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SPATIO-TEMPORAL MIXED MODELS FOR DIFFUSION TENSOR

MAGNETIC RESONANCE IMAGING

John A. Scott, PhD

University of Pittsburgh, 2008

Diffusion tensor imaging (DTI) is a magnetic resonance imaging modality that provides

useful in vivo information about the microstructure of human brain tissue, particularly the

white matter structures that comprise the ‘wiring’ of the brain. DTI holds great promise

for enhancing our understanding of white matter disorders, which comprise public health

burdens in a variety of medical domains. Due to its relatively complex structure, however,

extracting useful information from DTI data presents a number of statistical challenges.

More effective statistical methodologies will improve the sensitivity of DTI data analyses

and increases their clinical relevance, a goal of substantial public health significance.

In this dissertation, I propose a series of analytic approaches to DTI data analysis based

on linear mixed effects models (LMEs). These models provide a number of advantages

over several expedient DTI data analyses in current use. I demonstrate the applicability

and advantages of my LME-based approaches in an analysis that compares white matter

microstructure in a group of children and young adults with autism spectrum disorders

(ASDs) to typically developing controls.

I first identify a class of LMEs for DTI data analyses for which closed-form maximum

likelihood estimators of all parameters exist. By avoiding iteration, these models enable prac-

titioners to perform exploratory and confirmatory analyses of large DTI datasets in clinically

feasible time. This family of models incorporates group heterogeneity in variance-covariance

structure.
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I then compare the results of my approach with other approaches currently in practice

in an analysis of white matter abnormalities associated with ASDs. I also introduce a data

analytic framework that incorporates the entire multivariate tensor in a single analysis.

I last describe a unified likelihood-based approach to addressing reliability with a new

estimator of a generalized intraclass correlation coefficient. I establish the robustness of this

approach to model perturbations with a series of theoretical and simulation results and apply

it to quantify local spatial reliability in the ASDs example.
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1.0 INTRODUCTION

A large number of neurological and psychiatric conditions are associated with changes in

the cerebral white matter. Such disorders include primarily white matter diseases, both

demyelinating diseases (e.g. multiple sclerosis) and dysmyelinating diseases (e.g. leukodys-

trophies), as well as loss of white matter integrity secondary to trauma, ischemia or tu-

mor. A number of psychiatric disorders are believed to involve disconnectivities between

brain regions, and white matter abnormalites have been observed in conditions as varied

as Alzheimer’s disease[96], obsessive-compulsive disorder[91], schizophrenia[48] and alcohol

use[59]. Conversely, schizophrenia-like psychotic symptoms have been observed in a variety

of white matter diseases[93]. Together, these diseases comprise a massive public health bur-

den. Techniques which make it possible to identify and localize white matter abnormalities

are critical to fully understanding the etiology and course of these illnesses.

Diffusion tensor imaging (DTI) is a relatively new magnetic resonance imaging modal-

ity that makes it possible to visualize white matter in vivo[57]. DTI has already shown

great promise in illuminating the mechanisms underlying many neurological and psychi-

atric disorders. However, the statistical approaches to DTI data in practice to date have

been driven to a very large degree by convenience and computational simplicity. The major

drawbacks of common analytic approaches include disregarding within-subject variability,

potential heterogeneity and autocorrelation, limiting sensitivity to mean effects across pre-

determined regions of interest, failing to adequately control for sources of variation, and

inflexibility in detecting and handling group heterogeneity in variance structure (see Section

1.3). The potential consequences of a lack of a principled statistical approach to such data

are twofold: (1) results reported in the literature may not be reproducible (false positives),

and (2) legitimate white matter abnormalities in imaged brains may go undetected.
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I propose a new approach to the statistical modeling of DTI data based on linear mixed

effects (LME) models. The use of LMEs helps to overcome many of the potential shortcom-

ings of standard approaches. Within-subject variability can be modeled in LMEs, rather

than ignored, potentially accounting for spatial autocorrelation. By borrowing strength

across multiple voxels, LMEs make it possible to detect voxel-scale effects while control-

ling for between-subject covariates. And it is possible to test for and incorporate group

heterogeneity in variance structures with LMEs. The major disadvantage of LMEs rela-

tive to simpler statistical models for DTI data is that parameter estimation generally re-

quires computationally-intensive iterative procedures, which may be infeasible with large

neuroimaging datasets, especially in an exploratory, model-building analysis. Thus, there is

a premium on identifying special cases of LMEs for which closed-form (no iteration) likeli-

hood estimation is available.

In Chapter 1, I provide an overview of DTI and common statistical approaches to DTI

data. I will introduce a class of linear mixed effects models with closed-form maximum likeli-

hood estimation, including models allowing for group heterogeneity in covariance structure,

in Chapter 2. I focus on cross-sectional and longitudinal models designed for two-group

comparisons, as these are particularly relevant to identifying white matter abnormalities

associated with psychiatric disorders (i.e., by comparing disease to control groups).

In Chapter 3, these models are illustrated with applications to a neuroimaging study

comparing young adults with autism spectrum disorders to normally developing controls. I

will contrast group comparison results obtained from closed-form LMEs with results obtained

from typical DTI data analytic approaches.

Finally, I present an approach to evaluating reliability in neuroimaging studies based on

a generalization of the intraclass correlation coefficient (Chapter 4). The focus here is not

on group comparisons alone. The techniques introduced are closely tied statistically to the

material in Chapters 2 and 3, and reliability considerations are relevant to a broad range of

data analytic questions of concern to neuroimaging practitioners.

2



1.1 WHITE MATTER ABNORMALITIES IN AUTISM

Autism spectrum disorders (ASDs) encompass a range of pervasive developmental disor-

ders (autism, Asperger’s disorder and pervasive developmental disorder not otherwise speci-

fied), all involving deficits in communication and social interaction, and repetitive behaviors.

Based on the prevalence, difficulty of treatment, and degree of impairment to individuals

with autism and their families (which can range from mild to very severe, and is often life-

long), ASDs comprise a massive public health burden. It is notoriously difficult to obtain a

complete picture of the prevalence of ASDs in the U.S. population, apparently due largely

to ongoing changes in surveillance and diagnostic criteria. However, most recent estimates

of the prevalence of ASDs have been in the vicinity of 60 cases per 10,000 children, with

estimates of autism itself falling mostly in the range of 10 to 20 cases per 10,000[71].

In order to develop more effective treatments for autism, it is critically important to

understand the neurological underpinnings of autism. The neurobiology of ASDs appears

to be complex and is, as yet, poorly understood[82]. A recent review cited a number of

findings of anatomical abnormalities in ASDs patients, the most consistent of which were

increased brain volume, decreased numbers of Punkerje cells in the cerebellum, and cerebral

cortex dysgenesis[26]. A number of functional magnetic resonance imaging (fMRI) studies

have also found abnormalities in ASDs associated with functional activation of the brain

in various tasks, including tasks involving social attribution, sentence comprehension and

working memory, and face perception[49].

Some of the behavioral deficits characteristic of ASDs, as well as some of the functional

neuroimaging studies of ASDs, seem to suggest underlying disconnectivity issues, and in-

vestigating white matter structures in ASDs patients is a natural development. However,

the exact nature of these disconnectivities remains an open question as to date there have

been only a handful of DTI studies comparing ASDs patients to controls to investigate white

matter abnormalities in vivo. These studies have variously found white matter abnormalities

associated with ASDs in the corpus callosum[2, 42], the superior temporal gyrus and tempo-

ral stem[58], and in the ventromedial prefrontal cortex and anterior cingulate gyrus[8]. More

work is needed to pin down the areas of most consistent anatomical disconnectivity associ-

3



ated with ASDs, and more sophisticated modeling techniques than those typically employed

by practitioners may increase the sensitivity of DTI to detect such abnormalities and re-

duce the number of spurious findings. Specifically, an LME-based approach will help reduce

bias in estimates of group difference parameters due to covariance structure misspecification.

LMEs will also make it possible to adequately control for important covariates by borrowing

strength across voxels, while still retaining sensitivity to voxel-scale effects, unlike region of

interest-based analyses.

1.2 DIFFUSION TENSOR IMAGING

Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique designed to take

advantage of the diffusion properties of water in human tissue[12, 57, 56]. Due to Brownian

motion, water molecules in a purely liquid medium such as cerebrospinal fluid (CSF) will

tend to diffuse according to a Gaussian distribution characterized by the viscosity and tem-

perature of the medium[17]. Likewise, in a liquid medium that also contains tissue that is

relatively sparse, loosely organized or highly permeable to water (such as the gray matter

cells of the brain), water molecules will tend to diffuse equally in all directions on average;

this is referred to as isotropic diffusion. However, in dense, highly organized, relatively im-

permeable tissue (such as the major white matter tracts of the brain), water molecules will

preferentially diffuse parallel to the principal orientation of the tissue, and will show less

diffusion perpendicular to the tissue; this is called anisotropic diffusion.

Because it is sensitive to anisotropic diffusion, DTI is ideally suited for imaging dense,

highly organized tissue in vivo. Furthermore, since DTI makes it possible to measure both the

degree of anisotropy and the primary directions of diffusion, the information recovered from

DTI scans can also be used to trace the path of highly organized, fibrous tissue throughout

the human body, a process called tractography[15].
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1.2.1 Applications Of DTI

Although DTI has been used to image a variety of tissues including skeletal muscle[33],

cardiac muscle[38], and kidney[79], its greatest impact has been in the in vivo imaging of

white matter in the brain. DTI is sensitive to diffusion anisotropy due to intact axonal

membranes and to myelination[17], with at least one recent study suggesting that it is pos-

sible to distinguish changes in anisotropy due to axonal membrane collapse from changes

due to demyelination[23]. This sensitivity has made DTI invaluable for researching white

matter diseases such as multiple sclerosis[34, 60, 62] and adrenomyeloneuropathy[29], as well

as other neurological disorders that can have a profound impact on white matter structures,

including amyotrophic lateral sclerosis (ALS)[1, 5, 21] and epilepsy[22, 92]. DTI has also

proved useful in investigating axonal injury due to trauma[30, 81] or ischemic events[87],

and in mapping axonal displacement due to brain tumors[83]. Researchers have also used

DTI to examine the white matter connections underlying normal brain processes such as

reading[18], language processing[10, 77] and cognitive control[61]. The technology is also

beginning to see clinical use[89], including use in presurgical planning for brain tumors[97].

A wide range of psychiatric disorders also have white matter involvement which can be

investigated with DTI[93, 59]. To cite a few examples, Kubicki et al. (2002) found reduced

asymmetry in the diffusion anisotropy of the uncinate fasciculus in schizophrenia patients

compared to controls[48]. Xie et al. (2005) found reduced diffusion anisotropy in bilateral

cingulum bundles of patients with Alzheimer’s disease compared to controls[96]. And Szeszko

et al. (2005) found reduced anisotropy in the white matter of the anterior cingulate gyrus in

obsessive-compulsive patients relative to controls[91].

1.2.2 DTI Procedures And Data Processing

The processing stream for a DTI study involves several steps that I describe in detail in

the following sections. Briefly, the process begins with the acquisition of diffusion weighted

images (DWIs, described below). A tensor field (Section 1.2.2.2) can be estimated from these

DWIs, and there is a wide variety of ways in which to visualize the tensor field. Many of these

visualization approaches involve calculation of scalar quantities, including anisotropy indices
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and indices of diffusivity. These scalars are also used directly for data analytic purposes. For

the most part, analytic techniques that are meant to reflect the geometry of white matter

structures rely on diagonalizing the diffusion tensors to obtain their spectral decomposition.

1.2.2.1 Diffusion Weighted Imaging Diffusion weighted imaging is a magnetic res-

onance imaging (MRI) technique that is sensitive to molecular diffusion. A thorough de-

scription of MRI was provided in the statistical literature by Lange (1996)[51]. Briefly, MRI

depends on placing the subject to be scanned in a high-strength static magnetic field. This

magnetic field causes hydrogen protons in the target tissue to align and precess about their

axes at a known frequency. A second, much weaker, magnetic pulse is then applied to the

target tissue, which causes some of the protons to enter a higher-energy state. After this

pulse has been applied, the protons will gradually release this excess energy, which is detected

by the scanner.

DWI is a modification of standard MRI that uses additional magnetic pulses applied at

gradients to achieve sensitivity to diffusion. There are several methodologies for obtaining

DWIs, the most common of which is the Stejskal-Tanner technique[7]. The Stejskal-Tanner

method involves the application of identical rectangular magnetic gradient pulses. This has

the effect of dephasing and then rephasing protons, and those protons that have moved

subsequent to the first, dephasing gradient pulse will have experienced random changes in

their spin phase at the time of the rephasing pulse[68]. This leads to a signal attenuation. On

the other hand, for protons that have experienced no motion, the dephasing and rephasing

pulses cancel each other, and there is no net change in signal.

A single pair of identical gradient pulses sensitizes the signal to diffusion in a single

direction. The amount of diffusion is quantified by the apparent diffusion coefficient (ADC),

which is related to the signal strength S by the Stejskal-Tanner relationship:

S = S0 exp

(
−TE

T2

)
exp

(
−γ2G2δ2

(
∆− δ

3

)
ADC

)
, (1.1)

where S0 is the signal with no diffusion-encoding pulse, TE is the echo time, T2 is the

transverse relaxation time, γ is the gyromagnetic ratio (4,258 Hz/G for hydrogen nuclei), G

is the amplitude and δ the duration of the gradient pulse, and ∆ is the time interval between
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the gradient pulses. The term γ2G2δ2
(
∆− δ

3

)
is denoted by b and referred to as the b-factor.

The ADC can thus be calculated as:

ADC = −1

b
log

(
S

S0

)
. (1.2)

A DWI is constituted by measurements of ADCs at each voxel in the scanned space.

Although I will be concerned with diffusion tensor images rather than the diffusion weighted

images which form their basis, it is worth noting that DWIs themselves have important

clinical applications. In particular, DWIs make it possible to identify even very small ischemic

lesions within minutes of a stroke[69].

1.2.2.2 Fitting Tensors To DWIs A single DWI is sensitive to diffusion in one direc-

tion. This property means that a single DWI is adequate for imaging isotropic diffusion,

but is unable to identify anisotropic diffusion. Diffusion tensor imaging is an approach that

uses multiple DWIs, acquired from at least six non-collinear directions, to obtain a more

complete image of diffusion, including possible anisotropy. In DTI, instead of a single ADC,

diffusion is quantified by a diffusion tensor — a 3 × 3 positive definite symmetric (p.d.s.)

matrix[12]:

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 . (1.3)

Here, Dxx, Dyy and Dzz represent the average diffusion (over molecules) along three orthog-

onal axes and Dxy, Dxz and Dyz represent the covariances between the diffusion in the x, y

and z directions. This leads to an expansion of Equation 1.2 above:

log

(
S

S0

)
= −b : D (1.4)

= −(bxxDxx + byyDyy + bzzDzz + 2bxyDxy + (1.5)

2bxzDxz + 2byzDyz).

where b is now a known symmetric 3x3 matrix specified by the researcher and (· : ·) denotes

the generalized dot product, x : y = Vec(x) ·Vec(y). Analytical expressions for the elements
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of the b-matrix in terms of imaging parameters are available[65], and depend on the direction

and strength of each gradient encoding pulse.

Equation 1.4 has six unknowns and requires at least six distinct images acquired with

different diffusion-encoding gradient pulse directions (in addition to the S0 image acquired

with no gradient pulse) to estimate D. In the case when there are DWIs acquired with

gradients from exactly six directions available, there is a unique solution for D. There

have been several different estimation approaches proposed for the situation in which there

are more than six diffusion-encoding directions available[46, 63], but the least squares and

weighted least squares approaches (described below) are the most common.

I follow Kingsley’s notation in describing least squares diffusion tensor estimation[46]. I

assume there are N acquired images. The tensor elements and the log of the non-diffusion

encoded S0 image comprise a column vector:

α = (Dxx Dyy Dzz Dxy Dxz Dyz logS0)
T . (1.6)

Each individual b-matrix is included as a row in a design matrix B, along with a column of

1s for the logS0 term:

B =


−bxx1 −byy1 −bzz1 −2bxy1 −2bxz1 −2byz1 1

...
...

...
...

...
...

...

−bxxN −byyN bzzN −2bxyN −2bxzN −2byzN 1

 . (1.7)

And the observed log signal intensities are collected in a column matrix,

x = (logS1 logS2 . . . logSN)T . (1.8)

Based on Equation 1.4, the system of equations can be expressed as

x = Bα+ η, (1.9)

where η is an error term.

Again, in the situation in which B is invertible, with exactly six distinct diffusion-

encoding gradients and one b = 0 image, there is a unique solution:

α̂0 = B−1x. (1.10)
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In the more general case, a least squares estimator is possible:

α̂ls = (BTB)−1BTx. (1.11)

By the Gauss-Markov theorem, the least squares estimator is the best linear unbiased esti-

mator (BLUE) when the errors are homoscedastic (that is, when Var(η) = σ2I)[84]. How-

ever, while it is generally assumed that the errors in the original signal units, S1, . . . , SN

are homoscedastic, this implies that the errors are heteroscedastic in the log-signal units,

logS1, . . . , logSN . Specifically, if Si ∼ N(exp(Biα), σ2
i ) then, by the delta method,

logSi∼̇N(Biα,
σ2
i

S2
i

).

Thus, the BLUE of α is the weighted least squares estimate:

α̂wls = (BTΣ−1B)−1BTΣ−1x, (1.12)

where Σ is a diagonal matrix whose (i, i)th entry is
σ2

i

S2
i
. In most applications it is assumed that

σ2
i = σ2 for all i. Several authors have proposed additional methodologies for estimating

D, including non-linear least squares[73] and Geman-McClure M-estimators[63], but such

methods are not widely used.

Although the entries of the diffusion tensor are occasionally of interest in themselves

(at least the diagonal entries, which represent diffusion along the coordinate axes), the most

important properties of the tensor D are more clearly seen via diagonalization, D = EΛET ,

where

E =


ε1x ε2x ε3x

ε1y ε2y ε3y

ε1z ε2z ε3z

 , and Λ =


λ1 0 0

0 λ2 0

0 0 λ3

 .

The columns of E (denoted ε1, ε2 and ε3) are the eigenvectors of D, and λ1, λ2 and λ3 the

corresponding eigenvalues. (It is customary in DTI processing to order the columns of E

such that λ1 ≥ λ2 ≥ λ3, and I will adopt this convention throughout.) Since D is p.d.s., it

is always diagonalizable, with three positive eigenvalues. (It should be noted, however, that

estimated tensors are sometime not positive definite due to noise and numerical errors.) A

closed-form solution is available for the eigensystem of a 3× 3 p.d.s. matrix[44].
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The diagonalization of D allows for a simple but powerful geometric interpretation of the

tensor as an ellipsoid in R3, with the eigenvectors determining the directions of the principal

axes and the eigenvalues their radii. The surface of the diffusion ellipsoid corresponds to the

isosurface of molecular diffusion after a fixed period of time.

1.2.2.3 Calculation Of Scalar Quantities From Tensors As discussed above, the

diffusion tensor at any one voxel encodes information related to the magnitude, direction,

and shape of diffusion at that location in the brain. However, the tensor is an awkward

object from a data analytic perspective, in that it is multivariate and encodes structured

geometric information. Thus, the first step in extracting usable information from a DTI

study is often to calculate a small number of scalar-valued tensor functionals at each voxel

representing important features of local diffusion. These scalars can then be used to produce

images, or as the basis of voxelwise data analyses.

A large number of such scalars have been proposed in the literature, most of which fall

into one of three not necessarily mutually exclusive categories: those reflecting tensor mag-

nitude or diffusivity, those reflecting anisotropy, and those reflecting the shape of diffusion.

I summarize some widely used examples from each of these categories in this section. In

Chapter 4, I present an approach for comparing the reliability of scalar indices, thereby pro-

viding novel statistical guidance on which scalars should be considered for different analytic

purposes.

The total amount of diffusion in a voxel reflects the density and water content of the

underlying tissue[70]. In particular, diffusion is much greater in the fluid-filled ventricles than

in either white or gray matter structures[76]. Total diffusion is represented by measures of

the magnitude of the tensor, and several such measures have been proposed. The two most

widely used measures are scalar multiples of one another: the trace of the tensor[44]:

Tr(D) = Dxx +Dyy +Dzz (1.13)

= λ1 + λ2 + λ3, (1.14)

and the mean diffusivity[16]:

Dav =
Tr(D)

3
. (1.15)

10



Another measure of diffusivity is the Frobenius norm of the tensor[31]:

||D||F =

√
Tr(DDT ) (1.16)

=
√
D2
xx +D2

yy +D2
zz + 2D2

xy + 2D2
xz + 2D2

yz (1.17)

=
√
λ2

1 + λ2
2 + λ2

3 (1.18)

Much of the focus to date of DTI studies has been in using DTI images to quantify diffu-

sion anisotropy. Diffusion anisotropy is assumed to reflect the degree of organization of the

underlying tissue, with compact white matter structures exhibiting greater anisotropy than

more diffuse, non-compact white matter[67], gray matter structures showing considerably

less anisotropy than white matter structures[70], and little to no anisotropy in cerebrospinal

fluid[76]. Importantly, it is also believed that axonal bundles with greater myelination ex-

hibit greater anisotropy than areas with less (or compromised) myelination, although the

exact relative contributions of myelin and of axonal membranes to total diffusion anisotropy

are unknown[17].

Among the many scalar indices representing diffusion anisotropy, the most widely used is

the fractional anisotropy (FA), or the normalized standard deviation of the eigenvalues[16]:

FA =

√
(λ1 −Dav)2 + (λ2 −Dav)2 + (λ3 −Dav)2

||D||F√
3

(1.19)

=

√
3

2

√
(λ1 −Dav)2 + (λ2 −Dav)2 + (λ3 −Dav)2

λ2
1 + λ2

2 + λ2
3

. (1.20)

FA ranges from 0 to 1 with higher values reflecting increased anisotropy. In particu-

lar, FA = 0 reflects three equal eigenvalues, a spherical tensor, and FA = 1 reflects two

eigenvalues equal to 0, a degenerate ellipsoid corresponding to a line segment.

Basser[16] also proposed using the relative anisotropy (RA), or the coefficient of variation

of the eigenvalues:

RA =

√
Var(λ)

E(λ)
(1.21)

=

√
(λ1 −Dav)2 + (λ2 −Dav)2 + (λ3 −Dav)2

√
3Dav

. (1.22)
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RA ranges from 0 to
√

2 with higher values reflecting increased anisotropy. Some authors

prefer to use a scaled RA:

sRA =
RA√

2
, (1.23)

which ranges from 0 to 1[45].

Another measure of anisotropy, the volume ratio (VR)[75], is equal to 1 minus the ratio

of the volume of the diffusion ellipsoid to the volume of a sphere with radius equal to the

mean diffusivity:

VR = 1− Det(D)

Dav
3 (1.24)

= 1− 27λ1λ2λ3

(λ1 + λ2 + λ3)3
. (1.25)

VR also ranges from 0 to 1. As originally proposed by Pierpaoli[75], the volume ratio

was equal to 1 minus VR as defined here, but I follow Kingsley[45] in reversing the direction

so that higher values indicate increased anisotropy.

More recently, the geodesic anisotropy (GA) has been proposed[24], based upon the view

that the space of diffusion tensors is best seen as a Riemannian manifold equipped with an

affine-invariant Riemannian metric:

GA =

√
(log λ1 − log λ)2 + (log λ2 − log λ)2 + (log λ3 − log λ)2. (1.26)

Unlike the other indices, GA ranges from 0 to ∞, with higher values indicating increased

anisotropy.

It is important to note that quantities such as these do not constitute independent

measures of diffusion anisotropy. In some cases, anisotropy indices are relatively simple

algebraic functions of one another. For instance,

FA = sRA

[
3

2sRA2 + 1

] 1
2

.
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A third class of scalar-valued tensor functionals are those which attempt to describe the

shape of the diffusion ellipsoid. Westin[95] proposed three complementary indices, cl, cp, cs,

describing the degree to which the shape of the ellipsoid is linear, planar and spherical:

cl =
λ1 − λ2

λ1 + λ2 + λ3

(1.27)

cp =
2(λ2 − λ3)

λ1 + λ2 + λ3

(1.28)

cs =
3λ3

λ1 + λ2 + λ3

. (1.29)

These indices each range from 0 to 1 and they sum to 1.

Ennis (2006) proposed using the quantity mode(D̃) to quantify shape:

mode(D̃) = 3
√

6 det

(
D̃

||D̃||F

)
, (1.30)

where D̃ is the anisotropic part, or “deviatoric”, of D, D̃ = D − Tr(D)
3
I. mode(D̃) ranges

from -1 to 1, with -1 indicating planar shape, 0 indicating spherical shape and 1 indicating

linear shape[31].

1.3 DTI DATA ANALYSIS

Although investigators have taken a variety of approaches to analyzing the results of DTI

studies, there are two basic analytic strategies that are common enough to be considered

canonical: the region of interest-based approach (ROI), and the voxelwise approach. The

large majority of group comparisons of DTI data can be seen as a variation on one of these

two basic analytic strategies.

For either approach, the first steps are generally a series of data pre-processing techniques.

