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NUMERICAL METHODS IN TURBULENCE

Carolina Cardoso Manica , PhD

University of Pittsburgh, 2006

Fluid motion and its richness of detail are described by the Navier-Stokes equations. Most of

the numerical analysis existent to date is applicable for strong solutions (typically small body

force and initial data). We prove that statistics of weak solutions are optimally computable

in the simple but important case of small body force and large initial data. These estimates

are used to predict drag and lift statistics, quantities of great interest in engineering. In the

case of arbitrarily large body force and initial data, for shear flows, statistics of the computed

solution are shown to behave according to the Kolmogorov theory.

Many times, in turbulent fluid flow, a direct numerical simulation becomes expensive.

One alternative is Large Eddy Simulation (LES). It exploits the decoupling of scales, achieved

via introduction of a filter, thus reducing the number of degrees of freedom in a simulation.

A relatively new family of LES models is the Approximate Deconvolution Models (ADM).

They have remarkable mathematical properties and perform well in computations. However,

some reports claim that they are unstable for simulations with walls and require the addition

of explicit stabilization.

We show that, given the right formulation, variational discretizations of the Zeroth Order

Model, a member of the ADM family, are indeed stable. We present evidence that stability

of one formulation is sensitive to the exact way in which filtering is performed and show some

numerical results. An alternative formulation, which does not depend on the way filtering is

performed, is also presented. In both cases we perform convergence studies. This is a first

step in determining stable and robust discretizations for the whole family of ADM, as well as

guidance for dealing with arbitrary geometries/domains that arise in practical applications.
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Getting a prediction of a turbulent flow right also means getting the energy balance

and the rotational structures correct, which means (in the large) matching the energy and

helicity statistics. We apply similarity theory to the ADM and show that the model has a

helicity cascade, linked to its energy cascade, which predicts the correct helicity statistics up

to the cut-off frequency.
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1.0 INTRODUCTION

“Considering the diversity and complexity of fluid flows, it is quite remarkable that the rela-

tively simple Navier-Stokes equations describe them accurately and in complete detail. How-

ever, in the context of turbulent flows, their power is also their weakness: the equations

describe every detail of the turbulent velocity field from the largest to the smallest length and

time scales. The amount of information contained in the velocity field is vast, and as a conse-

quence (in general) the direct approach of solving the Navier-Stokes equations is impossible.”

(S. Pope, Turbulent Flows, 2000)

Physically important and mathematically challenging. That characterizes the study of

turbulence and its connection to the Navier-Stokes equations, described accurately in the

words of Pope [72]. Every contribution in this field is important. One of the aspects that

deserves attention is the numerical analysis of turbulent flows. Experiments may impose

high costs or many times they can even be unattainable. The increase in computing power,

allied with powerful algorithms and new ideas embodies a very attractive alternative. Un-

derstanding how this power should be used is very important. In my research, I consider

two ways of looking at this problem:

1. Assuming that it is possible to resolve computationally all the information obtained from

the Navier-Stokes equations and bearing in mind that turbulent flows are often irregular:

What is meaningful to compute? Further, can approximations be optimally computable?

2. Assuming that truncation of scales is needed and one chooses a specific Large Eddy

Simulation (LES) model:

a. What is the best finite element discretization for this model?
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b. How does the model predict helicity statistics?

These ideas are addressed in more detail in the main body of this thesis, which is outlined

as follows.

In Chapter 2, notation and preliminaries are presented. Chapter 3 gives a brief discussion

about turbulence and explains why it deserves to be better understood. Then, the equations

of fluid motion, the Navier-Stokes equations, are presented. A brief review of the theory is

in order, to set the path to the next chapter.

Chapter 4 addresses item 1 above. We study the problem of whether statistics of tur-

bulent flows are optimally computable. We show that for arbitrarily large initial data,

and provided the equilibrium problem has a unique solution, time averaged errors can be

estimated under no extra regularity assumptions. For shear flows we prove that the time av-

eraged energy dissipation rate of the approximate solution scales according to Kolmogorov’s

theory, provided that the first mesh line is chosen within O(1/Re) of the moving wall. This

result indicates that the computed solution is faithful to the true solution, although it does

not verify its accuracy.

Chapter 5 gives a brief description of Large Eddy Simulation (LES) models, focusing on

the properties of the Approximate Deconvolution Models (ADM). In Chapters 6, 7 and 8

we concentrate on one of these ADM in an effort to address item 2 above. Our contribution

is to investigate possible discretizations for these models. We start with the simplest and

lowest order model of the family, the Zeroth Order Model.

In Chapter 6, we explore the usual finite element techniques when applied to the Zeroth

Order LES model. When discretizing the model equations, one also has to decided how

to perform the filtering operation, i.e. the corresponding differential equation must also be

discretized. Filtering can be done on the same mesh on which the actual problem is being

computed, or it can be done on a finer mesh. In the latter case, we can only show that

the scheme is stable for finite time, whereas the former is stable for all time. The analysis,

though, is much more involving and full of technical details.

Some numerical experiments are presented in Chapter 7. We compare the exact and

discrete filters for a simple problem and then test the discrete filter on some more interesting

problems.
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An alternative formulation for the Zeroth Order Model is introduced in Chapter 8. We

write it in mixed form and then use the finite element method to approximate the solution.

This formulation is based on the idea of developing a discretization that has the right energy

balance, but does not require the use of more sophisticated finite element spaces. The

analysis shows that the scheme is stable and convergent under reasonable assumptions.

In Chapter 9, we investigate the existence of a joint energy-helicity cascade for the ADM,

showing that they predict the correct helicity statistics up to the cut-off wave number O(1/δ).

Lastly, in Chapter 10, we present some conclusions and possibilities for future research.
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2.0 MATHEMATICAL PRELIMINARIES AND NOTATION

We use standard notation for Lebesgue and Sobolev spaces, as in Adams [2]. The L2(Ω)

norm and inner product are denoted by || · || and (·, ·), respectively. For the Hilbert space

Hk(Ω), the norm is denoted by || · ||k.
For Y being a function space of functions v : [0,∞) → Y, we use the notation

Lp(0, T ;Y) =

{
v : v(t) : (0, T ) → Y, strongly measurable and

∫ T

0

||v(t) ||pY dt < ∞
}

,

with 1 ≤ p < ∞, and the usual modification is made if p = ∞.

The velocity at a given time t is sought in the space

X = H1
0 (Ω)d = {v ∈ L2(Ω)(d = 2, 3) : ∇v ∈ L2(Ω)d×d and v = 0 on ∂Ω}

equipped with the norm ‖v‖X = ‖∇v‖. The dual space of X is denoted by X′, and its norm,

by || · ||−1. For any φ in X′, we define

‖φ‖−1 = sup
v∈X

|(φ,v)|
‖∇v‖ ,

The pressure at time t is sought in

Q = L2
0(Ω) =

{
q : q ∈ L2(Ω) ,

∫

Ω

q dx = 0

}
.

In addition, the space of weakly divergence free functions is denoted by

V = {v ∈ X : (∇ · v, q) = 0 for all q ∈ Q}.

We often use the following inequalities:

4



Young’s Inequality:

ab ≤ ε

p
ap +

ε−q/p

q
bq, 1 < q, p < ∞,

1

q
+

1

p
= 1, a, b ∈ R.

Poincaré-Friedrich’s Inequality:

‖v‖ ≤ CPF‖∇v‖ ∀v ∈ X,

where CPF is a constant depending on Ω.

2.1 THE TRILINEAR FORM

In the theory and numerical analysis of the Navier-Stokes equations, stated precisely in

Chapter 3, the nonlinear term will be associated with the trilinear form defined below.

Definition 2.1.1. On X×X×X, let

b(u,v,w) = (u · ∇v,w). (2.1.1)

Lemma 2.1.1. For u ∈ V and v,w ∈ X,

b(u,v,w) = −b(u,w,v) and b(u,v,v) = 0.

Proof. The results follow from integration by parts.

These properties rely on the fact that u ∈ V, something which is not true when u is

discrete. This motivates the definition of a explicitly skew-symmetrized trilinear form.

Definition 2.1.2. On X×X×X, let

b∗(u,v,w) =
1

2
(u · ∇v,w)− 1

2
(u · ∇w,v). (2.1.2)

Remark 2.1.1. It can be easily checked that when u ∈ V, (2.1.1) and (2.1.2) are equivalent

and have the same properties. Thus, for the sake of simple notation, we will always use

b(u,v,w), rather than b∗(u,v,w).

5



Lemma 2.1.2. Let Ω ⊂ Rd, d = 2 or 3. Then there exists a constant M = M(Ω) < ∞ such

that

b(u,v,w) ≤ M || ∇u || || ∇v || || ∇w ||, ∀ u,v,w ∈ X. (2.1.3)

When d = 3, this can be improved to

b(u,v,w) ≤ M
√
||u || || ∇u || || ∇v || || ∇w ||, ∀ u,v,w ∈ X. (2.1.4)

or, equivalently, to

b(u,v,w) ≤ M ||∇u || ||∇v ||
√
||w || || ∇w ||, ∀ u,v,w ∈ X. (2.1.5)

Proof. We refer to Girault and Raviart [30] for the proof of inequality (2.1.3). To prove

(2.1.4), we first use Lemma 2.1 p.12 of Temam [84]:

b(u,v,w) ≤ C(Ω)‖u‖1/2‖v‖1‖w‖1.

Then, using Poincaré-Friedrich’s inequality,

‖v‖1 ≤ C‖∇v‖, ‖w‖1 ≤ C‖∇w‖.

Lastly, an interpolation inequality between L2(Ω) and H1(Ω) (see Adams [2]) gives

‖u‖1/2 ≤ C(Ω)‖u‖1/2‖u‖1/2
1 ≤ C(Ω)‖u‖1/2‖∇u‖1/2.

Similarly, (2.1.5) follows from

b(u,v,w) ≤ C(Ω)‖u‖1‖v‖1‖w‖1/2.

The best possible constant in Lemma 2.1.2 is

M := sup
u,v,w∈X

b(u,v,w)

||∇u || || ∇v || || ∇w || < ∞ (2.1.6)

and if u,v,w ∈ V, then it can be replaced by

N := sup
u,v,w∈V

b(u,v,w)

||∇u || || ∇v || || ∇w || < ∞. (2.1.7)

Since V ⊂ X, we have 0 < N ≤ M < ∞.
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2.2 A WORD ON THE FINITE ELEMENT SPACES

We shall assume throughout this thesis that the velocity-pressure finite element spaces

Xh ⊂ X and Qh ⊂ Q are conforming (where h denotes the mesh size), have approxima-

tion properties typical of finite element spaces commonly in use and satisfy the discrete

inf-sup condition,

inf
qh∈Qh

sup
vh∈Xh

(qh, ∇ · vh)

||∇vh || || qh || ≥ βh > β > 0. (2.2.1)

The space of discretely divergence free functions is defined as

Vh = {vh ∈ Xh : (qh, ∇ · vh) = 0, ∀ qh ∈ Qh}.

For examples of such spaces see, e.g., Gunzburger [33], Brezzi and Fortin [9] and Girault and

Raviart [30].

We assume that the following approximation properties, typical of piecewise polynomial

velocity-pressure finite element spaces of degree (k, k− 1), hold: there is k ≥ 1 such that for

any u ∈ (Hk+1(Ω))d ∩X and p ∈ (Hk(Ω) ∩Q):

inf
vh∈Xh

{‖u− vh‖+ h‖∇(u− vh)‖} ≤ Chk+1 ‖u‖k+1 , (2.2.2)

inf
qh∈Qh

‖p− qh‖ ≤ Chk ‖p‖k . (2.2.3)

Furthermore, we assume that Xh is such that an inverse inequality holds:

||∇vh || ≤ C h−1||vh ||, ∀vh ∈ Xh.

Throughout this thesis, C is a generic constant that does not depend on the mesh size h or

the filter width δ (to be defined in more detail in Chapter 5).

We also introduce the discrete Laplace operator, as described by Thomée [86].

Definition 2.2.1. For ζh ∈ Xh, ∆h : Xh → Xh, the discrete Laplacian, is defined as

(∆hζh,vh) = −(∇ζh,∇vh), ∀vh ∈ Xh. (2.2.4)

Lemma 2.2.1. The discrete Laplacian is well defined. Moreover, −∆h is self-adjoint and

positive definite.

7



Proof. Existence and uniqueness follow directly from the Riesz Representation Theorem.

Alternatively, since Xh is finite dimensional, we can take {ϕj}N
j=1 (where N is the dimension

of Xh) and write ∆hζh =
∑N

j=1 cjϕj. Consequently, (2.2.4) gives the system

N∑
j=1

cj(ϕj, ϕi) = −(∇ζh,∇ϕi), ∀i = 1, · · · , N,

which has a unique solution, since the mass matrix is positive definite. Self-adjointness and

positive definiteness of −∆h are easy to check.

2.3 PROPERTIES OF THE TIME AVERAGING OPERATOR

The time averaging operator is defined in terms of the limit superior (limsup) of a function.

Thus, we will use many properties of limsup, especially in Chapter 4. Next, we list some of

them and prove others. Let {an} and {bn} be sequences in R. Then

1. lim supn→∞(an + bn) ≤ lim supn→∞ an + lim supn→∞ bn;

2. | lim supn→∞ an | ≤ lim supn→∞ | an |;
3. lim supn→∞(an bn) ≤ lim supn→∞ an lim supn→∞ bn, if an, bn ≥ 0 ∀n;

4. lim supn→∞(c an) = c lim supn→∞ an, for c ≥ 0;

5. if an ≤ bn for each n, then lim supn→∞ an ≤ lim supn→∞ bn.

Lemma 2.3.1. If an ≥ 0 for all n, then lim supn→∞
√

an ≤
√

lim supn→∞ an.

Proof. Since lim supn→∞
√

an is an accumulation point of {√an} (the largest), there exists a

subsequence {√anj
} such that

lim sup
n→∞

√
an = lim

nj→∞
√

anj
=

√
lim sup

n→∞
anj

,

by continuity of the square root function. Moreover, since {anj
} is non-negative and conver-

gent, limn→∞ an = lim supnj→∞ anj
, and lim supnj→∞ anj

≤ lim supn→∞ an.

Lemma 2.3.2. If an ≥ 0 for all n, then

1. lim supn→∞(an)p ≤ (lim supn→∞ an)p, where p is a non-negative real number.

8



2. | lim supn→∞(an) | = lim supn→∞ | an |.

Proof. Work with subsequences, as in the proof of Lemma 2.3.1. The first claim follows from

the continuity of the power function and the second, from the continuity of the absolute

value function.

We are almost ready to introduce the time averaging operator. For a function q = q(t),

let

< q >
T
=

1

T

∫ T

0

q(t) dt.

Important properties are that

| < q >
T
| ≤ < |q| >

T
, (2.3.1)

and, similarly, for any function q(t,x), where || · || is a spacial norm of q(t,x),

|| < q >
T
|| ≤ < ||q|| >

T
. (2.3.2)

Let u ∈ Lp(Ω), v ∈ Lq(Ω) with p−1 + q−1 = 1, p, q ∈ [1,∞]. Using the Hölder inequality

for Lebesgue spaces, one can show a Hölder inequality of the form

| < (u,v) >
T
| ≤ 1

T

∫ T

0

|(u,v)| dt ≤ 1

T

∫ T

0

||u||Lp||v||Lq dt

≤
(

1

T

∫ T

0

||u||pLp dt

)1/p (
1

T

∫ T

0

||v||qLq dt

)1/q

= < ||u||pLp >1/p
T

< ||v||qLq >1/q
T

. (2.3.3)

With the same arguments, one obtains for u ∈ H1
0 (Ω) and v ∈ H−1(Ω),

| < (u,v) >
T
| ≤ < ||∇u||2L2 >1/2

T
< ||v||2H−1 >1/2

T
. (2.3.4)

We now define the time averaging operator as

< q >= lim sup
T→∞

< q >
T

= lim sup
T→∞

1

T

∫ T

0

q(t) dt.
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Using the properties of limsup described in the beginning of this section, it is easy to show

that

| < q > | ≤ < | q | > (2.3.5)

|| < q > || ≤ < || q || > (2.3.6)

| < (u,v) > | ≤ < ||u||pLp >1/p< ||v||qLq >1/q (2.3.7)

| < (u,v) > | ≤ < ||∇u||2L2 >1/2< ||v||2H−1 >1/2 (2.3.8)

if the right hand sides of these inequalities are well defined.

2.4 A CONTINUATION LEMMA

We next prove a Continuation Lemma, useful in the proof of Theorem 6.3.2. It allows us to

conclude that the solution to a certain nonlinear ordinary differential equation is bounded

for a finite interval of time in terms of the problem data. We present it here because it is a

very general result and many existence theorems use this type of argument.

Lemma 2.4.1 (Continuation Lemma). Let y(t) ∈ C1[0, 1] be a non negative function satis-

fying

y′ + αy ≤ βy3 + γ

y(0) ≤ γ,
(2.4.1)

where α ∈ L1(0, 1), β > 0 and γ > 0 are constants.

Then, there exists γ0 > 0 and a constant M ≥ 1 such that for γ < γ0, y satisfies y ≤ Mγ,

for 0 ≤ t ≤ 1.

Proof. Let I = {t ∈ [0, 1] : y ≤ Mγ}. We show that I = [0, 1] by showing that I is both

closed and open in [0, 1] for γ0 small enough and M large enough.

First, observe that I is nonempty, since M ≥ 1 implies that 0 ∈ I. Also, I is closed

because it is the pre-image of a closed set under a continuous mapping. Next, we still need

to show that I is open.

Let [0, t∗] ⊂ I. We show that for ε small enough, t∗ + ε ∈ I, i.e. y(t∗) < Mγ.
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Using an integrating factor and integrating (2.4.1) from 0 to t∗ gives

y(t∗) ≤
∫ t∗

0

e
R t

t∗ α(t′) dt′(βy3 + γ)dt.

Let K = e||α ||L1(0,1) . Since [0, t∗] ⊂ I and t∗ < 1,

y(t∗) < K (γ + βM3γ3).

Let M > 2K so that Kγ < M γ
2

and let KβM2γ2 < 1
2
. Under these conditions, y(t∗) < Mγ

and, by continuity, y(t) ≤ Mγ for t∗ ≤ t ≤ t∗ + ε, showing that I is open.

Remark 2.4.1. Lemma 2.4.1 can be extended for the interval 0 ≤ t ≤ T , for fixed T and

the result is valid for exponents other than 3 on the right-hand side of (2.4.1).
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3.0 TURBULENCE AND THE NAVIER-STOKES EQUATIONS

Who has not, at least once, wondered about turbulence? Most people often associate tur-

bulence with nothing beyond bumpy planes and tornadoes. However, it is much more than

that. Most flows in nature and in engineering applications are turbulent, so much that tur-

bulence is considered to be the rule, and not the exception. Some applications in which

turbulence plays an important role include reducing aerodynamic drag on vehicles and air-

crafts, improving fuel efficiency of engines and simulating blood flow in artificial hearts. The

classical example is the golf ball. Take two of them, one with a smooth surface and the

other with small indentations. When they are hit, the latter will reach at least twice as

far as the former. This simple example illustrates that for some applications, turbulence

improves performance: the mixing of fuel and oxidizers produces cleaner and more efficient

combustion; fuel efficiency is determined by drag, which depends a lot on turbulence.

In a time of great concern about natural resources and global warming, there is no

doubt that understanding, predicting, quantifying, simulating and controlling turbulence has

become one of the most important goals in science and engineering. Turbulent flows have

many characteristics, some of which are listed by Tennekes and Lumley [85] and summarized

here:

• irregularity: main reason why we resort to statistical methods;

• diffusivity: causes rapid mixing and increased rates of momentum, heat and mass trans-

fer; it is the single most important feature as far as applications are concerned;

• large Reynolds number: turbulent flows often originate as an instability of laminar flows

if the Reynolds number, Re (ratio between the inertial and viscous forces), becomes too

large;

12



• three dimensional vorticity fluctuations: turbulence is rotational and three dimensional,

thus being characterized by high levels of fluctuating vorticity;

• dissipation: turbulent flows are always dissipative; viscous shear stresses perform de-

formation work that increases the internal energy of the fluid at the expense of kinetic

energy. If no energy is supplied, turbulence decays rapidly;

• continuum: even the smallest scales are far larger than any molecular length scale.

Important as it may be, turbulence still encompasses many secrets. In the words of H.

Lamb: “I am an old man now, and when I die and go to heaven there are two matters

on which I hope for enlightenment. One is quantum electrodynamics and the other is the

turbulence motion of fluids. About the former I am rather optimistic.”

The possibility of using only computers to simulate fluid motion, without having to

construct and rely on expensive (and sometimes unattainable) experiments is very promising.

Unfortunately, as it should be expected, this approach has its drawbacks too. There are

many unresolved issues in the mathematical and physical fronts, but perhaps the major

obstacle is the estimate that to resolve a flow completely, the number of mesh points (in

three dimensions) must be proportional to Re9/4. Considering that in most applications

the Reynolds number can vary from thousands to thousands of millions, this estimate poses

quite a challenge.

Nevertheless, much insight has been achieved by simulating simple turbulent flows, with

simple geometries (e.g. channel flow) at moderate Reynolds number. For high Reynolds

number, the natural alternative is to pursue a statistical approach, i.e. to describe turbulent

flow in terms of some statistics (averaged values) of the velocity field, rather than pointwise

values (which may not even be available). The idea is that statistics are more tractable.

When turbulence is spatially homogeneous (invariant under translations), statistical and

time averages are regarded as equivalent, Dubois, Jauberteau and Temam [21].

Let us now take a closer look at the equations of fluid motion and some of their mathe-

matical properties, which are also nicely summarized in Berselli [5] and John [42].
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3.1 MATHEMATICAL PROPERTIES OF THE NAVIER-STOKES

EQUATIONS

One of the many reasons why the Navier-Stokes equations attract so much attention is the

fact that they describe accurately conservation of mass and momentum in turbulent flows.

They are the commonly accepted physical model for compressible and incompressible fluid

flow. The mathematical theory is more advanced in the incompressible case, in which the

equations (with initial and boundary conditions) are given by

ut + u · ∇u− ν∇u +∇p = f(x, t), x ∈ Ω, 0 < t < ∞ (3.1.1)

∇ · u = 0, x ∈ Ω, 0 < t < ∞
u(x, 0) = u0(x), x ∈ Ω

u = 0 on ∂Ω, t ≥ 0.

Here, Ω denotes a bounded and regular flow domain in Rd (d=2 or 3), u(x, t), p(x, t) denotes

the fluid velocity and pressure, ν is the viscosity, f(x, t) ∈ L∞(0,∞; L2(Ω)) are the body

forces and u0 ∈ L2(Ω) is a weakly divergence free initial condition. The Reynolds number

Re is the inverse of the viscosity. The derivation of these equations can be found in many

books, such as Chorin and Marsden [15].

Historically, Euler formulated the first mathematical model (based on Newton’s laws)

in the simplified case of an ideal fluid, which means that his model did not account for the

internal friction of the fluid, i.e. ν = 0. This was incorporated by Navier, in 1822, when he

derived the equations at a molecular level, from a purely theoretical point of view. However,

he gave no particular physical meaning to the parameter ν. Later, Stokes (1845) rederived

the same equations, making it clear that ν is the viscosity (friction) of the fluid.

Engineers, mathematicians and other scientists have devoted much of their time and

energy to understand the mysteries of fluid flow. From a physical point of view, many

problems are very simple in their formulation, but are still a challenge to solve, such as the

determination of the forces exerted by a turbulent flow on its boundary. Mathematically,

much more is known at this time than it was a century ago, but nevertheless, it is not

satisfactory.
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This is such a central problem in mathematical physics that it figures as one of the Clay

Prize Problems. The question is whether (in three spatial dimensions), the velocity field

of a fluid, initially smooth, remains smooth for all time. Regular solutions exist and are

unique for finite time, but it is not known whether after the instant of time for which they

lose regularity, they can become non unique. Leray [58, 59, 60] introduced the concept of

weak solutions to prove the existence of solutions in a larger class, which may not be unique,

based on energy estimates. His results were improved and the proofs, simplified, by Hopf [36].

Fundamental contributions in this area were also provided by Kiselev and Ladyzhenskaya

[48] and Ladyzhenskaya [51].

The key term in the theory is (not surprisingly) the nonlinear term. It could be respon-

sible for blow up (development of a singularity) in finite time, since it is intimately related

to vorticity (and therefore, to the vortex stretching mechanism). By taking the curl of the

momentum equation, and setting ω = ∇×u (ω represents vorticity), that equation becomes

ωt + u · ∇ω − ω · ∇u− ν∆ω = ∇× f(x, t), x ∈ Ω, 0 < t < ∞.

In two dimensions, since ω is a vector perpendicular to the two dimensional vector field,

the vortex stretching term, ω · ∇u, vanishes and does not contribute to the evolution of

the vorticity field. In three dimensions, this term may give rise to the vortex stretching

mechanism, since it does not necessarily vanish. This mechanism can amplify the vorticity

magnitude and cause the production of smaller structures in the flow, thus implying a transfer

of energy from large scale to small scale structures, creating the so called energy cascade.

Therefore, although the nonlinear term does not participate in the global kinetic energy

balance, since (u ·∇u,u) = 0, it is responsible for redistributing energy from the large scales

(created by the body force and boundary conditions) to the small scales (when viscosity

becomes dominant).

3.1.1 Weak vs. Strong Solutions of the Navier-Stokes Equations

The problem of turbulence is perhaps intimately connected with questions about weak solu-

tions vs. strong solutions of the Navier Stokes equations. It is well-known that weak solutions
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exist but it is not known if they are unique. (Thus, different methods of proving existence

might possibly lead to different solutions.) A strong solution is generally defined as a weak

solution which has enough extra regularity to ensure global uniqueness, i.e., which fulfills

Serrin’s condition, e.g Serrin [77]. In R3, it is also unknown if strong solutions exist, see

Galdi [28] and Sohr [79]. But if a strong solution exists, it is unique. Strong solutions might

conceivably describe all fluid motion. However, in at least one conjecture about turbulence

the case of strong solutions is associated with laminar flow.

For clarity of notation, we will give the definition of a weak and a strong solution,

following Galdi [28]:

Definition 3.1.1. Let

1. DT = {v ∈ C∞(Ω× [0, T ]) : v(t) ∈ C∞
0 (Ω) for each t}d,

2. D =
{
ψ ∈ C∞(Ω)d : ψ has compact support in Ω and ∇ ·ψ = 0 in Ω

}
,

3. H(Ω) ≡ {v ∈ L2(Ω) : ∇ · v = 0 and v · n̂ on ∂Ω}, where n̂ is the outward unit normal.

4. DT={ φ(x, t) ∈ C∞(Ω× [0, T ]) : φ(x, t) ∈ D for each t, 0 ≤ t ≤ T}.

Let u0 ∈ H(Ω), f ∈ L2(0, T ; L2(Ω)). A measurable function u(x, t) : Ω × [0, T ] → Rd is a

weak solution of the Navier-Stokes equations if, for all T > 0

1. u ∈ L2(0, T ;V) ∩ L∞(0, T ; H(Ω)),

2. u satisfies the integral relation

(u(T ),φ(T ))−
∫ T

0

[(
u,

∂ φ

∂ t

)
− ν (∇u,∇φ)− (u · ∇u,φ)

]
dt

= (u(0),φ(0)) +

∫ T

0

(f ,φ) dt (3.1.2)

for all φ ∈ DT , which is equivalent to

d

dt
(u,v) + ν(∇u,∇v) + (u · ∇u,v)− (f ,v) = 0 (3.1.3)

for all v ∈ V.

3. u is a strong solution if u is a weak solution and u ∈ L∞(0, T ;V) for any T > 0.
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It is also known, [28], that weak solutions satisfy the energy inequality: for any t ∈ [0, T ],

1

2
||u(T ) ||2 + ν

∫ T

0

|| ∇u(t) ||2 dt ≤ 1

2
||u0 ||2 +

∫ T

0

(u(t), f(t)) dt. (3.1.4)

Strong solutions satisfy even an energy equality, i.e., (3.1.4) with “≤” replaced by “=”.

