
SEMANTIC FEATURE CONSTRUCTION

by

Mark E. Fenner

M.S., University of Pittsburgh, 2002

M.A., University of Pittsburgh, 2002

B.S., Allegheny College, 1999

Submitted to the Graduate Faculty of

the Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2007

UNIVERSITY OF PITTSBURGH

COMPUTER SCIENCE DEPARTMENT

This dissertation was presented

by

Mark E. Fenner

It was defended on

June 14th 2007

and approved by

Dr. Bruce G. Buchanan, University Professor Emeritus, Department of Computer Science

Dr. Milos Hauskrecht, Assistant Professor, Department of Computer Science

Dr. Satish Iyengar, Professor, Department of Statistics

Dr. Jan Wiebe, Associate Professor, Department of Computer Science

Dissertation Director: Dr. Bruce G. Buchanan, University Professor Emeritus, Department of

Computer Science

ii

SEMANTIC FEATURE CONSTRUCTION

Mark E. Fenner, PhD

University of Pittsburgh, 2007

An effective set of features is integral to the success of machine learning algorithms. Semantic

feature construction is the knowledge-driven manipulation of the propositional descriptor space

of a set of examples for use in a learning algorithm. Two important sources of semantics for

feature construction are the semantic type (and associated semantic properties) and the semantic

class of features. These semantics can be captured in a knowledge base and utilized to constrain

search through the space of constructed features. This dissertation presents a system that captures

semantic feature construction knowledge and implements a search algorithm that respects that

knowledge. Results are presented for different combinations of features generated from different

successor functions used in search. These results are compiled over many learning problems and

several learning algorithms. Other results are also presented for different levels of detail in seman-

tic knowledge. Generally, semantics are an effective guide in the space of constructed features.

iii

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Feature Construction, Machine Learning, and Empirical Science 2

1.2 An Example of Feature Construction . 5

1.2.1 Automatic Construction of Meteorological Features 6

1.2.2 Manual Construction of Meteorological Features 7

1.2.3 Why Create Features for Weather Problems? 9

1.3 Utility of Feature Construction in Learning . 12

1.3.1 Inductive Bias of Learners . 12

1.3.2 Modification of Bias by Feature Construction 14

1.4 Contrasting Feature Construction and Related Methods 15

1.4.1 Modifying Data Representation . 15

1.4.2 Feature Selection and Feature Extraction 16

1.4.3 Constructive Induction . 17

1.4.4 Statistical Vector Space Methods . 19

1.5 Semantic Feature Construction . 20

1.6 Hypotheses . 20

1.7 Overview and Summary . 21

2.0 ANNOTATED EXAMPLES OF SEMANTIC FEATURE CONSTRUCTION BY

ISAK . 22

2.1 High Level Description and the Wine Problem 22

2.1.0.1 Trace of ISAK on the Wine CLP 31

2.2 Tic-Tac-Toe Problem . 34

iv

3.0 BACKGROUND . 37

3.1 Inductive Learning from Examples . 37

3.2 Inductive Bias and Feature Construction . 40

3.2.1 Inductive Bias . 40

3.2.2 Inductive Bias of Decision Trees . 42

3.2.3 Bias and Feature Construction . 42

3.2.4 Clarifying the Selective and Constructive Induction Dichotomy 44

3.3 Feature Construction . 49

3.3.1 Feature Construction . 49

3.3.2 Form of the Dataset . 51

3.3.3 Utility of Feature Construction, Feature Space Flaws and Troublesome

Concepts . 52

3.3.3.1 Instance Space Flaws . 53

3.3.3.2 Hypothesis Flaws in Decision Trees 54

4.0 FRAMEWORK: A KNOWLEDGE LEVEL DESCRIPTION FOR FEATURE CON-

STRUCTION . 55

4.1 Characteristics of Features, Algorithms, and Constructors used in Feature Con-

struction . 55

4.1.1 Sources of Knowledge from Features . 55

4.1.2 Knowledge Use in Feature Constructor Functions 58

4.1.3 Input and Processing of Feature Construction Algorithms 60

4.2 A Knowledge Level Description of ISAK . 62

4.2.1 Identification of Objects in the Learning Domain 62

4.3 An Ontology for Semantic Types . 67

4.3.1 Semantic Classes . 71

4.3.2 Feature Constructor Functions . 72

4.3.2.1 Constraints on the Search Space by the Available FCFs 72

4.3.2.2 Object Constraints . 73

4.3.2.3 Constraints from Semantic Types 75

4.3.2.4 Effects of Constraints on the Number of Constructable Features . . 75

v

4.3.2.5 Constraints by Semantic Class 77

4.3.2.6 Resulting Values and Semantics 77

4.3.3 Formal Description of Features and Feature Constructor Functions 77

4.4 Constructed Features as Trees . 78

5.0 RELATED WORK . 82

5.1 Learning from Relational Descriptions and Inductive Logic Programming 83

5.1.1 A Predicate Invention Example . 84

5.1.2 Constructive Induction Operators . 86

5.1.3 Michalski’s Constructive Induction Divisions 87

5.1.4 Constructive Induction and Knowledge 87

5.2 Learning and Representation in Attribute-Value Contexts 87

5.2.1 Prior Work . 88

5.2.2 CITRE . 89

5.2.3 Various Systems . 90

5.2.4 FICUS Overview . 91

5.2.4.1 FICUS Input . 91

5.2.4.2 FICUS Algorithm . 92

5.2.4.3 FICUS and Problem Domains 94

5.2.5 Representation and Modification in Other Learning Contexts 94

5.3 Knowledge in Feature Construction . 97

5.3.1 Knowledge in Explanation Based Learning and Problem Solving 97

5.3.2 Knowledge in Feature Construction . 98

5.3.3 Donoho’s Knowledge Framework . 98

5.3.4 Other Knowledge-Driven Feature Construction Systems 100

6.0 IMPLEMENTING ISAK: INPUT SPECIFICATION AND ALGORITHMS 102

6.1 Addition and the Interaction between Semantic Types and Feature Constructor

Functions . 102

6.2 Details of the Input Specification . 103

6.2.1 Semantic Types and Semantic Properties 103

6.2.2 Semantic Class Hierarchy . 106

vi

6.2.3 Feature Description . 107

6.2.4 Constraint Specification . 108

6.2.5 Specification of Feature Constructor Functions 110

6.2.6 Search Parameters . 112

6.2.7 Aggregate Features . 114

6.3 Algorithmic Description . 115

6.3.1 Beam Search Algorithm . 115

6.3.2 Formula and Value Pruning . 117

6.3.3 Evaluation Pruning . 118

6.3.4 Successor Function for the Beam Search 119

6.3.5 Windowed Selection of Features in the Successor Function 122

6.3.6 Type and Constraint Processing . 124

6.3.7 Output Type Generation . 125

6.4 Complexity of Beam Search and Matching . 125

6.4.1 Complexity of Beam Search . 125

6.4.2 Complexity of Matching Feature to Feature Constructor Functions 126

6.4.3 Total Complexity for Top and Random Successor Functions 128

7.0 EXPERIMENTS . 129

7.1 A Set of Experiments Describing the Behavior of ISAK on Multiple Learning

Problems using Multiple Successor Functions and Feature Sets 129

7.1.1 Construction and Learning Problems: Datasets, Knowledge Bases, and

Search Parameters . 129

7.1.2 Generation of Synthetic Datasets . 133

7.1.3 Learners . 134

7.1.4 Use of Base and Constructed Features in Learning 137

7.1.5 Successor Functions . 138

7.2 ISAK: Concept Description Abilities, Benchmark Performance Improvements,

and Successor Function Effects . 139

7.2.1 Experimental Variables, Parameters, and Method 139

7.2.2 An Experiment Comparing Feature Sets Averaged over All Learners . . . 142

vii

7.2.3 An Experiment Comparing Successors Averaged over All Learners 142

7.2.4 An Experiment Comparing Different Generators and Feature Sets over

Individual Learners . 144

7.2.5 Variance in Experiments . 146

7.2.6 A Linear Model for Experimental Variables 150

7.2.7 An Experiment Comparing the Effect of Different Feature Sets within

Each Individual Learner . 152

7.2.8 An Experiment Comparing the Effect of Different Successor Functions

within Each Individual Learner . 154

7.2.9 An Experiment Comparing the Effect of Different Feature Sets within

Each Individual CLP . 157

7.2.10 An Experiment Comparing the Effect of Different Successor Functions

within Each Individual CLP . 160

7.2.11 An Experiment Comparing the Cost and Benefit of Different Successor

Functions . 163

7.3 Experiments with Levels of Knowledge . 165

7.3.1 The Area Construction and Learning Problems 165

7.3.2 Sampling Effects . 176

7.4 The Behavior of ISAK on a Novel Problem with a Novel Learner 178

8.0 RESULTS AND CONCLUSIONS . 180

8.1 Results . 180

8.2 Future Work . 181

8.3 Conclusions . 182

APPENDIX A. ADDITIONAL EXPERIMENTAL DATA 183

A.1 Comparison of Different Generators and Feature Sets Averaged over Learners . . 183

A.2 A Linear Model of the Experimental Variables for the First Set of Experiments . . 186

A.3 Comparison of Different Generators and Feature Sets over Individual Learners . . 191

A.3.1 Additional Results for 10-Fold C.V. Accuracy 191

A.3.2 Additional Results for AUC . 193

A.3.3 Benefits Obscured by Feature Set Choice 195

viii

APPENDIX B. SYNTHETIC DATA GENERATION . 197

B.1 Description of the Weather Problem for Synthetic Generator 197

B.2 Description of the Area Problem for Synthetic Generator 199

BIBLIOGRAPHY . 200

ix

LIST OF TABLES

1 Base Tennis Weather Dataset . 6

2 Improvement in Weather Classification given Constructed Features 9

3 Comfort Index Calculations . 10

4 Modified Tennis Data . 10

5 Ten Examples from the UCI Wine Dataset . 23

6 New Features Constructed by ISAK for Wine CLP 29

7 Counts of Features in Data Flow for the Wine CLP 30

8 Seven Examples from the Tic-Tac-Toe UCI Dataset 35

9 Balance Dataset . 65

10 Differences among Aggregate Types . 71

11 Various Constraints for FCFs in the Pressure Problem 81

12 A Typical ILP Learning Problem . 84

13 Compressing a Partition of Variable Values . 85

14 FICUS Operators. 95

15 The Semantic Types of ISAK and Their Semantic Properties 105

16 Built-in Constraints of ISAK . 109

17 Built-in Feature Constructors . 111

18 Equality Testing . 112

19 Search Parameters for ISAK . 113

20 Description of Closed Form Datasets . 130

21 Description of Open Form Datasets . 131

22 Search Parameters . 132

x

23 Base Accuracy Rates for Example Datasets . 136

24 Feature Set Composition . 138

25 Experimental Conditions for the First Set of Experiments 140

26 10CVA Averaged over Learner, CLP, and Run by Feature Set 142

27 10CVA Averaged over Learner, CLP, and Run by Successor 143

28 10CVA Averaged over CLP and Run by Successor Function and Feature Set for

TREE and SVM . 145

29 ANOVA for Linear Models of the First Set of Experiments 151

30 Average 10CVA by Feature Set within Learners 152

31 Average 10CVA by Successor within Learners . 155

32 Average 10CVA by Feature Set within CLPs . 158

33 Average 10CVA by Successor within a CLP . 161

34 Overall Cost to Benefit . 163

35 Cost to Benefit of ConRIF Feature Set for Different Generators 164

36 Examples from the Area Problem in the Point Representation 167

37 Examples from the Area Problem in the Length Representation 168

38 Features Examined and Search Times for Different KBs 171

39 Results of Learning with RL on the Perimeter CLP 178

40 10CVA Averaged over Learner, Run, and CLP by Successor and Features Set 184

41 AUCs Averaged over Learner, Run, and CLP by Successor and Features Set 185

42 10CVA Averaged over Run and CLP by Successor Function and Feature Set for

3NN, 10NN, and NB . 191

43 10CVA Averaged over Run and CLP by Successor Function and Feature Set for

TREE, SVM, and FORST . 192

44 AUC Averaged over Run and CLP by Successor and Feature Set for 3NN, 10NN,

and NB . 193

45 AUC Averaged over Run and CLP by Successor and Feature Set for TREE, SVM,

and FORST . 194

46 Obscured Benefits of Feature Construction . 195

47 Best Feature Set Usage Results . 196

xi

LIST OF FIGURES

1 Four Constructed Features for the Weather Problem 8

2 A Decision Tree for xor and a Reduced Tree . 13

3 SVM Feature Space Modification . 13

4 XOR in Two Feature Spaces . 14

5 Overview of ISAK Input and Output . 23

6 A Knowledge Base Used by ISAK for the UCI Wine Dataset 25

7 Semantic Hierarchy for Wine CLP . 26

8 Operations for the Wine CLP . 27

9 Data Flow through Generation of Features from Round to Round 29

10 Path to Resulting Wine Features . 30

11 Trace of Wine CLP for Three Initial Features . 32

12 Trace of Wine CLP for Three Initial Features (Continued) 33

13 Instance, Example, and Sample Space Relationships 38

14 Relationships Among Selective and Constructive Induction and Feature Construction 47

15 Feature Construction Types in Classification Learning 50

16 Sources of Semantic Feature Construction Knowledge from Features 56

17 Semantic Feature Construction Knowledge and Feature Constructor Functions . . . 59

18 Additional Specifications for a Feature Construction System 61

19 Abstract View of Feature Construction as Operations on Objects 64

20 Four Examples from the Balance Universe . 66

21 Four Examples of Abstract Relations . 66

22 Top Level Type Ontology . 67

xii

23 Ontology for Symbolic Types . 68

24 Ontology for Numeric Types . 69

25 Ontology for Aggregate Types . 70

26 Tipped Boxes . 74

27 Constructed Features as Trees . 81

28 FICUS Pseudo-code . 92

29 FICUS Application of Feature Constructor Functions 93

30 ISAK Beam Search Pseudo-code . 116

31 Duplicate Feature Checking via MD5 Hash . 118

32 Top-N and Random-N Successor Functions . 120

33 Pseudo-code for the Windowed Successor Generators 121

34 matchFormulaToFeatures Pseudo-code . 123

35 Relationships among Experimental Variables . 141

36 Histogram of Standard Errors for Single Runs of Experimental Setups 147

37 Histogram of Standard Errors for Repeated Runs of Experimental Conditions 147

38 Histogram of Standard Errors of Average CA over Runs and Problems 149

39 Histogram of Standard Errors of Average CA over Runs, Problems, and Learners . . 149

40 Tukey’s HSD for Pairwise Differences between Feature Sets given Learners 153

41 Tukey’s HSD for Pairwise Differences between Successors given Learners 156

42 Tukey’s HSD for Pairwise Differences between Feature Sets given CLPs 159

43 Tukey’s HSD for Pairwise Differences between Generators Given Problems 162

44 The Two Representations of the Area Problem . 166

45 Learning Curves for the Point Representation of the Area Problem 169

46 Learning Curves for the Length Representation of the Area Problem 170

47 Original Point Dataset Compared to Unrestricted Constructions 172

48 Original Point Dataset versus Constructions Limited to XY Coordinate and Con-

structions Limited to Shape . 173

49 Original Point Dataset Compared to Constructions Limited to Shape and Construc-

tions Limited to XY Coordinate & Shape . 174

50 Comparison of Base Point, Base Length, and Detailed KB Constructions 175

xiii

51 Sampling Effects on Datasets Evaluated by SVM Learning Curves 177

52 Linear Model Page 1 . 186

53 Linear Model Page 2 . 187

54 Linear Model Page 3 . 188

55 Linear Model Page 4 . 189

56 Linear Model Page 5 . 190

57 Weather Dataset Description for Synthetic Generation 198

58 Area Dataset Description for Synthetic Generation 199

xiv

1.0 INTRODUCTION

It might be argued that this procedure of having the program select terms for the evaluation poly-
nomial from a supplied list is much too simple and that the program should generate the terms for
itself. Unfortunately, no satisfactory scheme for doing this has yet been devised. – Arthur Samuel,
Machine Learning Using the Game of Checkers (Samuel, 1963).

Indeed, [Kepler] assumed that the Sun was a centre of force which governed the motions of the
planets. If Kepler had tried to relate Mars to the Earth rather than to the Sun, he would never have
found the elliptic orbit. – Donald Gillies, Artificial Intelligence and the Scientific Method (Gillies,
1996).

Machine learning systems require appropriate descriptions of the data they process. This disserta-

tion describes semantic feature construction for machine learning and a system for implementing

semantic feature construction: ISAK1.

Broadly, feature construction is the process of taking a given description of an example and cre-

ating a new description of that example. Semantic feature construction performs feature construc-

tion based on symbolic knowledge of the learning examples and the world they occupy. Specif-

ically, feature construction refers to the creation of new attribute-value descriptors (i.e., features)

for examples which are currently described by other features. In semantic feature construction, an

algorithm takes – as minimal input – the currently available features describing examples and sym-

bolic knowledge of the world the examples occupy; the semantic feature construction algorithm

produces new features and symbolic knowledge describing the new features.

Two important sources of knowledge about features are (1) semantics of individual features

and (2) semantics about relationships among features. Individual features gain semantic meaning

(a semantic type and semantic properties) from the quality of an object or process they measure,

from the object itself, and from the relationship of the measured quality to other qualities2. Sets of

1ISAK stands for Integrating Search and Knowledge (for feature construction).
2A single learning example is a set of measurements on one or more objects and processes in the world under

consideration. In many cases, the measurements are all taken over one object (e.g., a patient in a medical dataset).

1

features may be related by measuring different qualities of the same object, the same quality of dif-

ferent objects, or more generic relationships that can be captured by a simple notion of similarity, a

semantic class. Each piece of knowledge used in this dissertation is represented explicitly and sym-

bolically. The specificity of knowledge used by ISAK ranges from problem-specific knowledge to

domain-specific knowledge to multi-problem, multi-domain knowledge such as that gathered in

the Standard Upper Merged Ontology (SUMO) (Niles and Pease, 2001). The semantic knowledge

is used as heuristic constraints while ISAK searches through the space of constructable features.

Search provides a useful, general framework with which to solve many problems. In feature

construction, the problem of finding good features can be defined as a search through the space of

constructable features. However, the combinatorics of the domain (i.e., the exponential growth of

the search space) make search without heuristics impractical. The search framework also allows

fine-grained control over the choices made in selecting constructed features. The control allows

users to choose the bias that they find most useful for feature construction in their given learning

problem.

The general hypothesis guiding this work is that explicit, symbolic knowledge about features

can be used to construct features that improve generalizations produced by learning algorithms, as

compared to generalizations produced by unmodified, base feature sets.

1.1 FEATURE CONSTRUCTION, MACHINE LEARNING, AND EMPIRICAL

SCIENCE

Machine learning is any automated process by which a computer program improves its perfor-

mance on a given task as it gains experience or knowledge (Mitchell, 1997). The learning task I

deal with is called classification learning. Classification learning algorithms take as input:

1. a set of examples called a training dataset,

2. a uniform list of attributes and, for each example, the respective values for each attribute, and

3. a special target attribute and its value for each example.

However, a dataset may contain measurements on distinct objects that are components of each learning example (e.g.,
see Section 7.3.1).

2

These algorithms produce, as output, a classifier that is a mapping from examples to target values.

The goal of the classifier is to achieve good performance on unseen examples. Building these

classifiers has been called pure inductive inference (Russell and Norvig, 1995) and learning by

example (Carbonell et al., 1983). Algorithmically performed induction is a special case of scientific

induction.

The empirical sciences are defined by their use of empirical data from observations and ex-

periments. The dependence on observation is the common thread in disciplines ranging from the

physical sciences, such as biology and physics, to the social sciences, like economics and psy-

chology. Collecting observations does not, in itself, satisfy the demands of a scientist. To utilize

collections of data, various forms of analysis are available to the scientist. Three of the most com-

mon types of analysis are: (1) testing hypotheses, (2) searching for meaningful, interesting, or

predictive patterns, and (3) creating parsimonious models of phenomena. The first of these roles

is clearly seen in the testing of significance of statistical hypotheses and in the development of

scientific (i.e., physical, psychological, or sociological) laws. The second and third analyses are

common paradigms in multiple regression statistics and modeling (Dobson, 2002; Hastie et al.,

2001), pattern recognition (Ripley, 1996), data mining (Hand et al., 2000; Fayyad et al., 1996),

and machine learning (Mitchell, 1997; Hastie et al., 2001).

Philosophers of science debate the exact process that describes how science operates. However,

a simplified view of the scientific process (Klemke, 1980) includes:

1. observing and recording phenomena as data,

2. classifying the data according to subject,

3. inducing general statements from observations,

4. deducing further statements from the general statements,

5. verifying the additional, deduced statements, and

6. creating theories that account for as many of the induced and deduced statements as possible.

Within these steps, a distinction is made between the process of discovering theories and statements

and the process of verifying those theories and statements. Some philosophers (Popper, 1965) have

argued that the verification process is subject to formal logic, but the discovery process cannot

3

be effectively studied. Others have argued that the discovery process itself can be subjected to

scrutiny, dealt with logically, and even automated (Buchanan, 1982; Langley et al., 1987).

Automated or not, the objects, processes, and theories discussed in the scientific process must

be represented. Following Langley et al. (1987), we can define a representation as a scheme for

holding information in storage and a means for operating on that representation to access, modify,

and process the information it contains. New representations are created by finding (1) new tests

for recognizing important features in a domain, (2) new inferences associated with these tests, and

(3) new relationships between each representation and reality.

Even before choices of representation appear in scientific work, the question of what to study

(i.e., what to represent) must be answered (Darden, 1991). For example, different levels of detail

in measured features may be obtained depending on the questions that are asked by a scientist.

General observations – such as the similarity of an offspring to a parent – do not support enough

detail to drive any substantial generalization. Compressing the many possible similarities between

offspring and parent into a simple statement, “Yes, the child and parent are similar”, abstracts

away too much useful information. However, observation of more specific characteristics, like the

height and eye color of the parents and adult children, leads to better hypotheses like “Eye color

is a heritable trait”. These more specific and more descriptive terms can be related to one another

and used in generalizations.

The scientific process relates to semantic feature construction in at least two ways. First, as

Darden (1991) states, “New discoveries beget new terms.” The statement means that when we find

out something new, we frequently attach new terminology to the discovery. If a discovery creates

a dichotomy between two previously unified concepts, each of the new classes may receive a new

name. For example3, early humanity may have considered only one type of plant, GenericPlants.

Upon receiving a nasty itch from certain plants, a new category was created for these itchy plants

called PoisonousPlants; the remainder were considered to be SafePlants. If a unification4 is found

between formerly disparate concepts, again a new term may be created. For example, Japanese and

American cars are normally grouped differently. However, in the modern world, some Japanese

cars (e.g., Toyotas) are made in Kentucky. So, both the Toyotas and many American cars are in

3From Darden.
4Unification is used in the sense of the computation of a least upper bound with respect to a concept hierarchy (an

instance of a join-semilattice).

4

the category of CarsMadeByAmericans, or even more accurately, CarsMadeInAmerica. In a more

scientific setting, the unification of magnetic and electric phenomena into the theory of electro-

magnetism demonstrates this joining process. New terms capture new theoretical relationships

that arise from a discovery. In this interpretation, feature construction is the creation of new terms

(i.e., attributes) and values for those terms with computable functions5.

The second relationship between semantic feature construction and science is the methods

that science uses to describe observations by quality and quantity. A particular scientific instru-

ment used to make a measurement comes coupled with a natural representation for that instrument

(Langley et al., 1987; Kuhn, 1996). Additionally, the instrumentation defines the semantics of the

observation. For example, measuring sticks, thermometers, and barometers each take a specific

physical process and quantify that process as a numeric measure on a scale. In the case of a metric

measuring stick, the scale is tied to the speed of light in a vacuum; for a barometer the scale is

tied to millimeters of mercury in a tube; for a thermometer, the scale is defined by a standardized

volume/pressure/temperature relationship. For the last of these, a particular proportionality (e.g.,

placement of freezing and boiling on the scale) and a particular zero point (e.g., absolute zero or

the freezing point of water) are sufficient to define the scale. Though both distance and tempera-

ture have been measured in many different ways through the ages, these scales can be converted

from one to another. The semantics and scale of measurements are both sources of knowledge for

combining and limiting combinations of features.

1.2 AN EXAMPLE OF FEATURE CONSTRUCTION

To make the learning and construction scenario concrete, consider the following example derived

from Quinlan (1995) and shown in Table 1. Each example (i.e., a line in the table) is a group

of weather measurements for a particular day. Each day has several attributes associated with it:

Precip, Temp, etc. The Tennis column, which is the target class for this problem, indicates whether

5Unifying two symbolic concepts can be done with logical or – if either of two concepts is true, it is true of the
new concept. Dividing, or specializing, a concept can be done by conjunction – if the former concept is true and
some additional concept is true, then the new concept holds. In a hierarchical structure of concepts, a new term may
necessitate rearranging the hierarchy with respect to the new attributes.

5

Table 1: Base Tennis Weather Dataset. The dataset shows attributes that are related to the target

concept of whether or not tennis is played on the day in question. The first 13 examples of 100 are

shown here.

Precip Temp Wind Humid Tennis

d d d d d

class

Cloudy Mod Calm Humid True

Sunny Cool Calm Humid True

Sunny Cool Breezy Humid True

Sunny Mod Calm Mod True

Rainy Warm Windy Arid False

Rainy Mod Breezy Mod False

Cloudy Hot Windy Arid True

Sunny Cool Breezy Arid True

Rainy Warm Breezy Mod False

PartCl Warm Breezy Humid False

Sunny Cold Breezy Arid False

tennis was played or not. A classifier for this learning problem predicts whether or not tennis

would be played on the basis of the values for Precip, Temp, Wind, and Humid on a given day.

The redescription of meteorological information is a common practice. Frequently, weather

forecasters give the actual air temperature followed by a temperature adjusted for humidity and

wind chill. So, if we have a dataset that has only the base features of temperature, humidity, and

wind speed, we can create a new feature that represents the apparent temperature.

1.2.1 Automatic Construction of Meteorological Features

ISAK can create features useful to the tennis classification problem. I used a synthetic data gener-

ator6 to create a weather dataset of 100 examples. Some of the values are shown in Table 1. The

complete target concept specification is shown in Appendix B. In addition to the raw dataset which

would be used by a typical learning algorithm, ISAK takes as input a knowledge base (KB) file

describing the features, operations, and search parameters for feature construction. For the weather

problem, the feature constructor functions include: (1) Boolean and, or, and not, (2) creation and

6The synthetic data generator is described in Section 7.1.2.

6

extension of bags7, (3) functions which test symbol equality, Temp = Hot, and (4) functions that

count symbolic and Boolean values in bags. ISAK returns four constructed features (Figure 1).

The results of learning with these new features is shown in Table 2.

The comparison between Base and New Features is the difference between learning with fea-

tures constructed by ISAK and learning with a standard, off-the-shelf learning system. ISAK

performs feature construction at a cost of time and memory. The dataset that results from ISAK

is then passed to the same, off-the-shelf learner. The difference in the scenarios is the work done

by ISAK to create new features. The improvement in 10-fold cross-validation accuracy may be

attributed to the modified dataset.

1.2.2 Manual Construction of Meteorological Features

Compare ISAK’s created features with the constructions performed by hand (or at least on an ad

hoc basis) by meteorologists. Here are some example formulas used by meteorologists in making

perceived temperature conversions8:

WindChill = 35.74 + .6215 ∗ Temp− 35.75 ∗WindV el.16

+.4275 ∗ Temp ∗WindV el.16

HeatIndex = 42.379 + 2.049 ∗ Temp + 10.143 ∗RelHumid

−.2248 ∗ Temp ∗RelHumid− .006838 ∗ Temp2

−.05482 ∗RelHumid2 + .00123 ∗ Temp2 ∗RelHumid

+.000853 ∗ Temp ∗RelHumid2

−.00000199 ∗ Temp2 ∗RelHumid2

In both cases the temperature is given in Fahrenheit. RelHumid refers to the relative humidity.
7Also known as multi-sets.
8Taken from http://www.psend.com/users/stormchaser/generalwx.html. ISAK does not at present have a parameter

fitting routine, so these types of regression equations would not be in the search space for constructed features. Adding
regression models to the search space would be relatively easy, but controlling the added complexity would not. Note,
the exponents in the WindChill equation are .16, not 16.

7

ftr 24180 (0.2239) is:

and(and(notEqRainy(Precip), notEqCloudy(Precip)),

or(eqMod(Temp), notEqBreezy(Wind)))

ftr 11824 (0.2239) is:

or(and(notEqSunny(Precip), notEqPartCl(Precip)),

and(notEqMod(Temp), eqBreezy(Wind)))

ftr 125980 (0.4327) is:

and(notEqRainy(Precip),

or(and(notEqRainy(Precip), notEqBreezy(Wind)),

or(eqMod(Temp), eqCool(Temp))))

ftr 124019 (0.3282) is:

and(or(eqRainy(Precip), eqBreezy(Wind)),

or(eqCold(Temp),

or(notEqSunny(Precip), eqHot(Temp))))

Figure 1: Four Constructed Features for the Weather Problem. Of the five base features shown in

Table 1, four features are components of the constructions shown here. ISAK did not find Humid

to be of value in any constructions. The values in parentheses, next to the synthetic feature names

(e.g., ftr 124019), are the information gains on the constructed feature over the original dataset.

The utility of these constructed features in comparison with the base features is shown in Table 2.

8

Table 2: Improvement in Weather Classification given Constructed Features. The cells are 10-fold

cross-validation accuracies for the weather data with six learners and three feature sets. Details

of the learning methods are discussed in Section 7.1.3. Base Features refers to the original, un-

modified set of features. New Features refers to the use of only the four newly created features

shown in Figure 1. None of the four new features make use of Humid in their definition. Thus, the

information from Humid is lost in New Features. The result of adding Humid to the new feature

set is shown in the third column of accuracies. The maximum standard error for any cell is .04.

Learner Base Features New Features

Majority Learner 0.60 0.60 0.60

3-Nearest Neighbor 0.71 0.81 0.83

10-Nearest Neighbor 0.73 0.84 0.84

Naive Bayes 0.77 0.85 0.85

Tree Classifier 0.71 0.82 0.84

Support Vector Machine 0.74 0.83 0.87

New Features
and Humidity

Meteorological formulas are not solely arithmetic. They can be created from any well-defined

procedure. For example, consider the comfort index9 depicted in Table 3. The comfort index ac-

counts for human body reaction to various environmental characteristics that affect our perception

of heat. These characteristics include temperature, humidity, and wind chill. Of course, these are

heuristic guides and they encode the general reaction of people to different weather conditions.

The created features can be incorporated into the tennis playing problem. Specifically, we can

add a new feature Comfortable that is computed from the other features and will be helpful in

predicting whether a day is suitable for tennis. Table 4 shows the Tennis problem with the newly

created feature. The newly created attribute Comfortable has a nice correlation with the target

concept of Tennis.

1.2.3 Why Create Features for Weather Problems?

The adjusted temperature is important because humans do not usually care what the temperature

value is per se; they care about how they feel when they are outside. The perception of temperature

9From http://www.bartsgroup.net/weather/.

9

Table 3: Comfort Index Calculations. WC and HI refer to wind chill and heat index; they are

defined by equations in the text.

Description Variables

Extreme Cold WC < 0

Uncomfortably Cold 0 < WC < 30

Cool 30 < WC < 60

Comfortable 60 < Temp < 80

Warm 80 < Temp < 90

Uncomfortably Hot Temp > 90 and HI < 100

Extremely Hot HI > 100

Table 4: Modified Tennis Data. Comfortable is an intuitively constructed variable from the initial

variables of a tennis type problem.

Day Outlook Temperature Humidity Wind Comfortable Tennis

D1 Sunny 57 95 5 Yes Yes

D2 Rain 63 80 0 No No

D3 Overcast 75 40 10 Yes Yes

D4 Sunny 92 99 30 No No

D5 Sunny 92 20 15 Yes No

10

is related to a number of raw meteorological values: temperature, wind speed, and humidity. So,

it is interesting to ask what mathematical relationship captures the perceived relationship among

these values.

Further, care must be taken to consider additional unrecorded conditions related to the tennis

games. A missing variable that determines whether the games were played indoors or outdoors

would lead to a very different model of tennis playing. Presumably, weather would be an important

part of determining the outdoor games, while the indoor games would be less dependent on the

weather. As it stands, the tennis playing problem is very close to answering the question, “Is

it a nice day outside?”, at least for avid tennis players. The cases where the answers differ (no

to Tennis, and yes to NiceDay) reflect that the given variables may not adequately model other

concerns, such as work and family obligations, in making time to go play tennis.

Why is the newly created variable given in terms of the attributes it is constructed from – that

is, its base attributes? In the case of heat index and wind chill, the constructed feature is described

as a temperature. Temperature is the measurement best correlated with personal warmth. So, even

though particular values of temperature may be perceived differently, the Celsius and Fahrenheit

scales are well-known and widespread. The common scales provide the best means for commu-

nicating temperature information. Manipulating a raw temperature on the basis of other relevant

factors – wind chill and humidity – produces a more accurate result, but it must be communicated

effectively. Creating a new scale for the new temperature would be tantamount to telling most

Americans the daily temperature in Celsius. The scale would be correct, but it would not carry

much semantic content and would be less intelligible than a result in Fahrenheit.

Returning to tennis, predicting whether a day is suitable for tennis will be better served by con-

sidering the perceived temperature instead of the actual temperature. The modified tennis example

takes this process one step further and uses knowledge of adjusted temperature and converts this to

a simple Boolean value – comfortable or not. ISAK allows the user to specify the terms of a new

feature as a part of the feature constructor function used to create new features from old features

(see Section 6.2.5).

11

1.3 UTILITY OF FEATURE CONSTRUCTION IN LEARNING

1.3.1 Inductive Bias of Learners

A significant difference in algorithmic learning methods is their inductive bias. The inductive

bias of a learner is the set of commitments that the learner makes to generalize from the given

training data to new, previously unseen cases. An important component of inductive bias is the

representation of the space of hypotheses a learner considers. For example, decision trees consider

a hierarchy of splits over the values of features present in the data (Breiman et al., 1984; Quinlan,

1995). An example of a decision tree is shown in Figure 2. Such a tree is applied by considering

an attribute at each node, starting from the root, and following the value for that attribute down

the appropriate branch to a new attribute or a leaf. If the new node is an attribute, the process is

repeated. If the new node is a leaf, the value of that leaf is the classification for that example. The

end result of the classification tree is a partition of the examples into different regions that share a

common target value or target function.

In contrast, support vector machines (SVMs) use a set of linear boundaries10 called support

vectors to form a separation among examples with different values (Burges, 1998). These bound-

aries are conveniently expressed as mathematical equations and can be visualized as graphs as in

Figure 3. Again, the end result is a partition of the feature space into regions of varying classes.

Other learning methods use different logical or mathematical representations for their hypotheses.

Many standard learning programs will perform poorly because the training examples’ given

representation is a bad match for the inductive bias of the algorithm. Rendell and Seshu (1990)

term such situations as hard problems. These situations occur when the concept to be learned

can be expressed in the given feature space, but the regions making up the concept are dispersed

throughout the instance space. Hence, the measurements used to model phenomena are tremen-

dously important. Using features in a suboptimal representation can lead to problems in the anal-

ysis of the data. These problems include (1) developing models that are more complicated than

necessary (Setiono and Liu, 1998; Blum and Langley, 1997) which in turn can cause problems

10With a kernel SVM, these boundaries are linear in some feature space, not necessarily the original feature space.
Also, in the SVM literature, the original feature space is referred to as the input space and the modified feature space
is referred to as the feature space.

12

Y

0 1

Y

0 1

X

0 1

X xor Y

1 0

Figure 2: A Decision Tree for xor and a Reduced Tree. Both trees have decision rules equivalent

to the xor function. The left tree requires two steps and tests on each feature, X and Y, to complete

its evaluation. The right tree makes use of a constructed feature to make the decision in a single

step. Note, the tree on the right requires preprocessing to create a feature Z = X xor Y .

−3 −2 −1 0 1 2

−
2

−
1

0
1

2
3

x

y

0 2 4 6 8

0
2

4
6

8

x^2

y^
2

Figure 3: SVM Feature Space Modification. The left pane shows an unmodified dataset created

from a non-linear concept,
√

x2 + y2 > 1. The right pane is two dimensions of the three di-

mensional projection of the original data with a second-order polynomial kernel. The missing

dimension is
√

2xy.

13

X

Y

xor(X, Y)

(0,0) (1,0)

(0,1) (1,1)

(1)(0)

Class

Figure 4: XOR in Two Feature Spaces. In the diagram on the left hand side, feature X and Y both

take two values {0,1}. The black circles represent the case where the circle is a member of the

target class False. The right hand diagram shows a combination of features X and Y into a single

new feature. With this new feature (which can only take two values, True and False), there is a

direct, separable relationship with the target class. In fact, the new feature has the same values as

the target class.

in verifying, interpreting, and applying the model and (2) missing satisfactory models or patterns

(Matheus, 1989).

1.3.2 Modification of Bias by Feature Construction

Classifier bias can be partially relieved by feature construction. Consider the simple perceptron

learner. It cannot learn to discriminate the xor function (Minsky and Papert, 1969). If an xor

operation is applied to the base features before the perceptron is induced, then the perceptron will

be able to learn the disjoint concept. Even so, the perceptron is still limited to learning linearly

separable concepts. The newly created feature presents a different space in which to learn as shown

in Figure 4. The modified space allows the concept to be learned by the perceptron because the

target classes are contiguous and linearly separable.

In the case of decision trees, providing pairs of features combined into a single new feature

may compensate for the limitation of selecting features one at a time. A constructed feature may

14

be a better selection for a tree node than either of its individual, constituent features. If so, the

new feature will be selected for a decision node and the overall tree will be simplified. Since the

xor function requires the conjunction of two tests, adding an xor feature to a decision tree learning

problem will reduce the learned tree from (1) three nodes representing four paths from the root to

a decision node to (2) one node representing two paths from the root to a decision node (see Figure

2). A specific benefit of feature construction to decision tree learning procedures is conservation

of data. By reducing the number of splits needed to make decisions, at each decision point there is

more data available. Hence, there is less sample bias at each node and better splits can be made.

In the weather example (Section 1.2.1), the average size of a tree constructed from the base

features was 33 nodes. In contrast, the average size of a tree using the new features was four nodes

and the average size of a tree using the new features and Humid was 12 nodes.

1.4 CONTRASTING FEATURE CONSTRUCTION AND RELATED METHODS

1.4.1 Modifying Data Representation

There are several methods of modifying the feature space of a dataset – a general term for all of

these is feature space transformations. The three major feature space transformations are: feature

selection, feature extraction, and feature construction. Feature selection is the process of choosing

subsets of features for learning. Feature extraction is the process of turning very general represen-

tations into more specific representations. Feature construction, the focus here, involves creating

new features for examples from previously existing attribute-value pairs. There are a number of

topics and areas in the machine learning and statistics communities that relate closely to feature

construction. The related topics include the other feature space transformations, constructive in-

duction, predicate invention, and certain statistical techniques that implicitly perform feature space

transformations.

15

1.4.2 Feature Selection and Feature Extraction

Feature selection can be viewed as a necessary prerequisite to performing feature construction –

what existing feature or features will be used in creating new features? However, this is somewhat

misleading. Feature selection, known in the statistical literature as the subset selection problem

(Ben-Bassat, 1982), refers to the process of choosing a subset of features that will be used in

making a model of the target. It does not refer to choosing features that will undergo further mod-

ification before the modeling process. If we consider feature construction as part of the modeling

process (as opposed to a pre-processing step), then the distinction disappears. Since the distinction

is not crisp, it makes sense to talk about feature selection and feature construction both as distinct

and as integrated processes. Further, whether features are selected for direct analysis or for use in

constructions, feature selection methods evaluate and order features and then pass the features to

the next processing stage.

Feature extraction is the process of creating useful features from raw, uninformative data. For

example, in a dataset of gray-scale images, replacing the image (e.g., a two dimensional grid of

gray-scale values) with the number of objects in the picture is a feature extraction process. The

operations performed in feature extraction are more complex versions of those performed in feature

construction. While feature construction might compute the dot product of two vectors of features,

feature extraction may compute a Fourier transform or perform other signal analysis over the entire

example.

One distinction that has been made between feature construction and feature extraction is that

feature extraction will usually result in significantly fewer features being present in the dataset (Liu

and Motoda, 1998b). Feature construction may either add to the feature space or replace a few fea-

tures with a single feature. Again, these are not defining characteristics, but general descriptions;

feature construction and feature extraction live on a continuum. The continuum has complex op-

erations and a large reduction of features at one end and simple operations and small feature set

additions and deletions at the other end. A second distinction between the two transformations is

that in feature construction many of the features available for feature construction are present in

the dataset because of specific, individual reasons. In feature extraction, the base features are there

because they are part of the natural representation of the object under consideration. For example,

16

pixels in an image do not have priority over each other – each pixel is simply one unit of the entire

aggregate image. Again, the difference between feature extraction and feature construction is a

difference of degree.

In a chess learning task we may find an initial representation of a chess board as a two di-

mensional array specifying position by position what is located at each space on a board – a piece

or an empty position. The detailed representation is correct and complete, but it does not capture

any higher-level knowledge about what it means to build a winning chess position. Instead, con-

cepts like point values of pieces, number of attacks available, number of pieces under attack, space

controlled, and pawn structure summarize the nature of a chess position. These concepts are in-

termediate concepts that link the raw chessboard to the target concept of winning chess positions.

Interestingly, it is much easier to explore the scenarios defined over these more expressive features

then it is to consider all possible, legal chess boards. Since the features capture some of the essence

of the position, working with more expressive features is valuable in learning. The raw data differs

from the extracted data in the level of generality of the representation. For example, many board

games can share a similar representation to chess; however, other games will not have the concept

of pawn structure. Specific representations are generated by the application of knowledge to a

problem.

Similar cases can be seen in computational analysis of bridge hands, web pages, gene sequence

analysis, text documents, and, in general, any heuristically guided problem solving task. In fact,

the heuristic guides used by humans for these problems often make use of constructed or extracted

features from their respective domains.

1.4.3 Constructive Induction

Constructive induction (Michalski, 1983; Matheus and Rendell, 1989) is the process of manipu-

lating the example descriptor space while performing an induction task. Here, the term descriptor

space is used instead of feature space because the learning scenario is more general than learning

from attribute-value pairs. Namely, in addition to attribute-value pairs that describe the examples,

there can also be relational descriptions among the various descriptors. The addition of relations

corresponds to moving from a propositional logic representation (i.e., the attribute-value represen-

17

tation) to some form of predicate or first-order logic representation. Some authors refer to con-

structive induction in ILP settings as predicate invention because newly created relationships are

described by new predicates. Feature construction can be used to perform constructive induction,

but it can also be used apart from constructive induction. More details on constructive induction

and its relationship with feature construction are given in Section 5.1.

