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Parkinson’s disease (PD) neurodegeneration is characterized by loss of the dopaminergic cells of 

the substantia nigra, and has been linked to oxidative stress and mitochondrial dysfunction.  The 

reactive neurotransmitter dopamine (DA) may play a role in neuronal vulnerability.  DA 

oxidation has been shown to elicit dopaminergic toxicity in animal models, covalently modify 

proteins, and affect mitochondrial function.  However, mitochondrial protein targets of DA 

modification are unknown.  In this study, I utilized proteomic techniques to identify and 

characterize mitochondrial proteins altered following in vitro exposure to DA oxidation.  Using 

two-dimensional difference in-gel electrophoresis and mass spectrometry analyses, I identified a 

subset of mitochondrial proteins that exhibited decreased abundance following exposure of 

isolated rat brain mitochondria to DA quinone (DAQ).  Losses of two of these proteins, 

mitochondrial creatine kinase (MtCK) and mitofilin were further confirmed by Western blot 

analyses.  Western blot also confirmed significant decreases of these two proteins in 

differentiated PC12 cells exposed to DA.  I next utilized two-dimensional gel electrophoresis 

with autoradiography to identify proteins covalently modified by DAQ.  I identified a subset of 

proteins covalently modified by 14C-DA from rat brain mitochondria exposed to 14C-DAQ and 

from differentiated SH-SY5Y cells exposed to 14C-DA.  Proteins including 
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mortalin/GRP75/mtHSP70, subunits of Complex I, MtCK, and mitofilin, amongst other proteins, 

were found to be covalently modified.  We chose to further examine mitofilin, a protein 

implicated in maintaining mitochondrial structure.  To characterize the effect of altered mitofilin 

levels on cell viability, I utilized overexpression and knockdown techniques to modulate 

mitofilin expression in dopaminergic cell lines, differentiated PC12 and SH-SY5Y cells, and 

examined their response to dopaminergic toxins, DA and rotenone.  I found that increased 

mitofilin expression was protective against both DA- and rotenone-induced toxicity in both cell 

lines, and decreased mitofilin enhanced DA-induced toxicity in differentiated SH-SY5Y cells.  

Therefore, in this thesis, I identified a subset of mitochondrial and cellular proteins that are 

potential targets of DA-induced modification, and may have roles in PD pathogenesis.  

Modulating the expression level of one of these proteins, mitofilin, affected the cellular response 

to toxins, and may play a role in dopaminergic cell vulnerability. 
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1.0  INTRODUCTION 

1.1 PARKINSON’S DISEASE 

Parkinson’s disease (PD) was first described in 1817 by James Parkinson in “An Essay of 

the Shaking Palsy” (Parkinson, 1817).  In the nearly 200 years that have passed since recognition 

of this neurological disorder, great strides have been made to characterize and identify disease 

pathology, clinical symptoms, and therapeutic treatment, but a cure has yet to be identified.  

Epidemiological studies and laboratory research have long sought to find potential causes of this 

prevalent disease (Khandhar and Marks, 2007).  Though the underlying mechanism of PD 

pathogenesis remains elusive, several environmental and genetics factors have been linked to 

PD, suggesting agents and biological pathways that promote PD pathogenesis.  Identifying and 

understanding the etiology of PD progression is key to development of new therapeutics for 

disease treatment. 

1.1.1 Clinical and Pathological Characteristics of PD 

Parkinson’s disease is not selective for race or region.  The overall prevalence of PD has 

been estimated by various studies, and varies somewhat depending on methodology (de Lau et 

al., 2004; Khandhar and Marks, 2007).  Age appears to be a factor in disease prevalence, with 

rates of 1-2% in persons over 65 years of age and increasing to 4-5% or higher after age 85 (de 
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Lau et al., 2004; reviewed in Weintraub et al., 2008).  Additionally, studies suggest that 

prevalence rates are higher for men than women (de Lau et al., 2004; Van Den Eeden et al., 

2003).   

Clinical symptoms of the disorder typically include a range of movement disorders, 

postural deficits, and non-motor symptoms.  Cardinal motor features include slow movement 

(bradykinesia), rigidity, and resting tremor.  Patients also exhibit postural instability and slow, 

shuffled gate when walking.  Most patients (75-90%) present initially with an asymmetric resting 

tremor in the upper distal extremity, presenting as a “pill-rolling” motion of the forefinger and 

thumb (Pallone, 2007; Weintraub et al., 2008).  Non-motor symptoms involved in PD include 

autonomic dysfunction, impacting cardiovascular, gastrointestinal, and bladder function, among 

others (Pallone, 2007; Weintraub et al., 2008).  Neuropsychiatic symptoms, including depression 

and dementia, impulse control disorders, sleep disorders, and marked olfactory dysfunction are 

also associated with PD (Barbas, 2006; Pallone, 2007; Weintraub et al., 2008; Weintraub and 

Stern, 2005).  Thus, while motor deficits can be among the more debilitating symptoms of the 

disease (Pallone, 2007), PD is clearly a disease impacting function and quality of life for the 

entire body and mind.  

Multiple brain regions are involved in PD, as noted by the development of proteinaceous 

cytoplasmic inclusions called Lewy bodies in select neuronal types and populations.  Lewy body 

deposition in association with PD appears before motor symptoms, and initiates in the dorsal 

motor nucleus and olfactory bulb regions of the brain (Braak et al., 2003; Braak et al., 2004).  

Lewy body formation progresses through the locus coeruleus, substantia nigra, and eventually 

involves the mesocortex and cortex, with long-axon, high-energy expenditure neurons being 
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particularly vulnerable (Braak et al., 2003; Braak et al., 2004).  Thus, PD is a progressive disease 

involving the entire brain. 

The hallmark pathology of PD, and the major contributor to the debilitating motor 

symptoms of the disease, is the loss of pigmented dopaminergic neurons in the substantia nigra 

pars compacta (SN) and their projections to the caudate and putamen (reviewed in Samii et al., 

2004).  This neuron loss ultimately leads to significantly decreased striatal dopamine (DA) 

levels, with reduction by 60% to 70% from normal levels at the time of diagnosis (Schapira, 

2006) corresponding with movement disorders early in the disease.  At death, DA loss was found 

to vary in specific regions of the basal ganglia, with 51-82% loss in the globus pallidus, and 89-

98% loss in the caudate and putamen, respectively (Rajput et al., 2008).  In early stages of the 

disease, motor symptoms respond well to treatment with the DA precursor, 3,4-dihydroxy-L-

phenylalanine or levodopa (L-DOPA), but the effectiveness of DA replacement eventually wanes 

in many patients.  Surviving neurons in PD are also characterized by the presence of Lewy 

bodies (reviewed in Samii et al., 2004), suggestive of ongoing protein aggregation. 

Compared to other brain regions, the SN is interesting in that the SN DAergic neurons are 

lost normally with age, with up to 50% loss by age 70 (McGeer et al., 1977).  It has been 

suggested that neurons can compensate for loss by increasing DA production and turnover in the 

remaining neurons, or promoting neurite outgrowth (Fornstedt et al., 1990).  Whether these 

compensatory mechanisms are protective against neuronal deficits or contributing to neuronal 

loss is not known.  Nevertheless, there is a threshold of DA and dopaminergic neuron loss that 

leads to the motor symptoms of PD. 
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1.1.2 Idiopathic PD 

Most PD cases are idiopathic, and are more or less similar in pathological and clinical 

characteristics from patient to patient.  Such similarity in symptomology and pathology suggests 

a common mechanism, though no one initiator or risk factor has been identified.  Thus it is 

believed that the cause may be due to genetic or environmental factors, or a combination of the 

two (Thomas and Beal, 2007).  Toxic exposures, including industrial chemical exposure, 

exposure to heavy metals, and pesticide and herbicide exposure from farming, in well water, or 

living in a rural environment have all been suggested to increase PD risk (Gorell et al., 1997; 

Kamel et al., 2007; Olanow and Tatton, 1999; Powers et al., 2003; Powers et al., 2006; Powers et 

al., 2008).  Genetic links have also been suggested to contribute to sporadic PD risk, including 

polymorphisms in mitochondrial DNA (mtDNA) and mitochondrial respiration enzymes 

(Sheehan et al., 1997; Swerdlow et al., 1996; Trimmer et al., 2004; van der Walt et al., 2003).  

Despite years of study, however, the mechanism initiating degeneration in PD is still unknown, 

and no strong connection between any of the above factors and idiopathic PD has been 

established.  However, a number of genes have been identified in connection with rare familiar 

forms of PD.  Study of these familial forms of PD is providing insights to the potential 

mechanisms of the disease. 

1.1.3 Familial Forms of PD and What They Teach Us 

Familial forms of PD linked to single gene mutations have been identified, but are 

estimated to make up only 10% or less of total PD cases (Thomas and Beal, 2007).  

Nevertheless, these rare genetic mutations give us a glimpse into the underpinnings of PD 
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pathogenesis.  Multiple gene loci have been associated with familial forms of PD, which are 

designated as PARK1-PARK13.  Of these, mutations in specific genes have been identified for 

nine, including the autosomal-dominant inheritance associated with alpha-synuclein (PARK1 

and 4), UCH-L1 (PARK5), and LRRK2 (PARK8); autosomal recessive inheritance associated 

with parkin (PARK2), PINK1 (PARK6), DJ-1 (PARK7) and ATP13A2 (PARK9); and increased 

risk associated with mutations in Omi/HTRA2 (PARK13) (reviewed in Thomas and Beal, 2007).  

Numerous studies are beginning to decipher the roles for gene mutations in PD pathogenesis, and 

have provided a wealth of information on potential mechanisms in the etiology of PD.  

Interestingly, many of these genes and their resulting proteins link mitochondria and oxidative 

stress with PD, two factors strongly associated with PD pathogenesis (Thomas and Beal, 2007).  

These include the proteins alpha-synuclein, parkin, PINK1, DJ-1, and Omi/HtrA2. 

 

Alpha-Synuclein - Oxidative stress, Aggregation, and Mitochondrial instability 

Alpha-synuclein is a presynaptic protein of unknown function, though it has been 

associated with several cellular processes, including roles in vesicle storage and recycling 

(Abeliovich et al., 2000; Yavich et al., 2004), as a chaperone (Ahn et al., 2006; Kim et al., 2000; 

Ostrerova et al., 1999; Souza et al., 2000), and in regulating DA biosynthesis (Perez et al., 2002; 

Tehranian et al., 2006).  Mutations in the alpha-synuclein gene were the first direct genetic links 

to PD discovered (Polymeropoulos et al., 1997) and are thought to account for only a small 

portion of familial PD cases (Vaughan et al., 1998; Wang et al., 1998).  Evidence indicates that 

alpha-synuclein is prone to aggregation, which was found to be augmented by the genetic 

variations associated with PD, and by oxidative and nitrative modifications (Conway et al., 1998; 

Giasson et al., 2000; Giasson et al., 2001; Paxinou et al., 2001).  Alpha-synuclein aggregates 
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form fibrillar deposits, which are major components of Lewy bodies and Lewy neurites, 

pathogenic hallmarks of PD (Baba et al., 1998; Spillantini et al., 1998).  Mice overexpressing a 

A53T mutant form of human alpha-synuclein also displayed mitochondrial abnormalities 

associated with aberrant aggregation of alpha-synuclein in brainstem and spinal cord neurons 

(Martin et al., 2006).  Overexpression of mutant alpha-synuclein also increased the sensitivity of 

mice to mitochondrial toxins, such as 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP), 

while mice lacking alpha-synuclein were more resistant to mitochondrial toxins (Dauer et al., 

2002; Klivenyi et al., 2006; Nieto et al., 2006).  Thus, while sensitive to oxidative stress and 

aggregation, aberrant accumulation of alpha-synuclein also appears to play a role in 

mitochondrial stability, linking these factors together in association with PD pathogenesis. 

 

DJ-1 – Antioxidant Function and Mitochondrial Localization 

While the specific function of the ubiquitous, conserved protein DJ-1 remains unknown, 

various studies have implicated this protein in an oxidative stress response and antioxidant 

mechanisms.  The antioxidant properties of DJ-1 may be attributed to the protein’s own 

susceptibility to oxidation (Wilson et al., 2003).  In cell culture, DJ-1 prevented H2O2-induced 

toxicity by oxidizing itself as indicated by a shift in the isoelectric point of the protein (Taira et 

al., 2004).  Further study revealed that the residue cys-106 is selectively modified to a cysteinyl 

sulfinic acid in the oxidized form of DJ-1 (Canet-Aviles et al., 2004).  In addition, siRNA-

induced downregulation of DJ-1 expression or expression of mutant DJ-1 resulted in an 

increased susceptibility to H2O2 and ER stress in cells (Takahashi-Niki et al., 2004; Yokota et al., 

2003).  Thus DJ-1 appears to be a strong candidate as an antioxidant protector.  Though 

primarily cytosolic, DJ-1 has also been shown to localize within the matrix and intermembrane 
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space of the mitochondria in mouse brain (Zhang et al., 2005), and associate with the 

mitochondrial chaperone mortalin/GRP75/mtHSP70 (Li et al., 2005), though with unknown 

function.  It has also been demonstrated in cell culture that following oxidative stress, cytosolic 

DJ-1 translocated to the mitochondria (Lev et al., 2008), though the mechanism involved or the 

function of DJ-1 once in the mitochondria is unknown.  It has been hypothesized that DJ-1 

serves as a sensor of oxidative stress, and thus may respond to mitochondrial-generated ROS in 

times of mitochondrial distress in order to protect against further oxidative damage (Dodson and 

Guo, 2007). 

 

Parkin, PINK1, and Omi/HtrA2 

Parkin is an E3 ubiquitin ligase protein that plays a role in the ubiquitin-dependent 

proteasome pathway, and mutations in parkin have been associated with dysfunction in the 

protein degradation pathway (Kitada et al., 1998; Shimura et al., 2000; Zhang et al., 2000).  It 

was previously hypothesized that parkin mutations exhibited their toxic effects through 

deficiencies in the proteosome pathway (Kahle and Haass, 2004).  However, studies suggest that 

parkin also has proteasome-independent roles affecting multiple cellular functions (Dodson and 

Guo, 2007; Thomas and Beal, 2007).  Parkin loss-of-function mutants in Drosophila exhibited 

increased sensitivity to oxygen radical stress and severe mitochondrial damage in muscle and 

germline tissues that included swollen mitochondria and fragmented cristae (Greene et al., 2003; 

Pesah et al., 2004), suggesting a role for parkin in mitochondrial stability.  Further, 

mitochondrial respiratory defects have been noted in brains of knockout mice, in association with 

oxidative stress (Palacino et al., 2004), and in leukocytes from PD patients with parkin mutations 

(Muftuoglu et al., 2004).  Recent studies have strengthened the role of parkin in mitochondrial 
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function through its association with the PD-related mitochondrial protein PINK1 (Clark et al., 

2006; Park et al., 2006a).   

The PTEN-induced putative kinase 1 protein, PINK1, is a nuclear-expressed 

mitochondrial serine protease, directly linking a mitochondrial protein with PD pathogenesis.   

Little is known about the function of PINK1. Valente et al. and others hypothesized that PINK1 

may be responsible for phosphorylation of mitochondrial proteins in times of cellular stress, and 

may have a role in protein stability (Beilina et al., 2005; Leutenegger et al., 2006; Valente et al., 

2004).  Loss-of-function PINK1 mutant Drosophila exhibited increased susceptibility to stress, 

decreased cellular ATP levels, reduced mtDNA content and mitochondrial morphological defects 

(Clark et al., 2006; Park et al., 2006a; Yang et al., 2006).  Interestingly, the mitochondrial 

morphologies and tissues in which they were exhibited were noted to be remarkably similar to 

those of parkin mutant Drosophila.  Studies showed that parkin overexpression completely 

rescued the effect of the loss of PINK1, but not the other way around (Clark et al., 2006; Park et 

al., 2006a; Yang et al., 2006), while double knockouts exhibited the same level of deficits as 

either model alone (Clark et al., 2006; Park et al., 2006a).  These studies suggest that the PD 

related proteins parkin and PINK1 participate in a related pathway to effect mitochondrial 

function and stability, in which parkin is downstream of PINK1 (Dodson and Guo, 2007).   

A recent study also found that PINK1 participated in a pathway with and directly 

interacted with Omi/HtrA2 (Plun-Favreau et al., 2007).  Omi/HtrA2 is a mitochondrial serine 

protease.  The function of the protein is controversial.  Previous studies suggested a role for the 

protein in promoting apoptosis following release from the mitochondria (Hegde et al., 2002; 

Martins et al., 2002; Suzuki et al., 2001; Verhagen et al., 2002; Yang et al., 2003).  Later studies 

in two mouse lines, Omi/HtrA2 knockout mice and mice expressing a protease-inactive mutant 
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form Omi/HtrA2, found that both demonstrated premature death associated with parkinsonian-

like neurodegeneration (Jones et al., 2003; Martins et al., 2004).  This suggested a possible role 

within the mitochondria for the serine protease activity.  Further, two mutations in Omi/HtrA2, 

which also impact serine protease activity, have now been associated with increased risk for PD 

(Strauss et al., 2005).  Recently, Omi/HtrA2 was found to be phosphorylated at a site adjacent to 

a site found to be mutated in humans with PD following activation of the p38 stress pathway in 

cells (Plun-Favreau et al., 2007).  Further, PINK1 was identified as a binding partner, and it was 

found that Omi/HTRA2 phosphorylation was decreased in brain tissue from PD patients who had 

PINK1 mutations (Plun-Favreau et al., 2007).  Phosphorylation appeared to increase serine 

protease activity of Omi/HtrA2 and appeared to be crucial for Omi/HtrA2-mediated protection of 

mitochondria when cells were exposed to various toxins (Plun-Favreau et al., 2007).  Whether 

Omi/HtrA2 is a target for PINK1 phosphorylation is uncertain.  Nevertheless, these two PD-

related proteins are intertwined, as are PINK1 and parkin, in a pathway responsible for 

mitochondrial stability during stress.  The genetic links of PD described here suggests that 

oxidative stress and mitochondrial dysfunction play key roles in the pathogenesis of PD. 

1.2 OXIDATIVE STRESS IN PD 

Studies of PD patients and post mortem tissue combined with studies of experimental PD 

models have hinted at pathogenic mechanisms directly related to oxidative stress, including 

mitochondrial dysfunction and oxidative protein modification (Beal, 2007; Betarbet et al., 2002b; 

Dauer and Przedborski, 2003; Jenner, 2003; Schapira, 2008).  Whether these pathways are a 
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cause for PD or the result of PD pathogenesis remains to be elucidated, but their involvement is 

apparent. 

1.2.1 Definition of Oxidative Stress 

The term reactive oxygen species (ROS) encompasses the family of oxygen-derived 

molecules, both radicals and non-radicals (Halliwell, 2006).  ROS carry the potential to react 

with and oxidize other molecules, which can lead to oxidative damage in living cells (Halliwell, 

2006; Halliwell, 2007).  Oxidative stress is typically denoted by an imbalance between reactive 

species, typically an overabundance of ROS, and countering antioxidant defenses in the cellular 

environment (Halliwell, 2007).  Oxidative stress has been implicated in the pathogenesis of 

neurodegenerative diseases, including PD (Beal, 2002; Beal, 2003; Butterfield et al., 2001a; 

Butterfield et al., 2001b; Butterfield and Kanski, 2001; Carri et al., 2003; Halliwell, 2001; 

Halliwell, 2006; Honda et al., 2004; Jenner, 2003; Jenner and Olanow, 1996) 

1.2.2 Evidence for Oxidative Stress in PD  

Glutathione and Antioxidant Defenses 

An early and distinct sign of oxidative stress associated with PD is the significant loss of 

the antioxidant tripeptide glutathione (GSH), up to 40% loss, in PD SN, but not in other brain 

regions (Jenner et al., 1992; Pearce et al., 1997; Riederer et al., 1989; Sian et al., 1994a; Sofic et 

al., 1992).  It is thought that this loss occurs early in the disease process, as loss of SN GSH was 

also found in Incidental Lewy Body disease (Dexter et al., 1994b), a presumed presymptomatic 

state of PD.  Interestingly, there was no observed increase in oxidized GSH in PD brain (Sian et 
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al., 1994b; Sofic et al., 1992), nor alterations in activity of enzymes related to GSH turnover, 

including gamma-glutamyl cysteine synthethase, GSH reductase, or GSH transferase (Sian et al., 

1994b).  All of these findings suggest an oxidative environment in PD SN.  Even in normal brain 

tissue, human SN was found to have the lowest GSH level in the brain (Perry et al., 1982).  This 

finding led some to suggest that a combination of low GSH and high oxidative stress would 

contribute to PD (Cohen, 1983; Perry et al., 1982).  It has also been suggested that reduced GSH 

levels precede the increased iron levels observed in PD (Jenner and Olanow, 1996) and thus may 

contribute to increased iron oxidation in PD SN. 

  In addition to GSH, the antioxidant α-tochopherol was found to be at its lowest in mouse 

SN (Fariello et al., 1987), further suggesting a typical yet increased potential for oxidative stress 

in SN.  Tissue from PD patient brain also displayed increased superoxide dismutase (SOD) 

activity, suggestive of increased levels of the reactive oxygen radical superoxide (Saggu et al., 

1989).  SOD enzymes are responsible for the conversion of superoxide to hydrogen peroxide 

(H2O2).  In accordance with this observation, elevated levels of the manganese-dependent 

mitochondrial form of SOD (SOD2) have been observed in the cerebrospinal fluid (CSF) of PD 

patients (Yoshida et al., 1994).  The increases in SOD2 observed in PD may be compensatory for 

increased ROS production by impaired mitochondria (discussed in greater detail below).  

Overall, the SN appears to have a lower antioxidant defense system in normal brain, and 

oxidative stress is significantly elevated in association with PD, either as a consequence or 

mechanism of PD pathogenesis. 
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Iron and PD 

The reduced transition metal ferrous iron (Fe2+) can participate in reactions with ROS 

such as H2O2, forming Fe3+ ions and the highly reactive and toxic hydroxyl radical (OH•) 

(Riederer et al., 1989; Youdim et al., 1989).  Iron levels are increased in PD SN (Dexter et al., 

1991; Dexter et al., 1989b; Hirsch et al., 1991; Hirsch and Faucheux, 1998; Sofic et al., 1991), 

with an increase in the ratio of Fe3+/Fe2+ ions (Riederer et al., 1989; Sofic et al., 1991; Sofic et 

al., 1988).  Combined with the lower antioxidant potential described above, the increased iron 

and resulting oxidant potential of the SN may contribute to PD pathogenesis. 

 

Oxidative Damage to DNA, Lipids, and Proteins in PD 

Increased markers of DNA, lipid, and protein oxidation have all been noted in advanced 

PD SN (Jenner, 2003; Jenner and Olanow, 1996), but interestingly not in Incidental Lewy Body 

disease SN (Alam et al., 1997a; Dexter et al., 1994b), which may suggest that these features are 

associated with PD degeneration specifically.  Oxidative damage to DNA has been detected in 

many neurodegenerative disorders (Browne et al., 1997; Ferrante et al., 1997; Gabbita et al., 

1998), including PD (Alam et al., 1997b; Halliwell, 2001).  Of the four base pairs that comprise 

DNA, guanine is the most sensitive to oxidative modification, and thus far is the only base found 

to be oxidatively modified in PD.  Increased levels of the oxidized forms of guanine have been 

identified in post mortem brain in the caudate, putamen, SN, and cerebral cortex of PD patients 

as compared to control patients (Alam et al., 1997b; Sanchez-Ramos et al., 1994).  Increases in 

oxidized cytosolic RNA and mitochondrial DNA (mtDNA) were also found in PD patient SN 

(Zhang et al., 1999).  In addition to further supporting the role of oxidative stress in PD, the 
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increased amount of DNA and mtDNA oxidation in the SN could contribute to cell death 

through DNA damage, such as breakage and mutation. 

Unsaturated lipids of the cellular and mitochondrial membranes are also susceptible to 

oxidative damage, resulting in toxic byproducts. In lipid peroxidation, ROS react with 

unsaturated fatty acid double bonds to generate reactive lipid peroxyradicals.  Peroxyradicals, in 

turn, react with other fatty acids leading to the formation of lipid peroxidation byproducts such as 

4-hydroxy-2,3-nonenal (HNE), acrolein, malondialdehyde, and F2-isoprostanes (reviewed in 

Barnham et al., 2004).  Signs of lipid peroxidation are evident in neurodegenerative disease, 

including AD (Butterfield et al., 2002; Montine et al., 2002; Montine et al., 2007) and PD 

(Dexter et al., 1994a; Halliwell, 2001).  Levels of the peroxidation product malondialdehyde 

were increased in PD SN (Dexter et al., 1989a), along with increases in fatty acid hydroperoxides 

and cholesterol lipid hydroperoxides, other markers of lipid peroxidation (Dexter et al., 1994a) as 

compared to control brain.  Lipid peroxidation has a profound impact on membrane fluidity and 

permeability.  Oxidative lipid damage can lead to dysfunction of membrane-associated ion 

channels, modulation of membrane receptors, and structural alterations in membranous 

organelles (Farooqui and Horrocks, 1998).  Byproducts of lipid peroxidation can also negatively 

impact other cellular components.  Proteins are particularly susceptible to oxidation or 

conjugation by 4-hydroxynonenal (4-HNE) and 4-oxynonenal (4-ONE).  4-HNE and 4-ONE can 

adduct with nucleophilic residues such as cysteine, and have been demonstrated to modify and 

inactivate many proteins.  Increased HNE-protein conjugates have been observed in PD midbrain 

(Yoritaka et al., 1996). 

Indicators of protein oxidative damage have been well documented in PD (reviewed in 

Beal, 2002; Halliwell, 2001; Jenner, 2003). The detection of protein carbonyl formation is the 
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most common measure of protein oxidation.  Protein carbonyls were increased in post mortem 

tissue in multiple regions of PD brain, including the SN, basal ganglia, cortex, globus pallidus, 

and cerebellum (Alam et al., 1997a; Floor and Wetzel, 1998).  There is also evidence for protein 

damage by reactive nitrogen species (RNS) in PD.  Increases in CSF nitrate levels and brain 

nitrosyl adducts were associated with PD (Good et al., 1998).  Additionally, nitrotyrosine 

immunoreactivity was associated with Lewy bodies, suggesting protein oxidation by 

peroxynitrite (Giasson et al., 2000).  Increased amounts of nitrated SOD2 have been found in PD 

CSF (Aoyama et al., 2000), which may indicate protein damage and inactivation.  Oxidative 

modifications to proteins can have a deleterious impact on protein function, ultimately affecting 

cellular health and promoting protein aggregation as observed in association with PD 

pathogenesis.    

1.3 MITOCHONDRIAL DYSFUNCTION IN PD 

Mitochondrial structure, function, and signaling have long been implicated in neuronal 

aging, neuronal injury, and neurodegenerative disease (Beal, 2007; Friberg and Wieloch, 2002; 

Kwong et al., 2006; Murphy et al., 1999; Schapira, 2008; Toescu et al., 2000).  A well-

characterized phenomenon of mitochondrial dysfunction associated with neuronal distress is the 

formation of the mitochondrial permeability transition pore (PTP) (Friberg and Wieloch, 2002; 

Kim et al., 2003; Sullivan et al., 2005).  The PTP is a nonselective pore formed by a complex of 

mitochondrial proteins between the inner and outer mitochondrial membrane allowing passage of 

ions and molecules <1.5 kDa (Beutner et al., 1998; Brdiczka et al., 1998; Vyssokikh and 

Brdiczka, 2003; Woodfield et al., 1998).  Opening of the PTP is triggered by excess Ca2+ and 
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oxidative stress, and dramatically decreases the membrane potential of the mitochondria.  If 

prolonged, PTP can lead to a loss of mitochondrial function and the release of apoptotic factors 

(reviewed in Olanow and Tatton, 1999; Vyssokikh and Brdiczka, 2003).  PTP opening has been 

linked to induction of cell death pathways (Friberg et al., 1998; Grimm and Brdiczka, 2007; 

Halestrap et al., 1998; Lemasters et al., 1998; Tsujimoto and Shimizu, 2007). 

Friberg et al. found that mitochondria from different regions of the brain (cortex, 

hippocampus, and cerebellum) were differentially sensitive to Ca2+-induced PTP opening, and 

the level of sensitivity correlated with the vulnerability of these regions to damage from ischemia 

(hippocampus>cortex>cerebellum) (Friberg et al., 1999).  More recently, Brown et al. found that 

while synaptic and non-synaptic mitochondria isolated from rat cerebral cortex did not differ in 

basal respiration or Ca2+ storage, synaptic mitochondria were more sensitive to Ca2+ induced 

PTP opening (Brown et al., 2006). The findings of these studies suggest that a differential 

susceptibility of brain regions, and even synapses and cell bodies, to injury or degeneration may 

correlate to the vulnerability of the mitochondria associated with those regions.  This is 

particularly significant for PD, in which the neurological deficits in movement are associated 

with degeneration of axon terminals and cell bodies of the nigrostriatal pathway. 

1.3.1 Evidence for Mitochondrial Dysfunction in PD 

In 1989, Shapira and colleagues first identified a deficiency in mitochondrial NADH 

dehydrogenase (Complex I) activity associated with PD SN tissue (Schapira et al., 1989), with an 

average loss in activity of approximately 35% (Mann et al., 1994; Schapira, 2006).  A deficiency 

was not found in other mitochondrial electron transport complexes, or with other brain regions in 

PD (Schapira et al., 1990).  Studies identified a similar Complex I deficit in platelets (-20 to -
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25% activity) (Blandini et al., 1998; Haas et al., 1995; Krige et al., 1992; Parker et al., 1989; 

Schapira, 2006), lymphocytes (Barroso et al., 1993; Yoshino et al., 1992), and, less consistently, 

in muscle tissue (Penn et al., 1995; Schapira, 2006; Taylor et al., 1994) from PD patients.  These 

results suggest there is a systemic, low-grade inhibition of Complex I activity associated with 

PD. 

Several lines of evidence also suggest a possible genetic link to Complex I dysfunction in 

PD.  Cybrid cell lines with normal nuclear genomes but mtDNA from PD patients exhibit a 

Complex I deficit, a higher sensitivity to 1-methyl-4-phenylpyridinium (MPP+; the toxic 

metabolite of MPTP), and generation of Lewy body-like inclusions, suggesting that possible 

genetic defects in mtDNA genes encoding Complex I subunits are associated with PD 

pathogenesis (Sheehan et al., 1997; Swerdlow et al., 1996; Trimmer et al., 2004).  In contrast, a 

study examining single-nucleotide polymorphisms in mtDNA comparing PD and control patients 

led to the discovery of a polymorphism in a gene encoding a subunit of Complex I that 

associated with a reduced risk of PD (van der Walt et al., 2003).  The polymorphism, associated 

with the NADH dehydrogenase 3 subunit of Complex I, resulted in an amino acid change from 

threonine to alanine, and was associated with a significantly lower susceptibility to PD (van der 

Walt et al., 2003).  While this suggests a protective effect of the polymorphism, the mechanism 

is not known.  However, the connection of mitochondrial dysfunction to sporadic PD provides 

evidence for a possible underlying mechanism of pathogenesis.  This association is supported by 

the identification of familial forms of PD that involve mitochondrial proteins, such as PINK-1, 

DJ-1, and Omi/HtrA2.  Mitochondrial protein expression and/or abundance have also been found 

to be altered in PD.  A recent proteomic analysis of mitochondria-enriched fractions from post 

mortem PD SN revealed differential expression of multiple mitochondrial proteins in PD brain as 
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compared to control, including subunits of Complex I, mitochondrial creatine kinase (MtCK), 

and the chaperone mortalin/GRP75/mtHSP70 (Jin et al., 2006).  Also, decreased immunostaining 

for mitochondrial alpha-ketoglutarate, a protein of the tricarboxylic acid cycle, was noted in post 

mortem PD brain (Mizuno et al., 1994).  Together, theses findings support a role for 

mitochondrial function in PD pathogenesis (Schapira, 2006). 

The specific impact of a slight, systemic decrease in Complex I activity on PD 

pathogenesis is not known.  Evidence from studies utilizing Complex I inhibitors, such as the 

toxin rotenone, suggest ROS generation plays a role in Complex I deficiciency-related 

pathogenesis (Sherer et al., 2003a), as is discussed in greater detail below.  Interestingly, the loss 

of GSH noted in Incidental Lewy Body disease, as discussed above, is coincident with a slight 

Complex I deficit (Dexter et al., 1994b), further suggesting a relationship between oxidative 

stress and mitochondrial dysfunction in disease pathogenesis. 

1.3.2 Mitochondrial Dysfunction and Oxidative Stress 

 The mitochondrial electron transport chain (ETC) is a known source of ROS generation 

and potential source of oxidative stress in cells (reviewed in Fiskum et al., 2003; Lenaz et al., 

2002; Turrens, 2003; Votyakova and Reynolds, 2001)].  Mitochondrial ETC Complexes I and III 

are associated with formation of the ROS free radical superoxide, and inhibition of these 

complexes can increase production of free radicals (reviewed in Fiskum et al., 2003; Orth and 

Schapira, 2002).  Superoxide is typically converted by SOD to H2O2, which may go on to 

generate the highly reactive and toxic hydroxyl radical.  Superoxide may also react with nitric 

oxide, forming reactive peroxynitrite (Halliwell, 1992; Halliwell, 2006).  Production of and 

increases in these reactive species could ultimately lead to oxidative stress and damage in the 

 17 



cellular environment (Halliwell, 2007).  Both oxidative and nitrative species have been shown to 

inhibit complexes in the ETC (reviewed in Halliwell, 2001; reviewed in Heales et al., 1999; 

Nulton-Persson and Szweda, 2001).  In addition, inhibition of Complex I has been demonstrated 

to facilitate the generation of ROS in vitro and potentially contribute to oxidative stress (Pitkanen 

and Robinson, 1996; Votyakova and Reynolds, 2001).   

Critical mitochondrial proteins and components aside from the ETC are also sensitive to 

the oxidative state of the mitochondrion.  Activity of the enzyme alpha-ketoglutarate, decreased 

abundance of which is detected in PD SN (Mizuno et al., 1994), has been shown to be sensitive 

to the redox state of the mitochondria (Kumar et al., 2003; Nulton-Persson et al., 2003; Nulton-

Persson and Szweda, 2001).  Other studies have shown that creatine kinase, the enzyme 

responsible for maintaining ATP and creatine phosphate energy stores in the cell, is susceptible 

to oxidative inhibition (Koufen et al., 1999; Miura et al., 1999).   In addition to proteins, both 

mtDNA and mitochondrial lipid membranes are susceptible to age- and disease-related oxidative 

damage (Barnham et al., 2004; Zhang et al., 1999).  Damage to either has severe effects on 

mitochondrial function, altering protein expression and membrane fluidity.  Mitochondrial 

membrane fluidity and structure, in turn, may be a crucial factor in ETC function and 

mitochondrial function in general (Mannella et al., 2001). 

1.3.3 Mitochondrial Dysfunction and Oxidative Stress as Models of PD 

Mitochondrial dysfunction and associated oxidative stress are not only linked to PD 

pathogenesis, but intertwined themselves (reviewed in Beal, 2003; Lenaz et al., 2002).  Models 

of PD exemplify this connection by utilizing toxins that cause mitochondrial dysfunction and 
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generate ROS; specifically the pesticide and Complex I inhibitor, rotenone, and the parkinsonian 

syndrome-inducing toxin MPTP (Dauer and Przedborski, 2003; Sherer et al., 2003a).  

 

Rotenone 

The pesticide rotenone is a lipophilic, high-affinity Complex I inhibitor (Degli Esposti, 

1998).  It is a naturally occurring compound that can be extracted from the roots of certain 

tropical plants belonging to the genus Lonchocarpus or Derris.  Rotenone has been used as a 

potent insecticide and fish kill toxin.  As discussed previously, exposure to pesticides, such as 

rotenone, is considered a risk factor for developing PD (Kamel et al., 2007). 

Due to the lipophilic nature of the toxin, rotenone can easily gain access to all organs and 

tissues of the body, as well as cross the blood-brain barrier (Talpade et al., 2000).  It has been 

demonstrated that chronic administration of rotenone to rats leads to a systemic inhibition of 

Complex I, and results in neurodegeneration and behavioral deficits characteristic of PD (Alam 

and Schmidt, 2002; Betarbet et al., 2000; Fleming et al., 2004; Sherer et al., 2003a; Sherer et al., 

2003b).  Rotenone exposure caused selective dopaminergic degeneration in the striatum and SN 

of treated rats, ubiquitin- and alpha-synuclein-positive protein inclusions in SN neurons, and 

behavioral deficits akin to bradykinesia, rigidity, and postural deficits observed in PD (Betarbet 

et al., 2000; Sherer et al., 2003b).  In vivo, oxidative damage in the form of increased protein 

carbonyl formation was observed to be elevated in select brain regions following rotenone, with 

highest increases found in the midbrain and olfactory bulb (Sherer et al., 2003a).  Rotenone 

toxicity has also been examined in human neuroblastoma cells (Sherer et al., 2003a; Sherer et al., 

2001; Watabe and Nakaki, 2007b), and organotypic cultures (Sherer et al., 2003a; Testa et al., 

2005).  Increased protein carbonyls and decreased GSH (-57%) levels were observed following 
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chronic rotenone exposure in SK-N-MC cells, while organotypic cultures displayed increased 

carbonyl formation and loss of dopaminergic neuron projections (Sherer et al., 2003a; Testa et 

al., 2005).  Treatment with the antioxidants alpha-tocopherol and coenzyme-Q 10 also protected 

against rotenone toxicity and oxidative damage in cell culture (Sherer et al., 2003a; Testa et al., 

2005), suggesting that rotenone toxicity results from increased oxidative stress.  

