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Mount Edziza Volcanic Complex (MEVC) lies within the Northern Cordilleran Volcanic 

Province (NCVP), in northwest British Columbia, Canada. The eruption products have been 

emplaced in a variety of subaerial, sub-ice and subaqueous environments from about 8Ma to less 

than 2000 y.b.p. (Souther, 1992).   Ice Peak Formation (IPF) trachyte lava flows of 

approximately 1Ma age (Souther, 1992) are exposed at Ornostay Bluff (OB) and Koosick Bluff 

(KB).  These flows comprise basal flow breccias overlain by massive conchoidally-fractured 

lava with large, poorly-developed columns, and local flow banding.  Edziza Formation (EF) 

approximately 1Ma (Souther, 1992) phonolite is exposed at Triangle Dome (TD).  TD can 

broadly be divided into an upper and lower zone.  The upper zone comprises poorly-developed 

columns in addition to prominent jointing.  In the lower zone the columns are planar and 75cm-

3m-wide in the interior of the complex grading into fan-like and curved subhorizontal columns 

<75cm-wide in the outer margins of the lower zone.  The upper zone is interpreted as an 

“entablature” where slow cooling was overprinted by joints formed during abrupt cooling due to 

water ingress.  Local areas with well-developed columnar jointing in the upper zone may reflect 

endogenous growth by late-stage intrusive emplacement, or areas where water ingress was less 

efficient.  The lower zone is interpreted as a “lower colonnade” with slower cooling and less 

water ingress during cooling.  The fan-like columns in the outer margins of the lower zone 

reflect cooling by direct contact with curved margins of the ice cavity.  The estimated minimum 
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thickness of the ice-contact zone is ~60m reflected by the thickness of the lower zone.  

Identifying ice-contact structures in trachytic-phonolitic lavas is difficult, especially in glacially 

eroded examples such as OB and KB, where marginal cooling-columns and structures caused by 

direct contact with ice have been eroded.  Trachyte lavas display a wide range of viscosities, 

flow thicknesses, and aspect ratios therefore caution is required in interpreting “overthick” flows 

as having formed by confinement by former ice.  Studies that focus on comparisons of estimated 

flow velocities and rates of ice melting are useful, though there are numerous unaccounted for 

variables in these models. 
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1.0  GOAL OF RESEARCH 

The main purpose of this research has been to document evidence that will allow the 

distinction to be made between trachyte/phonolite lavas that have contacted ice-water from those 

which have not.  Lava flows which have contacted ice include those emplaced entirely beneath 

ice, as well as those emplaced subaerially against ice along their margins.  Note that some 

authors (e.g. Head and Wilson, 2007) use intrusive terms such as “sill” and “dike” for initial 

emplacement beneath ice.  During the early phases of intrusion into ice strain rates can be very 

high and the ice may behave like a rock.  Under these conditions it is therefore more appropriate 

to use such terms.  However, for the sake of simplicity, terms associated with effusive 

emplacement are used here, namely, “lava” and “lava flow”. 

The most important research question that we are trying to answer in this project is “How 

do trachyte-phonolite lavas that have contacted ice differ from those emplaced in a ice-free 

environment?” 
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2.0  MOTIVATION 

There has been a large growth of interest in the processes and products of volcano-ice 

interaction both on Earth and Mars in the last decade (e.g. Squyres et al., 1987; Mouginis-Mark, 

1989; Garvin et al., 2000; Wilson and Head, 2007; Smellie and Chapman, 2002; Head and 

Wilson, 2007; McGarvie et al., 2007; Morris and Mouginis-Mark, 2006; Schopka et al., 2005; 

Milkovich et al., 2006).  This expansion of research interest is related to several factors, 

including the observation that (1) such results can provide a record of the presence of former ice 

and its thickness; (2) large volumes of meltwater generated during such eruptions or between 

eruptions can provide an important habitat for extremophiles (on Earth and maybe Mars); (3) 

such eruptions can provide a potential mechanism for destabilization of ice sheets (Smellie, 

2002; Blankenship, 1993; Corr and Vaughan, 2008) and (4) such eruptions can generate serious 

flood hazards in places like south Iceland (Stevenson et al.,  2006; Tómasson, 1996; Scharrer et 

al.,  2007; Alho et al., 2004).   
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Figure 1: Distribution of Neogene and Quaternary volcanic rocks in the Canadian Cordillera 

GVB – Garibaldi volcanic belt, WGC – Wells Gray-Clearwater volcanic field, AVB – Anaheim 

volcanic belt, WVR – Wrangell volcanic belt, and NCVP – the northern Cordilleran volcanic 

province.  The NCVP extends from DC – Dawson Creek, Yukon Territory in the north, south to S – 

Stewart, British Columbia.  Inset Fig shows the relationship of the NCVP and other volcanic areas in 

North America including: AVA – Aleutian volcanic arc, CVA – the Cascade volcanic arc, CP – 

Chilcotin plateau basalts, CRP – the Columbia River plateau basalt field, SRP – the Snake River 

Plain, and BR/GR – the Basin and Range-Rio Grande rift system.  Additionally (right), the 

distribution of volcanic centers in the NCVP with respect to the major tectonostratigraphic terrane 

boundaries and the Denali and Tintina fault systems (after Edwards and Russell, 2000).  

 

Ice-contact lavas are arguably more important than clastic rocks with regard to their 

potential use as a record of former ice conditions, because they are generally more easily dated. 

Ice-contact lavas of intermediate (such as trachtyes) or felsic composition are of particular 

importance as they are more easily dated by 39Ar-40Ar than mafic lavas.  Lavas are generally 
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better preserved than clastic sequences in the rock record, and are more likely to preserve 

evidence of confinement against ice than clastic deposits.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Map showing the approximate extent of the Cordilleran Ice Sheet (CIS)  

at Late Glacial Maximum. Location of Mount Edziza Volcanic Complex (EVC) and ice flow 

directions are illustrated (after Dawson, 1992) 

 

 

Trachytic and phonolite lavas that have been interpreted as having been emplaced 

beneath or in contact with ice have only been recorded from two areas on Earth, namely the 

Northern Cordilleran Volcanic Province (NCVP) of Canada (Edwards and Russell, 2000; Fig 1) 

and west Antarctica (LeMasurier, 2002).  The trachyte lavas of the NCVP are particularly 
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important in a North American context as they offer us an insight into the thickness and extent of 

the Cordilleran Ice Sheet (CIS), which once covered this entire volcanic province (Fig 2).   

There are very few studies on the emplacement of trachytic lavas in any subaqueous 

environment, so this study will add to this body of literature (e.g. Sohn, 1995; LeMasurier, 

2002).  In addition, most trachytic magmas are compositionally and hence rheologically similar 

to andesites, which are very much more common as lava flows on many stratovolcanoes around 

the world, therefore the results of this study could also be applied to these more common 

volcanic products. 
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3.0  INTRODUCTION 

In order to address the principal research question of this project as to “How do 

trachyte-phonolite lavas that have contacted ice differ from those emplaced in an ice-free 

environment?” the study was divided into four parts.  The sections of this thesis which 

correspond to these parts are given in parentheses. 

(1) Detailed field study of three extensive exposures of trachyte and phonolite lavas, at 

the Mount Edziza Volcanic Complex (MEVC), northern British Columbia (Fig. 4).  The lavas, 

exposed in three bluffs were previously interpreted as having been emplaced during glacial times 

(Souther, 1992; Section 12) 

(2)  Compilation of descriptions and interpretation of emplacement mechanisms and 

resultant structures of subaerial and submarine felsic to intermediate (with emphasis on 

trachyte) lavas in the literature for comparison with the above field study of likely ice-contact 

trachytes at the MEVC (Section 9)  

 (3)  Compilation of all known viscosity and flow dimensional data on trachtye lavas from 

the literature and comparison of this data with new data calculated from MEVC trachyte 

analyses and their estimated flow thicknesses and aspect ratios.  (Section 11) 

(4)  Study of rate of trachyte lava flow advance at MEVC compared with the estimated 

rate of ice melting to see if direct ice contact or just meltwater generation would have occurred.  

(Section 14) 
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4.0  LOCATION 

The Mount Edziza Volcanic Complex (MEVC, 57°43'0"N, 130°38'0"W; UTM 402906E, 

6398705N) is an aerially extensive, long lived (> 5 m.y.), voluminous complex that lies in the 

Regional District of Kitimat-Stikine, British Columbia, Canada (Figs 1 and 3).   
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Figure 3:  Location of Mount Edziza Volcanic Complex (MEVC) and two nearby volcanic complexes 

where ice-contact evidence has been observed, namely Level Mountain and Hoodoo Mountain.  

Image data from NASA I-Cubed ESAT World Landsat 7 Mosaic with 15 m resolution, image 

composed with NASA World Wind 1.4. 

 

The MEVC is comprised of a large (~ 1000 km2), steep sided plateau, approximately 75 

km long and 20 km wide, situated between the Klastline River Valley to the north, the Mess 

Creek Valley and larger Stikine River Valley to the west and the Iskut River Valley to the east 

(Fig 4).  The plateau rises to elevations of 1500 m to 1800 m with peaks to 2590 m.  The present 

day summit at Mount Edziza’s peak is glacier filled and has been interpreted as a caldera 

(Souther, 1992).  Several other glaciers still cover the central portions of the complex including 

Tencho Glacier (Fig 6).   
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Figure 4:  Map showing the outline of the Mount Edziza Volcanic Complex (MEVC) 

main vehicle access route (Cassiar-Stewart Highway), principalrivers (Stikine River, Mess Creek, 

and Iskut Rivers) and main settlements (Iskut and Telegraph Creek).  Image data from NASA I-

Cubed ESAT World Landsat 7 Mosaic with 15 m resolution, image composed with NASA World 

Wind 1.4. 

 

There are no roads into the area, the closest roadway being the Cassiar-Stewart Highway 

to the east.  Access to the area can be achieved most efficiently by helicopter from the nearby 

towns of Iskut or Dease Lake (Fig 4).   

The three bluffs of trachyte-phonolitelava studied at the MEVC for this project are 

Ornostay Bluff (OB), Koosick Bluff (KB), and Triangle Dome (TD, Fig 5) 
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Figure 5:  The field area is located on the western flanks of MEVC.   

Triangle Dome, the feature furthest to the north, as well as Koosick Bluff and Ornostay Bluff are 

shown.   Image data from NASA I-Cubed ESAT World Landsat 7 Mosaic with 15 m resolution, 

image composed with NASA World Wind 1.4. 
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5.0  PREVIOUS WORK AT MOUNT EDZIZA VOLCANIC COMPLEX 

Previous geologic work at the MEVC began in the 1940’s when Kerr described erosional 

remnants of basaltic lava flows resting on river gravels in the Stikine Valley near Telegraph 

Creek (Kerr, 1948).  Work subsequent to Kerr’s would not begin until Souther, working in 

conjunction with the Geological Survey of Canada (GSC), embarked on a mapping project, 

where he delineated the boundaries of the Mount Edziza Volcanic Complex (MEVC). This work 

resulted in a 1:250,000 geological map of the Telegraph Creek area (Souther, 1972).  Souther 

also undertook extensive field-based research for the GSC at the MEVC in 1965-1967, and also 

briefly revisited the area in 1968 and 1976.  Much of Souther’s work has been published in 

multiple summary and topical papers (Souther, 1968; Souther, 1972a; Souther, 1972b; Souther, 

1975; Souther, 1977; Souther, 1981a; Souther, 1981b; Souther and Hickson, 1984; Souther and 

Symons, 1974; Souther et al., 1984).  But the most up-to-date account of the geology of the 

MEVC is the GSC Memoir of Souther (1992), from which the background geology in the rest of 

this section, and all of the base geology maps used in the research project were taken. 
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6.0  REGIONAL GEOLOGIC SETTING OF MOUNT EDZIZA VOLCANIC 

COMPLEX 

The MEVC is underlain by Late Paleozoic and Mesozoic sedimentary, plutonic, and 

volcanic rocks of Stikinia, the largest in a group of several terrains collectively known as the 

Insular Superterrane.  These terranes likely collided with the continental margin during late 

Mezozoic transpressional and calc-alkaline volcanism of Stikinia during the Late Cretaceous – 

Early Tertiary (Souther, 1992)  However, by Late Miocene time extension and/or transtension is 

suggested by the mafic alkaline volcanics at MEVC (Edwards and Russell, 2000). 

According to Souther (1992) the history of the MEVC spans several episodes of bimodal 

volcanism, erosion, and periods of regional and alpine glaciation advance and retreat.  The 

MEVC lies within the Northern Cordillerian Volcanic Province (NCVP; Edwards and Russell, 

2000), a broad, arc shaped volcanic belt of Miocene and younger volcanoes. This belt runs 

roughly parallel to the North American – Pacific plate margin through western Yukon Territory 

and British Columbia, Canada (Fig 1). The NCVP is one of the largest Neogene volcanic 

provinces in western North America.  The province contains numerous volcanic centers, 

predominately of alkaline olivine basalt composition, which lie between the Tintina and Denali 

faults.  The rocks within the NCVP range from 20 Ma to ca 200 yr BP (Edwards and Russell 

2000).   
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The MEVC comprises ~775 km3 of basalt, trachyte and rhyolite erupted in a variety of 

subaerial, sub-ice and subaqueous environments from about 8Ma to <2000 y.b.p.  It forms a 

major component of the Stikine peralkaline subprovince of the central part of the NCVP in 

northwestern British Columbia, Canada.   The MEVC has been formed by five cyclical periods 

of magmatic activity, each beginning with a mafic phase and ending with felsic magmas.  

Predominantly basaltic lava flows dominate the base of the complex, capped by thicker, more 

evolved peralkaline trachytic to rhyolitic lavas and domes as well as pyroclastic products 

(Souther, 1992).   The origin of the more evolved magmas of MEVC can be attributed either 

fractionation of a mafic magma, fractionation accompanied by crustal contamination and 

assimilation, or crustal contamination alone (Edwards et al., 2002).  The bimodal composition 

and cyclical nature of volcanism at MEVC are attributed to the presence of a slab window and 

related tectonics driven by changes in relative plate motion, from compressional to 

transtensional, between the Pacific and North American plates approximately 15-10 Ma 

(Edwards and Russell, 2000; Madsen et al., 2006).   

Four main composite volcanoes that define a north-south axis form the main eruptive 

centers of the MEVC.  The Spectrum Range is the furthest south of these centers and is 

comprised mainly of a large rhyolite dome complex of approximately 3 – 7 Ma in age (Souther, 

1992; Souther, 1984).  Just to the north of it lies the heavily eroded Armadillo Peak (12-6Ma) 

that may have once comprised a caldera, and which may have had several satellite domes 

(Souther, 1992).  North of Armadillo Peak are the overlapping centers of Ice Peak (4.7-1.2Ma) 

and Mount Edziza.  Mount Edziza is the youngest of the four MEVC centers at 1.2 – 0.4 Ma in 

age and has an ice capped summit (Souther, 1992).   
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The three exposures studied for the field-based part of this project (Section 12) would be 

considered part of the Ice Peak and Mount Edziza eruptive centers, and would also be part of 

their respective formations of the same name (see below) according to Souther (1992). 
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7.0  GEOLOGIC HISTORY OF MOUNT EDZIZA VOLCANIC COMPLEX 

This section summarizes descriptions by Souther (1992) of the formations of the MEVC 

(Figs 6 and 7, Table 1) with particular focus on his interpretation of the interaction of lava 

or magma with ice and/or water

Figure 6:  Principal physiographic elements as indicated by Souther (1992)  

of the Mount Edziza Volcanic Complex.  Image data from NASA I-Cubed ESAT World Landsat 7 

Mosaic with 15 m resolution, image composed with NASA World Wind 1.4. 

 

.  All of the dates given in this section are K-Ar dates of 

Souther (1984).  Table 1 is a stratigraphic column for the MEVC illustrating the names of the 

formations, as defined by Souther (1992), the most recent dates (Souther, 1984) and a brief 

description of the products of each formation. 
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Table 1:  MEVC stratigraphy 

Mount Edziza Volcanic Complex Stratigraphic Column 

Unit Age 
Souther's (1992, 
1984) Age Date 

Description 

SURFICIAL 
DEPOSITS 

Holocene   Fluvial, glacial, talus, and landslide deposits 

BIG RAVEN 
FORMATION 

  10-1±6 ka 
Hawaiite, alkali olivine basalt, and comenditic trachyte cones, 

lava flows, air fall tephra, tuff-breccia, pumice, bombs and 
agglutinate, pillow breccia, pillow lava 

KLASTLINE 
FORMATION 

Pleistocene 0.62±0.04 Ma 
Alkali olivine basalt pyroclastic breccia, agglutinate, tuff 

breccia, lava flows, minor pillow lava with some lenses of 
fluvial gravel and glacial deposits 

KAKIDDI 
FORMATION 

  0.31±0.07 - 0.28±0.2 Ma Trachyte agglutinated pumice, lava flows, breccia 

ARCTIC LAKE 
FORMATION 

  0.71±0.05 Ma 
Alkali olivine basalt bombs, agglutinate, minor tuff breccia, 
pillow breccia, lava flows, minor pillow lava, lenses fluvial 

gravel and glacial deposits 

EDZIZA 
FORMATION 

  0.9±0.3 Ma 
Trachyte and comenditic trachyte pyroclastic breccia, lahar, 

ash flow deposits, lava flows, endogenous domes, vent 
breccia, lava lakes 

PILLOW RIDGE 
FORMATION 

  0.9±0.3 Ma 
Alkali olivine basalt and hawaiite tuff breccia, pillow breccia, 

lava flows 

ICE PEAK 
FORMATION 

  3.7±1.0 - 1.2±0.1 Ma 
Alkali olivine basalt, trachybasalt, tristanite, mugearite, 
benmoreite, and trachyte lava flows, domes, pyroclastic 

breccia, locally intercalated with fluvial and glacial deposits 

PYRAMID 
FORMATION 

  1.2±0.4 - 0.94±0.12 Ma 
Comendite, comenditic trachyte, and pantellerite lacustrine 
tuff, pyroclastic breccia, lahar deposits, till and glacial-fluvial 

gravel, lava flows and domes 
SPECTRUM 

FORMATION 
Pliocene 5.9±1.1 - 2.9±0.1 Ma 

Alkali olivine basalt, domes, intercalated fluvial gravel and 
paleosols, subvolcanic intrusions 

NIDO 
FORMATION 

  7.8±0.3 - 4.5±0.3 Ma 
Alkali olivine basalt tuff breccia, pillow lava, intrusives, lava 

flows, flow breccia, agglutinate, ice-contact facies and 
intercalated gravel 

ARMADILLO 
FORMATION 

Miocene 
10.2±1.4 Ma - 6.1±0.1 

Ma 
Comendite and trachyte pumice, ash flows, tuff, lava flows and 

domes, vent breccia, and subvolcanic intrusions 
LITTLE ISKUT 
FORMATION 

  7.2±0.3 Ma 
Trachybasalt lava flows, flow breccia, crackle breccia, and 

subvolcanic structures 
RASPBERR 

FORMATION 
  11.4±1.5 - 5.5±0.1 Ma 

Alkali olivine basalt lava flows, flow breccia, agglutinate, minor 
pillow lava, tuff breccia, and intercalated gravel deposits 

SLOKO GROUP Eocene   
Rhyolite, dacite, and andesite pyroclastic breccia, epiclastic 

breccia, debris flow and landslide deposits, minor lava flows, 
and intrusive pluton  

SUSTUT GROUP 
Cretaceous and 

Paleocene 
  

Chert-pebble conglomerate, quartzose sandstone, arkose, 
siltstone, carbonaceous shale, and minor coal 

UNDIVIDED 
BASEMENT 

ROCKS 
    Sedimentary, volcanic, and metamorphic 
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Activity began at the MEVC about 11.4 Ma ± 1.5 ago (Souther, 1992) with the eruption 

of basalts comprising the Raspberry Formation.  Subaqueous eruptions of trachybasalt 

comprising the Little Iskut Formation followed at approximately 7.2 ± 0.3 Ma ago.  Explosive 

volcanism then ensued with the eruption of pyroclastics and associated felsic and basaltic lavas 

of the Armadillo Formation approximately 10.2 ± 0.1 Ma ago.  Later, approximately 7.2 ± 0.3 

Ma, 6 basaltic volcanoes mapped as Nido Formation by Souther (1992) became active. Some of 

these centers encountered alpine glacial ice, namely Beta Peak and Gamma Peak.  Nido 

volcanism was followed by eruptions of mainly rhyolite and trachyte lavas beginning 

approximately 5.9 ± 1.1 Ma ago that comprise the Spectrum Formation. Another particularly 

explosive period followed with the eruption of rhyolite and trachyte products of the Pyramid 

Formation between 1.2 ± 0.4 Ma and 0.94 ± 0.12 Ma.  Eruptions of Pyramid Formation rhyolite 

at Sphinx Dome as well as Pharaoh Dome also likely encountered ice.  Also during this time, 

accumulation of lacustrine tuff in a glacially dammed lake (Tut Lake) provides further evidence 

of the prolonged periods of glaciovolcanism (or potential glaciovolcanism) at the MEVC.  

