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Product bundling is a business strategy that packages (either physically or logically), prices and 

sells groups of two or more distinct products or services as a single economic entity.  This 

practice exploits variations in the reservation prices and the valuations of a bundle vis-à-vis its 

constituents.  Bundling is an effective instrument for price discrimination, and presents 

opportunities for enhancing revenue without increasing resource availability.  However, optimal 

bundling strategies are generally difficult to derive due to constraints on resource availability, 

product valuation and pricing relationships, the consumer purchase process, and the rapid growth 

of the number of possible alternatives. 

This dissertation investigates two different situations—vertically differentiated versus 

independently valued products—and develops two different approaches for revenue 

maximization opportunities using product bundling, when resource availability is limited.  For 

the vertically differentiated market with two products, such as the TV market with prime time 

and non-prime time advertising, we derive optimal policies that dictate how the seller (that is, the 

broadcaster) can manage their limited advertising time inventories.  We find that, unlike other 

markets, the revenue maximizing strategy may be to offer only the bundle, only the components, 

or various combinations of the bundle and the components.  The optimality of these strategies 

critically depends on the availability of the two advertising time resources.  We also show how 

the network should focus its programming quality improvement efforts, and investigate how the 
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“value of bundling,” defined as the network’s and the advertisers’ benefit from bundling, 

changes as the resource availabilities change.  We then propose and study a bundling model for 

the duopolistic situation, and extend the results from the monopolistic to the duopolistic case. 

For the independently valued products, we develop stochastic mathematical programming 

models for pricing bundles of n components.  Specializing this model for two components in a 

deterministic setting, we derive closed-form optimal product pricing policies when the demand 

functions are linear.  Using the intuition garnered from these analytical results, we then 

investigate two procedures for solving large-scale problems: a greedy heuristic, and a 

decomposition method.  We show the effectiveness of both methods through computational 

experiments. 
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1.0  INTRODUCTION 

Across both service and manufacturing industries, a frequently used practice for increasing 

revenue and profitability combines components (that is, individual products) into packages of 

products.  This strategy of selling packages, referred to as bundling, allows companies to satisfy 

customers who may not be interested in buying the individual products, or who derive greater 

consumer surplus from the packages than they do from the individual products.  Thus, by 

offering product bundles along with the components, a company can increase its market size by 

appealing to a larger population.  Bundling is also an effective instrument for price 

discrimination, and presents opportunities for enhancing revenue without increasing resource 

availability.  Examples of bundling schemes include automotive option packages (for example, 

bundling a navigation system with a premium audio system), vacation packages (for example, 

bundling air, hotel and car rental reservations), software packages (for example, bundling word 

processing and spreadsheet software), and food product assortments (bundling different flavors 

of marinade sauces) and cosmetic products (for example, shampoo and conditioner, or mascara, 

eyeliner and eye shadow, etc). 

According to Stremersch  and Tellis (2002), bundling manifests itself on a product basis, 

where there is some degree of integration among the bundle components (e.g. the “quadruple 

play” packages offered by telecommunication companies, which integrate phone, Internet, 

television and mobile services), or on a price basis (e.g. season tickets for a sports team), where 
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the absence of sufficient value-adding integration may require price-discounting.  As these 

examples indicate, a seller offering multiple components faces the following alternative 

strategies (Adams & Yellen, 1976; Guiltinan, 1987): (i) pure-components strategy, in which the 

seller only offers the components as separate items; (ii) pure-bundling strategy, in which the 

seller only offers the bundle, but does not offer the components; and (iii) mixed-bundling 

strategy, in which the seller offers both the components and the bundle(s).  Our work examines a 

mixed-bundling situation, and refers to both components and bundles as products.  Given a 

distribution of customers’ willingness to pay and the component availability, our objective is to 

determine the revenue maximizing pricing strategy.  We examine two different situations—

vertically differentiated versus independently valued products—and develop two different 

approaches for revenue maximization opportunities using product bundling.  For the vertically 

differentiated market with two products, such as the television market with prime time and non-

prime time advertising, we derive optimal policies that dictate how the seller (that is, the 

broadcaster) can manage their limited advertising time inventories, in a monopolistic as well as a 

duopolistic environment.  For the independently valued products assumption we analytically 

derive optimal policies for the two components/one bundle scenario, and derive heuristics for 

pricing arbitrary number of products. 

In the context of TV advertising, broadcasters use a multi-pronged strategy to capture 

revenues from the roughly $150 billion dollar advertising market in the US.1  The market for 

selling television advertising time is split into two different parts: the upfront market, which 

accounts for about 60%-80% of airtime sold and takes place in May every year, and the scatter 

                                                 

1 2007 TNS media intelligence report (http://www.tns-mi.com/news/03252008.htm).  Of this amount, television 

advertising accounts for roughly $64 billion annually. 
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market which takes place during the remainder of the year.  In the first stage of their strategy, 

broadcast networks make decisions about how much advertising time to sell in the upfront 

market and how much to keep for the scatter market.  On their part, clients purchase advertising 

time in bulk, guided by their medium-term advertising strategy, during the upfront market, at 

prices that may eventually turn out to be higher or lower than the scatter market prices.  The 

scatter market, on the other hand, allows advertisers to adopt a “wait-and-see” approach to verify 

the popularity of various network shows, and to tailor their decisions to match their short term 

advertising strategy.  In the television advertising market, capacity constraints play a significant 

role in determining the broadcaster’s optimal strategy.  Particularly, the relative scarcity of the 

two resources, prime time and non-prime time, is the main driver of any sort of optimality 

analysis.  The prime time resource availability constraint is far more likely to be binding than the 

non-prime time resource availability constraint.  Prime time on television is usually the slot from 

8:00 pm until 11:00 pm Monday to Saturday, and 7:00 pm to 11:00 pm on Sunday.  Hence, the 

ratio of prime to non-prime time availability is about 1:8 (or 1:6 on Sunday). 

1.1 REVENUE MANAGEMENT AND PRODUCT BUNDLING 

Due to the peculiarities of the TV advertising market, our work diverges from the current 

revenue management stream in several ways.  Traditionally, the revenue management literature 

has focused on the airlines, hotels, cruise, automotive rental markets, and railway markets.  In the 

airlines, hotels, etc. situation, even though there is a strict ordering of the components, the bundle 

may not be preferred to the “prime” product.  For example, in the airline setting, an individual 

may prefer a business seat to an economy seat on the same flight, but the individual is not likely 
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to buy a bundle consisting of a both a business and an economy seat.  Similarly, a traveler may 

prefer a suite in a hotel to an ordinary double room on the same day, but is unlikely to rent a 

bundle consisting of the suite and the double room.   Likewise, an executive may prefer a full-

size car to a compact during the same trip, but is unlikely to rent both the full-size car and the 

compact.  This is quite different from a vertically differentiated market (e.g. the TV advertising 

market) where all advertisers prefer buying a bundle of prime time advertising and non-prime 

advertising to buying just prime time advertising, and prefer buying prime time advertising to 

buying just non-prime advertising.   

The advertising market is different from other revenue management applications in 

another way.  A “bundle” in the airlines industry could be two flight segments.  Consider three 

demands: Pittsburgh to New York, New York to Boston, and Pittsburgh to Boston.  Airline 

revenue management applications might consider a bundle of Pittsburgh to New York and New 

York to Boston to meet the Pittsburgh to Boston demand.  But clearly a preference order does 

not exist in this case for the traveler: in fact the bundle may have lower utility than the Pittsburgh 

to New York product for someone wanting to travel to New York from Pittsburgh.  Similar 

situations also occur in the hotel industry where a bundle may consist of a hotel room on Sunday 

and a hotel room on Monday.  A business traveler, wanting to spend Sunday night with her 

family might have no interest in purchasing the bundle.  So, in these cases, consuming the bundle 

may have lower utility than consuming the individual components. 

The methodologies developed and the approaches adopted in the revenue management 

literature are also different from our work.  While the revenue management literature is quite 

extensive, none of the revenue management papers adopt the “market segmentation through self 

selection” (that is, second degree price discrimination) approach as we do in this work.  On the 
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contrary, “fences” (Saturday night stay requirement to prevent a business traveler from using a 

leisure fare, or a student id requirement to prevent a regular patron from buying a discounted 

concert ticket) are typically constructed to prevent spillage.  Moreover, in most revenue 

management papers, the prices are exogenously given rather than endogenously determined, as 

in our work.  While there are papers that consider simultaneous pricing and inventory 

management decisions (Dana Jr & Petruzzi, 2001; Petruzzi & Dada, 1999; Raz & Porteus, 2006), 

multiple components and/or the availability of a bundle are not considered in these papers at all. 

Finally, according to Bollapragada and Mallik (2008), Zhang (2006), and Araman and 

Popescu (2009), the current practice in the broadcasting industry is to use subjective methods for 

media planning decision, and only a few analytical models have been developed.  Talluri and van 

Ryzin (2004), the most up-to-date, comprehensive reference on revenue management, describes 

some scheduling models for this application context.  Araman and Popescu (2009) suggest that 

technical complexity argues for decomposing the general media planning problem into smaller, 

tractable problems, and consider allocating advertising time capacity between the upfront and 

scatter markets given the uncertainty of the audience.  Bollapragada and Mallik (2008) focus on 

how to manage the “rating points” inventory for servicing the upfront market.  Zhang (2006) 

develops a hierarchical approach for matching advertisers to shows and then constructing a 

broadcast schedule.  Up to this point, none of these recent articles, as well as other recent 

television media related papers, consider the issue of bundling problem applied onto the TV 

advertising market. 
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1.2 OBJECTIVES OF THIS WORK 

The current thesis aims to address two major issues.  The main contribution of this research is to 

study the effectiveness of various bundling strategies on a market characterized by ordered 

preferences (i.e., the TV advertising market).  Here, we show how the various strategies shift as a 

function of the advertising time inventory, and we also study the impact of the distribution of 

clients over the overall profitability of the TV network.  Chapters 3 and 4 of the dissertations 

study this problem under different assumptions.  In Chapter 3, we start with a monopolistic 

framework, and we assume that the buyers (in this case, the advertisers interested in purchasing 

advertising time) self select into different segments (non-purchasers, buyers of  only one type of 

advertising product, or buyers of bundles containing both the “lower quality” and the “higher 

quality” product).  In the TV context, the “lower quality” time is called non-prime time and the 

“higher quality” time is referred to as prime time.  The availability of these two resources is 

limited.  Traditionally, the bundling research has consistently found that mixed bundling 

strategies dominate other bundling strategies, because a bundle is able to capture extra revenues 

by reducing the heterogeneity of the consumers.  Moreover, the issue of whether bundling 

benefits only one player (buyer or seller) involved in the transaction, or whether bundling is a 

win-win proposition when the resource availability is limited, is not addressed in the literature.  

Our work in Chapter 3 seeks to investigate these issues in the TV media context, and see whether 

conventional wisdom with respect to bundling holds, or whether the intrinsic characteristic of 

this market induces a different behavior.  Additionally, we are also interested in finding out as to 

what are the incentives for improving programming quality in the context of selling bundles of 

prime and non-prime time.  In Chapter 4, we address the same questions but this time in a 
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duopolistic setting.  Hence, Chapter 4 extends the results of Chapter 3.  Overall, the contributions 

of the first two essays can be summarized in the following main discussion points: 

The pure components strategy may dominate the mixed bundling strategy.  Past bundling 

literature in a monopoly setting (Adams & Yellen, 1976; McAfee, McMillan, & Whinston, 1989; 

Stigler, 1963) has demonstrated that the mixed bundling strategy (weakly) dominates the pure 

components and the pure bundling strategies for independently valued components.  We 

investigate the generality of this result and show that when all customers have a common 

preference ranking of the products, and the resource availability is unconstrained, then the pure 

bundling strategy is optimal.  More importantly, we show that with constrained resource 

availability, the optimal strategy depends on the scarcity of the resources.  In particular, we show 

that the pure components strategy may be the optimal strategy, dominating the mixed bundling 

strategy, when the resource availabilities are low.  Thus, the clean, unambiguous structure of the 

optimality of the mixed bundling strategy breaks down when the preferences for the products are 

ordered and the resources are limited. 

The skewness of the customer distribution is important in addition to its heterogeneity.  

Schmalensee (1984) points out that the reason for the dominance of the mixed bundling strategy 

stems from the fact that it allows greater price discrimination by reducing the heterogeneity of 

the customers.  Our results show that the skewness of the distribution of customers, in addition to 

the heterogeneity, affects the benefits of mixed bundling.  To our knowledge, previous research 

has not studied the impact of skewness on bundling. 

Should programming quality be improved?  If so, which one?  One question that effective 

managers always ask is how they can do better: in this case, how can the broadcasters’ profit be 

increased?  Should we try to improve the ratings of the prime time or the non-prime time 
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programming?  We answer this question by concluding that, under fairly mild additional 

assumptions, it is always (that is, under all bundling strategies) better to improve the ratings of 

the resource that is more plentiful.  Additionally, when the availabilities of the two resources are 

equal to each other, it is always better to increase the ratings of prime time programming, but the 

relative benefit from quality improvement of prime time programming depends on the overall 

resource scarcity. 

Does bundling in our context improve consumer and social welfare?  When decision 

makers evaluate a new strategy, they need to consider not just what the impact on their bottom 

line would be, but also how customers and society, in general, would be impacted.  Are there 

situations where everyone (in this case, the broadcaster and the advertisers as a group) would be 

better off?  We answer this question in the affirmative by computing the value of bundling for 

the broadcaster, the advertiser, and aggregate, in both monopolistic and duopolistic settings.  The 

consumer and social welfare measures have been studied in other contexts, and sometimes a 

similar phenomenon has been observed.  However, the relationship of the value of bundling to 

the scarcity of resources, and as a result, to the optimal bundling strategy, has not been addressed 

at all in the literature. 

In a competitive environment with a strong (in terms of ratings) network and a weaker 

one, the strong network uses the non-prime time product as a deterrent.  Previous literature on 

bundling in competitive environments has shown that the bundle can be used as a deterrent 

(Nalebuff, 2004).  Our work suggests that in a vertically differentiated product market with a 

weak and a strong player, the strong firm uses the lower quality bundle component as a deterrent, 

because in the limit it can be sacrificed and given away for free (the marginal costs are zero in 

our model), in order to protect the bundle. 
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In the final essay, we depart from the vertical differentiation model and study the general 

mixed bundling problem.  Here, we formulate the general mixed bundling problem under both 

stochastic and deterministic demands, and investigate the properties of the deterministic 

approach.  We can summarize the contributions of this work along the following discussion 

points: 

We investigate the connections between the optimal bundling strategies for vertically 

differentiated and independently valued products.  We show analytically that the regions defined 

by the number of binding capacity constraints are similar in both situations.  However, the 

dominant strategies are very different within each such region.  (As we will discuss later, the 

assumptions underlying the two situations are quite different.) 

We analyze effective solution methodologies for large-scale versions of the mixed 

bundling problem.  We investigate two different approaches that are computationally efficient: a 

generic greedy heuristic for pricing arbitrary bundles of products with independent valuations, 

and a decomposition method.  We investigate the theoretical performance of the heuristic, and 

observe that in practice it tends to perform well for moderate-sized problems.  Then, we 

formulate and evaluate a decomposition method that is geared towards large-scale problem 

instances.  We find that, in our limited computational experiments, on average more than 99.9% 

of the constraints of the optimization model are naturally satisfied by the solution, and therefore, 

it is possible to save valuable computational time by doing an implicit, rather than explicit 

enumeration of all the model constraints.  Even more interesting, only a fraction of all possible 

bundles end up being offered in practice.  With careful selection rules which we expand upon in 

Chapter 5, we can save a lot of computational time by identifying these candidates.  Therefore, 
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the overall theme of this last essay is the development of efficient algorithmic approaches for this 

hard combinatorial problem. 

1.3 OVERVIEW OF CHAPTERS 

Following this introductory chapter, the second chapter provides an overview of the current 

research stream, as it is applicable to revenue management and product bundling.  This chapter 

builds an introductory foundation upon which this work can extend the current state of the art.  

Subsequent chapters will address relevant research literature in a more focused manner, in their 

corresponding introductory sections. 

Chapter 3 examines a basic monopolistic setting in which the TV network seeks to 

maximize its revenues from sales of limited prime and non-prime advertising time, using 

different bundling strategies. We examine the impact of the relative scarcity of advertising time 

on the different strategies, quantify the effect of the shadow prices on the bundle composition, 

and look at the network relative incentive to improve the programming quality (and thus, its 

ratings).  We show how changing the distribution of the customers affects our results.  We also 

show how the value of bundling changes (the value of bundling is the net benefit for both the 

advertisers and the network) as the relative availability of the two advertising time resources 

changes. 

Chapter 4 extends the monopolistic framework to a competitive duopolistic environment.  

We examine the impact of competition on the bundling strategies, and we also quantify the value 

of bundling.  We present and interpret several structural properties of the value of bundling 
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function, and show that there exist certain scenarios where bundling is a win-win proposition for 

all parties. 

Chapter 5 approaches the bundling issue when the products are independently valued 

with known demand curves.  We also provide a heuristic approach that generates near-optimal 

solution to the revenue maximizing mixed bundling problem, and conclude with a worst-case 

behavior analysis of its performance, along with several computational experiments.  Finally, we 

introduce a decomposition-based framework that efficiently solves large scale instances of the 

mixed bundling problem, formulated as a convex optimization program. 

Finally, Chapter 6 is a summary of the work developed in the thesis, with discussion on 

limitations and plans for improvement and extensions. 
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2.0  REVENUE MANAGEMENT AND PRODUCT BUNDLING 

Businesses that sell perishable goods or services often have to manage a relatively fixed 

inventory of a product over a planning horizon.  Revenue management (sometimes also referred 

to as demand management) is the active administration of all processes that could generate extra 

revenues from an existing inventory (or in some cases, capacity), by making better decisions 

with respect to pricing and/or allocation of a particular (or an entire line of) good(s) or service(s) 

that the company is offering.  Organizations that use revenue management techniques often 

employ various techniques, such as priority rules for inventory allocation, customer 

segmentation, forecasting, and the dynamic adjustment of prices.  Successful implementations of 

revenue management techniques have led to increased revenues and profits for many 

organizations across various industries, most notably airline, hotel, restaurant and car-rental 

businesses.  Opportunities are now arising for the introduction of revenue management 

techniques into non-traditional areas, such as healthcare and the entertainment and advertising 

industries.  Making decisions about the prices to charge and the availability of those products or 

services for each market segment over a period of time with the goal of increasing the expected 

profit pertains to revenue management.  Thus, revenue management is sometimes referred to as 

“the art of maximizing the profit generated from managing a limited capacity of a product over a 

finite horizon, by selling each product to the right customer, at the right time, for the right price.” 

(Talluri & Van Ryzin, 2004) 
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One of the major pillars supporting the revenue management foundation is the concept of 

market segmentation into multiple classes (e.g., leisure versus business travelers), where 

different types of products (e.g., seats on an airline with restricted or fully refundable fares) are 

targeted to each class.  Another important operational driver is the idea that some resources are 

perishable.  A resource is perishable if after a certain date becomes either unavailable or it ages 

at a significant cost.  Seats on a flight or in a theater, rooms in a hotel, space on a cargo train, are 

a few examples of such perishable inventory, so the main focus of revenue is on the allocation of 

limited and perishable capacity to different demand classes (Elmaghraby & Keskinocak, 2003). 

Revenue management, or yield management as it was initially called, started in the airline 

industry, back in the late 1970s, as a need for airline companies to cope with the increased 

competition when many fares became available, following the Airline Deregulation Act of 1978.  

Airlines had to manage the discounted fares that became part of their product offers, and the 

opportunities for revenue management techniques and models were acknowledged very fast.  

Their positive impact on revenue was attested by many companies.  For example, American 

Airlines had a $1.4 billion in incremental revenue over the three year period between 1989-1992 

(Smith, Leimkuhler, & Darrow, 1992).  Recent successful applications of revenue management 

principles span industries beyond airlines.  For example, Geraghty and Johnson (1997) report 

that successful revenue management saved the National car rental company from bankruptcy.  In 

another study, Bollapragada et al. (2002) report significantly improved revenues after optimizing 

NBC’s commercial scheduling systems, and Metters et al. (2008) report the successful 

application of revenue management-based segmentation at Harrah’s Cherokee Casino.  Other 

interesting applications of revenue management can be encountered in car rental businesses 

(Savin, Cohen, Gans, & Katalan, 2005), media advertising (Araman & Popescu, 2009; 
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Fridgeirsdottir & Roels, 2009), internet service providers (Nair, Bapna, & Brine, 2001), cargo 

shipping (L. H. Lee, Chew, & Slim, 2007; Pak & Dekker, 2004), and restaurants (Kimes, 1999).  

The most comprehensive survey articles that encapsulate the past literature and main results in 

revenue management are, chronologically, those of Weatherford and Bodily (1992), McGill and 

van Ryzin (1999), and Talluri and van Ryzin (2004).  

Traditionally, revenue management research is broadly split along two dimensions.  The 

quantity based revenue management is mainly concerned with capacity allocation decisions.  In 

the airline case, for example, one of the tactical decisions is to determine the number of seats to 

make available to each fare class from a shared inventory and how many requests from each 

class to accept, in order to maximize total expected revenues, taking into account the 

probabilistic nature of future demand for a flight (Belobaba, 1989).  In other words, given a 

booking request for a seat in an itinerary in a specific booking class, the fundamental revenue 

management decision is whether to accept or reject this booking, considering the past and future 

demands.  In the hotel industry, the manager has to decide at the operational level, for example, 

whether or not to rent a room to a customer that requests it, considering the reservations already 

made, future reservation requests, and the potential walk-ins (customers that show up without a 

reservation).   So it is not at all uncommon to deny an advanced booking (in either business) to 

price-sensitive customers for peak travel periods because it is anticipated that there will be 

enough demand from higher paying customers.  The analysis of capacity (seat) allocation, (that 

is, controlling the mix of discount fares and early booking restrictions) and overbooking (selling 

more seats than available when cancellations and no-shows are allowed) are supported by a 

thorough understanding of customer behavior and the capability to accurately forecast future 

demand.  The three most important airline and hotel revenue management interrelated aspects 
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and areas of research are forecasting, seat allocation and overbooking.  On the other hand, the 

price based revenue management is concerned with pricing decisions.  These decisions can be 

different, depending on the industry.  For example, in the airlines and the hotel industry, one 

form of control is that of bid prices, where the request for a seat (or a room) is accepted only if 

the price offered exceeds a threshold established by the seller (for example, in the airlines 

industry the most common way to compute a bid control for a flight is to sum the dual prices of 

all the capacity constraints associated with each leg of that particular flight).  In the retail 

industry, an efficient form of price control is that of markdown pricing, where, at certain time 

intervals during the season, the prices for different items are permanently reduced.  Finally, 

across various industries, an efficient technique is that of dynamic pricing, which refers to the 

adjustment of prices (either upwards or downwards) at various moments during the planning 

horizon. 

Revenue management is attributable to bringing new ideas and models that changed the 

paradigm about doing business.  In one form or another, revenue management applications and 

their consequences are felt more and more, be it when renting a hotel room or a car online or 

trying to find a deal in a superstore by buying a bundling of products.  Revenue management is 

actively trying to reach new business settings and one of the current research focuses is finding 

ways to better incorporate customer behavior, lifetime customer value and competitive response 

into the revenue management decisions (Phillips, 2005).  
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2.1 BUNDLING STRATEGIES 

Bundling is a prevalent business strategy.  Most of the bundling papers are built on the early 

study of Stigler (1963), who concludes that bundling is profitable when the reservation prices of 

the components are negatively correlated.  Later, Adams and Yellen (1976) show that the 

profitability of bundling can stem from its ability to sort customers into groups with different 

reservation price characteristics, thus extracting greater consumer surplus.  They examine the 

three basic bundling strategies (pure components, pure bundling, and mixed bundling), compare 

these strategies in terms of seller profit and find that mixed bundling at least weakly (meaning 

that the revenues collected from a mixed bundling strategy are at least as high as those collected 

if some other strategy were followed) dominates pure bundling, since customers with negatively 

correlated reservation prices prefer individual products, while the others prefer the bundle.  A 

related paper, (Dansby & Conrad, 1984) finds the same effect, as well as the study made by 

McAffee, McMillan and Whinston (1989).  Bundling can also be used strategically, as an entry 

barrier, as Nalebuff (2004)  shows in a recent paper.  

Schmalensee, in two early papers (1982, 1984) relaxes the assumption that the 

reservation prices of the individual products are negatively correlated, and examines the case of a 

monopolist offering two products.  He constructs a class of examples within which the 

profitability of bundling can be analyzed as a function of production costs, the mean and 

variance of the distribution of reservation prices for each product, and the correlation between 

the reservation prices of the two products. Schmalensee also demonstrates that mixed bundling 

combines the advantages of pure bundling and pure components strategies, because this policy 

enables the seller to reduce effective heterogeneity among those buyers with high reservation 

prices for both goods, while still selling at a high markup to those buyers willing to pay a high 
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price for only one of the goods.  An interesting consequence is that bundling can be profitable 

when demands are uncorrelated or even positively correlated.  

Keeping it in the same two-product scenario, Venkatesh and Kamakura (2003) examine 

the relationship between the products—that is, whether they are complements, substitutes, or 

independent—and derive analytical solutions, based on the bivariate uniform distribution of 

consumers’ reservation prices, for pricing either a pure bundle or the components separately, and 

do a numerical simulation for the mixed bundling scenario.  Earlier, while examining a situation 

within the entertainment industry (pricing season tickets for an event), Venkatesh and Mahajan 

(1993) determined that mixed bundling can dominate both pure bundling and components 

strategies under certain conditions of the prices. They also derive analytical and numerical results 

for the profit maximizing equations when the probability density function that describes the 

customers’ reservation prices follows a Weibull distribution. 

Bakos and Brynjolfsson (1999) study the strategy of bundling a large number of 

information goods (that have zero marginal costs), such as those increasingly available on the 

Internet, and selling them for a fixed price.  Interestingly, they find that bundling very large 

numbers of unrelated information goods and offering only the bundle (that is, a pure bundling 

strategy) can be surprisingly profitable, and can dominate the mixed bundling strategy.  This 

research contrasts with the physical bundling scenario, where a negative product correlation 

seems to be the main driver of mixed bundling profitability.  In a latter paper (2000), the same 

authors extend their research to a general competition model on the Internet via bundling.  

Keeping the same approach, Altinkemer (2001) examines the bundling strategy in the online 

environment of e-banking strategies. 
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Salinger (1995) focuses on the graphical analysis of bundling and deals with the two-

product case, while assuming additive reservation prices.  He explores the implications of the 

relationship between the bundle and aggregated components demand curves for the profitability 

and welfare effects of bundling, and finds that if it does not lower costs, bundling tends to be 

profitable when reservation values are negatively correlated and high relative to costs.  If 

bundling lowers costs and costs are high relative to reservation values, positively correlated 

reservation values increase the incentive to bundle.  On the other hand, Soman and Gourville 

(2001) illustrate how the bundling of services can hurt consumption, due to its nature of hiding 

costs from consumers (they argue that bundling increases the valuation complexity). 

The internal valuation of bundles is a well-established marketing research area (Yadav, 

1994; Yadav & Monroe, 1993).  Chung and Rao (2003) examine the valuation of bundles 

comprised of heterogeneous products that could belong to several categories, and its implication 

on any optimal bundle pricing.  For an ample study of factors that drive bundle purchase 

intentions, the handbook of Fuerderer, Herrmann and Wuebker (1999) provides a comprehensive 

treatment of the subject. 

One notable shortcoming of most of these research papers is the relatively small number 

of optimal bundle prices derivations.  One important study that examines this topic is the paper 

of Hanson and Martin (1990) which provides a practical method for calculating optimal bundle 

prices.  The basis of the approach is to formulate the model as a mixed integer linear program 

using disjunctive programming.  The authors also consider one of the most serious problems 

facing a product line manager addressing the bundling issue: the exponential growth in possible 

bundles which results from increasing the number of components considered.  An algorithm for 

finding optimal solutions is given along with computational results.  A different approach is 
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undertaken by Bitran & Ferrer (2007), who provide a utility-maximizing analytical model for 

pricing bundles that will compete with other bundles on markets characterized by rapid 

technological innovation.  Cready (1991) also develops profitability conditions for bundles that 

can be sold at a premium price. 

