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A NONLINEAR AND INELASTIC CONSTITUTIVE EQUATION FOR

HUMAN CEREBRAL ARTERIAL AND ANEURYSM WALLS

Rachmadian Wulandana, Ph.D.

University of Pittsburgh, 2003

The underlying motivation of this work is the desire to understand better the formation

and development of cerebral saccular aneurysm, lesions frequently found at the apex of

bifurcations in and near the Circle of Willis. Degradation of elastin, which is one important

passive mechanical component of arterial walls, has been hypothesized to play a role in

aneurysm formation. This hypothesis has been motivated by the aneurysm wall histology

that always displays fragmented elastin.

Currently there is no single appropriate constitutive equation for both cerebral arterial

and aneurysm walls. Available constitutive equations are directed at modeling the nonlinear

behavior of cerebral arterial tissue that is hypothesized to arise from recruitment of collagen

(another important passive biomechanical component of arterial wall) but not the inelastic

behavior that is hypothesized to be due to elastin fragmentation.

In this work, we propose a constitutive equation that is capable of handling both the non-

linearity and inelasticity. This constitutive equation, unlike the classical single mechanism

elastic constitutive relation, employs two mechanisms. The first and second mechanisms

represent the mechanical response of elastin and collagen, respectively. The collagen recruit-

ment is modelled by introducing the second mechanism at a specified deformed state, while

the elastin breakage is modelled by deactivating the first mechanism at a later deformed

state.

Moreover, we discuss applications of the new constitutive equation in some relevant

problems. For example, we discuss the inflation of a cylindrical membrane and compare
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analytical results to existing experimental data that demonstrates both the nonlinear and

inelastic behavior of cerebral arterial walls and use the data to obtain material constants for

the new constitutive equation.

The presentation of this work is intended to introduce a new approach that can be used

to incorporate various biological mechanisms that have been hypothesized to be involved in

aneurysm formation and development. Indeed the current work involves only two important

mechanisms, but theoretically the current model can be generalized easily to include more

mechanisms if necessary to represent gradual recruitment and breakage.
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1.0 INTRODUCTION

1.1 MOTIVATION

This work is motivated by the mechanics of the initiation, development and rupture of human

intracranial aneurysms or saccular aneurysms. In this work we refer to saccular aneurysm as

a saccular or roughly spherical dilatation of cerebral arterial wall that measures two mm or

more in diameter and shows a clear neck region that differentiates it from fusiform aneurysms

that dilate rather laterally leading to an appearance of an inflated cylinder. This work

will focus more on saccular aneurysms rather than cerebral fusiform aneurysms. Saccular

aneurysms are found at the bifurcation or curved segments of arteries in or near the Circle

of Willis [2, 3, 4, 5]. Figure 1 shows how saccular aneurysms that grow at a bifurcation and

a curved segment of cerebral arteries differ from cerebral fusiform aneurysms.

Between 70 to 90 % of aneurysms, are less than 10 mm in diameter [6, 7, 8, 9, 10, 5].

Giant aneurysms, of size greater than 25 mm, comprise about five % of all intracranial

aneurysms [7, 11, 9]. A larger percentage (15 to 24 %) however is reported in more recent

studies [4, 12]. A saccular aneurysm may be stable in size or grow at an unpredictable rate

[13]. When aneurysms grow, the growth rate can exceed almost two mm/year [14]. It is

hypothesized that the growth rate of aneurysms combined with the arterial geometry near

the growing point determine the critical size of rupture [5, 14]. Rupture of aneurysms is the

ultimate danger of this disease. It is hypothesized that aneurysms at the bifurcations are

more likely to rupture compared to those that grow at the curved and branching points [5]. It

is also suspected that aneurysms in patients with deficiency of type III collagen, a structural

protein that is hypothesized to be responsible for the mechanical integrity of arterial walls,

are more prone to rupture [15]. When aneurysms rupture, the blood typically floods into the
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Figure 1: Typical appearances of (A) A saccular aneurysm at a curved section (B) A saccular

aneurysm at a bifurcating artery and (C) A fusiform aneurysm.

subarachnoid space and causes a subarachnoid hemorrhage (SAH). Occasionally, the blood

floods the brain parenchyma and causes an intracerebral hemorrhage (ICH).

Saccular aneurysms are common among the U.S. population. The incidence of saccular

aneurysms have been investigated through both angiography and autopsy studies. However,

many angiography studies have been performed on groups of patients who suffer diseases

suspected to have association with the etiology of saccular aneurysms and therefore are not

representative of the general population. The examples of such diseases include autoso-

mal dominant polycystic kidney disease [16, 17, 18], spontaneous cervical artery dissection

(SCAD) [19] , pituitary adenoma [20, 21], angina pectoris [22], carotid stenosis [23], and

ischaemic cerebrovascular [24]. Other angiography studies have also been biased by data of

relatives of patients who have experienced SAH [25, 26] or have experienced ICH [27] . One

angiography study for the general population in the U.S. revealed an incidence of anterior cir-

culation aneurysms of 1 % [28]. Autopsy studies report the incidence of saccular aneurysms

in the range of 0.8 to 8.1 % among the population of the United States [29, 7, 30, 31, 32, 10].

Of these studies, the highest reported incidence of ruptured aneurysms is 3 % [7]. The

International Study of Unruptured Intracranial Aneurysms Investigators reports that the

rate of rupture of aneurysms smaller than 10 mm for patients who never suffered a SAH is

approximately 0.05 % per year [33].
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Rupture of an aneurysm can be fatal or disabling. Studies of the North America pop-

ulation found that the incidence of aneurysmal SAH has been in a constant range of 10

to 12 per 100,000 person per year over the last four decades [34, 35, 36]. Over 50 % of pa-

tients die following SAH, including death due to rebleeding of previously ruptured aneurysms

[37, 36, 38]. Eleven percent of those died before getting medical attention or reaching the

hospital [39, 34, 37]. Approximately 36 to 40 % of patients survived with either minor or no

neurologic deficit and could return to normal lives [39, 37, 40, 36]. The remaining 14 to 20

% of the patients became moderately or severely disabled [37, 36, 39].

Aneurysmal SAH has a significant financial impact on the U.S. It was estimated that

513.1 million dollars annually were spent during the period between 1979 to 1989 to cover

the cost of hospital and surgery for patients with aneurysmal SAH. In the same period, the

loss of income based on annual mortality was approximately 827.1 million dollars [41]. This

significant loss of income may be due to the high incidence (38 %) of aneurysmal SAH in

the population with productive ages between 45 to 64 years old [41].

1.2 HISTOLOGY OF CEREBRAL ARTERIAL WALLS AND ANEURYSMS

Saccular aneurysms are characterized by a typical wall morphology that more closely resem-

bles a modified cerebral arterial wall rather than a newly developed entity [42]. The following

brief description of the histology of the wall of healthy cerebral arterial segments, walls of

the cerebral arterial bifurcations and walls of the cerebral saccular aneurysms underlines the

structural changes. Figure 2 illustrates a typical normal/healthy cross sectional area of an

artery and the layers that make up the wall. The structure of healthy cerebral arterial walls

and those of extracranial arteries with similar diameter are somewhat different. It has been

hypothesized that these differences predispose cerebral arteries to the formation of saccular

aneurysms [43]. The internal elastic lamina (IEL), which lies between the tunica intima and

tunica media, of cerebral arteries are more prominent than the IEL of extracranial arteries

[44, 45, 46]. The external elastic lamina, which presents between the tunica media and tu-

nica adventitia of extracranial arterial walls, is absent in cerebral arterial walls [47]. The

thickness of the media and adventitia of cerebral arteries are typically less than those of
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Figure 2: Typical cross section area of an artery. Cerebral arteries do not have external

elastic lamina.

extracranial arteries with similar diameter [45, 48]. The cerebral arterial wall usually is thin

and more transparent than walls of extracerebral arteries of similar caliber[48].

This work focuses on elastin and collagen, the two important passive components of

arterial wall [49]. They are contained in different proportions in the layers in the arterial wall.

Elastin in cerebral arterial walls is concentrated in the IEL and also can be found in small

amounts in the media and adventitia [50]. The amount of elastin in the cerebral arterial media

is less than that in extracranial arterial media [48]. The amount of reticular fibers, which are

composed of type III collagen, are less in the cerebral arterial media of aneurysms patients

compared to normal subjects [51]. Collagen fibers are mainly concentrated in the adventitia

of cerebral arteries [48]. There is no difference in appearance and content of elastin fibers in

the IEL of cerebral arteries of both aneurysms patients and normal subjects [51]. The intima

of the cerebral arterial wall consists of an endothelial layer and a thin collagenous layer [44].

The morphology of cerebral arterial bifurcations is somewhat different from nonbifurcating

arteries. Figure 3 depicts a typical cerebral arterial bifurcation with a saccular aneurysm.

Arterial bifurcations display two morphological features: intimal pads and medial gaps or

medial raphes, that distinguish them from nonbifurcating arteries. Intimal pad refers to a

thickened region of the tunica intima [52, 53, 44, 47, 54, 55], while medial gap refers to a
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Figure 3: Typical arterial bifurcation region with a saccular aneurysm at the apex.

thinning or a disappearance of the media [55]. Researchers have hypothesized that either

intimal pad or medial gap is a factor in aneurysm formation. All around the bifurcation

area the intima thickens. However, the intimal pad at the apical region is thinner than

in other regions [53, 44]. In infants, the intimal thickening consists of smooth muscle and

elastic tissue and it appears stratified due to a layer of newly formed elastin beneath the

endothelium lining and layer containing degenerated elastin [52]. The hypothesis that there

is a relationship between the intimal pad and aneurysms formation is due to the frequent

occurrence of aneurysms near to the intimal pad site [56, 42]. At the apical region, the medial

gap, in the form of either media thinning or total disappearance, causes the adventitia

and intima layers to coalesce [55, 57, 45, 54, 44, 48]. Within the gap, collagen fibers are

observed to run from one arterial branch to another branch and the elastin ends abruptly

[48]. Forbes, who observed the medial gap for the first time, regarded the gap as a local

vascular weakening that plays an important role in aneurysms formation [55]. Stehbens

expressed strong disagreement arguing that, for instance, the occurrence of the medial gap

is more frequent than the occurrence of saccular aneurysms (other arguments can be found

in Stehbens [58]). Figure 4 represent a schematic of layers that constitute the wall of a

simple aneurysms. It is hypothesized that such a well developed simple aneurysm is a
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Figure 4: A sketch of a saccular aneurysm cross section.

product of progression from a small outpounching, sometimes referred as ‘bleb’ [59] or ‘minute

aneurysm’ [60]. Figure 29 depicts the schema of the hypothesized progression. Furthermore,

it is commonly believed that during their formation aneurysms draw in the adjacent arterial

wall from both branches and parent arteries [60, 46]. The tissue of the saccular aneurysmal

wall however is structurally different from both the cerebral arterial wall and the bifurcation

region tissue from which it develops. The difference however can be viewed as a modification

of the arterial wall and not necessarily as an emergence of a totally different/new tissue

[61, 62]. The aneurysms may originate eccentrically to the apex of the bifurcation or in the

axis of the parent vessel [46]. At the orifice of the sack, the media terminates or at most

slightly extends into the aneurysm neck region while the elastic tissue, presumably of the

IEL, may be fragmented [63] or slightly extended [45, 60, 64, 65]. Away from the orifice,

the media layer is completely absent from aneurysmal wall. Remnants of elastic tissue can

be found at the inner wall of aneurysms [53, 66, 67, 55, 47, 68]. The elastic fragments can

be found also as early as in the ‘bleb’ but in lesser degree [60]. According to Suzuki [69],

the aneurysm wall becomes collagenous when the aneurysms size is larger than four mm.

Generally, type III collagen can be found in the arterial media and adventitia while type IV

is found in the intima of arteries [70]. However, the aneurysm wall contains collagen type

IV instead of type III [71].
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The intima of parent arteries however doesn’t end at the aneurysmal orifice. In fact, it

also covers the inner aneurysmal wall [2]. The endothelial cells have been reported to be

missing at the orifice [64] but Kataoka et al. reported that the walls of unruptured aneurysm

are fully covered with these cells [71]. Suzuki [69] reported the appearance of endothelial

cells on the wall of small (less than three mm in diameter) aneurysms. The adventitia is

detected at the outer wall of aneurysms and appears stretched [2]. The composition of

the aneurysmal wall may change during rupture. Kataoka et al. reported that the wall of

ruptured aneurysms, unlike those of unruptured aneurysms, show evidence of a disrupted

endothelial cells layer [71]. Rupture of aneurysms can occur either at the fundus, side or

base of aneurysms. The greatest occurrence of the rupture, 64 to 84 %, is at the fundus

[45, 72].

1.3 HYPOTHESIS REGARDING ANEURYSM FORMATION

The cause of the initiation, development and rupture of cerebral aneurysms is still unresolved.

Several theories on the initiation and development have been proposed (some extensive

reviews can be found in Connoly and Solomon [13] and Krex et al. [42]). Most or even all

of the theories on the initiation of saccular aneurysms underline the vascular weakening of

the arterial wall as a prelude to aneurysm formation. The degenerative theory, for example,

suggests that the weakening of the wall, mostly manifested as elastin and media degradation,

is due to hemodynamics forces [73]. Another theory is the congenital theory that is based on

statistical findings of the coincidence of cerebral aneurysms and some inheritable connective

disorders that may promote cerebral aneurysms (see the review in Schievink [74]). Examples

of the associated diseases include Ehlers-Danlos Syndrome Type IV (EDS Type IV) and

α1-Antitrypsin Deficiency. In patients with EDS type IV, the arterial wall integrity may

be altered due to deficiency of collagen type III. On the other hand, in patients with α1-

Antitrypsin Deficiency, the elastin is defective causing the loss of integrity of the arterial

wall.
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Figure 5: Representative nonlinear stress versus strain curve of cerebral and extracerebral

arterial tissues.

1.4 THE NONLINEAR AND INELASTIC BEHAVIOR OF ARTERIAL

WALLS

In order to test hypothesis on aneurysm etiology, mathematical modeling is often utilized

instead of performing costly experiments to artificially produce in vivo aneurysms in animals

(examples can be found by Hashimoto et al. [75] and Miskolczi et al. [76]). Mathematical

modeling of the initiation, development and rupture of cerebral aneurysms requires a material

description of the human cerebral arterial walls and saccular walls (A constitutive equation

of blood and study of its flow in cerebral circulation are required if hemodynamics factors are

considered). This work will focus on two important mechanical characteristics displayed by

human arterial walls: the nonlinearity exhibited by both cerebral and extracerebral arterial

walls and the inelasticity, exhibited by cerebral arterial walls. The meaning of the two

features will be clear in the following paragraphs.

In the stress versus strain loading curves resulting from, for example, a uniaxial test,

the nonlinearity of arterial walls is typically characterized by a toe region at low strain and

an exponential region at high strain. A typical representative figure of the nonlinearity is

depicted in Figure 5. Busby and Burton [49] hypothesized the nonlinearity is due to elastin

and collagen fibers, the two important passive mechanical components of arterial wall. It is
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Figure 6: Representative stress versus strain curves before and after the shifting.

hypothesized that the initial toe region of the stress versus strain curves must be due to elastin

load bearing, while the exponential region is produced by collagen fibers that are recruited

gradually as the deformation progresses [49]. A similar hypothesis was also presented by

Roach and Burton [77]. The collagen fibers however contribute more load bearing at large

strain than the elastin does [77]. It was also observed that arterial tissues with artificially

depleted elastin (presumably leaving the collagen fibers in the load bearing system) are much

stiffer than tissue with depleted collagen fibers [77]. The phenomenon of collagen recruitment

was shown by Samila et al. who morphologically observed the gradual unfolding of crimped

collagen fibers in human carotid artery strips that were stretched uniaxially [78].

In addition to the nonlinear behavior, it was also observed that cerebral arterial walls

exhibit inelastic behavior under sufficiently high loads. The most relevant mechanical testing

in which the inelastic behavior was revealed is that by Scott et al. [79] who investigated

the properties of cerebral arterial walls by means of inflation of cylindrical arterial segments.

In the experiments by Scott et al. [79] the typical repeatable nonlinear stress versus strain

curves immediately were recovered during repeated loading and unloading test indicating

the nonlinear yet elastic behavior. The inelastic behavior emerged as an abrupt change

of the stress versus strain curves after the cyclic loading went up to above a critical load

level. It was reported that the curves after the shifting lost the toe region and became

steeper. Moreover, it was clear that after unloading the original diameters of the segments
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were not recovered. Instead the segments possessed larger diameters. The newly shaped

curves however remain repeatable indicating that the material was in a new elastic regime.

Figure 6 depicts representative stress versus strain curves before and after the shifting.

The curves after the shifting are produced using the newly unloaded configuration as the

reference configuration. A more detailed description on the experiments by Scott et al. and

the observed inelastic behavior will be provided in Section 3.3. Scott et al. hypothesized

that rupture of the elastin, probably caused by an excessive mechanical loading, was the

source of the inelastic phenomenon. A morphology study to investigate the remnants of the

damaged elastin in the tissues after the irreversible change however were not performed in

this study [79]. A related hypothesis is that stated that elastin fragmentation may play a

role in aneurysm formation since elastin is commonly fragmented or absent in the wall of

aneurysms. It was known that elastin degradation can occur as a result of chemical treatment

as was done by Roach and Burton [77] on segments of human iliac arteries. Significantly

they found that the unloaded diameters of segments with depleted elastin are enlarged as

well.

Significantly, Holzapfel et al. [80] observed similar inelastic phenomena in the media

of extracranial arteries. In their experiments, they found repeated uniaxial loading and

unloading on a circumferential strip of arterial tunica media exhibited a jump or shift of the

stress versus strain curves similar to that reported by Roach et al. [79]. The shift occurred

after over stretching the strip beyond a critical strain level (unlike Scott et al. who considered

the shifting after a critical pressure level). After the shift, the strip also exhibited permanent

strain. The inelastic (and nonlinear) behavior of the media of extracerebral arteries certainly

can be modeled using the new constitutive equation that will be proposed in this work.

1.5 CLASSICAL VERSUS MULTI-MECHANISM CONSTITUTIVE

EQUATIONS

The nonlinear and inelastic characteristics described above must be mathematically formu-

lated in the material description of the arterial and aneurysms walls. Early attempts to

describe the nonlinearity include some sort of linearization of the stress versus strain rela-
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Figure 7: Frequently used models of undeformed shapes of well developed aneurysms: sphere

(from Canham and Ferguson [91]) and truncated sphere (from Kyriacou and Humphrey [92]).

tions that produce stiffness parameters; such as elastance [77], incremental elastic modulus

[81, 82, 83, 84], vascular compliance [85], and wall stiffness (β) [81, 82, 86]. Stiffness pa-

rameters are often chosen for convenience and they provide quantitative information about

material elasticity for limited clinical applications [82, 85]. The nonlinearity of the arterial

wall however cannot be adequately described using such parameters. Instead, nonlinear con-

stitutive equations derived from strain energy functions: including exponential type [87, 88],

polynomial type [89] or logarithmic type [90] are used. These classical elastic equations can

successfully model the material nonlinearity, however they cannot be used to describe struc-

tural phenomena exhibited by material components that occur during the deformation of

arterial walls, i.e collagen recruitment and elastin breakage, since they assume that the com-

ponents do not experience microstructural changes, which sometimes is irreversible, during

deformation.

The need for an appropriate constitutive equation that can handle both the nonlinearity

and inelasticity of cerebral arterial walls is now clear. Clearly, the early development or

initiation of cerebral aneurysms from a section of healthy arterial segment that involves

collagen recruitment and elastin breakage cannot be modelled using classical hyperelastic

constitutive equations. Investigators can mathematically model only the deformation of

saccular aneurysms and not the development of saccular aneurysms from segments of arterial
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Figure 8: Typical assumed shapes of saccular aneurysms used in hemodynamic studies of

blood flow inside aneurysms at curved segments (from Foutrakis et al. [59]) and bifurcations

(from Perktold et al. [96]).

walls with these equations. In studies using classical hyperelastic equations, the unloaded

reference configuration of the aneurysm was modelled either as a sphere [79, 91, 93, 94]

or a truncated sphere [95, 92]. Figure 7 shows two commonly selected undeformed shapes

of saccular aneurysm (from Canham and Ferguson [91] and Kyriacou and Humphrey [92]).

It’s clear that in these studies, the aneurysm tissue is treated as a different entity than the

arterial tissue from which it developed. Also here, the material properties of the aneurysms

are uncoupled from those of the arterial wall from which it developed.

The lack of appropriate constitutive equations for aneurysms walls also produces limi-

tations on relevant hemodynamic studies. Since the shape of the sacs supposedly produced

by hemodynamic forces cannot be computed, the shape has to be assumed. The studies

therefore are limited to studying flow inside sacs of assumed shape on either curved cerebral

arteries [97, 98], apices of arterial bifurcation [96, 59] or straight segments [99, 98, 100].

Figure 8, from Foutrakis et al. [59] and Perktold et al. [96], displays examples of assumed

shapes of saccular aneurysms used in hemodynamic studies. Most studies assume that the

wall of arteries and sacs, are fixed. Low et al. [98] however assume a flexible walled aneurysm
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model whose displacement is linearly proportional to the transmural pressure where the ex-

ternal pressure is constant. Even the flexible wall studies are limited to small deformations

about a presumed aneurysm shape. They are not appropriate for studying the large inelastic

deformation involved in aneurysm formation and growth.

Modeling the development of a section of normal cerebral arterial wall into a simple

saccular aneurysm requires a constitutive relation that can handle more than one mechanism

of material components during deformation history. The proposed constitutive relation will

include the participation of collagen and elastin as two separate mechanisms. Note that in

the sense of Humphrey [101], the current approach may not be considered phenomenological

due to the consideration of the individual constituents. However, the current approach

clearly is not microstructural either since the detailed architecture of the cerebral arterial

wall constituents is not used as the basis of the proposed equation.

In the current formulation, the usage of the structural information of elastin and colla-

gen fibers is solely as a motivation to separate the mechanics of aneurysm formation into

two mechanisms. The mathematical formulation of the two mechanisms therefore can be

considered phenomenological. These mechanisms therefore are used to represent the gross

mechanical response of elastin and collagen fibers and are not to be used to individually

quantify the material characteristics of these structural components. The current approach

is used so that the material identification of elastin and collagen fibers, which can become a

challenging task considering the fine size of cerebral arterial walls, can be avoided.

The incorporation of the first and second mechanisms in the equation can be described as

follows. At the early stage of deformation, only elastin is load bearing and its participation

is regarded as the first mechanism. The material response at this deformation level is similar

to the response of a single mechanism material. At some threshold deformation level, we

suppose that collagen fibers are recruited and begin load bearing. The participation of

collagen fibers is regarded as the second mechanism. When both mechanism are involved,

the Cauchy stress of material points is generated based on the contribution of both the first

and second mechanisms. At some larger deformation level, the elastin is damaged and its

structural contribution to the material stiffness is terminated. This damage phenomenon is

modelled by eliminating the contribution of the first mechanism from the material response.
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The idea that more than one mechanism may be involved in the mechanical response

of a material was introduced by Tobolsky et al. [102], as a way to describe the change in

mechanical response due to breaking and reforming of cross links in polymeric solids under

increasing loads. Wineman and Rajagopal [103, 104] developed the theoretical framework

for multi-mechanism constitutive models in the early 1990s. Since then, multi-mechanism

constitutive equations have been used to model numerous complex physical phenomena in-

cluding damage induced softening of rubber materials [104, 105, 106], inelastic processes in

metals due to twinning during impact [107], irreversible cyclic extension of human patellar

tendons [108, 109], recovery process of reference shapes after heating (‘shape memory ef-

fect’) of deformed intermetallic alloys [110], and the viscoelastic response of isotropic [111]

and anisotropic fluids [112].

1.6 CEREBRAL FUSIFORM ANEURYSMS AND ABDOMINAL AORTIC

ANEURYSMS

Not all of aneurysms are saccular. Non saccular aneurysms occur both in intracranial and

extracranial arteries. Here, we briefly discuss two examples of non saccular aneurysms of

intracranial and extracranial arteries: cerebral fusiform aneurysms and abdominal aortic

aneurysm (AAA). We will see that beside the shape, the etiology and histology of these

aneurysms are different from that of saccular aneurysms.

Cerebral fusiform aneurysms are non saccular aneurysms that occur in the cerebral ar-

teries. The following brief information on cerebral fusiform aneurysms is summarized from

Stehbens [56]. Figure 1 depicts the difference in appearance between a typical cerebral

fusiform aneurysm (C) and typical saccular aneurysms (A and B). Clearly, a cerebral fusiform

aneurysm manifests as a whole wall dilatation of a mostly short straight segment of artery

segment. The dilatation can be either bilateral, cylindrical or saccular. The last shape how-

ever is very rare. Cerebral fusiform aneurysms can be caused by severe atherosclerosis. The

atherosclerotic nature of cerebral fusiform aneurysms distinguishes these aneurysms from

saccular aneurysms. Due to the atherosclerosis, the dilatation however is not always accom-

panied by lumen enlargement. In fact, the lumen may be narrowed. Ruptures of cerebral
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fusiform aneurysms are rare. The histology of cerebral fusiform aneurysms generally is sim-

ilar to those of saccular aneurysms, except for the plaque deposition that is not found in

saccular aneurysms. This histology includes thinning of the media, thickening of the intima,

fragmentation of the elastic tissues and fibrosis of the wall.

The abdominal aortic aneurysms clearly are extracranial aneurysms. The following brief

explanation on the AAA is summarized from Zarins and Glagov [113]. The AAA are type of

fusiform aneurysm that manifest as dilatation of abdominal aorta. The formation of AAA

has been strongly hypothesized to be associated with general atherosclerosis. Therefore,

AAA are also atherosclerotic in nature, as cerebral fusiform aneurysms are.

Atherosclerosis process includes plaque deposition and vascular degeneration. The plaque

deposition on the arterial walls does not always result in stenosis in particular when it

is accompanied by compensatory vascular enlargement to maintain cross sectional area of

arterial lumen. However, the process of vascular enlargement during atherosclerosis is an

open question. One possible explanation begins with the alteration of local hemodynamics

forces due to the narrowing of the lumen. It is hypothesized that elevated wall shear stress

and blood flow velocity may induce lumen enlargement in order to return the level of wall

shear stress into normal level. This possible process however is limited to cases where only

part of the wall circumference is covered by plaque. When the entire wall is covered by

plaque, the vascular enlargement may not accompany atherosclerosis process especially in

the late phase of deposition.

It is hypothesized that in the AAA cases, the arterial enlargement is a result of vascular

degeneration which is commonly associated with the atherosclerotic process. The degener-

ation process manifests mostly as the damage of the components of the tunica media such

as collagen and elastin. Most hypothesis on the medial degradation generally agree that

the degradation is due to some enzymatic process [114, 115]. Medial degradation results

in reduction of total wall tensile strength. Stable or progressing plaque deposition however

may provide tensile strength to the wall and thus may compensate the loss of elasticity

resulted from the disintegration process of the wall. The support from the plaque however

is temporary. It is hypothesized that the late process of atherosclerosis may involve plaque

regression or erosion. The structural support may become insufficient if the plaque is eroded
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or altered in its composition. The atherosclerotic artery then is enlarged causing the AAA

to form. The histology of AAA therefore generally includes plaque deposition, fragments

of both elastin and collagen fibers in the arterial walls and intraluminal thrombus (ILT).

The mechanics of AAA walls has been an important subject of investigation. Constitutive

modeling of AAA walls [116, 117] and of ILT [118], for example, can lead to understanding

the rupture of AAA, the ultimate danger of this disease, and can help in improving surgical

methods. Noting the complexity of the mechanisms that are involved in the formation of

AAA, the multi-mechanism constitutive equation could be applied though the influence of

the plaque need to be accounted for.

1.7 CENTRAL OBJECTIVE OF THE RESEARCH

The central objective of this work is to develop a suitable constitutive model for human

cerebral arterial walls through inclusion of known phenomenological properties, especially

collagen recruitment and elastin degradation, and to apply the proposed equation in model

problems to predict clinically observed phenomena and experimentally induced passive me-

chanical behavior of segments of cerebral arterial walls.
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2.0 THEORY AND PROPOSED CONSTITUTIVE EQUATION

2.1 QUALITATIVE DESCRIPTION OF ARTERIAL WALL TISSUE

In the Introduction, the elastin and collagen have been described as passive mechanical com-

ponents that have been hypothesized to cause the mechanical nonlinearity and inelasticity

of cerebral and extracerebral arterial wall tissues. The proposed contribution of the elastin

and collagen fibers to the nonlinearity and inelasticity may be illustrated by considering an

idealized model of an arterial wall strip with undeformed length Lo that experiences uniaxial

stretch with stretch ratio λ defined as λ = L/Lo, where L is the deformed length. The

diagram of the idealization is depicted in Figure 9.

Note however that as is mentioned briefly in the Introduction (Section 1.4) , the structural

consideration of the elastin and collagen fibers is used only to motivate the separation of the

mechanics of aneurysm formation into two mechanisms. The overall approach therefore is

phenomenological. Yet, unlike previous phenomenological classical elastic constitutive equa-

tions, the current approach can capture mechanical responses that are produced by either

individual or collective behavior of the constituents. More importantly, different mechanisms

can be introduced in the equilibrium system at different configurations and not necessarily

at the same reference configuration. This approach therefore recognizes the importance of

the individual mechanical response produced by the constituents of tissues without requir-

ing detailed architectural structure, for example collagen fibers orientation and waviness,

and the interaction of the constituents, for example the interaction between the collagen

fibers and surrounding ground matrix, as would be necessary if the structural approach is

taken. Measurements of cerebral arterial tissue architecture that may require both complex

experimental protocols and sophisticated devices therefore can be avoided.
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Figure 9: Proposed mechanisms of an idealized arterial wall tissue under uniaxial loading.
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Note also that the following idealization inherits assumptions regarding the microstruc-

ture of the cerebral arterial tissues. It is assumed that the cerebral tissues are composed

of elastin and noninteracting collagen fibers and ground substance matrix and extracellular

fluids. Considering only the significance of elastin and collagen fibers in the cerebral arterial

deformation and aneurysm formation, the remaining components are assumed to be non

structural. It is assumed that the force to straighten the wavy collagen fibers is negligible.

The histology of elastin and collagen fibers will be discussed further in Section 2.4.

The following description refers to Figure 9 that depicts the deformed states of an ideal-

ized arterial wall tissue and their corresponding regimes in a typical stress vs. strain curve.

In the figure, the Greek letters λ and σ represent the stretch ratio and the applied traction

at the ends of the strip, respectively.

• Figure 9 (A) illustrates the strip in its unloaded configuration with ‘crimped’ collagen

fibers represented by zigzag lines. Experiments on human carotid arterial circumferential

strips suggested collagen fibers were ‘crimped’ or ‘folded’ when the strips were unloaded

[78].

• Figure 9 (B) shows the strip that is stretched due to the applied traction at the ends

and the crimped collagen fibers partially unfolded. Unfolding of collagen fibers was

observed in the stretched human carotid arterial circumferential strips [78]. Assuming

the crimped collagen fibers do not bear the load, one should expect that the elastin

fibers will dominate the mechanical response at this low strain deformation stage. This

hypothesis gains support from experimental results on human iliac arterial segments

[77]. The experimental results show the initial slope (slope in low strain region) of stress

vs. strain curves of normal samples are qualitatively similar to those from segments

with depleted collagen fibers. This supports the hypothesis that elastin is primarily

responsible for the load bearing in the low strain region.

• In Figure 9 (C), the unfolding collagen fibers reach their critical length L = La at which

they start to participate in the load bearing. This critical stage will be referred to as the

collagen recruitment stage. Here, it is only an assumption introduced for simplicity that

the collagen fibers reached their critical length at the same single deformation stage.

Busby [49] hypothesizes that collagen fibers are recruited gradually, in a sense that
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collagen fibers at a material point reach their critical length at different deformation

levels. The gradual recruitment results in, as is seen in Figure 5, gradual change of the

slope of stress versus strain curve from small values at low strain to significantly high

values at large strain. We denote λa stretch ratio corresponding to the critical length La.

• Figure 9 (D) shows the extension from the previous stage. In this stage, both the elastin

and collagen fibers participate in the load bearing. As will be explained later, if the

loading terminates at this stage and the stretch is gradually removed (unloaded), the

strip will return to the reference configuration upon full unloading. Here we would

consider that the stages A, B, C, and D constitute an elastic regime.

• As illustrated in Figure 9 (E), we also suppose that the elastin may fail, say at another

critical stretch λb > λa. The elastin breakage becomes an important issue in this work

because this phenomenon has been associated with early aneurysms formation. As in the

collagen recruitment case, it is only an assumption that the elastin breakage occurs at a

single deformation stage. The causes and the mechanisms of the failure of elastin and the

deformation stages associated with it remain an open question. Scott et al. hypothesized

that the shifting of the stress versus strain curve is due to purely mechanical loading [79].

Unfortunately the hypothesis was not accompanied by a morphological evidence. Elastin

degradation can also be produced by chemical treatment. Roach and Busby [77] depleted

the elastin of human iliac arterial segment samples and showed that the toe region at low

strain region was missing or disappeared from the typical stress versus strain curve. In

this work, we assume that the elastin degradation can be associated with some measure

of strain level, as will be described later on.

• Figure 9 (F) corresponds to stretch beyond λb. In this particular stage, only collagen

fibers contribute to the mechanical response. It will be seen later that when the unloading

is initiated at this deformation stage, the strip will return to the configuration that is

shown in stage C. Moreover, loading stages after total elastin breakage, for example

the stages shown by C, D and E that are not accompanied by elastin contribution,

constitute the second (new) elastic regime. That is, the loading and unloading cycles

use the configuration shown by C, which is a new unloaded configuration, as the new

reference configuration.

20



This inelastic feature is particularly clear when the strip experiences unloading. The behavior

of the strip during unloading however depends on the maximum loading. The following list

of cases occurs when the deformation is homogeneous. It will be shown in later sections that

more cases must be considered in nonhomogeneous deformations. In the following list, λ∗

denotes the maximum stretch experienced by the strip.

• Case 1: λ∗ < λa

In this case, the loading terminates at a deformation stage at which none of the collagen

fibers were recruited. Such a deformation stage is depicted in Figure 9(B). As expected

the behavior will be similar to that of materials with only a single mechanism. That is,

after complete unloading, the body will return to its reference configuration.

• Case 2: λa ≤ λ∗ < λb

In this case, the unloading initiates at a deformation level at which collagen fibers are

recruited but the elastin is not damaged yet. Such a deformation stage corresponds to

Figure 9 (D). Two unloading phases must be considered here. In the first unloading

phase, the collagen fibers will be unloaded until they reach their critical stretch ratio λa.

However, this configuration is not the fully unloaded configuration of the strip. When

the unloading continues and enters its second phase, the elastin can further unload to

its reference configuration causing the strip to return to its unloaded configuration. On

the other hand, the collagen fibers will be ‘recrimped’ to their original fully crimped

configuration and stop contributing .

