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Pressure damage in intact skin is difficult to detect, particularly in individuals with dark 

skin, because color changes and tissue blanching are masked by the skin’s pigmentation.  Tissue 

reflectance spectroscopy (TRS) may be able to detect the blanch response regardless of skin 

color by measuring the change in total hemoglobin (ΔtHb) that occurs when pressure is applied 

to the skin.  The objective of this dissertation was to examine the ability of TRS to detect the 

blanch response at sites at risk for pressure ulcer development in individuals with various levels 

of skin pigmentation.  Three studies were conducted to address this objective.  In Study 1, ΔtHb 

was assessed at the heel and sacrum of light and dark-skinned healthy participants using a 

portable TRS system.  Study 1 showed that a significant decrease (p<0.001) in tHb could be 

measured in both light and dark skinned-participants with good intra-rater reliability (ICC≥0.80) 

at the heel, but not at the sacrum.   Study 2 was conducted to identify a reliable method of skin 

color description for use in subsequent studies of the spectroscopic blanch response.  Two 

examiners (B and C) performed three skin color assessments at the volar forearm of ten healthy 

participants using Munsell color tile matching and colorimetry.  Intra and inter-rater reliability 

was excellent for colorimetry (ICCs typically ≥0.90).  Reliability for Munsell color tile matching 

was highest for Munsell value within Examiner B (93% agreement, kappa 0.87–1.00), which was 

determined to be sufficiently high for use in subsequent studies.  In Study 3, ΔtHb was assessed 

at the heels of light, moderate, and dark-skinned elderly nursing home residents at risk for 

pressure ulcers.  As in the pilot study, a significant decrease in tHb was observed in all skin color 

groups (p<0.05).  Intra-rater reliability for ΔtHb was moderate or greater (ICC≥0.61).  In 

combination, the results of Study 1 and Study 3 demonstrated that a significant spectroscopic 
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blanch response could be detected with moderate or greater intra-rater reliability at the heel 

regardless of age or pressure ulcer risk status.  
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1.0  INTRODUCTION 

1.1 DISCUSSION OF PROBLEM 

A number of research studies have described disparities in pressure ulcer incidence and 

prevalence between those with light and dark skin. Studies of long-term care and acute care 

patients have reported a higher incidence or prevalence of pressure ulcers in non-white patients 

compared to the overall patient population.1,2 Researchers have also reported a higher incidence 

or prevalence of full thickness pressure ulcers in dark-skinned individuals compared to those 

with light skin.3-6  

Many studies have suggested that higher stage ulcers are more prevalent in patients with 

dark skin because indicators of pressure damage in intact skin are difficult to detect in the 

presence of high skin pigmentation.3,4,6-10 Traditionally, the blanch response as been used as one 

of the main indicators of pressure damage in intact skin.  Healthy light skin appears pink in color 

because of blood flowing through vessels in the skin. When gentle pressure is applied to the skin, 

it temporarily becomes whiter in color, or “blanches”, as blood is displaced from the area where 

pressure is applied. This change in color is known as the blanch response.  Pressure damage in 

intact skin appears as a discolored area that does not blanch when pressure is applied to the skin 

(nonblanchable erythema).  Because of its high level of pigmentation, dark skin typically does 

not blanch visibly even when it is healthy, making it difficult to detect pressure damage in intact 

skin by observing color changes in the skin alone.9 Alternate indicators of pressure damage 

include changes in skin temperature, tissue consistency, or sensation.10 However, these indicators 

are frequently difficult to assess in clinical settings due to the use of examination gloves, ambient 

fluorescent lighting, and difficulty communicating with patients at risk due to aphasia or 

impaired cognitive status.9 
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Improved detection of signs of pressure damage in intact skin, such as nonblanchable 

erythema, would yield several benefits.  A number of research findings associate pressure ulcers 

in intact skin with the development of higher-stage ulcers11-13 which are often accompanied by 

significant medical complications, pain, increased mortality, and higher health care costs.14-17 

Improved detection of nonblanchable erythema would facilitate earlier intervention to treat 

existing damage and prevent ulcer progression, reducing costs and medical complications 

associated with damage to deeper tissue layers.  Improved detection would also provide more 

accurate information on the timing of pressure damage development than if pressure ulcer 

diagnosis were delayed until an opening in the skin is observed.  Furthermore, incidence and 

prevalence data are incomplete without an accurate means of pressure damage detection in intact 

skin. Several incidence and prevalence estimates have intentionally excluded individuals with 

Stage I pressure ulcers because of the uncertainties involved in detecting these lesions.13,16,18-20 

An accurate means of pressure damage detection in intact skin would improve the quality of 

prevalence and incidence data.   These data are essential to understand the clinical course of 

pressure ulcers, evaluate treatment and prevention outcomes, and develop health policy goals. 

1.2 TISSUE REFLECTANCE SPECTROSCOPY: A POSSIBLE SOLUTION 

Tissue reflectance spectroscopy (TRS) is non-invasive technique that provides information on 

the hemoglobin content of body tissues by analyzing light absorbed by tissue. Several 

researchers have developed TRS data analysis algorithms that account for the presence of skin 

pigmentation, allowing the concentrations of hemoglobin and deoxygenated hemoglobin to be 

measured in individuals with light and dark skin.21-26 Researchers have used TRS to measure 

tissue hemoglobin levels in human subjects during venous and arterial occlusion,27 orthostatic 

stress,28 and exercise.29  TRS has also been used to monitor hemodynamic changes in skin 

exposed to external loading. Investigators have successfully used TRS to track pressure-induced 

reactive hyperemia in healthy subjects23 and in subjects at risk for pressure ulcers, including 

subjects with spinal cord injury and below-knee amputation.30,31  

TRS provides a means of detecting the blanch response in light and dark skin. The 

whitening of light skin that is seen with pressure application occurs because of the displacement 
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of blood from the area. While this color change cannot be observed visually in dark skin, a 

“spectroscopic blanch response” can be quantified in both light and dark skin by comparing the 

total concentration of hemoglobin in skin in its resting state to that of skin during gentle pressure 

application. Two recent studies have used TRS to quantify the blanch response in light and dark 

skin. Matas, Sowa, and colleagues demonstrated that statistically significant decreases in total 

hemoglobin could be detected when pressure was applied to the forearms of light and dark-

skinned healthy participants.24 These results indicate that a blanch response can be “seen” with 

spectroscopy even when no visible color changes are identified with visual inspection.  Sprigle 

and colleagues used TRS to assess the blanch response at areas of discoloration near bony 

prominences in a population of rehabilitation patients.32 Sprigle reported that spectroscopic data 

from clinically blanching sites differed from that of clinically non-blanching sites, but there was 

wide variation in the extent of blanching measured by spectroscopy.  More information is needed 

to determine the diagnostic value of spectroscopic blanch response assessment.   

1.3 OBJECTIVES AND HYPOTHESES 

The objective of this dissertation was to examine the ability of tissue reflectance spectroscopy 

(TRS) to detect the blanch response in individuals with various levels of skin pigmentation.  

Three studies were performed to accomplish this goal.  Study 1 was a laboratory-based study in 

which the blanch response was assessed at the heel and sacrum of light and dark-skinned healthy 

participants using a portable TRS system.  Study 1 had two objectives: (1) to test the hypothesis 

that total hemoglobin will decrease significantly when pressure is applied to light and dark 

healthy skin, and (2) to assess the intra-rater reliability of spectroscopic blanch response 

measurement in participants with healthy skin. 

A second study (Study 2) was conducted to identify a reliable means of skin color 

description to assist subject recruitment in subsequent spectroscopic blanch response studies.  

This laboratory-based study was conducted in a population of light, moderate, and dark-skinned 

healthy participants with one objective: to examine the reliability of skin color assessments 

performed using Munsell color tile matching and colorimetry. 
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Finally, a third study was conducted to determine whether a spectroscopic blanch 

response could be measured at the heel in a population of light, moderate, and dark-skinned 

elderly nursing home residents at risk for pressure ulcers.  Study 3 had two objectives: (1) to test 

the hypothesis that total hemoglobin will decrease significantly when pressure is applied to the 

skin of elderly nursing home residents at risk for pressure ulcers, regardless of skin color, and (2) 

to assess the intra-rater reliability of spectroscopic blanch response measurement in elderly 

nursing home residents at risk for pressure ulcers. 

1.4 ORGANIZATION OF THE DISSERTATION 

Six chapters follow this introduction.  Chapter 2 provides clinical background information on 

pressure ulcers and the problem of pressure ulcer detection in intact skin.  Chapter 3 discusses 

non-invasive technologies to assess tissue viability with an emphasis on the operating principles 

of tissue reflectance spectroscopy and its application to the problem of pressure damage 

detection.  The methods, results, and conclusions of Studies 1-3 above are discussed in Chapters 

4-6, respectively.  Finally, Chapter 7 summarizes key findings of each of these studies, their 

limitations, contributions, and recommendations for future work. 

  4



2.0  OVERVIEW OF CLINICAL PROBLEM 

2.1 PRESSURE ULCER BACKGROUND 

2.1.1 Pressure Ulcer Definition 

A pressure ulcer is defined as “any lesion caused by unrelieved pressure resulting in damage of 

underlying tissue.”7  Pressure ulcers are also known as bedsores, pressure sores, or decubitus 

ulcers.  Pressure ulcers may develop in soft tissue overlying a number of bony prominences on 

the body, including the sacrum, coccyx, heels, greater trochanters, ischial tuberosites, malleoli, 

scapula, elbow, and occiput.33   

2.1.2 Relevant Soft Tissue Structures 

Pressure ulcers may damage any of the soft tissues overlying bony prominences.34,35 The 

outermost layer of soft tissue is the epidermis, which consists of several layers of cells and is 

avascular.  The outermost epidermal layer consists of hardened, flattened, cells containing a 

protein known as keratin.  The thickness of the epidermis varies from 70 to 120 µm in most areas 

of the body to 1.4 mm thick in callused areas on the hands or feet.35  Below the epidermis is the 

dermis, which contains blood vessels, lymphatic vessels, hair follicles, sweat glands, and sensory 

nerve endings.  The dermis is 1–2 mm thick on average, but can be up to 3 mm thick on the soles 

of the feet.35  The interface between the epidermis and dermis contains a series of ridges, or 

papillae, in which the epidermis extends downward into the dermis and dermal tissue containing 

blood vessels extends upward between the epidermal extensions.  Together, the epidermis and 

dermis comprise the skin.   Below the dermis is a layer of subcutaneous fat and loose connective 

tissue.  Blood vessels supplying the skin travel through the fatty tissue.  Below the subcutaneous 
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fat is a layer of fascia, a connective tissue made primarily of collagen that is avascular.  Muscle 

tissue lies below the fascia, and is highly vascularized.  Beneath muscle tissue is periosteum-

covered bone.  

2.1.3 Pressure Ulcer Etiology 

The pathophysiology of pressure ulcer development is not fully understood.  Researchers and 

clinicians typically attribute pressure ulcers to pressure exerted on soft tissue structures overlying 

bony prominences.34,36-39  Pressure is defined as force per unit area.  Pressure is thought to create 

ischemia in soft tissues by occluding blood flow in tissue vasculature, depriving soft tissues of 

oxygen and other nutrients and allowing the buildup of toxic by-products of cellular metabolism. 

The buildup of toxic by–products is thought to create tissue acidosis which results in increased 

capillary permeability, edema and cell death.37  In addition to creating vascular occlusion, 

pressure may disrupt lymphatic circulation, further disrupting the removal of wastes and 

contributing to tissue necrosis.37,39  Pressure may also create interstitial fluid flow in the tissue 

that may disrupt cellular functioning.40  Tissue damage may also result from “reperfusion injury” 

in which the return of blood to an ischemic area produces an inflammatory reaction and tissue 

injury.38,41 Histological studies of animal and human tissues exposed to pressure have shown a 

variety of inflammatory changes, including tissue edema and infiltration of neutrophils and 

macrophages.36,42  The magnitude and duration of pressure needed to create tissue injury are 

thought to be inversely related, such that injury may result from low pressure over a prolonged 

period of time or high pressure over a brief period of time.37,43 

While pressure is thought to be the primary cause of tissue injury, friction and shear 

forces are also contributing factors.  Friction has been defined by NPUAP as “resistance to 

motion of the external tissue sliding in a parallel direction relative to the support surface” (draft 

definition, 2006).44  Friction is thought to damage or remove the epidermis, making tissue 

vulnerable to infection and further weakening its ability to tolerate vascular compromise by 

pressure.37,39,42,45  Friction may also contribute to the production of shear.  Shear has been 

defined by NPUAP as “an action or stress resulting from applied forces which causes or tends to 

cause two contiguous internal parts of the body to deform in the transverse plane (i.e., shear 

strain)” (draft definition, 2006).44  A clinical scenario in which shear is likely imparted to soft 
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tissue is when a patient lies in bed with the head of the bed elevated.  In this situation, superficial 

tissues adhere to the surface of the bed via friction, but deeper tissues and fascia continue to slide 

down the bed due to body weight.37,45  Stretching and possible tearing of deep structures are 

thought to result from the shear stress.  Large vessels that perforate muscle and fascia are thought 

to be particularly vulnerable to shear.39,42   

Animal and human studies have demonstrated that shear and friction can enhance the 

damaging effects of pressure.  Dinsdale reported that less pressure was required to create tissue 

ulceration when pressure was applied in combination with friction.46  Goldstein and Sanders 

exposed pigs’ skin to pressure and two levels of shear and observed that the time required for 

skin breakdown to occur was shorter when more shear was present.47  Goosens and colleagues 

measured skin oxygen tension at the sacrum of young, healthy volunteers and found that the 

pressure required to reduce skin oxygen tension to 1.3 kPa was lower in the presence of shear.48  

Bennett and colleagues applied pressure and shear to the thenar eminence of healthy subjects and 

reported that the pressure necessary to produce vascular occlusion was reduced by approximately 

one half when shear was present.49 

Pressure ulcers are thought to develop via two mechanisms.  Pressure-related tissue 

damage may begin in superficial skin layers and progress to deep layers (“top down” 

mechanism) or begin in deeper layers, progressing to the surface of the skin (“bottom up” 

mechanism).50 Shea stated that deeper wounds would result if appropriate actions were not taken 

to prevent further damage in individuals with superficial wounds, suggesting that tissue damage 

begins in superficial layers and later progresses to deeper layers.34  Witkowski and Parish 

reported that upper dermal structures were the first to show signs of pressure-related injury, 

based on histological analysis of 6 mm punch biopsies taken from humans with various types of 

pressure damage.42  Expert opinion and research data also suggest bottom-up pressure ulcer 

development.  Several experts have described pressure being transmitted from the skin surface to 

bone in a cone-like distribution, such that the area of tissue affected and/or the magnitude of 

pressure is greatest near the bone.34,37,39,51  Some research data support the suggestion that deep 

vessels may be occluded first, producing deep tissue necrosis while more superficial structures 

appear normal. Bouten and colleagues modeled the mechanical response of buttock soft tissue 

supported by a foam cushion and showed high internal stresses in deeper fat and muscle layers.38  

Animal models also suggest that damage may occur first in deeper layers.  Daniel and colleagues 
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performed histological analysis of porcine soft tissue exposed to pressure, and reported that 

damage to muscle layers was observed without damage to overlying skin.43  Salcido and 

colleagues applied pressure to the greater trochanter of rats and reported that samples taken from 

skin with no visible signs of damage upon inspection showed signs of muscle damage upon 

histological examination.52  More data are needed regarding top-down versus bottom-up 

mechanisms of pressure ulcer development. 

2.1.4 Pressure Ulcer Risk Factors 

Pressure ulcer risk factors affect: (1) the duration and intensity of pressure applied to soft tissue, 

or (2) the ability of soft tissue to tolerate pressure.45 Immobility is a major risk factor for pressure 

ulcer development.37,45,53  Standing and walking relieves pressure on bony areas of the body.  

The ability to shift body position while seated or lying allows pressure to be redistributed as 

needed, preventing pressure buildup in any area of the body.  Those who have weakness, 

paralysis, or other conditions that affect movement and ambulation are unable to redistribute 

pressure without assistance, exposing them to potentially damaging pressure. Those with 

mobility impairments are also frequently unable to completely lift themselves up during 

transfers.  The result is sliding of the soft tissue along bed or seating surfaces, creating friction 

and shear that may damage tissue. Regression analyses have shown impaired mobility or 

ambulation to be a significant predictor of pressure ulcer development.11,19,54 

Impaired sensory perception is also a risk factor for pressure ulcer development.37,45  Pain 

and discomfort are signals of excessive pressure buildup and potential tissue damage.  Those 

who are unable to perceive pain or discomfort or who cannot respond purposefully to discomfort 

due to cognitive impairments are not aware that pressure buildup is a problem and will not take 

steps to relieve excessive pressure.  Fisher and colleagues demonstrated that sensory perception 

is significantly associated with pressure ulcer development.54 

Moisture is thought to reduce the skin’s tolerance to external forces.37,45 Moisture may be 

present on the skin due to urinary or fecal incontinence, perspiration, wound drainage, food 

spillage, or use of moist heat therapy.  Moisture creates maceration of the epidermis, in which 

the epidermis becomes softened and more susceptible to breakage.  Depending on the type of 

moisture present, the epidermis may be exposed to toxins or bacteria that may create 
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inflammation and infection.  Moisture may also cause the skin to adhere to bedding or other 

support materials, allowing friction and shear to occur in addition to pressure.  Moisture as been 

identified a significant predictor of pressure ulcer development.19,54 

Poor nutrition, particularly insufficient protein intake, is thought to weaken skin 

integrity.37,45,53 Insufficient protein is thought to create interstitial edema, which impairs flow of 

nutrients and wastes in tissue and may affect the health of soft tissues.37  Bergstrom and Braden 

reported that mean protein intake and mean serum albumin was significantly lower in nursing 

home residents who developed pressure ulcers compared to those without pressure ulcers.6  

Pieper and colleagues also found lower serum albumin levels in acute care, rehabilitation, and 

home care patients with pressure ulcers compared to those without pressure ulcers.55 Regression 

analyses have identified oral eating problems56, difficulty feeding oneself19, dietary protein or 

iron 6, and nutrition54 as significant predictors of pressure ulcer development. 

Advanced age has been shown in several research studies to be a risk factor for pressure 

ulcer development.  Amlung and colleagues reported that 55% percent of all pressure ulcers that 

developed in their sample of acute care hospital patients occurred in those aged 71 to 90.57  

Bergstrom and colleagues reported that the mean age for those who developed a pressure ulcer 

was approximately 10 years greater than those who did not (71.6 years vs. 61.9 years, p <0.0001) 

in a population of participants in tertiary care hospitals, Veterans Administration Medical 

Centers, and skilled nursing facilities.58  Horn and colleagues reported the mean age of nursing 

home residents developing pressure ulcers was significantly greater than those who did not (82.5 

vs. 80.8 years, p=0.010).56  Pieper and colleagues studied patients in acute care, rehabilitation, 

and home care, and found that those who developed pressure ulcers were significantly older than 

those without pressure ulcers (mean age 70.4 vs. 53.9 years).55 Several researchers have shown 

age to be a predictor of pressure ulcer development using survival11 or regression analyses.6,54,59  

Several age-related soft tissue changes may make skin more vulnerable to pressure including 

thinning of the epidermis, loss of dermal blood vessels, reduced elastin content, and production 

of collagen that has increased stiffness and decreased mechanical strength.11,37 

A number of other conditions have been described as possible risk factors for pressure 

ulcer development, including diabetes mellitus19, male gender19,54, previous history of a pressure 

ulcer11,56, body weight11,59, weight loss56, increased body temperature6, decreased blood 
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pressure6, greater illness severity56, number of illnesses55, low hemoglobin37,55, stroke or spinal 

cord injury53, and smoking45.  

2.1.5 Diagnosis and Staging of Pressure Injuries 

Pressure ulcers are currently diagnosed through a combination of visual and tactile inspection of 

the skin and consideration of patient-reported symptoms. Differential diagnosis of pressure 

ulcers versus other skin lesions is made considering several factors, including the wound’s 

proximity to a bony prominence, historical factors that increase likelihood of excessive pressure 

exposure (i.e. immobility, sensory loss), and appearance of surrounding skin (typically normal, 

erythmatic if chronic wound).60,61 

Several staging systems exist to describe pressure ulcers.50  The system used most 

frequently in the United States is that of the National Pressure Ulcer Advisory Panel (NPUAP).  

The NPUAP has defined four stages of pressure ulcers based on the anatomical depth of tissue 

observed in the base of the ulcer (Table 1).7  Lesions in which the wound base is not visible due 

to necrotic tissue (eschar, slough) or other factors are described as “unstageable”.   

While the definitions of Stage II – IV pressure ulcers have remained the same since the 

staging system’s creation in 1989, uncertainty persists regarding the appropriate staging of 

pressure damage in intact skin.   The definition of Stage I has been revised twice, largely due to 

differences between individuals with light versus dark skin, as will be discussed further in 

section 2.4.62  Debate is also ongoing regarding a category of lesion known as “deep tissue injury 

under intact skin” (DTI).  There is consensus among clinicians and researchers that pressure-

induced necrosis may be present in deeper tissue layers while the skin remains intact.50  

However, this phenomenon is not described in the current NPUAP staging system.  In 2001, the 

NPUAP drafted a definition of DTI as “a pressure-related injury to subcutaneous tissues under 

intact skin.”   DTI has been described as “dark purple or bruised areas over bony prominences 

with intact skin,”50 “deep purple ecchymosis”51 or “thin blistered skin with a dark base, which 

eventually presents as full eschar”.51  DTI lesions are thought to deteriorate rapidly and are 

attributed to the effects of shear and pressure on deep blood vessels and tissues.34,50,51,62  At 

present, NPUAP recommends that DTI be considered an “unstageable” ulcer.62  Discussions 

continue regarding the appropriate definitions and staging of pressure ulcers in intact skin. 
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Table 1. NPUAP staging system 

Stage Current NPUAP Definition 

I 

An observable pressure-related alteration of intact skin whose indicators as 
compared to an adjacent or opposite area on the body may include changes in 
one or more of the following: skin temperature (warmth or coolness), tissue 
consistency (firm or boggy feel), and/or sensation (pain, itching). The ulcer 
appears as a defined area of persistent redness in lightly pigmented skin, whereas 
in darker skin tones, the ulcer may appear with persistent red, blue, or purple 
hues. 

II Partial thickness skin loss involving epidermis, dermis, or both. The ulcer is 
superficial and presents clinically as an abrasion, blister, or shallow crater. 

III 
Full thickness skin loss involving damage to, or necrosis of, subcutaneous tissue 
that may extend down to, but not through, underlying fascia. The ulcer presents 
clinically as a deep crater with or without undermining of adjacent tissue. 

IV 
Full thickness skin loss with extensive destruction, tissue necrosis, or damage to 
muscle, bone, or supporting structures (e.g., tendon, joint, capsule). Undermining 
and sinus tracts also may be associated with Stage IV pressure ulcers. 

