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This starting point for this project was the question of how to understand the epistemic status 

of mathematized imaging technologies such as positron emission tomography (PET) and 

confocal microscopy.  These sorts of instruments play an increasingly important role in virtually 

all areas of biology and medicine.  Some of these technologies have been widely celebrated as 

having revolutionized various fields of studies while others have been the target of substantial 

criticism.  Thus, it is essential that we be able to assess these sorts of technologies as methods of 

producing evidence.  They differ from one another in many respects, but one feature they all 

have in common is the use of multiple layers of statistical and mathematical processing that are 

essential to data production.  This feature alone means that they do not fit neatly into any 

standard empiricist account of evidence.  Yet this failure to be accommodated by philosophical 

accounts of good evidence does not indicate a general inadequacy on their part since, by many 

measures, they very often produce very high quality evidence.  In order to understand how they 

can do so, we must look more closely at old philosophical questions concerning the role of 

experience and observation in acquiring knowledge about the external world.  Doing so leads us 

to a new, grounded version of empiricism. 

After distinguishing between a weaker and a stronger, anthropocentric version of empiricism, 

I argue that most contemporary accounts of observation are what I call benchmark strategies 

that, implicitly or explicitly, rely on the stronger version according to which human sense 

experience holds a place of unique privilege.  They attempt to extend the bounds of observation 
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– and the epistemic privilege accorded to it – by establishing some type of relevant similarity to 

the benchmark of human perception.  These accounts fail because they are unable to establish an 

epistemically motivated account of what relevant similarity consists of.  The last best chance for 

any benchmark approach, and, indeed, for anthropocentric empiricism, is to supplement a 

benchmark strategy with a grounding strategy.  Toward this end, I examine the Grounded 

Benchmark Criterion which defines relevant similarity to human perception in terms of the 

reliability-making features of human perception.  This account, too, must fail due to our inability 

to specify these features given the current state of understanding of the human visual system.  

However, this failure reveals that it is reliability alone that is epistemically relevant, not any 

other sort of similarity to human perception.  

Current accounts of reliability suffer from a number of difficulties, so I develop a novel 

account of reliability that is based on the concept of granularity.  My account of reliability in 

terms of a granularity match both provides the means to refine the weaker version of empiricism 

and allows us to establish when and why imaging technologies are reliable.  Finally, I use this 

account of granularity in examining the importance of the fact that the output of imaging 

technologies usually is images. 
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1. Introduction 

1.1. What we can learn from imaging technologies 

Over the last 50 or 60 years there has been an enormous increase in the number and variety 

of visual imaging systems in the biological and medical sciences.  The development of 

technologies such as electron microscopy (EM), X-ray computed tomography (CT), positron 

emission tomography (PET), X-ray crystallography, magnetic resonance imaging (MRI),  atomic 

force microscopy, and many others has not only given scientists the ability to study objects at 

smaller spatiotemporal scales but also, in some cases, to investigate phenomena which had 

previously been inaccessible or incompletely accessible.1  The development of these techniques, 

in general, can be interpreted as being motivated by the desire to see more or to see better – to 

increase magnification, spatial and/or temporal resolution, or to gain visual access to previously 

invisible (though not necessarily undetectable) phenomena.  While there are, of course, 

enormous differences between various types of imaging systems, two features that are common 

to all of them2 are, first, that the usual form in which the data is output is as more or less 

naturalistic images and, second, the need for computers that perform varying types and amounts 

of statistical and mathematical processing prior to the production of the image.   

                                                 
1 By incompletely accessible, I mean that there were some properties of objects or phenomena which were (or came 
to be) recognized as crucial to biological explanations of specific phenomena but that could not be fully investigated 
with other, previously existing, tools.  For instance, confocal laser scanning microscopy of living cells (CLSM) 
allows four-dimensional visualization of molecular scale processes about which information was previously 
accessible only by biochemical assay or by visualization of dead, fixed and stained cells (using EM or some other 
type of microscopy).  Inaccessible phenomena include those that were spatially inaccessible (e.g. occurring within 
the brains of living humans) or those which we had no way to measure or observe, despite their spatiotemporal 
accessibility.  
2 Or, if not every recently developed imaging technology, at least of all those technologies with which I am 
concerned. 

1 



 

The fact that the images look essentially like pictures3 of the objects they represent means 

that these technologies can seem to be providing us with a way of watching or seeing objects or 

events that are too small or are for other reasons inaccessible to human vision.  As such, they can 

seem similar to photographs or video of everyday objects – forms of image that we often take to 

be good evidence – despite the fact that their means of production is usually very different.  But 

facts about the means of production are absolutely central to whether or not an image is good 

evidence of some particular thing.  Just as distance, the quality of the lighting, the type and 

quality of the film, and other such factors can affect how well or how poorly a photograph 

represents features of the object photographed, so too do various features of the production of 

images by these highly complex instruments affect whether, when, and of what they can 

potentially generate good evidence.  One of the crucial features is the extensive mathematical 

and statistical processing that goes into the production of these images.  Statistical treatment of 

data is required not only to interpret, but to generate the primary data.  This, together with the 

fact that many of these instruments detect quantities such as radioactivity that are not directly 

detectable by any human sense, means that these instruments do not fit well with any empiricist 

account of evidence according to which distinctions between the observable and the 

unobservable and between theory and observation are essential to establishing the epistemic 

privilege associated with observation.   

These imaging technologies and continuing improvements in them have been and continue to 

be central to many areas of research.  As such, it is important to examine how they function as 

methods of producing evidence.  The need for a philosophical examination of these instruments 

is particularly critical since there is considerable diversity of scientific opinion about the 

                                                 
3 Though they look like quite low resolution pictures in some cases, such as positron emission technology (PET).  
Additionally, though the images are usually in color, the colors used often do not represent the color of the object 
but rather the value of the measured variable for that area. 
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evidential status of certain of these technologies.  Some of these imaging systems are almost 

universally heralded as having revolutionized whole domains of study.  Confocal microscopy in 

conjunction with the development of tags using naturally fluorescent proteins such as green 

fluorescent protein (GFP) is generally considered to have vastly increased the ability of cell 

biologists to ask a wide range of questions about events at the cellular and sub-cellular level.  On 

the other side of the scale, significant doubts have been expressed about the value of evidence 

generated by positron emission tomography (PET) to identify areas of the brain that are involved 

in certain cognitive tasks.  And, interestingly, somewhere in between these two is the use of PET 

for detection of different sorts of cancers.  For some (e.g. non-small cell lung carcinoma), PET is 

generally accepted to be useful, for others (e.g. breast cancer) the quality of the evidence is 

debatable, while for yet others (e.g. bladder cancer)4 PET cannot currently provide good 

evidence.  If the problem were simply that these sorts of instruments sometimes fail to produce 

reliable data, then there would not be much of philosophical interest to be gained by examining 

them.  However, the problem raised by these technologies is not that they sometimes fail – all 

instruments and our own senses are both fallible and useful only for certain applications – but 

that sometimes mathematized imaging technologies such as PET and confocal microscopy 

apparently do provide very good evidence despite the fact that neither fits any standard 

empiricist account of observation.  By trying to assess how and when these technologies can 

provide good evidence about certain properties or features of objects, we are also forced to look 

more deeply into old philosophical problems concerning the role of sense experience and 

                                                 
4 The most commonly used radiopharmaceutical in PET is fluorine-18 fluorodeoxyglucose (FDG).  Detection of 
cancer using FDG is possible since most tumor cells have a higher rate of glycolysis than normal cells.  Thus, their 
uptake of both unlabelled glucose and FDG is increased relative to healthy cells  and they will show up as “hot” 
areas of increased FDG concentration.  In the case of the bladder, however, even entirely normal tissue will show up 
as “hot” since, unlike glucose, FDG is not reabsorbed by the kidneys and is excreted into the urine, causing FDG 
concentration in the bladder to be high. 
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observation in getting knowledge about the natural world.  This dissertation, then, will not only 

provide an account of when we can or cannot gain knowledge about the world using these sorts 

of technologies but will also develop a refined version of empiricism that identifies why the 

principles that empiricists have gotten right are right and rejects those aspects that are wrong. 

1.2. Images as evidence 

Scientific images and imaging technologies are a topic that has not received a great deal of 

philosophical attention in the past, though that situation has started to change over the last 15 

years or so.  There has recently been increasing attention paid to how various types of images – 

including graphs, diagrams, photographs, sketches, illustrations, and computer displays – play a 

role in science.  This work, however, has focused on questions about what they represent or 

depict (Maienschein 1991), the relationship between diagrams and photographs or images and 

text (Rudwick 1976; Cambrosio, Jacobi, and Keating 1993; Krohn 1991; Lynch 1985, 1991; 

Myers 1988), what kind of role (if any) they play in arguments (Perini 2002, 2005; Kitcher and 

Varzi 2000) or in theories (Gilbert 1991; Taylor and Blum 1991; Taylor 1991; Giaquinto 1994), 

and whether visual representations are ever really necessary (Ruse 1991; Griesemer 1991; 

Wimsatt 1991).  What has only begun to be examined, however, is how they function as 

evidence and, in particular, to the epistemic role played by the means of production of an image 

(Bogen 2001, 2002).  This is an especially important issue when dealing with images that serve 

as primary data5 rather than those that act more as illustrations of a concept or hypothesis such as 

Sewall Wright’s path diagrams (Ruse 1990, Griesemer 1991).  For images such as those 

                                                 
5 Later I will argue that it is the numerical data that is more properly thought of as the primary data.  However, since 
the conversion from numerical data to image occurs by a simple, conventional translation, the distinction does not 
make a difference as far as the means of production of the data is concerned. 
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produced by PET and confocal microscopy, the question of whether they are good evidence – 

and what they are evidence of – must occur prior to these other sorts of concerns.   

Certain types of images have generally been taken to be very good evidence in that, under the 

right conditions, they reliably preserve some set of features of the objects they represent.  In 

particular, photographic evidence is usually believed to be an accurate reflection of visually 

accessible features of the world.  Of course, there may be questions about the epistemic 

credentials of photographs: whether that particular object was photographed in a way that 

misrepresents some of its features (or was manipulated after its production to achieve the same 

end), or how well the object photographed really represents a broader sample or class of objects.  

These sorts of worries, though, are usually relatively easy to resolve, especially when the 

photographs in question are of medium-sized objects easily visible to the naked eye.  

Photographs of objects too small or too far away to be seen using our unaided vision are usually 

granted the same status as those of medium-sized objects, primarily in virtue of the means of 

their production being the same.  But while this is a legitimate inference insofar as the means of 

production refers only to the operation of the camera (or other recording device), in the case of 

small or far away objects we also need to include the instruments that make these objects 

available to the camera as part of the means of production of the photograph.  The microscope, 

telescope, or other tool that makes such objects able to be photographed by the same detection 

devices that work for medium-sized objects also need to be shown to be capable of producing 

structure-preserving data.  This is where the real work of establishing the reliability of various 

types of photographic evidence lies.  The same sorts of considerations apply to images such as 

those produced by PET that are not strictly photographic, but look somewhat photograph-like 

and are at least roughly naturalistic.   
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For an image to be naturalistic or photograph-like is for it to preserve at least the spatial 

properties of the object(s) represented.6  These features are preserved if there is a sufficiently 

accurate and precise 2-dimensional or 3-dimensional mapping between the spatial properties of 

the object and the spatial properties of the representation. As will be discussed in Chapter 4, what 

counts as sufficiently precise and accurate will purpose relative, so there is no sharp distinction 

to be made between what counts as photograph-like and what does not.  A PET image is much 

more coarse-grained than many photographs of similar-sized objects – the spatial distribution of 

radioactivity in the data is represented much less precisely than the actual distribution in the 

object –but the relevant spatial features of the object are still spatially represented in the PET 

image, so it is included as photograph-like.  On the other hand, a graph that shows the radiation 

intensity on the y-axis and an axis through the object (say, moving from top to bottom) on the x-

axis will clearly not be photograph-like. 

 I take spatial features to refer primarily to size, shape, and relative position of objects.  Other 

visually accessible features of objects may also be preserved in some cases, though they need not 

be.  In particular, color (wavelength), and, in the case of the video, temporal relationships and 

motion may be represented and, so, potentially preserved, but these will not apply in all cases.7  I 

will refer to this set of properties (spatial, temporal, color) of an object that are at least 

potentially represented in a photograph or other naturalistic image as structural properties.  I 

intend this not in contrast with functional or secondary properties, but only as a way to 

distinguish the set of features of objects that are potentially visually accessible from those that 

are not, such as mass.  Because objects that are not actually visually accessible to us – positrons, 

for instance – possess a subset of these properties, I do not want to refer to the set simply as 

                                                 
6 From the point of view of the photographer or detection system. 
7 For instance, a black and white photograph does not represent color, though it may represent differences in tone or 
hue. 
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visually accessible properties since that would seem to indicate that we can straightforwardly see 

things such as the location of positrons.  It is important to identify these properties since for 

imaging technologies to produce good or reliable evidence will turn out to be, in part, for them to 

generate data that is structure-preserving with respect to those properties that are represented by 

that particular instrument.  A discussion of reliability must wait for later, but for now what 

matters is that there are some features of objects that we can get information8 about by looking at 

the objects themselves or at photograph-like images of those objects. In the discussion of sense 

experience and observation that follows, I will be concerned primarily with visual perception 

rather than other human sensory modalities.  Accordingly, it will be structural properties that are 

to be perceived or observed.   

The division between what is observable – understood as accessible to sense experience – 

and what is unobservable serves as the dividing line between what the empiricist considers to be 

acceptable evidence and what is not.  The motivation for drawing this distinction is to ensure 

epistemic security – to be sure that the data correctly represents the world (in whatever respects 

is important for the use to which we want to put the data).  When we are concerned with visual 

observation, what we want, then, is that we get things right about visually accessible features of 

the world.   Beginning with the idea that we need to interact epistemically with the world in 

order to get information about it and that the more direct and unmediated our evidence is, the less 

likely it is to be corrupted, empiricists have traditionally emphasized the importance of direct 

observation (unmediated sense experience) of the world.  If instruments of various types (e.g. 

microscopes, telescopes) are allowed to count as unproblematic extensions of our senses and to 

produce good evidence, it is because they too generate structure-preserving data.  The problem, 

                                                 
8 Information here is used in a non-technical sense.  Getting information about the structural properties of objects or 
groups of objects may be an end in itself, or it may serve another goal such as knowledge of the causal relationships 
that those objects stand in with respect to each other 
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then, is how to determine which instruments can do this.  In some cases, it may be possible to 

compare the object viewed via the instrument to the object viewed via unaided vision, but in 

most cases of scientific instruments this is not the case.  Thus, it is instead necessary to examine 

the means of production of the data in hopes of establishing that the process ensures preservation 

of structure.   

1.3. Benchmark and grounding strategies 

There are two ways to go about this analysis of the sorts of data-generation processes that can 

count as observation.  The first is what I call a benchmark strategy.  A benchmark strategy starts 

with the epistemic privilege that the empiricist accords to unaided human perception and 

attempts to extend the boundaries of observation by comparing the processes involved in the 

production of data by the instrument in question to those involved in unaided human perception.  

Instruments that use processes which are relevantly similar to the benchmark – human perception 

– are argued to share its epistemic status.  The difficulty for this kind of strategy is in 

establishing what relevant similarity consists in.  As we shall see later, different ideas for what 

counts as relevant similarity have been proposed.  In order to make a principled choice between 

different versions of the benchmark strategy, it is necessary to switch to the second strategy:  a 

grounding strategy.  A grounding strategy attempts to identify the characteristics of human 

perception that make it a good source of evidence about certain kinds of things, to understand 

why it works (when it does), and to extend observation to include instruments that share those 

characteristics.  By using a grounding strategy, it is possible to discover that the only relevant 

similarity to human perception that an instrument must share in order to produce good evidence 

is the fact that it produces reliable, structure-preserving data.9  The question then becomes 

                                                 
9 This is somewhat of a simplification; an account of reliability will be provided in Chapter 4. 
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whether extending the concept of observation to include all instruments that generate reliable 

data allows us to hold onto some form of empiricism. 

Given that mathematized imaging technologies do not fit any current empiricist account and 

that there is ample reason to believe that there are cases where these technologies produce very 

good, reliable data, we can certainly redefine observation in a way that can include these 

instruments.  But is this equivalent to abandoning empiricism?  The answer depends on whether 

the way in which observation needs to be redefined retains core elements of empiricism or 

whether the required redefinition forces us to abandon central tenets that are constitutive of 

empiricism.  To decide this, it is obviously necessary to briefly extract what the core principles 

of empiricism are.   

 

1.4. Empiricism 

It is difficult to identify empiricism as a single doctrine since the term has been used to refer 

to a number of considerably different approaches over the past several centuries.  What all of 

them have in common, however, is an emphasis on the fundamental role of sense experience in 

acquiring beliefs and knowledge.  A recent attempt to provide a definition of empiricism is as 

follows: 

“Empiricists believe that knowledge can only be obtained through 
the use of the senses to find out about the world and not by the use 
of pure thought or reason; in other words, the way to arrive at 
justified beliefs about the world is to obtain evidence by making 
observations and gathering data.” (Ladyman 2002, 21) 

While this is a good general account of the empiricist position, for our purpose here it will be 

necessary to look a bit more closely at the various forms empiricism has taken and, in particular, 

at what is motivating the insistence on sense experience.  What is it that sense experience is 
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supposed to get us that reason or intuition cannot?  And why or how does sense experience gain 

this advantage?  Essentially this is to apply a grounding strategy to empiricism itself.  Answering 

these questions by looking briefly at the history of empiricism will allow us to distinguish 

between two importantly different interpretations of the above description that are reflected in 

current debates both about observation and the epistemic position of mathematized imaging 

technologies.  The first interpretation takes sense experience of some sort to be necessary since 

this is how we make epistemic contact with the external world.10  We gather information by 

looking at things, by listening, by touching, and so on. These are forms of causal interaction with 

the world without which we could not discover its properties. This interpretation could be 

accepted by any empiricist since all it does is distinguish reason from sense experience and 

acknowledge that our senses happen to be the way humans have of epistemically interacting with 

the external world.11  This interpretation essentially identifies a causal difference between sense 

experience and reason or intuition and finds that an epistemic difference attaches to that causal 

difference.  It does not claim that the processes involved in human sensory capacities are 

somehow uniquely privileged ways of getting information about the world, but simply that they 

are to be preferred to the use of thought or reason alone and that they happen to be the proximal 

ways available to us to take in information from the world.  The distal processes that contribute 

to our interaction with the world (e.g. the instruments that produce the image that we then look 

at) must be structure-preserving, but this doesn’t require any similarity to unaided sense 

experience.   
                                                 
10 This interpretation of can be found in current discussions of empiricism.  For instance, John Norton introduces a 
discussion of why thought experiments are not problematic for empiricism as follows:  “The essential element in 
experimentation is the natural world.  We learn about the natural world by watching what it does in some contrived 
circumstance.  Just imagining what the world might do if we were to manipulate it in this way or that would seem 
futile, since it omits this essential element.” (2004, 44). 
11 I am concerned here with knowledge of the natural world.  One could be an empiricist, rationalist, realist, etc. 
about different subjects such as morality or mathematics without committing oneself to holding the same position 
for physical or biological sciences.   
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This contrasts with the second interpretation which, as we shall see later, is reflected in many 

current accounts of observation such as those of van Fraassen (1980), Shapere (19820, and 

Hacking (1983).12  This interpretation also identifies a difference in causal processes and a 

corresponding epistemic difference between sense experience and reason, but additionally 

identifies the processes involved in human sense experience as having a special epistemic 

privilege when compared not only to the use of reason alone, but to other processes that we 

might use to extend our perceptual capacities beyond the unaided use of our native sensory 

faculties.  While the first interpretation drew a distinction between sense experience and reason 

without specifying the processes of interaction or involvement with the world that precede our 

direct sense experience of some object or event (i.e. it does not automatically distinguish 

between seeing the readout of some machine that measures the size of very small objects and 

visually comparing the size of medium-sized objects with your naked eye), the second 

interpretation  implicitly makes a three-fold distinction between reason, processes of (or similar 

to) human sensory perception, and processes of interacting with the world that may end in sense 

experience but, because of their earlier unlikeness to human perception, do not share the 

epistemic privilege accorded to sense experience.  In the chapters that follow, I will argue that 

the second, anthropocentric interpretation, though it is more prevalent, is unjustified and that 

empiricism can be upheld only if we use the first, weaker interpretation.  The argument, in brief, 

is that there is no principled way to restrict epistemic privilege to those modes of interacting with 

the world that bear a certain kind of physical or causal similarity to human sensory modalities.  

By looking at what motivates empiricism, we can identify what sense experience is supposed to 

achieve:  information about accessible features (those accessible via a particular sense modality 

                                                 
12 This view is made explicit by van Fraassen and is implicit is some of the arguments made by Hacking and 
Shapere. 
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or instrument) of the world that is transmitted reliably via the processes involved in that 

modality.  It is true that, when used under the proper conditions, sense experience usually 

achieves this, but it is not the case that this sort of reliability has as a necessary condition that the 

process of acquiring this information bear any particular sort of physical or causal similarity to 

unaided human senses.   

In our examination of imaging technologies, we will see that without a more careful analysis 

of what is right about empiricism and why, we are unable to assess these instruments.  Thus, an 

investigation of these instruments not only leads to a better understanding of the technologies but 

also forces us to develop a more refined version of empiricism.  We will see that the second, 

anthropocentric version of empiricism cannot be maintained, but that the more refined, grounded 

empiricism can be.   

If we look at the history of empiricism, we can identify two main versions: that of the British 

empiricists of the 17th and 18th centuries and that of 20th century empiricists including both 

logical positivists and contemporary empiricists such as van Fraassen.13  Each shares the 

insistence on the role of sense experience noted in the earlier definition, but places different 

emphasis on two goals that are to be achieved by sense experience:  1) making contact with the 

external world, and 2) keeping out sources of error.  For the British empiricists, the rejection of 

innate ideas was a key aspect of empiricism.  As such, it contrasted primarily with rationalism 

and placed heavier emphasis on the first goal. Twentieth century empiricists, in contrast focuses 

more on the distinction between the observable and the unobservable, is contrasted more with 

realism than with rationalism, and emphasizes the second goal. 

                                                 
13 This is not intended as a comprehensive account of the history of empiricism but only as a way to identify the 
central themes that have characterized empiricism and, in particular, to locate claims that indicate the first or second 
interpretation of empiricism as described above.  There are obviously many differences between individuals whom I 
have grouped together – van Fraassen, for instance rejects the verification principle of the logical positivists – but 
the members of each of the two groups are united in which of two goals of empiricism is emphasized.  
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British Empiricists 
Since I want here only to provide a general outline of empiricism as conceived of in different 

periods, I will illustrate the common themes of British empiricism by reference primarily to 

Locke with a lesser amount of attention to Hume.  There are, of course, differences between 

Locke and Hume, but it will be more important here to focus on the commonalities in order to 

understand the motivation behind the position.  The consensus position of the British empiricists 

was that if we have knowledge of a particular subject – and we may simply not have knowledge 

in some domains – then our knowledge is dependent on sense experience.   Sense experience is 

our only source of primary or simple ideas – the innate concepts that rationalists took us to have 

were soundly rejected by both Locke and Hume.  Though reason certainly plays a role in 

knowledge – in comparing ideas or combining simple ideas into complex ones, for instance – it 

is not by itself capable of giving us knowledge.  It follows, then, that reason cannot give us 

knowledge with a higher degree of warrant, as rationalists claimed.   

For Locke, ideas are of two kinds: simple and complex.  We can get simple ideas only from 

experience.  Prior to any experience, the mind is “white paper, void of all Characters, without 

any Ideas” (Essay II.i.2, p. 104).  But then “our Senses, conversant about particular sensible 

Objects, do convey into the Mind, several distinct Perceptions of things … And thus we come by 

those Ideas, we have of Yellow, White, Heat, Cold, Hard, Bitter, Sweet” (Essay II.i.3, p. 104).  

All the content of our minds must ultimately be derived from experience: “All those sublime 

Thoughts, which towre above the Clouds, and reach as high as Heaven it self, take their Rise and 

Footing here” (Essay II.i.24, p. 118).   This is not to say that we can have no idea of anything of 

which we have had no experience, however. Once we have gained from experience a number of 

simple ideas, our minds can derive from them complex ideas by the mental operations of 

“Enlarging, Compounding, and Abstracting” (Essay II.ii.22:117).  Experience is of two kinds:  
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sensation and reflection.  Sensation is what is crucial for getting knowledge of the external 

world; reflection is essentially an inner sense that makes us aware of the operations of our own 

mind.  According to Locke, we can get some ideas only from reflection, but others come only 

from sensation.   

But this is not to say that reason has no role in the production of knowledge.  Knowledge, 

Locke says, is “the perception of the connexion and agreement or disagreement and repugnancy 

of any of our Ideas” (Essay IV.i.2, p. 525).  It comes in three degrees: intuitive, demonstrative, 

and sensitive. When these perceptions of connections are very immediate and direct they can 

seem to be derived from reason or intuition alone; this is intuitive knowledge.  When “the Mind 

perceives the Agreement or Disagreement of two Ideas immediately by themselves, without the 

intervention of any other” we can directly perceive “that Three are more than Two, and equal to 

One and Two” (Essay IV.ii.1, p. 530-31).  Though such knowledge seems intuitive, it is 

nevertheless based on ideas that were first obtained by experience.  In other cases, the connection 

between the two ideas is indirect and is mediated by other ideas (demonstrative knowledge) or is 

instead based on knowledge of the present existence of something in the world that corresponds 

to our current ideas (sensitive knowledge). 

To these three degrees of knowledge are four types of proposition based on the type of 

connection between ideas.  The sort that most concerns us here is general propositions about the 

properties of substances such as gold or silver.  Locke takes it to be implausible that our 

knowledge of physical properties of gold (e.g. that it does not dissolve in nitric acid) and silver 

(that it does dissolve in nitric acid) is based on our perception of connections between our ideas.  

In such cases, it seems that reasoning about ideas doesn’t play a role and that we are “left only to 

Observation and Experiment” (Essay IV.iii.28, p. 558).  Accordingly, since knowledge requires 
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perception of connections between ideas, Locke declares that these are not cases of knowledge 

but of “belief” or “opinion” (Essay IV.xv.3:655).  In these cases, we must use judgment about 

probabilities to determine what to believe.  The central problem identified by Locke for our 

knowledge of the external world, or natural philosophy, is that there is a distinction between real 

and nominal essences of things.  Our ideas of substances (such as gold and silver) are not of their 

real essences but only of their nominal essences while our ideas of triangles, for instance, are 

often, if not always, of their real essence.  The details need not concern us here, but basically 

Locke insists that the sensible qualities of substances are not the features that make them 

fundamentally what they are.  Only when our ideas are of real essences can we attain “certain 

and universal Knowledge” (Essay IV.iii.29:559) by the methods of intuition and demonstration.  

By this standard, “natural Philosophy is not capable of being made a Science” (Essay IV.xii.10, 

p. 645) since we cannot acquire real knowledge but are wholly dependent on beliefs formed on 

the basis of experience: 

“Substances afford Matter of very little general Knowledge; and 
the bare Contemplation of their abstract Ideas, will carry us but a 
very little way in the search of Truth and Certainty … Experience 
here must teach me, what reason cannot: and ‘tis by trying alone, 
that I can certainly know, what other Qualities co-exist with those 
of my complex Idea, v.g. whether that yellow, heavy, fusible Body, 
I call Gold, be malleable, or no; which Experience … makes me 
not certain, that it is so, in all, or in any other yellow, heavy, fusible 
Bodies, but that which I have tried … Because the other Properties 
of such Bodies, depending not on these, but on that unknown real 
Essence, on which these also depend, we cannot by them discover 
the rest.” (Essay IV.xii.9, p. 644) 

Thus, we find in Locke the idea that the only method appropriate to the investigation of the 

external world, of the properties of substances, is observation.  This he shares with both the 

logical positivists and contemporary empiricists such as van Fraassen, though for Locke the 

problem is with our understanding while for the logical positivists it is that the world is entirely 
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contingent so that observation and experiment are the only ways to investigate it. There are, of 

course, other differences – e.g. while the later logical positivists will insist that a priori 

knowledge of the sort that Locke refers to as “knowledge” has no real content, Locke firmly 

denies this, these differences can be set aside here..   

In the case of the ideas we get from sensation, our knowledge can only be based on ideas 

formed on the basis of connections between apparent qualities of external objects rather than 

between ideas for which we create an internal ideal and those for which the comparison is 

ultimately to be made with some external object that we can only understand inadequately.  This 

leads to the claim that our knowledge of the external world is inferior to our knowledge of other 

domains such as morality and mathematics.  This is not to say, however, that reason or reflection 

provide knowledge of the external world: they do not, it is just that our knowledge in other 

domains has a higher degree of certainty while our knowledge of the external world is properly 

thought of as opinion and is probabilistic rather than certain.  But without sensation, we could 

have neither certain nor probabilistic knowledge.  Locke further distinguishes two categories of 

probabilistic knowledge.  The first has to do with matters of fact – things that are available to 

observation and experience.  The second concerns knowledge of things that are not available to 

the senses – things like atoms that are smaller than the lower limits of our sensible capacities or 

the medium-scale features of other planets that are too far away to be sensed by us.14  

Hume’s version of empiricism shares much in common with Locke’s.  The raw materials for 

our mental operations are “impressions” and “ideas” which are distinguished by their degree of 

force and liveliness (Treatise, I.i.1, p. 5). Impressions are livelier and ideas more feeble – when 

we actually see a color our experience is much more vivid than if we merely think of it.  Ideas 
                                                 
14 (IV xvi 12 p. 665-6) 
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are derived from impressions and are essentially weaker copies of them:  “… all our simple ideas 

in their first appearance are deriv’d from simple impressions, which are correspondent to them, 

and which they exactly represent.” (Treatise, I.i.1, p. 4).  Thus, again, all of our concepts are 

ultimately derived from sense experience.  Moreover, our impressions are more certain than our 

ideas:  “These impressions are all strong and sensible.  They admit not of ambiguity.  They are 

not only placed in a full light themselves, but may throw light on their correspondent ideas, 

which lie in obscurity.” (Enquiry, p. 62).  Hume similarly classifies all true propositions as either 

matters of fact or relations of ideas and claims that reason (induction and deduction) cannot 

provide us with substantive knowledge of the natural world: 

“All the objects of human reason or inquiry may naturally be 
divided into two kinds, to wit, “Relations of Ideas,” and “Matters 
of Fact.”  Of the first are the sciences of Geometry, Algebra, and 
Arithmetic, and, in short, every affirmation which is either 
intuitively or demonstratively certain.  That the square of the 
hypotenuse is equal to the square of the two sides is a proposition 
which expresses a relation between these numbers.  Propositions of 
this kind are discoverable by the mere operation of thought, 
without dependence on what is existent anywhere in the universe.  
Though there never were a circle or triangle in nature, the truths 
demonstrated by Euclid would forever retain their certainty and 
evidence.  Matters of fact, which are the second objects of human 
reason, are not ascertained in the same manner, nor is evidence of 
their truth, however great, of a like nature with the foregoing.  The 
contrary of every matter of fact is still possible, because it can 
never imply a contradiction and is conceived by the mind with the 
same facility and distinctness as if ever so conformable to reality.” 
(Inquiry Concerning Human Understanding, IV, 1, p. 40) 

Like Locke, Hume admits the role of reason in producing knowledge, but insists that sense 

experience is necessarily prior to reason.  Both refer almost exclusively to features of the world 

that are detectable by the unaided senses so it is difficult to assess what Hume or Locke would 

have to say about modern imaging technologies.  There is one passage, however, in which Hume 
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refers to microscopes and telescopes making it possible for us to have impressions which were 

not possible with the naked eye:  

“Put a spot of ink upon paper, fix your eyes upon that spot, and 
retire to such a distance that at last you lose sight of it; ‘tis plain, 
that the moment before it vanish’d the image or impression was 
perfectly indivisible.  ‘Tis not for want of light that the minute 
parts of distant bodies convey any sensible impression; but because 
they are remov’d beyond that distance, at which their impressions 
were reduc’d to a minimum, and were incapable of any farther 
diminution.  A microscope or telescope, which renders them 
visible, produces not any new rays of light, but only spreads those, 
which always flow’d from them; and by that means both give parts 
to impressions, which to the naked eye appear simple and 
uncompounded, and advances to a minimum, what was previously 
imperceptible.” (Treatise 1.ii.1, p. 27-28) 

This passage could be read as indicating some support for a benchmark strategy since 

microscopes and telescopes do allow us to get impressions and in “spreading” rays of light seem 

to be described as operating in a way similar to human perception.  At a minimum, this passage 

indicates that Hume did not restrict sense experience to unaided sense experience.   

 

Twentieth century empiricists 

The logical positivists of the first half of the twentieth century shared the British empiricists 

emphasis on the role of sense experience and the crucial role played by observation in acquiring 

knowledge about the natural world.  Dismissive of metaphysics and claiming that many 

traditional philosophical problems were meaningless, the logical positivists are probably most 

closely associated with the verification principle.  A clear statement of this principle can be 

found in Hempel: 

“It is a basic principle of contemporary empiricism that a sentence 
makes a cognitively significant assertion, and thus can be said to 
be either true or false, if and only if either (1) it is analytic or 
contradictory—in which case it is said to have purely logical 
meaning or significance—or else (2) it is capable, at least 
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potentially, of test by experiential evidence—in which case it is 
said to have empirical meaning or significance.” (Hempel 1965, 
101) 

The logical empiricists held that both reason (logic) and empirical (sense) experience are 

sources of knowledge.  Unlike Locke, at least, they do not deny claims made on the basis of 

sense experience the status of knowledge.  Instead, they deny that logical or a priori truths have 

any substantive content, something that Locke would deny.  Despite this difference, the 

underlying motivation seems to be similar:  if we want to make claims (whether taken to be 

belief or knowledge) about the natural world, we need to use sense experience.    The logical 

positivists took this idea and applied it to their account of scientific theories.  The language of a 

theory contains two kinds of terms:  observation terms and theoretical terms.  Observation terms 

refer to objects or properties that can be directly observed or measured (i.e. they are verifiable) 

while theoretical terms refer to objects or properties that we cannot observe or measure but can 

only infer from direct observations.  Once again, direct observation, though not defined, seems to 

refer to the use of unaided human senses though things like reading the position of needles on 

various sorts of dials or meters are accepted (Hempel 1965, 127).  The point of allowing such 

things to count as direct observation, however, seems to be connected to the issue of public 

accessibility and interobserver agreement, rather than specifying types of instruments that count 

as allowing direct observations.  It is not made clear, in particular, whether what is directly 

observed is only the position of the needle or whether what the position of the needle represents 

(e.g. the temperature in a gas or the level of radioactivity in a test tube) is also to count as having 

been directly observed.  It seems more consistent with the use of their overall use of the term 

“directly observed” to interpret it as referring to the observation of the needle position alone, 

however, since this more easily fits with the apparent motivation for the verification principle – 
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the idea that sensory experience is more secure than inferences made on the basis of that 

experience. 

The verification principle turned out to be extremely problematic and is rejected by more 

contemporary empiricists such as van Fraassen.  As his constructive empiricism will be 

examined in Chapter 2, I will not go into any detail here.  Briefly, however, van Fraassen clearly 

adopts an anthropocentric empiricism, claiming that what counts as observable is observable by 

humans: “It is these limitations to which the ‘able’ in “observable” refers—our limitations, qua 

human beings.” (1980, 17).  And once again, stronger emphasis here seems to be placed on the 

avoidance of error through the addition of potentially error-ridden intermediaries such as 

microscopes than the need for sense experience in order to make contact with the world. 

1.5. So what is empiricism? 

The two motivating principles that have historically been associated with empiricism, though 

emphasized more or less at different times are the need for sense experience to make contact 

with the world and the desire to eliminate potential sources of error.  While the latter is often 

reflected in the specification that observation must be direct, involving unaided sensory 

experience, the passage from Hume showed that this was not an absolute requirement.  That 

passage alone is not sufficient to identify whether Hume would advocate a benchmark or a 

grounding strategy to extend observation beyond the use of our unaided senses, but there is 

nothing in either of the two principles that would require retaining any special role for sense 

experience except insofar as it is required proximally in order for us to interact with the external 

world.  As long as it can be established that instruments of any variety can be used without 

introducing error, then empiricism need not restrict observation to those instruments that bear 

some relevant similarity to human perception.  It will turn out that, in order to account for the 
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production of reliable evidence produced by mathematized imaging technologies, we must reject 

any type of anthropocentric empiricism, but we can still accept a grounded empiricism based on 

the two above principles. 

1.6. Outline of the dissertation 

In Chapter 2 I will argue that existing accounts of the scope of observation are what I have 

introduced as benchmark strategies – they attempt to extend the boundaries of observation by 

reference to primarily causal similarity to human perception (HP).  Moreover, they exclude the 

neural components of the visual system (the endpoint problem) in trying to determine what 

relevant similarity consists of and, as a result, the usually exclude even unaided visual perception 

as observation.15  Even supposing that these accounts could overcome the endpoint problem, 

they still must fail since they do not provide sufficient justification for preferring one criterion of 

relevant similarity over another.  I claim that this is because a benchmark strategy, if it is ever to 

succeed, must be supplemented with a grounding strategy that justifies the choice of a particular 

criterion of causal similarity to the benchmark, human perception (HP), in terms of the epistemic 

role played by the causal similarity.  Chapter 2 will also present a detailed case study of PET that 

casts doubt on the idea that causal similarity to HP is required to get maximally reliable data 

since the application of mathematical and statistical processing algorithms that seem to have no 

correlate in HP increases rather than decreases the reliability of the data. 

What the empiricist needs from an account of observation is to connect the reliability of HP 

(when it is reliable) with certain kinds of causal processes with respect to which other 

instruments may or may nor be similar.  Chapter 3 identifies the grounded benchmark strategy 

(GBC) as the last best hope for the empiricist to maintain that the epistemic privilege normally 

                                                 
15 van Fraassen is the exception here since his standard is perfect identity.  His account, however, fails to provide 
sufficient reason for why perfect identity is to be preferred as the epistemically relevant criterion. 
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ascribed to human perception can also apply to methods of data production that bear no causal 

similarity to HP.  The GBC asserts that we can perceive via an apparatus if and only if the 

apparatus is similar to human perception with respect to those features that make HP reliable.  

However, as this chapter will show, our understanding of the human visual system is not (yet) 

sufficient for us to specify its reliability-making features.  The argument for the reliability of HP 

cannot, at least at present, proceed in terms of the reliability of the processes involved, but must 

instead be based on our long experience with it and our ability to manipulate conditions in order 

to test that what our eyes are telling us is reliable.  Since we cannot identify the epistemically-

relevant causal features of HP, we also cannot use any sort of benchmark strategy, even the 

GBC, to extend the realm of epistemically privileged observation.  But this does not settle the 

matter in favor of the anthropocentric empiricist since what was identified in the ultimate failure 

of the GBC was the fact that it is only the epistemic criterion of reliability that matters.  As long 

as the evidence produced by some instrument is sufficiently reliable (and we have some means 

of determining the reliability of that instrument), it can share the epistemic privilege given to HP.  

The notion of reliability is a problematic one, however.  After reviewing a number of 

different accounts of reliability within epistemology and philosophy of science, Chapter 4 will 

lay out a new, pragmatic16 account of reliability that is relative to both the sort of discriminations 

that are needed for a specific purpose, and the sorts of properties or features of the world that an 

instrument (including the human visual system) can get at.  This account identifies reliability as 

both preservation of the structure of the object and a match between the granularity of the world 

at which a particular question is directed and the granularity of the instrument.  Both of these 

features are to be understood partially in terms of finite probabilities.  The second part of the 

                                                 
16 I am using “pragmatic” not in the way it is used by American pragmatists such as Dewey and James, but to refer 
to the sense of being based in practice (cf. Mitchell 1997, 2000). 
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chapter identifies strategies that are available for assessing the reliability of mathematized 

imaging technologies, once again focusing on PET.  It contends that we have more tools for 

doing this than are normally recognized and, so, that the quality of PET evidence for applications 

including some functional brain imaging purposes can be established. 

After focusing on the means of production of images that serve as evidence in Chapters 2-4, 

Chapter 5 turns to an examination of the significance of the fact that the data is presented in the 

form of images.  While it is sometimes the case that initial evidence generated by a particular 

instrument must be an image17 – for example, an X-ray produced using traditional X-ray film – 

this is not true for many modern imaging technologies.  For many mathematized imaging 

technology, the primary data can be thought of as the numerical value or intensity associated 

with each pixel or voxel.  This data can then be converted into an image by assigning a particular 

grey level or color to specific intensity ranges and displaying the data in a 2-D or 3-D array.  Yet 

images are the most common form in which this data is displayed.  Why?  In particular, is there 

any epistemic advantage to specific data display formats?  

The fact that images might be interpreted as being part of a relevant similarity to human 

perception and, in virtue of that, epistemically important, will be rejected in Chapter 3.  The 

account of reliability presented in Chapter 4 applies equally to numerical data or images, so no 

advantage can be found there.  After surveying a few of the historical, sociological, and 

rhetorical reasons why these data might be preferentially displayed as images, Chapter 5 

identifies two potential epistemic roles for images: cognitive accessibility and, especially for 

video images,  access to causal information.  Images unquestionably provide an easier way for us 

to grasp certain features of the data, especially larger scale relationships between parts of the 

data.  They normally do so at the cost of reducing the apparent granularity of the representation, 
                                                 
17 This is not to say that the image cannot later be represented in a different form, quantitative or otherwise. 
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but since the full granularity of the instrument can be maintained over limited portions of the 

data, this need not restrict the ability of the user to make the discriminations required by the 

question of interest.   

The second potential advantage, the ability to get causal information from video data, is more 

difficult to address both because the nature of causation is philosophically problematic and 

because scientific claims about the advantages of live cell imaging don’t (and don’t need to) 

distinguish between the advantages that are due specifically to differences in data display format 

(given the same data content) and those due to differences in the experimental set-ups that result 

in very significant differences in the content of the data represented in different formats.  

Without a doubt, live cell imaging allows much more data to be obtained, most notably by 

increasing the temporal granularity of the data, and its advantages are proclaimed with good 

reason.   However, it will be shown that, if we are careful to eliminate these content differences, 

our ability to extract causal information from the data is not dependent on the format in which 

the data is displayed.18  In identifying the minimal conditions required to get causal information 

from the data acquired using imaging technologies, the crucial role of background information is 

highlighted.  While it may be the case that a non-Humean account of causation that would allow 

us to see causal relationships is plausible at the macro scale, at the micro scale we can neither see 

nor recognize the sorts of causal processes that are the equivalent of Anscombe’s pushing, 

pulling, knocking over, etc.  We see only larger scale spatiotemporal interactions that must be 

supplemented with background information about the kinds of influence that certain kinds of 

entities can exert and the conditions under which they can do so.  Since the spatiotemporal 

information is also available from static images or numerical data, there is no advantage to video 

format. 
                                                 
18 Except insofar as there are differences due to cognitive accessibility. 
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2. Observation and the benchmark strategy 

2.1. Introduction 

In emphasizing the role of sense experience, empiricism can be interpreted as making one or 

both of the following claims:  1) that observation (the use of our sensory capacities in some way) 

is necessary for getting evidence and knowledge about the world, and 2) that sense experience - 

and observation when taken to include only instruments that bear some relevant similarity to 

unaided sense experience - provides us with evidence that has a uniquely high degree of 

epistemic privilege.  While the first of these is certainly true,19 for the goal of understanding 

whether and when mathematized imaging technologies can produce good evidence, this 

interpretation, as it stands, is insufficient.  It doesn’t have the conceptual resources to allow us to 

distinguish between different sorts of technologies or different applications of those technologies 

since in every case we will eventually look at the images they produce.  If this interpretation is to 

be useful for understanding contemporary science, therefore, it must be considerably elaborated.  