The most fundamental difficulty with DTI data analysis is the low signal-to-noise ratio (SNR)

which is common to MRI procedures, due to noise from a variety of sources, both from the

subject and the machine. Therefore, noise-correction steps are often employed prior to

data analysis. Several authors have reviewed the nature and sources of noise in DTI, and

have proposed a variety of approaches to mitigating the problem[9, 13, 11, 39, 43, 45, 94].
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Unfortunately, some noise reduction techniques may result in loss of resolution of the image,

and the effects of specific noise reduction techniques on data analysis results is generally

unknown. However, a certain amount of noise reduction is considered critical to obtaining

interpretable images, and data analysts are largely constrained to developing and employing

methods conditional on these first pre-processing steps. For example, in the applications I

present in Chapter 3, the data have been subjected to motion and eddy current distortion[63]

correction prior to analysis.

The next step is often inter-subject registration: spatially transforming each subject’s

image into a common anatomical space. This step is critical for voxelwise analyses, but

may not be necessary for ROI-based analyses. Again, registration induces distortion and

reduces resolution in the resulting images, and the downstream effects on data analysis

are difficult to quantify. Registration is particularly problematic between populations with

possibly substantial differences in neuroanatomy. Although much work on registration from

other neuroimaging modalities is applicable to DTI, there is a growing body of literature

relating to registration of DTI images specifically[3, 40, 74, 80], including issues related to

reorienting diffusion tensors in the target space.

1.3.1 Analyses Based On Regions Of Interest

In common practice, ROI-based analysis involves first drawing regions of interest in the brain

manually, semi-automatically or automatically, generally on anatomical images co-registered

to the DWIs, or extracting them automatically based on segmentation algorithms and/or

spatial normalization to a standard anatomical atlas. Then tensor-based scalars, such as

those described in Section 1.2.2.3, are calculated at each voxel in the ROI and averaged over

the ROI for each subject. The mean values of these ROI-level average scalar measurements

are then compared between groups using simple statistical tests (most frequently two-sample

t-tests, but ANOVA, ANCOVA and non-parametric tests, including resampling-based pro-

cedures, are sometimes used instead).

For instance, three of five previously published DTI studies in ASDs used variations of

this approach. Alexander et al. (2007) manually extracted four ROIs in the corpus callosum
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from automatically generated white matter masks. They compared mean FA (Equation

1.19), Dav (Equation 1.15), axial diffusivity (λ1) and radial diffusivity (λ2+λ3

2
) over these

ROIs between participants with ASDs and controls using two-sample t-tests[2].

Lee et al. (2007) adopted a very similar approach, comparing mean FA, Dav, axial

diffusivity and radial diffusivity over four ROIs between ASDs participants and controls,

this time using ANCOVA, controlling for age. They also employed a Bonferroni correction

to adjust for the multiple ROIs (but not the multiple scalars) examined[58].

Ben Bashat et al. (2007) used a slightly different approach, in that their study only

involved participants with ASDs and no controls. They manually extracted 18 ROIs from

each subject and calculated average FA over these regions, along with two other indices, Prob

and Diff, derived from q-space analysis[6]. They then compared the mean levels of these ROI

averages to predicted normal population levels using one-tailed, one-sample t-tests. They

used a modified Bonferroni method to adjust for multiple comparisons[19].

There are several strengths to the ROI-based approach. First is its simplicity: by

marginalizing over regions, the complex information contained in a full DTI image can be

reduced to a small number of scalar values for each subject, which are easily compared be-

tween groups. Another strength is interpretability: the ROIs are chosen to be anatomically

meaningful, and the results of an ROI-based analysis are direct measures of overall group

difference across these anatomically meaningful regions. Finally, ROI-based analyses do not

necessarily require subjects to be co-registered, eliminating a pre-processing step that can

entail substantial distortion and/or loss of resolution.

However, there are also corresponding weaknesses to the ROI-based approach. The

simplicity that was mentioned as a strength is also a weakness: marginalizing over regions

ignores within-region variability, and makes it quite possible to miss group differences that

may exist only in subregions (or, conversely, to ascribe group differences to an entire ROI

that belong properly only to a sub-region). Another weakness is that identification of ROIs

generally requires strong prior knowledge of the boundaries of anatomical regions, and which

regions are most likely to show differences. Manual segmentation of ROIs involves case-by-

case subjective judgment on the part of the researcher. However, even under the assumption

that specified ROIs are anatomically accurate and correspond exactly to important areas of
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group differences, ignoring the within-subject variability across the ROI can produce inflated

estimates of the precision of fixed effect estimates, potentially leading to spurious findings.

Finally (and this is a weakness common to most DTI analyses), the selection of one or a few

scalar indices to analyze leaves open the possibility that important information contained in

the full diffusion tensor is being ignored.

1.3.2 Voxelwise Analyses

An important alternative to ROI-based analysis is voxelwise analysis. In a voxelwise analysis,

subjects are spatially co-registered to a common anatomical space, and mean values of one

or more DTI-derived scalars are compared between groups separately at each voxel. The

statistical method used for the comparison at each voxel is again often, but not invariably,

a t-test. Typically, because of the large number of comparisons, a threshold for declaring

hypothesis tests significant is determined based on the number of comparisons and the spatial

contiguity of voxels showing significant differences. Voxelwise analyses may involve the whole

brain, or may themselves be limited to ROIs.

Two previous DTI studies in ASDs used voxewise approaches. Barnea-Goraly et al.

(2004) compared FA at each voxel of an image automatically masked to contain only white

matter between ASDs and control participants. Each comparison was performed with a two-

sample t-test, and the results were presented as Z statistics, thresholded based on spatial

contiguity[8].

Keller et al. (2007) also performed voxelwise comparisons of FA. In their paper, each

comparison was a random effects multiple regression (the authors are non-specific about

which effects were random, but it is reasonable to assume that these were linear mixed effects

models with random intercepts). At each voxel, they used a stepwise variable selection

process to determine which covariates to include in the models. The final p-values were

conservatively thresholded to adjust for multiple comparisons.

The greatest advantage of voxelwise analysis over ROI-based analysis is that it is possible

to detect group differences that occur on a smaller scale than over an entire ROI, or that

might overlap multiple ROIs in a way that would be missed by an approach that marginalizes

16



over ROI. Another advantage is that it is not necessary to impose prior anatomical knowledge

on the analyses in terms of identifying the ROIs, although anatomical knowledge is certainly

relevant in the interpretation of voxelwise analyses.

The disadvantages of voxelwise analyses are complementary to the advantages of ROI-

based analyses. Inter-subject registration is required for voxelwise analyses, with consequent

distortion and dependence of analytic results on the choice of registration algorithm. The

results of voxelwise analyses may be difficult to interpret anatomically. Voxelwise analyses

also present a very real multiple comparisons problem, and the choice of a thresholding ap-

proach is generally ad hoc. Finally, voxelwise analyses can be computationally burdensome,

depending on the number of subjects, the number of voxels compared, and the complexity

of the method used to compare groups at each voxel.

1.4 PROPOSED STATISTICAL APPROACHES FOR DTI

In this dissertation, I explore the application of linear mixed effects models with closed-form

likelihood estimation to DTI data analyses. Chapters 2 and 3 are devoted to using LMEs to

perform group comparisons of DTI data, while Chapter 4 is concerned with an LME-based

approach to quantifying reliability. While all the examples considered involve DTI data,

these methods are applicable to neuroimaging data more generally.

In Chapter 2, I describe a class of linear mixed-effects models for spatio-temporal data

with closed-form maximum likelihood estimators. In Section 2.3, I discuss the circumstances

under which closed-form estimation is available in cross-sectional models that assume homo-

geneous variance between groups. In Section 2.4, I relax the homogeneity assumption, and

examine closed-form estimation in models which allow heterogeneous variance of multiple

forms between groups. And in Section 2.5, I extend these cross-sectional models to include

longitudinal effects.

Chapter 3 is devoted to applying the results of Chapter 2 to the analysis of a DTI study

comparing children and young adults with ASDs to controls. In this chapter, I compare LMEs

with closed-form estimation to more traditional ROI-based and voxelwise group comparisons.
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In addition to analyses of FA, I also describe multivariate analyses of the whole tensor data.

Finally, in Chapter 4, I discuss generalizations to spatio-temporal models of the intraclass

correlation coefficient as an index of reliability. I present two theorems identifying invariant

properties of the generalized intraclass correlation coefficient (gICC) to model complexity

within the class of growth-curve models, and conduct a series of simulations examining the

performance of the gICC under the assumption of autoregressive errors in DTI data. I then

provide an application of the gICC to the quantification of local spatial reliability in a sample

of children and young adults with ASDs and controls.
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2.0 CLOSED-FORM SPATIO-TEMPORAL NEUROIMAGING MODELS

Linear mixed-effects (LME) models have great potential for performing group-based infer-

ence on neuroimaging data, and have been productively employed in the analysis of fMRI

data[52]. My work in this chapter is concerned with developing LMEs for the analysis of DTI

data. In addition to making it possible to explore group differences in mean values of tensor

elements, LMEs allow researchers to separate between-subject from within-subject variance

components and thus borrow strength across multiple subjects in obtaining subject-specific

estimated means. LME models also provide a convenient framework for exploring longitudi-

nal data, for accommodating between-group heterogeneity in variance, and for incorporating

spatial autocorrelation among neighboring voxels.

However, maximum likelihood estimation of LME models typically requires iteration.

These can be costly in terms of computer time, especially for models with many parame-

ters and large datasets, such as DTI scans. For instance, each whole brain DTI image in

the dataset explored in Chapter 3 contains approximately 200,000 voxels. While confin-

ing attention to specific tissue types or to regions of interest leads to smaller datasets, the

computation can still be prohibitive in exploratory, model-building analyses. Thus, it is

important to identify subclasses of LME models appropriate to DTI datasets that will admit

to closed-form ML estimators, and to derive the functional form of these estimators.

In this chapter, I first justify the use of univariate LME models for DTI tensor compar-

isons by deriving a data transformation that will remove the statistical dependence among

the six tensor elements (Section 2.1). Next, I review the mathematical tools available to de-

termine the circumstances under which a closed-form ML estimator will exist (Section 2.2).

Then I will apply these tools to a series of models, first exploring the existence of closed-

form ML estimators for successively more complicated mean structures for cross-sectional
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data under simple variance assumptions (Section 2.3), and then exploring more complicated

variance structures, including between-group variance heterogeneity (Section 2.4). Finally,

I will explore the possibility of closed-form ML estimators in the case of longitudinal data

(Section 2.5). Each of these developments will be illustrated by examples with a DTI study

in the following chapter.

2.1 TENSOR ELEMENT DECORRELATION

Diffusion tensor imaging data analyses are considerably complicated by the multidimensional

nature of the diffusion tensor estimated at each voxel. This multidimensionality in depen-

dent variables is an added feature of complexity to DTI data relative to other neuroimaging

modalities, on top of the ordinary multidimensionality due to the repeated spatial measure-

ments represented by multiple voxels. Practitioners often try to work around this complexity

by reducing the information in each tensor to a single scalar value, but this approach has

disadvantages that will be outlined below. In this section, I will describe a simple linear

transformation of tensor elements which serves to decorrelate the tensor elements under an

assumption of rotational invariance. This serves as a justification for analyzing the trans-

formed tensor elements independently of one another. This work is based on theoretical

results for a tensor-valued multivariate normal distribution presented by Basser and Pajevic

(2003)[14], but to the best of my knowledge this is a novel application of these results to

data analytic considerations.

2.1.1 Disadvantages Of Scalar Reduction

As discussed in Section 1.2.2.3, one immediate solution to the problem of multidimensional-

ity is to reduce the information contained in each diffusion tensor D to a scalar f(D) ∈ R

and to then use this scalar as the dependent variable in analyses. The fractional anisotropy

(FA, Equation 1.19) is the most popular choice for such scalar reduction. In addition to

dimensional reduction, this approach has the advantage that such scalars are often directly
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interpretable in more useful ways than the original tensor elements (for instance, as repre-

senting anisotropy, diffusivity or shape).

However, the disadvantages of this approach are also clear: the sheer number of candidate

scalar indices as described in Section 1.2.2.3 points to the problem of identifying which scalar

index best encapsulates the relevant information for a given problem. In many cases, it may

also be that no single scalar reduction of the tensor adequately summarizes the diffusion

properties across an entire brain or region for the purposes of group comparison.

We would like to be able to retain the full depth of information contained in the diffusion

tensor without multiplying the dimensionality of our already spatially (and, in the case of

longitudinal DTI data, temporally) extensive datasets. A natural approach would be to

treat the tensor elements as independent observations and to essentially perform the same

analysis six times - once for each distinct tensor element. However, the tensor elements are

correlated with one another over repeated measurements, and this approach would ignore

such dependence, leading to an overestimation of effective degrees of freedom and invalid

inference.

2.1.2 Tensor-Valued Normal Distribution

Basser and Pajevic (2003) explored the algebraic structure of a tensor-valued normal distri-

bution for DTI data[14]. By analogy with the density of the multivariate normal distribution

on Rn,

p(x;µ,Σ−1) ∝ exp

(
1

2
(x− µ)′Σ−1(x− µ)

)
,

they defined a tensor-valued normal distribution on the space of diffusion tensors as:

p(D;D0,A) ∝ exp

(
1

2
(D −D0) : A : (D −D0)

)
, (2.1)

where D0 is the mean diffusion tensor, A is a fourth-order “precision” tensor analogous to

the precision matrix Σ−1, and (· : ·) represents tensor contraction:

D : A : D =
∑
i,j,m,n

DijAijmnDmn.
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Although A consists of 34 = 81 elements, symmetry conditions (for instance, that

Aijmn = Amnij) imply that there are at most 21 independent elements ofA. Basser and Paje-

vic demonstrated that this tensor-valued distribution was equivalent to a multivariate normal

distribution on the six-dimensional vector of tensor elements, D̃ = [DxxDyyDzzDxyDxzDyz]
′,

with precision matrix Σ−1 made up of elements of A:

Σ−1 =



Axxxx Axxyy Axxzz 2Axxxy 2Axxxz 2Axxyz

Axxyy Ayyyy Ayyzz 2Ayyxy 2Ayyxz 2Ayyyz

Axxzz Ayyzz Azzzz 2Azzxy 2Azzxz 2Azzyz

2Axxxy 2Ayyxy 2Azzxy 4Axyxy 4Axyxz 4Axyyz

2Axxxz 2Ayyxz 2Azzxz 4Axyxz 4Axzxz 4Axzyz

2Axxyz 2Ayyyz 2Azzyz 4Axyyz 4Axyyz 4Ayzyz


. (2.2)

2.1.3 Tensor Element Correlation

Basser and Pajevic then considered the important special case in which A is a general

isotropic fourth-order tensor. This corresponds to the assumption that A is rotationally

invariant in the sense that its form is unchanged under any rotation, reflection or inversion

of the coordinate system in which D is measured. Note that this is a non-trivial assumption

— indeed, Jones et al. (in press) showed that rotational invariance is dependent upon the

gradient sampling scheme and the true but unknown value of the diffusion tensor[41]. Thus,

there cannot be a design that is completely rotationally invariant across the whole brain.

However, certain gradient encoding schemes will minimize rotational variance under general

conditions, and popular choices of sampling schemes (dodecahedral and icosahedral) may

satisfy this condition.
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Under the assumption of rotational invariance, Σ−1 takes the particularly simple form:

Σ−1 =



ζ + 2θ ζ ζ 0 0 0

ζ ζ + 2θ ζ 0 0 0

ζ ζ ζ + 2θ 0 0 0

0 0 0 4θ 0 0

0 0 0 0 4θ 0

0 0 0 0 0 4θ


. (2.3)

In this form, Σ−1 can be diagonalized as Σ−1 = EΛE′, where

E =



1√
3

1√
2

1
2
√

2
0 0 0

1√
3
−1√

2
1

2
√

2
0 0 0

1√
3

0 −1√
2

0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, and Λ =



3ζ + 2θ 0 0 0 0 0

0 2θ 0 0 0 0

0 0 2θ 0 0 0

0 0 0 4θ 0 0

0 0 0 0 4θ 0

0 0 0 0 0 4θ



. The columns of E are the eigenvectors of Σ−1 (and hence of Σ), and the diagonal entries

of Λ are the eigenvalues of Σ−1 (and hence their reciprocals are the eigenvalues of Σ). As a

consequence of this diagonalization and the orthogonality of E, if D̃ ∼ MVN(D̃
0
,Σ), then

E′D̃ ∼ MVN(E′D̃
0
,Λ−1).

Thus, E′ is a decorrelating transformation for the vector of tensor elements under the

assumptions of normality of the diffusion tensor and rotational invariance of its precision ten-

sor. We may therefore treat the transformed elements independently in subsequent analyses,

and transform results back into the original space as necessary for interpretability.

However, it is also worth noting that the transformed tensor elements themselves have

somewhat interesting interpretations in terms of diffusion parameters. The first transformed

element,

E′1D̃ =
1√
3

(Dxx +Dyy +Dzz),
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is proportional to the mean diffusivity, Dav, and thus represents the total amount of diffusion

in a given voxel. The second transformed element,

E′2D̃ =
1√
2

(Dxx −Dyy),

represents the difference in diffusivity between the x and y directions, and thus is a simple

anisotropy measure. And the third transformed element,

E′3D̃ =
1√
2

(
Dxx +Dyy

2
−Dzz

)
,

represents the difference in diffusivity between the mean of the x and y directions and the

z direction, thus capturing anisotropy unaccounted for by the second transformed element.

(Note that this interpretation diverges somewhat from that given by Basser and Pajevic,

who exhibited a different diagonalization of Σ−1.)

The remaining three elements of the transformed vector of tensor elements are the un-

changed off-diagonal elements of the original diffusion tensor, Dxy,Dxz, and Dyz.

2.2 CONDITIONS FOR THE EXISTENCE OF CLOSED-FORM ML

ESTIMATORS

The general linear mixed-effects model can be written as:

Y = Xβ +Zγ + ε, (2.4)

where Y is an N ×1 vector of observed responses, X is an N ×p fixed effects design matrix,

β is a fixed but unknown p×1 vector of fixed effects parameters, Z is an N×q random effects

design matrix with q ≤ p, γ is a vector of random effects parameters, with γ ∼ MVN(0,G),

and ε is a vector of residual errors, with ε ∼ MVN(0,R) and γ ⊥ ε. Under this model,

Y ∼ MVN(Xβ,Σ), where Σ = ZGZ ′ +R.

The unknown parameters in the LME model are usually estimated via likelihood meth-

ods, which have well-known favorable asymptotic properties. However, likelihood estimation

of LMEs typically requires iterative numerical procedures, such as Newton’s method or the
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EM algorithm[50]. While it is known that closed-form, non-iterative likelihood estimation is

possible for certain important subclasses of the general LME model, such as balanced growth

curves[54], such models may fail to capture the complexity of neuroimaging data. However,

closed-form estimation would be especially desirable in models for neuroimaging data, due to

the computational burden involved. In this section, I review theoretical tools for identifying

conditions under which closed-form likelihood estimation is possible in LMEs. I then use

these tools in subsequent sections to describe, in practical terms, classes of useful models for

neuroimaging data for which closed-form estimation is possible.

2.2.1 Normal Estimation Under Additive Mean And Covariance

Anderson (1973) examined the case of estimating the parameters of a multivariate normal

distribution, Y ∼ MVN(µ,Σ) in the special case of a linear mean and covariance structure:

µ = Xβ, and

Σ =
m∑
g=0

σgGg,

where β and σ = [σ0 . . . σm]′ are unknown, X is known and each Gg is a known, symmetric

matrix[4]. He noted that, for M i.i.d. observations Y 1, . . . ,Y M , the likelihood is maximized

over unknown parameters β and σ at the joint solution of the series of equations:

X ′Σ̂
−1
Xβ̂ = X ′Σ̂

−1
Ȳ (2.5)

Tr

( m∑
h=0

σ̂hGh

)−1

Gg

 = Tr

( m∑
h=0

σ̂hGh

)−1

Gg

(
m∑
h=0

σ̂hGh

)−1

C

 , (2.6)

for g = 0, . . . ,m, where

C =
1

M

M∑
α=1

(Y α − µ̂)(Y α − µ̂)′, (2.7)

for µ̂ = Xβ̂. Anderson observed that this arrangement suggests an iterative estimation

procedure, in which an initial estimate is adopted for σ̂, which is substituted into Equation

2.5 to obtain an estimate of β̂, which is then substituted into Equation 2.6 to obtain a revised
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estimate of σ̂, and so on until convergence to the maximum likelihood estimates. He went

on to derive asymptotic properties of this estimation procedure.

Szatrowski (1980) addressed the question of the general circumstances under which ex-

plicit, closed-form solutions exist for the maximum likelihood estimates in the models with

additive mean and covariance structure introduced above[90]. That is, he provided neces-

sary and sufficient conditions under which the iterative procedure discussed by Anderson

converges in one iteration. He separately considered closed-form estimation for the mean

and for the variance parameters.

2.2.2 Closed-Form Estimation Of Mean Parameters

Szatrowski observed that a closed-form expression for β̂ exists if and only if Equation 2.5

doesn’t depend on Σ̂. In other words, since

β̂ = (X ′Σ̂
−1
X)−1X ′Σ̂

−1
Ȳ ,

a closed-form expression exists for β̂ iff

(X ′Σ̂
−1
X)−1XΣ̂

−1
= (X ′X)−1X ′, (2.8)

in which case β̂ = (X ′X)−1X ′Ȳ , the ordinary least squares (OLS) solution. He then derived

an algebraic condition equivalent to the independence of Equation 2.5 to Σ̂, summarized here

as a theorem:

Theorem 2.2.1 (Adapted from Szatrowski’s Theorem 2[90]). For a multivariate normal

distribution with additive mean and covariance structure as described in Section 2.2.1, a

closed-form solution exists for the maximum likelihood estimate β̂ if and only if the p columns

of X are spanned by p eigenvectors of Σ. In this case, the closed-form ML estimator is the

OLS estimator, β̂ = (X ′X)−1X ′Ȳ

Although this condition is potentially difficult to verify in general, in the case of certain

important covariance structures, it is possible to identify the spectral decomposition of the

covariance matrix, and derive specific, practical conditions on the design matrix X under

which closed-form estimation of β̂ is possible. I employ this line of argument several times

in subsequent sections.
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2.2.3 Closed-Form Estimation Of Covariance Parameters

Szatrowski also developed an analogous algebraic condition to that in Theorem 2.2.1 for the

existence of closed-form ML estimates for covariance parameters. However, this condition is

algebraically cumbersome and difficult to apply. Fortunately, in the important special case

that the G matrices are simultaneously diagonalizable, there is a considerably simplified

condition under which closed-form estimates for the covariance parameters exist.

The matrices G0, . . . ,Gm are said to be simultaneously diagonalizable if there exists

an orthonormal matrix P such that PGαP
′ is a diagonal matrix for each α = 0, . . . ,m.

Symmetric matrices G0, . . . ,Gm are simultaneously diagonalizable if and only if they form

a commuting family of matrices (that is, if GiGj = GjGi ∀i, j)[37]. As will be seen, in

all of the important cases I’ll consider below, the G matrices form commuting families and

therefore are simultaneously diagonalizable.

When the G matrices are simultaneously diagonalizable, Szatrowski gives the following

condition for the existence of closed-form ML estimates for covariance parameters:

Theorem 2.2.2 (Adapted from Szatrowski’s Theorem 5[90]). Consider the multivariate

normal distribution with additive mean and covariance structure as described in Section

2.2.1. Assume there is a closed-form solution for the ML estimate of β and that PGαP
′

is diagonal for some orthonormal P for α = 0, . . . ,m. Then a closed-form solution exists

for the ML estimate of σ if and only if the eigenvalues of Σ (i.e., the diagonal entries of

PΣP ′) consist of exactly m+ 1 linearly independent combinations of σ0, . . . , σm.

When a closed-form expression for σ̂ does exist, it is given by

σ̂ = [Tr(GgGh)]
−1 (Tr(GgC)) ,

where [Tr(GgGh)] is the (m + 1) × (m + 1) matrix whose (i, j)th entry is Tr(GiGj) and

(Tr(GgC)) is the (m + 1) × 1 column vector whose ith entry is Tr(GiC) for C given by

Equation 2.7.

These two theorems provide very powerful tools for identifying practical conditions under

which closed-form estimates exist in important subclasses of LMEs, including models that are
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potentially very useful for neuroimaging data. I make repeated reference to both theorems

in the remainder of this chapter.

2.3 CLOSED-FORM ML ESTIMATORS UNDER COMPOUND

SYMMETRY

In this section, I apply the tools introduced in Section 2.2 to the case of LME models

with additive mean structures and simple covariance structures (compound symmetry). As

discussed in Section 2.2, it is already known that closed-form expressions exist for mean

and covariance parameters in many important models in this class. However, examining

these familiar, simple cases in detail will provide motivating examples for applying the same

tools to novel models in later sections. I first consider the simplest possible case, where a

single scalar mean is fit across all voxels, and then the case with a separate mean fit at each

voxel, both for one-group models and models with group-specific mean structures. Finally,

I present a general result concerning the existence of closed-form solutions in this class of

model.

2.3.1 Notation

Throughout, I fix one transformed tensor element to be the dependent variable, as treating

the six transformed tensor elements as independent was justified in Section 2.1. I will assume

that there are N subjects, n1 of whom are from Group 1 (a control group, for instance), and

n2 from Group 2 (an ASDs group).