To determine whether the rotenone-induced toxicity and ROS generation was the 

consequence of rotenone’s action on mitochondrial complex I, studies examined the effect of 

expressing a rotenone insensitive NADH dehydrogenase enzyme, Ndi1, in vitro and in vivo.  The 

neurotoxic effects associated with rotenone exposure were blocked in both SK-N-MC cells 

transfected with Ndi1 (Sherer et al., 2003a) and in rats expressing Ndi1 via adenovirus-mediated 

delivery in to the SN (Marella et al., 2008).  These studies demonstrate that the toxic effects of 

rotenone are mediated by its ability to inhibit complex I. 

There is a clear association between complex I inhibition and ROS generation in the 

rotenone model of PD, which resembles the complex I deficiency observed in idiopathic PD.  

Additional studies will be necessary to determine whether rotenone toxicity can also model the 

non-dopaminergic degeneration and non-motor deficits associated with PD.  Equally important is 

elucidating the mechanisms behind the selective degeneration of SN dopaminergic neurons, 

despite the systemic effect of the toxin.  There is evidence that endogenous DA may play a role 

in and even potentiate rotenone toxicity in PC12 cells (Dukes et al., 2005; Liu et al., 2005).  In 

addition, rotenone toxicity was increased in SH-SY5Y human neuroblastoma cells when 

intracellular levels of DA were elevated by inhibiting DA metabolism (Watabe and Nakaki, 

2007b). Rotenone-induced toxicity was decreased when DA synthesis was inhibited (Watabe and 

Nakaki, 2007b).  Rotenone-generated ROS was also associated with a redistribution of DA from 
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vesicles to the cytoplasm (Watabe and Nakaki, 2007b).  Together, these studies suggest rotenone 

may have a differential impact on dopaminergic cells due to their endogenous neurotransmitter.  

Thus, the similarities to PD in pathological and behavioral characteristics generated via 

mitochondrial complex I inhibition support rotenone as a useful model in studying the 

mechanisms of PD. 

 

MPTP/MPP+ 

The chemical MPTP is a dopaminergic toxin discovered accidentally in the early 1980’s.  

An impurity resulting from the illicit production of a meperidine analog (1-methyl-4-phenyl-4-

propionoxypiperidine; MPPP or “synthetic heroin”), the MPTP contaminant taken intravenously 

with the intended drug caused chronic, idiopathic parkinsonian symptoms in exposed young drug 

addicts (Langston et al., 1983; Langston and Ballard, 1983) and lesioning of the SN (Davis et al., 

1979; Langston et al., 1999).  Since the discovery, MPTP has been a widely used and very well 

characterized model of PD, and is most typically used in in vivo mouse and non-human primate 

models. The model has also been used in cell culture studies using various non-dopaminergic 

and dopaminergic cell lines, utilizing the MPTP metabolite MPP+ (see below).  MPTP has also 

been shown to cause parkinsonian symptoms in non-human primates.  MPTP exposed humans 

and non-human primates have demonstrated the loss of dopaminergic neurons and terminals in 

patterns similar to that of PD (reviewed in Dauer and Przedborski, 2003).  However, they did not 

appear to develop classical Lewy bodies (Forno et al., 1993; reviewed in Dauer and Przedborski, 

2003).  Also, at least in non-human primates, degeneration of PD-associated non-dopaminergic 

neuron populations, such as the locus coeruleus, was inconsistent (Forno et al., 1993; Forno et 

al., 1986).  It is thought that these discrepancies between PD and MPTP exposure may be 
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attributed to the acute exposure of MPTP toxicity in these situations (Dauer and Przedborski, 

2003).  Nonetheless, the MPTP model remains a widely utilized model for PD research due to 

the advantages that (1) it replicates L-DOPA-responsive, clinical motor symptoms almost 

identical to PD in humans, and (2) it is a relatively selective toxin of dopaminergic neurons in the 

brain (reviewed in Dauer and Przedborski, 2003). 

MPTP toxicity is elicited through its metabolite MPP+, which is produced via 

metabolism by monoamine oxidase B (MAO-B) in glial cells, then oxidized.  MPP+ is then 

exported by an unknown mechanism and selectively taken up by monoaminergic neurons via the 

DA transporter (DAT), norepinephrine transporter, and serotonin transporter (Javitch et al., 

1985; Javitch and Snyder, 1984; Mayer et al., 1986), though toxic effects are most prominent in 

dopaminergic neurons (Dauer and Przedborski, 2003).  In the cell, MPP+ has been found to 

interact with cytosolic proteins (Klaidman et al., 1993), bind the vesicular monoamine 

transporter (VMAT) and enter synaptic vesicles (Liu et al., 1992), and accumulate in 

mitochondria (Ramsay and Singer, 1986).  The mitochondria appear to be the primary site of 

action by MPP+, where the compound was shown to act as a Complex I inhibitor (Mizuno et al., 

1987; Nicklas et al., 1985; Ramsay et al., 1986).  MPTP administration in mice resulted in a loss 

of ATP in striatal and ventral midbrain regions (Chan et al., 1991) and increased production of 

ROS, including the hydroxyl radical (Adams et al., 1993; Rossetti et al., 1988; Smith and 

Bennett, 1997).  MPTP-treated mice also demonstrated a loss of GSH (Oishi et al., 1993).   The 

loss of ATP and increased oxidative damage are cited as the primary factors in MPTP-induced 

cell death.  In accord with this hypothesis, MPTP toxicity was attenuated in vivo by antioxidant 

administration (Park et al., 2004), overexpression of the cytosolic ROS scavenger SOD1 
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(Przedborski et al., 1992), and by agents improving mitochondrial energy production, such as 

coenzyme-Q 10 and nicotinamide (Schulz et al., 1995).  

DA itself may also play a critical role in MPTP toxicity, as suggested by the selective 

sensitivity of dopaminergic neurons to MPTP neurodegeneration compared to other 

monoaminergic populations (Dauer and Przedborski, 2003).  The selectivity of dopaminergic 

neurons to MPTP-induced toxicity appears to be due to uptake by DAT, as studies have found 

that chemically blocking or knocking out expression of DAT eliminated MPTP-induced toxicity 

(Bezard et al., 1999; Javitch et al., 1985).  Once in the cells, MPP+ can be taken up by VMAT.  

Sequestering MPP+ in vesicles, via VMAT, is in part considered a protective mechanism.  Cells 

overexpressing VMAT2 were found to be resistant to MPP+ toxicity (Liu et al., 1992), while 

VMAT2-null mice had enhanced MPTP-induced toxicity (Takahashi et al., 1997).  However, a 

study by Lotharius and O’Malley found that MPP+ displaces DA from vesicles in mesencephalic 

culture, leading to further oxidation and ROS generation (Lotharius and O'Malley, 2000).  

Increased oxidation products of DA, specifically cysteine-bound DA (discussed below), are also 

observed in MPTP treated mice (Teismann et al., 2003a). 

1.4 DA OXIDATION AND PD 

As mentioned above, multiple brain regions are now known to be associated with PD 

pathogenesis, particularly in mid- and late-stage disease (Braak et al., 2003; Braak et al., 2004).  

However, the pronounced loss of nigrostriatal dopaminergic neurons of the SN, along with 

decreases in striatal DA and DA terminals, remain the primary characteristics of disease 

progression, and are believed to be the major contributors to the movement disorders associated 
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with PD (Kish et al., 1988; Rajput et al., 2008).  Because the degeneration of dopaminergic 

neurons is clearly linked to oxidative stress, the potentially reactive neurotransmitter DA may be 

a contributing factor to PD pathogenesis.  (Greenamyre and Hastings, 2004; Hastings and 

Berman, 2000; Stokes et al., 1999).  

1.4.1 DA Oxidation, Protein Modification, and PD 

The DA molecule is comprised of a catechol ring and an ethylamine side chain, a 

structure that leaves DA vulnerable to oxidation even at physiological pH (Graham, 1978).  

Normally, DA is stably stored at high concentrations and reduced pH within vesicles 

(Schuldiner, 1994; Sulzer and Rayport, 1990).  However, if not adequately sequestered, DA is 

susceptible to oxidation through two separate pathways, (1) metabolism and (2) auto- or 

enzymatic oxidation.  The metabolism of the ethylamine side chain of DA by MAO leads to the 

formation of an aldehyde metabolite, 3,4-dihydroxyphenylacetaldehyde (DOPAL) via 

deamination (Maker et al., 1981).  The aldehyde is quickly oxidized by aldehyde dehydrogenase 

to form 3,4-dihydroxyphenylacetic acid (DOPAC), and H2O2 is formed as a byproduct  (Cooper 

et al., 1991; Florang et al., 2007) (Figure 1).   

DA, as well as the precursor DOPA and metabolite DOPAC, can also be oxidized.  The 

catechol ring structure of DA will readily oxidize to form the DA quinone, producing superoxide 

and H2O2, respectively (Figure 1) (Bindoli et al., 1992; Hastings and Berman, 2000; Monks et 

al., 1992).  This can happen through auto-oxidation, which may be accelerated by the presence of 

iron and other transition metal ions (Graham, 1978; Miller et al., 1990), or in the presence of 

other oxidants such as nitrite and peroxynitrite (LaVoie and Hastings, 1999).  DA quinones may 

also be generated through enzymatic oxidation of the catechol ring by enzymes including 
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prostaglandin H synthase (cyclooxygenases), tyrosinase, lipoxygenase, and xanthine oxidase 

(Foppoli et al., 1997; Hastings, 1995; Korytowski et al., 1987; Mattammal et al., 1995; Rosei et 

al., 1994).  Expression and activity of these enzymes has been noted in the brain (Miranda et al., 

1984; Naidu et al., 1992; Teismann et al., 2003b; Tief et al., 1998; Wajner and Harkness, 1989; 

Zhang et al., 2006), though the expression of tyrosinase protein in dopaminergic neurons is 

controversial (Greggio et al., 2005; Ikemoto et al., 1998; Tribl et al., 2007; Xu et al., 1997).   

The DA quinone is an electron deficient molecule open to nucleophilic attack.  An 

abundant and reactive biological nucleophile is the sulfhydryl group, which has readily 

accessible electron pairs at physiological pH (Graham et al., 1978; Monks et al., 1992; Tse et al., 

1976).  DA quinones react rapidly with and bind to sulfhydryl groups on free cysteine, 

glutathione, and protein cysteinyl residues in the cell, resulting in formation of 5-cysteinyl-DA 

conjugates (Figure 1) (Hastings et al., 1996; Ito and Fujita, 1982; Ito et al., 1988; Spencer et al., 

1998; Tse et al., 1976; Zhang and Dryhurst, 1994).   As many vital proteins contain active-site 

cysteine residues whose oxidation states are critical for function, modification by DA quinone 

may have detrimental effects on the health of the cell, thus contributing to the toxic potential of 

DA and DA quinone.   

In vitro exposure to DA and DA quinones has been demonstrated to modify the structures 

and functions of several proteins relevant to dopaminergic and neuronal cell function.  DA 

oxidation inhibited the activities of the DA transporter and glutamate transporter in isolated rat 

striatal synapses (Berman and Hastings, 1997; Berman et al., 1996).  Tyrosine hydroxylase, the 

rate-limiting enzyme in catecholamine biosynthesis, was also found to be modified following in 

vitro exposure to DA quinone, which covalently binds and inactivates the protein, and potentially 

alters it to a redox-cycling quino-protein (Kuhn et al., 1999; Xu et al., 1998).  Cytosolic and 
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mitochondrial forms of creatine kinase, a cysteine-dependent enzyme critical in maintaining ATP 

levels, can also be inhibited by exposure to DA and DA oxidation, (Jiang et al., 2002; Maker et 

al., 1986; Miura et al., 1999) potentially contributing to bioenergetic defects in the cell.  Alpha-

synuclein aggregation and oxidative DA modification have also been linked, showing that 

covalent modification by DA stabilized and promoted the aggregation of alpha-synuclein 

protofibrils, thought to be pathogenic, and prevented assembly of mature fibrils (Conway et al., 

2001; Rochet et al., 2004).  Norris et al. later found that while DA oxidation was necessary for 

this to occur, covalent modification of alpha-synuclein by DA was not, as DA oxidation by-

products interacted with alpha-synuclein to induce conformational changes that prevented mature 

fibril formation (Norris et al., 2005).  These studies suggest a relationship between oxidative 

stress, DA, and alpha-synuclein that could lead to the promotion of PD pathogenesis (Rochet et 

al., 2004).  Exposure to oxidized DA was also shown to cause tau protein to polymerize (Santa-

Maria et al., 2005a) and neurofilament proteins to covalently crosslink (Montine et al., 1995), 

while actin was found to bind DA in a Fe2+-mediated process (Velez Pardo et al., 1995).  These 

findings suggest DA oxidation may also have an impact on cellular cytoskeletal integrity. 

There is substantial evidence of DA oxidation and DA modification of thiols occurring in 

vivo.  Neuromelanin, the dark pigment found in dopaminergic cells of the SN, is ultimately 

formed from the polymerized products of oxidized DA, and contains oxidized forms of DA-

modified cysteine (Carstam et al., 1991; Odh et al., 1994; Wakamatsu et al., 2003), 

demonstrating a regular occurrence of DA oxidation in pigmented SN cells.  As the components 

of neuromelanin require DA oxidation for starting material, the formation of neuromelanin 

suggest a lower antioxidant defense in pigmented dopaminergic cells that would allow for DA 

oxidation (Zhang and Dryhurst, 1995).  Interestingly, the neuromelanin-containing cells of the 
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substantia nigra are those preferentially lost in PD (Hirsch et al., 1988; Mann and Yates, 1983).  

However, neuromelanin may also have a protective role in removing excess catecholamines, 

oxidized DA products, and chelating harmful metals  (Wakamatsu et al., 2003; Zecca et al., 

2003) 

Cysteinyl-catechols can also be identified in vivo.  Using high-pressure liquid 

chromatography techniques, detectable levels of 5-cysteinyl-DA, -DOPA, and –DOPAC were 

found in post mortem human tissue (Fornstedt et al., 1986) and were shown to be increased in 

PD patient SN (Spencer et al., 1998).  Further, Fornstedt et al. demonstrated that 5-cysteinyl-

catechol/catechol ratios in post mortem PD patient SN were increased as the loss of SN 

pigmentation increased, suggesting an enhanced rate of catechol oxidation and cysteine 

modification correlating with increased degeneration (Fornstedt et al., 1989).  Recently, LaVoie 

et al. demonstrated the presence of DA-bound parkin protein from post mortem tissue of normal 

human SN (LaVoie et al., 2005).  This finding not only demonstrates that proteins are targets for 

DA conjugation in vivo, but also provides a link between DA-induced protein modification and a 

specific protein associated with PD.   Thus, DA oxidation occurs normally in human SN, and 

may be contributing to PD pathogenesis. 
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Figure 1:  Metabolism and Oxidation of DA. 

(1) Deamination of DA by MAO and consequent oxidation leads to the formation of DOPAC, 

with H2O2 as a byproduct.  (2) DA can also undergo enzymatic- or autooxidation to form DA 

quinone, producing superoxide(O2
.) and H2O2. (3) The DA quinone will react with sulfhydryl 

groups, covalently bonding to free cysteines and protein cysteinyl residues in the cell to form a 

cysteinyl-DA conjugate. 
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1.4.2 Models of DA Oxidation and Toxicity 

Both DA metabolism and DA oxidation are known to lead to ROS and free radical 

generation. In addition, reactive metabolites of DA can lead to protein oxidation and covalent 

modification, all thought to be contributors to DA-induced toxicity.  Studies have taken 

advantage of the reactive chemistry of DA to study PD mechanisms, including 6-OHDA and DA 

toxicity models. 

 

6-OHDA 

 6-hydroxydopamine (6-OHDA) toxicity represents the first animal model of PD, 

introduced over 30 years ago, and was the first agent discovered to cause a specific neurotoxic 

effect to dopaminergic neurons (Jonsson and Sachs, 1975; Sachs and Jonsson, 1975; Ungerstedt, 

1968).  Since its introduction, 6-OHDA has been extensively used both in vivo and in vitro to 

study mechanisms of dopaminergic neuron degeneration.  6-OHDA has chemical structure 

similar to DA, and is a substrate for the DAT and the norepinephrine transporter.  As a result, 6-

OHDA toxicity is relatively selective to monoaminergic neurons (Luthman et al., 1989).  To 

elicit effects on dopaminergic structures of the brain, 6-OHDA must be administered centrally, 

as it cannot cross the blood-brain barrier (Dauer and Przedborski, 2003).  

6-OHDA is thought to elicit toxicity primarily through oxidative stress and quinone 

formation (Cohen, 1984).  Like DA, 6-OHDA has the potential to undergo autooxidation, 

producing H2O2 and the redox cycling paraquinone, producing ROS and resulting in 

dopaminergic cell death due to oxidative stress (Heikkila and Cohen, 1971; Kumar et al., 1995; 

Oiwa et al., 2003; Saner and Thoenen, 1971).  Studies in vivo and in vitro have also 

demonstrated toxic effects of 6-OHDA, including markers of lipid peroxidation (Kumar et al., 
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1995), decreased GSH and SOD (Perumal et al., 1992), and apoptosis (Bensadoun et al., 1998; 

Galindo et al., 2003; Marti et al., 2002), many of which are relative to PD pathology.  However, 

the 6-OHDA model does not replicate other features of PD, in that toxicity and degeneration are 

acute rather than prolonged and progressive, no other brain regions are involved in degeneration, 

and no Lewy body formation has been observed (reviewed in Betarbet et al., 2002b; Bove et al., 

2005).  However, the ability of the model to simulate striatal DA depletion and neuronal loss, 

along with the advantage of unilateral toxicity, has led to the model’s extenstive use in testing 

antiparkinsonian agents, cell transplantion studies to recover DA levels, and neurotrophic factor- 

and exercise-induced promotion of dopaminergic neuron survival (Dunnett et al., 1981; 

Schwarting and Huston, 1996; Smith and Zigmond, 2003). 

 

DA 

 The ability of DA to exhibit toxic effects in various cell culture studies is well established 

(Koshimura et al., 2000; Offen et al., 1995; Orth and Tabrizi, 2003).  DA toxicity in cell culture 

has been attributed to factors including oxidative stress, protein modification, alterations in 

mitochondrial respiration and membrane potential, and apoptosis (Ben-Shachar et al., 2004; 

Brenner-Lavie et al., 2008; Jones et al., 2000; Lai and Yu, 1997a; Lai and Yu, 1997b; Offen et 

al., 1996; Si et al., 1998; Wang et al., 2008b).  DA toxicity has also been demonstrated in vivo.  

Intrastriatal injection of DA in rats results in specific loss of striatal dopaminergic nerve 

terminals and axons (Hastings et al., 1996; Rabinovic and Hastings, 1998; Rabinovic et al., 

2000).  Further, toxicity is associated with increases in cysteinyl-catechol protein modification 

(Hastings et al., 1996; Rabinovic and Hastings, 1998).  Interestingly, no damage to DA terminals 

was observed following intrastriatal DA administration in DAT knockout mice, suggesting that 
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intracellular DA oxidation is necessary for DA-induced toxicity (unpublished data from the 

Hastings laboratory). 

While the exact mechanism of the DA-induced toxicity is not known, the toxicity of DA 

has been linked to oxidative stress.  In several cell culture studies, antioxidants prevented DA 

toxicity (Hoyt et al., 1997; Passi et al., 1987).  Similarly, co-administration of antioxidants with 

DA intrastriatal injections prevented striatal dopaminergic terminal loss and significantly 

decreased protein cysteinyl-catechol formation (Hastings et al., 1996).  Given the ability of 

oxidized metabolites of DA to bind and inhibit protein function, the toxicity induced by DA is 

most likely more complex than simply increasing oxidative stress, and may involve modification 

of critical cellular proteins. 

1.4.3 DA Oxidation and Mitochondrial Dysfunction 

 The association of oxidative stress and mitochondrial dysfunction with PD pathology has 

led many to study the effects of DA and DA oxidation on mitochondrial function.  Exposure of 

isolated intact rat brain mitochondria to DA or DA quinone has been shown to alter 

mitochondrial respiration (Berman and Hastings, 1999; Gluck et al., 2002; Gluck and Zeevalk, 

2004).  Exposure of mitochondria to DA quinones also triggered opening of the PTP (Berman 

and Hastings, 1999).  In cultured SH-SY5Y cells, exposure to DA resulted in a significant 

depolarization of mitochondrial membrane potential, which could be attenuated by bypassing 

Complex I and adding substrates for Complex II (Brenner-Lavie et al., 2008).  DA also 

potentiated mitochondrial dysfunction induced by the Complex I inhibitor MPP+ in isolated rat 

liver mitochondria, including reduced oxygen uptake, increased swelling, and decreased 

membrane potential as compared to controls, and to MPP+ or DA alone (Boada et al., 2000), 
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suggesting a DA-induced effect on mitochondrial respiratory enzymes.  Together the above 

findings suggest a modifying effect of DA or DA quinones on specific mitochondrial proteins.  

Though mitochondrial targets of DA oxidation have not been identified, the activities of several 

ETC complex proteins have been examined following DA exposure. 

 Rat brain mitochondrial Complex I was found to be inhibited by DA in disrupted brain 

mitochondria over the course of a few minutes by multiple studies, though with varying results, 

including 20-25% inhibition with 1-100 mM DA (Przedborski et al., 1993), 10% inhibition with 

10mM DA (Morikawa et al., 1996), and 50% inhibition with approximately 12 μM DA (Ben-

Shachar et al., 2004).  Kahn et al. found that extended periods of incubation (2 hr at 37 °C) with 

100-400 μM DA significantly inhibited both Complex I (20-45% inhibition) and Complex IV 

(30-55% inhibition) activity in disrupted rat brain mitochondria (Khan et al., 2005).  Inhibition 

coincided with the formation of DA-bound protein, and could be blocked by adding GSH, 

suggesting a role for DA quinones affecting enzyme function (Khan et al., 2005).  All of these 

studies were conducted using disrupted mitochondria, and examined only ETC protein functions.   

Studies have yet to confirm whether these or other proteins are subject to inhibition or covalent 

modification in intact brain mitochondria.  However, recent studies in the Hastings and 

Greenamyre laboratories suggest that exposure of intact mitochondria to DAQ results in a 

significant decrease in Complex I activity and covalent modification of Complex I subunits by 

DA (Arduini et al., Society for Neuroscience Abstract 2008; unpublished data). 

 As previously mentioned, mitochondrial dysfunction is known to lead to ROS 

production.  The added oxidative stress may contribute to DA oxidation, which contributes to 

further oxidative damage in the mitochondria and the cell.  The two pathways are thus 

intertwined, setting up a vicious cycle of increasing oxidative damage and toxicity in the cell.  
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Therefore, dopaminergic neurons may be especially vulnerable to propagating oxidative stress, 

leading to increased cellular damage, and perhaps leading to the selective dopaminergic PD 

pathogenesis.  Previous studies have suggested that DA oxidation leads to modifications of 

critical mitochondrial proteins, though no prior work has identified the specific mitochondrial 

protein targets of oxidized products of DA.  Thus, it is of interest to identify and characterize 

these protein targets, as they could further elucidate pathways of neuronal injury in PD 

development, as well as reveal novel targets for therapeutic interventions. 
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2.0  THESIS GOALS 

The primary goal of the work presented in this thesis was to identify mitochondrial 

targets of DA oxidation.  DAQ can bind protein, and has been associated with the inactivation 

and altered aggregation of specific cellular proteins.  Previous studies, including work from our 

laboratory, have established that mitochondrial function is altered by exposure to DA and DA 

oxidation products, suggesting modification of critical proteins.  However, these protein targets 

have not previously been identified.   

We utilized proteomic techniques to identify modifications to proteins following DAQ 

exposure of isolated rat brain mitochondria and DA exposure in cell culture. Analysis and 

identification of modified protein targets within the complete proteome of tissues or organelles 

can be accomplished using various proteomic techniques, which have previously been applied to 

the study of neurodegenerative disease and disease models (Butterfield et al., 2006; Johnson et 

al., 2005; Kim et al., 2004).  Studies have identified multiple protein targets of oxidative 

modification and altered expression in association with multiple neurodegenerative diseases in 

humans, including Alzheimer’s disease (Castegna et al., 2002a; Castegna et al., 2002b; Castegna 

et al., 2003) and Parkinson’s disease (PD) (Basso et al., 2004; Jin et al., 2006).  In these studies, I 

applied various proteomics techniques to identify targets of DA oxidation in a model of PD. 

First, I utilized the two-dimensional difference in-gel electrophoresis (2-D DIGE) 

proteomics technique to examine changes in proteins following in vitro exposure of isolated rat 
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brain mitochondria to DAQ.  2-D DIGE allows for the comparison of two protein samples, 

typically control and experimental, within one gel through the use of charge- and molecular 

weight-matched fluorescent dyes.  I utilized two sets of DIGE-compatible dyes, cysteine-reactive 

maleimide dyes and lysine-reactive NHS-ester dyes.  I inititally hypothesized that we would 

observe differential labeling with the cysteine-reactive dyes that would be indicative of either 

protein cysteinyl residues covalently modified following DAQ exposure or altered protein levels 

within our in vitro system, while differential labeling with the lysine-reactive dyes would 

indicate just altered protein levels.  We observed, however, that both dyes indicated alterations in 

abundance of a subset of mitochondrial proteins.  Protein alterations observed via DIGE analyses 

were quantified, and alterations in protein levels confirmed by Western blot.  The effect of DA 

exposure of PC12 cells on the mitochondrial levels of two of the identified proteins, 

mitochondrial creatine kinase and mitofilin, was also examined.  The results from these studies 

are discussed in Chapter 3. 

Second, I utilized proteomics techniques, including 2-D gel electrophoresis, 

autoradiography, and 2-D DIGE in combination with radiolabeled DA (14C-DA) to identify 

proteins covalently modified following exposure of isolated rat brain mitochondria to 14C-DAQ.  

As the DIGE analyses revealed alterations in protein levels, and not covalent modifications, my 

goal was to identify the mitochondrial proteins that are targets of DAQ covalent binding.  These 

proteins may further elucidate pathways in PD development, as well as reveal novel targets for 

therapeutic interventions.  These observations are discussed in Chapter 4. 

Lastly, I wanted to examine the effect of altered mitofilin protein levels on cellular 

responses to dopaminergic toxins.  Mitofilin was identified in studies from both Chapter 3 and 

Chapter 4 as a target of DA-induced modifications within the mitochondria.  Mitofilin was 
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recently shown to be important in the maintenance of mitochondrial cristae (John et al., 2005), 

and studies suggest that alterations in mitofilin, amongst other proteins, may play a role in 

neurological disorders (Myung et al., 2003; Omori et al., 2002; Wang et al., 2008a).  However, 

no previous study has directly characterized mitofilin with regard to a neurodegenerative disease 

model.  As exposure to DA oxidation can alter mitofilin abundance in isolated mitochondria and 

cell culture (see Chapter 3), I hypothesized that modulating the levels of mitofilin in 

dopaminergic cells, PC12 and SH-SY5Y, using overexpression and knock-down techniques 

would alter cellular responses to the toxins DA and rotenone, which can also alter mitochondrial 

function.  The results of these studies are discussed in Chapter 5. 
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3.0  PROTEOMIC ANALYSIS OF RAT BRAIN MITOCHONDRIA FOLLOWING 

EXPOSURE TO DOPAMINE QUINONE: IMPLICATIONS FOR PARKINSON’S 

DISEASE 

3.1 SUMMARY 

Oxidative stress and mitochondrial dysfunction have been linked to dopaminergic neuron 

degeneration in Parkinson’s disease.  We have previously shown that dopamine oxidation leads 

to selective dopaminergic terminal degeneration in vivo and alters mitochondrial function in 

vitro.  In this study, we utilized 2-D difference in-gel electrophoresis to assess changes in the 

mitochondrial proteome following in vitro exposure to reactive dopamine quinone.  A subset of 

proteins exhibit decreased fluorescence labeling following dopamine oxidation, suggesting a 

rapid loss of specific proteins.  Amongst these proteins are mitochondrial creatine kinase, 

mitofilin, mortalin, the 75 kDa subunit of NADH dehydrogenase, and superoxide dismutase 2. 

Western blot analyses for mitochondrial creatine kinase and mitofilin confirmed significant 

losses in isolated brain mitochondria exposed to dopamine quinone and PC12 cells exposed to 

dopamine.  These results suggest that specific mitochondrial proteins are uniquely susceptible to 

changes in abundance following dopamine oxidation, and carry implications for mitochondrial 

stability in Parkinson’s disease neurodegeneration. 
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3.2 INTRODUCTION 

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of 

dopaminergic neurons in the substantia nigra (SN) pars compacta and the formation of Lewy 

bodies (Samii et al., 2004).  Most PD cases are considered sporadic, and provide us with limited 

clues to causes of disease pathogenesis.  However, increasing evidence implicates mitochondrial 

dysfunction and oxidative stress in PD (Betarbet et al., 2002a; Dauer and Przedborski, 2003; 

Jenner, 2003; Pallanck and Greenamyre, 2006).  

Decreased mitochondrial Complex I (NADH dehydrogenase) activity has been observed 

in both the SN (Janetzky et al., 1994; Orth and Schapira, 2002; Schapira et al., 1990) and 

periphery (Blandini et al., 1998; Shoffner et al., 1991) of PD patients.  Deficiencies and 

inhibition of the mitochondrial electron transport chain (ETC), a known source of reactive 

oxygen species (ROS), can lead to increased mitochondria-generated free radicals and oxidative 

stress (Beal, 2003; Lenaz et al., 2002).  Increased ROS may cause damage to macromolecules, 

such as increased oxidation of mitochondrial proteins, making them susceptible to accumulation 

or proteolytic degradation (Bota and Davies, 2001; Bota and Davies, 2002; Bulteau et al., 2006).   

Although multiple brain regions are involved in PD, the degeneration of dopaminergic 

neurons under conditions of oxidative stress suggests dopamine (DA) may be contributing to PD 

pathogenesis (Greenamyre and Hastings, 2004; Ogawa et al., 2005; Stokes et al., 1999).  Normal 

DA metabolism leads to the production of ROS, and DA not adequately stored in vesicles is 

prone to oxidation, forming the reactive DA quinone (DAQ) (Graham et al., 1978).  Dopamine-

induced toxicity, demonstrated both in cell culture (Jones et al., 2000; Koshimura et al., 2000) 

and in vivo (Hastings et al., 1996; Rabinovic et al., 2000), is dependent on DA oxidation and the 

formation of reactive DA metabolites.  Post-mortem studies have found increased levels of 
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cysteinyl-DA, the covalent modification of cysteine by DAQ, in SN of PD patients (Fornstedt et 

al., 1989; Spencer et al., 1998).  Dopamine and DAQ exposure also alter mitochondrial 

respiration (Berman and Hastings, 1999; Cohen et al., 1997; Gluck et al., 2002) and trigger 

permeability transition (Berman and Hastings, 1999) in isolated rat brain mitochondria, 

suggesting modification of critical mitochondrial proteins, though specific proteins have yet to 

be identified.  As previous proteomic studies have identified alterations in mitochondrial proteins 

in animal models of PD (Jin et al., 2005; Palacino et al., 2004; Periquet et al., 2005; Poon et al., 

2005b), it is of interest to identify and characterize the mitochondrial protein targets of DA 

oxidation.  Such proteins could become therapeutic targets in PD. 

In this study, we utilized 2-D DIGE techniques in combination with cysteine- and lysine-

reactive fluorescent dyes as a non-biased approach to evaluate protein alterations in rat brain 

mitochondria immediately following in vitro exposure to DAQ.  Differential fluorescent labeling 

indicated a significant loss following DAQ exposure of a subset of potentially critical proteins 

that were identified by subsequent mass spectrometric studies.  Western blot analyses confirmed 

decreases in two of these proteins, mitochondrial creatine kinase and mitofilin, in isolated brain 

mitochondria exposed to DAQ and PC12 cells exposed to DA.  These findings suggest that 

specific mitochondrial proteins are uniquely susceptible to oxidation-induced changes in 

abundance, and may have implications for PD pathogenesis. 
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3.3 EXPERIMENTAL PROCEDURES 

Materials  

Cysteine-reactive maleimide-conjugated Cy3/5 cyanine Ettan DIGE Saturation Labeling 

dyes (Cys-CyDyes) and lysine-reactive N-hydroxysuccinimide (NHS) ester-conjugated Cy3/5 

cyanine Ettan DIGE Minimal Labeling dyes (Lys-CyDyes) were purchased from GE Healthcare 

(Piscataway, NJ).  Sequencing Grade Modified Trypsin and Gold Mass Spectrometry Grade 

Modified Trypsin were purchased from Promega (Madison, WI).  Solutions and stocks for in-gel 

trypsin digest and mass spectrometry procedures were prepared using HPLC-grade ddH2O from 

Fisher Biotech (Pittsburgh, PA) and HPLC-grade MeOH and acetonitrile from Sigma-Aldrich 

(St. Louis, MO).  Protease inhibitor cocktail (cat#P2714), DA, mushroom tyrosinase, and most 

general chemicals for SDS-PAGE, buffers, and solutions were purchased from Sigma Chemical 

Co. (St. Louis, MO) unless otherwise noted.  Rabbit-anti-mitochondrial creatine kinase (MtCK) 

and rabbit-anti-mitofilin polyclonal antibodies were generated for our laboratory by GeneMed 

Synthesis, Inc. (South San Francisco, CA).  All other general solutions and stocks were prepared 

using doubly distilled water (ddH2O) from a Milli-Q system (Millipore Corp., Bedford, MA). 

 

Mitochondrial Isolation and Respiration  

All animal procedures were approved by the Animal Care and Use Committee at the 

University of Pittsburgh and are in accordance with guidelines put forth by the National 

Institutes of Health in the Guide for the Care and Use of Laboratory Animals.  Mitochondria-

enriched fractions were isolated from the brain tissue of adult male Sprague-Dawley rats via 

differential centrifugation by the method of Rosenthal et al. (1987) as previously described 

(Berman and Hastings, 1999; Berman et al., 2000), with elimination of the protease Nagarse.  
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Final mitochondrial pellets were resuspended in mitochondrial isolation buffer (225 mM 

mannitol, 75 mM sucrose, 5 mM HEPES, 1 mg/ml FA-free BSA, and 1 mM EGTA, pH 7.4) and 

kept on ice.  Mitochondrial protein content was determined by the Bradford method (1976).  

Prior to experimental use, respiration rates based on oxygen consumption were measured in the 

mitochondrial preparations to ensure mitochondrial health, as previously described (Berman and 

Hastings, 1999).  Mitochondrial health was determined by the ratio of respiration active state 3, 

induced by the addition of ADP, to resting state 4, induced by the addition of oligomycin.  Only 

mitochondria with a coupled state 3/state 4 ratio above 6 were used for this study. 

 

Exposure of Isolated Mitochondria to Dopamine Quinone  

Mitochondria (2 mg total protein) were exposed to DA (150 μM) and tyrosinase (150 U) 

in modified mitochondrial isolation buffer with 25 mM HEPES minus BSA, pH 7.4 (reaction 

buffer) plus protease inhibitor cocktail (2.5 μl/mg protein; Sigma) for 15 min at room 

temperature (RT).  Following incubation, mitochondria were placed on ice and immediately 

pelleted by centrifugation at 15,000 x g for 15 min at 3°C.  Control mitochondria underwent the 

same procedure in the absence of DA.  Pelleted mitochondria were lysed by rigorous pipetting in 

denaturing 2-D DIGE lysis buffer (9 M urea, 2% w/v CHAPS, and 30 mM Tris-base, pH 8.5) in 

a ratio of 100 µL buffer to 1 mg protein.  Insoluble material was pelleted by centrifugation 

(16,000 x g for 1-2 min at RT) and discarded.  Protein concentrations of lysed control and DAQ-

exposed samples were determined by Bradford (1976).  Thiol reducing agents were excluded 

from the lysis buffer to maintain proteins in a non-reduced state. 
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Cys- and Lys-CyDye Labeling  

For cysteine-dye minimal labeling 2-D DIGE, migration-matched Cy3 and Cy5 Cys-

CyDyes (GE Healthcare) were rehydrated in dimethylformamide (DMF) to a concentration of 

0.5 mM, aliquoted, and stored at -20°C with desiccation until use.  Prior to use, an aliquot of dye 

was thawed to RT and diluted in DMF to a working concentration of 62.5 μM.  Control and 

DAQ-exposed protein sample lysates were reacted with the indicated Cys-CyDye under non-

reducing conditions at a ratio of 1 pmol dye per 2 μg protein.  We used low concentrations of 

Cys-CyDyes to achieve a minimal labeling effect on non-reduced protein samples.  Preliminary 

experiments using various dye concentrations identified 1pmol dye per 2 μg protein, which is 

0.125% of the ratio utilized for saturation labeling, as optimal for minimal Cys-CyDye labeling.  

This concentration provided sufficient labeling for detection and imaging while maintaining 

reproducible results across gels (data not shown). 

Samples were labeled Cys-Cy5 control and Cys-Cy3 DAQ, or the reciprocal to control 

for differential dye affinity.  Samples were gently vortexed and incubated in the dark for 45 min 

at RT.  The reaction was quenched by adding an equal volume amount of 2-D DIGE sample 

buffer (9 M urea, 2% w/v CHAPS, 2% v/v 3-10 IPG ampholyte buffer, 130 mM dithiothreitol 

(DTT), and a trace of bromophenol blue in ddH2O).  Final DIGE samples were prepared by 

combining equal amounts of Cys-CyDye labeled control protein and Cys-CyDye labeled DAQ-

exposed protein.  