According to Stremersch and Tellis (2002), a significant number of published bundling 

studies are fuzzy about some basic terms and principles and do not provide a comprehensive 

framework on the economic optimality of bundling.  They provide a new synthesis of the field of 

bundling based on a critical review and extension of the marketing, economics and law literature, 

while clearly and consistently defining bundling terms and principles.  They also propose a 

framework of twelve propositions that prescribe the optimal bundling strategy in various 

contexts, which incorporate all the important factors that influence bundling optimality. 

2.2 FORECASTING 

Forecasting is a critical component of any revenue management system, and in particular 

forecasting of sensible variables, such as demand and price sensitivities.  There are studies (Polt, 

1998) which suggest that a 20% reduction in the forecast error can yield a 1% increase in the 

revenues generated from the system.  Moreover, in a very elegant paper, Cooper, Homem-de-

Mello and Kleywegt (2006) show how incorrect assumptions about customer behavior result in 

lost sales, which trigger in return further incorrect capacity allocations in a downward spiral that 

could get out of control. 

The survey paper of McGill and van Ryzin (1999) lists, in chronological order, most 

relevant forecasting research in the airline industry.  They present historical results of models for 
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both demand distributions and arrival processes, as well as issues related to uncensoring demand 

data and aggregate and disaggregate forecasting.  In terms of demand distributions, the early 

work of Beckman and Bobkowski (1958)  and Lyle (1970) offer evidence, after testing various 

distributions for the passengers arrivals, that the gamma distribution provides the most 

reasonable fit for the data.  But later, various empirical studies, like in Belobaba (1987), have 

shown that the normal distribution, as a limiting distribution for both the binomial and Poisson 

distributions,  is a good continuous approximation  to aggregate airline demand distribution.  

Regarding the customers’ arrival distribution, various forms of Poisson processes have 

been proposed and used: homogeneous, nonhomogeneous and compound Poisson processes, in 

the research works of Lee and Hersh (1993), Gallego and van Ryzin (1994), Zhao and Zheng  

(2000), Bitran and Mondschein (1995) just to mention a few.   For example, Weatherford et al. 

(1993) modeled the passengers arrivals as a nonhomogeneous Poisson process to investigate how 

to optimally implement decision rules for two fare classes, where the arrival rates are modeled 

with Beta functions and total demand using a Gamma distribution.  They showed that that under 

certain characteristics of the arriving population, the simple static decision rule is a very good 

approximation to the optimal advanced static rule and can be applied as a heuristic to three or 

more classes.  

Forecasting is one of the central issues in revenue management as its accuracy level has a 

great impact over the results of the revenue management systems. The regression technique, as a 

forecasting method, was showed to improve the efficiency of the revenue management systems 

(Boyd & Bilegan, 2003; Sa, 1987).  Exponential smoothing and moving averages, as part of 

disaggregate forecasting systems, are also commonly implemented by airlines and hotels.  
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Even if these Poisson processes and smoothing approaches provide insights into future 

bookings in the same class, it is recognized, though, that these methods may fail to reflect the 

possible relations that may exist between various fare classes (diversion and possible sell-ups, for 

example).  Weatherford (1999) and Weatherford et al. (2001) provide evidence that more 

sophisticated, disaggregated forecast methods are needed to improve the forecasting activity.  

One step in this direction is taken by Lan et. al. (2008) who derive booking policies for the 

airline network revenue management problem in the absence of information about the demand. 

2.3 THE MEDIA ADVERTISING MARKET 

While there has been extensive work in the marketing literature regarding the impact of 

advertising on sales and on consumers (see for instance Kanetkar, Weinberg and Weiss (1992) 

and Gal-Or et al. (2006)), the operational problem of air-time inventory management is relatively 

recent.  From a scheduling perspective, the work done for NBC studios (Bollapragada, Bussieck, 

& Mallik, 2004; Bollapragada, et al., 2002) presents a coherent, deterministic optimization 

model for creating an advertising plan, while observing several scheduling constraints.  In the 

same deterministic framework, Kimms and Muller-Bungart (2007) proposed a unified approach 

for the separate problems of matching advertisers to shows and scheduling commercials in 

different slots.  In a related paper, Zhang (2006) tackles the same problem using a two-stage 

approach. 

In contrast, new work is emerging that focuses on the inherent uncertainties of the 

problem.  The major issue is that of audience (rating) uncertainty— this in respect drives the 

allocation decision between selling capacity during the upfront market, and selling the reminder 
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on the scatter market. In this context, the work of Araman and Popescu (2009) deals with the 

issue of properly allocating and then adjusting inventory time during the upfront season in order 

to deal properly with the rating variability.  They also mention the connection between the 

broader issue of capacity allocation under uncertainty in the media market, and the random yield 

production planning problem (Bollapragada & Morton, 1999), if no holding costs are assumed.  

Similarly, Bollapragada and Mallik (2008) derive a value-at-risk model for allocating rating 

points between upfront and scatter markets. 

2.4 BUNDLING IN COMPETITIVE ENVIRONMENTS 

In the recent past, researchers from the economics and marketing domains have investigated 

bundling related issues in a competitive environment.  Matutes and Regibeau (1992) analyzed 

the interactions between two players engaged in a duopolistic competition, and showed that the 

optimal strategy is for companies to provide compatible products (such that consumers could 

theoretically form their own bundle by purchasing each component from a different firm), but to 

offer a discount if all components are purchased from the same firm.  If the components are 

“incompatible” (i.e., components from different competitors cannot form a bundle), then they 

argue that the optimal strategy is pure bundling.  In the context of market expansion, Kopalle et 

al. (1999) show that if the market has limited growth potential, the equilibrium strategy tends to 

be to offer pure components, in the limit, because there is less incentive to attract customers with 

discounts when the market is saturated.  In a recent paper, Armstrong and Vickers (2009) show 

that bundling can harm customer welfare if customers are heterogeneous in their demand and 

there are costs associated with purchasing from one firm.  If the heterogeneity is reduced, then 
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bundling can increase customer welfare.  Thanassoulis (2007) also looks at customer welfare in 

the context of mixed bundling and finds that if the buyers have brand-specific tastes, or incur 

firm-specific costs, then their welfare is reduced, but on the other hand it increases when the 

differentiation between components increases.  Chen (1997) shows that bundling is an 

equilibrium strategy in a duopoly where at least one good that could be part of the bundle is 

produced under perfect competition, and that if both players in the duopoly commit to bundling, 

then they increase their profits, but the social welfare is reduced.  This idea is confirmed by Gans 

and King (2006) who find that if competitors can negotiate bundling arrangements, consumers 

will end up consuming a sub-optimal bundling mix.  Separately from the optimality of bundling 

question, Nalebuff (2004) shows that in a competitive model where a company has market power 

in two goods, it can protect its turf from potential entrants by packaging these goods into a 

bundle. 

2.5 SUMMARY 

As we have mentioned previously, bundling has received considerable attention in the economics 

and marketing literature.  Most of the research conducted in this area studies the conditions under 

which bundling is profitable for the seller and/or the customer, with the general result being that 

the profitability of bundling depends on the distribution of reservation prices.  We note that 

bundling studies in economics and marketing literature make an implicit assumption that there is 

an ample supply of products that could be acquired at a certain cost.  In this thesis, however, we 

assume that there is a fixed amount of perishable inventory for each product to be sold over a 
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finite horizon, and we study how individual and bundle products should be priced to maximize 

revenue from this limited inventory. 

We should also note that while the existing research in marketing and economics studies 

the performance of different bundling strategies, the emphasis is not necessarily on explicitly 

optimizing the bundle and the individual product prices.  In this thesis, our focus is on optimizing 

the bundle and individual prices when resources are scarce.  We also seek to complement the 

extant revenue management revenue stream in the following way.  In most revenue management 

papers, the prices are exogenously given rather than endogenously determined, as in our work.  

While there are papers that consider simultaneous pricing and inventory management decisions 

(Dana Jr & Petruzzi, 2001; Petruzzi & Dada, 1999; Raz & Porteus, 2006), multiple components 

and/or the availability of a bundle are not considered in these papers at all.  Our contribution to 

this research stream is to show that bundling can be used as a successful capacity management 

strategy, where the resources managed are exactly of the type studied by the revenue 

management literature (fixed and perishable). 
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3.0  MIXED BUNDLING PRICING STRATEGIES FOR THE TV ADVERTISING 

MARKET 

3.1 INTRODUCTION 

Advertising accounts for about two thirds of the total revenue2 for a typical television broadcast 

network.  While the quality of the programming affects the ratings and thus the demand for 

television advertising, effective strategies for selling the advertising time are an important 

determinant of the broadcaster’s revenue.  Determining such strategies is particularly important 

because the broadcaster’s available advertising time is limited either by competitive reasons (as 

in the US, where commercials account for roughly eight minutes for every 30 minute block of 

time) or by government regulations (as in the European Union,3 where commercials are limited 

to at most 20 % of the total broadcast time).  Moreover, the advertising time is a perishable 

resource; if it is not used for showing a revenue-generating commercial, the time and the 

corresponding potential revenue is lost forever. 

                                                 

2 Ad Revenue Down, CBS Posts Profit Drop of 52%.  The New York Times, February 18, 2009.  

http://www.nytimes.com/2009/02/19/business/media/19cbs.html. 
3 http://www.europarl.europa.eu/sides/getDoc.do?language=NL&type=IM-PRESS&reference=20071112IPR12883 
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Broadcasters therefore use a multi-pronged strategy to capture revenues from the roughly 

$150 billion dollar advertising market in the US.4  The market for selling television advertising 

time is split into two different parts: the upfront market, which accounts for about 60%-80% of 

airtime sold and takes place in May every year, and the scatter market which takes place during 

the remainder of the year.  In the first stage of their strategy, broadcast networks make decisions 

about how much advertising time to sell in the upfront market and how much to keep for the 

scatter market.  On their part, clients purchase advertising time in bulk, guided by their medium-

term advertising strategy, during the upfront market (at prices that may eventually turn out to be 

higher or lower than the scatter market prices).  The scatter market, on the other hand, allows 

advertisers to adopt a “wait-and-see” approach to verify the popularity of various network shows, 

and tailoring their decisions to match their short term advertising strategy.   

Our work develops revenue maximizing strategies as they apply to broadcast networks 

making decisions during the scatter market period.  The broadcaster makes available for sale 

limited amounts of advertising time during different categories of daily viewing times.  

Advertisers value these categories differently because television audience size varies by the time 

of the day.  In particular, evening time, called prime time, traditionally attracts the most viewers, 

and as such is deemed more valuable by the advertisers, while the rest of the viewing time is 

referred to as non-prime time.  A critical decision for the broadcaster is how to price these 

products (that is, the advertising time sold in the different categories) at levels that maximize 

revenue.  Optimally aligning the prices with the advertiser’s willingness to pay ensures that the 

network neither leaves “money on the table,” nor uses the advertising resource inefficiently.  

                                                 

4 2007 TNS media intelligence report (http://www.tns-mi.com/news/03252008.htm).  Of this amount, television 

advertising accounts for roughly $64 billion annually. 
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Moreover, ad hoc pricing can lead to improper market segmentation: advertisers with a higher 

propensity to pay may end up buying a less expensive product.  Likewise, some potential 

advertisers may be priced out of the market due to improper pricing, even though doing so may 

be unprofitable for the network.  The broadcast network faces yet another decision which is 

based on an evaluation of the benefits of enhancing the programming quality.  Improving quality 

requires effort (time and money), but can lead to higher ratings.  However, the impact of better 

quality on the network’s profitability may be different depending on whether it relates to prime 

or to non prime time programming.  The question that broadcasters need to answer is the amount 

of effort they should apply to improve programming quality. 

The complexity in the analysis for the situations described above gets amplified 

significantly if the network decides to use bundling—the strategy of combining several 

individual products for sale as a package (Stigler, 1963).  In this regard, the broadcaster has 

several options available (Adams & Yellen, 1976): (i) pure components strategy, that is, offer for 

sale the different categories of advertising time as separate items only; (ii) pure bundling 

strategy, that is, offer for sale advertising time from the different categories only as a unified 

product; and (iii) mixed bundling strategy, that is, offer for sale both the bundle and the pure 

components.  Mixed bundling offers an opportunity to the broadcaster to more precisely segment 

the market.  However, as the number of components increases, the number of bundles that can be 

offered in a mixed-bundling strategy increases exponentially.  As a consequence, the number of 

pricing relationships that need to hold also increases exponentially.  Specifically, the broadcaster 

needs to ensure that the price of each bundle should be no more than the price of its component 

parts.  Otherwise, the advertiser can simply buy the separate parts instead of the bundle 

(Schmalensee, 1984).  If the number of bundles is exponential, so is the number of such pricing 
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constraints.  To keep the problem tractable, and since our intent is to draw out qualitative 

managerial insights to help the broadcaster make decisions regarding the available advertising 

time resources during the scatter market, we begin by assuming that the components each consist 

of one unit of prime and non-prime time respectively, and the bundle consists of one unit each of 

the two components.  We later show that under some situations these earlier results apply with a 

simple recalibration of the units of measurement of the components.  When the bundle 

composition can be chosen by the advertiser, one might consider potentially using an elegant 

approach proposed by Hitt and Chen (2005).  This approach, customized bundling, allows buyers 

to themselves create for a fixed price idiosyncratic bundles of a specified cardinality from a 

larger set of available items.  Wu et al. (2008) use nonlinear programming to further explore the 

properties of customized bundling.  The customized bundling approach is not needed for the 

equal proportions television advertising case that we are considering; moreover, as we discuss 

later, we assume that the available resources are limited, and so the customized bundling model 

does not directly apply.  Therefore, we focus on the seller (that is, the network broadcaster) 

creating and offering the bundle for sale. 

In the television advertising case (as opposed to other bundling situations), the two 

components have a fundamental structural relationship.  Since viewership during prime time 

hours exceeds the viewership during non-prime time hours, all advertisers prefer to advertise 

during prime time as compared to advertising during non-prime time hours.  Therefore, the prime 

time product offered is more attractive than the non-prime time product.  This natural ordering of 

the advertising products offered by the broadcaster implies that, given suitably low prices for the 

three products, all advertisers prefer the non-prime time product to no advertising, the prime time 

product to the non-prime time product, and the bundle to the prime time product.  In the bundling 
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context, this type of preference ordering between the components does not always exist.  Indeed, 

the traditional bundling literature has focused on independently valued products (Adams & 

Yellen, 1976; Bakos & Brynjolfsson, 1999; McAfee, et al., 1989; Schmalensee, 1984) or 

assumed that the bundle consists of substitutable or complementary components (Venkatesh & 

Kamakura, 2003).  Products are independently valued if the reservation price of the bundle is the 

sum of the reservation prices of the components.  When the relationship is complementary, the 

reservation price of the bundle may exceed the sum of the reservation prices of its components 

(Guiltinan, 1987), and when the components are substitutable, the bundle’s reservation price may 

(though not necessarily) be lower than the sum of the reservation prices of the parts.  (Marketers 

may still offer the bundle to exploit market segmentation benefits, and because the variable cost 

of the bundle may be a subadditive function of the component variable costs.)  Substitutable 

products may (as in the case of a slower versus a faster computer system) or may not (Coke 

versus Pepsi, or a slower versus a faster automobile) be amenable to a universally consistent 

ordering.  Regardless, independent and complementary products clearly lack the natural ordering 

that we see for television advertising, where all advertisers prefer prime time advertising to non-

prime time advertising. 

This type of ordering in the advertisers’ preferences also exists in some other 

commercially important practical situations.  Radio or news magazine advertising are obvious 

examples.  Additionally, in online advertising, advertisers prefer placing an advertisement on the 

front page of a website to placing it on a lower ranking page.  Billboard advertising also exhibits 

this relationship.  Here, placing a billboard advertisement featured along an interstate highway is 

preferred to placing the same advertisement on a secondary road, where the exposure to the 

advertisement may be more limited.  While in this paper we use television advertising as a 
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prototypical example, our model and results apply to other situations that exhibit the preference 

ordering.  As we will see, this preference ordering in the products leads to some counter-intuitive 

and insightful results. 

Another distinctive feature of our research concerns the total amounts of each type of 

advertising time available for sale.  As is the case in practice, we assume that these amounts are 

limited, and investigate how the broadcast network’s decisions change as the availabilities 

change.  In contrast, previous bundling literature has not modeled resource availabilities. 

This chapter is organized as follows.  Section 3.2 discusses our modeling assumptions 

and develops a nonlinear pricing model for a bundling situation when the resources have limited 

availability.  The output from this model is a set of optimal product prices that automatically 

segments the market, and correspondingly sets the fraction of the market that is covered by each 

product.  Advertisers decide on the product they wish to purchase based on the prices they are 

offered and their willingness to pay—which in turn depends on the “efficiency” with which they 

can generate revenues from viewers of their advertisements.  In Section 3.3, assuming that the 

distribution of the advertiser’s efficiency parameter (which measures the effectiveness with 

which the advertiser translates viewers into revenue) is uniform, we analyze the properties of the 

optimal prices, and shadow prices.  Interestingly, the tightness and the relative tightness of the 

advertising resources plays a pivotal role in not only affecting the product prices but also 

influencing whether or not to offer the bundle, and if the bundle is offered, the type of bundling 

strategy to adopt.  When prime and non-prime time resource availability is unconstrained, the 

broadcaster offers only the bundle.  On the other hand, the broadcaster offers the bundle in 

conjunction with some components only when there is “enough” prime and non-prime time 

advertising resource.  We also analyze the shadow prices of advertising resources, and evaluate 
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how the broadcast network should focus its quality improvement efforts to improve total 

revenue.  Due to bundling, the shadow price of the prime time resource (non-prime time 

resource) can decrease or remain the same even when its availability is kept unchanged but the 

availability of only the non-prime time resource (prime time resource) is increased.  Our analysis 

shows that when the relative availability of the two resources is comparable, it always makes 

more sense for the network to improve the ratings of the prime time product.  This section also 

explores the value of bundling.  Section 3.4 relaxes two of the assumptions in our original model.  

Using specific instances from the Beta family of distributions to model the density function of 

advertiser efficiencies, we show numerically that the general nature of our conclusions is quite 

robust.  We also investigate how to implement, and the impact of, a generalization of the 

definition of the bundle to allow for an unequal mix in its constituent components.  Section 3.5 

concludes the chapter by identifying some future research directions. 

3.2 THE GENERAL MIXED BUNDLING MODEL 

A monopolist television broadcasting network, which we refer to as the broadcaster, considers 

offering for sale on the scatter market its available advertising time, that is, its advertising 

inventory.  This inventory is of two types: prime time and non-prime time.  The availability of 

both of these inventories, which we interchangeably refer to also as resources, is fixed, with qP 

denoting the amount of advertising time available during prime time hours, and qN denoting the 

amount of advertising time available during non-prime time hours.  The broadcaster’s objective 

is to maximize the total revenue it generates from selling its inventory.  As in the information 

goods situation in Bakos and Brynjolfsson (1999), we can assume that the variable costs of both 
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resources is zero for our situation, and so maximizing the revenue is equivalent to maximizing 

the contribution.  In order to do so, the broadcaster sells three products corresponding to selling 

one unit of each of the two resources separately, and selling a bundle which consists of one unit 

of each resource. 

The market consists of advertisers interested in purchasing advertising time from the 

broadcaster.  In line with the bundling literature (Adams & Yellen, 1976; Schmalensee, 1984), 

we assume that the marginal utility of a second unit of a product is zero for all advertisers.  

Advertisers have a strict ordering of their preferences: They consider advertising during non-

prime time to be more desirable than not advertising, prime time advertising to be more desirable 

than non-prime time advertising, and the bundle that combines both prime and non-prime time 

advertising to be the most desirable.  This preference is a consequence of prime time ratings 

being higher than non-prime time ratings.  We designate the ratings of the non-prime time, prime 

time, and the bundle options by α, β, and γ, respectively, where, 0 < α < β < γ.  We also assume 

that the relationship between the ratings is “concave” in nature, that is, α + β ≥ γ.  This 

assumption is reasonable because of diminishing returns seen in advertising settings: in this case, 

the same individual might see an advertisement shown during both prime and non-prime time 

periods, and so the rating of the bundle is less than the sum of the ratings of the prime and non-

prime advertisements. 

Advertisers differ in their willingness to pay for the three advertising products due to 

their varied ability to translate eyeballs into purchase decisions of viewers and the consequent 

profits.  Advertisers who are more successful in generating higher profits have a greater 

willingness to pay for the more desirable products—which are also more expensive.  We 

designate by the parameter t the intrinsic efficiency of an advertiser to generate profits out of 
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advertisements, and assume that this efficiency is distributed on the unit interval according to 

some probability density function f(t) and cumulative distribution function F(t).  The willingness 

to pay of an advertiser with efficiency t for an advertisement placed in time period i is thus equal 

to it r× , where ri is the rating of the ith product, i equal to prime, non-prime or the bundle. 

Given the above distribution of the efficiency parameter of advertisers and their 

willingness to pay function, an optimal strategy for the broadcaster segments the population of 

advertisers into at most four groups as described in Figure 1, with the thresholds T*, T**, and 

T*** demarcating the different market segments.5  With this strategy, advertisers in the highest 

range of efficiency parameters (interval [T*, 1]) choose to purchase the bundle.  Those in the 

second highest range of efficiency parameters (interval [T**, T*)) choose to advertise during 

prime-time.  Those in the third highest range (interval [T***, T**)) choose the non-prime 

product, and those in the lowest range refrain from advertising altogether.  An interval of zero 

length implies that it is not optimal for the broadcaster to offer the corresponding product.  The 

values of the threshold parameters T*, T**, and T*** are determined to guarantee that the 

advertiser located at a given threshold level is indifferent between the two choices made by the 

advertisers in the two adjacent intervals separated by this threshold parameter. 

  

                                                 

5 The willingness to pay function satisfies the “single crossing property” and therefore facilitates segmentation and 

guarantees the uniqueness, as well as the monotonicity (0 < T*** < T** < T* < 1) of the thresholds. 
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Figure 1. Market segmentation 

 

To set up the model we define the selling prices for the bundle, prime, and non-prime products 

by pB, pP and pN, respectively.  The revenue optimization with mixed bundling model (ROMB), 

from the broadcaster’s perspective, is: 

[ROMB] 
* **

* ** ***

1

, , 0
max ( ) ( ) ( )

B P N

T T

B P NT T Tp p p
p f t dt p f t dt p f t dtπ

≥
= + +∫ ∫ ∫  (3.1) 

subject to: 

  ,B P Np p p≤ +  (3.2) 

 
*

* **

1
( ) ( ) ,  and

T

PT T
f t dt f t dt q+ ≤∫ ∫  (3.3) 

 

**

* ***

1
( ) ( ) .

T

NT T
f t dt f t dt q+ ≤∫ ∫  (3.4) 

 

The broadcaster’s revenue from a market segment equals its size multiplied by the price of the 

product it corresponds to; the total revenue, π, in the objective function (3.1) is the sum of the 

revenues from each of the three segments that the broadcaster serves.  Constraint (3.2), the 

bundle “survivability” constraint, prevents arbitrage opportunities for an advertiser to compose a 
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bundle by separately buying a prime and a non-prime time products separately.6  Constraints 

(3.3) and (3.4) model the limited prime and non-prime time available. 

Advertisers self-select their purchases (or they may decide to not purchase any of the 

offered products) based on their willingness to pay and the product prices.  (See Moorthy (1984), 

for an analysis of self-selection based market segmentation.)  Consider the difference between an 

advertiser’s willingness to pay and the price of the product he7 purchases.  This difference equals 

the premium the advertiser derives from the purchase.  An advertiser will purchase a product 

only if his premium is nonnegative.  Moreover, an advertiser will be indifferent, say, between 

buying only prime time and buying a bundle consisting of prime and non-prime time, if he 

extracts the same premium from either purchase.  The following relationships between the 

purchasing premiums are invariant boundary conditions, regardless of the efficiency distribution 

f(t). 

 * * * ,B P
B P

p pT p T p Tγ β
γ β

−
− = − ⇔ =

−
 (3.5) 

          ** ** ** ,  andP N
P N

p pT p T p Tβ α
β α

−
− = − ⇔ =

−
 (3.6) 

          *** ***0 .N
N

pT p Tα
α

− = ⇔ =  (3.7) 

Notice that the non-negativity of the thresholds implies 

 ,P Bp p≤  and (3.8) 

 .N Pp p≤  (3.9) 

                                                 

6 Unless a systematic secondary market exists, an intermediary cannot purchase a bundle and then sell its 

components individually at a profit.   
7 Where necessary, we use masculine gender for the advertiser and feminine gender for the broadcaster.   
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Moreover, it is easy to see that pN, as well as the premium for customers in each of the three 

categories, is nonnegative. 

Before we analyze the situations that arise when at least one of the capacity constraints is 

binding, Proposition 3.1 considers the case when neither capacity constraint is binding. 

 

Proposition 3.1.  If the prime and non-prime resource availability is sufficiently high, the 

optimal strategy for the broadcaster is pure bundling.  The corresponding optimal threshold is 

the fixed point of the reciprocal of the hazard rate function of the distribution of advertisers, that 

is, ( )( ) ( )* * *1T F T f T= − . 

 

The following corollary uses Markov’s inequality to establish an upper bound on the 

optimal revenue when the problem is not constrained by the inventory availability. 

 

Corollary 3.2.  An upper bound on the broadcaster’s total revenue π is [ ]Tγ E , where 

[ ]TE  is the expected value of the efficiency, t.  The actual revenue collected under the pure 

bundling strategy is ( )( ) ( )2* *1 F T f Tγ − . 

Proof of Proposition 3.1 and Corollary 3.2: Consider the total revenue gained by the 

monopolist: 

( ) ( ) ( ) ( ) ( )* * ** ** ***1 .B P Np F T p F T F T p F T F Tπ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

We will derive first the conditions for the concavity of the revenue function.  Let K1 = 

2f(T*)+T*f’(T*), K2 = 2f(T**)+T**f’(T**), and K3 = 2f(T***)+T*f’(T***), with 0 < T*,T**,T*** 

< 1.  The Hessian matrix H associated with the revenue function is 
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1 1

1 1 2 2

32 2

0

.

0

K K

K K K KH

KK K

γ β γ β

γ β γ β β α β α

β α β α α

⎡ ⎤
−⎢ ⎥− −⎢ ⎥

⎢ ⎥
= − −⎢ ⎥− − − −⎢ ⎥

⎢ ⎥
− −⎢ ⎥− −⎣ ⎦

 

Let x = [x1 x2 x3] be a three dimensional real-valued vector. The product xTHx is equal to: 

( ) ( )2 2 231 2
1 2 2 3 3 .T KK Kx Hx x x x x x

γ β β α α
= − − − − −

− −
 

Hence, the Hessian matrix is negative semi-definite, and therefore the revenue function is 

concave and admits a local maximum, as long as K1, K2 and K3 are non-negative.  The non-

negativity assumption on K1, K2 and K3 is satisfied by a large class of probability density 

functions bounded on the [0, 1] domain, including the Beta distribution, of which the uniform 

distribution is a special case (Johnson, Kotz, & Balakrishnan, 1994). 

We will now use the first order KKT conditions to show that this local maximum is, in 

fact, unique, and therefore global.  Noticing, for example, that 

( ) ( ) ( )

( ) ( )

( ) ( )

* *
*

* *

* * *

1

1

1 ,

B P
B B B

B P

dF T dF T
F T p p

p dp dp

p pF T f T

F T T f T

π

γ β

⎛ ⎞ ⎛ ⎞∂ ⎡ ⎤ ⎜ ⎟ ⎜ ⎟= − + − + −⎣ ⎦ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠
−⎡ ⎤= − −⎣ ⎦ −

⎡ ⎤= − −⎣ ⎦

 

we can complete the rest of  the first order conditions associated with problem ROMB: 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* * *

* ** * * ** **

** *** ** ** *** ***

1 0

0

0.