Y i will denote the column vector of V observations of the tensor element in question

for subject i, i = 1, . . . , N , where V is the number of voxels in each coregistered DTI scan.

Y will denote the column vector of NV observations from all subjects stacked one after
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another. That is,

Y =


Y 1

Y 2

...

Y N


2.3.2 Overall Scalar Mean

The simplest non-vacuous LME model for DTI data involves fitting a single scalar mean

term across all voxels for all subjects, with a random intercept term allowing for subject-

specific offsets from that mean. This model would be inadequate for whole-brain voxelwise

analyses of DTI data, since the mean values of the tensor elements certainly depend on

spatial location. However, the model might be appropriate for small-region ROI analyses,

and is certainly an improvement over the simple averaging over regions that’s often seen in

practice (e.g., see Section 1.3.1).

More importantly for the present purposes, the overall scalar mean model serves as an

instructive example of the process of proving the existence and deriving the form of the

explicit ML estimators of the mean and variance parameters. Many of the derivations in

this section will be generalizable to more complex models in subsequent sections.

The overall scalar mean model is given by

Y NV×1 = 1NV×1 µ+ (IN×N ⊗ 1V×1)δN×1 + εNV×1, (2.9)

where 1 is a column vector of ones, µ is the unknown, fixed mean parameter, δ = [δ1, . . . , δN ]′

is the vector of subject-specific random intercepts, with δ ∼ MVN(0, σ2I), and ε = [ε11, ε12, . . . , ε1V , ε21, . . . , εNV ]′

is the vector of residual errors, with ε ∼ MVN(0, τ 2I). The variance of Y is given by

Σ = (IN×N ⊗ 1V×1)σ
2IN×N(IN×N ⊗ 1V×1)

′ + τ 2INV×NV

= σ2(IN×N ⊗ JV×V ) + τ 2INV×NV . (2.10)

In Szatrowski’s framework for identifying the existence of explicit ML solutions, Σ =

σ2G0 + τ 2G1, where G0 = IN×N ⊗ JV×V (where JR×C is the matrix with R rows and C

columns, all of whose entries are 1) and G1 = INV×NV .
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To take a small numerical example, for two subjects with three voxels each (N = 2 and

V = 3),

G0 =



1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1


, G1 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, and

Σ =



σ2 + τ 2 σ2 σ2 0 0 0

σ2 σ2 + τ 2 σ2 0 0 0

σ2 σ2 σ2 + τ 2 0 0 0

0 0 0 σ2 + τ 2 σ2 σ2

0 0 0 σ2 σ2 + τ 2 σ2

0 0 0 σ2 σ2 σ2 + τ 2


.

Szatrowski gives conditions for the existence of a closed-form ML estimator for µ that

depend on the span of the eigenvectors of Σ. Since Σ is block diagonal, its eigensystem can

be derived by combining the eigensystems from each block. A single compound symmetric

block can be diagonalized as

σ2J + τ 2I = PDP−1,

where

P =

 1 11×(V−1)

1(V−1)×1 −I(V−1)×(V−1)

 , and D = diag(V σ2 + τ 2, τ 2, . . . , τ 2︸ ︷︷ ︸)
(V − 1) times

.

Thus Σ itself has two distinct eigenvalues: V σ2 + τ 2 (with multiplicity N) and τ 2 (with

multiplicity N(V − 1). It can be diagonalized as

Σ = (IN×N ⊗ P )(IN×N ⊗D)(IN×N ⊗ P )−1. (2.11)
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In the example with N = 2, V = 3,

I2×2 ⊗ P =



1 1 1 0 0 0

1 −1 0 0 0 0

1 0 −1 0 0 0

0 0 0 1 1 1

0 0 0 1 −1 0

0 0 0 1 0 −1


,

(I2×2 ⊗ P )−1 =
1

3



1 1 1 0 0 0

1 −2 1 0 0 0

1 1 −2 0 0 0

0 0 0 1 1 1

0 0 0 1 −2 1

0 0 0 1 1 −2


, and

I2×2 ⊗D =



3σ2 + τ 2 0 0 0 0 0

0 τ 2 0 0 0 0

0 0 τ 2 0 0 0

0 0 0 3σ2 + τ 2 0 0

0 0 0 0 τ 2 0

0 0 0 0 0 τ 2


.

The columns of (I2×2 ⊗ P ), [p11 p12 . . . p1V p21 . . . pNV ], are eigenvectors of Σ, and

the diagonal entries of I2×2 ⊗D the corresponding eigenvalues. It is also immediate that

the sum of eigenvectors with the same eigenvalue is itself an eigenvector, as Σx1 = λx1 and

Σx2 = λx2 yields:

Σ(x1 + x2) = Σx1 + Σx2

= λx1 + λx2

= λ(x1 + x2).
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Therefore, the vector p.1, defined as

p.1 =
N∑
i=1

pi1 = 1NV×1, (2.12)

is an eigenvector of Σ with eigenvalue V σ2 +τ 2. Since this one eigenvector is exactly equal to

(and thus trivially spans) the one column of the fixed effects design matrix in model 2.9, we

have satisfied the conditions given in Theorem 2.2.1, and thus a closed-form ML estimator

for µ exists, and is equal to the OLS estimator,

µ̂ = (1′1)−11′Y

=
1

NV

∑
i,j

Yij,

the simple average of the elements of Y .

In order to determine whether a closed-form ML estimator exists for σ = (σ2, τ 2), we

first note that the G matrices commute and so are simultaneously diagonalizable. The

diagonalized form of Σ is the matrix (I2×2 ⊗D) described above, which has two distinct

entries: V σ2 + τ 2 and τ 2. Therefore, by Theorem 2.2.2, a closed-form expression exists for

σ̂.

The existence of a closed-form solution for σ̂, the vector of ML estimates of the variance

parameters, is equivalent to the convergence in one iteration from any allowable starting

point of the likelihood equation,

[
Tr(Σ̂

−1
GgΣ̂

−1
Gh)

]
σ̂ =

(
Tr(Σ̂

−1
GgΣ̂

−1
C)
)
,

where:

1.
[
Tr(Σ̂

−1
GgΣ̂

−1
Gh)

]
denotes the (m + 1) × (m + 1) matrix with i, jth entry equal to

Tr(Σ̂
−1
GiΣ̂

−1
Gj),

2.
(

Tr(Σ̂
−1
GgΣ̂

−1
C)
)

denotes the column vector of length m+ 1 with ith entry

Tr(Σ̂
−1
GiΣ̂

−1
C), and

3. C = (Y − 1µ̂)′(Y − 1µ̂) denotes the sample covariance matrix.
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Since Σ̂ = I is an allowable starting point for the covariance structure under considera-

tion, this is equivalent to the following solution for σ̂:

σ̂ = [Tr(GgGh)]
−1 (Tr(GgC)) . (2.13)

For the model under consideration in this section,

Tr(G1G1) = Tr(G0G1) = Tr(G1G0) = NV,

Tr(G0G0) = NV 2,

Tr(G0C) =
N∑
i=1

V∑
j=1

V∑
k=1

(Yij − µ̂)(Yik − µ̂), and

Tr(G1C) =
N∑
i=1

V∑
j=1

(Yij − µ̂)2.

Equation 2.13 yields: σ̂2

τ̂ 2

 =

 NV 2 NV

NV NV

−1  Tr(G0C)

Tr(C)


=

1

(V − 1)NV

 1 −1

−1 V

 Tr(G0C)

Tr(C)


=

1

(V − 1)NV

 Tr(G0C)− Tr(C)

V Tr(C)− Tr(G0C)

 .
Thus,

σ̂2 =
1

(V − 1)NV

N∑
i=1

V∑
j 6=k

(Yij − µ̂)(Yik − µ̂), (2.14)

the mean of the within-subject off-diagonal elements of C, and

τ̂ 2 =
1

(V − 1)NV

[
V

N∑
i=1

V∑
j=1

(Yij − µ̂)2 −
N∑
i=1

V∑
j=1

V∑
k=1

(Yij − µ̂)(Yik − µ̂)

]

=
1

(V − 1)NV

[
(V − 1)

N∑
i=1

V∑
j=1

(Yij − µ̂)2 −
N∑
i=1

V∑
j 6=k

(Yij − µ̂)(Yik − µ̂)

]
(2.15)

=
1

NV

N∑
i=1

V∑
j=1

(Yij − µ̂)2 − σ̂2,

the mean of the diagonal elements of C minus the mean of the within-subject off-diagonal

elements.
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2.3.3 Group Scalar Mean

The next simple case involves fitting a separate scalar mean to each of the two groups:

Y NV×1 = XNV×2β2×1 + (IN×N ⊗ 1V×1)δN×1 + εNV×1, (2.16)

where X = [x1 x2] is the fixed effects design matrix defined by x1 = 1NV×1 and x2 =

[0V n1×1 1V n2×1]
′, β = [β1 β2]

′ is the vector of unknown fixed parameters, δ is the vector of

subject-specific random intercepts, with δ ∼ MVN(0, σ2I), and ε is the vector of residual

errors, with ε ∼ MVN(0, τ 2I).

The variance structure here is the same as for model 2.9, so in order to determine the

existence of a closed-form ML estimator for β, it suffices to demonstrate that x1 and x2 are

contained in the span of two eigenvectors of Σ as given in Equation 2.10. This is immediate,

as both x1 and x2 are each the sum of eigenvectors of Σ with the same eigenvalues, and

thus are themselves eigenvectors:

x1 =
N∑
i=1

pi1

x2 =
N∑

i=n1+1

pi1.

The ML estimates of β̂ are thus given by the OLS solution, (X ′X)−1X ′Y . Since a

closed-form solution exists for β, we may apply the same reasoning as in Section 2.3.2 and

obtain the same closed-form expressions for σ̂2 and τ̂ 2 given in Equations 2.14 and 2.15.

2.3.4 Voxelwise Scalar Means

A more realistic example for DTI data is a model which fits a separate mean at each voxel,

allowing for spatial inhomogeneity in diffusion structure:

Y NV×1 = (1N×1 ⊗ IV×V )βV×1 + (IN×N ⊗ 1V×1)δN×1 + εNV×1, (2.17)

where β = [β1 . . . βV ]′ is a vector of unknown fixed parameters, δ ∼ MVN(0, σ2I) is the

vector of subject-specific random intercepts, and ε ∼ MVN(0, τ 2I) is the vector of residual

errors.
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The variance structure, Σ, is the same as in the previous two examples (Equation 2.10),

so to prove the existence of a closed-form for β̂ it again suffices to find a set of V eigenvectors

of Σ that span the columns of X = (1N×1 ⊗ IV×V ).

In this case, the columns of X are not eigenvectors of Σ, so it is necessary to exhibit a

separate set of V eigenvectors that span the column space of X. To this end, I extend the

notation introduced in Equation 2.12, and let p.j =
∑N

i=1 pij for j = 1, . . . , V . Thus, each p.j

is the sum across blocks of corresponding columns of (IN×N ⊗P ), the matrix of eigenvectors

of Σ. And, since corresponding columns across blocks of (IN×N ⊗P ) have equal eigenvalues

(V σ2 + τ 2 for column 1, τ 2 for columns 2 to V ), each p.j is an eigenvector of Σ.

The claim is that the set of V eigenvectors of Σ, {p.j}Vj=1 spans the column space of X.

Let E = [p.1 . . . p.V ], let z1 = 1
V

1V×1, and, for 2 ≤ j ≤ V , let zj be the vector defined

by zjl = 1
V

((1− δjl) + (1− V )δjl), where δ is Kronecker’s δ. That is, for j ≥ 2, zj is the

column vector with (1−V )
V

in the ith row and 1
V

in all other rows.

With E and zj defined above, Ezj = xj for j = 1, . . . , V , and thus the V columns of X

are spanned by the V columns of E, which are eigenvectors of Σ. For instance, with N = 2,

V = 3,

Ez1 =


1 1 1

1 −1 0

1 0 −1




1
3

1
3

1
3



=


3(1

3
)

1
3
− 1

3

1
3
− 1

3

 =


1

0

0


= x1,
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Ez2 =


1 1 1

1 −1 0

1 0 −1




1
3

−2
3

1
3



=


1
3
− 2

3
+ 1

3

1
3
− −2

3

1
3
− 1

3

 =


0

1

0


= x2,

and similarly Ez3 = x3.

Thus, there is a closed-form expression for β̂, which may again be found by OLS calcu-

lations. And we may once more apply Theorem 2.2.2 as in Sections 2.3.2 and 2.3.3 to obtain

the same closed-form expressions for σ̂2 and τ̂ 2 given in Equations 2.14 and 2.15.

The details are omitted, but we may also extend the closed-form estimation of model 2.17

to accommodate separate voxelwise mean structure per group, in exactly the same manner

in which the closed-form estimation of model 2.9 was extended to accommodate model 2.16.

2.3.5 The General Case For Homogeneous Compound Symmetry

Next, I discuss general conditions under which closed-form ML estimates exist for the fixed

effects parameters in the models with compound symmetric covariance structures described

in the previous sections. Consider the class of models given by:

Y NV×1 = XNV×rβr×1 + (IN×N ⊗ 1V×1)δN×1 + εNV×1, (2.18)

where X is an arbitrary fixed-effects design matrix, β is the vector of r fixed effects pa-

rameters, δ is a random vector of subject-specific intercepts, with δ ∼ MVN(0, σ2I) and

ε ∼ MVN(0, τ 2I) is a vector of residual errors.

The covariance structure is compound symmetric, as described in Equation 2.10, and

the eigensystem of Σ was derived in Section 2.3.2. There are two eigenvalues, V σ2 + τ 2

(multiplicity N) and τ 2 (multiplicity N(V − 1)). Σ is of full rank NV , and so the spectral

decomposition of Σ partitions RNV into two orthogonal subspaces: U1 and U2, spanned by

eigenvectors of Σ corresponding to V σ2 + τ 2 and τ 2, respectively.
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As discussed in Section 2.3.2, by Theorem 2.2.2, whenever a closed-form estimate exists

for β̂, closed-form estimates also exist for σ2 and τ 2 (and are given by Equations 2.14 and

2.15. And, by Theorem 2.2.1, a necessary and sufficient condition for the existence of a

closed-form estimate for β̂ is that the r columns of X be spanned by r eigenvectors of Σ or,

equivalently, by r vectors in U1 ∪ U2.

Based on these facts, we may draw several interesting conclusions:

Theorem 2.3.1. For the model described in Equation 2.18, a closed-form expression exists

for β̂ whenever the columns of X represent:

1. Between-subject covariates: columns of the form x = 1V×1 ⊗αN×1 for arbitrary α,

2. Within-subject spatial contrasts: columns x = [x11 x12 . . . x1V x21 . . . xNV ]′ with the

property that
∑V

j=1 xij = 0 ∀i, and

3. Within-subject spatial effects that are the same within groups of subjects defined by

between-subject covariates: columns of the form x = xαN×1 ⊗ γV×1 for arbitrary γ, where

xα is a between-subject covariate vector consisting of ones and zeros.

Proof. First, for any column vector x of the form described in part 1 (between-subject

effects), x ∈ U1:

Σx = Σ(1V×1 ⊗αN×1)

= 1V×1 ⊗ (V σ2 + τ 2)αN×1

= (V σ2 + τ 2)1V×1 ⊗αN×1

= (V σ2 + τ 2)x.

Thus, x is itself an eigenvector of Σ.

Next, for any column vector x of the form described in part 2 (within-subject spatial

contrasts), x ∈ U2:

Σx = Σ[x11 x12 . . . x1V x21 . . . xNV ]′

= τ 2[x11 x12 . . . x1V x21 . . . xNV ]′

= τ 2x.

That is, again, x is itself an eigenvector of Σ.
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Finally, for part 3 above, consider an x which represents a spatial effect that is the same

for all subjects with values of one on a between-subject covariate represented by another

column, xα = 1V×1 ⊗αN×1 of X, where α consists of only zeros and ones.

For each subject, i, let x̄i. = 1
V

∑V
j=1 xij. Since x is the same for all subjects for whom

αi = 1, x̄i. is also constant for these subjects, and thus:

x̄W = 1V×1 ⊗ [x̄1. . . . x̄N.]
′ ∝ xα.

Furthermore, x− x̄W ∈ U2, as centering the spatial effect x within subjects results in a

vector that sums to zero for each subject. Putting this together, we have:

Σx = Σ(x− x̄W ) + Σx̄W

= τ 2(x− x̄W ) + (V σ2 + τ 2)x̄W .

Thus, x is spanned by two eigenvectors, one of which was already “used” to span xα.

Put another way, adding x as a column to X requires adding the single eigenvector (x− x̄i.)

for the columns of X to be spanned by eigenvectors of Σ.

As a corollary to part 3 of this theorem, we have the following useful result:

Corollary 2.3.2. When X includes an overall intercept, 1NV×1 as one of its columns, then

a closed-form estimate exists whenever the other columns of X include any spatial effect that

is the same for all subjects, as well as any member of the classes of vectors described in parts

1, 2 or 3 of Theorem 2.3.1.

Proof. This is a consequence of the proof of part 3 of Theorem 2.3.1, with αN×1 = 1N×1.

Thus, for compound symmetric models with an overall intercept, closed-form expressions

exist for the ML estimates of mean and variance terms for a wide variety of mean structures.

The only circumstance under which a closed-form expression may not exist is when one of

the columns of X contains subject-specific spatial covariates. However, even in this case,

we may re-express such an effect as the sum of two effects, x = x̄W + (x− x̄W ), and obtain

closed-form estimates of the two effects separately, as x̄W is a between-subject effect and

x− x̄W is a within-subject spatial contrast.
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2.3.6 REML Estimation

Although ML estimation has many favorable asymptotic properties, ML estimates of variance

components in LMEs are biased downwards. Thus, ML estimation may lead to spurious

findings of group differences due to unrealistically low estimates of standard errors of fixed

effects. Another standard approach to estimation of variance components in mixed models

is Restricted Maximum Likelihood (REML), which produces unbiased estimates under very

general conditions[35].

REML estimation differs from ML in its adjustment for loss of degrees of freedom due

to the estimation of fixed effects. In the balanced models I have been considering in this

and subsequent sections, this adjustment takes the form of a simple algebraic modification

to the closed-form ML variance component estimates. The relationship between the ML and

REML variance component estimates can be derived from Lange and Laird (1989)[54].

The ML estimate of τ 2, τ̂ 2, which was derived in Equation 2.15, is related to the REML

estimate, τ̃ 2, by (Equation 11 from Lange and Laird):

τ̃ 2 =
N(V −m)

N(V −m)− f(w −m)
τ̂ 2, (2.19)

where m is the number of random effects, f is the number of between-subject effects and w is

the number of within-subject effects. Note that m = 1 for all the models under consideration

in this section, but will increase with variance heterogeneity and longitudinal designs in

subsequent sections.

The ML estimate of σ2, σ̂2 (Equation 2.14) is related to the REML solution, σ̃2, by

(Equation 14 of Lange and Laird):

σ̃2 =
N

N − f
σ̂2. (2.20)

In the context of exploratory model-building for DTI data, I am interested in using

ML estimation to fit the LMEs discussed in this and subsequent sections, in order to use

likelihood ratio significance testing to compare the fits of nested models. However, once a

final model has been settled on, it will be advisable to refit the model using REML estimation

in order to obtain unbiased estimates of the variance parameters.
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2.3.7 Summary

I have shown that closed-form expressions exist for the maximum likelihood estimators for

mean and variance parameters in a series of simple models with compound symmetric co-

variance structures. The mean structures considered included a single overall scalar mean

term fit to all voxels for subjects in a single group, a separate mean fit to each voxel for

subjects in a single group, and two-group variants of these structures. In each model, there

was a random intercept term and residuals were assumed to be i.i.d.

I also generalized these results, and showed that closed-form estimates exist whenever the

fixed effects include only between-subject effects, within-subject spatial contrasts and group-

specific within-subject spatial effects (where the group is defined by a between-subject effect).

Also, in the special case in which the model includes an overall intercept term, closed-form

estimates exist for within-subject spatial effects that are the same for all subjects.

The one case in which closed-form estimation is not possible is for spatially-varying

covariates (that is, effects that change both between- and within-subject). However, this

limitation can be overcome by centering the effect, breaking it into distinct between-subject

and within-subject spatial contrast effects.

The next step is to broaden the class of models under consideration by allowing group

heterogeneity in covariance parameters (either in the between-subject variance, the residual

variance, or both).

2.4 CLOSED-FORM ML ESTIMATION UNDER HETEROGENEOUS

VARIANCE

In this section, I examine the extent to which the results in Section 2.3 can be extended to

models with between-group heterogeneity in covariance structure. I consider heterogeneity

in residual variance, heterogeneity in between-subject variance, and simultaneous residual

and between-subjects heterogeneity.

40



2.4.1 Group Heterogeneity In Residual Variance

Suppose we adopt the model described in Equation 2.16 in Section 2.3.3:

Y NV×1 = XNV×2β2×1 + (IN×N ⊗ 1V×1)δN×1 + εNV×1, (2.21)

where X = [x1 x2] is the fixed effects design matrix defined by x1 = 1NV×1 and x2 =

[0V n1×1 1V n2×1]
′, β = [β1 β2]

′ is the vector of unknown fixed parameters, δ ∼ MVN(0, σ2I)

is the vector of subject-specific random intercepts, but with the modified assumption that

ε ∼ MVN(0, diag(τ 2
1In1×n1 , τ

2
2 In2×n2)). That is, that there is a different residual variance

parameter for group 1 (τ 2
1 ) than for group 2 (τ 2

2 ). Such a model might be appropriate in

practice if there is reason to think that the amount of within-subject noise is greater in

one group than in the other, while the amount of underlying biological variability between

subjects is comparable in both. For instance, perhaps the two groups were scanned on

different equipment, or participants from one group had greater head motion in the scanner

than the other group.

In this model, Σ = τ 2
1G0 + τ 2

2G1 + σ2G2, where G0 = diag(In1×n1 ,0n2×n2) ⊗ IV×V ,

G1 = INV×NV − G0, and G2 = IN×N ⊗ JV×V . Each subject-specific block of Σ has

a compound symmetric structure, as described in Equation 2.10. The eigenvalues of the

blocks corresponding to group 1 are V σ2 + τ 2
1 (multiplicity 1) and τ 2

1 (multiplicity V − 1),

while the eigenvalues of the blocks for group 2 participants are V σ2 + τ 2
2 (multiplicity 1)

and τ 2
2 (multiplicity V − 1). Thus, Σ itself has four distinct but not linearly independent

eigenvalues: V σ2+τ 2
1 (multiplicity n1), V σ

2+τ 2
2 (multiplicity n2), τ

2
1 (multiplicity n1(V −1))

and τ 2
2 (multiplicity n2(V − 1)).

Σ can be diagonalized much as in Equation 2.11:

Σ = (IN×N ⊗ P )(diag(In1×n1 ⊗D1, In2×n2 ⊗D2))(IN×N ⊗ P )−1. (2.22)

P is the same here as in Section 2.3.2, D1 is the V × V diagonal matrix with V σ2 + τ 2
1

as the entry in row 1, column 1 and τ 2
1 along the rest of the diagonal, and D2 is the V × V
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diagonal matrix with V σ2 + τ 2
2 as the entry in row 1, column 1 and τ 2

2 along the rest of the

diagonal. I extend the notation developed in Equation 2.12, and define:

p.1n1
=

n1∑
i=1

pi1 =

 1n1V×1

0n2V×1

 , and p.1n2
=

N∑
i=n1+1

pi1 =

 0n1V×1

1n2V×1



These are each eigenvectors of Σ (with eigenvalues V σ2 + τ 2
1 and V σ2 + τ 2

2 , respectively),

and they span the columns of X:

x1 = p.1n1
+ p.1n2

x2 = p.1n2
.

Thus, there is a closed-form solution to the maximum likelihood estimate β̂, obtained

from the least squares solution (X ′X)−1X ′Y .

Note that in this case, there would be no closed-form expression for β̂ if there were only

a single mean term fit to both groups. If X were just a single column of ones, no one

eigenvector would span it. In other words, separating the means by group is a precondition

for closed-form estimability of the mean structure when also separating residual variance by

group.

The next step is to ascertain whether there is a closed-form expression for the maximum

likelihood estimates τ̂ 2
1 , τ̂ 2

2 and σ̂2. Since the G matrices all commute with one another, they

are simultaneously diagonalizable, and a closed-form expression exists for β̂, so Theorem

2.2.2 applies. And, since there are four distinct eigenvalues of Σ but only three G matrices,

there are no closed-form expressions for the maximum likelihood estimates of the variance

parameters.
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2.4.2 Group Heterogeneity In Between-Subject Variance

The next model I consider incorporates a single variance parameter for residual variance

across groups, but allows for heterogeneity in between-subjects variance (i.e. unequal vari-

ance parameters for the subject-specific random intercept term). This model would be

applicable in situations in which subjects are scanned under similar conditions, but there

is reason to believe that the degree of biological variability is greater in one group than in

the other. This would be a reasonable assumption in many studies comparing a group of

participants with some neuropathological condition to controls, where the range of variation

will often be greater in the neuropathology group.

The model is:

Y NV×1 = XNV×2β2×1 + (∆⊗ 1V×1)δ1N×1
+ ((IN×N −∆)⊗ 1V×1)δ2N×1

+ εNV×1, (2.23)

where ∆ = diag(In1×n1 ,0n2×n2), δ1 ∼ MVN(0, σ2
1I), δ2 ∼ MVN(0, σ2

2I), X = [x1 x2] is the

fixed effects design matrix defined by x1 = 1NV×1 and x2 = [0V n1×1 1V n2×1]
′, β = [β1 β2]

′

is the vector of unknown fixed parameters, and ε ∼ MVN(0, τ 2I) is the vector of residual

errors.

