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ABSTRACT

SOFTWARE-ORIENTED DISTRIBUTED SHARED CACHE

MANAGEMENT FOR CHIP MULTIPROCESSORS

Lei Jin, Ph.D.

University of Pittsburgh, 2010

This thesis proposes a software-oriented distributed shared cache management approach for

chip multiprocessors (CMPs). Unlike hardware-based schemes, our approach offloads the

cache management task to trace analysis phase, allowing flexible management strategies.

For single-threaded programs, a static 2D page coloring scheme is proposed to utilize oracle

trace information to derive an optimal data placement schema for a program. In addition,

a dynamic 2D page coloring scheme is proposed as a practical solution, which tries to ap-

proach the performance of the static scheme. The evaluation results show that the static

scheme achieves 44.7% performance improvement over the conventional shared cache scheme

on average while the dynamic scheme performs 32.3% better than the shared cache scheme.

For latency-oriented multithreaded programs, a pattern recognition algorithm based on the

K-means clustering method is introduced. The algorithm tries to identify data access pat-

terns that can be utilized to guide the placement of private data and the replication of

shared data. The experimental results show that data placement and replication based on

these access patterns lead to 19% performance improvement over the shared cache scheme.

The reduced remote cache accesses and aggregated cache miss rate result in much lower

bandwidth requirements for the on-chip network and the off-chip main memory bus. Lastly,

for throughput-oriented multithreaded programs, we propose a hint-guided data replication

scheme to identify memory instructions of a target program that access data with a high

reuse property. The derived hints are then used to guide data replication at run time. By
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balancing the amount of data replication and local cache pressure, the proposed scheme

has the potential to help achieve comparable performance to best existing hardware-based

schemes.

Our proposed software-oriented shared cache management approach is an effective way

to manage program performance on CMPs. This approach provides an alternative direction

to the research of the distributed cache management problem. Given the known difficulties

(e.g., scalability and design complexity) we face with hardware-based schemes, this software-

oriented approach may receive a serious consideration from researchers in the future. In this

perspective, the thesis provides valuable contributions to the computer architecture research

society.
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1.0 INTRODUCTION

1.1 RECENT DEVELOPMENT OF MICROPROCESSOR TECHNOLOGY

Since the debut of the world’s first microprocessor in the early 70’s, microprocessor tech-

nology has experienced an astonishing evolution. The introduction of the commercial su-

perscalar processors [68] in the late 80’s resulted in significant performance improvement.

Since then, mechanisms to extract instruction-level parallelism (ILP) have been greatly em-

phasized in the computer architecture community. Taking the transistor budget for granted,

computer architects employed many microarchitecture innovations such as aggressive branch

prediction mechanisms, intelligent memory data prefetching, multiple instruction issue, dy-

namic scheduling, speculative execution, and simultaneous multithreading to keep improving

the processor performance [41, 93, 49, 90, 77, 61, 67, 32, 62, 110, 47, 50, 83, 10, 51, 21, 35,

107, 105, 30, 3, 100, 57, 29]. Some of these mechanisms have developed to a level of extreme

sophistication and complexity. Luckily, Moore’s law [69], which successfully predicted that

the number of transistors that can be placed inexpensively on an integrated circuit doubles

approximately every two years, has been valid for more than three decades. The complexity

and inefficiency of these hardware structures have been largely hidden by the fast increase of

transistor count on a chip. As a consequence, the microprocessor industry had much success

during the last two decades since the release of the first superscalar processor [68].

More recently, the advancement of microprocessor technology has faced some difficulties.

Moore’s law is challenged by physical constraints and is believed to be impossible to sustain

in the foreseeable future [54]. For instance, feature size is being pushed to near physical

limitations. Without care, power consumption can grow exponentially. Researchers even

predict if the power density is increasing at the current page, the core temperature of the
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microprocessor is going to trigger nuclear reaction [2]! Another challenge is reliability. With

decreased feature size, products become vulnerable to hard and soft faults. The degraded

product yield can also increase the cost significantly. Moreover, the margin of performance

improvement by using more aggressive speculation is decreasing, even though the hardware

design complexity and area budget are increasing exponentially. The fundamental obstacle

is the lack of ILP in current single-threaded programs and efficient mechanisms to uncover

them. With these issues, superscalar uniprocessor design can apparently no longer sustain

the historical performance growth rate. On the other hand, symmetric multiprocessor (SMP)

design tries to speed up program execution by running threads on multiple cooperating pro-

cessors, which are physically separated but wired together through interconnection. However

the performance of these workloads suffers from the slow interconnection. As a result, the

chip multiprocessor (CMP) architecture [73, 18, 37, 12, 11, 38] is proposed as an alternative

solution.

The CMP architecture is like the traditional SMP design. But instead of wiring together

physically separated processors, a CMP integrates multiple processor cores on a single die

with an on-chip network. In comparison to the SMP design, the on-chip network in the

CMP architecture naturally has much lower latency. In addition, the on-chip cache partially

replaces the role of main memory and takes the responsibility for synchronizing cooperating

cores. Unlike the superscalar uniprocessor architecture that depends on complex pipeline

design to extract ILP [91, 75], the CMP architecture is designed to exploit thread-level

parallelism (TLP). The individual core design is made simpler in compromise for larger core

count. Thus, the design principle here is that the CMP architecture sacrifices performance

of individual cores for higher overall throughput. Some studies [98, 99, 70] even propose

to use an asymmetric CMP (ACMP) design. In such a design, there is a high performance

superscalar core, which provides fast execution of a single-threaded program, while other

small parallel cores can run multiple threads simultaneously. By scheduling the workload

properly, ACMP is expected to achieve a good balance between performance for single-

threaded programs and throughput for multithreaded programs. Based on this discussion,

it is clear that the CMP architecture has advantages over the uniprocessor architecture in

terms of design complexity, performance scalability and power efficiency.
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CMPs with 4 or more processor cores [45, 88, 5, 6] are available now. Some special

purpose processors such as Tilera [103] even integrate 64 processor cores or more in a single

chip. It is believed that the CMP architecture will become the mainstream architecture.

CMPs with hundreds of cores are certainly anticipated.

1.2 CACHE ARCHITECTURES AND WORKLOAD CLASSIFICATION

In company with the shift from uniprocessor architecture to CMP architecture, the memory

hierarchy evolves accordingly, mainly adopting ideas from SMP design. To facilitate commu-

nication among processing cores, the memory subsystem (off-chip main memory) is shared

by all cores within a CMP in one form or another. As a result, the integration of more

and more processing cores on a single chip dramatically increases pressure on the memory

subsystem [43]. The last-level cache acts as a last defense before letting the request go off-

chip. A well-designed last-level cache can relieve pressure on the memory subsystem and

off-chip bandwidth. Comparing to the last-level cache design in uniprocessor design, it plays

a much more important role in the CMP architecture. Thus designing an effective on-chip

cache hierarchy becomes an imminent task for computer architects in the CMP era. In this

section, we will first introduce existing last-level cache designs briefly. Then we will discuss

common workload types, to which we should pay special attention when designing new cache

architectures.

1.2.1 Cache Architectures in CMPs

The research community has paid considerable attention to the last-level on-chip cache. To

exploit temporal locality not captured by higher level caches, the last-level cache tends to

employ large capacity. The large aggregated footprint size of programs running on CMPs also

favors caches with large capacity. However, the amount of die area required is proportional

to the cache capacity. The cross-chip diameter increases as the on-chip cache capacity grows,

leading to a longer signal propagation delay. The decreased feature size makes the wire delay
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even worse [13]. In such a case, adopting a traditional monolithic cache structure commonly

found in uniprocessors can result in very slow cache accesses.

To improve cache performance, the whole cache space is broken into banks or slices.

These banks are connected through wires or on-chip networks [31] to form a logically unified

view to the processing cores. The benefits of this approach come in two folds. First, com-

pared with the monolithic cache structure, smaller cache banks have lower access latency.

Furthermore, only the accessed cache banks are enabled at a time, providing much better

power efficiency. Second, the wire delay can now vary based on the target bank distance.

Nearby banks can be accessed much faster due to reduced wire delay even though accesses

to farthest cache banks still take the same latency as before. This distance-based latency

results in a much lower average access latency than that of the uniform latency design found

in traditional cache structure. This improved cache design is called Non-Uniform Cache

Architecture (NUCA) [13, 25, 53]. It has a simple design and achieves effective latency re-

duction. Without significant improvement of on-chip wire delay, NUCA seems an inevitable

solution for organizing the last-level on-chip caches with large capacity in CMPs. Moreover,

a new CMP design approach [111, 103] becomes very popular recently. The new approach

first designs a tile containing processing core, caches, and necessary logic to communicate

with others through the network. Then the tile is simply duplicated to meet the core count

requirement. This approach can dramatically reduce design effort for large-scale CMPs. The

resulting tile-based CMP architecture intrinsically uses a sliced last-level cache design. Thus,

NUCA is a natural fit in such a design.

Unfortunately, the speed gap between the processor and the main memory still exists.

Effective management of the on-chip cache capacity to minimize the number of expensive

off-chip accesses is critical to overall system performance. The introduction of NUCA brings

new opportunities for further optimizing cache performance. Since nearby cache banks can

be accessed faster than others, placing data close to where they are needed can provide

better cache access latency. However, excessive aggregation increases contention in the cache

banks, leading to performance loss of off-chip main memory accesses. An intelligent last-

level cache management scheme that balances these two conflicting factors to achieve optimal

performance is desirable.

4



The popular last-level cache organizations in CMPs are borrowed from traditional SMPs

since they share similarities. These two most widely used designs are the shared cache

scheme [45, 6, 46, 56, 71, 84] and the private cache scheme [5, 101, 40]. The shared cache

scheme interleaves consecutive cache blocks among all available cache banks based on their

block addresses. It provides a logically shared cache view out of physically distributed

cache banks. The shared use of all cache banks maximizes cache capacity utilization, thus

minimizing the number of cache misses. However, it distributes data purely based on block

address, without considering bank distance. A heavily accessed data block coincidentally

placed in a nearby cache bank could gain much more benefit than otherwise. For this

reason, program performance is sensitive to its cache access pattern and is not predictable

to some extent. As CMP core count increases, the performance degradation due to the

increased access latency to remote cache banks can become significant. It will eventually

out-weigh the benefit of reduced cache misses with large effective cache capacity. Without

a significant reduction in wire delay, the shared cache scheme seems not a proper choice for

very large-scale CMPs.

The second design is the private cache scheme. Its design philosophy lies on the other

extreme of the shared cache scheme. The private cache scheme avoids remote accesses by

always keeping a copy of an accessed data block in the processing core’s local cache bank.

Cache banks are independent of each other and exclusively accessed by their owners. A

cache miss in the local cache bank results in a main memory request directly. A directory

or snooping mechanism is responsible for maintaining coherence among cache banks. Each

processor becomes an autonomous unit, making a CMP easy to scale. Since data lookup

is always performed in the local cache bank, wire delay has limited impact on cache per-

formance. However, the strict capacity partitioning often becomes a fatal limitation. In a

CMP with N processing cores, the private cache scheme only allows each processor accessing

its own cache bank even though the total on-chip cache capacity is N times larger. When

a program’s working set exceeds the local cache bank’s capacity, performance is lost due

to conflicting misses, which can be saved with larger cache capacity. If a workload is not

distributed evenly, some cache banks can face severe contention while others are barely used.

Without caution, the increased number of cache misses can easily offset the benefit brought
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by the elimination of remote accesses.

Motivated by the limitations of these two basic cache management schemes, many recent

proposals try to combine the advantages of both [72, 43, 111, 14, 27, 26, 23, 39]. They can

be broadly classified into two basic approaches. One approach starts from a shared cache

organization and manages to reduce cache access latency by allowing some degree of replica-

tion [111, 14, 26]. The principle is to replicate frequently reused data in a local cache bank

so that a later access can be served locally. Replication effectively reduces average access

latency. For instance, the victim replication scheme [111] replicates remote cache blocks

that are replaced from L1 caches. Instead of replicating all blocks unconditionally as the

private cache scheme, the victim replication scheme gives preference to blocks with potential

reuse in the future. The other approach is based on a private cache scheme and tries to in-

crease the effective cache capacity by limiting the amount of replication [23]. The suppressed

replication of some rarely used data improves cache capacity utilization. For example, the

cooperating caching scheme [23] proposes to improve the private cache scheme by assigning

high replacement priority to replicated data and globally inactive data. Both approaches

seem promising, but challenges remain. First, it is difficult to track program behavior pre-

cisely. Without precise run-time information regarding the program’s data access pattern, it

is difficult to decide the best replication level. Unfortunately, the tracking mechanism often

requires complex hardware logic. Second, it lacks a mechanism to inexpensively trace data

movement around the cache. In order to maintain cache coherence, any data placement or

replication has to be recorded. At cache block granularity, the hardware cost for bookkeeping

the related information seems overly expensive.

1.2.2 Workload Classification

Neither the shared cache scheme nor the private cache scheme can perform consistently

better than the other because the access pattern varies a lot from one program to another.

It is important to have a good understanding of workload behavior before trying to come up

with any new scheme that can adapt to different situations. At the fundamental level, all

workloads can be broadly classified into three categories: single-threaded workload, latency-
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oriented multithreaded workload, and throughput-oriented multithreaded workload. These

three types of workloads have very distinct behavior. Some of them even have distinctively

different goals. For instance, a Fast Fourier Transformation program employs multithreading

to speedup the computation. On the other side, a web server application uses multithreading

to improve the number of HTTP requests serviced per second rather than the service time

of each individual request. In the following, we will examine these three workload categories

in detail.

For single-threaded programs, only one thread is active at any time. All data are exclu-

sively accessed by this thread. So no data sharing exists. The workloads in this category

are very popular in uniprocessors and still play an important role in CMPs. The access

pattern is the simplest among all types, since there is only one data owner all the time. It

is always attractive to place data close to where the program is running. But care has to

be taken to avoid excessive cache misses incurred by data aggregation. One variation to

the single-threaded workload is the multiprogrammed workload. It is composed of multiple

instances of single-threaded programs running concurrently. All instances are independent

of each other and use separate virtual address spaces. Data sharing among programs rarely

happens. Except the interference created by peering programs, the data access pattern is

largely unchanged as running alone.

The second category includes multithreaded programs that optimize the execution time.

This is the most commonly seen type of multithreaded programs. To improve execution

time, the original algorithm in a single-threaded form is rewritten to take advantage of mul-

tiple processing elements (e.g., cores in a CMP). A computation task is split into multiple

parallel threads. By running threads on spare hardware resources simultaneously, speedup

is achieved. A perfect workload partition can lead to an execution speedup proportional to

the number of processing cores available in a CMP. However, an ideal speedup is difficult to

achieve in real-world applications. Performance scaling is partly hindered by the inter-thread

communication, which essentially serializes the execution of participating threads. Further-

more, arbitrary data placement can increase the number of remote accesses, degrading cache

performance. If a parallel algorithm is not designed carefully, the benefit of parallelization

can be offset by the increased communication cost.
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The last group of workloads are throughput-oriented applications. A typical example is

a server daemon. In this type of workload, the execution time of an individual thread is still

as important as that in a latency-oriented multithreaded program. But the focus becomes

how to complete as many transactions as possible in a given time period. Unlike latency-

oriented multithreaded programs, some programs in this category can run continuously until

terminated explicitly. As a result, the OS virtual memory management policy can have a

profound impact on their performance. Moreover, threads in a throughput-oriented multi-

threaded program are often independent. They communicate and share data among each

other, but not in a cooperative way as the latency-oriented multithreaded programs.

Given the various characteristics of these workloads, it is not at all surprising that none

of these static cache schemes can serve all of them equally well. Some workloads favor a

shared cache scheme, while others may perform better on a private cache scheme. In practical

cases, a program can even exhibit different memory access patterns within different execution

phases. As a result, a fixed static cache scheme cannot even satisfy the requirement of a single

program. A flexible and intelligent cache management scheme that can adapt to different

program behaviors is desired in CMPs.

1.3 LIMITATIONS OF EXISTING SCHEMES

Apparently, neither the shared cache scheme nor the private cache scheme alone can suit the

memory access patterns of all workloads. Many proposals try to improve the performance of

the baseline shared and private cache schemes by adapting to program behavior. They are

motivated by different observations and provide distinct solutions. But the basic principles

of these proposals are the same: combining the advantages of both shared and private

cache schemes to form a new hybrid scheme. Naturally, these architectural innovations are

implemented in hardware. Admittedly, a hardware-based solution provides many benefits.

First, it hides the underlying detail completely from the OS and the applications. The

program behavior tracking and management decisions are performed in parallel with other

operations in background. Thus, these designs introduce limited interference to the program
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execution. Furthermore, the worst case latency of an operation is guarded by the hardware

design. The delay is predictable.

However, these hardware-based designs have some limitations: (1) Maintaining up to date

information for the executing program is critical to a dynamically adaptive cache scheme.

It is not trivial to track program behavior in hardware. The data storage for bookkeeping

the event history can become substantial and potentially unmanageable, not to mention the

complexity of the control logic. An over-simplified design can generate inaccurate estimation

of the current execution status. It can lead to incorrect run-time decisions and impact the

program performance adversely. Some statistical sampling method [78] is proposed to reduce

the monitoring cost. However, most of these tasks can be easily accomplished by software

using off-line analysis; (2) More importantly, these proposed hardware schemes often require

a central arbitrator to keep distributed caches coherent. Such a centralized design violates the

original purpose of using a distributed cache organization, creating a potential performance

bottleneck for large-scale CMP architectures.

1.4 RESEARCH OVERVIEW AND CONTRIBUTIONS

Motivated by these issues in existing hardware-based schemes, this thesis studies the dis-

tributed shared cache management problem using a software-oriented approach.

The proposed solutions are expected to perform at least comparable to available hardware-

based cache management schemes, but with much less hardware cost and better scalability.

1.4.1 Problem Overview

In this thesis, we propose a software-oriented last-level cache management approach for

optimizing program performance on CMPs. We assume the L2 cache is the last-level cache

in a CMP and L2 cache slices are distributed and shared by all cores, similar to recent

multicore processors [80, 103, 97]. To remove the constraints exposed in hardware-based

schemes, it is important to have a flexible mechanism to locate data in the L2 cache. The
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underlying mechanism used to control data placement in this work is similar to the page

coloring technique [27]. When a page fault is triggered, a free physical page frame has to be

mapped to the virtual page generating the fault. During this process, the OS also chooses

a target cache slice index and a cache bin number as augmented fields to the page table

entry.1 Whenever a cache block belonging to that page is accessed, the corresponding cache

slice index and the cache bin number are fetched to locate it among L2 cache slices. The

challenge is to determine a proper cache slice index and a cache bin number for a given

virtual page. The proposed software-oriented cache management approach employs a profile

analysis method to generate data mapping hints for a program. The hints are then used to

guide data placement at run time. The off-line analysis is not limited by hardware resources

and can perform a very sophisticated analysis task. By off-loading the cache management

task onto software, the proposed approach can exploit a program’s cache access patterns

that are hard to capture by hardware mechanisms. More importantly, the flexibility of the

off-line analysis even allows us to adopt different strategies to tackle programs with various

characteristics. In this thesis, a unique strategy is designed for three different types of

workloads separately.

For single-threaded programs, it is obvious that distributing data blindly across all L2

cache slices is not an efficient method. If the working set is not large, the remote access delay

from the on-chip network can degrade performance. Without causing excessive cache misses,

aggregating program working set data as close as possible to where the program runs can

provide a considerable performance boost. In this study, the cache access latency (including

the network delay) and the cache contention information are considered in combination to

compute the cost of a cache access. The derived “optimal” data distribution is the one with

minimum total cost for all L2 cache accesses. The evaluation results show that hints are

provide up to 3 times speedup with the oracle static 2D page coloring scheme. The average

improvement is 44.7%. The dynamic 2D page coloring scheme, which is the online version of

the static 2D page coloring scheme, achieves up to 191% better performance than the shared

cache scheme with an average of 32% improvement. In addition to the encouraging results,

1A cache bin is a collection of consecutive cache sets. The number of sets in a cache bin equals to the
page size divided by a cache block size. For example, if a page is 8KB, then a 512KB 4-way associative cache
with 64-byte cache block size contains 16 cache bins. Each cache bin has 128 cache sets.
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this study also leads to several interesting insights: (1) When NUCA L2 cache is used,

cautious data placement is beneficial to single-threaded program performance; (2) In a CMP

architecture design, the on-chip network delay becomes a nontrivial performance-limiting

factor, which, if not handled properly, will lead to significantly degraded performance; and

(3) As the number of cores increases, a flexible L2 cache management framework can be

highly beneficial and of growing importance.

Multithreaded programs have much more complex access patterns. Since several threads

are active at the same time, data can be requested from multiple sources simultaneously.

It is not obvious immediately which is the optimal location for the data. However, it is

observed that the data access behavior of a program is closely related to its intrinsic char-

acteristics. For instance, an array is accessed by an index. In a sophisticated program, the

index is usually computed from other variables, such as thread ID and loop iterators. Even

though the values of these dependent variables can change, the way the index is calculated

is determined by the algorithm itself. As a consequence, its access pattern persists. To gain

basic understanding of the cache access behavior of multithreaded workloads, profile analysis

is carried out. Some observations from the study are very motivating and worth mentioning.