• Case 3: λb ≤ λ∗

In this case, the unloading takes place after the elastin is damaged at λ = λb. Figure

9 (F) illustrates this deformation level. When λ < λb, it is assumed that the damaged

elastin is not repaired. As is in the previous case, the unloading will cause the collagen

fibers to contract to the reference configuration λ = λa > 1. However in this case, the

unloading will terminate here, since it is assumed that the collagen fibers cannot contract

further. In this case, the strip obtains a new unloaded configuration. The unloaded strip

exhibits larger unloaded length La = Lo ∗ λa than the initial strip L = Lo. A relevant

example was observed in the experiment on human iliac arterial segments in which the

strips with depleted elastin showed larger diameters after complete unloading [77].
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Classical constitutive equations for elastic solids in which the stress is generated from an

unchanged single mechanism cannot be used to capture this type of behavior. The recently

proposed multi-mechanism constitutive model can be used to model new mechanisms, for

example in the form of recruitment of new material components, that are introduced during

the deformation history.

The current approach clearly is different from the structural approach used for example

by Lanir [119] and Sacks [120, 121] for modeling planar collagenous tissues. Structural mod-

eling takes into account comprehensive structural information of the tissues components.

Lanir for example [119] assumes that the total material response is due to collective contri-

bution of the fluid matrix, elastin fibers and the collagen fibers. In his work, the elastin and

collagen fibers are assumed to be linear materials. The model requires information regarding

the volume fractions, distribution of fiber waviness, fiber orientations and the interaction be-

tween these three components. This information can be supplied by both histological data

and data on the microstructural behavior of the tissue components during deformation. To

quantify tissues architecture and interactions between the components sometimes requires

sophisticated experimental devices. Sacks [122, 121] for example uses a Small Angle Light

Scattering (SALS) device to obtain orientation of collagen fibers in planar collagenous tissues.

Structural modeling therefore yields constitutive relations in terms of physically meaning-

ful material parameters [101]. The resulting mathematical formulation however usually is

complex and the required experimental measurements cannot always be made.

The idealized model shown in Figure 9 assumes that only fully taut collagen fibers are

considered load bearing. It has been hypothesized that collagen fibers may already partic-

ipate in the mechanical response even when they are not fully straight [123, 124]. When a

structural approach is taken, the involvement of corrugated collagen fibers makes it necessary

to find both the appropriate reference configuration of each fiber, which may be different

for each fiber, and the stress versus strain relationship of both wavy and straight collagen

fibers. Kwan and Woo [124], for example, assume that the reference configuration of at

least one group of parallel collagen fibers contained in a tissue is the same as the stress free

configuration of the tissue. This assumption may be acceptable for tissues predominated by

collagen fibers where the participation of elastin at low strain can be neglected. Roach and
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Burton [77] showed that during the inflation of human iliac arterial segments, only elastin is

load bearing at low strain and the collagen fibers do not contribute up to a certain inflated

state. Kwan and Woo also assume that the behavior of both wavy and taut collagen fibers

can be considered linear with different elastic moduli.

The phenomenological approach that we take does not require a distinction between the

contribution made by corrugated and straight fibers as long as the gross behavior of the

deformed embedded body during the fiber straightening and stretching can be quantified.

The incorporation of wavy collagen fibers in the current constitutive equation can be easily

performed. Recall that the reference configuration of the second mechanism representing

collagen fibers response can be associated with the permanent deformation remaining after

unloading. In principle, there is no restriction that the non zero strain state must be associ-

ated with unloaded straight collagen fibers as long as the body is in a stress free configuration.

The current approach does not make a distinction between whether the permanent set con-

figuration of the body is occupied by wavy or straight collagen fibers. The fiber waviness is

immaterial to the determination of the reference configuration of the second mechanism.

Moreover in general, from the phenomenological point of view, the mechanics of a de-

formed tissue embedded with straightening and stretching fibers can be considered simply

as a continuously deforming body disregarding its microstructural changes. However, if

necessary, the mechanism representing straightening fibers can be considered as separate

mechanism from that representing stretching of already straightened fibers (provided that

supporting experimental data is available).

2.2 KINEMATICS OF A MULTI-MECHANISM CONSTITUTIVE MODEL

The main kinematical feature that differs between the multiple mechanism constitutive equa-

tion used here and a classical hyperelastic material is that the stress response of multi-

mechanism materials depends on deformation gradients relative to more than one reference

configuration. Discussions regarding the more general kinematics necessary for the multi-

mechanism theory can be found in Rajagopal and Wineman [103, 104] and Huntley and

Wineman [105]. A brief discussion regarding a dual mechanism material, which includes
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Figure 10: Kinematics of dual mechanism.

only two mechanisms, will be given below using Figure 10 as a reference. Let B denote

a three-dimensional body which at some time t = t1 occupies a region that is referred as

the reference configuration κ1 and is chosen as the initial unloaded configuration of B. We

suppose that the body is continuously deforming and at time t > t1 it occupies a region

referred to as the current configuration and denoted by κ(t) = κ. A motion of the body

assigns a material position X1 of B in the undeformed configuration κ1 to x in the current

configuration as follows:

x = χκ1(X1, t), (2.1)

where χκ1 is assumed to be single-valued, invertible and continuously differentiable with

respect to its arguments as many times as required in the subsequent analysis. The subscript

κ1 is used to emphasize the dependence of the function on κ1 as the reference configuration.

The deformation gradient F1 at time t for an arbitrary material point X1, relative to the

reference configuration κ1 is given by

F1 = Fκ1(X1, t) = ∇χκ1(X1, t) or F1iJ =
∂xi

∂X1J

, (2.2)

where ∇χκ1 is the gradient operator with respect to X1, holding t fixed. As is in the case of

classical single mechanism elastic materials, up to this deformation level, the Cauchy stress

tensor T of elastic material will depend solely on F1. The following function is a general
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representation of that dependency. A specific relation will be specified later on in Section

2.4 when the proposed constitutive equation is presented. The function is given as follows:

T = F1[F1]. (2.3)

We now suppose that the body continuously deforms and that at some later state of de-

formation or time, say at time t = t2 > t1, a microstructural change occurs inside the

material. The change under consideration may manifest itself in the form of conversion to

a new microstructure or recruitment of a new material. The microstructural change could

occur gradually or instantaneously. In the case of material conversion, a portion or all of ma-

terial could convert to a new microstructure. Similarly in the case of material recruitment,

a portion or all new material could be recruited gradually or simultaneously.

The initiation of the microstructural change may be related to some state of deformation

through a function of the deformation parameters [105]. The parameter t that has been used

to describe states of deformation may be used as a deformation parameter. However, its usage

is limited to deformations which can be defined by a single kinematic parameter: such as

uniaxial tension (where longitudinal stretch is the parameter) or inflation of long cylindrical

membrane (where circumferential stretch is the parameter). When the deformation involves

more than one parameter, such as biaxial extension, a scalar kinematic parameter s which

is associated with configuration κ(t) through the following relation:

s = A(F1), (2.4)

is used as function of deformation parameters. For simplicity, at time t = t1, when the body

is undeformed, s is set to be 0. When the material is isotropic and incompressible, without

loss in generality, relation (2.4) may be rewritten as a function of the invariants of F1 [105],

as

s = s(I1, II1), (2.5)

where the principal of material frame indifference has been used in obtaining (2.5). Here

I1 and II1 are the first and second invariants of the Left Cauchy Green strain tensor B1 =

F1F1
T , respectively and they are defined as follows:

I1 = tr(B1) = B1ii II1 =
1

2
((trB1)

2 − trB1
2) =

1

2
(B1ijB1ij −B1ijB1ji). (2.6)
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The initiation of the microstructural change, or specifically in our case the collagen fibers

recruitment process, can be defined to depend on s through a criterion as follows:

Aa = s(I1, II1)− sa, (2.7)

where sa is a scalar material parameter to be associated with the activation of collagen

recruitment. We will refer to this criterion as the activation criterion. In then follows that

the activation of the new mechanism (for example collagen recruitment) corresponds to

Aa = 0. (2.8)

After the new mechanism is initiated, depending on the homogeneity of the material and

the deformation under consideration, it is assumed that some or all material points that

satisfy (2.8) are occupied simultaneously by two material particles or material elements: one

represents the original material and the other represents the new (recruited) material [103].

Within the scope of collagen recruitment as the new mechanism, we shall also assume that

prior to the recruitment, the collagen fibers are in a stress-free state. The new mechanisms

generally can take any configurations, not necessarily those that are possessed by B during

the deformation history, as the reference configurations. However, it will be seen in this

work that configurations occupied by the deformed body B are often used as the reference

configurations of the recruited collagen fibers. Moreover, as is emphasized in Wineman and

Rajagopal [103] , we will see that a set of reference configurations each of which corresponds to

(2.8), must be considered when spatial material recruitment occurs due to nonhomogeneous

deformations.

Let’s denote κ2 the configuration that is occupied by the deformed body B at t = t2.

We suppose that at this deformation level, the recruitment occurs and takes configuration

κ2 as the reference configuration. The recruitment occurs at material points whose defor-

mation gradients satisfy the activation criterion (2.8). Depending on the deformation under

consideration, such material points belong either to the entire or some parts of the body.

When the deformation is homogeneous, the deformation gradient F1 is space independent

(constant) and therefore at t = t2 the entire body will simultaneously satisfies the activation
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criterion (2.8) (provided that sa is also space independent). In this case, no more collagen

fibers recruitment will occur when the deformation level (and therefore s) are increased.

In the case of nonhomogeneous deformations, the deformation gradient F1 is space de-

pendent. Therefore, at t = t2, the activation criterion (2.8) will be satisfied at only some

parts of the body, say P1. When the deformation level is increased, some other parts of the

body, say P2 6= P1, may eventually satisfy the activation criterion (2.8). Here, the body will

occupy a new configuration, say κ2b. The recruitment that occurs in P2 will take κ2b as its

reference configuration. When the body continues deforming, more body parts will satisfy

the activation criterion (2.8) and more reference configurations come into consideration. In

further discussion we shall use κ2 to denote all configurations of the body at which the new

or second mechanism is introduced in any part of the body. Similarly, we use t2 to denote

all times t2 > t1 at which the second mechanism is introduced in any part or all of the body.

We shall now discuss the deformation gradient of the second mechanism representing

the material recruitment relative to the reference configurations κ2 . Let X2 denote the

coordinates of the particle Y in κ2 that was in the position X1 in configuration κ1, then

according to (2.1),

X2 = χκ1(X1, t2). (2.9)

We suppose that the body continues deforming so that at the present time t > t2 a typical

material point which in configuration κ2 was at the place X2, moves to the place x in the

present configuration. A motion that refers to configuration κ2 is written as follows:

x = χκ2(X2, t). (2.10)

Similar to (2.2), the deformation gradient F2 at X2, relative to the reference configurations

κ2 is

F2 = Fκ2(X2, t) = ∇χκ2(X2, t) or F2iJ =
∂xi

∂X2J

, (2.11)

where ∇χκ2 is the gradient operator with respect to X2 holding t fixed. Using a change of

variables for (2.11) and making use of (2.2) and its inverse evaluated at t = t2, the relation

between F1 and F2 can be established as follows:

F2 = Fκ1(X1, t)F
−1
κ1

(X1, t2). (2.12)
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It is then assumed that at some later time t > t2, the Cauchy stress of material points

at which the activation criterion (2.8) is satisfied depends on the deformation gradient of

both the material possessing the original microstructure and a new material which either is

recruited or contains newly formed microstructure as follows:

T(t) = F2[F1,F2]. (2.13)

The Cauchy stress at the remaining material points will still be given by (2.3).

In the present work, in addition to material recruitment, the theory was adapted to

model material degradation or deactivation. It is assumed that material degradation at a

material point always begins after the initial material recruitment of that point. In the

case of gradual recruitment, the degradation doesn’t have to occur after the recruitment

is completed. Here, we suppose that at a time t = t3 > t2, the first or original material

starts to degrade. Similar to the activation of the material recruitment, we suppose that the

initiation of the deactivation can be related to the deformation parameter, s. The relation is

similar to (2.7), but a different scalar value sb will be used as the criterion for degradation.

The criterion that is referred to as the deactivation criterion will be defined as follows:

Ab = s(I1, II1)− sb, (2.14)

where the initiation of the degradation of the original material corresponds to

Ab = 0. (2.15)

The Cauchy stress of material points that satisfy the deactivation criterion (2.15) will depend

only on the deformation gradient of the recruited material, F2, as follows:

T = F3[F2]. (2.16)

At the remaining material points at which the activation criterion (2.8) is satisfied, the

Cauchy stress will still be given by (2.13), while at points at which (2.8) is not satisfied, the

Cauchy stress will still be given by (2.3).

Generally, a multi-mechanism model may employ more than two reference configurations.

The gradual recruitment of collagen fibers, for example, can be considered as recruitment
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of each fiber or group of fibers which may be recruited at different configurations. Stress

generated by a series of continuous microstructural changes can be presented in the form of

integration of local stresses generated by each new mechanisms. This has been found useful

to model damaged induced softening in polymeric materials under homogeneous deformation

[104] and under non-homogeneous deformation [105].

2.3 APPLICATION OF MULTI-MECHANISM CONSTITUTIVE

EQUATIONS FOR MODELING CEREBRAL ARTERIAL WALLS

In the present application, we are interested in modeling the observed nonlinear and inelastic

behavior of cerebral arterial and aneurysms walls which are believed to be related to col-

lagen recruitment and elastin breakage. The mechanisms produced by elastin and collagen

fibers during the deformation of cerebral arterial walls will be considered as two separate

mechanisms, each of which possesses different unloaded reference configuration and material

response. The separation allows either activation or deactivation of each mechanism inde-

pendently. As was discussed in Section 2.1, the mechanism produced by elastin is responsible

for the initial (low strain) loading Figure 9 (B). In later sections, this mechanism is referred

to as the first mechanism. Clearly, the reference configuration of the first mechanism coin-

cides with the initial reference configuration. As was described in Section 2.1 at some later

deformation stage, the collagen fibers recruitment is introduced (Figure 9 (C)). The mech-

anism produced by recruited collagen fibers will be referred to as the second mechanism.

The second mechanism uses the configuration occupied by the body at the onset of collagen

recruitment as the reference configuration. The association of the onset of collagen recruit-

ment with some measurable quantity has not been explored experimentally and it subjects

for further work. It is assumed that the onset is associated with the deformation history by

means of the activation criterion (2.8). In this work, it is also assumed for simplicity that all

of the collagen fibers occupying material points that satisfy the activation criterion (2.8) will

be recruited at once. Moreover, as was described in Section 2.1, it is important to include

elastin failure in the modeling (Figure 9 (D)). However, as was explained before, similar to

collagen recruitment, the causes and mechanisms of elastin breakage remain to be resolved.
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In this work, it as assumed that the failure of elastin can be associated with a deformation

level by means of the deactivation criterion (2.15) that occurs at some later deformation level

after collagen recruitment. Similar to collagen recruitment, for simplicity, it is assumed that

all of the elastin material points satisfying criterion (2.15) break simultaneously. Scott et al.

[79] hypothesized that elastin breakage in cerebral segments is due to intramural pressure

that is above a critical pressure level.

Making use of the deformation parameter s described previously, the application of the

multi-mechanism theory can be described briefly as follows. The unloaded arterial walls are

assumed to have s = 0 everywhere in the body. When the arterial wall deforms, s increases

from 0. As suggested before, at initial loading stages, only elastin, represented by the first

mechanism, contributes to the mechanical response and therefore the Cauchy stress tensor

for all of the material points is given by (2.3). In this stage, the crimped collagen fibers unfold

but do not participate in the load bearing. As was assumed, the participation of collagen

fibers is initiated when s reaches sa at any parts or all of the body. On such occasion, it is

assumed that all of the collagen fibers occupying material points which values of s satisfy the

activation criterion (2.8) are recruited. Material points satisfying the activation criterion will

be occupied by active elastin and collagen simultaneously and the Cauchy stress tensor of

those points is given by (2.13). The stress in the remainder of the body (where the activation

criterion is not satisfied) will still have the form of (2.3).

As was discussed before (Section 2.1), it is important to include the elastin breakage in

the constitutive equation. We suppose that the breakage phenomenon is modelled by deac-

tivating the first mechanism representing elastin response. As is assumed, the deactivation

of the first mechanism occurs at material points at which the deactivation criterion (2.15)

is satisfied. Therefore, when the deformation continues such that at some or all material

points s reaches sb, the Cauchy stress of such points will take the form of (2.16) where the

Cauchy stress depends solely on the deformation gradient of the second mechanism F2.

When the process is reversed due to unloading, say at s = s∗, the value of s decreases

and the stresses at material points will be determined by the values of s∗ relative to sa and

sb critical values. When the deformation is homogeneous, the following three cases of values

of s∗ must be considered:
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• Case 1: s∗ < sa

In this case, the unloading begins before the onset of collagen fibers recruitment. It

is clear that only elastin is active during unloading. Therefore, the material response

resembles those of classical elastic material. The Cauchy stress during unloading is

governed solely by (2.3) and the zero stress will correspond to the original reference

configuration.

• Case 2: sa ≤ s∗ < sb

In this case, the unloading begins after the onset of the new material recruitment but

before the initiation of elastin breakage. The unloading process consits of two unloading

phases. In the first phase, s reduces from s∗ to sa. In this phase, both collagen fibers

and elastin are active, so the Cauchy stress tensor will be given by (2.13). During this

unloading phase, the collagen fibers will return to their unloaded configuration denoted

by κ2 at which s = sa. As the unloading continues and enters the second phase, s reduces

from sa to s = 0. In this phase, the collagen fibers are assumed to recrimp and therefore

become inactive, leaving elastin as the only active mechanical component. In this phase,

the Cauchy stress tensor then is given by (2.3). The material response in the second

unloading phase is similar to those of the first case.

• Case 3: sb ≤ s∗ This the case in which the unloading occurs after elastin breakage. In

this case, elastin is inactive when the unloading is initiated and cannot be reactivated

since it assumed that elastin regeneration does not occur even when s < sb. Thus in this

unloading case, only collagen fibers contribute to mechanical load bearing. The Cauchy

stress is given by (2.16). The same equation is used when s is reduced below sb. Since

(2.16) depends on the deformation gradient relative to reference configuration κ2 of which

s = sa, the body reaches zero stress when s = sa. Since the elastin is deactivated, there

are no forces contributing to further deformation. The body will not return to its initial

reference configuration but possesses a new unloaded configuration.

We will see in Chapter 3 (particularly in Sections 3.4 and 3.5) that when the deformation is

nonhomogeneous, s is space dependent and more unloading cases need to be considered.
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2.4 THE PROPOSED CONSTITUTIVE RELATION

So far, no specific functional forms of (2.3), (2.13), and (2.16) have been imposed. We now

suppose that each of the two material components performs as a hyperelastic material, which

under quasi static loading exhibits no hysteresis. Moreover, it is assumed here that the elastin

and collagen embedded body can be modelled as homogeneous and isotropic at the reference

states κ1 and κ2, respectively. In the internal elastic lamina of cerebral arterial walls, elastin

appears as fairly homogenous lamina [67, 48]. In the media and adventitia, collagen appears

as bundles of fibers [48]. Collagen fibers in an undeformed tissue are known to be ‘crimped’

[121] and gradually become straight as the tissue is stretched [78]. Straightened collagen

fibers may induce anisotropy [80]. A morphology study by Finlay et al. [54] however shows

that the collagen fibers at the apex of bifurcations of cerebral arteries, the most common

region for saccular aneurysms, are arranged in a complex net that possesses no specific fiber

orientation. We then assume that the isotropy assumption for the apical region of bifurcation

is an acceptable approximation. It is important here to point out that the isotropy of the

body (or part of the body) containing the collagen is relative to the reference configurations

corresponding to s = sa.

We propose that the Cauchy stress tensor can be derived from a strain energy function

W that involves both the first mechanism and second mechanism in the form that depends

on s as follows:

T = −pI + 2
∂W

∂I1

B1 − 2
∂W

∂II1

B−1
1 + 2

∂W

∂I2

B2 − 2
∂W

∂II2

B−1
2 , (2.17)

W =





W1(I1, II1), when 0 ≤ s < sa;

W1(I1, II1) + W2(I2, II2), when sa ≤ s < sb;

W2(I2, II2), when sb ≤ s.

(2.18)

Here, the total stress at each stage of deformation is defined to be the superposition of

contributions of the original material and the recruited material represented by W1 and W2,

respectively. We consider the constitutive equation suitable for hyperelastic, incompressible,

and isotropic material for both of the material responses. Subscript ‘1’ indicates that the
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Left Cauchy Green Strain tensor and its inverse B1 and B−1
1 , are calculated from the gradient

of deformation F1 that refers to reference configuration κ1 while subscript ‘2’ indicates that

B2 and B−1
2 are calculated with respect to configuration κ2 at which material recruitment

occurs. They are calculated as follow :

B1 = F1F
T
1 or B1ij = F1ikF1jk (2.19)

B2 = F2F
T
2 or B2ij = F2ikF2jk. (2.20)

Due to material incompressibility and isotropy, the dependency of W on the deformation

gradients F1 and F2 has been reduced to a dependence on I1 and I2, the first invariants of

B1 and B2, respectively and II1 and II2, the second invariants of B1 and B2, respectively.

The invariants I1 and I2 are the trace of B1 and B2, while II1 and II2 are the trace of B−1
1

and B−1
2 (due to incompressibility and isotropy).

2.4.1 The selection of the strain energy function and the function of deforma-

tion parameters

Generally, there are at least three functional forms of strain energy functions (in the classical

sense) that have been proposed to describe the mechanical behavior of arterial tissue [85]:

exponential type, logarithmic type and polynomial type. In this work, we suppose that

exponential type is suitable to be used for both W1 and W2. The formulations are given as

follows:

W1 =
α1

2γ1

eγ1(I1−3) and W2 =
α2

2γ2

eγ2(I2−3), (2.21)

where α1, α2, γ1 and γ2 are material parameters and I1 and I2 are invariants of the first and

second mechanism, respectively, that have been described before. The form of the strain

energy function W1 is similar to that used by Demiray and Vito [125] for an artery, by

Delfino et al. [126] for a human carotid artery and in fact by Beatty for general biological

tissues [127]. The value of γ1 in general has no restriction, but it is necessary that γ1 ≥ 0

in order that the strain energy (2.21.1) to increase with the deformation from a reference

state [127]. Eventually, we must impose the same restriction for γ2 in particular since the
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strain energy must also increase with the deformation even in the states where the elastin

has been inactive. It will be shown in Section 3.3 that (2.21) is in satisfactory agreement

with real experimental data based on statistical analysis. In fact, the strain energy functions

employing the well known Neo Hookean and Mooney Rivlin models perform less well than

the proposed form.

The form of s as well as the values of sa and sb are part of material parameters that need

to be determined via some experimental procedures. Such experimental work is the focus of

future research, however suggested methods to obtain the form of s and the values of sa and

sb will be discussed in Chapter 3. The following form of s is selected to be used in future

illustrative applications:

s = I1 − 3. (2.22)

Here, s is assumed to depend linearly only on I1 which consistent with the form for strain

energy functions for biological tissues. The selected form of s ensures that the undeformed

body corresponds to s = 0. The linear dependency is preferred for the sake of simplicity. An

example of (2.5) that is more general than (2.22) is given by Wineman and Huntley [105].

In that work, s is a function of both I1 and II1.

2.4.2 Material objectivity

A constitutive equation must satisfy at least two important invariance restrictions: the

principles of coordinate invariance and material indifference [128]. A list other principles that

must be considered can be seen, for example, in Eringen [129]. The principle of coordinate

invariance for instance requires that a constitutive relation must not depend on a specific

coordinate system. The restriction is satisfied when the physical quantities in the formulation

are expressed using scalars, vectors and tensors with no dependency on a coordinate system.

Clearly, the constitutive relation (2.17) has satisfied this requirement.

The axiom of objectivity [129, 130] or frame indifference [131] requires that a constitutive

relation involving relevant physical quantities must be independent of observers’ stand points.

In order to satisfy this principle, transformations of the physical quantities due the presence

of the different observers must follow certain rules.
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Figure 11: A sequence of motions evaluated by two different observers denoted by φ and φ+.
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The principle of material objectivity can be described by considering a motion that is

monitored by two different observers that are moving relative to each other. Figure 11

depicts two different observers, denoted respectively by φ and φ+, both monitor the motion

given by (2.1). In order to describe physical quantities in the (three dimensional) Euclidian

space, each of the two observers is equipped with a rectangular Cartesian coordinate system

that is characterized by a set of fixed basis vectors and an origin point. We suppose that

sets of basis vectors and origin points, or reference frames [127], (O, ea) and (O+, e+
a ) are

assigned for observers φ and φ+, respectively. The observers are also furnished with clocks

to measure time differences, say t and t+ [130]. Here, without loss of generality, we suppose

that at a reference time, say t = t1, the two reference frames are coincide and both observers

use the same clock so that t = t+.

Having these two reference frames we can analyze the objectivity of some relevant physical

quantities. Quantities such as scalars s , vectors v and second order tensors S are objective

if they satisfy the following relations [132, 133, 130]:

s+ = s , v+ = Q(t).v and S+ = Q(t).S.QT (t). (2.23)

The derivations of the objectivity of these quantities can be found in, for example, Malvern

[132] and Truesdell [131]. In (2.23), Q(t) is a proper orthogonal second order tensor, i.e.,

Q(t)T .Q(t) = Q(t).QT (t) = I and detQ = +1. (2.24)

We suppose that the description of a motion (2.1) is given by observer φ. The other

observer φ+ will describe the same motion as:

x+ = χ+

κ+
1

(X+
1 , t). (2.25)

Recall however that the reference frames of the observers are coincide at the reference time

so that

κ+
1 = κ1 and X+

1 = X1. (2.26)

The most general form to relate (2.25) and (2.1) is given by [132, 133, 130]:

x+(t) = χ+
κ1

(X1, t) = c(t) + Q(t).x(X1, t), (2.27)
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where c(t) is a vector that is independent of position and X1 ∈ κ1 and Q(t) is given by

(2.24). The deformation gradient of the first mechanism relative to reference configuration

κ1 described by observer φ and φ+ are as follows:

Fκ1(t) = F1(t) =
∂χ1(X1, t)

∂X1

and F+
κ1

(t) = F+
1 (t) =

∂χ+
1 (X1, t)

∂X1

, (2.28)

respectively. Substituting (2.27) into (2.28.2) and using (2.1) we can see that F1 transforms

as follows:

F+
1 (t) = Q.F1(t). (2.29)

In a sense of the objective definition set by (2.23.3) the deformation gradient of the first

mechanism therefore is not objective.

During the motion described by (2.1), it is supposed that at t = t2 the activation criterion

of the second mechanism is satisfied. This material characteristic must be independent of

observer’s standpoint, so the activation criterion of the second mechanism is seen by the

other observer to be satisfied at t = t2. The position of a particle in body B at t = t2 is

described by the first observer as (2.9), while those will be described by the second observer

as:

x+
2 = χ+

κ1
(X1, t2) = c(t2) + Q(t2).X2, (2.30)

where the relation (2.27) has been used.

We suppose that the configurations occupied by body B at t = t2 due to the first

mechanism of the first motion and the second motion be denoted by κ2 and κ+
2 , respectively.

The second mechanism of the first motion uses κ2 as the reference configuration and is

described using (2.10), while those of the second motion uses κ+
2 as the reference configuration

and is described as follows:

x+ = χ+
κ2

(X+
2 , t). (2.31)

The deformation gradient of the second mechanism relative to κ2 is given as follows

Fκ2(t) = F2(t) =
∂χκ2(X2, t)

∂X2

, (2.32)
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which is analogous to (2.11). From observer φ+ point of view, the deformation gradient of

the second mechanism relative to κ+
2 configuration is given as follows:

F+
κ2

= F+
2 =

∂χ+
κ2

(X2, t)

∂X+
2

. (2.33)

Using chain rule for (2.33) and using the definitions given by (2.11),(2.27) and (2.30), we

find that F+
2 (t) transforms as follows:

F+
2 =

∂χ+
κ1

(X1, t)

∂x

∂x

∂X2

∂X2

∂X+
2

= Q(t).F2(t).Q
T (t2). (2.34)

Similar result can be obtained by employing (2.29) in the relation similar to (2.12) that must

be unaltered by superposed rigid body motion:

F+
2 = F+

1 .F+
1 (t2)

−1

= (Q.F1).(Q(t2).F1(t2))
−1

= Q.F1.F1(t2)
−1.QT (t2)

= Q.F2.Q
T (t2), since Q−1 = QT . (2.35)

Clearly, the transformation (2.35) shows that F2(t) is not objective (in a sense of the defini-

tion (2.23.3)).

The constitutive relations (2.3),(2.13), and (2.16) therefore must not depend on F1(t)

and F2(t) but must depend on other restricted quantities that satisfy the objectivity. Here,

however, we will show that the proposed constitutive equation (2.17) transforms according

to (2.23.3) and therefore is an objective quantity. In other word, the components of the

equation are objective. Using the definitions of (2.12),(2.34), and (2.29) , the objectivity of

the quantities B1, B2, B−1
1 and B−1

2 can be verified as follows.

The Left Cauchy-Green deformation tensor of the first mechanism denoted by B1 is

transformed as follows:

B+
1 = (F+

1 ).(F+
1 )T

= (Q.F1).(Q.F1)
T = Q.F1.(F1)

T .QT

= Q.B1Q
T . (2.36)
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The transformation of Left Cauchy-Green deformation tensor of the second mechanism B2

is given as follows:

B+
2 = (F+

2 ).(F+
2 )T

= (Q.F2.Q
T (t2)).(Q.F2.Q

T (t2))
T = Q.F2.Q

T (t2).Q(t2).F
T
2 .QT

= Q.F2.F
T
2 .QT = Q.B2.Q

T . (2.37)

Recalling that B−1
1 = (F1.F

T
1 )−1, the transformation rule for B−1

1 is given as follows:

(B−1
1 )+ = ((F+

1 ).(F+
1 )T )−1 = (B+

1 )−1

= (Q.B1Q
T )−1 = Q.B−1

1 QT . (2.38)

Similarly for the objectivity of B−1
2 can be seen as follows:

(B−1
2 )+ = ((F+

2 ).(F+
2 )T )−1 = (B+

2 )−1

= (Q.B2Q
T )−1 = Q.B−1

2 QT . (2.39)

Clearly, in the sense of (2.23.3) the second order tensors B1 B2, B
−1
1 , and B−1

2 are all objective

quantities. It is instructive that the resulting Cauchy stress tensors are also objective:

Q.T(B1,B2,B
−1
1 ,B−1

2 ).QT = T(Q.B1.Q
T ,Q.B2.Q

T ,Q.B−1
1 .QT ,Q.B−1

2 .QT ). (2.40)

We have shown that according to the objectivity restriction, the proposed formulation

(2.17) are sufficient. Wineman and Rajagopal [103] show the necessity of the dependency of

Cauchy stress T on the left stretch tensor of the first mechanism, U1 and the right stretch

tensor of the second mechanism, V2. The formulation (2.17) may be too restrictive since

it allows only isotropic materials to be involved in the mechanism. This formulation how-

ever can serve well in the current work. The activation and deactivation criteria introduced

earlier must also objective. Their transformation must follow the relation (2.23.1) for they

are scalar-valued functions. Since the deformation gradient F1 is not objective, the depen-

dency of s on F1 needs to be reformulated. The choice of scalar invariants of B1 serves the

objectivity requirement and satisfies (2.4).
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3.0 ANALYTICAL AND NUMERICAL RESULTS FOR SOME MODEL

PROBLEMS

In this section we wish to apply the dual mechanism model to some specific applications

and present the results. We will consider three homogeneous deformations; uniaxial and

biaxial loading of rectangular slabs and inflation of cylindrical membranes. In addition we

will consider two nonhomogeneous deformations; inflation of a thick cylindrical shell and

inflation of a circular membrane cap. In addition, we will also present results of unloading

for each model problem.

In Section 3.1, 3.2 and 3.3, we present results for homogeneous deformations. These prob-

lems are simple in the sense that during the deformation the strain is uniform throughout

the body and therefore both activation and deactivation criteria will be satisfied simultane-

ously throughout the body. Uniaxial loading employs only a single deformation parameter

that will simplify the form of scalar parameter s. Biaxial loading requires two deformation

parameters and therefore a scalar function of s is needed. In Section 3.3, we discuss the

inflation of a cylindrical membrane and compare the results to the existing experimental

data on inelastic behavior of cerebral tissue provided by Scott et al. [79]. Moreover, the

experimental data is used to obtain the exponential type forms and their material constants

of the proposed constitutive equation.

In Sections 3.4 and 3.5, we present results for nonhomogeneous deformations. Here,

the strain during deformation is not uniform and therefore the activation and deactivation

criteria are not satisfied simultaneously throughout the body. We will see in this section that

nonhomogeneous deformations are characterized by, depending on the deformation level, the

occurrences of fronts that divide the body into regions containing only active elastin, both

active elastin and collagen, and only active collagen.
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3.1 HOMOGENEOUS DEFORMATION: UNIAXIAL EXTENSION OF A

RECTANGULAR SLAB

3.1.1 Loading

In this section, we consider a rectangular slab of an incompressible dual mechanisms material

that is stretched in its longitudinal direction with a stretch ratio λ. As is well known, the

exact and explicit solution of the same problem for classical hyperelastic material is available

without prior specification of strain energy functions (see these solutions for examples in

Rivlin and Saunders [134] and Leigh [135]). This feature is useful for experimenters interested

in obtaining material parameters. It will be shown that such an exact solution is also available

for materials that possess dual mechanisms. This problem is governed by a single parameter

(in this case, λ) making it valuable for explaining the dual mechanism in a simple way.

With respect to the Cartesian coordinates (X,Y, Z) with the origin at the center of the

slab and the X,Y , and Z axis parallel to the sides of the slab of length Lo, Wo and Ho,

respectively, the undeformed slab occupies the following domain:

X ∈ [−Lo

2
,
Lo

2
], Y ∈ [−Wo

2
,
Wo

2
], Z ∈ [−Ho

2
,
Ho

2
]. (3.1)

In the current/deformed configuration κ, the deformed length of the slab becomes L. The

stretch ratio λ is defined as L/Lo. When only extension is considered, λ > 1. Positive

normal uniform traction t = ±σex are applied at surfaces X = ±Lo/2, respectively. The

lateral surfaces are traction free. Figure 12 shows the rectangular slab with its traction in

x direction. In the resulting deformation, the position of arbitrary material points in the

deformed or current configuration κ, identified using rectangular coordinates (x, y, z), can be

related to these position in the undeformed or initial reference configuration, κ1, identified

by rectangular coordinates (X, Y, Z), as follows:

x = λX, y =
1√
λ

Y, and z =
1√
λ

Z, (3.2)

where the incompressibility restriction has been imposed.
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Figure 12: Uniaxial extension of a rectangular slab.