2.4.2.1 Closed-Form Estimation Of Mean Parameters In this model, Σ = τ 2G0 +

σ2
1G1+σ2

2G2, whereG0 = INV×NV ,G1 = ∆N×N⊗JV×V andG2 = (IN×N−∆N×N)⊗JV×V .

Σ can be diagonalized in a manner analogous to Equation 2.22:

Σ = (IN×N ⊗ P )(diag(In1×n1 ⊗D1, In2×n2 ⊗D2))(IN×N ⊗ P )−1.

Here, P is as in previous sections, D1 is the V ×V diagonal matrix with V σ2
1 +τ 2 in the first

position and τ 2 in all other positions, and D2 is the V × V diagonal matrix with V σ2
2 + τ 2

in the first position and τ 2 in all other positions. Thus there are three distinct, linearly

independent eigenvalues.

By the same argument given in Section 2.4.1, eigenvectors p.1n1
and p.1n2

span the two

columns of X, so the OLS solution is a closed-form expression for the maximum likelihood

estimates as well.

43



2.4.2.2 Closed-Form Estimation Of Covariance Parameters With regard to the

existence of closed-form solutions for the variance parameters, note that again all three G

matrices commute with one another (G0 = I commutes with any conformable matrix and

G1G2 = G2G1 = 0). Therefore, the existence of exactly three eigenvalues for Σ guarantees

the existence of closed-form solutions for τ̂ 2, σ̂2
1 and σ̂2

2. These solutions can be derived from

Equation 2.13.

First, note the values of the following quantities:

Tr(G0G0) = NV

Tr(G0G1) = Tr(G1G0) = n1V

Tr(G0G2) = Tr(G2G0) = n2V

Tr(G1G1) = n1V
2

Tr(G2G2) = n2V
2

Tr(G1G2) = Tr(G2G1) = 0

Tr(G0C) =
N∑
i=1

V∑
j=1

(Yij − µ̂)2

Tr(G1C) =

n1∑
i=1

V∑
j=1

V∑
k=1

(Yij − µ̂)(Yik − µ̂), and

Tr(G2C) =

n2∑
i=n1+1

V∑
j=1

V∑
k=1

(Yij − µ̂)(Yik − µ̂).

Then the ML estimates of the covariance parameters are given by:
τ̂ 2

σ̂2
1

σ̂2
2

 =


NV n1V n2V

n1V n1V
2 0

n2V 0 n2V
2


−1 

Tr(G0C)

Tr(G1C)

Tr(G2C)



=
1

(V − 1)NV


V −1 −1

−1 V n1+(V−1)n2

V n1

1
V

−1 1
V

V n2+(V−1)n1

V n2




Tr(G0C)

Tr(G1C)

Tr(G2C)

 . (2.24)

Thus, the residual variance, τ̂ 2, is again the average of the diagonal elements of C minus the

mean of the within-subject off-diagonal elements, as in Equation 2.15.
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The between-subjects variance terms σ̂2
1 and σ̂2

2 are linear combinations of the within-

subject diagonal and off-diagonal elements of C. Interestingly, although the model allows

for heterogeneous within-subject covariance between groups, the ML estimates of these co-

variance terms for each group depend partly upon the empirical within-subject covariance

for the other group as well.

For example, for the case where n1 = n2 = N
2

, Equation 2.24 yields:

σ̂2
1 =

1

(V − 1)NV

(
2Tr(G1C) +

1

V
(Tr(G2C)− Tr(G1C))− Tr(C)

)
. (2.25)

This form of σ̂2
1 is intriguing. It demonstrates what we may have anticipated, that the

estimate is similar in form to the estimate of σ2 from the homogeneous variance model,

but with the off-diagonal covariance terms from group 1 “counted twice,” and the residual

variance based on the diagonal terms of C for both groups. However, there is also a penalty

term of sorts in the form of 1
V

(Tr(G2C)− Tr(G1C)). This means that, if the covariance

terms are smaller in group 2 than in group 1, we will be shrinking the estimate of the group

1 covariance a little toward the group 2 covariance, and vice-versa.

2.4.3 Combined Residual And Between-Subjects Variance Heterogeneity

Finally, I consider closed-form estimation for the model with group heterogeneity both in

residual and in between-subjects variance. This model would be appropriate in situations

in which there is reason to believe both that there is more subject-to-subject biological

variability and that there is more within-subject noise in one group (likely the group with

neuropathology) than in the other group. The model is:

Y NV×1 = XNV×2β2×1 + (∆⊗ 1V×1)δ1N×1
+ ((IN×N −∆)⊗ 1V×1)δ2N×1

+ εNV×1, (2.26)

where where ∆ = diag(In1×n1 ,0n2×n2), δ1 ∼ MVN(0, σ2
1I), δ2 ∼ MVN(0, σ2

2I), X = [x1 x2]

is the fixed effects design matrix defined by x1 = 1NV×1 and x2 = [0V n1×1 1V n2×1]
′, β =

[β1 β2]
′ is the vector of unknown fixed parameters, and

ε ∼ MVN(0, diag(τ 2
1In1×n1 , τ

2
2 In2×n2)).
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The covariance matrix of Y breaks down into four additive components in this model:

Σ = τ 2
1G0 + τ 2

2G1 + σ2
1G2 + σ2

2G3,

where G0 = diag(In1×n1 ,0n2×n2)⊗IV×V , G1 = INV×NV −G0, G2 = ∆N×N ⊗JV×V and

G3 = (IN×N −∆N×N)⊗ JV×V .

Σ can be diagonalized as:

Σ = (IN×N ⊗ P )(diag(In1×n1 ⊗D1, In2×n2 ⊗D2))(IN×N ⊗ P )−1,

where P is as defined in Section 2.4.2, D1 is the diagonal matrix with V σ2
1 + τ 2

1 in the first

position and τ 2
1 in all other positions, and D2 is the diagonal matrix with V σ2

2 + τ 2
2 in the

first position and τ 2
2 in all other positions. Thus, Σ has four distinct, linearly independent

eigenvalues: V σ2
1 + τ 2

1 (multiplicity n1), τ
2
1 (multiplicity n1(V − 1)), V σ2

2 + τ 2
2 (multiplicity

n2) and τ 2
2 (multiplicity n2(V − 1)).

As in the previous two sections, eigenvectors p.1n1
and p.1n2

span the two columns of X,

so we have the same OLS closed-form expression for β̂.

All four G matrices commute with one another, and there are four distinct, linearly in-

dependent eigenvalues, so there are also closed-form expressions for the maximum likelihood

estimators of the variance parameters. These are obtained from Equation 2.13 as (after

rearranging the rows in a convenient fashion):


τ̂ 2
1

σ̂2
1

τ̂ 2
2

σ̂2
2

 =


n1V n1V 0 0

n1V n1V
2 0 0

0 0 n2V n2V

0 0 n2V n2V
2




Tr(G0C)

Tr(G2C)

Tr(G1C)

Tr(G3C)

 . (2.27)
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Therefore, the ML covariance parameter estimates are exactly as given in Equations 2.15

and 2.14, but with all calculations performed within-group:

σ̂2
1 =

1

(V − 1)n1V

n1∑
i=1

V∑
j 6=k

(Yij − µ̂)(Yik − µ̂) (2.28)

τ̂ 2
1 =

1

n1V

n1∑
i=1

V∑
j=1

(Yij − µ̂)2 − σ̂2
1 (2.29)

σ̂2
2 =

1

(V − 1)n2V

n2∑
i=n1+1

V∑
j 6=k

(Yij − µ̂)(Yik − µ̂) (2.30)

τ̂ 2
2 =

1

n2V

n2∑
i=n1+1

V∑
j=1

(Yij − µ̂)2 − σ̂2
2. (2.31)

That is, this model entails complete separation of the covariance estimation by group.

2.4.4 The General Case For Heterogeneous Compound Symmetry

In Sections 2.4.1 - 2.4.3 above, I investigated the existence of closed-form maximum likelihood

estimates for models with three different kinds of group heterogeneity in variance structure.

However, the models I considered had extremely simple mean structures. In this section, I

will present general conditions under which closed-form ML solutions exist for models with

the heterogeneous variance structures considered above. The development is parallel to that

in Section 2.3.5 for models with homogeneous compound symmetric variance structures.

Theorem 2.4.1. For the models with covariance structures described in Equations 2.21,

2.23 and 2.26, a closed-form expression exists for β̂ whenever the columns of X consist of:

1. Group-specific between-subject effects: columns of the form x = Gl(1V×1 ⊗ αN×1),

where Gl is an NV ×NV diagonal matrix with 1s for group l and 0s for the other group.

2a. For Models 2.21 and 2.26, group-specific within-subject spatial contrasts (columns

x = Gl[x11 x12 . . . x1V x21 . . . xNV ]′ with the property that
∑V

j=1 xij = 0 ∀i, where G is as

in part 1 above.

2b. For Model 2.23, within-subject spatial contrasts that are not necessarily group specific

(columns x1 = [x11 x12 . . . x1V x21 . . . xNV ]′ with the property that
∑V

j=1 xij = 0 ∀i).
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3. Group-specific within-subject spatial effects that are the same within groups of subjects

defined by between-subject covariates: columns of the form x = Gl(xαN×1 ⊗ γV×1) for

arbitrary γ, where xα is a between-subject covariate vector consisting of ones and zeros and

G is as in part 1 above.

For Models 2.23 and 2.26, a closed-form solution exists for the ML estimates of the

covariance parameters whenever a closed-form solution exists for β̂. A closed-form solution

never exists for the ML estimates of the covariance parameters for Model 2.21.

Proof. The proof of this theorem is closely analogous to that of Theorem 2.3.1, but the

details of the spectral decomposition need to be treated separately for the three cases of

covariance structure.

Case 1: Heterogeneous Residual Variance

The spectral decomposition of the covariance matrix for Model 2.21 partitions RNV into

four orthogonal subspaces:

1. U1 of rank n1, spanned by eigenvectors corresponding to the eigenvalue V σ2 + τ 2
1 .

2. U2 of rank n1(V − 1), spanned by eigenvectors corresponding to the eigenvalue τ 2
1 .

3. U3 of rank n2, spanned by eigenvectors corresponding to the eigenvalue V σ2 + τ 2
2 .

4. U4 of rank n2(V − 1), spanned by eigenvectors corresponding to the eigenvalue τ 2
2 .

Columns of type 1 above are in U1 for l = 1 (group 1) and in U3 for l = 2 (group 2).

Columns of type 2a above are in U2 for l = 1 and U4 for l = 2.

Columns of type 3 above can be decomposed by centering into a multiple of a column

of type 1 already accounted for in the model, and a column in U2 for l = 1 and U4 for

l = 2.

Case 2: Heterogeneous Beween-Subjects Variance

The spectral decomposition of the covariance matrix for Model 2.23 partitions RNV into

three orthogonal subspaces:

1. U1 of rank n1, spanned by eigenvectors corresponding to the eigenvalue V σ2
1 + τ 2.

2. U2 of rank n2, spanned by eigenvectors corresponding to the eigenvalue V σ2
2 + τ 2.

3. U3 of rank N(V − 1), spanned by eigenvectors corresponding to the eigenvalue τ 2.
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Columns of type 1 above are in U1 for l = 1 (group 1) and in U2 for l = 2 (group 2).

Columns of type 2b above are in U3 .

Columns of type 3 above can be decomposed by centering into a multiple of a column of

type 1 already accounted for in the model, and a column in U3.

Case 3: Heterogeneous Residual And Between-Subjects Variance

The spectral decomposition of the covariance matrix for Model 2.26 partitions RNV into

four orthogonal subspaces:

1. U1 of rank n1, spanned by eigenvectors corresponding to the eigenvalue V σ2
1 + τ 2

1 .

2. U2 of rank n1(V − 1), spanned by eigenvectors corresponding to the eigenvalue τ 2
1 .

3. U3 of rank n2, spanned by eigenvectors corresponding to the eigenvalue V σ2
2 + τ 2

2 .

4. U4 of rank n2(V − 1), spanned by eigenvectors corresponding to the eigenvalue τ 2
2 .

Columns of type 1 above are in U1 for l = 1 (group 1) and in U3 for l = 2 (group 2).

Columns of type 2a above are in U2 for l = 1 and U4 for l = 2.

Columns of type 3 above can be decomposed by centering into a multiple of a column

of type 1 already accounted for in the model, and a column in U2 for l = 1 and U4 for

l = 2.

There are several interesting conclusions that follow immediately from this result. First,

note that the list of permissible columns for closed-form estimation given in Theorem 2.4.1

is not exhaustive. Whenever XNV×p is spanned by p eigenvectors of Σ, then so is XAp×p

for any invertible A. In particular, this means that pairs of group-specific effects x1 and x2

may be reparameterized into an overall effect, x̃1 and a group specific deviation from that

effect, x2. For a model that also contains a group-specific intercept, this means that any

group×effect interactions are permissible for closed-form estimation. I summarize this as a

corollary:

Corollary 2.4.2. For the models described in Equations 2.21, 2.23 and 2.26, a closed-

form expression exists for β̂ whenever the fixed-effects structure, X, consists of group×effect

interactions.
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Second, the important special case of models with a voxelwise mean structure of the form

E(Y NV×1) =

 1n1×1 0n1×1

1n2×1 1n2×1

⊗ IV×V
β2V×1,

does have a closed-form solution for β̂, even though it doesn’t fall explicitly into the criteria

outlined in Theorem 2.4.1 (which are sufficient but not necessary for the existence of closed-

form estimates). To see why this is, let

XNV×V =

 1n1×1 0n1×1

1n2×1 1n2×1

⊗ IV×V
 ,

and

X̃NV×(V+2) =

1NV×1

 0n1V×1

1n2V×1

 X

 .
By Theorem 2.4.1 , a closed-form solution exists for the model with X̃ as the fixed-effects

structure (as the first two columns are of type 1 and the remaining V columns are of type 3

given the first two). However, since the first two columns of X̃ are in the span of X itself, it

is not necessary to actually add them to the design in order to include two more eigenvectors

in the spanning set.

Therefore there are V eigenvectors of Σ that span X, and a closed-form solution exists

for the model with fixed-effects structure given by X. These may be exhibited explicitly in a

development exactly parallel to the generalization of the scalar mean model in Section 2.3.2

to the voxelwise mean model in Section 2.3.4. This is summarized in the following corollary:

Corollary 2.4.3. For the models described in Equations 2.21, 2.23 and 2.26, a closed-

form expression exists for β̂ whenever the fixed-effects structure, X, represents group-specific

voxelwise means, as well as any other permissible effect for closed-form estimation as outlined

in Theorem 2.4.1 and Corollary 2.4.2.
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2.4.5 Nonexistence Of Closed-Form Estimators And Implications

Of critical interest is what the preceding results imply about circumstances under which a

closed-form solution is not available. A closed-form solution for β̂ is unavailable whenever

X contains a column that represents an effect that is homogeneous across groups (with one

exception: homogeneous spatial contrasts are estimable in closed-form for Model 2.23).

This has important implications for model-building and hypothesis testing for DTI data.

Even in situations in which it is theoretically appropriate to model a fixed effect consistently

across groups (for instance, a between-subject covariate that pertains to the external scan-

ning circumstances and is independent of group membership), we are constrained to include

interaction terms in order to retain closed-form estimation in heterogeneous variance models.

Including unnecessary (from the standpoint of the subject matter) fixed effects terms entails

inflating the variance of all other parameters in the model.

Thus, the gain in computational efficiency granted by closed-form estimation is offset by

a loss in statistical power for the heterogeneous variance models discussed in this section.

Whether the cost in power is worth the added efficiency will be a highly context-dependent

question. For largeN , small p studies, the loss in power of adding a small number of unwanted

interaction terms may be negligible and well worth the gain in computational efficiency of the

closed-form ML estimation. On the other hand, for studies with small sample sizes and/or

a proliferation of important covariates, the loss in power may be substantial and the more

practical choice be to use iterative algorithms or to assume that variance is homogeneous

across groups.

2.4.6 Three Or More Groups

As a final note in this Section, all of the preceding results generalize in obvious ways to the

case where participants come from more than two groups. This includes the formulas for

closed-form covariance parameter estimates. For instance, for the case of three groups with
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heterogeneous between-subject variance, Equation 2.24 generalizes to:


τ̂ 2

σ̂2
1

σ̂2
2

σ̂2
3

 =


NV n1V n2V n3V

n1V n1V
2 0 0

n2V 0 n2V
2 0

n3V 0 0 n3V
2



−1 
Tr(G0C)

Tr(G1C)

Tr(G2C)

Tr(G3C)



∝


V −1 −1 −1

−1 V n1+(V−1)(n2+n3)
V n1

1
V

1
V

−1 1
V

V n2+(V−1)(n1+n3)
V n2

1
V

−1 1
V

1
V

V n3+(V−1)(n1+n2)
V n3




Tr(G0C)

Tr(G1C)

Tr(G2C)

Tr(G3C)



2.4.7 Summary

In this section, I have shown that closed-form ML estimators exist for the mean parameters

in random intercept models with heterogeneous residual variance, between-subjects variance,

or both, subject to the constraint that covariates must have group-specific effects, with the

exception that non-group specific within-subject spatial contrasts are estimable in closed-

form in the model with heterogeneous between-subjects variance and homogeneous residual

variance. As such, closed-form estimation may entail a cost in statistical power if it constrains

the data analyst to include interaction effects that would otherwise have been left out.

In this class of heterogeneous variance models, closed-form ML estimators only exist

for the variance parameters in models with heterogeneous between-subjects variance (either

with or without additional heterogeneity in residual variance). However, for models with

heterogeneous residual variance but homogeneous between-subjects variance, only iterative

estimation of the variance parameters is possible.

The next class of important models to consider for the purposes of identifying the ex-

istence of closed-form ML estimators are longitudinal models that will allow us to track

changes in DTI parameters over time, either within a single group, or differentially between

multiple groups.
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2.5 CLOSED-FORM ML ESTIMATION FOR LONGITUDINAL MODELS

Longitudinal models for DTI data are of great potential importance for tracing the develop-

ment of healthy and abnormal white matter anatomy over time. In addition, longitudinal

DTI data share a common structure in many respect with fMRI data, so many of the results

in this section apply equally to the analysis of fMRI studies. In this section, I will be applying

the same principles introduced in Sections 2.3 and 2.4 to LME models for longitudinal data.

I will explore longitudinal models for a single group, but the results will extend naturally to

the case of two or more groups.

2.5.1 Longitudinal Model With Random Intercept

Suppose, as before, we have V voxels for each of N subjects with data coregistered to a

common anatomical space, but that now each subject is also scanned on T occasions. Let

Yijk denote the fixed transformed diffusion tensor element for subject i, voxel j, timepoint k.

We will stack the observations across all subjects, voxels and timepoints into a single vector

in which the timepoint index will “move fastest”, the subject index will “move slowest.”

That is, Y ij = [Yij1 . . . YijT ]′, Y i = [Y i1 . . . Y iV ]′, and Y = [Y 1 . . . Y N ]′.

I will start with the simplest case, with an overall scalar mean fit across subjects, voxels

and timepoints and a linear trend in the mean fit across timepoints, along with a subject-

specific random offset from the overall mean. That is, let

Y NV T×1 = XNV T×2β2×1 + (IN×N ⊗ 1V×1 ⊗ 1T×1)δN×1 + εNV T×1, (2.32)

where X = [x1 x2]′ is the fixed effects design matrix given by x1 = 1NV T×1 and

x2 = [1 2 . . . T 1 . . . T︸ ︷︷ ︸]′ − [
T + 1

2
. . .

T + 1

2︸ ︷︷ ︸]′
NV times NV T times

.

β = [β1 β2]
′ is the vector of unknown fixed parameters, and δ ∼ MVN(0, σ2I) and

ε ∼ MVN(0, τ 2I) as in Section 2.3. Thus, Σ is compound symmetric as in Equation 2.10.
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This model is therefore a straightforward generalization of the models considered in

Theorem 2.3.1, with the fixed slope effect serving as an extension of the class of within-

subject contrast effects. It is instructive, however, to address closed-form estimation in this

model specifically, as a preliminary step to generalizing further to random slope models and

models with orthogonal polynomial random effects.

In order to determine whether there is a closed-form expression for β̂, we need to find

two eigenvectors of Σ that span the two columns of X. We already know that x1 is itself an

eigenvector of Σ. The design matrix column representing the (centered) linear effect across

time is also an eigenvector of Σ.

To demonstrate this, we note first that the off-diagonal blocks representing within-

subject, between-voxel covariance are all equal to σ2JT×T . The contribution of each of

these blocks to Σx2 is:

σ2JT×T


(1− T+1

2
)

...

(T − T+1
2

)

 = σ2


(1 + · · ·+ T )− (T T+1

2
)

...

(1 + · · ·+ T )− (T T+1
2

)



=


0
...

0

 .

Thus, only the voxel-specific diagonal blocks, equal to τ 2IT×T + σ2JT×T , possibly con-

tribute non-zero entries to the product Σx2. Specifically, the kT +1 through (k+1)T entries

of Σx2, for k = 0, . . . , (NV − 1) are given by:

(τ 2IT×T + σ2JT×T )


(1− T+1

2
)

...

(T − T+1
2

)

 = τ 2IT×T


(1− T+1

2
)

...

(T − T+1
2

)



= τ 2


(1− T+1

2
)

...

(T − T+1
2

)

 .
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which is a multiple of the kT + 1 through (k + 1)T entries of x2. Thus x2 is an eigenvector

of Σ.

The calculations above are made clear with a numerical example. Let N = 1, V = 2,

T = 3. Then:

Σx2 =



τ 2 + σ2 σ2 σ2 σ2 σ2 σ2

σ2 τ 2 + σ2 σ2 σ2 σ2 σ2

σ2 σ2 τ 2 + σ2 σ2 σ2 σ2

σ2 σ2 σ2 τ 2 + σ2 σ2 σ2

σ2 σ2 σ2 σ2 τ 2 + σ2 σ2

σ2 σ2 σ2 σ2 σ2 τ 2 + σ2





−1

0

1

−1

0

1



=



−(τ 2 + σ2) + σ2 − σ2 + σ2

σ2 − σ2 + σ2 − σ2

−σ2 + (τ 2 + σ2)− σ2 + σ2

−(τ 2 + σ2) + σ2 − σ2 + σ2

σ2 − σ2 + σ2 − σ2

−σ2 + (τ 2 + σ2)− σ2 + σ2



=



−τ 2

0

τ 2

−τ 2

0

τ 2


= τ 2x2.
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Therefore, there is a closed-form expression for β̂, the OLS solution:

β̂ = (X ′X)−1X ′Y

=

 NV T 0

0 NV
(
T 3−T

12

) −1

X ′Y (2.33)

=
1

NV

 x′1
T

12x′2
T 3−T

Y .

And there are closed-form solutions for σ̂2 and τ̂ 2, which are analogous to those given in

Section 2.3:

σ̂2 =
1

(V T − 1)NV T

N∑
i=1

∑
(j,k)6=(j′,k′)

(Yijk − µ̂)(Yij′k′ − µ̂), (2.34)

the mean of the within-subject off-diagonal elements of C, and

τ̂ 2 =
1

NV T

N∑
i=1

V∑
j=1

T∑
k=1

(Yijk − µ̂)2 − σ̂2. (2.35)

2.5.2 Longitudinal Model With Random Slope

One level of added complexity from the longitudinal model with a subject-specific random

intercept is the inclusion of a subject-specific random slope as well. The next step is to

determine whether such an extension of the model in Section 2.5.1 will also admit to closed-

form expressions for the ML estimators of the mean and covariance parameters.

The model is:

Y NV T×1 = XNV T×2β2×1 + (IN×N ⊗ 1V×1 ⊗ z1T×1
)δ1N×1

+ (IN×N ⊗ 1V×1 ⊗ z2T×1
)δ2N×1

+ εNV T×1, (2.36)

where X = [x1 x2]′ is the fixed effects design matrix as defined in Section 2.5.1 and z1 and

z2 are comprised of the first T entries of x1 and x2, respectively.
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As before, ε ∼ N(0, τ 2I). δ1 ∼ N(0, σ2
1) and δ2 ∼ N(0, σ2

2). The covariance of Y , Σ has

the additive structure introduced in Section 2.2: Σ = τ 2G0 + σ2
1G1 + σ2

2G2, where G0 = I,

G1 = J and

G2 = (IN×N ⊗ 1V×1 ⊗ z2V×1
)(IN×N ⊗ 1V×1 ⊗ z2T×1

)′ (2.37)

= IN×N ⊗ 1V×1 ⊗ (z2T×1
z′2T×1

). (2.38)

This is a block diagonal matrix with N blocks, each block equal to

JV×V ⊗




1− T+1
2

...

T − T+1
2


[
1− T + 1

2
. . . T − T + 1

2

] .

This latter matrix has as its ((kT + i), (lT + j))th entry
(
i− T+1

2

) (
j − T+1

2

)
, for 0 ≤

k, l < NV and 1 ≤ i, j ≤ T . To take a simple numerical example, let T = 3 and V = 2.