2.2 PRESSURE ULCER IMPACT IN LONG-TERM CARE 

2.2.1 Incidence and Prevalence 

As of the 1999 National Nursing Home Survey, there were more than 1.6 million nursing home 

residents in the United States, 90% of whom were over age 65.63 In addition to advanced age, 

long-term care residents often have mobility impairments, cognitive impairments, incontinence, 

nutritional deficiencies, and a host of cardiovascular and other comorbidities that place them at 

risk for pressure ulcer development.53 A systematic review by the NPUAP (2001) reported 

incidence rates of 2.2% to 23.9% within the long-term care population as a whole.7 However, 

pressure ulcer incidence has been reported to be as high as 73.5% for newly-admitted residents 

over age 65 at risk for pressure ulcers.6  Estimates made since 2001 have described incidence 

rates of 24.5%64, 29.1%56, and 43.3%65 for residents at risk for pressure ulcers.  Prevalence 

estimates in the long-term care population range from 2.3% to 28% as of the 2001 NPUAP 
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systematic review.7 A 2002 study of long-term care residents at risk for pressure ulcers reported 

that 27.7% of its overall sample had pressure ulcers at the beginning of the study.64  The mean 

prevalence reported by the 95 facilities participating in the study was 9.8% (range 0.6 – 54.8%) 

for all residents in their care from 1996-199764, which is similar to the 8.5% overall prevalence 

rate reported in a study of data collected from 92 nursing homes between 1992 and 1998.66  The 

prevalence of pressure ulcers in newly-admitted residents has been reported to be higher than 

that of current residents (17.4% vs. 8.9%).67 

The heel and sacrum/coccyx are among the most frequently observed sites of pressure 

ulcer development in long-term care residents. Research data suggest that heel pressure ulcer 

incidence may be as high as 24.8% to 49.5% in newly-admitted long-term care residents 65 and 

older at risk for pressure ulcers.6  Another study reported that 22% of all ulcers observed in long-

term care residents at risk for pressure ulcers occurred at the heel.64  Sacral pressure ulcer 

incidence has been reported as 11.8% in residents at risk for pressure ulcers68 and 22% in a 

mixed population of residents who may or may not be at risk for pressure ulcers.69  Others have 

reported that 25% to 30% of all pressure ulcers observed occurred in the sacrum/coccyx 

region.6,64  Other sites of pressure ulcer development in long-term care residents include the 

buttocks, ankle, foot, toe, and greater trochanter area.6,64,69  One study reported that over 47% of 

participants with pressure ulcers had ulcers at multiple sites.64  

Stage II ulcers are typically the most frequently observed in long-term care, followed by 

Stage I, Stage III, and Stage IV.  Brandeis and colleagues reported a 3.7% prevalence of Stage II 

ulcers in their sample, followed by 2.1% for Stage I, 2.0% for Stage III, and 1.1% for Stage IV in 

current long term care residents.67  New admissions showed a similar ranking of stages, with a 

6.3% prevalence of Stage II ulcers, 6.1% for Stage I, 2.6% for Stage III, and 2.4% for Stage IV.  

Berlowitz and colleagues excluded Stage I from analysis, but reported that 45.6% of the ulcers 

observed in their study were Stage II, 31.5% were Stage III, and 22.9% were Stage IV.20  Horn 

and colleagues reported that 52% of the ulcers observed were Stage II at initial assessment, 

followed by Stage I (15%) , Stage III (10%) and Stage IV (10%).64  Bergstrom and colleagues 

reported Stage I as the most frequently-observed stage at the time of detection (65.7% of all 

ulcers) followed by Stage II (31.6%), Stage III (2.1%), and Stage IV (0.3%).6  Bergstrom’s 

observation of Stage I ulcers may have been greater than in other studies because research staff 

conducted regular skin assessments in at-risk residents to track pressure ulcer incidence, whereas 
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many other studies collected pressure ulcer data from medical documentation.  In addition, the 

definitions of incidence and prevalence frequently differed among studies, and these differences 

should be considered when comparing their results.  

2.2.2 Pressure Ulcer Complications and Morbidity 

Pressure ulcers may require considerable effort to heal, and are associated with medical and 

psychosocial complications.  Once pressure ulcers develop, they may take weeks, sometimes 

months to heal.14,16,64  During the healing process, prolonged bedrest may be required, preventing 

participation in social activities and rehabilitation.14,70  In those with sensation, pressure ulcers 

may be associated with considerable pain.14,70  Stage III and IV pressure ulcers may require 

surgery, which may be associated with complications.  In a study of 22 elderly, non-ambulatory 

patients undergoing flap surgery, half of the patients developed complications, including 

reopening of the wound, infection, or seroma.71  Even if healing is successful, the risk of 

developing a new pressure ulcer at the same site is thought to increase due to the presence of 

fragile scar tissue that is more vulnerable to pressure than the original tissue.72  A study of 16 

elderly long-term care patients who received flap surgery showed a 37.5% rate of recurrence of 

the pressure ulcer.73  

Long-term care residents with pressure ulcers often experience medical complications.  

Residents with pressure ulcers have been reported to have a 37.7% greater rate of hospitalization 

than those without pressure ulcers.67  Hospitalized individuals with pressure ulcers have been 

shown to develop more complications during their stay than those without pressure ulcers.  

Allman and colleagues reported that 86.5% of hospitalized individuals with pressure ulcers 

developed complications compared to 43% of those without pressure ulcers.15   

Infection is perhaps the most dangerous complication of a pressure ulcer.  The presence 

of an open wound provides an entry point for pathogens, increasing infection risk.74  In 

hospitalized individuals age 55 and older with activity limitations, 45.9% of those with pressure 

ulcers developed nosocomial infections compared to 20.1% of those without pressure ulcers.15  

Infection in the wound may spread to surrounding tissues, resulting in cellulitis and 

osteomyelitis, which is commonly observed with Stage IV wounds.74  Drainage from infected 

wounds in a nursing home resident may be spread to other residents, increasing the risk of 
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infection throughout the facility.74  Infected pressure ulcers may lead to amputation to prevent 

spread of the infection.6,70  If septicemia develops, it is often associated with death. Death 

certificate data has shown that pressure ulcer associated deaths were 11.3 times more likely to 

have septicemia listed as an underlying or contributing cause of death than matched control 

deaths.75   Furthermore, it was found that 73% of certificates listing septicemia as an underlying 

or contributing cause of death listed the development of a pressure ulcer prior to the development 

of septicemia in the chain of events leading to death.  These data strongly suggest that pressure 

ulcers increase risk of septicemia and its complications. 

Whether due to septicemia or other medical complications, there are data to suggest that 

pressure ulcers are associated with increased mortality. Pressure ulcers were listed as a cause of 

death for 114,380 people according to death certificates completed between 1990 and 2001.75 

Nearly 80% of these deaths occurred in individuals aged 75 or older.  Several studies suggest 

that nursing home residents with pressure ulcers are more likely to die than those without 

pressure ulcers.  Brandeis and colleagues reported that rates of death were 129% greater for 

current residents with pressure ulcers and 88.1% greater for newly-admitted residents with 

pressure ulcers compared to those without pressure ulcers after 1 year of followup.67  Horn and 

colleagues observed that 11.5% of residents with pressure ulcers died compared to 5.6% of those 

without pressure ulcers (p<0.001).64  Berlowitz and colleagues reported that the relative risk of 

death was 2.37 for residents with pressure ulcers, although this risk decreased to 1.45 after 

adjusting for factors such as activity level and medical conditions.20  In an earlier study, 

Berlowitz and Van B. Wilking reported relative risks of death for long term care hospital patients 

to be 1.9 for those with pressure ulcers on admission, 3.1 for those who developed new sores, 

and 3.3 for those with sores that failed to improve in 6 weeks.16  The authors cautioned that 

increased risk of death was likely due to coexisting medical conditions and not necessarily due to 

the presence of the ulcer itself.  Debate continues regarding the extent to which pressure ulcers 

increase risk of death, but there is considerable evidence to suggest that pressure ulcers are a 

contributing factor to mortality. 
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2.2.3 Financial Impact of Pressure Ulcer Care 

Estimating the costs of pressure ulcer care are challenging, and study results are difficult to 

compare due to variation in the information and methodologies used to generate cost estimates.  

Despite these limitations, it is clear that pressure ulcer-related treatment costs are considerable, 

both in long term care and hospital settings.  The cost per pressure ulcer has been estimated at 

$1,727 (excluding hospital costs)76 and $2731 (including hospital costs) in long-term care 

residents.53 Costs for hospitalized patients with pressure ulcers were reported to be $15,229 

higher for those with pressure ulcers compared to those without pressure ulcers when adjusted 

for complications and admission characteristics.15  The total cost in the United States for 

hospitalized patients with pressure ulcers has been estimated at $9.1 – 11.6 billion/year based on 

past literature and adjustments for inflation.72 Costs increase considerably with the severity of the 

ulcer.  The total cost of wound care is estimated at $125-451 for Stage I or II ulcers and $14,000-

$23,000 for Stage III or IV ulcers.17,77  The average daily cost of long-term wound care for Stage 

III and IV pressure ulcers is estimated as high as $240 per day—12 times  the cost of  daily care 

for Stage II ulcers.17 

2.3 RACIAL DISPARITIES IN PRESSURE ULCER INCIDENCE AND 

PREVALENCE 

A number of research studies have described disparities in pressure ulcer incidence and 

prevalence between those with light and dark skin. Spector and colleagues found that the 

prevalence of pressure ulcers in non-white individuals admitted to nursing homes was 32%, 

versus 20% for the overall sample.1 In addition, non-white individuals had a 50% greater 

likelihood of being admitted to a nursing home with a pressure ulcer than whites.1 In a study of 

acute medical and surgical hospital patients, Lyder and colleagues found a 32% incidence rate of 

pressure ulcers in African-American and Latino patients versus the typical incidence rate of 11% 

for all patients in that setting.2 Individuals with darker skin often have a higher incidence or 

prevalence of full thickness pressure ulcers than individuals with light skin. Amlung and 

colleagues reported that rates of full-thickness ulcers (Stage III or IV) were highest in patients 
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with darker skin (58% of ulcers observed in American Indians, 54% for Pacific Islanders, and 

40% for African Americans/Blacks).  Caucasian/white (non-Hispanic) and Asian patients had the 

highest rate of Stage I pressure ulcers (48% for each group).57  Barczak and colleagues found a 

41% prevalence of full-thickness ulcers in African-American patients versus 20% in Caucasian 

patients in acute care hospitals.3 Fuhrer and colleagues found a significant relationship between 

race and ulcer severity in individuals with spinal cord injury, reporting a 69% prevalence of 

Stage III or IV ulcers in African-American patients versus 32% for Caucasians.4 Meehan and 

colleagues found that African-American acute care patients had the largest percentage of Stage 

IV ulcers of any ethnic group.5 Bergstrom and Braden found that the first pressure ulcer 

diagnosed in non-Caucasian institutionalized elderly patients was more likely to be Stage II or 

higher than Stage I.6  

2.4 CHALLENGES OF PRESSURE ULCER DETECTION IN INTACT SKIN 

Many studies have suggested that higher stage ulcers are more prevalent in patients with dark 

skin because indicators of pressure damage in intact skin are difficult to detect in the presence of 

high skin pigmentation.3,4,6-10,75 Traditionally, the blanch response as been used as one of the 

main indicators of pressure damage in intact skin. Healthy light skin appears pink in color 

because of blood flowing through vessels in the skin. When gentle pressure is applied to the skin, 

it temporarily becomes whiter in color, or “blanches”, as blood is displaced from the area where 

pressure was applied. This change in color is known as the blanch response. Exposure to 

damaging pressure is thought to produce the engorgement and eventual hemorrhage of vessels in 

the papillary dermis.78,79 These changes prevent the normal displacement of blood from the skin 

in response to gentle pressure. The result of this disruption is an area of “nonblanchable 

erythema of intact skin”, as stated in the National Pressure Ulcer Advisory Panel (NPUAP)’s 

1989 definition of a Stage I pressure ulcer (Table 2).  Because of its high level of pigmentation, 

dark skin typically does not blanch visibly even when it is healthy, making it difficult to detect 

pressure ulceration in intact skin by observing color changes in the skin alone.9 The NPUAP 

revised its Stage I pressure ulcer definition in 1992 and 1998 to include other indicators of 

pressure damage, including changes in skin temperature, tissue consistency, or sensation (Table 
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2).62,80 However, the use of examination gloves, ambient fluorescent lighting, and difficulty 

communicating with patients at risk due to aphasia or impaired cognitive status make alternate 

indicators of pressure damage difficult to assess in clinical settings.9  

Table 2. NPUAP's original and revised Stage I definitions 

Year NPUAP Stage I Definition 

1989 Nonblanchable erythema of intact skin; the heralding lesion of skin ulceration. 

1992 
Nonblanchable erythema of intact skin; the heralding lesion of skin ulceration.  
In individuals with darker skin, discoloration of the skin, warmth, edema, 
induration, and hardness may also be indicators. 

1998 

An observable pressure-related alteration of intact skin whose indicators as 
compared to an adjacent or opposite area on the body may include changes in 
one or more of the following: skin temperature (warmth or coolness), tissue 
consistency (firm or boggy feel), and/or sensation (pain, itching). The ulcer 
appears as a defined area of persistent redness in lightly pigmented skin, whereas 
in darker skin tones, the ulcer may appear with persistent red, blue, or purple 
hues. 

2.5 BENEFITS OF IMPROVED BLANCH RESPONSE DETECTION IN INTACT 

SKIN 

A number of research findings associate pressure ulcers in intact skin with the development of 

higher-stage ulcers.  Allman and colleagues found that 57.9% of hospitalized patients with Stage 

I pressure ulcers later developed Stage II or higher pressure ulcers at that site.11 Halfens and 

colleagues found that 22% of Stage I pressure ulcers in acute care and 8.7% of Stage I ulcers in 

long-term care deteriorated to a higher stage.12 Berlowitz and colleagues found that long-term 

care residents with Stage I pressure damage were twice as likely to develop a Stage II or higher 

ulcer than those without a Stage I ulcer.13  Higher stage ulcers are associated with significant 

medical complications, costly treatment, and increased mortality.14-17 

Considerable debate exists regarding whether lesions described as Stage I, typically 

associated with nonblanchable erythema, represent superficial pressure damage alone or may 
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indicate existing necrosis beneath intact skin that has not yet become an open wound, a lesion 

described as “pressure-related deep tissue injury under intact skin”.50 In either case, improved 

detection of nonblanchable erythema may assist clinicians in treating existing damage and 

preventing progression.  If an area of nonblanchable erythema represents damage to superficial 

skin layers alone, later development of an open wound may occur if damage in the area 

progresses to involve deeper tissue layers.  In this case, improved detection of nonblanchable 

erythema may facilitate earlier intervention to prevent damage to deeper tissue layers and their 

associated costs and complications.  Alternately, an area of nonblanchable erythema may be a 

sign that necrosis is already present in deeper tissue layers and that the area will inevitably 

become an open wound. In this case, improved detection of nonblanchable erythema would 

facilitate faster initiation of interventions to treat existing damage.   

Improved detection of nonblanchable erythema would also assist in reducing pressure 

ulcer-related health disparities between light and dark-skinned patients at risk for pressure ulcers.  

Research findings that higher rates of full thickness ulcers are present in darker-skinned 

individuals compared to those with light skin suggest that signs of pressure damage in intact dark 

skin are more difficult to detect, leading to progression of pressure damage without appropriate 

intervention. Furthermore, age-adjusted mortality rates have been reported to be more than 4 

times higher in African-Americans with pressure ulcers compared to Whites with pressure 

ulcers.75  Improved identification of nonblanchable erythema would enable clinicians to identify 

signs of pressure damage more readily in those with dark skin, facilitating their ability to provide 

prevention and treatment interventions in a manner similar to those of light-skinned individuals, 

and reducing the likelihood of fatal complications in those with dark skin. 

Improved detection of nonblanchable erythema would also provide more accurate data on 

the clinical course, incidence, and prevalence of pressure ulcers. Information on the timing of 

pressure damage development would be more accurate if pressure damage could be identified in 

intact skin, rather than delaying diagnosis until an opening in the skin is observed.  Incidence and 

prevalence data are incomplete without an accurate means of pressure damage detection in intact 

skin. Several incidence and prevalence estimates have intentionally excluded individuals with 

Stage I pressure ulcers because of the uncertainties involved with detecting these lesions.13,16,18-20 

An accurate means of pressure damage detection in intact skin would improve the quality of 
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prevalence and incidence data that is essential to understand the clinical course of pressure 

ulcers, evaluate treatment and prevention outcomes, and develop health policy goals.  
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3.0  TECHNOLOGY TO IMPROVE PRESSURE DAMAGE DETECTION 

3.1 THE NEED FOR TECHNOLOGY 

At present, clinical assessment of nonblanchable erythema is limited to the manual blanch test.  

In this test, an examiner observes the color of an area of skin, applies gentle pressure to the area 

with his/her index finger, removes his/her finger, and then inspects the skin to determine if 

lightening of the skin area—the “blanch response”—occurred as a result of pressure applied to 

the skin.  An alternate method of assessing the blanch response is to use a transparent material, 

such as a watch glass or microscope slide, instead of one’s finger to apply pressure to the skin.  

This method allows the examiner to observe color changes that may occur while pressure is 

being applied, as opposed to immediately after pressure application.  In both manual blanch test 

methods, the absence of blanching is considered a sign that pressure damage is present in the 

region that was examined.   

As described in the previous chapter, the manual blanch test is not effective in highly-

pigmented skin because color changes are difficult to observe visually, even in healthy skin, due 

to the presence of the skin’s pigment. Furthermore, the results of the manual blanch test are 

subject to interpretation by the observer, and are likely to be influenced by the skill and 

experience of that observer.  The manual blanch test also does not provide quantitative data on 

pressure damage.  There is a great need for an objective measure of nonblanchable erythema that 

is effective in both light and dark skin. 

A variety of non-invasive technologies provide objective measures of indicators of tissue 

viability or tissue damage.  Transcutaneous oxygen measurement, laser Doppler flowmetry, and 

temperature measurement have been used as measures of tissue viability in a variety of pressure 

ulcer-related research studies.  More recently, ultrasound has been suggested as a means of 

assessing pressure-related tissue damage.  While each of these technologies provides information 
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that relates to tissue viability or damage, none has been used to measure the blanch response or 

has been shown to otherwise address the challenges of pressure damage detection in darkly 

pigmented intact skin.  Another technology, known as tissue reflectance spectroscopy (TRS), 

shows promise in improving blanch response detection in light and dark intact skin through its 

ability to obtain information on both skin pigmentation and blood content.  The following 

sections provide an overview of existing non-invasive technologies for assessing tissue viability 

and discuss how TRS may improve pressure damage assessment by detecting a blanch response 

in skin regardless of its pigmentation. 

3.2 TECHNOLOGIES IN CURRENT USE 

3.2.1 Laser Doppler Flowmetry 

3.2.1.1 Measurement Principles and Instrumentation 

Laser Doppler flowmetry (LDF) is a measure of blood flow.  In this technique, monochromatic 

laser light is transmitted to tissue via optical fibers encased in a probe applied to the surface of 

the tissue.81-84  This light is typically red and is often emitted by a helium neon laser source.  A 

second optical fiber in the probe collects light backscattered from the tissue.  Information on 

blood flow is obtained from the backscattered light using the “Doppler effect”.  Through the 

Doppler effect, light striking a moving object, such as a red blood cell, undergoes a shift in 

frequency that is proportional to the velocity of the moving object.82,83  The light collected from 

the tissue consists of light of the same frequency as that transmitted to the tissue and light that 

has experienced a Doppler shift caused by reflection off a moving object.82  These two 

frequencies of light interact to create a “beat frequency” which is measured by photodetectors in 

the LDF device that subsequently create a voltage output.82,85  The LDF device then calculates a 

quantity known as “flux” which is considered a function of the number of moving red blood cells 

in the sampling volume multiplied by the mean net velocity of their movement.82,84   

LDF provides information on superficial tissue layers.  Its depth of penetration is 

estimated to be 0.5–1.5 mm with penetration up to 2 mm in tissue containing few light-absorbing 

species.81,82,84,86  The area of tissue sampled with a probe mounted on the surface of the skin is 
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small, estimated at 1 mm2.81,82  More complex laser Doppler imaging devices, which move the 

laser beam over an area of tissue, creating a 2-D image of flux information, can sample much 

larger tissue areas.81 

3.2.1.2 Applications  

LDF may be used to measure blood flow in a variety of clinical fields, including vascular 

surgery, dermatology, and plastic surgery.87  LDF has been used in several studies related to 

pressure ulcers.  LDF has been used to evaluate the effects of externally applied pressure on skin 

blood flow in both healthy participants and those at risk for pressure ulcer development.88-91  The 

influence of different body positions and various support surface types on blood flow has also 

been studied using LDF.92,93  Investigators have also used LDF to evaluate the effects of pressure 

experienced during surgical procedures and have studied the association between blood flow 

measured by LDF and subsequent pressure ulcer development.94,95  LDF has also been used to 

characterize differences between pressure-damaged and normal tissues.96,97 

3.2.1.3 Considerations   

Several factors must be considered when interpreting LDF measurements.  LDF devices express 

output in arbitrary units that do not provide absolute measures of tissue perfusion83,84, although 

data expressed in absolute units may be estimated using theoretical models.98  LDF is also known 

to show a flux signal even in tissue samples where blood flow has been completely occluded, 

suggesting some degree of background noise in the LDF signal.84  Some have suggested that this 

“biological zero” should be subtracted from the total LDF signal before data analysis.  LDF also 

does not provide information on the sources of flux in the tissue—all types of vessels in the 

sampling area contribute to the flux measurement.83  Finally, LDF measurements are highly 

variable over time and location.81,84 

3.2.2 Transcutaneous Oxygen Monitoring (TCPO2) 

3.2.2.1 Measurement Principles and Instrumentation 

Transcutaneous oxygen monitoring (TCPO2) is used to provide information on the presence of 

oxygen gas in blood and tissue.83,99   In this technique, a small chamber is attached to the surface 
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of the skin using an adhesive ring.  A few drops of solution are placed in the chamber and a 

transcutaneous gas probe connected to a monitoring device is attached to top of the chamber.  

The probe contains a heating element which warms the skin to approximately 42-45°C, 

depending on the device.  Heat has several effects that facilitate diffusion of blood gases through 

the skin and into the chamber.83  First, heat changes the structure of the stratum corneum, the 

outermost layer of the epidermis, such that it becomes more permeable to oxygen diffusion.  

Second, heat causes capillaries in the dermis to become hyperemic, bringing more gas-containing 

blood into the sampling region.  Third, heat from the probe warms the blood, facilitating oxygen 

dissociation.  Gases emerge from the tissue and enter the chamber where an electrochemical 

reaction takes place that can be measured by an electrode in the probe.83,96 

3.2.2.2 Applications  

Clinically, TCPO2 is most frequently used to estimate arterial oxygen pressure in infants, whose 

thin epidermis allows greater diffusion of gases than in adults.83,99,100  Other clinical applications 

include evaluation of peripheral hypoxia to determine prognosis for wound healing and assist in 

treatment selection.101,102 

TCPO2 has been used in several research studies related to pressure ulcers.  Several 

researchers have used TCPO2 to evaluate the effect of externally applied forces (pressure and/or 

shear) over bony prominences in healthy adults and those at risk for pressure ulcer 

development.48,89,90,100,103,104 TCPO2 has also been used to compare the effects of various kinds of 

bed support surfaces and seat cushions on tissue oxygen content.93,103,105-107  Investigators have 

also characterized tissue oxygenation in pressure-damaged versus healthy skin using TCPO2 

measurements.96 

3.2.2.3 Considerations   

Heating is required in TCPO2 to enable gases to reach the probe.  However, it has been reported 

that some individuals undergoing TCPO2 measurement experienced burns from the probe, 

requiring adjustment of the warming temperature and/or periodic changes in sensor position to 

prevent burns.83,100,105  Individuals at risk for pressure ulcers may have a variety of conditions 

that affect skin fragility or impair thermoregulation, making the potential for burns a serious 

concern.  In addition, those with conditions that impair vasodilation may show falsely low 
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TCPO2 readings compared to those without such conditions because they do not experience 

changes in blood flow that facilitate diffusion of gases present in blood and tissue.108  In addition, 

TCPO2 measurements require a stabilization period of 15-20 minutes after application of the 

probe before readings can be taken, increasing the length of measurement protocols.83 TCPO2 

equipment must also be calibrated frequently.99  Finally, errors in gas measurement may be 

introduced if the chamber on the skin is inadequately sealed, allowing gases from the external 

environment to enter the chamber.99 

3.2.3 Skin Temperature Measurement 

3.2.3.1 Measurement Principles and Instrumentation 

Skin temperature is frequently used as a measure of tissue viability, and is described by NPUAP 

as one of the possible indicators of Stage I pressure ulcers.80  The temperature of skin is 

influenced primarily by blood perfusion, although heat produced by metabolic activity may also 

contribute to skin temperature.109  Skin temperature may be measured using contact or non-

contact methods.  Thermistor probes, thermocouples, and liquid crystal thermometers attached 

directly to the surface of the skin may used to measure temperature.32,92,110,111  Thermography is a 

non-contact technique that uses an infrared-sensitive camera to measure heat energy emitted 

from the skin in the form of infrared radiation, creating a 2-D image of heat emission from the 

region of interest.109,112   

3.2.3.2 Applications 

Thermography has been used to monitor a variety of health conditions, including inflammatory 

diseases, muscle injuries, diminished enervation, and frostbite.112  Pressure ulcer researchers 

have used skin temperature measurement via contact sensors or thermography as an indicator of 

tissue perfusion or tissue damage.  Skin temperature measurements were used to evaluate the 

response of tissue to external pressure application in healthy participants and those at risk for 

pressure ulcers.92,105,109  Researchers have examined the relationship of skin temperature to 

subsequent pressure ulcer development in those at risk for pressure ulcers order to identify 

indicators of impending ulceration.110,113  Temperature has been used to characterize discolored 

areas near bony prominences to determine if temperature measurements differentiate pressure 
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damaged versus healthy skin.32,111  One animal study applied thermographic assessment of skin 

to the problem of identifying deep tissue injury under intact skin (DTI).114  Skin temperature 

measurements were correlated with histological examination and classification of wounds 

induced in pigs.  No differences in skin temperature were noted between normal and DTI sites, 

but when a cold stimulus was applied to the area, DTI sites showed a cooler skin temperature 

relative to surrounding skin than did normal sites.  More research is needed to determine what 

role skin temperature measurement plays in assessment of DTI. 

