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GALAXY ANGULAR CLUSTERING EVOLUTION IN THE SDSS CO-ADD

IMAGING DATA

Jeremy Brewer, PhD

University of Pittsburgh, 2008

We study the evolution of the angular clustering of galaxies as a function of redshift, lumi-

nosity, and type. We utilize redshift estimates computed from broadband photometry, so

we require precise flux measurements. For this reason, we chose the SDSS co-added imaging

data set from stripe 82 and obtained 1% error photometry with a custom image processing

pipeline. We measured the angular clustering of galaxies w(θ) and inverted it to obtain the

real space correlation function ξ(r), which we fit as a power law with parameters r0 and γ.

Finally, we use our measured ξ(r) fits to constrain galaxy formation models and find that

luminous galaxies are found in higher mass dark matter halos, in agreement with theory and

previous results in the field.

iv



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Theoretical Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Observational Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.0 IMAGE CALIBRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Overview of Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Open SkyQuery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 WESIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Photometric Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Magnitude Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Catalog Collation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Calibration Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Matched Aperture Catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.0 STAR/GALAXY CLASSIFICATION . . . . . . . . . . . . . . . . . . . . . 24

3.1 Fitting the Concentration Distribution . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Parametric Classification . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Non-parametric Classification . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Extending Star/Galaxy Classification . . . . . . . . . . . . . . . . . . . . . . 29

4.0 PHOTOMETRIC REDSHIFTS . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Bayesian Photometric Redshifts . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Estimating the Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Estimating Redshift Probability . . . . . . . . . . . . . . . . . . . . . 43

v



4.1.3 Template Selection and Tweaking . . . . . . . . . . . . . . . . . . . . 44

4.2 Photometric Redshift Results . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.0 THE ANGULAR CORRELATION FUNCTION . . . . . . . . . . . . . . 53

5.1 Computing the Correlation Function and Its Error . . . . . . . . . . . . . . 54

5.2 Limber’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Sample Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Estimating the Redshift Distribution . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Angular Correlation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.0 THE HALO MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Dark Matter Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Galaxy Clustering: The Halo Occupation Distribution . . . . . . . . . . . . 96

6.3 Comparison to HOD Models . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.0 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . 108

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vi



LIST OF TABLES

4.1 SDSS Magnitude Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 VVDS Magnitude Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 w(θ) Evolution with Apparent Magnitude . . . . . . . . . . . . . . . . . . . . 92

5.2 w(θ) Evolution with i Band Apparent Magnitude . . . . . . . . . . . . . . . 92

5.3 w(θ) Evolution with Absolute Magnitude . . . . . . . . . . . . . . . . . . . . 92

5.4 w(θ) Evolution with Galaxy Type . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 w(θ) Evolution with Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 HOD Evolution with Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 HOD Evolution with Absolute Magnitude . . . . . . . . . . . . . . . . . . . . 107

vii



LIST OF FIGURES

1.1 Visual Representation of Limber’s Scaling Relation . . . . . . . . . . . . . . . 6

2.1 Magnitude Calibration Example . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Co-add Magnitude vs SDSS Magnitude . . . . . . . . . . . . . . . . . . . . . 17

2.3 ∆ Magnitude vs Co-add Magnitude . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Co-add Color vs SDSS Color . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Calibration Variation in Right Ascension . . . . . . . . . . . . . . . . . . . . 20

2.6 Calibration Variation in Declination . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Number Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 EM Gaussian Mixture Model Fit (Ideal) . . . . . . . . . . . . . . . . . . . . 27

3.2 EM Gaussian Mixture Model Fit (Actual) . . . . . . . . . . . . . . . . . . . . 31

3.3 Star/Galaxy Classification (Bright) . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Star/Galaxy Classification (Middle) . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Star/Galaxy Classification (Faint) . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Star/Galaxy Classification (Unclassifiable) . . . . . . . . . . . . . . . . . . . 35

3.7 Concentration Cut vs Magnitude . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Star/Galaxy Number Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Photoz vs Specz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 u− g, g − r Color Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 g − r, r − i Color Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 r − i, i− z Color Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Redshift Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Redshift Distribution (No Abs Mag Cut) . . . . . . . . . . . . . . . . . . . . 52

viii



5.1 Volume Limited Sample Selection . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Average Redshift Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Average Absolute Magnitude Error . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Comparison of dn
dz

Estimations . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Apparent Magnitude Limited Redshift Distribution . . . . . . . . . . . . . . 69

5.6 Volume Limited Redshift Distribution (Mr Bins) . . . . . . . . . . . . . . . . 70

5.7 Volume Limited Redshift Distribution (Type Bins) . . . . . . . . . . . . . . . 71

5.8 Volume Limited Redshift Distribution (z Bins) . . . . . . . . . . . . . . . . . 72

5.9 w(θ) Evolution with Apparent Magnitude . . . . . . . . . . . . . . . . . . . . 78

5.10 w(θ) Comparison to Connolly et al. 2002 . . . . . . . . . . . . . . . . . . . . 79

5.11 w(θ) Evolution with i Band Apparent Magnitude . . . . . . . . . . . . . . . 80

5.12 w(θ) Comparison to Coil et al. 2004 . . . . . . . . . . . . . . . . . . . . . . . 81

5.13 w(θ) Evolution with Absolute Magnitude . . . . . . . . . . . . . . . . . . . . 82
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PREFACE

If I could do one near perfect thing, I’d be happy.

– Stuart Murdoch

Kid, I’ve flown from one side of this galaxy to the other, and I’ve seen a lot of strange
stuff, but I’ve never seen anything to make me believe that there’s one all-powerful Force
controlling everything. ’Cause no mystical energy field controls my destiny. It’s all a lot of
simple tricks and nonsense.

– Han Solo on Dark Energy

In the beginning...
Oh, long before that,
When Light was deciding who should be in and who should be out of Spectrum,
Yellow was in trouble, even then.
Seems that Green – you know how Green can be – didn’t want Yellow in.
Some silly primal envy I suppose, but for whatever cause, the effect was bad on Yellow
And caused Yellow to weep yellow tears for several eternals (before there were years)
Until Blue
Heard
What was up
Between Green and Yellow
And took Green aside for a serious talk in which Blue pointed out
That if Yellow and Blue were to get together –
Not that they would, but if they did, a gentle threat –
They could make their own Green.
“Oh” said Green with some understanding.
Naturally, by a sudden change of hue, Green saw the light and Yellow got in.
Worked out fine –
Yellow got lemons,
And Green
Got limes.

– “Yellow” by Ken Nordine, from Colors
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1.0 INTRODUCTION

In the late 1920s, Edwin Hubble demonstrated that there are galaxies outside of our Milky

Way receding at velocities proportional to their distance from us. This result, implying an

expanding universe composed of many galaxies, planted the seeds for our current under-

standing of how the universe originated, commonly referred to as the “Big Bang” theory.

The Big Bang theory rests on three key observations: the aforementioned Hubble diagram

demonstrating expansion, light element abundances consistent with Big Bang nucleosynthesis

theory, and the primordial blackbody radiation known as the cosmic microwave background

(CMB). From these observations, we theorize that the universe was once much denser and

hotter and that the structure we see today (i.e. galaxies) arose from a much smoother, more

homogeneous universe. Understanding how large scale structure grew from this environment

is one of the primary goals of cosmology today.

1.1 THEORETICAL DEVELOPMENTS

Recently, observations have motivated the need for new physics to drive the expansion of

the Big Bang: dark matter, dark energy, and inflation. Dark matter was originally proposed

in 1933 by Fritz Zwicky to explain discrepancies in the rotation curves of spiral galaxies,

but it is now known that dark matter is also needed to explain the large scale structure in

the universe today. Additionally, we believe that dark matter is non-baryonic (not made

of protons and neutrons) and interacts only gravitationally. Though its exact nature is

unknown, physicists are currently searching for theoretical particles (e.g. gravitinos, axions)

postulated to be this missing dark matter.
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Even more mysterious is dark energy, the unknown yet dominant form of energy proposed

to explain the observed expanding and accelerating universe. Though no theory currently

exists to explain dark energy, it has several interesting properties. First, its energy density

remains relatively constant with the expansion of the universe. Second, it has negative pres-

sure, making it an exotic substance with no known origin. Measuring the properties of dark

energy using weak gravitational lensing is one of the primary science goals of multiple future

surveys including the Dark Energy Survey (DES), the Sloan Digital Sky Survey (SDSS) III,

and the Large Scale Synoptic Survey (LSST).

Inflation is the current theory for explaining why large scale structure is so isotropic

on scales larger than the comoving horizon (i.e. outside of the distance light could have

travelled). Because photons in the CMB have nearly the same temperature (to one part in

105) even at very large scales, they must have been in equilibrium and thus in causal contact.

Inflation solves the horizon problem by proposing that the universe expanded exponentially

fast when it was 10−35 seconds old; unfortunately this solution requires matter or energy

with negative pressure, similar to dark energy. It is possible that dark energy arose from

inflation, though it is also possible that the form of dark energy driving the expansion of the

universe today is distinct from that which drove inflation.

Another important development in cosmology over the last decade is the emergence

of galaxy formation models which reproduce the observed statistical clustering of galaxies.

Galaxy evolution can be decomposed into three contributions: luminosity evolution due to

changes in the galaxy’s internal stellar population, number evolution due to galaxy merg-

ers, and spatial evolution due to large scale structure evolution. All of these components

are poorly understood, and worse, they are intertwined – merging galaxies, for instance,

experience bursts of star formation and hence become brighter after the merger. The cur-

rent models for explaining galaxy formation, collectively known as the halo model, seek to

sidestep these complications by first modeling the dark matter and later sprinkling galaxies

throughout the dark matter halos, spherical structures in which all of the dark matter is pos-

tulated to reside. This approach seeks only to reproduce the statistical properties of galaxies

rather than evolution of individual galaxies. The halo model uses this approach because dark

matter only interacts gravitationally, making it is easy to simulate its clustering. Because
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mass is easily modeled, there is a desire to associate the properties of galaxies only with

the mass of their host halo so that galaxies are independent of their environment. Though

still primitive, these models offer a promising approach to studying galaxy formation and

evolution.

1.2 OBSERVATIONAL DEVELOPMENTS

Observationally, cosmology has amassed an enormous amount of high quality data within

the last decade, particularly from the Sloan Digital Sky Survey (SDSS). Consider, for exam-

ple, that in 1985 the state-of-the-art in galaxy surveys measured the positions and redshifts

of 1100 galaxies. Today, SDSS has measured spectra of 1 million galaxies and broadband

photometry of 217 million objects. This wealth of data enables more sophisticated studies of

galaxy properties. First, important statistical properties such as galaxy number counts, clus-

tering, and luminosity distributions (termed the luminosity function) are better constrained

due to reduced Poisson noise. Second, galaxies can be separated into subpopulations by type

(e.g. spiral or elliptical), luminosity (which is known to correlate with type), and redshift,

enabling the study of how galaxy properties vary with these properties. In other words, we

are now able to ask questions such as “Do all types of galaxies cluster in the same way?”

and “How do galaxy properties evolve with time?”. Future surveys such as LSST will amass

even more data and probe even longer time scales for galaxy evolution, further constraining

galaxy formation models.

Together, the increase in observational data and improvements in galaxy formation mod-

els present an excellent opportunity to study the evolution of galaxy clustering. The simplest

statistic for measuring galaxy angular clustering is the two point angular correlation function

w(θ) which measures how much more or less likely than random a pair of galaxies will be

found at a given separation θ on the sky. In practice, w(θ) is measured by counting pairs of

galaxies between a data set and a randomly generated data set; see equation 5.3 for details.

The first wide field galaxy survey designed to study galaxy clustering was the Lick Obser-

vatory Sky Atlas. Shane and Wirtanen (1967) counted the distribution of galaxies brighter

3



than apparent magnitude 19 (by hand!), and Totsuji and Kihara (1969) first measured the

clustering length r0 using their results. In the 1970s, Groth and Peebles (1977) re-calculated

the 2 and 3 point correlation function with corrections for plate-to-plate limiting magnitude

and counting errors. Surveys since this time (Maddox et al., 1990; Collins et al., 1992; Con-

nolly et al., 2002, e.g.) have refined the clustering analysis by probing larger areas of the

sky and greater depths, with the current state of the art for local galaxy clustering measure-

ments coming from SDSS data. Connolly et al. (2002) measured w(θ) using only positional

information from the SDSS Early Data Release (EDR), and Budavári et al. (2003) used

SDSS data with photometric redshifts (discussed below) to investigate how clustering varies

with luminosity and type. Zehavi et al. (2005) measured the real space correlation function

ξ(r) from the SDSS spectroscopic data and used it to constrain the halo model of galaxy

formation. For non-local galaxies, other groups have measured the clustering of high redshift

galaxies (Coil et al., 2008) and very high redshift quasars (Shen et al., 2007) using DEEP2

and SDSS data respectively. Additionally, Zheng et al. (2007) have obtained preliminary

results for relating the halo properties of galaxies in DEEP2 to those in SDSS, illustrating

that work in this area is currently ongoing.

Galaxy clustering measurements have consistently found that the angular correlation

function w(θ) is well described on small angular scales by a power law: w(θ) = Aθ1−γ. As

shown in Figure 5.9, the amplitude A decreases with apparent magnitude with γ remaining

approximately constant. Thus, fainter galaxies are less strongly clustered than bright galax-

ies. This result is consistent with Limber’s well known scaling relation given in Equation

5.33; in essence, the number of spurious galaxies along the line of sight increases with sur-

vey depth and smears out the clustering strength. This is illustrated graphically in Figure

1.1 where one can easily see that the increase in galaxy numbers with depth reduces the

clustering signal.

In order to relate galaxy clustering measured from angular positions on the sky to the

true 3-D structure of galaxies, one must invert the angular correlation function using the

distances to each galaxy. The most straightforward way of determining distance to a galaxy

is by running the light of a galaxy through a spectrograph so that the various wavelengths

of light are separated. Features of known rest wavelength can then be identified; the shift
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in these features determines the redshift and hence distance to the galaxy (see Equations

4.1 and 5.9). Spectroscopy is very time consuming because the galaxy’s light is spread over

a larger area of the detector, requiring longer integration times, so a significant additional

time investment is needed if one wishes to compute the true spatial distribution. This

problem can be overcome by using a faster redshift estimation technique which utilizes only

broadband photometry that can be obtained roughly 100x more quickly than spectra. The

techniques for estimating redshift in this way are termed photometric redshifts or photozs for

short. Because photometric redshifts use less information to estimate the redshift, they are

inherently less accurate, but this can theoretically be overcome (in a statistical sense) with the

larger number of galaxies. Because photometric redshifts rely on photometric measurements

(i.e. magnitudes), it is essential to have well calibrated magnitude measurements.

The primary science goal of this thesis is to study the evolution of galaxy clustering with

luminosity, type, and redshift using photometric redshifts. Because photometric redshifts

require high quality photometry, we chose to measure galaxy clustering in the co-added

imaging data set stripe 82 from SDSS. This data set consists of stacks of SDSS images

co-added together from multiple passes over the same area of sky near the equator. The

multiple images should improve the photometry of the co-added images over those of the

SDSS main sample and probe higher redshifts than Budavári et al. (2003); we also hope to

constrain the halo model by inverting w(θ) to obtain the real space correlation function ξ(r).

As the main SDSS pipeline cannot currently be used to process the co-added sample, much

of this thesis is devoted to describing a custom pipeline we developed.

This thesis is broken into 6 additional chapters. In chapter 2, we cover the details of our

image processing. In chapter 3, we present the method used to classify stars and galaxies.