According to Souther (1992), the Cordillieran Ice Sheet (Fig 2) advanced across the Pyramid 

Formation rocks at the close of this period.  During the following Ice Peak Formation time, 

beginning approximately 3.7 ± 1.0 Ma ago, eruption of both basaltic and trachytic lavas took 

place.  Pillows and tuff-breccias of Ice Peak Formation formed where advancing lava flows 

contacted glacial ice.  The eruptions that form present day Camp Hill,  (also Ice Peak Formation 

basalt), began beneath ice with the formation of tuff-breccia, pillow lava, pillow breccia, and 

quenched pahoehoe lava flow toes.  Another sub-ice basaltic eruption formed Tsekone Ridge and 

Pillow Ridge of the Pillow Ridge Formation at 0.9 ± 0.3 Ma.  The Edziza Formation followed at 

approximately 0.9 ± 0.3 Ma and involved mostly trachytic and phonolitic lava flows.  The 
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basaltic lava flows of the Klastline Formation created the large plateaus in the northeastern 

portions of the MEVC, at 0.62 ± 0.04 Ma as well as the Klastline Cone which begun beneath 

alpine glacial ice.  Two small volcanoes are the principal components of the subsequent Arctic 

Lake Formation (0.71 ± 0.05 Ma) period of basaltic effusive and explosive activity that erupted 

subaerially (Outcast Hill, Tadekho Hill), during glacial maximum (Wetalth Ridge), and during 

glacial retreat (Thaw Hill, Knobs 1 and 2, and flows from Source Hill), according to Souther 

(1992).  The Kakiddi Formation (0.31 ± 0.7 Ma) comprises mostly trachyte lavas.  Alkali olivine 

basalt, hawaiite, and small quantities of comenditic trachyte of the Big Raven Formation (1 ± 6 

ka) are the result of the most recent activity at MEVC which post dates the most recent episode 

of regional glaciations, although some interactions with residual valley ice may have occurred 

(Souther, 1992).   

7.1 RASPBERRY FORMATION 

Raspberry Formation (11.4 ± 1.5 Ma – 5.5 ± 0.1 Ma):  This eruption of basaltic lava 

flows that form the first units of this formation mark the beginning of activity at MEVC at 

approximately 11 Ma (Souther, 1992).  The vent or vents that were the source of the basalts are 

believed to be located near Raspberry Pass (Fig. 6).  These flows total more than 83 km3 with a 

proximal total preserved thickness of up to 300 m.  On the western edge of the MEVC, 

Raspberry volcano formed an estimated 2100 m high edifice (Souther, 1992).  An intense period 

of erosion followed this activity (Souther, 1992). 
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7.2 LITTLE ISKUT FORMATION 

Little Iskut Formation (7.2 ± 0.3 Ma):  Around this time a large lake became ponded in 

the upper Little Iskut Valley (Fig 6) due to damming by the basaltic flows of the Raspberry 

Formation.  Eruptive activity began within the lake.  Layers of ash settled on the bottom of the 

lake and formed the base of a shield volcano (Little Iskut Volcano), which eventually emerged 

above lake level.   Breccia and flows also soon displaced much of the lame water and lava was 

emplaced over the Raspberry Formation surface (Souther, 1992). 

7.3 ARMADILLO FORMATION 

Armadillo Formation (10.2 ± 1.4 Ma – 6.1 ± 0.1 Ma): Armadillo Formation activity 

began with an explosive eruption of rhyolite and trachyte pumice from a vent near the northern 

edge of a dome.  Proximal deposits were more than 150 m in thickness where as distal deposits 

were up to 15 m thick (Souther, 1992).   Welded ash flow deposits extended as much as 10 km 

from their source in the early stages but viscous lava later dominated the activity.  The lava first 

formed steep-sided overlapping domes around the vent.  Lava flows eventually spread further 

from the vent eventually covering most of the southeastern landscape of MEVC with trachyte 

and rhyolite.   
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7.4 NIDO FORMATION 

Nido Formation (7.8 ± 0.3 Ma – 4.5 ± 0.3 Ma):  At least six major volcanoes were 

active at the MEVC during this stage of activity.  The newly formed valleys from Armadillo time 

were soon filled with more fluidal basaltic lava flows of the Nido which in turn altered drainage 

patterns and created lava dams.  Three composite volcanoes (Alpha, Beta and Gamma Peaks) 

formed north of Armadillo Peak in the central area of the MEVC. During their formation, 

permanent snow became a fixture in the MEVC landscape.  Alpine glaciers formed at higher 

elevations and flowed into river valleys.  Periods of advance and retreat over several thousands 

of years were accompanied by the eruption of more Nido basaltic lava flows.  At times during 

glacial advance, Beta peak was enveloped by ice from an ice cap that covered Gamma peak and 

surrounding areas.  The basalts that erupted during this time quenched against ice and formed 

piles of pillows and tuff-breccias in melt water ponds.  These lavas of the Nido Formation are 

the earliest recorded evidence of volcano-ice interaction at the MEVC

7.5 SPECTRUM FORMATION 

.  Souther (1992) 

suggested that towards the end of Nido time the MEVC was covered by an extensive ice-cap, 

indicated by the presence of a widespread glaciated pavement at the top of this formation 

Spectrum Formation (5.9 ± 1.1 Ma – 2.9 ± 0.1 Ma): Souther (1992) suggested that a 

glacially scoured MEVC emerged from beneath the ice and streams began to deposit fluvial 

sediments approximately 2 Ma ago.  A new vent complex (Spectrum Formation) developed in 

the south of the area and was probably centered around what is now Yeda peak.  Early Spectrum 



 

 21 

Formation lavas are rhyolitic and up to 150 m thick, 13 km long, and emplaced in a single event 

of activity.  A broad dome of lava was eventually created that is 20 km across and at least 750 m 

thick at its center (Souther, 1992).  A total of over 100 km3 of rhyolite and trachyte were erupted 

during the Spectrum stage of activity (Souther, 1992). 

7.6 PYRAMID FORMATION 

Pyramid Formation (1.2 ± 0.4 Ma – 0.94 ± 0.12 Ma): A period of volcanic quiescence 

that lasted approximately 1 Ma followed the eruptions of Spectrum stage lavas (Souther, 1992).  

During this time, streams and glacial ice carved the landscape.  Periods of glacial advance and 

retreat covered much of the MEVC plateau with glaciofluvial deposits.  This period of quiet 

ended with the explosive eruption of rhyolitic pumice and rock fragments along the northeaster 

edge of MEVC.  Explosive eruptions were accompanied by pyroclastic surges and basaltic lava 

flows.  This early activity in the Pyramid stage was mostly buried beneath felsic domes and 

flows that dominated the most of the later Pyramid activity.  A plug of lava, up to 40% 

crystallized, was too viscous to create flows as it erupted from the Pyramid Dome, about 1km 

wide and 400m high.  Souther (1992) suggested that a later dome (Sphinx Dome) may have 

grown within an ice-confined lake.  The Sphinx dome eventually grew to over 5 km across and 

800 km high.  Another vent began to erupt at this time, also beneath the ice.  At this vent, 

Pharaoh Dome began to form as melt water quenched the outer margins of the effusive lava 

producing large piles of tuff-breccia.  The dome eventually grew above the thickness of the 

surrounding ice.  This nunatak projecting above the ice was later to become completely 
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enveloped in ice as a period of massive regional glaciation (Cordillieran Ice Sheet, CIS) ensued 

and MEVC become dormant once again (Souther, 1992). 

7.7 ICE PEAK FORMATION 

Ice Peak Formation (3.7 ± 1.0 Ma – 1.2 ± 0.1 Ma):  At the beginning of Ice Peak time, 

and the onset of the eruption of Ice Volcano, the regional (CIS) ice sheet had begun to recede, 

according to Souther (1992).  Large areas of the plateau were ice-free and now covered by 

glacial fluvial, morainal and till deposits.  Other areas of MEVC were however still covered by 

ice (Souther, 1992). The initial eruptions of Ice Peak time were in this still-glaciated area.  

During this stage glacial melt water mixed with newly erupted materials creating debris flows.  

As the central edifice of Ice Volcano continued to grow, the flows that encountered ice created 

melt water lakes.  As additional lava flowed into these lakes, pillow lava and tuff-breccias 

formed.  Most of the lavas, both trachytic and basaltic in composition, that comprise the main 

eruptive center of this formation (Ice Volcano) were however erupted subaerially.  Eventually 

Ice Volcano grew to 2400 m high with three thick, steep sided lobes of blocky trachytic lava 

extending from satellite domes along its western flank (Souther, 1992).   Camp Hill and Cache 

Hill lie south of Ice volcano (Fig 6) and likely first erupted when ice was still present on the 

MEVC plateau.  As lava entered the ice above a vent, melt water ponds were formed.  

Successive lavas that entered the melt water were quenched and fractured.  This fragmental 

material was disturbed by phreatic eruptions.  A tuff cone was eventually created that in time 

rose above the level of the water within the melt water lake.  Subsequent eruptions built a 

pyroclastic come atop the original tuff ring.  Cache Hill erupted when almost all the glacial ice 
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had receded.  The first flows from Cache Hill flowed across a valley, damming a river and 

ponding a small lake.  Later flows that traveled into the lake formed pillow lava and tuff-breccia 

(Souther, 1992).  During the long period of Ice Peak activity, alpine glaciers advanced and 

retreated cutting cirques into Ice Volcano.  Towards the end of Ice Peak activity, approximately 

0.5 to 1 Ma this alpine ice joined to meet regional ice forming part of a regional Pleistocene ice 

sheet.  It is expected that only the tallest peaks may have been visible over the ice sheet that was 

at least 2285 m thick (Souther, 1992). 

7.8 PILLOW RIDGE FORMATION 

Pillow Ridge Formation (0.9 ± 0.3 Ma):  The regional ice sheet was near its maximum 

thickness and extent when the basaltic Pillow Ridge erupted (Fig 6) beneath the ice.   

7.9 EDZIZA FORMATION 

Edziza Formation (0.9 ± 0.3 Ma):  By the beginning of Edziza stage of activity, the 

regional ice sheet that had covered the MEVC had receded from the upper slopes and 

surrounding plateau, according to Souther (1992).  Viscous trachyte magmas created a bulge of 

rubble that would become Mount Edziza peak (Fig 6) approximately 900,000 years ago (Souther, 

1992).  The growth of Mount Edziza was characterized by periods of effusion of trachyte lavas, 

formation of steep-sided domes, and vent-clearing explosions.   
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7.10 KLASTLINE FORMATION 

Klastline Formation (0.62 ± 0.04 Ma):  From vents along the northeastern flank of 

Mount Edziza (Fig 6), basaltic lava erupted as the first products of the Klastline Formation.  

Three to six centers were active during this time each producing lava flows that traveled up to 25 

km from their vents.   

7.11 ARCTIC LAKE FORMATION 

Arctic Lake Formation (0.71 ± 0.05 Ma):  Approximately the same time that Klastline 

lavas were erupting to the north, Arctic Lake stage activity began with the eruption of two small 

basaltic volcanoes to the south.  Outcast Hill (Fig 6) was a composite cone that ultimately rose 

more than 300 m from the plateau below (Souther, 1992). Another vent to the south of Outcast 

Hill formed Tadekho Hill (Fig 6).  Souther (1992) suggested that the regional ice sheet likely 

covered Tadekho and Outcast Hill with at least 300 m of ice.   

7.12 KAKIDDI FORMATION 

Kakiddi Formation (0.31 ± 0.07 Ma – 0.28 ± 0.2 Ma):  About 0.5 Ma ago, a 1 km wide 

and 60-90 m thick lava flow eventually covered 20 km3 was emplaced and marked the beginning 

of Kakiddi stage activity (Souther, 1992) This eruption marks the last major eruption of 

intermediate composition lavas from a central vent at MEVC. 
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7.13 BIG RAVEN FORMATION 

Big Raven Formation (10 – 1 ± 6 ka):  The plateau of MEVC began to emerge from the 

Pleistocene glaciations, covered with glacial debris and marked with glacial striations during this 

time.  The central ice cap retreated and meltwater streams deposited silt and gravel along the 

plateau  Then, approximately 2600 years ago, the glaciers again began to advance during 

Neoglaciation (Souther, 1992).  Glacial advance and recession during Neoglacial time produced 

the moraine visible today that rises 18 m above the plateau of the MEVC (Souther, 1992).   

During this time eruptions of basalt from numerous satellite cones throughout MEVC ensued as 

well as a single climactic eruption of trachytic pumice.   
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8.0  PREVIOUS WORK ON TRACHYTE-PHONOLITE LAVAS AT MOUNT 

EDZIZA VOLCANIC COMPLEX 

This section focuses on previously published descriptions and interpretations of the 

trachyte-phonolite lavas at the MEVC by Souther (1992) and, in particular, on any structures he 

described that provide evidence of their emplacement or cooling histories.  This section also 

describes any evidence from previous work

This section in particular includes description of Souther’s (1992) evidence for ice-

contact of the lavas at the three field sites chosen for this study, i.e. Ornostay Bluff and 

Koosick Bluff (both Ice Peak Formation) and Triangle Dome (Edziza Formation).  

 for ice-contact or nearby ice at the time of their 

emplacement.    
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Figure 7:  Simplified geological map showing the three field areas studied  (TD, OB, KB) 

(after Souther,1992).   
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8.1 ARMADILLO FORMATION TRACHYTE 

Within the Armadillo Formation, trachyte lavas occur at several locations at the MEVC 

(Souther, 1992).  A 9-18 m thick trachyte flow lies upon an east-dipping surface of the 

underlying Cartoon Ridge comendite lava flows.  Trachyte can also be found within the 

Armadillo caldera.  Inside the structure, rocks below 1975 m elevation are highly fractured 

trachytes and breccias that have undergone hydrothermal alteration.  The trachytes here are 

massive, green, fine grained, and porphyritic.  Overlying these rocks is 180 m thick dark olive 

green trachyte lava flows each 3-9 m thick.  There is little to no pyroclastic material between the 

units, rarely any textural or color change, or alteration of flow boundaries.  Grooves and 

striations on trachyte lava surfaces identified at certain locations within the formation are 

attributed by Souther (1992) to cooling lava continuing to move until the flow was almost 

completely solid. Armadillo trachytes have been interpreted by Souther (1992) to have been 

erupted in predominately subaerial settings. 

8.2 SPECTRUM FORMATION TRACHYTE 

Souther (1992) identified four characteristic zones within the trachyte lava flows of the 

Spectrum formation (Fig 8).  A basal quenched zone is composed mainly of glass (or devtrified 

glass) overlain by a lower flow zone with layering/banding, followed by a central massive core 

capped by an upper breccia zone.  The relative thickness and proportion of these four zones 

varies with distance from the vent, with composition, and with flow thickness. The basal zone is 

relatively thin proximally and is replaced by a relatively thick layer of basal flow breccia distally.  
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Flow layering in general is less distinct that the layering seen within the interbedded rhyolite 

flows.  Most of the trachytes within the Spectrum Range are medium to dark olive-green 

aphanitic rocks with small 1-2 mm randomly oriented feldspar phenocrysts.    Distally, these 

flows develop thick basal and upper breccia zones which commonly exceed in thickness the 

massive core.  At the top and bottom of these flows, the massive core is cut by a boxwork of 

healed fractures formed by autobrecciation of the nearly solid lava during late stage movement.    
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Figure 8:  Sketch showing the morphology of distal and proximal facies of Spectrum Formation 

trachyte lava flows. (after Souther, 1992).  Note the increase in proportion of basal breccia with 

distance and corresponding decrease in basal flow layering.  Such a change presumably reflects an 

increase in viscosity on cooling with distance from the vent.  The exact mechanism of emplacement is 

not clear from this sketch or Souther’s description/interpretation, but flow banding on this scale is 

typical of highly viscous lava flows that are mostly emplaced “en masse” (“plug-like”) with some 

internal ductile deformation in proximal/hotter regions, and brittle zones developing in areas of 

higher shear and lower temperature (especially at the base and distally) 

 

The massive core zone comprises the majority of the flow in thicker flows.  Proximally 

flows tend to have thicker basal vitreous layers and thinner upper breccia zones than distal flows.  

Distal flows have thicker basal breccias.  Both of these textural changes with distances 

presumably reflect an increase of viscosity on cooling.  Such textures also appear to suggest that 
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the Spectrum tracthytes were most likely emplaced by a plug flow mechanism proximally 

evolving into aa-flow like traction with distance.  Souther (1992) suggested that the Spectrum 

formation was erupted in a subaerial environment.    

8.3 PYRAMID FORMATION TRACHYTE 

The Pyramid is a trachyte dome within the Pyramid formation (Fig 6).  The dome is 

about 366 m high and slightly more than 1 km across.  Concentric and inward dipping joint sets 

are well developed within the dome.  The trachyte here is coarsely and abundantly porphyritic 

with up to 50% stout, euhedral alkali feldspar phenocrysts from 0.5-2 cm across in a white 

aphanitic matrix with opaque oxides. Souther (1992) suggested that Pyramid dome formed (i.e. 

dammed) Tut Lake, a glacial lake with which later eruptions interacted, although Pyramid Dome 

itself likely erupted subaerially approximately 0.94 ± 0.5 Ma (Souther, 1992). 

8.4 ICE PEAK FORMATION TRACHYTE 

The trachytic lava flows of the Ice Volcano edifice are greenish grey flows of up to 90 m 

thick displaying long smooth columns and flaggy flow cleavage.  They are either non-porphyritic 

or contain a small percentage of clear, tabular feldspar crystals less than 1 cm long.  They are 

pale green to greenish grey with long smooth columns and flaggy flow cleavage.  Most of these 

flows are underlain by light colored pyroclastic breccia or ash.  The main flow unit grades from a 

dense dark flaggy trachyte at the base to a lighter green, less dense porous trachyte towards the 
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top of the main unit.  The neck is a trachytic body approximately 300 m in diameter and 215 m 

high on Sorcery Ridge.  The neck is a satellite center of Ice Peak age and consists of two main 

structural zones.  The first is an outer cylinder of concentric shells from 2.5-2.5 m thick of fine 

grained foliated trachyte.  This zone also exhibits centripetal arrangements of horizontal 

columns, normal to the cylinder walls that are well developed.  The second zone is the inner core 

of vertical, closely stacked planar or gently curved tabular bodies of similar, although coarser 

grained trachyte.  The arrangements of columns in this zone are similar to that of the first zone, 

although they are larger and less regular and have developed normal to the walls of the intrusion.  