Lysine-dye minimal-labeling 2-D DIGE analysis was utilized to control for changes in 

protein abundance between control and DAQ-exposure groups in comparison to Cys-CyDye 

DIGE.  Migration-matched Cy3 and Cy5 Lys-CyDyes were rehydrated in DMF to a 

concentration of 0.5 mM and stored at -20°C with desiccation until use.  Prior to use, dyes were 
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thawed to RT and diluted 1:1 in DMF.  Control and DAQ-exposed protein sample lysates were 

reacted with the indicated Lys-CyDye (Lys-Cy5 control and Lys-Cy3 DAQ, or the reciprocal) 

under non-reducing conditions at a ratio of 2 pmol dye per 1μg protein in the dark for 30 min on 

ice.  The reaction was quenched by the addition of free lysine to a final concentration of 385 µM 

and incubated 15 min on ice.  Labeled samples were diluted 1:1 with 2-D DIGE sample buffer.  

Equal protein amounts of the Lys-CyDye labeled control and the DAQ-exposed samples were 

combined to generate a final DIGE sample for 2-D gel electrophoresis.  Each DIGE gel 

experiment and its associated parallel gels (Cys- and Lys-CyDye DIGE gels and reciprocals) 

were generated from independent mitochondrial isolation and DAQ exposure experiments. 

 

2-Dimension Difference In-Gel Electrophoresis  

Samples (250 μg) were isoelectrically focused via sample cup loading on rehydrated 18 

cm linear 3-10 pH Immobiline DryStrips (GE Healthcare), using a Multiphor II system with a 

3501XL power supply (GE Healthcare), and using a 4-phase program with a total run of 75 

kVhr.  Focused strips were stored at -80°C until the second dimension run.  Prior to second 

dimension electrophoresis, DryStrips were equilibrated at RT for 10 min in an equilibration 

buffer (75 mM Tris-HCl pH 6.8, 6 M urea, 30% v/v glycerol, 1% w/v SDS) supplemented with 

30 mM DTT, followed by 10 min at RT in equilibration buffer supplemented with 240 mM 

iodoacetamide.  Equilibrated DryStrips were trimmed to 13.5-15 cm and run in second 

dimension 12% SDS-PAGE (1.5mm thick gels, Hoefer SE600 Ruby Electrophoresis Unit). 
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Fluorescence Detection and Spot Picking  

Immediately following the second dimension run, gels were scanned on a Typhoon 9400 

scanner using ImageQuant software (GE Healthcare) to obtain a 200 μm resolution image of the 

gel.  Following imaging, gels were fixed overnight in a 40% MeOH, 1% acetic acid solution at 

4oC.  The gels were scanned a second time using a fluorescent scanning automated spot picker, 

designed by Dr. Jonathan Minden of Carnegie Mellon University (instrumentation housed in the 

University of Pittsburgh Genomics and Proteomics Core Laboratories).  The digital scans of the 

Cy3 and Cy5 dyes within each gel were compared visually with the aid of Image J imaging 

software (NIH).  Protein spots that exhibited a noticeable change in fluorescence, and several 

that exhibited no change, were then picked utilizing the automated picker. 

 

In-gel Trypsin Digest and Protein Identification  

Immediately following excision from 2-D DIGE gels, gel plugs were washed with 50:50 

MeOH:50 mM ammonium bicarbonate followed by dehydration in acetonitrile (ACN) and 

drying by speed-vacuum.  The dried plugs were rehydrated with 10 μl of 20 μg/ml trypsin in 20 

mM ammonium bicarbonate and then incubated for 4 hr at 42°C.  Samples were extracted by 

repeated washing in 1% trifluoroacetic acid in 50:50 ACN:H2O extraction buffer, dried 

completely via speed-vacuum, and stored for up to 2 weeks with desiccation at 4°C.   

Protein identification was completed using MALDI-TOF mass spectrometry (MS) with 

peptide mass fingerprinting.  For MS analysis, dried samples were rehydrated (2-3 μl of 0.3% 

trifluoroacetic acid, 1 mM ammonium citrate in 50:50 ACN:H2O; plus an equal volume of 

saturated α-cyano-4-hydroxycinnamic acid matrix solution), spotted onto a target, and mass 

spectra obtained using an Applied Biosystems 4700 MALDI-TOF/TOF mass spectrometer 
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(Applied Biosystems, Foster City, CA).  Spectra were calibrated via external standard and 

internal trypsin calibration.  Mass spectra retrieved from MALDI-TOF MS were processed by 

GPS Explorer™ (ver. 3) MS data analysis software (Applied Biosystems, Foster City, CA) 

coupled with Mascot™ search engine (Matrix Science) for peak list generation and database 

search.  Criteria for peak list generation included a minimum signal to noise ratio of 5-10, with 

either no peak exclusions or exclusion of common trypsin peaks with a mass exclusion tolerance 

of 0.1 Da or 50ppm.  Database search parameters included specifying a peptide mass tolerance of 

50 ppm and peptide charge +1 for monoisotopic peaks, while allowing a maximum 1 missed 

trypsin cleavage with modifications of partial methionine oxidation, partial cysteine 

carboxylation, partial or complete cysteine carbamidomethylation, and/or partial cysteinyl-DA 

conjugation.  Resulting peak lists were searched against the National Center for Biotechnology 

Information non-redundant (NCBInr) database, specifying “all entries” or “Rattus” species.  A 

positive protein identification for a given spot was accepted when a top ranked hit yielded a 

statistically significant probability-based MOWSE protein score and protein score confidence 

interval > 90% with a peptide count ≥ 6, protein coverage >20%, a predicted molecular weight 

that was relative to the protein spot position on the gel, and could be replicated across two or 

more separate 2-D DIGE gel experiments. 

 

Fluorescence Imaging and Quantitative Image Analysis  

For quantitative image analysis, 2-D DIGE gels were scanned for fluorescence imaging 

on a Typhoon 9400 laser scanner using ImageQuant software (GE Healthcare) at 100 μm 

resolution using photomultiplier tube (PMT) voltage settings below saturation for each dye 

(Cy3/5).  Settings were determined for the first set of gels, both Cys- and Lys-CyDye labeled, 
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then all further gels were scanned using the same PMT voltage settings, or ratio as necessary, to 

obtain non-saturation images.  In-gel quantitative comparisons of fluorescence were completed 

using the Difference In-Gel Analysis (DIA) module of DeCyder Differential Analysis software 

(GE Healthcare).  Fold change ratios, based on volume ratios of the individual spots and 

internally normalized by DeCyder, were determined and recorded for DeCyder-defined spots that 

corresponded to proteins previously identified by MS analysis.  For each selected spot within a 

gel, the fold change was converted to percent DAQ-exposed mitochondrial protein fluorescence 

of control and averaged across all analyzed Cys-CyDye DIGE gels (n=6 total gels from 5 

separate mitochondrial experiments) or Lys-CyDye DIGE gels (n=7 total gels from 5 separate 

mitochondrial experiments) using Excel (Microsoft Corp.). Images obtained from ImageQuant 

were prepared for presentation using Adobe Photoshop (Adobe). 

 

PC12 Cell Culture and Mitochondrial Isolation  

PC12 cells were maintained in DMEM supplemented with 7% horse serum (HS) and 7% 

fetal bovine serum (FBS).  For differentiation, cells were subcultured on rat-tail collagen coated 

100 mm plates at 1.5 x 106 cells/plate in DMEM supplemented with 1% HS, 1% FBS, and 0.1 

μg/ml NGF for 6 days.  Media was then replaced with fresh differentiating media with or without 

150 μM DA and cells were incubated for 16 hrs.  Cells were collected by force pipetting, rinsed 

with PBS, and isolated by centrifugation.  Mitochondrial enriched fractions were prepared from 

10 confluent plates in each group using methods similar to those for isolating rat brain 

mitochondria, with the modification of protease inhibitor cocktail (2 μl/ml) being present in the 

mitochondrial isolation buffer throughout the isolation process.  Mitochondria were lysed in 2-D 

DIGE lysis buffer and final protein concentrations were determined by Bradford (1976).   
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SDS-PAGE and Western Blot Immunodetection of Select Proteins  

Lysed rat brain and PC12 cell mitochondrial protein samples (50 μg/lane) were run on 5-

20% gradient SDS-PAGE (Hoefer ® Mighty Small II apparatus) and transferred to nitrocellulose 

(BioRad) for Western blot analysis via a BioRad Trans-Blot ® Semi-Dry Electrophoretic 

Transfer system.  The membrane was removed, washed briefly in Tris-buffered saline (TBS), 

blocked in 0.2% w/v fat-free dry milk for 30min, rinsed briefly in TBS plus 0.1% Tween-20 

(tTBS), and placed in a 1:1000 dilution of rabbit anti-MtCK or 1:5000 dilution of rabbit anti-

mitofilin primary antibody in tTBS overnight at 4°C.  Immunoreactive bands were visualized 

using the BioRad Immune-Star ® goat-anti-rabbit (dil 1:10,000) chemiluminescence detection 

kit and exposed to Biomax MR Film (Kodak).  Mouse-anti-COXIV (dil 1:37,000; AbCam) and 

rabbit-anti-voltage-dependent anion channel 1 (VDAC1) (dil 1:2000; AbCam) were used as 

loading controls for rat brain mitochondria and for PC12 mitochondria, respectively.  VDAC1 

was selected because in parallel 2-D DIGE studies with PC12 cell mitochondria the protein did 

not significantly change following DA exposure (unpublished data).  Films were digitally 

scanned and the densities of immunoreactive bands were determined using UN-SCAN-IT Gel 

(ver. 5.1) densitometry software (Silk Scientific; Orem, Utah).   

 

Statistical Analysis  

Cys- and Lys-CyDye MS-identified proteins whose relative DAQ-exposed fluorescence 

values (as percent of control) fell outside of a defined range of 83.3-120% (±1.2 fold) were 

selected as different from control.  The range represents two standard deviations in a Cy5-labeled 

control versus Cy3-labeled control gel analyzed by DeCyder (data not shown), and is the 

 47 



recommended threshold for determining significant change in DeCyder analysis.  Statistical 

significance was determined using a 1-sample two-tailed Z-test on the DAQ-exposed 

mitochondrial protein spot volume intensities expressed as percent of control, as determined 

from DeCyder analysis.  The Z-test is optimal, as DeCyder DIA software calculates changes 

between corresponding control and treated protein spots within a gel as a volume ratio of the two 

samples, generating one value of “fold change” for each protein spot that compares both groups.  

The ratios are then internally normalized across the entire constellation of labeled spots.  

Significance for each changed DA-exposed protein from control (valued at 100% control) was 

determined when p<0.01.  The percent control values were directly calculated from the 

normalized DeCyder volume ratios.  For Western blot analysis, rat brain mitochondria samples 

were run in duplicate or triplicate for each of n=6-7 separate experiments, and PC12 

mitochondria samples were run in triplicate for each of n=4 separate experiments.  Significance 

between group means was determined by two-factor ANOVA with replication followed by post-

hoc Bonferroni tests. 

3.4 RESULTS 

3.4.1 A Subset of Proteins Exhibit Decreased Cysteine-reactive CyDye Labeling 

Following DAQ Exposure 

Cys-Cy5 labeled control (magenta) and Cys-Cy3 labeled DAQ-exposed (cyan) 

mitochondrial protein lysates were compared in equal protein amounts on the same gel, revealing 

a reproducible pattern of protein spots (Figure 2A; n=10), within which a subset of observed 
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spots displayed a differential fluorescence intensity.  Specifically, a subset of proteins exhibited 

relative decreased cysteine-reactive dye fluorescence following DAQ exposure as compared to 

control.  Protein spots of interest, including those that exhibited an obvious change in 

fluorescence, were identified by peptide mass fingerprinting (Figure 2A).  All identified proteins 

were determined to be mitochondria-associated proteins.  A listing of all proteins identified and 

their corresponding data can be found in Appendix A. 

Quantitative DeCyder analyses across a set of Cys-CyDye gels (n=6) confirmed 

significantly decreased fluorescence labeling of a subset of proteins in DAQ-exposed 

mitochondria as compared to control (Table 1).  Two of these proteins, mitofilin (-65±2%), 

associated with mitochondrial cristae organization (John et al., 2005), and ubiquitous 

mitochondrial creatine kinase (MtCK) (-82±3%), associated with ADP-ATP exchange and the 

permeability transition pore (Beutner et al., 1998; Schlattner et al., 1998; Vyssokikh and 

Brdiczka, 2003), participate in mitochondrial structure maintenance.  Both proteins exhibited a 

strong decrease in fluorescence intensity following exposure of mitochondria to DAQ (Figure 

2D-E), with MtCK exhibiting the largest changes in relative fluorescence in Cys-CyDye 2-D 

 

 49 



 

Figure 2:  2-D DIGE using Cys-CyDye labeling. 
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Figure 2 (continued): 2-D DIGE using Cys-CyDye labeling.   

Isolated brain mitochondria were exposed to DA (150μM)/tyrosinase (150U) for 15 min.  Lysed 

control (C) and DAQ-exposed (DAQ) mitochondrial proteins were reacted separately with a 

minimal concentration of Cys-Cy5 and Cys-Cy3 CyDyes, respectively, and then analyzed by 2-D 

DIGE.  (A) A representative Cys-CyDye DIGE gel of control (Cys-Cy5, pseudocolored magenta) 

and DAQ-exposed (Cys-Cy3, pseudocolored cyan) mitochondrial protein.  Spots exhibiting 

differential labeling present as magenta (decreased following DAQ) or cyan (increased following 

DAQ) hue, while blue spots represent minimal or no differential labeling.  Specific protein spots 

of interest were picked from the gel and identified via MS analysis, and identities are presented 

with their associated spot (deh. – dehydrogenase).  (B, C) Insets of separate black & white images 

obtained from ImageQuant of the DIGE gel for Cy5 (C) and Cy3 (DAQ-exposed) fluorophores.  

The pseudocolor overlay of B and C generated the image in A. (D) Magnified views of the region 

containing the identified protein spot mitofilin, comparing fluorescence intensity between Cys-

Cy5 labeled (C) and Cys-Cy3 labeled (DAQ-exposed) images of the gel.  (E) Magnified views of 

the region containing the identified protein spot mitochondrial creatine kinase (MtCK), 

comparing fluorescence intensity between Cys-Cy5 labeled (C) and Cys-Cy3 labeled (DAQ-

exposed) images of the gel.  These images demonstrate a decrease in Cys-CyDye fluorescent 

labeling following mitochondrial DAQ exposure for both mitofilin and MtCK. 

 

 

 

DIGE gels.  Other identified proteins whose relative fluorescence intensities were significantly 

reduced included several proteins of the Krebs cycle, including pyruvate carboxylase (-36±6%), 

succinate-CoA ligase (-43±4%), and oxoglutarate dehydrogenase (-49±5%), a protein previously 

shown to be inhibited by reactive metabolites of 5-cysteinyl-DA (Shen et al., 2000). 

When DAQ exposure to mitochondria was carried out in the presence of 1mM N-

acetylcysteine, an antioxidant, no differentially labeled spots were observed with Cys-CyDye 

DIGE (data not shown), demonstrating that DA oxidation is necessary to elicit the differential 

labeling of proteins.  However, Cys-CyDye DIGE analysis alone cannot distinguish whether the 
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reductions in labeling intensity of a specific protein are the result of a change in the redox state 

of its thiols by oxidation/modification by DAQ, or a change in protein abundance.  We utilized 

DIGE-compatible lysine-reactive fluorescent dyes to probe this distinction. 

3.4.2 Lysine-reactive CyDye DIGE Reveals Differential Fluorescent Labeling 

Comparable to Cysteine-reactive CyDye DIGE  

As with the Cys-CyDye DIGE experiments, Lys-CyDye DIGE analysis revealed a 

reproducible pattern of protein spots (Figure 2A; n=6), within which a subset of observed 

protein spots displayed differential fluorescence intensity.  Further, Lys-CyDye labeled DIGE 

gels resulted in an overall protein spot pattern similar to Cys-CyDye labeled DIGE gels (Figures 

2 & 3), as confirmed by MS analysis and peptide mass fingerprinting of spots from Lys-CyDye 

gels.  In addition, proteins of interest demonstrated a similar differential fluorescence with both 

Cys- and Lys-CyDye 2-D DIGE (Figure 3).  The proteins mitofilin and MtCK, in particular, 

both demonstrated a noticeable decrease in Lys-CyDye fluorescence intensity following DAQ 

exposure as compared to control (Figure 3D-E).  

Quantitative DeCyder analysis across a set of Lys-CyDye gels (n=7) confirmed the 

significantly decreased fluorescence labeling of the subset of differentially labeled proteins in 

DAQ-exposed mitochondria as compared to control (Table 1).  DeCyder analyses also 

demonstrate that the values of percent of control are comparable for all identified differentially 

labeled proteins between Cys- and Lys-CyDye 2-D DIGE (Figure 4).  In particular, the proteins 

MtCK, mitofilin, fumarylacetoacetate hydrolase domain containing 2A, voltage-dependent anion 

 52 



 

Figure 3:  2-D DIGE using Lys-CyDye labeling. 
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Figure 3 (continued): 2-D DIGE using Lys-CyDye labeling.   

Isolated brain mitochondria were exposed to DA (150μM)/tyrosinase (150U) for 15 min, lysed 

control (C) and DAQ-exposed (DAQ) mitochondrial proteins reacted separately with a minimal 

concentration of Lys-Cy5 and Lys-Cy3 CyDyes, respectively, and then analyzed by 2-D DIGE.  

(A) A representative Lys-CyDye DIGE gel of control (Lys-Cy5, pseudocolored magenta) and 

DAQ-exposed (Lys-Cy3, pseudocolored cyan) mitochondrial protein. Spots exhibiting a magenta 

or cyan hue represent differential labeling indicative of alterations in protein level, while blue 

spots represent minimal or no differential labeling.  Specific protein spots of interest were picked 

from the gel and identified via MS analysis, and confirmed identities are presented with their 

associated spot (deh. – dehydrogenase).  (B, C) Insets of separate black & white images obtained 

from ImageQuant of the DIGE gel for Cy5 (C) and Cy3 (DAQ-exposed) fluorophores.  The 

pseudocolor overlay of B and C generated the image in A.  (D) Magnified views of the region 

containing the identified protein spot mitofilin, comparing fluorescence intensity between Lys-

Cy5 labeled (C) and Lys-Cy3 labeled (DAQ-exposed) images of the gel.  (E) Magnified views of 

the region containing the identified protein spot mitochondrial creatine kinase (MtCK), 

comparing fluorescence intensity between Lys-Cy5 labeled (C) and Lys-Cy3 labeled (DAQ-

exposed) images of the gel.  These images demonstrate a decrease in Lys-CyDye fluorescent 

labeling following mitochondrial DAQ exposure for both mitofilin and MtCK. 

 

 

 

channel 2 (VDAC2), and glycerol-3-phosphate dehydrogenase all exhibit fluorescence labeling 

decreased greater than 50% in both Cys- and Lys-CyDye DIGE analyses, and represent the 

proteins with the greatest decrease in fluorescence intensity in mitochondria exposed to DAQ as 

compared to control.  These findings suggest that alterations demonstrated by our 2-D DIGE 

analyses result primarily from decreases in a specific subset of proteins, and not from oxidation 

of thiols. 
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Table 1. Protein alterations in isolated rat brain mitochondria exposed to DAQ 
 

Protein 
Spot Protein Protein Identification NCBI        

Accession #

Predicted 
Protein MW; 

pI

Protein 
Score; 
C.I.%**

Peptide 
Count

% 
Coverage

Cys-CyDye     
(% of control,    

± SEM )#

Lys-CyDye     
(% of control,    

± SEM )#

1 Gpd2 Gpd2 protein [Rattus 
norvegicus] gi|54035427 80921.3;  

6.18
101;  

100% 17 31% 32.3±2.74* 46.6±4.55*

2 GRP75 (A) grp75 [Rattus sp.] gi|1000439 73983.9;  
5.87

243;  
100% 27 53% 78.8±2.60* 73.7±3.30*

3 mitofilin
similar to inner membrane 
protein, mitochondrial             
[Rattus norvegicus] 

gi|34855983 82304.9;  
5.37

199;  
100% 26 42% 35.2±2.39* 45.8±2.51*

4 NADH deh. 75kDa
NADH dehydrogenase 
(ubiquinone) Fe-S protein 1, 75 
kDa [Rattus norvegicus] 

gi|51858651 79361.6;  
5.65

245;  
100% 30 49% 54.5±3.24* 54.1±3.48*

5 GRP75 (B) dnaK-type molecular chaperone 
grp75 precursor - rat gi|2119726 73698.8;  

5.87
141;  

100% 19 42% 73.3±3.41* 75.1±3.35*

8 succinate-CoA ligase

PREDICTED: similar to 
succinate-Coenzyme A ligase, 
ADP-forming, beta subunit 
[Rattus norvegicus]

gi|62661722 50274.1;  
7.57

156;  
100% 20 52% 57.0±4.48* 57.9±2.22*

9 isocitrate deh. 3-alpha (A)
isocitrate dehydrogenase 3 
(NAD+) alpha [Rattus 
norvegicus] 

gi|16758446 39588;  6.47 89;  
99.996% 13 37% 86.1±2.28 80.6±1.95*

11 Tu translation           
elongation factor

PREDICTED: similar to Tu 
translation elongation factor, 
mitochondrial                                    
[Rattus norvegicus]  

gi|109462848 49890.1;  
7.23

209;  
100% 21 65% 72.7±2.26* 59.1±1.43*

12 pyruvate carboxylase Pc protein [Rattus norvegicus] gi|55716041 129694.7;  
6.34

213;  
100% 31 39% 63.9±5.90* 69.0±1.71*

13 oxoglutarate 
dehydrogenase

Similar to oxoglutarate 
dehydrogenase (lipoamide)          
[Rattus norvegicus]

gi|53734284 116221.4;  
6.3

85;  
99.99% 18 21% 50.5±4.91* 54.8±3.77*

14 RIKEN cDNA 2410002K23
similar to RIKEN cDNA 
2410002K23                                      
[Rattus norvegicus] 

gi|34868689 80410.8;  
6.56

114;  
100% 19 29% 74.0±7.00* 56.1±5.17*

17 MtCK (A)
ubiquitous mitochondrial 
creatine kinase                         
[Rattus rattus]

gi|57539 46999.3;  
8.72

115;  
100% 16 49% 18.1±2.71* 24.6±2.11*

18 MtCK (B) creatine kinase, mitochondrial 1, 
ubiquitous  [Rattus norvegicus] gi|60678254 46932.2;  

8.58
128;  

100% 17 54% 26.6±3.24* 41.4±2.93*

20 aldehyde deh. 1, B1
Aldehyde dehydrogenase 1 
family, member B1(predicted) 
[Rattus norvegicus]

gi|51858643 58101.6;  
6.62

125;  
100% 15 43% N.D.*** 64.2±3.94*

21 VDAC2

B-36 VDAC 36 kda voltage 
dependent anion channel                   
[rats, hippocampus, Peptide, 
295 aa] 

gi|299036 31699.6;  
7.44

56;  
94.448% 8 40% 25.5±3.56* 31.7±3.25*

22 fumarylacetoacetate 
hydrolase domain

PREDICTED: similar to 
fumarylacetoacetate hydrolase 
domain containing 2A [Rattus 
norvegicus]

gi|34858672 40314;  8.49 122;  
100% 15 56% 34.9±2.61* 43.9±2.09*

23 SOD2 (A)
unnamed protein product 
[Rattus norvegicus]  (Superoxide 
dismutase 2)

gi|56691 24667.6;  
8.96

126;  
100% 13 65% 65.2±3.06* 64.6±2.35*

24 SOD2 (B) 
unnamed protein product 
[Rattus norvegicus]  (Superoxide 
dismutase 2)

gi|56691 24667.6;  
8.96

59;  
96.016% 8 41% 72.3±2.67* N.D.****

*     Significance from control (100%), p<0.01, for proteins outside of the cutoff of 83.3-120% of control (1.2 fold change) 
**    Probability-based MOWSE score (Protein Score) and Protein Score Confidence Interval (C.I.) represent the top Protein Score and C.I. pairing obtained across 
all gels, Cys- and Lys-CyDye, in  
         which the protein was confidently identified (n = 2-11)
***  Insufficient data for DeCyder analysis
**** Protein not identified via MS analysis in Lys-DIGE gels
#    Normalized fold change in fluorescence of DAQ sample compared to control as determined by DeCyder analysis, expressed as percent of control (100%) ± 
standard error of the mean (SEM)
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Figure 4:  Quantitative analyses of Cys-CyDye and Lys-CyDye fluorescence intensities of 

mitochondrial proteins following DAQ.   

Cy5 and Cy3 images obtained from the Typhoon 9400 scanner for DIGE gels were analyzed by 

comparison using DeCyder software.  Normalized values of fold change in fluorescence obtained 

from DeCyder were converted to fluorescence of proteins following DAQ as percent of control.  

The graph shows the mean percent of control value for annotated protein spots in the Cys-CyDye 

gel in Figure 1 (Cys-CyDye) and the Lys-CyDye gel in Figure 2 (Lys-CyDye).  N.D. indicates 

insufficient data for analysis.  N.I. indicates that MS data was insufficient to verify identification 

of SOD2 (B) in Lys-CyDye DIGE gels.  Proteins with differential fluorescence below a cutoff of 

83.3% of control (1.2 fold change) were considered changed and analyzed for significance from 

control.  (mean ± SEM; n= 6 Cys-CyDye DIGE; n= 7 Lys-CyDye DIGE; *, significance from 

control (100%), p<0.01) 
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3.4.3 omparison of Lys- and Cys-Dye DIGE  

Reciprocal labeling experiments with the Cys-CyDyes (n=3) and Lys-CyDyes (n=5) 

confirmed that the differential labeling was not influenced by preferential binding by the dye 

(data not shown).  Most of the subset of proteins showing altered levels of labeling has been 

successfully identified (Table 1), though due to limitations in detection sensitivity, we were 

unable to identify all proteins exhibiting differential labeling.  Despite this, it was obvious that 

the vast majority of mitochondrial proteins do not show any change in labeling following DAQ 

exposure (Figures 2A and 3A).  As only a fraction of the total observable spots on the 2-D DIGE 

gel exhibited a significant decrease in fluorescence, these proteins represent a unique subset of 

e mitochondrial proteome that are susceptible to alterations induced by DAQ exposure and 

AQ exposure quickly results in reduced levels of 

specific

an attem

presence of a 12.5-fold greater co

but this

with Cys- or Lys-CyDyes (data not shown). 

labelin

has a high reactivity with and selectivity for cysteine residues (and lesser reactivity with primary 

amines), and Cys-CyDyes are typically used under saturation-labeling conditions (Shaw et al., 

2003).  Although we initially anticipated that we would observe differential labeling indicative of 

oxidative modification of cysteinyl residues, minimal labeling using Cys-CyDyes detected only 

C

th

result in decreased protein levels. 

These data suggest the effect of D

 proteins, but the exact mode of DAQ-induced alterations of these proteins is unclear. In 

pt to block possible proteolytic degradation, mitochondria were exposed to DAQ in the 

ncentration of protease inhibitor cocktail than normally used, 

 did not have any apparent effect on the observed changes in protein levels as detected 

To our knowledge, this is the first study to examine the use of Cys-CyDyes in a minimal-

g scheme as compared to the more-typically utilized Lys-CyDyes.  The maleimide moiety 
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alterations in protein levels nearly identical to labeling by Lys-CyDyes.  Thus, differential 

labeling observed in Cys- and Lys-CyDye DIGE gels represents changes in abundance of 

protein

d Cys-CyDyes are only sufficient for five to ten experiments.  

The Cy

ysteine residues.  Nevertheless, with increased cost 

effectiv

s. 

The possibility exists that while cysteines are likely being modified by exposure to DAQ, 

DAQ-induced modification may be below detection limits under our experimental conditions.  

Data from a parallel 2-D DIGE study of mitochondria isolated from PC12 cells exposed to DA 

similarly indicate that using Cys-CyDyes at low concentrations primarily detects changes in 

protein levels (Dukes et al., 2008). Although a reasonable approach in theory, labeling and 

detection of bulk protein thiols as conducted here and investigated by others (Chan et al., 2005; 

Hurd et al., 2007) is not an effective method for detecting changes in thiol redox state. 

It is important to note that under manufacturer-recommended protocols, purchased 

quantities of both Lys-CyDyes an

s-CyDye minimal labeling methodology utilizes only a fraction of the recommended dye 

concentration, and increases the number of possible experiments that can be performed for a 

single purchased set of dyes by as much as 800 fold.  This methodology, however, does have the 

drawback that it can only detect proteins containing reactive cysteine residues.  Thus controls, 

such as Lys-CyDye DIGE or Western blot analyses, would be necessary to validate any 

observations or to evaluate proteins lacking c

eness, the methodology described here may make the Cys-CyDyes an ideal choice for 

certain DIGE experiments.   
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3.4.4 Comparable Decreases in Mitofilin and MtCK Levels Observed by Western Blot  

To confirm the decreases in protein levels observed in the DIGE experiments, Western 

blot an

le protein 

aggrega

alyses of two representative proteins, mitofilin and MtCK, were carried out on 

mitochondrial samples treated with the same exposure to DAQ as the DIGE experiments.  

Comparing lysates from control and DAQ-exposed rat brain mitochondria on Western blot, we 

observed significant decreases of both mitofilin and MtCK protein levels (-63.4±5.2%, n=7, and 

-51.4±7.5%, n=6, respectively, P<0.05) comparable to DIGE observations following exposure to 

DAQ (Figure 5A-B).  We also observed immunoreactive bands at higher molecular weights for 

both MtCK and mitofilin after exposure to DAQ (Figure 5C-D), suggesting possib

tion or crosslinking.  
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Figure 5:  Confirmation of protein level alteration following mitochondrial DAQ exposure.   

Western blot analysis was utilized to confirm DIGE analysis results for mitochondrial creatine 

kinase (MtCK) and mitofilin.  Isolated mitochondria were exposed to DAQ, then lysed and 

subjected to SDS-PAGE and Western blot analysis. Representative Western blots of (A) mitofilin 

(n=7) and (B) MtCK (n=6) from intact rat brain mitochondria, Control (Con) versus DAQ 

(DAQ), are presented with densitometry analysis representing DAQ-exposed band density as 

percent of Control band density.  Data is represented as a ratio of detection of the loading control, 

COXIV (mean ± SEM; *, significant from control, p<0.05).  Extended film exposure revealed 

higher molecular weight detection (arrowheads) of (C) mitofilin and (D) MtCK in isolated 

mitochondria following DAQ. 
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3.4.5 Decreased Mitochondrial Levels of Mitofilin and MtCK in DA-Exposed PC12 Cells  

To examine whether the DA-induced decrease in mitofilin and MtCK translates to the 

cellular environment, we utilized an established model of DA-induced PC12 cell toxicity.  

Mitochondria were isolated from differentiated PC12 cells following exposure to control media 

or media containing 150 μM DA for 16 hr.  This concentration and time point were previously 

demonstrated in our laboratory to result in covalent modification of cellular proteins by DAQ 

(indicative of DA oxidation) prior to significant cell death at 24 hrs (unpublished data).  Lysates 

of mitochondria isolated from both treatment groups were subjected to SDS-PAGE and Western 

blot analyses.  Data showed a significant decrease in both mitofilin and MtCK protein levels (-

15.5±5.8% and -25.7±5.4%, respectively, n=4, P<0.05) in mitochondria of DA-exposed PC12 

cells as compared to controls (Figure 6A-B).  Also, as observed in isolated rat brain 

mitochondria exposed to DAQ, higher molecular weight bands were detected for mitofilin in 

mitochondria from DA-exposed PC12 cells (Figure 6C), indicative of potential protein 

crosslinking and/or aggregation. 
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Figure 6:  Detection of mitofilin and MtCK in PC12 cell mitochondria following DA 

exposure.  

Control and DA-exposed PC12 cell mitochondria were collected, lysed, and subjected to SDS-

PAGE and Western blot analysis using VDAC1 as a protein loading control.  Representative 

Western blots of (A) mitofilin and (B) MtCK in mitochondria from PC12 cells, Control (Con) 

versus DA are presented with densitometry analysis representing band density of DA-exposed as 

percent of Control band density.  Data is represented as a ratio of detection of the loading control, 

VDAC1 (mean ± SEM, n=4; *, significant from control, p<0.05).  (C) Extended film exposure 

revealed higher molecular weight detection (arrowhead) of mitofilin in PC12 cell mitochondria 

following DA. 
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3.5 DISCUSSION 

3.5.1 Summary  

Oxidation of DA to reactive metabolites, ROS, and DAQ is thought to contribute to the 

oxidative stress, mitochondrial dysfunction, and dopaminergic neuron degeneration in PD.  In 

this study, we sought to identify mitochondrial proteins susceptible to DA oxidation using an 

unbiased proteomics approach.  We found that exposure of isolated brain mitochondria to 

reactive DAQ resulted in a rapid loss of specific proteins.  The altered proteins identified in this 

study (listed in Table 1) encompass a range of mitochondrial functions including structural 

maintenance, transport, and metabolism, suggesting that DA oxidation may have detrimental 

effects on mitochondrial function. Indeed, loss or altered function of many of the proteins we 

have identified in this study have been previously associated with oxidative stress, mitochondrial 

dysfunction, and neurodegenerative diseases including PD (Beutner et al., 1998; Jin et al., 2006a; 

Kim et al., 2001; Myung et al., 2003; Scott, 2006; Suh et al., 2004; Vyssokikh and Brdiczka, 

2003).   

by 2-D DIGE analysis are MtCK and mitofilin, and their respective decreases in 

abunda

significantly decreased 

suscept

presence of higher m

and for

Two of the proteins whose abundance are most decreased following DAQ exposure as 

determined 

nce were confirmed by Western blot analyses.  Levels of both proteins were also 

in the mitochondria of PC12 cells exposed to DA, suggesting 

ibility of MtCK and mitofilin to DA oxidation.  Western blot analyses also revealed the 

olecular weight species immunoreactive for MtCK in rat brain mitochondria 

 mitofilin in both rat brain and PC12 cell mitochondria following DA oxidation.  These 
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results suggest increased protein agg tio king as a potential consequence of 

oxidation by DAQ, though the nature of these interactions has yet to be examined. 

3.5.2 Mitochondrial Creatine Kinase and Mitofilin Levels Are Altered Following 

Dopam

drial permeability transition pore (PTP) (Brdiczka et al., 2006; Vyssokikh and 

Brdiczk

protein import (Xie et al., 2007), though the exact relationship mitofilin shares with these 

rega n and/or crosslin

ine Oxidation 

The protein whose relative fluorescence intensity was most decreased in our study, MtCK 

(-75% Lys-CyDye), is important in regulating ATP equilibrium in cells by generating 

phosphocreatine to help buffer against rapidly fluctuating energy usage (Schlattner et al., 1998).  

MtCK, an octameric protein, also plays a key role in mitochondrial morphology through 

formation and stabilization of contact sites between the inner and outer mitochondrial 

membranes (Lenz et al., 2007; Speer et al., 2005).  The cysteine-dependent activity of MtCK is 

known to be highly sensitive to oxidative modification (Dolder et al., 2001).  Oxidative stress 

may also result in dissociation of MtCK’s octameric structure into dimers (Dolder et al., 2001; 

Wendt et al., 2003), disrupting contact sites and potentially facilitating opening of the 

mitochon

a, 2003).  Thus, DA oxidation-induced modifications to MtCK activity or stability may 

have impacts on mitochondrial structural integrity and energy metabolism. 

Another protein with significantly decreased abundance is the inner mitochondrial 

membrane protein mitofilin (-54% Lys-CyDye).  The presence of mitofilin has been shown to be 

critical for maintenance of mitochondrial cristae structure (John et al., 2005), though the specific 

role of mitofilin in the mitochondria is unknown.  A recent study suggested mitofilin forms a 

complex with mitochondrial proteins Sam50 and metaxins 1 and 2, integral in mitochondrial 
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proteins has not been evaluated.  Various studies have shown that mitofilin is susceptible to 

oxidative stress, demonstrating oxidatively-modified cysteine and tryptophan residues (Suh et 

al., 2004; Taylor et al., 2003) and ROS-induced reduction of protein levels (Magi et al., 2004).  

crease in 

 proteins found to be significantly decreased in association with the 

disorder (Myung et al., 2003).  Our study shows, using a non-biased approach, that mitofilin is 

suscept

trated alterations in 

mitoch

A proteomic study on fetal Down syndrome brain tissue demonstrated a nearly 50% de

mitofilin, one of three

ible to oxidative stress, resulting in decreased mitofilin protein levels.  Such loss may 

impact mitochondrial structure and function, both of which are relevant to PD pathogenesis. 

Though the major function and interacting proteins of mitofilin are only beginning to be defined, 

a lot more remains to be understood about the important role of this protein within the 

mitochondria. 