Figure 1 shows the data sharing behavior of cholesky from the SPLASH-2 benchmark

suite [86]. Cholesky is a representative latency-oriented multithreaded programs. In the fig-

ure, both curves represent the cumulative percentage of accesses to data pages that are shared

by different number of threads. But the number of sharing threads is counted differently for

these two curves. For the dark blue curve (diamond), the number of sharers for a page is

counted over the entire program execution. For the light green curve (square), the number

of sharers for a page is determined by the maximum number of simultaneous sharers at any

instant during the program execution. As the figure shows, nearly 17% of the all accesses

are shown to go to pages predominantly accessed by a single thread. At the top right of the

plot, it shows around 40% of all accesses touch pages that are shared by all threads. This

type of curve shape is common in SPLASH-2 programs, suggesting that many data pages

are either private or highly shared. Indeed, this is intuitive as scientific workloads often

involve partitioned data processing (private data) and global synchronization and data ex-

change (highly shared data). For private data, it is desirable to place them in the requester’s
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Figure 1: Data sharing behavior of cholesky at page granularity. The two curves capture

the number of memory references to a page shared by a different number of threads. For

the dark curve (“total sharer #”), the number of sharers is determined by counting the

total number of threads accessing the page over the entire program run. For the light curve

(“max sharer #”), the number of sharers is determined by recording the maximum number

of simultaneous shares for that page at any instant during the program run.

local cache slice at the earliest to avoid remote accesses. On the other hand, it is benefi-

cial to replicate highly shared data or fetch them from neighbors nearby. This observation

uncovers an excellent data locality optimization opportunity by using the software-oriented

shared cache management approach. In more detail, the compiler can employ a K-means

clustering based algorithm to classify data access patterns for latency-oriented multithreaded

workloads. The generated hints, which are independent of program inputs and cache con-

figurations, are opportunistically used by the system to improve program performance. The

experimental results show that the proposed scheme improves the evaluated multithreaded
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scientific program performance by 10% over the shared cache scheme and achieves similar

performance to the victim replication technique [111]. When data replication is enabled and

guided by the hints, the proposed scheme brings additional 9% performance gain, performing

19% and 9% better than the shared cache and the private cache respectively.

The throughput-oriented multithreaded programs have very different nature in compar-

ison to the latency-oriented multithreaded programs. Thus a new strategy has to be taken.

However, it is difficult to extract access patterns of a throughput-oriented multithreaded

program through off-line trace analysis. Due to the randomness of the incoming requests

and the impact of thread scheduling by the OS, this type of program may even have no

trackable patterns at all. We have not found any related work from the literature in this as-

pect. In this study, we take an indirect approach to characterize the data access behavior of

a program. Instead of analyzing accessed data directly, we examine the memory instructions

which access those data. The profile study shows that the reuse property of a memory in-

struction is quit persistent. That is, a data block accessed by a memory instruction exhibits

frequent reuse during its residence in the cache, then other data blocks accessed by the same

memory instruction tend to have similar reuse pattern. As a result, the reuse statistics of

memory instructions from a profile analysis can be used to predict data reuse patterns. The

data reuse information is a good hint for controlling data replication in NUCA caches. For

example, if the data touched by a load instruction exhibit good temporal locality during a

profile study, it is beneficial to always allow replication of the data touched by this instruc-

tion based on our observation. Thus, this load instruction itself becomes a hint for data

replication. Here, there is no need to track data addresses as hints for online execution. In

addition, this scheme is not limited to throughput-oriented programs. The idea is general

and can be applied to other types of workloads as well. The evaluation results show that the

proposed hint-guided data replication control scheme is effective in locating the optimal data

replication level, achieving performance that is comparable to the best of other compared

cache schemes.
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1.4.2 Research Contributions

This thesis studies a software-oriented shared cache management approach, which is con-

sidered as deviating from conventional hardware-based cache management schemes substan-

tially. It opens up a new research direction for the last-level cache management. To the

best of our knowledge, this is the first study for software-oriented NUCA cache manage-

ment strategies. Moreover, the proposed software-oriented approach is orthogonal to other

hardware-based schemes and can be used in combination.

Through the study of the proposed software-oriented schemes, this thesis makes the

following contributions:

• A page-granularity data mapping mechanism is proposed. By transferring the data

placement control to virtual memory management, the proposed mechanism offers a

novel way to manage traditional shared caches through software.

• Based on the page placement mechanism, three different optimization strategies are

proposed for single-threaded programs, latency-oriented multithreaded programs, and

throughput-oriented multithreaded programs respectively. They are evaluated and com-

pared to the shared cache scheme, the private cache scheme, and their variants. The

experimental results show that the proposed schemes are effective for boosting the per-

formance of the baseline shared cache schemes, achieving better performance than other

compared schemes.

• For single-threaded programs, static and dynamic 2D page coloring schemes are proposed.

They improve a previous cache optimization scheme [82], which focuses on cache conflicts

removal. To adapt to the CMP architecture, the proposed schemes try to balance both

cache access latency and cache miss rate on a NUCA.

• For latency-oriented multithreaded programs, a novel cache access pattern recognition

algorithm is proposed. By utilizing machine learning techniques, the recognized patterns

are effective across different program inputs and cache configurations. The derived data

affinity hints can guide data placement at run-time for improved data locality.

• For throughput-oriented multithreaded programs, a novel profile-guided data replication

control scheme is proposed. Through off-line analysis, a set of memory instructions
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that contribute to most of the data reuse are identified. This information is then used to

guide online data replication. It is worth mentioning that there are only few profile-based

studies for this type of workloads.

1.5 DISSERTATION ORGANIZATION

In the remaining chapters of this thesis, previous work and related background are first pre-

sented in Chapter 2. In Chapter 3, the machine model on which the proposed schemes are

based and the detailed experimental setup are provided. Then the static 2D page coloring

technique and its dynamic counterpart are introduced in Chapter 4, along with the evaluation

results. Chapter 5 first analyzes common memory access patterns found in latency-oriented

multithreaded programs. Based on the analysis, a novel pattern recognition algorithm for

generating data affinity hints is introduced. Then the evaluation results are given. Chapter 6

analyzes the obstacles to perform profile-assisted optimizations for throughput-oriented pro-

grams and common characteristics of these programs. Then it introduces the profile-guided

data replication control scheme, followed by evaluation results. Finally, the summary of this

thesis work and the future research plan are described in Chapter 7.
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2.0 BACKGROUND AND RELATED WORK

In this chapter, we review related background and previous work in detail. First, we delve

into the basic shared cache scheme and the private cache scheme, as well as point out the

pros and cons of both. Then, previously proposed hybrid cache management schemes that

try to combine the advantages of the shared cache scheme and the private cache scheme are

discussed. This thesis work also bears some similarity to the memory management schemes

in Cache-Coherent Non-Uniform Memory Architecture (CC-NUMA) or Cache-Only Memory

Architecture (COMA) machines [41]. The related literature is introduced at the end.

2.1 HARDWARE-BASED CACHE MANAGEMENT SCHEMES

Almost all cache schemes proposed in recent literature or adopted by products in industry

are purely hardware-based schemes. In these schemes, the cache controller manages where

and how a block of data should be placed using predetermined rules. At the time of a data

access, the cache controller seeks data by following the same rules and supplies the data to

the processor pipeline. Some of them may require auxiliary hardware components, but all

hardware-based schemes introduced in the following sections essentially differ only in these

rules about data placement and replacement.

2.1.1 Shared Cache Scheme

There are two baseline L2 cache management schemes in the current-generation of CMPs:

the shared cache scheme and the private cache scheme [5, 6, 45, 40, 46, 56, 71, 84, 101].
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The shared cache scheme is a natural evolution from the cache structure of uniprocessors.

However, a monolithic shared cache structure is not suitable for CMPs. It is often split into

banks or slices to reduce cache access latency. All banks or slices are connected together

through wires or networks to form a logically unified cache space. The whole cache space is

shared and accessible by all cores in a CMP. If a shared cache is composed of multiple cache

slices, the common approach is to interleave consecutive memory blocks across available

cache slices based on their block address [6, 46, 56, 71, 84]. Spreading data in this way helps

balance cache accesses among all slices, mitigating hot-spots and contention. By aggregating

all cache slices, the shared cache scheme can utilize the cache capacity effectively. As a result,

it leads to a low cache miss rate, which is often the most important feature when designing

a cache for a uniprocessor. However, the biggest disadvantage of the shared cache scheme

for a CMP is that accesses to remote cache banks or slices may incur considerable delay

on the wires or interconnection network. In certain situations, data are blindly distributed

to remote slices even though the nearby cache slices are underutilized. This causes an

unnecessary latency penalty and negatively impacts the cache performance.

2.1.2 Private Cache Scheme

The private cache scheme adopts a different philosophy as compared to the shared cache

scheme. It divides the whole cache space into private cache partitions (slices), each of which

is owned by one core in a CMP [5, 40, 101]. A core has exclusive access to its own private

cache slice. The cache is often arranged in a way such that a core has the shortest distance

to its corresponding cache slice. On a cache access, only the local cache slice is searched. A

cache miss in the local slice results in a memory request. The cache coherence mechanism

then determines if the requested data should be fed from the off-chip main memory or a

neighboring cache slice. A returned data block is always replicated in the local cache slice

in the hope that the next access to the same data block can be resolved locally. If this is

the case, a slow remote cache access in the shared cache scheme is turned into a faster local

access in the private cache scheme. The latency saving can lead to better cache performance

than the shared cache scheme if a cache request sequence exhibits sufficient reuse patterns.
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Given the diversity of workloads characteristics, however, this does not always happen. Since

the whole cache capacity is split into N partitions for a N-core CMP, the effective capacity

seen by each core in the private cache scheme is much smaller than the shared cache scheme.

As a result, the cache miss rate becomes more sensitive to the program working set size. So

the private cache scheme often causes higher cache miss rate than the shared cache scheme.

When the cache miss rate increases, the benefit of local cache accesses starts to shrink and

is finally offset by cache miss penalties (the more expensive off-chip main memory accesses).

For this reason, the private cache scheme is not the best design for all workloads.

2.1.3 Hybrid Cache Schemes

It is apparent that neither the shared cache scheme nor the private cache scheme can perform

consistently better than the other for all workloads [72, 43, 111, 27]. For example, streaming

programs with little temporal locality or programs with their working sets entirely fit into

a cache slice can perform better with the private cache scheme, while programs with large

working sets or a high degree of read-write data sharing may perform better with the shared

cache scheme. Researchers have thus examined many possible solutions. The basic principle

of those proposals is to combine the advantages of both the shared cache scheme and the

private cache scheme, while avoiding their shortcomings. This goal is achieved by balancing

between latency (by improving data locality) and cache miss rate (by utilizing cache capacity

more efficiently).

Speight et al. [85] presented an eight-core CMP architecture design where each two cores

form a cluster and share a private L2 cache. Within an L2 cache cluster, four cache banks

are shared, providing fast access to shared data among the two cores. But each L2 cache

cluster is a private cache from the viewpoint of the CMP chip. So coherence should be

maintained among the four clusters. When a cache line is evicted from an L2 cache cluster,

hints are consulted to decide if the victim should be written to the off-chip main memory or

kept in a peer L2 cache cluster. If the victim is kept in a peer L2 cache cluster, an L2-to-L2

transfer is much faster than an off-chip main memory access when it is reused. Hints are

constructed dynamically in tables within each L2 cache cluster during a program execution.
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The performance of this scheme depends on the design-time parameters such as the cache

size and the number of cores in a cluster. Grouping threads with sharing data into a cache

cluster would provide much benefit. However it may be hard to predict the performance

of an application developed without any knowledge of the parameters unless the OS makes

informed process scheduling decisions.

Similarly, Huh et al. [44] proposed an L2 cache organization with a configurable sharing

degree. To be more specific, it clusters L2 cache banks based on a configuration set by the

OS. Cores assigned to an L2 cache bank cluster have exclusive access to it. By varying the

degree of clustering, this scheme essentially trades off between purely shared cache scheme

and purely private cache scheme. They also studied a static cache mapping policy and a

dynamic cache mapping policy. The dynamic cache mapping policy allows a cache block to

go to multiple candidate banks. With proper placement of a cache block, its access latency

can be improved. Furthermore, with the dynamic mapping policy, a generational promotion

algorithm can be used to guide cache block migration, which can further improve the access

latency depending on the cache block usage. The more cache banks it allows to go to, the

more aggressive the optimization becomes. However, an L1 cache miss can trigger a search

in multiple cache banks in parallel. Even though partial tags are added to help reduce the

pressure of full tags, this can still consume substantial cache bandwidth. Thus the search

cost largely determines the freedom of the dynamic mapping policy. This scheme is not

considered to be scalable for large-scale CMPs.

Zhang and Asanović [111] proposed the victim replication scheme based on a shared L2

cache organization. In the proposed scheme, each L2 cache slice can replicate a data block

from a remote cache slice when it is replaced from the L1 cache. The replication saves accesses

to remote L2 cache slices or directories when the replicated data blocks get reused in the

future. This scheme can boost shared cache performance significantly when the program’s

working set fits well into its local L2 cache slice, bringing the performance close to that of

the private cache scheme. Essentially, the local L2 cache slice provides a large victim cache

space for the cache blocks whose home are remote so that data locality can be improved.

However, a coherence request or an L1 cache miss calls for more actions than before, because

locating a cache block is no more deterministic. Both L1 and L2 caches (in parallel or in
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sequence) should be checked upon an invalidation request because it is not readily known

if a remote cache block has been replicated in the local L2 cache slice. The local cache

slice must be always searched on an L1 cache miss regardless of the missed address. As a

result, cache pressure is increased substantially. Further, the replicated victims can kick out

unowned cache lines in the L2 cache. This unwanted consequence can increase the number of

cache misses considerably, incurring expensive off-chip main memory accesses. Under certain

circumstance, victim replication becomes too aggressive and degrades program performance.

Beckmann et al. [14] proposed a controlled victim replication scheme called ASR, which

tries to reduce cache pollution caused by excessive replication in the original victim repli-

cation scheme. ASR employs a technique called selective probabilistic replication to achieve

controlled replication of frequently reused data. To measure the best replication level, their

design introduces a set of tables along with each core to keep track of the performance gain

and loss with regard to increasing or decreasing replication level. By adjusting the repli-

cation level adaptively during a program execution, their scheme is shown to achieve the

near-optimal balance between the miss rate and access latency. However, these tables take

considerable effort to maintain. The control logic can also be very complex. These hardware

structures can consume a lot of chip area. If such a complex scheme is suitable for a practical

design is unclear. Furthermore, the selective probabilistic replication technique relies on a

ring network to merge a victim with a copy in a remote cache slice. This limits it from

scaling up to a large number of cores.

Chishti et al. [26] proposed a cache scheme called CMP-NuRAPID having a hybrid of pri-

vate per-core tag arrays with forward pointers and a shared data array with reverse pointers.

By utilizing those pointers, cache blocks can virtually reside in any L2 cache slices. Based

on this hardware mechanism, they studied a series of optimizations, such as controlled repli-

cation, in-situ communication, and capacity stealing. The controlled replication duplicates

reused data blocks in L2 slices nearby to avoid remote cache accesses. The in-situ commu-

nication optimizes the access latency of read-write shared data by placing data blocks closer

to readers and updating the data blocks on every write actively. This allows direct data

block reads without incurring coherence misses. The capacity stealing technique allows a

core with large capacity demand to demote its less-frequently-used data to neighboring L2
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slices. By using this technique, a core can attract as many data blocks as necessary to im-

prove data affinity without suffering from the limited cache capacity as in the private cache

scheme. However, the flexibility of data movement among L2 cache slices does not come as

free. First, CMP-NuRAPID doubles the size of the tag array, incurring storage overhead.

Second, the modification to the coherence protocol increases the complexity of the control

logic substantially. Lastly, the use of bus and broadcast policy for making private tag arrays

consistent limits its capability to be adopted in large-scale CMPs.

Chang and Sohi [23] proposed a cooperative caching framework based on the private

cache scheme via cooperative actions among cache slices. They studied optimizations such

as cache-to-cache transfer of clean data, replication-aware data replacement, and global

replacement of inactive data. The cache-to-cache transfer of clean data is a natural extension

to the traditional cache coherence design in a multiprocessor system as the network latency

becomes much lower in CMPs. The replication-aware data replacement overrides the LRU

policy and gives the eviction priority to replicas in a private cache. This technique intends

to overcome the problem of excessive replications in the private cache scheme. The global

replacement of inactive data breaks the rigorous partitioning of a private cache space by

allowing local L2 cache victims to replace inactive cache blocks in peer L2 cache slices.

However, all those cooperations among multiple private L2 cache slices are implemented

assuming there is a facilitating data structure called Central Coherence Engine (CCE). The

CCE maintains information regarding replication status of all cache blocks. It has to consult

the CCE on every optimization decision and status update. As admitted in the paper, this

centralized structure becomes performance bottleneck when the number of cores is beyond

8.

Michael and Mark [65] proposed a two-level cache coherence based on the conventional

shared cache scheme for CMPs. In their scheme, each program is assigned a home node

table, which maps lower bits of a data block address to a target home node. By carefully

designing the mapping, all accessed cache blocks of a program can be grouped in cache slices

nearby where the program runs. The first-level cache coherence is responsible for maintaining

consistency among these L1 caches and the corresponding home nodes. By grouping related

threads together and binding home nodes tightly, the average access latency to these home
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nodes through the first-level cache coherence becomes lower than the shared cache scheme,

which distributes data to all available cache slices blindly. On an L1 cache miss, a lookup

is performed in the home node. A miss in the first-level cache coherence can involve extra

directory access in the second-level cache coherence. If the data is not found in the home

node, a request is sent to the directory like the conventional cache coherence. The directory

then either broadcasts or directly notifies the owner to forward the data. This scheme

essentially clusters data closely to the threads of a program by using a flexible mapping

mechanism. The focus of this paper is to optimize the cache performance of large-scale

CMPs for multiple co-scheduled server programs. No effort is made to improve data locality

within a cluster. As a result, it only benefits when the number of threads is smaller than

the number of available cores within a CMP.

Dybdahl and Stenstrom [33] proposed a hybrid scheme which divides each core’s local

cache slice into shared and private partitions, assisted by a modified replacement policy. The

shared partitions from all cores form a unified shared space. The Sharing Engine estimates

the best partition size for private partitions based on the augmented per-set shadow tags

and the LRU information. An accessed data block is first allocated in the local private

partition, which is always accessed first on a data request. An eviction from a private

partition replaces a cache block in the shared partition. The candidate for replacement

is determined based on the partition estimation and the LRU information. A miss in the

private partition leads to parallel search on the local and neighboring shared partitions.

Their scheme provides the benefit of fast access of the private cache scheme while loosens

the cache capacity constraint to include neighboring cache slices. The evaluation results show

that this smart partitioning scheme performs better than both the private cache scheme and

the shared cache scheme as expected. It also outperforms the cooperative caching scheme

proposed by Chang and Sohi [23]. However, the centralized Sharing Engine for estimating

cache partition size, controlling shared partitions, and enforcing the modified replacement

policy is not scalable. As a result, the proposed scheme suffers the same limitations of the

other related hardware-based schemes.
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2.2 PAGE-BASED CACHE MANAGEMENT

The page coloring technique was first proposed by Kessler and Hill [52] to reduce cache con-

flict misses. They derived a simple model that shows a naive page placement policy can lead

to up to 30% more unnecessary cache conflicts. Based on this observation, they developed

several page placement algorithms that reduce cache misses by 10-20%. The proposed page

coloring policies are relatively simple. They color pages based on static heuristic rules. So it

still leaves a lot of space for further improvement. Romer et al. [87] studied several dynamic

page mapping policies for reduced cache conflicts. They proposed two types of mapping

policies. The active policies closely monitor the TLB contents and proactively remap a page

that has potential to cause conflicts to a different color. The other group, called periodic

policy, is more passive and only periodically checks the TLB for selecting any pages that

violate the rules as recoloring candidates. Similarly, Bershad et al. [15] used cache miss

lookaside buffer to detect cache conflicts by recording and summarizing a history of cache

misses. Based on these hints, the OS virtual memory management module plays the role for

remapping a page that suffers from a large number of conflict misses.

Alternatively, Bugnion et al. [20] proposed a compiler-directed page coloring technique.

Their technique utilizes the compiler’s knowledge of the access patterns of a parallelized

application to reorder and group the pages that are accessed by the same processor together.

Then these pages are colored cyclically to avoid conflicts based on the principle that pages

accessed by the same processor should be spread to different colors as even as possible. Also

arrays accessed by the same processor should be assigned with different starting addresses.

The derived coloring plan guides memory page mapping in the OS at run time.

Sherwood et al. [82] proposed a profile-based method to guide page coloring for reduced

conflict misses. Their static approach uses a heuristic algorithm to analyze an L2 cache access

trace and estimates the number of potential conflicts between any pair of pages. Given the

inter-page conflict statistics, an optimal page placement is arranged to achieve minimum

number of conflict misses prior to a program execution. The derived hints then guide page

placement at run time for the same program and input set. They also propose a dynamic

scheme, which tries to recognize the pages that are responsible for the high conflict misses
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in a cache bin and migrate them to a different one. The evaluation results show that the

dynamic scheme is very effective in reducing the number of expensive main memory accesses

for a unified L2 cache. However, these early works all target for the cache architecture of

uniprocessors. The problem caused by non-uniform cache access latency in CMPs is not

considered.

There are several other works inspired by the page coloring based cache management

framework. Instead of using a simulation-based evaluation approach, Lin et al. [63] modified

memory management module in the OS to support different page coloring policies. Then

they evaluated in a real machine several previously proposed cache partitioning policies,

which target for different goals, such as performance, fairness, and quality of service (QoS).