F T T f T

F T F T T f T T f T

F T F T T f T T f T

− − =

− + − =

− + − =
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Let the hazard rate function h(t) be defined as h(t) = f(t) / [1 – F(t)].  From the first equation, we 

obtain the value of threshold T* to be equal to the fixed point of the inverse of the hazard rate 

function, that is, T* = [1 – F(T*)] / f(T*).  Substituting into the remaining equations, we obtain, 

similarly, that T** = [1 – F(T**)] / f(T**), and T*** = [1 – F(T***)] / f(T***).  Brouwer’s fixed 

point theorem guarantees the existence of at least one such point; however due to the 

monotonicity of the hazard rate function, we can see that the solution must be unique, that is, T* 

= T** = T***. 

Since all thresholds are equal, it follows that the monopolist will only offer the bundle, 

cover the segment ( )*1 F T− , and collect total revenues ( )* *1T F Tπ γ ⎡ ⎤= −⎣ ⎦ .  Using Markov’s 

inequality, we can find an upper bound on the profit value as follows: 

( ) [ ] ( ) [ ] [ ]* * * *
* *Pr Pr .
T T

t T T t T T T
T T

γ γ π γ> ≤ ⇔ > ≤ ⇔ ≤
E E

E □ 

 

The result in Proposition 3.1 seems to contradict previous bundling literature (McAfee, et al., 

1989; Schmalensee, 1984) which demonstrates that the mixed bundling strategy weakly 

dominates both the pure bundling and pure components strategies.  However, a critical difference 

between our model and previous work is that the advertisers have a common preferred ordering 

of the three products.  In contrast, the previous research stream does not assume any such 

ordering of the products.  Since the bundle is the most desirable option for every advertiser, the 

broadcaster offers only the bundle when the available prime and non-prime advertising time is 

unconstrained.  This unconstrained case is unlikely to arise in reality, since all broadcasters are 

usually heavily constrained by the prime time resource availability. 
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In the next section we derive the analytical solution of the constrained optimization 

problem under the simplifying assumption that the efficiency parameter of advertisers is 

uniformly distributed.  In Section 3.4, we extend the results numerically using a Beta 

distribution. 

3.3 REVENUE MAXIMIZING STRATEGIES WHEN CAPACITY IS BINDING 

Clearly, the capacity constraints in the ROMB model play a significant role in determining the 

broadcaster’s optimal strategy.  Particularly, the relative scarcity of the two resources, prime time 

and non-prime time, is the main driver of the analysis.  In the television advertising market, the 

prime time resource availability constraint (3.3) is far more likely to be binding than the non-

prime time resource availability constraint (3.4).  Prime time on television is usually the slot 

from 8:00 pm until 11:00 pm Monday to Saturday, and 7:00 pm to 11:00 pm on Sunday.  Hence, 

the ratio of prime to non-prime time availability is about 1:8 (or 1:6 on Sunday).  In other media 

markets, the relative scarcity of the non-prime time constraint may also become an issue.  For 

instance, in the billboard advertising market, the “non-prime time” resource is the limited 

availability of billboards on secondary roads (which are less traveled), whereas the “prime time” 

is the extensive availability of billboard advertisement space on major roads (which have more 

travelers).  In such a market, it is the “non-prime time” capacity that is more likely to be binding.  

Finally, in internet advertising both types of capacity constraints may be binding.  Each website 

has limited space for banner advertisements irrespective of whether it is the front page (“prime 

time”) or a secondary page (“non-prime time”).  In this section, we specify the distribution of the 

efficiency parameter of advertisers to be uniform and identify the impact of the two capacity 
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constraints on the type of strategy followed by the broadcaster.  We find that the following 

strategies can arise as the optimal solution of ROMB: no bundle is offered, that is, the pure 

components strategy, PC; only the bundle is offered, that is, the pure bundling strategy, PB; the 

bundle, as well as each separate time product is offered, that is, the full spectrum mixed bundling 

strategy, MBPN; the bundle and the prime time product are offered, that is, the partial spectrum 

mixed bundling strategy, MBP; the bundle and the non-prime time product are offered, that is, 

the partial spectrum mixed bundling strategy, MBN.  Throughout the remainder of the paper we 

will refer to these abbreviations. 

In our derivations, we will demonstrate that the optimal strategy critically depends upon 

the relative availability of qP and qN.  We will show that, for instance, that the MBN strategy is 

optimal when qP is scarce relative to qN, and the MBP strategy arises in the opposite case.  The 

MBPN strategy is the optimal strategy when the ratio of qP to qN is close to one, but they are both 

sufficiently large. 

We will also show that the characterization of the solution when the partial spectrum 

mixed bundling strategies (MBP or MBN) are optimal is further contingent upon the overall 

availability of the more abundant resource.  Specifically, even though the strategy itself, say 

MBP, remains the same, the solution characteristics (product prices and the shadow prices of the 

resources) depend on whether qP is less than or greater than a half.  Similarly, the characteristics 

of the solution corresponding to MBN depend on whether qN is less than or greater than a half.  

To distinguish between these two cases, we designate by MBP + and MBP − the partial spectrum 

mixed bundling strategies when qP is greater than and when qP is less than a half, respectively.  

We define the subcategories MBN + and MBN − of MBN in a similar manner depending on the 

availability of qN. 
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Figure 2 depicts the regions corresponding to the various strategies that we discussed 

above.  For the uniform distribution, the unconstrained solution that we described in section 3.2 

arises when qP and qN are both at least a half.  In this case, at the optimal solution, the 

broadcaster never sells more than an aggregate quantity of one, split equally between the prime 

and non-prime advertising times.  To depict the constrained solution, therefore, in Figure 2, we 

restrict attention only to the case when qP + qN ≤ 1.  The unconstrained solution in the figure is 

designated by the point, PB, where qP = qN = ½.  The boundaries for the regions in Figure 2 will 

be explained in detail once the solution to model ROMB is derived.    

1
2 2

γ β
α
−

−

1
2 2

γ β
α
−

−

1
2

1
2

1

1

 
Figure 2. Representation of the optimal strategies 

 
Replacing the general distribution by a uniform distribution in the model ROMB yields the 

following model, which we refer to as ROMB_U. 

[ROMB_U] max 1 P N P N NB P B P
B P N

p p p p pp p p pp p pπ
γ β γ β β α β α α

⎛ ⎞ ⎛ − ⎞ ⎛ − ⎞− −
= − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(3.10) 

subject to:  
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        ( ) 0,B P Np p p− + ≤  (3.11) 

 1 ,  andP N
P

p p q
β α

−
− ≤

−
 (3.12) 

   1 .P N NB P
N

p p pp p q
γ β β α α

−−
− + − ≤

− −

 

 (3.13) 

 

It is easy to see that the solution to the unconstrained case (when qP ≥ ½ and qN ≥ ½) is pB = γ/2, 

pP = β/2, and pN = α/2.  This solution guarantees that only pure bundling arises since T* = T** = 

T*** = ½, and the broadcaster’s revenues are γ/4.  Note that this solution also guarantees that the 

arbitrage constraint pB ≤ pP + pN is satisfied since γ ≤ α + β by the concavity assumption. 

3.3.1 Characterization of the different strategies 

We now discuss the characterization of the constrained case.  Proposition 3.3 describes the 

boundaries of the regions corresponding to the different strategies depicted in Figure 2, and 

Propositions 3.4 and 3.5 derive the optimal product and the shadow prices, respectively.  

  

 
Proposition 3.3.  The optimal strategies as a function of the availability of qP and qN are 

as follows: 

(i) The pure component strategy, PC, is optimal if  

10 .
2 2N Pq q γ β

α
−

< + < −  

(ii) The full spectrum mixed bundling strategy, MBPN, is optimal if 

1 2 .
1 2

N

P

q
q

γ β α
α γ β

−−
≤ ≤

− −
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(iii) The partial spectrum mixed bundling strategies, MBN − and MBN +, are optimal if 0< 

qP < ½, and  

1 2 1a.     ,
1 2 2

1b.    .  
2

N
N

P

N

q and q for MBN
q

q for MBN

γ β
α

−

+

− −
< <

−

≥
 

(iv) The partial spectrum mixed bundling strategies, MBP − and MBP +, are optimal if 0 < 

qN < ½ and 

1 2 1a.     ,
1 2 2

1b.    .  
2

N
P

P

P

q and q for MBP
q

q for MBP

α
γ β

−

+

−
> <

− −

≥
 

(v) The pure bundling strategy, PB, is optimal at a single point qP = qN = ½. 

Proof:  In Proposition 3.1 we have established that the objective function of ROMB is 

concave.  In particular, the ROMB_U model is a concave quadratic optimization program with 

linear constraints; therefore the first-order KKT conditions are both necessary and sufficient.  

The proof is straightforward once the first order conditions are expressed under the capacity 

scenario that both capacity constraints are binding and enforcing the increasing monotonicity of 

the thresholds.  Optimizing ROMB_U under the assumption that both capacity constraints are 

binding, and solving for the optimal thresholds, we get: 

( )

( )

*

**

***

1 1
2
1
1 1 .
2

P N

P

P N

T q q

T q

T q q

α
γ β α

γ β
γ β α

= + − −
− +

= −
−

= + − −
− +

 

In order to maintain consistency, the thresholds must be ordered on the [0, 1] line segment, that 

is 0 < T*** < T** < T* < 1 (this ordering is due to the single crossing property of the willingness 

to pay function).  For example, the last inequality is equivalent to the following: 
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( )* 11 1
2

1
2

1 .
2 2

P N

P N

P N

T q q

q q

q q

α
γ β α

γ β α
α

γ β
α

≤ ⇔ − − ≤
− +

− +
⇔ − − ≤

−
⇔ + ≥ −

 

The bundle is not offered when equality holds, therefore condition (i) from the proposition 

follows naturally.  Similarly, we can examine the remaining inequalities: 

( )

( )

( )

( )

** *

*** **

11
2

, and
2

11
2

.
2

P P N

P N

P P N

P N

T T q q q

q q

T T q q q

q q

α
γ β α

γ β αγ β α

γ β
γ β α

γ β αα γ β

≤ ⇔ + − − ≥
− +

− −
⇔ − − ≥

−
≤ ⇔ + − − ≤

− +
− −

⇔ + − ≤

 

Combining the two inequalities gives us condition (ii).  Conditions (iii) and (iv) emerge from (ii) 

with the additional observation that a capacity constraint is non-binding if and only if the 

corresponding capacity is greater than ½ (Proposition 3.1 with F(t) = t and f(t) = 1).  Finally, 

using again Proposition 3.1 with F(t) = t and f(t) = 1, we obtain T* = T** = T*** = ½ and the 

substitution into both capacity constraints yields condition (v). □ 

 

According to Proposition 3.3 when the available aggregate capacity is small (lower than 

1
2 2

γ β
α
−

− ), the broadcaster follows a pure component strategy where each advertiser can choose 

between advertising on prime time or on non-prime time but not both.  Offering the bundle is 

suboptimal in this case given the extreme scarcity of the advertising time availability.  When the 

aggregate capacity is larger than 1
2 2

γ β
α
−

− , and the discrepancy between the capacities available 
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on prime time and non-prime time is relatively moderate (that is, 1 2
1 2

N

P

q
q

γ β α
α γ β

−−
≤ ≤

− −
), it is 

optimal for the broadcaster to choose full segmentation of advertisers by offering all three 

different products.  Notice that the size of the region expands as the relationship between the 

ratings parameters becomes more concave (that is, the fraction ( )γ β α−  becomes smaller.)  On 

the other hand, the MBPN region becomes smaller as ( )γ β α−  becomes larger, that is, as γ − β 

approaches α.  In the extreme case, when γ − β equals α (that is, the ratings are additive), the 

MBPN region becomes a line (and the PC region disappears).  In this case, the MBPN strategy 

applies only when qP = qN.  This is obvious since the ratings of the bundle exactly equal the sum 

of the prime and non-prime ratings. 

When the availability of the non-prime time resource is much greater than that of the 

prime time resource (1 2
1 2

N

P

q
q

γ β
α

− −
<

−
), the broadcaster offers both the non-prime product and the 

bundle.  Conversely, when the availability of the prime time resource is much bigger than that of 

the non-prime time ( 1 2
1 2

N

P

q
q

α
γ β

−
<

− −
), the broadcaster offers a choice between advertising just 

on prime time or buying a bundle.  With significant abundance of one resource relative to the 

other, it pays to utilize the entire capacity of the more scarce resource as part of the bundle.  

Since advertisers have a higher willingness to pay for the bundle than for each component sold 

separately, the broadcaster uses the entire capacity of the scarcer resource in the form of the 

product that can command a higher price.  Any remaining quantity of the more abundant 

resource, not sold as part of the bundle, is offered separately to the customers.  According to part 

(v) of the Proposition, pure bundling arises only when the capacity of each category is large 

enough to obtain the solution of the unconstrained optimization (equal to ½).  Notice, in fact, that 
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the scarcity of the two resources, which determines the boundaries of the regions in Figure 2, is 

expressed in terms of (1−2qN) and (1−2qP).  These expressions measure the extent to which the 

individual capacities fall short of the unconstrained optimal value of ½. 

3.3.2 Optimal product prices and shadow prices 

Having studied how and why the differing relative availabilities of the prime and non-prime time 

resources impact the regions where the different strategies apply, we now investigate the optimal 

pricing structure under the different strategies. 

 

Proposition 3.4.  The optimal prices charged by the broadcaster in the different regions 

of Figure 2 are those listed in Table 1. 

Proof:  Just like the proof of Proposition 3.3, we use the fact that the first order 

conditions are both necessary and sufficient.  Additionally, the invariant boundary conditions 

(3.5) – (3.7) establish the relationships between thresholds and prices.  For example, under the 

case of both capacity constraints binding, we derive the optimal price for the non-prime time 

product: 

( )
( ) ( )

*** ***

***

0
1 .1 21

2

N N

N P N
P N

T p p T
p q q

T q q

α α
α γ βα

γ β γ β α
γ β α

⎫− = ⇔ =
−⎪ ⇒ = + − −− ⎬

− += + − − ⎪− + ⎭

 

Similarly we obtain the remaining prices as 

( ) ( ) ( )

( ) ( ) ( )

1 1
2 2 2

21 1 .
2 2 2

P P N

B P N

p q q

p q q

β γ β α β α α γ ββ
γ β α γ β α

β γ β α γ α α γ βγ
γ β α γ β α

− + − −⎛ ⎞ ⎛ ⎞= + − + −⎜ ⎟ ⎜ ⎟− + − +⎝ ⎠ ⎝ ⎠
− + − −⎛ ⎞ ⎛ ⎞= + − + −⎜ ⎟ ⎜ ⎟− + − +⎝ ⎠ ⎝ ⎠

 



 47 

The other cases follow the same argument and are derived in an identical fashion. □ 

 

It is noteworthy that ignoring the arbitrage constraint (3.11) (that is, B P Np p p≤ + ) and 

solving for the optimal prices yields a solution that automatically satisfies the constraint except 

possibly in the MBN + and the MBP + regimes.  If α < 2(γ − β) (that is, when the concavity of the 

ratings parameters is moderate), the constraint might be violated when ( )/ 2( )Pq α γ β< −  under 

MBN + or ( )/ 2( )Nq α γ β< −  under MBP +.  Since the arbitrage constraint is binding in this case, 

incorporating it (that is, setting P B Np p p= −  under MBN + or N B Pp p p= −  under MBP +) still 

results in the desired outcome for the broadcaster.  Specifically, no advertiser chooses to buy the 

prime time product under MBN + or the non-prime time product under MBP +.  

In Proposition 3.5, we solve for the Lagrange multipliers of the resource constraints.  

This analysis provides the foundation for our subsequent investigation into the relative marginal 

values of the two resources. 
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Table 1. Optimal prices for the ROMB_U model 

STRATEGY OPTIMAL PRICES 

PC ( )
( )
1

1

B P N

P P N

N P N

p q q
p q q

p q q

γ β α
β α

α

= − −

= − −

= − −

 (3.14)

MBPN 

( ) ( ) ( )

( ) ( ) ( )

( )

21 1
2 2 2

1 1
2 2 2

1 1
2 2 2

B P N

P P N

N P N

p q q

p q q

p q q

β γ β α γ α α γ βγ
γ β α γ β α

β γ β α β α α γ ββ
γ β α γ β α

α γ βα
γ β α

− + − −⎛ ⎞ ⎛ ⎞= + − + −⎜ ⎟ ⎜ ⎟− + − +⎝ ⎠ ⎝ ⎠
− + − −⎛ ⎞ ⎛ ⎞= + − + −⎜ ⎟ ⎜ ⎟− + − +⎝ ⎠ ⎝ ⎠
− ⎡ ⎤⎛ ⎞ ⎛ ⎞= + − + −⎜ ⎟ ⎜ ⎟⎢ ⎥− + ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3.15)

MBN − 

( ) ( )
( ) ( )
( )

1

1

1

B P N P

P P N P

N N

p q q q

p q q q

p q

γ α

β α

α

= − − −

= − − −

= −

 (3.16)

MBN + 

( )

( ) ( )

1
2 2

1 1max ,
2 2 2 2

2

B P

P P P

N

p q

p q q

p

γ γ α

β γ αβ α γ α

α

⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

⎧ − ⎫⎛ ⎞ ⎛ ⎞= + − − + − −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

=

 (3.17)

MBP − 

( ) ( )
( )
( )

1

1

1

B N P N

P P

N P

p q q q

p q

p q

γ β

β

α

= − − −

= −

= −

 (3.18)

MBP + 

( )

( )( )

1
2 2

2

max , 1
2

B N

P

N N

p q

p

p q

γ γ β

β

α γ β

⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

=

⎧ ⎫= − −⎨ ⎬
⎩ ⎭

 (3.19)
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Proposition 3.5.  The shadow prices of the resources in the different regions are 

specified as follows: 

STRATEGY OPTIMAL SHADOW PRICES  

PC 
( )
( )
1 2 2

1 2 2
P P N

N P N

q q

q q

λ β α

λ α

= − −

= − −
 (3.20)

MBPN 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 1 2

2
1

P P N

N P N

q q

q q

β γ β α β α α γ β
λ

γ β α γ β α
α γ β

λ
γ β α

− + − −
= − + −

− + − +

−
= − −

− +

 (3.21)

MBN − 
( )( )

( )
1 2

1 2
P P

N N

q

q

λ γ α

λ α

= − −

= −
 (3.22)

MBN + 
( )( )1 2
0

P P

N

qλ γ α
λ

= − −

=
 (3.23)

MBP − 
( )

( )( )
1 2

1 2
P P

N N

q

q

λ β

λ γ β

= −

= − −
 (3.24)

MBP + ( )( )
0

1 2
P

N Nq
λ
λ γ β

=

= − −
 (3.25)

Proof:  The proof relies on the first order conditions and solving for the Lagrange 

multipliers. □ 

 

To understand the relationship between the shadow prices that we report in Proposition 

3.5, and the product prices in Proposition 3.4, note that the availability of one additional unit of a 

scarce resource results in both a direct effect of generating additional revenues from the sale of 

this unit (perhaps, partly separately and partly in the bundle), and an indirect effect of depressing 

the prices that the broadcaster can charge for the products.  For instance, the availability of an 

additional unit of the prime time resource, when the strategy PC is employed, has the direct 

effect of generating extra revenues equal to pP and an indirect effect of reducing the price of the 
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prime time product at the rate of β and the price of the non-prime time resource at the rate of α.  

Hence, .P P P Np q qλ β α= − −   Substituting for pP from Proposition 3.4 yields the expression for 

λP reported in (20).  The explanation for the shadow price of the non-prime resource, λN, is 

similar.  For the MBPN strategy, establishing the relationship between shadow prices and 

product prices is a bit more complicated since an additional unit of the scarce resource is 

partially allocated to the bundle and partially sold separately.  Specifically, an additional unit of 

the prime time resource is allocated to the bundle at the rate of α/(γ − β + α) and is sold 

separately at the rate of (γ − β )/(γ − β + α).  Hence an additional unit of prime time resource 

generates direct extra revenues equal to α/(γ − β + α) pB + (γ − β )/(γ − β + α) pP.  The extra unit 

depresses prices according to Proposition 3.4 as follows: 

• the price pB at the rate of ( ) ( )( )( ) ( ) /γ β α β α β α γ β α− + + − − + ,  

• the price pP at the rate of ( )( ) ( ) / ( )β γ β α β α γ β α− + − − + , and 

• the price pN at the of ( ) / ( )α γ β γ β α− − + . 

Combining the direct and indirect effects yields the desired expression for λP in (3.21), 

and similarly for λN.  We observe that an increase in either the prime or the non-prime time 

resource availability lowers the optimal prices of all three products even though the broadcaster 

offers a lower amount of the prime time product when qN increases and of the non-prime time 

product when qP increases.  An argument that combines the direct and indirect effect similarly 

applies for the expressions (3.22) – (3.25).   
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3.3.3 Relative shadow prices 

The shadow prices in Proposition 3.5 measure the extra cost the broadcaster might be willing to 

incur in order to obtain one additional unit of the scarce resource.  In the case of television 

advertising, an increase in the available advertising time comes at the expense of programming 

time, and thus can potentially decrease the ratings and hence the advertiser’s profits.  The 

shadow prices in Proposition 3.5 provide an upper bound on the reduction in ratings that the 

broadcaster might be willing to tolerate in order to increase advertising time by one unit. 

A related question that arises is how much more, or less, valuable to the broadcaster an 

additional unit of prime time is vis-à-vis an additional unit of non-prime time.  In addition, how 

does this comparison change as we move from one regime to another?  We summarize this 

comparison in Corollary 3.6. 

 

Corollary 3.6.  The shadow price of a unit of the prime time resource is greater than a 

unit of non-prime time resource if the strategies PC, MBPN, and MBN (both MBN − and MBN +) 

are optimal.  If strategy MBP is optimal, an extra unit of the non-prime time resource may 

become more valuable than an extra unit of the prime time resource.  Specifically, the difference 

λP − λN for the different regions is as follows: 

STRATEGY DIFFERENCE IN THE  OPTIMAL SHADOW PRICES  

PC ( )( )1 2 Pqβ α− −  (3.26)

MBPN ( )( )1 2 Pqβ α− −  (3.27)

MBN − ( )( ) ( )1 2 1 2P Nq qγ α α− − − −  (3.28)

MBN + ( )( )1 2 Pqγ α− −  (3.29)

MBP − ( ) ( )( )1 2 1 2P Nq qβ γ β− − − −  (3.30)

MBP + ( )( )1 2 Nqγ β− − −  (3.31)
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Proof:  Follows immediately from Proposition 3.5 by taking the difference between the 

Lagrange multipliers for the prime and non-prime time capacity constraints. □ 

 

To illustrate how the relative availability for the two resources affects the relative shadow 

prices, consider a value of ( ) ( )1 2 2Pq γ β α< − − .  We select this choice of qP because the 

available prime time inventory is typically relatively low, and  as we gradually increase the value 

of qN, the optimal strategy shifts, according to Figure 2, from PC to MBPN to MBN − and finally 

to MBN +.  We can do a similar analysis for the case ( ) ( )1 2 2 1 2Pqγ β α− − < < .  Selecting a 

value of qP greater than or equal to a half does not result in a change in strategies as we increase 

the value of qN, and so a similar analysis is not interesting in that case.  Figure 3 depicts the 

relative shadow prices of the two resources when considering such an increase in qN.  (The solid 

dots in this and subsequent figures represent a shift in the strategy.) 

1
2 2 Pqγ β

α
−

− −
1
2 2 Pqγ β γ β

α α
− −

− +

( )( )1 2 Pqβ α− −

( )( ) ( )2
1 2 P

P

q
q

α γ β
β α

γ β α
−

− − +
− +

( )( )1 2 Pqγ α− −

P Nλ λ−

Nq1
2

 

Figure 3. Relative shadow prices of the resources for any  
1

2 2Pq
γ β

α

−
< −
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The shadow price of the prime time resource is higher than that of the non-prime time resource 

since the broadcaster can charge higher prices from advertisers choosing to place advertisements 

on prime time.  This higher price is proportional to the difference in the ratings of the prime and 

non-prime time products.  Indeed, under the PC and MBPN regimes, the difference in the 

shadow prices is proportional to (β − α), which measures the difference in ratings between the 

pure components.  Interestingly, the added segmentation of advertisers that is facilitated by 

bundling under MBPN, does not enhance the relative shadow price of the prime time resource.  

The reason for this result is that an additional unit of either resource is allocated in the same 

proportion towards the bundle, thus maintaining the relative desirability of the two resources to 

the broadcaster irrespective of whether full segmentation is feasible or not.  Under MBN + 

regime, the difference in the shadow prices of the two resources is proportional to (γ − α), since 

this regime occurs under the extreme scarcity of the prime time resource, and each additional 

unit of the prime time resource is used only in the bundle, thus yielding the extra rating of γ 

rather than β. 

A similar allocation of an extra prime time unit is optimal under MBN − also.  However, 

since there are no unused units of the non-prime time resource under this regime, each additional 

unit of the prime time that is sold requires directing a non-prime time unit from being sold as an 

independent component.  As a result, the shadow price of the prime time resource under MBN − is 

not as high as it is under MBN +.  Under MBN −, the difference λP − λN is an increasing function 

of qN, or alternatively, since qP is fixed for this analysis, an increasing schedule of the relative 

scarcity of the prime-time resource, until it reaches its maximum value when qN = ½, and the 

MBN + region is reached.  Note also that a bigger value of qP reduces the difference λP − λN for 
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all regimes.  Hence, as the prime time becomes less scarce, its importance relative to the non-

prime time resource declines. 

3.3.4 Incentives for improving the programming quality 

We can now use the characterization of the optimal solution to assess the relative incentives of 

the broadcaster to increase the ratings of the time periods by improving the quality of the 

programming.  We will evaluate those incentives by deriving the expression for the Relative 

Incentive to Improve Ratings, 
* *

RIIR π π
β α

∂ ∂
= −

∂ ∂
, where π* corresponds to the broadcaster’s 

optimal revenue. 

In our analysis, we assume that γ γ
α β

∂ ∂
=

∂ ∂
.  Specifically, improving the quality of 

programs on non-prime time has the same effect on the ratings of the bundle as an equivalent 

improvement in prime time programming.  We refer to this as the equal ratings-improvement 

effect assumption.  Given that we restrict attention to bundles with equal proportions of prime 

time and non-prime time resources, such an assumption seems reasonable.  Substituting the 

optimal prices from Proposition 3.4 back into the objective function (3.10) yields the optimal 

equilibrium revenue, π*. 

Proposition 3.7 reports on the RIIR values, that is, the added incentive of increasing the 

ratings of prime time over non-prime time, for the different regions.   

 

Proposition 3.7.  The RIIR values, 
* *π π

β α
∂ ∂

−
∂ ∂

, can be expressed as follows: 
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STRATEGY RIIR VALUES 
* *π π

β α
∂ ∂

−
∂ ∂

 

PC ( )( )1 2P N P N P Nq q q q q q− − − +  (3.32)

MBPN 
( ) ( )

( )

2 22 2

2

1 12
2

P N

P

q q
q

γ β α

γ β α

⎡ ⎤− + − − ⎛ ⎞⎣ ⎦ − −⎜ ⎟
⎝ ⎠− +

 (3.33)

MBN − ( )( )1P N N Pq q q q− − −  (3.34)

MBN + 
21

2 Pq⎛ ⎞− −⎜ ⎟
⎝ ⎠

 (3.35)

MBP − ( )( )1P N N Pq q q q− − −  (3.36)

MBP + 
21

2 Nq⎛ ⎞−⎜ ⎟
⎝ ⎠

 (3.37)

Proof:  Using Proposition 3.3 and substituting the optimal prices in the objective function 

of ROMB_U and taking the partial derivatives, we obtain, for example, for the PC case, the 

following: 

( ) ( )

( )

( )
( )( )

*

*

*

1 1 2

1 2
1 2 .

1

P P N N P

N N P

P N P N P N

P P

q q q q q

q q q
RIIR q q q q q q

q q

π β α

π
α
π
β

= − + − −

⎫∂
= − − ⎪∂ ⎪ ⇒ = − − − +⎬

∂ ⎪= −
⎪∂ ⎭

 

The other cases are derived in a similar fashion. □ 

 

Inspecting the expressions derived in Proposition 3.7, it immediately follows that the 

RIIR values depend on their relative scarcity.  In general, irrespective of which bundling strategy 

is optimal, the broadcaster has greater incentives to improve the ratings of the resource that is 

more abundant.  The value of RIIR is an increasing function of qP and a decreasing function of 

qN, implying that the broadcaster benefits more from upgrading the quality of the more plentiful 

resource. 