We note that if Ω is a bounded domain with ∂Ω satisfying a cone condition, then it is

known that, given a weak solution u, there exists a pressure p(x, t) ∈ L∞(0, T ; L2
0(Ω)) (see,

e.g. Galdi [28], Remark 2.5) satisfying

(u(T ),φ(T ))−
∫ T

0

(
u,

∂φ

∂t

)
− ν (∇u,∇φ)− (u · ∇u,φ)− (p,∇ · φ) dt

= (u(0),φ(0)) +

∫ T

0

(f , φ) dt ∀ φ ∈ DT . (3.1.5)

This is equivalent to

d

dt
(u,v) + ν (∇u,∇v) + (u · ∇u,∇v)− (p,∇ · v) = (f ,v) ∀ v ∈ X. (3.1.6)

The proof of existence of weak solutions is based on the construction of a Leray-Hopf

sequence of Galerkin approximations with eigenfunctions of the Stokes operator, say uN ,

in order to get an energy estimate (by multiplying (3.1.1) by uN). Then use it to get

bounds on the approximations in the appropriate norms. The last steps are the extraction

of subsequences and the use of additional compactness results.

The existence of strong solutions is also based on Galerkin approximations and energy

estimates, but we multiply (3.1.1) by AuN , instead, where A is the Stokes operator (see

Constantin and Foias [17]). In the two dimensional case, see Kiselev and Ladyzhenskaya [48]

strong solutions exist for all time T > 0. However, in three dimensions, they only exist for

arbitrary T if the initial data and body force are small. The condition on the data can be

relaxed, but then existence is restricted to finite T .

Weak solutions are unique in two dimensions, since u ∈ L4(0, T,V) (a condition also

satisfied by strong solutions). Thus, a weak solution is actually a strong solution. However,

in three dimensions, this is still an open question.
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3.2 THE FINITE ELEMENT DISCRETIZATION

Consider the standard finite element discretization of the Navier-Stokes equations (3.1.1).

The semi-discrete (continuous in time) finite element approximations uh = uh(·, t) and

ph = ph(·, t) are functions uh : [ 0,∞ ) → Xh, ph : [ 0,∞ ) → Qh satisfying

(uh
t ,v

h) + ν(∇uh,∇vh) + b(uh,uh,vh)− (ph,∇ · vh) = (f ,vh) ∀vh ∈ Xh (3.2.1)

(∇ · uh, qh) = 0 ∀ qh ∈ Qh (3.2.2)

(uh(·, 0)− u0,v
h) = 0 ∀vh ∈ Xh.

Under the inf-sup condition (2.2.1), this is equivalent to: find uh : [ 0,∞ ) → Vh satisfying

(uh
t ,v

h) + ν(∇uh,∇vh) + b(uh,uh,vh) = (f ,vh), ∀vh ∈ Vh, (3.2.3)

(uh(·, 0)− u0,v
h) = 0 ∀vh ∈ Vh.

3.3 THE ASSOCIATED EQUILIBRIUM PROBLEM

Consider the Navier-Stokes (3.1.1). When f(x, t) → f∗(x) as t →∞, we can associate with

(3.1.1) the following equilibrium problem: find u∗(x), p∗(x) satisfying

− ν∆u∗ + u∗ · ∇u∗ +∇p∗ = f∗ in Ω

∇ · u∗ = 0 in Ω (3.3.1)

u∗ = 0, on ∂Ω, and

∫

Ω

p∗dx = 0.

The variational formulation of the equilibrium problem is: Find u∗ ∈ X and p∗ ∈ Q such

that

ν(∇u∗,∇v) + b(u∗,u∗,v)− (p∗,∇ · v) = (f∗,v) ∀v ∈ X (3.3.2)

(∇ · u∗, q) = 0 ∀ q ∈ Q (3.3.3)
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or, equivalently: Find u∗ ∈ V such that

ν(∇u∗,∇v) + b(u∗,u∗,v) = (f∗,v) ∀v ∈ V. (3.3.4)

The finite element approximations u∗h and p∗h satisfy the equations

ν(∇u∗h,∇vh) + b(u∗h,u∗h,vh)− (p∗h,∇ · vh) = (f∗,vh) ∀vh ∈ Xh (3.3.5)

(∇ · u∗h, qh) = 0 ∀ qh ∈ Qh.

This becomes in Vh: Find u∗h ∈ Vh such that

ν(∇u∗h,∇vh) + b(u∗h,u∗h,vh) = (f∗,vh) ∀vh ∈ Vh. (3.3.6)

It is known that solutions of the equilibrium problem are nonsingular for small data,

generically nonsingular for large data and optimally approximated by u∗h when nonsingular,

e.g. Girault and Raviart [31]. Setting v = u∗ in (3.3.2) and vh = u∗h in (3.3.5), it is easy to

check the a priori bounds

||∇u∗ || ≤ ν−1|| f∗ ||−1, ||∇u∗h || ≤ ν−1|| f∗ ||−1. (3.3.7)

Both bounds can be sharpened slightly. In the continuous case, || f∗ ||−1 can be replaced

by the dual norm of V,

|| f∗ ||∗ := sup
v∈V

(f∗,v)

||∇v || ,

and in the discrete case by the dual norm of Vh,

|| f∗ ||∗h := sup
vh∈Vh

(f∗,vh)

||∇vh || .

It is known that if the problem data is small enough, concretely if

Mν−2|| f∗ ||−1 < 1, (3.3.8)

then u∗ is unique. If additionally f(x, t) ≡ f∗(x), u(x, t) → u∗(x) in L2(Ω) exponentially

fast as t → ∞ and (uh, ph) approximates (u, p) optimally, e.g. Girault and Raviart [30],

Layton [52] and Gunzburger [33].
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4.0 CONVERGENCE OF TIME AVERAGED STATISTICS OF FINITE

ELEMENT APPROXIMATIONS OF THE NAVIER-STOKES EQUATIONS

The motion of an incompressible fluid is governed by the incompressible Navier-Stokes equa-

tions. A fundamental problem of fluid motion is turbulence and a fundamental problem in

the Navier-Stokes equations is that of uniqueness of weak solutions in the general case of no

assumed extra regularity or small data. The Leray conjecture [60] is that these two problems

are connected: the lack of uniqueness of weak solutions (which he called “turbulent solu-

tions”) is not an artifact of imperfect mathematical techniques but it reflects fundamental

physical mechanisms of turbulence.

The numerical analysis of turbulent flows is caught between the gaps in the physical

understanding of turbulence and those in the mathematical foundations of the Navier-Stokes

equations. For example, smooth strong solutions are not expected while, if the uniqueness

of the weak solution is unknown, bounding the error in a numerical simulation is currently

not possible without assuming extra regularity on the solution, or without assuming both

the initial data u0 and the body force f(x, t) are very small.

On the other hand, computational simulations are carried out and statistics of computed

fluid velocities and pressures often reflect rather accurately statistics of physical flows even in

the absence of mathematical justification for this accuracy. Further, statistics (by which we

shall mean long time averages) are often smooth, behave deterministically (often in accord

with the Kolmogorov theory, e.g. Kolmogorov [49]) in both numerical simulations and in

physical experiments. From this situation, a challenge for the numerical analysis of fluid

motion arises: develop a rigorous understanding of how statistics computed from numerical

simulations reflect those for the unknown solution of the Navier-Stokes equations.

We will study statistics of the energy dissipation rate and the total kinetic energy of the
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flow. The energy dissipation rate of the flow at time t is given by

ε(u) :=
ν

|Ω | ||∇u(·, t) ||2,

where |Ω | is the measure of Ω and || · || denotes the L2(Ω)-norm, and its total kinetic energy

is

k(u) :=
1

2
||u(·, t) ||2.

The time average of the energy dissipation rate is

< ε(u) >= lim sup
T→∞

1

T

∫ T

0

ε(u) dt = lim sup
T→∞

1

T

∫ T

0

ν

|Ω | ||∇u||2 dt,

and the time average of the kinetic energy is

< k(u) >= lim sup
T→∞

1

T

∫ T

0

k(u) dt.

In practical simulations of turbulent flows, it is typical to output time averaged flow

statistics (which are then matched against benchmark averages, e.g. Berselli, Iliescu and

Layton [6], John and Kaya [43], Hughes, Oberai and Mazzei [37], Iliescu and Fischer [38],

Moser, Kim and Mansour [68] and Deardorff [18]). However, there is very little numerical

analysis in support of these calculations. Of course, if the error in certain norms of the

velocity and the pressure is provably optimal over 0 ≤ t < ∞ then time averages involving

these norms are convergent as well. But, the practical case is complementary: time averages

seem to be predictable even when dynamic flow behavior over bounded time intervals is

irregular. This is the case we aim to study. However, a complete analysis seems to be still

beyond the present mathematical tools.

We consider herein as a first step the case of arbitrary initial data u0 and asymptotically

small body forces which converge to a stationary limit f∗(x) = limt→∞ f(x, t). Let (uh, ph)

be a finite element approximation of the velocity field and the pressure and assume that

a small data condition is satisfied. Let u∗ be the solution of the stationary Navier-Stokes

equations with body force f∗. In Section 4.1, we show that

< ε(u− u∗) >= 0, < ε(uh − u∗h) >= 0,
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and we prove, see Theorem 4.1.2, an error estimate which shows that the problem of esti-

mating < ε(u − uh) > reduces to the one of estimating ||∇(u∗ − u∗h)||2. So the error goes

to zero optimally as the mesh width h → 0. This result is plausible because the possible

irregularities caused by large initial data are washed out by the time averaging.

Section 4.2 studies the flow around a body. The results of Section 4.1 are used to give

estimates for the time averaged drag and the lift coefficients at the body.

In Section 4.3, we consider the complementary situation of a flow driven by a large and

persistent boundary condition. We are not (yet) able to perform a complete error analysis

in this case. However, following the important work of Constantin and Doering [16] in the

continuous case, we show that provided the first mesh line in the finite element mesh is

within O(1/Re) of the moving wall which drives the flow, then the computed time averaged

energy dissipation rate for the shear flow scales as predicted for the continuous flow by the

Kolmogorov theory:

< ε(uh) > ≤ C
U3

L
.

This restriction on the mesh size arises from mathematical analysis of constructible back-

ground flows in finite element spaces and their subsequent analysis. However, it is consistent

with entirely different observation of the thickness of time averaged turbulent boundary

layers, see e.g. Schlichting [76].

4.1 ANALYSIS OF TIME AVERAGED ERRORS

We present some results involving the time averaged energy dissipation rate, aiming at

establishing an error estimate for this quantity. For a force f independent of time, we first

show that the time averaged energy dissipation rate < ε(u) > is bounded by the time

averaged power input to the flow through body force-flow interaction. It is significant that

this upper bound is independent of the initial condition (then it is reasonable that errors in

its approximation could be insensitive to the size of u0). We establish time averaged errors

for the pressure.
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Lemma 4.1.1. Let u be a weak solution to the Navier Stokes equations (obtained by the

Leray-Hopf construction). If f ∈ L∞(0,∞; H−1(Ω)), then ||u || is uniformly bounded

1

2
||u ||2(T ) ≤ e−νC−2

PF T ||u(0) ||2 +
C2

PF

ν2
|| f ||2L∞(0,∞;H−1), (4.1.1)

where CPF is the Poincaré-Friedrich’s constant of Ω, and consequently

lim
T→∞

1

T
||u ||2(T ) = 0.

Proof. Let VN be a span of eigenfunctions of the Stokes operator. The Leray-Hopf construc-

tion of weak solutions gives a sequence uN in VN satisfying

(uN,t,v) + ν(∇uN ,∇v) + b(uN ,uN ,v) = (f ,v), ∀v ∈ VN , (4.1.2)

with a subsequence uNj
→ u, the weak solution, in L2(0, T ; H(Ω)) strongly and L2(0, T ;V)

weakly.

This is a system of ordinary differential equations; setting v = uN and using Cauchy-

Schwarz and Young inequalities, followed by Poincaré-Friedrich’s inequality, we have

d

dt
||uN(t) ||2 + νC−2

PF ||uN(t) ||2 ≤ 1

ν
|| f ||2−1.

Using an integrating factor, we obtain a differential inequality which can be integrated on

(0, T ), yielding

||uN(T ) ||2 ≤ e−νC−2
PF T ||uN(0) ||2 +

1

ν2C−2
PF

|| f ||2L∞(0,∞;H−1).

This shows the uniform boundedness of ||uN(T ) ||. Passing to subsequences, taking the

limit inferior of both sides and using a weak convergence argument (which is standard for

the Navier-Stokes equations and which we show in detail in the proof of Proposition 4.1.3),

letting Nj →∞, we recover (4.1.1) for u. The second claim now follows from the first.

Lemma 4.1.2. Let f ∈ L∞(0,∞; H−1(Ω)) and let uh satisfy (3.2.3). Then ||uh || is uni-

formly bounded and consequently

lim
T→∞

1

T
||uh ||2 = 0, and lim

T→∞
1

T
||u− uh ||2 = 0.
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Proof. Take vh = uh in (3.2.3) (a step not possible in the continuous case of Lemma 4.1.1)

and proceeding as in the proof of Lemma 4.1.1, we prove a similar uniform bound for ||uh ||.
This proves the first equation and the bound on ||u−uh || follows by the triangle inequality

and Lemma 4.1.1.

We next consider time averages.

Proposition 4.1.1. Let u be a weak solution of the Navier-Stokes equations satisfying the

energy inequality (3.1.4). Then

< ε(u) > ≤ lim sup
T→∞

1

|Ω |T
∫ T

0

( f ,u ) dt =
1

|Ω | < (f ,u) > . (4.1.3)

If u satisfies the energy equality then the above inequality can be replaced by equality. Further,

if f ∈ L∞(0,∞; H−1(Ω)) ∩ L2(0, T ; L2(Ω)) for every 0 < T < ∞ then

< ε(u) > ≤ ν−1

〈
1

|Ω | || f ||
2
−1

〉
≤ ν−1

|Ω | || f ||
2
L∞(0,∞;H−1(Ω)). (4.1.4)

The semidiscrete finite element approximation uh of u also satisfies inequalities of form

(4.1.3) and (4.1.4), where in (4.1.3) even equality holds.

Proof. Since u satisfies the energy inequality (3.1.4), we have

1

2T

1

|Ω | ||u(T ) ||2 +
1

T

∫ T

0

ν

|Ω | || ∇u(t) ||2 dt ≤ 1

2T

1

|Ω | ||u0 ||2 +
1

T

∫ T

0

1

|Ω |(f ,u) dt.

Since 1
2T
||u(T ) ||2 → 0 by Lemma 4.1.1 and 1

2T
||u0 ||2 → 0 as T →∞, we obtain (4.1.3). If

we use as starting point the energy equality, the equal sign will be preserved.

For proving the last claim, we apply inequality (2.3.8) to (4.1.3)

< ε(u) > ≤ ν

2|Ω | < ||∇u(t) ||2 > +
1

2ν|Ω | < || f ||2−1 >

≤ 1

2
< ε(u) > +

1

2ν|Ω | ||f ||
2
L∞(0,∞;H−1).

In the semidiscrete case take uh as test function in (3.2.3). This gives

1

2

d

dt
||uh(t) ||2 + ν||∇uh(t) ||2 = (uh(t), f(t)).

Integration in (0, T ) shows that uh fulfills an energy equality. Now, the arguments to derive

the estimates of form (4.1.3) and (4.1.4) for uh are the same as in the continuous case.
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Lemma 4.1.3. Let (u, p) be a weak solution of the Navier-Stokes equations and (uh, ph) its

finite element approximation in finite dimensional subspaces Xh ⊂ X and Qh ⊂ Q. Let

e = u − uh. Then, for any C1 functions vh : [0, T ] → Xh, qh : (0, T ] → Qh (for each T ,

0 < T < ∞),

(e(T ),vh(T ))−
∫ T

0

[ (
e,

∂vh

∂t

)
− ν(∇e,∇vh)− b(u,u,vh) + b(uh,uh,vh)

+(p− ph,∇ · vh) + (∇ · (u− uh), qh)

]
dt = (e(0),vh(0)) (4.1.5)

which is equivalent to

d

dt
(e,vh)−

(
e,

∂vh

∂t

)
+ ν (∇e,∇vh) + b(u,u,vh)

−b(uh,uh,vh)− (p− ph,∇ · vh) = 0 (4.1.6)

(∇ · (u− uh), qh) = 0

Proof. We shall prove (4.1.6). The connection between (4.1.6) and (4.1.5) is the same as

(3.1.5) and (3.1.6).

First, note that both follow by subtraction provided (3.1.5) can be shown to hold for

φ ∈ C1(0, T ;Xh) or (3.1.6) can be shown for v ∈ C1(0, T ;Xh) (since Xh ⊂ X). We show

the latter.

Since Xh ⊂ X (3.1.6) holds for all vh(x) ∈ Xh. Next, let A(t) be a C1(0, T ) function.

Multiplication of (3.1.6) by A(t) and using

A(t)
d

dt
(u,vh) =

d

dt
(u, A(t)vh)− (u, A′(t)vh)

gives that u and p satisfy

d

dt
(u,vh)−

(
u,

∂vh

∂t

)
+ ν (∇u,∇vh) + (u · ∇u,vh) + (p,∇ · vh) = (f ,vh)

with vh = A(t)vh(x). The same equation holds for uh and ph. Subtracting gives (4.1.6) for

any vh of the form vh = A(t)vh(x).
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Since (4.1.6) is linear in vh, it also follows for any vh which is a finite linear combination

of such function,

vh(x, t) =
N∑

i=1

Ai(t)v
h
i (x).

Picking vh
i (x) to be a basis for Xh completes the proof.

Next, we consider the time averaged errors. It is important to note that there is a

difference between || < ∇(u − uh) > || and < ||∇(u − uh)|| >. By Minkowski’s inequality,

the second is an upper bound for the first. Experience with turbulent flows suggests that

< ∇u > might be smooth (and thus approximable). Thus, ideally we would like estimates

for the first || < ∇(u−uh) > ||. In the case of the error in the pressure, we are able to prove

such a bound.

Theorem 4.1.1. Let f ∈ L∞(0,∞; H−1(Ω)) and let (Xh, Qh) satisfy the discrete inf-sup

condition (2.2.1). Then,

lim sup
T→∞

|| < p− ph >
T
|| ≤ ν

β
(1 + 2Mν−2|| f ||L∞(0,∞;H−1(Ω)))

〈 ||∇(u− uh)||2 〉1/2

+

(
1 +

C

β

)
inf

qh∈Qh
lim sup

T→∞
|| < p− qh >

T
||.

Proof. A straightforward calculation shows that (4.1.5) is equivalent to

−
∫ T

0

(ph − qh,∇ · vh) dt = (e(T ),vh(T ))− (e(0),vh(0))

−
∫ T

0

[(
e,

∂vh

∂t

)
− ν(∇e,∇vh)− b(u, e,vh)− b(e,uh,vh) + (p− qh,∇ · vh)

]
dt

for all (vh, qh) ∈ Xh × Qh. Since the velocity finite element functions are continuous in Ω,

all terms are well defined. Let vh = vh(x). Division by T gives

(< qh − ph >
T
,∇ · vh) ≤ 1

T
(e(T ),vh)− 1

T
(e(0),vh) + ν (< ∇ e >

T
,∇vh)+ < b(u, e,vh) >

T

+ < b(e,uh,vh) >
T
−(< p− qh >

T
,∇ · vh). (4.1.7)
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For estimating (4.1.7), one uses again that vh does not depend on time, (2.1.3) and ||∇·vh|| ≤
C ||∇vh|| to obtain

∣∣(< qh − ph >
T
,∇ · vh)

∣∣ ≤ CPF

T
|| e(T ) || || ∇vh ||+ CPF

T
|| e(0) || || ∇vh ||

+ν || < ∇ e >
T
|| || ∇vh ||+ M < ||∇u || || ∇ e || >

T
|| ∇vh ||

+M < ||∇ e || ||∇uh || >
T
||∇vh ||+ C || < p− qh >

T
|| || ∇vh ||.

Dividing by || ∇vh || and applying the discrete inf-sup condition (2.2.1) on the left hand side

of this inequality leads to

β|| < qh − ph >
T
|| ≤ CPF

T
|| e(T ) ||+ CPF

T
|| e(0) ||+ ν || < ∇ e >

T
||

+M < ||∇u || ||∇ e || >
T

+M < ||∇ e || || ∇uh || >
T

+C || < p− qh >
T
||.

The first term on the right hand side can be estimated first with (2.3.2) and then with (2.3.3).

The other terms can be bounded directly with (2.3.3), resulting in

β|| < qh − ph >
T
|| ≤ C

T
|| e(T ) ||+ C

T
|| e(0) ||+ ν < ||∇ e ||2 >1/2

T

+M < ||∇u ||2 >1/2
T

< ||∇ e ||2 >1/2
T

+M < ||∇ e ||2 >1/2
T

< ||∇uh ||2 >1/2
T

+C || < p− qh >
T
||.

The triangle inequality then implies that

|| < p− ph >
T
|| ≤ C

T
|| e(T ) ||+ C

T
|| e(0) ||+ ν

β
< ||∇ e ||2 >1/2

T

+
M

β
< || ∇u ||2 >1/2

T
< ||∇ e ||2 >1/2

T

+
M

β
< || ∇ e ||2 >1/2

T
< ||∇uh ||2 >1/2

T
+

(
1 +

C

β

)
|| < p− qh >

T
||.

Taking limsup as T →∞ on both sides of the inequality and using Lemmas 4.1.1 and 4.1.2,

together with properties of limsup, give

lim sup
T→∞

|| < p− ph >
T
|| ≤ ν

β
< || ∇ e ||2 >1/2 +

M

β
< ||∇u ||2 >1/2 < ||∇ e ||2 >1/2

+
M

β
< ||∇ e ||2 >1/2 < ||∇uh ||2 >1/2

+

(
1 +

C

β

)
lim sup

T→∞
|| < p− qh >

T
||.

27



The norms of the weak and the discrete solution can be estimated with the results of Propo-

sition 4.1.1. The proof concludes by taking the infimum over qh ∈ Qh.

Corollary 4.1.1. If the assumptions of Theorem 4.1.1 hold true, then

|| < p− ph > || ≤ ν

β
(1 + 2Mν−2|| f ||L∞(0,∞;H−1(Ω)))

〈 ||∇(u− uh)||2 〉1/2

+

(
1 +

C

β

)
inf

qh∈Qh
lim sup

T→∞
|| < p− qh >

T
||.

Proof. The lower bound on the left hand side is a consequence of properties of limsup.

The key idea in the above proofs was to restrict vh ∈ Vh to be time independent. Then,

(finite) time averaging can be applied and brought inside upon the pressure error directly. It

is interesting that the equations of motion give a different realization of time averaged error

for the velocity and pressure (< ||∇(u− uh) || > versus || < p− ph > ||). This appears also

in the time averaged lift and drag error estimates in Theorem 4.2.1. At this point, we do

not know if this distinction has other, deeper causes or implications.

We next turn to the error inequalities for the time averaged velocity error < ε(u−uh) >.

Proposition 4.1.2. Let Y = L2(0, T ; H1(Ω)) ∩ L∞(0, T ; V h) and assume ut ∈ L1(0, T ;X′)

for every 0 < T < ∞. Then the time averaged velocity error satisfies the following inequali-

ties

< ε(u− uh) > ≤ C inf
qh∈Qh

ν−1 < || p− qh ||2 > +2 < | b(u− uh,u,u− uh) | >
+C inf

ũ∈Y

[
< ε(u− ũ) > +ν−1 < || (u− ũ)t ||2−1 >

+ 2
〈 | b(u,u− uh,u− ũ) |+ | b(u− uh,u,u− ũ) |

+| b(u− uh,u− uh,u− ũ) | 〉 ]
,

and

< ε(u− uh) > ≤ C inf
qh∈Qh

ν−1 < || p− qh ||2 >

+ C inf
ũ∈Y

[
< ε(u− ũ) > +ν−1 < || (u− ũ)t ||2−1 >

+ ν−3
〈||u− uh ||2/3|| ∇u ||4/3||∇(u− ũ) ||4/3

〉

+ ν−3
〈||u− uh ||2|| ∇(u− ũ) ||4〉 + C

〈
ν−1||∇u ||2 ||u− ũ || || ∇ (u− ũ) ||〉]

+ ν−3
〈||∇u ||4||u− uh ||2〉 .
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Remark 4.1.1. If ||∇u || is uniformly bounded in time, then these equations can be closed

provided < || e ||2 >≤ Chα < ||∇e ||2 > for some α > 0 and provided h is small enough.

However, this is again the case when pointwise accuracy in time is reasonable to expect

rather than accuracy in time averaged statistics. Thus, the problem of closing the circle in

the velocity error equation for the time averaged statistics seems to catch at the same point

as in the standard error analysis.

We shall see that in at least one case the circle of analysis is closable. In more general

cases, we believe the problem is due to the fact that we are estimating < ||∇(u − uh) ||2 >

rather than || < ∇(u− uh) > ||2.

Proof. Since ut ∈ L1(0, T ;X′), the weak solution satisfies the variational formulation

(ut,v
h) + ν(∇u,∇vh) + b(u,u,vh)− (p,∇ · vh) = (f ,vh) ∀vh ∈ L∞(0, T ;Xh).(4.1.8)

A similar equation holds for uh, so subtraction and the fact that, for qh ∈ Qh, (qh,∇ ·
vh) = 0, give an equation for the error e = u− uh:

(et,v
h) + ν(∇e,∇vh) + b(u,u,vh)− b(uh,uh,vh)

−(p− qh,∇ · vh) = 0 ∀vh ∈ L∞(0, T ;Vh). (4.1.9)

Let ũ be an interpolant of u with ũ ∈ L2(0,∞; H1(Ω)) ∩ L∞(0,∞;Vh) and write e =

η − φh, where η = u− ũ and φh = uh − ũ. Adding

−b(e, e, e) + b(u,uh,φh)− b(u,uh,φh),

where the first term vanishes, we get with vh = φh

1

2

d

dt
||φh ||2 + ν ||∇φh ||2 = (ηt,φ

h) + ν(∇η,∇φh)− (p− qh,∇ · φh)

+b(e,u,η)− b(e, e,η)− b(e,u, e) + b(u, e, η).

Time averaging the equation above and observing that ||φh || is uniformly bounded in time

(since ||uh || is bounded and ũ ∈ L∞(0,∞; L2(Ω))), we have

< ε(φh) > ≤ 1

|Ω|
[

< | (ηt,φ
h) | > + < ν | (∇η,∇φh) | > + < | (p− qh,∇ · φh) | >

+ < | b(e,u,η) | > + < | b(e, e,η) | > + < | b(e,u, e) | > + < | b(u, e, η) | >
]
.
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The time-averaged Cauchy-Schwarz-Young inequality (2.3.7) now gives

1

2
< ε(φh) > ≤ Cν−1 < ||ηt ||2−1 > + < ε(η) > +C ν−1 < || p− qh ||2 >

+ < | b(e,u, η) | > + < | b(e, e,η) | > + < | b(e,u, e) | > + < | b(u, e, η) | > .

The triangle inequality then gives the first claimed time-averaged error inequality.

For the second inequality we use the following bounds on the trilinear form, see Lemma

2.1.2, together with Young’s inequality

< | b(e,u, e) | > ≤ C < || ∇u || || e ||1/2 ||∇e ||3/2 >

≤ ν

8
< ||∇e ||2 > +C ν−3 < ||∇u ||4 || e ||2 >,

< | b(e, e, η) | > ≤ C < || e ||1/2 ||∇e ||3/2 || ∇η || >
≤ ν

8
< ||∇e ||2 > +C ν−3 < || e ||2 || ∇η ||4 >,

< | b(e,u, η) | > ≤ C < || e ||1/2 ||∇e ||1/2 || ∇u || || ∇η || >
≤ ν

8
< ||∇e ||2 > +C ν−3 < || e ||2/3 ||∇u ||4/3 ||∇η ||4/3 >,

< | b(u, e, η) | > ≤ C < ||∇u || ||∇ e || ||η ||1/2 ||∇η ||1/2 >

≤ ν

8
< ||∇e ||2 > +C < ν−1||∇u ||2 ||η || ||∇η || > .

Thus

< ε(u− uh) > ≤ C < ε(u− ũ) > +C ν−1 < || p− qh ||2 >

+C
[
ν−1 < ||ηt ||2−1 > +ν−3 < || e ||2/3 ||∇u ||4/3 ||∇η ||4/3 >

+ν−3 < || e ||2 ||∇η ||4 > + < ν−1||∇u ||2 ||η || ||∇η || >
+ν−3 < ||∇u ||4 || e ||2 >

]
,

which is the second error inequality, completing the proof.
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4.1.1 The Case of Large u0 and Small f∗(x)

There is at least one interesting case in which the error equations for the time-averaged

velocity error, < ε(u − uh) >, can be closed: the case of large initial condition u0 and

asymptotically small body force f(x, t). In this subsection we assume

f(x, t) ∈ L∞(0,∞; H−1(Ω)), f(x, t) → f∗(x) as t →∞

and

ν−2M || f∗ ||−1 =: α < 1.