In chapter 4, we detail the process used to obtain photometric redshifts for the galaxies in

our sample. In chapter 5, we describe the computation of the angular correlation function,

and finally in chapter 6 we use our results to constrain parameters in the halo model.
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Figure 1.1 Visual representation of clustering evolution with apparent magnitude. The top figure shows
galaxies with magnitudes r ≤ 18, and the bottom shows galaxies with r ≤ 20. As the number of spurious
galaxy encounters along the line of sight increases, the clustering strength is “smeared out”. Areas without
galaxies are present due to masking.
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2.0 IMAGE CALIBRATION

In order to analyze astronomical objects in imaging data, the images must first be processed

to detect sources and extract their properties (positions, fluxes, etc.). The software that

detects and measures these properties is termed an imaging pipeline. Developing an image

pipeline that produces accurate calibration in astronomy is non-trivial as it involves precise

measurements of both position and flux. Consider, for example, that the SDSS pixel scale

is 0.396 arcsec/pixel (Gunn et al., 1998), so 1 pixel can capture a dime held at a distance

of 2.9 miles. The photometric properties need to be similarly precise – an object with an

apparent magnitude of 22 has a flux roughly equivalent to that of a 100W light bulb placed

on the surface of the moon.

The SDSS survey team has developed a robust automated pipeline for obtaining precise

optical imaging data (Lupton et al., 2001). For this thesis, data from SDSS DR5, the 5th

data release which includes data taken through June 2005, were used to assist in calibration.

DR5 contains five bands of photometric data for 217 million objects spread over 8000 deg2

and roughly 1 million spectra over 5700 deg2. For the photometric data, there are 5 pass

bands: u (3551 Å), g (4686 Å), r (6165 Å), i (7481 Å), and z (8931 Å). The photometric

filters are discussed in detail in Fukugita et al. (1996). The r band is 95% complete to an

AB magnitude of 22.2 with 2% RMS error and a median point spread function width of 1.4

arcsec (Adelman-McCarthy et al., 2007). For an overview of the SDSS DR5 catalog, see

Adelman-McCarthy et al. (2007), for details on photmetric calibration pipeline see Lupton

et al. (2001), and for astrometric calibration see Pier et al. (2003).

In addition to the primary survey, the SDSS imaging camera has obtained repeat ob-

servations of a stripe along the Celestial Equator spanning 22h20m < α < 3h20m, −1.25◦ <

δ < 1.25◦ in J2000 coordinates, also known as stripe 82. The southern equatorial stripe
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is observed in the fall months when the southern Galactic cap is visible in the northern

hemisphere. This area of the sky was repeatedly imaged to enable studies of variable objects

such as supernovae and to enable co-added imaging for probing fainter magnitudes. Though

SDSS covers a wide area, it is a shallow survey only probing to a median redshift of roughly

0.1. With the co-added imaging data set, we can probe to fainter redshifts of roughly 0.4

at r = 22 in a volume limited survey and study evolution of galaxy clustering over a much

longer period of time. It is this feature of the co-added imagery that this thesis aims to

utilize – co-addition of imaging data to probe fainter sources and therefore the evolution of

galaxies.

The SDSS imaging camera is mounted on a drift scan telescope, meaning that the tele-

scope remains stationary while the sky passes overhead. As such, the SDSS imaging pipeline

was engineered to deal with a constant stream of data rather than a set of random pointings.

Work is currently underway to modify the imaging pipeline (Adelman-McCarthy et al., 2007)

to process the co-added imagery, but results are still currently unavailable as of this writing.

Instead, we chose to develop our own calibration pipeline which leveraged the SDSS main

survey pipeline.

To develop our custom pipeline, we took the novel approach of applying web services to

astronomical image calibration. This approach enabled us to utilize the entire DR5 catalog

without storing any data on local disk and still achieve processing times of 2-5 sec/field with

photometric RMS r band magnitude errors of 0.069 (see Figure 2.3). The details of this

custom pipeline and all relevant calibration checks comprise the remainder of this chapter.

2.1 OVERVIEW OF WEB SERVICES

The term web services encompasses several protocols for making remote procedure calls

(RPC), i.e. calling a function on another machine. For this thesis, two kinds of web services

were utilized: XML-RPC and SOAP (formerly Simple Object Access Protocol). Both of

these involve sending synchronous request messages in an XML format over plain text via

the standard web protocol HTTP. The difference between these two services is analogous
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to the difference between a dynamic language (e.g. Python) and statically typed language

(e.g. C++) – XML-RPC is much simpler, easier to write, and more flexible, but SOAP

potentially offers type safety on the client side which could detect errors at compile time

rather than run time. In the simpler XML-RPC, the client can send any message it wants

(including malformed ones) to the server, which decides whether the message is valid and

either processes the request or returns an error. In SOAP, the server provides an XML

description of its services named the Web Services Description Language (WSDL) which

client authors compile into code in their preferred language called stubs. The stubs handle the

conversion of types and functions/methods in the native language into XML messages that

the server understands, so theoretically it should be impossible to send a malformed message

to the server. Additionally, this approach enables code editors to implement automatic code

completion for the methods the server supports since they have been serialized into native

code.

In practice, though, SOAP’s advantages over XML-RPC disappear due to degeneracies

in how the WSDL can be specified which result in message transmission difficulties. In

particular, SOAP clients that are written in a different language or toolkit than the server

have trouble formatting messages in the precise form expected by the server. Often, these

differences are quite trivial (e.g. the addition of a namespace for a few tags), but they

result in technically malformed messages from the standpoint of the server. Even worse,

upgrading the SOAP library used to generate the stubs can subtly change how the output

message is formatted and completely break an application. This is a huge problem because

SOAP libraries are still quite young and under active development. To work around these

issues, we resorted to constructing SOAP messages using simple string formatting rather

than by generating stubs. This approach turned out to be both easier to develop and faster

performance-wise: for a typical query to Open SkyQuery, the “by hand” method was at least

3x faster.

One crucial element to achieving good performance using web services and large amounts

of data is an efficient method for sending binary data; in particular, the server should ideally

not pass large chunks of binary data through an XML parser. For the XML-RPC server

we developed, we used a simple custom HTTP POST path /data that indicates to the
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server that the accompanying message is binary data; this approach utilizes the fact that

XML-RPC servers are just web servers that parse XML messages. SOAP offers a similar

potential solution called attachments, where a placeholder message is inserted into the actual

XML which points to the accompanying binary part. Unfortunately, at the time our code

was under development, attachments were poorly supported, and often the XML parsers

would examine the attachments instead of ignoring them as they should. Another potential

SOAP solution is to send a URL to the server which then downloads the data it needs. The

drawback of this approach is that the client must be able to run some sort of file server.

With an efficient way to send large amounts of binary data, it is possible to achieve

excellent performance using web services: for the photometric calibration pipeline, the typ-

ical processing time per 12 MB image was 4-5 seconds (≈ 10 GB/hour). Furthermore, web

services can be used to implement a simple approach to parallelism for tasks that do not

require high volume message passing – simply write a “master server” that farms out incom-

ing messages to a network of normal servers. This approach can be further improved with

the use of asynchronous messaging.

The remainder of this section is devoted to outlining the web services used for this thesis.

2.1.1 Open SkyQuery

Open SkyQuery (Budavári et al., 2004) is a distributed database system that provides access

to multiple astronomical surveys using a SQL-like syntax called ADQL. In addition to the

usual SQL functions, ADQL provides a region operation that returns all sources within a

given circle on the sky and a cross match operation that returns matches between 2 data sets.

The cross match operation is made more useful by the fact that users can upload their own

data to temporary tables to compare against other surveys. Each individual survey catalog

is stored on a SkyNode, a server running a SQL database and implementing the ADQL query

language as a web service. Additionally, the data stored on SkyNodes are indexed using a

hierarchical triangular mesh (HTM), a hashing algorithm that significantly improves spatial

searching performance for spherically distributed data.

All of the reference data used in calibration were retrieved using queries to Open Sky-
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Query. The region command (as opposed to simple α, δ limits) is the fastest way to perform

spatial data queries because it makes use of the HTM indexing.

For cross matching, we found Open Sky Query’s algorithm to be lacking. Most signif-

icantly, it does not return a unique cross match between the two lists of points; that is,

a point in the 1st list may be matched to multiple points in the 2nd list and vice versa.

Additionally, the cross matching maximum radius is specified as a χ2 threshold instead of

a physically meaningful distance. For these reasons, we performed cross matches by first

employing a region query to Open SkyQuery then locally running an O(n log n) algorithm1

that ensures the match is unique with respect to both lists. This approach has the added

benefit that a temporary table does not need to be uploaded to Open SkyQuery, resulting

in a performance gain.

In addition, the queries from each co-add image overlap spatially (both because the

images themselves overlap and because the queries are spherical). This enables the remote

SDSS database to utilize caching to further improve query time. As an example, an initial

run of a representative query to select the first 10 objects within a radius of 5 arcmin took

≈3 seconds, but subsequent runs require only 0.5 seconds.

2.1.2 WESIX

Web Enabled Source Identification with X-Matching (WESIX) (Krughoff and Connolly,

2008) is a web service front end we developed to SExtractor (Bertin and Arnouts, 1996),

a source extraction program widely used in astrophysics. There are a large number of

configuration options controlling how SExtractor detects and measures sources, and WESIX

supports nearly all of them. The programmable nature of WESIX enabled us to write source

extraction programs that make multiple passes on the input image and adjust parameters

between each pass easily. In fact, one way of viewing WESIX is merely as a scripting

framework for generating SExtractor configuration files that is general enough to enable

running SExtractor remotely. All source extraction on images was performed using WESIX.

1It is possible to cross match in O(n) time using hash tables.
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2.2 PHOTOMETRIC PIPELINE

In this section, we outline the specifics of the photometric pipeline used to extract sources

and their properties from the co-add imaging data.

2.2.1 Magnitude Calibration

Magnitude calibration is broken into three steps for each input image: 1.) extract sources

from the input image and measure their positions on the sky using WESIX, 2.) retrieve

reference sources (in this case from SDSS DR5) in the same area of the sky using Open

SkyQuery, and 3.) compare the image and reference sources to determine the proper photo-

metric calibration. Source extraction is performed in two passes to optimize signal-to-noise.

In the first pass, only extremely bright (≥ 20σ above background) image sources are used.

These sources are cross matched against the reference sources to determine star-galaxy clas-

sification, then the average full-width-half-max (FWHM) of stars is computed to estimate

the point spread function (PSF). On the second source extraction pass, a Gaussian con-

volution filter with approximately the same FWHM is applied to improve signal-to-noise;

to ensure a close match in convolution FWHM, we generated Gaussian convolution filters

with FWHM ranging from 2 to 4 pixels in steps of 0.1 pixels. In addition, the SExtractor

detection threshold is set to 5σ per total number of effective pixels of the convolution filter

to optimize signal-to-noise for point sources. The image sources obtained on the second

pass are then cross matched against bright reference sources (16 < r < 19), after which an

iterative sigma clipping fit is applied to determine the magnitude calibration. The fit used is

a least squares fit with perpendicular offsets because there is no true independent variable,

and it is performed only over stars in the valid magnitude range. The cuts in magnitude

space are made roughly perpendicular to the fit line to avoid Malmquist bias. Finally, the

calibration fit (including the slope) is applied to the image magnitudes and the final catalog

is output for the image. An example calibration is shown in Figure 2.1.

It is important to note that each image is calibrated independently, including images of

the same area of sky in different pass bands. We performed several checks (discussed later
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in this chapter) to ensure that the magnitude calibrations did not vary significantly with

position on the sky.

This magnitude calibration procedure has a failure rate of ∼0.1% for the co-added data

set, where success is defined as having a fit with slope between 0.9 and 1.1. With the

inclusion of “empty images” which include no data (whether because this area of the sky

was unobserved or some co-add pipeline bug is unknown to me), the failure rate rises to

∼1.3%. Unfortunately, the failure rate of the matched aperture catalog (discussed later in

this chapter) is ∼4% due to the additional requirement that all 5 bands for a given field

must be calibrated successfully as a group.

2.2.2 Catalog Collation

The above calibration procedure is applied to every image in the co-added stripe 82. To

construct a catalog of co-add sources, it is necessary to collect the catalogs output for each

image into a single catalog. There are 2 difficulties in this procedure. First, the images

overlap both in right ascension and declination, so care should be taken not to double count

sources. The second difficulty is that a decision must be made as to what a “source” is –

is it every object in every band measured, or is there a particular pass band that an object

must present in to be considered a source?

To solve the overlap problem, we determined the non-overlapping boundaries between

adjacent images in both right ascension and declination by taking 1
2

the distance between

the image centers as the boundary. The cut in declination is simpler because camcols follow

lines of constant declination for stripe 82, so the limits can easily be pre-computed. For fields

within a given camcol, we used the halfway point between image centers of the two closest

successfully processed images as the non-overlapping boundary. This was done to allow a

few more sources in the areas normally excluded in the overlap region. A similar approach

could have been used for declination as well, but we preferred a simpler declination cut so

that camcols could be processed independently.

With respect to how a source is defined, we take the r band as our primary detection

band, meaning that sources are objects only if they are detected in r. If an object is not
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Figure 2.1 Magnitude Calibration Example. Points are color coded by object type with filled circles for
points used for the fit and hollow circles for rejected points.
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detected in another pass band, the measured properties for that band are set to a bad flag

value (−999). Our cross matching code is used to identify object matches between pass

bands. An additional result of this decision is that the right ascension and declination are

taken from the values in the r band, so it is the r band coordinates that are used to determine

the boundaries in the paragraph above.

With these two problems solved, it is a straightforward matter to collate all of the

individual catalogs. This process consists of reading the log files to determine which r band

images were successfully processed, computing the non-overlapping boundaries, reading each

set of ugriz catalogs for the successfully processed r band images, matching objects between

bands and filling in missing objects with bad flags, and outputting all of the measured

properties to a new catalog file. This process was done for each camcol independently, then

the results were uploaded to a SQL database to enable easier object selection.

As one final note, we created a unique ID for each object by joining the values for run,

rerun (always 1), camcol, and field together. This yields a unique 64-bit integer key called

the objID. Having a unique objID makes updating the SQL database much easier as no

spatial querying is needed; for this reason, the objID was used as the primary key in the

SQL database.

2.3 CALIBRATION TESTS

In this section we present a set of tests performed to verify the quality of the calibration was

consistent across the entire stripe.

The most obvious test to do is to compare the magnitudes of the final calibrated co-add

catalog against the SDSS DR5 sample used to calibrate it. Figure 2.2 demonstrates this

comparison for stars for all bands over the entire stripe, compromising 1.8 million objects.

Figure 2.3 shows ∆mag for each of the bands over the same region. The fits were performed

using an iterative σ clipping algorithm with both slope and intercept as free parameters. For

the r band, the RMS scatter was σr = 0.069 or rerr ≈ 0.4%. The highest error measured was

in the u band with σu = 0.178 and uerr ≈ 1%. These results demonstrate that we met our
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target goal of 1% photometry error which lies within the scatter of the single epoch SDSS

photometry.

Figure 2.4 shows a comparison of the co-add colors to SDSS DR5 colors over the entire

magnitude range. While the 1 to 1 trend is visible in the plots, there are additional lines

of degeneracy indicating some bias for our measured colors. However, it is important to

note that there are 700,000 to 1.8 million points on these plots, so the density of outliers is

over-emphasized visually. The percentage of points plotted lying within the 3σ line is 93.25%

for u − g, 92.22% for g − r, 93.11% for r − i, and 91.47% for i − z, so the total number of

outliers is less than 10% for every plot.

