
 

LOW TEMPERATURE PHOTOLUMINESCENCE STUDY ON DEFECT CENTERS IN 
SILICON CARBIDE 

 
 
 
 
 
 
 

by 

Fei Yan 

B.S. in Physics, Nanjing University, 2002 

 M.S. in Physics, University of Pittsburgh, 2004 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

Arts and Sciences in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2009 

 



UNIVERSITY OF PITTSBURGH 

FACULTY OF ARTS AND SCIENCES 
 
 
 
 
 
 
 
 

This dissertation was presented 

 
by 

 
 

Fei Yan 
 
 
 

It was defended on 

December 4, 2009 

and approved by 

Prof. W. J. Choyke, PhD, Dept. of Physics and Astronomy, University of Pittsburgh 

Prof. R. P. Devaty, PhD, Dept. of Physics and Astronomy, University of Pittsburgh 

Prof. X. L. Wu, PhD, Dept. of Physics and Astronomy, University of Pittsburgh 

Prof. R. D. Coalson, PhD, Dept. of Physics and Astronomy, University of Pittsburgh 

Prof. R. M. Feenstra, PhD, Department of Physics, Carnegie Mellon University 

 Dissertation Advisor: Prof. W. J. Choyke, PhD, Dept. of Physics and Astronomy 

 ii 



Copyright © by Fei Yan 

2009 

 iii 



LOW TEMPERATURE PHOTOLUMINESCENCE STUDY ON DEFECT CENTERS 

IN SILICON CARBIDE  

Fei Yan, PhD 

University of Pittsburgh, 2009

 

This thesis reports the study of several intrinsic defect centers in SiC, mainly by optical 

characterization techniques. Different defect centers were created by either electron irradiation or 

ion implantation into n-type and p-type doped SiC following by annealing at different 

temperatures. Low temperature photoluminescence (LTPL) was used to study the optical 

properties of these defect centers. The no phonon lines from the dicarbon antisite defect center 

were observed with their phonon replicas. The stretch frequencies of the dicarbon dumbbell 

model are observed up to the fifth harmonic. The Morse Potential model was found to explain 

the anharmonicity quite well. First principles calculations were carried out by our collaborator Dr. 

A. Gali and show excellent agreement with the experiment and the Morse Potential results. It is 

clear that the dicarbon antisite defect is indeed responsible for the LTPL spectra. We also studied 

the evolution of the DI deep defect centers at different annealing stages and attempted to find 

correlations between the DI center in LTPL and the Z1/Z2 center at EC – 0.68 eV or the HS1 

center at EV + 0.35 eV in deep level transient spectroscopy (DLTS). Our results indicate that in 

n-type 4H SiC there is no correlation between the Z1/Z2 center in DLTS and the L1 peak of the DI 

center seen in LTPL. In p-type 4H SiC we do not find a correlation between the HS1 DLTS peak 

and the LTPL L1 peak of the DI center. Consequently, we cannot find evidence for a 343 meV 

ground state postulated in the pseudodonor model. 
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1.0  INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

As a wide bandgap semiconductor, SiC has attracted a lot of research interest in the recent 

decades. It has high electron mobility, high breakdown electric field and high thermal 

conductivity. All these make it suitable for electronic use under high temperature, high frequency 

and high power conditions.  A summary of some of the optical and electrical properties of SiC in 

comparison to Si and GaAs is shown in Table 1.1. Si and GaAs are picked for the comparison 

purpose because they are widely used in the modern semiconductor industry. SiC has a much 

wider bandgap than Si and GaAs, therefore it can operate at high temperatures before the 

intrinsic conduction effects have to be considered. The breakdown field of SiC is one order of 

magnitude greater than that of Si and GaAs. All these properties make SiC a suitable material for 

fabricating high voltage, high power devices, such as diodes, power transistors, high power 

microwave devices, and so on. These devices can also be packed close together for integrated 

circuits. The thermal conductivity of SiC is much greater than that of Si and GaAs. Actually it is 

comparable to metals, such as copper. This high thermal conductivity enables SiC devices to 

dissipate the large amount of heat generated in the high power devices. It also reduces the extra 

need for cooling inside the electronics, which could save space for integrated circuits and reduce 

the weight. The high saturated drift velocity of SiC is ideal for fabricating high frequency (RF 
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and microwave) devices. Besides these properties, the Si-C bond in SiC is quite strong, which 

makes it resistant to chemical attack and radiation. Therefore SiC devices are suitable for 

working under very harsh conditions. SiC is also a very good substrate for GaN crystal growth 

and GaN has been used to make LEDs to save the world's energy. 

Table 1.1 Comparison of the electronic and physical properties of SiC, Si and GaAs [1]. 

 4H SiC 6H SiC Si GaAs 

Bandgap Energy (eV) 3.26 3.03 1.12 1.43 

Breakdown Field 
(V/cm) 3x106 3x106 2.5x105 3.0x105 

Thermal 
Conductivity at 

Room Temperature 
(W/cm·K) 

4.0 4.0 1.5 0.5 

Saturated Drift 
Velocity (cm/s) 2.0x107 2.0x107 1.0x107 1.0x107 

 

The many advantages of SiC semiconductor technology have been known for quite some 

time, but large single-crystal SiC boule growth has historically been a very difficult and 

expensive process due to SiC's physical properties (high melting point, hardness, polytypism, 

etc.).  SiC wafer production has improved greatly in recent years, which gives us a chance to 

study some of the properties which were unable to be characterized in the old days due to the 

limitation of the material quality. Thanks to our collaborators who can grow high quality 

epitaxial thin films, we are able to study the deep level defects in SiC after electron irradiation 

and ion implantation.  
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1.2 CRYSTAL STRUCTURE OF SILICON CARBIDE 

SiC is known as a wide bandgap semiconductor existing in over 170 crystallographic structures. 

These different crystallographic structures are called polytypes. Polytypism is one of the most 

unique features in SiC, which influences the properties of SiC. 

The simplest way to understand the structure of the polytypes of SiC is to consider the 

close-packing of spheres.  Figure 1.1 shows an array of white spheres in a single plane packed 

together in the closest possible configuration.  Another layer of similarly arranged black spheres 

is added on top of the array of white spheres in a way that minimizes the volume taken up by the 

overall arrangement (the centers of the black spheres are aligned with the spaces in the white 

sphere packing pattern).  When a third layer is added, there are two different stacking patterns 

which will both result in the overall arrangement occupying the least space possible. One choice, 

indicated by the location of the gray sphere on the left-hand side of Figure 1.1, is to place the 

spheres in the third layer directly above the spheres in the first layer.  The first layer is labeled A, 

the second layer is labeled B, and, in this case, we also label the third layer A because its spheres 

are in the same locations as the spheres in the bottom layer.  The other choice of sphere location 

for the third layer which equivalently minimizes the volume of the arrangement is indicated by 

the gray sphere on the right-hand side of Figure 1.1.  Here, the spheres in the third layer are not 

aligned with the spheres in layer A, so we label this layer C.  These two different packing 

structures, ABA and ABC, are referred to as hexagonal close-packed (HCP) and face-centered 

cubic (FCC), respectively. 

These three possible layers, A, B, and C, can be arranged in many different ways.  In SiC, 

we complicate matters because we actually have two different types of spheres - silicon atoms 

(whose atomic layers we label A, B, and C) and carbon atoms (whose atomic layers we label a, 
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b, and c).  We restrict ourselves to discussion of the cases where the silicon and carbon layers are 

the same (e.g. AaBbCc or AaBbAa) and use only the labels A, B, and C to specify the packing 

sequence of both silicon and carbon atoms.   

 
Figure 1.1 Example of packing spheres in the hexagonal close-packed (left) and face-centered cubic 

(right) configurations. 

The common close-packed structures of SiC are typically identified using Ramsdell's 

notation, which involves specifying the number of layers in the unit cell followed by the letter H 

(hexagonal), R (rhombohedral), or C (cubic) to indicate the lattice type.  4H means there are four 

layers in a hexagonal unit cell, corresponding to a stacking sequence of ABAC.  Similarly, 6H 

means there are six layers in a hexagonal unit cell, corresponding to a stacking sequence of 

ABCACB. 15R means there are fifteen layers in a rhombohedral unit cell, corresponding to a 

stacking sequence of ABCACBCABACABCB. These crystal structures of 3C, 4H and 6H SiC 

are shown graphically in Figure 1.2, along with real pictures taken from crystal structure models.   
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Figure 1.2  Schematic diagrams and pictures of real models of the different stacking sequences in the 

)0211(  plane for 3C, 4H, and 6H SiC. h and k denote the hexagonal and quasi-cubic inequivalent sites. 
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Figure 1.2 also illustrates one of the most important structural concepts for understanding 

the behavior of different polytypes of SiC - the inequivalent sites.  Each individual lattice point 

in Figure 1.2, which is occupied by an atom, can be classified as either quasi-cubic (k) or 

hexagonal (h) by considering the positions of the neighboring layers surrounding it.  If a lattice 

point is adjacent to two layers of different types (e.g. layer B surrounded by layers A and C), it is 

classified as quasi-cubic.  If a lattice point is adjacent to two layers of the same type (e.g. layer B 

surrounded by A layers on both sides), it is classified as hexagonal. Even those sites which are 

both k sites are different if we look at the next neighbors. It is important to recognize the 

difference between k and h sites because these locations react differently to donor and acceptor 

substitutions. In 4H SiC, for example, a nitrogen atom (which acts as a donor) will have a 

different ionization energy when it substitutes at a k site in the crystal lattice than when it 

substitutes at an h site. Consequently, the single donor is responsible for two distinct donor levels 

in 4H SiC. Similarly in 6H SiC there are three different inequivalent sites, marked as h, k1 and 

k2. 

1.3 EXCITON RECOMBINATION 

1.3.1 Free Exciton 

When a semiconductor is exposed to a laser with above bandgap photon energy, some of the 

electrons in the valence band will be excited and jump into the conduction band, leaving some 

holes back in the valence band. An electron and a hole may be bound together by the coulomb 

interaction force. This bound electron-hole pair is called an exciton.  
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In a direct bandgap semiconductor, where the minimum energy in the conduction band is 

at the same point in k-space as the maximum energy in the valence band, as shown in Figure 1.3 

(a), the exciton can recombine directly without any phonons involved. This process will emit a 

photon with an energy of hν = EG - EX , where EG is the bandgap of the semiconductor and EX is 

the exciton binding energy. 

In an indirect band gap semiconductor, the minimum energy in the conduction band does 

not occur at the same point in k-space as the maximum energy in the valence band, as shown in 

Figure 1.3 (b).  The result is a significant change in momentum when an electron transition 

happens from the conduction to the valence band. In order to satisfy the conservation of 

momentum, the transition must also be accompanied by a phonon emission or absorption with 

the appropriate change in momentum. This additional requirement for electron-hole 

recombination makes the indirect band gap semiconductors rather inefficient at emitting light. 

The energy of the emitted photon is hν = EG - EX - Eph, where Eph is the energy of the phonon 

emitted during the recombination. 

 

Figure 1.3 Schematic diagram of the exciton recombination process in a direct bandgap and an indirect 

bandgap semiconductor. 
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1.3.2 Bound Exciton and Four Particle Complex  

What has been shown in the previous section is the creation and recombination of the free 

exciton, which is not bound to any impurities or defects. However, semiconductors are not 

absolutely impurity free. Excitons can be captured by neutral donors or acceptors and form 

bound excitons. Let's take the case of an exciton bound to a neutral donor as an example. There 

are in total four particles, including the ionized nitrogen donor core, two electrons, and one hole. 

This is called the four particle complex. An electron and a hole can recombine radiatively within 

such a four particle complex. As discussed above, recombination in an indirect band gap 

semiconductor typically requires a phonon emission, but recombination within a four particle 

complex can occur with or without a phonon emission.  This is possible because the electron and 

hole wavefunctions partially overlap in k-space due to the fact that the bound exciton is 

localized. This leads to the existence of no-phonon lines in the low temperature 

photoluminescence (LTPL) spectrum of doped SiC. There are also phonon assisted emission 

lines (called "phonon replicas") which are shifted in energy from the no-phonon lines by the 

energy of the phonon emitted for conservation of momentum.  

Just as the energy of a free exciton is shifted from the band gap energy by the binding 

energy of the electron and hole, the energy of a bound exciton in a four particle complex is 

shifted from the free exciton band gap by the exciton's binding energy to the donor or acceptor 

site. The energy of the emitted photon is hν = EG - EX  -EBX  - Eph = EGX - EBX -Eph, where EBX is 

the binding energy of the exciton and Eph is the energy of the phonon emitted during the 

recombination. It is common to express an exciton's binding energy relative to the exciton energy 

gap, EGX  = EG - EX, because it is difficult to measure EG  for SiC, but straightforward to measure 

EGX  precisely. 
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Four particle complexes due to nitrogen in 6H, 15R, 3C and 4H SiC were first reported 

by Choyke et al. [1-5]. Several examples of the LTPL spectra of nitrogen bound excitons in low 

doped, moderately doped and highly doped 4H-SiC are shown in Figure 1.4. The notation I 

represents the intrinsic exciton related lines. The notations P and Q represent the nitrogen bound 

exciton related lines. The subscript numbers are the energies of the participating momentum 

conserving phonons in the unit of meV. It has been discussed earlier that in 4H SiC there are two 

inequivalent sites, which means there are two nitrogen levels. That's why these nitrogen related 

lines are marked in groups of P and Q. In this case, the shallower line P0 is assigned to the 

hexagonal site h and the deeper line Q0 is assigned to the cubic site k. 

In Figure 1.4 (a), which is from a sample with a very low doping, the spectrum is 

dominated by the intrinsic lines. However, in Figure 1.4 (b), which is from a sample with a 

moderate doping, it is dominated by nitrogen bound exciton lines. Therefore it has been 

discovered that one can estimate the doping concentration of the sample by comparing the free 

exciton line I75 to the nitrogen no phonon line Q0 [2-6], when the doping is in the range of 1013 - 

1017 cm-3 and the sample is not compensated by aluminum acceptors. When the doping is above 

1018 cm-3, the spectrum doesn't show those characteristic sharp lines any more. What can be seen 

is mainly the broad nitrogen peak from the heavily doped sample. With increasing doping, the 

broad peak position shifts to the higher wavelength direction. It has also been used to estimate 

the doping of the highly doped samples. 

One may notice that in the nitrogen bound four particle complex, the line Q0 is much 

stronger than the line P0. However, the spectrum is dominated by the phonon replicas from the P 

related center and the total area under P0 and its phonon replicas is several times greater than the 

area under Q0. In 4H SiC, the exciton binding energy of P0 is smaller than that of Q0. That means 
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the exciton bound to nitrogen at the Q0 position is more localized. Therefore, the wavefunctions 

of the electron and hole can have bigger overlap in k space. The direct no phonon transition is 

favored for this site. So we see a strong no phonon line Q0.  Again, the exciton binding energy of 

P0 is smaller than that of Q0, therefore the electron wavefunction radius is bigger for P0 position. 

A bigger radius results in a bigger capture cross section. So overall the spectrum is dominated by 

the phonon replicas of the P0 line, although P0 itself is smaller compared to Q0. 

 

Figure 1.4 LTPL spectra of nitrogen bound excitons in (a) low doped (b) moderately doped and (c) 

highly doped 4H SiC. 
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In p-type aluminum doped SiC, excitons can be bound to the neutral aluminum acceptors 

and form four particle complexes. Clemen et al. published a paper which discussed the aluminum 

bound exciton spectra in some of the major SiC polytypes including 4H, 6H and 3C SiC [7]. 

1.3.3 Donor-Acceptor Pairs 

Usually in p-type doped SiC, the low temperature luminescence spectrum contains many well-

resolved sharp lines. These are from excitons bound to a complex called donor-acceptor pairs 

(DAP). A low temperature photoluminescence DAP spectrum in SiC was first reported by 

Choyke et al. in 1970 [8]. In the DAP recombination mechanism, electrons are bound to neutral 

donors and holes are bound to neutral acceptors. The electrons and holes then recombine 

radiatively and emit photons with the energy given by: 

 ( )G D A C vdh E E E E E Wν = − + − +  (1.1) 

where EG is the energy gap, ED and EA are the donor and acceptor ionization energies, 
2

C
eE
rε

= −  

is the Coulomb interaction energy between donor and acceptor ions separated by a distance r 

after electron-hole recombination, and EvdW is the Van der Waals interaction energy between 

neutral donor and acceptor atoms before recombination [8]. The peak position of the 

luminescence is a function of the donor and acceptor distance r.  

 Choyke and Patrick studied the DAP luminescence in 3C SiC and got a very nice fit. It 

was concluded that the DAP in 3C SiC consists of nitrogen replacing carbon and aluminum 

replacing silicon, which is a Type II spectrum. If both donors and acceptors replace the same 

sublattice, it is called Type I. Ivanov, Magnusson and Janzén did similar work in 2003 on 4H SiC 
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which has two inequivalent sites [9]. Their results show that the recombination of pairs involving 

nitrogen donor and aluminum acceptor at hexagonal sites dominates the spectrum. 

1.4 ORGANIZATION OF THESIS 

In Chapter 2, I will present the theoretical models of different defect centers and what people 

have learned about some of the defects. The main focus is on the dicarbon antisite defect and the 

DI defect.  

Chapter 3 describes the experimental procedures in this project. This is an international 

collaboration involving researchers from the United States, Germany and Japan.  

Chapter 4 discusses the results from our study on the dicarbon antisite. Experimental 

spectra are presented with high spectral resolution. We are able to fit the results with the Morse 

Potential model and it gives a very good prediction of the vibration energies up to the fifth 

harmonic with an error of less than 1%. First principles calculation by our collaborator Dr. Ádám 

Gali (theorist) also shows that the two-carbon dumbbell model can explain all the vibrational 

states observed in the experiments. The problem is simplified to a one-dimensional Schrödinger 

Equation, which can be solved numerically. The numerical calculation results show excellent 

agreement on the anharmonicity with the experimental results, which further confirms the 

reduced mass obtained from the first principle calculations. Additional dicarbon antisite no 

phonon lines are presented in this chapter. We also study the distribution of the irradiation 

electrons inside the SiC and explain the discrepancy between our results and a recently published 

paper. An unusual annealing behavior of the dicarbon antisite defect is also observed. 
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In Chapter 5, we summarize the systematic work we have done on the DI defect in SiC. 

Defect centers are created by electron irradiation followed by annealing at different temperatures. 

Then we study the evolution of the DI center observed in LTPL and try to correlate it to the 

defect centers observed in DLTS measurements. We first started with n-type 4H SiC and 

attempted to correlate the DI optical center with the Z1/Z2 DLTS center, which was first proposed 

to be the associated to the DI center. Our results show no correlation between these two. We 

repeated the whole experiment on p-type 4H SiC and attempted to correlate the DI center with 

the observed DLTS HS1 center, which is proposed by the pseudodonor model. However, the 

thermal histories of these two defects don't show any correlation either. Therefore we cannot 

verify the pseudodonor model either. 

In Appendix A, I explain the physics of the deep level transient spectroscopy and show 

how to extract the defect properties from the capacitance transient decay. The actual experiments 

are done by our collaborators at the University of Erlangen-Nürnberg in Germany. 

Appendix B shows the Monte Carlo simulation of irradiation electrons inside SiC. It is 

done by a software called CASINO, but we have to apply it to our actual problem considering 

the incident electron energy and the creation threshold of defects. 

Appendix C shows the work we have done on another defect center called DII in SiC. The 

theoretical model is presented first, followed by the high-resolution variable temperature 

photoluminescence and Zeeman spectroscopy on an ion-implanted 3C SiC sample. 

Appendix D presents the study of the phosphorus-related photoluminescence in SiC by 

intentionally doping the samples with phosphorus during growth. It is shown that phosphorus 

atoms substitute on the carbon lattice sites, in addition to the well-accepted mechanism of 
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substitution on the silicon sites. Phosphorus doping in four major SiC polytypes is studied in this 

appendix. 