3.5.3 Proteins Associated With Mitochondrial Dysfunction and Neurodegeneration Are 

Altered Following Dopamine Quinone Exposure 

The altered proteins we have identified cover a wide range of critical mitochondrial 

functions, and the inhibition of any one could be detrimental to mitochondrial function.  Previous 

proteomic studies utilizing animal models of PD have also demons

ondrial proteins, including oxidation of key metabolism proteins (Poon et al., 2005b) and 

changes in expression and/or abundance of critical proteins (Jin et al., 2005; Palacino et al., 

2004; Periquet et al., 2005). Several of the proteins described here, such as the Complex I 75 

kDa subunit, VDAC2, and mortalin, have also displayed altered abundance in previous animal 

models of PD (Jin et al., 2005; Periquet et al., 2005). 
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The level of the NADH-ubiquinone oxidoreductase 75 kDa Fe-S protein, a key subunit of 

mitochondrial Complex I, was significantly decreased (-46% Lys-CyDye) in isolated rat brain 

mitochondria following exposure to DAQ.  Mutation and deletion of the 75 kDa subunit are 

linked to mitochondrial encephalopathy (Benit et al., 2001; Bulgiani et al., 2004); and led to 

reduced levels of Complex I, reduced Complex I activity, and increased mitochondrial ROS 

accumulation in fibroblasts (Iuso et al., 2006). As previously discussed, Complex I dysfunction 

has been directly linked to PD, and inhibition of Complex I and the ETC are known to lead to 

further ROS production by the mitochondria (Beal, 2003).  In the 1-methyl 4-phenyl 1,2,3,6-

tetrahydropyridine (MPTP)-treated mouse model of PD, proteomic analysis demonstrated a 

significant loss of the 75 kDa subunit in SN pars compacta tissue (Jin et al., 2005).  Protein 

levels of the 75 kDa subunit were also significantly reduced in various brain regions of Down 

syndrome and Alzheimer’s disease patients (Kim et al., 2001).  Thus, loss of the 75 kDa subunit 

DAC2) was greatly decreased (-68% Lys-

CyDye) in fluorescence labeling following DAQ exposure in rat brain mitochondria. The VDAC 

protein

tible to DAQ-induced changes. 

could be detrimental to cellular viability. 

The voltage-dependent anion channel 2 (V

s, like MtCK, have a role in the PTP.  VDAC is also believed to be a key player in 

mitochondrial-mediated apoptosis (Shoshan-Barmatz et al., 2006).  VDAC2, in particular, has 

been shown to regulate the proapoptotic molecule BAK (Cheng et al., 2003), a function that may 

be compromised if DA oxidation reduces protein levels.  A previous study also observed a 

significant decrease of VDAC2 in the SN of MPTP-treated mice (Jin et al., 2005).  While we 

found a decreased relative abundance of the VDAC2 isoform upon DAQ exposure, other 

isoforms of VDAC (VDAC1 and 3) were not detected.  Thus, further analyses will be necessary 

to evaluate whether these isoforms are equally suscep
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The mitochondrial protein chaperone, heat shock protein 70/glucose regulated 

protein75/mortalin (mortalin), another protein whose levels were demonstrably decreased (-26% 

Lys-CyDye) in this study, has also been linked to PD.  Mortalin serves as an important 

chaperone in mitochondria, with a major role in mitochondrial protein import and folding 

(Geissler et al., 2001).  A recent proteomic study found mortalin abundance to be decreased in 

SNpc of PD patients and in MES cells exposed to the mitochondrial Complex I inhibitor 

rotenone (Jin et al., 2006a).  Mortalin was also shown to interact with PD-related proteins DJ-1 

and α-synuclein in cultured cells (Jin et al., 2007), with enhanced DJ-1 interaction following 

oxidative stress (Li et al., 2005).  These studies combined with our present findings suggest that 

mortalin protein interactions and abundance are susceptible to oxidative stress.  Thus, it is 

possible that loss of this protein would have a major impact on importation and incorporation of 

key mitochondrial proteins, particularly at times of stress.  The exact role of mortalin in PD 

pathogenesis, however, remains to be elucidated. 

The cause of the loss of specific proteins identified in this study has yet to be determined. 

One source may be rapid aggregation of oxidatively modified proteins.  The Western blot 

analyses of mitofilin and MtCK indicate that protein aggregation or covalent protein-protein 

interactions do occur rapidly following in vitro DAQ exposure (15 min).  Another possibility 

may be the rapid proteolytic degradation of oxidatively modified proteins.  It is well established 

that mitochondria contain proteases dedicated to degradation of misfolded, denatured, and 

oxidatively modified proteins (Bota and Davies, 2001; Bota and Davies, 2002).  While 

preliminary experiments using increased levels of protease inhibitors in the DAQ-exposure 

reaction did not appear to affect protein loss, protection by protease inhibitors may be 

 67 



confou

 MtCK, mitofilin, and mortalin, and their 

responses to

contribution of DA to the progression of PD pathogenesis, and for developing novel therapeutic 

strategies for PD treatment. 

nded by the presence of intact mitochondrial membranes in our preparations.  More work 

will be necessary to elucidate the nature of the observed protein loss. 

3.5.4 Conclusions 

Our results demonstrate that DA oxidation results in the loss of a select subset of 

mitochondrial proteins.  Such an event, if not countered promptly, could lead to severely 

decreased mitochondrial function and stability.  A major significance of the MtCK and mitofilin 

alterations observed may be in the roles of these proteins in maintaining mitochondrial 

morphology (John et al., 2005; Lenz et al., 2007; Speer et al., 2005).  Dopamine oxidation-

induced alterations in MtCK and mitofilin may lead to disruption of key protein-protein 

interactions and to mitochondrial structure reorganization. 

Given the functions of proteins such as

 oxidative stress, it is possible that mitochondrial protein alterations resulting from 

DA oxidation may lead to impaired mitochondrial protein import, cristae reorganization, and 

PTP formation.  The mitochondrial state may, in turn, deteriorate further due to alterations in key 

proteins involved in the Krebs cycle and ETC function, including the 75 kDa subunit of Complex 

I, leading to increased ROS formation.  This could create a vicious cycle of oxidative damage, 

resulting in amplified mitochondrial dysfunction and, ultimately, neuronal degeneration and 

disease progression.  Further study will be necessary to evaluate this hypothesis and the specific 

roles for the proteins identified in this study within mitochondrial dysfunction.  Characterizing 

the susceptibility of mitochondrial proteins to DA oxidation may be key to understanding the 
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4.0  PROTEOMIC IDENTIFICATION OF DOPAMINE-CONJUGATED PROTEINS 

FROM ISOLATED RAT BRAIN MITOCHONDRIA AND SH-SY5Y CELLS 

Dopamine oxidation has been previously demonstrated

4.1 SUMMARY 

 to cause dysfunction in 

mitochondrial respiration and membrane permeability.  Mitochondrial dysfunction may be 

related to the covalent modification of critical proteins by the reactive dopamine quinone, though 

specific mitochondrial protein targets have not been identified.  In this study, we utilized 

proteomic techniques involving two-dimensional gel electrophoresis, fluorescent labeling, 

autoradiography, and mass spectrometry to identify proteins directly conjugated with 14C-

dopami olated rat brain mitochondria and differentiated SH-SY5Y 

human neuroblastoma cells to radiolabeled dopamine quinone and dopamine, respectively.  We 

observed a subset of rat brain mitochondrial proteins that were highly susceptible to covalent 

modification by 14C-dopamine, including chaperonin (HSP60), ubiquinol-cytochrome c 

reductase core protein 1, glucose regulated protein 75/mitochondrial HSP70/mortalin, 

mitochondrial creatine kinase, and isocitrate dehydrogenase 3 alpha. We used Western blot 

detection to confirm the association of radiolabled dopamine with two proteins, mitochondrial 

creatine kinase and mitofilin. We also found the Parkinson’s disease associated proteins 

ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and DJ-1 to be covalently modified by 

ne following exposure of is
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dopamine in our brain mitochondrial preparations and in SH-SY5Y cells.  The susceptibility of 

the identified proteins to covalent modification by dopamine may carry implications for their 

role in the vulnerability of dopaminergic neurons in Parkinson’s disease pathogenesis. 

4.2 INTRODUCTION 

Mitochondrial dysfunction and dat  been implicated in the pathogenesis 

of neurodegenerative diseases, including Parkinson’s disease (PD) (Beal, 2007; Halliwell, 2001; 

Halliwell, 2006; Jenner, 2003; Schapira, 2008).  PD is a progressive disorder, pathologically 

characterized by the loss of pigmented dopaminergic neurons in substantia nigra (SN), and the 

formation of proteinaceous cytoplasmic inclusions called Lewy bodies (Samii et al., 2004).  

Though other brain regions are known to be involved in PD, the degeneration of the nigrostriatal 

dopaminergic neurons combined with the increased oxidative stress observed in PD suggests the 

neurotransmitter dopamine (DA) may be contributing to disease progression (Greenamyre and 

Hastings, 2004; Ogawa et al., 2005; Stokes et al., 1999). 

Normal DA metabolism can lead to the production of reactive oxygen species (ROS).  If 

not adequately stored in vesicles, DA is also prone to auto- or enzymatic oxidation in the cellular 

environment, leading to the formation of reactive DA quinone (DAQ) and additional ROS 

(Graham et al., 1978; Hastings, 1995).  The electron deficient DAQ is readily susceptible to 

reduced glutathione, free cysteine, and cysteinyl residues of proteins (Tse et al., 1976).  The 

interaction of protein with reactive DA metabolites will result in either covalent binding of thiols 

by DAQ to form 5-cysteinyl-DA, or oxidation of protein sulfhydryl groups (Graham et al., 1978; 

 oxi ive stress have

attack by cellular nucleophiles, predominantly reduced sulfhydryls abundantly found in cells on 
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Hastings et al., 1996; Ito et al., 1988).  Many vital cellular and mitochondrial proteins contain 

cysteine residues whose redox states are critical for function.  Thus, DA-induced oxidative 

modifications, which may alter protein structure as well as function, could have detrimental 

effects on the cell (Berman and Hastings, 1999; LaVoie and Hastings, 1999; Premkumar and 

Simantov, 2002).   

DA-induced toxicity has b em ro in cell culture (Ben-Shachar et 

al., 2004; Jones et al., 2000; Koshimura et al., 2000; Lai and Yu, 1997a; Offen et al., 1996) and 

in vivo (Hastings et al., 1996; Rabinovic et al., 2000), where toxicity to DA terminals was 

correlated to the amount of DA oxidation and modification of proteins (Hastings et al., 1996).  

DA and DAQ exposures also altered mitochondrial respiration in isolated intact rat brain 

mitochondria (Berman and Hastings, 1999; Cohen et al., 1997; Gluck et al., 2002) and triggered 

permeability transition (Berman and Hastings, 1999), suggesting modification of critical 

mitochondrial proteins.   

Several cellular and mitochondrial proteins have been reported to have altered function 

following DA exposure and DA oxidation, including cytosolic and mitochondrial creatine kinase 

(Maker et al., 1986; Miura et al., 1999), mitochondrial aldehyde dehydrogenase (Turan et al., 

1989), mitochondrial Complex I (Ben-Shachar et al., 2004; Khan et al., 2005), tyrosine 

al., 1996).  Proteins associated with familial PD, parkin (LaVoie et al., 2005) and alpha-

synuclein (Conway et al., 2001), have also been demonstrated to be targets of covalent 

modification by DA.  It has also been shown that isolated brain mitochondria can accumulate 

exogenous radiolabeled DA (Brenner-Lavie et al., 2008).  In addition, Kahn et al. demonstrated 

een d onstrated both in vit

hydroxylase (Kuhn et al., 1999; Xu et al., 1998), and the dopamine transporter DAT (Berman et 

that exposure of crude mitochondrial-synaptosomal fractions to DA led to protein crossing-
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linking and protein-bound DA formation (Khan et al., 2001).  To date, however, the specific 

proteins directly modified by DAQ have not been identified. Thus, it was of interest to us to 

identify and characterize the mitochondrial targets of DA oxidation. 

Proteomic techniques allow for the analysis and identification of modified proteins within 

the complete proteome of tissues or organelles. In recent years, proteomics has become a 

valuabl

AQ. 

e and diverse tool in investigating disease processes of neurodegeneration, including 

altered protein expression and modification (Butterfield et al., 2006; Dalle-Donne et al., 2005; 

Fountoulakis and Kossida, 2006; Johnson et al., 2005; Kim et al., 2004).  Previous studies 

combining techniques such as two-dimensional (2-D) gel electrophoresis and Western blot 

analysis have detected oxidatively modified proteins associated with neurodegenerative diseases 

in animal models and human post mortem tissue (Castegna et al., 2002a; Choi et al., 2004a; Poon 

et al., 2005b).  Such techniques can also be applied toward the identification of proteins 

covalently modified by D

Recently, we have shown that several mitochondrial proteins are decreased in abundance 

following in vitro DAQ exposure (Van Laar et al., 2008; see Chapter 3).  While demonstrating 

the effect of DAQ on a subset of mitochondrial proteins, the method utilized did not identify 

proteins directly modified by covalent binding with DAQ.  In this study, we exposed isolated rat 

brain mitochondria to radiolabled DA (14C-DA) quinone, and differentiated SH-SY5Y 

neuroblastoma cells to exogenous 14C-DA.  Employing techniques including 2-D gel 

electrophoresis, autoradiography, and 2-D difference in-gel electrophoresis (DIGE) fluorescent 

labeling technology combined with mass spectrometry (MS) analysis, we have identified 

proteins directly conjugated to 14C-DA.  These findings further elucidate the effects of DA 

oxidation on cellular protein alterations, and may have implications for PD pathogenesis. 
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4.3 EXPERIMENTAL PROCEDURES 

Materials  

3,4-Dihydroxyphenylethylamine, [8-14C] (14C-DA) was purchased from MP Biomedicals, 

Inc. (Irvine, CA). IEF DryStrips (7 cm 3-5.6pH, 4-7pH, and 6-11pH , and 18 cm 3-10pH), and  

CyDye™ DIGE Fluor Scarce Sample Labeling (Cysteine-reactive) and Minimal Labeling 

(Lysine-reactive) dye kits were purchased from GE Healthcare (Piscataway, NJ).  Bradford Dye 

Reagent was purchased from BioRad (Hercules, CA).  Promega Gold Mass Spectrometry Grade 

Modified Trypsin was purchased from Promega (Madison WI). Dopamine (DA), Protease 

inhibitor cocktail (cat#P2714), mushroom tyrosinase, retinoic acid, and most general chemicals 

for SDS-PAGE, buffers, and solutions were purchased from Sigma Chemical Co. (St. Louis, 

MO) unless otherwise noted.  The MtCK and mitofilin polyclonal antibodies used in this study 

were generated for our laboratory by Genemed Synthesis, Inc. (San Antonio, TX).  Dulbecco’s 

modifie

d Use 

Committee at the University of Pittsburgh and are in accordance with guidelines put forth by the 

d Eagle medium (DMEM; Gibco) cell culture media, fetal bovine serum (FBS; 

HyClone), and 10,000 U/mL penicillin/10,000 μg/mL streptomycin (pen/strep; Gibco) were 

purchased from Invitrogen (Carlsbad, CA).  All general solutions and buffers were prepared 

using purified water from a Milli-Q system (Millipore Corp., Bedford, MA).  Solutions for in-gel 

and on-blot trypsin digest procedures were prepared using HPLC-grade water from Fisher 

Biotech (Pittsburgh, PA), and HPLC-grade acetonitrile and spectrophotometric-grade methanol 

from Sigma-Aldrich (St. Louis, MO).  

 

Mitochondrial Isolation and 14C-Dopamine Exposure Reactions  

All animal procedures were approved by the Institutional Animal Care an
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National Institutes of H  in of Laboratory Animals.  

Mitochondria were isolated from adult male Sprague-Dawley (300-350g) rat brain tissue via 

differential centrifugation as previously described (Van Laar et al., 2008; see Chapter 3).  

Mitoch

pamine Exposure  

roliferating SH-SY5Y cells were maintained in DMEM supplemented with 10% FBS 

and 1% nto 6 cm or 6-well 

plates a

ealth  the Guide for the Care and Use 

ondrial pellets were resuspended in isolation buffer and kept on ice.  Mitochondrial 

protein content was determined for the total suspension via Bradford protein assay (Bradford, 

1976).  Prior to experimental use, respiration measurements of the isolated mitochondria were 

made to ensure mitochondrial health, as previously described (Berman and Hastings, 1999).  A 

state 3/state 4 ratio above 6 was considered an indication of healthy, intact mitochondria. 

Mitochondrial protein (4 µg/µL) was exposed to 150 µM DA or 14C-DA (0.5-1 μCi; 

150µM) and tyrosinase (300U/mL), to oxidize DA to DAQ, in reaction buffer (225 mM 

mannitol, 75 mM sucrose, 25 mM HEPES, and 1 mM EGTA, pH 7.4 with PIC) for 15 min at 

room temperature (RT).  Mitochondria were then pelleted by centrifugation at 15,000 g for 15 

min at 0°C.  Control mitochondria underwent an identical procedure without DA present.  

Mitochondrial pellets were lysed by rigorous pipetting in denaturing 2-D DIGE lysis buffer (9 M 

urea, 2% w/v CHAPS, and 30 mM Tris-base, pH 8.5) in a ratio of 100 µL buffer to 1 mg protein.  

Insoluble material was pelleted by centrifugation (16,000 x g for 1-2 min at RT) and discarded. 

Protein concentrations in the lysed control and DAQ-exposed samples were determined by the 

Bradford method (Bradford, 1976).  

 

SH-SY5Y Cell Culture and Do

P

 pen/strep (SH media).  For differentiation, cells were subcultured o

t 2 x 105 cells/mL.  Culture media was exchanged for fresh SH media supplemented with 
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20 μM retinoic acid (SH differentiation media) 48 hr after plating, and every 48 hr thereafter for 

a total of 5 days of differentiation.  On day 5, culture media was exchanged for fresh SH 

differentiation media supplemented with 150 μM 14C-DA (1 μCi/mL media) for 16 hr.  

Immediately following treatment, cells were collected by 1 min exposure to 0.25% trypsin with 

2.21mM EDTA in HBSS (Mediatech; Herndon, VA) followed by force pipetting, rinsing with 

PBS, and centrifugation.  The resulting cell pellet was rinsed with PBS, centrifuged, then lysed 

in DIGE lysis buffer supplemented with Chaps Cell Extract Buffer (Cell Signaling Technology; 

Danvers, MA) and PMSF. 

 

2-D Gel Electrophoresis  

For 2-D gel electrophoresis utilizing mini-gel SDS-PAGE, 100-250 μg total protein from 

14C-DA exposed mitochondrial or SH-SY5Y cell lysate was loaded via sample cup on rehydrated 

7cm pH 3-5.6, pH 4-7, or pH 6-11 DryStrips and isoelectrically focused on a Multiphor II 

electrophoresis unit according to manufacture’s instructions (GE Healthcare).  Focused strips 

were equilibrated for 10 min at RT in an equilibration buffer (75 mM Tris-HCl pH 6.8, 6 M urea, 

30% v/v glycerol, 1% w/v SDS) supplemented with 30 mM DTT, followed by 10 min at RT in 

equilibration buffer supplemented with 240 mM iodoacetamide.  Equilibrated strips were then 

subjected to electrophoresis on 12% SDS-PAGE gels utilizing a Hoefer Mighty Small II 

apparatus.  Precision Blue markers (BioRad) were used as molecular weight standards.  

 

Transblotting and Autoradiography of 14C Dopamine-modified Proteins  

Following 14C-DA mini 2-D electrophoresis, proteins were transferred to PVDF 

membrane via a BioRad Trans-Blot Semi-Dry Electrophoretic Transfer system.  For 
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autoradiography, blots were air-dried and recognizable landmarks were marked on the edges of 

the blot using a green-ink phosphorescent imaging marker (Diversified Biotech; Boston, MA) for 

later reference between the blot and the resulting autoradiogram.   Blots were then placed in 

Kodak autoradiogram transcreens with BioMax MS autoradiogram film (Kodak) in a film 

exposure cassette at -80°C for 3 days to 3 weeks to allow for complete exposure.  

 

Radiolabeled Protein Spot Excision and Trypsin Digest  

Following autoradiography, PVDF blots were aligned with the developed film by 

matching the phosphorescent ink landmarks, and together they were placed on a 

transill  a sterile 2 mm tissue punch, points that corresponded with 

spots o

°C under 

desiccation until MS analysis. 

umination light box. Using

n the autoradiogram were excised from the blot.  Excised PVDF spots were then subjected 

to trypsin digest by methods adapted from Bienvenut et al. (Bienvenut et al., 1999).  Briefly, 

spots were washed with 1:1 methanol and water, and then air-dried.  Membrane spots were then 

submerged in 10 μL of 30% acetonitrile in 50 mM ammonium bicarbonate and 4 μL of 0.1 

mg/mL trypsin (Promega) and incubated 16-18 hr at RT with constant agitation.  Following 

digestion, the supernatant was collected and saved in a separate tube.  The membrane spots were 

then submerged in 20 μL of 80% acetonitrile, and sonicated for 15 min in a sonicating waterbath 

at RT.  The resulting supernatant was collected and added to the original digestion supernatant. 

The total supernatant was dried down by speed-vacuum without heating, and kept at 4
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Cys- and Lys-CyDye labeling and 2-D DIGE  

2-D DIGE analysis with either cysteine-reactive maleimide CyDye (Cys-CyDye) or 

lysine-reactive NHS-ester CyDye (Lys-CyDye) labeling of control and DAQ- or 14C-DAQ-

exposed mitochondrial protein was carried out as previously described (Van Laar et al., 2008; 

see Chapter 3).  Briefly, controls were paired with DAQ or 14C-DAQ reacted samples from the 

same mitochondrial isolation, and experiments were completed for sample sets from multiple 

mitoch AQ- or 14C-DAQ-exposed 

sample

yphoon 9400 scanner with ImageQuant software (GE Healthcare) 

to obtain a 100-200 μm resolution image of the gel.  Immediately following imaging, 14C-DA 2-

D DIGE gels were transblotted to PVDF or nitrocellulose.  Non-radioactive 2-D DIGE gels were 

fixed overnight in 40% MeOH, 1% acetic acid solution at 4oC.  Spots of interest were excised 

ondrial isolations. Cy5-labeled control and Cy3-labeled D

s were combined in equal protein amounts, generating the following DIGE gel 

experiments: (1) Cys CyDye Cy5 control vs. Cy3 DA, (2) Cys CyDye Cy5 control vs. Cy3 14C-

DA, (3) Lys CyDye Cy5 control vs. Cy3 DA, and (4) Lys CyDye Cy5 control vs. Cy3 14C-DA.  

We previously determined through reciprocal labeling that there is no disparate or preferential 

labeling exhibited by the individual dyes (Van Laar et al., 2008; see Chapter 3).  Samples were 

isoelectrically focused on 18cm pH 3-10 DryStrips using a Multiphor II electrophoresis system 

(GE Healthcare).  Focused DryStrips were equilibrated as described above and proteins were 

separated on 12% SDS-PAGE 1.5mm thick gels using a Hoefer SE600 Ruby Electrophoresis 

Unit.  

 

Fluorescence Detection, Spot Picking, and In-gel Trypsin Digest  

Immediately following the second dimension run, 2-D DIGE gels were scanned for Cy3 

and Cy5 dye labeling using a T
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using onathan Minden of Carnegie Mellon 

Univer

 protein spots that aligned with radioactive spots were considered spots of interest.  For 

protein spots that we did not already have an identification for based on previous data (Van Laar 

et al., ioactive DIGE gels 

and pic

an automated spot picker, designed by Dr. J

sity (instrumentation housed in the University of Pittsburgh Genomics and Proteomics 

Core Laboratories). Immediately following excision from 2-D DIGE gels, gel plugs were washed 

and carried through a previously described in-gel trypsin digest procedure (Van Laar et al., 2008; 

see Chapter 3). 

 

Image Analysis  

In-gel quantitative comparisons of fluorescence were completed utilizing DeCyder 

Difference In-Gel Analysis (DIA) module software (GE Healthcare).  Fold change ratios, based 

on volume ratios of the individual spots and internally normalized by DeCyder, were determined 

and recorded for DeCyder-defined spots as previously described (Van Laar et al., 2008; see 

Chapter 3).  

For 14C-DA 2-D DIGE experiments, transblots were subjected to autoradiography. 

Digital scan images of the autoradiogram and the corresponding DIGE gel were digitally merged 

and compared visually.  Images were aligned based on recognizable landmarks.  Fluorescence-

labeled

2008; see Chapter 3), correlating spots were located on the non-rad

ked for identification, as described above. 

 

MS and MS/MS Analyses for Protein Identification  

For MS and MS/MS analyses, dried trypsin-digested samples were rehydrated in 2-3 μl 

of 0.3% trifluoroacetic acid, 1 mM ammonium citrate in 50:50 acetonitrile/water, and an equal 
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volume of saturated α-cyano-4-hydroxycinnamic acid matrix solution, and then spotted onto a 

MALDI target plate at 42ºC.  MS and MS/MS spectra were obtained using an Applied 

Biosystems 4700 MALDI-TOF/TOF mass spectrometer (Applied Biosystems, Foster City, CA) 

and processed by GPS Explorer™ (ver. 3) data analysis software (Applied Biosystems) coupled 

with Mascot™ search engine (Matrix Science) for peak list generation, database search, and 

statistical analysis.  MS and/or combined MS and MS/MS spectra were searched against the 

Nationa otechnology Information non-redundant (NCBInr) and SwissProt 

databas

s ranges were 800-4000 Da for MS peaks and 20-60 Da under precursor for 

MS/MS

tive to the protein spot position on the gel or 

blot, and when (4) MS identification for the given 14C-DA-labeled spot could be replicated 

across ificant protein identities are also 

noted t

l Center for Bi

es, specifying “All Entries,” “Rodentia,” or “Rattus” species for rat brain mitochondria 

samples, and “All Entries” or “Homo sapiens” species for SH-SY5Y samples.  In specifications 

for searches, trypsin digest was specified, and MS and MS/MS peak filtering were set at a 

minimum S/N ratio of 10, with a peak density filter of 50 and maximum 65 peaks allowed.  

Allowed mas

.  Precursor tolerance was set at 50 to 100 ppm and MS/MS fragment tolerance was set at 

0.2 to 0.4 Da, allowing 1 missed cleavage.  Modifications specified included fixed or variable 

cysteine carbamidomethylation and methionine oxidation. 

For peptide mass fingerprinting via MS analysis, a positive protein identification was 

accepted when a top ranked hit yielded (1) a probability-based molecular weight search 

(MOWSE) protein score confidence interval percentage (C.I.%) > 95%, (2) peptides matched ≥ 

6, (3) a predicted molecular weight that was rela

two or more separate experiments.  Five statistically sign

hat were obtained via MS peptide mass fingerprinting analysis in only one 14C-DA 

exposure experiment, though corresponding 14C-DA conjugated spots were visible in blots from 
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multiple experiments.  These identities are noted in Tables 2 and 4.  Identification for a 

particular spot was accepted for combined MS and MS/MS (MS + MS/MS) results that yielded 

(1) a top ranked hit with both MS probability-based MOWSE protein score and MS/MS spectra 

total ion score C.I.% each > 95%, (2) total peptides matched ≥ 6 and/or significant ion score for 

≥ 2 unique peptides, (3) a predicted molecular weight that was relative to the protein spot 

position on the blot, and (4) a corresponding 14C-DA-labeled spot was present in blots from 

multiple experiments.  Total ion scores were calculated from weighted ion scores for individual 

peptides that were matched to a given spot identity.  C.I.% values are derived from the 

probability-based MOWSE scores.  Thus, values >95% suggest identities are significant, and not 

random matches. For each protein identity provided, we ensured that the next non-homologous 

protein hit obtained from Mascot was non-significant, suggesting that only the protein identity 

provided occupied the spot picked (data not shown). 

 

Western Blot Detection of Mitofilin & MtCK  

Following autoradiography, the transblots generated from 14C-DA 2-D DIGE gels were 

carried through the Western blot detection procedure. The membrane was washed and placed in 

a 1:1000 dilution of rabbit anti-MtCK or 1:5000 dilution of rabbit anti-mitofilin primary 

antibody 16-18 hr at 4°C.  Membranes were developed using the BioRad Immune-Star® goat-

anti-rabbit Chemiluminescence Detection kit, exposed to Biomax MR film (Kodak), and 

developed for imaging. Using recognizable landmarks for alignment, scanned images of the 

Western blot and the autoradiogram were digitally merged with the ImageQuant scan of the 

fluorescent DIGE gel for visual comparison. 
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4.4 RESULTS 

4.4.1 14C-DA-conjugated mitochondrial proteins were identified directly from transblots 

of 2-D gels 

transblotted to PVDF, and the membranes used to generate autoradiograms ( ).  Distinct 

Following exposure to 14C-DAQ, mitochondria were lysed and proteins separated by 2-D 

gel electrophoresis using three separate pI ranges for the first dimension, pH 3-5.6 (n = 5 blots, 

from n = 4 mitochondrial experiments), pH 4-7 (n = 9 blots, from n = 6 mitochondrial 

experiments), and pH 6-11 (n = 7 blots, from n = 6 mitochondrial experiments).  2-D gels were 

Figure 7

spots of radioactivity indicated protein targets covalently modified by 14C-DAQ.  The 

autoradiograms were then aligned with their PVDF blots, corresponding 14C-DA-associated 

spots were excised from the blot, and proteins were identified by mass spectrometry (MS) 

analysis (Figure 7, Table 2). 

modified by 14C-DAQ, including the tricarboxylic acid (TCA) cycle protein subunit isocitrate 

dehydrogenase 3-alpha, TCA cycle associated protein glutamate oxaloacetate transaminase 2, the 

NADH-ubiquinone oxidoreductase 30 kDa subunit of Complex I, the ubiquinol-cytochrome c 

reductase core protein 1 and Rieske Fe-S protein subunits of Complex III, ubiquitous 

mitochondrial creatine kinase (MtCK), and the chaperone proteins chaperonin, or heat shock 

protein 60 (HSP60), and mortalin, also known as glucose regulated protein 75 or mitochondrial 

heat shock protein 70 (mortalin/GRP75/mtHSP70).  Additionally, three proteins previously 

demonstrated to interact with mitochondrial membranes, the glycolytic enzyme enolase 

(Brandina et al., 2006; Entelis et al., 2006; Giege et al., 2003) and the cytoskeletal proteins 

Proteins involved in various mitochondrial functions were identified as being covalently 
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tubulin (Carre et al., 2002) and actin 

also identified to be covalently modified following exposure to 14C-DAQ.  Note that three 

, 

l manganese superoxide dismutase (SOD2), and guanine nucleotide-binding protein 

subunit beta 2, a G-protein subunit that to our knowledge has not previously been associated with 

mitoch

 the identity of these proteins as targets of covalent modification 

by 14C-

(Boldogh and Pon, 2006; Boldogh and Pon, 2007), were 

protein identities including mitochondrial voltage-dependent anion channel 1 (VDAC1)

mitochondria

ondria, were confirmed by MS peptide mass fingerprinting analysis in only one blot each, 

though corresponding radiolabeled spots were present in blots from multiple experiments.  

Several other proteins not specifically mitochondrial were also found to be covalently modified 

by 14C-DA, including the glycolytic enzyme triosephosphate isomerase, cytosolic creatine 

kinase, and the PD-associated proteins DJ-1 and ubiquitin carboxy-terminal hydrolase L1 (UCH-

L1).  The significance of the presence and modification of these proteins is discussed below.   

The proteins tubulin, HSP60, and gamma-enolase were found in both pH 3-5.6 (Figure 

7A) and pH 4-7 (Figure 7B) blots (likely due to overlap of the pI ranges in the first dimension 

separation), dually confirming

DAQ.  The identity of some 14C-DA-associated spots, however, remained unidentified 

due to limitations with protein recovery and MS analysis. 
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Figure 7:  14C-DAQ Exposure of Isolated Brain Mitochondria Results in DA Conjugation 

to Select Mitochondrial Proteins 

itochondria were exposed to 14C-DA/tyrosinase (150μM, 0.5-1μCi; 300 

L) and subjected to 2-D gel electrophoresis, followed by transblotting to PVDF membrane 

and autoradiography.  Samples were analyzed at pH ranges of (A) pH 3-5.6, (B) pH 4-7, and (C) 

pH 6-11.  Select radioactive spots displaying protein conjugated with 14C-DA were picked from 

the PVDF membrane and subjected to MS analysis for protein identification.  Protein identities 

are provided for each pI range.  The autoradiographic image of a representative pH 4-7 2-D gel 

protein blot was duplicated in (B-i.) and (B-ii.) for ease of accurate labeleing of identified 

proteins. 

Isolated rat brain m

U/m
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Table 2:  14C-DA-Conjugated Proteins Identified from Rat Brain Mitochondrial Fractions 

 

pH 3-5.6
MS Data:

Protein 

Spota Protein Identification

Accession 
Number & 
Database

Theoretical 
Protein MW

Theoretical 
Protein pI

Protein 

Scoreb

Protein 
Score 

C.I.%b
Peptide 
Count

3a.  gamma enolase Gamma-enolase (EC 4.2.1.11) (2-
phospho-D-glyceratehydro-lyase) 
(Neural enolase)

P07323 
SwissProt

47110.9 5.03 227 100 25

3b.  gamma enolase Gamma-enolase (EC 4.2.1.11) (2-
phospho-D-glyceratehydro-lyase) 
(Neural enolase)

P07323 
SwissProt

47110.9 5.03 123 100 17

2b.  HSP60 unnamed protein product                
[Rattus norvegicus]

gi|1334284 
NCBI

57889.7 5.35 130 100 18

Combined MS & MS-MS Data:

Protein 

Spota Protein Identification

Accession 
Number& 
Database

Theoretical 
Protein MW

Theoretical 
Protein pI

Protein 

Scoreb

Protein 
Score 

C.I.%b

Total Ion 

Scoreb

 Total Ion 

C.I. %b
Peptide 
Count

2a.  HSP60  unnamed protein product               
[Rattus norvegicus] 

 gi|1334284 
NCBI 

57889.7 5.35 325 100 125 100 25

1.  Tubulin beta  Tubulin beta chain (T beta-15)  P04691 
SwissProt 

49931 4.79 82 100 13 94.581 12

pH 4-7
MS Data:

Protein 

Spota Protein Identification

Accession 
Number & 
Database

Theoretical 
Protein MW

Theoretical 
Protein pI

Protein 

Scoreb

Protein 
Score 

C.I.%b
Peptide 
Count

8b.  actin gamma PREDICTED: similar to Actin, 
cytoplasmic 2Gamma-actin) 
[Rattus norvegicus] 

gi|109492380 
NCBI 

58670 5.67 81 99.965 12

12.  creatine kinase Creatine kinase B-type                   
(Creatine kinase B chain)

gi|122065316 
NCBI 

42725.27 5.39 146 100 16

17.  DJ-1 DJ-1 protein [Rattus norvegicus] gi|16924002 
NCBI 

20189.5 6.32 116 100 11

7.  gamma-enolase phosphopyruvate hydratase       
(EC 4.2.1.11) - rat

gi|1363309 
NCBI 

47495.1 5.07 85 99.977 12

4a.  GRP75 grp75 [Rattus sp.] gi|1000439 
NCBI 

73698.8 5.87 141 100 19

4b.  GRP75 grp75 [Rattus sp.] gi|1000439 
NCBI 

73698.8 5.87 95 100 14

Guanine nucleotide-binding protein 
G(I)/G(S)/G(T)subunit beta 
2(Transducin beta chain 2)

P54313 
SwissProt

37331 5.6 56 98.562 918. guanine nucleotide-
      binding protein  *

5a.  HSP60 unnamed protein product                gi|1334284 
NCBI 

57889.7 5.35 217 100 25
[Rattus norvegicus]

5b.  HSP60 unnamed protein product                
[Rattus norvegicus]

gi|1334284 
NCBI 

57889.7 5.35 137 100 19

15a.  isocitrate dehydrogenase isocitrate dehydrogenase 3 (NAD+) 
alpha [Rattusnorvegicus] 

gi|16758446 
NCBI 

40044.2 6.47 189 100 22

15b.  isocitrate dehydrogenase isocitrate dehydrogenase 3 (NAD+) gi|16758446 40044.2 6.47 148 100 18

11.  tubulin 

alpha [Rattusnorvegicus] NCBI 

beta Tubulin beta-2A chain (T beta-15) - 
Rattus norvegicus (Rat) 

P85108 
SwissProt

49907 4.78 226 100 25

C core protein 1 Ubiquinol-cytochrome-c reductase 
complex core protein1, 
mitochondrial precursor

Q68FY0 
SwissProt

53499.7 5.57 83 99.997 12

Ubiquitin carboxyl-terminal 
hydrolase isozyme L1 

6b.  Ub-cyt 

9.  UCH-L1

(EC3.4.19.12) (UCH-L1)

Q00981 
SwissProt

25164.6 5.14 80 99.994 9
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Table 2 (continued) 
pH 4-7
Combined MS & MS-MS Data:

Protein 

Spota Protein Identification

Accession 
Number& 
Database

Theoretical 
Protein MW

Theoretical 
Protein pI

Protein 

Scoreb

Protein 
Score 

C.I.%b

Total Ion 

Scoreb

 Total Ion 

C.I. %b
Peptide 
Count

8a.  actin gamma PREDICTED: similar to Actin, 
cytoplasmic 2(Gamma-actin) 
[Rattus norvegicus] 

gi|109492380 
NCBI  

58763.5 5.67 252 100 184 100 12

13.  aldehyde dehydrogenase mitochondrial aldehyde 
dehydrogenase precursor [Rattus 
norvegicus] 

gi|45737866 
NCBI 

56079.4 6.69 318 100 200 100 16

15c.  isocitrate dehydrogenase isocitrate dehydrogenase 3 (NAD+) 
alpha [Rattusnorvegicus] 

gi|16758446 
NCBI 

40044.2 6.47 277 100 190 100 12

NADH dehydrogenase (ubiquinone) 
Fe-S protein 3(predicted), isoform 
CRA_b [Rattus norvegicus] 

gi|149022594 
NCBI  

34391.7 8.67 133 100 37 97.67 13

16a.  peroxiredoxin 3 Thioredoxin-dependent peroxide 
reductase, mitochondrial precursor 
(Peroxiredoxin-3) (PRX-3)

gi|118597399 
NCBI 

28562.6 7.14 248 100 191 100 7

16b.  peroxiredoxin 3 Thioredoxin-dependent peroxide 
reductase, mitochondrial precursor -
Rattus norvegicus (Rat)

Q9Z0V6 
SwissProt

28562.6 7.14 91 100 77 100 3

14.  succinate CoA ligase PREDICTED: similar to succinate-
Coenzyme A ligase,ADP-forming, 
beta subunit           [Rattus 
norvegicus] 

gi|62661722 
NCBI  

50616.3 7.57 232 100 130 100 15

6a.  Ub-cyt C core protein 1 ubiquinol-cytochrome c reductase 
core protein I            [Rattus 
norvegicus] 

gi|51948476 
NCBI  

53499.7 5.57 364 100 229 100 16

pH 6-11
MS Data:

Protein 

Spota Protein Identification

Accession 
Number & 
Database

Theoretical 
Protein MW

Theoretical 
Protein pI

Protein 

Scoreb

Protein 
Score 

C.I.%b
Peptide 
Count

26.  ATP synthase b *  ATP synthase B chain, 
mitochondrial 

 Q9CQQ7 
SwissProt 

28930.4 9.11 50 99.06 10

glutamate oxaloacetate 
transaminase 2 [Rattusnorvegicus] 

gi|6980972 
NCBI

47683.2 9.13 181 100 19

27.  triosephosphate isomerase  Triosephosphate isomerase       
(EC 5.3.1.1) 

 P48500 
SwissProt 

26772.7 6.51 44 98.941 7

24.  SOD2 * Superoxide dismutase [Mn], 
mitochondrial precursor (EC 
1.15.1.1) - Rattus norvegicus

P07895 
SwissProt

24658.6 8.96 59 99.327 7

23.  VDAC1 * Unknown (protein for 
IMAGE:7462139) 
[Rattusnorvegicus] 

gi|75773332 
NCBI 

31920.2 8.35 87 99.993 10

Combined MS & MS-MS Data:

Protein 

Spota Protein Identification

Accession 
Number& 
Database

Theoretical 
Protein MW

Theoretical 
Protein pI

Protein 

Scoreb

Protein 
Score 

C.I.%b

Total Ion 

Scoreb

 Total Ion 

C.I. %b
Peptide 
Count

22.  ATP synthase gamma ATP synthase gamma chain, 
mitochondrial - Rattusnorvegicus 
(Rat) 

P35435 
SwissProt

30228.7 8.87 54 97.427 25 98.625 6

PREDICTED: similar to 
fumarylacetoacetate 
hydrolasedomain containing 2A       
[Rattus norvegicus] 

gi|34858672 
NCBI 

40884.2 8.49 105 100 55 99.989 8

creatine kinase, mitochondrial 1, 
ubiquitous [Rattusnorvegicus] 

gi|60678254 
NCBI

46932.2 8.58 175 100 70 99.998 15

25.  Rieske Fe-S Rieske Fe-S protein precursor gi|206681 
NCBI 

27671.3 8.9 119 100 74 100 7

       For all other identities provided, n = 2-4 for MS analyses, n = 1-3 for MS/MS analyses
 * = Identified by MS-based peptide mass fingerprinting in only one blot, but corresponding spots were observed in blots from 2 or more separate experiments

         obtained across all blots from which the protein was confidently identified

20.  glutamate oxaloacetate
        transaminase 2 

19. mitochondrial
       creatine kinase

a = Protein S

20. fumarylacetoacetate 
       hydrolase

10. NADH-
       oxidoreductase
       30 kDa subunit

Notes for Table 2:
pots correspond with Figure 7

= Probabilitb y-based MOWSE score (Protein Score), Protein Score Confidence Interval (C.I.), Total Ion Score, and Total Ion C.I.% represent the top score and C.I. pairing



4.4.2 DA conjugated proteins can be identified by comparing 2-D DIGE Fluorescent Dye 

Labeling and 14C-DA autoradiography 

Previously, utilizing 2-D DIGE and MS techniques, we demonstrated that in vitro 

exposure of rat brain mitochondria to DAQ resulted in decreased abundance of several identified 

mitochondrial proteins (Van Laar et al., 2008; see Chapter 3).  We reasoned here that by 

combining 2-D DIGE fluorescent labeling technology with autoradiographic techniques, we 

could take advantage of the protein identification map we already established for 2-D DIGE 

analysis of rat brain mitochondria.  Not only would this methodology provide possible identities 

of covalently modified proteins, but would also inform us as to whether covalent modification by 

DA correlated with the loss of abundance in select mitochondrial proteins following DAQ 

exposure.  