In this case, it is possible time averaging will eventually wash out the irregularities

caused by the large initial condition. We show that this is indeed the case. To shorten the

presentation, we shall simplify the condition on f to

f(x, t) ≡ f∗(x) and ν−2M || f∗ ||−1 = α < 1. (4.1.10)

Proposition 4.1.3. Suppose (4.1.10) holds. Then

< ε(u− u∗) >= 0, (4.1.11)

where u∗ is the solution of the equilibrium Navier-Stokes equations (3.3.2)-(3.3.3).

Proof. Let VN be a span of eigenfunctions of the Stokes operator. The Leray-Hopf Galerkin

construction gives a sequence uN in VN that satisfies

(uN,t,v) + ν(∇uN ,∇v) + (uN · ∇uN ,v) = (f ,v) ∀v ∈ VN , (4.1.12)

with a subsequence uNj
in VN converging to a weak solution u, as Nj → ∞, strongly in

L2(0, T ; H(Ω)), and weakly in L2(0, T ;V).

Let u∗N ∈ VN be the Galerkin projection of u∗ in VN . Then u∗N satisfies

ν(∇u∗N ,∇v) + (u∗N · ∇u∗N ,v) = (f ,v) ∀v ∈ VN , (4.1.13)

and u∗N → u∗ in X and V as N →∞.
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Set φN = uN(x, t)− u∗N(x) and subtract (4.1.13) from (4.1.12) to get

(φN,t,v) + ν(∇φN ,∇v) + (uN · ∇uN ,v)− (u∗N · ∇u∗N ,v) = 0 ∀v ∈ VN . (4.1.14)

Let v = φN , add and subtract (uN · ∇u∗N ,v) and integrate from 0 to T to get

1

2
||φN(T )||2 +

∫ T

0

ν||∇φN ||2 dt =
1

2
||φN(0)||2 +

∫ T

0

−b(φN ,u∗N ,φN) dt

Next, using the bound on the trilinear form, the á priori bound (3.3.7) and the small

data assumption (4.1.10) gives

1

2
||φN(T )||2 + (1− α)ν

∫ T

0

||∇φN ||2 dt ≤ 1

2
||φN(0)||2.

Thus, dropping the first term,

∫ T

0

ν||∇φN ||2 dt ≤ (1− α)−1 1

2
||φN(0) ||2. (4.1.15)

Passing to subsequences, and using classical properties of weak limits, we have

lim inf
N→∞

(∫ T

0

||∇φN ||2 dt

)
≥

∫ T

0

|| ∇φ ||2 dt.

Therefore, taking limit inferior on both sides of (4.1.15), gives

∫ T

0

ν||∇φ ||2 dt ≤ (1− α)−1 1

2
||φ(0) ||2.

Dividing by T and taking the limit superior as T →∞ proves the result.

The next proposition is needed in order to prove the desired error estimate on < ε(u−
uh) >, given below, in Theorem 4.1.2.

Proposition 4.1.4. Assume that (4.1.10) holds. Then

< ε(uh − u∗h) >= 0, (4.1.16)

Proof. The proof works in the same way as that of Proposition 4.1.3. It is based on sub-

tracting (3.2.3) and (3.3.6).
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Remark 4.1.2. The statements of Propositions 4.1.3 and 4.1.4 also hold for the kinetic

energy.

Theorem 4.1.2. Suppose that (4.1.10) holds. Then

< ε(u− uh) > ≤ C ν ||∇(u∗ − u∗h)||2, (4.1.17)

where the constant C depends on the domain.

Proof. We can start by writing

||∇(u− uh)||2 = ||∇(u− u∗ + u∗ − u∗h + u∗h − uh)||2.

Next, we use the triangle inequality, together with Proposition 4.1.3 and Proposition 4.1.4

to get

lim sup
T→∞

1

T

∫ T

0

ν ||∇(u− uh)||2 dt ≤ C ν ||∇(u∗ − u∗h)||2.

Remark 4.1.3. The statement of Theorem 4.1.2 says that the problem of estimating <

ε(u−uh) > reduces to the one of estimating ||∇(u∗−u∗h)||2. Standard finite element error

estimates thus immediately imply < ε(u− uh) > is optimal.

Corollary 4.1.2. Suppose the small data assumption (4.1.10) holds, (Xh, Qh) satisfies the

inf-sup condition. Then

< ε(u− uh) >≤ C

[
inf

vh∈Xh
ν||∇(u∗ − vh) ||2 + inf

qh∈Qh
ν−1|| p∗ − qh ||2

]

Proof. This follows by inserting the error estimates for ||∇(u∗ − u∗h) || from Girault and

Raviart [30] into the right hand side of (4.1.17).

Concerning the time averaged error in the pressure, we have the following corollary. It

is a direct consequence of Theorem 4.1.1.

Corollary 4.1.3. Let the assumptions of Corollary 4.1.1 be fulfilled. Suppose additionally

that assumptions (4.1.10) hold. Then

|| < p− ph > || ≤ 3ν

β

〈||∇(u− uh) ||2〉1/2
+

(
1 +

C

β

)
inf

qh∈Qh
lim sup

T→∞
|| < p− qh >

T
||.
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4.2 TIME AVERAGED ERRORS IN DRAG AND LIFT

Consider the flow around a body in a channel with flow region Ω and boundary Γ, which

consists of Γb (boundary of the body) and Γc = Γi ∪Γo ∪Γw (where Γi, Γo correspond to the

inflow and outflow and Γw, to the walls).

Define

σ = −p I+ 2 ν∇su,

where ∇s indicates the symmetric part of the operator ∇.

Let ρ be the density of the fluid. Then consider the Navier-Stokes equations written in

the form:

ρ(ut + u · ∇u) = ∇ · σ + f in Ω (4.2.1)

∇ · u = 0 in Ω

u = g on Γ

u(x, 0) = u0(x) in Ω

satisfying the compatibility condition
∫
Γ
g · n̂dS = 0. We assume g = 0 on Γw and Γb.

We introduce the spaces

Xg =
{
v ∈ H1(Ω)d : v|Γ = g

}
, X0 = H1

0 (Ω)d.

A weak formulation of (4.2.1) reads: Find u : [0, T ] → Xg and p : (0, T ] → Q such that

ρ (ut,v) + 2 ν(∇s u,∇s v) + ρ b(u,u,v)

+ (p,∇ · v) + (∇ · u, q) = (f ,v) ∀(v, q) ∈ X0 ×Q. (4.2.2)

Drag and lift are defined as

D = −
∫

Γb

ê1 · σ · n̂ dγ and L = −
∫

Γb

ê2 · σ · n̂ dγ,

respectively, where êi is the unit vector in the ith direction and n̂ is the outward pointing

unit normal to Γb. (We assume that +ê1 is the direction of motion and −ê2 is the direction

of gravity.)
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Remark 4.2.1. Deriving mathematical estimates of drag and lift involves some technical

points necessary to ensure that the trace of σ ·n on Γ is well defined in an appropriate space.

Requiring σ · n to be well defined at each t requires regularity. On the other hand, time

averages of σ · n seem to require less regularity. In this section, we assume that (u, p) is

slightly more regular than a general weak solution to ensure σ · n ∈ L1(0, T ; H−1/2(Γb)). In

particular, we assume that, for some s > 1/2, for a.e. T > 0, u ∈ L1(0, T ; H1+s(Ω)) and

p ∈ L1(0, T ; Hs(Ω)). This implies, by the Trace Theorem, that σ · n ∈ L1(0, T ; Hs−1/2(Γb)).

Lemma 4.2.1. Let u ∈ L1(0, T ; Hs+1(Ω))∩Xg, ut ∈ L1(0, T ; H−1(Ω)) and p ∈ L1(0, T ; Hs(Ω)),

for some s > 1/2 be solutions of (4.2.2). Then σ · n ∈ L1(0, T ; Hs−1/2(Γb)) and

∫ T

0

∫

Γb

v · σ · n̂ dγ dt (4.2.3)

=

∫ T

0

{
ρ (ut,v) + 2 ν(∇s u,∇s v) + ρ b(u,u,v)− (p,∇ · v)− (f ,v)

}
dt

for any v ∈ L∞(0, T ; H1(Ω)) with v = 0 on Γc.

Remark 4.2.2. In particular, in (4.2.3), one choice of v satisfying v = ê1 on Γb gives a

formula for the drag and v = ê2, one for the lift.

Proof. The proof uses a density argument. First, let {vj}∞j=1 be a sequence in C∞([0, T ]×Ω)

with vj|Γc = 0 for all j, vj → v in L∞(0, T ; H1(Ω)). Then, by the definition of distributional

derivatives, equation (4.2.3) holds true with v replaced by vj. For u, p with the assumed

regularity, each term in (4.2.3) is a bounded linear functional of v in L∞(0, T ; H1(Ω)). Thus

it is continuous on L∞(0, T ; H1(Ω)). Therefore we may let j → ∞ and (4.2.3) holds for

v ∈ L∞(0, T ; H1(Ω)), since C∞([0, T ]× Ω) is dense in L∞(0, T ; H1(Ω)).

Theorem 4.2.1. Let the assumptions of Lemmas 4.2.1 and 4.1.1 and Proposition 4.1.1 be

fulfilled. The time averaged drag and lift can be estimated as

| < D −Dh > |, | < L− Lh > | ≤ C(ν + ν−1‖f‖L∞(0,∞;H−1(Ω))) < ||∇ (u− uh) ||2 >1/2

+C lim sup
T→∞

|| < p− ph >
T
||.
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Proof. We present here a proof for the drag estimate, since the same argument follows for

the lift estimate, according to an appropriate choice of w.

Let w be a smooth time-independent vector field satisfying w = ê1 on Γb and w = 0 on

Γc. If we take v = w in (4.2.3), then we get a formula for the drag as follows

∫ T

0

D dt =

∫ T

0

{ρ (ut,w) + 2 ν(∇s u,∇s w) + ρ b(u,u,w)− (p,∇ ·w)− (f ,w)} dt.

Now let ihw be a finite element interpolant to w. Then

∫ T

0

D −Dh dt =

∫ T

0

{ρ (ut,w) + 2 ν(∇s u,∇s w) + ρ b(u,u,w)

− (p,∇ ·w)− (f ,w)− ρ (uh
t , ihw)− 2 ν(∇s uh,∇s ihw)

− ρ b(uh,uh, ihw) + (ph,∇ · ihw) + (f , ihw)
}

dt.

Adding and subtracting appropriate terms, this becomes

∫ T

0

D −Dh dt =

∫ T

0

{
ρ (ut,w − ihw) + ρ ((u− uh)t, ihw) + 2 ν(∇s u,∇s (w − ihw))

+ 2 ν(∇s (u− uh),∇s ihw) + ρ b(u,u,w − ihw) + ρ b(u,u, ihw)

− ρ b(uh,uh, ihw)− (p,∇ · (w − ihw))

− (p− ph,∇ · ihw)− (f ,w − ihw)
}

dt. (4.2.4)

Observe now that the term containing (f ,w − ihw) in (4.2.4) can be rewritten by mul-

tiplying (4.2.1) by w − ihw and integrating:

(f ,w − ihw) = ρ (ut,w − ihw) + 2 ν(∇s u,∇s (w − ihw))

+ ρ b(u,u,w − ihw)− (p,∇ · (w − ihw)). (4.2.5)

Hence, (4.2.4) and (4.2.5) together give

∫ T

0

D −Dh dt =

∫ T

0

{
ρ ((u− uh)t, ihw) + 2 ν(∇s (u− uh),∇s ihw)

+ ρ b(u,u, ihw)− ρ b(uh,uh, ihw) + (p− ph,∇ · ihw)
}

dt. (4.2.6)

Let e = u − uh and divide each term in (4.2.6) by T . The first term on the right hand

side yields, with the time independence of ihw,

1

T
(e(T )− e(0), ihw) ≤ CPF

T
(‖e(T )‖+ ‖e(0)‖) ‖∇ihw‖.
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Now, by (2.3.3),

< (∇s e,∇s ihw) >
T
≤ < ||∇ e ||2 >1/2

T
||∇ ihw ||.

Next, consider the nonlinear term

< b(u,u, ihw)− b(uh,uh, ihw) >
T

= < b(u, e, ihw) + b(e,uh, ihw) >
T

≤ M < (‖∇u‖+ ‖∇uh‖)‖∇e‖‖∇ihw‖ >
T

(2.3.3)
≤ C‖∇ihw‖ < (‖∇u‖+ ‖∇uh‖)2 >1/2

T
< ‖∇e‖2 >1/2

T

≤ C‖∇ihw‖ < ‖∇u‖2 + ‖∇uh‖2 >1/2
T

< ‖∇e‖2 >1/2
T

For the pressure term, we obtain, with the time independence of ihw and the Cauchy-

Schwarz inequality,

< (p− ph,∇ · ihw) >
T

= (< p− ph >
T
,∇ · ihw) ≤ C || < p− ph >

T
|| ||∇ ihw ||.

Putting everything together, equation (4.2.6) becomes

| < D −Dh >
T
| ≤ ρ

CPF

T
(‖e(T )‖+ ‖e(0)‖) ‖∇ihw‖

+ (ν + ρ < ‖∇u‖2 + ‖∇uh‖2 >1/2
T

) < ||∇ e ||2 >1/2
T

||∇ ihw ||
+ C || < p− ph >

T
|| || ∇ ihw ||,

Taking limsup on both sides of the inequality, we have

lim sup
T→∞

| < D −Dh >
T
| ≤ (ν + ρ < ‖∇u‖2 + ‖∇uh‖2 >1/2) < ||∇ e ||2 >1/2 ||∇ ihw ||

+ C lim sup
T→∞

|| < p− ph >
T
|| || ∇ ihw ||.

This gives the statement of the theorem, since the terms multiplying < ||∇ e ||2 >1/2 are

bounded by Proposition 4.1.1, the left hand side is lower bounded by | < D −Dh > |, and

||∇ ihw || ≤ 2 ||w ||H2(Ω) = C.

Corollary 4.2.1. If, in addition to the assumptions of Theorem 4.2.1, (4.1.10) holds, then

| < D −Dh > |, | < L− Lh > | ≤ C

(
ν ||∇(u∗ − u∗h)||+ lim sup

T→∞
|| < p− ph >

T
||
)

.

In the next section we investigate properties of the approximate solution of shear flows.
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4.3 PERSISTENT SHEAR FLOWS

We have seen in the previous sections that, provided the portion of the body force driving the

flow that persists is small, statistics, such as the time averaged energy dissipation rate, can

be accurately predicted by a flow simulation. This accuracy holds quite generally without

any of the further assumptions on u0, ν and Re typically needed to prove accuracy over

bounded time intervals.

The case when the persistent forces driving the flow are not small is much more difficult;

we shall prove in this section that the analogous estimate of time averaged energy dissipation

rate is physically reasonable under a condition on the finite element mesh near the walls.

Briefly, we consider the finite element approximation to the following shear flow problem:

let Ω = [0, L]3

∂u

∂t
+ u · ∇u +∇p− ν∆u = 0 in Ω× (0, T ]

∇ · u = 0 in Ω× (0, T ]

u = u0 at t = 0

u(x1, x2, x3, t) = φ(x3) for x3 ∈ ∂Ω

u(x1, x2, x3, t) = u(x1 + L, x2, x3, t) for x1 ∈ ∂Ω

u(x1, x2, x3, t) = u(x1, x2 + L, x3, t) for x2 ∈ ∂Ω

where

φ(x3) =




0

0

0


 if x3 = 0 and φ(x3) =




U

0

0


 if x3 = L,

see Figure 1.

In this problem, the persistent force driving the flow is clearly the motion of the top wall

and the time averaged energy dissipation rate must balance the drag exerted by the walls
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Figure 1: The shear flow problem.

on the fluid. For such problems, the Richardson-Kolmogorov energy cascade predicts quite

simply 1

< ε(u) > ≈ U3

L

independent of ν and Re, respectively.

Remarkably, the upper estimate has also been proven for weak solutions of the Navier-

Stokes equations in full generality:

< ε(u) > ≤ C
U3

L

by Constantin and Doering [16] and Wang [88].

Herein, we show in essence that provided the first mesh line of the finite element space

is within O(1/Re) of the top and bottom walls then

< ε(uh) > ≤ C
U3

L
,

1Briefly: the largest coherent structures are associated with the motion of the upper wall. They thus have
length scale L and characteristic velocity U . Their local Reynolds number is thus (U L

ν (= Re)) and viscous
dissipation is negligible on them. These break up into smaller eddies (velocity u, length l, Re (l) = u (l) l

ν )
until Re (l) is small enough for viscous dissipation to drive their kinetic energy to zero exponentially fast.
Since viscous dissipation is negligible through this cascade, the energy dissipation rate is related then to the
power input to the largest scales at the first step in the cascade. These largest eddies have energy 1

2U2 and
time scale τ = L

U so the rate of energy transfer is O(U2

τ ) = O(U3

L ).
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i.e. the computed energy dissipation has the correct mathematical and physical scaling.

Since the proof adapts the ideas of Wang [88] we expect that a similar analysis would

hold for other variational methods as well.

Let

X = {v ∈ H1(Ω) : v(x1, x2, x3, t) = v(x1 + L, x2, x3, t) for x1 ∈ ∂Ω,

v(x1, x2, x3, t) = v(x1, x2 + L, x3, t) for x2 ∈ ∂Ω,v(x1, x2, x3, t) = φ(x3) for x3 ∈ ∂Ω},
X0 = {v ∈ H1(Ω) : v(x1, x2, x3, t) = v(x1 + L, x2, x3, t) for x1 ∈ ∂Ω,

v(x1, x2, x3, t) = v(x1, x2 + L, x3, t) for x2 ∈ ∂Ω,v(x1, x2, x3, t) = 0 for x3 ∈ ∂Ω},
Q = L2

0(Ω)

and denote corresponding conforming finite element spaces with a superscript h. We assume

that the finite element space for the velocity contains linears.

The finite element problem reads as follow: find uh : [ 0, T ) → Xh, ph : [ 0, T ) → Qh

such that

(uh
t ,v

h) + ν(∇uh,∇vh) + b(uh,uh,vh)− (ph,∇ · vh) = 0 ∀vh ∈ Xh
0 (4.3.1)

(∇ · uh, qh) = 0 ∀ qh ∈ Qh (4.3.2)

(u(x, 0)− u0(x),v) = 0 ∀vh ∈ Xh
0 (4.3.3)

Consider the background flow (an extension of the boundary condition φ to the interior

of Ω) given by

φ̃(x3) =





0, if x3 ∈ [0, L− β L]

U
β L

(x3 − (L− β L)), if x3 ∈ [L− β L,L]

and

Φ =




φ̃(x3)

0

0


 ,

where β is a positive number. For β > 0 this function is piecewise linear, continuous and

satisfies the boundary conditions.
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We shall select β appropriately so that Φ belongs to the finite element space and then

take vh = uh −Φ in (4.3.1) to get

(uh
t ,u

h)− (uh
t ,Φ) + ν || ∇uh ||2 − ν (∇uh,∇Φ)− b(uh,uh,Φ) = 0 (4.3.4)

since b(·, ·, ·) is skew symmetric and Φ is divergence free.

Observing that (uh
t ,Φ) = ∂

∂ t
(uh,Φ), since ∂ Φ

∂ t
= 0, we rewrite (4.3.4) as

1

2

d

d t
||uh ||2 + ν ||∇uh ||2 =

∂

∂ t
(uh,Φ) + b(uh,uh,Φ) + ν (∇uh,∇Φ)

and integrate in time to get

1

2
||uh(T ) ||2 − 1

2
||uh(0) ||2 + ν

∫ T

0

||∇uh ||2 d t

= (uh(T ),Φ)− (uh(0),Φ) +

∫ T

0

b(uh,uh,Φ) d t + ν

∫ T

0

(∇uh,∇Φ) d t. (4.3.5)

We need to estimate each term on the right hand side of (4.3.5). For some of the terms,

calculated values of Φ will be needed:

||Φ ||L∞(Ω) = U,

||∇Φ ||L∞(Ω) =
U

β L
,

||Φ ||2 = L2

∫ L

0

| φ̃(x3) |2 d x3 = L2

∫ L

L−β L

U2

(β L)2
( x3 − (L− β L) )2 d x3 =

1

3
U2 β L3,

||∇Φ ||2 =
U2 L

β
.

For completeness, we include a short proof of the scaling of the constant in the Poincaré-

Friedrich’s inequality. That will be helpful for the estimation of the nonlinear term.

Lemma 4.3.1. Let Oβ L = {(x1, x2, x3) ∈ Ω : L− βL < x3 < L} be the region close to the

upper boundary (where the background flow Φ does not vanish). Then,

||uh −Φ ||L2(Oβ L) ≤ β L || ∇(uh −Φ) ||L2(Oβ L). (4.3.6)
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Proof. First, let v be a C1 function on Oβ L that vanishes for x3 ∈ ∂Oβ L. Then, componen-

twise (i = 1, 2, 3), we have

vi(x1, x2, x3) = vi(x1, x2, L)−
∫ L

x3

dvi

dz
(x1, x2, z)dz.

Observing that vi(x1, x2, L) = 0, squaring both sides and using the Cauchy-Schwartz in-

equality, we get

v2
i (x1, x2, x3) ≤ βL

∫ L

L−βL

(
dvi

dz
(x1, x2, z)

)2

dz.

Integrating both sides with respect to x3 gives

∫ L

L−βL

v2
i (x1, x2, x3)dx3 ≤ (βL)2

∫ L

L−βL

(
dvi

dz
(x1, x2, z)

)2

dz.

Then, integrating with respect to x1 and x2, and summing from i = 1 to 3, we have

||v ||2L2(OβL) ≤ (βL)2||∇v ||2L2(OβL),

which proves the lemma in the case of a C1 function. The case v ∈ Xh ⊂ H1(Ω) follows by

density. Finally, just take vh = uh −Φ.

Next, we use the estimates above to derive upper bounds for the following terms:

(uh(T ),Φ) ≤ ||uh(T ) || ||Φ || ≤
√

β

3
UL3/2||uh(T ) ||,

(uh(0),Φ) ≤ ||uh(0) || ||Φ || ≤
√

β

3
UL3/2||uh(0) ||,

ν

∫ T

0

(∇uh,∇Φ) d t ≤ ν

2

∫ T

0

||∇uh ||2 d t +
ν

2

∫ T

0

||∇Φ ||2 d t

≤ ν

2

∫ T

0

||∇uh ||2 d t +
ν

2 β
LU2 T.

For the nonlinear term, we add and subtract terms, and use the fact that b(·, ·, ·) is

skew-symmetric, to write

b(uh,uh,Φ) =
1

2
((uh −Φ) · ∇(uh −Φ),Φ)− 1

2
((uh −Φ) · ∇Φ,uh −Φ)

+
1

2
(Φ · ∇(uh −Φ),Φ)− 1

2
(Φ · ∇Φ,uh −Φ) (4.3.7)
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We use Lemma 4.3.1 together with the calculated values of Φ to analyze one term at a

time in (4.3.7). In all cases, integration is restricted to Oβ L, since supp(Φ) ⊂ Oβ L.

((uh −Φ) · ∇(uh −Φ),Φ) ≤ ||Φ ||L∞(Oβ L)||∇(uh −Φ) ||L2(Oβ L) ||uh −Φ ||L2(Oβ L)

≤ U β L ||∇(uh −Φ) ||2L2(Oβ L)

≤ 2 U β L ||∇uh ||2 + 2 U3L2, (4.3.8)

((uh −Φ) · ∇Φ,uh −Φ) ≤ ||∇Φ ||L∞(Oβ L)||uh −Φ ||2L2(Oβ L)

≤ U β L ||∇(uh −Φ) ||2

≤ 2 U β L ||∇uh ||2 + 2 U3L2, (4.3.9)

(Φ · ∇(uh −Φ),Φ) ≤ ||Φ ||L∞(Oβ L)||Φ ||L2(Oβ L)||∇(uh −Φ) ||L2(Oβ L)

≤ U

(
1

3
U2βL3

)1/2

||∇uh ||+ U

(
1

3
U2βL3

)1/2 (
U2L

β

)1/2

≤ 1

2
U β L||∇uh ||2 +

5

6
U3L2, (4.3.10)

(Φ · ∇Φ,uh −Φ) ≤ ||Φ ||L∞(Oβ L)|| ∇Φ ||L2(Oβ L)||uh −Φ ||L2(Oβ L)

≤ U β L

(
U2 L

β

)1/2

||∇uh ||+ U β L

(
U2 L

β

)1/2 (
U2 L

β

)1/2

≤ 1

2
U β L||∇uh ||2 +

3

2
U3L2. (4.3.11)

Putting (4.3.8) to (4.3.11) together, equation (4.3.7) gives

b(uh,uh,Φ) ≤ 5

2
U β L ||∇uh ||2 +

19

6
U3L2,

so that equation (4.3.5) becomes

1

2
||uh(T ) ||2 − 1

2
||uh(0) ||2 + ν

∫ T

0

||∇uh ||2 d t ≤
√

β

3
UL3/2||uh(T ) ||

+

√
β

3
UL3/2||uh(0) ||+ ν

2

∫ T

0

||∇uh ||2 d t +
ν

2 β
LU2 T

+
5

2
β L U

∫ T

0

||∇uh ||2 d t +
19

6
U3L2 T.
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Divide by T , take limsup as T →∞ and use |Ω| = L3, together with Lemma 4.1.2. If

β <
1

5 Re
, where Re =

U L

ν
,

then

L3

(
1

2
− 5

2

Lβ U

ν

)
< ε(uh) > ≤ ν

2 β
LU2 +

19

6
U3L2,

which gives

< ε(uh) > ≤ C
U3

L
.
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5.0 LARGE EDDY SIMULATION AND APPROXIMATE

DECONVOLUTION MODELS

The famous estimate that O(Re9/4) mesh points are required to resolve all the scales of a

three dimensional turbulent flow indicates that direct numerical simulation (DNS) is not

feasible for high Reynolds number flows and other approaches/turbulence models must be

introduced. An alternative to DNS are the Reynolds-stress models, which attempt to model

turbulence by time averaging. These models can be very accurate, but they are not suitable

for transient flows, because many features of the time dependent solution could disappear

under time averaging.

Motivated by the limitations of these two approaches, Large Eddy Simulation (LES) has

emerged as one of the most promising approaches in simulation of turbulent flows. Its goal

is to compute the large structures of a flow by modeling the effects of small scale structures

on the large structures. This is a clever idea, because the large structures, being created by

external forces and boundary effects, are specific to each flow, whereas the small structures

have a universal behavior and do not need to be accurately represented. This is achieved

by applying a space filtering/averaging operation to the Navier-Stokes equations, sifting out

the small scales, i.e. those which are of size smaller than the filter width, denoted by δ. LES

is not so computationally expensive as DNS (the cost of computing small scales is avoided)

and can be expected to be more accurate then the Reynolds-stress models for transient flows

(such as vortex shedding and unsteady separation). There are a number of LES models in

the literature, and examples of earlier models are the works of Smagorinsky [78], Lily [62]

and Deardorff [18].

Traditionally, the derivation of an LES model involves four steps, e.g. Pope [72]:
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• Decomposition of the velocity field as u = u+u′, where u represents the filtered velocity

(motion of large scales) and u′, the fluctuations. Typically, u = Gu, where G is the

filter/averaging operator.

• Averaging of the Navier-Stokes equations gives the non-closed space filtered system, for

the new variable u:

ut +∇ · (uu)− ν∆u +∇p = f and ∇ · u = 0. (5.0.1)

Assume for the moment that differentiation and averaging commute, otherwise, we would

have ∇ · (uu), instead of ∇ · (uu) (and similarly for the other terms).

• Closure is obtained by modeling u in terms of u.

• Discretization of the resulting equations, which are then solved numerically.

Examining this list, one can infer that the derivation of a good LES model depends a

great deal on the choice of filter and closure model. Moreover, one cannot fail to notice that

the new equations to be solved are equations for u, and not for u anymore, thus requiring

the imposition of appropriate boundary conditions. This is a matter of great discussion in

LES. Put simply, the problem is that the unknowns in the model are all averaged quantities;

so the averaged velocity, for instance, must be specified at the boundary. However, most of

the time, only the velocity itself is known, not its average. One possibility is to resolve this

issue by choosing a specific filter.

There are many filter kernels commonly used in the literature. Some of them are the

ideal low pass filter, the box filter and the Gaussian filter, see e.g. Aldama [3], Sagaut [74],

John [40], but perhaps the most popular is the Gaussian filter. Its application to the Stokes

and the steady state Navier-Stokes equations has been reviewed in Dunca, John and Layton

[24] and John and Layton [44]. These are used as convolution kernels for filtering when

the domain is the whole space or in the presence of periodic boundary conditions. A major

advantage is that filtering and differentiation commute. However, the correct extension for

wall bounded domains is not clear: commutation is not possible anymore, unless an extra

correction term is introduced in the equations, according to Dunca, John and Layton [25].