Appendix E shows a promising future use for high purity single crystal 4H and 6H SiC as 

an alternative cutting tool for ultra-precision nano-machining. It is demonstrated that SiC cutting 

tools polished to a sharp edge can be used for nano-machining of stainless steel and nickel, 

where conventional diamond tools wear rapidly and don't last. 
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2.0  DEEP LEVEL DEFECTS IN SILICON CARBIDE 

2.1 BACKGROUND 

Shallow dopants in SiC, such as nitrogen and aluminum have been studied extensively and the 

properties of these defects are well-understood. Besides these, there are some deep levels in the 

band gap of SiC. People don't understand too much about these deep centers. That doesn’t mean 

they are not important. Actually it has been found that these deep centers are critical for the 

device fabrication because they are the killers of the lifetime. The deep centers could act as 

recombination centers in the devices. Ion implantation is often used in device fabrication along 

with high temperature annealing. After ion implantation, the crystal lattice is damaged. 

Vacancies and interstitials are created immediately as part of the energy loss mechanism of the 

penetrating ion. As the SiC is annealed, these vacancies and interstitials tend to either recombine 

or form some other defect complexes. Some of these deep defects could affect the device 

performance and people could get results very different from the original device design. 

Therefore we invested a lot of time and efforts to study the optical and electrical properties of 

some of the prominent defects. 

As a compound semiconductor, there are two different kinds of vacancies in SiC, silicon 

vacancies VSi and carbon vacancies VC. Because of the different inequivalent sites in SiC, these 

vacancies also differ depending on the sites of the missing atoms. Figure 2.1 is taken from a 
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review paper by Bockstedte et al. [10] and shows the silicon and carbon vacancies at cubic and 

hexagonal sites in 4H SiC.  

 

Figure 2.1 Geometry of the vacancies in 4H SiC. Silicon vacancy at the (a) cubic and (b) hexagonal sites. 

Carbon vacancy at the (c) cubic and (d) hexagonal sites. Yellow spheres represent silicon atoms. Gray 

spheres represent carbon atoms. Dangling bonds are also shown. Pictures are taken from Ref. [10]. 

When these two vacancies happen to be next to each other, they form a simple vacancy 

complex called a divacancy, as shown in Figure 2.2, which is also taken from Ref. [10]. The 

alignment of the complex with the c-axis is different in Figure 2.2 (a) and (b). 

 

Figure 2.2 Geometry of the divacancy (a) axial complex at a hexagonal site and (b) off-axis complex VC-

VSi (kh). 
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Another possible defect is called an antisite. That means a silicon (carbon) atom occupies 

a carbon (silicon) site. More complicated complexes can be formed from an antisite, such as a 

vacancy-antisite pair or an antisite-antisite pair. It is also possible that more than one carbon 

atom can occupy a silicon site and form a di-carbon antisite, tri-carbon antisite and tetra-carbon 

antisite, which can form a carbon cluster together with the surrounding carbon atoms. In the 

following sections, I will discuss the different models related to the defect centers we observed in 

our experiments. 

2.2 DICARBON ANTISITE DEFECTS IN SILICON CARBIDE 

In two recent papers published by Steeds et al. in Phys. Rev. B [11, 12] one finds a discussion of 

some unusual defect spectral lines in 4H SiC after electron irradiation. Steeds et al. did electron 

irradiation on 4H SiC using a modified transmission electron microscope (TEM). The electron 

fluences he used were between 1018 cm-2 and 1020 cm-2. Most of the results he presents in these 

papers are from samples irradiated with fluences greater than 1019 cm-2. The electron beam has a 

circular cross section with a diameter of either 100 μm or 200 μm and a uniform intensity 

distribution with a sharp cutoff at the perimeter. The optical excitation sources that were used are 

a 488 nm Ar ion laser and a 325 nm He-Cd laser. After electron irradiation and subsequent 

annealing, a number of “new” lines are observed in their LTPL spectra.  

Our particular interest in the work of the Steeds group is a set of triplet lines at a0 463.2, 

b0 463.6 and c0 464.2 nm with their local vibrational modes, which will be shown in Chapter 4 

and have been discussed extensively in Ref. [11, 12]. Table 2.1 is taken from the original paper 

Ref. [11]. I have summarized the wavelengths and energies of these spectral lines in
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Table 2.2 for direct comparison with our results later. Note that the error of the wavelength 

reading given in the paper is 0.8 Å. In this wavelength region, the corresponding error in energy 

is 0.5 meV. However the so called “observed” local vibrational mode energies have reported 

uncertainties of 0.03, 0.05 or 0.06 meV. As the authors state in the Table 2.1 title, the local 

vibrational mode data were obtained by averaging data from several experiments. This error is 

not consistent with the experimental raw data. In the case of our results there is an error of 0.14 

Å in wavelength reading, which gives an error of 0.08 meV in energy. It appears that our results 

are more accurate in this high resolution spectral study.  

 

Table 2.1 Wavelengths and energies of the three no phonon lines of the 463 nm triplet together with the 

energies of their local vibrational modes in 4H SiC. The local vibrational mode values were obtained by 

averaging data from several experiments carried out at different excitation wavelengths and have errors of 

0.03 meV (Taken from Ref. [11]). 

Optical center (1) 
a0 

(2) 
b0 

(3) 
c0 

ZPL wavelength (nm) 463.15 ± 0.08 463.54 ± 0.08 454.26 ± 0.08 

ZPL energy (eV) 2.676 2.674 2.670 
Local vibrational mode energy 
(meV) 132.82 ± 0.03 132.54  ± 0.06 131.90 ± 0.05 

Local vibrational mode energy 
(meV) 179.86 ± 0.03 178.47 ± 0.06 180.03 ± 0.05 
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Table 2.2 Photon wavelengths and energies of the no-phonon lines and local vibrational modes calculated 

from Table 2.1, for convenience in later comparison with our data. 

No phonon lines Local vibrational modes Local vibrational modes 
 

Wavelength 
(Å) 

Energy 
(eV) 

Wavelength
(Å) 

Energy 
(eV) 

Wavelength 
(Å) 

Energy 
(eV) 

a0 4631.5 2.6762 4873.3 2.5434 4965.75 2.4961 

b0 4635.4 2.6740 4877.1 2.5415 4966.90 2.4955 

c0 4642.6 2.6698 4883.8 2.5380 4978.29 2.4898 
 

By comparing the experimental results to the published results of ab initio local density 

approximation (LDA) calculations in two theory papers [13, 14], Steeds concludes that the triplet 

is actually formed by four lines. The middle two are relatively weak and too close to resolve in 

their setup. They conclude that the triplet lines are very likely connected with dicarbon antisites. 

In dicarbon antisite configuration, each of these two carbon atoms forms bonds with three 

neighboring carbon atoms (one of these being the other carbon in the pair) and there are two 

electrons left. These two electrons can form either a spin-0 (low-spin) or a spin-1 (high-spin) 

configuration [15]. Because of the stacking sequence in 4H SiC, there are two inequivalent sites 

in 4H SiC. One is a hexagonal site and the other one is a quasi-cubic site. Each of the two spin 

states is associated with these two inequivalent sites and therefore there are a total of four 

defects. The outside two lines a0 and c0 are from the low spin states. The middle line b0 is 

actually from both high spin states and cannot be resolved in the real experiment. The connection 

with the theoretical calculations and the atomic model will be explained in detail in the next 

paragraph. Figure 2.3 is a schematic drawing which shows the perfect 3C SiC crystal structure 

and a dicarbon antisite in 3C SiC. 
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Figure 2.3 Structure of (a) a perfect 3C SiC crystal and (b) a dicarbon antisite in 3C SiC. 
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Since the high energy local vibrational mode is about 180 meV, which is greater than the 

highest lattice frequency 165 meV in diamond [16], the simplest model would be either a carbon 

split interstitial on a carbon site (two carbon atoms occupy a carbon site) or a dicarbon antisite so 

that it can generate a locally packed carbon environment similar to the diamond structure with 

several carbon atoms packed locally. Calculation shows that the carbon split interstitial defects 

are very mobile and therefore do not agree with the thermal stability of the triplet lines. The 

calculation of the dicarbon antisite shows that it is quite stable at relatively high temperature. The 

calculated local vibrational modes of the dicarbon antisites from different theoretical papers [13-

15] are listed in Table 2.3 along with the experimental data from Table 2.1. By comparing the 

local vibrational modes, the a0 line of the triplet is assigned as the (C2)Si,k in the low spin state, 

and the c0 line is assigned as the (C2)Si,h in the low spin state. The b0 line is assigned to the high 

spin states on both h and k sites. The high energy local vibrational modes of the high spin states 

are really close and cannot be resolved in the experiment. However, the low energy local 

vibrational modes are not in very good agreement with the calculations with 5-7 meV off. 

Table 2.3 Calculated first local vibrational modes of dicarbon antisite (C2)Si in 4H SiC from different 

theoretical papers along with the experimental data in the unit of meV. The subscripts h and k refer to the 

hexagonal and the quasi-cubic sites. ls denotes the low spin state. hs denotes the high spin state. 

Ref. [13]  Ref.[14, 15] 
(C2)Si,k, ls 

Ref [15] 
(C2)Si,h, ls 

Ref [15] 
(C2)Si,k, hs 

Ref [15] 
(C2)Si,h, hs 

Experiment 
Table 2.1 a0/b0/c0 

180 178.0 179.4 177.0 177.1 179.86/178.47/180.03

138 139.1 139.3 137.6 137.6 132.82/132.54/131.90

123 135.0 136.2 136.2 136.4  

 119.7 121.9 120.7 121.0  

 102.3 103.0 101.5 100.2  
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2.3 DI DEFECTS IN SILICON CARBIDE 

After annealing at high temperature above 1300 °C, the low temperature photoluminescence 

from ion-implanted SiC is usually dominated by the spectra from the well-known DI and DII 

defect centers, which are two very stable defects observed in the LTPL from ion-implanted SiC 

after high temperature annealing up to 1700 °C. They are both considered to be intrinsic defects 

since their spectra are independent of the implanted ion. The DI center was first reported in 3C 

SiC in 1971 [17] and then in 6H SiC in 1972 [18] by Choyke et al. Both the DI and DII centers 

were first observed in ion-implanted 15R SiC by Choyke et al. in 1972 [19]. The DII center in 

ion-implanted 3C SiC was first reported by Choyke et al. in 1973 [20]. The spectra of DII in 6H 

and 4H SiC were published by S.G. Sridhara et al. in our group over ten years ago [21]. 

The DI spectrum at 2 K has a no phonon line L1 in 4H SiC at 4272 Å (2.901 eV). In 6H 

SiC the DI spectrum consists of three no phonon lines at L1 4722 Å (2.625 eV), L2 4788 Å (2.589 

eV) and L3 4823 Å (2.570 eV). In 3C SiC it has a no phonon line L1 at 6280 Å (1.974 eV). There 

is a phonon gap between the acoustical and optical branches in SiC. The DI defect has been 

reported to have two localized modes in this phonon gap. They are at 82.0 and 82.9 meV in 3C 

SiC, 82.7 and 83.4 meV in 4H SiC and 82.8 and 83.7 meV in 6H SiC [22, 23].  

The DII spectrum at 2 K has a no phonon line in 3C SiC at 5373 Å (2.307 eV). In 6H SiC 

four no phonon lines are clearly resolved at 4202 Å (2.9498 eV), 4204 Å (2.9484 eV), 4205 Å 

(2.9477 eV) and 4210 Å (2.9442 eV). In 4H SiC it has a no phonon line at 3868 Å (3.205 eV). 

Even though these deep defect centers have been studied for almost forty years, not too 

much progress has been made except that now people can get better spectra thanks to the much 

improved growth technology. People are still trying to figure out the atomic models of these 

defects. 
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2.3.1 Pseudodonor Model of the DI Center 

Deep level transient spectroscopy (DLTS) was widely used to study the deep defect centers in 

SiC from the beginning of the 1990’s [24, 25]. Dalibor et al. studied the intrinsic defects mainly 

in 4H SiC after ion implantation and annealing steps [26-28]. Our group was also involved in all 

the work done by Dalibor et al. It was reported that in 4H SiC a one-to-one association was 

found between the DI center in the LTPL spectra and the Z1/Z2 center at EC - 0.68 eV in the 

DLTS spectra, mainly because both centers show similar behavior in terms of defect generation, 

thermal stability up to 2000 °C and an increase in the intensities of both peaks with increase in 

the ion bombardment fluence. Therefore it was proposed that these two centers are caused by the 

same intrinsic defect complex [26]. However, in another paper published by the same group of 

authors, even though the authors didn’t point this out, it is clear that the intensity of the L1 line of 

the DI center on a He+ implanted 4H SiC sample increases substantially from annealing at 430 °C 

to 1000 °C, while the Z1/Z2 concentration only increases slightly from 4x1015 cm-3 to 5x1015 cm-3 

[28].   

Some papers on the nature of the DI center were published by the Linköping Group in 

Sweden [29, 30]. The authors proposed a model saying that the DI defect is a pseudodonor in 4H 

SiC. The defect has a (+/0) charge transition level in the bandgap. It contains no charged particle 

at the neutral state but acts as a hole trap when the Fermi level is above this level. The DI center 

is an isoelectronic defect and the bound exciton consists of a strongly localized hole at the defect 

with a loosely bound, effective-mass-like electron bound via Coulomb coupling. The lowest 

excited state of the loosely bound electron is the initial state of the L1 recombination. The 

photoluminescence excitation (PLE) study in Ref. [29] shows a series of lines between 45 and 65 

meV higher than the energy of the L1 no phonon line. By fitting the strongest component within 
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the electron-hole coupling groups to the simple hydrogenic theory, they found the value of 62 

meV as the energy of the series limit, which means the electron is promoted into the conduction 

band. The L1 recombination energy from the LTPL measurement is 2.901 eV. Therefore, the 

ground state of this pseudodonor is 2.901 + 0.062 = 2.963 eV below the conduction band.  This 

is the energy needed to promote an electron from the defect in its ground state into the 

conduction band, leaving the defect in a positively charged state with a localized hole. The 

binding energy of the hole equals the bandgap energy minus the ground state energy of the 

pseudodonor. It should be 343 meV above the valence band. The schematic diagram of the 

pseudodonor model is shown in Figure 2.4. The authors observed a hole trap called HS1 at 0.35 

eV above the valence band by minority carrier transient spectroscopy (MCTS), which is 

consistent with the pseudodonor model. Therefore, they believe the DI center is correlated to the 

HS1 center, not the Z1/Z2 center as reported from the DLTS spectra [26]. The authors in Ref. [30] 

tried to show the direct correlation between the L1 intensity and the HS1 hole trap concentration 

in a large set of samples. Their figure (not shown here) does not seem to be very clear and 

convincing, even though a solid line is used as a guide for the eye. 
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Figure 2.4 Bandgap diagram of the pseudodonor model. 

2.3.2 Atomic Model of the DI Center 

Several models have been proposed for the DI center. It was first suggested to be an impurity-

vacancy complex on nearest-neighbor sites based on the extensive work on radiation damage and 

annealing on Si [17]. However, it was soon found that the DI center is independent on the 

impurities and a new pure defect model of divacancy was suggested [18]. In a theoretical paper 

published by Eberlein et al. in 2003 [31], first-principle density functional calculations were used 

to investigate antisite pairs in 4H SiC and the nearest neighbor antisite pair was suggested to be 
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the model of the DI center. The structure of the antisite pair is shown in Figure 2.5 (b). Out of 

many possible vibrational modes, a Si related local vibrational mode at 624.9 cm-1 (78 meV) 

from calculations is close to the experimental result of 669.4 cm-1 (83 meV) [17, 18]. 

 

Figure 2.5 The geometry of (a) a perfect lattice and (b) the antisite pair at the k site. 

Gali et al. did their own calculation using density functional theory in the local density 

approximation (DFT-LDA) and suggested that the neutral antisite pair is indeed a good candidate 

for the DI center [22, 23]. The authors used a 128 atom fcc unit cell for 3C SiC and 96 atom hcp 

unit cell for 4H SiC. In 4H SiC, the one-electron levels are calculated by the CRYSTAL’98 

code. There is an a1 level at EV + 0.16 eV and an e level at EV + 0.38 eV. The calculated (+/0) 

level is at EV + 0.3 eV. The local vibrational modes of the antisite pair in 3C SiC were 

calculated. The most interesting modes are a degenerate e mode at 627 cm-1 and an a1 mode at 

641 cm-1 which correspond to stretching modes of the compressed Si-Si bonds. The experimental 

values of the DI local vibrational modes are 661 and 669 cm-1 in 3C SiC. The authors think the 
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calculations are comparable to the experimental results and that there are actually three local 

vibrational modes for the antisite pair model. The first mode may consist of two modes very 

close to each other. The authors also calculated the local vibrational modes of the isolated CSi 

and SiC. The calculated local vibrational modes of the isolated CSi fall into the phonon continuum 

band. The isolated SiC has one triply degenerate local vibrational mode and another local 

vibrational mode in the phonon band gap. Therefore, the total number of local vibrational modes 

in the phonon band gap depends on the number of compressed Si-Si bonds. There are three local 

vibrational modes for the antisite pair and four for the isolated SiC. The authors also calculated 

the formation energies and one-electron defect levels. The formation energy of the antisite pair is 

lower than that of the Si vacancy. The calculated highest one-electron level is at EV + 0.38 eV = 

EC – 2.88 eV in 4H SiC, which is close to the transition energy of the no phonon line (2.901 eV) 

from the LTPL result. This energy is actually close to the pseudodonor model, which gives an 

energy level at EV + 0.343 eV. The calculated and experimental results in 3C SiC are also very 

close. From the calculation, the (+/0) occupation level is at about EV + 0.3 eV in 4H SiC. If this 

is correct, it tells us that the antisite pair is neutral in n-type and moderately p-type materials and 

the DI spectrum can only be seen in n-type and moderately p-type SiC. It should not be seen in 

heavily doped p-type SiC as the DI defect is positively charged in this case. From our experience 

during the study of the DI defect in 4H SiC with different doping from high n-type to high p-type, 

it is true that we did not see L1 line after both 170 keV and 1 MeV electron irradiation in the 

heavily p-type doped samples (p~4x1018 cm-3 and 6.7x1017 cm-3). The authors of Ref. [23] 

attempted to correlate the DI center to the HS1 center at EV + 0.35 eV reported by Zhang et al. 

[32], instead of the well-known Z1/Z2 center. As will be shown in our results, we have seen a 

DLTS center at EV + 0.34 eV in our systematic work on electron irradiated p-type doped 4H SiC. 
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In another paper published by Pinheiro et al., the authors proposed the model of a 

SiC(CSi)2 complex as a candidate for the DI center [33]. Their calculated local vibrational modes 

from the SiC(CSi)2 complex match the experimental values better than the SiCCSi antisite pair 

model. According to this model, the formation of the complex starts from an isolated Si vacancy 

VSi, as shown in Figure 2.6 (a). After being annealed at 750 °C, the nearest neighbor carbon atom 

can move into this VSi and form a CSiVC pair, as shown in Figure 2.6 (b). During the annealing 

between 750 °C and 1200 °C, the carbon vacancy in the CSiVC pair can be filled by a neighboring 

silicon atom, leaving a silicon vacancy behind. This process is illustrated in Figure 2.6 (c). This 

forms a complex CSiSiC + VSi. This silicon vacancy VSi can be filled up by a neighboring carbon 

atom simultaneously, making the complex as CSiSiCCSiVC in Figure 2.6 (d). Further annealing at 

temperature above 1200 °C can cause the dissociation of the VC and leave the SiC(CSi)2 complex 

as the possible atomic structure of the DI center. In this model, the gap modes consist of 

vibrations of both carbon antisites and their carbon neighbors which lie in the same plane as the 

defect itself, as shown in Figure 2.7. In this model proposed by Pinheiro et al., the two nearby 

gap modes are caused by the asymmetric and symmetric vibrations of the two carbon neighbors 

with respect to the carbon antisite. This is quite different from the antisite pair model suggested 

by Gali et al. [22], in which the gap modes are associated with the compressed Si-Si bonds. 