Each of these outer shell and inner tabulate cores has developed its own distinct tier of columns 

separated from the next tier by a 15 cm to 0.5 m zone of structureless, greenish-grey porous 

trachyte.  Altered and sintered basaltic pyroclastic deposits of Sorcery Ridge enclose the massive 

trachyte core of the neck.  The tabular, dike-like bodies of the interior core are dark grey, 

lustrous, coarse-grained trachyte lacking any obvious fabric (Souther, 1992).   

Ornostay Bluff (OB) and Koosick Bluff (KB) comprise thick trachytic lava flows and/or 

sequence of lava flows within the Ice Peak Formation and are two of the three selected field sites 

for this study (Figs 5 and 6).  What follows in this section is the description of these two bluffs 

according to Souther (1992).  New descriptions of these bluffs are given in section 12 and 

interpreted in section 13.  Both features rise above the surrounding plateau by 60-90 m.  Koosick 

Bluff is nearly 2 km long and over 1 km wide.  These flows slope from east to west at an 

approximate gradient of 5%.  The trachyte within Koosick is generally dense and dark green in 

appearance.  Some structures such as flaggy jointing, flow layering, and large diameter columns 

that persist throughout the majority of the flow are also present at Koosick.  According to 

Souther’s account (1992), the upper most portions of Koosick are a 9-12 m zone of structureless 
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porous trachyte that only locally exhibits flow banding.  Koosick appears to be comprised of 

only one flow unit.   The source for Koosick Bluff is concealed by talus near the summit ice cap.  

The source for OB is also concealed by talus near the summit ice cap although part of a tephra 

cone also exists in this area.  The tephra cone exposed in nunataks and beneath the southern edge 

of the flow consists of fine, lapilli sized pumice, glassy trachyte, and rock fragments in a matrix 

of brown altered ash and iron oxide cement.  The tephra is well bedded with a westwardly dip of 

approximately 8°.  Souther (1992) attributes the steep frontal cliffs of both Koosick and Ornostay 

bluffs to potential ponding against ice.  Further evidence, a K-Ar age date of 1.5 +- 0.4 Ma, may 

also put the time of eruption as coinciding with a glacial advance in the area (Souther 1992).   

8.5 MOUNT EDZIZA FORMATION TRACHYTE 

The central composite cone of Mount Edziza, a member of Mount Edziza Formation is 

presently largely covered by an ice cap (Fig 6). The 3 km diameter summit crater can be 

distinguished by a circular trace of nunataks that protrude through the ice.  The spires of 

trachytic lava are greenish grey in appearance having randomly oriented laths of feldspar 3-5 mm 

across.  Structures within the spires include well-formed, vertically extensive, small diameter 

columns (Souther, 1992).  Along other exposed portions of the cone Edziza Formation lava flows 

and breccias are observable.  The base of the cone is comprised of a chaotic pile of breccias and 

crudely columnar jointed trachyte lenses up to 120 m long and 15 m in thickness.  Moving 

upwards, massive lava flows begin to predominate over the breccias with individual cooling 

units reaching 150 m in thickness.  These lava flows exhibit well-developed flow layering that 
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commonly creates zones of weakness and flaggy textures as the result of weathering.  Small 

diameter columns are common throughout the flows and develop normal to the flow cleavage.  

Three other “domes” of Edziza Formation age exist of the flanks of the main Edziza 

cone, namely Nanook Dome, Triangle Dome, and Glacier Dome.  Note that the term “dome” is 

used in the geomorphological sense and was not used by Souther (1992) nor this author to 

necessarily indicate emplacement in the volcanological sense of a lava dome.  Nanook Dome is 

the largest (0.75 km in diameter) of the three and exhibits steep sides that rise 150-200 m.   Flow 

cleavage and fanning columns within the inner portions along with an outer rind of vesicular 

agglutinate trachyte characterize this domes appearance.  The base of the dome is exposed in one 

location revealing a 15 m section of spherulitic glass and pumice.  Tiers of short, well-formed 

columns that fan outward are observable along the northeastern corner of the dome.  The 150 m 

of nearly vertical sides of Nanook Dome are actually formed by three trachyte cooling units with 

weaker less resistant layers between them (Souther, 1992).    Glacier Dome, a 210 m high 

construct, is comprised of light silvery-green porphyritic trachyte with crudely aligned alkali 

feldspar up to 1 cm across and 1 mm to 5 cm hackly elongate voids.  Flow layering observed 

around the dome’s margins dips from 45° to 60° outward (Souther, 1992).  Both Glacier Dome 

and Triangle Dome have concentric flow layering parallel to the present surface as well as long 

thin columns normal to the surface (Souther, 1992).   Souther (1992) describes Triangle Dome 

high on the west side of the Mount Edziza central cone (Figs 5 and 6), composed of light silvery-

green porphyritic trachyte containing small, crudely aligned laths of clear alkali feldspar up to 1 

cm across.  The lava of Triangle dome also contains ragged, polygonal voids, varying from less 

than 1 mm to 3-5 cm in size, with rough hackly interior surfaces. 
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Souther (1992) suggested that most eruptive products during Edziza Formation time 

erupted subaerially, although there is the possibility that the regional glaciation that culminated 

just prior to Edziza time, could have lingered into this time period approximately 0.9 Ma 

(Souther, 1992).   

8.6 KAKIDDI FORMATION TRACHYTE 

A single (?) trachyte lava flow from the Kakiddi Formation is continuously exposed for 7 

km, is almost 1 km in width, and ranges from 60-120 m in thickness.  The sources of this flow 

are unknown and shrouded by current ice along the summit.   The flow(s) has consistently 

subhorizontal flow layering.  In areas where the flow has been eroded to reveal the inner portion, 

large 1-2 m thick columns extend vertically through the flow.  The lava was interpreted to have 

erupted subaerially (Souther, 1992). 
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9.0  OVERVIEW OF EMPLACEMENT AND STRUCTURE OF INTERMEDIATE 

AND FELSIC LAVAS 

This section is a brief overview of the emplacement mechanisms and resultant 

structures in lava flows of intermediate and felsic composition.  Structures related to 

cooling (including columnar jointing) are also briefly reviewed in this section.  

Note that discussion on the emplacement mechanisms and structures in trachytic 

lavas is given in the next section (section 10). 

9.1 SUBAERIAL INTERMEDIATE AND FELSIC LAVAS 

Lava flows are the surface manifestation of an outpouring of coherent lava from a 

volcanic vent.  Subaerially erupted lavas can produce flows with varying characteristics, 

thicknesses, and aspect ratios depending on several factors including the topographic surface 

upon which the flows erupt, the eruption temperature, the chemical composition, crystal content, 

volatile content, and viscosity of the lava.  All of these variables may also change as the flow 

moves away from its source. 

Lavas erupted onto the surface commonly display features that are attributed to flowage.  

Examples of these features include; planar domains of differing crystal abundance that create 

flow banding, crystal alignment often interpreted as shear zones (Smith, 2002), local internal 
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deformation of crystals such as brittle boudinage, elongate vesicles, and amygdales, and 

imbrications of elongate crystals (Smith, 2002; Ventura et al., 1995).  Ductile tearing and 

subsequent brittle fracture record flow movement during the brittle-ductle transition.  These 

features are formed when the driving forces of the flow (gravity, magma pressure, eruption 

velocity) overcome resistive forces (viscosity, basal friction).  When driving forces dominate, 

flow-related textures may be more developed.  Alternatively, when resistive forces prevail, the 

flow and therefore associated features terminate (Smith, 2002). 

Crystal alignment is a relatively common structural texture in volcanic rocks.  The 

crystals involved may be those within the groundmass or phenocrysts, or both.  Specifically, the 

trachytic textures involve the sub-parallel to parallel alignment of microcrystalline feldspar laths.  

Repeated domains of textural features, such as crystal alignment, define textural domains within 

the igneous rock.  Two main types are identified, crystal abundance and crystal orientation 

(Smith, 2002).  Crystal alignment domains are commonly planar and contain alternating zones of 

crystals aligned at low-angle with respect to the domain boundary with crystals aligned at higher-

angles.  Banding common to felsic to intermediate composition lava flows comprise crystal 

abundance domains.  Both types of domains may vary from millimeter to meter in thickness 

(Smith, 2002).  Furthermore, these planar domains may be further deformed.  Banding and 

crystal alignment textures may be folded creating a complex swirling pattern.  Boudins, evident 

as segments separated by gaps or thin ribbons, are another observable result of planar feature 

deformation.  In the case of boudins, brittle (resulting in the formation of gaps) or ductile 

(resulting in the formation of ribbons) deformation is attributed to planar-parallel tension (Smith, 

2002).   
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Microphenocrysts may show structural domains surrounding larger phenocrysts.  

Microphenocrysts may appear folded or otherwise disturbed by the presence of the phenocryst.  

Another common attribute of volcanic rocks are vesicles.  Surface tension and bubble pressure 

dictate that vesicles are typically spherical during gas expansion.  Any alteration in this shape, 

including ellipsoidal or elongate vesicles, is associated with magma or lava flow or movement of 

the vapor phase through the magma.  Deflation of vesicles due to escape of vapour or cooling 

and volume reduction of the vapour can result in partially to completely collapsed vesicles 

(Smith, 2002).  Elipsoidal or elongate vesicles may form linear or planar domains.  Larger scale 

changes in structural domains can be further related to zones within a flow of differing 

deformation patterns (Ventura et al., 1995).  Deformation commonly increases from the center of 

the flow outward towards the margins that are more viscous from being cooler relative to the 

lava at the center of the flow.  This viscosity and rheological difference leads to the development 

of discrete preferred orientation and imbrication of elongate crystals.  Additionally the random 

orientation of crystals in the inner zone supports a plug flow mechanism of a pseudoplastic lava.  

The zones of crystal alignments and imbrication structures may be the result of a more plastic 

plug flow moving between two non-deforming walls (Ventura et al., 1995). 

Textures in volcanic rocks preserve the syn-kinematic, or related directly to flow of the 

lava.  All of these structures mentioned may act as gauges of strain, vorticity, stress, pressure, 

strain rate, temperature and rheology of the lava.  The rheological behavior trend from brittle to 

ductile is most commonly associated with temperature changes and heat loss over time as lava 

cooled.  Crystal contents, especially at high concentrations influence rheology and result in 

strong crystal interactions producing unpredictable lava behavior.  Fabrics of crystals interlocked 

into a mesh can be pulled apart by tension allowing residual melt to be drawn up into the 
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resulting voids (Smith, 2002).  It is further suggested that high crystal concentrations dictate the 

change from shear thinning to shear thickening lava flows (Smith, 1996).    

9.2 STRUCTURES RELATED TO FLOW EMPLACEMENT 

Flow-related structures from magma transport and extrusion are syn-kinematic textures.  

Post-kinematic structures include those that are taking place as the lava cools and crystallizes.  

These can include crystallization, column and joint formation, devitrification and hydrothermal 

mineralization (Smith, 2002).  Strain rates within lava flows changes over time, starting at high 

rates and decreasing over time as the flow looses heat.  The viscosity also increases over time 

through cooling, crystallization and volatile loss and thus changing deformation from ductile and 

plastic to brittle. Strain may not always be uniformly distributed over the flow either, rather 

focusing in localized areas as shear zones.  These areas become weaker than the surrounding 

magma and strain continues to focus in this area resulting in localized structures.  Similarly, 

cooling is not uniform over the extent of the flow either.  Chilled outer rinds of lava flows 

develop and result in folding of the surface of the flow, independent of the interior (Smith, 

2002). 

9.3 STRUCTURES FORMED BY COOLING-CONTRACTION 

Lava cooling is dominated by three major mechanisms: conduction, convection, and 

radiation.  Cooled lava flows can exhibit various structures within that provide evidence of 
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movement (flow banding, tension gashes, stretched vesicles, aligned phenocrysts, etc), cooling 

structures (columnar jointing and fracturing, etc), and associated characteristic weathering 

patterns (flaggy jointing).   Many subaerially and subaqueously cooled lavas have columnar 

joints that form with fracture orientation perpendicular to the cooling surface and joints that 

propagate normal to the direction of maximum tensile stress. (Aydin and DeGraff, 1988).  

Lescinsky and Fink (2000) suggest further that magma composition also plays a role in column 

fracture and spacing, reporting that silicic lavas have more narrow columns whereas mafic lavas 

are much greater in diameter.   
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Table 2:  Description of fractures 

Description of fractures found in lavas that have interacted with ice (after Lescinsky and Fink, 2000) 

Fracture Type Description Inferred Origin 
Glassy Flow Margins  

Shards 

Small fragments of glassy lava, commonly 
altered to palagonite; found 

disaggregated as hyaloclastites in 
association with lava pillows or pillow 

fragments 

Rapid cooling and fracturing 
(granulation) of lava in contact with 

water, in some cases followed by 
spallation. 

Hackly fractures 

Chaotic, arcuate fractures with a range of 
orientations and crosscutting 

relationships; may have palagonite along 
fractures 

Rapid cooling and fracture sometimes 
"explosively" steam migration disrupting 

isotherms 

Pseudopillow fractures and 
secondary fractures 

Arcuate fractures with associated small, 
perpendicular, secondary fractures; 

palagonite along fracture 

Cooling by water/steam penetration into 
rock with relatively well-established 

isotherms that become locally disrupted 
resulting in secondary fractures. 

Sheet-like fractures 

Parallel, planar fractures extend beyond 
the sides of an individual column, in 

some places reaching lengths of more 
than 5 m; may be palagonite along 

fracture 

Cooling with well-established isotherms 
with extension of wide fractures with 

well-developed orthogonal cross cutting 
fractures 

Polygonal fractures, columnar 
joints 

Adjacent fractures intersect to define 
regular polygons.  Normally parallel, but 

may fan or bend 

Cooling with well-established isotherms 
with isotropic stress field; little or no 

fluid flow 

Crystalline Flow Interior 

Platy fractures, sheeting joints 

Fractures for overlapping plates that are 
often closely spaced and break around 

phenocrysts.  Fractures tend to be 
parallel to the flow base, except near the 
boundary with the carapace, where they 
are oriented parallel to the flow margin. 

Since these interior fractures parallel 
flow direction and occurred after the 

lava had substantially crystallized, they 
are probably related to late stage shear 

of the lava flow and or microlite 
orientation 

Broad polygonal fractures, 
megacolumns 

Broad polygonal joint sets cutting 
through flow interior.  Fractures break 

around phenocrysts. 

Late stage cooling and contraction, 
somewhat irregular due to preexisting 
platy fractures; in some cases, one face 

will have formed earlier, prior to 
development of platy fractures 
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Column size generally changes within the mass of the flow as well as seen by column 

widths increasing towards the interior of the flow due to fracture termination as the fractures 

propagated (Fig 9).  The fractures create ridges along the surfaces of the columns preserving 

evidence for staggered periods of crack propagation.  Columns at the base of flows are typically 

larger as well, fining upward (Lescinsky and Fink, 2000).  Cooling by radiation and atmospheric 

convection at the surface of the lava flow is slower than convective cooling by steam or water 

penetrating the flow (Lescinsky and Fink, 2000).  These different mechanisms of cooling cause 

the difference in textures and identification of zones within the cooling unit (Table 2).  Columns 

are more developed with increased fracture spacing as flow cooling rates decrease.  The cooling 

rate of any lava is primarily dependent upon the lava’s thermal diffusivity, those having higher 

thermal diffusivities such as rhyolite cooling more quickly than their lower diffusivity basaltic 

counterparts.   Column fracture spacing is also controlled by the physical properties of the 

magma that vary with composition such as Young’s modulus, Poisson’s ratio, and thermal 

expansivity causing smaller columns in felsic lavas and larger columns in mafic lavas (Lescinsky 

and Fink, 2000). 
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Figure 9:  A schematic sketch of formation of shrinkage cracks in cooling lava flows.  

Note the cracks begin and the surface and propagate inward towards the molten interior of the flow. 

(after Hull and Caddock, 1999) 

 

The Columbia River Basalt Group exhibits well-developed colonnades of well-formed 

polygonal columns and entablature structures of smaller column diameters and irregular fracture 

patterns that formed during the cooling of individual basaltic lava flows (Long and Wood, 1986).  

Generally, the colonnade is found in the lowermost 10-30% of the low and sometimes the 

uppermost 10-20% and the entablature occupies the central 60-70%.  What is remarkable about 

the two structural regions is the textural features are reverse of what would be expected for 

normal conductive cooling of flow margins compared with the interior of the flow.  Rocks of the 

colonnade have coarser oxide crystals and less glass than those of the entablature which exhibit 
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smaller oxide crystals and much more glass (Long and Wood, 1986).  The increased rate of 

cooling is attributed to influx and downward migration of water through cracks causing 

convective cooling of the underlying lava.  Through modeling it has shown that the water 

infiltrations from above can explain the presence of the thick, quenched, flow interior and 

resulting entablature if the infiltration front moves downward through the flow just behind the 

lava solidification front.      

9.4 SUBAQUEOUS INTERMEDIATE AND FELSIC LAVAS 

Pillows are commonly associated with subaqueous basaltic lava eruptions, but they have also 

been identified in many andesites in Japan and other areas.    DeRita, et al. (2001) noted that the 

main difference between subaqueosly and subaerially erupted rhyolitic lava domes is that in 

subaqueous eruptions, pervasive brecciation is much more common.  Therefore, subaqueously 

emplaced domes are typically dominated by brecciated hyaloclastite instead of coherent lava (see 

also Scutter et al., 1998).  In subaqueous environments, the final shape of the dome as well as the 

rheologic behavior of the lava as it is extruded is largely controlled by the thickness of this 

hyaloclastite layer.  The hyaloclastite layer is analogous to the crust that forms on subaerial lava 

flows, therefore the thickness of this layer dictates how well the interior of the flow is insulated 

from cooling as well as creating avenues of weakness for further lava intrusion to follow (DeRita 

et al., 2001). Lava is initially erupted into the bottom of a body of water where it produces 

hyaloclastite of varying degrees.  The degree of brecciation of this initial effusive flow generally 

decreases inward, from fine through coarse grained hyalocastite to a coherent section of lava 

flow.  The extent of brecciation and hyaloclastite grain size is a direct representation of the 
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efficiency of magma- water interaction.  As further pulses of lava intrude into the loose pile of 

brecciated hyalocastite they produce concentric and radial fractures as well as normal faulting.  

These fractures allow further infiltration of water into the pile and further fragmentation.  Lava 

intruding after these processes typically follows the newly created fractures and faulting to fill 

areas of saturated hyalocastite.   

The cooling rate and environment determine the gross morphology of final dome 

structures.  Rapid cooling rates favor thicker breccias layers at the surface of the dome, causing 

domes to grow taller faster than their slower cooling rater counterparts in subaerial 

environments.  The substrate surface texture, if rough, may impede the flow of cooling water 

through the base of the dome also resulting in taller rather than wider domes (DeRita et al., 

2001).  Both of these mechanisms favor vertical growth, but there are several factors that work 

against tall domes.  The dome still will not exceed the gravity stability threshold without slides 

of hyaloclastite flowing down the sides of the structure forming a wider base.  Obviously, the 

thicker layers of loose breccias that occur in subaqueous domes provide more material for 

collapse and slides making it easier to widen the base of a subaqueous dome when compared 

with a subaerial dome (DeRita et al., 2001).  

9.5 SUB-ICE AND/OR ICE-CONTACT INTERMEDIATE AND FELSIC LAVAS 

There is an increasing amount of literature concerned with subglacial or ice-contact lavas 

of felsic or intermediate composition.  Most of this literature either relates to studies of rhyolitic 

magma/lava emplaced explosively or effusively beneath ice in Iceland (e.g. Tuffen et al., 2001; 

Fig 10) or to subaerially emplaced andesitic and dacitic lavas that contacted ice along their 
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margins in the western USA (e.g. at Mount Rainier, Lescinsky and Sisson, 1988; Lescinsky and 

Fink, 2000; Figs 11 and 12).  Some examples from both of these groups of bodies of literature 

are discussed in this section.  There are also two studies of ice-contact andesite lavas from Mount 

Ruapehu, New Zealand (Sporli and Rowland, 2006) and at Mt Ember in British Columbia 

(Kelman et al., 2002).  Both of these examples are also discussed below. 