Additionally, because the calibration is performed on an image by image basis, it is

useful to test whether the calibration varies appreciably within a single camcol and between

neighboring camcols. Figure 2.5 shows how the calibration varies within a single camcol, and

Figure 2.6 shows how it varies between camcols. For both of these plots, the difference in

magnitudes shown is only for sources with 16 < r < 19, i.e. those for whom the calibration

should be best. The RMS scatter in ra for the r band is σr = 0.011, rerr = 0.06%, and in the

z band σz = 0.031, zerr = 0.18%; the RMS scatter in dec for r and z is identical. Though

the average error is insignificant, the u band shows a zero point variation in dec of roughly

0.015. While this trend in the u zero point is unsettling, the magnitude is nonetheless small

enough to disregard.

Finally, Figure 2.7 shows the number counts of objects in each band. The r band is

complete to 22.98, an improvement over the single epoch r limit of 22.2.

2.4 MATCHED APERTURE CATALOG

In addition to the catalog described above, we developed a version of the calibration pipeline

that measured the magnitudes using matched apertures between all of the photometric band

passes. In other words, objects were first detected in r, then the same apertures were placed

in each of the other band passes. This is done so that extended objects have more consistent

flux measurements, which should result in more accurate color measurements (flux ratios).

16



Figure 2.2 Comparison of co-added imaging MAG AUTO and SDSS DR5 model magnitudes for all of stripe
82. All objects plotted are stars found in both the co-added catalog and SDSS. The fit was performed over
all magnitudes using iterative 3σ clipping. Dotted lines show the 3σ cut and dash-dot lines show the range
of magnitude space over which the calibration was initially determined.
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Figure 2.3 Comparison of co-added imaging MAG AUTO and SDSS DR5 model magnitudes for all of stripe
82. All objects plotted are stars found in both the co-added catalog and SDSS. The fit was performed over
all magnitudes using iterative 3σ clipping. Dotted lines show the 3σ cut.
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Figure 2.4 Comparison of co-added MAG AUTO colors and SDSS DR5 model colors for all of stripe 82.
All objects plotted are stars found in both the co-added catalog and SDSS. The fit was performed over the
entire sample using iterative 3σ clipping. Dotted lines show the 3σ cut.
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Figure 2.5 Comparison of co-added imaging MAG AUTO and SDSS DR5 model magnitudes for all of in
stripe 82 as a function of right ascension. All objects plotted are stars found in both the co-added catalog
and SDSS. The fit was performed only over bright magnitudes (16 < r < 19) using iterative 3σ clipping
in order to demonstrate that the magnitude zeropoint does not appreciably vary within a camcol. Dotted
lines show the 3σ cut.
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Figure 2.6 Comparison of co-added imaging MAG AUTO and SDSS DR5 model magnitudes for all of stripe
82 as a function of declination. All objects plotted are stars found in both the co-added catalog and SDSS.
The fit was performed only over bright magnitudes (16 < r < 19) using iterative 3σ clipping in order to
demonstrate that the magnitude zeropoint does not appreciably vary between camcols. Dotted lines show
the 3σ cut.
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Figure 2.7 Number counts of co-added imaging MAG AUTO for all of stripe 82. These plots show both
stars and galaxies.
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Because photometric redshifts are measured from the colors of galaxies (which are extended),

the use of matched aperture magnitudes should increase the accuracy of our photometric

redshifts.
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3.0 STAR/GALAXY CLASSIFICATION

We are interested in the clustering properties of galaxies which are correlated with the large

scale structure of the universe. Stars, on the other hand, are correlated with the plane of

the Milky Way, which unfortunately runs through the middle of stripe 82. It is therefore

necessary that we develop a robust method for classifying objects in our catalog as stars or

galaxies to minimize stellar contamination of the galaxy clustering signal.

So, given an object, how does one determine its type? There are two pieces of information

that are typically used for star/galaxy separation. First, galaxies are extended objects, and

stars are point sources, assuming they are not sufficiently bright to cause diffraction spikes

or CCD blooming. Second, the intrinsic spectra of galaxies and stars are different; hence

their colors can be used for classification if a full spectrum is not available.

To classify based on object size, one can use magnitudes at two different apertures and

compute their difference, which is termed concentration. By construction, the concentration

of stars should be smaller than galaxies; moreover, there should be two visible populations

in a concentration histogram (Scranton et al., 2002). The drawback to using concentration

or object size is that faint galaxies are also very compact, so at some limiting magnitude it

will become impossible to classify objects.

For color based classification, one compares the colors of the object to a multidimensional

color manifold for some training set of stars and galaxies. The simplest form of this approach

is to define some color cut (a piece-wise hyper-plane in color space) to classify the sample

(Coil et al., 2004, e.g.). The drawback to using color cuts is that they introduce complicated

biases into object selection – very red stars, for example, could easily be misclassified as high

redshift galaxies. Additionally, because colors compare magnitudes in different pass bands,

the limiting magnitude at which colors become significantly affected by noise is determined
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by the band with the largest error (u or z for SDSS); that is, one cannot compare an object’s

magnitude in the r band to the u band if it is only detected in r.

For the reasons outlined above, we chose to use concentration distributions to classify

objects in the co-added imaging data set. This approach is straightforward and we feel

that it introduces less type bias into the galaxy selection. As a final note, one could try to

combine these two approaches, but more sophisticated classification is beyond the scope of

this thesis.

The remainder of this chapter gives an overview of the classification algorithm and con-

cludes with suggested improvements to our algorithm.

3.1 FITTING THE CONCENTRATION DISTRIBUTION

Because the ratio of galaxies to stars increases with apparent magnitude, the distribution of

concentrations is a strong function of apparent magnitude. For this reason, it is necessary to

break up the sample to be classified into apparent magnitude bins and compute the concen-

tration distribution in each bin; we used the SDSS r band (which has the best photometry)

with bins of size 0.5. We compute the concentration by comparing an aperture magnitude at

3σ of the PSF1 for the image to SExtractor MAG AUTO, the optimal flux measurement for

galaxies and stars convolved with Gaussian seeing. MAG AUTO fits an elliptical aperture

to the object’s light distribution and then applies an algorithm similar to the “first moment”

algorithm of Kron (1980). The concentration distribution in each bin can then be used to

classify objects in that bin, which given all of the bins, yields a classifier as a function of

magnitude.

For this thesis we attempted to use two classification schemes, one parametric and one

non-parametric. These are discussed below.

1The point spread function (PSF) for each image is estimated as part of the calibration process.
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3.1.1 Parametric Classification

The form of concentration distribution suggests that it could be modeled by a sum of two

Gaussians. The advantage of this parameterization is obvious – one can associate one Gaus-

sian with stars and the other with galaxies and assign a probability that an object is a star or

galaxy based on the likelihood ratio of these two distributions. A probabilistic classification

would enable the object selection to be optimized for the science question at hand, e.g. select

only objects with probability > 95% of being a galaxy. Additionally, at faint magnitudes,

when the concentration distribution becomes broad with only one peak, it would still be

possible to fit the distribution and hence classify objects.

As a first approach, we applied the Expectation-Maxmization (EM) algorithm (Hastie

et al., 2001) to Gaussian mixture models to fit the concentration distribution. EM is an

iterative maximum likelihood technique that determines an initial estimate of the likelihood

from the starting parameters (expectation step) and then varies the parameters to maximize

the expected likelihood (maximization step). This process is then repeated with the new

parameters input for the next expectation step. For a simple 2 Gaussian model, each iteration

amounts to fuzzy classification – each object is assigned a weight between 0 and 1 describing

how likely it belongs to each population, then the average and variance for each population

are computed using those weights. The new parameters are then used to update the weights

on the next iteration.

Figure 3.1 shows the results for an idealized concentration distribution. Unfortunately,

as Figure 3.2 demonstrates, the real concentration distributions are not equivalent to a

sum of two Gaussians, though they are close. The main reason the fit fails is that the

broader Gaussian (for galaxies) cannot fit the distribution at small concentrations where the

distribution abruptly goes to 0; this happens because below some limiting aperture, there

simply is no flux. To compensate, the right Gaussian is shifted to higher concentration,

which makes the overall fit worse in the most important area – the region between the two

Gaussians.
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Figure 3.1 EM Gaussian mixture model fit to an idealized distribution of 2 Gaussians. The red line is
the sum of both Gaussians, and the blue and green lines represent the contributions from each individual
Gaussian.
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3.1.2 Non-parametric Classification

The algorithm for our non-parametric classifier is simpler than the EM approach but more

robust to the actual distributions: find the location of the valley between the two peaks

in the concentration distribution. We used the mean shift algorithm (Carreira-Perpiñán,

2007; Fukunaga and Hostetler, 1975) to determine the location of the valley. The mean shift

algorithm is a simple adaptive gradient ascent method applied to kernel density estimation

(Hastie et al., 2001), a method for approximating distributions using a smoothing kernel.

We used a Gaussian kernel so that the density estimate at point x given a distribution of

data xi ∈ (x1, x2, . . . xN) and smoothing parameter h is

p(x) ≈ 1

N
√

2πh2

N∑
i=1

exp
−(x− xi)

2

2h2
(3.1)

One nice feature of the kernel density estimate is that there is no dependence on bin

size as in a histogram; the trade-off is that h is a parameter that needs to be tuned for the

distribution. Typically there is some range of h that works well for a distribution. We used

a value of h = 0.02, determined from “by eye” comparisons to histograms.

Given an estimate for p(x), we can locate the extrema by taking ∂p(x)
∂x

and setting it to

0. Doing so and solving for x gives the definition of the mean shift

xnew =

∑N
i=1 xi exp −(x−xi)

2

2h2

p(x)
≡ meanshift + x (3.2)

I have written xnew on the left to signify that in order to compute this value, one must

input some starting value of x. In fact, this is precisely how mean shift is used: input some

starting value of x, compute the mean shift, set xnew = x + meanshift, and iterate until

converged to within some tolerance. By choosing a series of initial starting values, one can

locate all of the maxima of a distribution. Finally, note that the presence of p(x) in the

denominator is what makes mean shift an adaptive algorithm – it automatically moves away

from areas with small probability densities.

In order to locate the valley between the two peaks, we first use mean shift to find

both peaks by starting from one small concentration value and one large one2. Next we use

2The location of the peaks need not be very accurate as they are only used to determine which of the
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bisection to pick concentration values (with the peaks as the initial bracketed region) and

determine which of the two peaks mean shift converges to from the mid point value, which

is used to update the bracket of the boundary between the peaks. This process is repeated

and the “root”3 bracket updated until its width is within a small tolerance. By definition,

the midpoint of the bracket is approximately the location of the valley we are seeking.

Figure 3.3 shows the results of our algorithm for a bright magnitude bin, Figure 3.4

shows a bin near the middle of our magnitude range, and Figure 3.5 shows a faint bin.

Finally, 3.6 shows a magnitude bin which is too faint to be classified using our algorithm.

The minimum r band magnitude we can classify to is 22.261314; however, the number of

galaxies is greater than stars at this point, so one can assume all sources fainter than this

are galaxies with only a small amount of contamination. Similarly, sources that are brighter

than r = 14.738327 cannot be classified, and we also flag objects that have abnormally high

or low concentrations.

The concentration cut for each bin is recorded at the average magnitude value for that bin,

then we interpolate to find the concentration cut to use for an arbitrary r band magnitude

as shown in Figure 3.7. The brighter magnitude bins (r < 18) have only one prominent peak

for stars, so the concentration cut used is constant with magnitude. To estimate the effect

of errors on our concentration cuts, we also classified objects using ±5% variations in the

cuts. As shown in Figure 3.8, this has a negligible effect on the resulting number counts.

3.2 EXTENDING STAR/GALAXY CLASSIFICATION

There are a number of ways in which the star/galaxy classification might be improved. The

obvious next step is to improve the parametric classifier so that a probability can be assigned

and fainter objects classified. One approach to this would be to use kernel density estimation

to obtain p(x) then use a non-linear fitting technique to fit two Gaussians to p(x), ignoring

the fit below some concentration threshold to avoid shifting galaxy population to fit the low

two populations a given point will migrate towards
3In this case there is no true root, as the starting value must converge to one of the two peaks.
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concentration tail4. Additionally, it might be possible to fit only the region between the

peaks; the other regions do not need to be particularly accurate given that they are assured

to be stars or galaxies.

Additionally, it should be possible to incorporate prior information using Bayes’ theorem

into the classification. One candidate for a prior is an object’s distance from the plane of the

Milky Way because objects within the plane are more likely to be stars. This information

can be quantified by using a dust reddening map and converting the reddening value into a

probability. A second potentially useful prior could be constructed using the colors of the

sample. Given the wealth of main sample SDSS galaxy data, it seems feasible that the color

manifolds of stars and galaxies could be sampled well enough to use as a training set, and

hence a useful prior.

4The parameterized pfit(x) should be forced to 0 for values below this concentration
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Figure 3.2 EM Gaussian mixture model fit to an actual concentration distribution. The red line is the sum
of both Gaussians, and the blue and green lines represent the contributions from each individual Gaussian.
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Figure 3.3 Concentration cut example for bright sources. The black line shows a histogram of the distribution
and the green line shows the kernel density estimate (which is used to find the peaks). The dashed red lines
show the location of the peaks and valley.
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Figure 3.4 Concentration cut example for sources near the middle of our magnitude range. The black line
shows a histogram of the distribution and the green line shows the kernel density estimate (which is used
to find the peaks). The dashed red lines show the location of the peaks and valley.
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Figure 3.5 Concentration cut example for faint sources. The black line shows a histogram of the distribution
and the green line shows the kernel density estimate (which is used to find the peaks). The dashed red lines
show the location of the peaks and valley.
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Figure 3.6 Concentration distribution for sources which are too faint to be classified
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Figure 3.7 Interpolated concentration cut as a function of r band magnitude. The red line shows the cut
used for classification, and the blue and green lines show ±5% values used to check number count variation
with shifts in the cut used.
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Figure 3.8 Star and galaxy number counts as a function of magnitude. There are 3 lines for both stars and
galaxies – the actual number counts and the counts from using ±5% different concentration cuts.
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4.0 PHOTOMETRIC REDSHIFTS

The expansion of the universe shifts the wavelengths of light emitted by stars and galaxies

in an manner analogous to the Doppler effect. Because these objects are receding from us,

they appear redder than if they were at rest. The shift from the emitted frame wavelength

λe to observed frame wavelength λo is related to the redshift z through

λo = (1 + z)λe (4.1)

We can exploit the fact that the redshift is due to the object’s recession velocity to infer

distance and time (Hogg, 1999); for this reason, redshift is the natural cosmological measure

of time. Obtaining redshifts for our galaxy sample is thus essential to studying the evolution

of galaxy clustering and to inferring the underlying 3-D distribution of galaxies.

Redshifts can be determined by running the light from an object through a spectrograph

which separates its different wavelengths. Features of known rest wavelength (e.g. emission

lines) can then be used to estimate the redshift with high accuracy. Additionally, the type

and subtype (e.g. B0 star) of the object can be determined with high accuracy, ensuring that

only galaxies are included in the clustering measurement. Unfortunately, taking a spectrum

requires much longer exposure times than broadband photometry because the light is spread

out over a larger physical area on the detector. As a concrete example, in SDSS there are

approximately 100x more objects in the photometric sample than the spectroscopic sample.

The shorter observing times of broadband photometry make it attractive for large scale

surveys because the larger number of objects allows for higher source density and subsam-

pling of populations (e.g. how do blue galaxies cluster compared to red ones). Obviously,

some method of estimating redshift using broadband photometric filters is highly desirable
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as it would allow for larger redshift surveys. Collectively the techniques for estimating red-

shift from broadband photometry are termed photometric redshifts (Baum, 1962; Connolly

et al., 1995; Bolzonella et al., 2000; Beńıtez, 2000; Csabai et al., 2003), as opposed to the

traditional spectroscopic redshifts. Photometric redshifts, or “photozs” for short, are most

simply explained as a low resolution (5 points for SDSS) spectrum that can only identify

broad spectral features. In particular, there are two significant breaks in galaxy spectra at

912 Å (the Lyman break, due to neutral hydrogen absorption) and 4000 Å (the H-K or 4000

Å break, due to absorption by doubly ionized calcium and the Balmer series) that provide

significant information even in low resolution. Of course, because photozs are estimated

with less information, they are inherently less accurate, but the increased number counts

can theoretically be used to reduce the scatter and allow for statistical measurements with

high precision. In addition, many applications may not require high redshift accuracy as long

as there is no bias in the redshift estimate. For galaxy clustering, only a few redshift bins are

required to measure the evolution, so the measurement is only affected if the contamination

due to incorrectly estimated redshifts within those bins is significant.