 56 

The results of Proposition 3.7 allow us to also assess the implications of different 

bundling strategies on the incentives to improve the quality of the programming.  To control for 

the relative size effect reported above, in conducting this assessment, we consider the symmetric 

case: qN = qP = q.  Given this symmetry, we can only compare the PC regime with the MBPN 

regime since the partial spectrum mixed bundling strategies (MBP and MBN) arise when the 

availabilities of the two resources is asymmetric. 

 

Corollary 3.8.  When qN = qP = q, the RIIR value,
* *π π

β α
∂ ∂

−
∂ ∂

, can be derived as follows: 

i. for the PC Strategy (that is , when 1
4 4

q γ β
α
−

< − ), 
* *

22qπ π
β α

∂ ∂
− =

∂ ∂
 

ii. for the MBPN Strategy (that is , when 1 1/ 2
4 4

qγ β
α
−

− < < ), 

( )
( )

2 2* *

2

(1 2 )
2

qα β γπ π
β α γ β α

+ − −∂ ∂
− =

∂ ∂ − +
 

Proof:  Follows from Proposition 3.7 by substituting q = qN = qP. □ 

 

Figure 4 graphically presents the results stated in Corollary 3.8.   
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1
4 4

γ β
α
−

− q1
2

* *π π
β α

∂ ∂
−

∂ ∂

 
Figure 4. Relative incentive to improve ratings, RIIR 

 

As illustrated in Figure 4, when the capacities of the prime time and non-prime time resources 

are comparable, it is always more advantageous to improve the ratings of the prime time product.  

However, whereas under the PC regime the relative benefit of enhancing the ratings of prime 

time over non-prime time programming is higher the larger the capacities are, the opposite is true 

for the MBPN region.  The reason for the increase in the RIIR value in the PC region as q 

increases is the following.  Given a value of q (recall that q = qN = qP for this discussion), the 

price pN is determined by the indifference relationship (3.7) of the customer with efficiency t = 1 

− 2q, and equals α (1 − 2q).  On the other hand, the price pP is determined by the indifference 

relationship (3.6) of the customer with efficiency t = 1 − q, and equals (β  − α) (1 − q) + pN = 

β (1 −  q) − αq.  Improving the quality of the prime time programming by a unit results in an 

increase of (1 −  q) in pP which is greater than the increase in pN of (1 − 2q) attributable to 

increasing the quality of non-prime programming.  The difference between these two quantities, 

(1 −  q) − (1 − 2q) = q, helps measure the difference in the change in optimal prime and non-

prime product prices as the corresponding ratings increase, and is obviously an increasing 
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function of q.  This difference gets further pronounced because increasing the ratings of the non-

prime product decreases pP.  Since the available quantities of both the resources are equal, the 

RIIR value, 
* *π π

β α
∂ ∂

−
∂ ∂

, increases as q increases.   

For larger resource capacities and full segmentation, the relative advantage of improving 

the prime time programming diminishes.  To gain insight into why this effect manifests, first 

consider the extreme case when q = ½ (where MBPN transitions to the PB strategy).  Since the 

broadcaster offers only the bundle in this case, improving the ratings of the prime time product 

affects the PB revenue (γ/4) only through its impact on the ratings of the bundle.  But by our 

“equal ratings-improvement effect” assumption, improving the ratings of the non-prime time 

product has an identical impact on the ratings of the bundle.  Therefore, the RIIR value is zero.  

Another way to look at this is that since a bundle needs both a prime and non-prime product, 

their impact is equivalent as far as the bundle is concerned.  Now consider the MBPN region.  As 

q goes to ½, the broadcaster sells more of the bundle, and so (i) the amount of the prime time 

resource used in the bundle increases and (ii) the amount sold separately decreases.  For reasons 

similar to those in the PB case above, the impact of improving prime time quality approximately 

equals the impact of improving non-prime time quality for the part used in the bundle, and the 

approximation becomes more exact as q approaches ½.  So, the impact on RIIR due to the bundle 

decreases as q approaches ½.  The impact on RIIR due to the individual component sale also 

reduces because the amount sold separately decreases.  Therefore, the RIIR value decreases as q 

increases. 
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3.4 VALUE OF BUNDLING 

We now analyze the economic benefit of bundling, first from the broadcaster’s perspective and 

then from the advertisers’ perspective.  For the broadcaster, bundling only makes sense if her 

revenue when she does consider bundling as an option is at least equal to the revenue when she 

does not.  On the other hand, we say that advertisers (as a group) derive positive value from 

bundling if their total premium when the broadcaster considers the bundling option exceeds the 

total premium if the broadcaster does not.  Let Bundle Included (BI) refer to the situation when 

the broadcaster includes the bundle in the set of products considered for being offered to the 

advertisers, and Bundle Excluded (BE) refer to the situation when she does not.  Note that BI is 

the default case that we studied in the previous sections.  In Sections 3.4.1 and 3.4.2 we 

investigate the value of bundling from the broadcaster’s viewpoint (VoBB) and the advertisers’ 

viewpoint (VoBA) respectively.  In Section 3.4.3 we determine the total (or, social) value of 

bundling VoB = VoBA + VoBB. 

3.4.1 Broadcaster’s Value of Bundling 

We refer to the optimal revenue of the BE case as *
BEπ .  Clearly, * *

B BEVoB π π= −  is always 

nonnegative (since the broadcaster will simply not offer the bundle if it is not profitable to do 

so).  For example, in the PC region (Figure 2), the optimal BI strategy is to not offer the bundle; 

hence VoBB = 0.  Next, whenever qP and qN both equal at least a half, the optimal BI strategy is to 

only offer the bundle with an optimal revenue of γ/4.  In this case, the optimal BE strategy is to 
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offer only the (more valuable) prime-time product to half the market and not cover the remaining 

market.  The optimal revenue value *
BEπ  = β/4, and VoBB = (γ  − β)/4. 

To compute the VoBB for the other BI regions (see Figure 2), we need to first determine 

the optimal BE strategies and the corresponding revenues.  Doing so is straightforward, and 

Figure 2a presents the different BE strategies.  Note that the optimal BE strategy offers, as 

mentioned above, only the prime-time product whenever qP ≥ ½ (region P+) at a price β/2.  For 

the remaining two regions, both the prime and non-prime products are offered, but optimal 

revenue expressions are different.  In the region N−P− (where qP + qN < ½), the expressions for 

the revenue and the product prices are the same as they were for the PC strategy of situation BI.  

For region NP− (where qP + qN ≥ ½ and qP is less than a half), the revenue is 

( ) ( )1
4 P Pq qα β α+ − − , pP is ( )( )1/ 2

2 Pqβ β α+ − −  and pN is α/2.  Note that both qP and qN are 

binding at the optimal solution for the N−P− region, only qP is binding in the NP− region, and 

neither resource is binding in region P+ (except at the boundary qP = ½).  

Figure 5b represents the different regions for computing VoBB.  Since VoBB depends on 

both π and πBE, the expression for VoBB would be different if the expression for either π or πBE is 

different.  Therefore, by taking the intersection between the regions in Figures 2 and 5a, we get 

the Figure 5b.  Note that, as an example, the vertical hatched region in Figure 2b, MBN+∧NP−, is 

the intersection of the regions MBN+ of Figure 2 and NP− of Figure 5a. 
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Figure 5. Total VoB as a function of qN = qP = q 

 

Proposition 3.9 lists the VoBB expressions for the different regions of Figure 5b.  The proof of the 

proposition comes directly from substituting the optimal prices as listed in Proposition 3 into the 

objective function of ROMB_U, which yields *π .  We then compute *
BEπ  in a similar fashion, 

by removing the bundle term from ROMB_U. 

 

Proposition 3.9.  The optimal revenue values,  and , and the broadcaster’s Value 

of bundling, VoBB, are as given in Table 2: 

Proof:  For the BI scenario, the results follow from substituting the optimal prices from 

Proposition 3.4 in the objective function (3.10).  For the BE scenario, the similar construction is 

made by modifying ROMB_U so that there is no bundle considered from the beginning. □ 

 

*π *
BEπ
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Table 2. Broadcaster’s VoB 

STRATEGY 
OPTIMAL REVENUE VALUE OF BUNDLING, 

VoBB *π  *
BEπ  

PC∧N−P− 
( )

( )
1

1 2
P P

N N P

q q

q q q

β

α

−

+ − −
 

( )
( )

1

1 2
P P

N N P

q q

q q q

β

α

−

+ − −
 0 

MBPN∧N−P− ( ) ( )

( )

2 2

0 1

1

0

1

1 1
4 2 2

1 12
2 2

P N

P N

K q K q

K q q

K

K

γ

β γ β α β α
γ β α

α γ β
γ β α

⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞− − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
− + −

=
− +

−
=

− +

 
( )

( )
1

1 2
P P

N N P

q q

q q q

β

α

−

+ − −
 ( )

( )

2
2

4
P Nq qα β γ α

γ β α
⎡ + − − + ⎤⎣ ⎦

− +

MBPN∧NP− ( ) ( )

( )

2 2

0 1

1

0

1

1 1
4 2 2

1 12
2 2

P N

P N

K q K q

K q q

K

K

γ

β γ β α β α
γ β α

α γ β
γ β α

⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞− − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
− + −

=
− +

−
=

− +

( ) ( )1
4 P Pq qα β α+ − −  ( ) ( )211

4
P Nq qα

γ β
γ β α

⎡ ⎤− −
− −⎢ ⎥

− +⎢ ⎥⎣ ⎦
 

MBN−∧N−P− 
( ) ( )

( )
1

1
P P

N N

q q

q q

γ α

α

− −

+ −
 

( )
( )

1

1 2
P P

N N P

q q

q q q

β

α

−

+ − −
 ( ) ( )

2
1

P N

P P

q q
q q

α
α β γ− + − −

 

MBN−∧NP− ( ) ( ) ( )1 1P P N Nq q q qγ α α− − + −  ( ) ( )1
4 P Pq qα β α+ − −

( ) ( )

( )

1

1
4

P P

N N

q q

q q

γ β
αα

− −

+ − −
 

MBN+∧NP− ( ) ( )1
4 P Pq qα γ α+ − −  ( ) ( )1

4 P Pq qα β α+ − − ( ) ( )1P Pq qγ β− −  

MBP−∧N−P− 
( ) ( )

( )
1

1
N N

P P

q q

q q

γ β

β

− −

+ −
 

( )
( )

1

1 2
P P

N N P

q q

q q q

β

α

−

+ − −
 ( ) ( )

2
1

P N

N N

q q
q q

α
α β γ− + − −

 

MBP−∧NP− ( ) ( ) ( )1 1N N P Pq q q qγ β β− − + −  ( ) ( )1
4 P Pq qα β α+ − −

( ) ( )

( )

1

1
4

N N

P P

q q

q q

γ β
αα

− −

+ − −
 

MBP+∧P+ ( ) ( )1
4 N Nq qβ γ β+ − −
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Several noteworthy comments follow from the VoBB expressions in Proposition 3.9.  As 

expected, because the prime-time resource is abundant in the region MBP+∧P+, VoBB does not 

depend on qP, but it increases as qN approaches ½.  Similarly, qN is not binding in the region 

MBN+∧NP−, and so VoBB does not depend on qN but increases as qP approaches ½.  Within both 

the MBPN regions (MBPN∧N−P− and MBPN∧NP−) the VoB is constant along the line qN + qP = 

c, for any c between ½ − (γ − β)/(2α) and 1, but increases as c increases.  The VoBB is maximized 

when qN = qP = ½. 

Now, let us fix the value of qP such that ( ) ( ) ( ) ( )2( ) 1 2 2Pqγ β α γ β γ β α− + − < < − −  

and assume that ( )(1 5) / 2α γ β> − + .  These conditions imply that as we increase qN from 

zero, the resource availability coordinates will move from sequentially through the PC∧N−P−, 

MBPN∧N−P−, MBPN∧NP−, MBN−∧NP−, and finally the MBN+∧NP− regions.  The VoBB will 

change as follows. 
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Figure 6. The broadcaster's VoBB for qP satisfying 
 

 

We might have expected that VoBB would be a concave function of qN (keeping qP fixed) rather 

than the quasi-linear that we observe in Figure 6.  Indeed, the optimal revenue functions for both 

BI and BE cases for the MBPN∧N−P− region are concave in qN; however, when we take the 

difference of π and πBE we get a convex function.  (Another interesting observation is that 

2 * 2 2 * 2/ 2 ( ) / ( ) 2 /N BE Nq qπ α γ β γ β α α π∂ ∂ = − − − + > − = ∂ ∂ .)  The reason for this relationship is 

that the non-prime resource can be used as a part of the bundle in the BI case and therefore the 

rate of increase of the revenue function decreases at a lower rate.  For the subsequent two regions 

( ) ( ) ( ) ( )2( ) 1 2 2Pqγ β α γ β γ β α− + − < < − −
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(MBPN∧NP− and MBN−∧NP−), *π  is concave and *
BEπ  is constant in qN, while for the 

MBN+∧NP−, both the revenue functions are constant in qN.  

3.4.2 Advertisers’ Value of Bundling 

The value of bundling for the broadcaster is thus always nonnegative and monotonically 

nondecreasing in qN.  However, the impact of bundling for the advertiser is less clear.  As for the 

broadcaster, the value of bundling for the advertiser varies by region as in Figure 2b.  But there 

are two issues to consider.  First, since the bundle is not offered in the BE case, the products that 

the advertisers select will be different for the BI and BE cases except in the PC∧N−P−.  Second, 

because different advertisers have different efficiencies, the same product might contribute 

different amounts to VoBA.   

Let RBI(t) and RBE(t) denote the premium that an advertiser with efficiency t draws under 

the BI and BE cases respectively.  Both these premiums depend on the product purchased.  RBI (t) 

is given below; the expressions for RBE(t) are similar.      

*
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Note that if a product is not offered, the thresholds defining the corresponding market segment 

are equal, and so this product does not contribute towards the consumer premium.  Knowing the 

thresholds, which are easy to derive given the optimal prices in Proposition 3.3 and the boundary 

conditions (3.5) - (3.7), we can compute RBI. 

Since the thresholds will in general be different tor the BE scenario, we use the subscript 

BE.  For consistency, we use **
BET  to denote the lower end of the prime market segment, and ***

BET  

to denote the lower end of the non-prime market segment.  Since the bundle is not considered, 

*
BET  is not relevant.  Similarly, ( )P BEp  and ( )N BEp  denote the prices of the prime and the non-

prime products under the BE scenario.  The total premium for all advertisers under the BE 

scenario, RBE, is then  

( ) ( )** ** ** *** ** ***
( ) ( )(1 ) (1 ) 2 / 2 ( ) ( ) 2 / 2.BE BE BE P BE BE BE BE BE N BER T T p T T T T pβ α= − + − + − + −

 

Proposition 3.10 presents the values of VoBA for the regions along the diagonal, that is, 

PC∧N−P−, MBPN∧N−P−, MBPN∧NP−, and PB∧P+. 
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Proposition 3.10.  The optimal consumer premium values, RBI and RBE , and the values of 

bundling for the advertisers, VoBA, are as follows: 

STRATEGY OPTIMAL CONSUMER PREMIUM VALUE OF BUNDLING, VoBA 
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To get some insight into how VoBA changes, let us assume that qN = qP = q.  We present 

VoBA below, in Figure 7. 
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Figure 7. The advertisers' VoBA as a function of qN = qP = q 
 

The VoBA is zero in the PC∧N−P− region (because bundling is not used for either BE or BI cases).  

Continuing from zero in the MBPN∧N−P−, VoBA decreases until q becomes ¼, and then increases 

until q equals ½, when it becomes (γ − β)/8.  This is in contrast to the model in Schmalensee 

(1984), for which bundling always lowers the advertisers’ value of bundling.  Like the model in 

Salinger (1995), we find that the advertisers’ value of bundling can be positive or negative, but 

unlike his analysis, we observe how the value of bundling changes with q.  (He did not assume 

limited resource availability.)  There are two ways in which the advertisers’ value of bundling is 

affected.  First, transitioning into the MBPN∧N−P− from PC∧N−P− region, there is a downward 

pressure on the price of the prime and non-prime products when bundling is introduced (see 

Corollary 3.11).  This effect, which like Salinger, we call the price effect, tends to increase VoBA.  

In addition to the price effect, the bundle effect is the loss in the consumer premium when a 

bundle is introduced.  This effect is always nonpositive for the advertisers.  The net effect is 
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therefore always nonnegative in the MBPN∧NP−  and the PB∧P+ regions, but could be negative 

in the MBPN∧N−P− region. 

 

Corollary 3.11.  The price effects across the regions described in Figure 5b are as 

follows: 

STRATEGY OPTIMAL PRICES DIFFERENCE ΔP 
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Proof:  We derive the optimal prices for the BI scenario from Proposition 3.4.  We get 

the optimal prices for the BE scenario by solving ROMB_U without the bundle decision variables 

and pricing constraints. □ 
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3.4.3 Total (Social) Value of Bundling 

The total value of bundling, VoB = VoBA + VoBB, measures the net economic impact of bundling.  

In region PC∧N−P−, the VoB is zero.  In the MBPN∧NP− region, VoB can be positive or negative, 

depending on the values of q, α, β, and γ.  Interestingly, when qN = qP = q, our discussion in the 

previous section indicates that total value of bundling is positive, and increases as q increases.  

Thus, at values of q close to ½, both the advertiser and the broadcaster are better off due to 

bundling.  The broadcaster is better off because bundling allows her to better segment the 

market; the advertisers are better off because bundling gives some of them the opportunity to get 

the bundle which has the highest ratings, thus contributing the most to the consumer surplus.  

Finally, we note that VoB, VoBA, and VoBB are all maximized at qN = qP = ½.  While qN and qP 

may be outside of the broadcaster’s control, the result indicates a target to aim for so as to 

achieve a common optimal point from all three perspectives. 

Proposition 3.12 presents the values of VoB for the regions along the diagonal, that is, 

PC∧N−P−, MBPN∧N−P−, MBPN∧NP−, and PB∧P+.   
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Proposition 3.12.  The optimal total value of bundling, VoB, is as follows: 

STRATEGY TOTAL VALUE OF BUNDLING, VoB 
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Proof:  Follows from adding the broadcaster’s value of bundling from Proposition 3.10 

to the advertisers’ value of bundling from Proposition 3.11. □ 
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Figure 8. Total VoB as a function of qN = qP = q 
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Table 3 gives the value of bundling from the broadcaster’s viewpoint (VoBB) and the 

advertisers’ viewpoint (VoBA) respectively.  The last column gives the total (or, social) value of 

bundling VoB = VoBA + VoBB.  We derive these values numerically for the symmetric case, q = 

qN = qP, with α = 1, β = 2 and γ = 2.5.  The tabulated values are expressed as a function of q.  

Note that the pricing strategy changes, both with and without bundling, as q is increased.   

Table 3. Value of Bundling 
(Uniform Distribution; α = 1, β = 2, γ = 2.5) 

qP qN VoBB VoBA VoB 
0.10 0.10 0.0000 0.0000 0.0000 
0.20 0.10 0.0017 -0.0092 -0.0075 
0.20 0.20 0.0150 -0.0325 -0.0175 
0.30 0.30 0.0717 -0.0442 0.0275 
0.40 0.40 0.1117 0.0025 0.1142 
0.50 0.50 0.1250 0.0625 0.1875 

 

As we can see from the table, VoBB is zero initially, and then increases as q goes to ½.  On the 

other hand, after remaining at zero initially, VoBA becomes negative (due to the impact of full 

segmentation as a result of offering all three products) and then increases.  As a result, the total 

value of bundling VoB is zero initially, becomes negative, and then increases.  The reason is that 

when q is small, bundling is not used and so all three values of bundling are zero.  Then VoB 

becomes negative because the increase in VoBB does not fully compensate for the decrease in 

VoBA, and the net impact is negative. 
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3.5 EXTENSIONS 

In this section, we generalize our results by relaxing our model assumptions.  First, rather than 

assuming that the advertiser efficiencies are uniformly distributed, we consider several other 

density functions, and investigate the robustness of our results.  Next, we allow for bundles to be 

comprised of arbitrary number of units of the prime and the non-prime resources, and determine 

how the optimal composition of the bundle changes as the problem parameters change. 

3.5.1 General density functions 

The results that we have presented so far assume that the efficiency random variable has a 

uniform density function.  A natural inquiry might be to check the sensitivity of our results to 

changes in the density function.  For example, if the density distribution was left skewed or right 

skewed, how would the optimal strategies, product prices, and the total revenue change for the 

same level of resources?  Or, if the density function was strictly concave and symmetric about an 

efficiency of one-half, how would the results compare with the uniform distribution? 

We use the family of (standard) Beta distributions to model the density function of the 

efficiencies.  The Beta distribution has two shape parameters, which we denote by a and b.  We 

use the Beta distribution because it has the domain [0, 1] which equals our assumed efficiency 

range, and changing the parameter values generates the different shapes that are interesting from 

our perspective.  Figure 9 gives the parametric settings and the four different shapes that we will 

investigate.  Given the complexity of deriving the analytic solution for these more general 

density functions, we complement our analytical results with numerical computations.  We 

assume that α = 1, β = 2, and γ = 2.5.  Since α = 1 and β = 2, γ must lie in the open interval (2, 3) 
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and so a value of 2.5 for γ denotes “medium” incentive to bundle, thus not favoring either a PB 

or a PC strategy. 

    

Figure 9 (a): a=1, b=2 Figure 9 (b):a=2, b=2 Figure 9 (c): a=1, b=1 Figure 9 (d): a=2,b=1 

Figure 9.  Density functions 

 

We refer to the advertisers having the efficiency distribution in Figure 9(a) as parsimonious 

advertisers because a large majority of them have a low willingness to pay.  Similarly, we refer 

to advertisers in Figures 9(b), 9(c), and 9(d) as centric advertisers, uniform advertisers and high-

spenders respectively (we have shown the uniform distribution in this figure for consistency with 

our later tables and figures). 

Figure 10 presents the broadcaster’s optimal strategies (determined numerically) for each 

of the four different types of advertisers as the availability of the two resources changes.  Even 

though there are differences across the different distribution types that reflect the distributions’ 

unique characteristics, the general structure of the optimal strategies is similar. 

Comparing the parsimonious advertisers and the high-spenders cases (Figures 10(a) and 

10(d)) we observe that the PC region is smaller for parsimonious advertisers.  This difference is 

a consequence of parsimonious advertisers being concentrated near the low end of the efficiency 

scale.  In order to extract greater revenue from them, the broadcaster offers full spectrum mixed 

bundling even when the availabilities of the two resources are low (and the relative availabilities 

are about the same).  For the high-spenders case, the broadcaster uses the PC strategy for a 
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greater range of resource availabilities because of the concavity assumption about the bundle 

ratings. 

As we mentioned earlier for the uniform advertisers case, unconstrained optimization 

corresponds to both qN and qP values being at least a half.  For the parsimonious advertisers case, 

we can use Proposition 3.1 to show that the unconstrained region begins at qN = qP = 4/9.  Figure 

10(a) reflects this observation.  For the high-spenders case, again using Proposition 3.1, we can 

show that the unconstrained region begins at qN = qP = 2/3.  Just like for the uniform advertisers 

case, these values of 4/9 and 2/3 do not seem to depend on the value of γ.  Thus, the pure bundle 

is not offered for the high-spenders case when the sum of the resource availabilities is at most 

one, as we have assumed in this paper.  Schmalensee (1984) has previously observed that mixed 

bundling reduces the heterogeneity in the customers, and therefore allows better price 

discrimination.  A natural measure of heterogeneity is variance, and the distributions for both 

parsimonious advertisers and high-spenders have the same variance.  Yet, for parsimonious 

advertisers, pure bundling is the optimal strategy for a larger region defined by qN and qP, and for 

high-spenders, mixed bundling is the optimal strategy for a larger region.  This comparison of 

Figures 10(a) and 10(d) thus demonstrates that the skewness of the efficiency distribution, 

besides its heterogeneity (as measured by variance), seems to affect the benefits of mixed 

bundling.   
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Figure 10. Strategies for the different advertiser types 

 

Tables 4, 5 and 6 show how the solution and the optimal strategy change as the distribution 

changes for the same values of resource availabilities.  The T* values are the lowest (keeping the 

resource availability constant) for parsimonious advertisers, and increase as we progressively go 

through centric and uniform advertisers; they are the highest for high-spenders.  Thus, the 

broadcaster does not have to resort to bundling when the majority of the customers have a high 
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willingness to pay.  This is also borne out in Table 3, where the MBPN strategy appears more 

frequently for the parsimonious advertisers’ case.  As expected, the broadcaster charges the 

highest prices for the bundle in the high-spenders case. 

Table 4. Strategies for Different Types of Advertisers (α = 1, β = 2, γ = 2.5) 

qP qN PARSIMONIOUS CENTRIC UNIFORM HIGH-SPENDERS

0.10 0.10 MBPN PC PC PC 

0.10 0.20 MBPN MBPN MBPN PC 

0.10 0.30 MBN- MBPN MBN- PC 

0.10 0.40 MBN- MBN- MBN- MBPN 

0.10 0.70 MBN+ MBN+ MBN+ MBN+ 

0.20 0.10 MBPN MBPN MBPN PC 

0.20 0.20 MBPN MBPN MBPN PC 

0.30 0.10 MBP- MBPN MBP- PC 

0.30 0.30 MBPN MBPN MBPN MBPN 

0.40 0.10 MBP- MBP- MBP- MBPN 

0.40 0.40 MBPN MBPN MBPN MBPN 

0.50 0.50 PB MBPN PB MBPN 

0.70 0.10 MBP+ MBP+ MBP+ MBP+ 
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Table 5. Threshold values for different Beta distributions (α = 1, β = 2, γ = 2.5) 

PARAMETER qP qN 
TYPES OF ADVERTISERS 

PARSIMONIOUS CENTRIC UNIFORM HIGH-SPENDERS

T* 

0.10 0.10 0.8352 0.9996 1.0000 1.0000 
0.10 0.20 0.7224 0.9231 0.9667 1.0000 
0.10 0.30 0.6838 0.8421 0.9000 1.0000 
0.10 0.40 0.6838 0.8042 0.9000 0.9659 
0.10 0.70 0.6838 0.8042 0.9000 0.9487 
0.20 0.10 0.7224 0.9231 0.9667 1.0000 
0.20 0.20 0.6344 0.8421 0.9000 1.0000 
0.30 0.10 0.6838 0.8421 0.9000 1.0000 
0.30 0.30 0.4939 0.7215 0.7667 0.9264 
0.40 0.10 0.6838 0.8042 0.9000 0.9659 
0.40 0.40 0.3791 0.6208 0.6333 0.8427 
0.50 0.50 0.3333 0.5276 0.5000 0.7517 
0.70 0.10 0.6838 0.8042 0.9000 0.9487 

T** 

0.10 0.10 0.6838 0.8042 0.9000 0.9487 
0.10 0.20 0.6838 0.8042 0.9000 0.9487 
0.10 0.30 0.6838 0.8042 0.9000 0.9487 
0.10 0.40 0.6838 0.8042 0.9000 0.9487 
0.10 0.70 0.6838 0.8042 0.9000 0.9487 
0.20 0.10 0.5528 0.7129 0.8000 0.8944 
0.20 0.20 0.5528 0.7129 0.8000 0.8944 
0.30 0.10 0.4523 0.6367 0.7000 0.8367 
0.30 0.30 0.4523 0.6367 0.7000 0.8367 
0.40 0.10 0.3675 0.5671 0.6000 0.7746 
0.40 0.40 0.3675 0.5671 0.6000 0.7746 
0.50 0.50 0.3333 0.5000 0.5000 0.7071 
0.70 0.10 0.3419 0.4215 0.5000 0.5773 

T*** 

0.10 0.10 0.5843 0.7129 0.8000 0.8944 
0.10 0.20 0.5279 0.6490 0.7333 0.8367 
0.10 0.30 0.4523 0.6132 0.7000 0.7746 
0.10 0.40 0.3675 0.5671 0.6000 0.7530 
0.10 0.70 0.3419 0.4215 0.5000 0.5774 
0.20 0.10 0.5279 0.6490 0.7333 0.8367 
0.20 0.20 0.4839 0.6132 0.7000 0.7746 
0.30 0.10 0.4523 0.6132 0.7000 0.7746 
0.30 0.30 0.4136 0.5599 0.6333 0.7361 
0.40 0.10 0.3675 0.5671 0.6000 0.7530 
0.40 0.40 0.3562 0.5149 0.5667 0.6999 
0.50 0.50 0.3333 0.4724 0.5000 0.6595 
0.70 0.10 0.3419 0.4215 0.5000 0.5774 
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Table 6. Bundle prices for different Beta distributions (α = 1, β = 2, γ = 2.5) 

PARAMETER qP qN 
TYPES OF ADVERTISERS 

PARSIMONIOUS CENTRIC UNIFORM HIGH-SPENDERS

pB 

0.10 0.10 1.6856 2.0169 2.2000 2.3431 
0.10 0.20 1.5728 1.9147 2.1167 2.2853 
0.10 0.30 1.4779 1.8385 2.0500 2.2233 
0.10 0.40 1.3932 1.7734 1.9500 2.1847 
0.10 0.70 1.3675 1.6278 1.8500 2.0004 
0.20 0.10 1.4418 1.8234 2.0167 2.2311 
0.20 0.20 1.3539 1.7471 1.9500 2.1690 
0.30 0.10 1.2464 1.6710 1.8500 2.1113 
0.30 0.30 1.1128 1.5574 1.7167 2.0359 
0.40 0.10 1.0770 1.5362 1.6500 2.0106 
0.40 0.40 0.9133 1.3924 1.4833 1.8958 
0.50 0.50 0.8333 1.2362 1.2500 1.7425 
0.70 0.10 1.0257 1.2452 1.4500 1.6291 

 

Across the different resource availability combinations in Table 5, the T*** values are the lowest 

for parsimonious advertisers indicating that the broadcaster has to “dig deeper” into the market, 

when many of the advertisers have low willingness to pay.  A further analysis of the T*** values 

shows that the location of the marginal advertiser, under all possible resource combinations, that 

the broadcaster chooses not to serve also varies.  It is 0.5 for the uniform advertisers, and for 

centric customers, this value is 0.4215, which is achieved for both MBN + and MBP + cases.  The 

reason for this change is that a lack of advertisers with high willingness to pay at the very top 

end in the centric advertisers case lowers T* and the increase in the willingness to pay in the 

middle of the distribution lowers T*** (for the MBN + strategy) and T** (for the MBP + strategy).  

