assumption, we use two 

approximations; one includes the wells treated with low concentrations; the other indicates the 

wells treated with high concentrations.  The first may reveal the parameters governing a more 

sensitive subpopulation.  The second may reveal parameters governing a less sensitive or even 

resistant subpopulation.   

To evaluate drug additivity, there are two different concepts of additive models; they 

are dose-additive and effect-additive models.  Dose-additivity is the usual benchmark agent if 

want to evaluate “synergism”, using the combination method.   We also examine on effect-

additive model, well-known examples are the mutually exclusive and mutually nonexclusive 

additive models.  By fitting Paclitaxel and Discodermolide with mutually exclusive and 

mutually nonexclusive models, we can check if our models would produce the same result as 

other papers have stated.  In the future, maybe the models we present here can be used to 

understand more about the mechanism of other microtubule perturbing agents, either known or 

unknown.  We will also base our mixed population assumption on effect-additive model.  
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The terminology used in discussion of combination of agents is still ambiguous. 

“Synergism”, “synergy”, and “super-additivity” are used exchangeably, but with multiple 

meanings.  Super-additivity sometimes is called synergism, which is when two drugs work 

together to create an effect that is “greater than expected” (dose super-additivity or effect super-

additivity).  The methodology of how to evaluate the drug effect when they work together is 

developing and there are competitive ways of doing this.  As statisticians, we can evaluate from 

the data if there is more than an additive effect relative for a particular additive model, but the 

data can only suggest, not prove, any mechanistic biological interaction between the drugs.  

Studying combinations of drugs could help to reduce the dose the patients need and possibly 

reduce the side effect of the drugs.  We will be using “dose” and “concentration” 

interchangeably in this paper. 
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2.0 RELEVANT LITERATURE 

 

2.1 THE DRUGS 

 

Anticancer drugs have several working mechanisms to stop the cancer growth.  One of 

the ways is to condense microtubules of cancer cells and stabilize them from deploymerization.  

Paclitaxel and Discodermolide are two examples that work to condense microtubules and 

interrupt the mutated cell from further splitting. [2][4] Paclitaxel is the generic name of Taxol.  

Taxol has been used in ovarian, breast, and non-small lung cancer.  Discodermolide was 

isolated from a marine sponge and reported to induce the assembly of micrutubles in vitro 

more rapidly than Taxol and cause mitotic arrest and microtubule bundling.[2] There are 

several papers that study the combined effect of Paclitaxel and Discodermolide.  Most studies 

use the median-effect method and combination index from Chou and Talalay [3] to determine if 

the agents work together would produce a super-additive effect.  However, they failed to take 

into account other statistical approaches, which to be discussed in the paper.     
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Figure 1 is the graph where you can see how cell division works and METAPHASE is 

the phase where these agents work. 

1

                                                           
1 https://eapbiofield.wikispaces.com/CHAPTER+12+THE+CELL+CYCLE+WH 

 

Figure 1 Cell Cycle 

A study was reported on the effect of three new agents, epothilones, eleutherobin, and 

discodermolide, that were identified, which have similar mechanism with Taxol. [2]   This paper 

was focusing to compare and contrast these new agents in Taxol - sensitive and –resistant cell 

lines. They used Taxol-sensitive cell lines to see if some of these agents can be used as 

substitute for Paclitaxel.  The researchers observed in Taxol- resistant cell line that “the presence 

of Taxol significantly amplified the cytotoxicity of discodermolide, and this phenomenon was 

not observed in combinations of Taxol with either the epothilones or eleutherobin.”  Thus, the 

paper suggested that Taxol and discodermolide may produce a super-additive effect in 

chemotherapy.  The researchers in this paper have considered the assumption of mixed cell 

populations, so they isolated the taxol-resistant cell line for Discodermolide to works on.  

Therefore, heterogeneity of cell population is an important when we wish to evaluate the 

combined drug effect.  
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Another research done at the University of California, Santa Barbara, and Albert 

Einstein College of Medicine, Brownx, New York, demonstrated that Paclitaxel and 

Discodermolide inhibited the growth of lung cancer cells by 41 percent when used together.[5]   

Discodermolide and Paclitaxel works alone only inhibited proliferation the cancer cell by 9.6 

and 16 percent, respectively.  They suggested that Paclitaxel and Discodermolide would 

synergistically block cell cycle progression.  It was known that Paclitaxel and Discodermolide 

have similar mechanism and they are competitive for the same binding site on microtubules, so 

it was surprising to see that these two agents would work together to create super-additive 

effect, quoted by the paper.  

One thing needs to be aware is these conclusion were based by using lung cancer cell 

lines, but the data we have here is using breast cancer cell lines. 

 

 

2.2 THE MODELS FOR SINGLE DRUG 

 

We will give a summary of the models that are used to evaluate the combined drug 

effect.  We start the summary from the single drug models.  We can combine then combined 

these single drug models to study the combined drug effect.  We will also introduce the mixed 

cell population assumption and present how to modify the model for this assumption. 

 

2.2.1 Median-effect model 

 

Median-effect model is derived from the mass-action law and describes the dose-effect 

relationship.    The median-effect equation is  
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𝑓𝑓𝑓𝑓
𝑓𝑓𝑓𝑓

= � 𝐷𝐷
𝐷𝐷𝐷𝐷  

�
𝑚𝑚

   (1) 

where fa is the fraction of the cells that is affected by drug, fu is the fraction of the cells that is 

unaffected, D is the dosage or the concentration of a drug, Dm  is the median-effect dose, and m 

is the slope of median-effect plot that signify the shape of dose-effect relationship, and m<1, =1, 

and >1 indicate flat sigmoidal, hyberbolic, and sigmoidal dose-effect curves.     Median-effect 

plot is an important step for plotting the combination index plot, because we can drive the 

value of m and Dm from this particular plot and plug these values into the equation of 

combination index. [3][6][7][8] 

The median effect equation can be transformed to  

    log10(fa
fu

) = mlog10(D) – mlog10(Dm )            (2)  

which follows the classic straight line equation y= m*x+ b,  where m is the slope of the median 

effect plot, and b is the y-intercept.    

 

2.2.2 Log(kill) model 

 

The log(kill) model assumes 

fu=10−kd                   (3)  

, where fu is the fraction of cell unaffected by the drug, d is the dose of the drug, and k is the 

killing rate of drug based on power of 10.  As the dose increases, the fraction of cells unaffected 

would decrease.  We name this equation as log(kill) model.   
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2.2.3 Heterogeneity model 

 

However, after some analysis, we discover that maybe there are just a mixed population 

of cancer cells one portion is very sensitive to drug and the other part is nearly resistant to the 

drug.  This is the concept we want to focus on in this paper. 

We suggest that heterogeneity of cells is an important concept to consider when we 

want to evaluate the drugs effect.  It needs to be aware that the cell population we label as 

resistant to the drug does not mean they are 100% resistant to the drugs, but they appears 

resistant to the dose range that we have.  Perhaps, ff the dose increases to infinitely large, all the 

cells can still be killed. 