Through the study, they confirmed several important conclusions from the prior work and

obtained new insights that are unlikely to get from a simulation. However, only single-

threaded programs and multiprogrammed workloads are studied in this work. Multithreaded

scientific programs and server programs can exhibit distinct cache behavior and require a

different cache policy. Besides that, the cache partitioning scheme only improves the cache

miss rate by isolating the impact from other co-running programs, it does not improve the

data affinity for the non-uniform latency cache at all.

Chaudhuri [24] proposed a hardware-based page migration scheme. His proposal is mo-

tivated by the observation that a majority of pages are only accessed by a single core during

consecutive sampling periods. These “solo pages” often exhibit good locality. If a page

is accessed by a core within a sampling period, it is very likely that most of the accesses

to that page would come from the same core in that epoch. His scheme adopted a simple

threshold-triggered page migration policy. The migration destination is determined based on

the principle of minimizing the average access latency for all sharing cores. The evaluation

results show significant improvement over the conventional shared cache scheme. However,

the tracking of a page usage and its location by hardware poses a big challenge. The solu-

tion given in this work employs a set-associative page access counter table to measure the

usage. It also uses a mapping table in both L1 cache and L2 cache to track the page move-

ment. Even though the author claims that the storage overhead of these tables is only 4.8%,

the logic required to maintain these tables becomes intractable, let alone the complexity of
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the migration protocol. Furthermore, it requires special care to maintain table consistency

and to avoid deadlock. The complexity also makes the job of logic design and verification

overwhelming.

Awasthi et al. [9] proposed a more practical page migration scheme. By modifying the

TLB and utilizing unused bits in the original page address, it allows a main memory ac-

cess with the original physical address and an L2 cache access with a manipulated address.

Decoupling the cache access address and the main memory access address makes page migra-

tion scheme very flexible. The scheme enables the OS to manage cache capacity allocation

to all cores within a CMP by dynamically migrating pages at the end of each epoch. The

goal of capacity allocation is to minimize the cache miss rate. They also studied a policy to

control the migration of shared pages. Based on the usage, a page is migrated to a location

where the total access latency of all sharers is minimized. Their evaluation results show

10% to 20% performance improvement compared to the shared cache scheme. However, it

is not very clear from the paper how the page migration process is done and how the cache

coherence is maintained during the migration. Another concern is that the page migration

scheme can suffer the “ping-pong” problem as discovered in the previous data block migra-

tion schemes. Many evenly shared pages may end up residing in these central cache banks,

creating hot-spots.

Finally, Hardavellas et al. [39] analyzed L2 access traces of scientific and server workloads.

They observed that the L2 cache accesses can form three categories: (1) Highly shared

read-only instruction accesses; (2) Mostly read-write shared data accesses; and (3) Private

data accesses. They introduced a new address interleaving mechanism so that data can

be clustered around the accessor in a controlled manner while still retaining quick lookup

within the cluster. Besides, they proposed to optimize access categories differently at page

granularity. First, instruction pages are replicated and spreaded nearby the requesting core.

Then data pages are initially classified as private and loaded into a local L2 cache slice. If a

data page is detected as actively shared, the corresponding TLB and related cache contents

are invalidated. The page is then distributed cross all cache slices using the traditional

address interleaving method. By differentiating read-write shared data from private data

and read-only shared data, it enables data replication without incurring cache coherence
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problem. As a result, their scheme avoids the hardware complexity introduced by previously

proposed data replication and migration mechanisms. However, one obvious shortcoming of

this scheme is that the classification conversion cannot be reversed. Once a page is deemed

as shared, it is distributed like the conventional shared cache scheme until the end of the

program execution. For long-run programs, especially server workloads, this undesirable

feature can gradually degrade their scheme to the traditional shared cache scheme.

2.3 SCHEMES FOR NON-UNIFORM MEMORY ARCHITECTURE

The problem of tackling non-uniformity of the L2 cache access latencies (i.e., NUCA) bears

similarity to the problem of attacking disparate memory access latencies of the distributed

shared memory in a SMP, such as the Non-Uniform Memory Architecture (NUMA) or the

Cache-Only Memory Architecture (COMA) machines [41]. Because the ratio between local

memory accesses and remote memory accesses largely determines program performance in

such a machine, it is of utmost importance to improve the data affinity at the level of

distributed main memory by carefully placing, migrating, and replicating pages [42, 17, 28,

59, 22, 106, 94, 108]. Indeed, NUMA is similar to the shared cache scheme while COMA

behaves like the private cache scheme. Previous studies of these schemes provide valuable

insights.

Holliday [42] studied the paged main memory management in a local/remote architecture

for shared memory multiprocessors. He addressed issues regarding the architectural support

for recording page reference history, the impact of a page size, and the operating system

support for page migration.

Bolosky et al. [17] proposed a very simple page placement policy, which initially places a

page in the local memory and migrates it to other processor’s local memory as requested. A

page is put into global memory after the page movement passes a threshold. They defined

three statuses for a page: read-only, local-writable, and global writable. The policy decision

combined with a page status decide the action to perform for a memory request. They found

the simple page placement policy performs well and achieves near optimal performance.
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Verghese et al. [106] classified all memory pages to three categories, which are very similar

to the Hardavellas’ classification [39]. Based on these page categories, they devised a decision

tree to control page migration and replication in the operating system through monitoring

some event counters. The evaluation results show that it achieves up to 30% improvement

over the ordinary NUMA scheme. Wilson and Aglietti [108] extended Verghese’s work and

further studied a dynamic page placement policy for a TPC-C workload.

Soundararajan et al. [94] studied the data locality property and performance of the

baseline NUMA scheme, the NUMA with remote access cache (RAC), the COMA, and the

NUMA with page migration and replication. Through experiments, they found RAC can

effectively capture short-term temporal locality of fine-grain data. Also the page migration

controlled by the OS can adapt to program memory usage (long-term data sharing at page-

granularity) and move a page’s home to the local memory. As a result, they proposed to

combine these two techniques so that they can work in a synergistic way. The evaluation

shows that the new scheme performs well and is robust.

Chandra et al. [22] studied the OS process scheduling policy for improving data locality

of a CC-NUMA machine. To increase the affinity of data that already reside in memory,

the modified OS scheduling manager tries to resume the execution of a sleeping process on a

processor or a processor cluster where it has been running before switched out. On the other

hand, they also employed a page migration policy, which uses a TLB miss as the signal. This

scheme is simple and effective.

Marathe and Mueller [64] proposed a hardware profile-guided page placement scheme

for reducing memory contention. In their work, a truncated version of code is profiled each

time before a program is about to execute. The sampled memory access trace is then used

to determine the optimal placement for each touched page. Then the derived affinity hints

are used to direct page placement in the full program execution. This method is effective in

improving data locality but has several limitations. First, it requires to profile the memory

access trace every time before a program’s execution. The quality of the truncated code is

crucial to the derived affinity hints. Generating representative code for the whole program

is difficult. Furthermore, they assume that a dynamic memory allocation returns the same

address for both the profile execution and the full program run. This is not always true and
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could hurt program performance significantly when the assumption does not hold.

Tikir and Hollingsworth [104] studied the data locality property of the specjbb server

benchmark on a Java virtual machine and found that different regions in the Java virtual

machine heap have unique characteristics. This observation led to a segmented heap design

for young generation objects, where each segment is allocated to a processor’s local memory.

On the other hand, objects in an old generation region of the heap survive multiple garbage

collections and can be accessed by different processors in different intervals. They propose

to allow migration of those long-life objects to improve the data locality. The evaluation

results demonstrate the effectiveness of their scheme.

Besides those experimental approaches, there are also a lot of theoretical studies on this

topic [16, 55, 1, 34, 36]. They tried to model the complexity of a system with non-uniform

access latency. Based on the model, the performance bound of all kinds of page replication or

migration algorithms were derived mathematically. Some even proposed online algorithms

that do not require oracle information to achieve performance within a given bound of the

optimum.

As seen in this section, previous works for NUMA systems put a great emphasis on the

data locality issue as they all employed migration policies to bring frequently accessed data

closer to where they are needed. This is because the remote access delay can be very severe

in these systems where processors are physically separated and connected through networks.

The delay on the networks and the latency of a local memory access can differ by up to

a magnitude. On the other hand, the main memory capacity is relatively large. Given

a program with a reasonable working set size, the contention caused by limited memory

capacity may not be significant. As a consequence, reducing the memory contention is not

as urgent as reducing the remote access latency. However, all processing cores are co-located

in a single CMP chip and communicated through on-chip networks. The remote access is

much faster than that in a shared memory multiprocessor. But the limited on-chip cache

budget indicates an efficient contention management is very important. Due to the shift of

trade-offs between the access latency and the storage capacity as we move from SMPs to

CMPs, the performance loss incurred by cache contention cannot be ignored.

The cache miss rate was the factor with utmost concern when optimizing the cache per-
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formance in the uniprocessor era. In a CMP with NUCA caches, it becomes ineffective to

only consider the impact of access latency and cache miss rate separately. Furthermore,

data in memory are managed at page-granularity naturally because of the virtual memory

management. Page table is all it needs to keep track of data movement and maintain coher-

ence. In cache, however, data are loaded and stored at cache block granularity. Migrating

data blocks around imposes a big challenge on the cache coherence module. Tracking data

location becomes too expensive to handle. Managing data at a larger granularity, such as

a page size, can certainly mitigate this problem. But the migration cost that comes from

invalidation and data copying becomes undesirably large. The last-level cache is higher in

the hierarchy than the main memory. Thus its performance plays a more critical role than

the main memory in terms of the whole system. From this perspective, effectively managing

NUCA caches in a CMP is much more difficult than the task in NUMA, even though they

share a lot of similarities.
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3.0 MACHINE MODEL AND EXPERIMENTAL SETUP

3.1 MACHINE MODEL

Throughout this thesis, we assume a tile-based CMP architecture as shown in Figure 2.

Examples of the tile-based organization include the TILE64 processor from Tilera Corpo-

ration [103] and the 80-core prototype Polaris from Intel Corporation [81]. Many research

proposals also adopt similar architectures [111, 65]. The core count within a CMP can range

from two to over one hundred. Several factors prohibit the adoption of a very aggressive

configuration in this work: (1) A simulation-based experimental method is used for this

thesis. While choosing an aggressive CMP configuration may exaggerate the benefit of the

cache management schemes proposed in this thesis, simulating a large number of tiles can be

prohibitively slow; (2) On the other side, the CMP configuration has to be large enough so

that problems with remote access delay can be clearly demonstrated. Therefore, we assume

a CMP has 16 tiles in this study. Since the proposed software-oriented approach does not

suffer the bottleneck in hardware-based schemes, we believe the conclusions drawn from this

study can be applied to other larger scale CMPs as well. Within a CMP chip, the 16 tiles

are organized as a 4 x 4 grid, connected through an on-chip 2D mesh network. Each tile

consists of a core, a private L1 instruction cache, a private L1 data cache, and a slice of

globally shared L2 cache. Cache coherence is maintained by the directories distributed along

with L2 cache slices. A tile is connected to the on-chip network with a 5-way switch.

To simplify the study in this thesis, we pin each thread to its specific core and assume

this binding does not change during the trace collection stage and the actual performance

measurement stage. In practice, the data placement should also consider the impact of the

thread scheduling. This is beyond the scope of this thesis.
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Figure 2: A tile-based CMP architecture organized as a 4 x 4 2D mesh. Tiles are connected

through on-chip networks.

The traditional page coloring technique controls data placement in a physically addressed

cache by choosing a proper physical page at page mapping time. While this process can be

done easily with a slight modification to the OS page fault handling routine, the coloring

range can be limited by the availability of free physical pages in the page list. As an al-

ternative, we extend the previously proposed TLB-based mechanism [82] to allow flexible

management of page placement in a L2 cache. As illustrated in the Figure 3, two extra fields

named tile ID (TID) and cache bin index (BIN) are attached to the ordinary page table and

TLB entries. A main memory access still uses the translated physical address as before. The

address for the L2 cache access needs special handling. Instead of using bits from the original

physical address to index a cache, the values in TID and BIN are used to locate a cache

slice and a cache bin within that slice. This essentially allows a page to be placed on any

cache bin by defining the values for TID and BIN. The address for a main memory access is

decoupled and does not constrain page placement in the cache. In addition, both TID and

BIN can have “null” value, commanding data distribution at cache block granularity for the

current page just like the conventional shared cache scheme. In this way, the two addressing

modes can co-exist in a single scheme. Depending on the access pattern of a page, one of
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Figure 3: A TLB entry is augmented with tile ID (TID) and cache bin (BIN) fields. These

two fields together with higher bits from a page offset are used to index the L2 cache. The L2

cache tag field is extended to accommodate the whole physical page number. Page locations

in the L2 cache and in the memory are decoupled. Similar mechanisms have been previously

used [82, 48].

the two modes can be selected for best performance.

The values for TID and BIN are assigned by the OS virtual memory management module

at the time of a page fault. The OS can calculate these two fields by following simple

heuristics, such as bin hopping and round robin techniques [52]. TID and BIN can also be

determined using a sophisticated mechanism which may require additional hardware support.

For the schemes proposed in this thesis, the main approach adopted is to calculate TID and

BIN based on the data placement hints derived off-line. We assume these hints are generated

by a compiler analysis routine and carried with a program binary. Strictly being “hints”,

the data affinity information causes no harm if the OS and the hardware do not support

any cache-level data affinity optimization. It simply falls back to the plain shared cache

scheme. Given this new mechanism, a data block can reside virtually anywhere in a cache

without regard to its original physical address. Thus the whole data block address has to be
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compared with cache tags in order to guarantee correctness.

The introduced extra fields incur a modest storage overhead, while offering a very flexible

data placement mechanism. Assuming a 16-tile CMP with 256KB 8-way associative L2 cache

slices, TID and BIN are 4-bit and 2-bit long respectively. This only results in less than 10%

increase in page table size, if the address width is 64-bit. Since the page table resides in main

memory, whose capacity is not a big concern in today’s computer, the page table expansion

is acceptable. The extra tag bits introduce less than 1% cache area overhead for a 64-byte

cache block size. The TID and BIN values are assigned at the time when a page mapping

is created. They persist until the corresponding page is replaced out of the main memory.

Therefore there is no consistency issue. No TLB flush is required.

3.2 EXPERIMENTAL SETUP

To simplify and speed up the evaluation process, different simulation infrastructures are

used for single-threaded programs and multithreaded programs respectively. For single-

threaded programs, we extended the SimpleScalar tool set (v3.0) [8] to model a tile-based

CMP architecture as described in Section 3.1. Since only one single-threaded program is

simulated on this platform at a time, the modified simulator essentially models a tile-based

cache structure. A core within a non-active tile is assumed to have no load and thus not

modeled. The tile on which a benchmark program runs contains a core with a 4-issue out-of-

order pipeline. The 32KB 2-cycle L1 instruction and data caches are 2-way set associative

and the 256KB 8-cycle L2 cache slice is 4-way set associative. An L1 cache block is 64-byte

wide while an L2 cache block is 128 bytes.1 A miss in an L1 cache triggers a request sent

through the on-chip network to the home L2 cache. Each hop in the networks takes 5 cycles.

The main memory access latency is 300 cycles. Otherwise stated, a program always runs

on tile 5. We selected 11 integer and 7 floating-point programs from the SPEC2k CPU

benchmark suite [95]. Because the execution of a single-threaded program rarely involves

coherence activities, the coherence mechanism is ignored for simplicity. After fast-forwarding

1This cache block size setting is common in a uniprocessor architecture [109].
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Component

Processor Model in-order

Issue Width 2

L1 I/D Cache

Cache Line Size 64 B

Cache Size / Associativity 8 KB / direct-mapped

Load-to-Use Latency 2 cycles

L2 Cache

Cache Line Size 64 B

Cache Size / Associativity 128 KB / 8-way

Tag Latency 2 cycles

Data Latency 6 cycles

Replacement Policy Random

Network on Chip

Topology 4 x 4 2D mesh

Hop Latency 3 cycles

Main Memory Latency 300 cycles

Table 1: Baseline architecture configuration

through an initialization phase and having a warm-up period, statistics are collected during

a period of 800M instructions.

In addition, we constructed a CMP cache system simulator by extending the timing in-

terface within Simics [89] to evaluate our software-oriented shared cache management scheme

for multithreaded programs. The simulated CMP adopts the UltraSPARC III ISA [97] and

runs a version of the Solaris operating system [96]. It models a 16-tile CMP with a 4×4

2D mesh on-chip networks as shown in Figure 2. Each processing core has a two-issue in-

order pipeline and private L1 instruction and data caches. Cache coherence is enforced by
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a distributed directory-based coherence protocol with MESI states [60]. Each router in the

network has separate queues for messages incoming from different links. Router arbitrator

fetches messages and delivers them to the next hop in a round-robin fashion. Table 1 de-

scribes the baseline architecture configuration. Because the benchmark programs we use

have small working set size, the cache size is scaled in the experiments so that caches see

reasonable pressure.2 The extra level of page address translation for an L2 cache access as

described in Figure 3 is mimicked in the simulator to avoid modifications in the OS kernel.

The simulator maintains a translation table that approximates the contents of the actual

page table in the OS. When there is an L2 cache access, the simulator looks up the trans-

lation table for the target tile ID and cache bin number based on the given virtual page

number. On the first access of a page, data affinity hints are consulted to assign new values

for TID and BIN. The data affinity hints are fed into the simulator directly at the beginning

of a simulation. The overhead of making affinity decision in the OS is a small one-time cost

and is ignored.

12 programs from the SPLASH-2 benchmark suite [86] and 2 programs from the PARSEC

benchmark suite [76] are chosen as the latency-oriented multithreaded workloads for exper-

iments. They are listed in Table 2 with associated inputs. There are a number of reasons

for picking these benchmark programs. First, since the experiments involve page placement

activities, a major part of which are done at the very initial stage of a program execution, it

is necessary to simulate a program from the beginning to the end. That is, fast forwarding is

not an option. Given the slow speed of a detailed CMP cache simulator, it is impossible to

simulate a very large application. Second, as required by the experiments, function calls for

dynamic memory allocation in a program’s source code are manually replaced by wrapper

functions to capture dynamic allocation information. This avoids implementing a full-blown

compiler. This method works well for C programs, but has trouble with programs written in

object-oriented languages. Third, the main focus of this work is on multithreaded programs.

The SPLASH-2 and the PARSEC benchmark suites are the most commonly and widely used

2In fact, based on the study, we found that using a larger cache size has a limited impact on the relative
performance of the evaluated schemes. Thus, the conclusions drawn from this study are also valid for larger
cache configurations. This is because each individual thread in these benchmark programs has a small
working set size that can mostly fit in a 128KB cache.
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Program Small Input Median Input Large Input

barnes 16K particles 32K particles 64K particles

cholesky tk15.O tk16.O tk29.O

fft 256K data points 1M data points 4M data points

fmm 16K particles 32K particles 64K particles

lu 512 x 512 matrix (cont.) 1024 x 1024 (cont.) 2048 x 2048 (cont.)

ocean 258 x 258 grid (cont.) 514 x 514 grid (cont.) 1026 x 1026 grid (cont.)

radiosity test room largeroom

radix 4M keys, 1024 radix 8M keys, 1024 radix 32M keys, 1024 radix

raytrace teapot car balls4

volrend scaleddown4 scaleddown2 head

water-ns 512 molecules 1000 molecules 2744 molecules

water-sp 512 molecules 1000 molecules 4096 molecules

blackscholes 64K options 128K options 256K options

swaption 4K swaptions 8K swaptions 16K swaptions

specjbb 1000 transactions 5000 transactions 10000 transactions

apache 100 requests 500 requests 1000 requests

btree 1000 requests 5000 requests 10000 requests

cheetah 1000 requests 5000 requests 10000 requests

Table 2: Benchmarks with small, median and large input parameters.

programs in the research community.

In addition, specjbb 2005 [95] and apache [4] are used as the throughput-oriented multi-

threaded benchmarks. Specjbb evaluates the performance of server side Java by emulating

a three-tier client/server system with emphasis on the middle tier. For the experiments,

specjbb is set up with 16 threads which serve transactions for 16 warehouses simultaneously.

apache is an open-source HTTP server program. The performance of apache is tested with
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its benchmarking tool ab, which is configured to establish 128 concurrent HTTP connec-

tions. We also include two customized kernels called btree and cheetah. Btree is a small

database kernel, which simulates parallel search, insert, and delete operations with coarse-

grain locking to guarantee data consistency. Cheetah [58, 92] is a light-weight HTTP daemon

originally, modified to support multithreading. In order to fit the simulation environment,

it is specially customized to be self-sustaining without the need of being driven by external

requests. In this study, cheetah is configured to spawn 16 threads, serving random file fetch

requests simultaneously.

Table 2 lists all multithreaded programs with their corresponding input sets used in our

study. The different input sets are used for each program in our experiments in order to

evaluate the generality of the off-line derived hints across different input sizes. A small in-

put set is used to collect the trace. Then median and large input sets are used to report

results. Throughput-oriented multithreaded programs do not require particular input data

like latency-oriented multithreaded programs. Their execution length is solely controlled by

the given number of transactions. In this study, we simulate throughput-oriented multi-

threaded programs for a small number of transactions for trace analysis. Then performance

is evaluated with a much larger number of transactions.