 

Figure 10:  Photos of columnar jointing from the eastern flank of Bláhnúkur, Torfajökull 

A 20 m thick rhyolite lava flow with well developed columnar jointing from the eastern flank of 

Bláhnúkur, Torfajökull, Iceland.  A 4 m thick section of obsidian base is visible in image a.  Image b 

shows cooling-jointpatterns that suggest this lava chilled against a sub-horizontal ice-cavity roof with 

steeply inclined ice walls.  From Tuffen et al, 2001.  
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A rhyolitic lava flow emplaced beneath ice at Bláhnúkur, Torfajökull, Iceland, 200 m 

long and 20 m thick is triangular in cross section with large columnar joints propagating in three 

main directions (Tuffen, et al 2001; Fig 10). There is a basal zone of columns normal to flow 

base, then two other orientations each running diagonally from the center of the flow towards 

each side and the flow margins.   These columns are 10-30 cm wide with flow banding parallel 

to the flow base.  Columns near the chilled margins of the flow are typically slightly smaller in 

diameter, between 10-15 m.  A basal breccia is largely absent from the flow although areas of 

peperite are observable (Tuffen et al., 2001).  Tuffen et al. (2002) suggests that the rhyolite 

bodies formed in small cavities in the ice. Along the upper carapaces of these flows, columnar 

jointing forms normal to a former steep vertical surface.  Interpretation suggests this orientation 

shows that flow lobes were emplaced at the base of a glacier, into cavities where lava cooled 

against the side-walls of sub-ice cavities.   
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Figure 11:  Sketches showing structural cross-sections and column distributions  

in different lava flow landforms associated with lava-ice interaction at stratovolcanoes.  Group 1 

landforms: (a) ridge forming lava flow; (b) smaller lava flow; (c) polygonally jointed subglacial 

dome.  Group 2 landforms:  (d) flat-topped mountain; (f) esker-like lava flow.  Group 3 landforms:  

(f) subglacial dome with pseudopillow fractures; (g) pillow lobe flow.  Sketch a and b of Group 1 

relate to both Koosick Bluff and Ornostay Bluff at MEVC.  Sketch c of Group 1 most represents 

Triangle Dome of this study.  OB and KB are more difficult to interpret and may represent the 

interior or eroded remnant of a Group 1 type flow..  (after Lescinsky and Fink, 2000). 

 

 

Subaerial, ice-contact steep – walled, ridge forming, rhyolite to andesite lava flows up to 

450 m thick and extending 25 km from their source are accompanied by less extensive smaller 

flows of only 20-30 m in thickness are both found at Mount Rainier and are suspected to have 
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been emplaced in an ice-contact (alpine glacier) environment (Lescinsky and Sisson, 1998).   In 

this location it appears that the glassy flow surface that is suspected to be common with ice 

contact flows is more prevalent as the thickness of the flow decreases.  The upper portions of the 

aforementioned flows are up to 30 m sections of crystalline vesicular lava usually altered and 

oxidized.  Just below this zone is the upper “entablature” zone composed of smaller columns 

accompanied by other jointing creating platy and polygonal fracturing.  The basal zone of the 

flows have broad (30-40 cm) vertically oriented columns forming the lower colonnade zone.  

Less glass is apparent at the flow base and basal breccias may be minimal to completely absent 

(Fig 11). 

Fractures in the glassy flow margins occur during the lava advance and during lava-ice 

interaction not post-emplacement.  These fractures started at the very margin of the flow and 

propagated inward incrementally by thermal contraction as evident by the ridges produced on the 

fracture face.  An irregularity in facture spacing from irregular and closely spaced (shard-

forming and hackly; Table 2) at the flow margin to regular and more widely spaced (sheet-like 

and polygonal; Table 2) toward the flow interior.  This variable fracture spacing corresponds to 

decreasing cooling rates across the flow.  Large variances in cooling mechanisms cause these 

marked changes in cooling rates.  Cooling by radiation and atmospheric convection along the 

flow’s surface is slower and less efficient than convective cooling via water and/or steam 

penetrating the flow through fractures.  These different mechanisms produce the zones of well-

developed polygonal fracturing (“colonnade” zone) as well as the poorly-developed irregular 

fracturing (“entablature” zone) as seen in columnar basalts (Long and Wood, 1986).  The lowest 

cooling rates, and therefore most organized jointing is associated with subaerial settings where 

higher cooling rates and more chaotic fracturing is the result of subaqueous emplacement  
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(Lescinsky and Fink, 2000).  Large fracture spacing is the result of smaller thermal gradients 

whereas large thermal gradients result in closer fracture spacing.  Furthermore, lava composition 

may dictate fracture spacing.  Silicic magmas, relative to mafic magmas, have higher thermal 

diffusivities and enable more rapid cooling.  Silicic magmas also comparatively have lower 

values of Young’s modulus and Poisson’s ratio and higher thermal expansivity, which enable 

closer fracture spacing (Lescinsky and Fink, 2000).  Although there are correlations between 

fracture spacing, cooling rate, and composition, they are still poorly constrained.     

 

Figure 12:  Idealized sketches showing cross sectional views of an ice-contact andesite-dacite lava 

flow and resulting structures.  Note the sub-horizontal to horizontal columnar joints along the 

margins as well as the larger scale vertical columnar joints along the base.  Vertical exaggeration ~ 

5x.  (after Lescinsky and Sisson, 1998). 

 

Rhyolitic lava flow bases at Mount Rainier have 30-40 cm in diameter polygonal 

columnar joints oriented normal to the basal flow contact (Fig 11).  Some flow banding is 

observable and generally parallels the underlying flow base.  These columns extend 2-4 m into 
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the flow where they terminate at another zone of columnar joints or within the flow interior.  The 

contact between the glassy zone and the main flow unit in the interior is a sharp transition.  The 

flow interior is massive and well crystallized with platy joints spaced 1-5 cm apart.  Unlike the 

polygonal columnar joints, the platy joints break around rather than through phenocrysts.  The 

platy joints are predominately parallel to the flow base, but are more irregularly oriented near 

flow margins.  Poorly formed cooling columns, 50-80 cm in diameter, are common in the flow 

interiors but are not easily distinguished except from a distance.  The outermost columns are 

subhorizontal and perpendicular to the present day near-vertical cliff exposures that face adjacent 

valleys (Lescinsky and Sisson, 1998).  

At Mount Rainier, steep flow sides approximately 50 m high with subhorizontal columns 

suggest extensive near-vertical cooling surfaces which are unlikely to have been the result of 

emplacement within river valleys.  A possible scenario for flow movement suggests that molten 

flow interior moves within a solid thermally protective ‘shell’ (Fig 12).  Additionally, situational 

evaluation of these flows also suggests ice-contact environment.  During a period of glacial 

advance, lava erupted from Mount Rainier flowed down the sloped of the volcano bounded on 

either side by ice-filled valleys on either side (Fig 13).  These thick ridge-forming perched lava 

flows preserve the presence of former ice and measurement and study of these types of flows 

leads to minimum ice thickness measurements (Lescinsky and Sisson, 1998). 
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Figure 13:  Cross section sketches of proposed ice-marginal formation of ridge-forming  

and perched lava flows at Mount Rainier, Washington.  Elevations and horizontal distances in 

meters (after Lescinsky and Sisson, 1998).   
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At Ruapehu andesite volcano, New Zealand, small (10-20 cm thick) secondary columns 

observed approximately perpendicular to larger (0.5-3 m thick) primary cooling joints are 

interpreted as originating during a secondary cooling period at temperatures between the low 

creep and elastic regimes involving a rapid influx of large volumes of water (Sporli and Rowland 

2006; Fig 14).  Neither the primary of the secondary cooling joints exhibit glassy rinds that 

would indicate quench or rapid cooling of molten lava.  The primary cooling joints are well-

formed and likely formed in absence of water by conductive cooling only.  The secondary 

columns, however, represent a secondary, stronger cooling event and may also be from a periods 

of larger and more rapid temperature drop.  This cooling event propagated from inward from the 

already formed primary column fracture surfaces.  During this period of cooling, the andesite had 

solidified below the glass transition temperature; the tensile strength of the andesite would have 

increased along with a slight decrease in the coefficient of expansion (Sporli and Rowland, 

2006).  Only water could cause such a drastic period of rapid cooling in these conditions.  Initial 

contact of the cold water and hot outer surface of the primary columns created a initial, shallow 

network of polygonal cracks.  After further cooling and intrusion of water increasing crack-tip 

stresses would the fractures progress into the interior of the primary columns.  Some of these 

secondary fractures flare, feather, and terminate prior to reaching the center of the primary 

column indicating an inward decrease in thermal stress.  A decrease of thermal stresses in this 

case would suggest a change in cooling mechanism back to conductive cooling without water.  

This is interpreted as indicating either the supply of water became limited or was boiled away 

before it could interact and propagate fully through the secondary columns.  These early 

terminations of secondary columns before reaching the interior of the primary columns are less 

common in the lower portions of the flow.  Although there is no direct evidence, this may 
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suggest an abundant supply of water.  There is little evidence at Ruapehu for the glassy rinds 

observed at Mount Rainier (Lescinsky and Sisson, 1998).  The temperature drops that produced 

the fractures within the flow at Ruapehu occurred later in the cooling history, or below the glass 

transition temperature of andesite, than those of Mount Rainier.  Orientations of the secondary 

columns are similar to the pseudopillow fractures of Lescinsky and Fink (2000) (Sporli and 

Rowland, 2006).   It is postulated that the outer solidified skin of the flow provided a physical 

barrier to prevent further water influx during primary fracture formation.  Water then began to 

seep into these fractures as the outer rind of the flow cooled allowing the presence of water 

during secondary fracturing event (Sporli and Rowland, 2006). 



 

 55 

 

Figure 14:  Photographs of secondary column structures from Spörli and Rowland’s (2006)  

‘column on column’ structures in Mount Ruapehu andesite:  (A) Curved primary columns (P) with 

subhorizontal, smaller secondary columns (S).  (B) Enlarged view of image A.  The flaring of 

secondary columns towards the center of the primary columns is visible here.  (C)  Down-flow face of 

a primary column showing the polygonal ends of secondary columns.  (D)  Primary and secondary 

columns in frontal rind of the lava lobe.  The columns here are slab-like in shape with prominent 

down-dip ribbing indicating horizontal fracture propagation  (after Spörli and Rowland, 2006).  
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Steep-sided andesitic lava flows at Ember Ridge, Mount Cayley volcanic field in 

southwestern British Columbia display fine-scale (15-30 cm) complexly oriented columnar 

jointing indicating an overall domal-shaped cooling surface.   Column size typically increases 

toward the lowest portions of the outcrop.  Where column size decreases, column orientations 

become more chaotic.  Planar jointing perpendicular to columns (10 cm) and flaggy jointing (<1 

cm) occur at numerous locations.  The presence of plentiful, poorly-formed, fine-scale cooling 

joints as well as bulbous rounded cooling surfaces and abundant glass observed at the least 

eroded outcrop all suggest Ember Ridge lava has cooled rapidly in a confined environment 

(Kelman et al., 2002).    It is suggested that moderate to large quantities of hyaloclastite may also 

have been present surrounding these lavas shortly after eruption but has since been removed by 

weathering and erosion and was therefore not observed at most locations. 
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10.0  DISCUSSION OF EMPLACEMENT MECHANISMS AND STRUCTURES OF 

TRACHYTE LAVA FLOWS 

The emplacement of trachyte or phonolitic lava flows has not been the focus of much 

research.  Most of the examples of such lava flows in the literature are brief descriptions within 

broader accounts.  This section focuses specifically on descriptions of trachyte lava flows in the 

literature, particularly descriptions of flow dimensions, especially thicknesses and aspect ratios, 

structures and emplacement mechanisms.   

The purpose of this discussion is to understand if the studied bluffs, specifically 

Ornostay Bluff and Koosick Bluff at MEVC, have been overthickened by being ponded 

against ice, or if their thickness does not require any confinement.  This relates to the 

principal research question of the project “How do trachyte-phonolite lavas that have 

contacted ice differ from those emplaced in a non-glacial environment?” 

10.1 SUBAERIAL TRACHYTE LAVA FLOWS 

Research using interferometrically processed SIR-C radar data was used to provide basic 

maps, morphological data, and estimate the thickness of trachyte lava flows at Karisimbi 

Volcano, Rwanda (MacKay et al., 1998).  The trachyte flows imaged at Karisimbi are found to 

be as long as 12 km and average 40 – 60 m in thickness although the actual number of flows 
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observed is undeterminable without additional imagery or field observations.  Comparison of 

digital elevation models (DEMs) created from this data allowed maps of flow thicknesses and in 

turn flow volumes to be created, resulting in volume values of up to 1 km3 for individual flows 

(MacKay et al., 1998).    

Highly fluid, columnar jointed trachyte lavas of the South Turkana volcanoes in the 

Kenya Rift cover areas up to 100 km2 and have flow thicknesses of 30 m or less.  These flows 

are holocrystalline throughout with thin basal breccias and often a thin chilled margin.  Along 

with these thin, low viscosity flows, thick and stubby flows and domes of trachyte cover limited 

extents and are nearly entirely degassed.  These thicker forms are also columnar and platy jointed 

(Webb and Weaver, 1976). 

Viscous trachyte lavas at Emuruangogolak Volcano in the Kenya Rift are 10-30 m thick 

and composed of dark green lavas with alkali feldspar phenocrysts  (Weaver, 1976). 

Through examination of the limited research reporting trachyte lava flow dimensions, it 

is concluded that subaerially emplaced trachyte lava flows “typically” have flow thicknesses of 

few tens of meters and extend to 12 km or more. 

10.2 SUBAQUEOUS TRACHYTE LAVAS  

The trachytic subaqueous lava flows of Tok Island, Korea (Sohn, 1995) are coherent are 

interpreted as domelike or lobate flows accompanied by autoclastic breccias that have been 

erupted and brecciated in a subaqueous environment.  The breccias exhibit close-fitting clast 

boundaries.  The clasts within the breccias are angular and blocky in shape with intergranular 
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textures which suggest these fragmented from solidified lavas, not from melt fragmentation.   

Radial-columnar, concentric, and square joints persist throughout the main coherent lava flows.   

LeMasurier (2002) identified trachytic pillow lavas in west Antarctica at Mount Takahe.  

The pillows observed are generally tubular in shape, 2-4 m long, and 1-1.5 m in diameter.  The 

pillow structure is commonly found surrounded by hyaloclastic debris.  The pillows outer texture 

varies from glassy margins of 3-6 cm in thickness to partial glassy rims to no rind at all.  The 

trachyte and benmoreite lava flows are 2-10 m thick indicating their relatively low viscosity 

which very likely played a role in pillow formation. 

Of the subaqueous trachyte lavas in the literature, the flows tend to be dome-like or 

lobate in morphology.  Most are associated with autoclastic breccia and some additionally with 

hyaloclastite.  Joints within these flows may be radial columnar, concentric, or square shaped. 

10.3 SUBGLACIAL AND ICE-CONTACT TRACHYTE LAVAS 

The step like topography and bounding cliffs identified at several localities including 

Hoodoo Mountain volcano, northern Canadian Cordillera suggest that phonolitic (note these are 

not trachytic, but they are very similar compositionally) flows were pooled against ice (Edwards 

et al., 2002).   At Hoodoo Mountain, the distinct vertical cliffs of lava that feature finely jointed 

flow fronts that form steep cliffs of 50 to 200 m in height at this locality may have resulted from 

lava flows being dammed and ponded against thick masses of ice (Edwards and Russell, 2002).  

The columns at this location are generally 30 m or less in diameter and often oriented 

perpendicular to the vertical cliff face, although areas of complex fanning joint patterns are also 

present The pattern of columnar jointing patterns is also of particular interest and perhaps quite 
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diagnostic of emplacement environment.  The lava bodies at Hoodoo are pervasively jointed with 

cooling joints that reflect highly irregular cooling surfaces are commonly encased in monomict 

breccias.  In addition, samples from the surfaces of massive bounding cliffs are cryptocrystalline.  

These features suggest relatively quick cooling or quenching (Edwards and Russell, 2002).   

Trachydacite (note again not trachytic or phonolitic, but sinilra in composition) lava 

flows at Oraefajokull stratovolcano in Iceland have thicknesses varying from 25 m to over 75 m.  

The base of the flow lies on breccias formed from the glassy margins of the flow whereas the 

interior of the flow grades from columnar jointed to massive.  The basal breccia, another section 

of breccia within the flow, and the surfaces of columnar joints all have pervasive pink-red 

staining.  This alteration has been attributed to the presence of steam caused by water infiltration 

at the flow’s surface during cooling.  There is, however, a distinct lack of flow front material 

within the basal breccia also indicates this flow may not have developed a typical lava flow 

front, suggesting the flow may have contacted ice directly (Stevenson et al., 2006).    

From evidence of subglacial and ice-contact documented in the literature, there are 

several factors that are recognized in other localities suggesting lava-ice interaction.  Step-like 

topography of volcanic forms as well as bounding vertical cliffs suggests ice-contact influenced 

volcanic morphology.  On these cliff faces, columns perpendicular to the cliff face further 

indicate a vertical cooling surface.  In other areas, complex entablature-like fanning  and 

hydrothermal alteration reflect water interaction. 
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11.0  DISCUSSION OF VISCOSITY, ASPECT RATIOS, AND DIMENSIONS OF 

TRACHYTE LAVA FLOWS 

This is the believed to be the first detailed compilation of calculated viscosity data based 

on a large dataset of trachyte compositional data. 

Lava viscosity has been identified as one of the primary controlling factors of how lava 

flows and domes form, move and their resultant morphologies and structures.  Highly viscous 

lavas, such as rhyolites and potentially some trachytes, tend to flow slowly and may form semi-

solid and solid portions that may additionally reduce movement. These viscous lavas are more 

likely to form steep sided domes and thick flows that may not flow far from their source. Less 

viscous lavas, such as basalts, tend to flow more easily in comparison to their more viscous 

counterparts.  These are more likely to form broader, thinner flows that travel further from their 

source. 

The purpose of this section is to describe and discuss the variation in the calculated 

viscosity, estimated dimensions (Table 3), and aspect ratios of trachyte lava flows from the 

literature.   This is in order to ascertain if we can use calculated viscocity and dimensional 

data for the lava flows in the study area (Tables 3 and 4) at the MEVC (specifically OB and 

KB) to suggest that the flows may have been overthickened by ponding against ice 

The primary factors that control viscosity of melts are temperature, pressure, chemical 

composition, volatile content, and crystal and bubble content.  The most influential factors are 
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temperature, chemical composition and volatile content, since small changes in these factors 

have great effects on the viscosity of the melt (by several orders of magnitude) (Whittington et 

al., 2001).   

Very little has been published directly addressing the viscosity of trachytes. This is an 

important factor to consider since the viscosities control the aspect ratio of unconfined flows, 

flow morphology, structures, velocity, and potential interaction with their substrate.  Being able 

to easily compare viscosities across several locations and samples of trachyte is important 

to help recognize any anomalous thicknesses that may indicate ponding against ice, which 

is of most interest here versus unconfined flow emplacement.    
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Table 3:  Table of comparison of MEVC trachyte flows  

(in bold) and other intermediate to felsic composition lava flow thickness from the literature. 