The minimum T*** value (again, over all combinations of the resource availabilities) for 

parsimonious advertisers is 1/3, and 0.5773 (this data point does not appear in Table 5 as not all 
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resource availabilities are included in the table) for high spenders.  Despite the fact that the 

minimum T*** is the highest for high-spenders and the lowest for parsimonious advertisers, the 

maximum proportion of the market served (again, over all combinations of the resource 

availabilities) by the broadcaster is the highest (2/3) for high spenders and the lowest (4/9) for 

parsimonious advertisers.  (It is 0.5 for uniform and 0.6167 for centric advertisers, respectively.)  

These values make sense because the broadcaster serves a greater proportion of the market if the 

majority of advertisers have a higher willingness to pay. 

3.5.2 Bundling with unequal resource proportions 

As we mentioned earlier, our model can be modified to allow for an unequal proportion of the 

two resources in the bundle.  In this context, there are two different scenarios, differentiated by 

whether or not this proportion is fixed or can be chosen optimally.  In each case, the solution 

approach differs slightly depending on whether or not we can redefine the non-prime product 

when we offer a bundle with unequal proportions of the prime and non-prime products.   

First, consider the case when the proportion is fixed and a redefinition of the non-prime 

product is possible.  In this case, we can simply recalibrate the units of measurement of the non-

prime product.  For instance, since the non-prime resource tends to be more plentiful than the 

prime time resource, one unit of the non-prime time resource can be calibrated to a supra-unitary 

multiple of the prime time unit.  For example, if the non-prime time resource is ten times more 

plentiful, a unit of the non-prime time product can consist of ten minutes, while a unit of the 

prime time product can consist of only one minute.  Hence, as long as the proportion of the two 

resources in the bundle has to remain fixed and the non-prime product can be redefined, the 

analysis we have done so far immediately carries over with one caveat: if the fixed proportion 
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multiplied by α turns out to be greater than β, then we switch the names of the prime and non-

prime products.  We make this exchange in the terminology to satisfy our assumption that the 

prime time ratings exceed the non-prime time ratings.  

When the proportion is fixed, but the units of the non-prime time cannot be recalibrated, 

the analysis is slightly different but the conclusions remain qualitatively similar to what we saw 

in Section 3.3. 

The interesting case arises when the proportion is a decision variable.  Here, we focus on 

the situation where we cannot redefine the non-prime product.  When this proportion can be 

chosen optimally as a function of the parameters of the model (qP, qN, α, β, γ), the 

characterization of the regions depicted in Figure 2 is likely to be more difficult since each 

combination of capacity levels (qP, qN) leads to a different optimal proportion of the resources 

used in the bundle.  Due to the analytical complexity of solving the problem with variable 

proportions, we illustrate the solution via numerical calculations. 

Let the bundle composition parameter, θ, with θ > 0, denote the number of units of the 

non-prime resource in the bundle with one unit of the prime resource.  If the non-prime resource 

has high availability, we expect the optimal value of θ to be at least one.  When we introduce the 

bundle composition parameter θ as a decision variable, we need to make three changes in the 

ROMB_U model.  First, since the bundle needs θ units of the non-prime resource (with one unit 

of the prime resource), the non-prime resource constraint (3.13) changes to 

1 .P N NB P
N

p p pp p qθ
γ β β α α

⎛ ⎞ −−
− + − ≤⎜ ⎟− −⎝ ⎠

  Second, to avoid the price arbitrage opportunity, so that 

bundle is “survivable” (Schmalensee, 1984), we need the constraint that the price of the bundle 

be no more than the sum of the prices of the components it comprises, that is, pB ≤ pP + θ pN.  
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Finally, we have to assume a functional form for the ratings of the bundle, γ, as a function of α, β 

and θ.  We use the specification γ β θα= + , and investigate two cases: α = 1 and β = 1.5, and 

α = 1 and β = 2.  Such a specification for γ guarantees that the ratings of the bundle increase with 

the ratings of the two resources sold separately, and with θ, the number of units of the non-prime 

resource used in the bundle.  Additionally, the functional form of γ maintains the concavity 

property we assumed in our original model with fixed proportions. 

As expected, the optimal value of θ increases as qN or qP increases.  Moreover, keeping β 

constant, θ seems to decrease as α increases (because the square root form of γ does not bring 

about a proportionate increase in the ratings of the bundle, and so we prefer to sell the nonprime 

resource by itself rather than in the bundle).  The following proposition describes the regions for 

the different strategies.  In this case, we end up using all the non-prime resource since θ > 1, and 

so the non-prime resource is always binding.  For simplicity, we do not distinguish between the 

MBP+ and MBP+ strategies and refer to the strategy where the prime product and the bundle is 

offered simply as MBP. 

 

Proposition 3.13.  For α = 1, β = 1.5 and γ β θα= + , the optimal mixed bundling 

strategies for a given value of θ are as follows:  

(i) The pure component strategy is optimal if  

10 .
2 2N Pq q γ β

θα
−

< + < −  
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(ii) The full spectrum mixed bundling strategy, MBPN, is optimal if 1
2 2N Pq q γ β

θα
−

+ ≥ −

and 
21 2( 1) ( ) .

1 2
N

P

q
q

θα θ γ β θ α
θα γ β

−− + −
≤ ≤

− −
 

(iii) The partial spectrum mixed bundling strategy, MBN, is optimal if  qP > 0 and  

1 2 ( 1) ( ) .
1 2

N

P

q
q

θα θ γ β
θα

− − + −
<

−
 

(iv) The partial spectrum mixed bundling strategies, MBP is optimal if qN > 0 and 

21 2 .
1 2

N

P

q
q

θ α
γ β

−
>

− −
 

Proof:  Exactly like Proposition 3.3. □ 

 

Figure 11 depicts these regions.  Note that each of these regions specialize to the regions 

in Proposition 3.3 when θ = 1.  However, there seems to be one difference.  When θ is greater 

than one, and with the α, β, γ as described above, the pure bundle is never offered. 

As the value of θ increases, ceteris paribus, the PC region increases.  The reason for this 

is again that the increase in the resources required by the bundle as θ increases is not 

commensurate with the improvement in its ratings.  This expansion of the PC region cuts into the 

regions for the MBN, MBPN, and the MBP strategies.  The line demarcating the MBN region 

from the MBPN regions shifts to the left; the reason is that the bundle requires more of the non-

prime and so there is less of the non-prime available for sale by itself.  The MBPN and MBP 

border also shifts to the left for a similar reason (because the bundle requires more of the non-

prime resource and only a limited amount of it is available, the region where the prime needs to 
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be sold by itself increases).  As a consequence, increasing θ decreases the MBN region (because 

the requirement of the non-prime resource from the bundle increases). 

1
2 2

γ β
θα
−

−

1
2 2

γ β
θα
−

−

1
2

1
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Figure 11. Optimal strategies as a function of the bundle composition parameter, θ 

 

Figures 12(a) – 12(c) depict how θ changes with the problem parameters.  In each case, the 

graphs do not include the PC region as the bundle is not offered in this region and so the value of 

θ  is irrelevant.  Figure 12(a) shows how the optimal θ changes with q = qN = qP.  The smaller 

values of q in this graph correspond to the MBPN regime.  As q increases, the optimal θ value 

increases because by consuming more of the non-prime resource as part of the bundle, the 

broadcaster can charge higher prices for the bundle while at the same time avoiding the 

downward pressure that selling the non-prime product by itself imposes on the price of the prime 

product.  Indeed, as q increases, the optimal strategy shifts from MBPN to MBP −.  When the β/α 
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increases to two, θ jumps up because, relatively speaking, the prime product becomes more 

attractive and commands a higher price, and therefore the amount of the prime sold by itself 

increases.  Consequently, the amount of the prime resource sold as part of the bundle, and hence 

the amount of bundle sold by itself decreases, and θ increases.   

Figure 12(b) shows how θ changes as qN increases keeping qP constant at 0.1.  Similarly, 

Figure 12(c) depicts how θ changes as qP increases keeping qN constant at 0.1.  In both cases, 

increasing the resource availability tends to increase the value of θ, but in slightly different ways.  

As qN increases, the strategy changes from PC to MBPN and then to MBN −.  However, as qP 

increases, the strategy changes from PC to MBPN to MBP − and then finally to MBP +.  Because 

θ is a decision variable, we always end up using all of the non-prime resource, but that is not so 

for the prime resource.  Also, once we reach the MBP − region, the value of θ no longer changes 

since the prime resource is not fully utilized in the bundle.  Therefore, in Figure 12(c), we see 

that θ plateaus; the kink that just precedes the plateau is the point at which the strategy switches 

from MBPN to MBP − region.   

 

Figure 12 (a).  θ as a function of q = qN = qP 



 86 

  

Figure 12 (b).  θ as a function of qN;qP = 0.10 Figure 12 (c).  θ as a function of qP; qN = 0.10 

Figure 12. Change in θ with resource availability 

3.6 CONCLUSIONS 

In this chapter, we have examined bundling strategies when the bundle’s components satisfy a 

universal preference ordering and have limited availability.  While this research is motivated by 

television advertising, where a preference ordering of the products exists naturally, several other 

situations (e.g, billboard and internet advertising) also exhibit this characteristic.  Our results 

show that the relative availabilities of the resources strongly influence the broadcaster’s optimal 

strategy of implementing full spectrum mixed bundling (offering the bundle and each of the 

components), or partial spectrum mixed bundling (offering the bundle with one of the 

components), or not using bundling at all.  Clearly, the resource availabilities also influence their 

marginal value to the broadcaster; we determine how much more valuable it is to increase the 

availability of one resource over the other.  We also investigate the relative benefits of improving 
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the quality of prime versus non-prime time programming.  The robustness of the managerial 

guidance provided by this analytical work is substantiated by our numerical testing. 

Our research points towards several promising research directions.  First, we have 

assumed a monopolistic scenario with only one broadcaster.  Introducing competition, where 

advertisers desiring to place commercials during, say, prime time have a choice of multiple 

networks, would both add complexity to and enhance realism of the model.  Incorporating the 

advertisers’ objectives such as recent work in targeted advertising (Chen & Iyer, 2002; Gal-Or & 

Gal-Or, 2005; Gal-Or, et al., 2006; Iyer, Soberman, & Villas-Boas, 2005), or combative 

advertising (Chen, Joshi, Raju, & Zhang, 2009) into this competitive bundling framework 

promises to be interesting.  Second, we have assumed that the resource capacities are limited and 

that their marginal costs are zero (or, equivalently, that the resource availabilities are limited and 

the resource costs are sunk).  It might be worth investigating how the results change if this 

marginal cost assumption does not hold.  Third, it might be useful to investigate the optimal 

bundling strategies in the presence of multiple resource classes (for example, in internet 

advertising, the number of clicks needed from the home page to reach the advertisement).  

Fourth, our model is deterministic along the advertisers’ willingness to pay; introducing 

stochastic elements with respect to this dimension (Ansari, Siddarth, & Weinberg, 1996; 

Venkatesh & Mahajan, 1993) might also be worthwhile.  Fifth, we have also assumed that the 

marginal utility of the second unit of a product is zero.  By removing this assumption, we can 

model situations where we can capture the effect of multiple views of an advertisement by the 

TV viewer.  The current model allows for such an extension, by introducing a new product that 

is formed by two units of non-prime time.  Depending on the positioning of this product on the 

line—either between the non-prime and the prime products, or between the prime and the bundle 
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products—and by comparing the emerging corresponding bundling strategies to the original 

model, we can analyze the impact of multiple opportunities to see an advertisement. 

Finally, we have assumed concavity of the rating function.  This need not always be the 

case.  Continuing with the television advertising situation, if there are multiple decision makers 

who have different viewing preferences, the advertiser may derive super-additive benefits from 

advertising during prime time and during prime time.  Moreover, assuming that there is no 

secondary market that allows an intermediary to buy the components and assemble the bundle 

for sale and that the broadcaster can impose a restriction rationing each advertiser to buy at most 

one product, the price arbitrage constraint (3.2) may not be economically valid. 
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4.0  COMPETITIVE ENVIRONMENT 

4.1 INTRODUCTION 

In Chapter 3, we have addressed the problem of deriving optimal bundling strategies under a 

vertically differentiated market and monopolistic competition, with limited advertising time 

availability.  In this chapter, we will extend the analysis to emphasize duopolistic competition.  

The intention here is to derive allocation policies and to examine the value of bundling in the 

television advertising market, under duopolistic competition, when the availability of the 

advertising time is limited.  We choose to focus on this environment due to several reasons.  

First, the television advertising market captures a significant component of the US advertising 

market (about $64 billion is spent annually on TV advertising, out of the approximately $150 

billion spent on advertising)8.  Secondly, this market has an interesting structure, given by the 

variation in television watching habits.  For obvious reasons, advertisers prefer placing 

advertisements during prime time (that garners largest audience sizes, but is limited to just the 

evening hours due to customer viewing habits), and if they cannot afford to, settle for the 

alternative, called non-prime time.  Lancaster (1979) refers to this type of market as being 

vertically differentiated.  (In a vertically differentiated market, everyone prefers having more of 

the attribute—in this case, audience—rather than less, but the valuation of the attribute is 
                                                 

8 2007 TNS media intelligence report (http://www.tns-mi.com/news/03252008.htm). 
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different.  In contrast, a horizontally differentiated market is characterized by a large variety of 

products.)  Thirdly, advertising time availability, especially during prime time, is becoming 

increasingly restrictive, either due to competitive pressures that force a cap on the amount of 

commercial time that can be broadcasters can use9, or due to ongoing debate of regulating the 

non-programming broadcast time (Getz, 2006), as is the case currently in Europe.  Considering 

the market size and the fact that broadcasters do not have much flexibility for increasing the 

amount of time they use for airing commercials, the limited resource availability situation in the 

television advertising market that we are considering is of significant economic consequence to 

broadcasters.  Finally, the television advertising market can be thought of being representative of 

other vertically differentiated advertising markets, like online or billboard advertising. 

In this setting, the broadcaster makes available for sale advertising time during both the 

prime and non-prime segments.  The advertising products are available separately as well as a 

bundle, and advertisers select products based on their willingness to pay and the product price.  

Previous marketing literature on bundling has focused primarily on pricing (Ansari, et al., 1996; 

Hanson & Martin, 1990; Venkatesh & Mahajan, 1993; Wu, et al., 2008), or studying the 

optimality of bundling (Bakos & Brynjolfsson, 1999; Guiltinan, 1987; Venkatesh & Kamakura, 

2003).  Recently, Wu et al. (2008) have looked at the welfare function using a computational 

study.  On the economics research front, the bulk of the investigations about welfare effects are 

in the context of bundling in a monopolistic setting (Dansby & Conrad, 1984; Salinger, 1995; 

Whinston, 1990).  Our work provides an analysis of the value of bundling for both parties 

involved in the transaction, focused in an advertising environment where limited availability of 

                                                 

9 1999 ANA report on commercial clutter (http://www.kued.org/misc/pdfs/outreach/readyToLearn/tvclutter.pdf) 



 91 

bundle components is a key issue.  In the process, we also identify situations where bundling is a 

win-win proposition for both broadcasters and advertisers. 

In the recent past, researchers from the economics and marketing domains have 

investigated bundling related issues in a competitive environment.  Matutes and Regibeau (1992) 

analyzed the interactions between two players engaged in a duopolistic competition, and showed 

that the optimal strategy is for companies to provide compatible products (such that consumers 

could theoretically form their own bundle by purchasing each component from a different firm), 

but to offer a discount if all components are purchased from the same firm.  If the components 

are “incompatible” (i.e., components from different competitors cannot form a bundle), then they 

argue that the optimal strategy is pure bundling.  Our findings show that in a vertically 

differentiated market, the partial bundling spectrum can still be optimal, depending on the 

relative availabilities of the resources.  If the market does not exhibit growth potential, it has 

been shown (Kopalle, et al., 1999) that the equilibrium strategy tends to be pure components.  

Armstrong and Vickers (2009) have shown that bundling can harm customer welfare, while 

Thanassoulis (2007) looks at customer welfare in the context of mixed bundling and finds that 

the customer welfare is either reduced or increased, depending on certain conditions.  With 

respect to the optimality of bundling as a strategy, Chen (1997) shows that bundling is an 

equilibrium strategy in a duopoly where at least one good that could be part of the bundle is 

produced under perfect competition.  Moreover, if both players in the duopoly commit to 

bundling, then they increase their profits, but the social welfare is reduced.  This idea is 

confirmed by Gans and King (2006).  Separately from the optimality of bundling question, 

Nalebuff (2004) shows that in a competitive model where a company has market power in two 

goods, it can use bundling as a strategy to create a barrier to entry in those markets. 



 92 

Our analysis focuses on the value of bundling, defined as the sum of the broadcasters’ 

and advertisers’ respective values, under a duopolistic competition effect, and under the same 

model of vertical differentiation of the TV advertising industry.  Just like in the previous essay, 

we will assume that one possible dimension of competition is exogenous (the ratings), and 

competition occurs only along the second dimension, namely price.  Once we characterize the 

various equilibrium strategies, we can compute the value of bundling.  Additionally, we assume 

that the advertisers can purchase time either separately, or a bundle, but only from one network 

or another.  In other words, the advertisers are not allowed to form a bundle on their own, by 

purchasing one component from the first network, and the second from the other (to follow 

Matutes and Regibeau (1992) nomenclature, we say that the individual components are 

incompatible).  We need to make this assumption in order to compute properly the broadcasters’ 

value of bundling; if we allow compatibility, we can only capture the advertisers’ value of 

bundling. 

In the context of one dimensional competition in a vertically differentiated market, 

Shaked and Sutton (1982) and Moorthy (1988) provide the earliest results about equilibrium 

prices, though neither consider bundling or capacity issues.  They show that the equilibrium 

strategy is maximum differentiation, with the higher quality firm choosing the higher price and 

vice-versa.  These results are generalized to competition in a two dimensional universe by 

Vandenbosch and Weinberg (1995).  Using a Hotelling spatial location model, they show that the 

equilibrium strategy has a maxmin structure, that is, the competitors will try to differentiate as 

much as possible along one dimension and as little as possible along the other.  However, in 

these papers, unlike in our work, the goal is to derive optimal locations for each competitor (i.e. 

the decision variables are the coordinates of the firms). 
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4.2 DUOPOLY MODELS 

The previous section derived the optimal value of bundling assuming a monopolistic 

environment.  In particular, we identified the value of bundling for the broadcaster and the 

advertisers under various resource availability scenarios.  In this section, we extend the results to 

a duopolistic environment, so that we can better capture any effects due to competition.  Due to 

the exogenous nature of the ratings, a key operating assumption for this scenario is that the two 

networks set prices to maximize their revenues.  However, the ratings still play an important part, 

because the relationship (the ordering) between the ratings of the two networks will still drive the 

model setup and the subsequent equilibrium analysis.  With that in mind, let i = 1, 2 denote the 

index of the network, and let { , , }J N P B=  be the index set of the three products offered.  Also, 

let { , , }i i i ir α β γ=  be the generic ratings of network i.  Let the prices for each product be 

,i
jp j J∈ , and let the indifference thresholds (the market segment delimiters) be * ** ***, ,i i iT T T .  

These thresholds are derived from the boundary conditions implied by the self-selection model 

described in the monopolistic environment, adjusted for ri and ,i
jp j J∈ .  Based on empirical 

data collected by two advertising trade organizations10, we assume that each broadcaster has 

equal resource availability, qP and qN, and that both networks have the same availability of qP 

and qN. 

                                                 

10 American Association of Advertising Agencies and the Association of National Advertisers, "Television 

Commercial Monitoring Report", 2002. 
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There are multiple possible approaches for modeling competition in broadcast advertising 

market.  First, we can assume that the two networks provide similar programming choices and so 

attract audiences with similar demographics.  For example, two family channels such as NBC 

and ABC have similar viewer demographics; therefore they attract advertisers with similar 

requirements.  On the other hand, channels might attract different audiences and therefore 

advertisements for different products.  For example, ESPN might primarily attract companies 

such as Toyota and Nickelodeon might primarily attract companies such as Toys’R’Us.   We 

model the first scenario as an extension of the one-dimensional model (because the advertisers 

are similar) that we developed in the previous chapter and the situation where the advertisers 

have different requirements using a two-dimensional model.  Within the one-dimensional 

framework, there are two different situations.  In the first case, one of the firms dominates the 

other one; for example, the Food Network dominates the newcomer TasteTV, and CNN 

dominates a smaller local news station, such as PCNS in Pittsburgh.  We refer to the dominating 

firm as the strong firm and the dominated firm as the weak firm, and assume that the ratings of 

the non prime product of the strong firm are at least as high as the bundle ratings of the weak 

firm (see Figure 13 below).  In the second one-dimensional case, the two competitors have 

similar strengths: the ratings of bundles from both firms are stronger than the ratings of the prime 

time products offered by both firms which are in turn stronger than the ratings of the non prime 

time products of both firms (see Figure 14).  In this chapter, we analyze the strong/weak model.  

As we later show, this model generalizes the model in Moorthy (1988).  In his analysis, Moorthy 

focuses on a duopolistic model where each competitor offers only one product, and there are no 

resource constraints.  We capture this particular case in our analysis of the strong/weak 

duopolistic model, with limited resource availability. 
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Figure 13. Competition with a dominant network 
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Figure 14. Competition between comparable networks 

 

Returning to the analysis of the case presented in Figure 13 (strong vs. weak competition), 

assume that the worst rating of network 1 is better than the best rating of the second network 

(e.g. the ordering assumption is 0 < α2 < β2 < γ2 < α1 < β1 < γ1).  Furthermore, assume, without 

loss of generality, that α2 = α1/ kα, β2 = α1/ kβ, and γ2 = α1/ kγ, with the multipliers kα > kβ > kγ > 

1.  In order to preserve the concavity of the ratings function for the weak firm, we will further 
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need to assume kγ > (kαkβ) / (kα + kβ).  Since kγ  measures the closeness of the second network 

with respect to the first, we will refer to this parameter as the relative weakness of the second 

firm.  In addition, we must also preserve the concavity assumption for the strong firm, as in the 

monopolistic model.  Notice that we can thus capture either the situation when the best product 

(the bundle) of the weak network is not differentiated from the worst product (the non-prime 

time) of the strong network (when kα, kβ, kγ approach 1 from above), or a monopolistic model 

(when kα, kβ, kγ  approach infinity). 

Each network individually optimizes its revenues subject to its availability and pricing 

constraints.  The equilibrium conditions are derived by simultaneously solving for the best 

response functions for each network since the objective functions are concave.  For tractability 

reasons, unlike the monopolistic competition analysis, we will restrict ourselves only to the cases 

when both networks are unconstrained, or one or both networks are constrained with respect to 

prime time availability.  (That is, we exclude the unlikely case where one or both networks are 

constrained regarding the non-prime resource.)  We consider the unconstrained scenario to be a 

base case, and the situation where the prime availability is limited for both networks to be the 

more realistic scenario.  The individual revenue maximization problem ROMB_Ui, as faced by 

each network i = 1, 2, is as follows: 

 [ROMB_Ui] 1 2max
i i i ii i i i

i i i iP N P NB P B P
B P N

i i i i i i i i

p p p pp p p pp p pπ τ τ
γ β γ β β α β α

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −− −
= − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(4.1) 

subject to:  

        ( ) 0,i i i
B P Np p p− + ≤  (4.2) 
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−
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Here, for convenience, we introduce the τ notations to capture the optimization model for each 

network i with one single set of equations. 

The boundary conditions are as follows: 

 
1 1

* 1 * 1 *
1 1 1 1 1

1 1

,B P
B P

p pT p T p Tγ β
γ β

−
− = − ⇔ =

−
 (4.6) 

 
1 1

** 1 ** 1 **
1 1 2 1 1

1 1

,P N
P N

p pT p k T p Tγβ γ
β α

−
− = − ⇔ =

−
 (4.7) 

 
( )

1 2
*** 1 *** 2 ***

2 1 2 1 1
2

,
1

N B
N B

p pk T p T p T
kγ

γ

γ γ
γ

−
− = − ⇔ =

−
 (4.8) 

 
2 2

* 2 * 2 *
2 2 2 2 2

2 2

,B P
B P

p pT p T p Tγ β
γ β

−
− = − ⇔ =

−
 (4.9) 

 
2 2

** 2 ** 2 **
2 2 2 2 2

2 2

, andP N
P N

p pT p T p Tβ α
β α

−
− = − ⇔ =

−
 (4.10) 

 
2

*** 2 ***
2 2 2

2

0 .N
N

pT p Tα
α

− = ⇔ =  (4.11) 

4.3 EQUILIBRIUM ANALYSIS 

Just like in the monopolistic scenario, we will first characterize the possible equilibrium 

solutions in terms of the inventory availability.  Since in this part of the work we are concerned 
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only with the impact of the prime time resource, we will characterize the boundaries of the 

various regions only as a function of qP and the relative weakness of the second network.  For 

ease of exposition, we will denote an equilibrium strategy via a pair (x & y), with x being the 

strategy chosen by the strong network, and y the strategy chosen by the weak firm.  Both x and y 

could theoretically take any value in the set { , , , , }PC PB MBN MBP MBPN .  Observe that the 

strategy of the strong network depends on the relative weakness value (and is independent of the 

value of qP.  The following result establishes the boundaries, which we show graphically below, 

in Figure 15. 

