
IDENTIFICATION OF NOVEL POTENTIAL CANCER  
THERAPIES BY SYNTHETIC LETHAL SCREENING 

 
 
 
 
 
 
 

by 

Peter Ryan McDonald 

B.Sc. Biology, Geneva College, 2002 

 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of the 

School of Medicine in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2008 

 



 ii 

UNIVERSITY OF PITTSBURGH 

SCHOOL OF MEDICINE 
 
 
 
 

This dissertation was presented 

 
by 

 
 

Peter Ryan McDonald 
 
 
 

It was defended on 

June 9, 2008 

and approved by 

 

_____________________________ 
Don DeFranco, Ph.D. 
Professor, Department of  
Pharmacology & Chemical Biology 
Committee Chair 
 
 
_____________________________ 
Yu Jiang, Ph.D. 
Associate Professor, Department of 
Pharmacology & Chemical Biology 
Committee Member 
 

_______________________________ 
Thomas E. Smithgall, Ph.D. 

Professor, Department of  
Molecular Genetics and Biochemistry 

Committee Member 
 
 

______________________________ 
Qiming Jane Wang, Ph.D. 

Assistant Professor, Department of  
Pharmacology & Chemical Biology 

Committee Member 
 

 
 

________________________________ 
John S. Lazo, Ph.D. 

Allegheny Foundation Professor, 
Department of Pharmacology & Chemical Biology 

Dissertation Advisor



IDENTIFICATION OF NOVEL POTENTIAL CANCER  
THERAPIES BY SYNTHETIC LETHAL SCREENING 
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There is an urgent need for novel effective drug regimens for the treatment of cancer. Current 

chemotherapy suffers from a slim therapeutic index, with significant toxicity from effective drug 

doses or tumor recurrence at low drug doses.  Identifying synergistic interactions between drugs 

is a difficult process.  To accelerate the discovery of potential drug combinations, I have 

developed a druggable genome siRNA synthetic lethal screen capable of rapidly identifying 

novel drug targets that would sensitize cancer cells to sublethal concentrations of microtubule 

destabilizing agents.  I employed a high-throughput cell-based 16,560-siRNA screen to isolate a 

high-confidence list of genes that, when silenced, enhanced glioblastoma multiforme cancer cell 

chemosensitivity.  Two gene products that were the major focus of my work were midline2 and 

the neurokinin receptor NK1R.  Silencing of midline2, a PP2A-microtubule tether, sensitized 

cells to two microtubule destabilizing agents, vinblastine and disorazole C1, suggesting a 

mechanistic dependency of the phosphatidylinositol 3-kinase pathway on microtubule 

functionality.  Combinations of phosphatidylinositol 3-kinase inhibitors with disorazole C1 and 

several vinca alkaloids confirmed this hypothesis.  To verify microtubule destabilizing agent 

sensitization by NK1R silencing, I demonstrated a significant collaboration of neurokinin 

receptor NK1R antagonists with low concentrations of vinca alkaloids.  These assay results and 

subsequent novel combination strategies demonstrate the tremendous ability of this synthetic 

 ii 



lethal screen to predict potent collaborations between different classes of drugs, as well as 

identifying molecular constituents mediating those interactions. 
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1.0  INTRODUCTION 

1.1 THE CHEMOTHERAPEUTIC WINDOW. 

Cancer chemotherapy had its origins one century ago, with the establishment of Paul Ehrlich's 

side-chain/receptor theory, where he first proposed the concept of targeted therapy against 

human diseases [1].  Cancer chemotherapy became practical in the early 1940s thanks to the 

breakthrough research of Louis Goodman and Alfred Gilman, using nitrogen mustard for cancer 

treatment [2].  Since then, cancer therapeutics has transformed into a multi-billion dollar industry 

[3].  In an attempt to stimulate oncology research, President Nixon enacted the National Cancer 

Act in 1971, declaring a "war on cancer".  Nonetheless, despite decades of research, we have 

made little progress in changing cancer mortality statistics, with cancer still accounting for about 

25% of all deaths [4, 5]. 

 

A major difficulty in treating cancer is dose-limiting and poor quality-of-life side effects, 

which limits the amount of chemotherapy that can be administered.  The level of 

chemotherapeutic selectivity in distinguishing cancer cells from normal cells is referred to as the 

therapeutic window, a drug concentration range between the effective dose and a toxic dose.  

Combination chemotherapy increases efficacy by widening the therapeutic window.  The need 

for new agents or combinations are highlighted by chemoresistant and radioresistant tumors, 
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such as glioblastoma multiforme (GBM), which have an especially slim chemotherapeutic 

window.  GBM, the most common and aggressive type of primary brain, is a grade 4 

astrocytoma in particular with strong resistance to chemotherapy and radiation therapy, and is 

associated with a median overall survival of approximately 1 year [6-8]. 

1.2 CANCER DRUG DISCOVERY CHALLENGES. 

Identifying novel, potent therapies for cancer is hindered by numerous factors inherent to cancer 

drug research, such as chemoresistance and tumor heterogeneity.  The ability of  particular 

tumors to resist chemotherapy may be due to expression of multidrug efflux transporters, 

including members of the ATP-binding cassette family such as ABCB1 and ABCC1.  These 

efflux pumps protect tumor cells from many chemotherapeutic compounds, especially 

hydrophobic amphipathic compounds, by interacting with the compounds and pumping them out 

of the cell [9].  Tumor heterogeneity poses a hurdle to drug discovery as well, as it is difficult to 

target specific upregulated or altered proteins in the face of wide molecular variability among 

tumors and the diversity of the cells within the tumor [10].  These factors greatly complicate 

target based drug discovery. 

1.2.1 Target-based drug discovery.  

Target-based drug discovery focuses on a key alteration with a specific phenotype, but it is 

difficult to pick a drug target that is indespensible for cancer cells but not normal cells.  The 

cellular necessity of a drug target to cancer versus normal cells dictates the width of the 
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therapeutic window, as inhibiting a crucial cancer-specific target may jeopardize the viability of 

normal cells.  The ideal drug target would be essential to tumors, yet non-essential to normal 

cells [10].  Perhaps the best example of this is the Ableson kinase (ABL), which is non-essential 

to normal cells, but essential chronic myeloid leukemia (CML) cells, where ABL is activated.  

This makes ABL a cancer specific target, and provides high efficacy of the inhibitor imatinib by 

killing CML cells with minimal side effects at effective doses, providing a wide therapeutic 

window [11].   

 

Following the lead of imatinib, perhaps the atrocious rate of attrition for cancer drugs 

could be abated by focusing cancer  research around better drug targets.  Currently, most cancer 

drugs require years of development before clinical trials, and suffer a clinical success rate of less 

than 5% [12, 13].  Researchers attempt to improve the likelihood of success by selecting small 

molecules that emulate the features of already used orally active drugs.  The characteristics of 

orally active drugs that receive FDA approval have been described by algorithms such as the 

‘rule of five’, five guidelines describing criteria that affect the solubility and permeability of a 

compound [14-16]. 

 

1.2.2 The druggable genome.  

Much like the application of the “rule of five” to small molecules, researchers have attempted to 

annotate the human genome into those genes making protein products that historically have been 

identified as targets for drugs used for most human diseases.  These have been defined as the 

“druggable genome” comprising between 3,000-10,000 genes that encode for proteins that are 
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potential drug targets [15].  These proteins were selected based on their potential binding 

capacity with small molecules with appropriate chemical properties or functional importance in 

disease processes, and include protein classes such as kinases, G-protein coupled receptors 

(GPCRs), phosphatases, proteases, and channels (Figure 1) [15].  An example of a druggable 

genome of 3,050 genes was presented by Andrew Hopkins in 2005, but more inclusive druggable 

genomes may include as many as 10,000 genes that loosely fit the definition of druggable.  By 

focusing on the druggable genome one should increase the likelihood for success of finding good 

drug targets for human diseases in a drug discovery paradigm. 
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Figure 1. Gene distribution of the 3,050 genes in the 'druggable genome'. 

Gene distribution of the 3,050 genes in the 'druggable genome' as described by Hopkins 

et al.  Inspired by Hopkins, A. L. and C. R. Groom "The druggable genome." (2002) and Russ, 

A. P. and S. Lampel “The druggable genome: an update.” 2005 [15, 17]. 
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1.3 COMBINATION CHEMOTHERAPY. 

Combination chemotherapy is a useful approach to circumvent some of the problems of cancer 

treatment because the combination of two or more drugs with different mechanisms of action 

enable synergistic cancer cell death while maintaining a range of toxicity tolerated by the patient 

for each individual drug [18].  Combination therapies are used in treatment of all cancers, 

theoretically addressing the multiple gene mutations in cancers [19-22].   

 

Combination chemotherapy has tremendous capability for reducing toxicity through 

requiring lower concentrations of multiple drugs, but identifying targets for combination and 

finding the right agents to combine is a difficult process.  One strategy for identifying new drug 

combinations would be the use of a synthetic lethality screen.  Two genes are synthetic lethal if 

the inhibition or mutation of one or the other does not kill the cell, while the inhibition of both is 

fatal to the cell [23].  This is very useful in the context of anticancer therapy, for inhibition of a 

gene that is synthetic lethal with a cancer mutation should only kill cancer cells, but not normal 

cells that lack the mutation.  Cancer specific synthetic lethal genes make a very attractive pair of 

targets for combination chemotherapy. 

1.4 SYNTHETIC LETHAL siRNA SCREENING. 

Small interfering RNA (siRNA) libraries can simplify the search for drug targets that are 

synthetic lethal, due to its precise silencing mechanism, by preventing expression of a specific 

gene by the siRNA molecule.  In the cell, siRNAs inhibit gene expression post-transcriptionally 
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by sequence-specific mRNA transcript degradation.  siRNAs carry out this activity by 

assembling into RNA-induced silencing complexes (RISCs) together with endoribonucleases.  

The siRNA sequence guides the RISCs to messenger RNA molecules with sequence 

complementary, where the RISCs cleave the messenger RNA, resulting in selective suppression 

of the target gene [24].  siRNA libraries are composed of a series of siRNA molecules targeting a 

series of genes.  These libraries can be used to screen for targets that are synthetic lethal with a 

given drug at a concentration that alone is not toxic.  This allows the identification of sensitizing 

genes that modulate cell senstivity to sub-lethal concentrations of an anticancer compound.  

Since siRNA simulates pharmacological protein inhibition by preventing protein expression and 

function, a second compound, targeting the protein of the sensitizing gene, would be expected to 

have the same synthetic lethal effect as the siRNA when combined with the first compound 

(Figure 2). 

 

The coupling of an siRNA technology with screening to form a sensitizing screen 

provides a fast method to identify synthetic lethal combinations.  The application of siRNA to 

systematic genome-scale screening method was first demonstrated using C. elegans [25, 26].  

Large libraries of siRNAs are commercially available, and can be used for large-scale synthetic 

lethal screening.  Since our goal was to identify drug combinations, we were only interested in 

screening druggable targets, including such proteins as transcription factors, receptors and 

kinases [15].  Researchers have annotated a druggable genome of targets and developed siRNA 

libraries targeting those genes. 
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Figure 2. A general method to uncover druggable synthetic lethal interactions for a 

potential anticancer drug. 

This model demonstrates how I used synthetic lethal siRNA screening to identify genes 

that sensitized cancer cells to non-toxic concentrations of a compound.  In this model, Gene X 

represented a gene that was targeted by one of the siRNAs in the siRNA library, and protein X 

was the protein expressed from Gene X.  In panel A, a library of siRNAs was screened, with 

interest only in siRNA that was able to silence protein expression of gene X, while not killing the 
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cancer cell.  In panel B, this screen was coupled with a low concentration of a compound (Drug 

#1) that was not sufficient to kill the cancer cell.  The combination of two non-toxic agents, 

siRNA and Drug #1, together lead to cell death (panel C).  This identified a synthetic lethal 

relationship between the unknown effects of the compound (Drug #1) and the loss of protein X 

(by silencing gene X).  Since I knew the identities of all siRNAs in the library and their target 

genes, I could combine the Drug #1 with a second compound (Drug #2) that directly targeted the 

expressed protein.  In this way, I could mimic the synthetic lethal interaction to kill cancer cells 

using two synergizing drugs, which alone are non-lethal. 

1.5 MICROTUBULE DISRUPTORS AS ANTICANCER AGENTS. 

Screening a library of siRNA or compounds has previously been reserved primarily to large 

pharmaceutical and biotechnology industries.  The decreasing cost of computer technology and 

increased availability of off-the-shelf screening solutions allow large scale screens to be 

performed in the university setting [27].  The synthetic lethal siRNA screening described in this 

dissertation was been miniturized to a 384-well plate format and automated, allowing fast and 

robust identification of genes that modulate tumor cell sensitivity to chemotherapeutic agents, 

such as taxanes, vinca alkaloids,  and natural products.  For this research, I chose two different 

chemotypes, the vinca alkaloid vinblastine, and the natural product disorazole C1 to study 

microtubule disruption.  Vinca alkaloids are isolated from the periwinkle plant, Vinca rosea, and 

include compounds such as vincristine, vinblastine, and vinorelbine.  Vinblastine and disorazole 

C1 are thought to share a similar molecular target, tubulin, and trigger microtubule 

destabilization, but details are lacking about precise details of the mechanism of action of 
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disorazole C1.  I speculate disorazole C1’s mechanism of cytotoxicity is unique from vinblastine, 

with a unique signaling profile.  Both compounds enter cells and bind tubulin, preventing 

polymerization.  This disruption impairs mitotic spindle formation in the M phase, preventing 

cells from proceeding through the spindle checkpoint, leading to programmed cell death [28-30]. 

 

Microtubules are a good target for cancer chemotherapy because proliferating cancer 

cells are dependent on proper microtubule dynamics, making cancer cells with high rates of 

proliferation more vulnerable to microtubule targeting drugs [31].  This vulnerability is born out 

of the unlimited replicative potential of cancer cells, enabling uncontrolled growth and cell 

division [32].  Further, the proliferating endothelial cells of tumor neovasculature is sensitive to 

microtubule destabilizers [33].  Tumor sensitivity to microtubule disruption makes 

depolymerizing drugs a valuable tool for chemotherapy [34]. 

 

The molecular signaling consequences of microtubule destabilizing agents (MDAs) 

provides great potential for enhancement by drug combination.  Combination therapy typically 

achieves the same effect while requiring lower concentrations of each compound, and is well 

suited to microtubule-targeted drugs since the concentration required to suppress microtubule 

dynamics is lower than their maximum tolerated dose [34].  The synthetic lethal screen uses very 

low concentrations of each compound (IC20 or less), so that there is minimal apoptosis, but high 

enough for some microtubule binding and subsequent cellular stress signaling effects [35].  For 

example, vinblastine induces the expression and phosphorylation of the stress-associated 

signaling molecules JNK, c-Jun, and AP-1.  At higher concentrations of vinblastine, JNK-

dependent apoptosis occurs through AP-1 signaling  [36, 37].  The consequences of microtubule 
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perturbing agents on intracellular protein kinase signaling pathways provides opportunities for a 

second agent to be used to synergistically enhance the apoptotic effects of MDAs on cancer cells.   

For example, ERK pathway inhibitor PD98059 potentiates vinblastine mediated apoptosis in 

ML-1 myeloid leukemia cells, and the EGFR inhibitor gefitinib synergizes with vinorelbine in 

human non-small cell lung cancer [38, 39].  An increased understanding of the mechanisms of 

MDAs and identification of synthetic lethal partners can provide effective chemotherapeutic 

effect at lower doses, minimizing side effects and neuropathy in patients with GBM. 

 

For this research project, the tool of synthetic lethal siRNA screening was used as a 

means to identify new drug therapies for GBM, the most common and malignant central nervous 

system tumor [40].  GBM is a grade IV glioma, is the most aggressive primary brain tumor, and 

represents over half of all cases of glioma [41-43].  First line therapy for GBM is surgical 

removal, followed by radiotherapy and temozolomide treatment [44].  GBM is a morphologically 

heterogenous cancer, with a widely varied cellular composition with mixed histologic features 

[45].  Present chemotherapies for GBM are greatly hindered by glioblastoma's intrinsic 

resistance to both chemotherapy and radiation [46].  The radioresistant and chemoresistant 

profile of the GBM cell line T98G and the numerous literature reports on its responsiveness to 

antineoplastic agents made it a suitable candidate for HTS optimization in our synthetic lethal 

siRNA screen [46].   
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1.6 HYPOTHESIS AND SPECIFIC AIMS. 