However, we can question this model on the initial isolated silicon vacancy VSi. DI center has 

been found in low energy electron irradiated SiC when the electron energy is less than the Si 

displacement threshold. Therefore, the SiC(CSi)2  model cannot explain the formation in this case. 
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Figure 2.6 Formation of the SiC(CSi)2 complex starting from a Si vacancy. (a) The initial Si vacancy in the 

lattice. (b) Creation of a CSiVC pair after 750 °C annealing. (c) Creation of a CSiSiC + VSi complex after 

annealing between 750 °C and 1200 °C. (d) A CSiSiCCSiVC complex is formed simultaneously. 
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Figure 2.7 The localized modes in the phonon gap in the case of the SiC(CSi)2 antisite complex. Taken 

from Ref. [33]. 

In a paper published by Eberlein et al. in 2006 [34], the authors used local density 

functional calculations and found that neither the close-by antisite pair nor the close-by antisite 

pair adjacent to a carbon antisite is stable enough to explain the DI center. They associated the 

isolated SiC antisite with the DI center. The calculated gap modes of the isolated SiC antisite are 

82.1 meV and 83.4 meV, which are also close to the experimental values of 82.7 meV and 83.4 

meV. In the SiC after low energy electron irradiation which doesn’t create any Si vacancies, the 

isolated SiC is not formed at low temperatures. When the sample is annealed at temperatures 

greater than 1200 °C, the C vacancies can trap the mobile Si interstitials and form the SiC 

antisites. However, our experiments have shown that the DI defect can form at temperatures 

much lower than that. Annealing at 900 °C is high enough to bring strong L1 defect lines. 

Therefore, this particular model is not totally convincing in this aspect. This might implicate that 

calculation of gap modes is not a very effective method for identifying the center. 
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3.0  EXPERIMENTAL TECHNIQUES 

3.1 SAMPLE PREPARATION 

The epilayers used for electron irradiations were grown in a horizontal hot-wall chemical vapor 

deposition (CVD) reactor in Prof. Kimoto’s group at Kyoto University, Japan. The n-type 

epitaxial thin films are 20 μm thick and the doping is in the range of ND-NA ~ 2-4x1015 cm-3. The 

p-type epitaxial thin films are 15 μm thick and the net doping concentration NA-ND is in the 

range of 3-4x1015 cm-3. 

Electron irradiation was carried out in Dr. Ohshima’s group at the Japan Atomic Energy 

Agency (JAEA) in Takasaki, Japan. The polytype-inclusion free samples were uniformly 

bombarded by electrons at either 170 keV with a fluence of 5x1016 cm-2 or 1 MeV with a fluence 

of 1x1015 cm-2. The electron energies required for carbon and silicon atom displacements are 

about 100 keV and 250 keV, respectively [35, 36]. Therefore 170 keV electrons will knock out 

just carbon atoms in the SiC lattice, while 1 MeV electrons will displace both silicon and carbon 

atoms. We hope this could give us a chance to judge whether a damage center requires just 

carbon vacancies and interstitials or both carbon and silicon vacancies and interstitials. The 170 

keV electrons penetrate to around 90 μm deep and the 1 MeV electrons penetrate to 1 mm. The 

penetration depth of electrons with different energies can be calculated using a simulation 

program called CASINO [37]. More details about this program are discussed in Appendix B. We 
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also want to point out that the electron irradiation experiments by Dr. Ohshima’s group were 

carried out in an accelerator with a uniform incident electron beam. The reason we want to make 

this clear is because we are going to compare our results to the literature in which the authors 

used a modified transmission electron microscope to do the electron irradiation. I will show the 

significant difference between these two techniques. 

The samples were annealed in Ar for 30 min at temperatures between 700 °C and 1700 

°C with 100 °C intervals. Temperatures were raised directly from room temperature to the 

desired temperature on every individual sample. A particular sample was annealed only once, so 

a large number of identical samples were required for this study. 

Samples for ion-bombardment experiments were non-intentionally doped and the H+ and 

4He+ bombardments were at the 5x1010 cm-2 fluence levels. 

3.2 LOW TEMPERATURE PHOTOLUMINESCENCE 

The low temperature photoluminescence measurements were carried out at 2 K using an 

immersion type liquid He cryostat, which was pumped below the lambda point (2.17 K). The 

luminescence was dispersed in an asymmetric Czerny-Turner spectrometer and collected with a 

liquid nitrogen cooled charge-coupled device (CCD) array. We calibrate the wavelength in every 

panel using the well-known noble gas discharge lines. The general schematic diagram of the 

whole setup is shown in Figure 3.1 with some experimental details marked on the figure. 
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Figure 3.1 Schematic drawing of the LTPL setup 

 We have two different lasers to choose in our lab. One is a HeCd laser with a wavelength 

of 325 nm and a power of 35 mW. The other one is a frequency doubled argon ion (FRED) laser 

with a wavelength of 244 nm and a power above 40 mW. We pick one of these two lasers 

depending on the thickness of the epilayer we need to measure. The penetration depth of the 

HeCd 325 nm laser is about 3-8 μm and it is less than 1 μm for the FreD 244 nm laser at 2K, 

depending on the SiC polytype [38]. When the doping of the sample is low, the laser can 

penetrate much deeper because of the exciton diffusion. We always have the laser beam reflected 

several times from a set dielectric mirrors to eliminate the plasma lines in the laser. The laser 

beam is then focused onto the sample surface with a diameter less than 1 mm. The sample is 

immersed inside the liquid helium cryostat which is connected to a mechanical pump. The liquid 

helium reaches the superfluid state when the pressure is below the Lambda point (2.17 K). 

Operating at 2 K and below eliminates the noise generated from the helium bubbling in the light 
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path. The luminescence coming out from the sample passes through two lenses and a cutoff filter 

is used to remove the scattered laser light. The luminescence is finally focused onto the entrance 

slit of an asymmetric Czerny-Turner spectrometer with a grating of 1800 l/mm blazed at 4000 Å. 

The entrance slit we use is usually 100 μm. A smaller slit is used in case we need to get a better 

resolution, but that also reduces the amount of light going into the spectrometer. We have a 

liquid nitrogen cooled CCD mounted on the focal plane of the spectrometer. It is connected to a 

computer and a commercial software is used to collect and save the data. Further data processing 

is done on other computers. 

 Most of the samples we have measured using LTPL have Si-terminated (0001) face (i.e., 

the epilayers were grown on this face). The c direction is either perpendicular to the sample 

surface or has a small off-cut angle of 4° or 8°. Therefore, the photoluminescence coming out 

from the sample is dominated by E c⊥  polarization. The spectra presented in this thesis are 

collection with this E  polarization configuration unless specified otherwise. Sometimes we 

wanted to determine the polarization dependence of certain spectral lines and we used <11

c⊥

2 0> 

a-face samples. X-ray Laue transmission patterns were first taken to determine the c direction on 

the sample surface [39]. We still use the same way to mount the sample but now the 

photoluminescence coming out of the sample is un-polarized. A Glan-Thompson polarizer is put 

between the cryostat and the spectrometer. By rotating the polarizer we can collect either E c⊥  

or ||E c  polarized light. 
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3.3 DEEP LEVEL TRANSIENT SPECTROSCOPY 

 

The deep level defects in semiconductors are usually characterized by Deep Level Transient 

Spectroscopy (DLTS), which was first proposed by D.V. Lang in 1974 [40]. The properties of 

the deep level defects, such as the energy levels and concentrations, are extracted by analyzing 

the capacitance transient decay of a Schottky diode after applying a reverse bias on the diode. 

The fundamental physics of this technique is explained in Appendix A based on the original 

paper published by D.V. Lang and the book written by Dieter K. Schroder [41]. Since we don’t 

do this DLTS here in our group, I am not going to get into the technical details in this section. 

All the DLTS measurements were done by Prof. Pensl’s group at the University of Erlangen in 

Germany. 
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4.0  DICARBON ANTISITE DEFECT IN 4H SILICON CARBIDE 

4.1 SPECTRA FROM LTPL EXPERIMENTS 

During our study of the deep defects, we have observed a set of triplet lines with their local 

vibrational modes in both 170 keV and 1 MeV electron irradiated n-type and p-type 4H SiC 

annealed at temperatures below and including 1300 °C. We also noticed that we had seen these 

lines before in Hydrogen and Helium ion-implanted 4H SiC. These triplet lines have first order 

phonon replicas of about 132 meV and 180 meV. However, for the second harmonic replicas a 

combination of the 132 meV and 180 meV modes is also observed. Figure 4.1 shows the triplet 

no-phonon lines and their first order local vibrational mode lines with different energies from an 

n-type Si-face 4H SiC sample bombarded by 1 MeV electrons with a fluence of 1x1015 cm-2 and 

later annealed at 1500 °C plus 1100 °C in Ar atmosphere for 30 min. I will explain the annealing 

procedure later in this chapter. The accurate readings of these different lines in Figure 4.1 are 

listed in Table 4.1. Figure 4.1 (a) is the full range spectrum showing all these lines. Figure 4.1 

(b), (c) and (d) show the no-phonon lines, first order low energy local vibrational modes and high 

energy local vibrational modes, respectively. Note that in Figure 4.1 (d), part of the spectrum 

containing the H1
b has been magnified by a factor of 50 so that the H1

b peak can be seen clearly. 

In Ref. [11, 12], the authors claim that they occasionally saw a splitting of 0.6 meV at the 

position of the T1 high energy local vibrational mode line (H1
a line in our notation), as shown in 
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Figure 4.2 (b). However, the two split lines have almost equal intensity. This is likely due to 

stress splitting or possibly the extra line is a spurious spike. The energy separation of the a0 and 

b0 no phonon lines is 1.9 meV from our measurements. Our data show that the energy separation 

of H1
a and H1

b is 2.6 meV, which is close to the no phonon line value and more importantly, we 

have seen this small H1
b peak consistently in different samples after different bombardment 

conditions.  
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Figure 4.1 Triplet no-phonon lines and their first order local vibrational mode lines with different 

energies. (a) Full range spectrum showing all these lines. (b) No-phonon lines. (c) First order low energy 

local vibrational modes and (d) First order high energy local vibrational modes. This is from an n-type 4H 

SiC sample bombarded with 1 MeV electrons and later annealed at 1500 °C and 1100 °C. 
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Table 4.1 Wavelengths and energies of the no-phonon lines and local vibrational modes from our data in 

Figure 4.1. 

No phonon lines Low energy local 
vibrational modes 

High energy local 
vibrational modes 

 
Wavelength 

(Å) 
Energy 

(eV) 
Wavelength

(Å) 
Energy 

(eV) 
Wavelength 

(Å) 
Energy 

(eV) 

a0 4632.46 2.67568 4873.53 2.54333 4966.44 2.49575 

b0 4635.79 2.67376 4877.07 2.54148 4971.75 2.49309 

c0 4643.51 2.66932 4884.02 2.53787 4979.38 2.48927 
 

 

Figure 4.2 High energy local vibrational modes from (a) our data and (b) Ref. [11] by Steeds. 

 

However, there is indeed a small bump on the high energy shoulder of the H1
a peak. A 

curve fitting was tried in the wavelength region between 4962 Å and 4972 Å. The result is shown 

in Figure 4.3. The black curve is the original experimental result. The two green peaks are the 

results from Gaussian fitting. We have tried different fitting methods but cannot get a perfect 

fitting. The result I am showing here does not fit on the high energy side. But it serves the 

purpose of the peak separation on the low energy side. There appears to be a real peak at the 
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wavelength of 4967.91 Å. It has a 1.5 Å separation from the strong local vibrational mode line 

H1
a. Its energy is 0.8 meV lower than the energy of line H1

a. Assuming that the vibrational 

modes have the same energies, we conclude that it cannot be the local vibrational mode line H1
b 

since the separation between the no phonon lines a0 and b0 is 1.9 meV. We just mark it as X. 

 

Figure 4.3 Gaussian curve fitting of the high energy local vibrational mode line H1
a. The black spectrum 

is the experimental result and the green curves are the fitting results. 
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4.2 MORSE POTENTIAL CALCULATION 

The theoretical calculations show that the high energy local vibration mode can be interpreted as 

due to the isolated stretching vibration of the C-C dumbbell in the dicarbon antisite (C2)Si. 

Therefore, we can treat the C-C dumbbell as an anharmonic diatomic configuration using the 

Morse Potential [42-45], assuming that the interaction from the rest of the lattice can be built into 

the parameters, which is a rough approximation. 

 The Morse Potential energy can be written as 

  (4.1) 0( ) 2( ) [1 ]r r
eV r D e α− −= −

where De is the depth of the potential well, r is the distance between the bonded atoms, r0 is the 

equilibrium bond distance, and α is a constant that determines the potential well width. Constant 

α is connected to the bond constant k at the potential minimum through the equation 
2 e

k
D

α = , 

which can be derived by taking the second derivative of V(r) evaluating it at r = r0 and setting it 

equal to bond constant k. 

 The energy levels of the Morse Potential well are given by the following equation: 

 21( ) ( ) ( )
2 2

E n n x nω ω= + − +h h
1

)

 (4.2) 

where n is the vibration quantum number n = 0, 1, 2, …, ( 1/22 /eDω α μ=  is the harmonic 

vibrational frequency and ωx is the anharmonicity constant with ( )1/2/ 8
4 e

e

x D
D
ω α μ= =
h

h . μ is 

the reduced mass of these two bonded atoms and 1 2

1 2

m m
m m

μ ⋅
=

+
. 
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 A schematic plot of the Morse Potential with vibration quantum number up to n = 5 is 

shown in Figure 4.4 . 

 

Figure 4.4 A schematic plot of the Morse Potential well with vibration quantum number up to n = 5. 

 From this energy level equation we can see that the energy spacing between two 

consecutive energy levels decreases with increasing vibrational quantum number. The extra term 

of the anharmonicity makes the spacing between the energy levels decrease as the vibration 

quantum number increases. The energy spacing between the n-1 and n level is  

 , 1 ( ) ( 1) (1 2 )n nE E n E n xnω−Δ ≡ − − = −h . (4.3) 

The energies up to the fifth order harmonic are given by the following equations: 

10 (1) (0) (1 2 )E E E xωΔ = − = −h , 21 (2) (1) (1 4 )E E E xωΔ = − = −h , 
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32 (3) (2) (1 6 )E E E xωΔ = − = −h , 43 (4) (3) (1 8 )E E E xωΔ = − = −h , 

54 (5) (4) (1 10 )E E E xωΔ = − = −h . 

 From our LTPL spectrum, we have clearly observed the first order and second order 

vibration modes. Using the energy spacing we can calculate the values of ωh  and x. Then we 

can put these two values back and calculate the energies of the third, fourth and fifth order 

vibration modes. If this C-C dumbbell model is correct and the Morse Potential is applicable to 

this model with our approximation, we should be able to compare the observed experimental 

third, fourth and fifth order vibration modes with the calculated values. The only problem is 

when the vibration quantum number increases, the corresponding LTPL peaks become smaller 

and smaller and eventually not strong enough to be seen in the spectrum. In our careful 

experiment we were still able to observe up to the fifth harmonic of the high energy local 

vibrational mode in our experiment, as shown in Figure 4.5. The first line of the triplet is labeled 

as a0, where 0 means it is the no phonon line. All the harmonic vibration modes are labeled with 

corresponding subscripts. Using the experimental energy values of the first two harmonics, we 

get 182.1ω =h  meV and x = 0.00631521. We can then predict the energies of the higher order 

harmonics. The results from the Morse Potential predictions and the experimental results from 

LTPL measurements are all listed in Table 4.2. We can see that they agree with each other very 

well within an error of less than 1.3 meV up to the fifth harmonic, which is just 0.8% in error. 

Table 4.2 A comparison of experiment and Morse Potential predictions for the harmonic energies up to 

the fifth order of the dicarbon antisite C-C dumbbell vibrations in 4H SiC.  

Triplet Line a ΔE10 (meV) ΔE21 (meV) ΔE32 (meV) ΔE43 (meV) ΔE54 (meV) 

Experiment 179.8 177.5 175.3 173.7 171.9 

Morse Potential 
Prediction / / 175.2 172.9 170.6 
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Figure 4.5 Line a0 of the triplet no phonon lines and its harmonics up to the fifth order. 
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Table 4.3 shows all the phonon replicas observed for the triplet no phonon lines a0, b0 and 

c0. ΔEph
1-0 is the additional vibrational energy (first vibrational quantum) contributing to the first 

replica relative to the no phonon line. ΔEph
2-1 is the additional vibrational energy (second 

vibrational quantum) contributing to the second replica relative to the first replica and similarly 

for ΔEph
3-2, ΔEph

4-3 and ΔEph
5-4. 

Table 4.3 Dicarbon antisite C-C dumbbell defect center triplet no phonon lines with phonon replicas. 

 ΔEph
1-0 

(meV) 
ΔEph

2-1 
(meV) 

ΔEph
3-2 

(meV) 
ΔEph

4-3 
(meV) 

ΔEph
5-4 

(meV) 

a0 4632.46 Å 179.8 177.5 175.3 173.5 171.9 

b0 4635.79 Å 180.7     

c0 4643.51 Å 180.0 177.9 175.5   

a0 4632.46 Å 132.4 132.5    

b0 4635.79 Å 132.3     

c0 4643.51 Å 131.4 131.3    

a0 4632.46 Å 132.4 179.9 177.6 175.0  

c0 4643.51 Å 131.4 180.0 178.2 175.2  

4.3 FIRST PRINCIPLES CALCULATION ON THE DICARBON ANTISITE 

DUMBBELL 

Our collaborator Dr. Gali calculated the vibrational properties of the dicarbon antisite dumbbell 

in a large 576-atom supercell using the density functional theory within the local density 

approximation (LDA). The vibration modes within the quasi-harmonic approximation were 

calculated as the numerical derivative of the forces. Two different defect-molecule models were 

used in the calculation of vibration: (a) only C1 and C2 atoms (see Figure 4.6) are allowed to 
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vibrate; (b) all six carbon atoms from C1 to C6 are allowed to vibrate. The numbering of the 

carbon atoms is shown in Figure 4.6 with the red arrows indicating the motion of C1 and C2 

atoms in the stretch vibration mode. 

 

Figure 4.6 Dicarbon antisite defect at the hexagonal site in 4H-SiC. The carbon atoms are labeled by 

numbers. The arrows indicate the motion of C1 and C2 atoms in the stretch vibration mode. 

The calculated stretch mode energy in the case (a) was about 172 meV, which slightly 

increased to 174 meV in the case (b). In the case (b) we obtained 136 meV for the symmetrically 
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allowed bending mode that can be tentatively compared to the experimental value of 132 meV. 

The main reason of the discrepancy between the calculated (174 meV) and measured (~180 

meV) stretch modes is likely due to the limitation on the number of atoms that were allowed to 

vibrate, while the LDA potential energy surface (PES) is sufficiently appropriate. It was found 

that for both cases (a) and (b) that the normal coordinates of the stretch mode show the motion of 

C1 and C2 atoms along their bond in the direction of the red arrows in Figure 4.6. This enables a 

simplification of the description of the stretch mode to a one-dimensional model where only C1 

and C2 atoms are moving symmetrically with respect to their bond center by compressing or 

expanding the bonding distance between them. Calculations at a total of 18 points were done 

where the maximum compression (expansion) of the bond was about 0.24 (0.36) Å. A very 

accurate match between the Morse Potential and the calculated first principles data was obtained 

despite the fact that the Morse Potential contains only two parameters, as shown in Figure 4.7. 

The units of Hartree and Bohr radius are defined in detail in the next section. This one-

dimensional Morse Potential can be applied in the one-dimensional Schrödinger equation where 

the kinetic energy contains the effective reduced mass (μ) of the vibrating system. If the C1 and 

C2 atoms are not connected to the rest of the SiC crystal then μ = mC/2, where mC is the mass of 

the 12C isotope. However, μ will be reduced due to the fact that C1 and C2 atoms are bound to 

the rest of SiC crystal, so μ = χ·mC/2 where χ<1. μ was used as a parameter to fit the first 

transition to the experimental value of 179.8 meV and a value of χ ≈ 0.9 was obtained. The one-

dimensional Schrödinger equation was solved numerically by applying the corresponding kinetic 

energy operator and the Morse Potential. The first five transitions were calculated to compare 

with the experimental results. The anharmonicity reduces the transition energies by about 2.09 

meV for each increment in the quantum number of the vibrational states, which agrees nicely 
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with the experimental value of 2.30 meV. The very nice agreement between experiment and 

theory further supports the dicarbon antisite model. 