We alter the log(kill) model to this assumption  

Z(dD )
avg .# of  control  cells

= (PS +  PD)θD(1)
dD +  (1 − ( PS + PD)) θD(2)

dD   

 = ψDθD(1)
dD + (1 − ψD)θD(2)

dD    (4)  

where  Z(dD) is the cell count corresponds to different dose of drug and D indicates which drug 

is used.  ψD  = PS + PD,  PS  is the population proportion of cells that are sensitive to both of drugs 

and PD is the population proportion of cells that are sensitive to only one of the drugs.  θD(1)
dD =

�e−KD 1�dD is the proportion of cells that are highly sensitive to the drug D even when the drug 

increase in small scale, and θD(2)
dD = (e−KD 2 )dD  represents the second portion of cells that react 

slowly to the drug, which is at end of high level of concentration. 
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2.3 THE MODELS FOR COMBINED DRUGS 

 

There are two primary classes of additive models used as references when evaluating 

the combined effects of drugs: dose additivity and effect additivity. 

 

2.3.1 Dose Additivity  

 

In a dose additive model, the two drugs act as if they are equivalent up to a dose 

conversion factor, or potency ratio, K. If K is equal to one, then two drugs are equally potent.  If 

K is not equal one, then one drug can be treated as a more concentrated or more diluted form of 

the other drug.  Then the combined effect is given by  

 

e(𝑑𝑑1,𝑑𝑑2) = 𝑒𝑒(𝑑𝑑1 +  𝑘𝑘𝑑𝑑2, 0) = 𝑒𝑒(0,𝑘𝑘−1𝑑𝑑1 + 𝑑𝑑2). (5) 

 

 In the dose additive model, the transformation of effect is not important.  However, 

thechoice of effect transformation is important for the error model.  It is assumed that the dose 

is untransformed.   

 

2.3.2 Combination Index (CI) Analysis  

 

 Combination index is frequently used to describe deviations from dose additivity 

between two drugs.  Combination-Index was developed in 1983 by Chou and Talalay for 

comparing data to a dose additive model assuming median effect single drug models.[3][6][7]  
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            CI = (𝐷𝐷)1
(𝐷𝐷𝑋𝑋 )1

+ (𝐷𝐷)2
(𝐷𝐷𝑋𝑋 )2

 = (𝐷𝐷)1

(𝐷𝐷𝑚𝑚 )1�
𝑓𝑓𝑓𝑓

1−𝑓𝑓𝑓𝑓 �
1
𝑚𝑚1

+  (𝐷𝐷)2

(𝐷𝐷𝑚𝑚 )2�
𝑓𝑓𝑓𝑓

1−𝑓𝑓𝑓𝑓 �
1
𝑚𝑚2

  (6)  

 

where (D)1 and (D)2 indicates the dosage of drug 1 and drug 2 respectively.  (𝐷𝐷𝑋𝑋)1 and (𝐷𝐷𝑋𝑋)2 is 

the dose of drug 1 or drug 2 that inhibit x% of cell growth.  fa  is the fraction of cell that is killed 

by the drugs.  F1
−1 �fa

fu
� = (DX)1  and F2

−1 �fa
fu
� = (DX)2 , where F1  and F2  are dose response 

curves.  Dm is the dose that is required to reach the median effect and can be calculated from 

the median-effect equation (2) as 

   

                Dm = 10−
b
m   (7)  

           

where m is the slope of the median effect plot, and b is the intercept (constant term). 

CI <1, =1, and >1 are sometimes interpreted as synergism, additivity, and antagonism, 

respectively.   [3][6][7][8]  Chou and Talalay combines the single drug median-effect model 

estimation for F1 and F2 with Equation (6).[3][6][7][8] 

In order to plot the CI, we can to first fit the median-effect models for each drug to 

estimate Dm and m value for each drug.  Next, plug these values into the CI equation (6), to get 

the CI value for different dose combinations. 

Equation (6) is not limited to use the median effect dose to find the CI value.  The CI can 

be interpreted as follows.   

According to the dose-additivity model, we can construct parallel lines for different 

values of effects, fa .  Suppose x% effect can be reached for drug 1 and drug 2 alone, with (𝐷𝐷𝑋𝑋)1   

and (𝐷𝐷𝑋𝑋)2  .  However, x% is reached with d1 and d2, that is the point CI(d1, d2) in Figure 2., 
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instead of our expected doses, and assume we know the potency, k, between drug 1 and drug 2.  

Use d1, d2 , and k, we can reconstruct the dose-effect line that d1 and d2  should have 

corresponded to, for example y%, which should parallel to the dose-effect line of x%.  We can 

then calculate the single drug doses that are expected to reach y%.  For example, (𝑑𝑑𝑦𝑦)1 = d2*k + 

d1.   If we divided (𝑑𝑑𝑦𝑦)1by (𝐷𝐷𝑋𝑋)1, this will reproduce the equation (6) and this will be the CI 

value.   

 

                 CI = (𝑑𝑑𝑦𝑦 )1

(𝐷𝐷𝑋𝑋 )1 
= (𝑑𝑑𝑦𝑦 )2

(𝐷𝐷𝑋𝑋 )2 
  (8) 

If lines are parallel.  

It is important to know that to be able to interpret the CI value this way is valid when 

m1, m2 in Equation (6) are equal. Different values of m change the sigmoid shape of the median 

effect line and the isoboles will not be parallel with each other.  If the isoboles are not parallel 

with each other, Equation (8) is no longer true. 

 

Figure 2 Isobole 
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2.3.3 Effect additivity   

 

In an effect-additive model, given the effect of each drug, when the two drugs are 

combined, the predicted effect is the sum of two single drugs’ effects relative to the chosen sacle.   

 

f(e(𝑑𝑑1,𝑑𝑑2)) = 𝑓𝑓(𝑒𝑒(𝑑𝑑1, 0)) + 𝑓𝑓(𝑒𝑒(0,𝑑𝑑2))  (9) 

 

where e is the effect of the drug measured as the fraction of cells killed. 

Transformation of effect is crucial because whether effect-additivity holds depends on 

the scale on which the effect is measured.   

If there is an effect greater than the expected, then there exists a super-additivity effect.   

 

             f(e(𝑑𝑑1,𝑑𝑑2)) > 𝑓𝑓(𝑒𝑒(𝑑𝑑1, 0)) + 𝑓𝑓(𝑒𝑒(0,𝑑𝑑2)).                                                          (10) 

 

2.3.4 Effect-additivity: mutually exclusive 

 

 In statistical definition, “mutually exclusive events are two or more events for which the 

occurrence of one event precludes the occurrence of the others” [9].  In equation form it will 

simply be e=e1+e2, no interaction term involves.  In pharmacology, mutually exclusive drugs 

are two drugs that have the same or similar modes of action. [2]   Since two drugs have the 

same mechanism and they are competitive with each other for the same working site, two drugs 

cannot work simultaneously on the same working site.  Due to the law of mass action, this takes 

an altered form.   
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The effect-additive equation for the mutually exclusive model is  

                𝑒𝑒
1−𝑒𝑒

= � 𝑒𝑒1
1−𝑒𝑒1

�+  � 𝑒𝑒2
1−𝑒𝑒2

�  (11) 

where e= effect of the drugs.  𝑒𝑒1, 𝑒𝑒2 are effect for drug 1 and drug 2 alone.  This equation is 

equivalent to Equation (9) with transformation f(e)=  𝑒𝑒
1−𝑒𝑒

 . 

