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AN INDEX OF LOCAL SENSITIVITY TO NONIGNORABILITY AND A

PENALIZED PSEUDOLIKELIHOOD METHOD FOR DATA WITH

NONIGNORABLE NONRESPONSE

Fang Zhu, PhD

University of Pittsburgh, 2008

The public health significance of this study is to provide researchers and practioners more

improved methods to analyze data with missing values as such data get prevalent in practice.

When data are missing at random (MAR), the missing-data mechanism can be ignored. Oth-

erwise, the mechanism needs to be modeled. Further sensitivity analyses are often necessary

to evaluate the impact of alternative mechanism assumptions on the inferences. For data

with nonignorable nonresponse, a pseudolikelihood method was developed, where specifica-

tion of the mechanism is not necessary. A sensitivity analysis for this method and extensions

to nonparametric and semi-parametric regression models were proposed in this thesis.

An index of local sensitivity to nonignorability for the maximum likelihood method

(ISNIML) for data with missing outcome values where the missing-data mechanism was

modeled by a logistic regression was developed. It is used to evaluate how a small devia-

tion from MAR affects the maximum likelihood estimate. A new index of local sensitivity

to nonignorability (ISNIPL) was proposed for this pseudolikelihood method in this thesis.

Compared with ISNIML, it has the advantage that functional specification of the missing-

data mechanism is not required. Depending on whether or not the distribution of the covari-

ate can be parametrically modeled, two versions of this ISNIPL were derived. Simulations

suggested that ISNIPL is very close to ISNIML when the likelihood is correctly specified

by the latter. But it does not require assumption on the function form of the missing-data

mechanism. The analysis of a real dataset was used to highlight their differences and utility.
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In the second part, a penalized pseudolikelihood (PPL) method was developed for semi-

parametric regression models with the following form: y = xβ + g(t) + error, where g

is an unspecified function and can be estimated by a natural cubic spline, for data with

nonignorable nonresponse. Two cross-validation methods were considered to find the optimal

smoothing parameter. Simulations suggested that PPL with the traditional cross-validation

method yields less biased estimates of the parameter of interest and the nonparametric

function. This PPL method was also illustrated in analysis of a clinical dataset.
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1.0 INTRODUCTION

Standard statistical tools are usually designed for data with complete records. However, in

practice missing values may occur for various reasons. For example, missing data may occur

when study participants refuse to answer certain sensitive questions in a survey, some patients

are too sick to have some outcome measures recorded in a clinical trial, some participants

may miss scheduled visits or drop out in a longitudinal study. Data with nonresponse, or

missing outcome values, are prevalent in survey studies and especially longitudinal studies.

Simply making inference based on complete cases, or cases with complete observations, leads

to inefficient usage of the data and sometimes misleading conclusions. In general, information

on how missing values occurred should be taken into account in the statistical inferential

procedure. Here we will focus on statistical methods for analyzing data with missing values

in the outcome variables.

1.1 MISSING DATA AND MISSING DATA MECHANISM

Traditional statistical methods are developed for complete datasets. In order to apply these

methods directly on data with missing values, incomplete cases with missing value have to be

deleted before the analysis can be carried out. Such analysis is called complete case analysis

and is mostly inadequate or inappropriate because the purpose of a statistical analysis is

to understand the properties of the complete data, not merely those of the observed data.

Research on data analysis with missing observation can be traced back to as early as 1930s

(Allan et al., 1930; Yates, 1933). The milestone in modern statistics analysis with missing

data was in 1976, when Rubin recognized the crucial role of the missing data mechanism
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(Rubin, 1976). Rubin (1976) defined the nomenclature for the missing data mechanism as

the conditional distribution of the missing data indicator given the hypothetically complete

data. Formally, considering a multivariate dataset where for individual i, i = 1, 2, . . . , n,

the covariates xi are fully observed and the outcomes yi = (yi1, yi2, . . . , yiK) are subject

to missing values. The missing data indicator is denoted as Ri = (Ri1, Ri2, . . . , RiK) with

Rik = 1 if yik is observed and Rik = 0 otherwise, k = 1, 2, . . . , K. For convenience, we denote

yi,obs and yi,mis as the observed and missing parts of yi. Rubin (1976) categorized general

missing-data mechanisms into three classes:

(i) Missing completely at random (MCAR) if the missingness depends on neither the missing

values nor the observed values:

Pr(Ri|yi,xi;ψ) = Pr(Ri;ψ)

.

(ii) Missing at random (MAR) if the missingness does not depend the missing values after

conditioning on the observed values:

Pr(Ri|yi,xi;ψ) = Pr(Ri|yi,obs,xi;ψ)

.

(iii) Missing not at random (MNAR) if the missingness still depends on the missing data

after conditioning on the observed values:

Pr(Ri|yi,xi;ψ) = Pr(Ri|yi,obs,yi,mis,xi;ψ),

where ψ is the set of model parameters for the missing-data mechanism and Pr(·) will

be used throughout this thesis as the probability distribution function. For example, if

an individual dropped out of a longitudinal study simply because of relocation, then the

missingness is most likely to be MCAR. The data would be MAR if a patient was taken off

a treatment because previously observed outcome values looked worrisome to the physician.

If a patient on an antidepressant quit the trial because he was not feeling well, then the

missingness was more or less associated with the underlying value of psychiatric outcomes

such as the Hamilton rating score for depression or PANSS (Positive and Negative Syndrome
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Scale) scores. Therefore, most likely, the data are MNAR. Rubin’s classification built up the

foundation for statistical analysis of data with missing values.

1.2 METHODS FOR ANALYSIS OF DATA WITH NONRESPONSE

Many statistical methods were proposed in the past few decades for analysis of data with non-

response. Standard methods include selection models and pattern-mixture models. Selection

models require a model for the hypothetical complete data and another model for the missing-

data mechanism. Pattern-mixture models stratify the data based on missing-data patterns

and draw conclusion on the distribution of data within each stratum. The model parameters

of the complete-data model in selection models have natural interpretation at the population

level. Inference on selection models can be obtained either from likelihood-based methods or

generalized estimating equation-based (GEE) methods. Multiple imputation-based methods

can also be used for making inference. However, these methods often require, explicitly or

implicitly, some untestable assumptions about the missing-data mechanism. For example,

the functional form of the missing-data mechanism may take various forms but the dataset

itself cannot tell which form is the true one. Sensitivity analysis are often recommended to

check how alternative assumptions on the missing data mechanism may affect the results

and subsequent conclusions. The impact of these alternative assumptions can be assessed

through examining the variability of the corresponding inference.

Pattern-mixture models are useful when subpopulations are indeed different across miss-

ing data patterns and the interest is on the properties of those subpopulations. Conclusions

are drawn within each subpopulation defined by the missing data pattern. Properties on

the total population usually have to be formed by a mixture of the corresponding proper-

ties from the subpopulations. In general, pattern-mixture models suffer from the problem

of nonidentifiability, that is, the joint distribution of variables within incomplete patterns

cannot be identified because some variables are completely missing. Usually parameter re-

strictions across missing data patterns are used to identify model parameters. Often such

parameter restrictions come from assumption on the missing-data mechanism. For example,
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for a bivariate normal dataset {yi1, yi2}i=1,2,...,n where Y1 is fully observed and Y2 is subject to

missing values. In the incomplete pattern, only Y1 is observed and the conditional distribu-

tion [Y2 | Y1, R = 0], where [·] is used throughout this thesis to denote a generic distribution,

cannot be estimated. If data are MAR, we have [Y2 | Y1, R = 0] = [Y2 | Y1, R = 1] and

the resulting parameter restrictions lead to identification of [Y1, Y2 | R = 0]. Then E[Y2] is

estimated by a weighted mean of Ê[Y2 | R = 1] and Ê[Y2 | R = 0]. Because of this identifia-

bility issue and the complexity of imposing parameter restrictions, usage of pattern-mixture

models to multivariate data with multiple missing-data patterns is often problematic (Tang

et al., 2004).

Compared to the pattern-mixture models, selection models have natural interpretation

on model parameters and are more appealing to the investigators. Usually, inference on

selection models is based on maximum likelihood where the missing data mechanism is

modeled by a parametric form. Methods that are not likelihood-based and do not require

a full specification of the missing-data mechanism have also been developed recently (Chen,

2001; Liang & Qin, 2000). A pseudolikelihood method developed by Tang et al. (2003) for

data with outcome dependent missing is of particular interest here. It is the foundation of

the two proposed methods in this thesis. Based on how much information we have on the

distribution of the covariates, several variations were available.

In the following sections, we will briefly describe selection models, the subsequent sen-

sitivity analysis, and the pseudolikelihood method by Tang et al. (2003). Then present a

summary of a local sensitivity index for nonignorability and a penalized pseudolikelihood

method for data with nonignorable nonresponse.

1.2.1 Standard methods

Consider a dataset {xi,yi}i=1,...n, where n is the number of subjects. The covariates xi are

fully observed and the outcomes yi = (yi1, yi2, . . . , yiK) are partially observed. The missing

data indicator is Ri = (Ri1, Ri2, . . . , RiK), k = 1, 2, . . . , K. Rik is 1 if yik is observed and

Rik = 0, otherwise. According to how the joint density of f(xi,yi,Ri) is factored, standard

statistical methods include selection models and pattern-mixture models. Selection models
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factor this joint density into two components: one for the distribution of the underlying

complete data and one for the conditional distribution of the missing data indicator given

the underlying complete data:

p(xi,yi,Ri) = p(xi,yi; θ)p(Ri|xi,yi;ψ),

where θ, ψ are model parameters and p(·) will be used throughout this thesis as the density

function. Pattern-mixture models stratify the data by the patterns of missing values, then

model distribution of data within each pattern.

p(xi,yi,Ri) = p(xi,yi|Ri; δ)p(Ri; γ),

where δ and γ are model parameters. Usually p(xi,yi; θ), the distribution of complete data,

is of interest. The inference from pattern-mixture models, on the other hand, is stratum-

specific. In the following context, we will focus on statistical methods for selection models.

The maximum likelihood method (ML) maximizes the likelihood based on (yi,obs,Ri),

i = 1, 2, . . . , n. Denote X = {xi}i=1,2,...,n the covariates, Y = {yi}i=1,2,...,n the outcome

and R = {Ri}i=1,2,...,n the missing data indicators. The likelihood function is (Diggle and

Kenward, 1994; Schluchter, 1992)

L(θ, ψ|X,Yobs,R) ∝
n∏
i=1

p(yi,obs,Ri|xi; θ, ψ)

=
n∏
i=1

∫
p(yi,obs,yi,mis,Ri|xi; θ, ψ)dyi,mis

=
n∏
i=1

∫
p(yi,obs,yi,mis|xi; θ)p(Ri|xi,yi,obs,yi,mis;ψ)dyi,mis. (1.1)

When data are MAR, i.e., p(Ri|xi,yi,obs,yi,mis;ψ) = p(Ri|xi,yi,obs;ψ) and

L(θ, ψ|X,Yobs,R) ∝
n∏
i=1

∫
p(yi,obs,yi,mis|xi; θ)p(Ri|xi,yi,obs;ψ)dyi,mis

=
n∏
i=1

{p(Ri|xi,yi,obs;ψ)

∫
p(yi,obs,yi,mis|xi; θ)dyi,mis}

=
n∏
i=1

p(Ri|xi,yi,obs;ψ)
n∏
i=1

p(yi,obs|xi; θ)

∝ L(ψ|Ri,xi,yi,obs)L(θ|X,Yobs,R),
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where,

L(θ|X,Yobs,R) =
n∏
i=1

p(yi,obs|xi; θ)

is the ignorable likelihood and

L(ψ|Ri,xi,yi,obs) =
n∏
i=1

p(Ri|xi,yi,obs;ψ)

is only related to the missing-data mechanism. If θ and ψ are also distinct, the inference

on θ does not depend on the missing-data mechanism. Therefore when data are MAR,

and θ and ψ are distinct, the missing-data mechanism is ignorable. When data are MNAR,

ignoring missing-data mechanisms could lead to biased estimates of θ. In such circumstances,

a parametric form has to be assumed for the missing-data mechanism in the ML method.

The inference can be highly sensitive to such assumptions.

Inverse-probability weighted estimating equations (IPWEE) is an estimating equation-

based method (Robins, Rotnitzky and Zhao, 1994, 1995) to make inference on selection

models. A simple version of this method is to weigh each complete case by the inverse-

probability of being observed while constructing the estimating equation. The motivation

is that each complete case not only represent itself but also other incomplete cases with

similar characteristics. It still requires specifying a model for the missing-data mechanism.

Misspecification often leads to biased estimates for the model parameters.

Multiple imputation is a simulation-based approach on analysis of missing data. It

imputes missing values from an explicit or implicit predictive model for the distribution of the

missing values given the observed values. A total of m > 1 complete datasets are generated

and analyzed using traditional methods as if data were complete. The analysis results from

all imputed datasets are combined with between and within imputation variation considered

(Rubin, 1987). Therefore multiple imputation still requires some kind of assumption on the

missing-data mechanism to derive the predictive model.

These standard methods require specifying the missing-data mechanism, but the observed

data do not supply such information. In practice, sensitivity analyses are used to evaluate

the impact of alternative assumptions on the parameter estimates of interest.
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1.2.2 Sensitivity analysis

Sensitivity analysis considers the estimate as a function of a parameter that related to

nonignorability. By varying this nonignorability parameter in a plausible range, the impact

of these parameters on the key inference is assessed (Rotnitzky et al., 1998). For example, for

a bivariate dataset {xi, yi}i=1,...,n, where xis are fully observed and yis are partially missing.

The missing-data indicator Ri = 1 if yi is observed and Ri = 0 otherwise. The missing-data

mechanism may be modeled as:

Pr[Ri = 1|yi, xi] = h(ψ0 + ψ1xi + ψ2yi), (1.2)

where h(·) is a known function. When ψ2 = 0, data are MAR. For a fixed ψ2, the MLE for

the regression parameters of Y given X, θ̂, is a function of ψ2, θ̂ = θ̂(ψ2). By varying ψ2,

the resulting curve (ψ2, θ̂(ψ2)) can be used to assess the impact of nonignorability on the

inference. But it can be computational costly.

Local sensitivity approximations were developed on the basic idea of using an index to

measure the dependency of the ML estimate on the nonignorability parameter at the neigh-

borhood of MAR. If such local sensitivity is low and there is no evidence of large departure

from MAR, the MAR estimate is reasonably close to the true value. Local sensitivity approx-

imations are not as extensive as a global sensitivity test, but they require less computation

and, unless there are large nonignorability, they yield reasonable results. Several methods

have been proposed (Copas and Li, 1997; Copas and Eguchi, 2001; Verbeke, et al. 2001).

But none of them can be easily adopted. Troxel et al. (2004) developed an index of local

sensitivity to nonignorability (ISNI). It provides a more general approach to define local

sensitivity with only a minor additional calculation besides MAR modeling calculation. It

will be described in detail in chapter 2.