Table 3:  Flow Thicknesses 

    Construct Type Thickness Notes 

    
Ornostay Bluff (MEVC) Flow 75 m Trachyte, Individual flow 
Ornostay Bluff (MEVC) Flows 90 m Trachyte, Sequence of flows 
Koosick Bluff (MEVC) Flows 90 m Trachyte, Individual flow 

Kakiddi (MEVC) Flow(s)? 60-120 m 
Trachyte, Unknown number of flows, Souther 

1996 

Armadillo (MEVC) Flows 3-9 m Trachyte, Individual flows, Souther 1996 
Armadillo (MEVC) Flows 180 m Trachyte, Sequence of flows, Souther 1996 

Mount Rainier, 
Washington 

Flows 15-450 m 
Andesite-dacite, Individual flows, Lescinsky and 

Sisson, 1998 

Karisimbi Volcano, 
Rowanda 

Flows 25-140 m Trachyte, Individual flows, MacKay et al, 1998 

Santiaguito Volcano, 
Guatemala 

Flows 31-65 Dacite, Individual flows, Harris et al, 2004 

Hoodoo Mountain, British 
Columbia 

Flows 10 - 200 m 
Phonolite - Trachyte, Individual and sequences, 

Edwards et al, 2002 

Blahnukur, Torfajokull, 
Iceland 

Flow 20 m Rhyolite, Tuffen et al, 2001 

 

Viscosities of the trachyte lava flows at Karisimbi Volcano, Rwanda have been estimated 

based upon the spacing of large folds as seen on DEMs derived from radar data.  The results are 

from 1012 Pa s for surface viscosity to 1010 to 1011 Pa s for interior viscosity, for a strain interval 

of 1 day (25 hr) (MacKay et al., 1998).  In another laboratory study, viscosities of hydrated 

synthetic iron-free phonolite and trachyte melts are reported between 108.4 and 1013.1 Pa s for 

water contents between 0 and 5 wt% (Whittington et al., 2001).  These results indicate that the 

effect of water on the viscosity of the melt is different on magmas that are already partially 

depolymerized as opposed to fully polymerized magmas (Whittington et al., 2001). Further 
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research suggests that increasing Na2O content within trachytes allows greater solubility in the 

melt and therefore can also play a role in final viscosity (Di Matteo et al., 2004). 

The results of the study of trachyte lava viscosities calculated from analyses in the 

literature and MEVC analyses are presented here: 
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Table 4:  Intermediate lava viscosities from the literature 

Table of calculated (using Giordano et al 2007, ‘Viscosity of magmatic liquids’ model) intermediate 

composition lava viscosities from the literature.  MEVC lavas in bold.  * indicates the calculations were from 

the published literature and not calculated by this author.  

 

Table 4:  Intermediate Lava Viscosities  

 Location Composition Temperature Viscosity 

  
C log[n (Pas)] 

MEVC - Koosick Bluff Trachyte  850 7.64 

MEVC - Ornostay Bluff Trachyte 850 5.96 

MEVC - Triangle Dome Phonolite 850 7.6 

Santiaguito Flow, Guatemala (Harris et al, 2004) * Dacite  unknown  9-10 

Karisimbi, Rwanda  (Harris et al, 2004) * Trachyte unknown  10-11 

Oraefajokull stratovolcano, Iceland (Stevenson et al, 2006) Trachy-dacite 850 5.43 

The Pitcarin hotspot in the South Pacific (Hekinian et al, 2002) Trachyte 850 4.33 

The Cerro Mencenares volcanic center, Baja California (Bigioggero 
et al,1995) 

Alkali Rhyolite (Dacite) 850 4.55 

Emi Koussi volcano, Tibesti, Chad (Gouraud and Vincent, 2003) Phonolite 850 4.49 

Northern Trans-Pecos magmatic province  (Barker, 1977) Trachyte  850 5.09 

Alborz Mountains, northern Iran (Davidson et al, 2004) Trachyandesite 850 4.33 

Rallier-du-Baty Peninsula, Kerguelen Archipelago (Indian Ocean)   
(Gagnevin et al, 2003) 

Trachyte 850 4.98 

Vico Volcano, Central Italy (Perini et al, 2004) Trachyte 850 5.20 

Longonot Volcano, Kenya (Rogers et al, 2004) Trachyte 850 4.40 

Cape Verde Islands and Fernando de Noronha (Gunn and Watkins, 
1976) 

Trachyte/Phonolite 850 4.86 

Hoodoo Mountain volcano, northern Canadian Cordillera  
(Edwards et al., 2002) 

Trachyte 850 4.96 

Thirtynine Mile volcanic field, central Colorado (Wobus et al, 
1990) 

Trachyte 850 5.78 

 

Aspect ratio is a common tool used in describing three-dimensional shapes and is used in 

various disciplines and is not specific to volcanology. The aspect ratio of a shape is simply 

derived by comparison of its longer dimension to its shorter dimension.  Although this is a 
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simple comparison it is also particularly problematic with natural landforms that are susceptible 

to erosion and inherently variable in shape and thickness.  The thickness of a flow may vary 

greatly over the areal extent of that flow.  Additionally, measurement of such variances is 

difficult and inaccurate in most cases.  Nonetheless, it is another use of information that adds 

another element for comparison to the limited number of trachyte and phonolite flows that have 

been studied (Table 5).   
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Table 5:  Trachyte lava flow aspect ratios 

Aspect ratio (relationship of flow thickness to aerial extent) for speculative MEVC trachyte lavas (bold) and 

the trachyte lava flows of Karisimbi Volcano.  Note that the MEVC trachyte lava flow dimensions are 

considered very speculative, especially regarding the length of the lava flow which is almost positively been 

eroded, to some unknown extent.  There is also possible erosion from the top of the flow and therefore 

thickness is also speculative.  Therefore, the resulting aspect ratio derived from these two measurements is 

very speculative.  

 

Table 5:  Trachyte Lava Flow Aspect Ratios 

   Location Flow ID Aspect Ratio 

   
MEVC KB 0.03 

MEVC OB (one flow) 0.069 

MEVC OB (entire unit) 0.08 

Karisimbi Volcano, Rwanda #3 0.11 

Karisimbi Volcano, Rwanda #6 0.16 

Karisimbi Volcano, Rwanda #10 0.095 

Karisimbi Volcano, Rwanda #11 0.06 

 

Aspect ratio is the ratio of flow thickness to flow area extent.  Generally speaking basalts 

have low aspect ratios (< 0.02), i.e. they are relatively thin and cover large areas.  Rhyolites have 

higher aspect ratios, relatively thick flow of little extent.  It is clear from Table 5 that trachytes 

are unique in that they can range between these two extremes and vary widely. The range of 
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known trachyte aspect ratios varies greatly and is hence not a particularly useful tool in 

identifying anomalous trachytic flow thicknesses that might have developed by confinement 

by ice. 

 

Table 6:  MEVC dome dimensions 

Table of comparison of Triangle Dome (phonolite) and other MEVC “domal structure” dimensions. 

Table 6: Dome Dimensions 

     Construct Type Height Diameter Notes 

     Triangle Dome 
(MEVC) Dome 120 m 500 m Trachyte 

Pyramid Dome 
(MEVC) Dome 366 m 1000 m Trachyte (Souther, 1996) 

Nanook Dome (MEVC) Dome 
150-200 

m 750 m 
Trachyte, Group of 3 units (Souther, 

1996) 

Glacier Dome (MEVC) Dome 210 m ? Trachyte (Souther, 1996) 
 

Understanding the controls on magma viscosity help to identify interesting and 

anomalous flow structures related to viscosity (tension gashes) as well as flow morphology 

(thickness (Tables 3 and 6), aspect ratio (Table 5)) and may be further applied in velocity 

calculations.  One factor affecting lava viscosity is the crystal content of the lava. The crystal 

contents as determined via thin section analysis for MEVC trachytes are between approximately 

1% (TD) and 30% (KB, OB).  Lava viscosity is calculated using the “Viscosity of Magmatic 

Liquids:  A Model” (Giordano et al., 2008) using an estimated eruption temperature (850 C) and 

geochemical analysis data.  The temperature selected in this case is only an estimate of an 

average intermediate lava eruption temperature.  In addition to this assumption, the model 

inherently makes several assumptions as well, including a completely liquid melt.  With all of 
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these assumptions, quantitative data for actual eruption viscosity is unachievable, but looking at 

the affect that changes in eruption condition variables have as well as trends in this data provides 

background knowledge for further interpretation.  By direct comparison of magma viscosity of 

OB lava and crystal contents from 0% to 50% it becomes apparent there is a great impact of 

crystal content on flow viscosity (Fig 15).  

 

 

Figure 15:  Chart showing calculated effects of crystal content on the viscosity of Ornostay Bluff 

trachyte. 
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12.0  DESCRIPTION OF STUDIED TRACHYTE LAVAS AT MOUNT EDZIZA 

VOLCANIC COMPLEX 

The three bluffs of lavas studied at MEVC include Ornostay Bluff, Koosick Bluff, and 

Triangle Dome (Fig 5).  Ornostay Bluff and Koosick Bluff are both composed of Ice Peak 

formation trachytic lava flows (Table 1) approximately 1.5 ± 0.4 Ma (Souther, 1992).  Triangle 

Dome is another construct of phonolitic (Fig 16, Table 7) composition approximately 0.9 ± 0.3 

Ma (Souther 1992).  These areas were selected for study based on the preliminary field work, 

geochemical analysis, and age dating done by Souther (1992).   

 

Figure 16:  TAS diagram 

Total Alkalis-Silica Classification of OB, KB, and TD compositions.  Both OB (1) and KB (2) fall 

within the trachyte or trachydacite field where TD (3) is phonolite. 
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Table 7:  Geochemical data 

XRF Element Chemical Analysis of Intermediate MEVC Lavas 

    
 

E6CE5 E6KL22 E6KL23 

 
Ornostay Bluff Koosick Bluff Triangle Dome 

 Trachyte Trachyte  Phonolite 
SiO2 62.94 62.07 59.88 
TiO2 0.462 0.506 0.293 
Al2O3 13.4 16.38 18.21 
Fe2O3 8.71 6.72 5.41 
MnO 0.157 0.134 0.127 
MgO 0.13 0.27 0.26 
CaO 1.07 1.68 1.19 
Na2O 6.44 6.35 7.66 
K2O 4.54 5.69 5.70 
P2O5 0.046 0.078 0.064 
BaO <d/l 114 33 
Ce 195 107 144 
Co <d/l <d/l <d/l 
Cr2O3 18 22 18 
Cu 4 13 24 
Ni 5 7 7 
Sc <d/l <d/l <d/l 
V <d/l <d/l <d/l 
Zn 298 118 114 
LOI 1.85 0.35 1.40 
Total 99.8 100.27 100.23 

 
   Note: The results are expressed as weight percent, the trace elements (BaO to Zn) as ppm 
(ug/g). 

 

Total iron present has been recalculated as Fe2O3.  In cases where most of the iron 
was originally in the ferrous state (usually the case with unaltered rocks) a higher total 
is the result. 

 

Analyses done on fused beads prepared from ignited samples. 

 

Detection limits are based on three times the background sigma values. 
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12.1 TRIANGLE DOME 

Triangle Dome (Fig 17) is a spiny (Fig 18) ridge-like edifice that protrudes above the 

lower plateau of the MEVC, collared by alpine ice, and is located along Mount Edziza caldera’s 

western rim.  The “dome” is approximately 120 m high, 600 m wide, and 1000 m long oriented 

along an east-west axis.  The northern, eastern, and most of the southern faces of the dome are 

surrounded by the alpine ice cap that currently occupies the Mount Edziza caldera.  The western 

side of Triangle Dome is steep terrain of Edziza formation lavas and younger alpine glacial 

moraine. This feature is comprised of approximately 0.03 km3 of coherent lava with concentric 

flow layering and spectacular columnar jointing structures (Fig 19).   The basal zone of the dome 

has long (up to 40 m), 50 cm wide, well developed, regular polygonal columns (Fig 20) and very 

steep sides.  These columns are oriented so that they splay outwards slightly at the base (from 90̊  

vertical to approximately 75̊).  Moving upwards, in some locations, a relatively thin 1 m layer of 

‘S’ and ‘C’ curved columns (Fig 22) is visible capping the much larger and more well formed 

columns of the basal zone.  From here upward the next structural zone comprises the bulk of the 

exposed face.  These are fanning sets of columns (Fig 21), smaller in diameter than those of the 

basal zone and not as well-formed (Figs 23 and 24).  At some locations the long axis of the 

columns are visible while in other areas the ends of columns are visible creating a ‘lizard skin’ or 

scaly appearance (Figs 25 and 26).  This section is also geomorphically more irregular with 

weathered spires and spines.  The uppermost sections of the dome are fissile highly weathered 

areas of crudely columnar jointed lava with pervasive platy jointing. 
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Figure 17:  Aerial photo of Triangle Dome and surrounding areas. 

Ice, colluvium, and moraine dominate the landscape.  The evidence for recent and continued glacial 

interaction of TD can be seen in the collar of ice and surrounding moraine. 

 

TD preserves a complex pattern of curvicolumnar, planar columnar and hackly/blocky 

jointing (Fig 20), but can broadly be divided into an upper and lower zone at about a maximum 
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of 60m above its exposed base (Fig 19).  The top most portion of TD is dominated by hackly to 

poorly developed columnar joints and pervasive platy jointing.   Local sill and dike-like areas of 

well-developed columnar joints and more coherent lavas are discernable by the differential 

weathering that has occurred along their contacts with the rest of the structure.  

 

Figure 18:  Photo of Triangle Dome from the north.   

From this location the nearest cliff outcrop are lavas beneath the main portion of the “dome” that 

was studied.  The spires of TD are visible here as well as an underlying outcrop (yellow ?) cliff that 

was not studied but may be related to TD. 
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Triangle Dome is comprised of light grey-green microporphrytic phonolite of the Edziza 

Formation dominated by alkali feldspars.  Microphenocrysts are mostly euhedral alkali feldspar 

laths, up to 1 cm in size, with well developed twinning although some pyroxenes are also 

present. The groundmass is predominantly interlocking clusters or contorted flow layered alkali 

feldspar crystals of lath or tabular shape and sparse interstitial aenigmatite.   Souther (1992) 

dated the Edziza Formation from a sample of pantelleritic trachyte collected from lavas on the 

western slopes of Mount Edziza (57° 44.5’ N, 130° 34.5’ W) at 0.9 ± 0.3 Ma using whole rock 

K-Ar methods. 
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Figure 20:  Photo mosaic of Triangle Dome with close-up images of structures.   

(clockwise from the top) Purple:  Spire within the upper entablature portion of TD.  Blue:  ‘Lizard 

skin’ appearance of columns when viewed from the ends.  Yellow: ‘Lizard skin’ and radial columnar 

jointing.  Green:  Larger, well developed, hexagonal columnar jointing at the base of TD.  Pink:  

Section of ‘S’ and ‘C’ shaped curved columns just above the lower colonnade.  Orange:  Fine scale 

platy jointing in the upper entablature portion of TD.  
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Figure 21:  Radial fanning columnar jointing at Triangle Dome.   

Lens cap for scale (arrow). 
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Figure 22:  Photo of ‘C’ and ‘S’ curves at Triangle Dome 

This photo shows the transition area between the lower colonnade and upper entablature and the 

area of ‘C’ and ‘S’ columns that were observed in some areas between these two zones, this area may 

be interpreted as a sill-like intrusive feature.  Yellow lines highlight the long axis of the well-formed 

lower polygonal columns.  Pink ‘C’ and blue ‘S’ curves highlight those columns.  Red lines highlight 

the long axis only a few areas of organized columns.   
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Figure 23:  Photo of radial columns at Triangle Dome 

Blue dashed line indicates the approximate contact between the lower colonnade and the upper 

entablature zones.  Note that the yellow lines highlighting the long axis of the polygonal columns 

appears to radiate from a central source near the contact with the upper entablature.  The upper 

portion in this photo has relatively well formed columns (long axis in purple). 

 



 

 81 

 

Figure 24:  Vertical to sub-horizontal fanning columns  

These column orientations indicate cooling against an ice surface perpendicular to the axis of the 

columns.  View from the west of the lower portions of Triangle Dome.  Blue dotted line = 

approximate contact between lower colonnade and upper entablature.  Yellow lines = long axis of 

lower well-formed polygonal columns, radiating outward to a subvertical cooling surface.  Purple = 

long axis of upper entablature columns.   
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Figure 25:  The ends and ‘lizard skin’ appearance on the lower portions of Triangle Dome.   

Columns formed perpendicular to the cooling surface and propagating inward. 

 

 

Figure 26:  Radial columnar jointing at Triangle Dome 

The columns in the lower half of the image are part of the lower colonnade zone, note they appear to 

be propagating from a point source near the center of the picture.  
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12.2 ORNOSTAY BLUFF 

Ornostay Bluff is a small trachytic steep-sided bluff of lava flows along the southwestern 

side of the Mount Edziza caldera (Fig 27).  The source of the flows is shrouded by the ice cap 

that currently fills the caldera.   The bluff is 600 m wide, 1800 m long (as currently exposed), 

and rises 60 m above the surrounding plateau.  The top surface of the bluff slopes gently a few 

degrees to the west, which is also assumed to be the direction of lava flow advance.  The top of 

the bluff flow has been glaciated and is relatively featureless and flat with only small amount of 

visible debris (Fig 30).  The sides of the bluff are very steep with extensive piles of talus at the 

base of their slopes.  The northern side of the bluff abuts alpine glacial moraine and glacier ice.    

Two waterfalls incise the southwestern and mid-southern side of the bluff and provide good 

accessible sections through the lava flows (Fig 32).  Here a well formed lower step of lavas 

approximately 40 m thick, that creates a 50 m wide bench upon which another 10-20 m of upper 

lavas rest.   
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Figure 27:  Aerial photo of Koosick Bluff (KB) and Ornostay Bluff (OB) and surrounding area.   

Note the extent of the moraine on either side of OB and KB as well as current ice location. 
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OB is approximately 0.2 km3 in volume and composed of 2-3 trachytic lava flows, with 

the basal flow being the thickest (Fig 29).  The basal flow is 75 m in total thickness although 

portions of the flow are below the cliff forming lavas and only exposed on the hillside beneath 

the cliff due to erosion.  This basal flow is comprised of three distinct structural units (Fig 39).  

Unit 1, 18 m thick and the lowest stratigraphically, is a basal clast-supported breccia.  The clasts 

within the breccia appear to be fractured in situ. Dark flow banding within the clasts is more 

prominent within the lower portions of Unit 1 (Fig 40).  It is unknown what this breccia lies upon 

as no basal contact was observed in the field (Fig 32).  The contact between the Unit 1 unit and 

Unit 2 is gradational.  Unit 2 is a 10 m thick unit of glass that has orange to yellow altered rinds 

several mm to 1 cm thick (Fig 33).  Within the rind is black devitrified glass.  Some crude 

jointing is visible here and is only a few cm in width with axial traces inclined towards the 

northeast.  The next unit within the sequence is the thickest structural unit and has a gradational 

contact with the Unit 2 below.  Unit 3 is 47 m thick and characterized by columnar joints 30-201 

cm thick (Fig 38) accompanied by horizontal fracturing of creating sub-cm to 17 cm thick plates  

(Fig 34).   The columns at OB are however not as well formed as those in the basal unit at TD  

(Fig 37).   Fracture surfaces in this unit exhibit conchoidial fracture surfaces and expose tension 

gashes (Fig 35).  The columns are not hexagonal in shape and vary from 6-sided polygonal to 

rectangular, (Fig 34) the latter being much more common.  The tan-grey trachyte of this unit  has 

some areas of flow banding.   
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Above the basal lava flow at OB lays another lava flow comprising a comparable set of 

structural units only proportionally much thinner than the basal flow, an additional third flow 

may also be present although it was difficult to determine and close inspection was not possible 

due to the steep cliff faces.  The aspect ratio for OB is 0.069 (basal flow only) to 0.08 (entire 2-3 

flows comprising OB)  (Table 5).  The aspect ratio for OB was calculated using the widest part 

of the flow and length of the flow, measured on aerial photos as well as Souther’s (1992) 

geological map of MEVC and the total thickness of all the possible flows (2-3) at OB and the 

measured basal flow.  All of the area measurements were made using maps and images, where 

true non-geometric shape and variation were not taken into account.  Also, the source of OB is 

cloaked by ice and only the portion exposed was measured.  This aspect ratio also only portrays 

the portion of the bluff that remains at the present time and does not give a good indication as to 

an original aspect ratio for the flow at the time of emplacement.  Since then extensive, but 

immeasurable amounts of weathering have occurs (Fig 36). 
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Figure 29:  Ornostay Bluff photo mosaic overlay.    