The account of reliability that will be developed in Chapter 4 is such an elaboration.  Before that 

occurs, though, the second interpretation will be shown to fail.   

For this stronger interpretation to hold, we must either define the scope of observation as co-

extensive with any and all methods of getting the highest quality evidence, or establish that some 

particular subset of instruments and methods for collecting data have some common feature – 

other than the epistemic quality of the data gathered using them – that ensures that they, and no 

methods that do not share this feature, generate evidence with a uniquely high degree of 

                                                 
19 This I take to be true as long as any new capacities that we might imagine humans to have or acquire that would 
allow them access to certain features of the world (some sort of ESP, for instance) would be counted as perceptual 
capacities. 
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epistemic warrant.  The first strategy makes little sense for the defender of anthropocentric 

empiricism since it immediately abandons the idea that it is some connection to or similarity with 

human sensory capacities that is the source of epistemic privilege.20  The second is the one that 

is normally used (van Fraassen 1980; Shapere 1982; Hacking 1983) and offers at least a greater 

chance of success.  The difficulty with such a strategy, however, is in trying to identify the 

common feature.  Existing accounts are what I call benchmark strategies:  they allow or disallow 

certain instruments as modes of observation according to whether or not they bear a relevant 

similarity to the epistemic benchmark of human visual perception.  The problem, then, becomes 

how to understand relevant similarity.  No imaging technology or other instrument is identical to 

the human visual system.  Instruments such as microscopes, telescopes, and positron emission 

tomography (PET) are like human perception in some respects but unlike it in others.  A light 

microscope, like the human visual system, makes use of light within the (humanly) visible range 

of the spectrum.  Unlike the human system that ‘sees’ primarily reflected light, however, the 

microscope involves the use of diffraction (Hacking 1983, 194-5).  It is not immediately obvious 

whether it is the similarity or the difference that should matter if we want to know if the light 

microscope is enough like the human visual system to count as a mode of observation.   Thus, we 

need a principled reason to prefer a particular standard for what counts as relevant similarity.   

Since the goal is to use relevant similarity to define an epistemically privileged class of 

instruments, the criterion of relevance had better be one that ensures that these instruments 

produce especially good evidence.  Notice that the empiricist who wants to defend the second 

interpretation needs this class of instruments – those that count as methods of observation in 

                                                 
20 This principle could, in theory, be recovered, but then it seems to be a backwards sort of strategy at best.  The 
empiricist could work back from the set of epistemically excellent methods and show that they all have some 
relevant similarity to human sensory capacities, but this seems unlikely to produce any principled account of what 
relevant similarity is and more than likely to produce some sort of ad hoc account.   
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virtue of some type of similarity to human perception – to possess a uniquely high degree of 

epistemic warrant.  If there are methods that lack this similarity yet share the same epistemic 

status, then the empiricist cannot hold onto the claim that the evidence gained by our senses 

(both unaided and aided by the class of relevantly similar instruments) has any unique status.  In 

the set of possibilities laid out in Table 2.1, the empiricist21 requires that all of our instruments 

fall into either box 1 (observational + privileged) or box 4 (not observational + not privileged).  

If there is no principled account of observation that leaves boxes 2  and 3 empty, then all that is 

left of empiricism is the first claim that we need to use our senses in some way to get knowledge 

(of whatever quality) about the world.  Though true, this position is so weak that it hardly seems 

to deserve to be called a philosophical doctrine.   

1.  Observational + Privileged 2.  Not Observational + Privileged 

3.  Observational + Not Privileged 4.  Not Observational + Not Privileged 

Table 2.1  Possibilities for the status of imaging technologies. 

 
Showing that box 2 is not empty will fall to Chapter 3.  This chapter will be focused on an 

evaluation of existing accounts of observation and the challenges that technologies such as PET 

create for any account that implicitly or explicitly assumes that an instrument must bear some 

sort of similarity to human perception in order to produce good evidence.  Van Fraassen (1980), 

Shapere (1982) and Hacking (1983) have all attempted, in different ways, to define the scope of 

observation. This chapter will evaluate these existing proposals and ultimately argue that none is 

adequate.  Assessing both what these proposals are trying to capture about the nature of 

observation and the ways in which they fail will make clear what the desiderata of a better 

account of observation are.  This will be facilitated by an examination of PET.  This heavily 

                                                 
21 Unless otherwise specified, for the remainder of this chapter, I will use “empiricist” to refer to the anthropocentric 
empiricist who wants to defend the second interpretation on empiricism. 
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mathematized imaging technology is used to “see” into the living body and produces images that 

are complex epistemic objects, a hybrid between a standard photographic image and the output 

of a mathematical model.  The examination of PET will help to make clear what the limitations 

of the various existing accounts of observation are and will highlight certain features that must 

be accommodated in any account of observation. 

This chapter is organized in the following way.  Section 2 examines current accounts of 

observation and identifies both what features of observation they are trying to capture and how 

each fails to do so.  Section 3 then provides an introduction to PET and the features of it that are 

particularly interesting and informative in trying to understand what counts as observation.  

Section 4 examines in more detail how the signal and signal detection system and mathematical 

aspects of PET challenge existing accounts of observation.  Finally, section 5 identifies the 

general features that an improved account of observation must have, in particular, that a 

benchmark strategy alone cannot succeed but must be supplemented by a grounding strategy. 

2.2. The Scope of Observation 

 Existing accounts of observation (van Fraassen 1980; Shapere 1982; Hacking 1983) are 

versions of the benchmark strategy, according to which a process qualifies as observation if it is 

relevantly similar to unaided human perception.22  Each in its own way is trying to capture two 

key aspects of observation:   

1) observation must preserve23 spatial and other accessible features of the observed 

object (including color or temporal structure in cases where this is relevant), and  

                                                 
22 van Fraassen makes this explicit; it is implicit in the accounts of Shapere and Hacking. 
23 What they are preserved in will vary according to the type of imaging system we are concerned with.  In the case 
of an imaging technology that outputs a photograph or photograph-like image (e.g. an electron micrograph), we are 
concerned with that image.  In the case of direct, unaided human perception, the question becomes more difficult 
since there is considerable debate over the nature of mental representation.  However, for the purposes of this 
chapter it does not matter whether or not the mental representation of an observed object is picture-like.   
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2) this preservation of features is generated specifically by the processes involved in 

observation.   

These two conditions are intended to ensure the epistemic security of observation.  A benchmark 

strategy attempts to claim that both of these aspects are satisfied for certain types of instrument 

by starting from the fact that unaided human perception, under appropriate conditions of use, is 

usually very good at preserving certain features of the external world such as spatial 

relationships.  Assuming that it is not accidental, this preservation must be the result of the causal 

processes involved in visual perception.  If a process is reliable in one instance, it is potentially, 

though not necessarily, reliable in other instances.24  Therefore, if the same or similar processes 

are used by some instrument, it is at least potentially capable of producing as good evidence as 

does human perception. 

That observation should preserve certain features of the world (here, visually accessible 

ones) seems unproblematic, though of course there is more to say about the degree of accuracy 

and precision required as well as which features must be preserved using a given imaging 

modality.  The second condition, however, requires further clarification.  In particular, which sort 

of processes are allowed needs to be specified since, as the previous chapter noted and as will be 

examined in much more detail later in this chapter, one of the primary concerns with imaging 

technologies such as PET is the extensive statistical and mathematical processing that is involved 

in the production of the data.  

In addition to this need for clarification of what observation is intended to achieve, however, 

I argue that there are three general problems that are found in these existing proposals.  First is 

the benchmark problem. The choices of a particular standard for what counts as relevant 

                                                 
24 No one would deny that processes may be less than maximally reliable under different conditions.   
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similarity to unaided human perception have not been well justified and fail to explain the 

privileged epistemic status of those technologies that possess the relevant characteristic.  Van 

Fraassen, Shapere, and Hacking all differ in their choice of standard and although each offers 

some justification for his own choice of standard, even Hacking’s - the most successful of the 

three - is not ultimately satisfactory.  In order to have a principled benchmark strategy, what is 

ultimately needed is to identify as relevantly similar specifically those processes that contribute 

to the preservation of whatever features must be preserved for a certain instrument (including our 

unaided senses).  

The second problem is the perception-reliability problem.  Although they differ in what 

counts as relevant similarity to human perception, all three accounts presuppose that similarity to 

human perceptual mechanisms and reliability coincide.25   They begin with the premise that 

similarity to human perception establishes the potential for some instrument to be reliable since 

similar processes should, under similar conditions, produce similar results.  Regardless of 

whether or not this is actually true, it is insufficient to establish that other processes which are 

entirely dissimilar to human perception lack the potential to produce equivalently good, spatial or 

other structure-preserving data 

Third, is the endpoint problem. Observation is in each case taken to be what happens in the 

interval between the object and the retina and ignores the fact that visual perception does not 

simply consist of the retina as a light detector but also involves at least some neural or cognitive 

mechanisms.  These mechanisms both need to be considered as being important to establishing 

the relevant similarity of other instruments and must not be excluded as dissimilar by some 

                                                 
25 Once again, Hacking’s account comes closest to succeeding here since he acknowledges that instruments can fail 
to be reliable and discusses methods we can use to test whether or not the data generated is reliable or not.  
However, he does not mention the reliability conditions of unaided human perception nor does he consider whether 
instruments that involve physical processes that are not similar to human perception can still be similarly reliable.   
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chosen standard of relevant similarity if that standard is to be able to classify even unaided 

perception as observation. 

While each account of observation shares the general features and, to a greater or lesser 

extent, the problems noted above, each is significantly different from the others so it will be most 

helpful to examine each in turn.  Van Fraassen’s is both the simplest and the most problematic, 

so let us turn to it first. 

2.2.1. Van Fraassen 
My focus to this point has been, and will remain, on observation, but van Fraassen is instead 

interested primarily in when we can claim that something is observable.  He claims that “X is 

observable if there are circumstances which are such that, if X is present to us under those 

circumstances, then we observe it” (1980, 16) and is unconcerned with the question of whether 

or not we actually do observe some observable object using anything other than unaided human 

perception.  As long as there are conditions under which we can directly see a particular object, it 

is observable.  This has consequences for the debate between the scientific realist and the 

constructive empiricist.  If an object is observable, then for the constructive empiricist to accept a 

scientific theory (as empirically adequate), what the theory says about this sort of object must be 

right (van Fraassen 1980, 18). This holds even in cases where the data to be explained by a 

theory is not attained by unmediated human perception.  He allows, for instance, that the moons 

of Jupiter are observable since we could, with our unaided vision, see them if we were able to 

catch a ride on a spaceship out to Jupiter.  An object that can only be detected with the aid of a 

microscope, in contrast, van Fraassen does not count as observable since there are no 

circumstances under which such objects can be observed using our unaided vision.    

It may seem as though van Fraassen’s question of what is observable is quite distinct from 

my question of what the scope of observation is, but in defining “observable” van Fraassen is 
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also making a claim about what counts as observation.  For him, there is a clear connection 

between what is observable and what is knowable.  Claims about observables carry more 

epistemic weight: we can have better, more secure knowledge about them.  There is an obvious 

question about how we get this particularly secure sort of knowledge in cases such as that of the 

moons of Jupiter where no human has ever directly observed anything about the object so that 

observability is purely observability in principle, but setting this worry aside for the moment, let 

us look at how van Fraassen can be understood to be applying a type of benchmark strategy. 

Van Fraassen’s criterion of observability not only relies on a benchmark strategy, but on a 

very strict one that takes relevant similarity to human perception to consist only of identity with 

unaided human perception.  The use of such a strict standard of similarity inherent in the unaided 

human perception criterion seems unmotivated and certainly conflicts with common usage of the 

term “observable” according to which such things as cells and other objects detected with a 

standard light microscope at even low power are said to be observable.  Why, then, does van 

Fraassen choose this standard?    Although he does not make it explicit, it seems that the 

reasoning must be that perceptual knowledge is uniquely well grounded and unproblematic.  

There is, then, a strong presumed connection between unaided human perception and reliability.  

The fact that the observability of an object is tied to its potential observation by unmediated 

human perception and can never be established by, for instance, validation or confirmation of 

detected features of objects by several mediated forms of observation (for instance, by using a 

standard light microscope, a fluorescence microscope, or an electron microscope) assumes that 

direct human perception has a particularly high degree of reliability.  And, further, that it is a 

degree of reliability that either cannot be matched or that we cannot know is matched by any 

form of mediated vision.  This is an especially clear form of the perception-reliability problem.  
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The existence of such a strong connection between unmediated human perception and reliability 

needs an argument but none is provided.  Furthermore, if claims about observables-in-principle 

such as the moons of Jupiter are to have the same status as claims about observables-in-practice, 

it must be possible for at least some mediated forms of perception to provide the same degree of 

reliability as direct human perception.  Looking through a telescope at celestial bodies is, for van 

Fraasen, to get information about observables.  The evidence obtained in this way is no worse 

that the evidence we would get about these same objects if we were to see them up close, with 

our unaided vision.  There is not supposed to be an epistemic difference between the two cases, 

but there is clearly a difference in the processes involved.  Looking through a telescope is not 

perfectly identical to looking at something with the naked eye.  Thus, the exact identity standard 

for relevant similarity cannot be adequate even for what van Fraassen wants it to do. 

But is there a more adequate standard for similarity that could be recovered from his 

examples of things that are observable and unobservable?  The place to look would seem to be 

the alterations of the way the world actually is that are allowed or disallowed in classifying 

objects as observable.  It may be that the standard of direct human perception requires not perfect 

identity but rather possession of some set of properties of the actual human visual system.  Could 

we, for instance, shrink ourselves down and have eyes that could detect energy with extremely 

short wavelengths and so observe much smaller objects than we actually can?  There is no 

indication that van Fraassen thinks that this is the case.  We can relocate ourselves in the 

universe in ways that are not currently possible but we are not allowed to imagine modifications 

of our actual visual system.  Van Fraassen’s strict standard really does appear to be a standard of 

identity, and so does not escape the objections noted above. 
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The failure of the van Fraassen’s unaided human perception criterion, however, does not 

establish the insufficiency of the benchmark strategy overall.  The promise of accounts that allow 

extensions of human perception seems greater, especially in light of the fact that critics of 

empiricism have long argued that the requirement that the observable be restricted to the 

observable by the unaided human visual system is misguided (Maxwell 1962; Hacking 1983). 

Both Hacking (1983) and Shapere (1982) have suggested alternative accounts of observation that 

are far more lenient than van Fraassen’s.   

2.2.2. Shapere 
Shapere describes his position as a descendant of the empiricist tradition and aims to 

resuscitate its central claim that all our knowledge rests on observation from the criticisms noted 

earlier.  In doing so, he acknowledges that unaided human perception plays a role in increasingly 

few cases of what many – scientist and philosopher alike – take to be observation.  What matters 

for Shapere is not whether some object or phenomenon is observed by an unaided human 

observer, as van Fraassen demands, but only that it is directly observed.  “Direct”, for Shapere, 

does not require the absence of an intervening instrument between the object being observed and 

the human who will ultimately look at or use the data.  An entity, X, is directly observed if: 1) 

information is or can be received by an appropriate receptor, and 2) the information is or can be 

transmitted without interference (this is the meaning of direct) to the receptor from x (Shapere 

1982, 492).  These requirements seem to be trying to specify the two features of observation 

identified earlier: that spatial features and relationships26 of the observed object must be 

preserved, and that this preservation must be generated specifically by the causal processes 

involved in observation.  Most of the work is done by the second requirement though the first is 

clearly necessary to ensure that anything even remotely resembling observation is possible.  

                                                 
26 And others such as color and motion when relevant. 
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Non-interference is intended to ensure both that spatial features are preserved and that this 

preservation is non-accidental and directly causally related to the object’s having these spatial 

features.  These features of non-interference, then, are what are supposed to justify Shapere’s 

particular choice of benchmark.   

The non-interference criterion serves in large part to ensure that observation is non-

inferential.  By “non-inferential”, Shapere specifically does not intend to refer to the logical 

meaning most people would understand the term to have. Instead, he uses it to refer to reasoning 

where we have no specific reason to doubt the leaps we are making and conclusions we arrive at 

(1982, 517). How is non-interference is supposed to guarantee that direct observation is non-

inferential in this sense?  A crucial part of Shapere’s account is his extremely broad 

understanding of information.  He includes not just interactions due to light and other forms of 

electromagnetic radiation, but those due to nuclear strong forces, weak forces, and gravity as 

forms of information that can potentially play a role in observation.  The examples Shapere gives 

to illustrate the presence and absence of interference are the reception of electromagnetic 

radiation (photons) and neutrinos, respectively, from the core of the sun.  Given existing 

knowledge about the physical characteristics of electromagnetic processes, we can expect a 

photon to travel less than one centimeter before interacting with some particle and being 

scattered, absorbed, or re-radiated. By the time it reaches the surface of the sun (apparently after 

100,000 to 1,000,000 years), so many interactions will have occurred that the original high 

frequency, short wavelength gamma ray will now be low-frequency, long wavelength light 

(Shapere 1982, 491).  The vast majority of electromagnetic radiation from the sun’s core is 

received on earth in this altered form and so, Shapere concludes, provides us with only indirect 

or inferential knowledge of the core of the sun.  In contrast, neutrinos exhibit very weak 
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interactions with other matter and have an extremely low probability of experiencing any 

interaction (interference) even over the great distance from the core of the sun to the earth.  Thus, 

as long as we have detectors on earth that can capture these neutrinos, they will provide us with 

direct information about the core of the sun and the detectors can be said to allow us to directly 

observe the core.   

This account contains a serious problem: the non-interference criterion is far too strict.  

Surely Shapere does not want to claim that any interference whatsoever makes an observation 

indirect?  This would mean that almost all observation that involves electromagnetic radiation 

would not count as direct observation.  Even the gold standard of unaided human perception 

would be cast into doubt since not all the visible light reflected by an object is received by the 

retina without further interference.27  But if the criterion is not read as being absolute (or as 

nearly absolute as the case of neutrinos), then there needs to be some way of determining what 

extent or type of interference is acceptable.  How this should be done is not obvious, though one 

possibility is to allow interference whose extent and characteristics can be predicted and 

corrected for on the basis of secure background knowledge.  This would be consistent with other 

aspects of Shapere’s account in which he is happy to allow that the use of background 

knowledge that there is little specific reason to doubt is epistemically unproblematic and does not 

prevent direct observation.  So, for instance, assumptions about which neutrinos will actually be 

detected by a particular system (in the case he mentions, only the highest energy neutrinos) and 

their relative frequency does not create problems for the claim that the central core of the sun can 

be directly observed (Shapere 1983, 494). But in cases where there is interference, how are we to 

get this secure background knowledge?  In the absence of direct observation there doesn’t seem 

                                                 
27 Not to mention that if unaided human perception cannot be direct observation, it would seem as though we could 
never even directly observe the data collected by neutrino detectors.   
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to be any way to know what sort of correction factors need to be applied.  The causal basis for 

declaring something to be directly observable, therefore, is problematic in Shapere’s account.  

The epistemology, on the other hand is very clear.  Direct observation provides the foundation 

for knowledge so if evidence is obtained by direct observation it is epistemically privileged.   

2.2.3. Hacking 
Hacking’s discussion of observation occurs as part of a larger project aimed at finding a 

philosophy of experiment that avoids both the difficulties with the observation sentences of the 

logical positivist program and the theory-laden observation of Kuhn (1970) and Feyerabend 

(1978).  His discussion of observation is not primarily intended to define its scope, but rather to 

identify the conditions of production under which we should accept experimental data.  He 

downplays the role that observation alone plays in science and even states that “Observation has 

precious little to do with that question” (Hacking 1983, 181) (the question of what makes an 

experiment and the results obtained from it convincing).  Nevertheless, he also asks “How far 

could one push the concept of seeing?” (1983, 207), and provides guidelines for how we should 

answer this question, so it is clear that he does have an account of the limits or scope of 

observation (or “seeing”).   

Hacking’s account is by far the most successful of the three and makes a real attempt at 

going beyond the benchmark strategy to incorporate a grounding strategy although, in the end, 

the particular grounding strategy that he uses doesn’t succeed.  Briefly, by attempting to ground 

the epistemic status of observation in the reliability of physical processes involving waves 

(electromagnetic or other types), Hacking is unable to accommodate neurochemical aspects of 

the visual system.  As a result, his description proves to be insufficient even as an account of 

unaided human perception.   
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Hacking’s account resembles Shapere’s in some respects.  As with Shapere, the criteria 

Hacking sets out for observation are intended to capture the idea that observation should preserve 

spatial relationships and that this can reliably be done if there is a direct causal relationship 

between the observed object and the eventual representation of it.  Also, like Shapere and in 

contrast to van Fraassen, Hacking argues that we need not restrict the range of the observable to 

that which is observable with the naked eye.  He allows that observation is not limited to systems 

that make use of the normal physics of human vision (reflected light in the visible spectrum) but 

that a system that makes use of  “any property of any kind of wave at all” (1983, 198) can count 

as “seeing” as long as there is a direct interaction between the source of the wave, an object, and 

a sequence of physical events that conclude in the production of an image of the object that can 

be considered a good mapping (one in which the spatial relationships, 2-D or 3-D, in the 

structure of the object are reproduced in the image) of the interactions between the wave and the 

object (1983, 207-8).  The idea that observation must consist entirely of a series of physical 

events serves the same role as Shapere’s non-interference criterion, though it is significantly less 

strict.  If there is an uninterrupted chain of physical events linking the object to our viewing of it, 

then it is at least possible that spatial relationships will be preserved.   

But not all sorts of physical events will reliably do this: some physical events might 

introduce distortion or error.  Shapere’s non-interference criterion was a way to eliminate this 

possibility:  Hacking instead uses the idea of a good mapping.  We can judge whether or not the 

mapping is a good one since we don’t just passively look at things in a microscope, we interfere 

(1983, 189).  Just as unaided vision is an active process, so too is observing things under the 

microscope.  Both unaided vision and seeing through a microscope can go wrong.  Practice, 

alteration of conditions, and even change of instruments are crucial to establishing the epistemic 
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credentials of microscopic observation.  In order to judge a map to be good, we need to know: 1) 

which features do not represent features of the object under study, and 2) which features are or 

may be artifactual or aberrant.   Hacking’s solution to these problems is to confirm the structural 

properties using a different technique.  Unlike van Fraassen, this other technique need not be 

unaided human perception.  He allows, for instance, that we can confirm the existence of a 

certain feature of platelets – the so-called “dense bodies”- which show up on transmission 

electron microscope (TEM) scans of these cells by using a certain fluorescent stain and viewing 

the cells using a fluorescence microscope.  When the same grid of cells is observed using both 

techniques, the dense bodies show up in the same spatial location.  Thus, they are taken to be real 

features of platelets, not merely artifacts of TEM (1983, 200-1).  This example works because: 1) 

TEM and fluorescence microscopy involve both different cell preparation techniques and 

different optics (but can be used with approximately the same degree of magnification and 

resolution), and 2) in these cases it is true that using these microscopes does not involve theory 

(except in the sense that all observation, including unaided human perception, involves theory) 

since choices among algorithms, decisions about whether and how to correct the data, etc. are not 

performed.   

Hacking’s account is valuable in that it provides a basis for determining what good data is (a 

good mapping), acknowledges that particular methods of observation can sometimes fail to 

produce good evidence, and identifies some strategies that can be used to try to identify and/or 

correct for artifacts.  However, the conditions that he identifies as needing to be present for 

“seeing” are not able to ground the usual reliability of unaided human perception, let alone 

extend the concept to the use of instruments such as microscopes.  The primary problem is what I 

identified as the endpoint problem.  Hacking’s black boxing of all aspects of human perception 
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that occur after light hits the retina leads him to think that the feature of observation that is 

(usually) likely to produce good mappings is the involvement of a series of physical interactions 

between a wave of some sort, the object observed, and the receptor.  This is Hacking’s 

benchmark criterion and his attempt to provide justification for it (i.e. to implement some type of 

grounding strategy) is based on the fact that electromagnetic radiation outside the visible range 

and sound waves behave in similar ways in their interactions with matter (being reflected, 

refracted, etc.) and that these interactions are regular and so can produce reliable data.  As far as 

it goes, this is fine.  However, once you open the black box and go beyond the retina into neural 

mechanisms involved in vision, it is no longer possible to insist that the output of “seeing” be 

produced by a series of physical events involving interactions between objects, waves, and 

receptors.  Neural mechanisms are certainly physical, but they involve chemical and electrical 

events rather than interactions with waves.  Therefore, the use of any kind of wave will not be 

enough to establish relevant similarity to human perception.  The idea that we can test whether a 

good mapping has been achieved by a particular instrument, however, is valuable since it makes 

explicit the idea that observation need not produce incorrigible evidence.  Thus, while Hacking 

does not specifically address the fact that even unaided human vision is not always reliable, his 

discussion of the ways we might go about checking the reliability of our aided or unaided 

observations provides at least a partial solution to the perception-reliability problem. 

2.3. Key features of PET with respect to observation 

The three general problems with existing accounts of observation are brought clearly into 

focus when one considers PET.  With respect to the benchmark problem, PET seems to resemble 

human perception in some ways (e.g. the data is usually presented as images that appear to give 

us a “view” inside the human body or brain) but clearly differs from it in others (e.g. our eyes 
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cannot detect radiation nor do they actually implement complex statistical and mathematical 

algorithms)28, thus demonstrating the need for reasons to prefer one standard over another.  

Regarding the perception-reliability problem, the case of PET will show very clearly that 

mechanisms dissimilar to human perception may be needed to improve reliability and obtain 

better quality data.  Finally, the importance of the endpoint problem is highlighted by the 

statistical and mathematical processing involved in PET.  If observation consists of purely 

physical interactions involving EM radiation or other types of waves, then PET is clearly not 

observation.  And, if the empiricist is right, this means that PET data is not as good evidence as 

is data produced by methods that do count as observation.  But if the visual system is understood 

to be more than the retinas as light detectors, then the contribution that neural mechanisms make 

to the epistemic status of unaided human perception must be included.  These mechanisms are 

not based on physical interactions with waves and are often at least described in terms of 

algorithms and computations, so there is clearly a need for a different account of observation to 

adequately describe evidence production even by unaided human perception.  Such an account 

may or may not extend to include PET, but it must recognize the contribution of different sorts of 

processes to the reliability of the human visual system – and so more possibilities for relevant 

similarity – than did the accounts described in section 2.2. 

PET is a non-invasive tool for imaging molecular processes occurring throughout the body.  

It generates what appear to be relatively naturalistic pictures of the brain or the body that are 

used for a variety of purposes from localization of specific cognitive functions in the brain to 

assessment of areas of reduced blood flow or tissue viability in the heart to identification of 

cancerous lesions anywhere in the body.  PET was first developed in the early 1970’s, shortly 

after computed tomography (CT) and at about the same time as magnetic resonance imaging 
                                                 
28 Though neural networks may be modeled as if this is what is actually happening. 
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(MRI) (Phelps et al., 1975). The fundamental difference between PET and these other widely 

used imaging tools is that while CT and MRI are anatomical imaging techniques and can be used 

to visualize structural features, PET is a functional imaging technique and is used to identify 

regions of altered molecular activity.  While CT and MRI are also heavily mathematized imaging 

technologies and so share some of the same features as PET, the fact that PET images function 

rather than structure raises particular epistemological challenges.  Structural features can be seen 

with the naked eye once the body is cut open (at least structural features of the size that fall 

within the resolving power of CT or MRI) but sub-cellular molecular processes cannot.  Thus, 

imaging of biological function allows us to “see” something that can be visualized by no other 

means.29   

Functional images are a very complex type of visual evidence and have recently drawn 

the interest of some philosophers.30  PET images (Figure 2.1) look somewhat like a picture of a 

particular anatomical region but just how (or even whether) it is that they can be claimed to 

                                                 
29 While the debate over observability is often tied to the issue of realism, I will not be concerned with ontological 
issues here but only with epistemological ones.  The claim that one can “see” brain activity using PET may seem to 
be of a very different nature than the claim that one can “see” tumors with PET since obviously tumors are visible 
by other means – including with the naked eye once the body has been cut open.  But the difference is much more 
subtle than this since it is not tumors per se that are seen with PET but altered metabolic activity that is characteristic 
of malignant cells.  And this type of metabolic activity, for instance the rate of glycolysis in a cell, is not something 
which can be “seen” in anything like the way a tumor can be seen.  There is a difference between the two, but this 
difference is connected to details about the tracers used and their connection to the phenomena of interest (brain 
activity or malignancy) as well as to the limits and characteristics of both spatial and temporal resolution of PET.  
These issues will be discussed in more detail later. 
30 See, for instance, Bogen (2000, 2002), van Orden and Paap (1997), Stuffelbeam and Bechtel (1997).  This interest 
has focused exclusively on functional imaging of the brain [functional magnetic resonance imaging (fMRI) as well 
as PET] and, in particular, on the use of functional imaging for research purposes (especially mapping brain 
functions).  I will instead be focusing primarily on clinical applications of PET.  While early clinical use of PET was 
in neurology and cardiology, today its predominant clinical use is in oncology.  While there are many interesting 
issues that arise in the context of brain mapping that do not apply in the case of oncology (in particular, the validity 
of assumptions about localization of cognitive functions and the need to perform intersubject comparisons to 
generate a map of an average human brain), these issues are not directly related to the questions about PET that I am 
concerned with here.  The actual imaging technology is the same for both research and clinical applications, 
however.   Thus, restricting my focus to the use of PET in oncology will allow me to disentangle questions about the 
technology from questions about cognitive theory. 
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represent the functioning body is far from obvious. 31  Furthermore, it is not clear whether or not 

this type of representation is observational or perceptual in nature and whether PET shares the 

epistemic privilege normally associated with perception.  PET images are very different from  

 

A   

    B   

Figure 2.1 PET images. 

PET images.  Panel A is an FDG PET scan of an 80-year old man indicating with an arrow an area of 
hypermetabolic activity that was confirmed by biopsy to be non-small cell lung carcinoma (from Wang et al. 2001).  
Panel B shows a comparison of the number of dopamine receptors (raclopride is a dopamine D2 receptor antagonist) 
in normal and obese subjects  (from Rohren, Turkington, and Coleman 2004). 

 
                                                 
31 CT images also raise some epistemological questions since they, like PET, are dependent on reconstruction 
algorithms.  Other aspects of CT, however, are less problematic than PET since they are, in essence, X-rays from 
which interference from planes other than the one of interest has been removed. 
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any sort of photographic image32 since, first, they are neither produced by any kind of optical 

imaging technique, nor are the quantities they detect (511 keV photons) accessible to human 

senses.  Thus, while they may appear to be straightforward photograph-like images, the physical 

process involved in their production is substantially different from that typically associated with 

perception.  Second, and more importantly, they are produced only through the use of intensive 

mathematical and statistical processing.  In virtue of this feature, they are not visual evidence in 

the relatively uncomplicated sense that a photograph is but are instead a hybrid epistemic object, 

sharing some features of a mathematical model or computer simulation in addition to some 

features of a standard (photographic) image.  At the very least, this mathematical processing 

indicates that production of PET images includes some steps that are inferential, and depending 

on the nature of these inferences, it may involve interpretation rather than simply production of 

data.  The former might be able to be incorporated onto a sophisticated empiricist viewpoint, but 

the latter is potentially more problematic.  As a result of the nature of its signal detection and its 

extensive reliance on mathematical processing, PET is very difficult to accommodate in an 

empiricist view according to which observation and (direct) perceptual evidence are 

epistemically privileged ways of providing justification for our beliefs about the world.  Since 

both aspects play an important role in putting up roadblocks to understanding the epistemic 

status of PET images according to existing accounts of observation, it will be necessary to 

examine both the detection system (what is detected and how) and the mathematical and 

statistical procedures that are involved in their production.  

                                                 
32 I will use the term photographic image to refer not only to photographs but also to other images such as X-rays 
that are produced by direct optical means.  The epistemic status of photographic images is not uncontroversial (even 
setting aside digital manipulation) and will be discussed in detail later, but for the present purpose the photographic 
image will be taken to be both epistemically much simpler than the PET image and, among durable, stable objects, 
the closest possible relative to perception. 
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While PET can be used to examine a variety of functional characteristics of different regions 

of the body, I will focus my discussion on its use in oncology.  It will be important to examine 

three aspects in particular: the nature of the signal and its connection to the phenomena of 

interest, the signal detection system, and the process of image reconstruction from the raw data.  

In general terms, all of these features except the connection of the signal to the phenomenon of 

interest are common to all applications of PET.  Thus, the present discussion of these aspects of 

PET in oncology will apply to other applications as well.  However, because data correction and 

image reconstruction are complex mathematical and statistical tasks and there are many available 

alternatives in terms of strategy and algorithm, there is no single PET protocol or technique.  The 

choice of strategy and of algorithm matters, and will be discussed in more detail in section 5.  

For now, however, only a general outline of the process will be given. 

2.3.1.  The signal and the phenomena 
PET uses molecular tracers or probes that are specific to biochemical pathways or molecular 

targets in order to perform in vivo assays of physiological function.  These probes are labeled 

with a positron-emitting isotope, are injected intravenously into the subject, and get distributed in 

the body according to the delivery, uptake, metabolism, and excretion characteristics of the 

probe.  Depending on the task, a different probe as well as a different radioisotope will be 

required.  Thus, for instance, brain imaging makes extensive use of 15O while the use of PET in 

clinical oncology uses primarily an analog of glucose, 18F-fluorodeoxyglucose (FDG)33.   

The most important characteristic of the radioisotope – other than its being a positron-emitter 

– is its half-life (Table 2.2).  The half-life has a significant impact on the ability to detect 

particular sorts of phenomena.  Too long a half-life means that detection of a sufficient number 

                                                 
33 The development of new tracers is an important area of research since the lack of a suitable 
molecular probe makes PET studies of a particular phenomena inconclusive or impossible. 
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of counts34 must either involve long scanning times (tying up the scanner as well as being 

inconvenient for the patient) or injection of larger amounts of radioactivity into the patient 

(which is clearly undesirable from a safety perspective).  Too short a half-life produces other 

problems since it means that the isotope and labeled tracer must both be produced at the site 

where the PET scan is to occur.  This requires a cyclotron (to generate the positron-emitting 

isotope) at the PET facility as well as the staff to operate the cyclotron and synthesize the tracer.  

In a clinical setting, and especially as the number of PET scanners in use grows and they are 

increasingly found away from major medical centers with associated research programs, these 

things are not always available.  18F is by far the most commonly used in clinical applications 

since its longer half life allows it to be shipped from a regional manufacturing facility to 

hospitals or imaging centers.   

 
Radioisotope Half-life 
Fluorine 18 (18F) 110 minutes 
Carbon 11 (11C) 20 minutes 
Nitrogen 13 (13N) 10 minutes 
Oxygen 15 (15O) 122 seconds 
Rubidium 82 75 seconds 

 

 

 

Table 2.2  Radioisotopes used in PET. 

While the characteristics of the radioisotope are important, even more important is the 

radiopharmaceutical probe or tracer into which it is incorporated.  The ideal tracer for PET 

imaging in oncology is one that is specific for malignant cells (i.e. is not taken up by normal cells 

or by other disease processes) and provides a high contrast to background ratio (i.e it has a high 

uptake by tumor cells and no or negligible uptake by surrounding normal tissue).  The kinetics of 

tracer uptake into specific areas is not crucial to oncology since tumors are stable entities at least 

when considered on the time scale of a PET scan, though kinetic features are very important to 
                                                 
34 Since the longer the half-life, the less frequently an atom of the radioisotope decays. 
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applications where temporal resolution of molecular events is an important goal.  This is most 

obviously the case in the use of PET for brain function mapping.  While this issue is less acute 

for PET than for functional magnetic resonance imaging (fMRI),35 there are real difficulties in 

trying to detect a fast event with a tracer that moves slower than that event.  Because temporal 

resolution is not a concern for oncology, however, this point will not be elaborated on here 

though it will arise again in chapter 5. 

As noted above, the radiopharmaceutical that is most commonly used in clinical PET 

imaging is an analog of glucose, 18F-fluorodeoxyglucose (FDG).  This compound was first 

described in the late 1970’s (Gallagher et al., 1975) and its usefulness for PET studies is based 

on a particular metabolic feature of tumor cells that was first observed by the chemist Otto 

Warburg in 1930.36  Warburg discovered that malignant cells have a much increased rate of 

glycolysis37 relative to normal cells.  Oxidative phosphorylation is almost entirely absent in 

tumor cells and anaerobic glycolysis is increased to make up for the loss of ATP from the 

oxidative pathway.  This means that glucose is transported - via normal glucose transport 

proteins - into tumor cells at a higher rate than into normal cells.  Importantly, glucose and FDG 

behave similarly in the initial stages of glucose metabolism and are distributed in tissue in 

proportion to glucose metabolic activity.  FDG as well as glucose is recognized by the glucose 

                                                 
35 The 1-2 second resolution of fMRI comes much closer to the millisecond time scale of neural events that the ~1 
minute temporal resolution of PET. 
36 Warburg (1930). 
37 Glycolysis refers to the metabolic process by which glucose is broken down and converted to pyruvate (aerobic) 
or lactate (anaerobic).  Increased glycolysis is not specific for malignancy, however.  Increased glycolysis and 
glucose uptake also occurs with benign conditions such as infection, inflammation, and granulomatous disease.  
There are strategies to try to circumvent these limitations of FDG-PET and a significant amount of research is going 
into the development of radiopharmaceuticals that can make use of other features such as increased protein and 
DNA synthesis or elevated choline and phosphocholine levels in cell membranes that may be more specific to tumor 
cells. 
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transporter proteins and so is transported into tumor cells at a higher rate.38  And once inside the 

cell, both glucose and FDG are phosphorylated by the enzyme hexokinase.  At this point, 

however, glucose-6-phosphate continues through the glycolytic pathway whereas FDG-6-

phosphate is effectively trapped inside the cell since tumor cells do not contain significant 

amounts of glucose-6-phosphatase, the enzyme that would dephosphorylate it.39  Thus, FDG-6-

phosphate accumulates inside cells in proportion to their rate of glycolysis and its distribution in 

normal and malignant cells can be imaged with PET.  A semi-quantitative measure of glucose 

metabolism, the standardized uptake value (SUV), is often used to characterize lesions.  The 

SUV is determined by defining an area of interest over the lesion and dividing the value (in 

microcuries per cubic centimeter) by the injected dose (in microcuries) divided by the patient’s 

weight (in grams).  The SUV associated with malignancy must be defined for each different type 

and location of tumor cells since the rate of glycolysis varies with different sorts of tumors as 

well as with different normal tissues (e.g. it is higher in muscle, the brain, and in the bladder). 

2.3.2.  Signal detection 
As the radioactive atoms attached to the probe decay, they emit a positron and a neutrino.  

The neutrino passes out of the body without interacting and cannot be detected, but the positron 

rapidly loses energy in collisions with electrons in the tissue and within a short distance (usually 

less than 2 mm) annihilates with one of these electrons.  The annihilation event produces two 

photons with an energy of 511 keV that are emitted with an angular separation of 180o.  A PET 

scanner is composed of 360o  2-dimensional or 3-dimersional arrays of scintillation detectors that 

register  “true” or coincidence events in which two photon interactions occur almost 

                                                 
38 Though there are exceptions.  FDG may have a low rate of uptake in some kinds of cancer such as low-grade 
lymphomas (Barrington and O’Doherty 2003).  As well, certain normal tissues are known to have high rates of 
glucose and FDG uptake (e.g. the bowel, urinary tract, muscle, salivary glands, and lymphoid tissue).  
39 The main exception to this rule is the liver.  Liver cells contain high concentrations of phosphatase enzymes so 
FDG-6-phosphate is dephosphorylated and cleared from the liver.  This means that PET using FDG is not generally 
useful for liver cancers. 
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simultaneously on opposite sides of the head (or other region of the body).  Scintillation counters 

work by coupling a dense crystalline material known as a scintillator with a photomultiplier tube. 

40  When a gamma ray hits the scintillating crystal, some of the energy deposited is converted 

into a flash of visible light.  The amount of light produced is low so in order to produce a 

measurable signal, a photomultiplier tube, optically coupled to one face of the scintillator is used 

to detect the light and amplify the signal (Knoll 1989).  If the locations of both photons can be 

accurately detected, the line along which the annihilation (and, therefore, the positron emission) 

took place can be determined.  These lines correspond to projections of the concentration of 

positron-labeled molecules in the body.  By combining projections from many angles, the data 

can be reconstructed into cross-sectional images using reconstruction algorithms as will be 

described in the next section.  The count density in the resulting images is then taken to represent 

the concentration of the positron-emitting probe in the tissue 

However, before image reconstruction can begin, there are several sources of error - 

especially loss of true events - that must be corrected for at this point.  These require the 

application of specific mathematical data corrections.  These include correction for photon 

attenuation by tissue, correction for accidental or random coincidence events, differences in 

individual detector efficiency, and correction for detector dead time (processing of a detected 

event takes a finite amount of time and while this occurs the detector cannot detect another 

event).  After correction factors are applied, the pixel intensity may still be in error due to 

resolution effects, thus partial volume correction must also be applied. At this point, image 

                                                 
40 Different scintillating crystals can be used here and have significantly different characteristics. The exact nature of 
some data corrections depends on the type of scintillating crystal used as well as the way in which detectors are 
arranged (2-D or 3-D). These details, however, are less important than other mathematical aspects of PET and will 
not be discussed here. 

49 



 

reconstruction from the PET projection data can be performed.   Attenuation correction is 

particularly important and will be discussed in more depth later in this chapter.   

2.3.3.  Image reconstruction    
 The task of image reconstruction arises because of the nature of the detection system 

described above.  The result of using this form of detection system (and of detecting positrons to 

begin with) is that raw PET data, unlike an autoradiograph or an X-ray, is not an image of the 

object that was scanned: it is a set of numbers.  The data is stored as a 2-D matrix known as a 

sinogram. The vertical axis represents the angle of the line of response and the horizontal axis 

represents the displacement from the center of the field of view (Figure 2.2).  Each element in 

the sinogram represents the number of counts detected by a particular detector pair (members of 

a pair are located at 180o from each other).  Thus, any point in the (r, φ) coordinate system of the 

sinogram represents the count density at a particular point in the (x,y) plane being scanned.  The 

sinogram is 2D but the body is 3D so somehow the spatial information needs to be recovered 

from the data.  To do this – and to produce an image of the body from the sinogram - requires a 

reconstruction algorithm.   