1.2.3 A pseudolikelihood method

A pseudolikelihood method (PL) proposed by Tang et al. (2003) is to make inference on data

with nonresponse without modeling the missing-data mechanism for a class of nonignorable

mechanisms. Consider a bivariate dataset (X, Y ), where X = (x1, x2, . . . , xn), n is the
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sample size, is fully observed and Y = (y1, y2, . . . , yn) is a partially observed dependent

variable. Assume that the response probability depends on the outcome variable Y alone,

i.e., R is independent of X given Y . This implies that the complete cases are a random

sample from the conditional distribution X given Y . Usually, the conditional distribution of

Y given X is of interest and it is often assumed by a parametric density, g(y|x; θ). Denote

f(x;α) the marginal distribution of X, Tang et al. (2003) proposed the following conditional

likelihood method and two pseudolikelihood methods for making inference on θ:

When the parametric form of f(·) and the true value of α, α0, are known, the following

conditional likelihood can be used for inference on θ:

PL0(θ;α0) =
∏
Ri=1

p(xi|yi, θ, α0) =
∏
Ri=1

g(yi|xi; θ)f(xi;α0)∫
g(yi|x; θ)f(x;α0)dx

∝
∏
Ri=1

g(yi|xi; θ)∫
g(yi|x; θ)f(x;α0)dx

.

When f(·) is known but α0 is unknown, α can be estimated by maximizing the marginal

likelihood of X: α̂ = arg maxα
∏n

i=1 f(xi;α). A pseudolikelihood can be constructed as

PL1(θ; α̂) =
∏
Ri=1

g(yi|xi; θ)∫
g(yi|x; θ)f(x; α̂)dx

,

and θ is estimated by maximizing PL1(θ; α̂) as a function of θ. However, in practice, the

functional form of f(·) is unknown and not of interest. Another pseudolikelihood method

was proposed by maximizing

PL2(θ;Fn) =
∏
Ri=1

g(yi|xi; θ)∫
g(yi|x; θ)dFn(x)

,

where Fn(x) = 1
n

∑n
i=1 I(x ≤ xi) is the empirical distribution of X.

Denote PL0, PL1 and PL2 the estimates of the conditional and two pseudolikelihood

methods respectively. Under some regularity conditions, all these estimates are consistent

and asymptotically normal. PL1 is more efficient than PL0. Simulation studies suggested

that PL2, which requires no assumption about the distribution of X, is even more efficient

than PL1 (Tang et al. 2003).

This pseudolikelihood method can be extended to a general class of MNAR mechanisms,

such as

Pr(Ri = 1|xi, yi) = ω(λyi + xi), (1.3)

8



where λ is a known constant a priori. A new dataset (X, Yλ), where Yλ = λY + X can be

constructed from the original data. Inference on θ can be made by applying the pseudo-

likelihood method on this generated dataset. Such extension can also be used as sensitivity

analysis by looking at the parameter estimates under a range of λ values.

1.3 PROPOSED METHODS FOR DATA WITH NONRESPONSE

Two methods will be proposed here for analysis of data with nonignorable nonresponse. Both

of them are related to the pseudolikelihood method developed by Tang et al. (2003). First

we would develop a local sensitivity index for this method, then extend this method to semi-

parametric regression models with penalized spline for analysis of data with nonignorable

nonresponse.

1.3.1 ISNI for a pseudolikelihood method

For bivariate data with nonresponse, as mentioned in the previous section, the standard ML

method requires a model for the missing-data mechanism. A popular choice is h = logit−1

in (1.2). The index of local sensitivity of nonignorability, ISNI, by Troxel et al. is defined

as the first derivatives of the MLE with respect to ψ2 (Troxel et al., 2004, Ma, G., et al.,

2005). By fixing ψ2, θ̂ or θ̂(ψ2) can be derived by maximizing the joint likelihood (1.1) and

ISNI can be computed by

ISNI =
∂θ̂

∂ψ2

∣∣∣
ψ2=0

.

Similarly, with λ in (1.3) fixed, θ̂(λ) can be estimated from the pseudolikelihood method.

When λ = 0, data are MAR and the pseudolikelihood method produces the same estimate as

the ignorable maximum likelihood method. A new index of local sensitivity to nonignorability

for this pseudolikelihood method can be defined similarly as the first derivatives of the

maximum pseudolikelihood estimate with respect to λ at λ = 0. It does not make assumption

on the parametric form of the missing-data mechanism, hence is more flexible than ISNI for

9



the maximum likelihood method. The details on the developement and the utility of this

new local sensitivity index will be presented in Chapter 2.

1.3.2 A penalized pseudolikelihood method

Semi-parametric regressions with penalized spline supply a flexible and powerful regression

tool when the contribution from a predictor is either nonlinear in nature or not of interest.

A smoothing parameter is used to control the smoothness of the spline. It is generally

chosen by cross-validation or generalized cross-validation method (Green and Silverman,

1994). The theory behind it is quite developed for complete data. However, the dependent

variable may be subject to nonresponse in practice and standard semi-parametric regressions

cannot be directly applied. In Chapter 3, a penalized pseudolikelihood method is proposed to

incorporate data with nonignorable nonresponse. Two cross validation methods are discussed

and compared via simulation studies. This penalized pseudolikelihood method is illustrated

through analysis of a dataset from a psychiatric clinical study.
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2.0 AN INDEX OF LOCAL SENSITIVITY TO NONIGNORABILITY FOR

A PSEUDOLIKELIHOOD METHOD

In general, maximum likelihood inference for selection models requires specification of the

missing-data mechanism unless the data are MAR. Unfortunately MAR is untestable be-

cause the dataset itself cannot tell whether or not the data are MAR. Misspecification of the

missing-data mechanism often leads to biased estimates and incorrect conclusions. Sensitiv-

ity analyses are usually carried out to assess the impact that the alternative missing-data

mechanism assumptions have on the parameter estimates (Rotnitzky et al., 1998). Local

sensitivity analyses usually check the local properties of such sensitivity analyses at the

neighborhood of MAR. If parameter estimates are not sensitive to a slight deviation from

the MAR assumption and there is no evidence of large departure from MAR, the param-

eter estimates under MAR are acceptable. ISNI, developed by Troxel et al. (2004), is a

local sensitivity index for such purpose. The definition will be introduced in Section 2.1.

ISNI supplies an intuitive measure on how fast the maximum likelihood estimates, under

alternative MNAR mechanisms within a parametric family, may change when the missing-

data mechanism deviates from MAR. The computation process of this index requires the

assumptin on the parametric function form of the missing data mechanism (Troxel et al.,

2004). A popular choice is logistic regression. This assumption hampers the adaptability of

ISNI. We adopted the idea of ISNI and developed a new index based on a pseudolikelihood

method (Tang et al., 2003). This new index can be used for analysis of a more general class

of missing data.

11



2.1 ISNI FOR THE MAXIMUM LIKELIHOOD METHOD

Consider a bivariate dataset {xi, yi}i=1,...,n, where xis are fully observed and yis are missing

for i = m+ 1, . . . , n. The missing data indicator is denoted by Ri : Ri = 1 for i = 1, . . . ,m,

Ri = 0 for i = m+ 1, . . . , n. Assume that

[Y |X] ∼ g(y|x, θ),

where θ is the parameter of interest. A typical selection model assumes the following missing

data mechanism:

Pr[Ri = 1|yi, xi] = logit−1(ψ0 + ψ1xi + ψ2yi). (2.1)

Even though the logit link is used, a generalization to other mechanisms is possible if the

missing data model is monotone in the outcome variable. Denote ψ = (ψ0, ψ1, ψ2). The log

likelihood is

l(θ, ψ) =
∑n

i=1

[
Ri {log g(yi|xi, θ) + log logit−1(ψ0 + ψ1xi + ψ2yi)}

+(1−Ri) log[
∫
g(u|xi, θ) {1− logit−1(ψ0 + ψ1xi + ψ2u)} du]

]
(2.2)

As in any sensitivity analysis, the MLE θ̂ can be represented as a function of ψ2 for a

range of possible values (Figure 1). When ψ2 = 0, data are MAR. In the neighborhood of

MAR, the deviation of parameter estimates under MNAR mechanisms from the estimate

under MAR can be represented by the slope of the tangent line at ψ2 = 0 (Figure 1). Based

on this observation, a natural local index of sensitivity to nonignorability (ISNI) for the

maximum likelihood method was proposed by Troxel et al. (2004):

ISNI =
∂θ̂(ψ2)

∂ψ2

∣∣∣
ψ2=0

(2.3)

To differentiate it from the new local sensitivity index that would be introduced later, ISNI

for the maximum likelihood method will be denoted as ISNIML in the following context.
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Figure 1: Definition of ISNI for the maximum likelihood method
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Denote the other missing data mechanism parameters by Ψ = (ψ0, ψ1). This index can be

computed by the following formula

ISNIML = −(52L11)−152 L13, (2.4)

where

52L =


∂2L
∂θ∂θ′

∂2L
∂θ∂Ψ′

∂2L
∂θ∂ψ2

∂2L
∂Ψ∂θ′

∂2L
∂Ψ∂Ψ′

∂2L
∂Ψ∂ψ2

∂2L
∂ψ2∂θ′

∂2L
∂ψ2∂Ψ′

∂2L
∂ψ2

2


∣∣∣∣∣∣∣∣∣
θ=θ̂0,Ψ=Ψ̂0,ψ2=0

and (θ̂0, Ψ̂0) are the MLEs under MAR or ψ2 = 0, and {52Lij}i,j=1,2,3 is subsequent (i, j)

element of above matrix.

ISNIML depends on the scale of Y when Y can be re-scaled, for instance, when Y

is an interval variable. Under such circumstances, a sensitivity transformation below was

considered by Troxel et al. (2004):

cML = |σY SEY /ISNIML(Y )|,

where σY is the standard deviation (SD) of Y , SEY is the standard error (SE) of θ̂0 and

ISNIML(Y ) is the ISNIML from data with outcome Y (Troxel et al., 2004, Ma, G., et

al., 2005). In practice, the SD of Y can be estimated from the observed data under the

MAR assumption, ȳ = 1
m

∑m
i=1 yi and σ̂Y = 1

m

∑m
i=1(yi − ȳ)2. This new index cML is scale-

independent. To interpret cML, notice that when Y is transformed to cML

σY
Y , the missing

data mechanism is

log
Pr[R = 1|y, x]

1− Pr[R = 1|y, x]
= ψ0 + ψ1x+

cML

σY
y.

That means a change of σY /cML in Y is associated with an odds of 2.7 in response probability.

At the same time, considering that θ̂(ψ2) ≈ θ̂0 +ISNIML ·ψ2 at the neighborhood of ψ2 = 0,

under this re-scaled data cML

σY
Y ,

ISNI cML
σY

Y /SE cML
σY

Y =
cML

σY
ISNIY /SEY = 1,

where ISNI
ML

(
cML
σY

Y
) and SE cML

σY
Y are the ISNIML and standard error of θ̂0 from the

data with the outcome re-scaled to cML

σY
Y . The maximum likelihood estimate θ̂ is about one

SEcMLY/σY away from θ̂0. A large cML, for example, cML = 10, means 0.1 SD change on Y

14



substantially changes the odds of being observed. This corresponds to a very extreme non-

ignorability. Such a magnitude of nonignorability brings about a deviation of one standard

error from θ̂0. We would say the ML estimate is not sensitive to nonignorability assumption.

If cML is small, for instance, cML = 0.1, 10 SDs change on Y is associated with a change

of 2.7 in odds of being observed. However such a weak nonignorability mechanism leads to

parameter estimates about one standard error from θ̂0. It would suggest that the inference is

quite sensitive to local deviation from MAR. More comprehensive sensitivity analyses have

to be carried out in such circumstances. A cutoff point of cML = 1 was recommended for

local sensitivity evaluation (Troxel, et al., 2004).

ISNIML is easy to compute. But when the missing data mechanism is not monotone

in Y or there is minimal information on the functional form of Y , it may lead to wrong

conclusions about the local sensitivities. To circumvent the specification of missing data

mechanism, we adopted the idea of ISNIML and developed a new local sensitivity index for

the pseudolikelihood method proposed by Tang et al. (2003).

2.2 ISNI FOR A PSEUDOLIKELIHOOD METHOD

For the same bivariate dataset {xi, yi}i=1,...,n with yis subject to missing values, consider a

general class of missing-data mechanisms with the following form:

Pr(Ri = 1|xi, yi) = w(xi + λyi), (2.5)

where w(·) is an arbitrary non-constant function and λ serves as the nonignorability param-

eter. When λ = 0, data are MAR. Let yλi = xi + λyi, and F̂ (x) be a consistent estimator of

F (x), the cumulative distribution function of X. For fixed λ, the pseudolikelihood method
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maximizes

PL(θ;λ, F̂ ) =
∑
Ri=1

log p(xi|yλi; θ, λ, F̂ ) ∝
∑
Ri=1

log

{
g(yλi|xi; θ)
p(yλi; θ, λ, F̂ )

}

∝
∑
Ri=1

log

{
g(yi|xi; θ)

p(yλi; θ, λ, F̂ )

}
=

∑
Ri=1

[
log{g(yi|xi; θ)} − log{p(yλi; θ, λ, F̂ )}

]
. (2.6)

Following the same rational of ISNIML, a new local index for sensitivity to nonignorability

is developed here for the above pseudolikelihood method (Tang, et al., 2003), where the

specification on the function form of the missing-data mechanism is not required. If θ̂(λ) is

the pseudolikelihood estimate of θ, given a fixed λ, this index ISNIPL is defined as

ISNIPL =
∂θ̂(λ)

∂λ

∣∣∣∣
λ=0

. (2.7)

Consider PL(θ;λ, F̂ ) as a function of (θ, λ), PL(θ, λ; F̂ ). If θ̂0 = arg maxθ PL(θ, 0; F̂ ) is

the MAR estimate, carrying out a Taylor expansion of PL(θ, λ; F̂ ) at MAR point (θ, λ) =

(θ̂0, 0) would give,

PL(θ, λ; F̂ ) ≈ PL(θ̂0, 0; F̂ ) + [(θ − θ̂0)′, λ]5 PL+
1

2
[(θ − θ̂0)′, λ]52 PL[(θ − θ̂0)′, λ]′ (2.8)

where

5PL =

(
∂PL
∂θ

∂PL
∂λ

)∣∣∣∣∣
θ=θ̂0,λ=0

52PL =

(
∂2PL
∂θ∂θ′

∂2PL
∂θ∂λ

∂2PL
∂λ∂θ′

∂2PL
∂λ2

)∣∣∣∣∣
θ=θ̂0,λ=0

and {52PLij}i,j=1,2 is subsequent (i, j) element of above matrix.