Photometric redshift techniques fall into two broad categories: empirical and template

based. The empirical techniques tend to follow standard data mining approaches – given

some training set of data with known redshifts and colors (i.e. a multi-dimensional color

manifold), compare the colors of each object to be classified to those in the training set to

determine redshift. For example, the weighted average of redshifts of the k nearest neighbors

(with k as an input parameter) in color space can be used as an estimator. Errors can be

estimated by jack-knifing the training set because randomly removing points in color space

measures how well sampled the color manifold is. As with all training set algorithms, the

redshift estimation will only be good if the training set accurately represents the color space

and redshift distribution of the unclassified data set. One consequence of this is that empirical

techniques can only be used for shallow photometric surveys because the spectroscopic sample

used for training will have longer integration times and hence a brighter limiting magnitude.

Template based estimation seeks to overcome the shallow limitation by building the

training set out of a small set of template spectra that are generated from theoretical galaxy

models or empirical averages of multiple objects of similar type. Typically, the template set
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includes elliptical, spiral, irregular, and star burst galaxies as well as hybrid types interpo-

lated between each discrete spectrum. Each template spectrum can then be redshifted over

an arbitrary range and have its colors measured by convolving the spectrum with the filter

curves of the desired survey. Doing this for each template over some redshift range produces

a training set which can then be used as in the empirical methods. Usually, though, most

template based codes simply compute a χ2 measurement of color distance for the entire

template-redshift grid and take the minimum value as the redshift (i.e. use only 1 nearest

neighbor). The error (or rather, the redshift probability density) can be estimated by turning

the χ2 into a probability for either the entire 2-D type-redshift grid or the grid marginalized

over type.

It is important to note that the template based methods are not without problems.

First, there is an implicit assumption that galaxy types do not evolve with time; the degree

to which this assumption is violated is unknown. Second, we are presuming that we can

accurately describe any galaxy in the universe as one of a handful of templates; alternatively

stated, we can only estimate redshifts for objects which are well described by our template

set. Third, at high redshift the color tracks of each template begin to cycle and create

degeneracies, though a priori knowledge such as magnitudes can be used to partially correct

for this. This problem is made worse for larger redshift grids. Additional degeneracies arise

when distinguishing spectral features pass through a gap between two filters. All of these

problems underscore that improvements to photometric redshift techniques are needed and

research in this area is still currently ongoing.

The rest of this chapter outlines in detail the procedure used to obtain photometric

redshifts for the co-added imaging set.

4.1 BAYESIAN PHOTOMETRIC REDSHIFTS

To estimate redshifts we use BPZ (Beńıtez, 2000), a template based photometric redshift

code that implements an apparent magnitude Bayesian prior. A magnitude prior improves

photoz quality by resolving color-type degeneracies through a priori knowledge. This makes
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intuitive sense because we know that brighter galaxies are more likely to be nearby and hence

at low redshift. Additionally, BPZ improves redshift error estimation by outputting the type

marginalized p(z) for each object.

The magnitudes/colors that we input into BPZ were those generated from the matched

aperture catalog so that objects’ fluxes were measured with the same aperture in all bands.

Objects that were not detected in a given band (excluding the r band) had their magnitudes

flagged so that BPZ would treat them as non-detections and use the 1 σ detection limit1 for

an upper bound flux threshold as additional information when determining the redshift.

We customized BPZ to improve photoz quality and error estimation by modifying its

default behavior in three ways: we developed a prior more suitable for SDSS data, we

parameterized the marginalized p(z) for each object, and we created an alternate template

set. We discuss each modification below.

4.1.1 Estimating the Prior

The probability that a given galaxy with colors C and apparent magnitude m has redshift

z is given by applying Bayes’ Rule to the set of templates T (Beńıtez, 2000):

p(z|C, m) =
∑

T

p(z, T |C, m) ∝
∑

T

p(z, T |m)p(C|z, T ) (4.2)

Here it is assumed that C and m are independent. The p(C|z, T ) term is simply the

standard likelihood computed by comparing the object’s colors to that of the templates. The

first term is the apparent magnitude prior which can be further decomposed

p(z, T |m) = p(T |m)p(z|T, m) (4.3)

These two terms are parameterized for a given training set following the method of

Beńıtez (2000):

p(T |m) =





fte
−kt(m−m0) early and spiral

1− p(T = early|m)− p(T = spiral|m) irregular
(4.4)

1The 1 σ detection limit was approximated using the completeness limits for the SDSS main sample and
assuming the relative offsets from the r band remained constant.
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p(z|T,m) ∝ zαt exp

[
−

(
z

z0t + kmt(m−m0)

)αt
]

(4.5)

There are 11 free parameters to be determined: {αt, z0t, kmt, kt} where t denotes the

type used in the prior. The prior type t is distinct from the template type T because the

prior is parameterized for 3 basic types: early/elliptical, spiral, and irregular. To apply the

prior, each template type must be associated with one of the 3 prior types. Additionally,

the fractions ft at m0 (the magnitude above which to apply the prior) must be determined,

though they can be measured directly from the sample.

The parameters are estimated using Maximum Likelihood Estimation (MLE) by maxi-

mizing the log likelihood function with a simplex method (Galassi et al., 2006, e.g.):

logL =
∏

i

p(Ti|mi)p(zi|Ti, mi) (4.6)

Here i labels objects in the data set used to estimate the prior. The normalization of

p(z|T, m) is the most computationally expensive part of this calculation. A useful optimiza-

tion is to compute the normalization on a grid in m (for all 3 types) and interpolate rather

than compute the normalization for each individual object.

We simplify the parameter estimation by solving for the set of kt and ft independently

by maximizing the simpler log likelihood function

logL2 =
∏

i

p(Ti|mi) (4.7)

Application of the algorithm outlined above to a training set consisting of objects with

known redshifts, magnitudes, and type (which can be determined using a simple color com-

parison with the templates at the known redshift) is straightforward.

For our prior, we used a mixed prior for SDSS r band computed from 2 data sets, the

SDSS spectroscopic sample (Adelman-McCarthy et al., 2007) and the VIMOS VLT Deep

Survey (VVDS) (Le Fèvre et al., 2003, 2004). We used the SDSS prior with m0 = 16

for r < 20 and the VVDS prior with m0 = 20 for fainter magnitudes. The full list of prior

parameters for SDSS is given in Table 4.1 and the VVDS prior in Table 4.2. Incorporating the
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prior reduced a small number of catastrophic outliers and improved the slope and intercept

in Figure 4.1 by ≈ 5%.

4.1.2 Estimating Redshift Probability

Most photoz codes do not provide realistic error estimates of the redshifts they output.

Furthermore, the idea that an object’s photometric redshift is a single value is incorrect; it

should be regarded as a probabilistic estimate and hence a spread of values with associated

likelihood. Because template based photoz codes compute a χ2 value on a grid of redshift and

type, the most accurate estimate of p(z) would be this 2-D grid2. For our BPZ parameters,

though, this would require a total of 1500×6 points3 for each galaxy. Marginalizing this 2-D

grid over type yields a factor of 6 improvement in size, but it still represents a substantial

amount of data to store for each galaxy. A better solution is to parameterize p(z). Schmidt

(2007) showed that the type marginalized p(z) is well approximated by a double Gaussian

with 5 free parameters {α,σ1,σ2,µ1,µ2}:

p(z) ' α√
2πσ2

1

exp

[
(z − µ1)

2

2σ2
1

]
+

(1− α)√
2πσ2

2

exp

[
(z − µ2)

2

2σ2
2

]
(4.8)

Our experience confirms the accuracy of this fit for a wide variety of shapes of p(z): we

were able to find excellent fits for over 99.9% of our galaxies using an implementation of the

Levenberg-Marquardt algorithm (Galassi et al., 2006). Most of the failures are caused by

extremely bimodal distributions with z = 0 and z = 1.5 degeneracies, implying that they

are either objects at high redshift or objects with unusual colors (e.g. incorrectly classified

stars).

Given a compact and analytic expression for p(z), it is possible to represent photometric

redshifts in a more statistically correct way. For instance, it is possible to compute dn
dz

by

summing p(z) for each galaxy rather than taking a histogram of reported photoz values (i.e.

the peak values of p(z)). It is also possible to more intelligently bin objects in redshift by

2Of course, if the object is not well described by the template set, the type-redshift grid will not accurately
describe p(z).

3We compute redshifts on a grid from 0.01 to 1.5 in steps of 0.001.
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integrating p(z) over the bin and either making a confidence cut or assigning a weight based

on the probability the object actually lies within the bin.

4.1.3 Template Selection and Tweaking

The default BPZ template set contains the 4 empirical templates of Coleman et al. (1980)

and 2 theoretical star burst spectra (Kinney et al., 1996). For this thesis, we obtained

elliptical and spiral templates which have been optimized for our data set (S. Schmidt, private

communication). These “tweaked” templates were derived from the original templates using

the method of Csabai et al. (2003). Briefly, this process involves adjusting the template

spectra to more closely follow the observed tracks of the data sample through color space;

in this way, the templates are trained using the data they will later classify.

Of all of the work we did to improve redshift quality, template tweaking had the most

significant effect.

4.2 PHOTOMETRIC REDSHIFT RESULTS

Evaluating the quality of photometric redshifts is difficult because the most obvious metric,

comparing to a sample of spectroscopic redshifts, will only cover a small fraction of the data.

Additionally, the comparison will typically consist of only the brightest sources which have

the best photometry and hence the smallest errors. To work around the latter issue, we

combined spectroscopic samples from multiple surveys: the SDSS spectroscopic sample, the

Canadian Network for Observational Cosmology Field Galaxy Redshift Survey (CNOC2)

(Yee et al., 1998; Lin et al., 1999), and DEEP2 (Davis et al., 2003). Figure 4.1 shows the

results of an iterative sigma clipping fit to photoz vs specz.

Another useful comparison is to plot the color tracks of both the templates and the data

points and compare how well the templates span the color manifold of the data. Unfortu-

nately color space is 4-D, so we must plot in color slices, making interpretation of overlapping

color tracks more difficult (do they really overlap, or is it a projection effect?). As is evi-
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dent in figures 4.2, 4.3, and 4.4 the ellipticals clearly have a distinct color track that is well

modeled by the templates.4 As a result, one would expect that elliptical galaxies have more

accurate redshifts.

As a final test, we computed dn
dz

from the photoz distribution in 3 different ways. First,

we computed a histogram of the photoz values and then interpolated to obtain a smooth

function. Second, we summed the p(z) distributions for each object. Finally, we used the

parameterization of Baugh and Efstathiou (1993) with the median photometric redshift zm:

dn

dz
=

3z2

2(zm/1.412)3
exp

[
−

(
1.412z

zm

) 3
2

]
(4.9)

The distribution of redshifts was computed using an apparent magnitude cut of 16 ≤
r ≤ 21 and an absolute magnitude cut of −22 ≤ Mr ≤ −18. Bolzonella et al. (2000)

apply a similar absolute magnitude cut to implement a crude luminosity function prior (it

eliminates obviously suspect galaxies); for our data, we noticed a significant improvement

in the shape of dn
dz

when applying this cut. As seen in Figure 4.5, the observed dn
dz

as

computed from summed p(z) approximately matches how a typical distribution should look,

as parameterized by Equation 4.9 with a median redshift of 0.233. For comparison, we also

show the distribution without absolute magnitude cuts (median zm = 0.254) in Figure 4.6.

Our significantly improved dn
dz

demonstrates that we can remove objects with poorly

estimated p(z) distributions simply by making cuts in absolute magnitude. Alternatively

stated, our most accurate redshift predictions are for objects with intrinsic luminosity near

what we expect for our sample. The advantage of this is obvious – we now have a simple

way of finding objects that are poorly described by the photoz template set. Unfortunately,

there was insufficient time to further investigate the physical mechanisms by which selecting

objects in luminosity removes photoz outliers. One possible explanation is that because

absolute magnitude is very sensitive to object type5, this cut becomes a sanity check on the

estimated object type. Another possibility is that objects which are intrinsically bright or

faint will tend to be more degenerate in color space as they will appear brighter or fainter

4This is the reason why luminous red galaxies (LRGs) are often studied at high redshift – they have more
reliable photometric redshifts.

5At z = 1, the K correction can be off by ≈ 4 magnitudes if the object type is incorrect. See the next
chapter for more information.
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than the typical galaxy at their redshift.

46



Spectral Type αt z0t kmt ft kt

Early/Elliptical 2.24 0.062 0.052 0.585 0.043

Spiral 2.00 0.048 0.038 0.250 + 0.145 −0.045

Irregular 1.38 0.026 0.021 . . . . . .

Table 4.1 Prior parameters used for r < 20 derived from SDSS spectroscopic sample with m0 = 16. We
estimated the fractions of the Sbc and Scd spiral templates separately because they were so abundant in
the SDSS sample.

Spectral Type αt z0t kmt ft kt

Early/Elliptical 1.957 0.3214 0.1963 0.25 0.557

Spiral 1.598 0.2911 0.1667 0.54 0.100

Irregular 0.9638 0.1700 0.1290 . . . . . .

Table 4.2 Prior parameters used for r > 20 derived from VVDS spectroscopic sample (m0 = 20).
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Figure 4.1 Comparison of photometric redshifts to spectroscopic redshifts from SDSS, CNOC2, and DEEP2.
The fit was an iterative 3σ clipping algorithm with 2 DOF and a maximum of 5 iterations. The solid line
shows the best fit and the dash-dot line shows the 1 to 1 line. The dotted lines show the 3σ cut. Color
indicates the outlier status: bright green = < 1σ, dark green = 1-2σ, yellow = 2-3σ, orange = 3-4σ, and
red = ≥ 4σ.
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Figure 4.2 Color tracks of templates and SDSS co-add data for u − g and g − r. The top panel shows
the evolution of the templates from z = 0 to 2 and the bottom panel shows co-add data overlaid on the
template tracks. In the top panel, point shape indicates template type and color indicates redshift, with
blue = 0 ≤ z < 0.5, green = 0.5 ≤ z < 1.0, magenta = 1.0 ≤ z < 1.5, and red = 1.5 ≤ z < 2.0. In the
bottom panel, line type indicates template type and color indicates the outlier status from Figure 4.1.
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Figure 4.3 Color tracks of templates and SDSS co-add data for g − r and r − i. The top panel shows
the evolution of the templates from z = 0 to 2 and the bottom panel shows co-add data overlaid on the
template tracks. In the top panel, point shape indicates template type and color indicates redshift, with
blue = 0 ≤ z < 0.5, green = 0.5 ≤ z < 1.0, magenta = 1.0 ≤ z < 1.5, and red = 1.5 ≤ z < 2.0. In the
bottom panel, line type indicates template type and color indicates the outlier status from Figure 4.1.
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Figure 4.4 Color tracks of templates and SDSS co-add data for r − i and i − z. The top panel shows
the evolution of the templates from z = 0 to 2 and the bottom panel shows co-add data overlaid on the
template tracks. In the top panel, point shape indicates template type and color indicates redshift, with
blue = 0 ≤ z < 0.5, green = 0.5 ≤ z < 1.0, magenta = 1.0 ≤ z < 1.5, and red = 1.5 ≤ z < 2.0. In the
bottom panel, line type indicates template type and color indicates the outlier status from Figure 4.1.