Cysteine CyDye DIGE gels of rat brain mitochondria (Cys-CyDye Cy5 control vs. Cys-

CyDye Cy3 14C-DAQ-exposed protein; Figure 8A) demonstrated a spot patterning and 

differential fluorescence identical to that which we previously described (Van Laar et al., 2008; 

see Chapter 3), as did the Lysine CyDye labeled DIGE gels of 14C-DAQ-exposed protein (data 

not shown).  DIGE gels of 14C-DA-exposed mitochondrial proteins (Cys-CyDye DIGE, n = 5 

gels from 5 separate experiments; Lys-CyDye DIGE, n = 4 gels from 3 separate experiments) 

were imaged and then transblotted to a membrane for autoradiography.  The resulting 

autoradiogram was then compared back to the parent gels.  Figure 8B shows the autoradiogram 

generated from a blot of the representative 14C-DA Cys-CyDye DIGE gel in Figure 8A, and 

Figure 8C shows the digital merge of the corresponding fluorescent and autoradiographic 

images. 
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The identities of several proteins associated with 14C-DA labeleing were determined

based on identities established for analog

 

ous spots from our previous DIGE experiments (Van 

Laar et al., 2008; see Chapter 3) (Figure 8C; bold text).  Several proteins that we previously 

identifi

odified (Figure 8C).   

ed as decreased in abundance following exposure of brain mitochondria to DAQ were 

also found to be covalently modified by 14C-DAQ (Figure 8C; marked with *).  These proteins 

include mitofilin, 75kDa subunit of Complex I, mortalin/GRP75/mtHSP70, fumarylacetoacetate 

hydrolase domain protein, superoxide dismutase 2 (SOD2), MtCK, and the TCA cycle proteins 

isocitrate dehydrogenase 3-alpha subunit and succinate-CoA ligase.  14C-DA modification was 

also observed correlating with several protein spots whose abundances do not appear to be 

altered following DAQ exposure.  The chaperone HSP60 and TCA cycle protein aconitase, 

which we identified previously but were not decreased in abundance (Van Laar et al., 2008; see 

Chapter 3), were found to be covalently m

We also observed several 14C-DA conjugated protein spots that did not appear decreased 

in abundance, which were not previously identified in our other DIGE experiments.  To identify 

these proteins, Cys- and Lys-CyDye 2-D DIGE gels with control and non-radiolabeled DA 

exposed mitochondrial protein were run in parallel with the 14C-DAQ DIGE gels, as described in 

the methods.  Protein spots identified in these experiments as corresponding with covalent 14C-

DA modification include actin, ubiquinol cytochrome-C reductase core protein 1, tubulin, and 

UCH-L1 (Figure 8C, Table 3).  DeCyder analysis confirmed that the overall normalized 

abundance of these proteins does not decrease following DAQ exposure (data not shown). 
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Figure 8:  14C-DAQ Exposure of Isolated Brain Mitochondria Combined with 2-D DIGE  
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Figure 8 (continued):  14C-DAQ Exposure of Isolated Brain Mitochondria Combined with 

2-D DIGE  

Lysed Control (C) and 14C-DAQ exposed (14C-DA) mitochondrial proteins were reacted 

separately with a minimal concentration of cysteine-reactive CyDyes, and then analyzed by 2-D 

DIGE and autoradiography. (A) Cysteine-labeled (maleimide dye) DIGE gel of Control 

mitochondrial protein (Cy5, magenta) and 14C-DAQ exposed mitochondrial protein (Cy3, cyan). 

(B) Autoradiogram generated by the PVDF transblot of the 14C-DIGE gel shown in (A).  (C) 

Merged pseudocolor image of the fluorescent cysteine-labeled 14C-DA DIGE (Cys-CyDye DIGE) 

image in (A) (green) and its corresponding autoradiogram of the PVDF transblot (red).  Yellow 

spots demonstrate proteins visualized by DIGE that are conjugated to 14C-DA. Protein 

identifications were obtained from parallel non-radioactive DIGE gels treated identically to 14C-

DA DIGE experiments.  BOLD protein identifications were previously described (Van Laar et 

al., 2008; see Chapter 3).  * indicates proteins which were also found to be decreased in 

abundance following DAQ exposure based on previous DeCyder analysis of DIGE gels (Van 

Laar et al., 2008; see Chapter 3). 

 

 

Table 3:  Identified Proteins from Control vs DA DIGE Corresponding with Radiolabeling 

 

 

Protein 

Spota Protein Identification

Accession 
Number & 
Database

Theoretical 
Protein MW

Theoretical 
Protein pI

Protein 

Scoreb

Protein 
Score 

C.I.%b
Peptide 
Count

tubulin beta Tubulin, beta, 2                        
[Rattus norvegicus]

gi|38014578 
NCBI

49769 4.79 225 100 24

gamma enolase enol_cds [Rattus norvegicus] gi|1619609 
NCBI

47110.9 5.03 139 100 19

Ub-cyt C red core 1 protein Ubiquinol-cytochrome c reductase 
core protein I [Rattusnorvegicus] 

gi|51259340 
NCBI

52815.4 5.57 91 99.997 14

actin gamma similar to gamma actin-like protein 
[Rattus norvegicus]

gi|34875636 
NCBI

43082.3 5.11 143 100 17

UCH-L1 Ubiquitin carboxy-terminal 
hydrolase L1 [Mus musculus] 
(Protein Group: ubiquitin carboxyl-
terminal hydrolase PGP9.5 Rattus

gi|25058057 
NCBI

25164.6 5.14 87 99.996 9

Notes for Table 3:
a = Protein Spots correspond with Figure 8

b = Probability-based MOWSE score (Protein Score) and Protein Score Confidence Interval (C.I.) represent the top score and C.I. pairing  
      obtained across all blots from which the protein was confidently identified (n = 3-5)
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4.4.3 Comparing 14C-DA autoradiography, 2-D DIGE, and Western blot detection 

demonstrates DA conjugation with MtCK and mitofilin. 

immun

from C

mitoch

positio

Alignm

demon

and 10D

Following autoradiography, blots of 14C-DA 2-D DIGE gels were used for 

ochemical detection of MtCK and mitofilin.  Both proteins were previously identified 

ys- and Lys-CyDye DIGE gels comparing DAQ-exposed and control rat brain 

ondria (Van Laar et al., 2008; see Chapter 3).  Here, Western blot analysis confirmed the 

ns of MtCK (Figure 9) and mitofilin (Figure 10) within the 14C-DA 2-D DIGE gel blots. 

ent of digital images of the parent fluorescent gels and the resulting autoradiograms 

strated the association of covalently bound 14C-DA with these two proteins (Figures 9D 

). 
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Figure 9:  14C-DA Conjugation with MtCK 

A 14C-DA Cys-CyDye DIGE gel was transferred to PVDF membrane, followed by 

autoradiography and Western blot analysis to detect MtCK.  The fluorescent scan of the DIGE gel 

(A), Western blot (B), and autoradiogram (C) of 14C-DA-labeled mitochondrial creatine kinase 

(MtCK) were merged (D) to demonstrate the association between 14C-DA-modification (red), 

immunodetection (blue), and the known DIGE analysis location (green) of MtCK.  Arrows point 

to the location of MtCK in (B) and (C). 
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Figure 10:  14C-DA Conjugation with Mitofilin 

A 14C-DA Cys-CyDye DIGE gel was transferred to PVDF membrane, followed by 

 

 

autoradiography and Western blot analysis to detect mitofilin.  The fluorescent scan of the DIGE 

gel (A), Western blot (B), and autoradiogram (C) of 14C-DA-labeled mitochondrial mitofilin were 

merged (D) to demonstrate the association between 14C-DA-modification (red), immunodetection 

(blue), and the known DIGE analysis location (green) of mitofilin.  Arrows point to the location 

of mitofilin in (B) and (C). 
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4.4.4 14C-DA-conjugated proteins were identified from differentiated SH-SY5Y cells.  

Differentiated SH-SY5Y cells were exposed to 150 μM 14C-DA (1 μCi/mL media) for 16 

hrs, a concentration and time point of toxicity established in our laboratory to induce slight 

(~10%) yet significant cell death (unpublished data).  Whole cell lysates from three separate 

platings of cells with 14C-DA treatment were independently separated by 2-D gel electrophoresis, 

and the resulting blots of the gels were used to generate autoradiograms to map DA-conjugated 

proteins.  A representative autoradiogram is presented in Figure 11.  We found that a subset of 

cellular proteins was covalently modified following SH-SY5Y cell exposure to exogenous 

radiolabeled DA (Figure 11).  Using MS and MS + MS/MS analyses, we identified several 14C-

DA conjugated proteins (Figure 11; Table 4).  These proteins include peroxiredoxin 2 isoform 

A, nucleoside diphosphate kinase A, superoxide dismutase 1 (SOD1), ER-60, 

mortalin/GRP75/mtHSP70, tropomyosin, UCH-L1, and DJ-1.  Note that two protein identities, 

actin and chloride intracellular channel protein, were confirmed by MS peptide mass 

fingerprinting analysis in only one blot, though corresponding radiolabeled spots were present in 

blots from all three experiments.  Interestingly, some of the modified proteins identified in SH-

SY5Y cells, actin, DJ-1, UCH-L1, and mortalin/GRP75/mtHSP70, were also detected as 

ochondrial model of DAQ exposure. 

 

 

 

 

 

covalently modified by 14C-DA in the rat brain mit
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Figure 11:  Exposure of Differentiated SH-SY5Y Cells to Exogenous C-DA Results in DA 

Conjugation to Cellular Proteins 

Differentiated SH-SY5Y cells were treated with 14C-DA (150μM; 10μCi/mL media) and 

rane and 

autoradiography.  Samples were analyzed at a pH ranges of 4-7 pI.  Select radioactive spots 

displaying protein conjugated with 14C-DA were picked from the PVDF membrane and subjected 

to MS analysis for protein identification.  Protein identities are indicated on autradiogram.  

14

subjected to 2-D gel electrophoresis, followed by transblotting to PVDF memb
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Table 4:  Identified DA-Conjugated Proteins from 14C-DA-Exposed SH-SY5Y Cells 

Table 3. Identified DA-Conjugated Proteins from DA-Exposed SH-SY5Y Cells

MS Data:

Protein 
Spota Protein Identification

Accession 
Number

Theoretic
al Protein 

MW

Theoretic
al Protein 

pI
Protein 
Scoreb

Protein 
Score 
C.I.%b

Peptide 
Count

2a. Actin * ACTB protein [Homo sapiens] gi|15277503 40194 5.55 108 100 15

2b. Actin * ACTB protein [Homo sapiens] gi|15277503 40194 5.55 146 100 16

2c. Actin * actin, gamma 1 propeptide         
[Homo sapiens]

gi|4501887 41662 5.31 138 100 17

4. Cloride intracellular channel* chloride intracellular channel 1    
[Homo sapiens]

gi|14251209 26792 5.09 119 100 13

7a. ER-60 protein disulfide isomerase 
family A, member 3, 
isoformCRA_a [Homo sapiens] 

gi|119597640 54454 6.78 249 100 28

protein disulfide isomerase-
related protein 5 [Homosapiens] 

gi|1710248 46170.2 4.95 131 100 28

3. Tropomyosin hypothetical protein [Homo 
sapiens]

gi|57997573 27387 4.71 199 100 22

5. UCH-L1 ubiquitin carboxyl-terminal 
esterase L1

gi|21361091 25151 5.33 148 100 15

Combined MS & MS-MS Data:

Protein 
Spota Protein Identification

Accession 
Number

Theoretic
al Protein 

MW

Theoretic
al Protein 

pI
Protein 
Scoreb

Protein 
Score 
C.I.%b

Total Ion 
Scoreb

 Total 
Ion   C.I. 

%b
Peptide 
Count

6. GRP75 heat shock 70kDa protein 9B 
precursor 

gi|24234688 73920 5.87 145 100 94 100 10

7b. ER-60 protein disulfide isomerase          
[Homo sapiens] 

gi|860986 57043 6.1 393 100 210 100 21

9. DJ-1 (Q99497) Protein DJ-1 
(Oncogene DJ1) 

Q99497 ** 19879 6.33 172 100 78 100 10

8. Peroxiredoxin 2 TSA [Homo sapiens] gi|1617118 18486 5.19 325 100 236 100 9

10. Nucleoside diphosphate kinase NME1-NME2 protein [Homo 
sapiens] 

gi|66392203 30346 9.06 228 100 147 100 8

11. SOD1 Chain A, A4v Mutant Of Human 
Sod1 

gi|47169370 16051 5.7 95 99.993 52 99.86 4

Notes for T
a = Protein 

b = Probabi
      C.I. pair

 * = Identifi
       For all 

able 3:
Spots correspond with Figure 11

lity-based MOWSE score (Protein Score) Protein Score Confidence Interval (C.I.) and Total Ion Score and Total Ion C.I.% represent the top score and
ing obtained across all blots from which the protein was confidently identified 

ed by MS-based peptide mass fingerprinting in only one blot, but corresponding spots were observed in blots from 2 or more separate experiments
other identities provided, n = 2-4 for MS analyses, n  = 1-3 for MS/MS analyses

on Number from SwissProt database.  All others are from NCBI database.**= Accessi

1. protein disulfide 
    isomerase related 
    protein 5 *
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4.5 DISCUSSION 

4.5.1 Summary 

Oxidative damage of proteins has been associated with the pathogenesis of various 

neurodegenerative diseases, including Alzheimer’s disease and PD (Halliwell, 2001; Halliwell, 

2006).  Proteomic studies have identified multiple protein targets of oxidation in association with 

these diseases (Castegna et al., 2002a; Castegna et al., 2002b; Choi et al., 2004b; Choi et al., 

2005; Choi et al., 2006).  Utilizing a DA oxidation model of PD, we identified protein targets 

covalently modified by DAQ.  Proteomic analysis of isolated rat brain mitochondria exposed to 

14C-DAQ in vitro revealed a subset of mitochondrial proteins conjugated to DA, including 

mortalin/GRP75/mtHSP70, HSP60, MtCK, mitofilin, glutamate oxaloacetate transaminase 2, 

isocitrate dehydrogenase 3 subunit alpha, the ubiquinol-cytochrome c reductase core protein 1 

and Rieske Fe-S protein subunits of Complex III, and the 75 kDa and 30 kDa subunits of 

Complex I.  We also identified several DA-conjugated proteins from whole-cell lysate of 14C-

DA-exposed differentiated SH-SY5Y cells.   Some of the proteins identified from SH-SY5Y 

cells, including actin, UCH-L1, DJ-1, and mortalin/GRP75/mtHSP70, correlated with the 

mitochondrial 14C-DAQ-exposure model, suggesting that DA-modified proteins identified from 

DAQ-exposed mitochondria are also targets of modification in living cells.  Covalent 

modification of these proteins by DA may lead to altered structure or inactivation of function, 

nd may play a role in dopaminergic neuron vulnerability in PD pathogenesis. 

We utilized two methods for identification of 14C-DA-modified proteins in the 

itochondrial model.  First, using MS analyses we carried out direct identification of protein 

ots conjugated to radiolabeled DA from the PVDF membrane.  Second, we compared known 

a

m

sp
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spot patterns from fluorescent-labeled 2-D DIGE gels of radiolabeled protein to the 

autoradiographic images generated from blots of those same gels.  In the second method, 

ined from MS analyses of protein spots form parallel, non-radioactive 

DIGE gels.  Most of the identified covalently-modified proteins were similar between the two 

method

f

se in their native 

state ar

identities were determ

s, validating both the protein identities and the individual methods for identifying DA-

modified proteins.  

Noting that isolated brain mitochondria were intact when exposed to 14C-DAQ, it is 

interesting that we identified covalently-modified proteins associated with the mitochondrial 

matrix as well as the intermembrane space.  This suggests that the electrophilic DAQ gains 

access to both compartments in the intact mitochondrion at a physiological pH (pH 7.4).  This 

inding also has implications for the reactivity of specific mitochondrial proteins to DA quinone.  

Thus, the 14C-DA labeled spots observed in this study represent proteins that are the most 

reactive and/or accessible to DAQ as compared to the remainder of the mitochondrial proteome. 

Some proteins we identified from our DAQ-exposed rat brain mitochondrial isolates, 

such as triosephosphate isomerase and UCH-L1, are not typically associated with the 

mitochondria.  We are aware that the mitochondrial-enriched fractions isolated from brain by our 

described procedure typically contain approximately 10% of contaminating synaptosomes 

(Berman et al., 2000).  Thus, we are not asserting that such proteins are necessarily 

mitochondrial.  This fact does not, however, make the identification of DA-conjugated non-

mitochondrial proteins in these samples any less significant.  We demonstrate here that the 

cytosolic proteins actin, tubulin, UCH-L1, DJ-1, and triosephosphate isomera

e potential targets of DA modification when exposed to DAQ in vitro.  Further, actin, 
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UCH-L1, and DJ-1 were also subject to covalent modification in DA-exposed SH-SY5Y cells, 

which may have implications for the role of these proteins in neurodegeneration.  

4.5.2 Several mitochondrial proteins covalently modified by DA displayed changes in 

abundance 

Several proteins we identified here as being covalently modified by DAQ were also 

identified in our previous study as being decreased in abundance following mitochondrial 

exposure to DAQ (Van Laar et al., 2008; see Chapter 3).  The proteins MtCK and mitofilin, in 

particular, were previously confirmed to be decreased in DAQ-exposed rat brain mitochondria 

and DA-exposed PC12 cells via Western blot analysis, and are demonstrated here, by 

comparison of Western blot and autoradiography, to also be covalently modified by C-DA.  We 

previously hypothesized that the loss of protein may involve either rapid aggregation or

14

 

proteolytic degradation of oxidatively modified proteins.  However, other proteins identified as 

DA-conjugated in this study were not associated with any measurable change abundance, such as 

HSP60 and aconitase.  Thus, covalent modification by DAQ does not necessarily correspond 

with decreases in protein abundance in mitochondria.  This may have implications for the 

susceptibility of specific mitochondrial proteins for proteolytic degradation or aggregation 

following oxidative modification.  Further study will be necessary to evaluate the differences in 

individual protein responses to DA oxidation both in mitochondria and in cells. 
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4.5.3 Protein Targets of DA Conjugation Encompass Multiple Critical Functions, and are 

Known Targets for Oxidative Modification 

The protein targets of covalent modification by DAQ that we have identified are invo

in a range o

lved 

f critical mitochondrial and cellular functions. Because they are susceptible to 

modification by the electrophilic DAQ, many of the proteins identified in this study are likely 

vulnera

aperones in the 

mitochondria, with roles in matrix protein folding and mitochondrial protein import, respectively 

(Wadhwa et al., 2005; Yaguchi et al., 2007).  Mortalin/GRP75/mtHSP70, in particular, is a 

known target of oxidative stress, and has previously been linked to neurodegenerative diseases 

PD and AD based on altered expression (Jin et al., 2006; Osorio et al., 2007).  A recent study 

ble to other oxidative agents that induce modification.  Indeed, several proteins identified 

here have been reported in other studies to be oxidatively modified in association with disease, 

disease models, and oxidative stress.  One such protein is mitofilin, which we previously 

identified as exhibiting decreased abundance following DAQ-exposure (Van Laar et al., 2008; 

see Chapter 3). Various studies have shown that mitofilin is susceptible to oxidative stress, 

demonstrating oxidatively-modified cysteine residues following alcohol exposure in hepatoma 

cells (Suh et al., 2004), as well as a ROS-induced reduction of protein levels (Magi et al., 2004).  

Given the proposed role of mitofilin in maintaining mitochondrial cristae morphology (John et 

al., 2005) and interaction with key mitochondrial import proteins (Xie et al., 2007), oxidative 

modification could have a detrimental impact on proper function or protein-protein interactions, 

and thus on mitochondrial stability.   

Protein import and processing could also be impacted by the modification of two 

mitochondrial protein chaperones, HSP60 and mortalin/GRP75/mtHSP70, as identified in this 

study.  HSP60 and mortalin/GRP75/mtHSP70 are key protein processing ch
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found that both HSP60 and Mortalin/GRP75/mtHSP70 interacted with frataxin, a protein 

involved in iron-sulfur (Fe-S) cluster biogenesis for Fe-S cluster-dependent enzymes (Shan et al., 

2007).  The authors also noted that Mortalin/GRP75/mtHSP70 shares homology with the 

HSP70

ase activity of Complex I has been observed in both the 

SN (Ja

-family protein Ssq1, a mitochondrial matrix protein required for Fe-S cluster assembly 

(Lutz et al., 2001; Shan et al., 2007).  Interestingly, we identified several Fe-S cluster-containing 

proteins covalently modified by 14C-DA, including the 30 kDa subunit of Complex I, Rieske Fe-

S protein subunit of Complex III, and aconitase.  Thus, DA oxidation may potentially contribute 

to an impaired Fe-S protein system in dopaminergic neurons, both in Fe-S protein biogenesis and 

function. 

Multiple subunits of Complex I (75 kDa and 30 kDa subunits) and Complex III 

(ubiquinol-cytochrome c reductase core protein 1 and Rieske Fe-S protein) of the mitochondrial 

electron transport chain (ETC) were identified as targets of covalent DA modification.  Several 

studies have demonstrated that incubation of isolated brain mitochondria with DA or DAQ 

inhibits mitochondrial respiration (Berman and Hastings, 1999; Cohen et al., 1997; Gluck et al., 

2002; Gluck and Zeevalk, 2004).  Studies in disrupted mitochondria have also suggested DA can 

directly interact with and inhibit Complex I (Ben-Shachar et al., 2004; Brenner-Lavie et al., 

2008).  Decreased NADH dehydrogen

netzky et al., 1994; Orth and Schapira, 2002; Schapira et al., 1990) and the periphery 

(Blandini et al., 1998; Shoffner et al., 1991) of PD patients. PD models utilizing Complex I 

inhibitors rotenone and 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP) replicate 

characteristics of the disease, including nigrostriatal dopaminergic cell death (Przedborski et al., 

2000; Sherer et al., 2003a).  Modification of critical ETC proteins by DA oxidation may 
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potentially inhibit these proteins, possibly leading to an increase in mitochondrial dysfunction 

and play a role in the increased susceptibility of dopaminergic neurons in PD. 

In this study, we also found both cytosolic and mitochondrial isoforms of CK to be 

targets of DA modification in isolated brain mitochondria.  Previous studies have shown that 

exposure to dopamine and dopamine oxidation can inhibit the activity of CK proteins (Maker et 

al., 1986; Miura et al., 1999).  Choi et al. also found that cytosolic creatine kinase (CK) was 

susceptible to increased oxidation in the hippocampus of aged mice, as well as in young and old 

ApoE-KO mice, as compared to brain tissue of young mice (Choi et al., 2004a).  CK was also 

identified as having increased carbonyl modification in AD brain (Castegna et al., 2002a). Given 

the cri

and gamma-enolase, and beta-actin were found to be targets of protein nitration in AD brain 

tical role of CK and MtCK in ATP level maintenance (Eder et al., 2000), and the 

association of MtCK with the proteins involved in the permeability transition pore (Vyssokikh 

and Brdiczka, 2003), oxidative modification of CK proteins may carry implications for energy 

maintenance and mitochondrial function in dopaminergic neurons.  In a similar vein, we found 

14C-DA covalent modification of the protein nucleoside diphosphate kinase A in SH-SY5Y cells.  

Considered a multifunctional protein, the assigned function of this enzyme is to maintain a 

balance between ADP, GDP, ATP, and GTP levels in the cell, and its activity is known to be 

modulated by disulfide crosslinking of two oxidation-sensitive cysteine residues (Cumming et 

al., 2004; Song et al., 2000).   

Though not necessarily mitochondrial, the glycolysis proteins enolase 2 and 

triosephosphate isomerase were also shown in this study to be modified by DA in DAQ-exposed 

mitochondria preparations.  These proteins have previously been shown to be targets of oxidative 

modification in association with neurodegenerative disease.  Triosephosphate isomerase, alpha- 
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(Castegna et al., 2003).  Oxidative modification of these proteins by DAQ could have 

implications for dysfunction in cellular metabolism and energy generation upstream of the ETC, 

which c

14 14

cells and in PD brain (Fang et al., 2007).  In addition, silencing 

express

protein 5 (also known as ERp5 or PDIA6) in SH-SY5Y cells exposed to DA.  Both proteins are 

ould have detrimental effects for the high-energy demands of neurons. 

4.5.4 Antioxidant and Thiol Oxidoreductase Enzymes are covalently modified by DAQ 

We observed covalent DA modification of mitochondrial SOD2 and peroxiredoxin 3 in 

C-DAQ-exposed brain mitochondria, and cytosolic SOD1 and peroxiredoxin 2 in C-DA-

exposed differentiated SH-SY5Y cells. Both enzyme types are integral in managing ROS levels 

and protecting against oxidative stress.  SOD enzymes catalyze conversion of the free radical 

superoxide to oxygen and H2O2, and peroxiredoxins catalyze reduction of H2O2 to water.  

Alterations in expression and activity of both enzymes have been linked to PD and PD models.  

Post mortem PD brain tissue displayed increased SOD activity (Saggu et al., 1989), and elevated 

levels of SOD2 have been observed in PD patient CSF (Yoshida et al., 1994), suggestive of a 

response to increased levels of superoxide.  Peroxiredoxin 2, which is highly abundant in 

neurons, showed increased abundance in PD brain SN (Basso et al., 2004), again suggestive of 

an oxidative stress response.  Peroxiredoxin 2 was also found to be S-nitrosylated in rotenone 

and MPP+ treated SH-SY5Y 

ion of mitochondrial peroxiredoxin 3 and 5 increased the vulnerability of SH-SY5Y cells 

to MPP+ toxicity (De Simoni et al., 2008).  Thus, DA modification of these enzymes could 

compromise the antioxidant defense mechanisms of dopaminergic neurons. 

In this study, we also observed DA modification of the endoplasmic reticulum 

chaperones ER-60 (also known as GRP58 or ERp57) and protein disulfide isomerase-related 
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members of the protein disulfide isomerase family, which employ thiol-disulfide oxidoreductase 

activity to oxidize disulfide bonds in substrates, and thus mediate proper protein folding 

(Ellgaard and Ruddock, 2005).  Both proteins are primarily localized to the endoplasmic 

reticulum, and each contains two cysteine-glycine-histidine-cysteine, or C-X-X-C, thioredoxin-

k, 

2005).  Proteins containing the C-X-X-C motif are very susceptible to modification by 

electrop

d

le for the protein in 

oxidati

like activity motifs integral in enzymatic disulfide bond formation (Ellgaard and Ruddoc

hilic compounds such as DAQ (Lame et al., 2003; Lame et al., 2005).  ER-60 also has 

emonstrated cysteine protease activity (Okudo et al., 2000; Urade and Kito, 1992; Urade et al., 

1992) and a role in degradation of misfolded proteins (Otsu et al., 1995).  We have previously 

shown the upregulation of ER-60 expression along with other ER chaperones following DA 

exposure in differentiated PC12 cells, suggesting DA toxicity induces ER stress and the unfolded 

protein response (Dukes et al., 2008).  As aberrant protein folding and aggregation are associated 

with PD, DA may be contributing by modification and inactivation of key ER chaperone 

proteins. 

4.5.5 DJ-1 and UCH-L1 Are Targets for Covalent Modification by DAQ 

An intriguing finding of this study was the covalent DA modification of two proteins 

directly linked to genetic forms of PD, UCH-L1 and DJ-1.  DJ-1, linked to familial PARK7 

(Bonifati et al., 2003), is found widely distributed in the brain (Bandopadhyay et al., 2004).  

While the specific function of DJ-1 remains unknown, data suggest a ro

ve stress regulation, possibly through the protein’s own susceptibility to oxidation of a 

critical cysteine residue (Canet-Aviles et al., 2004).  UCH-L1 is linked to PARK5 through a 

mutation that leads to a decrease in the deubiquinating activity of the protein (Leroy et al., 1998; 
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Nishikawa et al., 2003).  The exact mechanism by which this mutation leads to decreased activity 

is unknown.  However, it has been shown that the active site of UCH-L1 contains cysteine and 

histidine residues that are sensitive to modification by 4-hydroxynonenal (4-HNE), a reactive 

byproduct of lipid peroxidation (Nishikawa et al., 2003).  Additionally, oxidative damage of both 

DJ-1 and UCH-L1, in the form of carbonylation and direct oxidation at cysteines and 

methionines, has been identified in both PD and AD brain (Castegna et al., 2002a; Choi et al., 

2004b; Choi et al., 2006).  Thus covalent modification by DAQ may be detrimental to DJ-1 and 

UCH-L1 function.  It is important to note that DA-induced modifications have been associated 

with alterations in two other PD-linked proteins, alpha-synuclein (Conway et al., 2001) and 

parkin (LaVoie et al., 2005).  The susceptibility of multiple PD-linked proteins to DA 

modification further supports a contributing role for DA oxidation in dopaminergic neuron 

degeneration and PD pathogenesis. 

4.5.6 DAQ Binds to Cytoskeletal Proteins 

gets of covalent 

modification by DAQ in isolated mitochondria preparations, and actin and interacting protein 

tropom

We found that cytoskeletal proteins actin and tubulin were tar

ysoin were covalently modified by DA in DA-exposed differentiated SH-SY5Y cells. 

Tubulin protein is highly abundant, contains multiple free thiol groups critical for microtubule 

assembly, and is a known target of oxidative modification (Landino et al., 2002; Luduena and 

Roach, 1991).  Tubulin was modified in vitro at specific cysteine residues by 4-HNE (Stewart et 

al., 2007), which has been shown to disrupt neuronal microtubules and neurite outgrowth in 

cultured Neuro 2A cells (Neely et al., 2005; Neely et al., 1999).  Likewise, beta-actin was 

observed to be modified by 4-HNE in brain tissue of patients with mild cognitive impairment 
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patient (Reed et al., 2008).  Increased carbonylation and nitration of actin was observed in post 

mortem AD brain (Aksenov et al., 2001; Castegna et al., 2003). Relevant to our findings, other 

cytoskeletal proteins have been demonstrated as targets of DA oxidation in vitro. Exposure to 

oxidized DA promoted polymerization of tau protein (Santa-Maria et al., 2005a) and covalent 

crosslinking of neurofilament proteins (Montine et al., 1995). 

It is well known that the transport and localization of mitochondria within the cell relies 

upon their close interaction with intact cytoskeletal structures (Boldogh and Pon, 2006; Boldogh 

and Pon, 2007). Thus, oxidation-induced damage to cytoskeletal proteins could have drastic 

effects on cellular structure, and on critical transport, localization, and ultimately function of 

organelles such as mitochondria.  

4.5.7 Conclusions 

In conclusion, we identified proteins in this study that are targets of quinone modification 

following intracellular DA oxidation, and should be considered for further study in connection 

with the pathophysiology of PD.  The susceptibility of these proteins to modification may play a 

role in the enhanced vulnerability of DAergic neurons.  In addition to protein dysfunction, such 

oxidative modifications may lead to disrupted protein-protein interactions, targeting of proteins 

for degradation, or promoting aggregation of damaged proteins, as is observed in PD. 

As this is an in vitro study, these proteins should be considered for further 

characterization in in vivo models, as well as in PD patients, to evaluate their potential as targets 

of oxidative stress within the nigrostriatal system.  In this regard, it is important to note that 

many of the proteins we identify here as targets of DA modification have previously been 

identified as targets of oxidative modification in conjunction with various neurodegenerative 
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diseases and disease models, as discussed above.  The identification of these same proteins 

across multiple independent studies not only validates their characteristic susceptibility to 

oxidative modification but also demonstrates their potential significance in neurodegenerative 

disease pathogenesis.   Such proteins deserve critical attention to elucidate their roles in disease 

progression and their potential as targets for novel therapeutic strategies. 
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5.0 EFFECT OF MITOCHONDRIAL MITOFILIN ON DOPAMINE- AND 

ROTENONE-INDUCED TOXICITY IN DIFFERENTIATED PC12 AND SH-SY5Y 

CELLS 

5.1 SUMMARY 

Mitochondrial dysfunction and oxidative stress have been implicated in the 

neurodegenerative process in Parkinson’s disease.  Mitofilin, a protein of the inner mitochondrial 

membrane, has been shown to be critical for maintaining mitochondrial cristae organization, 

l function. Using proteomic techniques, we 

previously demonstrated that exposure of isolated rat brain mitochondria to dopamine quinone 

resulted in the loss of a subset of mitochondrial proteins, including mitofilin.  However, mitofilin 

has not been previously characterized in dopaminergic cells.  To examine the effect of altering 

mitofilin levels on dopaminergic cell vulnerability, we utilized overexpression and shRNA 

knockdown techniques in differentiated PC12 and SH-SY5Y cells.  Transient and stable 

overexpression of FLAG-tagged mouse mitofilin in differentiated PC12 cells significantly 

attenuated cell death by approximately 50% following dopamine or rotenone exposure, as 

compared to controls.  In differentiated SH-SY5Y cells, transient overexpression of mitofilin 

significantly attenuated cell death by 60% following DA exposure, and stable overexpression of 

mitofilin significantly attenuated both dopamine- and rotenone-induced cell death as compared 

 

suggesting an important role in mitochondria
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to treated controls.  Conversely, transient knockdown of mitofilin protein in differentiated SH-

SY5Y cells potentiated cell death by over 30% following exposure to dopamine as compared to 

controls.  Co-expression of mitofilin protein, not susceptible to the shRNA, rescued the cells 

from the enhanced vulnerability associated with mitofilin knockdown.  These results suggest that 

altering levels of mitofilin significantly affects the vulnerability of cells to dopaminergic toxins, 

dopamine and rotenone, carrying implications

5.2 INTRODUCTION 

Mitochondria are the powerhouses of the cell, responsible for regulating various cellular 

functions and signaling pathways.  Maintenance and integrity of mitochondrial structure are 

essential to cellular health. In particular, organization and shape of the inner membrane, the site 

of the electron transport chain (ETC) and ATP generation, are suggested to impact mitochondrial 

function, and may change in response to various factors (for review see Mannella et al., 2001).  