The first principles calculations also give the length of the different C-C bonds. The C-C 

distance between C1-C2 is 1.41 Å. It is 1.50 Å between C1, C2 and their first C neighbors. The 

next neighbor C-Si bond length is between 1.86 and 1.96 Å. 

 

Figure 4.7 Plots of both the Morse Potential fit and the First Principles calculation. 
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4.4 NUMERICAL SOLUTION TO THE SCHRÖDINGER EQUATION WITH 

MORSE POTENTIAL 

 

4.4.1 Atomic Units 

In general physics, the International System of Units (SI) is widely used with a meter-kilogram-

second (MKS) system. But when one wants to do computational calculations, this system will 

cause some trouble especially when quantum mechanics is involved in the problem. Here are 

several examples under the standard unit system. The electron rest mass me is 9.10938215x10−31 

kg. The Planck constant h is 6.62606896x10−34 J·s. The electron charge e is 1.602176487x10−19 

C. All these numbers have high orders of magnitude with a +/– sign. During the computational 

calculations, these will reduce the efficiency of the program because of the high orders of 

magnitude. Therefore, a so-called Atomic Units system is introduced for which six physical 

constants are defined as unity and a whole new set of units is given from them. For this part of 

our problem, I will give some of the physical constants under the atomic units system. 

 The electron rest mass me = 1.  

The reduced Planck constant ħ = 1.  

The electron charge e = 1. 

The unit of length is called Bohr Radius a0 = 1 (in SI 
2

0
0 2

4

e

a
m e
πε

=
h = 5.291772108x10-11 

m = 0.529 Å). 
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The unit of energy is called Hartree Eh = 1 (SI: 
2

2
0

h
e

E
m a

=
h = 4.35974417x10-18 J = 

27.2116 eV). 

I will keep the traditional equations in the following text, but I will use the atomic units in 

my numerical calculations. Atomic units are also used in Dr. Gali’s calculations. 

From the first principles calculations, Dr. Gali was able to get the reduced mass μ value 

of 9983.939635 a.u. From the two equations ( )1/22 /eDω α μ=  and ( )1/2/ 8
4 e

e

x D
D
ω α μ= =
h

h , I 

can calculate the values of De and α since we already got ħω and x from our Morse Potential 

fitting and reduced mass μ from Dr. Gali. De = 7.20878 eV = 0.264916 Hartree and actually 

doesn't depend on the reduced mass. α = 5.76051x10-11 m-1  = 0.918628 (Bohr Radius)-1. 

4.4.2 The Numerov Algorithm 

Our model can be treated as a one-dimensional time-independent Schrödinger equation and the 

deviation from the equilibrium bond length x = r – r0 is the only variable. Let’s write the 

Schrödinger equation as 

 
2 2

2

( ) ( ) ( ) ( )
2

d x V x x E x
dx
ϕ ϕ ϕ

μ
− + =
h  (4.4) 

We can rewrite it as  

 2''( ) ( ) ( ) 0x k x xϕ ϕ+ =  (4.5) 

where 2
2

2( ) [ ( )]k x E V xμ
= −
h

. Once I put in the atomic units in here, I will set ħ = 1 and the 

reduced mass μ will be a simple number. One boundary condition we can think of easily is that 

the wavefunction φ(x) has to go to zero when x goes to infinity. 
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 ( ) 0, when x xϕ → → ±∞  (4.6) 

 We can treat the problem in a region big enough so that we can consider φ(x) is already 

zero at a certain distance. Then we divide this big region into many very small equally spaced 

segments with a spacing Δx. 

 We can write the Taylor expansions of the wavefunction: 

2 3 4 5
6( ) ( ) '( ) ''( ) '''( ) ''''( ) '''''( ) ( )

2! 3! 4! 5!
x x x xx x x x x x x x x O xϕ ϕ ϕ ϕ ϕ ϕ ϕΔ Δ Δ Δ

+ Δ = + Δ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + Δ  (4.7) 

2 3 4 5
6( ) ( ) '( ) ''( ) '''( ) ''''( ) '''''( ) ( )

2! 3! 4! 5!
x x x xx x x x x x x x x O xϕ ϕ ϕ ϕ ϕ ϕ ϕΔ Δ Δ Δ

−Δ = −Δ ⋅ + ⋅ − ⋅ + ⋅ − ⋅ + Δ  (4.8) 

 Add these two equations and the odd power terms cancel out. We get 

 
4

2 6( ) ( ) 2 ( ) ''( ) ''''( ) ( )
12
xx x x x x x x x O xϕ ϕ ϕ ϕ ϕΔ

+ Δ + −Δ = + Δ ⋅ + ⋅ + Δ  (4.9) 

 From Eq. (4.5), we have 2''( ) ( ) ( )x k x xϕ = − ϕ . Now we can get the fourth derivative from 

this equation starting from the third derivative. 

 
2 2

2 ( ) ( ) ( ) ( )'''( ) [ ( ) ( )]d k x x x x kx k x x
dx x

ϕϕ ϕ + Δ + Δ −
= − = −

Δ
x xϕ  (4.10) 

 

2
2

2

2 2 2 2
2

2 2 2
2

''''( ) [ ( ) ( )]

1 {[ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )]}

1 [ ( ) ( ) ( ) ( ) 2 ( ) ( )]

dx k x x
dx

k x x x x k x x k x x k x x x x
x

k x x x x k x x x x k x x
x

ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

= −

= − + Δ + Δ − − − −Δ −Δ
Δ

= − + Δ + Δ + −Δ −Δ −
Δ

 (4.11) 

 Substitute Eqs. (4.5) and (4.11) into Eq. (4.9) and we get 

2 2

4
2 2 2

2

( ) ( ) 2 ( ) [ ( ) ( )]
1{ [ ( ) ( ) ( ) ( ) 2 ( ) ( )]} (

12

x x x x x x k x x
x k x x x x k x x x x k x x O x6 )

x

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

+ Δ + −Δ = + Δ ⋅ −

Δ
+ ⋅ − + Δ + Δ + −Δ −Δ − + Δ

Δ

 (4.12) 

 Re-arrange the equation and we get 
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2 2 2 2

6

2 2

5 12[1 ( )] ( ) [1 ( )] ( )
12 12( ) (11 ( )

12

x k x x x k x x x x
)x x O

x k x x

ϕ ϕ
ϕ

− Δ ⋅ − + Δ ⋅ − Δ −Δ
+ Δ = + Δ

+ Δ ⋅ + Δ
x  (4.13) 

 From this equation, we can see that once we set the initial values of the first two 

wavefunction points, we can calculate all the rest of the wavefunction points. We can also see 

that this equation gives a high accuracy with an order of Δx6, where Δx itself is a very small 

constant and the power of 6 only makes it much smaller. 

 This is the key of the Numerov Algorithm and is widely used for numerically solving the 

second order ordinary differential equations, such as the Schrödinger equation here and the 

Poisson equation. It has been discussed in extensive details in some computational physics books, 

such as "An Introduction to Computational Physics" by Tao Pang [46] and "Quantum Mechanics: 

Concepts and Applications" by Nouredine Zettili [47]. These books also have examples of the 

programs written in C++, which can be applied to the actual problems after making the 

appropriate adjustments. 

4.4.3 Numerical Calculation Results 

After applying the parameters we got in section 4.4.1, we can solve the Schrödinger equation 

numerically for the dicarbon antisite dumbbell model. Figure 4.9 (a) shows the profile of the 

given Morse Potential obtained during the numerical calculation simultaneously. Figure 4.9 (b) 

shows the wavefunctions for different vibrational states to the fifth excited state. The 

corresponding energy eigenvalues for these vibrational states are 3.3354x10-3, 9.9430x10-3, 

0.0165, 0.0229, 0.0293 and 0.0355 in the unit of Hartree. They are also plotted in Figure 4.9 (a). 

Convert them to the unit of meV and we get 90.7629, 270.5637, 448.0645, 623.2652, 796.1659 
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and 966.7667. The transition energies between two consecutive states are 179.8008, 177.5008, 

175.2007, 172.9007 and 170.6008 meV. The anharmonicity difference between these transition 

energies is about 2.30 meV. This is slightly different from the 2.09 meV calculated by Dr. Gali, 

which is coming from his potential energy surface calculation. In the Morse Potential fitting 

section, my original fitting gives ħω = 182.1 meV and x = 0.00631521. The anharmonicity factor 

should be ħω·(2x) = 2.30 meV, which is a perfect match to my numerical calculation result. So I 

am self-consistent with myself. More importantly, this match further confirms the reduced mass 

value calculated by Dr. Gali from the potential energy surface method.  

 From quantum mechanics, we know that the probability density 2( ) ( )n nP x xϕ= . 

Therefore, we can plot the probability densities for different vibrational states to the fifth excited 

state, which are shown in Figure 4.9 (a). They are converted into a probability density map at 

different energy levels. Figure 4.9 (b) shows the map along with the potential well. The color 

scale is shown on the right side. Blue color represents very small probability density, while red 

color represents big probability density. From this map, we can clearly see that the anharmonic 

shape of the distribution and the places with high probability densities are near the both sides of 

the potential well, which is similar to what we have learned from the harmonic oscillator case in 

quantum mechanics. 
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Figure 4.8 (a) The calculated Morse Potential profile with energy levels of different vibrational states. (b) 

Plots of the corresponding wavefunctions from the ground state up to the fifth excited states. 
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Figure 4.9 (a) Plots of the probability densities from the ground state up to the fifth excited states. (b) 

Map of the probability densities converted from the plots in (a). 
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4.5 OTHER DICARBON ANTISITE DEFECT LINES OBSERVED IN LTPL 

In addition to the previously observed no phonon lines a0, b0 and c0 we observe a number of new 

lines E0, F0, θ0, Φ0, K0, G0, J0, and M0 as shown in Figure 4.10. The triplet no phonon lines are 

plotted next to them for intensity comparison. It is clear that those new lines are relatively weak, 

but they are all reproducible in different samples after both electron irradiation and ion 

implantation. They all annealed out together between 1300 °C and 1400 °C. This is evidence that 

the lines are not impurity related and are due to the same or perhaps very similar intrinsic defect 

center. 

 

Figure 4.10 Other lines of the dicarbon antisite C-C dumbbell center from 4H SiC irradiated by 1 MeV 

electrons with a fluence of 1x1015 cm-2. 
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Table 4.4 Other dumbbell lines with phonon replicas, excluding the triplet a0, b0 and c0. 

Defect 
Lines E0 F0 θ0 Φ0 K0 G0 J0 M0 

Wave-
length (Å) 4735.39 4748.71 4755.55 4759.23 4833.06 4934.29 4958.81 4989.32

ΔEph
1-0 

(meV) 179.5 180.2 179.1 180.2 179.8 169.6 132.3 179.0 

ΔEph
2-1 

(meV) 177.7 177.8    169.2   

 

In Table 4.4 we also show the observed phonon replicas for these new lines. Line G0 

deviates from the normal pattern of phonon mode replica energies but that doesn’t rule out that it 

might be a variant of the proposed carbon dumbbell center. Since the 169 meV local vibrational 

mode of G line is really close to the 165 meV frequency of diamond [16], we can speculate that 

it might have something to do with the dicarbon antisite with the surrounding four carbon atoms. 

The interaction between one of the two carbon antisite atoms with one of the four nearest carbon 

neighbors is similar to the carbon-carbon interaction in the diamond, except that the bond length 

and stiffness are changed due to difference between the SiC unit cell and the diamond unit cell in 

addition to the two carbon atoms squeezed into one Si site. 

At this point, we cannot make the statement that these new lines are additional no phonon 

lines from the dicarbon antisite, even though they have phonon replica energies similar to the 

triplet lines. It is still possible that these new lines are also phonon replicas from the triplet a0, b0 

and c0 lines with different replica energies. In order to clear up this, a photoluminescence 

excitation (PLE) spectroscopy experiment has to be done. A collaboration is currently being 

scheduled with Dr. Ivan Ivanov at Linköping University in Sweden for the PLE study. 
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4.6 MONTE CARLO SIMULATION OF THE DAMAGE DISTRIBUTION 

In Ref. [11, 12] the authors claim that the electron beam fluences used were either 1020 cm-2 or 

high 1019 cm-2. Our experiments have shown that under such conditions the samples are 

irreversibly rendered amorphous. We have used fluences of 5x1016 cm-2. So how can we 

reconcile this discrepancy? Steeds also reports that, using a He-Cd laser at 325 nm, he was only 

able to observe this triplet system at considerable distance from the central axis and beyond the 

irradiation profile of the TEM beam diameter of 100 μm or 200 μm. He had no explanation for 

this mysterious phenomenon. We believe that if one assumes that the 325 nm laser penetrates 10 

to 20 μm from the surface one can explain his results due to the tremendous scattering of the 170 

keV electron beam in the SiC lattice. Although Steeds claims his TEM electron beam has a sharp 

cutoff at the perimeter, this is only true before the electrons get into the SiC material. Once the 

electrons have penetrated into the sample, they will travel not only in the forward direction but 

also laterally because of the scattering with the SiC lattice. Therefore there is a significant 

irradiated volume outside of the initial beam area. However, the electron fluence recedes as one 

goes further away from the TEM beam profile. In the next paragraph we give results of an 

electron simulation of a 170 keV electron beam entering a SiC crystal again using the simulation 

program CASINO [37].  
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Figure 4.11 Simulated penetration trajectories of 100,000 electrons inside SiC for 170 keV electrons. The 

incident electron beam has a diameter of 10 nm. 

Figure 4.11 is a trajectory simulation of 100,000 electrons with an energy of 170 keV 

going into SiC. The blue lines are the electrons which are still inside the SiC and stop at 100 keV, 

which is the threshold to displace any atoms. The red lines are the electrons which escape from 

the sample surface. From this figure, we can see that 20 μm away from the edge of the TEM 

beam and at a depth of 20 μm, there are many trajectories spreading perpendicular to the original 

beam direction. We can do a rough estimate here. At a distance of 20 μm from the edge of the 

TEM beam and at a depth of 20 μm from the surface we estimate the electron fluence to be 

approximately four orders of magnitude smaller than the incident beam. If the incoming beam 

fluence is 1020 cm-2, our estimate of the effective electron fluence at 20 μm from the edge of the 

TEM beam is between 1015 cm-2 to 1016 cm-2, which is exactly what we used in our own electron 
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irradiation experiments. Hence, there are regions outside of the central beam which are irradiated 

by electrons but at a reduced fluence. This makes the Steeds result of observing the triplet lines 

well beyond the confines of the TEM beam very plausible.  

4.7 UNUSUAL ANNEALING BEHAVIOR OF THE DICARBON ANTISITE DEFECT 

LINES 

Another thing we have observed is a startling re-appearance of all the dicarbon antisite defect 

lines subsequent to a re-heating of the samples at 1100 °C after they have been annealed out at 

1400 °C. We have done the annealing on many samples in our own ceramic tube furnace and 

these triplet lines are always annealed out between 1300 °C and 1400 °C. We sent these samples 

to our collaborator Dr. Pensl at the University of Erlangen for the DLTS measurement. They 

processed the 1400 °C annealed samples in their graphite furnace and re-heated them at 1100 °C 

again. When we got them back, we checked them with LTPL and we were very surprised to see 

that these lines re-emerged. We have noticed that the re-emergence appears only after the sample 

has been processed in the graphite furnace at the University of Erlangen. We have done the 1400 

°C annealing and subsequent heating at 1100 °C all in our own ceramic tube furnace, but we do 

not see the re-appearance of the triplets. This suggests that the furniture in the Erlangen 

annealing furnace has a profound effect on this defect system. Since the atomic model of this 

particular defect is a dicarbon antisite, the additional carbon atoms available in the graphite 

furnace might be the key to the reappearance of the defect lines. 
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5.0  DI DEEP DEFECT IN N-TYPE AND P-TYPE 4H SILICON CARBIDE 

5.1 EXPERIMENT PROCEDURES  

In order to give a clear answer to this controversy of the DI center summarized in Chapter 2, we 

decided to do a systematic study on the defect centers in electron irradiated 4H SiC. We used 

electron irradiation to create the damage because it is a clean way to create the deep centers 

without introducing other impurities. In order to see if there is any correlation between the DI 

center in LTPL and the Z1/Z2 center in DLTS, we tried the n-type 4H SiC first. We then repeated 

the same procedures on p-type 4H SiC so that we can check the HS1 defect, which can be 

detected by DLTS only in the p-type material. 

The CVD growth and electron irradiation have been presented in the experimental 

techniques chapter. Prior to the electron irradiation, DLTS was done on these samples to make 

sure they have a DLTS background of 5x1011 cm-3. This is two orders of magnitude lower than 

DLTS backgrounds found in ordinary materials. We have tried with several different growth 

groups and Prof. Kimito’s group was the only place where such a low deep defect background 

could be obtained. This ensures that we are starting with samples which don’t have the 

background to interfere with the deep defects we are going to create using electron irradiation. 

We cut the wafer into many 3mm x 5mm pieces and checked all of them with LTPL. Some of 

the pieces contain polytype inclusions and were ruled out. 
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We did the LTPL and DLTS measurements on samples annealed at different 

temperatures to check if there is any correlation between the defect centers observed using these 

two different characterization techniques. 

5.2 EXPERIMENTAL RESULTS FROM LTPL AND DLTS ON ELECTRON 

IRRADIATED N-TYPE 4H SILICON CARBIDE  

In LTPL it is not possible to determine the absolute concentration of certain defects without 

using other measurement techniques for calibration. People have developed a method to 

determine the concentration of the nitrogen from the LTPL spectra, but capacitance-voltage (C-V) 

measurement and secondary ion mass spectrometry (SIMS) were used to find the correct doping 

as a calibration, then an extrapolation was made [2-4, 6].  

However, a qualitative result with small relative errors can be determined by taking the 

intensity ratio of the defect line with a line corresponding to an impurity which is expected to 

have a constant concentration in all samples. In our experiment, the electron bombardment lattice 

damage is sufficiently small so that the no phonon nitrogen Q0 line at 3821 Å in n-type 4H SiC 

remains almost constant as samples are annealed from room temperature to 1700 °C. 

Consequently, we use Q0 as a standard and take ratios of peak heights of a desired defect line to 

the Q0 line at each anneal temperature in n-type 4H SiC. We can use the variation of this 

intensity ratio as a tool to study the concentration of the desired defect center. Figure 5.1 shows 

an example of these particular two lines from an n-type 4H SiC sample which was irradiated by 

1 MeV electrons and annealed at 1300 °C. Table 5.1 lists all the L1 to Q0 ratios from both 170 

keV and 1 MeV irradiated n-type samples after different annealing. 
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Table 5.1 Intensity ratios of L1 to the nitrogen no phonon line Q0 from n-type samples after electron 

irradiation and annealing. 

L1/Q0 Intensity Ratio Annealing 
Temperature (°C) 170 keV 1 MeV 

900 0.0113 0.1302 

1000 0.0153 0.1224 

1100 0.0109 0.1338 

1200 9.1582 x 10-3 0.1264 

1300 7.1276 x 10-3 0.1614 

1400 7.3890 x 10-3 0.1912 

1500 0.0157 0.1928 

1600 0.0866 0.2488 

1700 0.2916 1.0890 
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Figure 5.1 One LTPL example from a 1 MeV electron irradiated and 1300 °C annealed n-type 4H SiC 

sample showing both the DI no phonon line L1 and the nitrogen bound exciton no phonon line Q0. The 

intensity ratio of these two is used to monitor the concentration change of the DI center in all the samples 

during the different temperature annealing. 
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Figure 5.2 The annealing temperature dependence of the intensity ratio of L1/Q0 from n-type 4H SiC 

which has been irradiated with 170 keV electrons. Note the intensity ratio is plotted in semi-logarithmic 

scale. 
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Figure 5.3 The annealing temperature dependence of all the defect centers detected by DLTS from n-type 

4H SiC which has been irradiated with 170 keV electrons. The blue triangle represents the particular 

Z1/Z2 center which we are trying to correlate to the L1 line from the DI center in LTPL. 
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 Figure 5.2 shows the annealing temperature dependence of the intensity ratio of L1/Q0 

from n-type 4H SiC which has been irradiated by 170 keV electrons. The intensity ratio of L1/Q0 

after annealing at 900 °C is about one order of magnitude higher than that from non-annealed 

samples. L1 does not further increase very much until we reach 1500 °C and then increases from 

1500 °C to 1700 °C. In the DLTS results in Figure 5.3, the concentration of the Z1/Z2 center is 

plotted with blue triangles and shown to be roughly constant until 1200 °C annealing. It then 

drops three orders of magnitude from 1200 °C to 1500 °C. The Z1/Z2 concentration appears to 

recover after annealing to 1600 °C but then anneals out at 1700 °C. What is striking is that we 

don’t see any direct correlation between the DI center in LTPL and the Z1/Z2 center in DLTS. 