Then each of the N diagonal blocks of G2 are given by:

 1 1

1 1

⊗


1

0

−1

[ 1 0 −1
]

=



1 0 −1 1 0 −1

0 0 0 0 0 0

−1 0 1 −1 0 1

1 0 −1 1 0 −1

0 0 0 0 0 0

−1 0 1 −1 0 1


.

And each of the N diagonal blocks of Σ itself are:



τ 2 + σ2
1 + σ2

2 σ2
1 σ2

1 − σ2
2 σ2

1 + σ2
2 σ2

1 σ2
1 − σ2

2

σ2
1 τ 2 + σ2

1 σ2
1 σ2

1 σ2
1 σ2

1

σ2
1 − σ2

2 σ2
1 τ 2 + σ2

1 + σ2
2 σ2

1 − σ2
2 σ2

1 σ2
1 + σ2

2

σ2
1 + σ2

2 σ2
1 σ2

1 − σ2
2 τ 2 + σ2

1 + σ2
2 σ2

1 σ2
1 − σ2

2

σ2
1 σ2

1 σ2
1 σ2

1 τ 2 + σ2
1 σ2

1

σ2
1 − σ2

2 σ2
1 σ2

1 + σ2
2 σ2

1 − σ2
2 σ2

1 τ 2 + σ2
1 + σ2

2


.
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To satisfy the conditions of Theorem 2.2.1 for the existence of a closed-form ML solution

for the mean parameters, β, it suffices to show that x1 and x2 are themselves eigenvectors

of Σ. First, x1:

Σx1 = τ 2G01 + σ2
1G11 + σ2

2G21

= τ 21 + σ2
1V T1 + σ2

2G21

= τ 21 + σ2
1V T1

∝ x1,

because the (kT + i)th entry of σ2
2G21 is

σ2
2V

(
i− T + 1

2

) T∑
j=1

(
j − T + 1

2

)
= σ2

2V

(
i− T + 1

2

)(( T∑
j=1

j

)
− T T + 1

2

)
= 0

Thus, x1 is an eigenvector of Σ with eigenvalue τ 2 + V Tσ2
1. For x2, we have:

Σx2 = τ 2G0x2 + σ2
1G1x2 + σ2

2G2x2

= τ 2x2 + V σ2
1

T∑
i=1

(
i− T + 1

2

)
1 + σ2

2(x2x
′
2)x2

= τ 2x2 + σ2
2x2(x

′
2x2)

= τ 2x2 + V σ2
2

T∑
i=1

(
i− T + 1

2

)2

x2

∝ x2

Thus, x2 is also an eigenvector of Σ, with eigenvalue τ 2+V σ2
2

∑T
i=1

(
i− T+1

2

)2
. Therefore,

the OLS estimate of β (given in Equation 2.33) is also the ML estimate.

Next, to establish the existence of closed-form solutions for τ 2, σ2
1 and σ2

2, we will first

demonstrate that G0,G1, and G2 are simultaneously diagonalizable. This is clear: G0 = I

commutes with every conformable matrix, and G1G2 = G2G1 = 0 (as the sum of any row

or column of G2 is 0), so all three G matrices commute with each other, and are therefore

simultaneously diagonalizable.

The diagonal entries of Σ in its diagonalized form are its eigenvalues. Two of these were

exhibited above: τ 2 + V Tσ2
1 corresponding to the N eigenvectors of G1 comprised of blocks
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of x1 of length V T and τ 2 +V σ2
2

∑T
i=1

(
i− T+1

2

)2
corresponding to the N eigenvectors of G2

comprised of blocks of x2 of length V T .

The remaining (N−2)V T eigenvalues will all be equal to τ 2. To see why this is, note that

Σ = G0 +G1 +G2 is of full rank NV T . G1 and G2 are each of rank N, and their column

spaces are orthogonal, and spanned by linearly independent vectors comprised of blocks of

x1 and x2, respectively. The intersection of their null spaces is therefore of rank (N −2)V T .

Therefore, the set comprised of x1, x2 and any orthonormal basis for the intersection of the

null spaces of G1 and G2 comprise a basis for the column space of Σ. And, if a is in the

intersection of the null spaces of G1 and G2 then Σa = τ 2G0a+ σ2
1G1a+ σ2

2G2a = τ 2a.

Therefore there are three linearly independent entries on the diagonal of Σ in its diag-

onalized form: τ 2 + V Tσ2
1, τ 2 + V σ2

2

∑T
i=1

(
i− T+1

2

)2
and τ 2, and so there are closed-form

maximum likelihood estimators for τ 2, σ2
1 and σ2

2, which can be derived from Equation 2.13,

based on the following quantities:

Tr(G0G0) = Tr(G0G1) = Tr(G1G0) = NV T

Tr(G1G1) = N(V T )2

Tr(G0G2) = Tr(G2G0) = Tr(G1G2) = Tr(G2G1) = 0

Tr(G2G2) = Tr([In×n ⊗ (z2z
′
2)][In×n ⊗ (z2z

′
2)])

= Tr(I ⊗ (z2z
′
2z2z

′
2))

= NV

(
T 3 − T

12

)
Tr(z2z

′
2)

= NV

(
T 3 − T

12

)2

Thus the ML estimates of the covariance parameters are given by:
τ̂ 2

σ̂2
1

σ̂2
2

 =


NV T NV T 0

NV T N(V T )2 0

0 0 NV
(
T 3−T

12

)2


−1 

Tr(G0C)

Tr(G1C)

Tr(G2C)



=


1

N(V T−1)
−1

NV T (V T−1)
0

−1
NV T (V T−1)

1
NV T (V T−1)

0

0 0

(
NV 2

(
T 3−T

12

)2
)−1




Tr(G0C)

Tr(G1C)

Tr(G2C)

 (2.39)
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2.5.3 General Orthogonal Polynomial Random Effects Models

In the previous two sections, I demonstrated the existence of closed-form ML estimators for

spatio-temporal neuroimaging models with voxelwise means and linear slope effects over time.

In Section 2.5.1, I considered the model with a random intercept only, whereas in Section

2.5.2, I considered the model with random intercept and slope effects. In practice, these are

the most important cases, since linear longitudinal effects will often be of greatest interest

to the researcher. However, it would be useful to have results on closed-form estimation for

models with higher-order polynomial fixed and/or random effects.

Fortunately, the previous results generalize in a straightforward manner for orthogonal

polynomial designs. Consider the extension of model 2.36 above to:

Y NV T×1 = XNV T×pβp×1 + (IN×N ⊗ 1V×1 ⊗ z1T×1
)δ1N×1

+ . . .+ (IN×N ⊗ 1V×1 ⊗ zrT×1
)δrN×1

+ εNV T×1, (2.40)

where the columns of X are orthogonal longitudinal effects, with x1 = 1 being an intercept

effect. As before, each zi is comprised of one longitudinal segment (i.e., the first T elements)

of xi. Assume r ≤ p. The covariance matrix for this model can be decomposed as

Σ = τ 2G0 +
r∑
i=1

σ2
iGi,

where G0 = I, and

Gi = IN×N ⊗ 1V×1 ⊗ (ziT×1
z′iT×1

)

for i = 1, . . . , r. Σ is of full rank NV T and its spectral decomposition partitions RNV T into

r + 1 orthogonal subspaces, U0, . . . , Ur. Each Ui for i > 0 is of rank N and is spanned by

vectors representing corresponding within-subject longitudinal effects (i.e., each basis vector

has 1V×1 ⊗ zi for one subject and zeros for other subjects). U0 is of rank (V T − r)N and is

spanned by any orthonormal basis for the joint null space of the Ui, i > 0.

It is straightforward to show for this class of models that, whenever a closed-form ex-

pression exists for β̂, a closed-form expression also exists for σ̂. By applying Theorem 2.2.2,
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it suffices to show that Σ has r + 1 linearly independent eigenvalues. This can be seen by

noting that if u is an eigenvector of Gα for α > 0, then:

Σu = τ 2G0u+
r∑
i=1

σ2
iGiu

= τ 2u+ σ2
αGαu,

as u is in the null space of Gi for i > 0, i 6= α. And any vector v that is in the joint null

space of Gi for all i > 0 will be an eigenvector of Σ with eigenvalue τ 2. Thus, Σ has r + 1

linearly independent eigenvalues, τ 2 and τ 2 + σ2
i V z

′
izi for i = 1, . . . , r.

The question, then, is under which circumstances β̂ has a closed-form estimator. When

the columns of X contain only orthogonal longitudinal effects, then we do have closed-form

estimation, as each longitudinal effect is either in Ui for some i > 0, or it is in their joint

null space (U0) because of orthogonality. Either way, each orthogonal longitudinal effect is

itself an eigenvector of Σ, and thus Theorem 2.2.1 applies.

For columns of X beyond orthogonal longitudinal effects, the considerations of Theo-

rem 2.3.1 apply: closed-form estimation is possible when the additional columns of X are

comprised of between-subject effects, within-subject spatial contrasts (or any within-subject

effect that’s orthogonal to the longitudinal effects in X already accounted for above), or

within-subject spatial effects that are specific to groups determined by between-subject ef-

fects.

Thus, closed-form estimation in the spatio-temporal models considered in this section is

directly analogous to closed-form estimation in the cross-sectional spatial models considered

in Section 2.3. This provides us considerable versatility in developing models for longitudinal

neuroimaging data without compromising computational feasibility.

2.5.4 Multiple Groups And Variance Heterogeneity

The results in this section extend in a very straightforward manner to models with multiple

groups, parallel to the development in Theorem 2.3.1. The extension of these longitudinal

results to models with heterogeneous variance is complicated by the range of possibilities -

in a model with r longitudinal random effects and a residual variance parameter, there are
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2r+1 possible different combinations of heterogeneous and homogeneous variance parameters.

However, it seems possible that general results in this direction would be obtainable by

methods similar to those used in this chapter, and this could well be a fruitful avenue for

future exploration.

2.6 CONCLUSIONS

In this chapter, I have investigated the possibility of applying LME models with closed-form

likelihood estimation to the analysis of DTI data. While LMEs provide many potential

advantages over the simpler approaches often used in practice for DTI group comparison,

their applicability in practice may be hindered by computational burdens. Therefore, finding

subclasses of LMEs with closed-form ML estimates is a potentially important step toward

fostering the adoption of such models in DTI data analyses.

In Section 2.1, I described a decorrelating transformation that will allow the multivariate

data contained in diffusion tensors to be treated with separate univariate analyses. I then

reviewed theoretical tools described by Szatrowski (1980) for establishing the existence of

closed-form ML estimation in Section 2.2.

In the simple case of LMEs with compound symmetric covariance structures (Section

2.3), I observed in Theorem 2.3.1 that closed-form ML solutions are available under general

conditions on the fixed effects design. In particular, any purely between-subject and within-

subject covariates can be included without requiring iterative estimation.

In Section 2.4, I expanded the class of models considered to include group heterogeneity

in residual variance parameters (Section 2.4.1), between-subjects variance parameters (Sec-

tion 2.4.2) or both residual and between-subjects variance parameters (Section 2.4.3). For

the cases of heterogeneous between-subjects variance and of both heterogeneous between-

subjects and residual variance, closed-form ML estimation is available for both mean and

variance parameters under certain conditions on the fixed effects design detailed in Theorem

2.4.1. Specifically, closed-form estimation is possible in the model incorporating both het-

erogeneous between-subjects and residual variance if all the fixed effects are group-specific
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or, equivalently, if every fixed effect in the design is supplemented with a group interaction

effect. The conditions for the existence of closed-form estimation in the model with group

heterogeneity in between-subjects variance only were relaxed in that within-subject spatial

contrasts were not required to be group-specific.

In Section 2.5, I investigated the possibility of closed-form estimation for LMEs for

longitudinal DTI data. I showed that closed-form estimation was possible for models with

voxelwise mean effects and orthogonal polynomial random effects. Although longitudinal

DTI studies have been infrequently seen in the literature to date, they hold great promise

for investigating white matter development over time, and the results in this section indicate

that it will be computationally to apply appropriate LMEs to the analyses of these data.

2.6.1 Nonexistence Of Closed-Form Estimators

Some of the most significant results in this chapter concern the identification of circumstances

under which closed-form ML estimation is not possible. In the case of homogeneous com-

pound symmetry, only the inclusion of uncentered spatially-varying covariates entails a loss

of closed-form estimation for this simple covariance structure. However, spatially-varying

covariates can be decomposed via centering into between- and within-subject components,

both of which are estimable in closed-form. For instance, if we wanted to control for local

gray matter volume in a DTI analysis assuming group homogeneity in variance parameters,

it would be necessary to parameterize this as two effects in order to maintain closed-form

estimation: a purely between-subject effect defined by each subject’s global mean gray mat-

ter, and a purely within-subject spatial contrast effect consisting of local deviations from the

mean gray matter.

In the case of group heterogeneous compound symmetric structures, I found that closed-

form estimation of variance parameters was not possible in the case of heterogeneous residual

variance alone. This means that practitioners who want to incorporate group heterogeneity

in residual variance without resorting to iterative estimation procedures are constrained to

include group heterogeneity in between-subjects variance as well, even if a homogeneity

assumption is justified for between-subjects variance. Thus, for instance, if individuals from
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two groups sampled from the same population are imaged on two different scanners, it would

probably be desirable to allow for model flexibility in accommodating group heterogeneity

in residual variance induced by different levels or quality of machine noise. In order to retain

closed-form estimation in this model, however, it would be necessarily also to fit separate

between-subjects variance components for the two groups, even if this had little biological

justification.

I also found that closed-form estimation in models with group heterogeneity in between-

subjects variance or group heterogeneity in both between-subjects and residual variance

requires substantial constraints on the fixed effects design. Specifically, all effects have to

be group-specific or, equivalently, include group interactions, with the exception of spatial

contrast effects in models that include heterogeneity only in between-subjects variance. This

means that if a practitioner wanted to control for, say, age in a closed-form heterogeneous

variance model, it would be necessary to include a group × age interaction effect even if

there was no reason to believe that age effects differed between the groups.

This requirement to add unnecessary effects to maintain closed-form likelihood estimation

could lead to inflated estimated of the variance of fixed effects of interest, reducing the

sensitivity of the models, particularly in studies with small samples or a large number of

important covariates. Careful simulation studies would help determine the trade-offs between

the gains in precision from accommodating group heterogeneity in variance and the losses

in power from being constrained to include extraneous fixed effects, and this is an area of

possible future investigation.
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3.0 APPLICATIONS TO NEUROIMAGING STUDIES OF AUTISM

This chapter applies the results established in Chapter 2 to diffusion tensor imaging data

analysis. I employ DTI data to compare white matter between individuals with ASDs and

controls with the closed-form models identified in Chapter 2. I clarify the feasibility of these

methods and discuss the incorporation of group heterogeneity in variance structure. I also

compare these models with more conventional voxelwise and regionwise analyses (Section

1.3).

I first describe the sample and methods used to collect the data (Section 3.1). In Section

3.2, I perform analyses based on fractional anisotropy (FA) to compare the performance of

the LMEs discussed in the previous chapter to standard methods for the most frequently

analyzed dependent variable in DTI studies, FA. Then in Section 3.3, I perform group

comparisons based on decorrelated whole-tensor data, as discussed in Section 2.1. The

LME-based approach to these comparisons is compared to direct multivariate analogues of

conventional voxelwise and regional approaches.

3.1 DATA DESCRIPTION

The data analyzed in this chapter consist of DTI scans of a sample of 80 children and young

adults with a lifetime diagnosis of an ASDs and 40 typically-developing controls, all males.

The data were collected under the auspices of the Utah Autism Research Program at the

University of Utah (Janet Lainhart, M.D., P.I., NIH grant MH0808026). The sample and

data collection methods have been described previously[2]. Basic demographic and clinical

characteristics are provided below in Table 3.1. In the table, handedness refers to the score on
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the Edinburgh Handedness Inventory, with scores ranging from -100 (completely left-handed)

to 100 (completely right-handed)[72].

Table 3.1: Demographic and clinical characteristics of the sample

Control ASDs

Variable Mean S.D. Mean S.D.

Age (years) 15.5 6.5 14.1 8.5

Handedness 70.1 35.4 66.5 50.5

Performance IQ 116.7 16.4 97.3 20.0

Verbal IQ 115.8 14.1 98.1 23.2

Full-scale IQ 118.9 15.5 96.2 22.3

As reported in the previous analysis by Alexander et al. (2007), diffusion weighted images

were acquired for all participants on a Siemens Trio 3.0 Tesla Scanner[2]. The acquisition used

twelve non-collinear diffusion encoding pulses with b = 1000s/mm2 and a single unweighted

pulse (b = 0), and the diffusion weighted images were corrected for head motion and eddy

current distortion. The images were interpolated to obtain 2mm×2mm×2mm isotropic

voxels. The diffusion tensor at each voxel was estimated via weighted least squares, as

described in Section 1.2.2.2. The images were spatially transformed to a common anatomical

space using the affine transformation option in the FLIRT utility of the FSL package. The

orientation of the tensors was then recaptured by reorienting them in the new space using

the procedure described by Alexander (2001)[3].

I performed all of the analyses described in the remainder of this chapter using custom

code built in MATLAB R©, Version 7.4[64], unless otherwise noted.

3.2 FRACTIONAL ANISOTROPY ANALYSES

The first set of analyses I performed were intended to identify group differences in fractional

anisotropy (FA, Equation 1.19) between the ASDs and control participants. FA is a measure
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of the degree to which the diffusion at a given voxel is anisotropic, and is highest in areas

of dense, well-organized white matter, and lowest in the fluid-filled ventricles. I chose this

univariate dependent measure as it is the most commonly used scalar index in the DTI

literature, although there are many other possible choices (see Section 1.2.2.3). Thus, it

provides a useful benchmark with which to compare LME-based methods with standard

approaches.

The midaxial slice (that is, the center of the brain as seen from above) of the mean FA

image for the sample is shown in Figure 3.1. In this figure, lighter areas reflect regions where

mean FA is higher, and dark areas reflect regions where mean FA is lower. For instance,

the horseshoe-shaped structures at the top and bottom of the figure correspond to the most

anterior (genu) and posterior (splenium) portions of the corpus callosum, respectively, where

white matter is dense and highly organized. The black areas immediately below the genu

correspond to the fluid-filled ventricles, and gray areas of the figure largely correspond to

diffuse white matter in regions with substantial gray matter. Figure 3.2 shows the midaxial

difference map for mean FA (ASDs - control). The control group has higher mean FA in the

densest white matter structures, with mean differences as high as 0.12.

Figure 3.1: FA mean for 80 ASDs and 40 control participants
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Figure 3.2: ASDs mean FA - control mean FA

3.2.1 Brain Regions Explored

In order to explore the performance of LME-based methods across a range of DTI data, I

performed separate analyses on three regions of interest. These regions were chosen to be

representative of different types of tissue. Also, the LMEs introduced in Chapter 2 all share

a common assumption of spatial homogeneity in variance. Therefore, for demonstrative

purposes I selected regions for which this assumption seemed plausible. Figure 3.3 shows the

sample variance of FA at each voxel in the midaxial slice. The regions of highest variance

are the most anterior and posterior portions of the corpus callosum (the genu and splenium,

respectively), along with the extension of the splenium into the forceps major. Other white

matter structures show middling variance, as do cortical areas containing both diffuse white

matter and gray matter. Areas of primarily gray matter and the ventricles show much lower

variance.

3.2.1.1 Region 1 The first region I selected is a 23 × 11 voxel (1012mm2) rectangular

region of the midaxial slice, symmetrically positioned around the sagittal midline, roughly

corresponding to the splenium of the corpus callosum. This region represents a dense white

matter structure, and an area of largely homogeneous, and high, variance. It was identified

as an area of significant group difference in FA in the previous analysis by Alexander et al.
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Figure 3.3: FA variance for 80 ASDs and 40 control participants

(2007)[2]. The region is outlined in Figure 3.4.

Figure 3.4: Mean FA in Region 1

3.2.1.2 Region 2 Region 2 (Figure 3.5) encompasses the genu. I again used a rectangu-

lar region of the midaxial slice, symmetric about the sagittal axis, this time encompassing

19 × 10 voxels, or 760mm2. This region was also found to display significant overall group

difference in FA by Alexander et al.
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Figure 3.5: Mean FA in Region 2

3.2.1.3 Region 3 Region 3 (Figure 3.6) is a rectangular region taken from the frontal

portion of a slice 4mm superior to Regions 1 and 2. This region encompasses portions of

the anterior horns of the lateral ventricles, the septum pellucidum and some surrounding

gray matter. There is also some compact white matter in the region: The medial anterior

portion of the region overlaps the posterior portion of the genu, and the lateral posterior

portions border the internal capsule. This region was chosen as a null case by which to

informally judge the Type 1 error rate of the various models explored, as any white matter

abnormalities detected in the fluid-filled ventricles are likely to be spurious findings. Choos-

ing a brain region of considerable tissue heterogeneity was necessary in order to obtain a

moderately-sized rectangular region with substantial amounts of CSF, and to maximize the

image contrast.

3.2.2 Data Analysis

FA was calculated for each subject at each voxel in the regions of interest by diagonalizing

the diffusion tensor at those voxels and substituting the observed values of λ1, λ2, and λ3

into Equation 1.19. I then analyzed these FA data with five distinct approaches, here listed

from least to greatest model complexity:
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Figure 3.6: Mean FA in Region 3

1. A group comparison of regional means

2. A group comparison of voxelwise means

3. An LME with homogeneous between-subject variance and homogeneous residual variance

4. An LME with heterogeneous between-subject variance and homogeneous residual vari-

ance

5. An LME with heterogeneous between-subject variance and heterogeneous residual vari-

ance

3.2.2.1 Group Comparison Of Regional Means For the simplest analysis, I took

a traditional ROI-based approach, as described in Section 1.3.1. For each subject, I first

calculated the mean FA value across the regions of interest. This yielded a single scalar

index for each region for each subject. I then compared the mean values for each region

between ASDs and control participants with a two-sample t-test.

Let Ȳi denote the sample mean FA for subject i in a fixed region, and let C denote the set
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of N0 control participants and A denote the set of N1 ASDs participants. I then calculated:

ȲA =
1

N1

∑
i∈A

Ȳi

ȲC =
1

N0

∑
i∈C

Ȳi

σ2
A =

1

N1 − 1

∑
i∈A

(Ȳi − ȲA)2

σ2
C =

1

N0 − 1

∑
i∈C

(Ȳi − ȲC)2, and

σ2
p =

(N1 − 1)σ2
A + (N0 − 1)σ2

C

N0 +N1 − 2
.

The test statistic for the two-sample t-test is then:

t =
ȲA − ȲC√
σ2
p

(
1
N0

+ 1
N1

) .

This value was compared to a t-distribution with N0 + N1 − 2 degrees of freedom to

determine whether there was a significant regional difference in mean FA between ASDs and

control participants.

3.2.2.2 Group Comparison Of Voxelwise Means The second method I used corre-

sponds to the standard voxelwise approach introduced in Section 1.3.2. In this approach, a

separate two-sample t-test was performed at each voxel in the regions of interest, yielding

a separate t-statistic at each voxel. These can then be mapped directly for each region, or

compared against a t-distribution with N0 +N1−2 degrees of freedom to form p-value maps.
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3.2.2.3 LME With Homogeneous Variance The third method is a linear mixed

effects model with a random intercept and homogeneous group variance, such as described

in Section 2.3. The fixed effects portion of the model included a separate mean fit at each

voxel and an ASDs-group deviation from the mean. The random effects portion of the model

consisted of a region-wide subject-specific random intercept.

Specifically, suppose a region of interest has V voxels, denote the FA for subject i at

voxel j by Yij, and let g be an N × 1 vector of group indicators (gi = 0 for i ∈ C, gi = 1 for

i ∈ A). Then the model is:

Yij = µj + giγj + δi + εij, (3.1)

In Equation 3.1, µj and γj are unknown, fixed parameters, δi ∼ N(0, σ2), and εij ∼ N(0, τ 2).

I will let β = [µ′ γ ′]′ denote the entire vector of fixed effects parameters.

I estimated the model parameters according to the closed-form procedure described in

Section 2.3. That is, letting

XNV×2V =
[
(1N×1 ⊗ IV×V ) (gN×1 ⊗ IV×V )

]
, (3.2)

the fixed effects parameters were given in standard form:

β̂ = (X ′X)−1X ′Y . (3.3)

The variance parameters were estimated according to Equations 2.14 and 2.15:

σ̂2 =
1

(V − 1)NV

N∑
i=1

V∑
j 6=k

(Yij − (µ̂j + giγ̂j))(Yik − (µ̂j + giγ̂j))

τ̂ 2 =
1

NV

N∑
i=1

V∑
j=1

(Yij − (µ̂j + giγ̂j))
2 − σ̂2.

The estimated covariance matrix of the observations Y is:

Σ̂ = IN×N ⊗ (σ̂2JV×V + τ̂ 2IV×V ),

and its inverse is given in closed-form by:

Σ̂
−1

=
1

V τ̂ 2σ̂2 + τ̂ 4
IN×N ⊗

(
(V σ̂2 + τ̂ 2)IV×V − σ̂2JV×V

)
.
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The covariance matrix of the fixed effects estimates, β̂ can thus be calculated as:

Var(β̂) = (X ′Σ̂
−1
X)−1,

and a t-statistic can be calculated for the difference between ASDs and control participants

on FA at each voxel by dividing the appropriate γ coefficient in Equation 3.1 by its standard

error, the square root of the corresponding diagonal element of Var(β̂). These t-statistics

can be mapped directly or compared to a t-distribution on N1 + N2 − 2 degrees of freedom

to obtain p-value maps.