3.2.3.3 Considerations   

Highly controlled environments are critical for conducting skin temperature measurements.109  

Fluctuations in external temperature create a confounding variable that complicates the 

interpretation of skin temperature changes.  Particularly in cases when temperature is being 

measured at the skin-support surface interface, the heat insulating or conduction properties of the 

surface must be considered when interpreting skin temperature data.  One researcher reported 

that thermographic findings did not correspond well with blood flow measures, suggesting that 

warmth at the skin surface resulted from the insulating properties of the support surface rather 

than an increase in blood flow.105  

3.2.4 Ultrasound Imaging 

3.2.4.1 Measurement Principles and Instrumentation 

Ultrasound uses sound waves to obtain images of body structures.  Ultrasound devices include a 

transducer that converts electrical energy to sound waves.115  To obtain an image, the transducer 

is placed in contact with skin to which a coupling medium, typically gel, has been applied to 

allow transmission of sound waves from the transducer to the body.116  Sound waves entering the 

body are absorbed, reflected, or scattered by tissues.  “Echoes” are created at areas of transition 

between tissues with different densities or elastic properties.112,116  Sound waves that are 

reflected back to the transducer are converted to electrical signals that are displayed visually by 

the device.  Most ultrasound imaging uses B-mode (brightness mode) ultrasound, in which the 

device creates a cross-sectional image of the structure being examined.115,116  Bright, or 

hyperechoic, areas correspond to structures containing a number of internal density transitions 
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that create backscattering of sound waves.  Dim, or hypoechoic, areas arise from structures 

lacking internal density transitions, including fluids.  Abnormalities in tissue may be identified 

by patterns of echogenicity that differ from healthy tissues.  

The depth and resolution of ultrasound images depends on the frequency and power of 

sound produced by the transducer.  Most conventional diagnostic imaging ultrasound devices 

operate in the 2-10 MHz range, with frequencies of 3.5 MHz recommended for deep scanning in 

adults.115,117  More recently, high frequency devices using 20 MHz or greater sound waves have 

been developed to visualize superficial structures (less than 2 cm deep) with greater resolution 

than that of conventional ultrasound.116-119 

3.2.4.2 Applications 

Conventional ultrasound devices are widely used in clinical practice for diagnostic imaging of 

abdominal structures, developing fetuses, major blood vessels, musculoskeletal structures, and 

breast tissue.115,120 High-frequency devices have been used clinically to examine skin lesions 

(skin cancers, psoriasis, scleroderma)117,118, ophthalmic structures, vascular structures, and 

cartilage.121 

Ultrasound assessment of wounds is not widespread, but has been reported in some 

investigations.  Conventional ultrasound has been used to make volumetric measurements of 

chronic wounds up to 6 cm deep122, measure burn scar depth123, and scan post-surgical hip 

wounds for the presence of subcutaneous hematomas.124   High-frequency ultrasound has been 

used to assess skin thickness in chronic wounds97, and to measure depth and width of healing 

wounds created by punch biopsy119,125,126 or cryosurgical removal of basal cell carcinoma.127 

Experts in the pressure ulcer field have suggested that ultrasound may be a valuable tool in 

assessing pressure damage, but there are little research data specific to pressure ulcer assessment 

by ultrasound. 

3.2.4.3 Considerations 

Ultrasound imaging requires a skilled operator for appropriate interpretation of images.128  

Ultrasound also requires the use of a gel or other medium to transmit sound waves to the tissue.  

Skin hydration due to these media may change the properties of the wound being evaluated, and 

efforts must be made to protect open wounds from contamination by gel.97,119 The irregular 
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shape of wound sites further complicates imaging by making it difficult to maintain appropriate 

pressure and orientation of the transducer in order to avoid artifacts.97,117 More information is 

needed to determine the feasibility and value of ultrasound imaging to assess pressure-related 

tissue damage. 

3.3 EMERGING TECHNOLOGY: TISSUE REFLECTANCE SPECTROSCOPY 

While laser Doppler flowmetry, TCPO2, skin temperature measurement, and ultrasound are 

capable of providing information that relates to tissue damage, none of these technologies has yet 

been demonstrated to address the challenges of pressure damage detection in darkly pigmented 

intact skin.  Pressure ulcer researchers have recently begun to explore the capabilities of another 

technology, known as tissue reflectance spectroscopy (TRS).  TRS is a non-invasive method that 

uses light reflected from the skin to obtain information about the type and concentration of 

biochemical substances present in the skin tissue, such as melanin and hemoglobin. While TRS 

has been used in animal and human-subjects research studies for several years, the application of 

TRS to pressure damage assessment is relatively new.  This section describes the mechanisms by 

which TRS provides information on factors relevant to tissue viability, and explores how TRS 

may improve the detection of pressure damage in darkly-pigmented intact skin by measuring the 

blanch response regardless of skin pigmentation. 

3.3.1 Optical Properties of Skin Tissues 

Light shone on the skin may be reflected, absorbed, or scattered.  Approximately 5% of incident 

light is reflected off the outermost layer of the skin without entering the tissue.129,130  Light that 

penetrates the surface of the skin may encounter a number of light-absorbing species, known as 

chromophores. The primary chromophores in skin include melanin in the epidermis and 

oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) in the plasma of the dermal vessels.129-131  

Light that enters skin tissue also experiences considerable scattering due to differences in the 

refractive index of various tissue constituents, including collagen, cell membranes, intra and 
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extra-cellular fluids, mitochondria, ribosomes, and fat globules.130-132  A portion of the light 

transmitted to the skin re-emerges as diffuse reflectance, which includes light that has been 

reflected and scattered within tissue.133 

3.3.2 Measurement of Tissue Reflectance 

Instrumentation used to measure tissue reflectance consists of several components, including a 

light source, fiber optics, and a spectrophotometer.131,134     Quartz tungsten halogen light sources 

are frequently used to provide visible (400-700nm) and near-infrared (700-2500nm) illumination 

to the tissue.23,24,31,131  Light in these ranges is considered to be non-ionizing, and falls below the 

longer infrared wavelengths capable of causing superficial thermal injury to skin.135  Light from 

the source is carried to the skin via fiber optics.134  A second set of fiber optics carries diffusely 

reflected light from the tissue to a spectrophotometer.  The spectrophotometer contains 

photodetectors that convert light (photons) into electrical signals that are a function of the 

amount of light reaching the photodetector and the duration of light exposure.131  Most 

photodetectors respond to light in milliseconds, providing fast readout of reflectance information 

from the tissue.131 

The spacing of the illumination and collection optodes and the wavelengths of light 

transmitted to the tissue influence the depth of tissue sampled by the spectroscopy system.  The 

path light takes between the illumination and collection optodes is thought to be “banana shaped” 

such that the maximum depth of tissue sampled falls between the optodes.134  The greater the 

separation between the optodes, the greater the depth of light penetration.  Inter-optode spacing 

of a millimeter of less is used to sample surface tissues131, where as spacing of several 

centimeters may to used to sample deeper tissues such as muscle or brain tissue.134  The 

sampling depth desired must be balanced with signal to noise levels as noise also increases with 

increased inter-optode spacing.134  Sampling depth also increases with longer wavelengths of 

illumination.  Depths of several centimeters may be sampled using near-infrared illumination, 

whereas shorter wavelengths in the visible and mid-infrared range may penetrate millimeters or 

less in the tissue.134  Longer-wavelength near-infrared light is not as readily absorbed by tissue as 

light of shorter wavelengths, such as mid-infrared or visible light.131  Its reduced absorption 
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allows near-infrared light to travel farther into the tissue before it is attenuated.  Near-infrared 

light is also highly scattered, which may facilitate its travel to deeper tissues.131   

The spectrophotometer calculates a quantity known as “log inverse reflectance” (LIR) 

which approximates the absorbance of light by the tissue.22  LIR is calculated using the intensity 

of diffusely reflected light from the skin and light reflected from a white surface, recorded prior 

to taking measurements from the skin, as follows: 

 

LIR = log10 (intensity of light reflected from white surface/intensity of light reflected from tissue) 

 

The spectrophotometer displays an absorbance spectrum based on the calculated LIR.  Light 

wavelength in nanometers is plotted along the x-axis of the spectrum, and the absorbance of light 

at each wavelength (expressed as “optical density”) is plotted on the y-axis of the spectrum.  

Peaks in the spectrum represent regions of high light absorption (maxima) and valleys represent 

regions of low absorption (minima).  Typical skin spectra recorded from light and dark healthy 

skin are shown in Figure 1.   

 

 

Figure 1. Typical spectra of light and dark skin 
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3.3.3 Derivation of Hemoglobin Data from Tissue Spectra 

Tissue spectra provide information on the type and concentration of chromophores in the skin 

tissue.  The shape of the spectrum obtained from the skin is a result of contributions from each of 

the skin’s chromophores, principally melanin, oxyhemoglobin (HbO2) and deoxyhemoglobin 

(Hb).  Each of these chromophores absorbs light in unique patterns (Figure 2).24,131   HbO2 shows 

two absorption maxima in the visible light range near 540 and 577 nm, while Hb shows one 

maximum near 555 nm.  Melanin’s light absorption is high in the visible range, but decreases 

steadily toward the near-infrared region with very little absorption beyond 1100 nm.24,131 The 

shape of the skin spectrum may be considered a composite of the shapes of the chromophores’ 

spectra.  This is particularly evident in the visible region.  In lightly pigmented skin, two 

absorbance maxima and an absorbance minimum are clearly visible between 500 and 600 nm as 

a result of the combined presence of HbO2 and Hb in the tissue.  In darkly pigmented skin, the 

skin spectrum has a sloped shape in this region, due to the contribution of melanin.  Thus, 

spectral shape provides information on the types of chromophores present in the tissue. 

 

 

Figure 2. Spectra of hemoglobin (HbO2)136, deoxyhemoglobin (Hb)136, and melanin137 in 
the visible light region 
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While spectral shape provides information about the types of chromophores present in the 

skin, the amount of absorption provides information about the concentration of each of the 

chomophores present.  For non-scattering media, absorbance (approximated by LIR) is directly 

proportional to the concentration of chomophores in the sample and the distance traveled 

between the illumination and collection optodes, as described by the Beer-Lambert Law134: 

A = ∑Ciεid 
CI = Concentration of ith species,  εi = Molar absorptivity of ith species,  d = Inter-optode distance
 

Thus, the concentration of a substance in a non-scattering medium can be assessed quantitatively 

using absorbance data.  In a highly scattering medium such as skin, photons of light do not travel 

in a straight line between the illumination and collection optodes.  Light follows any number of 

paths on its way to the collection fiber, such that the distance traveled in the tissue exceeds the 

inter-optode distance.131,134  Absorbance in scattering media is described via a modified version 

of the Beer-Lambert Law, where a “differential pathlength factor” (DPF) is added to the 

expression to account for the difference between the actual pathlength traveled in the sample and 

the inter-optode distance134: 

A = ∑Ciεid DPF 

Estimates of DPF fall in the 4–6.5 range, meaning that photons of light may travel a distance at 

least 4 times greater than the inter-optode distance.134  Because DPF cannot be known exactly in 

highly scattering media such as skin, it is difficult to quantify the absolute concentrations of 

chromophores in skin.  However, absorbance is considered a measure of relative concentration of 

the chromophores in the tissue sampled.24 

Several researchers have developed TRS data analysis algorithms that account for the 

presence of melanin in the skin, allowing the concentrations of hemoglobin and deoxygenated 

hemoglobin to be measured in individuals with various levels of skin pigmentation.21-26  One 

approach is to calculate indices for hemoglobin and melanin content.  Dawson and colleagues 

calculated an “erythema index” (E) based on the area under the skin spectrum between 510 and 

610 nm.22  Dawson then adjusted E for skin pigmentation using a “melanin index” based on the 

differences in absorption at wavelengths in the 645-655 nm range compared to the 695-705 nm 

range.  Feather and colleagues reported that the erythema index described by Dawson was 
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influenced by blood oxygenation, and described a new “hemoglobin index” (H) derived from 

absorbance data at isobestic points—wavelengths where absorption for oxyhemoglobin and 

deoxyhemoglobin are the same.26  Feather calculated H via the difference in absorption gradients 

calculated for two sets of isobestic points (544 and 527.5 nm; 573 and 544 nm).  Ferguson-Pell 

and Hagisawa calculated an index of blood content (IHB) using the method of Feather, but 

developed a melanin index (IMEL) for each tissue sample based on “bloodless” spectra obtained 

by applying firm finger pressure to the area of interest.21  IMEL was calculated based on the 

linear regression of bloodless spectrum data in the 500-600 nm range.   

Others have used regression analysis to calculate relative concentrations of hemoglobin 

in tissue.  Riordan and colleagues scaled the slope of an in-vitro, concentration-independent 

absorption curve for melanin by the difference in absorption between 500 nm and 625 nm for 

each tissue spectrum of interest.23  The scaled melanin spectrum was then subtracted from the 

corresponding tissue spectrum. The resulting spectrum was regressed against a standard in-vitro, 

concentration-independent absorption curve for hemoglobin.  The resulting regression coefficient 

was considered a measure of hemoglobin concentration in the tissue.  Matas and colleagues24 

calculated tissue hemoglobin content using regression analysis and in vitro extinction 

coefficients, a measure of the light absorbed by a 1 mole/liter solution of a pure substance 

measured in a 1 cm light path.138  Matas and colleagues calculated the relative concentrations of 

Hb, HbO2, and melanin by performing non-negative least squares fits of tissue spectra to the 

extinction coefficients for each of these species, including an offset term to account for light 

scattering.  Total hemoglobin was calculated as the sum of the coefficients produced for Hb and 

HbO2.  

3.3.4 Research Applications of Hemoglobin Monitoring via Spectroscopy 

TRS has been used to characterize hemoglobin content or oxygenation in a variety of animal and 

human studies.  Several investigators have used TRS to monitor hemoglobin content in animal 

skin flaps139-141 and to characterize burns in a porcine model.142  In human subjects, investigators 

have demonstrated the ability of TRS to measure real-time changes in Hb and HbO2 content 

associated with arterial or venous occlusion during forearm occlusion protocols.21,27,143  Muscle 

oxygenation has been assessed using TRS during exercise29,144,145 or post-occlusive reactive 
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hyperemia146 in healthy individuals and those with vascular disease.  Cerebral oxygenation has 

been measured with TRS during motor tasks147,148 or orthostatic stress.28,149 

TRS has also been used to monitor hemodynamic changes in human skin exposed to 

external loading.  Investigators have successfully used TRS to track pressure-induced reactive 

hyperemia in participants at risk for pressure ulcers, including participants with spinal cord 

injury and below-knee amputation.30,31 TRS has also been shown to distinguish pressure-induced 

erythmatic sites from non-erythmatic sites with high levels of reliability (ICC 0.80-0.99), 

sensitivity (0.74 to 0.90) and specificity (0.64 to 0.91) in light and dark-skinned healthy 

participants using a variety of analysis algorithms.23 TRS instrumentation has also been 

developed to monitor blood content changes in residual limbs to which a compressive garment 

has been applied.150 

3.3.5 Pressure Damage Detection in Intact Skin via Spectroscopic Assessment of the 

Blanch Response 

TRS provides a means of improving pressure damage detection in light and dark intact skin 

because of its ability to measure hemoglobin despite the presence of skin pigmentation.  As 

described in Chapter 2, the blanch response is frequently used as an indicator of pressure damage 

in intact skin.  In a clinical blanch test, whitening or “blanching” of the skin occurs with pressure 

application due to the displacement of blood from beneath the area where pressure is applied.  

While blanching cannot be observed visually in dark skin, a “spectroscopic blanch response” can 

be quantified by comparing the total concentration of hemoglobin in skin in its resting state to 

that of skin during gentle pressure application.24  Because a variety of algorithms exist to account 

for the presence of melanin in the spectral signal, it is possible to measure the spectroscopic 

blanch response in both light and dark-skinned individuals. 

Two recent studies have used TRS to quantify the blanch response in light and dark skin. 

Matas and colleagues applied pressure to the outer forearm of healthy participants whose skin 

visibly blanched with manual pressure (light skin group) and healthy participants whose skin did 

not blanch visibly (dark skin group).24,25  Cyclic loads of up to a maximum of 50 mmHg were 

applied to the dorsal forearm via a fixed benchtop device containing a stepper motor, pressure 

sensor, and fiber optic probe.  A statistically significant decrease in total hemoglobin was 
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detected in both the light and dark skin groups.  These results indicate that a blanch response can 

be “seen” with spectroscopy even when no visible color changes are identified with visual 

inspection.  Sprigle and colleagues assessed the blanch response in participants receiving 

inpatient and outpatient rehabilitation services.32 Spectroscopic and manual blanch tests were 

conducted over areas of discoloration near bony prominences.  Spectroscopic blanch tests were 

performed using an indenter containing a fiber optic probe and pneumatically driven piston that 

applied 150 mmHg pressure to the skin.  Spectroscopic data from clinically blanching sites 

differed from that of clinically non-blanching sites, but there was wide variation in the extent of 

blanching measured by spectroscopy.  More information is needed to determine the diagnostic 

value of spectroscopic blanch response assessment. 
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4.0  PILOT STUDY TO DETECT THE BLANCH RESPONSE IN LIGHTLY AND 

DARKLY-PIGMENTED SKIN USING TISSUE REFLECTANCE SPECTROSCOPY 

4.1 GOALS AND OBJECTIVES 

Little data exist in the literature describing spectroscopic assessment of the blanch response at 

sites at risk for pressure ulcer development.  Therefore, a pilot study was conducted to establish a 

reliable protocol to assess the blanch response in lightly and darkly pigmented healthy skin using 

a portable reflectance spectroscopy system.  The pilot study had two objectives: (1) to determine 

if a significant decrease in total hemoglobin can be observed when pressure is applied to light 

and dark healthy skin, and (2) to assess the intra-rater reliability of spectroscopic blanch response 

measurement in participants with healthy skin. 

4.2 METHODS 

4.2.1 Participants 

Eligible participants were healthy, able-bodied males and females aged 18–50 years. Participants 

were excluded from the study if they (1) had skin disorders that produced scarring, flaking, rash, 

or discoloration of the skin at the sacrum or the dorsal aspect of the heel, (2) were diagnosed 

with diabetes, pulmonary disease, renal disease, collagen vascular disease or clotting disorders, 

(3) were taking vasoactive medications, or (4) were unable to lie prone and semi-sidelying 

without difficulty.  

A total of 30 participants were recruited for this study, 15 with dark skin and 15 with 

light skin.  Skin color classification was determined by manually applying gentle pressure to the 
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outer forearm of each participant. Participants whose skin showed no visually observed color 

change in response to pressure were placed in the dark skin group. All others were placed in the 

light skin group. The manual blanch test has been used both clinically and in previous 

investigations to define light versus dark skin.9,24,32 

Participants’ skin at the heel and sacrum was also matched to Munsell color tiles (Figure 

3). Munsell color tile matching has been used in previous investigations to facilitate description 

of color.23,151-153 The Munsell Color-Order system assigns alphanumeric designations to color 

samples based on three qualities: hue, value, and chroma.153 The value quantity describes the 

lightness or darkness of a color, ranging from 0 for pure black, to 10 for pure white. The 5YR 

Munsell color tile card consisted of 33 tiles arranged in 7 rows of 2-6 tiles each mounted on 

neutral grey flexible cardboard. The card included tiles of Munsell value 2.5, 3, 4, 5, 6, 7, and 8 

and Munsell chroma 1, 2, 3, 4, 6, and 8. The tiles were perforated to allow close comparison of 

each tile to the participant’s skin.  The investigators recorded the Munsell value and chroma of 

the tile that best matched each participant’s skin at the heel and sacrum. 

 All study procedures, risks, and benefits were discussed and informed consent provided 

prior to the beginning of any study procedures in compliance with the policies of the Institutional 

Review Board at the University of Pittsburgh. 
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Figure 3. 5YR Munsell color tile card 
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4.2.2 Instrumentation 

Skin reflectance data were acquired using a spectroscopy system made up of four major 

components (Figure 4): a spectrophotometer (Ocean Optics, Dunedin, FL, Model SD2000), a 

100W quartz tungsten halogen light source (Oriel Industries, Stratford, CT, Model 77501), a 

bifurcated fiber optic reflectance probe (Fiberguide Industries, Caldwell, ID), and a computer 

with data acquisition software (OOIBase32, v. 2.0.0.3, Ocean Optics, Inc., Dunedin, FL). The 

probe included an outer ring of 32 illumination fibers and 7 central collection fibers. The 

collection and illumination fibers were separated by 1 mm. A custom-designed spring assembly 

and indenter head (radius 7.5 mm) were fabricated and mounted onto the fiber optic probe to 

allow the examiner to apply gentle pressure (up to 120 mmHg) to the skin (Figure 5), mimicking 

the pressure applied with the index finger during clinical assessment of the blanch response.  The 

outer edge of the probe head was machined with a 0.9 mm radius of curvature to minimize edge 

effects. The radius of curvature was optimized using finite element modeling to minimize stress 

concentrations at the perimeter of the head.154 

 

 

Figure 4. Spectroscopy system composed of: (1) spectrophotometer (2) light source (3) fiber 
optic probe (4) laptop computer 
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Figure 5. Fiber optic probe with indenter head and spring assembly 

4.2.3 Procedures 

The light source was allowed to warm up for at least 30 minutes prior to the participant’s arrival. 

After this period, dark and reference spectra were recorded for later calculation of optical 

density. Reference spectra were recorded from a white reflectance standard (Halon, >97% 

reflectivity, StellarNet, Inc., Tampa, FL).  

Informed consent was obtained, eligibility was verified, and skin color group 

classification was determined as described above. A total of six skin reflectance measurements 

were obtained at each body site (heel and sacrum): three with the participant positioned in prone, 

and three with the participant positioned in semi-sidelying (approximately 60° from supine). 

Each measurement contained spectra obtained in light contact and gentle pressure conditions. All 

spectra were acquired at a rate of 1 spectrum/second. The heel test site was located at the dorsal 

aspect of the heel, over the most prominent part of the calcaneus.  The sacral test site was located 

at the apex of the curve of the sacrum, approximately 1 to 1.5 inches superior to the beginning of 

the gluteal cleft. The heel to be tested (left vs. right), and the order of body site testing and body 

positioning were determined using a coin flip.   