Cocktails of two or more cancer specific drugs acting synergistically at significantly lower doses 

provides a means to widen the chemotherapeutic window, giving more effective tumor killing 

while sparing the patient the side effects of high concentrations of drug.  However, due to the 

complexities of cancer mentioned above, there is a need to develop an optimal, unbiased strategy 

to systematically elucidate the molecular underpinnings of GBM cell chemoresistance.  In this 

dissertation, I proposed to develop a synthetic lethal siRNA screen and apply it to the 

glioblastoma T98G cell line to identify sensitivity determinants of microtubule destabilizing 

agents for use in predicting novel, synergistic drug combinations against GBM.  Therefore, I 

hypothesized that synthetic lethal screening can identify gene products that modulate 

glioma cell sensitivity to cancer therapy.  Thus, the specific aims of this dissertation were 1) 

develop a multi-component, high-throughput MDA-dependent synthetic lethal siRNA screen, 2) 

identify genes and networks that modulate tumor cell sensitivity to sub-lethal concentrations of 

microtubule perturbing agents, and 3) determine if functional inhibitors of the identified target 

proteins or networks enhance the toxicity of microtubule perturbing agents against human cancer 

in culture. 
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2.0  EXPERIMENTAL METHODS 

2.1 REAGENTS. 

DharmaFECT 2 transfection reagent, 5x siRNA resuspension buffer, and siGLO Green 

Transfection Indicator were from Dharmacon (Lafayette, CO).  CellTiter-Blue Cell Viability 

Assay was from Promega (Madison, WI).  The Silencer Druggable Genome siRNA Library was 

from Ambion (Austin, TX).  384-well tissue-culture treated microtiter plates were from Greiner 

Bio-One (GmbH, Frickenhausen, Germany).  Antibodies recognizing TAU [phospho Serine 

199], OptiMEM, McCoy’s 5A Medium (modified), DMEM, EMEM, Stealth™ RNAi Negative 

Control Med GC scrambled siRNA, phosphate buffered saline (PBS), hoechst 33342, and 

Lipofectamine2000 were from Invitrogen (Carlsbad, CA).  FITC donkey anti-mouse secondary 

antibody #715-095-152 and horseradish peroxidase-conjugated secondary antibodies was from 

Jackson Immunoresearch (West Grove, PA).  ECL Western blotting substrate was from Pierce 

Biotechnology (Rockford, IL).  Rabbit polyclonal neurokinin 1 receptor antibody #ab466 was 

from Abcam (Cambridge, UK).  FuGENE transfection agent was from Roche (Nutley, NJ).  

Colchicine, vinorelbine, vincristine, vinblastine, doxorubicin, 37% formaldehyde, L-733,060, 

LY-294,002, WIN-51,708, DMSO, wortmannin, NeuroPorter transfection reagent and mouse 

monoclonal anti-alpha tubulin antibody #T9026 were from Sigma-Aldrich (St Louis, MO).  
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Disorazole C1 was generously synthesized and provided by Peter Wipf (University of Pittsburgh, 

Pittsburgh, PA).  Vinculin H300 antibody was from Santa Cruz Biotechnology (Santa Cruz, CA). 

2.2 CELL CULTURE AND TREATMENTS. 

MDA-MB-231 and Hela cells (ATCC, Rockville, MD) were maintained in DMEM 

supplemented with 1% L-glutamine, 100 U/mL penicillin/streptomycin (Invitrogen, Carlsbad, 

CA) and 10% fetal bovine serum (Cellgro, Manassas, VA).  T98G, U87, and IMR-90 cells 

(ATCC, Rockville, MD) were maintained in EMEM supplemented with Earle's basic salt 

solution, nonessential amino acids, sodium pyruvate, 1% L-glutamine, 100 U/mL 

penicillin/streptomycin (Invitrogen, Carlsbad, CA) and 10% fetal bovine serum (Cellgro, 

Manassas, VA).  T24 cells (ATCC, Rockville, MD) were maintained in McCoy’s 5A medium 

supplemented with 1% L-glutamine, 100 U/mL penicillin/streptomycin (Invitrogen, Carlsbad, 

CA) and 10% fetal bovine serum (Cellgro, Manassas, VA). 

 

All compounds were dissolved into DMSO for cell treatment.  All compound treatments 

for synthetic lethal screening were added 48 hours after cell plating by replacing cell medium 

with fresh medium containing either vehicle or MDA compound at a final DMSO concentration 

of 0.5% for 48 hours in a humidified incubator at 37ºC with 5% CO2.  For combination studies, 

compounds were combined in DMSO in 96-well polypropylene plates, then added to media on 

cells 24 hours after cell plating, at a final DMSO concentration of 0.5%, and cells were incubated 

in the presence of compounds for 72 hours in a humidified incubator at 37ºC with 5% CO2. 

 14 



2.3 WESTERN BLOTTING. 

For Western blotting, 6-well plates containing T98G, U87, Hela, T24, MDA-MB-231, and IMR-

90 cells were placed on ice, washed with 5 ml of ice-cold PBS, and collected by scraping into 

lysis buffer containing a mini EDTA-free Protease Inhibitor Cocktail Tablet (Roche), Triton X-

100, SDS, NaCl, EDTA, NaF, sodium beta-glycerol phosphate and Na3VO4 (Sigma).  Relative 

protein concentrations of each sample were determined using the Bio-Rad protein assay kit 

(BioRad).  Equivalent protein amounts from cell lysates were resolved on 4–20% SDS-

polyacrylamide gels and transferred to nitrocellulose membranes (Protran, Schleicher & 

Schuell).  Depending on the experiment, membranes were probed with either anti-phospho-

TauSer199, anti-Lamin A/C, anti-NK1R, or anti-beta-tubulin antibodies.  Beta-tubulin or 

vinculin were used as loading controls with mouse polyclonal anti-beta-tubulin antibody or 

vinculin H300 antibody, respectively.  Positive antibody reactions were visualized using 

peroxidase-conjugated secondary antibodies (Jackson ImmunoResearch, West Grove, PA) and 

chemiluminescence by ECL Western Blotting Substrate (Pierce) according to manufacturer's 

instructions, and membranes were then exposed to X-ray film. 

2.4 COMPOUND TREATMENT AND IMMUNOFLUORESCENCE. 

T98G cells (1,000), U87 cells (1,000), Hela cells (1,000), IMR-90 cells (2,000), and MDA-MB-

231 cells (3,000) were plated in 80 µL of medium into the wells of tissue-culture treated 96-well 

polystyrene plates (BD Falcon) and allowed to attach overnight.  Compound combinations (40 

µL) were added to the wells for a total of 120 µL medium at a final DMSO concentration of 
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0.5%.  Cells were incubated in the presence of compounds for 72 hours in a humidified incubator 

at 37ºC with 5% CO2.  After incubation, cell viability was measured with the CellTiter-Blue cell 

viability assay for three hours, according to manufacturer’s protocol, adding a 1:5 ratio of 

CellTiter-Blue to complete media (described further in Chapter 3, section 3.4.1).  Cells were then 

fixed and stained with 3.7% formaldehyde and 1.2 µg/mL Hoescht 33342 for 10 minutes, then 

permeabilized with 0.5% Triton X-100 (Sigma-Aldrich) in PBS for five minutes.  Cells were 

then immunostained with anti-alpha tubulin antibody (1:3000) for one hour, gently rinsed twice 

with PBS, and incubated with FITC donkey anti-mouse secondary antibody for one hour, gently 

rinsed twice with PBS, then sealed with 120 µL PBS per well.  Cellular tubulin and nuclei for 

selected wells were visualized and photographed with the ArrayScanVTi. 

 

2.5 SYNTHETIC LETHAL siRNA SCREEN. 

The development and optimization of the synthetic lethal screen will be discussed in 

Chapter 3.  Below are the selected screening parameters based on the optimization experiments 

of Chapter 3. 

2.5.1 siRNA library sequences. 

The 5,520 druggable targets of the Ambion Silencer Druggable Genome siRNA Library 

were selected by Ambion based on an internal bioinformatics analysis.  The 109 categories 

composing this library are listed in Table 1.  Three unique siRNAs duplexes targeting each gene 
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were designed, synthesized, and purified by Ambion (Austin, TX).  Below are the sequences for 

the three unique siRNAs targeting MID2 and NK1R discussed in Chapters 4 and 5, respectively. 

 

Sense siRNA Sequence Antisense siRNA Sequence

Midline 2 Duplex #1 GCGCAACAGCGAACUAGAAtt UUCUAGUUCGCUGUUGCGCtt
Midline 2 Duplex #2 CCUACCCGACUAAAAACAAtt UUGUUUUUAGUCGGGUAGGtt
Midline 2 Duplex #3 CCAACCUGGUUAAGCGCAAtt UUGCGCUUAACCAGGUUGGtg

NK1 receptor Duplex #1 GGACAGUGACGAACUAUUUtt AAAUAGUUCGUCACUGUCCtc
NK1 receptor Duplex #2 GGGCUACUACUCAACCACAtt UGUGGUUGAGUAGUAGCCCtg
NK1 receptor Duplex #3 GCCUGGCAAAUUGUCCUUUtt AAAGGACAAUUUGCCAGGCtg  

2.5.2 Automation. 

The following automation and liquid handling platforms used in for the synthetic lethal 

siRNA screen: 

• Velocity 11 V-Prep™ high speed automated precision microplate pipetting station. 
 
• Titertek™ Zoom™ MV automated microplate dispenser. 
 
• Molecular Devices SpectraMax M5 multi-detection plate reader and absorbance 

spectrophotometer, equipped with a Molecular Devices StakMax robotic plate handler. 
 
• AquaMax™ DW4 liquid handling system (Molecular Devices). 
 
• Abgene® SEAL-IT 100™ automated microplate sealer. 
 
• Cellomics™ ArrayScan® VTi HCS reader. 
 
• Bio-Stack™ Twister® II Microplate Handler, running iLink automation software. 
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2.5.3 Cell plating. 

To maintain consistency of experiments from plate to plate and from week to week, 

special attention was made to ensure T98G cells in T-150 culture flasks were at a consistent log 

phase at the time of harvesting.  To do this, 850,000 T98G cells were seeded in each of two T-

150 flasks 72 hours before the day of the siRNA screen, ensuring at least 10 million cells on the 

day of harvest.  On the first day of a screen, T98G cells in T-150 flasks were trypsinized for 7 

minutes, counted, and resuspended in complete medium at a concentration of 9 cells/µL.  T98G 

cells were then seeded at 450 cells per well in a volume of 51 µL per well into 384-well, tissue-

culture treated black-side clear-bottom polystyrene microtiter plates (Greiner) using the Titertek 

Zoom bulk liquid dispenser (plates already contained siRNA transfection complexes, see next 

step).  To ensure even settling and to avoid edge effect settling, I kept plates at room temperature 

for 20 minutes before they were placed in a humidified incubator at 37ºC with 5% CO2.  To 

avoid edge effect due to edge well evaporation, I added two extra pans of water to the incubator 

to maintain humidity. 

 

2.5.4 siRNA transient transfection. 

T98G cells were forward transfected with the Ambion Silencer Druggable Genome 

siRNA library at a final concentration of 20 nM/target in a one-gene, one-well format.  For each 

target, 4.13 µL of 833.3 nM siRNA was combined with 0.17 µL DharmaFECT2 transfection 

reagent and 33 µL of OptiMEM.   The complexes were then split between two 384-well plates 

(14 µL per well), and 51 µL of T98G cell suspension was added directly onto the siRNA 
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complexes.  siRNA complexes were prepared with DharmaFECT2 transfection reagent in pools 

of three unique siRNA duplexes per well, one gene per well across sixteen 384 well siRNA 

library plates.  siRNA complexes were prepared at 50 nM per well, and the addition of cell 

suspension (20 minutes after complex preparation) to the siRNA complexes brought the siRNA 

concentration to 20 nM per well.  Five hours later, medium containing siRNA complexes was 

removed and replaced with fresh complete medium.  Cells were incubated for 48 hours in a 

humidified incubator at 37ºC with 5% CO2 to allow for gene silencing before vehicle or MDA 

compounds were added. 

 

2.5.5 Drug treatment. 

Forty-eight hours after cells were plated and transfected with library siRNA, medium was 

removed from the cells and replaced with fresh medium containing either 1.2 nM vinblastine, 

350 pM disorazole C1 , or 0.5% DMSO vehicle.  Cells were incubated in the presence of 

compounds for 48 hours in a humidified incubator at 37ºC with 5% CO2.  After incubation, cell 

viability was measured with the CellTiter-Blue cell viability assay for three hours, according to 

manufacturer’s protocol. 

 

2.5.6 Cutoff for selecting sensitizing hits. 

The synthetic lethal siRNA screen was performed three times for vinblastine, and three 

times for disorazole C1, over six separate weeks.  To quantify the degree of interaction between 
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siRNA plus drug or drug plus drug, I used the following equation to measure the percent greater-

than-additive (%GTA) ratio: 

 

C – ( S + M ) = % GTA 

 

Where S was the percent inhibition caused by the target siRNA plus vehicle DMSO, M 

was the percent inhibition caused by the drug plus scrambled siRNA, and C was the percent 

inhibition caused by the combination treatment.  This formula and its derivation will be 

described in greater detail in Chapter 3, section 3.4.2.  "Inhibition" referred to the loss of cell 

viability relative to vehicle treated cells transfected with scrambled siRNA.  A %GTA ratio of 

10% or greater was considered a "hit". 

2.6 DETERMINATION OF COMBINATION INDEX FOR DRUG INTERACTIONS. 

To determine if drug combinations were additive, synergistic, or antagonistic to cancer 

cells at different effect levels, the combination index (CI) method of Chou and Talalay was used 

[47-50].  These methods of evaluating drug interactions were selected because they take into 

account the potencies of each drug and combinations (Dm value), as well as the shape of the 

dose-effect curves (m values), calculating how the experimental effect differs from the effect 

expected with additivity.  CI values of <1, 1, and >1 indicate synergism, additivity, and 

antagonism, respectively.  Briefly, cells were plated in a 8x8 grid of a 96-well plate and 

horizontal rows were treated with a range of seven concentrations of the first compound and one 

row of DMSO, and treated vertically with a range of seven concentrations of the second 
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compound and one row of DMSO.  The final DMSO concentration of all wells was 0.5%.  Cells 

were incubated for 24 hours after plating before compound treatment, and cell viability was 

measured by CellTiter-Blue after 72 hours in the presence of compound.  After cell viability 

measurement, cells were simultaneously fixed and stained for ten minutes with a PBS solution 

containing 4% formaldehyde and 1.2 µg/mL Hoescht 33342.  The 8x8 grid arrangement of 

compound treatment provided 64 unique drug combination ratios of the two compounds and/or 

DMSO, including a DMSO vehicle-only well.  This scheme enabled CI values to be determined 

at many different effect levels and different dose levels.  CI values and plots were automatically 

generated using the computer software program CalcuSyn version 2.1 [51, 52].  The CalcuSyn 

program calculates the CI values and plot through the median-effect equation of Chou, enabling 

a correlation between the dose or concentration of compound and the effect in terms of cell 

viability [51].  According to the CalcuSyn product manual:   

 

fa/fu = (D/Dm)m  [Eq. 1] 

where: 

D:  the dose of drug 

Dm:  the median-effect dose signifying the potency. It is determined from the x-intercept 

of the median-effect plot. 

fa:  the fraction affected by the dose 

fu:  the fraction unaffected, fu=1-fa 

m:  an exponent signifying the sigmoidicity (shape) of the dose effect curve. It is 

determined by the slope of the median effect plot.] 

 

 21 



The alternative forms of the median-effect equation are: 

fa = 1/[1+ (Dm/D)m]   [Eq. 2] 

D = Dm[fa/(1-fa)]1/m  [Eq. 3] 

From Eq. 2, if Dm and m are known, the effect (fa) can be determined for any dose (D). 

From Eq. 3, if Dm and m are known, the dose (D) or (Dx) can be determined for any effect (fa). 

Thus, Dm and m parameters representing the potency and shape, respectively, determine the 

entire dose-effect curve. 

 

Synergism is defined as a more than expected additive effect, and antagonism as a less 

than expected additive effect.  CI = 1 is designated as the additive effect, thus from the multiple 

drug effect equation of two drugs, we obtain: 

[Eq. 4] 

 

CI < 1, = 1, and > 1 indicates synergism, additive effect, and antagonism, respectively. 

Eq. 4 dictates that drug 1, (D)1, and drug 2, (D)2, (in the numerators) in combination inhibit x% 

in the actual experiment. Thus, the experimentally observed x% inhibition may not be a round 

number but most frequently has a decimal fraction. (Dx)1 and (Dx)2 (in the denominators) of Eq. 