One may notice that these is a discontinuity between 1500 °C and 1600 °C. We have a 

possible explanation for this discontinuity. The n-type sample annealing below and including 

1500 °C was done in our ceramic tube furnace which can only go up to 1500 °C. For annealing 

at higher temperatures, we had to send the samples to our collaborator at the University of 

Erlangen. They have a graphite furnace which can handle the 1600 °C and 1700 °C annealing. 

Therefore, this discontinuity between 1500 °C and 1600 °C might come from the different 

annealing environment in two different kinds of furnaces. Anyway, if we compare the evolution 

of the L1/Q0 intensity ratio and the Z1/Z2 center concentration, we just simply can not see any 

direct correlation between these two. 

We can compare the L1/Q0 intensity ratio and the Z1/Z2 center concentration from the 1 

MeV irradiated n-type 4H SiC, as shown in Figure 5.4 and Figure 5.5, respectively. We still can 

not find any similarity between these two figures.  

Our conclusion from the work done in this section is that we don’t see any direct 

correlation between the DI center in LTPL and the Z1/Z2  center in DLTS in n-type 4H SiC. 

 67 



 

Figure 5.4 The annealing temperature dependence of the intensity ratio of L1/Q0 from n-type 4H SiC 

which has been irradiated with 1 MeV electrons. Note the intensity ratio is plotted in semi-logarithmic 

scale. 
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Figure 5.5 The annealing temperature dependence of all the defect centers detected by DLTS from n-type 

4H SiC which has been irradiated with 1 MeV electrons. The blue triangle represents the particular Z1/Z2 

center which we are trying to correlate to the L1 line from the DI center in LTPL. 
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5.3 EXPERIMENTAL RESULTS FROM LTPL AND DLTS ON ELECTRON 

IRRADIATED P-TYPE 4H SILICON CARBIDE  

In October 2007 there was an International Conference of Silicon Carbide and Related Materials 

(ICSCRM) in Otsu, Japan. All the collaborators in this project including some theorists gathered 

together and had a small meeting. People went through all the data from the n-type 4H SiC 

material and agreed that if the pseudodonor model [30] is correct, we should be able to see a 

clear correlation between the DI center and the HS1 center from the same experiments on p-type 

4H SiC. Therefore, after this meeting the collaborating team started the whole procedure again 

on p-type 4H SiC, including thin film growth, electron irradiation, annealing, LTPL and DLTS. 

Similar to the study on n-type samples, for p-type 4H SiC, we assume that the aluminum 

concentration in all these samples is the same. Then we can use the ratio of the intensity of the L1 

line and the strongest aluminum bound exciton no phonon line at 3815 Å to monitor the 

concentration change of the DI center. Figure 5.6 shows an example from an n-type 4H SiC 

sample which was irradiated by 170 keV electrons and annealed at 1300 °C. 
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Figure 5.6 One LTPL example from a 170 keV electron irradiated and 1300 °C annealed p-type 4H SiC 

showing both the DI no phonon line L1 and the strongest aluminum bound exciton no phonon line at 3815 

Å. The intensity ratio of these two is used to monitor the concentration change of the DI center in all the 

samples during the different temperature annealing. 
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Table 5.2 Intensity ratios of L1 to the strongest aluminum no phonon line from p-type samples after 

electron irradiation and annealing. 

Intensity Ratio of L1 to Al 3815 Å Line Annealing 
Temperature (°C) 170 keV 1 MeV 

700 0.183 0.060 

800 0.288 0.244 

900 0.558 0.156 

1000 3.15 2.11 

1100 - 6.48 

1200 3.64 5.05 

1300 3.01 5.77 

1400 3.32 9.69 

1500 14.7 10.1 

1600 7.67 7.24 

1700 37.1 11.7 
 

Table 5.2 lists all the ratios of the L1 line to the aluminum 3815 Å line from both 170 keV 

and 1 MeV irradiated p-type samples after different annealing. We didn’t have enough good 

samples for the 170 keV and 1100 °C annealing, so it is left blank in the table. When we did the 

annealing on the n-type materials, we used our ceramic tube furnace for the temperature up to 

1500 °C and used the graphite furnace at the University of Erlangen for the 1600 °C and 1700 °C 

annealing. This time we sent all p-type samples to the University of Erlangen for the annealing to 

make sure there is no difference in the annealing environment. 

 72 



 

Figure 5.7 The annealing temperature dependence of the intensity ratio of L1 to the strongest aluminum 

no phonon line at 3815 Å from p-type 4H SiC which has been irradiated with 170 keV electrons. Note the 

intensity ratio is plotted in semi-logarithmic scale. 
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Figure 5.8 The annealing temperature dependence of all the defect centers detected by DLTS from p-type 

4H SiC which has been irradiated with 170 keV electrons. The black round dot represents the particular 

HS1 center which we are trying to correlate to the L1 line from the DI center in LTPL. 
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Figure 5.7 shows the annealing temperature dependence of the intensity ratio of L1 to the 

Al 3815 Å line from p-type 4H SiC which has been irradiated by 170 keV electrons. The ratio of 

the LTPL line L1 to Al0 can be seen to vary by more than two orders of magnitude between 700 

°C and 1700 °C. In the pseudodonor model of 4H SiC the ground state of the DI center is 

postulated to be 343 meV above the valence band. Hence the appearance of a 340 meV peak 

above the valence band in p-type 4H SiC might be associated with the ground state of DI in the 

pseudodonor model. Indeed, a 0.34 eV peak was observed in the p-type DLTS measurements, as 

shown in Figure 5.8. The black dots represent the concentration of the EV + 0.34 eV center 

measured from DLTS. This is the most dominating defect center in the p-type samples, 

especially after high temperature annealing. Unfortunately, the concentration of the 0.34 eV peak 

appears essentially constant (increases by a factor of three) as we anneal the p-type samples from 

room temperature to 1700 °C. As we have already pointed out we find the L1 peak of the DI 

center to increase in intensity by more than a factor of 100 between samples annealed at 700 °C 

and 1700 °C. Apparently these two centers do not show a one-to-one correlation judging from 

the results on the170 keV electron irradiated p-type 4H SiC. 

We can also compare the results from the 1 MeV electron irradiated p-type 4H SiC. The 

results from the LTPL and DLTS are shown in Figure 5.9 and Figure 5.10, respectively. The 

intensity ratio of the L1 line to the Al 3815 Å line increases by two orders of magnitude as the 

annealing temperature goes up. But the concentration of the EV + 0.34 eV defect is fluctuating 

within one order of magnitude. We do not see any clear correlation between these two on the 1 

MeV electron irradiated p-type 4H SiC. 

Therefore, the conclusion of the experiments on p-type 4H SiC is that no correlation has 

been found between the 340 meV DLTS level and the L1 line of the DI center and our 
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experiments provide no confirmation of the existence of a 343 meV ground state postulated in 

the pseudodonor model. 

 

Figure 5.9 The annealing temperature dependence of the intensity ratio of L1 to the strongest aluminum 

no phonon line at 3815 Å from p-type 4H SiC which has been irradiated with 1 MeV electrons. Note the 

intensity ratio is plotted in semi-logarithmic scale. 
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Figure 5.10 The annealing temperature dependence of all the defect centers detected by DLTS from p-

type 4H SiC which has been irradiated with 1 MeV electrons. The black round dot represents the 

particular HS1 center which we are trying to correlate to the L1 line from the DI center in LTPL. 
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5.4 CONCLUSION  

We have studied the LTPL of n-type and p-type 4H SiC irradiated by 170 KeV and 1 MeV 

electrons with annealing at different temperatures. In n-type 4H SiC no correlation is found 

between the Z1/Z2 DLTS signal at annealing temperatures from room temperature to 1700 °C and 

the intensity of L1 measured by LTPL in the same temperature interval. Hence, we conclude 

there is no connection between Z1/Z2 and DI. In p-type SiC no correlation is found between the 

340 meV DLTS signal and the intensity variation of the L1 line of the DI center. We conclude 

that our data cannot verify the existence of a 343 meV ground state for the DI center in the 

pseudodonor model. 
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APPENDIX A 

DEEP LEVEL TRANSIENT SPECTROSCOPY 

A.1 BACKGROUND ON DEEP LEVEL TRANSIENT SPECTROSCOPY 

A.1.1 Capture and Emission Processes on the Deep Level Defects 

Figure A.1 shows the electron energy band diagram of a deep level defect inside the 

semiconductor bandgap. EC and EV are the bottom of the conduction band and top of the valence 

band, respectively. ET is the energy position of the deep level, which has a concentration of NT. 

The electron concentration is n in the conduction band and the hole concentration is p in the 

valence band. There are totally four difference processes that could happen in the bandgap. The 

deep level defect could capture an electron from the conduction band with an electron capture 

coefficient cn, which is labeled as process (a) in Figure A.1. There are two possible processes 

following this process (a). The electron which is captured could be emitted and return to the 

conduction band with an electron emission coefficient en, labeled as process (b) in Figure A.1. Or 

the defect could capture a hole from the valence band with a hole capture coefficient cp, which is 

process (c) in Figure A.1. Now the deep defect is occupied by a hole and there are two possible 

processes. It could emit the hole back to the valence band with a hole emission coefficient cp, 

 79 



which is labeled as process (d) in Figure A.1. Or it could capture an electron from the conduction 

band, which is just process (a). 

There are two possible charge states on the deep centers. When it is occupied by an 

electron, it is in the nT state. When it is occupied by a hole, it is in the pT state. The total density 

of these two charge states should equal the density of the deep centers itself NT = nT + pT. The 

electron concentration n in the conduction band is affected by the electron capture process (a) 

and electron emission process (b). The rate of change of the electron concentration in the 

conduction band can be written as  

 n T n T
dn e n c np
dt

= −  (A.1)  

The physics meaning of this equation is that the rate of change of the electron 

concentration is increased by the electron emission process (b) from the deep centers and is 

decreased by the electron capture process (a). For the electron emission process, it is proportional 

to the total number of deep centers occupied by an electron. The second term on the right side of 

Eq. (A.1) is the electron capture rate. It is slightly different from the first term because it is also 

proportional to the total electrons available in the conduction band. Therefore there is an extra 

factor n in the second term. So en means the total number of electrons emitted per second from 

the deep centers. cn means the total number of electrons captured per second to the deep centers. 

cnn means the total number of electrons captured per second from the conduction band to the 

deep centers.  
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Figure A.1 Electron energy band diagram with deep level defects. (a), (b), (c) and (d) are electron capture 

and emission processes mentioned in the text. 

The electron capture coefficient is defined as 

 n nc thvσ=  (A.2) 

where σn is the electron capture cross section of the deep centers and vth is the thermal velocity of 

the electrons. 

Similarly for holes, the rate equation can be written as  

 p T p T
dp e p c pn
dt

= −  (A.3) 

Now we can look at the deep centers which are occupied by electrons. The change rate of 

the concentration of these centers is 
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       ( ) ( )

      ( ) ( )

      ( )( ) ( )

T

p T p T n T n T

n p T p n T

n p T T p n

dn dp dn
dt dt dt

e p c pn e n c np

c n e p c p e n

c n e N n c p e n

= −

= − − −

= + − +

= + − − + T

 (A.4) 

Rewrite it and we get this equation: 

 ( ) (T
n p p n T n p

dn c n e c p e n c n e N
dt

= − + + + + + ) T

T

 (A.5) 

We can do an approximation and consider the quasi-neutral regions where n and p can be 

considered constant. That will make Eq. (A.5) easy to solve. 

To solve this differential equation, I will define two quantities to make the equation look 

simple. Define ( )n pA c n e N= +  and 1

n p pc n e c p e
τ =

n+ + +
, where A is a constant and will be 

determined later. 

For a first order differential equation ( ) ( )dy P x y Q x
dx

+ = , the general solution is 

, where C is a constant. 
( ) ( )

[ ( )
P x dx P x dx

y e Q x e dx C
−∫ ∫= ∫ ]+

Compare to Eq. (A.5) and we get 1( )P x
τ

=  and Q(x)=A. 

So the solution for Eq. (A.5) is 

 

1 1

/ /

/

[ ]

    [ ]
    

dt dt

T

t t

t

n e Ae dt C

e A e C
A Ce

τ τ

τ τ

τ

τ

τ

−

−

−

∫ ∫= +

= +

= +

∫
 (A.6) 

Set t = 0 and we get (0)Tn A Cτ= + , so (0)TC n Aτ= − . Put it back into Eq. (A.6), we 

get 
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/ /

/ /

/ /

( (0) )

    (1 ) (0)

    ( ) (1 ) (0)

t t
T T

t t
T

t t
n p T T

n A Ce A n A e

A e n e

c n e N e n e

τ τ

τ τ

τ τ

τ τ τ

τ

τ

− −

− −

− −

= + = + −

= − +

= + − +

 

 /( ) (0) (1 )n pt
T T T

n p p n

c n e
n t n e N e

c n e c p e
/tτ τ− −+

= + −
+ + +

 (A.7) 

In order to use Eq. (A.7), we need to do some simplification. In an n-type sample, we can 

neglect the hole concentration p. Eq. (A.7) is simplified as 

 /( ) (0) (1 )n pt
T T T

n p n

c n e
n t n e N e

c n e e
/tτ τ− −+

= + −
+ +

 (A.8) 

where 1

n pc n e e
τ =

+ + n

. 

Now let us consider the Schottky diode on an n-type substrate. 

 

Figure A.2 Schottky diode on an n-type substrate 
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 When the Schottky diode is at zero bias, the deep centers below the Fermi level EF are 

occupied by electrons. When a reverse bias is applied, the Fermi level is pushed down and the 

electrons are emitted from some of the deep centers in the space charge region. Once the 

electrons jump into the bottom of the conduction band, they could either jump back on the deep 

centers or be swept out of the space charge region. In reality, the time required to remove the 

electrons from the space charge region is much shorter than the time required to recapture the 

electrons back on the deep centers. Finally it will come to equilibrium as t . During the 

whole process, the capacitance over this Schottky diode is changing as a function of time. The 

capacitance transient is shown schematically in Figure A.2. 

→∞

A.1.2 Capacitance Measurements 

The capacitance of a Schottky diode on an n-type substrate can be found in any fundamental 

semiconductor physics book. In order to explain the topic clearly, I am going to derive all the 

equations in this section. I will start with a p-n junction first. 

 

Figure A.3 Schematic drawing of the charge distribution in a p-n junction in thermal equilibrium with 

zero bias voltage applied. 
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Figure A.3 is the schematic drawing of a p-n junction. On the left side is the p-type 

material. On the right side is the n-type material. The width of the negatively charged acceptor 

ions region is xp. The width of the positively charged donor ions region is xn. The total width of 

the space charge region is D p nX x x= + . The charge density distribution in the space charge 

region is  

 
  ( 0

( )
    (0 )

A p

D n

qN x x
x

qN x x
ρ

⎫− − < <⎧ )⎪ ⎪= ⎨ ⎬
< <⎪ ⎪⎩ ⎭

 (A.9) 

where NA and ND are the acceptor and donor concentrations on the p-type and n-type sides, 

respectively.  is chosen to be at the interface. 0x =

Since the p-n junction itself has to be neutral, the net positive charges and net negative 

charges should cancel out each other. This gives the equation A p D nqN x qN x Q= = , where Q is 

the total charge on a unit cross section area inside one of the two space charge regions. Therefore  

 A p DN x N xn=  (A.10) 

From the classical electromagnetics, we know the general Poisson equation for a charge 

density ρ is 2V ρ
ε

∇ = − , where ε is the permittivity of the medium and equals to the product of 

the dielectric constant (relative permittivity) εr and the vacuum permittivity ε0. Apply this 

equation to both sides of the p-n junction and we have 

 

2
1

2

2
2

2

( )        ( 0)

( )     (0 )

A
p

D
n

d V x qN x x
dx

d V x qN x x
dx

ε

ε

⎫
= − < < ⎪⎪

⎬
⎪= − < < ⎪⎭

 (A.11) 

where V1(x) and V2(x)  are the electric potentials in the negative and positive charge regions. 

Integrate Eq. (A.11) once to obtain  
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1
1

2
2

( ) ( )         ( 0)

( ) ( )      (0 )

A
p

D
n

dV x qN x C x x
dx

dV x qN x C x x
dx

ε

ε

⎫= + − < < ⎪⎪
⎬
⎪= − + < <
⎪⎭

 (A.12) 

where C1 and C2 are constants to be determined using the boundary conditions. 

 Outside of the space charge region, the material should be neutral and the electric field is 

zero. Therefore we can apply this at the boundaries on both left and right sides. 

 
( )

( )

1

2

( ) 0

( ) 0

p

n

p
x x

n
x x

dV xE x
dx

dV xE x
dx

=−

=

⎫
− = − = ⎪

⎪
⎬
⎪= − = ⎪⎭

 (A.13) 

 Apply Eq. (A.13) back to Eq. (A.12) and we get the two constants: 

 1 2, A p D nqN x qN xC C
ε ε

= = . (A.14) 

 Eq. (A.10) gives A p DN x N x= n , therefore C1 = C2. The electric field inside the space 

charge region is 

 
( )

( )

1
1

2
2

( )( )        ( 0)

( )( )           (0 )

A p
p

D n
n

qN x xdV xE x x x
dx

qN x xdV xE x x x
dx

ε

ε

+ ⎫
= − = − − < < ⎪⎪

⎬
− ⎪= − = < <

⎪⎭

 (A.15) 

 Integrate Eq. (A.15) once to get the equation of the electric potential.  

 
( )

( )

2
1 1

2
2 2

( )               ( 0)
2

( )            (0 )
2

A pA
p

D nD
n

qN xqNV x x x D x x

qN xqNV x x x D x x

ε ε

ε ε

⎫
= + + − < < ⎪⎪

⎬
⎪= − + + < <
⎪⎭

 (A.16) 

where D1 and D2 are constants and will be determined using the boundary conditions. 
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 We can set the electric potential in the neutral region on the p-type side as zero, and then 

the electric potential in the neutral region in n-type side is VD, where VD is the built-in voltage. 

These are two boundary conditions for Eq. (A.16).  

 1 2( ) 0, ( )p nV x V x VD− = = . (A.17) 

 Put Eq. (A.17) back into Eq. (A.16) and we get those two constants. 

 
2 2

1 2, 
2 2

A p D n
D

qN x qN xD D V
ε ε

= = −  (A.18) 

 Since V(x) is continuous at x = 0, from Eq. (A.16) we can see that D1 = D2. 

 Finally we have the equations for the electric potentials. 

 
( )

( )

2 2

1

2 2

2

( )
             ( 0)

2
( )       (0 )
2

A p A p
p

D n D n
D n

qN x x qN xx
V x x x

qN x x qN xxV x V x x

ε ε

ε ε

⎫+
= + − < ⎪⎪

⎬
+ ⎪= − + < < ⎪⎭

<
 (A.19) 

From V1(0) = V2(0), we get 
2 2

2 2
A p D n

D

qN x qN xV
ε ε

= − . So 

 
2 2( )
2

A p D n
D

q N x N x
V

ε
+

=  (A.20) 

From two equations D p nX x x= + and A p DN x N xn= , we get  

 ,  A D D D
n p

D A D

N X N Xx x
N N N N

= =
+ + A

 (A.21) 

 
2

2 2 A D D
A p D n

D A

N N XN x N x
N N

+ =
+

 (A.22) 

 Eq. (A.20) can be rewritten as 

 2( )
2

A D
D D

D A

N NqV
N Nε

=
+

X  (A.23) 

 The width of the whole space charge region is 
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 2 D A
D D

A D

N NX V
q N N
ε ⎛ ⎞⎛ ⎞ +

= ⎜⎜ ⎟
⎝ ⎠⎝ ⎠

⎟  (A.24) 

 Eq. (A.24) is for the case when there is no bias voltage applied accross the p-n junction. 