An alternative has been proposed by Germano [29]: the use of a differential filter. In that

case, u is the solution of a Poisson (or Stokes) problem with right-hand side u, subject to
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u = u on ∂Ω. This seems to be the correct extension of filtering by convolution to bounded

domains, providing a simple choice of boundary conditions. It also carries some similarity

to filtering in the interior of Ω, since the Poisson kernel is a Gaussian. See Berselli, Iliescu

and Layton [6] for a thorough discussion on boundary conditions and LES models.

The closure problem arises because the average of the product is not the product of the

averages, i.e uu 6= uu. In fact, given that u = u + u′, uu = uu + uu′ + u′u + u′u′, since

u′ 6= 0 and, in general, u 6= u. Solving the closure problem means solving the deconvolution

problem, i.e. finding useful approximations of u (since u = Gu, this means finding an

inverse of G). For most averaging operators, G is symmetric, positive semi-definite and not

stably invertible. Thus, the deconvolution problem is generically ill-posed and we resort to

approximate deconvolution.

A very simple closure model, perhaps the simplest, is to replace u by u, which is exact

on constant flows (since the fluctuation u′ is taken to be zero). However, it is a very rough

approximation. Recall the properties of turbulent flows! Nevertheless, this is the simplest

model in a specific class of higher order closure models (and systematic definition), the family

(N = 0, 1, 2, . . .) of Approximate Deconvolution Models (ADM), introduced by Adams and

Stolz [82, 1]. These models have performed well in practical computations, such as the

incompressible channel flow and the supersonic compression-ramp flow, see Stolz, Adams

and Kleiser [81, 80]. Their mathematical theory has flourished in the last couple of years,

confirming their effectiveness in the works of Dunca and Epshteyn [22] and Layton and

Lewandowski [61].

5.1 PROPERTIES OF THE APPROXIMATE DECONVOLUTION

OPERATORS

We focus on the case where averaging is performed by differential filters and Ω is periodic.1

Thus, given u, u is the unique periodic solution of

− δ2∆u + u = u, in Ω. (5.1.1)

1In Chapters 6, 7 and 8, when we study discretizations, we do not assume periodicity of Ω.
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We then let G = (−δ2∆ + I)−1, so that u = (−δ2∆ + I)−1u.

Lemma 5.1.1. G is a symmetric positive operator with eigenvalues

λ(G) =
1

δ2k2 + 1
, k = 1, 2, . . . .

Proof. The Laplacian operator is symmetric positive definite, and so are −δ2∆ + I and its

inverse, G. Similarly, the eigenvalues of G are the inverse of the eigenvalues of −δ2∆+1.

The approximate deconvolution operators we study are based on the following algorithm,

studied by van Cittert, e.g. Bertero and Boccacci [7].

Algorithm 5.1.1 (van Cittert approximate deconvolution algorithm). u0 = u, where

for n=1,2,...,N-1, perform

un+1 = un + {u−Gun}

This algorithm may be compactly rewritten as uN = DNu, where the N th deconvolution

operator DN is

DNu :=
N∑

n=0

(I −G)nu. (5.1.2)

The operators corresponding to N = 0, 1, 2, for example, are D0u = u, and D1u = 2u− u,

and D2u = 3u− 3u + u. Let us now give some key properties of these operators and show

how they renorm the energy.

Lemma 5.1.2. [Stability of approximate deconvolution]Let averaging be defined by the dif-

ferential filter (5.1.1). Then DN is a self-adjoint, positive definite operator on L2(Ω) with

norm

||DN || := sup
φ∈L2(Ω)

‖DNφ‖
‖φ‖ = N + 1.

Proof. We summarize the proof from Berselli, Iliescu and Layton [6] for completeness. Recall

from Lemma 5.1.1 that the eigenvalues of G are between zero and one, accumulating at zero.

Since DN :=
∑N

n=0(I−G)n is a function of G, it is also self-adjoint. By the spectral mapping

theorem

λ(DN) =
N∑

n=0

λ(I −G)n =
N∑

n=0

(1− λ(G))n.
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Thus,

λ(DN) =
N∑

n=0

λ(I −G)n =
N∑

n=0

(1− λ(G))n, and 0 < λ(G) ≤ 1

imply that 1 ≤ λ(DN) ≤ N + 1, i.e. λ(DN) > 0 and DN is also positive definite. Since

DN is self-adjoint, the operator norm ||DN || is also easily bounded by the spectral mapping

theorem by

||DN || =
N∑

n=0

λmax(I −G)n =
N∑

n=0

(1− λmin(G))n = N + 1. (5.1.3)

Definition 5.1.1. The deconvolution weighted norm and inner product are

‖φ‖N =
√

(φ, DNφ) and (φ,ψ)N := (φ, DNψ).

for φ,ψ ∈ L2(Ω).

Lemma 5.1.3. We have

||φ||2 ≤ ‖φ‖2
N ≤ (N + 1)||φ||2, ∀φ ∈ L2(Ω) . (5.1.4)

Proof. As in the proof of Lemma 5.1.2, 1 ≤ λ(DN) ≤ N + 1. Since DN is a self-adjoint

operator (and its eigenvectors form an orthonormal basis of L2(Ω)), this proves the above

equivalence of norms.

It is insightful to consider the Cauchy problem or the periodic problem and visualize

the approximate deconvolution operators DN in wave number space (re-scaled by k ← δk).

This shows how the N norm reweights the usual L2(Ω) norm. Let D̂N be the symbol or the

transfer function of DN , given by

D̂N(k) =
N∑

k=0

(Î −G)n =
N∑

k=0

(
k2

1 + k2

)n

. (5.1.5)
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Figure 2: Approximate de-convolution operators, N=0,1,2.

Examples of the first three are

D̂0 = 1,

D̂1 = 1 +
k2

k2 + 1
, and

D̂2 = 1 +
k2

k2 + 1
+ (

k2

k2 + 1
)2,

and their transfer functions are plotted in Figure 2.

Note that the plot of D̂N(k) is consistent with (5.1.4): the transfer functions are bounded

below by 1, positive and uniformly bounded by N +1. Figure 2 also reveals that the weighted

norm is very close to the usual norm on the largest spacial scales but then overweights (by at

most N +1) smaller scales. The large scales are associated with the smooth components and

with the wave numbers near zero (i.e., |k| small). Thus, the fact that DN is a very accurate

solution of the deconvolution problem for the large scales is reflected in the above graph in

that the transfer functions D̂N(k) have high order contact with Ĝ−1 = 1 + k2 near k = 0.

Lemma 5.1.4 (Error in approximate de-convolution). For any φ ∈ L2(Ω),

φ−DNφ = (I −G)N+1φ

= (−1)N+1δ2N+2∆N+1G(N+1)φ,
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i.e., for smooth φ, φ = DNφ + O(δ2N+2).

Proof. See Dunca and Epshteyn [22].

Proposition 5.1.1. For φ smooth and N fixed,

‖φ‖2
N = ‖φ‖2 + O(δ2).

Proof. A short proof using φ− φ = O(δ2) and φ−DNφ = O(δ2N+2) is as follows:

(φ, DNφ) = (φ,φ) + (φ, DNφ− φ) + (φ, DN(φ− φ)) = ‖φ‖2 + O(δ2N+2) + O(δ2).

5.2 PROPERTIES OF THE APPROXIMATE DECONVOLUTION LES

MODELS

Let (w, q) denote approximations to (u, p), the averaged velocity and pressure of the Navier-

Stokes equations. The induced LES model is to find (w, q) satisfying

wt +∇ · (DN(w) DN(w))− ν∆w +∇q = f and ∇ ·w = 0 (5.2.1)

with initial condition w(x, 0) = w0(x) = u0(x).

These models have been extensively studied from an analytical point of view in the case

of periodic boundary conditions. It all started with the Zeroth Order Model (the simplest

model, although it provides much insight) when Layton and Lewandowski [53] showed that

weak solutions exist and that the model is stable. In Layton and Lewandowski [54] it was

further proven that strong solutions exist and are unique, the modeling error, ||u − w ||,
was bounded and convergence as δ → 0 to a solution of the NSE was also established.

The methods used in Layton and Lewandowski [53, 54] were extended to the whole ADM

family by Dunca and Epshteyn [22] to prove an energy inequality, existence, uniqueness and

regularity of strong solutions.
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First, let C denote the d-dimensional cube of size L > 0, C = (0, L)d, and

Hm(C) = {w ∈ Hm
loc(Rd) : w periodic with period C} (5.2.2)

H
m

(C) =

{
w ∈ Hm(C) :

∫

C
w dx = 0

}
. (5.2.3)

We recall here, from Dunca and Epstheyn [22], the energy balance of the ADM (5.2.1).

Proposition 5.2.1 (Model’s energy balance). Consider the ADM (5.2.1). For w0 ∈ H
1
(C)∩

H(C) and f ∈ L2(0, T ;V′), the unique strong solution w of (5.2.1) satisfies

1

2
[‖w(t)‖2

N + δ2‖∇w(t)‖2
N ] +

∫ t

0

ν‖∇w(t′)‖2
N + νδ2‖∆w(t′)‖2

N dt′ =

=
1

2
[‖w0‖2

N + δ2‖∇w0‖2
N ] +

∫ t

0

(f(t′),w(t′))N dt′. (5.2.4)

Proof. See Dunca and Epshteyn [22].

Remark 5.2.1. From this proposition, we can clearly identify the analogs in the ADM (5.2.1)

of the physical quantities of kinetic energy and energy dissipation rate, given next.

Definition 5.2.1.

Emodel(t) :=
1

2L3
{||w(t)||2N + δ2||∇w(t)||2N} (5.2.5)

εmodel(t) :=
ν

L3
{||∇w(t)||2N + δ2||∆w(t)||2N}. (5.2.6)

Remark 5.2.2. The energy dissipation in the model

εmodel(t) :=
ν

L3

{‖∇w(t)‖2
N + δ2∆w(t)‖2

N

}
(5.2.7)

is enhanced by the extra term, which is equivalent to νδ2‖∆w(t)‖2. This term acts as an

irreversible energy drain localized at large local fluctuations. The kinetic energy of the model

has an extra term

Emodel(t) :=
1

2L3
{‖w(t)‖2

N + δ2‖∇w(t)‖2
N} (5.2.8)

which is uniformly equivalent to δ2‖∇w(t)‖2.
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The true kinetic energy,

E(t) :=
1

2L3
‖w(t)‖2,

in regions of large deformations is thus extracted, conserved and stored in the kinetic energy

penalty term δ2‖∇w(t)‖2.

Remark 5.2.3. Recall the definition of energy dissipation rate from Chapter 4. In terms of

the model’s velocity w, it can be expressed as

ε(t) :=
ν

L3
||∇w(t) ||2. (5.2.9)

Proposition 5.2.2. For smooth w,

Emodel(t) = E(t) + O(δ2), εmodel(t) = ε(t) + O(δ2).

Proof. This follows directly from Definition 5.2.1, Proposition 5.1.1 and Lemma 5.1.4.

Dunca and Epshteyn [22] also give a rigorous bound on the modeling error, ||u−w || =
O(δ2N+2) (where u is assumed to be a unique strong solution of the Navier-Stokes equa-

tions). These models also preserve energy in the absence of viscosity and external forces, see

Rebholz [73], making it conceivable that they possess an energy cascade, proven in Layton

and Neda [56]. Another remarkable property of this family of models is that their time

averaged consistency error converges to zero uniformly in the Reynolds number as O(δ1/3)

(see Lewandowsky and Layton [61]).

The mathematical properties of these models are superior to those of many other LES

models being currently used, so the next natural step is to develop and analyze useful

discretizations, for the practical case of bounded, non periodic, domains.
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6.0 CONVERGENCE ANALYSIS OF THE FINITE ELEMENT METHOD

FOR A FUNDAMENTAL METHOD IN TURBULENCE

One of the most basic models in turbulence is the Zeroth Order Model. It has been studied

analytically and has good properties, such as existence and uniqueness of strong solutions,

Layton and Lewandowski [53, 54] (unlike the Navier-Stokes equations). Our motivation is to

use the finite element method to derive a good discretization for this model. Despite being

the lowest order of the Approximate Deconvolution Models, it is the key to understanding

the higher order members.

Interestingly, this seemingly straightforward idea is far more intricate than it appears.

It demands the study of a correct interpretation of averaging on bounded domains. This is

the first step in devising stable discretizations for the model, and is strongly influenced by

how filtering is ultimately defined in the computational framework. We find that solving the

filter equation in a mesh finer than the one used to solve the model itself does not offer any

clear advantages, may even be unstable and, of course, increases the computational effort.

We also present convergence studies for the discretizations we propose.

In our derivation of the Zeroth Order Model, with the filter chosen, the commutation error

(e.g. ∇ · u ≈ ∇ · u) is within the modeling error of O(δ2), so it can be safely ignored. The

imposition of correct boundary conditions also has a lot to do with the filter selection. We

have chosen to use a differential filter, because that seems to provide a reasonable extension

of filtering by convolution to bounded domains. It also gives us somewhat more freedom:

loosely speaking, since in the finite element method all equations are treated weakly, we can

impose boundary conditions only on the component of the averaged value that lies in the

space we are working with.

We investigate stability and convergence of a semidiscretization of the Zeroth Order
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Model. In order to assess its accuracy, the numerical error, w−wh, is considered, where wh

is an approximation to w. We analyze two types of schemes, depending on the discretization

of the differential filter equation (which can be done on the same mesh as the solution of the

problem or on a finer one). When the filtering operation is performed on the same mesh, wh

is stable and we can prove that an optimal error estimate holds, whereas if it is performed

on a finer mesh, we can show only that wh is stable for a small finite interval of time. In

addition, the convergence results assume strong regularity properties on the true solution w

and require strong conditions on the body forces and the mesh size h. Computationally, this

means that solving the filtering equation in the same mesh used to compute the solution is

the best approach, since it is both more economical and stable.

In Section 6.1, we give a brief derivation of the model. Properties of the differential filter

are presented in Section 6.2. The stability and error analysis of the model with respect to

both discretizations of the filtering equations are studied in Section 6.3.

6.1 DERIVATION OF THE MODEL

The Zeroth Order Model is arguably the simplest LES model for the incompressible Navier-

Stokes equations, presented in (3.1.1) and recalled here:

ut +∇ · (uu)− ν∆u +∇p = f in (0, T ]× Ω,

∇ · u = 0 in [0, T ]× Ω,

u = 0 in [0, T ]× ∂Ω,

u(0,x) = u0(x) in Ω
∫

Ω
p dx = 0,

(6.1.1)

where Ω ⊂ Rd, d = 2, 3 is a bounded, regular domain, u is the fluid velocity, p is the fluid

pressure, f is the body force driving the flow and ν is the kinematic viscosity. The Reynolds

number, Re, is inversely proportional to ν (Re = LU/ν, where L and U are characteristic

length and velocity scales, respectively).
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Spacial filtering is achieved by an averaging process (here, the solution of a Poisson

problem) which requires u to be defined in terms of u (closure problem). We shall work with

a filter that (minimally) satisfies

u = u + O(δ2),

for smooth u.

Applying this spacial averaging operator to (6.1.1) gives the space filtered Navier-Stokes

equations (imposition of zero boundary condition is explained in Section 6.2)

ut +∇ · (uu + O(δ2))− ν∆u +∇p = f in (0, T ]× Ω,

∇ · u + O(δ2) = 0 in [0, T ]× Ω,

u = 0 on [0, T ]× ∂Ω,

u(0,x) = u0(x) in Ω.

(6.1.2)

Letting w denote the approximation to u induced by this closure model, and dropping

the O(δ2) terms, system (6.1.2) gives that (w, p) satisfies

wt +∇ · (ww)− ν∆w +∇p = f in (0, T ]× Ω,

∇ ·w = 0 in [0, T ]× Ω,

w = 0 on [0, T ]× ∂Ω,

w(0,x) = u0(x) in Ω.

(6.1.3)

Once again, we remark that, for this model, we assume that the differentiation and

averaging operators commute up to the modeling error of O(δ2). We commute operators

or not, according to which yields a stable model. For example, we can impose ∇ · w = 0

as in (6.1.3) (to preserve incompressibility), or use ∇p instead of ∇p, (see Section 6.3 for

details).
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6.2 PROPERTIES OF DIFFERENTIAL FILTERS

We focus on the differential filter, introduced by Germano [29], since the differential equation

can be supplemented with appropriate boundary conditions, which seems to be a natural

extension of filtering on the whole space to a bounded domain.

We work with the following Poisson problem: given φ, its differential filter φ is the

solution of

−δ2∆φ + φ = φ

subject to zero boundary condition.

Remark 6.2.1. From here on, as an alternative to the usual notation of overbar to indicate

averaging, we introduce a new variable. For clarity, instead of denoting the differential filter

of φ by φ, we will denote it by ψ.

Given φ ∈ L2(Ω), ψ ∈ X satisfies

δ2(∇ψ,∇v) + (ψ,v) = (φ,v) ∀v ∈ X, (6.2.1)

with solution operator T : L2(Ω) → X such that Tφ = ψ. It is well known that given

φ ∈ L2(Ω), (6.2.1) has a unique solution and that if Ω is a convex polygon, then ψ ∈ H2(Ω).

In general, if φ ∈ Hk(Ω), then ψ ∈ Hk+2(Ω) (see Grisvard [32]).

Similarly, the discrete filter ψh ∈ Xh is given by

δ2(∇ψh,∇v) + (ψh,v) = (φ,v) ∀v ∈ Xh, (6.2.2)

with solution operator T h : L2(Ω) → Xh satisfying T hφ = ψh.

Next we describe some of the properties of differential filters to be used in the error

estimation in Section 6.3.1. Similar properties are given in Dunca and John [23] and are

included here for completeness.

Lemma 6.2.1. If φ ∈ L2(Ω), the following stability estimate for problem (6.2.1) holds:

δ2||∇ψ ||2 +
1

2
||ψ ||2 ≤ 1

2
||φ ||2.
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Proof. In (6.2.1), choose v = ψ, then apply the Cauchy-Schwarz and Young’s inequality on

the right-hand side.

Lemma 6.2.2. The operator T : L2(Ω) → X is self-adjoint on L2(Ω).

Proof. Let v ∈ L2(Ω). Then Tv ∈ X and from (6.2.1) and symmetry of inner products, we

have

(φ, Tv) = δ2(∇(Tφ),∇(Tv)) + (Tφ, Tv) = (Tφ,v).

Lemma 6.2.3. If ∇φ ∈ L2(Ω) and ψ satisfies (6.2.1), then

δ2

2
||∇(φ−ψ) ||2 + ||φ−ψ ||2 ≤ δ2

2
||∇φ ||2, (6.2.3)

If, additionally, ∆φ ∈ L2(Ω), then

δ2||∇(φ−ψ) ||2 +
1

2
||φ−ψ ||2 ≤ δ4

2
||∆ φ ||2. (6.2.4)

Proof. Add and subtract δ2(∇φ,∇v) to (6.2.1), then choose v = ψ − φ. Applying the

Cauchy-Schwarz and Young’s inequalities proves the first assertion.

Note that for ∆φ ∈ L2(Ω), integration by parts implies that

δ2(∇φ,∇v) + (φ,v) = (−δ2∆φ + φ,v) ∀v ∈ X. (6.2.5)

Subtracting (6.2.1) for v ∈ X from (6.2.5),

δ2(∇(φ−ψ),∇v) + (φ−ψ,v) = −δ2(∆φ,v). (6.2.6)

Letting v = φ − ψ and using Cauchy Schwarz, followed by Young’s inequality, gives the

second claim.

Lemma 6.2.4. The operator T h : L2(Ω) → Xh is self-adjoint and positive semi-definite on

L2(Ω) and positive definite on Xh.
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Proof. Self-adjointness follows as in the continuous case. T h is positive semi-definite on

L2(Ω), since

(φ, T hφ) = δ2||∇(T hφ) ||2 + ||T hφ ||2 ≥ 0.

Now, for φh ∈ Xh with T hφh = 0, using (6.2.2) we have

(φh,φh) = δ2(∇(T hφh),∇φh) + (T hφh,φh) = 0,

which proves the last claim.

This guarantees that T h : L2(Ω) → Xh is invertible on Xh. Let Ah : Xh → Xh be the

inverse of T h on Xh. Then, it is easy to show that Ah := −δ2∆h + I (recall Definition 2.2.1).

Next, we prove an error estimate for problems (6.2.1) and (6.2.2).

Theorem 6.2.1. Let ψ and ψh be solutions of problems (6.2.1) and (6.2.2), respectively

and assume that approximation property (2.2.2) holds. Then,

δ||∇(ψ −ψh) ||+ ||ψ −ψh || ≤ Chk(δ + h)||ψ ||k+1. (6.2.7)

Proof. From the usual finite element analysis, we get

δ||∇(ψ −ψh) ||+ ||ψ −ψh || ≤ C inf
ψ̃∈Xh

(
δ||∇(ψ − ψ̃) ||+ ||ψ − ψ̃ ||

)
,

where ψ̃ is an approximation to ψ ∈ Xh.

Examining the right hand side, the optimal parameter selection is δ = O(h). In this

case, we have the following.

Corollary 6.2.1. If, in addition to the assumptions of Theorem 6.2.1, we choose δ = O(h),

the following is true:

δ|| ∇(ψ −ψh) ||+ ||ψ −ψh || ≤ Chk+1||ψ ||k+1. (6.2.8)

Before going on to the numerical analysis, let us first say a few words on how we define

averaging.
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Remark 6.2.2. Recall formulations (6.2.1) and (6.2.2). These may seem like odd choices

for many terms in the filtered equations of Section 6.3. For example, even if φ 6= 0 on ∂Ω,

we would still have T hφ = 0 and Tφ = 0 on ∂Ω. The reasons are that in a weak formulation,

these terms occur as (Tφ,v), v ∈ X and (T hφ,vh), vh ∈ Xh. Thus, the component of φ

(for example) outside of X or Xh, respectively, will not influence the weak formulation. In

other words, if −∆h : Xh → Xh denotes the discrete Laplacian and Πh, the L2 projection

into Xh, (6.2.2), for example, implies that T hφ = T h(Πhφ). Moreover, for stability, it is

important that all averaging operators have common domains, and then the same boundary

conditions.

Remark 6.2.3. Another important possibility is filtering as the solution of a Stokes problem,

rather than a Poisson problem. The motivation for that is to preserve incompressibility

exactly (not simply up to O(δ2)). This type of averaging deserves to be further investigated.

6.3 STABILITY AND ERROR ANALYSIS OF THE MODEL

In this section, we propose two semi discretizations of (6.1.3) and discuss their stability and

convergence properties. The basic difference between the two formulations is the manner in

which the filtering operation is performed.

Consider the problem: Find (w, p) ∈ (X, Q) such that w(0,x) is an approximation of

u0(x) and

(wt,v) + (∇ · (ww),v) + ν(∇w,∇v) + (∇p,v) = (f ,v), ∀v ∈ X

(∇ ·w, q) = 0, ∀ q ∈ Q (6.3.1)

Ultimately, since we are performing a numerical analysis, all filters must be discrete. The

discretization of (6.3.1) calls for a decision on whether the computation of ∇ · (ww), for

example, should be performed in the same mesh used to calculate w. In other words, should

the filtering operation be carried out in the same mesh used to approximate the solution of

the problem, or in a finer mesh? We investigate the two possibilities.
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We regard the case in which filtering and computation of w are performed in the same

mesh as “discrete filter”. When filtering/averaging is performed by solving the filtering

problem on a finer mesh, we call it “exact filter”. In order to keep the notation clear, we use

the operators T and T h (as defined in Section 6.2) instead of overbar. If ζ is the quantity

to be filtered, then T (ζ) means that ζ is computed in a finer mesh and T h(ζ) means that ζ

is computed on the same mesh. Based on Remark 6.2.2, we will omit the use of projections

into X and Xh from now on. For instance, we will write T h(ζ) instead of T h(Πhζ), since

these are equivalent.

Different filters will lead to different schemes. Note that Cases I and II (discrete and

exact filter, respectively, discussed below) require (for stability) a different formulation of the

pressure term in the momentum equation, (∇ph,vh) versus (λh,∇ · vh). In the two formu-

lations, ph is an approximation to p (Navier-Stokes pressure), while λh is an approximation

to p. This means that, in Case II, we are introducing a commutation error (within O(δ2) of

the modeling error, due to the non commutativity of filtering and differentiation in bounded

domains).

We need to introduce two new skew symmetric forms on X×X×X. For u ·∇v ∈ L2(Ω)

and (∇ · u)v ∈ L2(Ω), the bilinear forms are:

B(u,v,w) = (T (u · ∇v),w) +
1

2
(T ((∇ · u)v),w) (6.3.2)

and

Bh(u,v,w) = (T h(u · ∇v),w) +
1

2
(T h((∇ · u)v),w). (6.3.3)

These bilinear forms have some important properties.1

Lemma 6.3.1. For all u,v,w ∈ X,

B(u,v,w) = b(u,v, T (w)).

1Recall from Remark 2.1.1 that b(·, ·, ·) = b∗(·, ·, ·).

61



Proof. Let ŵ = T (w) and since w ∈ X, ŵ ∈ X. From (6.3.2) and the self-adjointness of the

operator T , we can write

B(u,v,w) = (u · ∇v, ŵ) +
1

2
((∇ · u)v, ŵ),

and integration by parts gives that

((∇ · u)v, ŵ) = −(u · ∇v, ŵ)− (u · ∇ŵ,v).

Lemma 6.3.2. For all u,v ∈ X and wh ∈ Xh,

Bh(u,v, Ahwh) = b(u,v,wh).

Proof. From (6.3.3) and the self-adjointness of T h : L2(Ω) → Xh, we have

Bh(u,v, Ahwh) = (u · ∇v, T hAhwh) +
1

2
((∇ · u)v, T hAhwh).

Since T hAhwh = wh on Xh, integration by parts gives

(u · ∇v, T hAhwh) +
1

2
((∇ · u)v, T hAhwh) = b(u,v,wh).

Corollary 6.3.1. For all uh,vh ∈ Xh,

Bh(uh,vh, Ahvh) = 0.

Proof. Follows directly from Lemma 6.3.2 and the property that b(uh,vh,vh) = 0.

Using (6.3.2), the Zeroth Order Model (6.1.3) can be rewritten as: Find (w, p) ∈ (X, Q)

such that w(0,x) = u0(x)

(wt,v) + B(w,w,v) + ν(∇w,∇v) + (T (∇p),v) = (T (f),v), ∀v ∈ X

(∇ ·w, q) = 0, ∀ q ∈ Q (6.3.4)

In the next pages, we show that the solution computed with the discrete filter is stable

and convergent. However, in the exact filter case, it appears that the solution is stable only

for a finite time, which raises some issues on how well the computed solution approximates

the exact solution.
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6.3.1 Case I: Discrete Differential Filter

Consider a semi-discretization of the Zeroth Order Model (6.3.1): Find wh : [0, T ] → Xh,

ph : (0, T ] → Qh satisfying

(wh
t ,v

h) + Bh(wh,wh,vh)

+ ν(∇wh,∇vh) + (T h(∇ph),vh) = (T h(f),vh), ∀vh ∈ Xh

(∇ ·wh, qh) = 0, ∀ qh ∈ Qh (6.3.5)

where wh(0,x) is an approximation of u0(x).

Lemma 6.3.3 (Stability of the semi-discrete solution). Assume wh satisfies (6.3.5) and

f ∈ L2(0, T, H−1(Ω)). Then,

1

2
||wh ||2L∞(0,T,L2(Ω)) +

δ2

2
||∇wh ||2L∞(0,T,L2(Ω))

+
ν

2
||∇wh ||2L2(0,T,L2(Ω)) + νδ2||∆hwh ||2L2(0,T,L2(Ω))

≤ 1

2
(||wh(0) ||2 + δ2||∇wh(0) ||2) +

1

2ν
|| f ||2L2(0,T ;H−1(Ω)).

Proof. Consider the variational formulation (6.3.5) and take vh = Ahwh and qh = ph. Adding

the two equations, using the self-adjointness of T h, the definitions of Ah and Πh and Corollary

6.3.1, this is the same as

1

2

d

dt
(||wh ||2 + δ2||∇wh ||2) + ν(∇wh,∇(Ahwh)) = (f ,wh).

From this, the Cauchy-Schwarz and Young’s inequalities give

1

2

d

dt
(||wh ||2 + δ2||∇wh ||2) +

ν

2
||∇wh ||2 + νδ2||∆hwh ||2 ≤ 1

2ν
|| f ||2−1.

The result follows by integrating in time.