51



Figure 4.5 Comparison of 3 ways of estimating dn
dz for the co-add data set. The sample was selected with an

apparent magnitude cut of 16 ≤ r ≤ 21 and an absolute magnitude cut of −22 ≤ Mr ≤ −18. The median
redshift was 0.233.
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Figure 4.6 Comparison of 3 ways of estimating dn
dz for the co-add data set. The sample was selected with

an apparent magnitude cut of 16 ≤ r ≤ 21. The median redshift was 0.254.
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5.0 THE ANGULAR CORRELATION FUNCTION

The standard galaxy clustering measurement is the two point angular correlation function,

w(θ). The angular correlation function is defined as how much more or less likely than

random a pair of galaxies will be found with a separation on the sky of θ within a solid angle

dΩ:

dP = n̄(1 + w(θ))dΩ (5.1)

Here n̄ is the mean number of galaxies per solid angle. w(θ) is therefore an excess

probability, measuring the probability that an event will occur more or less frequently than

a random event. For a Gaussian random field, w(θ) and its Fourier transform pair the power

spectrum fully specify the distribution of galaxies. Even if the case of non-Gaussianity, the

angular correlation function remains a useful statistic for quantifying galaxy clustering.

The two point angular correlation function has been measured since the very first large

scale galaxy surveys which probed brighter magnitudes (Groth and Peebles, 1977; Maddox

et al., 1990; Collins et al., 1992), and it has consistently been found to be well described by

a power law on small scales with a steeper decrease beginning at ∼ 1◦. For reasons which

will become apparent later, the power law form of w(θ) is typically written as (Mart́ınez and

Saar, 2002)

w(θ) = Aθ1−γ (5.2)

The slope and intercept in log-log space are then 1−γ and log A respectively with γ ≈ 1.7

More recent measurements that probe fainter magnitudes (Connolly et al., 2002; Willmer

et al., 2006) revealed that the power law slope remains roughly constant but the intercept
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decreases with fainter magnitudes. Similar results are observed when galaxies are binned in

luminosity or redshift.

In practice, w(θ) is measured by counting pairs of galaxies in an annulus of radius θ and

width ±δθ for multiple values of θ. Because w(θ) is an excess probability, the pair counting

must be done for both the data set and a set of random points uniformly distributed over

the sphere in the same area of the sky1; a statistical estimate of w(θ) can then be computed

from the pair counts. The well known Landy-Szalay estimator (Landy and Szalay, 1993) is

a minimum variance estimator and hence requires the fewest number of random points to

estimate w(θ):

w(θ) =
DD − 2DR + RR

RR
(5.3)

Here DD represents the number of pairs between the data set compared to itself, DR

pairs between the data and random sets, and RR pairs between random and itself. The size

of the random set is typically 6-10x that of the data set so that Poisson errors in the random

data set do not effect the w(θ) measurement; for this thesis we generated 10x more randoms

than data.

The remainder of this chapter is devoted to the many details associated with the mea-

surement of the angular correlation function and its interpretation in the framework of a

power law correlation function.

5.1 COMPUTING THE CORRELATION FUNCTION AND ITS ERROR

To compute w(θ) we use the code of R. Scranton (private communication). Scranton’s code

uses a hierarchical 2-D grid data structure based on SDSSPix (Tegmark et al.) to efficiently

locate points on the sphere2. On small scales, pairs are counted exactly by examining

neighboring grid cells. On large scales, pairs are counted using an approximate scheme

1The randoms are effectively a Monte Carlo integration over the annulus – the integral is too difficult to
perform analytically

2The grid projection breaks down near the poles, but fortunately our data lie near the equator.
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which utilizes the hierarchical nature of the grid cells to group together many cells and

hence reduce the number of cells to examine.

The approximate counting algorithm is necessary to achieve good performance on large

scales because a huge number of tiny (compared to the annulus radius) cells must be ex-

amined to perform an exact pair count. This is because spatial data structures are efficient

at finding all points near a given location, but they become inefficient when a significant

fraction of points must be examined (i.e. for a large search radius). The transition scale

between these two pair counting methods is a configurable flag typically set to 0.09◦.

The same hierarchical grid data structure is used to describe the area of the survey in a

set of grid cells (also called pixels) termed a map or mask, depending on whether the area

is to be added or subtracted respectively. Scranton provides a C++ API called STOMP

(Scranton et al., 2008) for efficiently performing a variety of map related operations such as

area computation, addition/subtraction, and intersection.

Measuring w(θ) requires minimizing systematic contaminants of the galaxy clustering

signal as possible. Additionally, it is important that the random data points are generated

to fill the same geometry on the sky as the survey. The map facilities provided by STOMP

can help accomplish both of these goals. To compute w(θ) we we combined several maps

using STOMP: a map describing the basic area of stripe 82, a mask to remove bright stars

(which create many spurious objects along diffraction spikes), a mask to remove areas from

fields which we failed to calibrate, and a mask to remove highly reddened (E(B− V ) > 0.2)

areas of the stripe due to the galactic plane. This final mask was necessary because our star-

galaxy classification appears to be correlated with the galactic plane. Obtaining reliable

star-galaxy classification near the galactic plane is difficult due to the increased star number

counts and dust (which tends obscure local stars so they appear to be faint galaxies), so this

is not surprising. The final area we used for the calculation was 175.95 deg2.

The errors for w(θ) are computed by creating a set of jack-knife samples (i.e. by generat-

ing multiple random data sets) and observing the change in w(θ). The simplest form of this

approach is simply to leave out 1 random chunk of the random data and observe the change

in w(θ). We used 48 jack-knife samples, which is 2x the number of bins in θ. A covariance

matrix containing information about how the errors in separate angular bins are correlated
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is also determined from the jack-knife errors. We use this covariance matrix when computing

fits to w(θ) to account for cross correlations between angular bins. For more details on the

calculation of w(θ) and its errors, see Scranton et al. (2002).

5.2 LIMBER’S EQUATION

In the limit of small separations, w(θ) can be related to the real space two point correla-

tion function ξ(r) through an expression known as Limber’s equation (Peebles, 1980, 1993;

Mart́ınez and Saar, 2002). In this section, we provide a brief derivation of all of the relevant

equations for relating w(θ) to ξ(r).

To compute the angular correlation function, one must integrate over the comoving lines

of sight for 2 objects at 3-D positions ~r1, ~r2 separated by an angle θ on the sky:

w(θ) =

∫ ∫
ξ(~r1, ~r2)r

2
1r

2
2φ(r1)φ(r2) dr1 dr2 (5.4)

Here r1 = |~r1|, r2 = |~r2|, φ(r) is the radial selection function, and we have assumed that

there are no curvature effects. The radial selection function incorporates the limitations

of a survey by quantifying the probability of observing a galaxy at radial distance r. The

selection function is normalized so that
∫∞
0

φ(r)r2 dr = 1.

Next we change variables to u = r1 − r2 and r = 1
2
(r1 + r2) and note that the largest

contributions to the integral come from when u is small so that r1 ≈ r2. If we further assume

that θ ¿ 1 so that cos θ ≈ 1− θ2

2
, the distance d between the two galaxies becomes

d =
√
|~r1 − ~r2|2 =

√
r2
1 + r2

2 − 2r1r2 cos θ ≈
√

u2 + r2θ2 (5.5)

Finally, we change variables to u and r in the integral (the determinant of the Jacobian

is 1 so that dr1 dr2 = dr du) to obtain Limber’s equation:

w(θ) =

∫ ∞

0

r4φ2(r) dr

∫ ∞

0

ξ
(√

u2 + r2θ2
)

du (5.6)
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In practice the actual integration limits are finite as they are determined by the non-zero

range of the selection function. We can relate the radial selection function to the observable

redshift distribution dn
dz

by noting that the number of observed galaxies in a small radial shell

is equivalent to the number of galaxies observed in a small width of redshift:

φ(r)r2 dr =
dn

dz
dz (5.7)

Here, we have again assumed a flat cosmology. Additionally, the redshift distribution

must be normalized so that
∫∞
0

dn
dz

dz = 1. This equation is equivalent to the assumption that

the true number density of galaxies is constant with comoving volume (i.e. a homogeneous

universe) – to see this, simply divide both sides of Equation 5.7 by r2 dr = dV
dΩ

. Substitution

into Equation 5.6 yields a more practical expression of Limber’s equation

w(θ) =

∫ ∞

0

(
dn

dz

)2 (
dr

dz

)−1

dz

∫ ∞

0

ξ
(√

u2 + r2(z)θ2
)

du (5.8)

The term dr
dz

is given by the standard cosmography measures (Hogg, 1999) with r as the

comoving line of sight distance:

dr

dz
=

DH

E(z)
(5.9)

E(z) =
√

ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ (5.10)

H(z) = H0E(z) (5.11)

DH =
c

H0

(5.12)

In order to compute Limber’s equation, one must assume a set of cosmological param-

eters. For this thesis, we used the latest WMAP cosmology parameters (Hinshaw et al.,

2008): ΩM = 0.28, ΩΛ = 0.72, Ωk = 0, H0 = 71 km/s/Mpc. Integration of Equation 5.8 is

straightforward once dn
dz

has been measured.
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Finally, we can gain additional insight into the physical scales of galaxy clustering by

assuming that the real space correlation function ξ(r) is a power law:

ξ(r) =

(
r

r0

)−γ

(5.13)

Under this assumption it can be shown (Peebles, 1980) by substitution of Equation 5.13

into 5.8 that w(θ) is also a power law

w(θ) = rγ
0Hγθ

1−γ

∫ ∞

0

r1−γ

(
dn

dz

)2 (
dr

dz

)−1

dz (5.14)

Hγ =
Γ(1

2
)Γ(γ−1

2
)

Γ(γ
2
)

(5.15)

This is equivalent to the previous power law expression for w(θ) in Equation 5.2 with

A = rγ
0Hγ

∫ ∞

0

r1−γ

(
dn

dz

)2 (
dr

dz

)−1

dz (5.16)

Note that A ∝ rγ
0 . If we measure w(θ) and fit a line to it in log-log space, we can use the

measured slope and intercept to derive r0. We can do this by integrating Equation 5.16 with

r0 = 1 and γ as measured from our w(θ); the value of A is then independent of r0. Taking

the ratio of A(r0 = 1) with the A derived from the w(θ) fit yields the desired value of r0:

r0 =

[
A

A(r0 = 1)

] 1
γ

(5.17)

Thus, by using Limber’s equation we can relate the correlation scale length r0 to the

clustering amplitude of w(θ).

5.3 SAMPLE SELECTION

For this thesis we created two samples from the co-added imaging data. The first sample is an

apparent magnitude limited survey consisting of all galaxies with magnitudes 16 ≤ r ≤ 21.

This sample is easy to define but difficult to interpret physically because all galaxies are

grouped together simply by how bright they are on the sky; hence galaxies within such a
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sample do not share any intrinsic properties. In particular, this selection leads to inherent

bias at the faint end of the sample because there is a tendency to select galaxies that are

intrinsically more luminous. The clustering in an apparent magnitude sample is therefore

affected by the limitations of the survey (i.e. the fact that we cannot resolve every galaxy

in a given patch of sky). For this reason, we only used the magnitude limited sample as a

check for systematic errors in our calibration.

The second sample we created is a volume limited sample which removes the incom-

pleteness in our galaxy selection. A volume limited sample is defined so that the number of

galaxies per redshift per comoving volume element is constant. The limits for the volume

limited sample can be determined by plotting redshift vs absolute magnitude and finding

a rectangular region that lies entirely within the resulting curve. As Figure 5.1 shows, we

define our volume limited sample with cuts of 0.1 ≤ z ≤ 0.3 and −23 ≤ Mr ≤ −20. We

initially hoped to probe higher redshifts, but we would require an apparent magnitude cut

of r = 22 to reach z = 0.4; photometric redshift errors forced us to use the shallower r = 21

cut, reducing both our number counts and upper redshift limit.

Because the photometric redshifts have an associated error, the absolute magnitudes

computed using photozs are also inherently noisy. Thus, selecting a sample using a hard cut

in both photometric redshift and absolute magnitude does not yield a true volume limited

sample. As such, we must model the contamination in both redshift and absolute magnitude

in order to compute the true redshift distribution, a topic covered in detail in the following

section.

5.4 ESTIMATING THE REDSHIFT DISTRIBUTION

Limber’s equation requires an estimate of dn
dz

, but the inherent scatter in photometric red-

shifts makes estimating the true redshift distribution difficult. We previously mentioned

three methods for estimating dn
dz

: computing a histogram of the photoz values, summing

p(z) for each galaxy, and computing the median redshift and using Equation 4.9. In this sec-

tion we outline another method following Budavári et al. (2003) for computing the redshift
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Figure 5.1 Selection used for the volume limited sample. The dashed red line indicates the cuts we used
to define the sample. The white stripes in the sample indicate that BPZ does not produce a continuous
distribution in z for our templates.
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distribution which utilizes the luminosity function and estimations of contamination in the

redshift and luminosity cuts.

To relate dn
dz

to the luminosity function, the distribution of absolute magnitudes, we must

first define a few basics. Absolute magnitude is the magnitude an object would have if it

were located 10 parsecs away. For a flat universe, the absolute magnitude M is

M = m− 5 log

[
r(z)(1 + z)

10 pc

]
−K(z, T ) (5.18)

where r(z) is the comoving line of sight distance and K is the K-correction which depends

on redshift and type T . The K-correction adjusts magnitudes to how they would be measured

in the object’s rest frame (Hogg et al., 2002):

K = −2.5 log

[(
1

1 + z

) (∫
λF ( λ

1+z
)R(λ) dλ∫

λF (λ)R(λ) dλ

)]
(5.19)

Here R(λ) is the filter transmission curve used to measure the apparent magnitude, which

is roughly a Gaussian shape, and F (λ) is the flux in units of energy/length/sec2/wavelength.

To compute the K-correction, one needs an estimate of the object’s flux as a function of

wavelength λ. Because we estimated the object’s type when computing the photometric

redshift, we can simply use the spectrum for that template when computing K-corrections.

For interpolated types, we normalized the spectra so that
∫

F (λ)λ dλ = 1 and then took

linear combinations of neighboring types. For example, for the type 1.66, we used 1
3

of type

1 and 2
3

of type 2 after normalizing both.

The distribution of absolute magnitudes is known as the luminosity function, φ(M). The

luminosity function is similar to dn
dz

in that it is often used to determine the selection function;

hence it is an important fundamental quantity that has been measured for many surveys.

The luminosity function is often parameterized using a Schechter function (Lin et al., 1999,

e.g.):

φ(M) = 0.4 ln (10)φ∗100.4Pz
[
100.4(M∗(z)−M)

]α+1
exp

[−100.4(M∗(z)−M)
]

(5.20)

M∗(z) = M∗(0)−Qz (5.21)
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The luminosity function is specified with the set of parameters {φ∗, α, M∗(0), Q, P},
with the last two parameters estimating density and luminosity evolution with redshift re-

spectively. The luminosity function for SDSS has been measured using spectroscopic data

(with a median redshift of 0.1) by Blanton et al. (2003); we use their fit for the r band

luminosity function: φ∗ = 1.49 102h3, α = −1.05, M∗(z = 0.1) = −20.44 + 5 log h, Q = 1.62,

P = 0.18. Here h is related to Hubble’s constant through h = H0

100
3; we use h = 0.71. Note

that these values are fits for z = 0.1, so we use z′ = z − 0.1 in 5.20.