When there is an external voltage V on the p-n junction, the overall voltage across the p-n 

junction is VD – V. V is greater than zero for a forward bias and less than zero for a reverse bias. 

Eq. (A.24) can be extended as 

 2 (D A
D

A D

N N )DX V V
q N N
ε ⎛ ⎞⎛ ⎞ +

= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

− . (A.25) 

From the following equations D p nX x x= +  and A p D nqN x qN x Q= = , we can get 

A
D

A D A D

N NQ Q QX
qN qN q N N

+
= + = D . So the relationship between the total charge on a unit cross 

sectional area and the applied voltage can be written as 

 2 (D A
D

A D

N NQ q V
N N

ε
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
)V−  (A.26) 

The differential capacitance on a unit cross section area is   

 
1
21' 2 ( )

2 2( )(
D A D A

D
A D A D D

N N qN NdQC q V V
dV N N N N V V

εε
−⎛ ⎞

= = ⋅ − =⎜ ⎟+ +⎝ ⎠ )−
 (A.27) 

If the cross section area is A, then the total differential capacitance is  

 
2( )( )

D A

A D D

qN NC A
N N V V

ε
=

+ −
 (A.28) 

 For a Schottky diode on n-type material, we can let . Then we have AN →∞

 
2

D

D

NqC A
V V

ε
=

−
 (A.29) 
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 So far I have only considered the situation with no deep level defects at reverse bias –V. 

If there are some deep level defects, the donor concentration ND in Eq. (A.29) should be replaced 

with the net donor concentration in the space charge region Nscr = ND  – nT(t). 

 ( ) ( )1
2 2 2( )

scr D T D T

D D D

N N n t qN n tq qC A A A
V V V V V V N

εε ε −
= = =

− − − D

−  (A.30) 

Define 0 2( )
D

D

qNC A
V V
ε

=
−

, which is the capacitance when there are no deep level defects. 

 0
( )1 T

D

n tC C
N

= −  (A.31) 

Usually during the DLTS measurements, the deep level defect concentration is far less 

than the donor concentration (which has been discussed in the experiment procedures). Therefore 

we can do an expansion on Eq. (A.31). 

 0
( )[1 ]

2
T

D

n tC C
N

≈ −  (A.32) 

The time dependence of the deep center concentration is Eq. (A.8) 

/ /( ) (0) (1 )n pt t
T T T

n p n

c n e
n t n e N e

c n e e
τ τ− −+

= + −
+ +

, where 1

n pc n e e
τ =

n+ +
. Consider the traps in the 

upper half of the band gap. The electron emission rate en is greater than the hole emission rate ep. 

So we can neglect ep. At the initial emission stage, the electron emission process dominates and 

the electron capture process barely happens. Then we can neglect the electron capture term cn. 

Finally we can simplify Eq. (A.8) as 

 ( ) (0)exp( / )T Tn t n t eτ= −  (A.33) 

where 1
e

ne
τ = . 
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 Put Eq. (A.33) into Eq. (A.32), we get 

 0
(0)[1 exp( / )]

2
T

e
D

nC C t
N

τ= − −  (A.34) 

 Now we need to find out what τ or en is. 

 Under equilibrium condition, process (a) and (b) in Figure A.1 should cancel each other. 

Therefore Eq. (A.1) should be zero. 

 0 0 0 0 0 0 0 0(n T n T n T Te n c n p c n N n )= = −  (A.35) 

where the subscript 0 represents the equilibrium condition. 

From fundamental semiconductor physics, we know that 

 0 0exp( ),  
1 exp[( ) / ]

F i T
i T

T F

E E Nn n n
kT E E kT
−

= =
+ −

 (A.36) 

 Put Eq. (A.36) into Eq. (A.35), we get 

 0 0
exp[( ) / ]exp( )

1 exp[( ) / ] 1 exp[( ) / ]
F iT T

n n i
T F T F

E EN Ne c n T FE E kT
E E kT kT E E kT

− −
=

+ − + −
 

 0 0 0exp( )T i
n n i n

E Ee c n c n
kT 1
−

= =  (A.37) 

where 1 exp( )T i
i

E En n
kT
−

= . 

 We need to make a critical assumption here, assuming that the emission and capture 

coefficients remain equal to their equilibrium values under non-equilibrium conditions. Then we 

can take out the subscript 0 and get a new equation: 

 1n ne c n=  (A.38) 

Since 1
e

ne
τ =  and n nc thvσ= , we can put everything in Eq. (A.38) and get the following: 
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 1 exp( )T i
n th i

e

E Ev n
kT

σ
τ

−
=  

 exp[( ) / ]1 i T
e

n th i

E E kT
v n

τ
σ

−
=  (A.39) 

 From fundamental semiconductor physics, we know that n0 can be expressed using the 

effective density of states in the conduction band Nc as 

 0 exp[ ( ) / ]c C Fn N E E kT= − −  (A.40) 

 Compare Eq. (A.40) to Eq. (A.36), we get 

 
0

exp[ ( ) / ] exp[( ) / ]1 F i C F

i c

E E kT E E kT
n n N

− − −
= =  (A.41) 

 Multiply e  on both sides of Eq. (A.41) and get a new equation: xp[( ) / ]F TE E kT−

 exp[( ) / ] exp[( ) / ]i T C T

i c

E E kT E E kT
n N
− −

=  (A.42) 

 We can rewrite Eq. (A.39) as 

 exp[( ) / ] exp[( ) / ]1 C T C T
e

n th c n th c

E E kT E E kT
v N v N

τ
σ σ

− −
= =  (A.43) 

The thermal velocity of electrons is  

 3
th

n

kTv
m

=  (A.44) 

 The density of states in the conduction band is 

 3/2
2

22( )n
c

m kTN
h

π
=  (A.45) 

 Therefore the time constant is 

 
3/2 2 3/2

2 2

exp[( ) / ] exp[( ) / ]
2 23 32( ) 2( )

C T C T
e

n n
n n

n n

E E kT E E kT
m kT m kkT kT

m h m h

τ
π πσ σ

− −
= =  

 91 



Define 3/2
2

23 2( )n
n

n

m kk
m h

πγ = , which is a constant determined by the electron effective 

mass. We can get the equation of the time constant as a function of temperature: 

 2

exp[( ) / ]C T
e

n n

E E kT
T

τ
σ γ
−

=  (A.46) 

During the DLTS measurement using a double boxcar instrument, the capacitance 

difference between two different times is a standard output feature. Use Eq. (A.34), we get 

 0
1 2 2 1

(0)( ) ( ) [exp( / ) exp( / )]
2

T
e

D

C nC C t C t t t
N eδ τ= − = − − − τ . (A.47) 

Figure A.4 illustrates how the DLTS spectrum is obtained. The capacitance decay is 

shown on the left side at different temperatures with different decay rate, which can be explained 

by Eq. (A.46). When the capacitance decays really slowly or fast, the capacitance difference 

between two different window times t1 and t2 is quite small. This capacitance difference reaches 

the maximum value at a temperature in the middle. This δC as a function of the temperature T is 

plotted on the right side. In order to find the temperature with the maximum capacitance 

difference, we can set the differential of Eq. (A.47) with respect to τe to zero.  

0
2 2 1 1

2 2 1 1

2
1 2

1

2
2 1

1

(0)( ) [ exp( / ) exp( / )] 0
2

exp( / ) exp( / )
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1ln( ) ( )
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e e

e D

e e

e

e

C nd C t t t t
d N

t t t t
t t t
t

t t t
t

δ τ τ
τ

τ τ

τ

τ

= − − + − =

− = −

= − −

= −

 

 2 1
,max

2 1ln( / )e
t t
t t

τ −
=  (A.48) 
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Figure A.4 Illustration of how a double boxcar is used to define the rate window. The left-hand side 

shows capacitance transients at various temperatures, while the right-hand side shows the corresponding 

DLTS signal resulting from using the double boxcar to display the difference between the capacitance at 

time t1 and the capacitance at time t2 as a function of temperature. Figure is taken from D. V. Lang, J. 

Appl. Phys. 45, 3023 (1974). 

 93 



 From Eq. (A.46) 2

exp[( ) / ]C T
e

n n

E E kT
T

τ
σ γ
−

= , we can re-arrange the equation and get 

 2 1ln( ) ln( )C T
e

E ET
k T n nτ σ γ−

= −  (A.49) 

Usually the capture cross section is assumed to be temperature independent. Therefore a 

plot of  versus 1/T is a straight line using values of τe for various choices of t1 and t2. 

The slope gives the deep centers energy level. The intercept on the y-axis gives the capture cross 

section. 

2ln( )eTτ

Another important property of the deep center is the concentration. It can be obtained 

from Eq. (A.47) 0
2

(0) [exp( / ) exp( / )]
2

T
e

D

C nC t
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 (A.50) 
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The DLTS system can measure max

0

C
C

δ  in the range of 10-5 to 10-4. The donor 

concentration can be obtained from the C-V measurement. Therefore the deep center 

concentration can be obtained from the above equation.  

To summarize, the most important equations in the DLTS measurement are 

0
(0)[1 exp( / )]

2
T

e
D

nC C t
N

τ= − −  

2

exp[( ) / ]C T
e

n n

E E kT
T

τ
σ γ
−

=  

2 1
,max

2 1ln( / )e
t t
t t

τ −
=  

The procedure to carry out a DLTS measurement is 

1. Set a window rate τref by setting t1 and t2. 

2. Heat up the sample. 

3. When the temperature T reaches a value which makes n( , , )e TT Eτ σ  equal τref, one 

can get the maximum output on the meter. Different deep centers have different 

ET and σn. Therefore they will show up as different peaks at different temperatures. 

4. Change the preset value of τref and get a different DLTS spectrum. The peak 

positions will shift a little bit. 

5. From all the runs, one can get a data set with a τref corresponding to a maximum 

temperature T for each deep center. 

6. Plot 2ln( )eTτ  versus 1/T. Get the deep center energy level from the slope and the 

capture cross section from the intercept, respectively. 
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A.2 EXAMPLE OF DLTS MEASUREMENTS 

To give an example of the DLTS measurement, I am going to use the figure in D.V. Lang’s 

original DLTS paper to do the calculations. Figure A.5 is copied directly from D.V. Lang’s first 

paper on DLTS. I’m going to use trap B as an example. I can do a rough estimate of all the peak 

positions and get Table A.1. 

 

Figure A.5 Typical experimental DLTS spectra for hole traps in n-GaAs. The two traps are labeled A and 

B and have activation energies measured from the valence band of 0.44 and 0.76 eV, respectively. The 

trap concentrations are both 1.4x1014 cm-3. Five different spectra are shown corresponding to the five rate 

windows determined by the values of t1 and t2.  Figure and text are taken from D. V. Lang, J. Appl. Phys. 

45, 3023 (1974). 
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Table A.1 Window times, rate windows and peak positions of trap B from DLTS spectra in Figure A.5. 

t1 (msec) t2 (msec) τ (msec) T (K) 

0.5 5 1.95 372.22 

0.2 2 0.78 387.33 

0.1 1 0.39 397.78 

0.05 0.5 0.20 408.89 

 

Figure A.6 Plot of as a function of 1000/T. The round dots are experimental data from the 

above table. The straight line is a polynomial fitting. 

2ln( )eTτ

 Figure A.6 shows the plot of  versus 1000/T. The straight line fitting gives the 

equation . 

2ln( )eTτ

8.700 17.75y x= ⋅ −
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The slope is 8.700
1000

C TE E
k

−
= , where k = 8.617x10-5 eV/K is the Boltzmann constant. 

Therefore the energy level is given by 0.75 eVC TE E− = . This is consistent with the value 0.76 

eV D.V. Lang got in his paper. The slight difference comes from my rough estimate of the peak 

positions from Figure A.5. 

In n-type GaAs, γ has an accepted value of 2.3x1020 cm-2s-1K-2. From the value of the 

intercept, we can get the capture cross section . 13 22.22 10  n cmσ −= ×

To summarize this section, I have explained the theory behind the DLTS technique and 

showed how to extract the valuable information from the experimental data. The actual DLTS 

system used for our investigations on the deep defect centers is described in Ref. [48]. 
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APPENDIX B 

MONTE CARLO SIMULATION OF ELECTRON TRAJECTORIES IN SILICON 

CARBIDE USING THE CASINO PROGRAM 

We used the CASINO program [37] as a Monte Carlo simulation of electron trajectories in the 

SiC material, but crystal structure is not taken into account. The name CASINO is derived from 

the word “monte CArlo SImulation of electroN trajectory in sOlids”. It is widely used to 

calculate the irradiation electron distribution inside the sample, which is quite useful if we want 

to know how the irradiation electron travels inside the material and the damage caused by that. 

We fully appreciate that this program is strictly applicable for electrons with energy less than 50 

keV under non-relativistic conditions! When the electron has a kinetic energy above 50 keV, the 

relativistic effect has to be considered but the simulation gets very complicated. We can do a 

comparison between the non-relativistic and relativistic conditions and find out the error between 

these two. 

For the non-relativistic case, the classical equation for the kinetic energy of the electron is  

 2
0

1
2kE m v=  (B.1) 

where  is the rest mass of the electron. 31
0 9.11 10m −= × kg

So the velocity is 
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0 0

2 2kE e Uv
m m

⋅
= =  (B.2) 

where  is the charge on electron. U is the voltage applied to the electron. Put in 

different values for U and we get the following Table B.1. 

191.60 10e −= × C

 

Table B.1 Velocities of electron with different energies using the non-relativistic expression. 

U (V) v (m/s) 

15 kV 7.26 x 107 

170 kV 2.45 x 108 

300 kV 3.25 x 108 

1 MV 5.93 x 108 
 

The velocities for 300 kV and 1 MV electrons are greater than the speed of light 3.00 x 

108 m/s, which can’t be right. That tells us we can’t use the classical equations to calculate the 

velocity of electrons. We have to use the theory of relativity. 

For the relativistic case, the mass of an electron increases as its speed increases according 

to the following formula 

 0
21

mm
β

=
−

, (B.3) 

where v
c

β =  and c = 3.00 x 108 m/s is the speed of light. 

The momentum of the electron is given by p mv= , which is just like the classical 

formula for momentum, except that the mass m of the electron is a function of its speed v. 

From the theory of relativity, we know the relationship between the total energy and the 

kinetic energy of the electron is  
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 0kE E E= −  (B.4) 

where 2E mc=  is the total energy of the electron while 2
0 0E m c=  is the rest energy of the 

electron.  

The relationship between the total energy and the momentum of the electron is  

 2 2 2
0
2E c p E= + . (B.5) 

Therefore 

2 2 2
0 0

2 2 2 2
0 0
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Rearrange the equation and we get 

 
2

2

0

11

1 1k

c
v E

E

⎛ ⎞ = +⎜ ⎟ ⎡ ⎤⎝ ⎠ ⎛ ⎞
⎢ ⎥+ −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (B.6) 

We can calculate the value of E0 first. 

( )22 30 8 5
0 0 19

19.11 10 3.00 10 5.11 10  511 0.511 
1.60 10

E m c eV eV keV MeV−
−= = × × × × = × = =

×

 When 
0

1kE
E

<< , we can do an expansion on Eq. (B.6) and get the following 

 
2

0

0

1 1 11 1
2 2

1 2 1 k kk

0E Ec
v EE

E

⎛ ⎞ ⎛ ⎞⎛ ⎞ ≈ + = + ≈⎜ ⎟ ⎜⎜ ⎟ ⎡ ⎤⎛ ⎞⎝ ⎠ ⎝ ⎠ ⎝ ⎠+ −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

E ⎟  (B.7) 
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Put 2
0 0E m c=  back in and we get 

 
2 2

01
2 k

m cc
v E

⎛ ⎞ =⎜ ⎟
⎝ ⎠

, (B.8) 

which can be written as 2
0

1
2kE m v=  and is the kinetic energy of the electrons in the non-

relativistic limit. Note that the condition for this equation to hold is 
0

1kE
E

<< . That means 

. Therefore, we can only use the non-relativistic conditions for electrons 

with energy less than 50 keV. 

0 511 kE E ke<< = V

If Ek is large enough so that the non-relativistic mechanics doesn’t hold, we have to use 

Eq. (B.6) to calculate the electron velocity. Table B.2 shows the velocities of electron with 

different energies in this case. 

 

Table B.2 Velocities of electron with different energies under relativistic conditions. 

Ek v/c v (m/s) 

15 keV 0.237 7.11 x 107 

170 keV 0.661 1.98 x 108 

300 keV 0.777 2.33 x 108 

1 MeV 0.941 2.82 x 108 
 

We can compare the two tables for the relativistic and non-relativistic results and see that 

the velocity is almost the same for a 15 keV electron. This is the voltage usually used for 

scanning electron microscope (SEM). For the higher energy electrons which people use for 

irradiation, there is a big error between these two cases. The error is 24% for the 170 keV 
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electron and 110% for the 1 MeV electron. We believe it is still useful to use the CASINO 

program to simulate 170 keV electrons since the error is not excessive.  

Another thing we have to keep in mind is the electron energy threshold to kick out a 

carbon atom. This program, by default, simulates the electron trajectory until the electron energy 

is less than 50 eV. What we are interested in for these experiments are the electrons which have 

an energy greater than 100 keV so that they can create a carbon vacancy and a carbon interstitial. 

Hence in our calculations we stop the simulation when the energy drops from 170 keV to 100 

keV. Figure B.1 is the simulated penetration depth of the 170 keV electrons. Most of the 

electrons stop near a depth of 90 μm. Therefore, since the FreD and He-Cd laser penetration is 

far smaller than 90 μm [38], the LTPL signal we get is entirely from the irradiated part of the 

material. 

 

Figure B.1 Simulated electron penetration depth profile of 170 keV electrons stopping at 100 keV. 
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APPENDIX C 

DII DEEP DEFECT IN 3C SILICON CARBIDE 

C.1 ATOMIC MODEL OF DII DEFECT CENTER IN SILICON CARBIDE 

As I have mentioned in Chapter 2, the DII center is usually observed in ion-implanted SiC 

regardless of the polytype [15, 21]. The spectrum of DII consists of the no-phonon line(s) with 

vibrational replicas. It also has some gap modes and localized modes. These localized modes 

have energy higher than the lattice limit of 120 meV in SiC. The highest energy is near 165 meV, 

which is the highest lattice frequency in diamond [16]. Therefore a model of a carbon di-

interstitial (two carbon atoms sharing an interstitial site) was first proposed in Ref. [20], based on 

the argument that a di-interstitial is one of the simplest defect complexes and the interstitials can 

stiffen the lattice. The strong carbon-carbon bonds account for the high energy localized modes 

above the 120 meV lattice limit. The DII center in 6H and 4H SiC was re-visited by S.G. Sridhara 

et al. and these authors used the original carbon di-interstitial model to describe the DII center 

[21].   

Recently, theorists have done many calculations on the vibrational spectra for different 

defect complexes. In a paper published by A. Mattausch et al., the carbon di-interstitial model 

was ruled out and a new model of a carbon antisites cluster was proposed [15]. An ab initio 
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density-functional theory calculation was done using the software package FHI96SPIN [49]. The 

authors used large supercells with 216 lattice sites for 3C SiC and 128 sites for 4H SiC for all 

calculations of the defect energetics. They found that the formation energy of the carbon di-

interstitial is about 12 eV, which is extremely high and rules out this model. They also calculated 

the carbon split interstitial, which is a pair of carbon atoms sharing the same (carbon) site. 