4 are the doses of drug 1 and drug 2 alone, respectively, inhibiting x%. Dx can be readily 

calculated from Eq. 3.  The axes of the combination index (CI) plot are illustrated in figure 3. 
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Figure 3. Description of the combination index plot. 

The combination index plots generated by CalcuSyn provided a quantitative measure of 

the degree of drug interaction in terms of additive effect, synergism, or antagonism for a given 

endpoint of the effect measurement.  For each combination, Calcusyn plots a single data point 

onto a graph illustrated above.  The location of the data point on the Y-axis illustrated whether a 

particular combination was antagonistic, additive, or synergistic, plotted above, on, or below a 
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combination index value of 1.0.  The location of the data point on the X-axis illustrated the % of 

cells affected by a combination, termed fraction affected.  As illustrated, a fractional affect at 0.1 

would indicate the level of synergy or antagonism when only 10% of the cells were affected, 

either by a 10% inhibition of cell proliferation or a toxic effect in 10% of cells.  Likewise, at a 

fraction affect level of 0.9 displays the interaction of the drug combination when 90% of cells are 

affected. 

 

 24 



3.0  DEVELOPMENT AND APPLICATION OF A SYNTHETIC LETHAL SCREEN 

TO IDENTIFY GENE PRODUCTS AND NETWORKS THAT MODULATE GLIOMA 

CELL SENSITIVITY TO CANCER THERAPY 

The first specific aim of this thesis was to develop a synthetic lethal screen to identify 

gene products that modulate GBM cell sensitivity to cancer therapy.  To develop this screen, I 

used a miniaturized, 384-well format for transiently transfecting T98G cells with siRNA from a 

druggable genome siRNA library, silencing specific druggable genes in cells treated with 

minimal concentrations of MDAs, and coupled this to a semi-automated, high-throughput, cell-

based cytotoxicity assay.  This chapter describes the development and application of this 

synthetic lethal assay.  The objectives of this aim were to 1) develop a workflow for high-

throughput transfection and MDA treatment in microtiter plates, 2) optimize reproducible cell 

culture plating and compound treatment conditions, 3) optimize siRNA library transient 

transfection conditions in T98G cells, and 4) establish methods for collection and analysis of 

large screening data sets. 
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3.1 SYNTHETIC LETHAL siRNA SCREENING ASSAY WORKFLOW. 

The workflow of the synthetic lethal screen, which was fully optimized by me, consisted 

of a five-day week, illustrated in Figure 4.  The transfection reagent DharmaFECT2 was 

combined with OptiMEM and uniformly distributed into a series of sterile polystyrene V-bottom 

384-well plates using a Titertek Zoom bulk dispenser.  siRNA molecules were added to the 

wells, targeting one gene per well, plus in-plate scrambled siRNA control wells on every plate.  I 

had three unique siRNAs for each of the 5,520 genes that were targeted across 16 plates.  I 

pooled the three siRNAs to reduce the cost and improve throughput.  The druggable genome 

siRNA library was screened at a final concentration 20 nM siRNA.  Transfection complexes 

were prepared using automated liquid handling instruments, and after 15-20 minutes, 

transfection complexes were divided among two new 384-well plates (16 x 2 = 32 plates total) 

followed by the addition of T98G cells in suspension.  Plate pairs were incubated for 48 hours, 

then treated with either vehicle (0.5% DMSO) or a microtubule perturbing agent.  Fourty-eight 

hours later, cell viability was measured by the CellTiter-Blue assay.  The assay was limited to a 

total of 96 hours due to minimize variability while still providing sufficient time for gene 

silencing and MDA impact on dividing T98G cells.  For each compound tested, three individual 

screens were performed over separate weeks. 
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Figure 4. Synthetic lethal siRNA screening assay workflow diagram.  

The five-day workflow of the synthetic lethal screen consisted of a five-day week.  Cells 

were transfected on Day 1, treated with either vehicle (0.5% DMSO) or a microtubule perturbing 

agent on Day 3, and cell viability was measured on Day 5 by the CellTiter-Blue assay.  For each 

compound tested, three individual screens were performed over separate weeks. 

 

3.2 OPTIMIZATION OF T98G CELL CULTURE CONDITIONS AND MDA 

TREATMENT 

3.2.1 Cell seeding in 384 well plates. 

A cell seeding density experiment was conducted to determine the optimal number of 

T98G cells to be seeded per well of the 384-well microtiter plate for the five day assay (96 hour 

 27 



incubation).  Plating density was extremely important to this type of assay, as this assay was very 

sensitive to the final number of cells surviving siRNA transfection and compound treatment.  

Too many cells per well resulted in early confluency and over confluency, muting the effects of 

minor cell inhibition.  In addition, crowding leads T98G cells to enter a viable G1 arrested state.  

Too few cells will result in under confluency at the end of the 96 hours, and decrease 

reproducibility.  To determine the optimal number of cells to plate, I plated T98G cells using a 

semi-automated Titertek Zoom liquid dispenser to minimize plate-to-plate and day-to-day 

variability.  Target T98G cell density on day 1 was 30% well confluency, to achieve 90-100% 

confluency by day 5.  Logarithmically growing T98G cells were seeded in 384-well plates and 

incubated for 96 hours before measuring cell viability.  CellTiter-Blue viability assay (Figure 

5A) and microscopic evaluation (Figure 5B) indicated that seeding 400-500 T98G cells was 

sufficient to provide 90 -100% confluency after 96 hours.  Based on these data and similar 

reproductions of this experiment, a seeding density of 450 T98G cells per well was selected for 

all further assay development. 

 

 

 

Figure 5. Cell seeding density for T98G cells. 
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T98G cells were seeded at a range of cell densities with 25 μL/well in 384-well 

polystyrene tissue-culture-treated plates in complete medium and incubated for 96 hours at 37°C 

and 5% CO2.  (A) After incubation, CellTiter-Blue viability reagent (5 µL) was added to each 

well and the fluorescence was read on the SpectraMax M5 after three hours.  Fluorescence was 

proportional to the ability of living cells to convert the non-fluorescent resazaurin dye to 

fluorescent resorufin.  Data represent the mean value of four well replicates + S.E.M.  (B) 

Brightfield image of T98G cells 96 hours after seeding 450 cells in a 384-well microtiter plate. 

3.2.2 Compound treatment.  

The purpose of this assay was to identify siRNAs that sensitized T98G cells to concentrations of 

disorazole C1 or vinblastine that alone would be sub-lethal.  To determine the minimal growth 

inhibition of compound, I conducted a concentration response curve for both disorazole C1 and 

vinblastine in T98G cells transfected with scrambled siRNA (Figure 6).  Based on these data, I 

selected concentrations of 0.35 nM and 1.2 nM concentrations of disorazole C1 and vinblastine, 

respectively, as suitable sub-lethal (EC15) concentrations for treating cells in the siRNA 

screening assay.  By using these concentrations, it was easier to visualize any synergistic 

synthetic lethal response.  Compound concentrations causing less than 10% inhibition of cell 

viability decreased the ability of the assay to detect sensitization by target gene silencing, and 

compound concentrations causing a greater than 20% inhibition of cell viability were less 

reproducible, as they approached the downward slope of the concentration response curve, 

frequently triggering a greater than intended toxicity.  
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1.2 nM 0.35 nM 

 

Figure 6. Disorazole C1 and vinblastine concentration response in T98G cells. 

T98G cells were seeded at 450 cells/well in 50 µL in 384-well plates and transfected with 

non-targeting scrambled siRNA.  After 48 hours of incubation at 37°C and 5% CO2, cells were 

treated with a range of concentrations of either (A) disorazole C1 or (B) vinblastine.  After 

incubation, CellTiter-Blue viability reagent (10 µL) was added to each well and the fluorescence 

was read pm the SpectraMax M5 after three hours.  Fluorescence was proportional to cell 

viability.  Data represent the mean values of four well replicates + S.E.M. 

3.3 OPTIMIZATION OF HIGH-THROUGHPUT TRANSIENT siRNA LIBRARY 

TRANSFECTION OF T98G CELLS. 

siRNA transfection optimization was necessary to assure a high transfection efficiency with 

minimal cytotoxicity.  A successful RNAi transient transfection provides high target knockdown 

with high cell viability.  There are at least seven key considerations when optimizing siRNA 

transfection:  (1) choice of transfection reagent, (2) transfection method, (3) amount of 
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transfection reagent, (4) cell density per well, (5) cell exposure time to reagent, (6) amount of 

siRNA, and (7) timing of the assay. 

3.3.1 Transfection procedure. 

To silence the genes in this study, I used transient transfection of siRNA because of its ease of 

use and cost efficiency while still providing sufficient gene silencing within 48-72 hours for most 

gene targets [53].  siRNA molecules are transfected into the cell as duplexes, and do not require 

the endogenous processing needed by short hairpin RNA (shRNA) [53].  One limitation of 

siRNA transfection is the transient nature of the effect, with decreased silencing after 96 hours, 

unlike shRNA, which provides stable, long term silencing.  Because the synthetic lethal assay is 

only 96 hours, siRNA was sufficient, and its flexibility was preferable for automation of this 

assay. 

 

Further, there are several methods of siRNA transient transfection beyond the standard 

forward transfection, such as dry reverse transfection, and wet reverse transfection.  Forward 

transfection refers to plating cells, allowing the cells to grow for 24 hours before adding siRNA 

complexes.  Wet reverse transfection involves plating out the siRNA complexes then adding 

cells in suspension directly to the complexes.  Dry reverse transfection is performed by plating 

out siRNA molecules alone into dry plates, and letting all moisture evaporate away from the 

plate, allowing daughter siRNA plates to be stored while awaiting resuspension in transfection 

media and cell suspension.  Preliminary studies comparing forward to wet reverse transfection 

gave me nearly identical transfection efficiencies, measured by fluorescent siGLO siRNA.  For 

the siRNA library screening, I used wet reverse transfection because it allowed same-day 
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transfecting and plating cells, eliminating the 24 hour incubation waiting period and removed the 

handling step of replacing cell media with complexes 24 hours after plating. 

3.3.2 Transfection reagents.  

To get optimal transfection efficiency with minimal toxicity, I had to select an appropriate 

transfection reagent.  siRNA experiments required a transfection reagent that was specially 

optimized for siRNA delivery into mammalian cells, and the best transfection reagent for 

plasmids was not always the best reagent for siRNA, as in Figure 7 panel A and B.  To determine 

the best siRNA transfection reagent for T98G cells, I transiently transfected T98G cells in 

quadruplicate in a 384-well plate with fluorescently labelled siRNA (75 nM final concentration 

of Invitrogen BLOCK-IT fluorescent oligo siRNA) using four transfection reagents: 

Lipofectamine2000, FuGENE6, NeuroPorter, and DharmaFECT.  DharmaFECT siRNA 

transfection reagent is specifically designed for siRNA transfection, while the other three 

reagents are suitable for plasmid or siRNA transfection.  There are four versions of 

DharmaFECT reagent:  DharmaFECT1, DharmaFECT2, DharmaFECT3, and DharmaFECT4, 

which slightly different formulations for transfecting different cell lines.  According to 

manufacturer’s protocol, DharmaFECT2 is the optimal DharmaFECT reagent for T98G.  To 

compare DharmaFECT2 to the other transfection reagents, T98G cells were fixed and stained 

with Hoescht 33342, and transfection efficiency was determined by handcounting (# transfected 

cells / # total cell nuclei) (illustration in Figure 7 panel C).  Noticeably, the small size of siRNA 

compared to plasmids allowed a much higher transfection efficiency with siRNA (Figure 7, 

compare A to B).  Visually, the fluorescent siRNA could be seen in nearly every T98G cell in 

Figure 7 panel C.  While FuGENE had the greatest transfection efficiency of plasmids in T98G, 
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it could not achieve higher than 11% transfection efficiency of siRNA.  Lipofectamine2000 

enabled transfection of both plasmid and siRNA, but was unpredictably toxic to most wells and 

required complexes to be removed 3-5 hours after transfection to prevent 100% cell death.  

Importantly, this toxicity could adversely affect results of this siRNA screen, for toxic reagents 

such as Lipofectamine have been reported to alter gene expression of over 2,000 genes after 

transfection of cells with plasmids (without inserts) [54].  The DharmaFECT2 reagent, however, 

had both a high transfection efficiency and minimal toxicity.  DharmaFECT2 was selected for all 

further assay development.   

 

 

 

 

Figure 7.  T98G cell transfection efficiencies. 

T98G cells were seeded at 1000 cells/well in 50 µL in 384-well plates in complete 

medium and allowed to attach overnight at 37°C and 5% CO2. Cells were then transiently 
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transfected in quadruplicate with (A) green fluorescent protein expressing pEGFP-C1 plasmid or 

(B) 75 nM (final concentration) Invitrogen BLOCK-IT fluorescent (fluor.) oligo siRNA (non-

targeting scrambled) using various transfection reagents according to manufacturer’s protocols, 

scaled from 96-well format down to 384-well plate format.  Twenty-four hours after transfection, 

cells were fixed and stained with 3.7% formaldehyde and 1.2 µg/mL Hoescht 33342, 

respectively.  Transfection (transfxn) efficiency was assessed by manual counting fluorescent 

cells divided by total nuclei per field.  Panel C illustrates Hoescht 33342 stained nuclei, 

fluorescent siRNA, and a merged image overlaying nuclear staining with fluorescent siRNA 

clusters. 

3.3.3 Transfection conditions. 

To confirm gene silencing with DharmaFECT2 deprived T98G cells of target protein, I 

transfected T98G cells with siRNA against lamin A/C and assessed lamin A/C silencing by two 

methods:  (1) protein silencing in whole cell lysates by Western blot, and (2) % of cells silenced, 

as measured by lamin A/C antibodies and read with ArrayScan for fluorescence of lamin A/C-

Alexa594 antibodies. 

 

Lamin A/C immunoblotting is presented in Figure 8.  The transfection conditions were 

capable of delivering lamin A/C siRNA and reducing protein levels.  DharmaFECT-mediated 

siRNA transfection reduced protein levels after 48 and 72 hours, but not 24 hours.  Since some 

proteins have long half lives (like lamin), to prevent false positives, the siRNA screen should 

provide 48 hours for silencing before addition of drug.  This assay was optimized to keep 
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proteins silenced between 48-96 hours after transfection, to coincide with the duration of the 48 

hour drug treatment period. 

 

 

 Figure 8. Lamin A/C protein depletion by siRNA against lamin A/C.    

T98G cells were transiently transfected in 6-well plates with 0, 50, or 100 nM final 

concentration of siRNA targeting lamin A/C using DharmaFECT2 transfection reagent.  24, 48, 

or 72 hours after transfection, cells were lysed for Western blot analysis.  Lamin A/C protein was 

detected by immunoblotting using lamin A/C primary rabbit antibody (Cell Signaling).  Lamin 

A/C protein levels were only not affected after 24 hours, but were dimished after 48 and 72 hours 

in the presence of siRNA against lamin A/C. 

 

Lamin A/C silencing in 384-well plate format was detected by ArrayScan VTi as 

described in the legend of Figure 9.  Lamin A/C signal could be seen in the first column, where 

cells did not receive siRNA against lamin A/C.  Lamin A/C signal was dramatically decreased in 

cells by both 50 nM and 100 nM final concentrations of siRNA, however, 100 nM was slightly 

more toxic to cells.  In both this immunofluoresce assay, and the previous immunoblotting assay, 

50 nM siRNA concentration was sufficient for silencing lamin A/C, so 50 nM was chosen as the 

final concentration of siRNA for future library transfections.  A lower range of siRNA 

concentrations (10, 20, and 50 nM) was later tested, revealing that 20 nM was sufficient for 
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silencing.  Library screening was performed using a final concentration of 20 nM siRNA per 

well. 

 

 

Figure 9. siRNA silencing of lamin A/C in T98G cells.    

T98G cells were seeded at 450 cells/well in 50 µL in 384-well plates in complete medium 

and allowed to attach overnight at 37°C and 5% CO2.  Cells were then transiently transfected in 

quadruplicate with 0, 50, or 100 nM final concentration of siRNA targeting lamin A/C using 

DharmaFECT2 transfection reagent.  Seventy-two hours after transfection, cells were fixed and 

stained with 3.7% formaldehyde and 1.2 µg/mL Hoescht 33342, respectively.  Lamin A/C 

protein was detected using lamin A/C primary rabbit antibody (Cell Signaling) and Alexa594-

conjugated secondary goat-anti-rabbit (Cell Signaling).  Transfection efficiency was assessed by 
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ArrayScan VTi.  Briefly, cells were defined by drawing a nuclear mask (blue line) around 

Hoescht 33342-stained nuclei in the first fluorescence channel (top row of panels), and this mask 

was used to detect lamin A/C-Alexa594 staining in the second fluorescence channel (green 

outline, bottom row of panels).   