For the experiments in this thesis, we conveniently used an architecture simulator to

collect traces. However, in realistic software development settings, one would seek a faster

tracing strategy. There exist much more efficient alternative solutions that use, for example,

hardware performance counters [64] or binary instrumentation tools [66]. While building

an optimized tracing tool can be rewarding, it is beyond the scope of the study in this

thesis. Considering that programmers resort to various performance tuning tools to improve

the performance of multithreaded programs, the extra one-time tracing overhead can be

justified.
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4.0 DATA PLACEMENT FOR SINGLE-THREADED PROGRAMS

In this chapter, the page placement strategies for single-threaded programs are introduced.

Because a single-threaded program seldom has shared data, it is desirable to attract data

as close to the running program as possible to reduce the access delay incurred by the on-

chip networks. The problem becomes how to aggregate a program’s working set in the L2

cache nearby the running program while keeping the miss rate low. In what follows, a static

2D page coloring technique is first discussed. It uses off-line analysis hints to achieve the

near-optimal performance. This static scheme utilizes the profiling information of a whole

program, which may not be practical in certain production systems. Motivated by the results

of the static 2D page coloring scheme, a practical solution called dynamic 2D page coloring

is then devised. The dynamic scheme tries to approach the performance of the static 2D

page coloring scheme without performing the off-line profile. So it is a practical solution,

which can be used for optimizing performance of programs in a real system. The results and

conclusions are presented at the end.

4.1 STATIC 2D PAGE COLORING

In this section, the static data placement scheme for single-threaded programs is presented.

It is called static two-dimensional (2D) page coloring because data to cache bin mappings

are determined before a program’s execution. A profile-driven method is employed to guide

the mapping process. A cache bin is a smallest group of cache sets which would hold an

entire memory page. The number of cache bins in a cache is simply the cache size divided by

the product of the page size and the associativity. The proposed off-line algorithm greedily
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selects a desirable cache bin (among all cache slices) for a page based on the detailed inter-

page conflict information derived from a program’s memory reference trace.

This scheme is called “2D” page coloring because choosing a target cache bin decides

not only the cache bin within a cache slice, but also the cache slice itself, which in turn

determines the program-to-data distance. While collecting and analyzing detailed traces

for all programs might be impractical, this static scheme provides valuable insights into

the “ideal” program performance on distributed shared caches, by optimizing cache access

latency and miss rate together. It is also noted that the performance of the proposed

profile-driven 2D page coloring places an upper bound on the performance achievable by

an aggressive static compiler analysis [20].

4.1.1 Basic Approach

The static 2D page coloring scheme consists of three phases: trace generation, trace analysis

and mapping hints generation. In the trace generation phase, memory references of a target

program are collected. To accurately capture the related cost in the trace analysis phase,

only L2 cache references are collected. A sampling method can be used if the L2 cache

references are too large to be handled efficiently. In the trace analysis phase, the number

of references to different pages and the number of inter-page conflicts are counted, within

the scope of the whole trace. While the number of references for each page can be easily

obtained given a memory reference trace, computing the number of conflicts between pages

is impossible before the mappings of these pages are known.

To tackle this problem, an assumption is made: if there are two references to page A

and page B and there is no other reference to page B in between, these two references can

potentially cause a conflict miss if page A and page B are placed in the same cache bin [82].

Based on this assumption, the algorithm for calculating conflict information is sketched in

Figure 4. Two matrices Reference[ ][ ] and Conflict[ ][ ] are defined. The Reference[ ][ ]

matrix keeps track of temporal relationships among references. The Conflict[ ][ ] matrix

counts the number of potential conflicts between any pair of pages. To update the matrices,

references in the trace are processed one by one, as shown in Figure 4. For each reference,
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while trace is not empty {

get the next reference R from trace

PI = array index of the page accessed by R

for(i = 0; i < total number of pages; i++) {

Reference[i][PI] = 1;

if(Reference[PI][i] == 1) {

Conflict[PI][i]++;

Reference[PI][i] = 0;

}

}

}

Figure 4: The algorithm to extract conflict information from an L2 cache access trace.

the column bits in Reference[ ][ ] corresponding to the accessed page are set to 1. All the

bits in the row corresponding to the same page are then checked. Any bit previously set

to 1 indicates that the current reference may cause a conflict with this previous reference.

Thus, the corresponding position in Conflict[ ][ ] is increased by 1. After all references in

a trace are processed, an item in Conflict[ ][ ] matrix, Conflict[i][j], contains the number

of potential conflicts when page i and j are mapped to the same cache bin.

Figure 5 demonstrates this process using a simple example. In this example, page A, B,

C, and D are accessed in the given order. Initially, all entries in both matrices are 0. After

page A is accessed, entries from the column A of the Reference[ ][ ] matrix are marked to

1. In addition, entries from row A of the Reference[ ][ ] matrix are scanned. If a marked

entry is found, the corresponding entry from the Conflict[ ][ ] matrix is increased by 1. In

this case, nothing happens since all entries are 0. Access to page B repeats the same process:

Entries from the column B of the Reference[ ][ ] matrix are marked to 1 and row B checked.
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Reference
Matrix

Conflict
Matrix

Accessed
Page

A B C D
A 0 0 0 0
B 0 0 0 0
C 0 0 0 0
D 0 0 0 0

A B C D
A 0 0 0 0
B 0 0 0 0
C 0 0 0 0
D 0 0 0 0

A                     B                        C                     D                      C                       B                    D

A B C D
A 0 1 1 1
B 0 0 0 1
C 0 1 0 1
D 0 X X 0

A B C D
A 0 0 0 0
B 1 0 1 1
C 1 1 0 1
D 1 2 2 0

A B C D
A 0 0 0 0
B 1 0 0 0
C 1 0 0 0
D 1 0 0 0

A B C D
A 0 0 0 0
B 0 0 0 0
C 0 0 0 0
D 0 0 0 0

A B C D
A 0 1 0 0
B X 0 0 0
C 1 1 0 0
D 1 1 0 0

A B C D
A 0 0 0 0
B 1 0 0 0
C 0 0 0 0
D 0 0 0 0

A B C D
A 0 1 1 0
B 0 0 1 0
C X X 0 0
D 1 1 1 0

A B C D
A 0 0 0 0
B 1 0 0 0
C 1 1 0 0
D 0 0 0 0

A B C D
A 0 1 1 1
B 0 0 1 1
C 0 0 0 1
D X X X 0

A B C D
A 0 0 0 0
B 1 0 0 0
C 1 1 0 0
D 1 1 1 0

A B C D
A 0 1 1 1
B 0 0 1 1
C 0 0 0 X
D 0 0 1 0

A B C D
A 0 0 0 0
B 1 0 0 0
C 1 1 0 1
D 1 1 1 0

A B C D
A 0 1 1 1
B 0 0 X X
C 0 1 0 0
D 0 1 1 0

A B C D
A 0 0 0 0
B 1 0 1 1
C 1 1 0 1
D 1 1 1 0

Figure 5: An example demonstrates how the algorithm extracts conflict information from

an access trace. An X in Reference[ ][ ] matrix indicates a detected conflict. The

Conflict[ ][ ] matrix in the rounded box contains the derived conflict information for the

processed trace.

Since the entry Reference[B][A] is 1, a potential conflict is detected (represented by X in

the matrix). The Reference[B][A] is added by 1. The final conflict information is provided

by the Conflict[ ][ ] matrix. For instance, if page D is assigned to a cache bin where page

B is allocated, it could raise 2 additional conflict misses. Interestingly, if page B is mapped

to a cache bin where page D resides, it only causes 1 potential conflict miss.

Note that the numbers in Conflict[ ][ ] have a lot of false conflicts because the conflicts

are estimated at the page granularity. Even though two pages are mapped to the same cache

bin, they may not cause conflicts if different portions from these two pages are actually

accessed. In addition, an implicit assumption in this algorithm is that the target cache is

direct-mapped. If a cache has set associativity, a number of pages up to the associativity

can be placed in a set without a conflict.

The inter-page conflict information is used in the last phase when estimating the extra

potential cache misses caused by placing a page to a cache bin. The goal in this phase is to

minimize the total cost of all L2 cache accesses. This is achieved by iteratively computing

the cost of assigning a particular page to all cache bins and selecting the cache bin with the
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smallest cost. Given the inter-page conflict information in Conflict[ ][ ] and other necessary

microarchitectural parameters, hints for mapping pages to cache bins can be calculated.

Since the page coloring problem is in general NP-complete [52], a heuristic method is adopted

to make the computation tractable. The proposed coloring algorithm evaluates pages from

the one with the largest number of accesses and proceeds in a decreasing order. The cost of

assigning a particular color or bin C to a page P is computed by the following cost function:

Cost(P, C) = α× TotalConflicts(P, C)×MemLatency

+ (1− α)× TotalAccesses(P)

× (L2Latency + NoCDelay(C)) (4.1)

In Equation 4.1, TotalConflicts(P, C) is given as
∑

Conflict[P][j]/N for any page j

already mapped to C. N stands for the number of pages that have been allocated to the cache

bin. NoCDelay(C) denotes the transmission latency on the on-chip networks. Without

losing generality, it is assumed in Equation 4.1 that the program location is fixed (and thus

not shown) for the clarity of presentation.

Since TotalConflicts(P, C) is an estimation of the page conflicts, it is not proportional

to TotalAccesses(P) due to the false conflict issue mentioned previously. So a parameter α

is introduced to balance the weights between TotalConflicts(P, C) and TotalAccesses(P).

α can have a value ranging from 0 to 1. It essentially controls the page aggregation density.

With a smaller α, more weight is put on NoCDelay(), thus placing pages closer to the

program location. As such, when α is 0, the algorithm simulates a private cache. On the

other hand, with α equal to 1, the algorithm simulates a shared cache by only considering the

aggregated miss penalty and ignoring the on-chip network delay and cache access latency.

The process of selecting an optimal cache bin for a page using the above cost function is

repeated until all pages are colored. The derived color assignment information is then used

to guide the page placement at run time [27].
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4.1.2 Discussions

Although the focus of the proposed scheme is on the performance of a single-threaded pro-

gram, it is straightforward to extend the presented algorithm to handle co-scheduled pro-

grams. For instance, it requires little change to Equation 4.1 to accommodate a set of co-

scheduled programs that do not have data sharing (i.e., multiprogrammed workload). For a

multithreaded workload, however, the access cost component (the second term) needs to be

modified to include the impact caused by the sharing behavior among threads. Equation 4.2

shows the new cost function.

Cost(P,C) = α× TotalConflicts(P,C)×MemLatency

+ (1− α)× (
∑

TotalAccesses(P,S)

× (L2Latency + NoCDelay(C,S)))

for all sharers S. (4.2)

The new cost function takes into account the number of accesses from different sharers

and the network delay based on the locations of all sharers. This extension may not always

lead to maximum performance for a multithreaded workload because the changing sharing

behavior is not captured and exploited by this once-and-for-all mapping strategy. In addition,

a popular page shared by several threads may end up in the center relative to all sharers,

not benefiting anyone. A dynamic scheme could prove more effective in this case.

4.2 DYNAMIC 2D PAGE COLORING

4.2.1 Basic Approach

In this section, a dynamic 2D page coloring scheme is presented. It optimizes both cache

hit latency and cache miss rate. The dynamic page placement exploits the on-line cache

resource usage information to select a home cache bin having the smallest total expected

cache access cost for a new page. The key design issues for the proposed scheme are: (1)
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what information to collect and (2) how to compute the expected cache access cost with the

information.

What run-time information do we collect? Selecting a good home cache bin for a

page involves estimating the combined cost of cache access latency and cache misses. The

cache access latency is simply the distance between the program and the target cache slice.

The process of estimating the number of cache misses, however, requires it to continuously

monitor the cache bin hotness. Cache bin hotness measures the level of conflicts a cache bin

experiences in a given interval. Because accurately predicting future page access behavior

is difficult, the initial placement decisions are based on the most recent hotness information

of the cache bins in consideration. There are potentially many different ways to assess the

hotness of a cache bin. For example, one can measure the cache pressure by counting the

number of hot pages [27] or derive the cache utility by tracking the LRU stack positions

being touched [78]. In this study, we examine an alternative method which simply counts

the number of misses (BinMiss()) and accesses (BinAcc()) at each cache bin because the

values are directly used in the cost estimation process.

How do we determine a home tile for a page? The actual cost of placing a new

page to a cache bin C is computed at run time using Equation 4.3. The estimated cost in

Equation 4.3 is simply the average L2 cache access latency to the bin C. Because there is no

information about the page usage at the time of the initial page placement, the cost function

only considers the current state of a cache bin. The experimental results indicate that page

placement decisions guided by the proposed cost function are effective. In order to reflect the

phase changes of a program, BinMiss() and BinAcc() need to be continuously decayed.

The decay period (Tdecay) is a parameter to the overall cache management scheme. To

determine a home tile for a page, it simply chooses a cache bin having a minimum cost.

Cost(C) =
BinMiss(C)

BinAcc(C)
×MemLatency

+ (L2Latency + NoCDelay(C)) (4.3)

44



4.2.2 Page Migration

While efforts are made to pick the best target cache bin in the initial page placement step, a

program’s changing memory access behavior and the dynamicity created by the OS process

scheduling may result in largely uneven usage of cache resources. To secure the program

performance under such circumstance, the dynamic 2D page coloring scheme can employ a

dynamic page migration strategy. Page migration helps improve performance in two com-

plementary ways. First, it balances cache bin usages and reduces miss rate by moving a page

from a hot bin to a cold bin. Second, it can improve cache access latency by relocating a

hot page from a remote cache slice to a cache slice closer to the program.

In this page migration scheme, it identifies a page having a large expected migration

benefit, and migrate cache blocks belonging to the page to a new cache bin. This process is

performed based on the run-time cache usage information. Determining where to migrate a

page is similar to finding a best cache bin at the initial placement step. The guiding principle

is to consider both cache access latency and miss rate when evaluating the expected cache

access cost. While the design space for the page migration scheme is wide, here it uses a

cost-driven approach to identify a page for migration, similar to how it decides the home

tile for a newly allocated page. The key design issues are: (1) identifying a page to migrate,

(2) deciding when to migrate a page, and (3) controlling the frequency of migration actions,

given the frequency of workload changes and the overhead of migration. These issues are

inter-related.

The cost of a cache access incurred on a page P is evaluated on every L2 cache access.

Since the access behavior for a newly allocated page may not represent the condition of

its stable usage, the initial L2 cache accesses do not trigger the evaluation. Only when

the PageAcc(p) exceeds a threshold value Theval, the monitoring process is enabled. A

migration is triggered for a high-cost page if there exists a cache bin which will render a

better home for the page as shown in Equation 4.4.

(Cost(Bincur)−Min(Cost(Binany))) > Thmig, (4.4)
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The Thmig in Equation 4.4 is a threshold value, which controls the frequency of migration

events. If Thmig is given a small value, page migration becomes very aggressive. The usage

variation of a cache bin can cause its access cost becomes temporally lower or higher than the

cache bin where the page currently resides. The page ends up thrashing between two cache

bins with similar cost. Given the large overhead of a page migration, it can severely harm a

program’s performance. On the other side, a large threshold value makes the page migration

to react to environment changes too slowly, losing optimization opportunities. Thus choosing

a proper Thmig is important. In this study, we set Thmig to be one standard deviation

of all cache bin costs. The cost function in Equation 4.4 for calculating the cost of placing a

page P in a cache bin C is given in Equation 4.5. Naturally, the migration scheme chooses

a cache bin with a minimum cost as the migration target.

Cost(C) = PageMiss(P)× BinMiss(C)

BinMiss(Bincur)
×MemLat.

+PageAcc(P)× (L2Lat. + NoCDelay(C)) . (4.5)

4.2.3 Architectural Support

Figure 6 shows a block diagram of the microarchitectural support needed for the proposed

dynamic 2D page coloring scheme. There are several structures added to facilitate dynamic

2D page coloring. First, each cache bin in the L2 cache is augmented with a pair of counters,

BinMiss() and BinAcc(). They are updated on every L2 cache access. These counters can

be implemented using registers to provide fast access. For a cache with a large associativity,

the number of cache bins is usually small. So the hardware cost is negligible. Moreover, the

counters are updated in parallel with an L2 cache access. Thus, they do not incur any delay.

Second, each tile maintains a Global Bin Usage Table, which provides information

about how cache bins are used across the chip. Each entry in this table provides the cache

usage information of the optimal cache bin from one tile. The usage information includes

BinIndex, BinMiss() and BinAcc(). Other sub-optimal cache bins are not considered

during the page placement or migration process. So it is not necessary to keep their informa-

tion. As a result, the size of the table is proportional to the number of cores in a CMP. For a
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Figure 6: Microarchitectural support for dynamic 2D page coloring.

16-core CMP, the hardware overhead is very limited as will be shown below. It is noted that

the information carried in this table is only a hint for making the page placement or migration

decision; inconsistent and imprecise information is acceptable. Henceforth, the global bin

usage table can be updated from time to time, via periodic messages between tiles, or even

utilizing piggybacked information in regular messages in order to reduce synchronization and

communication overhead.

When looking for the best cache bin for a page placement, calculations outlined in Equa-

tion 4.3 have to be performed efficiently. A straightforward solution is to use a hierarchy of

comparators. At the bottom level, every pair of cache bins from the Global Bin Usage

Table are compared in parallel. Then at the next higher level, the better one of one pair is

again compared to the better one from another pair. This process continues until it reaches

the top of the hierarchy, where the best cache bin is found. At each level, the number of

cache bins to compare is halved. To find the best cache bin from 16 tiles, 4 levels of compara-

tors are required. As the number of tiles increases, the number of levels in the comparator

hierarchy grows as well. The hardware cost can become substantial, not to mention the
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increased delay. Instead of determining the best cache bin at the time of a page placement,

an improved solution is to track the best cache bin continuously so that comparisons are

done earlier. A pointer called MinBin is used to indicate the current best cache bin in the

Global Bin Usage Table. Whenever there is an update in BinMiss() and BinAcc() in

the table, the cost of the updated cache bin is calculated and compared to the cache bin.

MinBin is redirected to the new cache bin if its new cost is lower. With the new scheme,

only one comparator is needed. The optimal cache bin is given in MinBin and ready for

use immediately.

The hardware cost for tracking cache bin usage information is modest. Assuming a

counter width of 16 bits, the cost for each bin is only 4 bytes. Assuming that the page size

is 8KB and a 256KB 8-way associativity L2 cache slice, only 16B storage is needed for the

attached counters for each tile. The cost of Global Bin Usage Table is also negligible.

Given the same cache configuration, a 16-core CMP contains 64 cache bins in total. Each

bin requires Two counters and a bin index in Global Bin Usage Table, which only cost

5 bytes at most. Thus the total cost for one Global Bin Usage Table is estimated to be

320 bytes, only accounting for about 0.1% of total cache area.

4.3 EVALUATION RESULTS

For the sake of consistency, results reported are relative to the baseline shared cache scheme

(“SharedBase”), which adopts simple heuristics to color pages [52]. No profile information

is used for the baseline shared cache scheme.

4.3.1 Static 2D Page Coloring

Figure 7 shows how a change in α (in Equation 4.1) affects the page mappings and cache

access behavior. 9 different values of α, ranging from 0 to 1, are examined. The α value

increases at a stride of 1
8
. When α equals to 0, the factor of cache contention is not considered.

So the static 2D page coloring scheme essentially simulates a private cache. On the other
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Figure 7: L2 cache access decomposition: local vs. remote (upper) and hit vs. miss (bottom)

at different α values. Nine bars for each program represent cases for α = 0, α = 1/8, ...,

α = 1.

extreme, when α is set to 1, it behaves like a conventional shared cache without regard to

the access delay on the networks.

The upper graph shows the distribution of accesses between a local cache slice or other

remote cache slices. It clearly shows that increasing the α value scatters more cache accesses

to remote cache slices, since the static 2D coloring scheme behaves more like a shared cache

with large α value. The bottom graph shows the distribution of accesses between cache

hit and cache miss. Programs like gzip, twolf and art have a very small number of misses,

which does not change much when the α value varies. Many of their conflict misses are

removed by the static 2D page coloring scheme (“Static2D” from now on) and unavoidable

cold misses remain. crafty and eon have similar characteristics. As a result, they achieve

their best performance with a small α value among those examined. Other programs like

mcf, parser, vortex, bzip2 and swim all exhibit a concave curve, which peaks roughly at the

middle. mgrid and equake even show an increase in the number of misses. This situation is

caused by imperfect trace information used in the off-line analysis algorithm. The heuristic
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Figure 8: Performance of Private, Shared, and Static2D. Numbers on bars show the value

of α chosen.

coloring algorithm cannot always produce the optimal page placement hints. When it fails

to capture a program’s cache access behavior, the number of cache misses increases from

the optimal. In addition, when α equals to 0, no conflict information is considered. This

may lead to non-deterministic behavior as exhibited in some programs such as the elevated

miss rate in parser, vortex and swim. In general, a value of α which balances miss rate and

latency yields the best performance.

Figure 8 shows the performance of the private cache scheme, the shared cache scheme

and the proposed Static2D. For fair comparison purpose, an aggressive profile-guided page

coloring technique [82] is applied on the private cache scheme and the shared cache scheme.

They are named “Private” and “Shared” respectively to differentiate from SharedBase.