The participant was asked to lie in position 1 (either prone or semi-sidelying) on a padded 

mat table. Pillows were provided as needed to provide support, comfort, and minimize 

movement during the study procedures.  The skin over site 1 (either heel or sacrum) was 

inspected to verify that it was free of scarring, flaking, rash, or discoloration. A piece of 

transparent double-sided tape was applied to site 1 to mark the site and minimize movement of 
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the fiber optic probe during data acquisition. The investigator then placed the fiber optic probe in 

light contact (<5 mmHg) with the tape over the skin at site 1.  Previous studies have reported that 

this contact pressure is sufficient to allow even contact with the skin’s surface, but is insufficient 

to produce a blanch response.24  The probe was positioned so that incident light was directed 

perpendicular to the skin surface.  

 

 

Figure 6. Hand-held indenter during light contact period (left) and gentle pressure period (right) 

The probe was held in light contact with the skin for a total of 45 seconds. (The 

reflectance signal was allowed to stabilize for 15 seconds, followed by 30 seconds of reflectance 

data collection.) Without lifting the probe from the skin, the investigator gently increased the 

pressure delivered to the skin to 120 mmHg by depressing the plunger on the probe and 

compressing the spring to a predetermined length (Figure 6). This gentle pressure was 

maintained on the skin for 45 seconds while reflectance data was collected by the 

spectrophotometer. The probe was then lifted off the skin. A two-minute washout period was 

provided, and the process was repeated until three measurements were acquired in body position 

1 at site 1.  The tape was removed from the test site and the site was inspected to verify that the 

  40



participant experienced no irritation. Three measurements were then taken at site 2 in position 1 

using the same process described above.  The participant was provided an optional 10-minute 

break to move around and refresh him/herself as needed.  After the break, the participant 

assumed body position 2 on the mat table and a new piece of double-sided tape was applied to 

site 1.  Three measurements were acquired in position 2 at site 1 and site 2 using the same 

process described above. 

4.2.4 Spectroscopic Data Processing 

Reflectance data were converted to optical density units by the OOIBase32 software using the 

formula log10(reference – dark) – log10(skin reflectance – dark). The relative concentrations of 

oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), and melanin present in the 

skin in-vivo were determined by performing a non-negative least squares fit of in-vivo skin 

spectra to the extinction coefficients of HbO2, Hb and melanin measured by in-vitro 

spectroscopy (Figure 2).24,25 The regression coefficients represent a multiplication factor that 

describes the concentration of HbO2, Hb, and melanin in the skin relative to their concentrations 

in the solutions from which the in vitro spectra were obtained. Because the skin is a scattering 

medium, the regression coefficients cannot be used to calculate the absolute magnitude of the 

concentration of each species in the skin.131 However, the regression coefficients can be 

considered a relative measure of concentration for each of these species 

Optical density data were analyzed in Matlab (v.6.5, Mathworks, Inc., Natick, MA). Fits 

were performed using data in the visible region of the spectrum between 525 nm and 580 nm. 

Melanin was assumed to be constant in both the light contact and gentle pressure conditions and 

an offset term was included to account for the scattering of light in skin. Total hemoglobin (tHb) 

was calculated as the sum of the HbO2 and Hb signals. Percent tissue oxygen saturation (StO2) 

was calculated from the HbO2 and Hb signals according to the formula [HbO2 / (HbO2 + Hb)] x 

100. 

Fifteen Hb, HbO2, tHb, and StO2 values obtained during the middle of the light contact 

and gentle pressure periods were averaged to produce one light contact and one gentle pressure 

value for each spectroscopic blanch test. For each species, the light contact value was subtracted 

from the gentle pressure value so that negative changes indicated a decrease in concentration 
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when pressure was applied. The “spectroscopic blanch response” was defined as the change in 

total hemoglobin (ΔtHb) that occurred when pressure was applied to the skin.  

Data used to calculate measurement reliability were obtained from a second data analysis 

approach. In this paired difference approach, the relative concentrations of Hb and HbO2 for 

conditions of light contact and gentle pressure were subtracted within each subject and for each 

anatomical site.  This paired difference approach provided the relative change in the 

concentrations of HbO2, and Hb due to the application of pressure on the skin.  Calculating a 

ΔtHb parameter by summing the calculated values of ΔHbO2, and ΔHb provides a measure of the 

amount of blood displaced out of the sampling volume of the optical beam during the application 

of pressure.  ΔStO2 was calculated as [ΔHbO2/[ΔHbO2 + ΔHb]] x 100%. 

4.2.5 Statistical Analysis 

Dependent samples t-tests were used to compare the light contact and gentle pressure values of 

each hemodynamic species (tHb, StO2, HbO2, and Hb) and to compare the magnitude of change 

in the concentration of these species with pressure application between the two body positions.  

Dependent samples t-tests were also used to compare the relative concentration of melanin at the 

sacrum versus the heel within each participant.  Independent samples t-tests were used to 

compare the magnitude of the change in each species between light and dark skinned participants 

and to compare the relative concentration of melanin (averaged over both positions) for the light 

skin versus dark skin group.  Statistical tests were run in SPSS (v. 11.0.1, SPSS, Inc.) with data 

split by each unique skin color, body site, and body position combination. An alpha level of 0.05 

was selected for all tests. 

Intra-rater reliability for the overall sample was quantified using intra-class correlation 

coefficient (ICC) Model 3.155,156  This approach is based on a two-way mixed model and 

calculates ICC values using analysis of variance (ANOVA) for repeated measures.  Model 3 was 

selected because the tested raters were considered the only raters of interest and measurements 

were repeated within participants.  Both average measure (ICC 3,k) and single measure (ICC 3,1) 

outputs were reported.  Due to their small magnitude, relative concentration data were multiplied 

by 106 prior to calculating ICCs in SPSS. 
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Demographic data and Munsell color tile values were compared between the light and 

dark skin groups. Chi-square analyses were used to assess differences between the light and dark 

skin groups on nominal variables (gender, race/ethnicity). Independent samples t-tests were used 

to compare age between the skin color groups. Munsell color tile values were treated as ordinal 

data and analyzed using the Mann-Whitney U test. 

4.3 RESULTS 

4.3.1 Participant Characteristics 

Demographics and Munsell color tile values are shown in Table 3. The light and dark skin 

groups were not significantly different from each other in terms of age or gender. As expected, 

the racial/ethnic makeup of the light and dark skin groups differed (χ2=26.3, significant at 

p<0.001). The majority of the light skin group members (n=10) described themselves as White, 

whereas all dark skin group members described themselves as African-American. Munsell color 

tile values were significantly higher in the light skin group than the dark skin group at both the 

sacrum and heel (p<0.001).  The relative concentration of melanin at the both the heel and 

sacrum was significantly greater in dark-skinned participants than light-skinned participants 

(p<0.001, Table 4).  The relative concentration of melanin was significantly greater at the sacrum 

than the heel for both light and dark-skinned participants (p≤0.001).  No discomfort was reported 

or skin irritation observed in any of the participants participating in the pilot study. 
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Table 3. Characteristics of light and dark skin groups 

Characteristic 

Name Data Format 

Light Skin 

(n = 15) 

Dark Skin 

(n = 15) 

Age in Years 
Mean (Standard 
Deviation) 34.1 (9.9) 33.2 (10.6) 

Gender 
    Male 
    Female 

 
Number of 
Subjects 

 
6 
9 

 
5 

10 

Race/Ethnicity† 
    African-American 
    Asian-Pacific Islander 
    Hispanic 
    White 
    African-American/White 

 
Number of 
Subjects 

 
1 
2 
1 

10 
1 

 
15 
0 
0 
0 
0 

Munsell Color Tile Value* 
     Heel 
     Sacrum 

Median (Range)
 

7 (6-7) 
6 (5-7) 

 
4 (3-5) 
3 (2.5-4) 

† χ2=26.3, significant at p<0.001. 
* Significant at p<0.001. 

 

 

Table 4. Relative Concentration of Melanin (µM * cm) 

Skin Color Heel 
Mean (St. Dev) 

Sacrum 
Mean (St. Dev) 

Light Skin (n = 15) 167.8 (110.9) 269.0 (154.1) 

Dark Skin (n = 15) 638.9 (217.9) 964.6 (222.9) 

Note: Melanin data averaged between prone and sidelying measurements. 
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4.3.2 Heel Spectroscopic Data 

4.3.2.1 Hemodynamic Species 

Typical light contact and gentle pressure spectra for light and dark skin are shown in Figure 7.  

The total hemoglobin (tHb) time courses observed during the spectroscopic blanch test are 

shown in Figure 8.  A significant decrease in the relative concentration of tHb, StO2, HbO2, and 

Hb was observed with pressure application in both prone and semi-sidelying (p<0.001 for all 

species), as shown in Table 5. The magnitude of the change was not significantly different in 

prone versus semi-sidelying when data were grouped by skin color, although the magnitude of 

the change in Hb was greater in semi-sidelying than prone when light and dark skin participant 

data were combined (p=0.04). The magnitude of the decrease in tHb, HbO2, and Hb with 

pressure application was not significantly different in light versus dark-skinned participants in 

either prone or semi-sidelying. The change in StO2 was significantly greater in light skinned 

participants than dark skinned participants in both prone and sidelying (p<0.001 for both 

positions). 

The magnitude of the change in the relative concentrations of each hemodynamic species 

with pressure application varied considerably between participants.  In light-skinned participants, 

standard deviation values ranged from 39% (tHb in prone) to 62% (Hb in semi-sidelying) of the 

magnitude of the hemodynamic species’ change value.  In dark-skinned participants, standard 

deviation values ranged from 41% (tHb in prone) to 69% (Hb in sidelying) of the change value. 

4.3.2.2 Intra-rater Reliability 

Single measure ICCs for ΔtHb measurement at the heel (Table 6) were 0.80 or greater, while 

average measure ICCs (Table 7) exceeded 0.90, indicating good to excellent156 intra-rater 

reliability.  In general, reliability for ΔStO2, ΔHbO2, and ΔHb was moderate to good for single 

measures (most ICCs >0.75) and excellent for average measures (most ICCs >0.90), with the 

exception of ΔStO2 in sidelying. 
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Figure 7. Typical heel spectra observed in participants with light skin (right) and dark skin (left) 

 

 

Figure 8. Heel total hemoglobin time courses 
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Table 5. Mean change in relative concentration of hemodynamic species following pressure 
application at the heel 

Species Position 
Light Skin 

(n = 15) 
Mean (St. Dev.) 

Dark Skin 
(n = 15) 

Mean (St. Dev.) 

P -17.57 (6.83) -14.66 (6.00) 
ΔtHb (µM * cm) 

SL -21.64 (10.62) -15.67 (8.37) 

P -18.04 (9.94) -5.89 (3.51) 
ΔStO2 (%) 

SL -16.61 (8.17) -5.48 (3.20) 

P -7.46 (4.16) -6.10 (3.29) 
ΔHb (µM * cm) 

SL -10.53 (6.56) -7.03 (4.83) 

P -10.11 (4.32) -8.56 (3.90) 
ΔHbO2 (µM * cm) 

SL -11.11 (5.28) -8.64 (4.45) 

P= Prone, SL=Semi-sidelying. 
 

Table 6. Single measure intra-rater ICCs at heel (95% confidence intervals in parentheses) 

 Position 

Species Prone Semi-Sidelying 

ΔtHb 0.80 (0.67, 0.89) 0.83 (0.71, 0.91) 

ΔStO2 0.76 (0.62, 0.87) 0.52 (0.31, 0.71) 

ΔHb 0.78 (0.64, 0.89) 0.79 (0.65, 0.88) 

ΔHbO2 0.82 (0.70, 0.90) 0.84 (0.73, 0.91) 
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Table 7. Average measure intra-rater ICCs at heel (95% confidence intervals in parentheses) 

 Position 

Species Prone Sidelying 

ΔtHb 0.92 (0.86, 0.96) 0.93 (0.88, 0.97) 

ΔStO2 0.91 (0.83, 0.95) 0.76 (0.57, 0.88) 

ΔHb 0.91 (0.84, 0.96) 0.92 (0.85, 0.96) 

ΔHbO2 0.93 (0.88, 0.97) 0.94 (0.89, 0.97) 

 

4.3.3 Sacral Spectroscopic Data 

4.3.3.1 Hemodynamic Species 

Considerable variability was observed in the magnitude and direction of the change in 

hemodynamic parameters following pressure application at the sacrum.  The change in each 

species was typically positive in dark-skinned participants, with the exception of ΔStO2.  In light 

skinned participants, the change values were typically negative, with the exception of ΔtHb and 

ΔHb measured in prone. 

The magnitude of ΔtHb was not significantly different from zero at the sacrum for either 

light or dark-skinned participants in either prone or semi-sidelying (Table 8). The magnitude of 

ΔtHb was not significantly different between the prone and semi-sidelying test positions for data 

grouped by skin color or for the overall sample.  The magnitude of ΔtHb was not significantly 

different in light versus dark-skinned participants in either prone or semi-sidelying. 
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Table 8. Mean change in relative concentration of hemodynamic species following pressure 
application at the sacrum 

Species Position 

Light Skin 

(n = 15) 

Mean (St. Dev.) 

Dark Skin 

(n = 15) 

Mean (St. Dev.) 

P 0.80 (3.20) 1.08 (3.92) ΔtHb (µM * cm) 
SL -0.73 (2.83) 2.10 (6.60) 

P -3.83 (5.19) -0.23 (0.47) ΔStO2 (%) 
SL -1.93 (3.27) -0.30 (0.67) 

P 1.38 (1.85) 1.00 (2.36) ΔHb (µM * cm) 
SL -0.03 (2.12) 1.81 (4.07) 

P -0.58 (1.89) 0.08 (1.67) ΔHbO2 (µM * cm) 
SL -0.69 (1.17) 0.28 (2.63) 

P= Prone, SL=Semi-sidelying 
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Figure 9. Sacrum total hemoglobin time courses 

The total hemoglobin time course data averaged for all participants within each skin color 

and position combination showed little change after pressure application (Figure 9).  Further 

examination of the time course data acquired for each participant showed that the sacral total 

hemoglobin time courses fell roughly into three patterns.  The first pattern (Figure 10 and Figure 

11) shows a sustained decrease in total hemoglobin such that the gentle pressure tHb values were 

typically less than the light contact tHb values.  The second pattern (Figure 12 and Figure 13) 

showed a relatively flat time course, where tHb varied throughout the light contact and gentle 

pressure periods but did not show an obvious or sustained decrease in tHb with gentle pressure 

application.  The third pattern (Figure 14 and Figure 15) showed an apparent increase in tHb 

with pressure application, such that the gentle pressure tHb values typically exceeded the light 

contact tHb values.  
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Figure 10. Decreased post-pressure sacral tHb, light skin group participant 

 

Figure 11. Decreased post-pressure sacral tHb, dark skin group participant 
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Figure 12. "Flat" post-pressure sacral tHb, light skin group participant 

 

Figure 13. "Flat" post-pressure sacral tHb, dark skin group participant 
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Figure 14. Increased post-pressure sacral tHb, light skin group participant 

 

Figure 15. Increased post-pressure sacral tHb, dark skin group participant 

The change in StO2, HbO2, and Hb also varied.  A significant decrease in StO2 was 

observed with pressure application at the sacrum in light-skinned participants in both the prone 

and sidelying positions (p=0.013 and p=0.038, respectively). The magnitude of ΔStO2 did not 

differ between the two test positions for the overall group, but was greater in prone than semi-
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sidelying for the light skin group (p=0.048). The magnitude of ΔStO2 was greater in light-

skinned participants than dark-skinned participants in prone (p=0.018) but not in semi-sidelying. 

A significant decrease in HbO2 was observed at the sacrum for light-skinned participants 

in semi-sidelying (p=0.037).  The magnitude of ΔHbO2 was not significantly different from zero 

for dark-skinned participants in either test position. The magnitude of ΔHbO2 did not differ 

significantly between the two test positions for data grouped by skin color or for the overall 

group.  ΔHbO2 did not differ between the skin color groups in either prone or semi-sidelying.  

Contrary to the expected pattern, there was a statistically significant increase in Hb in 

light skinned participants in prone (p=0.012). The magnitude of ΔHb was not different between 

the test positions for the overall group, but was significantly higher in prone than semi-sidelying 

for the light skin group (p=0.024). The magnitude of ΔHb was not significantly different in light 

versus dark-skinned participants in either prone or semi-sidelying.  

The between-participants variability in the magnitude of the change in the relative 

concentrations of hemodynamic species with pressure application was greater at the sacrum than 

the heel.  In general, the standard deviation values for light skin sacral data ranged between 

134% (ΔHb in prone) and 400% (ΔtHb in prone) of the change value.  Dark skin sacral data 

ranged between 204% (ΔStO2 in prone) and 363% (ΔtHb in prone) of the change value.  Standard 

deviation values were extremely high for ΔHbO2 measured in prone and semi-sidelying in dark 

skin (2088% and 939% of change values, respectively), and ΔHb measured in semi-sidelying in 

light skin (7067% of the change value). 

4.3.3.2 Intra-rater Reliability 

Intra rater reliability for sacral ΔtHb was poor to moderate156 for single measures (ICC 

range 0.32-0.69, Table 9) and moderate to good for average measures (ICC range 0.58-0.87, 

Table 10).  Reliability for ΔStO2, ΔHb, and ΔHbO2 was poor to moderate for single measures 

(ICC range 0.07-0.74), and poor to excellent for average measures (ICC range 0.18–0.90).  ICCs 

for ΔHb in sidelying were lower than for other species.  ICCs for all species were typically 

higher in prone than in sidelying, particularly for ΔHb.   
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Table 9. Single measure intra-rater ICCs at sacrum (95% confidence intervals in parentheses) 

 Position 

Species Prone Sidelying 

ΔtHb 0.69 (0.51, 0.82) 0.32 (0.09, 0.55) 

ΔStO2 0.41 (0.18, 0.62) 0.41 (0.19, 0.63) 

ΔHb 0.58 (0.37, 0.75) 0.07 (-0.13, 0.32) 

ΔHbO2 0.74 (0.59, 0.86) 0.66 (0.47, 0.80) 

Table 10. Average measure intra-rater ICCs at sacrum (95% confidence intervals in parentheses) 

 Position 

Species Prone Sidelying 

ΔtHb 0.87 (0.76, 0.93) 0.58 (0.24, 0.79) 

ΔStO2 0.67 (0.40, 0.83) 0.68 (0.41, 0.84) 

ΔHb 0.80 (0.64, 0.90) 0.18 (-0.50, 0.58) 

ΔHbO2 0.90 (0.81, 0.95) 0.85 (0.73, 0.92) 

 

4.4 DISCUSSION 

4.4.1 Heel Findings 

The findings of this pilot study demonstrated that a blanch response could be detected in light 

and dark healthy skin at the heel using portable spectroscopy instrumentation. As anticipated, the 

optical density in the visible region associated with HbO2 and Hb showed a significant decrease 

when pressure was applied. This was associated with a drop in the amount of total hemoglobin in 

the sampled skin area. This change in total hemoglobin (ΔtHb) between the light contact and 
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gentle pressure states was defined as the spectroscopic blanch response. The spectroscopic 

blanch response was statistically significant (p<0.001), as were changes in HbO2, Hb, and StO2. 

These results are consistent with the displacement of blood from vessels in the skin when gentle 

pressure is applied. The findings at the heel in the current study are consistent with those 

described at the forearm by Matas and colleagues.24  In Matas’ work, cyclical loads of up to a 

maximum of 50mmHg were applied to the dorsal forearm via an indenter featuring a stepper 

motor attached to a benchtop device. A significant change in total hemoglobin between the high 

and low pressure conditions (p<0.01) was observed in both light and dark skinned participants.  

Despite differences in loading method, pressure magnitude, and body site, the pilot study and 

Matas’ work showed similar results.  This observation provides further support for the use of 

spectroscopy as a tool for assessing the blanch response. 

The magnitude of ΔtHb, ΔHbO2, and ΔHb was not significantly different in light versus 

dark-skinned participants. Although both groups showed a decrease in StO2, the magnitude of the 

change in StO2 was significantly higher in light versus dark skinned participants. The difference 

in oxygenation may indicate real differences in the oxygen carrying capacity of blood in 

individuals with light and dark skin. There may also be incomplete separation of the melanin and 

hemoglobin signals in the data analysis algorithm used in the pilot study. The separation of the 

total hemoglobin time courses between the light and dark skin groups shown in Figure 8 also 

suggests potential “cross-talk” between melanin and hemoglobin in the data analysis algorithm. 

The data analysis algorithm continues to be refined to optimize data quality.  Despite these 

issues, the finding that a significant decrease in total hemoglobin occurs in both skin color 

groups at similar levels of significance suggests that spectroscopy was an effective tool for 

assessing the blanch response at the heel in both light and dark skin. 

When data were grouped by skin color, no significant differences were noted in the 

magnitude of ΔtHb, ΔHbO2, ΔHb, and ΔStO2 measured in prone versus semi-sidelying. When 

data from both skin color groups were pooled, ΔHb was significantly greater when measured in 

sidelying than in prone. Whether this result occurred by chance or is explained by real 

physiological differences associated with body position is unknown. The spectroscopic blanch 

response (ΔtHb) and all other species showed no significant differences between positions for the 

pooled data. The investigators were able to readily access the heels in both positions, and 

participants were able to maintain both positions comfortably without movement. These results 
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indicate that comparable spectroscopic blanch test results may be obtained in different body 

positions. Individuals at risk for pressure ulcers often have orthopedic or other limitations that 

prevent them from assuming certain positions, particularly prone. The finding that similar 

spectroscopic blanch responses can be detected in multiple positions will facilitate the transition 

of this technology to a clinical environment.  

The magnitude of the spectroscopic blanch response (ΔtHb) at the heel was measured 

with good intra-rater reliability for single measures in both semi-sidelying and prone positions, 

with ICCs ≥0.80.  Average measure ICCs (>0.90, Table 7) exceeded the single measure ICCs, 

(Table 6) indicating excellent intra-rater reliability when the mean of multiple ratings is the unit 

of analysis.  High intra-rater reliability facilitates the interpretation of spectroscopic blanch 

response measurements, as it suggests that changes in magnitude of the spectroscopic blanch 

response from measurement to measurement within a person may be attributed to changes in the 

blanching of the tissue rather than variability associated with the testing procedure.  Intra-rater 

reliability was likely facilitated by the investigator’s ability to view the spectra acquired from the 

skin during the point spectroscopic blanch test.  While this does not allow direct interpretation of 

the concentration of hemoglobin in the skin, it does provide a general sense of the consistency of 

the spectra acquired from measurement to measurement.  Further work is needed to determine if 

intra-rater reliability would decrease without this feedback.  Inter-rater reliability remains to be 

examined in future investigations, and must be demonstrated if spectroscopic blanch response 

measurement is to become a meaningful clinical tool. 

Considerable inter-participant variability was observed in the magnitude of the change in 

each hemodynamic species (see standard deviation values in Table 5). Coefficients of variation 

for heel data ranged from 39% to 69%. High inter-participant variability has also been reported 

by other investigators who have used spectroscopy to examine hemoglobin changes associated 

with tissue loading.30-32 This is likely the result of a combination of factors.  Skin blood flow is 

likely to vary within and between participants.  In addition, each participant will have a unique 

level of skin pigmentation, therefore inter-participant variability may be attributed in part to real 

differences in skin pigment and hemoglobin content between individuals.  Differences in 

pressure delivery to the skin may also explain part of the between-participants variability.  A 

portable hand-held indenter was chosen for this study because it would transition to a clinical 

application more readily than a fixed bench-top device. However, small movements by the 
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participant or the investigator may have produced variation in the pressure delivered to the skin. 