We suppose that the slab is being stretched according to (3.2) without causing the second

mechanism to be activated. So here only the first mechanism, representing the response of

elastin, is active. It follows from (3.2), that the deformation gradient F1 relative to original

reference configuration κ1 is:

F1 = DIAG[λ,
1√
λ

,
1√
λ

], (3.3)

where the notation DIAG[Λ1, Λ2, Λ3] is used to denote a three by three matrix with zero off

diagonal components and nonzero Λ1, Λ2,and Λ3 as the diagonal components. Using (3.3),

the Left Cauchy Green strain tensor and its inverse: B1, and B1
−1 are:

B1 = DIAG[λ2,
1

λ
,
1

λ
], B1

−1 = DIAG[
1

λ2
, λ, λ]. (3.4)

The first and second invariants of B1 denoted by I1 and II1 , respectively are

I1 = λ2 +
2

λ
and II1 =

1

λ2
+ 2λ. (3.5)

We suppose that the second mechanism representing the mechanical response by collagen

fibers will be activated at some later level of deformation. As is discussed in previous section,

we will employ scalar parameter s as defined in (2.4) to describe both the activation and

later on the deactivation process. We suppose that the collagen recruitment and elastin

breakage each occur at s satisfying the recruitment criterion (2.8) and deactivation criterion

(2.15), respectively. However, according to (2.5), s is a function of invariants and so by (3.5),
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s = s(I1, II1) = ŝ(λ). Moreover, when s is a strictly monotonically increasing function of the

invariants, then s is also a strictly monotonically increasing function of λ. This implies that

for a given value of sa, a root, say λa, for Aa = 0 in (2.7) can be found. Note that the value

of sa and the form of s must be constructed in a way to produce λa > 1. The progression of

the deformation level can now be described simply by λ, with λa indicating the initiation of

the second mechanism.

Furthermore we suppose that at some higher level deformation, the first mechanism is

deactivated. In this case, a similar argument used before may be used to introduce λb that

satisfies sb = s(λb) for Ab = 0 in (2.14) that indicates the occurrence of the deactivation.

Here, we only consider that the deactivation occurs after the recruitment of the second

material, so λb is always greater than λa. The activation and deactivation criteria introduced

in (2.7) and (2.14), respectively then are reduced to

Aa = λ− λa and Ab = λ− λb. (3.6)

The activation of the second mechanism and deactivation of the first mechanism correspond

to λ = λa and λ = λb, respectively.

We wish to obtain the relation between σ and λ during three stages of increasing λ:

• λ < λa: The stages before the recruitment of the second material,

• λa ≤ λ < λb: The stages when the recruitment has occurred but before the deactivation

of the first mechanism, and

• λb ≤ λ: The stages after the deactivation.

Only three stages need to be evaluated since the nature of the deformation causes an instan-

taneous new material recruitment and instantaneous deactivation of the original material

and so there is no partial process that needs to be considered.

When λ < λa, corresponding to s < sa, the second mechanism is not activated and the

strain energy function described by (2.18), is given by W = W1(I1, II1). The Cauchy stress

at each material point depends only on the deformation gradient of the first mechanism, F1,
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through the relation (2.3). Following (3.4) and (2.17) for s < sa, the nonzero components of

the Cauchy stress tensor are as follows:

Txx = −p + 2λ2∂W

∂I1

− 2

λ2

∂W

∂II1

, (3.7)

Tyy = Tzz = −p +
2

λ

∂W

∂I1

− 2λ
∂W

∂I2

, (3.8)

where p is the Lagrangian multiplier arising from the incompressibility condition and the

terms accompanying it are called the extra stress of Txx,Tyy, and Tzz. Since λ is independent

of the material position, it follows that the extra stress terms in (3.7) and (3.8) are too.

Moreover, in order that (3.7) and (3.8) satisfy the equilibrium, then ∇p must be zero, i.e,

p must be a constant. This implies that the body experiences uniform stress. The zero

traction on surfaces Y = ±Ho/2 and Z = ±Wo/2 imply that Tyy = Tzz = 0. While the

nonzero traction vector ±σex on surface X = ±Lo/2 implies that Txx = σ throughout the

body. The value of p then can be obtained from (3.8) and it can be substituted into (3.7) to

obtain Txx. The relation between σ and λ are therefore:

σ = 2(−1

λ
+ λ2)(

∂W

∂I1

+
1

λ

∂W

∂II1

), (3.9)

throughout the body. For classical hyperelastic materials the relation (3.9) is true for any λ

greater than one. However, the second mechanism that will be introduced when λ = λa will

contribute to the stress generation in the body. The relation (3.9) then is true only when

1 ≤ λ < λa.

We suppose that the slab is stretched further to λ = λa. At this level of deformation,

the material points in the body will occupy the following coordinate points:

x̂ = λaX, ŷ =
1√
λa

Y, and ẑ =
1√
λa

Z. (3.10)

We denote this configuration as κ2 and let the body be further stretched so that the activation

criterion is satisfied but not the deactivation criterion. In other word, λ is increased so that

λa ≤ λ < λb. The relation (3.2) still holds for the original material (the first material). The

second material will be activated with respect to the configuration κ2. Following (3.2) and

(3.10), the relationship between the position of arbitrary material points of the recruited
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material in the current configuration κ relative to its position in reference configuration κ2

can be written as follows:

x = λX =
λ

λa

x̂, y =
1√
λ

Y =

√
λa√
λ

ŷ, and z =
1√
λ

Z =

√
λa√
λ

ẑ. (3.11)

It follows from (3.11) that the deformation gradient of the second mechanism relative to the

reference configuration κ2 , (F2), and the corresponding Left Cauchy Green strain tensor

and its inverse, B2 and B−1
2 , respectively, are:

F2 = DIAG[
λ

λa

,

√
λa√
λ

,

√
λa√
λ

], (3.12)

B2 = DIAG[
λ2

λ2
a

,
λa

λ
,
λa

λ
], B2

−1 = DIAG[
λ2

a

λ2
,

λ

λa

,
λ

λa

]. (3.13)

Generally, the deformation gradient F2 can be obtained using (2.12) with t = t2 corresponds

to λ = λa.

After the second mechanism is activated, the strain energy function is composed of two

contributions: W1 and W2 representing the original and the recruited materials, respectively,

as is described in (2.18) for sa ≤ s < sb. It follows from (2.17), (2.18),(3.4), and (3.13), that

the nonzero components of Cauchy stress tensor are as follows :

Txx = −p + 2λ2∂W

∂I1

− 2

λ2

∂W

∂II1

+ 2
λ2

λ2
a

∂W

∂I2

− 2
λ2

a

λ2

∂W

∂II2

, (3.14)

Tyy = Tzz = −p +
2

λ

∂W

∂I1

− 2λ
∂W

∂II1

+ 2
λ

λa

∂W

∂I2

− 2
λa

λ

∂W

∂II2

. (3.15)

The stress strain relations (3.14) and (3.15) can be solved so that they satisfy the equilibrium

equation and the boundary conditions using the procedure previously described. It follows

that relation between σ and λ, when λa ≤ λ < λb is:

σ = 2(−1

λ
+ λ2)(

∂W

∂I1

+
1

λ

∂W

∂II1

) + 2(−λa

λ
+

λ2

λ2
a

)(
∂W

∂I2

+
λa

λ

∂W

∂II2

). (3.16)
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We now consider stretch with λ ≥ λb, when the deactivation criterion of the first mechanism

is satisfied throughout the body. At this state of deformation the original material is deac-

tivated and so the strain energy function contributed by the first mechanism is disregarded.

Therefore, for λb ≤ λ:

W = W2(I2, II2), (3.17)

as is described in (2.18) for sb ≤ s. It follows from (2.17), (2.18), and (3.13) that the nonzero

components of Cauchy stress tensor are:

Txx = −p + 2
λ2

λ2
a

∂W

∂I2

− 2
λ2

a

λ2

∂W

∂II2

, (3.18)

Tyy = Tzz = −p + 2
λ

λa

∂W

∂I2

− 2
λa

λ

∂W

∂II2

. (3.19)

The use of standard procedures previously employed for λ < λb reveals the following relation

between σ and λ:

σ = 2(−λa

λ
+

λ2

λ2
a

)(
∂W

∂I2

+
λa

λ

∂W

∂II2

), (3.20)

that can be obtained simply by removing the first term of (3.16).

3.1.2 Unloading

We shall now study the behavior of the relations between σ and λ during decreasing λ. We

suppose that the maximum of the stretch ratio λ before unloading is denoted by λ∗. It

follows from the loading cases that only three cases of λ∗ must be considered:

• Case 1: λ∗ < λa

In this case, the unloading begins before the onset of collagen fibers recruitment. The

unloading path will follow the curve of σ versus λ for λ < λa (3.9). Here, the material

response resembles that of classical hyperelastic materials. It can be seen from (3.9), the

zero stress corresponds to λ = 1, the original reference configuration, κ1.

• Case 2: λa ≤ λ∗ < λb

In this case, the collagen fibers have been recruited when the unloading begins. However,

the recruited material only contributes when λ ≥ λa and the contribution will be ceased
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when the criterion is not satisfied, i.e. λ < λa. So during unloading, the relation for σ

versus λ follows (3.16) when λ ≥ λa and it follows (3.9) when λ < λa. It is clear therefore

that in this case, the slab will return to the original reference configuration for its zero

stress condition.

• Case 3: λ∗ ≥ λb

Here, the unloading begins after the elastin breakage at λ = λb. When λ is reduced so

that λ < λb, the degraded elastin, cannot be reactivated. The path of the unloading

curve therefore cannot follow (3.16) nor (3.9), instead it follows (3.20). However, it can

be seen from (3.20) that the zero stress (σ = 0) corresponds to λ = λa > 1. This

implies that the slab doesn’t return to its original undeformed configuration but rather

it occupies a new unloaded configuration. The unloaded configuration corresponds to

the reference configuration of the second mechanism or recruited material.

3.1.3 Summary

The exact solution of a slab composed of dual mechanism material undergoing uniaxial ex-

tension has been presented. Clearly, the solution doesn’t require specification of the strain

energy function W a priori. Namely, the deformation is a controllable deformation for the

dual mechanism material. It can be seen in (3.9), (3.16), and (3.20) that in this deforma-

tion, the deformation parameters sa and sb are simplified to the stretch ratios λa and λb,

respectively.

The relation between σ and λ in (3.9) can be seen as a composition of a functional of

stretch, denote E(Λ), defined as

E(Λ) ≡ 2(− 1

Λ
+ Λ2) (3.21)

and functional of derivatives of the strain energy function, denote w1, defined as

w1(λ) ≡ (
∂W

∂I1

+
1

λ

∂W

∂II1

) (3.22)

that is commonly known as the response function (see Rivlin and Sanders [134]). The relation

(3.9) can be written as follows;

σ = E(λ)w1(λ). (3.23)
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Table 1: The relation between σ and λ during uniaxial loading. The definitions of

E(Λ), w1, w2 are given by (3.21),(3.22),and (3.24), respectively.

Range of λ σ vs. λ

1 ≤ λ < λa σ = E(λ)w1(λ)

λa < λ ≤ λb σ = E(λ)w1(λ) + E( λ
λa

)w2(λ)

λb ≤ λ σ = E( λ
λa

)w2(λ)

The same functional E but with different argument; Λ = λ/λa, can be seen in the second

term of (3.16) and also in (3.20). Another response function is found in (3.16) and (3.20),

denoted w2, and defined as follows;

w2(λ) ≡ (
∂W

∂I2

+
λa

λ

∂W

∂II2

). (3.24)

Using the definitions of E, w1 and w2 above, the relationship between σ and λ during

loading and unloading can be summarized in Tables 1 and 2. Generally, the two strain

energy functions W1 and W2 for (2.18) can be of two different types. In Table 4, values

of the response functions w1 and w2 used in (3.9),(3.16) and (3.20) for different types of

strain energy functions are presented. In that table, α1, β1 and γ1 are material parameters of

the first mechanism, while α2, β2, and γ2 are of the second mechanism. While the response

functions: w1 and w2 are simply constants for Neo Hookean materials, w1 for Mooney Rivlin

materials is a linear function of stretch ratio, λ. For the second mechanism, w2 for Mooney

Rivlin materials still depends linearly on λ, since λa is merely a constant. Here, λa serves as

an indirect material parameter that can be derived from the more general scalar parameter

sa that indicates the deformation level of the initiation of the second mechanism. For the

exponential type strain energy, the first invariants of the first and second mechanisms denoted

by I1 and I2, respectively, are included in the response functions. The first invariant of the

second mechanism, I2, for uniaxial stretching is:

I2 =
λ2

λ2
a

+ 2
λa

λ
. (3.25)
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Table 2: The relation between σ and λ during uniaxial unloading for three different possible

maximum stretch λ∗. The definitions of E(Λ), w1, w2 are given by (3.21),(3.22),and (3.24),

respectively.

Location of λ∗ Range of λ σ vs. λ

1 ≤ λ∗ < λa 1 ≤ λ < λa σ = E(λ)w1(λ)

λa ≤ λ∗ < λb λa < λ ≤ λb σ = E(λ)w1(λ) + E( λ
λa

)w2(λ)

1 ≤ λ < λa σ = E(λ)w1(λ)

λb ≤ λ∗ 1 ≤ λ σ = E( λ
λa

)w2(λ)

Table 3: Examples of W1 and W2 from commonly used strain energy functions.

W W1 W2

Neo Hookean α1

2
(I1 − 3) α2

2
(I2 − 3)

Mooney Rivlin α1

2
(I1 − 3) + β1

2
(II1 − 3) α2

2
(I2 − 3) + β2

2
(II2 − 3)

Exponential α1

2γ1
eγ1(I1−3) α2

2γ2
eγ2(I2−3)

Table 4: Some examples of w1 and w2 for uniaxial extension derived from the strain energy

functions tabulated in Table 3. The definitions of w1 and w2 are given by (3.22) and (3.24),

respectively.

W w1(λ) w2(λ)

Neo Hookean α1

2
α2

2

Mooney Rivlin α1

2
+ β1

2
1
λ

α2

2
+ β2

2
λa

λ

Exponential α1

2
eγ1(I1−3) α2

2
eγ2(I2−3)
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Table 5: Material parameters for exponential type strain energy function (2.21) used as

an example in this chapter. Parameters sa and sb indicate the activation and deactivation

criteria, respectively.

Material parameters

α1 (103dynes/cm2) 71.21986

γ1 0.6224785

α2 312.6121

γ2 1.867605

sa 1.4237

sb 3.479

3.1.4 An example and discussion

It will be useful to consider a specific example for the strain energy density function W

and plot the curves of σ versus λ. We will present results for an exponential strain energy

function (2.21), since this type is most relevant to this work. Table 5 displays values of the

six material parameters used in this discussion. These values are obtained from a nonlinear

regression analysis of real experimental data that will be discussed Section 3.3 where the

inflation of a cylindrical membrane is discussed. The results of uniaxial extension of the dual

mechanism material (2.21) with material constants given in Table 5 are presented in Figure

13. Four curves depicted in Figure 13. Curve OAB shows the relation σ(λ) for selected W

without activating the second mechanism, thus mimicking the response of a classical elastic

material. Curve OAC shows the results of activating the second mechanism that represents

the recruited material without considering the deactivation of the first material. Here, the

second mechanism occurs when the deformation parameter s reaches sa corresponding to

λ = λa = 1.8241 indicated by point A. It can be seen that curve OAC deviates from curve

OAB at point A to a stiffer relation as is expected when the second mechanism contributes

to the load bearing. The two curves OAB and OAC represent the unloading paths as well as

loading paths. When unloading occurs along three curves, the deformed body will return to
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Figure 13: Resulting σ vs. λ curves of a material composed of two mechanisms both of

which are represented by an exponential type strain energy function under uniaxial stretch

(loading and unloading). The second mechanism is initiated at λ = λa = 1.8241 and the

first mechanism is terminated at λ = λb = 2.374.
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point O, the original reference configuration. Line OAC’DE represents the relation of σ(λ)

when the first mechanism is deactivated, which represents the elastin breakage, following the

recruitment or the activation of the second mechanism. The deactivation occurs when the

stretch ratio λ = λb = 2.374, indicated by point C’, corresponds to deformation parameter

s = sb. The jump that occurs at C’ clearly is caused by the termination of the participation

of the first mechanism in the load bearing. This termination happens abruptly throughout

the body at a single stretch ratio, λ = λb. Curve DE therefore shows the response of material

to further load bearing when only the second mechanism is active. Since the reactivation of

damaged elastin is not considered, the unloading that occurs after λ = λb will not follow line

EDC‘AO. Instead, curve EDF indicates the path taken by such an unloading case. Clearly,

the zero stress state corresponds to a value of λ > 1 indicated by point F. This stretch ratio,

not surprisingly, corresponds to λ = λa, the stretch ratio at which the second mechanism

is activated. Hence, the unloaded configuration is the reference configuration of the second

mechanism that differs from the original reference configuration.

The last unloading case suggests one method for experimentally handling material pa-

rameter identification of λa, i.e to detect or obtain the level of deformation at which the

second mechanism is activated. For a dual mechanism material of which each of the cri-

terion, either the activation or deactivation, occurs abruptly, the values of λa and λb, in

theory, can be discovered by performing unloading for increasing values of λ∗ until a new un-

loaded configuration is revealed. The new unloaded configuration theoretically corresponds

to λ = λa. The corresponding λ∗ theoretically can give an approximation of the value of λb.

The values of sa and sb can be determined from measuring λa and λb and using the form of

s(I1, II1) that is formulated through experiments.

The curve FDE can be viewed as a new loading and unloading curve for an elastic

material with a reference configuration corresponding to λ = λa. The response therefore

can be seen as classical elastic response with a single mechanism (the second mechanism).

The overall response of the material however is inelastic in a sense that the material doesn’t

return to the original reference configuration. The very important feature of this model is the

coupling of two elastic responses: before and after the breakage, in one deformation history.

This allows us to model the transition of a normal nonaneurysmal arterial wall section to an
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aneurysmal wall section. And this is particularly important for more complex deformations

where the tissue cannot be merely treated as two different elastic materials.

3.2 HOMOGENEOUS DEFORMATION: BIAXIAL EXTENSION OF A

RECTANGULAR SLAB

3.2.1 Loading

In this section, we will discuss biaxial extension of a dual mechanism rectangular slab,

for which both mechanisms are hyperelastic, isotropic, and incompressible. As is known,

an explicit solution of biaxial extension of classical hyperelastic materials is available even

without prior specification of the strain energy function [134, 135]. The availability of such a

solution and it’s simple boundary conditions attract investigators to perform biaxial stretch

experiments on both rubbery materials [134, 136] and biological tissue samples [120]. We

will show here that within the framework of dual mechanism materials, an exact solution

is also available. More importantly, the problem is presented to show the use of scalar

parameter s defined in (2.4) for describing the deformation stages experienced by the slab.

As is explained in the previous section, the parameter s is used to determine the initiation

of the second mechanism and the termination of the first mechanism.

With respect to Cartesian coordinates (X, Y, Z) with the origin at the center of the slab

and the X,Y , and Z axis parallel to the sides of length Lo,Wo, and Ho, respectively, the

undeformed slab occupies the following domain:

X ∈ [−Lo

2
,
Lo

2
], Y ∈ [−Wo

2
,
Wo

2
], Z ∈ [−Ho

2
,
Ho

2
]. (3.26)

We first suppose that the slab is biaxially stretched without causing the second mechanism

(collagen recruitment) to be activated. Therefore only one mechanism (representing elastin

activity) is active during this process. In the deformed or current configuration κ, the

deformed length and width of the slab are L and W , respectively. The extension ratios in the

longitudinal (X) and lateral (Y ) directions are given by λx = L/Lo ≥ 1 and λy = W/Wo ≥ 1,

respectively. At surfaces X = ±Lo/2 and Y = ±Wo/2, we apply positive normal uniform
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Figure 14: Biaxial stretch of a rectangular slab.

traction ±σxex and ±σyey, respectively. The remaining surfaces are traction free. Figure

(14) shows the rectangular slab with its traction in x and y directions. We wish to obtain

the relations between σx and σy and λx and λy. The relationship between the position of

arbitrary material points in the deformed or current configuration κ, identified by rectangular

coordinates (x, y, z), relative to its position in the undeformed or reference configuration κ1

identified by coordinates (X, Y, Z) is as follows:

x = λxX, y = λyY, and z = λzZ =
Z

λxλy

, (3.27)

where λx and λy are constants representing the stretch ratios in the longitudinal and lateral

directions, respectively. It can be seen in (3.27) that the restriction of material incompress-

ibility, λxλyλz = 1, has been implemented.

The body with active first mechanism (representing elastin) in κ1 deforms according to

(3.27). The deformation gradient of the first mechanism denote F1 relative to the original

reference configuration κ1 is obtained from (3.27) as follows:

F1 = DIAG[λx, λy,
1

λxλy

]. (3.28)

The Left Cauchy Green strain tensor and its inverse for the first mechanism, B1 and B1
−1,

can be obtained from (3.28), and are as follows:

B1 = DIAG[λ2
x, λ

2
y,

1

λ2
xλ

2
y

], B1
−1 = DIAG[

1

λ2
x

,
1

λ2
y

, λ2
xλ

2
y]. (3.29)
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The first and second invariants of B1 denote I1 and II1, respectively are:

I1 = λ2
x + λ2

y +
1

λ2
xλ

2
y

, II1 =
1

λ2
x

+
1

λ2
y

+ λ2
xλ

2
y. (3.30)

Here, since the deformation is described using two deformation parameters; λx and λy, it

is convenient to employ the scalar parameter s as is defined in (2.4), with the invariants

I1 = I1(λx, λy) and II1 = II1(λx, λy) given by (3.30) as the arguments.

We suppose that at this deformation level, the second mechanism is not activated yet.

The Cauchy stress tensor therefore is generated based on the strain energy function W = W1

as described in (2.18) for s < sa. Therefore, the nonzero components of the Cauchy stress

tensor obtained from (2.17),(2.18) and (3.29. 1 and 2) are as follows:

Tαα = −p + 2λ2
α

∂W

∂I1

− 2

λ2
α

∂W

∂II1

, (3.31)

where α = x or y and no sum on α.

Tzz = −p +
2

λ2
xλ

2
y

∂W

∂I1

− 2λ2
xλ

2
y

∂W

∂II1

. (3.32)

Clearly, (3.29) imply that the off diagonal components are zero. Moreover, since both λx and

λy are constants, the extra stress tensor for each of the nonzero components are constant too.

Moreover, the equilibrium equations Tij,j = 0, implies that p is a constant and therefore the

stresses are uniformly distributed throughout the body and the boundaries. Zero traction

at the Z = ±Ho/2 surfaces implies that Tzz = 0 throughout the body, while the nonzero

traction applied at other surfaces imply that Tyy = σy and Txx = σx throughout the body.

The Lagrangian multiplier p can be obtained from (3.32) and can be substituted into (3.31),

to obtain the following relations:

σα = 2(λ2
α − λ2

z)(
∂W

∂I1

+
1

λ2
αλ2

z

∂W

∂II1

), (3.33)

where λz = 1/(λxλy) and α = x or y.

We now suppose that the deformation continues and the second mechanism is activated.

During loading, the deformation parameter s increases as the stretch progresses. We sup-

pose that the activation criterion and the deactivation criterion given by (2.8) and (2.15),

respectively, are used in this problem. As mentioned before, we will employ (2.5) to measure
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the deformation level. More specifically, in this example we will use the formulation for s

introduced in Chapter 2 (equation 2.22). Here, I1 is given by (3.30) and the expanded s

formulation for this case is given as follows:

s = ŝ(λx, λy) = λ2
x + λ2

y +
1

λ2
xλ

2
y

− 3. (3.34)

We suppose that the activation criterion (2.8) is met when λx = λxa and λy = λya, where

s = ŝ(λxa, λya) = sa. Generally, there is an infinite number of combinations of λxa and λya

that satisfy the criterion (2.8) (for all possible loading paths). So, unlike the uniaxial case,

there is a set of configurations, say Ka, satisfying the activation criterion, (2.8). Similarly,

there is a set of configurations, say Kb, satisfying the deactivation criterion (2.15). We denote

the pairs of λx and λy satisfying (2.15) as λxb and λyb, respectively. Clearly, recalling (3.34),

ŝ(λxb, λyb) = sb. The pairs of λxa and λya can be plotted on a 2D coordinate system with

λx and λy as the axes. The pairs form a curve along which the s values equal to sa (s = sa

curve). Similarly, the plot of (λxb, λyb) form another curve along which s = sb (s = sb curve).

Figure 15 shows curves PQ and RS representing s = sa and s = sb curves, respectively.

Figure 15 also displays two examples of possible loading paths represented by lines OC and

OD. The two paths represent loading paths for which λy are linearly dependent on λx. The

loading path OC crosses the sa curve at point A, while the loading path OD crosses the same

curve at point F. Points A and F indicate two different configurations, yet they can equally

function as the reference configuration of the activated second mechanism. Similarly, the

two loading paths cross the sb curve at two different locations (denoted by points B and E)

representing two possible configurations at which the first mechanism is deactivated.

We suppose that we have reached a configuration at which s = sa. Because the deforma-

tion is homogeneous, s will be uniform throughout the body and provided that sa is space

independent, the activation criterion will be satisfied simultaneously throughout the body.

When λx = λxa and λy = λya, the body will take the following configuration, denoted by

κ2 ∈ Ka:

x̂ = λxaX, ŷ = λyaY, and ẑ =
1

λxaλya

Z. (3.35)

At this deformation level, the second mechanism, representing the recruited material, is

activated. When the body is further deformed, the original or old material will deform
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Figure 15: The curves of s = sa (PQ) and s = sb (RS) for the biaxial stretch case. The

lines OC and OD show examples of two possible loading paths. The two lines cross s = sa

and s = sb curves at two different locations for each curve, indicating that each criterion,

activation or deactivation, can be satisfied at more than one configuration.
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according to the first mechanism. The deformation gradient of the mechanism of the original

material relative to reference configuration κ1 is still given by (3.28). The recruited material,

however, will take configuration κ2 as its reference configuration. The deformation gradient

relative to configuration κ2 can be described using (3.27) and (3.35). The mapping can be

written as follows:

x = λxX =
λx

λxa

x̂, y = λyY =
λy

λya

ŷ, and z =
Z

λxλy

=
λxaλya

λxλy

ẑ, (3.36)

where the incompressibility restriction is used. The gradient of deformation of the second

mechanism relative to reference configuration κ2 and the Left Cauchy Green tensor of the

second mechanism and its inverse are:

F2 = DIAG[
λx

λxa

,
λy

λya

,
λxaλya

λxλy

]. (3.37)

B2 = DIAG[
λ2

x

λ2
xa

,
λ2

y

λ2
ya

,
λ2

xaλ
2
ya

λ2
xλ

2
y

], B2
−1 = DIAG[

λ2
xa

λ2
x

,
λ2

ya

λ2
y

,
λ2

xλ
2
y

λ2
xaλ

2
ya

]. (3.38)

The deformation gradient (3.37) can be recovered using relation (2.12) with F1 given by

(3.28), to obtain:

F2 = F1.F1
−1|(λxa,λya) (3.39)

Therefore, the deformation gradient F2 is the product of the deformation gradient of the

first mechanism and its inverse, evaluated at s = sa.

The nonzero components of Cauchy stress tensor are obtained from (2.17), (2.18) for

sa ≤ s < sb, (3.29), and (3.38) as follows:

Tαα = −p + 2λ2
α

∂W

∂I1

− 2

λ2
α

∂W

∂II1

+ 2
λ2

α

λ2
αa

∂W

∂I2

− 2
λ2

αa

λ2
x

∂W

∂II2

, (3.40)

where α = x or y and

Tzz = −p + 2
1

λ2
xλ

2
y

∂W

∂I1

− 2λ2
xλ

2
y

∂W

∂II1

+ 2
λ2

xaλ
2
ya

λ2
xλ

2
y

∂W

∂I2

− 2
λ2

xλ
2
y

λ2
xaλ

2
ya

∂W

∂II2

. (3.41)

The boundary conditions, equilibrium equations and previously used standard arguments

will lead to the following relations:

σα = 2(λ2
α − λ2

z)(
∂W

∂I1

+
1

λ2
αλ2

z

∂W

∂II1

) + 2(
λ2

α

λ2
αa

− λ2
za

λ2
z

)(
∂W

∂I2

+
λ2

αaλ
2
za

λ2
αλ2

z

∂W

∂II2

), (3.42)
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where α = x or y, so λαa is either λxa or λya, and λz = 1/(λxλy), λza = 1/(λxaλya). We can

see that (3.42) is composed of the stress contribution of the original material, shown in the

first term, and the contribution of the recruited material, shown in the second term.

We will suppose that after the second mechanism is activated, s increases so that s =

sb > sa. In any case, the deactivation is initiated when λx = λxb and λy = λyb, where

s = ŝ(λxb, λyb) = sb. Similar to the activation case, there is a set of configurations, say Kb,

satisfying deactivation criterion (2.15).

When the level of deformation is further increased until s > sb, the contribution of the

first mechanism in (3.42) is terminated. The strain energy function W now is composed of

only the second mechanism, so that W = W2(I2, II2) as described in (2.18) for sb ≤ s. The

stresses can be obtained from (2.17), (2.18) for sb ≤ s, and (3.38) as follows:

Tαα = −p + 2
λ2

α

λ2
αa

∂W

∂I2

− 2
λ2

αa

λ2
x

∂W

∂II2

, (3.43)

where α = x or y and no summation on α and

Tzz = −p + 2
λ2

xaλ
2
ya

λ2
xλ

2
y

∂W

∂I2

− 2
λ2

xλ
2
y

λ2
xaλ

2
ya

∂W

∂II2

. (3.44)

Using similar procedure previously used for s ≤ sa, the equilibrium equations and the

boundary conditions lead to the following relations:

σα = 2(
λ2

α

λ2
αa

− λ2
za

λ2
z

)(
∂W

∂I2

+
λ2

αaλ
2
za

λ2
αλ2

z

∂W

∂II2

), (3.45)

where α = x or y. We note that the last relation (3.45) can be obtained simply by removing

the contribution of the first mechanism in the first term of (3.42).
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3.2.2 A special case: equibiaxial extension

When both stretch ratios; λx and λy are maintained equal, so that λx = λy = λ during

the loading (equibiaxial extension), the relations (3.33),(3.42) and (3.45) are simplified. It

should be clear from (3.33) that during equibiaxial loading, σx and σy become equal, say

equal to σ, and the following relation is true:

σ = 2(λ2 − 1

λ4
)(

∂W

∂I1

+ λ2 ∂W

∂II1

). (3.46)

When λ is increased so that s, defined by (3.30) for λx = λy = λ, is equal to sa, the second

mechanism is activated. The body occupies configuration κ2 ∈ Ka where the value of the

scalar parameter s is given by λ = λa where s(I1(λ), II1(λ)) = sa. Here, λa is a special case

of the set of pairs of λxa, λya that have equal value.

Provided that λxa = λya = λa, it’s easy to see that in (3.42), (and of course in (3.45)),

σx = σy = σ. When the loading is continued and s is increased, so that sa ≤ s < sb, relation

(3.42) therefore become

σ = 2(λ2 − 1

λ4
)(

∂W

∂I1

+ λ2 ∂W

∂II1

) + 2(
λ2

λ2
a

− λ4
a

λ4
)(

∂W

∂I2

+
λ2

λ2
a

∂W

∂II2

). (3.47)

Moreover, it should follow that when λ is increased so that deactivation criterion s = sb is

satisfied, the relation (3.45) becomes

σ = 2(
λ2

λ2
a

− λ4
a

λ4
)(

∂W

∂I2

+
λ2

λ2
a

∂W

∂II2

). (3.48)
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3.2.3 Unloading

In this subsection, we will discuss the behavior of σx and σy during unloading for the general

biaxial cases. We suppose that at some deformation level, say at s = s∗ given by λx = λ∗x

and λy = λ∗y, we decrease s to the zero stress state. As in the case of uniaxial extension,

three cases of s∗ must be considered; s∗ < sa, sa ≤ s∗ < sb and sb ≤ s∗.

• Case 1: s∗ < sa

In this case, the unloading starts before the recruitment of the new material. This is

similar to unloading of an elastic material with a single mechanism. Therefore, during

the unloading, the relations (3.33) are used. It can be seen from (3.33) that the zero

stress will be achieved when λx = λy = λ = 1, corresponding to the original reference

configuration κ1.

• Case 2: sa ≤ s∗ < sb

In this case, the unloading starts when the new material has been recruited but the

original material is still load bearing. When s is decreased from s∗ to s = sa, both mech-

anisms are active and the strain energy is given by W = W1(I1, II1) + W2(I2, II2). The

relation in (3.42) are valid during the unloading process. The path of unloading doesn’t

have to be the same path used during loading from sa to s∗. Hence, the configuration

taken by the body when s = sa during unloading can be different from the configuration

when s = sa during loading. So, λxa and λya in (3.42) can differ from the one we used

during loading. When the unloading proceeds so that s < sa, the contribution of the sec-

ond mechanism is ceased. We don’t consider the possibility that the recruited material

contributes compressive stress after it reaches zero stress and therefore the strain energy

is given by W = W1(I1, II1) and the stresses versus stretch relations are given by (3.33).

As in the previous unloading case, any unloading path will lead to the zero stress state

corresponding to the reference configuration κ1.

• Case 3: sb ≤ s∗

In this last case, the unloading starts when the first material is deactivated permanently,

that is sb ≤ s∗. When s is decreased from s∗ to sb, the relations (3.45) are valid.

When the unloading is continued so that s < sb, the deactivated material cannot be
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recovered, therefore the strain energy is still given by W = W2(I2, II2) and the relations

(3.45) are still used for σx and σy. We can see from (3.45) that the zero stress state

corresponds to λx = λxa and λy = λya. Here, the values of λxa and λya; as long as they

satisfy s(λxa, λya) = sa, do not have to be the same as λxa and λya during loading, since

unloading can follow a different path from loading. The configuration taken by the body

after unloading at zero stress is denoted by κ′2 and κ′2 ∈ Ka and κ′2 6= κ1.

3.2.4 Summary

The analytical solutions for biaxial stretch of a dual mechanism slab for which each mecha-

nism is an isotropic, incompressible, hyperelastic material have been presented in equations

(3.33),(3.42), and (3.45). The analytical solutions for equibiaxial stretch are presented in

equations (3.46),(3.47), and (3.48). Clearly, no specific strain energy function W is required

to obtain the solutions.

Similar to the uniaxial stretch case, the relations between σα and λα, α = x or y, during

loading and unloading can be summarized in a compact manner. The relation (3.33) can be

seen as composition of a function of stretch ratios, denoted E(Λ, Γ), defined as:

E(Λ, Γ) ≡ 2 ∗ (Λ2 − Γ2) (3.49)

and a response function, denoted w1α (α is either x or y), as a function of λα and λz, defined

as:

w1α ≡ (
∂W

∂I1

+
1

λ2
αλ2

z

∂W

∂II1

). (3.50)

Making use these definitions, (3.33) can be written as follows:

σα = E(λα, λz)w1α. (3.51)

It can be seen that the function E is used in the second term of (3.42) and (3.45) with λα/λαa

as arguments. Another response function w2α is introduced for (3.42) and (3.45) and it is

defined as;

w2α ≡ (
∂W

∂I2

+
λ2

αaλ
2
za

λ2
αλ2

z

∂W

∂II2

). (3.52)

Using the above definitions of E, w1α, and w2α, the relations between σα and λα (α is either
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Table 6: The relations between σα and λα (α = x or y) during biaxial loading. The definitions

of E(Λ, Γ), w1α and w2α are given by (3.49), (3.50), and (3.52), respectively.