In what follows we give an estimate for the difference between the exact solution, w, and

the semi-discrete, wh.
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Theorem 6.3.1 (Accuracy of Discretization). Assume w satisfies (6.3.4) and wh satisfies

(6.3.5). Assume also that wt ∈ L2(0, T ; H−1(Ω)), p ∈ L2(0, T ; L2
0(Ω)), w · ∇w and ∇p ∈

L2(Ω) for every t ∈ (0, T ) and that ∇w ∈ L4(0, T, L2(Ω)). Then, the numerical error

satisfies:

||w −wh ||2L∞(0,T,L2(Ω)) + δ2||∇(w −wh) ||2L∞(0,T,L2(Ω)) + ν||∇(w −wh) ||2L2(0,T,L2(Ω))

≤ C∗ inf
w̃∈Xh

(|| (w − w̃)(0) ||2 + δ2||∇(w − w̃)(0) ||2)

+C∗ν−1 inf
w̃∈Xhph∈Qh

{
(1 + δ2)

(
|| (w − w̃)t ||2L2(0,T ;L2(Ω))

+ || p− ph ||2L2(0,T ;L2(Ω)) + ||(T − T h)(w · ∇w) ||2L2(0,T ;L2(Ω))

+ ||(T − T h)(f) ||2L2(0,T ;L2(Ω)) + ||(T − T h)(∇p) ||2L2(0,T ;L2(Ω))

)

+(1 + δ2h−2)||∇(w − w̃) ||2L4(0,T ;L2(Ω))

+||∇w ||2L4(0,T ;L2(Ω))||∇(w − w̃) ||2L4(0,T ;L2(Ω))

+||wh ||L∞(0,T ;L2(Ω)) ||∇wh ||L2(0,T ;L2(Ω)) ||∇(w − w̃) ||2L4(0,T ;L2(Ω))

}

where C∗ = e
Cν−3||∇w ||4

L4(0,T ;L2(Ω)).

Proof. Subtracting (6.3.5) from (6.3.4), we have

((w −wh)t,v
h) + ν(∇(w −wh),∇vh) + B(w,w,vh)

−Bh(wh,wh,vh) + (T (∇p)− T h(∇ph),vh) = (T (f)− T h(f),vh), ∀vh ∈ Xh.

Adding and subtracting (T h(w · ∇w),vh) to the nonlinear terms, we get

B(w,w,vh)−Bh(wh,wh,vh) = ((T − T h)(w · ∇w),vh)

+ Bh(w,w,vh)−Bh(wh,wh,vh),

since ∇ ·w = 0 weakly. Similarly, adding and subtracting T h(∇p) to the pressure term, we

get

(T (∇p)− T h(∇ph),vh) = ((T − T h)(∇p),vh) + (T h(∇p−∇ph),vh)
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Then, the error equation becomes

((w −wh)t,v
h) + ν(∇(w −wh),∇vh)

+ ((T − T h)(w · ∇w),vh) + Bh(w,w,vh)−Bh(wh,wh,vh)

+ ((T − T h)(∇p),vh) + (T h(∇p−∇ph),vh) = ((T − T h)(f),vh).

Choose an interpolant w̃ ∈ Vh and set e = w −wh = (w − w̃) − (wh − w̃) = η − χh.

Then,

(χh
t ,v

h) + ν(∇χh,∇vh) + ((T − T h)(w · ∇w),vh)

+ Bh(w,w,vh)−Bh(wh,wh,vh) + ((T − T h)(∇p),vh) + (T h(∇p−∇ph),vh)

= (ηt,v
h) + ν(∇η,∇vh) + ((T − T h)(f),vh). (6.3.6)

Since w̃ ∈ Xh, we can set vh = Ahχh. From Lemma 6.3.2, we write

Bh(w,w, Ahχh)−Bh(wh,wh, Ahχh) = b(w,w,χh)− b(wh,wh,χh),

and we also have

(T h(∇p−∇ph), Ahχh) = (∇p−∇ph, T hAhχh) = −(p− ph,∇ · χh).

For the other terms, we have to use the fact that Ah = −δ2∆h + I.

Thus, equation (6.3.6) becomes

1

2

d

dt

(||χh ||2 + δ2||∇χh ||2) + ν||∇χh ||2 + νδ2||∆hχh ||2

= (ηt,χ
h)− δ2(ηt, ∆

hχh)

+ν(∇η,∇χh)− νδ2(∇η,∇(∆hχh))

+(p− ph,∇ · χh)

−b(w,w,χh) + b(wh,wh,χh)

−((T − T h)(w · ∇w),χh) + δ2((T − T h)(w · ∇w), ∆hχh)

−((T − T h)(∇p), χh) + δ2((T − T h)(∇p), ∆hχh)

+((T − T h)(f),χh)− δ2((T − T h)(f), ∆hχh). (6.3.7)
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Next, each of the terms in (6.3.7) is bounded. First, we examine the linear terms (we

use an inverse inequality of the form || ∇(∆hχh) || ≤ C h−1||∆hχh ||):

(ηt,χ
h) ≤ ν

14
||∇χh ||2 +

C

ν
||ηt ||2

δ2(ηt, ∆
hχh) ≤ νδ2

10
||∆hχh ||2 +

Cδ2

ν
||ηt ||2

ν(∇η,∇χh) ≤ ν

14
||∇χh ||2 + C ν ||∇η ||2

νδ2(∇η,∇(∆hχh)) ≤ νδ2

10
||∆hχh ||2 +

C ν δ2

h2
||∇η ||2

(p− ph,∇ · χh) ≤ ν

14
||∇χh ||2 +

C

ν
|| p− ph ||2

((T − T h)(∇p),χh) ≤ ν

14
||∇χh ||2 +

C

ν
|| (T − T h)(∇p) ||2

δ2((T − T h)(∇p), ∆hχh) ≤ νδ2

10
||∆hχh ||2 +

Cδ2

ν
|| (T − T h)(∇p) ||2

((T − T h)(f),χh) ≤ ν

14
||∇χh ||2 +

C

ν
|| (T − T h)(f) ||2

δ2((T − T h)(f), ∆hχh) ≤ νδ2

10
||∆hχh ||2 +

Cδ2

ν
|| (T − T h)(f) ||2

For the nonlinear terms, we have:

((T − T h)(w · ∇w),χh) ≤ ν

14
||∇χh ||2 +

C

ν
|| (T − T h)(w · ∇w) ||2

δ2((T − T h)(w · ∇w), ∆hχh) ≤ νδ2

10
||∆hχh ||2 +

Cδ2

ν
|| (T − T h)(w · ∇w) ||2

Lastly, we look at the term b(w,w,χh)−b(wh,wh,χh). Adding and subtracting b(wh,w, χh),

it can be rewritten as

b(w,w, χh)− b(wh,wh, χh) = b(η,w,χh)− b(χh,w, χh) + b(wh,η,χh),
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where each of the terms is bounded as follows:

b(η,w, χh) ≤ M ||η ||1/2||∇η ||1/2||∇w || || ∇χh ||
≤ ν

14
||∇χh ||2 +

C

ν
|| ∇η ||2||∇w ||2

b(χh,w, χh) ≤ M ||χh ||1/2||∇χh ||1/2||∇w || || ∇χh ||
≤ ν

14
||∇χh ||2 +

C

ν3
||∇w ||4||χh ||2

b(wh, η,χh) ≤ M ||wh ||1/2||∇wh ||1/2||∇η || || ∇χh ||
≤ ν

14
||∇χh ||2 +

C

ν
||wh || || ∇wh || ||∇η ||2

Thus,

b(w,w,χh)− b(wh,wh,χh) ≤ 3ν

14
||∇χh ||2 +

C

ν
||∇η ||2||∇w ||2

+
C

ν3
|| ∇w ||4||χh ||2 +

C

ν
||wh || || ∇wh || || ∇η ||2

Putting all the estimates together, equation (6.3.7) gives

1

2

d

dt

(||χh ||2 + δ2||∇χh ||2) + ν||∇χh ||2 + νδ2||∆hχh ||2

≤ Cν−1(1 + δ2)||ηt ||2 + Cν−1|| p− ph ||2

+Cν−1(ν + νδ2h−2 + ||∇w ||2 + ||wh || || ∇wh ||) ||∇η ||2

+Cν−1(1 + δ2)||(T − T h)(w · ∇w) ||2 + Cν−1(1 + δ2)|| (T − T h)(∇p) ||2

+Cν−1(1 + δ2)||(T − T h)(f) ||2 + Cν−3||∇w ||4||χh ||2

Using Gronwall’s inequality, this becomes

1

2
||χh ||2 +

δ2

2
||∇χh ||2 +

ν

2

∫ T

0

(||∇χh ||2 + δ2||∆hχh ||2)

≤ C∗

2
(||χh(0) ||2 + δ2||∇χh(0) ||2)

+C∗ν−1

∫ T

0

{
(1 + δ2)||ηt ||2 + || p− ph ||2

+ (ν + νδ2h−2 + ||∇w ||2 + ||wh || ||∇wh ||) ||∇η ||2

+ (1 + δ2)||(T − T h)(w · ∇w) ||2

+ (1 + δ2)|| (T − T h)(∇p) ||2 + (1 + δ2)||(T − T h)(f) ||2} dt,
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where C∗ = eCν−3
R T
0 ||∇w ||4dt. Drop the term that contains the operator ∆h and the triangle

inequality gives the result.

Corollary 6.3.2. Let δ = O(h). If w, f and p are regular enough and satisfy the assump-

tions of Theorem 6.3.1, then

||w −wh ||2L∞(0,T,L2(Ω)) + δ2||∇(w −wh) ||2L∞(0,T,L2(Ω)) + ν||∇(w −wh) ||2L2(0,T,L2(Ω))

≤ C(w, f , p, ν) h2 k.

Proof. Follows from the estimate in Theorem 6.3.1, Corollary 6.2.1 (with ψ = T (w ·∇w) and

ψh = T h(w · ∇w), for instance) and the approximation properties (2.2.2) and (2.2.3).

6.3.2 Case II: Exact Differential Filter

In this case, we show that the semi-discrete scheme is stable only under some conditions.

Due to the fact that the nonlinear term does not vanish, this extra term will impose restric-

tions on the stability of the scheme. Briefly, it is a cubic term, which can only be dominated

by quadratic terms for a finite time interval; eventually the higher order term will domi-

nate. This also means that the kinetic energy of the model is not likely to be monotonic

decreasing. In this context, it is natural to raise questions on the convergence properties of

the approximating scheme. According to the subsequent analysis, the scheme does converge

over small time intervals at least, provided some regularity properties are considered.

The semi-discrete formulation of (6.3.1) now reads as follows: Find wh : [0, T ] → Xh,

λh : (0, T ] → Qh satisfying wh(0,x) ≈ u0(x) and 2

(wh
t ,v

h) + B(wh,wh,vh) + ν(∇wh,∇vh)− (λh,∇ · vh) = (T (f),vh), ∀ vh ∈ Xh,

(∇ ·wh, qh) = 0, ∀ qh ∈ Qh.

(6.3.8)

We now present a basic á priori estimate for the solution of (6.3.8). The following stability

theorem is proven by using an idea similar to the one in Temam [84] (see Lemma 3.2, p. 21).

2Note that the pressure term is now cast as (λh,∇ · vh), instead of (Th(∇ph),vh), for stability reasons.
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Lemma 6.3.4. (Stability of wh) Let wh satisfy (6.3.8). Then

‖wh(t)‖2 ≤ 2(1 + ‖wh(0)‖2)

with

t ≤ T ∗ = C(f, ν, T )
δ2h2

(1 + ‖wh(0)‖2)
.

Proof. Restrict vh ∈ Vh in (6.3.8). Choose vh = wh and use Cauchy-Schwarz and Young’s

inequalities

1

2

d

dt
‖wh‖2 +

ν

2
‖∇wh‖2 ≤ 1

2ν
‖T (f)‖2

−1 −B(wh,wh,wh). (6.3.9)

We first consider the nonlinear term. The first step is to use Lemma 6.3.1, followed by

equation (2.1.5) in Lemma 2.1.2. Then, use Lemma 6.2.1 and an inverse inequality of the

form ||∇wh || ≤ Ch−1||wh ||. The last step is to apply Young’s inequality with conjugate

exponents 4 and 4/3.

B(wh,wh,wh) = b(wh,wh, T (wh))

≤ M ||∇wh || || ∇wh || ||T (wh) ||1/2 ||∇(Twh) ||1/2

≤ Cδ−1/2h−1/2|| ∇wh ||3/2||wh ||3/2

≤ ν

2
||∇wh ||2 + Cδ−2h−2 ν−3||wh ||6.

Using this last inequality, rewrite (8.1.14), multiply it by 2 and drop the term ν‖∇wh‖2.

In the resulting differential inequality, set z(t) = 1 + ‖wh‖2 to get the following:

dz

dt
≤ C∗δ−2h−2z3,

where

C∗ = max(ν−1 sup
t∈[0,T ]

‖T (f)‖2
−1, C ν−3).

If we solve the differential inequality and integrate from 0 to t, we derive

z(t) ≤ z(0)√
1− 2C∗h−2δ−2z2(0)t

(6.3.10)
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with t < 1/(2C∗h−2δ−2z2(0)). We can verify that 1√
1−2C∗h−2δ−2z2(0)t

≤ 2 and then equation

(6.3.10) becomes

1 + ‖wh‖2 ≤ 2(1 + ‖wh(0)‖2), with 0 ≤ t ≤ 3

8C∗
δ2h2

(1 + ‖wh(0)‖2)2
.

This concludes the proof of the lemma.

Lemma 6.3.4 confirms what was expected, according to our discussion in the beginning

of this section: the approximate solution wh is bounded in terms of the problem data, wh(0)

and T (f), for a bounded time interval.

The next natural step is to analyze convergence properties of the scheme. The following

theorem gives an estimate of the error between w and its finite element approximation, wh.

Theorem 6.3.2. Let w and wh solve (6.3.4) (with the appropriate modification in the

pressure term) and (6.3.8), respectively and assume that ∇w ∈ L∞(0, T, L2(Ω)), wt ∈
L∞(0, T,H−1(Ω)), and λ ∈ L∞(0, T, L2(Ω)). Then the error satisfies

||w −wh ||2L∞(0,T ;L2) ≤ C inf
w̃∈Vh,λh∈Qh

[
ν−1||wt − w̃t ||2L∞(0,T ;H−1) + ν||∇(w − w̃) ||2L∞(0,T ;L2)

+ν−1||λ− λh ||2L∞(0,T ;L2) + ν−1 (δ + 1)||∇(w − w̃) ||4L∞(0,T ;L2)

+ ν−1||∇w ||2L∞(0,T ;L2)||∇(w − w̃) ||2L∞(0,T ;L2)

]
.

Proof. In order to get an error equation, we subtract (6.3.8) from (6.3.4) for vh ∈ Vh and

set e = w −wh. Then, the equation for e becomes

(et,v
h) + ν(∇e,∇vh) + B(w,w,vh)−B(wh,wh,vh)− (λ,∇ · vh) = 0 vh ∈ Vh.

By picking w̃ to be the best approximation of w in Vh, we can decompose the error in

two parts as: e = η − χh where η = w − w̃ and χh = wh − w̃. Thus, using the fact

that (λh,∇ · vh) = 0 for all qh ∈ Qh and the decomposition of e, the error equation can be

reformulated as

(χh
t ,v

h) + ν(∇χh,∇vh) = (ηt,v
h)− ν(∇η,∇vh) + (λ− λh,∇ · vh)

−B(w,w,vh) + B(wh,wh,vh).
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Setting vh = χh gives

1

2

d

dt
||χh ||2 + ν||∇χh ||2 = (ηt, χ

h)− ν(∇η,∇χh) + (λ− λh,∇ · χh)

−B(w,w, χh) + B(wh,wh, χh). (6.3.11)

We now analyze the nonlinear terms on the right hand side of (6.3.11). Using the self

adjointness property of differential filter, Lemma 6.3.1 and the skew-symmetry of the trilinear

form yields

B(w,w,χh)−B(wh,wh, χh) = b(w,w, T (χh))− b(wh,wh, T (χh))

= b(w, e, T (χh))− b(e, e, T (χh)) + b(e,w, T (χh))

= b(w, η, T (χh))− b(w,χh, T (χh))− b(χh, χh, T (χh))

−b(η,η, T (χh)) + b(χh,η, T (χh)) + b(η,χh, T (χh))

−b(χh,w, T (χh)) + b(η,w, T (χh)).

With the aid of this result, equation (6.3.11) becomes

1

2

d

dt
||χh ||2 + ν||∇χh ||2 = (ηt,χ

h)− ν(∇η,∇χh) + (λ− λh,∇ · χh)

−b(w,η, T (χh)) + b(w,χh, T (χh)) + b(χh,χh, T (χh))

+b(η,η, T (χh))− b(χh,η, T (χh))− b(η,χh, T (χh))

+b(χh,w, T (χh))− b(η,w, T (χh)). (6.3.12)

We wish to bound the terms on the right hand side of (6.3.12). Therefore, we use the

Cauchy-Schwarz inequality followed by Young’s inequality:

1

2

d

dt
||χh ||2 + ν||∇χh ||2 ≤ C

ν
||ηt ||2−1 + C ν||∇η ||2 +

C

ν
||λ− λh ||2 +

3ν

14
||∇χh ||2

+|b(w,η, T (χh)) + b(w,χh, T (χh)) + b(χh,χh, T (χh))

+b(η,η, T (χh))− b(χh,η, T (χh))− b(η, χh, T (χh))

+b(χh,w, T (χh))− b(η,w, T (χh))|. (6.3.13)

Next, we use standard bounds on each of the trilinear forms (as per Lemma 2.1.2) on

the right hand side of (6.3.13). We also make frequent use of Lemma 6.2.1, Lemma 6.2.3
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and Young’s inequality (with conjugate exponents 2 and 2, or 4/3 and 4); in some cases, we

apply an inverse inequality.

b(w,η, T (χh)) = b(w,η, T (χh)− χh) + b(w,η, χh)

≤ M ||∇w || ||∇η || ||∇(T (χh)− χh) ||+ M ||∇w || || ∇η || || ∇χh ||
≤ C|| ∇w || ||∇η || ||∇χh ||
≤ ν

14
||∇χh ||2 +

C

ν
||∇w ||2 ||∇η ||2

b(η,w, T (χh)) ≤ ν

14
||∇χh ||2 +

C

ν
||∇w ||2 ||∇η ||2

b(χh, χh, T (χh)) ≤ M ||χh ||1/2 ||∇χh ||3/2 ||∇T (χh) ||
≤ ν

14
||∇χh ||2 +

C

ν3
||χh ||2 ||∇T (χh) ||4

≤ ν

14
||∇χh ||2 +

C

ν3 δ4
||χh ||6

b(η,η, T (χh)) = b(η,η, T (χh)− χh) + b(η,η,χh)

≤ M ||∇η ||2 ||T (χh)− χh ||1/2 ||∇(T (χh)− χh) ||1/2 + M ||∇η ||2 ||∇χh ||
≤ C δ1/2||∇η ||2 ||∇χh ||+ C||∇η ||2 ||∇χh ||,
≤ ν

14
|| ∇χh ||2 +

C

ν
(δ + 1)||∇η ||4,

b(η,χh, T (χh)) ≤ M || ∇η || || ∇χh || ||T (χh) ||1/2 ||∇T (χh) ||1/2

≤ Ch−1δ−1/2||∇η || ||χh ||2

b(χh, η, T (χh)) ≤ Ch−1δ−1/2||∇η || ||χh ||2

b(w,χh, T (χh)) ≤ M || ∇w || ||∇χh || ||T (χh) ||1/2 ||∇T (χh) ||1/2

≤ Ch−1δ−1/2||∇w || ||χh ||2
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b(χh,w, T (χh)) ≤ M || ∇w || ||∇χh || ||T (χh) ||1/2 ||∇T (χh) ||1/2

≤ Ch−1δ−1/2||∇w || ||χh ||2

Putting everything together and using Poincaré-Friedrich’s inequality on the left hand

side we get

1

2

d

dt
||χh ||2 + C−2

PF

ν

2
||χh ||2 ≤ C

ν
||ηt ||2−1

+ Cν||∇η ||2 +
C

ν
||λ− λh ||2 +

C

ν
(δ + 1)||∇η ||4 +

C

ν
||∇w ||2 ||∇η ||2

+ Cδ−1/2h−1(||∇η ||+ ||∇w ||)||χh ||2 +
C

ν3 δ4
||χh ||6. (6.3.14)

Setting y(t) = ||χh ||2 and combining terms, this equation can be rewritten as

d

dt
y(t) + α(t) y(t) ≤ β y(t)3 + γ,

where α(t) is the coefficient of ||χh ||2, β is the coefficient of ||χh ||6 and γ is the maximum

over [0, T ] of all the remaining terms on the right hand side of (6.3.14). With a suitable

choice of w̃, we also have 0 ≤ ||χh(0) || ≤ γ.

The Continuation Lemma (Lemma 2.4.1) implies that there exists a constant M ≥ 1 and

γ0 > 0 such that for γ ≤ γ0,

y(t) ≤ Mγ, (6.3.15)

for 0 ≤ t ≤ T . In other words,

||χh ||2 ≤ C max
0≤t≤T

[
ν−1||ηt ||2−1 + ν||∇η ||2 + ν−1||λ− λh ||2 + (δ + 1)ν−1||∇η ||4

+ ν−1 ||∇w ||2 ||∇η ||2] .

Applying the triangle inequality and taking the infimum over w̃ ∈ Vh and λh ∈ Qh, gives

the required result.
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7.0 NUMERICAL EXPERIMENTS

The theory developed in the previous chapter deserves to be complemented with numerical

validation. We chose a few examples to test mainly stability and physical fidelity of that

discretization.

We use the software FreeFem++ [35] to run the numerical tests. Systems (6.3.5) and

(6.3.8) are discretized according to the following:

• time stepping scheme: Backward Euler (first order, implicit);

• linearization: fixed point iteration

• discretization in space: Taylor-Hood element (continuous piecewise quadratic polynomi-

als for the velocity and linear for the pressure).

The first goal is to show in an example that the exact filter can actually develop insta-

bilities that lead to blow up of the solution in finite time.

7.1 THE FAILURE OF THE EXACT FILTER

We investigate the kinetic energy of the exact filter versus discrete filter discretization, given

respectively by:

EE(wh) =
1

2
||wh ||2, for t ∈ [0, T ].

and

ED(wh) =
1

2
||wh ||2 +

δ2

2
||∇wh ||2, for t ∈ [0, T ].
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The kinetic energy is one of the indicators of whether a model is useful for turbulent

flow computations, e.g. John [40]. Notice that ED has an extra term, justified by the energy

inequality in Lemma 6.3.3. In order to be able to compare these two cases, we normalize the

results and present graphs of EE/Einitial
E and ED/Einitial

D in Figures 3 and 4.

Our test problem is determined by the following choices:

Ω = (0, 1)× (0, 1) wh|∂Ω = 0 f = 0.

A nonzero divergence free initial condition is obtained by construction. Let

ψ(x, y) = 10 sin(100xy2)x2(1− x)2y2(1− y)2 (7.1.1)

and set

w0 =


 ψy

−ψx


 .

Then, ∇ ·w0 = 0.

We have proven that the kinetic energy for the exact filter scheme is bounded for a finite

time interval. Here, we show numerically that it actually blows up after a certain time by

computing the total kinetic energy of the approximated velocity.

Let nZ be the number of mesh points used in the discretization of the Zeroth Order Model

equation and nF , the corresponding number for the filtering problem. Considering that the

boundary conditions and the forcing term, f , are zero, one would expect that after some

transient time period, where the effects of the nonzero initial condition are still important,

the solution would tend to zero.

Figure 3 shows that the kinetic energy computed with the exact filter does not correspond

to the expected true kinetic energy. It not only does not go to zero, but blows up. This can

be verified by dividing the time step by 2, which gives the same qualitative result. On the

other hand, the kinetic energy of the discrete filter scheme is consistent with what we expect

and tends to zero asymptotically and monotonically, as shown in Figure 4.
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Figure 3: Time vs. EE/Einitial
E , nF = 16,nZ = 8,Re = 100000
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Figure 4: Time vs. ED/Einitial
D , nF = 8, nZ = 8, Re = 100000, dt = 0.001
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7.1.1 Influence of the Nonlinear Term

It was very hard to find an example that shows that the solution with the exact filter can

actually be unstable. For more insight into the problem, we analyzed the nonlinear term

more closely, since this is the main source of the difference between the two filters in the

analysis.

Let h denote the mesh size used to filter (h = 1/nF ) and let H denote the coarse mesh

size (h = 1/nZ), used to compute the solution itself. We wrote a small program to compute

E := Bh(ςH , ςH , AHςH) for a given quantity ςH defined in the finite element space, according

to the algorithm below.

Algorithm 7.1.1.

Construct ςH .

Solve for Ψh := T h(ςH · ∇ςH + 1
2
(∇ · ςH) ςH) in a mesh with nF × nF points in space.

Calculate

E := (Ψh, ςH) + δ2(∇Ψh,∇ςH),

which comes from

Bh(ςH , ςH , AHςH) = (T h(ςH · ∇ςH + (∇ · ςH) ςH), AHςH)

= (Ψh ,−δ2∆HςH + ςH) = (δ2∇Ψh,∇ςH) + (Ψh, ςH).

We have proven that if H = h (discrete filter), E = 0. Otherwise (exact filter), this term

could artificially input energy into the numerical scheme. This experiment was designed to

give us an estimate on how big E can actually be when H 6= h. We choose two distinct ςH

and compute E for various combinations of H and h, according to the following.

We first take ςh = w0 (as constructed from (7.1.1)) and then take ςh = 1
1000

w0, both

with δ = 2 H. The results are displayed in Tables 1 and 2, respectively.
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H � h 1/4 1/8 1/16 1/32 1/64 1/128

1/4 2.2 10−15 1.00 10−1 1.39 10−1 3.14 10−2 6.28 10−3 1.19 10−2

1/8 − 8.31 10−16 1.60 10−1 2.13 10−2 1.14 10−2 2.42 10−3

1/16 − − 2.46 10−16 2.82 10−3 5.76 10−3 3.58 10−3

1/32 − − − 1.32 10−16 5.60 10−4 9.86 10−4

1/64 − − − − 3.33 10−17 7.46 10−8

1/128 − − − − − 3.13 10−16

Table 1: Magnitude of the nonlinear term when ςh = w0.

H � h 1/4 1/8 1/16 1/32 1/64 1/128

1/4 2.17 10−24 1.00 10−10 1.39 10−10 3.14 10−11 6.28 10−12 1.19 10−11

1/8 − 8.49 10−25 1.60 10−10 2.13 10−11 1.14 10−11 2.42 10−12

1/16 − − 6.92 10−27 2.82 10−12 5.76 10−12 3.58 10−12

1/32 − − − 2.61 10−26 5.60 10−13 9.86 10−13

1/64 − − − − 1.08 10−25 7.46 10−17

1/128 − − − − − 1.23 10−25

Table 2: Magnitude of the nonlinear term when ςh = 1
1000

w0.
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Table 1 shows that when ςH is relatively large, E can be considerably big, while Table 2

shows that for a smaller ςH , that is not the case. These computations show clearly that the

choice of ςH does not affect the case H = h (discrete filter), but they say a lot about the

case h 6= H (exact filter). Hence, the magnitude of ςH plays a major role in the magnitude

of E.

These results confirm instability of the exact filter. We believe that this discretization

produces some initial noise that gets amplified as the time evolves and this seems to be due

to a combination of factors. A large oscillatory initial condition on a coarse mesh and high

Reynolds number play a major role. It appears that for fixed initial condition and Reynolds

number, mesh refinement should eventually dissipate the initial noise.

We thus concentrate on the discrete filter (cheaper), since the exact filter proved to be

unreliable (and more expensive).

7.2 TESTS WITH THE DISCRETE FILTER

The main idea of the examples in this section is to show how reliable the discrete filter is in

tests that involve more than homogeneous boundary conditions and zero forcing term. In

this section, since all filters are discrete, we denote filtering simply by overbar. We present

three test problems. The first is one for which the true solution is known and the other two

are conventional test problems.