In order to compare this model with the other LME-based approaches via likelihood-ratio

tests, I also calculated the maximized log-likelihood in closed-form as:

−2 logL(Y ; β̂, Σ̂) = −2 log

(
1

(2π)N/2|Σ̂]1/2
exp

(
−1

2
(Y −Xβ̂)′Σ̂

−1
(Y −Xβ̂)

))
= N log(2π) + log(|Σ̂|) +

(
(Y −Xβ̂)′Σ̂

−1
(Y −Xβ̂)

)
(3.4)

= N log(2π) +N log(τ 2V + V σ2τ 2(V−1)) +
(

(Y −Xβ̂)′Σ̂
−1

(Y −Xβ̂)
)
.

3.2.2.4 LME With Heterogeneous Between-Subject Variance The fourth ana-

lytic approach involved fitting an LME very similar to that in Section 3.2.2.3, but allowing

for group heterogeneity in between-subjects variance. Closed-form estimation for such mod-

els was described in Section 2.4.2. Specifically, the model was:

Yij = µj + giγj + (1− gi)δ0i + giδ1i + εij, (3.5)

where g ∈ {0, 1}, δ0 ∼ N(0, σ2
0), and δ1 ∼ N(0, σ2

1). Otherwise, the notation and assumptions

are the same as in Model 3.1.
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The fixed effects portion of this model was estimated as in Equation 3.3. The covariance

parameters are estimated as in Equation 2.24, letting Ŷij = µ̂j + giγ̂j:

τ̂ 2 =
1

N(V − 1)

N∑
i=1

V∑
j=1

(Yij − Ŷij)2

− 1

NV (V − 1)

N∑
i=1

V∑
j=1

V∑
k=1

(Yij − Ŷij)(Yik − Ŷij) (3.6)

σ̂2
0 =

1

NV (V − 1)

(
V N0 + (V − 1)N1

V N0

∑
i∈C

V∑
j=1

V∑
k=1

(Yij − Ŷij)(Yik − Ŷik)

+
1

V

∑
i∈A

V∑
j=1

V∑
k=1

(Yij − Ŷij)(Yik − Ŷik)−
N∑
i=1

V∑
j=1

(Yij − Ŷij)2

)
(3.7)

σ̂2
1 =

1

NV (V − 1)

(
V N1 + (V − 1)N0

V N1

∑
i∈A

V∑
j=1

V∑
k=1

(Yij − Ŷij)(Yik − Ŷik)

+
1

V

∑
i∈C

V∑
j=1

V∑
k=1

(Yij − Ŷij)(Yik − Ŷik)−
N∑
i=1

V∑
j=1

(Yij − Ŷij)2

)
. (3.8)

The estimated covariance matrix of the observations Y is:

Σ̂ = (I − diag(g))N×N ⊗ (σ̂2
0JV×V + τ̂ 2IV×V ) + diag(g)N×N ⊗ (σ̂2

1JV×V + τ̂ 2IV×V ),

where diag(g) is the diagonal matrix whose (i, i)th entry is the group indicator gi. Its inverse

is given in closed-form by:

Σ̂
−1

=
1

V τ̂ 2σ̂2
0 + τ̂ 4

(I − diag(g))N×N ⊗
(
(V σ̂2

0 + τ̂ 2)IV×V − σ̂2
0JV×V

)
+

1

V τ̂ 2σ̂2
1 + τ̂ 4

diag(g)N×N ⊗
(
(V σ̂2

1 + τ̂ 2)IV×V − σ̂2
1JV×V

)
.

The covariance matrix of the fixed effects estimates, β̂ can again be calculated as:

Var(β̂) = (X ′Σ̂
−1
X)−1,

and t-statistic or p-value maps can be produced for the group difference parameters as before.
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The maximized log-likelihood for this model is given by:

− 2 logL(Y ; β̂, Σ̂) = −2 log

(
1

(2π)N/2|Σ̂]1/2
exp

(
−1

2
(Y −Xβ̂)′Σ̂

−1
(Y −Xβ̂)

))
= N log(2π) + log(|Σ̂|) +

(
(Y −Xβ̂)′Σ̂

−1
(Y −Xβ̂)

)
(3.9)

= N log(2π) +N0 log(τ 2V + V σ2
0τ

2(V−1)) +N1 log(τ 2V + V σ2
1τ

2(V−1))

+
(

(Y −Xβ̂)′Σ̂
−1

(Y −Xβ̂)
)
.

3.2.2.5 LME With Combined Heterogeneous Variance The final approach in-

volved fitting another LME analogous to that in Section 3.2.2.4, but allowing for group

heterogeneity in residual variance in addition to heterogeneity in between-subjects variance.

Closed-form estimation for such models was described in Section 2.4.3. Specifically, the

model was:

Yij = µj + giγj + (1− gi)(δ0i + ε0ij) + gi(δ1i + ε1ij), (3.10)

where δ0 ∼ N(0, σ2
0), δ1 ∼ N(0, σ2

1), ε0 ∼ N(0, τ 2
0 ) and ε1 ∼ N(0, τ 2

1 ). Otherwise, the

notation and assumptions are the same as in Model 3.1.

The fixed effects portion of this model was estimated as in Equation 3.3. The covariance

parameters are estimated as in Equation 2.27:

σ̂2
0 =

1

N0V (V − 1)

∑
i∈C

V∑
j 6=k

(Yij − Ŷij)(Yik − Ŷik) (3.11)

τ̂ 2
0 =

1

N0V

∑
i∈C

V∑
j=1

(Yij − Ŷij)2 − σ̂2
0 (3.12)

σ̂2
1 =

1

N1V (V − 1)

∑
i∈A

V∑
j 6=k

(Yij − Ŷij)(Yik − Ŷik) (3.13)

τ̂ 2
1 =

1

N1V

∑
i∈A

V∑
j=1

(Yij − Ŷij)2 − σ̂2
1. (3.14)

The estimated covariance matrix of the observations Y is:

Σ̂ = (I − diag(g))N×N ⊗ (σ̂2
0JV×V + τ̂ 2

0IV×V ) + diag(g)N×N ⊗ (σ̂2
1JV×V + τ̂ 2

1 IV×V ).

76



Its inverse is given in closed-form by:

Σ̂
−1

=
1

V τ̂ 2
0 σ̂

2
0 + τ̂ 4

0

(I − diag(g))N×N ⊗
(
(V σ̂2

0 + τ̂ 2
0 )IV×V − σ̂2

0JV×V
)

+
1

V τ̂ 2
1 σ̂

2
1 + τ̂ 4

1

diag(g)N×N ⊗
(
(V σ̂2

1 + τ̂ 2
1 )IV×V − σ̂2

1JV×V
)
.

The covariance matrix of the fixed effects estimates, β̂ can again be calculated as:

Var(β̂) = (X ′Σ̂
−1
X)−1,

and t-statistic or p-value maps can be produced for the group difference parameters as before.

The maximized log-likelihood for this model is given by:

− 2 logL(Y ; β̂, Σ̂) = −2 log

(
1

(2π)N/2|Σ̂]1/2
exp

(
−1

2
(Y −Xβ̂)′Σ̂

−1
(Y −Xβ̂)

))
= N log(2π) +N0 log(τ 2V

0 + V σ2
0τ

2(V−1)
0 ) +N1 log(τ 2V

1 + V σ2
1τ

2(V−1)
1 )

+
(

(Y −Xβ̂)′Σ̂
−1

(Y −Xβ̂)
)
. (3.15)

3.2.3 Results

Below, I describe the results of the FA analyses, region-by-region.

3.2.3.1 Region 1 Figure 3.7 displays the maps of t-statistics summarizing group differ-

ence at each voxel of the splenium region from each of the five analytic methods discussed in

Section 3.2.2, in order of model complexity. Figure 3.8 displays the corresponding maps of

p-values. Note that the regional mean model (Section 3.2.2.1) yields a single t-statistic and

p-value. These have been converted to maps by assigning the value of the regional t-statistic

or p-value to each voxel in the region.

The direction of the differences for the t-statistic maps are ASDs mean - control mean,

so that blue blocks reflect voxels in which control participants had a higher mean FA than

ASDs participants, and red blocks reflect voxels in which the ASDs mean FA was higher.

Significant p-values (p < .05) are displayed in red on the p-value maps.

Model 1 yielded t118 = −1.38, p = .17, indicating no significant difference between the

groups in mean FA averaged over the whole region. The overall patterns of t-statistics
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Figure 3.7: Group difference t-statistics for FA in Region 1
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Figure 3.8: Group difference p-values for FA in Region 1
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are comparable between Models 2 - 5, with mean FA for control participants higher than

for ASDs participants in the main body of the splenium, and mean FA higher for ASDs

participants in the anterior boundary of the splenium.

There are, however, some interesting differences among the models. The t map for Model

2 (voxelwise t-tests) is less smooth than those for the Models 3 – 5: Contrasts between

neighboring voxels tend to be more abrupt for Model 2 than for the LME-based methods,

especially in the lower part of the figure (posterior boundary of the splenium). And, when

looking at the p-value maps, the voxels with significant group differences for Models 3 – 5

form a roughly bilaterally symmetric pattern in the densest part of the splenium. On the

other hand, the areas of significant difference under Model 2 are less coherent. An echo of

the bilateral mid-splenium difference is still visible, but the area of largest difference is at

the upper-left portion of the figure, corresponding to the boundary between the splenium

and adjacent structures.

The differences among the three LME-based approaches (Models 3 – 5) are much more

subtle. The t maps are visually indistinguishable, and the p-value maps are also very similar,

although a few voxels that show significant group difference under Models 3 and 4 are no

longer significant under Model 5. According to likelihood ratio tests, Model 5 provides a

significantly better fit than Model 3 (χ2
2 = 16.91, p = .0002) or Model 4 (χ2

1 = 16.73, p <

.0001), whereas there is no evidence of a difference in fit between Models 3 and 4 (χ2
1 =

0.18, p = .67).

3.2.3.2 Region 2 The results for the region incorporating the genu are displayed in

Figures 3.9 (t-statistic maps) and 3.10 (p-value maps). Model 1 shows a significant overall

regional group difference in FA (t118 = −2.48, p = .02), with higher mean FA for control

participants than for ASDs participants. Models 2 – 5 also show increased FA for control

relative to ASDs participants, particularly in the left hemisphere (right side of the figures).

Interestingly, the magnitude of the effect is substantially attenuated for the voxelwise t-

test approach (Model 2) relative to the LME-based approaches (Models 3 – 5). This is

particularly evident in the p-value map, where only three voxels of the genu (and one voxel

anterior to the genu) show significant group differences, compared to approximately 20 voxels
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with significant group differences for each of the LME-based models.

As with the Region 1 analyses, the differences among the LME-based approaches are quite

subtle. Likelihood ratio tests indicate that incorporating group heterogeneity in variance is

justified: χ2
1 = 6.00, p = .01 for Model 3 vs. Model 4, χ2

2 = 50.16, p < .0001 for Model 3 vs.

Model 5, and χ2
1 = 44.15, p < .0001 for Model 4 vs. Model 5. Thus, we would have greatest

confidence in the results for the model incorporating group heterogeneity in both between-

subject and residual variance parameters, summarized in the bottom panels of Figures 3.9

and 3.10.

3.2.3.3 Region 3 Figure 3.11 displays the t statistics for the ventricular region as calcu-

lated by the five models under consideration, and Figure 3.12 shows the associated p-values.

There was no overall regional difference in mean FA according to Model 1 (t118 = −1.02, p =

.31). Models 2 – 5 show no group differences in the ventricles themselves, as is appropriate.

The mean FA is higher in the control group than the ASDs group in the anterior portion of

the figure, bordering on the genu. This difference is significant under the LME-based models,

not under voxelwise t-tests. There is also a trend toward the mean FA being higher for the

ASDs group than for controls in an anterior – posterior strip in the lower medial part of the

figure. This strip may correspond to the septum pellucidum, which separates the anterior

horns of the lateral ventricles.

There are no visually obvious differences among Models 3, 4 and 5, apart from a small

number of voxels above or below threshold. Likelihood ratio tests indicate no difference

between Models 3 and 4 (χ2
1 = 0.42, p = .52). Model 5, however, is superior to both

(χ2
2 = 14.78, p = .0006 vs. Model 3 and χ2

1 = 14.36, p = .0002 vs. Model 4).

3.3 FULL TENSOR ANALYSES

The analyses in Section 3.2 demonstrated the application of closed-form LME based methods

to the analysis of fractional anisotropy, which is the most widely-used of the scalar indices

derived from diffusion tensor data. While this is an important demonstration, there is an
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Figure 3.9: Group difference t-statistics for FA in Region 2
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Figure 3.10: Group difference p-values for FA in Region 2
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Figure 3.11: Group difference t-statistics for FA in Region 3
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Figure 3.12: Group difference p-values for FA in Region 3
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inherent limit to the sensitivity of any approach based on only one tensor-derived scalar index

to detect white matter abnormalities. Diffusion tensors are six dimensional and any scalar

reduction entails a loss of information, and there does not yet appear to be any principled

method by which to identify which scalar index or indices will be sensitive to important

group differences.

In this section, I will describe analyses I performed to compare the entire six-dimensional

tensor data between groups. This approach is potentially sensitive to any white matter

abnormality that can be captured by the tensor model.

The first step was to apply a decorrelating transformation to the tensor elements in order

to justify analyzing them separately. I then applied five multivariate analytic approaches

analogous to the univariate approaches in Section 3.2 to the decorrelated tensor data for

each region described in Section 3.2.1, obtaining in each case regional maps of T 2 statistics

and p-values.

3.3.1 Decorrelating Transformation

Because the tensor elements are not statistically independent, including all six together

as dependent variables in a single LME model would require estimation of inter-element

covariance terms, greatly increasing the complexity and the computational burden of the

model. For that reason, I employed the transformation described in Section 2.1 to decorrelate

the tensor elements. This allowed me to treat the transformed tensor elements as independent

in each model, considerably simplifying the analysis.

Specifically, suppose a vectorized diffusion tensor is given by:

d = [Dxx Dyy Dzz Dxy Dxz Dyz]
′.
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Then the transformed tensor elements given by:

d̃ =



D̃xx

D̃yy

D̃zz

D̃xy

D̃xz

D̃yz


=



1√
3

1√
3

1√
3

0 0 0

1√
2
− 1√

2
0 0 0 0

1
2
√

2
1

2
√

2
− 1√

2
0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


d

are independent under the assumption of rotational invariance of the gradient sampling

scheme. The elements of d̃ served as the dependent variables in the analyses described

below.

3.3.2 Data Analyses

The data analyses for the full tensor comparisons were closely analogous to those for frac-

tional anisotropy described in Section 3.2.2. The difference is that these are analyses with

multiple dependent variables, and the methods used previously had to be adapted to the

multivariate context. The five methods employed were:

1. A group comparison of regional multivariate means

2. A group comparison of voxelwise multivariate means

3. A series of LMEs with homogeneous between-subject variance and homogeneous residual

variance

4. A series of LMEs with heterogeneous between-subject variance and homogeneous residual

variance

5. A series of LMEs with heterogeneous between-subject variance and heterogeneous resid-

ual variance
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3.3.2.1 Regional Multivariate Means The simplest analysis was a direct multivari-

ate analogue of the region-wise t-test described in Section 3.2.2.1. To accommodate the

multivariate nature of the transformed tensor data, I used a two-sample Hotelling’s T 2 test.

Specifically, let

d̄i = [d̄i1 d̄i2 d̄i3 d̄i4 d̄i5 d̄i6]
′

denote the sample mean of the vector of transformed tensor elements for subject i in a single

region, and let d̄C and d̄A denote the group means of these mean vectors for the control and

ASDs groups, respectively. I then calculated the pooled variance of each transformed tensor

element, dl, as

Var(dl) =
1

N0 +N1 − 2

(∑
i∈C

(d̄li − d̄lC)2 +
∑
i∈A

(d̄li − d̄lA)2

)
,

and these were combined into a variance matrix as:

W = diag(Var(d1), . . . ,Var(d6)).

The two-sample T 2 statistic was then given by

t2 =
N0N1

N
(d̄A − d̄C)′W−1(d̄A − d̄C). (3.16)

This quantity is proportional to a statistic with an F distribution, and so I compared

f =
N − 7

6(N − 2)
t2

to an F -distribution on (6, N − 7) degrees of freedom to obtain p-values.

3.3.2.2 Multivariate Voxelwise Means The second approach to whole-tensor com-

parisons was a direct multivariate analogue to the voxelwise scalar analyses introduced in

Section 3.2.2.2. Rather than performing two-sample univariate t-tests at each voxel, I per-

formed two-sample T 2 tests, using the calculations described above in Section 3.3.2.1, but

substituting individual voxel values rather than regional means. This allowed me to create

maps of T 2 statistics and corresponding p-values.
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3.3.2.3 Multiple Linear Mixed Effects Models Approaches 3 - 5 in the list above

were direct extensions of the models described in Sections 3.2.2.3 – 3.2.2.5. The novelty

is that, since there are six distinct dependent variables, I fit a separate model for each

transformed tensor element under each approach.

For simplicity, consider the homogeneous LME (approach 3). The basic model I used was

that given in Equation 3.1, but I fit a separate model for each transformed tensor element

dl:

dijl = µjl + giγjl + δil + εijl, (3.17)

where dijl is transformed tensor element l at voxel j for subject i, µjl is the overall mean of

element l at voxel j, gi is a group indicator as before, γjl an ASDs group deviation from the

mean for element l at voxel j, δil ∼ MVN(0, σ2
l ) is a subject-specific random intercept for

element l for subject i, and εijl ∼ MVN(0, τ 2
l ) is a residual error term.

The estimation for each of these six models was conducted as in Section 3.2.2.3. This

yielded an estimate of ASDs - control group difference, γ̂jl, for each voxel and each dependent

variable, along with the variance of this estimate, Var(γ̂jl). In order to summarize the group

tensor differences at each voxel, I combined these estimates into a single voxelwise T 2 statistic

by setting:

γ̂j = [γ̂j1 . . . γ̂j6]
′,

and

Γ̂j =



Var(γ̂j1) 0 0 0 0 0

0 Var(γ̂j2) 0 0 0 0

0 0 Var(γ̂j3) 0 0 0

0 0 0 Var(γ̂j4) 0 0

0 0 0 0 Var(γ̂j5) 0

0 0 0 0 0 Var(γ̂j6)


.

I then formed a T 2 statistic for each voxel as:

t2j = γ̂ ′jΓ̂
−1

j γ̂j

and compared

f =
N − 7

6(N − 2)
t2
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to an F -distribution with (6, N-7) degrees of freedom to obtain p-value maps.

For the scalar index analyses in Section 3.2, I relied on likelihood ratio tests to determine

whether heterogeneous variance models were justified by the data. One complication of

using multiple univariate models to test for a difference in multivariate outcomes is that it

is no longer possible to use a single likelihood ratio test to compare nested models. To work

around this difficulty, I extended the likelihood ratio test to this context in the following way.

Suppose we wish to compare Model A and Model B (with Model B nested within Model A)

for a single transformed tensor element, dl. We would form the likelihood ratio statistic:

LRl = 2
(

log(LA(dl; β̂, Σ̂))− log(LB(dl; β̂, Σ̂))
)
,

which has an asymptotic χ2 distribution on p degrees of freedom (the difference in the number

of parameters between Models A and B). Noting that the sum of statistics with independent

χ2 distributions also has a χ2 distribution with degrees of freedom equal to the sum of the

degrees of freedom of the summands, I formed the statistic:

LRd =
6∑
l=1

LRl, (3.18)

which has an asymptotic χ2 distribution on 6p degrees of freedom. This statistic can be

used to test the null hypothesis that Model A and Model B provide equivalent fits to the six

dependent variables.

3.3.3 Results

The following sections summarize the results for the whole-tensor comparison, one region at

a time.
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Figure 3.13: Group tensor difference T 2 statistics in Region 1
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Figure 3.14: Group tensor difference p-values in Region 1
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3.3.3.1 Region 1 The maps of T 2 statistics obtained from each of the models described

in Section 3.3 for the splenium are displayed in Figure 3.13 and the associated p-values are

shown in Figure 3.14.

Model 1 shows an overall regional difference in diffusion characteristics between ASDs

and control participants (f6,113 = 2.50, p = .03). Model 2 shows a very scattered pattern

of group difference, with very blurry boundaries between the dense white matter of the

splenium and surrounding tissue. The p-value map shows scattered significant voxelwise

differences in mean diffusion properties.

Models 3 – 5 reveal a much more cohesive pattern of group differences, with roughly

bilaterally symmetric and largely spatially contiguous group differences in the splenium, as

well as a right-hemisphere (left side of the figure) region anterior to the splenium. The

differences among the LME models are visually subtle and are largely in the direction of

attenuation of group difference effects with the incorporation of increasing heterogeneity,

although not uniformly so.

The likelihood ratio test described in Equation 3.18 indicated significant improvement

in fit with increased heterogeneity: χ2
6 = 17.40, p = .008 for Model 4 vs. Model 3, χ2

12 =

280.58, p < .0001 for Model 5 vs. Model 3, and χ2
6 = 263.18, p < .0001 for Model 5 vs. Model

4.

3.3.3.2 Region 2 Figure 3.15 displays the maps of T 2 statistics for each model for the

genu region; associated p-values are shown in Figure 3.16.

Model 1 shows an overall significant regional difference in mean diffusion properties

(f6,113 = 4.78, p = .0002). The T 2 map for Model 2 shows a somewhat confused pattern of

group difference. The p-value map indicates that there are significant group differences in

a region of the genu in the left hemisphere as well as two somewhat distinct clusters in the

right hemisphere, including significant group difference in a posterior region that overlaps the

anterior portion of the right lateral ventricle. Group differences in diffusion in the ventricles

make very little sense, and these results are likely irreproducible.

Models 3 – 5 show a much more coherent pattern of group difference, with the greatest

difference in the right hemisphere of the genu, but also greater difference in the left hemi-
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Figure 3.15: Group tensor difference T 2 statistics in Region 2
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Figure 3.16: Group tensor difference p-values in Region 2
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sphere than was shown by Model 2. There is no evidence of group difference in the lateral

ventricles with the LME-based approaches. The generalized likelihood ratio test defined in

Equation 3.18 shows no evidence that Model 4 is better than Model 3 (χ2
6 = 6.22, p = .40),

but there is evidence that including heterogeneous residual variance provides a significantly

better fit: χ2
12 = 123.49, p < .0001 for Model 3 vs. Model 5 and χ2

6 = 117.27, p < .0001 for

Model 4 vs. Model 5.

3.3.3.3 Region 3 Figure 3.17 displays the maps of T 2 statistics for each model for the

ventricular region, and Figure 3.18 contains the associated p-values.

According to Model 1, there is no overall regional difference in diffusion between ASDs

and control participants (f6,113 = 1.76, p = .11). Model 2 shows a patchwork pattern of group

differences in diffusion, including plausible significant bilateral differences in the anterior horn

of the internal capsule, and some significant differences in the upper portion of the figure

where the region intersects the posterior portion of the genu. However, there are also voxels

that show significant differences in the right lateral ventricle (left side of the figure), and

the ventricles overall are not well-defined in the figure, with many voxels trending toward

significant differences.

This is not the case in Models 3 – 5, which yielded clearly defined patterns of group

difference, with significant differences in the portions of the figure bordering on the genu and

the internal capsule, and no suggestion of significant differences in diffusion in the lateral

ventricles. There is also a medial strip of group difference that may correspond to the septum

pellucidum.

As with the previous analyses, there is little visible difference among Models 3, 4 and 5.

According to the generalized likelihood ratio test (Equation 3.18), there is again no significant

difference between Models 3 and 4 (χ2
6 = 1.80, p = .94), but Model 5 provides a significantly

better fit than Model 3 (χ2
12 = 228.49, p < .0001) or Model 4 (χ2

6 = 226.68, p < .0001).
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Figure 3.17: Group tensor difference T 2 statistics in Region 3
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Figure 3.18: Group tensor difference p-values in Region 3
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3.4 DISCUSSION

The results presented in this chapter demonstrate that LMEs were able to detect plausible

and consistent group differences in white matter anatomy between a large sample of individ-

uals with ASDs and comparable controls. In analyses involving the whole tensor information

as the dependent variable, I detected significant differences in general diffusion properties bi-

laterally in the body of the splenium (Figure 3.14) and in the genu (Figure 3.16), while there

was the predicted absence of group difference in the lateral ventricles (Figure 3.18). There

was qualitative evidence of asymmetry in the patterns of group difference in the splenium

and genu, which may prove to be an interesting area of future investigation.

In the analyses with FA as the dependent variable, I found significantly increased anisot-

ropy in the control group relative to the participants with ASDs bilaterally in the splenium

and the genu (Figures 3.8 and 3.10), and no evidence of differences in anisotropy in the

lateral ventricles.

These findings are in broad agreement with those reported on the same sample by Alexan-

der et al. (2007), who found decreased anisotropy in ASDs relative to control populations in

both the genu and the splenium using an ROI-based analysis.