When data are MAR, ∂PL
∂θ

∣∣∣
θ=θ̂0,λ=0

= 0. Take derivatives with respect to θ from both

sides of the equation (2.8) at θ̂(λ) for any fixed λ

0 =
∂PL(θ, λ, F̂ )

∂θ

∣∣∣∣∣
θ̂(λ),λ

≈ (θ̂(λ)− θ̂0)52 PL11 + λ52 PL12.
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A function form θ̂(λ) can be derived as:

θ̂(λ) = −(52PL11)−1(θ̂052 PL11 − λ52 PL12) + o(λ)

Subsequently taking the first derivative of θ̂(λ) with respect to λ, we have

ISNIPL = −(52PL11)−152 PL12. (2.9)

Notice that, from Slutzky’s Lemma, Yλ → X in law as λ→ 0. So if f is the probability

distribution function of X, 1
n

∑
Ri=1[log{p(yλi; θ)} − log{f(xi)] → 0. The first and second

derivatives of log{p(yλi; θ)} with respect to θ at (θ̂0, λ) converges to zero as λ → 0. Thus,

when λ → 0, θ̂λ converges to θ̂0 and ∇2PL11 depends only on
∑

Ri=1 log{g(yi|xi; θ)}, the

ignorable log-likelihood function.

To better interpret ISNIPL, we will use the same logic as the interpretation of ISNIML.

Because ISNIPL is the derivative of θ̂ with respect to a nonignorability parameter λ, θ̂(λ) ≈

θ̂0 +ISNIPL ·λ at the neighborhood of λ = 0. If λ = 1, the adjustment to the MAR estimate

θ̂0 is the corresponding ISNIPL. We can consider the ratio of ISNI to the standard error

(SE) of the parameter of interest θ when data are MAR. If this ratio is larger than one, a

unit change in the nonignorability parameter would bring more than one SE deviation from

the MAR estimate. A deviation of this magnitude is usually considered having substantial

impact on the inference and subsequent conclusion.

Similar to ISNIML, ISNIPL is not scale free when the outcome Y can be re-scaled.

Denote ISNIPL(Y ) and ISNIPL(aY ), a is any constant, the ISNIPLs from data with outcome

Y and aY , respectively. Denote SEaY and SEY the standard errors of θ̂0 from data with

outcome aY and Y , respectively. Relation

ISNIPL(aY )/SE(aY ) = aISNIPL(Y )/SE(Y )

holds between ISNIPL derived from the transformed data aY and from Y . A parameter cPL,

that results in ISNIPL(cY/σY )/SE(cY/σY ) = 1, is an important indicator. This transformation

cPL can be derived as:

cPL =
∣∣σY SEY /ISNIPL(Y )

∣∣ .
17



So a missing data mechanism

Pr[R = 1|X, Y ] = ω(X +
cPL
σY

Y )

leads to a pseudolikelihood estimate θ̂ to be about SEY from θ̂0. If it is speculated that the

relative impact of Y in the missing data mechanism does not exceed cPL
σY

, we would expect

that the corresponding pseudolikelihood estimate would not differ from θ̂0 by over one SEY

of θ̂0

θ̂(λ)− θ̂0 ≈ ISNIPL(Y ) ·
cPL
σY

= SEY .

If ω is the logit link, when X is fixed but Y is changed by σY /cPL, this relative impact

of Y is associated with an odds of 2.7 of being observed. A small value of cPL implies

a weak nonignorable mechanism may cause significant deviation from the MAR estimate.

For example, if cPL = 0.1, a change of 10 SDs on Y is corresponding to an odds of 2.7

in response probability. For such a weak nonignorable mechanism, the pseudolikelihood

estimate is about one SE of θ̂0 from the MAR estimate θ̂0. Therefore the pseudolikelihood

method is very sensitive to nonignorability. On the other hand, a large cPL would mean that

the pseudolikelihood method is not sensitive to nonignorability. For example, if cPL = 10,

then a change of 0.1 SD in Y is corresponding to an odds of 2.7 in response probability. For

such a strong nonignorable mechanism, the pseudolikelihood estimate is about one SE of θ̂0

away from the MAR estimate θ̂0. Therefore the pseudolikelihood estimate is not sensitive to

nonignorability. For general ω, it is difficult to evaluate the degree how a change in Y affects

the response probability but we would recommend a cutoff point of 1 in practice. When the

link function is logit, a cutoff at 1 is reasonable and is consistent with the choice for ISNI

under the ML approach.

A very important difference between PL and ML methods is, in (2.6), the consistent

estimator of F , F̂ , needs to be derived from the marginal distribution of X. When the

functional form of F is known, for instance, F (x) = F (x;α), the estimate F̂ (x) can be

derived by replace α in F (x;α) by α̂ = argmaxα
∏n

i=1 f(xi;α): F̂ (x) = F (x; α̂). When the

functional form of F is unknown, ideally we would like to derive ISNIPL with F̂ = Fn(x),

the empirical function of X. However, we encountered great difficulty in deriving of the

analytical form for ISNIPL and could not work it out at this moment. A compromise was
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carried out by using an kernel estimator of F (x) as F̂ in (2.6). In the following sections, we

would present the parametric version of ISNIPL, denoted by ISNIPL1, for bivariate normal

data and the nonparametric version of ISNIPL, denoted by ISNIPL2. Simulation studies

were carried out to evaluate their performance and analysis of a real dataset was used for

illustration.

2.2.1 ISNI for bivariate normal data

For ISNIPL1, consider bivariate normal data {xi, yi}i=1,...,n with

[X] ∼ N(µx, σ
2
x), [Y |X] ∼ N(β0 + β1x, σ

2), (2.10)

where θ = (β0, β1, σ
2) are the parameters of interest. Assume that y1, y2, . . . , ym are observed

and ym+1, . . . , yn are missing. Then for a given λ, the conditional distribution of Yλ = X+λY

given X is

[Yλ|X] ∼ N(λβ0 + βλx, λ
2σ2), (2.11)

and βλ = λβ1 + 1. Let µ̂x and σ̂2
x be the consistent estimator of µx and σ2

x:

µ̂x =
1

n

n∑
i=1

xi, σ̂2
x =

1

n

n∑
i=1

(xi − µ̂x)2. (2.12)

Then a parametric estimator of F is the cumulative distribution function of N(µ̂x, σ̂
2
x). The

logarithm of the pseudolikelihood function is:

PL(β0, β1, σ
2, λ; µ̂x, σ̂

2
x) = −m

2
log σ2 − 1

2σ2

m∑
i=1

(yi − β0 − β1xi)
2

+
m

2
log(λ2σ2 + β2

λσ̂
2
x) +

∑m
i=1(yλi − λβ0 − βλµ̂x)2

2(λ2σ2 + β2
λσ̂

2
x)

, (2.13)

where yλi = λyi + xi. The first derivative of PL with respect to θ at MAR, (θ̂0 =

(β̂00, β̂10, σ̂
2
0), λ = 0) is

5PL =


1
σ̂2
0

∑m
i=1(yi − β̂00 − β̂10xi)

1
σ̂2
0

∑m
i=1(yi − β̂00 − β̂10xi)xi

− m
2σ̂2

0
+ 1

2σ̂4
0

∑m
i=1(yi − β̂00 − β̂10xi)

2

mβ̂10 + 1
σ̂2
x

∑m
i=1[(yi − β̂00 − β̂10µ̂x)

2(xi − µ̂x)]− 1
σ̂2
x

∑m
i=1 β̂10(xi − µ̂x)2

 .
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The first three elements are exactly the same with the score matrix from ignorable likelihood.

It confirmed that θ̂(λ)→ θ̂0 as λ→ 0.

Denote x̄ =
∑m

i=1 xi, ȳ =
∑m

i=1 yi, s11 = 1
m−1

∑m
i=1(xi− x̄)2, s12 = 1

m−1

∑m
i=1{(xi− x̄)(yi−

ȳ)} and s22 = 1
m−1

∑m
i=1(yi − ȳ)2. Then as λ → 0, (β̂00, β̂01, σ̂

2
0) = (ȳ − s12

s11
x̄, s12

s11
, s22 − s212

s11
).

Matrices ∇2PL11 and ∇2PL12 of (2.9) are:

∇2PL11 = − 1

σ̂2
0


m

∑m
i=1 x 0∑m

i=1 x
∑m

i=1 x
2
i 0

0 0 m
2σ̂2

0

 ,

∇2PL12 =
1

σ̂2
x


−m(x̄− µ̂x)

mσ̂2
x −

∑m
i=1 x

2
i +mµ̂xx̄

0

 (2.14)

ISNIPL1 can be derived from (2.9):

∂θ̂

∂λ

∣∣∣
λ=0

=
σ̂2

0

σ̂2
x


m

∑m
i=1 x 0∑m

i=1 x
∑m

i=1 x
2
i 0

0 0 m
2σ̂2

0


−1

−m(x̄− µ̂x)

mσ̂2
x −

∑m
i=1 x

2
i +mµ̂xx̄

0

 (2.15)

After simplification, (2.15) can be written as

∂β̂0

∂λ

∣∣∣∣∣
θ=θ̂0,λ→0

= −s22s11 − s2
12

s2
11

x̄+
µ̂x
σ̂2
x

s22s11 − s2
12

s11

∂β̂1

∂λ

∣∣∣∣∣
θ=θ̂0,λ→0

=
s22s11 − s2

12

s2
11σ̂

2
x

(σ̂2
x − s11)

∂σ̂2

∂λ

∣∣∣∣∣
θ=θ̂0,λ→0

= 0

The detailed calculation can be found in Appendix A.1.
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An alternative way of deriving ISNIPL1 is to find the analytic forms of θ̂λ, then their

first derivatives at λ = 0. The estimator of the parameters are:

β̂0(λ) = ȳ − bλx̄−
µ̂x
σ̂2
x

(s12 − bλs11),

β̂1(λ) =
1

σ̂2
x

{s12 + bλ(σ̂
2
x − s11)},

σ̂2
y(λ) = s22 + b2

λ(σ̂x − s11),

σ̂2(λ) = s22 −
b2
λ

σ̂2
x

(σ̂2
x − s11)2 + (b2

λ −
2s12bλ
σ̂2
x

)(σ̂2
x − s11)− s2

12

σ̂2
x

,

where bλ = λs22+s12
λs12+s11

λ→0→ s12
s11

(Brown, 1990). Take the first derivatives with respect to θ at

λ = 0, the results are exactly the same from the one we derived above. Details can be found

in Appendix A.2.

Troxel et al. (2004) also derived ISNIML for bivariate normal data with nonresponse

ISNIML = −σ̂2
0

 m
∑m

i=1 x∑m
i=1 x

∑m
i=1 x

2
i

−1 ∑n
i=m hi∑n
i=m xihi

 (2.16)

where hi = Pr[Yi is observed|Xi = xi] and is derived by fitting a logistic regression.

The newly developed index ISNIPL1 can be represented in matrix form as

ISNIPL1 = −σ̂2
0

 m
∑m

i=1 x∑m
i=1 x

∑m
i=1 x

2
i

−1 m(x̄− µ̂x)/σ̂2
x

−m+ (
∑m

i=1 x
2
i −mµ̂xx̄)/σ̂2

x



Comparing ISNIML and ISNIPL1, the only difference is the last matrix. It is not clear

how they are related just from these formulae. The performance of ISNIML and ISNIPL1

were compared through simulation studies in Section 2.3.

This ISNIPL1 was developed for bivariate normal data. However, in reality, the distri-

bution of X is generally not of interest and may not be normal. In the next section, we

developed the ISNIPL when the distribution of X is unknown by using a kernel estimator

for F (x) in (2.6).
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2.2.2 ISNI when the distribution of X is unknown

Consider the pseudolikelihood method (2.6) when the distribution of the covariate X is un-

known and F̂ is the empirical distribution of X, F̂ = Fn(x). The derivation of ISNIPL

under this scenario should still follow formula (2.9). The matrix ∇2PL11 is still the infor-

mation matrix corresponding to the ignorable maximum likelihood. The second part of the

equation ∇2PL12 is the partial derivatives of the logarithm of PL

PL(β0, β1, σ
2; F̂ ) = −m

2
log σ2 − 1

2σ2

m∑
i=1

(yi − β0 − β1xi)
2 +

m∑
i=1

log p(yλi; θ, F̂n(x))

with respect to θ and λ. It is determined simply by the term log p(yλi; θ, F̂n(x)). Although

as λ→ 0, Yλ → X. So

1

n

m∑
i=1

log p(yλi; θ, F̂n(x))− 1

n

m∑
i=1

log f(xi)→ 0, (2.17)

it is not clear how to derive the analytical formula for ∇2PL12 because as λ→ 0,

p(yλi; θ, F̂n(x)) =
1

n
√

2πλ2σ2

n∑
j=1

exp

{
−{(yi − β0 − β1xj) + (xi − xj)/λ}2

2σ2

}
→∞.

An alternative is to estimate the probability density function of X in the PL method by

a kernel estimator in the pseudolikelihood method and derive ISNIPL subsequently. This

kernel estimator of f(x) can avoid the phenomenon mentioned above.
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2.2.2.1 Kernel density estimation A probability density function is the most funda-

mental concept in statistics. If f is the density function of an interval random variable X,

the probability associated with X is

P (a < X < b) =

∫ b

a

f(x)dx, for all a < b.

Density estimation is to estimate this f(x) from observed data. One approach is to assume

X comes from a parametric family of distribution, such as a normal distribution with mean

µ and variance σ2. From the observed data, the parameters µ and σ2 can be estimated and

the distribution function can be constructed from the estimated mean and variance. There

are also nonparametric methods, including the kernel density estimation, to estimate f(x).

Unlike the parametric density estimation methods, the kernel density estimation method

does not assume that it comes from any parametric family. It intends to retain the feature

of the observed data points, while forcing certain amount of smoothing. Assume that the

unknown density f(x) is a smooth function of x. If there are n data points, the kernel density

estimate of f with smoothing parameter h is defined by (Silverman, 1986)

f̂(t) =
1

n

n∑
j=1

1

h
K

(
t− xj
h

)
,

where K(·) is a symmetric kernel function satisfying∫
K(t)dt = 1,

∫
tK(t)dt = 0, and

∫
t2K(t)dt = k 6= 0.

The bias and variance associated with kernel density estimation is

bias(f(x)) = Ef̂(x)− f(x) =
1

2
h2f ′′(x)k2 + o(h), (2.18)

varf̂(x) ≈ n−1h−1

∫
K(t)2dt,

where limh→0 o(h)/h = 0 (Silverman, 1986). The smoothing parameter h can be chosen by

several methods. A rule of thumb is to choose hopt = 1.06σxn
−1/5, where σ2

x is the variance of

X and can be estimated from σ̂2
x = 1

n

∑n
j=1(xi − x̄)2. It is derived based on the assumption

that f(x) is N(0, σ2
x). In some cases when the distribution of X is very skewed or it is

multimodal, it tends to oversmooth the densitiy function. But it generally works well and is

very easy to compute. We will use this method for the estimation of f .
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2.2.2.2 ISNI for the pseudolikelihood method when density of X is estimated

by kernel smoothing. For computational convenience, we used Gaussian kernel

K(t) =
1√
2π

exp(−t
2

2
).