3.3.4 siRNA library. 

We relied on siRNA technology as a means of gene silencing by pools of three individual 

siRNAs per gene, in a one-gene one-well format, performed three times independently.  Due to 

the focus of this project on chemotherapeutics, we relied on a commercially available library 

targeting gene products that are either affected by existing drugs or have the potential to be used 

by drug-like compounds [55, 56].  In this research, I used the Ambion Silencer Druggable 

Genome siRNA Library, which contains 16,560 unique siRNA sequences to target 5,520 genes 

(categories of this library are listed in Table 1).  This library contains members of all of the 

major functional protein categories including G-protein coupled receptors (GPCRs), transporters, 

ion channels, kinases, phosphatases, deacetylases, oxidoreductases, polymerases, reductases, and 

other enzymes (Figure 10). 
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Figure 10. Gene Categories in Silencer® Druggable Genome siRNA Library.    

Functional categories in Silencer Druggable siRNA Library.  I utilized a library of 16,560 

siRNAs corresponding to three unique siRNA duplexes, targeting 5,520 unique human genes in a 

one-gene per well format on 384-well plates.  The list of categories is provided in Table 1, in 

order of appearance in piechart, clockwise from the top (GPCR first). 
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Ambion Silencer Druggable Genome siRNA Library v. 1.1 
Gene categories from Figure 3.7 
are displayed clockwise from top:   
Subset Genes

% of 
library Subset Genes

% of 
library

GPCR siRNA Library 431 7.8% Carboxylase Related siRNA Library Subset 25 0.5%
Transferase siRNA Library Subset 345 6.3% Other Ligand Ion channels siRNA Library Subset 25 0.5%
Receptor siRNA Library Subset 295 5.3% Oxygenase siRNA Library Subset 25 0.5%
Other Transporter siRNA Library Subset 257 4.7% Unassigned siRNA 25 0.5%
GO Kinase siRNA Library Subset 253 4.6% Anion channels siRNA Library Subset 23 0.4%
Dehydrogenase siRNA Library Subset 186 3.4% Tubulin siRNA Library 23 0.4%
Hydrolase Related siRNA Library Subset 173 3.1% Kinase Related siRNA Library Subset 22 0.4%
Transferase Related siRNA Library Subset 164 3.0% Carboxylase siRNA Library Subset 21 0.4%
Metallo Protease siRNA Library Subset 157 2.8% GABA Neurotransmitter siRNA Library Subset 20 0.4%
Other Phosphatase siRNA Library 151 2.7% Synthase siRNA Library Subset 20 0.4%
Serine Protease siRNA Library Subset 141 2.6% Adhesion Molecule siRNA Library 19 0.3%
Ras G Protein siRNA Library Subset 101 1.8% ATP Carbohydrate Transporter siRNA Library Subs 19 0.3%
Other G Protein siRNA Library Subset 96 1.7% Dynein siRNA Library Subset 19 0.3%
Cysteine Protease siRNA Library Subset 87 1.6% Peptidase Inhibitor siRNA Library Subset 19 0.3%
TK Kinase siRNA Library Subset 84 1.5% Acetylcholine Neurotransmitter siRNA Library Sub 18 0.3%
Voltage Gated Potassium Channel siRNA Library S 76 1.4% Esterase Related siRNA Library Subset 18 0.3%
Silencer®Other Kinase siRNA Library Subset 72 1.3% Oxidoreductase siRNA Library 18 0.3%
CAMK Kinase siRNA Library Subset 68 1.2% Reductase Related siRNA Library Subset 18 0.3%
Dehydrogenase Related siRNA Library Subset 67 1.2% Integrin siRNA Library Subset 17 0.3%
Reductase siRNA Library Subset 65 1.2% Ligase siRNA Library Subset 17 0.3%
Other Ion channels siRNA Library Subset 63 1.1% Lyase and Related siRNA Library 17 0.3%
Miscellaneous siRNA Library 62 1.1% Oxidase Related siRNA Library Subset 17 0.3%
Carrier Related siRNA Library Subset 59 1.1% Aspartic Protease siRNA Library Subset 16 0.3%
AGC Kinase siRNA Library Subset 58 1.1% BCL2 and Related siRNA Library 16 0.3%
CMGC Kinase siRNA Library Subset 57 1.0% Polymerase siRNA Library 16 0.3%
Other Protease siRNA Library Subset 57 1.0% Protein Exchange G Protein siRNA Library Subset 16 0.3%
Oxidase siRNA Library Subset 56 1.0% Amino AcidTransporter siRNA Library Subset 15 0.3%
Nuclear Hormone Receptor siRNA Library 53 1.0% Heterotrimeric G Protein siRNA Library Subset 15 0.3%
Cytochrome P450 siRNA Library Subset 52 0.9% Ribonuclease siRNA Library Subset 15 0.3%
ATP Binding Cassette (ABC) Transporter siRNA Lib 50 0.9% Dehydratase siRNA Library Subset 14 0.3%
Isomerase Related siRNA Library Subset 46 0.8% Voltage gated - sodium siRNA Library Subset 14 0.3%
Ubiquitin siRNA Library 46 0.8% Other Neurotransmitter siRNA Library Subset 13 0.2%
Receptor Related siRNA Library Subset 45 0.8% Deaminase siRNA Library Subset 12 0.2%
Hydroxylase siRNA Library Subset 43 0.8% CK Kinase siRNA Library Subset 11 0.2%
Kinesin siRNA Library Subset 42 0.8% ATPase Related siRNA Library Subset 10 0.2%
Lipase Related siRNA Library Subset 42 0.8% Hydroxylase Related siRNA Library Subset 10 0.2%
STE Kinase siRNA Library Subset 42 0.8% Guanylate Cyclase siRNA Library Subset 9 0.2%
TKL Kinase siRNA Library Subset 41 0.7% Adenylate Cyclase siRNA Library Subset 8 0.1%
Tyrosine Phosphatase siRNA Library Subset 41 0.7% Cyclic Nucleotide Gated Ion Channel siRNA Library 8 0.1%
Atypical Kinase siRNA Library Subset 40 0.7% Dehydratase Related siRNA Library Subset 8 0.1%
Isomerase siRNA Library Subset 40 0.7% Helicase siRNA Library Subset 7 0.1%
Synthetase siRNA Library Subset 40 0.7% Glucosidase siRNA Library Subset 7 0.1%
Hydrogen Transporter siRNA Library Subset 39 0.7% Oxygenase Related siRNA Library Subset 7 0.1%
Caspase siRNA Library Subset 38 0.7% Protease Inhibitor siRNA Library 7 0.1%
Phosphodiesterase Library 38 0.7% Deacetylase siRNA Library Subset 6 0.1%
Myosin siRNA Library Subset 37 0.7% Integrin Related siRNA Library Subset 6 0.1%
Proteinase siRNA Library 34 0.6% Synthase Related siRNA Library Subset 6 0.1%
Peptidase siRNA Library Subset 33 0.6% Synthetase Related siRNA Library Subset 6 0.1%
Solute Carrier siRNA Library Subset 33 0.6% Cytochrome P450 Related siRNA Library Subset 5 0.1%
Glutamate Neurotransmitter siRNA Library Subset 32 0.6% Endonuclease siRNA Library Subset 5 0.1%
ATPase siRNA Library Subset 31 0.6% Non Solute Carrier siRNA Library Subset 5 0.1%
Cyclin siRNA Library Subset 31 0.6% Other Cyclase siRNA Library Subset 4 0.1%
Lipase siRNA Library Subset 28 0.5% RNA Binding siRNA Library Subset 3 0.1%
Voltage Gated Calcium Channel siRNA Library Sub 28 0.5% Exonuclease siRNA Library Subset 2 0.0%
Esterase siRNA Library Subset 27 0.5%  

Table 1. List of gene categories in Silencer Druggable Genome siRNA Library. 

List of functional categories in Silencer Druggable siRNA Library from Figure 10.  The 

list of categories is provided in order of appearance in Figure 10 piechart, clockwise from the top 

(GPCR first). 
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The siRNA library consisted of three sets of 16 microtiter plates, each containing a 

different set of 5,520 siRNA 19-mer duplexes.  For each target gene, three unique siRNA 

duplexes were provided, thus 16,560 wells of siRNA targeting 5,520 genes.  I resuspended the 

library in 100 µL/well sterile siRNA resuspension buffer (Dharmacon) to a concentration of 2.5 

µM.  A small volume of each of the three sets of 16 plates were pooled together to creating a 

daughter set of 16 plates, each well containing three duplexes against a particular gene.  The 

majority of the library was left unpooled for future single-duplex use.  Pools were created for 

screening to reduce initial screening cost by two thirds, as well as to increase speed of 

throughput.  This approach provided significantly higher efficiency in time and cost than running 

the screen with individual siRNAs.  Another major advantage of siRNA pooling is the reduction 

of off-target effects.  Off-target effects refer to when an unintended gene target is silenced, such 

as when an siRNA silences an mRNA that is not the intended target.  Silencing of unintended 

targets can lead to incorrect results.  Each duplex alone may silence its own specific set of off-

target genes, but as a pool of three, this reduces the off-target silencing by roughly two-thirds for 

each duplex, while the three duplexes together still target the same desired mRNA. 

Each 384-well plate of the siRNA library had two columns of empty wells.  To those 

columns I added non-targeting scrambled siRNA for each newly created pooled daughter plate to 

serve as in-plate controls for toxicity caused by siRNA transient transfection in the absence of 

gene silencing. 

 40 



3.4 DATA COLLECTION AND ANALYSIS. 

3.4.1 Data collection: Assessment of cell viability. 

To determine the effect of siRNA or compound treatment on T98G cells at the end of the screen, 

I used the CellTiter-Blue cell viability assay, described in Figure 11.  CellTiter-Blue was selected 

because it was economical, easy to use, and non-toxic to the cells and to humans, unlike other 

viability assays such as MTT (dimethyl thiazolyl diphenyl tetrazolium) assay.  Forty-eight hours 

after compound or vehicle treatment, thus 96 hours after siRNA transfection, cell viability was 

assessed using the CellTiter-Blue assay.  Following a fluorometer reading, cells were fixed with 

3.7% formaldehyde to preserved cells for later immunofluorescence analysis. 

 

 

 

 

Figure 11. Resazurin reduction mechanism of CellTiter-Blue cell viability assay.  

This diagram illustrates the cell viability assay mechanism of resazurin conversion 

triggered by ATP from viable cells.  Viable cells produce NADH, which in the presence of 
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diaphorase and resazurin, was used to drive the diaphorase-catalyzed production of the 

fluorescent resorufin product.  Resazurin could enter living cells where it is reduced to the 

fluorescent resorufin product. The conversion of resazurin to resorufin was proportional to the 

number of metabolically active, viable cells present in a population.  The CellTiter-Blue Cell 

Viability Assay used an optimized reagent containing resazurin. The homogeneous procedure 

involved adding the reagent directly to cells in culture.  The assay plates were incubated at 37°C 

for 1–4 hours to allow viable cells to convert resazurin to the fluorescent resorufin product. The 

signal is recorded using a standard multiwell fluorometer.   

 

3.4.2 Data analysis. 

Performing this screen in triplicate, with controls, using two different microtubule disrupting 

agents – vinblastine and disorazole C1 – involves a total of 73,728 wells: 

 16 plates in library * 384 wells per plate * 2 (1st set with drug, 2nd set with vehicle) * 

triplicate * 2 compounds (vinblastine and disorazole C1) = 73,728 wells 

 Due to this large number of wells, individual visual inspection was impossible.  The 

following formula was derived to provide a meaningful estimate of the ability of an siRNA to 

sensitize T98G cells to the MDA compound: 

 

C – ( S + M ) = % GTA 

 

Where: 
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%GTA = the % of cell inhibition that is greater than the additive inhibition caused by the target 

siRNA transfection and the inhibition caused by the MDA compound. 

C = % inhibition of cell viability caused by the combination of both target siRNA transfection 

plus MDA compound. 

S = % inhibition of cell viability caused by target siRNA plus vehicle. 

M = % inhibition of cell viability caused by scrambled siRNA plus MDA compound. 

 

The three values of C, S, and M are calculated by: 

 

C = cell viability of cells transfected with scrambled control and treated with vehicle minus cell 

viability of cells transfected with target siRNA and treated with MDA compound. 

S = cell viability of cells transfected with scrambled control and treated with vehicle minus cell 

viability of cells transfected with target siRNA and treated with vehicle. 

M = cell viability of cells transfected with scrambled control and treated with vehicle minus cell 

viability of cells transfected with scrambled control and treated with MDA compound. 

 

For example, in Figure 12A, the cell viability of T98G cells under various conditions was 

compared as a % of control, where control was T98G cells transfected with scrambled siRNA 

and treated with vehicle, set to 100% cell viability.  Transfection of cells with the target siRNA 

(against a proteasome subunit) inhibited cell viability by 10%, 10%, and 5% over three screens, 

an average of 8% loss of cell viability compared to control.  As defined above, S = 8% (Figure 

12B).  Similarly, the effect of 350 pM disorazole C1 alone over three independent screens was an 

average of 6% inhibition compared to control, so M = 6%.  Cells that were both transfected with 
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siRNA against proteasome subunit and treated with 350 pM had an average % cell inhibition of 

47% relative to the control cells, so C = 47%.  When we used these values in the formula C – ( S 

+ M ) = % GTA, we calculated the greater-than-additive effect to be 33% (Figure 12C). 
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Figure 12. Example of how to calculate % greater-than-additive effect.    

To identify specific siRNAs that sensitize cells to sub-lethal concentrations of MDA 

compounds, I needed to identify a cutoff value.  Figure 13 illustrates a frequency distribution of 

%GTA sensitization resulting from each of 11,040 siRNA pool averages  (5,520 from disorazole 

C1 screening plus 5,520 from vinblastine screening).  From these combined data, I chose a 

selection cutoff at two standard deviations above the mean, which was 10%GTA.  With this 

cutoff, 34 genes were identified as sensitizers to both disorazole C1 and vinblastine.  For 

example, with this cutoff, the siRNA against the proteasome subunit in Figure 12 was declared a 

“hit”, since its 33% GTA was greater than 10%.  A cutoff of three standard deviations above the 

mean was too stringent, leaving only 3 siRNAs as sensitizers, and a cutoff at one standard 

deviation above the mean was too relaxed, yielding 276 sensitizers.   
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Figure 13. Frequency distribution of screening hit averages from six whole library screens.    

Frequency distribution of sensitization resulting from each of 11,040 siRNA pool 

averages  (5,520 from disorazole C1 screening plus 5,520 from vinblastine screening).  %GTA is 

a measure of the greater-than-additive inhibition of cell viability, defined in figure 12.  From this 

histogram, I chose a hit cutoff of 10%, which was two standard deviations above the mean. 
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3.5 DISCUSSION 

3.5.1 Data application #1:  identification of survival genes. 

The data from this screen provided several applications in addition to synthetic lethality.  The 

first application was the detection of survival genes, similar to the work of MacKeigan [57].  

MacKeigan screened a library of kinases and phosphatases to identify kinases and phosphatases 

that when inhibited contribute to apoptosis [57].  Survival genes are loosely defined as genes 

whose expressed proteins are essential for cell survival and proliferation.  The proteins of T98G 

survival genes could be novel drug targets, particularly proteins which are essential for T98G 

survival but not essential for normal cells.  These survival genes could also provide an 

explanation for the chemoresistant profile of T98G, especially if these survival genes are 

overexpressed in T98G relative to normal cells.  Since the siRNA library was screened in 

duplicate plates, one treated with vehicle (DMSO), the other one with compound, the data 

needed to identify survival genes had already been gathered.  To identify gene products that 

regulated T98G cell survival, I analyzed the data from plates that were screened in the presence 

of vehicle alone.  Wells in which these survival genes had been silenced had significantly fewer 

cells than wells with siRNA against non-essential genes or control siRNA.  To quantify the 

ability of a target siRNA to either increase or decrease T98G cell viability, the % cell viability of 

each well transfected with target siRNA against any of 5,520 genes was calculated.  Percent cell 

viability was measured by dividing the target siRNA well viability by the average scrambled 

siRNA well viability for that plate.  The % cell viability data from three individual screens was 

averaged together and the frequency distribution is displayed in figure 14.  An arbitrary cutoff of 

two standard deviations below the mean was chosen to declare survival genes.  A survival gene 
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was thus defined as a gene that, when silenced, led to an average of at least 66% inhibition of 

T98G cell viability, n=3.  This cutoff identified 188 genes as T98G survival genes.   The top 40 

genes from this list are shown in Table 2.  These survival genes were uploaded to Ingenuity 

Pathway Analysis (IPA), a web based data analysis program, to identify potential pathways or 

networks of T98G survival genes.  IPA analysis of T98G survival genes identified over a dozen 

networks of associated proteins.  Three networks were connected by their relationships to histone 

H3, and are displayed in Figure 15.  IPA analysis is useful for identify the biological context of 

clusters of survival genes, and to identify the shortest path between multiple identified genes. 