3.4.1 LMEs Compared To Traditional Approaches

Each set of LME-based analyses I performed was accompanied by parallel ROI-based (Model

1) and voxelwise (Model 2) analyses. The ROI-based analyses provide qualitatively different

information than the LME-based analyses, so a direct comparison of the results isn’t neces-

sarily possible. The ROI-based approach provides a single overall indication of the presence

of group difference over a whole region, while the LME-based approaches yield a distinct

measure of group difference at each voxel in the region. In the FA analyses, Model 1 showed

no overall significant difference between ASDs and control participants in the splenium or the

ventricular area, while Models 3 – 5 revealed significant differences at the level of individual

voxels in the densest white matter portions of the regions. And, in the genu, while Model 1

revealed an overall decrease in FA in ASDs relative to controls, Models 3 – 5 yielded a more
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nuanced picture, with significant difference in anisotropy in the center of the genu, but less

difference toward the exterior of the region. The comparison between Model 1 and Models

3 – 5 is much the same in the multivariate whole-tensor comparisons as in the FA analyses.

The Model 2 analyses provide the same sort of voxelwise quantitative information as

Models 3 – 5, and it is here that we see the most interesting contrasts between traditional

methods and LME-based approaches. In the FA analyses, in all three regions considered,

the Model 2 analysis produced a less coherent picture of significant group difference. Models

3 – 5 showed consistent group differences in the densest white matter of each region. Model

2 showed virtually no areas of significant group difference in the genu, including the portion

of the genu abutting the ventricular region (Region 3). In Region 1, Model 2 revealed a few

voxels with significant group difference in the densest part of the splenium, but also showed

surprising group differences in parts of the region outside of the splenium.

In the whole-tensor analyses, the LME-based approaches were more sensitive than the

voxelwise analysis to overall group differences in diffusivity in the white matter tracts in

Regions 1 and 2. In both cases, the voxels with significant group difference under Model 2

were a subset of those under Models 3 – 5, and showed less spatial coherence. In Region 3,

Model 2 was not sensitive to group differences in the part of the region abutting the genu or

in the septum pellucidum, and did show group differences in two voxels of the right lateral

ventricle.

The results justify LME-based approaches as a useful alternative to traditional ROI or

voxelwise analyses. Models 3 – 5 each showed greater and more cohesive areas of group

difference than Model 2, both in univariate analyses of FA and multivariate analyses of the

whole tensor. And each provides more nuanced information than Model 1. Statistically,

the strength of LMEs relative to voxelwise t-tests in this context is that the LMEs borrow

strength across the whole region to estimate variance components, while the voxelwise anal-

yses require estimation of a distinct pooled variance at each voxel. Naturally, some of these

pooled variance estimates will be too low, potentially leading to spurious findings of group

difference, and some estimates will be too high, leading to voxelwise Type II errors.
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3.4.2 Full Tensor Analyses Compared To FA Analyses

The standard approach to group comparisons of DTI data is to use ROI or voxelwise methods

with one or more tensor-derived scalar indices as the dependent variable(s). I have shown

the utility of LME-based approaches in this context by performing univariate analyses of

FA. I have also performed a series of multivariate analyses comparing all six dimensions of

diffusion information encoded in the tensors between groups. Multivariate and univariate

approaches each have strengths and weaknesses, and it is worthwhile to discuss these in light

of the results presented in this chapter.

We saw the main weakness of the univariate approach in Sections 2.1 and 3.3: any

single tensor-derived scalar index necessarily entails a loss of information from the full six-

dimensional diffusion tensor. Thus, it is entirely possible that genuine group differences

could be overlooked by focusing attention on only one or a small number of tensor-derived

scalar indices. The major strength of univariate analyses of chosen scalar indices is ease of

interpretation. Several of the most popular tensor-derived indices (see Section 1.2.2.3) have

simple interpretations in terms of the geometry of the underlying diffusion. Furthermore,

the fact that analyses of FA and mean diffusivity in particular have become somewhat

conventional is itself a recommendation for continuing to perform such analyses, in order to

have a firm ground for comparing new results with previous literature.

The strengths and weaknesses of the multivariate approach are exactly complementary

to those of scalar analyses. By analyzing all six transformed tensor components, it is possi-

ble to identify the location of group differences of any sort in diffusion properties captured

by the tensor model, potentially including differences in anisotropy, diffusivity, shape and

orientation of the diffusion ellipsoid. However, having identified an overall difference in mul-

tivariate means among the transformed tensor elements at a single voxel, the interpretation

of this difference is non-trivial. While it would be a simple matter to follow up an overall

significant multivariate comparison with six individual voxelwise comparisons of the trans-

formed tensor elements, this would gain us little in terms of interpretability. As described in

Section 2.1, the first transformed tensor element is proportional to mean diffusivity and is

thus potentially directly interpretable to practitioners, but the remaining five transformed
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elements have much more problematic interpretations. The second and third have a loose

interpretation as anisotropy indices, but they are sensitive only to differences in amount of

diffusion between cardinal directions of the scanner frame of reference. Thus, they are not

rotationally invariant, meaning that a change of coordinate system would lead to a change

in value of these indices. And the final three elements are the untransformed off-diagonal

elements of the original tensor, and have no useful direct interpretation in terms of diffusion

properties.

The tension between the strengths and weaknesses of univariate and multivariate ap-

proaches is evident in the results presented in this chapter. In each of the three regions,

the voxels that showed significant group differences in anisotropy (univariate FA analyses)

were a subset of those that showed significant multivariate group differences. That is, the

multivariate approach was more sensitive to group differences in local diffusion properties.

However, while we can directly interpret the FA results as indicating voxels where control

participants had (usually) higher anisotropy than ASDs participants, and therefore likely

more compact, well-organized and/or highly myelinated white matter fibers, we have no

such simple interpretation for the voxels shown to have significant multivariate group differ-

ences. These observed differences may be due to anisotropy, but may just as well be due to

diffusivity or tensor orientation. Nor is it meaningful to speak of the direction of difference

in the multivariate analyses.

3.4.3 Homogeneous Compared To Heterogeneous Variance Models

One of the novelties of the data analytic approach in this chapter was the application of

LME models with group heterogeneity in variance structure to DTI data. In the univariate

analyses of FA as well as the multivariate analyses of the whole tensor data, I fit three

different classes of LMEs. Model 3 assumed homogeneous variance between groups for

both the within- and between-subject variance components, Model 4 assumed homogeneous

variance for within-subject variance, but group heterogeneity in between-subjects variance,

and Model 5 assumed group heterogeneity in both within- and between-subject variance

structure.
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The differences in the several p-value maps obtained from each of these models were

visually quite subtle. In most cases, there was a slight attenuation of estimated group differ-

ence effects with increasing variance heterogeneity, with a small number of voxels crossing

the threshold from significant to non-significant in the transition from Model 3 to Model 5.

Table 3.2: Likelihood ratio tests comparing FA analyses under Models 3–5

Region 1 Region 2 Region 3

Comparison χ2 df p χ2 df p χ2 df p

Model 3 vs. Model 4 0.18 1 .67 6.00 1 .01 0.42 1 .52

Model 3 vs. Model 5 16.91 2 .0002 50.16 2 <.0001 14.78 2 .0006

Model 4 vs. Model 5 16.73 1 <.0001 4.15 1 <.0001 14.36 1 .0002

Table 3.3: Likelihood ratio tests comparing full tensor analyses under Models 3–5

Region 1 Region 2 Region 3

Comparison χ2 df p χ2 df p χ2 df p

Model 3 vs. Model 4 17.40 6 .008 6.22 6 .40 1.80 6 .94

Model 3 vs. Model 5 280.58 12 <.0001 123.49 12 <.0001 228.49 12 <.0001

Model 4 vs. Model 5 263.18 6 <.0001 117.27 6 <.0001 226.68 6 <.0001

Tables 3.2 and 3.3 display the likelihood ratio comparisons between the three LME based

models for the FA and full tensor analyses, respectively. In every region, for both univariate

and multivariate analyses, Model 5 provided a significantly better fit to the data than either

Models 4 or 3 according to likelihood ratio tests. Model 4 provided a significant improvement

in fit to Model 3 in some cases and not in others. This suggests that incorporation of group

heterogeneity in variance structure, and especially in residual variance, is justified, and that

the results reported from Model 5 are the most reliable of those presented in this chapter.
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3.4.4 Conclusions

Based on these results, I propose a hybrid two-stage approach to DTI group comparisons

in future analyses. The first stage would be an LME-based multivariate analysis such as

performed in Section 3.3. The goal of this stage would be to localize areas of group difference

in overall diffusion properties. Once regions displaying overall group differences had been

identified, the second-stage analysis would involve performing a series of univariate analyses

of tensor-derived scalar indices within those regions in order to determine the nature of the

group difference in an interpretable framework. This two-stage approach is analogous to

the common statistical practice of comparing multivariate means with a MANOVA, and

following significant omnibus MANOVA results with univariate ANOVA to more specifically

isolate the group differences. One advantage of this approach over the analysis of scalar

indices only is that the first-stage multivariate analysis provides some protection against

inflation of Type I error due to multiple comparisons (in this case, comparisons of multiple

scalar indices). The other major advantage is that, as we have seen in this chapter, the

multivariate comparison may be sensitive to group differences that are not apparent in the

given choice of tensor-derived scalars. These multivariate differences, while not directly

interpretable on their own, may point the way for future investigation or for consideration

of a greater variety of scalar indices in the regions involved.
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4.0 GENERALIZED ICC IN NEUROIMAGING MODELS

My research involves the application of linear mixed effects models (LMEs) to the analysis

of DTI datasets. In previous chapters, my focus was on using LMEs to perform group com-

parisons in order to address research questions involving the identification of white matter

abnormalities associated with psychiatric disorders. In this chapter, I instead address the

evaluation of reliability in DTI datasets.

The reliability investigations are connected with the previous chapters in that I inves-

tigate a generalized intraclass correlation coefficient (ICC) based on variance components

estimated from LMEs. I present analytic results showing that the generalized ICC is ro-

bust to misspecification of the random effects structure of mixed models, and simulation

results that demonstrate the generalized ICC is also robust to misspecification of the resid-

ual covariance structure. These properties make the generalized ICC an attractive choice for

quantifying reliability in an exploratory model-building framework.

4.1 RELIABILITY

There are many different contexts in which quantifying reliability is important. However,

the literature to date on reliability in DTI analyses has been fairly sparse, and focused

on simple techniques. For instance, a few studies have assessed reliability in the sense of

within-subject, between-scan reproducibility of a small number of scalar indices, using the

coefficient of variation to quantify reproducibility[20, 36].
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4.1.1 Local Spatial Reliability

In this chapter, I present an application of the generalized ICC for quantifying and com-

paring the local spatial reliability of tensor-derived scalar indices. As discussed in Section

1.2.2.3, investigators exploring white matter abnormalities with DTI typically use summary

statistics calculated from one or more scalar indices (formally, scalar-valued tensor function-

als) to quantify important aspects of white matter architecture. There are many such indices

available, most of which fit into one of three broad classes: diffusivity indices (e.g. mean dif-

fusivity, Frobenius norm), anisotropy indices (e.g. fractional anisotropy, relative anisotropy,

volume ratio) and shape indices (e.g. Westin’s coordinates, tensor mode)[16, 31, 75, 95].

Although indices from these three categories are not independent (shape and anisotropy

indices in particular are closely related), it is generally assumed that measures from each

category reflect functionally distinct aspects of white matter neuroanatomy. For a given re-

search question, it may be clear whether data analysis should focus on diffusivity, anisotropy,

and/or shape. In many cases, it is appropriate to perform analyses involving more than one

of these categories.

What is generally less clear is which representative of a given category should be used in a

particular analysis. Fundamental properties of the indices can help inform this decision. For

example, fractional anisotropy is more sensitive to variability at the low end of the anisotropy

spectrum than is the volume ratio, and so might be more appropriate for analyzing cortical

white matter microstructure and its abnormalities [45]. In practice, however, such properties

seem to provide inadequate guidance for data analyses, and the choice of which scalar index

to use within a given class appears to be driven more by external forces such as software

availability and laboratory tradition than by intrinsic properties of the indices themselves or

of the underlying research questions.

Empirical evidence of differences in reliability among scalar indices would provide addi-

tional practical guidance as to the choice of index for a given problem. In this context, I am

interested in quantifying the local spatial reliability of scalar indices; that is, in quantifying

how much variability in scalar indices is due to individual differences vs. how much is due

to within-subject variability. Since within-subject variability in white matter characteris-

106



tics certainly swamps between-subject differences on the scale of the entire brain, I examine

reliability in very localized regions (e.g., 3×3×3 voxel).

A model-based approach to quantifying such reliability is potentially advantageous, in

that it may allow us to calculate a reliability index in the presence of complicated fixed ef-

fects structures, multiple sources of between-subject variability, and spatially autocorrelated

residuals. However, it is not immediately obvious how to generalize traditional reliability

indices to a mixed effects model context, and how changes in the structure of such mod-

els would affect reliability estimates. I address these issues in this chapter. Although the

focus here is on DTI, these reliability investigations are very generally applicable to other

correlated data.

4.1.2 Other Applications

Although the emphasis in this chapter is on local spatial reliability, there are many other

potential applications of a generalized approach to calculating reliability for neuroimaging

data. These include assessment of test-retest reliability and inter-rater reliability. In the

context of DTI, evaluation of test-retest reliability could be very useful in understanding

the variance attached to individual scans of subjects, and might well be found to depend

on equipment, gradient encoding scheme, and the population under consideration. Inter-

rater reliability in this context could be used to quantify variability in scans due to different

scanners, or different processing streams.

4.2 INTRACLASS CORRELATION COEFFICIENT BACKGROUND

The intraclass correlation coefficient (ICC) is a standard approach to inter-rater reliability

and test-retest reliability (in the case of more than two timepoints)[66]. For instance, in the

context of inter-rater reliability in which N judges provide ratings on n targets, the ICC

represents the average within-judge correlation across targets.
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4.2.1 ICC Definition

The ICC is typically defined in terms of the variance parameters in the one-way random

effects ANOVA model as the ratio of the between-subject variance to the total variance.

Suppose we have N subjects each with n observations. Then the model is:

Y s = µ1n + αs1n + εs, (4.1)

where Y s is the vector of observed responses for the sth subject, µ is the population mean,

αs is a subject-level random intercept, and εs is a vector of residual errors. It is typi-

cally assumed that αs ∼ N(0, σ2
α), εs ∼ N(0, τ 2In), and that α and ε are independent.

These assumptions induce a compound symmetric covariance structure on the observations:

Var(Y i) := Σ = τ 2In + σ2
αJn, where Jn = 1n1

′
n. In this context, the ICC, ρ, is defined as:

ρ =
σ2
α

σ2
α + τ 2

. (4.2)

Lange, Jones and Pierpaoli (2004) used this model in DTI data analysis for the first time,

leading to more efficient Empirical Bayes estimates of individual and population tensor

fields[53].

4.2.2 ICC Estimation

There are several estimators of ρ. The classical ANOVA estimator is

ρ̂a =
BMS−WMS

BMS + (N − 1)WMS
, (4.3)

where

BMS =
N∑
s=1

n

N
(Ȳs. − Ȳ..)2

denotes the between-subject mean square,

WMS =
N∑
s=1

n∑
t=1

1

N(n− 1)
(Yst − Ȳs.)2

denotes the within-subject mean square, Ȳs. =
∑n

t=1 Yst/n and Ȳ.. =
∑N

s=1

∑n
t=1 Yst/(nN).

ρ̂a is probably the most widely described estimator (for instance, see Shrout and Fleiss
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(1979)[86]). Equation 4.3 assumes a balanced design, but the estimator can be algebraically

extended to accommodate unbalanced designs[27]. The ANOVA estimator has also been

extended to the ANCOVA model with one covariate by Stanish and Taylor[88], but further

generalizations in this direction are not straightforward.

Donner and Koval (1980)[28] derived the likelihood equation for ρ, which can be opti-

mized numerically to obtain the maximum likelihood estimate,

ρ̂m = min
ρ
M(1 + log σ2 + log 2π) + (M −N) log(1− ρ) +

N∑
s=1

log(1 + (ns − 1)ρ),

where M =
∑N

s=1 ns. In the balanced data case (ns = n,∀s), ρ̂a = ρ̂m.

Another approach is to obtain ML or REML[35] estimates of the variance components

σ̂2
α and τ̂ 2 using standard techniques (i.e., σ̂2

α = (BMS − WMS)/n and τ̂ 2 = WMS for

balanced cases, the EM algorithm for unbalanced and/or incomplete cases[25]) and construct

a ‘variance components’ estimator, ρ̂vc = σ̂2
α/(σ̂

2
α + τ̂ 2). One advantage of this approach is

that it is applicable to models with arbitrarily more complicated fixed effects structures than

that in Equation 4.1. Lange and Ryan (1989) corrected for “plug-in” effects of this type in

LME models[55].

Although the ANOVA and variance components reliability estimators are sensible in

many simple applications, none are designed or appropriate for more complex models in-

volving correlated data, complex fixed effects structures, and covariance structures other

than compound symmetry. Since models for neuroimaging data often exhibit these features,

a more general approach is needed.

4.2.3 Generalized ICC

The alternative to the ANOVA-based formulation I develop is based on the proposal by

Kistner and Muller (2004)[47], who defined a generalized intraclass correlation coefficient

based on the covariance matrix of the observations, Σ:

ρ =
[1′nΣ1n − Tr(Σ)]/n(n− 1)

Tr(Σ)/n
. (4.4)
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Equation 4.4 can be interpreted as the ratio of the average of the off-diagonal elements

of Σ to the average of its diagonal elements or, in other words, the ratio of the average

covariance among within-subject observations to the average variance. As an estimator of

ρ, Kistner and Muller proposed replacing Σ in Equation 4.4 with its maximum likelihood

estimate, namely the sample covariance matrix S. They derived the exact distribution of ρ̂

defined in this way.

Unlike the quantities described previously, the generalized ICC can be calculated for

any covariance matrix Σ and thus is potentially applicable to more general random effects

structures than that in Equation 4.1. In particular, ρ̂ can be calculated from model-based

estimates of Σ̂ in mixed-effects models with arbitrary random effects and residual covariance

structures. In this respect, the generalized ICC has much in common with the ideas of Gen-

eralizability Theory (G-Theory), which extends classical notions of test reliability to a much

more general linear model-based context[85]. However, the quantities defined in G-Theory

are dependent upon the use of relatively simple ANOVA-like models with independent ran-

dom effects and i.i.d. residuals. On the other hand, the generalized ICC is applicable to

any model-based framework in which a covariance matrix is estimable, including potentially

non-linear models and models with non-normal errors.

Throughout the following sections, ρ will refer to the generalized ICC, Equation 4.4.

4.3 GENERALIZED ICC IN GROWTH CURVE MODELS

An immediate question is how an estimator ρ̂ will behave in the context of mixed-effects

models with more complicated random effects structures than that of the one-way random

effects ANOVA (Equation 4.1). In this section, I consider this question in the context of

growth curve models - an analytically tractable and important subset of mixed effects mod-

els, closely related to the examples considered in Chapter 2. In the following, I show that

within the class of mixed-effects growth curve models with i.i.d. residuals, ρ̂ is invariant to

the number of random effects under ML estimation and approximately so under REML esti-

mation. I also provide simulation results to demonstrate that ρ̂ is robust to misspecification

110



of the residual covariance structure. These robustness properties indicate that ρ̂ is a good

candidate for quantifying reliability in the context of the models I have proposed for group

comparisons of DTI data, such as those presented in Chapter 3.

4.3.1 Notation And Assumptions

Let Y s denote the vector of n observed responses for subject s, s = 1, . . . , N . Note that in

the case of the DTI analyses performed in Chapter 3, Y s would be the vector of observed

values of a scalar index over voxels in a region of interest. Let matrix Z = [z1 z2 . . . zp]

be an n × p fixed effects design matrix with 1 ≤ p < n. Without loss of generality, assume

that the columns of Z form an orthonormal set of vectors in Rn: z′izj = δij, where δij is

Kronecker’s δ, and assume that the first column of Z corresponds to an intercept term:

z1 = (1/
√
n)1n. Zr will denote a random effects design matrix formed from the first r

columns of Z, 1 ≤ r ≤ p. β will be a p × 1 vector of fixed effects coefficients and bs an

r× 1 vector of random effects coefficients. I will assume b ∼ N(0,G) where Gij = σij. The

vector of residual errors, εs, is p× 1, with ε ∼ N(0, τ 2In). With this notation, the model I

am considering is

Y s = Zβ +Zrbs + εs. (4.5)

Note that span(Zr) ⊆ span(Z), a necessary condition for growth curve models of this

form[78]. To facilitate comparisons between models with varying numbers of random effects,

I denote the variance components from the model with r random effects as σij,r and τ 2
r , and

the generalized ICC as ρr.

The variance of Y for these models is given by Σ = ZrGZ
′
r + τ 2

r In. Σ̂ is obtained by

substituting Ĝ for G and τ̂ 2
r for τ 2

r . I will denote the estimator of the generalized intraclass

correlation coefficient obtained by substituting Σ̂ into Equation 4.4 by ρ̂r.
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4.3.2 Preliminary Results

In the results below, I will use the following observation: for j > 1,

n∑
i=1

zji = 0, (4.6)

which follows from z1 ⊥ zj:

z′1zj = 0

1′nzj = 0

n∑
i=1

zji = 0.

With the notation and assumptions, we have the following lemmas needed for the main

result:

Lemma 4.3.1.

1′nziz
′
j1n =

n if i = 1 = j

0 otherwise

Proof. There are two cases. Case 1: i = j = 1

1′nz1z
′
11n = 1′n

1

n
Jn1n

=
1

n
n2

= n.

Case 2: i > 1 or j > 1. Assuming without loss of generality that j > 1, we have:

1′nziz
′
j1n =

n∑
k=1

n∑
l=1

zikzjl

=
n∑
k=1

(
zik

n∑
l=1

zjl

)
= 0, by Equation 4.6.
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Lemma 4.3.2.

Tr(ziz
′
j) =

0 i 6= j

1 i = j

Proof. This follows from the orthonormality of the columns of Z.

Lemma 4.3.3.

τ̂ 2
r = τ̂ 2

p +
1

m

p∑
j=r+1

σ̂jj,p,

and for 1 ≤ i ≤ r,

σ̂ii,r = σ̂ii,p −
1

m

p∑
j=r+1

σ̂jj,p,

where m =

n− r for ML estimation

n− r + 1
N−1

(n− p) for REML estimation

These results follow directly from Equations 19 and 20 in Lange and Laird (1989) [54].

4.3.3 Invariance Of The Generalized ICC To Number Of Random Effects

I am now prepared to state the main result of this section.

Theorem 4.3.4. The estimator of ρ obtained by substituting the ML estimate of the within-

subject covariance, Σ̂, from a model of the class described in Equation 4.5 for Σ in Equation

4.4 is invariant to r, for 1 ≤ r ≤ p.

Proof. The proof of this result is given in Appendix A.1.

This invariance of ρ̂ to the number of random effects is specific to ML estimation of the

model in Equation 4.5. Under REML estimation, ρ̂ varies modestly with the number of

random effects, attaining its minimum with the saturated random effects model, r = p. The

following algebraic identity will be used several times in the proof of this result.

Lemma 4.3.5.

(
n− r +

1

N − 1
(n− p)

)−1

=
1

(n− r)
− (n− p)

(n− r)2(N − 1) + (n− r)(n− p)
.
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Proof.

1

n− r
− (n− p)

(n− r)2(N − 1) + (n− r)(n− p)
=

1

n− r
−

(n−p)
N−1

(n− r)2 + (n−r)(n−p)
N−1

=
1

n− r
−

n−p
N−1

(n− r)
[
n− r + n−p

N−1

]
=

[n− r + n−p
N−1

]− n−p
N−1

(n− r)
[
n− r + n−p

N−1

]
=

(
n− r +

1

N − 1
(n− p)

)−1

.

Theorem 4.3.6. For any 1 ≤ r < p, ρ̂r > ρ̂p where ρ̂ is the estimator of ρ obtained by

substituting the REML estimate of the within-subject covariance, Σ̂, from a model of the

class described in Equation 4.5 for Σ.

Proof. The proof of this result is provided in Appendix A.2.

Although ρ̂ is not invariant to the number of random effects under REML estimation of

Σ̂ as it is under ML estimation, ρ̂r − ρ̂p will be small under most realistic conditions. The

numerator and denominator of ρ̂r each differ from those of ρ̂p by a multiple of
∑p

j=r+1 σ̂jj,p.

In practice, the magnitudes of variance components σ̂jj,p tend to decrease with increasing

j, so the magnitude of this sum can be expected to be relatively small. Furthermore, the

multiples of
∑p

j=r+1 σ̂jj,p by which the numerators and denominators of ρ̂r and ρ̂p differ,

(n − p) ((n− 1)[(n− r)(N − 1) + (n− p)])−1 and (n − p) [(n− r)(N − 1) + (n− p)]−1, re-

spectively, decrease rapidly with N . Even at the modest value of N = 10, these terms have

maxima of 0.026 (at n = 3, p = 2, r = 1) and 0.089 (at n = 9, p = 2, r = 1), respectively.

4.3.4 Autoregressive Error

I have shown that the generalized ICC is invariant to the number of random effects in

a balanced growth model with i.i.d. errors under ML estimation and is modestly larger

for a model with r < p random effects than for the saturated random effects model with

p random effects under REML estimation. An immediate question of interest is how ρ
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behaves in models with possibly non-i.i.d. errors. This extension is particularly important

the application of ρ to MRI data that is susceptible to noise from a variety of sources, leading

to spatially autocorrelated errors.