Given an expression for the luminosity function and an estimate of the K-corrections, we

can relate the redshift distribution to the luminosity function (Dodelson et al., 2002, e.g.):

dn

dz
∝ r2(z)dr

dz

(1 + z)3

∫ Mmax(z)

Mmin(z)

φ(M) dM (5.22)

Again, r(z) is the comoving line of sight distance and dr
dz

is given by Equation 5.9. Note

that the integration limits are a function of redshift. In an apparent magnitude limited

survey, the limits are given by a range in apparent magnitude, and as we probe different

redshifts, the limits in absolute magnitude change according to Equation 5.18. That is, the

range of the luminosity function that contributes to dn
dz

varies with redshift.

Finally, we note that the integration limits depend on the type of galaxy used for the K-

correction in Equation 5.18. For this reason, we compute three integrals in Equation 5.22 for

early, spiral, and irregular galaxies with BPZ spectral types 1.0, 2.334, and 4.0 respectively.

We then weight each integral according to the expected fractions we determined for the

photoz prior in Equation 4.4 using the average apparent magnitude (i.e. 1
2
(mmin + mmax)).

For a large range in apparent magnitude, this is not a good approximation, but we can break

up the dn
dz

calculation into small bins in apparent magnitude and average them according to

the number of objects in each bin.

For a volume limited survey, the limits in Equation 5.22 are fixed. Similarly, the non-zero

range of dn
dz

is fixed. However, because we are using photometric redshifts, these cuts will

have contamination from objects with redshifts outside the desired range due to errors in the

redshift estimation. Because the photozs are estimated from apparent magnitudes, we expect

3This odd choice of parameterization is due to historical uncertainty in H0.
4We used an interpolated type here because there are 2 spiral templates.
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there to be a strong correlation between the contamination in the volume limited survey and

apparent magnitude. For this reason, we will estimate the contamination as a function

of apparent magnitude by taking small (width = 0.2) bins in apparent magnitude and

estimating the contamination in both z and Mr in each bin. We then use these contamination

estimates to compute dn
dz

using the method outlined below.

We first approximate the average photometric redshift error in a particular magnitude

bin. The error of an individual object is not Gaussian, but the average of the errors in the

bin should be roughly Gaussian because of the central limit theorem. The probability of

obtaining photometric redshift zp given the true redshift z is then

p(zp|z) =
1√

2πσ2
exp

[
−(zp − z)2

2σ2

]
(5.23)

We actually want to compute the reverse, p(z|zp), which we can obtain using Bayes’

Rule:

p(z|zp) =
p(z)p(zp|z)

p(zp)
(5.24)

We then want to select a set of redshifts using a window function W (z) that is a simple

step function:

W (z) =





1 0.1 ≤ z ≤ 0.3

0 otherwise
(5.25)

The probability that a galaxy is selected by this window function (in this particular bin)

is

p(z|W ) ∝
∫

p(zp)W (zp)p(z|zp) dzp

∝ p(z)

∫
W (zp)p(zp|z) dzp (5.26)

∝ p(z)Weff(z)

where Weff(z), the effective window function, is the window function convolved with the

uncertainty in photometric redshift. We estimate the true redshift distribution p(z) using
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the luminosity function and Equation 5.22. However, we will see that there is an effective

luminosity function that must be used rather than Equation 5.20. Finally, we note that

p(z|W ) is not normalized because of the window function, so it must be normalized in each

individual magnitude bin.

The errors in M follow a similar derivation. We estimate the average error in absolute

magnitudes computed with photozs Mzp given the true absolute magnitude M as a Gaussian

(central limit theorem):

p(Mzp |M) =
1√

2πσ2
exp

[
−(Mzp −M)2

2σ2

]
(5.27)

Then, using an analogous window function W (M) that is 1 for −23 ≤ M ≤ −20 and 0

otherwise, we compute the probability of selecting an object with absolute magnitude M :

p(M |W ) ∝
∫

p(Mzp)W (Mzp)p(M |Mzp) dMzp

∝ p(M)

∫
W (Mzp)p(Mzp |M) dMzp (5.28)

∝ p(M)Weff(M)

p(M) =
φ(M)∫

φ(M) dM
(5.29)

Thus, we see that p(M |W ) defines an effective luminosity function φeff(M) = φ(M)Weff(M)

for this apparent magnitude bin. It is this φeff(M) that we integrate to obtain p(z) in Equa-

tion 5.27. As a final note on the luminosity function, to evaluate φ(M) we need a redshift

value, so we use the average redshift for this magnitude bin.

Now it only remains to estimate the average errors for zp and Mzp . Ideally, we could

simply compare to spectroscopic data and average the true errors. Unfortunately, the fainter

magnitude bins do not have enough points to allow for a good average error estimate when

comparing to SDSS spectroscopic data, so we instead estimate the errors using the p(zp) fits
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in Equation 4.8. We compared our estimates to those from the true errors in the bright bins

to verify our estimates. The redshift errors were computed as

< z >=

∫
zp(z) dz (5.30)

< z2 >=

∫
z2p(z) dz (5.31)

σz =< z2 > − < z >2 (5.32)

Comparison to the true errors revealed that we underestimate the average photoz error

by roughly a factor of 2, so we used 2σz as our redshift error estimate (see Figure 5.2). To

compute the errors in Mr, we generated random points according to the Gaussian distribution

we fit to p(z)5 and then computed σMr of this distribution. While the z error estimate was

underestimated, our absolute magnitude error estimation was approximately correct. Both

error estimates displayed the expected behavior – monotonic increase of both σ values with

apparent magnitude. The average error in both z and Mr are plotted for 6 representative

bins in figures 5.2 and 5.3 respectively.

Once we have estimated the contamination, we can then compute a normalized p(z|W )

for every magnitude bin and weight each bin by the number of objects it contains. The

weighted sum then gives our estimate of dn
dz

. Because of the exponential nature of galaxy

number counts, the contamination will always be dominated by the faint end which contains

more galaxies than the previous bins and also has the largest average error.

Figure 5.4 compares our new method of estimating dn
dz

to our previous methods of sum-

ming individual p(z) distributions and fitting the median redshift. As in Figure 4.5, adding

an absolute magnitude cut improves the agreement between the various estimations. For the

volume limited cut, though, the large discrepancy in redshift distributions justifies our use

of the dn
dz

estimate outlined above.

Finally, we show dn
dz

for bins in apparent magnitude (Figure 5.5), absolute magnitude

(Figure 5.6), type (Figure 5.7), and redshift (Figure 5.8) as computed using the method

5This was only done for speed, and we could have simply generated according to p(z).
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Figure 5.2 Average redshift error as a function of r band apparent magnitude. The histogram is taken from
comparison with spectroscopic redshifts from SDSS, CNOC2, and DEEP2. The red line is our Gaussian
estimate from photometric redshifts, and the blue line is the same but with twice the estimated σ for
comparison.
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Figure 5.3 Average r band absolute magnitude error as a function of r band apparent magnitude. The
histogram is taken from comparison with spectroscopic redshifts from SDSS, CNOC2, and DEEP2. The
red line is our Gaussian estimate from photometric redshifts, and the blue line is the same but with twice
the estimated σ for comparison.
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Figure 5.4 Comparison of different dn
dz estimations. The methods are very similar for the cuts in the top 2

panels. The methods are the most consistent for the case with an absolute magnitude cut (upper right),
in agreement with the results in Figure 4.5. The discrepancy in the volume limited cut (bottom right) is
partially because of the z cut (see the lower left panel) and partially because of the different Mr cut.
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outlined in this section. For all calculations requiring dn
dz

, we used the technique described

in this section.

5.5 ANGULAR CORRELATION RESULTS

The evolution of w(θ) with r band apparent magnitude is shown in Figure 5.9 with the

corresponding fit parameters in Table 5.1. The intercept decreases from −1.7 to −2.5 and

the slope decreases from −0.72 in the two brightest bins to −0.8 in the two faintest bins.

Thus, the evolution is primarily in A with γ remaining approximately constant. These results

are consistent with the scaling relation (Peebles, 1973) that results from Limber’s equation.

Given two samples that only differ in depth D, the selection function φ(r,D) in Equation

5.6 must depend only on the ratio r
D

. It can be shown in this case that (Fall, 1979)

w(θ) =

(
1

D

)
F (θD) (5.33)

where F is a function which is determined by ξ(r) but depends on θ only through θD. At

a fixed physical scale θD, the clustering strength decreases inversely with depth D because

the number of uncorrelated galaxies along the line of sight is proportional to D. Hence,

projection effects appear to “smear out” the clustering signal due to increased numbers of

galaxies along the line of sight.

Figure 5.10 compares our w(θ) measurement against that of Connolly et al. (2002) which

was measured from the Early Data Release (EDR) of SDSS. The EDR had magnitude zero

point calibration issues which result in fit intercepts inconsistent with our measurement,

though the slopes are consistent (≈ −0.7) in the brightest two bins. In the two fainter

bins, our measured slopes steepen to ≈ −0.8 whereas the EDR slopes remain near −0.7.

The change in slope is clearly related to increased deviation from a pure power law – the

fit becomes a strong function of the limits in θ used for these bins. The deviation from a

power law is most likely a result of unknown systematics in our magnitude calibration and/or

star-galaxy classification.
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Figure 5.5 Redshift distributions for each bin in the apparent magnitude limited sample. Here dn
dz is

computed by summing the effective luminosity function in apparent magnitude bins.
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Figure 5.6 Redshift distributions for 3 absolute magnitude bins in the volume limited sample. Here dn
dz is

computed by summing the effective luminosity function in apparent magnitude bins.
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Figure 5.7 Redshift distributions for the 3 prior types. Here dn
dz is computed by summing the effective

luminosity function in apparent magnitude bins. The dn
dz of all galaxy types is shown for comparison;

spirals clearly dominate the redshift distribution.
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Figure 5.8 Redshift distributions for 2 redshift bins in the volume limited sample. Here dn
dz is computed by

summing the effective luminosity function in apparent magnitude bins.
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We performed a second measurement of evolution in apparent magnitude bins, this time

using the i band, in Figure 5.11 with fit parameters given in Table 5.2. This measurement

shows a similar trend in A to that of the r band with the intercept decreasing with apparent

magnitude from −1.86 to −2.41; however, the slope actually increases from −0.78 to −0.61,

displaying even more power law deviation than the r band. We made this measurement for

direct comparison to the results of DEEP2 (Coil et al., 2004), which is presented in Figure

5.12. The differences in this comparison stem from the fact that the DEEP2 galaxy popula-

tion is very different from that in the SDSS sample. The DEEP2 survey team selected their

objects with color cuts designed to predominantly select high redshift (> 0.7) galaxies; thus,

the galaxies in the DEEP2 are high redshift galaxies with a particular range in color space

rather than the set of all observable galaxies. Hence, we expect the clustering measurements

to differ. In particular, we expect higher redshift galaxies to be less strongly clustered than

our sample, which is exactly what is observed in Figure 5.12.

Figure 5.13 shows the evolution of w(θ) with luminosity in the volume limited sample

with fit parameters in Table 5.3. Here the intercept decreases from −1.74 to −1.77 and

the slope increases from −0.92 to −0.68. Here we see that selecting in absolute magnitude

changes the slope of the sample appreciably; this is the expected result, as we expect type to

be correlated with absolute magnitude. Despite this, though, our result still agrees well with

the results of Budavári et al. (2003) who found that there is marginal evolution in γ with

luminosity; this is shown in Figure 5.14. This comparison demonstrates the best agreement

of any comparison we made, and it should – both samples are taken from SDSS data and use

nearly identical volume limited cuts. The agreement is a nice result, though, as it shows that

our imaging pipeline and photometric redshifts are consistent with those of the main SDSS

sample. The potential advantage of our sample, increased photometric accuracy, seems to be

outweighed by the larger number counts of Budavári et al. (2003) who use roughly a factor

of 8 more galaxies.

We present the evolution of w(θ) with type in Figure 5.15 with fit parameters in Table

5.4. The fits here demonstrate a decrease in intercept from −1.60 to −2.06 and an increase

in slope of −0.85 to −0.77, consistent with Budavári et al. (2003) who found that both γ and

A change with type. We used the broader definition of type from the BPZ prior consisting
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of only early/elliptical (t < 1.5), spiral (1.5 < t < 3.5), and irregular (t > 3.5) galaxies.

Unfortunately even with this broad grouping, we did not have enough irregular galaxies

to estimate w(θ) reliably, so we omitted them from the figure and table. As expected, the

early galaxies (which have higher quality photometric redshifts) display a smooth correlation

function. We again compare to the results of Budavári et al. (2003) in Figure 5.16 and find

rough agreement. This comparison should be taken qualitatively, though, as we use different

luminosity cuts and different photometric redshift templates. For the comparison, we used

the t < 0.02 values for ellipticals and the 0.3 < t < 0.65 values for spirals from Budavári

et al. (2003).

Budavári et al. (2003) and Zehavi et al. (2002) found that γ does not vary appreciably

with luminosity even though it does with type, but we found evidence that γ does vary

with luminosity. To explain their discrepancy, Budavári et al. (2003) proposed a simple

bimodal model for the galaxy population consisting of red and blue galaxies. In this model,

luminosity cuts brighter than Mr∗ ≈ −20 do not select objects by type due to similar

luminosity functions for red and blue galaxies (Baldry et al., 2004). Hence, the shape of

the correlation function should be roughly the same, as is shown in the measurement. An

alternative explanation, and one which seems more probable, is that photometric redshifts

have errors in Mr which introduce a wider variety of galaxy types into a particular absolute

magnitude bin than should be present. This “mixing” of galaxy types obscures the type

selection one would normally expect with absolute magnitude cuts; the w(θ) measurement

is then averaged over a larger spread of types and the type evolution is lost.

Figure 5.17 shows the evolution of w(θ) with redshift within our volume limited sample

with fit parameters in Table 5.5. Once again, the evolution primarily occurs in A with the

intercept decreasing from −1.53 to −1.78 and the slope changing from −0.796 to −0.804.

Because the shape of w(θ) depends only upon A and does not change with redshift, the

bimodal galaxy population model suggests that the relative mix of red and blue galaxies

is roughly constant over our redshift interval 0.1 ≤ z ≤ 0.3. Thus, we would expect the

evolution of galaxies over this interval to be minimal. This seems unlikely with such a large

redshift interval, giving further doubt to the bimodal population model.

We also show the evolution of the clustering length r0 with apparent magnitude (Figure
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5.18), absolute magnitude (Figure 5.19), galaxy type (Figure 5.21), and redshift (Figure

5.22). The errors in r0 presented are derived solely from the associated linear fit errors6.

In general, our estimates for r0 are systematically higher than previous surveys (Hudon and

Lilly, 1996, e.g.) which previously found 3.8 < r0 < 5.4 in units Mpc h−1. For our volume

limited absolute magnitude evolution, we were able to directly compare to the results of

Budavári et al. (2003) (Figure 5.19, red line). Here we are again systematically higher; the

inconsistency is greater than the expected errors, implying an additional source of error.

This is almost certainly due to differences in the redshift distribution used to estimate r0,

which is highly sensitive to the width of dn
dz

. Unfortunately it is impossible to obtain a reliable

estimate of the error in r0 due to dn
dz

because the error in contamination for the faintest bins

cannot be determined due to insufficient spectroscopic information. Because of the nature of

galaxy number counts, the faintest bins undoubtedly contribute the most to the variation in

the redshift distribution. To quantify the necessary changes in dn
dz

for the luminosity binned

samples, we varied the average photometric redshift error in each apparent magnitude bin

by a constant factor; adjusting the contamination in each bin effectively narrows or widens

the distribution. We find that this simple model can successfully account for the discrepancy

in two of the three luminosity bins using a factor of 0.5 as shown by the blue line in Figure

5.19. This implies our average photoz error estimation is a factor of 4 too large since we

originally used a factor of 2. It is enlightening to see what change this causes in the redshift

distribution, so we show this in Figure 5.20; the solid line gives our original dn
dz

estimate

and the dashed line our inferred dn
dz

chosen to match the values of r0. From this plot it is

evident that the faintest bin −20 < Mr < −21 is significantly less peaked, implying a larger

r0 value consistent with the final point in Figure 5.19. Comparing this estimated dn
dz

to our

other techniques for estimating the redshift distribution shown in Figure 5.4 reveals that

the summed p(z) may be a more accurate estimation of the redshift distribution than the

contamination approach, though clearly a more substantial analysis is needed. All of this

demonstrates a fundamental difficulty in de-projecting w(θ) to obtain ξ(r) using photometric

redshifts – there is a potentially significant source of error from the shape of dn
dz

which cannot

6The fit errors dominate over the errors from the luminosity function parameters; see (Budavári et al.,
2003) for typical error values from the luminosity function.
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be estimated without spectroscopic redshifts.