Because no force transducer was integrated in the design of the indenter used in the pilot study, it 

was difficult to verify that the pressure delivered to the skin was at its expected level and was 

consistent from test to test.  Within participants, visual observation of spectral shape provided an 

indirect indication of the consistency of pressure delivery as changes in the amplitude and shape 

of the spectrum were readily observed with movement of the hand-held indenter.  However, this 

feedback is not useful in evaluating measurement consistency between participants because the 

shape of the skin spectrum is unique for each participant.  Improving force control of the hand-

held indenter may reduce much of the variability seen in the pilot study and increase precision of 

spectroscopic blanch response measurement.  Excessive variability in spectroscopic blanch 

response measurement may complicate interpretation of findings and the limit diagnostic value 

of this assessment method, therefore it is beneficial to reduce sources of variability whenever 

possible.  Despite these limitations, the pilot study showed that a blanch response may be 

measured with good intra-rater reliability in healthy heel skin of both light and dark skin 

pigmentation. 

4.4.2 Sacral Findings 

In contrast to the heel, a statistically significant spectroscopic blanch response was not detected 

in either light or dark sacral skin using our current instrumentation and data analysis methods.  

The direction of change in total hemoglobin was inconsistent, showing a negative value for light 

skin in semi-sidelying but positive values for light skin in prone and for dark skin in both test 

positions.  Moreover, a spectroscopic blanch response was not detected even in light skinned 

individuals where blanching during manual pressure was observed.  This suggests that our results 

do not reflect a true lack of blanching at the sacrum, but rather that adjustments to our 

instrumentation and data analysis techniques are needed to enable us to measure the blanch 

response spectroscopically at the sacrum. 

The change in total hemoglobin following pressure application did not differ from zero 

for either the light or dark skin group in either position. Time course data averaged across all 

participants within each skin color and position combination showed a flat pattern, with little 

change in tHb occurring after pressure application.  When the time courses for individual 
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participants were examined further, three patterns of tHb time course data emerged.  The first 

pattern showed a drop in tHb following pressure application, but typically showed more 

variability during the light contact and gentle pressure periods than the heel data.  As discussed 

at the heel, revising the design of our indenter to provide more precise force control would likely 

improve the variability in the data.  In addition, many of these time courses showed an initial 

drop in tHb after pressure application followed by a gradual increase in tHb. One possible 

explanation for this pattern is stress relaxation in the viscoelastic soft tissue, which was thicker at 

the sacrum than at the heel test site.  If the amount of stress experienced by the tissue subsided, 

the compressed blood vessels might have opened slightly, increasing blood content in the area.  

It may also be possible that exposure to pressure produced a hyperemic response toward the end 

of the gentle pressure period, increasing blood flow to the area exposed to pressure and 

attenuating the initial decrease in tHb that occurred when pressure was applied to the skin.  In 

addition, although the examiner attempted to maintain a constant load on the skin via the hand-

held probe, it is possible that subtle changes in the examiner’s hand position may have allowed 

the spring to expand, causing a release of pressure and allowing blood to return to the area of 

skin beneath the probe. 

The second pattern showed a relatively flat tHb time course, where there was little 

difference in the tHb values measured during the light contact and gentle pressure periods.  High 

variability in the data may have made differences in tHb more difficult to detect.  Several of the 

flat tHb time courses were associated with raw spectral data in which the doublet typically 

associated with hemoglobin was not pronounced, even in light skin in the light contact condition. 

This might occur if the sampling depth was not appropriate to reach the blood vessels associated 

with blanching.  If data were sampled from a largely avascular layer (epidermis or adipose 

subcutaneous tissue), that might explain the lack of pronounced doublet in several of the sacral 

spectra and why there is minimal change in the hemoglobin signal when pressure is applied. 

Adjustment of the illumination-collection fiber distance may be needed to optimize sampling 

depth for data acquisition. 

The third tHb time course pattern showed an increase in tHb immediately following 

pressure application—the reverse of the expected pattern.  Notably, this pattern was observed 

even in light skinned participants whose skin visibly blanched with manual pressure application.  

At this time, it is unclear what factors are contributing to this phenomenon.  While hyperemia 
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may occur following pressure, the immediate nature of the increase in tHb suggests that a 

physiological upregulation of blood flow is not the most likely explanation for the observed 

increase in tHb.  Sampling depth may have contributed to this phenomenon.  Observations made 

during the pilot study showed that the soft tissue at the sacral site was typically thicker and 

contained more adipose tissue than that over other bony prominences, such as the heel.  If 

sampling during the light contact condition is occurring at a depth that is above a vascular layer, 

perhaps compressing the tissue brings the light path closer to the blood vessels, allowing more 

hemoglobin to be detected than when the tissue was in an uncompressed state.  

Percent oxygenation decreased as expected in participants with light skin in both test 

positions. HbO2 also decreased as expected in the light skin group, but only in semi-sidelying.  In 

contrast, Hb increased in the light skin group in prone.  The increase in Hb may be partially 

explained by the partial occlusion of blood vessels with pressure, causing oxygen to be 

consumed, transforming hemoglobin from its oxygenated to deoxygenated state. Any significant 

changes in hemodynamic species at the sacrum following pressure were found in light skinned 

participants.  Incomplete separation of the melanin signal from the hemoglobin signal may make 

subtle differences more difficult to detect in dark skinned participants than light skinned 

participants at the sacrum.  More melanin was found at the sacrum compared to the heel in both 

light and dark-skinned participants, making interference from skin pigment a greater issue at this 

site.  Further optimization of the data analysis algorithm would be beneficial to more accurately 

characterize the response of hemodynamic species to pressure at the sacrum.   

The changes in StO2 and Hb were both found to have higher magnitudes in prone.  During 

the study, the investigators found that it was more difficult to maintain a steady hand position 

during spectroscopic blanch tests performed in the semi-sidelying position at the sacrum than in 

prone, particularly during the light contact condition.  This was observed even when pillows 

were used to help support the examiner’s arm during the blanch tests.  The semi-sidelying test 

position required that the examiner hold the probe up against gravity while also controlling 

pressure applied to the skin.  Poor reliability values and high standard deviations calculated for 

sacral data in semi-sidelying are consistent with the examiner’s perceived difficulty in 

controlling the probe.  This variability may have made subtle changes in the relative 

concentration of hemodynamic species more difficult to detect.  Participants who are at risk for 

pressure ulcers may have physical limitations that prevent them from tolerating the prone 
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position, therefore it is important to improve the quality of data obtained in the semi-sidelying 

test position.  Improving force control of the hand held indenter may help to reduce some of the 

variability seen in the semi-sidelying measurements. 

4.4.3 Summary 

The pilot study demonstrated that a blanch response could be detected with good intra-rater 

reliability at the heel in both light and dark healthy skin using a hand-held indenter and portable 

spectroscopy instrumentation.  The blanch response was not detected consistently at the sacrum.  

The sacrum’s soft tissue composition as well as imprecise force control in the indenter and 

incomplete separation of the melanin and hemoglobin signals in the data analysis algorithm may 

all have contributed to the difficulty in detecting the spectroscopic blanch response at the 

sacrum.  Further work is needed to optimize our instrumentation and data processing algorithms 

to improve our ability to detect the blanch response at the sacrum.  Those at risk for pressure 

ulcers have a variety of age and health-related conditions that may make blanch response 

detection more difficult than in healthy participants.  To evaluate the effectiveness of our 

instrumentation and data analysis modifications, it would be beneficial to repeat the blanch 

response assessment protocol at the sacrum in a healthy participant population whose skin is 

known to show a clinical blanch response. 

While our pilot study indicates that a blanch response can be detected in healthy heel skin 

using spectroscopy, additional information is needed to verify that a blanch response can be 

detected reliably at the heel in individuals at risk for, but currently without, pressure ulcers. The 

clinical study discussed in Chapter 6.0 will address this area of uncertainty by using 

spectroscopy to assess the blanch response in the skin of elderly nursing home residents at risk 

for pressure ulcers. 
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5.0  RELIABILITY OF SKIN COLOR ASSESSMENT VIA COLOR TILE 

MATCHING AND COLORIMETRY 

5.1 BACKGROUND AND OBJECTIVE 

After the completion of the pilot study discussed in the previous chapter, it was determined that a 

reliable means of skin color description was needed to aid recruitment in subsequent studies of 

the spectroscopic blanch response.  Munsell color tile matching was used to describe skin color 

at the sacrum and heel in the pilot study (see section 4.2.1).  In the Munsell system, 

alphanumeric designations are assigned to color samples based on three qualities: hue, value, and 

chroma.129,153  Hue is the color quality that is described as red (R), yellow (Y), green (G), etc. 

Value is the lightness or darkness of a color, ranging from 0 for pure black, to 10 for pure white. 

Chroma can be described as the vividness or saturation of a color.  Sets of color tiles arranged by 

Munsell hue, value, and chroma are commercially available.  By identifying the tile that best 

matches a material, the color of that material may be described using Munsell color notation.   

Munsell color tiles have been used in several studies to describe the color of both healthy 

and lesioned skin.  Munsell color tile matching has been used to describe the lightening of 

capillary vascular malformations (“port wine stains”) exposed to pulsed dye laser treatments157, 

assist in the evaluation of glycolic acid peel treatment for melasma in Asian women158, classify 

the skin color of participants in a study of erythema detection mechanisms23, and assess the 

perception of blue tones in skin overlying veins159.  The relationship between the Munsell value 

of subjects’ skin and the accuracy of pulse oximetry readings has also been reported in research 

literature.152  Munsell color tiles are inexpensive (less than $20 for 1 card), compact and easy to 

carry, and require virtually no maintenance.  However, the color tile matching process requires 

subjective decision-making on the part of the observer, increasing variability in skin color 

assessment.  
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Colorimetry is a technique that provides objective data on skin color.  A colorimeter is a 

device that uses measurements of red, green, and blue light reflected from the skin to calculate 

descriptive parameters of skin color in a variety of color notation systems.129 Several 

investigations have used colorimetry to assess patient responses to topical treatments or irritants 

applied to the skin160-168, evaluate the outcomes of dermatologic procedures such as carbon 

dioxide laser resurfacing169, and measure skin tanning following ultraviolet radiation exposure or 

use of tanning agents.163,170-172  Colorimetry has been used to describe burn scars173, assess 

psoriatic plaque severity174, and evaluate overall illness severity in at-risk newborn infants.175 

The primary advantage to colorimetry is that it provides quantitative data on skin color 

instantaneously and in a manner that does not involve subjective color perception, reducing 

measurement variability. However, a colorimeter may cost several thousand dollars, must be 

properly calibrated and maintained, and—while portable—is more bulky and heavy than a color 

tile card.    

Little is known about the reliability of skin color descriptions obtained using these “low 

tech” and “high tech” methods. One study by Gitelson reported 83% agreement for skin color 

descriptions obtained by Munsell color tile matching.151  No results specific to the assessment of 

hue, value, or chroma were reported in Gitelson’s study, and no other studies examining 

reliability of Munsell skin color matches were identified. The majority of studies using 

colorimetry have not reported data on the reliability of colorimetric measurements.  Three studies 

have reported high reliability for colorimetry in healthy skin163,176 and in burn scars173, but 

reproduction of these data are needed.  

The objective of this investigation was to examine the intra and inter-rater reliability of 

skin color assessments performed using Munsell color tile matching and colorimetry in a group 

of 10 healthy adults.  Data obtained in this study were used to determine which method of skin 

color description was most appropriate for a subsequent study of spectroscopic blanch response 

assessment in elderly nursing home residents at risk for pressure ulcers. 
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5.2 METHODS 

5.2.1 Participants 

A convenience sample of 10 participants was recruited from students, staff, and faculty at the 

University of Pittsburgh.  Recruitment and screening procedures were completed by an 

investigator who was not involved in performing skin color assessment procedures.  Eligible 

participants were: 1) males or females age 18 years or older, 2) in general good health (per self-

report), and 3) free of rashes, scarring, bruising, or pigmentation disorders on the volar aspect of 

the forearm.  Participants of a variety of skin tones were selected from those who expressed 

interest in the study and met eligibility criteria. All study procedures, risks, and benefits were 

discussed and informed consent provided prior to the beginning of any study procedures in 

compliance with the policies of the Institutional Review Board at the University of Pittsburgh.   

5.2.2 Instrumentation 

5.2.2.1 Munsell Color Tiles 

A set of 5YR Munsell color tiles was used to perform skin color matches (Figure 3).  The 5YR 

card consisted of 33 tiles arranged in 7 rows of 2-6 tiles each mounted on neutral grey flexible 

cardboard. The card included tiles of Munsell value 2.5 and 3 – 8, and Munsell chroma 1-4, 6, 

and 8. The tiles were perforated to allow close comparison of each tile to the participant’s skin.  

Gitelson (1965) reported fewer matching errors using perforated versus non-perforated tiles both 

in vitro and in vivo.151 

5.2.2.2 Colorimeter 

Skin color was also assessed using a hand-held colorimeter (Chroma Meter™ model CR-300, 

Minolta Co., Ltd., Osaka, Japan).  The colorimeter system consisted of a hand-held measuring 

head (Figure 16) with an 8 mm diameter measuring area and an attached data processor that 

displayed and printed color data.  The colorimeter contained a pulsed xenon arc lamp to 

illuminate the skin and photodetectors to collect reflected light in the red, green, and blue regions 
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of the visible light spectrum (approximately 600 nm, 560 nm, and 450 nm, respectively).  The 

colorimeter was calibrated immediately prior to the study session using the standard white plate 

provided by the manufacturer.  The colorimeter was set to use the Commission Internationale 

d'Eclairage (CIE) Standard Illuminant C and “multi measure” mode, in which three readings are 

automatically taken and averaged when the button on the measuring head is pressed.  Skin color 

measurements were taken by placing the measuring head of the colorimeter perpendicular to and 

in light contact with the participant’s skin (Figure 16) and pressing the measuring button once to 

trigger acquisition of color data.  Data obtained by the colorimeter were expressed in CIE 

L*a*b* color notation.  In this system, L* represents the “luminance” or “brightness” of a color, 

ranging from 0 for black to 100 for white.  The a* descriptor represents where a color falls on a 

continuum from red (positive a* values) to green (negative a* values).  The b* descriptor 

represents where a color falls on a continuum of yellow (positive b*  values) to blue (negative b*  

values).  Both the a* and b* descriptors have a range of –60 to +60.129,163,167 

 

 

Figure 16. Investigator performing skin color assessment using the Minolta CR-300 colorimeter 
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5.2.2.3 Assessment Area Setup 

An assessment station was created to prevent the investigators performing the skin assessments 

from viewing any part of the participant other than the forearm site of interest (Figure 17). The 

station was created by placing a cardboard shield on top of a table draped with a sheet, 

concealing the seated participant’s upper and lower body from the view of the examiners seated 

on the opposite side of the table.  The shield contained a hole into which the participant inserted 

his/her arm.  A cloth flap attached to the front of the shield assisted in preventing the examiners 

from viewing anything other than the participant’s arm through the hole in the shield (Figure 18).   

 

 

Figure 17. Participant seated in front of assessment station 
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Figure 18. Forearm skin site of interest as viewed by examiners behind assessment station 

5.2.3 Protocol 

Three investigators, designated Examiners A, B, and C, implemented the research protocol.  

Examiner A conducted recruitment and screening procedures and assisted in the preparation and 

guidance of participants through the assessment procedures.  Examiners B and C performed the 

skin color assessments, and were masked to the identity of the study participants and to each 

other’s skin color assessments. All skin color assessments took place under indoor fluorescent 

light conditions, which were kept constant throughout the procedures described below.  All skin 

assessments were completed on the same testing day during a session lasting approximately 90 

minutes. 
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5.2.3.1 Preparation Steps 

In an area outside of the assessment room, each participant provided general demographic 

information to Examiner A, including age, gender, race, and ethnicity. Examiner A marked a 

small circular area of the exposed skin on the participant’s right volar forearm using a non-toxic 

washable marker and a cardboard template.  The marked area was approximately 1 square inch 

in area and was located approximately 1 to 2 inches distal to the cubital fossa.  Each participant 

then donned a white long-sleeved shirt with a small patch cut out to expose the marked area of 

skin, and then donned a white sock on his/her right hand.  

5.2.3.2 Skin Color Assessments 

The order in which participants were assessed was randomized prior to the start of study 

procedures.  Examiner A assigned each participant a two-digit identification (ID) number (01 – 

10).  Examiner A then searched a random numbers table for numbers between 01 and 10, 

recording each number on a list in the order in which it appeared in the table.  This process 

continued until each ID number had been found in the table three times, generating a list of 30 

numbers.  Participants were presented to Examiners B and C in the order of their ID numbers in 

the list. 

Examiner A escorted the participant to be assessed into the assessment room. Examiners 

B and C were unable to see the participant entering the room.  The participant assumed a seated 

position in front of the assessment station and inserted his/her right arm into the hole in the 

cardboard shield.  

Examiner B entered the station and placed the Munsell color tile card on or near the 

marked site on the subject’s skin.  Examiner B selected the color tile that he/she felt best 

matched the participant’s skin and recorded the Munsell value and chroma of the selected tile on 

an index card. Examiner B then recorded a reading from the marked site using the colorimeter, 

and recorded the colorimeter’s output in CIE L*a*b* notation on the index card. Examiner B 

placed the index card in a lidded box, left the station, and sat in a chair in the test room with 

his/her back to the station.   Examiner C then entered the assessment station and completed a 

Munsell color tile match and colorimeter reading as described for Examiner B above, recording 

data on a new index card. Examiner C then left the station and sat next to Examiner B with 

his/her back to the station while Examiner A escorted the participant from the test room.  The 
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process described above was repeated until each participant was presented randomly to 

Examiners B and C three times, such that a total of 30 Munsell color tile matches and 30 

colorimeter readings were completed per examiner. 

5.2.4 Data Analysis 

Intra and inter-rater reliability for Munsell value and chroma data were described using percent 

agreement and kappa.  To calculate intra-rater percent agreement for each examiner, value or 

chroma data for each participant were listed for each possible pair of assessments within each 

examiner (3 pairs/participant).  This process generated a list of 30 possible pairs of value or 

chroma data for each examiner.  Percent agreement was calculated by counting the number of 

absolute agreements within each list, dividing this result by 30, and multiplying that result by 

100.  To calculate inter-rater percent agreement, value or chroma data for each subject was listed 

for each possible examiner/assessment combination (9 pairs).  This process generated a list of 90 

possible pairs of value or chroma data.  Percent agreement was calculated by counting the 

number of absolute agreements within each list, dividing this result by 90, and multiplying that 

result by 100.  As an additional measure of intra-rater agreement, kappas and 95% confidence 

intervals were calculated for each possible pair of assessments (3 pairs/participant) within each 

examiner.  Inter-rater agreement kappas and 95% confidence intervals (CI) were calculated in 

two ways.  First, kappas were calculated for each possible examiner/assessment combination (9 

pairs).  Second, the mode of the three Munsell values or chromas recorded for each subject by 

each examiner was determined (mode B123, mode C123), and kappas describing the agreement 

between Examiners B and C were calculated using the mode data. Kappas were calculated in 

SPSS version 11.0.1 for Mac OSX (SPSS, Inc., Chicago, Illinois, USA). To aid data 

interpretation, the minimum acceptable level of agreement was considered to be 80% for percent 

agreement and 0.70 for kappa. 

Reliability for L*, a*, and b* colorimeter data was described using intra-class correlation 

coefficients (ICCs).  ICC Model 3155,156 was used to describe intra-rater reliability. This approach 

is based on a two-way mixed model and calculates ICC values using analysis of variance 

(ANOVA) for repeated measures.  Model 3 was selected because the tested raters were 

considered the only raters of interest and measurements were repeated within participants.  
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Single measure ICCs (ICC 3,1) were reported.  ICCs and 95% confidence intervals were 

calculated using data from: (1) each possible pair of assessments (3 pairs/participant), and (2) all 

three assessments completed by each examiner for each participant.  

Inter-rater reliability was described using ICC Model 2.155,156  This approach is based on 

a two-way random model and calculates ICC values using analysis of variance (ANOVA) for 

repeated measures.  Model 2 was selected because it considers the tested raters to be selected 

from a larger population of raters and examines variance due to differences between the tested 

raters when measures are repeated within subjects.  Inter-rater reliability was calculated in two 

ways.  First, single measure ICCs (ICC 2,1) and 95% confidence intervals were calculated for 

data from each possible examiner/assessment combination (9 pairs).  Second, the investigators 

calculated the mean of the three L*, a*, or b* values obtained during the three assessments for 

each participant by each examiner (mean B123, mean C123) and then calculated average 

measure ICCs (ICC 2,k) and 95% confidence intervals using the mean data. To aid data 

interpretation, the minimum acceptable level of reliability was considered to be 0.70 for the ICC. 

5.3 RESULTS 

5.3.1 Participant Characteristics 

The average age of study participants was 27 years (range 23–44 years).  All participants were 

female and described their ethnicity as Not Hispanic or Latino.  Forty percent of the participants 

described themselves as White, 30% as Asian, and 30% as Black or African-American. 

5.3.2 Color Tile Matching Agreement 

5.3.2.1 Munsell Value 

Both Examiners B and C selected values in the range of 4 –7 during their skin color matches 

(Table 11).  Percent agreement (Table 12) within Examiner B was 93% for Munsell value (28 

agreements observed out of 30 possible agreements).  The 2 observed disagreements were 
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between adjacent tiles. Kappas describing agreement within Examiner B for Munsell value 

ranged from 0.87–1.00 (Table 13).  Examiner C showed 80% agreement for value (24 

agreements observed out of 30 possible agreements).  All 6 observed disagreements involved 

adjacent tiles. Kappas describing agreement within Examiner C for Munsell value ranged from 

0.71-0.73 (Table 13).  

Inter-rater agreement (Table 12) was 74% for value (67 agreements observed out of 90 

possible agreements) with all 23 disagreements involving adjacent tiles.  The inter-rater kappas 

for Munsell value calculated for the nine examiner/assessment combinations ranged from 0.46-

0.86 (Table 14).  The inter-rater kappa calculated using mode data for Munsell value was 0.60. 

Table 11. Descriptive statistics for Munsell color tile and colorimetric data recorded by each 
examiner during 30 skin color assessments 

 Examiner B Examiner C 

Color Descriptor Median† or 
Mean  (St. Dev.)

Range 
Min – Max 

Median† or 
Mean  (St. Dev.) 

Range 
Min – Max 

Munsell Value 6†   4 - 7 6†   4 - 7 
Munsell Chroma 3† 3 - 4 3† 2 - 4 
L* 56.45 (9.64) 39.87 – 68.77 57.62 (10.16) 40.41 – 72.28 
a* 7.94 (1.34) 5.51 – 10.05 8.19 (1.29) 5.66 – 9.73 
b* 16.48 (3.18) 11.54 – 21.31 16.69 (2.90) 12.15 – 20.48 
 

Table 12. Intra and inter-rater percent agreement for Munsell color tile matches 

Munsell 
Descriptor 

Within 
Examiner B 

Within 
Examiner C 

Between 
Examiners 

B & C 
Value 93% 80% 74% 

Chroma 93% 60% 61% 
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Table 13. Intra-rater kappas and 95% confidence intervals for Munsell color tile data 

Munsell 
Descriptor 

Assessment 
Combinations 

Examiner B 
Kappa (95%CI) 

Examiner C 
Kappa (95%CI) 

1 & 2 0.87 (0.62, 1.11) 0.71 (0.38-1.05) 
1 & 3 0.87 (0.62, 1.11) 0.73 (0.43-1.03) Value 
2 & 3 1.00 (1.00-1.00) 0.71 (0.38-1.05) 
1 & 2 0.78 (0.39-1.18) * 
1 & 3 0.78 (0.39-1.18) * Chroma 
2 & 3 1.00 (1.00, 1.00) * 

* Not able to calculate kappa because a symmetric 2-way table in which the values 
of the first variable matched the values of the second variable could not be
constructed with the observed data. 