Units are referenced in the Ornostay Bluff stratigraphic column Fig 39.   

 

Because cooling joints are recognized as forming perpendicular to cooling surfaces, by 

plotting the orientations of columns measured in the field at OB, the data generally indicate 

cooling surfaces near horizontal or slightly sloping (Fig 28). 

The lavas at OB are microporphyritic alkali trachytes of the Ice Peak Formation.  The 

microphenocrysts are alkali feldspar in lath or tabular shape, less than 1 cm across.  The 

groundmass is composed of predominately feldspar laths at times crudely oriented in flow 

directions creating trachytic textures that are visible in thin section.  Limited quantities of small 

pyroxenes, opaque oxides, and aenigmatite are also present within the rock.  Souther (1992) 
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dated the Ice Peak formation from a sample of trachyte from OB at 1.5 +- 0.4 Ma using K-Ar 

methods.  

 

 

Figure 30:  Photo of Ornostay Bluff from the north 

This image illustrating Ornostay Bluff’s steep-sided and flat-topped geomorphology 
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Figure 31:  Ornostay Bluff mosaic and close-up images   

(clockwise from top) Orange: the ends of the columns are visible more prominently on the north side 

of OB.  Yellow:  close up of the ends of columns.  Pink:  massive flow unit visible near the second 

waterfall on the southern side of OB.  Green:  Upper portion of OB with extensive platy jointing.  

Blue:  Conchoidal and irregular fracture surfaces (see also Fig 35).  
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Figure 32:  Photo of the southwest corner of OB and the first waterfall.   

The cut of the waterfall allowed the study of the lowermost lava flow.  Note that the yellowish area in 

the lower foreground is the Unit 2 of OB (Stratigraphic section of this area in Fig 39). 
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Figure 33:  Ornostay Bluff   

(A)  Waterfall near the southwest corner of OB where the OB stratigraphic section was studied.  (B)  

Upper massive flow Unit 3 to the east of the waterfall.  (C)  Crude columns near the base of Unit 3 

(hammer for scale (arrow))  (D)  Contact of Unit 2 (yellow) and Unit 3.  (E)  Gradational contact of 

Unit 2 (yellow) into Unit 3 (red and grey) (See OB stratigraphic column Fig 39) 
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Figure 34:  Ornostay Bluff columnar and platy jointing on the north side of the bluff.   

(A) The jointing at this location is not as well formed as at other location in the flow.  (B)  Smooth 

fracture surfaces and abundant platy jointing on the north side of OB.  (C)  The columnar joints here 

are short and not well formed, often with polygonal or rectangular shapes.  In places along this side 

of the bluff the ends of the columns are observable on the smooth fracture surfaces of the larger 

columns. 
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Figure 35:  Ornostay Bluff Unit 3  

Unit 3 (Fig 39) - areas of conchoidal fractured columns in central parts of lava flows.   The smooth 

shiny surfaces in these photos show the irregular surfaces of fracture.    
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Figure 36:  Photos of the top of Ornostay Bluff.   

The surface is a level surface with small rubble covering (A).  The upper portions of the flow with 

prevalent flaggy jointing and platy weathering (B). OB has clearly been glaciated and its margins 

and top surface are largely talus-covered making interpretation of ice-contact surfaces difficult.  

However, this is very typical of intermediate lavas in glaciovoclanic environments and it is important 

to research. 
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Figure 37:  Ornostay Bluff Unit 3 further east along the bluff’s southern face.   

The vertical, crudely formed, wider columns (highlighted in blue) can be seen here with smooth and 

more curved fracture surfaces than the narrow overlying columns.  View from the southwest.  See 

Ornostay Bluff stratigraphic section in Fig 39. 
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Figure 38:  Ornostay Bluff cooling-contraction columns all within Unit 3.   

(A)  Main column (vertical) and thinner platy (sub-horizontal) jointing.  (B)  Smooth face along the 

lower column with platy jointing near the top.  (C)  The ends of columns showing dominantly crudely 

rectangular cross-sections .  (D)  Curved fracture surfaces of primary columns.  See Fig 39 for 

Ornostay Bluff stratigraphic column. 
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Figure 40:  Ornostay Bluff  field photos 

(A) A fresh face on a loose piece of the glassy Unit 2 (Fig 39) showing the orange-yellow altered rind 

and devitrified glassy interior.  (B)  Clast from flow breccia Unit 1 (Fig 39) showing prominent flow 

banding.  

12.3 KOOSICK BLUFF 

Koosick Bluff (Fig 27) is a similar trachytic bluff to Ornostay Bluff, although there are 

some significant differences.  The bluff appears to be comprised of a single lava flow unit that is 

at least 1000 m wide, 3000 m long (exposed portion), and about 100 m high with an aspect ratio 

of 0.03 (Fig 41, Table 5).   As is the case with OB, the source area and eastern portion of the 

flow is obscured by the ice cap that fills Mount Edziza caldera and Tencho Glacier as well as the 

much younger Tennana Cone and its associated basaltic flows and pyroclastic units of late 

Pleistocene to early Holocene in age.  The northern and western faces of KB are steep exposures 

with large talus slopes at their base (Fig 42).  The southern side of KB lies alongside the basaltic 

flows and pyroclastic units of the late Pleistocene early Holocene Coco Crater.   The base of this 

flow is not visible, but the top of KB is relatively smooth with little debris and maintains a 

westward slope of approximately 5%. 
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KB is approximately 0.5 km3 volume and composed of microporphyritic alkali trachyte 

of the Ice Peak Formation as described at OB.  As previously mentioned, Souther (1992) dated 

Ice Peak lavas from a sample of trachyte from OB at 1.5 +- 0.4 Ma using K-Ar methods.  Field 

work at KB was limited to a quick reconnaissance stop and therefore additional observations 

were not made.  
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Figure 42:  Koosick Bluff 

In this figure some of the prominent larger scale cooling columns are highlighted with blue lines 

(long axis of the columns). 
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13.0  INTERPRETATION OF STUDIED TRACHYTE LAVAS AT MOUNT EDZIZA 

VOLCANIC COMPLEX 

The pattern and dimensions of cooling-contraction joints in lavas at glaciovolcanic 

centers can often provide important evidence for former ice contact and minimum ice thickness.  

In particular, narrow columns that are perpendicular to subvertical flow margins are commonly 

interpreted as evidence for contact with steep ice (Lescinsky and Fink 2000; Lescinsky and 

Sisson, 1998).  Examples of the range of fractures types observed in ice-contact lava flows are 

illustrated in Figure 43 (after Lescinsky and Fink, 2000).  However, interpretation of joint 

patterns in such lavas can be very complex, as several factors need to be considered, including 

the topography of the contacted ice, basal bedrock topography, fluctuations in water levels 

during cooling, ingress of water and steam along earlier joints, lava effusion rates and rheology, 

lava intrusion (endogenous growth), ice unloading, recent freeze-thaw processes, etc. 
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Figure 43:  Sketches of fracture morphologies in ice-contact lava flows.   

(a)  Polygonal fractures.  (b)  Sheet-like fractures.  (c) Pseudopillow fractures.  (d) Hackly fractures.  

White surfaces correspond to cooling fracture faces, with grey lines representing incremental 

fracture terminations.  Heavy black lines represent cooling fractures.  In (c) these are secondary 

fractures.  Propagation for all primary fractures (a-d) is toward the bottom of the figure.  

Propagation direction for the secondary fractures in (c) are into and out of the figure.  (after 

Lescinsky and Fink, 2000). 

13.1 INTERPRETATION OF TRIANGLE DOME 

TD and its complex fanning column and joint patterns are interpreted as being the result 

of a complex cooling regime within a partially water-flooded sub-ice cavity.  The cooling surface 

was most likely in a continually variable state causing complex cooling surfaces against the lava 

as it was being emplaced.  Curved columnar cooling joints are very common (Fig 44).  The basal 

fanning “colonnade” suggests that the lava formed in a cavity in the ice during emplacement, the 
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movement of water and steam throughout the cavity flushed through portions of the dome during 

emplacement causing new cooling surfaces to form almost continuously (Fig 45).  Possible 

controls for the shape of these subglacially emplaced domes includes the shape of the ice or ice 

cavity, rate of melting of the ice during emplacement, and amount and flow rate of water 

surrounding the emerging lava.  Similarly, the controls of the elaborate fanning patterns (Fig 44) 

include the changing cooling surface and the temperature of the fluid/ice in immediate contact 

with the lava.  
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Figure 44:  Curved columnar structures formed in basalt lava flows 

Arrows marking the probable direction of growth of primary fracture.  From Hull and Caddock, 

1999.  Many such fracture patterns of these curved columnar types were observed particularly at 

Triangle Dome. 
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The upper zone of TD, where regular columns are much less common, is interpreted as a 

type of “entablature” as commonly described from water-flooded basaltic lava flow as in the 

Columbia River basalts by Long and Wood (1986), (Fig 45).  The entablature is an area where 

initial set of joints has been overprinted by cooling joints due to water infiltration.  The origin of 

the prominent sheet-like planar jointing that dips into the core is unclear, but one possibility is 

that it may reflect ice unloading during or after emplacement.  Some of these dipping surfaces 

may also reflect lava flow contacts, but were not accessible to directly observe.  The local areas 

with well-developed coarser (relative to their immediate neighbors) columnar jointing and often 

S or C-like columns (Fig 22) in the upper zone may reflect endogenous growth by dike and sill 

intrusion after parts of the dome had already begun to cool, or some at least may also be lava 

flow contacts   The lower zone of TD, with its well developed hexagonal columnar joints, is 

interpreted as a thick “lower colonnade” with slower cooling and likely more regular cooling 

history likely due to less water ingress during cooling.  The absence of an upper colonnade (Fig 

46) may be due to removal by erosion, or it may never have developed because of water 

ponding, as opposed to direct lava-ice contact, in the upper part of the cavity. 
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Figure 45:  Typical intraflow structures present in Grande Ronde Basalt flows.   

This figure correlates nomenclature across various studies of these structures.  Fracture widths not 

to scale within the figure.  From Long and Wood, 1986. 

 

 



 

 109 

 

Figure 46:  Possible emplacement scenario for Triangle Dome.   

In first frame, a lower colonnade is formed by direct contact with ice and an upper entablature by 

water ingress. Note that sub-ice emplacement is not necessarily a requirement, but ice-contact along 

margins at the base is necessary (second frame).  The estimated minimum thickness of ice-contact 

zone is about 60m.  Prominent subhorizontal sheet-like jointing may be due to ice unloading (?) 

 

13.2 INTERPRETATION OF ORNOSTAY AND KOOSICK BLUFFS 

OB and KB, although not anomalously thickened for a magma of that viscosity (Tables 3 

and 4) nor exhibiting the complex cooling patterns of TD are still of interest in studying and 

recognizing ice-contact lavas.   This is because similar glacially-eroded thick steep-sided lavas 

are common on many intermediate to felsic volcanoes and deciding if they have contacted ice is 
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frequently a challenging task.   Some of the cooling joints observed and measured in the field 

exhibit the same cooling column geometry, joint patterns, visible textures, and other structures as 

those described in other subglacial environments (Table 2, Figs 43 and 47).  Due to the 

uncertainty associated with the emplacement environment of OB and KB bluffs a variety of 

possible emplacement scenarios is illustrated in Figure 48.  

 

 

Figure 47:  Sketch showing progression of fracture from a void along the flow base inward towards 

the flow interior.   

(a)  hackly fractures, (b) pseudopillow fractures, (c) sheet like fractures, (d) polygonal fractures.  The 

transition between each type of fracture is gradational.  Wider well developed polygonal fractures 

are found closer to the flow base and more irregular, broad polygonal fractures and platy jointing 

are in the flow interior.  Cross reference with Fig 43 for sketches of characteristics of each type of 

fracture morphology (a-d; after Lescinsky and Fink, 2000).  The larger columns at OB, TD, KB are 

similar in dimensions of the “flow interior” zone in this figure.  This suggests that much of the key 

structural data for ice-contact has been removed by erosion (perhaps several meters of the margin 

have been removed). 
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Figure 48:  Simplified lava flow emplacement scenarios for Ornostay and Koosick Bluffs.   

(A)  Local ice-contact margin  (B)  Lava flow ice-bound on both sides   (C)  Lava flow overtops ice.  

Probably unlikely?  Evidence would not be preserved.  (D)  Sub-ice lava emplacement Scenario B or 

D is considered the most likely for both OB and KB 
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14.0  DISCUSSION OF STUDIED TRACHYTE FLOW VELOCITY AND ICE 

MELTING RATES 

To see if the studied trachyte bluffs (specifically KB) at MEVC would have 

contacted ice directly or just produced meltwater, a study of the rate of ice melting 

compared with estimated flow velocity was performed, as follows:   

Taking Jeffreys equation (Jeffreys, 1925) to calculate the flow of a viscous body on an 

inclined plane (Tuffen et al., 2001), bulk melt density calculated from geochemical data from 

Edziza samples (Koosick Bluff), acceleration due to gravity, the thickness of Koosick Bluff (90 

m), slope angles of 1-30 degrees, and a viscosity of 103 Pa s we calculated an average flow 

velocity for a KB trachyte lava flow to be < 0.001 – 0.01 m/s (Fig 49, Table 8).  Note that 

Jeffreys equation (Jeffreys, 1925) relates viscosity (h), gravitational acceleration at Earth’s 

surface (g), density (ρ), angular measurement of slope (α), flow velocity (ν), and the thickness of 

the flow (d).    
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Table 8:  Jeffreys Equation 

Table of values used in velocity calculation 

 

Table 8: Jeffreys Equation 

    Symbol Property Units Values 

    
ν velocity m s-1 

0-
0.0099 

ρ magma density 
kg m-
3 

2506 

g acceleration due to gravity m s-2 9.8 

h thickness of viscous body m  90 

α slope angle ° 0-30 

μ viscosity  Pa s 10 7 

    
 

ν = ρgh sin α / 3μ 
  

     

The Einstein-Roscoe Equation (Marsh, 1981) was used to approximate the effect of the 

crystal content of a melt on viscosity.  The equation uses the viscosity of the liquid of the melt, a 

constant based on the volumetric ratio of solids at maximum packing (R), and the volume 

fraction of solids.  The volume fraction of solids was determined via thin section of the rock 

sample.   

Einstein-Roscoe Equation: 

(μ liq + Xtals) = (μ liq )* (1 - R * volume fraction of solids)-2.5 
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Figure 49:  Estimated velocity of the Koosick Bluff lava flow compared with typical ice melting rates. 

This graph shows the relationship of flow movement to possible ice melt-back rates as lava flows 

encounter ice.  This shows that there would likely be interaction of the lava and ice and not just 

melting.  Hence ice-contact structures should have formed. 

 

Höskuldsson and Sparks (1997) estimated ice would be melted at a rate of 10-6  m s-1 

during the emplacement of rhyolite lavas.  This lower end member of melting is based on the rate 

of heat transfer due to conductive cooling and includes the effects of a chilled rind on the flow.  

On the upper end of the scale, rates as high as 10-3 m s-1 were observed during the Gjálp 
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subglacial basaltic eruption.  These higher rates have been interpreted as indicative of more rapid 

heat exchange through explosive magma-water interaction (Tuffen et al., 2001).  Typical ice 

melting rates are realistically 2.5x10–5 to 3.2x10–4 m/s (Höskuldsson and Sparks, 1997), 

markedly slower than lava advance (Fig 49).  It is evident that if the lava encountered ice it 

would pond against and further interact with the ice without completely melting it upon contact.  

This favors interaction by flowing into cavities within the ice or by other means rather than 

simply the melting back of the ice.  If the ice was thick enough, this would also allow the ice to 

constrain the flow of lava or divert and change the flows natural path.  Further support of this 

interaction would be found in evidence of the meltwater run off that must be created during these 

interactions.  

The melting rate of ice is governed by the rate at which heat is being released from the 

lava flow.  The rates of ice melt produced by the equation suggest only a few days to weeks are 

necessary to melt ice of 500-2000 m in thickness.  This is, however, largely dependent upon 

numerous factors including how fractured the lava becomes through cooling as jointing allows 

further steam and water infiltration making flow cooling more efficient, temperature of the flow, 

condition of the contact surface and how chilled the exterior is at the point of contact, as well as 

relative quantity of lava compared with that of ice (Höskuldsson and Sparks, 1997).   
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15.0  DISCUSSION:  RECOGNIZING ICE-CONTACT TRACHYTE LAVAS 

The spectacular fanning and curved columns at the base of TD are an important indicator 

for ice contact, suggesting emplacement against a steep wall of ice, or at least within a cavity that 

able to pond water at that position on the MEVC.  These features as previously mentioned were 

not seen at KB or OB but due to the possibility of erosion in the time since emplacement, it does 

not necessarily rule out sub-ice emplacement for both of these bluffs also. 

Geomorphic evidence is an important indicator of the presence of former ice in 

glaciovolcanic settings.  Lava flows comprised of lava of average viscosity for a given 

composition, but markedly over-steepened landforms when compared with similar lavas at other 

locations (Table 3, Table 6) may suggest the lava had pooled against and been further formed by 

a body of ice (Fig 46).  Of the three similar domes Souther (1992) described of the Edziza 

Formation, Nanook Dome, Glacier Dome, and Triangle Dome (TD), TD most likely to have 

been molded by ice.  The splaying columns in the basal colonnade zone of TD most likely 

suggest steep walls of ice surrounded the cooling lava of the newly formed dome.  Additionally, 

for the amount of water needed to create the upper entablature zone at TD would likely need 

water ponded in a sub-ice lens or ice-bound lake (Fig 46).  Nanook Dome is associated with an 

outer rind of frothy, agglutinated trachyte scoria and blocks which may not have formed if lava 

had been extruded into the base of a >200m (?) ice sheet where pressure may be sufficient 

enough to suppress vesicle formation and degassing to such an extent.  Additionally, these 
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materials would have been waterlain, hydrothermally altered, and/or fragmental deposits if ice-

dammed water and meltwater were encountered.  Although there is little description of Glacier 

Dome from Souther (1992) it is said to exhibit the concentric flow layering typical of other 

subaerially erupted domes.  The only photograph of Glacier Dome from Souther’s work (1992) 

displays the regular, well formed basal colonnade as seen at TD, although none of the columns 

seem to splay outward near the base and maintain vertical to sub-vertical orientations.  

Similar to geomorphic evidence, locational and situational evidence may also be present 

and lead to a specific environmental determination.  For example, the perched ridge-top flows at 

Mount Rainier provide situational evidence for an emplacement scenario involving glacier filled 

valleys (Fig 13; Lescinsky and Sisson, 1998).  The steep sided flows along with sub-horizontal 

cooling columns along the flow’s margins further indicate cooling and confinement against a 

steep surface of ice occupying the U-shaped valleys on either sides of the flows.  Retreat of ice 

left these flows high on the sides of ridges and along ridge crests.  This is an important tool, 

especially for use in other high-latitude stratovolcanoes.  No situational evidence exists for the 

OB, KB or TD.  Any chilled margins or regions of clearly defined sub-horizontal jointing if they 

had existed upon emplacement have since been eroded away at OB and KB.  Much of what we 

see at OB and KB is the larger diameter columns that relate to the slower-cooled interiors of such 

flows (Fig 12; Lescinsky and Sisson, 1998). 