Dysfunction of mitochondrial respiration can lead to increased oxidative stress and cell death, 

and has been implicated in the pathogenesis of Parkinson’s disease (PD) (Beal, 2007; Schapira, 

2008). 

Mitochondrial dysfunction may cause oxidative stress, as the mitochondrial ETC is a 

known source of reactive oxygen species (ROS), and mitochondrial ETC inhibition can lead to 

have detrimental effects on general cellular functions and on the mitochondrion itself (Fiskum et 

al., 2003; Turrens, 2003).  Mitochondrial dysfunction is also linked to PD through observations 

of decreased activity of NADH dehydrogenase (Complex I) in the ETC in both the SN (Janetzky 

 for Parkinson’s disease pathogenesis. 

increased free radical production (Beal, 2003; Lenaz et al., 2002).  Oxidative stress can, in turn, 
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et al., 1994; Orth and Schapira, 2002; Schapira et al., 1990) and the periphery (Blandini et al., 

1998; Shoffner et al., 1991) of PD patients. Chronic administration of rotenone, a high-affinity 

Complex I inhibitor, to rats resulted in PD-like effects in behavioral disorders and 

neurodegeneration (Betarbet et al., 2000; Sherer et al., 2003a), supporting a role for Complex I in 

the pathogenesis of PD. These results suggest a susceptibility of the dopaminergic SN neurons to 

impaired mitochondrial activity. 

Though multiple neuronal types are known to be involved in the symptoms of PD, the 

unique susceptibility of the nigrostriatal dopaminergic neurons suggests the possibility that 

dopamine (DA) may be contributi  th  is susceptible to both enzymatic 

and auto-oxidation, resulting in the formation of reactive DA quinines (DAQ).  The Hastings 

laboratory has previously shown in vivo that DA oxidation resulted in covalently modified 

proteins and the selective loss of DA terminals (Hastings et al., 1996; Rabinovic et al., 2000).  

Our laboratory and others have also demonstrated that exposure of isolated brain mitochondria to 

DA and DAQ leads to altered respiration, mitochondrial swelling, and PTP opening (Berman and 

Hastings, 1999; Cohen et al., 1997; Gluck et al., 2002). We recently demonstrated that exposure 

of rat brain mitochondria to DAQ results in a significant loss of several mitochondrial proteins 

(Van Laar et al., 2008).  One of the most affected proteins, mitochondrial mitofilin, was 

n Laar et al., 2008).  Mitofilin was also found to 

be decreased in mitochondria isolated from DA-exposed PC12 cells (Van Laar et al., 2008; see 

Chapter 3).  Additional proteomic study demonstrated that mitofilin was a target for covalent 

modification by DAQ (unpublished results; see Chapter 4). 

The inner mitochondrial membrane protein, mitofilin, first identified in human heart 

ng to eir degeneration.  DA

decreased 65% following exposure to DAQ (Va

muscle (Icho et al., 1994), is a nuclear-expressed mitochondrial protein that is targeted selectively 
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to the inner mitochondrial membrane (Gieffers et al., 1997; Odgren et al., 1996). The protein 

contains a transmembrane domain near the N-terminus that spans the inner mitochondrial 

membrane, while the bulk of the protein juts into the intermembrane space (Gieffers et al., 1997).  

Mitofilin also contains three coiled-coil domains (John et al., 2005), which are often involved in 

protein-protein interactions (Cohen and Parry, 1990).  Mitofilin appears to be ubiquitously 

expressed in all cells containing mitochondria (Gieffers et al., 1997), and is highly conserved 

across 

 

ilin protein expression will modulate 

the vul

mammals (Odgren et al., 1996; Omori et al., 2002).  In humans, the protein is known to 

have at least two splice variants of 90 and 88 kDa (Gieffers et al., 1997). The specific function of 

mitofilin remains unknown.  However, evidence suggests that the protein is critical in 

maintaining mitochondrial cristae structure (John et al., 2005). 

To elucidate possible functions for mitofilin, John et al. utilized siRNA against mitofilin 

in cultured HeLa cells (John et al., 2005).  A loss of mitofilin resulted in reduced cell growth rate, 

increased apoptosis, and increased ROS production in HeLa cells (John et al., 2005). 

Morphologically, a decrease in mitofilin resulted in mitochondria with severely disrupted cristae, 

suggesting a critical role for mitofilin in mitochondria structural maintenance (John et al., 2005). 

Recently, mitofilin was found to exist in complexes with proteins integral in mitochondrial 

protein import, including SAM50 and metaxins 1 and 2 (Xie et al., 2007). These studies suggest 

that mitofilin and its protein-protein interactions play an important role in normal mitochondrial 

function and morphology.  Thus, a loss or modification of mitofilin could lead to detrimental 

effects in mitochondrial structure and function.  As exposure to DA can alter mitochondrial 

mitofilin levels in cells, it is possible that alterations in mitof

nerability of dopaminergic cells to toxins that affect mitochondrial function.   
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In this study, we utilized overexpression and shRNA techniques to examine the effect of 

modulating mitofilin protein levels on the cellular response to DA- and rotenone-induced toxicity 

in two dopaminergic cell lines, rat pheochromocytoma PC12 cells and human neuroblastoma SH-

SY5Y cells.  The results showed that increased mitofilin expression attenuated cell loss following 

DA or rotenone exposure in both cell types, whereas decreased mitofilin potentiated DA-induced 

cell death in SH-SY5Y cells.  Our findings suggest that altering levels of mitofilin affects the 

vulnerability of cells to dopaminergic toxins.  Given that levels of mitofilin are sensitive to 

oxidant stressors (Jin et al., 2004; Magi et al., 2004; Van Laar et al., 2008; see Chapter 3), these 

findings may also have implications for mitochondrial dysfunction in PD. 

5.3 EXPERIMENTAL PROCEDURES 

(DMEM; Gibco), fetal bovine serum (FBS; HyClone), horse serum (HS; HyClone), 10,000 

U/mL penicillin/10,000 μg/mL streptomycin (pen/strep; Gibco), and Geneticin ® (G418, 

cat#10131-035; Gibco) were purchased from Invitrogen (Carlsbad, CA).  Rat-tail collagen was 

purchased from BD Bioscience (Bedford, MA), trypsin with 0.25% EDTA from Mediatech 

(Herndon, VA), nerve growth factor (NGF) from BD Bioscience, and rotenone from MP 

Biomedicals (Aurora, OH). Dimethyl sulfoxide, retinoic acid, dopamine, Trypan Blue, protease 

inhibitor cocktail (cat#P2714) and all chemicals for general buffers and solutions were purchased 

Materials  

Lipofectamine™ 2000, OptiMEM (Gibco), Dulbecco’s modified Eagle medium 

from Sigma (St. Louis, MO), unless otherwise noted. 
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Antibodies & Plasmids  

The polyclonal “Genemed” rabbit anti-mitofilin antibody was made for our laboratory by 

Genemed Synthesis (San Antonio, TX) (Van Laar et al., 2008; see Chapter 3) and used for 

immundetection at 1:500 dilution.  Mouse anti-FLAG® M2 antibody (used at 1:500 dilution) 

was purchased from Stratagene (La Jolla, CA).  Mouse anti-actin MAB1501 (used at 1:75,000-

100,000 dilution) was purchased from Chemicon (Temecula, CA).  Rabbit anti-GAPDH ab9485 

(used at 1:15,000) was purchased from Novus (Littleton, CO). Fluorescent-conjugated secondary 

antibodies, goat anti-rabbit IRDye® 800 and goat anti-mouse IRDye® 680, were purchased from 

Li-Cor Biosciences (Lincoln, NE) and used at 1:10,000 dilution.  The “T3867” polyclonal rabbit 

anti-mitofilin antibody (1:1500) and the FLAG-tagged mouse mitofilin construct in pcDNA3 

plasmid vector were generously provided by Dr. Jiping Zha, formerly of University of Texas 

Southwestern (John et 00 FP protein expression 

construct in pcDNA3 plasmid vector (mitoYFP) and pcDNA3 empty vector plasmid (pcDNA3; 

Invitrogen) were generously provided by Dr. Don DeFranco, University of Pittsburgh.  HuSH 

29mer shRNA constructs against human mitofilin were purchased from OriGene Technologies 

(cat#TR312153; Rockville, MD).  The provided kit included an empty vector pRS plasmid 

and purified using QiaGen Midiprep or Miniprep kits (QiaGen, Valencia, CA). 

 

 

al, 2 5).  The mitochondrially-targeted eY

(TR20003) negative control, a non-functional GFP-targeted shRNA construct (TR30003) 

negative control, and four functional human mitofilin targeted shRNA constructs, TI348605 

(TI’05), TI348606 (TI’06), TI348607 (TI’07), and TI348608 (TI’08).  All plasmids used were 

initially transduced into competent DH5α bacteria (Invitrogen), cultured in ampicillin LB media, 
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Transient Transfection and Treatment of Differentiated PC12 Cells  

PC12 cells were subcultured on rat-tail collagen coated 6-well plates at 1.125 x 105 

cells/well and differentiated in DMEM supplemented with 1% HS, 1% FBS, 1% pen/strep, and 

100 ng/ml NGF (PC12 differentiation media) for a total of 5-6 days.  On day 3 of differentiation, 

media was removed (conditioned media) and replaced with 2.5 mL OptiMEM supplemented 

with 0.05 μg/mL NGF, and cells were transfected with 2 μg plasmid DNA and 6 μL 

Lipofectamine™ 2000 according to manufacturer’s instructions.  Transfection media was 

removed after 3.5 hrs and replaced with a 1:1 mixture of conditioned media and fresh PC12 

differentiation media for 16-18 hrs, then replaced with full fresh PC12 differentiation media.  

Non-transfected controls underwent the same media changes, without transfection reagents or 

DNA present. The described method results in approximately 10-12% transfection rate in 

differentiated PC12 cells based on co-transfection with mitoYFP (data not shown). 

On day 6 of differentiation (72 hr following transient transfection), cells were treated 

with either DA or rotenone.  For DA toxicity experiments, media was replaced with fresh 

differentiating media with or without 150 μM DA and cells were incubated for 24 hrs, a 

concentration and time period demonstrated to elicit moderate cell death.  For rotenone toxicity 

experiments,  rotenone was diluted in a 1:1 mixture of DMSO and sterile H2O.  Cell media was 

replaced with fresh PC12 differentiation media with either 0.5 μM rotenone or equivalent 

volume of vehicle added, as previously described (Dukes et al., 2005).  The presence of DMSO 

did not affect the viability of the cells (data not shown). 
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Stable plasmid expression and treatment in PC12 cells  

Proliferating PC12 cells, maintained in DMEM supplemented with 7% HS, 7% FBS, and 

1% pen/strep (PC12 media), were plated at 1 x 106 cells/plate on collagen-coated 6 cm plates.  

After 48hrs, at ~75% confluency, cells were transfected in 5 mL OptiMEM, using 4 μg plasmid 

DNA and 12 μL Lipofectamine™ 2000.  Transfection media was removed after 5hr and replaced 

with 1:1 conditioned media:fresh PC12 media for 18hr, followed by a media change to full PC12 

media.  For selection, cells were treated with 500μg/mL Geneticin ® (G418) for 5 days, followed 

by 375 μg/mL G418 for 5 days, and finally maintained in PC12 media supplemented with 200 

μg/mL G418 to ensure selection of stable cells.  Prior to DA exposure, cells were differentiated 

with NGF for 6 days with G418 present, and then treated with 150 μM DA for 24 hr.  For 

rotenone treatments, cells were differentiated with NGF for 5 days without G418, and then 

treated with 0.5 μM rotenone for 48 hr.  Cells were also collected following 5 days of 

differe

1:1 mixture of OptiMEM and SH media 

lacking penicillin/streptomycin and supplemented with 5-10 μM retinoic acid.  Cells were 

transfec ed with 2 μg plasmid DNA and 6 μL Lipofectamine™ 2000 according to manufacturer’s 

instructions.  Transfection media was removed after 3.5 hrs, and replaced with a 1:1 mixture of 

ntiation for Western blot analyses of mitofilin expression. 

 

Transient transfection and treatment of SH-SY5Y cells  

Human-derived SH-SY5Y neuroblastoma cells were subcultured on 6-well plates at 2 x 

105 cells/well in DMEM supplemented with 10% FBS and 1% pen/strep (SH media).  The cell 

media was changed 48hr after plating and supplemented with 20 μM retinoic acid (SH 

differentiation media) and the cells differentiated for a total of 5 days.  On day 2 of 

differentiation, media was removed and replaced with a 

t
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penicill n media 16-18 hr, and then 

replace

 by 500 μg/mL for 4 days.  

Proliferating cells were maintained in SH media supplemented with 250 μg/mL G418. Cells 

were d oic-acid for 5 days, without 

G418. 

in/streptomycin-free SH media and full SH differentiatio

d with full fresh SH differentiation media.  Non-transfected controls underwent the same 

media changes, without transfection reagents or DNA present.  Based on imaging of 

differentiated SH-SY5Y cells co-transfected with mitoYFP, we achieved approximately a 60% 

transfection rate (data not shown).  On day 5 of differentiation (72hr following transient 

transfection), media was replaced with fresh SH differentiating media with or without 150-250 

μM DA and cells were incubated for 24 hrs. 

 

Stable expression of mitofilin and treatment in SH-SY5Y cells 

Proliferating SH-SY5Y cells, maintained in SH media, were plated at 1.5 x 106 cells/plate 

in 6cm plates.  At 24 hrs after plating (~80% confluency) cells were transfected as described 

above using 4 μg plasmid DNA and 12 μL Lipofectamine™ 2000.  Stable cells were selected by 

treating media with 700 μg/mL G418 for 4 days, followed

ifferentiated in SH media supplemented with 20 μM retin

 On day 5, cells were either collected for Western blot analyses, or treated with media 

containing 250 μM DA for 24 hr or 0.5 μM rotenone for 48 hr, followed by analyzing cell 

viability.  Non-transfected cells were maintained in parallel to the stable cells during selection, 

without G418, to serve as a passage-matched control. 

 

Cell Collection and Viability Assay  

Following treatment, SH-SY5Y cells were collected by 1 min exposure to 500 μL trypsin 

followed by force pipetting with SH media, rinsed with PBS, and isolated by centrifugation.  
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PC12 cells were harvested by force pipetting without trypsin, rinsed, and isolated by 

centrifugation.  To determine changes in cell viability, cells were resuspended in PBS and an 

aliquot was used for cell counting in the trypan blue exclusion assay.  In all cases, cell viability 

in each group was compared to its respective, untreated or vehicle-treated control to determine 

percent cell death due to toxin treatment.  For Western blot analysis, collected cells were 

resuspended in lysis buffer (9 M urea, 2% w/v CHAPS, and 30 mM Tris-base, pH 8.0) with 

protease inhibitor cocktail.  Final protein concentrations were determined by the Bradford 

method (Bradford, 1976).  

Statistical Analysis  

zed by single-factor ANOVA followed by pos-hoc 

Tukey’

 

 

SDS-PAGE and Western Blot Immunodetection of Select Proteins  

Lysed whole-cell protein samples (25-50 μg/lane) were run on 5-20% gradient SDS-

PAGE (Hoefer ® Mighty Small II apparatus) and transferred to nitrocellulose (0.2 μm; BioRad) 

via a BioRad Trans-Blot ® Semi-Dry Electrophoretic Transfer system for Western blot analysis.  

Blots were blocked with LiCor blocking buffer supplemented with 0.2% w/v fat-free dry milk, 

and then exposed to primary antibody in blocking buffer with 0.1% Tween-20 16-18 hrs at 4°C.  

Immunoreactive bands were detected using the LiCor IRDye secondary antibodies as described 

above.  Blots were imaged and quantified using a LiCor Odyssey imaging system coupled to 

Odyssey analysis software ver. 3.0.  

For all experiments, results were analy

s T-test, for equal sample sizes between groups, or Fisher’s protected T-test, for unequal 

sample sizes.  Significance was determined at p< 0.05. 
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5.4 RESULTS 

5.4.1 Transient Overexpression of FLAG-tagged mouse mitofilin protects against DA- 

and rotenone-induced toxicity in differentiated PC12 cells 

In the initial experiments, we sought to examine whether increased mitofilin would affect 

the cellular response to toxin exposure.  NGF-differentiated PC12 cells were transiently 

transfected with either empty-vector pcDNA3 plasmid (pcDNA3) or FLAG-tagged mouse 

mitofilin plasmid (Mitofilin-FLAG) as described, while non-transfected control cells (Control) 

underw 72 hr following 

transfec

ansfected Mitofilin-FLAG cells (+80.9%, n=5) as compared 

to Control cells (Figure 12B).    

 

ent only media changes. Western blot analysis of cells collected 

tion detected two bands immunoreactive for mitofilin (at approximately 92 and 82 kDa) 

in Control and pcDNA3 cells (Figure 12A).  In the Mitofilin-FLAG cells, Western blot also 

confirmed the presence of the FLAG-tag associated with a third band immunoreactive for 

mitofilin at the expected molecular weight for the mitochondrial-processed form of the expressed 

protein (approximately 87 kDa; Figure 1A) (John et al., 2005).  These results confirm plasmid 

expression and processing of the final protein product. Quantification showed similar levels in 

endogenous mitofilin between Control and pcDNA3 cells, and significantly increased total 

mitofilin expression in transiently tr
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Figure 12:  Transient overexpression of FLAG-tagged mitofilin in differentiated PC12 cells. 
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Figure 12 (continued): Transient overexpression of FLAG-tagged mitofilin in differentiated 

PC12 cells.  

(A) Differentiated PC12 cells were collected 72 hr following transient transfection of empty 

vector pcDNA3 (pcDNA3) or FLAG-tagged mouse mitofilin (Mitofilin-FLAG), with non-

transfected Control cells.  Whole-cell lysate was examined by Western blot using T3867 rabbit 

anti-mitofilin.  A band corresponding to FLAG-tagged mitofilin was observed in addition to 

endogenous forms of mitofilin in mitofilin-FLAG cells.  (B) Quantification of mitofilin from 

Western blots with respect to the GAPDH loading control in differentiated PC12 pcDNA3 and 

Mitofilin-FLAG cells as compared to non-transfected Control (n=5, mean ± SEM; * = p<0.05).  

(C,D) Cell death was assessed by trypan blue exclusion for control and treated groups, and is 

represented as % cell death as compared to respective untreated controls following (C) 24 hr 

treatment with 150 μM DA (n=5) and (D) 48 hr treatment with 0.5 μM rotenone exposure (n=7; 

mean ± SEM; * = significant from untreated control, ** = Mitofilin-FLAG cell death significant 

from pcDNA3 and Control, p<0.05). 

 

 

 

Three days after transfection, differentiated cells were treated with either 150μM DA or 

control media for 24 hrs (n=5), or with 0.5μM rotenone or vehicle for 48hrs (n=7).  Transient 

expression of the pcDNA3 empty vector or Mitofilin-FLAG did not significantly alter cell 

viability in control-media treated groups as compared to non-transfected Control.  Significant 

cell death was elicited by DA or rotenone exposure in both non-transfected Control cells (25.4% 

cell death with DA; 32.8% cell death with rotenone) and empty vector pcDNA3 cells (26.8% cell 

death with DA; 34.1% cell death with rotenone) as compared to their respective non-treated 

control cells (Figure 12C,D).  In Mitofilin-FLAG cells, DA-induced cell death was significantly 

attenuated by 50%, and rotenone-induced cell death significantly attenuated by 43% as compared 

to treated Control and pcDNA3 cells (Figure 12C,D). 
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5.4.2 Transient Overexpression of FLAG-tagged mouse mitofilin protects against DA-

induced toxicity in differentiated SH-SY5Y cells 

were tr

differen

immun

weight 

significant difference in endogenous

cells, a

Control cells, n=4).  This band was also associated with the presence of the FLAG-tag in the 

Mitofilin-FLAG cells (Figure 13A,B).   

 cells were treated with 150 μM DA (n=6), 250 μM 

DA (n=3), or untreated control media for 24 hrs.  DA exposure resulted in significant cell death 

in both the empty vector pcDNA3 cells (11.4% with 150 μM DA; 27.0% with 250 μM DA) and 

SH-SY5Y cells were differentiated for five days with retinoic acid (RA, 20 μM), and 

ansiently transfected with either pcDNA3 or Mitofilin-FLAG vectors on day two of 

tiation. Western blot analysis of cells collected 72 hr after transfection detected one 

oreactive band for mitofilin, or a tightly-associated doublet, at the appropriate molecular 

(approximately 87 kDa; Figure 13A).  Quantification of mitofilin bands showed no 

 mitofilin levels between Control and pcDNA3-transfected 

nd confirmed overexpression of mitofilin in Mitofilin-FLAG cells (+117.9% above 

Three days following transfection,

non-transfected Control cells (7.4% with 150 μM DA; 19.9% with 250 μM DA; Figure 13C,D).  

DA-induced cell death was significantly attenuated in the Mitofilin-FLAG cells by 47-65% with 

150 μM DA, and by 45-59% following 250 μM DA as compared to DA-treated empty vector 

and non-transfection control groups. 
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Figure 13:  Transient overexpression of FLAG-tagged mitofilin in differentiated SH-SY5Y 

cells. 
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Figure 13 (continued):  Transient overexpression of FLAG-tagged mitofilin in 

differentiated SH-SY5Y cells. 

(A) Differentiated SH-SY5Y cells were collected 72 hr following transient transfection of empty 

vector pcDNA3 (pcDNA3) or FLAG-tagged mouse mitofilin (Mitofilin-FLAG), with non-

transfected Control cells.  Whole-cell lysate was examined by Western blot using Genemed rabbit 

anti-mitofilin.  A FLAG-immunoreactive band was detected corresponding to the same molecular 

weight as mitofilin.  (B) Quantification of mitofilin from Western blots with respect to the actin 

loading control in differentiated SH-SY5Y cells as compared to non-transfected Control (n=4, 

mean ± SEM; * p<0.05).  (C,D) Viability was assessed by trypan blue exclusion for control and 

treated groups, and is represented as % cell death as compared to respective untreated controls 

following (C) 24 hr treatment with 150 μM DA (n=6) and (D) 24 hr treatment with 250 μM DA 

exposure (n=3; mean ± SEM; * = significant from untreated control, ** = Mitofilin-FLAG cell 

death significant from pcDNA3 and Control, p<0.05). 

 

 

5.4.3 Stable overexpression of FLAG-tagged mitofilin is protective against both DA and 

rotenone toxicity in differentiated PC12 and SH-SY5Y cells 

Proliferating PC12 and SH-SY5Y cells were stably transfected with either empty-vector 

pcDNA3, mitochondria-targeted fluorescent YFP expression vector (mitoYFP, to control for 

expressing a mitochondria-targeted protein), or Mitofilin-FLAG.  Stable cells were selected with 

and maintained in media containing Geneticin ® (G418) as described in Methods.  Western blot 

analyses of NGF-differentiated stable-expressing PC12 cells (Figure 14A,B) and RA-

differentiated stable-expressing SH-SY5Y cells (Figure 15A,B) showed there was no difference 

was significantly increased above stable-pcDNA3 cells in both 

in endogenous mitofilin between pcDNA3- and mitoYFP-stable cells within cell types.  

However, Mitofilin expression 
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stable-Mitofilin-FLAG cell lines (+40.3% in PC12 cells, n=6; +107.3% in SH-SY5Y cells, n=4), 

and was associated with detection of the FLAG-tag (Figures 14 and 15).   

μM rot

rotenon

with DA; 26.3% with rotenone) and pcDNA3 st

rotenon

stable Mitof

DA or

untreat

Significant cell death was also observed following 250 μM DA treatment (n=6) or 0.5μM 

rotenone treatment (n=6) in differentiated stable SH-SY5Y mitoYFP cells (43.9% with DA; 

Mitofilin-FLAG stable SH-SY5Y cells demonstrated significantly lower cell death (32.1% cell 

death w

Differentiated stable PC12 cell lines were treated with 150 μM DA for 24 hr (n=8), 0.5 

enone for 48 hr (n=6), or non-treated media, as described in Methods. Both DA and 

e exposure elicited significant cell death in differentiated mitoYFP stable cells (22.1% 

able cells (24.9% with DA; 28.7% with 

e) compared to their untreated controls (Figure 14C,D).  By comparison, differentiated 

ilin-FLAG PC12 cells showed approximately 50% less cell death following either 

 rotenone treatment (Figure 14C,D).  There was no difference in viability between 

ed stably-transfected cell lines. 

14.0% with rotenone), pcDNA3 cells (45.5% with DA; 11.9% with rotenone), and passage-

matched non-transfected Control cells (49.7% with DA; 12.6 % with rotenone).  Treated 

ith DA, ~30% attenuated; 4.2% cell death with rotenone, ~65% attenuated) compared to 

treated controls (Figure 15C,D).  In SH-SY5Y stable cell lines and non-transfected Control 

cells, there was no difference in viability between untreated cells.  Results from both the 

transient-transfected and stable-transfected cells suggest that increased mitofilin expression 

decreases the vulnerability of dopaminergic cells to the toxins DA and rotenone. 
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Figure 14:  Stable expression of FLAG-tagged mitofilin in differentiated PC12 cells. 
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Figure 14 (continued):  Stable expression of FLAG-tagged mitofilin in differentiated PC12 

cells. 

(A) Stable expressing Mitofilin-FLAG, pcDNA3 empty vector, and mitoYFP PC12 cells 

were differentiated for 5 days, collected, and whole-cell lysate examined by Western blot 

using T3867 rabbit anti-mitofilin. A mitofilin- and FLAG-immunoreactive band 

corresponding to FLAG-tagged mitofilin was observed in mitofilin-FLAG cells in 

addition to endogenous forms of mitofilin. (B) Quantification of mitofilin from Western 

blots with respect to the GAPDH loading control in differentiated stable Mitofilin-FLAG 

and mitoYFP PC12 cells as compared to stable pcDNA3 cells (n=6, mean ± SEM; * 

p<0.05).  (C,D) Viability was assessed by trypan blue exclusion for control and treated 

groups, and is represented as % cell death from respective untreated controls following 

(C) 24 hr treatment with 150 μM DA exposure (n=8), treated following 6 days of 

differentiation, and (D) 48 hr treatment with 0.5 μM rotenone exposure (n=6), treated 

following 5 days of differentiation. (mean ± SEM; * = significant from untreated control, 

** = Mitofilin-FLAG cell death significant from pcDNA3 and mitoYFP, p<0.05). 
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Figure 15:  Stable expression of FLAG-tagged mitofilin in differentiated SH-SY5Y cells. 
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Figure 15 (continued):  Stable expression of FLAG-tagged mitofilin in differentiated SH-

SY5Y cells. 

(A) Non-transfected, passage-matched Control SH-SY5Y cells and stable-expressing Mitofilin-

FLAG, pcDNA3 empty vector, and mitoYFP SH-SY5Y cells were differentiated for 5 days, 

collected, and whole-cell lysate examined by Western blot using T3867 rabbit anti-mitofilin. A 

FLAG-immunoreactive band was detected corresponding to the same molecular weight as 

mitofilin. (B) Quantification of mitofilin from Western blots with respect to the actin loading 

control in differentiated SH-SY5Y Mitofilin-FLAG, pcDNA3, and mitoYFP cells as compared to 

non-transfected control cells (n=4, mean ± SEM; * p<0.05).  (C,D) Viability was assessed by 

trypan blue exclusion for control and treated groups, and is represented as % cell death from 

respective untreated controls following (C) 24 hr treatment with 250 μM DA exposure (n=6) and 

(D) 48 hr treatment with 0.5 μM rotenone exposure (n=6; mean ± SEM; * = significant from 

untreated control, ** = Mitofilin-FLAG cell death significant from pcDNA3, mitoYFP, and 

Control cells, p<0.05). 

 

 

 

5.4.4 Loss of mitofilin increases susceptibility of differentiated SH-SY5Y cells to DA-

induced toxicity 

Differentiated SH-SY5Y cells were transiently transfected as described with one of five 

shRNA vectors in pRS plasmid: empty vector (TR20003, n=5), non-functional GFP shRNA 

vector (TR30003, n=3), and three functional shRNA vectors against human mitofilin (TI’05, 

TI’07, and TI’08; n=4).  Western blot analysis of cells collected 3 d following transfection 

confirmed a significant knock down of total mitofilin protein by 23-30% as compared to the 

TR20003 empty-vector control (Figure 16A,B).  Transfected cells and non-transfected controls 
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were treated 3 d after transfection with media containing 250 μM DA or control media for 24 

hrs.  Again, transfection did not have a significant effect on viability in non-treated cells.  DA 

exposu

death in transfection-contro

seen in

potentiated by 33-36% in 

which d

with kn

to DA

differentiated SH-SY5Y cells were co-transfected with one of three combinations of plasmid 

DNA:  (1) transfection-control, TR30003 non-functional shRNA and pcDNA3 empty vector 

(TR30003+pcDNA3); (2) knockdown-control, pcDNA3 and TI’05 shRNA (TI’05+pcDNA3); or 

(3) knockdown and rescue; TI’05 shRNA and mouse Mitofilin-FLAG (TI’05+Mitofilin-FLAG).  

 the 

+pcDNA3 cells (35.2%, n=3) as compared to the transfection-control 

TR30003+pcDNA3 cells (19.0%, n=3; Figure 17).  Co-transfection of functional shRNA TI’05 

with M

re of SH-SY5Y cells resulted in 13% percent cell death in Control cells and 17-18% cell 

l TR20003 and TR30003 cells (n=6; Figure 16C), comparable to that 

 DA-treated Control SH-SY5Y cells as discussed above.  DA-induced cell death was 

cells transfected with TI’05, TI’07, and TI’08 functional-shRNAs, 

ecreased endogenous mitofilin (n=6; Figure 16).   

One functional shRNA-mitofilin, TI’05, contained a 29-mer sequence not compatible 

own mouse mitofilin mRNA sequences.  To examine whether the increased vulnerability 

-induced toxicity observed with shRNA expression could be rescued by mitofilin, 

Percent cell death following treatment with 250 μM DA was significantly increased in

knockdown TI’05

itofilin-FLAG eliminated the TI’05-mediated potentiation of DA toxicity, reducing cell 

death in the knockdown and rescue TI’05+Mitofilin-FLAG cells to 20.3% of untreated control 

(n=4).  Cell death in this group was not significantly different from the DA-treated transfection 

control (Figure 17).  There was also no significant difference in viability among non-DA-treated 

groups.  Together, the above data suggest that a loss of mitofilin increases the vulnerability of 

dopaminergic cells to DA-induced toxicity.  
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Figure 16:  Transient expression of shRNA-mitofilin and knockdown of mitofilin in 

differentiated SH-SY5Y cells. 
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Figure 16 (continued):  Transient expression of shRNA-mitofilin and knockdown of 

mitofilin in differentiated SH-SY5Y cells. 

(A) Differentiating SH-SY5Y cells were transfected with empty-vector pRS plasmid (TR20003), 

non-functional shRNA-GFP vector (TR30003), or one of three functional shRNA-mitofilin 

vectors (TI’05, TI’06, TI’08).  Differentiated cells were collected 72 hr following transient 

transfection and whole-cell lysate examined by Western blot using Genemed rabbit anti-mitofilin.  

(B) Quantification of Western blots with respect to the actin loading control in shRNA-mitofilin 

cells (n=4), and TR30003 cells (n=3) as compared to TR20003 transfection control cells (n=5; 

mean ± SEM; * p<0.05).  (C) Viability was assessed by trypan blue exclusion for control and 

treated groups, and is represented as % cell death from respective untreated controls following 24 

hr treatment with 250 μM DA (n=6, mean ± SEM, * = significant from untreated control, 

p<0.05).  Cell death was significantly increased in transiently-expressing shRNA-mitofilin cells 

as compared to treated TR30003 negative control and non-transfected Control (** = p<0.05) and 

to TR20003 empty vector control (*** = p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 131 



 

Figure 17:  Rescue of SH-SY5Y cells from shRNA-associated effect on DA susceptibility 

ifferentiated SH-SY5Y cells were co-transfected with one of three combinations:  transfection 

ntrol, TR30003 plus pcDNA3 empty vector (TR30003+pcDNA3, n=3); knockdown control, 

pcDNA3 empty vector plus shRNA-human mitofilin TI’05 (TI’05+pcDNA3, n=3); and 

nockdown and rescue, shRNA-mitofilin TI’05 plus mouse-Mitofilin-FLAG vector 

I’05+Mitofilin-FLAG, n=4).  Viability was assessed by trypan blue exclusion for control and 

esented as % cell death from their respective non-toxin-treated controls 

4 hr treatment with 250 μM DA (n=3-4, mean ± SEM, *= significant from untreated 

ntrol, p<0.05).  Cell death was significantly increased in DA-treated TI’05+pcDNA3 cells as 

mpared to DA-treated TR30003+pcDNA3 cells (** = p<0.05), while cell death was attenuated 

in DA-treated TI’05+Mitofilin-FLAG cells as compared to DA-treated TI’05+pcDNA3 cells (*** 

 p<0.05). 
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5.5 DISCUSSION 

Mitofilin structure and expression has been studied and characterized by several 

laboratories (Gieffers et al., 1997; Icho et al., 1994; John et al., 2005; Odgren et al., 1996).  

Interest in the protein has increased recently following a study by John and colleagues, which 

described mitofilin as a critical protein for maintaining mitochondrial cristae structure (John et 

al., 2005).  Mitofilin protein levels also appear to be sensitive to oxidative stress (Magi et al., 

2004; Van Laar et al., 2008; see Chapter 3).  We previously demonstrated that mitofilin 

abundance was decreased 65% in isolated rat brain mitochondria following exposure to DAQ, 

and significantly decreased in mitochondria isolated from DA-exposed PC12 cells (Van Laar et 

al., 2008; see Chapter 3).  In this study, we have demonstrated that modulation of the level of 

mitofilin affects the vulnerability of dopaminergic cells to two separate toxins, DA and rotenone.  

To our knowledge, this is the first demonstration of altered mitofilin expression influencing the 

rry 

implications for the involvem

particu

5.5.1 

roteno

mitochondrial stressors.  Transient overexpression of FLAG-tagged mitofilin significantly 

decreased cell loss following exogenous DA exposure in both differentiated PC12 and SH-SY5Y 

cells, as well as against rotenone exposure in PC12 cells.  We also generated stable cell lines 

cellular response to toxic insults. While the mechanism remains elusive, these findings ca

ent of mitochondrial stability in disease models and pathologies, 

larly PD. 

Mitofilin overexpression decreases dopaminergic cell vulnerability to DA- and 

ne-induced toxicity 

In this study, we found that increased mitofilin could attenuate cell death in response to 
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overexpressing mitofilin.  Again, ob d cell death in stable mitofilin-

overexpressing PC12 and SH-SY5Y cells exposed to both DA and rotenone as compared to 

stable-e

03).  Mitofilin, through its proposed role in mitochondrial cristae maintenance, 

may attenuate DA and rotenone toxicity in a similar manner by retaining mitochondrial structural 

t nism 

 

we served attenuate

xpressing empty vector and mitoYFP cells.  These findings suggest that excess mitofilin 

may increase cellular tolerance against stressors, such as the PD model toxins DA and rotenone. 