Finding good test problems with known solutions for the model turns out to be nontrivial

(a partial differential equation must be solved!). This is so because whenever (w, p) is

prescribed, ∇ · (ww) and ∇p must be computed in order to find f . Most of the cases where

f can be found exactly are when w is such that ∇ · (ww) is linear or constant (in the space

variable), because then ∇ · (ww)=∇ · (ww). The same is true for ∇p. However, there is at

least one interesting case where ∇ · (ww) and ∇p can be computed exactly. It is known as

the Chorin vortex decay problem, detailed below.
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7.2.1 Chorin Vortex Decay Problem

This problem can be found in Chorin [14] and it was also used by Tafti [83] and John and

Layton [45]. The prescribed solution in Ω = (0, 1)× (0, 1) has the form

w1(x, y, t) = − cos(nπx) sin(nπy)e−2n2π2t/τ

w2(x, y, t) = sin(nπx) cos(nπy)e−2n2π2t/τ

p(x, y, t) = −1

4
(cos(2nπx) + cos(2nπx))e−2n2π2t/τ (7.2.1)

When the relaxation time τ = Re, this is a solution of the model with f = 0, consisting of

a n× n array of oppositely signed vortices that decay as t →∞, as shown in Figure 5.

Figure 5: True solution of Chorin problem, n = 4, Re = τ .

The right-hand side f can be computed and the initial/boundary data can be chosen so

that (w1, w2, p) is a closed solution of (6.1.3). It is possible to compute f because ∇ · (ww)
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and ∇p are of the form

ψ = g(t)


sin(2nπx)

sin(2nπy)


 .

In that case, it is easy to check that the solution of

−δ2∆ψ + ψ = ψ in Ω

ψ = ψ on ∂Ω.

is

ψ =
f(t)

4n2δ2 + 1
ψ.

This implies that

∇ · (ww) =
−nπ

2
e−4n2π2t/τ

4n2δ2 + 1


sin(2nπx)

sin(2nπy)




and

∇p =
nπ
2

e−4n2π2t/τ

4n2δ2 + 1


sin(2nπx)

sin(2nπy)


 .

Therefore, when computing f , ∇ · (ww) and ∇p cancel each other out and

f = wt − ν∆w,

i. e.,

f = 2n2π2(
1

τ
− ν)e−2n2π2t/τ


 cos(nπx) sin(nπy)

− sin(nπx) cos(nπy)


 .

From this expression, it is obvious that when τ = Re (≡ 1/ν), f = 0.

Figure 6 shows the model’s true and computed kinetic energy, compared with the kinetic

energy from the Navier-Stokes and Smagorinsky’s equations. The parameters are n = 4,

Re = 104 and τ = Re. The mesh width is h = 1/16, the filter radius is δ = 2h and the time

step, dt = 0.01.

Note that (7.2.1) is also a true solution of the Navier-Stokes equations. Figure 6 shows

that (7.2.1) being a true solution to both the model and the Navier-Stokes equations, the

model’s computed kinetic energy is much closer to the true kinetic energy than the Navier-

Stokes computed kinetic energy. Furthermore, the Smagorinsky model proves to be more

dissipative, as expected.
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Figure 6: Comparison of kinetic energy for different models.
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7.2.2 Flow around a Cylinder

The domain Ω for this problem is depicted in Figure 7. It is a well known benchmark

problem, well explained in Schäfer and Turek [75]. The time dependent inflow and outflow

profile are

w1(0, y, t) = w1(2.2, y, t) =
6

0.412
sin(π t/8)y(0.41− y)

w2(0, y, t) = w2(2.2, y, t) = 0

no slip boundary conditions are prescribed along the top and bottom walls and the initial

condition is w(x, y, 0) = 0. The viscosity is ν = 10−3 and the external force f = 0. The

Reynolds number of the flow, based on the diameter of the cylinder and on the mean velocity

inflow is 0 ≤ Re ≤ 100. The filter radius is chosen as the length of the cylinder divided by

nC , the number of mesh points around the cylinder: δ = 2π(0.05)/nC (here, nC = 40).

Figure 7: Cylinder Domain

For this setting, it is expected that, as the flow increases, from time t = 2 to t = 4, two

vortices start to develop behind the cylinder. Between t = 4 and t = 5, the vortices should

separate from the cylinder, so that a vortex street develops, and they continue to be visible

until the final time t = 8. In general, turbulence models do not perform well for this value

of Reynolds number, but the Zeroth Order Model surprisingly does.
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Figure 8: Formation of a vortex street, flow field at T = 2, 4, 5, 6, 7, 8.
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7.2.3 Step Problem

The domain Ω is sketched in Figure 9. The inflow boundary conditions (and initial condi-

tions) are

w1(0, y, t) = y(1− y)/25

w2(0, y, t) = 0

and the fluid leaves the domain by outflow boundary conditions. At the top and bottom

walls (including the step), homogeneous Dirichlet boundary conditions are imposed.

Figure 9: Step Domain

Perhaps the most commonly known form of this problem is the backward facing step,

but the configuration we adopt here is more challenging, because the solution does not scale

with the Reynolds number, see Gunzburger [33]. At a critical Reynolds number, for which

the flow should be time dependent, some models are not able to capture the correct (non

stationary) physical properties of the flow, e.g. John, Layton and Sahin [47].

The results shown here are for viscosity ν = 1/600 and time step dt = 0.005. The filter

width is chosen as δ = 2 1
nS

, where nS is the number of mesh points on the back of the step

(which has length 1).

We show the solution for two meshes at four instants of time, T = 10, 20, 30, 40. Figure

10 displays the streamlines for the solution computed in the coarser mesh, with 5827 total

degrees of freedom and δ = 1/8. It does not show vortex shedding behind the step after time

T=40. On the other hand, refining the mesh (24562 total degrees of freedom and δ = 1/16),

we can see the expected behavior in Figure 11: vortices start shedding behind the step at

around T = 30.
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Figure 10: Coarse mesh: no vortices shed after T=40
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7.3 NOTES ON IMPLEMENTATION

Let us now discuss briefly some implementation issues. It is not clear what is the best way

of implementing these time-stepping schemes, since the filtered terms are a solution of a

Poisson problem, which should ideally be computed at the same time as the velocity and

pressure are computed.

The simplest idea, especially if one has a code for solving the time dependent Navier-

Stokes equations, is to lag the filtered terms and add and subtract appropriate terms to make

the discretization similar to the known Navier-Stokes discretization. This is the approach

we adopted to compute the results in this chapter. We outline the algorithm we used below.

Note that we drop the superscript h for convenience.

Algorithm 7.3.1 (Backward Euler).

For n=1 to number of time steps

For i=1 to number of fixed point iterations

Filter ∇ · (ww) + 1
2
(∇ ·w)w.

Filter ∇p.

Solve

1

dt
(wn+1,v) + ν(∇wn+1,∇v) + b(wi,wn+1,v)− (pn+1,∇ · v)

= (fn+1,v) +
1

dt
(wn,v)−Bh(wi,wi, v)− (∇pi,v)

+b(wi,wi,v)− (pi,∇ · v)

Stop if maxx∈Ω |wn+1 −wi | < TOLw and maxx∈Ω | pn+1 − pi | < TOLp.

wi = wn+1 and pi = pn+1.

In our opinion, the biggest issue seems to be related to the correct prescription of bound-

ary conditions for the differential filters. We remarked earlier that if, given φ, one wants to

compute φ, then it must be specified that φ = φ on ∂Ω. The question is what to do when

φ is not known on the boundary!

Filtering the nonlinear term does not seem to be so critical as filtering the pressure

term. Boundary conditions for the Poisson problem related to the nonlinear term can be
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prescribed, once the velocity is known on the boundary. However, p is not usually known

on the boundary, much less ∇p. In the case of zero boundary conditions, we have shown

in Chapter 6 that ∇p must vanish on ∂Ω. For the test problems with non homogeneous

Dirichlet boundary conditions, we have found that the best results were obtained when we

assign no boundary conditions to ∇p.

Another delicate issue is the stopping criteria for the nonlinear solver. We tried to set

TOLp = TOLw, but the computations are not practical at all, because the pressure converges

extremely slowly. Thus, it could take hundreds or thousands of iterations per time step until

the fixed point iteration converges. We found that what works better is not to set any

conditions on the pressure, because whenever the velocity converges, the pressure converges

too, eventually. In this case, even if, in the first time steps, the nonlinear solver needs a large

number of iterations to converge, this number will decrease as time progresses.

We also tried to write the filter and model equations as a coupled system and solve

for w,∇p and w · ∇w + 1
2
(∇ ·w)w, but this approach requires much larger matrices and

therefore, computations take much longer.
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8.0 ON AN ALTERNATIVE DISCRETIZATION OF THE ZEROTH

ORDER MODEL

In this chapter, we consider a new discretization of the Approximate Deconvolution Models

in Large Eddy Simulation (LES), focusing once more on the pivotal Zeroth Order Model.

The usual finite element approach was already considered in the previous chapter and in

[63] and its stability was proven to be dependent on the exact way the filtering operation

is performed. The discretization we propose here grows out of the natural formulation

for the continuous model, i.e. it comes directly from a formulation that gives the correct

energy balance for the large scales. It is inspired by the technique used by Layton and

Lewandowski [54] to prove existence and uniqueness of strong solutions in the continuous

case. In contrast to the approach of Chapter 6, it is less sensitive to the details of the filter,

but its implementation introduces more degrees of freedom. After all, Ferziger [26], “. . .

there is a close connection between the numerical methods and the modeling approach used

in simulation; this connection has not been sufficiently appreciated . . . .” We prove that the

new discretization is stable and give optimal convergence rates, including an analysis of time

averaged errors.

Recall the Zeroth Order Model, derived in Section 6.1,

wt − ν∆w +∇ · (ww) +∇p = f in (0, T ]× Ω,

∇ ·w = 0 in [0, T ]× Ω,

w = 0 in [0, T ]× ∂Ω.

w(0,x) = u0(x) in Ω

(8.0.1)

Here, we were inspired by the idea in Layton and Lewandowski [54], in which the varia-

tional formulation is in H2(Ω) (see Section 8.1). This would be computationally expensive,
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requiring the use of C1 elements. Instead, we study a mixed formulation that requires less

regularity of the true solution w. The error analysis is performed and optimal convergence

rates are derived. We also include a section on time averaged errors, since this method is

designed for simulation of turbulent flows. In such cases, the usual procedure is to compute

time averages of the physical quantities of interest, e.g Moser, Kim and Mansour [68] and

Berselli, Iliescu and Layton [6].

The derivation of the discretization and its stability properties are explained in Section

8.1. Optimal convergence rates are derived in Section 8.2, with the help of a modified Stokes

projection. In Section 8.3, time averaged errors are analyzed.

8.1 DERIVATION OF THE NEW DISCRETIZATION

This section develops a mixed variational formulation for (8.0.1) and its finite element dis-

cretization. We recall that the operations of differentiation and filtering do not commute

and use a strategy that gives the correct balance of energy for the model. The stability of

the discrete solution is also investigated.

By choosing a differential filter as an averaging operator, following the discussion in

Layton and Lewandowski [54], we define Av = −δ2∆v+v, for all v ∈ X∩ (H2(Ω))d, so that

Av = v. Note that since the Laplace operator ∆ is self-adjoint, so is A.

Let w be a smooth strong solution of (8.0.1). The development of the model starts with

multiplying (8.0.1) by Av and integrating over the domain. One has

(wt, Av)− ν(∆w, Av) + (∇ · (ww), Av) + (∇p,Av) = (f , Av), ∀v ∈ X ∩ (H2(Ω))d.

By using the self-adjointness of the operator A, together with the property that Av = v,

followed by integration by parts, we derive the following variational formulation: Find w :

[0, T ] → X ∩ (H2(Ω))d, p : (0, T ] → Q satisfying w(0,x) = u0(x) and

(wt,v) + δ2(∇wt,∇v) + ν[(∇w,∇v) + δ2(∆w, ∆v)]

+(∇ · (ww),v)− (p,∇ · v) = (f ,v),

(∇ ·w, q) = 0,

(8.1.1)
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for all (v, q) ∈ (X ∩ (H2(Ω))d, Q).

No similar formulation follows by the usual approach of multiplying by v and integrating

by parts. The formulation (8.1.1) contains the term (∆w, ∆v) which is a fourth order term.

This suggests using C1 elements. Instead, we consider a mixed formulation of (8.1.1): Find

w : [0, T ] → X, φ : [0, T ] → X and p : (0, T ] → Q satisfying w(0,x) = u0(x) and:

(wt,v) + δ2(∇wt,∇v) + b(w,w,v)

+ν(∇w,∇v) + νδ2(∇φ,∇v)− (p,∇ · v) = (f ,v), (8.1.2)

(∇w,∇ξ) = (φ, ξ), (8.1.3)

(∇ ·w, q) = 0, (8.1.4)

for all (v, ξ, q) ∈ (X,X, Q).

In V, this formulation becomes: Find (w,φ) : [0, T ] → (V,X) such that

(wt,v) + δ2(∇wt,∇v) + b(w,w,v)

+ν(∇w,∇v) + νδ2(∇φ,∇v) = (f ,v), (8.1.5)

(∇w,∇ξ) = (φ, ξ). (8.1.6)

for all (v, ξ) ∈ (V,X).

The kinetic energy and the energy dissipation rate at time t associated with this model

are defined as

κ(w) =
1

2

(||w(t) ||2 + δ2 ||∇w(t) ||2) and ε(w,φ) =
ν

|Ω |
(||∇w(t) ||2 + δ2 ||φ(t) ||2) ,

where |Ω | is the measure of Ω.

We first establish uniformly boundness of the kinetic energy of w at time T .

Lemma 8.1.1. Let f ∈ L∞(0,∞, H−1(Ω)). Then the kinetic energy κ(w) at time T is

uniformly bounded as

κ(w) ≤ (||w(0) ||2 + δ2 ||∇w(0) ||2) e−ν C−2
PF T

+ν−2C2
PF || f ||2L∞(0,∞;H−1(Ω)).

In particular,

lim
T→∞

1

T
κ(w) = 0.
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Proof. Set v = w in (8.1.5) and ξ = φ in (8.1.6). Then, since b(w,w,w) = 0, we get

1

2

d

dt

(||w ||2 + δ2||∇w ||2) +
ν

2
(|| ∇w ||2 + 2 δ2||φ ||2) ≤ 1

2 ν
|| f ||2−1. (8.1.7)

Letting ξ = w in equation (8.1.6) and using Poincaré-Friedrich’s inequality, we have that

||∇w || ≤ CPF ||φ ||. Then (8.1.7) becomes

d

dt

(||w ||2 + δ2||∇w ||2) + ν C−2
PF (||w ||2 + δ2||∇w ||2) ≤ ν−1|| f ||2−1. (8.1.8)

Setting y = ||w ||2 + δ2||∇w ||2 and using an integrating factor, equation (8.1.8) gives

y(T ) ≤ y(0) e−ν C−2
PF T + ν−2C2

PF || f ||2L∞(0,T ;H−1(Ω)).

This proves the uniform boundedness. Now, dividing by T and taking the limit as T → ∞
gives the second claim.

Remark 8.1.1. One can also show that the total energy is bounded. We only present the

proof for the discrete case (Lemma 8.1.3), since the idea is the same in both cases.

Our goal is to understand the behavior of numerical methods based on (8.1.2)-(8.1.4).

Therefore, we consider a continuous in time finite element discretization of the problem

(8.1.2)-(8.1.4). Let Xh ⊂ X and Qh ⊂ Q satisfy (2.2.1). The finite element approximation

to (w,φ, p) are maps wh : [0, T ] → Xh,φh : [0, T ] → Xh and ph : (0, T ] → Qh such that

(wh
t ,v

h) + δ2(∇wh
t ,∇vh) + b(wh,wh,vh)

+ν(∇wh,∇vh) + νδ2(∇φh,∇vh)− (ph,∇ · vh) = (f ,vh), (8.1.9)

(∇wh,∇ξh) = (φh, ξh), (8.1.10)

(qh,∇ ·wh) = 0, (8.1.11)

for all (vh, ξh, qh) ∈ (Xh,Xh, Qh).

In Vh, the semi-discrete approximation of (8.1.9)-(8.1.11) is: Find (wh,φh) ∈ (Vh,Xh)

such that

(wh
t ,v

h) + δ2(∇wh
t ,∇vh) + b(wh,wh,vh)

+ν(∇wh,∇vh) + νδ2(∇φh,∇vh) = (f ,vh), (8.1.12)

(∇wh,∇ξh) = (φh, ξh), (8.1.13)
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for all (vh, ξh) ∈ (Vh,Xh).

A discrete version of Lemma 8.1.1 shows that the kinetic energy of the discrete solution

is also uniformly bounded.

Lemma 8.1.2. Let f ∈ L∞(0,∞, H−1(Ω)). Then the kinetic energy κ(wh) is uniformly

bounded as

κ(wh) ≤ (||wh(0) ||2 + δ2 || ∇wh(0) ||2) e−ν C−2
PF T

+ν−2C2
PF || f ||2L∞(0,∞;H−1(Ω)).

As a consequence,

lim
T→∞

1

T
κ(wh) = 0.

Proof. The claim exactly follows as in the continuous case of Lemma 8.1.1.

In addition, the next result shows that the total energy of the approximate solution wh

is bounded.

Lemma 8.1.3. (Stability of wh) Let f ∈ L2(0, T,H−1(Ω)). Then any solution (wh,φh) of

(8.1.12)-(8.1.13) satisfies the following stability bound:

1

2
‖wh(t)‖2 +

δ2

2
‖∇wh(t)‖2 +

∫ t

0

[
ν

2
‖∇wh‖2 + νδ2‖φh‖2]dt′

≤ 1

2
‖wh(0)‖2 +

δ2

2
‖∇wh(0)‖2 +

1

2ν

∫ t

0

‖f‖2
−1dt′.

Proof. Set vh = wh in (8.1.12), ξh = φh in (8.1.13) and use b(wh,wh,wh) = 0 to get:

1

2

d

dt

(‖wh‖2 + δ2‖∇wh‖2
)

+ ν‖∇wh‖2 + νδ2(∇φh,∇wh) = (f ,wh) (8.1.14)

(∇wh,∇φh) = (φh, φh). (8.1.15)

Multiplying (8.1.15) by −νδ2, adding it to (8.1.14), and then using the Cauchy Schwarz

inequality, one has

1

2

d

dt

(‖wh‖2 + δ2‖∇wh‖2
)

+
ν

2
‖∇wh‖2 + νδ2‖φh‖2 ≤ 1

2ν
‖f‖2

−1.

Integrating the last equation over (0, t) with t ≤ T gives the required result.
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8.2 CONVERGENCE ANALYSIS

It is useful to define the following modified Stokes projection aiming at simplifying the error

analysis.

Definition 8.2.1. (Modified Stokes Projection) The modified Stokes projection operator PS :

(X,X, Q) → (Xh,Xh, Qh) is defined as follows: Let PS(w,φ, p) = (w̃, φ̃, p̃) where (w̃, φ̃, p̃)

satisfies

ν(∇(w − w̃),∇vh) + νδ2(∇(φ− φ̃),∇vh)− (p− p̃,∇ · vh) = 0,

(∇(w − w̃),∇ξh) = (φ− φ̃, ξh),

(qh,∇ · (w − w̃)) = 0, (8.2.1)

for all (vh, ξh, qh) ∈ (Xh,Xh, Qh).

In (Vh,Xh), this formulation reads: Given (w,φ), find (w̃, φ̃) ∈ (Vh,Xh) satisfying

ν(∇(w − w̃),∇vh) + νδ2(∇(φ− φ̃),∇vh)− (p− qh,∇ · vh) = 0, (8.2.2)

(∇(w − w̃),∇ξh) = (φ− φ̃, ξh), (8.2.3)

for all (vh, ξh) ∈ (Vh,Xh) and any qh ∈ Qh.

Under the discrete inf-sup condition (2.2.1), (w̃, φ̃, p̃) is a quasi optimal approximation

of (w,φ, p). Since the stability and error estimation of the projection operator will be used

to approximate the error between w and wh, we now give two related results.

Proposition 8.2.1. (Stability of the modified Stokes projection) Let (w,φ, p) be given.

Then, any solution (w̃, φ̃, p̃) of (8.2.1) satisfies

ν‖∇w̃‖2 + νδ2‖φ̃‖2 ≤ C{(ν + νδ2h−2)‖∇w‖2 + νδ4‖∇φ‖2 + νδ2‖φ‖2 + ν−1‖p‖2}

and

|| p̃ || ≤ C
{
|| p ||+ ν||∇w ||+ νδ2||∇φ ||+ ν||∇w̃ ||+ νδ2|| φ̃ ||

}
,

where C is independent of ν, δ and h.
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Proof. We first set vh = w̃ in (8.2.2) and ξh = φ̃ in (8.2.3). Then, we obtain

ν‖∇w̃‖2 = ν(∇w,∇w̃) + νδ2(∇(φ− φ̃),∇w̃)− (p,∇ · w̃), (8.2.4)

(∇w̃,∇φ̃) = (∇w,∇φ̃) + (φ̃− φ, φ̃). (8.2.5)

Multiplying (8.2.5) by νδ2, substituting in (8.2.4) and applying the Cauchy-Schwarz inequal-

ity yields

ν‖∇w̃‖2 + νδ2‖φ̃‖2 ≤ ν‖∇w‖‖∇w̃‖+ νδ2‖∇φ‖‖∇w̃‖
+νδ2‖∇w‖‖∇φ̃‖+ νδ2‖φ‖‖φ̃‖+ ‖p‖‖∇ · w̃‖.

Lastly, we apply the inverse inequality

‖∇φ̃‖ ≤ C h−1‖φ̃‖,

and Young’s inequality to obtain the first claimed inequality.

The second claimed inequality comes from rewriting the first equation in (8.2.1) in terms

of the pressure, and then using the Cauchy-Schwarz inequality to write

(p̃,∇ · vh)

||∇vh || ≤ C
{
|| p ||+ ν||∇w ||+ νδ2||∇φ ||+ ν||∇w̃ ||+ νδ2|| φ̃ ||

}
.

The inf-sup condition (2.2.1) gives the result.

Proposition 8.2.2. (Error in the modified Stokes projection) Suppose the discrete inf-sup

condition (2.2.1) holds. Then, (w̃, φ̃, p̃) exists uniquely in (Xh,Xh, Qh) and satisfies

ν‖∇(w − w̃)‖2 + νδ2‖φ− φ̃‖2 ≤ C

[
infbw∈Xh

(ν + νδ2h−2)‖∇(w − ŵ)‖2 + inf
qh∈Qh

ν−1‖p− qh‖2

+ infbφ∈Xh
νδ2‖φ− φ̂‖2 + νδ4‖∇(φ− φ̂)‖2

]
,

and

‖p− p̃‖ ≤ C

[
ν‖∇(w − w̃)‖+ νδ2‖φ− φ̃‖+ inf

qh∈Qh
‖p− qh‖

]
,

where C is a constant independent of ν, δ and h.
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Proof. The à priori bounds in Proposition 8.2.1 (and the discrete inf-sup condition (2.2.1))

are enough to guarantee existence and uniqueness, since (w̃, φ̃, p̃) is the solution of a linear

system.

For the error bound, set ew = w−w̃ and eφ = φ−φ̃ and let ŵ and φ̂ be approximations

of w ∈ Vh and φ ∈ Xh, respectively. Then decompose ew and eφ in two parts as ew =

ηw −ψh
w = (w− ŵ)− (w̃− ŵ), and eφ = ηφ −ψh

φ = (φ− φ̂)− (φ̃− φ̂), so that equations

(8.2.2) and (8.2.3) become

ν(∇ψh
w,∇vh) + νδ2(∇ψh

φ,∇vh) = ν(∇ηw,∇vh) + νδ2(∇ηφ,∇vh)

−(p− qh,∇ · vh) (8.2.6)

(∇(ηw −ψh
w),∇ξh) = (ηφ −ψh

φ, ξh). (8.2.7)

Choose vh = ψh
w in (8.2.6) and ξh = ψh

φ in (8.2.7), which gives

ν‖∇ψh
w‖2 + νδ2(∇ψh

φ,∇ψh
w) = ν(∇ηw,∇ψh

w) + νδ2(∇ηφ,∇ψh
w)

−(p− qh,∇ ·ψh
w), (8.2.8)

(∇ηw,∇ψh
φ) + ‖ψh

φ‖2 = (∇ψh
w,∇ψh

φ) + (ηφ,ψh
φ). (8.2.9)

Multiply (8.2.9) by νδ2 and substitute the resulting expression in the left hand side of (8.2.8).

With the application of the Cauchy-Schwarz inequality, we obtain

ν‖∇ψh‖2 + νδ2‖ψh
φ‖2 ≤ ν‖∇ηw‖‖∇ψh

w‖+ νδ2‖∇ηw‖‖∇ψh
φ‖+ νδ2‖ηφ‖ ‖ψh

φ‖
+νδ2‖∇ηφ‖‖∇ψh

w‖+ ‖p− qh‖‖∇ ·ψh
w‖. (8.2.10)

By using the following inverse inequality,

‖∇ψh
φ‖ ≤ Ch−1‖ψh

φ‖,

and using Young’s inequality for the terms on the right hand side of (8.2.10), we get

ν‖∇ψh
w‖2 + νδ2‖ψh

φ‖2 ≤ C
{

(ν + νδ2h−2)‖∇ηw‖2 + νδ2‖ηφ‖
+νδ4‖∇ηφ‖2 + ν−1‖p− qh‖2

}
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The first result follows from applying the triangle inequality and taking the infimum over

ŵ ∈ Vh and φ̂ ∈ Xh. Note that, under the inf-sup condition and the condition ∇ ·w = 0,

the infimum over Vh can be replaced by infimum over Xh (see e.g. Girault and Raviart [30],

p.60).

The second claim follows from adding and subtracting (qh,∇ · vh) to (8.2.1) and then

using the Cauchy-Schwarz inequality, followed by the inf-sup condition (2.2.1), to get

‖p̃− qh‖ ≤ C
[
ν‖∇(w − w̃)‖+ νδ2‖φ− φ̃‖+ ‖p− qh‖

]
.

The proof concludes by using the triangle inequality and taking infimum over qh in Qh.

Remark 8.2.1. The statements of Proposition 8.2.1 and Proposition 8.2.2 suggest that to

get an optimal bound, one has to choose δ = O(h).

Remark 8.2.2. The error in the modified Stokes projection (w̃, φ̃, p̃) is bounded by approx-

imation theoretic terms, according to Proposition 8.2.2.

The semi-discrete convergence analysis of the new discretization uses properties of the

modified Stokes projection defined above. It follows the usual finite element technique and

calls for the use of Gronwall’s inequality. A term similar to the nonlinear one that arises

in the analysis of the Navier-Stokes equations appears here, making it necessary to make á

priori assumptions on w.

Theorem 8.2.1. Let (w, p) solve (8.1.2)-(8.1.4). Assuming that ∇w ∈ L4(0, T ; L2(Ω)),

wt ∈ L2(0, T ; H−1(Ω)), ∇wt ∈ L2(0, T ; L2(Ω)), and p ∈ L2(0, T ; L2
0(Ω)), the error e =

w −wh satisfies

‖e‖2
L∞(0,T ;L2) + δ2‖∇e‖2

L∞(0,T ;L2) + ν‖∇e‖2
L2(0,T ;L2) + νδ2‖φ− φh‖2

L2(0,T ;L2)

≤ CC∗(‖w(0)−wh(0)‖2 + ‖∇(w(0)−wh(0))‖2) + C F(w − w̃,φ− φ̃)
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where (w̃, φ̃) is the modified Stokes projection, C∗ = exp( C
ν3

∫ T

0
‖∇w‖4dt′) and

F(w − w̃, φ− φ̃) = ‖w − w̃‖2 + δ2‖∇(w − w̃)‖2
L2(0;T ;L2)

+νδ2‖φ− φ̃‖2
L2(0;T ;L2) + C∗(T )

[
‖w(0)− w̃(0)‖2

+‖∇(w(0)− w̃(0))‖2 + ν−1‖(w − w̃)t‖2
L2(0;T ;H−1)

+ν−1δ4‖∇(w − w̃)t‖2
L2(0;T ;L2)

+(‖∇wh‖L2(0;T ;L2) + ‖∇w‖2
L4(0;T ;L2))‖∇(w − w̃)‖2

L4(0;T ;L2)

]
.