The lava flow margins at Mount Rainier have zones of glassy columns 8-20 cm in 

diameter sub-horizontally oriented and perpendicular to present day cliff faces (Lescinsky and 

Sisson, 1998).  This zone of cooling joints extends into the flow 2-4 m terminating abruptly at a 

2-4 m zone of subvertical columns or at the massive flow interior.  There are only a few 

locations on the north side of OB where columns are similar in size and chaotically oriented 
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some sub-horizontal or inclined, although none are glassy or as prevalent as those seen at Mount 

Rainier.  Basal breccias at Mount Rainier are a scant 5 cm or less indicating flow advancement 

analogous to basaltic lava tubes where sheath like cooled margins acted as a shell for the molten 

interior and therefore very little autobrecciation occurred.     

The ‘column on column’ structures identified at Ruapehu (Spörli and Rowland, 2006) 

provide information for not only the modes of fracture and column formation but the relative 

timing of such fracture as well.  Spörli and Rowland’s (2006) ice interaction model (Fig 50) for 

the formation of the column on column jointing attributes water ingress as the main cause 

responsible for the creation of the jointing.  As the lava flow advances in their model, the water 

that is produced effects the front and lateral margins of the flow.  As mentioned before, it is 

certain that the margins of both OB and KB have experienced extensive erosion and evidence for 

the water ingress may have been lost.  A second scenario however would be an ice sheet with 

sufficient drainage beneath and perhaps a well established drainage system may be able to handle 

a sufficient amount of meltwater that would be produced from the lava-ice interaction.  In this 

case, the water would not be available to create the column on column jointing.  Furthermore, the 

meltwater involved in the lava-ice interaction would act as a cooling fluid for the lava removing 

heat from the margins of the flow creating a thicker cooled margin than would be on subaerially 

erupted flows. Column-on-column, pseudopillow pillow, and other steam-generated fracturing 

would only be expected when the environment beyond the lava is more impermeable than the 

lava, so that steam is pushed into the earlier formed contraction cracks and further propagates 

these cracks under pressure.  If any of the surroundings (sub-ice, ice cracks, tunnels, existing 

drainage channels) allowed rapid enough water drainage, then pressure and containment may not 

occur and these structural elements would not form.  
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Figure 50:  The model for formation of ‘column-on-column’ structures  

on the outer margins of lava flows.  Lateral and frontal egress of water is the dominant force in the 

structure formation.  (a) zone of platy jointing, (b) primary columns  (after Spörli and Rowland, 

2006) 

 

Much like the large columns at Ruapehu (Spörli and Rowland, 2006) the columns at OB, 

KB and TD also lack the glassy rind that was observed at Mount Rainier (Lescinsky and Sisson, 

1998).  This suggests that the large primary columns at Ruapehu and those of OB, KB and TD 

fractured and began to form below the glass transition temperature whereas those at Mount 

Rainier must have fractured at temperatures above the solidus (Spörli and Rowland, 2006).  The 

timing of lava-ice interaction in relation the cooling history of the flow may therefore play an 
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important role in the types of lava-ice interaction evidence produced.  A lack of glassy rinds is 

not particularly indicative and not a good sole indicator for the lack of ice-contact.    

The large, well formed, sub-vertical primary columns observed at Ruapehu tended more 

towards rectangular in shape, a characteristic also observed at OB and KB.  These columns at 

both OB and KB as well as at Ruapehu cross cut the platy jointing that is prevalent at both 

locations as well.  Although the platy jointing itself is not particularly indicative of emplacement 

environment it occurs at other locations where ice-contact emplacement has been identified such 

as Mount Rainier, Ӧrӕfajökull stratovolcano, and Hoodoo Mountain. (Lescinsky and Sisson, 

1998; Stevenson et al, 2006; Lescinsky and Fink, 2000; Spörli and Rowland, 2006; Edwards et 

al., 2002)  The formation of the platy jointing is not well explained.  It may be due to thermal 

contractions although for this mechanism to be the sole cause of the platy jointing a temperature 

drop of at least 1400 C would be required, which is unreasonable in most situations (Spörli and 

Rowland, 2006).  A mechanical force may be responsible for the formation of this platy jointing 

due to expansion across the jointing or due to the detachment of outer zones of the flow possibly 

due to deflation of the flow (Spörli and Rowland, 2006).  These platy joint may also simply be 

due to frost wedging (Stevenson et al., 2006), or as suggested for TD, due to ice unloading. 

It is important to note that facies associations with surrounding units can provide critical 

evidence for emplacement environment.  Interbedding with unequivocal glacial tills would 

provide indisputable evidence for emplacement in a setting where ice-contact could have 

occurred.   

Subaqueously erupted domes often form thick margins and carapaces (100’s m thick) of 

hyaloclastite material as seen at Ponza Island (DeRita et al., 2001).  These domes were erupted 

as pulses and jets of activity into a subaqueous environment which created these thick piles of 
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hyaloclastite material.  The quantity of water present for interaction and fluidal cooling likely 

played a role in this rather efficient exhibit example of fragmentation as the result of magma-

water interaction.  No thick carapace of hyaloclastite was observed at TD, no hyaloclastite at all 

was found.  The basal colonnade of TD with well-developed hexagonal columns suggests a 

relatively regular and consistent cooling regime for this section of the dome.  The only evidence 

in this section for ice contact is the splaying outward of these columns at the margins of the 

dome, which is interpreted as indicating (perhaps) direct contact with ice.  During the initial 

stages of TD eruption, lava flowed from a vent beneath ice into a cavity that had sufficient 

enough existing drainages to efficiently transport meltwater created from the lava-ice interaction 

away from the lava and eruption.  However, these drainages eventually ceased efficiently 

moving water away from the dome resulting in water inundation of already forming columns, 

creating the entablature zone in the upper portions of the dome.   

Complex and irregular cooling contraction jointing and abundant glass are indicators of 

rapid cooling of lava by water.  The lack of hyaloclastite and other quenched materials at OB, 

KB, and TD is not necessarily problematic in relation to an ice contact environment when the 

extensive weathering and erosion that has taken place since these features were emplaced 1.5-0.9 

Ma ago is taken into account.  These are all features within an alpine environment with harsh 

weather extremes that speed freeze thaw fracturing and removal of clastic material from exposed 

surfaces.     
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16.0  FUTURE WORK 

Note that we would have liked to analyze glass within these trachytes for H2O, CO2, S, Cl 

and F to constrain the confining pressure during emplacement. Using the solubilities of these 

gases and their measured values, minimum confining pressures can be calculated, although this 

turned out to be a problematic endeavor with the Edziza trachytes because of the lack of glass 

remaining in the samples and the overall lack of knowledge regarding the solubilities of these 

gasses within trachytes in general.  
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17.0  CONCLUSIONS 

Mount Edziza Volcanic Complex (MEVC) lays within the Northern Cordilleran Volcanic 

Province (NCVP), in northwest British Columbia, Canada. The eruption products include basalt, 

trachyte, phonolite and rhyolite that have been emplaced in a variety of subaerial, sub-ice and 

subaqueous environments from about 8Ma to less than 2000 y.b.p. 

The MEVC includes several trachytic (and compositionally very similar, phonolitic) lava 

bodies that had previously been interpreted as having either contacted ice or at least having been 

emplaced in a glacial environment.  Three such bodies were studied for this project, namely 

Triangle Dome (TD), Koosick Bluff (KB) and Ornostay Bluff (OB).  Triangle Dome, displays 

features which most clearly indicates emplacement in direct contact with ice, including a 

spectacular basal colonnade of radial fanning columns, suggestive of cooling against a steep wall 

of ice.  An upper “entablature zone” indicates that the lava was flooded by meltwater during 

cooling, generating a pattern of jointing architecture similar to that previously described from 

water-flooded basaltic lava flows.  It is not clear if TD was emplaced entirely beneath ice, or if it 

just contacted ice only contact ice around it basal margins within an ice-confined lake open to the 

air. The estimated minimum thickness of the ice-contact zone is about 60m, corresponding to a 

minimum thickness of overlying ice, if sub-ice emplacement is postulated.  The origin of the 

widespread prominent subhorizontal sheet-like jointing at TD is difficult to ascertain, but one 

possibility is that it may be due to ice unloading.   



 

 124 

Identifying ice-contact or sub-ice emplacement at the other two studied bluffs (Ornostay 

and Kooskick Bluffs) at the MEVC was much more difficult.  However, it is important to note 

that such steep-sided glacially-eroded bluffs are common at many glaciovolcanic centers, so it is 

a worthwhile challenge.  Impressive curvicolumns and jointing patterns present at TD are not 

present at Ornostay Bluff (OB) and Koosick Bluff (KB).  A study of trachtytic lava flow 

dimensions in the published literature revealed that the observed flow thickness for OB and KB 

(75 m and 90 m) did not necessarily suggest ponding against ice.  Similarly, calculation of 

viscosities from published analyses of trachytes ranging from 4.33 to 11 log [n (Pas)] and their 

corresponding flow dimensions (including aspect ratios) demonstrated that OB (5.96 log [n 

(Pas)]) and KB (7.46 log [n (Pas)]) lava flows also do not necessarily require confinement for a 

lava of their viscosity.  However, study of estimated flow velocity of KB trachyte compared to 

rates of ice melting did demonstrate that direct ice contact was likely, and that ice-contact 

structures were likely to have formed.  However, the diameter of preserved columns at OB and 

KB suggest that several meters of the margins of both bluffs have likely been removed by 

erosions, and hence key structural data that may have preserve clearer evidence of ice contact has 

been lost. 

In conclusion, identifying ice-contact structures in trachytic-phonolitic lavas is difficult, 

especially in glacially eroded examples, where marginal joint sets are likely to have been eroded 

off.  Trachytes display a wide range of viscosities and hence flow thicknesses and aspect ratios, 

so caution is required in interpreting “overthick” flows as confinement by former ice.  Study of 

comparisons of estimated lavas flow velocities and ice melting rates is a useful exercise to 

determine if direct ice contact may have occurred, though caution is required due to the large 

number of variables and assumptions such as uniformity of temperatures, completely liquid 
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melts, no atmospheric or conductive cooling, and assumed volatile and water contents of the melt 

in these models. 
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APPENDIX A 

THIN SECTION DESCRIPTIONS AND PHOTOMICROGRAPHS 
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Thin section: E6KL23 
 

Unit:   Triangle Dome lava 
Rock name: Phonolite 

 
Grain size:  Microporphyritic 

Location:  Triangle Dome 
 

Date sampled: 7/17/2006 
UTM / Elevation: 400455 E 6398846 N, 2257 m (± 5 m) 

 
Observer(s): KL, VP 

Primary mineralogy: Alkaline Feldspar 
   

        
Phenocrysts Percent 

Present 
Size (mm) Approximate 

composition Morphology  Comments 
min max average 

K Feldspar 1 
0.65 x 
1.1 

1.3 x 
5.95 

0.77 x 
2.88 

Potassic 
anorthoclase 

Euhedral or 
subhedral 

Twinning, some 
zoning 

Arfvedsonite trace 
0.175 x 
0.2 

0.25 x 
0.8 

0.225 x 
0.39   

Euhedral or 
subhedral   

Pyroxene trace 
0.1 x 
0.125 

0.25 x 
0.4 

0.62 x 
0.285 Clinopyroxene 

Euhedral or 
subhedral 

Iron oxide 
rim/corona 

Glass 25           Devitrified 

        
Groundmass / 

matrix 
Percent 
Present 

Size (mm) Approximate 
composition Morphology  Comments 

min max average 

K Feldspar  55 
0.02 x 
0.07 

0.23 x 
0.08 

0.074 x 
0.106 

Potassic 
anorthoclase 

Microlites - 
ragged, 
interlocking laths Trachytic texture 

Arfvedsonite 7         Intergranular   
Pyroxene 5       Augite Intergranular   

opaque oxides 7       
Magnetite/ 
aenigmatite Intergranular   

        Secondary 
mineralogy               
Iron oxide  

       
        Vesicles / cavities               
< 1%, none observed in thin section 

        Comments               
Some glomerophorphyritic/cumuloporphyritic cluster inclusions 
Sperulitic devitrified glass 
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Thin section: E6KL5 
   

Unit: 
Unit 1 - basal flow 
breccia clast 

Rock name: Trachyte 
  

Grain size: Microporphyritic 
Location:  Ornostay Bluff 

  
Date sampled: 7/5/2006 

UTM / Elevation: 397580 E 6396229 N, 1844 m (±6 m) 
 

Observer(s): KL, VP 
Primary 
mineralogy: Alkaline Feldspar 

   
        

Phenocrysts Percent 
Present 

Size (mm) Approximate 
composition Morphology  Comments 

min max average 

K Feldspar 1 
0.35 x 
0.4 

1.45 x 
1.65 

0.68 x 
1.07   

Euhedral to 
subhedral   

Amphibole trace 

0.125 
x 
0.125 

0.175 
x 0.4 

0.125 x 
0.335   Subhedral   

Glass 60         
Vitric to de-
vitrified   

        Groundmass / 
matrix 

Percent 
Present 

Size (mm) Approximate 
composition Morphology  Comments 

min max average 

K Feldspar  18 
0.02 x 
0.12 

0.08 x 
0.34 

0.058 x 
0.228   

Microlites - 
ragged, 
interlocking 
laths Trachytic texture 

Amphibole 1         

Microlites - 
ragged, 
interlocking 
laths   

opaque oxides trace       Magnetite   
Embayed, amphibole 
rim 

Accessory 
minerals 20             

        Secondary 
mineralogy               
Pervasive clays 

     
        Vesicles / cavities               
None observed 

     
        Comments               
Pervasive alteration 
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 131 

Thin section: E6CE4 
 

Unit: Unit 2 - glass 
Rock name: Trachyte 

   
Grain size: Mircoporphyritic 

Location:  Ornostay Bluff 
   

Date sampled: 7/5/2006 
UTM / Elevation: 397594 E 6396248 N, 1855 m (± 6 m) 

 
Observer(s): KL, VP 

Primary mineralogy: Alkaline Feldspar 
     

        
Phenocrysts Percent 

Present 
Size (mm) Approximate 

composition Morphology  Comments 
min max average 

K Feldspar 1 
0.15 x 
1.15 

0.6 x 
3.85 

0.53 x 
1.19 Sanidine/Anorthoclase 

Euhedral to 
subhedral 

Poikiolitic, 
twinning 

Pyroxene 8       Clinopyroxene 
Euhedral to 
subhedral   

Ferrohedenbergite trace         Subhedral   

Magnetite trace 
0.1 x 
0.2 

0.9 x 
0.95 

0.38 x 
0.42   

Subhedral to 
anhedral 

Corroded, 
embayed 

        
Groundmass / matrix Percent 

Present 
Size (mm) Approximate 

composition Morphology  Comments 
min max average 

K Feldspar - medium 20 
0.06 x 
0.4 

0.1 x 
0.4 

0.09 x 
0.34 Sanidine/Anorthoclase 

Microlites - 
ragged, 
interlocking 
laths 

Trachytic 
texture - 
medium 
generation 

K Feldspar - fine 60 
0.01 x 
0.06 

0.03 
x 
0.14 

0.02 x 
0.09 Sanidine/Anorthoclase 

Microlites - 
ragged, 
interlocking 
laths 

Trachytic 
texture - smaller 
generation 

Pryoxene 2         Intergranular   
Ferrohedenbergite 3         Intergranular   
Amphibole 5         Intergranular   

        Secondary 
mineralogy               
none observed 

      
        Vesicles / cavities                

< 1%, none in thin section 
     

        Comments               
Ornostay Bluff, Southwest corner, basal (?) trachyte flow glass unit 

  Trachytic texture not as prevalent as in other samples 
  Devitrified glass, spherulitic splays of feldspar laths 
  Cracked K-feldspar phenocrysts with pyroxene/ferrohedenbergite filling 
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Thin section: E6KL9 
  

Unit: Unit 3 - main flow  
Rock name: Trachyte 

  
Grain size: Microporphyritic 

Location:  Ornostay Bluff 
  

Date sampled: 7/5/2006 
UTM / Elevation: 397618 E 6396271 N, 1874 m (±6 m) 

 
Observer(s): KL, VP 

Primary 
mineralogy: Alkaline Feldspar 

   
        

Phenocrysts Percent 
Present 

Size (mm) Approximate 
composition Morphology  Comments 

min max average 

K Feldspar 1 
0.35 x 
0.55 

1.55 
x 2.6 

0.85 x 
1.78 Sanidine/Anorthoclase 

Euhedral to 
subhedral  Poikolitic, twinning 

Pyroxene trace 
0.12 x 
0.22 

0.2 x 
0.44 

0.16 x 
0.29 Sanidine/Anorthoclase 

Euhedral to 
subhedral    

Opaque oxides trace 
0.7 x 
0.9 

0.95 
x 1.8 

0.83 x 
1.35 Magnetite 

Subhedral to 
anhedral Uralitization 

        Groundmass / 
matrix 

Percent 
Present 

Size (mm) Approximate 
composition Morphology  Comments 

min max average 

K Feldspar - 
medium 20 

0.08 x 
0.36 

0.1 x 
0.56 

0.08 x 
0.5 Sanidine/Anorthoclase 

Microlites - 
ragged, 
interlocking laths 

Trachytic texture - 
medium generation 

K Feldspar - fine 55 
0.02 x 
0.06 

0.02 
x 
0.24 

0.02 x 
0.16 Sanidine/Anorthoclase 

Microlites - 
ragged, 
interlocking laths 

Trachytic texture - 
smaller generation 

              

Groundmass feldspar 
laths are interlocking 
and wrap around 
larger felspar 
pheocrysts  

Pryoxene 10       Clinopyroxene Interstitial   

Opaque oxides 9       Magnetite 
Anhedral, 
intergranular 

Amphibole/Biotite 
alteration rim and 
filling voids 

Amphibole 5         
Anhedral, 
intergranular   

Accessory 
minerals trace       

Ferrohedenbergite, 
aenigmatite, 
arfvedsonite, acmitic 
pyroxene Interstitial   

        Secondary mineralogy 
none observed 

     
        Vesicles / cavities  

< 1%, none in thin section 
      

        Comments 
Ornostay Bluff, Southwest corner, basal (?) trachyte flow 

 Trachytic texture not as prevalent as in other samples 
 Cracked K-feldspar phenocrysts with pyroxene filling 
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Thin section: E6KL22 
    

Unit: Koosick Bluff main flow 
Rock name: Trachyte 

  
Grain size: Microporphyritic  

Location:  Koosick Bluff 
  

Date sampled: 38908 
UTM / Elevation: 397078 E 6394016 N, 1710 m (±7 m) 

 
Observer(s): KL, VP 

Primary 
mineralogy: Alkaline Feldspar 

    
        
        

Phenocrysts Percent 
Present 

Size (mm) Approximate 
composition Morphology  Comments 

min max average 

K Feldspar 10 
0.4 x 
0.85 

0.85 
x 
3.65 

0.73 x 
1.85 

sanidine/anorthoclase Euhedral to 
subhedral  

Cumulate, 
glomerophyritic, fine 
twinning  

     
   

Groundmass / 
matrix 

Percent 
Present 

Size (mm) Approximate 
composition Morphology  Comments 

min max average 

K Feldspar - 
medium 10 

0.05 
x 0.9 

0.1 x 
1.0 

0.09 x 
0.78 sanidine/anorthoclase 

Microlites - 
ragged, 
interlocking 
laths 

Trachytic texture - 
medium generation 

K Feldspar - fine 64 

0.01 
x 
0.06 

0.02 
x 0.2 

0.016 x 
0.136 sanidine/anorthoclase 

Microlites - 
ragged, 
interlocking 
laths 

Trachytic texture - 
smaller generation 

              

Groundmass feldspar 
laths are interlocking 
and wrap around 
around larger felspar 
pheocrysts 