  

 

Figure 14. Frequency distribution of average % cell viability of siRNA treated T98G cells from three 

whole library screens.    
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Frequency distribution of % cell viability of T98G cells 96 hours after being transfected 

with siRNA.  Data represent averages of three experiments, one average data point per gene 

target, 5,520 gene targets, using pools of three siRNA sequences per gene.  Blue bar indicates 

cutoff for two standard deviations below the mean.  The T98G survival genes were defined as 

the 188 gene targets that fell below the cutoff. 
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Cell viability Symbol Gene Name
5% RAN RAN, member RAS oncogene family
7% DDX39 DEAD (Asp‐Glu‐Ala‐Asp) box polypeptide 39
8% SIAT4B ST3 beta‐galactoside alpha‐2,3‐sialyltransferase 2
8% PSMC3 proteasome (prosome, macropain) 26S subunit, ATPase, 3
9% K‐ALPHA‐1 K‐ALPHA‐1
10% SIAT7E ST6 N‐acetylgalactosaminide alpha‐2,6‐sialyltransferase 5
11% HLCS holocarboxylase synthetase (biotin ligase)
11% PSMD14 proteasome (prosome, macropain) 26S subunit, non‐ATPase, 14
11% POLR2F polymerase (RNA) II (DNA directed) polypeptide F
12% SPTLC1 serine palmitoyltransferase, long chain base subunit 1
12% TLR2 toll‐like receptor 2
12% TUBGCP6 tubulin, gamma complex associated protein 6
13% PSMC6 proteasome (prosome, macropain) 26S subunit, ATPase, 6
14% RAB40B RAB40B, member RAS oncogene family
14% SRCRB4D scavenger receptor cysteine rich domain containing, group B (4 domains)
14% BTN2A3 butyrophilin, subfamily 2, member A3
15% PIGQ phosphatidylinositol glycan, class Q
16% GRHPR glyoxylate reductase/hydroxypyruvate reductase
16% NQO3A2 NAD(P)H:quinone oxidoreductase type 3, polypeptide A2
16% CHN1 chimerin (chimaerin) 1
16% CGI‐04 tyrosyl‐tRNA synthetase 2 (mitochondrial)
17% GABRB2 gamma‐aminobutyric acid (GABA) A receptor, beta 2
17% RAB40C RAB40C, member RAS oncogene family
17% CLCN3 chloride channel 3
17% RALB v‐ral simian leukemia viral oncogene homolog B (ras related; GTP binding)
17% ITGAV integrin, alpha V (vitronectin receptor, alpha polypeptide, antigen CD51)
18% POMT1 protein‐O‐mannosyltransferase 1
18% COX7A2 cytochrome c oxidase subunit VIIa polypeptide 2 (liver)
18% PSMC5 proteasome (prosome, macropain) 26S subunit, ATPase, 5
18% CARM1 coactivator‐associated arginine methyltransferase 1
19% SORCS1 sortilin‐related VPS10 domain containing receptor 1
19% ITGA3 integrin, alpha 3 (antigen CD49C, alpha 3 subunit of VLA‐3 receptor)
19% VCP valosin‐containing protein
19% IL18R1 interleukin 18 receptor 1
20% LOC144125 olfactory receptor, family 2, subfamily AG, member 1
20% DKFZP434L1717 DKFZP434L1717
20% IDH3B isocitrate dehydrogenase 3 (NAD+) beta
20% CYB5R2 CYB5R2
20% UBL5 ubiquitin‐like 5
20% SLC7A2 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2  

Table 2. Top 40 T98G survival genes. 

This table displays the top 40 T98G survival genes, which are defined as genes that, 

when silenced, inhibit T98G cell viability by at least  66%, relative to scrambled siRNA control.  

The first column displays the % cell viability of T98G cells when transfected with siRNA against 

the displayed gene, for 96 hours, relative to scrambled siRNA control. 

 50 



 

 

Figure 15. Networks of survival genes identified by IPA analysis.  

An example of an IPA network analysis of T98G survival genes.  Upper left network:  

The USP3, 4, 5, 8, 32, 33, 38, 46, and 47 proteins are a cluster of associated deubiquitinating 

enzyme (DUBs) that have ubiquitin specific peptidase activity [58-60].  Upper right network:  

The PSMA1, 2, and 3 proteins in this cluster are members of the 26S proteasome, which is 

formed by the PA700 proteasome activator and the 20S proteasome [61, 62].  Lower network:  

CYP1B1, PKMYT1, SLC20A1, MLL, and MMP2 bind to RNA polymerase II, which is 

activated by the survival kinase CDK9.  The peptidase MMP2 has relationships with the 

peptidases ADAMTS1, PCSK6, and ELA2A. 
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3.5.2 Data application #2:  identification of protective siRNAs. 

A second application of the data obtained from this screen was protective siRNAs.  The 

frequency distribution (Figure 13) illustrates that while there are a number of siRNAs that 

sensitized T98G cells to MDAs, there were also siRNAs that would seem to protect T98G cells.  

In a separate research project, I have applied this protective screening concept in other research 

to identify genes which, when silenced, protect cultured human cells from ionizing radiation.  

Data from three independent siRNA screens with ionizing radiation in T98G cells provided 

information for visualizing both sensitizing siRNAs and protective siRNAs.  One example of a 

protective siRNA was siRNA against the gene mixed lineage kinase 4 (KIAA1804), shown in 

figure 16.  Silencing KIAA1804 with siRNA increased T98G cell viability by 5%, and a 25 Gy 

dose of ionizing radiation inhibited cell viability by 53%.  Silencing KIAA1804 48 hours before 

ionizing radiation treatment protected cells by 31%.  Screening the siRNA library with an EC50 

dose of ionizing radiation to identify both protective and sensitizing genes of T98G helped us 

understand what genes regulated its radiation resistance profile, and helped us identify molecular 

targets to made T98G more sensitive to radiation therapy.    
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Figure 16. Silencing mixed lineage kinase 4 (KIAA1804) with siRNA protects T98G cells from 

ionizing radiation. 

Bar graphs demonstrate cell viability of T98G cells 3 days after 25 Gy ionizing radiation 

(or mock) either scrambled control siRNA or KIAA1804 gene siRNA.  T98G cells were treated 

with 25 Gy irradiation 48 hours after siRNA transfection.  Cell viability was measured with 

CellTiter-Blue and is shown as a percentage of the viability of cells transfected with control 

siRNA.  Data are plotted as the mean + SD of three different experiments.   

 

3.5.3 Data application #3:  identification of sensitizing siRNAs. 

The research of this dissertation was focused on identifying siRNAs that sensitized T98G 

cells to MDAs, and the data from this work is described in chapters 4 and 5 of this dissertation.  

In addition, this synthetic lethal siRNA screening methodology can be applied more broadly to 

other therapeutic agents.  This assay is not limited to small molecules, as I am currently 
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employing this technique to identify siRNAs that sensitize these radioresistant T98G cells to sub-

lethal doses of ionizing radiation.  This synthetic lethal siRNA screen is a valuable tool for 

identifying genes products that sensitize or protect cells to any number of mechanistically 

distinct small molecules and other therapeutic agents and modalities. 
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4.0  SYNTHETIC LETHAL SCREENING PREDICTS A NOVEL MECHANISM FOR 

SYNERGISM OF PI3K INHIBITORS AND MICROTUBULE DISRUPTING AGENTS 

FOR TUMOR CELL DEATH 

Combination drug regimens expand the therapeutic window for cancer treatment. Identifying the 

chemosensitivity nodes that produce synergy is challenging. I have exploited an unbiased, 

16,560-member siRNA synthetic lethal screen capable of quickly identifying novel drug targets 

for sensitizing cancer cells to sublethal concentrations of microtubule-perturbing agents. I 

employed this high-throughput siRNA screen with human T98G glioblastoma cells to isolate a 

high-confidence list of 142 and 152 siRNAs that enhanced the cytotoxicity of the natural 

products vinblastine and disorazole C1 , respectively, with 34 siRNAs being common to both 

agents.  These results suggested that the two inhibitors of tubulin polymerization could have 

different mechanisms of action or binding sites. Silencing of microtubule-associated midline 

proteins potentiated the cytotoxicity of both vinblastine and disorazole C1 , but not cisplatin or 

ionizing radiation. Microtubule-associated proteins are controlled by the PI3K/Akt axis, and 

inhibition of upstream PI3K/Akt pathway elements with wortmannin and LY-294,002 acted 

synergistically with microtubule perturbing agents to increase cytotoxicity in cancer cells. These 

results demonstrate the power of combining siRNA libraries with automated phenotypic assays 

to uncloak previously unknown drug pathways and to identify potential novel drug 

combinations. 
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4.1 INTRODUCTION 

The vinca alkaloids gained status as a novel class of anticancer agents in the early 1960s [63].  

Since then, microtubule destabilizing agents (MDAs) have been recognized as powerful 

chemotherapeutic agents for the treatment of cancer by their ability to alter microtubule 

dynamics, arresting cell cycle progression at mitosis and leading to apoptotic cell death.  

However, the neurological and hematological toxicities of MDAs hinders their effectiveness for 

cancer therapy. 

 

To circumvent the problems associated with dose-dependent side effects, I sought to 

identify genes mediating sensitivity to MDAs using a synthetic lethal siRNA screen.  Previous 

groups have used siRNA screening to categorize determinants of taxane sensitivity and predict 

novel drug combinations [64].  siRNA screens rely on RNA interference, the cellular mechanism 

that inhibits gene expression post-transcriptionally by sequence-specific mRNA transcript 

degradation [24].  siRNA screening is made feasible by large libraries of siRNA reagents, 

targeting a wide range of transcripts [65].  When coupled to automation, high-throughput siRNA 

screening enables efficient analysis of genome-wide screens [66].  The application of siRNA to 

systematic genome-scale screening method was first demonstrated using C. elegans [25, 26]. 

 

Druggable genome libraries are increasingly popular siRNA libraries, as they target genes 

that are considered potential targets for therapeutics, such as ion channels, proteases, protein 

kinases and phosphatases [67].  The druggable genome reflects targets that are considered both 

druggable and disease modifying [56].  In this study, I have used a druggable genome synthetic 

lethal siRNA screen to identify determinants of sensitivity to the microtubule disruptors 
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vinblastine and disorazole C1.  The identification of novel mediators of the cellular response to 

microtubule disruptors may indicate novel potential combination therapies. 

4.2 RESULTS 

4.2.1 Uncloaking novel sensitizers of microtubule disruptor cytotoxicity using synthetic 

lethal siRNA screening. 

I sought to use synthetic lethal siRNA screening to identify new drug therapies for GBM, 

the most common and malignant central nervous system tumor [40].  To detect novel sensitizers 

of disorazole C1 and vinblastine, three independent synthetic lethal screens were performed for 

each of the two microtubule disrupting compounds.  Screening data were averaged and revealed 

a normal distribution (Chapter 3), and the frequency distribution of all screening data indicated 

that a 10% sensitization was two standard deviations above the mean.  Therefore, siRNAs that 

sensitized T98G cells to compounds by 10% or more were selected as hits.  This cutoff yielded 

152 and 142 hits for disorazole C1 and vinblastine, respectively, with 34 siRNAs being common 

to both agents (Figure 17B).  The list of 34 genes is summarized in Table 2.  One of the common 

34 hits for both vinblastine and disorazole C1, midline 2 (MID2), was of particularly interest due 

to its colocalization with microtubules, its role in tethering a key regulator of intracellular 

signaling (protein phosphatase 2A, PP2A) to microtubules, and its potential role in microtubule 

stability through PP2A binding [68, 69].  In the screen, siRNA against MID2 in the presence of 

vehicle DMSO inhibited T98G cell viability by 13% compared to scrambled siRNA, and 

treatment of cells with scrambled siRNA and 1.4 nM vinblastine inhibited T98G cell viability by 
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22% (Figure 17C).  Combining vinblastine and MID2 siRNA led to a 78% inhibition of cell 

viability (Figure 17C).  The combinations of vinblastine plus MID2 siRNA and disorazole C1 

plus MID2 siRNA yielded 43% and 22% greater-than-additive inhibition of T98G cell viability, 

indicating the importance of MID2 in sensitizing GBM cells to microtubule disruption (Figure 

17C). To confirm the specificity of the MID2 silencing-mediated cell death with MDAs, I 

investigated interactions with ionizing radiation and found cell death was not enhanced by MID2 

siRNA (Figure 17C). 

 

 

Figure 17. Silencing midline2 (MID2) with siRNA sensitizes T98G cells to microtubule destabilizers. 

(A) Structures of the compounds vinblastine and disorazole C1 (B) Three independent 

screens for each of two MDAs were performed. Screening data were averaged and siRNAs that 

sensitized T98G cells to compounds were selected as hits. siRNA against MID2 was one of the 

common 34 hits for both vinblastine and disorazole C1  (C) Bar graphs demonstrate cell viability 

of T98G cells 2 days after drug treatment (1.2 nM vinblastine, 350 pM disorazole C1 , 25 GY 
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ionizing radiation (IR) or 0.5% DMSO vehicle). T98G cells were treated with drug 48 hours 

after siRNA transfection. Silencing MID2 with siRNA sensitizes T98G cells to low 

concentrations of both compounds, but not ionizing radiation. Cell viability was measured with 

CellTiter-Blue and is shown as a percentage of the viability of cells transfected with control 

siRNA. Graphs are representative of mean data from three independent screens. 
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GenBank Symbol Gene Name
NM_138340 ABHD3 abhydrolase domain containing 3
NM_001024946 ASL argininosuccinate lyase
NM_138578 BCL2L1 BCL2-like 1
NM_032966 BLR1 Burkitt lymphoma receptor 1, GTP binding protein
NM_016382 CD244 CD244 natural killer cell receptor 2B4
NM_004661 CDC23 CDC23 (cell division cycle 23, yeast, homolog)
NM_130901 C15orf16 chromosome 15 open reading frame 16
NM_015510 DKFZp566O084 DKFZp566O084
NM_007026 DUSP14 dual specificity phosphatase 14
NM_022066 E2-230K E2-230K
NM_173641 FLJ33655 EPH receptor A10
NM_152873 TNFRSF6 Fas (TNF receptor superfamily, member 6)
NM_002014 FKBP4 FK506 binding protein 4, 59kDa
NM_178557 FLJ37478 FLJ37478
NM_178135 SCDR9 hydroxysteroid (17-beta) dehydrogenase 13
NM_012302 LPHN2 latrophilin 2
NM_000255 MUT methylmalonyl Coenzyme A mutase
NM_033115 MGC16169 MGC16169
NM_052817 MID2 midline 2
NM_004685 MTMR6 myotubularin related protein 6
NM_000303 PMM2 phosphomannomutase 2
NM_000918 P4HB procollagen-proline 4-hydroxylase beta polypeptide 
NM_206876 PPP1CB protein phosphatase 1, catalytic subunit, beta isoform
NM_001664 RHOA ras homolog gene family, member A
NM_032918 RERG RAS-like, estrogen-regulated, growth inhibitor
NM_016544 RBJ RBJ
NM_014715 RICS RICS
NM_005778 RBM5 RNA binding motif protein 5
NM_006919 SERPINB3 serine (or cysteine) proteinase inhibitor, clade B (ovalbumin),3
NM_006217 SERPINI2 serine (or cysteine) proteinase inhibitor, clade I (pancpin),2
NM_004174 SLC9A3 solute carrier family 9 (sodium/hydrogen exchanger), 3
NM_001058 TACR1 tachykinin receptor 1
NM_003844 TNFRSF10A tumor necrosis factor receptor superfamily, member 10a
NM_152444 ZADH1 zinc binding alcohol dehydrogenase, domain containing 1  

Table 3. Overlapping siRNA screening hits for vinblastine and disorazole C1 synthetic 

lethal screens. 