 

Table 14. Inter-rater kappas and 95% confidence intervals for Munsell color tile data 

Examiner/Assessment 
Combinations 

Munsell Value 
Kappa (95% CI) 

Munsell Chroma 
Kappa (95% CI) 

B1 & C1 0.86 (0.60-1.12) * 
B1 & C2 0.60 (0.24-0.95) * 
B1 & C3 0.61 (0.27-0.94) 0.21 (-0.43-0.85) 
B2 & C1 0.73 (0.41-1.05) * 
B2 & C2 0.46 (0.09-0.83) * 
B2 & C3 0.73 (0.41-1.05) 0.09 (-0.47-0.66) 
B3 & C1 0.73 (0.41-1.05) * 
B3 & C2 0.46 (0.09-0.83) * 
B3 & C3 0.73 (0.41-1.05) 0.09 (-0.47-0.66) 
Mode B123 & 
Mode C123 0.60 (0.23-0.96) 0.09 (-0.47-0.66) 

* Not able to calculate kappa because a symmetric 2-way table in which the 
values of the first variable matched the values of the second variable could 
not be constructed with the observed data. 
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5.3.2.2 Munsell Chroma 

Examiner B selected chromas of 3-4 for all participants, while Examiner C selected chromas in 

the range of 2-4 (Table 11).  Percent agreement (Table 12) within Examiner B was 93% for 

Munsell chroma (28 agreements observed out of 30 possible agreements).  Two disagreements 

were observed, both involving adjacent tiles. Kappas describing agreement within Examiner B 

for Munsell chroma ranged from 0.78–1.00 (Table 13).   

Percent agreement (Table 12) within Examiner C was 60% for chroma (18 agreements 

observed out of 30 possible agreements).  Ten disagreements involved adjacent tiles, and 2 

disagreements involved non-adjacent tiles.  Kappas describing agreement within Examiner C 

could not be calculated because a symmetric 2-way table in which the values of the first variable 

matched the values of the second variable could not be constructed with the observed data. 

Inter-rater agreement (Table 12) was 61% for chroma (55 observed agreements out of 90 

possible agreements).  Of the 35 disagreements observed, 32 involved adjacent tiles and 3 

involved non-adjacent tiles. Inter-rater kappas for Munsell chroma could be calculated for three 

of the nine examiner/assessment combinations.  These kappas ranged from 0.09-0.21 (Table 14).  

The inter-rater kappa calculated using mode data for Munsell chroma was 0.09. 

5.3.3 Colorimetric Measurement Reliability 

5.3.3.1 L* Descriptor 

The range of L* recorded by each of the examiners during the 30 colorimetric measurements is 

shown in Table 11.  ICCs describing intra-rater reliability were very high for L*. All ICCs were 

in the range of 0.99-1.00 for Examiners B and C (Table 15).  

Inter-rater reliability (Table 16) was also very high with ICCs in the range of 0.98-1.00 

for each possible examiner/assessment combination.  The ICC calculated using the mean of 

assessments 1 –3 for each examiner was 1.00. 

 

 

 



Table 15. Intra-rater ICCs and 95% confidence intervals for colorimetric data expressed in CIE 

L*a*b* notation 

CIE L*a*b 
Descriptor 

Assessment 
Combinations 

Examiner B Examiner C 
ICC (95% CI) ICC (95% CI) 

1 & 2 0.99 (0.95-1.00) 1.00 (0.99-1.00) 
1 & 3 0.99 (0.98-1.00) 1.00 (0.99-1.00) 
2 & 3 0.99 (0.96-1.00) 1.00 (1.00-1.00) 

L* 

1, 2, & 3 0.99 (0.97-1.00) 1.00 (0.99-1.00) 
1 & 2 0.94 (0.77-0.98) 0.85 (0.50-0.96) 
1 & 3 0.92 (0.72-0.98) 0.94 (0.77-0.98) 
2 & 3 0.95 (0.82-0.99) 0.92 (0.71-0.98) 

a* 

1, 2, & 3 0.94 (0.83-0.98) 0.90 (0.74-0.97) 
1 & 2 0.99 (0.98-1.00) 1.00 (0.99-1.00) 
1 & 3 0.99 (0.97-1.00) 0.99 (0.96-1.00) 
2 & 3 0.99 (0.97-1.00) 0.99 (0.97-1.00) 

b* 

1, 2, & 3 0.99 (0.98-1.00) 0.99 (0.98-1.00) 

Table 16. Inter-rater ICCs and 95% confidence intervals for colorimetric data expressed in CIE 
L*a*b* notation 

CIE L*a*b Descriptor Examiner/Assessment 
Combinations L* a* b* 

B1 & C1 1.00 (0.98-1.00) 0.93 (0.76-0.98) 0.99 (0.96-1.00) 
B1 & C2 0.99 (0.96-1.00) 0.77 (0.32-0.94) 0.99 (0.97-1.00) 
B1 & C3 0.99 (0.96-1.00) 0.84 (0.48-0.96) 0.99 (0.95-1.00) 
B2 & C1 0.99 (0.94-1.00) 0.93 (0.74-0.98) 0.98 (0.93-1.00) 
B2 & C2 0.98 (0.93-1.00) 0.91 (0.67-0.96) 0.99 (0.95-1.00) 
B2 & C3 0.98 (0.93-1.00) 0.92 (0.71-0.98) 0.98 (0.93-1.00) 
B3 & C1 0.99 (0.97-1.00) 0.93 (0.73-0.98) 0.97 (0.90-0.99) 
B3 & C2 0.99 (0.97-1.00) 0.87 (0.57-0.97) 0.98 (0.94-1.00) 
B3 & C3 0.99 (0.97-1.00) 0.90 (0.65-0.97) 0.99 (0.95-1.00) 

Mean B123 & 
Mean C123 1.00 (0.99-1.00) 0.97 (0.87-0.99) 1.00 (0.98-1.00) 

 

  74



5.3.3.2 a* Descriptor 

All a* values recorded during the skin assessments were positive for both Examiners B and C 

(see range in Table 11).  Intra-rater reliability (Table 15) was also high for the a* descriptor, 

though not as high as that observed for L*.  ICCs calculated using pairs of assessments for 

Examiner B ranged from 0.92- 0.95.  The ICC calculated using all three assessments for 

Examiner B was 0.94.  ICCs describing intra-rater reliability for pairs of assessments made by 

Examiner C ranged from 0.85-0.94.  The ICC calculated using all three assessments for 

Examiner C was 0.90.   

Inter-rater reliability (Table 16) for a* was lower than that for L* with ICCs in the range 

of 0.77-0.93 for each possible examiner/assessment combination.  The ICC calculated using the 

mean of assessments 1–3 for each examiner was 0.97. 

5.3.3.3 b* Descriptor 

All b* values recorded during the skin assessments were positive for both Examiners B and C 

(see range in Table 11).  Intra-rater reliability (Table 15) for b* was similar to that of L*. ICCs 

calculated using pairs of assessments and all three assessments were 0.99 for Examiner B and 

0.99-1.00 for Examiner C.   

Inter-rater reliability (Table 16) was also very high with ICCs in the range of 0.97-0.99 

for each possible examiner/assessment combination. The ICC calculated using the mean of 

assessments 1–3 for each examiner was 1.00. 

5.4 DISCUSSION 

The objective of this investigation was to evaluate the reliability of two methods of skin color 

assessment: Munsell color tile matching and colorimetry.  In the Munsell color tile matching 

method, color is described based on three qualities: hue (red, yellow, green, etc.), value 

(lightness), and chroma (color saturation).  To describe skin color in Munsell notation, the 

examiner holds a set of color standards (each associated with a specific Munsell hue, value, and 

chroma) near the skin and selects the tile that best matches the skin.  In colorimetry, a device 

placed on the surface of the skin measures the amount of red, green, and blue light reflected from 
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the skin.  The reflected light is used to calculate color descriptors in a number of systems of color 

notation.  In this study, colorimetric data were expressed in CIE L*a*b* color notation, in which 

L* describes the color’s luminance, a* describes the color’s degree of red or green, and b* 

describes the color’s degree of yellow or blue.   

Reliability was expected to be lower for Munsell color tile matching than colorimetry.  In 

colorimetry, the color assessment was made automatically by the device based on light reflected 

from the skin.  In contrast, Munsell color tile matching required subjective judgment on the part 

of the examiner, which was expected to introduce greater possibility for variation.  The data 

support these expectations. Reliability was very high for colorimetry, for both examiners and all 

skin color descriptors. In general, reliability was lower for Munsell color tile matching than 

colorimetry, particularly for Munsell chroma.  In addition, skin color assessments made via 

colorimetry were similarly reliable for Examiners B and C.  Unlike colorimetry, reliability was 

not comparable between Examiners B and C for value or chroma with the greatest differences 

noted for chroma.   

The following sections will: (1) discuss the Munsell color tile and colorimetry findings 

and relate them to previous work, (2) identify limitations of this study, and (3) describe factors to 

be considered when selecting skin color measurement techniques. 

5.4.1 Agreement of Skin Color Description via Munsell Color Tile Matching 

Measures of agreement for Munsell color tile matching are reported in detail in Tables 12-14.  

For value, intra-rater agreement for Munsell value was high for Examiner B but was moderate 

for Examiner C.  Inter-rater agreement for value was moderate to poor.  For chroma, intra-rater 

agreement was moderate to high for Examiner B and poor for Examiner C.  Inter-rater agreement 

for chroma was poor.  In general, for both value and chroma, confidence intervals calculated 

around kappa were generally wider than they were for the ICCs calculated for the colorimetric 

data, particularly for Munsell chroma.  This observation further supports the conclusion that 

colorimetry was more reliable than Munsell color tile matching.  

Differences in the reliability for Examiner B compared to Examiner C may be explained 

by differences in the background and experience of the examiners.  Examiner B was a clinician 

who was involved in in-vivo skin research for several months prior to the conduct of this 
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experiment, and had used Munsell color tile matching during that period to assess participants’ 

skin color.  Examiner C was an engineer working primarily with instrumentation, who practiced 

using the color tiles briefly during the week prior to the study’s implementation.  Providing 

Examiner C with additional training and practice time may have increased his intra-rater 

reliability, and it is likely that inter-rater reliability would also have been higher had Examiners 

B and C been similarly experienced in the use of the color tiles.   

The relative strength of reliability for Munsell value compared to chroma is consistent 

with the examiners’ comments following the completion of the study.  The examiners reported 

that they could select a value faster and with greater confidence than they could for chroma. This 

is also reflected in the nature of the disagreements between tiles.  All disagreements for Munsell 

value within and between Examiners B and C were between adjacent tiles, suggesting that 

examiners could reliably narrow the value to 1 of 2 rows on the card.  Disagreements for chroma 

within Examiner B always involved adjacent tiles, whereas disagreements within Examiner C 

and between Examiners B and C involved non-adjacent tiles.   These findings suggest that it was 

more difficult to narrow down the choice of chroma.  Additional training may have improved 

Examiner C’s ability to narrow down chroma matches to 1 of 2 adjacent tiles in a manner similar 

to Examiner B.  

Little data are available in the literature with which to compare our Munsell color tile 

matching findings.  Gitelson’s (1965) data indicate an overall intra-rater percent agreement of 

83% for Munsell color tile matching using perforated color tiles.151  In general, Examiner B’s 

intra-rater agreement exceeded Gitelson’s finding and Examiner C’s intra-rater percent 

agreement was lower.  However, it is difficult to interpret these differences because Gitelson 

reported percent agreement based on data from multiple body sites using multiple color tile 

charts, and did not report reliability data specific to value, and chroma. Gitelson did not report 

inter-rater agreement data.   

Two studies allow comparison of the inter-rater reliability of Munsell color tile matching 

to that of ordinal or nominal scales used to assess skin color. Draaijers and colleagues (2004), 

conducted a study in which four independent observers assessed the degree of pigmentation of 

burn scars at various body sites using a ten point ordinal rating scale, and the pattern of 

pigmentation using a four point categorical scale (normal, hypopigmentation, mixed 

pigmentation, hyperpigmention).173   Draaijers reported moderate to poor inter-rater reliability 
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for the ordinal rating scale (single-measure ICC of 0.59) and poor inter-rater reliability for 

categorical description of pigmentation pattern (kappa range 0.176 – 0.349). In a study by Koster 

and colleagues (1998), 5 observers described the color of portwine stains in patient photographs 

using a seven point ordinal scale and inter-rater reliability was assessed.177   The average percent 

agreement among the ten possible combinations of raters was 47% and the average weighted 

kappa was 0.46.  Direct comparison between our findings and Draaijers’ findings for the ordinal 

rating scale is difficult due to the use of different statistics in the two studies.  However, inter-

rater reliability for Munsell value in our investigation was similar to, or slightly higher than, that 

reported by Draaijers for both the ordinal and categorical scales.  Munsell value inter-rater 

reliability also exceeded that reported by Koster.  Munsell chroma inter-rater reliability was 

similar to or slightly lower than that reported by Draaijers for the ordinal rating scale and 

comparably poor for the categorical scale.  Our inter-rater percent agreement for chroma exceeds 

the agreement reported by Koster, but our kappas are lower.  More data are needed to determine 

if Munsell color tile matching, particularly for Munsell value, has higher inter-rater reliability 

than color descriptions using ordinal or categorical rating scales. 

5.4.2 Reliability of Skin Color Description via Colorimetry 

Reliability data for colorimetry are reported in detail in Tables 15 and 16.  Reliability was 

excellent for the L* and b* color descriptors, where all intra and inter-rater ICCs exceeded 0.97.  

Reliability was still high, but slightly less so for a*, where intra-rater ICCs typically exceeded 

0.90 and inter-rater ICCs typically exceeded 0.84. ICC confidence intervals were typically wider 

for a* than for L* and b*, suggesting greater variability in a*. 

The a* color descriptor relates to the degree of redness in the skin, which depends on the 

presence of hemoglobin-rich blood.  Several factors in this experiment may have affected skin 

blood content and may explain part of the variation observed in a*. The end of the colorimeter 

measuring head is shaped like a hollow cone with a hole at its peak, such that there is no direct 

contact between the measuring head and the small circular area of skin from which reflected 

light is measured.  However, pressure along the periphery of the sampling area may influence 

blood flow.  Contact pressure of the colorimeter on the skin compresses blood vessels, 

decreasing the amount of blood flow in the area and causing “blanching” or whitening of the 
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skin. While care was taken to keep pressure on the skin at a minimal level, some variation in 

contact pressure was expected because the device was held in contact with the skin by hand.  In 

addition, the protocol did not include an equilibration period prior to data collection as has been 

used by some investigators.163,176  Colorimetric measurements were taken immediately after the 

participant was positioned at the assessment station. The lack of equilibration period may have 

permitted variations in blood flow due to uncontrolled conditions present just prior to skin 

assessment (i.e. skin temperature, limb position relative to the heart) and subsequently increased 

variation in a*. 

Our results for colorimetry are generally similar to those reported by Van den Kerckhove 

and colleagues (2001), who evaluated intra and inter-rater reliability using the same model of 

colorimeter (Minolta CR-300) and the same forearm body site in subjects with healthy skin.176  

The mean L*, a*, and b* observed at the forearm by Van den Kerckhove fall within the range of 

data in our investigation (Table 11).  The standard deviations reported in our experiment (Table 

11) fall at the low end of the range of standard deviations reported by Van den Kerckhove for a* 

(1.30–2.43) and fall within the range reported for b* (2.07–3.25).  Our standard deviation for L*, 

the color descriptor for luminance, is higher than the range reported by Van den Kerckhove 

(2.42–4.86). Van den Kerckhove did not report skin color as a consideration in recruitment, 

therefore it is possible that we have more variation in L* because we specifically made efforts to 

include participants with light, moderate, and dark skin in our sample.  Our reliability results are 

also similar to those of Van den Kerckhove.  Both investigations report very high intra and inter-

rater reliability for L and b with ICCs exceeding 0.97.  Our observed intra-rater ICCs (range 

0.85-0.95) for a* were slightly lower than that reported by Van den Kerckhove (0.98) but still 

fall in a range that suggests high intra-rater reliability for the measurement of a*.  The inter-rater 

ICC of 0.92 reported by Van den Kerckhove falls within the range of inter-rater ICCs observed 

in our investigation (0.77-0.97) suggesting comparably high inter-rater reliability.   

A second study of colorimetric assessment reliability in healthy adults was conducted by 

Clarys and colleagues (2000), who examined intra-subject repeatability of ten L*, a*, b* 

measurements conducted at the dorsal forearm, volar forearm, belly, and forehead of healthy 

adults using an earlier colorimeter model (Minolta CR-200).163  Clarys reported low coefficients 

of variation at all sites (<5%) for L* and b*, with higher variation in a* (range 4–12%).  These 
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results are consistent with our finding that reliability of colorimetry results, while high, were 

slightly lower for a* than for L* and b*.   

Draaijers and colleagues (2004) examined inter-rater reliability of skin color assessment 

in lesioned skin.173  Four independent observers assessed the color of burn scars at various body 

sites using a Minolta Chromameter (Model CR221-R).  The single measure inter-rater ICCs for 

L*, a*, and b* based on data from all 4 observers were 0.73, 0.75, and 0.89, respectively.  These 

inter-rater ICCs are lower than those observed in our experiment (Table 16), particularly for L* 

and b*.  This difference may be explained in part by irregularities in pigmentation, blood flow, 

and texture in scarred skin that are absent in healthy skin.  The average-measure inter-rater ICCs 

reported by Draaijers for L*, a*, and b* (0.91, 0.92, 0.97, respectively) are similar to the single-

measure ICCs observed in our investigation (Table 16). Draaijers did not report intra-rater 

reliability data. 

5.4.3 Limitations 

Several limitations of this study must be considered when interpreting its results and establishing 

recommendations. As has been previously discussed, Examiner C had less experience in skin 

color assessment than Examiner B, and it is likely that this portrayed a poorer picture of Munsell 

color tile reliability than might have been observed with similarly experienced examiners.  In 

future investigations, it would be of benefit to either ensure similar training of examiners or 

include level of training as a variable of interest in the study so that the effects of experience can 

be examined specifically. In addition, while attempts were made to create as diverse a skin color 

sample as possible, the range of skin color descriptors was small.  There were no participants 

with very dark skin (Munsell value 2.5 – 3) and the range of chromas observed included only the 

middle three of the six chromas represented on the card. This should be considered when 

interpreting the data, as the variance due to error may appear exaggerated due to the small 

overall variability possible with the observed data.  In future investigations it will be desirable to 

ensure the inclusion of individuals who fall at the light and dark skin color extremes.  One must 

also consider that this protocol attempted to create a “best case scenario” for reliability 

assessment.  The investigators controlled ambient light conditions, selected participants whose 

skin was free of irregularities in skin color or texture, and allowed the examiners to view only the 
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skin site of interest, rather than sitting face to face with the person being evaluated, as would be 

typical in a clinical context.  While this design helped to reduce the effect of external factors on 

the skin color assessment results, several issues remain unaddressed by this investigation.  

Additional data are needed to determine how skin color assessment reliability is affected when 

assessments are completed under daylight conditions, under low light conditions, or when 

ambient light cannot be controlled.  In addition, in clinical practice, patients’ skin may be 

irregular in color due to irritation, birthmarks, pigmentation disorders, circulatory impairments, 

or other factors, all of which may make skin color more difficult to assess reliably.  Further 

studies are also needed to determine how reliability results differ, if at all, when examiners are 

not masked to the identity of the person being examined.  The choice to use only the 5YR 

Munsell color tile card may also have been problematic.  The 5YR card was selected because it 

had been used in previous studies to describe skin color.23,151,152  However, the examiners 

reported that participants with olive or yellow-toned skin often did not match well with the 

available tiles on the card.  The inclusion of other tiles in the yellow-red hue might have 

improved the examiners’ ability to find a skin color match.  In addition, because only one 

Munsell hue is represented on the card, the reliability of Munsell hue matches could not be 

assessed.   

5.4.4 Skin Color Measurement Considerations 

In addition to reliability, there are several other factors that should be considered when selecting 

a system of skin color measurement for a particular application, including cost, portability, 

measurement time, maintenance, and the nature of the color output. The color tiles used in this 

investigation are extremely inexpensive, whereas the colorimeter system costs hundreds of 

dollars/month to lease and thousands of dollars to purchase.  The colorimeter system is small 

enough to be considered portable, with all components fitting into a small suitcase-sized 

container.  However, the colorimeter is much bulkier than the color tile card and requires a 

power source for its operation. Measurements obtained by the colorimeter appear as output 

within seconds of initiating the reading.  Color matches may take up to a minute or more, 

particularly with the examiner is trying to decide which of two adjacent tiles is the most 

appropriate color.  The color tiles require appropriate storage and handling to prevent staining or 

  81



tearing of the card, but require no other maintenance.  The colorimeter must be calibrated 

properly and, as with any device, may be subject to breakage or malfunction. Colorimetry 

provides numerically precise readings, however the meaning of these numerical outputs is not 

necessarily intuitive.  Color tile matching provides data that are more qualitative than 

colorimetric data, but does provide an intuitively meaningful way of describing color.  Those 

interested in skin color measurement must examine their own resources and needs when 

determining which method of color assessment is the best match for their particular setting. 

5.4.5 Summary 

The results of this investigation indicate that colorimetry was generally more reliable than 

Munsell color tile matching.  However, a colorimeter would have been very costly to purchase or 

rent for the duration needed for the planned spectroscopic blanch response study in nursing home 

residents (discussed in Chapter 6).  Although Munsell color tile matching showed moderate to 

poor intra-rater reliability for Examiner C and moderate to poor inter-rater reliability, Munsell 

value descriptions were highly reliable within Examiner B, who would be solely responsible for 

all subject enrollment and data collection in the planned study.   Therefore, it was determined 

that Munsell color tile matching was sufficiently reliable to stratify participants in light, 

moderate, and dark skin color groups for subsequent research. 
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6.0  SPECTROSCOPIC ASSESSMENT OF THE BLANCH RESPONSE IN ELDERLY 

NURSING HOME RESIDENTS AT RISK FOR PRESSURE ULCERS 

6.1 HYPOTHESES/OBJECTIVES 

The pilot study discussed in Chapter 4 demonstrated that a blanch response could be detected 

reliably in light and dark healthy heel skin using tissue reflectance spectroscopy (TRS).  Unlike 

the participants in the pilot study, individuals at risk for pressure ulcers frequently are of 

advanced age, and may have a variety of medical conditions that affect skin structure or tissue 

oxygenation.  Such conditions may affect the magnitude or reliability of the spectroscopic blanch 

response.  In addition, clinical environments are more difficult to control than laboratory settings, 

and it is necessary to demonstrate that spectroscopic blanch response assessments are feasible 

and well tolerated in “real world” settings where clinical devices will eventually be applied.   

A study was conducted to verify that the spectroscopic blanch response could be detected 

reliably in the skin of individuals at risk for, but currently without, pressure ulcers.  

Spectroscopic assessments were performed at the heels of elderly long-term care residents at risk 

for pressure ulcers to address two objectives: (1) to test the hypothesis that total hemoglobin will 

decrease significantly when pressure is applied to the skin, regardless of skin color, and (2) to 

assess the intra-rater reliability of spectroscopic blanch response measurement. 
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6.2 METHODS 

6.2.1 Participants 

Fifteen long-term care residents were recruited from six long-term care facilities in the Greater 

Pittsburgh area.   Residents were considered eligible to participate if they met the following 

criteria: (1) age 65 or older, (2) at risk for pressure ulcer development, (3) limited mobility, (4) 

free of pressure ulcers on one or both heels.  Risk for pressure ulcer development and mobility 

status were defined by the Braden Scale.  The Braden Scale contains six subscales for sensory 

perception, activity level, mobility, moisture, friction, and nutrition.45 Studies have shown the 

Braden scale to be reliable and valid in light and dark-skinned populations.2,58 A Braden Scale 

score of ≤18 indicated risk for pressure ulcer development.  Limited mobility was defined as a 

combined activity and mobility subscale score of ≤5.  Skin inspections to determine pressure 

ulcer status were conducted according to current Agency for Healthcare, Research, and Quality 

(AHRQ) practice guidelines and pressure ulcers (if present) were staged according to NPUAP 

staging definitions (Table 1).  Residents were excluded from the study if they had scarring, 

bruising, rashes, or abnormal pigmentation of the skin over the posterior aspect of both heels that 

would prevent accurate assessment of pressure ulcer status. 