The basic problem is how to reconstruct a two- or three- dimensional image of the interior 

and exterior aspects of an object from data that consists of a large number of projections through 

the object. The mathematical techniques that were developed to accomplish this task are known 

as reconstruction algorithms.  The primary problem is the superimposition of multiple planes in 

each data point (point on the photographic film or, later, the numerical figure representing a 

projection in a computer) resulting in blurring of the structure of interest by structures on front 

and behind it. Resolution of this problem thus required a strategy to eliminate the effect of 

radiodensity variations in planes other than the one of interest (or the one for which data is 

explicitly being sought).  While I want to minimize as much as possible any mathematical 
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formalism, it is necessary to give a brief summary here in order for it to be clear what 

reconstruction algorithms need to do.  As described above, the process of data collection must 

involve both translational and rotational scanning.  Each plane of the object which is scanned, 

then, can be represented by an (x,y) coordinate system (Figure 1).  The contribution of each point 

to the total detected signal is represented by the density function f(x,y).  ‘Density’ is not used in a 

technical sense here, but is used as a general term to cover both emission (PET) and transmission 

(CT) scanning.  For CT, f(x,y) actually represents the linear attenuation41 coefficient μ; for PET, 

f(x,y) is proportional to the radioisotope density.  Ray-paths are described by an (r,s) coordinate 

system which is rotated by the same angle as the ray (see Fig. 2.2).  Thus, each ray is specified 

by coordinates (r, φ), where φ is the angle of the ray with respect to the y-axis and r is its 

distance from the origin.  The coordinate s represents path length along the ray.  The integral of 

f(x,y) along a ray (r, φ) is called the ray-projection p: 

        (1) ∫=
φ

φ
,

),(),(
r

dsyxfrp

For CT, p is proportional to the logarithm of the detector signal (because of physical 

considerations that are not important here).  For PET, p is directly proportional to the total 

detector signal42.  A complete set of ray-projections at a given angle is called a projection.    

                                                 
41 The linear attenuation coefficient reflects the degree to which different materials (in this case, different tissues) 
attenuate, or block, the transmission of X-rays. 
42 Because MRI (and fMRI) is based on a different set of physical properties, the details of the detection system and 
characterization of the ray–paths differ. In particular, the data are collected in the Fourier domain (k-space) and 
include information on the amplitude, frequency, and phase of the precessing nuclei.  Reconstruction, therefore, 
must involve fast Fourier transforms.  However, many reconstruction algorithms also use Fourier transforms and are 

readily adapted for MRI and fMRI. The Fourier transform of a function f(t) is proportional to:    or 

the corresponding function with sin ut.  The transform allows a single non-periodic function to be expressed as a 
sum of trigonometrical functions of vanishingly small amplitudes.  The transform itself pre-dates any work on 
reconstruction algorithms, having been developed by the French mathematician Jean Baptiste Joseph Fourier (1768-
1830) (Glenn and Littler 1984, 74). 
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Ideally f(x,y) is a continuous function and the number of projections is infinite.  In practice, 

of course, f(x,y) is calculated at a finite number of points from a finite number of projections.  

This is the starting point for the image reconstruction algorithms.  These algorithms can be 

roughly divided into three classes based on the type of strategy they use to solve Equation (1).  

They are: 1) summation or back-projection, 2) iterative reconstruction, and 3) analytic 

reconstruction.  There are interesting and important differences between the classes of algorithm, 

particularly with respect to the spatial resolution that they can provide, the artifacts or noise they  
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Figure 2.2  Coordinate system for describing ray paths and projections. 

 (Adapted from Brooks and DiChiro 1976). 
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introduce into the data, the assumptions they either require or are incompatible with, and the 

computational power they need to be useable in practice, I will not discuss them here.43  For the 

present purpose, it is that a mathematical solution was required for this problem and that the 

solution is complex and involves trade-offs between many approximations and assumptions that 

matters.   

 

2.4. Mathematical Aspects of PET 

As is evident from the previous section, there are many layers of mathematical processing 

associated with PET and they clearly must be understood not only to contribute but to contribute 

very substantially to the process of PET image production.44  Such procedures at the very least 

seem to be inferential.  The problem with inference is that it can seem to blur the line between 

producing data and interpreting it and part of what has traditionally been taken to contribute to 

the privileged epistemic status of observation is that it does not involve interpretation.45   

The crucial aspects of this extensive mathematical dependence is whether it automatically 

forces us to conclude that PET is more epistemically questionable than methods of data 

production that do not involve inference or whether only particular types of inference render PET 

data epistemically problematic.  If some kinds of mathematical processing can be shown to 

                                                 
43 An excellent review of these differences is provided by Brooks and DiChiro (1976).  Gordon, Herman, and 
Johnson (1975) is a good, non-technical summary. 
44 It may seem that PET could unproblematically be considered observation on van Fraassen’s account.  To 
understand why PET cannot be used to observe tumors in the same way that a telescope allows us to observe the 
moons of Jupiter, recall that what PET is detecting is not actually tumors per se but (in the case of FDG-PET) 
increased glycolytic activity in cells.  If what was detected were instead structural anatomical features of tumors of a 
sufficient size that the naked eye could discern them once the body was opened up and the tumor looked at in situ or 
removed and examined, then van Fraassen might be happy to concede that tumors are observable using PET.  
However, the situation here is closer to that of seeing parts of cells using a microscope.  There is no context in which 
we could, with our unaided vision, observe either the build-up of FDG-6-phosphate inside tumor cells or other 
features of altered tumor cell metabolism.  Thus, van Fraassen along with the traditional empiricist would have to 
conclude that PET cannot be used to observe cancer. 
45 Thus, for instance, Hacking’s emphasis on the fact that using a microscope does not require knowing or applying 
optical theory (1983,169-209). 
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improve the quality of the data, then it seems that there is good reason not to exclude such 

processes from the epistemic evaluation of particular technologies.  Whether an account of 

observation that uses a benchmark strategy can accommodate this processing as part of a relevant 

similarity to human perception, is another question.  Shapere argues that direct observation can 

include certain types of inference (including mathematical) while Hacking, as noted above, 

excludes all but physical processes from the production of what can count as a good map and 

therefore as observation. As described in the previous section, there are many layers of 

mathematical processing involved in PET.  Each layer, each type of correction and 

reconstruction algorithm, as well as their relative virtues and flaws is the topic of extensive 

continuing research.  This section will focus on strategies for calculating and correcting 

attenuation since this is an area of current debate and one where the role of mathematical 

processing in preserving structural relationships is especially evident. 

Attenuation occurs when the photons are absorbed or scattered while passing through the 

body, thus leading to the loss of detection of true events.  For whole body PET, attenuation is the 

greatest source of loss of true counts.  Approximately 10% of the 511 keV photons are lost for 

every 1 cm of tissue traversed.  For whole-body PET, this means that the uptake of radioactive 

tracer is measured at only 5%-20% of the actual value if attenuation corrections are not applied 

(the loss is more severe the larger the patient).  This can lead to very low, even negative tracer 

concentrations being assigned to some areas.  For instance, consider a sphere of uniform 

radioisotope density and uniform attenuation.  Without attenuation correction, the center of the 

sphere will appear to be of much lower radioisotope density than the outside.46  In other words, 

the data will be consistent with a sphere of non-uniform radioisotope distribution, with the 

central region having a lower radioisotope density than the outside.  It is also consistent with 
                                                 
46 A mathematical proof of this is given in Bai et al. (2003), but the intuitive example will suffice here. 
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more than one different pattern of non-uniform attenuation.  If attenuation is not measured 

accurately and appropriate corrections applied, therefore, it will not be possible to distinguish 

between several possibilities.  In addition to quantitative inaccuracies, attenuation also causes 

specific and well-known types of qualitative artifacts.  These include a prominent body outline 

that resembles high skin uptake, distortions of high-uptake areas such as the bladder (due to more 

attenuation in some directions than in others), and apparent high tracer uptake in low-attenuation 

areas such as the lung.    

Attenuation creates problems in objects of both uniform and non-uniform composition, but 

the effects are more severe and the true tracer distribution harder to predict in objects of 

nonuniform attenuation.  The amount of attenuation varies between tissue types (Rohren et al. 

2004, 308) and depends on both density and the chemical composition of the tissue.  Thus, since 

most soft tissues (blood, liver, pancreas, etc.) are over 70% water47 and overall have very similar 

densities, their attenuation coefficients are approximately equal.  Lung tissue has a very similar 

chemical composition to other tissues, but has a lesser proportion of water and a far greater 

proportion of air (especially when the lungs are fully expanded) than most soft tissues and hence 

has a lower attenuation value than other soft tissues.  Adipose tissue has a slightly lower 

attenuation value because it is composed of more lipids and less water.  Bone has large chemical 

and density differences in comparison to soft tissue and has a much higher attenuation rate.    In 

the case of PET imaging of the brain, attenuation can be treated as constant; however, in whole 

body imaging this is clearly not always the case.  Imaging of some regions of the body, in 

particular the abdomen as it is composed of primarily soft tissue types, can be treated as having 

uniform attenuation.  However, most other areas of the body will contain areas of with very 

                                                 
47 The grey matter of the brain is 70.6% water, the white matter 84.3%, the heart 80.0%, and blood 93.0%.  In 
contrast, bone is 12.2% water. 
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different attention values, for example, soft tissue, bone, and lung in the thorax.  Thus, one 

cannot assume a standard attenuation rate, and to correct for the amount of attention in a 

particular mixed tissue body area, the actual amount of attenuation for each projection must be 

measured.  The standard way of measuring attenuation factors for PET has been to use a 

transmission scan prior to the emission scan.  This involves using an external rotating positron-

emitting source (normally germanium 68 or cesium 137) and measuring the proportion of the 

known positron emissions that are detected for each plane: the higher the proportion, the less the 

total attenuation for that plane.  In dual modality PET/CT scanners, attenuation factors can be 

calculated much more quickly from the CT scan rather than a transmission PET scan.48  Since 

attenuation values are energy dependent, the correction factor calculated from a CT scan at a 

mean photon energy of 70keV needs to be adjusted to the PET energy of 511keV.  The scale 

factor is determined by the chemical composition (electron density) of a particular tissue.  In 

theory, scaling would take into account even small differences between or within tissue types 

(for instance, different bone types have different fractional amounts of water-like tissue and 

dense cortex) but in practice, attenuation values above and below certain thresholds are treated 

using the same scaling factor.  Whichever way these attenuation factors have been calculated, 

they can then be applied to the reconstruction of the PET emission data collected to correct for 

variable amounts of attenuation in each plane.   

Given the problems associated with failure to apply attenuation corrections, one might think 

that their use would be an indispensable part of PET.  However, this is not the case.  In the recent 

clinical literature, there has been a considerable amount of debate about whether or not one 

                                                 
48 The speed of this measurement is a great advantage, though breathing artifacts are a serious concern with this 
method, especially when the CT scan is performed with the lungs maximally expanded (i.e. with the patient holding 
their breath) and the PET is acquired with the patient breathing normally.  It has been reported that in 300 patients 
with known liver tumors, PET/CT localized the tumor to the lung in approximately 2% of the cases (Osman et al. 
2003).   
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should even attempt attenuation correction in whole-body PET imaging (Bengel, Ziegler, and 

Avril 1997; Bleckman et al. 1999; Farquhar et al. 1999; Wahl et al. 1997; Wahl 1999; Bai et al. 

2003).  The advantages of image reconstruction without attenuation correction have been 

claimed to be avoidance of the noise amplification that is inherent in attenuation correction (this 

can come from two sources: the noise multiplicative effect of the attenuation correction and the 

noise inherent in the correction factors themselves)49, reduction of the patient scanning time 

(though this does not apply to PET/CT), avoidance of potential artifacts which arise from patient 

motion occurring between the transmission and emission scan, and improvement of the contrast 

to noise ratios for lesions because of reductions in the local background.  As noted earlier, the 

disadvantages of not performing attenuation correction are quantitative and qualitative 

inaccuracies in determination in the shape and location of lesions.  Bai et al. (2003) have 

attempted to resolve this dispute by performing a systematic survey of PET tumor detection with 

and without attenuation correction using simulation studies, a phantom experiment, and a patient 

experiment.  Their results showed that lack of attenuation correction in areas of uniform 

attenuation can enhance contrast due to lowering of the local background level.  This can 

facilitate detection of lesions.  However, in areas of nonuniform attenuation (their work focused 

on the thorax in particular) image reconstruction without attenuation correction can result in the 

total absence of contrast between areas of background and of increased tracer uptake, thus 

making some lesions undetectable.  The tracer concentration at which this effect occurs depends 

                                                 
49 This is the most significant problem epistemologically.  There are several methods that can be used to estimate the 
attenuation coefficients from the transmission scan data (or from CT in the case of a PET/CT scanner) but all of 
them result in the propagation of noise and measurement errors from the transmission data into the reconstructed 
map of attenuation coefficients and from there to the attenuation corrected emission data and eventually into the 
final reconstructed image of positron emission activity.  Correcting for this noise and error propagation in turn is 
made difficult by the fact that the noise in the data is not linear but instead signal-dependent.  This means that non-
linear methods for reconstruction are required and these are more difficult and less well worked out than linear 
methods.  In addition, non-linear methods are particularly affected by the fact that the spatial resolution of PET is 
spatially variant and object dependent (Lewitt and Matej 2003, 1606). 
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on the size, location, and density of the tumor but, importantly, is independent of the method 

used for reconstruction and of the acquisition mode (2-D or 3-D).  In other words, only by using 

attenuation correction can these lesions be detected. 

The fact that both calculation of attenuation and correcting for it in the data set rely on 

mathematical processes and assumptions seems problematic for Hacking since these are not 

physical processes and yet have a strong influence on the generation of the image.  It seems that 

Hacking’s account then must categorize PET as non-observational for this reason despite the fact 

that it could count as observational on the basis of the signal and signal detection.  The problem 

with this is that there is no real reason given for why only physical processes are allowed.  It may 

well be the case that the epistemic status of inferential procedures is not as good as that of (some) 

physically based processes, but we need to have some grounds for making this claim.  A 

plausible reason that might be given on Hacking’s behalf is that observation must be non-

inferential and these mathematical processes clearly involve inference.  Such a claim might be 

reasonable given the significant amount of work that has claimed that the epistemic privilege of 

unaided human perception is connected to the fact that it is non-inferential. The general claim, 

though, assumes that the addition of inferential reasoning to causal processes must always result 

in a process that is less accurate than the causal processes alone.  The fact that some 

mathematical processes – inferences – clearly have a positive effect on the quality of PET 

evidence is difficult to reconcile with the view that all inference is problematic.  Without 

attenuation correction, the quantitative and qualitative relationships in the PET image are simply 

wrong in many respects.  But Bai et al showed that, despite worries about the noise-amplificative 

effects of attenuation corrections, they do produce what Hacking would certainly characterize as 

a better (if perhaps not good) map.   
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Shapere’s account does not automatically exclude inferences from as long as we have no 

specific reason to doubt them.  The basis for this is that just as background knowledge about the 

nature of the signal and detection system contributes to determining what counts, epistemically, 

as observation, so should secure background beliefs be allowed to contribute elsewhere.  For 

instance, observation of neutrinos allows us to observe the composition of the core of the sun 

only with a chain of complex calculations based on the age of the sun, nuclear reactions, and 

stellar evolution (Shapere 1982, 517). Epistemically, we need to be concerned only with how 

secure these inferences are, not with the fact that they are inferences.  That something is an 

inference does not determine its epistemic status.  The question for PET, then, is how secure the 

mathematical inferences are.  This is a difficult question to answer since each algorithm and each 

correction factor undeniably involves assumptions and simplifications that are known to be false.  

In part, the question can be addressed within the domain of mathematics alone, but at least in the 

case of PET in oncology, it is possible to perform validation studies of various types of algorithm 

and correction.  As shown above in the discussion of attenuation factors, this can help to 

establish which mathematical processes involve secure or insecure inferences.   

Suppose that some PET image i, is used as evidence for the existence and location of a tumor 

t.  If i is to be considered good evidence of t, then i should have the characteristics (spatial, 

quantitative) it does only if there actually is a metabolically active tumor of a particular size and 

shape at a particular location.  Unlike the case of brain imaging discussed by Bogen (2002), this 

sort of counterfactual dependence can be tested for oncological applications of PET.  This 

applies to both the signal detection system and the mathematical processing.  In the case of living 

patients, the diagnosis or staging of a tumor can be confirmed by visual inspection (upon 

surgery) and biopsy (this is, in fact, the standard means of validating PET and of estimating its 
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specificity and sensitivity for detecting tumors of particular kinds)50.  PET can also be tested 

with the use of what are referred to as “phantoms”.  Phantoms are objects which are constructed 

to have specific known physical characteristics (shape, size, attenuation coefficient, and 

radioisotope density).  These objects can be placed in a PET scanner and the results of using 

particular types of data correction or reconstruction algorithm assessed.  Since the characteristics 

of the phantom are known, the characteristics of the image produced can be compared to those of 

the phantom.  In this way PET in oncology can be assessed through investigation of the 

counterfactual dependence of the image characteristics on the characteristics of the object 

scanned.  This dependence cannot be determined completely accurately since the case of 

scanning real humans involves an additional source of error: motion.  The phantom does not 

move at all while an actual human engages in overall bodily (though everything is done to 

minimize this) as well as internal motion at least some of which is not under voluntary control. 

Imaging of the thorax is particularly vulnerable to motion-related sources of error since there is 

considerable motion associated with breathing as well as with the beating of the heart.  Even if a 

breathing, heart-beating phantom were constructed, it would not be possible to match all of its 

motion characteristics (timing of breathing and heartbeat, volume of lung expansion, etc) to 

those of a given patient since these are not known quantities.  Such motion does create real 

problems, resulting, for instance, in some lung tumors being incorrectly localized to the liver. 

However, the conditions under which such problems arise can normally be specified and either 

measures taken to minimize them or particular caution used in assessing the images produced. 

                                                 
50 A recent meta-analysis of the literature on the use of PET to distinguish benign and malignant nodules showed 
that PET was 97% sensitive and 78% specific for malignancy (Gould et al. 2001).  A preliminary study on using 
SUV as a semi-quantitative measure of the likelihood of malignancy found that by using a cut-off value of 2.5 the 
specificity of PET for a benign lesion was 100% and the sensitivity for a malignant lesion was 89% (Patz et al. 
1993), though for lesions of under 1.5 cm partial volume effects make assessment more difficult since an SUV of 
<2.5 may be due to the limits of PET spatial resolution rather than the nature of the nodule (Matthies et al. 2002). 
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Additional discussion of strategies that can be used to assess the epistemic status of PET, 

including its mathematical aspects, will occur in Chapter 4.  For now, it is important to notice 

that statistical and mathematical processes can be shown to often increase the quality of PET 

data.  Thus, either these sorts of processes must somehow be included as relevantly similar to 

some aspect of human perception (if the anthropocentric form of empiricism is to be retained), or 

it must be concluded that similarity to human perception is irrelevant to the epistemic status of an 

imaging technology (in which case we can retain only the interpretation of empiricism that 

claims that we need sense experience to make causal contact with the world).  Chapter 3 will 

argue that we must do the latter, then Chapter 4 will add to this minimal version of empiricism 

the resources to assess the evidential status of various imaging technologies.  

 

2.5. Conclusion 

 

Increasingly biology and medicine rely on heavily mathematized imaging systems such as 

PET.  It is, therefore, important to understand how to assess the evidential status of the data 

(usually images) that such technologies produce.  An interpretation of empiricism that takes 

sense experience to be crucial only because we need it in order to make any sort of contact with 

the external world has, as it stands, nothing to say about the epistemic importance of different 

sorts of causal processes that occur earlier in the chain of events that lead to our eventual sensory 

experience.  It does not, in other words, allow us differentiate the evidential status of images 

produced by very different means.  As such, it cannot help us to assess why (or even whether) 

attenuation-corrected images are better than non-attenuation corrected ones or if confocal videos 

of GFP-labelled cells are likely to be better evidence of some sorts of phenomena than PET 
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images may be of how the brain performs certain cognitive tasks. The anthropocentric 

interpretation of empiricism was theoretically able to help with such questions, but PET is not 

well accommodated by any existing account of observation that is based on this interpretation.  

Moreover, an examination of PET highlights certain difficulties that afflict each account.  These 

problems are of three general kinds.  First is the benchmark problem:  the failure of an account of 

observation to provide a principled reason to prefer what it takes to be relevant similarity to 

human perception over other proposed standards.  Second, the perception-reliability problem 

presupposes that reliability and similarity to human perception must coincide.  Extending the 

bounds of observation by identifying certain causal features of human perception as essential to 

making it reliable and identifying only those instruments that share these features as sharing the 

same (potential) degree of reliability as unaided perception ignores the fact that there may be 

other, dissimilar, ways in which the same degree of reliability can be attained.  Finally, in 

focusing their definition of relevant similarity to human perception on the sorts of physical 

processes that occur between light interacting with an object and light being received by the 

retina, existing accounts of observation, suffer from the endpoint problem.  Relevant similarity to 

human perception, if this approach is at least on the right track, must take the visual system to 

involve at least some neural mechanisms.  Figure 2.3 illustrates this point.  The endpoint problem 

consists in thinking that the potential observational status of imaging technologies (PM) is to be 

drawn by analogy to PH1.  As the Chapter 3 will discuss, however, the analogy must be drawn 

with PH2. 
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Figure 2.3  The scope of perception.  

PM designates the processes involved in image production using a mathematized imaging technology.  PH1 
designates the processes involved in unaided human perception from the interaction of the object with light up to 
light hitting the retina.  PH2 designates the processes involved in human perception including those neural 
mechanisms that form part of the visual system 

 

While none of the accounts of observation discussed in this chapter is ultimately successful, 

they are each attempting to capture two features of observation that seem to be correct:  that it 

must preserve spatial relationships and that this preservation must be ensured by  a particular 

process.  It is the nature of this process - and particularly its presumed reliability - that underlies 

the presumed epistemic privilege of observational evidence.  The problems with existing 

accounts of observation follow from the fact that each is a benchmark strategy.  I claim that the 

solution is to be found by supplementing a benchmark with a grounding strategy.  In order to 
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justify any account of what relevant similarity to human perception is, we need to be clear on 

how relevance is to be determined.  Are we concerned solely with physical similarity of 

processes?  That might be plausible if it were not for the endpoint problem.  Once we recognize 

that the human visual system, even if it is taken as pre-conceptual and strictly separable from 

cognitive processes,51 involves more than retinal stimulation by light, an account of observation 

that is based on the physical properties of light (or a wider range of electromagnetic radiation) 

and causal processes involving light and light detection will be inadequate.  The involved neural 

mechanisms must be accommodated and these do not involve physical interactions with light.  

But if the straightforward physics of signal and signal detection are inadequate, what determines 

relevant similarity?  The idea that observation involves structure preservation produced by 

physical processes is based on the idea that (certain) physical processes are reliably able to 

transmit and conserve structural properties from the object the representation of it.  The idea that 

all the processes in human perception are particularly good at doing this leads to the perception-

reliability problem.  Despite this, the basic intuition seems correct.  A grounding strategy can 

take this intuition and attempt to define relevant similarity in terms of the sorts of features that 

make perception reliable – when it is – and their presence or absence in other imaging systems. 

Importantly, this may not exclude certain types of inference or mathematical or statistical 

processing.  As the case of attenuation correction showed, there are cases where you can better 

preserve structural relationships by using inferential steps than you can by allowing only 

physical processes.   

It should be noted that my goal is not to develop an account of observation that will 

accommodate PET.  It may very well be that any account of observation that retains, as the 

anthropocentric interpretation of empiricism must, some non-epistemic criterion of similarity to 
                                                 
51 As Pylyshyn (2003) argues. 
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human perception will exclude PET and/or other mathematized imaging technologies.  However, 

it is not a necessary condition of a good account of observation that observation must hold a 

place of special epistemic privilege.  The available options for the nature and epistemic status of 

mathematized imaging technologies were outlined in Table 2.1.  The key possibilities are: 1) that 

epistemic privilege is always and specifically associated with observation, and 2) that non-

observational processes can sometimes share the epistemic status of observational processes.  

For the anthropocentric empiricist to retain the central principle that the best source of evidence 

is human sensory perception (and allowable extensions of it), she must present an argument that 

identifies some epistemically relevant similarity between human perception and instruments that 

are included under the name of observation.  It is not sufficient for her simply to claim that all 

epistemically privileged forms of data production count as observation.  If, on the other hand, no 

such similarity can be found, then we must reject this interpretation of  empiricism since there 

will be no connection between some instrument being like human perception and it being as 

good a source of evidence as human perception.  The next chapter will examine whether any 

such relevant similarity can be found by using a grounding strategy that defines relevant 

similarity in terms of the reliability-making features of human perception. 
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3. Can imaging technologies be like human perception (and does it matter)? 

3.1. Introduction 

The last chapter showed that existing accounts of observation use benchmark strategies 

which assume that it is possible to define the scope of observation, i.e. to identify all systems that 

are potentially capable of producing data that preserves the relevant features of the observed 

object (spatial structure, color, etc.) to a sufficiently high degree, by reference to a benchmark 

that is held to be epistemically privileged.  The anthropocentric interpretation of empiricism 

takes human perception (HP) to be that benchmark.  If an imaging technology is relevantly 

similar to HP, the argument goes, it can produce similarly structure-preserving, reliable data and 

so share the epistemic privilege of HP.  A real problem for this approach is how to understand 

what counts as relevant similarity.  As the PET example showed, sometimes making a system 

seeminglyly less similar to HP by performing attenuation correction actually increases the degree 

to which the data preserves spatial features of the object under investigation.  Thus, similarity to 

the human visual system in at least some respects is not required for reliability.  This chapter will 

develop an account of observation that explicitly recognizes the potential for reliability and 

similarity to HP to occur either together or apart, an account that is encapsulated in what I will 

call the grounded benchmark criterion (GBC).  The GBC, roughly stated, asserts that we can 

perceive via an apparatus if and only if the apparatus is similar to human perception (HP) with 

respect to those features that make HP reliable.  If the stronger version of empiricism – according 

to which sense experience is not simply required for us to causally interact with the world, but 

has a uniquely high degree of epistemic privilege - is to be successfully defended, then the GBC 

must show that the reliability-making features of HP are uniquely associated with systems that 
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are similar to HP with respect to these features.  If reliability can be obtained in other, non-

similar, ways, then this version of empiricism fails.   

The first aim of this chapter will be to clarify and explicate this criterion.  The second aim 

will be to show that the reliability-making features that are identified using the GBC are not 

uniquely associated with systems that are similar to the human visual system.  What matters for 

reliability is that the data preserve the relevant features of the object under investigation.  This 

can be achieved in a variety of ways, many of which do not appear to be similar to HP.  I say 

“appear” because part of the work of investigating the GBC will involve showing that our 

understanding of the human visual system and, in particular, of the things that contribute to 

making it reliable (when it is), is not yet sufficiently complete for us to make use of a benchmark 

strategy in order to assess the epistemic status of various imaging technologies.  We simply don’t 

yet know enough to be able to specify what features a system must have or not have to be 

relevantly similar to HP in its reliability-making aspects.  If a benchmark strategy is to be a 

useful tool in trying to explain actual scientific practice, then it must not just specify that in order 

for instrument X to count as a mode of observation, it must be like HP in some relevant ways, 

but we must also be able to specify what those ways are in enough detail to be able to judge 

whether or not PET or some other instrument does or does not possess these features.  Since we 

cannot do this, and since there is no independent argument to be made that generally HP-like 

mechanisms possess a uniquely high degree of reliability, we must reject the anthropocentric 

version of empiricism.   

3.2. Some preliminaries 

Before anything else can proceed, there is a matter of terminology that stands in need of 

clarification.  In the previous chapter, I stipulated that I would use “observation” to include 
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unaided HP plus whatever a given author regarded as legitimate extensions of it.  The above 

paragraph began by referring to accounts of observation and then switched to discussing 

perception.   This was not an accidental oversight, but was quite deliberate.  In discussions of 

empirical access to the world, “observation” is the term that is most commonly used52 (Hacking 

1983; Shapere 1982; Azzouni 2004; Kosso 1992; Machamer 1970; Menuge 1995).   It is usually 

used to refer to a privileged mode of gaining access to phenomena and is associated both with a 

(perhaps false) dichotomy between things that are observable and things that are not and with an 

account of scientific knowledge that is based on observation sentences or observation reports.  

To introduce some consistency in the various usages of the authors whose work was discussed in 

the previous chapter, I have also used the term “observation” until this point to capture 

everything that is epistemically good in virtue of being like HP in some way.  Since benchmark 

strategies characteristically define observation both as epistemically privileged modes of getting 

information and justifying claims about the world and in terms of likeness to human perception, 

there is little reason for them to distinguish between the terms “observation” and “perception” 

when what is at issue are the epistemic qualities associated with the class of things relevantly like 

human perception.  However, I have claimed that this sort of strategy fails to define likeness in 

an epistemically relevant way—unaided human perception is taken as the benchmark for 

epistemically privileged ways of gaining access to the external world but extension of the term 

“observation” to various forms of technically assisted perception is allowed or disallowed 

according to physical similarities that are either not essential or not sufficient to guarantee that 

this extension is granted to all (and only) those systems that bear an epistemic similarity to HP.   

                                                 
52 Hacking frequently refers instead to “seeing”, though, interestingly, he does not use the term “perception”.  
Outside of the philosophy of science – in particular, within epistemology and philosophy of perception – it is 
“perception” rather than “observation” that is normally used even when referring to extensions of the human visual 
system. 
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Whether or not some instrument involves causal processes that are similar to HP does not 

always determine whether it is capable of producing data that preserves features of objects in the 

world as well as does HP.  Therefore, I want now to be able to distinguish between: a) methods 

that are reliable (in the sense that the structure of the relevant parts of the world are preserved in 

the data via the causal53 processes involved in the method)54 and get this reliability by using 

processes that are the same or similar way to those involved in HP, and b) methods that are 

reliable and get this reliability via processes that are different from those involved in HP.  While 

benchmark strategies typically use “observation” to refer to the methods included in (a) and deny 

or at least ignore that (b) is not empty, I will instead use “perception” to refer to (a) and 

“observation” to refer to the disjunction of (a) and (b).  Because I am interested in the 

epistemology of imaging technologies and there is no epistemic difference between (a) and (b), I 

will not coin a term to refer specifically to (b).   

A second issue that merits a few remarks at this point is that of methodology.  I have claimed 

that the causal and epistemic aspects of perception can be separated, at least conceptually, and 

that one might, for instance, want to define some system as causally like HP but deny it the 

epistemic privilege traditionally associated with HP (see Chapter 2, Table 2.1, box 3) or, 

alternatively, as causally non-perceptual but epistemically good (see Table 2.1, box 2).  Why, 

then, propose a criterion that reconnects the causal and the epistemic aspects of perception?  

Why not move on directly to an account that focuses solely on the epistemic aspect and denies 

the epistemic relevance of causal similarity to HP?   First of all, while the two aspects are 

separable in principle, it remains true that it is the causal processes that determine the reliability 

                                                 
53 By “causal” I mean both straightforward physical processes like reflection of light and waves hitting a detector 
and mathematical and statistical processing.  Though mathematical and statistical transformations are not causal in 
and of themselves, the application of algorithms can be interpreted as causing features of the data set to change. 
54 A more precise account of reliability will be developed in Chapter 4. 
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of a method since they are what either preserve or fail to preserve features of the world in the 

representation of it that is the data.  Second, if there is to be any chance for the anthropocentric 

empiricist to retain the principle of epistemic privilege of our senses, then there must be some 

causal similarity to HP that links all forms of epistemically privileged data acquisition.  While I 

have suggested that it is the epistemic aspect (understood here in terms of reliability) itself that is 

what matters in the end, it is not the case that an initial examination of specifically perceptual 

reliability is an unnecessary detour.   

The second reason to specifically focus on perceptual reliability is that we need to do so in 

order to know if there is any principled reason to distinguish between the alternatives of 

identifying epistemically good processes and dividing those into two classes – perceptual and 

non-perceptual – or calling everything that reaches a certain threshold of reliability perceptual.  

While making this distinction doesn’t serve an epistemic purpose on my account, it might still 

seem appealing in that there are some modes of reliable data acquisition that many people would 

greatly resist calling perceptual (e.g. instruments that count gamma rays that make it through the 

earth’s atmosphere).  To justify the claim that it makes no difference whether you call perception 

all of what I have termed observation - as long as it is epistemology that you are interested in – it 

helps to be able to show that, in terms of structure preservation, perceptual and non-perceptual 

reliability are just the same sort of thing, that they are not different but equal in the sense that 

perceptual reliability involves a distinct subclass of reliable processes.55  In this way, it also 

serves as a connecting step from the anthropocentric empiricist’s claim that perceptual evidence 

                                                 
55 It should be noted up front, however, that I will be claiming that we have insufficient knowledge to establish the 
reliability of the sub-processes that contribute to HP.  The argument for the reliability of HP must, instead, be made 
for the process as a whole and not based on an understanding of the precise processes that contribute to its 
reliability. 
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has a special privilege to the claim that it is reliable evidence, regardless of the sorts of distal 

processes involved, that is good.56   

This, then, brings us back to the question of what the consequences are for empiricism if 

extensions of our perceptual capacities that are not connected to our native capacities in any 

causally significant way, are found to share the special epistemic status of perception.  The idea 

that unaided and appropriately aided (bearing a relevant similarity to unaided HP) sense 

perception bear a uniquely high degree of epistemic privilege with respect to establishing claims 

about the natural world was central to the second, anthropocentric interpretation of empiricism 

outlined in Chapter 1.  By establishing that the GBC is the best possible account that can be 

given of how the scope of observation should be extended—since it identifies epistemically 

relevant features of HP as these to which an instrument must bear similarity—and then showing 

that it fails to isolate all instruments that share this privilege, this version of empiricism is shown 

not to be viable.  The first interpretation, according to which sense experience is required simply 

in order for us to have contact with the external world, can still be maintained.  However, all this 

version says is that the proximal end of some series or chain of events that comprise an 

investigation of the world must be something that is accessible to our senses: data that is output 

by some instrument must be visible (or, less frequently, audible, tactile, etc.).  This 

interpretation, as it stands, doesn’t allow us to make any distinction between the epistemic status 

of various distal processes and so is not useful for the project of assessing mathematized imaging 

technologies unless it can be substantially elaborated.  This elaboration will come in the next 

chapter in the form of an account of reliability, but the grounds for doing so will flow from the 

arguments of this chapter since the failure of the GBC shows that what the stronger interpretation 

                                                 
56 Of course, this could also be achieved by starting with a general account of reliability and moving back to show 
that perception is just a specific case of this sort of reliability, defined in terms of causal likeness.   
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of empiricism was trying to get at was simply reliability.  Reliability, then, is the basis for an 

expanded version of the first interpretation of empiricism, which, when fleshed out, becomes 

essentially a grounded empiricism as opposed to a benchmark or anthropocentric empiricism. 

 

3.3. The GBC 

The previous chapter identified three problems with existing accounts of observation.  To 

review briefly, the problems are as follows: 

1) The benchmark problem.  The use of what I have termed benchmark strategies to define 

the boundaries of observation are inevitably forced to make an arbitrary choice of which 

aspects of HP are relevant for comparisons of likeness or similarity unless they also 

incorporate a grounding strategy that aims to define the relevant features as those that 

contribute to making HP epistemically good.   

 2) The perception-reliability problem. Evidence that HP, while usually reliable, is not always 

reliable is not taken into account, and HP and reliability are presumed to coincide. 

 3) The endpoint problem.  The assumption is made that HP involves only processes that 

occur between the external object and the retina of the observer.  Cognitive processes that are 

part of the visual system processes are uniformly ignored.  These processes, however, are of 

a very different nature than those occurring between the retina and the observed object and 

their inclusion significantly alters how HP is understood.     

Solving these problems begins with the recognition that HP has both a causal and an 

epistemic aspect. The problem of whether imaging technologies are forms of perception, then, 

also involves both a causal and an epistemic question.  This is not to say that the causal story of 

perception is divorced from the epistemic story – in fact, just the opposite is the case– but rather 

that similarity to any or all causal processes involved in HP is not a necessary condition for 
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epistemic goodness.  The assumption that such a connection exists is at the root of the 

perception-reliability problem, so showing it to be false will go a long way toward repairing this 

error.  The distinction between the causal and the epistemic aspects also helps solve the 

benchmark problem since it facilitates the development of a grounding strategy by making it 

easier to identify the epistemically relevant and irrelevant parts of the causal story of HP.  Since 

it is clear that (causal) cognitive processes play a major role in ensuring the epistemic 

qualifications of HP, the separation of the two aspects also helps to fix the third problem. 

An account of perception57 that aims to identify a class of epistemologically similar things 

cannot be a simple benchmark strategy, but must also incorporate a grounding strategy.  A 

benchmark strategy alone places undue emphasis on the causal aspect of HP58 and pays 

insufficient attention to the epistemic aspect.  For any benchmark-type strategy to succeed, it 

must take the reliability-making features of human perception as the essential criteria for 

assessing relevant similarity to HP.  This is to incorporate a grounding strategy—an attempt to 

justify the use of a certain benchmark (e.g. for good evidence production) by identifying that in 

virtue of which it is a suitable benchmark.  This is the basic idea underlying the grounded 

benchmark criterion (GBC).  Simply stated, the GBC says that we can perceive via an apparatus 

if and only if the apparatus is similar to HP with respect to those features that make human 

perception reliable.  The GBC accepts that HP is, under appropriate conditions, a reliable means 

of getting certain kinds of information about the external world.59  However, it recognizes that 

                                                 
57 At least when perception is taken to be characterized in part by epistemic features, as it is must be by empiricism. 
58 While I am not aware of any accounts that do this, a benchmark strategy could also be based exclusively on the 
epistemic aspects of HP.  This would have the effect of producing an account of what I am now calling observation.  
In other words, this might be how one would go about producing a general account of reliability (though this would 
not require that the starting point be HP).  
59 I will not be considering any kind of global skepticism here.  If this problem is to be taken seriously, it will affect 
both unaided HP and human use of imaging technologies equally since there must be an end human user of the 
technology - or, more specifically, of data acquired using the technology - in order for there to be any question of 
knowledge. 
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HP is not infallible and that only the sorts of processes that contribute to its reliability are the 

ones that we want to identify as contributing to the epistemic status of HP.   

A few points need to be made here.  The use of the terms “perceive”, “perceptual” and/or 

“perception” in this context will undoubtedly raise a red flag in the minds of some readers 

despite my earlier specification of what I will mean by perception.  I want to be very clear, 

therefore, both about what I mean by these terms and about what I expect – and, just as 

importantly, what I do not expect - my account of perception to do.  First of all, I do not in any 

way intend to be providing a universal, univocal definition of perception.  This would not only 

be far too large a task, but would be a project doomed to failure.  There are many different 

reasons one might have for wanting a definition of perception and many different functions to be 

served by such a definition.  For instance, some authors (e.g. Keeley 1999, 2002) are interested 

in perception from a functional, evolutionary perspective and want to individuate modes of 

perception and distinguish them from processes that are merely detection.   An important aspect 

of Keeley’s (1999, 2002) account of sensory modalities is dedication: sensation requires 

dedicated anatomical structures to carry out specific kinds of sensory discriminations.  Thus, 

merely because an organism can respond to electrical stimulation does not mean that it can sense 

electricity (it merely detects it).  Perception in this context is not connected to the epistemic 

issues I am concerned with and can certainly be defined in a different way without introducing 

any sort of inconsistency.  Secondly, I am not concerned with the question of whether machines 

can perceive.  This question partially overlaps with mine insofar as the sorts of machine-based 

causal processes that can count as or enable perception are common to both, but I am not 

interested in whether machines can be claimed to have knowledge. I take it for granted that all 

imaging technologies (certainly all of those currently in use) have at least an eventual human 
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observer, user, or interpreter of the data and that any or all requirements that knowledge be a part 

of perception can be met in this way.  What I do intend by the term perception is nothing more 

than is defined by the GBC:  perception is a mode of acquiring data about the external world that 

both involves physical processes similar to HP and is able to make reliable discriminations (of 

color, shape, relative size, texture, etc.60) to at least approximately the same degree that the 

human visual system can.   Perception, in other words, is anything that falls into Class I in Table 

3.1.  I will contrast perception with observation (data-acquisition processes that are reliable but 

may or may not bear any causal similarity to HP; Class III in Table 2.1), and with epistemically 

inferior forms of data acquisition, both like and unlike HP (Classes II and IV, respectively). 

The notions of similarity and reliability are clearly crucial to the GBC but have been left very 

vague in all that I have said above. Much more will be said about them, both here and, in the 

case of reliability, in Chapter 4.  Before moving on to that, however, I first want to present some 

simple cases to illustrate that the GBC provides us with intuitively correct answers for simple 

examples of all four types shown in Table 3.1.  For this purpose, a common sense understanding 

of both similarity and reliability will suffice. 

  Reliability  

  Yes No 

Similar to human perception Yes Class I Class II 

 No Class III Class IV

 

Table 3.1  Reliability and likeness to human perception. 

                                                 
60 As I will discuss later in this chapter, it is not required that a perceptual process be able to make exactly the same 
sorts of discriminations as the human visual system.  A system such as a phase contrast microscope, for instance, 
that cannot be used to perceive color, is not judged to be non-perceptual on that basis alone.   
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Falling into Class I are systems are those that satisfy the GBC and count as perceptual.  They 

are both reliable61 sources of data and similar to HP.  HP, under appropriate operating 

conditions, is, of course, an example of this class.  Another example is the light microscope (used 

by a human observer).  The material composition and/or operating conditions of the light 

microscope are very different from those of the human visual system, but the light optics of the 

two are very similar and both generally display a high degree of reliability in allowing objects to 

be discriminated on the basis of shape, texture, relative size and position.  Class II systems are 

those that are similar to HP but do not share its reliability.  According to the empiricist and the 

GBC, this class has no members.  Since relevant similarity to HP is supposed to be sufficient to 

ensure reliability—though it may not turn out to be necessary—nothing that bears the relevant 

similarity to HP can be unreliable in the appropriate operating conditions.  Class III systems are 

those that are dissimilar to HP yet share with it a high degree of reliability.  This is an important 

class since it may be hoped or expected to hold imaging technologies that fail to meet the GBC, 

and so do not fall into Class I.  Such examples, however, are very complex and cannot be 

assessed using our intuitive ideas of similarity and reliability.  A simple example of a system that 

would fall into this class, then, might be a stethoscope used to observe heart sounds and identify 

certain kinds of cardiac defect such as heart murmurs.  Finally, Class IV systems are those that 

are both unreliable and dissimilar to HP.  There would seem to be little use in purposely 

designing an unreliable instrument, so members of this class will consist primarily of those that 

either have broken down, are used for a purpose or in a situation other than that for which they 

were intended (for which they may or may not be reliable), or which, though unreliable, are the 

                                                 
61 Later, I will specify that they must possess both reliability and validity in the sense of those terms that is common 
in statistics and psychology, wherein a valid instrument is one that measures the intended phenomenon and a reliable 
instrument is one that yields repeatable results.  When referring to HP itself, however, the concept of validity seems 
misplaced so I have chosen to leave it out of the simple statement of the GBC.  Within epistemology, at least, the 
term reliability is often used in a sense that subsumes validity. 
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best or only available way for gathering some sort of data about a particular phenomenon.  The 

use of a stethoscope to detect the presence of a healthy, functioning heart in an organism with an 

open circulatory system (such as a mollusk) would be an example of the second kind. 