Thirty-four genes were identified that, when silenced by siRNA, sensitized T98G cells to 

vinblastine and disorazole C1 by more than two standard deviations above the mean of all 

sensitization values (see also Figure 17).   
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4.2.2 Microtubule sensitization by loss of MID2.  

Identifying the underlying mechanisms of MDA sensitization by MID2 silencing should enable 

prediction of suitable compounds for combination chemotherapy, and may help assessment of 

the clinical relevance of this combination.  I hypothesize that MID2 silencing sensitizes T98G 

cells to MDAs due to the role of MID2 in tethering PP2A to the microtubules [69].  As 

illustrated in Figure 18, homodimers and heterodimers of MID1 and MID2 tether α4, a 

regulatory subunit of PP2A, to microtubules [69].  In this way, the dimerized midline proteins 

tether PP2A to the microtubules.  

 

  The localization of PP2A at the microtubules allows it maintain the dephosphorylated 

status of the microtubule-associated protein (MAP) tau; inhibition of PP2A promotes 

hyperphosphorylation of tau [70].  As predicted, silencing of MID2 induced the phosphorylation 

of tau on Ser199 (Figure 18A).  Ser199 was selected as one of several motifs that are 

phosphorylated in its hyperphosphorylated state.  Kinase-mediated hyperphosphorylation of tau 

reduces its ability to bind and stabilize microtubules, so the role of PP2A is important in 

maintaining microtubule structural integrity [34, 71].  The relevance of this to chemotherapy lies 

in rapamycin-sensitive α4. 

 

The interaction of α4 with PP2A is dependent on phosphorylation by the mammalian 

target of rapamycin (mTOR) kinase [69].  I hypothesized that inhibitors of the PI3K-AKT-

mTOR pathway might sensitize T98G cells to MDAs by a mechanism similar to MID2 silencing.  

Indeed, Kohno et al. reported the synergistic effect of a combination of PI3K pathway inhibitors 

with vincristine only in tumor cells in which the PI3K pathway is constitutively activated:  T98G 
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GBM, T24 bladder cancer, and Hela cervical cancer [72].  Perhaps the ability of T98G cells to 

resist MDA-mediated apoptosis is due to microtubule stabilization by a constitutive PI3K 

pathway. 

 

 

Figure 18. Disruption of PI3K-mediated Tau dephosphorylation sensitizes PI3K-active cells to 

microtubule disruptors.    

(A) MID2 siRNA transfection induces hyperphosphorylation of the microtubule-

associated protein tau. Western blot analysis of cellular Ser199- phosphorylated tau, and vinculin 

(loading control) in T98G cells. Cells were transiently transfected with a pool of three siRNAs 

targeting MID2. Scrambled control siRNA-transfected cells received a nonsense siRNA 

sequence. (B) Proposed model of microtubule sensitization. PP2A prevents tau 
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hyperphosphorylation when tethered to microtubules by MID2 and phosphorylated-α4. PP2A 

can be displaced from the microtubules by MID2 silencing or by inhibiting α4 phosphorylation 

by the PI3K pathway. In the absence of PP2A, tau becomes hyperphosphorylated and dissociates 

from the microtubules, destabilizing them. This model predicts that cells can be sensitized to 

microtubule disrupting agents by either MID2 siRNA or inhibition of α4 phosphorylation. 

4.2.3 Disorazole C1 and PI3K inhibitor combinations produce synergistic inhibition of 

T98G cell growth.  

To assess additive, synergistic, or antagonistic interactions between PI3K inhibitors and 

vinblastine or disorazole C1, I exploited the combination index (CI) method of Chou and Talalay 

[47-50].  This method of evaluating drug interactions was selected because it examines the 

potencies of each drug and combinations (Dm value), as well as the shape of the concentration-

effect curves (m values), calculating how the experimental effect differs from the effect expected 

with additivity. 

 

The combination effects of wortmannin and the microtubule disruptors vinblastine and 

disorazole C1 are represented in Figure 19.  For these curves, CI values of <1, 1 (dotted line), and 

>1 indicated synergism, additivity, and antagonism, respectively. The combination index plot 

(Figure 19) indicated that a 1:2000 ratio of disorazole C1 plus wortmannin (1 nM disorazole C1 

to 2 µM wortmannin) achieved a greater than additive effect, with the data points of all 

combinations falling well below a CI value of 1 at 90% (CI = 0.38), 75% (CI = 0.40), and 50% 

(CI = 0.44) levels of cell inhibition.  As expected from the screen, the combination of 
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wortmannin with vinblastine was also synergistic, but to a lesser effect.  Exposure of T98G cells 

to both combinations resulted in increasing levels of synergism with increasing effect levels. 

 

Figure 19. Synergism between MDAs and wortmannin in T98G cells.    

T98G cells were plated at low density and treated with concentration gradients of disorazole C1, 

vinblastine, vehicle (0.5% DMSO), or mixtures thereof in an 8x8 grid of a 96-well plate, 

providing 64 unique combinations.  Cells were incubated in the presence of compounds for 72 

hours.  Cell viability was measured with the CellTiter-Blue assay.  To quantify the interaction 

between drug treatments, I generated combination index plots of the treatments at constant molar 

ratios.  For these curves, CI values of <1, 1 (dotted line), and >1 indicated synergism, additivity, 

and antagonism, respectively.  Data were analyzed assuming mutually exclusive drug effects and 

are representative of two or more separate experiments. 

 

While wortmannin has antitumor activity against tumor xenografts in animals, it is 

biologically unstable and is accompanied by liver and hematologic toxicity [73, 74].  This led to 

the development of PX866, a novel, less toxic, and significantly more biologically stable PI3K 

inhibitor [74, 75].  Because of the potential greater clinical relevance of PX866 over 
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wortmannin, I performed combination studies with disorazole C1 and PX866 at various ratios.  

PX866 and disorazole C1 were synergistic at ratios of 8 µm : 1 nM, 5 µm : 1 nM, 3 µm : 1 nM, 2 

µm : 1 nM, especially when higher fractions of cells are affected (Figure 20).  The effect was 

decreased at ratios outside of this range (data not shown). 

 

 

Figure 20. Analysis of the combination of PX866 and disorazole C1 in T98G cells at four different 

ratios.    

Combination index plot analysis of the combination of PX866 with disorazole C1 in 

T98G cells at µM:nM ratios of 8:1, 5:1, 3:1, and 2:1 for PX866 to disorazole C1.   Combination 

index values at <1.0, 1.0, and >1.0 indicate synergy, additivity, and antagonism, respectively. 
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PI3K inhibition is a potentially relevant target for GBM chemotherapy, as AKT 

activation has been detected in several types of human cancers and is associated with resistance 

to chemotherapy and radiotherapy [76-78].  PI3K inhibitors are currently being used in early 

clinical trials for patients with glioblastoma [79].  This past year, Kohno et al. reported the 

synergistic effect of a combination of PI3K pathway inhibitors with vincristine only in tumor 

cells in which the PI3K pathway is constitutively activated [72].  Both the GBM cell line T98G 

and the bladder cancer cell line, T24, have a constitutively active PI3K pathway, sensitizing both 

to PI3K inhibition [80].  I therefore performed combination studies to plot the CI curve for 

vinblastine with PX866 in both T98G and T24 cell lines (Figure 20).  As predicted, vinblastine 

synergized with PX866 for inhibition of T98G cell viability at a ratio of 1µM to 2nM of PX866 

to vinblastine in both the T98G and T24 cell lines Figure 21).  In agreement with my model 

(Figure 18), synergy was also seen with MDAs combined with inhibitors of the mTOR but not 

with the DNA damaging agent cisplatin (Figure 22).  Other combinations of PI3K inhibitors and 

MDAs also synergize together, (Figure 22) and the combination effects of disorazole C1, 

vinblastine, vincristine, cisplatin, rapamycin, wortmannin, LY-294,002, and PX866 are 

summarized in Table 4 for direct comparison across all drug combination studies (Table 4). 
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Figure 21. Synergy of PX866 and vinblastine in cell lines with constitutively active PI3K. 

Combination index plots for the combination of PX866 with vinblastine in T98G and T24 

cell lines at a ratio of 1 µM PX866 : 2 nM vinblastine.  Combination index values at <1.0, 1.0, 

and >1.0 indicate synergy, additivity, and antagonism, respectively. 
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Figure 22. Combination index plot analysis of MDAs with a LY-294,002, cisplatin, or rapamycin in 

T98G cells. 

Combination index plots for combinations of the PI3K inhibitor LY-294,002 with 

vincristine or disorazole C1, and combinations of disorazole C1 with cisplatin or rapamycin.  

Combination index values at <1.0, 1.0, and >1.0 indicate synergy, additivity, and antagonism, 

respectively. 
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CI value at
Cell line Combination EC50 EC75 EC90 r

T98G Disorazole C1 + PX-866 (5.1 nM : 1 µM) 0.37 0.30 0.27 0.97
Disorazole C1 + Wortmannin (1 nM : 2.2 µM) 0.44 0.40 0.38 1.00
Disorazole C1 + Cisplatin (1 nM : 2 µM) 1.45 1.41 1.36 1.00
Disorazole C1 + LY-294,002 (1 nM : 18.8 µM) 1.00 0.81 0.65 0.99
Disorazole C1 + Rapamycin (1 nM : 10 nM) 0.59 0.67 0.77 0.98
Vinblastine + PX-866 (2 nM : 1 µM) 0.83 0.78 0.74 0.95
Vincristine + LY-294,002 (1 nM : 1.4 µM) 0.47 0.32 0.24 1.00
Vinblastine + Wortmannin (1 nM : 2.5 µM) 0.84 0.81 0.80 0.95

T24 Vinblastine + PX-866 (3 nM : 1 µM) 0.87 0.91 0.95 1.00
 

Table 4. Concentration-effect relationships and combination index values for 

compound combinations in T98G and T24 cells. 

Multiple drug effect analysis was performed using the PI3K inhibitors wortmannin, LY-

294,002, and PX866 in combination with either one of the three microtubule destabilizing agents 

(vinblastine, disorazole C1, or vincristine).  Experiments were performed in the bladder cancer 

cell line T24 and the glioblastoma cell line T98G.  CalcuSyn was used to quantitatively describe 

the interaction of drug combination and to derive combination index plots (Figures 19-22).  This 

table lists the actual experimental values for the combination indices as a function of fractional 

inhibition of cell viability by a mixture of the PI3K inhibitor and a microtubule destabilizer.  

Combination index values are listed for three different fractional effects, wherein EC50 

represents the level of interaction at 50% cell inhibition.  Combination index values at <1.0, 1.0, 

and >1.0 indicated synergy, additivity, and antagonism, respectively.  “r” is the linear correlation 

coefficient for the median effect line of the median effect plot.  Commonly referred to as r value, 

this value indicates the conformity of the data. 
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4.3 DISCUSSION 

 

I have used a synthetic lethal siRNA screen to identify MID2 as a sensitizing link 

between PI3K pathway inhibitors and microtubule destabilizing agents (MDAs).  Previously, 

Kohno et al. demonstrated that blockade of the PI3K-Akt pathway enhanced apoptosis by MDAs 

in cells with a constitutively active PI3k pathway [72].  They showed that the enhancement of 

MDA apoptosis by PI3K inhibitors was mediated by activation of glycogen synthase kinase-3β 

(GSK-3β) and consequent tau phosphorylation, decreasing its ability to bind and stabilize 

microtubules [34, 71, 72].  The PI3K pathway regulates the phosphorylation of Tau through the 

respective phosphatase and kinase activities of GSK-3β and PP2A [81].  Given the role of MID1 

and MID2 homo- and heterodimers in tethering PP2A to microtubules, the induction of tau 

hyperphosphorylation after MID2 silencing was predictable; sensitization of T98G and T24 cell 

lines to low concentrations of MDAs was less obvious and previously unknown.  Importantly, 

the redundancy of MID1 and MID2 ensures that silencing MID2 alone was not sufficient to 

induce full microtubule destabilization and resultant cell death.  It is interesting to note that 

MID1 siRNA did not sensitize T98G cells to MDAs.  I speculate that MID2 could play a more 

prominent role in α4 tethering in T98G cells than MID1. 

 

Since PI3K inhibitors sensitize T98G cells to disorazole C1 or vinblastine, I would expect 

that PI3K siRNA should also sensitize T98G cells.  However, PI3K has numerous isoforms and 

subunits.  The Ambion siRNA library has siRNA against many different subunits of PI3K, 

including five PI3K regulatory subunits, four PI3K catalytic subunits, and three PI3K 

polypeptides.  Silencing only one particular isoform or subunit may not be enough to disrupt the 
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redundant or overlapping functions of the other forms, preventing siRNA against any single 

subunit or isoform to be identified as a sensitizer.  However, it should be noted that siRNA 

against the following three PP2A subunits did sensitize T98G cells to vinblastine, possibly 

because loss of any of these subunits was sufficient to enhance tau hyperphosphorylation and 

subsequent microtubule destabilization: 

PPP2R2A - protein phosphatase 2 (formerly 2A), regulatory subunit B, alpha isoform 

PPP2R1B - protein phosphatase 2 (formerly 2A), regulatory subunit A, beta isoform 

PPP2R5D - protein phosphatase 2, regulatory subunit B', delta isoform 

 

This synthetic lethal methodology is a broad platform; thus the pattern of screening hits 

for vinblastine and disorazole C1 can be used as a screening profile for each compound, similar 

to microarray reference profiling.  The data from our vinblastine and disorazole C1 screens will 

be used in our current siRNA-mediated compound sensitization profiling.  The principle of this 

technique is that the unique sensitization profile from a compound-driven synthetic lethal siRNA 

screen can be directly compared with the profile of other similar and dissimilar compounds.  

With a battery of compound profiles, it may become feasible to use siRNA screening data to 

predict the mechanism of action of novel small molecule inhibitors and classify the compound by 

its pattern of sensitivity to the druggable genome siRNA library. 

 

MID2 was just one of 34 silencing targets that modulated T98G sensitivity to both 

vinblastine and disorazole C1.  The remaining screening hits identified by this screen could 

potentially predict other mechanisms in GBM for resistance to MDAs, and I am currently 

investigating several of these other targets.  Interestingly, there were a number of siRNA targets 
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that modulated T98G cell sensitivity to only one or the other MDA, illustrating unique, diverse 

responses of each agent on signal transduction pathways.  This differential response may be due 

to the broad array of signaling molecules that interact with microtubules and the diverse effects 

of MDAs on signaling pathways such as the JNK, hedgehog, MAPK, and Wnt networks [82].  

Disruption of microtubules can prevent their ability to position signaling molecules to allow 

signal transduction in these pathways.  Although all MDAs are defined by their effect of 

destabilizing microtubules at high concentrations, different MDAs can elicit different effects in 

the cell, such as disorazole C1 more readily inducing senescence than vinblastine (Brisson, M. et 

al., unpublished) [34].  Microtubules have also been demonstrated to be affected by signaling 

pathways, potentially further contributing to the criss-cross of downstream signal transmission 

[82].  It will be very interesting to tease out the pathway distinctiveness of disorazole C1 and 

vinblastine. 