Research has shown that Discodermolide is competitive with Paclitaxel for microtubule 

binding and Discodermolide has higher affinity, so Discodermolide and Paliclitaxel might fit a 

mutually exclusive model. [4][5] 

 

2.3.5 Effect-additivity: mutually nonexclusive 

 

Alternatively, mutually non-exclusive drugs mean two drugs are non-competitive.  For 

the mutually nonexclusive model 

                �1 − 𝑒𝑒
1−𝑒𝑒

� = �1 − 𝑒𝑒1
1−𝑒𝑒1

� ∗  �1 − 𝑒𝑒2
1−𝑒𝑒2

�  (12) 

Subtracted one from the left side and the most right side and multiple by -1.  Then 

                  𝑒𝑒
1−𝑒𝑒

=  𝑒𝑒1
1−𝑒𝑒1

+ 𝑒𝑒2
1−𝑒𝑒2

− � 𝑒𝑒1
1−𝑒𝑒1

� ∗ � 𝑒𝑒2
1−𝑒𝑒2

� (13) 

where e is the effect. 

and this equation is equivalent to Equation (9) with different transformation, which is 

f(e)=log(1 − 𝑒𝑒
1−𝑒𝑒

). 
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From the view point of a mutually exclusive model, this looks as though there is an 

interaction term, which is the product of the previous two terms, times -1, suggesting inhibition.  

This shows how crucial the choice of effect scale is.  

This concept is similar, but not identical to statistical independence of two events.  

If the two events, “cell survives drug 1” and “cell survives drug 2”, are independent 

P(a cell would survive if under treatment with drug 1 AND drug 2) 

=P(a cell would survive under drug 1 only)*P(a cell would survive under drug 2 only). 

The model can be written as 

 

f(e12) = f(e1) + f(e2), where f(ed)= log(1 – e) (14) 

 

where d=1 or 2, indicates which drug is used. 

 

2.3.6 Effect-additivity: Heterogeneity of cell population  

 

The models that we have discussed so far require that for as the dose goes to infinite 

large, the cell count approaches zero.  The data seems to contract this behavior.  This leads us to 

the assumption of mixed cell populations. 

Even within the same cell lines, the cells treated are not likely to be homogeneous with 

respect to cytotoxicity.  There may be some portion of the cell populations that each drug is 

unable to kill. However, it does not mean this proportion of cell populations cannot be killed 

because other kinds of drugs may have the ability to kill this portion of cell population due to 

different biological components or functions.  The fraction of cells that is sensitive to drug D but 

not to the other drug is the probability of cell population that is only sensitive to this drug, so it 
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is called PD  = P (sensitive to drug D), where D indicates drug A or drug B.  Furthermore, the 

probability of a cell belonging to the cell population sensitive to both drugs A and B would be 

PAB  = P (sensitive to both drug A and B).  Vice versa, a cell population that is resistant to both 

drugs would be labeled as RAB  = P(resistant to both drug A and B).  

Table 1. Heterogeneity of cell population 

P(Sensitive to A, Sensitive to B) 
= 𝑷𝑷𝑺𝑺 

P(Sensitive to A, Resistant to B) 
= 𝑷𝑷𝑨𝑨 

P(sensitive to A)  
= 𝚿𝚿𝑨𝑨= 𝐏𝐏𝐒𝐒 + 𝐏𝐏𝐁𝐁 

P(Resistant to A, Sensitive to B) 
= 𝑷𝑷𝑩𝑩 

P(Resistant to A, Resistant to B)  
=𝑹𝑹𝐴𝐴𝐴𝐴  

P(Resistant to A) 

P(Sensitive to B)= 𝚿𝚿𝑩𝑩=𝐏𝐏𝐒𝐒 +  𝐏𝐏𝐁𝐁 P(Resistant to B) =100% 
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3.0 METHODOLOGY 

 

 

The experiment was performed in purpose to test the additive effect within the anti-

cancer agents.  There are four different anti-cancer agents that were being tested in this data; 

they are Vincristine(Vinc), , Disorazole C1(Diso) , Paclitaxel, and Discodermolide(Disco).   We 

want to confirm the existing proven case of super-additve effect between Discodermolide and 

Paclitaxel.  

 

 

3.1 DATA COLLECTION 

 

The data is from Dr. Vogt, who is the associate director of Fiske Drug Discovery 

Laboratory of University of Pittsburgh Drug Discovery Institute.  The experiments initially were 

performed for wishing to evaluate the effect between Disorazole C1, the novel anticancer agent, 

with other anticancer agents, such as Taxel and Vincristine here. 

The experiments were performed as follow: 

1. On Day 0, plate 1,000 MDA-MB-231 breast cancer cells in plates and separate them into 

control (non-treated) and case (treated) cells.  There are 24 columns and 16 rows, which 
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adds up to 384 wells, in each plate.  Among these 384 wells, there are 96 combinations of 

different drugs or at different concentration and each combination or concentration has 

four replications.  Also, there are four columns of controls in each plate.   

2. Stain the nuclei within cells with fluorescent DNA-binding dye, Hoechst 33342.   

3. Treat cells with compounds in 10 two-fold serial dilutions starting at highest 

concentration.  

4.  Incubate cells for 72 hours at 37C, 5% CO2. 

5. On Day 4, enumerate the cell number and determine cell density, which is cells per 

image field, by automated image acquisition and batch image analysis on the ArrayScan 

II.   

6. Calculate growth inhibitory activity as percent cell survival compared to control based 

on cell expansion over the duration of the study.   

The ratio between two drugs is being kept constant by automated a serial dilution.  

The measurement of drug effect, which is cells affected fraction in this data, is within the range 

of 0 to 1.   

Fraction = 1 – Treated  Cells
Controls  (Untreated  Cells )

 (15) 
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Figure 3 Different experiments have different combinations of drugs.  We will only focus on analyzing Paclitaxel and 

Discodermolide. 