Feature construction can also be seen as a means to perform constructive induction. If the

operations available in the feature construction process mimic the operations performed in the pro-

cess of induction, then constructed features may represent values of hypotheses. Hence, a learning

system and a feature construction system, working in concert, can jointly perform constructive in-

duction. This can be seen clearly in the case of rule learning. Suppose that a feature constructor

has available the Boolean operations and can perform equality tests over values of an attribute.

Then a new feature may take the value and(f1 = green, not(f2 = blue)). Subsequently, rules

having the new feature taking the value True would correspond to any rule that was induced with

a left hand side matching f1 = green ∧ f2 6= blue.

Features created by negation are particularly interesting if the induction process (e.g., a partic-

ular rule learner) does not have the ability to represent logical negation. In this case, adding the

constructed feature adds to the total representational power of the inductive system with feature

construction. Further, a feature that is constructed by testing for inequality with a given color can

allow for generalizations not strictly justified by the dataset. For example, even if no data point has

a color attribute with value magenta, the missing value is still covered by fcolor 6= blue. The de-

scription by negation shows that the feature construction process can perform operationally similar

tasks to the induction algorithm proper and may extend the hypothesis language of the induction

process.

As a final connection between feature construction and constructive induction, there exists

a trade-off between the representation of descriptors and the search necessary in a space of hy-

potheses. Different representations may require less search and may lead to better hypotheses.

Hence, there is also a trade-off between search in the descriptor space and search in the hypothesis

space. At its most extreme, search in the descriptor space can replace search in the hypothesis

space. If the set of feature constructor functions contains symbolic value tests (e.g., f1 = blue)

and Boolean connectives (e.g., and(f3, f4)) then it can create pseudo-rules as constructed features

18

(e.g., and(f1 = blue, f2 = green)). In numeric contexts, this sort of feature construction goes by

the term equation discovery. In these systems, constructed features themselves mimic the target

concept.

1.4.4 Statistical Vector Space Methods

On the logic-equation spectrum of learning systems, statistical methods are opposite of symbolic

learners. An important class of these statistical methods redescribe examples by projecting them

(i.e., mapping points) from one coordinate system to another. Kernel support vector machines take

a description of data in one feature space and project it into another, higher dimensional space

whose bases are different combinations of the original features. For example, using a polynomial

kernel of degree 2, a dataset with features {f1, f2} will be projected into a space where the points

are described in terms of {f 2
1 , f 2

2 ,
√

f1f2}. In this more expressive space, the data may be separated

by linear boundaries; in the original space, nonlinear equations may have been required to separate

the concept regions as in Figure 3.

Projection from one space to another is an implicit manipulation of the feature space in two

respects. First, in the computations there is no explicit representation of the features in the higher

dimensional space. The implicit nature of the representation is beneficial because it makes the

problem more computationally feasible. Second, the knowledge of feature combinations is en-

capsulated in the kernel function that takes the data from the low dimensional space to the high

dimensional space. The encapsulation has the benefit of modularizing the learning process, but it

requires that the knowledge be expressible within the kernel formalism. The kernel represents a

dot-product between all pairs of features (i.e., distances between all examples). So, it may not be

obvious how the knowledge in the kernel (i.e., the distances) represents knowledge in the world of

the learning problem (i.e., objects and relationships). Also, the kernel is a relatively complete set

of knowledge relating each example to every other example.

19

1.5 SEMANTIC FEATURE CONSTRUCTION

Why do we want to do semantic feature construction? First, we want to make use of domain and

background knowledge when we perform a learning task. Second, we want to make use of avail-

able, off-the-shelf learners with little modification. If we incorporate background knowledge in

feature construction before the learning process and produce data in the same form we are given

(i.e., as attribute-value pairs), then our available learners can be used without modification. We will

see that feature construction offers a means of incorporating background knowledge into the learn-

ing process. Third, on their own, constructed features can lead to insights about a dataset. Fourth,

the use of explicit, semantic knowledge also allows testing the usefulness of that knowledge for

learning. Pieces of knowledge can be evaluated by their benefit to the performance characteristics

of learners.

1.6 HYPOTHESES

I propose that making explicit, declarative knowledge available to an automated feature construc-

tor will result in positive changes to the representation of data as demonstrated by the performance

characteristics of machine learners. By providing knowledge to the feature construction process,

the performance of learning algorithms using feature constructed with background will be im-

proved in comparison to learning algorithms using only base features. By performing feature con-

struction as a pre-processing task, unmodified learning algorithms can make use of the constructed

features.

The specific hypotheses that this dissertation tests are:

1. knowledge is useful in the feature construction process and it can be captured in a uniform

fashion,

2. knowledge can be used in an automated fashion in the feature construction process via beam

search,

3. knowledge-based feature construction results in increased generalization performance by learn-

ing algorithms with constructed feature sets, as compared to base feature sets, and

20

4. knowledge-based feature construction results in less time spent in feature construction and a

greater increase in generalization performance, as compared to knowledge-lean feature con-

struction.

1.7 OVERVIEW AND SUMMARY

Chapter 2 shows two annotated examples of the ISAK system and feature construction. Chapter 3

presents background on the methods used in this study. Chapter 4 offers a framework for discussing

systems that perform semantic feature construction. Chapter 5 describes work related to semantic

feature construction. Chapter 6 describes the tools, algorithms, and implementations used in this

project. Chapter 7 details a number of experimental results generated by ISAK and discusses the

implications of these results. Chapter 8 looks at future directions and considerations of my work.

Representational power is frequently analyzed as a characteristic of machine learners. It has

become popular to deal with representational issues by feature construction. In the learning com-

munity, many attempts are being made to incorporate domain background knowledge into the

machine learning process. My aim is to combine these two approaches by using background

knowledge to drive the construction of new features.

21

2.0 ANNOTATED EXAMPLES OF SEMANTIC FEATURE CONSTRUCTION BY ISAK

2.1 HIGH LEVEL DESCRIPTION AND THE WINE PROBLEM

ISAK (Integrating Search and Knowledge) is a semantic feature construction system that takes as

input:

1. a dataset in the form of attribute-value pairs,

2. a semantic description of the features and their interactions, and

3. an optional set of search parameters (defaults are provided).

As output, ISAK produces a modified dataset of attribute-value pairs (Figure 5).

The input dataset takes a format similar to the UCI wine dataset (Newman et al., 1998) shown

in Table 5. The wine dataset contains 178 examples described by 13 numeric features. Each

example of a wine belongs to one of three classes. The attributes are characteristics of wines:

amounts of chemical compounds, quantifications of visual effects, and results of experiments on

samples of the wine. The three possible target values represent the three regions from which the

wines in the dataset are produced. Besides the dataset proper, the only other information in the

data file is a distinction of continuous and symbolic valued features, names for the features, and an

indicator for the target class.

An example of an input knowledge base and search parameters for the wine dataset is shown in

Figure 6. The knowledge base contains the description of feature semantics, applicable constructor

functions, and search parameters. These make up a complete specification for a single feature

construction problem. A dataset and a construction knowledge base together form a construction

and learning problem (CLP). The wine CLP is a self-contained example; other CLPs make use of

22

Feature
Semantics

Construction
Formulas

Semantic
Classes

Search
Parameters

Original
Data

Knowledge

ISAK Modified
Data

Figure 5: Overview of ISAK Input and Output. ISAK makes use of three types of knowledge

about the data: facts about the features in isolation, facts about class relations among the features,

and methods of creating features that may be applied when given facts are true. Search parameters

control the progress through the space of possible features and the order in which prospective

features are considered.

Table 5: Ten Examples from the UCI Wine Dataset. The attributes are named a1 to a13. The target

class is wine. The wine classes all have value 1 because the example lines were taken from the top

of the file. The second line of the file has values c and d. These indicate that the value is numeric

or symbolic, respectively. The third line has the value class in the column that is the target class.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 Wine

c c c c c c c c c c c c c d

class

14.23 1.71 2.43 15.60 127.00 2.80 3.06 0.28 2.29 5.64 1.04 3.92 1065 1

13.20 1.78 2.14 11.20 100.00 2.65 2.76 0.26 1.28 4.38 1.05 3.40 1050 1

13.16 2.36 2.67 18.60 101.00 2.80 3.24 0.30 2.81 5.68 1.03 3.17 1185 1

14.37 1.95 2.50 16.80 113.00 3.85 3.49 0.24 2.18 7.80 0.86 3.45 1480 1

13.24 2.59 2.87 21.00 118.00 2.80 2.69 0.39 1.82 4.32 1.04 2.93 735 1

14.20 1.76 2.45 15.20 112.00 3.27 3.39 0.34 1.97 6.75 1.05 2.85 1450 1

14.39 1.87 2.45 14.60 96.00 2.50 2.52 0.30 1.98 5.25 1.02 3.58 1290 1

14.06 2.15 2.61 17.60 121.00 2.60 2.51 0.31 1.25 5.05 1.06 3.58 1295 1

14.83 1.64 2.17 14.00 97.00 2.80 2.98 0.29 1.98 5.20 1.08 2.85 1045 1

13.86 1.35 2.27 16.00 98.00 2.98 3.15 0.22 1.85 7.22 1.01 3.55 1045 1

23

a built-in library of feature construction knowledge to supply the feature constructor functions and

semantic types used to describe feature semantics (Section 6.2).

ISAK starts by building its internal structures from the information given in the problem de-

scription. For each base and constructed feature, the program tracks the feature’s semantic type

and an estimate of the feature’s utility for learning1. For each constructed feature, ISAK records

the features used in its construction. For the construction formulas, the internal structures record

the allowable types of the input arguments, constraints on the details of these types, the resulting

output type from a formula application, and the mathematical operation that produces new features

values from the old feature values.

In the wine problem, ISAK:

1. Creates a semantic class hiearchy of features. The semantic classes are defined by lines 1-11 in

Figure 6. The relationships among classes are defined by lines 13-19. A graphical depiction of

these relationships is shown in Figure 7. Lines 21-42 place specific features into these semantic

classes.

2. Creates feature constructor functions (FCFs), from their specifications, that will create new

features from old features. The feature constructor functions are specified in lines 44-55 of

Figure 6. A logical specification of these functions (and the features they construct) is given in

Figure 8.

3. Loads the search parameters that will limit the search in the space of constructed features. The

search parameters are specified in lines 58-64 of Figure 6.

The feature constructor functions specified in the wine KB are arithmetic functions that apply

to the given features if those features are in unifiable semantic classes. For example, looking

at Figure 7, Flavinoid Phenols and Nonflavinoid Phenols unify to the class of Phenols. A ratio

between Flavinoid or Nonflavinoid and Phenol would give a relative quantity of that type of phenol.

A ratio between Flavinoid and (all) Phenols would give the relative proportion of phenols that

are flavinoid compounds. Features in the Environment semantic class cannot be combined with

features in the Genetic semantic class (or any of Genetic’s subclasses) unless they are specifically

placed in both the Genetic and Environment classes.

1ISAK uses information gain as the feature evaluation metric.

24

0:
1: #
2: # semantic classes for the wine problem
3: #
4: col = SemNode("color")
5: gen = SemNode("genetics")
6: env = SemNode("environment")
7: phen = SemNode("phenols")
8: flav = SemNode("flavinoids")
9: nonflav = SemNode("nonflavinoids")

10: pro = SemNode("proanthocyanins")
11: biochem = SemNode("biochemical")
12:
13: #
14: # put semantics classes in their relational hierarchy
15: #
16: topClass.addChildren(col, gen, env, biochem)
17: gen.addChildren(phen)
18: phen.addChildren(flav, nonflav)
19: flav.addChildren(pro)
20:
21: #
22: # Match the features with their respective semantics
23: #
24: tmpTypeDict = {"a1": (biochem,),
25: "a2": (biochem,),
26: "a3": (env,),
27: "a4": (env,),
28: "a5": (env,),
29:
30: "a6": (gen,phen),
31: "a7": (gen,flav, col),
32: "a8": (gen,nonflav),
33: "a9": (gen,pro),
34: "a10": (gen,col),
35: "a11": (gen,col),
36:
37: "a12": (biochem,),
38: "a13": (biochem,)}
39: fd = ItemAttrDict()
40: for attr, classD in tmpTypeDict.iteritems():
41: fd[attr] = BaseFeature(attr, GenQuantType(classD))
42: kbfeatures = fd.values()
43:
44: #
45: # Create some operations that will work on GenericQuantitys
46: #
47: def f_GenericInherit(x,y):
48: return (LGUs(x.classDesc, y.classDesc),)
49: unifArithOps = [Formula((GenericQuantityType, GenericQuantityType),
50: (f_notupperlgu,),
51: thisOp,
52: GenericQuantityType,
53: f_GenericInherit)
54: for thisOp in f_add, f_div, f_mul, f_sub]
55: probformulas = unifArithOps
56:
57:
58: #
59: # Define the search parameters for the feature space search
60: #
61: searchparameters = {"minMsr": .9, "minMsrImp":.3, "junkMsr":.1,
62: "minFtrs":1, "minHgt":1, "minLeaves":1,
63: "maxFtrs":4, "maxHgt":3, "maxLeaves":4,
64: "maxNew": 75, "maxReturn":10, "maxOld": 75}
65:

Figure 6: A Knowledge Base Used by ISAK for the UCI Wine Dataset. Comments in the code are

denoted with #. Code segments are described in the text.

25

Top

Color Genetic Environment Biochemical

Phenols

Nonflavinoid Phenols Flavinoid Phenols

Proanthocyanins

Figure 7: Semantic Hierarchy for Wine CLP. The hierarchy is used to specify similarities and

differences among features. A single feature may belong to more than one semantic class. For

example, a11 is an element of both Color and Genetic.

The resulting values of the FCFs are defined by the arithmetic operation associated with each

FCF. The resulting semantics have two pieces (1) the semantic type of the result is a GenericQuan-

tity and (2) the semantic class of the result is the unification of the semantic classes of the initial

features used in the construction.

The search is constrained by the search parameters, the types of the features, and the in-

put/output characteristics of the construction formulas. New features are generated by matching

the available types of features to the required types in the type signatures of the construction for-

mulas. As type-compatible features are found, additional type-specific constraints are tested, and

finally, structures for the features satisfying the constraints are built. The new features are then

integrated onto the search beam subject to the beam search parameters. The beam integration pro-

cess may also remove old features from the beam. Finally, the features that survive integration are

partitioned into three distinct sets: (1) features that are known to be good, (2) features that may po-

tentially produce good features with additional processing, and (3) features that may be discarded.

The process continues iteratively until no new features are produced2.

2Other stopping criteria, besides quiescence, are possible such as the time of execution or the number of rounds of
beam expansion performed.

26

with op ε{+,−, ∗, /}
∀f1, f2Feature(f1) ∧ Feature(f2) ∧ Unification(class(f1), class(f2)) 6= Top

type(f1) = GenericQuantity ∧ type(f2) = GenericQuantity

NewFeature(fN) ∧ values(fN) = op(values(f1), values(f2)) ∧
class(fN) = Unification(type(f1), type(f2))

type(fN) = GenericQuantity

Figure 8: Operations for the Wine CLP. The equations express a logical formulation of four arith-

metic feature constructor functions for the wine domain. Feature constructor functions define the

characteristics of the features to which the functions may be applied and the results of that appli-

cation. In English, the first three lines of the logical formulation say that the arithmetic operations

apply to features that are GenericQuantitys and that they unify to something other than Top. Uni-

fication, in this problem, refers to checking for common ancestry in Figure 7. The next two lines

state that the resulting feature has values defined by the arithmetic operation (i.e., one of addition,

subtraction, multiplication, of division) and a semantic class defined by the unification of the input

types. The last line says that the type of the new feature is a GenericQuantity.

27

The search for constructed features (Figure 9) can be summarized as follows:

1. generate new features based on (a) the type signatures of construction formulas and the types

of the available features and (b) the specific typing information available in the features,

2. prune the new features that (a) do not satisfy the search parameters and (b) can never lead to

satisfactory features, and

3. partition the remaining features into those that are known to be of interest and those that may

be used to produce other new features of interest in subsequent rounds.

The procedure is repeated until it exhausts itself by generating no new keepers – features that are

either (1) known to be of interest or (2) may be of interest in the future. The end result of running

ISAK on the wine CLP is another dataset3 (Table 6).

Table 7 shows the counts of features through the generation process. The six keepers from the

last round do not exceed the value of the maxReturn (10 in the wine CLP) argument to ISAK so all

six are returned. The path through the search space leading to these six features is shown in Figure

10.

3Following common convention, ab = a ∗ b for neatness of presentation.

28

Old
Keepers

Old
Others

New
Keepers

Old
Keepers

New
Keepers

New
Others

Fringe
Expansion

Old

Current

Keepers

Others

Partition

Model
Pruner

Pruner
Data

Trim

Generator

End of Round i
Start of Round i+1

Model
Pruned on

Pruned on
Data

Start of Round i
End of Round i−1

Old

New

Others

Others

Sucessor

Figure 9: Data Flow through Generation of Features from Round to Round. At the start of each

round, the old features for the current round are the features that were available in the previous

round. The new features are those produced in the previous round of generation. When the New

Keepers and New Others lists are both empty, the round to round iteration stops.

Table 6: New Features Constructed by ISAK for Wine CLP. Wines in the modified dataset have

a mix of base and constructed features. Here, we show only the first ten wines from the original

datset. a7, a12, and a13 are features that survived from the initial feature set. The other features are

numbered according to the order in which they, and other non-returned features, were produced.

The constructions for the new features are: ftr 04501= (a7a10)/(a6 − a10), ftr 01868= (a7a10)−
(a10/a11), and ftr 04288= (a8 − a11)/a10.

a12 a13 ftr_04501 ftr_01868 a7 ftr_04288 Wine

c c c c c c 1 2 3

class

3.40 1050 -6.99 7.92 2.76 -0.18 1

3.45 1480 -6.89 18.15 3.49 -0.08 1

2.73 1150 -8.66 15.61 3.69 -0.15 1

2.88 1310 -4.77 15.54 2.91 -0.13 1

2.57 1130 -6.15 16.60 3.40 -0.11 1

3.52 770 -5.19 6.48 2.41 -0.17 1

2.71 1285 -6.86 13.74 3.25 -0.16 1

2.69 1020 -7.51 6.63 2.64 -0.24 1

3.53 760 -7.38 9.77 3.04 -0.14 1

3.44 1065 -9.41 10.82 3.17 -0.16 1

29

Table 7: Counts of Features in Data Flow for the Wine CLP. Here, the term model refers to the

syntactic characteristics of a constructed feature: how many base features it uses, how many leaf

nodes it has, and its height. The last two characteristics rely on interpreting the constructed feature

as a tree (Section 4.4). The column headings make reference to the flow of data through the feature

generation process (Figure 9). At the end of round 3, there are no NewKeepers or NewOthers, so

ISAK terminates.

Round Within Round Counts End of Round Counts

Old Current Generated Keepers Others

Initial <No generation. Filled from initial features.> 0 0 3 10

1 0 13 192 192 144 0 140 75 3 10 0 75

2 13 75 5280 5280 3022 3 2992 75 3 85 3 75

3 25 103 14240 0 0 0 0 0 6 160 0 0

Pruned on
Model

Pruned on
Data

Trimmed
Others

Old
Keepers

Old
Others

New
Keepers

New
Others

a7 a10 a11

a10/a11a7a10

(a7a10) − (a10/a11)

Figure 10: Path to Resulting Wine Features. The figure shows only those features used in the

process of generating new feature 01868. feature 01868 is expanded from the initial set of features

in the innermost box. Other initial features, not shown in the innermost box, expand to the other

constructed features shown in Table 6.

30

2.1.0.1 Trace of ISAK on the Wine CLP To illustrate the operation of ISAK in some further

detail, here is a trace of ISAK, operating on the wine dataset for a subset of the initial features:

a7, a10, and a11. The trace for these features was generated within the run of ISAK on the full,

initial feature set (i.e., including the other ai). So, the counts in the trace match those presented in

Table 7. The trace is shown in Figures 11 and 12.

Figure 11 (lines 1-62) shows the initial problem setup, the setup of the initial search state,

and the first round of generation. Figure 12 (lines 65-129) shows the second and third rounds of

generation. The third round produces no models that are acceptable with respect to the search

parameters given in lines 8-11. Specifically, the new features at the end of round two and the start

of round three are all of height three4. Round i is responsible for generating all features of height

i + 1. The maximum height allowed in the wine CLP is three (see Figure 6, line 64). Since all of

the arithmetic operations add one to the height of any tree they are applied to5, any application of

the operations will increase the height of the new feature by one. Hence, any constructed features

created from the new features coming out of round two will have height four and will be pruned

immediately6.

Another interesting point is that the NewOther list in round two (lines 102-110) shows features

with evaluations higher than the evaluations in the NewKeeper list for the same round. The selec-

tion occurs because the MinimalImprovement search parameter requires that features be evaluated

at least .3 higher than their parent features to be considered a Keeper. For feature 01642 (line 110,

evaluation 1.3493), its parents are feature 00045 (line 61, evaluation 1.2050) and feature 00166

(line 56, evaluation 0.8569). Since 1.3493 � 1.2050 + .3, feature 01642 is not a Keeper.

Now, let us look at the operations that take the results from round one to the results of round

two. At the start of round two (and the end of round one), there are two OldOthers, a10 and a11,

and there is one OldKeeper, a7. There are sixteen NewOthers.

4Constructed features may be represented as trees with the base features as leaves and the resulting constructed
features as the root of the tree. See Section 4.4 for further details.

5The operations are applied strictly at the root of the tree (i.e., the whole feature), not to leaves or internal nodes
(i.e., components of the feature).

6The immediate pruning of some features raises the issue of lookahead in the search to prevent generation of some
features. Due to the complexities of algebraic and symbolic operation interactions, I did not pursue implementing
lookahead in the generation process. I did implement lookahead for simple cases like that in the wine CLP, but that
code is not used in the dissertation.

31

0:
1: ***Initial features from data file:****
2: FloatVariable ’a7’ FloatVariable ’a10’ FloatVariable ’a11’
3:
4: ***Class Attribute:
5: EnumVariable ’Wine’
6:
7: ***Search parameters:
8: maxReturn : 10 minMsr : 0.9 maxFtrs : 4 maxLeaves : 4 minLeaves : 1
9: genArgs : {’N’: 40} maxNew : 75 minFtrs : 1 minHgt : 1 dumpFS : True

10: newFtrGen : topNGen minMsrImp : 0.3 maxOld : 75 maxHgt : 3
11: maxForGen : 10 junkMsr : 0.1
12:
13: ***Formulas:
14: " + " with sig: GenQuantType x GenQuantType -> GenQuantType
15: " - " with sig: GenQuantType x GenQuantType -> GenQuantType
16: " * " with sig: GenQuantType x GenQuantType -> GenQuantType
17: " / " with sig: GenQuantType x GenQuantType -> GenQuantType
18:
19: **
20: ************Setting inital search state from problem.*************
21: **
22: a11 0.668378829956 a10 0.767301917076 a7 1.26114284992
23:
24: ***Setup complete.***
25: ***Results: ***
26: old kep: new kep: old otr: new otr:
27: 0 3 0 10
28: ********************* Lists for Initial Round ********************
29: *** old keep list:
30: *** new keep list:
31: a7
32: *** old othr list:
33: *** new othr list:
34: a11 a10
35: ********************* End Initial Lists **************************
36:
37: **
38: ************************ Doing Round 1 **************************
39: **
40: OldPol CurPol Gen’ed ModPrn DatPrn NewKep NewOtr TrmOtr:
41: 0 13 192 192 144 0 140 75
42:
43: ***Initial Round Results***
44: old keep: new keep: old otr: new otr:
45: 3 0 10 75
46:
47: *********************** Lists for Round 1 ***************************
48: *** old keep list:
49: a7
50: *** new keep list:
51: *** old othr list:
52: a11 a10
53: *** new othr list:
54: ftr_00082 (0.6424) is: -(a10, a11) ftr_00070 (0.6847) is: -(a11, a10)
55: ftr_00191 (0.6920) is: /(a7, a10) ftr_00034 (0.7490) is: +(a10, a11)
56: ftr_00166 (0.8569) is: /(a11, a10) ftr_00084 (0.8966) is: -(a10, a7)
57: ftr_00178 (0.9032) is: /(a10, a11) ftr_00143 (0.9151) is: *(a7, a10)
58: ftr_00180 (0.9710) is: /(a10, a7) ftr_00095 (0.9717) is: -(a7, a10)
59: ftr_00189 (0.9921) is: /(a7, a11) ftr_00093 (1.0020) is: -(a7, a11)
60: ftr_00141 (1.0141) is: *(a7, a11) ftr_00167 (1.0288) is: /(a11, a7)
61: ftr_00071 (1.0536) is: -(a11, a7) ftr_00045 (1.2050) is: +(a7, a11)
62: ************************** End Lists *******************************
63:

Figure 11: Trace of Wine CLP for Three Initial Features. The trace shows the initial setup steps

and the first round of generation for a subset of features. The subset was chosen to demonstrated

the generation of features in Figure 10. Feature set counts (and abbreviations) follow from Figure

9 and Table 7. Subsequent rounds of generation are shown in Figure 12.

32

65: **
66: ********************** Doing Round 2 *****************************
67: **
68: OldPol CurPol Gen’ed ModPrn DatPrn NewKep NewOtr TrmOtr:
69: 13 75 5280 5280 3022 3 2992 75
70:
71: ***Round 2 Results***
72: old kep: new kep: old otr: new otr:
73: 3 3 85 75
74:
75: *********************** Lists for Round 2 ***************************
76: *** old keep list:
77: a7
78: *** new keep list:
79: ftr_01868 (1.2521) is: -(*(a7, a10), /(a10, a11))
80:
81: *** old othr list:
82: ftr_00082 (0.6424) is: -(a10, a11)
83: a11
84: ftr_00070 (0.6847) is: -(a11, a10)
85: ftr_00191 (0.6920) is: /(a7, a10)
86: ftr_00034 (0.7490) is: +(a10, a11)
87: a10
88: ftr_00166 (0.8569) is: /(a11, a10)
89: ftr_00084 (0.8966) is: -(a10, a7)
90: ftr_00178 (0.9032) is: /(a10, a11)
91: ftr_00143 (0.9151) is: *(a7, a10)
92: ftr_00180 (0.9710) is: /(a10, a7)
93: ftr_00095 (0.9717) is: -(a7, a10)
94: ftr_00189 (0.9921) is: /(a7, a11)
95: ftr_00093 (1.0020) is: -(a7, a11)
96: ftr_00141 (1.0141) is: *(a7, a11)
97: ftr_00167 (1.0288) is: /(a11, a7)
98: ftr_00071 (1.0536) is: -(a11, a7)
99: ftr_00045 (1.2050) is: +(a7, a11)

100:
101: *** new othr list:
102: ftr_00837 (1.2450) is: +(/(a7, a11), /(a10, a7))
103: ftr_04145 (1.2521) is: *(a7, +(a7, a11))
104: ftr_01505 (1.2521) is: +(a7, +(a7, a11))
105: ftr_01393 (1.2567) is: +(a7, /(a10, a7))
106: ftr_05414 (1.2611) is: /(a11, /(a11, a7))
107: ftr_02575 (1.2611) is: -(+(a7, a11), -(a11, a7))
108: ftr_01248 (1.3043) is: +(+(a7, a11), /(a10, a7))
109: ftr_02317 (1.3083) is: -(/(a11, a7), +(a7, a11))
110: ftr_01642 (1.3493) is: -(/(a11, a10), +(a7, a11))
111: ************************** End Lists *******************************
112:
113: **
114: ********************** Doing Round 3 *****************************
115: **
116: OldPol CurPol Gen’ed ModPrn DatPrn NewKep NewOtr TrmOtr:
117: 75 78 11464 0 0 0 0 0
118:
119: <No new features. End of run.>
120:
121: Number of features examined: 16936
122: Feature Space Search Time (Wall Clock): 8.61
123: Feature Space Search Time (User Time): 8.52
124: Feature Space Search Time (Sys Time): 0.09
125: Feature Space Search Time (User + Sys): 8.61
126:
127: ****** (2) Newly Created Features ******
128: ftr_01868 (1.2521) is: -(*(a7, a10), /(a10, a11))
129: a7

Figure 12: Trace of Wine CLP for Three Initial Features (Continued). The trace shows the second

and third rounds of generation and some final performance statistics. The initial setup and first

round are shown in Figure 11.

33

TopNGen (line 10), the successor function, steps through each available operation and attempts

to match argument tuples to each operation’s signature. Here, the four arithmetic operations are

processed in an analogous manner, so let us consider multiplication. Since all of the initial and

constructed features share the same type (i.e., GenericQuantity), the generation of potential tuples

is limited only by the semantic classes of the features.

Generation proceeds by generating (new, any other) and then (old, new) where new and old

are directly from NewOthers and OldOthers and any other is any element of either list that has not

already been used in that tuple. So, some pairs in the generation process will be:

Using a7a10 as new (i.e., (a7a10, any)):

(a7a10, a11), (a7a10, a10), (a7a10, a10 − a11), · · · , (a7a10, a10/a11), · · · , (a7a10, a7 − a8).

Using a11 as old (i.e., (a11, new)):

(a11, a10 − a11), (a11, a7/a10), · · · , (a11, a7 − a8).

Each tuple is checked against the constraint list for multiplication. Combinations between fea-

tures that are not in unifiable semantic classes is prohibited (e.g., (a7a10, a1) is prohibited because

a7a10 is in class Color and a1 is in class Biochemical). Those pairs that pass through constraint

processing are instantiated as new features and returned to the Expanded Fringe list in Figure 9.

The same is true for each of the other arithmetic operations.

The Model Pruner (Figure 9) is responsible for syntactic constraints on the models: these

constraints include the height and breadth of the features considered as trees. The Data Pruner

is responsible for constraints based on the features’ values and evaluations. For example, one

element of NewOthers is a7a10. Now, one of the newly generated pairs is (a7a10, a11/a7). Applying

multiplication to this pair gives a7a10a11/a7 = a10a11. However, a10a11 is of height two and was

generated at some point in round one. It was not considered a keeper or an other. Hence, we

discard a7a10a11/a7 by checking the cache of expanded features for the duplication.

2.2 TIC-TAC-TOE PROBLEM

The tic-tac-toe (TTT) dataset from UCI contains various TTT boards that are reachable during the

play of a standard game of TTT. The boards are classified by the target value into two groups:

34

Table 8: Seven Examples from the Tic-Tac-Toe UCI Dataset. The columns of the dataset are

positions on the tic-tac-toe board, starting in the top left corner and moving to the bottom right in

row major order. The target class, y, has the value p (a positive example), if player x is the winner.

It has the value n if the board is a tie or the board is a loss for player x.

tl tm tr ml mm mr bl bm br y

x o b x o b x o b x o b x o b x o b x o b x o b x o b p n

class

x x x x o o x o o p

x x x x o o o x o p

x x x x o o o o x p

x x x x o o o b b p

x x x x o o b o b p

x x x x o o b b o p

x x x x o b o o b p

wins for the x player and not-wins for the x player. The first several rows of the dataset are shown

in Table 8. As the table indicates, the state at the end of the game is represented by the values at

different locations on the board. The locations can take on one of three symbolic values indicating

the presence of an x, the presence of an o, or neither – a blank, b.

The features in TTT have a high degree of interaction. Recall that the target concept of a

winning position (for player x) is defined by three x’s in a straight line (row, diagonal, or column).

Hence, combinations of only two features will not capture the target concept. Combinations of

three features can replicate parts of the complete target concept, if they are carefully chosen.

Knowledge for the TTT problem includes:

1. knowledge of the structure of a TTT board: rows, columns, and diagonals,

2. knowledge of the values on the board: x, o, and b,

3. knowledge that the attributes represent pieces on a board at a particular position (e.g., attribute

tl is the top left corner of the board; it is in the first row, the first column, and is on the diagonal

with negative slope),

4. knowledge of an operation that counts the number of occurrences of the different values in a

bag, and

5. knowledge that the problem is specifically defined to find where player x is the winner.

The symbolic domain knowledge is combined with the following search control knowledge:

35

1. minimum target evaluation is .08 (knowledge that the value of individual winning components

– rows, columns, and diagonals – are weakly valued until combined),

2. minimum improvement over parents is .005 (similar to the knowledge in 1.),

3. minimum number of base features is 3 (encapsulating the knowledge that a win requires three

elements),

4. minimum height is 1 (we have to apply at least one operation7), and

5. maximum number of base features is 3.

There are other search parameters, but the listed parameters are the most interesting in the TTT

CLP. The search control also encapsulates domain knowledge, in addition to controlling the com-

plexity of the search.

Given the operations and the search parameters, ISAK builds up counts of related board posi-

tions (i.e., row, columns, and diagonals). The counts, such as number of x’s in a row, form partial

concepts of the actual target concept. The two operations provided to the TTT CLP are: (1) an

operation that takes two pieces and produces a count on the number of those pieces with a distin-

guished value (here, x) and (2) an operation that takes a count and a piece and then produces a new

count, incremented by one, if the piece has the distinguished value. The restriction of combina-

tions to rows, columns, and diagonals is done by specifying a semantic class for each feature. The

top left corner of the board is a member of the topRow, the leftColumn, and the negativeDiagonal

semantic classes.

As specified, the CLP gives the learners adequate features to determine a good approximation

of the target concept. Since only three base features are allowed in any constructed feature, there

is no attempt by ISAK to combine the individual winning conditions into an aggregate condition.

We do not attempt to learn the entire TTT winning concept for two reasons: (1) it is interesting to

see how useful constructions of the partial concept are in predicting the complete concept and (2)

the combinatorics of the search for the complete concept are more prohibitive than for the partial

concept. To construct features that represent the complete winning concept, we would introduce

an equality test (i.e., check if a row’s x count is 3) and the Boolean or: Is row1 a winner or is row2

a winner or is row3 a winner or ... ? These two additions would give ISAK the tools necessary to

find the complete definition of a win for x in TTT.
7Leaves are considered to have height 0. So, tree heights count from 0, 1, 2, etc.

36

3.0 BACKGROUND

3.1 INDUCTIVE LEARNING FROM EXAMPLES

Feature construction occurs in the context of machine learning. Following Russell and Norvig

(1995), the specific machine learning problem addressed here is:

Given a collection of examples {(x, f(x))} of a function f over a domain x ∈ X , return a
function h that approximates f .

The function h that approximates the true, underlying function is called a hypothesis and its form

or syntax is specified by a hypothesis language. The set of all hypotheses is called the hypothesis

space. If f is in the hypothesis space H, then the learning problem is called realizable; if f is not

an element of H, the learning problem is called unrealizable. When h is limited to functions that

output a small, finite number of values the learning problem is called classification learning or

simply classification. In addition to the language used to specify the hypotheses, the examples of f

are described in a particular language called the instance language.

The instance space is the the domain of f. That is, the instance space is the set of all possible

objects that might ever have a target value associated with them in this learning problem (see Figure

13). Feature construction modifies the set of attributes that measure the objects in the instance

space. The set of all objects with a known target value is the example space; the example space is a

subset of the instance space. The subset of examples used for learning is called the sample space.

In many cases, the sample space represents a randomly selected sample of the instance space. The

sample space may be divided into different sets for use in hypothesis development (training set),

37

Instance
Space

Example
Space

Sample
Space

U
E

S

Figure 13: Instance, Example, and Sample Space Relationships. Instances are all possibly relevant

data. The example space is the set of all labeled (i.e., classified) data; E may be infinite or open-

ended. The sample space is the set of data that is available for learning or analysis; S is finite and

closed. The training, validation, and test sets are subsets of the sample space.

tuning of hypotheses (validation set), and, finally, prediction of generalization ability back to the

entire instance space (a test or hold-back set)1.

Each individual instance is described on the basis of its attributes within the capabilities of the

instance language. Formally, these are propositional statements of the form height(example1, 5.2).

An attribute can be viewed as a function that maps an example to a value or characteristic of that

example. Different attributes in a dataset may take values over different ranges. For example,

attributes may be symbolic, discrete, set, real, integer, or Boolean valued. For a particular learn-

ing problem, values of attributes may have errors and examples may be mislabeled. However, I

will only consider datasets for which some value is present for each example and attribute. I also

restrict myself to problems with stationary features.

The elements in the set of examples are typically called cases, observations, examples, experi-

ments, or individuals. In the weather learning scenario from Chapter 1, these are the different days

1Some presentations reverse the meaning of the testing and validation sets.

38

under consideration. The characteristics that describe each example are typically called measure-

ments, variables, independent variables, or attributes. The attributes for the weather example are:

Precipitation, Temperature, Humidity, and Wind.

Though sometimes used as a synonym for attribute, I will reserve the term feature for an

attribute paired with a legal value. Legal values come from the domain of that attribute. An

example feature is the pair (Wind, Calm). The set of all features taken together is called the feature

space. In classical statistics, the target attribute is the dependent variable that is modeled on the

independent variables. In the weather example, Tennis is the dependent variable. I also reserve the

term object to refer to conceptual entities in the world of the learning problem. Namely, a single

example may be made up of attributes over multiple conceptual objects in the world of the learning

problem. Thus, in my usage, objects and examples are not synonymous.

There are many methods for creating a classifier or function. These methods include neural

networks, Bayesian networks, clustering methods, genetic algorithms, regression frameworks, in-

ductive logic programs (ILP), support vector machines (SVMs), decision trees, and rule learners

(Mitchell, 1997; Hastie et al., 2001). Each of these systems has different strengths and weaknesses

including its capability of dealing with different types of data (symbolic or numeric; discrete or

continuous), its suitability to formal analysis, its speed of execution and the natural interpretation

of the resulting hypotheses. These methods also have different degrees of success when dealing

with missing data points, small datasets (i.e., small sample sizes), errors in measurement, errors in

target value, and other practical concerns in real-world generalization tasks. Regardless of these

differences, we want the learning system to (1) operate correctly because it is implemented cor-

rectly (i.e., to give the proper algorithmic output for a given input) and (2) to be accurate in its

generalizations2.

A subjective aspect of learning algorithms is interpretability of their algorithmic operation. In

classifiers used to support human decision making processes, the complexity and interpretability

of the learned function and the rationale for determining a given target value may be of equal

importance to the performance of the learned function. For example, doctors may prefer simple,

2Datasets, learning algorithms, and the interaction between dataset and algorithm (e.g., sample bias, inductive bias,
and bias mis-match) may limit classification accuracy even with a program that correctly implements the learning
algorithm.

39

concise rules to complex mathematical formula because he or she can more easily compare the

knowledge encapsulated in the rules with his or her own knowledge and experience.

A second subjective issue in data analysis is the use of learning algorithms for exploring data.

In many settings, vast collections of data lack adequate theory to explain what phenomena the data

represent. That is to say, the data exist as isolated points, not as a collection related to a compact

theory. In fact, there may be little indication what patterns exist in the data. The methods of

exploratory data analysis are used to find such patterns. Defining a classification problem may not

be an appropriate first step in the absence of clear ideas about the data. In this case, how a learning

system gathers data, looks for groups of similarities, and makes recommendations from these, can

offer insight into the data.

Both the subjective aspects (i.e., interpretability of results and exploration of datasets) and

the objective measures (i.e., accuracy, bias, and speed) of learning systems can be improved by

semantic feature construction. This dissertation provides evidence of improved accuracy.

3.2 INDUCTIVE BIAS AND FEATURE CONSTRUCTION

3.2.1 Inductive Bias

Feature construction is intimately tied to the topic of bias in learning (Section 3.2.3). Mitchell

(1982; 1990) phrases the problem of bias in the following context. In a learning problem, we have:

1. a language of instances,

2. a language of generalizations (i.e., hypotheses),

3. a matching predicate for matching generalizations to instances, and

4. sets of positive and negative training instances.

The third of these, the matching predicate, is sometimes forgotten when the hypothesis language

and the instance language are very similar or the same. However, the generality of a matching

predicate allows for substantial differences between the generalizations and the instances – namely

any difference that can be expressed in the matching predicate’s language.

40

Mitchell defines bias as any basis for choosing one generalization over another, other than strict

consistency with the observed training instances. Two sources of bias are (1) the language used

to represent hypotheses and (2) the procedure used to search or optimize among these hypotheses.

An unbiased hypothesis language must be able to express the powerset (i.e., every possible subset)

of the instance language. Decision trees, if allowed to grow arbitrarily large, can represent any

subset of an instance space3. An example of an unbiased search procedure is Mitchell’s Candidate-

Elimination algorithm. Candidate-Elimination finds all conjunctive hypotheses consistent with the

given training data. Utgoff and Mitchell (1982) link the idea of bias to feature space modification

by defining the dynamic bias of a learner as its ability to adaptively modify its attribute set.

Using an unbiased hypothesis language (e.g., any language capable of representing arbitrary

length disjunctive normal formulas (DNFs)) with Candidate-Elimination results in an unbiased

learning procedure. But, as Mitchell notes, a learning system with no bias in its representational

language and no bias in its algorithm is equivalent to performing lookup in, or matching against, a

table of the learning examples. Specifically, Candidate-Elimination in a space of DNF hypotheses

will produce DNF representations of the given training data. While this is not worthless, it certainly

does not allow for generalization beyond the given data.

Explicit representation of biases allows (1) experimentation on the effects and interactions of

the biases, (2) selection of biases appropriate to the problem, data, and results desired, and (3)

search over the biases for a good bias for a given learning task. Provost et al. (1999) describes a

learning system, RL, that uses explicit bias representation for use in knowledge discovery. Provost

(1992) and Provost and Buchanan (1995) discuss the methods used to choose between different

explicitly represented biases. Explicit representation of the feature construction process allows

control of the representation bias in an analogous manner. The explicit representation of knowledge

and search parameters in ISAK is driven partially by the goal of explicit control of bias.

Because learning systems have different inductive bias, different learners will learn some con-

cepts better than others. Imagine using a rule learning system to model a relationship that is best

expressed as a complex formula relating the descriptive features to the target value. The rule

learner may lack the appropriate representation to describe the concept succinctly. This does not

3In the worst case, it could represent every possible instance (i.e., every combination of values for each attribute)
individually.

41

imply the concept is unlearnable. It simply means that the underlying concept and the learner have

a mismatch in the form used to represent the relation between the features and the target.

3.2.2 Inductive Bias of Decision Trees

The language bias of a standard decision tree classifier is that concepts are represented as a dis-

junct of conjunctive attribute tests and that each conjunct of the test examines a single attribute.

Sequences of conjunctive tests form a very general language. If the tree is allowed to grow arbi-

trarily large, it can express any subset of an instance space with a finite set of attributes which have

a finite number of values. The algorithmic bias of decision tress is normally expressed by starting

with trees of height 0 and recursively adding leaves as necessary. Hence, part of their bias is that a

classification hypothesis consists of a sequence of tests on individual attributes. The preference of

shorter to longer trees is an application of Ockham’s razor.