 

The complexity and multi-factorial nature of GBM make it very challenging to address 

with single agent chemotherapy.  Combination chemotherapy addresses the need to target 

interconnected pathways through mechanistically distinct small molecule inhibitors.  This 

synthetic lethal siRNA screen provides an unbiased tool for probing the druggable genome to 

identify determinants of cellular sensitivity to novel microtubule destabilizing compounds like 

disorazole C1.  Using this screen, I have demonstrated that inhibition of either MID2 or upstream 

PI3K pathway elements is sufficient to sensitize T98G and T24 cells to MDAs, highlighting the 

importance of this PP2A tethering molecule in mediating the effects of this synergy in tumor 

cells with constitutively active PI3K signaling.  Numerous survival-related genes have been 

identified in the PI3K signaling pathway in GBM, making PI3K inhibitors a critical therapy for 
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glioma patients [83].  The application of microtubule disrupting agents in combination with PI3K 

glioma chemotherapy has great potential for patients with GBM.  These results demonstrate the 

ability of this synthetic lethal screen to unveil novel biology that can be exploited to predict 

synergistic drug combinations.  The benefits of this type of predictive screen are uniquely able to 

identify determinants of MDA sensitization while pinpointing the specific molecular target 

regulating that sensitivity. 
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5.0  SYNTHETIC LETHAL SCREENING REVEALS CANCER SPECIFIC 

SYNERGY BETWEEN MICROTUBULE DESTABILIZING AGENTS AND NK1R 

ANTAGONISM 

5.1 INTRODUCTION 

The previous two chapters described the development and application of the synthetic 

lethal siRNA screen.  As described in chapter 4, the screen was used to identify 142 and 152 

genes that, when silenced, enhanced the cytotoxicity of vinblastine and disorazole C1 by greater 

than two standard deviations, respectively.  One of the 34 common hits for both agents was the 

neurokinin 1 receptor (NK1R).  NK1R is also known as the tachykinin 1 receptor, TACR1, or 

the substance P receptor, SPR, and is a member of the G protein-coupled receptor (GPCR) 

family [84].  NK1R is expressed in neuronal, non-neuronal, and non-innervated tissues, both 

normal and neoplastic, and is agonized by neuronal tachykinins, such as substance P, as well as 

by non-neuronal tachykinins, such as hemokinin-1 and endokinins [84-94].  Due to the 

antiapoptotic signaling of NK1R in tumor cells, I hypothesized that antagonism of this receptor 

would inhibit the cytoprotective effect of NK1R in tumor cells, sensitizing them to sub-lethal 

concentrations of antimitotic agents, concentrations that alone would be too low to induce 

apoptosis.  L-733,060, a potent and selective antagonist of NK1R, was selected for synergy 

studies due to its antitumor effect in numerous cancer cell lines.  I demonstrated that low 
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concentrations of L-733,060 greatly sensitized the breast cancer cell line MDA-MB-231 and the 

GBM cell lines T98G and U87 to sub-lethal concentrations of the vinca alkaloids vinblastine, 

vincristine, and vinorelbine.  I also found remarkable synergy between L-733,060 and 

vinblastine in the bladder cancer cell line T24 and the cervical cancer cell line Hela in addition to 

MDA-MB-231, T98G and U87, but only an additive effect in the normal lung fibroblast cell line 

IMR-90.  In contrast to synergy seen between NK1R antagonists WIN-51,708 and L-733,060 

and the MDAs disorazole C1 and vinca alkaloids, I observed additive or antagonistic effects 

when L-733,060 was combined with the microtubule stabilizer paclitaxel and the non-

microtubule targeting agent doxorubicin.  This chapter presents the novel finding that NK1R 

antagonists synergize specifically with MDAs in multiple cancer cell lines.  The lack of 

synergistic cytotoxicity in normal cells illustrates the tremendous potential of this strategy for 

combination chemotherapy for multiple forms of cancer. 

5.2 RESULTS 

5.2.1 NK1R silencing sensitizes T98G cells to MDAs 

Based on my screen of the 16,560-member druggable genome siRNA library in a synthetic lethal 

screen with MDAs using T98G human GBM cells (Table 3), I identified the neurokinin 1 

receptor (also known as NK1R, the tachykinin receptor, TACR1, or the substance P receptor) as 

one of the 34 genes targets that modulated T98G sensitivity to both vinblastine and disorazole C1 

was NK1R.  I observed that siRNA against NK1R sensitized T98G cells to the MDAs 

vinblastine and disorazole C1. (Figure 23B).  Interestingly, silencing NK1R had minimal effect 
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on sensitizing cells to the microtubule stabilizing agent discodermolide, indicating a potential 

specificity of this sensitization towards microtubule destabilizers. 

 

 

 

Figure 23. Silencing NK1R with siRNA sensitizes T98G cells to microtubule destabilizers.    

Bar graphs demonstrate cell viability of T98G cells 2 days after drug treatment (1.2 nM 

vinblastine, 350 pM disorazole C1, 30 nM discodermolide or 0.5% DMSO vehicle). T98G cells 

were treated with compound 48 hours after siRNA transfection. Silencing NK1R with siRNA 

sensitizes T98G cells to low concentrations of vinblastine and disorazole C1, but not 

discodermolide.  Cell viability was measured with CellTiter-Blue and is shown as a percentage 

of the viability of cells transfected with control siRNA. Graphs are representative of data from 

three independent screens. 

 

5.2.2 NK1R antagonist L-733,060 sensitizes T98G cells to MDAs  

The objective of this druggable genome siRNA screen was to identify gene products that 

have commercially available inhibitors, to develop synergistic drug combinations for cancer 

therapy.  The identification of NK1R as a determinant of sensitivity for microtubule disruption 
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was of great interest due to the antitumor properties of NK1R antagonists [95] and the 

availability of numerous commercially available compounds targeting NK1R.  The NK1R 

antagonist L-733,060 was selected for synergy studies with MDAs because this compound has 

antiproliferative activity against human neuroblastoma and glioma cell lines (Figure 24) [96, 97].  

To determine if combinations of the NK1R antagonists and microtubule disruptors were additive, 

synergistic, or antagonistic to cancer cells at different effect levels, I used the combination index 

(CI) method of Chou and Talalay, described in Chapter 2 [47-50].  The combination index 

method of evaluating drug interactions was selected because it incorporated consideration of the 

potencies of each drug and combinations (Dm value), as well as the shape of the concentration-

effect curves (m values), calculating how the experimental effect differs from the effect expected 

with additivity. 

 

 

Figure 24. Chemical structures of the NK1R antagonists L-733,060 and WIN-51,708.    

The combination effects of the NK1R antagonist L-733,060 and the MDAs vinblastine 

and disorazole C1 are represented in Figure 25 and summarized in Table 5.  The combination 

index plot (Figure 25) shows that the combination of L-733,060 plus vinblastine at a 6000:1 (6 

µM L-733,060 to 1 nM vinblastine) ratio achieved a synergistic effect, with the data points of all 
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combinations falling well below a CI value of 1 at 90% (CI = 0.50), 75% (CI = 0.53), and 50% 

(CI = 0.57) levels of cell inhibition.  As predicted from the screen, the combination of L-733,060 

with disorazole C1 was also synergistic.  Exposure of T98G cells to both combinations resulted 

in increasing synergism with increasing effect levels.  The 8x8 grid format of my experiment 

allowed me to test for synergy at multiple compound to compound ratios in any given 

experiment (method described in Chapter 2).  I observed that these two compounds synergize at 

µM:nM ratios of 14:1, 9:1, 6:1, and 4:1 for L-733,060 to vinblastine, respectively, especially 

when higher fractions of cells are affected (Figure 26).  The effect was decreased at ratios 

outside of this range (data not shown). 

 

 

 

 

Figure 25. Synergism between MDAs and NK1R antagonist L-733,060 in T98G cells.    

T98G cells were plated at low density and treated with concentration gradients of 

disorazole C1, vinblastine, vehicle (DMSO), or mixtures thereof in an 8x8 grid of a 96-well plate, 
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providing 64 unique combinations.  Cells were incubated in the presence of compounds for 72 

hours.  Cell viability was measured with CellTiter-Blue.  To quantify the interaction between 

drug treatments, I generated combination index plots of the treatments at constant molar ratios.  

For these curves, CI values of <1, 1 (dotted line), and >1 indicated synergism, additivity, and 

antagonism, respectively. Data were analyzed assuming mutually exclusive drug effects and 

were representative of two or more separate experiments. 

 

CI value at
Cell line Combination EC50 EC75 EC90 r

U87 L7 + VBL (6.3 µM : 1 nM) 0.58 0.49 0.44 0.99
L7 + VEL (1 µM : 4.5 nM) 0.80 0.62 0.53 1.00
L7 + VCR (9.4 µM : 1 nM) 0.86 0.81 0.77 1.00
L7 + PTX (1 µM : 1.3 nM) 1.21 1.37 1.70 0.99
L7 + Dox (4.7 µM : 1 nM) 1.11 1.04 0.98 0.89

T98G L7 + VBL (6.2 µM : 1 nM) 0.57 0.53 0.50 0.99
L7 + DisC1 (6.9 µM : 1 nM) 0.90 0.81 0.73 0.99
L7 + VEL (1 µM : 4.5 nM 0.66 0.56 0.52 1.00
L7 + VCR (4.2 µM : 1 nM) 0.50 0.32 0.21 1.00
L7 + PTX (1 µM : 1.5 nM) 1.01 0.98 0.95 0.99

MDA-MB-231 L7 + VBL (4.2 µM : 1 nM) 0.77 0.84 0.92 0.98
L7 + VEL (1 µM : 6.8 nM) 0.47 0.37 0.31 1.00
L7 + VCR (6.3 µM : 1 nM) 0.89 0.80 0.71 0.98

T24 L7 + VBL (9.4 µM : 1 nM) 0.47 0.39 0.34 0.99
Win + VBL (4.7 µM : 1 nM) 0.96 0.84 0.73 0.99

Hela L7 + VBL (9.3 µM : 1 nM) 0.57 0.52 0.48 1.00
 

Table 5. Concentration-effect relationships and combination index values for 

compound combinations in normal and cancer cell lines. 
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Multiple drug effect analysis was performed using the NK1R antagonist L-733,060 (L7) 

or WIN-51,708 (Win) combination with either one of the four microtubule destabilizing agents,  

vinblastine (VBL), vincristine (VCR), vinorelbine (VEL), or disorazole C1 (DisC1) or the 

microtubule stabilizing agent paclitaxel (PTX) or doxorubicin (Dox).  Experiments were 

performed in six cell lines:  the normal lung fibroblast cell line IMR-90, the breast cancer cell 

line MDA-MB-231, the bladder cancer cell line T24, the cervical cancer cell line Hela, and the 

glioblastoma cell lines T98G and U87.  CalcuSyn was used to quantitatively describe the 

interaction of drug combination and to derive combination index plots (Figures 25, 26, 29, 30, 

and 31).  This table lists the actual experimental values for the combination indices as a function 

of fractional inhibition of cell viability by a mixture of L-733,060 and either a microtubule 

destabilizer or a stabilizer.  Combination index values are listed for three different fractional 

effects, wherein EC50 represents the level of interaction at 50% cell inhibition.  Combination 

index values at <1.0, 1.0, and >1.0 indicated synergy, additivity, and antagonism, respectively.  

“r” is the linear correlation coefficient for the median effect line of the median effect plot.  

Commonly referred to as r value, this value indicates the conformity of the data. 
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Figure 26. Analysis of the combination of vinblastine and L-733,060 in T98G cells at four different 

ratios.    

Combination index plot analysis of the combination of L-733,060 with vinblastine in 

T98G cells at µM:nM ratios of 14.1:1, 9.4:1, 6.3:1, and 4.2:1 for L-733,060 to vinblastine.   

Combination index values at <1.0, 1.0, and >1.0 indicate synergy, additivity, and antagonism, 

respectively. 
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5.2.3 NK1R protein levels in six cell lines 

To provide the molecular basis for the synergy, I next investigated the expression of 

NK1R and the promiscuity of this synergy across normal and cancer cell lines.  NK1R receptors 

are present in numerous glioma, glioblastoma and astrocytoma cell lines, including T98G, U373, 

U87, UC11, and SJ-G4 [85-91].  NK1R expression has also been demonstrated in squamous cell 

carcinoma, pancreatic cancer, human B lymphoblastoma, hepatoma, and breast cancer cell lines 

[86, 95, 98-100].  I used immunoblotting to detect the presence of NK1R in six cell lines:  

normal lung fibroblast IMR-90, glioblastoma T98G and U87, bladder cell carcinoma T24, breast 

adenocarcinoma MDA-MB-231, and cervical cancer Hela cells (Figure 27).  Cells were grown in 

culture and total cell protein extracts were resolved by polyacrylamide gels, then transferred to 

membranes and incubated with an antibody against NK1R.  A band was observed in all five cell 

lines, with a molecular weight correlating with the predicted 53 kDa band for NK1R.  Notably, 

this is the first time NK1R protein expression has been documented in the T24, IMR-90, and 

Hela cell lines. 

Tubulin

NK1R, 53 kDa

U87 T24 MDA-M
B-23

1

HelaIM
R-90

T98
G

 

 

Figure 27. Western blot analysis of NK1R in normal and cancer cell lines.    
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Immunoblotting was used to detect relative amounts of NK1R protein in six cell lines:  

normal lung fibroblast IMR-90, glioblastoma T98G and U87, bladder cell carcinoma T24, breast 

adenocarcinoma MDA-MB-231, and cervical cancer Hela cells.  The mass of NK1R has been 

reported to be 53 kDa. 

5.2.4 Promiscuity of synergy in five cancer cell types  

Due to the high levels of NK1R expression in these cancer cell lines, I sought to 

demonstrate the synergy of NK1R antagonism with microtubule disruption in these cells by 

combining vinblastine and L-733,060 at a constant ratio over multiple effect levels.  L-733,060 

was used due to its wide range of cytotoxic activity against various cell lines, including human 

glioma, neuroblastoma, retinoblastoma, laryngeal, melanoma, and pancreas carcinoma cell lines 

[96, 97, 101-104].  However, to our knowledge L-733,060 has not been previously reported to be 

cytotoxic in our particular cell lines.  Treatment of T98G, U87, Hela, T24, and MDA-MB-231 

cancer cells with L-733,060 resulted in a concentration-dependent cytotoxicity (Figure 28).  I 

then performed combination studies to plot the CI curve for vinblastine plus L-733,060 in each 

of these cell lines (Figure 29).  As predicted, the combination yielded optimal synergistic 

inhibition of cell proliferation in U87, MDA-MB-231, T24, and Hela, at µM L-733,060 : nM 

vinblastine ratios of 6:1, 4:1, 9:1, and 9:1, respectively. 
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Figure 28. Inhibition of cancer cell viability by NK1R receptor antagonist L-733,060.    

Cell viability of T98G, U87, Hela, T24, and MDA-MB-231 cancer cells 72 hours 

following the addition of increasing concentrations of L-733,060.  Cell viability was measured 

with CellTiter-Blue and is shown as a percentage of the viability of cells treated with vehicle 

(0.5% DMSO).  Values are means + SD (bars) from independent experiments.  Number of 

experiments per cell line represented:  T98G n=10, U87 n=10, T24 n=4, Hela n=1, and MDA-

MB-231 n=4.   
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Figure 29. Synergy of vinblastine and L-733,060 in T98G in four different cancer cell lines.    

Combination index plots for the combination of L-737,060 with vinblastine in U87 

glioblastoma (6.3 µM : 1 nM), MDA-MB-231 breast cancer (4.2 µM : 1 nM), Hela cervical 

cancer (9.4 µM : 1 nM), and T24 bladder cancer cells (9.4 µM : 1 nM).  Combination index 

values at <1.0, 1.0, and >1.0 indicated synergy, additivity, and antagonism, respectively. 
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5.2.5 L-733,060 specifically sensitizes cancer cells to MDAs. 

Since cancer cells were sensitized to vinblastine and disorazole C1 by NK1R siRNA and 

NK1R antagonism, I questioned whether this interaction was specific to these two agents, or was 

common among other microtubule destabilizers and stabilizers.  Therefore, I tested two 

additional MDAs, vincristine and vinorelbine, and one microtubule stabilizer, paclitaxel, for 

potential cooperative cytotoxicity with L-733,060.  Combination index studies confirmed that L-

733,060 combined with either vincristine or vinorelbine was synergistic in U87, MDA-MB-231, 

and T98G cancer cell lines (Figure 30).  However, the combination of a microtubule stabilizing 

agent, paclitaxel, was additive in T98G cells and antagonistic in U87 cell lines (Figure 31).  

These results suggested that the synergy between NK1R antagonism and MDAs was not shared 

by microtubule stabilizing agents. 
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Figure 30. Combination index plot analysis of L-733,060 combined with the vinca alkaloids 

vincristine and vinorelbine.    

(A) Combination index plots for the combination of L-733,060 with vinorelbine (ratio 1 

µM : 6.8 nM) or vincristine (ratio 6.3 µM : 1 nM) in MDA-MB-231 cells.  (B) Combination 
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index plots for the combination of L-733,060 with vinorelbine (ratio 1 µM : 4.5 nM) or 

vincristine (ratio 9.4 µM : 1 nM) in U87 cells.  (C) Combination index plots for the combination 

of L-733,060 with vinorelbine (ratio 1 µM : 4.5 nM) or vincristine (ratio 4.2 µM : 1 nM) in 

T98G cells.  Combination index values at <1.0, 1.0, and >1.0 indicate synergy, additivity, and 

antagonism, respectively. 

 

 

 

 

Figure 31. Analysis of the combination of paclitaxel and L-733,060 in two glioblastoma cell lines.    

Combination index plots for the combination of L-733,060 with paclitaxel in T98G cells 

(ratio 1 µM : 1.5 nM) and U87 cells (ratio 1 µM : 1.3 nM).  Combination index values at <1.0, 

1.0, and >1.0 indicate synergy, additivity, and antagonism, respectively. 
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5.2.6 Visualization of combination treatment effects on intracellular tubulin and nuclei by 

immunofluorescence. 