Then the density estimate for the distribution of X is

f̂(x) =
1

n
√

2πh2

n∑
j=1

exp(−(x− xj)2

2h2
).

If θ = (β0, β1, σ
2), the density estimation of yλi is,

p(yλi; θ, F̂ ) =
1

n

n∑
j=1

φ

(
λyi + xi − λβ0 − (λβ1 + 1)xj√

λ2σ2 + (λβ1 + 1)2h2

)
λ→0→ 1

n

n∑
j=1

φ

(
xi − xj
h

)
,

where φ(t) = 1√
2π

exp(−t2/2). The value of ∇2PL12 is then

∇2PL12 =



∑m
i=1

1

h2
∑n
j=1 exp

[
−

(xi−xj)2

2h2

]∑n
j=1 exp

[
− (xi−xj)2

2h2

]
(xi − xj)

m−
∑m

i=1
1

h2
∑n
j=1 exp

[
−

(xi−xj)2

2h2

]∑n
j=1 exp

[
− (xi−xj)

2h2

]
{(xi − xj)xi}

0

 (2.19)

The computation details can be found in Appandix B.1.

When h = 0, the density estimator will be the empirical distribution. When h 6= 0, this

value 52PL is derived with some smoothing on the density estimation of X. So the bias

associated with it has to be evaluated. In particular, when the true value of ∇2PL12 is close

to zero, this bias can be substantial. However, this bias is related to the true form of f(x)

through f ′′(x). An estimate of such bias can be difficult without knowing the true form of

f(x). A simple and natural approach is to assume a parametric form for f(x) and derive

a working estimator for f(x), for example, normal distribution with mean µx and variance

σ2
x. Both of the parameters can be estimated from the marginal distribution of X with

µ̂x = 1
n

∑n
i=1 xi and σ̂2

x = 1
n−1

∑n
i=1(xi − µ̂x)2. Incorporate this f into the bias estimation

(2.18), the bias of f̂(x) is

bias of f̂(x) =
1

2
h2φ

(
x− µx
σx

)(
(x− µx)2

σ4
x

− 1

σ2
x

)
.
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It follows that the bias of the density estimation of yλi, denoted by ∆, is

∆ =
1

2
h2φ

(
λyi + xi − λβ0 − (λβ1 + 1)µx√

σ2
λ

)
[

(λβ1 + 1)2

σ4
λ

[
{λyi + xi − λβ0 − (λβ1 + 1)µx}2 − σ2

λ

]]
λ→0→ 1

2
h2φ

(
xi − µx
σx

){
(xi − µx)2 − σ2

x

}
,

where σ2
λ = λ2σ2 + (λβ1 + 1)2σ2

x. The corresponding partial derivatives of ∆ with respect to

λ and θ at (θ̂0, λ = 0) are:

∂2∆

∂λ∂β0

λ→0→ −1

2
h2φ

(
xi − µx
σx

)
1

σ6
(xi − µx){(xi − µx)2 − 3σ2

x},

∂2∆

∂λ∂β1

λ→0→ −1

2
h2φ

(
xi − µx
σx

)[ 1

σ4
x

{(xi − µx)2 − σ2
x}

− 1

σ6
(xi − µx)xi{(xi − µx)2 − 3σ2

x}
]
,

∂2∆

∂λ∂σ2

λ→0→ 0.

Correspondingly, if p̂(yλi) = p̂(yλi; θ, F̂ ) is the density estimate of yλi with f(x) estimated

from kernel density estimation, the bias corrected estimate of p̃(yλi) is p̂(yλi) − ∆. If θ =

(β0, β1, σ
2), when λ = 0, all the first derivatives of p̂(yλi) and ∆ with respect to θ are vector

of zeros. Then ∂p̃(yλi)/∂θ = 0 as λ → 0. So the correction to (2.19) for any parameter ζ,

where ζ can be β0, β1 or σ2, is

∂2 log p̃(yλi)

∂2ζ∂λ
=

1

p̃(yλi)

∂2p̃(yλi)

∂λ∂ζ
− 1

p̃(yλi)2

∂p̃(yλi)

∂λ

∂p̃(yλi)

∂ζ

=
1

p̃(yλi)

∂2p̂(yλi)

∂λ∂ζ
− 1

p̃(yλi)

∂2∆

∂λ∂ζ

=
p̂(yλi)

p̃(yλi)

{
∂2 log p̂(yλi)

∂λ∂ζ
+

1

p̂(yλi)2
(
∂p̂(yλi)

∂λ

∂p̂(yλi)

∂ζ
)

}
− 1

p̃(yλi)

∂2∆

∂λ∂ζ

=
p̂(yλi)

p̃(yλi)

∂2 log p̂(yλi)

∂λ∂ζ
− 1

p̃(yλi)

∂2∆

∂λ∂ζ
.
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The exact bias corrected value of ∇2PL12 is:

∂2
∑m

i=1 log p̃(yλi)

∂λ∂β0

∣∣∣∣
(θ̂0,λ=0)

=
m∑
i=1

p̂(yλi)
∑n

j=1 exp
[
− (xi−xj)2

2h2

]
(xi − xj)

p̃(yλi)h2
∑n

j=1 exp
[
− (xi−xj)2

2h2

]
+

m∑
i=1

1

2p̃(yλi)
h2φ

(
xi − µx
σx

)
1

σ6
(xi − µx){(xi − µx)2 − 3σ2

x},

∂2
∑m

i=1 log p̃(yλi)

∂λ∂β1

∣∣∣∣
(θ̂0,λ=0)

=
p̂(yλi)

p̃(yλi)

[
m−

m∑
i=1

1

h2
∑n

j=1 exp
{
− (xi−xj)2

2h2

}
·

n∑
j=1

exp

{
−(xi − xj)

2h2

}
(xi − xj)xi

]
+

m∑
i=1

1

2p̃(yλi)
h2φ

(
xi − µx
σx

)[ 1

σ4
x

{(xi − µx)2 − σ2
x}

+
1

σ6
x

(xi − µx)(yi − β0 − β1xi){(xi − µx)2 − 3σ2
x}
]
,

∂2
∑m

i=1 log p̃(yλi)

∂λ∂σ2

∣∣∣∣
(θ̂0,λ=0)

= 0.

Details can be found in Appendix B.2.

2.3 SIMULATION STUDIES

Two sets of simulation studies were carried out to evaluate the performance of ISNIPL. The

first set was designed to compare the performance of ISNIPL and ISNIML under a missing-

data mechanism (2.1) and the ML correctly specified the mechanism. In the second set of

simulation studies, the missing data mechanism was simulated different from (2.1) and the

ML method misspecified the mechanism. This set of simulations was used to demonstrate

the flexibility of ISNIPL.

2.3.1 Simulations with missing data mechanism correctly specified by the ML

The first set of simulations were done based on the model specified below:

X ∼ N(0, 1),
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Y ∼ β0 + β1X + ε, where ε ∼ N(0, 1),

Pr(R = 1|X, Y ) = logit−1(ψ0 + ψ1X + ψ2Y ) = exp(ψ0+ψ1X+ψ2Y )
1+exp(ψ0+ψ1X+ψ2Y )

,

where β0 = 0 and β1 = 1; parameters (ψ1, ψ2) controlled the nature and magnitude of the

nonignorable mechanism with the following choices: (0,0), (1,0), (1,1,), (1,-1), (1,3), (0,1),

and (0,3); parameter ψ0 was used to maintain 50% overall completed cases. Under each

setting, 500 datasets were simulated and there were 1000 observations within each simulated

dataset. In these simulation studies, the primary of interest is β1, the regression slope.

Denote the sensitivity transformations for the maximum likelihood method, pseudolikelihood

with bivariate normal distribution and pseudolikelihood with the kernel density method as

cML, cPL1 and cPL2, respectively. For each simulated dataset, the estimator of β1 under the

ignorable ML method and the three sensitivity transformations were obtained. These results

were summarized and compared in Table 1 and Table 2.

In both tables, the true values of (ψ1, ψ2) are listed in the first two columns. Under each

parameter setting for the missing-data mechanism, Table 1 presents the empirical median, the

empirical 90% confidence interval that consist of the 5th percentile and 95th percentile of the

sensitivity transformations from 500 simulated datasets for each of those three methods. His-

tograms for cMLs, cPL1s and cPL2s from 500 simulated datasets under (ψ1, ψ2) = (0, 0), (1, 0)

are also presented in Figure 2. Under each parameter setting for the missing-data mech-

anism, Table 2 presents the empirical bias, empirical standard deviation of the estimators

under the ignorable ML method from 500 simulated datasets and the proportions of those

500 simulated datasets with cML < 1, cPL1 < 1, and cPL2 < 1, respectively.

Table 1 shows that the cPLs and the cML were in general consistent with each other

on the local sensitivity of the data to nonignorability. The local sensitivity indices for the

pseudolikelihood methods tended to be more conservative compared to ISNIML and had a

larger variability in most cases. This is probably a reflection of the loss of information on

the pseudolikelihood method from the ML method. Table 2 shows that except for the case

when (ψ1, ψ2) = (1, 0), for those mechanisms when the ignorable MLEs were biased, the

cPLs and the cML concluded that the datasets were sensitive to local deviation from MAR

and more extensive sensitivity analyses would be warranted; for those mechanisms when the

ignorable MLEs were not substantially biased, most of the cPLs and the cMLs concluded that
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Table 1: Distribution characteristics of three sensitivity transformations for bivariate normal

data when the mechanism is correctly specified by ML.

ψ1 ψ2 Median (90% CI) Median (90% CI) Median (90% CI)
of cML of cPL1 of cPL2

0 0 6.215 ( 2.103 - 74.396 ) 2.139 ( 0.785 - 23.178 ) 1.602 ( 0.62 - 15.303 )
1 0 0.322 ( 0.295 - 0.356 ) 0.316 ( 0.221 - 0.587 ) 0.279 ( 0.206 - 0.418 )
1 1 0.238 ( 0.226 - 0.252 ) 0.139 ( 0.110 - 0.183 ) 0.130 ( 0.109 - 0.157 )
1 -1 6.316 ( 2.119 - 75.873 ) 2.133 ( 0.730 - 19.86 ) 1.858 ( 0.608 - 19.60 )
1 3 0.222 ( 0.212 - 0.234 ) 0.113 ( 0.093 - 0.142 ) 0.106 ( 0.093 - 0.124 )
0 1 0.349 ( 0.315 - 0.391 ) 0.406 ( 0.251 - 1.034 ) 0.349 ( 0.236 - 0.555 )
0 3 0.247 ( 0.232 - 0.264 ) 0.169 ( 0.128 - 0.233 ) 0.155 ( 0.128 - 0.197 )

the datasets were not sensitive to local deviation from MAR and the ignorable MLE would

probably be fine for the parameter estimation and subsequent conclusion. Similar to Table 1,

the cPLs were more conservative than the cML although they were mostly consistent.

2.3.2 Simulation results when the missing data mechanism was misspecified by

the ML

For the next set of simulations, we would like to study the adaptability of ISNIPL in detect-

ing the sensitivity of the estimate under other nonresponse mechanisms. For this simulation

study, the complete data were simulated from the same distribution as the previous simula-

tion study and a quadratic function was used to simulate the missing-data mechanism:

X ∼ N(0, 1)

Y ∼ β0 + β1X + ε, where ε ∼ N(0, 1)

Pr(R = 1|X, Y ) = logit−1{ψ0 + (ψ1X + ψ2Y )2}

As in the previous simulation study, (β0, β1) = (0, 1). Similarly parameters (ψ1, ψ2) con-

trolled the nature and magnitude of the nonignorable mechanism with the following choices:

(0,0), (1,0), (1,1,), (1,-1), (1,3), (0,1), and (0,3); parameter ψ0 was used to maintain 50%

overall completed cases. Under each parameter setting for the complete data model and

nonresponse mechanism, 500 datasets with 1000 observations were simulated. The results
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Table 2: Empirical bias for the ignorable MLE and proportions with cML < 1, cPL1 < 1, and

cPL2 < 1 when mechanism is correctly specified by the ML.

ψ1 ψ2 Bias (standard error) % % %
of β̂10 [cML < 1] [cPL1 < 1] [cPL2 < 1]

0 0 -0.004(0.044) 0 14.2 23.8
1 0 -0.004(0.051) 100 99.8 100
1 1 -0.235(0.056) 100 100 100
1 -1 -0.002(0.041) 0 13.2 24.4
1 3 -0.426(0.051) 100 100 100
0 1 -0.154(0.046) 100 94.8 99.2
0 3 -0.373(0.045) 100 100 100

are averaged over 500 datasets for each parameter setting. The true selection model for

these datasets is non-monotone in the outcome. The ISNIML assumed a wrong missing-

data mechanism and would be misleading for datasets simulated under such mechanisms.

Results on cML were not collected. The empirical medians and 90% empirical confidence

intervals for both cPL1 and cPL2, proportions of cPL1 < 1 and cPL2 < 1 were obtained and

compared in Table 3.

In general, these two sensitivity indices agreed with each other on whether datasets are

sensitive to local deviation from MAR. With less assumption on the distribution of the

covariate, cPL2 was more conservative than cPL1.

2.4 EXAMPLE: SMOKING AND MORTALITY DATA

A dataset from Troxel et al. was used for illustrating the proposed index. That dataset

contains the smoking and the mortality information for 25 occupational groups in England

and Wales in early 1970s (Troxel, et al., 2004). The variables include the smoking index, the

ratio of the average number of cigarettes smoked per day by men in the occupational group

to the average number of cigarettes smoked per day by all men, and the mortality index,

the ratio of the rate of deaths from lung cancer among men in the occupational group to

29



histogram of c(ML)

median (range) 6.21  ( 1.225 , 50728.389 )

D
en

si
ty

0 2 4 6 8 10

0.
00

0.
10

0.
20

histogram of c(PL1)

median (range) 2.14  ( 0.392 , 2208.874 )

D
en

si
ty

0 2 4 6 8 10

0.
0

0.
2

histogram of c(PL2)

median (range) 1.6  ( 0.404 , 84.78 )

D
en

si
ty

0 2 4 6 8 10

0.
0

0.
2

0.
4

histogram of c(ML)

median (range) 0.32  ( 0.277 , 0.388 )

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
10

20

histogram of c(PL1)

median (range) 0.32  ( 0.158 , 1.208 )

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
2

4

histogram of c(PL2)

median (range) 0.28  ( 0.165 , 0.724 )

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
4

8

Figure 2: Histograms of sensitivity transformations when the missing data mechanism is

correctly specified by maximum likelihood method. The three plots in the left panel are

corresponding to (ψ1, ψ2) = (0, 0). The three plots in the right panel are corresponding to

(ψ1, ψ2) = (1, 0).
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Table 3: Simulation results on sensitivity transformations cPL1 and cPL2 when mechanism is

misspecified by ML.