For spectroscopic redshift samples, there appears to be disagreement in the literature as

to the effect uncertainty in dn
dz

has on the measurement of r0. Hudon and Lilly (1996) found

that the errors in r0 due to dn
dz

were roughly 3%, much smaller than the other sources of

error. On the other hand, Coil et al. (2004) note with some concern the variety of methods

used to estimate the redshift distribution for spectroscopic samples – for example, some use

dn
dz
∝ z2 exp

(
− z

z0

)
, some use dn

dz
∝ z2 exp

[(
− z

z0

)2
]
, and Hudon and Lilly (1996) used the

“ 1
Vmax

formalism”. Thus it seems possible that the errors due to the redshift distribution have

not been fully addressed even for spectroscopic redshift samples. For photometric redshift

samples, though, the uncertainty in the redshift distribution is clearly a problem which

deserves more exploration. A recent paper by Newman (2008) proposes a novel technique

for measuring dn
dz

which we were unable to test due to time constraints. Finally, we note that

it would be worthwhile to develop an unbiased estimator for the true median redshift given

a photometric redshift distribution (perhaps through comparison to Newman’s technique)

so that Equation 4.9 could be easily applied to photometric redshift distributions.
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Figure 5.9 Evolution of w(θ) with r band apparent magnitude. The sample used was apparent magnitude
limited. The fit was performed using all points with θ < 0.1◦. The fit parameters are given in Table 5.1.
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Figure 5.10 Comparison of w(θ) evolution in apparent magnitude bins to the results of Connolly et al.
(2002) (the dash-dot lines). The discrepancies are due to calibration issues in magnitude zero points for
the SDSS EDR (Early Data Release). See also Figure 5.9 and Table 5.1.
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Figure 5.11 Evolution of w(θ) with i band apparent magnitude. The sample used was apparent magnitude
limited. The fit was performed using all points with θ < 0.1◦. The fit parameters are given in Table 5.2.
These fits were performed for comparison to the DEEP2 results. See Figure 5.12.
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Figure 5.12 Comparison of w(θ) evolution in i band apparent magnitude to the results of Coil et al.
(2004) (the dash-dot lines). The discrepancies are due to differences in sample selection. For SDSS, the
selection was i band apparent magnitude limited. For DEEP2, objects were selected using a color cut to
predominantly select high redshift (> 0.7) objects before an apparent magnitude cut was applied. See also
Figure 5.11 and Table 5.2.
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Figure 5.13 Evolution of w(θ) with absolute magnitude. The sample used was volume limited. The fit was
performed using all points with θ < 0.1◦. The fit parameters are given in Table 5.3.
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Figure 5.14 Comparison of w(θ) evolution in absolute magnitude bins to the results of Budavári et al. (2003)
(the dash-dot lines). The fits agree reasonably well, though it is clear that the larger sample size (roughly
a factor of 8) smooths out w(θ) considerably. See also Figure 5.13 and Table 5.3.
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Figure 5.15 Evolution of w(θ) with galaxy type. The sample used was volume limited. The fit was
performed using all points with θ < 0.1◦. The fit parameters are given in Table 5.4. Irregulars are not
included due to low number counts (≈ 1000) which yield incorrect covariance matrices in our w(θ) code.
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Figure 5.16 Comparison of w(θ) evolution with type to the results of Budavári et al. (2003) (the dash-dot
lines). Some discrepancy is due to different luminosity bins, and some of it to different spectral templates,
though our results are in qualitative agreement. See also Figure 5.15 and Table 5.4.
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Figure 5.17 Evolution of w(θ) with redshift. The sample used was volume limited. The fit was performed
using all points with θ < 0.1◦. The fit parameters are given in Table 5.5.
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Figure 5.18 Evolution of r0 with apparent magnitude. The sample used was apparent magnitude limited.
The fits used to derive r0 are from Figure 5.9 and Table 5.1.
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Figure 5.19 Evolution of r0 with absolute magnitude. The black line shows our results, the red line the
results of Budavári et al. (2003), and the blue line our results with a more narrow dn

dz (see Figure 5.20).
The sample used was volume limited. The fits used to derive r0 are from Figure 5.13 and Table 5.3.
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Figure 5.20 Comparison of redshift distributions for the volume limited sample as a function of contam-
ination in photometric redshift. The solid line shows our derived dn

dz from Figure 5.6 and the dashed line
that of a factor of 4 smaller photometric redshift contamination in each apparent magnitude bin. The
dashed curves are the derived redshift distributions which approximately match the results of Budavári
et al. (2003). See also figure 5.19.
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Figure 5.21 Evolution of r0 with galaxy type. The black line shows our results and the red line the results
of Budavári et al. (2003). The sample used was volume limited. The fits used to derive r0 are from Figure
5.15 and Table 5.4.
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Figure 5.22 Evolution of r0 with redshift. The sample used was volume limited. The fits used to derive r0

are from Figure 5.17 and Table 5.5.
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Magnitude Slope Intercept γ r0 (Mpc h−1) χ2

DOF

18 < r < 19 −0.727± 0.023 −1.693± 0.045 1.727± 0.023 6.979± 0.437 15.41

19 < r < 20 −0.722± 0.017 −1.946± 0.037 1.722± 0.017 6.718± 0.354 16.55

20 < r < 21 −0.793± 0.011 −2.284± 0.025 1.793± 0.011 6.415± 0.214 17.79

21 < r < 22 −0.798± 0.009 −2.528± 0.019 1.798± 0.009 6.104± 0.162 27.43

Table 5.1 Fit parameters for w(θ) in apparent magnitude bins as shown in Figure 5.9.

Magnitude Slope Intercept γ r0 (Mpc h−1) χ2

DOF

18 < i < 19 −0.781± 0.019 −1.861± 0.039 1.781± 0.019 5.777± 0.299 6.19

19 < i < 20 −0.776± 0.013 −2.174± 0.029 1.776± 0.013 5.201± 0.196 9.85

20 < i < 21 −0.760± 0.010 −2.464± 0.022 1.760± 0.010 4.917± 0.148 52.55

21 < i < 22 −0.611± 0.012 −2.410± 0.029 1.611± 0.012 5.672± 0.259 31.52

Table 5.2 Fit parameters for w(θ) in i band apparent magnitude bins as shown in Figure 5.11.

Magnitude Slope Intercept γ r0 (Mpc h−1) χ2

DOF

−23 < Mr < −22 −0.920± 0.037 −1.736± 0.069 1.920± 0.037 11.506± 1.043 1.28

−22 < Mr < −21 −0.757± 0.023 −1.764± 0.047 1.757± 0.023 9.249± 0.601 4.24

−21 < Mr < −20 −0.684± 0.020 −1.768± 0.042 1.684± 0.020 7.815± 0.464 3.40

Table 5.3 Fit parameters for w(θ) in absolute magnitude bins as shown in Figure 5.13.

Type Slope Intercept γ r0 (Mpc h−1) χ2

DOF

Early −0.849± 0.020 −1.603± 0.045 1.849± 0.020 10.536± 0.636 6.62

Spiral −0.773± 0.023 −2.064± 0.046 1.773± 0.023 5.980± 0.399 11.34

Table 5.4 Fit parameters for w(θ) in galaxy type bins as shown in Figure 5.15.
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Redshift Slope Intercept γ r0 (Mpc h−1) χ2

DOF

0.1 < z < 0.2 −0.796± 0.023 −1.533± 0.047 1.796± 0.023 11.058± 0.673 3.79

0.2 < z < 0.3 −0.804± 0.020 −1.777± 0.046 1.804± 0.020 8.671± 0.534 7.72

Table 5.5 Fit parameters for w(θ) in redshift bins as shown in Figure 5.17.
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6.0 THE HALO MODEL

The early galaxy clustering theory of Neyman and Scott (1952) proposed to describe the

galaxy distribution using galaxy clusters of various sizes. Given information about the

distribution of sizes of these galaxy clusters, the arrangement of galaxies within these clusters,

and how clusters are scattered across the sky (the “clustering of clusters”), one can describe

the statistical properties of galaxy clustering. This theory faced a major drawback, though

– none of the pieces of the model were understood due to insufficient data.

Presently, we know that the majority of the universe is made up of dark matter which

was initially smoothly distributed. This enables the study of dark matter structure evolution

through perturbation theory (Bernardeau et al., 2002) down to scales of a few megaparsecs;

on smaller scales, the clustering becomes non-linear. Increases in computer efficiency have

made possible numerical studies of the growth of non-linear dark matter structure as well.

These studies have shown that dark matter evolves from its initially smooth conditions to a

spiderweb-like distribution of knots and filaments; these knots are known as halos. Because

simulations are limited by the number of particles that can be simulated in a reasonable

amount of time, dark matter has been tackled from two different perspectives. First, high

resolution, low volume simulations have mapped the structure of dark matter within and

around a single halo (Navarro et al., 1997). Second, low resolution, high volume simulations

have characterized the large scale distribution of dark matter halos throughout the universe

(Jenkins et al., 2001). Together, these advances have enabled the treatment of dark matter

using a similar approach to that of Neyman and Scott (1952) with great success; collec-

tively, the models which describe dark matter using this approach are termed the halo model

(Cooray and Sheth, 2002; Zentner, 2008). The halo model can be extended to describe the

clustering of galaxies which are known to trace the dark matter distribution (White and Rees,
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1978), making it a useful comparison for observations because we cannot directly observe

dark matter.

The fundamental assumption of the halo model is that all dark matter resides within

halos. The size of a halo (usually assumed to be spherical) is given by the virial radius –

the radius needed to enclose some over-density of mass (typically ≈200). Thus, a halo is by

definition a sphere of dark matter with a density 200 times that of the background. We can

use the halo model to describe dark matter clustering by specifying 3 ingredients: 1.) the

distribution of dark matter halos as a function of mass dn
dm

, termed the halo mass function

(Sheth and Tormen, 1999), 2.) the bias between halos and dark matter bh(m) (Sheth and

Tormen, 1999; Tinker et al., 2005), and 3.) the distribution of dark matter within halos

λm(~x) (Navarro et al., 1997). Additionally, it is often assumed that halo clustering depends

only upon halo mass, though it is possible to extend the formalism to include other halo

properties. While it has been shown that halo clustering depends upon age (Gao et al., 2005)

and concentration (Wechsler et al., 2006), these effects are small enough to justify neglecting

them.

In this chapter we give a very brief overview of the halo model and its application to

galaxy clustering and present results constraining the halo occupation distribution.

6.1 DARK MATTER CLUSTERING

Using the halo model, we can compute the 2 point correlation function of dark matter in real

space. We can break this calculation into two terms: one dealing with correlations within a

single halo and another dealing with correlations between different halos. These terms are

known as the “one halo” and “two halo” terms, respectively. Clearly, the one halo term

dominates at small scales (i.e. scales less than the typical virial radius), and the two halo

term dominates at large scales. The correlation function is then

ξ(r) = ξ1h(r) + ξ2h(r) (6.1)

We compute the one and two halo terms by counting pairs of infinitesimal masses (Zent-
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ner, 2008):

ξ1h(r) =
1

ρ̄2

∫
dmm2 dn

dm

∫
d3xλm(~x)λm(~x + ~r) (6.2)

ξ2h(r) =
1

ρ̄2

∫
dm1

∫
dm2 m1

dn

dm1

m2
dn

dm2

∫
d3x

∫
d3y λm1(~x)λm2(~y)ξhh(~x− ~y + ~r|m1,m2)

(6.3)

Here ρ̄ is the mean mass density of the universe, ξhh(~x|m1,m2) is the cross correlation

function for halos of masses m1 and m2, and λm(~x) is the density profile form of Navarro

et al. (1997), commonly called the NFW profile:

λm(r) ∝
[
c(m)r

rvir

]−1 [
1 +

c(m)r

rvir

]−2

(6.4)

The concentration c is some weak function of halo mass specified by the model (Bullock

et al., 2001, e.g.), and rvir is the virial radius. Furthermore, it is usually assumed that

ξhh(r|m1,m2) = bh(m1)bh(m2)ξlinear(r) (6.5)

where ξlinear(r) is the correlation function of dark matter as computed from linear per-

turbation theory.

Because this integral involves a convolution, it is usually computed in Fourier space where

convolutions are simple multiplications. Several other approximations are needed to compute

the integrals, the details of which are beyond the scope of this simple overview – see Zentner

(2008) for details. We use the halo model code of A. Zentner (private communication) with

the NFW profile (Navarro et al., 1997), concentrations from Bullock et al. (2001), and the

halo mass function dn
dm

and bias bh(m) from Sheth and Tormen (1999).

6.2 GALAXY CLUSTERING: THE HALO OCCUPATION DISTRIBUTION

We can also compute the correlation function of galaxies using the halo model if we assume

that all galaxies reside within dark matter halos. This computation is further simplified if we
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assume that the properties of galaxies within a halo depend only upon their host halo mass.

To compute the galaxy correlation function, we need only specify the probability p(Ngal|m)

that a halo of mass m host Ngal galaxies; this probability is known as the halo occupation

distribution (HOD). As before, we denote the spatial distribution of galaxies within a halo

of mass m as λ(~x|m) and break the computation into correlations between galaxies within

the same halo and galaxies in separate halos:

ξgg(r) = ξ1h
gg (r) + ξ2h

gg (r) (6.6)

Each term is given by counting pairs of galaxies (Zentner, 2008):

ξ1h
gg (r) =

1

¯ngal
2

∫
dm

dn

dm
〈Ngal(Ngal − 1)〉m

∫
d3xλm(~x)λm(~x + ~r) (6.7)

ξ2h
gg (r) =

1

¯ngal
2

∫
dm1

∫
dm2

dn

dm1

〈Ngal〉m1

dn

dm2

〈Ngal〉m2

∫
d3x

∫
d3y λm1(~x)λm2(~y)ξhh(~x−~y+~r|m1,m2)

(6.8)

Here ¯ngal is the mean number density of galaxies. The cross correlation of halos ξhh is

again simplified by assuming it can be expressed in terms of the halo bias bh(m). The one

halo term contains the mean number of galaxy pairs per halo:

〈Ngal(Ngal − 1)〉m =
∞∑

Ngal=1

Ngal(Ngal − 1) p(Ngal|m) (6.9)

The two halo term depends on the average number of galaxies within a halo:

〈Ngal〉m =
∞∑

Ngal=1

Ngal p(Ngal|m) (6.10)

These equations are fully determined once we have parameterized p(Ngal|m). Simulations

indicate that it is useful to model the contributions to p(Ngal|m) as arising from two distinct

populations of galaxies: central galaxies located at the center of halos and satellite galaxies

scattered throughout the halo according to some distribution. It is known that smaller halos

do not host galaxies, so the central galaxy component is often modeled as a step function

such that halos with mass below some threshold Mmin host 0 galaxies, and galaxies above
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Mmin contain 1 central galaxy. This distribution is known as a nearest integer distribution,

and it has a second moment 〈N(N − 1)〉 = 0. The average contribution of satellite galaxies

is parameterized as a power law:

〈Nsat〉 =

(
m

M1

)α

(6.11)

Simulations have demonstrated that satellite galaxies follow a Poisson distribution within

a halo of fixed mass m; this is convenient as the Poisson distribution is fully specified with

the average 〈Nsat〉.
The halo occupation distribution is thus fully specified with a given cosmology, redshift

(the mass functions change with redshift), and set of HOD parameters Mmin, M1, and α.