 

Proposition 4.1. The equilibrium space for the strong/weak competition model is 

partitioned as follows: 

i) If 
1

0
4 1P

k
q

k
γ

γ

−
< <

−
, MBN & MBN is a valid equilibrium if the second network is 

relatively weak, while PC & MBN is a valid equilibrium if the second network is 

relatively strong; 

ii) If 
1 1

4 1 2P

k
q

k
γ

γ

−
< <

−
, MBN & PB is a valid equilibrium if the second network is 

relatively weak, while PC & PB is a valid equilibrium if the second network is 

relatively strong; 

iii) If 1
2Pq ≥ , MBN & PB is a valid equilibrium if the second network is relatively 

weak, while PC & PB is a valid equilibrium if the second network is relatively 

strong. 

Proof:  For parts i) and ii), assume that in both ROMB_U1 and ROMB_U2 the prime time 

capacity constraint is binding.  The Nash equilibrium is found by solving simultaneously the 
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system of equations formed by the best response function of each firm.  The best response 

functions are as follows: 

 ( )*
1 1 1

1 1
1 2
2B P T

p pγ β λ= − + +  (4.12) 

 
( ) ( ) ( ) ( )* *

1 1 1 1 1 1 1 1 1
1 1 1

1 1

1 2 2 2 2
2P P N P B N BT T

p p p p pγ λ β λ λ α λ
γ α

⎡ ⎤= + − + − + + −⎣ ⎦−
 (4.13) 

 
( ) ( )( )1 2 1 2 1 1

1 1
1 1

1 1 2 2
2N B P B P Pp k p k k p p k p

k γ γ γ γ
γ

β α λ
β α

⎡ ⎤= − − + + −⎣ ⎦−
 (4.14) 

 
( ) ( ) ( )( ) ( )*

2 2 2 1 2 2 11 1 2 1
2 1B P N P P NT

p k k p k p k p
k k β γ γ γ

γ β

λ λ λ⎡ ⎤= + − + + − − +⎣ ⎦−
 (4.15) 

 ( ) ( ) ( )
( )

*

*

2 2 2

2 2 2

2 2 2

21 2
2 2 2

P NT
P BT

P B N

k p
p k k p k

k k k k p p

β

β γ α
β α γ γ

λ λ
λ

λ

⎡ ⎤⎛ ⎞− + −
⎢ ⎥⎜ ⎟= − +
⎢ ⎥⎜ ⎟− − +⎝ ⎠⎣ ⎦

 (4.16) 

 ( )*
2 2 2 22

2N P PT

k
p p

k
β

α

λ λ= − +  (4.17) 

Solving simultaneously (4.12) - (4.17) we obtain the equilibrium prices.  In order for all prices to 

be valid, the arbitrage pricing constraint must also be observed.  Imposing the pricing constraints 

, 1, 2i i i
B P Np p p i≤ + =  introduces two different strategies for network 1: MBN and PC, depending 

on the magnitude of the relative weakness parameter, whereas the magnitude of qP drives two 

different strategies for network 2—MBN and PB.  Part iii) is derived similarly, observing that all 

Lagrange multipliers are zero, since the operating assumption is that both networks are 

unconstrained. □ 
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1
2

1
4 1
k
k
γ

γ

−
−

10

 

Figure 15. Valid equilibrium strategies 

 

We summarize below, in the next two propositions, the equilibrium prices and corresponding 

thresholds under the assumption that both networks have no capacity constraints (the natural 

ordering of the thresholds coupled with the concavity assumptions automatically satisfy the 

pricing constraints). 

 

Proposition 4.2. When qP > 1/2, the equilibrium strategy for the weak network is always 

pure bundling, PB. The strong network may choose either: 

i)  the partial spectrum mixed bundling MBN, if ( )
( )

1 1

1 1 1

3
1

4
kγ

γ β
α β γ

−
≥ +

+ −
. 

ii) pure components PC, otherwise. 

 The equilibrium thresholds are as follow: 
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SCENARIO THRESHOLD FIRM 1 FIRM 2 

MBN & PB 

*
iT  1

2
 

1
4 1
k
k
γ

γ

−
−

 

**
iT  1

2
 

1
4 1
k
k
γ

γ

−
−  

***
iT  

2 1
4 1

k
k

γ

γ

−
−

 
1

4 1
k
k
γ

γ

−
−

PC & PB 

*
iT  1 

1
4 1
k
k
γ

γ

−
−  

**
iT  

1
2

1
4 1
k
k
γ

γ

−
−  

***
iT  

2 1
4 1

k
k

γ

γ

−
−

1
4 1
k
k
γ

γ

−
−  

 

The equilibrium prices are as follow: 

SCENARIO PRICES FIRM 1 FIRM 2 

MBN & PB 

i
Bp  

( )
1 13

2 2 4 1kγ

γ α
−

−
 ( )2 1

4 1
k

k
γ

γ

γ −

−
 

i
Pp  ( )

1 13
2 2 4 1kγ

β α
−

−
 ( )2 1

4 1
k

k
γ

γ

β −

−  

i
Np  ( )12 1

4 1
k

k
γ

γ

α −

−
 

( )2 1
4 1

k
k

γ

γ

α −

−

PC & PB 

i
Bp  ( )

1 1
1 2 12 4

3
kγ

αγ β
+

−
− ( )2 1

4 1
k

k
γ

γ

γ −

−  
i
Pp  ( )

1 13
2 2 4 1kγ

β α
−

−  

( )2 1
4 1

k
k

γ

γ

β −

−  
i
Np  

( )12 1
4 1

k
k

γ

γ

α −

−
( )2 1

4 1
k

k
γ

γ

α −

−  
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Proof:  Solving simultaneously (4.12) - (4.17) and observing that all Lagrange 

multipliers are 0.  The equilibrium prices are then substituted in (4.6) - (4.11) to derive the 

equilibrium thresholds. □ 

 

The proposition establishes that if the weak firm is “weak enough,” the strong network 

does not have to offer the entire mixed bundling spectrum, nor does it have to offer pure 

components.  Past results from the literature have focused, for instance, on the usage of bundling 

as a barrier to entry (Nalebuff, 2004), or on the equilibrium strategies on a generic market that is 

not vertically differentiated (Chen, 1997).  In our case, surprisingly, the strong firm does not use 

the bundle as a deterrent, but rather the “worst” product in its portfolio (the non-prime time).  As 

the dominated firm gets stronger and tries to rival the strong firm (kγ approaches 

( ) ( )1 1 1 1 11 .75 /γ β α β γ+ − + −⎡ ⎤⎣ ⎦  from above), the strong network reacts by discounting both the 

non-prime and the bundle.  When the prices go down enough such that the arbitrage pricing 

constraint becomes active (which will happen because the strong network decreases its non-

prime price at a faster rate than either the price of the prime or of the bundle), the strong network 

switches to PC, and continues to discount just the non-prime price, effectively pushing the 

competitor out of the market.  Therefore, it is this downward effect on prices (due to 

competition) that gradually forces the pricing constraint for the strong network to become 

binding.  Once the pricing constraint is binding, the strong network is forced to switch to pure 

components, so that it can further depress the price of its non-prime time resource, without the 

need of affecting downwards its bundle prices, and thus the total revenue.  If we denote by i
jπ  

the revenues of firm i under strategy j, then the total revenues collected by each firm are: 
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( )

( )
11

2
1

8 1
,

4 4 4 1
MBN

k

k
γ

γ

α
π γ +

= −
−

 (4.18) 

 
( )

( )
1 11

2

8 1
, and

4 4 4 1
PC

k

k
γ

γ

β α
π

+
= −

−
 (4.19) 

 
( )

( )
12

2

1
.

4 1
PB

k

k
γ

γ

α
π

−
=

−
 (4.20) 

We can see the competition effects on total revenue, by varying kγ.  When the weak firm 

threatens the competition by improving its programming quality, π1 decreases due to network 1 

depressing the prices of its non-prime and bundle, but too much of a threat results in firm 2 being 

pushed out of the market.  In fact, the concavity of π2 suggests the following corollary, which 

follows from optimizing π2 with respect to kγ: 

 

Corollary 4.3. The optimal response to the strong firm is for the weak network to choose 

kγ = 1.75.  At this value, regardless of the strong network’s bundling strategy, network 2’s 

equilibrium profit is maximized at α1 / 48, and the total market coverage is 87.5%, with the 

strong network capturing 58.33% of the market. 

Proof:  Using Proposition 4.2 and substituting the equilibrium prices for network 2 into 

the objective function of ROMB_U2, we obtain the optimal revenue for the weak network.  

Differentiating the total revenue with respect to the relative weakness parameter and solving the 

resulting equation gives us the optimal value of the parameter.  Substituting back into the 

corresponding thresholds gives us the corresponding market shares. □ 
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The consequence of the corollary is that there exists an equilibrium solution such that one 

can find an optimal separation between the two networks.  At this level, depending on the 

concavity of the ratings, the strong firm’s revenue will vary from ( )1 112 5 / 48β α−  to 

( )1 112 5 / 48γ α− .  A deviation from this strategy will translate into lost revenues for the second 

player, and any further threats would result in the eventual expulsion from the market, as the 

strong firm retaliates by giving non-prime time for free, in the limit.  The important insight 

seems to be that the best approach for the weak firm is to not threaten the strong network when 

seeking to improve its ratings (as the corollary shows, the optimal value for kγ is greater than 1).  

Figure 16 below presents the total revenues earned by the weak firm as a function of the relative 

weakness parameter. 

 

Figure 16. Total revenues of the weak network as a function of kγ 

 

In addition, as the competition becomes fiercer, the dominant firm depresses the price of the non-

prime resource, until it gives it for free in the limit (under the pure components choice, in 

retaliation to a strong competitor).  But this is not the only effect—the price of the bundle is 
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reduced as well, by α1/2, so from a welfare perspective, even if the competition is damaging for 

the weak firm, the market segment that purchases the strong firm’s bundle will be better off.  

Similarly, when the weak network has very low ratings, it will be forced to compensate by 

decreasing its prices until her products become essentially free goods.  Consequently, the strong 

firm will behave like a monopolist. 

An analysis of the market share covered by each network reveals that, as expected, 

stronger competition benefits the consumers, in terms of the size of the market that is collectively 

covered.  When the relative weakness parameter is high, then, ceteris paribus, the strong network 

acts like a monopoly, and in the limit only half the market will be covered.  On the other hand, if 

the relative weakness parameter is low, and thus the weak network threatens the strong network, 

the total market covered by both firms grows to 100% (with 2/3 of the market served by the 

strong network, and the remaining 1/3 covered by the weak network).  Both market shares are 

decreasing in kγ, which suggests that there is no interest in serving a higher fraction of the market 

as the weak network becomes weaker.  Figure 17 below illustrates this phenomenon. 

 

Figure 17. Market shares of both networks as a function of kγ 
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The equilibrium prices derived in Proposition 4.2 also generalize Moorthy’s (1988) results, since 

we consider a larger set of products.  (In his paper, equations 4.5 and 4.6 are equivalent to our 

results for 1
Np  and 2

Bp , if we define kγ = s2/s1.)  In addition, we provide here an analysis for a 

duopoly where both players offer a line consisting of three products (two individual components 

and a bundle), whereas his analysis is limited to competition with single product offerings. 

We now shift our analysis to characterizing the equilibrium solution when at least one of 

the networks is constrained with respect to the prime time resource. First, we examine the 

situation where the strong network is constrained with respect to qP, but the weak network is not.  

We summarize the results in Proposition 4.4. 

 

Proposition 4.4. When the strong network is constrained with respect to the prime time 

resource, but the weak network is unconstrained, the equilibrium strategy for the weak network 

is always pure bundling, PB.  The strong network may choose either: 

i)  the partial spectrum mixed bundling MBN, if 

( )( )
( )( )
1 1

1 1 1

3 1
1

2 1
P

P

q
k

qγ

γ β
α γ β

− −
≥ +

− − −⎡ ⎤⎣ ⎦
 

ii) pure components PC, otherwise. 

 The equilibrium thresholds are as follow: 
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SCENARIO THRESHOLD FIRM 1 FIRM 2 

MBN & PB 

*
iT  1 Pq−  

1
4 1
k
k
γ

γ

−
−

 

**
iT  1 Pq−  

1
4 1
k
k
γ

γ

−
−  

***
iT  

2 1
4 1

k
k

γ

γ

−
−

 
1

4 1
k
k
γ

γ

−
−

PC & PB 

*
iT  1 

1
4 1
k
k
γ

γ

−
−  

**
iT  1 Pq−

1
4 1
k
k
γ

γ

−
−  

***
iT  

2 1
4 1

k
k

γ

γ

−
−

1
4 1
k
k
γ

γ

−
−  

 

The equilibrium prices are as follow: 

SCENARIO PRICES FIRM 1 FIRM 2 

MBN & PB 

i
Bp  ( ) ( )1

1 1

2 1
1

4 1P P

k
q q

k
γ

γ

α
γ α

+
− + −

−
( )2 1

4 1
k

k
γ

γ

γ −

−
 

i
Pp  ( ) ( )1

1 1

2 1
1

4 1P P

k
q q

k
γ

γ

α
β α

+
− + −

−
( )2 1

4 1
k

k
γ

γ

β −

−  

i
Np  ( )12 1

4 1
k

k
γ

γ

α −

−
 

( )2 1
4 1

k
k

γ

γ

α −

−

PC & PB 

i
Bp  ( ) ( )1

1 1 1

2 1
4 1P

k
q

k
γ

γ

α
γ β α

+
− − −

−
( )2 1

4 1
k

k
γ

γ

γ −

−  
i
Pp  ( ) ( )1

1 1

2 1
1

4 1P P

k
q q

k
γ

γ

α
β α

+
− + −

−
( )2 1

4 1
k

k
γ

γ

β −

−  
i
Np  

( )12 1
4 1

k
k

γ

γ

α −

−
( )2 1

4 1
k

k
γ

γ

α −

−  
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Proof:  From solving simultaneously (4.12) - (4.17).  The equilibrium prices are then 

substituted in (4.6) - (4.11) to derive the equilibrium thresholds. □ 

 

The first observation is that the weak firm follows exactly the same strategy as in the 

above analysis, that is, they will go with PB, regardless of what the strong network chooses.  

Therefore, the same analysis we have done in the previous proposition will apply here as well.  

Secondly, due to the constraint on prime time, the tipping point from MBN to PC for the first 

network will change (and we note that in the limit, as qP approaches ½, the switching point from 

Proposition 4.4 approaches the one from Proposition 4.2). 

 

Proposition 4.5. When the strong network is unconstrained, but the weak network is 

constrained with respect to prime time availability, the optimal strategy for the weak firm is 

always MBN.  The strong firm may choose either: 

i) partial spectrum mixed bundling MBN, if 2

11
2 2 1

kk
k k

α
β

α α

−
≤ +

− +
 

ii) pure components PC, otherwise. 

The equilibrium thresholds are as follows: 
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SCENARIO THRESHOLD FIRM 1 FIRM 2 

MBN & 
MBN 

*
iT  1

2
 

( )
( )( )

( ) ( )

1

2 1

2 2

2

1

1

1

P P

k

k q q

k k kα γ

α

γ

γ −
×

−

−

−

−

−

+⎡ ⎤⎣ ⎦

 

**
iT  

1
2

 

( )
( )( )

( ) ( )

1

2 1

2 2

2

1

1

1

P P

k

k q q

k k kα γ

α

γ

γ −
×

−

−

−

−

−

+⎡ ⎤⎣ ⎦
 

***
iT  ( ) ( ) ( )

( ) ( )
1 2 1 2 1

2 1 2 1

P

P P

q

k k q q

k k kγ γ

γ

α

α

−

+

− − + −⎡

−
⎦

−

⎤⎣

( )
( )( )
( ) ( )
2

1

1

1

1 2

P

k

k

k k k k q

k k k
γ

γ

γ α α

α γ γ

γ

−
×

⎡ ⎤− −⎣ ⎦
⎡ ⎤− −

−

−⎣ ⎦
 

PC & MBN 

*
iT  1 

( )
( )( )

( ) ( )

1

2 1

2 2

2

1

1

1

P P

k

k q q

k k kα γ

α

γ

γ −
×

−

−

−

−

−

+⎡ ⎤⎣ ⎦

 

**
iT  

1
2

 

( )
( )( )

( ) ( )

1

2 1

2 2

2

1

1

1

P P

k

k q q

k k kα γ

α

γ

γ −
×

−

−

−

−

−

+⎡ ⎤⎣ ⎦
 

***
iT  ( ) ( ) ( )

( ) ( )
1 2 1 2 1

2 1 2 1

P

P P

q

k k q q

k k kγ γ

γ

α

α

−

+

− − + −⎡

−
⎦

−

⎤⎣

( )
( )( )
( ) ( )
2

1

1

1

1 2

P

k

k

k k k k q

k k k
γ

γ

γ α α

α γ γ

γ

−
×

⎡ ⎤− −⎣ ⎦
⎡ ⎤− −

−

−⎣ ⎦
 

 

The equilibrium prices are as follows: 
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SCENARIO PRICES FIRM 1 FIRM 2 

MBN & 
MBN 

i
Bp  ( )1 1 1

2 Np
γ α−

+
 

( )
( )( )
( ) ( )( )

2 1

2 1 2 1

1 4 1P

k

k k k

k k k q

γ

α γ γ

α α γ

γ
×

−

− − −

⎡ ⎤− − − −⎣ ⎦
 

i
Pp  ( )1 1 1

2 Np
β α−

+
 

( )
( )( )

( ) ( )( )

2 1

2 1 2 1

1 4 1 1P P

k

k k k

k
k k k q q

k

γ

α γ γ

β
α α β

γ

β −
×

− − −

⎡ ⎤⎛ ⎞
− − − − − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

i
Np  

( )
( )( )

( ) ( )

22 1

2 1 2 1

1 P

k

k k k

k k k k q

γ

α γ γ

γ α α γ

γ −

− − −

⎡ ⎤− −−⎣

×

⎦

( ) ( )

( )( )
2 1 1 1

2 1 2 1

P
kk k q
k

k k k

α
γ α

γ

α γ γ

α
⎡ ⎤⎛ ⎞

− − − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
− − −  

PC & 
MBN 

i
Bp  

( )1
1

11

2 Np
β α

γ
+

− +
( ) ( ) ( )( )

( )( )
2 1 1 4 1

2 1 2 1
Pk k k k q

k k k
γ α α γ

α γ γ

γ ⎡ ⎤− − − − −⎣ ⎦
− − −

i
Pp  

( )1 1 1

2 Np
β α−

+
 

( )
( )( )

( ) ( )( )

2 1

2 1 2 1

1 4 1 1P P

k

k k k

k
k k k q q

k

γ

α γ γ

β
α α β

γ

β −
×

− − −

⎡ ⎤⎛ ⎞
− − − − − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

i
Np  

( )
( )( )

( ) ( )

22 1

2 1 2 1

1 P

k

k k k

k k k k q

γ

α γ γ

γ α α γ

γ −

− − −

⎡ ⎤− −−⎣

×

⎦

( ) ( )

( )( )

2 1 1 1

2 1 2 1

P
kk k q
k

k k k

α
γ α

γ

α γ γ

α
⎡ ⎤⎛ ⎞

− − − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
− − −  

Proof:  From solving simultaneously (4.12) - (4.17).  The equilibrium prices are then 

substituted in (4.6) - (4.11) to derive the equilibrium thresholds. □ 
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Proposition 4.6. When both networks are constrained with respect to the prime time 

resource, the optimal strategy for the weak firm is always MBN.  The strong firm may choose 

either: 

i) partial spectrum mixed bundling MBN, if 2

11
2 2 1

kk
k k

α
β

α α

−
≤ +

− +
 

ii) pure components PC, otherwise. 

The equilibrium thresholds are as follows: 

SCENARIO THRESHOLD FIRM 1 FIRM 2 

MBN & 
MBN 

*
iT  1 Pq−

 

( )
( )( )

( ) ( )

1

2 1

2 2

2

1

1

1

P P

k

k q q

k k kα γ

α

γ

γ −
×

−

−

−

−

−

+⎡ ⎤⎣ ⎦
 

**
iT  1 Pq−

 

( )
( )( )

( ) ( )

1

2 1

2 2

2

1

1

1

P P

k

k q q

k k kα γ

α

γ

γ −
×

−

−

−

−

−

+⎡ ⎤⎣ ⎦
 

***
iT  ( ) ( ) ( )

( ) ( )
1 2 1 2 1

2 1 2 1

P

P P

q

k k q q

k k kγ γ
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The equilibrium prices are as follow: 

SCENARIO PRICES FIRM 1 FIRM 2 

MBN & 
MBN 
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γ α

γ
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α
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Proof:  From solving simultaneously (4.12) - (4.17).  The equilibrium prices are then 

substituted in (4.6) - (4.11) to derive the equilibrium thresholds. □ 
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It is interesting to notice that the weak network always follows a stable strategy: PB if it 

is unconstrained, and the next best, MBN, when it is constrained with respect to the prime-time 

availability.  This suggests that if the weak network does not position itself on the line according 

to the maxmin principle (by optimizing kγ), it is vulnerable due to its inflexibility that arises from 

its “the best or nothing” approach.  On the other hand, the strong network does have added 

flexibility and can adapt both when it has information about the competitor’s ratings, as well as 

when it does not. 

4.4 VALUE OF BUNDLING WITH COMPETITION 

We now analyze the broadcasters’ value of bundling under competition.  We present the results 

below, in Proposition 4.7. 

 

Proposition 4.7. The broadcaster’s value of bundling, , 1,2i
BVOB i = , as well as the 

aggregated broadcaster value of bundling, VOBB, are as given in Table 7: 

Proof:  Using Propositions Proposition 4.2 through Proposition 4.6, and substituting the 

equilibrium prices into the objective functions of ROMB_U1 and ROMB_U2, respectively, we 

obtain the optimal revenues when the bundle is considered by each network.  Similarly, we 

derive the optimal revenues when the bundle is not considered by either network.  The difference 

in revenues represents the broadcaster’s value of bundling for each network. □ 
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Table 7. Broadcaster’s and aggregate value of bundling 

VOBB FIRM 1 FIRM 2 AGGREGATE 

MBN & 
PB

 1 1

4
γ β−  
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1 1

4 1 4 1

k k
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γ β

γ β
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1 11
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The first interesting observation is that when the second firm cannot differentiate between its 

prime and the bundle with respect to the strong network’s non-prime time ratings, that is, both 

are just as poor compared to the strong network’s non-prime ratings (kγ = kβ), the weaker firm 

derives no value from bundling, while the strong network (and thus the aggregate measure) 
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reverts to the monopolistic scenario analysis.  This can be explained by the fact that any benefit 

derived from bundling by the second firm is negated by the cannibalization due to its prime 

product having the same rating.  Therefore, customers will prefer buying the prime time product 

at a (presumably) cheaper price.  In this situation it makes no difference if the firm is stronger 

(both multipliers approach 1) or weaker (both multipliers approach infinity), the effect is the 

same.  The other interesting observation is that for firm 2, once kγ has been optimized, 

maximization of VoBB occurs when kβ is minimized subject to the constraint imposed by the 

concavity assumption.  This behavior has also been observed in the two-dimensional competition 

models based on the Hotelling framework (Ansari, Economides, & Steckel, 1998), which have 

the same MaxMin equilibrium solution.  Under the Hotelling framework, the competitors choose 

locations alongside each of the two dimensions (say, quality and service level), and the 

subsequent analysis shows that the equilibrium solution has maximum differentiation across one 

dimension—in our case, prime time—and minimum differentiation across the other—in our 

case, the bundle. 

We now examine the advertiser’s value of bundling. The results are summarized below, 

in Proposition 4.8. 

 

Proposition 4.8. The advertisers’ value of bundling, , 1,2i
AVOB i = , as well as the 

aggregated advertiser value of bundling, VOBA, are as given in Table 8. 

 

We notice that VOBA has the same behavior as VOBB, that is, when the dominated firm 

does not differentiate, regardless of its status (weak or strong), we revert to the monopolistic 

scenario, and there is no bundling benefit for the second network. 
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Table 8. Advertisers’ and aggregate value of bundling 

VOBA FIRM 1 FIRM 2 AGGREGATE 

MBN & PB
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Proposition 4.9. The total value of bundling, VOB, is as follows: 

VOB FIRM 1 FIRM 2 AGGREGATE 
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⎢ ⎥− −⎣ ⎦

Proof:  Using Proposition 4.7 and Proposition 4.8 and adding up the corresponding 

values across each scenario and for each network. □ 
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4.5 CONCLUSIONS AND EXTENSIONS 

In this chapter, we have extended the bundling study for a vertically differentiated monopolistic 

market (that we have studied in chapter 3), to include competition in the form of a duopoly.  We 

have modeled two different types of duopolies: competition between a strong and a weak 

network, and competition between two comparable networks.  For the strong-weak competition 

model, we derive the conditions for the equilibrium strategies as a function of the available 

capacities and the relative weakness of the second firm, as well as the properties of each 

equilibrium strategy.  We then investigate the value of bundling in a duopoly. 

In the equilibrium analysis, we find that the strong network chooses either MBN or PC, 

whereas the weak network chooses either PB or MBN.  The main drivers of the equilibrium 

strategies are the relative scarcity of the prime time resource and the relative weakness of the 

second firm.  Of notable importance is that in a strong/weak framework, unlike in a general 

duopoly, the strong firm can use the inferior product as a deterrent, rather than the bundle (in 

fact, the inferior product is used in such a fashion precisely so that the bundle is protected).  In 

this market, the weak network survives only if the quality of its programming does not threaten 

the strong firm. 

The value of bundling analysis suggests that, as expected, competition has a beneficial 

effect for the consumers (the advertisers) than in the monopolist case.  Overall, bundling is a 

win-win proposition for both broadcasters and advertisers. 

Possible future extensions would include finalizing the analysis for the comparable 

networks scenario and contrasting the results to the findings of the strong/weak analysis 

presented in this chapter, as well as extending the analysis to an arbitrary number of 

broadcasters.  Separately, it would be interesting to consider a two-dimensional competition 
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model between the two networks.  In this two-dimensional framework (see Figure 18), the 

advertisers are distributed over a unit-square, with their locations measuring their efficiencies for 

each of the two networks.  Each axis represents a network, and along each axis, according to the 

self-selection framework, there exist thresholds delimiting the different market segments.  Unlike 

the one-dimensional case, we conjecture that the indifference regions would be defined by lines, 

with different slopes equal to the relative ratings of the competitors.  A possible solution to the 

two-dimensional model would look like Figure 18. 

***
1T **

1T *
1T

*
2T

**
2T

***
2T

 

Figure 18. Two-dimensional competition model 
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Notice that each indifference line has a different slope, due to the fact that the relative ratings 

may very well be different across the entire unit square (i.e., 1 1 1

2 2 2

α β γ
α β γ

≠ ≠ ).  In the particular 

case where the two competitors have equal ratings for each product type, then the three 

indifference lines would collapse into the 45 degree line. 
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5.0  MIXED BUNDLING WITH INDEPENDENTLY VALUED PRODUCTS 

5.1 INTRODUCTION 

In this chapter, we depart from the assumption of the vertically integrated market that existed in 

Chapters 3 and 4, and focus instead on the properties of the mathematical programming model 

that describes the general mixed bundling problem.  This is an interesting problem because of its 

complexity, and also because of its potential real-world applications.  For example, consider a 

travel website such as Expedia.com or Travelocity.com, which specialize in putting together 

travel packages (in effect bundles) of air fares, hotel rooms, car rentals, and/or tickets for local 

attractions.  Assuming that a good demand forecasting system is in place (as discussed in the 

literature review section on forecasting), and given the high traffic that these type of websites 

typically experience, the problem of finding an optimal discount level for a travel package, as 

opposed to building the trip separately from components, in an online environment is very 

challenging.  On one hand, there are many possibilities that can be combined together into 

bundles, if we consider the plethora of flight legs, hotel classification, car types, etc.  On the 

other hand, the transaction occurs online, so a pricing solution has to be found fast, usually, 

while a web page is loading in between the submission of forms containing the pricing requests. 