By adding single nodes at each step, a decision tree may have problems when two or more

features have a high degree of interaction (Setiono and Liu, 1998). For example, a decision tree

may ignore two important features for a third feature that is, individually, more important. This

would happen when two features are very important when considered jointly but are less important

when compared individually to the third feature. Symbolically, let util be a function that measures

the learning utility of a feature or set of features, then we can say util({f1, f2}) > util(f3) but

util(f1) < util(f3) and util(f2) < util(f3).

3.2.3 Bias and Feature Construction

Kramer (1995) states:

From a theoretical point of view, the algorithmic bias is the only justification for feature construction
in propositional learning. For standard propositional learning algorithms using DNF-hypotheses or
decision trees of arbitrary size, the construction of new features does not change the basic ability
to express a concept. In other words, the occurrence of the real concept in the hypothesis space is
not affected by the construction of new features. So in the propositional setting emphasizing the
language bias does not make sense except for fixed-size languages. (pages 4-5)

I take two issues with these statements: the first is a matter of degree and the second is a matter

of principle. Rephrasing Kramer’s claim, we can say that a dataset represented as attribute-value

42

pairs can be expressed as a disjunct of conjuncts (i.e., in a disjunctive normal form, or DNF) for

exactly those attribute-value pairs in a desired class labeling. Consider the problem of classifying

cars as Japanese. The DNF form defining a car as Japanese is (make=Honda and model=Accord)

or (make=Toyota and model=Camry) or (make=Toyota and model=Celica) or ... for each make

and model pair of Japanese car.

In the hypothesis space for trees and rules, the DNF is equivalent to specifying neighborhood

by neighborhood, every region of the instance space and taking the union of all these regions as

a class (i.e., the class of Japanese cars). Certainly, with enough conditions and disjunctions, we

can express any arbitrary, finite region of a larger space. Phrased as an adversarial problem, if you

show me an example outside the union region, then I can simply add its attribute-values as another

disjunct to the current hypothesis.

It is a tautology to claim that we can express a set of propositional claims in a DNF expression

– this is simply an extensional definition of a concept. However, much like Mitchell (1990) points

out (see Section 3.2), the only learning that can be performed without bias is rote learning (i.e.,

memorization of training examples). We are subject to the same limitations in a DNF expression

of concepts expressed feature by feature and instance by instance. We could learn such a concept

but it would need to be presented in instance/region pairs and we will not have achieved any

generalization. In the Japanese car example, we would have missed the fact that (in a simplified

sense) Make is sufficient, without Model, to know the country of a car. Furthermore, allowing

arbitrarily complex hypotheses (i.e., a tree with ever-increasing depth) will increase the amount of

overfitting done by the tree.

The second issue, a matter of principle, is that there is not an a priori necessity that the target

concept be a subset of the example space. The training data for the target concept may be4 a subset

of the target concept. However, the concept space, instance space, and hypothesis space need not

have the nice properties that (1) the hypothesis space is the powerset of the instance space and (2)

the concept space is a subset of the hypothesis space. In other words, it need not be the case that

the hypothesis space can represent all subsets of the instance space (i.e., distinguish all possible

groupings of instances). Hence, the hypothesis space may not be able to represent some potential

target concepts.

4At least up to errors in feature values and in target value.

43

Kramer’s concerns may be more justified in learning problems with target concepts defined

over a finite domain. However, with a simple infinite domain, we can construct a problem for

which his claim fails. Consider learning the concept of the even numbers over the entire natural

numbers. So, the elements of the positive concept class are 0,2,4,... Now, without feature construc-

tion, a decision tree must be infinitely (not arbitrarily) large to specify this concept. The concept

space is not a proper subset of the hypothesis space. However, with feature construction, we can

define a perfect classification tree with only one decision node: val mod 2 = 0. Given that any

learning problem with continuous features either (1) has an infinite domain or (2) must be dis-

cretized (which is itself, a feature space modification), Kramer’s limitation of feature construction

to solving algorithmic bias seems short-sighted.

3.2.4 Clarifying the Selective and Constructive Induction Dichotomy

There is disagreement in the machine learning community as to what properly defines the process

of constructive induction. Since feature construction is a means to perform some aspects of con-

structive induction, it is important that these terms be defined precisely and adequately illustrated.

A first reference to constructive induction is given in Michalski (1983):

If every descriptor occurs in the initial concept descriptions Di, i = 1, 2, ..., then the rule is selec-
tive, otherwise it is constructive.

In the same volume, Dietterich and Michalski (1983) state:

A generalization rule is a transformation rule that when applied to a classification rule5 S1 Â K,
produces a more general classification rule S2 Â K. This means that the implication S1 ⇒ S2

holds. A generalization rule is called selective if S2 involves no descriptors other than those used
in S1. If S2 does contain new descriptors, then the rule is called constructive (pg. 46).

Dietterich and Michalski summarize constructive induction as “any form of induction that gener-

ates new descriptors not present in the input data” (pg. 47). Dietterich and Michalski limit the

term descriptors to variables, predicates, and functions (i.e., the expressive components of pred-

icate calculus). Now, given the list of descriptors and definition of constructive induction, we

can rephrase the definition of constructive induction as any form of induction that generates new

variables, predicates, or functions not present in the input data.
5Here, Âis used to indicate “classifies to class”.

44

A decade later, Michalski is quoted by Kramer (1995) as distinguishing between empirical

learning which uses little domain knowledge while constructive induction uses more domain

knowledge. Michalski continues describing the distinction,

A more precise way to characterize this distinction is that in empirical induction the description
space for examples and for the hypothesis space is the same, while in constructive induction these
spaces are different (pg. 2).

It appears that empirical learning is a synonym for selective induction in this case.

Finally, Bloedorn and Michalski (1998a) state,

constructive induction is a general approach for coping with inadequate attributes found in original
data. It uses two intertwined searches – one for the best representation space, the other for the best
hypothesis within that space – to formulate a generalized description of examples (pg. 30).

Their view can be compared with a more restrictive view presented by Matheus and Rendell (1989).

They write “We ... reserve the term constructive induction to refer to the prediction of unobserved,

disjunctive regions in the instance space” (pg. 645). Presumably, prediction is done using con-

structed features – not by other descriptors. Matheus and Rendell also write,

If generalization is performed during feature construction, the features generated may “predict”
regions of positive and negative instances that have not been observed. We call this form of feature
construction constructive induction (pg. 647).

The statement should also be understood in the context of Rendell’s belief that constructive induc-

tion is the process of merging disjoint regions of the instance space (Rendell and Seshu, 1990).

Matheus and Rendell present an example of their distinction. Their example of the differ-

ence between “constructive compilation” (feature construction) and constructive induction is the

difference between (1) observing instances from regions A, B, and C and creating a new fea-

ture or(A,B,C) and (2) observing instances from regions A, B, and C and creating a new feature

or(A,B,C,D) where D matches some generalization of A, B, and C. In this context, a region is some

cross-product of the space of attribute-value pairs.

Matheus and Rendell instantiate the distinction by noting that on a checkers board, the relative

positions of checkers can be more important than the absolute positions of those pieces. Hence,

if some property is true of checkers at {(6,8), (7,7)}, at {(2,8), (3,7)}, and at {(2,4), (3,3)}, then

we can generalize that to being true at (conservatively) {(6,4), (7,3)} or being true (liberally) at

45

{(m,n), (m+1, n-1)} with some bounds checking to ensure both pieces are on the board. The

general statement is equivalent to specifying that the checkers have some property when they are

at a distance of one square on the downward diagonal. The property is part of the concept of jump-

ability. In either the conservative or liberal case, Matheus and Rendell’s version of constructive

induction can occur. The more specific generalization predicts an unobserved region of the instance

space, if that pair of pieces did not occur in the dataset. The more general statement would only

predict unobserved regions (i.e., a set of examples) when some diagonal pair of pieces are missing

from the dataset.

The most limiting definition of constructive induction is exemplified by (Pazzani, 1998), “Con-

structive induction is the process of changing the representation of examples by creating new at-

tributes from existing attributes” (pg. 342). Here, there is no notion of induction as part of the

change of representation. So, Pazzani’s definition reduces to stating that constructive induction

and feature construction are the same.

Constructive induction, as such, should retain its general definition as originally proposed by

Michalski. Therefore, I will reserve the term feature construction for the task of creating new

features (i.e., new attribute-value pairs) from preexisting features (i.e., preexisting attribute-value

pairs). Feature construction may occur simultaneously with induction, in which the system doing

both processes is performing constructive induction (Figure 14). If feature construction occurs

separately from induction, the system is performing selective induction and feature construction.

If results from selective induction are used to guide feature construction, the system becomes a

constructive induction system. Feature construction may be performed with or without search or

optimization in the space of hypotheses. ISAK performs feature construction with no input from

the induction system or its results. Hence, ISAK is part of an induction system with separate

modules for feature construction and for selective induction.

Now, are learning algorithms that develop conjunctive lists of attributes6 creating new descrip-

tors? For example, a rule learning system may create the pseudo-feature F (Color = Blue) ∧
(Shape = Box) in a hypothesis and F may not be a descriptor in the input (i.e., only the con-

stituent features are in the initial descriptor space). I believe the proper interpretation of these

6A similar analysis applies to mathematical hypotheses where parameters of a function are fit to match a dataset.
In this instance, the mathematical function defines the space of possible hypotheses (which are pseudo-combinations
of the input features).

46

Create New Descriptors?

No

Yes

YesNo

Create Propositions

Selective
Induction

Feature
Construction

+
Selective
Induction

Constructive
Induction

via
Feature Construction

Constructive
Induction

via
Predicate/Function

Invention

Predicate/Function
Invention

+
Selective
Induction

Predicates/Functions
Create
Yes

(Attribute−Value Pairs)

Induction
and
Descriptor
Modification

Separately?
Performed

Figure 14: Relationships Among Selective and Constructive Induction and Feature Construction.

Two axes can be considered in combining representation modification and learning. The vertical

axis asks whether there is a simultaneous search through the space of representations and the space

of hypotheses. The horizontal axis asks what sort of descriptor space modifications are performed.

Learning problem representations are typically either (1) attribute-value pairs or, in inductive logic

programming, (2) a combination of propositions, predicates, and functions. If separate searches

are performed, there are two distinct steps in the joint inductive process. If the two searches are

intertwined, one of the descriptor modification methods is used to perform constructive induction.

47

pseudo-features is as the selection of preexisting descriptors, not as the creation of new descrip-

tors. These descriptors are tied to individual attribute values. They are bound to predefined po-

sitions in a given hypothesis language. Phrased another way, these descriptors are selected into

appropriate positions in the hypothesis language. Such a phrasing meshes well with the notion

of selective induction proposed by Michalski. Likewise, Callan (1990) notes that the distinction

between learning concepts and creating terms can be largely arbitrary.

For example, in an example space of cars on the highway, a particular car has a make, model,

and year. Hypotheses in a rule or tree induction system may note that make = Ford has some

special property relating to the concept class. Placing this feature into a conjunct or a tree node

has the effect, when added to other attribute-value pairs, of creating a new prototypical or abstract

instance of a car and claiming it has that special property. Here again, we see a justification

for calling these processes selective induction. We are selecting attribute-value pairs and placing

them, appropriately, into a predetermined hypothesis language. Also, we see the justification for

an older term – similarity based learning. Those instances matching (i.e., most similar to) the

prototype instance are grouped together. A suitable definition of feature construction requires

that new descriptors, not expressible in the hypothesis language, be placed into the preexisting

hypothesis language. By this definition, kernel methods are feature construction because they map

problems into a space that is amenable to linear hypotheses.

Consider a second example. If we have numerical attributes, we may observe an attribute-value

pair speed=49.2325. A conjunct that uses this feature will be limited to representing a smaller

portion of the hypothesis space than a feature speed in [49, 50). The wider interval might result

from a simple discretization of the attribute speed. Now, we may temporarily ignore the problem

of the infinity of reals and the large number of floating point values between 49 and 50. Even so,

collecting enough data to form an arbitrarily fine mesh of values between [49, 50) will be difficult.

Collecting enough data to justify the claim that all values between 49 and 50 should be classified

in the same way is unlikely to occur. Thus, there is a consideration apart from the dataset itself

that justifies discretization – that is, discretization is a bias in the learning process. In the general

case, the use of constructed features (i.e., new descriptions of that data) is a bias and it allows for

generalizations to be made on the basis of considerations apart from the data. This is a forceful

48

justification for calling a process constructive induction, though I have not seen it stated this way

previously.

Recall that an unbiased hypothesis language must be able to represent the powerset of the

instance space (i.e., all possible subsets of the instance space and hence all possible concepts in

that instance space). If the hypothesis language can represent one hypothesis that contains an

element outside of the instance space, then the hypothesis language itself is again biased because

it allows generalizations that, by definition, cannot be supported by the data. A simple example of

this is a hypothesis containing val < attr. If that attribute’s values in the instance space are never

greater than 100, then an unbiased statement would be val < attr <= 100. However, allowing

val to go beyond 100 introduces bias. Careful selection of feature construction operations paired

with a learning system can result in the constructive generation of hypothesis not available to the

original learner.

3.3 FEATURE CONSTRUCTION

3.3.1 Feature Construction

Feature construction, whether performing constructive induction or operating independently, is a

conceptually simple method to create new features from old. Since problem representation is such

an important part of the machine learning task, it is not surprising that much work has been done

using feature construction as the means of representational modification.

Just as constructive induction can be driven by hypothesis, data, and knowledge, feature con-

struction can be initiated on the same bases (Figure 15). Data-driven feature construction operates

by using feature selection metrics to guide the choice of operands. Hypothesis-driven feature

construction relies on the output of a learning algorithm to determine the need for feature con-

struction, the operands to use in feature construction, and, potentially, the operations to perform.

Knowledge-driven feature construction uses any other information that can be applied to the prob-

lem to create new features. Results-driven feature construction has not been explicitly discussed

except in the context of detecting the need for feature construction. When a classifier produces

49

Knowledge
Driven
Feature

Construction

H
yp

ot
he

sis
D

riv
en

Fe
at

ur
e

Con
str

uc
tio

n

DataDrivenFeature
Construction

Feature
Construction

Algorithm

Constructed
Features

Search
Parameters

Data

Modified

Data
Test

Modified

Data
Test

Initial

Data

Initial

Data
Initial

Learner

Classifier
Results

(Accuracy)

Feature
Construction

Results
Driven

Training

Training

(Base
Features)

Declarative
Knowledge

Chooses Combinations of
Base and Constructed Features

Feature Set Selector

Figure 15: Feature Construction Types in Classification Learning. In the present work, the feature

construction algorithm is ISAK. ISAK makes use of data-driven and knowledge-driven feature

construction to construct features.

50

poor or otherwise unacceptable results one coping strategy is to start performing feature construc-

tion. Additionally, certain deficiencies in the results (e.g., certain subsets of the example space are

being misclassified), may point to certain feature construction possibilities. Two or more of the

primitive construction methods may be combined for multi-strategy feature construction.

ISAK is a multi-strategy feature construction system, making use of data-driven and knowledge-

driven feature construction methods. ISAK uses data values to generate an information gain mea-

sure. The information gain is used as a heuristic utility value for base and constructed features.

ISAK uses declarative knowledge and search parameters to perform knowledge-driven feature con-

struction.

The problem of creating new features can be cast as a problem of searching through the space

of possible constructed features. A well-defined search problem requires the following pieces:

1. a starting state,

2. a description of the current state in the search space,

3. a means of progressing from one state to the next, and

4. a stopping criterion or goal test that determines when either an optimal or a satisfactory final

state is found.

When searching for a good set of features, these requirements become:

1. the initial set of features to be considered,

2. the current set of old and new features to be used,

3. a successor function that applies feature constructor functions to the current set of feature, and

4. a satisfactory set of final features to be used.

ISAK does not attempt to generate all possible features. The feature constructor functions that

ISAK uses for a problem define a space of plausible features for that problem. The beam search is

a process of selecting which of these plausible features should be used for classification.

3.3.2 Form of the Dataset

All of the forms of feature construction that I consider can be viewed as vector-wise operations

over columns of features. For example, closing values of stocks listed day-by-day represents a

51

historical time series for one day, going back over the previous examples (i.e., previous days). For

ISAK to perform feature construction over the closing prices, the column must be expanded into

a sequence of attributes for each example (i.e., a row). In the case of stock data, a redescribed

example would gain attributes

{$Day−1, $Day−2, ..., $Day−n}

or a single TimeSeries attribute with the same values in a list for some length of history. The

expansion of the attribute set comes at the cost of representing certain pieces of information many

times. Specifically, each feature of every example is now represented explicitly. The conceptual

simplicity of explicit representation makes the expansion a useful trade-off in ISAK.

3.3.3 Utility of Feature Construction, Feature Space Flaws and Troublesome Concepts

An appropriate feature space may reduce the required running time or example complexity for

a learning algorithm. Blum and Langley (1997) note two extremes on a spectrum of learning

algorithms. At one end are algorithms that show no preference among features – an example is a

clustering algorithm. As irrelevant features are added, the number of examples needed to ensure

a certain accuracy increases exponentially. Following Rendell’s region merging perspective (see

Section 3.2.4), feature construction can help these algorithms. Merging disjoint regions of a given

concept will bring more examples of the same class in closer proximity to each other. So, the

distances between related examples will be reduced. On the other end of the spectrum, there are

algorithms that explicitly try to judge the relevance of features. These algorithms can also benefit

from a reduced, more expressive feature set by spending less time sorting out features during their

own execution.

Feature construction can simplify the description of a classifier if the data have a suitable

representation. A good representation, in this context, is any representation that serves its required

purpose – accuracy, conciseness, etc. Because constructed features are, in some sense, a summary

of their parts, it follows that they can replace two or more features with one useful feature. This

process can be repeated iteratively. If such features exist and can be found, then the classifier

using them will be more concise than one without that feature (Fenner, 2002). The simplified

52

description can save both (1) computation time in learning and classification and (2) storage space

for the classifier at the cost of computation time during feature construction.

Finally, improvements in classification accuracy of learned hypotheses are an important result

of feature construction. Many, if not most, feature construction systems take accuracy improve-

ment as one of their measures of success.

3.3.3.1 Instance Space Flaws One categorization of instance space flaws (Bloedorn and Michal-

ski, 1998b) is into (1) problems of over-precision, (2) problems of attribute interaction, and (3)

problems of irrelevant attributes. Over-precision occurs when a feature has more values than are

necessary to delineate the target concept. Solving this problem involves merging distinct values

and creating an abstracted feature. Bloedorn and Michalski discuss this in the context of contin-

uous feature discretization but other justifications are also possible. Symbolic values may form

conceptual hierarchies apart from numerical similarity. Value hierarchies are discussed in (Aronis

and Provost, 1997) in the context of rule learning with hierarchies of feature values.

Attribute interaction is directly addressed by feature construction. If two features have a degree

of interaction and a function of those features can account for their interaction, the constructed

feature can replace two constructed features with a single feature. The resulting feature set is more

concise and removes the interaction.

A second categorization of instance space problems was proposed by Rendell and Seshu

(1990). These authors consider dispersion and blurring. These two problems are tied to two bi-

ases in learning algorithms. The first bias is the continuity assumption that similar classes occupy

similar regions of the instance space. Because of the continuity assumption, dispersion may occur

when instances with shared classifications are spread over the available feature space in similarity

based learning algorithms. Dispersed features may arise because of inappropriate ordering of the

values of a feature. The result of dispersion in the instance space is verbose, over-fit hypotheses.

Over-precision is one form of dispersion.

The individual choice of features included in a hypothesis is a second bias in many algorithms.

Such an algorithmic bias may prevent appropriate features from being used in a hypothesis because

of blurring (Rendell and Seshu, 1990). Blurring occurs when the worth of an individual feature

cannot be properly evaluated in comparison to the other individual features. This may happen

53

when each feature has (1) relatively little information content or (2) features have a high degree of

interaction that is not revealed individually. Consider a set of five features f1, . . . , f5. If f1, . . . , f3

have high individual evaluations compared to f4, f5 then the the fourth and fifth features may never

be included in a hypothesis. However, it is possible that f4 and f5 together are more useful then any

of the other features (i.e., any feature constructed from f4 and f5 will be better than any constructed

from the other features). Blurring is a form of attribute interaction.

To relate these categories, the presence of dispersion implies that blurring will also take place.

Consider the xor function. The concept points are evenly distributed over both values of both

features taken individually. Hence, the information content of each feature must be equal and

thus there can be little reason to select either feature over the other feature unless there is relevant

background knowledge available.

3.3.3.2 Hypothesis Flaws in Decision Trees Problems in the instance space can lead to prob-

lems fitting hypotheses. In the domain of decision trees, we can isolate three classes of flaws:

replication, repetition, and fragmentation (Setiono and Liu, 1998; Pagallo and Haussler, 1990).

Replication occurs when subtrees of a decision tree are duplicated at different points within a

larger decision tree. Repetition occurs when a single feature’s value is tested repeatedly on a path

to a leaf node. Fragmentation occurs when the sequence of tests in a tree lead to overly small

partitions of the data which in turn causes overfitting (i.e., estimation bias) and increased testing

error.

To see how feature construction can alleviate these issues, consider a tree with a replicated

subtree. If a replicated subtree is compressed into a new feature, then each occurrence of the

subtree will be replaced by a single feature test. The overall tree will be compressed as a result.

Also, the examples that were previously pushed to the leaves of the replicated subtree will be

aggregated under the new feature. Thus, the new feature will have more examples available; this

should improve its sampling error. If the new feature is tested at a higher point in the decision tree

(i.e., closer to the root), it will also aggregate classes from lower in the tree to the new feature(s)

higher in the tree and relieve fragmentation.

54

4.0 FRAMEWORK: A KNOWLEDGE LEVEL DESCRIPTION FOR FEATURE

CONSTRUCTION

A knowledge-driven feature construction system must represent, manipulate, and utilize back-

ground knowledge. Here we address the issue of what is represented. The overall architecture

I use to describe feature construction is presented in Figure 16, Figure 17, and Figure 18. The

three figures describe three aspects of any feature construction system: the feature construction

algorithm, the features, and the feature constructor functions. The features and the constructor

functions serve as the main inputs to the construction algorithm. Some elements of the architec-

ture are not used by ISAK. These elements are shown to emphasize the relationship between the

knowledge ISAK uses and what other systems use for feature construction. Further examples of the

top-level elements are given in Section 4.2 and Chapter 6. Many of the following elements are im-

plemented directly in ISAK. Those elements that are not implementated are either (1) indications

of future and/or related work or (2) useful for discussion of ISAK and other feature construction

systems.

4.1 CHARACTERISTICS OF FEATURES, ALGORITHMS, AND CONSTRUCTORS

USED IN FEATURE CONSTRUCTION

4.1.1 Sources of Knowledge from Features

Feature description can be sub-divided into two categories (Figure 16): description of a single

feature in isolation and description of interactions among features. Individual features are com-

posed of an attribute and value. The attribute component of a feature may have specific semantics:

55

Feature
Construction

Algorithm

Feature
Construction

System

Feature
Constructor
Functions

Features

Inter-
Feature

Knowledge

Per
Feature

Knowledge

Inter
Value

Relations

Inter
Attribute
Relations

Values Attributes

Functions
on

Symbolic
Values

Semantic
Classes

Mathematical
Properties

Semantic
Properties

Semantic
Properties

Mathematical
Types

Symbolic
Value

Hierarchy

Range

Instantiated
Range

Numerical
Value

Hiearchy

Semantic
Type

Semantic
Class

Object
Measured

Semantic
Properties

Implicit
to

Example

Explicit
to a

Feature Value

Figure 16: Sources of Semantic Feature Construction Knowledge from Features. The nodes in the

tree show different sources of knowledge that may be used in a feature construction system. The

nodes that are greyed out are not implemented in ISAK.

56

the type of the attribute1, properties of that type including the object2 it describes, and a semantic

class. The semantic class of an attribute is a loose grouping of related attributes. The object that

an attribute describes may be described explicitly, as the value of some other feature, or implicitly,

as the underlying object that some or all of the attributes measure. It is important to note than an

object is not an example. One example may contain measurements on two or more objects in the

world from which the example is drawn. The attributes are the measurements on these objects (see

Section 4.2.1). For instance, in an attribute-value description of two-vehicle car accidents, one

example of an accident will have attributes describing two objects: the first car and the second car.

The measurements might be the weight of the first car, the weight of the second car, the speed of

the first car, and the speed of the second car.

In the wine CLP, all of the measurements are taken over one object, a sample of wine. Thus,

there is no need to specify particular objects in the wine CLP. However, each of the measurements

belong to semantic classes (Figure 7) which have some loose relationships based on what the

attributes measure. Because the measurement types (e.g., whether or not the measurements are

ratios or absolute quantities) of the wine attributes are unknown, each of the features is of type

GenericQuantity. GenericQuantity represents that the measurements are quantifications of some

property but that the specifics are unknown.

The values that an attribute takes over the examples in a dataset are described by their mathe-

matical and semantic properties. The mathematical properties of a value include the legal range of

values for that type and, also, the legal operations defined on those values. For example, arithmetic

operations are defined on integers and real numbers. Set operations are defined on sets. Boolean

logical operations are defined on truth values. The mathematical type refers to the formal proper-

ties of the value. A numeric type restricts the range of values; further restrictions can be useful in

restricting feature construction. Inclusion of zero in a value range precludes the use of division, as

it is normally defined, on the corresponding feature. A symbolic value hierarchy defines the values

for a symbolic features, as well as the relationships among the values.

Inter-feature knowledge can be subdivided into (1) knowledge of relationships among values of

different features and (2) knowledge of the relationships among attributes. The former is generally

1Also, see Figure 22.
2The term object may refer to an object or a reified process.

57

unnecessary – features with incompatible values are typically not combined. However, in the

case of symbolically defined values, operations that account for the semantics of those values

may be defined. Since these operations must account for the semantics of the values of different

features, the operations represent inter-feature knowledge. In TTT, constructions of features in

similar positions are most important. In the second case, there typically are relationships among

the attributes in a dataset. These relationships can be expressed as semantic classes of features for

which some property holds. Such relationships include measurement of similar objects, groups of

objects, or properties of objects (e.g., same object, different but related property; same property,

different but related object). The wine CLP defines relationships among the features on the basis

of what those features measure.

The general ontology of types that ISAK draws on is described in Section 4.3. ISAK’s built-in

semantic types and their semantic properties are discussed in Section 6.2.1. ISAK’s use of semantic

classes is described in Section 6.2.2. Functions on symbolic values may be specified by feature

constructor functions (see Section 6.2.5). ISAK does not make use of symbolic value hierarchies;

these are described by Aronis and Provost (1994).

4.1.2 Knowledge Use in Feature Constructor Functions

Feature constructor functions (Figure 17) apply computationally defined operations to tuples of

features and produce one or more newly constructed features. The feature constructor functions

(FCFs) are defined by their mathematical and semantic properties. The mathematical, or formal,

properties of a FCF include a computable definition of the operation it performs on its arguments,

the semantic types of its arguments, constraints on the arguments and their types, and the semantic

type and properties of the results of the construction. The resulting features are also described by

their mathematical type and the range of values they take.

For example, in the wine problem (Chapter 2.1), the feature constructor functions are designed

around the four standard arithmetic operators. The computable definition of each FCF is its re-

spective arithmetic operator. The semantic type of the result is defined as a GenericQuantity. The

semantics properties of the arguments are constrained by unification and the output result is that

unification.

58

Feature
Construction
Algorithm

Feature
Construction

System

Feature
Constructor
Functions

Mathematical
Properties

Semantic
Properties

Features

Computable
Definition

Argument
Constraints

Result
Properties

Per
Argument
Semantics

Inter
Argument
Semantics

Results
Semantics

Mathematical
Type

Value
Range

Constraints Constraints
Argument

Results
Relation

Semantic
Type

Object
Measured

Semantic
Properties

Semantic
Type

Semantic
Class

Object
Measured

Semantic
Properties

Computable
Definition

Semantic
Type

Object
Measured

Semantic
Properties

Figure 17: Semantic Feature Construction Knowledge and Feature Constructor Functions. Each

node in the graph represents a knowledge source used by semantic feature constructor functions.

59

The semantics of constructors are specified by individual argument semantics, inter-argument

semantics, and semantics of the result. Individual arguments to a constructor are specified by

constraints on their semantic types and the semantic properties of those types. Constraints among

arguments are specified by the semantic types, properties, and classes of the arguments. The

semantics of the resulting features are a function of the input semantics. Hence, a computable

definition is needed that takes the input semantics, respects the operation performed, and gives the

appropriate output semantics (i.e., a semantic type and semantic properties). The generation of

these pieces of semantic information mirrors the generation of new values to fill in new attributes.

The built-in feature constructor functions are described in Section 6.2.5.

4.1.3 Input and Processing of Feature Construction Algorithms

A feature construction algorithm operates by applying feature constructor functions to groups of

features. Its operation is further specified by some additional inputs and choice of processing

method. The additional inputs are (1) the original, unmodified dataset which is dependent upon

the data description language used and (2) results from the induction process. Induction results

come from the learning algorithm (e.g., performance of the learner) and from the learner applied

to data (i.e., a classifier and performance of the classifier). The learner considers hypotheses and is

dependent upon the hypothesis description language; the order in which hypotheses are considered

is the algorithmic component of the learner. Classifiers are differentiated by their complexity and

the results of applying them to data for classification. The classification results can be broken

down into generalization results and resource usage. ISAK makes use of the input data in feature

construction; it does not use any of the other characteristics of data and learners. The characteristics

unused by ISAK are typically used by hypothesis-driven and results-driven feature construction

systems (see Section 3.3 and Chapter 5).

We can consider three different, yet overlapping, methods of processing in a feature construc-

tion algorithm: search, inference, and agenda-based processing. The later two may be built on top

of search methods. Search itself is defined by a search method, a successor function on the search

space, and heuristics on the search space. Search methods include breadth-first, depth-first, and

beam search. The heuristics take the form of ordering and pruning constraints which, in turn, are

60

Feature
Construction
Algorithm

Additional
Inputs

Processing
Methods

Constructor
Functions

Feature
Construction

System

Features

Learning
Data

Induction
Characteristics

Search Inference Agenda

Data
Description
Language

Learner Classifier

Hypotheses
Algorithmic
Operation

Classifier
Complexity

Classifier
Results

Hypothesis
Description
Language

Resource
Usage

Generalization
Results

Resource
Usage

Successor
Function

Search
Method

Ordering
and

Pruning
Heuristics

Search
Parameters

Feature
Syntax

Feature
Utility

Feature
Semantics

Forward Backward
Available
Actions

Selection
Heuristics

Figure 18: Additional Specifications for a Feature Construction System. Each of the nodes in

the graph can affect feature construction systems. Several aspects are relevant to other feature

construction methods (i.e., feature construction that is not knowledge-guided). Nodes which are

grayed out are not implemented in ISAK. Feature semantics are used as a pruning method and are

implemented by restricting the application of FCFs in the successor function.

61

dependent on the characteristics of the nodes in the search space. The nodes represent features

in the feature space. Hence, the constraints are characteristics of features: form, semantics, and

utility. Search, in particular beam search, is the processing method used by ISAK (see Section

6.3.1).

Other processing methods include inference via forward and backward chaining. An agenda

can be defined in terms of available steps, possibly similar to successor generation in search, and

in terms of selection criteria for those steps. Seen as an adjunct to the search process, an agenda

system can inject larger step sizes (i.e., it can apply several single-step successor functions at once)

and finer-grained control of successor generation into the movement through a search space.

4.2 A KNOWLEDGE LEVEL DESCRIPTION OF ISAK

The three major semantic descriptors available in ISAK are semantic types, semantic properties,

and semantic classes. A semantic type defines a class of measurements; it has a set of semantic

properties that provide the details of a measurement’s semantics. The most broadly used semantic

detail is the object to which the measurement refers. Other semantic properties are associated with

specific semantic types. For example, dimension is a semantic property of the spatial extent of an

object. Semantic classes of measurements group related subsets of features and naturally constrain

combinations of features.

The semantic type and properties are combined with feature constructor functions by a feature

construction algorithm to produce new features. New features require values and semantics that

are computed from old features. New values are needed to use the features in the primary learning

task; new semantics are required to use the new features in subsequent rounds of semantic feature

construction.

4.2.1 Identification of Objects in the Learning Domain

The values in an attribute-value data representation are statements about the value of a character-

istic of some object that exists in the world under consideration. The objects may come from the

62

physical reality that surrounds us, a constructed domain, or both. In either case, an example in

a dataset groups together measurements from that world which are presumed to be useful in the

target prediction. However, the attributes of a single example may refer to multiple different ob-

jects in the world3. The fact that measurements on the objects are used for prediction is the reason

they are joined in a single learning example. An example may be a combination of measures on

multiple, individual objects.

Specifying these objects explicitly is important because many of the statements made about

feature types and formula constraints refer to the underlying objects in the CLP. By making ex-

plicit the particular objects that underlie an example, we can capture distinctions among attributes

describing a single object, attributes describing multiple objects and their relationships, and at-

tributes describing (generic) relationships between and among objects. Typical attribute-value

(propositional) representations of learning problems do not make explicit mention of the objects

measured. In the wine domain, the fact that the measurements are made on a sample of wine is not

mentioned anywhere in the learning data. One instance where the underlying objects are exposed

to attribute-value learners is in propositionalization4 of relational learning tasks (see Section 5.1.1).

A simple example of a dataset where the attributes refer directly to the object under consid-

eration is the classification of triangles as isosceles or not isosceles given the lengths of the sides

of a triangle. A logical statement, equivalent to one of the features in the isosceles problem, is

length(implictTriangle, firstSide) = 27.5. Here, the logical statement is made in reference to

the example itself – that is, the triangle that is implicit to the example. The logical statement can

be broken down into the statements that (1) there exists a triangle e, (2) each of the side attributes

is a statement about e, (3) the triangle e and the current example, (i.e., this example) are one and

the same, (4) the functional relation length has the value of 27.5 for the object implicitTriangle and

part firstSide.

A contrasting scenario is the problem of learning whether or not a balance-type scale is bal-

anced based on the weight and distance of objects on either end of a pivot point (Table 9). In

this case, one example in the dataset refers to a scenario involving two different objects and their

relation to a third object. Specifically, the point-masses on either end of a balance and the relation-

3Again, think of examples of car accidents that involve at least two objects, car1 and car2.
4Propositionalization is the conversion of a relational dataset to a propositional (i.e., an attribute-value) dataset.

63

Example
1

Example
1

Example
2

Example
2

Object
A

Object
C

Object
B

Feature
Constructors

Feature
New

Feature
New

Ftr Ftr Ftr

Object
A

Object
C

Object
B

Target

Feature
Constructors

Feature
New

Feature
New

Ftr Ftr Ftr

Object
A

Object
C

Object
B

Target

Feature
Constructors

Feature
New

Feature
New

Ftr Ftr Ftr

Universe
of

Unclassified
Example

Examples

Sample
of

ExamplesClassified

Example Example
3 3

Target?

Measures Measures

Measures

Figure 19: Abstract View of Feature Construction as Operations on Objects. Measures on objects

in the world of the example are the features in a learning problem. Those features are modified with

feature constructors; new features may describe the original objects or relationships among them.

Likewise, the Target concept may be a property of a single object or a relation on multiple objects.

The knowledge that a feature pertains to a particular object or group of objects is an important

source of restriction in the feature space. The Target value for Example 3 is highlighted in gray,

because it must be predicted. Example 3 is drawn from the set of Unclassified Examples.

64

Table 9: Balance Dataset. The Balance dataset from the UCI repository. LeftWeight and

RightWeight indicate a mass at a distance of LeftDistance and RightDistance respectively from

the central fulcrum. There are three classes for the problem, B, R, and L, indicating that the scale

is balanced, leaning right, or leaning left.

LeftWeight LeftDistance RightWeight RightDistance Lean

c c c c d

class

1 1 1 1 B

1 1 1 2 R

1 1 1 3 R

1 1 1 4 R

1 1 1 5 R

1 1 2 1 R

1 1 2 2 R

1 1 2 3 R

1 1 2 4 R

1 1 2 5 R

ship of the masses to the pivot point are the determining factors in the classification. The example

is better understood as a relationship among several individual objects than as a single, complex

entity5 (Figure 20). Here, there are three objects: leftWeight, rightWeight, and pivot. The features

LeftWeight and RightWeight are weight types that refer to the left and right weights, respectively.

LeftDistance refers to a spatial separation between the point of attachment of left weight and the

pivot; RightDistance is analogous. The distinction of different objects allows combinations of fea-

tures with like referents (i.e., measurements on the left or right weight) and can disallow combina-

tions of features with different referents. When the weight and distance are combined – producing

a torque-like quantity – the similar results can be compared.

As a final example of the universe of objects referenced in a dataset, objects themselves may be

the value of a feature. Direct reference to the objects and the relationships in a learning problem

is typical in ILP datasets (shown abstractly in Figure 21). These relationships are exposed in

propositionalization of relational learning problems (Lavrac and Flach, 2001).

5A single complex entity might encapsulate the entire scenario as the objects of interest. So, we might have
weight(implicitScenario, leftW) and length(implicitScenario, leftW) instead of length(leftW).

65

1 2

3 4

Figure 20: Four Examples from the Balance Universe. The universe of the balance examples has

three objects of interest: two weights, right and left, and the pivot. The measurements in the dataset

(Table 9) are the masses of the weights and the distances between each weight and the pivot.

X Y

Z A

X Y

Z A

X Y

Z A

X Y

Z A

Figure 21: Four Examples of Abstract Relations. In the propositional form of a relational learning

problem, the objects and relations among objects are directly exposed and used for learning. In this

diagram we have abstract entities (in circles) and relationships (directed arrows). The relationships

may be exposed for learning in an attribute-value representation by expanding the relationship into

a table with an entry for each element of the cross-product of objects in the learning world (see

Section 5.1).

66

General Type

Symbolic Types Numeric Types Aggregate Types

Figure 22: Top Level Type Ontology. A hierarchy of types for knowledge about features. The on-

tology is continued under Symbolic Types (Figure 23), Numeric Types (Figure 24) and Aggregate

Types (Figure 25).

All learning problems allow alternate representations and these representations can affect the

specification of objects in the learning domain. For example, game boards may be described as a set

of location attributes with piece values. Alternatively, a board might be described as a set of piece

attributes with location values. Objects are central descriptors in the knowledge that describes the

world from which the instance space is drawn: objects composing the examples, measurements

of objects, and relationships among objects are important sources of semantics in learning from

examples.

4.3 AN ONTOLOGY FOR SEMANTIC TYPES

A measurement on an object in the learning domain has a semantic type. An ontological hierarchy

of types is shown in Figures 22, 23, 24, and 25.

The point of the hierarchy is to provide a foundation on which a discussion and implementation

of feature typing can be undertaken conveniently. As such, there is more than one way to describe

certain feature semantics and there are concepts that are best addressed by adding to the hierarchy.

The hierarchy will be useful if the additions can be easily integrated. The general form of the

ontology is motivated by SUMO (Niles and Pease, 2001). The ontology shown here abstracts

67

Symbolic Types

Nominal Ordinal

Boolean Role

Predicate
Relation

(Mathematical)

Figure 23: Ontology for Symbolic Types. Relation refers specifically to a mathematical relation,

namely the subset of a cross-product between two sets. Role include specific pieces on a game

board and positions within an organization.

away many details of the SUMO ontology and retains only the levels that are most important for

feature construction by ISAK.

The uppermost level of typing is closely related to the syntax of the features. Aggregate types

have compound representation similar to mathematical sets and vectors. Usually, numeric and

symbolic types are distinguished by their data values. One exception is when a numeric valued

feature has few values and these values are interpreted as symbolic values. In the exception, each

number is considered as a unique symbol and the mathematical relationships between these values

are discarded. For example, a dataset might have a coding with Female coded as “1” and Male

coded as “2”.

Ordinal values have uncertainty in their placement in the hierarchy because they only make

use of the ordering and distinguishing properties of integers. So, ordinals may be considered as

a symbolic value with the additional property of being ordered or as a numeric value without a

fixed distance metric between values. Given the type hierarchy’s increase in specificity towards

68

Numeric Types

Count

Measure

Statistic

Relational (Object)

Quantity

Constant

Functional

Summary

Location

Separation

Color
(Quantified)

Valuation

Weight

Extent

Rate

Pressure

Power

Force

Illuminance

Temporal

Spatial

Age

Length

Area

Volume
Speed

Position

Time

Distance

Duration

Mean

Median

Mode

Figure 24: Ontology for Numeric Types. Relational types in this hierarchy refer to measurements

between distinct individuals. Locations are made with respect to an absolute coordinate. Sepa-

rations are made with respect to another arbitrary object. Color refers specifically to colors as

quantified by a wavelength or other quantified scale (i.e., not as a symbolic value). Statistics are

scalar properties of aggregations.

69

Aggregate Types

Bag Set List

Uniform
Elements

Interval

Figure 25: Ontology for Aggregate Types. Example of the aggregate types are shown in Table 10.

the leaves, placing ordinals under symbols follows the general rule. As a practical matter, ordinal

values do not figure prominently in the following examples and experiments.

There are three aggregate types: sets, bags, and lists. Sets are the familiar mathematical objects

– they are composed of unique elements without respect to order. Bags are sometimes referred to as

multi-sets; they are unordered collections of elements with potential duplication of those elements.

Lists are a standard programming construct and they enforce ordering but not uniqueness. Bags

may be preferred to sets because sets discard duplicates in their construction. For example, if we

construct a set of features and a bag of features (from the same set of initial features), then the

values of the bag and set will be different on any example that has duplicates among the values of

its initial features (Table 10). The difference is troublesome if we want to count all of the items –

without respecting uniqueness – in a collection. Of course, the difference is useful if we want to

see the uniqueness or duplication within an aggregate of features’ values.

Nominal types allow specification of logical relationships in a variety of forms. Because these

values are at a logical level of description, nominal types will generally carry a high degree of

domain or problem-specific information in the attribute and in the values of that type. For example,

a symbolic variable with two values, black and white, can be interpreted as a Boolean variable.

Specifically, the non-semantic information content in the values of color (with values black and

white) and in color=black (with values True and False) is the same. However, domain knowledge

can distinguish whether those values are colors on a board where only the difference is important,

70

Table 10: Differences among Aggregate Types. In the case where features have duplicated values

(i.e., Ftr1 and Ftr2 in the first line), a bag and a set constructed from these features are different

– the bag maintains the duplication; the set removes it. The difference is also evident in the third

line. Bags and sets discard the order of features in their construction. Lists maintain the order of

features.