Range of s σα vs. λα

1 ≤ s < sa σα = E(λα, λz)w1α

sa < s ≤ sb σα = E(λα, λz)w1α + E( λα

λαa
, λz

λza
)w2α

sb ≤ s σα = E( λα

λαa
, λz

λza
)w2α

Table 7: The relations between σα and λα (α = x or y) during biaxial unloading for different

maximum deformation level s∗. The definitions of E(Λ, Γ), w1α and w2α are given by (3.49),

(3.50), and (3.52).

Location of s∗ Range of λα σα vs. λα

1 ≤ s∗ < sa 1 ≤ s < sa σα = E(λα, λz)w1α

sa ≤ s∗ < sb sa < s ≤ sb σα = E(λα, λz)w1α + E( λα

λαa
, λz

λza
)w2α

1 ≤ s < sa σα = E(λα, λz)w1α

sb ≤ s∗ 1 ≤ a σα = E( λα

λαa
, λz

λza
)w2α
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Table 8: Some examples of w1α and w2α for biaxial stretch. The definitions of w1α and w2α

are given by (3.50) and (3.52), respectively.

Type of W w1α w2α

Neo Hookean α1 α2

Mooney Rivlin α1 + β1
1

λ2
αλ2

z
α2 + β2

λ2
αaλ2

za

λ2
αλ2

z

Exponential α1e
γ1(I1−3) α2e

γ2(I2−3)

x or y) during loading and unloading can be summarized in Tables 6 and 7, respectively.

In Table 8, we display w1α and w2α for some specific strain energy functions: Neo Hookean,

Mooney Rivlin and Exponential type strain energy function. The definition of each strain

energy function can be seen in Table 3. In Table 8, α1, β1, and γ1 are material parameters for

the first mechanism, while α2, β2, and γ2 are those of the second mechanism. The exponential

type model contains the first invariants of the first and second mechanism, denoted I1 and

I2, respectively, where I1 is given by (3.30.1) and I2 = λx/λxa +λy/λya +λxaλya/λxλy. As in

the uniaxial case, the combinations of W1 and W2 in (3.33),(3.42), and (3.45) for biaxial case

and in (3.46),(3.47), and (3.48) for equibiaxial case, do not have to be of the same type.

3.2.5 An example and discussion

As an example, we consider here the results of a slab made of the exponential type hypere-

lastic material given in (2.21) with its material parameters given in Table 5 that undergoes

biaxial extension where λy and λx are maintained in the following relation:

(λy − 1) =
2

5
(λx − 1) (3.53)

during loading and unloading. This biaxial ratio is also employed in Rajagopal and Wineman

[104]. We suppose that the scalar parameter s depends solely on the first invariant of the

first mechanism I1 as is given in (3.34). Figure (15) depicts the s = sa = 1.4237 curve (PQ

curve) and s = sb = 3.4791 curve (RS curve). In this figure, the loading path used in this

example is represented by the straight line OC. The loading path OC crosses PQ curve at
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Figure 16: Resulting σx vs λx curves for biaxial stretch of a block with material parameters

given in Table 5. Here, λxa and λxb correspond to sa=1.4237 and sb=3.4790, respectively.
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Figure 17: Resulting σy vs λy curves for biaxial stretch of a block with material parameters

given in Table 5.Here, λya and λyb correspond to sa=1.4237 and sb=3.4790, respectively.
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A (λxa = 1.6192 and λya = 1.2477), when the second mechanism is activated. Moreover,

when the loading is continued, the loading path crosses the RS curve at B (λxb = 2.0779 and

λyb = 1.4312) when the first mechanism is deactivated. We suppose that the loading stops

at point C at which the unloading begins. This is the case where the unloading occurs after

the deactivation of the first mechanism representing total elastin breakage.

The functions σx(λx) and σy(λy) during loading and unloading are given in Figure 16 and

17, respectively. In each figure the line OB represents the solution for the selected material

without activating the second mechanism. So, curve OB represents a solution of a classical

elastic material with the same material parameters. Curve OC in both Figures 16 and 17,

display the results for the selected material when the second mechanism is activated at s = sa.

Here, we see that the material becomes slightly stiffer than before the activation. Lines

OC’DE in both figures indicate the solution for our material experiencing both the activation

of the second mechanism and the deactivation of the first mechanism. The deactivation of

the first mechanism is indicated by the drop of the material response (stress values). As

was seen in the uniaxial case, line EDF indicates the path of material response taken by an

unloading case that occurs after deactivation. We suppose that the stretch ratios λx and λy

during unloading take the relation (3.53) as well. This line EDF also indicates a new elastic

regime of the material beside curve OB.

The unloading case for biaxial stretch suggests a possible improved experimental method

for obtaining the parameters sa and sb associated with the activation criterion. While the

uniaxial unloading may lead to the recovery of the activation stretch ratio λa, the biaxial

loading and unloading can lead us to recover a specific functional form of s and corresponding

critical value sa. The process can be done by performing the unloading Case 3 in which the

entire elastin is deactivated when the maximum s∗ is attained. So in this case s∗ > sb.

The value of sb is also unknown, so a priori there is no certainty that loading causes total

deactivation. One technique to overcome this is to perform loading and unloading for a

specific loading path for increasing values of s∗ i.e maximum λx and λy. According to our

proposed theory, the slab will return to the reference configuration κ1 when s∗ < sb or

otherwise to a new reference configuration, which corresponds to the activation state. Thus,

the loading and unloading must be repeated until a permanent deformation is obtained. The
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permanent deformation will correspond to some point in the λx vs. λy diagram as is shown

in Figure 15. This procedure then is repeated for other loading paths to produce more points

corresponding to different permanent deformation states. The resulting collection of points

on the λx vs. λy diagram should form a curve of s = sa similar to that indicated by curve

PQ in Figure 15. The resulting curve can be used to determine the formulation of s and the

value of sa. Note however that the proposed approach assumes that the different samples

that are used for the loading and unloading procedure possess similar forms of s and values

of sa.

3.3 HOMOGENEOUS DEFORMATION: INFLATION OF A

CYLINDRICAL MEMBRANE

3.3.1 Loading

In this section, we consider the idealized problem of inflation of a dual mechanism cylindri-

cal membrane, for which both mechanisms are hyperelastic, isotropic, and incompressible.

Uniform pressures Pi and Po are applied on its inner and outer wall, respectively. In classical

mechanics, the analytical solution for this problem is available and is very useful for material

identification [137, 138]. Many experiments aimed at material identification of the arterial

wall are performed using this idealized solution. The idealized solution considers cylindrical

membrane of infinite length, constant wall thickness and constant radius along the length.

In reality, the segment has finite fixed length and the radius along the sample segment may

not be constant. In experiments, the pressure at the inner wall of the cylinder is produced

by fluid perfusion. Here, investigators control the volume change of the intact segment and

monitor the pressure that produces the changes.

The analytical solution of this problem for a dual mechanism cylindrical membrane for

which both mechanism are hyperelastic, isotropic and incompressible will be presented in

this section. We also consider specific strain energy functions for W1 and W2 and compare

the results to available experimental data and obtain the material parameters for cerebral

arterial and aneurysm walls. The data are extracted from experimental results presented
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Figure 18: Inflation of a cylindrical membrane.

in Figure 5 in Scott et al.[79]. Exponential type functions will be employed to represent

both the first and second mechanisms in (2.21). The Neo Hookean and Mooney Rivlin and

their combinations were also evaluated but the results were not satisfactory. The regression

analysis results for other strain energy functions are presented in Appendix B

With respect to the cylindrical coordinate system (R, Θ, Z), with Z axis aligned with

the axis of the cylinder, the cylindrical membrane with length L, radius of midwall Ro and

thickness H occupies the following domain in the undeformed configuration:

R ∈ [Ro − H

2
, Ro +

H

2
], Θ ∈ [−π

2
,
π

2
], Z ∈ [0, L]. (3.54)

Figure 18 shows the cylinder under consideration and its loading. The prescribed uniform

pressures Pi and Po at the inner and outer wall, respectively produce traction as follows:

t|R=Ro−H
2

= +Pier and t|R=Ro+H
2

= −Poer. (3.55)

The thickness of the cylindrical membrane is assumed to be small; H/Ro << 1, so

that the stress variation along the thickness can be neglected. In this case, the membrane

approximation can be used to obtain the relation between uniform transmural pressure ∆p =

Pi−Po and λ [138, 139]. Here, the cylinder is regarded as a surface of revolution with radius

R constant along the axis of revolution that is aligned with the axis Z.
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In this problem, we look for the solution of a cylindrical membrane that inflates in a

purely radial direction to become a deformed cylindrical membrane with larger radius r due

to the pressure difference ∆p. Let’s denote λ as the ratio between the deformed radius r

and the original radius R, so λ = r/R and λ ≥ 1 during inflation. Standard calculations

using membrane approximations yield the deformation gradient F1 whose basis is given

by the principle axis of the surface: parallel to the Z axis (longitudinal direction), in the

circumferential direction of the cylinder, and in the normal direction to the surface as follows:

F1 = DIAG[1, λ,
1

λ
]. (3.56)

In the normal direction, as a result of the incompressibility restriction, the cylinder experi-

ences thinning as it is enlarged. The deformed thickness h is given by:

h =
1

λ
H. (3.57)

The corresponding Left Cauchy Green strain tensor and its inverse are:

B1 = DIAG[1, λ2,
1

λ2
], B1

−1 = DIAG[1,
1

λ2
, λ2]. (3.58)

The first and second invariants of B1, I1 and II1 are equal and are given by:

I1 = II1 = 1 + λ2 +
1

λ2
. (3.59)

In this case, λ serves as the only deformation parameter and therefore can be used to

describe the changes in deformation level. As in the uniaxial case, the scalar function s

defined in (2.4) then can be reduced to s = ŝ(λ). Moreover, since s is a strictly monotonic

function of the invariants and the invariants are strictly monotonic functions of λ for λ ≥ 1,

the relation of s to λ is also monotonic for λ ≥ 1. The activation criterion (2.7) and

deactivation criterion (2.14), can be reduced to λ = λa and λ = λb, respectively, where λa

and λb are the roots of (2.7) and (2.14), respectively.

Since λ doesn’t depend on position, the values of the invariants (and also the strain

and the Cauchy stress) are uniform throughout the body during the deformation history.

Therefore when λ is increased so that 1 ≤ λ < λa, the entire body possesses only the first (or

original material) and the strain energy function is given by W = W1(I1, II1) only. Following
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(2.17),(2.18) for s < sa, and (3.58), the nonzero Cauchy stress components Tzz, Tθθ, and Trr

are:

Tzz = −p + 2
∂W1

∂I1

− 2
∂W1

∂II1

(3.60)

Tθθ = −p + 2
∂W1

∂I1

λ2 − 2
∂W1

∂II1

1

λ2
(3.61)

Trr = −p + 2
∂W1

∂I1

1

λ2
− 2

∂W1

∂II1

λ2. (3.62)

The membrane equilibrium equations in the circumferential, longitudinal and normal to the

surface are given respectively as follows (see in Green and Adkins [140]):

(
1

r2
Tθθλh), θ = 0 (Tzzλh),z = 0 − 1

r
Tθθλ + ∆p = 0, (3.63)

where all the shearing components of the Cauchy stress tensor are vanished. It’s easy to see

that the equilibrium equations in the longitudinal and circumferential directions are satisfied

immediately.

The relation between r ∆p and λ when λ ≤ λa then can be obtained from (3.63.3) as

follows:

r ∆p = 2
H

λ
(λ2 − 1

λ2
)(

∂W1

∂I1

+
∂W1

∂II1

), (3.64)

where r is the current radius. Following the notation in Scott et al. [79], the product of

the net pressure ∆p and r later on will be referred to as ‘tension’. When the deformation

state reaches λ = λa, the body occupies configuration κa and the activation of the second

mechanism occurs throughout the body. The deformation gradient of the second mechanism

F2 relative to configuration κa of all the material points can be calculated using (2.12), where

t = t2 indicates the deformation state when κ = κa, as follows:

F2 = DIAG[
λa

λ
,

λ

λa

, 1]. (3.65)

Using (3.65), the tensor B2 and its inverse can easily be obtained as follows:

B2 = DIAG[
λ2

a

λ2
,
λ2

λ2
a

, 1], B2
−1 = DIAG[

λ2

λ2
a

,
λ2

a

λ2
, 1]. (3.66)
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After recruitment of the second mechanism, the strain energy function is composed of two

contributions: W1 representing the original material and W2 representing the recruited ma-

terial. So, W = W1(I1, II1) + W2(I2, II2), as is described in (2.18) for sa ≤ s < sb. Fol-

lowing the same procedure as used for obtaining (3.64), we obtain the following relation for

λa ≤ λ < λb:

r ∆p = 2
H

λ
[(λ2 − 1

λ2
)(

∂W1

∂I1

+
∂W1

∂II1

) + (
λ2

λ2
a

− λ2
a

λ2
)(

∂W2

∂I2

+
∂W2

∂II2

)]. (3.67)

When the loading is increased so that λb ≤ λ, (the first mechanism is deactivated when

s = sb and therefore λ = λb) only the second mechanism contributes to the total mechanism,

so that W = W2(I2, II2). The relation of tension versus λ for λb ≤ λ can be obtained simply

by removing the first term of (3.67) and is given as follows:

r ∆p = 2
H

λ
(
λ2

λ2
a

− λ2
a

λ2
)(

∂W2

∂I2

+
∂W2

∂II2

). (3.68)

3.3.2 Unloading

We now suppose that at some chosen stretch λ = λ∗ the pressure is decreased (unloading).

As is in previous homogeneous problems, for example in the uniaxial case, three cases of λ∗

needs consideration: λ∗ < λa, λa ≤ λ∗ < λb and λb ≤ λ∗.

• Case 1: λ∗ < λa

Here, the unloading begins before the recruitment occurs. Since the material is elastic,

the unloading path will follow (3.64) with decreasing λ. As is expected, when no new

mechanism takes place and no deactivation is initiated, the cylindrical membrane returns

to its original undeformed configuration at the zero stress state.

• Case 2: λa ≤ λ∗ < λb

In this case, the unloading begins after the second material is recruited. It should be clear

that relation (3.67) holds when λ is reduced from λ∗ to λa. When λ is decreased further,

the contribution of the second mechanism or recruited material is ceased, since the second

mechanism only participates when the activation criterion is satisfied i.e λ ≥ λa. Thus, as
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it is mentioned before, we suppose that during unloading the collagen fibers return to its

crimped configuration and stop participating when it reaches its reference configuration.

So, the relation of tension versus λ follows (3.64) when λ < λa. It is clear that in this

case, the cylinder will return to the original reference configuration at the zero stress

state.

• Case 3: λb ≤ λ∗

In the last case, the unloading begins after the first mechanism is deactivated. It should

be clear that when λ is reduced from λ∗ to λb, the relation (3.68) is used. However,

when λ is reduced so that λ < λb, the first material that has been deactivated cannot

be reactivated. So for this unloading case, the strain energy function W is always given

by W = W2(I2, II2). The path of the unloading curve therefore cannot follow (3.67) nor

(3.64), instead it will follow (3.68). It can be seen from (3.68) that the zero stress state

corresponds to λ = λa > 1. This implies that the cylinder doesn’t return to its origi-

nal undeformed configuration but rather it obtains a new unloaded configuration. The

new unloaded configuration corresponds to the reference configuration of the recruited

material, κa.

3.3.3 Summary

The analytical solutions for inflation of a long cylindrical membrane composed of a dual

mechanism material for which both mechanisms behave as incompressible, isotropic, hyper-

elastic materials were presented in (3.64),(3.67), and (3.68). Clearly, the solutions do not

require specification of the strain energy function, W . As is in the previous two sections,

(3.64) can be seen as a composition of a function of stretch denoted by E(λ), and defined

as:

E(Λ) ≡ (Λ2 − 1

Λ2
). (3.69)

and a response function denoted by w1, and defined as

w1 ≡ (
∂W

∂I1

+
∂W

∂II1

). (3.70)
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Table 9: The relation between Tension and λ during inflation. The definitions of E(Λ), w1

and w2 are given by (3.69),(3.70) and (3.71), respectively. Here, H denotes the undeformed

thickness.

Range of λ Tension

1 ≤ λ < λa 2 H/λE(λ)w1

λa < λ ≤ λb 2 H/λ(E(λ)w1 + E( λ
λa

)w2)

λb ≤ λ 2H/λE( λ
λa

)w2

A similar stretch function with a different argument, λ
λa

instead of λ, is used in the second

term of equation (3.67) and in equation (3.68). The corresponding response function is

defined as follows:

w2 ≡ (
∂W

∂I2

+
∂W

∂II2

). (3.71)

The relations between tension and λ during loading and unloading therefore can be written

using E, w1 and w2 and the undeformed thickness H. These relations are summarized in

Tables (9) and (10).

3.3.4 Experimental data on the nonlinearity and inelasticity of cerebral arteries

In the following two sections we evaluate the performance of the proposed constitutive equa-

tion in capturing the mechanical behavior of real cerebral arterial segments. The results of

experimental work on segments from human Circles of Willis published by Scott, Ferguson

and Roach [79] are in particular interest. Scott et al. showed quantitatively the nonlinear

inelastic behavior of anterior cerebral arteries (ACA) segments. Due to the importance of

these results, for this work, the procedure of the experiment and the relevant results are

described in this section. A regression analysis of the data as applied to the dual mechanism

model will be described in the following section.

In their work, Scott et al. performed inflation tests on intact ACA segments in vitro

using an experimental procedure developed by Nichol [141] and Roach and Burton [77].

In their works, the segment was attached to one end of a metal adapter using suture silk
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Table 10: The relation between Tension and λ during unloading for possible cases of λ∗. The

definitions of E(Λ), w1 and w2 are given by (3.69),(3.70) and (3.71), respectively (H is the

undeformed thickness).

Location of λ∗ Range of λ Tension

1 ≤ λ∗ < λa 1 ≤ λ < λa 2 H/λE(λ)w1

λa ≤ λ∗ < λb λa < λ ≤ λb 2 H/λ(E(λ)w1 + E( λ
λa

)w2)

1 ≤ λ < λa 2 H/λE(λ)w1

λb ≤ λ∗ 1 ≤ λ 2 H/λE( λ
λa

)w2

and closed with a glass plug at the other end. The inflation was produced by perfusion

of the segment with dyed water using a syringe fit through the adapter. During the test,

the segments were kept submerged in water contained in a glass chamber. A micrometer

was attached to the syringe to control and to measure the delivery of perfusing fluid and

therefore to measure volumetric changes of the lumen of the segments. Pressure changes

due to perfusion were measured by a vertical mercury manometer. During the experiment,

pressure and the corresponding luminal volume of the segment were recorded.

Changes in the segment’s inner diameter were calculated from the measured luminal

volumetric changes. This procedure can be done by assuming the segments maintained a

cylindrical shape and length. However, since the ends were not fixed during inflation, the

experimental procedure used by Scott et al. allowed axial contraction of the sample segment.

This change in length was reported to be negligible for samples from patients over 30 years

in age [49]. The mounting of the sample potentially also allowed the sample to bulge at high

pressures resulting in a non-uniform or variation of radius along the segment. This effect

was decreased by applying a large plug and adapter to hold the segment [77]. A procedure

for measurements of the undeformed radius was suggested by Busby and Burton [49] who

used similar apparatus. First, the segments were collapsed by applying a negative pressure.

A small positive pressure then was applied to remove the collapse. The unloaded volume

measured geometry, hence the undeformed circumference, was assumed to correspond to the

state when visually the segments were no longer collapsed.
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In this work, the term ‘strain’ was defined as the ratio of computed circumferential change

to initial circumference. We will refer to this simply as strain and denote it by ε. Recall

that the product of the applied pressure and the corresponding deformed radius is defined

as tension. Scott et al. reported that the wall thickness of the segments were in the range

from 100 to 200 µ.

In this experiment, Scott et al. subjected four ACA segments to slow cycles of loading

and unloading though only results from the loading procedure were reported. Three samples

were loaded up to 200 mm Hg and one control sample was loaded up to 100 mmHg. The

experiments yielded significant results. The control segment was reported to show consistent

curves of tension versus strain, ε, and tension versus deformed radius after six repetitions of

loading and unloading.

The other three segments, on the other hand, were reported to behave differently from

the control. It was reported that after three cycles of loading that produced three consistent

distensibility curves similar to those of the control sample, the final six curves exhibited a

measurable ‘shifting’. These post shifting tension versus ε curves were reproducible. Simi-

larly, the tension versus radius curves also showed a new series of consistent curves shifted

from the first three curves. Significantly, the post shifting series displayed a larger unloaded

radius implying that some form of permanent deformation had occurred. Scott et al. used

the new reference radius to calculate ε after the shifting. The qualitative shape of the post

shifting curves is also different from those before the shifting. The typical ‘toe region’ is

not pronounced in the new or shifted curves. Scott et al. hypothesized that the shift of the

curves was due to elastin breakage, however, they never performed a morphology study to

investigate the fragments of the elastin. Nevertheless, Scott et al. found that the new curves

of tension versus ε were more similar in shape to those from distensibility tests of aneurysm

segments. Based on those similarities, they hypothesized that mechanical breakage of elastin

may play a significant role in aneurysms formation [79].

In the following paragraph, we describe how the multi-mechanism equations can be used

to model the nonlinear and inelastic response of the segments of human cerebral arterial

walls reported by Scott et al. [79]. The proposed mechanisms experienced by the control

segment and non control segments are described below.
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We suppose that the initial stage of the first elastic regime, often referred as the ‘toe

region’, corresponds to the mechanism produced by elastin load bearing or simply the first

mechanism. As the deformation progresses, at some stretch level or configuration, say κa,

collagen is recruited, initiating the second mechanism produced by recruited collagen fibers.

We also suppose that the maximum perfusion of the control segment and the first two runs of

the non control segments doesn’t cause substantial breakage of elastin. This is supported by

the repeatability of the loading curves. During unloading, the extended collagen fibers will

be unstretched and return to their undeformed configuration, κa, at a nonzero transmural

pressure. When the unloading continues, the collagen fibers become ‘recrimped’ and do not

contribute to compression stress in the wall. At κa, the elastin is still stretched so when the

unloading continues, the elastin will continue to contract more until the elastin reaches its

reference configuration which corresponds to zero transmural pressure. When these loading

and unloading paths are completed, the segment will return to its reference configuration.

The control segment is reported to exhibit six consistent elastic tension/strain curves during

the six loading cycles. The unloading curves are not reported, but there was no report

that the control segment possesses new zero pressure radius after unloading. Assuming that

material hysteresis is negligible, the response of the control segment therefore is elastic 1.

The three non control segments were exposed to larger maximum pressure (200 mmHg)

than that experienced by the control (100 mmHg). We suppose that the maximum pressure

of 200 mmHg for the first three loading doesn’t cause the elastin to be totally damaged.

As a result, the first series of distensibility curves resemble those produced by the control.

On the fourth loading run, we suppose that the maximum perfusion is sufficiently large

to produce total elastin breakage. We suppose that once the elastin breaks, it becomes

inactive, unable to contribute to further loading and unloading. When the unloading is

performed after elastin breakage, the collagen will return to its reference configuration, κa.

Here, the unloading cannot continue since the elastin has been inactive and the collagen

fibers have no mechanism for generating a force to contract further. So, the configuration

κa now corresponds to zero transmural pressure. The segment possesses a new unloaded

radius because the reference configuration κa does not coincide with the original unloaded

1The viscoelasticity effect was not shown in the experiment by Scott et al. so it will be ignored.
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configuration. Here, the inelastic feature becomes pronounced. The non control segments

now contain only collagen fibers as the active component. When the pressure is reapplied,

collagen immediately is recruited since the zero pressure configuration corresponds to the

configuration in which the collagen fibers is ready to be activated. The typical ‘toe region’

obviously disappear since the elastin that produced it has been deactivated. The new series

of distensibility curves feature a modified elastic regime. This should be expected since the

elastic regime before the shifting arose from elastin at the lower strain level and by both the

elastin and recruited collagen at higher strain levels.

The non control segments exhibit two distinct series or regimes of elastic tension vs.

strain curves and series of tension vs. radius curves implying that at least two mechanisms

are involved. However, the new undeformed radius that clearly becomes the reference con-

figuration for the post shifting runs, implies that the material doesn’t ‘switch’ from one

mechanism to another. In fact, the new reference configuration after the shifting supports

the idea of having the second mechanism being initiated at some level of deformation during

the pre shifting elastic response. We hypothesized that the pre shifting regime is produced

by both mechanisms while the post shifting regime is produced by the second mechanism

alone, since the first mechanism had been deactivated.

Furthermore, we suppose that the experimental work and results by Scott et al. can

be described using the analytical solution for a problem involving an inflated cylindrical

membrane composed of a dual mechanism material. Some assumptions regarding the defor-

mation experienced by the segment and regarding the class of the materials used to model

the segments must be made to reduce the complexity of the modeling. So, we suppose that

the deformation is quasi-static as a result from slow loading and unloading. Scott et al.

didn’t report the rate of loading, however the interval of the data points suggest a pressure

increment of 20 mmHg. Moreover, it is described by Busby and Burton [49] that, typically,

data measurement was done in the interval of at least 20 seconds to allow the stress to be

relaxed. We assume the arteries are incompressible. This assumption is not novel for biotis-

sues and gains support from, for example, experimental results by Chuong and Fung [142]

and Carew et al. [143]. The incompressibility of the material restricts the deformation to be

volume preserving. Many researchers suggest cerebral arterial wall is anisotropic [144, 145].
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The isotropic assumption of the apical region of the bifurcation, at which the aneurysms fre-

quently occur, is particularly reasonable. Findlay et al. [54] have shown that in this specific

region the collagen fibers are laid out in a multi directional configuration. This arrangement

prevents the region from having a specific preferred material symmetry. We also assume that

the walls of the segment are homogenous. This assumption is mainly due to the fact that

the strain measurements of Scott et al., are based on volume measurements of the artery,

a bulk response which does not provide information about the spatial variation in material

response. In addition, we emphasize in the current approach the wall is treated as a mem-

brane. As a result we are not attempting to capture the effects of material inhomogeneity

across the wall thickness.

3.3.5 Data interpretation and nonlinear regression analysis

Our goal in this section is to evaluate whether the dual mechanism model can be used to

fit the nonlinear and inelastic behavior of real cerebral arterial segments. This can be done

by quantitatively comparing the data of Scott et al. to the analytical results of cylindrical

inflation of dual mechanism material that has been constructed in the beginning part of this

section. The resulting experimental data from the previously described procedures will be

used here.

The data of Scott et al. will be divided into multi sub data corresponding to one mecha-

nism of the proposed multi mechanism constitutive equation. The data therefore needs to be

interpreted so that the correspondence between it and the new equations can be constructed.

A nonlinear regression analysis will be performed afterwards. In order to extract data points

needed in the regression analysis, Figure 5 in Scott it et al. [79] was scanned and the resulting

images were digitized using SigmaScan, an image processing package. The resulting data are

presented in Table 25. Following Scott et al. we label the curves before and after the shifting

as Run13 and Run49, respectively. According to our proposed mechanism for the nonlinearity

of cerebral arterial walls, Run13 therefore includes the response before and after the colla-

gen fibers recruitment. The distinction between the two regions is critical in the regression

analysis. For simplicity, we denote the subregions before the recruitment as Run13A, while
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after the recruitment as Run13B. So, the subregion R13A corresponds to elastin only load

bearing and the subregion Run13B corresponds to load bearing of both collagen fibers and

elastin. The proposed constitutive equation also assumes that elastin breakage is responsible

for the inelastic behavior of human cerebral arterial walls. We assume that during the third

run of the test by Scott et al. the elastin breakage occurs simultaneously throughout the

arterial wall. Consequently, Run49 corresponds to the response due to collagen fibers only.

It should be clear that Run13A, Run13B, and Run49 correspond to equations (3.64), (3.67)

and (3.68), respectively. Note however that Run49 contains strain data that are calculated

using the new undeformed radius obtained after elastin breakage.

Only tension versus ε data is needed in the regression analysis. The stretch ratio λ in the

equations (3.64),(3.67) and (3.68), by definition, is equivalent to ε+1. We denote εa = λa−1

and εb = λb−1 as the strain associated with the deformation levels of the collagen activation

and elastin deactivation, respectively. Scott et al., however, did not specifically report the

values of εa. Also, the maximum transmural pressure does not necessarily correspond to a

specific strain at which the elastin is damaged (εb). In the experiment by Scott et al., it was

not clear if only the last run before the shifting was performed up to 200 mmHg or all of

the runs were performed up to the same value. The values of λa and λb that are needed for

specifying the range of Run13A and Run13B are approximated as follows.

The tension, T , versus radius, r, curve after the ‘shifting’, which is hypothesized to

be produced by collagen only, displays a larger reference radius than that of the series of

pre shifting curves. As we have hypothesized, this post shifting reference radius should

correspond to the reference configuration for the collagen fibers, κa. From the same figure

we found that the post shifting zero tension radius is 0.58 cm and while the pre shifting

undeformed radius is 0.33 cm. Obviously, the two reference radius give λa = 1.7610 that

corresponds to εa=0.7610. In the case of λb, we decided to use the maximum strain value in

tension versus ε curves, which corresponds to εb = 1.30 and λb=2.30.

To determine the material parameters; α1, α2, γ1, and γ2, a nonlinear regression analysis

must be performed. As is known, during the analysis, material parameters in a system

of equations are determined by means of minimizing the sum of square of the deviation

of measured or experimental tension to theoretical tension for all data points from all the
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Table 11: Resulting material parameters and corresponding R2 values for undeformed thick-

ness H = 100 and 125 µ and fixed λa=1.761029.

Undeformed thickness (H) in µ

Material Parameters 100 125

λa 1.761029 1.761029

α1(103dynes/cm2) 89.03572 71.21986

γ1 0.622428 0.622428

α2(103dynes/cm2) 390.872 312.6121

γ2 1.867193 1.867605

R2 0.9903374 0.9903374

three groups; Run13A, Run13B and Run49, simultaneously. We developed a code that

employs RNLIN; a nonlinear regression analysis subroutine that is available in the Fortran

IMSL STAT/Library. The minimization of the total summation of deviation or error was

performed by the built-in subroutine RNLIN that uses a modified Levenberg-Marquardt

method to generate a sequence of approximations to a minimum point. To measure the

quality of the curve fitting, a pseudo R2 value is used, where [146]:

R2 = 1−
∑

(Tdata − Ttheoretical)
2

∑
(Tdata − Tmean)2

. (3.72)

Here, Tmean is the average values of tension, T , calculated for each group of data points,

Run13A, Run13B and Run49, while Ttheoretical is tension, T , calculated from (3.64), (3.67)

and (3.68), with W is given by (2.18).

Specific strain energy functions W1 and W2 must be selected for equations (3.64),(3.64)

and (3.68). Here, we suppose that both the first and second mechanisms can be represented

by exponential type strain energy functions in (2.18). The exponential type strain energy

function is selected since it is typically useful in biological applications. Neo Hookean and

Mooney Rivlin materials were evaluated but no satisfactory regression analysis was resulted

( the nonlinear regression analysis results are presented in Appendix B).
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Figure 19: Resulting tension vs ε curves for inflation of cylindrical membrane with the

material parameters given in Table 11 for H = 125 µ along with the experimental data

points. The activation strain εa=0.7610 and the deactivation strain εb = 1.3.
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Figure 20: Resulting tension vs λ curves for inflation of cylindrical membrane with the

material parameters given in Table 11 for H = 125 µ.
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Recall that Scott et al. stated that the wall thickness H ranged from 100 to 200 µ but

they did not specify a particular value of H for the experimental data points they used. The

resulting material parameters for exponential type W1 and W2 for the two extreme thickness

H are tabulated in Table 11. The values of the material parameters in the two columns

indicate that they are insensitive to this range of membrane thickness. Although we can

observe that the values of α1 and α2 for the two thickness are inversely proportional to the

thickness. This should be expected from (3.64), (3.67), and (3.68) in which the tension are

the product of thickness H and coefficients α1 and α2 and other terms. The values of R2 for

the two cases indicate that the theoretical curves very well fit the experimental data points.

Therefore, at least for the deformation under discussion, the analytical solution can be used

to describe the nonlinear and the inelastic behavior of human cerebral arterial segments.

It is expected that Neo Hookean and Mooney Rivlin materials produce qualitatively simi-

lar results since w1 and w2 for these two functions are simply constants. For Neo Hookean, the

resulting material constants α1 and α2 are 293.08 103dynes/cm2 and 960.94 103dynes/cm2,

respectively. For Mooney Rivlin, the resulting material constants α1, β1, α2, and β2 are (in

103dynes/cm2) 78.21, 214.91, 462.83, and 498.08, respectively. These resulting constants

are obtained for 125 µ thickness. The values of R2 for these two functions are only 0.6565

indicating a poor fitting. Results of nonlinear regression analysis for Neo Hookean, Mooney

Rivlin and the exponential type and their combinations for W1 and W2 are presented in

Appendix B.

Plots of the relations (3.64),(3.67) and (3.68) with the resulting material parameters for

H = 125 µ along with the data points are presented of in Figure 19. The resulting Tension

vs. λ curves for H = 125 µ are displayed in Figure 20. Here, unlike in Figure 19, the curve

after elastin breakage was not normalized to λa. The resulting material parameters displayed

in Table 11 were obtained by fixing λa a priori. This value of λa was approximated from

the tension vs. radius curves from Scott et al.. When such information is not available, λa

then must become one of material parameters that needs to be determined via the nonlinear

regression. A similar nonlinear regression analysis using equations (3.64),(3.67) and (3.68)

was performed without fixing λa a priori. The material parameters obtained from this

analysis are tabulated in Table 12.
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Table 12: Resulting material parameters and corresponding R2 values for undeformed thick-

ness H = 100 and 125 µ and non fixed λa.

Undeformed thickness (H) in µ

Material Parameters 100 125

λa 1.596175 1.596258

α1(103dynes/cm2) 73.96133 59.16755

γ1 0.590765 0.590855

α2(103dynes/cm2) 395.7232 316.598

γ2 1.848324 1.848228

R2 0.992577 0.992577

3.3.6 Nonlinear regression results for experimental data of the nonlinear elastic

behavior of cerebral arteries

In the classical elastic sense, equation (3.64), which relates tension to circumferential strain

in membrane cylindrical inflation, is valid for all λ ≥ 0. Here, equation (3.64) is seen as a

gross representation of the mechanical response by the cerebral arterial walls disregarding

the individual behavior of both the elastin and the recruited collagen fibers. It will be shown

in this chapter that the equation (3.64), which employs only the first mechanism part of

the exponential type strain energy function given in (2.21.1), can be used to successfully

describe the commonly known nonlinear elastic behavior of a variety of intracranial arteries

from both humans and animals.

In this chapter we present the results of nonlinear regression analysis using equation

(3.64) for experimental data on intracranial arteries that are obtained from the following

sources:

• Data by Scott et al. [79] obtained from experiments on Anterior Cerebral Artery (ACA),

Middle Cerebral Artery (MCA) and Posterior Cerebral Artery (PCA) of a 34-year old

woman. The data are presented in Table 27.