Proof. We first set v = vh in (8.1.2) and ξ = ξh in (8.1.3). Then, subtracting (8.1.2) from

(8.1.12) and (8.1.3) from (8.1.13) and letting e = w−wh give the following error equations:

(et,v
h) + δ2(∇et,∇vh) + ν(∇e,∇vh) + b(w,w,vh)− b(wh,wh,vh)

+νδ2(∇(φ− φh),∇vh)− (p− qh,∇ · vh) = 0 ∀vh ∈ Vh (8.2.11)

(∇e,∇ξh) = (φ− φh, ξh) ∀ξh ∈ Xh. (8.2.12)

Decompose the error in two parts: e = η − ψh where η = w − w̃, ψh = wh − w̃, and add

and subtract νδ2(∇φ̃,∇vh) in (8.2.11), where w̃ ∈ Vh, φ̃ ∈ Xh are chosen as the Stokes

projection, defined via (8.2.2)-(8.2.3). Putting all these together and setting vh = ψh in

(8.2.11), and ξ = φh − φ̃ in (8.2.12) yields

(ψh
t ,ψ

h) + δ2(∇ψh
t ,∇ψh) + ν(∇ψh,∇ψh) + νδ2(∇(φh − φ̃),∇ψh)

= (ηt,ψ
h) + δ2(∇ηt,∇ψh) + b(w,w,ψh)− b(wh,wh,ψh) (8.2.13)

(∇ψh,∇(φh − φ̃)) = (φh − φ̃,φh − φ̃). (8.2.14)

Note that since (w̃, φ̃) is taken to be the modified Stokes projection of (w, φ) in (Vh,Xh),

some of the terms in the error equation (8.2.13) vanish.

We then multiply both sides of (8.2.14) by νδ2, substitute in (8.2.13), and apply Cauchy-

Schwarz inequality. This gives

1

2

d

dt
‖ψh‖2 +

δ2

2

d

dt
‖∇ψh‖2 + ν‖∇ψh‖2 + νδ2‖φh − φ̃‖2

≤‖ηt‖−1‖∇ψh‖+ δ2‖∇ηt‖‖∇ψh‖+ |b(w,w, ψh)− b(wh,wh,ψh)|. (8.2.15)
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The nonlinear term on the right hand side of (8.2.15) is decomposed into three parts:

b(w,w, ψh)− b(wh,wh, ψh) = b(η,w, ψh)− b(ψh,w,ψh) + b(wh,η,ψh).

By applying the improved estimate (2.1.4), Poincaré-Friedrich’s and Young’s inequalities,

the nonlinear terms are bounded as:

b(η,w,ψh) ≤ C‖η‖1/2‖∇η‖1/2‖∇w‖‖∇ψh‖
≤ ε

4
‖∇ψh‖2 +

C

ε
‖∇η‖2‖∇w‖2

b(ψh,w,ψh) ≤ ‖∇ψh‖3/2‖ψh‖1/2‖∇w‖
≤ ε

2
‖∇ψh‖2 +

C

ε3
‖∇w‖4‖ψh‖2

b(wh,η,ψh) ≤ C‖wh‖1/2‖∇wh‖1/2‖∇η‖‖∇ψh‖
≤ ε

4
‖∇ψh‖2 +

C

ε
‖wh‖‖∇wh‖‖∇η‖2

On the right hand side of (8.2.15), we apply Young’s inequality and choose ε = ν/4,

1

2

d

dt
‖ψh‖2 +

δ2

2

d

dt
‖∇ψh‖2 +

ν

2
‖∇ψh‖2 + νδ2‖φh − φ̃‖2

≤2ν−1‖ηt‖2
−1 + ν−1δ4‖∇ηt‖2 +

C

ν
(‖∇w‖2 + ‖wh‖‖∇wh‖)‖∇η‖2 +

C

ν3
‖∇w‖4‖ψh‖2.

Since by assumption ‖∇w‖4 ∈ L1(0, T ), Gronwall inequality implies that

‖ψh‖2 + δ2‖∇ψh‖2 +

∫ t

0

[ν‖∇ψh‖2 + 2νδ2‖φh − φ̃‖2]dt′

≤C∗(‖ψh(0)‖2 + ‖∇ψh(0)‖2) + CC∗
∫ t

0

[
ν−1‖ηt‖2

−1 + ν−1δ4‖∇ηt‖2

+
1

ν
(‖∇w‖2 + ‖wh‖‖∇wh‖)‖∇η‖2

]
dt′,

where C∗ = exp( C
ν3

∫ t

0
‖∇w‖4dt′). In order to complete proof, one has to study the L1(0, T )

regularity of terms in the last inequality. Note that using the Cauchy-Schwarz inequality

∫ t

0

‖∇w‖2‖∇η‖2dt′ ≤ ‖∇w‖2
L4(0,t;L2)‖∇η‖2

L4(0,t;L2) < ∞.
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Similarly, using Hölder’s inequality and Lemma 8.1.3 imply that

∫ t

0

‖wh‖‖∇wh‖‖∇η‖2dt′ ≤ ‖wh‖L∞(0,t;L2)‖∇wh‖L2(0,t;L2)‖∇η‖2
L4(0,t;L2)

≤ C(
1

ν1/2
‖wh(0)‖2 +

δ2

ν1/2
‖∇wh(0)‖2

+
1

ν3/2
‖f‖2

L2(0,t;H−1))‖∇η‖2
L4(0,t;L2) < ∞.

The stated error estimate now follows by applying the triangle inequality.

8.3 TIME AVERAGED ERRORS

In this section, we analyze time averaged errors. In practical flow computations, pointwise

flow quantities may not make sense, whereas statistics of flow quantities may be relevant.

The analysis we employ here follows the same approach as in Chapter 4, where statistics of

weak solutions of the Navier-Stokes are investigated. Accordingly, we consider the case where

the solution to the time dependent problem converges to a stationary solution, provided the

steady-state body force is small enough. In this context, statistics are optimally computable.

In the general case, it is not known if a closed estimate is feasible (see Chapter 4).

We must point out once more that weak solutions of the Zeroth Order Model are in-

deed strong solutions and satisfy an energy equality. This has been proven for the periodic

case, but it is reasonable to assume that the same also holds true in the non periodic case

(operationally, this will allow us to choose e.g. w as a test function in the estimates below).

We will need properties of the steady-state solution, denoted with superscript ∗, so

we first consider the equilibrium variational formulation of problem (8.1.2)-(8.1.4) when

f(x, t) → f∗(x) as t →∞: Find (w∗, φ∗, p∗) ∈ (X,X, Q) such that

ν(∇w∗,∇v) + νδ2(∇φ∗,∇v) + b(w∗,w∗,v)− (p∗,∇ · v) = (f∗,v), ∀v ∈ X(8.3.1)

(∇w∗,∇ξ) = (φ∗, ξ), ∀ ξ ∈ X (8.3.2)

(q,∇ ·w∗) = 0, ∀ q ∈ Q (8.3.3)
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In V, the variational formulation becomes: Find (w∗,φ∗) ∈ (V,X) satisfying

ν(∇w∗,∇v) + νδ2(∇φ∗,∇v) + b(w∗,w∗,v) = (f∗,v), ∀v ∈ V (8.3.4)

(∇w∗,∇ξ) = (φ∗, ξ), ∀ ξ ∈ X (8.3.5)

Our first result in this section gives an á priori bound on (w∗,φ∗).

Lemma 8.3.1. A pair (w∗,φ∗) satisfying (8.3.4)-(8.3.5) is bounded such that

||∇w∗ ||2 + 2δ2 ||φ∗ ||2 ≤ ν−2|| f∗ ||2−1.

Proof. Setting v = w∗ in (8.3.4) and ξ = φ∗ in (8.3.5) gives the claimed result.

This result, together with assumptions on the steady state body force f∗ and on its

relationship with the time dependent body force f give, in turn, a relationship between the

solutions w and w∗.

Proposition 8.3.1. Let f ∈ L∞(0,∞, H−1(Ω)). Suppose that for all T sufficiently large,

|| f − f∗ ||−1 is bounded for 0 ≤ t ≤ T/2 and
∫ T

T/2
|| f(·, t)− f∗(·) ||2−1 dt → 0 as T →∞, then

w(x, t) → w∗(x) in H1(Ω), whenever M ν−2|| f∗ ||−1 := α < 1.

Proof. The idea behind this proof is to divide the time axis in two parts. The first, where

the difference between f and f∗ is bounded (and the exponentials involved tend to zero), and

the second part, which becomes small when f and f∗ are sufficiently close.

We first subtract (8.3.4) from (8.1.5) and (8.3.5) from (8.1.6) and set W = w−w∗ and

Φ = φ− φ∗. Then, we have an equation of the form

(Wt,v) + δ2(∇Wt,∇v) + ν(∇W,∇v)

+νδ2(∇Φ,∇v) + b(w,w,v)− b(w∗,w∗,v) = (f − f∗,v), (8.3.6)

(∇W,∇ξ) = (Φ, ξ), (8.3.7)

for all (v, ξ) ∈ (V,X).

Setting v = W in (8.3.6) and ξ = Φ in (8.3.7), adding the two resulting equations

together and adding and subtracting the term b(w,w∗,W), we have

1

2

d

dt

(||W ||2 + δ2||∇W ||2) + ν (||∇W ||2 + δ2||Φ ||2) = −b(W,w∗,W) + (f − f∗,W).(8.3.8)
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Using the bound on nonlinear term, b(W,w∗,W) ≤ M ||∇w∗ || || ∇W ||2, together with

the á priori bound ||∇w∗ || ≤ ν−1|| f∗ ||−1 (from Lemma 8.3.1), followed by (f − f∗,W) ≤
|| f − f∗ ||−1 ||∇W || and Young’s inequality, we get, for fixed ε > 0,

1

2

d

dt

(||W ||2 + δ2||∇W ||2) + ν(1− α− ε)||∇W ||2 + νδ2||Φ ||2 ≤ 1

4εν
|| f − f∗ ||2−1.(8.3.9)

Letting ξ = W in equation (8.3.7) and using Poincaré-Friedrich’s inequality, we find that

||∇W || ≤ CPF ||Φ ||. Application of Poincaré-Friedrich’s inequality to (8.3.9) yields

d

dt

(||W ||2 + δ2||∇W ||2) + 2 C−2
PF ν

(
(1− α− ε)||W ||2 + δ2||∇W ||2) ≤ 1

2εν
|| f − f∗ ||2−1.

Set y = ||W ||2 + δ2 ||∇W ||2. Then, for ε small enough, K := 2 ν C−2
PF (1 − α − ε) > 0 and

this inequality becomes

d y

d t
+ K y <

1

2εν
|| f − f∗ ||2−1. (8.3.10)

Choosing an integrating factor, equation (8.3.10) gives

y(T ) ≤ y(0) e−K T +
1

2εν

∫ T
2

0

eK (t−T )|| f − f∗ ||2−1 dt

+
1

2εν

∫ T

T
2

eK (t−T )|| f − f∗ ||2−1 dt. (8.3.11)

The integrals on the right hand side of (8.3.11) can be estimated, respectively, as:

∫ T
2

0

eK (t−T )|| f − f∗ ||2−1 dt ≤ K−1 (e−K T
2 − e−K T )|| f − f∗ ||2L∞(0,T/2;H−1(Ω)),

and

∫ T

T
2

eK (t−T )|| f − f∗ ||2−1 dt ≤
∫ T

T
2

|| f − f∗ ||2−1 dt,

since eK (t−T ) ≤ 1 for T
2
≤ t ≤ T .

Combining everything together, (8.3.11) becomes

y(T ) ≤ y(0) e−K T +
1

2ενK
(e−K T

2 − e−K T )|| f − f∗ ||2L∞(0,T/2;H−1(Ω))

+
1

2εν
|| f − f∗ ||2L2(T/2,T ;H−1(Ω)).

Letting T →∞ concludes the proof.
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The first result involving time averages shows that the time averaged energy dissipa-

tion rate of the non stationary solution converges, as T → ∞, to the steady state energy

dissipation rate.

Proposition 8.3.2. Under the same assumptions as Proposition 8.3.1, we have that

< ε(w −w∗,φ− φ∗) >= 0.

Proof. The proof is similar to the proof of Proposition 8.3.1, so we start directly from equation

(8.3.9), with W = w − w∗ and Φ = φ − φ∗. We multiply it by 2, use the fact that

min{ 1− α− ε, 1} = 1− α− ε and integrate from 0 to T to obtain

||W(T ) ||2 + δ2||∇W(T ) ||2 + (1− α− ε) ν

∫ T

0

(|| ∇W ||2 + δ2||Φ ||2) dt

≤ ||W(0) ||2 + δ2||∇W(0) ||2 +
1

2εν

∫ T

0

|| f − f∗ ||2−1 dt.(8.3.12)

Dividing everything by T and taking limit supremum on both sides, we see that the first and

second terms on the left hand side vanish (as a consequence of Lemma 8.1.1 and of the fact

that w∗ does not depend on time). Observing that ||W(0) ||2 + δ2||∇W(0) ||2 is a constant

and using the hypothesis on f and f∗, the right hand side also vanishes and we are left with

(1− α− ε) ν < ||∇W ||2 + δ2||Φ ||2 >≤ 0.

The fact that (1− α− ε) > 0 gives the desired result.

Properties of the approximate solution w∗h are also needed. Thus, we also consider finite

element approximation of (8.3.1)-(8.3.3). Finite element approximation of the equilibrium

solution is to: Find (w∗h,φ∗h, p∗h) ∈ (Xh,Xh, Qh) satisfying

ν(∇w∗h,∇vh) + νδ2(∇φ∗h,∇v) + b(w∗h,w∗h,vh)− (p∗h,∇ · vh) = (f∗,vh), (8.3.13)

(∇w∗h,∇ξh) = (φ∗h, ξh), (8.3.14)

(qh,∇ ·w∗h) = 0, (8.3.15)

for all (vh, ξh, qh) ∈ (Xh,Xh, Qh), with the usual extension to the formulation in (Vh,Xh).
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Lemma 8.3.2. The pair (w∗h, φ∗h) satisfying (8.3.13)-(8.3.15) has the following bound:

||∇w∗h ||2 + 2δ2 ||φ∗h ||2 ≤ ν−2|| f∗ ||2−1.

Proof. The claim exactly follows the proof of Lemma 8.3.1.

We now derive error estimates. The following result uses the modified Stokes projec-

tion defined via (8.2.2)-(8.2.3). Recall that according to Proposition 8.2.2, the error in the

modified Stokes projection (w̃, φ̃) is bounded.

Proposition 8.3.3. Assume that (Xh, Qh) satisfy an inf-sup condition. Under the small

data condition, Mν−2|| f ||−1 := α < 1, the following error estimate holds:

ν||∇(w∗ −w∗h) ||2 + νδ2||φ∗ − φ∗h ||2 ≤ C
{
(ν + ν−3|| f∗ ||2−1)||∇(w∗ − w̃) ||2

+ νδ2||φ∗ − φ̃ ||2
}

,

where (w̃, φ̃) is the modified Stokes projection.

Proof. Subtracting (8.3.13) from (8.3.1), for vh ∈ Vh, and subtracting (8.3.14) from (8.3.2),

for ξh ∈ Xh, we find the error equations:

ν(∇(w∗ −w∗h),∇vh) + νδ2(∇(φ∗ − φ∗h),∇vh)

+b(w∗,w∗,vh)− b(w∗h,w∗h,vh)− (p∗ − qh,∇ · vh) = 0

(∇(w∗ −w∗h),∇ξh) = (φ∗ − φ∗h, ξh)

Decompose the error as e = η − ψh, where η = w∗ − w̃, ψh = w∗h − w̃, and add and

subtract φ̃, where w̃ ∈ Vh, φ̃ ∈ Xh are chosen as the modified Stokes projection. Putting

all these together and setting vh = ψh and ξh = φ∗h − φ̃ yields

ν||∇ψh ||2 + νδ2||φ∗h − φ̃ ||2 = b(η,w∗,ψh)− b(ψh,w∗,ψh) + b(w∗h,η, ψh) (8.3.16)

where the nonlinear term was decomposed into three parts (by adding and subtracting

appropriate terms).
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Using the bounds on the trilinear form followed by Young’s inequality and the Cauchy-

Schwarz inequality, together with the a priori estimates for w∗ and w∗h, we write

b(η,w∗,ψh) ≤ M ||∇η || || ∇w∗ || || ∇ψh ||
≤ ν

4
||∇ψh ||2 + Cν−1||∇w∗ ||2 ||∇η ||2

≤ ν

4
||∇ψh ||2 + Cν−3|| f∗ ||2−1 ||∇η ||2

b(ψh,w∗,ψh) ≤ M ||∇w∗ || || ∇ψh ||2

≤ Mν−1|| f∗ ||−1 ||∇ψh ||2

b(w∗h,η,ψh) ≤ M ||∇η || || ∇w∗h || || ∇ψh ||
≤ ν

4
||∇ψh ||2 + Cν−3|| f∗ ||2−1 ||∇η ||2

With the help of the estimates above and the fact that 1−α > 0, equation (8.3.16) becomes

ν||∇ψh ||2 + νδ2||φ∗h − φ̃ ||2 ≤ Cν−3|| f∗ ||2−1 ||∇η ||2.

The triangle inequality gives the stated result.

The discrete counterpart of Proposition 8.3.2 is given in the following statement.

Proposition 8.3.4. With the same assumptions as in Proposition 8.3.2, we have that

< ε(wh −w∗h,φh − φ∗h) >= 0.

Proof. The argument is the same as in the proof of Proposition 8.3.2 for the continuous

case.

The next theorem is the major result in this section. It shows that under the condition

that the body force driving the flow, when it has reached steady state, is small enough

statistics can be accurately computed.

Theorem 8.3.1. Assuming the hypotheses of Proposition 8.3.1 hold, then

< ε(w −wh, φ− φh) >≤ C ν
(||∇(w∗ −w∗h) ||2 + δ2||φ∗ − φ∗h ||2) . (8.3.17)
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Proof. Add and subtract w∗, w∗h, φ∗, φ∗h appropriately to the formula of < ε(w−wh,φ−
φh) >. Then, the proof follows by the application of triangle inequality and from Proposi-

tions 8.3.2 and 8.3.4.

Corollary 8.3.1. Suppose that the small data condition holds and (Xh, Qh) satisfy an inf-sup

condition. Then,

< ε(w −wh,φ− φh) >≤ C
{

(ν + ν−3|| f∗ ||2−1)||∇(w∗ − w̃) ||2 + νδ2||φ∗ − φ̃ ||2
}

,

where (w̃, φ̃) is the modified Stokes projection.

Proof. Use the estimates of Proposition 8.3.3 on the right-hand side of (8.3.17).

108



9.0 THE JOINT ENERGY-HELICITY CASCADE FOR HOMOGENEOUS,

ISOTROPIC TURBULENCE GENERATED BY ADM

We consider herein aspects of flow statistics and the physical fidelity related to the coherent

rotational structures and integral invariants (helicity and helicity statistics) predicted by the

Stolz-Adams ADM described in Chapter 5. Notation and properties are used as introduced

there. We take Ω = (0, L)3 and impose periodic boundary conditions on all variables (with

the usual normalization condition of the periodic case
∫
Ω

φ = 0, φ = w,w0, f and q). We

study the joint energy-helicity cascade for homogeneous, isotropic turbulence generated by

these models. Our goal is to give a comparison of the energy and helicity statistics of ADM

to the true flow statistics and a comparison of their respective energy and helicity cascades.

Both energy,

E(t) :=
1

2L3

∫

Ω

|u(x, t)|2 dx, (9.0.1)

and helicity,

H(t) :=
1

L3

∫

Ω

u(x, t) · (∇× u(x, t))dx, (9.0.2)

are conserved by the Euler equations and dissipated (primarily at the small scales) by vis-

cosity. Energy and helicity dissipation rates are defined, respectively, as

ε(t) :=
ν

L3
||∇w(t) ||2, (9.0.3)

γ(t) :=
ν

L3
(∇×w(t), (∇×)2w(t)). (9.0.4)

It is widely believed that both cascades, e.g. André and Lesieur [4], and the details of

their respective cascades are intertwined. Recent studies, confirmed by Bourne and Orszag [8]
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have suggested that for homogeneous, isotropic turbulence averaged fluid velocities exhibit

a joint energy and helicity cascade through the inertial range (where viscous effects are

considered to be negligible) of wave numbers given by

E(k) = CEε2/3k−5/3, H(k) = CHγε−1/3k−5/3, (9.0.5)

where k is wave number, ε the mean energy dissipation, and γ the mean helicity dissipation,

see also Chen, Chen and Eyink [11], Chen, Chen, Eyink and Holm [12], Ditlevsen and

Giuliani [19]. The cascades are referred to as “joint” because they travel with the same

speed through wave space (i.e. the exponents of k are equal). The energy cascade given

in (9.0.5) is the famous Kolmogorov cascade, and the work of Chen, Chen and Eyink [11]

showed that the helicity cascade in (9.0.5) is consistent for wave numbers up to the standard

Kolmogorov wave number, kE = ν−3/4ε1/4. Herein, we explore the existence and details of

a comparable joint cascade in the ADM (5.2.1), to examine if this qualitative feature of the

NSE is matched in the ADM. The ADM conserve helicity, e.g. Rebholz [73], which is a first

and necessary step for correct helicity cascade statistics, implying that the existence of a

helicity cascade is possible.

Other authors have compared LES model energy cascades to energy cascades of the NSE.

This was pioneered by Muschinsky [69] for the Smagorinsky model. In [13] by Cheskidov,

Holm, Olson and Titi the energy cascade of the Leray-α model was explored, as was the

energy cascade of the ADM (5.2.1) and associated regularization in Layton and Neda [56, 57].

The work in [56] found that, with some key assumptions, the energy cascade in the ADM

is identical to that of the NSE up to the cut-off length scale of δ, and begins to truncate

scales like k−11/3 for length scales < δ, until viscosity takes over at a length scale larger than

ηKolmogorov. The effects of time relaxation on scale truncation was explored using similar

tools in [57]. There are many other applications of K41 phenomenology to understanding

LES models, Sagaut [74].

The study of helicity in fluid flow and turbulence has only recently begun. It was not

until 1961 that helicity’s inviscid invariance was discovered by Moreau [67], and two decades

later Moffatt gave the topological interpretation of helicity [65]: that helicity is nonzero if

and only if the flow is not rotationally symmetric. This topological interpretation leads to
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the commonly accepted interpretation of helicity: it is the degree to which the vortex lines

are knotted and intertwined. Another interesting and important feature of helicity is that

it is a rotationally meaningful quantity that can be checked for accuracy in a simulation.

Moffat and Tsoniber gave a good summary of the early results on helicity in [66].

We show that solutions of the ADM possess a joint energy/helicity cascade that is asymp-

totically (in the filter width δ) equivalent to that of the NSE. In Layton and Neda [56], it

is shown that there exists a piecewise cascade for energy in the ADM; that is, up to wave

number 1
δ
, i.e., over the resolved scales, the ADM cascades energy in the same manner as

in the NSE (k−5/3). However, after this wave number and up to the model’s microscale, the

ADM cascades energy at a faster rate (k−11/3). Interestingly, the results for helicity in the

ADM are analogous; helicity is cascaded at the correct rate of k−5/3 for wave numbers less

than 1
δ
, and for higher wave numbers up to the model’s microscale, helicity is cascaded at

a rate of k−11/3. This k−11/3 rate of enhanced decay is filter dependent, see Remark 9.3.2.

We deduce the microscale helicity in the ADM and we also show that the helicity cascade is

consistent (in the sense introduced by Chen, Chen and Eyink [11]) up to the model’s energy

microscale.

The following proposition recalls, from Rebholz [73], the helicity balance of the ADM

(5.2.1) (function spaces as in (5.2.2) and (5.2.3)).

Proposition 9.0.5 (Model’s helicity balance). For w0 ∈ H
2
(C)∩H(C) and f ∈ L2(0, T ;V′),

the unique strong solution w of (5.2.1) satisfies

(w(t),∇×w(t))N + δ2(∇×w(t), (∇×)2w(t))N

+ 2ν

∫ t

0

(∇×w(t′), (∇×)2w(t′))N + δ2((∇×)2w(t′), (∇×)3w(t′))N dt′

= (w0,∇×w0)N + δ2(∇×w0, (∇×)2w0)N +

∫ t

0

(f(t′),∇×w(t′))N dt′ (9.0.6)

Proof. See Rebholz [73].

Remark 9.0.1. Recall that the ADM renorms energy. See Section 5.1 for the definition and

properties of the new norm || · ||N and inner product ( · , · )N .
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Remark 9.0.2. From this proposition, we can clearly identify the analogs in the ADM (5.2.1)

of the physical quantities of helicity (Hmodel) and helicity dissipation rate (γmodel).

Definition 9.0.1. The model’s helicity, and the model’s helicity dissipation rate, are

Hmodel(t) :=
1

L3
{w(t),∇×w(t))N + δ2(∇×w(t), (∇×)2w(t))N} (9.0.7)

γmodel(t) :=
2ν

L3
{(∇×w(t), (∇×)2w(t))N + δ2((∇×)2w(t), (∇×)3w(t))N} (9.0.8)

Proposition 9.0.6. For smooth w,

Hmodel(t) = H(t) + O(δ2), γmodel(t) = γ(t) + O(δ2).

Proof. Follows from Definition 9.0.1, Proposition 5.1.1 and Lemma 5.1.4.

In this chapter, if two real quantities A, B (such as energy and helicity), satisfy C1(N)A ≤
B ≤ C2(N)A, where C1, C2 are positive constants depending only on N (which is fixed), we

write

A ' B.

We start by giving the decomposition of energy and helicity in spectral modes in Section

9.1. Section 9.2 derives the joint cascade of energy and helicity in the ADM and Section 9.3

shows how the ADM truncates scales for helicity.

9.1 SPECTRAL REPRESENTATION OF ENERGY AND HELICITY

In order to represent the true kinetic energy and the model’s kinetic energy spectrally, we

expand the velocity field w(x, t) in Fourier series1 as follows:

w(x, t) =
∑

k

∑

|k|=k

ŵ(k, t)eik·x, (9.1.1)

1In fact, under the Kolmogorov theory of homogeneous and isotropic turbulence, these sums are finite,
because the scales larger than the cut-off length scale are negligible.
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where the wave numbers k are given by k = 2π
L
n, n ∈ Z3, k = 2π

L
n, n ∈ N, and

ŵ(k, t) =
1

L3

∫

Ω

w(x, t)e−ik·x dx (9.1.2)

are the Fourier coefficients.

Using Parseval’s equality, the kinetic energy E(t) in (5.2.9) can be expressed as

1

2 L3
‖w(t)‖2 =

∑

k

∑

|k|=k

1

2
|ŵ(k, t)|2 . (9.1.3)

The above formula is equivalent to writing

E(t) =
2π

L

∑

k

E(k, t), (9.1.4)

where

E(k, t) :=
L

2π

∑

|k|=k

1

2
|ŵ(k, t)|2 . (9.1.5)

Then, the time averaged kinetic energy2 is

E =< E(t) >, or E =
2π

L

∑

k

E(k), (9.1.7)

where E(k) =< E(k, t) >.

2In full generality, since lim sup an + bn ≤ lim sup an + lim sup bn, we only have

E ≤ 2π

L

∑

k

E(k). (9.1.6)

This is a mathematical technicality, and equality holds if we use limits or generalized Banach limits (see e.g.
Foias et al. [27]) in the appropriate definitions. Furthermore, in the Kolmogorov theory, it is believed that
the limits involved exist. The same observation is true in Remark 9.1.1
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Remark 9.1.1. Equations similar to (9.1.4) and (9.1.7) hold with E replaced by Emodel, ε,

εmodel, H, Hmodel, γ, or γmodel. In other words, if X ∈ {Emodel, ε, εmodel, H,Hmodel, γ, γmodel},
then

X(t) =
2π

L

∑

k

X(k, t), (9.1.8)

and

X =< X(t) >, or X =
2π

L

∑

k

X(k), (9.1.9)

where X(k) =< X(k, t) >. Obviously, {Emodel, ε, εmodel, H, Hmodel, γ, γmodel} are not iden-

tical; what distinguishes between them in (9.1.8) and (9.1.9) is the fact that (9.1.5) has a

particular decomposition in each case, as illustrated by (9.1.3).

The model’s kinetic energy (5.2.5) and energy dissipation rate (5.2.6) can also be decom-

posed in Fourier modes.

Proposition 9.1.1. In Fourier space, (5.2.5) corresponds to

Emodel(t) =
∑

k

D̂N(k) (1 + δ2k2)E(k, t), (9.1.10)

or equivalently,

Emodel(t) =
∑

k

Emodel(k, t), (9.1.11)

where

Emodel(k, t) := D̂N(k) (1 + δ2k2)E(k, t). (9.1.12)
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Proof. Using Parseval’s equality again, we get

1

2 L3
‖w(t)‖2

N =
∑

k

∑

|k|=k

1

2
D̂N(k) |ŵ(k, t)|2 (9.1.13)

and

1

2 L3
‖∇w(t)‖2

N =
∑

k

∑

|k|=k

1

2
k2 D̂N(k) |ŵ(k, t)|2 . (9.1.14)

Recall from formula (5.2.5) that

Emodel(t) =
1

2L3
{||w(t)||2N + δ2||∇w(t)||2N},

so combining (9.1.13) and (9.1.14) proves the claim.