Note that all performance numbers are normalized to that of SharedBase. It is shown

that Static2D consistently outperforms Private and Shared. The performance of Private

often suffers due to the relatively small cache slice size of 256KB; vpr, twolf, art, and ammp

are among the most affected. It exhibits a high L2 cache miss rate in these programs, which

cannot be simply compensated by L2 cache latency savings.

Shared always shows better performance than SharedBase by reducing the number
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Figure 9: Average performance when (a) cache slice size is varied and (b) tile count is varied.

of conflict misses. The average access latency is not affected since no data is aggregated.

Programs like mcf, swim, mgrid benefit much from the miss rate reduction and achieve over

50% performance improvement. Static2D achieves higher performance than both Private

and Shared by balancing cache miss rate and cache access latency. swim is a notable

exception, for which Shared achieves a better miss rate than Static2D due to its fine-

grained block interleaving. On average, Static2D achieves 44.7% performance improvement

over SharedBase, 23.7% over Shared, and 83.2% over Private.

Figure 9 shows how performance of different schemes scales when the cache slice size or

the tile count changes. When cache slices are small, miss rate is the dominant performance

factor. In this case, Private performs poorly. As the cache slice size increases, however, the

gap between Private and Shared decreases. Private begins to outperform Shared at 2MB,

where the performance loss caused by conflict misses is mitigated by large cache capacity and

the cache access latency becomes a determining factor. Though not plotted, Private and

Static2D will merge finally and Shared will approach 1 (i.e., degenerate to SharedBase)

as the cache size increases indefinitely. When there are more tiles on a chip, the average cache

access latency of Shared and SharedBase grows (also shown in Figure 9(b)). Shared is

shown to approach 1. That is, Shared degrades to the SharedBase on a large-scale CMP.

51



17.5

18

18.5

19

19.5

20

20.5

21

21.5

N
u

m
b

e
r 

o
f 

p
a

g
e

s

0

2

4

6

8

10

12

0

5

10

15

20

25

N
u

m
b

e
r 

o
f 

a
c
c
e

s
s
e

s

α=1.0

0

1

2

3

4

5

6

7

8

N
u

m
b

e
r 

o
f 

p
a

g
e

s

N
u

m
b

e
r 

o
f 

a
c
c
e

s
s
e

s

α=0.5

Figure 10: Page placement and cache access distribution for ammp with α = 0.5 and α = 1.0.

Each bar in x-y space corresponds to a cache bin. A cluster of eight bars represents a cache

slice from one tile.

This is because the latency becomes the dominant factor and the benefit of profile-guided

coloring becomes negligible. By comparison, the performance of Private and Static2D is

largely insensitive to the addition of new tiles. Private begins to outperform Shared due

to the remote access latency saving on large-scale CMPs.

Lastly, Figure 10 gives an example of how Static2D allocates pages to different L2 cache

bins. In case of ammp, if α is set to 0.5, most pages are allocated to the local cache slice while
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Figure 11: Program performance of the dynamic 2D page coloring scheme.

a few pages are spread out to neighboring tiles. The access distribution exhibits a similar

pattern. After increasing α to 1.0, Static2D simulates Shared with data distribution at

page granularity. Pages and memory accesses are almost evenly distributed across the whole

CMP. It is clearly shown that a larger α value results in more spread memory accesses among

the cache bins.

4.3.2 Dynamic 2D Page Coloring

For dynamic 2D page coloring scheme, Tdecay is an important parameter, which controls

the sensitivity to the program phase change. The results presented in this section are eval-

uated with a empirically chosen value (8,192 L2 cache misses).

Figure 11 shows the performance of Static2D, the victim replication scheme [111]

(“VR”), the dynamic spill and receive scheme [79] (“DSR”) and the dynamic 2D page

coloring scheme without page migration (“Dyn2D”). Again, the results are normalized to

the performance of SharedBase. VR achieves better performance than SharedBase for

most of the studied programs. For swim and mgrid, VR degrades performance considerably.

This degradation is mainly caused by the interference introduced by replications. swim and
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mgrid have large footprint. However, some of the accessed data have poor locality. Replica-

tion of these streaming data does not help but only pollute the cache content, kicking out

other frequently reused data. Overall, the performance improvement of VR over Shared-

Base is shown to be limited. This is not surprising for single-threaded programs. Since only

one tile is active during the program execution, the victim replication scheme essentially tries

to duplicate the whole working set in the local cache slice. Commonly, the capacity of one

cache slice could not satisfy the demand of a program in such conditions. DSR outperforms

VR considerably by spreading the evicted data across all available cache slices. However, its

performance is inferior to Static2D since the latter tries to utilize nearby capacities while

DSR spreads data randomly. Another reason is that Static2D also considers the cache

conflict condition when placing the data while DSR does not utilize this information.

Dyn2D provides slightly lower performance than Static2D overall. This is reasonable

since Dyn2D makes a page placement decision solely based on the current cache usage

while Static2D utilizes cache access information for the whole execution. The lack of future

access information in Dyn2D can sometimes lead to poor decisions. For mcf and swim,

the dynamic scheme performs considerably worse than Static2D. This is because these two

programs access a large number of pages for a relatively small number of times per page.

As a result, the cache usage changes rapidly. The dynamic scheme cannot react to the page

usage changes in a timely manner.

Static2D and Dyn2D perform significantly better than VR. The improvement comes

from two factors: (1) The page coloring schemes place data close to the program location

when it is not able to fit data in the local cache slice. VR, on the other hand, does not provide

such flexibility; and (2) The page coloring schemes provide extra benefit by minimizing miss

rate through cautious data placement. In contrast, VR can potentially introduce more

misses because of the increased local cache pressure by injecting replicas without control.

Overall, the performance of Dyn2D is comparable to that of Static2D. They boost the

performance by 32.3% and 40.9%, respectively, compared with SharedBase. Compared to

VR, Dyn2D gains 24.7%.

Figure 12 takes mgrid as an example to show how different schemes, SharedBase,

Shared, Static2D, and Dyn2D (from (a) to (d)), create changes in how frequently cache
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Figure 12: Cache access distribution of mgrid under 4 different schemes: (a) SharedBase,

(b) Shared, (c) Static2D, and (d) Dyn2D.

slices (grouped into tiers) are accessed and how often accesses hit. Tier 0 refers to the local

cache slice, tier 1 refers to the four neighbors in north, south, west, and east, and so on.

Compared with SharedBase, Shared does not change the access frequencies to different

tiers. However, it reduces the miss rate from over 22% down to 10.4%, resulting in an 1.5×
speed-up. Static2D further reduces the miss rate to 2.2%, while attracting almost all pages

to the local cache slice. Lastly, Dyn2D trades access latency for an even lower miss rate,

thus achieving the best performance.

Figure 13 compares the performance of the dynamic 2D page coloring scheme without

page migration and with page migration enabled. For those memory intensive workloads,
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Figure 13: Program performance of the dynamic 2D page coloring scheme with and without

page migration enabled normalized to the performance of static 2D page coloring scheme.

such as twolf, vortex, and art, the page migration scheme achieves significant performance

improvement. The performance of vortex is improved by nearly 34.2%, compared to the

plain dynamic 2D page coloring scheme. Memory intensive programs are sensitive to L2

cache access latency and conflict miss changes. Other programs only see moderate increase

in performance. Two programs, mgrid and ammp, suffer about 3% performance loss when

page migration is enabled. These two programs have large working set. The cache contention

cannot be mitigated by page migrations. As a result, the false triggering of page migrations

incur unnecessary overhead but no benefit. On average, the performance improvement over

the plain dynamic 2D page coloring scheme is 6.9%.

4.3.3 Multiprogrammed Workload

The multiprogrammed workload is a generalized variation of the single-threaded workload as

no system runs only one single-threaded program at a time. So the dynamic 2D page coloring

scheme is also evaluated for multiprogrammed workloads. This study is conducted on a full-

system simulator built on Simics [89]. The simulator models the same machine configuration
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used in experiments for single-threaded programs. To form workloads, programs are grouped

into three classes: low pressure, medium pressure, and high pressure, based on their cache

usage. A combination of eight programs are selected for each workload class. In the first

workload labeled “mix.low,” the programs include gzip, crafty, parser, eon, vortex, vpr, mesa,

and swim. The workload is designed to mimic a situation where each co-scheduled program

requires a small L2 cache space. The next workload, labeled “mix.mid,” has wupwise, gzip,

mcf, crafty, parser, mgrid, eon, and art. Lastly, the workload “mix.high” comprises of twolf,

gap, mcf, wupwise, mgrid, art, equake, and ammp.

After skipping the initialization phase of all programs, the progress of every program

in the group is measured after one simulated second. Program locations are fixed, ranging

from tile 4 to tile 11. Additionally, the decay method in the dynamic 2D coloring scheme is

modified slightly as follows. Counters are right-shifted on every 50k cycles. Then the values

in the cache bin miss counters are added to the cache bin access counters in order to better

distinguish between hot bins and relatively cold bins that have many cold misses. The reason

for doing this is that after every decay the newly generated misses get more weight on the

calculated miss rate. So miss rate can vary substantially, causing unwanted results. Adding

the miss count to the access count decreases the miss rate and hence the effect of the newly

generated misses after a decay. There may be many different implementations to achieve the

same effect, but this simple method works sufficiently well in the experiments.

Figure 14 shows the performance of the three workloads in terms of averaged speedup

(a) and aggregate throughput (b). As expected, the performance of the private cache scheme

keeps decreasing (compared with that of the shared cache scheme) as the L2 cache demand

of the workloads increases. When the L2 cache contention is high (“mix.high”), the private

cache scheme performs poorly, worse than SharedBase. VR follows the similar trend as

local contention degrades the performance of data replication considerably. DSR intelli-

gently avoids local contention by spilling the data to spare cache capacity, thus achieving

better performance than private cache scheme and VR. The Dyn2D outperforms both the

private and the shared cache scheme robustly, in almost all the comparison points. In par-

ticular, it achieves an improvement of up to 26.4% using the average speedup metric and

38.6% using the aggregate throughput metric when compared to the baseline shared cache
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Figure 14: Performance of multiprogrammed workloads under the private cache scheme,

victim replication scheme, dynamic spill and receive scheme , and dynamic 2D page coloring

scheme normalized to the baseline shared cache scheme.

scheme. In comparison with the private cache scheme, the dynamic 2D scheme achieves an

improvement of up to 14.3% in average speedup and 18.8% in throughput in the best case.

For “mix.low” and “mix.mid” workloads, Dyn2D outperforms DSR since it gains benefit

from balancing cache contention. For “mix.high”, the advantage of cache conflict reduction

diminishes as cache contention becomes very high. As a result, these two schemes have very

close performance.

The dynamic 2D page coloring scheme has a very slight throughput degradation than

the private cache scheme for the “mix.low” workload. This is because the programs in this

workload have low cache space requirement each and can run efficiently on a private cache.

On the other hand, the dynamic 2D page coloring scheme introduces some interferences

in allocating pages and accesses. An interesting observation is that the dynamic 2D page

coloring scheme performs best for the “mix.mid” workload in both metrics. This is because

this workload provides the largest room for trade-off between miss rate and access latency,

and the dynamic 2D page coloring scheme is able to hit the right point in the trade-off span.
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4.4 SUMMARY

In this chapter, the problem of managing distributed L2 caches on a large-scale chip multi-

processor to achieve a high single-threaded program performance is studied. First, a static

2D page coloring scheme is studied, which utilizes static trace information to provide a near-

optimal upper bound. Then a dynamic 2D page coloring scheme is proposed as a practical

solution. The dynamic page coloring scheme utilizes a heuristic strategy to balance both

cache miss rate and cache access latency based on the current cache usage information. Due

to the lack of comprehensive information, the initial data placement can lead to hot-spots

later on. For this reason, the page migration technique is proposed to mitigate the impact

of hot-spots. The evaluation shows improved performance.

The outline and achieved contributions of this study are summarized as follows:

• A static off-line 2D page coloring algorithm is proposed and studied. It assigns a memory

page to a cache bin based on detailed page conflict and access frequency information. The

automated process tunes key algorithm parameters to trade cache access latency over

cache miss rate and vice verse. As a result, the near-optimal performance of the static

data mapping strategy is obtained. It presents a relative tight bound on the performance

of the shared cache structure when the cache hit latency and the on-chip cache miss rate

are optimized together via a flexible data mapping scheme.

• A dynamic online algorithm is proposed and studied. It maps pages to L2 cache bins

and migrates previously mapped pages. The proposed algorithm uses only run-time

information about cache bin hotness and page usage when selecting a target cache bin

for a new page. The design and implementation issues are discussed in detail.

• The proposed schemes are evaluated and compared with the existing shared and private

cache schemes. The quantitative study shows that the proposed schemes achieve higher

performance because they balance cache miss rate and cache access latency effectively.

The proposed schemes are shown to be relatively insensitive to the scale of the CMP and

the size of the cache slice. The proposed dynamic 2D coloring scheme achieves much of

the performance potential identified through the limit study using the off-line algorithm.
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5.0 DATA AFFINITY ANALYSIS FOR MULTITHREADED PROGRAMS

Improving data affinity for multithreaded programs is not as straightforward as single-

threaded programs. The shared data are accessed by multiple threads simultaneously. Thus

it is difficult to place the data in a single location while achieving lowest access latency for

all sharers. As a result, optimization techniques such as data replication seem necessary. On

the other hand, private data are used mostly by a single thread. It is desired to place a block

of private data into the L2 cache slice of its owner. Data replication and migration tech-

niques can remedy the performance loss caused by blind data distribution. However, data

replication and migration incur extra data placement and movement in the L2 cache. These

activities lead to increased cache pressure and can have negative impact if their engagement

is not carefully controlled. To avoid these issues, it is important to make informed decisions

when data are placed initially and moved later on.

To improve the data affinity of latency-oriented multithreaded programs, the approach

proposed and studied in this chapter uses affinity hints generated from off-line analysis to

guide data distribution at run time. The hints should be sufficiently general so that they

can be used by multiple runs with different input sets and micro-architecture configurations.

To achieve this, a fundamental understanding of the general behavior of latency-oriented

multithreaded programs is necessary.

In this chapter, we first analyze the general cache access behavior of a set of latency-

oriented multithreaded programs. Then the most commonly seen memory access patterns

are summarized. The programs are drawn from the widely used SPLASH-2 benchmark

suite [86] and the PARSEC benchmark suite [76] and are listed in Table 2 of Chapter 3.

Based on the qualitative study, the proposed memory access pattern recognition algorithm

is introduced, followed by the evaluation results.

60



5.1 PROPERTIES OF MULTITHREADED PROGRAMS

5.1.1 Parallel Programming Models

Most multithreaded programs can be categorized into two types in terms of the program-

ming model they use: the throughput-oriented model and the latency-oriented model. The

throughput-oriented model is commonly found in server programs. In these programs, a

master thread is responsible for picking up tasks from a task queue and distributing them

to slave threads for parallel execution. Tasks share similar characteristics. But the jobs

they process are mostly independent on each other. There is little communication and syn-

chronization among slave threads. In this type of program, performance is measured by the

number of transactions or tasks completed in a given unit of time. The throughput of the

whole server program is considered more important than the execution time of individual

tasks.

The latency-oriented model encompasses a broad range of multithreaded programs, es-

pecially scientific workloads and kernel-based programs [7]. In these programs, a large and

complex problem is partitioned into subproblems to solve them in parallel. In contrast to

throughput-oriented multithreaded programs, latency-oriented programs are more concerned

about the wall-to-wall execution time. During a program’s execution, there may be a lot of

data exchange and synchronization from time to time, depending on its algorithm design.

Latency-oriented multithreaded programs are the main focus of study in this chapter.

5.1.2 Data Structure Types

A program’s data access patterns are highly dependent on the associated data structures. Im-

portant data structures are described here before introducing the access patterns. Through

the examination of programs from the SPLASH-2 benchmark suite, it is easy to reach a

conclusion that the commonly used data structures are array, linked list, tree, graph and

their compositions. These data structures are indeed the most important ones you can find

in almost any programs and programming language textbooks.

Among these data structure types, the array plays an especially important role when
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designing a program because it is easy to use and maintain. An array can be assigned

statically at compile time or allocated dynamically at run time when the size is known. An

array element is accessed directly with its index. Since an index is often calculated explicitly

from dependent variables, the array’s access pattern is often predictable given the index

calculation formula. In contrast, locating a node in a linked list usually requires a traversal

of the list starting from the head. So the nodes near the list head tend to be accessed more

frequently than those at tail. The dynamic expansion and shrinking of the linked list can also

lead to a non-contiguous memory layout, posing a challenge for off-line analysis. Tree and

graph are more advanced data structures. Since a node can spawn multiple children in a tree

or a graph, the search path becomes less predictable than a linked list. The irregularity makes

it impossible to recognize their access patterns. However, the rule of thumb is that the nodes

close to the root of the structure are accessed more often than others. Fortunately, the tree

and the graph are used less frequently than the array in the latency-oriented multithreaded

programs we examined.

5.1.3 Memory Allocation Types

A memory area touched by a program can be categorized as either a static data region or a

dynamic data region. Global variables and data structures are those used to track program-

wide information, to synchronize and to exchange shared data among threads. They are often

assigned statically. The location and size of the static data are known prior to a program’s

execution. The determinism makes off-line affinity analysis for static data relatively easy.

The size of static data usually does not scale when the input set changes. Thus the ratio of

static data access to all data access can decrease as the input set becomes larger.

The dynamic data plays an important role in large-scale parallel programs. From time to

time, it may require to allocate memory areas dynamically at run time, since the variations

of a program’s input can prohibit it from claiming a memory area statically without knowing

the data size. malloc is a typical library function to provide dynamic allocation of memory

region in the C language. In this study, malloc is used as an indication of a dynamic

allocation in general. Dynamic data are usually the target of computation, thus they tend
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Figure 15: The one-time profiling and data access pattern analysis flow (upper box) and the

hint exploitation flow (lower box) of the proposed hint-guided data placement scheme.

to be accessed more frequently than static data. Careful distribution of dynamic data can

have a positive impact on the performance of a latency-oriented multithreaded program.

5.2 BASIC APPROACH

Figure 15 depicts the two major stages of the proposed hint-guided data placement scheme:

the one-time profiling and data analysis phase and the hint exploitation phase. In the first

phase, the proposed scheme profiles a given program’s L2 cache accesses with a test input.

Based on the collected traces, access histograms are constructed for each page (buckets in
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each histogram count accesses from different processors). Then K-means clustering algorithm

is applied on those per-page access histograms to derive page clusters. Given the page cluster

information, our scheme finally determines the patterns for dynamic and static data areas

and attach those hints to the binary. At the run-time stage, the OS peels off the hints from

the binary and uses the information whenever a new memory page mapping event occurs.

In this section, we first examine the common data access patterns found in multithreaded

applications. We will then discuss in detail the data access pattern recognition algorithm

and how the resultant data affinity hints are exploited to guide the OS cache management

decisions.

5.2.1 Access Pattern Classification

In this section, some of the observed memory allocation and access patterns are summarized.

Access patterns for static data area and dynamic data area are introduced separately.

A program’s static data access patterns can be broadly characterized as three types:

• Shared: Data structures of this type are accessed by all threads. They can be evenly

shared by all threads all the time. Or they can be accessed by only one or more threads at

a time. But as the program phase changes, they become dominantly accessed by other

threads. Over the period of the program’s whole execution, it is difficult to identify

patterns. Global data structures usually fall into this category.

• Local: Data structures of this type are only accessed by one thread. For instance, a block

of data allocated within a program’s parallel section usually falls into this category. Its

existence is only aware by the thread which allocates it. So it can only accessed by that

thread.

• Private: Data structures of this type are shared by all threads, but they are mostly

accessed by a single thread. For instance, a global data structure is mostly used by the

main thread even though all threads have periodic accesses to it.

Benchmarks like radiosity, fmm, raytrace, water-nsquared, and water-spatial have a significant

portion of accesses to static data structures, especially when the input set is relatively small.

Most programs introduce many more accesses to dynamic data structures than to static
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data structures when the program input set grows. In addition, the access patterns of static

data are relatively easy to identify. So more attention will be paid to the access patterns of

dynamic data from now on.

Access patterns for dynamic data are more complex. They are categorized into types of

even partition, scattered, private, small-entity, and shared. They are examined type by type

in the following paragraphs.

Even: In many scientific computation programs, a large one-dimensional data array

is allocated at the beginning of the execution and initialized with input data. A data

array can be easily partitioned among threads due to its regularity. The array index is

commonly a function of the thread ID and some loop indices. As a result, a data array

can be unambiguously partitioned in terms of the thread ID. For example, the following

pseudo-code illustrates how an array is allocated by the main thread and then how each

thread accesses its own partition by using its thread ID (ProcNo).

Main Thread:

/* array allocation */

Array = malloc(sizeof(int) * NumProc * N);

Thread [ProcNo]:

/* a partition of the array is accessed

by the corresponding thread */

for(i = 0; i < N; i++)

Array[ProcNo * N + i] = i;

This access pattern leads to even partitioning of the whole data array among threads.

It presents a good optimization opportunity to distribute data in the L2 cache according to

the data partition. As shown in Figure 16(a), the access pattern of the example pseudo-code

can evenly split an array into four partitions. Each partition is exclusively accessed by one

thread in order. Hence, to achieve ideal data affinity, partition 0 can be placed in the local

cache slice of thread 0, partition 1 of the same array can be placed in the local cache slice

of thread 1, and so on. Sometimes, accesses to a data array can be interleaved in a finer
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Figure 16: An example of a dynamically allocated memory area shared by four threads

evenly.

granularity depending on the style of the loop iteration. The following code illustrates such

case:

Thread [ProcNo]:

for(i = 0; i < N; i++)

Array[i * N + ProcNo] = i;

The corresponding data access pattern is shown in Figure 16(b). As you may note, the

new pattern is essentially the same as the previous one, except the data layout is interleaved.