Though all of the above examples are quite simple, it should already be clear that the 

intuitive notions of similarity and reliability are being pushed to their useful limits (or perhaps 

beyond, in some cases) in explicating how these examples measure up to the GBC.  It is time, 

then, to develop a more substantial account of similarity.  A fuller exposition of reliability will be 

presented in the next chapter.  For now, it can be fleshed out slightly by specifying that it is 

described by the two features that the previous chapter identified as needed in any account of 

perception: 1) it must preserve information about structural features of the perceived object or 

phenomenon (these will, of course, vary according to the perceptual modality in question, but 

will include such things as size, shape, color, etc.), and 2) this information must be preserved via 

the causal processes that make up perception.62   

3.4. Similarity 

In our everyday experience of the visual world, we very readily identify objects that are 

similar in color or shape.  I can pick all of the blue marbles or all of the big ones out of a bag 

containing a collection of marbles in various colors and sizes.  We also have great facility with 

identifying whether a pair or set of concepts is similar (Goodman 1955; Gentner, 2000).  But just 

what is it that we are identifying when we identify two things as similar?  The blue marbles are 

similar to one another in terms of one property - their color.  They may or may not be absolutely 

identical in terms of their color- they may have differences in tone or hue.  Some of them may 

                                                 
62 More will need to be said about what sorts of processes are causally efficacious.  In particular, whether and how 
the mathematical and statistical processes involved in many imaging technologies can be thought of as causal 
processes is problematic.  While mathematical or statistical operations might not be causal, there is a sense in which 
the application of algorithms to data is causal.  For now, I will use the term “causal” to include such processes. 
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also be similar to each other in terms of size, whether big or small.  They might also be made of 

different materials with different densities or textures.  If I were given a large blue glass marble 

and asked to pick out all the similar marbles from a bag containing a mixture of colors, sizes, and 

materials, then, how should I approach the task?  Most likely, I would search for other large blue 

glass marbles and pick out only them.  I would pick out, in other words, those which had the 

greatest number of properties in common with the target marble.  It might be that the other 

marbles were absolutely identical to the target marble.  To be all but numerically identical to 

another object is certainly to be similar to it.  But just as certainly, this degree of similarity is not 

required.  Similarity is not absolute but comes in degrees.  It may also be relative to context.  If 

all the marbles in the bag are various shades of blue, I may be inclined to pick out only those that 

are large, glass, and a shade of blue that closely matches that of the target.  If, on the other hand, 

most of the marbles are orange, red, yellow, and brown, and the blue marbles are of a shade quite 

different from the target (say, the target is navy blue and the marbles in the bag are more the 

color of a robin’s egg), I might pick out those of the robin’s egg blue marbles that are large and 

glass even though I would have left them behind in a bag filled with many darker blue marbles.   

In addition, what counts as relevant similarity is always relative to some set of interests.  

Suppose that there are no other marbles in the bag that are large, blue, and glass.  Some are large 

and blue but not glass, others are blue and glass, but small, and others are large and glass, but 

other colors.  Still others have only one property in common with the target marble:  they are 

large or glass or blue.  Should I now pick out all the blue glass marbles?  All of the large blue 

ones?  All of the blue marbles regardless of size or composition?  Without further instructions, it 

is not clear how I should proceed.  The marbles that have two properties in common with the 

target might be quantitatively more similar to it,  but (assuming that all property matches are 
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weighted equally) is any of the three property pairs <blue, glass>, <large, blue>, or <large, 

glass> more similar than the others?  And is it always the case that having more properties in 

common makes for a higher degree of similarity?  If the purpose of picking out marbles that are 

like the big blue glass one is to get a collection of objects that can be crushed into glass powder, 

then the relevant similarity involves only one property and I should pick out all and only glass 

marbles, paying no attention to whether or not they have any other features in common with the 

target marble.  So, on this informal account, similarity seems to be related to the properties of 

objects (if both the base and the target for assessment are objects) and is relative to both the 

context in which similarity is judged and to some purpose or set of interests.  What more can be 

gained by turning to a more technical account? 

The primary way in which similarity is understood more technically is in terms of 

isomorphism.  Formally, an isomorphism is a bijective map f such that both f and its inverse f-1 

are homomorphisms (structure-preserving mappings).   Unless we are prepared to provide 

mathematical descriptions of all the objects and phenomena involved in HP and imaging 

technologies, this formal definition won’t be of much use.  However, some philosophers (e.g. 

Weitzenfeld 1984) have made use of a less formal definition of isomorphism.  Less formally, an 

isomorphism is a map or relation between structures where each structure consists of a set of 

elements and a set of relations among those elements:  “The word isomorphism applies when 

two complex structures can be mapped onto each other in such a way that to each part of one 

structure there is a corresponding part in the other structure, where “corresponding” means that 

the two parts play similar roles in their respective structures.” (Hofstadter 1979, 49).  A very 

similar description is given by Hacking, though without any mention of isomorphism:  “What is 

a good map?  After discarding aberrations or artifacts, the map should represent some structure 
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in essentially the same two- or three-dimensional set of relationships as are actually present in 

the specimen.” (Hacking 1983, 208).  What seems to be crucial here is the idea that it is 

structural similarity that matters and that this is assessed at some level of abstraction, not with 

respect to the identities of the elements themselves.  If there exists an isomorphism between two 

structures, then they are “the same” at some level of description.  For example, the small blue 

glass marble and the large red metal marble are both spheres.  Their material composition and 

color are different, but their geometric structures are isomorphic.  This less formal use of 

isomorphism is helpful, but isn’t sufficient on its own to fully characterize the notion of 

similarity that in needed in the GBC.  The crucial problems that remain unanswered are: 1) 

which elements or features of these systems need to be included as elements or relations of HP or 

imaging technologies in order to identify epistemically relevant similarities, and 2) what level of 

description is interesting and informative for the same purpose. 

To begin with the first question, there are three general ways in which we might attempt to 

understand similarity of HP to an imaging system:  1) in terms of the material composition of its 

parts, 2) in terms of the inputs and outputs of the systems, and 3) in terms of the types of 

mechanisms involved.  The first of these seems to be obviously wrong.  Why should the physical 

stuff out of which an imaging system is made matter?  If we were to restrict the material 

composition to the sorts of proteins, etc, that make up the human (or even vertebrate) eye, we 

exclude many other classes of animals, especially those with compound eyes from having 

perception.  This is not necessarily a problem since the GBC is concerned with identifying not 

just causal processes that are involved in seeing, but those that contribute to its epistemic 

goodness.  Whether or not animals can have knowledge,63 no one would deny that they at least 

                                                 
63 Some such as Dretske (1969) have taken the impossibility of animal knowledge given a particular account of 
knowledge to be a serious argument against it. 
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have something (we might call it sensation) that is causally like HP but epistemically unreliable 

(i.e. that would fall into class II).64  This is still possible by insisting that material similarity to 

HP be included in the GBC.  However, to my knowledge, no author other than van Fraassen 

wants to deny that the light microscope can be used to observe (or in the terminology of this 

chapter, to perceive) – that this is an instrument that ought to fall within class I.  And certainly 

the inorganic material that makes up a light microscope is very dissimilar to the organic material 

of the human visual system.  If we were to make a serious attempt to include material 

composition as epistemically relevant, therefore, we would either be forced to go to a 

ridiculously abstract level of description - that the system has to be made of material stuff – or 

rework the description of the material composition in functional terms – e.g. that (some of) the 

material has to permit the passage of electromagnetic radiation in the visible wavelength, that 

lenses with certain functional properties be present, etc.  The former is uninteresting and useless 

when it comes to grounding the epistemic aspect of HP while the latter will be dealt with 

separately as explicitly in terms of mechanisms. 

The second possibility – the input and output of the system – is more promising.  Hacking’s 

(1983) account, in fact, makes a quite successful case that the input and output of an imaging 

system and their similarity to HP matter for whether or not we can claim to be able to see using a 

particular instrument.  He argues first of all that the input to a system need not be restricted to 

light within the visible spectrum, but that an instrument whose input is any sort of 

electromagnetic radiation, or even waves more generally, can enable us to see.  Because the 

optical characteristics of light (reflection, refraction, etc.) are essential to the eventual production 

of the image, and, in particular, to the production of images that are “good maps” in that they 

have the desired sort of structural similarity with the object they represent.  There remains some 
                                                 
64 If they do have knowledge, of course, it must be epistemically reliable for at least certain applications. 
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question about how we should understand the output of HP as well as the inputs to various sorts 

of imaging technologies (is the input some property of the phenomenon we set out to examine or 

instead what is detected by the detector system that is a part of the imaging system?), and these 

will be discussed in section 3.4.1.  For now, however, it seems that the input and output to a 

system are causal elements that do play an epistemic role. 

The third way in which we can characterize HP – in terms of function – will also be very 

important.  By function I mean something like how the components of a system interact to 

perform the various types of processes that take a given input and produce a certain output.  

Hacking’s account of why any sort of electromagnetic radiation can permit seeing already 

includes some reference to the functioning of the apparatus – how features of electromagnetic 

radiation are involved in or require specific processes to be performed by the system (e.g. 

diffraction of light requires that diffracted rays be at least partially recaptured in order to produce 

a good map of the specimen).  It is within the domain of function that the cognitive portions of 

HP as well as the mathematical and statistical processes included in assorted imaging 

technologies will need to be accounted for.  This, then, will be the most important area in which 

to connect causal to epistemic features of perception.  It will also be the most difficult one in 

which to try to identify an interesting and informative level of description for processes whose 

physical instantiations and lower level functional descriptions are very disparate.  A further 

complication here is the fact that many aspects of the functioning of HP are currently unknown.  

A great deal is known about which areas are involved in certain types of visual processing, but 

much less is known about how this processing is actually accomplished.  Given these significant 

gaps in our knowledge, the best that can be provided at this time is a relatively abstract 
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description of the sorts of processes that HP must be able to perform in order to ensure the 

degree of reliability that it has in for certain tasks.   

To try to provide anything even vaguely approaching a complete functional description of the 

mechanisms making up the human visual system would be a daunting and ultimately impossible 

task.  It would be impossible in anything less than a multivolume book not only because of the 

vast amount that is known about the visual system, but even then because of the amount that is 

currently unknown.   Fortunately, for the purpose of my argument, the extent of our current 

ignorance does not present a problem.   If we do not know enough about the workings of the 

human visual system to provide a complete account of how it achieves its function(s), then it is 

instead the defender of empiricism who faces a challenge.  For once we explicitly acknowledge 

the extent and variety of neural processing that is required to get veridical perception, we must 

also admit the possibility that there are instruments that perform relevantly similar processing 

operations and that should, based on any sort of benchmark criterion (including the GBC), be 

taken to share the epistemic status of HP.   If the epistemic goodness of an imaging technology 

is, for the empiricist, ultimately connected to its similarity to HP, then her argument for or 

against some mathematized imaging technology must appeal, in part, to the similarity or 

dissimilarity between the computations performed by the human visual system65 and the imaging 

technology in question.  At present, this part of her argument simply cannot be made 

convincingly.  This is not to say that the argument will not be able to be made at some point in 

the future when the state of knowledge about the human visual system is more complete, but 

surely we need not wait until that date in order to assess the epistemic status of imaging 

technologies.  The empiricist argument is not the only one by which to establish the reliability of 

                                                 
65 I do not mean by the use of this phrase that cells are literally performing computations, but rather in the sense 
identified by Grush (2001, 156) that groups of neurons compute in the sense that they process information as if they 
were implementing computable functions.  

83 



 

an imaging technology.  That, however, is the still distant conclusion of this chapter.  Before we 

can get there, it remains to be demonstrated that an argument based on any benchmark criterion, 

even the GBC, must fail.  

3.4.1. Similarity of Input and Output 
The input to HP is straightforward:  it is light within the visible range.  It is true that there are 

different types of photoreceptors - rods and cones - as well as differences among the cones, but 

these are functional differences that have to do with the responsiveness of the different cell types 

to a specific input.  If we take input to an imaging system to simply be the entities that that 

causally interact with the detection system – here, the photoreceptor cells of the retina – then all 

that matters is that it is light in the range of wavelengths from 400-750 nm that can be detected.  

Questions about light intensity, pattern of light, and particular wavelengths within the visible 

spectrum have to do with functional properties of HP.  The inputs to PET and CLSM are 

similarly straightforward:  in the case of PET, it is 511 keV photons, in the case of CLSM, it is 

laser light of specific wavelengths.66  It is important to be able to separate the irradiating laser 

light from the fluorescent light emitted by the sample and to separate the fluorescent light into 

various regions of the light spectrum when multiple labels have been used.  This is achieved 

through the use of dichroic mirrors and optical filters to separate light of different wavelengths.67  

The light is then detected, in the case of CLSM, by photomultiplier tubes (PMTs).  The input to 

the microscope, then, is light within the visible spectrum.68  It might be objected that the input in 

this case should be taken to be only light of particular wavelengths - which ones being dependent 
                                                 
66 Depending on the fluorochrome that was used to label the sample, a different wavelength of light will be required 
to excite the fluorochrome, causing it to fluoresce – to emit light in a particular wavelength.  These are referred to, 
respectively, as the excitation and emission wavelengths.   
67 Each imaging channel has its own PMT.  Thus, for instance, if a sample is dual-labelled with a fluorochrome that 
emits light in the green range and one that emits light in the red range, a dichroic mirror is used to split the longer 
wavelength (red) light from the shorter wavelength (green) light, each of which is directed towards different PMTs.  
This is crucial in order to collect data in different channels separately since the output of each PMT is determined 
only by the total light hitting it – the wavelength doesn’t matter.
68 Some fluorochromes emit within the UV range and can also be detected, but most emit within the visible range. 
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on the fluorochromes used.  This is not the case, however, since what matters with respect to 

detection is simply the amount of light that hits the PMTs.  It is the other physical components of 

the microscope – in particular, the wavelength of light emitted by the laser and the use of 

dichroic mirrors to split emitted light – that determine which wavelengths will be received by the 

PMTs.  While any particular use of the microscope will not involve the PMTs detecting 

wavelengths across the spectrum, neither does HP always involve detection of the full range.  If, 

for instance, I were in a closed room with plain white-painted walls, illuminated with pure green 

light (say, of 518 nm), and my head restrained so that I could look only at the wall (not at my 

own body or clothing), I would see only light of a particular wavelength.  It would not be true to 

say, however, that the input to my visual system overall is limited to this green wavelength.  Due 

to the particular physical situation in which I find myself, that may be the only actual input to my 

visual system at the moment, but in a different physical context, my same visual system can 

detect a much broader range of wavelengths.  It is the in theory input, not the input in a specific 

application of the system, that is relevant for the purpose of defining the input to the system in 

general. 

So how do these inputs bear on the reliability of HP and so fit with the GBC?  As far as input 

is concerned, what matters is that there should be a reliable transmission of the input entity (light, 

high energy photons) both between its source and the light (photons, etc.) 

emitted/reflected/refracted etc. by the object that is emitting/reflecting/refracting/otherwise 

interacting with it and between the object and the detection system.  This is what Hacking (1983) 

correctly sought to capture with the idea of physical processes and the argument that any 

electromagnetic radiation behaves in similar ways and should be allowed to count as permitting 

“seeing”.  There are additional complications introduced when the phenomenon that we are 
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interested is only distantly related to the input to the imaging system, and these will be addressed 

in Chapter 4.  For the purpose of judging the immediate inputs to the imaging system to be 

similarly reliable, however, these complications need not be considered.   

While identifying and comparing the input to HP and imaging technologies is relatively 

straightforward, the same is not true of outputs.  In general terms, the output ought to be taken to 

be what the observer uses.  In the case of HP, this could be taken to be phenomenal experience, 

qualia, or some feature of the visual system of the brain.  What the output should be taken to be, 

then, will be at least partly relative to the purpose to which the observer is putting the 

observation.  Philosophers have long debated the nature of visual representations.  The situation 

is perhaps less contentious, but still unclear when one looks instead at the scientific literature.  

Specific patterns of neural activity in and across various levels of the hierarchical visual pathway 

somehow are correlated with objects (visually accessible properties of the external world) and 

there is good evidence that certain cell types and certain cortical areas represent different 

features69, but just how it is that the physical states of groups of cells and the relations between 

them can be taken to represent objects is unclear.  We just don’t yet know what, in neural terms, 

corresponds to the final representation of what we see. The neural correlate may be the activation 

of particular cells, of particular cell assemblies, of particular temporal patterns of activation 

within or across cells regardless of which cells display this pattern, or it may be a combination of 

spatial and temporal patterns (Treisman 1999).  Moreover, since mental representations, 

whatever they turn out to be, at a minimum do not have spatial characteristics whose structure 

can be compared with the object being perceived. 

                                                 
69 Treisman (1998) identifies six different types of object representation, each specialized for a different task and 
encoding different properties with varying degrees of detail. 
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While computational models are often taken to be indispensable for understanding 

representation,70  it is not clear that computational models will tell us what we want to know 

about how the actual system.  Grush (2001) has argued that computational neuroscience is 

unable to provide an explanation of why some neural states but not others are representations and 

of what the content is of those neural states that are representations.  However, we need not be 

overly troubled by this conclusion if we share in Grush’s optimism that it is possible to formulate 

a theory that can provide such explanations.  If this is the case, then this simply counts as one 

more area in which we do not have sufficient knowledge to adequately fill out the sort of account 

that is needed for the GBC or any benchmark strategy to succeed. 

Similarly, though less obviously, what we should take to be the output of PET and confocal 

microscopy, is not self-evident.  Though the output images are usually brightly colored images, 

the fact that the input is digitized early in the process and that the end result of the extensive 

statistical processing is an intensity value for each voxel which can then be displayed as a 2-D or 

3-D image by assigning a color to specific ranges of intensities suggests that it is not 

unreasonable to take the final output to be the array of numbers corresponding to each voxel.  

For the question of reliability, it makes no difference which we take to be the ‘true’ output since 

the conversion from the numerical data to images is unproblematic.  The question will arise 

again in Chapter 5, however, when we examine what epistemic value might be gained by 

producing images. 

 

                                                 
70 “Anatomical and physiological data provide important clues about form vision, but a complete understanding of 
visual function requires us to work backwards from the neural implementation to the computational principles 
involved.  Experiments describe the tuning profiles of cells in a particular area and, in some cases, the anatomical 
distribution of cells with similar response properties.  Computational considerations must be invoked to address the 
underlying representation and its functional role in vision.”  Gallant  (2000, 324).   
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3.4.2. Mechanisms71 
Before attempting to break human visual perception into a limited number of functions for 

which mechanisms can be sought, it will help first to be clear about what the overall function of 

the visual system is.  Some prominent researchers in the field of vision have described it as 

follows:  

“The overall goal of the visual system is to provide an accurate three-dimensional 

description of the environment over time which includes the identification of objects and 

events.” (Geisler and Albrecht 2000, 121) 

 

This description72 captures several key points that should be kept in mind:  1) the visual 

system is supposed to provide accurate representations, 2) in order to achieve this, it needs to 

represent the world in its full three dimensions, despite the fact that the retinal display is only 

two-dimensional, 3) vision is temporally extended, and 4) correct individuation of objects (and 

events) is crucial.  It should also be kept in mind that this overall function is achieved only by the 

visual system taken as a whole – from the retina through the primary visual cortex and higher 

visual areas.73  We need, in other words, to include both well-characterized parts of vision such 

as the response patterns of rods and cones to light of various intensity and wavelength, and less 

well understood aspects such as the influence and control of attention.   It will also be helpful to 

                                                 
71 There has been considerable recent philosophical discussion about mechanisms, but differences between, for 
instance, Glennan’s (1996, 2002) and Machamer, Darden and Craver’s (2000; Machamer 2004) accounts will not 
affect this discussion.  Here, the term is meant to track the scientific sense without being specific about its 
philosophical underpinnings. 
72 This description could be amended to explicitly recognize that not all of human vision is visual perception.  The 
simplest kind of sensitivity to light is photosensitivity – the ability to detect different intensities of light within the 
visible spectrum via photosensitive molecules.  This ability is present in many organisms, including even many 
single-celled organisms, and is important in humans for its role in regulating circadian rhythms (Shepherd 1988, 
326).   
73 I do not mean by this that each aspect of vision involves all visual areas.  The visual system is characterized by 
hierarchical processing and functional specialization and different functions are carried out in different higher visual 
areas.  For instance, the middle temporal, or MT, area is both necessary and sufficient (among higher visual areas) 
for perception of motion (Farah 2000, 45). 
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recall that the goal here is not to provide a full functional account of the human visual system, 

but to examine what functions contribute to the reliability of HP.  Moreover, since the final goal 

in describing this set of structure-preserving functions is to assess whether or not we can argue 

that imaging technologies such as PET are relevantly similar to HP with respect to these 

functions, we need not consider any functions of HP that have no analog in imaging 

technologies.  This means that we must consider how the visual system produces representations 

of object tokens (a viewpoint-relative representation of an intact object as it is currently seen) but 

need not take into account how the visual system produces representations of object type 

(recognition of an object as a member of some category of object – e.g. as a cat) or 

representations that are based on further knowledge associated with that category – e.g. that it is 

warm, purrs when pet, and likes to chase birds).  Finally, it is important to recall that the claim 

being made here is not that we can use the GBC to validate imaging technologies, but rather that 

we cannot do so (though I will go on to argue, briefly here and at more length in the next chapter, 

that possession of reliability-making features has no connection with bearing relevant similarity 

to HP).  While the claim that we can justify PET and other mathematized imaging technologies 

by using the GBC and arguing that they are relevantly similar to HP with respect to its 

reliability-producing features requires that a complete account be given of what these features 

are, the negative argument requires only that it be shown that no such account can be provided 

for HP.  Thus, in what follows, I will not attempt to provide a complete description of any of the 

functions of HP.  While it may be of some interest to consider, for instance, whether or not some 

mechanisms of attention or top-down processing at various levels of the visual system should be 

considered to blur the line between observation and theory in a way that should make the 
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empiricist uneasy, such issues will not affect my conclusion here and will be set aside for 

examination at some other time. 

With those constraints in mind, I propose that we should take the visual system to have as the 

following three general functions: 

1. Selective reduction of information available to the system. 

2. Transmission (which will include transformation) of information from input 

through various levels of processing to the final output. 

3. Association of separately processed information to produce a unified 

representation of objects (one in which each visual feature of an object, such as its 

shape, is correctly associated with each of its other features, such as color and 

location). 

Each of these functions must be achieved in order that the final output of HP (or an imaging 

technology) is reliable.  The second and third very obviously serve this end, but the first may not 

seem quite as clear.  Any elementary psychology text, however, will point out that the brain is 

limited in its processing capability and that the (presumably evolutionary) solution to this is to 

fully process only the most relevant stimuli.  Why and in what sense its processing capacity is 

limited, however, is less clear.  Farah (2000, 175) identifies two sorts of processing limitations.  

First, there is a response bottleneck in the sense that our behavioral responses (e.g. reaching for 

objects or moving our eyes towards stimuli) are limited - we cannot respond simultaneously to 

large numbers of stimuli - so it may be helpful to limit the number of stimuli within the visual 

system itself.  Second, the use of distributed representations74 within the visual system suggests 

that a common set of neurons will represent a variety of different stimuli and when more than 

one stimulus is represented simultaneously, problems with mutual interference and crosstalk are 
                                                 
74 Readers unfamiliar with the visual system should refer to the appendix for a brief description of its organization. 
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introduced.  Selective reduction of information that gets fully processed by the visual system, 

therefore, helps to ensure its reliability.  This function is carried out largely by the retina.  The 

retina makes substantial “front-end” reductions in the amount of information that gets 

transmitted to downstream parts of the visual system.  It does not encode and transmit all of the 

information available in the retinal image; it is selective to a limited range of wavelengths, 

luminances around the mean, and temporal frequencies.  Furthermore, over most of the visual 

field (with the exception of the fovea), the retina encodes a limited range of the available spatial 

frequencies.  Within these broad limits, there are subpopulations of neurons that are even more 

selective, subdividing the information into narrower ranges.  However, this function is not 

exclusively carried out by the retina; there are additional attentional mechanisms that select a 

small subset of the stimuli for extensive processing and consign the rest to only limited analysis.  

There remain many open questions regarding attention and at least six different cognitive models 

of attention have  been proposed (see Shipp 2004), so the undisputed fact that attention does play 

an important role in limiting the amount of information that gets processed already indicates that 

this function is far simpler and far better understood in the case of PET and CLSM than in HP.75   

Farah (2000, 178-9) identifies two different sorts of questions, the first having to do with how 

attention affects processing at various levels in the visual system, the second concerning how the 

attention itself is controlled.  With respect to the first question, while there is clear evidence that 

attention modulates processing in the extrastriate visual cortex, there is conflicting evidence for 

whether or not attention plays a role as early as the primary visual cortex.(for a review of 

multiple lines of evidence, see Farah 2000).  In addition, the mechanisms of selection (within 

both early and late visual areas) are poorly understood.  They appear to involve both facilitation 

                                                 
75 This is not to say that the retinal mechanisms are completely understood, but just that our understanding of 
attention is much farther from being complete. 
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of attended stimuli and inhibition of unattended stimuli, but there is very little information on 

how such modulation of neuronal activity is achieved (see Hillyard, Vogel, and Luck 1998 for a 

discussion of alternative models; see Wolfe and Horowitz 2004 for a discussion of the attributes 

that (may) guide the deployment of attention). With respect to the second question, there is 

considerable, though not unambiguous, evidence that both the prefrontal and parietal cortices 

play a role in top-down attentional control (see Farah 2000).  Again, however, the mechanism or 

mechanisms by which such control is exerted are unknown.  

The situation is again much simpler in the case of PET and CLSM.  Excess of information is, 

in fact, not a problem for PET.  There the real difficulty is getting enough information.  The 

signal-to-noise ratio is very poor, so data must be collected over a sufficient time period in order 

that statistical processing techniques that model and seek to eliminate noise from the data set can 

be applied.  CLSM is also different in that the potential for excess information (which might be 

considered noise) is present.  However, the confocal optics were specifically designed to 

eliminate all but the in-focus light from reaching the PMTs.  In this case, then, information 

reduction is carried out by the optical components of the system and is very well understood.76

The second function, reliable transmission and transformation (e.g. from electromagnetic to 

chemical form) of information, is variously well and poorly understood for different aspects of 

HP.  We have a good understanding of the behavior of light and this allows us to account for 

transmission of information between the object and the retina.  We also have a good 

understanding of both molecular neurobiology and neurophysiology at the level of the single 

neuron.  Tract-tracing has also provided us with fairly good information about the neural 

connections between various brain areas (see Rockland and Pandya 1979, Scannell et al. 1995).  

                                                 
76 While this applies to CLSM, it is not true of confocal microscopes that use Nipkow disks.  In this case, it is not 
fully understood how light projected through these spinning disks covered with an array of “pinholes” is able to 
achieve the same effect. 
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What we do not have is a good account of the functional architecture and this is crucial for 

knowing exactly how information in various processing streams gets transmitted and, in 

particular, modified by other inputs. 

The biochemical mechanisms that occur at synapses and the molecular events that affect the 

membrane potential are, though not understood in every detail, relatively well characterized (for 

details, see Kandel, Schwartz and Jessel 2000).  Interactions between neurons are fundamental to 

how information is exchanged within and between areas (or computing elements) of the brain.  It 

is important to understand, for instance that when a synaptic terminal receives an all-or-nothing 

action potential from the neuron of which it is a terminal, it releases a chemical neurotransmitter 

that crosses the synaptic cleft and produces either depolarization or hyperpolarization in the 

postsynaptic neuron by opening particular ion channels.  Summations of a number of 

depolarizations (excitatory inputs) within the time constant of the receiving neuron (typically 15-

25 ms) produces sufficient depolarization that the neuron fires an action potential.  The action 

potential is then conducted in an all-or-nothing manner from the axon through to the synaptic 

terminal where it can affect other neurons.  Any inputs that the neuron receives that cause it to be 

hyperpolarized move the membrane potential away from the critical threshold at which an action 

potential is initiated and thus are described as inhibitory.  The neuron can thus be thought of in a 

simple way as a computational element that sums its inputs within its time constant and, 

whenever this sum reaches a threshold, produces an action potential than propagates to all of its 

outputs.  However, what is crucial for the transmission of information about aspects of the visual 

scene is not interactions between single neurons, but the distributed patterns of activation across 

large numbers of neurons.  This requires knowledge not only of the structure of structural 

connections within and between brain areas, but of functional connections, a challenge that 
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remains unsolved. 77  It also includes knowing how to best model the summation of inputs, since 

in the absence of a good functional architecture, it isn’t possible to assess exactly which and how 

many neurons are involved in a specific task and what their input and output cells are.  As an 

additional complication, there is evidence that not all response patterns are linear (see, e.g. 

Edelman 1999). Thus, to try to understand how information about particular aspects of the visual 

scene gets transmitted though the groups of neurons in the various hierarchically organized areas, 

it is necessary to use computational models.  There are very different approaches that can be 

taken to modeling the interactions between multiple neurons.  One type of approach is to assume 

that the responses of the neurons are combined using a simple operation such as simple 

summation, Minkowski summation, or “winner-take-all”.  Another common approach, however, 

is to treat visual perception as Bayesian inference and use model particular visual tasks by using 

a so-called ideal observer who computes the most probable interpretation of the retinal stimulus 

by extracting all of the information78 available in neuron responses and combining it with 

information about stimulus probabilities (for a review, see Kersten et al. 2004).  The details of 

these approaches are not important here; what matters is that we simply do not have anything 

approaching a complete knowledge of the neural connections that are involved in specific visual 

tasks and that, in the absence of this knowledge, it is not possible to give an account of how 

information about specific visual features is transmitted through the various brain areas believed 

to be involved.  Understanding how transmission of information occurs within and between 

individual neurons (the molecular neurobiology and neurophysiological accounts) is not an 

account of how information about color, shape, motion, and other aspects of the visual scene get 

                                                 
77 There is a great deal of information on neuroanatomical structure, but the degree to which individual areas are 
interconnected (some areas connect with 8-10 others) has made it very difficult to establish a functional  model of 
cortical architecture (see Vezoli et al. 2004). 
78 I am using “information” here in a strictly non-technical sense and not, for instance, the sense of Shannon-
Weaver. 
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transmitted. To accomplish that, we need to know more about the patterns of interaction between 

groups of neurons, and that information is not currently available.   

Contrast this with the case of PET where transmission of information can be described much 

more completely.  As with HP, description of the features and behavior of photons is 

straightforward.  After the photons are registered by the scintillation counter, however, the 

information literally is digital information stored on a computer.  The statistical and 

mathematical computations that will be performed on it are literally computations, not simply 

capable of being described as or represented by computations.  Furthermore, even if they are not 

necessarily perfect from the perspective of avoiding error,79 the computations that are applied to 

the information are fully known.  The various software packages that determine them80 were 

written by computer scientists and the code contains full information about the processing that 

the initial count data can be subjected to.  The same is true of CLSM.  As an optical system, the 

first part of the story about transmission of information is, as with HP, to be found in our 

understanding of the properties of light.  After light hits the various photomultiplier tubes, it is 

converted to digital form and stored on a computer as was the case with PET.  Further 

transformations of that digital information again is performed through the use of various 

software packages and is exactly analogous to PET in the completeness of our knowledge of 

these transformations (should we choose to examine them), if not in the identity of the 

transformations. 

The third function, association of separately processed information to produce a unified 

representation of objects, is related to the second in that it clearly involves transfer of 

information, but it also requires coordination of information.  The evidence that separate, parallel 

                                                 
79 This issue will be examined in the next chapter. 
80 Or, more accurately, that determines the set of processes that are available for use.  There is, of course, room for 
the user to adjust settings and use or ignore certain options provided by the software. 

95 



 

processes are responsible for different aspects of vision and that specialized areas code represent 

different aspects of the visual scene, raise one of the biggest unsolved problems for our 

understanding of the visual system:  how do we get from dispersed brain representations of 

different aspects of the world to the coherent, unified percepts that we experience?  This is 

referred to as the binding problem.  There are three aspects of the visual system that contribute to 

the possibility of binding.  The first is the general one noted above that various properties of 

objects appear to be separately analyzed by specialized visual subsystems.  Thus, while 

information from the same spatial location is implicitly bound by the cells that respond to it 

initially, at later stages the information from these cells appears to be routed to different neural 

populations, forming a distributed representation of an object’s various properties.  The second is 

that receptive fields at higher levels are large enough – up to 30o in temporal areas – to 

generalize across a wide range of locations.  Because visual scenes typically contain multiple 

objects, the question of which features belong to which objects could frequently arise.  Third, 

coarse coding of different stimulus dimensions creates representations that may depend on ratios 

of activity in neurons with different but overlapping tuning.  Whenever the perceptual 

representations of simultaneously present objects depend on distributed patterns of firing in 

populations of cells, the risk of superposition ambiguities within the same neural network will 

arise, creating a need to identify and to signal which units belong to the same representation. 

Several different cognitive models for binding have been proposed.  Prominent among them 

are Treisman’s Feature Integration Theory (FIT) (Treisman  1982, 1998, 1999), Wolfe’s Guided 

Search model (Wolfe, Cave, and Franzel 1989; Wolfe and Bennett 1996), and Reynolds and 

Desimone’s biased competition model Reynolds and Desimone 1999).  The nature of the 

differences is not crucial to the argument here and will not be described.  The interested reader is 
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directed to Treisman (1999) for a summary of the disagreements between the models.  The 

crucial point is that there currently exist multiple accounts of how binding is achieved and the 

available evidence is unable to distinguish between them.  Furthermore, although there are 

differences between them, all suggest that attention plays an important role in binding.  Thus, 

uncertainty about mechanisms of attention limits our ability to specify precisely how binding 

occurs, even if there were agreement on other aspects of the binding problem.   

Though how this function is reliably achieved is still unclear in the case of HP, it is again less 

problematic in the case of PET and CLSM.  In these instruments, the binding problem simply 

does not occur so there is no need for it to be solved in order for the output image to possess all 

of its own features.  Of course, it is true that PET and CLSM do not represent all of the features 

of objects that HP does: neither can represent color (recall that the color in the images is 

artificial, corresponding to the intensity value calculated for each voxel rather than 

corresponding to the actual color of the object), nor can they represent motion as an independent 

feature of objects (though CLSM can represent motion as a consequence of its ability to detect 

change in position over time).  However, the key aspect of PET and CLSM that allows them to 

avoid the binding problem is that they do not have separate processing of different object 

attributes.   All that is measured is the light intensity or number of photons that hit the PMTs or 

scintillation counters when the instrument is scanning a particular location in the object (recall 

that both PET and CLSM involve scanning successive layers of the object).  The ability to 

recover spatial information from this data is ensured by the physical arrangement of the detectors 

and (in the case of PET) the use of reconstruction algorithms.  Thus, there exists only the need to 

ensure reliable transmission and transformation of the data, not an additional need to re-attach 

different features of objects. 
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3.5. Conclusion (what does the GBC tell us?) 

The GBC states that we can perceive via an apparatus if and only if the apparatus is similar to 

HP with respect to those features that make human perception reliable, where the conclusion that 

some apparatus allows us to perceive is intended to establish that the evidence gathered using the 

apparatus shares the privileged epistemic status of HP.  It was intended to solve difficulties with 

other benchmark strategies by both explicitly including the neural components of the visual 

system within the domain of required similarity and by providing a non-arbitrary way to decide 

the question of what counts as relevant similarity to HP for the purpose of extending the 

boundaries of epistemically privileged observation.  It was, in other words, intended to provide 

the last best chance for the empiricist to justify the claim that instruments of various types are 

epistemically trustworthy if and only if they are an extension of our own senses. The basic idea 

underlying benchmark strategies (as employed by Hacking, Van Fraasssen, and Shapere) is that:  

1) perceptual knowledge, though not indefeasible, is usually a very good way to get reliable 

information about the physical world, and 2) the way to be sure if the ways we have of extending 

our sensory capacities provide similarly reliable data is to see if they use similarly reliable 

processes.  This core idea was maintained in the GBC. 

The problem, as revealed in the preceding section, is that our knowledge of how the visual 

system works – especially of its neural components - is still so incomplete that it is impossible to 

construct an argument for the reliability of HP based on the reliability of the causal processes 

that contribute to it.   It might be possible to make this argument at some point in the future once 

the many gaps in our knowledge of the human visual system have been filled in, but that doesn’t 

help us with the project of trying to justify the reliability of (some) complex imaging 

technologies now.    Does the (present) inability of the GBC to be used for this purpose mean 

that we are left with no way of establishing the epistemic reliability of technologies like PET and 
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CLSM?  That it does not is clear when we reflect on the fact that the crucial part of the GBC was 

the need to identify reliability-making features of HP.  This was what provided the required 

connection between a causal account of HP and an epistemic account and a justification of its 

epistemic status.  However, similarity to the causal processes of HP is not a necessary condition 

for an instrument being reliable.  If reliability is understood to be something like the avoidance 

of error in producing a representation of certain features of the world,81 then what we need is to 

ensure that our instruments are capable of this.  They need be similar to HP only in this property 

of being reliable.   

The fact that not even HP itself can be justified by using a benchmark strategy makes it very 

clear that there must be other sorts of arguments that can be used to justify the reliability of our 

senses and our instruments.  In the case of HP, its reliability can be justified by the fact that we 

have a great deal of knowledge about the conditions under which it is reliable and the conditions 

under which it is not.82  We know, for instance, that there must be appropriate lighting 

conditions, that solid objects can hide things that lie distal to them, etc.  In the case of 

uncertainty, we can also easily alter the viewing conditions by changing the light or moving 

closer, farther, or to a different side of an object.  We can also use our other senses to be sure, for 

instance, that what we’re seeing is a live dog rather than a stuffed one.  We can also seek 

consensus from other people.  In short, we can argue for the reliability of HP based on our 

enormous experience with it and our ability to determine when the appropriate working 

conditions are or are not present.  While our experience with imaging technologies is vastly less 

than our experience with HP, we can still use most of these ways to establish their reliability.  

                                                 
81 This is consistent with Hacking’s map analogy (1983, 208) as well as with vision scientists’ descriptions of the 
goal of HP: “The goal of perception is to account for systematic patterning of the retinal image, attributing features 
to their real world sources in objects and in the current viewing conditions.” (Treisman and Kanwisher 1998, 218)  
 
82 See, for instance, Goldman (1986) and Alston (1993). 
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Our ability to manipulate the conditions may be somewhat more limited in these cases, but it is 

often not the case that conditions can be changed enough to adequately test the reliability of the 

system.  As the last section showed, our knowledge of the sorts of physical and mathematical 

processes that are involved in these technologies gives them an advantage over HP when it 

comes to trying to establish reliability based on how the system works.  Recall, for instance, the 

discussion in Chapter 2 about testing whether the application of attenuation correction algorithms 

to PET data improved the quality of the images.  In this case both physical means (the use of a 

phantom constructed out of parts with known attenuation coefficients) and knowledge of the 

algorithms were used to establish the sorts of errors that result when attenuation correction is not 

performed.  A detailed analysis of how reliability83 can be established will form the basis of the 

next chapter. 

                                                 
83 Questions of experimental validity will be distinguished from those of reliability.  While the distinction has not 
mattered here, it will be important in what follows. 
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4. Reliability 

4.1. Introduction 

The last chapter argued that it is reliability independent of any sort of physical or causal 

similarity to human perception that can determine the epistemic goodness of any type of data 

collection process and so defines the scope of observation.84  Thus, what is needed now is an 

account of what reliability is, and how it can be assessed.  At the outset I want to make it clear 

that I am not aiming to lay out a general theory of reliability that can be applied to all possible 

domains and that can escape all possible objections.85  What I will present is a pragmatic account 

of reliability that is: a) relative to the sort of discriminations that are needed for a specific 

purpose, and b) relative to the sorts of properties or features of the world that an instrument 

(including the human visual system) can get at.  This pragmatic approach is motivated by the 

sorts of challenges presented to us by human perception and imaging technologies.86  We use 

them to get information of a particular sort about the external world – about properties or 

features of the world such as the spatial location, size, motion, and color of objects87 - and, 

usually, with a specific question or set of questions in mind.  Answering a particular question 

requires that we get information about a specific set of properties with a certain degree of 

                                                 
84 Recall that the previous chapter identified observation as any reliable means of data collection without requiring 
any causal similarity to human perception.   
85 I do not, in particular, make any claim that the account to be laid out here can defeat skeptical worries about, to 
take Colin McGinn’s example, benevolent deities that would preserve our sensory input in the case that all material 
objects should cease to exist (1999, 8-9).  Similarly, I am not worried about brains in vats, etc. In declining to 
engage with the skeptic, I share the view expressed by others who contend that these sorts of skeptical possibilities 
are not among the relevant alternatives that scientists are trying to discriminate between and so need not be 
addressed by an account of scientific evidence.   
86 This approach has a great deal in common with the pragmatic approach to laws taken by Mitchell (1997). 
87 Not all of these apply to every imaging technology, or to every application of a particular technology.  We do not 
observe color using PET, for instance.  I also think that the same account of reliability will also apply to other sorts 
of non-visual sorts of observation, though I will not explore that here.  I have already denied that observation is 
limited to those processes that are directly available to the human senses and there is no clear way, on epistemic 
grounds alone, to discriminate between processes that are, for example, vision-like and hearing-like.  I am happy to 
grant Hacking’s claim that we can “see” with a microscope (1983), for instance. 
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accuracy and some minimal degree of resolution.88  In order for us to use a particular instrument 

to make the sorts of discriminations needed to answer a particular question, there must be a 

match between the granularity of the world and the resolution of the instrument.  Reliability, in 

short, requires both preservation89 of the structure or features of the object and a match between 

the granularity of the world at which a particular question is directed and the granularity of the 

instrument.90  The task of this chapter will be to examine what this sort of match consists of and 

how we can determine if the match is good enough for the data obtained using some instrument 

to be good evidence, useful in answering the question or questions at hand.  The second part, 

assessing the reliability of an instrument for a particular purpose, often presents significant 

challenges in the case of imaging technologies91 since, like unaided human perception, they are 

not perfectly reliable under all conditions92 and the methods we have of assessing their reliability 

may be limited, particularly in cases where we have no independent access to the properties 

which we seek to represent reliably.   