ψ1 ψ2 Bias(SE) Median (90% CI) Median(90% CI) % %
of β̂10 of cPL1 cPL2 cPL1 < 1 cPL2 < 1

0 0 -0.004(0.044) 2.139 ( 0.785 - 23.178 ) 1.602 ( 0.62 - 15.303 ) 15 23.8
1 0 0.004(0.043) 0.168 ( 0.153 - 0.182 ) 0.191 ( 0.172 - 0.216 ) 100 100
1 1 0.194(0.033) 0.158 ( 0.145 - 0.173 ) 0.173 ( 0.158 - 0.192 ) 100 100
1 -1 -0.007(0.058) 1.994 ( 0.667 - 28.914 ) 1.663 ( 0.53 - 13.661 ) 17.6 30.2
1 3 0.257(0.033) 0.181 ( 0.165 - 0.200 ) 0.202 ( 0.182 - 0.226 ) 100 100
0 1 0.252(0.037) 0.252 ( 0.216 - 0.299 ) 0.295 ( 0.25 - 0.369 ) 100 100
0 3 0.299(0.036) 0.212 ( 0.19 - 0.242 ) 0.243 ( 0.212 - 0.287 ) 100 100

the rate of deaths from lung cancer among all men. The dependent variable is the mortality

index. The purpose was to find how smoking, as represented by the smoking index, affects

the lung cancer mortality. The original dataset is complete. The estimates of the intercept

β̂0 and the slope β̂1 from the complete data are β̂0 = −2.885±23.034 and β̂1 = 1.088±0.221

(Estimate±se).

We ordered observations according to the predictor, smoking index. Missing data were

artificially created by orderly deleting one or five consecutive values of the mortality index.

The impact of any particular point/points and the proportion of missing on the sensitivity are

of particular interest here. Sensitivity transformations, cML, cPL1 and cPL2, were computed

from the observed data after artificial deletions. Due to the large variance of smoking index,

the smoothing parameter h, which is proportional to the standard deviation of the covariate,

is very large. It causes the bias to soar beyond the estimated density of the outcome variable.

To resolve this problem, the smoking index were scaled with its standard deviation. The

subsequent ISNIPL2 was rescaled back to the one corresponding to the original data.

For each artificially created dataset with missing values, the estimated ignorable ML

estimator and its standard error, the cML, cPL1 and cPL2 corresponding to the regression slope

are listed in Table 4. Overall, there are some discrepancies between these indices. Except

for the scenario where the first 5 points are missing, the complete data estimate (1.088)

is within all one SE of the ignorable MLE. Despite some occasional jump, the sensitivity
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Table 4: Smoking and mortality data with missing points

Missing

Missing Point(s) β̂10(SE) σ̂2 cML cPL1 cPL2

1 0.967(0.235) 315 ∞ 25.23 25.45

2 1.000(0.222) 313 4.77 67.00 52.08

12 1.085(0.21) 315 141.94 125.31 12.22

1 - 5 0.655(0.317) 315 ∞ 7.11 2.85

3 - 7 1.088(0.265) 374 1.73 88.0 2.62

10 - 14 1.086(0.222) 347 91.70 25.91 48.42

20 - 24 1.036(0.261) 324 1.92 29.41 1.38

transformations were generally larger when only one point was missing. Considering that the

proportion of missing is much larger when 5 observations are missing at a time than when

only one observation is missing at a time, this phenomenon is consistent with past reports

that the proportion of missingness is relevant to the sensitivity of the estimate. A larger

proportion of missing is usually related to higher sensitivity (Troxel, et al., 2006). The point

1 seems to have a large impact on the estimates. The β̂10s are the worst when data points

1 or 1-5 are missing. Somehow, cMLs, in both cases, suggest complete insensitivity towards

nonignorability assumption. At the same time, cPL1 is among the lowest in both situations

and cPL2 confirms that with points 1-5 missing, these methods are not sensitive to deviation

from MAR. With points 20-24 missing, cPL2 agrees with cML, confirming that the estimate is

somewhat sensitive, while cPL1 rejected such indication. This discrepancy between cPL1 and

cPL2 may be heavily affected by the distribution of X. With points 3-7 missing, the MAR

estimate is almost the same with the complete data analysis. Only cPL1 suggested strongly

that the method PL1 is not sensitive to deviation from MAR. With points 10-14 missing,

all of them agree that they are not sensitive to the missing data mechanism assumption.

We cannot tell from this data analysis, which one of the methods is more close to the

truth. With only a small sample of data, the complete data analysis may not be trustworthy
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either. But there are still noticeable difference between these indices. Each index has its

advantage and weakness. ISNIML depends on the missing data mechanism and ISNIPLs

do not. Between the two ISNIPLs, ISNIPL1 need the parametric distribution of X, while

ISNIPL2 does not. But its values tend to be lower. Precautions are required when making

any judgment based on only one of them. If possible, all of them can be computed and if

any of them indicate important sensitivity, more comprehensive sensitivity analyses should

be carried out.
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3.0 A PENALIZED PSEUDOLIKELIHOOD METHOD

Parametric regressions generally require the assumption that the contributions of the pre-

dictors to the mean of the outcome or its transformation are either linear or polynomial. For

example, in multiple linear regressions, the mean of the outcome is linear in predictors. In

logistic regression model, the logit of the mean of the outcome is linear in predictors. With

such assumptions, the effect of the predictors on the outcome is easy to interpret. In most

situations, a parametric model is good enough for a regression analysis. However, sometimes

the effect of some predictors on the outcome cannot be simply characterized by parametric

functions. Instead the effect of such variables are often modeled nonparametrically. For

example, for a bivariate dataset {ti, yi}i=1,...,n, the contribution of T on Y can be described

by an unspecified function g. The subsequent model is:

yi = g(ti) + εi, εi ∼ N(0, σ2), (3.1)

where εis are iid. Some restrictions on g are then required in order to estimate g. In general,

these nonparametric models require fewer assumptions and provide more freedom in model

fitting. In some semi-parametric regression models, the mean structure is a combination of

parametric functions of some predictors and nonparametric functions of other predictors.

These semi-parametric regression models are especially useful when the contribution from

some predictors is not well understood or not of interest but needs to be adjusted. For

example, for a dataset (xi, ti, yi), i = 1, . . . , n, where n is the number of subjects, xi is

the predictor of interest, ti is a confounder whose effect is not of interest but needs to be

adjusted, and yi is the outcome or dependent variable. A typical semi-parametric regression

model for such dataset is

yi = xiβ + g(ti) + εi, εi ∼ N(0, σ2), (3.2)
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where g(t) is the contribution of T on Y and its functional form is not well understood and

unspecified. Let θ = (β, g, σ2), the likelihood function is

L(θ) = −n
2

log σ2 − 1

2σ2

n∑
i=1

{yi − xiβ − g(ti)}2.

Without further information, θ̂ cannot be identified. For such semi-parametric regression

models, a useful method for estimation is the penalized likelihood as the following(Good &

Gaskins, 1971)

L(θ)− 1

2
λJ(g),

where J(g) is a pre-specified roughness penalty, which increases as g becomes less smooth.

For example, it can be J(g) =
∫
|g′′(x)|dx. When g is linear, the regression curve is smooth

and this quantity J(g) = 0. When g(x) = sin(x) with x bounded by [0, π], the regression

curve is not as smooth and J(g) = 2. Parameter λ is a nonnegative smoothing parameter

that is used to control the influence of the smoothness on the model fitting. Semi-parametric

models have been successfully adopted to solve many complex problems. However, few stud-

ies have been done when there are nonignorable nonresponse in Y . We extended the pseu-

dolikelihood method for multivariate monotone data with nonignorable nonresponse (Tang

et al., 2003) by incorporating a roughness penalty term in the logarithm of the pseudolike-

lihood function. Two cross-validation (CV ) methods were explored to choose the optimal

λ. The properties of the proposed penalized pseudolikelihood method and two CV methods

were evaluated through simulation studies and illustrated by analysis of a psychiatric clinical

study dataset.

3.1 NONPARAMETRIC REGRESSIONS AND THE STATISTICAL

METHODS FOR NONPARAMETRIC REGRESSIONS

Consider a bivariate dataset {ti, yi}i=1,...,n, where n is the sample size. For simplicity we

assume that the predictor T has no tie. When there is no prior knowledge on the functional

form of effect of T on Y , their relationship can be described by model (3.1). The mean
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structure function g is square integrable and has m continuous derivatives. Denote L2[a, b]

as the function space of all square integrable functions on a pre-specified interval [a, b] that

covers the observed tis. This function g(·) is assumed to be a member of the following

space(Eubank, 1999)

Wm
2 [a, b] =

g :
g(j) is absolutely continuous,

j = 0, . . . ,m− 1, and g(m) ∈ L2[a, b]

 .

The exact function form of g is not well understood and cannot be modeled by linear or

polynomial regression. This function g(T ) will be estimated using a nonparametric model.

3.1.1 The penalized likelihood method for nonparametric regression

The motivation of using a nonparametric model for g(T ) is to preserve the key features of the

real function g, while control for the overall smoothness. Let θ = (g, σ2). Given a smoothing

parameter λ > 0 and a penalty function J(g) =
∫ b
a
{g′′(x)}2dx, the penalized likelihood is:

L(θ) ∝ −n
2

log σ2 − 1

2σ2

n∑
i=1

{yi − g(ti)}2 + λ

∫ b

a

{g′′(x)}2dx. (3.3)

The estimates are obtained by maximizing this penalized likelihood: θ̂ = argmaxθ L(θ).

With λ fixed, there is a unique solution to this optimization problem, in which ĝ is a natural

cubic spline (NCS) with knots at all unique points ti (Green and Silverman, 1994). That is,

if t1, t2, . . . , tn satisfying a < t1 < t2 < . . . < tn < b are the unique ordered values of T , ĝ

is cubic polynomial on each of the intervals (a, t1), (t1, t2), . . . , (tn, b). Function ĝ itself and

its first and second derivatives are continuous on [a, b]. The second and third derivatives

are zero at a and b. The estimating procedure for ĝ is straightforward. However, in reality,

if all the unique data points are chosen as knots, the complexity of computation increases

quickly with the sample size. It has been suggested that when the total number of knots k

is sufficiently large, increasing k has little influence on the fit from the penalized likelihood

function. It was discussed in Ruppert (2002) that a default of at most 35 knots can provide

a good fit for almost all sample size. In most data analysis, the knots τ1, τ2, . . . , τk on [a, b],

where a < τ1 < τ2 < . . . < τk < b, k ≤ n, were selected beforehand.
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After k knots have been selected, the value of the roughness penalty J(g) and ĝ(t),

for any t ∈ [a, b], can be computed from ĝ(τi), i = 1, . . . , k. Denote gi = g(τi) and γi =

g”(τi) for i = 1, . . . , k and γ1 = γk = 0. Denote g = (g1, . . . , gk)
T and γ = (γ2, . . . , γk−1)T ,

hi = τi+1− τi for i = 1, . . . , k−1. Matrices Qk×(k−2) and R(k−2)×(k−2) are two band matrices.

The entries qij, i = 1, . . . , k and j = 2, . . . , k − 1, of Q is given by

qj−1,j = h−1
j−1, qjj = −h−1

j−1 − h−1
j , qj+1,j = h−1

j , and qij = 0 for |i− j| ≥ 2.

R is a symmetric matrix with elements rij, for i and j from 2 to (k − 1), given by

rii =
1

3
(hi−1 + hi) for i = 2, . . . , k − 1, ri,i+1 = ri+1,i =

1

6
hi for i = 2, . . . , k − 2,

and rij = 0 for |i− j| ≥ 2. Matrix K = QR−1QT .

For the band matrices defined as above, QTg = Rγ. The second derivatives vector γ can

be computed from g and the band matrices. The roughness penalty can be derived by∫ b

a

g′′(t)2dt = γTRγ = gTKg (3.4)

(Green and Silverman, 1994). For any τj−1 < t < τj, j = 1, . . . , k, ĝ(t) can be computed by

ĝ(t) =
tl
hj
gj+1 +

tr
hj
gj+1 − tltr{γj+1(1 +

tl
hj

) + γk(1 +
tr
hj

)}/6, (3.5)

where tl = t− τj−1 and tr = τj − t.

While fitting a smoothing spline, choosing a optimal smoothing parameter λ is essential.

When a very large value of λ is used, the penalty term would dominate the penalized like-

lihood function and force the spline close to a straight line. Such a smooth fit often leads

to substantial bias. When λ is too small, the regression fit of the data will dominate the

penalized likelihood and lead to a volatile fit with small bias. Data-driven methods such as

cross validation (CV) and generalized cross-validation (GCV) are the most common methods

to find the optimal λ that balance the bias and variation in practice. The leave-one-out CV

is to find a λ that minimizes the following function:

CV (λ) = n−1

n∑
i=1

{yi − ĝ(−i)(ti;λ)}2,
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where ĝ(−i)(t;λ) is estimated from the dataset after deleting an observation (ti, yi), given the

smoothing parameter λ. If we consider observation (ti, yi) a new observation, the estimated

mean for yi is ĝ(−i)(ti) and the corresponding prediction error would be {yi−ĝ(−i)(ti;λ)}. The

CV score can be roughly considered as the estimate of mean squared prediction error. The

optimal λ is obtained by minimizing CV . Generalized cross-validation (GCV) is a modified

form of the simple leave-one-out cross-validation. It adaptively chooses λ that minimizes a

GCV score

GCV (λ) = n−1

∑n
i=1{yi − ĝ(ti)}2

{1− n−1trA(λ)}
,

where A(λ) = (In + λQR−1QT )−1 and In is n× n identity matrix.

These traditional methods for nonparametric models have been successfully employed in

many statistical problems. But they only deal with data with complete records and may

yield biased estimates when the data are not complete. The proposed statistical methods for

nonparametric regression with incomplete data mainly include imputation methods (Cheng,

1994), the propensity score method (Hahn, 1998) and imputed empirical likelihood methods

(Wang and Rao, 2002). However, all of them require the data to be MAR. Few studies has

been done to nonparametric regression of data with nonignorable nonresponse. To address

this issue, we expanded the pseudolikelihood method (Tang, et al., 2003) to the analysis of

nonparametric regression models for data with nonignorable nonresponse.