Ftr1 Ftr2 Ftr3 Set(Ftr1, F tr2Ftr3) Bag(Ftr1, F tr2Ftr3) List(Ftr1, F tr2Ftr3)

a a b {a,b} {a,a,b} [a,a,b]

a b c {a,b,c} {a,b,c} [a,b,c]

a c c {a,c} {a,c,c} [a,c,c]

c b a {a,b,c} {a,b,c} [c,b,a]

colors on a screen which may be combined as gray-scale values (e.g., associated with ranges of

numeric values), or ethnicity with a wide variety of socio-economic concerns. So, we need to know

how a value measures a given object, in addition to what the object is.

In contrast, numeric types such as measurements tend to be built on top of a general system

of measurements (such as the International System of Units, SI) and carry standard relationships

to other such measurements. There is less need for problem specific interpretation of values in

this case. What is still needed is knowledge of what these values are measuring – what objects

and what characteristics of those objects. A length can measure one of several dimensions of

an object; a time can measure the duration of different processes in a single construction and

learning problem. The functional branch of measures distinguishes those quantities that map from

one constant quantity to another. Constant quantities include the base SI units and properties like

monetary value.

4.3.1 Semantic Classes

Multiple features may refer to groups of objects or measurements that are related. I term such a

set of features a semantic class of those features. The statement that a number of features belong

71

to a semantic class means that these features share some commonality. For example, two semantic

classes are:

1. measures of different aspects of a single object: {systolicBP(Mark), disystolicBP(Mark)} is a

semantic class of different blood pressures for one patient, and

2. measures of the same characteristic of different objects: {height(Jeff), height(Bill), height(Mary)}
is a semantic class of heights for several different players.

Semantic classes may be applied independently of each other. However, relationships among se-

mantic classes can be captured in a semantic class hierarchy.

An important operation on the semantic class hierarchy is unifying classes in the hierarchy.

The hierarchy of semantic classes is a partial ordering among nodes representing the semantic

classes. Unification on partially ordered sets involves computing the least upper bound for any two

semantic classes. In terms of semantic classes, unification involves finding the least general class

that is a superclass of all the classes to be unified. By restricting operations to class types that unify

within a hierarchy, we can constrain possible legal combinations of features.

4.3.2 Feature Constructor Functions

With the world objects, semantic types, and semantic classes of features, we specify semantics

of individual features and describe relationships among the features. We must now specify how

the descriptive knowledge is utilized to create new features from existing features. The unit that

encapsulates this knowledge is called a feature constructor function (FCF). The feature constructor

functions used by ISAK are described in Section 6.2.5.

A feature constructor function is specified by three parts: (1) a description of when the FCF

is applicable, (2) a computable operation that produces new feature values from the values of

existing features, and (3) a computable semantic description of the resulting feature. These parts

are described in the feature constructor functions for the wine CLP (Figure 8).

4.3.2.1 Constraints on the Search Space by the Available FCFs The applicability of a FCF

in ISAK is based on the semantic elements of its features. Although it is not implemented as such,

the test for applicability can be thought of as testing satisfaction of a system of constraints or as

72

pattern matching for determining whether or not to apply a production rule. The applicability of

an entire set of feature constructor functions determines the plausible constructions defined by the

system. The set of constructors creates a hard boundary within the space of all possible constructed

features. Constraining the plausible features to a set of useful features is left to the search space

pruning done by the beam search mechanisms (see Section 6.3.1).

Theoretically, for a set of numerical features, there are a uncountably many features that may

be constructed: simply taking all linear combinations of the features with real-valued coefficients

results in an uncountable set of new features. A strong restriction on the number of combinations

is restricting the constructor functions to easily interpreted arithmetic functions of one and two

features: inverse, reciprocal, doubling, halving, square root, square, addition, subtraction, multi-

plication, and division. This reduces the space of plausible features to countably many features

and enforces a certain degree of simplicity in the constructed features. It also limits the immediate

interactions among features to pairs.

4.3.2.2 Object Constraints Object constraints, the most important class of semantic constraints,

distinguish between attributes that describe the same object and attributes that describe different

objects. Object constraints are enforced by comparing the object specified in the semantic class of

a feature.

Within-object feature construction results in further descriptors of that same object. Body

mass index, computed from height and mass, describes the body composition of a person based on

easily obtained measurements of that person. Various financial ratios, such as price-to-earnings,

redescribe a company and its stock value based on attributes of that business. Many combinations

of physical measurements over a single object are possible. For example, packages delivered via

the United Parcel Service are considered large based on the (1) the maximum length of any side

of the package and (2) the girth of the package. The girth is defined as 2width + 2height where

width and height are the two non-maximal sides of the package. A package is considered large

when the length + girth > 130. The distinguishing aspect of within-object combinations is that

the new feature is also an attribute of that same object.

Between two different objects, features of a similar type may be combined. For example,

combining the heights of two boxes (creating a difference or a sum) is appealing. Combining a

73

width + width
width + height

Figure 26: Tipped Boxes. Semantic descriptions must be set to represent the world in which the

objects reside.

height and a width is only logical in specific instances – for example, if one box has been overturned

and the target function depends on the total width of the two boxes (Figure 26). Here, even though

we are now considering a height and a width we are still concerned with two extents. In the absence

of specific information, it makes little sense to combine a height of an object with the weight of a

different object and even less sense to combine the color wavelength of an object with the weight

of a different object.

Certain inter-object relationships can be specified precisely when the objects are known to be

involved in a particular event. For example, if one object is resting on another, there is a pressure

exerted between the two objects and its value is computed from the surface area of contact and

the force between the two objects. The semantics of the new relationship may be recorded as

being between the two objects or as an aspect of a new object (an event object) that is itself the

relationship between the objects6.

6Similar in character to ILP.

74

4.3.2.3 Constraints from Semantic Types Types of individual features give strong guidance

to the manner in which they may be combined. A number of combinations can be justified on the

basis of functional measurements (measurements that map one measure to another). For example,

speed is a mapping between distance and time. With any two of these we may compute the third.

Other combinations are justified by the definition of an operation. The area of planar objects

is defined for different shapes in terms of linear measurements. Both the operations arising from

functional measurements and from specific definitions are examples of within-object combinations.

The pressure example above is dependent on the types of the features present (forces7 and areas)

and new features between distinct objects are constructed in that example.

Aggregate types – lists, bags, and sets – require specific operations that combine, test, and

modify values of that type. Lists and bags may be tested for occurrence-counts and for unique-

ness of elements in that aggregation. Lists support ordering predicates. All three aggregate types

support element matching predicates (e.g., aggregate A contains value e) and counting functions.

Matching predicates may be against a constant value or against a value taken from another feature.

4.3.2.4 Effects of Constraints on the Number of Constructable Features Imagine a learning

problem where the features are the mass, width, and depth of ten objects; let the target concept be

closely related to the concept of pressure. What is the effect of semantic type signatures and

within/between object constraints (Table 11)? To compute pressure, we need a surface area of

contact and a force. To simplify the problem, define the surface area of contact between two

objects to be the minimum surface area of either object and define the force exerted by an object

to simply be its mass (a reasonable assumption if all the objects are at rest and in the same frame

of reference). The surface area is the product of the width and depth.

If the operations are known, the feature construction problem becomes one of filling in the

argument slots {width1,2, depth1,2,mass} in

7With a direction or with respect to a canonical direction.

75

div(contactArea,mass) =

div(min(area1, area2),mass) =

div(min(mul(width1, depth1),mul(width2, depth2)),mass)

In each of the following, reuse of features is forbidden. With no constraints on semantic type

and object, there are

(
30

1

)(
29

1

)(
28

1

)(
27

1

)(
26

1

)
= 657720

possible combinations of features.

With constraints on both type and object (e.g., Width1, Depth1, Width2, Depth2, Mass1),

there are

(
10

1

)(
1

1

)(
9

1

)(
1

1

)(
2

1

)
= 180

plausible features.

With constraints on types but not on objects (e.g., Width1, Depth3, Width4, Depth8, Mass2),

there are:

(
10

1

)(
10

1

)(
9

1

)(
9

1

)(
10

1

)
= 100 ∗ 81 ∗ 10 = 81000

plausible features.

With constraints on the objects but not on types (e.g., Width1, Depth3, Width4, Depth8,

Mass2), there are:

(
10

1

)(
3

2

)(
9

1

)(
3

2

)(
2

1

)(
3

1

)
= 10 ∗ 3 ∗ 9 ∗ 3 ∗ 2 ∗ 3 = 810 ∗ 6 = 4860

plausible features.

If there are few measurements on each object and many objects, within-object limitations

are very powerful constraints. If there are few objects and many measurements on each object,

between-object limitations are very powerful. If there are many objects and many measurements

76

on each object, a large number of constraints are necessary to reduce the search space to a reason-

able size.

4.3.2.5 Constraints by Semantic Class Semantic class specifications justify and prohibit other

combinations. For example, adding features that represent counts can be constrained with respect

to a given semantic class hierarchy. Adding apples and oranges has a simple interpretation with

an appropriate semantic class hierarchy – a total number of fruit. However, adding atoms and

cars (which would occupy very different heights in a class hierarchy) will result in a total number

of physical entities. Hence, a constructor allowing such combinations is inappropriate. A more

reasonable example of combination would be combining different types of imported and domestic

cars with the result in the general class of all cars.

Class specifications may also be used to define a limit on the contribution from different

classes. In a demographic dataset, if several features measure the amount of wealth of an indi-

vidual (e.g., income, savings, number of cars, size of house), we may only need one of those

features. More generally, a single feature may adequately capture the necessary information from

its semantic class. If this is the case, replacing multiple features with a single feature will reduce

the redundancy in the dataset.

4.3.2.6 Resulting Values and Semantics The computable operation is a computable function

that takes input feature values from existing features and outputs feature values for one or more

new features. The operation defines the values of the result.

The semantic description of the resulting feature(s) is based on the semantics of the input

features and the operation performed on them. The semantic computation defines the semantics,

specifically the type and typing details, of the result.

4.3.3 Formal Description of Features and Feature Constructor Functions

Let a feature be a set containing a tuple of values, a semantic type, and semantic properties, f =

{V, t, p}. Let V alues(f), Type(f) and Prop(f) return V, t, and p, respectively.

77

An ordered tuple of features F = (f1, f2, ..., fnf) satisfies a type specification T = (t1, t2, ..., tnt),

if nf = nt and ∀iType(Fi) ⊆ Ti. For two types T1 and T2, T1 ⊆ T2, if T1 = T2 or T2 is an ancestor

of T1in the type hierarchy.

The semantic properties8 P = (p1, p2, ..., pnp) of the features F satisfy the constraint predicate

c, if c(P) = True. Likewise, the features F satisfies a feature constraint c, if c(F) = True. The

values v of a new feature fnew constructed from a set of values V of features with a computable

function FV is a vector of values v = FV (V).

The semantic type and properties tnew, pnew of a newly feature constructed are computed from:

1. a tuple of values V ,

2. a tuple of types T ,

3. a given semantic type tnew, and

4. a computable function FP of the values, types, and semantic properties.

The new semantics are of type tnewwith semantic properties pnew = Fp(V, T).

A feature constructor function is defined by a tuple of semantic types T = (t1, ..., tA), a set of

semantic constraints CS = {c1, ..., cnsc}, a set of feature constraints CF = {c1, ..., cnfc}, a com-

putable function for values FV , an output type tnew, and a computable function FP for semantic

properties of the output type.

A feature constructor function {T, CS, CF ,FV , tnew,Fp} is applied to create a new feature

fnew = {FV (V alues(F)), tnew,FP (V alues(F), T ypes(F))} from a tuple of features F , if Types(F)

satisfy T and ∀c∈CS
c(Types(F)) = True and ∀c∈CF

c(F) = True.

4.4 CONSTRUCTED FEATURES AS TREES

Both constructed features and known target concepts that are defined in terms of base features can

be defined as trees where:

1. the tree root is a constructed feature,
8For simplicity sake, object specification is considered one of the semantic properties. It is separated out in the

description of knowledge because of its important role in semantic feature construction.

78

2. the interior nodes of the tree are (partial) constructed features,

3. the tree (directed) edges represent the flow of values from leaves towards the root from the

leaves (note, we pass values “up” towards the root), and

4. the leaf nodes represent base features (or constructed features taken as base features).

Interpreting the constructed features as trees allows us to measure several aspects of the complexity

of the constructed features. Importantly, the height of the tree is the maximum number of oper-

ations performed on any path from the base features to the constructed features, the number of

leaves on the tree is the number of base features used to construct this feature, and the number

of unique leaves is the number of unique features used to construct this particular feature. An

example is shown in Figure 27.

The value of a leaf node is defined as the vector of values of that base feature over each example

in the dataset. The value of a non-leaf node N is defined recursively as the result of applying the

feature constructor at N in a vector-wise fashion to the values of N’s children.

Two constructed features, T and T’ are equivalent, if the value of the root of T is equal to the

value at the root of T’.

F is a partially constructed feature for a constructed feature T, if F is a subtree of T and the

leaves of F are leaves of T.

The distance from a set of features to a target concept or constructed feature given a set of

operations, d({ftrs}, T |{constructors}), is the minimum number of non-leaf nodes in any T’

whose values at the root of T’ are equal to the values at the root of T where the internal nodes

of T’ are elements of {constructors} and the leaves of T’ are elements of {ftrs}. For example,

d({a, b, c}, ab/c|{∗, /}) = 2.

A set of constructors, O is compressed by a single operator, o′, when a tree can be constructed

from O that has the same values at the root as o′. O is not unusable; other orders of operations

may not be compressed to o′. A set of operators S1 is compressed by another set of operators

S2 when a subset of S1 is compressed by a subset of S2. For example, the set of constructors

{mul(., .), div(., 2)} is compressed by average(., .).

The gap between two sets of constructors C1 and C2, where C1 ⊆ C2 and ∀o1 ∈ C1, o2 ∈
2C2¬compresses(o2, o1) (i.e, no subset of C2 compress any of C1) with respect to a set of features

F and a target concept/feature T is

79

argmax
P

d(F, T |C2)− d(P, T |C2).

The idea here is that C1 only leads to a partial concept of C2 and we want to know how close

C1 gets us to C2.

Two feature trees, T1 and T2 are equivalent at their top-level if T1 ∩ T2 6= ∅ and x ∈ T1 ∩ T2

=⇒ parent(x) ∈ T1 ∩ T2. That is, there is a path from every element of the intersection back to

the root (note that parent(x) of the root is empty).

If T1 and T2 are top-level equivalent and x /∈ T1 ∩ T2, then x is in the bottom-difference of the

trees.

80

Table 11: Various Constraints for FCFs in the Pressure Problem. For each FCF (Area, Contact

Area, and Pressure) there are several combinations of constraints from the semantic type and ob-

ject. Each line shows a different combination of constraints.

Width, Depth Same Object

Area Width, Depth None

None Same Object

None None

Area, Area Different Objects

Contact Area Area, Area None

None None

Mass, Contact Area

Pressure Mass, Contact Area None

None None

Semantic Type
Signature

Object
Constraints

One of Objects
in Contact

mul(,)

add(,)

F3F1F2

F1 F2

F1 F2

F3

(F1F2) + F3

Figure 27: Constructed Features as Trees. F1, F2, and F3 are leaves of the feature tree. They

represent the values of their respective features. The tree has height 2 – the longest path from the

root to a leaf is two operations, add(,) and mul(,). The tree shows what happens to the values of the

base features as they are propagated towards the root of the tree. Comparable work must be done

for the semantic types of the features.

81

5.0 RELATED WORK

Representation has been studied extensively in contexts outside of the machine learning and statis-

tics communities. For example, the line of research on heuristic problem solving that started with

the GPS program (Newell and Simon, 1963), was applied to human problem solving (Newell and

Simon, 1972), and eventually developed into SOAR (Laird et al., 1987) repeatedly emphasized

that adequate representation is fundamental to problem solving. The problem of representation

in relation to more general cognitive tasks and human psychology is discussed in Newell (1990).

Representation is also integral to logical formalisms and the trade-offs they entail (Levesque and

Brachman, 1985). Outside of AI based research, the relationship between representation and hu-

man mental processing is one of the pillars of cognitive psychology. Here, the mental structures

(i.e., representations) used in problem solving and learning make up a key area of conjecture and

research.

Learning and representation are inseparable. An early reference to the problem of using an

appropriate data representation in machine learning is due to Samuel (1963) (see the quotation at

the start of Chapter 1). More recently, dissertations by Matheus (1989) and Donoho (1996), an

anthology Feature Extraction, Construction, and Selection: A Data Mining Perspective (Liu and

Motoda, 1998a), and journal articles (Markovitch and Rosenstein, 2002) show that the problem

of representation in learning continues to be of interest and has not been adequately solved. The

entire literature on learning using kernel methods deals with applying relatively simple learning

methods in complicated spaces generated by functions of the input features.

The threads of inquiry into feature transformation can be segmented by the underlying learning

mechanism and representation that they support. Segmentation by learning mechanism serves

to follow the threads of research that are closely tied to the learning community in which they

were developed. For example, ILP researchers and attribute-value based learning researchers have

82

typically used descriptor modification systems from their own area (i.e., predicate invention for

ILP and feature construction for feature based learning). Hence, the intellectual lineage of various

systems follows a subset of the learning community. We can look at three major divisions:

1. learning from examples with relational descriptions (a large subset of which is ILP),

2. learning from examples with a propositional (attribute-value) description, and

3. other learning and discovery paradigms.

The choice of representation used in a learning problem drives the algorithms that are appropri-

ate for use in solving that problem and vice versa. Instances need to be represented as numer-

ical vectors for statistical learning methods. Symbolic representations can be used in symbolic

learning systems. Predicate logic representations can be processed by ILP and analytic learners.

Conversely, the selection of a particular type of learning system can lead to re-representation of

instances that is appropriate for that learner. Representation shift (Cohen, 1990) is feature con-

struction for this purpose.

5.1 LEARNING FROM RELATIONAL DESCRIPTIONS AND INDUCTIVE LOGIC

PROGRAMMING

A relational description of an example portrays that example as a composite structure including

various components (Dietterich and Michalski, 1983). The description is normally captured with

predicate calculus descriptors (i.e., variables, predicates, and function). The descriptor transforma-

tion mechanisms used in relational learning, including ILP, are quite general because they allow

the creation of both propositional descriptors as well as new logical predicates, variables, and

functions.

There are two main methods of inductive logic programming1 (Lavrac and Dzeroski, 1994).

The first is a bottom-up approach: form the most specific generalizations that are justified by the

initial data and repeat this process until no more generalizations are justified. The second is a

top-down approach: start with the most general concept and add restrictions to it. When these

1These methods underlie any search based learning program.

83

Table 12: A Typical ILP Learning Problem. The goal here is to learn the parent relationship that

generalizes the concepts of mother and father.

Example Class

daughter(ted, barb) Negative

daughter(barb, ted) Positive

daughter(barb, judy) Positive

generalizations or specializations are created, they may or may not involve new descriptors. If the

new concept does not involve a new descriptor, then the new clause is selective. If it does create a

new descriptor, it is constructive.

5.1.1 A Predicate Invention Example

A typical ILP learning task (Lavrac and Dzeroski, 1994) is to learn the definition of the relation

daughter(X, Y) in terms of some background knowledge and a number of positive and negative

examples of this concept (see Table 12).

Background knowledge for the problem would be:

1. father(ted, barb), mother(judy, barb)

2. male(ted), female(barb), female(judy)

An ILP algorithm could achieve the following definitions of daughter:

1. daughter(X,Y) : − female(X), mother(Y, X)

2. daughter(X,Y) : − female(X), father(Y,X).

This definition can be simplified a bit if we understand the commonalities between mother and

father. In this case, if we construct a new predicate, say newPred57 such that:

1. newPred57(X, Y) : −mother(X, Y)

2. newPred57(X, Y) : − father(X,Y).

84

Table 13: Compressing a Partition of Variable Values. If Red, Blue, and Green form a partition of

the Color of examples, then the features testing those values can be compressed from a series of

predicates to a function. Likewise, the functional form can be expanded to the predicate form.

Example Color(Ex, Blue) Color(Ex, Red) Color(Ex, Green) Color(Ex)

1 T F F Blue

2 F T F Red

3 F F T Green

4 T F F Blue

With these new definitions, we could legitimately rename newPred57 as parent and subsequently

compact the definition of daughter to daughter(X,Y) : − female(X), parent(Y,X). With

parent : −mother and parent : − father in the initial KB, ILP methods are capable of finding

this simplification.

Another example of compressing information into fewer predicates is shown in Table 13. Here,

several values Color are taken to form an informal partition of the entire range of values for Color2.

These values can be represented as new objects in the ILP dataset and the information represented

as a binary predicate can now be represented as a relation between objects. Compression of this

type, and the inverse expansion, can be done by ISAK.

The reverse process, moving from sparse relationships to fully instantiated examples, is the

fundamental idea behind propositionalization. Lavrac and Flach (2001) describe one system for

propositionalization. Depending on the level of semantic information available in a background

KB, it may be important for a feature constructor to either compress predicates into relations or to

expand relations into predicates.

2If the value for every color were False then we could define a special attribute, Other, to hold missing color values.

85

5.1.2 Constructive Induction Operators

What are some specific methods of creating new descriptors in ILP? Michalski (1983) gives a

couple of examples of constructive generalization rules. Here is one:

If a concept description C contains a part F1 and it is known that F1 ⇒ F2, then a more general
description C’ can be obtained by replacing F1 with F2.

For example, if it is known that:

1. an object which is black, writable, long, and wide belongs to the class of blackboards, and

2. if an object is both long and wide then it is large.

Then, we can create a new concept description in which things that are black, writable and large

are blackboards.

The generalization rule can be instantiated by:

1. counting existentially quantified variables in a limited range,

2. counting the number of arguments to a predicate that satisfy some other predicate,

3. following chains of transitivity and inferring descriptors of the whole chain from individuals

on the chain and also characteristics of the length of the transitive chain, and

4. detecting relationships by means of numerical interdependence.

As an example of the second instantiation, consider the predicate contains(A,B1, B2, ..., Bn).

With this predicate, we can determine the number of Bi that satisfy some other predicate(s), for

example, large(X) and red(X). Putting these pieces together, we can create a new predicate

that determines the number of large and red objects contained in object A. If the dataset is in a

propositional form, ISAK can generate these conjunct predicates.

An example of the third instantiation follows the transitivity of stacked blocks with a predicate

on-top-of. Counting the number of unique objects occurring in such a chain of predicates will yield

a new concept: size-of-stack.

Several additional operators are described in the DUCE system (Muggleton, 1989). These are

absorption, identification, truncation, inter-construction, intra-construction, and dichotomization.

These work by either rewriting terms, dropping terms, or creating new productions that simplify

86

other productions. The goal of these operations is to reduce the number of descriptors in a set

of examples without substantially increasing the number of counterexamples to the more general

rule. The reduction in descriptors is due to the creation of a more powerful vocabulary that more

concisely describes the same relationships contained in the initial vocabulary.

5.1.3 Michalski’s Constructive Induction Divisions

In the relational setting, Wnek and Michalski (1994) identify four kinds of constructive induction:

(1) data-driven CI (DCI) where new descriptors are found by searching for relationship between

the base descriptors, (2) hypothesis-driven CI (HCI) where generated concept hypotheses drive the

modification of the base descriptors, (3) knowledge-driven CI (KCI) where domain knowledge is

utilized to construct new descriptors, and (4) multi-strategy CI (MCI) utilizing two or three of the

previous methods. These divisions were used in analogy when I defined different types of feature

construction.

5.1.4 Constructive Induction and Knowledge

Several KCI systems are briefly reviewed in Donoho (1996) and Wnek and Michalski (1994); many

systems show up in both papers. A number of systems in the second paper contain KCI interacting

with either DCI or HCI (which makes them MCI systems). The majority of the systems in both

reviews follow closely in the line of inductive logic programming. In most ILP systems, increasing

the background knowledge increases the complexity of the hypothesis search space. The increased

complexity is due to the database of facts is larger with the additional knowledge.

The types of knowledge used in constructive induction are discussed in more detail in the

discussion on Donoho’s dissertation in Section 5.3.3.

5.2 LEARNING AND REPRESENTATION IN ATTRIBUTE-VALUE CONTEXTS

A second major division of learning programs, learning from examples with attribute descriptions,

is typical of neural network, statistical, decision tree, and rule-based learning. These methods fit a

87

hypothesis (e.g., mathematical, decision tree, rules) to the data. The form of input to these methods

is an attribute-value representation of the data. The attribute-value representation is as expressive

as a general structural representation. However, achieving this equivalence may require, in the

worst case, an exponential increase in the number of attributes. A new attribute must be created

for every element in the cross-product of relationships and for each object in those relationships as

in propositionalization (Section 5.1.1).

In inductive learning, typical modifications to the data representation are feature construction

and feature selection. Feature construction and selection may occur incidentally within a learning

algorithm. An example of this is the weighting provided by internal nodes in a neural network;

weights of zero on a feature indicate that the feature is not selected for use in hypotheses. Con-

struction and selection may also be done as a pre- or post-processing step in learning. In the

FRINGE system, new features are constructed based on an induced decision tree (Pagallo and

Haussler, 1990). Since feature construction occurs after a hypothesis is created and because the

created features are a function of the hypothesis, it has been termed hypothesis-driven constructive

induction. In the case where construction and induction are performed separately, this becomes

hypothesis-driven feature construction.

5.2.1 Prior Work

The progression of work in the feature construction literature has been one of iterative improve-

ment. A review of the related and prior work sections of various feature construction publications

(Matheus, 1989; Donoho, 1996; Markovitch and Rosenstein, 2002; Wnek and Michalski, 1994)

and the chapters in Liu and Motoda (1998a) reveals a consistent trend towards the use of more

complicated operations and data types in feature construction programs. The CITRE program

(Matheus, 1989; Matheus and Rendell, 1989), for example, used a single Boolean operator and(.,.)

to combine Boolean features in the context of decision tree learning. The FRINGE algorithm

(Pagallo and Haussler, 1990) and descendants work by combining tree leaf nodes to form more

compact trees by relieving the problem of replication of subtrees. Replication occurs when the

same subtree occurs more than once in a decision tree. Here again, the FRINGE algorithm limits

itself to constructions using a single Boolean operator, and(.,.). Because and captures the seman-

88

tics of descending a path on a decision tree, conjugation is a reasonable operation to capture the

structure of decision trees. FICUS (Markovitch and Rosenstein, 2002) allows the use of general

computable functions with a fixed number of arguments.

5.2.2 CITRE

Matheus’ dissertation (Matheus, 1989) presents two primary contributions: a framework for ana-

lyzing constructive induction systems and CITRE. CITRE is an implementation of a constructive

induction system using the results of applying his framework to analyze a number of existing sys-

tems. I will look at each of these results, in turn. Though Matheus claims to analyze constructive

induction systems, his work is most applicable to feature construction systems proper and I will

discuss it in the feature construction context.

The framework that Matheus presents is centered around four phases in feature construction.

The four major phases in his framework include: (1) detection of need, (2) selection of construc-

tors, (3) generalization of constructors, and (4) evaluation of the results. In this description, a

constructor is an operator paired with n operands where n is the arity of the operator and the actual

constructive process occurs between the third and fourth step.

Matheus considers these phases to be soft delineations among different systems in two respects.

First, depending on the perspective of someone applying the framework, portions of a given pro-

gram may fall logically into different phases of the framework. For example, domain knowledge

used to evaluate features may be described as user input to filter results in the evaluation of results

or the knowledge could preclude different constructors in the selection phase. Second, in modeling

an implemented system into the form described by Matheus, it may be quite difficult to separate

the preexisting system into these four parts. For example, while Matheus found it relatively easy

to implement BACON with his framework, he states, ”In practice, it may be difficult to separate

an existing algorithm into distinct modules ...” (pg. 65).

Matheus uses his framework to analyze a number of systems. This analysis is then put to use

in designing a feature construction program called CITRE that operates on decision trees. Within

CITRE there is a sharp delineation among detection, selection, generalization, and evaluation.

Matheus incorporates domain knowledge into CITRE by constraints on the selection of operands.

89

After initial and run-time operator selection, domain knowledge serves as a conjunctive list of

restrictions on the legal pairs of operands to and(., .).

ISAK presumes the need for feature construction. As such, its detection capabilities are limited

to specific evaluations of features: if no features are suitable components for feature construction,

then no feature construction will be performed. ISAK uses data and knowledge to limit its selection

of the feature constructor functions that it will apply. ISAK does not provide further generalization

of its constructor functions after they have been found to be useful. ISAK operates in an iterative

fashion and repeatedly evaluates the produced features until the terminating conditions are reached.

5.2.3 Various Systems

Other programs (Zheng, 1998) have been developed that use more complicated Boolean features

constructed from base Boolean features. Two typical feature constructor functions are (1) the M-

of-N operation which is a generalization of the or Boolean operation and (2) the X-of-N operation

which is a generalization of the and operation. In M-of-N, a feature is constructed that is True if

and only if M or more of N specified features are True. An X-of-N construct is True if and only

if exactly X of N specified features are True. These constructed features can be used to simplify

decision trees; the most fruitful gains come from trees representing binary logic functions such as

the parity and majority functions.

CN2-MCI (Kramer, 1994) moves one step away from feature construction with strictly Boolean

domains. It allows an operation to take pairs of n-ary features, map them through a hierarchical

clustering algorithm, and produce a single Boolean feature as the result. HINT (Zupan et al., 1998)

also restricts itself to Boolean input domains and potentially creates and outputs features that are

4-ary functions of the input features. HINT uses methods from switching circuit analysis to de-

compose complex table functions into potentially less complex pairs of tabular functions. Feature

construction is performed from this by executing many decompositions and choosing the best de-

composition to retain as a new feature. In this context, the best decomposition is the decomposition

with the fewest values.

Another investigation (Sutton and Matheus, 1991) moves the feature construction task to nu-

meric features. Sutton and Matheus construct arbitrary order polynomials by a selection process

90

based on linear regression and a construction process that performs a linear combination of features

plus some constant term.

5.2.4 FICUS Overview

The FICUS system of Markovitch and Rosenstein (2002) extends the types of constructable fea-

tures. FICUS makes use of a formal grammar to allow input of feature space specifications (FSSs).

FSSs drive a multi-strategy feature construction system. FICUS uses an inductive learner to pro-

vide context for feature construction (i.e., hypothesis-driven feature construction). FICUS also

makes use of that same learner to evaluate features (i.e., data-driven feature construction). In the

presented paper, the authors implement a feature construction system that uses a decision tree

learner. However, the authors claim that other concept learners could be used to provide the fea-

ture construction context and feature evaluation. Even though a learning system is used internally

by FICUS, the output of a run of FICUS is a feature set which can be used by any attribute-value

learner.

5.2.4.1 FICUS Input For a given learning problem and associated construction task, a FSS

identifies (1) the set of basic features, (2) the set of constructor functions, (3) the domain and

range of each constructor function, and (4) a set of constraints on the application of the constructor

functions. The set of basic features is a subset of all features. The constructor functions are

any unary or binary operations defined over the ranges of the features. The domain and range

of the constructor functions and the base attributes are constrained by the following primitive

types: nominal, ordered-nominal (i.e., ordinal), and continuous. Additionally, there are compound

types including sets and lists of the primitive types. For example, the function max takes a set of

continuous values and returns a single continuous value.

Lastly, the elements of the argument constraint set are Boolean functions that take an argu-

ment and test its compliance. The three constraints provided in FICUS are NoConst, Const, and

Unique. Respectively, these forbid constant features, require constant features, and forbid identical

elements. These constraints are not semantic in nature; they simply enforce mathematical require-

ments of certain operators (i.e., forbidding division by zero). The constraints make no reference

91

def CreateNode(data):

if allSameClass(data):

return Node(getClass(data))

else:

newFeatures<-createNewFeatures(data)

bestFeature <- pickBest(newFeatures + features(data))

N <- Node(bestFeature)

for each split, s, defined by N:

append CreateNode(s) to N’s children

return N

Figure 28: FICUS Pseudo-code. features() returns the features of its argument.

to any general or specific knowledge about the objects in a learning environment or semantically

useful constructors.

5.2.4.2 FICUS Algorithm FICUS generates features in an evolutionary approach whereby

new features are composed from those features that currently exist. The presented version of

FICUS makes use of a decision tree learner internally to provide a context for feature construction.

When new tree nodes are constructed, if the node is not of a uniform class, then the feature con-

struction subroutine is called (see Figure 28). The routine selects features to use in constructions

and then performs constructions with the highest evaluated pairs of features (see Figure 29). The

initial selection process is a function of the decision tree (i.e., the hypothesis) and the data set.

Eventually, a complete decision tree is formed. The constructed features used in the tree as

decision nodes are gathered together. These constructed features are passed through a selection

process that measures their utility in the induced decision tree. The best of these features are re-

tained and are then used in subsequent rounds of construction. The use of a decision tree makes

FICUS a hypothesis-driven approach to feature construction, even though the hypothesis is devel-

92

Choose pairs of features A,B

If A==B:

do unary ops

discretize continuous

count symbolic

For all base A,B:

do unary ops

do binary ops

generate set {A,B}
generate list [A,B]

For aggregate A xor B:

insert base into aggregate

replace aggregate elements by base

Figure 29: FICUS Application of Feature Constructor Functions. FICUS applies feature construc-

tor functions to pairs of features. The application is based on the types of the elements of the pair.

If both elements of the pair are the same, FICUS applies unary and symbolic operations. If the

types are primitive, FICUS applies binary operations and generates aggregates of the two features.

If both are aggregates, then FICUS generates combined aggregates of the features.

93

oped in an internal module of FICUS and not in an independent learner. The internal learner should

be viewed as a method of finding features and interactions between features that are of interest to

the feature construction module.

5.2.4.3 FICUS and Problem Domains In the application of FICUS to problem domains, the

authors present a list of the operators (Table 14) used over all the domains on which they experi-

mented; certain operators were selected for use in certain problem. For example, in the UCI wine

domain the feature set consists of 13 numeric features and the set of available construction func-

tions is the arithmetic operations (addition, subtraction, multiplication, and division). Different

operations are selected for use in other domains.

The authors note that a limitation of the FICUS approach is that it depends on the high utility

of the building blocks of complex features to find those complex features. This assumption held in

most of the domains they tested. A solution to selecting building blocks piecewise is to widen the

beam search size, but this is not always computationally practical.

Like FICUS, ISAK is able to use arbitrary, fixed argument size computable functions as fea-

ture constructors. Unlike FICUS, ISAK relies on knowledge, not hypotheses, to drive its feature

construction. Both FICUS and ISAK use data-driven analysis in feature construction.

5.2.5 Representation and Modification in Other Learning Contexts

As an example of the final division of learning systems, miscellaneous learning paradigms, I

present BACON. BACON’s operation is highly analogous to the constructive process in learning

from examples in an attribute-value representation.

BACON (Langley et al., 1987) looked for algebraic patterns in datasets as a process sufficient

to mimic the discovery process in scientific inquiry. It focused on finding constant ratios that

were assumed to represent empirical laws and used heuristics, driven by the given data, to search

the space of possible equations. BACON rediscovered laws of Galileo, Kepler, Boyle, and Ohm.

Notably, BACON was limited by its assumption that all data provided to it were relevant, and

it relied on multiplicative terms and ratios to describe relationships among features. The use of

heuristics driven by theory was developed in a later program called STAHL (Zytkow and Simon,

94

Table 14: FICUS Operators.. A list of FICUS operators, operands, and examples where fnew =

add(f1, f2) represents the creation of an entire column of new values for fnew from the values of

f1 and f2.

Operation Arguments Example

addition numeric feature add(f1, f2)

division numeric feature div(f1, f2)

subtraction numeric feature sub(f1, f2)

multiplication numeric feature mul(f1, f2)

absolute difference numeric feature abs(f1, f2)

average numeric set avg({f1, f2, f3})
maximum numeric set max({f1, f2, f3})
minimum numeric set min({f1, f2, f3})

equality test symbolic feature eq(f1, blue)

range test numeric feature inRange(f1, [0, 10])

occurrence counting symbolic set count({f1, f2, f3}, val}

95

1986). STAHL starts with data and develops hypotheses (i.e., theories) to explain relationships in

the data. These posited relationships are used in subsequent rounds of discovering relations (i.e.,

equations that model) in the data. BACON has given rise to a community of equation discovery

researchers whose aim is to find simple equations that summarize sets of data. Such work is typified

by LAGRANGE (Dzeroski and Todorovski, 1995) and LAGRAMGE (Todorovski and Džeroski,

1997).

Of the BACON systems, BACON.4 is of most interest because its operation involved creating

new terms called intrinsic properties from nominal variables. Intrinsic properties are associated

with independent variables in an experiment. Suppose that experiments are run over several differ-

ent metals. Then, some numerical property of those metals might be introduced and subsequently

used to derive scientific knowledge. For example, gold has a particular density as an intrinsic prop-

erty. Intrinsic properties are dependent on theory and thus are a subset of theoretical terms; these

are contrasted with observable properties of objects in a soft distinction. As a pragmatic distinction

between the two types, we can allow measurements obtained from non-problematic instruments to

be considered observable. The other measurements (e.g., from troublesome instruments) are the-

oretical. The terms created by ISAK are intrinsic, theoretical terms because they derive from the

knowledge base given as input for a construction and learning problem.

STABB carries out descriptor modification on data in a structural representation. STABB

(Shift to a Better Bias) (Utgoff, 1983), can be interpreted as a representation modification system

(Matheus, 1989). STABB’s purpose is to address representational problems in LEX (Mitchell et al.,

1983), a system for learning heuristics for solving symbolic integration problems. If LEX’s induc-

tive algorithm fails to find a suitable hypothesis for a concept, STABB will attempt to create new,

more general concepts for LEX to process by joining existing descriptions by least disjunction.

STABB uses a transformation approach and constraint propagation to drive constructive induction.

STABB also uses transformation methods which operate by applying predefined transformations

to training instances.

96

5.3 KNOWLEDGE IN FEATURE CONSTRUCTION

Knowledge plays an important role in both human and machine learning. Inductive logic program-

ming and explanation based learning are two areas in machine learning where this importance has

been most directly addressed. The use of knowledge in ILP was discussed in Section 5.1.

5.3.1 Knowledge in Explanation Based Learning and Problem Solving

Explanation based learning (EBL) (Mitchell, 1997) is a form of analytical learning and it has many

similarities to inductive learning with background knowledge. The main goal of EBL is to make

up for a lack of data (i.e., having too few examples) with background knowledge to allow suitable

learning of hypotheses. When using background knowledge to augment feature construction, there

is presumably, though not necessarily, a sufficient amount of data to make inductive inferences.

The use of knowledge is to modify the feature space.

EBL uses prior knowledge to reduce the complexity of the hypothesis space being searched.

This is also one of the goals of modifying the feature space by feature construction. Hence, EBL

and feature space modifications can be seen as two methods with similar types of input and goals.

The methods by which they operate also share some parallels. If we look at feature construction as

a learning process (i.e., heuristic search that results in a generalization) then feature construction

with background knowledge can be interpreted as combined analytical and inductive learning (i.e.,

EBL).

An interesting system that uses knowledge for constructive induction (most specifically, feature

extraction) integrated with problem solving is CINDI (Callan, 1989, 1990). CINDI is a system that

works in the domain of learning for problem solving systems. In particular, CINDI addresses the

issue that a suitable problem solving representation for a given task – playing checkers – may not be

suitable for an associated learning problem – learning winning moves. Hence, the difficult problem

of representation must be solved twice by problem solving systems with learning components.

CINDI’s learning task is to learn search control knowledge. A logical specification of the primary

problem to be solved is given as input. Features for learning are automatically created from a

97

logical specification of the primary problem and transformations are applied to this specification.

So, knowledge of the learning domain is used to drive the representation used in learning.

5.3.2 Knowledge in Feature Construction

One of the trends in feature construction is to make additional knowledge available to the construc-

tion program (Donoho and Rendell, 1998). Knowledge can be integrated implicitly or explicitly.

Implicit knowledge, also called procedural knowledge, is built into the operation of a program (i.e.,

it rests in the program code and internal structures). Explicit knowledge, also called declarative

knowledge, allows for a more modular set of constructions from knowledge – the knowledge is an

input to the feature construction mechanism. ISAK makes use of explicit knowledge to describe

the available feature constructor functions, to describe the characteristics of the learning features,

and to specify its search parameters.

Although there are several systems that perform feature construction, there is little use of ex-

plicitly represented background knowledge in these systems. As rough evidence of this fact, con-

sider that aside from a chapter (Donoho and Rendell, 1998) based on Donoho’s dissertation which

will be discussed shortly, Liu and Motoda (1998a) has only two other references to background

knowledge in the index. Both are pointers to general statements about the use of background

knowledge, not to research involving background knowledge. In Liu and Motoda, knowledge of

probability structure – for example, that a sample probability distribution function is unimodal – is

discussed as it related to choosing feature selection methods (Pudil and Novovicova, 1998).

Many feature construction systems that do not emphasize the use of background knowledge al-

low for some use of constraints on the operands provided to operators. The constraints are typically

mathematical constraints on the domains of the functions. For example, the second argument to a

division operation should not be zero. The value of this limited knowledge has not been evaluated.

5.3.3 Donoho’s Knowledge Framework

Donoho (1996) presents the first detailed discussion of computationally automated knowledge-

driven feature construction. He approaches knowledge-driven feature construction by (1) identi-

fying the needs of feature construction, (2) identifying what sorts of knowledge can meet these

98

needs, and (3) applying this knowledge in a search based feature construction paradigm. The types

of knowledge that Donoho considers include: scale, relevance, support, correlation, contingency,

hierarchical, and normalization knowledge. In addition, Donoho considers knowledge of time

series, dimensional analysis, and deductive theories. The analysis of knowledge and systems is

thorough. Donoho leaves one description slightly vague: the hierarchical knowledge of Aronis

and Provost (1994) is not concerned with interactions between different attributes; it deals with

a hierarchy of values for a single attribute. This can be clearly seen in another presentation of

their work (Aronis and Provost, 1997) that emphasizes an efficient algorithmic implementation for

using this knowledge.

In the context of a search problem, the pieces of knowledge that Donoho discusses can affect

(1) the starting node or nodes in the search space, (2) the ordering of successor nodes in the search

space, (3) the connectivity between different nodes in the search space, (4) the boundaries of the

search space, and (5) the method of search used to traverse the search space such as depth-first,

breadth-first, or beam search.

To be clear on Donoho’s contribution to the use of knowledge in learning, let us consider his

example of knowledge use. Suppose that the starting information in a task consists of a deductive

theory, dimensional analysis knowledge, and the given dataset. The deductive theory specifies

some starting points (i.e., an initial set of constructed features) and the dimensional analysis is

used ”to create a boundary between high quality and low quality features” (pg. 55). The boundary

can be construed as either connectivity in the search space or ordering on successor nodes, but

Donoho does not elaborate. Now, a researcher could write a program implementing a search using

these principles and run it. To begin with, the researcher might use the starting points from the

deductive theory directly as the initial search nodes. A learning method would be applied to the

resulting dataset and the results would be evaluated to determine if they are satisfactory or not.