The general mixed bundling problem is characterized by rapid growth in both the number 

of constraints that have to be observed and in the number of variables.  On one end, a pure 
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bundling strategy has only one decision variable: at what price should the bundle be offered in 

order to maximize the revenue from the sale.  Conversely, a pure components strategy has n 

decision variables – one for each component.  A mixed-bundling strategy has 2n -1 variables, 

reflecting all the possible combinations of products that can be formed from the base set, plus the 

components that can be sold separately.  On the constraints part, the set of bundle prices have to 

satisfy a “no arbitrage” condition, which means that the seller should never offer a bundle at a 

price higher than the sum of its parts, since no one will buy it (assuming negligible building 

costs) and rather prefer to construct the bundle themselves.  It is easy to see that, as the base set 

of components increases, the number of such constraints that have to be observed grows very, 

very fast.  Moreover, in a realistic setting, the seller has limited resources, and so the sales 

decision will involve trade-offs between the products being offered.  Additionally, other design 

parameters could be added to the complexity of the problem as well: the number of units of each 

component that goes into the bundle, the demand characteristic (stochastic vs. deterministic, as 

fitted by a forecasting model).  For tractability reasons, we will limit ourselves in our analysis to 

a deterministic linear demand assumption, and we will base our analytical work on the two 

product/one bundle setting.  We also assume that all products (that is, the individual components, 

as well as the bundle) are independently valued, and that, in essence, there exists a separate 

market for each product.  These markets are linked via a common inventory and via the pricing 

constraints.  While this assumption may seem limiting, we will see later on that it still provides a 

good basis for a rich discussion. 

This chapter is organized as follows.  Section 5.2 provides a small theoretical foundation 

that helps us understand why exactly the mixed bundling problem is difficult to solve, and what 

is its special structure.  In this case, the underlying price function defined on the set of products 
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is submodular, and the underlying structure of the unconstrained mixed bundling problem is that 

of a polymatroid.  We discuss the definition and properties of polymatroids and explain under 

what conditions a greedy algorithm is optimal for this type of problem.  Section 5.3 discusses our 

modeling assumptions and develops a nonlinear pricing model for a bundling situation when the 

resources have limited availability.  The output from this model is a set of optimal product 

prices.  In Section 5.4, we analyze the properties of the optimal prices and of the shadow prices.  

Section 5.5 starts the computational investigation by developing a heuristic method that 

computes fast sub-optimal bundle prices in the presence of inventory considerations.  We also 

provide a theoretical discussion of the worst-case performance of the method, as well as a 

computational study that shows the practical performance of the method on a set of randomly 

generated instances.  Section 5.6 addresses the need for a large scale optimization methodology 

for the mixed bundling problem through a column generation approach.  We discuss the 

connection between the restricted master problem and its two sub-problems – the separation and 

the pricing sub-problems – and do a computational analysis of the performance of this method.  

We find that in all instances only a small fraction of constraints and variables are present in the 

final solution. 

5.2 SUBMODULAR OPTIMIZATION 

In order to have a better understanding of the complexities of the general mixed bundling 

problem, we need to define first several concepts that we will use throughout this chapter.  For a 

better understanding of submodular optimization in the context of resource allocation problems, 
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see Ibaraki and Katoh (1988), while for a good treatment of general submodular optimization 

topics, Topkis (1978) provides a good reference. 

Let n be a positive integer and let {1, 2,..., }E n= .  Let 2E denote the family of all subsets 

of E, and let 2E⊆D be a given family of subsets of E.  We will start with the following 

definitions. 

 

Definition 5.1.  If , ,X Y X Y X Y∈ ⇒ ∪ ∩ ∈D D , we call D  a distributive lattice with 

lattice operations union and intersection, and we denote it by ( ), ,∪ ∩D . 

Definition 5.2.  A function :r → RD is submodular over the distributive lattice D  if: 

 ( ) ( ) ( ) ( ), ,r X r Y r X Y r X Y X Y+ ≥ ∪ + ∩ ∀ ∈D  

Furthermore, a pair ( ), rD where D  is a distributive lattice and r is a submodular function 

over D  is called a submodular system. 

Definition 5.3.  Define ( ){ }1 2, ,..., | ,E
n jx x x x x j E= = ∈ ∈R R .  For a submodular 

system ( ), rD , { }( ) | , ( ) ( ),EP r x x x X r X X= ∈ ≤ ∀ ∈R D  is called the submodular polyhedron 

associated with ( ), rD .  A subset of P(r), { }( ) | ( ), ( ) ( )B r x x P r x E r E= ∈ =  is called the base 

polyhedron of ( ), rD , and each ( )x B r∈  is a base of ( ), rD . 

Definition 5.4 (Edmonds, 1970).  A system ( )2 ,E r  is a polymatroid if : 2Er → R  

satisfies the following axioms: 

i) ( ) 0r ∅ =  

ii) monotonicity: , , 2( ) ( ) ;EX Yr X r Y X Y∀ ∈≤ ⊆  

iii) submodularity of r 
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Notice that according to Definition 5.4 a pricing relationship for bundles satisfies the conditions 

of a polymatroid.  Indeed, the price of nothing should be 0 (condition i).  For any two bundles X 

and Y, such that Y contains at least as many items as X, the price of X should be lower than the 

price of Y (condition ii).  Finally, for any two components (either individual components or 

bundles) S and T, the bundle S T∪  should be priced lower than the sum of its components (the 

“no arbitrage” pricing constraint first introduced in model ROMB_U in Chapter 3; also condition 

iii).  The following result provides us with the intuition for our own heuristic development later 

in the chapter. 

Lemma 5.5. Consider the following optimization problem: 

 : max | ( ), 0j j
j E

SMLP c x x P r x
∈

⎧ ⎫
∈ ≥⎨ ⎬

⎩ ⎭
∑  

Problem SMLP defined over the polymatroid ( )2 ,E r  can be solved in polynomial time 

using a greedy algorithm. 

Proof:  See Ibaraki and Katoh (1988). 

 

Notice that problem SMLP is a relaxation of the problem ROMB_U (there are no capacity 

constraints here). 

5.3 THE GENERAL MIXED BUNDLING PROBLEM 

In this section, we will examine the bundling problem formulated as a generalization of the well-

studied resource allocation problem (Hochbaum, 1994; Ibaraki & Katoh, 1988).  In this context, 
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Federgruen and Groenvelt (1986) and later Zaporozhets (1997) have shown that a greedy 

algorithm based on allocating resources according to the marginal revenue is optimal if the 

underlying problem structure is a polymatroid.  Unfortunately, the general bundling formulation 

does not have a polymatroidal structure (because of the capacity constraints), rendering a pure 

greedy approach ineffective.  Related, Dyer and Frieze (1990) describe a polynomial algorithm 

for the particular allocation problem with a nested structure; as we will see later, the general 

model does not have this structure, since a component can be used in more than one bundle.  A 

different approach is described by Hanson and Martin (1990), who look at an optimization model 

based on reservation prices and market segmentation. 

Let { }1,2,...,N n=  denote the set of components which we can be used to form bundles.  

Let { }1,2,...,B b=  denote the set of all products (separate components and bundles) offered.  Let 

2N  denote the power set of N. For all k N∈ , let { }( ) |S k I B k I= ⊂ ∈ , and 

{ }( ) |T J k N k J= ∈ ∈ , that is, S(k) is the set of all products that use component k, and T(J) is the 

set of all components that are used in bundle J.  Let ( ) , ,k
J k N J Bγ= ∈ ∈Γ  be the bill of 

materials matrix, that is, k
Jγ  represents how many units of component k are used in packaging 

product J (for our purposes, we will assume that all  are either 0 or 1, that is, there is only 

unitary consumption).  Notice that under this provision, the set of possible bundles increases 

infinitely, because we could in theory create independently a given combination of any number 

of base products, mixed in any number of proportions. 

Let ( ),Jp J B= ∈p  denote the price vector, and ( ),J jd p J B= ∈d  be the demand 

function of product J.  Also, let ( , ), ,Ja p J Bξ ξ= ∈ ∈Ξa  denote the number of units of the Jth 

k
Jγ
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product offered, under a random scenario ξ  drawn from the set of all possible future realizations 

Ξ.  Let ( , )Jr p ξ=r  be the revenue function, defined as = Tr p a .  The general problem of 

stochastic revenue maximization with mixed bundling (SMBRM) in the presence of given 

inventory levels iq  of each component i, and subject to “no arbitrage” pricing constraints, can be 

formulated as follows: 

[SMBRM]    
, 1

max ( , )
n

SMBRM i jj i
pπ ξ

∈Ξ
=

⎧ ⎫= ⎨ ⎬
⎩ ⎭
∑p a

r  

subject to: 

                               
: ( ) ( ) : ( ) ( )

, . ,k k
I J I J

I T I T J I T I T J
p p J B s t k Nγ γ

∪ ∪= =

≥ ∀ ∈ ≥ ∀ ∈∑ ∑  (5.1) 

 
( )

( , ) , ,j
J k i

J S i
a p q i N kγ ξ

∈

≤ ∀ ∈ ∈Ξ∑  (5.2) 

 ( , ) ( , ), 2 ,N
i j i ja p d p i jξ ξ≤ ∀ ∈ ∀ ∈ Ξ  (5.3) 

 0 , 2N
i ip u i≤ ≤ ∈  (5.4) 

The first set of constraints imposes that the price of any bundle has to be i) at least the price of 

any of its component parts, and ii) the price of the bundle has to be at most the sum of the prices 

of its components. Thus, this set enforces a no “buyer arbitrage” condition – that is, we do not 

allow for the possibility of a particular consumer buying a bundle that contains more items that 

she needs initially, breaking it up, and discarding of the parts that are of no use to her; nor do we 

allow for someone to buy a bundle, break it up into an arbitrary number of sub-bundles and/or 

components, and resell everything for a profit.  The second set of constraints is a regular 

inventory capacity constraint.  Constraint set (5.3) imposes that the allocation should not exceed 

the demand, while the last constraint set says that the prices should not exceed a general upper 

bound u, for which the corresponding demand is 0. 
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In order to reduce the complexity of the model, throughout this section we will make the 

following simplifying assumptions: 

a) the demand is deterministic; 

b) the consumption rates are unitary, i.e. 1, ,j
i i jγ = ∀ . 

 

Proposition 5.6.  If demand is deterministic, then optimal allocations are made exactly at 

the observed demand levels. 

Proof:  Optimality conditions imply this result.  Let *a  be a solution in which the 

allocation is not made exactly at the observed demand level.  If there is under-allocation, then we 

can improve the value of the objective function induced by  simply by increasing the 

allocation.  No constraint will be violated.  Hence, constraints (5.3) are always tight when 

demand is deterministic. □ 

 

The managerial insight of the above proposition is that when a manager knows exactly 

the demand for his products, she will allocate exactly up to the demand level, while observing 

the capacity constraints.  As a result, the only decision variables in the revised model are the 

prices, since ( ) ( ), 2N
i ia p d p i= ∀ ∈ . 

The simplified model MBRM can be written as follows: 

[MBRM]  
1

max ( )
n

MBRM i
i

r pπ
=

= ∑p
 

subject to: 

 
: ( ) ( )

,I J
I T I T J

p p J B
∪ =

≥ ∀ ∈∑  (5.5) 

 
( )

( ) ,J J k
J S k

d p q k N
∈

≤ ∈∑  (5.6) 

*a
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 0 , 2N
i ip u i≤ ≤ ∈  (5.7) 

In the formulation MBRM, the total number of variables is given by 
1

2 1
n

n

k

n
k=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ .  The first 

set of constraints can be counted using the definition of a Bell number.  The Bell number of a set, 

denoted by nB , counts the number of ways in which the set can be partitioned into non-empty 

subsets.  It is given by the recurrence formula 1
0

n

n n
k

n
B B

k+
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ .  In our case, there are 

2

n

k
k

n
B

k=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
 

constraints of the type (5.5).  Finally, the set of constraints (5.6) has exactly n constraints.  

Therefore, the problem has exponential growth in both the number of variables and in the 

number of constraints.  The following table exhibits the combinatorial explosion of the problem, 

as the cardinality of set N increases: 

Table 9. MBRM problem growth for selected values of n 

n ROWS COLUMNS 

10 677,556 1,023 

20 4.75x1014 1,048,575 

30 1.03x1025 1.07x109 

40 2.35x1036 1.09 x1012 

50 3.26x1048 1.12x1015 
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5.4 BUNDLING WITH LINEAR DEMAND FUNCTIONS 

Let i i i ip dα β= −  be a general linear demand function.  Since we are interested in finding out the 

optimal price values, we will make the transformation 1,i
i i

i i

A α η
β β

= =  such that the demand has 

the form i i i id A pη= − for each product (including the bundle).  Let 
( )

i j
j S i

A A
∈

= ∑
 

(i.e., 

1 1 12 13 12...... nA A A A A= + + + + ).  Then, the first order KKT conditions applied to the deterministic 

version of the MBRM model imply the following optimal price vector 

 { }1* ,
2

I I j
j I j

I
I

A

p I B

η λ

η
∈ =

+

= ∀ ∈
∑

 (5.8) 

where 1,..., nλ λ  are the Lagrange multipliers associated with the n inventory availability 

constraints (5.6).  We can then show the following result. 

 

Proposition 5.7. Constraint set (5.5) is satisfied automatically if  

: ( ) ( )
,JI

I T I T J I J

AA J B
η η

∪ =

≥ ∀ ∈∑  

Proof:  Consider a general inequality of type (5.5).  According to (5.8), we can rewrite 

the term: 

{ } { } { } { }1 11 1

0

0
2 2 2

0

I J I J

I J I J k mI I k J J m
k I k m J mk I k m J m

I J I J

J I JI

I J I J

p p p

AA A

A AA

η λ λη λ η λ

η η η

η η η

∪

∪ ∪
∈ = ∈ =∈ = ∈ =

∪

∪

∪

+ − ≥ ⇔

⎛ ⎞
⎜ ⎟+ ++ + ⎜ ⎟
⎝ ⎠⇔ + − ≥

⇔ + − ≥

∑ ∑∑ ∑

 □
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Corollary 5.8. If there exists a relationship between the parameters of the demand 

functions as stated in Proposition 5.7, then constraint set (5.5) is redundant and can be dropped 

from the general model MBRM. 

Proof: From Proposition 5.7 the first set of inequalities is automatically satisfied if the 

demand parameters are suitably chosen.  Hence, these inequalities can be dropped from the 

model. □ 

 

Proposition 5.7 allows us to formulate the conditions that imply whether or not the i-th 

capacity constraint is binding: 

 
( ) ( )

, 1,...,
2 2

j i
i j i i i i

j S i j S i

A Aq p A q A q i n
∈ ∈

+ ≥ ⇔ ≥ − ⇔ ≥ =∑ ∑  (5.9) 

Under the assumption of deterministic linear demand, the MBRM model is a quadratic 

maximization problem with linear constraints, so the first-order KKT conditions are both 

necessary and sufficient.  Obviously, the solution depends on whether or not the quantities on 

hand make the inventory constraints binding, so we will have to analyze each possible scenario 

in detail.  For the sake of simplicity, we will analyze a stylistic scenario with n = 2 possible 

components. 

5.4.1 Unconstrained model 

If the last two inequalities are not binding on the optimal solution, then analytically the two 

Lagrange multipliers associated with (5.6) are 0.  Looking at (5.9), this implies 

 1 12
1 2

A Aq +
≥  (5.10) 
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 2 12
2 2

A Aq +
≥  (5.11) 

Then, the optimal solution becomes simply 

1 2 12

2 2 2
* * * *1 2 12 1 2 12

1 2 12 1 2 12

1, , ,
2 2 2 4
A A A A A Ap p p z
η η η η η η

⎛ ⎞
= = = = + +⎜ ⎟

⎝ ⎠
 

5.4.2 Both capacity constraints binding 

If the two quantities do not satisfy simultaneously (5.10) and (5.11), then complementary 

slackness dictates that 4 50, 0λ λ> > , where 4 5,λ λ are the Lagrange multipliers associated with 

(5.6). The optimal solution is found by solving the first order conditions 

( )

1 1 12 1 1 12 12

2 2 12 2 2 12 12

1 1 4
1

1

2 2 5
2

2

12 12 4 5
12

12

0
0

2

2

2

q A A p p
q A A p p

Ap

Ap

A
p

η η
η η

η λ
η
η λ

η
η λ λ

η

− − + + =
− − + + =

+
=

+
=

+ +
=

 

which has the unique solution 
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( )( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

( )

2 12 1 12 1 12 2 12 2*
4

1 2 12 1 2

12 1 12 1 1 12 2 12 2*
5

1 2 12 1 2

1 2 12 2 12 1 1 12 2 1 2 12 1 2 12 1 12 2*
1

1 1 2 12 1 2

2 12 1 2 1 12*
2

2 2

2 2

2 2
2

2

A A q A A q

A A q A A q

A A A q q
p

A
p

η η η
λ

η η η η η

η η η
λ

η η η η η

η η η η η η η η η η η η η
η η η η η η

η η η η η

+ + − − + −
=

+ +

− + − + + + −
=

+ +

+ + − + − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=
+ +⎡ ⎤⎣ ⎦

− + +
=

( )
( )

( ) ( )
( )

1 12 2 1 2 12 2 12 1 1 12 2

2 1 2 12 1 2

2 12 1 1 12 2 12 1 2 1 2 12 12 2 1 1 2*
12

12 1 2 12 1 2

2
2

2 2
2

A A q q

A A A q q
p

η η η η η η η η
η η η η η η

η η η η η η η η η η η η
η η η η η η

+ + − − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
+ +⎡ ⎤⎣ ⎦

+ + + + − +⎡ ⎤⎣ ⎦=
+ +⎡ ⎤⎣ ⎦

 

In order to ensure the validity of the solution, we need to further impose the condition that both 

multipliers are nonnegative.  This amounts to imposing the following boundary conditions: 

 ( ) ( )( ) ( )2 12 1 12 12 2 12
2 12 1 12 2 2

A A A A
q q

η η η
η η η

+ + − +
+ − ≤  (5.12) 

 ( ) ( )( ) ( )1 12 2 12 12 1 12
1 12 2 12 1 2

A A A A
q q

η η η
η η η

+ + − +
+ − ≤  (5.13) 

 1 12 2 12
1 2,

2 2
A A A Aq q+ +

< <  (5.14) 

5.4.3 One binding constraint 

If only one of the capacity constraints is binding, then we have two possible sub-cases, 

depending on which one it is.  Supposing that 2 12 1 12
2 1,

2 2
A A A Aq q+ +

< ≥ , then the first order 

conditions resolve to: 
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( )

2 2 12 2 2 12 12

2 2 5
2

2

12 12 5
12

12

2 12 5 2 12 2

0

2

2

2

q A A p p
Ap

Ap

A A q

η η
η λ

η
η λ

η

η η λ

− − + + =
+

=

+
=

+ = + −

 

with the unique solution 

( )

( )
( )

( )
( )

* 2 12 2
5

2 12

* 1
1

1

2 12 2 2 12 2 2*
2

2 2 12

12 2 2 12 12 12 2*
12

12 2 12

2

2
2 2

2

2 2
2

A A q

Ap

A A q
p

A A q
p

λ
η η

η
η η η η

η η η

η η η η
η η η

+ −
=

+

=

+ + −
=

+

+ + −
=

+

 

This solution holds under all circumstances, because to imply a negative value of the multiplier 

would mean that 2 12
2 12 2 22 0

2
A AA A q q +

+ − < ⇔ > , which contradicts the case setup.  On the 

other hand, if 1 12 2 12
1 2,

2 2
A A A Aq q+ +

< ≥ , the first order conditions are: 

( )

1 1 12 1 1 12 12

1 1 4
1

1

12 12 4
12

12

1 12 4 1 12 1

0

2

2
2

q A A p p
Ap

Ap

A A q

η η
η λ
η

η λ
η

η η λ

− − + + =
+

=

+
=

+ = + −

 

with the unique solution 
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( )
( )

( )

( )
( )

* 1 12 1
4

1 12

1 12 1 1 12 1 1*
1

1 1 12

* 2
2

2

12 1 1 12 12 12 1*
12

12 1 12

2

2 2
2

2
2 2

2

A A q

A A q
p

Ap

A A q
p

λ
η η

η η η η
η η η

η
η η η η

η η η

+ −
=

+

+ + −
=

+

=

+ + −
=

+

 

Putting together the boundary conditions from (5.10)-(5.14), we can represent graphically the 

regions that define the various bundling strategies.  Figure 19 below summarizes the possible 

solutions. 

( )
( )

12 1 122 12

1 122 2
A AA A η

η η
++

−
+

( )
( )

12 2 121 12

2 122 2
A AA A η

η η
++

−
+

1 12

2
A A+

1 12A A+

2 12

2
A A+

2 12A A+

2q

1q
 

Figure 19. Mixed bundling strategies with independent linear demand functions 

 

Notice how the variation in the two quantities affects the price levels, and accordingly the value 

of the optimal solution.  When either of the quantities exceeds a certain threshold, then the 
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optimal prices do not depend on it, and moreover, the optimal price of the base product based on 

that quantity is set independently of the other prices.  What is also interesting is that the optimal 

prices when one (or both) of the quantities are below the given threshold, then the optimal prices 

of each bundle are inversely related to the quantities available of the parts that go in the bundle, 

and directly related to the quantities available from the products which are not included in the 

bundle.  Finally, notice the connection between Figure 19 and Figure 2 from Chapter 3.  In 

Chapter 3, we obtained the strategies using a self selection mechanism that did not explicitly 

model a linear demand function.  However, the linear demand structure can be easily derived 

from the uniform distribution of advertisers.  Using the notation from Chapter 3, for the bundle, 

the demand function is 1 ( ) / ( )B B Pq p p γ β= − − − , for the prime time product, it is 

( ) / ( ) ( ) / ( )P B P P Nq p p p pγ β β α= − − − − − , and for the non-prime product it is 

( ) / ( ) /N P N Nq p p pβ α α= − − − .  In Chapter 3, the demand elasticities therefore depend on the 

ratings parameters, α, β, and γ, whereas in Chapter 5 they depend on the values of 1 2 12, , andη η η .  

Unlike Chapter 3, in this section the mixed bundling strategy emerges as the optimal strategy in 

each case, due to the independent valuation assumption.  In this situation, it is never optimal to 

choose either pure bundling or pure components. 

5.5 GREEDY HEURISTIC 

Based on the observations presented so far, and on the properties of the demand function d 

(continuous, decreasing) and those of the revenue function (concave), we can derive an 

allocation algorithm, generalizing the previous work of Federgruen and Groenvelt (1986)  and 
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Hochbaum (1994).  In our situation, we need to account for the capacity constraints, which 

destroy the polymatroidal structure of the problem.  We are grateful to Dr. Srinivas Bollapragada 

of GE Research for his ideas about this particular approach. 

We will denote by ( )1,..., Br rΔ = Δ ΔR  the vector of marginal revenues (i.e. the changes in 

the objective function as a result of changing the corresponding demand by a small amount idΔ .  

Let ( )iq=Q  be the current allocation vector, let ( )Jp=p  be the price vector, and let ( )1g − ⋅  

denote the inverse of function g.  The algorithm proceeds as follows: 

Step 0: Initialization.  Let 0, i ip u= =Q  (set the initial quantities to zero and all prices at 

their upper bounds). 

Step 1: Allocation.  Let { }arg max jj B
i r

∈
= Δ .  If 1( )i ip p g d−← − Δ  is not feasible, find the 

next best available ip  and decrement accordingly.  Set i iq q d← + Δ  for those quantities that are 

affected by the price decrement. 

Step 2: Stopping.  If 0Δ ≤R , stop.  Report Q and p.  Otherwise, go to step 1. 

Figure 20. Description of the greedy allocation algorithm 

 

It is easy to see that Step 1 of the algorithm maintains primal feasibility at all iterations. 

5.5.1 Worst-case heuristic performance 

Since mixed bundling weakly dominates both pure components and pure bundling in this case, 

we can compute the optimal solutions for these situations and consider the maximum of those as 
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our lower bound on the optimal solution. For ease of exposition throughout this subsection, 

assume a functional form for the demand function of type ,J J J Jd a b p J B= − ∈ . 

For the pure components strategy, we need to solve the following problem: 

{ }
1 2

1 1 2 2 1 1 2 2,
max | ;PCd d

p d p d d q d qπ = + ≤ ≤  

The optimal set of solutions is as follows: 

( ) ( )

( )

( )

* *1 2
1 1 2 2

1 1 1 2 2 2 1 2
1 2

1 2

2
1 1 1 2 1 2

1 2
1 2*

2
2 2 21 1 2

1 2
1 2

2 2
1 2 1 2

1 2
1 2

min , , min ,
2 2

,if and 
2 2

,if and 
4 2 2

,if and 
4 2 2

,if and 
4 4 2 2

PC

a ad q d q

q a q q a q a aq q
b b

q a q a a aq q
b b

q a qa a aq q
b b

a a a aq q
b b

π

⎧ ⎫ ⎧ ⎫= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

− −⎧
+ < <⎪

⎪
⎪ −

+ < ≥⎪
⎪= ⎨

−⎪ + ≥ <⎪
⎪
⎪

+ > >⎪
⎩

 

Noticing that for any parameters ( ) ( ) ( ) 2 2 2
1 1 1 2 2 2 1 1 1 2 1 2

1 2 1 2 1 24 4 4
q a q q a q q a q a a a

b b b b b b
− − −

+ ≤ + ≤ +  and 

that ( ) ( ) ( ) 2 2 2
1 1 1 2 2 2 2 2 2 1 1 2

1 2 2 1 1 24 4 4
q a q q a q q a q a a a

b b b b b b
− − −

+ ≤ + ≤ + , we obtain that the maximum value 

of the objective function is  
2 2

* 1 2

1 24 4PC
a a
b b

π = + .   Conversely, for the pure bundle strategy, we need 

to solve the following problem: 

{ }
12

12 12 12 1 12 2max | ;PBd
p d d q d qπ = ≤ ≤  

The optimal solution is as follows: 
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( )

( )

* 12
12 1 2

1 12 1 12
1 1 2

12

2 12 2* 12
2 1 2

12
2
12 12 12

1 2
12

min , ,
2

, if min , ,
2

, if min , ,
2

, if min , ,
4 2 2

PB

ad q q

q a q aq q q
b

q a q aq q q
b

a a aq q
b

π

⎧ ⎫= ⎨ ⎬
⎩ ⎭

−⎧ ⎧ ⎫= ⎨ ⎬⎪
⎩ ⎭⎪

⎪ −⎪ ⎧ ⎫= =⎨ ⎨ ⎬
⎩ ⎭⎪

⎪ ⎧ ⎫⎪ = ⎨ ⎬
⎩ ⎭⎪⎩

 

Once again, noticing that ( ) 2
1 12 1 12

12 124
q a q a

b b
−

≤  and ( ) 2
2 12 2 12

12 124
q a q a

b b
−

≤  we conclude that the 

maximum value of the objective function is 
2

* 12

124PB
a
b

π = .  Finally, for the mixed bundling 

strategy, we have to solve: 

{ }
1 2 12

1 1 2 2 12 12 1 12 1 2 12 2, ,
max | ;MBRMd d d

p d p d p d d d q d d qπ = + + + ≤ + ≤  

We can say from first principles that the more constrained the problem, the worse the objective 

value.  Hence, the largest possible value for MBRMπ  occurs when the problem is unconstrained, 

and the lowest occurs when all the constraints are binding on the optimal solution.  Therefore, 

using the analytical results from the previous section, the optimal solution ranges between  

( )( ) ( )( )12 2 12 1
1 2 12 1 1 2 12 2 1 12 2 2 1 12 12 1 2

12 2 12 1*
min

1 2 2 12 1 12

2a a a aq b b a q b b q b b a q b b b q q
b b b b

b b b b b b
π

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
+ − + − + + − + − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦=
+ +

 

and  
2 2 2

* 1 2 12
max

1 2 124 4 4
a a a
b b b

π = + + .  We will use *
minLBπ π=

 

as our lower bound. 