The pair we focus on is Discodermolide versus Paclitaxel from RPS-118.  The concentrations 

were as follows  

Table 2. RPS-118 Discodermolide vs. Paclitaxel 

 Paclitaxel (µM) Discodermolide(µM) at 
1:5  

Discodermolide(µM) at 
1:2 

1 50 250 100 
2 25 125 50 
3 12.5 62.5 25 
4 6.25 31.25 12.5 
5 3.125 15.625 6.25 
6 1.5625 7.8125 3.125 
7 0.78125 3.90625 1.5625 
8 0.390625 1.953125 0.78125 
9 0.195313 0.976563 0.390625 
10 0.097656 0.488281 0.195313 
 

In RPS-118, the drug combinations are Disorazole C1 versus Paclitaxel at 2:1, Disorazole 

C1 versus Vincristine at 1:1, and Discodermolide versus Paclitaxel at 2:1 and 5:1.  There is a 

plate 

First, the data is reorganized in Excel to be suitable for SAS to read and use.  The data 

used here is the cell survival count per field in the wells. There are 384 wells within each 

experiment plates.  Among these 384 wells, 64 of them are control wells and the rest 320 wells 

Discodermolide

(Stabilizer)

Paclitaxel
(Stabilizer)

RPS-109

RPS-118
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are treated with different concentrations of drugs.  There are 10 concentrations of each drug 

alone and 10 concentration combinations of each drug pair.  There are four replications for each 

concentration combinations and we treat each replication as an independent experiment output.  

We choose to exam our methods on RPS-118 because the controls in RPS-118 do not have any 

particular systematic error and it is easier for us to explain the outcome bases on such controls.  

APPENDIX Table 1A is the plate layout. 

 

3.2 DATA QUALITY ISSUES 

 

 

One thing to be kept in mind is that we are not sure all these survival cell counts 

scanned by the machine truly count only living cells.  We know the nuclei of cell are stained 

with fluorescence, but we are not sure if the scanner would definitely only pick up the viable 

cells.  Or it could be that a plate was not clean enough, so there was some unknown chemical 

left on the plate.  Therefore, what we present here is based on the assumption that these cell 

counts truly count only living cells. 

 

3.2.1 Data Recording 

 

The data we used here must be handling with care because the experiments had several 

problems which appeared when we examined the data.  The data we initially received was in 

terms of a calculated unaffected fraction ( fu ) , rather than the original count data.  The 

unaffected fraction that is above one had been deleted from the data, because affected fraction 
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(fa) = 1 - fu  will become negative, and calculating CI value cannot include such data.    This 

could cause systematic error in model estimated.  Thus, we requested the raw data, the cell 

counts that were recorded for each well, including controls, 394 wells for each experiment plate. 

 

3.2.2 Outliers 

 

Over-dispersion and outliers are two issues to consider when we want to fit the model 

appropriately.  For the Poisson distribution, the mean is equal to the variance.  Outliers could 

influence the model fit if the variance greatly exceeds the mean.  Outliers can be easily detected 

when we draw the residual plot.  When there are outliers, we should be aware that our model 

fits may be influenced by these outliers and we should be really careful on making conclusion 

based on such model.  One thing we could do is to delete the outliers and fit the model again, 

this way the model would be less biased.  However, deleting outliers is not always the best as 

this may create other bias problem. 

3.2.3 Systematic Errors 

 

We wish to consider other factors that may influence the cell count besides the drugs.  

We will examine the systematic errors only on the control wells because we can rule out the 

effect of drugs and it will be easier to detect if there are other factors that would influence the 

cell counts.  The concentrations were not randomly placed on the plate, so row and column may 

be two factors needed to be considered besides any biological effect of the drugs.  We fitted only 

the counts from control wells with only row and column number and treated row and column 

number as numeric parameters, not as categorical parameters.  Cell counts can be assumed 
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initially to have the Poisson distribution.  The results from SAS show linear row effect is highly 

statistical significant and they should be considered when we want to fit the model.  We can see 

from Figure 4 and Figure 5 that there is an increasing row effect, but there is no particular trend 

that suggests column effect. Ideally we should control for the row effect in each model.  This has 

not yet been done. 

 

 

Figure 4. Control wells show increasing row effect 

 

 

 

Figure 5.  Control wells do not show column effect 

 

 

3.2.4 Baseline Effect 

 

We do not know how many cells are in each well before we apply our treatments.  It 

would be difficult to keep the number of cells fixed in each well.  The survival cell counts in 

control wells were expected to be random, and drawn from the same distribution as the 

unknown initial counts in the treated wells.   Therefore, this should be added to the model as a 
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random variable when we estimate the model.  To simplify the model fitting process, we fixed 

the baseline control value by calculating the average of all control wells.  

  

                                                             3.3 Fitting Single Drug Effect  

 

Interaction can be defined in several ways when it comes to drugs.  By Chou and Talalay, 

when one drug interferes with another drug’s working pathway, it is sometimes called an 

interaction.  Also, when one drug can improve another drug’ working pathway, it is sometimes 

called a synergism effect.  We will focus on the drug pair of Paclitaxel and Discodermolide to 

illustrate our method. 

When one wants to evaluate if the model is a good fit to the data, people usually would 

plot the residual plot of the model to check model fit and see if any outlier exists.  If the residual 

plot has any particular pattern or trend, the model may not be a good fit for the data.    If the 

points are scattered around randomly around 0, the model may be acceptable.  If there is point 

that has a large residual and locates far away from most of other points, then this point could 

possibly be an outlier.  We will plot the residual plots to help us determine if the model is a 

good fit. 

 

3.3.1  Median-Effect Model 

 

One of the important features of median-effect plot is to flatten the sigmoidal curve in 

the dose-effect plot by taking log of both side of the median-effect Equation (1).  Then we 
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compare the median-effect model to the data by taking logarithm of concentration and  fa
fu

.  The 

plot would have y-axis as logit (fa) and x-axis as log(dose). 

The median effect model is fitted by PROC REG for least squares on the logit scale of fa .  

The linear regression fitted will be in the form of equation (2). 

 

3.3.2 Log(kill) Model  

 

The log(kill) model can be plot with log (based 10) for fraction unaffected on the y-axis 

and the dose of drug but (not logged) on x-axis.  The model is fitted by least square on the scale 

of log( based 10) for fraction unaffected by using PROC REG. 

 

3.3.3 Log(kill) Mixture Model 

 

We plot the effect, the cell count divided the average of control wells, of each drug 

against the dose.  This heterogeneity assumption will lead to different effect-additive model 

because the proportion populations are varied to each drug. 

This outcome is a fraction, the cell count of the treated well divided by the average of 

four control columns.  Then to separate equation (4) into two portions that one corresponds to 

low concentration of drug and the other portion corresponds to high concentration of drug. 