Supposing the results (e.g., classification accuracy) are not satisfactory, a breadth first search

could be run from the initial starting points. Again, the resulting features could be used in a

learner and evaluated. Suppose this results in a higher accuracy. Now, perhaps the researcher

tries a depth-first search of the constructed feature space. The result is a lower accuracy. Finally,

a hill climbing search is run that ignores the boundary knowledge provided by the dimensional

analysis. The accuracy drops. Given these results, Donoho states, ”We can conclude for this series

99

of experiments that a good set of features lie close to the starting points but require a thorough

search to be found” (pg. 55).

To summarize, Donoho proposes using background knowledge to manually conduct a meta-

level search through a space of feature space searches. In contrast, ISAK uses fragmentary knowl-

edge as constraints on search in an automatic fashion.

Donoho leaves open two main lines of inquiry. The first line is to create an automated system

for feature construction that uses knowledge in an automated manner. In Donoho’s work, the

framework of knowledge analysis is used while coding each particular search. So, knowledge is

only incorporated at the point it is used by the coder. Further, new pieces of knowledge require

additional coding of the search process and possibly coding several different feature space searches.

The second open task is extending the types of knowledge that can inform the search for good

features. Three sub-tasks are: (1) extending the types of knowledge known about the data (i.e.,

extending Donoho’s direct work), (2) delineating the sorts of operations that can be performed

on data and the sorts of knowledge about these operations that can be applied to construct fea-

tures (something Donoho does not discuss), and (3) implementing these extensions and Donoho’s

original framework in an automated, computational system.

ISAK uses knowledge to determine connectivity in the feature space and boundaries of the

feature space. ISAK may be used to deductively specify new starting nodes in the feature space.

ISAK operates in a purely automated fashion; it may be used iteratively but there is not need

for user intervention after the input KB specification is developed. ISAK relies upon numerical

heuristics for evaluating and ranking features.

5.3.4 Other Knowledge-Driven Feature Construction Systems

Wnek and Michalski (1994) and Donoho and Rendell (1998) provide overviews of systems mak-

ing use of knowledge to guide constructive induction and feature construction. Examining these

reviews, it becomes clear that most knowledge used for representation manipulation comes from

structural descriptions which has found its way into the ILP lines of research. The systems geared

towards an attribute-value representation, such as MIRO (Drastal and Raatz, 1989), tend to use

deductive theories in a single step to develop new initial features that are then used in learning.

100

Some systems have only utilized knowledge in the form of human interaction. COPER (Kokar,

1986) takes a BACON-like approach to equation discovery but extends it by using background

knowledge of dimensional analysis to constrain equation construction. Like BACON, COPER is

looking for equations that derive constant terms.

101

6.0 IMPLEMENTING ISAK: INPUT SPECIFICATION AND ALGORITHMS

ISAK’s algorithms and the input format are both implemented in the Python programming lan-

guage (PSF, 2006). Accessory learning elements – information gain routines, low level application

of functions to features in a vector-wise fashion, discretization of continuous values – are imple-

mented with the Orange data mining system (Demsar et al., 2004), which is itself a combination

of C++ and Python code.

6.1 ADDITION AND THE INTERACTION BETWEEN SEMANTIC TYPES AND

FEATURE CONSTRUCTOR FUNCTIONS

Because of the intertwined nature of the pieces of the implementation, this section describes how

semantic types interact with four different feature constructor functions. Details are delayed to

Section 6.2. ISAK has four distinct, built-in methods of applying addition to two features (Table

17):

1. add1 unconstrained addition of two numeric values,

2. add2 addition on two GenericQuantities (numeric values without a specific measurement type)

that unify below Top (i.e., the FCFs in the Wine CLP),

3. add3 addition on two GenericQuantities that are members of the same semantic class, and

4. add4 addition of two lengths that are in the same dimension.

If add1 is in the set of FCFs for a CLP, then every pair-wise combination of numeric features

is a candidate to be combined with addition. add1 is included so that ISAK can perform ad-

dition in extremely knowledge-lean problems. add1, and similar FCFs, allows comparison of

102

ISAK without knowledge and other feature construction programs that do now use knowledge. In

general, knowledge-lean operators, like add1, do not adequately constrain search in the space of

constructable features.

When add2 is in the FCF set of a CLP, addition is performed between all pairs of GenericQuan-

tity features g1, g2 such that the semantic classes of g1 and g2 unify to some non-trivial member

of their semantic class hierarchy (i.e., Unify(g1, g2) 6= Top). Depending on the semantic class

hierarchy for a CLP, add2 can significantly constrain the space of constructable features.

add3 is similar to add2 but it requires that g1 and g2 belong to the exact same semantic class,

as opposed to unifying to any non-trivial unification of the semantic class hierarchy.

add4 is significantly different because it requires detailed feature types and specific type prop-

erties. add4 applies to two LengthTypes. It imposes two constraints: (1) a SameObject constraint on

the objects measured by the LengthTypes and (2) a SameDimension constraint on the dimensions of

the measurements. The SameObject constraint is imposed by checking the semantic classes of the

features; SameDimension is imposed by checking the semantic type properties of the LengthTypes.

6.2 DETAILS OF THE INPUT SPECIFICATION

6.2.1 Semantic Types and Semantic Properties

The semantic types that ISAK provides form a hierarchy like that shown in Figures 22, 23, and 241.

Each semantic type is implemented as a Python class; hierarchical relationships are implemented

among classes2. The classes representing semantic types have member variables representing the

semantic properties for that type. A table of ISAK’s semantic types is given in Table 15. The

semantic properties of a type are the semantic class to which the type’s feature belongs (including

reference to an object) and its per-type properties (e.g., the dimension of a spatial extent). Object

specifications and per-type properties are implemented as tuples of strings. The string values may

1Certain levels and branches of that hierarchy are not implemented in ISAK. Where levels are not implemented,
there is simply a direct link from the parents of the missing layer to the children of the missing layer.

2The hierarchical structure is specified through object-oriented inheritance relationships.

103

exist in hierarchical relationships. Semantic classes are inter-feature knowledge; their specification

is discussed in Section 6.2.2.

ISAK’s built-in semantic types are provided as a library and do not need to be explicitly de-

scribed in a problem input file. Each of these semantic types is an instance of a node in the type

hierarchy specified in Section 4.3. The implemented types include typing details relevant to the

type’s measurement. Users may also specify new semantic types in the knowledge base (KB) file

for a construction and learning problem (CLP).

All non-aggregate semantic types have a semantic class as one of their semantic properties.

The most important part of the semantic class description is the object measured by a type’s fea-

ture. Other pieces of the semantic class description include class membership of the object and

relationships to other features. For example, consider a novel learning problem involving wine.

Let each example have measurements on each of three different wines and let the target class be

the wine preferred by a taste tester. Each individual wine has a measurement on its Ash, Alkalinity,

etc. The measurements can be related in the same fashion as in the semantic hierarchy given in

Chapter 2 for the UCI wine problem. However, each feature is now also associated with an object,

namely Wine1, Wine2, or Wine3. The object specification is implemented as an element of the

tuple that represents the semantic class of a feature type. In the new wine problem, the semantic

class for the first wine’s ash content would be the tuple3 (Wine1, Ash).

Other semantic properties of the semantic type narrow the potential interpretations of that

type’s feature. For example, if the values of a feature are two-dimensional extents (i.e., AreaType),

then describing those two dimensions is a necessary part of the feature description. These two

dimensions (e.g., length and height) are specific information that may justify or prohibit other

combinations. In ISAK, descriptions of dimensions or other ad hoc type characteristics are speci-

fied symbolically. Symbolic description allows a variety of dimensions or type details to be used.

The choice of the value for a type property can represent further constraints – it is possible to

have two spatial coordinate systems within the same example. It is useful to have unlinked coor-

dinate systems, if two objects are measured on different axes or on different scales. For example,

{upframe1 , upframe2 , downframe1 , downframe2} may be used to represent two sets of directions in

3Here the tuple is a pair. In general, the semantic class specification may have n elements. The unification of
multiple elements is the a set of least upper bounds in different portions of the semantic class hierarchy.

104

Table 15: The Semantic Types of ISAK and Their Semantic Properties. The semantic properties

of a type specify the details of that type. The semantic class may hold information about the object

that a measurement describes and information about the relationship of that measurement to other

measurements.

S
em

an
ti

c
T

y
p
e

D
es

cr
ip

ti
o
n

S
em

an
ti

c
P

ro
p
er

ti
es

E
x
am

p
le

 V
al

u
e

E
x
am

p
le

 S
em

an
ti

cs

B
ag

T
y
p
e

S
em

an
ti

c
C

la
ss

It
em

 T
y
p
e

{
a,

a,
b
}

C
o
lo

rs
 o

f
ca

rs

A
g
g
re

g
at

eT
y
p
es

L
is

tT
y
p
e

S
em

an
ti

c
C

la
ss

It
em

 T
y
p
e

[3
,2

,5
]

L
en

g
th

s
o
f

p
eo

p
le

S
et

T
y
p
e

S
em

an
ti

c
C

la
ss

It
em

 T
y
p
e

{
a,

b
}

C
o
u
n
ts

 o
f

w
in

s

C
o
u
n
tT

y
p
e

Q
u
an

ti
ty

 o
f

It
em

S
em

an
ti

c
C

la
ss

1
0

B
o
o
k
s

G
en

er
ic

M
ea

su
re

T
y
p
e

C
o
n
st

ra
in

ed
 Q

u
an

ti
ty

S
em

an
ti

c
C

la
ss

Q
u
an

ti
ty

Q
u
an

ti
fi

er
1
0

B
o
o
k
s

p
er

 s
h
el

f

G
en

er
ic

Q
u
an

ti
ty

T
y
p
e

A
rb

it
ra

ry
 V

al
u
e

S
em

an
ti

c
C

la
ss

9
3
.7

0

Q
u
an

ti
ty

T
y
p
e

S
em

an
ti

c
C

la
ss

S
ca

le
S

u
b
st

an
ce

4
.2

0
G

al
lo

n
s

o
f

w
at

er
 i

n
 b

u
ck

et

N
u
m

er
ic

T
y
p
es

L
o
ca

ti
o
n
T

y
p
e

W
h
er

e
is

 O
b
je

ct
?

S
em

an
ti

c
C

la
ss

2
3
.7

0

D
im

L
o
ca

ti
o
n
T

y
p
e

L
o
ca

ti
o
n
 i

n
 D

im
en

si
o
n

S
em

an
ti

c
C

la
ss

D
im

en
si

o
n

1
3
.2

0
L

o
n
g
it

u
d
e

o
f

sh
ip

M
as

sT
y
p
e

M
as

s
o
f

O
b
je

ct
S

em
an

ti
c

C
la

ss
1
0
0
.2

0
P

er
so

n
's

 m
as

s

L
en

g
th

T
y
p
e

S
em

an
ti

c
C

la
ss

D
im

en
si

o
n

2
0
.0

0
D

ep
th

 o
f

p
o
o
l

A
re

aT
y
p
e

A
re

a
o
f

O
b
je

ct
S

em
an

ti
c

C
la

ss
D

im
en

si
o
n
 1

D
im

en
si

o
n
 2

1
0
0
.0

0
A

cr
ea

g
e

o
f

p
ro

p
er

ty

V
o
lu

m
eT

y
p
e

V
o
lu

m
e

o
f

O
b
je

ct
S

em
an

ti
c

C
la

ss
D

im
en

si
o
n
 1

D
im

en
si

o
n
 2

D
im

en
si

o
n
 3

3
.4

0
V

o
lu

m
e

o
f

te
n
n
is

 b
al

l

D
is

ta
n
ce

T
y
p
e

E
x
te

n
t

o
f

M
o
v
em

en
t

S
em

an
ti

c
C

la
ss

1
0
0
0
.0

0
D

is
ta

n
ce

 t
ra

v
el

le
d
 o

n
 v

ac
at

io
n

T
im

eT
y
p
e

D
u
ra

ti
o
n
 o

f
E

v
en

t
S

em
an

ti
c

C
la

ss
2
5
.0

0
T

im
e

o
f

fl
ig

h
t

S
p
ee

d
T

y
p
e

S
em

an
ti

c
C

la
ss

E
v
en

t
6
5
.0

0
C

ar
 d

u
ri

n
g
 t

ri
p

R
at

eT
y
p
e

R
at

e
o
f

C
h
an

g
e

S
em

an
ti

c
C

la
ss

E
v
en

t
1
0
.0

0
W

at
er

 d
u
ri

n
g
 f

lo
o
d

S
y
m

b
o
li

cT
y
p
es

S
y
m

b
o
lT

y
p
e

A
rb

it
ra

ry
 S

y
m

b
o
li

c
V

al
u
e

S
em

an
ti

c
C

la
ss

V
al

u
es

B
lu

e
C

o
lo

r
o
f

ca
r

A
rb

it
ra

ry
 v

al
u
e

o
f

o
b
je

ct

(a
lk

al
in

it
y
 o

f
w

in
e

sa
m

p
le

)

M
ea

su
re

d
 Q

u
an

ti
ty

 o
f

S
u
b

st
an

ce

A
rb

it
ra

ry
 l

o
ca

ti
o
n

(l
o
ca

ti
o
n
 o

f
p
la

y
er

)

L
en

g
th

 o
f

O
b
je

ct
 i

n

D
im

en
si

o
n

R
at

e
o
f

C
h
an

g
e

in

P
o
si

ti
o
n

105

two different contexts within the same learning example. Separate frames of reference in details

also prevent the knowledge representation from requiring a canonical and universal coordinate sys-

tem. From another perspective, multiple coordinate systems allow local frames of knowledge to

prevent interactions among unrelated sets of features (i.e., upframe1 cannot interact with upframe2).

In another example, given that the values of an attribute are board game pieces (i.e., they are of

type PieceType), it is possible to specify what class of characteristics those pieces have in common.

The pieces (i.e., the values of the attribute) may share positional similarities. In a common case, the

attribute represents a constant location in each of the different examples (e.g., the top left corner of

the board) and the value represents the piece at that location (e.g., a rook in chess). So, the pieces

that are values of the feature share a common location and the KB specifies this fact. We might

also be interested in combining pieces with broader, location similarities (e.g., same row or same

column). So, our piece in the top left corner of the board is also a member of the top row and the

left column.

6.2.2 Semantic Class Hierarchy

Semantic class hierarchies are specified by creating nodes and putting these nodes into a tree.

Each node has a set of links to its children and a label to distinguish that node’s semantic class.

All semantic class hierarchies are rooted at a special node topClass. Semantic class membership is

indicated when a semantic type for an attribute has a semantic class hierarchy node as the value of

one of its member variables. An example of a semantic class hierarchy is given in the description

of the wine CLP (see Section 2.1). Any string value of a semantic property that is not explicitly

in a hierarchy is compared by equality. Unification between two concepts in the hierarchy is

determined by computing the least upper bound of the two concepts. If two semantic classes both

involve multiple concepts, then each element of the two semantic classes is unified individually

with each element from the other semantic class. The union of the results is the unification of the

two semantic classes.

106

6.2.3 Feature Description

ISAK specifies base and constructed feature semantics by associating a name for the feature with

a semantic type for that feature. The program structure describing the feature holds syntactic and

numeric information for that feature. Constructed features are additionally described by:

1. the features that are used in the new features’ construction,

2. the typing characteristics that these features lead to,

3. the formula applied to the base features to get the current feature,

4. the data values that the actual computations bring about, and

5. a heuristic measurement of the learning value of the current feature.

A number of non-semantic characteristics of a feature are also important. The tree characteristics

of a feature (see Section 4.4) provide important pruning information in the feature search space.

Associated with each feature is a heuristic evaluation of its usefulness in predicting the target class

(e.g., information gain of the feature with respect to the target class).

The BaseFeature data structure (a Python class), contains the following member variables:

1. Name – a string value such as a1 in the wine problem or Temperature in the weather problem,

2. Type – the semantic type of the feature as in Table 15,

3. Values – a list of the values taken by each example for the feature,

4. Components – a list of components for the feature (for base features the only component of the

feature is itself),

5. Number of Components – the length of Components,

6. Height – the height of the feature when interpreted as a tree,

7. Leaves – the number of leaves of the feature when interpreted as a tree,

8. Number of Base Features – the number of unique base features used to construct the feature

(for base features the value is one), and

9. Parents – a list of pointers to the parent features of the feature (i.e., the features used in the

construction of this feature). Base features have an empty parent list. Parents differ from

Components in that Components is reduced to a set of unique features and is a complete record

of used features back to, and including, the base features. Parents tracks each particular feature

107

in the argument list used to construct the present feature. Parents is used for comparison of the

present feature’s evaluation to its parents’ evaluations.

In addition to setting the member variables, the class initialization also computes the information

gain of the feature with respect to the target class, registers the feature values in a hash table (for

duplicate checking), and registers the feature with its semantic class.

Constructed features are stored in a NewFeature data structure. The NewFeature data structure

holds all the information for base features with some additions:

1. Formula – the feature constructor function used to create the feature, and

2. Arguments – an ordered list of the features serving as arguments to Formula. Arguments are

ordered and duplicative while Parents are unordered and unique.

The Value variable of NewFeatures is calculated once when it is first needed and then stored in

memory. The memorization is necessary to prevent a series of recursive calls. To construct the

values of a new feature, only the values of the parent features need to be accessed.

6.2.4 Constraint Specification

There are two types of constraints in ISAK: semantic constraints and feature constraints. Semantic

constraints are functions that take the facts specified by semantic type, semantic class (including

object), and other semantic type properties, and return whether or not the given features satisfy

those constraints. Feature constraints are constraints on the non-semantic properties of the fea-

ture. For example, constraints based on the tree characteristics of a feature (e.g., height or number

of leaves) are feature constraints. Feature constraints are implemented as predicates that indicate

whether or not a list of features satisfy the given, non-semantic relationships. The important dif-

ference between semantic and feature constraints is that semantic constraints are functions of the

semantic type; feature constraints are functions of the feature itself. The built-in constraints of

ISAK are shown in Table 16.

Semantic constraints augment typing information. Typing information alone may not be suf-

ficient to limit the possible feature constructions. For example, suppose f1 is the value of coins

in a coin jar and f2 is the value of an investment portfolio. Adding the two values would yield

108

Table 16: Built-in Constraints of ISAK. The two main divisions of constraints on feature construc-

tor application are constraints that are functions of the semantic type of a feature (i.e., Semantic

Constraints) and constraints that are functions of the feature itself (Feature Constraints).

Constraint Type Constraint Description

Same Event Features describe same event

Same Object Features describe same object

Different Event Features describe different events

Different Object Features describe different objects

Different Dimension Features describe different dimensions

Semantic Constraints Same Dimension Features describe same dimensions

Subset Class description of first feature is progeny of second

Superset Class description of first feature is ancestor of second

Not All Top Class descriptions of multiple features are not all TopClass

Not Both Top Class descriptions of two features are not both TopClass

Not Top LGU Class descriptions of features unify to something besides TopClass

Same Unification Unification of class descriptions is same as class descriptions

Same Type Features have same semantic type

Semantic type of container elements is same as feature

Different Feature Forbid same feature in two arguments positions

Feature Constraints Unused Feature Require feature not in components of other

Disjoint Components Require features with disjoint components

Require components of second feature not also components of first feature

Same Type as
Aggregate

First Components
not in Second

a value with clear semantics, but the value would be very unlikely to be important. Specifically,

the sum is going to come primarily from the value of the investment portfolio. Here, an appro-

priate constraint would require that the combined features measure the same type of object (i.e.,

capital assets versus nominal assets). The constraint makes use of the semantic class specification

discussed in Section 6.2.1. In the case of aggregate types, the primitive type that is aggregated is

processed as a semantic constraint. For example, identifying sets of LengthTypes versus sets of

WeightTypes is done with semantic constraints.

Feature constraints implement non-semantic restrictions on constructions. For example, a fea-

ture constraint is needed to limit a feature constructor that produces sums of counts from other

counts. The feature constructor may be applied iteratively, and it may apply itself to the original

two counts repeatedly. The repetition would no longer be building an aggregate count over many

features. Instead, it would be adding one feature back into the total count many times. To prevent

repetition, a feature constraint can require that one of the given arguments does not appear in the

history of the other argument or, more generally, that the two constructed feature trees are disjoint.

109

If repeated addition is needed, multiplication is generally a better choice of operation because it is

an atomic (i.e., non-compound) construction4.

6.2.5 Specification of Feature Constructor Functions

A feature constructor function (FCF) is composed of several pieces of information: a definition

of the operation it performs, the input typing requirements, further input argument constraints, the

output type, and a function that will compute output type properties from the input type properties.

A table of most of ISAK’s built-in FCFs is shown in Table 17.

The operation that a FCF encapsulates may be any computable function of the formula’s at-

tributes. It is a function of a fixed number of attributes. The function arguments may include set,

list, and bag valued attributes. FCF may not, as implemented, apply to variable length argument

lists other than what is permitted by applying a FCF to arbitrary sets, lists, and bags.

The process of defining constraints is discussed in Section 6.2.4. The purpose of constraints

is two-fold: within similar types, there may be references to specific properties of that type. The

property information, together with the type, will determine the applicability of a FCF. Secondly,

there may be inter-feature constraints that are not semantic in nature. These constraints are easily

resolved by processing them at this point. A non-semantic constraint might require an aggregate

feature type to have a certain number or range of elements.

Generally, a feature construction formula will only output features of one type, even if it out-

puts several new features. However, it is possible to specify the output types as a function of

the input features. Regardless of type similarity, output type properties will vary with the type

properties of input features.

For example, multiplication of an area and a length yields a volume. This is a simple case

where the feature constructor function produces a single new feature on each application (the

volume of the object). In a more complex case (Table 18), we generate several Boolean features

where each is an indicator function for each value of ftr1. Each feature is tied specifically to the

symbolic value to which the original feature was compared. The relationship is reflected in the

column headings of Figure 18 and is encoded in the typing details for the new features.

4Piecewise addition (versus multiplication) may still be necessary if the number of repeated additions (i.e., one of
the factors in a multiplication term) is not available in the dataset.

110

Table 17: Built-in Feature Constructors. Input types, constraints, operations, output types, and

some output typing details for several built-in feature constructors. Examples of actual code for

the unification-constrained arithmetic is shown in Chapter 2.

Input Types Constraints

Square NumericType

Absolute Value NumericType abs(x) NumericType

Inverse NumericType NumericType

Square Root NumericType

+, -, *, / NumericType

+, -, *, / GenericQuantityType unifyDescriptions

+, -, *, / GenericQuantityType unifyDescriptions

Same Dimension +, - LengthType

BagType(NumericType) BooleanType

BagType(NumericType) BooleanType

Aggregate(Continuous) max(x), min(x), avg(x) Continuous

Aggregate(Boolean) |{x | x in Bag and x =True}| CountType

BooleanType

Boolean Not BooleanType not(x) BooleanType

BooleanType

BooleanType

SymbolType

SymbolType

Ternary Test x > y, x < y, x eq y SymbolicType

Feature
Constructor
Name

Computable
Function

Output
Types

Output
Detail
Computation

Generic
Arithmetic

NumericType,
NumericType

Unifiable
Arithmetic

GenericQuantityType,
GenericQuantityType

Non-TopClass
Unification

Same Class
Arithmetic

GenericQuantityType,
GenericQuantityType

Same Parent
Class Unification

Same Dimension
Length Arithmetic

LengthType,
LengthType

Inherit Objects
and Dimension

Bag, List
Creator

NonAggregateType,
NonAggregateType

Different Feature,
Same Type

Bag{x,y},
List[x,y]

BagType,
ListType

Inherit Type and
Description

Bag, List
Extender

BagType(NonAggregate),
NonAggregate

Single not in Aggregate,
Same Type

union(x,Bag(y)),
append(x,y)

BagType,
ListType

Inherit Type and
Description

Bag Numeric
Uniqueness

Bag Numeric
All Different

Aggregate Max,
Aggregate Min,
Aggregate Avg

Aggregate
Count True

Boolean Or,
Boolean And

BooleanType,
BooleanType

or(x,y),
and(x,y)

Numeric
Equality

NumericType,
NumericType

Numeric
Inequality

NumericType,
NumericType

x > y,
x < y

Equality Test
All Symbol Values

Multiple
BooleanTypes

Equality Test
All Symbol Values

Multiple
BooleanTypes

NumericType,
NumericType

1/ x

��x� y ����

� values�SymbolType
Equals�x , value�

	 x , y�Bag
��x� y ����

x
2

� x�

��x� y ����
¬	 x , y�Bag

NotEqual � x , value �
� values�SymbolType

111

Table 18: Equality Testing. Equality testing over several symbolic values of a feature converts the

symbolic feature to several Boolean features.

Example ftr1 Eq(ftr1, A) Eq(ftr1, B) Eq(ftr1, C)

1 A True False False

2 B False True False

3 A True False False

4 C False False True

6.2.6 Search Parameters

The legal space of constructed features implied by the semantic types, constraints, and feature

constructors will grow combinatorially for all but the most trivial CLPs. To allow the program to

execute in a reasonable time, the generation of features is embedded inside a beam search. The

beam search process and the use of the following parameters is described in more detail in Section

6.3.1. Table 19 shows the search parameters used by ISAK.

For now, it is sufficient to describe the parameters used in the search to accept, reject, or delay

judgment on constructed features. The search parameters described here form a different class

of constraint than those specified in Section 6.2.4. The constraints here constrain the exploration

of the feature space. The constraints discussed in Section 6.2.4 affect whether or not a feature

constructor function may be applied to particular features as part of the successor function. The

search parameters fall into four categories:

1. constraints on the size of generated sets of constructed features,

2. constraints on the form (i.e., tree characteristics) of the constructed features (see Section 4.4),

3. constraints computed from the values of the constructed features, and

4. constraints on the heuristic evaluation of the features.

112

Table 19: Search Parameters for ISAK. Feature evaluation constraints are requirements on the

value of information gain for constructed features. Tree characteristic parameters are constraints

on the tree form of constructed features. Beam and size parameters affect the storage of the beam

(i.e., the search fringe) directly.

P
ar

am
et

er
 T

y
p

e
P

ar
am

et
er

 N
am

e
D

es
cr

ip
ti

o
n

S
u
cc

es
so

r
S

u
cc

es
so

r
F

u
n
ct

io
n

M
et

h
o

d
 u

se
d

 t
o

 c
h
o

o
se

 f
ea

tu
re

s
an

d
 a

p
p

ly
 f

ea
tu

re
 c

o
n
st

ru
ct

o
r

fu
n
ct

io
n
s

M
in

im
u
m

 M
ea

su
re

M
in

im
u
m

 m
ea

su
re

 f
o

r
an

 a
cc

ep
ta

b
le

 f
ea

tu
re

F
ea

tu
re

 E
v
al

u
at

io
n

M
in

im
u
m

 I
m

p
ro

v
em

en
t

M
in

im
u
m

 i
m

p
ro

v
em

en
t

in
 m

ea
su

re
 o

v
er

 p
ar

en
ts

 f
o

r
an

 a
cc

ep
ta

b
le

 f
ea

tu
re

Ju
n
k
 M

ea
su

re
M

ax
im

u
m

 m
ea

su
re

 f
o

r
a

fe
at

u
re

 t
o

 b
e

p
ru

n
ed

 f
ro

m
 t

h
e

se
ar

ch
 s

p
ac

e

M
in

im
u
m

 F
ea

tu
re

s
M

in
im

u
m

 n
u
m

b
er

 o
f

b
as

e
fe

at
u
re

s
u
se

d
 i

n
 a

n
 a

cc
ep

ta
b

le
 f

ea
tu

re

M
in

im
u
m

 H
ei

g
h
t

M
in

im
u
m

 h
ei

g
h
t

o
f

an
 a

cc
ep

ta
b

le
 c

o
n
st

ru
ct

ed
 f

ea
tu

re
 t

re
e

M
in

im
u
m

 L
ea

v
es

M
in

im
u
m

 n
u
m

b
er

 o
f

le
af

 n
o

d
es

 f
o

r
an

 a
cc

ep
ta

b
le

 c
o

n
st

ru
ct

ed
 f

ea
tu

re
 t

re
e

T
re

e
C

h
ar

ac
te

ri
st

ic
s

M
ax

im
u
m

 F
ea

tu
re

s
M

ax
im

u
m

 n
u
m

b
er

 o
f

b
as

e
fe

at
u
re

s
u
se

d
 i

n
 a

n
 a

cc
ep

ta
b

le
 f

ea
tu

re

M
ax

im
u
m

 H
ei

g
h
t

M
ax

im
u
m

 h
ei

g
h
t

o
f

an
 a

cc
ep

ta
b

le
 c

o
n
st

ru
ct

ed
 f

ea
tu

re
 t

re
e

M
ax

im
u
m

 L
ea

v
es

M
ax

im
u
m

 n
u
m

b
er

 o
f

le
af

 n
o

d
es

 f
o

r
an

 a
cc

ep
ta

b
le

 c
o

n
st

ru
ct

ed
 f

ea
tu

re
 t

re
e

M
ax

im
u
m

 N
ew

M
ax

im
u
m

 n
u
m

b
er

 o
f

N
ew

 O
th

er
s

at
 t

h
e

en
d

 o
f

a
ro

u
n
d

 o
f

g
en

er
at

io
n

B
ea

m
 a

n
d

 S
et

 S
iz

e
M

ax
im

u
m

 O
ld

M
ax

im
u
m

 n
u
m

b
er

 o
f

O
ld

 f
ea

tu
re

s
u
se

d
 t

o
 s

ta
rt

 a
 r

o
u
n
d

 o
f

g
en

er
at

io
n

M
ax

im
u
m

 C
u
rr

en
t

M
ax

im
u
m

 n
u
m

b
er

 o
f

C
u
rr

en
t

fe
at

u
re

s
u
se

d
 t

o
 s

ta
rt

 a
 r

o
u
n
d

 o
f

g
en

er
at

io
n

M
ax

im
u
m

 R
et

u
rn

M
ax

im
u
m

 n
u
m

b
er

 o
f

fe
at

u
re

s
re

tu
rn

ed
 b

y
 I

S
A

K
 a

ft
er

 a
ll

 g
en

er
at

io
n
 c

o
m

p
le

te
s

113

A final parameter to the beam search, which is generally not specified on a per-problem basis, is

the successor function used to expand the current fringe of features in the search space. Successor

functions are discussed in Section 6.3.4.

6.2.7 Aggregate Features

The aggregate types were described in Section 4.3. There are several ways that an aggregate feature

can be introduced into a dataset:

1. by hand – the aggregate feature is added to the base set of features,

2. by KB – the aggregate feature is explicitly created from base features in the KB file (before

search through the feature space), and

3. by feature construction – the aggregate feature is created in competition with other constructed

features.

How do aggregate features differ from a set of features that make up a semantic class? Aggregate

features are tightly grouped for some reason. If they are grouped by hand or by KB, the features

in the aggregate make up some arbitrary conceptual group in the domain. If an aggregate type

is created by feature construction, they share some semantic type and properties. The degree of

similarity is determined by the aggregate feature constructor function used to create the bag, list,

or set.

Semantic classes of features are a looser grouping of those features than aggregation in two

respects. First, semantic class information may be ignored by a feature constructor function (e.g.,

when performing knowledge-less constructions). Second, semantic class knowledge may be used

to justify the creation of an aggregate type (e.g., creating a set of features that measure different

aspects of one object).

114

6.3 ALGORITHMIC DESCRIPTION

6.3.1 Beam Search Algorithm

Beam search is a search strategy that compensates for exponential growth in a search space by

maintaining a fixed-size set of nodes representing the best of the fringe of the currently explored

portions of the search space. Given any current beam of fringe nodes, the search algorithm will

ask a successor function to produce these nodes’ successors, apply some ranking criterion to the

new nodes, and trim off those nodes that are not among the nth best.

Code for the beam search of ISAK is given in Figure 30; the following lines numbers refer to

this figure. An analysis of the complexity of this code is deferred to Section 6.4.1. In the case of

search through the space of constructable features by ISAK, a node in the search space represents

a particular constructed feature. The nodes available at the beginning of ISAK’s search are the

base features. The base features are segmented (line 50) into new keepers and new others based

on whether they pass the tree and evaluation constraints (Table 19) for acceptable features. For the

initial round of feature generation, the base features are expanded (lines 52-55) with expandFringe

once and then an iterative process repeats until no new features are generated. At the beam search

level, there are three sets of keepers (i.e., acceptable features) and others (i.e., features usable as

building blocks): new (newKeepers and newOthers), old (oldKeepers and oldOthers), and tempo-

rary (tmpKeepers and tmpOthers). When new features are used for expansion, they are merged into

the appropriate old sets. The merge is done to maintain ordering by the feature evaluation metric

(i.e., information gain).

In the iterated case (lines 57-63), the old and new sets are repeatedly expanded until the expan-

sion process produces no new features. At the fringe expansion level of code, there is an additional

set of features, current (curKeepers and curOthers). The successor function (see Section 6.3.4)

generates a new pool of potential features (line 34) from the feature constructor functions, the

old and current features, and the successor parameters. This pool of features is pruned by tree

characteristics (line 35). The surviving features are instantiated with values as specified by the

computable function in the FCF (line 36). The instantiated features are then pruned for duplicate

115

0:
1: def getModels(formulas, baseFeatures, successor, succParams,
2: treeConstraints, listConstraints, evaluationConstraints):
3:
4: def segment(features):
5: partition features into newKeepers which pass
6: interesting and newOthers which are not
7:
8: def interesting(model):
9: evaluate for satisfied tree and evaluation constraints

10:
11: def pruneByTree(model):
12: evaluate for unsatisfiable tree constraints
13:
14: def pruneByValues(model):
15: evaluate for duplicate data values against other features
16:
17: def fillValues(m):
18: evaluate the model at the values of each example
19: and create the new data values
20:
21: #
22: # oldKeepers are "stale" ftrs that are interesting
23: # curKeeprs are "fresh" ftrs that are interesting
24: #
25: # oldOthers are "stale" ftrs that are midling
26: # curOthers are "fresh" ftrs that are midling
27: #
28: def expandFringe(formulas,
29: oldKeepers, curKeepers,
30: oldOthers, curOthers):
31: oldPool = trim(merge(oldKeepers, oldOthers), listConstraints)
32: curPool = trim(merge(curKeepers, curOthers), listConstraints)
33:
34: genModels = successor(formulas, oldPool, curPool, succParams)
35: prunedOnModel = filter(genModels, pruneByTree)
36: modelWithData = apply(fillValues, prunedOnModel)
37: prunedOnData = filter(modelWithData, pruneByValues)
38:
39: for m in prunedOnData:
40: if interesting(m):
41: m.finalize()
42: newKeepers += m
43: else:
44: newOthers += m
45:
46: sort(newKeepers)
47: trim(sort(newOthers), listConstraints)
48: return newKeepers, newOthers
49:
50: newKeepers, newOthers = segment(baseFeatures)
51:
52: oldKeepers, oldOthers = newKeepers, newOthers
53: newKeepers, newOthers = expandFringe(formulas,
54: [], newKeepers,
55: [], newOthers)
56:
57: while newOthers != [] or newKeepers != []:
58: tmpKeepers, tmpOthers = newKeepers, newOthers
59: newKeepers, newOthers = expandFringe(formulas,
60: oldKeepers, newKeepers,
61: oldOthers, newOthers)
62: oldKeepers, oldOthers = merge(oldKeepers, tmpKeepers),\
63: merge(oldOthers, tmpOthers)
64: finalKeepers = merge(oldKeepers, newKeepers)

Figure 30: ISAK Beam Search Pseudo-code. filter(l,p) applies the predicate p to each element

of the list l and returns those elements of l that pass p. apply(f, l) applies the function f to each

element of the list l and returns the resulting list. The tree, list (beam and set), and evaluation

constraints are shown in Table 19. The term model is used in the implementation as a term for a

constructed feature during its instantiation. See also Figure 9 for a graphical depiction of the beam

search process. 116

values (i.e., an instantiated feature has the same values, pairwise, over the examples as a previously

generated feature) and pruned with respect to evaluation constraints (line 37).

The features available at this point are partitioned into new keepers and new others5. Finally,

the new keepers are sorted with respect to information gain evaluation. The new others are sorted

and trimmed to the maximum other parameter.

6.3.2 Formula and Value Pruning

Pruning based on the form of the constructed features is based on the following tree-derived char-

acteristics:

1. the height of the tree (i.e., number of operations),

2. the number of leaves in the tree (i.e., number of base features), and

3. the number of unique leaves in the tree (i.e., number of unique base features).

Pruning based on value is done after pruning based on form to prevent the instantiation of features

over many examples. There are no user-defined pruning settings for data values. The current pur-

pose of value-based pruning is to remove duplicate features from the feature search space. A new

feature will be pruned, if its data values for each example are found to be identical to the respective

values of a previously generated feature. For example, if a feature a1/a7 has been generated pre-

viously and a new feature a1a4/a7a4 is generated in the current round, the two features will have

the same values up to floating point errors. Thus, ISAK recognizes the fact that the new feature is

equivalent to the old feature. The process is implemented in ISAK by creating an md5 hash of a

string representation of the values for each example (see Figure 31) and detecting duplicate hash

values.

The detection of duplicates is necessary because even with an ordered generation of features,

the equivalence of different arithmetic forms will create duplicate entries. As the growth of expres-

sions is combinatorial, even a few duplicates early in the feature space search will create a heavy

processing burden deeper in the search. For example, if we have addition and multiplication, we

can generate a(a + b) before a(b + a) in a depth-first search since a < b lexicographically. How-

5For simplicity, the removal of features by the junk measure search parameter is not shown.

117

"72"
"60"

"32"
"78"

"62"

Generate
MD5
Hash

72
60
62

78
32

"7260623278"

926c9f20708111e16bb714204383559a

To

Text

Concatenate

Temperature (F)

Figure 31: Duplicate Feature Checking via MD5 Hash. The use of quotes denotes a string value

versus a numeric value. The purpose of duplicate checking is to remove features that have equiva-

lent tree structures (Section 4.4).

ever, both expressions evaluate to a2 + ab. So, generation in a canonical order does not eliminate

the generation of duplicates.

Another option, not implemented by ISAK, to reduce duplication is to perform a canonical

simplification on each expression before evaluating it. The canonical form would be compared to

a database of previously examined forms and duplicates could be immediately pruned. A problem

with the simplification approach is that well-known canonization procedures operate on formal

mathematical fields. Therefore, feature constructors that are not field operators and features that

are not field elements will cause the canonization procedure to fail. While some datasets can be

expressed in terms of a field of elements and operations, many would require at least two fields

(e.g., a dataset with Boolean and arithmetic operations).

6.3.3 Evaluation Pruning

Once a feature is found to satisfy type constraints and is not a duplicate of another feature, an

evaluation measure is generated on that feature that is an indication of its usefulness in relation to

118

predicting a target value. Information gain is implemented and used in ISAK; other measures can

be provided as a parameter to ISAK. The use of information-theoretic measures (e.g., information

gain) generally requires a discretizing step for continuous-valued attributes and classes. The dis-

cretization is performed by Fayyad and Irani’s maximum entropy discretization method (Fayyad

and Irani, 1993) as implemented in Orange.

Information gain, also known as the Kullback-Leibler divergence, is a common metric used

to select attributes in machine learning tasks (e.g., C4.5 (Quinlan, 1995) uses information gain to

choose attributes for decision tree nodes). The information gain of an attribute a is the expected

reduction in entropy of the target class that comes from knowing a. Less formally, information gain

provides a measure of the relevance of the attribute a in predicting the target class. Many feature

selection metrics result in similar rankings of features (Ben-Bassat, 1982). Thus, the choice of

metric is not of primary importance.

Based on the information gain, three types of pruning are performed. First, a comparison

between the current feature and its parent features determines if the new feature is an improvement

over the parent feature or features. If the new feature is not a sufficient improvement, it may

be discarded. The improvement constraint introduces a hill-climbing aspect to the feature space

search. Second, there is a threshold below which the feature is considered hopeless and should be

discarded immediately. Third, the features are ranked according to their evaluations and the best n

(where n is the beam size) are retained. The final pruning implements the beam size restriction of

beam search.

6.3.4 Successor Function for the Beam Search

The purpose of the successor function is to produce a new beam of constructed features from a

current beam of features. The basic generation process has two sub-tasks: selecting features to

combine and applying operations to the features. Either sub-task may drive the overall successor

generation, or in an agenda driven system both may be considered as selection and application are

intertwined. The least restrictive successor – an exhaustive generation of all features specified by

the feature and the feature constructor functions – will apply each FCF to all possible permutations

119

1: def topNGen(kbformulas, oldFeatures, curFeatures, N):
2: newTypeToFeature = best N of curFeatures
3: oldTypeToFeature = best N of oldFeatures
4:
5: for _f in kbformulas:
6: for ftr in matchFormulaToFeatures(_f,
7: oldTypeToFeature, newTypeToFeature):
8: yield ftr
9:
10: def randomNGen(kbformulas, oldFeatures, curFeatures, N):
11: newSample = uniform sample(curFeatures, N)
12: oldSample = uniform sample(oldFeatures, N)
13:
14: for _f in kbformulas:
15: for ftr in matchFormulaToFeatures(_f,
16: oldTypeToFeature, newTypeToFeature):
17: yield ftr

Figure 32: Top-N and Random-N Successor Functions. yield is a method of returning a closure

so when the function is called again, the next feature will be returned. Best in Top-N refers to

the top N feature in an ordering of features by information gain. The Top successor represents

the heuristic that the best features (for construction) are those with the highest evaluation. The

Random successor implements the heuristic that the uniform random choice of features provides a

good source of variety in the pool of features used for construction.

of the current beam features. The permutations represent different arguments to the functions.

Heuristics are used to create more restrictive generators (see Figures 32 and 33).

Selection of features for feature construction may be implemented in two ways: random and

ordered. A random selection method defines a probability distribution over the features and selects

features according to that distribution. Ordered selection involves ranking the features and making

use of that ordering. In either case, a subset of the features may be selected. Ordered selection

and random selection may be combined by making the probability distribution a function of the

ordering or evaluation of the features.