• Data by Töth et al. [83] obtained from experiments on ACA of 11 aneurysm patients

85



Table 13: Resulting material parameters and corresponding R2 values for experimental data

by Scott et al. [79] obtained from segments of ACA, MCA and PCA of a young woman

using equation (3.64).

ACA MCA PCA

α1(103dynes/cm2) 38.7630 232.9863 95.5911

γ1 0.4147 1.8614 0.3676

R2 0.9922 0.9836 0.9789

and 16 patients with no cerebral artery disease. The data are presented in Table 26.

• Data by Nagasawa et al. [147] obtained from experiments on basilar segments of 25

treated and ten untreated mongrel dogs. The data are presented in Tables 28 and 29.

Note that only the average data value will be used in the regression analysis.

Scott et al. [79] investigated the variation of the mechanical behavior of arterial segments

from different locations in the Circle of Willis. The mechanical tests were performed by

inflating the cylindrical samples by fluid perfusion. A wide variation of behavior was found

among samples from ACA, MCA and PCA from a young woman. The equation (3.64) that

employs the first mechanism part of strain energy (2.21.1) gives satisfactory results for the

three different arteries. Scott et al. reported that the thicknesses of the samples are between

100 to 200 µ but specifies are not given for individual experiments. Hence, here we set

the undeformed thickness at 125 µ. The resulting material parameters and R2 values are

presented in Table 13. The highest R2 value is obtained for the ACA. The curves that fit

the experimental data, which are reproduced by manually scanning Figure 3 in Scott et al.

[79], are presented along with the data in Figure 21. Töth et al. [83] investigated the

mechanical behavior of ACA from aneurysm patients and normal human subjects (control).

From the pressure vs. external radius curves, they concluded that the behavior of the ACA

from the two groups do not differ. The representation of the data, which are reproduced

from manually scanning Figure 1B in Töth et al. [83], in a tension vs. ε chart however

reveals that ACA from aneurysm patients are stiffer than control arteries.
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Figure 21: Resulting tension vs ε curves for inflation of cylindrical membrane and the exper-

imental data (diamond symbols) for ACA (red color), MCA (green color), and PCA (blue

color) shown in Table 13.
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Table 14: Resulting material parameters and corresponding R2 values for experimental data

by Töth et al. [83] obtained from segments of Anterior Cerebral Artery (ACA) of aneurysm

patients and normal patients using equation (3.64).

Aneurysm patients Control

α1(103dynes/cm2) 17.4962 18.5178

γ1 1.9807 1.4234

R2 0.9930 0.9916

The equation (3.64) again is employed in the regression analysis. The average thickness

for ACA from aneurysm patients and human subjects with no cerebral artery disease, which

are obtained from Fig. 1A in Töth et al. [83], are 280 µ and 210 µ, respectively. The

resulting material parameters and R2 values are displayed in Table 14. The R2 values

indicate that equation (3.64) gives satisfactory results. The resulting tension vs. ε curves

and the experimental data are displayed in Figure 22. Nagasawa et al. [147] investigated

the mechanical behavior of basilar segments of mongrel dogs with different collagen to elastin

ratio (C/E). The variation of C/E is a product of replacing some cerebro spinal fluid with

fresh blood in an attempt to produce vasospasm. The mid wall stress vs. strain data

shown in Figure 4 in Nagasawa et al. [147] are transformed into tension vs. strain data

for nonlinear regression analysis purpose. Tension data can be computed by factoring the

tangential wall stress data with the corresponding deformed radius calculated from the strain

data and the undeformed radius shown in Figure 3 of the same publication. The results of

the nonlinear regression analysis using the equation (3.64) shows satisfactory results. The

resulting material parameters for treated basilar and control segments are presented in Table

15. The resulting tension vs. ε curves and the experimental data (diamond symbols) for

basilar segments with different C/E ratios are presented in Figure 23. The curves produced

by basilar segments with high C/E ratios, which indicate high collagen content compare to

elastin, indicate that these basilar are stiffer than those with the lowest C/E ratio.
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Figure 22: Resulting tension vs. ε curves for inflation of cylindrical membrane and the

experimental data (diamond symbols) of ACA from aneurysm patients (blue color) and

normal/control (red color) along with the corresponding data from Töth et al. [83].
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Figure 23: Resulting tension vs ε curves for inflation of cylindrical membrane of samples A

(black color), B (red color), C (blue color), D (purple color), E (green color) and F (black

dashed line) of which the material parameters shown in Table 15 along with the corresponding

experimental data from Nagasawa et al. [147].
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Table 15: Resulting material parameters and R2 values for experimental data by Nagasawa

et al. [147] on basilar segments of treated mongrel dogs using equation (3.64).

Labels A B C D E F

C/E contents: 1.6 ± 0.2 2.1 ± 0.3 2.7 ± 0.4 3.5 ± 0.5 4.3 ± 0.6 5.1 ± 0.9

α1(103dynes/cm2) 1004.208 2088.555 3698.864 1189.203 1406.443 1674.112

γ1 2.5976 4.6615 5.1351 4.3772 4.6510 7.7963

R2 0.9899 0.9956 0.9862 0.9941 0.9950 0.99833

3.4 NONHOMOGENEOUS DEFORMATION: INFLATION OF A THICK

WALLED HOLLOW CYLINDER

In this section, we consider a thick walled dual mechanism cylinder where each mechanism

is composed of an isotropic incompressible hyperelastic material that is radially inflated due

to the transmural pressure ∆P = Pi−Po, where Pi and Po are the uniform pressures acting

at the inner and outer wall, respectively. The perfusion test of an intact arterial segment

previously discussed can be modelled by this particular deformation when the arterial wall

is considered thick and so the stress variation along the thickness is taken into account. In

the work by Carroll [148], the behavior of the transmural pressure ∆P during loading was

studied for various strain energy functions. A relevant work is provided by Demiray and Vito

[125] in which using computational results of combined inflation and extension of exponential

type thick walled cylinder identified segments of an artery. Unlike in those two studies, here

we consider pure inflation of thick walled cylinder (without considering extension) and also

some possible unloading cases in the context of the multi mechanism theory.

It will be seen that this problem serves as an example in which the resulting deformation

is nonuniform throughout the body (inhomogeneous deformation). As a result, each of

the activation and deactivation criteria is not simultaneously satisfied throughout the body.

During loading, (provided that the deformation level is sufficiently large), the activation and

deactivation criteria are first satisfied at the inner most layer of the wall. This implies that

collagen fibers at the inner layers theoretically will be recruited earlier than those at the outer
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layers and similarly the elastin at the inner layers will be damaged first. The first suggestion

might be difficult to demonstrate since generally collagen fibers are not evenly distributed

throughout the thickness of a cerebral arterial wall [149]. Nevertheless, observations on

perfused segments of rabbit aorta show that when the pressure increases to 200 mmHg the

collagen fibers in the media appear to loose their waviness while those in the adventitia

remain in bundles [150]. Here, the collagen recruitment is measured indirectly by observing

how the crimped collagen bundles transform into taut and oriented fibers. On the other

hand, the later implication, on the location of elastin breakage, to the best of our knowledge,

has not been demonstrated yet.

We will see as a result of inhomogeneity of the deformation the wall will contain one

or more of the following regions: a region that is occupied by elastin only, a region that

contains both elastin and collagen fibers and a region that contains only collagen fibers. In

the unloading case, an ‘empty’ region with neither active elastin nor active collagen may

develop.

Let the inner and outer radii of the undeformed cylinder denoted by Ri and Ro, respec-

tively (see Figure 24). With respect to the cylindrical coordinates system (R, Θ, Z) with

Z-axis aligned with the axis of the cylinder, the undeformed cylindrical shell occupies the

following space:

R ∈ [Ri, Ro], Θ ∈ [0, 2π], and Z ∈ [0, L]. (3.73)

Let the configuration that is taken up by the undeformed body denoted by κ1. We suppose

that Pi > Po, so that the cylinder experiences pure radial inflation (see Figure 24). It

is assumed that the length of the undeformed cylinder L is sufficiently long so that the

deformation can be regarded as plain strain and the ends effect can be neglected. In addition,

the deformation is assumed to be axisymmetric. The inner and outer radii of the deformed

cylinder are denoted as ri and ro, respectively. The pressures are introduced as applied

surface traction that can be summarized as follows:

t = −Pier on r = ri and t = −Poer on r = ro. (3.74)
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Figure 24: Inflation of a thick walled cylindrical shell.

As sufficiently low transmural pressure, the activation criterion of the second mechanism

will not be satisfied anywhere in the body. In the cylindrical coordinate system, material

points of original material at arbitrary position (R,Θ,Z) at reference configuration κ1 will

move to new radius r in the deformed or current configuration κ with no change to their

circumferential or axial position. The deformation can be described as follows:

r =
√

R2 + C, θ = Θ, and z = Z, (3.75)

where C is a constant. The following deformation gradient as well as the corresponding Left

Cauchy Green tensor and its inverse are derived from the motion described in (3.75) for all

material points relative to the reference configuration κ1,

F1 = DIAG[
1

λ
, λ, 1], B1 = DIAG[

1

λ2
, λ2, 1], B1

−1 = DIAG[λ2,
1

λ2
, 1], (3.76)

where the incompressibility restriction has been implemented. In (3.76), λ denotes the

stretch ratio r/R, where r and R denote the deformed and undeformed radii, respectively,

of a particle in the wall. A procedure given by Spencer [151] can be used to obtain F1
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in (3.76.1). It will be seen that λ is dependent on spatial position. The first and second

components of F1 represent the stretch ratios in the radial and circumferential directions,

respectively. The third component is always unity implying that there is no stretch in the

longitudinal direction. During inflation, i.e λ > 1, as the circumference enlarges, the wall

thins to preserve the volume of the cylinder.

The first and second invariants of B1 are equal and denoted by I1 and II1 , respectively:

I1 = II1 = 1 + λ2 +
1

λ2
. (3.77)

Since the activation criterion is not satisfied anywhere in the body, the non-zero Cauchy

stress tensor components are given by (2.17) and (2.18) for s < sa with B1 and its inverse

given by (3.76.2 and 3), respectively:

Trr = −p + 2
∂W1

∂I1

1

λ2
− 2

∂W1

∂II1

λ2

Tθθ = −p + 2
∂W1

∂I1

λ2 − 2
∂W1

∂II1

1

λ2
(3.78)

Tzz = −p + 2
∂W1

∂I1

− 2
∂W1

∂II1

.

The equilibrium equations in the cylindrical coordinates system are reduced to the following

equations:

∂Trr

∂r
+

Trr − Tθθ

r
= 0,

1

r

∂Tθθ

∂θ
= 0, and,

∂Tzz

∂z
= 0. (3.79)

The equations (3.79.2 and 3) imply the dependency of the Cauchy stress on r only. The

differential equations reduces to the integration of the stress difference (Trr − Tθθ) shown

in (3.79.1). The integration of (3.79.1) across the wall thickness and the use of boundary

conditions (3.74) results in the relation between the transmural pressure ∆P and the stress

difference as follows:

Trr(ro)− Trr(ri) = ∆P =

∫ ro

ri

Tθθ − Trr

r
dr. (3.80)

At this stage, one can rewrite the stress difference as a function of r instead of λ and perform

the integration to obtain the expression of ∆P in terms of ri and ro. A method suggested

by Carroll [148] results in more useful expression of ∆P in terms of nondimensional variable
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λi, the stretch ratio at the inner radius. This however requires substitution of r with λ using

the following relation between dr and dλ:

dr

r
= − dλ

λ(λ2 − 1)
, (3.81)

that can be derived from the following local incompressibility restriction:

r2 − r2
i = R2 −R2

i . (3.82)

After substituting (3.78.1 and 2) and (3.81) into (3.80) and replacing the limits of the inte-

gration with the corresponding values of λ, the following relation is obtained:

∆P = −
∫ λo

λi

2(
∂W1

∂I1

+
∂W1

∂II1

)(λ2 − 1

λ2
)

dλ

λ(λ2 − 1)
, (3.83)

where the upper and lower limits of the integration can be determined from the incompress-

ibility restriction as follows:

λo = λ(Ro) =

√
1 + (λ2

i − 1)(
Ri

Ro

)2. (3.84)

The relation (3.84) can be derived from (3.82) for r = ro and R = Ro, which is equivalent

to imposing incompressibility for the entire volume of the cylinder. The generalization of

(3.84) for any radius stretch ratios can be done by manipulating (3.82) to obtain the following

important relation:

λ = λ(R) =

√
1 + (λ2

i − 1)(
Ri

R
)2. (3.85)

The relations (3.84) and (3.85) demonstrate the inhomogeneity of the deformation that, for

this particular deformation, is manifested as a monotonically decreasing stretch ratio λ from

the innermost to the outermost layer of the wall for any inflated state. Moreover, the relation

between λi and λo shown in (3.84) allows the deformation to be measured by one parameter.

The stretch ratio of the inner radius, λi, commonly is selected as the parameter since it is

always maximum. Since the deformation is now parameterized by a single variable, it follows

that the activation (2.7) and deactivation criteria (2.14) can be reduced to

Aa = λ− λa and Ab = λ− λb, (3.86)
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respectively. Here, λa and λb are the critical stretch ratios of the activation of the second

mechanism, representing collagen recruitment, and the deactivation of the first mechanism,

representing elastin breakage, respectively. Here, we also assume that there is no spatial

variation of values of the critical stretch ratios λb and λa and that λb > λa all the time.

Since λ is always maximum at r = ri, the activation and deactivation criteria are always

satisfied at the innermost layer first. This means that the recruitment of collagen fibers and

the breakage of the elastin will always occur at the innermost layer first.

We shall discuss briefly here the involvement of many reference configurations for the

introduction of the second mechanism. This phenomenon must be distinguished from a

similar one encountered in biaxial loading in which the collagen recruitment is associated

with a set of reference configurations each of which represents a loading state with s = sa but

from many different possible biaxial loading configurations i.e different λx to λy ratio. While

in the biaxial loading case, once a biaxial loading path is selected, a loading history can

only have one, among many others, reference configuration for the second mechanism, in the

inflation of thick walled cylinder a loading history must employ multi reference configurations

for the second mechanism.

We begin the discussion by considering the configuration occupied by the deformed body

when the collagen fibers are activated at the innermost layer. So, in this configuration, say

κ2a, λi = λa and hence s(r = ri) = sa. The mechanical response representing the active

collagen contained in layer r = ri is called the second mechanism introduced at r = ri. This

second mechanism takes configuration κ2a as the reference configuration. Note that when s

at the innermost layer is equal to sa, s values at neighboring layers are less than sa since

the stretch ratio at the innermost layer is always maximum. Therefore at κ2a only collagen

fibers contained in the innermost layer becomes active and not in other layers (r > ri).

The situation changes when the loading continues. Following (3.85), the progression of

λi causes the stretch ratios at the neighboring layers, λ(r > ri), to increase. However, for any

inflated state, λ monotonically decrease toward the outer wall from its maximum at the inner

wall. In other words, during loading, λ of each layer progresses from some degree less than

to become equal to λa. This also means that for any configuration identified by some λi > λa

there is always one layer having s = sa marking the activation of collagen fibers contained
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in that layer. The second mechanism representing the activated collagen fibers then pick up

the corresponding configuration as its reference configuration. When λi is increased, more

and more layers end up having s = sa and therefore more collagen fibers are activated and

more configuration must be employed. This process is valid until s(r = ro) (the outermost

layer) is equal to sa when all layers in the wall contain active collagen fibers and no more

collagen fibers can become activated. This particular inflated state, where s(r = ro) = sa,

will be identified with λi = λioa which can be seen as the magnitude of λi (λ(r = ri)) that

causes λ(r = ro) = λo = λa.

3.4.1 Loading

In this subsection, we study the behavior of the transmural pressure ∆P as the inner wall

stretch ratio λi progresses. Due to the inhomogeneity of the deformation, we should expect

that the collagen fibers will become activated throughout the wall in a gradual manner. The

same expectation should be applied to the elastin breakage process. It will be seen that

generally during the loading, λi will follow the progression path below:

1 → λa → min(λioa, λb) → max(λioa, λb) → λiob, (3.87)

where λioa and λiob denote the value of λi that causes the outer wall to satisfy the activation

and deactivation criteria, respectively. The following loading states must be considered:

• Loading Case 1: 1 ≤ λi < λa

The case when λi < λa was discussed above. This is the loading range where the criteria

are not met at the innermost layer (and therefore nowhere in the wall). Obviously, this

case resembles inflation of the classical hyperelastic thick walled cylinder. In this case,

the transmural pressure, ∆P , is given by (3.83), where λo is related to λi through (3.84),

for 1 ≤ λi < λa.

• Loading Case 2: λa ≤ λi < min(λioa, λb)

We suppose that the loading process continues from Case 1 so that an inflated state

where the innermost layer satisfies the activation criterion is reached. Note however

that as the loading is continued, more and more layers next to the innermost radius will
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become stretched and will satisfy the collagen activation criterion. Therefore, eventually

as the loading progresses the wall will be completely filled with active collagen fibers in

addition to elastin. This occurs when λo reaches λa (or equivalently when λi reaches

λioa). However, there is a chance that the innermost layer satisfies the elastin breakage

criterion at some inflated state before the collagen fibers fully occupy the wall.

It follows that we should consider in this loading case, a loading range of λi from λa,

when the innermost layer begins to activate the collagen fibers, until either λb, when the

innermost layer begins to experience elastin damage, or λioa, when the outermost layer

satisfies the collagen recruitment criterion, depending on the values of λb relative to λioa.

The deformation gradients of the first and second mechanisms will be discussed next.

The deformation gradient of the first mechanism relative to the reference configuration κ1

however has been described earlier. The deformation gradient of the second mechanism

will be described below. First we recall that at the early stage of this loading case, say

when λi = λa, the deformation gradient of the material points at the innermost layer

relative to the reference configuration κ1 can be derived from (3.76.1) as follows;

F1(r = ri) = DIAG[
1

λa

, λa, 1]. (3.88)

Let the configuration that is occupied by the body at this stage be denoted as κ2a.

Then, as was discussed before, at configuration κ2a the collagen fibers contained in the

innermost layer begin to be activated. The second mechanism representing the activated

collagen fibers takes configuration κ2a as the reference configuration. Following (2.12)

and (3.88), the deformation gradient of the second mechanism is given as follows:

F2a(r = ri) = DIAG[
λi

λa

,
λa

λi

, 1] (3.89)

with the corresponding Left Cauchy strain tensor and its inverse that are given as:

B2a(r = ri) = DIAG[
λ2

a

λ2
i

,
λ2

i

λ2
a

, 1], and B2a
−1(r = ri) = DIAG[

λ2
i

λ2
a

,
λ2

a

λ2
i

, 1]. (3.90)
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As λi progresses, the domain radii occupied by activated collagen fibers increases. At a

particular inflated state λi > λa, the recruited collagen fibers occupy a region between

ri and, say, ra, where ra is given by:

ra =

√
(λ2

i − 1)

(λ2
a − 1)

λaRi. (3.91)

Simply speaking, r = ra represents the radius at which s = sa. The relation (3.91) can

be easily derived from (3.85) and by using the definition of λa = ra/Ra. Moreover, (3.91)

states that the region with recruited collagen grows, i.e ra enlarges, as λi increases. On

the other hand, the complimentary region (ra < r ≤ ro) that contains active elastin only,

shrinks as the loading progresses. The deformation gradient of the second mechanism of

any r in the region bounded by ri ≤ r ≤ ra can be generalized from (3.89) as follows:

F2(r) = DIAG[
λ

λa

,
λa

λ
, 1]. (3.92)

Here, λ, or more precisely λ(r), can be related to λi by (3.85). Of course, the value of

λa in (3.92) generally can be set to be different from one layer to another. In the real

situation in which the collagen fibers are not distributed uniformly and may be activated

at different local stretch ratio, the situation can be modelled by setting different sa or

λa for each layer. Following (3.92), the Left Cauchy Green strain tensor and its inverse

are given as follows:

B2 = DIAG[
λ2

a

λ2
,
λ2

λ2
a

, 1], and B2
−1 = DIAG[

λ2

λ2
a

,
λ2

a

λ2
, 1]. (3.93)

The nonzero components of Cauchy stress tensor of material points in the region bounded

by ri ≤ r ≤ ra, in which the activation criterion is satisfied, are given by (2.17) and (2.18)

for sa ≤ s < sb :

Trr = −p + 2
∂W1

∂I1

1

λ2
− 2

∂W1

∂II1

λ2 + 2
∂W2

∂I2

λ2
a

λ2
− 2

∂W2

∂II2

λ2

λ2
a

Tθθ = −p + 2
∂W1

∂I1

λ2 − 2
∂W1

∂II1

1

λ2
+ 2

∂W2

∂I2

λ2

λ2
a

− 2
∂W2

∂II2

λ2
a

λ2
(3.94)

Tzz = −p + 2
∂W1

∂I1

− 2
∂W1

∂II1

+ 2
∂W2

∂I2

− 2
∂W2

∂II2

,
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where tensors B1 and its inverse are still given by (3.76.2 and 3) and B2 and its inverse

are given by (3.93). The nonzero components of Cauchy stress tensor of material points

at the complimentary region defined by ra < r ≤ ro are given by (3.78). When (3.78.1

and 2) and (3.94.1 and 2) are substituted into (3.80) together with (3.81), the following

relation is obtained:

∆P = E1(λo)− E1(λi) + E2(λa)− E2(λi), (3.95)

where the useful notations E1(Λ) and E2(Λ) are defined as follows:

E1(Λ) ≡ −
∫ Λ

λ

2(
∂W1

∂I1

+
∂W1

∂II1

)(λ2 − 1

λ2
)

dλ

λ(λ2 − 1)
and

E2(Λ) ≡ −
∫ Λ

λ

2(
∂W2

∂I2

+
∂W2

∂II2

)(
λ2

λ2
a

− λ2
a

λ2
)

dλ

λ(λ2 − 1)
. (3.96)

It can be seen in the relation (3.95) that the contribution to the transmural pressure by

the first mechanism is represented by E1(Λ)s, and by the second mechanism is represented

by E2(Λ). It is clear to see that the solution for a classical hyperelastic material is easily

recovered by removing E2(Λ)s from (3.95). The limits of integration for E1 (maximum

at λi and minimum at λo) dictate the participation of the elastin contained in the entire

wall thickness for this particular loading case. However, the relation (3.95) rests on the

assumptions that the first mechanism is homogeneous and isotropic material. On the

other hand, the participation of collagen fibers are confined to the region between the

inner wall to the layer having stretch ratio λa. It is clear therefore that E2(Λ) does not

play a role when λi ≤ λa.

The relation (3.95) is no longer valid when one of the following situations occurs. The

first situation is when the collagen fibers are activated throughout the wall. As the

loading increase, λi increases as well as the stretch ratios of the neighboring layers. The

radius ra of the layer having λ = λa, ra also enlarges and eventually encompasses the

outer wall, so that ra ≥ ro. In this situation, λa cannot be the limit of integration E2(Λ)

since ra lies outside the wall. The limits of integration for E2(Λ) has to be λi and λo

representing the inner and outer wall, respectively. The configuration at which the outer
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wall satisfies the activation criterion will be identified with λi = λioa. With the help of

(3.84), λioa can be obtained as follows:

λioa =

√
1 + (λ2

a − 1)
R2

o

R2
i

. (3.97)

The other scenario that violates (3.95) is when elastin breakage occurs. As was discussed,

(3.95) is valid for elastin representation throughout the entire wall. When the stretch

ratios at some inner layers become greater than λb, the elastin damage occurs there

creating inactive elastin layers. The integration of E1(Λ)s cannot be performed between

the inner and outer walls, but must be done between the outer wall and some layer in

the middle of wall thickness that separates the healthy from the deactivated wall region.

The stretch ratio of the layer that is just about to experience damage obviously is λb.

When this situation is met the limits of integration of E1 must be changed to λo and λb.

• Loading Case 3A. λb ≤ λi < λioa

We suppose that the loading is continued from Case 2. As was discussed in Case 2 and

also according to (3.87), the next deformation level during loading depends on the value

of λb relative to λioa. We suppose that the breakage of elastin at the inner wall is achieved

at an earlier deformation state than the collagen recruitment at the outer wall. In other

words, λb < λioa, which by (3.97) implies the following inequality must hold:

λ2
a − 1

λ2
b − 1

>
R2

i

R2
o

. (3.98)

When λi ≥ λb the damaged elastin will occupy a region defined by ri ≤ r ≤ rb where rb

is given by:

rb =

√
(λ2

i − 1)

(λ2
b − 1)

λbRi. (3.99)

The radius r = rb represents the radius at which s = sb. Moreover, the relation (3.99)

can be easily derived from (3.85) and by using the definition of λb = rb/Rb. It is clear

that only collagen fibers are active in the region defined by ri ≤ r ≤ rb. The Cauchy

stress therefore arises from the second mechanism only. The nonzero components of the
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Cauchy stress tensor for material points in this region are given by (2.17) and (2.18) for

sb ≤ s are as follows:

Trr = −p + 2
∂W2

∂I2

λ2
a

λ2
− 2

∂W2

∂II2

λ2

λ2
a

Tθθ = −p + 2
∂W2

∂I2

λ2

λ2
a

− 2
∂W2

∂II2

λ2
a

λ2
(3.100)

Tzz = −p + 2
∂W2

∂I2

− 2
∂W2

∂II2

,

where B2 and its inverse given by (3.93). The region next to the damaged elastin region

is occupied by both active elastin and collagen. The inner boundary of this middle region

therefore is r = rb. However, since the wall is only partially occupied by active collagen,

the outer boundary of this region is the front of the collagen recruitment region given by

the radius r = ra. This middle region is defined by rb ≤ r ≤ ra. The nonzero components

of the Cauchy stress tensor for material points in this region are given by (3.94). The

outermost region in this loading case obviously is a region filled by elastin only and is

defined by ra ≤ r ≤ ro. The nonzero components of Cauchy stress tensor for material

points in this region are given by (3.78).

The computation of ∆P is obtained from substitution of (3.78), (3.94) and (3.101) into

(3.80) together with (3.81). The result is:

∆P = E1(λo)− E1(λb) + E2(λa)− E2(λi), (3.101)

where E1(Λ) and E2(Λ) are given by (3.96). As was discussed in Case 2, the difference

between (3.101) and (3.95) is that the maximum limit of the integration for E1(Λ) is λb

instead of λi.

• Loading Case 3B. λioa ≤ λi < λiob

The previous loading case results in both collagen recruitment and elastin breakage in

a region that only partially occupies the wall. The assumption that λb > λa for all the

inflated states however implies that, when the loading continues, the complete elastin

breakage will not occur until the collagen recruitment fully occupies the wall. This

progression path has been shown in (3.87). The complete collagen recruitment and

complete elastin breakage are identified by λi = λioa and λi = λiob, respectively. The
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current loading case deals with the states between a partial elastin breakage state and

full collagen recruitment state (λioa ≤ λi < λiob).

The region of damaged elastin is still defined by ri ≤ r ≤ rb. In this case, the outer

border of the region that is occupied by both active elastin and collagen has reached

the outer wall and therefore the outer bound of the region is given by ro instead of ra.

The Cauchy stress of material points in the region with damaged elastin is still given by

(3.101), while those in the elastin and collagen region is given by (3.94). Following the

procedure performed in previous cases, the transmural pressure ∆P in this case is given

by:

∆P = E1(λo)− E1(λb) + E2(λo)− E2(λi), (3.102)

where E1(Λ) and E2(Λ) are given by (3.96). The expression for ∆P in this case differs

from those of Case 3A only in the minimum limit of the integration E2(λ) where we have

here λo instead of λa.

• Loading Case 4A. λioa ≤ λi < λb

An alternative loading path to Case 3A is provided by the situation where λb > λioa. So,

as opposed to (3.98), the following inequality must hold:

λ2
a − 1

λ2
b − 1

<
R2

i

R2
o

. (3.103)

In this case, the innermost layer hasn’t satisfied the elastin breakage criterion yet when

the collagen recruitment reaches the outermost layer. Therefore, the entire wall is oc-

cupied by both active elastin and collagen fibers. The Cauchy stress components for

material points throughout the wall are given by (3.94). The transmural pressure ∆P

will be given by the following relation:

∆P = E1(λo)− E1(λi) + E2(λo)− E2(λi), (3.104)

where E1 and E2 are given by (3.96). It’s easy to see that (3.104) demonstrates the

participation of both mechanisms in the stress generation throughout the entire thickness.
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• Loading Case 4B. λb ≤ λi < λiob

When the loading continues from Case 4A, λi is increased so that λi ≥ λb as is indicated

by (3.87). Here, the elastin at the innermost layer is damaged and eventually a region

with damaged elastin will develop as λi increases. The region with inactive elastin

occupies radius r where ri < r ≤ rb and rb is given by (3.99). The resulting regions of

this case will be the same as those from Case 3B. The outcome of this case is the same

as that described in loading Case 3B.

• Loading Case 5. λiob ≤ λi

We suppose that λi can be increased beyond that of Case 3B or Case 4B. As is indicated

by (3.87), the outermost layer eventually will satisfy the deactivation criterion, i .e λb ≤
λo. In this case the elastin in the entire wall will be deactivated, leaving only collagen as

the mechanical source of bearing support. Replacing λa in (3.97) with λb, we can obtain

λiob:

λiob =

√
1 + (λ2

b − 1)
R2

o

R2
i

. (3.105)

In this case, the Cauchy stress of the entire wall will be given by (3.101). The transmural

pressure ∆P is given by:

∆P = E2(λo)− E2(λi), (3.106)

where E2 is given by (3.96.2). The expression (3.106) clearly demonstrates the absence

of the first mechanism in the stress generation.

3.4.2 Unloading

We also want to learn the behavior of the transmural pressure ∆P during unloading after

a maximum deformation level is attained. We suppose that the maximum stretch ratios at

the inner and outer walls obtained during loading be denoted by λ∗i and λ∗o, respectively.

The behavior of ∆P will depend on the values of λ∗i relative to λa and λb. Following the

previously discussed loading cases, the unloading cases listed below will be considered.

• Unloading from case 1: 1 ≤ λ∗i < λa

Here, we consider the case when the unloading begins before any collagen recruitment.
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Clearly, this case resembles the unloading of classical elastic materials in which only one

mechanism is involved. During unloading the Cauchy stress will be given by (3.78) and

the transmural pressure (3.83). It is easy to see that, in this case, the zero transmural

pressure is obtained when λi = λo = 1, i.e the segment returns to its original reference

configuration κ1.

• Unloading from Case 2: λa ≤ λ∗i < min(λioa, λb)

In this case, unloading begins at some deformation level after collagen recruitment be-

gins but before either the elastin breakage as begun or collagen recruitment has been

completed throughout the wall. At the beginning of the unloading process, the wall is

divided into two regions: a region that is filled with elastin only at the outer side and

an inner region that is occupied by both elastin and active collagen. The value of for

particles inside the inner region is greater than sa, while the value of s for particles inside

the outer region is less than sa. The radius of the interface between the two regions is

given by r = ra at which λ = λa.

During unloading, the amount of active collagen decreases and the inner region shrinks.

As λi decreases, all λ(r) and therefore all s(r) along the radius decrease. The interface is

no longer given by r = ra but somewhere at r < ra. The value of s for layers in the inner

region gradually become equal to and even less than sa. Here, we suppose that when s

reduces to sa i.e λ reduces to λa, the stretched collagen fibers return to the unloaded

length. Furthermore, in the layers where λ < λa, the collagen is recrimped and becomes

inactive. Eventually, when λi = λa, all collagen fibers is inactive and the entire thickness

is occupied solely by the elastin.

In this unloading case, the process from λi = λ∗i to λi = 1 involves two ranges of λi:

λa ≤ λi ≤ λ∗i and 1 ≤ λi ≤ λa. In the first range, when λi reduces from λ∗i to λa, the

Cauchy stress of the particles in the inner region is given by (3.94), while of those in

the outer region is given by (3.78). The transmural pressure, ∆P , is given by (3.95).

During the second unloading stage, the inner region disappears and only elastin is active

in the entire wall. This stage clearly is the same as the unloading case 1. The Cauchy

stress then is given by (3.78). The transmural pressure, ∆P , will be given by (3.83) and

becomes zero when the segment returns to the original reference configuration, κ1.
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• Unloading from case 4A: λioa ≤ λ∗i < λb

In this case, the unloading begins after the collagen is activated in the entire wall but

before the elastin breakage occurs. So here, when λi = λ∗i , the entire wall is filled with

both active elastin and collagen. When λi is reduced from λ∗i , both collagen and elastin

are active throughout the thickness as long as the outermost layer is stretched beyond

λa. Once this condition is ceases to be met, λo < λa, there is an outer region of the wall

where collagen is inactive. At this deformation level, we return to the unloading process

described in the previous case (unloading Case 2).

Recalling that the deformation level at which λo = λa is identified with λi = λioa,

it appears that the unloading process can be seen to involve three unloading stages;

λ∗i > λi ≥ λioa, λioa > λi ≥ λa, and λa > λi ≥ 1. In the first stage, the Cauchy

stress of all material points arise due to both mechanisms and is given by (3.94). The

transmural pressure, ∆P , therefore is given by (3.104). When the unloading continues

further so that λi < λioa, the collagen fibers are active in only some part of the wall. The

wall is divided into two regions, an elastin only region and an inner region filled with

both elastin and collagen as was shown in the unloading for Case 2A. Clearly, further

unloading situations can be described by the unloading of Case 2A.

• Unloading from Case 3A: λb ≤ λ∗i < λioa

In one case, the unloading may begin at some deformation level after some inner layers

lost their elastin but before the collagen fibers completely occupy the entire thickness.

So, here λ∗o < λb ≤ λ∗i < λioa, where λ∗o is the corresponding outer wall stretch ratio when

λi = λ∗i . We suppose that the region in which the elastin is damaged occupies a region

bounded by the inner radius ri and the interface radius, say r∗b , between the damaged

region and the healthy region. The interface radius, r∗b , is formulated as follows;

r∗2b =
(λ∗2i − 1)

(λ2
b − 1)

λ2
bR

2
i . (3.107)

The expression (3.107) is obtained by substituting λ∗i for λi in (3.99). At the interface,

λ = λb, when λi = λ∗i . The Lagrangian description of these boundaries are given by the

inner radius Ri and the interface radius R∗
b that is formulated as follows;

R∗2
b =

(λ∗2i − 1)

(λ2
b − 1)

R2
i . (3.108)
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The formulation is obtained from (3.107) and the definition of λ. As was discussed

elsewhere, it is assumed that the damaged elastin is unrecoverable. The associated region,

which is occupied by collagen only, is also unrepairable and is going to be unchanged

throughout the unloading history. When λ of a damaged layer is decreased from some

λ > λb to λ < λb, the elastin contained in the layer cannot be reactivated.