In order to compute an upper bound, we will denote by p’ and d’ the values of price and 

demand after making a small allocation δ.  We have d’ = d + δ, and p’ = p - ε.  It follows 

immediately that ε = δ / b. 
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Let r12, r1, and r2 respectively be the marginal changes in revenues after the allocation is 

made (i.e. r12 = (p12’d12’-p12d12) / δ, etc.)  Suppose, without loss of generality, that r12 > r1 > r2 

and r12 < r1 + r2. Also, assume q1 << q2.  By selection rule, we will allocate d to product 1 rather 

than the bundle, which is a suboptimal choice (it is suboptimal since allocating to the bundle is 

feasible, and by choice, the increase in revenue contributed by the bundle is higher than the 

increase in revenue contributed by product 1.)  Hence, there will be a loss, which can be 

computed as: 

( ) ( )' ' ' '
12 12 12 12 1 1 1 1 12 12 1 1

12 1
12 1

2 2p d p d p d p d a d a d
r r

b b
δ δ

δ δ

− − − − − −
Δ = − = − = −  

In the worst case, Δ is largest when 0δ →  and d1 = d12 = 0 (first step of the greedy allocation 

algorithm).  In this case, the loss is 12 1

0
12 1

lim
a a
b bδ →

Δ = − .  Let ( )
1

kr  be the marginal revenue of 

product 1 at iteration k, and ( ) ( )
1 1,k kp d  be the corresponding price and demand levels.  Obviously, 

(0) (0)1
1 1

1

, 0
a

p d
b

= = . We want to establish a recursion rule: 

( )( ) ( ) ( )

( )( ) ( ) ( )

(1) 1
1

1

(1) (1) (1) (1) (0) (0)
1 1 1 1 1 1(2) (1)1

1 1
1 1 1 1

(2) (2) (2) (2) (1) (1)
1 1 1 1 1 1(3) (2)

1 1
1 1 1

( ) ( 1)
1 1

1

3 2

2

...
2k k

a
r

b

p d p d p d a
r r

b b b b

p d p d p d
r r

b b b

r r
b

δ

ε δ ε δ ε δ εδ δ δ

ε δ ε δ ε δ εδ δ

δ−

−
=

− + − − − + − −
= = = = −

− + − − − + −
= = = −

= −

 

Hence, at each step, the loss is 
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( )

(1)
1 12 1

(2) (1)
2 12 1 12 1

1

(3) (2) (1)
3 12 1 12 1 12 1

1 1

( ) (1)
12 1 12 1

1

2

2 4

...

2 1k
k

r r

r r r r
b

r r r r r r
b b

k
r r r r

b

δ

δ δ

δ

Δ = −

⎛ ⎞
Δ = − = − −⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞

Δ = − = − − = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−⎡ ⎤
Δ = − = − −⎢ ⎥

⎣ ⎦

 

The total loss is  

 ( ) ( ) ( )(1) 12 1
12 1

1 11 12 1 1

12 21
2

k k

i
i i

k ka ak r r i k
b b b b

δδ δ
= =

−⎡ ⎤⎛ ⎞−
Δ = Δ = − − − = − −⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦
∑ ∑  

The initial relationships r12 > r1 > r2 and r12 < r1 + r2 cannot always hold, since r1 is decreasing at 

every step.  To figure out what is the maximum number of iterations, we need to solve 

(0) ( ) (0) (0) ( ) (0)
12 1 2 12 1 2;k kr r r r r r> > = + . We have 

 

( )( ) 12 1 2
12 1 2

12 1 1 2

1 1 2 12

2 12

2 1
0 0

2 2

k ka a ar r r
b b b b

a b a ak
b b

δδ

δ

−−
− − = ⇔ − + − =

⎛ ⎞+
⇒ = + −⎜ ⎟

⎝ ⎠

 

It could also happen that ( )
1 0kr = , at some iteration k, that is 

 ( )1 1

1

2 1
0 1

2
a k ak

b
δ

δ
− −

= ⇔ = +  

Putting the two situations together, it follows that 

1 1 2 12 1

2 12

max ,1
2 2 2

a b a a ak
b b

δ
δ

⎧ ⎫⎛ ⎞+⎪ ⎪= + − +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 

Substituting back into the total loss expression and taking the limit, we get:   
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max ,1
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a ak r r i k
b b b

a a a b a a a
b b b b

δ δ δ

δ

δ
δ

→ → →
= =

⎡ ⎤ ⎛ ⎞
Δ = Δ = − + − = −⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠
⎧ ⎫⎛ ⎞ ⎛ ⎞+⎪ ⎪= − + − +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
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Since we can make the same argument for product 2, then the worse that can happen is: 

12 12 12

12 12 12

max , 1 , 1,2
2 2 2

i i i i i i

i i i

a a b a a aa a a i
b b b b b b

δ
δ

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞+⎪ ⎪⎡ ⎤Δ = − − − − + =⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
 

If we denote by π* the optimal solution to the mixed bundling problem, and by πH the solution 

given by the greedy heuristic, we have obtained that, in fact, *
Hπ π− ≤ Δ .  Putting together this 

information and our previously established lower bound, the performance of the greedy 

algorithm can be bounded by: 

 
*

LB

H LB

ππ
π π

≤
− Δ

 

 

Corollary 5.9. The performance of the heuristic algorithm as a function of initial 

capacity is asymptotically optimal. 

Proof:  Lemma 5.5 establishes that the greedy allocation is optimal if the capacity 

constraints are non-binding.  As qi approach infinity, the capacity constraints become non-

binding, so the result in Lemma 5.5 applies. □ 

5.5.2 Computational results 

In order to establish the practical performance of the heuristic, we have created a benchmark of 

test problems, varying the size of the set of basic components.  Due to the size of the problem, 
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we limited ourselves to small instances, so that we can compute the optimal solution with a non-

linear solver and evaluate the optimality gap.  We randomly picked the slopes and the intercepts 

of the linear demand functions from a uniform distribution with support [1, 10].  Similarly, we 

selected the initial quantities from a uniform distribution with support [0, 5t], 
1

n

i i
i

t a b n
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ .  

For each problem size n, we benchmarked 30 different instances and aggregated the results.  The 

summary is presented below, in Table 10. 

Table 10. Greedy heuristic performance 

COMPONENTS 

(n) 

AVG. GAP 

(%) 

AVG. TIME 

(SECONDS) 

2 0.34% 0.063 

3 0.82% 0.084 

4 0.44% 0.209 

5 0.90% 0.771 

6 2.45% 1.984 

7 2.71% 5.933 

8 2.91% 17.922 

9 2.96% 50.209 

 

We notice a monotonic increase in the size of the optimality gap, as the problem size grows. This 

is not unexpected, as the possible ways in which the greedy selection mechanism can make a 

suboptimal choice increases with the number of available components.  On the other hand, the 

gap is relatively small, with the highest around 3%, which could be very manageable for realistic 

pricing problems, especially since the average time needed to run the algorithm is amenable even 

for an online environment (like, say, pricing a set of products while the user is waiting for the 

response with a web browser).  Unfortunately, the global solver runs out of memory after n = 9 
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base components, so we cannot judge the accuracy of the heuristic beyond this point, although 

we could test its running time.  However, looking at the current data points, we would expect an 

exponential increase in the running time. 

5.6 DECOMPOSITION FRAMEWORK  

In this section we propose an efficient approach for solving the mixed bundling revenue-

maximizing problem.  We recognize the rapid growth in dimensionality of the generic problem, 

and we try to exploit the problem structure, based on the insight that not all possible bundles 

need to be considered explicitly.  Therefore, the idea is to price bundles on the fly, and introduce 

them for consideration in the maximization problem only when, in fact, they are profitable.  The 

tradeoff that we will have to judge is whether or not the computational gains that we theoretically 

make by not having to consider the entire product set are offset by the search for the next “best” 

bundle, as well as by validating that the pricing constraints are met at every iteration. 

 The rest of this section is organized as follows.  We first present the idea behind the 

decomposition approach, and formulate a restricted master problem.  We then augment the 

restricted master problem with a separation sub-problem and a pricing sub-problem.  The 

separation sub-problem validates that, given a set of prices as inputs, either all pricing constraints 

are satisfied, or one pricing constraint is violated.  If such a constraint is violated, it is added to 

the restricted master problem.  The pricing sub-problem identifies a possible bundle (a new 

column) that can be added to the restricted master problem.  Finally, we present results from a 

computational experiment that suggest this approach is promising for large-scale problems. 
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5.6.1 The restricted master problem 

Recall the original formulation of the generalized deterministic MBRM problem: 

[MBRM]  
1

max ( )
i

n

MBRM ip i

r pπ
=

= ∑  

subject to: 

 
: ( ) ( )

,I J
I T I T J

p p J B
∪ =

≥ ∀ ∈∑  (5.15) 

 
( )

( ) ,J J k
J S k

d p q k N
∈

≤ ∈∑  (5.16) 

 0 , 2N
i ip u i≤ ≤ ∈  (5.17) 

The problem suffers from exponential growth in both variables and constraints; however the 

structure of the problem is such that there is an exponential increase in the number of constraints 

for each possible variable that is included in the model.  Therefore, an interesting attack angle is 

that of decoupling the complicating variables from the problem, and adding them only on a 

needed basis.  Initially, we would start optimizing with no bundles at all, only with the non-

bundle products, so that there are no pricing constraints to observe.  As we start adding potential 

revenue-increasing bundles, we start adding pricing constraints as needed, observing again that 

for a given bundle, it is possible that not all pricing constraints need to be added (as some pricing 

constraints might be either dominated by others). 

We refer to the variant of MBRM without all bundles and pricing constraints explicitly 

included as the restricted master problem of MBRM, or MBRM-RMP, for short.  Let 'B B⊂  be 

the set of all products included in MBRM-RMP, and let S’ be the set of all pricing constraints 

included in MBRM-RMP.  The MBRM-RMP problem is then as follows: 
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[MBRM-RMP] 
'

max ( )MBRM RMP J J Jp J B
p d pπ −

∈

= ∑  

subject to: 

 
: ( ) ( )
:

, '
I

I J
I T I T J
I I J

p p J S
∪ =

⊃

≥ ∀ ∈∑  (5.18) 

 
( )

( ) ,J J k
J S k

d p q k N
∈

≤ ∈∑  (5.19) 

 0 , 'J Jp u J B≤ ≤ ∈  (5.20) 

Initially, S’ is initialized with the empty set, and B’ is initialized with the subset of all base 

components.  Using an iterative algorithm, we will connect the master problem with two sub-

problems: a separation problem (MBRM-SEP) for identifying violated pricing constraints, and a 

pricing sub-problem (MBRM-CG) that generates new bundles that are added to the master 

problem.  The pseudo-code for the decomposition algorithm is presented below. 

Step 0:  Let { }' | 1B J B J= ∈ = . Let 'S = ∅  

Step 1:  Solve MBRM-RMP.  Obtain the optimal solution vector p*. 

Step 2:  Using p* as an input, solve the separation subproblem MBRM-SEP and see if 

there exists a pricing constraint for some bundle J that is violated.  If it is, add the constraint to 

the master problem, let { }' 'S S J= ∪  and go to step 1, otherwise go to step 3. 

Step 3:  Solve the column generation subproblem MBRM-CG and see if any new bundle 

prices favorably.  If there exists such a bundle J’, then let { }' ' 'B B J= ∪  and go to step 1.  

Otherwise, stop.  The vector p* is an optimal solution to MBRM. 

Figure 21.  Description of the decomposition algorithm 
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The following sections describe in detail the two sub-problems that are invoked by the master 

problem. 

5.6.2 The separation sub-problem 

The separation sub-problem receives as input a vector of prices from the master problem and 

checks to see whether some pricing constraint is violated.  If such a constraint exists, it is 

identified and added to the master problem.  Resolving the new master problem should generate 

a new set of prices.  At a basic level, the separation sub-problem is similar to a valid inequalities 

generator from a generic mixed integer programming solver.  Just like the way a cut generator 

eliminates intermediate fractional solutions, the separation sub-problem eliminates prices that 

violate the pricing relationships. 

Let p  = p* be the current solution to the master problem ( is a parameter).  Let 

{0,1}Jw ∈  be a binary variable indicating whether the price of product 'J B∈  violates 

subadditivity.  If 1Jw = , then a pricing constraint for bundle J has to be added to the master 

problem.  Also, let {0,1}JKu ∈  be a binary decision variable equal to 1 if product K contains 

some components that can be used to assemble product J, and 0 otherwise.  Finally, let the 

parameter 1iJe =  if ( )i T J∈  and 0 otherwise. 

Following a formulation originally presented in Hanson and Martin (1990), the separation 

problem MBRM-SEP is a binary integer program that can be written as follows: 

 

 

p
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[MBRM-SEP]  
' '\

maxMBRM SEP J J K JK
J B K B J

p w p uπ −
∈ ∈

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑  

subject to: 

 
'\

, ',iJ J iK JK
K B J

e w e u J B i N
∈

≤ ∀ ∈ ∈∑  (5.21) 

 
'

1J
J B

w
∈

≤∑  (5.22) 

 { }, 0,1 , , 'J iJw u i N J B∈ ∀ ∈ ∈  (5.23) 

The idea behind MBRM-SEP is the identification of the maximally violated pricing constraint.  

If 0MBRM SEPπ − =  then all pricing constraints are satisfied for the current master problem.  

Otherwise, the violated pricing constraint 
{ }| 1JK

K J
K u

p p
=

≥∑
 
for which 1Jw =  and 1JKu =  should 

be added to the master problem.  Constraints (5.21) ensure that a valid set of pricing components 

are identified (otherwise the maximization problem can be solved trivially by setting 1Jw =  and 

0JKu = ).  Constraint (5.22) is a set covering constraint, ensuring that at most one bundle J with a 

violated pricing constraint is identified.  Computationally, it can be experimented with dropping 

this constraint and adding several violated pricing constraints during the current iteration.  On the 

other hand, the addition of several constraints at every single iteration might not be worthwhile if 

some of them are implied by other pricing relationships. 

5.6.3 The pricing sub-problem 

The pricing sub-problem is designed to add (or “price”) new variables (that is, new bundles) into 

the master problem.  Since MBRM is a convex optimization problem, we need to take several 
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theoretical precautions to ensure that the column generation mechanism generates variables that 

ensure both convergence and optimality of the restricted master problem. 

Let | | | |N B×
+∈A R  be the bill-of-materials for the products (the usage rates for each product), 

| | | | | |

, :
B B B

+ + +∈ →p R d R R , and 
| |N

+∈q R  be the price, demand functions, and capacity vectors.  Also, 

let { }| | | | , 1,0,1B B×∈Ε Ε = −C  be a generic matrix corresponding to the coefficients of the pricing 

constraints (5.18).  Then, problem MBRM can be re-written in matrix form as: 

[MBRM]  
0

maxMBRMπ
≥

= T

p
p d  

subject to: 

 0≤Cp  (5.24) 

 ≤Ad q  (5.25) 

Let σ, ω  be the row vectors of Lagrange multipliers associated with constraints (5.24) and (5.25)

, respectively. Consider the Wolfe dual of MBRM: 

 ( ) ( ){ }
0

minDπ
≥

= + +T T T

d,σ,π
p d σ Cp ω Ad - q  (5.26) 

subject to: 

 ( ) ( ) ( ) 0∇ + + ∇ + ∇ =T T T
d d dp d σ Cp ω Ad - q  (5.27) 

Since MBRM is a convex problem, if the dual is also a convex problem, then (Bazaraa, Sherali, 

& Shetty, 2006) the duality gap is 0 (a condition that is satisfied for linear demand functions).  

The Lagrange multipliers will have the same interpretation as the shadow prices in a linear 

programming problem.  In particular, ω , the Lagrange multiplier vector associated with 

constraint (5.25) can be interpreted as the fair price for a very small amount resource q.  Hence, 

the idea behind the column generation method is fundamentally a cost-benefit analysis: we will 

accept into the master problem a new bundle J if its contribution is greater than the “cost” 
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incurred by consuming the resources that go into the bundle.  Specifically, let JA  be the column 

of matrix A corresponding to bundle J, and define 

 J
J

J J J

d
p d p

ρ = =
T T

J Jω A ω A  (5.28) 

to be the cost/benefit ratio associated with a bundle J  

Then, the pricing problem involves finding the “best” such Jρ , that is, we want to solve 

[MBRM-CG] * arg min 1, \ '
J J

J J B B
p p

⎧ ⎫⎪ ⎪= ≤ ∀ ∈⎨ ⎬
⎪ ⎪⎩ ⎭

T T
J Jω A ω A  (5.29) 

The pricing problem MBRM-CG reduces thus to a sorting problem.  The computational challenge 

is twofold: sorting a list of products that is theoretical exponential in size (all potential non-

included bundles) and figuring out a priori what is the value of pJ in (5.29).  The first problem 

can be mitigated (besides using an efficient sorting algorithm) by maintaining the sorting order 

and updating the list only if the Lagrange multipliers change.  The problem of finding out the 

correct price can be solved by using as a proxy the price at which product J would have been 

offered if J were the only item in the product line, and ensuring that this price is higher than 

T
Jω A .  This approximation, coupled with the fact that the duality gap inherent in MBRM-SEP 

may not be 0 due to non-convexity of the Wolfe dual, establishes that the decomposition might 

not provide optimal solutions to the general MBRM model. 

If problem MBRM-CG does not have a solution, then the current solution to the relaxed 

master problem is optimal. Indeed, if there exists a solution J* to (5.29) such that * 1Jρ ≥ , then the 

cost of adding bundle J* to the solution is greater than its potential contribution, so the total 

revenue will decline.  Since the revenue function is concave, it follows that the relaxed problem 

cannot be optimal. 
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5.6.4 Computational results 

In this section we present several results that evaluate the effectiveness of the decomposition 

algorithm.  Just like the evaluation of the heuristic introduced in section 5.5.2, our benchmark 

consists of randomly generated instances having the same parameters for the demand function as 

those presented previously.  Unlike the heuristic case, we increased the size of the instances 

beyond the capabilities of the current non-linear solvers.  The decomposition algorithm was 

implemented using the AMPL modeling language.  We used CPLEX 8.1 with the built-in 

quadratic solver for the restricted master problem and the regular integer optimization solver for 

the separation sub-problem.  Table 10 below presents the aggregate results.  The “average rows” 

columns refers to the average number of constraints present in the master problem at the last 

iteration, while the “average columns” section refers to the total number of products included in 

the final solution.  For a given size n, the results are averaged across 10 different instances. 

Table 11. Aggregate results for the decomposition algorithm 

COMPONENTS 

(n) 

AVG. ROWS 

(CONSTRAINTS) 

AVG. COLUMNS 

(BUNDLES) 

AVG. TIME 

(SECONDS) 

10 93 54 2.58 

15 3193 1836 8.52 

20 87353 57402 192.72 

25 597233 354298 606.42 

 

It is interesting to note that even for large size instances, the density of the problem (proportion 

of actual bundles present in the final solution as opposed to all possible bundles of size n) is 

really small, around 4.3%.  This suggests that the decomposition approach can be an effective 

tool for these type of instances, since it does not need to consider explicitly every single bundle.  
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As expected, only a small fraction of the bundles turn out to be relevant.  The same is true for the 

constraints, where the original exponential number of constraints is reduced to a more 

manageable size.  On the other hand, the method has its limitation, as the algorithm runs out of 

memory around instances of size n = 26 (which is still better than the previous limit of n = 9 that 

exhausts the direct approach to solving MBRM). 

5.7 CONCLUSIONS 

In this chapter we have studied analytically and computationally the general mixed bundling 

problem when products have independent valuations.  We have shown that the general 

deterministic problem is hard, due to both the exponential growth in both constraints and 

decision variables, as well as the non-polymatroid structure exhibited by the problem. 

First, we examined a particular situation of the general mixed bundling problem, when 

there are only two components and the demand function is assumed linear, and found a 

noteworthy feature of the optimal solution.  We notice a connection between the linear 

demand/independent valuation case and the self-selection model described in Chapter 3.  

Specifically, we find that in both cases the regions described by the capacity constraints are 

similar to one another.  The similarity of the regions, even though the dominant strategy in each 

region is different between the settings, most likely comes from the fact that in Chapter 3 the 

consumers are assumed to be uniformly distributed, which implicitly induce a linear demand 

function of the type used in this chapter.  The difference is that in Chapter 3 the pure components 

strategy is optimal when both resources are very scarce, and that pure bundling is optimal when 

both resources are plentiful whereas we do not find either the PC or the PB strategy to hold in the 
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general linear demand case.  The reason for this is twofold: on one hand, in this chapter there is 

no assumption about the vertical differentiation, and therefore there is no universal ranking of 

preferences, and on the other hand we in this case we have independent valuation, which results 

in both the PC and PB strategies being always dominated by some form of mixed bundling. 

Next, we derive two different algorithms for solving the general case of the mixed 

bundling problem.  The first method, a greedy heuristic, has the advantage of speed for smaller 

instances, but it can behave badly in terms of solution quality if the instance is characterized by 

relatively large scarcity (the performance becomes asymptotically optimal as the resource 

availability increases).  The second algorithm, which is based on a decomposition framework, 

performs well on larger scale instances. 

For the future, an interesting discussion would be to derive optimal strategies if the 

independent valuation assumption is removed, but the capacity constraints remain in place.  In 

this case, the demand for the bundle would have a functional form that depends on the 

relationship between the demands for the components (and whether these are complements or 

substitutes).  We would expect the boundaries of the optimal strategy to change, and it would be 

interesting to see if either pure components PC or pure bundling PB emerge as possible optimal 

strategies over the mixed bundling spectra.  Additionally, we would like to modify the two 

algorithms to account for stochastic demands.  In the decomposition case, such an extension 

would probably include an extra layer in the algorithm, in the form of an L-shaped approach.  

Similarly, the greedy heuristic would have to be modified in a fashion similar to the capacity 

control limits from revenue management, that is, we would expect to “protect” the more 

expensive product (the bundle) by pre-allocating a certain amount of capacity.  It would also be 

interesting to relax the assumption of unitary resource consumption in the bundle, and see if 
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there exists an efficient way to generate the additional pricing constraints that would be needed 

in such a model.  Finally, it would be interesting to account for temporal effects and introduce a 

dynamic pricing formulation, to see whether the structure of the solution is influenced by the 

planning horizon, (e.g. if, for example, the mixed bundling strategy is optimal up to a certain 

time, after which some other strategy may become dominant), in addition to the scarcity of the 

resources. 
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6.0  CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

This dissertation addresses the general problem of mixed bundling in two separate environments: 

a vertically differentiated market where there exists a universal ordering of customer preferences, 

and a generic market where the products offered are independently valued.  In both settings, a 

point of emphasis is the limited availability of the bundle components.  Each of the three 

chapters contributes along a different research question, from characterization of optimal 

bundling strategies, to computational issues raised by the problem complexity.  We present 

below the most interesting findings, alongside possible future investigative avenues. 

In Chapter 3, we have examined bundling strategies when the bundle components satisfy 

a universal preference ordering and have limited availability, as in television advertising.  The 

most important outcome of this work is to show that the relative availabilities of the resources 

strongly influence the broadcaster’s optimal strategy of implementing full spectrum mixed 

bundling, or partial spectrum mixed bundling, or not using bundling at all.  Clearly, the resource 

availabilities also influence their marginal value to the broadcaster; we determine how much 

more valuable it is to increase the availability of one resource over the other.  We also investigate 

the relative benefits of improving the quality of prime versus non-prime time programming.  The 

robustness of the managerial guidance provided by this analytical work is substantiated by our 

numerical testing. 
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Chapter 4 introduces competition in the form of a duopoly.  We show several ways in 

which competition can be modeled, depending on the relative strength of each competitor, and 

derive the equilibrium strategies if one network dominates the other in terms of ratings.  The 

weak firm always chooses pure or partial spectrum mixed bundling, while the strong firm 

chooses either partial spectrum mixed bundling or pure components.  The interesting outcome 

here is that the strong firm can use the lower quality component as a barrier to entry or as a 

deterrent, if it feels threatened by the weaker firm. 

In Chapter 5, we notice the connection between the linear demand/independent valuation 

case and the self-selection model described in Chapter 3.  Specifically, we find that in both cases 

the graphical depiction of the strategies is similar in both cases.  The similarity most likely 

comes from the fact that in Chapter 3 the consumers are assumed to be uniformly distributed, 

which implicitly induce a linear demand function of the type used in this chapter.  The difference 

is that in Chapter 3 the pure components strategy is optimal when both resources are very scarce, 

and that pure bundling is optimal when both resources are plentiful whereas we do not find either 

the PC or the PB strategy to hold in the general linear demand case.  This is due to the 

assumption of independent product valuations that appears in Chapter 5, which results in both 

the PC and PB strategies being always dominated by some form of mixed bundling.  Separately, 

we also derive two different algorithms for solving the general case of the mixed bundling 

problem.  The first method, a greedy heuristic, has the advantage of speed for smaller instances, 

but it can behave badly in terms of solution quality if the instance is characterized by relatively 

large scarcity (the performance becomes asymptotically optimal as the resource availability 

increases).  The second algorithm, which is based on a decomposition framework, performs well 

on larger scale instances. 
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This rich research area has several potential interesting avenues for further research.  For 

example, we have assumed that the resource capacities are limited and that their marginal costs 

are zero (or, equivalently, that the resource availabilities are limited and the resource costs are 

sunk).  It might be worth investigating how the results change if this marginal cost assumption 

does not hold.  It might also be useful to investigate the optimal bundling strategies in the 

presence of multiple resource classes (for example, in internet advertising, the number of clicks 

needed from the home page to reach the advertisement).  In the analytical treatment in all 

chapters we have assumed that our model is deterministic along the advertisers’ willingness to 

pay; introducing stochastic elements and exploring the stochastic formulation introduced at the 

beginning of Chapter 5 might also be worthwhile. 

In Chapter 3, we have assumed concavity of the rating function.  This need not always be 

the case.  For example, in the broadcast of TV advertisings, if there are multiple decision makers 

who have different viewing preferences, the advertiser may derive super-additive benefits from 

advertising during prime time and during prime time.  For example, Mattel might advertise 

during non-prime time to target children and during prime time to target the parent.  To sell a big 

ticket item such as an automobile or a large kitchen appliance, both spouses (who may have 

different viewing habits) may need to be targeted, and so a company like Maytag may see 

advertisements during prime time and non-prime time as complementing each other.  Due to 

joint decision making and complementarity of components, therefore, Mattel’s or Maytag’s 

willingness to pay for the bundle of advertisements may be greater than the sum of their 

willingness to pay for the components of the bundle.  In this case, the price arbitrage constraint 

may be always binding.  Moreover, assuming that there is no secondary market that allows an 

intermediary to buy the components and assemble the bundle for sale and that the broadcaster 
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can impose a restriction rationing each advertiser to buy at most one product, the price arbitrage 

constraint (3.2) may not be economically valid. 

In the competition framework, a natural extension would be to examine equilibrium 

strategies when both networks have relatively equal strength.  It might also be of interest to study 

bundling-based competition when there exists a vertical as well as a horizontal dimension.  From 

an optimization perspective, the problem of finding computationally the Bertrand-Nash 

equilibrium in the context of an arbitrary number of products and/or competitors is not solved so 

far. 

In the context of Chapter 5, an interesting discussion would be to derive optimal 

strategies if the independent valuation assumption is removed, but the capacity constraints 

remain in place.  In this case, the demand for the bundle would have a functional form that 

depends on the relationship between the demands for the components (and whether these are 

complements or substitutes (Venkatesh & Kamakura, 2003)).  We would expect the boundaries 

of the optimal strategy to change, and it would be interesting to see if either pure components PC 

or pure bundling PB emerge as possible optimal strategies over the mixed bundling spectra.  

Additionally, we would like to modify the two algorithms to account for stochastic demands.  In 

the decomposition case, such an extension would probably include an extra layer in the 

algorithm, in the form of an L-shaped approach.  Similarly, the greedy heuristic would have to be 

modified in a fashion similar to the capacity control limits from revenue management, that is, we 

would expect to “protect” the more expensive product (the bundle) by pre-allocating a certain 

amount of capacity.  It would also be interesting to relax the assumption of unitary resource 

consumption in the bundle, and see if there exists an efficient way to generate the additional 

pricing constraints that would be needed in such a model.  Finally, it would be interesting to 
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account for temporal effects and introduce a dynamic pricing formulation, to see whether the 

structure of the solution is influenced by the planning horizon, (e.g. if, for example, the mixed 

bundling strategy is optimal up to a certain time, after which some other strategy may become 

dominant), in addition to the scarcity of the resources. 

After presenting all these potential research vectors, and after noting the challenges in 

modeling and analyzing bundling situations and its inter-disciplinary appeal, it is our belief that 

in all likelihood bundling will continue to be a fertile research area. 
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