ISAK implements two simple successor functions that pick n features from the set of current

features and use those as the base for constructions. The Top-N successor uses an ordering heuristic

to guide the choice of features. It takes the top n old features and the top n new features with respect

to a ranking criterion and uses those 2n features as the base for a round of construction. Random-

N uses randomness to choose features. It picks 2n features from a uniform random distribution, n

from the old features and n from the new features. Should there be less than n features in either set,

120

0:
1: def joinedBallGen(kbformulas, oldFeatures, curFeatures, maxCross, hardLimit):
2:
3: allFtrs = best hardLimit features of sort(oldFeatures + curFeatures)
4:
5: for ftrSet in windows(allFtrs, maxCross, hardLimit):
6: cur = features in ftrSet that are from curFeatures
7: old = features in ftrSet that are from oldFeatures
8:
9: for _f in kbformulas:
10: for ftr in matchFormulaToFeatures(_f, old, cur)
11: yield ftr
12:
13: def sepBallGen(kbformulas, oldFeatures, curFeatures, maxCross, hardLimit):
14: curFeatures = best hardLimit of curFeatures
15: oldFeatures = best hardLimit of oldFeatures
16:
17: for cur in in windows(allFtrs, maxCross, hardLimit):
18: for old in in windows(allFtrs, maxCross, hardLimit):
19: for _f in kbformulas:
20: for ftr in matchFormulaToFeatures(_f, old, cur)
21: yield ftr

Figure 33: Pseudo-code for the Windowed Successor Generators. The window function takes a

list of features ordered by evaluation metric and generates windows of size maxCross from the

hardLimit best features. maxCross is the size of the set of features that are potentially combined

with each other; hardLimit is the size of the larger set from which these subsets are drawn.

the entire set is selected and less than 2n total features are used. Pseudo-code for these successors

is shown in Figure 32.

An important utility function in the Top, Random, and other successors is matchFormulaToFea-

tures. The matching function is responsible for generating each legal combination of FCFs and

features from the given sets of new features, old features, and FCFs. The segmentation of features

into old and new sets prevents regeneration of features in the old set by only considering combina-

tions that involve one or more new features. Specifically, we do not need any combinations of only

old features, because these have been dealt with in previous rounds. Since the new features did not

exist in previous rounds, the features generated from them must be new6. The matching procedure

generates all feature-FCF combinations with one new feature, then two new features, up to entirely

new features. Thus, it must also generate every possible combination of FCF and feature with

one or more new features. Pseudo-code for matchFormulaToFeatures is given in Figure 34. The

complexity of the matching procedure is described in Section 6.4.2.

6Though the new features may be algebraically or numerically equivalent to an old feature.

121

Matching (lines 23-38) proceeds by putting each new feature in each argument spot and then

filling in old features to the left of that spot and unused features to the right of that spot. Unused

features are specifically features in the new and old sets that have not been used as arguments in the

current formula (i.e., to the left of the current position being filled). Features that satisfy a given

type are found in constant time by look-up in a hash table (the oldTTF, newTTF, and allTTF)

that maps a semantic type to a list of features of that type. After type matches are found, the

semantic properties of those types are checked in the second part of the code (lines 44-49) and, if

the constraints pass, new feature are generated and returned (lines 50-51).

6.3.5 Windowed Selection of Features in the Successor Function

Joined Ball and Separate Ball are two more complicated generators that combine features with

similar evaluations (i.e., rankings) but that are not necessarily at the top of the ranking. Both

generators rely on considering a sliding window of ranked features. Joined Ball ranks all of the

features at once and then considers windows of these features. Separate Ball ranks the features

separately (i.e., as old features and as new features) and then generates successors from the cross-

product of windows from each set. Pseudo-code for the windowed generators is shown in Figure

33.

Both methods take two window parameters: a window size and a total number of features to

use from the list of all features. The window size, maxCross, determines the maximum number of

features that can be considered at one time. From the window size and the total number of features

to be windowed, a number of window can be computed, but does need to be explicitly known. The

slide amount is fixed at maxCross/2 and is the number of features skipped, moving down the

numerical ordering; the number of windows determines how many steps to take.

For example, with features f1, ..., f100 ordered by information gain, five windows of size 10,

and a slide value of two, the windowing procedure generates the following sets of features to be

processed by the matcher for use as arguments:

{{f1, ..., f10}, {f3, ..., f12}, {f5, ..., f14}, {f7, ..., f16}, {f9, ..., f18}}

where each of the sets is of size 10.

122

0:
1: # inUsed is a dictionary of used features (constant time lookup)
2: def recTypeMatch(types, inUsed, typeToFeature):
3: if types == tuple():
4: yield []
5: else:
6: # this gets all features matching the given type
7: for i in typeToFeature[types[0]]:
8: if i not in inUsed:
9: nowUsed = inUsed.copy()

10: nowUsed[i] = None
11: for s in recTypeMatch(types[1:], nowUsed, typeToFeature):
12: yield [i] + s
13:
14:
15: # oldTTF, newTTF are mappings from types to features
16: def matchFormulaToFeatures(formula, oldTTF, newTTF):
17:
18: newSpots = len(formula.types)
19: for i in range(newSpots):
20: allTTF = oldTTF + newTTF
21:
22: # newFtr is any new feature
23: for newFtr in newTTF[formula.types[i]]:
24: matches = []
25: # have to loop through spots of multi-arg formulas
26: if len(formula.types) > 1:
27: # left side is old only
28: for oldSide in recTypeMatch(formula.types[:i],
29: {},
30: oldTTF):
31: used = oldSide + newFtr
32:
33: # right side is any (old or new)
34: # that is unused
35: for allSide in recTypeMatch(formula.types[i+1:],
36: used,
37: allTTF):
38: matches.append(oldSide + newFtr + allSide)
39:
40: # one spot, so use this
41: else:
42: matches.append((newFtr),)
43:
44: #
45: # if this matching tuple satisfies the constraints
46: # ask the formula to produce new features from it
47: #
48: for args in matches:
49: if formula.checkDetails(ftrTuple):
50: for generatedFtrs in formula.getNew(ftrTuple):
51: yield generatedFtrs

Figure 34: matchFormulaToFeatures Pseudo-code. recTypeMatch simply generates all tuples of

features whose types match the types needed by a portion of type signature for a feature constructor.

Matching (lines 23-38) proceeds by putting each new feature in each argument spot and then filling

in old features to the left the new argument with types that match the left-most arguments in the

FCF and unused features to the right of the new spot with types that match the right-most arguments

of the FCF.

123

The heuristic approach of taking the best features with respect to a feature evaluation metric

has particular problems when the selection is done for generalized feature construction. Those

features which have the highest evaluation with respect to the target class are not necessarily the

features that will make the most learning improvement when used in constructions. In fact, if

we consider a tree representation of a target concept, the root node is the closest, most predictive

value to the target value. The features we want to bring together are not necessarily those with the

best individual relationship to the target class, but those features that are close to each other in the

construction tree.

Specifically, we wish to choose pairs or tuples of features that share a parent node in the

construction tree. As a heuristic measure of this distance, we can turn back to the features’ rela-

tionships to the target class. Instead of combining the group of the highest evaluated features, we

combine groups of closely evaluated features. The closeness indicates a similarity of level in the

construction tree and a potential match as operands to an operation.

6.3.6 Type and Constraint Processing

Type processing is handled in the matching procedure described in Section 6.3.4. By generat-

ing a hash mapping of types to features, we can look-up all features of a given type in constant

time. Constraint processing is handled explicitly in the matching procedure and is described here.

Constraints are Boolean functions that operate on the semantic properties of instantiated types

or directly on features. Typing constraints check for object similarity, dimensional compatibility,

and any more detailed semantic property. Feature constraints implement restrictions on feature

combinations that are not necessarily semantic in nature.

Every feature constructor function has a list of constraints that must be met before that FCF

will generate a new feature from a given argument tuple. The entire argument tuple is passed to

each constraint. The constraints may be any computable function that returns a Boolean value.

It is preferable that the constraints operate in constant time. However, unification constraints on

semantic classes execute in time dependent on the hierarchy in which the semantic class being

checked against exists.

124

6.3.7 Output Type Generation

If a formula produces a single feature, there is only one output type and there is one function given

to produce output typing properties from the input features. The output properties are a function

of the inputs types, the input properties, the constructor function, and, possibly, the values of the

the input and output features.

If the FCF supports multiple outputs for a given input, then the formula typing function and

the output typing properties function are actually a family of functions. The family of functions is

defined by a function that produces a separate typing function for each new feature based on the

feature constructor function and the old features.

6.4 COMPLEXITY OF BEAM SEARCH AND MATCHING

6.4.1 Complexity of Beam Search

The complexity of the beam search portion of ISAK (Figure 30) can be expressed in terms of

1. the number of features generated by the successor function, G,

2. the number of examples in the dataset being modified, E,

3. the maximum time to apply any formula to one example, T,

4. the maximum number of arguments to any feature constructor function, A.

Now, pruning the generated models7 on model characteristics takes time constant in G because

the model values (e.g., height and number of leaves) are evaluated as each model is generated and

there is a constant number of value comparisons done for each model.

Evaluating the data for each example requires gathering values, applying a formula to the

values, and computing the heuristic measure from new values for each of the G models. Gathering

the values for each attribute in the formula over all of the formulas which is bounded above by

EA8. Applying the function in the formula for each example is bounded by TE. The worst case,

7A model is a new feature in the process of construction. Specifically, it may be missing values and semantics.
8There is no recursion because each attribute stores its own data values directly, without reference to its constituent

parts.

125

when computing information gain as the feature evaluation measure, is a continuous feature that

must be discretized which requires a call to maximum entropy discretization routine (Fayyad and

Irani, 1993) at a time complexity of E log E + E. Once discretized values are present, another E

operations are required to compute the contingency table of values and determine the information

gain for the feature. Over G new features, the complexity to set the data values and information

gain is bounded by

GEA + GET + G(E log E + E) + GE = GE(A + T + log E)

Note that G grows at a variable rate based on the successor function. Checking for duplicates

is implemented by building an md5 hash of the values for each G requiring time linear in E and

checking against values in a hash table requiring constant time. Duplicate checking takes time GE.

Determining interestingness is bounded by the number of parents (i.e., the number of argu-

ments, A) as the other checks are constant time. Finalize is also bound by A. Forgettable takes

constant time for each feature. So, the final loop has time complexity GA. The sorting step on the

two lists with length n + m ≤ G is bounded by the time to sort that many elements total, which is

just G log G.

Thus, an upper bound on the total time complexity for one round of feature generation is

G + GE(A + T + log E) + GA + G log G =

G(E(A + T + log E) + A + log G)

6.4.2 Complexity of Matching Feature to Feature Constructor Functions

The matching function (see Figure 34) takes formulas specified in part by their type signature and

mappings from types to features. Thus, given a type slot, all features that match this type can

be found in constant time. A bound on the number of matches generated can be computed by

segmenting the argument signature into three parts: old Ô, new N̂ , and any except those already

used in new or old, Â. Letting the number of old features vary from zero to k − 1 (k is max

number of arguments) and requiring one new feature at each step, gives us the following form for

the number of matches with full replacement

126

k−1∑
s=0

ÔsN̂Âk−s−1

However, in the matching procedure we track the use of features and do not allow replacement

because it allows subsequent rounds of generation to produce duplicates9. So, without replacement

the three components become:

1. Old side: fill s arguments from Ô old features which involves choosing s features and ordering

them giving


 Ô

s


 s! = Ô!

(Ô−s)!
,

2. New slot: fill 1 argument from N̂ features giving N̂ , and

3. Any side: fill k − s − 1 arguments from the remaining N̂ − 1 and Ô − s features and order

them giving:


 N̂ + Ô − s− 1

k − s− 1


 (k − s− 1)! =

(N̂ + Ô − s− 1)!

(N̂ + Ô − k)!
.

Multiplying the three counts for Old, New, and Any and then summing the counts over all possible

positions of the guaranteed New argument gives:

k−1∑
s=0

Ô!

(Ô − s)!
N̂

(N̂ + Ô − s− 1)!

(N̂ + Ô − k)!
=

N̂Ô!

(N̂ + Ô − k)!

k−1∑
s=0

(N̂ + Ô − s− 1)!

(Ô − s)!

In the case of k = 2 (i.e., for binary operations), the summation simplifies to:

N̂Ô!

(N̂ + Ô − 2)!

[
(N̂ + Ô − 1)!

Ô!
+

(N̂ + Ô − 2)!

(Ô − 1)!

]
=

N̂
(
N̂ + Ô − 1

)
!

(N̂ + Ô − 2)!
+

N̂Ô!

(Ô − 1)!
=

N̂
(
N̂ + Ô − 1

)
+ N̂Ô

9With replacement, from the set of features a, b and add(., .) we generate: a + a,a + b, and b + b in the first round.
In the second round we generate: a + a + b, b + b + b, a + b + b, a + a + a, b + b + a, and a + b + a. In the second
round, 2a + b and a + 2b occur twice.

127

In the case of N̂ = 3 and Ô = 2, we would generate the following argument tuples

{(n1, any), (n2, any), (n3, any), (old, n1), (old, n2), (old, n3)}

where ni is the ith element of N̂ , any is any element of new or old except ni and old is any

member of old. Counting the possibilities gives 4 + 4 + 4 + 2 + 2 + 2 = 18 argument tuples. By

formula, we get 3(3 + 2− 1) + 3 · 2 = 18.

Each argument tuple generated is given to each formula, multiplying the number of tuples by

F̂ .

The generated matches are then checked against the formula constraints and then return the

features specified by the formula for the match. Generally there is only one returned feature but

there are possibly more as in the case of a formula that specifies testing each value of a symbolic

feature.

6.4.3 Total Complexity for Top and Random Successor Functions

The complexity of the Top-N and Random-N successors is a function of the number of selected

features, 2N (N old and N new), given as input to the matcher and the complexity of the matching

process. The time for generation is bounded by and the number of features generated from these

two functions is

N (N + N − 1) + NN = 3N2 −N.

Taken over each formula, these two successor functions are bound by F̂N2.

When the Top-N or Random-N generators are used as the successor function for beam search,

one round of beam search is bounded by

F̂N2
(
E (A + T + log E) + A + log F̂N2

)
.

128

7.0 EXPERIMENTS

7.1 A SET OF EXPERIMENTS DESCRIBING THE BEHAVIOR OF ISAK ON

MULTIPLE LEARNING PROBLEMS USING MULTIPLE SUCCESSOR

FUNCTIONS AND FEATURE SETS

7.1.1 Construction and Learning Problems: Datasets, Knowledge Bases, and Search Pa-

rameters

Each construction and learning problem (CLP) is defined by three pieces of information: a dataset,

a knowledge base, and a set of search parameters. Table 20 and Table 21 contain summary infor-

mation for each CLP. The balance, monks, tic-tac-toe, iris, promoter, and wine datasets are taken

from the UCI Machine Learning Repository (Newman et al., 1998). The isosceles and soccer

offsides datasets were randomly generated following descriptions of their target concepts in the

FICUS paper (Markovitch and Rosenstein, 2002). The goal of the isosceles problem is to classify

a given triangle as isosceles or not on the basis of the lengths of its sides. For offside, the goal

is to determine if a given configuration of soccer players, described by their x- and y-coordinates,

has a player offsides. The offsides datasets have 50% irrelevant features because the players’

y-coordinates do not matter to the definition of offsides.

The three promoter CLPs and the two tic-tac-toe CLPs share their respective datasets but have

different knowledge bases (KBs) and search parameters. The offsides problems have the same

top-level concept (i.e., they are top-level equivalent) but differ in the number of leaf features based

on the problem size. Offsides2, for example, has 2 players per team and 8 total coordinates.

The three promoter CLPs use two different knowledge bases. The first KB treats the features

– nucleotides at different positions in a DNA promoter sequence – as symbolic variables and con-

129

Table 20: Description of Closed Form Datasets. The TTT operations are not sufficient to generate

the target concept for those problems. All other problems have a sufficient set of operations to

generate the target concept. Min Ops is the minimum number of operations (non-leaf nodes) nec-

essary to construct the target concept (or the closest partial target concept for the TTT problems).

Min Height is the longest path in the constructed tree for the target concept. Details of the FCFs

are shown in Figure 17.

Features Examples

Balance 4 Continuous 3 625 3 2

Isoceles 3 Continuous 2 100 3 3

Monks1 a1, ..., a6 6 Symbolic 2 556 (a1=a2) or (a5 = 1) 3 2

Monks2 a1, ..., a6 6 Symbolic 2 601 13 13

Monks3 a1, ..., a6 6 Symbolic 2 554 7 4

Offsides2 8 Continuous 2 100 7 4

Offsides5 20 Continuous 2 100 16 7

Offsides11 44 Continuous 2 100 34 13

TTT1 9 Symbolic 2 958 32 4

TTT2 9 Symbolic 2 958 41 4

CLP
Name

Feature
Names

Feature
Description

Value
Type(s)

Target
 Classes

Available
Feature Constructor

Functions
Target

Concept
Target

Description
Min
Ops

Min
Height

l-weight, l-dist,
r-weight, r-dist

Weight and
distance of
dangle from
pivot

genericMul,
ternary comp

tcomp(l-weight * l-dist,
 r-weight * r-dist)

Is the scale
balanced?

side_a, side_b
side_c

Length of
sides of
triangle

initBag,
addBag,
bagNotUniq?

bagNotUniq({side_a,
 side_b,
 side_c})

Is the triangle
isoceles?

Symbolic
values

eqTestAllSym,
symEq,
boolAnd,
boolOr

Symbolic
values

initBag,
addBag,
eqTestAllNums,
aggSymCounts

twoOf(a1=1, a2=1,
 a3=1, a4=1,
 a5=1, a6=1)

Symbolic
values

eqTestAllSym,
notEqTestAllSyms,
boolAnd,
boolOr

(a5 = 3 and a4 = 1) or
(a5 != 4 and a2 != 3)

o1x, o2x, b1x,
b2x,o1y, o2y,
 b1y, b2y

Positions of
players from
two teams on a
soccer field

initBag,
addBag,
aggMin,
aggMax,
continuous >

max({o1x, o2x}) >
max({b1x,b2x})

Is an orange player
offsides?

o1x, ..., o5x,
b1x, ..., b5x,
o1y, ..., o5y,
b1y, ..., b5y

Positions of
players from
two teams on a
soccer field

initBag,
addBag,
aggMin,
aggMax,
continuous >

max({o1x, ..., o5x}) >
max({b1x, ..., b5x})

Is an orange player
offsides?

o1x, ..., o11x,
b1x, ..., b11x,
o1y, ..., o11y,
b1y, ..., b11y

Positions of
players from
two teams on a
soccer field

initBag,
addBag,
aggMin,
aggMax,
continuous >

max({o1x, ..., o11x}) >
max({b1x, ..., b11x})

Is an orange player
offsides?

tl, tm, tr,
ml, mm, mr,
bl, bm, br

Pieces on a
tic-tac-toe
board

twoPieceCount,
countPlusPiece

countX(tl,tm,tr) == 3 or
countX(ml,mm,mr) == 3 or
...

Is the board a win
for player 1 or not?

tl, tm, tr,
ml, mm, mr,
bl, bm, br

Pieces on a
tic-tac-toe
board

eqTestAllSym,
initBag,
addBag,
aggCtTrue

ctTrue({eqx(tl), eqx(tm),
 eqx(tr)}) == 3 or
...

Is the board a win
for player 1 or not?

130

Table 21: Description of Open Form Datasets. Values in parentheses indicate a change in the

feature set before the feature space search commences. The change is explicitly specified by the

KB file for that problem. Details of the FCFs are shown in Figure 17.

Iris 4 Continuous 3 150

Promoter1 57 Symbolic 2 106

Promoter2 4 (57) Symbolic 2 106

Promoter3 61 (57) Symbolic 2 106

Wine 13 Continuous 3 178

CLP
Name

Feature
Names

Feature
Description

Number of
Features

Value
Type(s)

Number
 of

 Classes

Number
of

Examples

Available
Feature Constructor

Functions

sepal_width,
sepal_length,
petal_width,
petal_length

Characteristics
of Iris Petals

lenAdd, lenSub,
lenMul, lenDiv

p-50,
p-49,
...,
p+07

Nucleotides in a
DNA Sequence

eqTestAllSym,
initBag,
addBag,
aggCtTrue

p-50,
p-49,
...,
p+07

Nucleotides in a
DNA Sequence

match35s,
match10s

p-50,
p-49,
...,
p+07

Nucleotides in a
DNA Sequence

eqTestAllSym,
initBag,
addBag,
aggCtTrue,
match35s,
match10s

a1,
...,
a13

Measurements
on Wine
Samples

unifAdd, unifSub,
unifMul, unifDiv

structs Boolean tests, bags, and counts on bags. In short, the first KB simply treats the values as

arbitrary symbols. The second KB has detailed knowledge about two contact regions within the

promoter sequence1: the feature constructor functions try to match the regions to known promoter

sequences2. The third CLP uses the union of these two KBs. The tic-tac-toe problems also make

use of two different types of knowledge. The first is a problem specific KB with integrated knowl-

edge of rows, columns, diagonals, and winning criteria. The second KB for tic-tac-toe contains

general symbolic operations similar to the first promoter KB.

The CLPs are divided into two categories: open-form and closed-form. The datasets labeled

closed-form have a known closed-form representation of the target concept in terms of the given

base features. For each of the closed-form CLPs except tic-tac-toe, the feature constructors are

sufficient to construct the target concept. In the case of the tic-tac-toe problem, the given feature

1Each example describes a promoter sequence for a single individual.
2There is also conformational knowledge available for the promoter problems. However, the conformation knowl-

edge did not appear to be useful within ISAK’s constructions and was not used in the experiments. The original UCI
promoter problem is an ILP style learning problem.

131

Table 22: Search Parameters. The figure shows the search parameters for the standard set of CLPs.

The semantics of the search parameters are discussed in Section 6.2.6.

Balance 0.3 0.01 0 1 1 2 4 4 3 20 10 20

Iris 1.5 0.1 0 1 1 1 4 4 3 100 10 undef

Isoceles 0.5 0.01 0 1 1 1 3 3 4 100 10 undef

Monks1 0.3 0.01 0 1 1 1 3 3 3 100 15 undef

Monks2 0.01 0.01 0 1 1 1 6 6 7 100 15 undef

Monks3 0.5 0.01 0.03 1 1 1 4 4 4 75 5 undef

Offsides2 0.25 0.05 0 1 1 1 4 4 6 50 5 undef

Offsides5 0.1 0.05 0 1 1 1 10 10 7 150 5 undef

Offsides11 0.25 0.05 0 1 1 1 4 4 6 50 5 undef

Promoter1 0.4 0.01 0.01 1 1 1 10 10 10 100 10 100

Promoter2 0.25 0 0 2 1 1 10 10 4 100 10 undef

Promoter3 0.25 0 0 2 1 1 10 10 4 100 10 undef

TTT1 0.08 0.01 0 3 1 1 4 4 3 100 10 undef

TTT2 0.08 0.01 0 1 1 1 10 10 10 50 10 100

Wine 1 0.3 0.1 1 1 1 4 4 3 75 10 75

CLP
Name

Minimum
Measure

Minimum
Measure

Improvement
Junk

Measure
Minimum
Features

Minimum
Leaves

Minimum
Height

Maximum
Features

Maximum
Leaves

Maximum
Height

Maximum
New

Maximum
Return

Maximum
Old

Features

constructors are sufficient to generate a partial target concept. Note that just because the feature

constructor functions are sufficient to lead to the target concept or a partial target concept, the

path to the goal may not be found. Also, the constructed concepts may only be equivalent (not

necessarily identical) to the target concept; the application of operations may be more or less

complex than the order in the given form of the target concept.

The search space parameters for each CLP are shown in Table 22. The search parameters are

chosen based on the knowledge in the KB file and knowledge or guesses of the form of the target

concept. At a minimum, search parameters were chosen to allow an adequate number of FCF

applications. For example, in the case of the tic-tac-toe problems, the form of the target concept is

known and the depth of search necessary to construct features that encapsulate the definition of a

win can be calculated. Search parameters can also be manipulated to control the rate of growth of

the space of explored features.

The CLPs were initially chosen for comparison with the experiments in FICUS (Markovitch

and Rosenstein, 2002). Unfortunately, I was unable to implement a working version of FICUS

for use in direct experimental comparisons, because some methodological variables in the FICUS

experiments are unknown. Hence, there are differences between the baseline results in my work

and in the FICUS paper. The use of mostly toy-level problems is justified on the basis of (1)

132

knowledge of the form of some use features in the problem domains, (2) comparison with results

in the literature, and (3) accessibility of the datasets for comparison purposes. As with other

research involving the UCI datasets, these experiments contribute to the trend of overfitting the

UCI datasets. This is partially offset by utilizing several non-UCI datasets (i.e., the isosceles and

soccer CLPs) and by performing additional experiments on novel problems (Section 7.3.1).

7.1.2 Generation of Synthetic Datasets

An auxiliary synthetic data generation program (SDG) takes an input specification of features,

distributions of values for the features, relationships among the features, and constraints. The

SDG outputs a dataset satisfying the specification. The data generator was used to produce the

isosceles, offsides, and weather datasets. The synthetic area datasets used in later experiments

were also produced by the SDG.

Feature values are defined in the generator via a probability distribution of values, a file speci-

fying specific values, or as a function of other features. The data type of a value may be any Python

data type, but typically it will be of type float, integer, Boolean, or string. Features defined by a

distribution or a file are called base features. Features created from base features by functions are

called derived features. The target feature is some function, perhaps via the application of several

other functions, of the base features. The output file contains the base and derived features that

the user specifies for output and it also contains the target feature. The output features are the

features that will be available to the learning algorithm when it processes the synthetic dataset. If

an input file is used to define any features, then the size of the output dataset is fixed to the number

of examples in the file; otherwise, the user may specify a number of test and training examples to

produce.

Functions used to create derived values are defined in Python syntax and may use any built-

in functions from the Python language. Functions may also be arbitrary, user-defined Python

functions (including functions that generate random values). The set of all functions applied to

create a target value from the base features is called a model. Multiple models may be defined and

applied to proportions of the data (e.g., for 20% of the data, the target concept is f1 + f2; for 80%

of the data, the target concept is f1 − f2).

133

Constraints are Boolean functions that apply to a single created example and enforce relation-

ships among the values of the example’s attributes. Satisfiability of constraints is not checked;

random feature values are generated and derived feature values are computed until satisfactory ex-

amples are generated. A progress bar allows the user to determine if insufficient progress is being

made due to unsatisfiable (or low-likelihood of satisfiability) constraints. There is no mechanism

for enforcing constraints between examples.

An example synthetic problem specification is given in Appendix B.

7.1.3 Learners

The experiments make use of seven different learning algorithms implemented in the Orange data

mining system (Demsar et al., 2004). The algorithms are:

1. Majority (MAJ) classifies each example according to the most frequent class in the training

data.

2. K-Nearest Neighbors (KNN), for k = 3 (3NN), classifies each example according to the most

frequent class of its 3 closest neighbors. Closeness is measured using Euclidean distance for

continuous valued features and Hamming distance for symbolic valued features.

3. KNN, for k = 10 (10NN), classifies as per 3NN, but an example is classified to the most

frequent class of its 10 nearest neighbors.

4. Naive Bayes’ (NB) classifies each example to the most probable class c computed from the

product of the class probabilities for each attribute considered independently of each other (i.e.,

the value of c that maximizes P (C = c)
∏

A P (A = a|C = c)). NB uses relative frequency as

the probability estimate.

5. Tree (TREE) classifies each example using a CART (Breiman et al., 1984) classification tree

that (1) is pruned when the maximum majority class is greater than .85 and (2) requires at least

5 examples in each split.

6. Support Vector Machine (SVM) classifies each example using a C-support vector classification

machine with a radial basis function (RBF) kernel. The γ parameter of the RBF kernel is

γ = 1/# attributes. Orange provides SVMs via an interface to libsvm (Chang and Lin,

2006).

134

7. Forest (FORST) classifies each example using a 50-tree forest learner. Essentially, FORST

is an ensemble method gathering independent classifications from each of fifty tree and com-

bining them to form a final classification for the example. For a discussion of the theory of

random forest learners, see Breiman (2001).

I choose these learners for two reasons. First, as discussed in Section 3.2, different learners have

different biases. Feature construction modifies the dataset; in turn, the dataset interacts with the

bias of a learner. It is reasonable to expect feature construction to affect different learners in dif-

ferent ways. In particular, feature construction may result in different changes in generalization

performance. Second, the learners I choose represent a variety of types of classification learn-

ers. KNN, NB, and TREE are well-known and understood by a variety of researchers inside and

outside of the machine learning community. SVM and FORST have recently achieved very good

classification results on a variety of problems. KNN and TREE represent different degrees of ex-

plicit feature measurement: KNN does not weight distances based on feature relevance and TREE

explicitly chooses features at every node split. NB has a theoretical limitation in dealing with de-

pendent features: are constructed features dependent to a degree that hampers NB classification?

SVMs perform feature construction as part of their internal operation. Can SVMs be improved by

further feature construction? Can learning methods that do not perform internal feature construc-

tion be improved by ISAK?

For each of the CLPs, we can establish two baseline standards for classification performance.

The first is the performance of a learning algorithm on the original learning problem with no addi-

tional features. The second performance baseline is the use of a majority classifier. In the context

of varying feature sets, we may interpret a majority classifier as a classifier using no features. A

majority learner makes no use of features in building its hypotheses; MAJ simply picks the most

likely target class, regardless of features, and chooses that as its target concept for all input cases.

Thus, we have a progression of comparison from (1) classification with no features, to (2)

classification with the given problem features, and then to (3) learning with the various combi-

nations of constructed features and base features discussed in the next section. Table 23 shows

base feature set learning accuracies, computed by 10-fold cross-validation, for each problem de-

scribed in Section 7.1.1 with these seven learners. It should be emphasized that these, and other

baseline results, are achieved with off-the-shelf learning systems using no additional information

135

Table 23: Base Accuracy Rates for Example Datasets. The table shows the base accuracy rates

for 15 CLPs described in Tables 20 and 21. The values are the 10-fold cross-validation accuracies

using the original, unmodified features. The mean accuracy and standard error for each problem

are computed over each learner excluding MAJ. The standard error computed over the CLPs is

somewhat misleading because there are 15 CLPs but only 12 have unique datasets. The differences

in the Promoter and TTT problems are in the KBs. Hence, Promoter and TTT have the same base

rate for each different CLP. The standard error over distinct CLPs is shown in the bottom row of

the table.

CLP Name MAJ 3NN 10NN NB TREE SVM FORST Standard Error

Balance 0.46 0.78 0.83 0.90 0.78 0.91 0.80 0.83 0.024

Iris 0.33 0.95 0.95 0.93 0.92 0.96 0.94 0.94 0.006

Isoceles 0.82 0.96 0.93 0.80 0.82 0.81 0.84 0.86 0.028

Monks1 0.50 0.84 0.90 0.75 0.95 1.00 0.94 0.90 0.037

Monks2 0.66 0.79 0.69 0.62 0.65 0.65 0.65 0.68 0.024

Monks3 0.52 0.86 0.93 0.96 0.96 0.99 0.99 0.95 0.020

Offsides2 0.58 0.60 0.64 0.71 0.66 0.66 0.73 0.67 0.019

Offsides5 0.58 0.60 0.62 0.63 0.61 0.68 0.70 0.64 0.016

Offsides11 0.49 0.55 0.50 0.50 0.50 0.50 0.46 0.50 0.012

Promoter1 0.47 0.81 0.86 0.86 0.82 0.91 0.87 0.85 0.014

Promoter2 0.47 0.81 0.86 0.86 0.82 0.91 0.88 0.86 0.014

Promoter3 0.47 0.81 0.86 0.86 0.82 0.91 0.88 0.85 0.014

TTT1 0.65 0.81 0.90 0.70 0.84 0.99 0.90 0.86 0.040

TTT2 0.65 0.81 0.90 0.70 0.84 0.99 0.90 0.86 0.040

Wine 0.40 0.95 0.95 0.98 0.91 0.98 0.97 0.96 0.011

0.54 0.80 0.82 0.78 0.79 0.85 0.83 0.81

0.029 0.032 0.036 0.036 0.034 0.041 0.037

0.034 0.036 0.041 0.041 0.038 0.046 0.041 0.0009

Mean
for CLP over

Learners
Excluding MAJ

Mean for
Learner
over CLPs

Standard
Error Over
All CLPs

Standard Error
Over Distinct
CLPs

136

outside of the given dataset itself. The only information used to generate the hypotheses that lead

to these results are (1) the learning method and (2) the examples in the dataset. These examples

are contained in standard attribute-value datasets and, in the case of the UCI datasets, are the exact

examples downloaded from the UCI repository.

7.1.4 Use of Base and Constructed Features in Learning

Processing a CLP by ISAK results in constructed features. I used the features from each CLP in

one of five different combinations of base features and constructed features (respectively, those

features in the original learning dataset and those feature returned from ISAK). The base features

can be partitioned into two sets: those features which are components of constructed features

(CCFs) and those feature which are not components of constructed features. The second set is

called the remaining initial features (RIF).

The five combinations are:

1. all of the original base features and none of the constructed features (Base),

2. none of the original base features and all of the constructed features (New),

3. all of the original base features and all of the constructed features (All),

4. all of the RIFs and all of the constructed features (Constructed and Remaining Initial Features,

ConRIF), and

5. all of the components of constructed features and none of the constructed features (CCF).

Table 24 shows the composition of the feature sets.

The motivation for combination four, ConRIF, comes from viewing each base feature as a po-

tential source of information that may contribute to the target classification. If a constructed feature

makes use of several base features, it encapsulates some of the information contained in those base

features. If an important base feature is not used as a component of any of the constructed features,

then important information will be missing in the constructed feature set alone (i.e., combination

two). Further, using all base and constructed features (i.e., combination three) may result in dupli-

cation of information in the feature set. Duplication of information in slightly different forms may

promote overfitting.

137

Table 24: Feature Set Composition. The feature sets used in the first set of experiments are created

from combining three sources of features: (1) the components of constructed features (CCF), (2)

the remaining initial features (RIF), and (3) the constructed features. The shaded boxes indicate

that a particular source is used in that experimental feature set.

Source of Features

Feature Base Features Constructed

Set CCF RIF Features

Base

New

All

ConRIF

CCF

Combination five, CCF, separates the information content in the features (i.e., directly in the

CCF set) used for feature construction from the operations performed and the information gener-

ated from those features (i.e., the constructed features) during feature construction. Feature con-

struction can be viewed as adding to the information content of the base features. Then, each of the

feature sets that make use of constructed features has two sources of information: the base features

used and the constructions made from those features. CCF is meant to allow us to tease apart the

contribution from each of these sources.

7.1.5 Successor Functions

There are five successor functions used in this set of experiments: Exhaustive, Top, Random,

Joined, and Separate. They are described fully in Section 6.3.4. Exhaustive creates all plausible

constructions from the given FCFs and features; Top and Random select a subset of features for

construction; Joined and Separate rank features and choose features of similar ranking for use

in constructions. In each case, the plausible constructions are subject to pruning in the beam

search. In these experiments, each generator is paired with sets of values for its hard limit and

maximum cross parameters. These parameters determine the breadth of search within a depth

specified by the CLP search parameters. The Exhaustive successor explores the complete breadth

138

of the allowed depth; the hard limit and maximum cross parameters listed for it are the maximum

breadth parameters that result from the beam search parameters specified in the CLPs.

For convenience, a successor function and its parameters may be referred to as one unit with

the parameters in the order HardLimit and then MaximumCross. Join(5,10) refers to the Join

successor function with HardLimit = 5 and MaximumCross = 10.

7.2 ISAK: CONCEPT DESCRIPTION ABILITIES, BENCHMARK PERFORMANCE

IMPROVEMENTS, AND SUCCESSOR FUNCTION EFFECTS

The following sets of experiments demonstrate the ability of ISAK to use knowledge and search

for feature construction in several different benchmark problems and to improve classification

accuracy on these problems. The experiments also show the results of different successor functions

and the effect of parameter variation in these functions.

7.2.1 Experimental Variables, Parameters, and Method

The first set of experiments combines the CLPs described in Section 7.1.1, the learners described

in Section 7.1.3, and the methods of using constructed features (Section 7.1.4) with successor

functions and parameters from Section 7.1.5. The experimental variables and their respective levels

are shown in Table 25. Each experimental condition (i.e., a particular CLP, learner, successor, and

successor parameters) was repeated 10 times.

Using all of the available examples for feature construction would allow overfitting the data

with constructed features. In this set of experiments, ISAK was configured to use a twenty percent

sample of the data for feature construction. The sample size was chosen to balance between min-

imizing overall run-time for a large set of runs while still generating usable constructed features.

The feature construction sample is taken independently of the cross-validation samples used in

learning evaluation; the sample used for feature construction is replaced for learning.

To restrict the dimensionality of the constructed data, a maximum of 10 features are returned

from ISAK for use in the learning algorithm. The maximum number of additional features was

139

Table 25: Experimental Conditions for the First Set of Experiments. These conditions, along with

numeric parameters for the successor functions, define the space of input variables for the first set

of experiments. Each condition (i.e., a selection of a learner, successor function with parameters,

CLP, and feature set) was repeated 10 times yielding a 10-fold cross-validation accuracy for each

repetition. The ten values were then averaged.

Experimental Variable Values

Learners MAJ, 3NN, 10NN, NB, TREE, SVM, FORST

Successor Functions Exhaustive, Top, Random, Joined Ball, Separate Ball

CLPs Each CLP from Section 7.1.1

Feature Set Base, New, All, ConRIF, CCF

chosen to be of the approximate magnitude of the number of base features in each of the CLPs.

Allowing the number of constructed features to grow arbitrarily large would allow the features

to overfit the data from which they are constructed. These returned features are the top features

measured by information gain on the data sampled for feature construction. Some problems are

restricted to 5 constructed features as shown in Table 22. So, at most the number of features in any

dataset used for learning is 10 + |base features|.
10-Fold Cross-Validation Accuracy (10CVA) was taken as the primary performance indica-

tor, where classification accuracy is defined as the ratio of correct classification predictions to all

predictions. However, there are problems with simply evaluating learners by their accuracy. The

Area-Under-the-(ROC)-Curve3 (AUC) for learners has been proposed as an alternative measure of

performance. I will not evaluate AUC in the same detail as accuracy, but I did gather AUC rates for

the experimental conditions. I also gathered the time spent in feature generation and the number

of features examined in each condition.

The relationships among the experimental variables are shown in Figure 35.

3The ROC curve is the receiver operating characteristic curve.

140

Balance
Isoceles

Monks 1,2,3
Offside 2, 5, 11

TTT 1,2
Iris

Promoter 1,2
Wine

CLPs

ISAK Evaluator

Experimental
Input

5, 10, 20, 40Random
Top

SeparateBall
JointBall

Detailed
in

Results

Successor Function
and

Successor Parameters

Exhaustive

Learners

FORST

MAJ
3NN
10NN

SVM

NB
TREE

Feature Set

Base
New
All

ConRIF
CCF

Generalization

Estimate

10−Fold C.V.
Accuracy

Experimental
Output

AUC

Construction
Resources

Features
Generated

Time

Figure 35: Relationships among Experimental Variables. Seperate Ball and Joined Ball are ab-

breviated as Sep and Join in the results tables. The generalization estimates are 10-fold cross-

validation classification accuracy (10CVA) and Area Under an ROC Curve (AUC). Features Gen-

erated is a simple count of the features considered in the construction process; Time is the user

time consumed by ISAK. The diagram shows the layout of a single run. Multiple replication trials

(10 per set) were performed for each set of experimental variables.

141

Table 26: 10CVA Averaged over Learner, CLP, and Run by Feature Set. The Base feature set gives

an 10CVA of .81 with a standard error of .0009. The maximum standard error of cell values in this

table is less than .0064 (Section 7.2.5).

Base Feature Set 10CVA: .81

Feature Set

All New ConRIF CCF

Exhaustive 150 150 0.87 0.83 0.86 0.80

Join 20 80 0.86 0.82 0.86 0.79

Random 40 40 0.86 0.82 0.86 0.79

Sep 10 40 0.86 0.79 0.85 0.77

Top 40 40 0.86 0.80 0.85 0.78

Average 10CVA
over All Learners

and All CLPs

Successor
Function

Maximum
Cross

Hard
Limit

7.2.2 An Experiment Comparing Feature Sets Averaged over All Learners

Table 26 shows the 10CVA averaged over the conditions of learner, CLP, and run for each level of

feature set. A detailed table of all successor functions, successor parameters, and feature sets is

shown in Appendix A.1, as are analogous results with AUC as the performance measure. Under

AUC, the trends across experimental conditions are similar to the trends under 10CVA.

Among the feature sets, the general trend is that CCF < New < Base < All u ConRIF .

That is, the order of performance of feature sets is (1) components of constructed features, (2)

newly constructed features, (3) base features, and then, (4) all features (base and constructed) and

constructed and remaining initial features are approximately equivalent. The comparison among

levels of feature set is examined in more detailed in Sections 7.2.7 and 7.2.9.

7.2.3 An Experiment Comparing Successors Averaged over All Learners

Table 27 shows the 10CVA averaged over the conditions of learner, CLP, and run for each level

of successor and successor parameters. A detailed table of all successor functions, successor pa-

rameters, and feature sets is shown in Appendix A.1, as are analogous results with AUC as the

142

Table 27: 10CVA Averaged over Learner, CLP, and Run by Successor. The Base feature set gives

an 10CVA of .81 with a standard error of .0009. The maximum standard error of cell values in this

table is less than .0064 (Section 7.2.5). The three left-most columns are the values of the successor

function and its search breadth parameters. The first row of values, Exhaustive, may be taken as

gold standard of comparison for each other breadth-restricted successor.

Base Feature Set 10CVA: .81

Feature Set

All New

Exhaustive 150 150 0.87 0.83

Join 5 10 0.84 0.73

Join 5 20 0.85 0.75

Join 5 40 0.85 0.75

Join 10 20 0.85 0.76

Join 10 40 0.86 0.80

Join 20 40 0.86 0.81

Join 20 60 0.87 0.82

Join 20 80 0.86 0.82

Random 5 5 0.84 0.71

Random 10 10 0.85 0.77

Random 20 20 0.86 0.80

Random 40 40 0.86 0.82

Sep 3 6 0.84 0.73

Sep 3 10 0.85 0.76

Sep 3 15 0.85 0.76

Sep 3 20 0.85 0.77

Sep 3 30 0.85 0.77

Sep 5 10 0.85 0.76

Sep 5 15 0.85 0.75

Sep 5 20 0.85 0.76

Sep 5 30 0.86 0.78

Sep 10 15 0.85 0.77

Sep 10 20 0.86 0.78

Sep 10 30 0.86 0.79

Sep 10 40 0.86 0.79

Top 5 5 0.84 0.74

Top 10 10 0.85 0.76

Top 20 20 0.85 0.78

Top 40 40 0.86 0.80

Average 10CVA
over

All Learners
and All CLPs

Successor
Function

Maximum
Cross

Hard
Limit

143

performance measure. Under AUC, the trends across experimental conditions are similar to the

trends under 10CVA.