According to our mixed population assumption, the sensitive and resistant cells should 

have different survival rate.  Therefore, we should assign the appropriate survival rate for these 

two populations instead of fitting all together with only one survival rate, K.  We separated 

Equation (4) into two parts with two set of concentration ranges. 
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First, let the concentration of drug approach zero and use the fact that e−α ≈ 1 − α , so 

Equation (4) will transform to  

             Z(dD )
avg .# of  control  wells

≈ ψD  (1− K1dD) + (1 −  ψD)(1 − K2dD)    

                                               = 1 −  dD(ψDK1 +  (1 − ψD)K2)                             low concentration (16) 

As for the high concentration of drug, let the concentration of drug be very large; Equation (4) 

transform to 

                Z(dD )
avg .# of  control  wells

≈ (1 −  ψD)θD(2)
dD                high concentration (17) 

After derive the equations for high and low dose, we now would need to determine the 

range of dose for each equation of each drug, which are Paclitaxel and Discodermolide.   We fit 

two analysis models to Equation (16) and Equation (17) with PROC GENMOD, but with 

different details.  For equation (16), the model is assumed to be Poisson distribution with 

identity link function and intercept sets to be 1.  From this analysis, the parameter estimate of 

slope would be (ψDK1 +  (1 − ψD)K2).  As for equation (17), the error model is still assumed to 

be Poisson distribution, but instead of identity link function, log link function is used here.  So 

equation (17) will be  

                log � Z(dD )
avg .# of  control  wells

� ≈ log(1 −𝜓𝜓𝐷𝐷) −  K2dD    (18) 

The parameter estimated fit by equation (18) will be K2 and the intercept will estimate 

log(1 − 𝜓𝜓𝐷𝐷) , from which we can derive 𝜓𝜓𝐷𝐷.  Then we can plug K2 and 𝜓𝜓𝐷𝐷 into the slope we 

derived from equation (16) to estimate K1.   
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3.4 FITTING COMBINATION EFFECT 

 

 

3.4.1 Combination Index Model 

 

We mentioned earlier in the paper that m1, m2 in Equation (6) needs to be the same in 

order for the CI to be clearly interpreted.  Therefore, we fit the both single-drug dose responses 

at the same time with an altered form of Equation (2) and we can force the m to be the same for 

both drugs. 

               log10(fa
fu

) = mlog10(D) – mlog10(Dm )A + k ∗ 𝑍𝑍 = b + mlog10(D) + k ∗ 𝑍𝑍 (19) 

 

where b= −mlog10(Dm )A , and if it is drug A, Z=0, if it is drug B, Z=1, and k is the coefficient 

parameter for the indicator I. 

The equation for calculating median dose for drug A, (Dm )A , would be the same as Equation (7).  

(Dm )A = 10−
b
m .   However, the equation for drug B would be somewhat different than Equation 

(7), (Dm )B = 10−
(b +k)

m .  We would fit Equation (19) with least square on the logit scale of fa and 

the estimate slope would be m.  We can use (Dm )A  and (Dm )B  to fit Equation (6) and calculate 

the combination index values, and we can also plot the isobole similar to Figure 2.  Once we 

have estimated (Dm )A  and (Dm )B , we can also calculate the potency between drug A and drug B, 

which would be (Dm )A  
(Dm )B

=  10
k
m   
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3.4.2 Mutually Exclusive Model 

 

The other purpose of this paper is to fit the data with our models and to hope we can 

gain a little information about the drugs’ working mechanism.  We know Paclitaxel and 

Discodermolide is a mutually exclusive drug pair.[5]  We fit the data with Equation (11) and 

check if the model fits the data. 

In RPS-118, the combined effect is measured at a 2:1 ratio of concentration of 

Discodermolide to Paclitaxel.  Since the data we have are counts, we divided all the cell counts 

by average number of all 64 control wells, which will be fu.  To calculate fa, fa=1-fu.  In 

Equation (11), we need the ratio, fa
fu

.  We estimated combined drug ratio and single drug ratios 

for both drugs.  To check if the model fits the data well, we plotted the observed ratio against 

the predicted ratios. 

  

3.4.3 Mutually Nonexclusive Model 

 

In addition to the mutually exclusive model, we proceeded to fit the mutually 

nonexclusive model, Equation (12) and Equation (13).  We were interested to see if one of the 

two models, mutually exclusive model or mutually nonexclusive model, would fit much better 

than the other. 

  

3.4.4  Heterogeneity 

 

Previously in the paper, we presented Equation (4), which is for a single drug.  In 

Equation (4), we have three unknown parameters, K1, K2, and ψ .  By fitting low and high 
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equation (16) and (18), we estimated K1, K2, and ψ.  Now, we combined Equation (4) for each 

drug and used the estimates.   

To construct the combined effect model. 

            Z(d1,d2)
Avg .# of  control  cells

=   

                    PSθA(1)θB(1) + PAθA(1)θB(2) + PBθA(2)θB(1) + (1 − PA − PB − Ps)θA(2)θA(2)  (20) 

where PS  is the population proportion of cells that are sensitive to both of drugs, and PA and PB  

are the population proportion of cells that are sensitive to either drug A or drug B, respectively. 

θA(1)θB(1) = (e−KA 1KB 1 )dA dB  is the proportion of cells that are sensitive to both drugs. θA(1)θB(2) =

(e−KA 1KB 2 )dA dB  is the proportion of cells that are sensitive to drug A but not drug B. θA(2)θB(1) =

(e−KA 2KB 1 )dA dB  is the proportion of cells that are sensitive to drug B but not drug A. And 

θA(2)θA(2) = (e−KA 2KB 2 )dA dB is the proportion of cells that are resistant to both drug A and drug B. 

In Equation (20), we have three unknown parameters, PA , PB , and PS .  However, once we 

find the value for PS , we can easily find the values for PA , PBby Table 1. 
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4.0 RESULTS/ FINDINGS 

 

 

4.1 SINGLE DRUGS 

 

 

4.1.1 Median-effect model 

The red line is the cell counts and the blue line is the fitted value for median effect model. 

The y-axis is the logit scale of fa . The median-effect axis is 0 which represents that fa
fu

 = 1 and fa+ 

 fu  need to be equal to 1. [6][7]     

 

Figure 6 Median effect for Paclitaxel 

 

Figure 7 Median effect for Discodermolide 
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The median effect plot of Paclitaxel  is roughly a good fit; however, if we look closely, 

the cell counts line could be separated into two parts, the first part from -1 to 0.5 log10(dose)is 

more steep and the second of 0.5 to about 1.8 is more flat.  This seems to correspond to our 

assumption of two kinds of cell populations.    

For Discodermolide, there is a dramatic drop around 0.2 log10(dose) level, which could 

possibly suggest a sensitive cell population exist within and correspond to our assumption of 

heterogeneity cell population.  

We also plotted the residual plot to see if the median-effect model fits the data well 

enough.  In Figure 6 there is an obvious curvature, which indicates the median-effect model is 

not a good fit for Paclitaxel.  As for Discodermolide, the residual points seem to decrease slowly 

for these that is close to 0 residual and there are possible outliers exist at the bottom of the graph.  

Therefore, the median effect model is not a good fit for this data either. 

 

 

Figure 8 Residuals for Paclitaxel Median Effect Model  

 

Figure 9 Residuals for Discodermolide Median Effect 
Model 
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4.1.2 Log(kill) Model 

 

We plotted the log10 ( fu )  on the y-axis and the concentrations of Paclitaxel or 

Discodermolide on the x-axis.  The model we fitted is shown in red, and the cell counts are 

shown in blue.  

 

Figure 10 Log(kill) model for Paclitaxel 

 

Figure 11 Log(kill) model for Discodermolide 

Both log(kill) models suggest that there is a plateau effect of affected effect exist because 

the lines would approaches nonzero high-dose asymptote, which could be the largest effect the 

drug alone can achieve.  However, it may also represent that the dosage we used weren’t large 

enough to kill all the cancer cells.   If somewhat we continuously increase the dosage, we may 

be able to kill all the cancer cells.  The log kill model is very poor fitted, and this could suggest 

heterogeneity. 