The compiler can always reschedule the data layout and transform it back to the pattern in

Figure 16(a). Among the benchmarks examined, fft, lu and blackscholes have this kind of

data access pattern.

Scattered: At times, the workload assigned to each thread is not balanced. So a thread

wants to manage the data storage allocation by its own. That is, the data allocation is

done within each thread instead of in the main thread. The programmer can also choose

a separate memory area to allocate for each thread. Hence, unlike the “even” pattern,

the whole data set is scattered into multiple memory regions. These memory areas are

not necessary continuously allocated. The following pseudo-code demonstrates a typical

situation where the scattered pattern emerges.

Thread [ProcNo]:

Array = malloc(sizeof(int) * N);
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for(i = 0; i < N; i++)

Array[i] = i;

Since the allocated memory area is exclusively accessed by its owner, the optimal data

distribution is straightforward. The allocation can also be done in the main thread, especially

when a two-dimensional array is used. The following pseudo-code demonstrates the described

scenario:

Main Thread:

ArrayPtr = malloc(sizeof(int) * NumProc);

for(i = 0; i < NumProc; i++)

ArrayPtr[i] = malloc(sizeof(int) * PartitionSize[i]);

Thread [ProcNo]:

for(i = 0; i < PartitionSize[i]; i++)

ArrayPtr[ProcNo][i] = i;

Note how ProcNo plays a role in addressing array elements. Data placement of this

pattern can use ProcNo as a hint since those in-order allocated areas are exclusively accessed

by each thread using ProcNo. Because two-dimensional arrays are extensively used, this

access pattern is very common in the multithreaded programs examined in this study. The

representative programs that more or less exhibit this pattern are barnes, cholesky, fmm,

ocean, and radix.

Private: There are occasions when a shared data area is mostly accessed by only one

thread. These memory areas are commonly allocated for auxiliary structures in the main

thread. They help record temporary information while initialization progresses. These areas

are regarded as private because it is logical to place these data in cache slices, where they are

accessed the most. An example is the program radiosity, which has a global data structure

accessed a lot by the main thread.

Small-Entity: When a program’s data are organized using a linked list, a tree, or

a graph, dynamic memory allocation is often required to save storage space. It involves

intermittent allocation and freeing of nodes. A small trunk of memory area can be repeatedly
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allocated and reclaimed by multiple malloc and free instances. This behavior poses extreme

difficulty for tracking memory usage and managing data at coarse granularity. Since the

cache management scheme studied in this thesis relies on the page mapping mechanism to

control data placement, it is impossible to differentiate two nodes co-located within the same

page. cholesky, raytrace and swaption are typical programs with this small-entity pattern.

Another representative case involves the small-entity pattern is the usage of data stack. On

function calls and returns, the data stack expands and shrinks accordingly, creating complex

usage patterns. However, unlike the previous case, the ownership of the stack data is explicit.

This is because data items in the stack are used as function parameters and local variables,

which are certainly private to the accessing thread.

Shared: The last category contains all data areas that could not be classified to any

type mentioned previously. These areas are highly shared by multiple threads. No particular

affinity pattern can be found in these areas. The pattern can also change under different

situations. However, data areas can be loosely separated into read-only sharing and read-

write sharing. Because the input variation seldom affects the read/write behavior of the

data, it is safe to mark data areas with read-only sharing property as replication candidates.

Other more complex memory access patterns are revealed in the studied programs. But

this study does not attempt to recognize all possible memory access patterns that may prove

useful. By focusing on the most frequently observed access patterns presented in this section,

it tries to motivate the proposed software-oriented cache management approach.

5.2.2 Access Pattern Recognition Algorithm

Efficient recognition of a program’s memory access patterns is not a trivial task. By “pat-

tern”, it means an abstraction that can effectively capture a program’s cache access behavior

under different conditions. The goal is to derive data allocation hints that can be used across

different program parameters and microarchitecture configurations, such as different cache

sizes. In addition, choosing a proper method to represent these hints is critical in this scheme.

For the static data whose layout is determined at compile time, a hint can be given as a plain

virtual page number to cache slice mapping. However, the location and size of a dynamic
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data area are unknown until the corresponding malloc returns at run time. There is no way

to directly command a page’s placement solely based on off-line information.

Our strategy is to associate one dynamic hint with each malloc instance, which can

be identified uniquely by the file name, the line number in source code, and the number

of times it has been called. A dynamic hint only expresses which pattern the memory

area allocated by the corresponding malloc instance would exhibit, instead of giving specific

placement information. Only at run time, when the address and size of a dynamic area

are determined, the actual page to cache slice mapping is generated. The hints can be

embedded in a program’s binary and loaded into the OS whenever it is necessary. When a

page fault occurs, hints are consulted to select a page location among all L2 cache slices.

In what follows, pattern recognition algorithms for both dynamic data and static data are

introduced.

5.2.2.1 Pattern Recognition for Dynamic Data To identify the access pattern for

a dynamically allocated memory area through L2 cache access trace analysis, it is required

to profile the program with a small, reasonably representative input set once. During the

profile execution, an L2 cache read trace is collected from each tile. In addition, the starting

address and the range of every malloc system call are recorded. Then each access trace item

from the trace is processed by checking it against all malloc ranges. An L2 cache access

is a dynamic access if it falls into one of the malloc ranges. In order to count the access

frequency, each page within the malloc range is associated with a counter vector. When a

page receives an access from a tile, the counter corresponding to that tile is incremented.

After all traces have been processed, the counter vector of a dynamic page represents the

histogram of accesses from all tiles. The counter vector is normalized to the maximum

counter value within it. Then K-means clustering method is applied on all counter vectors

associated with the corresponding pages of a given malloc range. The initial centroids for

this clustering method play an important role in determining what the final clusters look like.

In this study, the initial centroids are carefully designed so that pages accessed exclusively

by different threads are grouped into different clusters. An example of the initial centroids

used to cluster traces from a 4-tile CMP is:
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C0 (1, 0, 0, 0)

C1 (0, 1, 0, 0)

C2 (0, 0, 1, 0)

C3 (0, 0, 0, 1)

C4 (1, 1, 1, 1)

The K-means clustering algorithm is sketched as follows:

do {

1. Assign all vectors to their nearest

cluster centroids based on Euclidean distance.

2. Determine the error as the distance between the

vector and its nearest centroid as the error.

3. Accumulate the total error for all vectors

4. Update the new cluster centroids by averaging

vectors within each cluster.

5. Calculate the error difference between

the current iteration and the last iteration.

} while(error difference > threshold)

After the clustering procedure finishes, each cluster contains many vectors corresponding

to pages from the same dynamic memory area. All pages from cluster 0 (C0) are accessed

mostly by tile 0. All Pages from cluster 1 (C1) are accessed mostly by tile 1. This applies

to all clusters, except the last one (C4), where pages are accessed almost equally by all tiles.

Next, patterns discussed in Section 5.2 are identified based on the derived cluster infor-

mation. The even partition pattern is checked by counting the number of “fitting pages”

in each cluster. For instance, suppose a dynamic memory area has 16 pages and traces are

profiled on a 4-tile CMP. Figure 17(a) shows a typical even partition pattern, where each

partition has 4 pages. An example of the clustering result is given in Figure 17(b). As

illustrated, the partitions may not be perfectly even in practice. Some clusters can have

more pages while others have less pages than the average. To examine if a memory area has

even partition pattern, its clustering results (i.e., partitions) are compared with the even
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Figure 17: (a) An example of the even partition pattern. (b) Page clusters after K-means

clustering of the access histograms.

partition pattern for this memory area in an ideal situation. In this example, pages in C0

are compared to pages in T0, pages in C1 are compared to pages in T1, and so on. A cluster

is defined as a fitting cluster if half of the pages from the ideal partition range reside in the

cluster. A malloc is regarded as having an Even Partition Pattern if more than 75% of

all clusters are fitting clusters.

Recognition of the scattered pattern follows a similar procedure, except that the clus-

tering method has to be performed for all instances of the same malloc. Figure 18 shows

an example of a scattered pattern where the malloc is called 4 times within a for loop. The

aggregated space of these 4 malloc instances occupies 16 pages. The area allocated by the

first malloc instance is mostly accessed by tile 0. The area allocated by the second malloc

instance is used mainly by tile 1 and so on. In order to examine if a malloc exhibits scattered

pattern, all instances of the same malloc are checked along with the information about the

sequence they are called. If an instance is the Nth call of the same malloc, the sequence

number of this malloc instance is N - 1. If half of the pages allocated by a malloc instance

are assigned to one cluster, the cluster number is checked against the sequence number of the

malloc instance. If more than half of the instances of the same malloc have cluster number

and sequence number matched, this malloc is regarded as having an Ordered Scattered

Pattern.
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Figure 18: An example of the clustering results of four instances of the same malloc.

If it does not have Ordered Scattered Pattern, the malloc instances might be called

within the parallel threads. In such a case, the malloc is defined as Private Scattered

Pattern. If majority of the pages allocated by a malloc are clustered into one cluster, the

malloc is defined as having Private Owner Pattern. Lastly, when pages are grouped into

the last cluster (C4), they are shared by all threads. It cannot differentiate which thread

accesses the pages more than the others. The corresponding malloc does not associate with

any recognizable pattern. It is marked as a Shared Pattern.

5.2.2.2 Affinity Hint for Static Data Compared to the pattern recognition method

for dynamic data, analysis for static data is relatively easy, since it is assumed that the access

pattern for a static page is deterministic. A simple page number to cache slice mapping can

be used as a hint. The hint generation is straightforward. If the number of accesses from

a particular tile counts more than 50% of total accesses for a page, the page is assigned to

that tile. Otherwise the page is marked as Shared. The threshold value 50% essentially

controls if a page should be treated as a shared page. A higher threshold value would result

in a more conservative page placement decision. There is a lower bound for the threshold

in terms of the number of tiles in a CMP. For a 16-tile CMP, the threshold value should be

greater than 6.25% since that is the average share each tile should receive. In this study, the

evaluation results show that 50% works well.
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5.2.3 Hint-Guided Data Placement

After various memory access patterns are recognized for static and dynamic memory areas,

an efficient hint representation method becomes necessary so that these patterns can be

utilized by later executions. Since hints for dynamically allocated data and static data are

different, they are presented separately. A static hint gives the target cache slice for a static

page explicitly, thus can be used directly at run time. A dynamic hint only tells the type of a

malloc instance in the source code. It needs to be translated into actual mappings when the

starting address and the size of a memory area are determined by the corresponding malloc.

This section discusses how to utilize these dynamic pattern hints at run time to guide data

placement.

The OS reads carried hints when loading a program for execution. Each hint is repre-

sented by the OS internally using a data structure such as following:

struct DynamicHint {

Integer MallocID

Integer HintType

Integer Counter

Integer Target

}

When malloc is called, the corresponding MallocID (e.g., a combination of the containing

file name and the line number) is searched against the hint list. If there is a match, a new

pattern descriptor is created. The following pseudo-code describes how a dynamic hint is

translated into a pattern descriptor at the time of malloc:

struct PatternDescriptor {

Integer PatternType

Addr_t Start

Addr_t End

Integer Target

Pointer Next

}
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MallocHandler()

{

normal malloc operation

......

ID = current malloc identifier

Start = start address of the allocated memory

End = end address of new allocated memory

ThreadID = the calling thread ID

for each hint item h in hint list

if ID equals h.MallocID

p = new PatternDescriptor structure

p.PatternType = h.HintType

p.Start = Start

p.End = End

if p.PatternType is OrderScattered

p.Target = h.Counter

h.Counter++

if p.PatternType is PrivateScattered

p.Target = ThreadID

if p.PatternType is PrivateOwner

p.Target = h.Target

add p into the pattern list

exit the loop

return start address

}
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The following text describes how our scheme generates target tile ID (i.e., where the page

is placed in the cache) from pattern descriptors at run time.

Even Partition Pattern: In the above MallocHandler(), only the whole memory

range is generated for the even partition pattern. The actual data placement decision is

deferred until a page fault is triggered. The whole memory range is artificially partitioned

into 16 equal sub-ranges. Then the triggering virtual address is checked to find out which

range it falls in. The corresponding sub-range index is the target tile ID. The following

pseudo-code illustrates this process:

PageFaultHandler() {

VA = virtual address that triggers the page fault

/* the default value -1 indicates a shared pattern */

TargetTID = -1

for each pattern p in the pattern list

if VA falls in the range [p.Start, p.End]

if p.PatternType is EvenPartition

PartitionSize = (p.End - p.Start) / NCore

TargetTID = (VA - p.Start) / PartitionSize

save TargetTID into the corresponding page table entry

}

Ordered Scattered Pattern: As described in MallocHandler(), the target tile ID

is determined during the process of translation from the hint to its pattern descriptor. A

counter with an initial value of 0 is associated with the hint structure. Each malloc call

uses the counter value as the target tile ID and increments the counter. For example, if the

counter value in the hint structure for a malloc is 2, then the memory area returned by the

next call to this malloc is assigned to the cache slice in tile 2. The counter value is then

increased to 3. Given the pattern descriptor, the following pseudo-code illustrates how tile

ID is determined:

PageFaultHandler() {
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VA = virtual address that triggers the page fault

/* the default value -1 indicates a shared pattern */

TargetTID = -1

for each pattern p in the pattern list

if VA falls in the range [p.Start, p.End]

TargetTID = p.Target

save TargetTID into the corresponding page table entry

}

Private Scattered Pattern: If a hint indicates that a malloc has this pattern, the

memory area returned by this malloc is placed directly to the tile, who calls this malloc

instance. The implementation of MallocHandler() is the same as Ordered Scattered

Pattern.

Private Owner Pattern: For this pattern, a target tile ID comes with the pattern type

in the hint explicitly. The allocated dynamic area is simply placed in the specified target

cache slice. The implementation of MallocHandler() is the same as Ordered Scattered

Pattern.

Shared Pattern: As shown in MallocHandler(), when there is no match in the

pattern list, -1 is assigned to the target tile ID to indicate a shared pattern for a page. By

default, no effort is made to optimize for a dynamic data area of this pattern. Since the

data in a page are shared by all threads, placing this page in any single cache slice would

cause uneven access latency among all sharers. It can also create a hot-spot in the hosting

cache slice. As a result, it seems reasonable to distribute the data in this page at cache block

granularity instead of page size to balance L2 cache accesses among all cache slices. Moreover,

it is beneficial to combine other hardware-based techniques to improve access latency for

highly shared data since shared memory accesses account for a significant portion of all L2

cache accesses. To capture temporal data affinity for shared data, one can benefit from the

victim replication scheme [111]. As the private data are correctly placed, the amount of data

replication and the number of resulting conflict misses can be reduced significantly. Other

hardware techniques such as multicast can also be employed. The motivation here is that
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highly shared data are likely possessed by multiple tiles simultaneously in their L1 caches.

If the load request misses in the local L1 cache, it is very likely to find the data in one of its

neighbors’ L1 caches. Based on this observation, a multicast scheme can work as follows: A

read miss leads to an access to the home directory to find out where to fetch the data. On its

way to the remote directory, L1 caches of all visited tiles are checked for the data. If a copy

of the data is found, it is replied immediately to the requester, which could resume execution

earlier. A similar multicast scheme was recently proposed in [19], albeit in a different context

(private L2 cache).

5.3 EVALUATION RESULTS

Five cache schemes are evaluated and compared in order to demonstrate the benefit of the

proposed data placement scheme. These five of them are: the shared cache scheme (L2S),

the private cache scheme (L2P), the victim replication scheme (L2VR), the hint-guided

data placement scheme (L2H), the hint-guided data placement and data replication scheme

L2HR. For L2HR, the page placement in the L2 cache for private data is guided by L2H

as usual, but data replication is used to save remote access latency for shared data blocks.

The data replication is also guided by the derived hints.

5.3.1 Hint Accuracy

Figure 19 shows the L2 cache access distribution according to the type of access pattern

identified by the proposed pattern recognition algorithm. In case of cholesky, the algorithm

recognizes around 15% of total accesses belonging to private scatter pattern. Nearly 80% of

total accesses come from shared data areas. These numbers are consistent with the curves

in Figure 1 shown in the introduction section. Other benchmarks such as raytrace, volrend,

water-nsquared and water-spatial also have very large number of L2 accesses for shared data.

This is aligned to the data structures used by these programs—they naturally have a lot

of data sharing. In contrast, fft, lu, ocean, radix and swaptions exhibit abundant private
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Figure 19: Breakdown of L2 cache accesses based on the classified pattern types (median

input set).

data accesses which are captured by the identified patterns. Overall, the recognized patterns

capture more than 50% of total L2 accesses.

Figure 19 shows the algorithm is effective in recognizing different types of access patterns.

It is interesting to see the accuracy of these identified access patterns. To do so, the access

histogram of all pages and their locations suggested by the hints during the simulation

are collected. The data affinity hint is considered “accurate” and a page is considered

“accurately placed” if the local tile of a page predicted by the hint accesses it the most. The

hint accuracy is defined as the ratio of the number of accurately placed pages to the total

number of placed pages. Note that the shared pages are not considered in this calculation.

The accuracy metric measures how good the algorithm is at identifying and representing the

access patterns. Another metric defined is called coverage, which is the ratio of the number

of accesses to the “accurately placed” pages to the total number of L2 cache accesses. This

metric includes the impact of the shared pages. It indicates how effectively the affinity hints

can cover all L2 cache accesses. Table 3 shows the results with the small and median input

sets. The derived hints achieve a high accuracy of over 80% in most cases. The exceptions
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Program
Small Median Large

Accuracy Coverage Accuracy Coverage Accuracy Coverage

barnes 82.1% 47.8% 84.6% 43.3% 83.1% 45.6%

cholesky 82.9% 7.3% 85.9% 9.0% 84.6% 9.2%

fft 96.1% 53.7% 99.0% 69.4% 98.0% 65.7%

fmm 88.2% 28.1% 90.2% 28.5% 90.1% 29.2%

lu 96.7% 77.1% 98.3% 87.4% 98.4% 87.0%

ocean 99.0% 48.9% 98.7% 52.5% 98.3% 50.1%

radiosity 97.7% 26.8% 96.6% 33.5% 94.9% 35.7%

radix 90.4% 69.0% 66.1% 54.3% 63.7% 57.8%

raytrace 68.4% 7.9% 31.7% 3.9% 34.5% 6.1%

volrend 80.4% 9.7% 79.6% 8.0% 80.1% 8.9%

water-ns 45.0% 25.2% 45.0% 25.7% 45.1% 26.0%

water-sp 67.2% 16.6% 67.2% 17.2% 68.5% 18.5%

blackscholes 83.7% 34.2% 60.6% 29.8% 65.3% 34.1%

swaption 60.8% 44.8% 61.7% 47.3% 60.8% 46.4%

Table 3: Pattern recognition accuracy and coverage.

are raytrace, water-ns, and water-sp. These programs use complex data structures such as

trees and 3D matrices during computation. Data structures are updated constantly, leading

to many mallocs and frees, which poses a challenge for the off-line pattern analysis scheme.

The coverage varies from one program to another. Some programs such as lu, ocean,

and radix have good data affinity and well recognized data partitions, thus achieving a high

coverage ratio. Others such as cholesky, raytrace, and volrend have low coverage. This

means the cache access patterns of major data regions are not recognized since they are

widely shared by threads. Interestingly, the accuracy and coverage measure of small input

set and those of median input set are very close. This shows that the provided hints are
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stable across different input sets. In some cases, the accuracy and coverage become even

higher for the median input set even though the hints are derived from the small input set.

This can happen because the target data area becomes larger with the median input set,

capturing relatively more accesses. The results for the large input set are very close to these

of the median input set.

5.3.2 Performance Improvement

Let us turn the attention to the program performance and behavior on the studied machine

architecture. Figure 20 shows the normalized execution times of the five cache management

schemes for the small, median and large input sizes as given in Table 2. Execution time

is normalized to L2S, the baseline design. Since the hints are derived from small input,

Figure 20(a) provides a measure of how the hints perform under ideal situation. Comparing

the results in Figure 20(a), (b) and (c), it is obvious that the relative performance of these

schemes change little with different input sizes. One major reason is that many of these

examined benchmarks are well optimized and have relatively small working set sizes that

do not scale with the benchmark input. In other words, scaling up the input size does

no cause the situation, where the working set cannot fit in the cache slice. This explains

why L2P performs better than L2S most of the time. The results also demonstrate that

the off-line pattern recognition algorithm performs robustly for different input sizes as L2H

consistently provides around 10% performance improvement over L2S. This shows that the

proposed algorithm captures existing program access patterns effectively. The patterns are

stable and help place memory pages correctly even with changed input. In the following

discussions, results with the median input set are used unless otherwise noted.