Lemma 9.1.1. In wave number space, we can rewrite (5.2.6), the model’s energy dissipation:

εmodel(t) = ν
4π

L

∑

k

D̂N(k) k2(1 + δ2k2)E(k, t). (9.1.15)

Using (9.1.12), equation (9.1.15) can be further simplified to

εmodel(t) = ν
4π

L

∑

k

k2Emodel(k, t). (9.1.16)

Proof. Start with equation (5.2.6) and proceed as in the proof of Proposition 9.1.1.

We now turn to the spectral representation of helicity. We need to start by defining

helical modes, e.g. Waleffe [87].

Definition 9.1.1. In a periodic box, the helical modes h± are orthonormal eigenvectors of

the curl operator, i.e. ik× h± = ±kh±. They satisfy k · hs = 0 and h∗s · h−s = 0, for s = ±
(here, * denotes complex conjugate).
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Remark 9.1.2. This is a particular case of the more general Yosida-Giga Theorem, stated

in Wu, Ma and Zhou [89]. In a singly-connected domain D, the solutions of the eigenvalue

problem (λ = ±1)

∇× φλ = λ k φλ in D

n · φλ = 0 on ∂D

exist and form a complete orthogonal set {φλ} ∈ L2
0(Ω).

Since w is incompressible, k · ŵ(k, t) = 0, i.e. ŵ is orthogonal to k and we can expand

ŵ(k, t) in terms of its projection on an orthogonal basis, chosen as {k,h+,h−}. Thus, we can

write ŵ(k, t) = a+(k, t)h+ +a−(k, t)h−, where a+(k, t) and a−(k, t) are the projections of ŵ

on h+ and h−, respectively. For the spectral decomposition of helicity, we follow Chen, Chen

and Eyink [11] and Waleffe [87] and expand ŵ(k, t) in a basis of helical modes. Therefore,

velocity and vorticity can be expanded as

w(x, t) =
∑

k

∑

|k|=k

∑
s=±

as(k, t)hs(k)eik·x, (9.1.17)

∇×w(x, t) =
∑

k

∑

|k|=k

∑
s=±

s k as(k, t)hs(k)eik·x (9.1.18)

Similarly,

(∇×)nw(x, t) =
∑

k

∑

|k|=k

∑
s=±

snknas(k, t)hs(k)eik·x. (9.1.19)

Recall first the definition of helicity, equation (9.0.2), for the model’s velocity w. Ex-

panding w in helical modes, we get

H(t) =
2π

L

∑

k

H(k, t),

where

H(k, t) := k
L

2π

∑

|k|=k

∑
s=±

s |as(k, t)|2.
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Proposition 9.1.2. The model’s helicity spectrum, Hmodel(k, t) is related to the true helicity

spectrum, H(k, t), as

Hmodel(k, t) = D̂N(k)(1 + δ2k2)H(k, t). (9.1.20)

Proof. Using (9.1.17)-(9.1.19), we have

1

L3
(w(t),∇×w(t))N =

∑

k

∑

|k|=k

∑
s=±

sD̂N(k)k |a(k, t)|2

and

1

L3
(∇×w(t), (∇×)2w(t))N =

∑

k

∑

|k|=k

∑
s=±

sD̂N(k)k3 |a(k, t)|2

so that, from (9.1.8) with X = Hmodel, and from (9.0.7),

Hmodel(t) =
2π

L

∑

k

Hmodel(k, t) =
2π

L

∑

k

D̂N(k)(1 + δ2k2)H(k, t). (9.1.21)

Corollary 9.1.1. Hmodel(k, t) and H(k, t) satisfy Hmodel(k, t) ' (1 + δ2k2)H(k, t):

(1 + δ2k2)H(k, t) ≤ Hmodel(k, t) ≤ (N + 1)(1 + δ2k2)H(k, t). (9.1.22)

Proof. By Lemma 5.1.2, 1 ≤ D̂N(k) ≤ N + 1 is bounded.

Lemma 9.1.2. In wave number space, we can rewrite (9.0.8), the model’s helicity dissipation

in the form

γmodel(t) = ν
∑

k

∑

|k|=k

∑
s=±

D̂N(k) sk3(1 + δ2k2) |as(k, t)|2 . (9.1.23)

Using (9.1.21), (9.1.23) can be further simplified to

γmodel(t) = ν
2π

L

∑

k

k2Hmodel(k, t). (9.1.24)

Proof. Use (9.1.17)-(9.1.19) to write (9.0.8) in helical modes.
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9.2 PHENOMENOLOGY OF THE JOINT ADM ENERGY AND

HELICITY CASCADE

Since helicity plays a key role in organizing three dimensional flows, it is important to

understand the extent to which statistics of helicity predicted by an LES model are correct.

We answer that question in this section by extending the similarity theory of approximate

deconvolution models (begun in Layton and Neda [56]) to elucidate the details of the model’s

helicity cascade and its connection to the model’s energy. Inspired by the earlier work on

helicity cascades in the Navier-Stokes equations done by Brissaud, Frisch, Leorat, Lesieur

and Mazure [10], Ditlevsen and Giuliani [19, 20], Chen, Chen and Eyink [11], we investigate

the existence and details of the joint cascade of energy and helicity for the family of ADM,

adapting a dynamic argument of Kraichnan, [50].

Let Πmodel(k) and Σmodel(k) denote the total energy and helicity transfer from all wave

numbers < k to all wave numbers > k.

Definition 9.2.1. We say that the model exhibits a joint cascade of energy and helicity if

in some inertial range Πmodel(k) and Σmodel(k) are independent of the wave number, i.e.,

Πmodel(k) = εmodel and Σmodel(k) = γmodel.

Following Kraichnan’s formulation of Kolmogorov’s ideas of localness of interaction in k

space, we assume the following.

Assumption 9.2.1. Πmodel(k) (Σmodel(k)) is proportional to the ratio of the total energy

∼ kEmodel(k) ( total helicity ∼ kHmodel(k)) available in wave numbers of order k and to

some effective rate of shear σ(k) which acts to distort flow structures of scale 1/k.

The distortion time τ(k) of flow structures of scale 1/k due to the shearing action σ(k)

of all wave numbers ≤ k is given by:

τ(k) ∼ 1

σ(k)
with σ(k)2 ∼

∫ k

0

p2Emodel(p)dp. (9.2.1)

The conjecture of joint linear cascades of energy and helicity is based on the idea (sup-

ported by numerical experiments of Bourne and Orszag [8]) that since energy and helicity
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are both dissipated by the same mechanism (viscosity), they relax over comparable time

scales.

Assumption 9.2.2. τ(k) and σ(k) are the same for energy and helicity of the model.

We therefore write

Πmodel(k) ∼ kEmodel(k)/τ(k) and Σmodel(k) ∼ kHmodel(k)/τ(k). (9.2.2)

In the definition of mean-square shear (9.2.1) the major contribution is from p ∼ k, in

accord with Kolmogorov’s localness assumption. This gives

τ(k) ∼ k−3/2E
−1/2
model(k). (9.2.3)

The energy spectrum Emodel(k) was derived in Layton and Neda [56], using similar tools:

Emodel(k) ∼ ε
2/3
modelk

−5/3. (9.2.4)

Putting (9.2.2) and (9.2.3) together with the fact that Σmodel(k) = γmodel, it follows that

the ADM model helicity spectrum is given by:

Hmodel(k) ∼ γmodelk
−5/2E

−1/2
model(k)

i.e.,

Hmodel(k) ∼ γmodelε
−1/3
modelk

−5/3. (9.2.5)

Using relation (9.1.22), we write

H(k) ' γmodelε
−1/3
modelk

−5/3

1 + δ2k2
,

which shows that the true helicity spectrum is cut by this family of models as

H(k) ∼ γmodelε
−1/3
modelk

−5/3, for k ≤ 1

δ
, (9.2.6)

H(k) ∼ γmodelε
−1/3
modelδ

−2k−11/3 , for k ≥ 1

δ
. (9.2.7)

The above result is depicted in Figure 12.
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Figure 12: The helicity spectrum of Approximate Deconvolution Models

The true energy spectrum is influenced by the ADM in a similar fashion, as proven in

Layton and Neda [56]

E(k) ∼ ε
2/3
modelk

−5/3, for k ≤ 1

δ
, (9.2.8)

E(k) ∼ ε
2/3
modelδ

−2k−11/3 , for k ≥ 1

δ
. (9.2.9)

Thus, down to the cut-off length scale (or up to the cut-off wave number) the ADM predicts

the correct energy and helicity cascades.

9.3 MODEL’S HELICITY MICROSCALE AND CONSISTENCY OF THE

CASCADE

On a small enough scale, viscosity grinds down all the flow’s organized structures (including

helicity) and ends all cascades (including the helicity cascade). The length scale, ηH , at
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which helical structures do not persist and begin to decay exponentially fast is called the

helicity microscale (in analogy with the Kolmogorov microscale for kinetic energy). The

correct estimate of the helicity microscale for the NSE is unclear: two estimates with strong

arguments in favor of each appear in the literature. The microscale has been estimated

for isotropic turbulence by Ditlevsen and Giuliani in [19] to be different (larger) than the

Kolmogorov scale ηKolmogorov: ηH ∼ ν−3/7γ3/7ε−2/7 based on the decomposition of helicity

flux in ± helical modes. On the other hand, Chen, Chen and Eyink in [11] show that the

net helicity flux is constant up to ηKolmogorov(= k−1
E ), so there is no shorter inertial range for

helicity cascade.

In this section, we find that the same occurs when one computes the model’s helicity

microscale. Based on the equilibrium of the helicity flux, we derive a model’s helicity mi-

croscale, ηH
model, whereas we show that the model’s helicity cascade derived in Section 9.2 is

consistent up to kEmodel
(= (ηE

model)
−1), in the sense introduced by and Chen, Chen and Eyink

in [11]. These two results do not contradict each other.

9.3.1 Model’s helicity microscale

Using ideas in [56] from the derivation of the energy microscale, ηE
model, we estimate the

ADM’s helicity microscale to be:

ηH
model ∼ Re−3/11δ6/11L5/11, if δ < ηH

model

ηH
model ∼ Re−3/5L, if δ > ηH

model

Let the reference velocity and length scale for the large scales be U,L, and wsmall, η
H
model,

for the small scales. From Layton and Neda [56] the analog of the small scales and large

scales Reynolds number of the model are given by

Relarge ∼ |nonlinearity|
|viscous terms|

∣∣∣∣
large scales

, Resmall ∼ |nonlinearity|
|viscous terms|

∣∣∣∣
small scales

.

Definition 9.3.1.

Remodel−Large =
UL

ν(1 + ( δ
L
)2)

and Remodel−Small =
wsmallη

H
model

ν(1 + ( δ
ηH

model
)2)

(9.3.1)

121



The ADM’ energy and helicity cascade are halted by viscosity grinding down eddies

exponentially fast. This occurs when Remodel−Small ∼ O(1), that is, when

wsmallη
H
model

ν(1 + ( δ
ηH

model
)2)

∼ 1. (9.3.2)

Equation (9.3.2) determines wsmall

wsmall ∼
ν(1 + ( δ

ηH
model

)2)

ηH
model

. (9.3.3)

The next important equation to determine the helicity microscale comes from statistical

equilibrium of the helicity flux: the helicity input at the large scales must match helicity

dissipation at the microscale. The rate of helicity input to the largest scales is the total

helicity (from (9.0.7)) over the associated time scales

Hmodel

(L
U
)

=
U2

L
(1 + ( δ

L
)2)

(L
U
)

=
U3

L2

(
1 +

(
δ

L

)2
)

. (9.3.4)

From (9.0.8), we see that helicity dissipation at the model’s microscale scales as

γsmall ∼ ν

(
w2

small

(ηH
model)

3

(
1 +

(
δ

ηH
model

)2
))

. (9.3.5)

This must match the helicity input. There are three cases with the third being the only

important one: δ = O(ηKolmogorov), δ = O(L) and the typical case of δ in the inertial range:

ηKolmogorov << δ << L. If δ ∼ O(ηKolmogorov), then the simulation reduces to a direct

numerical simulation of the NSE. If δ ∼ O(L), then we do not have LES, but VLES (Very

Large Eddy Simulation). In the case of VLES, results follow similarly to those below, but

are omitted here.

In the case δ = O(ηKolmogorov), we have

(1 +

(
δ

L

)2

) ∼ 1 and (1 +

(
δ

ηH
model

)2

) ∼ 1. (9.3.6)

Thus, under (9.3.6), at statistical equilibrium (9.3.4) and (9.3.5) imply that

U3

L2
∼ ν

w2
small

(ηH
model)

3
. (9.3.7)
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Since wsmall simplifies to ν/ηH
model, we get

ηH
model ∼ Re−3/5L,

using that Re = LU/ν.

In the most important case,

ηH
model << δ << L

we have

(1 +

(
δ

L

)2

) ∼ 1 and (1 +

(
δ

ηH
model

)2

) ∼
(

δ

ηH
model

)2

.

Matching helicity microscale dissipation to large scale input thus simplifies in this case to

U3

L2
∼ ν

w2
smallδ

2

(ηH
model)

3(ηH
model)

2
. (9.3.8)

Further, when ηKolmogorov << δ << L, the small scale velocity in (9.3.3) reduces to

wsmall ∼ νδ2

(ηH
model)

3
. (9.3.9)

Substituting (9.3.9) into (9.3.8) gives

U3

L2
∼ ν3δ6

(ηH
model)

11
. (9.3.10)

Solving (9.3.10) for ηH
model, and using Re = LU/ν gives the model’s helicity microscale,

ηH
model ∼ Re−3/11δ6/11L5/11. (9.3.11)

The ADM helicity microscale is slightly larger than the ADM energy microscale (found in

Layton and Neda [56]): ηE
model ∼ Re−3/10L4/10δ6/10. Hence, capturing wave numbers up to

the highest energetic wave number will also capture all wave numbers containing significant

helicity.
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9.3.2 Consistency of the ADM joint cascade

The model’s energy and helicity dissipation rates are given by equations (9.1.16) and (9.1.24)

above, which are equivalent to 3

εmodel(t) ∼ ν

∫ ∞

0

k2Emodel(k, t)dk. (9.3.12)

and

γmodel(t) ∼ ν

∫ ∞

0

k2Hmodel(k, t)dk. (9.3.13)

Lemma 9.3.1. The wavenumber of the energy microscale of the ADM model (5.2.1) is given

by

kEmodel
∼ ν−3/4ε

1/4
model.

Proof. Based on (9.3.12), the mean (time-averaged) energy dissipation equals to

< εmodel(t) >∼ ν

∫ kEmodel

0

k2Emodel(k)dk,

where the upper limit of the integral is kEmodel
, the wave number of the smallest persistent

scales in the model’s solution. Using also (9.2.4) we derive the estimate for kEmodel
in the

usual way as kE was derived for NSE.

< εmodel(t) >∼ νk3
Emodel

Emodel(kEmodel
) ∼ νk3

Emodel
(ε

2/3
modelk

−5/3
Emodel

) ∼ εmodel.

Solving for kEmodel
gives the result.

Since γmodel is usually defined as < γmodel(t) > and the RHS of (9.3.13) can be calculated

by spectral integration through the inertial range, checking this definition is a way to test if

the estimate derived for the end of the inertial range is correct (or consistent).

3Recall that k = 2πn
L , and observe that (9.1.1) and (9.1.2) can be written as

w(x, t) =
∑

k

ŵ(k, t)eik·x∆k, and ŵ(k, t) =
1

(2π)3

∫

Ω

w(x, t)e−ik·x dx,

with ∆k = ∆k1∆k2∆k3 and ∆ki = 2π
L , i = 1, 2, 3. Then, for small enough ∆ki (or large enough L), the sum

can be replaced by an integral.
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Lemma 9.3.2. Provided the largest wave number containing helicity is no larger than

kEmodel:

< γmodel(t) > ∼ γmodel.

Proof. Substituting the helicity cascade result (9.2.5) and evaluating the integral (9.3.13) up

to kEmodel gives

< γmodel(t) > ∼ νγmodelε
−1/3
model(k

4/3
Emodel)

∼ νγmodelε
−1/3
modelν

−1ε
1/3
model

∼ γmodel

Remark 9.3.1. We want to stress out that < γmodel(t) > ∼ γmodel only if we integrate up

to kEmodel
, i.e. only if the end of the inertial range for helicity is the same as the end of the

inertial range of energy.

Remark 9.3.2 (Other Filters). With the differential filter (5.1.1), scales begin to be trun-

cated by the model at the lengthscale l = O(δ) by an enhanced decay of the energy and

helicity cascade of k−11/3. Examining the derivation, the exponent −11/3 (= −5/3 + (−2))

occurs because the filter decays as k−2. With a fourth order differential filter, these results

would be modified to k−14/3 (−14/3 = −5/3 + (−4)) between the cut-off wavenumber and the

microscale. Continuing, it is clear that with the Gaussian filter (which decay exponentially

after kC = O(1/δ)), exponential decay begins at kC = 1/δ. In other words, with the Gaussian

filter, kC = O(1/δ) = O(1/ηH
model) = O(1/ηE

model).
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10.0 CONCLUSIONS AND OPEN PROBLEMS

The central idea and major motivation for this thesis was to understand and develop the

mathematical theory related to turbulent flow problems. In Chapters 2 to 4 we have con-

centrated on the Navier-Stokes equations, while in Chapters 5 to 9, we have focused on LES

models.

In Chapter 2, we discussed the concept of turbulence and its connection to the Navier-

Stokes equations, explaining why these are a never-ending source of exciting and challenging

questions. Then, in Chapter 3, we addressed the importance of accurately predicting statis-

tics. We studied a simple yet interesting case of internal flow, with higher Reynolds number,

large initial data and asymptotically small body force. These estimates were applied to the

practical problems of predicting drag and lift. We also pointed out where the difficulty in the

analysis lies for the case of arbitrary body force and initial condition. However, in the case of

large body force (shear flow) we determined that statistics of the computed approximation

do reflect statistics of the true solution.

Our long-term goal is to develop a theory paralleling and inspired by the theory of shad-

owing in approximation of dynamical systems,, e.g. Pilyugin [71], Ostermann and Palencia

[70] and Hammel, Yorke and Grebogi [34], i.e., to understand when computed time-averaged

statistics from numerical simulations of the Navier-Stokes equations reflect statistics cor-

responding to the exact solution of the Navier-Stokes equations with the data (which is

essentially driving the flow) perturbed.

In Chapter 5 we narrowed our investigation of turbulent flow simulation to focus in LES

models, in particular, ADM. In Chapter 6, we studied the finite element semi-discretization

of the Zeroth Order Model, proving that the precise implementation of the filtering operation

plays a major role in the stability and convergence properties of the scheme: filtering must
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be implemented in the same mesh as the solution is computed. This guarantees a stable

formulation, with optimal convergence rates when δ = O(h), which is consistent with the

literature and simulations with other models, e.g. Iliescu, John, Layton, Matthies and

Tobiska [39] and John [41]. In terms of computations, this means that solving the filter

problem in a finer mesh does not improve the overall performance of the scheme and may

even produce an unstable approximation.

Numerical confirmation for these results were pursued and presented in Chapter 7. We

provided an example where the kinetic energy computed with the exact filter blows up in

finite time and then presented more extensive tests with the discrete filter. At this time,

we are not (yet) able to numerically verify the convergence rates predicted by the theory.

We have preliminary convergence studies for the Chorin problem described in Section 7.2

with n = 1, τ = Re = 1, dt = 0.0001 and 200 time steps (i.e. T = 0.2). Set e = u − uh.

The results are shown in Table 3. They indicate that the time step should be even smaller,

because the convergence rates for ‖e‖L∞(0,T,L2(Ω)) begin to deteriorate for small h.

h ‖e‖L∞(0,T,L2(Ω)) rate ‖∇e‖L∞(0,T,L2(Ω)) rate ‖∇e‖L2(0,T,L2(Ω)) rate

1/4 5.22 10−3 2.98 2.79 10−1 2.98 2.16 10−2 1.96

1/8 6.64 10−4 2.99 3.55 10−2 2.99 5.55 10−3 1.99

1/16 8.34 10−5 2.40 4.45 10−3 3.00 1.40 10−3 1.99

1/32 1.58 10−5 5.58 10−4 3.51 10−4

Table 3: Preliminary convergence studies for the discrete filter.

In Chapter 8, we proposed a discretization of the Zeroth Order Model based on a mixed

variational formulation that reflects the natural energy properties of the model. Optimal

convergence rates are obtained if δ = O(h). Additionally, time averaged error estimates

were presented. For the special case of asymptotically small body force, they proved to be

optimally computable.

Lastly, in Chapter 9, a joint energy and helicity cascade has been shown to exist for

homogeneous, isotropic turbulence generated by approximate deconvolution models. The

energy and helicity both cascade at the correct O(k−5/3) rate for inertial range wave numbers
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up to the cut-off wave number of O(1
δ
), and at O(k−11/3) afterward until the model’s energy

and helicity microscale. A microscale for helicity dissipation has been identified for flows

predicted by ADM. As expected, it is larger than both the Kolmogorov scale (i.e. the ADM

truncates scales), and the microscale for energy dissipation in the ADM (i.e. capturing all

scales containing energy will also capture all scales containing helicity).

Next, we consider some open questions and future research problems.

10.1 FILTERING AS THE SOLUTION OF A STOKES PROBLEM

The natural choice of a differential filter for an incompressible fluid LES model is the Stokes

filter, since incompressibility is preserved. In that case, φ is the solution of

− δ2∆φ + φ +∇µ = φ and ∇ · φ = ∇ · φ in Ω (10.1.1)

φ = φ on ∂Ω

Using this differential filter, proceeding as in Section 6.1, the space filtered Navier-Stokes

equations become

ut +∇ · (uu + O(δ2))− ν∆u +∇p = f in (0, T ]× Ω,

∇ · u = 0 in [0, T ]× Ω,

u = 0 on [0, T ]× ∂Ω,

u(0,x) = u0(x) in Ω.

(10.1.2)

Note that, comparing to (6.1.2), u is exactly incompressible and the pressure p is also

filtered. Letting (w, λ) denote the approximation to (u, p) and dropping the O(δ2) terms,

system (10.1.2) gives that (w, λ) satisfies

wt +∇ · (ww)− ν∆w +∇λ = f in (0, T ]× Ω,

∇ ·w = 0 in [0, T ]× Ω,

w = 0 on [0, T ]× ∂Ω,

w(0,x) = u0(x) in Ω.

(10.1.3)
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Let us look at the discretization of this model. For the moment, let T h be the analogous

of (6.2.2) for the new filter (10.1.1). The continuous in time finite element method for (10.1.3)

is: find (wh, λh) in (Xh, Qh) such that

(wh
t ,v

h) + ν(∇uh,∇vh) + Bh(wh,wh,wh) + (λh,∇ · vh) = (T h(f),vh), ∀vh ∈ Xh

(∇ ·wh, qh) = 0, ∀qh ∈ Qh.

The key step for stability of this discretization is to construct Ah : Vh → Vh, an inverse

to T h restricted to Vh. In that case, Bh(wh,wh, Ahwh) = 0 and (λh,∇ · (Ahwh)) = 0, since

Ahwh is weakly divergence free.

10.2 EXTENSION OF THE DISCRETE FILTER TO THE NTH ORDER

MODELS

The formulation of a discretization for the N th Order ADMs should be a straightforward

extension from that of the Zeroth Order Model. Our conclusion is basically that this will be

achieved as soon as the issues with the Stokes filter, pointed out in the previous section, are

resolved.

The discretization proposed in Chapter 6 can be extended to the higher order models,

according to

wt +∇ · (DNwDNw)− ν∆w +∇λ = f in (0, T ]× Ω,

∇ ·w = 0 in [0, T ]× Ω,

w = 0 on [0, T ]× ∂Ω,

w(0,x) = u0(x) in Ω,

(10.2.1)

but some drawbacks must be noted:

• the O(δ2) error introduced to guarantee incompressibility can no longer be overlooked,

for it is now larger than the modeling error of O(δ2N+2);
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• the model could be unstable: if we multiply the discrete formulation by wh, the pressure

term vanishes, but the nonlinear term does not; if we multiply it instead by AhDNwh,

then the opposite happens.

Nevertheless, we have one example, for the First Order Model, that shows that this

discretization can give good results.

Consider the step problem again, flow field at T = 10, 20, 30, 40, with δ = 1/8. The

results in Figure 13 are comparable to the results in Figure 11, but were obtained for the

same mesh used to calculate the data in Figure 10. This indicates that higher order models

may be able to compute accurate approximations on coarser meshes than the meshes needed

for low order models.
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Figure 13: First Order Model comparable to Zeroth Order Model with fewer degrees of

freedom.
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Pisa, 2000.

[6] L.C. Berselli, T. Iliescu, and W. Layton. Mathematics of Large Eddy Simulation of
Turbulent Flows. Scientific Computation. Springer, 2006.

[7] M. Bertero and B. Boccacci. Introduction to Inverse Problems in Imaging. IOP Pub-
lishing Ltd., 1998.

[8] J. Bourne and S. Orszag. Spectra in helical three-dimensional homogeneous isotropic
turbulence. Physics Review Letters E, 55:7005–7009, 1997.

[9] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Springer-Verlag,
1991.

[10] A. Brissaud, U. Frisch, J. Leorat, M. Lesieur, and A. Mazure. Helicity cascades in fully
developed isotropic turbulence. Physics of Fluids, 16(8):1366–1367, 1973.

[11] Q. Chen, S. Chen, and G. Eyink. The joint cascade of energy and helicity in three
dimensional turbulence. Physics of Fluids, 15(2):361–374, 2003.

[12] Q. Chen, S. Chen, G. Eyink, and D. Holm. Intermittency in the joint cascade of energy
and helicity. Phys. Rev. Lett., 90:214503, 2003.

131



[13] A. Cheskidov, D. D. Holm, E. Olson, and E. S. Titi. On a Leray-α model of turbulence.
In Royal Society London, editor, Mathematical, Physical and Engineering Sciences,
volume 461 of A, pages 629–649, 2005.

[14] A. Chorin. Numerical solution for the Navier-Stokes equations. Math. Comp., 22:745–
762, 1968.

[15] A. J. Chorin and J. E. Marsden. A Mathematical Introduction to Fluid Mechanics.
Springer-Verlag, New-York, 1993.

[16] P. Constantin and C. Doering. Energy dissipation in shear driven turbulence. Physical
Review Letters, 69(11):1648–1651, 1992.

[17] P. Constantin and C. Foias. Navier-Stokes Equations. University of Chicago Press,
Chicago, IL, 1988.

[18] J. W. Deardorff. A numerical study of three-dimensional turbulent channel flow at large
Reynolds numbers. J. Fluid Mech., 41:453–480, 1970.

[19] P. Ditlevsen and P. Giuliani. Cascades in helical turbulence. Physical Review E,
63:036304, 2001.

[20] P. Ditlevsen and P. Giuliani. Dissipation in helical turbulence. Physics of Fluids,
13(11):3508–3509, 2001.

[21] T. Dubois, F. Jauberteau, and R. Temam. Dynamic multilevel methods and the numer-
ical simulation of turbulence. Cambridge University Press, 1999.

[22] A. Dunca and Y. Epshteyn. On the Stolz-Adams deconvolution LES models. SIAM J.
Math. Anal., 37(6):1890–1902, 2006.

[23] A. Dunca and V. John. Finite element error analysis of space averaged flow fields defined
by a differential filter. Math. Models and Meth. in Appl. Sci., 14(4):603–618, 2004.

[24] A. Dunca, V. John, and W. Layton. Approximating local averages of fluid velocities:
the equilibrium Navier-Stokes equations. Appl. Numer. Math., 49:187–205, 2004.

[25] A. Dunca, V. John, and W. Layton. The commutation error of the space averaged
Navier-Stokes equations on a bounded domain. In Birkhauser Verlag Basel, editor,
Advances in Mathematical Fluid Mechanics, pages 53–78, Switzerland, 2004.

[26] J. H. Ferziger. Direct and Large Eddy Simulation of Turbulence. In A. Vincent, editor,
Numerical Methods in Fluid Mechanics, volume 16 of CRM Proceedings and Lecture
Notes, Centre de Recherches Mathematiques, Universite de Montreal, 1998. American
Mathematical Society.

[27] C. Foias, O. Manley, R. Rosa, and R. Temam. Navier-Stokes equations and turbulence.
Encyclopedia of Mathematics. Cambridge University Press, 2001.

132



[28] G.P. Galdi. An introduction to the Navier-Stokes initial-boundary value problem. In
G.P. Galdi, J.G. Heywood, and R. Rannacher, editors, Fundamental Directions in Math-
ematical Fluid Dynamics, pages 1 – 70. Birkhäuser, 2000.
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