3.1.2 A penalized pseudolikelihood method (PPL)

Consider bivariate data {ti, yi}i=1,...,n, tis are fully observed and yis are observed for i =

1, . . . ,m, missing for i = m + 1, . . . , n. The missing data indicator Ri = 1 for i = 1, . . . ,m

and Ri = 0 for i > m. Assume Ri depends completely on yi

Pr[Ri = 1|ti, yi] = Pr[Ri = 1|yi] = ω(yi;ψ),

for some unknown function ω(·) and parameter ψ. Under such circumstances, R is indepen-

dent of T , given Y . Then observed data are a random sample of T , given Y .

The corresponding pseudolikelihood function for θ = (g, σ2) is

L(θ; F̂ , λ) = −
m∑
i=1

{yi − g(ti)}2

2σ2
−

m∑
i=1

log

∫
exp

[
−{yi − g(t)}2

2σ2

]
dF̂ (x),
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where F̂ (x) is a consistent estimator of the cumulative distribution function of X. In order

to obtain a smooth fit of g, the following penalized pseudolikelihood was proposed with knots

τ1, τ2, . . . , τk predetermined:

L(θ; F̂ , λ) = −
m∑
i=1

{yi − g(ti)}2

2σ2
−

m∑
i=1

log

∫
exp

[
−{yi − g(t)}2

2σ2

]
dF̂ (x) (3.6)

−λ
∫ b

a

g′′(t)2dt,

In the following context, the empirical distribution of T , Fn(t) = 1
n

∑n
i=1 I(ti ≤ t) is used as

the consistent estimator of F . Parameter θ can be estimated by

θ̂ = arg max
θ
L(θ;Fn)

= arg max
θ

[
−

m∑
i=1

{yi − g(ti)}2

2σ2
−

m∑
i=1

log

∫
exp[−{yi − g(t)}2

2σ2
dFn(t)]

−λ
∫ b

a

g′′(t)2dt

]
= arg max

θ

[
−

m∑
i=1

{yi − g(ti)}2

2σ2
−

m∑
i=1

log
[ 1

n

n∑
j=1

exp

{
−{yi − g(tj)}2

2σ2

}]
−λgTKg

]
(3.7)

3.1.3 Cross validation method for the penalized pseudolikelihood method

Leave-one-out cross validation is rooted on the assumption that any data point is a random

sample from the study population. If the data are complete, CV is a slightly biased estimate

of the mean squared prediction error. However, for data with nonignorable nonresponse, the

missing data indicator needs to be taken into account while comparing observed outcome

and the predicted value. For example, for the nonparametric regression model (3.1),

[Y |T,R = 1] 6= Pr[Y |T ].

The formula
1

m

m∑
i=1

[yi − Ê{y|ĝ(−i)(ti;λ), σ̂2(−i)}]2,
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where i = 1, 2, . . . ,m, is only a rough estimate of the squared prediction error of yi given Ri =

1 and ti. This CV is not an ideal candidate for data with outcome-dependent missingness.

But this CV method is easy to implement and will be considered as an option for choosing

the optimal smoothing parameter λ.

An alternative cross-validation method for the penalized pseudolikelihood method was

also considered. Its rationale was to trace back to the assumption on the missing-data

mechanism. Under the outcome-dependent assumption,

[T |Y,R = 1] = [T |Y ],

the difference

ti − Ê{t|yi, ĝ(−i)(ti;λ), σ̂2(−i)},

offers a legitimate evaluation of the prediction error when yi is used to predict ti. Let

θ = (g, σ2), we can construct a reversed cross validation (RCV) in terms of the mean squared

prediction error of T ,

RCV (λ) =
1

m

m∑
i=1

[ti − Ê{t|yi; ĝ(−i)(ti;λ), σ̂2(−1)}]2 (3.8)

where,

Ê{t|yi; θ(−i), F̂} =

∫
tp(t|yi; θ̂(−i))dt =

∫
t

p(yi|t; θ̂(−i))∫
p(yi|t; θ̂(−i))dF̂ (t)

dF̂ (t),

and F̂ (t) is a consistent estimate of the cumulative distribution function of T .

The estimated value Ê[t|yi, θ(−i)] can be obtained by using empirical estimator Fn(t) =

1
n

∑n
i=1 I(ti ≤ t):

H(λ) =
n∑

j=1,j 6=i

tj

1
n−1

p(yi|tj θ̂(−i)(λ))

1
n−1

∑n
k=1,k 6=i p(yi|tk; θ̂(−i)(λ))

(3.9)

=
n∑

j=1,j 6=i

tj
p(yj|tj; θ̂(−i)(λ))∑n

k=1,k 6=i p(yj|tk; θ̂(−i)(λ))

The corresponding version of RCV for semi-parametric model (3.2) and θ = (β, g, σ2),

when X and T are independent, is

RCV (λ) =
1

m

m∑
i=1

[ti − Ê{t|yi, xi; β̂(−i)(λ), ĝ(−i)(ti;λ), σ̂2(−1)}]2 (3.10)

40



where,

Ê{t|yi, xi; θ(−i), F̂} =

∫
tp(t|yi, xi; θ̂(−i))dt =

∫
t

p(yi|xi, t; θ̂(−i))p(xi|t)∫
p(y|xi, t; θ̂(−i))p(xi|t)dF̂ (t)

dF̂ (t)

X⊥T
=

∫
t

p(yi|xi, t; θ̂(−i))∫
p(yi|xi, t; θ̂(−i))dF̂ (t)

dF̂ (t).

The above term can be estimated by an empirical estimator Fn(t) = 1
n

∑n
i=1 I(ti ≤ t):

H(λ) =
n∑

j=1,j 6=i

tj

1
n−1

p(yi|xi, tj; θ̂(−i)(λ))

1
n−1

∑n
k=1,k 6=i p(yi|xi, tk; θ̂(−i)(λ))

(3.11)

=
n∑

j=1,j 6=i

tj
p(yi|xi, tj; θ̂(−i)(λ))∑n

k=1,k 6=i p(yi|xi, tk; θ̂(−i)(λ))

By minimizing (3.8) and (3.10), the optimal λ can be obtained. This RCV method, along

with CV method, will be considered as the candidate for choosing an optimal λ.

3.1.4 Simulation studies

We conduced simulation studies to examine the performance of PPL and to select the best

cross-validation method. Several issues were considered and studied in the simulation studies:

i) The fitted curves derived from PPL methods are affected by the smoothing parameter

λ. They tend to be rough for small λ and smooth for large λ. ii) The cross validation

methods have to pick a better fit for the nonparametric curve. These issues were investigated

through one set of simulation studies to evaluate the performance of the PPL method for

nonparametric regression models here.

In this simulation study, a bivariate dataset {ti, yi}i=1,...,n was simulated from

T ∼ Unif(0, 1) and Y = 10T 2 +N(0, 1). (3.12)

The nonresponse in Y was created based on the following mechanism:

Pr[R = 1|T, Y ] = Φ(−1.7 + 0.5Y ). (3.13)

Each simulated dataset had 300 observations. Due to high computation complexity, the

global minimization of either CV or RCV was not carried out. The optimal λ among a
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grid of ten values: (0.0, 10−6, 10−5, 10−4, 0.001, 0.005, 0.01, 0.1, 1, 10) was used instead in the

simulation studies. For each simulated dataset, the corresponding values of CV (λ) and

RCV (λ) over these ten values were computed and the smallest one was used to determine

the corresponding optimal λ. The loss function

LOSS(λ) =
1

n

n∑
i=1

(ĝλ(ti)− g(ti))
2

was used to evaluate how the fitted curve, from the CV or RCV method, differed from

the true curve. A large value of LOSS(λ) would indicate a poor fit with large squared

bias. The smaller LOSS(λ) indicates a better fit to the curve. For each λ, the penalized

pseudolikelihood was fitted with 10 evenly distributed knots within (0, 1).

The results from one simulated dataset is shown in Figure 3. In the figure, CC denotes

results from the complete case analysis by minimizing the penalized likelihood function (3.3).

It was based solely on the complete cases. This was fitted by “smooth.spline” function in R

with similar degree of freedom and CV method (The R Development Core Team, 2008). The

figure gives the PPL fitted lines under eight values of λ and the complete case estimator. The

influence of λ is visible. When the value of λ is small, the part with less observed data is very

rough. When the value of λ is large, the curve is close to a straight line. The complete case

analysis is obviously bias toward the low end of T . In Table 5, the values of RCV (λ), CV (λ)

scores and LOSS(λ) corresponding to each λ are listed. The last row gives the optimal λ,

the corresponding CV (λ) and LOSS(λ) from the complete case analysis. The RCV (λ) and

CV (λ) were minimized at λ = 0.0001 and λ = 0.005 over the grid of ten values, respectively.

LOSS(λ) is the smallest at λ = 0.005, which is exactly the same one that was picked by CV

method. At λ = 0.0001, however, the LOSS is relatively large. Therefore the CV method

performed better than the RCV method on this simulated dataset. The optimal λ from

the complete case analysis was larger than that from the penalized likelihood methods and

LOSS was also much larger. However, CV score from the complete case analysis was smaller

than the CV score from the PPL methods because the complete case analysis was aimed to

fit the complete cases without incorporating information from the incomplete cases.

In the subsequent simulation study, 1000 datasets with the above parameter setting

were simulated. For each simulated dataset, the optimal λs chosen by the CV and RCV
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Figure 3: Regression lines from one set of simulation
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Table 5: RCV , CV and LOSS for the first simulation study

method λ RCV (λ) CV (λ) LOSS(λ)

PL 0 0.00953561 1.112577 0.06188

PL 0.000001 0.00953559 1.112018 0.06141

PL 0.00001 0.00953541 1.107453 0.05768

PL 0.0001 0.00953441 1.083862 0.04026

PL 0.001 0.00954016 1.054673 0.01904

PL 0.005 0.00957467 1.046275 0.01884

PL 0.01 0.00960019 1.047713 0.02655

PL 0.1 0.00994471 1.196050 0.22773

PL 1 0.01029818 1.504486 0.57325

CC 0.008 0.922399 0.16393
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Figure 4: Relations of RCV , CV scores from PPL, CV from complete case analysis and

LOSS
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Table 6: Summary of RCV ,CV score and LOSS

method λ RCV(CV ) score LOSS

Median(Range) Mean(std) Mean(std)

RCV 0.005(0-10) 0.008(0.001) 0.156(0.214)

CV 0.005(0-0.1) 1.031(0.119) 0.050(0.062)

CC 0.018(0-0.046) 0.952(0.102) 0.167(0.083)
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Figure 5: Comparison of LOSS and CV score between different methods
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methods were recorded and the corresponding loss functions were computed. The results

were summarized in Table 6. The numbers of complete cases were between 152 and 215 with

an average of 180. The optimal λs based on the loss function had a median of 0.005 and range

(0.0001, 0.1). The optimal λs chosen by the RCV and CV methods were both centered at

0.005. However, the optimal λs chosen by the RCV method had a much larger range. Overall

the LOSS from the RCV method were larger with much larger variance than that from the

CV method. The complete case analysis still had the largest LOSS. The scatter plots of

LOSS versus the cross-validation scores, corresponding to theRCV for the PPL method, CV

for the PPL method, and complete case analysis over 1000 simulated datasets are presented

in Figure 4. The CV method with PPL had the lowest LOSS function and the corresponding

LOSS was generally stable. The LOSS associated with the RCV method had much wider

spread and suggested a worse fit compared to the fit under the CV method for the PPL

approach. Scatter plots of those three LOSS functions over 1000 simulated datasets are also

presented in Figure 5. In the first plot, LOSS from PPL with CV method (LOSS(CV )) is

compared with LOSS from the PPL with RCV method (LOSS(RCV )). This plot suggests

that mostly the CV method can find a better fitted spline with smaller LOSS than the RCV

method when PPL is used. In the second plot, similar comparison was done with LOSS from

the PPL with CV method and the complete case analysis (LOSS(CC)). In the last plot,

the CV score from PPL method (CV ) and CV score from complete case analysis (CV (CC))

is compared. These plots showed that the PPL method with CV method was associated

with smaller LOSS function and better fit of the true association between the predictor and

the outcome, even though the complete case analysis fit the complete cases better. So CV

method still has its flaw because it only respond to complete cases. But overall, CV method

in combination with PPL consistently chose a better fitted curve than the RCV method.

These simulation studies suggest that the RCV method is not stable and performs worse

than the CV method in cross validation. It is probably because that the RCV method

chooses the optimal smoothing parameter λ based on the predictive error of E[T |Y ] from

T . However, whether a curve fits the data well or not should still be evaluated based on the

predictive error of E[Y |T ] from Y . Although the traditional cross validation method is not

ideal because the complete cases are not a random sample of [Y |T ], it is still better.
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3.2 SEMI-PARAMETRIC REGRESSIONS AND THE STATISTICAL

METHODS FOR SEMI-PARAMETRIC REGRESSIONS

In Section 3.1, the PPL method for fitting a nonparametric regression, a NCS in specific, was

explored. However, very often, we would have a dataset where some variables can be modeled

by a parametric model and other variables cannot. The prime interest is generally to under-

stand the variables that can be modeled parametrically after adjusted by the other variables.

A semi-parametric model that consists of both parametric and nonparametric component

can be used. Traditionally, a penalized likelihood is maximized to obtain the estimate of

both parametric parameter and the nonparametric regression curve when data are complete.

When data are MNAR, it may yield invalid inferences. In this section, we expanded our PPL

method to incorporate the parametric component for data with nonignorable nonresponse.

3.2.1 A penalized likelihood method for semi-parametric regressions

For semi-parametric regression model (3.2), NCS can also be used to describe the effect of a

predictor on the outcome with a similar penalty term in the penalized likelihood function.

Consider a trivariate dataset {xi, ti, yi}i=1,...,n from model (3.2). The effect of X on the

outcome Y can be modeled in a linear form and it is of primary interest. The effect of T on Y

cannot be modeled by a parametric model and is not of primary interest. If θ = (β, g, σ2), the

penalized likelihood for a semi-parametric model can be defined similarly as a nonparametric

model with the same roughness penalty as:

L(θ) ∝ −n
2

log σ2 − 1

σ2

n∑
i=1

{yi − xiβ − g(ti)}2 + λ

∫ b

a

{g′′(x)}2dx. (3.14)

In this model, the roughness penalty term is only a function of the nonparametric component.

But it also impacts the parametric component. Variations of the CV or GCV to include the

X term were used to choose the optimal λ:

CV (λ) = n−1

n∑
i=1

{yi − xiβ̂(−i) − ĝ(−i)(ti;λ)}2

GCV (λ) = n−1

∑n
i=1{yi − xiβ̂(−i) − ĝ(ti)}2

{1− n−1trA(λ)}
.
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In both formula, β̂(−i) is the estimate of β after deleting observation i. The optimal λ

is derived by maximizing either CV , or GCV. The final estimates of β̂ and ĝ(·) are then

estimated from (3.14) with the optimal λ.