After calculating cell viability for 96-well plates, the cells in all wells were 

simultaneously fixed and stained for ten minutes with a PBS solution containing 4% 

formaldehyde and 1.2 µg/mL Hoescht 33342.  This nuclear staining provided a means to count 

cells by nuclei to confirm cell viability reads, and also allowed visual inspection of nuclear 

shape, chromatin condensation, and multinucleation in the presence of compound.  To observe 

the effects of individual compound and combination treatment on cellular microtubule structure, 

I incubated the treated, fixed cells with immunofluorescent antibodies against tubulin.  Figure 

32A illustrates MDA-MB-231 breast cancer cells treated with either vehicle, 1.2 nM vinblastine, 

7.4 µM L-733,060, or the combination of vinblastine and L-733,060.  As described in Chapter 2, 

the final DMSO concentration of in all wells was 0.5%.  As seen in the figure, breast cancer cells 

treated with low concentrations either vinblastine or L-733,060 alone did not inhibit cell growth 

or proliferation, and the cells are visually healthy with uniform nuclei and well organized 

tubulin.  However, interaction of the two agents in MDA-MB-231 cells induces a heterogeneous 

response of tubulin disorganization, cell rounding, and multinucleation, possibly suggesting 

mitotic slippage.  The amorphous, rounded cellular appearance in the dual compound treatment 

is a hallmark of microtubule destabilization, which we hypothesized reflected sensitization of the 

breast cancer cells to concentrations of vinblastine [105].  Figure 32B presents the cell viability 

of the four wells from which these photos were taken, measured prior to fixing and staining. 
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Figure 32. Quantification and visualization of MDA-MB-231 cells treated with a NK1R antagonist 

plus a vinca alkaloid.    
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Immunofluorescence images (A) and cell viability (B) of MDA-MB-231 breast cancer 

cells treated with vehicle (DMSO), 7.4 µM L-733,060 (L7), 1.2 nM vinblastine (VBL), or a 

combination of 7.4 µM L-733,060 and 1.2 nM vinblastine. 

5.2.7 The combination of L-733,060 and MDAs is not synergistic in normal lung 

fibroblasts. 

To determine the limits of the synergy between microtubule destabilizers and L-733,060, 

I tested numerous cell lines and compound combinations, summarized in Table 5.  To confirm 

that the synergy was due to L-733,060 mediated antagonism of NK1R, I also showed that the 

NK1R antagonist WIN-51,708 also synergized with vinblastine, with combination index plot 

data points falling well below a CI value of 1 at 90% (CI = 0.73), 75% (CI = 0.84), and 50% (CI 

= 0.96) levels of cell inhibition.  To test whether the synergy of L-733,060 was limited to 

microtubule targeted drugs, I combined the DNA intercalating compound doxorubicin with L-

733,060, yielding only an additive response (Table 5). 

 

The use of NK1R inhibition in cancer therapy is of great interest due to potential 

selectivity in cancer cells.  Notably, NK1R is overexpressed in tumorigenic breast cancer cell 

lines relative to nontumorigenic breast cancer cell lines [86].  Since the goal of our research was 

to identify novel drug combinations for cancer therapy, I sought to determine whether the 

interaction of vinca alkaloids and L-733,060 would produce synergistic toxicity in normal cells.  

I repeated the synergy studies of vincristine and L-733,060 in normal lung fibroblast IMR-90 

cells at multiple ratios and effect levels, and found that the combination was not synergistic in 

this cell line.  To confirm the cell viability data used to measure synergy, I fixed and stained 
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IMR-90 cells following the synergy study to visualize tubulin structure, nuclei shape and cell 

morphology following treatment of IMR-90 cells with vincristine and L-733,060 (Figure 33).  

Figure 33A illustrates the results when IMR-90 cells were treated with either vehicle, 1.2 nM 

vincristine, 7.4 µM L-733,060, or the combination of vincristine and L-733,060.  Unlike the 

MDA-MB-231 breast cancer cells, the IMR-90 cells appeared healthy, with organized tubulin 

even with the combination treatment.  Figure 33B reports the cell viability for these conditions, 

measured prior to fixing and staining.  These data suggested that drug combinations targeting 

microtubules in tandem with NK1R antagonism represented a valuable strategy for specific 

targeting of cancer cells. 
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Figure 33. Quantification and visualization of IMR-90 cells treated with a NK1R antagonist plus a 

vinca alkaloid.    
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Immunofluorescence images (A) and cell viability (B) of normal lung fibroblast IMR-90 

cells treated with vehicle (DMSO), 7.4 µM L-733,060 (L7), 1.2 nM vincristine (VCR), or a 

combination of 7.4 µM L-733,060 and 1.2 nM vincristine. 

 

5.3 DISCUSSION 

I performed synthetic lethal screening to identify genes that, when silenced, would 

sensitize cancer cells to MDAs.  The goal of this research was to identify druggable protein 

targets for pharmacological inhibition and to replicate the MDA sensitization observed with the 

target siRNA.  I discovered that silencing NK1R sensitized T98G cells to non-toxic 

concentrations of both vinblastine and disorazole C1.  The use of NK1R inhibition in cancer 

therapy is of great interest due to potential selectivity in cancer cells.  Notably, NK1R is 

overexpressed in tumorigenic breast cancer cell lines relative to nontumorigenic breast cancer 

cell lines [86].  In addition, NK1R activity influences numerous life and death signaling 

pathways in both normal and neoplastic cells. 

5.3.1 NK1R in normal cells: agonists and antagonists. 

The tachykinin substance P (SP), also known as neurokinin 1 (NK1), is the preferential, 

but not exclusive, ligand for NK1R, agonizing neurotransmission [94].  Substance P (SP) was 

long considered to be the main pain neurotransmitter of pain [95, 106].  Later, SP was classified 

into the tachykinin family with other peptides containing the amino acid consensus sequence 
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FxGLM-NH2 at their C-terminus [90].  Tachykinins were traditionally viewed as peptides 

expressed by neuronal cells, however, there is now evidence for tachykinin expression in non-

neuronal cells, such as endothelial, muscle, and inflammatory cells [92], such as the tachykinins 

hemokinin 1 and endokinins, which exhibit selectivity for NK1R [93].  Thus NK1R acts as 

receptor for ligands derived from both neuronal and non-neuronal cells, and itself is expressed in 

tissues other than the brain, including endothelial cells, muscle cells, inflammatory cells, and in 

different parts of the female reproductive system [84, 91, 92]. 

 

NK1R antagonism is clinically very beneficial, and numerous NK1R antagonists have 

been developed.  The NK1R antagonist L-754,030 (aprepitant) is a widely used anti-emetic, 

preventing chemotherapy induced nausea in cancer patients [107-109].  The NK1R antagonists 

CP96345 and SR140333 have demonstrated anti-inflammatory properties in astroglioma cells 

and in mouse autoimmune encephalomyelitis, respectively [110, 111].  Several NK1R 

antagonists have provided an analgetic effect in mice (FK888) and in humans (CP99994) [112, 

113].  Interestingly, NK1R antagonists have also been shown to have antiproliferative properties. 

5.3.2 NK1R antiapoptotic signaling:  NK1R as a drug target for cancer. 

Several studies have shown NK1R antagonists can inhibit NK1R mediated tumor cell 

proliferation.  SP is implicated in inducing mitogenesis of human astrocytoma cells, through 

activation of mitogen-activated protein kinase (MAPK) signaling pathway through NK1R [114].  

DeFea et al. demonstrated that SP induces expression of antiapoptotic Bcl-2 and protects cells 

against apoptosis, dependent on NK1R and ERK1/2 signaling [115].  NK1R agonists activate 

ERK1/2 by the formation of a complex of NK1R, β-arrestin and ERK1/2 at the plasma 
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membrane [115].  The activated ERK1/2 translocates to the nucleus to induce proliferation and 

protect cells from apoptosis [114, 115].  The protective antiapoptotic effects of SP through 

NK1R in human colonocytes and rat cerebellar granule cells is mediated through Akt-activation, 

preventing apoptosis [116, 117].  SP promotes tumor cell proliferation in human retinoblastoma, 

breast carcinoma, neuroblastoma, glioma, and pancreatic cancer cells [96-98, 103, 104, 118].  

NK1R antagonists inhibit tumor cell proliferation in these cell lines, as well as in human small 

cell lung cancer, suggesting that the proliferative and protective effects of SP in cancer cells is 

through NK1R [119].  NK1R overexpression in breast cancer and in the GBM cell line T98G 

further suggests a potential role for NK1R in tumor growth, supporting NK1R as a potential drug 

target for cancer therapy [86, 91]. 

5.3.3 Synergy between MDAs and NK1R antagonists. 

The proliferative and antiapoptic signaling by NK1R provides a possible explanation for 

the synergy observed between NK1R antagonists and MDAs.  MDAs like vinblastine trigger 

apoptotic signaling through JNK, and modulation of MAPK pathway elements can enhance or 

inhibit MDA-induced apoptosis.  The pro-death JNK/AP-1 pathway is required for vinblastine-

mediated apoptosis, while ERK pathway inhibition by the upstream MEK inhibitor U0126 

strongly potentiates vinblastine-mediated apoptosis [36, 120].  Similarly, I hypothesized that the 

proliferative and antiapoptotic signaling of NK1R inhibited the apoptotic signaling of MDAs.  

Therefore, the NK1R antagonist L-733,060 sensitized cancer cells to MDA-mediated inhibition 

of cell viability by reducing this antiapoptotic NK1R signaling, potentiating vinblastine-induced 

cell death.  It would be valuable to explore the effects of the combination of MDAs and NK1R 

antagonists on MAPK pathway elements ERK, JNK, and AP-1, and to determine if ERK, JNK, 
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or AP-1 are necessary for this synergistic toxicity in cancer cell lines containing NK1R.  

Elucidating the underlying mechanisms of this interaction may help assessment of the clinical 

relevance of this novel, synergistic combination. 

5.3.4 Potential cancer cell specificity. 

The cytotoxic combination synergy of microtubule disrupting agent and NK1R 

antagonism was observed with the cancer cell lines but we found only additive effects with 

normal cells (Figures 32 and 33, and Table 5).  Because NK1R protein was detected in both 

normal and cancer cell lines (Figure 27), it was unlikely that the cancer specific synergy was due 

to NK1R levels.  The NK1R receptor may be activated by autocrine signaling in the cancer cells, 

making L-733,060-mediated NK1R antagonism more pronounced in cancer cells, similar to 

autocrine and paracrine stimulation of EGFR signaling in cancer [121-124].  It was also possible 

that the cancer cell lines I used were more dependent on microtubule dynamics than the normal 

lung fibroblast cell line, making the cancer cells more vulnerable to microtubule targeting drugs 

[31].  The specificity of this synergy to cancer cells and not normal cells suggested that this 

combination could be useful for cancer combinatorial chemotherapy.  However, experiments in 

other normal cell lines and animal models will be required to confirm cancer specificity with 

minimal normal cell toxicity. 

 

Interestingly, NK1R antagonist treatment sensitized cancer cells to the microtubule 

destabilizer vinblastine, but not to the microtubule stabilizer paclitaxel (Figure 31).  Recent 

research by Kolomeichuk et al. revealed distinct signaling pathways of microtubule inhibitors, 

noting that apoptotic cell death by vinblastine was AP-1-dependent, which death by paclitaxel 
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was through an AP-1-independent mechanism [37].  Over-expression of transcription factors 

such as AP-1 contribute to the enhanced survival, radioresistance, and chemoresistance of GBM 

[125].  Given the role of AP-1 activation by NK1R signaling, inhibition of AP-1 activation by 

NK1R antagonists could explain why cells are so sensitive to the AP-1-dependent cell death 

mechanism of vinca alkaloids but not paclitaxel [126, 127]. 
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6.0  CONCLUSION 

Despite the availability of 132 FDA-approved anticancer drugs, tumor recurrence within the 

treatment dosing range in a majority of GBM patients emphasizes the fact that we need better 

chemotherapeutic agents or strategies.  To identify novel potential cancer chemotherapy 

combinations, I developed a synthetic lethal siRNA screen and used it to identify genes and 

networks that modulate tumor cell sensitivity to sub-lethal concentrations of two microtubule 

perturbing agents, vinblastine and disorazole C1.  I identified 34 genes whose silencing enhanced 

the cytotoxicity of both vinblastine and disorazole C1 in T98G GBM cells.  The protein products 

of these genes represent potential drug targets for sensitizing T98G cells to MDAs, with great 

potential for synergistic cytotoxicity. 

 

The final aim of this dissertation was to determine if pharmacological inhibition of 

screening hits could potentiate MDA mediated cancer cytotoxicity.  I anticipated that functional 

inhibitors of the biological functionality of the identified target proteins would enhance the 

cytoxic actions of either vinblastine or disorazole C1 against human GBM.  To this end, I 

selected several candidate compounds against identified hits for synergism study.  Two candidate 

targets were selected from the list of siRNA hits based on the biology of the expressed protein 

and the commercial availability of compounds against that protein: MID2 and NK1R. 
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The candidate MID2 was selected in light of its role as a tether of the phosphatase PP2A 

to the microtubules.  I was intrigued that silencing this tether sensitized cancer cells to MDAs, 

but MID2 has no known enzymatic activity that would be the target for pharmacologic 

inhibition.  Although it is theoretically possible to seek direct inhibitors of the PP2A-α4-MID2-

microtubule interaction, I decided to instead disrupt PP2A association with microtubules by 

targeting upstream PI3K/AKT pathway regulators of α4 phosphorylation, to prevent PP2A 

association with MID2 at the microtubules.  A reasonable number of PI3K/AKT inhibitors are 

currently in early and advance stage clinical development.  I confirmed that silencing MID2 

induced tau hyperphosphorylation, a predictable result of microtubule destabilization.  Moreover 

I demonstrated that the PI3K inhibitors wortmannin, LY-294,002, and PX866 sensitized T98G 

cells to both disorazole C1 and vinblastine.  The use of PX866 with vinblastine was also 

synergistic toxic in the bladder cancer cell line T24, which like T98G, has constitutively active 

PI3K, which I hypothesize was necessary for this combination.  Thus, even molecular targets 

that are not immediately druggable can be addressed by focusing on proximal regulators. 

 

siRNA against the tachykinin receptor NK1R sensitized T98G cells to both disorazole C1 

and vinblastine.  This screening hit was selected for further study due to its expression in many 

cancer types, the antiproliferative  properties of NK1R antagonists (Esteban, Munoz et al. 2006), 

and the availability of several commercially available compounds targeting NK1R.  The NK1R 

antagonist L-733,060 was selected for synergy studies with MDAs because this compound has 

cytotoxic activity against human glioma, neuroblastoma, retinoblastoma, laryngeal, melanoma, 

and pancreas carcinoma cell lines [96, 97, 101, 103, 104].  I hypothesized that an antagonist of 

NK1R should emulate the sensitization seen with siRNA against NK1R.  I confirmed this with 
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combination studies showing that the NK1R antagonist L-733,060 sensitized T98G cells to both 

disorazole C1 and vinblastine.  I demonstrated that L-733,060 combined with vinblastine was 

synergistic in T98G cells at multiple combination ratios and fraction levels.  To confirm studies 

by other researchers that NK1R is located in non-neuronal cancer tissues [85, 86, 91, 95, 98, 

100], I demonstrated NK1R protein levels in T98G, U87, MDA-MB-231, Hela, T24, and IMR-

90 cell lines.  I demonstrated that L-733,060 combined with vinblastine was synergistic for 

inhibition in all five of these NK1R-possessing cancer cell lines, but not in IMR-90 cells, 

suggesting that this combination may be more potent in NK1R-overexpressing cancer cells.  The 

NK1R antagonist WIN-51,708 also sensitizes T98G cells to vinblastine.  Further, I discovered 

that L-733,060 sensitizes cancer cells to other microtubule disrupting agents, including 

vincristine and vinorelbine, but not the microtubule stabilizer paclitaxel nor the DNA 

intercalating agent doxorubicin.  These results reveal that it is the functional signaling associated 

with NK1R rather than the structural aspects of the protein that are important for the synergy.  

Moreover, the potent and novel interaction between two classes of small molecule inhibitors, the 

MDAs and the NK1R antagonists, might be clinically useful as NK1R antagonists have been 

approved by the FDA for chemotherapy induced emesis.  My studies demonstrate the utility of 

this synthetic-lethal siRNA screening to predict novel collaborations between different classes of 

compounds for cancer chemotherapy. 
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