Both the DA and rotenone toxicity models have been well established in PC12 and SH-

SY5Y cells, both in differentiated and undifferentiated cells, and have been attributed to factors 

including oxidative stress, protein modification, alterations in mitochondrial respiration and 

membrane potential, and mitochondrial release of apoptosis-initiating factors (Ben-Shachar et 

al., 2004; Berman and Hastings, 1999; Brenner-Lavie et al., 2008; Dukes et al., 2005; Imamura 

et al., 2006; Jones et al., 2000; Lai and Yu, 1997a; Lai and Yu, 1997b; Marella et al., 2007; 

Molina-Jimenez et al., 2003; Offen et al., 1996; Si et al., 1998; Wang et al., 2005; Watabe and 

Nakaki, 2007a).  Chronic, low-dose rotenone exposure in SH-SY5Y cells also caused decreased 

mitochondrial membrane potential, as well as altered Ca2+ signaling (Sherer et al., 2001).  One 

study found that coenzyme-Q10 supplementation reduced the effect of rotenone toxicity in SH-

SY5Y cells by attenuating rotenone-induced loss of the mitochondrial membrane potential 

(Menke et al., 20

integri y during cellular stress.  Further work is necessary to elucidate the protective mecha

of mitofilin. 
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5.5.2 A loss of mitofilin increases susceptibility of differentiated SH-SY5Y cells to DA 

toxicity 

Mitofilin expression is suggested to be important for cell survival as loss of mitofilin led 

to a red

ls increase the vulnerability of dopaminergic cells to toxic insults. 

uced mitotic growth rate in HeLa cells, along with a slight increase in apoptosis (John et 

al., 2005).  Because DA exposure can decrease levels of mitofilin protein in dopaminergic cell 

mitochondria (Van Laar et al., 2008), we sought to determine whether decreased levels of 

mitofilin would affect the susceptibility of dopaminergic cells to exogenous DA.  At the time 

point examined in differentiated SH-SY5Y cells, we did not observe an effect on basal viability 

following mitofilin knockdown via transient expression of shRNA vectors against human 

mitofilin in SH-SY5Y cells in our experiments.  The level of knockdown (~30%) observed in 

these experiments may not be dramatic enough to affect cell viability without additional 

stressors.   Further work will be necessary to see if modulating mitofilin levels affects basal 

survivability of dopaminergic cells over time.  However, we did find that a shRNA-induced 

reduction of mitofilin protein in differentiated SH-SY5Y cells was associated with a significant 

decrease in viability following DA exposure as compared to DA-exposed controls.  Further, SH-

SY5Y cells were rescued from the shRNA-associated effect by transiently co-expressing human 

mitofilin shRNA with mouse mitofilin resistant to the RNAi.  These results show that decreased 

mitofilin leve
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5.5.3 Mitofilin has been connected to neuropsychiatric disorders and neurodegenerativ

disease 

e 

mitofilin protein 

modification on cellular function are uncertain (Wang et al., 2008a).  A basic pI shift was also 

observed in mitofilin from cortical tissue of a seizure-sensitive strain of Mongolian gerbil 

(Omori et al., 2002).  The authors suggest that sequence changes or alternative splicing of genes 

may be a factor in generating the different protein isoforms identified (Omori et al., 2002).   

Other studies have also demonstrated the potential of mitofilin to be post-translationally 

Alterations in mitofilin expression level and structure have previously been linked to 

neuropsychiatric and neurodegenerative diseases. Proteomic analysis of brain tissue from fetal 

Down syndrome subjects has found dysregulated expression of proteins, including mitofilin, 

which is decreased by nearly 50% from control (Myung et al., 2003).  Models have also linked 

mitofilin levels to neurological disorders.  Proteomic analysis of mitochondria from G93A-

SOD1-expressing NSC34 cells, a cell line model of familial ALS, found multiple proteins with 

altered expression, including significantly decreased mitofilin expression (-72%), compared to 

wild type cells (Fukada et al., 2004).  We have shown that exposure of brain mitochondria to an 

oxidant stressor leads to a 65% decrease in mitofilin protein in an in vitro model of PD (Van 

Laar et al., 2008; see Chapter 3) 

Alterations in mitofilin structure have also been tied to neurological disorders. Proteomic 

analysis of hippocampal tissue from senescence-accelerated mouse prone 8 (SAMP8) mice, a 

model for age-related cognitive deficits and neuronal degeneration, revealed a basic pI shift 

specifically in mitofilin protein as compared to age-matched SAM resistance control mice  

(Wang et al., 2008a).  Mitofilin was one of only two proteins found to be altered between the two 

mouse lines, though the specific reason for the pI shift and the impact of any 
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modified, which could affect protein pI, including oxidation of tryptophan residues in cardia

muscle m

c 

itofilin (Taylor et al., 2003), oxidation of cysteine residues following alcohol exposure 

in human hepatoma cells (Suh et al., 2004), and poly-ADP-ribosylation of mitofilin in a rat 

model 

role for mitofilin.  Xie et al. found that immunoprecipitation of 

mitofili

of traumatic brain injury (Lai et al., 2008).  We have also demonstrated covalent 

modification of mitofilin by DAQ (See Chapter 4).  Thus, protein structure and modification of 

mitofilin, in addition to expression level, may be crucial for proper cellular functions. 

5.5.4 Conclusions 

We have now shown that alterations in mitofilin protein levels modulate vulnerability of 

two dopaminergic cell lines to two toxin models of PD, DA and rotenone.  Though the 

mechanism remains elusive, recent reports have identified protein-protein interactions of 

mitofilin that may shed light on a 

n reveals an association with a protein complex including SAM50, coiled-coil-helix 

coiled-coil-helix domain-containing (CHCHd) proteins 3 and 6, and metaxins 1 and 2, proteins 

known to be involved in mitochondrial protein import and assembly (Xie et al., 2007).  This 

suggests an integral role for mitofilin in mitochondrial functional maintenance.  If mitofilin 

levels were altered or the protein covalently modified by a stressor, such as oxidized dopamine, 

the modification could result in dissociation of the protein import complex and reorganization of 

mitochondrial cristae.  Such an event would have a major impact on mitochondrial respiration, 

protein stability, and ultimately cellular health.  Mounting evidence provides a strong case and 

need for further study to identify the specific roles mitofilin plays in the mitochondria.  

Understanding mitofilin could lead to a better knowledge of mitochondria-mediated cell death 

and degeneration pathways, particularly in neurodegenerative disease. 
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6.0  CONCLUDING REMARKS 

The pathogenesis of sporadic Parkinson’s disease (PD) it thought to result from a 

combination of environmental and predisposing genetic factors (Warner and Schapira, 2003).  

Studies also suggest that mitochondrial dysfunction and oxidative stress play key roles in disease 

pathogenesis. Dopaminergic neurons of the SN, the loss of which is a hallmark of PD, may be 

particularly vulnerable to degeneration due to DA oxidation.  There is evidence of DA oxidation 

occurring natively in the pigmented neurons of the substantia nigra (SN) (Fornstedt et al., 1986; 

Zecca et al., 2003).  Additionally, conditions that foster disrupted biogenesis of DA or storage of 

DA could lead to increased levels of cytosolic DA and DA oxidation, increasing neuronal 

vulnerability (reviewed in Caudle et al., 2008).  Using proteomic approaches, I have identified 

mitochondrial and cellular targets of DA induced modifications.  I have also characterized the 

effects of modulating expression of one of the protein targets, mitofilin, in cell culture models of 

PD.  The proteins targets reported here may have relevance in PD pathogenesis, and should be 

evaluated for potential therapeutic interventions in PD. 
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6.1 ISOLATED BRAIN MITOCHONDRIA AND DA OXIDATION AS A MODEL OF 

PD 

In the studies presente Ch odel of exposing isolated rat 

brain mitochondria to oxidized DA, DA quinone (DAQ).  Various studies from multiple 

laboratories, including the Hastings laboratory, have demonstrated that exposure of intact brain 

mitochondria to DA and DA oxidation products resulted in altered respiration (Berman and 

Hastings, 1999; Gluck et al., 2002; Gluck and Zeevalk, 2004).  Results suggested that DA was 

modifying the activity of mitochondrial proteins, likely though direct conjugation, but it was 

unknown which proteins were susceptible to DA modification.  Some studies examined the 

effect of DA on the activities of specific electron transport chain (ETC) complexes to elucidate 

the targets of DA modification.  However, these experiments were carried out in disrupted 

mitochondria (Ben-Shachar et al., 2004; Khan et al., 2005; Morikawa et al., 1996; Przedborski et 

al., 1993).  No study prior to those comprising this thesis examined which specific mitochondrial 

proteins are direct targets of DA-induced modification in intact brain mitochondria.  Doing such 

experiments in intact mitochondria is more physiologically relevant, as certain proteins may be 

inaccessible to DA due to native protein-protein interactions, location, or potentially by the 

limited ability of DA to cross membranes.  Additionally, direct effects of DA oxidation on 

mitochondrial proteins may involve alterations in multiple interacting proteins.  Mitochondrial 

disruption may destroy such networks, potentially altering the observed effects of DA oxidation.  

Notably, the studies in this thesis demonstrated that the electrophilic DAQ could elicit 

effects on protein abundance and covalently modify proteins throughout the mitochondria, 

including proteins of the intermembrane space and the matrix.  As we observe covalent 

modification of matrix proteins, such as HSP60 and aconitase, the DAQ must first be gaining 

d in apters 3 and 4 we utilized a m
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access to this region of the mitochondria.  Recent studies in the Hastings and Greenamyre 

laboratories show that exposure of intact mitochondria to DAQ resulted in covalent modification 

of Complex I subunits and a significant decrease in Complex I activity (Arduini et al., Society 

for Neu

striatal 

roscience Abstract 2008; unpublished data).  These results suggest that DAQ can access 

the interior of intact mitochondria, though the mechanism is unknown.  A recent study suggested 

that intact mitochondria could accumulate DA in vitro (Brenner-Lavie et al., 2008). Brenner-

Lavie et al. found that intact isolated rat brain mitochondria in the presence of a low DA 

concentration (2 nM) rapidly accumulated (Brenner-Lavie et al., 2008).   The accumulation 

appeared to be an energy- and ion-dependent process, suggestive of a transporter-mediated 

process, though the specific mechanism is not known (Brenner-Lavie et al., 2008), nor is it 

known if a similar mechanism works for the DAQ radical.  Nevertheless, the ability of DA and 

DAQ to enter the mitochondria suggests that cytosolic DA could impact mitochondrial function 

by oxidatively modifying critical mitochondrial proteins. 

In support of this hypothesis, other models of PD and dopaminergic cell death suggest 

that dysregulation of cytosolic DA is relevant to mitochondrial dysfunction and PD pathology.  

Studies that utilized disruption of the DA storage system by altering the abundance or function of 

the vesicular monoamine transporter (VMAT2) demonstrated the importance of proper cellular 

handling and storage of DA (reviewed in Caudle et al., 2008).  A recent study reported that mice 

expressing only 5% of normal levels VMAT2 displayed age-dependant decreases in SN 

antioxidants, increases in SN cysteinyl-catechol adducts, oxidative damage to proteins, decreased 

DA, increased alpha-synuclein deposition in SN, and progressive loss of SN 

dopaminergic neurons when compared to wild types (Caudle et al., 2007).  These results 
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replicate multiple characteristics of nigrostriatal degeneration in PD, and suggest that a deficient 

system for DA handling may contribute to dopaminergic vulnerability.   

Models that utilize inhibitors of mitochondrial respiration also support the hypothesis that 

DA may contribute to dopaminergic neuron vulnerability.  Chronic administration of the 

Complex I inhibitor rotenone in vivo in rats, despite being systemic, results in relatively selective 

degeneration of nigrostriatal dopaminergic neurons (Betarbet et al., 2000; Sherer et al., 2003a; 

Sherer et al., 2003b), suggesting an inherent vulnerability of these neurons that may be linked to 

DA.  Cell culture models using mitochondrial toxins have sought to elucidate the role of 

endogenous and/or excess cytosolic DA in dopaminergic neuron vulnerability.  In examining the 

role of endogenous stores of DA in acute rotenone-induced toxicity in dopaminergic SH-SY5Y 

human neuroblastoma cells, Watabe and Nakaki found that decreasing or increasing cellular 

content of endogenous DA attenuated or potentiated rotenone-induced apoptosis, respectively 

(Watabe and Nakaki, 2007b).  In addition, the study found that rotenone exposure led to a 

redistri

mitochondrial dysfunction may play a role in DA dysregulation.   

bution of DA from vesicles to the cytosol (Watabe and Nakaki, 2007b).  Additionally, our 

lab previously demonstrated that co-treatment of differentiated PC12 cells with rotenone and 

methamphetamine, which induces DA release from vesicles, led to an increase in toxicity 

compared to rotenone treatment alone (Dukes et al., 2005).  The enhanced toxicity observed with 

co-treatment was eliminated by prior depletion of cellular DA (Dukes et al., 2005), 

demonstrating that excess cytosolic DA can exacerbate the effect of rotenone.  Similarly, Lee et 

al. found that co-administration of DA and the Complex I inhibitor MPP+ increased toxicity over 

either toxin alone in PC12 cells (Lee et al., 2003). Together, these findings suggest that DA plays 

a role in the vulnerability of dopaminergic neurons to mitochondrial toxins, and that acute 
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Cell culture studies also suggest that excess cytosolic DA may have a direct effect on 

mitochondrial function.  Multiple studies have found that DA exposure in neuroblastoma cells 

resulted

up a vicious cycle, in which 

 in decreased mitochondrial membrane potential in association with cell death (Brenner-

Lavie et al., 2008; Fuentes et al., 2007; Gimenez-Xavier et al., 2006; Premkumar and Simantov, 

2002; Zafar et al., 2006).  Treatment with exogenous DA, in the presence of the MAO inhibitor 

pargyline, decreased ATP levels in SH-SY5Y cells (Ben-Shachar et al., 2004) suggesting altered 

ETC function was associated with DA exposure.  Premkumar and Simantov found that DA 

toxicity in human neuronal NMB cells decreased mitochondrial VDAC expression, in addition to 

dissipating mitochondrial membrane potential (Premkumar and Simantov, 2002).  

Overexpression of VDAC, a protein integral in formation of the permeability transition pore 

(PTP) and that we observed to be modified by DAQ (see Chapters 3 and 4), was able to protect 

against DA toxicity (Premkumar and Simantov, 2002).  In SK-N-MC cells, DA-induced loss of 

mitochondrial membrane potential and cell death were abrogated by NAD(P)H quinone 

oxidoreductase 1 (NQO1) overexpression (Zafar et al., 2006).  Superoxide dismutase (SOD) and 

catalase added to the cell media were not able to prevent DA-associated death (Zafar et al., 

2006).  As intracellular NQO1 was protective, these findings support the hypothesis that 

intracellular oxidation of DA is responsible for cell death associated with DA toxicity (Zafar et 

al., 2006).  In RCSN-3 cells, derived from rat SN, VMAT2 inhibition by reserpine in addition to 

exogenous DA exposure resulted in blebbing of cellular processes, nuclear chromatin 

condensation, cell death, and mitochondrial damage in the form of structural abnormalities 

(Fuentes et al., 2007). 

These studies suggest a link between DA mishandling, excess cytosolic DA, and 

mitochondrial dysfunction.  Such an effect could ultimately set 
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increas

The use of proteomics in neuroscience and the study of neurodegenerative disease has 

2006; Johnson et al., 2005; Kim et al., 2004), and been proposed as the optimal route to 

characterize diseases such as PD (Zhang and Goodlett, 2004).  Studies have also utilized 

proteomic techniques to identify oxidation-sensitive protein targets, a field referred to as redox 

proteomics (Butterfield et al., 2006; Ghezzi and Bonetto, 2003).  Though identification of a full 

et al., 2005), various thiol-specific labeling methods have been utilized to detect specific 

mitochondrial protein sulfhydryl groups susceptible to oxidative modification (Lin et al., 2002).  

Proteomic analysis of mitochondria has also turned attention to alterations in mitochondrial 

protein levels following oxidative stress both in vitro and in vivo (reviewed in Bailey et al., 

2005). 

In the presented studies, we used two primary methods of protein separation and 

detection, two-dimensional difference in-gel electrophoresis (2-D DIGE; Chapter 3) and 2-D gel 

electrophoresis combined with a radiolabeled ligand (Chapter 4).  The methodologies we used 

ed cytosolic DA will oxidize to DAQ in the cytosol and/or accumulate in the 

mitochondria.  DAQ entering the mitochondria would result in modification of mitochondrial 

proteins and their functions, leading to further increases in DA mishandling, ROS production, 

and oxidative damage.  Such a cycle would likely enhance the vulnerability of dopaminergic 

neurons following exposure to a stressor. 

6.2 PROTEOMICS AS A TOOL FOR DA OXIDATION MODEL RESEARCH 

become widely prevalent (Butterfield et al., 2006; Fountoulakis and Kossida, 2006; Gillardon, 

proteome of oxidant-sensitive mitochondrial proteins has previously proved challenging (Bailey 
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to detect covalent-modified proteins in Chapter 4 are similar to previously described methods, 

particularly when comparing DIGE gels and their resulting autoradiograms in order to pinpoint 

modified proteins.  Studies have used comparison of two separate 2-D gels, one immunoblotted 

for detecting oxidative modifications and a parallel protein stained gel used for spot picking and 

MS analysis.  This method has been proven successful in identifying oxidized proteins in mouse 

models of neurodegeneration and human disease brain tissue (Castegna et al., 2002a; Castegna et 

al., 2002b; Castegna et al., 2003; Choi et al., 2004a; Poon et al., 2005b). 

ny 

of the complications from doing only 2-D gel electrophoresis for quantitative study (Issaq and 

Veenstra, 2008).  Specifically, DIGE allows for the direct comparison of two to three samples, 

depending on dye availability, within one gel.  This eliminates the potential variability in protein 

migration encountered when comparing separate gels with standard 2-D gel electrophoresis, as 

well as allowing for higher reproducibility and confidence in quantitative analysis (Issaq and 

Veenstra, 2008; Unlu et al., 1997).   

Our study (Chapter 3) was the first to examine the use of commercially available DIGE-

compatible cysteine-reactive maleimide CyDyes in a minimal-labeling scheme and to compare 

those results to lysine-reactive NHS-ester CyDyes (Van Laar et al., 2008).  Primarily intended 

saturation-labeling conditions (Shaw et al., 2003).  However, when used under such conditions, 

others have noted that protein spot patterns did not match between Cys- and Lys-CyDye DIGE 

gels, complicating comparisons between the two methods (Chan et al., 2005; Shaw et al., 2003).  

Under minimal Cys-CyDye labeling conditions, our Cys- and Lys-CyDye DIGE gels were a near 

2-D DIGE is a relatively recent development in proteomic methodology, and solves ma

for use in labeling scarce-abundance protein samples, Cys-CyDyes are typically used under 

perfect match, as confirmed by MS identification of spots from both gels.  It is possible that 
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saturation labeling of cysteines using CyDyes may have unintentional side effects such as cross-

reactivity of the dyes with other amino acid residues, which may alter protein pI.  In our 

experience, we found that the minimal-labeling technique for Cys-CyDyes may be a preferable 

method for DIGE detection. 

One limitation to the methods we utilized was that observation of modifications, whether 

via DIGE comparison or covalent binding of 14C-DA, was in part dependent on the basal 

abundance of the protein. This is particularly crucial for DIGE, where comparison of protein 

abunda

n was dependent on its abundance.  For example, if half of 

the tota

nce in control and experimental samples is dependent on being able to visualize 

quantifiable amounts of the labeled protein.  In the case of 14C-DA covalently bound proteins, 

autoradiography allowed us to pinpoint the modified proteins, but we are mindful of the fact that 

the amount of observed radioactivity (based on the density of the spot on the autoradiogram) did 

not necessarily correlate to the amount of covalent modification.  Intensity of a 14C-DA-labled 

spot may have been influenced by the overall abundance of the protein in question, and the 

ability to even see a modified protei

l amount of “Protein X” is modified, but there is very little Protein X in the sample, we 

may never detect a radiolabeled spot in the autoradiogram.  However, if only 5% of “Protein Y” 

is modified, but “Protein Y” comprises 10% of the total protein in a sample, it may appear as a 

very strong target of modification.  Resolving these issues can be a difficult and tedious task, and 

remains a major hurdle in some proteomics-based studies (reviewed in Ahmed and Rice, 2005).  

There are methods available, including fractionation of the proteome and, in the case of plasma 

samples, affinity chromatography-based depletion of high-abundance proteins, which may allow 

for concentration of scarce proteins (reviewed in Ahmed and Rice, 2005; Minden, 2007).  There 

is also the option of using other proteomic methodologies such as liquid-chromatography-

 146 



MS/MS based shotgun proteomics, or MudPIT, with SILAC and ICAT differential labeling to 

examine complex protein mixtures (Jin et al., 2006; McDonald and Yates, 2002; Wu and 

MacCoss, 2002).  However, these methods can suffer similar limitations based on protein 

abundance, and, since identification is based on sequencing of individual labeled peptides, are 

possibl

When we first identified mitofilin as being modulated by DAQ-exposure in rat brain 

mitochondria, little was known about the protein beyond its structure and localization.  Over the 

y confounded by incomplete labeling or the presence of multiple protein isoforms in 

samples (reviewed in Ahmed and Rice, 2005; McDonald and Yates, 2002; Wu and MacCoss, 

2002). 

Ultimately, the goal of proteomic studies is to give a picture of the multiple changes 

associated with a disease or toxin, and thus provide potential protein targets for further 

investigation.  Sometimes the result can be overwhelming amounts of data.  Validation, both 

from characterization of individual targets and reports of similar findings in repeated studies by 

others, is necessary to evaluate whether results from these studies are significant.  To that end, I 

again point out that many of the proteins identified here as modified following exposure to DA 

oxidation are also reported with abundance alterations or oxidative modifications in other studies 

of neurological disease and disease models, including PD.  Thus, our findings not only support 

previous results regarding a potential role for these proteins in oxidative stress and disease, but 

also encourage additional research to characterize these targets, such as mitofilin, with regard to 

DA toxicity and PD pathogenesis. 

6.3 THE ROLE OF MITOFILIN IN TOXICITY AND DISEASE  
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course of our work, however, other studies began to associate alterations in mitofilin with 

neurological disorders (Myung et al., 2003; Omori et al., 2002), and found mitofilin was 

susceptible to oxidative and covalent modifications (Lai et al., 2008; Suh et al., 2004).  Recently, 

mitofilin was reported to have a role in mitochondrial cristae maintenance (John et al., 2005) and 

associate with key mitochondrial protein import proteins (Xie et al., 2007).  Overall, studies, 

including ours, now demonstrate that mitofilin is a crucial protein in normal mitochondrial 

function, a target of modification in times of cellular stress, and may have a key role in the 

pathoge

ds mitofilin in intact mitochondria in vitro (see Chapter 4), 

which may be contributing to the immunodetectable higher-molecular weight forms observed 

following DAQ exposure in Chapter 3.  While we are the first to associate these modifications 

with exposu  D  oxidative 

and covalent modification following cellular stress. Oxidation of mitofilin cysteinyl residues has 

been re

nesis of neurological diseases. 

6.3.1 Mitofilin as a target for post-translational modification and altered expression 

We identified mitofilin as a target for DA oxidation-induced decreases in abundance in 

isolated mitochondria and differentiated PC12 cells (see Chapter 3).  Potential mechanisms for 

the reduction in mitofilin protein in isolated mitochondria are discussed in greater detail below.  

Decreased abundance of the protein in PC12 cells may result from similar mechanisms 

(discussed below) or decreased expression.  In both cases, we found evidence via Western blot 

for DA-induced crosslinking and/or aggregation of the mitofilin protein.  Additionally, we found 

evidence that DAQ covalently bin

re to A or DAQ, other studies have established mitofilin as a target of

ported following alcohol exposure in cells (Suh et al., 2004).  Mitofilin was also found to 

be a target of poly-ADP-ribosylation in rat brain in a model of traumatic brain injury, suggesting 
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that modification of mitochondrial proteins is related to pathogenic over-activation of poly(ADP-

ribose) polymerases, or PARP, and subsequent cell death (Lai et al., 2008).  Though other 

proteins were also reported as modified in these proteomic analyses, the above studies show that 

mitochondrially-located mitofilin is susceptible to modification following cellular stress.   

Models of cellular stress have also demonstrated effects on mitofilin expression.  

Downregulation of mitofilin was noted following photodynamic therapy in HL60 cells and 

MCF-7 cells (Kratassiouk et al., 2006; Magi et al., 2004), a cancer-treatment method that triggers 

oxidative stress and apoptosis.  Only a few other proteins demonstrated altered expression in 

these studies, though multiple cellular proteins showed signs of oxidative modification through 

tosis-

inducing compound homoharringtonine (HTT) showed an initial decrease in mitofilin mRNA 

express

carbonylation (Kratassiouk et al., 2006; Magi et al., 2004).  HL60 cells exposed to the apop

ion, followed by a rapid increase (6-fold) in mRNA expression within 6 hrs of treatment, 

one of only a few genes detected to behave in this manner (Jin et al., 2004).  Such a response 

may suggest that the cells are attempting to recover following a toxic insult.  Along this line, 

Navet et al. found that expression of mitofilin is significantly increased, along with altered 

expression of other mitochondrial proteins, in rat brown adipocyte cells during acclimation to 

colder temperatures, which requires high-energy usage (Navet et al., 2007).  Increases in 

mitofilin may suggest an impact on mitochondrial structure or cristae shaping, which may affect 

mitochondrial function and energy production (Mannella et al., 2001). 

Despite being a nuclear-expressed protein, mitofilin protein was also downregulated in 

myocytes with depleted mitochondrial DNA, a model of diabetic insulin resistance (Park et al., 

2005; Park et al., 2006b).  This model has demonstrated that a subset of nuclear expressed 

mitochondrial proteins is dysregulated following mitochondrial DNA depletion (Park et al., 
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2006b).  This is thought to be due to a mitochondrial stress-signaling pathway, affecting various 

factors including mitochondrial membrane biogenesis, intracellular signaling pathways, and 

nuclear transcription factor activity (Amuthan et al., 2002; Amuthan et al., 2001; Biswas et al., 

1999; Biswas et al., 2003).  Thus, alterations in mitochondrial DNA may be impacting 

mitoch

erved effect on HeLa cell 

viabilit

response of differentiated PC12 and SH-SY5Y cells to DA- and rotenone-induced toxicities.  We 

ondrial-nuclear signaling and altering nuclear expression of mitochondrial proteins 

(Amuthan et al., 2002; Amuthan et al., 2001; Biswas et al., 1999; Biswas et al., 2003; Park et al., 

2006b). As mitochondrial DNA deletions and mutations have been found to increase in neuronal 

mitochondria with age, particularly in aged and PD SN (reviewed in Biskup and Moore, 2006), it 

is possible that the mitochondrial-nuclear signaling system leads to decreased expression of vital 

proteins, such as mitofilin, impacting mitochondrial function and leading to neuronal 

dysfunction. 

6.3.2 Altered mitofilin expression modulates cellular response to toxin exposure 

After we identified mitofilin as a target of DA-induced modification, and knowing the 

proposed crucial role for mitofilin in mitochondrial cristae maintenance (John et al., 2005), we 

were encouraged to examine mitofilin in a more sophisticated model by altering mitofilin 

expression directly, through overexpression and RNAi techniques, in cultured dopaminergic 

cells.  John et al. previously observed that overexpression had no obs

y and mitochondrial function, while almost complete knockdown of mitofilin protein 

showed only slight increases in apoptosis with altered mitochondrial function (John et al., 2005).  

However, those experiments were not done in neuronal or dopaminergic cells.  We found that 

modulation of mitofilin expression had little effect on viability in untreated cells, but altered the 
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observed that increased mitofilin expression was protective and decreased mitofilin expression 

potentiated toxicity (see Chapter 5).  This study provides the first evidence that altered mitofilin 

expression, specifically, can have an effect on cellular response to a stressor.   

While our results give little clue as to the mechanism for the effects of modulating 

mitofilin expression on toxin-induced cell death, we can speculate as to why we see these effects 

based on what is known about mitofilin.  As John et al. demonstrated, a knockdown of mitofilin 

led to severely disrupted mitochondrial cristae morphology, in association with mitochondrial 

functional deficits (John et al., 2005).  Thus, it was anticipated that downregulating mitofilin 

would increase toxicity, which is what we observed with DA-induced toxicity in SH-SY5Y cells 

with reduced mitofilin expression.  As we previously observed DA-induced decreases in 

mitofilin abundance in PC12 cells, we hypothesized that increasing expression of mitofilin prior 

to toxic insult would be protective against DA toxicity, which we observed in both PC12 and 

gainst the 

mitochondrial toxin, rotenone.  We have not yet evaluated whether rotenone alone can impact 

endoge

SH-SY5Y cells overexpressing mitofilin.  Interestingly, we also observed protection a

nous mitofilin levels.  At present, we hypothesize that this protection is mediated through 

mitofilin-induced stabilization of mitochondrial cristae structure, potentially protecting against 

rotenone- and DA-toxicity induced disruptions in mitochondrial function by maintaining proper 

morphology and preventing loss of membrane potential.  Protection may also be mediated 

through the potential role for mitofilin in mitochondrial protein import.  Mitofilin was recently 

found to interact with a complex of proteins important for mitochondrial protein import (Xie et 

al., 2007).  Thus, excess mitofilin may allow for continued mitochondrial protein maintenance 

and mitochondrial biogenesis related to the import of new proteins during cellular stress. Further 

studies, including examination of mitochondrial integrity using electron microscopy and 
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mitochondrial respiration in association with modulating mitofilin expression, will be necessary 

to evaluate these hypotheses.   

It is important to note that the models used in our studies were acute toxicity.  Thus, 

while they demonstrate mitofilin-associated effects against an abrupt insult, they do not provide 

insight to the effects of mitofilin increase or decrease over prolonged periods of time, or in 

concert with chronic exposure to stressors.  Thus, a long-term neuronal culture model should be 

ideal to further evaluate the effects of altered mitofilin expression.  Culture methods have been 

described for neuronal differentiation and long-term culture of SH-SY5Y (Constantinescu et al., 

2007), which would accommodate the stable overexpressing SH-SY5Y cells we have already 

developed.  Or, primary neuronal and organotypic cultures could be transfected to boost or knock 

down mitofilin expression.  Not only would this provide in vitro insight to the effects of mitofilin 

modulation within neuronal cells over time, but also could be used in conjunction with already-

established methods of chronic in vitro rotenone exposure (Sherer et al., 2003a; Testa et al., 

2005). 

The ultimate goal would be to the move study of mitofilin into in vivo models to evaluate 

the role of mitofilin in dopaminergic survival and with respect to PD toxins. Viral-mediated 

delivery of constructs expressing mitofilin or mitofilin shRNA could be used not only to evaluate 

the effects of mitofilin expression in vivo, but also used in conjunction with established PD 

animal models, such as DA or rotenone toxicity.  Transgenic models would also be valuable, 

particularly knockouts, if viable.  If heterozygous knockouts with decreased expression could be 

developed, it would be interesting to examine whether they show early signs of aging or 

increased vulnerability to toxin exposure.  For now, this is wishful thinking, but is a likely next 

step for investigating mitofilin with regard to neurodegenerative disease.   
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Despite enthusiasm for proposing additional studies, there is one important point to 

consider.  At present, there is no reported link between mitofilin and PD, either familial or 

sporadi

euronal degeneration 

(Wang et al., 2008a), and in cortex from a seizure-sensitive strain of Mongolian gerbils (Omori 

c.  This does not necessarily preclude a role for mitofilin, however.  Thus, a logical next 

step in the study of mitofilin would be examination of PD patients, including CSF, platelets, or 

post mortem brain tissue, to look for alterations in mitofilin protein as compared to controls, 

whether that be abundance, distribution, or modification.  If alterations were found, then 

experiments such as those described above would be well warranted in elucidating the role of 

mitofilin in PD.  Even if minimal or no alterations were detected, the protection elicited by 

mitofilin in models of PD alone merit further study.  Such work could eventually translate to new 

therapeutic avenues for PD involving mitofilin or its associated proteins.  

6.3.3 A role for mitofilin in neuropsychiatric disorders, neurodegenerative disease, and 

PD 

While there is currently no evidence that mitofilin plays a role in sporadic PD, alterations 

in mitofilin have been associated with other neurological disorders.  Mitofilin expression, in 

association with other dysregulated proteins, was found to be decreased approximately 50% in 

post mortem Fetal Downs syndrome brain tissue as compared to control tissue (Myung et al., 

2003), and decreased 72% in G93A-SOD1-expressing NSC34 cells, a cell line model of familial 

ALS, compared to wild type cells (Fukada et al., 2004).   Alterations in protein sequence and 

structure of mitofilin have been tightly linked with altered neuronal function.  Specifically, 

changes in mitofilin protein pI was noted in association with the senescence-accelerated mouse 

prone 8 (SAMP8) mouse model for age-related cognitive deficits and n
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et al., 2

 protein disrupted in 

schizophrenia 1 (DISC1) (Millar et al., 2003), while a separate study found that truncated forms 

d 

 and lariat-like structures (Millar et al., 2005).  Recently, mitofilin was found to interact 

with a complex of proteins including SAM50 and metaxins 1 and 2, proteins associated with 

mitoch

002).  Covalent DA modification of mitofilin may contribute to an altered structure and, 

thus, altered function in the mitochondria.  These findings and our studies presented here 

demonstrate that mitofilin may play an important role in neurological disorders.  While they 

suggest modification of mitofilin structure may be involved, they do not elucidate a clear 

mechanism for the effect of changes in mitofilin levels in cell function. It is important to note 

that no study prior to our work directly examined the manipulation of mitofilin in a 

neurodegenerative model or with regard to exogenous stressors.  Our studies support a case for 

further examination into the function of mitofilin, and  potential role of mitofilin in PD.  

The effects of modulating mitofilin levels may be related to its interacting proteins.  

Mitofilin was found to associate with the schizophrenia risk factor

of DISC1 resulted in the formation of abnormal mitochondrial morphologies including enlarge

rings

ondrial protein import mechanisms (Xie et al., 2007).  The results of these studies suggest 

that mitofilin and its protein-protein interactions play an important role in normal mitochondrial 

function and morphology. 

Perhaps the most remarkable characteristic that was noted in association with mitofilin 

loss is the severe reorganization of the mitochondrial cristae structure, resulting in concentric 

ring-like structures or whorls (John et al., 2005).  Interestingly, similar structures have been 

noted in models of toxicity, disease, and cell death.  Fornai and colleagues have noted the 

formation of cellular inclusions resembling membranous whorls following methamphetamine 

toxicity in PC12 cells, and in postsynaptic striatal neurons following 3,4-
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methylenedioxymethamphetamine (MDMA) toxicity in mice (Ferrucci et al., 2002; Fornai et al., 

2002; Lazzeri et al., 2006).  The formation of whorls was thought to be associated with oxidative 

stress following excess DA release (Ferrucci et al., 2002; Fornai et al., 2002; Lazzeri et al., 

2006).  These whorl structures were immunopositive for ubiquitin, and were thought to represent 

an early sign of proteosome dysfunction and inclusion formation, though their origin is unknown 

(Ferrucci et al., 2002; Fornai et al., 2002; Lazzeri et al., 2006).  Mitochondria exhibiting 

disrupted cristae structures resembling whorls, have also been observed in muscle tissue of mice 

expressing a mutant form of mitochondrial cytochrome c oxidase subunit I (Fan et al., 2008).  

Mitoch

mitochondrial cristae structures are known to undergo reorganization 

in time

ondrial whorls, remarkably similar to those John et al. observed following mitofilin 

depletion, have also been observed with apoptosis in mature mouse oocytes in in vitro culture 

(John et al., 2005; Perez et al., 2007).  The biological significance of these whorl structures is not 

known.  However, their formation following knockdown of mitofilin, following toxic insult, and 

in association with apoptosis suggests they serve as a sign for mitochondrial dysfunction and 

cellular distress. 

The association of mitofilin with DISC1 and other reported findings on altered mitofilin 

expression allow us to speculate on a potential role for this protein in mitochondrial dysfunction 

and neuropathology.  The 

s of increased energy demands, cellular stress, and apoptosis (Mannella et al., 2001; 

Scorrano et al., 2002).  In apoptosis, this may be partly due to peroxidation of inner membrane 

lipids, including cardiolipin, which facilitates the release of cytochrome c (Kagan et al., 2005; 

Kagan et al., 2006; Petrosillo et al., 2003; Petrosillo et al., 2001).  It is possible that mitofilin is 

participating in this reorganization due to oxidation-induced alterations.  Excess oxidants may 

modify mitofilin, altering its structure or targeting it for degradation, further allowing for cristae 
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destabilization and reorganization.  As mitofilin also interacts with proteins connected to 

mitochondrial protein import (Xie et al., 2007), a loss of mitofilin could hamper efforts to 

recover from excessive protein damage and loss, setting up a deadly cycle of ROS generation, 

oxidative protein and lipid damage, ultimately leading to mitochondrial collapse.  In 

dopaminergic neurons, this effect could be amplified by DA oxidation and modifications to 

mitofilin, contributing to the selective vulnerability of these neurons in toxin exposure or PD 

pathogenesis.   

6.4 MITOCHONDRIAL AND CELLULAR PROTEINS AS TARGETS OF DA-

INDUCED MODIFICATIONS 

The studies comprising this thesis have identified several mitochondrial and cellular 

proteins as targets of DA oxidation-induced modifications.  The potential impact of the DA-

induced modifications associated with these proteins has been touched on in the Discussion 

Chapters 3 4

to link the seemingly varied pathways potentially affected by DA-induced oxidative 

modifications. 

6.4.1 Changes in abundance vs. covalent modification of mitochondrial proteins following 

in vitro exposure to DAQ 

sections of  and .  In this section, I will expand upon these discussions, and attempt 

Using proteomic methods, we observed two effects of exposure of isolated brain 

mitochondria to DAQ on mitochondrial proteins, protein loss and covalent modification (see 
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Chapters 3 and 4).  We are not the first to observe that DA can covalently modify mitochondrial 

proteins in vitro.  Exogenous DA applied to liver mitochondria was found to associate with 

multiple unidentified matrix proteins (Turan et al., 1989).  Kahn et al. observed the formation of 

redox cycling quino-proteins and aggregation of protein in fresh rat brain mitochondrial-

synaptosomal fractions incubated with DA, which was prevented by reduced glutathione (GSH) 

(Khan et al., 2001).  However, we are the first to identify specific mitochondrial protein targets 

of DA oxidation.  These proteins, identified in Chapters 3 and 4, are targets for oxidative 

modification, and may be relevant to PD pathogenesis. 