3.2.2 The penalized pseudolikelihood method for semi-parametric regression

Similarly, for the semi-parametric regression model (3.2) with dataset {xi, ti, yi}i=1,...,n, where

yi, i = 1, . . . ,m are observed and yi, i = m+ 1, . . . , n are missing, to obtain the estimate of

θ = (β, g, σ2), the penalized pseudolikelihood is maximized:

θ̂ = arg max
θ
L(θ;Fn, λ)

= arg max
θ

[
−

m∑
i=1

{yi − xiβ − g(ti)}2

2σ2
−

m∑
i=1

log

∫ ∫
exp[−{yi − xβ − g(t)}2

2σ2
dFn(x, t)]

−λ
∫ b

a

g′′(t)2dt

]
= arg max

θ

[
−

m∑
i=1

{yi − xiβ − g(ti)}2

2σ2
−

m∑
i=1

log
[ 1

n

n∑
j=1

exp

{
−{yi − xjβ − g(tj)}2

2σ2

}]
−λgTKg

]
, (3.15)

where Fn(x, t) = 1
n

∑n
i=1 I(xi ≤ x, ti ≤ t).

An analytical form of the standard error of β̂ is difficult to derive. Resampling based

methods such as Bootstrap and Jackknife can be used for standard error estimation.

3.2.3 A simulation study

A simulation study was carried out to evaluate the performance of this penalized pseudolike-

lihood method for semi-parametric regression model on data with nonignorable nonresponse.

In particular, the PPL method should yield an unbiased estimate of the parameter of interest,

β. The complete data {ti, xi, yi}i=1,...,n were generated from

X ∼ N(0, 1), T ∼ Unif(0, 1), and Y = X + 10T 2 +N(0, 1). (3.16)
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Table 7: Empirical bias and standard deviation of β̂ when under three methods

Method Empirical Bias(se)of β̂ LOSS

RCV 0.013(0.084) 0.161(0.235)

CV 0.006(0.078) 0.048(0.069)

CV (CC) 0.065(0.078) 0.204(0.091)

The nonresponse in Y was created based on the following mechanism:

Pr[R = 1|T,X, Y ] = Φ(−1.7 + 0.5Y ). (3.17)

One thousand datasets were simulated and the number of complete cases ranged from 153 to

205, with an average of 180. For each dataset, the values of β̂ when the RCV score and the

CV score are minimal were recorded. The complete case analysis based on a semi-parametric

model was also conducted to each simulated data for comparison purpose. The gam(mgcv)

function in R was used (The R Development Core Team, 2008). LOSS is calculated by

LOSS(λ) =
1

n

n∑
i=1

[̂(β̂λ − β)xi + ĝλ(ti)− 10t2]2.

Table 7 presents the empirical bias and empirical standard deviation of β̂ under the PPL

method with either RCV and CV for cross validation and the complete case analysis. This

simulation study suggests that the PPL method has negligible bias and the complete case

analysis is apparently biased. Among the two cross validation methods for the PPL method,

the CV method is associated with smaller bias and LOSS function.
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3.3 EXAMPLE: DATA FROM CLINICAL TRIAL TO TREAT PANIC AND

GENERALIZED ANXIETY DISORDERS (PD/GAD)

This penalized pseudolikelihood method was further illustrated by using data collected as

part of an NIH-funded clinical trial to treat panic and/or generalized anxiety disorders

(PD/GAD) (Rollman, et al., 2005). Over a 22-month period (7/00-4/02), 191 primary care

patients with PD/GAD were randomized into two groups: a telephone-based collaborative

care intervention or a ”usual care” control condition with a ratio of 3 versus 2. Afterwards

blinded telephone follow-up assessments were conducted at 2-, 4-, 8-, and 12-months. By

12-months, 15% of patients dropped-out, 65%-75% completed a follow-up assessment at the

appropriate time-point, and 95% completed ≥ 1 follow-up assessments. Using the continuous

outcome of decline in Rating Scale for Anxiety (HRS-A) score from baseline at 12 month

(change), we compared outcomes using three methods: (a) Penalized pseudolikelihood with

RCV method. (b) Penalized pseudolikelihood with CV method. (c) Function gam(mgcv) in

R. We used spline to fit the baseline HRS-A score and the treatment effect is of interest.

In this dataset, 143 patients had HRS-A score recorded at 12 months and the other 48

had missing 12-month HRS-A score. Among these 48 patients, 22 withdrew from the study

due to: time constraint, no longer interested, or simply refused. Two patients were deceased

before 12 months and another 14 patients could not be reached. The other 10 were excluded

because they were later found out to be ineligible by protocol. The treatment effect (trt) is

of interest. Normally, patients with higher baseline score (base) may have more reduction,

but they are also found to be more treatment resistant. There the baseline score needs to be

adjusted in regression analysis. Figure 6 shows the relation between these three variables. It

seems that patients in intervention (trt=1) had more reduction on HRS-A at 12 month than

patients in UC (trt=0). Those who have higher baseline score was associated with more

absolute improvement. The following semi-parametric regression model was considered:

change = β · trt+ g(base) +N(0, σ2).

In this analysis, the standard error of the estimate is derived from 500 bootstrap samples

of size 100. The estimate of the treatment effect is listed in Table 8. In the original report,
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Figure 6: Baseline HRS-A, treatment group and changes on HRS-A at 12 month

Table 8: Estimate of treatment effect

Method λ, Median(range) β̂, estimate(bootstrap se)

RCV 0.1(0-10) -3.477(3.003)

CV 1.0(0-10) -3.205(2.390)

CC -3.694 (1.385)
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random regression models were used on all data from 5 time points to account for between

subject variation (Rollman et al., 2005). The difference in change score between UC and

intervention estimated at 12 month was -3.6 points with 95% CI of (−6.4,−0.8). It is almost

the same from our complete case analysis. Estimates from PPL are very similar but with

larger standard errors. The splines from PPL have a very large variation. The optimal λ

covers from 0 to 10. It may have caused the large variance of the estimate of the treatment

effect.

In complete case analysis, an ignorable penalized likelihood method was used. It assumes

that the missingness depend only on the covariates. The PPL, on the other hand, assumes

that the missingness depends only on the outcome. Neither of them are testable. The results

from PPL are reasonably close to that using ignorable penalized likelihood method. Even

though the larger standard error will make the treatment effect insignificant, we can still

conclude that the results supported the ignorable ML method.
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4.0 DISCUSSION AND CONCLUSION

4.1 AN INDEX OF LOCAL SENSITIVITY TO NONIGNORABILITY FOR

A PSEUDOLIKELIHOOD METHOD

Selection models supply a standard framework for analysis of data with missing values.

Specification of a parametric model is usually required for making the maximum likelihood

inference. When data are MAR and complete-data model parameters are distinct from the

parameters for the missing-data mechanism, the mechanism is ignorable and the inference

can be made on the likelihood based on observed values. Without prior knowledge on the

missing-data mechanism, sensitivity analysis is necessary in order to evaluate the impact

from alternative assumptions on the missng-data mechanism. ISNIML is a local sensitivity

index to nonignorability developed for the maximum likelihood method (Troxel et al., 2004).

It is used to evaluate how a small deviation from MAR may affect the ML estimate. If the

estimate is not sensitive to deviation from MAR, then the ignorable ML estimate may be

used for subsequent conclusion. The developed ISNIML requires a parametric model, often a

logistic regression, for the missing-data mechanism. Here we developed a new local sensitivity

index to nonignorability based on a pseudolikelihood method (Tang et al., 2003) that does

not require parametric specification fo the missing-data mechanism. Through simulation

studies and analysis of a dataset, it was demonstrated that ISNIPL had similar performance

with ISNIML when the ML method used a correctly specified model for the missing-data

mechanism. In some cases ISNIPLs were a little more conservative than ISNIML because

fewer assumptions were used. When the missing-data mechanism is quite differenct from

what was required by ISNIML, ISNIPL still supplied reationable guidance on the local

sensitivity, but ISNIML would be misleading. Since both ISNIML and ISNIPL are not
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difficult to compute, it is recommended that all of them are computed and compared. If

either of them indicate potential local sensitivity to nonignorability, more comprehensive

sensitivity analyses on how these estimates, such as the estimate of the prime interest,

change on a range of nonignorability parameters.

Based on whether the distribution of the covariate can be assumed parametric or not,

two versions of ISNIPL were developed here. If the distribution of X is not normal, the

performance of the bias correction is essential. As a matter of fact, the bias from the kernel

smoothing can take over the entire computation of ISNIPL. This is not desired. A rescaling

of the covariates are needed. In the smoking data example, the standard deviation of the

covariate is very large. The optimal h is proportional to it. A large h also leads to large bias

and re-scale of the covariates is necessary.

4.2 SEMI-PARAMETRIC REGRESSIONS AND THE STATISTICAL

METHODS FOR SEMI-PARAMETRIC REGRESSIONS

In this thesis, we developed a penalized pseudolikelihood method for a nonparametric/semi-

parametric regression. A new cross validation method was proposed based on the predication

error of the nonparametric variable. This RCV method was compared to traditional CV

method through series of simulations.

In the simple nonparametric regression simulations, the lines fitted with PPL has less

bias than that from ignorable penalized likelihood method. It does not matter which cross

validation was used. The CV method with PPL out performed the RCV method, judging

by the LOSS of the fitted lines chosen by these two methods. The reason may be that the

relation between Y and E[Y |T ] is not reflected in that between T and [T |Y ]. In the semi-

parametric regression simulations, judging by LOSS or the bias of β̂, the CV method with

PPL method also out performed the RCV method. Despite its advantage over RCV, the CV

scores in nonparametric complete case analysis is still lower than the CV scores obtained

from PPL. It suggested that CV method is only controlled by the complete case and the

missing data are completely ignored. It is not ideal and has to be used in combination with
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PPL. The PPL method compensate some of the bias caused by the nonignorable missingness.

The limitation of this study would be that due to computation difficulty, a bootstrap for

each simulated dataset was not done. Only empirical standard errors were obtained. We are

unable to acquire information on the coverage probability. Several studies on complete data

have come to the conclusion that the estimating process of β in semi-parametric regression is

confounded by the smoothing process of the NCS (Green, 1987). In fact, for semi-parametric

regression on trivariate dataset, the bias of β̂ consists of two parts. The first part is in the

order of o(n−1/2), while the second part is bounded by the square root of integrated squared

bias of ĝ. The variance of β̂ is in the order of o(n−1/2). If the bias can achieve the order

of o(n−1/2), this bias reduces at least as fast as the variance. However, it is almost always

at the expense of undersmoothing the nonparametric components (Rice, 1986). Given the

computation power, a study on the coverage probabilities may provide some insights on how

the bias and variance of β̂ from PPL evolve with different sample sizes.
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APPENDIX A

DERIVING ISNI FOR A PSEUDOLIKELIHOOD OF BIVARIATE NORMAL

DATA

In Section 2.2.1, ISNIPL1 was derived for bivariate normal data. In this part, the details

of how it was derived from (a) Pseudolikelihood method and (b) Brown’s estimators were

presented in Section A.1 and Section A.2, respectively.

A.1 FROM PSEUDOLIKELIHOOD

The details of deriving 5PL:

∂PL

∂β0

=
1

σ2

m∑
i=1

(yi − β0 − β1xi)−
∑m

i=1(yλi − λβ0 − βλµ̂x)λ
λ2σ2 + β2

λσ̂
2
x

λ→0→ 1

σ2

m∑
i=1

(yi − β0 − β1xi)

∂PL

∂β1

=
1

σ2

m∑
i=1

(yi − β0 − β1xi)xi +
mλβλσ̂

2
x

λ2σ2 + β2
λσ̂

2
x

−
∑m

i=1(yλi − λβ0 − βλµ̂x)λµ̂x
λ2σ2 + β2

λσ̂
2
x

− λβλσ̂
2
x

(λ2σ2 + β2
λσ̂

2
x)

2

m∑
i=1

(yλi − λβ0 − βλµ̂x)2 λ→0→ 1

σ2

m∑
i=1

(yi − β0 − β1xi)xi

∂PL

∂σ2
= − m

2σ2
+

1

2σ4

m∑
i=1

(yi − β0 − β1xi)
2 +

mλ2

2(λ2σ2 + β2
λσ̂

2
x)

− λ2

2(λ2σ2 + β2
λσ̂

2
x)

2

m∑
i=1

(yλi − λβ0 − βλµ̂x)2 λ→0→ − m

2σ2
+

1

2σ4

m∑
i=1

(yi − β0 − β1xi)
2
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∂PL

∂λ
=

m(λσ2 + βλβ1σ̂
2
x)

λ2σ2 + β2
λσ̂

2
x

+
1

λ2σ2 + β2
λσ̂

2
x

m∑
i=1

[(yλi − λβ0 − βλµ̂x)(yi − β0 − β1µ̂x)]

− 1

(λ2σ2 + β2
λσ̂

2
x)

2

m∑
i=1

[(yλi − λβ0 − βλµ̂x)2(λσ2 + βλβ1σ̂
2
x)]

λ→0→ mβ1 +
1

σ̂2
x

m∑
i=1

[(yi − β0 − β1µ̂x)(xi − µ̂x)]−
1

σ̂2
x

m∑
i=1

β1(xi − µ̂x)2

Detail of deriving 52PL:

∂2PL

∂β2
0

= −m
σ2

+
mλ

λ2σ2 + β2
λσ̂

2
x

λ→0→ −m
σ2

∂2PL

∂β0∂β1

= −mx̄
σ2

+
mλ2µ̂x

λ2σ2 + β2
λσ̂

2
x

+
2λ2βλσ̂

2
x

∑m
i=1(yλi − β0 − βλµ̂x)

(λ2σ2 + β2
λσ̂

2
x)

2

λ→0→ −mx̄
σ2

∂2PL

∂β0∂σ2
= − 1

σ4

m∑
i=1

(yλi − β0 − βλxi) +

∑m
i=1 λ

3(yλi − β0 − βλµ̂x)
(λ2σ2 + β2

λσ̂
2
x)

2

λ→0→ − 1

σ4

m∑
i=1

(yλi − β0 − βλxi)

∂2PL

∂β0∂λ
= − 1

λ2σ2 + β2
λσ̂

2
x

m∑
i=1

[2λ(yi − β0 − β1µ̂x) + (xi − µ̂x)]

−2λ
∑m

i=1[(yλi − λβ0 − βλµ̂x)(λσ2 + βλβ1σ̂
2
x)]

(λ2σ2 + β2
λσ̂

2
x)

2

λ→0→ −
∑m

i=1(xi − µx)
σ̂x

∂2PL

∂β2
1

=
1

σ2

m∑
i=1

x2
i +

mλ2σ̂2
x

λ2σ2 + β2
λσ̂

2
x

− 2mλ2β2
λσ̂

2
x

(λ2σ2 + β2
λσ̂

2
x)

2

+

∑m
i=1 λ

2(yλi − λβ0 − βλµ̂x)µ̂2
x

λ2σ2 + β2
λσ̂

2
x

− λ2σ̂2
x

∑m
i=1(yλi − λβ0 − βλµ̂x)2

(λ2σ2 + β2
λσ̂

2
x)