It is worth looking at Figure 20(b) in more detail. First, L2P performs considerably

better than L2S due to the small program working set size. The exceptions are cholesky,

ocean, raytrace and volrend, where data sharing is relatively high. For the same reason,

L2VR is also very effective, achieving around 11% execution time improvement over L2S and

similar to L2P on average. L2VR brings the L2 cache access latency close to L2P through

replication. L2H approaches the performance of L2P and L2VR very well, achieving 10%
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Figure 20: Execution time of benchmarks with (a) small, (b) median, and (c) large input

set, normalized to the execution time of the shared cache scheme (L2S).

execution time improvement over L2S. The improvement of L2H comes from the optimized

data affinity for those data used mostly by one thread. No effort is made by L2H to

tackle highly shared data. When hints are used to direct data replication, L2HR improves

81



A
gg

re
ga

te
d 

L2
 M

is
s 

R
at

e

0%

20%

40%

60%

80%

L2S
L2P
L2VR
L2H
L2HR

Figure 21: Aggregated L2 cache miss rate of benchmarks with the median input set.

performance by nearly 9% over L2VR and L2P. It marks 19% performance improvement

over L2S. These results demonstrate that L2H is complementary to other hardware-based

optimization techniques. When hints are used to control both private data placement and

shared data replication, L2HR removes unnecessary replications by allocating private data

locally in L2 cache. This helps reduce the cache pressure significantly, resulting in fewer

off-chip accesses. On the other hand, L2VR cuts the remote access latency of L2H by

duplicating shared data in local L2 cache. L2HR entertains the advantages of both private

cache and shared cache schemes.

5.3.3 Cache Miss Rate Comparison

Figure 21 provides more insights regarding to the performance difference in Figure 20(b).

It shows the ratio of total number of off-chip reads to the total number of L2 accesses. In

general, L2P incurs more off-chip accesses than L2S due to conflict misses caused by smaller

effective L2 cache size. In case of cholesky, ocean, raytrace and volrend, L2S performs better

than L2P because the gain of more on-chip accesses in L2S is large enough to compensate

for the loss in longer remote access latency. However, the margin is very small for the rest

of the benchmarks. L2VR increases the cache pressure even more than L2P as it has to

duplicate private data that are blindly distributed in L2S. This explains why L2VR has

worse performance than L2P in Figure 20(b). L2H has a comparable off-chip access rate as

L2S since it is basically the shared cache with improved data locality. L2HR mitigates the
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Figure 22: Number of remote L2 data requests normalized to L2S for 3 shared cache variants

L2VR, L2H and L2HR.

cache pressure of L2VR by correctly placing the private data. It effectively improves the

L2 cache miss rate of L2VR, binging it close to that of L2S. However, unlike L2P, L2HR

writes back the modified cache line directly to its home node. This eliminates the need for

expensive three-way cache-to-cache transfer of modified data when requested later by other

threads.

5.3.4 Network Traffic

The other determinate factor of the distributed shared cache performance is the L2 cache

access latency which is affected by the number of remote accesses. Figure 22 shows the num-

ber of remote data requests for L2S and its variants L2VR, L2H and L2HR, normalized

to that of L2S. These four schemes have a similar number of L1 misses. Therefore, the more

remote L2 data requests there are, the longer the average L2 access latency. Figure 22 shows

that L2VR effectively removes nearly 60% of the remote accesses of L2S by duplicating

clean L1 victims in the local L2 cache slice. However, the remote access reduction comes at

the sacrifice of the decreased L2 cache hit rate as shown in Figure 21. L2H has on average

40% less remote accesses than L2S without any compromise in the L2 cache hit rate, since it

essentially rearranges the data distribution of L2S. Because L2H only optimizes the private

data while L2VR replicates any clean data blocks, it has less remote access reduction than
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Figure 23: On-chip network traffic of benchmarks with median input set.

L2VR. Surprisingly, L2HR eliminates over 85% the remote accesses of L2S on average.

There are two reasons for this result. First, L2HR reduces the number of remote accesses

by correctly distributing data in the local L2 cache in the first place. This also eliminates the

need for replicating those data as in L2VR. Second, a smaller amount of victim replication

leads to lower cache pressure, which in turn preserves more replicas of shared data in the

local L2 cache.

Besides remote data requests, there are a lot of other network traffic such as coherence

messages and memory requests. Figure 23 shows the on-chip network traffic.It is assumed

the flit width is 8 bytes. Thus coherence packet takes 1 flit while data packet needs 9

flits. As shown in Figure 23, L2S has 3 times more network traffic than L2P on average

because of the remote accesses. L2VR and L2H both achieve around 30% traffic reduction

by satisfying more data requests in the local L2 cache slice. Finally, L2HR reduces the

network traffic of the shared cache scheme to the level close to L2P.

5.4 SUMMARY

In this chapter, the software-oriented cache management approach is applied to improve the

performance of latency-oriented multithreaded programs. The following contributions are

made through the study of the proposed scheme:
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• A classification of the memory access patterns is carried out for latency-oriented multi-

threaded programs. Based on that, an efficient hint-guided data placement and replica-

tion scheme is proposed. The scheme is substantially deviated from existing hardware-

based schemes. The scheme is orthogonal to the existing hardware schemes. As a result,

it can work together with them for even higher performance.

• A novel memory access pattern recognition algorithm is proposed based on the K-means

clustering method. The results show that the algorithm works well in recognizing those

commonly seen access patterns for dynamically allocated memory areas. The recognized

patterns are independent on program parameters. They are general enough to be used

for multiple executions with different inputs. This makes the scheme very flexible as the

off-line analysis only needs be done once at compile time.

• The proposed scheme is evaluated and compared with the the shared cache scheme, the

private cache scheme, and their variants. It is shown that by applying the hints to guide

page placement and data replication on the shared L2 cache, it performs significantly

better than both the shared cache and the private cache.

85



6.0 PROFILE-GUIDED DATA REPLICATION FOR MULTITHREADED

PROGRAMS

The pattern recognition algorithm introduced in Chapter 5 is effective in capturing the data

affinity patterns for latency-oriented multithreaded programs. However, the throughput-

oriented multithreaded programs exhibit unique characteristics, which demand a new off-

line analysis strategy to improve their data affinity at run time. In this chapter, some

insights regarding cache access behavior learned from the profile study of the specjbb server

benchmark are presented first. Then the proposed profile-guided data replication scheme

for multithreaded programs is introduced in detail followed by the evaluation results. The

proposed scheme optimizes the performance of throughput-oriented multithreaded programs

through controlled data replication. Even though the focus here is on throughput-oriented

multithreaded programs, the proposed scheme can be applied to a broad range of workloads.

6.1 PROGRAM BEHAVIOR ANALYSIS

The CMP architecture is suitable for executing parallel threads. In a CMP, threads can run

on separate cores instead of competing for pipeline resources like in a single-core processor.

In throughput-oriented multithreaded programs, each thread often independently serves a

stream of incoming requests. The last-level cache contains the data for all threads, behaving

as a last defense for expensive off-chip memory accesses. An effective use of the last-level

cache so that each thread receives good data affinity and low cache interference is critical to

the program performance. The problem of placing data in an optimized way in the NUCA

last-level cache is as important for throughput-oriented multithreaded programs as other
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types of programs.

6.1.1 Overview

Throughput-oriented multithreaded workloads are a unique type of programs with growing

importance. A representative workload of this type is a server program. In a brief overview,

a typical task of a throughput-oriented multithreaded program is to serve requests coming

from different sources by returning necessary data or information. Throughput-oriented pro-

grams are often programmed in a multithreaded fashion so that multiple requests arriving

at the same time can be served simultaneously. Depending on the design, a program can kill

an old thread upon the completion of a service and then start a new one for an incoming

request. Alternatively, it can command the same thread to keep processing new requests.

In both cases, the program essentially continues executing multiple streams of requests un-

til being terminated explicitly. In terms of each individual request, service time is of top

priority. But from the perspective of the system, throughput is the most important metric

which is often measured as the number of requests serviced during a given time unit. In

contrast, latency-oriented multithreaded programs studied in Chapter 5 concern about fin-

ishing a given computation task as quickly as possible. Due to the difference in design goals,

throughput-oriented multithreaded workloads bear distinct characteristics.

First, the parallel threads of a latency-oriented multithreaded program often work in a

cooperative way to tackle a large computation task together. The cooperation can involve

significant amount of data exchange and synchronization. In contrast, a throughput-oriented

multithreaded program usually does not coordinate the execution among peer threads. They

work independently to process independent requests.

Second, the cooperation in a latency-oriented multithreaded program naturally leads to

data partitioning. That is, a large problem domain is split into subdomains for parallel

processing. Thus the corresponding data set is also partitioned. This allows us to express

data affinity hints naturally. However, a throughput-oriented multithreaded program does

not have such algorithm-level data partitioning behavior. In such a program, a shared

database or a set of common files are accessed by all threads. Thus, data sharing can
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happen through the database when a user requests the related data.

Lastly, the most distinct feature of a throughput-oriented multithreaded program is

that it often runs for a much longer period than a latency-oriented multithreaded program.

For latency-oriented programs, the lifetime is limited by the amount of computation. But

throughput-oriented programs can run infinitely before being terminated explicitly. During

its long-lasting execution, the effect of the OS scheduling, virtual memory management, and

I/O can come into play. A latency-oriented multithreaded program suffers less from these

factors. With those differences, throughput-oriented multithreaded programs exhibit unique

data sharing and communication patterns. This nature demands a new strategy when using

the software-oriented approach to manage their performance on a distributed shared cache

of a CMP.

6.1.2 Distribution of Cache Blocks

To quantitatively understand the behavior of throughput-oriented multithreaded programs,

we analyzed the cache access traces of the specjbb program collected from profile executions

of 5,000 and 10,000 transactions respectively. Figure 24(a) shows how cache blocks accessed

by the program are distributed according to the number of sharers during a profile execution

of 5,000 transactions. Light red and dark blue curves represent instruction blocks and data

blocks respectively. The big spike in the light red curve shows that about 86.1% of all

accessed L2 cache blocks are only touched by one thread during the whole profile period.

On the other hand, both curves have flat tails extending to the right. That indicates the

number of shared cache blocks only accounts for a small portion. More precisely, 12.1% of

the total accessed L2 cache blocks are shared data blocks. The number of shared instruction

blocks only accounts for 1.4% of the total accessed L2 cache blocks. Figure 24(b) shows

the same plot for a profile execution of 10,000 transactions. The results are very similar to

Figure 24(a).
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Figure 24: Instruction and data blocks distribution of specjbb 2005 based on the number

of sharers of the blocks derived from the profile of (a) 5,000 transactions and (b) 10,000

transactions.

6.1.3 Distribution of Cache Accesses

To further understand the data sharing behavior of the specjbb, the distribution of the L2

cache accesses based on the number of sharers from a profile execution is also collected.

Figure 25 shows the results. Instruction and data accesses are represented using light red

and dark blue curves separately. In comparison with the block distribution in Figure 24(a),

the curves in Figure 25(a) have spikes at both ends. At the right end, the number of accesses

for instruction and data each accounts for about one third of all L2 cache accesses. The spike

at the left end of the light red curve shows that nearly 21% of total L2 cache accesses are

private data accesses. Figure 25(b) shows the similar results for a profile execution of 10,000

transactions.

A comparison between Figure 24 and Figure 25 uncovers some insights regarding the

access behavior of the specjbb. First of all, only less than 1% of all accessed L2 cache blocks

are shared by all threads. But they receive about 70% of total L2 cache accesses. This

divergence between the distributions of cache blocks and their accesses indicates that data
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Figure 25: Instruction and data access distribution of specjbb 2005 based on the number

of sharers of the blocks derived from the profile of (a) 5,000 transactions and (b) 10,000

transactions.

replication for these highly shared cache blocks can be rewarding. Replication only increases

a small margin of the program footprint, but it improves affinity for a significant portion of

L2 cache accesses.

Similarly, the divergence for private cache blocks can also be observed. Comparing

Figure 24 and Figure 25, it is shown that about 86.5% of all cache blocks are private. But

they only receive 21.8% of total L2 cache accesses. This divergence essentially tells that

the reuse ratio of private cache blocks is relatively low in comparison to that of these highly

shared cache blocks. Because private data have much larger footprint than the highly shared

data, uncontrolled replication of private data that are not placed locally can be detrimental

when the cache capacity is limited.

In both Figure 24 and Figure 25, the curves in plot (a) and plot (b) show similar shape.

That demonstrates the observed cache access behavior of the specjbb is largely independent

on the length of the profile execution. This observation is worth some more discussion. By

comparing plot (a) and plot (b) in both figures, we discover that some cache blocks become
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Figure 26: Read/write access distribution of specjbb 2005 based on the number of sharers

of the blocks derived from the profile of (a) 5,000 transactions and (b) 10,000 transactions.

shared as the profile execution length increases. This phenomenon is not a coincidence but

an artifact from the memory management of the JAVA virtual machine. As the virtual

machine constantly reclaims memory area from garbage and maps them to new objects, a

private cache block will be used by another thread eventually if the profile execution lasts

long enough. These cache blocks are regarded as shared by off-line analysis due to the lack of

dynamic information about the remapping. This information is only available at run time.

For this reason, a static data placement hint which maps a given virtual address to a fixed

location does not work well for this type of workloads. In order to manage data affinity

efficiently by using off-line analysis hints, a more flexible strategy is required. Based on this

discussion, hint-guided data replication appears a better strategy than the hint-guided data

placement scheme.

6.1.4 Distribution of Cache Reads and Writes

Figure 26 further shows the distribution of the L2 cache accesses between read access and

write access. Again, the length of the profile execution has little impact on the results since
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plot (a) and (b) are similar. Furthermore, the figure shows that the cache blocks shared by

all 16 threads receive many more reads than writes. Because a write triggers invalidation

of data shared by other threads, data replication can increase the cost of this invalidation

process. For this reason, a replication scheme would favor data with a high read-to-write

ratio. On the other hand, private data have very low read-to-write ratio. A replication

scheme should avoid replicating them. Thus these highly shared data are proper candidates

for data replication.

6.1.5 Property of Memory Instructions

We also examined data reuse patterns seen by each individual memory instruction and

observed an important property for memory instructions: a memory instruction tends to

exhibit persistent data access pattern. For instance, if a data block accessed by a load

instruction is found to exhibit high reuse, then it is likely that other data blocks referenced

by the same load instruction will also exhibit good rescue. The following pseudo-code shows

a simple example of a Fibonacci number generator. This example gives us a motivating idea

of why a memory instruction can have a persistent data access pattern.

data[0] = 0;

data[1] = 1;

for(i = 2; i < N; i++) {

data[i] = data[i - 1] + data[i - 2];

}

In this example, a data array is accessed within a FOR loop. Except the first two elements

of the data array, each one is read twice for generating the next new number. The newly

calculated value is written to the next element in the array. If each array element occupies

4 bytes and a cache block is 64-byte long, a cache block can receive up to 48 accesses in

total after it is first accessed. All these reads and writes are initiated by the same statement.

In this case, it is evident that a cache block touched by this statement can see more reuse

in the near future. Of course, the programs in the real world are much more complex, but

they are composed of nothing but loops and all kinds of control flows. As a result, some
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statements can exhibit a similar property as the one in this Fibonacci example. Since the

reuse pattern of such a statement (memory instruction essentially) does not change with

program parameters and cache configurations, it can be a good hint for guiding online data

replication.

6.2 PROFILE-GUIDED DATA REPLICATION SCHEME

Because of the long execution time of throughput-oriented multithreaded programs and the

intervention of the OS memory management module, a static hint-based data placement

scheme cannot work well. Luckily, a private cache block and a shared cache block exhibit

distinct access patterns. It suggests that controlled replication can be a viable approach.

Figure 27 shows the flow diagram for the proposed profile-guided data replication scheme at

a very high level. During the profile stage, the L2 cache access trace and the corresponding

memory instruction addresses are collected. The analysis routine estimates the reuse pattern

for each memory instruction recorded in the trace. Memory instructions with poor reuse

behavior are filtered before generating an annotated program binary. Finally, the annotations

within memory instructions dictate the data replication decision at run time. In this section,

we will first present the trace analysis algorithm for filtering memory instructions. Then we

will describe in detail how the reuse pattern information can be utilized at run time to guide

data replication in L2 cache.

6.2.1 Trace Analysis Algorithm

To analyze the reuse of memory instructions, an L2 cache access trace is collected during

the profile execution. Each trace item contains the memory reference address and the corre-

sponding program counter (PC) address of the instruction, which issues the memory request.

A PC address can uniquely identify the corresponding memory instruction. For each mem-

ory instruction, a corresponding counter is added for each accessed memory block to track

the number of references. Trace items are examined one by one as follows: The counter
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Figure 27: Block diagram for the one-time profile and trace analysis process (upper box)

and the run-time data replication control (lower box).

array of the memory instruction is first selected using the PC address. Then the counter

corresponding to the referenced block address is looked. If such a counter is not found, a

new one is created and added into the array. Otherwise the counter value is incremented. If

the PC address has not been seen before, an empty array is created for it. At the end of this

process, these counters represent the number of accesses received by different cache blocks

for a specific load instruction.

The following pseudo code demonstrates this process. The elements of the PC list are

indexed by the PC address of a memory instruction. Each of them points to a BLK list,

which counts the number of access for each data block. Access counts can be tracked at

different granularity. Cache block granularity provides the most precise information but
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coarser granularity requires less computation power and storage. In this study, cache block

granularity is adopted to gain maximum accuracy. Only load instructions are considered in

the algorithm.

/* trace processing */

while trace is not empty:

PC = pc address of the memory instruction

BLK = blk address of the memory reference

if PC in PC_list:

BLK_list = PC_list[PC]

if BLK in BLK_list:

BLK_list[BLK] = BLK_list[BLK] + 1

else:

BLK_list[BLK] = 0

else:

add PC to PC_list

After executing this algorithm with a collected trace, the corresponding BLK list of each

memory instruction contains the access counts for all data blocks accessed by this memory

instruction.

The next step is to identify memory instructions that can bring in data blocks with

many potential reuses. The underlying assumption here is that each data block requires at

least one memory access to load the value. Thus a memory instruction’s total number of

memory accesses is equal to the summation of the counter values in BLK list array while

the number of reuses is calculated as the summation of each counter value in BLK list array

minus one. Then the reuse ratio for a memory instruction is simply the number of reuses

divided by the total number of memory accesses. In our algorithm, a memory instruction

is considered as having good temporal reuse if the reuse ratio is larger than a pre-defined

threshold. A small threshold value passes a memory instruction with a low reuse count,

resulting in more qualified memory instructions than a larger threshold value. The following
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pseudo code demonstrates this algorithm.

/* PC filtering based on reuse rate */

for each PC in PC_list:

BLK_list = PC_list[PC]

reuse_count = 0

access_count = 0

for each BLK in BLK_list:

access_count = access_count + BLK_list[BLK]

reuse_count = reuse_count + BLK_list[BLK] - 1

/* found a PC with high reuse rate */

if reuse_count / access_count > Threshold:

print PC

This filtering method essentially differentiates two types of memory instructions. One type

of memory instructions touch many memory blocks. But the access count for each block is

low. This can lead to a low reuse ratio based on our algorithm. The other type of memory

instructions access a memory block a lot after loading it into the cache. As a result, the

reuse count is very close to the access count, leading to a high reuse ratio.

6.2.2 Profile-Guided Data Replication

Another challenge of using a software-oriented approach to optimize the performance of

throughput-oriented multithreaded programs is how to convey the static data reuse hints

to accessed data blocks dynamically at run time. The off-line analysis is performed at the

time of program compilation. Using the algorithm introduced in Section 6.2.1, the compiler

can identify a list of memory instructions that access data with good reuse property from a

profile trace of L2 cache accesses. At the code generation phase, these memory instructions

are marked with hints to differentiate them from other normal memory instructions. All

memory instructions access the data in the same way as before. An L1 miss triggers an

L2 cache access, which brings back the data. But if a memory instruction is marked, its
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accessed L1 cache block also has to be marked to indicate that it may experience a lot of

reuse in the L2 cache. At this point, the hint regarding a memory instruction is transferred

to an L1 cache block. This cache block is expected to receive some reuses in the future.

When an L1 cache block is evicted, some extra actions are performed. The cache block is

first checked to see if it is marked. If the flag is not set, it is retired by following the normal

cache coherence routine. Otherwise, the cache block is deemed as a candidate for replication

in the local L2 cache. To find a place in the local L2 cache, the scheme searches for an

invalid cache block, an unused cache block or a replicated cache block in order, same as the

victim replication scheme [111]. If no such a L2 cache block is found, the L1 cache block has

to be evicted. Because timely fetching of instructions is critical to the pipeline performance,

an instruction cache block is always a candidate for replication in the local L2 cache. The

profile study shows that instructions have a very small footprint. So the replication of all

instruction cache blocks has little impact on the cache pressure.

The number of cache blocks that exhibit good reuse can grow when the execution length

increases. The cache blocks accessed also tend to change under different execution envi-

ronment. As a consequence, there is no way to directly supply accurate replication hints

in terms of data blocks that are expected to be accessed at run time. However, the key

memory instructions that always access data blocks with good reuse property stay largely

unchanged. This observation makes the profile-guided data replication possible and is the

major contribution of this work. By attaching the reuse information to memory instructions

and then transferring them to access cache blocks at run time, the hints become decoupled

from program parameters and cache configurations.

This profile-guided data replication scheme only allows data accessed by specified mem-

ory instructions to be replicated. These data are expected to have good reuse property.

Other data are considered to have poor temporal locality, thus not replicated. Avoiding

the replication of data with poor locality limits the interference from reckless replication.