Participants were recruited in light, moderate, and dark skin color subgroups (5 

subjects/subgroup) to ensure a variety of levels of skin pigmentation in the sample. Skin color 

classifications were determined by matching the skin on the outer forearm of each participant to 

perforated Munsell color tiles (Figure 3), which have been previously described in section 4.2.1.  

Skin that matched Munsell 5YR (yellow-red) color tiles of value 7-8 was considered light, 5-6 

moderate, and 2.5-4 dark.  Munsell color tile matching by the investigator was shown to be 

highly reliable in the study described in Chapter 5 (93% agreement, kappa range 0.87-1.00).   

All study procedures, risks, and benefits were discussed and informed consent provided 

prior to the beginning of any study procedures in compliance with the policies of the Institutional 

Review Board at the University of Pittsburgh. In cases where a resident was considered by 

his/her facility to be decisionally-impaired with regard to consenting to participation in research, 

informed consent was obtained from a representative authorized to make health care decisions on 

his/her behalf. 
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6.2.2 Instrumentation 

Skin reflectance data were acquired using the spectroscopy system described previously for the 

pilot study (see section 4.2.2).  The hand-held indenter was modified slightly to include a flexible 

filament attached to the side of the indenter head (Figure 19).  This filament served as an 

indicator of appropriate spring displacement.  The plunger of the spring assembly and filament 

were placed such that compression of the spring by 20 mm (resulting in 120 mmHg pressure on 

the skin) would bring the plunger in contact with the filament.  The investigator was made aware 

of excessive pressure application by observation of filament bending, and of insufficient pressure 

application by a lack of contact between the plunger and the filament.  

The light source was allowed to warm up for approximately 5 minutes prior to 

spectroscopic assessment of the skin.  Reference and dark spectra were recorded in a darkened 

environment prior to data collection to allow calculation of optical density.  Reference spectra 

were recorded from a white reflectance standard made of Halon (≥97% reflectivity).  Spectra 

were recorded using an integration time of 60 msec with averaging set at 50.  Spectral data were 

saved automatically by the software at a rate of 1 spectrum approximately every 3 seconds. 

6.2.3 Data Collection Procedures 

Medical and demographic information were obtained for each participant via medical chart 

review and consultation with nursing staff.  Medical diagnoses were categorized based on the 

Cumulative Illness Rating Scale for Geriatrics.178,179 

The assessment site was identified as the most prominent aspect of the calcaneus on the 

hand-dominant side heel.  In preparation for assessment, the participant was positioned 

comfortably in bed in a manner that allowed access to the assessment site.  Most participants 

preferred a semi-sidelying position with hips and knees slightly flexed.  Others were most 

comfortable in supine with the lower extremity of interest externally rotated and slightly flexed. 

Pillows and draping were used as needed to maintain comfort and stability.  Footwear and socks 

were removed to allow access to the assessment site.  Each participant’s heel skin was matched 

to Munsell color tiles and a digital photograph of the assessment site was taken.  Participants 
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rested in their preferred position with the assessment site exposed for up to 10 minutes prior to 

spectroscopic assessment to allow skin temperature to stabilize.  

 

 

Figure 19.  Hand-held indenter with filament in light contact condition (left) and gentle pressure 
condition (right) 

Three point spectroscopic blanch tests (PSBTs) were performed at the heel of interest.  A 

sterile, transparent dressing (Tegaderm™, 3M) was applied to the assessment site. A piece of 

transparent double-sided tape was applied over the dressing in order to minimize movement of 

the fiber optic probe during data acquisition.  The fiber optic probe was placed in light contact 

(<5 mmHg) with the tape (Figure 19).  The probe was positioned such that incident light was 

directed perpendicular to the skin surface. The probe was held in this position for 45 seconds 

while reflectance data were collected by the spectrophotometer. Without lifting the probe from 

the tape, the investigator gently increased the pressure delivered to the skin to 120 mmHg by 

depressing the plunger on the probe and compressing the spring until contact was made with the 

tip of the filament. This gentle pressure was maintained for 45 seconds while reflectance data 

was collected by the spectrophotometer. The probe was lifted gently off the tape and a two-
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minute washout period took place. This process was repeated until three PSBTs at the heel of 

interest were completed. If a condition arose during a PSBT that would negatively the quality of 

data collected (i.e. subject movement), that PSBT was repeated to ensure that three data sets 

suitable for analysis were acquired.   

6.2.4 Spectroscopic Data Processing 

Reflectance data were converted to optical density units by the OOIBase32 software using the 

formula log10(reference – dark) – log10(skin reflectance – dark).  Spectral data files saved during 

the light contact and gentle pressure conditions were identified, and spectral data within each of 

these conditions were averaged to produce a single light contact and gentle pressure spectrum for 

each PSBT.  A difference spectrum for each PSBT was calculated by subtracting the gentle 

pressure spectrum from the light contact spectrum.   

A semiparametric fitting approach, described by Sowa and colleagues180, was used to 

estimate the change in the relative concentrations of HbO2 and Hb that occurred when pressure 

was applied to the skin. This approach is based on the principles of non-negative least squares 

estimation, and includes parametric terms which model the contributions of HbO2 and Hb to the 

skin spectrum as well as a non-parametric term which accounts for the contributions of melanin, 

light scattering, and unknown tissue constituents. Difference spectra were regressed against the 

extinction coefficients for oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) using data in the 

510-610 nm range.  The magnitude of the spectroscopic blanch response (ΔtHb) was determined 

by summing the calculated values of ΔHbO2 and ΔHb. Optical density data were analyzed in 

Matlab (v.6.5, Mathworks, Inc., Natick, MA). 

6.2.5 Statistical Analysis 

Statistical analyses were performed in SPSS version 11.0.1 for Mac OSX (SPSS, Inc., Chicago, 

Illinois, USA).  A one-way analysis of variance (ANOVA) was performed to explore differences 

in the magnitude of ΔtHb, ΔHb, and ΔHbO2 between skin color subgroups prior to pooling these 

data. Tukey post-hoc tests were performed as needed.  A dependent samples t-test was performed 
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on the pooled data set and Wilcoxon signed ranks tests were performed on data in each of the 

skin color subgroups to determine if a significant decrease in tHb, Hb, or HbO2 occurred when 

pressure was applied to the skin.  The non-parametric Wilcoxon signed ranks test was chosen for 

subgroup analyses due to the small subgroup sample size (n=5).   

Reliability of ΔtHb, ΔHb, and ΔHbO2 measurement was described by the intra-class 

correlation coefficient (ICC), Model 3155,156, using data obtained during the three PSBTs at the 

heel of interest for each participant. ICC Model 3 is based on a two-way mixed model and 

calculates ICC values using analysis of variance (ANOVA) for repeated measures.  Model 3 was 

selected because the tested raters were considered the only raters of interest and measurements 

were repeated within participants. ICCs were calculated for the overall group and within each 

skin color subgroup.  Both single measure (ICC 3,1) and average measure ICCs (ICC 3,k) were 

reported.  Due to their small magnitude, relative concentration data were multiplied by 106 prior 

to calculating ICCs in SPSS. 

One-way ANOVA was used to explore differences among skin color subgroups for 

continuous medical and demographic variables (age, length of stay, number of diagnosis types, 

number of medications, Braden Scale scores) with Tukey post-hoc tests performed as needed.  

Chi-square analyses were used to explore differences between skin color subgroups for nominal 

variables (gender, race/ethnicity, types of diagnoses, incontinence status, PU history, PU sites, 

means of mobility, hand dominance), with post-hoc chi-square tests performed as needed.  

Munsell color tile values were treated as ordinal data and analyzed using the Kruskal-Wallis test.  

Post-hoc testing was performed using the Mann-Whitney U statistic (exact significance 

reported).  Due to the exploratory nature of this preliminary study, the Bonferroni correction was 

not used for multiple comparisons tests.  
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6.3 RESULTS 

6.3.1 Participant Characteristics 

Participants’ demographic and skin color characteristics are shown in Table 17.  The average age 

of study participants was 81.2 years (range 67.1-90.4).  Most participants were female (73%).  

No significant differences were found among the skin color subgroups with regard to age or 

gender.  Race differed significantly between the light versus moderate and dark subgroups 

(p<0.01), with all moderate and dark-skinned participants described as Black or African-

American and all light skin participants described as Caucasian or White.  As expected based on 

the study’s design, the forearm Munsell value differed significantly among the skin color 

subgroups with a median value of 7 for light skin, 5 for moderate skin, and 4 for dark skin 

(p<0.01 for all post-hoc comparisons).  Heel Munsell values were significantly higher for the 

light skin group compared to the moderate (p<0.05) and dark (p<0.01) skin color subgroups, 

with no significant difference between moderate and dark-skinned participants (median heel 

Munsell value 7 for light skin, 6 for moderate skin, and 5 for dark skin).   

Health-related characteristics of study participants are shown in Table 18.  The majority 

of study participants had a length of stay between 0.9 and 56.2 months, with one subject having a 

much longer length of stay of 136.9 months. The median number of diagnosis types present per 

participant was 8 (range 5-13).  The most frequently reported diagnosis types were genitourinary 

(principally incontinence), musculoskeletal/integument, psychiatric illness (principally 

Alzheimer’s dementia), and vascular (Table 19). “Other” diagnoses were reported only in dark 

skin subgroup participants (p<0.05 for comparison to light and moderate subgroups).  No other 

statistically significant differences for length of stay, number of diagnoses, or type of diagnoses 

were found among the skin color subgroups. The median number of medications prescribed for 

study participants was 12 (range 8-21), with no significant differences among the subgroups. 

The median Braden Scale total score for study participants was 16 (range 13-18) with all 

subjects having activity/mobility subscale scores of 4 or 5 (Table 18).  Braden Scale total or 

activity/mobility subscale scores did not differ significantly among the skin color subgroups.    

Seven of the 15 participants had a documented prior history of pressure ulcers, with most ulcers 

documented at the heel (5 participants) followed by the ischial tuberosities (2 participants), and 
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greater trochanters (1 participant).  Of those participants with a history of heel pressure ulcers, 2 

had pressures ulcers on the non-dominant side, 2 on the dominant side, and 1 on both sides.  No 

significant differences were noted among the subgroups with regard to pressure ulcer history or 

location.   

The skin color subgroups did not differ significantly with regard to incontinence status, 

means of mobility, or handedness (Table 18).  Nearly all study participants were incontinent of 

urine and/or feces (14 of 15 participants).  The majority of participants (80%) used manual 

wheelchairs as their primary means of mobility.  Most participants were right-handed (87%). 



Table 17. Demographic and skin color characteristics of participants 

Variable [Data Format] All Skin Colors 
(n = 15) 

Light Skin 
(n = 5) 

Moderate Skin 
(n = 5) 

Dark Skin 
(n = 5) 

Age in Years  
[Mean (St. Dev.)] 
[Median (Range)] 

 
81.2 (7.5) 
82.9 (67.1-90.4) 

 
85.0 (6.7) 
86.9 (73.1-89.2) 

 
75.9 (7.3) 
75.7 (67.1-84.7) 

 
82.9 (6.7) 
82.9 (74.5-90.4) 

Gender [n] 
Male 
Female 

 
4 

11 

 
1 
4 

 
1 
4 

 
2 
3 

Race/Ethnicity [n]a 
White or Caucasian 
Black or African-American 

 
5 

10 

 
5 
0 

 
0 
5 

 
0 
5 

Forearm Munsell Valueb 
[Median (Range)] 

 
5 (3-7) 

 
7 (7-7) 

 
5 (5-6) 

 
4 (3-4) 

Heel Munsell Valuec 
[Median (Range)] 

 
6 (4-7) 

 
7 (7-7) 

 
6 (5-7) 

 
5 (4-6) 

a 
χ2=15.0, p=0.001; Light vs. Dark χ2=10.0, p=0.002, Light vs. Moderate χ2=10.0, p=0.002, Moderate vs. Dark – not 
significant 

b 
χ2=13.462, p=0.001; p=0.008 for all skin color subgroup comparisons 

c 
χ2=10.020, p=0.007; Light vs. Moderate p=0.032, Light vs. Dark p=0.008,  Moderate vs. Dark – not significant 
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Table 18. Health-related characteristics of participants 

Variable Data Format All Skin Colors 
(n = 15) 

Light Skin 
(n = 5) 

Moderate Skin 
(n = 5) 

Dark Skin 
(n = 5) 

Length of Facility Stay in 
Months 

Mean (St. Dev.) 
Median (Range) 

28.6 (34.7) 
13.3 (0.90-136.9)

22.8 (22.2) 
13.3 (4.6-56.2) 

22.2 (18.1) 
12.3 (11.1-53.6) 

40.9 (55.8) 
14.8 (0.9-136.9) 

Number of Diagnosis Types 
Present 

Mean (St. Dev.) 
Median (Range) 

8.5 (2.3) 
8 (5–13) 

7.4 (1.7) 
7 (6–10) 

8.4 (2.2) 
9 (5–11) 

9.6 (2.7) 
10 (6–13) 

Number of Medications Mean (St. Dev.) 
Median (Range) 

13.0 (4.0) 
12 (8–21) 

12.2 (3.3) 
12 (8–17) 

10.6 (2.6) 
9 (9–15) 

16.2 (4.3) 
16 (11–21) 

Braden Scale Total Score 
 

Mean (St. Dev.) 
Median (Range) 

15.5 (1.8) 
16 (13–18) 

14.4 (2.1) 
14 (13–18) 

16.4 (1.5) 
16 (15–18) 

15.6 (1.5) 
16 (13–17) 

Braden Activity/Mobility 
Score  

Mean (St. Dev.) 
Median (Range) 

4.4 (0.5) 
4 (4–5) 

4.2 (0.4) 
4 (4–5) 

4.6 (0.5) 
5 (4–5) 

4.4 (0.5) 
4 (4–5) 

Documented PU History n 7 1 3 3 
Incontinence Status  

Not Incontinent 
Incontinent of Urine 
and/or Feces 

n  
1 

14 

 
0 
5 

 
1 
4 

 
0 
5 

Primary Means of Mobility 
Manual Wheelchair 
Recliner 
Power Wheelchair 

n  
12 
2 
1 

 
4 
1 
0 

 
5 
0 
0 

 
3 
1 
1 

Hand Dominance 
Right 
Left 

n  
13 
2 

 
5 
0 

 
5 
0 

 
3 
2 

  



Table 19. Diagnosis types listed by number of participants with each diagnosis 

Diagnosis Types All Skin 
Colors 
(n = 15) 

Light 
Skin 

(n = 5) 

Moderate 
Skin 

(n = 5) 

Dark 
Skin 

(n = 5) 
Genitourinary 15 5 5 5 
Musculoskeletal/Integument 14 4 5 5 
Psychiatric Illness 13 5 4 4 
Vascular 13 5 4 4 
Endocrine/Metabolic and Breast 9 4 3 2 
Eyes, Ears, Nose, Throat, and Larynx 9 4 2 3 
Neurological 9 3 3 3 
Heart 8 2 3 3 
Respiratory 8 2 4 2 
Upper Gastrointestinal 8 1 3 4 
Hematopoietic 6 1 3 2 
Lower Gastrointestinal 5 1 1 3 
Liver 4 0 1 3 
Renal 3 0 1 2 
Other Diagnosis (es)a 3 0 0 3 
a Overall χ2 =7.5, p= 0.024;  Light vs. Dark χ2=4.286, p=0.038, Moderate vs. Dark 

χ2=4.286, p=0.038 
 

6.3.2 Key Spectral Features 

Figure 20 shows examples of light contact, gentle pressure, and difference spectra acquired from 

participants in each of the skin color subgroups.  The shapes of the skin spectra differ between 

skin color subgroups in a manner consistent with the presence of melanin.  Optical density, a 

measure of light absorption, is highest in dark skin, followed by moderate and light skin.  This is 

expected because the light absorption capacity of darker skin is increased by greater 

concentrations of light-absorbing melanin compared to light skin.  In addition, the skin spectra 

show a steeper “slope” to their shape with increasing skin pigmentation.  Melanin absorbs light 

in a sloped pattern in the visible region (Figure 2), therefore it is expected that the slope of the 

overall skin spectrum would increase as the presence of melanin in the skin increases. 
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The shapes of the skin spectra are also consistent with a decrease in Hb and HbO2 content 

with pressure application.  Optical density in the visible region decreased with gentle pressure 

application in all skin color subgroups. The difference spectra for all subgroups show two 

absorption maxima and one absorption minimum between 500 and 600 nm.  This spectral shape 

is associated with the presence of Hb and HbO2 in the skin, and indicates that the change in 

optical density may be attributed to changes in the concentration of Hb and HbO2 in the sampled 

tissue. 

6.3.3 Change in Hemoglobin Concentration with Pressure Application 

The mean change in relative concentrations of tHb, Hb, and HbO2 following pressure application 

is shown in Table 20.  The relative concentration of tHb decreased significantly with pressure 

application for the overall group (p<0.001) and within each of the skin color subgroups (p<0.05) 

(Figure 21).  The relative concentration of Hb (Figure 22) and HbO2 (Figure 23) also decreased 

significantly (p<0.001 for overall group, p<0.05 for subgroups).  The magnitude of ΔtHb, ΔHb, 

and ΔHbO2 did not differ significantly among the skin color subgroups. 



 

Figure 20.  Examples of optical density spectra from participants with light, moderate, and dark skin 
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Table 20. Magnitude of mean change in relative concentrations of tHb, Hb, HbO2 with pressure 
application 

Species All Skin 

Colors 

(n = 15) 

Light Skin 

(n = 5) 

Moderate 

Skin 

(n = 5) 

Dark Skin 

(n = 5) 

ΔtHb (µM * cm) 15.05 (5.07) 13.29 (4.06) 15.41 (6.91) 16.44 (4.38)

ΔHb (µM * cm)  8.35 (3.09) 7.23 (1.13) 8.83 (4.58) 9.00 (2.95)

ΔHbO2 (µM * cm) 6.69 (2.78) 6.07 (3.71) 6.58 (2.61) 7.43 (2.30)

 

 

Figure 21. Magnitude of mean change in tHb 
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Figure 22. Magnitude of mean change in Hb 

 

Figure 23. Magnitude of mean change in HbO2 
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6.3.4 Reliability of ΔtHb, ΔHb, and ΔHbO2 Measurement 

Intra-rater reliability for the spectroscopic blanch response (ΔtHb) was moderate for 

single measures (ICC range 0.61-0.77, Table 21), and good to excellent for average measures 

(ICC range 0.83-0.91, Table 22).  Intra-rater reliability for ΔHbO2 measurement was moderate to 

good for single measures (ICC range 0.60-0.82) and good to excellent for average measures (ICC 

range 0.82-0.93).  Results for ΔHb measurement reliability were mixed.  Intra-rater reliability for 

ΔHb was generally moderate for single measures (ICC range 0.60-0.76) and good to excellent for 

average measures (ICC range 0.82-0.90) among the overall sample, moderate skin, and dark skin 

subgroups, but was very poor in the light skin group for both single and average measures (ICC 

range 0.05-0.14). 

Table 21. Single measure intra-rater ICCs (95% confidence intervals in parentheses) 

Species 
All Skin Colors 

(n = 15) 

Light Skin 

(n = 5) 

Moderate Skin 

(n = 5) 

Dark Skin 

(n = 5) 

ΔtHb 0.61 (0.32, 0.83) 0.65 (0.09, 0.95) 0.67 (0.11, 0.95) 0.77 (0.28, 0.97) 

ΔHb 0.60 (0.30, 0.82) 0.05 (-0.34, 0.76) 0.70 (0.16, 0.96) 0.76 (0.26, 0.97) 

ΔHbO2 0.69 (0.43, 0.87) 0.82 (0.38, 0.98) 0.60 (0.03, 0.94) 0.79 (0.33, 0.97) 

Table 22. Average measure intra-rater ICCs (95% confidence intervals in parentheses) 

Species 
All Skin Colors 

(n = 15) 

Light Skin 

(n = 5) 

Moderate Skin 

(n = 5) 

Dark Skin 

(n = 5) 

ΔtHb 0.83 (0.59, 0.94) 0.85 (0.23, 0.98) 0.86 (0.27, 0.98) 0.91 (0.54, 0.99) 

ΔHb 0.82 (0.57, 0.93) 0.14 (-3.32, 0.90) 0.88 (0.37, 0.99) 0.90 (0.51, 0.99) 

ΔHbO2 0.87 (0.69, 0.95) 0.93 (0.65, 0.99) 0.82 (0.07, 0.98) 0.92 (0.60, 0.99) 
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6.4 DISCUSSION 

6.4.1 Detection of Changes in tHb, Hb, and HbO2 with Pressure Application 

This study demonstrated that a significant spectroscopic blanch response could be detected at the 

heels of light, moderate, and dark-skinned elderly individuals at risk for pressure ulcers.  The 

spectroscopic blanch response is defined as the change in total hemoglobin (tHb) that occurs 

when pressure is applied to the skin.  In skin that is free of pressure damage, the relative 

concentration of tHb is expected to decrease with pressure application due to the displacement of 

blood from the area where pressure is applied.  As expected, both the raw spectra and relative 

concentration data derived from those spectra showed that tHb decreased significantly when 

pressure was applied to the skin. Visual inspection of skin spectra for all skin color subgroups 

showed a decrease in optical density between 500-600 nm, a region of high light absorption by 

Hb and HbO2.  In addition, the presence and location of two maxima and one minimum in the 

difference spectra indicate that the change in optical density between light contact and gentle 

pressure conditions can be attributed primarily to a decrease in Hb and HbO2.   

The magnitude of the spectroscopic blanch response (ΔtHb) was statistically significant 

for both the pooled sample (p<0.001) and within each of the skin color subgroups (p<0.05), as 

were changes in Hb and HbO2.  These data indicate that TRS can be used successfully to 

measure the blanch response at the heels of light, moderate, and dark-skinned elderly individuals 

at risk for pressure ulcers.  Furthermore, these data suggest that age-related skin changes and the 

presence of cardiovascular and other health conditions does not adversely affect the ability of 

spectroscopy to measure the blanch response.  The PSBT protocol was well-tolerated by 

participants, with no adverse events, or verbal or non-verbal indications of discomfort during the 

spectroscopic assessment. 

No statistically significant differences in the magnitude of ΔtHb, ΔHb, and ΔHbO2 were 

identified between skin color subgroups.  However, visual inspection of the data revealed a 

tendency for the magnitude of change to increase with increasing skin pigmentation, particularly 

for HbO2.  The small subgroup sample size (n=5) makes it difficult to determine if a true 

difference in the magnitude of ΔtHb, ΔHb, and ΔHbO2 exists among subgroups.  The power to 

detect a difference is likely to be low and the distribution of data is greatly influenced by inter-
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subject variability in such a small sample.  The magnitude of ΔtHb, ΔHb, and ΔHbO2 is not 

expected to differ between skin color subgroups, but data from a larger sample is needed to 

confirm this expectation. 

The spectroscopic blanch response findings of the present study are similar to those of the 

pilot study conducted in healthy, young individuals, discussed in Chapter 4.  Differences in the 

spectral data processing approaches used for these data and those reported for the pilot study 

preclude direct comparison of the magnitude of ΔtHb in these studies. However, both studies 

detected a statistically significant spectroscopic blanch response at the heel in individuals with 

light and dark skin pigmentation.  The level of significance for ΔtHb in the subgroups for the 

current study (p<0.05) is somewhat lower than that of the light and dark skin subgroups in the 

pilot study (p<0.001), which may be attributed to the smaller subgroup sample size (n=5 vs. 

n=15).  In combination, the results of the current study and pilot study demonstrate that a 

significant blanch response may be detected at the heel regardless of age or pressure ulcer risk 

status.   