It is apparent that ρ provides an intuitively appealing measure of intraclass correlation in

one-way ANOVA designs with possibly non-i.i.d. errors. As an example, consider again the

model in Equation 4.5, with the assumption that, instead of being independent, the errors

stem from a first-order autoregressive (AR(1)) process. I use this particular example because

it leads to a non-i.i.d. covariance structure with only two parameters that is a reasonable

model in many situations with serially autocorrelated errors. Specifically, εs ∼ N(0,Σε),

where the (i, j)th entry of Σε is given by τ 2θ|i−j|. Under this assumption, the variance of the

observations takes the form of Σ = Z ′rGZr + Σε, and

ρAR(1) =
σ̂11 − 1

n−1

∑r
i=2 σ̂ii + nτ 2

Pn−1
j=1 wjθ

jPn−1
j=1 wj

nτ̂ 2 +
∑r

i=1 σ̂ii
, (4.7)

with wj = (2(n− j))/(n− 1). Thus, the numerator of Equation 4.7 incorporates a weighted

average of the within-subject covariance terms, where the weights are given by the number

of times each term appears in the covariance matrix. In practice, we can estimate ρAR(1) by

substituting ML or REML estimates of {σ2
ii}, τ 2 and θ into Equation 4.7 to obtain ρ̂AR(1).

Unfortunately, the generalized ICC is not invariant to changes in the residual covariance

structure. This can be shown with simple empirical examples. Nor do there appear to be

simple analytic relationships between the estimated variance components from the growth

curve model with i.i.d. errors and the model with AR(1) errors that would make it possible

to establish inequalities between ρ̂ calculated from the two models.

4.3.5 Simulations

I conducted a series of simulations to evaluate and compare several different methods of

estimating ρ for data generated according to the autoregressive model described in Section

4.3.4. The results of these simulations are given in Tables 4.1 – 4.3. Each dataset was

simulated with N = 100, n = 20, r = 1 and σ11 = 1. The values of τ 2 are 0.33 for Table 4.1,

1.00 for Table 4.2 and 3.00 for Table 4.3. The value of θ varies by row for each table. The
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columns of each table contain the mean percent bias and empirical 95% confidence intervals

of the percent bias over 500 simulations of five different estimators of ρ:

• ρ̂1 is the estimator based on ML estimation under the assumption of i.i.d. residuals.

• ρ̂2 is the estimator based on ML estimation under the assumption of AR(1) residuals.

• ρ̂3 is the estimator based on the sample covariance matrix.

• ρ̂4 is the estimator based on REML estimation under the assumption of i.i.d. residuals.

• ρ̂5 is the estimator based on REML estimation under the assumption of AR(1) residuals.

Table 4.1: Mean percent bias and empirical 95% confidence intervals of percent bias of ρ̂ for

500 simulations under an AR(1) process with N = 100, n = 20, σ11 = 1, and τ 2 = 0.33.

θ ρ̂1 ρ̂2 ρ̂3 ρ̂4 ρ̂5

0.00 * * * * *
0.25 -0.5 (-6.5, 5.0) -0.5 (-6.5, 5.0) -0.3 (-6.2, 5.2) -0.3 (-6.2, 5.2) -0.3 (-6.2, 5.2)
0.50 -0.7 (-6.5, 4.4) -0.7 (-6.5, 4.4) -0.5 (-6.2, 4.6) -0.5 (-6.3, 4.6) -0.5 (-6.3, 4.7)
0.75 -0.3 (-5.2, 4.2) -0.4 (-5.4, 4.1) -0.2 (-5.1, 4.4) -0.2 (-5.0, 4.3) -0.2 (-5.3, 4.2)

Table 4.2: Mean percent bias and empirical 95% confidence intervals of percent bias of ρ̂ for

500 simulations under an AR(1) process with N = 100, n = 20, σ11 = 1, and τ 2 = 1.00.

θ ρ̂1 ρ̂2 ρ̂3 ρ̂4 ρ̂5

0.00 -1.2 (-14.2, 10.4) -1.2 (-14.1, 10.4) -0.7 (-13.8, 10.9) -0.7 (-13.7, 10.9) -0.7 (-13.6, 10.9)
0.25 -0.8 (-13.2, 10.7) -0.8 (-13.4, 10.7) -0.4 (-12.8, 11.1) -0.4 (-12.7, 11.2) -0.4 (-12.9, 11.1)
0.50 -1.1 (-12.4, 9.4) -1.1 (-12.0, 9.4) -0.6 (-11.9, 9.9) -0.6 (-12.0, 9.8) -0.7 (-11.6, 9.8)
0.75 -0.5 (-11.4, 9.5) -0.5 (-11.0, 9.4) -0.2 (-11.1, 9.8) -0.2 (-11.1, 9.8) -0.2 (-10.7, 9.7)

Table 4.3: Mean percent bias and empirical 95% confidence intervals of percent bias of ρ̂ for

500 simulations under an AR(1) process with N = 100, n = 20, σ11 = 1, and τ 2 = 3.00.

θ ρ̂1 ρ̂2 ρ̂3 ρ̂4 ρ̂5

0.00 -1.3 (-22.6, 19.0) -1.3 (-22.5, 19.0) -0.5 (-21.8, 19.8) -0.5 (-21.8, 19.9) -0.5 (-21.8, 19.9)
0.25 -1.1 (-19.8, 18.6) -1.1 (-19.7, 18.7) -0.3 (-18.9, 19.6) -0.3 (-19.1, 19.5) -0.3 (-19.1, 19.5)
0.50 -1.4 (-20.4, 16.7) -1.3 (-19.7, 16.2) -0.7 (-19.7, 17.4) -0.7 (-19.8, 17.5) -0.7 (-19.1, 16.8)
0.75 -0.9 (-16.1, 13.0) -0.8 (-14.0, 12.5) -0.5 (-15.7, 13.7) -0.4 (-15.5, 13.6) -0.4 (-13.6, 12.9)

These simulations highlight several interesting results. First, all five estimators con-

sidered are slightly biased downward. Second, the two model-based estimators with ML
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estimation (ρ̂1 and ρ̂2) have almost identical bias, and the sample covariance based estima-

tor (ρ̂3) and the two model-based estimators with REML estimation (ρ̂4 and ρ̂5) have almost

identical bias, which is less than that of ρ̂1 and ρ̂2. The variances of all the estimators are

comparable, and increase with τ 2 and decrease slightly with θ. Interestingly, this decrease

is slightly more marked for the AR(1) model-based estimators.

The results in this section suggest that the generalized ICC performs well under misspec-

ification of the residual error structure, at least in the case of spatial autoregressive error.

This is an additional robustness finding that supports the use of the generalized ICC in ex-

ploratory analyses of neuroimaging data. Spatially autocorrelated residuals are ubiquitous

in these data, but the exact distribution is generally unknown, and may be difficult to model

for computational reasons.

The model-based REML estimators performed approximately equivalently to the sample

covariance-based estimator in these simulations. However, in data with more complicated

fixed-effects structures than a simple global mean, it is much more sensible to model that

mean and use model-based variance-covariance estimates as the basis for calculating the

gICC than it would be to calculate gICC based on the simplistic model implicit in the

sample covariance based estimator.

4.4 GENERALIZED ICC APPLICATION

In order to provide an empirical example of the use of the generalized ICC for neuroimaging

data, I performed a series of data analyses designed to compare the local spatial reliability

(Section 4.1.1) of different scalar indices. Specifically, I was interested in evaluating the

reliability of three different measures of anisotropy: fractional anisotropy (FA, Equation

1.19), standardized relative anisotropy (sRA, Equation 1.23) and volume ratio (VR, Equation

1.24). All three of these indices are designed to measure the degree to which tissue at a given

voxel is compact and coherently organized. While FA is the most widely used anisotropy

index in the DTI literature, sRA has the elegant mathematical property of scaling linearly

with the largest eigenvalue in tensors that reflect cylindrical symmetry, and VR has an
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attractive direct geometrical interpretation as the ratio between the volume of the diffusion

tensor and the volume of a sphere of equal total diffusivity.

The three indices each have a distinct sensitivity range to anisotropy: FA is most sensitive

to differences among low levels of anisotropy, VR is most sensitive to differences among high

levels of anisotropy, and sRA is in between[45]. It seems entirely possible that different

indices may have different levels of spatial reliability depending on the region of the brain or

type of tissue under consideration. However, these considerations have not generally been

used to inform the choice of a particular index for a given analysis, nor have there been any

empirical investigations of such regional differences in reliability to date.

4.4.1 Methods

I used the same data for this application as was used in Chapter 3. The sample consisted of

80 children and young adults with autism spectrum disorders, and 40 otherwise comparable

controls. All of the participants in the sample were male. The DWI acquisition, preprocess-

ing, diffusion tensor estimation and inter-subject registration were all performed as described

in Section 3.1

I first created binary brain masks for each participant using the Brain Extraction Tool

from the FSL software suite. I then multiplied the masks together to obtain an overall brain

mask for the entire sample. I calculated the FA, sRA and VR at each voxel in the masked

space for each participant.

I then fit a series of local LME models for each of the three anisotropy measures to create

local reliability maps. The procedure was the same for all three indices; for simplicity, I will

fix FA as the dependent variable in the following discussion. For each voxel v in the masked

space, I extracted the FA values in the 3× 3× 3 voxel neighborhood (216mm3) centered at

v for each subject. Then, if every voxel in the neighborhood was within the masked brain

area, I fit the following model, closely analogous to the model described in Section 3.2.2.5:

FAij = µj + giγj + (1− gi)(δ0i + ε0ij) + gi(δ1i + ε1ij), (4.8)

where FAij is the FA for subject i at voxel j, j = 1, . . . , 27, gi is a group indicator (gi = 0 if
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subject i is in the control group, gi = 1 if subject i is in the ASDs group), µj is an unknown

fixed parameter reflecting the control mean at voxel j, γj is an unknown fixed parameter

reflecting the ASDs group deviation from the control mean at voxel j, δ0 ∼ N(0, σ2
0) and

δ1 ∼ N(0, σ2
1) are subject-specific random intercepts, and ε0 ∼ N(0, τ 2

0 ) and ε1 ∼ N(0, τ 2
1 )

are residual error terms. This model thus incorporates group heterogeneity in both the

between-subject and the residual variance, which was justified in each analysis performed in

Chapter 3.

Each of these models has closed-form likelihood estimation, as discussed extensively in

Chapter 2, and, more specifically, Section 2.4.3. I estimated the model parameters using

REML estimation (Section 2.3.6) obtaining in particular an estimated covariance matrix

Σ̂. This covariance matrix is block diagonal with blocks of two distinct types, one for

control participants (Σ̂0) and one for participants with ASDs (Σ̂1). I then used these group-

specific estimated covariance matrices to calculate group-specific generalized ICCs according

to Equation 4.4, ρ0 for the control group and ρ1 for the ASDs group.

Note that this procedure was repeated for each anisotropy measure at every voxel in

the interior of the masked space. Thus, the analysis resulted in multiple reliability maps,

one for each group for each scalar index. I also calculated maps containing the ratios of

the generalized ICC estimates obtained for the three scalar indices in order to compare the

regional reliability between different indices.

4.4.2 Results

Figure 4.1 displays the generalized ICC maps for FA for control participants, while Figures

4.2 and 4.3 display the control ICC maps for sRA and VR, respectively. The maps for ASDs

participants are contained in Figures 4.4 – 4.6.

In order to compare the local reliability between scalar indices and groups, it is more

instructive to examine a single slice. Figure 4.7 displays the midaxial slice of the gICC maps

for FA, sRA and VR for control and ASDs participants. In this figure, the reliability maps for

FA and sRA are nearly indistinguishable. The reliability maps for VR are also very similar

to those for FA and sRA, but there is some suggestion of generally decreased reliability,

119



Figure 4.1: gICC maps for FA, control participants

Figure 4.2: gICC maps for sRA, control participants
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Figure 4.3: gICC maps for VR, control participants

Figure 4.4: gICC maps for FA, ASDs participants
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Figure 4.5: gICC maps for sRA, ASDs participants

Figure 4.6: gICC maps for VR, ASDs participants
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except in the frontal cortical portion of the figure. Table 4.4 presents summary statistics

for reliability in the midaxial slice by group and anisotropy index. FA and sRA have very

similar average reliability, as do controls and ASDs participants, although the reliability for

ASDs participants is uniformly slightly lower than that for controls. However, it should be

noted that one of the strengths of the approach in this chapter is that it allows us to obtain

a more nuanced, local picture of reliability than is traditionally available through simple

summary statistics.

In all six panels, there is a characteristic pattern of decreased relative reliability in the

medial portions of major white matter tracts. These decreases appear as dark lines through

the middle of otherwise high-reliability areas. This is due to the relative contributions of

between- and within-subject variance to the total variance in the densest parts of major

white matter structures compared to the periphery. I discuss this phenomenon in detail in

Section 4.5.

Table 4.4: Mean and standard deviation of local ρ̂ in the midaxial slice

Control ASDs

Index Mean S.D. Mean S.D.

FA 0.413 0.175 0.407 0.175

sRA 0.408 0.176 0.402 0.172

VR 0.373 0.167 0.368 0.164

Figure 4.8 displays the pairwise percentage difference in gICC for the midaxial slice

among FA, sRA and VR for the control group. The top pane in the figure shows the

ratios of local reliability for sRA compared to FA. It appears from this figure that FA has

higher reliability (light areas) in the densest callosal white matter regions, while sRA has

higher reliability (dark areas) in the midbrain white matter structures lateral to the corpus

callosum, apparently including the superior longitudinal fasciculus and the corticospinal

tract. These areas show differences in reliability on the order of about 5%, indicating fairly

subtle differences in reliability between FA and sRA.

The middle pane of Figure 4.8 shows the reliability of FA as a percentage of that for VR.
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Figure 4.7: gICC maps comparison, midaxial slice
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In this image, FA seems to have higher reliability (light areas) in most of the major white

matter structures, while VR has higher reliability (dark areas) in some cortical areas and

along the boundaries between different types of tissues. There is a particularly distinctive

increase in reliability for VR relative to FA in the frontal cortex. The decreased reliability

for FA relative to VR in the frontal region is on the order of 10 – 15%, while the increases

in reliability for FA in the major white matter tracts are in the range of 15 – 20%. The

areas that show the greatest increase in reliability for FA relative to VR are the fluid-filled

ventricles, where the reliability of FA is as high as 60% higher than that of VR. However,

as between-subject diffusivity differences in these regions are not apparently interpretable,

it seems likely that this is an artifact of very low baseline reliability in this region for VR.

The comparison between VR and sRA reliability (bottom pane of the figure) is much the

same as that between VR and FA, as would be expected due to the similarity of sRA and

FA.

4.5 CONCLUSIONS

I have shown that the generalized ICC ρ is an intuitive and useful measure of reliability

in mixed effects growth curve models. It is robust to misspecification of the random ef-

fects model under assumptions of balanced data and i.i.d. errors, in that it is invariant

to the number of random effects under ML estimation and approximately so under REML

estimation. Based on the simulation results in Section 4.3.5, it is also robust to misspecifi-

cation of the residual covariance structure. These properties make ρ an attractive candidate

to quantify reliability in an exploratory model-building framework in which random effects

misspecification is entirely possible.

In an example with a sample of DTI data from an autism study, I have shown that

the generalized ICC can be used to compare the reliability of various tensor-derived scalar

indices. In my analysis of the local spatial reliability of anisotropy indices in a sample of

80 participants with ASDs and 40 controls, it appeared that FA and sRA had comparable

reliability throughout the brain, while VR has substantially less reliability than either in
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Figure 4.8: gICC ratio maps, midaxial slice
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major white matter tracts. This would seem to indicate that FA or sRA would be statistically

preferable to VR as an anisotropy index. However, in analyses involving substantial amounts

of cortical white matter, especially in the frontal cortex, VR might prove to be a more reliable

index than FA or sRA.

The reliability maps themselves contain an important lesson about DTI data analyses.

Under the classical ICC model, the local spatial reliability at each voxel would represent

the proportion of variance accounted for by between-subjects variation, and this is a useful

framework in which to view the generalized ICC results as well. Thus, ρ can be taken as

an index of the extent to which variability in a measurement at that voxel represents some

true individual anatomical characteristic rather than noise. The reliability maps in Figure

4.7 show generally high reliability in major white matter tracts, which is to be expected for

anisotropy indices.

However, the characteristic pattern of decreased reliability in the medial areas of these

structures is perhaps more surprising. The explanation for this finding is that all scanned

subjects tend to have comparably high anisotropy in these densest portions of the white

matter structures. Therefore, the between-subject variance is lower here relative to the

within-subject variance, which is more uniform throughout the region.

The implication is that between-subject differences and, by extension, between-group

differences will be more difficult to find in the central portion of major white matter structures

than differences outside of the dark stripes seen on Figure 4.7. That is, all else being

equal, a DTI experiment that is adequately powered to detect group differences of a certain

magnitude in the high reliability areas of the anisotropy maps will not necessarily be able

to detect differences of the same magnitude in the center of the major white matter tracts.

As Fleiss (1986) observed, if a sample size of n∗ is required to have power 1− β to detect an

effect of size δ in the population for a variable measured without error, then a sample of size

n = n∗/ρ is required to have the same power to detect the same sized effect for a variable

with reliability ρ < 1[32].

It is important to remember that reliability is only one consideration in choosing a scalar

index - the validity of the quantity for any specific analytic purpose must be established

separately. Post-mortem, animal, phantom and simulation studies can all contribute to our
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understanding of the validity of DTI-derived quantities, as can finding replicable results in

clinical populations (convergent validity). However, since reliability is a prerequisite for va-

lidity, evaluations of reliability constitute an important first step, and one which has been

largely absent from the literature to date. While the application in this chapter centered

on local spatial reliability, the methods are more generally applicable to the quantifica-

tion of test-retest or inter-rater (inter-scanner or inter-processing stream) reliability as well.

Through the example in this chapter, we have seen that the reliability of anisotropy indices

in the brain is not necessarily a simple matter, and could have profound implications for the

design and interpretation of future DTI experiments.
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APPENDIX

PROOFS OF THEOREMS IN CHAPTER 4

A.1 PROOF OF THEOREM 4.3.4

I will prove that ρ̂r = ρ̂p for arbitrary r, 1 ≤ r < p.

First, expanding ρ̂r yields:

ρ̂r =
[1′nΣ̂1n − Tr(Σ̂)]/n(n− 1)

Tr(Σ̂)/n

=
1′n(ZrĜZ

′
r + τ̂ 2

r In)1n − Tr(ZrĜZ
′
r + τ̂ 2

r In)

(n− 1)Tr(ZrĜZ
′
r + τ̂ 2

r In)

=
1′nZrĜZ

′
r1n − Tr(ZrĜZ

′
r) + 1′nτ̂

2
r In1n − Tr(τ̂ 2

r In)

(n− 1)Tr(ZrĜZ
′
r + τ̂ 2

r In)

=
1′nZrĜZ

′
r1n − Tr(ZrĜZ

′
r)

(n− 1)Tr(ZrĜZ
′
r + τ̂ 2

r In)
, as 1′nτ̂

2
r In1n = Tr(τ̂ 2

r In)

=
1′n(
∑r

i,j=1 σ̂ijZiZ
′
j)1n − Tr(

∑r
i,j=1 σ̂ijZiZ

′
j)

(n− 1)(Tr(
∑r

i,j=1 σ̂ijZiZ
′
j) + nτ̂ 2

r )

=
nσ̂11,r −

∑r
i=1 σ̂ii,r

(n− 1)(nτ̂ 2
r +

∑r
i=1 σ̂ii,r)

, by Lemmas 4.3.1 and 4.3.2

=
σ̂11,r − 1

n−1

∑r
i=2 σ̂ii,r

nτ̂ 2
r +

∑r
i=1 σ̂ii,r

Similarly,

ρ̂p =
σ̂11,p − 1

n−1

∑p
i=2 σ̂ii,p

nτ̂ 2
p +

∑p
i=1 σ̂ii,p

.
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To establish the equality of ρ̂r and ρ̂p, I will separately establish the equality of the

numerators and denominators, making repeated reference to Lemma 4.3.3. First, the de-

nominators:

nτ̂ 2
r +

r∑
i=1

σ̂ii,r = n

(
τ̂ 2
p +

1

n− r

p∑
j=r+1

σ̂jj,p

)
+

r∑
i=1

(
σ̂ii,p −

1

n− r

p∑
j=r+1

σ̂jj,p

)

= nτ̂ 2
p +

r∑
i=1

σ̂ii,p +
n

n− r

p∑
j=r+1

σ̂jj,p −
r

n− r

p∑
j=r+1

σ̂jj,p

= nτ̂ 2
p +

p∑
i=1

σ̂ii,p

And the numerators:

σ̂11,r −
1

n− 1

r∑
i=2

σ̂ii,r =(
σ̂11,p −

1

n− r

p∑
i=r+1

σ̂ii,p

)
− 1

n− 1

(
r∑
i=2

σ̂ii,p −
r − 1

n− r

p∑
j=r+1

σ̂ii,p

)

= σ̂11,p −
1

n− 1

r∑
i=2

σ̂ii,p +

(
r − 1

(n− 1)(n− r)
− 1

n− r

) p∑
j=r+1

σ̂jj,p

= σ̂11,p −
1

n− 1

r∑
i=2

σ̂ii,p +

(
(r − 1)− (n− 1)

(n− 1)(n− r)

) p∑
j=r+1

σ̂jj,p

= σ̂11,p −
1

n− 1

p∑
i=2

σ̂ii,p

A.2 PROOF OF THEOREM 4.3.6

In the proof of Theorem 4.3.4, we observed that

ρ̂r =
σ̂11,r − 1

n−1

∑r
i=2 σ̂ii,r

nτ̂ 2
r +

∑r
i=1 σ̂ii,r

and

ρ̂p =
σ̂11,p − 1

n−1

∑p
i=2 σ̂ii,p

nτ̂ 2
p +

∑p
i=1 σ̂ii,p
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To establish the inequality ρ̂r > ρ̂p, I will separately establish inequalities for the numer-

ators and denominators of these expressions. Starting with the numerators, Lemmas 4.3.3

and 4.3.5 yield

σ̂11,r −
1

n− 1

r∑
i=2

σ̂ii,r =

σ̂11,p −
(
n− r +

1

N − 1
(n− p)

)−1 p∑
j=r+1

σ̂jj,p

− 1

n− 1

r∑
i=2

[
σ̂ii,p −

(
n− r +

1

N − 1
(n− p)

)−1 p∑
j=r+1

σ̂jj,p

]

= σ̂11,p −
1

n− 1

r∑
i=2

σ̂ii,p −
(
n− r +

1

N − 1
(n− p)

)−1 p∑
j=r+1

σ̂jj,p

+
r − 1

n− 1

(
n− r +

1

N − 1
(n− p)

)−1 p∑
j=r+1

σ̂jj,p

= σ̂11,p −
1

n− 1

r∑
i=2

σ̂ii,p

+

(
r − 1

n− 1
− 1

)(
n− r +

1

N − 1
(n− p)

)−1 p∑
j=r+1

σ̂jj,p

= σ̂11,p −
1

n− 1

r∑
i=2

σ̂ii,p +
r − n
n− 1

(
1

n− r

) p∑
j=r+1

σ̂jj,p

− r − n
n− 1

(
(n− p)

(n− r)2(N − 1) + (n− r)(n− p)

) p∑
j=r+1

σ̂jj,p

= σ̂11,p −
1

n− 1

r∑
i=2

σ̂ii,p −
n− r

(n− r)(n− 1)

p∑
j=r+1

σ̂jj,p

+
(n− r)(n− p)

(n− 1) [(n− r)2(N − 1) + (n− r)(n− p)]

p∑
j=r+1

σ̂jj,p

= σ̂11,p −
1

n− 1

p∑
i=2

σ̂ii,p
n− p

(n− 1) [(n− r)(N − 1) + (n− p)]

p∑
j=r+1

σ̂jj,p

> σ̂11,p −
1

n− 1

p∑
i=2

σ̂ii,p

Thus, the numerator of ρ̂r is strictly greater than that of ρ̂p. Next, considering the denomi-
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nators,

nτ̂ 2
r +

r∑
i=1

σ̂ii,r =

n

[
τ̂ 2
p +

(
n− r +

1

N − 1
(n− p)
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σ̂jj,p
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σ̂ii,p −

(
n− r +

1

N − 1
(n− p)
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]

= nτ̂ 2
p +

r∑
i=1

σ̂ii,p + (n− r)
(
n− r +

1

N − 1
(n− p)
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= nτ̂ 2
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r∑
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σ̂ii,p +
n− r
n− r

p∑
j=r+1

σ̂jj,p

− (n− r)(n− p)
(n− r)2(N − 1) + (n− r)(n− p)

p∑
j=r+1

σ̂jj,p

= nτ̂ 2
p +

p∑
i=1

σ̂ii,p −
n− p

(n− r)(N − 1) + n− p

p∑
j=r+1

σ̂jj,p

< nτ̂ 2
p +

p∑
i=1

σ̂ii,p

So the denominator of ρ̂r is strictly less than that of ρ̂p. This inequality, together with the

inequality between the numerators, yields the result: ρ̂r > ρ̂p.
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