This can effectively relieve cache pressure caused by excessive data replication. On the other

hand, replication of data with potential reuse effectively improves access latency of these

frequently accessed cache blocks.
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6.2.3 Implementation Issues

Architectural change is required to support the proposed profile-guided data replication

scheme. Since most of the trace analysis and decision making process in this proposed

scheme are performed off-line by software, there is no need for hardware logic and storage

to track program behavior at run time. The added hardware complexity is minimized. The

cache structure is similar to a traditional distributed shared cache. Each L1 data cache block

needs one extra flag bit to indicate if the data block is replicable at the time of eviction.

This flag is set based on the annotation comes with a memory instruction. Accordingly, the

ISA has to provide a set of modified memory instructions with hint bit added. The compiler

turns on or off the bit based on the decision made from the profile analysis. In case there

is no spare bit available in an existing ISA design, hints can be carried explicitly with the

program binary in a form of a list of PC addresses. Depending on the size of the provided

hardware storage, however, the length of the list can be constrained. In addition, a hardware

logic for matching the PC address of the current memory instruction with the hint list is

required. For a long list, an efficient matching mechanism should be implemented. In this

work, the annotated ISA approach is assumed.

The replication management and the corresponding cache coherence changes are similar

to the victim replication scheme. No more complexity is added. The area overhead of the

added hint bit in the L1 data cache is very limited. Attaching one bit to every 64-byte cache

line only incurs less than 0.2% area budget for an L1 data cache. There is no change for the

L1 instruction cache. The time it takes to make the data replication decision is overlapped

with the latency for fetching the new data block. Thus it is off the critical path. If no

replication is allowed for an evicted data block, it can take extra time for the directory to

get notified. But the impact is minimum because the notification is asynchronous to the

pipeline execution.

98



6.3 EVALUATION RESULTS

To evaluate the proposed scheme, specjbb 2005 [95] and apache [4] are chosen as the server

workloads. In addition, we also customized two server kernel programs: btree and chee-

tah [58, 92]. Btree simulates database activities by performing lookup, insert, and delete

operations on an existing B-Tree structure. Cheetah simulates the behavior of a static web

server with a modified network component to ease the simulation setup. Besides, selected

programs from SPLASH-2 [86] and PARSEC [76] are also evaluated. Four major cache

schemes are simulated and compared: the shared cache scheme (L2S), the private cache

scheme (L2P), the victim replication scheme (L2VR), and the proposed hint-guided data

replication scheme (L2HR).

6.3.1 Profiling Analysis Threshold

The threshold value in the trace analysis algorithm plays an important role in determining

the amount of data replication allowed for a given program. A small threshold value passes

memory instructions with low reuse ratio as hints, leading to more replication at run time.

One extreme is to use 0 as the threshold value, which generates hints for all memory instruc-

tions. It essentially enables replication for all accessed data, behaving exactly as the victim

replication scheme. A large threshold value does the opposite. A threshold value of 1.0

results in no hints at all, directing the hint-guided data replication scheme to fall back to the

shared cache scheme. It is crucial to select a proper threshold value based on a program’s

characteristics. In this work, six threshold values are examined: 0, 0.2, 0.4, 0.6, 0.8 and

1.0. The threshold that results in the best performance for the testing execution is used to

generate the hints.

Table 4 shows the number of static memory instructions captured as hints by our off-line

analysis algorithm. As expected, the number of captured memory instructions decreases

with a larger threshold value. Threshold 0 essentially shows the total number of memory

instructions seen by the L2 cache. Figure 28 shows the normalized execution time of programs

with the guidance of data replication hints generated from the six threshold values. The
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Threshold 0 0.2 0.4 0.6 0.8

specjbb 3485 3125 2996 2841 2508

apache 3313 2948 2771 2587 2307

btree 2009 1901 1849 1751 1518

cheetah 1279 1251 1203 1134 994

barnes 1072 1001 980 955 838

fmm 1594 1502 1452 1347 1176

radiosity 1090 1007 971 931 850

raytrace 1263 1152 1137 1112 995

volrend 800 774 761 738 683

blackscholes 2596 2541 2503 2414 2087

swaptions 2868 2720 2657 2496 2164

Table 4: Number of static memory instructions captured by different threshold values.
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Figure 28: Impact of threshold value on program execution time.
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Program specjbb apache btree cheetah barnes fmm

Threshold 0.4 0 0.6 0 0.8 0.8

Program radiosity raytrace volrend blackscholes swaptions

Threshold 0.2 0.8 0 0.4 0

Table 5: The optimal threshold value derived from test executions is given for each program.

A high threshold value filters out more memory instructions, resulting in less data replication.

A threshold value of 0 represents the victim replication scheme.

examined programs exhibit different preference on the threshold values. For instance, specjbb

performs best with a threshold value of 0.4 while apache prefers a threshold value of 0. Table 5

lists the optimal threshold values for all evaluated programs. From here on, results reported

for hint-guided data replication scheme are evaluated using the optimal threshold values

unless otherwise noted.

6.3.2 Reuse Comparison

After obtaining the optimal threshold values, we evaluate programs with much longer execu-

tion time. The first thing we are interested in is how well the hint-guided replication scheme

controls the data replication amount. Figure 29 compares L2VR and L2HR in terms of

their replication effectiveness. The bars in the figure represent the percentage of the total

number of L2 cache accesses that get hit in local L2 caches because of data replication.

The figure shows that only for few programs L2HR has slightly less number of local L2

cache hits than L2VR since it constrains data replication. Overall, L2VR and L2HR have

very similar amount of local L2 cache hits that are served by replicated data. This figure

demonstrates that L2HR still preserves most of the performance benefits of L2VR, even

though it limits data replication for some L1 cache evictions. Figure 30 shows the number

of data replication instances that occurred in L2HR relative to L2VR. The results show

that programs with high threshold values, such as specjbb, btree, and raytrace, have signifi-
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Figure 29: A comparison of the ratios of the total number of L2 cache accesses that find

data replicated in local cache slices for L2VR and L2HR.

A
m

ou
nt

 o
f d

at
a 

re
pl

ic
at

io
ns

 re
la

tiv
e 

to
 L

2V
R

0

0.2

0.4

0.6

0.8

1

Figure 30: Number of data replication instances in L2HR relative to L2VR.

cantly less data replication than L2VR. It illustrates a nice property of the proposed data

replication scheme: by adopting a carefully selected threshold value, useless data replication

can be largely suppressed while not affecting the reuse ratio in local L2 caches.

Figure 31 uncovers the other side of the story. It compares the aggregated L2 cache miss
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Figure 31: A comparison of the aggregated L2 cache miss ratio for L2VR and L2HR.

rate between L2VR and L2HR. Compared to L2VR, L2HR reduces cache miss rate by

9.7% and 10.9% for specjbb and fmm respectively. For other programs such as btree, barnes,

and blackscholes, L2HR also achieves considerable cache miss rate reduction. As expected,

these programs all have high threshold values shown in Table 5. A high threshold value pro-

hibits many data replication instances that are allowed in L2VR, resulting in less contention

in the L2 cache. Figure 29 and Figure 31 together suggest that the data replication hints

derived from off-line analysis are effective in removing fruitless data replication instances

while keeping data with potential reuse in the L2 cache.

6.3.3 Performance

Lastly, we examine the performance of the proposed L2HR scheme with comparison to

L2S, L2P, and L2VR. We use execution time as the metric to evaluate performance. For

latency-oriented multithreaded programs, execution time of the parallel section is measured.

For throughput-oriented multithreaded programs, the execution time is measured for a given

number of completed transactions. As a result, the measured execution time is inversely

proportional to a program’s throughput. Figure 32 shows the results, which are normalized

to the shared cache scheme. Overall, L2P performs considerably worse than L2S. Especially,

for btree, cheetah, raytrace, and swaptions, L2P performs 38.0%, 71.1%, 483.8%, and 52.8%
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Figure 32: Normalized execution time of L2S, L2P, L2VR, and L2HR schemes.

worse than L2S. The performance degradation of L2P is mainly caused by excessive L2

cache misses. For instance, cheetah misses almost all local L2 cache accesses with L2P

scheme. This is because serving a HTTP file request exhibits little data locality. Caching

data in local private L2 cache does not help in this case. However, caching data in shared L2

cache can provide potential reuse for the same requests from other threads. L2VR tracks

the best performance between L2S and L2P very well. When L2P shows advantage over

L2S, L2VR starts to perform better than L2S by shrinking the number of remote accesses.

For example, L2VR has similar performance as L2P for barnes and blackscholes, achieving

14.5% and 22.1% better performance than L2S.

Our proposed L2HR scheme approaches the best of all these three schemes. Most of

the time, L2HR tracks the performance of L2VR closely. In case L2VR fails to adapt to

a large working set of a program, L2HR can safely fall back to L2S. For example, L2VR

performs worse than L2S for specjbb, in which case L2HR can constrain the data replication

and approach the performance of L2S.

To examine how replication level affects a program’s performance, we introduce prob-

abilistic data replication. Instead of indiscriminately replicating all L1 cache victims as in

L2VR, probabilistic data replication only keeps L1 cache evictions in local L2 cache with

a pre-defined probability. We use L2VRxx to indicate that data replication is allowed in
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Figure 33: Normalized execution time of variants of L2VR and L2HR.

this scheme with a probability of xx%. Thus L2VR0 is equivalent to L2S while L2VR100

represents L2VR. We examine probabilities ranging from 0 to 100 with an interval of 20.

Figure 33 compares their performance with L2HR. We can make several interesting

observations from the figure. Firstly, some programs such as specjbb, barnes, radiosity,

raytrace, and blackscholes are sensitive to replication probabilities. Others do not respond

to replication that much. Secondly, btree, barnes, radiosity, raytrace, and blackscholes all

show big performance difference between L2VR20 and L2VR0. This indicates that these

programs have some frequently accessed data, which benefit much from replication. Lastly,

we can observe that L2HR approaches the best probabilistic data replication scheme for

most of the programs. The results clearly demonstrate that L2HR through off-line trace

analysis can uncover critical data replication information and use them as hints at run time

to improve data replication efficiency.

6.4 SUMMARY

In this chapter, the cache access behavior of throughput-oriented programs is studied. Using

specjbb as a case study, we show that server programs exhibit divergent access behaviors
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for privately owned data and highly shared data in the L2 cache. Motivated by this obser-

vation, then we propose a hint-guided data replication scheme. The new scheme relies on

the off-line trace analysis to generate replication hints on a per-memory-instruction basis.

The evaluation results show that most of the selected latency-oriented programs perform

well without data replication control for the given architecture configuration. The victim

replication scheme works well. For the throughput-oriented programs, the proposed con-

trolled data replication scheme improves performance moderately compared to the victim

replication scheme.

Due to the dynamic nature of throughput-oriented programs, using profile-derived in-

formation to guide online decision seems a big challenge. There is no previous work that

studies the profile-driven approach to manage shared L2 cache for improved performance

for throughput-oriented programs. This work contributes to the literature by attempting to

explore a promising method in this direction.
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7.0 CONCLUSIONS AND FUTURE WORK

7.1 SUMMARY

This thesis proposes and studies a software-oriented shared cache management approach for

CMPs. The new approach proposes to augment two extra fields to TLB and page table entries

so that the address of a last-level cache access can be translated in a controlled way. The

cache access address is formed by replacing designated bits from the original physical address

by the values from the augmented fields. The main memory access still uses the original

physical address. Thus it is decoupled from the last-level cache access. The augmented

fields introduce moderate increase in the page table storage, but this minor modification to

the hardware wins many opportunities. Instead of distributing data blindly like the classic

shared cache scheme, the proposed approach allows software components to manipulate

data placement in the last-level cache by supplying proper values for the augmented fields in

page table entries. Compared to hardware-based cache schemes that manage data at cache

block granularity, the proposed approach raises the data placement granularity to page size.

By sacrificing control granularity to control flexibility, the proposed approach brings many

optimization opportunities for shared last-level caches of CMPs. For instance, cautious data

placement can have a profound impact on a program’s performance, quality of service, power

consumption, reliability, fault tolerance, and so on. This thesis studies how to utilize this

flexible data placement mechanism to improve program performance by extracting critical

hint information through off-line trace analysis.

Since the software-oriented shared cache management approach offloads majority of the

management task to the off-line trace analysis, the decision making process is no longer

restricted by the response time and hardware resources. Sophisticated trace analysis al-
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gorithms can be performed to extract the best available information. Especially, it allows

different strategies to be applied based on the characteristics of various programs. This study

is broadly split into three parts, each of which mainly targets one of three most important

types of modern workloads.

For single-threaded programs, the proposed static 2D page coloring scheme derives an

optimal page placement schema through off-line analysis of the trade-off between remote

cache access latency and the cache miss rate for a collected L2 cache access trace. The

generated hints are then used to guide the program execution with the same input set.

The results of this oracle scheme indicate that it effectively removes unnecessary remote

cache accesses and mitigates cache contention, leading to superior performance for single-

threaded programs running on CMPs. Due to the ideal setting, it provides an upper bound

for optimization of this kind. A more practical solution, named dynamic 2D page coloring

scheme, is proposed. Following the same philosophy, it utilizes online information to make

best data placement decisions. However, the initial page placement decisions can be sub-

optimal due to the lack of accurate information regarding the future data usage. To recover

the impact caused by improper initial page placement decisions, a page migration scheme

is also studied. It is used in conjunction with the dynamic 2D page coloring scheme when

enabled. The evaluation results show that the dynamic 2D page coloring scheme approaches

the performance of the static scheme very well. The additional speedup achieved by the

page migration scheme is moderate, but it rescues the performance in case the initial page

coloring scheme fails to make proper decisions.

The second type of workloads is latency-oriented multithreaded programs. The funda-

mental difference between this type of workloads and single-threaded programs is represented

by the data sharing behavior among parallel threads in latency-oriented multithreaded pro-

grams. A block of shared data can be possessed by multiple threads simultaneously. Moving

a block of shared data closer to one of its sharers can make it apart from other sharers, effec-

tively leading to worse performance for the majority of sharers. On the other side, placing a

block of shared data in the middle of all sharers may improve overall fairness. However, every

sharer can end up being worse off than the optimal access latency. As a result, determining

the optimal location for a block of shared data is not a trivial task. This thesis introduces a
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pattern recognition algorithm based on the K-means clustering method to identify commonly

seen cache access patterns. Generated hints are used to guide data placement for private

data and data replication for highly shared data. Through data replication, the described

dilemma for shared data placement is largely avoided. The increased cache pressure incurred

by data replication is mitigated nicely through two ways: First, data affinity hints direct

private data placement to their owners’ local cache slices. The amount of data replication

for private data can be reduced significantly, if they are correctly placed. Second, data repli-

cation is mostly limited to shared data, which tends to have small footprint. So replication

only increases the cache capacity demand moderately. The evaluation results show that the

pattern recognition algorithm is effective in identifying data distribution patterns. The de-

rived hints guide data placement and replication properly, improving program performance

substantially.

The last type of workloads is throughput-oriented multithreaded programs. Due to their

unique characteristics, the hint-guided data placement proven to be effective for latency-

oriented programs does not work well. Indeed, throughput-oriented programs are very dif-

ficult to optimize by using off-line analysis hints, because they tend to have many non-

deterministic activities. It is not possible to capture these dynamic characteristics through

static off-line analysis. The dynamics of thread creation and termination also makes static

data placement futile. The solution proposed in this thesis tries to recognize data that can

receive potential reuses in the future. Through controlled replication of those data, data

affinity is improved while cache contention is confined. One important observation that lays

the foundation for the proposed controlled replication scheme is: the data reuse property

of a memory instruction is determined by the algorithm design of a program. If a block of

data accessed by a memory instruction shows good temporal locality, then other data blocks

accessed by the same memory instruction can exhibit the same reuse behavior. Memory

instructions that access data with high reuse rate can be identified through off-line analysis

of a profile trace. As a result, the dynamic information regarding data reuse at run-time

can be conveyed using static hints. Moreover, this scheme is also applicable to other mul-

tithreaded programs. The experimental results show that the evaluated server programs

achieve meaningful performance improvement over the victim replication scheme. However,
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the improvement for other latency-oriented multithreaded programs was limited with our

current implementation of the idea.

7.2 CONCLUSIONS

This work proposes a software-oriented shared cache management approach as an alterna-

tive to existing hardware-based cache management schemes. Thanks to the flexibility of the

software-oriented data placement mechanism, various off-line analysis schemes can be inte-

grated in a single framework to target different types of workloads. In this work, three cache

management schemes are proposed and studied. The following conclusions can be drawn

from the qualitative analysis and the experimental results:

• Cautious data placement is very important to the performance of single-threaded pro-

grams that run on non-uniform latency shared caches. Through careful data placement,

a significant portion of cache contention in the traditional shared cache scheme can be

removed. This results in a huge saving of the bus bandwidth to off-chip main memory.

Furthermore, location-aware data aggregation is very effective in cutting down the av-

erage remote cache access latency. These two optimizations together achieve significant

performance boost for single-threaded programs. This shows that off-line analysis has

advantages over online approaches, despite it lacks dynamic information.

• Page-level data migration is also studied for single-threaded programs. This dynamic

scheme helps correct improper data placement decisions when more page usage infor-

mation is available. But the performance improvement is limited because of its large

migration overhead. We find that migration decisions must be made carefully due to the

same reason.

• Analysis shows that latency-oriented multithreaded programs exhibit many recognizable

cache access patterns, which are intrinsic properties of program designs. These patterns

can be utilized to guide online data placement and data replication. The proposed

pattern recognition algorithm is effective in identifying these patterns. The derived hints

successfully improve programs’ data affinity, achieving good performance improvement.
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The hint-guided data placement scheme achieves comparable or even better performance

than other hardware-based cache management schemes including the victim replication

scheme and the dynamic spill and receive scheme.

• Throughput-oriented programs are very difficult to optimize by using hints generated

off-line from cache access traces. Their dynamics and non-deterministic activities are

hard to characterize through trace analysis. But reuse pattern of data fetched by the

same instruction tend to be similar. As a result, we characterize reuse behavior of

memory instructions and use these information as hints to guide online data replication.

The proposed hint-guided data replication scheme shows promising results for server

programs. Overall, it achieves comparable performance improvement as other hardware-

based schemes.

• This thesis work shows that the proposed software-oriented shared cache management

approach is promising. It enables off-line analysis to guide online data placement and

data replication. In general, its achieved performance improvement is competitive with

and sometimes better than other hardware-based cache schemes. However, the hard-

ware complexity of the proposed software-oriented approach is significantly lower. This

provides much benefit in terms of power consumption, reliability, and design efficiency.

However, the software-oriented approach has its limitations as compared to hardware-

based schemes:

• The effectiveness of off-line trace analysis is very sensitive to the OS scheduling. While

the hints can accurately summarize the data access patterns for a particular program,

they may not apply to the actual condition where multiple programs are co-scheduled.

• The proposed static 2D page coloring scheme may not be practical in many situations.

The generated data placement hints have to be used for the execution with the same

data input. The dynamic 2D page coloring is a more realistic scheme.

• While the proposed hint analysis algorithm for latency-oriented multithreaded programs

is largely independent on input size and many architectural parameters, it requires fixing

the number threads for some types of patterns. For instance, with a different number of

threads at run time, the hints for static data can be inaccurate.
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7.3 CONTRIBUTIONS

This thesis makes the following contributions to the state of the art:

• This thesis proposes the software-oriented shared cache management approach for CMPs.

The new approach deviates from traditional hardware-based cache management ap-

proaches substantially. It opens up a new direction for NUCA cache optimization and

provides an alternative solution for system designs.

• Based on the proposed approach, three different management schemes are proposed and

studied. The flexibility of the software-oriented shared cache management approach

enables many possible design choices. The three proposed management schemes shed

light on how this flexible framework can be utilized.

• For single-threaded programs, remote access latency and cache miss rate are regarded as

the two most important factors when optimizing program performance. New algorithms

are proposed to optimize them simultaneously while most previous studies only consider

one of them at a time.

• For latency-oriented multithreaded programs, a novel cache access pattern recognition al-

gorithm is proposed. Instead of capturing detailed data mapping information as proposed

in previous works, our algorithm is able to characterize patterns that are independent

on program parameters and cache configurations.

• For throughput-oriented multithreaded programs, a hint-guided data replication scheme

is proposed and studied. This is the first study on the off-line analysis of data replication

characteristics for throughput-oriented multithreaded programs. Our study shows that

this type of workloads is very difficult to optimize using off-line analysis hints. The

proposed controlled data replication scheme shows its potential by achieving comparable

performance to the existing hardware schemes.
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7.4 FUTURE WORK

This thesis opens up a new direction for NUCA cache research. The study demonstrates

that this is a very promising approach. It has large potential to be explored. Thus there are

still many interesting research topics that can be considered as the possible future work:

• The pattern recognition algorithm presented in this thesis is still in its rudimental stage.

Only several simple access patterns are studied. To discover more complex data access

patterns, more sophisticated algorithms are required. It could bring tremendous returns

when more patterns are covered by the proposed cache management scheme.

• The proposed trace analysis scheme for throughput-oriented programs shows the poten-

tial of the software-oriented shared cache management approach for this type of work-

loads. However, the proposed scheme is not significantly better than existing hardware-

based cache optimization schemes. Furthermore, using profile-driven optimization method

for throughput-oriented programs is barely studied before. Thus it is worth investigating

more advanced trace analysis schemes that are able to characterize dynamic activities.

• Given the flexibility of the proposed data placement framework, it will be interesting

to study how to optimize other aspects of the system using the same approach. The

possible topics include optimizing cache sharing fairness, improving power efficiency of

NUCA caches, optimizing bandwidth requirement of on-chip networks, and minimizing

the impact of hardware and software faults in caches.
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