The stress contribution by the first mechanism is generated from the region bounded by

r∗b and ro only. The stretch ratios at this boundaries then must be defined. While λo can

be easily calculated from (3.84), the stretch ratio at the boundary of damaged elastin

region for a given λi is not defined yet. We denote the stretch ratio at r = r∗b : or R∗
b in

the reference configuration, with λrb. The value of λrb can be obtained with the help of

(3.85) by substituting R with R∗
b obtained from (3.108) as follows:

λ2
rb = 1 +

(λ2
i − 1)

(λ∗2i − 1)
(λ2

b − 1). (3.109)

It can be verified that when λi = λ∗i , λrb = λb implying that at the maximum loading

state λrb = λb. Moreover, when λi = 1, λrb = 1 implying that at the undeformed state,

the interface layer must also be undeformed.

In this unloading case, the active collagen fibers occupy part of the wall bounded by ri

and ra, where ra is given by (3.91) and ra < ro. The elastin in the other hand occupies a

region bounded by rrb and ro. It is easy to see that the transmural pressure ∆P is given

as follows:

∆P = E1(λo)− E1(λrb) + E2(λa)− E2(λi). (3.110)

In this unloading case, when the unloading begins, the wall is divided into three regions:

a region with damaged elastin, i.e a region with only active collagen, that occupies region

defined by ri < r ≤ r∗b , a region filled by both active elastin and collagen that is bounded

by r∗b and ra, where ra is given by (3.91) and an elastin only region that occupies a region

bounded by ra < r ≤ ro.

During unloading, collagen fibers at r = ra are becoming inactive. The interface radius

ra therefore moves toward smaller radii. The composition of the wall is unchanged as
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long as ra ≥ r∗b . However, when λi is reduced such that ra becomes smaller than r∗b or

when λi is in the range of:

λa ≤ λi <

√
1 + (λ∗2i − 1)

(λ2
a − 1)

(λ2
b − 1)

λ2
b

λ2
a

, (3.111)

the region filled with active collagen reduces and becomes smaller than the damaged

elastin region (ra < r∗b ). The wall composition is now provided by the following three

regions; the inner region with only active collagen (ri ≤ r ≤ ra), an ‘empty’ region in the

middle with no active elastin nor active collagen (ra < r ≤ r∗b ) and the outer region with

active elastin only (r∗b < r ≤ ro). Even though the composition is changed, basically the

boundaries of the regions occupied by the elastin and collagen are not altered. Therefore,

the transmural pressure ∆P is still given by (3.110).

The next stage of unloading is to reduce λi to λa. We can observe from (3.110) that the

contribution of the second mechanism eventually vanishes when λi = λa. Basically, the

negative contribution of the second mechanism when λi < λa is not considered, since we

assume that the collagen fibers do not introduce compression. So, when 1 < λi ≤ λa,

the transmural pressure ∆P is given by:

∆P = E1(λo)− E1(λrb). (3.112)

We can see from (3.112) that ∆P = 0 corresponds to λo = λrb, which can be attained

during undeformed state. This implies that the segment returns to the original reference

configuration κ1 as is in previous cases.

• Unloading from Case 3B or 4B: max(λioa, λb) ≤ λ∗i < λiob

In this case, the loading ends when active collagen fibers occupy the entire wall and the

elastin has been damaged in some layers near the inner radius. The wall is divided into

only two regions: the inner region bounded by ri ≤ r ≤ r∗b in which only collagen fibers

are active and the outer region bounded by r∗b < r ≤ ro filled up by both active elastin

and collagen fibers.

Two unloading stages are considered for this case. The stages of λi are λ∗i ≥ λi > λioa and

λioa ≥ λi. In the first stage of unloading, when λi is reduced from λ∗i to λioa, only λ(r)

for each of the layers are reduced. The wall composition remains unchanged. It’s easy
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to see that the transmural pressure ∆P during this first stage is given by the following

relation:

∆P = E1(λo)− E1(λrb) + E2(λo)− E2(λi). (3.113)

When the unloading is further done so that collagen contained in some outer layers

become inactive i.e λi < λioa or ra < ro, the resulting case then can be described as is in

the unloading case 3A. Clearly, in this case, as is in the previous case, when λi is further

reduced, ∆P = 0 corresponds to the initial reference configuration κ1.

• Unloading from Case 5: λiob ≤ λ∗i

In this case, at the beginning of the unloading, the elastin in the entire wall has been

irreversibly damaged and so is inactive during the unloading process. The maximum

loading in this case is λ∗i > λiob, where λiob is defined by (3.105). Here, the entire wall

consisted of a region with active collagen only and the Cauchy stress of the material

points in the wall is given by (3.101). During unloading, the stretched collagen fibers

return to their initial reference (unloaded) configuration. The fibers at the outermost

layer are stretched less than the other and so will return to their reference configuration

at earlier unloading stage compare to those at other layers. Once the outermost layer

become inactive, the wall is partially occupied by collagen fibers and only this part of

the wall needs to be included in the stress generation.

It’s clear that there are two unloading stages need to be considered; λ∗i > λi ≥ λioa

λioa > λi ≥ λa. During the first unloading stage the active collagen fibers are bounded

by the inner and outer radii of the wall, so the ∆P is given by;

∆P = E2(λo)− E2(λi). (3.114)

In the second unloading stage, the collagen fibers at the outer layers become recrimped

and inactive. The transmural pressure ∆P is then contributed by collagen fibers in layers

bounded by ri and ra, instead of ro, and it is given by:

∆P = E2(λa)− E2(λi). (3.115)

We can see that in (3.115), ∆P vanishes as λi = λa > 1. Here, the unloading terminates,

since there is no supporting active mechanical component below this level. Thus, in this
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Table 16: Relations between ∆P and λi for inflation of a thick walled cylinder during loading.

The definitions of E1(Λ) and E2(Λ) are given by (3.96).

Case no. Range of λi ∆P vs. λi

1 1 ≤ λi < λa ∆P = E1(λo)− E1(λi)

2 λa ≤ λi < min(λioa, λb) ∆P = E1(λo)− E1(λi) + E2(λa)− E2(λi)

3A λb ≤ λi < λioa ∆P = E1(λo)− E1(λb) + E2(λa)− E2(λi)

3B λioa ≤ λi < λiob ∆P = E1(λo)− E1(λb) + E2(λo)− E2(λi)

4A λioa ≤ λi < λb ∆P = E1(λo)− E1(λi) + E2(λo)− E2(λi)

4B λb ≤ λi < λiob ∆P = E1(λo)− E1(λb) + E2(λo)− E2(λi)

5 λiob ≤ λi ∆P = E2(λo)− E2(λi)

case, the segment doesn’t return to its initial reference configuration κ1 but instead the

segment chooses configuration κ2a as the new reference configuration.

3.4.3 Summary

The relations between ∆P and λi, during loading and unloading can be summarized in

the Tables 16 and 17 displayed below. We also display part of the integrand of E1(Λ) and

E2(Λ), say w1 and w2 respectively, from three specific strain energy functions: Neo Hookean,

Mooney Rivlin and exponential type strain energy function in Table 18. The definitions of

w1 and w2 are as follows:

w1 ≡ ∂W1

∂I1

+
∂W1

∂II1

and w2 ≡ ∂W2

∂I2

+
∂W2

∂II2

. (3.116)

The first invariant of B2 (I2) used in the formulation for exponential type strain energy

function is given as follows:

I2 =
λ2

λ2
a

+
λ2

a

λ2
+ 1. (3.117)
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Table 17: Relations between ∆P and λi for inflation of a thick walled cylinder during

unloading for different maximum loading λ∗i . The definitions of E1(Λ) and E2(Λ) are given

by (3.96).

Case no. Location of λ∗i Range of λi ∆P vs. λi

(use case no. from Loading table)

1 1 ≤ λ∗i < λa 1 ≤ λi ≤ λ∗i 1

2 λa ≤ λ∗i λa ≤ λi ≤ λ∗i 2

≤ min(λioa, λb) 1 ≤ λi < λa 1

3A λb ≤ λ∗i < λioa λa ≤ λi ≤ λ∗i ∆P = E1(λo)− E1(λ
∗
b) + E2(λa)− E2(λi)

1 ≤ λi < λa ∆P = E1(λo)− E1(λ
∗
b)

3B λioa ≤ λ∗i < λiob λioa ≤ λi ≤ λ∗i ∆P = E1(λo)− E1(λ
∗
b) + E2(λo)− E2(λi)

λa ≤ λi < λioa ∆P = E1(λo)− E1(λ
∗
b) + E2(λa)− E2(λi)

1 ≤ λi < λa ∆P = E1(λo)− E1(λ
∗
b)

4A λioa ≤ λ∗i < λb λioa ≤ λi ≤ λ∗i ∆P = E1(λo)− E1(λi) + E2(λo)− E2(λi)

λa ≤ λi < λioa 2

1 ≤ λi < λa 1

4B λb ≤ λ∗i < λiob λioa ≤ λi ≤ λ∗i ∆P = E1(λo)− E1(λ
∗
b) + E2(λo)− E2(λi)

λa ≤ λi < λioa ∆P = E1(λo)− E1(λ
∗
b) + E2(λa)− E2(λi)

1 ≤ λi < λa ∆P = E1(λo)− E1(λ
∗
b)

5 λiob ≤ λ∗i λioa ≤ λi ≤ λ∗i ∆P = E2(λo)− E2(λi)

λa ≤ λi ≤ λioa ∆P = E2(λa)− E2(λi)
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Table 18: Some examples of w1 and w2 for inflation of a thick walled cylinder. The definitions

of w1 and w2 are given by (3.116).

Type of W s w1 w2

Neo Hookean α1 α2

Mooney Rivlin α1 + β1 α2 + β2

Exponential α1e
γ1(I1−3) α2e

γ2(I2−3)

Table 19: Resulting material parameters obtained for fixed λa = 1.761029 using both finite

thickness and membrane approximation.

Material Parameters Finite Thickness (3D) Membrane Approx.

H (µ) 100 125 100 125

λa 1.761029 1.761029 1.761029 1.761029

α1(103dynes/cm2) 83.72267 67.68549 89.03572 71.21986

γ1 0.6700442 0.6738098 0.6224279 0.6224279

α2(103dynes/cm2) 443.6744 361.6479 390.872 312.6121

γ2 1.838987 1.850415 1.867193 1.867605

R2 0.9928429 0.9928429 0.9903374 0.9903374
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Figure 25: The resulting ∆P vs. λi curves for the exponential type material whose parame-

ters are given in the second column of Table 19 for H = 125µ.
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Figure 26: The resulting ∆P vs. λi curves for the same material as is used in Figure 25 but

with H = 1 mm.
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Figure 27: The resulting ∆P vs. λi curves for material with Neo Hookean as the first

mechanism and exponential type as the second mechanism.
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3.4.4 Examples and discussion

In order to obtain some meaningful illustration, the geometry of the cylinder and the strain

energy functions, W1 and W2 must be specified. We consider in this section thick walled

cylinders each of which has an inner radius of 0.3264 cm and other specifications as follows:

• A. Material parameters given in the first column of Table 19 and the undeformed thick-

ness (H) = 125 µ.

• B. Similar material parameters as in A but using H = 1 mm.

• C. A material with the first and second mechanisms that are represented by Neo Hookean

and exponential type functions, respectively. The parameters α1, α2, and γ2 are 67.6855

dynes/cm2, 361.6479 dynes/cm2, and 1.8504, respectively. The critical stretch ratios, λa

and λb, are adopted from examples A and B. The undeformed thickness H is 1 mm.

Material constants displayed in Table 19 are obtained from a nonlinear regression analysis

of data provided by Scott et al. [79] using equations presented in Table 16 which are derived

from a 3D theory. Here, a similar regression procedure to that described in Section 3.3

is employed. The activation and deactivation stretch ratios λa and λb both are set fixed

and we suppose that these values are applicable to all layers. It can be observed in Table

19, the resulting constants do not demonstrate significant differences compared to material

parameters obtained using membrane approximation. Clearly, for the thicknesses used in

this case, the membrane approximation produces satisfactory results.

The resulting transmural pressure ∆P vs. λi curves for the example A for some possible

cases are plotted in Figure 25. In the figure, the curve OAB illustrates the results when

only the first mechanism is considered. Neither collagen recruitment nor elastin breakage

are considered. The curve OAC depicts the resulting ∆P vs. λi when both elastin and

active collagen recruitment are included. As was seen in other figures, here we can also see

that the curve deviates from OAB at A when the collagen begins to be active. The wall

becomes stiffer due to the additional material component. For both cases the unloading

curves coincide with their corresponding loading curves. During unloading, the cylinder

returns to the original reference configuration after complete unloading. The curve OAC’DE

illustrates the case where both the collagen recruitment and elastin breakage are included in
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the calculation. In this curve, point C’ indicates that the elastin breakage begins to occur at

the inner wall. Here, ∆P drops to the minimum value at D and then comes back (recovers)

to point E. This last case corresponds to Loading Case 5 where the maximum loading λ∗i

exceeds λiob (the value of λi at which the elastin breakage reaches the outer wall). The

relation between ∆P and λi during unloading for this case is described in Unloading from

Case 5. The unloading curve EDF for this case is obtained using (3.114) and (3.115) and

therefore does not coincide with the loading curve. It is seen from (3.115), the zero ∆P after

complete unloading corresponds to λi = λa. This new unloaded configuration is different

from the original reference configuration and in fact it is never occupied by the collagen only

embedded body during loading.

The local minimum denoted by D corresponds to λi = λiob. When D is reached, all

elastin is deactivated. When the loading continues, no more elastin degradation occurs so

∆P is recovered. Due to the inhomogeneity of the deformation, the local minimum D is

achieved gradually not abruptly as happened in homogeneous deformations (see Figure 20

in the previous subsection). The value of λiob can be computed by substituting the inner

and outer radii values and λb into formulation (3.105) to obtain λiob = 2.371682.

The gradual breakage is clearly illustrated in Figure 26 when a similar material was used

but a much thicker wall was considered (material B). In the later example, the thickness

of the wall is 1 mm, eight times thicker than the previous example. As is expected, the

resulting transmural pressure is much higher than the previous case since the additional

thickness causes the wall to be stiffer. Moreover, in the later case, the complete elastin

breakage occurs at a much higher pressure than before. Here, λiob = 2.8847. This delay can

be expected from (3.105) where the thickness factor R2
o/R

2
i plays role as the ’magnifying’

factor for λiob. It can be seen that when the thickness is negligible, this factor approximates

unity and λiob simply equals to λb. When the wall thickness increases, this factor is enlarged

and λiob > λb.

The local minimum phenomenon seen in examples A and B (and also in previous cases of

homogeneous deformation) in theory cannot be observed in a force-controlled experimental

setting. The recovery zone will be simply ‘skipped’ or ‘jumped over’ when the transmural

pressure is increased from the local maximum (C’). It is important therefore to consider a
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Figure 28: The undeformed and deformed states of an inflated clamped circular membrane.

strain-controlled experiments instead, so that the recovery zone can be identified. As an

example, in the case of inflation of cylindrical segment, the volumetric change of the fluid

that is used to perfuse the segment can be used as a control. The identification of this zone

is essential since the critical deactivation stretch λb can only be detected in this zone.

The resulting ∆P vs. λi curve for material C is depicted in Figure 27. This example

is intended to demonstrate that the deactivation of the first mechanism may not cause the

transmural pressure to decrease during the inflation of cylindrical wall. So here, a local

minimum is not produced.

3.5 NONHOMOGENEOUS DEFORMATION: INFLATION OF A

CLAMPED CIRCULAR MEMBRANE

3.5.1 Loading

In this section, we consider an undeformed circular thin sheet that is clamped or fixed on

its edge. The disc is made of a dual mechanism for which each mechanism is an isotropic

incompressible homogenous hyperelastic material. A distributed pressure, qo, is applied to

the circular sheet or disc from below so that the disc axisymmetrically inflates. Figure 28

shows the side view of the undeformed and deformed disc.

The following motivations have directed the study of this particular model. First, we

expect that the inflation of the flat disc can imitate the hypothesized initiation and devel-

opment of cerebral saccular aneurysms. It has been hypothesized that an aneurysms sac
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originates from a relatively flat arterial section that transforms into a ‘bleb’, a small out-

pounching formation, and progresses into a well developed saccular aneurysm with enlarged

orifice [59]. The sketch of such a hypothesis is given in Figure 29.

The new constitutive equation can be used to simulate the aneurysms formation not only

in a geometrical sense but also in a sense of the constituent of the sacs walls. The geometric

progression hypothesized by Foutrakis et al. [59] certainly can be modelled as inflation

of a clamped membrane made out of a classical elastic material (see the resulting profiles

for examples in Adkins and Rivlin [139] and Crisp and Hart-Smith [152]). The medically

observed fragmentation of elastin however cannot be explained using classical material that

disregards alteration of the components of the body that may occur during the deformation.

It will be seen later that elastin degradation is clearly captured in the modeling.

Note however, that some assumptions regarding the aneurysm orifice must be employed

in this modeling. It is hypothesized by Foutrakis et al. [59] that the developing of aneurysms

is accompanied by enlarging orifice. It is assumed here that the orifice is not enlarged during

the deformation. However, it can be seen in the results the radial enlargement beyond the

orifice size of the sac wall proximal to the edge. Furthermore, it was commonly believed that

during their formation, aneurysms draw in the adjacent arterial wall from both branches and

parent arteries [60, 46]. Here, it is assumed that the edge is fixed and therefore preventing

tissue withdrawal from neighboring areas.

We consider here, the applied pressure at the inner wall that is either uniformly dis-

tributed or linearly varied with its maximum at the center of the circular membrane (the

dome). In real biological situation, the distributed applied pressure can be considered as a

representation of hemodynamics pressure produced by blood flow. The pressure distribution,

in particular at the sac orifice, however is rarely reported in hemodynamics studies relevant

to this subject. A 2D numerical hemodynamics study of saccular aneurysms reveals that

fairly constant pressure distribution is observed both at the orifice of a well developed sac

at a bifurcation and along the wall of another well developed sac at the outer wall a curved

segment [59]. Similar 2D modeling of bifurcation without an aneurysm reveals that the lin-

early varying pressure distribution occurs at the apical region [153]. Secondly, this problem

presents an inhomogeneous deformation case that involves two deformation parameters. The
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Figure 29: The hypothesized stages of aneurysms formation and development.

deformation level then must be measured with a scalar function of the deformation parame-

ters. Here, we will consider a function, s, that depends on I1 similar to the function s used

in the 3D biaxial problem. The inhomogeneity of the deformation is demonstrated by the

stretch ratios that monotonically decrease from a maximum at the dome to a minimum at

the edge as was shown in the classical works by Adkins and Rivlin [139]. As will be shown

later, this result is used as the basis for the assumption that the collagen recruitment and

elastin breakage will always occur first at the dome.

Thirdly, this problem is studied since it can potentially be used for experiments directed

at material identification. Such efforts have been performed by Treloar [136], Crisp and Hart-

Smith [152], Wineman et al. [154] and Hsu et al. [155]. None of them however performed

experiments in the context of multi mechanism constitutive theory.

We have to mention here too that Wineman and Huntley [105] have carried out a numer-

ical computation of this problem in the case of multi mechanism material. They calculated

the deformed state of membrane inflation made of Neo Hookean material that experienced

damaged induced softening. The softening was regarded as a sequence of new mechanisms

that continuously were born during deformation. This following work employs similar equa-

tions and adopts many numerical techniques used in Wineman and Huntley’s calculation

[105]. However, here the exponential type material will be used instead of Neo Hookean.

Also in this discussion, as in earlier model problems, we consider a material with only two

discrete mechanisms, the mechanism contributed by elastin and by recruited collagen fibers.

As is in the previous problems, here the second mechanism is activated, to mimic the col-

lagen recruitment, at some levels of deformation followed by the deactivation of the first
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mechanism, to mimic the elastin breakage, at higher levels of deformation. The forms of the

criteria that will be used in this problem also adopt the formulation used in the 3D biaxial

case.

The undeformed disc has radius R0 and thickness 2h0. We suppose that the origin of the

cylindrical coordinate system with coordinates denoted by (R, Θ, Z) be placed at the center

of the circular membrane sheet, so that the body will occupy the following region:

0 ≤ R ≤ R0, 0 ≤ Θ ≤ 2π, −h0 ≤ Z ≤ h0. (3.118)

The disc’s circular edge, along R = R0 and Z = 0, serves as a fixed boundary. The surface

Z = h0 is traction free, while at the surface Z = −h0 a uniformly distributed pressure q0 is

applied. The loaded profile is an axisymmetric inflated dome.

We suppose that the ratio of the thickness to the radius of the disk is very small (h0/R0 ¿
1). The disk then is assumed to be very thin and the variations of the kinematic quantities

along the thickness of the disk can be neglected. Moreover, it is assumed that a straight

fiber that is perpendicular to the middle surface (Z = 0) will remain straight during the

deformation. This suggests that only the deformed state of the middle surface needs to

be determined while those of the top and bottom surfaces can be calculated from middle

surface results. In addition, we consider the variation of s only on the middle surface and not

within the thickness. The activation and deactivation would occur not within the thickness

but on the surface. Moreover, it is important to assume that those assumptions still hold

after the introduction of the multi mechanism. Based on these assumptions, the relation

between the pressure qo and some measure of inflation can be computed using the membrane

approximation.

It can be calculated and shown that the material points on the membrane surface locally

experience biaxial stretch in the principal directions of the deformed membrane: the circum-

ferential and meridional directions [105, 139]. We denote the stretch ratios in the meridional,

circumferential and normal directions with λ1, λ2, and λ3, respectively. Their definitions are

as follows:

λ1 = [(
∂r

∂R
)2 + (

∂z

∂R
)2]1/2, λ2 =

r

R
, and, λ3 =

1

λ2λ3

, (3.119)
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where r and R are radial position in the current and reference configuration, respectively, of

a point in the middle surface and z is the ordinate of a deformed position. Here, it can be

seen that due to the incompressibility restriction, the material point experiences compression

in the normal direction when the tissue is being stretched.

Moreover, it is more convenient to write the kinematics of the membrane surface with a

curvilinear coordinate system formed by the two principal directions of the inflated membrane

and a direction normal to that surface. Generally, the components of Cauchy stress tensor

of material points of a shell like body such as flat circular membrane are derived from a

strain energy function that depends on 2D strain tensor and some measure of strain in the

thickness direction. However, here we suppose that the components of the Cauchy stress

tensor can be derived from a strain energy function W in a similar formulation as is shown

in (2.17) and (2.18). Such an assumption is acceptable when the deformation in the normal

direction of the surface is not taken into account [156]. Furthermore, we will consider here

strain energy functions of the exponential type similar to those that are used in 3D model

problems given by equations (2.21).

The deformation gradient, Left Cauchy Green tensor and its inverse, respectively, of the

first mechanism are written as follows:

F1 = DIAG[λ1, λ2, λ3], B1 = DIAG[λ2
1, λ

2
2, λ

2
3], B1

−1 = DIAG[
1

λ2
1

,
1

λ2
2

,
1

λ2
3

]. (3.120)

It’s easy to see that the first and second invariants of B1 are, respectively:

I1 = λ2
1 + λ2

2 + λ2
3, and II1 =

1

λ2
1

+
1

λ2
2

+
1

λ2
3

. (3.121)

First we consider the deformation that is large but is not large enough to activate the

second mechanism anywhere on the surface . In these loading stages, the components of the

Cauchy stress tensor are derived from (2.17) using (2.18) for 0 ≤ s < sa and W1 given by

(2.21.1). Observing the (3.120.2 and 3), the only nonzero components of Cauchy stress tensor

are Tii, no sum on i, i = 1..3. Moreover, the membrane approximation assumes that the
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middle surface is in the plane stress state, so T33 = 0 everywhere. The Lagrange multiplier

p then can be obtained and can be used to obtain the following T11 and T22:

T11 = 2(λ2
1 − λ2

3)
∂W

∂I1

− 2(
1

λ2
1

− 1

λ2
3

)
∂W

∂II1

T22 = 2(λ2
2 − λ2

3)
∂W

∂I1

− 2(
1

λ2
2

− 1

λ2
3

)
∂W

∂II1

. (3.122)

Denoting T11 and T22 as σ1 and σ2, respectively, the equilibrium equation in the meridional

direction is as follows:
∂(λ3σ1)

∂R
+

ηλ3(σ1 − σ2)

λ2R
= 0, (3.123)

where

η =
∂r

∂R
(3.124)

and equilibrium equation in the normal direction:

κ1λ3σ1 + κ2λ3σ2 =
q0

h0

, (3.125)

where κ1 and κ2 are the curvatures in the meridional and circumferential directions and they

are defined as follows:

κ1 =
η ∂λ1

∂R
− λ1

∂η
∂R

λ2
1

√
(λ2

1 − η2)
and κ2 =

√
(λ2

1 − η2)

λ1λ2R
. (3.126)

The applied distributed pressure, which is denote by q0, is defined as follows:

q0 = qdome (1 + C R/R0), (3.127)

where qdome is the value of the pressure at the dome, R0 is the undeformed radius of the

membrane and C is the radial pressure gradient of qo. So, when C = 0.00, the applied

pressure is uniformly distributed. When c < 0, the maximum load is applied at the dome

and when C > 0, the applied pressure at the dome becomes the minimum. In the study

involving nonuniform pressure, we only apply the case in which the maximum pressure is at

the dome.
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Due to the axisymmetry of the deformation, the dome (R = 0.00) of the inflated disc

experiences equibiaxial stretching. Denoting t for both the stretch ratios in the circumferen-

tial and meridional directions at the dome, Green and Adkins [140], Rivlin and Adkins [139]

and Wineman and Huntley [105] assume the following conditions at the dome:

λ1 = λ2 = η = t at R = 0. (3.128)

These assumption has been used and shown to work well with the classical elastic material

[140] and multi mechanism based constitutive equations [105]. The assumption will be

employed in this work and also t will be used as a measure of inflation.

It follows from (3.122.1 and 2) and (3.128), that at the dome, σ1 = σ2. Also, due to the

symmetry at the dome, the curvatures in both directions are the same, so κ1 = κ2 for R = 0.

It can be seen that at the dome, the equilibrium equation (3.125) becomes simply

2h0λ3κ2σ2 = q0, (3.129)

which after making use (3.126.2), we obtain the following important equation:

η = ±
√

(λ2
1 − (

λ2
1λ

2
2Rq0

2h0σ1

)2). (3.130)

Beside at the dome, another boundary condition must be satisfied at the edge of the mem-

brane. There the circular membrane is clamped preventing stretching in the circumferential

direction, thus

λ2 = 1.00 at R = 1.00. (3.131)

The differential equations (3.123) and (3.125) with the constitutive relations given by

(3.122.1 and 2) involve three unknown variables: η, λ1, and λ2. Due to the axisymmetry of

the inflated disc, the three unknown variables depend only on R. Following Wineman and

Huntley [105], the system of differential equations will be solved numerically using the Runge

Kutta method. The method requires explicit expressions of the derivatives of the unknown

variables with respect to R: ∂λ1

∂R
, ∂λ2

∂R
and ∂η

∂R
. The derivation process is briefly described in
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the following section. The derivative of λ2 is obtained by taking the derivative of (3.119.2)

with respect to R and making use (3.124), yielding:

∂λ2

∂R
=

η − λ2

R
. (3.132)

The derivative of η can be obtained by substituting (3.126.1 and 2) into (3.125) to obtain:

∂η

∂R
=

η

λ1

∂λ1

∂R
+

λ3λ1(λ
2
1 − η2)

R

σ2

σ1

− q0

h0

λ1

λ3

(λ2
1 − η2)1/2

σ1

(3.133)

We make use the following useful identity that can be derived from (3.119.3):

∂λ3

∂R
= −λ3(

1

λ1

∂λ1

∂R
+

1

λ2

∂λ2

∂R
) (3.134)

in the calculation of the derivative of λ1. In this calculation we also need the derivative of σ1

with respect to R. The explicit expression of ∂λ1

∂R
can be obtained by substituting (3.134),

(3.132) and the derivative of σ1 into (3.123) and rearranging the terms. The resulting

expression is as follows:

∂λ1

∂R
=

λ1

λ2

η(σ2 − σ1)− (S2λ2 − σ1)(η − λ2)

R(λ1S1 − σ1)
, (3.135)

where S1 and S2 are functions of λ1 and λ2 and the expression of which depends on the

form of the strain energy function being employed. In fact, S1 and S2 will also depend on s,

since the value of s relatives to sa and sb determines mechanism components that must be

included in the strain energy function. In this work, we’d like to confine our attention to the

exponential type strain energy function that is given by (2.21). The complete expression of

S1 and S2 will be given later.

In the following discussion, it is helpful to reformulate the governing equations previously

introduced in a nondimensional form. The nondimensionalization is calculated using the

following relations: R̂ = R
R0

, r̂ = r
R0

, ẑ = z
R0

, σ̂α = σα

α1
, α = 1, 2, where R0 is the undeformed

radius of the undeformed circular membrane and α1 is the material parameter of the first

mechanism shown in (2.21). When those relations are used, the following nondimensional

equations will be obtained:

η = ±
√

(λ2
1 − (

λ2
1λ

2
2QR

2σ1

)2). (3.136)
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In (3.136), variable Q will be termed as the nondimensional pressure which can be linearly

varied along the radius of the disc. The nondimensional relation of Q is as follows:

Q =
q0R0

h0α1

and
∂η

∂R
=

η

λ1

∂λ1

∂R
+

λ3λ1(λ
2
1 − η2)

R

σ2

σ1

−Q
λ1

λ3

(λ2
1 − η2)1/2

σ1

. (3.137)

Here, we have dropped the hat sign for convenience. As a result the expressions for the

derivatives of λ1 and λ2 are still given by (3.135) and (3.132), respectively. From now on,

equations (3.135) and (3.132) are understood to represent their nondimensional form. The

formulations of σ1, σ2, S1 and S2 are given as follows:

σ1 = M1(λ
2
1 − λ2

3) and σ2 = M1(λ
2
2 − λ2

3) (3.138)

and

S1 = 2
M1

λ1

((λ2
1+λ2

2)+γ1(λ
2
1−λ2

2)
2) and S2 = 2

M1

λ2

(λ2
3+γ1(λ

2
1−λ2

2)(λ
2
1−λ2

3)), (3.139)

where M1 = e(γ1(I1−3)). Equations (3.135), (3.132), and (3.137) are to be used to numerically

solve the system for s < sa.

We consider now the condition where more than one mechanism is involved. First we will

discuss variables that can be used to determine either the activation of the second mechanism

or the deactivation of the first mechanism. Note that t globally cannot be used to indicate

both the activation and the deactivation, since t = λ1 = λ2 is true only at the dome. In

this problem, the stretch ratios λ1 and λ2 monotonically decrease from a maximum at the

dome along the radius of membrane to a minimum at the edge [105, 139]. Note also that an

equation that can either relate local λ1 (or λ2) to t or an relate λ1 to λ2 is not available. A

scalar function, s, that depends on both λ1 and λ2 then must be employed to indicate both

the activation of the second mechanism and the deactivation of the first mechanism. In this

work, we use the function s given by (2.22) introduced in Chapter 2. The first invariant of

B1 is given by (3.121.1). It will be seen that the stretch ratios λ1 and λ2 vary along R and
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depend on the value of the stretch ratios at the dome, t. So, the scalar parameter s must

depend on R and t through λ1 and λ2 as follows:

s = s(λ1(R, t), λ2(R, t)). (3.140)

In this case, we also employ scalar values sa and sb to indicate the activation and the

deactivation, respectively. We will suppose that both scalars are space independent and

sa < sb. Moreover, the activation and deactivation criteria are given by (2.8) and (2.15),

respectively.

At a particular value of t, as was mentioned earlier, λ1 and λ2 are both maximum at

the dome. Hence, s is maximum at the dome for all inflated states and so the activation

criterion (and later on also the deactivation) criterion is satisfied at the dome first. Here, we

assume that the collagen recruitment occurs first at the inflated dome. Note however, that

no supportive histological evidence of this result is available currently.

Moreover, λ1 and λ2 both monotonically decrease along the radius. It follows that s also

monotonically decreases along the radius. Therefore when s(R = 0) > sa, the activation

criterion (2.8) is satisfied only at one material point along the radius. We denote Ra as the

radius of that point relative to the dome. And we introduce λ1a and λ2a to denote the stretch

ratios λ1 and λ2, respectively, satisfying the criterion (2.8) at Ra.

It immediately follows that when s(R = 0) = sa, the activation occurs exactly at the

dome (Ra = 0) and λ1a = λ2a. The corresponding value of t is denoted as ta. So, ta is a

positive real root of the following relation:

s(λ1(R = 0, ta), λ2(R = 0, ta)) = sa. (3.141)

Moreover, when t is increased so that s(R = 0.0) > sa, the activation is satisfied at a

particular nonzero radius (Ra > 0) (provided that t is not large enough to produce value

of s greater than sa at all nodes other than the edge). It will be discussed later on (in the

Appendix A in which we describe the numerical procedure employed in this work) that the

radius Ra and the associated λ1a and λ2a can be computed from the following relation:

s(λ1a(Ra, t), λ2a(Ra, t)) = sa. (3.142)
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As t is monotonically increased, s is increased everywhere and Ra is enlarged. The progression

of t forms an enlarging circular area with radius Ra inside which the material points have

their s progressively becoming greater than sa implying a region with collagen recruitment

in addition to the elastin. Obviously, outside this region is a region filled with elastin only.

The Cauchy stress tensor of the material points at which the collagen fibers are activated

must include the contribution of the second mechanism represented by the collagen fibers

mechanical response. As was discussed before, the second mechanism will take the configura-

tion at which the activation criterion (2.8) is satisfied, say κ2, as their reference configuration.

The deformation gradient relative to κ2 however can be written in terms of the deformation

gradient relative to the reference configuration κ1. Using (2.12), the deformation gradient

F2 relative to κ2 can be obtained as follows:

F2 = DIAG[
λ1

λ1a

,
λ2

λ2a

,
λ3

λ3a

], (3.143)

where due to incompressibility, λ3a = λ1a/λ2a. The Left Cauchy Green strain tensor and its

inverse are given, respectively, by

B2 = DIAG[
λ2

1

λ2
1a

,
λ2

2

λ2
2a

,
λ2

3

λ2
3a

] and B2
−1 = DIAG[

λ2
1a

λ2
1

,
λ2

2a

λ2
2

,
λ2

3a

λ2
3

]. (3.144)

The first invariant of B2 is given by;

I2 =
λ2

1

λ2
1a

+
λ2

2

λ2
2a

+
λ2

3

λ2
3a

.

Note however that different material points satisfy the activation criterion at different loading

states, thus implying that more than one configuration of the body will be used as the

reference configuration for the second mechanism.