There are, of course, many existing philosophical accounts of reliability.  While none is on its 

own able to resolve the problems that are set by PET and human perception, it will be helpful to 

review several of them that suggest desiderata for any account of reliability.   Within 

epistemology, Nozick’s (1981) counterfactual “truth-tracking” account of knowledge and 

                                                 
88 Having higher resolution than is required does not prevent the question from being answered, though it may make 
it considerably more difficult.  If I want to count the number of bacterial colonies on an agar plate, my unaided eyes 
will usually provide the most efficient means of arriving at an answer.  A dissecting scope with ~10X magnification 
may help me more easily spot small colonies, but looking at the plate under 100X magnification will not provide 
any additional assistance and will slow the counting process down considerably. 
89 Features of the object need not be perfectly preserved, but must be preserved within some definable set of limits. 
90 The granularity of the world is more precisely stated as the granularity of the description of the world at which a 
particular question is directed.  While the world offers some constraints on how we may divide it, and so on possible 
descriptions of it, there is no uniquely correct way of dividing up and describing the world (cf.  Mitchell 2002). 
91 The next chapter will draw heavily on confocal microscopy since the issues to be addressed there (having to do 
with the concept of gaining visual access to phenomena and the sort of advantages it might confer) are particularly 
relevant to it.  In the interest of space and non-redundancy I will restrict myself to PET in this chapter.  There are 
both more and more complex difficulties with establishing reliability in the case of PET, so it will be more 
informative to use it as the case study here. 
92 Including the conditions under which they are commonly used. 
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Goldman’s (1986) reliable process account of justification are among the most commonly 

referred to types of epistemic externalism.  Both, however, have been subjected to serious 

criticism resulting in successive revisions to Goldman’s account and a broadly held belief that 

Nozick’s view is untenable.93 While Goldman’s account is the most successful reliabilist 

account, reliabilism in general has been accused of both having an inadequate concept of 

reliability and of lacking a principled way of identifying process types to which a reliability 

measure can be applied (usually known as the generality problem).  Help with resolving these 

difficulties can be found by looking to the philosophy of science.  Here, there is a considerable 

literature which deals with the reliability of evidence under the rubric of confirmation theory and 

philosophy of experiment.   

There is considerable heterogeneity of approaches with key differences between those who: 

1) promote a logical or a priori account of evidence (e.g. Carnap 1962, Hempel 1965, Glymour 

1980) vs. an empirical account (e.g. Achinstein 1985, 2000, 2001; Woodward 2000; Mayo 2000; 

Bogen and Woodward 1988,1992), and 2) those who take reliability to refer to convergence on 

the correct (true or some surrogate notion) answer in the limit (e.g. Kelly 1996; Kelly, Schulte, 

and Juhl 1997; Harrell 2000)94 vs. those who understand reliability to minimize the probability 

of error given a finite amount of data or time (e.g. Mayo 1996, 2000; Roush 2005).95  Recent 

work in this area has argued strongly in favor of an empirical rather than a logical approach 

(Bogen and Woodward 1992; Woodward 2000; Mayo 2000; Achinstein 2000).  Arguments to 

this effect point out that traditional accounts focus on the relationship between evidence and a 

                                                 
93 Though Keith DeRose (1999) has incorporated some aspects of Nozick’s account into his own contextualism and 
Sherri Roush (2005) advocates tracking accounts of both knowledge and evidence using conditional probabilities 
instead of counterfactuals. 
94 Some Bayesian approaches will also fall into this category, though convergence for them will be in terms of 
subjective probability such that convergence refers to the agent’s certainty that her degree of belief will converge to 
1 in the limit.  
95 These two axes of difference are clearly overlapping and are not intended to represent independent positions. 
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hypothesis rather than on the role played by the reliability with which the evidence is produced.  

Since I am concerned primarily with the latter question, I will focus on the second area of 

disagreement. As with reliabilist accounts within traditional epistemology none of the proposed 

accounts are without difficulties, but after considering in section 4.2 how each succeeds or fails 

to shed light on the problem of reliability of observational processes, I will argue in section 4.3 

for an account that takes reliability to be objective, is based on limiting error rather than 

converging to the truth and distinguishes the issue of reliability from that of resolution.  

With this account of reliability in hand, section 4.4 will assess how processes can be 

determined to be reliable in the specified sense.  The key challenges for this task will be to deal 

with the generality problem, as mentioned above, and to respond to charges that current accounts 

of evidence are unable to accommodate PET (Bogen 2001, 2002).  With respect to the first, I will 

claim that if we can specify what it means for an experimental set-up to be repeatable, we ought 

to be able to apply the same idea to epistemically relevant process types. With respect to the 

second, I will argue that by disentangling the question of resolution from reliability and by 

further distinguishing the instrument itself from the specific application, we are much better able 

to account for the epistemic value of PET.    

4.2. Reliability 

The intuitive sense of the term “reliable” is something like trustworthy or tending strongly to 

lead to correct conclusions.  Reliable data ought to indicate to us that something is the case (is 

present or absent, has a particular value, etc.) when it is, and that it is not the case when it isn’t.  

For data to be reliable, then, it must correspond to the phenomenon in some sort of regular way, 
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with respect to some specified set of properties.96  A reliable process, in turn, is one that 

produces reliable data.97 This notion of reliability can be identified in a great deal of writing, 

both philosophical and scientific. However, this general statement can be agreed to by 

proponents of considerably different proposals for how reliability and reliable processes should 

be understood, once fleshed out.  I will begin by looking at how reliable process accounts in 

epistemology try to elaborate this notion.  Next, I will examine some important accounts of 

reliability within philosophy of science. Finally, I will suggest how accounts from the two areas 

can complement each other and provide a starting point for the account of reliability that I will 

develop. 

4.2.1. Internalism and externalism 
Reliabilism in epistemology is usually taken to be the pre-eminent version of externalism.  

Externalist accounts are often taken to be ways of getting around Gettier-type counterexamples 

by assuring a connection between knowledge and truth.  Several different reliabilist accounts 

have been proposed, but they all hold that an agent is justified in her belief that p if her belief 

that p was produced by a reliable process.  Importantly, the agent need not know that her belief is 

produced by a reliable process in order to be justified in holding the belief.  As such, reliabilism 

stands in contrast to internalist accounts of justification which require that the agent have access 

to and able to give reasons to justify her belief that p.  Both internalism and externalism have 

been subjected to heavy and ongoing criticism and a complete defense of either approach would 

require solutions to some very significant problems – solutions for many of which I do not claim 

to have.  However, the project of developing an account of reliability that is capable of 

                                                 
96 Any particular type of instrument detects only certain objects or properties; it cannot produce reliable data about 
features of the world that it does not detect or (in some case) that are not causally related to what it detects. 
97 While there is an apparent symmetry in taking reliable processes to produce reliable data and reliable data to be 
those produced by reliable processes, it is obviously the process not the data that determines reliability.  However, 
analysis of the data plays a crucial role in allowing us to assess the reliability of the processes that produce them. 
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supporting the epistemic status of observational processes does not require that the debate 

between internalists and externalists be solved.98   My purpose here is not to answer the question 

of when we are justified in holding our beliefs, but instead to provide an account of the sorts of 

processes that are most conducive to correctness.99  For this purpose an account that shares 

some, though certainly not all, features with the externalist project is needed.  Before turning to 

Nozick’s “truth-tracking” account of knowledge and Goldman’s reliable process account of 

justification, however, I want to clarify what my account will and will not take from or 

contribute to the larger dispute between internalism and externalism. 

Reliable processes are the most likely to produce knowledge if we use even a very coarse 

understanding of reliability as trustworthiness: even if a particular individual does not know that 

the process (e.g. PET) is reliable, there is still an objective fact of the matter about whether or not 

it is.  The internalist and externalist disagree about whether or not an agent must know that the 

process that produced her belief is reliable, but both ought to admit that an unreliable process 

can’t justify beliefs since it doesn’t tend to produce true beliefs.  (And if it does, it is by sheer 

luck.)  So, like the externalist I need to have some way of characterizing what reliability means 

and what sorts of processes are reliable in this sense.  In order to determine what processes are 

reliable (in whatever sense), one clearly needs to find and give reasons, and in the case of 

contested or competing knowledge claims, reasons may need to be given for why one method or 

instrument is more reliable than another.  Thus, my account is not intended to defeat the 

internalist.  After I have defended my account of reliability, it could certainly still be argued by 

                                                 
98 One of the key goals of both internalist and externalist accounts is to fend off skepticism, but, as I said earlier, that 
will not be my concern here.  
99  I will use the term “correctness” to refer to the sought-after relationship between the data and the hypothesis or 
between the data and their representation of the phenomenon.  I mean by this term, however, only that the 
relationship be one which is judged to be correct, whether one takes this to be truth, empirical adequacy, good 
predictive power, or some other notion. 
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the internalist that it is not the fact that my believing p was produced by a reliable process that 

provides the justification for my belief, but rather that the justification comes from facts that I 

can know by reflection alone.100   

It is plausible to claim that our justification for some belief that is based on data obtained 

using PET or some other imaging technology is justified only if someone – though not every 

individual user of the technology – has internal access to facts about the reliability of the 

instrument for a certain purpose that justify this belief.101  Such a claim would, however, need to 

allow that complete and sufficient facts about this reliability not be present in the mind of any 

single user but instead be distributed among workers who are themselves spread between 

multiple disciplines – statistics, computer science, physiology, etc. – and so possessed 

“internally” only by the scientific community more generally.  This is not necessarily a problem 

for the internalist, however, as long as an argument can be made that justifies my reliance on 

pooled expert knowledge.  Something like this can be found in what Brandom refers to as the 

“social articulation of the space of reasons” (1995).102  Very briefly, Brandom insists that 

considerations of truth and reliability cannot be completely disengaged from the ability to give 

reasons, but that the giving of reasons ought not to be understood as a requirement to be met by 

each of us individually.  We must recognize, first, that reliability is connected to the legitimacy 

of inference in that it concerns the reason for believing or knowing p and, second, that it is 

socially articulated inference.   There are always two social perspectives involved:  that of the 

one to whom knowledge (or standing in the space of reasons) is attributed, and that of the one 

                                                 
100 Pryor (2001, 104) characterizes this basic internalist view as “simple internalism”.  There are many more 
stringent takes on internalism, but for our purpose the minimal view will be sufficient. 
101 If nobody had access to this sort of justification, no one would use the technology or at least not place much 
weight on the evidence gathered using it until some such justification is established. 
102 Brandom is not defending a strict internalist view and his emphasis on truth and reliability as external features of 
the world would have to be dealt with by any internalist wanting to adopt the more congenial (to them) parts of his 
account. 
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who attributes it.  In some cases, I can attribute knowledge to another person because I can 

defend his reliability even though he cannot.  The social distribution of reason giving ability, 

therefore, allows us to have knowledge in cases where we ourselves do not have the expert’s 

reason-giving capacity.   

Additional support for such an argument can be found in work on social epistemology (e.g. 

Shapley and Grofman 1984; Goldman 1999) that aims to show how certain modes of combining 

various sets of expert opinion can increase the accuracy of group belief.  It might also be found 

by analogy to Putnam’s causal account of reference according to which reference, after being 

fixed to samples of a particular natural kind at a dubbing, is to whatever has the same internal 

structure of the samples (e.g. having the chemical structure H20 in the case of water). Those 

present at a dubbing are able to transmit the reference to others via communicative exchanges, 

these others can then lend the reference to yet other people, and so on.  In this way, speakers who 

are ignorant about the internal properties of the kind in question can nevertheless use the natural 

kind term to refer to the members of the kind because underlying their uses are causal chains 

stretching back to a reference-fixing (Putnam 1975).  Similarly, neither the oncologist who sends 

a patient to get a PET scan, the PET technician who performs the scan, the statistician who 

develops statistical techniques for modeling the data, the computer scientist who writes the 

software that gets used to process the data, the physicist who develops new radiopharmaceuticals 

for use in PET, nor the physiologist who develops tracer kinetic models of the movement of the 

radiopharmaceutical between various compartments (e.g. between capillaries and synapses in the 

case of a compound that binds serotonin receptors) individually has complete knowledge of the 

necessary and sufficient conditions for when and why a PET scan using a certain 

radiopharmaceutical and specific collection parameters and specific mathematical and statistical 

108 



 

processing methods will be able to serve as a reliable indicator of whether that patient has 

cancer.  Each could contribute some of the needed conditions - and so, reasons to believe the 

scan was a reliable indicator of the presence (or absence) and location of cancerous lesions - but 

none could provide them all.  However, this fact doesn’t bear on the matter of whether or not 

PET is or is not a reliable indicator of cancer:103 it is not the giving of reasons that makes the 

process conducive to knowledge but rather the reliability-making features of the process itself.  

Thus, what I need to provide an account of the reliability of evidence (or the reliability of the 

relation between data and phenomena) will have much in common with externalism, specifically 

with process reliabilism, but less in common with internalism.  

4.2.2. Tracking the truth 
An externalist account that has received a great deal of attention, though it has fallen largely 

out of favour in recent years, is Nozick’s “truth-tracking” account of knowledge.  According to 

Nozick’s account of knowledge, belief counts as knowledge just in case it “tracks the truth”, i.e. 

if it reliably covaries with reality across a certain range of close possible situations.  After going 

through several iterations, Nozick presents the following analysis of knowledge: 

Let us define a technical locution, S knows, via method (or way of believing) M, that p: 

1. p is true.  

2. S believes, via method or way of coming to believe M, that p. 

                                                 
103 As will be made clear later, the claim that PET is or is not a reliable indicator of cancer is far too broad.  A better, 
though less succinct, way to phrase it is whether PET is a reliable detector of lesions of a particular type (e.g small 
cell lung carcinoma) and size in a particular location.  The fact that knowledge is distributed among such a large set 
of disparate disciplines might conceivably pose a problem for the internalist if there is no effective communication 
between the groups.  I will not consider this possibility, however, since I do not consider it to be a real problem.  A 
related difficulty, however, is the use of PET scans in situations in which they are not reliable and taking the results 
to be reliable indicators of the presence or absence of some disease or condition.  This is less of a problem in 
oncology, though the use of whole-body CT in otherwise healthy individuals as part of a supposedly thorough (and 
expensive) “check-up” has in recent years aroused concern.  It is also a real concern in neuroimaging where PET 
images are used in legal courts and other public arenas as objective, supposedly reliable indicators of mental illness, 
personality disorders, etc. (c.f. Dumit, 2004). 
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3.   If p weren’t true and S were to use M to arrive at a belief whether (or not) p, then 

S wouldn’t believe, via M, that p.  

4. If p were true and S were to use M to arrive at a belief whether (or not) p, then S 

would believe, via M, that p.  (Nozick 1981, 179) 

 

It is the reliance on subjective conditionals that is perhaps the most serious problem with this 

account. McGinn (1999), for instance has claimed that since counterfactuals always have a 

dependent truth value, Nozick owes us an account of what makes the counterfactuals true.  If, as 

McGinn claims, a satisfactory analysis must reveal the categorical facts upon which the 

counterfactuals depend, then the counterfactuals themselves are eliminable and the real work is 

done by the categorical statements.  Nozick’s strategy to deal with worries about the status of 

counterfactuals is to claim that their truth status depends on whether they hold in close possible 

world:  

 “This point [about the power and intuitiveness of the subjunctive 
condition] is brought out especially clearly in recent ‘possible-
worlds’ accounts of subjunctives: the subjunctive is true when 
(roughly) in all those worlds in which p holds true that are closest 
to the actual world, q also is true. (Examine those worlds in which 
p holds true closest to the actual world, and see if q holds true in all 
these.) Whether or not q is true in p worlds that are still farther 
away from the actual world is irrelevant to the truth of the 
subjunctive.” (Nozick 81, p. 174)  

 

Even if we put aside general worries about possible worlds, it is very difficult to see how this 

account could be applied to the cases we are interested in.  Consider, for instance the subjunctive 

conditional, “If cortical area X were not involved in cognitive task Y, then this particular set of 

voxels would not have been active when subjects were asked to do Z.”  What are the closest 

possible worlds to ours in which cortical area X is involved in Y?  And how are we to assess 
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whether or not the antecedent holds in all of those worlds?  The standard account of closeness of 

possible worlds is in terms of the material facts and natural laws that hold in various worlds.  So 

what we would want is to find worlds with the smallest possible difference in facts (made 

possible by a ‘small miracle” or exception to a law in this one instance) and identical or, at most 

slightly different sets of laws and check the pattern of activation that would be derived from 

those facts using the laws in order to determine if (or at what distance of possible world) an area 

of activation changes.  But notice how very strong the third and fourth condition are and the 

fineness with which we would have to specify the set of laws involved in producing a specific 

area of activation if we want to assess whether tracking holds for this PET experiment or for PET 

more generally.   If we could derive the results (activation patterns) from the laws and material 

facts that hold in the close possible worlds, then certainly we must also be able to provide such a 

derivation for the actual world.   But there is no way in which we can do this.  As we shall see in 

section 4.4, that sort of fine-grained analysis based on derivation of results from laws (or from 

the particular algorithms that are applied to the raw count data) is simply not possible.  We must 

supplement our theoretical understanding of the mathematics and statistics (as well as of the 

physical processes involved prior to detection of a photon) with experimental manipulations such 

as the use of phantoms in order to know what pattern of activation will be observed given a 

particular input.  If we cannot predict exactly when (e.g. using what distribution of radiation 

density in the phantom or which reconstruction algorithm) or how the activation pattern will 

change in the real world, then we have no chance of assessing it in non-actual worlds with 

slightly different laws.  Yet, it is my contention in this chapter that we can, at least sometimes, 

check to see if PET data is reliable.  The details of how we can do this will be discussed later, but 

for now what matters is that Nozick’s counterfactual analysis cannot possibly allow us to do this 
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– ever.104  Thus, his account does not provide much assistance in judging the reliability of human 

perception and imaging technologies. 

4.2.3. Reliabilist accounts 
Goldman’s reliable process account of justified belief is often taken to be the best developed 

version of reliabilism (e.g. Beebe 2004; Ginet 1985; Haack 1993; Harrell 2000), so I will rely on 

it to examine what reliabilist accounts might have to offer.  In one of his early papers, he begins 

by saying that “reliability consists in the tendency of a process to produce beliefs that are true 

rather than false” (1979, 10).  He goes on in that paper to provide several successive 

modifications of his definition of justification based on this general idea.  Similarly, in work over 

the next two decades he continues to refine his definition of when a person is justified in his or 

her beliefs.  Many of these refinements are motivated at least in part by consideration of 

skeptical arguments and so respond to difficulties that will not be addressed here.  The crucial 

point for the project at hand is that throughout the successive refinements of his proposal, 

Goldman retains the conception of reliability as the tendency of a process to produce more true 

beliefs than false ones. I will only consider, therefore, one later version in which he defines 

justified belief as follows: 

S’s belief in p is justified iff it is caused (or causally sustained) by 
a reliable cognitive process, or a history of reliable processes. 
(Goldman 1994, 309) 

 

A cognitive process is reliable if it produces a sufficiently high ratio (>50%) of true to false 

beliefs.  If a belief is produced by a process with a high truth ratio (i.e. by a process with a high 

                                                 
104 That is, we could check none (vs. some) of our results at present.  If we had much greater computational ability 
than we actually do – and much faster brains or computers – then it is possible that we could derive the needed 
results.  However, since this is not currently the case and is not likely to be the case at any point in the foreseeable 
future, I do not take this to count in favor of Nozick’s account. 
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degree of reliability), the belief has a high degree of justification.  If a belief is produced by a 

process with a lower truth ratio, the belief has a lower degree of justification. 

On the face of it, this seems to match very well with what I claimed above we would like to 

get from reliable data if we take the beliefs in question to refer to beliefs about the data.  Data 

that has a high probability of correctly discriminating between relevant alternative claims about 

the phenomena will have a high truth ratio.  As long as we have some means of assessing the 

truth ratios, presumably by reference to independent means of assessing the truth or falsity of our 

beliefs or data, we should be able to determine whether or not a particular process is reliable.  It 

is in the details of how this should be done, however, that problems emerge. 

Several objections have continued to be raised over the years to Goldman’s account and have 

not been satisfactorily resolved with any of the revised versions of his proposal.  One of these 

objections is the lack of precision of his truth ratios, in particular the fact that he has refused to 

specify a particular truth-ratio a process must have to be considered reliable.  I am unconvinced 

that this is a significant problem, however.  To begin with, while we would like reliability itself 

to be something that we can define in absolute terms even if few or even no actual processes are 

perfectly reliable; we would also like to be able to assess by how little or by how much a 

particular process falls short of this ideal.  While producing false belief nearly half the time does 

perhaps run counter to most people’s intuitions about what it means for a process to be reliable, it 

may be the case that certain processes do generate a relatively high proportion of false beliefs but 

that we also have the ability to identify which ones are more likely to be wrong and so increase 

the effective truth ratio.  If we are able to isolate at least some of the false beliefs, in other words, 

we may be able to use the process in a more limited manner (i.e. not for the types of beliefs that 

have a higher chance of being wrong), but with a higher degree of justification.  This, however, 
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raises the question of whether we are still referring to the same process or to a new, more tightly 

defined process that has a higher degree of reliability than the original process.  Trying to resolve 

this issue leads to two more objections, both of which I take to be much more serious.  The 

second objection is that the idea of the tendency of a process to produce a certain proportion of 

correct beliefs is vague.  The third is what has come to be known as the “generality problem” and 

concerns the fact that reliability has to be ascribed to process types rather than tokens, but that 

there is no principled way of identifying a single relevant process type that is responsible for 

producing the belief for each process token.  I will consider each of these in turn. 

The problem of specifying what it means for a process to produce a certain ratio of true 

beliefs is that it seems like we must have a process that can be repeated many times in order to 

see how often it usually gets things right (i.e. enough times that we can perform a meaningful 

statistical analysis of its performance).  This not only requires that we be able to specify the 

relevant process (bringing up the generality problem), but that we face up to the difficulty of 

what interpretation of probability to use.  Goldman’s reply to this challenge is that “general 

reliability is probably best understood as a propensity rather than a frequency.  This avoids the 

possibility that actual uses of the process are numerically too limited or skewed to represent an 

intuitively appropriate ratio.” (1986,49).  Propensities  are, of course, notoriously vague 

themselves as well as having a somewhat tenuous connection with what actually happens in the 

world.  This, then, is a serious challenge.  Similar difficulties involving the appropriate 

interpretation of probability will surface again later in the discussion of error statistics, so I will 

leave this problem for now and return to it at that point. 

The generality problem arises, as I said above, because you cannot assign truth ratios to 

process tokens, but only to process types.  A process token is, by definition, a unique event 
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(producing a single belief) occurring at a particular time and place; it makes no sense to ask if it 

would produce mostly true beliefs over repeated use.105  Thus, in order to provide meaningful 

truth ratios, we need to refer to process types.  Since each belief is produced by a process token, 

we must also be able to identify each process token as being an instance of a particular process 

type.  This is the real source of the problem since for every process token, it seems that we can 

provide a seemingly endless number of process types to which it may belong.  To illustrate this 

problem, Conee and Feldman (1998) offer the following example:  suppose that Smith looks out 

his window, sees a maple tree, and forms the belief that there is a maple tree nearby.  As long as 

the proper operating conditions for human visual perception are in place (i.e. Smith has normal 

eyesight, is not drunk or otherwise hallucinating, there is sufficient light, etc.), then it seems 

plausible that Smith’s belief is justified.  However, the token process that produced Smith’s 

belief is a member of many process types, including but not limited to the following:  

1. visual process 

2. perceptual process 

3. tree-identifying process 

4. classifying tree by identification of leaf-shape process 

5. process of retinal image with specific characteristics leading to belief that a maple 

tree is close by 

6. process of identifying objects through a window 

7. process of identifying trees through a window 

8. process of identifying trees completely behind a solid obstruction 

                                                 
105 If we were to do so, all processes would either have a truth ratio of 1 (if the token produced a true belief) or 0 (if 
the token produced a false belief).  Goldman identifies this as the Single Case Problem and proposes that by using a 
propensity account of truth-ratio production it can be avoided. 
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And so on.  If every process type to which a token could conceivably belong tended to 

produce the same truth ratio, then this might not be such a severe difficulty for reliabilism, but 

even cursory consideration of the above list shows that this is not so.  Type (7), for instance 

would undoubtedly have a fairly high truth ratio (at least if we further specified that the trees 

were reasonably close), but type (8) will presumably have quite a low truth ratio since glass is a 

special kind of solid and most solid objects that completely occlude objects to be identified will 

cause a very significant decrease in the truth of identifications made using this process type. It is 

not obvious whether the actual process token was an instance of type (8), in which case his belief 

would seem to be unjustified, or of type (7)  - or (1) through (6) – in which case it would seem to 

be justified.  The heart of the generality problem, then, is that there seems to be no principled 

way to identify a single process type that is the epistemically relevant type of which a particular 

process token is an instance.  Since the idea of a stable repeatable process is one that is also 

required in order to characterize experiment, it seems likely that in turning to accounts of 

reliability within philosophy of science, we may find some help in trying to resolve this objection 

as well. 

4.2.4. Accounts of reliability within philosophy of science 
In the above section, reliability was taken to be something that could apply equally to any 

belief-generating process.  The same is true when we turn to philosophy of science.  Science uses 

many different sorts of methods to try to get knowledge about the world and if reliability serves 

the ultimate goal of inquiry (whether taken to be correctness truth, empirical adequacy, accurate 

predictions, etc.) then it is something we ought to seek in all of our methods.  Nevertheless, 

questions of what makes something good or reliable evidence – its relation to some phenomenon 

of interest – are often treated separately from those concerned with how evidence supports some 

hypothesis.  We might take these to be questions about the reliability of observation and the 
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reliability of induction, respectively.  I am primarily concerned here with the reliability of 

observation.  This question is not entirely separable from that of inductive inference, but the 

emphasis is different.106   

I will be concerned in this section primarily to examine the question of whether we ought to 

understand reliability in the context of human perception and imaging technologies  as limiting 

logical reliability in the sense of Kelly (1996) or, instead, as finite probabilistic reliability (as 

advocated by classical statistics and by Mayo (1996,  2000)).  Briefly, a method is characterized 

by logical limiting reliability if, for a given hypothesis, the method converges in the limit to the 

truth about that hypothesis on all possible sets of data that are consistent with the background 

assumptions. A method has finite probabilistic reliability if it generates erroneous results with a 

low enough probability given a finite amount of data.   

On the face of it, it might seem that neither account is really what we want.  Ideally, what we 

would like is a process that is guaranteed to get things exactly right107 all the time.  However, 

such processes are rarely, if ever, available to us.  It is also the case, though, that in order for data 

to be useful – for them to allow us to identify relevant features of phenomena and discriminate 

between different hypotheses regarding the phenomena, we rarely need perfect accuracy and the 

highest degree of precision.  But, if we acknowledge that practical considerations often make it 

                                                 
106 As I indicated earlier, several authors have recently argued that an adequate account of evidence (usually 
observational evidence) must be empirical rather than logical (e.g Bogen and Woodward 1992; Woodward 2000; 
Mayo 2000; Achinstein 2000).  For instance, Bogen and Woodward “deny that the use of data to correctly 
discriminate between competing phenomena claims requires that the data stand in some distinctive logical 
relationship to those claims of a sort that has been the subject of standard philosophical accounts of confirmation.” 
(1992, 594-5).  I agree that the types of processes by which we try to achieve correct discriminations of this sort are 
very heterogeneous and have more to do with the particular methods and circumstances we use than with any sort of 
logical framework.  This is not to say, however, that logical frameworks are not also useful for other aspects of 
science, such as how different sorts of evidence (reliably obtained) can provide support for hypotheses or theories.  
However, since my interest here is with the reliability of evidence and of methods of obtaining evidence, I will not 
discuss here either hypothetico-deductive accounts or other strictly logical accounts such as Hempel’s “satisfaction” 
theory (1965) and Glymour’s bootstrapping (1980).   
107 With respect to the features that the process in question represents about the phenomenon. 
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impossible to actually obtain perfect data, how should we decide between different accounts of 

reliability?  Should we prefer a method that is guaranteed to get things right eventually (even if 

we may not ever arrive at that point and, even if we do, won’t know when we’re there) or one 

that gets us acceptably close108 to the correct answer, but may never get it exactly right?  The 

answer will depend on what problem we’re trying to solve.  The problem that human perception, 

PET, and other imaging technologies set before us is whether or not the data they provide allows 

us to reliably discriminate between relevant alternative hypotheses about the things we are 

observing given a relatively small amount of data - a finite number of trials or a reasonably short 

viewing time (for visual perception).  This is particularly the case for PET.  PET is often used in 

clinical contexts where both the amount of data that can be collected and the computational 

resources that can be devoted to any one scan are severely limited.109  The amount of data that 

can be collected is limited both by the fact that the amount of radioactive compound that can 

safely be injected into a patient is quite small and by the fact that the detectors themselves have 

upper limits on their count rates.  Computational time is limited simply because of the fact that 

no one region and no one hospital or research institution has very many PET scanners.  In order 

to fit in as many patients as can benefit from scans, time spent on the scan itself as well as on the 

processing of the data must usually be minimized as much as possible.  In the end, then, what we 

want to know is whether the answer we arrive at after a relatively short series of trials is likely to 

be approximately correct.  To address this question what we want is some sort of finite 

probabilistic reliability.110  To see why, let us first look at logical limiting reliability to see why 

                                                 
108 What is “acceptably close” will depend on the specific context.  Some questions will require that more fine-
grained discriminations be made and this may, in turn, require that the range of error be smaller. 
109 Similar constraints apply to research applications.  In addition, cost often becomes a more significant factor when 
it is research funds rather than insurance that pays the cost of the scans. 
110 This term is borrowed from Steel (2005). 
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the sort of problem that it can help us with is not the problem that imaging technologies present 

us with. 

Logical limiting reliability requires of a reliable method that it converge in the limit on the 

correct answer (again understood as truth, empirical adequacy, or some other criterion) in every 

context consistent with our background knowledge (c.f. Kelly 1996, Harrell 2000).  It is itself a 

compromise of sorts since there are many ways to cash out “convergence”, some of which might 

seem a better match with our intuitive ideal.  We might have convergence in the following ways: 

by time t, with certainty, and in the limit.111 Convergence by time t means that we will get the 

right answer by a particular time or deadline.  This is the strongest criterion of success, but it is 

clearly too strong for most scientific inquiries:  we usually don’t know how much data or how 

much time will be required to determine the status of a hypothesis.  Convergence with certainty 

is weaker, but still too strong for actual practice.  According to this standard, a method should 

output a specific mark (Kelly uses “!”) right before it outputs the correct answer.  We don’t know 

how long it will take, but we’ll know once we get there.  Unfortunately, our methods don’t 

usually let us know when we’ve reached the end, with a “!” or otherwise.  Weaker still is the idea 

of convergence in the limit.  A method converges in the limit if there exists some time after 

which it will forever output that particular answer.  We cannot be certain about when this point 

has been reached however, since any finite sequence of outputs is consistent with any answer in 

the limit and, of course, we will never actually reach the end of an infinite data stream.  Kelly 

claims that many scientific hypotheses fall into this category and that it is useful to be able to 

determine which hypotheses will allow knowledge in the limit even if we’re not sure that we’ve 

got it yet.   
                                                 
111 Kelly also considers gradual convergence, but this notion is weaker than the one he chooses, so I will leave it 
aside.  There are also 3 different ways to cash out “the truth”: verification, refutation or decision. 
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I do not deny that convergence in the limit may be a theoretical possibility for many methods 

including imaging technologies, though the constraints of our actual scientific practice will often 

restrict us to a relatively short data stream.  My contention that logical limiting reliability is not 

the sense we need to assess the reliability of imaging technologies stems from the fact that this 

sense of reliability is designed to address questions about underdetermination rather than about 

the problem that imaging technologies confront us with.  Kelly is concerned primarily with the 

problem of induction and, more specifically, with identifying the difference between theories that 

are underdetermined and those that are not.  He proposes that underdetermination is exactly the 

impossibility of logical reliability (Kelly 1996, 30).  The framework he goes on to develop, then, 

is intended to examine the question of whether there are methods that can be shown to be 

logically reliable.  If no such methods exist, then we are faced with underdetermination, but if 

some methods are reliable in his sense, then at least some knowledge can be freed from the 

specter of underdetermination.112  While it may be very interesting to explore the logical 

structure of problems and methods that will converge to the correct answer in the limit, this 

understanding of reliability is of little use for the question of whether or not some method is 

likely to get the correct answer (to whatever degree of approximation is acceptable for the 

purpose at hand) after a short series of trials.  Any initial data stream is consistent with any 

answer in the limit, so we have no reason to think that the finite amount of data we have 

available to us stands in any particular relationship to the correct answer.  We would like to be 

able to claim that individual uses of visual perception or some imaging technology are reliable, 

not just that they are methods that are reliable in the limit.  Limiting reliability, therefore, is not 

useful for evaluating the reliability of currently used methods of observation. 

                                                 
112 This is particularly interesting at the highest level of abstraction where the methods in question are very general 
inductive methods or what he refers to as “complete architectures for induction” (Kelly 1996, 36). 
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The other way that we might choose to understand reliability is as finite probabilistic 

reliability.113  To meet this standard, a method must produce erroneous data with an acceptably 

low frequency given a finite specified sample size.  Defenders of orthodox statistical methods 

(e.g. Mayo 1996) claim that this standard is the one that should be met in order to be consistent 

with actual scientific practice.  Does this variety of reliability do any better for the problem of 

getting the (approximately) correct answer with a limited amount of data?  I think it does, but we 

need to be careful about how we describe it. Above, I said that finite probabilistic reliability 

requires of a reliable method that it generate erroneous results with an acceptably low rate given 

a specified and finite sample size.  The key point is that we want to know the chance of error.  

But orthodox statistics doesn’t tell us how likely we are to be wrong.  This is a common 

misconception of what p-values114 tell us (Gigerenzer 2000; Mayo 1996), but in fact they tell us 

only the probability that we would get the data we did if the null hypothesis were true.  In other 

words, if a PET study identifies a particular region of the brain as involved in a particular task 

with p<0.01, it doesn’t tell us that there is less that a 1% chance that this area isn’t involved in 

the task, but only that we can would have less than a 1% chance of getting this data if the area 

weren’t involved in the task.  If we want the chance that we’re wrong, then what we need is to 

incorporate the base rate into the calculation (to get the positive predictive value of some result).   

Mayo (1996) has argued vehemently that it is not what we want.  Instead, she claims that 

what we want is for error statistical analysis to assess whether or not the evidence is effective at 

                                                 
113 There is a third option: limiting probabilistic reliability.  According to probabilistic limiting reliability, a method 
must converge on the right answer with probability 1 (e.g. Spirtes, Glymour, Scheines 2000).  In the case of 
Bayesian convergence theorems where probability refers to the agent’s degrees of belief, this means only that the 
agent must believe that the method will converge, not that it actually will (Steel 2005; Kelly, Schulte, and Juhl 
1997).  If a method can meet the former standard, it will also meet the latter, so I will only discuss logical limiting 
reliability here.   
114 The p-value (probability value) of a statistical hypothesis test is the probability of getting a value of the test 
statistic of equal or greater magnitude than that observed (by chance) if the null hypothesis were actually true. 
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ruling out the error in assessing the particular hypothesis under test.  But base rates can clearly be 

relevant to the question of how likely we are to be making an error.  It is not entirely clear, then, 

why she denies that the positive predictive value of a result is something that we ought to 

consider in characterizing the error characteristics of some method.  In cases such as the 

interpretation of medical diagnostic tests, it certainly seems as though we ought to incorporate 

the base rate if this information is available to us (though in many cases it might not be).  If, for 

instance, we know that the sensitivity of HIV testing is 99.8 % (the test will be positive in 998 

out of 1000 people who are infected with HIV), that the rate of false positives is 0.01% (or 1 in 

10,000, and that the prevalence of HIV in low risk populations is also 0.01%, it would seem to 

make a relevant difference to the error status of the test in the case of an  individual who tests 

positive if we know that that person is in a low risk or high risk group.  While the positive 

predictive value of a positive test for someone in a high risk group is 99.8% (or is at least near 

that, depending on how high risk the person’s behavior is), for a person in a low risk group is 

only 50%.115  In other words, we are very likely to be wrong in the latter case, but only 

minimally likely to be wrong in the former. 

Prevalence of HIV 
in lower-risk population 

# of true positives per 
10,000 tests 

Positive predictive value  
of a positive test 

0.01% 1/10,000 50% 

0.02% 2/10,000 67% 

0.05% 5/10,000 83% 

0.1% 10/10,000 91% 

1.0% 100/10,000 99% 

Table 4.1  Effect of base rate. 

                                                 
115 This example is taken from Gigerenzer (2000, 81). 
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  Moreover, failure to take the base rate into consideration can lead to very significant error 

even with relatively small differences in the base rate.  Table 4.1 shows the effect of relatively 

small differences in the prevalence of HIV in a population on the positive predictive value of an 

HIV test (all other values remaining unchanged from the scenario described above).  It seems to 

me to be unproblematic to admit base rates into calculations such as these.  It is not even 

necessary to admit subjective probabilities in order to do this, so to admit this point would not 

require that Mayo give any ground on this matter (the point against which a great deal of her 

criticism of Bayesians is directed).  While I agree with Mayo that probability and reliability 

ought to be objective, the prevalence of certain conditions (such as HIV infection) among 

various classes can be objectively measured as can an individual’s likely membership in a 

particular class (i.e. by a survey of their patterns of behavior).   

In addition to her dismissal of the relevance of base rates, another difficulty with Mayo’s 

account as it stands is that it is not entirely clear how she understands the idea of probability.  

She does say that she favors a frequentist interpretation but is silent about whether she means by 

this a limiting relative frequency or a finite relative frequency approach.   If she means the 

former, then this version of reliability will end up collapsing into a version of logical limiting 

reliability and so will have little use for imaging technologies.  If she means the latter, then she 

owes us a solution to difficulties with this interpretation such as the Gambler’s Fallacy according 

to which if a gambler accepts a finite frequency account according to which the statement that 

“the probability of heads is ½” means that in a reasonably large, but finite sequence of coin 

tosses, the frequency of heads will be very close to ½, then if he tosses a coin he believes to be 

fair 1000 times and gets all tails, he will bet on heads for the next 1000 tosses.  Mayo offers no 

such account and, indeed, seems to avoid specifying how she interprets relative frequencies.  
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This is perhaps not surprising, since the finite frequency account generally finds few defenders.  

However, in a recent paper, Glymour (2003) has provided a defense of this view.  Following a 

discussion of the merits of data analysis in terms of uncertain but bounded error (which he claims 

likely lost out to least squares analysis due to the latter’s greater computational tractability), 

Glymour contends that: 

“the finite frequency story is something else besides a definition of 
“probability”, that it is a compressed account of how inferences 
from data may be made with the aid of the mathematics of 
probability, but without the obscure thing itself” (2003, 249) 

 

and that we ought to take this interpretation: 

“as a proposal to use the language and mathematics of probability 
to approximately describe actual or potential finite populations, 
and as a means of generating definite, nonprobabilistic 
hypotheses” (2003, 249) 

 

Glymour’s way of dealing with the Gambler’s Fallacy is to say that the reasonable gambler 

must either reject the distribution assumption that, for a reasonably large sample in which the 

normal distribution is not approximated, a larger sample will still be normally distributed, or, if 

that is impossible (e.g. in the case of a population from which successive samples are taken and 

not replaced), make the assumption that the next 1000 tosses will be heads with perfect 

rationality.  In other words, after acquiring a significant amount of data in which the expected 

frequency of different possible outcomes fails to be obtained, rather than continue to believe that 

each successive trial has the same chance of a particular outcome (e.g. that the probability of 

heads on each subsequent trial will be ½) it is more reasonable to doubt that expected pattern of 

results (the distribution) was correct to begin with. Or, if it is certain that the distribution is as 

originally hypothesized, the reasonable person will acknowledge that the unlikely pattern of 
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results obtained up to that point requires that a similarly skewed series of outcomes must follow.  

In neither case would the gambler be making an illegitimate assumption that the chance of 

obtaining a particular outcome on the next trial or set of trials depends on the outcome of prior 

trials. 

The most interesting part of the proposal, however, is how it allows us to interpret statements 

about the degree of error or approximation in large but finite samples:  they are not claims about 

probabilities but rather about uncertain but bounded errors in some feature of the empirical 

distribution of an actual or potential finite frequency distribution.  The more parameters (with 

their respective errors) contribute to the calculation of this feature, the larger the bounds of the 

error will tend to be since the uncertainty in measurement of each will propagate (additively or 

multiplicatively depending on their relationship to the quantity being calculated) through the 

calculation.  Thus in the gas law example Glymour discusses (2003, 242-3), if we want to 

calculate the pressure of a sample of a gas at time t2 when we are able to measure the 

temperature and volume of the gas at t2 as well as  the pressure, volume, and temperature at some 

other time t1, we simply calculate:116  

(1)    P2 = (P1V1T2)/(T1V2) 

If each quantity has a value of 100 and an error bound of 1, we can calculate with certainty 

that 95.118<P2<105.122.  The degree of uncertainty, in other words, has expanded from 1% in 

the individual measurements, to 10% in the calculated value for P2.  If we were then to measure 

P2 and found it to lie outside the bounds of error, say 106.5, then we would have to either reject 

the gas law or, alternatively, the assumption that the gas sample was the same at the two time 

points.   

                                                 
116 The ideal gas law states that PV=KT where K is a constant, P is pressure, V is volume, and T is temperature.  K 
is constant for any species of gas, so for any one sample K=P1V1/T1=P2V2/T2.  Upon rearrangement, this gives 
equation (1). 
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The same idea can be applied to the measurements and calculations involved in generating 

PET data.  If we are able to calculate the error bounds for the measured quantities and know the 

calculations that are carried out using these quantities to produce areas of activation in the final 

image, then we can set error bounds for these areas of activation with respect to their location, 

intensity (represented by color), and time of appearance and/or disappearance (when relevant).  

Calculation of the error bounds in the final image requires both knowledge of the nature of the 

calculations, and measurement of the error for input measured quantities.  Of course, the 

computations involved are far more complex for PET than for the gas law example and there is 

no simple and general way to determine the error bounds for PET.  Because different algorithms 

and different settings can be used at various points in data collection and processing, the error 

bounds must be calculated independently for each.  To get a better understanding of how this can 

be done, let us look at a comparison of spatial normalization techniques for PET. 

An important part of the resolution of PET for studies of cognitive function has to do with 

the mapping of individual data sets onto standardized reference spaces.  Many such spaces are 

probabilistic atlases that combine the anatomical features of multiple subjects in order to 

construct a brain map that will allow investigators to calculate the probability that a specific 

point of interest (in an MRI or PET data set, for instance) is within a particular anatomical 

structure.  Glymour’s version of the finite frequency interpretation allows us to understand these 

probabilistic brain atlases as containing definite, empirical claims about the location of particular 

anatomical features.  When an investigator takes a particular point (area of activation) in a PET 

data set from an individual subject, maps it onto a standardized atlas, and finds that it falls 

outside the error bounds for the location of a particular structure, she can reject the hypothesis 

that the task that produced the activation involved that particular structure.   
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While this sounds straightforward, the process (spatial normalization) of getting to the point 

of identifying a particular area of activation as falling outside the error bounds of a structure are 

far from simple and are not easy to characterize in terms of their own error bounds.  It is widely 

recognized that there are considerable anatomical and functional differences between 

individuals.  Anatomical differences are present at the macroscopic level – the size and shape of 

the entire brain as well as of specific regions are variable – as well as the microscopic level of 

cellular architecture.  Functional variation is superimposed on this structural variation since 

different areas may be used to perform the same task in different individuals.  Relationships 

between structure and function (or the lack thereof) cannot be investigated without reducing as 

far as possible the structural variability between individual subjects.  Accordingly, virtually all 

studies in cognitive neuroscience require a spatial normalization step in which data acquired in 

different individuals are mapped onto a common neuroanatomical reference space.117  The 

original Talairach transformation (Fox et al., 1985) is restricted to linear transformations, but 

more recently several nonlinear brain warping procedures have been developed to match a given 

brain volume onto a standardized one. These procedures are based on different mathematical 

techniques and can be divided broadly into intensity-driven and model-driven approaches 

according to the sorts of features that are used to map one brain onto the other (Toga 1999).  