2

+
4λ2β2

λσ̂
4
x

∑m
i=1(yλi − λβ0 − βλµ̂x)2

(λ2σ2 + β2
λσ̂

2
x)

3

λ→0→ 1

σ2

m∑
i=1

x2
i
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∂2PL

∂β1∂σ2
= − 1

σ4

m∑
i=1

(yi − β0 − β1xi)xi −
mλ3βλσ̂

2
x

(λ2σ2 + β2
λσ̂

2
x)

2

+
λ3
∑m

i=1(yλi − λβ0 − βλµ̂x)µ̂x
(λ2σ2 + β2

λσ̂
2
x)

2
+

2λ3βλσ̂
2
x

(λ2σ2 + β2
λσ̂

2
x)

3

m∑
i=1

(yλi − λβ0 − βλµ̂x)2

λ→0→ − 1

σ4

m∑
i=1

(yi − β0 − β1xi)xi

∂2PL

∂β1∂λ
=

m(2βλ − 1)σ̂2
x

λ2σ2 + β2
λσ̂

2
x

− 2mλβλσ̂
2
x(λσ

2 + βλβ1σ̂
2
x)

(λ2σ2 + β2
λσ̂

2
x)

2

− µ̂x
λ2σ2 + β2

λσ̂
2
x

m∑
i=1

[2λ(yi − β0 − β1µ̂x) + (xi − µ̂x)]

+
2λµ̂x(λσ

2 + βλβ1σ̂
2
x)
∑m

i=1(yλi − λβ0 − βλµ̂x)2

(λ2σ2 + β2
λσ̂

2
x)

2

−(2βλ − 1)σ̂2
x

∑m
i=1(yλi − λβ0 − βλµ̂x)2

(λ2σ2 + β2
λσ̂

2
x)

2

−2λβλσ̂
2
x

∑m
i=1{(yλi − λβ0 − βλµ̂x)(yi − β0 − β1µ̂x)}

(λ2σ2 + β2
λσ̂

2
x)

2

+
4λβλσ̂

2
x(λσ

2 + βλβ1σ̂
2
x)
∑m

i=1(yλi − λβ0 − βλµ̂x)2

(λ2σ2 + β2
λσ̂

2
x)

3

λ→0→ m− mµ̂x(x̄− µ̂x)
σ̂2
x

−
∑m

i=1(xi − µ̂x)2

σ̂2
x

∂2PL

∂σ4
=

m

2σ4
− 1

σ6

m∑
i=1

(yi − β0 − β1xi)
2

− mλ4

2(σ2 + β2
λσ̂

2
x)

2
+

λ4

(σ2 + β2
λσ̂

2
x)

3

m∑
i=1

(yλi − β0 − βλµ̂x)2

λ→0→ m

2σ4
− 1

σ6

m∑
i=1

(yi − β0 − β1xi)
2

∂2PL

∂σ2∂λ
=

mλ

λ2σ2 + β2
λσ̂

2
x

− mλ2(λσ2 + βλβ1σ̂
2
x)

(λ2σ2 + β2
λσ̂

2
x)

2
− λ

∑m
i=1(yλi − λβ0 − βλµ̂x)2

(λ2σ2 + β2
λσ̂

2
x)

2

−λ
2
∑m

i=1(yλi − λβ0 − βλµ̂x)(yi − β0 − β1µ̂x)

(λ2σ2 + β2
λσ̂

2
x)

2

+
2λ2(λσ2 + βλβ1σ̂

2
x)

(λ2σ2 + β2
λσ̂

2
x)

3

m∑
i=1

(yλi − λβ0 − βλµ̂x)2

λ→0→ 0

Let (β̂00, β̂10, σ̂2
0) and β̂λ0 = λβ̂10 + 1 be the maximum likelihood estimate at λ→ 0. Using
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the notations in Section 2.2.1, at (β̂00, β̂10, σ̂2
0, λ = 0),

∂2PL

∂β2
0

∣∣∣
β̂00,β̂10,σ̂2

0 ,λ=0
= −m

σ̂2
0

∂2PL

∂β0∂β1

∣∣∣
β̂00,β̂10,σ̂2

0 ,λ=0
= −mx̄

σ̂2
0

∂2PL

∂β0∂σ2

∣∣∣
β̂00,β̂10,σ̂2

0 ,λ=0
= −

∑m
i=1(yi − β̂00 − β̂01xi)

σ̂4
0

∂2PL

∂β̂0∂λ

∣∣∣
β̂00,β̂10,σ̂2

0 ,λ=0
= −m(x̄− µ̂x)

σ̂2
x

∂2PL

∂β2
1

∣∣∣
β̂00,β̂10,σ̂2

0 ,λ=0
= −

∑m
i=1 x

2
i

σ̂2
0

∂2PL

∂β1∂σ2

∣∣∣
β̂00,β̂10,σ̂2

0 ,λ=0
= −

∑m
i=1(yi − β̂00 − β̂01xi)xi

σ̂4
0

∂2PL

∂β̂1∂λ

∣∣∣
β̂00,β̂10,σ̂2

0 ,λ=0
= m− mµ̂x(x̄− µ̂x)

σ̂2
x

−
∑m

i=1(xi − µ̂x)2

σ̂2
x

∂2PL

∂σ4

∣∣∣
β̂00,β̂10,σ̂2

0 ,λ=0
=

m

2σ̂4
0

−
∑m

i=1(yi − β̂00 − β̂01xi)
2

σ̂6
0

∂2PL

∂σ2∂λ

∣∣∣
β̂00,β̂10,σ̂2

0 ,λ=0
= 0

MLE as λ→ 0 is (β̂00, β̂01, σ̂
2
0) = (ȳ − s12

s11
x̄, s12

s11
, s22 − s212

s11
). Then

ISNIPL1 =
σ̂2

0

σ̂2
x


m

∑m
i=1 x 0∑m

i=1 x
∑m

i=1 x
2
i 0

0 0 m
2σ̂2

0


−1

−m(x̄− µ̂x)

mσ̂2
x −

∑m
i=1 x

2
i +mµ̂xx̄

0



A.2 FROM BROWN’S ESTIMATOR

In this part of appendix, Brown’s estimators for dataset (X, Yλ) are presented. The deriva-

tives of them with respect to λ were calculated. The results were compared with what we

had from appoximate method.
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Using the notations of section ( 2.2.1), Brown’ estimators for (X, Yλ) are:

β̂0(λ) = ȳ +
x̄− µ̂x
λ

+ (µ̂x − x̄)
λs22 + s11/λ+ 2s12

λs12 + s11

− µ̂x
σ̂2
x

{s12 + bλ(σ
2
x − s11)}

= ȳ − bλx̄−
µ̂x
σ̂2
x

(s12 − bλs11)

β̂1(λ) =
1

σ̂2
x

{s12 + bλ(σ̂
2
x − s11)}

σ̂2
y(λ) = s22 + b2

λ(σ̂x − s11)

σ2(λ) = σ̂2
y(1−

β2
1 σ̂x
σ̂2
y

)

= s22 −
b2
λ

σ̂2
x

(σ̂2
x − s11)2 + (b2

λ −
2s12bλ
σ̂2
x

)(σ̂2
x − s11)− s2

12

σ̂2
x

where bλ = λs22+s12
λs12+s11

λ→0→ s12
s11

and b′λ =
s22s11−s212
(λs12+s11)2

λ→0→ s22s11−s212
s211

.

ISNIPL1 derived from these estimators would be:

∂β0

∂λ
= −b′λx̄+

µ̂x
σ̂2
x

b′λs11

λ→0→ −s22s11 − s2
12

s2
11

x̄+
µ̂x
σ̂2
x

s22s11 − s2
12

s11

∂β1

∂λ
=

1

σ̂2
x

b′λ(σ̂
2
x − s11)

λ→0→ s22s11 − s2
12

s2
11σ̂

2
x

(σ̂2
x − s11)

∂σ2

∂λ
= −2bλb

′
λ

σ̂2
x

(σ̂2
x − s11)2 + (bλ −

2s12

σ̂2
x

)(σ̂2
x − s11)b′λ

λ→0→ 0

If substituting
∑m

i=1 x
2
i = s11 + mx̄2, the results derived from pseudolikelihood is the same

with ISNIPL1 derived from Brown’s protective estimators.
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APPENDIX B

DERIVING ISNI FOR A PSEUDOLIKELIHOOD WITH KERNEL

SMOOTHING

In Section 2.2.2.2, ISNIPL2 for bivariate dataset {xi, yi}i=1,...,n with the distribution of X

estimated from kernel smoothing is presented. In B.1, the computation details of how the

index was derived is presented and in B.2, the details of how the bias corrections were

computed is presented.

B.1 DERIVING THE INDEX

Using Gaussian Kernel f̂(x) = 1
n

∑
i:1,n ψ(x−xi

h
)

P (yλi) =

∫
φ(
λyi + xi − λβ0 − (λβ1 + 1)x

λσ
) · 1

n

n∑
j=1

ψ(
x− xj
h

)dx

=
1

n

n∑
j=1

∫
φ(
λyi + xi − λβ0 − (λβ1 + 1)x

λσ
) · ψ(

x− xj
h

)dx

=
1

n

n∑
j=1

φ

(
λyi + xi − λβ0 − (λβ1 + 1)xj√

λ2σ+(λβ1 + 1)2h2

)

Let Vy = λ2σ2 + (λβ1 + 1)2h2 and A = −{λ(yi−β0−β1xj)+(xi−xj)}2
2Vy

then

logP (yλi) = −1

2
log(Vy) + log{ 1

n

n∑
j=1

exp(A)}
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∂ logP (yλi)

∂λ
= −λσ

2 + (λβ1 + 1)β1h
2

Vy
− 1∑n

j=1 exp(A)

n∑
j=1

exp(A)

[{λ(yi − β0 − β1xj) + (xi − xj)}(yi − β0 − β1xj)

Vy

−{λ(yi − β0 − β1xj) + (xi − xj)}2{λσ2 + (λβ1 + 1)β1h
2}

V 2
y

]
λ→0→ −β1 −

1∑n
j=1 exp

[
− (xi−xj)2

2h2

] ·
1

h2

n∑
j=1

exp

[
−(xi − xj)2

2h2

] [
(xi − xj)(yi − β0 − β1xj)− (xi − xj)2β1

]

∂ logP (yλi)

∂λ∂β0

λ→0→ − 1

h2
∑n

j=1 exp
[
− (xi−xj)2

2h2

] n∑
j=1

exp

[
−(xi − xj)2

2h2

]
(xi − xj)

∂ logP (yλi)

∂λ∂β1

λ→0→ −1 +
1

h2
∑n

j=1 exp
[
− (xi−xj)2

2h2

] n∑
j=1

exp

[
−(xi − xj)

2h2

]
(xi − xj)xi

B.2 BIAS CORRECTION

If f(x) is a normal distribution with mean µx and variance σ2, the bias of f̂(x) is

bias of f̂(x) =
1

2
h2f ′′(x) =

1

2
√

2πσ2
x

h2 exp

{
−(x− µx)2

2σ2
x

}{
−(x− µx)2

2σ4
x

− 1

σ2
x

}
.
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The bias of P (yλi) (∆) is

∆ =
1

2
h2

∫
1√

2πσ2λ2
exp

{
−(yλi − λβ0 − βλx)2

2λ2σ2

}
· 1√

2πσ2
x

exp

{
−(x− µx)2

2σ2
x

}{
−(x− µx)2

2σ4
x

− 1

σ2
x

}
dx

= − 1

2σ2
x

h2φ

(
yλi − λβ0 − βλµx√

σ2
λ

)
+

1

2
h2 1

2π
√
σ2
xσ

2λ2
exp

{(yλi − λβ0)2

2λ2σ2

− µ2
x

2σ2
x

+
1

2σ2
λλ

2σ2σ2
x

(βλ(yλi − λβ0)σ2
x + µxλ

2σ2)2
}

∫
(x− µx)2

2σ4
x

exp

[
− σ2

λ

2λ2σ2σ2
x

[x− 1

σ2
λ

{βλ(yλi − λβ0)σ2
x + µxλ

2σ2}]
]
dx

= − 1

2σ2
x

h2φ

(
yλi − λβ0 − βλµx√

σ2
λ

)
+

1

2
h2φ

(
yλi − λβ0 − βλµx√

σ2
λ

)
[

1

σ4
x

[
1

σ2
λ

(βλ(yλi − λβ0)σ2
x + µxλ

2σ2)− µx]2 +
λ2σ2

σ2
xσ

2
λ

]
=

1

2
h2φ

(
yλi − λβ0 − βλµx√

σ2
λ

)[
β2
λ

σ4
λ

{(yλi − λβ0 − βλµx)2 − σ2
λ}
]

λ→0→ 1

2σ4
x

h2φ

(
xi − µx
σx

)
{(xi − µx)2 − σ2

x}

Let B = yλi−λβ0−βλµx√
σ2
λ

. The first derivatives of ∆ with respect to λ is

∂∆

∂λ
=

1

2
h2φ(B)

[
− λσ2 + βλβ1σ

2
x

σ2
λ

β2
λ

σ4
λ

{(yλi − λβ0 − βλµx)2 − σ2
x}

+{−(yλi − λβ0 − βλµx)(yi − β0 − β1µx)

σ2
λ

+

(yλi − λβ0 − βλµx)2(λσ2 + βλβ1σ
2
x)

σ4
λ

} · [β
2
λ

σ4
λ

{(yλi − λβ0 − βλµx)2 − σ2
x}]

+

{
2βλβ1

σ4
λ

− 4β2
λ(λσ

2 + βλβ1σ
2
x)

σ6
λ

}
{(yλi − λβ0 − βλµx)2 − σ2

x}

+
β2
λ

σ4
λ

{2(yλi − λβ0 − βλµx)(yi − β0 − β1µx)− 2(λσ2βλβ1σ
2
x)}
]

λ→0→ −1

2
h2φ

(
xi − µx
σx

)[β1

σ4
x

{(xi − µx)2 − σ2
x}

+
1

σ6
x

(xi − µx)(yi − β0 − β1xi){(xi − µx)2 − 3σ2
x}
]
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Then the partial derivatives of ∆ with respect to λ and θ = (β0, β1, σ
2) is:

∂2∆

∂λ∂β0

λ→0→ −1

2
h2φ

(
xi − µx
σx

)
1

σ6
(xi − µx){(xi − µx)2 − 3σ2

x}.

∂2∆

∂λ∂β1

λ→0→ −1

2
h2φ

(
xi − µx
σx

)[ 1

σ4
x

{(xi − µx)2 − σ2
x}

− 1

σ6
(xi − µx)xi{(xi − µx)2 − 3σ2

x}
]
.

∂2∆

∂λ∂σ2

λ→0→ 0.
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