 

4.1.3  log(kill) mixture model 

From the single drug graphs, we can see that cell survival decrease dramatically at low 

concentration, but when the concentration increases in large scale the killing rate would slow 
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down and appear to reach a plateau effect.  One question emerges from the single drug graph is 

why the cell would respond dramatically to low concentration drug instead of high 

concentration.  We then propose an assumption that instead of one population of cell which has 

plateau effect, there is a mixed population of two kind of cell that one reacts fast to the drug, 

which would correspond to the portion of drug that is killed by low concentration, and the 

other one is insensitive to the drug, which is the portion of high concentration. 

Figure 12 is the actual drug effect plot against the dose of Paclitaxel, and using this 

graph, we can try to determine the dose ranges for fitting Equation (16) and Equation (18). 

Table 3 and 4 shows how the dose ranges for the low-dose and high-dose 

approximations have selected.  The total number of points included equals the number of doses 

times four replications.  The estimates of slope change every time we re-fit the models with 

more points included.  The standard error of the slope, and the scale parameter indicate 

goodness of fit.  We can use the scale parameter to determine if the model fits the data well 

enough.  If the scale parameter increases, this suggests that adding the data for this extra 

 

Figure 12 Actual drug effect vs. Paclitaxel dose  
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concentration would increase the deviation between predicted values and the actual cell counts 

too much.  

Table 3  Low dose approximation for Paclitaxel 

Highest dose 
included  

# of points 
included  

Estimate of 
Slope 

S.E of slope Scale Parameter  

0.1953 8 1.1249 0.1332 0.0652 
0.3906 12 1.2155 0.0925 0.1093 
0.7813 16 0.9450 0.0386 0.1297 
1.5625 20 0.5458 0.0286 0.2749 
3.125 24 0.3299 Can’t fit Can’t fit 
 

Table 4  High dose approximation for Paclitaxel 

Lowest 
dose 
included 

# of Points 
included 

Estimate of 
Slope 

S.E of 
slope 

Estimate of 
Intercept 

S.E of 
intercept 

Scale 
Parameter 

25  8 0.0124 0.0052 -2.3780 0.1974 0.0445 
12.5 12 0.0140 0.0031 -2.3074 0.0932 0.0414 
6.25 16 0.0150 0.0025 -2.2728 0.0630 0.0420 
3.125 20 0.0169 0.0025 -2.2083 0.0532 0.0475 
1.5625 24 0.0260 0.0052 -1.9406 0.0859 0.1026 
 

We conclude from these two tables, the range of low dose for Equation (16) is from 

0.0977µM to 0.7813µM. Adding 1.5625µM, the scale parameter increases more than doubles, 

which means this point should not be added to the model.  When tried to include 3.125 µM, the 

model cannot even fit this value.  As for Equation (18), the range of dose should include from 

1.5625µM to 50 µM.  Fitting Equation (18), we would get the estimate of K2 from estimate of 

slope, and 𝜓𝜓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  from estimate of intercept.  K1 , K2 , and ψpacltaxel , and we got 

ψpacltaxel =0.89011, K1 =  1.05958and K2 =0.016895, which seems to fit the plot because it is 

around 0.1 of cells are hard to kill and K1 is supposed to be very large compare to K2 because K1 

corresponds to the proportion of drugs that is very sensitive to the drug and decay very fast. 
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Figure 13 and Figure 14 are predicted effect against actual effect plots for low dose equation (16) 

and high dose equation (18).  The red line is predicted effect and the blue line is the actual effect.  

 

Figure 13 Low dose approximations for Paclitaxel 

 

Figure 14 High dose approximations for Paclitaxel 

 

Figure 15  Predicted effect vs. actual effect for Paclitaxel alone 
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 DISCODERMOLIDE: 

 

Figure 16  Actual drug effect vs. Discodermolide dose 

Applying the same procedures with Discodermolide, first we look at the graph and see 

which dose point may be the boundary point for Equation (16) and Equation (18).  Table 5 is a 

summary table of fitting Equation (16) and from Table 5, we can roughly decide the range of 

low dose equation should be from 0.195 µM to 3.125 µM because after 3.125 µM, the scale 

parameter start to increase.   Table 6 is derived from fitting Equation (18), and we can see the 

dramatic difference in scale parameter when the dose decreases from 25 to 12.5.  Therefore, the 

range of dose to be used in Equation (18) should be from 25 µM to 100 µM.  Figure 22 shows the 

fitted model seems to fit better than before because the predicted effects are close to the 

observed effects. By fitting Equation (16) and (18), we estimate K1, K2, and ψdisco  to be 

0.12342, 0.0138 and 0.74436, respectively. 
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Table 5.  Low dose approximation for Discodermoolide  

Highest Dose 
included 

# of points 
included 

Estimate of 
Slope 

S.E of slope Scale Parameter  

0.3906  8 -0.1074 0.0489 0.0419 
0.7813 12 -0.0645 0.0258 0.0451 
1.5625 16 0.0457 0.0276 0.1011 
3.125 20 0.0963 0.0127 0.1047 
 6.25 24 0.0856 0.0049 0.0996 
12.5 28 0.0547 0.0030 0.1543 
25 32 0.0341 0.0014 0.2167 
50 36 Cannot fit Cannot fit  
 

Table 6.  High dose approximation for Discodermolide  

Lowest 
dose 
included 

# of Points 
included 

Estimate of 
Slope 

S.E of 
slope 

Estimate of 
Intercept 

S.E of 
intercept 

Scale 
Parameter 

50 8 0.0086 0.0014 -1.7844 0.1036 0.0291 
25  12 0.0138 0.0020 -1.3640 0.1084 0.0664 
12.5 16 0.0211 0.0032 -0.8909 0.1203 0.1288 
6.25 20 0.0245 0.0029 -0.7178 0.0842 0.1314 
3.125 24 0.0288 0.0032 -0.5378 0.0724 0.1520 
1.5625 28 0.0338 0.0041 -0.3614 0.0724 0.1942 
0.7813 32 0.0384 0.0047 -0.2244 0.0672 0.2201 
 

 

 

Figure 17 Low dose approximations for Discodermolide 

 

Figure 18 High dose approximations for Discodermolide 
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Figure 19 Predicted effect vs. actual effect for Discodermolide alone 

After several trying to fit the model, finally the model for Paclitaxel seems to work fine 

now.  However, there is still room for the fit for Discodermolide to improve.  Looking at the 

actual effect graph of Discodermolide again, the residuals do not add to zero, suggesting that 

the informal fitting approach taken here should be replaced by a true maximum likelihood 

approach.   