Pryoxene - 
medium 1 0.05 0.25 0.12 clinopyroxene Intergranular Medium generation 
Pyroxene - fine 9 0.02 0.08 0.037 clinopyroxene Intergranular Small generation 
Opaque oxides 3         Intergranular   

Accessory 
minerals 3       

ferrohedenbergite, 
aenigmatite, 
arfvedsonite, acmitic 
pyroxene Intergranular   

        Secondary mineralogy 
Iron oxide staining, weathering along crack and within phenocrysts proximal to the 
crack 

  
        Vesicles / cavities  
< 1%, none in thin section 

  
        Comments 
Koosick Bluff, north side, trachyte flow 

  Some glomerophorphyritic cumulate cluster inclusions appear broken and microlites 
'flow' through 
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APPENDIX B 

VISCOSITY SPREADSHEETS 
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Paper / Source Sample ID Chemistry 
Temperature 

(C)  
(unless otherwise 

noted) 
Hyrdous? Viscosities 

log[n (Pas)] Viscosity source 

Edziza field sample 
2006 

Koosick Bluff 
Lava Trachyte 700 no - 0% 10.75 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

Edziza field sample 
2006 

Koosick Bluff 
Lava Trachyte 700 2% 6.20 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

Edziza field sample 
2006 

Koosick Bluff 
Lava Trachyte 850 no - 0% 7.64 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

Edziza field sample 
2006 

Koosick Bluff 
Lava Trachyte 850 2% 4.5 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

Edziza field sample 
2006 

Koosick Bluff 
Lava Trachyte 1000 no - 0% 5.59 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

Edziza field sample 
2006 

Koosick Bluff 
Lava Trachyte 1000 2% 3.26 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

Edziza field sample 
2006 

Triangle Dome 
Lava Phonolite 700 no - 0% 10.64 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

Edziza field sample 
2006 

Triangle Dome 
Lava Phonolite 700 2% 6.09 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

Edziza field sample 
2006 

Triangle Dome 
Lava Phonolite 850 no - 0% 7.6 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

Edziza field sample 
2006 

Triangle Dome 
Lava Phonolite 850 2% 4.42 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

Edziza field sample 
2006 

Triangle Dome 
Lava Phonolite 1000 no - 0% 5.57 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

Edziza field sample 
2006 

Triangle Dome 
Lava Phonolite 1000 2% 3.2 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

Edziza Field sample 
2006 

Ornostay Bluff 
Lava Trachyte 700 no - 0% 10.53 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

Edziza field sample 
2006 

Ornostay Bluff 
Lava Trachyte 700 2% 5.76 

Calculated by this 
author using 

Giordano et al 
(2008) Model  
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Edziza field sample 
2006 

Ornostay Bluff 
Lava Trachyte 850 no - 0% 5.96 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

Edziza field sample 
2006 

Ornostay Bluff 
Lava Trachyte 850 2% 3.44 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

Edziza field sample 
2006 

Ornostay Bluff 
Lava Trachyte 1000 no - 0% 3.51 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

Edziza field sample 
2006 

Ornostay Bluff 
Lava Trachyte 1000 2% 1.96 

Calculated by this 
author using 

Giordano et al 
(2008) Model  

"Water and the 
viscosity of andesite 
melts" (Richetet al, 

1996) 

ME1311e Andesite 996.2 - 1123.8 no - 0% 13.76 - 9.92 From the paper 

"Water and the 
viscosity of andesite 
melts" (Richetet al, 

1996) 

ME1311e Andesite 793.7 - 866.4 2% 12.87 - 10.49 From the paper 

"The viscosity of 
hydrous phonolites and 
trachytes" (Whittington 

et al, 2001) 

"Phonolite 
samples" Phonolite 

889.2 - 1046.4 
(K) (616.05 - 

773.25 C) 
no - 0% 13.12 - 8.66 From the paper 

"The viscosity of 
hydrous phonolites and 
trachytes" (Whittington 

et al, 2001) 

"Phonolite 
samples" Phonolite 676.4 - 747.9 

(K) 2.15% 12.34 - 10.05 From the paper 

"The viscosity of 
hydrous phonolites and 
trachytes" (Whittington 

et al, 2001) 

"trachyte 
samples" Trachyte 951.1 - 1113.7 

(K) no - 0% 12.77 - 8.37 From the paper 

"The viscosity of 
hydrous phonolites and 
trachytes" (Whittington 

et al, 2001) 

"trachyte 
samples" Trachyte 725.4 - 802.2 

(K) 2.19% 12.31 - 10.01 From the paper 

"The evolution of an 
active silicic lava flow 

field: an ETM+ 
perspective" (Harris et 

al, 2004) 

"Mount Hood 
Andesite, 

Oregon, USA" 
andesite 900-100 C 

yes, of 
unknown 

extent 
5-7 

(Murase and 
McBirney, 1973) - 

lab based 

"The evolution of an 
active silicic lava flow 

field: an ETM+ 
perspective" (Harris et 

al, 2004) 

"Chao Dacite 
Flow, N. Chile" dacite unknown 

yes, of 
unknown 

extent 
9 (Fink, 1980) - 

surface folds 

"The evolution of an 
active silicic lava flow 

field: an ETM+ 
perspective" (Harris et 

al, 2004) 

"Colima 
Andesite Flow" Andesite unknown 

yes, of 
unknown 

extent 
9-10 

(Navarro-Ochoa, 
et al., 2002) - 

Equation 
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"The evolution of an 
active silicic lava flow 

field: an ETM+ 
perspective" (Harris et 

al, 2004) 

"Santiaguito 
Dacite Flow, 
Guatemala" 

dacite unknown 
yes, of 

unknown 
extent 

9-10 

equation / 
measurement of 

flow front 
migration 

"The evolution of an 
active silicic lava flow 

field: an ETM+ 
perspective" (Harris et 

al, 2004) 

"Karisimbi 
trachyte, 
Rwanda" 

trachyte unknown 
yes, of 

unknown 
extent 

10-11 
(McKay, et al, 

1998) - surface 
folds 

"Thermodynamic and 
rheological properties 

of rhyolite and andesite 
melts" (Neuville et al, 

1993) 

"andesite 
melts" andesite 

939.3 - 1036.8 
(K) (666.15 - 

763.65 C) 
unknown 13.66 - 10.67 creep aparatus 

"Thermodynamic and 
rheological properties 

of rhyolite and andesite 
melts" (Neuville et al, 

1993) 

"andesite 
melts" andesite 

1670.0 - 
1867.0 (K) 
(1396.85 - 
1593.85 C) 

unknown 3.19 - 2.33 creep aparatus 

"Subglacial and ice-
contact volcanism at 

the Oraefajokull 
stratovolcano, Iceland" 
(Stevenson et al, 2006) 

JS203 trachy-dacite  850 no - 0% 5.43 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Subglacial and ice-
contact volcanism at 

the Oraefajokull 
stratovolcano, Iceland" 
(Stevenson et al, 2006) 

JS203 trachy-dacite  850 2% 3.93 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Subglacial and ice-
contact volcanism at 

the Oraefajokull 
stratovolcano, Iceland" 
(Stevenson et al, 2006) 

JS226 trachy-dacite  850 no - 0% 5.60 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Subglacial and ice-
contact volcanism at 

the Oraefajokull 
stratovolcano, Iceland" 
(Stevenson et al, 2006) 

JS226 trachy-dacite  850 2% 4.12 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Subglacial and ice-
contact volcanism at 

the Oraefajokull 
stratovolcano, Iceland" 
(Stevenson et al, 2006) 

JS257 trachy-dacite  850 no - 0% 5.10 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Subglacial and ice-
contact volcanism at 

the Oraefajokull 
stratovolcano, Iceland" 
(Stevenson et al, 2006) 

JS257 trachy-dacite  850 2% 3.62 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  
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"The Pitcarin hotspot in 
the South Pacific: 
distribution and 
composition of 

submarine volcanic 
sequences" (Hekinian 

et al, 2002) 

1-01 trachyte 850 no - 0% 4.33 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Pitcarin hotspot in 
the South Pacific: 
distribution and 
composition of 

submarine volcanic 
sequences" (Hekinian 

et al, 2002) 

1-01 trachyte 850 2% 2.86 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Pitcarin hotspot in 
the South Pacific: 
distribution and 
composition of 

submarine volcanic 
sequences" (Hekinian 

et al, 2002) 

13-01 trachyte 850 no - 0% 4.79 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Pitcarin hotspot in 
the South Pacific: 
distribution and 
composition of 

submarine volcanic 
sequences" (Hekinian 

et al, 2002) 

13-01 trachyte 850 2% 3.31 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Pitcarin hotspot in 
the South Pacific: 
distribution and 
composition of 

submarine volcanic 
sequences" (Hekinian 

et al, 2002) 

13-02 trachyte 850 no - 0% 4.31 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Pitcarin hotspot in 
the South Pacific: 
distribution and 
composition of 

submarine volcanic 
sequences" (Hekinian 

et al, 2002) 

13-02 trachyte 850 2% 2.66 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Pitcarin hotspot in 
the South Pacific: 
distribution and 
composition of 

submarine volcanic 
sequences" (Hekinian 

et al, 2002) 

13-08 trachyte 850 no - 0% 4.54 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Pitcarin hotspot in 
the South Pacific: 
distribution and 
composition of 

submarine volcanic 
sequences" (Hekinian 

et al, 2002) 

13-08 trachyte 850 2% 2.84 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  
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"The Pitcarin hotspot in 
the South Pacific: 
distribution and 
composition of 

submarine volcanic 
sequences" (Hekinian 

et al, 2002) 

13-10 trachyte 850 no - 0% 4.64 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Pitcarin hotspot in 
the South Pacific: 
distribution and 
composition of 

submarine volcanic 
sequences" (Hekinian 

et al, 2002) 

13-10 trachyte 850 2% 2.90 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Pitcarin hotspot in 
the South Pacific: 
distribution and 
composition of 

submarine volcanic 
sequences" (Hekinian 

et al, 2002) 

13-11 trachyte 850 no - 0% 4.49 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Pitcarin hotspot in 
the South Pacific: 
distribution and 
composition of 

submarine volcanic 
sequences" (Hekinian 

et al, 2002) 

13-11 trachyte 850 2% 2.82 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Pitcarin hotspot in 
the South Pacific: 
distribution and 
composition of 

submarine volcanic 
sequences" (Hekinian 

et al, 2002) 

13-13 trachyte 850 no - 0% 4.48 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Pitcarin hotspot in 
the South Pacific: 
distribution and 
composition of 

submarine volcanic 
sequences" (Hekinian 

et al, 2002) 

13-13 trachyte 850 2% 2.84 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Pitcarin hotspot in 
the South Pacific: 
distribution and 
composition of 

submarine volcanic 
sequences" (Hekinian 

et al, 2002) 

13-16 trachyte 850 no - 0% 4.5 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Pitcarin hotspot in 
the South Pacific: 
distribution and 
composition of 

submarine volcanic 
sequences" (Hekinian 

et al, 2002) 

13-16 trachyte 850 2% 2.82 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  
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"The Cerro 
Mencenares volcanic 
center, Baja California 

Sur: Source and 
tectonic control on 

postsubduction 
magmatism within the 

Gulf Rift" (Bigioggero et 
al,1995) 

MV-1 Alkali Rhyolite 
(dacite) 850 no - 0% 4.55 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Cerro 
Mencenares volcanic 
center, Baja California 

Sur: Source and 
tectonic control on 

postsubduction 
magmatism within the 

Gulf Rift" (Bigioggero et 
al,1995) 

MV-1 Alkali Rhyolite 
(dacite) 850 2% 3.38 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Cerro 
Mencenares volcanic 
center, Baja California 

Sur: Source and 
tectonic control on 

postsubduction 
magmatism within the 

Gulf Rift" (Bigioggero et 
al,1995) 

MV-2 Alkali Rhyolite 
(dacite) 850 no - 0% 4.33 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Cerro 
Mencenares volcanic 
center, Baja California 

Sur: Source and 
tectonic control on 

postsubduction 
magmatism within the 

Gulf Rift" (Bigioggero et 
al,1995) 

TJ Alkali Rhyolite 
(dacite) 850 no - 0% 4.29 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Cerro 
Mencenares volcanic 
center, Baja California 

Sur: Source and 
tectonic control on 

postsubduction 
magmatism within the 

Gulf Rift" (Bigioggero et 
al,1995) 

TJ Alkali Rhyolite 
(dacite) 850 2% 3.17 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Cerro 
Mencenares volcanic 
center, Baja California 

Sur: Source and 
tectonic control on 

postsubduction 
magmatism within the 

Gulf Rift" (Bigioggero et 
al,1995) 

YM Dacite 850 no - 0% 4.63 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  
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"The Cerro 
Mencenares volcanic 
center, Baja California 

Sur: Source and 
tectonic control on 

postsubduction 
magmatism within the 

Gulf Rift" (Bigioggero et 
al,1995) 

YM Dacite 850 2% 3.14 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Cerro 
Mencenares volcanic 
center, Baja California 

Sur: Source and 
tectonic control on 

postsubduction 
magmatism within the 

Gulf Rift" (Bigioggero et 
al,1995) 

SB Alkali Rhyolite 
(dacite) 850 no - 0% 4.86 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Cerro 
Mencenares volcanic 
center, Baja California 

Sur: Source and 
tectonic control on 

postsubduction 
magmatism within the 

Gulf Rift" (Bigioggero et 
al,1995) 

SB Alkali Rhyolite 
(dacite) 850 2% 3.7 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Cerro 
Mencenares volcanic 
center, Baja California 

Sur: Source and 
tectonic control on 

postsubduction 
magmatism within the 

Gulf Rift" (Bigioggero et 
al,1995) 

SJN Alkali Rhyolite 
(dacite) 850 no - 0% 4.67 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Cerro 
Mencenares volcanic 
center, Baja California 

Sur: Source and 
tectonic control on 

postsubduction 
magmatism within the 

Gulf Rift" (Bigioggero et 
al,1995) 

SJN Alkali Rhyolite 
(dacite) 850 2% 3.51 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The Cerro 
Mencenares volcanic 
center, Baja California 

Sur: Source and 
tectonic control on 

postsubduction 
magmatism within the 

Gulf Rift" (Bigioggero et 
al,1995) 

XL trachyte/andesite 850 no - 0% 4.07 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  
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"The Cerro 
Mencenares volcanic 
center, Baja California 

Sur: Source and 
tectonic control on 

postsubduction 
magmatism within the 

Gulf Rift" (Bigioggero et 
al,1995) 

XL trachyte/andesite 850 2% 3.11 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Petrology of two 
continental alkaline 

intraplate series at Emi 
Koussi volcano, Tibesti, 

Chad" (Gouraud and 
Vincent, 2003) 

K46 phonolite 850 0% 4.49 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Petrology of two 
continental alkaline 

intraplate series at Emi 
Koussi volcano, Tibesti, 

Chad" (Gouraud and 
Vincent, 2003) 

K46 Phonolite 850 2% 2.70 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Petrology of two 
continental alkaline 

intraplate series at Emi 
Koussi volcano, Tibesti, 

Chad" (Gouraud and 
Vincent, 2003) 

K32 trachyte 850 0% 5.10 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Petrology of two 
continental alkaline 

intraplate series at Emi 
Koussi volcano, Tibesti, 

Chad" (Gouraud and 
Vincent, 2003) 

K32 trachyte 850 2% 3.60 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Northern Trans-Pecos 
magmatic province: 

Introduction and 
comparison with the 
Kenya rift"  (Barker, 

1977) 

T-29 Phonolite 850 0% 4.50 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Northern Trans-Pecos 
magmatic province: 

Introduction and 
comparison with the 
Kenya rift"  (Barker, 

1977) 

T-29 Phonolite 850 2% 2.96 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Northern Trans-Pecos 
magmatic province: 

Introduction and 
comparison with the 
Kenya rift"  (Barker, 

1977) 

T-23 Trachyte 850 0% 5.09 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Northern Trans-Pecos 
magmatic province: 

Introduction and 
comparison with the 
Kenya rift"  (Barker, 

1977) 

T-23 Trachyte 850 2% 3.62 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  
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"The geology of 
Damavand volcano, 
Alborz Mountains, 

northern Iran" 
(Davidson et al, 2004) 

DMV12 trachyandesite 850 0% 4.33 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"The geology of 
Damavand volcano, 
Alborz Mountains, 

northern Iran" 
(Davidson et al, 2004) 

DMV12 trachyandesite 850 2% 2.71 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Open-system 
processes in the 
genesis of silica-

oversaturated alkaline 
rocks of the Rallier-du-

Baty Peninsula, 
Kerguelen Archipelago 

(Indian Ocean)" 
(Gagnevin et al, 2003) 

521 trachyte 850 0% 4.98 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Open-system 
processes in the 
genesis of silica-

oversaturated alkaline 
rocks of the Rallier-du-

Baty Peninsula, 
Kerguelen Archipelago 

(Indian Ocean)" 
(Gagnevin et al, 2003) 

521 trachyte 850 2% 3.20 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Evolution and Genesis 
of Magmas from Vico 
Volcano, Central Italy: 
Multiple Differentiation 
Pathways and Variable 

Parental Magmas" 
(Perini et al, 2004) 

VCO 177B trachyte 850 0% 5.20 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Evolution and Genesis 
of Magmas from Vico 
Volcano, Central Italy: 
Multiple Differentiation 
Pathways and Variable 

Parental Magmas" 
(Perini et al, 2004) 

VCO 177B trachyte 850 2% 3.56 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

""Rates and 
Timescales of 

Fractional 
Crystaliization from 
138U-130Th-226Ra 

Disequilibria in 
Trachyte Lavas from 
Longonot Volcano, 

Kenya" (Rogers et al, 
2004) 

26Lt2 trachyte 850 0% 4.40 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  
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""Rates and 
Timescales of 

Fractional 
Crystaliization from 
138U-130Th-226Ra 

Disequilibria in 
Trachyte Lavas from 
Longonot Volcano, 

Kenya" (Rogers et al, 
2004) 

26Lt2 trachyte 850 2% 2.66 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Geochemistry of the 
Cape Verde Islands 

and Fernando de 
Noronha" (Gunn and 

Watkins, 1976) 

 trachyte/phonolite 850 0% 4.86 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Geochemistry of the 
Cape Verde Islands 

and Fernando de 
Noronha" (Gunn and 

Watkins, 1976) 

 trachyte/phonolite 850 2% 3.54 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Subglacial, phonolitic 
volcanism at Hoodoo 

Mountain volcano, 
northern Canadian 

Cordillera" (Edwards et 
al, 2002) 

94-76 trachyte 850 0% 4.96 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Subglacial, phonolitic 
volcanism at Hoodoo 

Mountain volcano, 
northern Canadian 

Cordillera" (Edwards et 
al, 2002) 

94-76 trachyte 850 2% 3.28 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Subglacial, phonolitic 
volcanism at Hoodoo 

Mountain volcano, 
northern Canadian 

Cordillera" (Edwards et 
al, 2002) 

93-29 phonolite 850 0% 4.09 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Subglacial, phonolitic 
volcanism at Hoodoo 

Mountain volcano, 
northern Canadian 

Cordillera" (Edwards et 
al, 2002) 

93-29 phonolite 850 2% 2.47 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Geochemistry of high-
potassium rocks from 

the mid-Tertiary Guffey 
volcanic center, 

Thirtynine Mile volcanic 
field, central Colorado" 

(Wobus et al, 1990) 

 trachyte 850 0% 5.78 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  

"Geochemistry of high-
potassium rocks from 

the mid-Tertiary Guffey 
volcanic center, 

Thirtynine Mile volcanic 
field, central Colorado" 

(Wobus et al, 1990) 

 trachyte 850 2% 4.85 

Calculated by this 
author using 

Giordano et al 
(2008) Model and 

chemistry from 
literature  
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APPENDIX C 

MOUNT EDZIZA VOLCANIC COMPLEX STRATIGRAPHIC COLUMN 
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