                                                 
117 The availability of a good reference space is also an important issue.  While many investigators still use the 
Talairach-Tournoux atlas, it has been extensively criticized for being based on one brain – that of a 60-year old 
female.  Other references now in use include the MRI atlas of the Montreal Neurological Institute and the Human 
Brain Atlas.  A new probabilistic map is currently being produced by Zilles and colleagues that will incorporate not 
just post-mortem MRI data for 15 brains, but also microstructural information generated from histological analysis 
(see Abbott 2003).  After the MRI scan, the brains are embedded in paraffin, cut into 20μm thick sections (of which 
there are 5000-8000 per brain), and every fifteenth section stained to visualize the cell bodies.  Every sixtieth section 
(i.e. one section every 1.2 mm) is imaged, its contours are morphed back to those of the in situ brain (since 
sectioning tends to distort the shape of the sample in just the same way as does cutting through any relatively soft 
object even with a very sharp knife), then the number and distribution of cell bodies are counted and a computer 
used to identify borders of distinct anatomical areas by searching for sudden and statistically significant changes in 
the number and distribution of cell bodies in corresponding coordinates of sequential sections. 
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Intensity-driven procedures define some measure of similarity118 between the specific individual 

brain and the reference or target brain, and then adjust the parameters of the deformation until 

the value of the chosen measure is maximized.  Model-driven approaches, on the other hand, 

start by building explicit geometric models that represent specific anatomical elements119 in each 

of the brains to be warped, then parameterize each element and use these to guide the 

transformation of one brain volume to the other.   

The precise details of these procedures are not important here:  what does matter is that there 

is no way to calculate the error for each variable that enters into the procedures and, accordingly, 

no way to straightforwardly define the error bounds for the final spatial distribution calculated 

with a particular procedure as we were able to do for Glymour’s gas law example.  What we 

really want to know is how close a procedure can get to performing a perfect brain match as 

judged by residual anatomic variability (size of the bounded error) between subjects after spatial 

normalization.  However, there are relatively few studies comparing different spatial 

normalization procedures and methods for measuring error in the final map.   

Crivelli et al. (2002) compared the performance of four common normalization procedures 

for warping individual MRI brain volumes onto a standard reference template (the Human Brain 

Atlas).  The merit of each spatial normalization procedure was assessed by using tissue 

segmentation as the criterion of success.  Each method was used to identify120 each voxel in MRI 

data sets as grey matter, white matter, or cerebrospinal fluid (taking the tissue classification 

performed on the Human Brain Atlas template as the gold standard).  They then quantified the 
                                                 
118 Some of the similarity measures that have been used are normalized cross-correlation (Bajcsy and Kovacic, 1989; 
Collins et al., 1995, 1995), squared differences in pixel intensities (Christensen et al. 1997; Woods et al., 1998; 
Ashburner and Friston 1999), and mutual information metrics (Kim et al., 1997). 
119 These include functionally important surfaces (e.g. Szeliski and Lavallee, 1993; Thompson and Toga, 1996; 
Davatzikos 1996) , curves (e.g. Monga and Benayoun 1995; Subsol, 1999), and point landmarks (Bookstein, 1989; 
Amit et al., 1991). 
120 Each voxel is assigned a probability of belonging to a particular tissue class then a threshold (in this case, 50%) is 
set for classifying each voxel as a unique tissue type. 
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degree of spatial overlap between the template and each MRI volume for each tissue class and 

for each procedure.  In addition, the impact of different spatial normalization procedures on 

functional maps was investigated by taking PET data sets for the same individuals for whom the 

spatial normalization and tissue segmentation had been performed (using MRI data) and looking 

at the overlap in the volumes judged to be active according to the four different procedures.  The 

results showed that there are differences in tissue segmentation between the spatial normalization 

procedures, but that the consequences of these differences were much greater when high 

resolution functional maps (FWHM ~6 mm) are used than at lower resolution (FWHM ~10 mm).   

Whereas 42.8% of the total activation volume was shared between the four methods for the low 

resolution functional maps, only 6.2% was shared at high resolution.  No differences in the 

number of activated areas were observed, but the location of the active areas was significantly 

different between the different methods, creating problems for trying to distinguish precise 

activation areas within the same anatomical area.121   

This means that unless there are good reasons to believe that one normalization method is 

better than another for a specific experimental question, a probabilistic map generated using one 

particular procedure may not correctly identify the relevant error bounds. If a map using multiple 

methods is used, however, the error bounds will be very large, even at low resolution.   Which 

strategy is preferable will itself depend largely on the question.  If, for instance, we were 

interested in whether or not different classes of subjects used widely separated brain areas to 

perform the same task, the wide error bounds might still provide sufficient resolution to answer 

the question.  If the two classes showed non-overlapping areas of activation (including the error 

bounds), they would have been shown to involve different areas.  If, however, the question was 

                                                 
121 They do not claim that the procedure judged to be best for tissue segmentation is always the best choice for any 
experimental question.   
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more specific – about, for instance, the differential involvement of precise areas whose error 

bounds overlapped using either a single method or a compiled map – then the evidence would 

not be able to be used to reliably discriminate between the hypothesis that the same area is 

involved in both classes and the hypothesis that different areas are involved. 

4.3. What characteristics must reliability have? 

To summarize the position at which we have now arrived, an account of reliability that will 

help to solve the challenges presented by human perception and imaging technologies must have 

the following characteristics: 

• It must be an objective relationship between the data and the features of the world 

it represents 

• It cannot be characterized in strictly causal terms since we need to be able to 

describe complex instruments (including the human visual system) that involve 

both causal processes such as interactions between light and physical objects and 

statistical or mathematical processing steps that are not causal in any clear sense. 

• It must recognize the fact that reliability is usually not an end in itself, but is 

instead a requirement for the achievement of another goal:  discriminating 

between different (relevant) possibilities.   

• It must provide us with the ability to make these discriminations based on finite 

amounts of data with a low frequency of error.  In assessing the likelihood of 

error, probabilities should be understood as finite relative frequencies. 

These characteristics, however, are not sufficient.  In particular, more needs to be said about 

what is required for data to allow us to discriminate between different hypotheses. It is in 

allowing particular sorts of discriminations to be made that data or an instrument are reliable for 
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a particular purpose.   I propose that an account of the reliability of imaging technologies 

requires three parts: 

1. the concept of resolution must be distinguished from that of reliability 

2. specification of the purpose-relativity of reliability  

3. understanding reliability as a relation between the granularity of the world 

required to answer a particular question and the resolution of the data or 

instrument. 

 

4.3.1. Resolution and purpose-relativity 
An account of reliability must make a distinction between reliability and resolution and be 

careful not to subsume the latter to the former.  Resolution is the smallest interval (spatial or 

temporal) at which two points can be distinguished by a particular instrument or process.  In 

terms of spatial resolution, the increased magnification that we get from using a magnifying 

glass or microscope doesn’t on its own allow us to see more than we can with our naked eye; we 

just see the same thing bigger (and less of it within a single field of view).  Think, for instance, 

of zooming in on a fairly low resolution digital image on your computer.  The more you zoom in, 

the more the image gets pixilated.  You see an image made up of bigger rectangles, but each 

rectangle still only has a constant greyscale or color intensity, you don’t see more detail in the 

image.122    

In order for increased magnification to really be useful, we also need a corresponding 

increase in resolution so that we can distinguish finer detail in the object under investigation.123  

                                                 
122 This simple story is true only for the specified low-resolution image.  If you start with a high resolution image, 
this will still happen eventually, but if the resolution of the original image was beyond that of the unaided eye, you 
will be able to discern more detail as you first begin to zoom in. 
123 Increasing image size beyond the resolution of an instrument is often referred to “empty magnification” and 
confers no benefit on the observer.   
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It may not seem obvious that reliability is independent of resolution: someone might well object 

that if one instrument allows me to distinguish finer-grained spatial or temporal features of some 

phenomenon than another does, then surely it is more reliable.  But to see that an increase in 

resolution alone makes no difference to reliability, consider the following.  Suppose that I am 

interested in studying the bacterial population in a local pond.  I am especially interested in 

knowing whether the proportion of a particular pathogenic species increases under particular 

environmental conditions.  To do this, I will take samples of pond water at various times, put 

drops of the water on slides, and look at them in a standard light microscope.124  Suppose, that 

the pathogen that I’m interested in is a rod-shaped bacteria while all the other pond species are 

round so that as long as I can visually discriminate between a rod and a spherical bacterium, I 

can distinguish the pathogen from the other bacterial species.    Setting aside questions of 

sampling technique and other statistical questions, let us focus simply on the reliability of my 

visual identification of the pathogen.  I cannot see any of the bacteria with my naked eye, but 

suppose that they are quite large bacteria so that I can easily tell the difference between a rod and 

a sphere at 100X magnification.  All I see at this magnification is a smooth outline of a rod or a 

cone, but that is all I need to discriminate between the pathogen and all non-pathogenic species.  

Now suppose that, out of curiosity, I switch to the high power objective which gives me both an 

increase in magnification and in resolution (i.e. the high powered objective lens also has a higher 

numerical aperture than the low powered objective lens).  Now I can see fewer bacteria in each 

field, but the rods no longer appear to have the completely smooth surface that they seemed to 

have under low power but are instead a bit uneven and rough-looking.   

                                                 
124 Obviously this example is grossly oversimplified.  Visual discrimination of different species would never be the 
sole mode of species identification and would likely be performed only after some sort of staining process (e,g, 
Gram staining).  
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What has happened as I moved from my naked eye to looking at the bacteria under low 

power to looking at them under high power?  I have increased the magnification and the 

resolution in each step, but have I increased the reliability of the observational method? To even 

consider this question would make no sense on a anthropocentric empiricist account since we 

would seem to be obligated instead to defend the claim that we haven’t lost reliability in moving 

along the chain away from unaided human perception.125  However, since the previous chapter 

showed that the reliability of an instrument does not depend on its bearing some physical or 

causal similarity to human perception, the question should now seem entirely legitimate.   My 

naked eye sees just some water - maybe clear, maybe cloudy, maybe with some algae or debris 

in it, but for all I know there are no bacteria of any kind in it.  Using the low power objective of 

the microscope, I can easily distinguish the rod-shaped pathogens from all other bacteria.  So as 

not to prejudice the example, let’s further specify at this point that I occasionally misclassify a 

rod as a sphere, so that I am not perfectly reliable (though this need not indicate imperfect 

reliability of the microscope itself).  Does this mean that my eyes are less reliable than the 

microscope on low power?  This would certainly be a bad result for the empiricist.126  However, 

we are not justified in coming to that conclusion, so the empiricist can rest easy on this count at 

least.  What the example shows is that the human visual system is unable to make certain sorts of 

discriminations that can be made with a fairly high degree of reliability using the microscope.  

This is not due to a failure of reliability of human visual perception, but due to its insufficient 

resolution.   
                                                 
125 An alternative empiricist strategy at this point might be to claim that only the sorts of discriminations that can be 
made using human senses are reliable. I see no way that this sort of distinction could be made in any principled 
manner, however. 
126 Since this would imply that, other factors affecting reliability being equal, the better the resolution of an 
instrument the better the reliability.  So not only would the light microscope be more reliable than human 
perception, but the electron microscope would be more reliable than the light microscope, and so on.  Since, as a 
very general rule, the higher the resolution an instrument has, the less similarity of any sort it bears to human 
perception, this would indeed be very bad for the empiricist. 
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We might be misled by stating the problem in the following way:  unaided human perception 

is not a reliable instrument for detecting rod-shaped pathogens.  This statement is true, but it is 

true only because reliability is to be characterized with respect to a particular purpose.  The 

reliability of an instrument must be understood to be connected its ability to make the kinds of 

discriminations a particular purpose requires.  If we try to require that perfect reliability 

discriminate between all possible states of affairs, then the only instrument that would stand a 

hope of coming anywhere near this would be one that can detect all possible properties (not just 

visually accessible features such as size, color, shape, and motion, but mass, gravity, chemical 

composition, etc.).  This would preclude any human sense from being even remotely reliable and 

that just seems wrong.  While I claimed in the previous chapter that it is important to recognize 

that human perception can fail and has something like proper operating conditions, I also 

claimed that it is usually very reliable.  To do otherwise simply flies in the face of our vast 

experience with it.  While an instrument is reliable for a specific purpose, the concept of 

reliability is still an objective relation as long as we keep in mind that a particular instrument can 

detect only certain properties.  Each takes a specific input and produces a specific output which 

may but need not represent all of the properties possessed by the input.  Reliability does not 

require detecting every property.  But along the same lines, an instrument need not have finitely 

small resolution in order to be maximally reliable.  To see this point, let’s return to the 

microscope example.   

In switching from low to high power, the rods that had seemed to have a smooth surface 

turned out to be rough and uneven (though still rod-shaped overall).  Being able to discern this 

feature of the bacteria didn’t allow for better accuracy in distinguishing between pathogens and 

non-pathogens, so it was not more reliable in terms of allowing that discrimination.  However, 
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one might want to claim that using the high power objective is (objectively) more reliable in that 

it allows us to discern more fine-grained features of the bacteria, even if this additional 

information is not required for the discrimination we want to make.  If this objection is to 

succeed, however, it must be because the more detailed surface is a better indicator of some 

feature than the less-detailed surface.  But why should the less detailed surface be less reliable?  

Essentially what the smooth surface represents is the average amount of surface disruption over a 

stretch of bacterial cell membrane corresponding to the resolution of the instrument used to 

detect it.   The only way that an average over some area is less reliable than the set of individual 

values is if the averaging procedure itself introduces error.  As long as it does not, then lower 

resolution does not imply lesser reliability. 

That said, however, the fact that reliability is assessed relative to a specific purpose means 

that there may well be purposes for which switching to the high power objective does increase 

reliability.  If, for instance, there were actually two types of rods in the sample, one of which was 

still smooth and the other rough under higher magnification, we would be able to make 

discriminations that we could not have made under lower power.  In general, it will be the case 

that higher resolution will increase the number and type of discriminations that can be made.  

Properties of objects that could not be distinguished with lower resolution can now be 

discovered.  However, if the resolution of the instrument is greater than the granularity of the 

representation of the world at which discriminations must be made in order to answer a particular 

question, the increased resolution might actually slow or even prevent making the required 

discriminations.  Too much fine-grained detail can obscure the relevant similarities or 

differences at a coarser grain.   
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4.3.2. Granularity match vs. mapping 
Granularity is a characteristic of representations.  We can refer to both the granularity of the 

representation of the world that a particular question is directed at and to the granularity of the 

representation of the world (data) that an instrument generates.  For the sake of ease, I will refer 

to these as the granularity of the world and the granularity of the instrument respectively.  The 

granularity of a representation is the smallest object or unit required to address the question of 

interest.127  The larger the spatial and temporal scale of the aspects of the world which must be 

distinguished in order to answer a particular question, the coarser the grain.  A question about the 

effect of annual fluctuation in berry crops on the size of grizzly bear territories, for instance, 

might not require that one investigate anything smaller than individual organisms (bear and 

berry), while a study of herpes egress from cells would require that questions be addressed 

towards and data obtained about sub-cellular entities and events.  The granularity of an 

instrument matches or is sufficient for a question if it is capable of providing evidence about the 

smallest objects needed to address that question. 

Normally, though, we speak of the resolution of an instrument, not its granularity.  What is 

the relationship between the two?  Often the two will coincide, but this is not always the case.  

The granularity of the instrument is related but not always identical to its resolution.  In some 

cases, the granularity with respect to certain features may be higher than the resolution; i.e. some 

kinds of questions about objects that are smaller than the resolution of the instrument can be 

addressed.  This occurs when these objects are coordinated in some way so as to allow detection 

of certain of their features despite the objects as a whole being too small to individuate.  For 

instance, pictures taken of the stands of a football stadium from a blimp high above the ground 

could be used to make a reasonable estimate of the proportion of fans supporting each team 
                                                 
127 In its question relativity, my account of granularity and reliability resembles the approach to laws taken by 
Mitchell (2000). 
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(assuming that all the fans wore the colors of their team).  No individual fan could be 

distinguished, but patches of color representing groups of like-dressed individuals could be seen 

and the overall amount of the stands filled with each color calculated.   

A similar situation can occur with biological imaging technologies.  The spatial resolution of 

a PET or fMRI image is the voxel size.128  It is limited by many factors including intrinsic 

characteristics of the receptor (e.g. for PET, the type of scintillating crystal and the size and 

geometry of the detectors), selection of the reconstruction algorithm, and spatial blurring caused 

by both motion of the subject and by biological or physical features of the system upstream of 

the detectors (e.g. the distance traveled by a positron in tissue before it annihilates).129  

Resolution here refers simply to the fact that voxels are the minimal spatially discriminable unit 

since a separate numerical activity value is calculated for each voxel.130  This number represents 

the average activity for the spatial area131 of the object – the cube of brain or other tissue – 

corresponding to that voxel.  

The granularity of the instrument refers instead to the size of the units of data (i.e. the 

number of spatiotemporally discriminable units or voxels) that can completely represent some 

quantity.132  Sometimes the granularity of PET (or fMRI) may be equal to the resolution, but 

often it is not.  Some quantities such as blood flow cannot be represented in a single voxel so the 

granularity will span many pixels.  In other cases, features of the PET detection system itself 

                                                 
128 Voxel size does not refer to the dimensions taken up in the image by a particular voxel, but to the volume of the 
object (e.g. 2 mm3) that each voxel represents as a single numerical value or colored square.  The size of the image 
itself (and, accordingly, the size of each voxel in the image) can be made smaller or larger without changing the 
voxel size in this sense.   
129 Sanchez-Crespo, Andreo, and Larsson (2004). 
130 Notice that the resolution is not specific to the image – it applies equally to the data presented as a set of 
numerical values for each voxel.  
131 Each voxel also has a temporal dimension, reflecting counts obtained over some period of time.  Temporal 
aspects of imaging will be discussed more in the next chapter. 
132 The granularity of an object or event will always be relative to some quantity such as neural activity in response 
to a particular stimulus:  its granularity is the smallest area that completely contains that quantity.   
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mean that only structures that span two or more pixels can be adequately measured.  The idea 

that only objects larger than twice the resolution can be properly investigated is captured in the 

specification of “full width at half maximum” (FWHM) that accompanies most PET data. 

Structures smaller than this have not generally been believed to be able to be interpreted reliably 

since they are significantly affected by the surrounding areas either through partial volume 

effects or averaging out of very small areas of high activity within a single voxel.133  However, 

recent work has shown that this might not always be the case and that information about 

structures such as orientation columns that are smaller than a voxel can be identified using fMRI 

data134 by using multivariate pattern recognition to identify patterns of activity that occur across 

space, from multiple voxels (e.g. Kamitani and Tong 2005; Haynes and Rees 2005; Cox and 

Savoy 2003).   

There has been considerable recent interest is in the mapping of putative orientation columns 

in humans.  In the visual cortex of non-human mammals, neurons with similar response 

properties to lines with a certain orientation (i.e. that are oriented at a particular angle within the 

visual field) have been shown to be clustered into columns  These are referred to as orientation 

columns and are about 300-500 μm in width.135  Questions about individual columns are 

questions referring to a granularity of the world of about half a millimeter. It is expected that 

questions about orientation columns in humans refer to or require a similar granularity.  But 

mapping such structures in humans has proven to be difficult since the invasive techniques that 

have been used in cats and monkeys cannot be used in humans and non-invasive neuroimaging 

                                                 
133 Partial volume effects are due to the fact that the count number for any given voxel is subject to interference or 
spillover into that voxel from adjacent voxels that have significantly higher activity.  They result in some voxels 
being represented as having more activity than they actually do.  Areas of high activity that are smaller than a voxel, 
on the other hand, will get missed since the activity of a voxel reflects the average activity over the whole of the area 
represented. 
134 These recent studies have all focused on fMRI, but the same sort of techniques could also be applied to PET. 
135 Vanduffel et al., 2002. 
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methods (primarily fMRI in this case) have a spatial resolution at the level of millimeters, not 

hundreds of micrometers.    

However, one lab has recently shown that it is possible to use fMRI to investigate some 

features of orientation columns in humans.  Rather than using typical fMRI data analysis in 

which each voxel is treated as a separate entity as far as statistical analysis is concerned, 

Kamitani and Tong (2005) used  multivariate techniques and statistical pattern recognition 

algorithms to learn and later classify multivariate data points based on statistical regularities in 

the data set.  Essentially, pattern-recognition algorithms operate by dividing a high-dimensional 

space into regions corresponding to different classes of data.  This and other multivariate 

approaches are powerful because they can potentially discriminate between different classes of 

multivariate data even when the data, as projected along any one dimension, are 

indistinguishable.  Kamikani and Tong (2005) used these techniques to show that distinct 

patterns of fMRI activity are produced by looking at differently oriented line gratings even 

though orientation columns are significantly smaller than the size of a voxel.  By showing that 

there are small but stable biases136 in the hemodynamic response of individual voxels to specific 

orientation patterns, they were able to use the information from these weak signals in many 

voxels (each of which, individually would not be sufficient to discriminate between different 

stimulus orientations) to identify distinct patterns of activity that correspond to different 

orientations. These patterns could also be identified in new data sets and reliably used to predict 

what stimulus orientation the subject was viewing.  Thus, the granularity of the representation in 

this case is not to be understood as individual pixels, but as patterns of many (up to 100) pixels.  

The fact that an individual object of interest, such as an orientation column, may have a 

                                                 
136 They suggest that such biases may arise from variability in the distribution of columns or of their vascular supply 
(2005, 5). 
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granularity below the resolution of an instrument, does not automatically mean that there can be 

no granularity match.  If a question is directed at distributed patterns of activity among many 

small, sub-voxel size objects, then the granularity of the representation may still be sufficient to 

provide the relevant discriminations. 

Reliability, then, refers not to the resolution of the instrument but to the relation between the 

granularity of the objects137 in the world that are required to discriminate between the 

possibilities under consideration and the granularity of the instrument.  Both the resolution of the 

representation and its granularity will be set, independently, by error bounds.  Reliability comes 

in degrees and the degree of reliability is determined by the maintenance of structural features of 

the object in the data and by the extent to which the granularity of the world (the level of 

granularity at which the question of interest is directed) is similar to the resolution of the 

instrument or data.138 I will refer to this similarity as a granularity match.  For there to be a 

granularity match139, however, does not require matching in the sense of an isomorphism or 1:1 

correspondence between the structure of the world and that of the representation.  Rather, what 

                                                 
137 Or, more precisely, of those properties of the object or event that get represented. 
138 As was the case with reliability, I take the resolution of the data to be determined by the resolution of the 
instrument that produces them.  If the question of interest concerns not the immediate input to the system – e.g. the 
source of 511keV photons – but some event such as neuronal activity that occurs further upstream, then the degree 
of resolution that characterizes the relation between this event and photon production will contribute to the relevant 
resolution of the final PET data for the purpose of addressing that question. 
139 Poeppel and Embick (forthcoming) discuss what they term “the Granularity Mismatch Problem” between 
neuroscientific and linguistic investigation of language.  The idea is that basic linguistic concepts are usually more 
fine-grained than basic concepts in neurobiology and cognitive psychology creating difficulties for developing and 
testing hypotheses bridging the two domains.  They also suggest a solution to the problem:  we need to describe 
linguistic processes in computational terms at an appropriate level of abstraction, which they claim is that of 
neuronal populations (forthcoming, 4-5).  In this way, we can connect linguistics with neuroscience.  When I refer to 
a granularity match, however, I am referring not to the match between two conceptual domains, but between the 
object and the representation.  Since the sort of representation that we can get using PET is quite heavily constrained 
(we can change many things about the visual display, but not about the effective resolution), we cannot simply re-
describe or re-represent the object in order to get a granularity match.  Neither can we change the granularity of a 
particular object:  if a group of neurons that is involved in a particular task (e.g. an orientation column) is a 
particular size, it just is that size.  We can change the question to be about objects with a different granularity, of 
course, but this obviously doesn’t get us an answer to the question we started out with.  Thus, what I mean by a 
granularity match (or mismatch) is considerably more difficult to alter than the sort of mismatch Poeppel and 
Embick discuss. 
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determines the presence and goodness of a match is the discriminatory ability that a particular 

representation provides relative to the discriminatory requirements of the question to be 

answered.  The discriminatory ability of a representation is determined by the error bounds that 

apply to the represented quantities: as long as there is a sufficient agreement between the 

targeted granularity of the world and the (non-overlapping) error bounds of the representation140, 

then the data allows the relevant discriminations to be made and are reliable for that purpose.  If, 

on the other hand, the granularity of the representation is lower than the granularity of the world 

that is addressed by the question, then it cannot reliably discriminate between the relevant 

possibilities. 

This account of reliability in terms of a granularity match improves on accounts of 

representation that require an isomorphism between the structure of the target and that of the 

representation (e.g. Cummins 1996; Giere 1998; Ziman 1978; Turnbull 1989) since it clarifies 

how a PET image or other representation can be used to make very reliable discriminations even 

in the absence of a 1:1 mapping.  While accounts based on isomorphism generally deny that X 

can represent Y in the absence of a structural isomorphism between the two141, all that is 

required on the granularity account is that the structures of the target that are relevant to a 

particular question be mapped somewhere within the error bounds in the representation.  To see 

how this works, consider Figure 4.1.  Panel A show what a traditional mapping account would 

require of a reliable mapping.  The yellow oval on the left refers to some region of the brain 

activity.  The smaller red circles are areas of activity, e.g orientation columns.  The blue oval on 

the right refers to the granularity of the PET image (set by the  

                                                 
140 Recall that it is not always possible to determine the error bounds.  If the error bounds are not calculable, neither 
is the granularity of the representation. 
141 Cummins, for instance, defends a picture theory of representational content that requires strict isomorphism 
between object and representation. 
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(1) 

(2) 

 

Figure 4.1  Granularity vs. a traditional mapping account. 

 
error bounds) and the white circles represent areas of activation.  A 1:1 mapping would require 

that the areas of activation stand in the same relationship to each other and the outer bounds in 

both the object and the representation.  Panel B shows what is required given my account of 

reliability as a granularity match.  There must be a correspondence between  the granularity of 

the object and the granularity of the representation (the yellow and blue ovals), but differences 

that occur in the representation below the level of granularity need not stand in any single kind of 

mapping relationship.  Thus, both (1) and (2) constitute a reliable representation of the real world 

object.   
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Figure 4.2  Absence of granularity match. 

 
If, however, there failed to be a granularity match between the object and the 

representation, then no reliable information could be obtained.  This is shown in Figure 4.2 in 

which the granularity of the objects in reference to which some discrimination is to be made is 

smaller than the granularity of the representation.  If we wanted to know whether activity 

occurring with some particular task were occurring in area a or area b, but the granularity of our 

imaging technology were such that it could only tell us that it occurs within c, then it does not 

allow us to reliably discriminate between the relevant possibilities.  This might occur, for 

instance, if we wanted to answer questions about the activity of isolated orientation columns 

using PET or fMRI.  While identifying distributed patterns of activity increases the effective 

granularity of the representation (give the use of appropriate statistical techniques), the 

granularity of an individual orientation column is below the resolution of the instrument and, in 

this case, the granularity would not have greater dimensions than the resolution. 
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4.4. How can reliability be assessed? 

 

I will now turn to the question of how reliability of a process (whether human perception or 

an instrument) can be assessed.  The reliability of an imaging technology will be separated into 

the reliability of the instrument itself (for detecting what it actually detects, e.g. the location of 

annihilation events in the case of PET) and the reliability of the process of detecting the 

phenomenon that the data will be claimed to represent (e.g. the location of cancerous lesions or 

brain activity).  To do this, it will be helpful to disentangle the notions of reliability and validity.  

While validity is usually subsumed by reliability in the epistemological literature, the difference 

is often important.142  When claims about the validity of results obtained with some imaging 

technology are made or disputed, it is usually reliability in the second, broader, sense that is 

intended.   

Bogen (2001, 2002) has argued convincingly that functional brain images143 are better in the 

sense of being more reliable, than any current epistemological theory would allow them to be.  

Neither any traditional empiricist account, nor Mayo’s error statistics, nor Woodward’s 

counterfactual approach are able to explain why functional images seem to be as good evidence 

as they sometimes are.  One difficulty for the anthropocentric empiricist is that no human 

observer perceives either the signals (i.e. positron-emitting isotopes, or, I will claim, photons, in 

the case of PET) that are detected by the instrument, the physiological phenomena that are 

presumed to be causally related to the distribution of the signal within the brain (increased blood 

                                                 
142 The difference may not be as important in the case of human perception or in thought experiments where validity 
is assumed to – and usually does - accompany reliability.  However, the difference makes a difference in the case of 
imaging technologies since they  may more often produce very reliable data that systematically misrepresent (or 
even fail to represent) the phenomenon of interest.  
    Interestingly, in some work on validity within philosophy of science, the opposite holds and validity either 
assumes or subsumes reliability 
143 He discusses both PET and fMRI, but I will continue to restrict my discussion to PET. 
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flow), or the phenomena of interest itself (cognitively significant brain activity) (Bogen 2002, 

S60).  Another problem for an anthropocentric empiricist account is that the intensive statistical 

and mathematical processing required to produce this sort of data seems to irremediably blur the 

distinction between producing and interpreting data (Bogen 2001, 174).  On these points, Bogen 

is entirely correct and will not say any more about them than I have in earlier chapters.  I am also 

largely in agreement with him as far as his characterization of the inability of both Woodward’s 

and Mayo’s accounts to allow for the epistemic quality of functional brain images, though I think 

that we can do a substantially better job of assessing the error characteristics of PET than he 

allows.   More importantly, my account here has aimed to provide a much more substantial 

account of what it means for this sort of evidence to be reliable.  In addition, in examining the 

ways in which we can assess reliability I claim that we can and should assess the reliability of 

PET not only as an instrument that detects brain activity, blood flow, or cancerous lesions, but 

also as an instrument that detects the spatial and temporal source of 511keV photons within an 

object.  In essence, what we need to do is to isolate the instrument itself from the upstream and 

downstream processes that are, variously, added to the instrument when it is used to try to detect 

different phenomena of interest.  If we do this, we can provide a better account of the reliability 

of the instrument itself than is apparent on Bogen’s characterization.  This is made possible by 

the fact that there are far more empirical tools available to test different aspects of PET, 

including the algorithms, when we look at medical and specifically oncological applications.  

Once we can improve our account of the reliability of the instrument, we can then focus on 

trying to assess the reliability of the upstream and downstream processes that flank the 

instrument in the experimental set-up used in investigating particular types of phenomena.   
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The first thing to do, therefore, is to set out what I take to be the bounds of the instrument.  In 

keeping with the last chapter where I discussed human perception and PET partially in terms of 

input and output, I will again take the input of PET to be high energy (511 keV) photons and the 

output to be either the reconstructed, attenuation-corrected image or the numerical vales for each 

voxel that correspond to the image.  For the present purpose, the two are functionally equivalent 

since going from the numbers to the image is purely conventional and is as close to perfectly 

reliable as any process can get.144  I differ from Bogen in taking the input to the instrument to be 

photons rather than radiation (positrons).  Because he is concerned with the process of detecting 

brain activity as a whole, however, this difference has no real significance for his account.  With 

respect to the anthropocentric empiricist position, for example, it makes no difference whether it 

is positrons or 511keV photons that get detected, since human observers are incapable of 

detecting either.  Similarly, we are no better or worse able to identify counterfactual 

dependencies or statistical error for one relative to the other.  Since it is close to guaranteed that 

an emitted positron will collide with an electron (and so produce a pair of 511keV photons) after 

traveling less than 1mm, this distinction actually makes virtually no practical difference to my 

account either.  However, because it is the photons and not the positrons that actually strike the 

PET detectors and are counted, I do want to insist on taking photons to be the input to the 

instrument.  Annihilation events and positron emission are the immediately proximal upstream 

events and are characterized by highly reliable physical interactions, but they are part of the 

upstream sequence, not the input. 

                                                 
144 Recall that a simple thresholding method is used to assign color to each voxel in an image.  Any voxel that has an 
intensity value with a specific range will be shown as a particular color in the image.  The only sorts of errors that 
could occur are programming errors that result in faulty assignments.  In Chapter 5 the distinction between the 
image and the numbers will become important, however. 
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With these boundaries in place, it is obvious that applications of PET for both brain imaging 

and oncology can share an assessment of reliability with respect to the instrument and the 

immediate upstream events of positron emission and annihilation events.  Any method that can 

be used to establish the reliability of different arrays of detectors, different scintillating crystals, 

and, more importantly, different algorithms for noise elimination, image reconstruction, or 

attenuation correction, can tell us about the reliability of the instrument portion of the 

experimental set-up for either sort of application.  This is very important since there are many 

more options available for checking the reliability of PET in oncology than there are in 

neuroimaging.  For instance, the existence of a tumor in the identified location can be checked by 

biopsy and histology.   

At this point I need to review a terminological matter than was mentioned earlier only in 

passing.  I have been using the term reliability in accordance with common usage in 

epistemology and much of the philosophy of science to refer not just to repeatability of data 

gathered using some method, but to the idea that the data actually reflects the phenomenon of 

interest, not interfering factors of various kinds (i.e. it is not artifactual).  The latter notion, 

however, might more properly be referred to as validity, and specifically as internal validity.  

Allan Franklin (1989), for instance, has identified a set of epistemological strategies for 

establishing the validity – primarily in the sense of internal validity – of an experimental result or 

observation. Franklin’s strategies also assume that results are reliable in the sense of repeatable, 

but since this is a far easier thing to establish, he likely never felt the need to point out the fact 

that you need reliability too.  While it may introduce some confusion in the minds of readers 

more familiar with the proper use of the term “validity”, especially as I am about to discuss some 
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of Franklin’s strategies, I am going to continue to use the term “reliability” for what we seek 

from instruments or experimental processes in order to establish their epistemic credentials.   

It will be helpful to consider how the reliability of PET can be assessed in terms of the 

strategies that Franklin (1989) has suggested are used to assess whether the results from an 

experiment are reliable (in my sense).  They can be used to establish, in other words, that the 

instrument is working properly and that the data accurately145 reflect features of the phenomenon 

under investigation.  They are not intended to be either individually or jointly sufficient to 

guarantee the reliability of observational data, neither does he take the set to exhaust the possible 

strategies.  Nevertheless, they provide a broad sample of the sorts of strategies that can be used 

to help establish reliability.  Franklin’s examples come primarily from material experiments in 

physics, but Rudge (1996, 1999) has shown that the same sorts of strategies are used in 

evolutionary biology and Parker (2003, unpublished manuscript) has demonstrated that they can 

also be used to establish the reliability of computer simulation experiments.  It is not my 

intention to demonstrate that each of Franklin’s strategies can be used in the case of PET, but 

rather to use his strategies as a framework for highlighting particularly important methods for 

determining the reliability of PET.  Accordingly, I will not even mention some strategies and 

will deal with others very briefly while discussing some at greater length. 

4.4.1. Strategies for assessing the reliability of PET 

Replication of results using a different apparatus. 
If the same phenomenon can be observed using a different apparatus, especially one that is 

based on very different physical characteristics (e.g. Hacking’s example of using different types 

of microscopes to establish the existence of dense bodies in cells), then we ought to have 

increased confidence that when we observe the phenomenon using the instrument whose 

                                                 
145 With a degree of accuracy sufficient to make the discriminations required. 
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reliability is in question, it is a real effect.  The difficulty with PET, as Bogen (2001) points out, 

is that the only other tools we have right now for observing the same sorts of cognitive activity as 

PET rely on many of the same statistical methods as well as physiological assumptions.  Thus, 

these methods are not different in a very significant way.  However, we can observe cancerous 

lesions that are identified by PET in other ways:  by biopsy and histology, as well as, in the case 

where histology (generally believed to be the gold standard for detection of cancer) has 

confirmed the presence of an operable lesion, by surgery.  Both biopsy and surgery provide 

naked eye confirmation of the location of the tumor; surgery also confirms its size and shape.  

Histology provides an interesting contrast since it detects not gross morphologic features of a 

tumor, but changes at the cellular and subcellular level.  This provides support not only for the 

reliability of the PET instrumentation (everything that lies between input and output of the 

instrument), but for the physiological changes that are associated with cancerous cells and that 

the radiopharmaceuticals used for oncological applications (FDG-glucose, as well as less 

commonly used compounds) are actually identifying individual cells with metabolic and other 

changes associated with cancer. 

Indirect testing 
This is a potentially very valuable technique for determining the reliability of PET since it is 

a strategy that can be used when a particular observation (e.g. of brain activity in the intact living 

human) can only be made with one kind of instrument.  In practice, however, its usefulness is 

relatively limited. If we can observe a particular phenomenon, p1, only with one instrument but 

we can use that instrument to observe another type of phenomenon, p2, which can also be 

observed using some other instrument, then replicating our observation of p2 in the second 

instrument serves not only to establish the reliability of our observation of p2 using the first 
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instrument, but helps to establish the reliability of the first instrument for detecting p1.  Thus, our 

ability to use biopsy, histology, and surgery to help establish the reliability of PET for detecting 

cancer also helps to establish its reliability for detecting brain activity.  Its potential value, 

however, is limited to establishing the instrument itself and the immediate upstream steps of 

positron emission and annihilation events.  Because the physiological events or features that lie 

further upstream are not at all related in the case of oncology (e.g. increased glucose metabolism 

of tumor cells) and functional brain imaging (increased blood flow in response to an increase in 

neuronal activity), this strategy cannot provide any support for the reliability of these processes 

and of the considerable role they play in the overall reliability of PET for functional brain 

imaging. 

Intervention and prediction 
This is another strategy that can be used in the case of phenomena that can be observed using 

only one technique and is perhaps the most valuable technique that is available in the case of 

PET.  It involves controlled manipulation of the observed objects and determining whether or not 

the instrument gets the predicted or correct results.  Ethical as well as practical considerations 

preclude the sorts of experimental interventions on living humans that would be needed to test 

the use of PET for either oncology or brain imaging.  However, so-called “phantoms” that have 

known characteristics can be specially constructed for both sorts of applications and the 

reliability of different sorts of statistical methods (within the PET instrument itself) compared 

with respect to how closely the results of using them match the known features of the phantom.  

The use of phantoms in oncology was discussed in Chapter 2 in the context of the debate over 

whether attenuation correction increased or decreased reliability.  To review briefly, a phantom 

is a physical model of some part of the human body or of a simpler geometric form the 
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composition of which is known.  The relevant features will normally include the position, shape, 

size, radiation concentration, and attenuation coefficient of each compartment.  The phantom is 

scanned under different conditions and the resulting data compared to its known characteristics.  

For instance, Hsu (2002) used an anthropocentric thoracic phantom into which was placed (in the 

left breast) a “lesion” with a radiation level five times background and a volume of 2 cm3.  The 

phantom was scanned and the initial image reconstruction performed using four different 

algorithms.  By comparing the data obtained using each algorithm and comparing it to the actual 

features of the phantom, Hsu was able to determine not only which algorithm was the most 

reliable, but also to get information about how different algorithms performed over time (of two 

iterative algorithms that provided equivalently good data in the end, one required 4 or five 

iterations to reach what was deemed to be a reasonable level of convergence, while the other 

took 20 iterations and was four times slower to achieve a similar convergence).146   Phantoms, 

therefore, are an invaluable resource for testing the reliability of various statistical techniques. 

Phantoms are also used to validate or optimize PET methods for brain imaging.  In this case, 

however the phantoms used are not physical models as described above for oncology, but digital 

models.  They consist of multiple data sets that are defined in terms of voxel size and intensity.  

The phantom can be used to simulate different patterns of brain activity by creating data sets that 

vary in the location and size of areas of increased voxel intensity (e.g. Schoenahl et al. 2003; 

Lukic, Wernick, and Strother 2002; Collins et al. 1998; Hoffman et al. 1990) These digital 

phantoms do not actually get scanned by the instrument as do the radioactive phantoms used to 

evaluate algorithms for use in oncology; they can only be used as input data to the computer to 

test how different algorithms will perform.   However, they serve a very similar role in allowing 

                                                 
146 Computational time required is a very significant consideration for clinical practice, as was suggested earlier in 
the discussion of logical vs. finite probabilistic reliability.   
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the performance of different algorithms to be evaluated in terms of how well the final data it 

generates correspond to known data sets.  Since we have no other (sufficiently different) way of 

observing the sort of brain activity that we use PET to detect, using simulated data is the only 

way in which to empirically assess the performance of algorithms specifically for data of the 

kind to be expected in brain imaging (i.e. activations that are often smaller, more spatially 

distributed, and of much shorter temporal duration than phenomena observed in oncology).   

Properties and theory of the phenomena  
It may be the case that observed patterns in the data are too consistent and natural looking to 

make it plausible to interpret them as artifacts.  This strategy does not seem to be particularly 

useful in the case of PET since there are so many sources of error that it is unlikely that no other 

plausible account could be given for any particular pattern observed.  On the other hand, this 

seems to be a very common strategy for assessing the reliability of human perception. 

A well-corroborated theory of the instrument 
 This is a strategy that can be used much more successfully imaging technologies of various 

kinds than for human perception.  As the last chapter showed, our knowledge of the functioning 

of the visual system is still far too incomplete for us to claim to have a theory of it that can 

provide support for claims that it is reliable.  On the other hand, we know exactly what sorts of 

physical and statistical processes contribute to PET and often, if not always, have a good idea of 

the sorts of errors that a particular algorithm will make. To take just a single example,  

identification of active voxels in neuroimaging data usually involves performing voxel-by-voxel 

statistical tests and setting some threshold according to which voxels will be classified as active 

(if above the threshold) or inactive (if below).   The selection of thresholds that are both 

objective and effective in terms of limiting the false positive rate has been an enduring problem.  
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Theoretically motivated thresholds (e.g. always setting the significance level at the conventional 

>0.05) result in a very high rate of false positives since so many tests (28672 for each voxel in a 

64 X 64 X 7 image) are performed. Standard methods for multiple hypothesis testing (such as the 

Bonferroni correction)147 are often not sensitive enough for neuroimaging.  It can be shown 

statistically that the Bonferroni correction tightly controls Type I error and, when applied to the 

entire data set, has a tendency to eliminate both true and false positives (Genovese, Lazar, and 

Nichols 2002).  More complicated methods can be used, but these usually require either 

increased data or increased computational time and so are not always feasible.  Another 

alternative it to reduce the number of comparisons that are performed simultaneously, for 

instance, identifying regions of interest and applying the correction to each set of voxels 

separately.  However, in order to be objective, regions of interest must be created prior to data 

analysis and must be left unchanged, a condition which often proves to be too rigid.  One 

alternative strategy that has recently been proposed is the use of procedures that control the false 

discovery rate (FDR).  According to Genovese, Lazar, and Nichols, “the FDR is the proportion 

of false positives (incorrect rejections of the null hypothesis) among those tests for which the 

null hypothesis is rejected.  We believe that this quantity gets at the essence of what one actually 

wants to control, in contrast to the Bonferroni correction, for instance, which controls the rate of 

false positives among all tests whether or not the null is actually rejected.” (2002, 871).   