Calculation shows that the carbon split interstitial defects are very mobile and therefore do not 

agree with the thermal stability of the DII center. The number of the local vibrational mode 

energies they calculated beyond the bulk lattice spectrum from this model does not match the 

number from the experimental DII spectrum. Therefore, they ruled out this model as well. The 

next model they calculated is the carbon antisite CSi, which is a carbon atom sitting on the silicon 

lattice site. This model only shows vibrational resonances in the bulk phonon spectrum and has 

no local vibrational modes. Carbon clusters based on the dicarbon antisite model have been 

proposed to be an appropriate model for the DII center. For example, more carbon atoms can be 

bound together and form a cluster of four carbon atoms at a silicon site (C4)Si. Two dicarbon 

antisites can be created next to each other and form a pair of dicarbon antisites ((C2)Si)2. These 

carbon clusters have a much richer phonon spectrum. However, the authors pointed out the 

difficulty with this model in that none of the considered defect complexes can explain all 

features of the DII center. The model of the dicarbon antisites and carbon clusters generated by 

the dicarbon antisites is an attractive possibility. This same model of a pair of dicarbon antisites 

((C2)Si)2 has also been calculated and assigned as the origin of the DII center in another 

theoretical paper by A. Gali et al. [13] by comparing the calculated local vibrational modes with 

the experimental values. 
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C.2 EXPERIMENT AND RESULTS 

C.2.1 Experiment 

The sample we used for this study is a homo-epitaxial 3C SiC thin film grown in the [001] 

direction. The nitrogen concentration is on the order of 1016 cm-3. Aluminum implantation was 

done at room temperature at the University of Erlangen. The aluminum concentration is 1x1018 

cm-3 and penetrates 1 μm deep. The sample was annealed at 1500 °C for 30 min. 

Figure C.1 shows the X-ray transmission Laue pattern from this sample. A Philips X-ray 

generator was used at 40 kV and 15 mA. A crystal-to-film distance of 3 cm was used and a 

Polaroid type-57 (ASA 3000) black and white film was used to record the Laue pattern. The 

exposure time was 5 min. All the directions are marked on the picture based on the review paper 

published by Choyke et al. [50].  

Since the company Polaroid stopped making the instant films in 2008, we are going to 

replace the instant film cassette with a Photonic Science Laue X-ray Imaging camera system 

from Micro Photonics Inc. This system has an active input area of 143.52 mm x 96.04 mm with a 

1913 x 1280 pixel resolution. Pictures will be captured on a PC with FireWire interface card 

installed. 
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Figure C.1 Transmission Laue pattern photograph of the aluminum implanted 3C/3C SiC (40 kV, 15 mA, 

5 min exposure, crystal to film distance 3 cm). 

Photoluminescence measurements were made at different temperatures between 2 K and 

50 K by mounting the sample in a Janis SuperVariTemp cryostat (Model 8DT) and flowing He 

vapor over it. We also have a Janis split coil superconducting magnet cryostat (Model 12CNDT) 

which can operate up to seven Tesla. We run the magneto optics LTPL from 0 to 6 Tesla in 0.5 

Tesla steps. The FreD laser (244 nm) was used for the excitation source since the implanted layer 

is only 1 μm thick. The luminescence from the sample was imaged onto a liquid nitrogen cooled 

CCD array mounted on the focal plane of a two-meter Baird-Atomic high-resolution (0.05 Å) 

spectrometer. 

In the magneto optics study on 4H or 6H SiC grown along the c direction, people usually 

use two different configurations with the magnetic field either perpendicular or parallel to the c 
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axis. In our case, we are studying 3C SiC, which is isotropic. But since we are all set up to run 

the experiment, we used the similar configurations with the magnetic field either perpendicular 

or parallel to the sample surface, which are shown in Figure C.2. 

 

Figure C.2 Two different configurations we used for the magneto optics study on 3C SiC (a) H parallel to 

the sample surface of [001] plane; (b) H perpendicular to the sample surface of [001] plane. 

C.2.2 High-Resolution LTPL Spectra from the DII Defect Center in 3C SiC at Different 

Temperatures 

The photoluminescence of the DII defect center in aluminum implanted 3C/3C SiC is collected at 

different temperatures between 2 K and 50 K. Figure C.3 shows the temperature dependence of 

the no phonon lines of the DII center. When the DII center in 3C was first reported by Choyke et 

al. in 1973 [20], only one no phonon line was reported. In that paper the photoluminescence was 

collected at 1.3 K. As can be seen in our results in Figure C.3, we observed two no phonon lines 
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at 5372.36 Å (2.3072 eV) and 5370.31 Å (2.3081 eV) and labeled them as DII
1 and DII

0, 

respectively. They are the no phonon lines from an excited state and the ground state of the DII 

center. Using the experimental bulk excitonic band gap value of 3C SiC EGX = 2.390 eV at 2 K 

[51], we obtain the binding energies of these two states are 82.8 meV and 81.9 meV with respect 

to EGX.  At the temperature of 1.3 K, the no phonon line of the excited state is probably too weak 

to be observed. That might be the reason why it was not reported in Ref. [20].  

At low temperatures, the ground state no phonon line DII
0 dominates the spectrum. At 

intermediate temperatures, the intensity of the ground state line DII
0 decreases and the intensity 

of the excited state line DII
1 increases. At relatively high temperatures, the DII

1 line dominates the 

spectrum. Further increasing of the temperature leads to the quenching of these two peaks and 

the slight shift of less than 0.5 Å to the high wavelength direction due to the lowering of the band 

gap as the temperature goes up [52, 53]. When the temperature goes above 20 K, we start to see a 

really small peak at around 5362 Å. It is always very weak between 20 K and 54 K but it is 

definitely not seen at temperatures below 20 K. This peak also quenches when the temperature 

goes above 54 K. An example of this peak at 40 K is shown in Figure C.4 and marked with an 

arrow.  
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Figure C.3 High resolution LTPL spectra at different temperatures from the aluminum implanted 3C/3C 

SiC. The temperature is indicated on the right side of the figure. DII
1 and DII

0 are the no phonon lines from 

the excited state and ground state of the DII center. 
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Figure C.4 High resolution LTPL spectra at 40 K from the aluminum implanted 3C/3C SiC. DII
1 and DII

0 

are the no phonon lines from the excited state and ground state of the DII center. The peak at 5362.21 Å is 

marked with arrow and is only observed at temperature higher than 20 K and quenches at 54 K. 
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Figure C.5 Arrhenius plot of the temperature dependence of the intensities of the excited state no phonon 

line DII
1 from 4 K to 54 K. The thermal activation energy EA = 6.4 meV is calculated from the slope of the 

linear fit to the five leftmost points. 

Figure C.5 shows an Arrhenius plot of the temperature dependence of the excited state no 

phonon line DII
1 from 4 K to 54 K. The five leftmost data points are used for the linear fit and the 

thermal activation energy EA = 6.4 meV is calculated from the slope. We have calculated the 

binding energies of the excited state and the ground state as 82.8 meV and 81.9 meV. In order to 

compare with the thermal activation energy, we have to consider the free exciton binding energy, 

which has been calculated and has a value of 26.7 meV [54]. The thermal activation energy is 

significantly smaller than the localization energy of the DII bound exciton. A possible 

explanation is that the DII defect center is an isoelectronic center. Either the hole or the electron 

in the exciton is weakly bound to the DII center and the other one is tightly bound. The 
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quenching of the spectral lines is caused by the loose binding of the weakly bound particle when 

the temperature increases. This is consistent with the theoretical paper published by Gali et al. 

[13], in which they proposed that the DII center is an isoelectronic center and the hole is more 

localized than the electron which is in an effective-mass state around the hole. Sridhara et. al also 

proposed that the DII spectrum is from bound exciton recombination at isoelectronic centers from 

the photoluminescence study on the ion-implanted 6H SiC [55]. 

Figure C.6 is the Arrhenius plot of the intensity ratio of DII
1/ DII

0 at temperatures between 

4K and 54K. The intensity ratio follows the Boltzmann statistics and should follow the equation 

1

0 exp( )I E
I kT

Δ
∝ − , where ΔE is the activation energy of the excited state. On a semi-log plot of 

Log(
1

0

I
I

) as a function of 1000/T,  the slope from the linear fit is 
1000

E
k
Δ
⋅

. From the fitting results, 

we get ΔE = 1.1 meV. The measured spectrum shows a separation of 1 meV between the excited 

state and the ground state, which agrees well with the linear fitting result. We can use the fitting 

results to do a quick calculation of the intensity ratio at 1.3 K. Our result shows that at 1.3 K, the 

intensity of the DII
1 is 1/10000 of the intensity of DII

0. This explains why the excited state is not 

observed in Ref. [20]. 
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Figure C.6 Arrhenius plot for the intensity ratio of DII
1/ DII

0 at temperatures between 4K and 54K. The 

activation energy from the slope of the linear fit agrees well with the energy separation of the no phonon 

lines in the LTPL spectrum. 

C.2.3 High-Resolution Zeeman Spectra from DII Defect Center in 3C SiC 

Figure C.7 and Figure C.8 show the Zeeman splitting of the excited state and ground state of the 

DII center in 3C SiC for both H parallel to the sample surface and H perpendicular to the sample 

surface. It is obvious that the excited state line DII
1 does not split, while the ground state line DII

0 

shows clear splitting into two lines, which are about the same intensity. 
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Figure C.7 High resolution LTPL spectra at different magnetic fields from the aluminum implanted 

3C/3C SiC with H
r

 parallel to the sample surface. The magnetic field is indicated on the right side of the 

figure. DII
1 and DII

0 are the no phonon lines from the excited state and ground state of the DII center. 
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Figure C.8 High resolution LTPL spectra at different magnetic fields from the aluminum implanted 

3C/3C SiC with H
r

 perpendicular to the sample surface. The magnetic field is indicated on the right side 

of the figure. DII
1 and DII

0 are the no phonon lines from the excited state and ground state of the DII center. 
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 Figure C.9 and Figure C.10 are the fan diagrams obtained from the Zeeman spectra 

shown in Figure C.7 and Figure C.8, respectively. They show the energies of the peaks versus 

the magnetic fields. Assuming a linear Zeeman effect, we can find the values for the magnetic g-

factor from the formula: 

B

Eg
Hμ

Δ
=

⋅Δ
 

where μB = 5.79 x 10-5 eV/T is the Bohr magneton and ΔE is the splitting of each peak. The 

magnetic g-factor is 2.20 for H parallel to the sample surface and 2.63 for H perpendicular to the 

sample surface. It is unclear at this time why these two values are different. 3C SiC has an 

isotropic crystal structure. It shouldn’t make a difference whether H is parallel or perpendicular 

to the sample surface. The other interesting phenomenon in these two fan diagrams is the 

splitting from 2 T to 6 T is somewhat linear. But if we draw two lines through these data points, 

they intersect each other at 1.5 T. So the Zeeman splitting only starts happening from 1.5 T, 

which can also been seen in Figure C.7 and Figure C.8. However, if we look at the Zeeman 

spectra with weak magnetic fields carefully, we can see that at 0.5 T, 1.5 T and 2.0 T, the ground 

state no phonon line is actually getting broader as the magnetic field goes up. The splitting is just 

not big enough to be separated even by our high resolution spectrometer. Therefore, the splitting 

does not seem to be linear at the small magnetic field and the magnetic g-factors calculated from 

the fan diagrams using the above linear equation may not mean anything. The DII center is 

probably too complicated to use the simple equation to calculate the g-factor. 
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Figure C.9 Fan diagram obtained from the Magneto-Optics spectra for the DII center from the aluminum 

implanted 3C/3C SiC with H
r

 parallel to the sample surface. 

 118 



 

Figure C.10 Fan diagram obtained from the Magneto-Optics spectra for the DII center from the aluminum 

implanted 3C/3C SiC with the H
r

 perpendicular to the sample surface. 
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We also measured the dependence of the Zeeman spectra on the angle θ between the 

magnetic field H and the direction normal to the crystal surface. Figure C.11 shows the diagram 

of the angle dependence we used in the setup. θ is the angle between the direction in which the 

luminescence was detected and the sample surface normal direction. Figure C.12 shows the 

angle dependence of the three peaks at H = 6 T. Each of them stays at the same energy position 

from 0 T to 6 T. This is what we should expect because 3C SiC has an isotropic crystal structure.  

 

Figure C.11 Schematic diagram of the setup for the angle dependence. 
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Figure C.12 Angle dependence of the H = 6 T Zeeman spectrum on the angle between the magnetic field 

and the direction normal to the crystal surface. 

S. G. Sridhara et al. has done the Zeeman spectroscopic measurements on the DII defect 

center in 6H SiC [55]. They didn’t observe any splitting on all the four no phonon lines from 

DII
6H at a magnetic field up to 5 T.  A. Henry et al. reported that no splitting was seen in the case 

of the DII spectrum in 4H SiC [56]. Our work represents the first systematic study of the DII 

defect center in 3C SiC. As far as we know, the splitting of the DII defect line is seen for the first 

time in any of the SiC polytypes. 

Since the DI center and the DII center are two persistent intrinsic defect centers in SiC 

after ion implantation and high temperature annealing, it is instructive to compare the Zeeman 

spectra of these two. W. J. Choyke et al. did the first work on the DI center in 6H SiC in 1979 
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[57]. T. Egilsson et al. studied the DI center in 3C and 4H SiC in 1999 [29]. In those two papers, 

the authors didn’t see any splitting of the high temperature (excited state) lines. They did observe 

the splitting of the low temperature Li lines. For the case of DI in 3C SiC, the authors did not 

observe any angular dependence and concluded that it is isotropic [29]. All these observations 

are similar to our results for the DII in 3C SiC. Combining the results with our variable 

temperature experiments, we conclude that the DII defect is also an isoelectronic center, even 

though he atomic structures of the DI and DII defects are different from the theoretical models. In 

the fan diagram in Figure 3 in Ref. [57], it is shown that the splitting of L1
0 in 6H SiC is linear 

from 2 T up to 10 T. At the weak magnetic field end, the authors didn’t show any data point, 

which is probably because they didn’t observe any clear splitting. This is also similar to our 

experimental results from DII in 3C SiC. However, a lot of work has been down on the shallow 

donors and shallow acceptors in SiC and the Zeeman splitting is always linear for the shallow 

dopants. P. J. Dean et al. studied the magneto-optical properties of the three no phonon lines of 

nitrogen shallow donors in 6H SiC and the splitting is linear between 0 T and 3 T [58].  R. P. 

Devaty et al. studied the Zeeman spectra of the aluminum and gallium shallow acceptors in 6H 

SiC and observed linear splitting between 0 T and 6 T [59]. Therefore, we can speculate that the 

Zeeman splitting is linear for the shallow donors and acceptors. For the deep defect centers like 

DI and DII in SiC, it only shows linear splitting with a magnetic field stronger than 2 T and above. 
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APPENDIX D 

LOW TEMPERATURE PHOTOLUMINESCENCE STUDY OF PHOSPHORUS 

DOPING IN SILICON CARBIDE 

D.1 INTRODUCTION 

As has been introduced in the first chapter, SiC is believed to be suitable for electronic and 

optical use under high temperature, high frequency and high power conditions. In order to 

improve its performance in devices, good material quality and doping properties must be 

achieved. However, the doping incorporation in SiC is far more difficult than that in the silicon 

industry. Nitrogen is the most commonly used n-type dopant in SiC. People have extensively 

studied the mechanism of nitrogen incorporation in SiC during chemical vapor deposition (CVD) 

growth and proposed the site-competition theory to control the nitrogen incorporation [60-62]. 

Phosphorus is another possible dopant for n-type doping SiC material. But people haven’t made 

it clear how phosphorus is incorporated into SiC lattice. Larkin reported that phosphorus should 

mainly occupy the silicon sites because its atomic size is much bigger than the carbon atom. The 

CVD growth of 6H SiC showed that the incorporation of phosphorus is consistent with the site 

competition effect by varying the Si/C ratio and assuming that phosphorus atoms occupy the Si-

sites [62]. Sridhara et. al. reported LTPL spectra of phosphorus doped 6H-SiC and proposed that 
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phosphorus does substitute on the silicon site and does form neutral donor four particle bound 

exciton complexes [63]. However, recent research shows that there is a finite chance that 

phosphorus also substitutes for carbon sites. Electron paramagnetic resonance (EPR) studies 

have been performed on 6H SiC after high energy phosphorus ion implantation and post-

implantation high temperature annealing [64]. EPR signals of phosphorus shallow donors at both 

carbon and silicon sites were observed, with the former with much stronger intensity. Wang et. al. 

studied the phosphorus incorporation behaviors in CVD growth using techniques of mercury 

probe C-V measurements and secondary ion mass spectrometry (SIMS) [65]. They proposed that 

phosphorus could incorporate into both carbon and silicon sites depending on the C/Si ratio 

during growth. In certain range of C/Si ratio, phosphorus might occupy the carbon sites, too. 

Meanwhile, according to a recent theoretical finding the second most abundant phosphorus-

related defect is phosphorus substituting on the carbon site (PC) in CVD SiC samples [66, 67]. In 

this chapter I will give low temperature photoluminescence results on 6H and 4H SiC, which 

indicate that, contrary to nitrogen which substitutes only on the carbon sublattice, phosphorus 

can substitute on both the silicon and carbon sites. I will also present some LTPL results from 

15R and 3C SiC doped with phosphorus. 

D.2 EXPERIMENT AND RESULTS 

D.2.1 Growth of Phosphorus Doped SiC 

The epilayers used for these experiments have been grown over a number of years by Dr. D. J. 

Larkin at the NASA Glenn Research Center and by Prof. I.B. Bhat at the Rensselaer Polytechnic 
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Institute (RPI). The NASA samples were phosphorus doped epitaxial layers grown on 4H, 6H, 

15R and 3C boule substrates in an atmospheric pressure, cold-wall chemical vapor deposition 

(CVD) system and doped with phosphorus by the addition of phosphine into the reactor during 

growth. The phosphorus doping was controlled via the site competition effect. The RPI 4H and 

6H SiC samples were also grown in a horizontal water-cooled CVD reactor. The SiC substrates 

were placed on TaC-coated high purity graphite susceptors. Pd-diffused hydrogen was used for 

carrier gas. SiH4 (2% in H2), C3H8 (2% in H2) and PH3 (0.1% in H2) were used as the sources of 

Si, C and P respectively. Further growth details can be found in Ref. [65]. Mercury probe 

capacitance-voltage (C-V) measurements show the doping concentration ND-NA varies from 

7.5x1015 cm-3 to 2.7x1016 cm-3. Phosphorus concentration profiles were also measured by SIMS 

and they are in the order of 1016 cm-3. Figure D.1 shows the SIMS depth profile of the nitrogen 

and phosphorus concentrations in one of the 6H SiC samples provided by the RPI group. It 

shows that the phosphorus doping concentration is on the order of 1016 cm-3 and the nitrogen 

doping concentration is on the order of 1015 cm-3. The epilayer is primarily doped by phosphorus. 
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Figure D.1 SIMS depth profile of a phosphorus-doped 6H-SiC epilayer. It shows that phosphorus doping 

concentration is on the order of 1016 cm-3 while the nitrogen doping concentration is in the order of 1015 

cm-3. 

D.2.2 Low Temperature Photoluminescence Experiment 

For the phosphorus doping study, the low temperature photoluminescence measurements were 

carried out from 1.5 K to 2 K. For the study of the phosphorus doped samples, we always use the 

244 nm FreD laser because we want to avoid the possible background signal coming from the 

nitrogen doped substrate. We tune the laser power as high as 60 mW so that we can see the 

relatively low intensity peaks which are of great interest in this project. 
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D.2.3 Phosphorus Doping in 6H SiC 

Figure D.2 shows the full scale low temperature spectrum of a 6H SiC epitaxial film doped with 

phosphorus. It is dominated by the no-phonon and phonon replica lines from phosphorus on Si 

sites and looks similar to what has been published before in Ref. [63]. The letter h stands for the 

hexagonal site in the 6H SiC lattice. The letters k1 and k2 stand for the two quasi-cubic sites in 

the 6H SiC lattice. The superscript P stands for Phosphorus substituting as a donor in the 6H SiC 

lattice. We can also see two of the three nitrogen related no-phonon lines, R0 and S0. They are 

very small and buried underneath the phosphorus related spectrum, in agreement with the 

statement we made from the SIMS concentration depth profile that the sample is primarily doped 

with phosphorus. 
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Figure D.2 LTPL spectra of 6H/6H SiC doped with phosphorus at 2K measured using the 244 nm line, at 

60 mW, from a FreD laser. 
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Figure D.3 No-phonon lines of 6H/6H SiC doped with phosphorus at 2K measured using the 244 nm 

line, at 60 mW, from a FreD laser. 