At material points whose s ≥ sa, the equations for the stress components are given by

(2.17) and (2.18) for sa ≤ s < sb with W given by (2.21). When the plane stress restriction

is imposed, the resulting nonzero components σ1 and σ2 take the following form:

σ1 = 2(λ2
1 − λ2

3)
∂W

∂I1

− 2(
1

λ2
1

− 1

λ2
3

)
∂W

∂II1

+ 2(
λ2

1

λ2
1a

− λ2
3

λ2
3a

)
∂W

∂I2

− 2(
λ2

1a

λ2
1

− λ2
3a

λ2
3

)
∂W

∂II2

σ2 = 2(λ2
2 − λ2

3)
∂W

∂I1

− 2(
1

λ2
2

− 1

λ2
3

)
∂W

∂II1

+ 2(
λ2

2

λ2
2a

− λ2
3

λ2
3a

)
∂W

∂I2

− 2(
λ2

2a

λ2
2

− λ2
3a

λ2
3

)
∂W

∂II2

(3.145)
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After substituting (2.21) into (3.145) and using the nondimensional variable σ̂α, α = 1, 2, it

follows that

σ1 = M1(λ
2
1−λ2

3)+M2(
λ2

1

λ2
1a

− λ2
3

λ2
3a

) and σ2 = M1(λ
2
2−λ2

3)+M2(
λ2

2

λ2
2a

− λ2
3

λ2
3a

), (3.146)

where the hat sign has been removed for convenience and M1 and M2 are defined as follows;

M1 = e(γ1(I1−3)) and M2 =
α2

α1

e(γ2(I2−3)) (3.147)

All of the nonzero stress components, whether evaluated at the material points satisfying

the activation criterion or at other points, must satisfy the equilibrium equations given by

(3.125) and (3.123). It can be shown that the expression for derivatives of η and λ2 needed

in the Runge Kutta method are given by (3.133) and (3.132), respectively. However, since

σ1 shown in (3.146.1) contains terms from the second mechanism, the derivative of λ1 differs

from (3.135). We skip the lengthy calculation for the derivative of λ1 and only present the

results below:

∂λ1

∂R
=

λ1

λ2

η(σ2 − σ1)− (S2λ2 − σ1)(η − λ2)− λ2R(Z1
∂λ1a

∂R
+ Z2

∂λ2a

∂R
)

R(λ1S1 − σ1)
, (3.148)

which is nondimensional and where S1, S2, Z1 and Z2 are given as follows:

S1 = 2
M1

λ1

((λ2
1 + λ2

3) + γ1(λ
2
1 − λ2

3)
2) + 2

M2

λ1

((
λ2

1

λ2
1a

+
λ2

3

λ2
3a

) + γ2(
λ2

1

λ2
1a

− λ2
3

λ2
3a

)2)

S2 = 2
M1

λ2

(λ2
3 + γ1(λ

2
1 − λ2

3)(λ
2
2 − λ2

3)) + 2
M2

λ2

(
λ2

3

λ2
3a

+ γ2(
λ2

1

λ2
1a

− λ2
3

λ2
3a

)(
λ2

2

λ2
2a

− λ2
3

λ2
3a

)) (3.149)

and

Z1 = −2
M2

λ1a

((
λ2

1

λ2
1a

+
λ2

3

λ2
3a

) + γ2(
λ2

1

λ2
1a

− λ2
3

λ2
3a

)2)

Z2 = −2
M2

λ2a

(
λ2

3

λ2
3a

+ γ2(
λ2

1

λ2
1a

− λ2
3

λ2
3a

)(
λ2

2

λ2
2a

− λ2
3

λ2
3a

)), (3.150)

and M1 and M2 were defined in (3.147). For completeness, the derivative of σ1 given in

(3.146.1) is presented below:

∂σ1

∂R
= S1

∂λ1

∂R
+ S2

∂λ2

∂R
+ Z1

∂λ1a

∂R
+ Z2

∂λ2a

∂R
. (3.151)

129



As for earlier examples, we would like to study, the behavior of the inflated clamped

membrane when the elastin stops participating in the load bearing mechanism. We now

consider the stage where the loading has been increased to the level where the deactivation

criterion (2.15) is satisfied at the dome and its neighboring points. As with collagen recruit-

ment, the elastin breakage is assumed to occur at the dome first. However, currently, it is

not clearly understood where in aneurysms walls the elastin starts to fragment. As is for

collagen recruitment, for a fixed t ≥ tb the criterion (2.15) is satisfied only at one material

point along the radius. We denote Rb as the radius of that point relative to the dome.

The corresponding stretch ratios λ1 and λ2 that satisfy the deactivation criterion (2.15) are

denoted as λ1b and λ2b, respectively.

When the inflated state is such that s(R = 0.0) = sa, the deactivation occurs exactly at

the dome (Rb = 0.0) and λ1b = λ2b. We denote these stretch ratios as tb. Therefore, tb is a

positive real root of the following relation:

s(λ1(R = 0, tb), λ2(R = 0, tb)) = sb. (3.152)

As t monotonically increase, the stretch ratios λ1 and λ2, and hence the value of s, of the

neighboring material points of the dome also monotonically increase. In fact, the following

relation:

s(λ1b(Rb, t), λ2b(Rb, t)) = sb (3.153)

produces values of increasing Rb and a set of pairs of λ1b and λ2b for increasing t. The

progression of t corresponds to an enlarging circular area with radius Rb inside of which

s ≥ sb for all the material points. Namely, this is a region with elastin breakage. The

circular line with radius Rb therefore becomes the interface between an inner region filled

with only collagen and an outer region filled with both recruited collagen and elastin. We

assume that sb is always larger than sa implying that elastin breakage occurs only inside the

region with recruited collagen.

At the points where s ≥ sb the stresses are generated according to (2.17) and (2.18) for

s ≥ sb with W is given by (2.21). Similar procedures and restriction as in the recruitment

are used to obtain the nonzero stresses σ1 and σ2. However, they can be easily deduced from
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(3.146.1 and 2) by removing the term corresponding to the first mechanism. The resulting

formulations are as follows:

σ1 = M2(
λ2

1

λ2
1a

− λ2
3

λ2
3a

) and σ2 = M2(
λ2

2

λ2
2a

− λ2
3

λ2
3a

), (3.154)

where both σ1 and σ2 are nondimensional variables. These expression of σ1 and σ2 are to

be used in the differential equations (3.133), (3.132) and (3.148). In these equations, S1 and

S2, respectively, are:

S1 = 2
M2

λ1

((
λ2

1

λ2
1a

+
λ2

3

λ2
3a

) + γ2(
λ2

1

λ2
1a

− λ2
3

λ2
3a

)2) (3.155)

S2 = 2
M2

λ2

(
λ2

3

λ2
3a

+ γ2(
λ2

1

λ2
1a

− λ2
3

λ2
3a

)(
λ2

2

λ2
2a

− λ2
3

λ2
3a

))

The expressions for Z1 and Z2 given in (3.150) are still valid. The resulting differential

equations that must be solved are summarized and grouped according to their range of s in

Table 20.

3.5.2 Unloading

We also want to study the unloading behavior of the inflated clamped membrane as Q is

decreased after a maximum t, denoted as t∗, is achieved. As in previous model problems,

several cases of t∗ need consideration: t∗ < ta, ta ≤ t∗ < tb and tb ≤ t∗.

• Case 1: t∗ < ta

In this case, we suppose that the unloading begins before the collagen recruitment occurs

at the dome. Since the second mechanism is not activated yet, it’s easy to see that this

case resembles an unloading case of classical elastic materials with only one mechanism

involved. During unloading, the nondimensional components of Cauchy stress tensor

are generated by (3.138.1 and 2) with M1 = e(γ1(I1−3)). The nondimensional differential

equations that need to be solved are given by (3.135, 3.132 and 3.137) with S1 and S2

given by (3.139.1 and 2). These equations are given in the top box of Table (20). Clearly,

the unloading returns the inflated circular sheet membrane into a flat membrane with

stress free reference configuration.
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Table 20: The nondimensional differential equations used in the numerical calculations of

the inflation of circular clamped membrane.

Range of s: 0 < s < sa

∂λ2

∂R
= η−λ2

R

∂λ1

∂R
= λ1

λ2

η(σ2−σ1)−(S2λ2−σ1)(η−λ2)
R(λ1S1−σ1)

∂η
∂R

= η
λ1

∂λ1

∂R
+

λ3λ1(λ2
1−η2)

R
σ2

σ1
−Qλ1

λ3

(λ2
1−η2)1/2

σ1

σ1 = M1(λ
2
1 − λ2

3) σ2 = M1(λ
2
2 − λ2

3)

S1 = 2M1

λ1
((λ2

1 + λ2
2) + γ1(λ

2
1 − λ2

2)
2)

S2 = 2M1

λ2
(λ2

3 + γ1(λ
2
1 − λ2

2)(λ
2
1 − λ2

3))

M1 = e(γ1(I1−3))

Range of s: sa ≤ s < sb

The expressions for ∂λ2

∂R
and ∂η

∂R
are the same as those for range of s ∈ [0, sa]

∂λ1

∂R
= λ1

λ2

η(σ2−σ1)−(S2λ2−σ1)(η−λ2)−λ2R(Z1
∂λ1a
∂R

+Z2
∂λ2a
∂R

)

R(λ1S1−σ1)

σ1 = M1(λ
2
1 − λ2

3) + M2(
λ2
1

λ2
1a
− λ2

3

λ2
3a

) σ2 = M1(λ
2
2 − λ2

3) + M2(
λ2
2

λ2
2a
− λ2

3

λ2
3a

)

S1 = 2M1

λ1
((λ2

1 + λ2
3) + γ1(λ

2
1 − λ2

3)
2) + 2M2

λ1
((

λ2
1

λ2
1a

+
λ2
3

λ2
3a

) + γ2(
λ2
1

λ2
1a
− λ2

3

λ2
3a

)2)

S2 = 2M1

λ2
(λ2

3 + γ1(λ
2
1 − λ2

3)(λ
2
2 − λ2

3)) + 2M2

λ2
(

λ2
3

λ2
3a

+ γ2(
λ2
1

λ2
1a
− λ2

3

λ2
3a

)(
λ2
2

λ2
2a
− λ2

3

λ2
3a

))

Z1 = −2M2

λ1a
((

λ2
1

λ2
1a

+
λ2
3

λ2
3a

) + γ2(
λ2
1

λ2
1a
− λ2

3

λ2
3a

)2)

Z2 = −2M2

λ2a
(

λ2
3

λ2
3a

+ γ2(
λ2
1

λ2
1a
− λ2

3

λ2
3a

)(
λ2
2

λ2
2a
− λ2

3

λ2
3a

))

M2 = α2

α1
e(γ2(I2−3))

Range of s: sb ≤ s

The expressions for ∂λ2

∂R
and ∂η

∂R
are the same as those for range of s ∈ [0, sa]

The expression of ∂λ1

∂R
is the same as that for s ∈ [sa, sb]

σ1 = M2(
λ2
1

λ2
1a
− λ2

3

λ2
3a

) σ2 = M2(
λ2
2

λ2
2a
− λ2

3

λ2
3a

)

S1 = 2M2

λ1
((

λ2
1

λ2
1a

+
λ2
3

λ2
3a

) + γ2(
λ2
1

λ2
1a
− λ2

3

λ2
3a

)2)

S2 = 2M2

λ2
(

λ2
3

λ2
3a

+ γ2(
λ2
1

λ2
1a
− λ2

3

λ2
3a

)(
λ2
2

λ2
2a
− λ2

3

λ2
3a

))

The formulations of Z1 and Z2 are the same as those for s ∈ [sa, sb]

For all ranges, Q = q0R0

h0α1
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• Case 2: ta ≤ t∗ < tb

In the second case, we suppose the sheet is unloaded after the collagen is recruited at the

dome and its neighboring points, so, here ta ≤ t∗ < tb. As was discussed previously, the

active collagen fibers contained in the deformed body will return to its stress free and

unstretched reference configuration during unloading. Recall that, due to the inhomo-

geneity, an inner circular region with radius Ra < 1.00 is filled with active collagen fibers

the stretch of that is maximum at the dome and minimum at R = Ra. The material

points in the inner region possess s ≥ sa, with the maximum at the dome and minimum

(s = sa) at R = Ra. So here, Ra denotes the radius of material point with s = sa.

The complementary region is filled with material points possessing only elastin. The s

values in the complementary region are always less than sa. During unloading, s in both

regions monotonically decrease. The s value at R = Ra reduces from s = sa to s < sa

and s values at some R < Ra reduce from some s > sa to s = sa. The interface radius

Ra decreases and the inner region shrinks while the outer region enlarges.

During unloading, the stress generation of the points that were in the outer region be-

fore the unloading began obviously follows that of classical elastic materials, since the

collagen is never activated there. The equations generating the stress and corresponding

differential equations at these material points are those used in the first unloading case

previously discussed.

During unloading, some of the material points that possess both active collagen fibers

and elastin at the maximum loading generally will loose the active collagen fibers due

to unrecruitment and as a result will have only elastin. The stress generation at these

points depends on their s values. The stress generation of the points with s > sa

is given by (3.146.1 and 2) with M1 and M2 given by (3.147.1 and 2), respectively.

The nondimensional differential equations are given by (3.148) with S1 and S2 given

respectively by (3.149.1 and 2) and Z1 and Z2 given respectively by (3.150.1 and 2),

(3.132) and (3.137) with Q as the nondimensional pressure. Furthermore, eventually the

value of s decreases due to the unloading and become less than sa. The stress generators

and differential equations that are used by these points with s < sa admit those that are

used in the first case of the unloading (t∗ < ta).

133



More importantly, the unloading will reach a deformation level at which the whole region

is occupied only by the elastin just as is in the first unloading case (t∗ < ta). Here, as is in

the first case, the unloading will return the inflated sheet into a flat stress free membrane

as the membrane was in the original reference configuration.

• Case 3: tb ≤ t∗

This is the case when the unloading begins after some points at the dome and its neigh-

boring region lost their elastin. As was assumed, the damaged elastin is unrepairable

and therefore they cannot be reactivated by decreasing s below the breaking value sb

during the unloading. This differs from the collagen of which the activity is governed by

the s values of the points possessing it, disregarding whether it is loading or unloading

case.

At the beginning of unloading, generally the inflated sheet is divided into three regions:

the innermost region, which is the region with damaged elastin leaving collagen as the

sole mechanical component, the middle region, which is occupied by both active elastin

and collagen fibers and the outer region, which is filled with points possessing only active

elastin. The s values in the innermost region is greater than sb. In the middle region,

the s values are sb > s > sa and in the outermost region, s ≤ sa. When t is reduced, the

s values in the three regions are reduced. Moreover, as was explained in the second case,

the radius of the interface Ra is also reduced causing the middle region to shrink while

the outermost region grows. The same logic however cannot be applied to the interface

with radius Rb dividing the innermost region and the middle region. While in principal,

during loading, Rb denotes the radius of material points with s = sb bounding a region

with s > sb. The radius Rb also denotes the radius bounding the region where the elastin

is damaged. The two regions coincide during loading but not during unloading. Due to

the unloading, the s values decrease causing the region with s ≥ sb to shrink, however

the region with damaged elastin remains. We suppose that Rb remains to denote the

radius of material point with s = sb. So, during the unloading, Rb also becomes smaller.

We denote the radius of the fixed region filled with damaged elastin with R∗
b .

In summary, the following regions are developed during the unloading process:

– Region 1a. (0 ≤ R < Rb): The innermost region filled only with active collagen.
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– Region 1b. (Rb ≤ R < R∗
b): Generally, this region is similar to the first region with

the exception of the s values that are less than sb.

– Region 2. (R∗
b ≤ R < Ra): The middle region that is filled with both active collagen

and elastin.

– Region 3. (Ra ≤ R < 1.00): The outermost region that is filled with active elastin

only.

The differential equations that are involved during the calculation are summarized below:

– Region 1a and 1b

In this region the first mechanism has been deactivated. The differential equations

are given by (3.137),(3.148), and (3.132) with the definitions of σ1 and σ2 are given

by (3.154.1 and 2), respectively with M2 is given by (3.147.2). The definitions of

S1, S2, Z1, and Z2 given by (3.156.1 and 2), (3.150.1 and 2), respectively.

– Region 2

In this region, both mechanisms are active. The differential equations and the stress

generator that are involved in the calculation are the same as those that are used in

the inner region of the second unloading case.

– Region 3

It is easy to see that this region resembles that of a classical elastic material. The

differential equations of the first unloading case are used in this region.

It is very important to note that in this particular case, the fixed radius R∗
b and the

decreasing radius Ra eventually will coincide. At this particular unloading stage, two

regions remain: the collagen only region (0 < R < R∗
b = Ra) and the elastin only

region (R∗
b = Ra < R < 1.00). Furthermore, when the unloading proceeds, theoretically

Ra becomes smaller than R∗
b and basically an ‘empty’ region Ra < R < R∗

b , in which

no elastin nor collagen are active, is developed. Technically, however, the numerical

calculation never achieves this state of deformation since the algorithm cannot handle

this ‘empty’ region. In fact, the unloading then ceases at some inflated membrane state

and some nonzero nondimensional pressure Q. We do not know if the ‘empty’ region

phenomenon can explain the inelastic behavior of saccular aneurysms. The mechanics

of the inactive collagen fibers that are embedded in the deforming membrane, if any, is
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also unknown. We also cannot predict the profiles of the membrane when Q continuous

decreasing to a zero value. However, it will be shown in the next section the membrane

profiles when Q is close to zero values.

3.5.3 Results

In this section we present results for inflation of circular clamped membranes composed of

the dual mechanism material each of which is an exponential type material. Four materials

are employed as examples: material A, B ,C and D. The material parameters are tabulated in

Table (21). Basically these parameters are obtained through the nonlinear regression analysis

presented in Section 3.3. The material parameters for A and B are obtained by having λa

fixed during nonlinear regression analysis. Unlike materials A and B, material parameters C

and D are obtained by having λa not fixed resulting in ‘early’ recruitment (small λa). The

values of fixed λa=1.7610 and non fixed λa=1.5962 correspond to sa=1.4237 and sa=0.9407,

respectively. Recall that for both cases, the value of λb is assumed to be 2.3 which corresponds

to sb = 3.4790. At the dome of inflated clamped membrane, sa=1.4237, sa=0.9407, and sb

= 3.4790 correspond to ta = 1.4485, ta = 1.3510, and tb = 1.7862, respectively. Observe also

that the thicknesses of materials A and C both are 100 µ, while those of materials B and D

both are 125 µ.

We will see in this section, the resulting curves of Qd (the value of non dimensional

pressure Q at the dome) versus t (the dome stretch ratio) during loading and unloading for

different material parameters, different pressure distribution and different maximum load-

ing. We also will see the resulting profiles for different pressure distribution. Only linearly

varying distribution with maximum pressure at the dome is considered in this section. The

distribution of the pressure along the radius is measured by a parameter C. Uniform distri-

bution corresponds to C = 0.00. The value of C = -G indicate that the local pressure at the

edge (R=1.00) is (1-G) times those at the dome.

The resulting Qd vs. t curves during loading with uniform pressure for materials A and

B and C and D are depicted in Figures (30) and (31), respectively. In these figures, curves

OAB represent the response given only by the first mechanism. Curves OAC’C represent
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Table 21: The materials and their parameters used as examples in this section. The strain

energy function of the material is given by (2.21).

Material Parameters A B C D

Undeformed thickness (H) (µ) 100 125 100 125

λa 1.76103 1.76103 1.5962 1.5963

α1(103dynes/cm2) 89.0357 71.2199 73.9613 59.1676

γ1 0.6224 0.6224 0.5908 0.5909

α2(103dynes/cm2) 390.872 312.6121 395.723 316.598

γ2 1.867193 1.867605 1.8483 1.8482

sa 1.4237 1.4237 0.9407 0.9407

sb 3.4790 3.4790 3.4790 3.4790

ta 1.4485 1.4485 1.3510 1.3510

tb 1.7862 1.7862 1.7862 1.7862
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Figure 30: Resulting Qd vs t curves corresponding to the materials A (top) and B (bottom)

given in Table 21.
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Figure 31: Resulting Qd vs t curves corresponding to the materials C (top) and D (bottom)

given in Table 21.
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the response given by both first and second mechanism without elastin breakage. For both

materials A and B, the second mechanism is activated at ta = 1.4485, while for both materials

C and D the second mechanism is activated at ta = 1.3510. In all of these figures, at t = ta

(indicated by point A) curves OAC deviate from curve OAB indicating material stiffening

due to the additional mechanism. Curves OC’DE represent the response of a dual mechanism

material that experiences elastin breakage. The breakage occurs at t = tb (indicated by point

C’) when the response shows local maximum. The values of tb for all of the materials A,

B, C, and D are 1.7862. At these local peaks, instead of having abrupt jumps as typically

occur in homogenous deformation cases, the values of Qd gradually decrease as the values of

t increase. The values of Qd reach local minimum D and recover. The recovery of materials

C and D however appear to be ‘faster’ than those of materials A and B. The ‘fast’ recovery of

materials C and D is probably due to the ‘early’ recruitment that allows a sufficient amount

of the recruited material to be deposited at the dome and the neighboring area to compensate

the weakening that is produced by the deactivation of the first mechanism.

The resulting Qd vs. t curves for material A and B qualitatively are the same. Similarly,

the resulting Qd vs. t curves for material C and D qualitatively are also the same. These

similarities should be expected since the equilibrium system is non dimensional. The ratios of

the coefficients of the second mechanism materials to the coefficients of the first mechanism

materials are more important than the individual values of the coefficients. The ratios of α2

to α1 for both materials A and B approximately are 4.39, while those for both materials C

and D approximately are 5.35. Figure 32 shows the resulting Qd versus t curves for material

C during both loading (OBC and OB’C’) and unloading (CD and C’D’) cases. Curve OBCD

is the response of material C when a uniform pressure Q is applied, while curve OB’C’D’

is the response when a linearly varying Q is applied. In the later case, the value of Qd

at the dome is twice of that at the edge (so here C=-0.5). As is expected, a Qd value to

produce a particular value of t in the non uniform case is higher than that in the uniform

case. For both pressure distribution cases, the maximum loading t∗=1.88 before unloading

occurs after total elastin breakage. The path of unloading does not follow the loading path.

The unloading for both cases are terminated at some nonzero Qd (indicated by point D and

D’ for C=0.00 and C=-0.5, respectively).
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Figure 32: Resulting loading and unloading Qd vs. t curves for both uniform and linearly

varying Q corresponding to the material parameters C given in Table 21.
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From the computation point of view the termination can be explained as follows. Recall

that during loading a circular region of damaged elastin is enlarged along with the progression

of t. If total elastin breakage is achieved, as occurs in the loading for these cases, then the

entire circular membrane is left with only active collagen fibers. During unloading, the

stretched collagen fibers return to their unstrained reference configurations. One might

expect that the unloading will stop at t = ta (ta=1.3510 in these two cases) below which

all collagen fibers become inactive. However, t = ta corresponds to the collagen activation,

or deactivation in the unloading case, only at the dome. In fact, the rest of collagen fibers

have been deactivated when the inflated state reaches t = ta. In the case of total breakage,

t = ta is never obtained during unloading. The collagen fibers away from the dome are

deactivated earlier than those at the dome (since s is always maximum at the dome). As

is now, the computation cannot handle the case when neither elastin nor collagen is active

at a particular node. In this situation the computation is terminated. In the cases under

discussion, the terminal states after unloading, indicated by D and D’, both correspond to

t=1.56 corresponding to low values of Qd ≈ 4.0 and Qd ≈ 3.0 for C = 0.00 and C = -0.5,

respectively. For the linearly varying pressure distribution, Qd = 4.0 corresponds to local Q =

2.0 at the edge. Considering these significantly low values of Qd, the terminal inflated states

that are obtained here can be seen as near stress free states. Figure 33 demonstrates the

effect of the variation of C values. In this case, material D is loaded with different pressure

distribution and unloaded at t∗=1.8. Here we can see that as C values are decreased, Qd

required to produce the same amount of t are increase.

Figure 34 shows typical developing profiles of an inflated circular clamped membrane

composed of dual mechanism for both cases: uniform and linearly varying pressure distribu-

tion. The numbers shown in the figure are values of applied t corresponding to the material

C. These numbers vary from one material to other materials. In the figure, the wall thinning,

especially at the dome, is well demonstrated. In the left figure, the values of ta and tb (in the

figure are shown as λa and λb) are 1.35099 and 1.7862, respectively. At t=1.84 the profiles

looks elongated in the Z direction . This is due to the elastin breakage that occurs first at

the dome causing that area to be weaken. The right figure demonstrates that at t=1.90, the

profile reaches its maximum height. When t progresses beyond the maximum height state,
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Figure 33: Resulting Qd vs t curves corresponding to the material parameters D given in

Table 21 during loading and unloading for different values of C. For the same amount of t

values, Qd values increase proportionally to the decrement of C.

Figure 34: Representative resulting inflated membrane profiles.
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the profiles develop in rather lateral direction (perpendicular to the Z axis). This is due to

the built up of collagen fibers that has been recruited. The stiffness contributed by collagen

fibers compensate the dome weakness created by elastin breakage. In fact, since the collagen

is stiffer than elastin, the dome area stiffen and thus preventing the development in the axial

direction (parallel to Z axis).

Figures 35 and 36 show the inflated profiles for different pressure distribution. The solid

and dashed lines represent resulting profiles for C=0.00 and C=-0.50, respectively. Figures

35 top and bottom both show the resulting profiles for the two different pressure distribution

but for the same amount of Qd. The top and bottom figures correspond to Qd ≈ 30.00 and

Qd ≈ 51.10, respectively. The profile resulted from C=-0.50 shows dome area that is more

elongated in the Z axis direction rather than those resulted from C=0.00. Similarly, Figures

36 top and bottom both show the resulting profiles for the two different pressure distribution

for the same amount of dome stretch ratios t. The top and bottom figures correspond to

t =1.799 and t =1.965, respectively. Again here we can see that the linearly varying pressure

distribution produces inflated profiles that are more elongated in the Z axis direction compare

to those produced by uniform distributed pressure.

Figure 37 shows the effect of different maximum loading t∗ on the final inflated profiles

after unloading. Here the circular membrane made out of material D is loaded with uniform

pressure distribution. The unloading is performed for several different maximum loading

t∗. The resulting terminal inflated profiles after unloading for t∗=1.9 (solid line) and t∗=2.1

(dashed line) show that the later case appears to be flattened than the first case. Clearly, the

amount of maximum loading in the later case provides more amount of recruited collagen

fibers resulting in stronger stiffening at the dome compare to those provided by the first case.

The results for other maximum loading are tabulated in Table 22. In this table r∗b , tf ,

qf indicate the final radius of the region occupied by elastin fragments, final t and final q

after unloading, respectively. The corresponding maximum Qd for each t∗ is given by qmax.

The maximum value of r∗b therefore is 1.00. As is expected, the values of r∗b are enlarged

proportionally to the increment of the maximum loading t∗. The value of r∗b=0.00 implies

that the elastin breakage has not occurred yet when the unloading is initiated. An example

of this case is when t∗ = 1.7 < tb. In this case the tf value is approximately 1.00 and the
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Figure 35: Resulting inflated profiles for material D at Qd ≈ 30.0 (top) and Qd ≈ 51.1

(bottom) for C=0.00 (solid line) and for C=-0.50 (dashed line). The figures clearly indicate

that for the same amount of dome pressure Qd, linearly varying pressure distribution (C =

−0.5) produces a profile that is more elongated in the axial direction compare to those

produced by uniformly distributed pressure (C=0.00).
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Figure 36: Resulting inflated profiles for material D at t=1.799 (top) and t=1.965 (bottom)

for C=0.00 (solid line) and for C=-0.50 (dashed line). The figures clearly indicate that for

the same amount of dome stretch ratio t, linearly varying pressure distribution (C=-0.50)

produces a profile that is more elongated in the axial direction compare to those produced

by uniformly distributed pressure (C=0.00).
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Figure 37: The top figure show the resulting Qd vs t curves corresponding to the material

parameters D given in Table 21 during loading and unloading for maximum loading t∗=2.1

(dot dashed lines) and t∗=1.9 (solid lines). The bottom figure shows the resulting terminal

inflated states for both maximum loading cases: t∗=2.1 (dashed lines) and t∗=1.9 (solid

lines).
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Table 22: Results of different maximum loading t∗ for material D. Here, qmax, r∗b , tf , qf are

the corresponding Qd value for t∗, the radius of elastin fragments region, final t and final q

after unloading.

Maximum loading t∗ qmax r∗b tf qf

1.7 15.8386 0.0000 1.0040 0.0000

1.8 22.9845 0.1809 1.3840 1.4977

1.9 29.2590 0.6015 1.4120 0.9081

2.1 96.2413 0.9030 1.5030 2.0236

2.2 204.547 0.9999 1.5850 3.7580

qf value is close to zero indicating the membrane returns to its flat configuration. When

t∗= 2.2, r∗b= 0.999 indicating that the entire circular membrane has no active elastin during

unloading. The tf and qf values in this case are 1.5850 and 3.750, respectively. The final

inflated state is near stress free state. An improvement to the computation algorithm should

be made so that qf values that are close to zero can be obtained.
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4.0 DISCUSSION

Aside from its promising results, the proposed constitutive equation has some limitations

with respect to applications to cerebral arterial tissues. It will be seen that the limitations

arise from either insufficient experimental data or inherent assumptions. In this chapter we

also discuss future works to address these limitations.

4.1 LIMITATIONS OF THE PROPOSED CONSTITUTIVE EQUATION

The limitations in applications of the constitutive equation mostly arise from the assumptions

employed in the constitutive equation that must be prescribed due to insufficient real data

on the mechanics of cerebral arterial tissues, in particular the inelastic behavior. While the

nonlinearity of cerebral arterial walls has been confirmed by several experimental results

[82, 79, 83], the inelastic behavior, on the other hand, is seldom reported. The report

by Scott, Ferguson and Roach [79] may be the only documentation regarding the inelastic

behavior of cerebral arteries. Holzapfel et al. reported similar inelastic behavior of the

media of extracerebral arteries [80]. The inelastic behavior that is hypothesized to be due

to the damage of elastin [79] is an essential feature to be incorporated for cerebral aneurysm

applications due the finding of fragmented elastin on the aneurysm walls [2, 55].

• It is assumed that all collagen fibers occupying a material point are recruited at the

same deformed state. Busby and Burton [49] however hypothesized that the nonlinear

appearance of the elastic curves of arteries are due to recruitment of collagen fibers in

a gradual manner. Busby and Burton also assumed that the number of collagen fibers

recruited during the deformation can be approximated by the second derivative of the
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tension with respect to the circumferential stretch. No histological evidence however is

offered to support this relation. The assumption of non gradual recruitment employed

in this work therefore is taken due to lack of data on the recruitment rate.

• It is assumed that all elastin occupying a material point fragments at the same deformed

state (local total breakage). One resulting consequence is that the loading and unload-

ing cycles of a particular homogeneous deformation produce only two elastic curves:

before and after the elastin breakage. Results from the experiments of Scott et al. [79]

demonstrate more than two elastic curves prior to the inelastic deformation leading to a

hypothesis that the elastin is fragmented rather gradually. However, their data does not

include sufficient information to evaluate this hypothesis of gradual elastin fragmenta-

tion. Local total elastin breakage assumption therefore is taken due to insufficient data

on the fragmentation rate.

• It is assumed in the equation that the damaged elastin are not regenerated. This as-

sumption reflects the fact that currently there is no report of elastin rehabilitation at the

aneurysm walls.

• It is assumed that the first and second mechanisms are isotropic with respect to reference

configurations κ1 and κ2, respectively. The elastin embedded body generally can be

regarded as an isotropic material. The apical region of an arterial bifurcation contains

collagen fibers with no preferred orientation [54]. Yet experimental results confirming the

material symmetry of this particular region are unavailable. The isotropy assumption

for the second mechanism therefore is taken due to lack of experimental data.

• It is assumed in this work that the original body containing the elastin and collagen

is homogeneous. The histology of arterial walls reveals that structurally an arterial

segment can be considered uniform in the longitudinal and circumferential directions

but not in the radial direction (across the wall thickness) [150, 157]. This is consistent

with mechanical testing demonstrating that the material properties of arterial walls can

be considered uniform in the longitudinal and the circumferential direction but not in

the radial direction[158]. The assumption regarding the homogeneity across the thickness

however is imposed since the small thickness of the cerebral arterial wall justifies the use

of the membrane approximation theory for the deformations considered here.
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4.2 FUTURE WORK

The aforementioned limitations immediately suggest future directions for this work that can

be categorized into three groups: theoretical, experimental and numerical work.

4.2.1 Future theoretical work

• To consider collagen recruitment in a gradual manner

The multi-mechanism constitutive equation is not restricted to the involvement of the

new mechanisms in a discrete manner. A simple example of gradual involvement of new

mechanisms can be seen in Rajagopal and Wineman [104]. The gradual recruitment

can be thought of as continuous recruitment of fibers or groups of fibers at different

configurations.

• To allow more than one mechanism representing more than one kind of collagen fiber

Blood vessel walls contain four types of collagen: Type I, Type III, Type IV and Type

V [70]. Deficiency of Type III collagen is hypothesized to play a role in the rupture

of aneurysm [15]. Therefore the distinction between mechanisms representing response

of bodies embedded with these different types of collagen therefore may be important

when dealing with aneurysm rupture. In principal, multi-mechanism modeling does not

limit the number of mechanisms that can be added in the equilibrium system. Techni-

cally, the consideration of other kinds of collagen fibers can be done easily by adding

another (or other) strain energy function(s) for example in the current constitutive equa-

tion. The addition of the new component(s) certainly demands new material parameter

identification.

• To consider gradual elastin breakage

As was mentioned before, a non discrete microstructural change is not a novel application

in multi-mechanism modeling (see an example in Rajagopal and Wineman [104]). The

incorporation of gradual elastin breakage is an essential effort to more realistically mimic

the elastin fragmentation process. The implementation of gradual breakage requires

factors that can quantify the breaking rate of elastin.
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• To allow elastin regeneration

Elastin fragmentation has been hypothesized to play a role in aneurysm formation.

Hence, it is possible that future prevention of aneurysm formation will include efforts to

artificially introduce ‘new’ elastin. From a multi-mechanism modeling point of view, the

introduction of ‘new’ or regenerated elastin technically can easily be done by consider-

ing mechanisms that are added at a specified deformed level. Experimental information

regarding the material parameters of the newly generated elastin certainly are required.

• To construct a constitutive equation that incorporates anisotropy

It has been commonly accepted that arterial walls are well modelled as cylindrically

orthotropic[159, 160]. An isotropic assumption however sometimes is still used [125,

126]. Cerebral arterial walls however are anisotropic [161]. The degree of anisotropy of

cerebral arterial walls however has not been explored yet and it likely depends on the

local geometry. Recall that the apical region of an arterial bifurcation contains collagen

fibers with no preferred orientation [54]. Therefore, the isotropic assumption is likely

reasonable for modeling aneurysm development at bifurcations. The wall anisotropy

however becomes an essential issue when one models the formation of saccular aneurysm

at curved segments of arteries where the collagen fibers are more oriented and therefore

may introduce anisotropy.

• To consider material inhomogeneity

Recall that, as remarked by Patel and Vaishnav, the inhomogeneity in the radial direc-

tion may becomes an important issue for some types of deformations, such as bending,

[158]. In these cases, it may be important to treat the individual contributions of wall

constituents, such as collagen and elastin, as separate entities, occupying physically dif-

ferent radial positions. The incorporation of this type of inhomogeneity certainly can be

done within the framework of multi-mechanism constitutive equations.
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4.2.2 Future experimental work

Future experimental work can be directed at the following issues:

• To construct experimental protocols suitable for the proposed equation

It’s clear that the currently proposed approach demands new experimental procedures

that differ from the traditional ones. As an example, we can see that both the recruitment

and breakage criteria, certainly cannot be evaluated using commonly used experimental

procedures. We have already made substantial progress in developing a suitable exper-

imental protocol using real samples from cadavers. The experimental results will be

presented in future publications.