                                                 
147 The Bonferroni correction adjusts the level of statistical significance that is required to reject the null hypothesis 
according to the number of tests that are performed.  Essentially, it decreases the significance level (p-value) that is 
required for an individual test so that type I errors are reduced and the study-wide significance level remains at 
<0.05.   The general formula for the adjusted significance level is 1-(1-α)1/n, often approximated as α/n.  To see why 
this helps, consider that if the null hypothesis is true and the significance level set at p>0.05, a significant difference 
will probably be observed by chance once in every 20 trials.  So if you were trying to assess the activity status of 20 
voxels (far, far fewer than any actual PET data set), and the null hypothesis were, in fact, to hold for all of them, the 
chance that at least one of them would (incorrectly) be judged to be active is not 0.05 but 0.64.  Applying the 
Bonferroni correction to this case, the significance level for each test would be set at 0.00256. 
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A well-corroborated statistical theory can help with the statistical aspects of the instrument 

(as well as any statistical steps located upstream or downstream of the instrument), but other 

causal aspects of the experimental set up require different corroboration.  The connection 

between increased glucose metabolism and tumor cells is something that has been well-

established by physiologists and cell biologists.  The connection between blood flow and brain 

activity is also generally accepted to hold.  However, it is also widely acknowledged that 

neuronal activity occurs on a much smaller time scale that does a change in blood flow.  Thus, 

knowledge of the experimental set-up (of upstream events in this case) tells us that any brain 

imaging technique that relies on blood flow to indicate cognitive activity will have too low a 

resolution to make discriminations for many questions of interest.  (Recall, however, that low 

resolution does not imply low reliability). 

4.4.2. Success of strategies for assessing reliability  
While I focused in the above discussion on PET, I did make brief mention of human 

perception at a couple of points.  This hopefully served as a reminder that while I hope to give an 

improved account of the reliability of PET based on a separation of particular applications into 

the instrument itself, upstream elements, and downstream elements, I also need my account of 

reliability to apply to human perception.  While we do not generally have available any sort of 

error statistics for human perception under normal conditions, this need not undermine the 

account since Mayo claims that “in practice often informal and qualitative arguments may be all 

that is needed to approximate the severity argument.  Indeed, perhaps the strongest severity 

arguments are of a qualitative variety.” (2000, S202)  She cites as a good instance of this, 

Hacking’s argument for taking dense bodies to be a real rather than artifactual.  This same 

argument was cited by Franklin as an instance of the replication of results using a different 

apparatus.  If no direct appeal to any formal statistical model is required to run a severity 
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argument, then it seems plausible to claim that the other epistemological strategies that Franklin 

identifies may also count as qualitative severity arguments.  In this way, we may argue for the 

reliability of human perception based primarily on qualitative arguments about the plausibility of 

the data obtained with it, our ability to intervene with the objects of perception and get the 

predicted results, our (admittedly non-technical) understanding of the instrument in terms of the 

conditions under which it works and those under which it doesn’t, and our ability to confirm at 

least some observations (e.g. the shape, size, and texture of objects) by using other sensory 

modalities (especially touch).   

Assessment of the reliability of PET will rely more heavily on actual statistical claims.  I am 

more optimistic than Bogen (2001, 2002) about the ability of an error statistical approach 

(suitably fitted with a finite frequency interpretation of probability).  In part, this is because I 

have ignored the downstream components of PET for brain imaging.  While mapping images 

onto the standard Talairach-Tournoux atlas is still common148 and is responsible, as Bogen 

claims, for introducing a significant amount error, there are a large number of alternative 

warping algorithms that can be used to perform this task and can be chosen with an aim to 

maximizing reliability for the particular biological question at hand.  This area is very complex, 

however, and an adequate discussion would take a lot of space while contributing very little to 

my story. It will suffice to point out that both the linear transformations available with the 

Talairach-Tournoux atlas and the more complex warps now available (if not often used) can fit 

into my account of reliability.  They may often be the resolution-limiting step and so reduce the 

number and type of question that the method can be used to address, but this does not necessarily 

                                                 
148 Though the Montreal Neurological Institute (Evans et al., 1994) created a composite MRI dataset from 305 
young normal subjects to deal with some of the concerns that had long been expressed with the actual template used 
by Talairach (post-mortem sections of a 60-year-old woman).  The resulting average brain has some blurring of 
individual structures where spatial variability in the population is high, but the template is used with increasing 
frequency as part of the common Statistical Parametric Mapping (SPM) template. 
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indicate that they reduce the reliability of the overall process.  This is not to say that they may 

not sometimes also decrease the reliability, only that they need not do so. 

4.5. Conclusion 

 

I have argued for an account of reliability that shares features with both Goldman’s reliable 

process account and Mayo’s error statistical approach.  It captures Goldman’s fundamental idea 

that a reliable process ought to be truth-conducive while adopting a more substantial account of 

what it means for a process to tend to produce more true than false beliefs.  Importantly, the 

account is not a strictly causal account, thus, it can be applied to both the straightforward 

physical or causal processes that contribute to both human perception and imaging technologies 

and to the mathematical and statistical techniques that are used in various imaging 

technologies.149   

My account also suggests solutions for some of the key objections that have been raised 

against reliabilist accounts in general.  To recap, the objections and their solution were as 

follows: 

• A reliabilist account must explain how a process is to be judged to be reliable.  

This was achieved by supplementing Goldman’s basic intuition that a reliable 

process should produce a high ratio of true beliefs to false beliefs with a more 

precise account of reliability drawn from Mayo’s error statistics. 

• It must make sense of the idea that a process type can tend to produce data with 

good long-run error characteristics.  An error statistical approach provided part of 

                                                 
149 While neural aspects of visual perception are often referred to as computational or algorithmic, our current lack 
of knowledge about these processes means that we cannot hope to assess their reliability through examination of the 
computations or algorithms themselves.  On the other hand, this is exactly what we can and must do in the case of 
imaging technologies. 
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the solution here but the sense of probability used had to be specified.  Goldman 

wanted to understand probabilities as propensities and Mayo was vague on the 

issue, claiming only to want a frequency interpretation.  It was claimed that the 

goals of objectivity and having the best chance of accepting the correct hypothesis 

in the (relatively) short run given a finite amount of data requires specifically a 

finite relative frequency interpretation. 

• It must solve or avoid the generality problem.  This problem was easier to deal 

with in the case of imaging technologies since we know exactly what sorts of 

physical, computational, and algorithmic processes contribute to them and since 

their input is heavily constrained.  In the case of human perception, it was 

suggested that a similar account in terms of the computational and algorithmic 

processes involved might help overcome this problem. 

In addition, my account proposed a distinction between reliability and resolution.  Reliability, 

like resolution, can be had to greater or lesser degrees and discrimination between particular 

statements about the phenomena may require a method that has a certain minimum level of 

resolution and a minimum level of reliability.  However, a method that has a lower degree of 

resolution does not necessarily have a lower degree of reliability. 

Finally, this account, together with a distinction between the instrument itself and upstream 

and downstream components of the experimental set-up for specific applications of PET was 

able to be used to help improve our understanding of when and why PET data is reliable. 
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5. Why pictures? 

5.1. Introduction 

 

Imaging technologies seem, by their very name, to refer to the production of images yet it is 

a striking feature of many imaging technologies that their output need not be images.  When we 

examine the means by which PET images are produced, for instance, we see that the fact that 

they even are images is accidental.  While a photograph may be measured and subjected to 

quantitative analysis subsequent to its production, PET images require that extensive 

mathematical transformation occur to produce the data that can then be represented in the form 

of an image.  In the case of PET, the result of signal detection, data correction and reconstruction 

is a numerical value assigned to each voxel.  The final conversion of this data into the form of a 

vaguely naturalistic image is simply a matter of assigning a color (or grey level) to particular 

ranges of numerical values and then displaying the data in a 2-D or 3-D array.  It could just as 

easily be represented in other ways.  For instance, the change in the average voxel intensity 

within some defined region or regions of interest over time could be displayed in graphical 

format.  Some neuroscientists and cognitive scientists, in fact, prefer to represent their data in 

this way.150  Yet, every scientific paper that reports data from functional imaging studies 

contains at least some photograph-like images.151  Given that there is a choice between data 

display formats, why are images the dominant form?  A full answer to this question clearly 

involves historical, sociological, and rhetorical perspectives in addition to the epistemic one.   In 

this chapter, however, I will only be able to briefly identify a few of the historical and other 

                                                 
150 Julie Fiez, personal communication. 
151 At least, I have not been able to find any that do not. 
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features that may contribute to the dominance of images.  My primary concern will be with the 

question whether there is an epistemic advantage to using images.  I will examine two 

advantages that might be claimed for images - cognitive accessibility and facilitating the 

identification of causal relationships (in the case of kinetic images) – and argue that only the first 

actually holds. 

5.2. What can we see in the data? 

Some types of data often seem to us to essentially wear their reliability on their sleeve.  We 

tend, for instance, to take photographs, video recordings, and photograph-like images such as X-

rays as reliable forms of evidence for certain sorts of visually accessible features of the world.152  

This is, in part, a consequence of the fact that the processes involved in producing these forms of 

evidence usually are reliable.   However, it is also partially explained by our familiarity with 

these sorts of images and the sorts of things they often represent.  We are all highly trained in 

reading these types of images, even if we are not always expert in identifying or interpreting 

specific kinds of content.  The layperson looking at a photograph of a face, for instance, will 

recognize it as a face though that same person looking at a photograph of a tissue sample stained 

to reveal macrophages may have no idea what they are looking at.153   

This familiarity with certain visual formats not only allows us to identify their content, but, 

importantly, also often allows us to judge the reliability of the image. We know both what a 
                                                 
152 However, Daston and Galison (1992) point out that what counts as objectivity has changed over time and is 
reflected in the practices of scientific image-making.  It is not always clear which objects, if reliable images are 
produced of them, serve as reliable information about some phenomenon or feature of the world. For instance, in 
examining the number of immune cells of a particular type that are present in different layers of the skin in normal 
as opposed to scar tissue, should I always photograph and count random fields of view or ought I to instead require 
that fields be randomly selected but meet some additional criteria – perhaps that they not contain any tears or that 
the tear not cover more than a certain percentage of the area of the field.  Some such criteria undoubtedly enhance 
the reliability of the data, but it is not obvious just what sort of constraints are there on the criteria that count as 
legitimate. 
153 This need for some knowledge or interpretive framework to see something as, for instance, a face, rather than just 
seeing a mixture of different colored areas was noted by Hanson (1965).  Kuhn (1970) also discusses seeing versus 
seeing as in the context of the theory-ladeness of observation. 
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(real) face looks like and what a reliable photograph of a face looks like.  Some sorts of variation 

we know to be permissible – we do not think that a black and white photograph is generally 

unreliable, for instance.154  However, if we see a very blurry photograph, we will be more 

inclined to question its reliability because we can tell that something has gone wrong in the 

production of the image.  Our ability to read the content of certain types of visual images is 

sometimes but not always connected to our ability to read their reliability.  This is very evident in 

the photographic representations of visual illusions such as the Ames room in which people of 

the same height appear to be dramatically taller or shorter than each other depending on their 

position in an oddly shaped room that appears perfectly rectangular from the limited perspective 

of the viewer.155  In this case, the unrecognized unreliability is created by the absence of some 

depth cues, not from unfamiliarity with what people of different height look like in a “normal” 

photograph.  In other cases, we may be relatively unfamiliar with the content of an image and 

still be able to recognize it as less than maximally reliable.  In the case of the tissue sample, for 

instance, some people would likely still be able to identify blurriness as a problem, though they 

would probably not pick up on other problematic features related to content and to parts of the 

experimental set-up upstream of the production of the photograph.156  Thus, while it is obviously 

not always correct to do so, is easy for us to interpret reliable-appearing photographs or 

photograph-like images157 as being, in fact, reliable.158

                                                 
154 It may be unreliable for certain purposes, but even then we can usually identify the purposes for which it is 
unreliable (e.g. for discriminating between green and blue eyes). 
155 See Crick (1994, 45-6). 
156 For instance, they would be unlikely to identify a photograph where all the cells in the tissue were uniformly 
stained as indicating a problem with the staining technique. 
157 Hereafter I will use the term “photograph” to refer to actual photographs as well as other images such as X-rays 
that are produced by processes that bear a physical similarity to optical photography. 
158 An additional difficulty in identifying photographs as reliable or not is digital manipulation of images after their 
initial production.  This is a very real concern today given the ease with which images can be altered and has been 
addressed in several recent pieces in Science and Nature (Ottino 2003; Pearson 2005; Greene 2005).  Part of the 
difficulty is in establishing what degree or type of manipulation is legitimate - i.e. does not compromise the 
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This connection between our expertise in reading photographs and our inclination to interpret 

them as being reliable is undoubtedly connected to the persuasive power of images, a topic that 

will be briefly returned to in section 5.3.  It also highlights the importance of distinguishing 

between the production of data (the relationship between the object and the representation) and 

the use of data (the relationship between the representation and the human user – or observer – of 

that representation).  My focus up to this point has been primarily, though by no means 

exclusively, on the former.  However, the fact that the same data, obtained by a specific process 

for a particular sample, can be displayed in a variety of different ways now requires more 

attention.  It is an important feature of the use of data that different representations of the same 

data may be interpreted very differently by the user.   

Recall that in order for an image or any type of data to be reliable, it must satisfy the two 

criteria described in the previous chapter.  First, there must be a granularity match between the 

instrument and the description of the world at which a particular question is directed.  Second, 

the structure of the object must be preserved in the data within finite error bounds.  Whether 

these criteria are met in any given case is in part dependent on the question to which an answer is 

sought, but the range of possible questions that can be reliably answered using a given 

instrument is itself constrained by the nature of the processes involved in the instrument.159  This 

account of reliability does not distinguish between numerical data or images:  both can be 

described in terms of error bounds and granularity.   

                                                                                                                                                             
truthfulness or reliability of the data and may, in fact, aid the viewer in making relevant discriminations - and what 
constitutes fraud or misrepresentation of what was originally perfectly reliable data.  These sorts of conditions on 
selection and manipulation of data, however, are not specific to images but apply to all sorts of data production 
methods. 
159 More accurately, this constraint is enforced not only be the instrument (which has defined start and end points, as 
indicated in Chapter 4 for the case of PET), but by the experimental set-up including elements upstream of the 
instrument.   
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An essential part of reliability, though, is allowing certain objects, properties, or features to 

be discriminated.   The ability of the user of the data to make certain types of discriminations is 

affected both by the data production process (constraints imposed by features of the object-

representation relationship) and by the data display format.  Features of the data production 

process obviously limit the types of discriminations that can be made using a given instrument.   

For instance, if one object contains twice the radioactivity as a second, but my method of data 

production cannot discriminate between x and  2x over this range of radioactivity, the same value 

will be assigned to both objects and I will not be able to discriminate between the two (at least 

not with respect to their level of radioactivity).  Situations such as this can arise from either the 

detector used by the instrument or from the mathematical or statistical processing. If a particular 

detector can (or is set to) collect only a specific range of wavelengths or can register only a 

maximum number of radioactive counts per second, then it can obviously not be used to make 

discriminations that would require data about other wavelengths or distinguishing between two 

different radiodensities both if which produced counts above the maximal rate.  Alternatively, 

mathematical or statistical features such as partial volume effects (see Chapter 2) may be the 

limiting factor.   

However, it is also the case that the way I choose to display the data can make it much easier 

or much harder for the set of possible discriminations to actually be made by the human viewer 

of the data display. Tufte (1983, 1997) provides a guide to the types of visual display that allow 

human user to make more discriminations and to make them more easily.  But, as Tufte also 

notes, there are also formats that inhibit our ability to identify specific features of the data.  

Examples where the viewers’ interpretations of the data are manipulated, intentionally or not, by 

the choice of graphical method are very familiar.  For instance, choosing a larger or smaller scale 
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for the y-axis of a graph can make two quantities appear much more similar or dissimilar than 

they would had another scale been used, as is shown in Figure 5.1.  The same holds true of 

photograph-like images.  Figure 5.2, for example, shows 41 images that all represent the same 

PET data but assign different colors to different ranges of voxel intensities (the first and last 

image are shown with a linear grey scale).  Notice in particular how the spot at the base of the 

image appears hot, cold, or even absent according to which color scale is used.  Similarly, in 

Figure 5.3 the use of a pseudocolor palette in the images on the right allows us to more easily 

discriminate different voxel intensities and makes the difference between the top and bottom 

images appear to be much greater.  Thus, the potential advantage of images over other data 

formats is highly dependent on specific features of the image display.  For the remainder of this 

chapter, therefore, I will assume that images and other forms of data display are created in such a 

way as to maximize the ability of the user – given a particular display format – to make correct 

discriminations.160  Notice that this does not prejudge the question of whether a particular 

display format has an epistemic advantage relative to other display formats; it merely recognizes 

that for each display format there are ways to increase or decrease its effectiveness.   Just as the 

choice of color palette for an image may be optimized for making the discriminations of interest 

in a particular case, so too may there be optimal graphical or numerical representations of the 

same data.  Presenting only a subset of the data in graphical format, for instance, can make it 

easier to identify features relevant to a making a given sort of discrimination. 

                                                 
160 “Correct” here refers to the discrimination(s) needed to answer the question of interest in any given case.  It will 
sometimes be the case that display formats that make some features of the data more easily discriminable by the user 
also obscure or make impossible to discriminate other features.  For instance, if what is needed to answer a 
particular question is the ability to discriminate relatively small differences within a specific, limited range of 
intensity values, a different pseudocolor may be assigned to small intensity intervals within this range and larger 
intervals outside of it.   This will, in effect, visually eliminate some differences that occur outside of the intensity 
range of primary interest.  This is, of course, purely a matter of the representation-user relationship, the differences 
are not eliminated from the numerical data (the object-representation relationship is unchanged by this sort of 
manipulation). 

163 



 

 

a 0

20

40

60

80

100

120

140

160

Cats Dogs Pigs

av
er

ag
e 

IQ

 

b 0

100

200

300

400

500

600

700

800

900

1000

Cats Dogs Pigs

av
er

ag
e 

IQ

 

     
80

100

120

140

160

Cats Dogs Pigs

Av
er

ag
e 

IQ

 
c 
Figure 5.1  Visual effect of changes in graphical scale. 

All three graphs show the same data for the average IQ of three different animals:  cats 150, pigs 135, and dogs 90.  
The only difference between the three graphs is the choice of y-axis.  In a, it starts at 0 and goes up to 160.  While 
cats and pigs are clearly smarter than dogs, the dogs don’t appear to be too badly off.  In b it starts at 0 and goes up 
to 1000.  All three animals seem to be almost equally mentally challenged.  In c the y-axis begins at 80 and goes up 
to 160.  Cats and pigs again seem to be much smarter than dogs, which now appear to have some real difficulties. 
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Figure 5.2 Identical PET data displayed using different choices of color scale   

Original images taken from Brian Murphy (1996).  This series of images appeared on the cover of the December 
1996 issue of the Journal of Nuclear Medicine Technology and was intended to demonstrate the effect that choice of 
color scale has on how we “see” the data. 

 

165 



 

 

 

 
Figure 5.3  Effect of pseudocolors 

Demonstration of the difference in visual effect of the use of  pseudocolors rather than variation in brightness of a 
single color to represent intensity differences.  (Images courtesy of Simon Watkins) 

 

For the purpose of examining whether visual images have any kind of epistemic advantage, it 

will be important to keep in mind not only that any display format can be used more or less 

effectively, but that, in the case of the sorts of imaging technologies that are the focus of this 

dissertation, the use of different data display formats does not indicate a difference in the object-

representation relationship, but only in that between the representation and the user.  The data 

collected using the instrument is the same no matter what form of data display is chosen.161  The 

                                                 
161 This will not be true of all other types of instruments.  An instrument that uses X-ray or photographic film as the 
detector, for instance, does not first represent the data in numerical form.  The image format in such cases is not 
optional in the sense that it is with something like PET.  The data can be converted to numerical format (e.g. by 
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numerical value associated with each pixel or voxel is not changed when we represent it in a 

different format or by a different color within a certain format.  Thus, if images are to provide 

some kind of advantage, it will be in terms of their use by the viewer rather than in terms of their 

content.   

Given the above, images are potentially able to play two important epistemic roles.162   

• The first is cognitive accessibility:  images make many features of the data set 

(overall patterns, relationships between parts of the images and between large and 

small scale structure) more easily accessible to the human cognitive system than do 

other types of display such as linear strings of numbers.  This is particularly true for 

very large, complex data sets such as those produced by PET and confocal 

microscopy. It might well be possible for me to extract as much information from a 

string of numbers identifying the number of blades of grass in each of two halves of a 

1 square inch patch of lawn as it would be to see an image of the area with different 

colors used for different numbers of blades, but as the number of data points 

increases, so does the efficiency of the visual over the numerical display.  A graphical 

representation of the patch of lawn divided into quadrants rather than halves would, at 

least for most people, probably make it easier to identify the spatial relationship 

(directly vertical, directly horizontal, etc.) between the most grassy and least grassy 

quadrants.  For the tens of thousands of voxels in the average PET image, there is no 

question of our being able to identify areas of high of similar activity by looking at 

strings of numbers, let alone being able to tell what region of the brain those areas 

                                                                                                                                                             
scanning or otherwise digitizing the image) and then represented in other formats, but in this case it is not strictly 
accurate to claim that the same data is displayed as an image or in other forms.   
162 Wimsatt (1991) similarly identifies visual representations as the simplest and most inferentially productive means 
of analyzing multidimensional data and processing information about motion. 
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correspond to.  But this information is very readily picked up by even a quick scan of 

the PET image. 

• The second potential role is in facilitating the identification of causal relationships.  

Claims about imaging technologies allowing us to “see causation” in the sense of 

picking up causal information are frequently made either implicitly or explicitly163 by 

biologists.  This is a very important idea to try to understand since, if true, it means 

that some 4-dimensional visual representations can provide us with causal 

information that is not only less accessible but that may not even be present in other 

data formats.  With regard to this function of images, we need to distinguish between 

static images, whether 2- or 3-dimensional, and moving images such as the videos 

produced in conjunction with live-cell imaging techniques.  Moving images are 

widely claimed to provide more information than static images and often the sort of 

information that we can get from them is couched in causal terms.  The obvious 

candidate for the extra information contained in moving images is the temporal 

dimension.  However, as will be discussed later, temporal data is not absent in all 

static representations:  serial representations of some object created at defined time 

intervals can, at least in theory, represent the same information.   

The idea that causation is something that we either can or cannot  perceive has a long history 

within philosophy (though the majority of writers, including Hume, have taken the negative 

position) and there is a more recent, though still substantial, psychological literature investigating 

the question of when and how we get the visual impression of causation.   It has, of course, 

proven to be very difficult to come up with a satisfactory account of what causation is.  

                                                 
163 Though explicit claims tend to be limited to oral communication, a fact that perhaps already suggests that this 
claim is not to be taken at face value. 
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Fortunately, this question need not be resolved in order to answer the question of whether 

imaging cells (or other biological objects) in real time allows us special access to causal 

information.  I will claim that, whichever interpretation of causation we accept, whether we can 

get causal information from data has less to do with whether it is in the form of static or kinetic 

images – or even images at all – and more to do with the background information we have about 

possible or plausible causal mechanisms.  I will argue that while we do very often get ‘extra’ 

information from imaging events in real time, we do not specifically get causal information.  

Furthermore, the additional information we get is not specifically due to the data being presented 

in the form of a 4-dimensional image, but is rather due to features of the experimental set-up 

such as the temporal resolution that can be achieved using different methods or the ability to 

track single objects (cells or molecules) over time. 

5.3. Why images? Some other perspectives. 

Before turning to an examination of these two potential epistemic roles of images, I want to 

very briefly acknowledge some of the answers that other disciplines have to offer to the question 

of why images are a preferred form of biological evidence, even when other options are 

available.  A considerable amount of work has been done on the history, sociology, 

anthropology, and rhetoric of scientific images (e.g. Dumit 2004; Lynch and Woolgar 1988; 

Cartwright 1995; Brain and Wise, 1994; Jones and Galison 1998; Elkins 1999; Kevles 1997; 

Abraham 2003; Breidbach 2002) and these perspectives are crucial to a complete answer to this 

question.  While it is clearly impossible for me to address all of the responses that these 

disciplines have suggested, I want to very briefly sketch a couple of possibilities that seem to be 

particularly important.  These are: 1) the historical importance of visual evidence and images in 

169 



 

medicine and biology, and 2) our affinity for and attraction to images together with the rhetorical 

power of images. 

5.3.1. Historical Preferences 
N.J. Berrill has claimed that biology is and has always been an “eminently and inherently 

visual” science (1984, 4).  Evelyn Fox Keller claims that, while various branches of biology take 

different forms of evidence to be explanatory and there has often been conflict between those, in 

the tradition of natural history, that give preference to observation (whether direct or via imaging 

technologies) and those that are more theoretical and give preference to mathematical models, 

there is a common attraction to the use of visual representations that resemble what we get by 

direct observation - i.e. naturalistic images (2002, 202).  Data that is the output of mathematical 

models – cellular automata, for example – becomes more acceptable to a broad range of 

biologists and gains persuasive power when the results are displayed in ways that bear visual 

resemblance to the objects and processes they are supposed to represent (2002, 272).   

Essentially, it seems, most biologists like to watch natural objects doing things.  Advances in 

biological imaging, including confocal microscopy, in the last 15 years or so are widely 

considered to have revolutionized164 cell biology.    While this claim is true simply in virtue of 

the enormous advances that have been made in the types of questions that can be asked and the 

ease with which they can be addressed, it is often justified at least in part by making reference to 

the fact that these advances have allowed us to watch events occurring inside cells.  It is not only 

that we now have the ability to easily ask many questions that were previously difficult or 

impossible to address:  it is that we can see – or watch – things happen.  I will have more to say 

about the difference between seeing and watching later, but for now it is sufficient to notice that 

                                                 
164 This term, or “revolution” is used in almost every paper that makes reference to the period that is usually taken to 
begin with the discovery and cloning of green fluorescent protein (GFP). 
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having specifically visual access to objects and events of interest is a longstanding desire in 

biology. 

Some forms of biological data may not obviously present alternatives in terms of preferred 

data display format:  with confocal microscopy, for example, you see an image if you look at the 

specimen through the eyepieces or on the monitor so it seems natural that the output should be an 

image.  In the case of PET, however, the choice seems less obvious since the data exists as 

numbers before it gets converted into an image.  However, just as current cell biology may share 

some preferences for visual observation with the natural history of past centuries, PET also 

belongs to a lineage of technologies with a particular preferred format of representation.  We can 

trace a direct line from the X-ray to CT (computed tomography) to PET.165   Originally, X-rays 

were necessarily photograph-like, being produced by the direct interaction of X-rays with the 

film.166  No mathematical processing goes into the production of an X-ray and while it can be 

measured after its production (e.g. by densitometry) and the data presented in some other format, 

the X-ray is essentially pictorial.  CT is essentially a tomographic, 3-D X-ray format that requires 

image reconstruction to regain spatial information just as PET does.  In the very early days of the 

technology the representational format made explicit acknowledgement of the mathematized 

nature of CT.  Instead of a picture with each pixel assigned a color or shade of grey, the data was 

displayed as a two-dimensional array of numbers.  The number indicating the intensity of each 

pixel was displayed in an arrangement  

                                                 
165 For a history of medical imaging, see Kevles 1997. 
166 This is no longer true, however, since X-rays data is often collected digitally rather than by using photographic 
film.   
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Figure 5.4 An early example of CT data.   

CT data as shown in the initial clinical report on the technique.  This figure appeared in Ambrose (1973). 

 

approximating that of the brain (the early use of CT was for brain imaging) as shown in Figure 

5.3.  Very soon however, CT data began to be displayed in a standard pictorial format, like an X-

ray.  This might reflect the preferred representational style of the researchers and clinicians using 

the CT images167 as well as the undoubtedly greater ease of gathering information from the 

straightforward image.  So it might be that the naturalistic style of PET images reflects the 

pictorial preferences of a discipline in addition to (or rather than) conferring any particular 

epistemic advantage.   

 

5.3.2. Affinity for and rhetorical power of images 
The source of the preference of biologists for visual access to the world that was discussed in 

the last section is not entirely clear.  One plausible way of accounting for it is by reference to the 

                                                 
167 Along similar lines, in discussing the representational style of electron micrographs, Rasmussen (1997) claims 
that it was strongly influenced by the way that previous types of cytological images were presented. 
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fact that, when used under appropriate conditions, visual perception is usually reliable.  We learn 

to trust the results of our eyes, under most conditions, and ways of investigating the world that 

seem to be like straightforward, unaided visual observation  may more easily be taken to also be 

trustworthy in virtue of this apparent similarity.   In essence, seeing is believing and if we can 

come up with new ways of seeing then we might at least be inclined to think that we should 

believe what we see in these new ways too.  While of course no scientist naively believes that 

our eyes or imaging technologies always produce veridical data, the phrase “seeing is believing” 

appears in several paper titles168 as well as in a recent letter to the editors of Nature in which the 

author suggests that our natural tendency to go from seeing to believing is now being inverted 

through the use of digital manipulation of image data.169   

The editorial on which the author of this letter is commenting, brings up another reason why 

images may have persuasive power:  we are simply drawn to attractive images.  We like to look 

at them and we like to make them: “Tweaking images is also seductive in a way that adjusting 

statistics is not, because of the natural human desire to create an aesthetically pleasing picture” 

(Pearson 2005, 953).170  This sometimes leads us into questionable digital manipulation 

practices, but it also leads to such things as the calendars of extraordinarily beautiful scientific 

images that are often put out by companies such as Zeiss that make microscopes.  The beauty of 

the images may, in some cases, be an end in itself, but it may also serve other purposes.  In 2003, 

the American Academy for the Advancement of Science together with the journal Science 

organized the first annual Science and Engineering Visualization Challenge.  The report on the 

outcome of the 2004 version clearly states that the contest was designed to foster “the ability to 

                                                 
168 Hearst 1990, Orr-Weaver 1995, Monteith 1995, Herschman et al 2000. 
169 Greene 2005. 
170 The idea that we like to create pictures that resemble the world around us can be traced back as far as Aristotle’s 
claim that humans have a natural tendency toward mimetic activity (Poetics xxx). 
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convey the essence and excitement of research in digitized images, color diagrams, and even 

multimedia presentations” since this increases public attraction to and understanding of science 

and since it “the general public that ultimately supports the global research enterprise … 

everybody benefits” (Supplee and Bradford 2004, 1903).  Joseph Dumit, an anthropologist of 

science, suggests that images can do this in virtue of their ability to serve multiple purposes and 

hold several different meanings simultaneously.  A single PET image can represent not only the 

actual blood flow in a slice of a specific individual’s brain over a particular time period, but also 

the pattern of blood flow in some type of person (e.g. schizophrenics), the viability of PET as a 

research tool for certain disciplines and types of questions, and (perhaps most importantly for the 

public perception and support of science), the value and importance of research in neuroscience 

more generally (2004, 4). 

As suggested by the multiplicity of meanings and roles they can play, images are important 

not only for the reception of science by the general public, but for the evaluation of individual 

pieces of research and research projects by journal editors and grant review boards.  Dumit 

interviewed a number of prominent PET researchers about various aspects of their use of images 

and found that most claimed that it was crucial to include brain images (as opposed to only 

graphical or other statistical data) in articles submitted for publication or grant applications since 

the failure to do so significantly reduces your chance of getting your work published or funded 

(2004, 57).  It is important to note that the quality of the data doesn’t change between these 

different display formats, but apparently the appeal, power, or apparent importance of the data 

does.  One feature of naturalistic images that potentially contributes to the authority that they 

may hold outside of a very specific scientific or medical context is their resemblance to 

photographs.  Despite the enormous complexity of producing a PET image, by or for the 
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layperson such images are often interpreted as being essentially photographs of the brain.  As 

such, they inherit the presumed objectivity and reliability of a photograph171 and serve as 

persuasive evidence for the (multiple) claims that they are used to support.  The combination of 

presumed objectivity and reliability together with the ease with which these images come to hold 

multiple meanings gives them enormous power.  Others have written extensively about the 

power that visual images (scientific and otherwise) exert on public discourse and emotion (e.g. 

Mitchell 1994; Cartwright 1995) as well as on the aesthetics of scientific images (e.g Stafford 

1991, 1994, 1996; Elkins 1999), but I will not be able to discuss their work here.  Instead, I will 

now turn to the first of the two potential epistemic roles of images: cognitive accessibility. 

5.4. Cognitive accessibility 

The fact that visual representations (including not just photograph-like images but diagrams, 

maps, graphs, etc.) can present us with large amounts of complex data in a way that is more 

easily available to our cognitive apparatus than is data in a straightforward numerical format is 

uncontroversial.  Even very simple types of visual array such as arranging numbers from highest 

to lowest makes it much easier for most people to identify certain features of the data (Tufte 

1983, 1997).  Faced with tens of thousands of numbers in a PET data set listed in a linear 

sequence proceeding from the first to the last slice (along the z-axis) and, within a slice, from left 

to right (along the x-axis) and from bottom to top (along the y-axis), no human could hope to 

identify regions of higher or lower activity within any reasonable period of time.  We might be 

able to scan the list and eventually come up with a set of the highest numbers, but to keep track 

of the position on the x,y,z-axes each value belonged and which were adjacent to other high 

values, while theoretically possible, would be enormously difficult and time-consuming, 

                                                 
171 Though awareness of the extent to which photographs are digitally manipulated has undoubtedly reduced the 
degree to which photographs are seen as reliable and objective representations of the world. 
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especially if we were not to add any sort of visual representation (lines, symbols, etc.) to mark 

the spatial location to which each number belonged.  The epistemic value of cognitive 

accessibility, then, is not that images contain spatial information that is not present in the 

corresponding numerical data, but that they make it much easier to get it into our heads; to 

produce belief or knowledge.  In general, the larger and more complex the data set, the greater 

the epistemic advantages of using some form of visual representation.   

However, this advantage holds in general for any type of visual representation.  Is there any 

special advantage to photograph-like images compared to other visual formats such as graphs?  

Recall that some scientists who use PET are reported to prefer graphs to semi-naturalistic brain 

images.  An important caveat that was left out earlier, however, is helpful in identifying what 

advantage images specifically might have.  Even scientists who prefer to analyze their data using 

various graphical representations use the images at earlier stages in order to get an overall sense 

of the data in order to judge whether the experiment worked or showed some characteristic(s) 

that might suggest that something had gone wrong with the experiment.172  What the images do 

very effectively is to give the user a sense of the overall characteristics of the data:  how both 

adjacent and distant parts of the image compare to one another and what both the global and 

local characteristics of the data are.  Looking at the image, for instance, makes it easy to see 

whether two regions of interest (ROIs) are active at the same time or if one region becomes 

active following the other.  The same information is present if the data is presented in the form of 

two graphs, a time course of activation for each of the two ROIs, but in this case additional work 

must be done (e.g. using the same scale and aligning one graph above the other) in order to pick 

out this larger scale feature of the data.  Under some circumstances, looking at the image may 

                                                 
172 Julie Fiez  (Associate Professor, Departments of Psychology and Neuroscience, University of Pittsburgh), 
personal communication.   
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help to initially identify a ROI.  While an ROI may sometimes be defined prior to an imaging 

study in terms of anatomical structure or Talairach coordinates, in other cases the ROI(s) may 

not be identified until the imaging data has been acquired.  In such a case, an ROI will often be 

defined as an area that is differentially active between control and test individuals or between a 

baseline state and a response to some stimulus.  Delineating the boundaries of an ROI in this 

situation involves identification of an area of high activity and so requires a very simple kind of 

“seeing as”.  Although the area may have no pre-specified shape, it still requires that we 

recognize specific features as characteristic of an ROI: a patch of either uniform color (or a 

mixture of the colors representing the highest activity levels) and the boundaries at which the 

color shifts to one representing a lower activity.173   

This advantage that images have over representation of portions of the data in other formats 

such as graphs may sometimes be reversed, however.  The central point about cognitive 

accessibility is that some types of representation allow us to more easily make certain sorts of 

discrimination.  Sometimes it is easier to discriminate more local features of the data if the extra, 

non-local data is removed from view.  The presence of excess information can make it harder 

(though, again, not impossible) to pick out specific features of interest.  Thus, if what you are 

most interested in is relatively subtle differences in the timing of activation of a specific ROI 

between two populations, it may very well be easier to make the relevant discriminations by 

looking at time courses for that ROI in the two groups and eliminating all of the data from other 

areas.  The effect of using different color schemes in Figure 5.2 is essentially the same: it 

highlights some differences while obscuring others and so facilitates some discriminatory tasks 

while making other more difficult.   

                                                 
173 The same information could be extracted from the numerical data but it would almost certainly require using a 
computer and some sort of pattern recognition tool to identify the required features.  Except perhaps in very simple 
cases, we could not easily identify these features from numerical PET data on our own. 
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Representation of the data in numerical form can also offer some potential advantages.  In 

particular, numerical data is capable of representing an infinite number of different values. Of 

course, no instrument offers infinite precision so that the full advantage of numerical 

representations is never actually needed.  But a numerical format does have the capacity to fully 

capture the granularity of the instrument:  the apparent granularity of the numerical 

representation will be equal to that of the instrument whereas the apparent granularity of the data 

represented as an image will usually be less than that of the instrument.  This situation arises 

because the human visual system is able to discriminate only a very limited number of shades of 

grey and larger, but still finite, number of colors.  Therefore, when PET or other data is 

represented as a grey scale or pseudocolor image, each grey level or color must be used to 

represent a range of numerical values.  This is not necessarily a bad thing – in fact, by 

eliminating some differences that are not relevant to answering the question of interest, we can 

more easily pick out those that are relevant.174  However, it does mean that finer-grained 

distinctions can be made over the full range of data values using the numerical data rather than 

an image.  The full granularity of the instrument could be captured in a set of images if we 

iteratively selected small regions of a larger scale image in which only a limited segment of the 

full color range was present and redefined the intensity range associated with each color such 

that a smaller and smaller range was used in each iteration.  We could eventually capture the full 

granularity of the instrument, but it would require a large number of images and the fact that the 

same color would represent different intensities in different images would eliminate any 

cognitive advantage. 

                                                 
174 Trying to minimize the range of values represented by each color by using as many colors as the human visual 
system can discriminate would only reduce the ease with which we could make any discriminations. 
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Thus, the cognitive advantage of images over other forms of data display is relative.  The 

existence and extent of the advantage is dependent of the sort of discriminations that need to be 

made and, even in cases where there is a significant advantage to using an image, the image is 

easier to use but does not allow anything to be done that could not in principle be accomplished 

using other forms of data. 

5.5. Perception of causation 

 

Do images have an epistemic advantage over other types of data display in that they, and not 

other formats, give us access to causal information?  More specifically, do moving images – 

videos – created by imaging living cells allow us to pick up information that we cannot get either 

from either series of static images or other forms of data?  Since numerical data precedes both 

the static images and videos, there need not be any difference in content between any of these 

forms of data display.175 This is important since it means that we can isolate epistemic 

differences that are due to the data display format from those that must be attributed to different 

object-representation relationships.  It is differences that can be attributed to differences in 

display format that are the primary concern of this section.   

The advantages of live cell imaging are widely celebrated though it is often a bit unclear 

precisely what the advantage is (all italics my own):   

“Static images – until now the source of most data in 
developmental biology – give an incomplete view.  … [Live cell] 
imaging allows scientists to take advantage of the world’s fastest 
computer processors: their own eyes and brains.  Humans can take 
in lots of visual information at once and extract patterns from it; 

                                                 
175 As will be discussed shortly, though it is in principle possible for numerical data, static images, and videos to 
have the same content, in practice the experimental set-up and data are usually different when one compares static 
images to videos.  These differences are very important but they are not differences that are due to the data display 
format itself. 
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complex images and movies provide such information.”(Beckman 
2003, 76) 

 

“With the advances in labeling and imaging technologies, we have 
already witnessed remarkable improvements in our ability to 
monitor and interpret processes in real life and in real time.” 
(Hurtley and Helmuth 2003, 75) 

 

“Being able to observe processes as they happen within the cell by 
light microscopy adds a vital extra dimension to our understanding 
of cell function.” (Stephens and Allan 2003, 82) 

 

“The ability to visualize, track, and quantify molecules and events 
in living cells with high spatial and temporal resolution is essential 
for understanding biological systems.  […] the development of 
highly visible and minimally perturbing fluorescent proteins … 
together with updated fluorescent imaging techniques, are 
providing unparalleled insights into the movement of proteins and 
their interactions with cellular components in living cells” 
(Lippincott-Schwartz and Patterson 2003, 87) 

 

The above quotations were all taken from articles in a special section of Science devoted to 

biological imaging.  Live cell imaging is identified as giving us more (complete, with an extra 

dimension) and better information (allowing extraction of patterns, interpretation, 

understanding), but what is the nature of this extra information?  The obvious response is that it 

gives us temporal information, but, as noted earlier, temporal information is not absent from all 

data presented as static images.  Series of static images produced at defined temporal intervals 

also convey this sort of information, though it is often less fine-grained temporal information and 

is added to the images rather than being strictly contained by them.  However, coarser temporal 

resolution is a matter of different content of the data rather than a necessary feature of the data 

display format and time lapse video data also requires that some temporal information be added 
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back to the video images, so these differences will not play a role in identifying possible 

epistemic differences specific to data format.   

Is it only the case that live cell imaging usually gives us more of the same sort of information 

that is present in static images, or can we get a different kind of information from moving 

images?  Though none of the review papers cited above make any direct reference to causal 

information, if we look at reports of specific imaging studies, they tend to report primarily two 

types of information:  1) descriptions of the spatiotemporal movements of one or more objects, 

and/or 2) calculation of the dynamic or kinetic features of specific interactions.  It is the first sort 

of information that is most relevant here since the descriptions involved usually include 

ascriptions of causal relationships between various imaged components.  Thus, for instance, we 

read (italics mine): 

“…that kinetochores can attach to the forming spindle by 
capturing astral MTs [microtubules] was directly demonstrated by 
video microscopy … Subsequent video microscopy studies 
revealed that this kinetochore switches between two activity states: 
one that allows it to move poleward in response to a force, and 
another that allows it to be pushed (or pulled) away” (Rieder and 
Khodjakov 2003, 93) 

 

“Growth of phragmoplast across the cell creates a new partition in 
its wake, giving the visual effect of a curtain being pulled across 
the cell.  Throughout this process, the advancing front of the 
phragmoplast is in intimate contact with the parental wall, 
suggesting that short-range interactions between the phragmoplast 
and plasma membrane may play important roles in guiding the cell 
plate throughout much of its development.”(Cutler and Ehrhardt 
2002, 2812) 

 

Such causal claims are, as above, often explicitly based on the interactions that are seen in 

the videos.  Is it the case, then, that watching videos produced by imaging living cells allow us to 

identify causal relationships in a way that we cannot by seeing static images or numerical data?   
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Causal information is central to scientific explanation, so the identification of causal 

interactions is crucial to our understanding of the various objects and events studied in biology 

and medicine.  We want our methods to allow us to do more than simply describe what 

happened:  we want to understand how and why things occur.   The question of whether we can 

get such causal information specifically by watching is considerably more complex than the 

issue of cognitive accessibility for three reasons.  First, the concept of causation has proven to be 

notoriously difficult to pin down.  If we want to understand whether we can “see causation”, we 

need to have some idea of what makes a sequence of events a causal sequence and of how the 

relation of causation is identified or defined.  In particular, we would like to know whether the 

causal relation is something that supervenes on other physical properties of the world and what 

features of the world, if any, we need to observe.   Second, the idea that 4-dimensional images in 

particular might provide us with information about causal relations is often found in the context 

of a comparison between data obtained in different ways – for example, between samples that 

were taken at various times, then prepared for imaging and a single specimen that was monitored 

continuously or near-continuously over an extended period of time.  Moreover, the techniques 

involved are not techniques merely for visualizing, but involve intervening in the systems that 

they make visible.  Thus the question of whether we are able to extract different information 

from different ways of displaying the same data needs to be separated from the question of 

whether some methods of intervention provide more, less, or different information.  Third, we 

need to address the question of how the content of the data and/or data display is related to the 

psychological effect (or causal impression) that seeing certain sorts of visual interactions 

produces in humans.  The two are not always connected. We may, for instance, get a visual 

impression of causation from only a subset of the interactions that represent actual causal 
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relations.176  Alternatively, we may get an impression of causation from visual interactions that 

are not causal.   