 

4.2 COMBINATION OF DRUGS 

 

4.2.1 Combination Index model 

 We fitted Equation (19), and the estimated m is 0.92156.  The median doses we 

calculated for Paclitaxel and Discodermolide is 0.65811 and 8.28330, respectively.  Using these 

two median doses, we plotted the isobole which has the slope 10−
k
m = 10−

−1.01363
0.92156 = 12.5865.  We 

also plotted the residual plot of fitting Equation (19).  The curvature in residual plot suggests 

possible quadratic function.  We used these median effect doses to calculate combination index.  
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However, our calculated combination index values mostly are greater than 1, which is not what 

we expect for Paclitaxel and Discodermolide.  This may suggest that our model here is not an 

appropriate one to interpret this data, and this may relate to the quadratic function suggests by 

the residual plot.

 

Figure 20. 𝐈𝐈𝐈𝐈𝟓𝟓𝟓𝟓 Isobole. 

 

Figure 21. Residual plot of Equation (19) 

 

4.2.2 Mutually Exclusive Model 

 

Figure 22.  Mutually Exclusive model of  𝐟𝐟𝐚𝐚
𝐟𝐟𝐮𝐮

We plotted the observed ratios, fa
fu

, against the predicted ratios we calculated by using 

Equation (11).  We can see that the predicted values are really close to the observed one because 
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the slope between observed points and predicted points are close to 1.  Therefore, we can 

conclude that our mutually exclusive model can fit the data well here, which can suggest the 

relation between Paclitaxel and Discodermolide might be mutually exclusive. 

 

 

4.2.3 Mutually Nonexclusive Model

 

Figure 23 Mutually nonexclusive model of  𝐟𝐟𝐚𝐚

We fitted the model by using Equation (13).  We plotted the observed affected fraction, fa , 

against predicted effect.  We can see in Figure 23 that the predicted effects are not close to 

observed effects, the predicted values are lower than observed effect.  Therefore, the mutually 

nonexclusive model is not a good fit for our data, and this could suggest that Paclitaxel and 

Discodermolide is not a mutually nonexclusive drug pair. 
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4.3 MIXED POPULATION OF CANCER CELLS 

 

4.3.1 Heterogeneity 

After fitting low and high dose Equations (16) and (18) for each drugs, we estimated the 

K1, K2, and ψ for each drugs.  Table 7 organized the values. 

 

Table 7.  Table of 𝑲𝑲𝟏𝟏,𝑲𝑲𝟐𝟐,𝜳𝜳𝑫𝑫 

 𝐾𝐾1 𝐾𝐾2 𝛹𝛹𝐷𝐷=𝑃𝑃𝑆𝑆 + 𝑃𝑃𝐷𝐷 
Paclitaxel  1.05958 0.016895 0.89011 
Discodermolide  0.12342 0.0138 0.74436 
 

At this point, we can get a valid range of 𝑃𝑃𝑆𝑆 by using Table 7. From the column of 𝛹𝛹𝐷𝐷, 

we can see that the largest possible value for 𝑃𝑃𝑆𝑆 is 0.74436.  We know all the proportions, 

𝑃𝑃𝑆𝑆 + 𝑃𝑃𝐴𝐴 + 𝑃𝑃𝐵𝐵+𝑅𝑅𝐴𝐴𝐴𝐴, need to add up to 1, and 𝑃𝑃𝑆𝑆 + 𝑃𝑃𝐴𝐴 + 𝑃𝑃𝐵𝐵 < 1.  We can use this inequality 

and derive the lowest possible value for 𝑃𝑃𝑆𝑆.   

𝑃𝑃𝑆𝑆 + 𝑃𝑃𝐴𝐴 + 𝑃𝑃𝐵𝐵 = (𝑃𝑃𝑆𝑆 + 𝑃𝑃𝐴𝐴) + (𝑃𝑃𝑆𝑆 + 𝑃𝑃𝐵𝐵) − 𝑃𝑃𝑆𝑆 = 𝛹𝛹𝐴𝐴 + 𝛹𝛹𝐵𝐵 − 𝑃𝑃𝑆𝑆 = 0.89011 + 0.74436 − 𝑃𝑃𝑆𝑆 < 1 , 

and 𝑃𝑃𝑆𝑆 ≥ 0.63.  We got a range for 𝑃𝑃𝑆𝑆, 0.63 ≤ 𝑃𝑃𝑆𝑆 ≤ 0.74.  Once we know the value of 𝑃𝑃𝑆𝑆, 

we can calculate the rest of proportions using Table 1.   

To find the most likely value of 𝑃𝑃𝑆𝑆, we estimated the likelihood of 𝑃𝑃𝑆𝑆 to find the 

maximum value of 𝑃𝑃𝑆𝑆.  The maximum likelihood of 𝑃𝑃𝑆𝑆 would be the most likely value of 

𝑃𝑃𝑆𝑆.    We calculate the likelihood of 𝑃𝑃𝑆𝑆 assuming the binomial distribution for the error 

model.  The likelihood equation for the binomial distribution is  

              𝑙𝑙𝑖𝑖 = [𝑟𝑟𝑖𝑖 log(Pi) + (ni − ri) log(1 − Pi)] (21) 
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where i is the number of observations,  ni would be the average cell counts of  control 

wells, which is a fixed number, and ri  would be the number of cells are killed, 

calculated by subtracting each well’s count from average cell counts.   

 

Figure 24 Likelihoods of 𝐏𝐏𝐒𝐒  

Once we calculated all the likelihood value, we noticed the likelihood increase as the 

value of 𝑃𝑃𝑆𝑆 increases.  Therefore, the maximum likelihood value of PS is at 𝑃𝑃𝑆𝑆=0.74.  Put 

𝑃𝑃𝑆𝑆  into Table 1, where A indicates Paclitaxel and B indicates Discodermolide, and we can 

calculate the rest of proportions. 

Table 8. Calculate the proportions 

P(Sensitive to A, Sensitive to B) 
= 𝑷𝑷𝑺𝑺 = 0.74 

P(Sensitive to A, Resistant to B) 
= 𝑷𝑷𝑨𝑨=0.15 

P(sensitive to A)  
= 𝚿𝚿𝑨𝑨 = 0.89011 

P(Resistant to A, Sensitive to B) 
= 𝑷𝑷𝑩𝑩=0 

P(Resistant to A, Resistant to B)  
=𝑹𝑹𝐴𝐴𝐴𝐴=0.11 

P(Resistant to A) 

P(Sensitive to B)= 𝚿𝚿𝑩𝑩=0.74436 P(Resistant to B) =100% 

 
We got some interesting results from Table 8, which shows 𝑃𝑃𝐵𝐵 , the proportion that 

corresponds to the cell population that is only sensitive to Discodermolide, is equal to 0.  This 

result could suggest that probably the cells that are sensitive only to Discodermolide do not 



41 
 

exist in this data.  The cells we observed are killed under treatment of Discodermolide may be 

the cells that are sensitive to both Paclitaxel and Discodermolide.  

We plugged all the calculated values from Table 8 back into Equation (20), and 

calculated the predicted values of effects.  We then plotted the predicted values with the 

observed effect.  The red line is the observed effects and the blue line is the predicted effect.  