Table 27 shows that the Exhaustive successor function serves as a maximum (based on breadth)

for the other successors. Because Exhaustive does not select particular features for use in expand-

ing the fringe (i.e., it attempts to generate all combinations of features and feature constructor

functions), it performs the most comprehensive search of the constructed feature space. Hence,

the other successor functions are only looking at a subset of the features looked at by Exhaus-

tive and may miss features discovered by Exhaustive. As a trade-off, other successors may find

features deeper in the search space than Exhaustive can explore in a given amount of time (see

Section 7.2.11). However, in the search parameters for the CLPs, the hardest constraint on search

is depth. So, the different successors are really only varying breadth for a given depth in each

CLP. The variation in successor parameters controls the breadth. Thus, Exhaustive is searching the

broadest space of features. Join(20,60), Join(20,80), Random(40), and Top(40) all approach the

performance of Exhaustive because they are searching more broadly than lower valued successor

parameters.

7.2.4 An Experiment Comparing Different Generators and Feature Sets over Individual

Learners

Table 28 shows the 10CVA averaged over the CLPs and runs by each level of successor func-

tion and feature set for the TREE and SVM learners. Additional tables for the other learners are

shown in Section A.3.1. Appendix A.3.2 shows analogous results for AUC for each learner. The

performance follows similar trends to that of the averages taken over all learners (Table 40).

Here again, Join(20,60), Join(20,80), Random(40), and Top(40) approach the performance

of Exhaustive. The highly restricted successors (i.e., with low parameter values), still help the

TREE substantially. In answer to the question, “Can SVMs benefit from feature construction?”,

the answer is yes: under feature construction with broad search, we see a 5% improvement in

10CVA.

Comparing Table 27 and Table 28 , limited successors seem to help TREE more than the

average learner (increases around 5% for TREE versus 3% on average).

144

Table 28: 10CVA Averaged over CLP and Run by Successor Function and Feature Set for TREE

and SVM. The three left-most columns are the values of the successor function and its search

breadth parameters. The maximum standard error in this table is less than .018. Note that the value

of .91 for SVM, All, Join(20,60) is unexpected; it is greater than SVM, All, Exhaustive (.90). Most

likely, this is due to overlap in the confidence intervals and rounding of these means.

TREE SVM

Base 0.79 Base 0.85

All New ConRIF CCF All New ConRIF CCF

Exhaustive 150 150 0.87 0.84 0.87 0.78 0.90 0.86 0.89 0.83

Join 5 10 0.84 0.73 0.84 0.70 0.88 0.75 0.87 0.73

Join 5 20 0.84 0.75 0.84 0.72 0.88 0.76 0.87 0.75

Join 5 40 0.85 0.75 0.85 0.72 0.89 0.77 0.88 0.75

Join 10 20 0.85 0.76 0.85 0.73 0.89 0.78 0.87 0.76

Join 10 40 0.86 0.80 0.86 0.76 0.90 0.81 0.87 0.79

Join 20 40 0.86 0.82 0.86 0.77 0.90 0.83 0.88 0.80

Join 20 60 0.87 0.82 0.87 0.78 0.91 0.84 0.89 0.82

Join 20 80 0.87 0.83 0.87 0.77 0.90 0.85 0.89 0.81

Random 5 5 0.84 0.71 0.84 0.69 0.88 0.73 0.87 0.71

Random 10 10 0.86 0.78 0.85 0.74 0.89 0.79 0.88 0.76

Random 20 20 0.86 0.80 0.85 0.76 0.90 0.82 0.88 0.79

Random 40 40 0.87 0.82 0.87 0.78 0.90 0.84 0.89 0.81

Sep 3 6 0.84 0.73 0.84 0.71 0.88 0.75 0.86 0.73

Sep 3 10 0.85 0.75 0.85 0.72 0.88 0.77 0.87 0.75

Sep 3 15 0.85 0.76 0.85 0.73 0.89 0.78 0.87 0.75

Sep 3 20 0.85 0.77 0.84 0.74 0.89 0.79 0.87 0.76

Sep 3 30 0.86 0.78 0.85 0.75 0.90 0.79 0.88 0.76

Sep 5 10 0.85 0.76 0.84 0.73 0.88 0.78 0.87 0.76

Sep 5 15 0.85 0.75 0.85 0.73 0.89 0.77 0.88 0.75

Sep 5 20 0.85 0.76 0.85 0.73 0.89 0.78 0.88 0.76

Sep 5 30 0.86 0.79 0.86 0.74 0.90 0.80 0.89 0.78

Sep 10 15 0.85 0.77 0.85 0.74 0.89 0.79 0.88 0.76

Sep 10 20 0.85 0.78 0.85 0.74 0.89 0.80 0.87 0.77

Sep 10 30 0.86 0.79 0.85 0.75 0.89 0.81 0.88 0.78

Sep 10 40 0.86 0.79 0.86 0.75 0.89 0.81 0.88 0.79

Top 5 5 0.84 0.74 0.84 0.72 0.88 0.76 0.86 0.74

Top 10 10 0.85 0.76 0.84 0.73 0.88 0.78 0.88 0.76

Top 20 20 0.86 0.78 0.85 0.75 0.89 0.80 0.88 0.78

Top 40 40 0.86 0.80 0.86 0.76 0.90 0.82 0.88 0.79

Successor
Function

Maximum
Cross

Hard
Limit

145

7.2.5 Variance in Experiments

The values in the preceding tables are averages of behavior. To understand these averages we need

to address the variance in these values. Shortly, we will develop a linear model of the experi-

mental variables. Linear modeling assumes a common variance among each of the experimental

conditions.

There are several sources of variance in this set of experiments. In the feature construction

process, there is a random sampling of cases to be used for feature construction. In the random

generator, there is a random selection of features to be used for successive constructions. In all

cases, the evaluation of feature sets is done via cross-validation which selects training and testing

sets randomly. We will examine several combinations of variation. In each, I use standard error as

the measure of variability.

The standard error determines the expected degree of overlap between the mean accuracies

given in the previous sets of tables. For a given mean and standard error, X ± 1.96SE represents a

95% confidence interval around that mean. If two confidence intervals do not overlap, an α = .05

difference exists in those means, but this significance is uncorrected for multiple comparisons.

The following figures have a horizontal box-and-whiskers plot superimposed on them. In the box-

and-whiskers plot, the solid line indicates the inter-quartile range (IQR) spanning the first and

third quartiles [x.25, x.75] and the central dot on that line indicates the median (x.5). The circles

(overlapping in these graphs) represent outliers (values greater than (1.5IQR) + x.75). Dashes

represent values that are neither outliers nor within the IQR.

1. What is the variability of evaluations in a single experimental run? For example, given a CLP,

a learner, a generator and generator parameters, and a feature set, what is the standard error

of the 10-fold C.V. accuracy of one run? The distribution of these standard errors is shown in

Figure 36.

2. What is the variability of the average 10-fold C.V. accuracies over the 10 repeated runs for each

experimental scenario (i.e., a CLP, successor function, successor parameters, and a learner)?

The distribution of these standard errors is shown in Figure 37. These values are the standard

errors over the experimental conditions if we do not aggregate the values over any particular

experimental condition.

146

Standard Error of 10−Fold CV Accuracy

F
re

qu
en

cy

0.00 0.02 0.04 0.06 0.08

0
10

00
0

20
00

0
30

00
0

Figure 36: Histogram of Standard Errors for

Single Runs of Experimental Setups. The

black bar, dashed lines, and overlapping cir-

cles to the right form a box-and-whiskers

plot of the distribution of values in the his-

torgram. See the text for details.

Standard Error of 10−Fold CV Accuracy
Averaged over Runs

F
re

qu
en

cy

0.00 0.02 0.04 0.06 0.08

0
20

00
60

00

Figure 37: Histogram of Standard Errors for

Repeated Runs of Experimental Conditions.

The promoter CLP and the New feature set

account for most of outlying, high standard

errors.

147

3. The distribution of standard errors over repeated runs and CLPs is shown in Figure 38. These

are the standard errors occurring in means shown in the Table 28 and in the tables in Appendix

A.3.1. The means in these figures can be compared with a (worst-case) standard error of .018.

4. The distribution of variances over repeated runs, CLPs, and learners is shown in Figure 39.

These are the standard errors of the accuracy means in Table 26 and Table 28.

One cell in Tables 26 and 27 is the average of the 10-fold cross-validation accuracies over

CLP, learner, and run for the given successor function, successor parameters, and feature set. The

distribution of the standard errors of these averages are given in Figure 39. The maximum standard

error is less than .0064.

148

Standard Error of 10−Fold CV Accuracy
Averaged over Runs and Problems

F
re

qu
en

cy

0.010 0.012 0.014 0.016

0
50

10
0

15
0

Figure 38: Histogram of Standard Errors of

Average CA over Runs and Problems. These

are the standard errors occurring in means

shown in the Figure 28 and in the figures in

Appendix A.3.1.

Standard Error of 10−Fold CV Accuracy
Averaged over Runs, Problems, and Learners

F
re

qu
en

cy

0.0052 0.0056 0.0060 0.0064

0
5

10
15

20
25

30

Figure 39: Histogram of Standard Errors

of Average CA over Runs, Problems, and

Learners. These are the standard errors of

the accuracy means in Figure 26

149

7.2.6 A Linear Model for Experimental Variables

Here I analyze the extent to which the experimental variables and interactions among these vari-

ables account for the variability in the experimental results. The values of the experimental condi-

tions are given in Table 25. I generated two linear models of the 10CVA on the experimental input

variables (Figure 35):

1. the first linear model consists of the two- and three-way interactions between the learner, CLP,

and feature set and two-way interactions between the successor function and its two parameters

(HardLimit and MaximumCross).

2. the second linear model consists of (1) all two-way interactions between learner, CLP, feature

set, successor function, and the successor parameters and (2) the three-way interactions among

the learner, CLP, and feature set and among the successor function and successor parameters.

The second, more complex model, accounted for significantly more variability than the simple

model. The results of an ANOVA between the two models is shown in Table 29. In addition to the

comparison between the two models, we see that all of the main effects and all of the interactions

are significant. We also see that the residual sum of squares for the second model are relatively

small.

The complete set of parameters for the second model is given in Section A.2. In the more

complex model, almost all of the coefficients are significant (i.e., non-zero). Of those coefficients

that are not significant (i.e., the coefficients are approximately zero), the most obvious block is

the set of coefficients on the interactions between CLP and feature set. Likely, the insignificance

is because the variability is accounted for by the CLP and feature set individually and the three-

way interaction between CLP, feature set, and learner which is by far the strongest three-way

interaction. The CCF4 feature set also has weak coefficients on its interactions with the learners

and its interactions with the learners and CLPs.
4The CCF feature set is referred to as UsedO in Appendix A.2.

150

Table 29: ANOVA for Linear Models of the First Set of Experiments. In the ANOVA analysis, gen

refers to the successor function. All interactions among experimental conditions have a (highly)

significant effect on 10CVA (abbreviated CA in the table).
justanova.txt Wed Mar 28 11:00:12 2007 1

Analysis of Variance Table

Response: CA
 Df Sum Sq Mean Sq F value Pr(>F)
learner 6 147.861 24.643 18260.225 < 2.2e-16 ***
prob 14 196.944 14.067 10423.637 < 2.2e-16 ***
ftrSet 4 17.496 4.374 3240.977 < 2.2e-16 ***
gen 4 0.355 0.089 65.849 < 2.2e-16 ***
hardLimit 1 1.219 1.219 902.959 < 2.2e-16 ***
maxCross 1 0.129 0.129 95.954 < 2.2e-16 ***
learner:prob 84 76.927 0.916 678.585 < 2.2e-16 ***
learner:ftrSet 24 4.219 0.176 130.256 < 2.2e-16 ***
prob:ftrSet 56 24.439 0.436 323.373 < 2.2e-16 ***
gen:hardLimit 3 0.085 0.028 20.910 1.633e-13 ***
gen:maxCross 1 0.014 0.014 10.583 0.001144 **
hardLimit:maxCross 1 0.118 0.118 87.445 < 2.2e-16 ***
learner:prob:ftrSet 336 17.994 0.054 39.683 < 2.2e-16 ***
Residuals 15214 20.532 0.001

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Analysis of Variance Table

Response: CA
 Df Sum Sq Mean Sq F value Pr(>F)
learner 6 147.861 24.643 25797.1389 < 2.2e-16 ***
prob 14 196.944 14.067 14725.9961 < 2.2e-16 ***
ftrSet 4 17.496 4.374 4578.6905 < 2.2e-16 ***
gen 4 0.355 0.089 93.0281 < 2.2e-16 ***
hardLimit 1 1.219 1.219 1275.6562 < 2.2e-16 ***
maxCross 1 0.129 0.129 135.5594 < 2.2e-16 ***
learner:prob 84 76.927 0.916 958.6713 < 2.2e-16 ***
learner:ftrSet 24 4.219 0.176 184.0195 < 2.2e-16 ***
learner:gen 24 0.091 0.004 3.9814 1.863e-10 ***
learner:hardLimit 6 0.295 0.049 51.4433 < 2.2e-16 ***
learner:maxCross 6 0.026 0.004 4.6204 0.0001070 ***
prob:ftrSet 56 24.439 0.436 456.8448 < 2.2e-16 ***
prob:gen 56 1.829 0.033 34.1867 < 2.2e-16 ***
prob:hardLimit 14 2.507 0.179 187.4643 < 2.2e-16 ***
prob:maxCross 14 0.185 0.013 13.8572 < 2.2e-16 ***
ftrSet:gen 16 0.263 0.016 17.1747 < 2.2e-16 ***
ftrSet:hardLimit 4 0.841 0.210 220.0036 < 2.2e-16 ***
ftrSet:maxCross 4 0.081 0.020 21.3101 < 2.2e-16 ***
gen:hardLimit 3 0.085 0.028 29.5402 < 2.2e-16 ***
gen:maxCross 1 0.014 0.014 14.9510 0.0001108 ***
hardLimit:maxCross 1 0.118 0.118 123.5381 < 2.2e-16 ***
learner:prob:ftrSet 336 17.994 0.054 56.0621 < 2.2e-16 ***
gen:hardLimit:maxCross 3 0.021 0.007 7.2137 7.802e-05 ***
Residuals 15067 14.393 0.001

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Analysis of Variance Table

Model 1: CA ˜ (learner + prob + ftrSet)^3 + (gen + hardLimit + maxCross)^2
Model 2: CA ˜ (learner + prob + ftrSet + gen + hardLimit + maxCross)^2 +
 (learner + prob + ftrSet)^3 + (gen + hardLimit + maxCross)^3
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 15214 20.5323
2 15067 14.3932 147 6.1392 43.718 < 2.2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

151

7.2.7 An Experiment Comparing the Effect of Different Feature Sets within Each Individ-

ual Learner

There are clear trends in the accuracies given different combinations of base and constructed fea-

tures for particular learners (Table 30 and Figure 40). Here, we will ignore (1) the MAJ learner

because it is unaffected by feature set and (2) the CCF feature set because it has very poor per-

formance. Within the remaining experimental conditions, the only differences that are not signifi-

cant are for NB: (All, Base) and (All, ConRIF) and for FORST, 3NN, and TREE: (All, ConRIF).

The experimental condition New gives uniformly poor performance and is significantly worse

than all other feature sets including condition Base. Essentially, the ordering of feature sets is

New < Base < ConRIF = All.

The statistical comparison was done using Tukey’s Honestly Significant Difference (HSD) test

(Hochberg and Tamhane, 1987). Tukey’s HSD test is performed after an ANOVA test reveals that

some difference exists in group means for given levels of an experimental variable. If the ANOVA

gives evidence of mean difference, Tukey’s HSD provides a test of which levels of the mean differ

from each other in pairwise comparisons. Tukey’s HSD operates by comparing differences in the

means for each level of a variable and makes appropriate adjustments for multiple comparisons.

Table 30: Average 10CVA by Feature Set within Learners. The table shows the average 10-fold

cross-validation accuracy per feature set averaged over successor, CLP, and run in the context of a

single learner. Significance testing of differences in means is done in Figure 40. The only learner

for which All is not the highest 10CVA is naive Bayes’. See text for details.

Learner Feature Set Learner Feature Set

3NN Base 0.796 TREE Base 0.794

3NN New 0.766 TREE New 0.775

3NN ConRIF 0.837 TREE ConRIF 0.851

3NN All 0.845 TREE All 0.854

10NN Base 0.822 SVM Base 0.855

10NN New 0.780 SVM New 0.793

10NN ConRIF 0.854 SVM ConRIF 0.877

10NN All 0.867 SVM All 0.891

NB Base 0.784 FORST Base 0.829

NB New 0.751 FORST New 0.786

NB ConRIF 0.794 FORST ConRIF 0.869

NB All 0.792 FORST All 0.872

Average
10CVA

Average
10CVA

152

0.00 0.02 0.04 0.06 0.08 0.10

All−ConRIF

All−Base

ConRIF−Base

All−New

ConRIF−New

Base−New

3NN

0.00 0.02 0.04 0.06 0.08 0.10

All−ConRIF

All−Base

ConRIF−Base

All−New

ConRIF−New

Base−New

10NN

0.00 0.02 0.04 0.06 0.08 0.10

ConRIF−All

ConRIF−Base

All−Base

ConRIF−New

All−New

Base−New

NB

0.00 0.02 0.04 0.06 0.08 0.10

All−ConRIF

All−Base

ConRIF−Base

All−New

ConRIF−New

Base−New

TREE

0.00 0.02 0.04 0.06 0.08 0.10

All−ConRIF

All−Base

ConRIF−Base

All−New

ConRIF−New

Base−New

SVM

0.00 0.02 0.04 0.06 0.08 0.10

All−ConRIF

All−Base

ConRIF−Base

All−New

ConRIF−New

Base−New

FORST

Figure 40: Tukey’s HSD for Pairwise Differences between Feature Sets given Learners. The graphs

show 95% confidence intervals for the difference in the mean 10CVA for the pairs of feature sets

within the given learner.

153

Specifically, Tukey’s HSD preserves the family-wise type I error rate among a set of hypothesis

tests by using a specific ordering of comparisons between pairs of group means.

Why does New give uniformly poor performance? Recall, that for each CLP, the number of

features returned by ISAK to be used for learning is limited to 10. Thus, the new feature sets

have, at most, 10 features. Other feature sets expand and contract with the size of the base feature

set. A manual examination of the features in the new feature set reveals a large degree of overlap

in the base features used for construction. The overlap means that there is a lack of diversity of

information contained in the new feature sets. It appears that the new feature sets with a strict

size limit throw away too much of the information contained in the base feature sets and do not

synthesize enough additional information to make up for the loss.

For 3NN, TREE, and FORST the lack of difference between ConRIF and All is acceptable.

If All is considered a gold-standard, upper bound for the feature sets, then it would be surprising

for ConRIF to outperform All. For SVM, All does maintain a significant difference over ConRIF.

The significance is likely due to the implicit feature construction performed by SVM which may

construct additional (implicit) features using the base features removed from ConRIF.

The lack of improvement in NB with All versus Base (and the closeness of ConRIF to Base) is

likely due to the redundancy, and hence dependence, among the constructed features and between

the base and constructed features.

The significant differences between Base and ConRIF for most learners must be considered

against the actual size of the differences. Statistical significance does not imply real-world signifi-

cance; any sufficiently large sample size can give statistical significance to a difference. Looking at

Table 30, the increases in accuracy range from 1% for NB to 3% for SVM and up to 6% for TREE.

The small increase for NB is almost inconsequential. The modest increase for TREE seems quite

useful.

7.2.8 An Experiment Comparing the Effect of Different Successor Functions within Each

Individual Learner

The other question that can be asked, given a learner, is what successor function should be used. I

address this question in Table 31 and Figure 41. Again, Tukey’s HSD (described in Section 7.2.7)

154

Table 31: Average 10CVA by Successor within Learners. The table shows the average 10-fold

cross-validation accuracy per successor averaged over each CLP, feature set, and run in the context

of a single learner. Significance testing of differences in means is done in Figure 41.

Learner Successor Learner Successor

3NN Exh 0.829 TREE Exh 0.831

3NN Join 0.801 TREE Join 0.807

3NN Rand 0.797 TREE Rand 0.803

3NN Sep 0.795 TREE Sep 0.800

3NN Top 0.795 TREE Top 0.801

10NN Exh 0.847 SVM Exh 0.866

10NN Join 0.820 SVM Join 0.840

10NN Rand 0.816 SVM Rand 0.838

10NN Sep 0.813 SVM Sep 0.833

10NN Top 0.813 SVM Top 0.835

NB Exh 0.783 FORST Exh 0.854

NB Join 0.774 FORST Join 0.828

NB Rand 0.773 FORST Rand 0.825

NB Sep 0.771 FORST Sep 0.822

NB Top 0.772 FORST Top 0.822

Average
10CVA

Average
10CVA

is used to calculate the confidence intervals of the differences. The only significant differences

exist between Exhaustive and other levels (except for NB which has no significant differences).

The general trend is that Exhaustive is better than all others and the others are statistically similar.

These results are consistent with the fact that Exhaustive generates all possible combinations in

the space described by the CLP while the other generators perform pruning before expanding the

fringe. Also, the comparison is taken over all values of successor parameters. If we only used

the most extensive successor parameters, the non-exhaustive successors would be more similar to

Exhaustive. Importantly, the choice of successor function is not a function solely of accuracy. The

efficiency of generators with respect to accuracy improvement is discussed in Section 7.2.11.

155

0.00 0.02 0.04 0.06 0.08 0.10

Exh−Join
Exh−Rand
Join−Rand

Exh−Top
Join−Top

Rand−Top
Exh−Sep
Join−Sep

Rand−Sep
Top−Sep

3NN

0.00 0.02 0.04 0.06 0.08 0.10

Exh−Join
Exh−Rand
Join−Rand

Exh−Top
Join−Top

Rand−Top
Exh−Sep
Join−Sep

Rand−Sep
Top−Sep

10NN

0.00 0.02 0.04 0.06 0.08 0.10

Exh−Join
Exh−Rand
Join−Rand

Exh−Top
Join−Top

Rand−Top
Exh−Sep
Join−Sep

Rand−Sep
Top−Sep

NB

0.00 0.02 0.04 0.06 0.08 0.10

Exh−Join
Exh−Rand
Join−Rand

Exh−Top
Join−Top

Rand−Top
Exh−Sep
Join−Sep

Rand−Sep
Top−Sep

TREE

0.00 0.02 0.04 0.06 0.08 0.10

Exh−Join
Exh−Rand
Join−Rand

Exh−Top
Join−Top

Rand−Top
Exh−Sep
Join−Sep

Rand−Sep
Top−Sep

SVM

0.00 0.02 0.04 0.06 0.08 0.10

Exh−Join
Exh−Rand
Join−Rand

Exh−Top
Join−Top

Rand−Top
Exh−Sep
Join−Sep

Rand−Sep
Top−Sep

FORST

Figure 41: Tukey’s HSD for Pairwise Differences between Successors given Learners. The graphs

show 95% confidence intervals for the difference in the mean 10CVA for the pairs of generators.

Only Exhaustive has any significant difference with any other successor function.

156

7.2.9 An Experiment Comparing the Effect of Different Feature Sets within Each Individ-

ual CLP

Typically, one does not have the same control over the choice of learning problem as one does

with a choice of learning method. However, the data available in this set of experiments let us ask

what we can expect from different problems. Table 32 shows the means of different feature sets

and generators given a problem. Again, I performed a Turkey’s HSD test for significance of these

differences. The test by feature set within a CLP is given in Figure 42.

A few problems show very large increases in accuracy over the Base feature set: balance,

isosceles, monks1, and monks2. These problems share a small to moderate sized target concept

that is known a priori in a closed-form. Many CLPs show a strong decrease in accuracy for the

New feature set. The decrease is not reflected in the ConRIF and All datasets; this is evidence that

replacing the information from Base that is missing in New is sufficient to achieve Base level per-

formance. There are many insignificant (or statistically significant but small) differences between

Base, ConRIF, and All. Offsides2 shows modest improvement from both ConRIF and All. The

other offsides problems are poor performers with all of the feature sets. Iris, wine, and monks3

show little improvement but these CLPs already have a high accuracy rate over the given learners.

Some comparisons between problems are interesting. The offsides problems differ in number

of features; promoter2 and ttt1 use problem-specific knowledge, promoter1 and ttt2 use general

knowledge, and promoter3 uses a combination of problem-specific and general knowledge.

157

Table 32: Average 10CVA by Feature Set within CLPs. The table shows the average 10-fold cross-

validation accuracy per feature set averaged over learner, successor, and run in the context of a

single CLP. Significance testing of differences in means is done in Figure 42. Comparisons across

rows of similar CLPs are interesting but not tested statistically.

CLP Feature Set CLP Feature Set CLP Feature Set

bal Base 0.834 iris Base 0.943 isoc Base 0.860

bal New 0.901 iris New 0.930 isoc New 1.000

bal ConRIF 0.902 iris ConRIF 0.956 isoc ConRIF 1.000

bal All 0.904 iris All 0.956 isoc All 0.997

mnk1 Base 0.897 mnk2 Base 0.676 mnk3 Base 0.949

mnk1 New 0.958 mnk2 New 0.683 mnk3 New 0.947

mnk1 ConRIF 0.989 mnk2 ConRIF 0.859 mnk3 ConRIF 0.964

mnk1 All 0.989 mnk2 All 0.827 mnk3 All 0.970

off02 Base 0.667 off05 Base 0.639 off11 Base 0.502

off02 New 0.647 off05 New 0.601 off11 New 0.516

off02 ConRIF 0.698 off05 ConRIF 0.643 off11 ConRIF 0.505

off02 All 0.701 off05 All 0.644 off11 All 0.505

prom1 Base 0.855 prom2 Base 0.856 prom3 Base 0.855

prom1 New 0.775 prom2 New 0.582 prom3 New 0.665

prom1 ConRIF 0.845 prom2 ConRIF 0.862 prom3 ConRIF 0.852

prom1 All 0.846 prom2 All 0.870 prom3 All 0.862

ttt1 Base 0.856 ttt2 Base 0.855 wine Base 0.960

ttt1 New 0.839 ttt2 New 0.682 wine New 0.899

ttt1 ConRIF 0.846 ttt2 ConRIF 0.827 wine ConRIF 0.957

ttt1 All 0.908 ttt2 All 0.863 wine All 0.959

Average
10CVA

Average
10CVA

Average
10CVA

158

0.00 0.04 0.08

All−ConRIF

All−New

ConRIF−New

All−Base

ConRIF−Base

New−Base
bal

0.00 0.04 0.08

All−ConRIF

All−Base

ConRIF−Base

All−New

ConRIF−New

Base−New
iris

0.00 0.04 0.08

New−ConRIF

New−All

ConRIF−All

New−Base

ConRIF−Base

All−Base
isoc

0.00 0.04 0.08

ConRIF−All

ConRIF−New

All−New

ConRIF−Base

All−Base

New−Base
mnk1

0.00 0.04 0.08

ConRIF−All

ConRIF−New

All−New

ConRIF−Base

All−Base

New−Base
mnk2

0.00 0.04 0.08

All−ConRIF

All−Base

ConRIF−Base

All−New

ConRIF−New

Base−New
mnk3

0.00 0.04 0.08

New−All

New−ConRIF

All−ConRIF

New−Base

All−Base

ConRIF−Base
off11

0.00 0.04 0.08

All−ConRIF

All−Base

ConRIF−Base

All−New

ConRIF−New

Base−New
off02

0.00 0.04 0.08

All−ConRIF

All−Base

ConRIF−Base

All−New

ConRIF−New

Base−New
off05

0.00 0.04 0.08

Base−All

Base−ConRIF

All−ConRIF

Base−New

All−New

ConRIF−New
prom1

0.00 0.04 0.08

All−ConRIF

All−Base

ConRIF−Base

All−New

ConRIF−New

Base−New
prom2

0.00 0.04 0.08

All−Base

All−ConRIF

Base−ConRIF

All−New

Base−New

ConRIF−New
prom3

0.00 0.04 0.08

All−Base

All−ConRIF

Base−ConRIF

All−New

Base−New

ConRIF−New
ttt1

0.00 0.04 0.08

All−Base

All−ConRIF

Base−ConRIF

All−New

Base−New

ConRIF−New
ttt2

0.00 0.04 0.08

Base−All

Base−ConRIF

All−ConRIF

Base−New

All−New

ConRIF−New
wine

Figure 42: Tukey’s HSD for Pairwise Differences between Feature Sets given CLPs. For isoc, All,

New, and ConRIF are at least 10% greater than Base. For prom2, prom3, and ttt2, New is at least

10% smaller than Base, ConRIF, and All. For mnk2, Base and New are at least 10% less than

ConRIF and All.

159

7.2.10 An Experiment Comparing the Effect of Different Successor Functions within Each

Individual CLP

For a given CLP, there seems to be little significant difference due to successor function (see Table

33 and Figure 43). Again, I performed a Turkey’s HSD test for significance of these differences.

The problems that do show substantial variation due to successor are monks2, promoter2, pro-

moter3, and ttt1. Promoter2 and ttt1 use domain-specific KBs for those learning problems (in

contrast with the general symbolic KBs). This implies that more detailed knowledge leads to bet-

ter results earlier in the search. Monks2 uses general symbolic value manipulation. Promoter3

incorporates both domain and general knowledge. The base feature sets for these four problems

contain only symbolic features.

Among problems that have similar characteristics, the offsides problems differ in number

of features; promoter2 and ttt1 use problem-specific knowledge, promoter1 and ttt2 use general

knowledge, and promoter3 uses a combination of problem-specific and general knowledge. Pro-

moter1 has similar performance regardless of successor; promoter2 improves markedly with the

exhaustive successor and does poorly with the other successors. This may indicate a problem

with the search parameters for promoter2. Promoter3, which combines the knowledge used in

promoter1 and 2, seems to be an approximate average of the performance of the other two.

As shown by the widths of the confidence intervals, it appears that given a fixed CLP the choice

of successor function introduces substantially greater variability into the classification accuracy

than does the choice of a feature set (with the exception of the New feature set).

160

Table 33: Average 10CVA by Successor within a CLP. The table shows the average 10-fold cross-

validation accuracy per successor averaged over learner, feature set, and run in the context of a

single CLP. Significance testing of differences in means is done in Figure 43. These values are

computed from the main Experiment 1 dataset after screening out the MAJ learner and the CCF

feature set. Comparisons across similar CLPs are interesting but not tested statistically.

CLP Successor CLP Successor CLP Successor

bal Exh 0.880 iris Exh 0.951 isoc Exh 0.951

bal Join 0.880 iris Join 0.930 isoc Join 0.951

bal Rand 0.868 iris Rand 0.952 isoc Rand 0.951

bal Sep 0.872 iris Sep 0.939 isoc Sep 0.950

bal Top 0.880 iris Top 0.951 isoc Top 0.950

mnk1 Exh 0.971 mnk2 Exh 0.759 mnk3 Exh 0.962

mnk1 Join 0.951 mnk2 Join 0.732 mnk3 Join 0.960

mnk1 Rand 0.935 mnk2 Rand 0.745 mnk3 Rand 0.932

mnk1 Sep 0.951 mnk2 Sep 0.729 mnk3 Sep 0.960

mnk1 Top 0.960 mnk2 Top 0.703 mnk3 Top 0.960

off02 Exh 0.700 off05 Exh 0.640 off11 Exh 0.522

off02 Join 0.670 off05 Join 0.624 off11 Join 0.508

off02 Rand 0.672 off05 Rand 0.624 off11 Rand 0.512

off02 Sep 0.670 off05 Sep 0.629 off11 Sep 0.503

off02 Top 0.677 off05 Top 0.624 off11 Top 0.510

prom1 Exh 0.814 prom2 Exh 0.895 prom3 Exh 0.851

prom1 Join 0.821 prom2 Join 0.785 prom3 Join 0.807

prom1 Rand 0.829 prom2 Rand 0.770 prom3 Rand 0.773

prom1 Sep 0.819 prom2 Sep 0.716 prom3 Sep 0.763

prom1 Top 0.822 prom2 Top 0.725 prom3 Top 0.770

ttt1 Exh 0.891 ttt2 Exh 0.796 wine Exh 0.944

ttt1 Join 0.834 ttt2 Join 0.783 wine Join 0.940

ttt1 Rand 0.849 ttt2 Rand 0.789 wine Rand 0.930

ttt1 Sep 0.859 ttt2 Sep 0.781 wine Sep 0.939

ttt1 Top 0.848 ttt2 Top 0.783 wine Top 0.933

Average
10CVA

Average
10CVA

Average
10CVA

161

0.00 0.04 0.08

Exh−Join
Exh−Top
Join−Top
Exh−Sep
Join−Sep
Top−Sep

Exh−Rand
Join−Rand
Top−Rand
Sep−Rand

bal

0.00 0.04 0.08

Rand−Top
Rand−Exh
Top−Exh

Rand−Sep
Top−Sep
Exh−Sep

Rand−Join
Top−Join
Exh−Join
Sep−Join

iris

0.00 0.04 0.08

Join−Sep
Join−Top
Sep−Top

Join−Rand
Sep−Rand
Top−Rand
Join−Exh
Sep−Exh
Top−Exh

Rand−Exh
isoc

0.00 0.04 0.08

Exh−Top
Exh−Join
Top−Join
Exh−Sep
Top−Sep
Join−Sep

Exh−Rand
Top−Rand
Join−Rand
Sep−Rand

mnk1

0.00 0.04 0.08

Exh−Rand
Exh−Join

Rand−Join
Exh−Sep

Rand−Sep
Join−Sep
Exh−Top

Rand−Top
Join−Top
Sep−Top

mnk2

0.00 0.04 0.08

Exh−Sep
Exh−Join
Sep−Join
Exh−Top
Sep−Top
Join−Top

Exh−Rand
Sep−Rand
Join−Rand
Top−Rand

mnk3

0.00 0.04 0.08

Exh−Rand
Exh−Top

Rand−Top
Exh−Join

Rand−Join
Top−Join
Exh−Sep

Rand−Sep
Top−Sep
Join−Sep

off11

0.00 0.04 0.08

Exh−Top
Exh−Rand
Top−Rand
Exh−Join
Top−Join

Rand−Join
Exh−Sep
Top−Sep

Rand−Sep
Join−Sep

off02

0.00 0.04 0.08

Exh−Sep
Exh−Join
Sep−Join

Exh−Rand
Sep−Rand
Join−Rand

Exh−Top
Sep−Top
Join−Top

Rand−Top
off05

0.00 0.04 0.08

Rand−Join
Rand−Top
Join−Top

Rand−Sep
Join−Sep
Top−Sep

Rand−Exh
Join−Exh
Top−Exh
Sep−Exh

prom1

0.00 0.04 0.08

Exh−Join
Exh−Rand
Join−Rand

Exh−Top
Join−Top

Rand−Top
Exh−Sep
Join−Sep

Rand−Sep
Top−Sep

prom2

0.00 0.04 0.08

Exh−Join
Exh−Rand
Join−Rand

Exh−Top
Join−Top

Rand−Top
Exh−Sep
Join−Sep

Rand−Sep
Top−Sep

prom3

0.00 0.04 0.08

Exh−Sep
Exh−Rand
Sep−Rand
Exh−Top
Sep−Top

Rand−Top
Exh−Join
Sep−Join

Rand−Join
Top−Join

ttt1

0.00 0.04 0.08

Exh−Rand
Exh−Join

Rand−Join
Exh−Top

Rand−Top
Join−Top
Exh−Sep

Rand−Sep
Join−Sep
Top−Sep

ttt2

0.00 0.04 0.08

Exh−Join
Exh−Sep
Join−Sep
Exh−Top
Join−Top
Sep−Top

Exh−Rand
Join−Rand
Sep−Rand
Top−Rand

wine

Figure 43: Tukey’s HSD for Pairwise Differences between Generators Given Problems. With

the exception of the ttt and promoter problems and monk2, most of the confidence intervals are

relatively small.

162

Table 34: Overall Cost to Benefit. Each of the successor functions and parameters used to con-

struct ConRIF achieves approximately the same improvement over the base features. The major

difference is the time spent in feature generation. Random(20,20) uses the least time of these

successor-parameter pairs. The set of rows shown here is the top quartile of successors and param-

eters on the basis of improvement of ConRIF over Base.

Successor

random 20 20 1.8 0.85 0.04 0.021

sep 5 30 13.51 0.86 0.04 0.003

join 20 40 2.01 0.86 0.04 0.021

Overall random 40 40 5.15 0.86 0.04 0.008

top 40 40 5.38 0.85 0.04 0.007

join 20 60 2.81 0.86 0.05 0.017

join 20 80 3.32 0.86 0.04 0.013

Exh 150 150 20.65 0.86 0.05 0.002

Maximum
Cross

Hard
Limit

Feature
Generation

Time

10CVA
using

ConRIF

Improvement
over

Base Features

Increase
in

10CVA
Per

Unit Time

7.2.11 An Experiment Comparing the Cost and Benefit of Different Successor Functions

When accounting for the time spent generating features, what is the best generator overall and what

is the best generator within a given learner? Table 34 investigates performance of successors rela-

tive to time. Here, we consider the accuracy improvement of the ConRIF feature set generated by

the different generators versus the base feature set. The improvement is divided by the time spent

in the generator. To make recommendations about the generator and generator parameters, I first

grouped the generators into the best performers by absolute accuracy improvement over learning

with the base feature set. I then sorted the top quartile performers by accuracy improvement per

unit time. Averaged over all of the learners Random(20,20) is the most cost-effective successor.

Looking at some individual learners (Table 35), Join(20,40) is the most cost-effective successor

for for SVM, TREE, and 10NN. Join(20,40) is also a strong performer for FORST and 3NN.

NB does not see a great deal of accuracy improvement with any successor function and, by

these measures, prefers a successor functions that finish quickly. The choice is reflected in the low

successor parameter values – which generate fewer expanded nodes in the feature search space –

for the top-quartile successors for NB.

163

Table 35: Cost to Benefit of ConRIF Feature Set for Different Generators. For each learner, the

various successors and parameters are listed in increasing order of 10CVA improvement. The

row highlighted in gray is the most cost-effective (i.e., greatest increase in 10CVA per unit time)

successor and parameter set. Each set of rows shown here is the top quartile of successors and

parameters on the basis of improvement of ConRIF over Base.

Successor

random 20 20 1.8 0.85 0.05 0.028

sep 5 30 13.51 0.85 0.05 0.004

sep 10 40 12.41 0.85 0.05 0.004

join 20 40 2.01 0.85 0.05 0.025

3NN random 40 40 5.15 0.85 0.05 0.011

join 20 60 2.81 0.86 0.06 0.022

join 20 80 3.32 0.85 0.06 0.017

exh 150 150 20.65 0.86 0.06 0.003

sep 5 30 13.51 0.87 0.04 0.003

sep 10 30 7.13 0.86 0.04 0.005

sep 10 40 12.41 0.86 0.04 0.003

10NN join 20 40 2.01 0.87 0.04 0.021

random 40 40 5.15 0.87 0.05 0.009

join 20 60 2.81 0.87 0.05 0.018

join 20 80 3.32 0.86 0.04 0.013

exh 150 150 20.65 0.88 0.05 0.003

top 5 5 0.2 0.8 0.01 0.073

sep 3 6 0.93 0.81 0.02 0.024

sep 3 10 3.18 0.8 0.02 0.006

NB sep 5 10 1.23 0.8 0.02 0.012

random 10 10 0.62 0.8 0.02 0.028

sep 3 20 11.8 0.8 0.02 0.001

sep 5 20 5.86 0.8 0.02 0.003

join 10 20 0.71 0.8 0.02 0.022

sep 5 30 13.51 0.86 0.07 0.005

sep 10 40 12.41 0.86 0.06 0.005

join 20 40 2.01 0.86 0.07 0.035

TREE random 40 40 5.15 0.87 0.07 0.014

top 40 40 5.38 0.86 0.07 0.013

join 20 60 2.81 0.87 0.08 0.027

join 20 80 3.32 0.87 0.07 0.022

exh 150 150 20.65 0.87 0.08 0.004

sep 5 30 13.51 0.89 0.03 0.002

sep 10 30 7.13 0.88 0.03 0.004

join 20 40 2.01 0.88 0.03 0.014

random 40 40 5.15 0.89 0.03 0.006

SVM top 40 40 5.38 0.88 0.03 0.005

join 20 60 2.81 0.89 0.04 0.013

join 20 80 3.32 0.89 0.03 0.009

exh 150 150 20.65 0.89 0.04 0.002

sep 10 15 1.78 0.88 0.05 0.026

sep 10 20 3.25 0.88 0.05 0.015

sep 5 30 13.51 0.88 0.05 0.004

join 20 40 2.01 0.88 0.05 0.026

FORST random 40 40 5.15 0.88 0.05 0.010

top 40 40 5.38 0.88 0.05 0.009

join 20 60 2.81 0.88 0.06 0.020

exh 150 150 20.65 0.88 0.05 0.002

Maximum
Cross

Hard
Limit

Feature
Generation

Time

10CVA
using

ConRIF

Improvement
over

Base Features

Increase
in

10CVA
Per

Unit Time

164

7.3 EXPERIMENTS WITH LEVELS OF KNOWLEDGE

7.3.1 The Area Construction and Learning Problems

To investigate the use of knowledge in construction, I created a learning problem that has mul-

tiple natural levels of knowledge. In this context, a level of knowledge refers to the generality

or specificity of both the knowledge and the representation of a problem. The learning problem,

which I call Area, is to determine which of three plane shapes has the largest area from a geometric

descriptions of the shapes. Two natural levels of representing the Area problem are (1) represent-

ing the shapes by points (Point) and (2) representing the shapes by lengths of important pieces

(Length). The representations are displayed in Figure 44. Table 36 shows 10 examples in the Point

representation. Table 37 shows 10 examples in the Length representation.

While conceptually simple, Area poses problems for traditional learning algorithms, particu-

larly in the Point representation. Figure 45 shows learning curves for several learners (the details

of the learners are discussed in Section 7.1.3) on the Area problem with the Point representation.

Figure 46 shows learning curves for the Area problem with the Length representation. In both

figures, the dotted lines represent point-wise standard error for the accuracy estimates.

Just as there are natural levels of representation for the Area problem, there are also natural

pieces of knowledge we can use to constrain the feature construction for these CLPs. We can

constrain feature construction over shapes, over coordinates, over both, and over neither. The

Shape KB allows constructions among features that share a semantic class (e.g., triangle points

may only be combined with triangle points). The XY KB allows constructions among features

that share a coordinate type (e.g., x-coordinates may only be combined with other x-coordinates).

Applying both constraints would require constructions like triangle x1 with triangle x2. The two

KBs account for four KB conditions (with and without each KB). The fifth KB condition, Detailed,

includes operations that are appropriate in a Euclidian space – squares, differences, square roots,

etc.

ISAK generated a ConRIF feature set using each of the five knowledge conditions and the

Exhaustive successor using the Point representation.5 The constructed datasets were given to an

5The Exhaustive generator was used because time was not an issue and because completeness of search through
the space of possibilities was important for straightforward use of the knowledge.