Availability and accessibility of reactive amino acid side chains is another factor to 

con  in hile 

DAQ has extremely high affin ith reduced thiols (Tse et al., 

1976), there is the possibility that it may bind other residues, such as lysine, depending on 

whether the side chain amine can act as a nucleophile under given conditions.  Using a thiol-

reactive compound that is accumulated by mitochondria, (4-iodobutyl)triphenylphosphonium, 

Lin et al. demonstrated that reactive thiols are accessible for covalent modification throughout 

the mitochondria, particularly thiol residues associated with the matrix faces of Complex I, II, 

and IV proteins (Lin et al., 2002).  If DA or DAQ can be accumulated by mitochondria, they 

ctive thiols in multiple membrane and matrix proteins.  Because thiols at 

physiological pH are the strongest nucleophiles in the cell, covalent modification by DA is likely 

occurring through, but not be limited to, thiol modification.  Mass spectrometric sequencing 

analysis would be necessary to definitively answer this question by pinpointing the DAQ-

modified residues, and is a logical next step in

sider  the ability of DA to covalently modify proteins. It is important to note that w

ity for and rapid reaction rate w

would have access to rea

 characterizing the DA-induced modifications to 

specific proteins identified in these studies. 
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One unresolved question from this work is whether the protein loss observed in our DIGE 

experiments is from protein aggregation or protein degradation.  When we compared DIGE 

analysis to covalent modification following 14C-DA exposure in isolated mitochondria, we found 

that while most proteins reduced in abundance following DAQ exposure are also covalently 

modified by DA, not all covalently modified proteins displayed a DAQ-induced reduction in 

protein amount (see Chapter 4).  Mitochondrial proteins, including the matrix chaperone 

HSP60, the ubiquinol-cytochrome C reductase core protein 1 subunit of Complex III subunit, 

and aconitase all demonstrate covalent interaction with 14C-DA, but show no loss of total protein 

followi

ial proteases are not known (reviewed in Bulteau et 

ng DAQ exposure based on DIGE analyses.  This lack of complete overlap suggests that 

there may exist a selective process for removal of damaged proteins.  Or it may attest to the 

affinity of some proteins to oxidatively crosslink and/or aggregate versus others.  Both processes 

are a possibility within the intact mitochondria. 

Mitochondria possess a proteolytic system of processing peptidases and proteases.  These 

include processing peptidases involved in imported protein maturation and ATP-dependent 

proteases, including the Lon matrix protease, Clp-like matrix protease, and AAA-family inner 

membrane proteases (reviewed in Kaser and Langer, 2000).  There is also the mitochondrial 

serine protease Omi/HtrA2.  Whether this protein has proteolytic function within the 

mitochondria is uncertain.  However, a mutation that inhibits its serine protease activity was 

recently linked to an increased risk of PD (Bogaerts et al., 2008; Strauss et al., 2005).  Stable 

expression of human-related mutant forms in cells resulted in mitochondrial dysfunction (Strauss 

et al., 2005), suggesting a role for Omi/HtrA2 protease activity within mitochondria.  Overall, 

the mitochondrial proteases and peptidases are not well characterized in mammals, and the 

functional significance of many mitochondr
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al., 200

ce of intra-mitochondrial electron dense bodies 

as dete

6; Kaser and Langer, 2000).  Much of what is known about mitochondrial protease 

function comes from study of their homologues in yeast mitochondria.  Such studies suggest that 

the ATP-dependent proteases are integral in mitochondrial protein quality control and serve a 

dual function, both in removal of misfolded and aberrant proteins, and in selective proteolysis 

related to mitochondrial biogenesis and morphology (reviewed in Escobar-Henriques and 

Langer, 2006; Kaser and Langer, 2000).  Of these proteases, the Lon protease has received 

heightened attention for the discovery that mammalian Lon selectively proteolyzes the oxidized 

form of mitochondrial matrix aconitase (Bota and Davies, 2001; Bota and Davies, 2002).  

Knockdown of Lon protease expression in human lung fibroblasts resulted in disrupted 

mitochondrial morphology and increased apoptosis after 4 days (Bota et al., 2005).  The 

surviving cells were characterized by severely depressed mitochondrial function and aberrant 

mitochondrial morphology, including the presen

cted by electron microscopy, presumed to be accumulated oxidized protein (Bota et al., 

2005).  These findings suggest a crucial role for mitochondrial proteases in clearing damaged 

proteins. 

Whether or not mitochondrial protein degradation is playing a role in protein loss in our 

in vitro study is uncertain.  We did not observe any attenuation of protein loss by increasing the 

protease inhibitor cocktail (PIC) concentration during DA exposure, as reported in Chapter 3.  

But, as previously mentioned, treatment with PIC could be complicated by the dual membranes 

of the intact mitochondria, which may not allow entrance of the compounds in the cocktail into 

the mitochondria.  Experiments with disrupted mitochondria would overcome this obstacle, but 

introduce new factors, such as release of non-membrane-bound proteins and the loss of our intact 

system, which is more physiologically relevant.  Additionally, though the PIC contains 
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compounds for broad-spectrum protease inhibition, including cysteine-, serine-, and 

metalloproteases, there is no guarantee it is efficiently or specifically inhibiting all 

mitochondrial-based proteases.  Further experiments titrating the level of protease inhibitors or 

using select types of inhibitors per experiment may shed light on the role of proteolytic 

degradation in our in vitro model. 

We did observe evidence of SDS-insoluble protein interactions, however.  Protein 

aggregation in DA-exposed mitochondria has previously been observed (Khan et al., 2001).  

However, that study merely observed extra, high molecular weight bands in SDS-PAGE gels of 

mitochondrial lysate, and did not delineate which proteins succumbed to aggregation (Khan et 

al., 2001).  Using Western blot analyses to individually detect two altered proteins, 

mitochondrial creatine kinase (MtCK) and mitofilin, we detected multiple immunoreactive bands 

in the molecular weight range between the proteins of interest and the stacking gel only in 

samples exposed to DAQ (see Chapter 3).  This would suggest DA oxidation-induced covalent 

crosslinking or other non-SDS-soluble interaction of proteins.  In fact, the molecular weights of 

some of the bands detected (~85, 95, and 180 kDa for MtCK; ~180, and 250 kDa for mitofilin) 

are approximately multiples of the monomeric molecular weights of the proteins of interest (~42 

kDa, MtCK; ~90 kDa, mitofilin), suggesting these may be homomeric crosslinked forms of the 

individual proteins.  This is likely, considering MtCK is known to exist as an octameric protein 

(Speer et al., 2005; Wendt et al., 2003), and mitofilin has been suggested to form a homo-

oligomeric complex (John et al., 2005).  

More study is necessary to evaluate the predominant mechanism responsible for the loss 

of specific proteins following DA oxidation.  It is also possible that degradation and aggregation 

are acting in parallel, an event that could have detrimental effects on mitochondrial viability in 
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vivo.  Covalent DA modification and subsequent targeting of proteins for degradation 

automatically eliminates their function.  If other mitochondrial functions, such as protein import, 

are impacted by DA oxidation, replacement of damaged proteins could be hindered.  Rapid 

modification and targeting of proteins for degradation could also lead to aggregation as the 

mitochondrion’s own proteolytic system becomes overwhelmed.  

ondrial ETC functions are believed to play a major role 

in PD p

rapidly fluctuating energy usage, such as is found in muscle and neural cells (Eder et al., 2000). 

6.4.2 Energy production and energy management proteins as targets of DA-induced 

modifications 

We observed DA-induced modifications to proteins involved in multiple steps of energy 

metabolism, including glycolysis (enolase and triosephosphate isomerase), the TCA cycle 

(isocitrate dehydrogenase, aconitase, succinyl-CoA ligase, and glutamate oxaloacetate 

transaminase 2), the ETC (30 kDa and 75 kDa Complex I subunits and Rieske Fe-S and 

ubiquinol-cytochrome C reductase core protein I complex III subunits) and ATP level 

maintenance (nucleoside diphosphate kinase A, creatine kinase (CK), and MtCK).  Inhibition of 

TCA cycle proteins has previously been associated with PD (Mizuno et al., 1994), suggesting 

deficiencies in this system are related to disease pathogenesis.  Similarly, oxidative modifications 

to CK and MtCK have been associated with disease and disease models (Boyd-Kimball et al., 

2005; Butterfield et al., 2002; Castegna et al., 2002a; Choi et al., 2004a; Poon et al., 2004; Poon 

et al., 2005a), while alterations in mitoch

athogenesis. 

CK enzymes convert cellular creatine into creatine phosphate by reducing ATP to ADP, 

thus storing the high-energy phosphate bond.  This creatine phosphate store helps buffer against 
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The cytosolic form of CK occurs primarily as a dimer, (Muhlebach et al., 1994), while the 

mitochondrial form is primarily octameric, made up of dimer-dimer interactions (Gross and 

Wallimann, 1995; Schlegel et al., 1988; Schnyder et al., 1988).  Oxidative modification of both 

CK and MtCK has previously been demonstrated (Butterfield et al., 2002; Castegna et al., 2002a; 

Dolder et al., 2001; Wendt et al., 2003).  Previous studies have also shown that exposure of CK 

and MtCK to DA and DA quinones results in a decrease in enzymatic activity (Jiang et al., 2002; 

gly, the two Complex I subunits that we identified as targets of DA modification, 

the 30 kDa and 75 kDa subunits, have been reported to be targets of other biological processes 

that me

y and Lieberman, 2008).  They demonstrated that the cellular effects of 

granzym

Maker et al., 1986; Miura et al., 1999).  

Interstin

diate cell death through disruption of mitochondrial function.  Ricci et al. found that 

induction of apoptosis in HeLa cells led to a caspase-dependent cleavage and loss of the 75 kDa 

subunit, but not other subunits of Complex I (likely due to accessibility), mediating apoptosis-

associated mitochondrial dysfunction (Ricci et al., 2004).  Further, expression of a cleavage-

resistant form of the 75 kDa subunit attenuated the apoptosis-associated loss of mitochondrial 

function, morphology, and ROS production (Ricci et al., 2004), suggesting a key role for this 

subunit in mitochondrial deficiencies associated with apoptosis.   

Martinvalet et al. recently reported that the 30 kDa subunit of Complex I is a target for 

cleavage by the killer lymphocyte enzyme granzyme A (Martinvalet et al., 2008).  Granzyme A 

initiates a caspase-independent apoptosis-like cell death in targeted cells that is dependent on 

mitochondrial disruption resulting in increased ROS and decreased mitochondrial membrane 

potential (Chowdhur

e A may be mediated though disruption of complex I, and expression of a cleavage-

resistant form of the 30 kDa subunit attenuated granzyme A-mediated cell death (Martinvalet et 
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al., 2008).  However, the actual presence of granzyme A in the brain is uncertain.  Overall, the 

effects elicited by directed cleavage of these two Complex I subunits suggest that their 

dysfunction or loss would contribute significantly to mitochondrial deficits and ROS production.  

The fact that the 30 kDa and 75 kDa subunits are targets of biological cell death pathways attests 

to their importance in cell survival.  Though the nature of the DA modifications we identified on 

these two subunits is not yet certain, it is possible that DA oxidation of the 30 kDa and 75 kDa 

subunits could impact their function or interaction with other Complex I proteins, contributing to 

mitoch

energy system may also hinder 

the abil

ondrial ETC dysfunction and cellular vulnerability.   

Taken together, we can begin to see the potential impact of DA oxidation on the cellular 

energy system.  If multiple proteins involved in ATP generation are targets for DA oxidation-

induced damage or altered function, the result for dopaminergic neurons may be an adequate but 

limited energy system.  Neurons could thus become stressed from a lifetime of slightly depressed 

mitochondrial respiration and increased ROS, creating an environment of increased oxidative 

stress and ongoing oxidative damage.  These are characteristics often associated with aging in 

cells and mitochondria, particularly in the SN (Beal, 2002; Bulteau et al., 2006; Floor and 

Wetzel, 1998; Lenaz et al., 2002; Toescu et al., 2000).  A limited 

ity of the neurons to defend against or recover from acute stress.  Such a state may cause 

dopaminergic neurons to be inherently more vulnerable to a pathogenic trigger, such as exposure 

to exogenous stressors like pesticides.   

Modification of MtCK and nucleoside diphosphate kinase may also have a role in 

mitochondrial dysfunction beyond ATP level management. Both MtCK and the mitochondrial 

form of nucleoside diphosphate kinase (NDPK-D) localize to the intermembrane space, 

particularly contact sites, and interact with the lipids of the mitochondrial membranes, such as 
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cardiolipin (Dolder et al., 2001; Epand et al., 2007; Muller et al., 1985; Speer et al., 2005; 

Wegmann et al., 1991).  Both proteins have also been shown to demonstrate lipid transfer 

properties, and may play a role in maintaining the mixed lipid compositions of the inner and 

outer mitochondrial membranes, key for maintaining mitochondrial structure (Epand et al., 

2007).  Evidence also suggests that the octameric structure of MtCK has a role in inducing and 

stabilizing contacts sites between the inner and outer membrane of mitochondria (Speer et al., 

2005).  Within contact sites, MtCK has been shown to interact with VDAC and adenine 

nucleotide translocase, proteins implicated in formation of the PTP (Beutner et al., 1998; 

Brdiczk

nes as targets of DA oxidation 

directly facilitate the aggregation of proteins, including alpha-synuclein (Conway et al., 2001) 

a et al., 1998; Dolder et al., 2001).  Oxidative stress can result in dissociation of the 

octameric form of MtCK into dimers  (Dolder et al., 2001; Speer et al., 2005; Vyssokikh and 

Brdiczka, 2003; Wendt et al., 2003).  The dissociation is thought to facilitate opening of the PTP 

(Dolder et al., 2001; Vyssokikh and Brdiczka, 2003).  Thus, oxidative modification of MtCK and 

nucleoside diphosphate kinase function and/or structure may result in mitochondrial membrane 

restructuring.  As we have also demonstrated that mitofilin, a protein key in maintaining 

mitochondrial cristae structure, is susceptible to modification following DA oxidation, DA-

induced damage to mitochondrial proteins may contribute to membrane reorganization, and 

ultimately promote mitochondrial dysfunction.   

6.4.3 Mitochondrial and ER chapero

The discovery of multiple cellular and mitochondrial protein chaperones as targets for 

covalent modification carries implications for the effects of DA oxidation on aberrant protein 

folding and aggregation in dopaminergic cells.  While studies have demonstrated that DA can 
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and neurofilaments (Montine et al., 1995), modification and potential inactivation of chaperone 

proteins, such as ER-60, creates a situation in which proteins may aggregate due to misfolding.  

This could lead to induction of ER stress, which we observed in proteomic analysis of PC12 cells 

following DA toxicity (Dukes et al., 2008). 

Of the chaperones found modified by DA oxidation, only mortalin/GRP75/mtHSP70 has 

been linked to PD.  Mortalin/GRP75/mtHSP70 was identified to be significantly decreased in a 

proteomic analysis of PD brain SN mitochondria (Jin et al., 2006).  A member of the hsp70 

family of proteins and functioning primarily as a key chaperone in mitochondrial protein import 

and processing, mortalin/GRP75/mtHSP70 appears to be both a crucial and multifunctional 

protein in mitochondrial and cellular function, including management of oxidative stress and 

stability of mitochondrial morphology (reviewed in Wadhwa et al., 2002; Yaguchi et al., 2007).  

Functional inactivation of mortalin/GRP75/mtHSP70 in yeast results in aggregation of 

mitochondria by a mechanism independent of its protein import function (Kawai et al., 2001).  

Mortalin/GRP75/mtHSP70 also interacts with familial PD-associated DJ-1 protein, suggesting a 

role in regulation of oxidative stress (Jin et al., 2007).  Recently, mortalin/GRP75/mtHSP70 was 

reported to interact with frataxin (Shan et al., 2007), suggesting a role in Fe-S cluster biogenesis 

and protein processing.  Given the key roles mortalin/GRP75/mtHSP70 plays in the 

mitochondria, DA-induced modifications may result in dramatic effects on mitochondrial 

ein.  Additionally, we 

observed that DAQ exposure in vitro resulted in reduced abundance of 

mortali

morphology and protein processing simply through impacting this prot

n/GRP75/mtHSP70.  Perhaps DA oxidation plays a role in the loss of abundance of this 

protein associated with PD (Jin et al., 2006). 

 165 



6.4.4 Cytoskeletal proteins as targets of covalent modification by DA 

In both our mitochondrial and cellular models, we found cytoskeletal proteins to be 

vulnerable to covalent modification by DA.  Actin and tubulin, were identified with covalent DA 

modific

on mitochondrial trafficking in the neuron, as 

mitochondria interact both directly with actin scaffolds for anchoring and with tubulin 

ation in our DAQ-exposed rat brain mitochondria, while actin and the actin-interacting 

protein tropomyosin were targets of covalent modification in DA-exposed SH-SY5Y cells (see 

Chapter 3).  Previous studies have also demonstrated the susceptibility of cytoskeletal proteins 

to DA oxidation and oxidative stress relative to PD.   

Montine et al. found that oxidized catechols could covalently crosslink neurofilaments 

(Montine et al., 1995).  Aggregated neurofilaments have been associated with Lewy bodies, and 

both L & M neurofilament proteins have been found to be less abundant in PD brain SN (Basso 

et al., 2004).  In agreement with our findings, previous work demonstrated that oxidized DA, 

induced by Fe2+, bound to specific regions of skeletal muscle actin in vitro (Velez Pardo et al., 

1995), further demonstrating the potential of actin as a target of dopamine oxidation.  Though 

there are no other reports of DA-induced tubulin modifications, MPTP and rotenone toxicity, 

both of which generate excess ROS, have been shown to depolymerize tubulin microtubules in 

cell culture (Cappelletti et al., 1995; Feng, 2006).  Additionally, exposure to quinones, including 

benzoquinone and juglone, resulted in decreased microtubule assembly and increased tubulin 

crosslinking in vitro and decreased neurite outgrowth in cultured hippocampal neurons (Santa-

Maria et al., 2005b). Thus, exposure to and likely modification following oxidative stress can 

have drastic effects on the proper function of this critical cytoskeletal protein. Cytoskeletal 

modification may even have an impact 
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microtubules for movement throughout the cell, respectively (Boldogh and Pon, 2006; Boldogh 

and Pon, 2007). 

prise that we found multiple cellular and 

mitoch

in SH-SY5Y cells and primary neuron culture found that induction of increased glutathione and 

6.4.5 Antioxidant Enzymes and DA oxidation 

Impaired antioxidant defense systems and oxidatively damaged antioxidant proteins have 

been previously associated with PD pathogenesis (Aoyama et al., 2000; Choi et al., 2006; Sian et 

al., 1994a; Sofic et al., 1992).  Thus, it was no sur

ondrial antioxidant proteins to be targets of DA oxidation.  Specifically, cytosolic 

peroxiredoxin II, SOD1 in SH-SY5Y cells, and mitochondrial peroxiredoxin III, and SOD2 in 

isolated mitochondria were covalent modification targets of DA, and SOD2 also showed altered 

abundance.  We also found the PD-linked protein DJ-1 to be covalently modified in both cell 

culture and isolated mitochondria experiments.  As discussed in Chapter 4, dysregulated 

expression and/or oxidative modification of each of these proteins has been associated with 

various diseases and disease models, including PD.   

The significance of the identification of these proteins as targets of DA oxidation is 

emphasized by the knowledge that the human SN has a somewhat deficient antioxidant defense 

system in general.  Glutathione levels in the brain were found to be at their lowest in the SN of 

normal human brain (Perry et al., 1982).  These levels are even more decreased in PD brain 

(Pearce et al., 1997; Riederer et al., 1989; Sian et al., 1994a; Sofic et al., 1992).  With this vital 

antioxidant system impaired, other systems may be heavily taxed.  However, as we show here, 

those other mechanisms may be in danger of DA oxidation, and oxidized DA can bind 

glutathione, further jeopardizing the antioxidant defense of dopaminergic neurons.  Indeed, study 
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quinone oxidoreductase expression prevented toxicity from various toxins, including dopamine, 

6-hydroxydopamine, 4-hydroxy-2-nonenal, and hydrogen peroxide (Jia et al., 2008).  The 

presence of an adequate antioxidant defense system may be the key to decreasing DA oxidation 

city.  

6.4.6 

odification of parkin, detectable in human 

brain ti

and thus, preventing the effects of DA-induced toxi

Proteins linked to PD as targets of DA-induced modifications 

Perhaps among the more significant findings of this thesis, with regard to PD, is the 

discovery of two PD-linked proteins, UCH-L1 and DJ-1, as targets for covalent modification by 

DA.  Though other studies have found that these proteins are sensitive to oxidative stress and 

oxidative modification, direct DA modification has not previously been reported.  DA 

modification has been reported for two other PD-linked proteins, alpha-synuclein (Conway et al., 

2001) and parkin (LaVoie et al., 2005).   

DA modification of alpha-synuclein was demonstrated to facilitate aberrant aggregation 

of the protein (Conway et al., 2001), while covalent m

ssue, inhibited protein function in vitro (LaVoie et al., 2005).  As the results in this thesis 

are the first evidence of UCH-L1 and DJ-1 being covalently modified by DA, the effects of 

modification on function or structure of the proteins are largely unknown.  However, recent 

studies in the Hastings laboratory demonstrate exposure of differentiated SH-SY5Y cells resulted 

in decreased UCH-L1 activity (Mishizen and Hastings, 2006).  Potential impacts on function are 

also suggested by studies examining oxidative modification of the proteins.  UCH-L1, a highly 

abundant protein in the brain (1-5% of soluble protein), is also a major target of oxidation and 

carbonyl formation in Alzheimer’s disease and sporadic PD brains (Choi et al., 2004b), thus 

demonstrating a propensity of even the wildtype protein for modification in association with 
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neurodegeneration.  Kabuta et al. demonstrated that carbonyl-modified UCH-L1 protein in COS-

7 cells exhibited abnormal function and protein interactions similar to a mutant form of UCH-L1 

associated with familial PD (Kabuta et al., 2008).  Though the specific function is unknown, DJ-

1 is considered to be an antioxidant protein by virtue of a reactive cysteine that becomes 

oxidatively modified in response to oxidative stress, and therefore has neuroprotective properties 

 (Zhang et al., 2005), 

oxidation results in the translocation of cytosolic DJ-1 to the mitochondria (Canet-Aviles et al., 

2004; L

at are associated with PD often impact function and/or 

ability 

(Canet-Aviles et al., 2004).  Though already present in mitochondria

ev et al., 2008).  The biological significance of this relocation, however, is unknown 

(Canet-Aviles et al., 2004; Lev et al., 2008).  Like UCH-L1, increased oxidative modification of 

DJ-1 is also strongly associated with sporadic PD and Alzheimer’s disease (Choi et al., 2006). 

The fact that these four proteins, which are implicated in PD pathogenesis, are targets for 

activity or structural modification by DAQ suggests that dopaminergic neurons may be at greater 

risk in PD.  Mutations in these proteins th

of the proteins to aggregate.  Modification by DA may replicate these effects even in 

normal proteins, as is exemplified by the effect of carbonylation on normal UCH-L1 activity 

(Kabuta et al., 2008).  Thus, DA oxidation may be conferring vulnerability to dopaminergic 

neurons by depressing or altering normal activity of these proteins. 

6.4.7 The vicious cycle of DA oxidation in Oxidative stress, Mitochondrial Dysfunction, 

and Dopaminergic Vulnerability:  A highly vulnerable population of proteins? 

As stated above, and made apparent in other chapter discussions, many of the proteins we 

identified as modified appear to be common targets of oxidative modification and altered 

abundance in other models of oxidative stress and disease, and in diseases themselves.  Many of 
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these proteins are cited frequently by other proteomic and oxidative stress studies examining 

protein modifications. Proteins including mitofilin, CK, MtCK, enolase, 

mortalin/GRP75/mtHSP70, VDAC, the 75 kDa and 30 kDa subunits of Complex I, the Rieske 

Fe-S and ubiquinol cytochrome c reductase core protein of Complex III, HSP60, glycerol 3 

phosphate dehydrogenase, elongation factors, UCH-L1, tubulin, and actin are often found, either 

together or in various combinations, with altered protein expression or oxidative modification in 

proteomic studies associated with aging brain (Poon et al., 2005a; Poon et al., 2006; Weinreb et 

al., 2007), Alzheimer’s disease (Abdi et al., 2006; Castegna et al., 2002a; Castegna et al., 2002b; 

Castegna et al., 2003; Sultana et al., 2006), ALS and ALS models (Fukada et al., 2004; Poon et 

al., 2005c), PD disease models (Jin et al., 2005; Palacino et al., 2004; Periquet et al., 2005; Poon 

et al., 2

vironment of high oxidative 

stress, may be subject to modification, altered abundance, and may contribute to disease 

n, 

Within the 

mitochondria, DA oxidation and damage of the protein targets discussed above would likely 

contrib

005b; Xun et al., 2007), and PD (Abdi et al., 2006; Basso et al., 2004; Jin et al., 2006).  It 

is possible, as per an earlier discussion on the limitations of our own system, that the relative 

abundance of these proteins aids in their detection as targets of modification.  However, the fact 

that they are cited in multiple diseases and models utilizing various detection methods would 

suggest that it is more complicated than sheer abundance. 

The proteins we have identified in this work are potential targets of DA oxidation, and 

represent a particularly vulnerable subset of proteins that, in an en

progression.  Oxidative modification of these proteins may lead to inhibition of functio

disrupted protein-protein interactions, or enhanced protein aggregation.  

ute to functional inhibition and structural instability.  Ultimately, DA oxidation may 

initiate and/or contribute to a vicious cycle of oxidative stress, protein damage, and 
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mitochondrial dysfunction, weakening the cell and leaving it vulnerable to stressors.  Thus, the 

potential of DA to contribute to the vulnerability of dopaminergic neurons in PD should not be 

ignored.  Further investigation of the proteins identified as targets of DA oxidation in this thesis 

and their potential roles in PD pathogenesis may ultimately lead to a better understanding of 

disease progression and novel therapeutic avenues in the treatment of PD. 
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APPENDIX A 

MITOCHONDRIA ASSOCIATED PROTEINS IDENTIFIED FROM DIGE GELS AND 

CORRESPONDING DECYDER ANALYSIS FOR CHAPTER 3 
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Table 5. Mitochondria associated proteins identified from DIGE gels and corresponding 

DeCyder analysis 

 

 

 

Protein 
Spot Protein

Protein Identification:
  (i) Top Hit for Protein Identification
  (ii) Highest Non-homologous Hit (Associated 
with Top Hit)

NCBI  
Database 

Accession #

Predicted 
Protein       MW; 

pI

Protein Score;    
C.I.% **

Peptide 
Count

Percent 
Coverage

Peaks 
Matched/ 

Peaks 
Searched

Cys-CyDye       
(% of control,     

± SEM )#

Lys-CyDye       
(% of control,     

± SEM )#

1 Gpd2 (I)  Gpd2 protein [Rattus norvegicus] gi|54035427 80921.3;  6.18 101;  100% 17 31% 17/65 32.3±2.74* 46.6±4.55*

(ii)  PREDICTED: similar to ARP2/3 complex 21 kDa 
subunit (p21-ARC) (Actin-related protein 2/3 complex gi|27665454 19864;  8.8 26;  0%

3 mitofilin
(I)  similar to inner membrane protein, 
mitochondrial (mitofilin); motor protein [Rattus 
norvegicus] 

gi|34855983 82304.9;  5.37 199;  100% 26 42% 27/65 35.2±2.39* 45.8±2.51*

(ii)  similar to Phosphoglycerate kinase, testis specific 
[Rattus norvegicus] gi|34859676 37007.1;  6.9 29;  0%

4 NADH Deh 75kDa (I)  NADH dehydrogenase (ubiquinone) Fe-S 
protein 1, 75kDa [Rattus norvegicus] gi|51858651 79361.6;  5.65 245;  100% 30 49% 32/65 54.5±3.24* 54.1±3.48*

(ii)  glutamyl aminopeptidase - rat (fragment) gi|2144073 15089.6;  7.03 36;  0%

5 GRP75 (B) (I)  dnaK-type molecular chaperone grp75 
precursor - rat gi|2119726 73698.8;  5.87 141;  100% 19 42% 20/65 73.3±3.41* 75.1±3.35*

(ii)  hypothetical protein XP_237748 [Rattus norvegicus] gi|27666626 11111.7;  9.76 40;  0%

6 HSP (I)  unnamed protein product [Rattus 
norvegicus]               (HSP60 Protein) gi|1334284 57889.7;  5.35 265;  100% 27 66% 32/65 101±2.08 93.5±0.771

(ii)  similar to hypothetical protein E230012L24 [Rattus 
norvegicus]

gi|34862740 47293;  9.28  35;  0%

7 Eno1 (I)  Eno1 protein [Rattus norvegicus] gi|50926833 47098.2;  6.16 169;  100% 19 62% 22/65 127±7.63* 107±3.30

(ii)  similar to immunoglobulin heavy chain [Rattus 
norvegicus]  gi|34935583 18662.4;  9.1 37;  0%

8 succinate-CoA ligase
(I)  PREDICTED: similar to succinate-
Coenzyme A ligase, ADP-forming, beta 
subunit [Rattus norvegicus]

gi|62661722 50274.1;  7.57 156;  100% 20 52% 24/65 57.0±4.48* 57.9±2.22*

(ii)  green fluorescent protein [Montastraea cavernosa] gi|32188168 25999.98;  7.05 44;  0%

9 isocitrate deh. 3-

subunit 3 [Rattus norvegicus]

2 GRP75 (A) (I)  grp75 [Rattus sp.] gi|1000439 73983.9;  5.87 243;  100% 27 53% 29/65 78.8±2.60* 73.7±3.30*

(ii)  Hox-D|Hox-4 [Rattus sp.] gi|30352212 7585;  10.48 31;  0%

60

 (A) (I)  isocitrate dehydrogenase 3 (NAD +) alpha 
[Rattus norvegicus] 

gi|16758446 39588;  6.47 89;  99.996% 13 37% 18/65 86.1±2.28 80.6±1.95*

(ii)  similar to Lectin, galactose binding, soluble 1 
[Rattus norvegicus] gi|34879568 16967.6;  9.78 34;  0%

10 isocitrate deh. 3-  (B) (I)  isocitrate dehydrogenase 3 (NAD +) alpha 
[Rattus norvegicus] 

gi|16758446 39588;  6.47 133;  100% 17 46% 20/65 99.0±1.30 88.1±4.58

(ii)  myosin heavy chain [Rattus norvegicus] gi|554476 19424.6;  5.29 25;  0%

11 Tu translation              
elongation factor

(I)  PREDICTED: similar to Tu translation 
elongation factor, mitochondrial [Rattus 
norvegicus]  

gi|109462848 49890.1;  7.23 209;  100% 21 65% 23/65 72.7±2.26* 59.1±1.43*

(ii)  general amidase [Aspergillus fumigatus Af293] gi|70991685 62402.9;  6.13  63;  0%

12 pyruvate carboxylase (I)  Pc protein [Rattus norvegicus] gi|55716041 129694.7;  6.34 213;  100% 31 39% 32/65 63.9±5.90* 69.0±1.71*

(ii)  p21 protein [Rattus norvegicus] gi|56769 21229.5;   5.02 33;  0%

 173 



Table 5 (continued) 

 

 

 

 

Protein 
Spot Protein

Protein Identification:
  (i) Top Hit for Protein Identification
  (ii) Highest Non-homologous Hit (Associated 
with Top Hit)

NCBI  
Database 

Accession #

Predicted 
Protein       MW; 

pI

Protein Score;    
C.I.% **

Peptide 
Count

Percent 
Coverage

Peaks 
Matched/ 

Peaks 

Cys-CyDye       
(% of control,     

± SEM )#

Lys-CyDye       
(% of control,     

± SEM )#Searched

13 oxoglutarate 
dehydrogenase

(I)  Similar to oxoglutarate dehydrogenase 
(lipoamide)                   [Rattus norvegicus] gi|53734284 116221.4;  6.3 85;  99.99% 18 21% 18/65 50.5±4.91* 54.8±3.77*

(ii)  similar to Protein c20orf178 homolog [Rattus 
norvegicus] gi|34859079 13220;  9.68  36;  0%

14 RIKEN cDNA 
2410002K23

(I)  similar to RIKEN cDNA 2410002K23 [Rattus 
norvegicus] gi|34868689 80410.8;  6.56 114;  100% 19 29% 20/65 74.0±7.00* 56.1±5.17*

(ii)  BM259 [Rattus norvegicus] gi|15072458 16832.6;  4.99 30;  0%

15 aconitase 2 (I)  Aconitase 2, mitochondrial [Rattus 
norvegicus] gi|38541404 85380;  7.87 307;  100% 34 51% 35/65 87.8±3.98 85.8±1.97

(ii)  acetylcholinesterase [Rattus norvegicus] gi|25282401 68153.5;  5.9 43;  0%

16 glutamate deh. 1 (I)  glutamate dehydrogenase 1 [Rattus 
norvegicus] gi|6980956 61377.3;  8.05 257;  100% 27 56% 34/65 101±5.29 96.5±1.37

(ii)  sema domain, immunoglobulin domain (Ig), short 
basic domain, sec [Rattus norvegicus] gi|8394255 88751.9;  7.4 37;  0%

17 MtCK (A) (I)  ubiquitous mitochondrial creatine kinase 
[Rattus rattus] gi|57539 46999.3;  8.72 115;  100% 16 49% 18/65 18.1±2.71* 24.6±2.11*

(ii)  insulin receptor precursor [Rattus norvegicus] gi|5230548 5078.5;  5.83 27;  0%

18 MtCK (B)
(I)  creatine kinase, mitochondrial 1, ubiquitous         
[Rattus norvegicus] gi|60678254 46932.2; 8.58 128;  100% 17 54% 19/65 26.6±3.24* 41.4±2.93*

(ii)  hypothetical protein CdifQ_01003041 [Clostridium 
difficile QCD-32g58] gi|85684359 22215.3;  5.7 42.5;  0%

19 pyruvate deh E1 (I)  pyruvate dehydrogenase E1 alpha form 1 
subunit              [Rattus rattus] gi|57657 43168.6;  8.35 96;  99.999% 14 45% 18/65 90.1±5.72 95.4±2.71

(ii)  similar to L-lactate dehydrogenase A chain (LDH-A) 
(LDH muscle subunit) (LDH-M) [Rattus norvegicus] gi|34851481 31563.8;  6.34 33;  0%

20 aldehyde deh. 1, B1 (I)  Aldehyde dehydrogenase 1 family, member 
B1(predicted) [Rattus norvegicus] gi|51858643 58101.6;  6.62 125;  100% 15 43% 17/65 N.D.*** 64.2±3.94*

(ii)  glutamate dehydrogenase 1 [Rattus norvegicus] gi|6980956 61719.4;  8.05 44;   28.477%

21 VDAC2
(I)  B-36 VDAC=36 kda voltage dependent 
anion channel       [rats, hippocampus, 
Peptide, 295 aa] 

gi|299036 31699.6;  7.44 56;  94.448% 8 40%  8/65 25.5±3.56* 31.7±3.25*

(ii)  ADAMTS protein [Rattus norvegicus] gi|5929892 9102.7;  8.44 22;  0%

22 fumarylacetoacetate 
hydrolase domain

(I)  PREDICTED: similar to fumarylacetoacetate 
hydrolase domain containing 2A [Rattus 
norvegicus]

gi|34858672 40314;  8.49 122;  100% 15 56% 19/65 34.9±2.61* 43.9±2.09*

(ii)  Flot2 protein [Rattus norvegicus] gi|53733398 38693.6;  5.26 32;  0%

23 SOD2 (A)
(I)  unnamed protein product [Rattus 
norvegicus]                      (Superoxide 
dismutase 2)

gi|56691 24667.6;  8.96 126;  100% 13 65% 13/65 65.2±3.06* 64.6±2.35*

(ii)  similar to ribosomal protein L30 [Rattus norvegicus] gi|34855533 12708.8;  9.59 30;  0%
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Table 5 (continued) 

 

 

 

Protein 
Spot Protein

Protein Identification:
  (i) Top Hit for Protein Identification
  (ii) Highest Non-homologous Hit (Associated 
with Top Hit)

NCBI  
Database 

Accession #

Predicted 
Protein       MW; 

pI

Protein Score;    
C.I.% **

Peptide 
Count

Percent 
Coverage

Peaks 
Matched/ 

Peaks 
Searched

Cys-CyDye       
(% of control,     

± SEM )#

Lys-CyDye       
(% of control,     

± SEM )#

24 SOD2 (B) 
(I)  unnamed protein product [Rattus 
norvegicus]                       (Superoxide 
dismutase 2)

gi|56691 24667.6;  8.96 59;  96.016% 8 41%  8/65 72.3±2.67* N.D.****

(ii)  similar to mesenchymal stem cell protein DSCD75 
[Rattus norvegicus] gi|27662044 23732.6;  9.14  23;  0%

25 F1-ATPase (I)  Chain B, Rat Liver F1-Atpase [Rattus 
norvegicus] gi|6729935 51320.8;  4.95 289;  100% 26 86% 36/65 N.D.***** 122±5.41*

(ii)  PREDICTED: similar to hypothetical protein 
MGC49942 [Rattus norvegicus] gi|27672993 17943.3;  6.74 29;  0%

*     Significance from control (100%), p<0.01, for proteins outside of the cutoff of 83.3-120% of control (1.2 fold change) 
**    Probability-based MOWSE score (Protein Score) and Protein Score Confidence Interval (C.I.) represent the top Protein Score and C.I. pairing obtained across all gels, Cys- and Lys-CyDye, in  
         which the protein was confidently identified (n = 2-11)
***  Insufficient data for DeCyder analysis
**** Protein not identified via MS analysis in Lys-DIGE gels
***** Protein not identified via MS analysis in Cys-DIGE gels
#    Normalized fold change in fluorescence of DAQ sample compared to control as determined by DeCyder analysis, expressed as percent of control (100%) ± standard error of the mean (SEM)
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