 

Figure 25 Predicted effect vs. actual effect for heterogeneity assumption 

We can see in Figure 25 that after we adjusted for the cell heterogeneity assumption, the 

predicted values are much closer to the actual effects.  Therefore, we can conclude that consider 

the cell heterogeneity assumption can help us to improve the prediction of combined drug 

effects.  
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5.0 DISCUSSION 

 

 

As we mention earlier, we cannot be sure if these survival cell counts are really from 

viable cells.  It can be machine’s error or the plate’s problem.  What we assume here is only the 

working assumption, but this assumption may still prove to be true in the future. 

We focused our analysis on the drug pair of Paclitaxel and Discodermolide.  We first 

performed the single drug analysis with median-effect model and log(kill) model.  Their large 

deviations from the actual effects lead us to the mixture of cell population assumption.  We 

noticed that around 10% of cells survive individual drugs and their combination at high 

concentration.  We later hypothesized that there may be a mixture of cell populations that 

consists of a population that is sensitive to both drugs, two populations that are each sensitive 

to only one of the drugs, and a population that is relatively resistant to both drugs.  

We analyzed the combined drug effects focus on using models for effect-additivity and 

log kill models for mixtures.  To avoid difficult optimization problems, we fitted the normalized 

(fa) data to low and high dose range equation separately and plotted them.  Then we combined 

the estimates we derived from low and high dose equations to construct the mixed population 

model.  After adjusting for the mixed cell population, the predicted effects are quite close to the 
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actual effects.  Therefore, we would suggest that considering the cell heterogeneity assumption 

can improve the prediction of drug effects. 

We also fitted the mutually exclusive and mutually nonexclusive models to check if our 

models can tell us the same drug relation other papers have stated.  And our results have 

showing that Paclitaxel and Discodermolide only fitted well in mutually exclusive model, 

which corresponds to other paper have stated.  Thus, our models maybe can be useful for the 

future investigation in combination of microtubule perturbing agents with known and 

unknown mechanisms of action. 

However, several weaknesses of the experiment need to be kept in mind.  The problems 

with baseline of controls, the outliers, and the way data recorded, and the importance of row 

and column factors, should be considered when we want to estimate the data more precisely. 
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6.0 CONCLUSIONS 

 

As other research papers may conclude that it is surprising to see Paclitaxel and 

Discodermolide works together to produce super-additive effect because theoretically they are 

competitive with each other for their similar mechanism and working site, it is not what we try 

to prove here.   To be able to explain how two agents which are supposed to compete with each 

other can produce a super-additive effect requires an extensive and detailed experiment that 

takes into account many other things, such as the specific working sites of agents, different time 

gaps between using drugs on the cell lines, etc., that we do not have here in this experiment. 

The main purpose for this paper is to provide a summary of methods that can be used to 

analyze drug combinations while adjusting for the mixed cell population assumption.  WE want 

to emphasize the importance of this assumption when one wants to understand drug effects.  

Fitting the heterogeneity assumption into our models for predicting the dr drug effects 

improves our prediction.  These methods may be extended for further analysis of other drug 

pairs, such as Disorazole C1 with Paclitaxel, and Vincristine with Paclitaxel, using data which 

we have not yet analyzed.  Also, our models, such mutually exclusive model, may be useful in 

the future when one want to investigate the combination of drugs of either known or unknown 

mechanisms. 
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What we present here is a statistical analysis that cannot prove any biological conclusion 

until further cancer cell experiments are done.  Also, drug “synergism”, whatever that might 

mean, biologically, might not be desirably clinically.  These drugs may combine well against 

cancer cells, but they may also work too well on normal cells and increase damage on human 

body. 
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APPENDIX: TABLE 1A. LAYOUT OF EXPERIMENT PLATE 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1                                                      C
O

N
TRO

L 

Vinc 100 (µM
) 

Vinc 50 

Vinc 25 

Vinc 12.5 

Vinc 6.25 

Vinc 3.125 

Vinc 1.5625 

Vinc 0.78125 

Vinc 0.390625 

Vinc 0.195313 

                                                     C
O

N
TRO

L 

                                                     C
O

N
TRO

L 

Pacl 50 

Pacl 25 

Pacl 12.5 

Pacl 6.25 

Pacl 3.125 

Pacl 1.5625 

Pacl 0.78125 

Pacl 0.390625 

Pacl 0.195313 

Pacl 0.09765625 

                                                     C
O

N
TRO

L 

2 

3 

4 

5 D
iso C1 100 + Pacl 50 

D
iso C1  50 +  Pacl 25 

D
iso C1  125 +  Pacl 

12.5 

D
iso C1 12.5 +  Pacl 

6.25 

D
iso C1  6.25 +  Pacl 

3.125 

D
iso C1  3.125 +  Pacl 

1.5625 

D
iso C1  1.5625 + 

Pacl 0.78125 

D
iso C1  0.78125  + 

Pacl 0.390625 

D
iso C1  0.390625 +  

Pacl 0.195313 

D
iso C1  0.195313 +  

Pacl 0.09765625 

Pacl 50 + D
isco 250 

Pacl 25 + D
isco 125 

Pacl 12.5 + D
isco 

62.5 

Pacl 6.25 + D
isco 

31.25 

Pacl 3.125 + D
isco 

15.625 

Pacl 1.5625 + D
isco 

7.8125 

Pacl 0.78125  + D
isco 

3.90625 

Pacl 0.390625 + 
D

isco 1.953125 

Pacl 0.195313 + 
D

isco 0.9765625 

Pacl 0.09765625 + 
D

isco 0.48828125 

6 

7 

8 

9 D
iso C1 100 + V

inc 
100  

D
iso C1 50 + Vinc 50 

D
iso C1 25 + Vinc 25 

D
iso C1 12.5 + Vinc 

12.5 

D
iso C1 6.25 + Vinc 

6.25 

D
iso C1 3.125+ Vinc  

3.125 

D
iso C1 1.5625+ 

Vinc 1.5625 

D
iso C1 0.78125 + 

0.78125100  

D
iso C1 0.390625 

0.390625100  

D
iso C1 0.195313+ 

0.195313100  

Pacl 50 + D
isco 100 

Pacl 25 + D
isco 50 

Pacl 12.5 + D
isco 25 

Pacl 6.25 + D
isco 

12.5 

Pacl 3.125 + D
isco 

12.5 

Pacl 1.5625 + D
isco 

3.125 

Pacl 0.78125  + 
D

isco 1.5625 

Pacl 0.390625 + 
D

isco 0.78125 

Pacl 0.195313 + 
D

isco 0.390625 

Pacl 0.09765625 + 
D

isco 0.195313 

10 

11 

12 

13 D
isco 100 

D
isco 50 

D
isco 25 

D
isco 12.5 

D
isco 6.25 

D
isco 3.125 

D
isco 1.5625 

D
isco 0.78125 

D
isco 0.390625 

D
isco 0.195313 

D
iso C1 100  

D
iso C1  50  

D
iso C1  25  

D
iso C1 12.5  

D
iso C1  6.25  

D
iso C1  3.125  

D
iso C1  1.5625  

D
iso C1  0.78125    

D
iso C1  0.390625  

D
iso C1  0.195313   

14 

15 

16 
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