In order to see more details we are going to check the spectrum in different wavelength 

ranges and blow them up to look at amplified scales. In Figure D.3, we can clearly see the lines 

associated with phosphorus substituting on the C sites. P0
N, R0

N and S0
N are the no-phonon lines 

of the nitrogen donor bound exciton four particle complexes. The superscript N is used to make 

nitrogen-related lines distinguishable from the phosphorus-related lines. The spectrum, as 

expected from theory, is dominated by phosphorus substituting on the Si sites. A subscript Si is 

used to indicate the Si sublattice upon which the phosphorus donor is located. The important 
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thing is that there are some new lines that were not understood very well but we have known 

about them for some time. These new lines hC
P, k1C

Pand k2C
P are located at 4116 Å (3.0114 eV), 

4140 Å (2.9940 eV) and 4141 Å (2.9932 eV). We assign them to the phosphorus donor 

substituting on the C sublattice. The exciton binding energies to the three new no-phonon lines 

are 12.1 meV, 29.4 meV and 29.9 meV. The similarity of the positions of the phosphorus donor 

lines on carbon sites to those of nitrogen on carbon sites suggests that the 4116 Å line be 

associated with the hexagonal site (hC
P) and the 4140 Å and 4141 Å lines be associated with the 

two cubic sites (k1C
P, k2C

P). An arrow points to the peak we have designated as k1Si
P. The nearby 

higher energy peak is not seen in some samples and is not as consistent with the phonon replica 

values of k2Si
P and hSi

P as is the assigned peak k1Si
P. Un-identified peaks between hSi

P and 

(hSi
P)VO are seen in samples where hC

P,  k1C
Pand k2C

P are not seen and hence are likely to be 

associated with phosphorus on Si sites. 

In order to verify these assignments we have made a careful study of the momentum 

conserving phonon replicas associated with the no-phonon line hC
P and those of k1Si

P, k2Si
P and 

hSi
P. In the case of the phosphorus on the carbon sites we expect to see phonon replicas primarily 

from hC
P in analogy with the situation for nitrogen donors, where P0

N is the prime source of the 

phonon replicas at low temperature. 

Phonon replicas of the phosphorus no-phonon lines of the carbon and silicon lattice sites 

are given in Figure D.4. Note that some of them are indicated here with arrows and are barely 

seen, but once we expand the intensity scale, they turn out to be well resolved peaks. Agreement 

of the phonon replica energies of the carbon sites with those on the Si sites is on the order of 0.5 

meV, giving us a measure of confidence in our assignments. 

 

 130 



 

Figure D.4 Phonon replica lines of 6H/6H SiC doped with phosphorus measured at 2K using the 244 nm 

line, at 60 mW, from a FreD laser. Symbols labeling the lines are marked with superscripts specifying the 

momentum conserving phonon energies in meV. Subscripts indicate phonon replicas associated with 

phosphorus substituting on either the Si sublattice or the C sublattice. The phonon replicas attributed to 

phosphorus on the carbon sublattice is shown in bold type. 
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In a recently paper published by A. Henry et al. [68], the authors presented their low 

temperature photoluminescence results in phosphorus doped SiC. They observed the similar fine 

structures as in Figure D.3 in the region of the no phonon lines. We should notice that they 

plotted the PL intensity in log scale, which might make it look a little bit different from our 

spectra in terms of the intensity ratios. The authors assigned some of the new lines as the excited 

states and did not provide any explanation for the other new lines. We don’t agree with this 

assignment and we believe it actually provided more evidence for our assignment of the 

phosphorus substituting on C sites.  
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D.2.4 Phosphorus Doping in 4H SiC 

Figure D.5 (a), (b) and (c) are the LTPL spectra of a 4H SiC epitaxial film doped with 

phosphorus. Figure D.5 (a) shows the no-phonon lines due to the phosphorus donor bound 

exciton four particle complexes as well as the nitrogen donor. The P0
N line of nitrogen is hidden 

under the phosphorus hSi
0 line. This is understandable since normally P0

N is observed to have 

1/10th the amplitude of Q0
N. Considering the intensity of Q0

N, we can expect P0
N to be relatively 

small. A careful study of the phonon replicas due to the phosphorus on Si and C sites has been 

carried out and is shown on Figure D.5 (b) and (c). This supports the assignments of the hSi
0 and 

kSi
0 lines. Unfortunately, the phonon replicas attributable to hC

0 are too weak to be distinguished 

from those of hSi
0 and hence our assignment of hC

0 and kC
0 must be taken as possible but not 

proven. For comparison, we include a nitrogen doped 4H SiC spectrum in Figure D.5 (d) with a 

doping concentration of 1x1016 cm-3.  It is seen that the phonon replicas due to nitrogen in Figure 

D.5 (b) are negligible compared to those of phosphorus. This rules out the impact from nitrogen 

doping. 
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Figure D.5 (a), (b) and (c) LTPL spectra of 4H/4H SiC doped with phosphorus at 2K measured using the 

244 nm line, at 60 mW, from a FreD laser. Symbols labeling lines are marked with superscripts 

specifying the momentum conserving phonon energies in meV. Subscripts indicate phonon replicas 

associated with phosphorus substituting on either the Si sublattice or the C sublattice. (d) LTPL spectra of 

4H/4H SiC doped with nitrogen at 2K for comparison with (b) in the same wavelength region. 

D.2.5 Phosphorus Doping in 15R SiC 

15R SiC is a more complicated polytype than 4H and 6H SiC. It is very difficult to identify the 

phosphorus lines in 15R SiC. In Figure D.6 the top spectrum (a) is from a sample doped with 
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phosphorus. The bottom spectrum (b) is from a regular nitrogen doped sample. They look totally 

different. We are confident to say that the spectrum (a) is due to phosphorus doping. There are 

five inequivalent sites in 15R SiC lattice and five no phonon lines are expected. But so far in the 

literature people have found only four no phonon lines in the nitrogen doped 15R SiC spectrum 

[69]. The last one is missing. People are not very sure about the nitrogen doping mechanism in 

15R SiC. It makes it even more difficult to identify the phosphorus lines. We cannot identify the 

different substitution sites in this case.  
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Figure D.6 (a) LTPL spectra of 15R/15R SiC doped with phosphorus at 2K; (b) LTPL spectra of 

15R/15R SiC doped with nitrogen at 2K in the same wavelength region. 
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D.2.6 Phosphorus Doping in 3C SiC 

Our collaborator Dr. Larkin at the NASA Glen Research Center was able to put high quality 

phosphorus doped 3C-SiC epilayers on 3C-SiC substrates. We haven’t done any SIMS doping 

concentration profile on the 3C-SiC samples, but we can definitely see some new lines in the 

LTPL spectra, which are shown in Figure D.7. Figure D.7 (a) is the near band-edge part of the 

spectrum. Besides some well-known nitrogen lines, we can see some new sharp lines right below 

the nitrogen lines in wavelength. The line labelled as N0 at 5210.81 Å (2.3787 eV) is the no 

phonon line from recombination of excitons bound to the nitrogen donors. There is an extra line 

on the high energy shoulder of the N0 line, labelled as X0 at 5210.13 Å (2.3790 eV) and is only 

0.3 meV above the N0 line. We think it might come from recombination of excitons bound to the 

phosphorus donors. But it is not proven to be absolutely true because there is a controversy about 

these sharp lines. During our study of some other samples from two other different growth 

groups, we have also seen these features. However those samples were not intentionally doped 

with phosphorus and we don’t have any evidence that there could be any phosphorus 

contamination in the reactors. One grower is IKZ in Germany. They tried to grow an epitaxial 

layer on a porous 6H SiC substrate and got yellow 3C thin films instead. The other grower is 

HOYA in Japan. That was 3C epitaxial layer on regular 3C substrate. Therefore we cannot mark 

these lines Phosphorus related. Instead, we mark them X in the figures.  

In order to see the detail of the new lines, we can zoom in and check the wavelength 

region around the new lines, as shown in Figure D.8. The energy shift of these two lines matches 

the typical nitrogen momentum conserving phonon replica energy of 3C SiC. Unfortunately we 

cannot see the new lines coming out on the next three nitrogen phonon replicas in Figure D.7 (b). 

 137 



However if we look carefully we can see that there are shoulders on the left side of those 

nitrogen phonon replica lines, especially on the left side of the N-LO(X) peak. The phonon 

replica lines from the possible phosphorus bound exciton may be just buried under the nitrogen 

phonon replica lines. 

In a paper published by A. Henry et al. [68], the authors studied the phosphorus doping in 

SiC and one of the samples was a 3C SiC epitaxial film on 6H SiC substrate. They observed very 

sharp LTPL no phonon line and phonon replica lines which are shifted to the low energy side by 

1 meV from the well-studied nitrogen lines. The authors did not give the doping concentration of 

the sample they measured.  

From all the work done on the other SiC polytypes, we have found that phosphorus is a 

shallower donor than nitrogen. The no phonon line(s) from the phosphorus dopant should appear 

at the higher energy side of the nitrogen no phonon line(s), which is exactly what we observed in 

our experiments, as shown in Figure D.7. Therefore, our understanding of the spectrum 

published in the Ref. [68] is those PL lines are probably still from nitrogen bound excitons, not 

from the phosphorus bound excitons. The fact that it is shifted to the lower energy side instead of 

the higher energy side makes us believe that that is from the stress between the 3C SiC epitaxial 

film and the 6H SiC substrate. S. Bai et al. has done a systematic study on the LTPL dependence 

on the stress between the 3C SiC epitaxial film and the Si (001) substrate and found out that the 

stress shift is towards the lower energy [70]. Similar work on the stress shift was done earlier by 

W. J. Choyke et al. and showed the similar shift towards the low energy direction [71].  
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Figure D.7 LTPL spectra of 3C/3C SiC doped with phosphorus and nitrogen at 2K. (a) N0 and N0 – 

TA(X) are the no-phonon line and one of the phonon replicas line from the nitrogen bound exciton. X0 

and X0 – TA(X) are the no-phonon line and one of the phonon replicas line possibly from the phosphorus 

bound exciton. (b) The other three of the four major phonon replicas from the nitrogen bound exciton are 

clearly seen here. But those possibly from phosphorus turn out to be shoulders on the left side of the 

nitrogen phonon replica lines. 
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Figure D.8 Expanded view of two of the putative phosphorus lines in Figure 2.8. (a) Region around the 

X0 line. (b) Region around the line X0 – TA(X). 
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APPENDIX E 

ULTRA-PRECISION MACHINING OF STAINLESS STEEL AND NICKEL WITH 

SINGLE CRYSTAL 4H AND 6H BOULE SILICON CARBIDE 

E.1 INTRODUCTION 

Ultra-precision machining has advanced significantly over the last several decades with 

improvements in design, computer control, and precision measurements, but the cutting tool of 

choice has remained unchanged; it is single-crystal natural diamond. Despite the exceptional 

mechanical properties of diamond, its chemical properties have inhibited the extension of ultra-

precision machining to iron-containing (ferrous) or nickel alloys.   

The workhorse of ultra-precision machining is the ultra-precision lathe (UPL). When 

used with a single-crystal diamond cutting tool, the machining process is known as single point 

diamond turning (SPDT). We use a Moore Nanotech 250 UPL, which uses hydrostatic oil-

bearing slides and an air-bearing spindle to eliminate mechanical contact between its moving 

parts (see Figure E.1). The spindle motor is brushless and the slides are coupled magnetically 

with linear motors to avoid mechanical drive mechanisms which could introduce jitter. This UPL 

can be programmed with a resolution of 1 nm, can routinely cut surfaces to a local surface 

roughness of 1 to 2 nm in select materials, and can cut a large area to within tens of nm of the 
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programmed dimensions. This remarkable precision is a result of constant measurement of the 

slide positions by glass scales (resolution 34 pm) and feedback to the linear motors. Single 

crystal diamonds are used as cutting tools because of their hardness, strength, and high thermal 

conductivity. These properties contribute to the ability of a diamond to hold a precision, polished 

cutting edge and to carry away the heat generated during the cutting process. 

 

 

Figure E.1 (left) Moore Nanotech 250 UPL, an ultra-precision, computer-controlled lathe. (right) The 

SiC cutting tool in the ultra-precision lathe with a stainless steel sample mounted on the spindle and a 

nozzle for spraying a coolant mist. 

 

Materials that are commonly cut with SPDT include non-ferrous metals (e.g. aluminum, 

copper, brass, silver), polymers (e.g. polymethylmethacrylate, polystyrene), and even some hard 

crystals (e.g. zinc sulfide, zinc selenide, germanium, silicon). For low surface roughness, the 

cutting must occur in the ductile regime. This may require very careful choices of cutting 

parameters, but it has been shown that it is even possible to cut SiC with SPDT [72]. Some 

materials cause unacceptably rapid diamond tool wear due to their hardness (mechanical wear) 

or due to chemical reactions involving the diamond tip and the surface being cut at the tip of the 
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tool (chemical wear). Wear on the cutting edge is exacerbated by the possibility of large forces 

and high temperatures at the cutting edge.  

Ferrous alloys include some of the highest-performance metals available, but they are 

particularly problematic for SPDT. Chemical reactions involving the diamond tool and iron 

rapidly wear the cutting edge, making SPDT of steels and other ferrous alloys impractical. Many 

potential solutions to this problem have been explored, including cooling with liquid nitrogen, 

coating the diamond with wear-resistant layers, ultrasonic vibration of the tool tip, or cutting in 

an inert atmosphere. While some of these techniques help to decrease tool wear, none has yet 

proven practical [73]. Nickel alloys have similar problems. While electroless nickel can be 

successfully cut with SPDT, standard nickel alloys lead to unacceptably fast diamond tool wear. 

E.2 EXPERIMENTS 

Motivated by the similarities of single-crystal SiC to diamond in hardness and thermal 

conductivity, but noting the increased chemical stability compared to diamond, we sharpened 

ultra-pure single-crystal boule SiC into cutting tools for ultra-precision machining. High quality, 

low doped, boule grown SiC is expected to have an equivalent thermal conductivity to that of the 

type of diamonds currently used for ultra-precision machining. In addition, low defect single 

crystal SiC should be superior to any of the varieties of polycrystalline SiC materials currently 

available. 

We fabricated the first SiC tool (shown in Figure E.2) from a 2.5 x 2.9 mm2 strip of 

single crystal 6H SiC cut from a basal plane slice of n-type 6H SiC doped to 5 x 1015 cm-3. The 

front of the 6H SiC tool was cut to about a 10º angle from the vertical axis. Side bevels were 
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fabricated with a diamond loaded abrasive Dremel Tool prior to polishing. The two surfaces that 

intersect to make up the cutting edge were polished with 30, 15, 6, 3, 1 and 1/2 µm diamond 

paste. The back end of the single crystal 6H SiC tool was held in a specially fabricated steel 

holder. A second tool was made in a similar fashion out of single crystal 4H SiC, but instead of 

sharp corners, it has a large (20 mm radius of curvature) cutting edge for a wider and potentially 

smoother cut (also shown in Figure E.2). A cutting tool with this shape is known as a radius tool. 

 

 

Figure E.2 (left) A sharp-cornered SiC cutting tool utilizing a single crystal of 6H SiC polished to a sharp 

cutting edge, mounted in a steel holder and shank. (right) A similar tool using single crystal 4H SiC 

polished to a sharp edge with a large circular radius, also mechanically mounted in a steel holder. 

 

As a first test, we cut a flat surface on the end of a 12.7 mm diameter, 316 stainless steel 

rod in our UPL with our sharp-cornered 6H SiC cutting tool. The spindle speed was 2000 rpm, 

with a feed rate of 1 μm per revolution and a 4 μm depth of cut. The SiC crystal and stainless 

steel surface were cooled with a sprayed mist of odorless mineral spirits (OMS) and compressed 

air, which also serves to clear off the chips of material as it is cut. We then changed to our large 

radius 4H SiC cutting tool, and cut several more surfaces on 316 stainless steel rods. The cuts 

were generally lighter to keep the cutting forces low despite the much larger cutting surface of 
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the large radius tool. We started with a surface cut at a spindle speed of 2000 rpm, a feed rate of 

1 μm per revolution and a 1 μm depth of cut. We then cut additional surfaces while tripling the 

feed rate to 3 μm per revolution and maintaining a 1 μm depth of cut, or tripling the depth of cut 

to 3 μm and maintaining a feed rate of 1 μm per revolution. We then repeated the last cut, with a 

depth of cut of 3 μm and a feed rate of 1 μm per revolution on a nickel rod. 

E.3 RESULTS AND DISCUSSION 

From the first attempts to cut 316 stainless steel with the sharp-cornered 6H SiC tool, we found 

that the sharp single-crystal 6H SiC tool could cut a smooth, mirror like finish on a 316 stainless 

steel rod. Compared to the finish from cutting with a high-speed steel tool on a conventional 

lathe, the SiC tool on the UPL gave impressive results (see Figure E.3), with no indication of 

wear after several cuts across the surface. Furthermore, we saw no significant difference in the 

quality of finish on stainless steel compared to aluminum with the 6H SiC tool. We do not have a 

direct comparison to a diamond tool because the test would almost surely destroy the costly 

diamond tool. 

 145 



 

Figure E.3 (left) 316 stainless steel cylinder end cut with a high-speed steel tool on a conventional lathe. 

(center) 316 stainless steel cylinder end cut with the sharp-cornered single-crystal 6H SiC tool on an ultra-

precision lathe. The difference in reflectivity as a result of the difference in surface roughness is clearly 

visible. (right) Surface map of the sample shown in the center measured with a Zygo interferometer. 

 

The most common metric for quantifying surface roughness is the average surface 

roughness (Ra), defined to be the average distance between the measured surface and the mean 

plane. A quantitative analysis of the 6H SiC-cut 316 stainless steel surface with a Zygo 

interferometer shows why the surface is so reflective: the Ra is approximately 3 nm in the 

smoothest areas. A map of a small region of the surface is shown in Figure E.3. The grooves 

from the spiral cutting pattern, while very low in amplitude, are clearly visible as slightly curved 

lines.  

An analysis of the roughness of the surfaces cut with the large radius single-crystal 4H 

SiC tool showed similar, although slightly rougher, results. The surfaces cut at 2000 rpm with a 

feed rate of 1 μm per revolution and a depth of cut of 1 μm or 3 μm had Ra of 5 nm to 6 nm in 

the smoothest regions, while the surface cut with a feed rate of 3 μm per revolution and a depth 

of cut of 1 μm had Ra of 8 nm in the smoothest regions. The surface of the nickel rod, cut with a 

feed rate of 1 μm per revolution and a depth of cut of 3 μm also had Ra of 6 nm in the smoothest 
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regions. The maps of small regions of two of the surfaces cut with the large radius 4H SiC tool 

are shown in Figure E.4. 

 

 

Figure E.4 (left) Surface map of a portion of the end of a 316 stainless steel cylinder cut with the large 

radius single-crystal 4H SiC cutting tool. (right) Surface map of a portion of the end of a nickel cylinder 

cut with the large radius 4H SiC single-crystal cutting tool. 

 

The surfaces cut with the large radius tool show less defined grooves, as expected with a 

much rounder ended tool. However, there is notable increased roughness, likely due to vibrations 

of the tool or sample induced by the larger cutting forces produced while cutting a wider band on 

each pass with the large radius tool. It may be possible to reduce these vibrations with careful 

choice of cutting speeds and feed rates, as is commonly needed in conventional machining of 

stainless steel. Alternatively, a smaller radius tool should decrease the cutting forces, although a 

smaller radius tool generally requires a slower feed rate to avoid excessive grooving of the 

surface. 

 147 



E.4 CONCLUSION 

We have shown that high purity 4H and 6H single-crystal boule SiC ground and polished to a 

sharp edge has the potential to be an alternative cutting tool for ultra-precision machining, 

particularly for materials such as stainless steel and nickel, where diamond wears excessively 

rapidly. We showed that surfaces with average roughness down to 3 nm can be achieved on 316 

stainless steel with a single-crystal 6H SiC cutting tool in an ultra-precision lathe. Furthermore, 

the potential advantages of single-crystal SiC cutting tools over diamond extend beyond ferrous 

and nickel alloys. If the cutting performance on other materials is even comparable to natural 

diamond, the cost, available crystal size, and purity of synthetic single-crystal SiC could make it 

the preferred cutting tool material of the future for ultra-precision machining of a wide range of 

materials. 
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