Each of these three features will need to be addressed in turn.  The second is more easily 

separable from the first and third, so I will begin with it. 

5.5.1. Different data 
As it was in the quotations in the previous section, a contrast is usually drawn between the 

information we are able to get from seeing static images and from watching videos of living 

cells.  Static images, even when they form a time series, are taken to be incomplete relative to 

video and to be unable to provide the information we need to fully interpret and understand 

protein and other molecular interactions.  The question at issue here, though, is not whether 

videos simply contain more information than static images, but whether the 4-dimensional data 

display format provides us with a specific kind of additional information – a kind that allows us 

to extract causal information about the objects and interactions that are imaged.  In order to do 

this, we need to compare apples to apples.  The problem with comparing series of static images 

to video is that they usually involve not only different forms of data display, but different ways 

of intervening with the objects of investigation.  They are different in at least three important 

ways.  First, video will normally allow a much greater temporal resolution.  Second, sampling 

requires that each image in the time series represent different individual cells/molecules while 

live cell imaging can continuously monitor a single cell or molecule from start to finish of the 

imaged process.177  Third, for many objects and events there may exist no way of monitoring 

them or making them visible by any technique other than those normally used for live cell 

imaging.   

                                                 
176 The causal anti-realist should replace “actual causal relations” with something like “interactions of the sort that 
actually meet the criteria for what we call causal relationships”. 
177 Keller also refers to the first two differences, but not the last, in her assessment of the advantages of studying 
living cells (2002, 225). 
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With respect to the issue of temporal resolution, while neither human perception nor any type 

of video are truly continuous,178 they can much more closely approximate continuous monitoring 

of some object than can any technique that depends on taking samples at discrete intervals.  The 

sampling interval that is technically feasible in generating a time series will depend in large part 

on the nature of the particular experiment.  If, for instance, I want to examine the movement of a 

particular protein in a cell undergoing mitosis, I can synchronize a large number of cells in a 

flask, extract samples at regular intervals (maybe every 5 seconds, if I have help), prepare each 

sample (e.g. by fixing then staining the cell with a fluorescently-labelled antibody), then 

photograph them using an appropriate kind of microscope and camera. The sampling interval 

will be determined by how quickly I can withdraw samples as well as by how quickly I can halt 

the process in which I’m interested.  With an automated system, I might be able to get below 5 

seconds, but there is no way in which I could achieve a sampling interval of 1/300 second to 

correspond to the frame capture even of a CCD camera.  As a result, I am virtually certain to get 

data with a much finer temporal resolution by using my confocal microscope with a living cell 

(or group of cells) in which the protein of interest has been made visible in some way (perhaps 

by creating a GFP fusion).  By keeping the cell(s) alive in culture for whatever time period 

mitosis requires in that species, I can get the same spatial resolution as in the previous case, but 

much greater temporal resolution.   

The difference in temporal resolution alone may or may not make an important difference to 

our ability to make causal claims based on the video vs. the time series data.  Whether it does or 

not depends on the temporal scale at which events relevant to ruling out the occurrence of 

alternative interactions or mechanisms, as will be discussed later.  The important point, though, 

                                                 
178 Our visual system involves brief saccades as well as attentional shifts that prohibit continuous attention being 
paid to any single object.   CCD cameras can now capture frames at about 300 frames per second. 
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is that this difference is not one that is due to differences in content between data display 

formats, but due to the fact that the video format almost always contains more information (but 

of the same sort) than does the time series.  To show that there is a difference specifically due to 

the type of data display would require that we be able to get additional information from the 

video than from a series of static images spaced at intervals equivalent to the video capture rate 

(such a series could be created from the video).  This, however, is not the situation that is 

referred to in the above quotations or in any discussion of the advantages offered by live cell 

imaging.  From the perspective of the scientist, this comparison is of little interest since time 

series data with the same content as video doesn’t actually exist.  What matters is simply that you 

can ask and answer more questions using live cell imaging methods.  For the philosopher seeking 

to understand the epistemic significance of watching, however, it is very important to distinguish 

differences that are due to the amount of data that is collected from those that may be due to the 

difference in data display format. 

The second contributing factor to the difference in the content of data in video format 

compared to series of static images is the visualization of a single individual vs. multiple 

individuals of the same type.  This difference is impossible to eliminate, even in principle, since 

taking and preparing samples at timed intervals is a destructive process.  A cell that has been 

removed from culture, fixed, and stained at time t is of course no longer available to be sampled 

at time t+1.   Different samples must inevitably be used at each time point.179  How significant 

this difference is will depend on the range of variation between individuals – the greater the 

variation, the greater the impact.  However, it is not the case that live cell imaging is entirely free 

                                                 
179 The sample should not be confused with the entity (organism, types of cell, etc.) from which it is being drawn.  
For example, we can take multiple biopsies of the same tumor at different times, but the cells in each biopsy are 
different. 
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of this concern with the effect of differences between individuals.180  If the object of interest is 

whole cells (or larger units), then it is almost always possible to monitor individuals.  But a large 

part of the advantage of techniques such as confocal microscopy of living cells is not the ability 

to image larger units such as cells, but to monitor the spatiotemporal activities of specific 

proteins.   While it is increasingly possible to visualize single molecules and to follow an 

individual molecule through some event,181 it is still more common that many molecules are 

labeled and that all of the molecules present in a given cell or cell compartment cannot be 

distinguished.182    In such cases, it is aggregate behavior of the labeled molecules that is 

observed.   Accordingly, unless single molecules are imaged, there is only a difference in degree 

between the effect of a time series generated using different individuals and a video in which the 

change in spatiotemporal position of multiple molecules is represented (for instance, as a general 

shift in fluorescence intensity from the cytoplasm to the plasma membrane).. 

The third difference is that technical limitations with other methods mean that live cell 

imaging may sometimes provide the only means of addressing certain questions.  In this case, the 

fact that the video display format contains more information follows simply from the inability to 

effectively intervene using other methods whose usual output is static images.  There may, for 

instance, be no good antibody with which to stain some particular protein in fixed specimens.  

GFP and its variants, however, can be genetically fused to virtually any protein of interest, 

usually without interfering with the function of the protein.  Even if alternatives are present, 

creating a GFP fusion and using the fluorescent protein to track or quantify single or multiple 
                                                 
180 This is not to deny that knowing the range of variation in a sample or population is a good thing, but only to 
indicate that knowing individual rather than aggregate behavior is also of value. 
181 See, for instance, Seisenberger et al. 2001; Murakoshi et al. 2004; Lommerse et al 2005; Ritchie et at. 2005; 
Koyama-Honda et al. 2005. 
182 In the case of GFP fusion proteins, for instance, every protein expressed from the altered gene will contain the 
GFP moiety.  Additionally, new copies of the tagged protein will continue to be produced as long as the gene 
continues to be transcribed and translated.  These new proteins are not yet in their eventual sub-cellular location, nor 
are they contributing to specific functions. 
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proteins in the cell is often much faster and easier than taking and preparing individual 

specimens from multiple time points.  This is without any question an enormous advantage for 

live cell imaging techniques.  However, it is an advantage that belongs to the intervention aspects 

of these methods rather than the visual display aspects.  Moreover, this difference could easily be 

overcome by simply creating the GFP fusion and using cells containing it to generate a time 

series of static images.  No one in their right mind would do this since live cell imaging requires 

far less time and effort, but in theory the difference could be eliminated.   

To sum up this section, then, there are indisputably many advantages associated with live cell 

imaging.  However, many of these follow from the fact that imaging technologies are tools not 

only for visualization but for intervention.  Differences in data display format (video vs. static 

images) usually also involve differences in the type of manipulations that have been performed 

on the biological system.  While the differences that are specific to the intervention aspects of the 

methods are very important for scientific practice, for the purpose of this chapter they need to be 

separated from the epistemic effects of different forms of data display.  In order to assess the 

effect that the data format may have on our ability to get causal information, we need to start 

with the same data.  The general claim that videos may allow us to get causal information about 

protein interactions while times series do not requires that we compare the video with the same 

data presented as a time series (i.e. a series of static images consisting of each frame captured in 

the video).  Specific causal claims will require different amounts and types of information and, in 

some cases, video microscopy may produce far more data than is required and a series of static 

images at, for instance, much lower temporal resolution, may contain all the necessary 

information.  Further discussion of when and how this might occur will follow in the next 

section. 
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5.5.2. Understanding causation 
In order to determine whether or not we can get causal information from some data display 

formats and not others, we first need to have some idea of what we mean when we say that we 

saw X knock over Y or make some other sort of causal claim.  Hume famously argued that 

causes are not knowable a priori and that the observation of regularities in the world serves as 

the basis for our impression of causality.  However, all we really perceive, according to Hume 

are constant conjunctions of objects or events.  When we see one event regularly followed in 

space and time by another, the first one will naturally and forcefully bring to mind the 

expectation of the second.183  The causal impression just is this action of the mind.  Although 

one can see the prior event that would be labeled ‘cause’ and the subsequent event that would be 

labeled the ‘effect’, it is not possible to see a causal connection between them.  Other 

philosophers have contested this claim, maintaining that it is indeed possible to observe 

causation, even in single cases where no constant conjunction can be found.  Thus, for instance, 

Ducasse (1926) contends that by observing the relata of a causal relation, we observe the cause.  

Anscombe claims instead that the concept of a causal relation is too abstract and has meaning 

only if we can first understand ideas like push, pull, break, bend, etc.  (1975). These causal 

concepts can be applied on the basis of observation – we know what it looks like for something 

to break or to push or pull another object.  What we see, then, are instances of pushing, pulling, 

breaking, etc, not causation more generally.   

There is a very large philosophical literature on this topic184 and I cannot hope even to 

review all of the many accounts that have been developed let alone resolve the question of what 

                                                 
183 As many have pointed out, Hume actually seems to have two different definitions of “cause” - one based on 
regularity and the other making reference to counterfactuals.   
184 Not to mention a great deal of dissatisfaction with the state of the discussion:  “The attempt to 'analyze' causation 
seems to have reached an impasse; the proposals on hand seem so widely divergent that one wonders whether they 
are all analyses of one and the same concept.” (Kim 1995, 112). 
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causation is.    However, two very general sorts of alternatives can be identified.  The first is 

Humean and holds that what we are doing is drawing an immediate, automatic inference based 

on background knowledge of some sort.  Exactly what this background knowledge is supplying 

that allows us to identify certain relations as causal – information about regularities, 

counterfactual dependence, or something else – is far from being agreed upon.   But for the 

present purpose, disagreements of this sort can be passed over since the crucial feature of this 

position is that it holds that we are making an inference based on background knowledge of some 

sort, though we make the inference automatically and unreflectively.  The second alternative is 

non-Humean and claims that causal relations are immediately accessible to experience: we really 

are seeing causation, just as we would see a color or a shape.  Anscombe (1971) and Ducasse 

(1926) offer the most prominent defenses of this sort of view.   The former alternative is easily 

the dominant one, but the latter is not without its current defenders.  Interestingly, many 

psychologists working on visual perception claim that, despite what Hume claimed, we can 

perceive causation.  Thus, it will be informative to consider some of the arguments and 

experiments that psychologists offer in support of this view.   

While it may be an open question which of the two alternatives more adequately describes 

what is happening when we make causal claims on the basis of seeing some interaction at the 

macro level, I will argue that the Humean interpretation is the only possible alternative at the 

micro level of confocal and other types of microscopy since the careful application of 

background knowledge is indispensable to making causal attributions based either on seeing or 

watching. 

Minimal conditions for seeing something as causal 
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What is needed for my argument is not a complete theory of what causation is but an account 

of the minimal conditions that are required for us to be able to see that or how X caused Y based 

on the information available in some type of data display.  These conditions, I claim, are as 

follows: 

1. In order for there to be a causal relationship between two 
objects or events, they must possess spatiotemporal 
contiguity with certain acceptable limits.   

2. Importantly, these limits are determined not by 
characteristics of the data alone, but are established by 
background information regarding the sorts of interactions 
that are possible or impossible for objects or events of the 
involved type(s).   

The reasons for identifying these particular conditions will be elaborated in the remainder of 

this section.  Two features are important to notice at this point:  first, spatiotemporal information 

can be obtained from any data format, so there is no special ability to get causal information 

from video displays, and, second, the role of background information is what favors the Humean 

alternative, at least at the micro level.   

If it were to be true that we can get causal information in videos that we cannot get from 

static images or other (numerical, statistical) forms of data display, causal information would 

have to follow either from some difference in the content of these displays or from our 

psychological response to them.  Since there is no necessary difference in content between 

different data display formats, as has been argued earlier, I will turn to the question of the 

psychological effect.   

Psychologists on perceiving causation 
Since the early work of the French psychologist, Albert Michotte, in the middle of the 

twentieth century, a large amount of work has been undertaken to investigate when the visual 

system will interpret a dynamic stimulus as causal (e.g. Michotte 1946/1963; Scholl and 
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Nakayama 2002, 2004; Twardy and Bingham 2002; White and Milne 1999, 2003).  This work 

involves experiments such as the following (see Figure 5.4):  two shapes, A and B, are displayed 

and animated on a computer screen.  A begins to move towards B then stops when it is 

immediately adjacent to B.  Just when A stops, B begins to move away from A.185   Observers  

A B

 

Figure 5.5  Illustration of Michotte's launching effect.   

Adapted from Thinès, Costall and Butterworth (1991, 69) 

 

(adults or children) are asked whether or not A was the cause of B’s motion.  In the situation just 

described, the majority of observers will claim that A was the cause.  However, if the set-up is 

changed slightly so that B starts moving before or after A stops186 or if A overlaps B before B 

starts moving, then the proportion of people who claim that A caused B to move drops 

significantly.  Michotte referred to the “illusion” of causality in this interaction as the “launching 

effect”.  Other sorts of interactions have also been shown to produce the impression of causation: 

                                                 
185 There are additional factors that matter, most importantly the relative speed of A and B.  
186 A delay of up to about 50 ms between the collision and the departure of B did not affect whether or not people 
reported seeing the event as a “launch”.  Gaps of up to about 100 ms reduced the proportion of people who claimed 
to see the interaction as causal while gaps of more than 150-200 ms eliminated the effect. 
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entraining (when, after colliding, A and B move off together in the same direction as A was 

moving before the collision), pulling, enforced disintegration, bursting, and penetration.187    

The most important thing to notice about these experiments is that they indicate that there are 

tight constraints on the sorts of interactions, whether viewed once or repeatedly, that humans 

perceive as causal. Some visual interactions almost always, seemingly unavoidably,188 produce 

the impression that they are causal, while others, no matter how regularly they occur, never do.  

This suggests that we must reject the claim that scientists can directly “see causation” in videos 

of living cells.  The animations used in these experiments are very simple, even when contextual 

factors are added in to see how they influence the perception of causation.  Cases of observed 

interaction in, for instance, a confocal microscope are almost always much more complex than 

the simple interaction just described.  There are many more objects and the types of interactions 

will not often fall neatly into one of the above categories. Thus, the visual interactons observed 

in a confocal movie will almost certainly not produce a causal impression in the sense described 

by Michotte and others.   Moreover, even if such a straightforward type of interaction were to be 

observed, there is no reason to think that the causal impression corresponds to any actual causal 

relation.  After all, no actual causation is involved in the animations used by psychologists.  We 

may “see” causation where it fails to exist and fail to “see” it where it is present.  Many cases 

where we may have good reason to say that a protein-protein interaction involves some sort of 

causal relation, for instance, will not involve the sorts of visual interactions that people identify 

                                                 
187 Scholl and Nakayama 2004. 
188 I do not mean by this that it is innate, but only that we do it automatically and apparently without reflection.  The 
question of whether it this is an innate or learned tendency remains a matter of considerable debate among 
psychologists who work on event perception.  Experiments showing that 6 month old infants seem to perceive 
causation are sometimes taken to suggest that it is innate, but since even 6 month old babies have considerable 
experience with the world this conclusion is open to question. 
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as causal (e,g. launches) and , even if they do, will not fall within the correct spatiotemporal 

boundaries 

Thus, the conclusion that we cannot “see causation” in this simple sense in 4-dimensional 

images does not mean that we cannot get causal information from a movie (or from other forms 

of data).  In order to clarify how we might do so, it is necessary first to look at the sort of 

information that seems to be involved when observers see certain interactions as causal.  This 

will also help with elucidating my minimal conditions for causation.  I have suggested that the 

information that we need to get from the data itself is spatiotemporal relationships between 

objects.  But we also need additional information to interpret (rather than simply “see” in the 

above sense) an interaction as causal whether or not it is also “seen” as causal.   This 

information, is background knowledge of the types of mechanisms that are plausible189 in a 

given context. 

What are we seeing when we “see causation”? 
It is not clear exactly what is meant by the term “causal” in the animation experiments 

described above.  Michotte simply asked observers how “causal” an interaction seemed to be or, 

alternatively, to give a free response describing the interaction (e.g. A pushed B, A crashed into 

B and made it roll away, etc.).  What seem to be involved, however, are certain types of 

spatiotemporal relationship.  A launch event is perceived, for instance, if a moving object gets 

close (enough) to another then stops, and the second object, after a suitably small time interval, 

begins to move in a certain direction with a suitable velocity.  What counts as suitable in these 

instances is, presumably, determined by some part of the human visual system or other cognitive 

apparatus.  Suitability may also be determined by background information in cases where we 

interpret an interaction to be causal, as will be discussed shortly, but for the moment we can 
                                                 
189 Or at the very least, not impossible. 
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ignore those modifiers and focus on the fact that the basic features that seem to be relevant are 

the relative spatiotemporal positions and velocities of the two objects.   

Twardy (2000) similarly wants to identify the physical quantities that we pick up on in 

observing causation.  He, however, adopts a Salmon-Dowe (e.g. Salmon 1984; Dowe 2000) 

conserved quantities account of causation and contends that what we really pick up on are the 

transfer of conserved quantities such as energy and momentum.  While my project is very 

different from his and I want to avoid defending a particular theoretical account of causation, I 

do not think that Twardy’s account helps with biological imaging.  Cells, proteins, and other 

biological entities are not immune to physical laws, of course, but information about relevant 

transfers of conserved quantities are not usually going to be available via biological imaging 

methods.  If, for instance, protein A phosphorylates another protein, B, which, once 

phosphorylated, undergoes a conformation change and dissociates from some third protein, C,  

all we will likely see (depending on the specific imaging technology used) is that A made contact 

with B and then B moved away from C.  These are changes in spatiotemporal position, not 

energy, momentum, mass, or some other conserved quantity. 

However, we cannot get sufficiently fine-grained spatiotemporal information to be able to 

recognize specific biological causal concepts like phosphorylation.  We are unable to give 

precise descriptions of the spatiotemporal characteristics of many of the sorts of events or 

processes that we want to say are causally responsible for some change.  What is involved, 

therefore, is not something like seeing pushing, pulling, breaking as Anscombe claims is at the 

root of our observation of causes.  We don’t know what it looks like for A to phosphorylate B in 

the same way that we know what it looks like for A to “launch” B or for one person to hit 

another.  And even if we did have this knowledge, the resolution of most of our imaging 
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technologies is insufficient to allow us to discriminate between different causes on the basis of 

their appearance alone.   An interaction between a GTP-binding protein and a GTPase activating 

protein (GAP) that causes the hydrolysis of GTP may well look just the same as kinase A 

phosphorylating protein B in a confocal movie.  What we can observe is the changing 

spatiotemporal relationship between the two proteins and other parts of the cell, not the 

supposedly causal relation (hydrolysis or phosphorylation) itself.  To determine which of these 

processes is actually occurring requires additional information about which proteins have been 

labeled and what sorts of activities they may engage in.  This is not information that is present in 

the imaging data, whatever format is used to display it.  The crucial role of background 

information in identifying causal interactions will be discussed shortly, but before turning to it 

the issue of whether spatiotemporal information of the required sort is only present in some 

forms of data display still needs to be resolved. 

It should be obvious that information about the relative spatiotemporal positions of various 

objects is present not only in movies, but also at least in series of static images.190   Spatial 

information is of course present in each static image and temporal information is present as long 

as the time interval between images in the series is known.  As discussed earlier, differences in 

the temporal resolution of a series of static images and a movie are due to the intervention 

aspects of the imaging methods, not to the data display format.  If we had a series of static 

images at time intervals equal to the inverse of the frame collection rate of the video or CCD 

camera, the two display formats would contain exactly the same spatiotemporal information.  In 

practice, the temporal resolution for the time series will usually be much lower, but whether or 

                                                 
190 The same information is present in numerical data.  This information can be extracted; though with more 
difficulty, since the ability to recognize an object (in particular, its boundaries) is aided by visual presentation.  
However, one could use computational methods to identify objects (as they move and change over time) in the 
numerical data. 
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not this makes a difference to our ability to extract causal information from the data will again 

depend on the background information we have.  Let us turn, then, to the role that background 

information plays in combination with spatiotemporal data, however displayed. 

Background information 
As I suggested above, background information is necessary in order to identify causal 

relations in any data display format: movie, static images, or numerical.  In most cases of 

biological imaging, we will not get a Michotte style causal impression from a movie (and it is in 

principle impossible for us to do so from other data formats), but whether or not we “see” a 

causal relation in the data, we must have background information about the types of interactions 

that particular objects in particular sorts of spatiotemporal relationships to one another can, 

might, or cannot participate in.  Background information supplying the possibility of there being 

a plausible mechanism for a causal relation would be required for any more than a descriptive 

statement about the spatiotemporal positions, and changes therein, of the objects under 

investigation.  A launch, pull, penetration, or other interaction may be seen (in 4-dimensional 

format) as potentially causal, but can be interpreted as actually involving causation if there is 

potentially a mechanism that identifies the smaller scale causal concept (phosphorylation, etc.) 

and can so explain this interaction as causal.191  The same sort of information is required if the 

interaction is not seen as causal.   Given the severe constraints on the sorts of interactions that we 

“see” as causal, very few biological interactions will be “seen” as causal, but this has no impact 

on whether or not they can be interpreted as causal.  Background information is crucial for 

supplementing spatiotemporal data, however the spatiotemporal data is displayed.  In fact, it is 

often required even for observations made using unaided perception.  If I see a clear liquid being 

                                                 
191 While she is describing infants and children rather than scientists, Schlottmann (2001) describes prior knowledge 
of mechanisms as serving to constrain perceptual causality. 
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dropped onto a group of cells and see them disintegrate, I need to know what the composition of 

the clear liquid is in order to determine whether it was the cause of the disintegration.  If it was a 

highly acidic or basic solution or a strong detergent, for example, I might reasonably conclude 

that it did cause the cells to disintegrate since my background information provides me with a 

causal concept (e.g. disruption of the lipid component of the cell membrane by detergent).  If, 

however, it was a salt solution (with physiological solute concentrations), then it is very unlikely 

that it was the cause and I ought to look elsewhere for my explanation - perhaps there was a 

sonicator operating but I didn’t notice because the volume on my iPod was turned up to a 

similarly cell-shattering volume. 

 One role for the background information is to identify the (possible) small scale causes 

actually involved in a larger scale (non-causal) interaction such as A approaching or moving 

away from B.  Another is to rule out possible alternative explanations of some event, resulting in 

the possibility that an actual (low temporal resolution) time series of static images to be 

epistemically equivalent to a kinetic image in cases where the set of possible causal events or 

interactions occur at a time scale greater than the interval between images in the series.  Just as 

there are constraints on the spatiotemporal conditions under which we will “see” a launch or 

other causal event, background information places upper and lower bounds on the larger scale 

spatial and temporal relations (those that we actually observe) that can be connected to the 

smaller scale causal interactions such as phosphorylation that need to be either ruled out or 

permitted.  It is not necessary, for instance, that for one object to be claimed to have caused 

another’s motion, that there be no temporal gap.  If phosphorylation or some sort of 

conformational change is supposed to be initiated by the arrival of A close to B and responsible 
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for causing B to start to move away, it is entirely reasonable to expect that there will be a gap 

between the arrival of A and the departure of B.   

5.6. Conclusion 

The data that is acquired by many biological imaging technologies can be presented in 

different formats:  as static images, as movies, as graphs, as diagrams, or even as very large sets 

of numbers.  Images, however, are the dominant form in which the data is displayed.  Why 

should this be?  While historical, sociological, and rhetorical parts of the answer are important, 

the primary concern of this chapter has been with whether images confer any epistemic 

advantage over other formats.  Two possibilities were raised: that the data is more cognitively 

accessible to us when it is presented as images, and that images – specifically 4-dimensional 

images – contain more and different information than other data formats.  Of particular interest 

was whether 4-dimensional images permit us to get causal information that we can’t get from 

static images or numerical data.  The first possibility was found to have significant merit, 

especially for very large, complex data sets such as those obtained via PET and confocal 

microscopy.  The second was found not to hold, at least not when the form of visual display is 

treated independently of other factors.  While live cell imaging does often get us more 

information – sometimes causal information – than we can get from series of static images, this 

is due to the kinds of intervention that different imaging technologies allow rather than the data 

display format. 
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6. Conclusion 

 

The starting point for this project was the question of how to understand the epistemic status 

of data produced by heavily mathematized imaging technologies such as PET and confocal 

microscopy.  There are many kinds of mathematized imaging technologies and they play an 

increasingly important role in virtually all areas of biology and medicine.  Some of these 

technologies have been widely celebrated as having revolutionized various fields of study while 

others have been the target of substantial skepticism and criticism.  Thus, it is essential that we 

be able to assess these sorts of technologies as methods of providing evidence.  They differ from 

each other in many respects, however one feature that they all have in common is the use of 

multiple layers of mathematical and statistical processing that contribute to data production.  

This feature alone means that these technologies do not fit neatly into traditional empiricist 

accounts of the relation between observation and evidence.  Yet, in many cases, these 

instruments appear to live up to the claims of their supporters and provide very high quality 

evidence.  Thus, it does not seem to be the case that their failure to fit into standard accounts of 

evidence reflects some general inadequacy on their part.  In order to understand these 

technologies, then, we were led to look more closely at old philosophical questions concerning 

the role of experience and observation in acquiring beliefs and knowledge about the external 

world and saw that a more refined version of empiricism was needed in order to properly 

understand how these instruments can produce good evidence. 

A number of relatively diverse positions have been labeled as “empiricist” over the last 

several hundred years.  These range from the British empiricists of the seventeenth and 

eighteenth centuries to the logical empiricists of the early twentieth century to contemporary 
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versions such as van Fraassen’s constructive empiricism (1980).  In general, empiricism can be 

understood to encompass two closely related, but distinct theses.  The first is a theory of meaning 

and holds that all of our concepts must be derived from experience.  The second is a thesis about 

knowledge and holds that beliefs192 must ultimately derive their justification from sense 

experience.  These two doctrines do not necessarily entail one another, and it is the second one 

that has been central to more recent work in philosophy of science and is the one with which I 

have been concerned.  The epistemological thesis can be interpreted in a stronger or a weaker 

sense.  The weaker sense holds that we must use sense experience to make epistemic contact 

with the world; we cannot rely upon thought alone.  The stronger sense of empiricism, however, 

is an anthropocentric one which holds that sense experience provides a uniquely high degree of 

epistemic warrant for our beliefs about the natural world, one that cannot be achieved by other 

means.  Though the first, weaker sense is evident in many discussions of empiricism (e.g. Norton 

2004), I have claimed that the anthropocentric sense either explicitly or implicitly underlies 

attempts in philosophy of science to provide an account of observation that extends the epistemic 

privilege of unaided human perception to other methods of data collection such as microscopes 

(van Frassen 1980; Shapere 1982; Hacking 1983).   

Both senses are inadequate when it comes to understanding modern imaging technologies.  

The weaker sense, as it stood, insisted only that we need to observe the world in order to get 

knowledge about it.  This usually means doing experiments and doing experiments of any 

kind193 will involve using our senses.  This is true whether we are using our unaided vision to 

watch squirrels cache and retrieve food or whether we are looking at a printout from 

fluorescence activated cell sorter that was used to determine the proportion of different cell types 

                                                 
192 Here, I have been concerned specifically with beliefs about the natural world.   
193 Except for thought experiments (see Norton 2004). 
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in a sample.  Accordingly, this sense failed to make any distinction between looking at some 

object of interest directly and looking at any sort of representation of that object – a picture of it 

generated by any means (photograph, painting, etc,), the color of the contents of a well in a 

microtiter plate whose intensity indicates the protein concentration of the sample placed in that 

well, the numerical printout that indicates the protein concentration of the samples in each well 

of the microtiter plate, etc.  Thus, while not incorrect, in its original form, the weaker sense failed 

to be useful in trying to account for when and how modern scientific instruments provide good 

evidence.   

The stronger, anthropocentric sense was also shown to be inadequate.  The epistemic 

privilege associated with direct or unaided observation is based on the idea that evidence 

gathered using our unaided senses is supposed to be particularly reliable as long as we are using 

the sense in question194 correctly and appropriately.  There are differences of opinion regarding 

the type of aid to our native senses that can still be counted as observation (van Fraassen 1980; 

Shapere 1982; Hacking 1983).  Claims about the limit or scope of observation use what I call 

benchmark strategies to establish the boundaries of observation by identifying instruments that 

bear a relevant sort of causal similarity to unaided human perception.   Disputes arise because of 

disagreement about what sort of similarity is relevant.  Chapter 2 argued that no existing account 

of observation contains a satisfactory notion of what the required sort of relevance is since none 

identifies an epistemically relevant similarity.  Relevant similarity is supposed to be what 

justifies the claim that data gathered using certain instruments has the same epistemic status as 

data acquired using our unaided senses.  Reliability (under appropriate use conditions) is what 

                                                 
194 Usually it is vision that is at issue, though hearing, smelling, and touching may also be good 
sources of information in the appropriate context. 
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provides epistemic security, so relevant similarity must be defined in terms of the reliability-

making features of human perception.  This is what I referred to as a grounding strategy.      

If a benchmark strategy was to have any last chance of rehabilitating an anthropocentric 

empiricism, therefore, it needed to be supplemented with a grounding strategy.  Thus, Chapter 3 

identified the Grounded Benchmark Criterion (GBC) as the best chance for any sort of 

benchmark approach to succeed.  The GBC specified that we can observe via an instrument if 

and only if the apparatus is similar to human perception with respect to those features that make 

human perception (HP) reliable.  However, as Chapter 3 showed, no sort of physical or causal 

similarity to human perception is a necessary condition for epistemic similarity to human 

perception.  Instruments that bear no other resemblance to visual perception can share its 

reliability.  Thus there is no unique epistemic privilege associated with being physically or 

causally similar to HP and both all forms of benchmark strategy and the anthropocentric version 

of empiricism must fail. 

Having established the key role of reliability is grounding not just epistemically privileged 

forms of data production, but empiricism itself, Chapter 4 reviewed several existing accounts of 

reliability before going on to develop a novel account of reliability.  This new account both 

provides a means to refine the weaker version of empiricism – showing why traditional 

empiricists were right about what they got right while providing the justification for eliminating 

what was wrong about the anthropocentric version – and allows us to assess the epistemic status 

of mathematized imaging technologies.  The key idea developed in this chapter was that of 

granularity.  Granularity is a characteristic of representations.  We can refer to both the 

granularity of the world at which a particular question is directed and at the granularity of the 

representation (data) than an instrument generates.  The granularity of a representation is the 
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smallest object or unit required to address the question of interest.  The larger the spatial or 

temporal scale of the world which must be distinguished in order to answer a particular question, 

the larger the grain.  The granularity of an instrument matches or is sufficient for a question if it 

is capable of providing evidence about the smallest objects needed to address that question.  In 

many cases, the granularity of an instrument will be equal to its resolution.  However, there are 

interesting and important cases where the granularity of an instrument is greater than its 

resolution (i.e. one can distinguish objects below the resolution of the instrument), so it is 

important to distinguish between the two.  While it is not always possible to determine whether 

or not there is a granularity match in a given case, the latter part of Chapter 4 showed that there 

are a wide range of techniques available in order to establish the reliability of PET for particular 

applications.   

Chapter 5 examined the significance of the fact that, though other data display formats are 

possible, the output of mathematized imaging technologies is usually images.  While earlier 

chapters addressed epistemic features of the relationship between the object and its 

representation (i.e. the mode of production of the data), here I addressed the relationship between 

the representation and the viewer.  In particular, Chapter 5 was concerned with the question of 

whether or not there is any epistemic privilege associated with certain data formats.  Two 

possibilities were considered: 1) that images provide increased cognitive accessibility compared 

to other data formats, and 2) that moving images (videos) facilitate the identification of causal 

relationships.  Cognitive accessibility was found to be an important feature of images.  While it 

often results in a loss of effective granularity, presenting data in the form of an image does often 

increase the ease with which we can discriminate relevant features of the data.  The identification 

of causal relationships, however, was not found to be affected by the data display format.    If 

203 



 

videos were to provide special access to causal information, it must be that they allow us to 

perceive causation in a way that we cannot in static images or other data display formats.  But 

the causal relationships that are even potentially visible with current imaging technologies are 

not the sorts of causes that we want to ascribe to the objects under study.  We may see a cell 

move in a certain pattern and claim that it is chemotaxing, for instance.  This is not a claim that is 

based only on our observation of the motion, but is based on background information about the 

type of cell it is and the presence of some unobserved chemoattractant in the medium. Thus, 

what we get from the data itself, however presented, is only spatiotemporal information, and 

without additional background information acquired in other ways we cannot identify specific 

causal relationships.  However, it is often the case that the set of methods that are used in 

conjunction with video data collection (e.g visualizing specific proteins in a cell by creating 

fusions with green fluorescent protein and imaging living cells) are able to produce finer-grained 

data than do other methods where the data is represented as static images.  As such, they may in 

practice (if not in theory) have a higher degree of granularity and so be able to more reliably 

answer certain sorts of questions. 

This dissertation has shown that philosophical difficulties in understanding these 

technologies can not only be overcome, but than in the process we are led to a better 

understanding of the relationship between observation and evidence. At the end of this inquiry, 

we are left not only with the means to better assess the epistemic status of mathematized imaging 

technologies and to show why they can often produce very reliable evidence, but also with a 

more subtle version of empiricism that neither unduly privileges unaided human sense 

experience nor lacks the substance to distinguish between good and bad instruments or 

applications of instruments.   

204 



 

 

APPENDIX A 
 
 
 

The Human Visual System 
 
 

Light enters the eye by first passing through the cornea, which first begins to focus it.  The 

light then passes through to the retina at the back of the eye.  The retina converts light into neural 

signals.  It consists of three layers composed of five types of cells – photoreceptors, bipolar cells, 

horizontal cells, amacrine cells, and ganglion cells – that collect light and extract basic 

information about color, form and motion.  Incoming light travels through the other layers to 

reach the photoreceptor cells in the back.  Photoreceptors are divided into two types – rods and 

cones.  Rod cells are very sensitive to changes in contrast even at low light levels, but, as a 

result, are imprecise in detecting position (due to light scatter) and insensitive to color.  They are 

primarily located in the periphery of the retina.  Cones are high-precision cells that are 

specialized to detect red, green, or blue light.  They are generally located in the center of the 

retina in an area of high spatial acuity called the fovea.  Signals from the photoreceptor cells pass 

forward into the next layer of the cell containing horizontal, bipolar, and amacrine cells.  These 

cells form small networks that are able to extract information about form and motion.  That 

information continues on to the front of the retina where it is received by a layer of ganglion 

cells.    The ganglion cells send out long, thin fibers that bundle together and go back down 

through the retina and out the back of the eye into the optic nerve.  The spot where the optic 

nerve exits each eye has no light receptor cells and forms a blind spot in each eye.   

The optic nerves within each eye meet in the front part of the head at a point called the optic 

chiasm.  From there, all the fibers from the left half of each retina turn towards the right side of 
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the brain, and the fibers from the rights half of each retina head towards the left side of the brain.  

A small group of fibers in the optic nerve splits off and travels to the brainstem nuclei, which are 

groups of cells that govern reflex actions.  Those fibers mediate automatic responses such as 

adjusting the size of the pupil, blinking, and coordinating the movement of the eyes.  The 

majority of the fibers in the optic nerve, however, connect to a part of the occipital lobe called 

the primary visual cortex, or V1 (also known as the striate cortex).   

On the way to V1, these fibers enter a part of the thalamus called the lateral geniculate 

nucleus (LGN), a layered structure with cells that respond to form motion and color.  After fibers 

from the optic nerve enter the LGN, these streams of information are further separated before 

being sent on to V1.  The connections from the eyes to the LGN and from the LGN to the V1 are 

topographically organized. This means that the mapping of each structure to the next is 

systematic: as you move along the retina from one point to another, the corresponding points in 

the LGN or V1 trace a continuous path. For example, the optic nerve fibers from a given small 

part of the retina all go to a particular small part of the LGN, and fibers from a given region of 

the LGN all go to a particular region of the primary visual cortex. In the retina, the successive 

stages are in apposition, so that the fibers can take a very direct route from one stage to the next. 

The cells in the LGN are obviously at a distance from the retina, as is V1 in a different place 

from the LGN. The style of connectivity nevertheless remains the same, with one region 

projecting to the next as though the successive areas were still superimposed.  The optic-nerve 

fibers are gathered into a bundle as they leave the eye, and when they reach the LGN, they fan 

out and end in a topographically orderly way. Fibers leaving the LGN similarly fan out into a 

broad band that extends back through the interior of the brain and ends in an equally orderly way 

in the primary visual cortex. After several synapses, when fibers leave the primary visual cortex 
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and project to several other cortical regions, the topographic order is again preserved. Because 

convergence occurs at every stage, receptive fields tend to become larger: the farther along the 

path, the fuzzier this representation-by-mapping of the outside world becomes.  An important, 

long-recognized piece of evidence that the pathway is topographically organized comes from 

clinical observation. If you damage a certain part of your primary visual cortex, you develop a 

local blindness, as though you had destroyed the corresponding part of your retina. The visual 

world is thus systematically mapped onto the LGN and cortex. 

V1 is responsible for creating the basis of a three-dimensional map of visual space and for 

extracting features about the form and orientation of objects.  Once basic processing has 

occurred in V1, the visual signal enters the secondary visual cortex, V2, which surrounds V1.  

V2 is primarily responsible for perceiving color and the relationships between form and color.  

V2 and higher cortical areas are generally referred to as extrastriate areas.  Most of what we 

consider visual perception occurs in these extrastriate areas.  They perform the two broad tasks 

of perceiving what forms are in the visual image and where objects are in space.  The “what” 

tasks correspond to a number of connections in the temporal lobe (at the front of the brain, thus, 

the “what” stream is also known as the ventral stream), which contains areas that recognize 

objects and faces.  The “where” tasks are performed through the dorsal stream into the parietal 

lobe, which has areas dedicated to perceiving motion and spatial relationships. 

These “what” and “where” streams can be understood to each comprise a number of fairly 

general sub-modalities or functions.  These different functions are listed in Table 7.1. There is an 

enormous amount of evidence from multiple areas of investigation that the visual system 

analyses the scene before it along these different dimensions in specialized modules that act in 
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parallel195 beginning at the level of retinal cells and continuing through the various areas of the 

brain involved in vision.  

 

Function196 Basic requirement 

Photosensitivity Photosensitive molecule 

Form discrimination  
    (spatial localization) 
 

2-D array of   photoreceptors 
plus focusing mechanism 

Motion discrimination 
 

2-D array of photoreceptors 

Binocular vision and 
     depth perception 
 

Fusion of images 

Color vision Different photopigments 

 

Table 6.1  Submodalities of vision. 

Adapted from Shepherd (1988, 327). 

 

These submodalities can be broken down into finer-grained functions which are associated 

with specific areas of the brain as is indicated in Figure 7.1.  Even the most summary account of 

what is currently known about one of the submodalities in Figure 7.1 alone would fill dozens of 

pages and would involve descriptions of very particular processes and functions.  This level of 

detail is not required for my project since the primary point to be  

 

                                                 
195 Among researchers in early vision, this division of labor tends to be referred to as “parallelism”, “multiplexing”, 
or “partitioning”, while “modularity” is the usual term used when referring to high level vision and visual cognition.   
196 I have left out discrimination of polarized light since this is not a submodality that human vision possesses, 
though other animals are able to make such discriminations and use it for orientation and navigation. 
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Figure 6.1  Hierarchical organization of the visual system in macaques.  

Figure adapted from Van Essen and Gallant (1994). 
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made is that, although a great deal is known, there are still an enormous number of gaps in our 

knowledge.   

The primary visual cortex is a part of the visual system which is relatively well understood 

from the point of view of neurophysiology.  There exists a great deal of information about the 

different types of cells that are found in this area, the responses of these cells to different visual 

stimuli, and the neural connections and physical layout of these cells (see, for instance, Palmer 

1999).  Evidence from cognitive psychology – including the effects of lesions in various 

locations within the visual cortex as well as imaging studies that attempt to localize where 

different processes take place - have been very informative for identifying what different parts do 

and which functions can be dissociated from one another.  What is less well understood, 

however, is how this area carries out these functions.197  Providing a list of functions that appear 

to be carried out in this area (and that may or may not have analogues in specific imaging 

technologies) is possible, but this is clearly insufficient for assessing how or whether these 

functions contribute to the reliability of HP.  (This question is not answered by the general 

veridicality of HP since many optical illusions are explained by the operation of the same 

functions that generally produce veridical perception.  In other words, there is not a subset of 

functions that we can cordon off as contributing to the sometimes unreliability of HP - even 

under optimal conditions – and so leave the remainder as reliability-producing and therefore 

something that the GBC identifies as needing to be performed in a relevantly similar way in 

imaging technologies.)  What we need is an account of how these functions are carried out in a 

                                                 
197 Martha Farah, in summarizing the current state of knowledge, has the following to say: “…yet we still know 
relatively little about how this part of the brain [the primary visual cortex] subserves perception, in the sense of 
identifying functional perceptual mechanisms with the machinery described by neuroscientists. (…) The 
organization of the early visual cortices has been subject to intensive study in neuroscience, resulting in some hard-
won and, in their own way, beautiful descriptions of visual anatomy and physiology.  However, in many cases it has 
been impossible to assign any functional role to this organization, and when such attributions have been made they 
have been controversial.” (2000, 20). 
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way that generates reliable information about the set of properties accessible to that form of 

imaging (whether HP or an instrument).  Here, there are often multiple models that have been 

proposed to account for the empirical evidence.  This multiplicity of mechanisms is then 

reproduced and expanded at the level of computational models. 
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