Multiple studies (e.g. Zehavi et al., 2005) have found that M1 ≈ 20Mmin, so the number of

degrees of freedom can be reduced to 2; assuming this ratio effectively limits the parameter

search to HOD models that are similar to a power law (Zentner, 2008). Hence, we can

compare our w(θ) measurements to the HOD model and solve for α and Mmin or M1 instead

of using a standard 2 parameter least squares fit.

6.3 COMPARISON TO HOD MODELS

To compare against our w(θ) measurements, we fixed ξ(r) as a power law with γ and r0

from our previous fits and then solved for α and M1 with Mmin = M1

20
. We used a simple

adaptive grid of size 10 × 10 to search for the optimal parameters: the cell containing the

optimum values of α and M1 from each iteration was expanded to a new 10 × 10 grid and

the process repeated until both parameters were known to a relative tolerance of 10−4. α

was allowed to vary from 0.5 to 2.5 in evenly spaced steps, and log M1 from 11 to 16 (M1 is

in units M¯h−1) in evenly spaced steps in log space. To estimate errors, we used 50 Monte

Carlo iterations and varied γ and r0 according to their measured errors; more iterations were

computationally prohibitive. For the redshift, we used the average redshift for each bin.

Figure 6.1 shows the evolution of ξ(r) with redshift for the volume limited sample. The

dotted lines show the derived power law fits from Table 5.5, and the solid lines show the
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optimal HOD fits given in Table 6.1. The dip seen in both HOD curves is due to the transition

between the 1 halo and 2 halo terms. This general shape demonstrates a basic difficulty for

our method of comparing to the halo model, namely that ξ(r) is not well described by a

power law in the intermediate regime. Nonetheless, the trend of decreasing amplitude with

roughly constant slope as seen in the power law evolution is present in the HOD curves as

well.

Figures 6.2 and 6.3 show the redshift evolution of α and M1 respectively. From these,

we see that α is nearly constant with redshift while M1 decreases slightly. Thus, the redshift

evolution in galaxy clustering appears to be due to an increase in the characteristic mass

of halos that host galaxies. This scenario is consistent with the ΛCDM cosmological model

where large structure grows bottom-up from mergers of smaller masses. Because we expect

halos to grow in size over time, halos at later times can host more galaxies, so we expect

clustering to increase at lower redshifts.

The evolution of ξ(r) with luminosity is presented in Figure 6.4 using γ and r0 parameters

from Table 5.3. The −23 < Mr < −22 and −21 < Mr < −20 bins agree well with the power

law, but the −22 < Mr < −21 bin is poorly described by the HOD. As seen in Figures 6.5

and 6.6, the HOD parameter space becomes is very degenerate near the solution for this

particular bin. From these plots we see that α decreases for brighter objects and that M1

shows the reverse trend, consistent with the results of Zehavi et al. (2005) and theoretical

models. Semianalytic models predict that the most massive halos host the brightest galaxies,

and it is also known that these massive halos are more strongly clustered. As a result we

expect that brighter galaxies will be more strongly clustered (Cooray and Sheth, 2002). Our

results are consistent with this explanation because we find that more luminous galaxies

reside in more massive halos. Additionally, we find that power law slope of the distribution of

satellite galaxies increases with luminosity, consistent with Zehavi et al. (2005) and numerical

simulations (Gao et al., 2004, e.g.). That is, higher mass halos host a larger number of high

luminosity galaxies.

For comparison, we also show the results of Zehavi et al. (2005) in Figures 6.5 and 6.6

as the red points and lines. No exact errors are listed in Zehavi et al. (2005) though they

are of the order ±0.05 in α and ±0.5× 1013h−1M¯ as reported in Zehavi et al. (2004). It is
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important to regard this comparison as only qualitative because Zehavi et al. (2005) use a

much shallower spectroscopic sample and a different binning for Mr; instead of considering

a particular range of Mr, they take every galaxy brighter than a given threshold in Mr.

Despite these differences, there are consistent trends between are two results. First, M1

decreases with Mr as expected from theory. This means that intrinsically brighter galaxies

are found within larger mass halos. Second, both feature a sudden changes in the trend for

α for luminous galaxies. Zehavi et al. (2005) suggest that this sudden change is a result of

using a step function for Mmin in the high luminosity samples rather than a smooth roll-off.

Further investigation of this idea would require modification of our underlying halo model,

which is beyond the scope of this thesis.

Our constraints on the HOD models would be significantly improved with increased

number counts and reduced systematics – both of which should smooth out the resulting

w(θ) curve and reduce the error bars – and a more accurate representation of the redshift

distribution. With a smoother w(θ) curve, it should be possible to detect deviations from

a power law on intermediate scales. These deviations were first associated with the 1 halo

to 2 halo transition by Zehavi et al. (2004). The 1 to 2 halo transition would provide a

stronger constraint on the HOD models because more points would meaningfully contribute

to the χ2 (currently the small and large scale points dominate as we assume a power law).

Additionally, the improved redshift distribution would enable more accurate determination

of γ and r0. Finally, with an accurate representation of dn
dz

we can compare the two point

projected correlation function w(rp) (projected along the axis perpendicular to the line of

sight) instead of ξ(r) to reduce redspace distortions along the line of sight due to galaxy

motion.
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Figure 6.1 Evolution of best fit HOD ξ(r) with redshift. The sample used was volume limited. The best
fit parameters are listed in Table 6.1.
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Figure 6.2 Evolution of HOD parameter α with redshift. The sample used was volume limited. The best
fit parameters are listed in Table 6.1.
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Figure 6.3 Evolution of HOD parameter M1 with redshift. The sample used was volume limited. The best
fit parameters are listed in Table 6.1.
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Figure 6.4 Evolution of best fit HOD ξ(r) with absolute magnitude. The sample used was volume limited.
The best fit parameters are listed in Table 6.2.
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Figure 6.5 Evolution of HOD parameter α with absolute magnitude. The sample used was volume limited.
The best fit parameters are listed in Table 6.2. The red line and points shows the results from Zehavi et al.
(2005). Their sample is shallower in redshift and binned in Mr differently, so only qualitative comparisons
should be made.
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Figure 6.6 Evolution of HOD parameter M1 with absolute magnitude. The sample used was volume
limited. The best fit parameters are listed in Table 6.2. The red line and points shows the results from
Zehavi et al. (2005). Their sample is shallower in redshift and binned in Mr differently, so only qualitative
comparisons should be made.
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Redshift Avg. Redshift α log M1 log Mmin

0.1 < z < 0.2 0.163 1.54± 0.132 15.31± 0.155 14.01

0.2 < z < 0.3 0.254 1.55± 0.127 15.13± 0.169 13.83

Table 6.1 Fit parameters for the HOD model in redshift bins as shown in Figure 6.1. Mass units are M¯h−1.

Magnitude Avg. Redshift α log M1 log Mmin

−23 < Mr < −22 0.304 1.66± 0.094 15.63± 0.078 14.32

−22 < Mr < −21 0.291 2.27± 0.312 14.41± 0.396 13.10

−21 < Mr < −20 0.252 2.11± 0.044 14.51± 0.026 13.21

Table 6.2 Fit parameters for the HOD model in absolute magnitude bins as shown in Figure 6.4. Mass
units are M¯h−1.
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7.0 CONCLUSIONS AND FUTURE WORK

Our goal was to measure the angular clustering evolution of galaxies in luminosity, type,

and redshift using redshifts estimated from broadband photometry. Photometric redshifts

require precise flux measurements, so we used the SDSS stripe 82 co-added imaging data

set; this data set has co-added repeat scans of the same patch of the sky in order to obtain

higher quality imaging. We developed a custom imaging pipeline to extract sources from

this data with photometry errors less than 1% and no significant spatial zero point variation.

We classified objects as stars or galaxies by examining how point-like objects were as a

function of magnitude. We estimated the size of objects using concentration, the difference

of magnitudes at two different apertures. For a particular range of apparent magnitude, the

distribution of concentrations has two visible populations, one for stars and one for galaxies;

we applied the non-parametric mean shift algorithm to separate the two populations by

locating the midpoint of the population peaks.

We computed photometric redshifts using the code of Beńıtez (2000) with three signifi-

cant modifications. First, we computed a custom r band magnitude prior using SDSS and

VVDS spectroscopic data. Second, we parameterized the type marginalized p(z) so that

we could describe the redshift of each galaxy as a probability density. Third, we used a

“tweaked” template set that was optimized for our data. All of these improved the photo-

metric redshift quality over the BPZ defaults.

We compare multiple methods for computing the true redshift distribution dn
dz

from a

distribution of photometric redshifts. We used a naive histogram, a sum of p(z) for each

galaxy, the paramterization in Equation 4.9 with the median photometric redshift, and the

method of Budavári et al. (2003) which convolves the dn
dz

from the luminosity function with

an effective selection window. We demonstrate that these methods agree when we perform
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a cut in Mr of roughly M∗± 2 as shown in Figure 5.4. This result demonstrates that we can

accurately predict photometric redshifts and their errors for galaxies in a particular range of

intrinsic luminosity.

We measured the angular correlation function w(θ) of galaxies. Our w(θ) result agrees

with the closest available study (Budavári et al., 2003). We used Limber’s equation to fit a

power law to the real space correlation function ξ(r) using our estimated dn
dz

. Our results for

r0 are systematically higher than similar studies, though we qualitatively agree in the trend

of r0 increasing with luminosity. This discrepancy must be due to our estimate for dn
dz

; in

particular, the average photometric redshift error for our faintest bin has significant effect

on the width of dn
dz

and thus r0. We found that we can account for this discrepancy in 2 of

our 3 luminosity bins by reducing our photometric redshift contamination by a factor of 4.

Finally, we related our w(θ) measurement to parameters from the halo occupation dis-

tribution to provide more physical insight into clustering evolution. We found that the

characteristic mass of dark matter halos decreases with redshift and increases with luminos-

ity while α only evolves with luminosity. The M1 redshift evolution is consistent with the

bottom-up formation of large scale structure in ΛCDM cosmology, and the M1 luminosity

evolution is consistent with semianalytic model results which find that the brightest galaxies

are found in higher mass halos. However, our results do not improve upon those of Zehavi

et al. (2005) due to the uncertainties in dn
dz

which prevented us from performing a direct

comparison of ξ(r) or the projected correlation function w(rp). Determining an accurate dn
dz

would significantly improve our constraints on the HOD.

One of the goals of this work was to obtain higher quality photometric redshifts using

superior co-added imagery. While we did succeed in improving the quality of redshifts, the

improvement was not enough to probe magnitudes fainter than r = 21, the same depth used

by Budavári et al. (2003) with single epoch SDSS data. This severely limited both the num-

ber counts and the maximum redshift we could investigate, and as a result we were unable

to improve on the results of Budavári et al. (2003). Further improving photometric redshifts

is obviously a candidate for future work, though probing to r = 22 or fainter with just

SDSS data will be difficult. However, new surveys such as UKIDSS will add infrared pho-

tometry for much of the footprint of SDSS, and adding additional magnitude measurements
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to each galaxy can significantly improve photometric redshift results; photometric redshifts

computed in this way are sometimes termed super photozs. Additionally, it may be possible

to use empirical photometric redshifts, which have better error properties, for this purpose

in the future, but a deeper spectroscopic sample is needed. Finally, the difficulty in prop-

erly determining dn
dz

from a photometric redshift distribution is an important outstanding

problem that is just beginning to be addressed in the literature (Newman, 2008).

Star/galaxy classification is the second obvious area to improve. Devising an effective

parametric classifier would allow for classification of fainter objects. Additionally, the proba-

bility that an object is a galaxy could be used as a weight in the w(θ) computation to further

improve the measurement. Of particular importance to this data set is the performance of

star/galaxy separation as a function of distance from the galactic plane, so this should be

investigated thoroughly.

There appear to be additional systematics present in the apparent magnitude binned w(θ)

plot in Figure 5.9, so further investigating the properties of the magnitude calibration would

be worthwhile. In particular, studying how the convolution filter used affects source density

in neighboring images should be enlightening, particularly for images near the galactic plane.

Finally, we note that future surveys such as LSST and improved photometric redshift

techniques could significantly improve our constraints on galaxy formation models. LSST

will offer more galaxies in more filters at greater depth, all of which would improve our

results. The increased number counts would help smooth out w(θ) and reduce error bars,

enabling us to probe the power law deviations at intermediate scales arising from the 1 to

2 halo transition. This would enable us to compare directly to the HOD models rather

than using a power law approximation. The greater depth would improve our star/galaxy

classification and reduce stellar contamination, further smoothing w(θ) and reducing errors

in the measurements of γ and r0. The addition of the y filter would provide one more point

for our low resolution spectra for each galaxy and reduce photometric redshift degeneracies.

Improved photoz codes would offer similar improvements, providing less contamination in

our redshift bins and improved dn
dz

estimation. Thus, future developments in cosmology will

provide even more insight into galaxy formation.
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G. R. Knapp, P. Kunszt, D. Q. Lamb, B. C. Lee, R. H. Lupton, T. A. McKay, J. Munn,
J. Peoples, J. Pier, C. Rockosi, D. Schlegel, C. Stoughton, D. L. Tucker, B. Yanny, and
D. G. York. The Angular Correlation Function of Galaxies from Early Sloan Digital Sky
Survey Data. ApJ, 579:42–47, November 2002. doi: 10.1086/342787.

A. Cooray and R. Sheth. Halo models of large scale structure. Phys. Rep., 372:1–129,
December 2002.
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O. Le Fèvre, G. Vettolani, D. Maccagni, D. Mancini, A. Mazure, Y. Mellier, J. P. Picat,
M. Arnaboldi, S. Bardelli, E. Bertin, G. Busarello, A. Cappi, S. Charlot, G. Chincarini,
S. Colombi, M. Dantel-Fort, S. Foucaud, B. Garilli, L. Guzzo, A. Iovino, C. Marinoni,
G. Mathez, H. McCracken, R. Pello, M. Radovich, V. Ripepi, P. Saracco, R. Scaramella,
M. Scoreggio, L. Tresse, A. Zanichelli, G. Zamorani, and E. Zucca. Virmos-VLT deep
survey (VVDS). In P. Guhathakurta, editor, Discoveries and Research Prospects from
6- to 10-Meter-Class Telescopes II. Edited by Guhathakurta, Puragra. Proceedings of the
SPIE, Volume 4834, pp. 173-182 (2003)., volume 4834 of Presented at the Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference, pages 173–182, February 2003.
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R. Pellò, A. Pollo, L. Pozzetti, M. Radovich, E. Zucca, M. Arnaboldi, M. Bondi, A. Bon-
giorno, G. Busarello, P. Ciliegi, L. Gregorini, Y. Mellier, P. Merluzzi, V. Ripepi, and
D. Rizzo. The VIMOS VLT Deep Survey. Public release of 1599 redshifts to IAB≤24
across the Chandra Deep Field South. A&A, 428:1043–1049, December 2004. doi:
10.1051/0004-6361:20048072.

H. Lin, H. K. C. Yee, R. G. Carlberg, S. L. Morris, M. Sawicki, D. R. Patton, G. Wirth,
and C. W. Shepherd. The CNOC2 Field Galaxy Luminosity Function. I. A Description of
Luminosity Function Evolution. ApJ, 518:533–561, June 1999. doi: 10.1086/307297.

116
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