The findings at the heel in the current study are also consistent with those described at the 

forearm by Matas and colleagues.24  In Matas’ work, cyclical loads of up to a maximum of 

50mmHg were applied to the dorsal forearm via an indenter featuring a stepper motor attached to 

a benchtop device. A significant change in total hemoglobin between the high and low pressure 

conditions (p<0.01) was observed in both light and dark skinned participants.  Despite 

differences in participant population, loading method, pressure magnitude, and body site, both 

Matas’ investigation and the current study detected a significant blanch response using 

spectroscopy.  The similarity of results between the investigations supports the use of 

spectroscopy as a tool for assessing the blanch response. 

6.4.2 Variability in Measurement of ΔtHb, ΔHb, and ΔHbO2 

The ICC data demonstrate that the spectroscopic blanch response may be detected with moderate 

or greater intra-rater reliability in individuals of advanced age with health conditions that place 

them at risk for pressure ulcers.  In general, intra-rater reliability for ΔtHb and ΔHbO2 was 

moderate for single measures (ICCs ≥ 0.60) and good to excellent for average measures (ICC ≥ 
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0.82) for both the pooled sample and all skin color subgroups.  As in the pilot study, it is likely 

that the examiner’s ability to view the skin spectrum during data collection may have provided 

feedback that assisted measurement reliability.  There is no obvious physiological explanation 

for the poor reliability of ΔHb measurement in the light skin subgroup (ICC=0.05-0.14).  The 

variance in ΔHb for the light skin group was lower than that of the other skin color groups, 

which may have influenced the magnitude of the ICC.  Data from a larger sample size may have 

produced different reliability results.  Notably, ΔtHb measurement reliability for the light skin 

subgroup remained moderate to good despite poor ΔHb measurement reliability.  As in the pilot 

study discussed in Chapter 4, average measure ICCs were higher than single measure ICCs, 

indicating excellent intra-rater reliability when the mean of multiple ratings is the unit of 

analysis. 

The 95% confidence intervals around the ICCs were very wide, particularly for single 

measures, with a range as large as 0.09-0.95 for ΔtHb (light skin subgroup).  These confidence 

intervals are wider than those reported for heel data in the pilot study, where the lowest 

confidence interval boundaries were 0.31 for single measure and 0.57 for average measure ICCs.  

The small sample size, particularly for the subgroups, likely contributed to the lack of precision 

in the reliability estimate.  Data from a larger sample is needed to quantify intra-rater reliability 

with greater confidence. 

ICC values for ΔtHb in the current study are generally lower than those reported for the 

pilot study, where ICCs exceeded 0.80 for single measures and 0.92 for average measures.  Intra-

rater reliability may be lower in the current study for several reasons.  First, limitations in 

participants’ range of motion and the setup of residents’ rooms made it more difficult for the 

examiner to position herself in a manner that allowed her to view both the test site and the 

computer monitor easily.  This setup reduced the feedback provided by observation of the skin 

spectra during data collection.  Second, variations in pressure application may have contributed 

to lower reliability.  The examiner found it more challenging to maintain the appropriate amount 

of spring displacement in the current study than in the pilot.  This was due in part to difficulty 

placing the probe in a manner that allowed full view of the filament and due to difficulty finding 

a comfortable and stable hand position during the PSBT.  Third, residents sometimes moved 

spontaneously during the PSBT.  In several cases, residents’ cognitive status prevented them 

from following directions to keep their feet still during the assessment.  In other cases, residents 
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fell asleep during the PSBT and moved in their sleep or in response to the examiner’s contact 

with the heel site.  Others coughed frequently, creating body movement.  While PSBTs were 

repeated in cases where considerable movement occurred, it was not always feasible to obtain 3 

PSBT measurements that were unaffected by movement.  Finally, participants in the current 

study frequently had medical conditions that affected circulation, possibly contributing to 

variability in skin blood content and response to pressure. 

Inter-participant variability was high, with coefficients of variation (CV) ranging between 

27-45% for ΔtHb, 15-52%, for ΔHb, and 31-61% for ΔHbO2.  These CV are similar to, or 

slightly lower, than those observed in the pilot study (range 39-69% over all species). High inter-

participant variability has also been reported by other investigators who have used spectroscopy 

to examine hemoglobin changes associated with tissue loading.30-32  Inter-subject variability may 

arise from  several sources, including variability in the examiner’s application of pressure to the 

skin, subject movement, and variations in skin blood content between individuals due in part to 

medical conditions affecting circulation. 

6.4.3 Summary 

This investigation demonstrates that a significant spectroscopic blanch response (ΔtHb) can be 

detected at the heel in light, moderate, and dark-skinned elderly individuals at risk for pressure 

ulcers.  This finding is similar to that of pilot work conducted in a young, healthy population and 

to findings at the forearm by other investigators. Findings demonstrate that the spectroscopic 

blanch response can be measured with moderate or greater intra-rater reliability in those with 

multiple medical conditions and advanced age.  Additional data from a larger sample would be 

of benefit to determine if there are differences in the magnitude of ΔtHb between skin color 

groups and to improve the precision of intra-rater reliability estimates.  The significance of this 

work and directions for future research will be discussed further in Chapter 7. 
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7.0  SUMMARY AND RECOMMENDATIONS 

7.1 REVIEW OF OBJECTIVES 

Pressure ulcer researchers and clinical experts have frequently reported that pressure damage in 

intact skin is difficult to detect, particularly in darkly pigmented skin.  Tissue reflectance 

spectroscopy (TRS) has been identified as a possible means of improving pressure damage 

detection because of its ability to provide information on hemoglobin content regardless of skin 

pigmentation. Few studies have applied TRS to the problem of pressure damage detection in 

intact skin. 

The goal of this dissertation was to examine the ability of tissue reflectance spectroscopy 

(TRS) to detect the blanch response, a clinical indicator of pressure damage in intact skin.   

Three studies were performed to accomplish this goal.  Study 1 was a laboratory-based study in 

which the blanch response was assessed at the heel and sacrum of light and dark-skinned healthy 

participants using a portable TRS system.  Study 1 had two objectives: 

 
1.1    To test the hypothesis that total hemoglobin will decrease significantly when 

pressure is applied to light and dark healthy skin 

1.2    To assess the intra-rater reliability of spectroscopic blanch response 

measurement in participants with healthy skin 

 
After the completion of Study 1, it was determined that a reliable means of describing 

participant’s skin color was needed to assist subject recruitment for subsequent studies of 

spectroscopic blanch response assessment.  To address this need, a second laboratory-based 

study (Study 2) was conducted in a population of light, moderate, and dark-skinned healthy 

participants with the following objective: 
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2.1   To examine the reliability of skin color assessments performed using 

Munsell color tile matching and colorimetry 

 

Once a reliable means of skin color description was identified, a third study (Study 3) was 

conducted to replicate the findings of Study 1 in a population of light, moderate, and dark-

skinned elderly nursing home residents at risk for pressure ulcers.  Study 3 had two objectives: 

 
3.1    To test the hypothesis that total hemoglobin will decrease significantly when 

pressure is applied to the skin of elderly nursing home residents at risk for pressure 

ulcers, regardless of skin color 

3.2    To assess the intra-rater reliability of spectroscopic blanch response measurement in 

elderly nursing home residents at risk for pressure ulcers 

 
Each of these studies has been discussed in detail in Chapters 4-6.  The following 

sections will summarize key findings of each of these studies, their limitations, contributions, 

and recommendations for future work. 

7.2 SUMMARY OF FINDINGS 

7.2.1 Study 1 - Pilot Study to Detect the Blanch Response in Lightly and Darkly-

Pigmented Skin Using Tissue Reflectance Spectroscopy 

Three point spectroscopic blanch tests (PSBTs) were performed at the heel and sacrum of 30 

young, healthy participants in two positions: semi-sidelying and prone.  Half of the participants 

had light skin (blanch response visible at the forearm in response to finger pressure) and half had 

dark skin (blanch response not visible at the forearm).  At the heel, a significant decrease in tHb, 

StO2, HbO2, and Hb (p<0.001) occurred in both the light and dark skin subgroups in both semi-

sidelying and prone test positions.  The magnitude of the spectroscopic blanch response (ΔtHb) 

at the heel was not significantly different in light versus dark skinned-participants or between test 

positions.  Single measure ICCs for ΔtHb measurement at the heel were 0.80 or higher, while 
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average measure ICCs exceeded 0.90, indicating good to excellent intra-rater reliability. 

Considerable inter-subject variability was observed at the heel with coefficients of variation 

(CV) for ΔtHb, ΔStO2, ΔHbO2, or ΔHb measurements ranging from 39-69%.   

In contrast to the heel, a significant blanch response was not detected at the sacrum.  The 

magnitude of ΔtHb was not significantly different from zero at the sacrum for either light or 

dark-skinned participants in either prone or semi-sidelying. Examination of tHb timecourses for 

individual subjects showed that tHb could decrease, increase, or remain unchanged with pressure 

application.  The magnitude of ΔtHb did not differ significantly between skin color subgroups or 

test positions.  Intra-rater reliability for ΔtHb was typically lower than that at the heel.  Intra rater 

reliability for sacral ΔtHb was poor to moderate for single measures (ICC range 0.32-0.69) and 

moderate to good for average measures (ICC range 0.58-0.87).  Between-subjects variability was 

much greater than at the heel, with coefficients of variation for ΔtHb, ΔStO2, ΔHbO2, and ΔHb 

ranging from 134% to 7067%. 

In summary, Study 1 demonstrated that a significant spectroscopic blanch response could 

be detected with good intra-rater reliability in healthy skin, regardless of skin color or test 

position, at the heel but not at the sacrum.  Based on these results, it was determined that 

adjustments to the TRS instrumentation would be necessary to improve blanch response 

detection at the sacrum prior to conducting future studies at this site.  However, the results of 

Study 1 assisted in the design of a subsequent study to examine spectroscopic blanch response 

measurement at the heels of individuals at risk for pressure ulcers.  

7.2.2 Study 2 - Reliability of Skin Color Assessment via Munsell Color Tile Matching and 

Colorimetry 

A reliable means of classifying participants by skin color was needed for subsequent studies of 

the blanch response.  An investigation was conducted to evaluate the reliability of two skin color 

assessment techniques: Munsell color tile matching and colorimetry.  Two examiners (B and C) 

performed three skin color assessments at the volar forearm of ten healthy participants by 

matching participants’ skin to the 5YR set of Munsell color tiles and performing skin light 

reflectance measurements with the Minolta Chromameter (CR-300). 
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Reliability was generally higher for colorimetry than for color tile matching. Reliability 

was particularly high for the L* and b* color descriptors (intra and inter-rater ICCs exceeded 

0.97 for L* and b*).  Intra-rater ICCs for a* exceeded 0.85 and inter-rater ICCs typically 

exceeded 0.84.   Munsell value assessment was typically more reliable than chroma.  Intra-rater 

agreement for Munsell value was good to excellent for Examiner B (93% agreement, kappa 

0.87–1.00) but was moderate for Examiner C (80% agreement, kappa 0.71-0.73). Intra-rater 

agreement for chroma was moderate to high for Examiner B (93% agreement, kappa 0.78–1.00) 

and poor for Examiner C (60% agreement, unable to calculate kappa). Inter-rater agreement was 

moderate to poor for value (74% agreement, kappa typically 0.46-0.73) and poor for chroma 

(61% agreement, kappa 0.09-0.21). 

The results of Study 2 indicated that colorimetry was generally more reliable than 

Munsell color tile matching.  However, a colorimeter would have been very costly to purchase or 

rent for the duration needed for the planned spectroscopic blanch response study in nursing home 

residents (Study 3).  Although Munsell color tile matching showed moderate to poor intra-rater 

reliability for Examiner C and moderate to poor inter-rater reliability, Munsell value descriptions 

were highly reliable within Examiner B, who would be solely responsible for all subject 

enrollment and data collection in the planned study.   Therefore, it was determined that Munsell 

color tile matching was sufficiently reliable to stratify participants in light, moderate, and dark 

skin color groups for Study 3. 

7.2.3 Study 3 – Spectroscopic Assessment of the Blanch Response in Elderly Nursing 

Home Residents at Risk for Pressure Ulcers 

Study 3 was conducted to verify that the spectroscopic blanch response could be detected 

reliably in the skin of individuals at risk for, but currently without, pressure ulcers. Fifteen 

residents age 65 and older who were at risk for pressure ulcers were recruited from six long-term 

care facilities in the Greater Pittsburgh area.  Participants were enrolled in light, moderate, and 

dark skin color subgroups (n=5 per subgroup) via Munsell color tile matching of each resident’s 

forearm skin.  Three point spectroscopic blanch tests were performed at the dominant-side heel 

of each participant at his/her bedside.  
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The magnitude of ΔtHb was statistically significant (p<0.001) for the overall sample and 

within each of the skin color strata (p<0.05 for all strata).  The magnitude of ΔtHb was not 

statistically different among the skin color subgroups, although visual inspection of the data 

suggested that the magnitude of change tended to be greater in darker skin. Intra-rater reliability 

for ΔtHb was moderate for single measures (ICC range 0.61-0.77), and good to excellent for 

average measures (ICC range 0.83-0.91). 

In combination, the results of Study 1 and Study 3 indicate that a significant blanch 

response may be detected at the heel regardless of age or pressure ulcer risk status.  Furthermore, 

Study 3 demonstrated that the spectroscopic blanch response could be measured with moderate 

or greater intra-rater reliability in those with multiple medical conditions and advanced age.  

7.3 LIMITATIONS 

The primary limitation of this work is that it demonstrates successful blanch response detection 

at only one body site, the heel. The heel is typically less pigmented than other areas of the body, 

even in very dark-skinned individuals. Therefore, it can be argued that the studies described 

herein are not a stringent test of spectroscopy’s ability to measure a blanch response regardless 

of skin pigmentation.  Furthermore, many body sites at risk for pressure ulcers, such as the 

greater trochanters and ischial tuberosities, are more similar in structure to the sacrum than to the 

heel, both in the amount of soft tissue present and the extent of skin pigmentation. Investigators 

must determine why the expected spectroscopic blanch response was not observed at the sacrum 

and develop instrumentation that addresses the challenges encountered at this site. Spectroscopy 

must be able to detect a blanch response at multiple body sites at risk for pressure ulcers if it is to 

become a useful clinical tool.  

One must also consider that the processing techniques used to derive relative 

concentration data from skin spectra are based on assumptions about the optical properties of 

skin.   The success of spectroscopic blanch response measurement, particularly in those with 

darkly-pigmented skin, is highly dependent on the accuracy of these assumptions and the ability 

of data processing algorithms to account for the presence of melanin in the skin.  Furthermore, 
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direct comparison of results from different studies may be difficult depending on the nature of 

the data processing algorithms used in those studies.  The TRS technique described in this 

dissertation does not provide an absolute or direct measurement of the concentration of a 

particular chromophore (i.e. hemoglobin) in the sampling area.  The data reported are quantities 

thought to vary with chromophore concentration—measures of “relative” concentration.  While 

relative concentration data are sufficient to address the objectives of this dissertation, the 

magnitude of these data cannot be directly compared between studies that use different 

approaches to quantify changes in tissue hemoglobin content.  Despite these issues, the non-

invasive nature of TRS is highly beneficial from a clinical standpoint, and may counterbalance 

the lack of absolute information on chromophore concentration. 

In addition, hemoglobin data in Studies 1 and 3 are derived using data from the visible 

region only.  However, near-infrared spectroscopy has also been used to examine hemoglobin in 

tissue24,27-29,146, and may offer advantages over visible light spectroscopy.131 Melanin has little 

light absorbance in the near-infrared region compared to the visible region, reducing the need to 

account for melanin’s contribution to the spectral signal, particularly in those with darkly 

pigmented skin. Longer wavelength, near-infrared light, although more highly scattered, is 

absorbed less strongly by tissue compared to visible light and can be used to sample more deeply 

into tissue.    Matas and colleagues demonstrated that a significant blanch response could be 

detected in both light and dark forearm skin of healthy subjects in both the near-infrared and 

visible light regions.24  It would be of benefit to examine both visible and near-infrared data in 

future investigations when possible to determine which region provides the most useful data for 

assessing the blanch response. 

Another limitation of this work was the method used to control the force applied by the 

hand-held indenter. In Studies 1 and 3, the force applied to the skin was controlled by manually 

compressing a spring in the hand-held indenter.  The desired spring displacement was 

determined based on the area of the indenter head and the properties of the spring.  A more “high 

tech” method of force control, including the integration of a force transducer in the hand-held 

indenter, was considered but was complicated by the small size of the indenter and the 

configuration of the fiber optic probe.  Furthermore, the “low tech” manual spring displacement 

method of force control did not require additional electronics that would have been costly, would 

have added bulk to the system, or may have malfunctioned during the testing process. For these 
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reasons, it was determined that the manual spring displacement method of force control would be 

most appropriate.  However, this method of force control did not provide a means of controlling 

the rate of force application and was subject to disruption if either the examiner or participant 

moved during testing.  It also did not provide feedback to verify that the force delivered to the 

skin was at the expected level, or a record of the force applied during testing.  Observation of 

skin spectra during testing showed that the amount of force applied through the indenter had a 

considerable effect on the shape of the skin spectrum, therefore it is important that force be 

controlled as precisely as possible.  A more precise means of force control in future studies 

would enhance the reproducibility of blanch response measurement.   Furthermore, simultaneous 

collection of force and blanch response data would allow investigators to examine the 

relationship between the amount of force and the extent of blanching—data that would be useful 

in designing clinical devices to assess the blanch response.  

Another limitation related to the indenter is the presence of “edge effects”.  Edge effects 

occur when there is a high concentration of pressure around the periphery of the indenter.  

Ideally, pressure should be applied as evenly as possible over the indenter surface.  Although the 

probe edges were rounded to reduce edge effects, visual inspection of the skin immediately after 

removal of the indenter from the skin surface showed greater blanching (when blanching was 

visible) around the edges of the area to which pressure was applied.  This is problematic because 

the fiber optics used to measure blanching are located in the center of the indenter.  Enhancing 

the curvature of the probe’s edges may be of benefit in order to reduce edge effects in future 

testing.  

The small sample size, particularly in Studies 2 (total n=10) and 3 (total n=15), must also 

be considered when examining the studies’ findings.  The precision of reliability estimates for 

both skin color assessment and ΔtHb measurement would have been enhanced by larger samples 

of data.  In addition, the subgroup sample size in Study 3 was too low to fully explore possible 

differences in the magnitude of ΔtHb between skin color groups.  This limitation is difficult to 

address, particularly with respect to recruiting larger numbers of individuals with moderate to 

dark skin. The proportion of residents with dark skin was observed to be low in the facilities 

participating in Study 3.  In addition, residents with moderate to dark skin frequently had legal 

guardians who were not authorized to enroll them in research. In future investigations, it may be 

of benefit to consider recruiting participants from other settings (i.e. those receiving care at 
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home) or geographical areas in which greater racial and ethnic diversity may be found.  Future 

research recruitment may also be improved by outreach efforts to educate individuals with 

moderate to dark skin and their legal representatives about the benefits of research participation 

and the legal documentation necessary to allow decisionally impaired individuals to participate 

in research. 

7.4 RECOMMENDATIONS FOR FUTURE WORK 

The findings of this dissertation suggest that spectroscopic blanch response measurement may be 

a useful skin assessment tool.  However, further research is needed in a number of areas in order 

to evaluate the clinical value of spectroscopy in pressure damage detection: 

• Successful blanch response detection must be demonstrated at other of body sites at 

risk for pressure ulcers, particularly those with higher amounts of soft tissue and 

pigmentation than at the heel.  

• Data are needed regarding the inter-rater reliability of spectroscopic blanch response 

measurement at the heel and other body sites at risk for pressure ulcers. 

• Future work is needed to compare the magnitude of the spectroscopic blanch response 

between sites with and without pressure damage in intact skin.  Spectroscopy must be 

able to differentiate lesioned sites from non-lesioned sites if this technique is to have 

diagnostic value.  

• Additional research is needed to examine whether spectroscopy is capable of 

identifying signs of pressure damage in intact skin before they are observed clinically.  

• Future work should include examination of data from both the visible and near-

infrared regions of the spectrum to determine which wavelengths of light provide the 

most useful data for assessing the blanch response. 

• In addition to blanch response detection, the ability of spectroscopy to identify and 

measure erythema would be of value both in pressure damage assessment and in other 

wound care applications.  Further research on the use of TRS to assess erythema is 

needed. 
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• Researchers should also examine the ability of other non-invasive techniques to 

provide information on pressure damage.  Optical techniques such as spectroscopic 

imaging, which provides information on both the presence and spatial distribution of 

chromophores in tissue, may be very valuable in pressure ulcer assessment and 

should be explored further.  Temperature measurement, TCPO2, and ultrasound also 

deserve further study to determine their ability to improve pressure damage detection 

in both light and dark skin. 

• The impact of improved pressure damage detection on clinical outcomes must also be 

examined. 

Additional work is also needed in the area of skin color assessment:  

• Additional information is needed on the reliability of skin color assessment in those 

with medical conditions that create changes in skin color, such as peripheral vascular 

disease. 

• Data are needed regarding the reliability of skin color assessments performed in “real 

world” clinical environments, where light conditions and other factors are more 

difficult to control than in laboratory settings. 

• The effect of training and experience on skin color assessment requires further study, 

and may be of particular value in determining if color matching is sufficiently reliable 

for clinical and research applications. 

• Investigators should also examine the reliability of other devices and techniques for 

skin color measurement such as spectrophotometry.   

• Additional information on inter-device reliability would also be useful, particularly 

for projects involving multiple research centers.  

• More data are needed to describe the agreement between subjectively determined skin 

color descriptors (i.e. Munsell hue, value, and chroma selected through color 

matching) and those obtained by a device (i.e. Munsell descriptors reported by 

colorimeter or spectrophotometer).  
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7.5 CONTRIBUTIONS 

The primary contribution of this work is evidence to support the use of TRS as a tool for 

assessing the blanch response.  In combination, the findings of Study 1 and Study 3 demonstrate 

that a significant blanch response may be observed at a site at risk for pressure ulcers (the heel) 

regardless of age, skin pigmentation, or the presence of medical conditions that place individuals 

at risk for pressure ulcers.  These data will encourage researchers and manufacturers to develop 

devices that use spectroscopic technology to assess signs of pressure damage in light and dark 

intact skin.  In addition to raising interest in the use of spectroscopy for pressure damage 

assessment, the studies’ findings provide data to assist in the selection of instrumentation for 

future studies and the design of clinical devices by manufacturers.  Even “negative” results, such 

as Study 1’s finding that the blanch response was difficult to detect at the sacrum, will assist 

device development by identifying challenges to be considered in instrument designs.  Clinical 

devices capable of detecting pressure damage in intact skin would have considerable clinical 

impact by reducing disparities in pressure ulcer detection between those with light versus dark 

skin, facilitating timely intervention to address existing pressure damage or prevent progression, 

and improving the accuracy of pressure ulcer incidence and prevalence estimates.   

A secondary contribution of this work is the data it provides on intra and inter-rater 

reliability of two methods of skin color assessment, color tile matching and colorimetry.  

Colorimetry is frequently used in clinical practice and research studies to assess skin color, but 

few investigators have reported data on its measurement reliability.  The results of Study 2 

indicate that colorimetry is highly reliable both within and between raters.  These data help to 

validate the use of colorimetry as a skin color assessment tool in clinical and research 

applications.  Study 2 also provides new data regarding the use of Munsell color tiles for skin 

color description.  Prior to Study 2, only one other study was identified that reported data on the 

agreement of skin color description via color tile matching.151  However, it did not report 

agreement data specific to each Munsell color descriptor (hue, value, chroma) and did not assess 

inter-rater reliability.  Study 2 addresses this gap in knowledge by reporting data on both intra 

and inter-rater reliability for Munsell value and chroma data.  These data will assist researchers 

and clinicians in determining whether Munsell color tile matching will be appropriate for their 

applications. 
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