• To run experiments on real tissue samples

Once the desired protocol is established, experiments using real samples can be run to

obtain data and material constants including the form of the function of deformation

parameters s(F1) and values of both the recruitment and breakage criteria sb and sb,

respectively.

• To include morphology studies in particular regarding the elastin breakage

The phenomenon of elastin breakage is fundamental to the current modeling due to the

abundant evidence of elastin fragments in the aneurysm walls.

4.2.3 Future numerical work

The results presented in this work are mainly from geometrically simplified model problems

that can be solved either analytically or numerically. When geometrically complex prob-

lems must be considered, complex numerical tools must be employed. Unfortunately, the

concept of multi-mechanism constitutive equations is relatively new and therefore is not yet

implemented in any commercial numerical tools.

Two possible directions therefore are open. One direction is to implement the dual

mechanism concept in a commercial finite element or finite difference package. The other

method is to construct a numerical tool based on either a finite element or finite difference

method incorporating the proposed constitutive equation. Challenges will include modeling

of geometrically complex bodies and fluid-structure interactions.
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5.0 CONCLUSION

The conclusions of this work can be summarized below:

• A new constitutive equation for both cerebral arterial and aneurysm walls has been

presented. The new constitutive relation can handle both the nonlinearity and inelasiticty

exhibited by the tissues. More importantly, using the new contitutive equation, the two

different entities, the arterial wall and aneurysm wall, can be related or coupled. The

separation of the two entities that was commonly practiced becomes unnecessary.

• Results of the proposed dual mechanism used in some relevant model problems, including

homogeneous and inhomogeneous deformations, 3D and 2D, and either single or multi

parameter, have been presented. These examples are intended to show how to implement

the new constitutive equation in some basic models and provide guidance for future

experimental work.

• It has been shown that the proposed constitutive equation can capture the inelastic

bevahior of cerebral arterial walls observed by Scott et al.[79]. The resulting regression

analysis shows that exponential type strain energy functions serve very well for both

mechanisms. It is very important to emphasize that the material identification is not

intended to predict the material properties of collagen fibers and elastin sheet. It has

to be understood that the identification is only a way to quantify the gross mechanical

response produced by a body that is composed of either elastin only or by collagen only

or by both collagen and elastin.

• Some suggested experimental methods for material identification of the proposed consti-

tutive equation have also been given, in particular the determination of s and value of

sa.
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• Finally, the proposed constitutive equation can model the early stages of aneurysms

formation. The model can predict the elastin fragmentation observed inn the wall of

aneurysms, wall thinning at the fundus, the inhomogeneity of the wall due to partial

elastin breakage and collagen recruitment, and the sac-like behavior of the dome. The

variation of sac shape due to the distribution of the applied pressure implies the impor-

tance of hemodynamic factors.

• It is expected that the new constitutive equation presented here can be used to incor-

porate various proposed mechanisms that may either precede aneurysm formation or

favor aneurysm development. The generalisation from the classical constitutive equa-

tion, which is restricted to include only one mechanism, is expected to result in more

realistic predicitions of both aneurysm formation and development in future application

of this model.
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APPENDIX A

NUMERICAL PROCEDURE OF SOLUTION FOR INFLATION OF

CIRCULAR CLAMPED MEMBRANE

The set of differential equations presented in Table (20) is integrated using the well known

numerical scheme Runge-Kutta (RK) method. The goal of the numerical process is to

obtain the unknowns stretch ratios λ1 and λ2, η and the nondimensional pressure Q for a

given inflated state identified by the dome stretch ratio t. This however does not imply that

the numerical scheme can be used to solve the problem for any given t, independent from

the history of t. As will be discussed below, the algorithm that handles the introduction

of the second mechanism requires information from some preceding deformed states. The

overall algorithm is lengthy and therefore only important numerical issues are discussed in

this chapter. A full pictorial flowchart is presented in Appendix E.

The numerical procedure used here, particularly part of it that handles the multi-

mechanism section, relies on the assumption that s(R, t) monotonically decreases with R.

Such a condition has been exhibited in the classical elastic material [140] as well as in the

multi-mechanism based material [105]. Moreover, some important parts of the algorithm are

inspired by the computational work by Wineman and Huntley[105].

Due to the problem’s axisymmetry of the deformation, the circular membrane can be

represented by material points or particles defined on the domain 0 to Ro. These particles

form the computational domain of this problem. The radius line is nondimensionalized using

the length of the circular membrane undeformed radius R0. The material points then will be

represented by some finite numbers of equally distanced nodes so that the numerical scheme
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can be performed. The nodes are denoted by Rj, where j = 1, 2, ...J and J is the number

of nodes. The dome node R = 0.00 and the edge node R = 1.00 are denoted by R1 and

RJ , respectively. The distance between the nodes, ∆R, that leads to a convergent solution

is found, by numerical experiments, to be either ∆R = 1.00/10 or ∆R = 1.00/8. In the RK

method, the unknown values at node Rk+1 are estimated by ‘adding’ incremental values to

either computed or already known values at node Rk. The incremental values are calculated

using the set of the differential equations displayed in Table (20) that employ values at node

Rk. Generally, for a given inflated state identified by t = λ1(0, t) = λ2(0, t), a an initial

estimate for Q must be assigned first and modified later if the edge boundary condition

(3.131) is not satisfied.

The rate of aneurysm development ranges from approximately 0.1 mm/year for nonsmok-

ers aneurysms patients to 0.5 mm/year for smoker patients [14]. The formation and growth

of the aneurysm therefore are considered to be sufficiently slow, the circular membrane can

be considered to inflate in a quasi-static mode. No initial condition therefore is needed

in the calculation process. With respect to the pulsating blood pressure, the quasi-static

assumption however is far from realistic and needs to be improved in future modeling.

A.1 STAGES IN WHICH THE FIRST MECHANISM IS ACTIVE

We first discuss the numerical procedure for deformed states where only the first mechanism

is active. By definition this means the dome stretch ratio t is less than ta. These deformed

states resemble those of classical single mechanism materials. In our discussion, these states

will be referred to as no recruitment states. Due to the inhomogeneity of the deformation,

the stretch ratios λ α (α = 1, 2) monotonically decrease from its maximum at the dome to

the minimum at the edge. The deformation parameter s is less than sa everywhere in the

computational domain for all t < ta. It is clear that the value of s depends on the node

radius R and the dome stretch ratios t, so s(R, t) < sa, R ∈ [0, 1] for t < ta. For these

deformed states, the nondimensional differential equations are given by (3.135,3.132 and

3.137) with S1 and S2 given by (3.139.1 and 2) and σ1 and σ2 respectively given by (3.138.1

and 2) with M1 = e(γ1(I1−3)). The details on how to implement the RK method for the
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given system of differential equations will not be delivered here. Interested readers may find

such information available from many sources, for example from Gerald and Wheatley [162].

Some special technical challenges derived from the boundary conditions of the problem and

the introduction of the multi mechanism scheme however are not part of the RK method in

general and they will be discussed in the following lines.

The first problem appears in the right hand sides of the system of differential equations

(3.135,3.132 and 3.137) that are unbounded when the integration is initiated at R = 0.00

(R1). A remedy for this problem, suggested by Green and Adkins [140] is to assume that at

R = 0.00:
∂λ1

∂R
=

∂λ2

∂R
=

∂η

∂R
= 0.00 (A.1)

in order to obtain a bounded solution. However, the consequences is that the incremental

values cannot be produced and the integration process fails to start. This problem is solved

by supplying an alternative equation for η, (3.124) to reduce the system of differential equa-

tions to depend on two unknown variables: λ1 and λ2. The alternative equation provides

estimation of η at R2, while the reduced system provides the estimation of nonzero λ1 and

λ2 there. Once the computed values at R2 are obtained, the calculation of the values at the

next nodes (at R3, R4...) can be achieved using the complete system of differential equations.

The next issue is the algorithm for an iterative procedure that is used to obtain the

nondimensional pressure Q. As was discussed, an initial estimate Q must be supplied for

each value of t in the integration process. The node-to-node calculation described above

eventually will reach RJ , the edge node. The computed value λ2(RJ , t) must satisfy the

boundary condition (3.131). A small tolerance is set to measure the closeness of the computed

value to the required value. When the error is intolerable for the estimate value Q, a new

estimate value of Q must be found and supplied in the next iteration. Observe however that

the resulting λ2(R = 1.00, t) can be seen as a product of a function f of an initial estimate

value Q for a fixed t as follows:

λ2(R = 1.00, t) = f(Q). (A.2)

The ‘new’ estimated Q can be found using the well known Secant iteration method [163]

using the demanded boundary condition (3.131) as a target value for λ2(R = 1.00). Once

158



the new estimated Q is obtained, the node-to-node integration process can be repeated from

R1 toward RJ using this updated Q. The whole scheme, which includes the integration

process, the checking of the edge condition and the updating of Q, is iterated until the error

of λ2(1, ti) is within some small tolerance indicating that the desired Q has been found for

the given ti.

A.2 STAGES IN WHICH BOTH THE FIRST AND SECOND

MECHANISMS ARE ACTIVE

The numerical procedure involving the recruitment process is discussed next. We suppose

that t increases such that the stretch ratios at the dome and its neighboring points are large

enough to activate the collagen recruitment but not to initiate the elastin breakage at the

dome (ta ≤ t < tb). We shall refer these deformation states as the recruitment states. As

was discussed earlier, during these recruitment states, a circular region with radius Ra that

is occupied by both the elastin and recruited collagen is formed and is enlarged. In this

region, both mechanisms, the first and the second, participate in the stress generation. In

the complimentary region, as was discussed, only the first mechanism is active. Note however

that the previous technical issues will still be encountered during these stages. In addition,

more challenging issues due to the introduction of the second mechanism will be encountered

during these stages.

First we will discuss the scheme that is used to obtain the stretch values λ1a and λ2a

that appear in the second mechanism deformation gradients F2, which is employed in the

stress generation of particles in the recruiting region (the corresponding λ3a can be obtained

easily from an incompressibility condition). Recall that the second mechanism is activated

on particles that satisfy the collagen recruitment criterion. Each particle however satisfies

the collagen recruitment criterion at different deformation levels. Clearly, the configuration

of the deformed membrane corresponding to that activation phase becomes the reference

configuration of the second mechanism for that particle. Eventually, every particle in the

recruiting region employs a configuration once occupied by the deformed membrane as its

second mechanism reference configuration. As a consequence, the second mechanism de-
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formation gradient, F2, must be relative to the corresponding reference configuration. This

dependency is demonstrated in F2 by the appearance of the stretch ratios λ1a and λ2a, which

are λ1 and λ2, respectively, of a particle at Rk due to some t ≥ ta, say t = t̂, that corresponds

to a deformation level at which the collagen fibers of that particle begin to load bearing.

Since the collagen fibers are activated when s = sa the following local relation, say at Rk,

then must hold:

s(λαa(Rk, t̂(Rk))) = sa for α = 1, 2. (A.3)

Here, since s monotonically decrease along R, the stretch ratios λ1a and λ2a are unique for

each particle, say Rk, in the recruiting region. Moreover, each crown stretch ratio t̂ is also

unique for each recruiting particle, say Rk. The dome stretch ratios provide a good example.

The dome stretch ratio ta is t that satisfies the collagen activation criterion there and so

λ1a = λ2a = ta for R = 0.00. Correspondingly, t̂ = ta for R = 0.00.

These values: λ1a, λ2a, t̂, are a priori unknown and must be computed during the nu-

merical process. Note that during the computational effort, t is increased incrementally by

amount of ∆t. If we suppose that the resulting s at Rk due to tj is denoted by s(k, j), then

it is possible that when t progresses from tj to tj+1, s at Rk evolves from s(k, j) < sa to

some s(k, j +1) > sa. In this situation, we assume that s smoothly progresses with t, and so

there exists tj < t = t̂ < tj+1 such that s(k, t = t̂) = sa. The following procedure to obtain t̂

is adopted from the work by Wineman and Huntley [105]. The computation involves some

deformation ‘history’. We denote λ1(k, j) and λ2(k, j) as the stretch ratios of particle at

radius Rk due to dome stretch ratio tj as follows:

λα(k, j) = λα(Rk, tj) for α = 1, 2. (A.4)

The set of λα(Rk, ti) for i = j, j − 1, j − 2 describes the history of the stretch ratios of a

particle at radius Rk. A second degree polynomial in t that is constructed by a Lagrange

interpolation denoted by Pλα(k, j) can be formed based on that history as follows:

Pλα(k) =
(t− tj−1)(t− tj−2)

(tj − tj−1)(tj − tj−2)
λα(k, j) +

(t− tj)(t− tj−2)

(tj−1 − tj)(tj−1 − tj−2)
λα(k, j − 1)

+
(t− tj)(t− tj−1)

(tj−2 − tj)(tj−2 − tj−1)
λα(k, j − 2). (A.5)
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So Pλα(k) can be used to estimate the values of λα for a particle at radius Rk due to a given

t that lays somewhere in between tj−2...tj+1. Moreover, an estimated value of s for Rk is

easily given by:

Ps(k) = s(Pλ1(k), Pλ2(k)). (A.6)

The formulation (A.6) that employs (A.5) can be considered as a function, say h, that

produces s for a given, say τ , for t in (A.5) while keeping tl and λα(k, l) for l = j − 2..j

and α = 1, 2 fixed. The Secant method can be used here to approximate the value of τ = t̂

that gives Ps(k) = sa. Furthermore, once t̂ is obtained, it can be supplied to (A.5) to

estimate λαa(k), for α = 1, 2, the stretch ratios λα at which the second mechanism begins to

participate.

We now discuss the overall node-by-node procedure that must be followed when the

second mechanism is introduced. The numerical scheme involving the multi-mechanism is

initiated when t ≥ ta i.e when the parameter s at the dome and some neighboring nodes

become greater than sa. The number of nodes with s ≥ sa however cannot be known a

priori. When t ≥ ta, and hence s ≥ sa, at the dome (R1), the procedure assumes that s at

the next node, say R2, is also greater than sa. Employing this assumption, the differential

equations involving both mechanisms (see Table 20 for the range of s: sa ≤ s < sb) are used

to estimate the variables values at R2. The resulting λ1 and λ2 and the resulting s of R2,

s(R2), is compared to sa. If the resulting s(R2) is greater than sa, the assumption then is

accepted and the procedure moves on to the next node that is also assumed to have s > sa.

The process is stopped if either the edge node is reached or the resulting s(R + ∆R) is less

than sa.

Eventually, for an inflated state t, we would have a situation in which s(R) > sa but

s(R + ∆R) < sa. Assuming that s monotonically decrease with R, there must exist ∆Rcr <

∆R such that s(R + ∆Rcr) ≈ sa for fixed t and Q. We turn our attention now in searching

for ∆Rcr. First, recall that the computation for values of R + ∆R employs variables values

at R and also both t and Q. The resulting s(R + ∆R) then can be considered as a product

of a function, say g(∆R) while keeping fixed other variables values i.e λ1, λ2, η, Q, t and

R. It’s important to note that the function g involves the multi-mechanism differential

equations. A small δ < ∆R can be supplied into g so that g(δ) = s(R + δ). Having
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the function g, an iteration method can be employed, here we use the Bisection method,

to obtain ∆Rcr such that g(∆Rcr) ≈ sa. Once ∆Rcr is obtained, the resulting variables

values at Rc = R + ∆Rcr can be calculated based on values at R using differential equations

involving the dual mechanism.

Note that s(R = Rc) ≈ sa, so values at R > Rc must be calculated using the values at

R = Rc and single mechanism differential equations. The stored values at Rc, for example,

are used to calculate values at Rc + ∆Rco using single mechanism equations, where ∆Rco

is the remaining distance to the next node from Rc, so ∆Rco = ∆R − ∆Rcr. The single

mechanism equations are used in further node-to-node computation until the edge node is

reached.

When the variables values at the edge node are obtained, the boundary condition (3.131)

must be satisfied. Otherwise, similar to the case where there is no recruitment, a new estimate

Q must be searched using the secant method to be supplied for the next iteration. When a

new Q is required, the above iteration must be performed again to produce new ∆Rcr that

corresponds to the new Q.

A.3 STAGES IN WHICH THE FIRST MECHANISM IS DEACTIVATED

The numerical procedure that must be used when elastin breakage is involved will be dis-

cussed here. We suppose that t is increase such that the stretch ratios at the dome and its

neighboring points are large enough to cause elastin breakage at the dome, i.e tb ≤ t. We

shall to refer these deformation states as the breakage states. As was discussed in Section

3.5, during these states, a circular region with radius Rb that is occupied by active recruited

collagen only is formed and is enlarged. In this region, the first mechanism is deactivated,

while the second mechanism remains active in the stress generation.

Generally, the node-to-node computation goes as follows. When t of the dome is such

that t ≥ tb, it is assumed that the next node, say R2, is also having its s > sb. As a

consequence, the set of dual mechanism differential equations neglecting the first mechanism

must be used here to estimate values at R2. Technically, this is done simply by assigning a

zero factor that eliminates the terms derived from the first mechanism. The dual mechanism
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differential equations neglecting the first mechanism contribution can be viewed in Table 20

for range of s: sb ≤ s. Similar to what we did in the recruiting states, the value s at R2 then

is checked against sb. The assumption is accepted when s(R2) > sb and the computation

using the same differential equations moves on to the next node assuming that the s at the

next node also greater than sb. Similar to that in the recruiting case, these computation is

ceased if either the edge node is reached or the resulting s(R + ∆R) is less than sb.

When the later case is met, a situation in which s(R) > sb but s(R + ∆R) < sb for

a fixed t > tb may occur. Assuming that s smoothly decreases with R for a fixed t, a

similar technique employed before in the recruitment case can also be used here to obtain,

say ∆crE, so that s(R + ∆crE) ≈ sb. Note however, that the differential equations that are

used to obtain ∆crE must use the contribution of the second mechanism only. Once, ∆crE is

obtained, the same equations can be used to obtain values at Rb = R+∆crE. Once values at

Rb is obtained, we can calculate values at Rb + ∆coE, where ∆coE is the remaining distance

from Rb to the next node, so ∆coE = ∆R −∆crE. Since s(Rb) = sb and so s(R > Rb) < sb,

the computation for R > Rb must use the full dual mechanism differential equations or the

first mechanism differential equations. The calculation for Rb + ∆coE uses both values at Rb

and the dual mechanism differential equations. Due to the wide distance between sa and sb,

most likely, s(Rb+∆coE) > sa. The computation using the full second mechanism differential

equations can be continued for next nodes until a node with s < sa is encountered. Here,

the procedure to obtain ∆Rcr as described above must be performed.

Similar to previous cases, when the edge is encountered, the RK computation is stopped

and the edge boundary condition 3.131 is checked. When the condition is not satisfied for

a certain degree, a new Q must be obtained. The new Q then is used in the next iteration

and the above procedure is repeated until the edge condition is met.

A.4 UNLOADING STAGES

The following section explains the numerical procedure during unloading. As was discussed,

generally three unloading cases will be encountered; t∗ < ta, ta ≤ t∗ < tb, and tb ≤ t∗, where

t∗ denotes the maximum dome stretch ratio during loading.
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• Case 1: t∗ < ta

The first case implies that the loading is maximized before the collagen recruitment

begins. Clearly, this case resembles the unloading of classical single mechanism elastic

materials. The procedure during unloading follows exactly those during loading with an

obvious exception that t is applied in a decreasing manner from t∗ to t = 0.00. If similar

loading steps for t are used as before (∆t) is used in the unloading, the nondimensional

pressure Q for each corresponding decreasing t can be restored. In doing so, no additional

searching effort for the appropriate value of Q is needed for each given value of t.

• Case 2: ta ≤ t∗ < tb

This case is encountered when the loading is maximized after the collagen recruitment

occurs but before the dome experiences elastin breakage. As was described before here

both the deformed collagen fibers and the deformed elastin will return to their own

undeformed configuration. Intuitively, we should expect that the procedure that is used

in unloading follows exactly that of the loading. This is true in general but the unloading

process, benefiting by useful information stored during loading, requiring fewer iteration

and less complex if-then-else logic step.

As an example, we may consider the stretch ratios λαa (α = 1, 2), which corresponds

to the configuration in which the collagen fibers load bearing is initiated. The values of

λαa are properties of the node. These values theoretically must never change since they

reflect the information regarding the reference configuration of the recruited collagen

fibers. The values of λα a for each node that were obtained and stored during loading

can be restored and be used in the unloading process. The iteration process to obtain

such values then can be avoided.

For technical convenience, we use the same ∆t that was used during loading in the

unloading scheme. It follows immediately that the corresponding values of Q and the

stretch ratios of each node due to each t can be restored from the results of loading. This

leads to another technical convenience.

Moreover, recall that after the collagen is recruited at the dome, a circular region filled

with both active elastin and collagen with radius Rc is developed. It should be clear

that the radius Rc is unique for each inflated state. The stored values of Rcs for each
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corresponding inflated state (with t > ta) can be restored and be used during unloading.

The Bisection iteration for obtaining ∆cr therefore can be avoided.

So generally, provided that the unloading step is the same ∆t that was employed during

loading, the node-to-node computation will follow that of loading but with decreasing t,

instead of increasing t, to mimic the unloading process. Assumptions stating that s > sa

at a node next to a node having s > sa are also imposed during unloading. Also, as was

performed during loading, once the next node no longer has s > sa the scheme moves on

to the next node using the single mechanism differential equations.

• Case 3: tb ≤ t∗

This case is encountered when the maximum loading occurs after the elastin fragments

at the dome. In this configuration, as was discussed, a circular region of radius R∗
b , filled

with deactivated elastin, leaving only active collagen, is developed. During unloading,

this circular region will not regain active elastin regardless of the decreasing values of

s of the particles inside it. This implies that the computation of the nodes inside the

breakage region must use only differential equations for the second mechanism at all the

inflated states during unloading. To impose this restriction on every inflated state, a

checking step is added to the scheme. When the radius of a computed node is less than

R∗
b , a factor of 0.00 is assigned to eliminate the terms in the dual mechanism differential

equations that are derived from the first mechanism. Due to the presence of this region,

the corresponding Q and the stretch ratios of each node, which have been obtained

during loading, must be recomputed for each inflated state t. In addition, the radius

of the recruitment region Rc of an inflated state t during unloading is not expected to

be the same as that of the same value of t in the loading process. This radius must

also be recalculated for every inflated state t. The iteration technique that is used here

follows the one that is used in the loading process. The ‘memory’ of stretch ratios that

are employed to construct a Lagrange interpolation scheme similar to (A.5), however

are obtained from ‘higher’ deformation levels (larger values of t). Note however that

during the decrement of t, the radius Rc is decreasing and is approximating R∗
b . As was

discussed, when both regions coincide and R∗
b = Rc an ‘empty region’ is created in which

none of the mechanisms is active.
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APPENDIX B

REGRESSION ANALYSIS RESULTS FOR OTHER

CHOICES OF STRAIN ENERGY FUNCTIONS

In principal, the first and second mechanism do not have to be represented by the same

type of strain energy functions. The equation (2.18) implies that W1 and W2 can be of two

different strain energy functions. This flexibility allows the incorporation of two material

components possessing dissimilar behavior.

The choice of exponential type for both W1 and W2 given in (2.21) therefore is only

one combination among many other possibilities. In this chapter, however, it will be shown

that this choice is better than some other choices of strain energy functions for W1 and W2.

Here, experimental data by Scott et al. [79] are again employed in a nonlinear regression

analysis using the resulting equations (3.64),(3.67) and (3.68) from inflation of cylindrical

membrane and W1 and W2 that are different from (2.21). The choices of W1 and W2 include

the commonly used Neo Hookean and Mooney Rivlin hyperelastic models. The formulation

for Neo Hookean and Mooney Rivlin can be seen in Table 3. The results are summarized in

Table 23. The behavior of Mooney Rivlin materials and combinations with other functions

are expected to be similar to the behavior of Neo Hookean materials and combinations with

other functions. This is explained by the same resulting expression of response functions w1

and w2 of the two materials. The response functions w1 and w2 are defined by (3.70) and

(3.71), respectively, and their values are proportional to tension as is described in equations

(3.64),(3.67), and (3.68). The response functions for Neo Hookean and Mooney Rivlin mate-

rials are simply constants. Therefore, only Neo Hookean and its combinations are presented.
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Table 23: Resulting material parameters and R2 for Neo Hookean (NH), Mooney Rivlin

(MR), Exponential (Exp) and their combinations for undeformed thickness H= 125 µ and

fixed λa=1.761029.

Combination A B C D E

W1 NH MR NH Exp Exp

W2 NH MR Exp NH Exp

α1(103dynes/cm2) 293.0811 78.2121 346.6768 52.1691 71.2198

α2(103dynes/cm2) 960.9422 462.8301 442.7509 922.0090 312.6121

γ1 - - - 0.6605 0.6224

γ2 - - 1.3660 - 1.8676

β1(103dynes/cm2) - 214.9100 - - -

β2(103dynes/cm2) - 498.0802 - - -

R2 0.6565 0.6565 0.77032 0.8144 0.9903

The resulting material parameters for all of the combinations of hyperelastic models and

the corresponding R2 values are tabulated in Table 23. The R2 values clearly indicate that

the choice given in (2.21) is the best at least among these particular group of combinations.

Figure 38 depicts the resulting tension vs. strain curves compare to the experimental data

by Scott et al. [79]. The poor fitting by either Neo Hookean or Mooney Rivlin model

can be attributed to their natural characteristic, in particular, for inflation of cylindrical

membrane case. It can be seen from the figure that parts of the tension vs. curves produced

by employing Neo Hookean (or Mooney Rivlin) are always concave down instead of concave

up as the experimental data tend to be. This should be expected since the second derivative

of tension with respect to λ (i.e ε) for λ > 0 for Neo Hookean or Mooney Rivlin are always

negative.

Recalling the definition of tension given by (3.64) and (3.68), the tension contributed

only by the first mechanism represented by Neo Hookean, say T1NH , and tension contributed
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Figure 38: Resulting tension vs ε for inflation of cylindrical membrane for combinations of

strain energy functions A (coincide with B, red line), C (green line), and D (blue line) shown

in Table 23.
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only by the second mechanism represented by Neo Hookean, say T2NH , are given by:

T1NH = 2
H

λ
(λ2 − 1

λ2
)α1 (B.1)

T2NH = 2
H

λ
(
λ2

λ2
a

− λ2
a

λ2
)α2, (B.2)

respectively, where λa is the activation stretch. The second derivatives of T1NH and T2NH

with respect to λ are simply given by:

d2T1NH/dλ2 = −24H/λ5α1 (B.3)

d2T2NH/dλ2 = −24Hλ2
a/λ

5α2, (B.4)

where H is the undeformed thickness. The values of (B.3) and (B.4) are always negative

since λa > 0 and the range of λ are 0 < λ.
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APPENDIX C

REGRESSION ANALYSIS RESULTS FOR EXPERIMENTAL DATA ON

THE NONLINEAR ELASTIC BEHAVIOR OF INTRACRANIAL ARTERIES

It is well known that cerebral arterial walls exhibit nonlinearity. The nonlinearity has been

hypothesized to be due to the recruitment of collagen fibers at some deformed configuration

[49]. It can be seen in Section 3.3.6 that the equation (3.64) alone can be used to describe this

nonlinear characteristic. This approach disregards the individual contribution made by the

response of elastin and collagen fibers. In this chapter it will be shown that an improvement

can be obtained when we take into account the individual contribution made by the response

of the cerebral arterial components, namely the elastin and collagen responses. We consider

the strain energy functions (2.21) that employs two mechanisms to represent the two passive

mechanical components.

We use here the experimental data by Scott et al. [79] on the inflation of PCA and ACA

that were used in Section 3.3.6. The experimental data are presented in Table 27. We assume

that the nonlinearity of PCA and ACA is due to both elastin and collagen fibers and is not

due to collagen fibers only as a result of elastin damage. We employ the resulting equations

of inflation of cylindrical membrane (3.64) and (3.67) to obtain the material parameters

shown in (2.21). Since there is no information that can be used to obtain the recruitment

stretch λa (used in equation (3.67)), the parameter λa is considered as part of the material

parameters that must be obtained via nonlinear regression analysis.

The results of the nonlinear regression analysis using dual mechanism equations are

tabulated in Table 24. The results are compared to the resulting material parameters and
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Table 24: Resulting material parameters and corresponding R2 for inflation of cylindrical

membrane obtained from both single mechanism and dual mechanism approaches for the

experimental data points of ACA and PCA by Scott et al. [79].

Dual mechanism Single mechanism

Material Parameters ACA PCA ACA PCA

λa 1.8619 1.5566 - -

α1(103dynes/cm2) 24.9874 50.0958 38.7630 95.5911

γ1 0.4124 0.3225 0.4174 0.3676

α2(103dynes/cm2) 363.4576 447.3069 - -

γ2 0.6895 0.9967 - -

R2 0.9972 0.9967 0.9922 0.9789

R2 obtained by the single mechanism approach. The R2 values of the current results shows

an improvement on the results produced by equation (3.64) alone. Figure 39 depicts the

resulting curves for the single mechanism approach (dashed lines) and the dual mechanism

approach (solid lines) along with the experimental data (reproduced from Figure 3 in Scott

et al. [79]). It can be seen from the R2 values in Table 24 that the dual mechanism equations

produce better fitting compare to the single mechanism equation.
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Figure 39: Resulting tension vs ε curves for inflation of cylindrical membrane obtained from

single mechanism equation (dashed lines) and from dual mechanism equations (solid lines)

along with the corresponding experimental data points of ACA (red color) and PCA (blue

color) by Scott et al. [79].
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APPENDIX D

EXPERIMENTAL DATA USED IN THE NONLINEAR REGRESSION

ANALYSIS

In this Appendix the experimental data used in the nonlinear regression analysis are pre-

sented.
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Table 25: Experimental data on a human ACA. The data are extracted from Figure 5B in

Scott et al. [79].Strain and Tension are in the circumferential direction.

Before shifting (Run13) After Shifting (Run34)

Strain Tension Strain Tension

(103dynes/cm) (103dynes/cm)

0 0.0 0 0.0

10 0.1 8 0.6

20 0.3 11 1.0

30 0.5 17 1.6

40 0.7 20 2.0

50 0.95 22 3.0

51 1.0 26 4.0

60 1.5 30 5.0

66 2.0 31 6.0

72 3.0 37 8.0

80 4.0 40 10.0

90 6.0 45 13.0

100 8.0 48 15.0

105 10.0 50 17.9

110 12.0 52 20.0

118 13.9

121 15.9

125 18.0

130 20.0
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Table 26: Experimental data on ACA of aneurysm patients and normal subjects. The data

are extracted from Figure 1B in Töth et al. [83].

Intraluminal External Radius (mm)

Pressure (mmHg) Controls Patients

0 0.63 0.70

10 0.90 0.96

20 1.03 1.06

30 1.09 1.13

40 1.13 1.15

50 1.15 1.19

60 1.20 1.20

70 1.22 1.22

80 1.22 1.24

100 1.25 1.25

120 1.28 1.28

140 1.30 1.30

160 1.305 1.305

180 1.31 1.31

200 1.33 1.33
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Table 27: Experimental data of MCA, PCA, and ACA of a 34 year old woman. The data

are extracted from Figure 3 in Scott et al. [79]. Strain and Tension are in the circumferential

direction.

MCA PCA ACA

Strain Tension Strain Tension Strain Tension

(103dynes/cm) (103dynes/cm) (103dynes/cm)

0.00 0.0 0.00 0.0 0.00 0.0

0.13 1.0 0.32 0.5 0.55 0.5

0.20 1.5 0.49 1.0 0.80 1.0

0.22 2.0 0.58 1.5 0.90 1.5

0.28 3.0 0.65 2.0 1.01 2.0

0.30 4.0 0.78 3.0 1.11 3.0

0.32 5.0 0.85 4.0 1.20 4.0

0.36 6.0 0.92 4.9 1.30 4.9

0.39 7.0 1.01 5.9 1.39 5.8

0.40 8.0 1.10 6.9 1.45 6.8

0.42 9.0 1.19 7.9 1.50 7.5

0.45 10.0 1.27 8.8 1.55 8.8

0.49 11.0 1.31 9.8 1.61 9.5

0.495 12.0 1.39 11.0 1.65 10.6

0.505 13.0

0.51 14.0
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Table 28: Experimental data on basilar arteris of treated mongrel dogs. The data are

extracted from Figure 4 in Nagasawa et al. [147]. The number of days are the period of

treatment. Stress and strain are in the circumferential direction.

2 Days 4 Days 7 Days

Strain Stress Strain Stress Strain Stress

(106dynes/cm2) (106dynes/cm2) (106dynes/cm2)

0.00 0.00 0.00 0.00 0.00 0.00

0.20 0.14 0.10 0.20 0.06 0.18

0.31 0.36 0.18 0.43 0.12 0.45

0.39 0.64 0.25 0.73 0.18 0.72

0.44 0.94 0.29 1.07 0.22 1.05

0.48 1.30 0.31 1.43 0.24 1.35

0.51 1.59 0.34 1.77 0.25 1.70

0.54 1.88 0.35 2.13 0.27 2.05

0.55 2.38 0.37 2.49 0.3 2.40

0.56 2.52 0.38 2.84 0.32 2.77

0.58 2.90 0.39 3.22 0.325 3.11

0.61 3.23 0.40 3.59 0.33 3.50

0.62 3.59 0.41 3.66 0.335 3.89

177



Table 29: Experimental data on basilar arteris of treated mongrel dogs. The data are

extracted from Figure 3 in Nagasawa et al. [147].The number of days are the period of

treatment. Stress and strain are in the circumferential direction.

14 Days 28 Days Control

Strain Stress Strain Stress Strain Stress

(106dynes/cm2) (106dynes/cm2) (106dynes/cm2)

0.00 0.00 0.00 0.00 0.00 0.00

0.09 0.13 0.12 0.16 0.08 0.18

0.18 0.38 0.21 0.39 0.15 0.43

0.22 0.63 0.27 0.66 0.19 0.70

0.31 0.93 0.32 0.96 0.22 1.05

0.35 1.27 0.34 1.25 0.24 1.30

0.37 1.51 0.36 1.55 0.26 1.60

0.39 1.88 0.38 1.88 0.27 1.90

0.41 2.20 0.39 2.19 0.28 2.20

0.42 2.50 0.41 2.49 0.29 2.50

0.43 2.84 0.42 2.79 0.295 2.85

0.44 3.36 0.43 3.09 0.305 3.20

0.45 3.50 0.43 3.40 0.31 3.50
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APPENDIX E

ALGORITHM FOR THE COMPUTATION OF THE

INFLATION OF CIRCULAR CLAMPED MEMBRANE

179



Figure 40: Flowchart of the main program.
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Figure 41: Flowchart of the dual mechanism computation block used in the main program.
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Figure 42: Flowchart of the unloading computational block used in the main program.
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Figure 43: Flowchart of modified dual mechanism computational block used in the unloading

computational block.

183



Figure 44: Flowchart of the single mechanism computational block used in the main program.
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