165

(x,y)

(x,y)(x,y)

(x,y)(x,y)

Figure

Point
Representation

Representation

lengthlength

length

length

(x,y)

(x,y)

(x,y)

(x,y)

length

length

Length

Figure 44: The Two Representations of the Area Problem. Each shape has a different set of

attributes in the two forms of the Area problem. The triangle, circle, and rectangle are represented

by 6, 4, and 8 attributes in the Point representation. Respectively, the shapes are represented by 3,

1, and 2 attributes in the Length representation.

166

Table 36: Examples from the Area Problem in the Point Representation. Note that a single example

is defined over two lines because of the large number of features. A single example is defined by

18 values. The points belong to three different shapes, but without feature construction there is no

specification of that relationship. Points are also distinguished by x- and y- coordinate. KBs add

the knowledge that some points are related to other points.

Example point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9

1 2.19 -2.92 6.26 -2.92 4.27 -0.58 -1.03 1.74 2.93

2 -0.56 3.42 3.12 3.42 -2.77 9.74 -2.78 0.01 1.71

3 -2.59 -2.72 7.57 -2.72 9.22 3.32 -1.25 -3.30 4.67

4 0.02 2.70 8.47 2.70 4.52 9.37 3.39 1.94 7.08

5 1.86 -1.60 4.83 -1.60 6.32 2.87 1.05 -3.43 5.32

6 0.18 0.84 7.13 0.84 5.07 1.63 3.15 1.97 8.89

7 -0.77 -2.64 8.41 -2.64 6.94 -1.80 2.79 -3.62 8.38

8 -1.13 2.69 0.33 2.69 1.05 7.15 -3.57 2.41 1.25

9 1.17 -2.55 4.14 -2.55 4.11 1.01 -2.77 -2.33 1.23

10 3.04 -0.75 7.25 -0.75 9.78 -0.55 -1.04 2.51 3.98

Example point 10 point 11 point 12 point 13 point 14 point 15 point 16 point 17 point 18 largest?

class

1 1.74 2.93 4.27 -1.03 4.27 -2.37 -2.59 0.06 -2.59 circ

2 0.01 1.71 1.19 -2.78 1.19 2.43 2.29 4.79 2.29 circ

3 -3.30 4.67 -1.48 -1.25 -1.48 2.94 -3.55 4.21 -3.55 tri

4 1.94 7.08 4.93 3.39 4.93 -3.31 -3.65 -1.76 -3.65 tri

5 -3.43 5.32 -1.98 1.05 -1.98 -2.29 3.45 -0.99 3.45 tri

6 1.97 8.89 6.23 3.15 6.23 -3.26 1.10 -2.16 1.10 rect

7 -3.62 8.38 0.48 2.79 0.48 3.30 -0.03 5.87 -0.03 rect

8 2.41 1.25 6.09 -3.57 6.09 1.40 1.60 4.05 1.60 circ

9 -2.33 1.23 0.25 -2.77 0.25 2.09 2.32 4.62 2.32 circ

10 2.51 3.98 3.83 -1.04 3.83 1.20 1.93 3.09 1.93 circ

167

Table 37: Examples from the Area Problem in the Length Representation. Here, a single learning

example is described by six sides. The sides belong to three different shapes, but without feature

construction there is no specification of that relationship. KBs add the knowledge that some sides

are related to other sides.

side 1 side 2 side 3 side 4 side 5 side 6 largest?

class

9.18 2.29 7.74 5.74 1.45 1.62 rect

9.08 1.49 8.1 4.46 3.28 1.93 rect

6.61 9.45 9.4 3.3 5.21 1.6 tri

4.08 3.2 3.25 4.64 2.42 2.54 circ

9.34 7.65 15.99 4.87 1.65 2.57 tri

8.89 2.22 8.31 5.3 1.94 2.56 circ

9.26 4.67 5.09 1.42 1.61 1.91 circ

3.94 6.9 6.58 1.32 1.91 1.16 tri

3.09 5.58 8.34 2.71 3.19 1.77 circ

8.3 8.47 9.48 4.26 4.31 1.73 tri

SVM learner and learning curves were constructed from the SVM’s performance. Here, each

learning curve plots the stratified 10-fold cross-validation accuracy against the percent used in the

training sample proportion. A comparison of the number of features produced under each KB is

shown in Table 38.

In the following figures, one set of accuracies and error estimates is either represented by

a solid line with dotted error bars or by a solid center line with dark gray fill surrounding it.

Figure 47 shows leaning curves for the original dataset and constructions with no restrictions.

Figure 48 shows curves for the original point dataset, construction with coordinate restrictions,

and constructions with figure restrictions. Figure 49 shows curves for the original point dataset,

construction with coordinate restrictions, and construction with both restrictions.

Knowledge-based feature construction can make up for a lack of data. For example, 20% of

the base dataset with constructions from the XY & Shape KB achieves approximately the same

accuracy as 100% of the base dataset with no constructions. For the XY KB and the Shape KB,

40% of the base dataset with those constructions yields approximately the same accuracy as 100%

of the base dataset with no constructions. The unrestricted constructions produce a significantly

168

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

MAJ

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

NB

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

3NN

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

10NN

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

TREE

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

SVM

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

FORST

Figure 45: Learning Curves for the Point Representation of the Area Problem. These learning

curves show the trade-off between sample size and accuracy for the Point form of the Area prob-

lem. The learners are evaluated using stratified 10-fold cross-validation accuracy. The upper and

lower dotted lines represent 95% confidence intervals around the accuracy estimates. For the Point

representation, the accuracies for most learners only approaches 50%. FORST approaches 60%

and SVM approaches 70%.

169

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

MAJ

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

NB

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

3NN

0.2 0.4 0.6 0.8 1.0
0.

0
0.

4
0.

8

10NN

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

TREE

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

SVM

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

FORST

Figure 46: Learning Curves for the Length Representation of the Area Problem. These learning

curves show the trade-off between sample size and accuracy for the Point form of the Area problem.

The learners are evaluated using stratified 10-fold cross-validation accuracy. The upper and lower

dotted lines represent 95% confidence intervals around the accuracy estimates. For the Length

representation, the accuracies approach 90% with the full set of examples.

170

Table 38: Features Examined and Search Times for Different KBs. The table shows the number of

features examined and the time in seconds for search under the different construction KBs with the

exhaustive successor function. Note how the increase in knowledge restricts the number of features

examined and, hence, reduces the time spent in search for the XY, Shape, and XY & Shape KBs.

The Detailed KB introduces several addition feature constructor functions which greatly expand

the space of considered features. These five KBs were applied to the Point representation of the

Area problem. The KBs are discussed in the text.

KB Features Examined Search Time

Unrestricted 266520 76

XY 127128 44

Shape 79416 30

XY & Shape 24552 11

Detailed 911766 82

better dataset at the cost of a factor of 2 to 6 in the time for generation compared to the XY, Shape,

and XY & Shape. The XY & Shape KB is superior to the XY KB and to the Shape KB; XY &

Shape also requires less feature generation time than either individual KB.

Finally, a KB was developed for the Area problem that took into account both the constraints

between shapes and coordinates and incorporated operations that are of use in building up Eu-

clidean distances: differences, squares, sums, and square roots. These operations were restricted

in application to features of appropriate levels (e.g., square roots of initial X-coordinates were not

taken). A comparison between the original point to area dataset, the dataset developed with the

knowledge intensive KB, and the shape to area dataset is shown in Figure 50.

171

0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

SVM

Sample Proportion

C
A

Figure 47: Original Point Dataset Compared to Unrestricted Constructions. The original point

dataset for the area problem is the bottom triple; unrestricted constructions were used to make

the dataset for the top triple. The datasets are evaluated using stratified 10-fold cross-validation

accuracy on the y-axis. The upper and lower lines of each triple represent 95% confidence intervals

around the accuracy estimates.

172

0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

SVM

Sample Proportion

C
A

Figure 48: Original Point Dataset versus Constructions Limited to XY Coordinate and Construc-

tions Limited to Shape. From bottom to top, the triples are: original point dataset, constructions

from XY, and constructions from Shape. The datasets are evaluated using stratified 10-fold cross-

validation accuracy on the y-axis. The upper and lower lines of each triple represent 95% confi-

dence intervals around the accuracy estimates.

173

0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

SVM

Sample Proportion

C
A

Figure 49: Original Point Dataset Compared to Constructions Limited to Shape and Constructions

Limited to XY Coordinate & Shape. From bottom to top, the triples are: original point dataset,

constructions from Shape, and constructions from XY & Shape. The datasets are evaluated using

stratified 10-fold cross-validation accuracy on the y-axis. The upper and lower lines of each triple

represent 95% confidence intervals around the accuracy estimates.

174

0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

SVM

Sample Proportion

C
A

Figure 50: Comparison of Base Point, Base Length, and Detailed KB Constructions. From bottom

to top, the triples are: base point to area dataset, constructions from the detailed KB on the base

area dataset, and the length to area dataset. The datasets are evaluated using stratified 10-fold

cross-validation accuracy on the y-axis. The upper and lower lines of each triple represent 95%

confidence intervals around the accuracy estimates.

175

7.3.2 Sampling Effects

The first set of experiments did not address the effect that sampling has on feature construction by

ISAK because of the large number of experimental conditions already present in that experiment.

Here, I evaluate the effects of sampling on feature construction in the context of the Area problem

in the Point representation. The CLP was given a larger search space than was used in the previous

runs. The expansion was done by weakening the feature evaluation restrictions. ISAK was then

run repeatedly with the sampling parameter set to 10, 20, 30, 40, and 50 percent. Learning curves

for an SVM learner with the ConRIF datasets generated by sampling are shown in Figure 51. At

10 percent sampling, there is clearly tremendous variability in the construction of features. By 30

percent, the variability is substantially reduced. It is interesting that there is no distinct drop in

accuracy from 30 to 50 percent sampling. The preserved accuracy indicates that even at 50 percent

sampling, ISAK is not overfitting the sample data for the Area CLP.

176

0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Proportion of Data Used

10
C

V
A

ss10

0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Proportion of Data Used

10
C

V
A

ss20

0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Proportion of Data Used

10
C

V
A

ss30

0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Proportion of Data Used

10
C

V
A

ss40

0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Proportion of Data Used

10
C

V
A

ss50

Figure 51: Sampling Effects on Datasets Evaluated by SVM Learning Curves. Each graph is a

learning curve. A greater degree of overlap in the curves represents a decrease in the amount of

variability due to sampling. As the sample size used for feature construction increases from 10

percent to 50 percent, there is a decrease in the variability of the 10CVA of the SVM.

177

Table 39: Results of Learning with RL on the Perimeter CLP. The PPV is the number of correct

predictions divided by the number of correct + incorrect predictions (i.e., it ignores examples that

are unclassified). The classification accuracy is the number of correct predictions divided by the

sum of correct, incorrect, and non-predicted examples (i.e., unclassified examples count as wrong).

Feature Set

Correct 202 270 264

Incorrect 42 33 47

No Prediction 236 177 169

PPV 82.8% 89.1% 84.9%

Classification Accuracy 42.1% 56.3% 55.0%

Avg. Rule Set Size 27.4 36.2 51.8

Base Point
Representation

Base + Detailed KB
Construction From

Point Representation
Base Length

Representation

7.4 THE BEHAVIOR OF ISAK ON A NOVEL PROBLEM WITH A NOVEL LEARNER

As a final check on the performance of ISAK, I will now look at the performance of ISAK with

a new learner and a new problem, neither of which were used in the development of ISAK. The

learner is a rule-learner, RL6. The CLP is a related to the Area CLP, but instead of area, the target

concept is perimeter. The KB used is the same as the detailed KB used for the Area CLP. RL was

run with its own bias space search (medium length) looking for good rule-space search parameters.

The default 5-fold cross-validation was used for parameter tuning and evaluation within RL. The

results for RL on Perimeter are shown in Table 39.

Comparing the base point representation to the detailed constructions, the detailed construc-

tions classify many more examples correctly, several fewer examples incorrectly, and leave fewer

examples unclassified. Both the PPV and classification accuracy are improved by detailed con-

struction. However, these improvements come at the cost of a slightly larger rule set.

Comparing the base length representation to the detailed constructions, we see that the number

of correct predictions and no prediction is similar, but the number of incorrect predictions is better

6RL version 2005-04-27 was used for these experiments and is available from http://www.cs.pitt.edu/˜philip/rl/.

178

for the detailed constructions. The detailed constructions perform about as well as length on PPV

and classification accuracy. The length representation leads to a larger rule set.

179

8.0 RESULTS AND CONCLUSIONS

8.1 RESULTS

ISAK reinforces several known results:

1. we can capture declarative, symbolic knowledge in uniform representations,

2. the knowledge can be used to guide search,

3. feature construction can be performed as a search through the feature space, and

4. feature construction can improve performance of a learning program.

ISAK extends our knowledge about feature construction:

1. Knowledge based feature construction significantly, though to a moderate extent, improves

generalization performance for the class of UCI type learning problems.

2. Knowledge can decrease the amount of time spent in feature construction; however, knowing

that there are additional operations (i.e., more possible nodes in the feature space) can extend

the amount of time spent in feature construction.

3. Different sets of knowledge affect generalization performance in significantly different ways.

Feature construction using domain-specific knowledge reduces the variance in accuracy, as

compared to feature construction using general knowledge.

4. Constructed features retain some part of the information of their components. Learning with

constructed features uses the retained information and ignores information contained in base

features not used for construction. Feature set combinations that include some form of the

original, base features (i.e., either as components of constructed features or as the base fea-

tures themselves) perform substantially better than feature set combinations which exclude

information from the base features.

180

5. Successor functions with complicated built-in heuristics (i.e., windowing of features) are not

substantially better than simple heuristics like best and random selection of features for fringe

expansion.

6. The generalization performance of learning algorithms that perform implicit feature construc-

tion can be improved with explicit, knowledge-guided feature construction.

It is unclear whether knowledge-guided feature construction is better than feature construction

without knowledge. Exhaustive, knowledge-less search trades time of execution for better perfor-

mance improvements. However, even knowledge-lean search has limited sets of operators provided

to it – which is itself, a source of knowledge and a constraint on the space of constructable features.

8.2 FUTURE WORK

Some interesting extensions of ISAK, and this research, are:

1. Replace the ad hoc knowledge representation with an off-the-shelf representation and reason-

ing system and make use of a modern, extensive ontology like SUMO or Cyc.

2. Specify classes of feature constructors conveniently and enforce relationships among members

of the class of constructors. speed = distance ∗ time, d = s/t, and t = s/d can be seen as

taking steps forward or backward from given features. If a forward step is taken, we should be

smart enough not to go backward later.

3. Check redundancy of elements with a canonical simplification routine. Programs like Math-

ematica have a canonical form for a large class of mathematical expressions. Simplification

would save time in the feature construction algorithm by replacing a function of the data points

with a function of the constructor formula.

4. Perform meta-learning: learn what knowledge bases are useful given descriptions of the learn-

ing problem and the target concept.

5. Discover if a well-selected subset of examples can perform substantially better than random se-

lection of an example set as input to ISAK. This is a perfect opportunity to combine hypothesis-

driven feature construction with ISAK’s knowledge-guided approach. Examples that are mis-

181

classified by a learner may provide a better basis for constructing feature to be used by that

learner.

6. Incorporate ISAK’s beam search feature construction as an alternative step within RL. The

main forward step in RL is specialization of a rule. This means adding a feature to a rule and

thereby restricting the rule’s applicability. Adding feature construction as a possibility would

intertwine the search for a good representation with the search for good hypotheses and give

RL true constructive induction capabilities.

8.3 CONCLUSIONS

The results of my work indicate that feature construction improves classification accuracy for a

variety of learners over a variety of learning problems. Even relatively powerful learning methods,

such as support vector machines, are improved by feature construction. It is also apparent that

using constructed features, in addition to initial features that are not useful for construction, can

represent a significant improvement over the constructed features alone.

Generating features via heuristic search gives a powerful means to apply explicit, declarative

knowledge in machine learning. ISAK allows knowledge to be given in a simple, declarative

form and it allows the knowledge to be used in conjunction with off-the-shelf learning systems.

By producing tables of data that are in the same format as the initial problem data, the feature

construction step is a modular component of a larger learning process. Incorporating increasing

amounts of knowledge results in more efficient learning – the use of fewer data points can give

better classification accuracies when done with constructed features. The use of specific feature

constructor functions can expand or contract the step size in the search, trading search time and

use of domain knowledge. The choices of a particular search strategy and its search parameters

are not critical to the success of knowledge-guided feature construction. Knowledge and operators

can both be applied to numeric and symbolic features with beneficial learning results.

182

APPENDIX A

ADDITIONAL EXPERIMENTAL DATA

A.1 COMPARISON OF DIFFERENT GENERATORS AND FEATURE SETS

AVERAGED OVER LEARNERS

183

Table 40: 10CVA Averaged over Learner, Run, and CLP by Successor and Features Set.

Base Feature Set CVA: .81

Feature Set

All New ConRIF CCF

Exhaustive 150 150 0.87 0.83 0.86 0.80

Join 5 10 0.84 0.73 0.84 0.72

Join 5 20 0.85 0.75 0.84 0.73

Join 5 40 0.85 0.75 0.84 0.74

Join 10 20 0.85 0.76 0.84 0.74

Join 10 40 0.86 0.80 0.85 0.77

Join 20 40 0.86 0.81 0.86 0.78

Join 20 60 0.87 0.82 0.86 0.79

Join 20 80 0.86 0.82 0.86 0.79

Random 5 5 0.84 0.71 0.84 0.70

Random 10 10 0.85 0.77 0.85 0.75

Random 20 20 0.86 0.80 0.85 0.77

Random 40 40 0.86 0.82 0.86 0.79

Sep 3 6 0.84 0.73 0.83 0.72

Sep 3 10 0.85 0.76 0.85 0.74

Sep 3 15 0.85 0.76 0.84 0.74

Sep 3 20 0.85 0.77 0.84 0.75

Sep 3 30 0.85 0.77 0.84 0.75

Sep 5 10 0.85 0.76 0.84 0.74

Sep 5 15 0.85 0.75 0.85 0.74

Sep 5 20 0.85 0.76 0.85 0.75

Sep 5 30 0.86 0.78 0.86 0.76

Sep 10 15 0.85 0.77 0.85 0.75

Sep 10 20 0.86 0.78 0.85 0.75

Sep 10 30 0.86 0.79 0.85 0.77

Sep 10 40 0.86 0.79 0.85 0.77

Top 5 5 0.84 0.74 0.83 0.73

Top 10 10 0.85 0.76 0.85 0.75

Top 20 20 0.85 0.78 0.85 0.76

Top 40 40 0.86 0.80 0.85 0.78

Average 10CVA
over All Learners

Successor
Function

Maximum
Cross

Hard
Limit

184

Table 41: AUCs Averaged over Learner, Run, and CLP by Successor and Features Set.

AUC Averaged Over All Learners

All New ConRIF CCF

Exhaustive 150 150 0.89 0.85 0.88 0.82

Join 5 10 0.88 0.74 0.87 0.73

Join 5 20 0.88 0.76 0.87 0.75

Join 5 40 0.88 0.77 0.87 0.75

Join 10 20 0.88 0.78 0.87 0.76

Join 10 40 0.89 0.81 0.87 0.79

Join 20 40 0.89 0.83 0.88 0.80

Join 20 60 0.89 0.84 0.88 0.81

Join 20 80 0.89 0.84 0.88 0.81

Random 5 5 0.88 0.73 0.87 0.71

Random 10 10 0.89 0.79 0.88 0.76

Random 20 20 0.89 0.81 0.88 0.79

Random 40 40 0.89 0.84 0.88 0.81

Sep 3 6 0.88 0.75 0.86 0.73

Sep 3 10 0.88 0.78 0.88 0.75

Sep 3 15 0.88 0.78 0.87 0.76

Sep 3 20 0.88 0.79 0.87 0.76

Sep 3 30 0.88 0.79 0.87 0.77

Sep 5 10 0.88 0.78 0.87 0.76

Sep 5 15 0.88 0.77 0.88 0.75

Sep 5 20 0.88 0.78 0.88 0.76

Sep 5 30 0.89 0.80 0.88 0.78

Sep 10 15 0.88 0.79 0.87 0.77

Sep 10 20 0.88 0.80 0.87 0.77

Sep 10 30 0.88 0.81 0.87 0.78

Sep 10 40 0.88 0.81 0.88 0.79

Top 5 5 0.87 0.75 0.86 0.74

Top 10 10 0.88 0.78 0.87 0.77

Top 20 20 0.88 0.80 0.87 0.78

Top 40 40 0.88 0.82 0.87 0.80

Successor
Function

Maximum
Cross

Hard
Limit

185

A.2 A LINEAR MODEL OF THE EXPERIMENTAL VARIABLES FOR THE FIRST

SET OF EXPERIMENTS

A
n

a
ly

si
s

o
f
V

a
ri
a

n
ce

 T
a

b
le

R
e

sp
o

n
se

:
C

A

 D

f
 S

u
m

 S
q

 M
e

a
n

 S
q

 F

 v
a

lu
e

P

r(
>

F
)

le
a

rn
e

r

6

 1
4

7
.8

6
1

2

4
.6

4
3

 1
8

2
6

0
.2

2
5

 <
 2

.2
e

-1
6

 *
**

p
ro

b

 1

4
 1

9
6

.9
4

4

1

4
.0

6
7

 1
0

4
2

3
.6

3
7

 <
 2

.2
e

-1
6

 *
**

ft
rS

e
t

 4

1

7
.4

9
6

 4

.3
7

4

3

2
4

0
.9

7
7

 <
 2

.2
e

-1
6

 *
**

g
e

n

 4

 0

.3
5

5

 0

.0
8

9

6

5
.8

4
9

 <
 2

.2
e

-1
6

 *
**

h
a

rd
L

im
it

1

 1

.2
1

9

 1

.2
1

9

 9

0
2

.9
5

9
 <

 2
.2

e
-1

6
 *

**
m

a
xC

ro
ss

1

 0

.1
2

9

 0

.1
2

9

9

5
.9

5
4

 <
 2

.2
e

-1
6

 *
**

le
a

rn
e

r:
p

ro
b

 8

4

7

6
.9

2
7

 0

.9
1

6

 6

7
8

.5
8

5
 <

 2
.2

e
-1

6
 *

**
le

a
rn

e
r:

ft
rS

e
t

2

4

 4

.2
1

9

 0

.1
7

6

 1

3
0

.2
5

6
 <

 2
.2

e
-1

6
 *

**
p

ro
b

:f
tr

S
e

t

 5

6

2

4
.4

3
9

 0

.4
3

6

 3

2
3

.3
7

3
 <

 2
.2

e
-1

6
 *

**
g

e
n

:h
a

rd
L

im
it

3

 0

.0
8

5

 0

.0
2

8

2

0
.9

1
0

 1
.6

3
3

e
-1

3
 *

**
g

e
n

:m
a

xC
ro

ss

1

 0

.0
1

4

 0

.0
1

4

1

0
.5

8
3

0

.0
0

1
1

4
4

 *
*

h
a

rd
L

im
it:

m
a

xC
ro

ss

1

 0

.1
1

8

 0

.1
1

8

8

7
.4

4
5

 <
 2

.2
e

-1
6

 *
**

le
a

rn
e

r:
p

ro
b

:f
tr

S
e

t

3

3
6

1

7
.9

9
4

 0

.0
5

4

3

9
.6

8
3

 <
 2

.2
e

-1
6

 *
**

R
e

si
d

u
a

ls

 1

5
2

1
4

2

0
.5

3
2

 0

.0
0

1

--
-

S
ig

n
if.

 c
o

d
e

s:

0

 ’*
**

’ 0
.0

0
1

 ’*
*’

 0
.0

1
 ’*

’ 0
.0

5
 ’.

’ 0
.1

 ’
’ 1

A

n
a

ly
si

s
o

f
V

a
ri
a

n
ce

 T
a

b
le

R
e

sp
o

n
se

:
C

A

D

f
 S

u
m

 S
q

 M
e

a
n

 S
q

F

 v
a

lu
e

P

r(
>

F
)

le
a

rn
e

r

 6

 1
4

7
.8

6
1

2

4
.6

4
3

 2
5

7
9

7
.1

3
8

9
 <

 2
.2

e
-1

6
 *

**
p

ro
b

1

4
 1

9
6

.9
4

4

1

4
.0

6
7

 1
4

7
2

5
.9

9
6

1
 <

 2
.2

e
-1

6
 *

**
ft
rS

e
t

4

1

7
.4

9
6

 4

.3
7

4

4

5
7

8
.6

9
0

5
 <

 2
.2

e
-1

6
 *

**
g

e
n

4

 0

.3
5

5

 0

.0
8

9

9

3
.0

2
8

1
 <

 2
.2

e
-1

6
 *

**
h

a
rd

L
im

it

 1

 1

.2
1

9

 1

.2
1

9

1

2
7

5
.6

5
6

2
 <

 2
.2

e
-1

6
 *

**
m

a
xC

ro
ss

 1

 0

.1
2

9

 0

.1
2

9

 1

3
5

.5
5

9
4

 <
 2

.2
e

-1
6

 *
**

le
a

rn
e

r:
p

ro
b

8

4

7

6
.9

2
7

 0

.9
1

6

 9

5
8

.6
7

1
3

 <
 2

.2
e

-1
6

 *
**

le
a

rn
e

r:
ft
rS

e
t

 2

4

 4

.2
1

9

 0

.1
7

6

 1

8
4

.0
1

9
5

 <
 2

.2
e

-1
6

 *
**

le
a

rn
e

r:
g

e
n

 2

4

 0

.0
9

1

 0

.0
0

4

 3

.9
8

1
4

 1
.8

6
3

e
-1

0
 *

**
le

a
rn

e
r:

h
a

rd
L

im
it

 6

 0

.2
9

5

 0

.0
4

9

5

1
.4

4
3

3
 <

 2
.2

e
-1

6
 *

**
le

a
rn

e
r:

m
a

xC
ro

ss

 6

 0

.0
2

6

 0

.0
0

4

 4

.6
2

0
4

 0
.0

0
0

1
0

7
0

 *
**

p
ro

b
:f
tr

S
e

t

5

6

2

4
.4

3
9

 0

.4
3

6

 4

5
6

.8
4

4
8

 <
 2

.2
e

-1
6

 *
**

p
ro

b
:g

e
n

5

6

 1

.8
2

9

 0

.0
3

3

3

4
.1

8
6

7
 <

 2
.2

e
-1

6
 *

**
p

ro
b

:h
a

rd
L

im
it

 1

4

 2

.5
0

7

 0

.1
7

9

 1

8
7

.4
6

4
3

 <
 2

.2
e

-1
6

 *
**

p
ro

b
:m

a
xC

ro
ss

 1

4

 0

.1
8

5

 0

.0
1

3

1

3
.8

5
7

2
 <

 2
.2

e
-1

6
 *

**
ft
rS

e
t:
g

e
n

1

6

 0

.2
6

3

 0

.0
1

6

1

7
.1

7
4

7
 <

 2
.2

e
-1

6
 *

**
ft
rS

e
t:
h

a
rd

L
im

it

4

 0

.8
4

1

 0

.2
1

0

 2

2
0

.0
0

3
6

 <
 2

.2
e

-1
6

 *
**

ft
rS

e
t:
m

a
xC

ro
ss

4

 0

.0
8

1

 0

.0
2

0

2

1
.3

1
0

1
 <

 2
.2

e
-1

6
 *

**
g

e
n

:h
a

rd
L

im
it

 3

 0

.0
8

5

 0

.0
2

8

2

9
.5

4
0

2
 <

 2
.2

e
-1

6
 *

**
g

e
n

:m
a

xC
ro

ss

 1

 0

.0
1

4

 0

.0
1

4

1

4
.9

5
1

0
 0

.0
0

0
1

1
0

8
 *

**
h

a
rd

L
im

it:
m

a
xC

ro
ss

 1

 0

.1
1

8

 0

.1
1

8

 1

2
3

.5
3

8
1

 <
 2

.2
e

-1
6

 *
**

le
a

rn
e

r:
p

ro
b

:f
tr

S
e

t

 3

3
6

1

7
.9

9
4

 0

.0
5

4

5

6
.0

6
2

1
 <

 2
.2

e
-1

6
 *

**
g

e
n

:h
a

rd
L

im
it:

m
a

xC
ro

ss

 3

 0

.0
2

1

 0

.0
0

7

 7

.2
1

3
7

 7
.8

0
2

e
-0

5
 *

**
R

e
si

d
u

a
ls

1

5
0

6
7

1

4
.3

9
3

 0

.0
0

1

--
-

S
ig

n
if.

 c
o

d
e

s:

0

 ’*
**

’ 0
.0

0
1

 ’*
*’

 0
.0

1
 ’*

’ 0
.0

5
 ’.

’ 0
.1

 ’
’ 1

A

n
a

ly
si

s
o

f
V

a
ri
a

n
ce

 T
a

b
le

M
o

d
e

l 1
:
C

A
 ˜

 (
le

a
rn

e
r

+
 p

ro
b

 +
 f
tr

S
e

t)
^3

 +
 (

g
e

n
 +

 h
a

rd
L

im
it

+
 m

a
xC

ro
ss

)^
2

M
o

d
e

l 2
:
C

A
 ˜

 (
le

a
rn

e
r

+
 p

ro
b

 +
 f
tr

S
e

t
+

 g
e

n
 +

 h
a

rd
L

im
it

+
 m

a
xC

ro
ss

)^
2

 +

(l
e

a
rn

e
r

+
 p

ro
b

 +
 f
tr

S
e

t)
^3

 +
 (

g
e

n
 +

 h
a

rd
L

im
it

+
 m

a
xC

ro
ss

)^
3

R

e
s.

D
f

R

S
S

D

f
S

u
m

 o
f
S

q

F

P

r(
>

F
)

1

1

5
2

1
4

 2
0

.5
3

2
3

2

1

5
0

6
7

 1
4

.3
9

3
2

 1

4
7

6

.1
3

9
2

 4
3

.7
1

8
 <

 2
.2

e
-1

6
 *

**
--

-
S

ig
n

if.
 c

o
d

e
s:

0

 ’*
**

’ 0
.0

0
1

 ’*
*’

 0
.0

1
 ’*

’ 0
.0

5
 ’.

’ 0
.1

 ’
’ 1

C
a

ll:
lm

(f
o

rm
u

la
 =

 C
A

 ˜
 (

le
a

rn
e

r
+

 p
ro

b
 +

 f
tr

S
e

t
+

 g
e

n
 +

 h
a

rd
L

im
it

+

m

a
xC

ro
ss

)^
2

 +
 (

le
a

rn
e

r
+

 p
ro

b
 +

 f
tr

S
e

t)
^3

 +
 (

g
e

n
 +

 h
a

rd
L

im
it

+

m

a
xC

ro
ss

)^
3

,
d

a
ta

 =
 m

s)

R
e

si
d

u
a

ls
:

 M

in

 1

Q

 M

e
d

ia
n

 3

Q

M

a
x

-0
.2

1
2

5
4

6
5

 -
0

.0
1

0
4

0
4

0
 -

0
.0

0
0

1
4

6
2

0

.0
1

1
9

5
0

1

0

.2
5

4
7

8
1

3

C
o

e
ff
ic

ie
n

ts
:
(5

 n
o

t
d

e
fin

e
d

 b
e

ca
u

se
 o

f
si

n
g

u
la

ri
tie

s)

 E

st
im

a
te

 S
td

.
E

rr
o

r

t
va

lu
e

 P
r(

>
|t
|)

(I
n

te
rc

e
p

t)

 1

.0
1

8
e

+
0

0

8

.9
1

0
e

-0
2

1

1
.4

3
1

<

 2
e

-1
6

 *
**

le
a

rn
e

rb
a

ye
s

 3

.7
5

7
e

-0
1

2

.0
1

8
e

-0
2

1

8
.6

1
6

<

 2
e

-1
6

 *
**

le
a

rn
e

rf
o

rs
t

 1

.9
8

3
e

-0
1

2

.0
1

8
e

-0
2

 9

.8
2

3

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
1

0

2

.1
8

9
e

-0
1

2

.0
1

8
e

-0
2

1

0
.8

4
4

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
3

 1

.7
1

3
e

-0
1

2

.0
1

8
e

-0
2

 8

.4
8

9

<

 2
e

-1
6

 *
**

le
a

rn
e

rs
vm

3

.0
8

2
e

-0
1

2

.0
1

8
e

-0
2

1

5
.2

6
8

<

 2
e

-1
6

 *
**

le
a

rn
e

rt
re

e

 1

.7
6

7
e

-0
1

2

.0
1

8
e

-0
2

 8

.7
5

7

<

 2
e

-1
6

 *
**

p
ro

b
ir
is

 -

7
.5

7
8

e
-0

2

2

.8
2

9
e

-0
2

-2

.6
7

9
 0

.0
0

7
3

9
6

 *
*

p
ro

b
is

o
c

 4

.2
6

9
e

-0
1

2

.8
2

9
e

-0
2

1

5
.0

9
2

<

 2
e

-1
6

 *
**

p
ro

b
m

o
n

ks
1

 -

1
.5

5
8

e
-0

1

2

.8
2

9
e

-0
2

-5

.5
0

9
 3

.6
7

e
-0

8
 *

**
p

ro
b

m
o

n
ks

2

7

.4
0

9
e

-0
2

2

.8
2

9
e

-0
2

 2

.6
1

9
 0

.0
0

8
8

2
8

 *
*

p
ro

b
m

o
n

ks
3

1

.0
1

7
e

-0
2

2

.8
2

9
e

-0
2

 0

.3
5

9
 0

.7
1

9
2

2
8

p
ro

b
o

ff
si

d
e

s1
1

1

.1
8

6
e

-0
1

2

.8
2

9
e

-0
2

 4

.1
9

3
 2

.7
6

e
-0

5
 *

**
p

ro
b

o
ff
si

d
e

s2

 1

.2
3

4
e

-0
1

2

.8
2

9
e

-0
2

 4

.3
6

1
 1

.3
0

e
-0

5
 *

**
p

ro
b

o
ff
si

d
e

s5

 1

.7
7

0
e

-0
1

2

.8
2

9
e

-0
2

 6

.2
5

8
 4

.0
0

e
-1

0
 *

**

p
ro

b
p

ro
m

o
te

r1

 1

.0
8

1
e

-0
1

2

.8
2

9
e

-0
2

 3

.8
2

2
 0

.0
0

0
1

3
3

 *
**

p
ro

b
p

ro
m

o
te

r2

-2

.8
1

2
e

-0
1

2

.8
2

9
e

-0
2

-9

.9
4

0

<

 2
e

-1
6

 *
**

p
ro

b
p

ro
m

o
te

r3

-2

.4
5

0
e

-0
1

2

.8
2

9
e

-0
2

-8

.6
5

9

<

 2
e

-1
6

 *
**

p
ro

b
tt
t1

 -

2
.1

0
7

e
-0

2

2

.8
2

9
e

-0
2

-0

.7
4

5
 0

.4
5

6
4

6
8

p
ro

b
tt
t2

2

.6
2

2
e

-0
1

2

.8
2

9
e

-0
2

 9

.2
6

8

<

 2
e

-1
6

 *
**

p
ro

b
w

in
e

 -

8
.2

9
3

e
-0

2

2

.8
2

9
e

-0
2

-2

.9
3

2
 0

.0
0

3
3

7
7

 *
*

ft
rS

e
ta

ll

 -

6
.6

7
7

e
-0

2

1

.7
5

8
e

-0
2

-3

.7
9

7
 0

.0
0

0
1

4
7

 *
**

ft
rS

e
tn

e
w

-2

.4
9

8
e

-0
1

1

.7
5

8
e

-0
2

 -

1
4

.2
0

7

<

 2
e

-1
6

 *
**

ft
rS

e
tn

e
w

P
u

n

 -

6
.1

5
4

e
-0

2

1

.7
5

8
e

-0
2

-3

.5
0

0
 0

.0
0

0
4

6
7

 *
**

ft
rS

e
tu

se
d

O

-1

.9
8

9
e

-0
1

1

.7
5

8
e

-0
2

 -

1
1

.3
1

3

<

 2
e

-1
6

 *
**

g
e

n
jo

in

-5

.3
5

5
e

-0
1

8

.8
7

5
e

-0
2

-6

.0
3

4
 1

.6
4

e
-0

9
 *

**
g

e
n

ra
n

d
o

m

-5

.6
0

1
e

-0
1

8

.8
2

9
e

-0
2

-6

.3
4

4
 2

.3
0

e
-1

0
 *

**
g

e
n

se
p

 -

5
.4

5
9

e
-0

1

8

.8
8

5
e

-0
2

-6

.1
4

4
 8

.2
5

e
-1

0
 *

**
g

e
n

to
p

 -

5
.2

9
0

e
-0

1

8

.9
9

7
e

-0
2

-5

.8
8

0
 4

.1
9

e
-0

9
 *

**
h

a
rd

L
im

it

 -

1
.1

9
7

e
-0

3

4

.3
7

7
e

-0
4

-2

.7
3

3
 0

.0
0

6
2

7
4

 *
*

m
a

xC
ro

ss

5

.8
4

5
e

-0
4

3

.9
7

0
e

-0
4

 1

.4
7

2
 0

.1
4

1
0

0
9

le
a

rn
e

rb
a

ye
s:

p
ro

b
ir
is

 1

.5
3

6
e

-0
1

1

.1
2

9
e

-0
2

1

3
.6

1
0

<

 2
e

-1
6

 *
**

le
a

rn
e

rf
o

rs
t:
p

ro
b

ir
is

 2

.6
0

3
e

-0
1

1

.1
2

9
e

-0
2

2

3
.0

6
6

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
1

0
:p

ro
b

ir
is

 2

.4
9

7
e

-0
1

1

.1
2

9
e

-0
2

2

2
.1

2
7

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
3

:p
ro

b
ir
is

2

.9
4

3
e

-0
1

1

.1
2

9
e

-0
2

2

6
.0

7
8

<

 2
e

-1
6

 *
**

le
a

rn
e

rs
vm

:p
ro

b
ir
is

 1

.7
8

7
e

-0
1

1

.1
2

9
e

-0
2

1

5
.8

3
4

<

 2
e

-1
6

 *
**

le
a

rn
e

rt
re

e
:p

ro
b

ir
is

2

.6
5

9
e

-0
1

1

.1
2

9
e

-0
2

2

3
.5

6
1

<

 2
e

-1
6

 *
**

le
a

rn
e

rb
a

ye
s:

p
ro

b
is

o
c

 -

4
.6

6
4

e
-0

1

1

.1
2

9
e

-0
2

 -

4
1

.3
2

6

<

 2
e

-1
6

 *
**

le
a

rn
e

rf
o

rs
t:
p

ro
b

is
o

c

 -

3
.2

6
4

e
-0

1

1

.1
2

9
e

-0
2

 -

2
8

.9
2

0

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
1

0
:p

ro
b

is
o

c

 -

2
.6

0
3

e
-0

1

1

.1
2

9
e

-0
2

 -

2
3

.0
6

2

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
3

:p
ro

b
is

o
c

-1

.8
5

7
e

-0
1

1

.1
2

9
e

-0
2

 -

1
6

.4
5

3

<

 2
e

-1
6

 *
**

le
a

rn
e

rs
vm

:p
ro

b
is

o
c

 -

4
.5

8
0

e
-0

1

1

.1
2

9
e

-0
2

 -

4
0

.5
8

2

<

 2
e

-1
6

 *
**

le
a

rn
e

rt
re

e
:p

ro
b

is
o

c

-3

.2
0

8
e

-0
1

1

.1
2

9
e

-0
2

 -

2
8

.4
2

4

<

 2
e

-1
6

 *
**

le
a

rn
e

rb
a

ye
s:

p
ro

b
m

o
n

ks
1

-1

.9
6

6
e

-0
1

1

.1
2

9
e

-0
2

 -

1
7

.4
2

0

<

 2
e

-1
6

 *
**

le
a

rn
e

rf
o

rs
t:
p

ro
b

m
o

n
ks

1

 1

.0
0

6
e

-0
1

1

.1
2

9
e

-0
2

 8

.9
1

5

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
1

0
:p

ro
b

m
o

n
ks

1

 3

.0
2

3
e

-0
2

1

.1
2

9
e

-0
2

 2

.6
7

8
 0

.0
0

7
4

0
9

 *
*

le
a

rn
e

rk
n

n
3

:p
ro

b
m

o
n

ks
1

2

.1
9

9
e

-0
2

1

.1
2

9
e

-0
2

 1

.9
4

9
 0

.0
5

1
3

6
5

 .

le
a

rn
e

rs
vm

:p
ro

b
m

o
n

ks
1

 5

.5
6

0
e

-0
2

1

.1
2

9
e

-0
2

 4

.9
2

7
 8

.4
6

e
-0

7
 *

**
le

a
rn

e
rt

re
e

:p
ro

b
m

o
n

ks
1

1

.3
1

7
e

-0
1

1

.1
2

9
e

-0
2

1

1
.6

7
3

<

 2
e

-1
6

 *
**

le
a

rn
e

rb
a

ye
s:

p
ro

b
m

o
n

ks
2

-4

.7
9

6
e

-0
1

1

.1
2

9
e

-0
2

 -

4
2

.4
9

6

<

 2
e

-1
6

 *
**

le
a

rn
e

rf
o

rs
t:
p

ro
b

m
o

n
ks

2

-3

.5
7

9
e

-0
1

1

.1
2

9
e

-0
2

 -

3
1

.7
1

0

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
1

0
:p

ro
b

m
o

n
ks

2

-3

.3
3

7
e

-0
1

1

.1
2

9
e

-0
2

 -

2
9

.5
7

0

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
3

:p
ro

b
m

o
n

ks
2

 -

1
.9

4
3

e
-0

1

1

.1
2

9
e

-0
2

 -

1
7

.2
1

9

<

 2
e

-1
6

 *
**

le
a

rn
e

rs
vm

:p
ro

b
m

o
n

ks
2

-4

.5
7

8
e

-0
1

1

.1
2

9
e

-0
2

 -

4
0

.5
6

4

<

 2
e

-1
6

 *
**

le
a

rn
e

rt
re

e
:p

ro
b

m
o

n
ks

2

 -

3
.2

3
7

e
-0

1

1

.1
2

9
e

-0
2

 -

2
8

.6
8

2

<

 2
e

-1
6

 *
**

le
a

rn
e

rb
a

ye
s:

p
ro

b
m

o
n

ks
3

-2

.5
0

0
e

-0
3

1

.1
2

9
e

-0
2

-0

.2
2

2
 0

.8
2

4
6

9
3

le
a

rn
e

rf
o

rs
t:
p

ro
b

m
o

n
ks

3

 1

.2
0

2
e

-0
1

1

.1
2

9
e

-0
2

1

0
.6

5
3

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
1

0
:p

ro
b

m
o

n
ks

3

 4

.4
0

9
e

-0
2

1

.1
2

9
e

-0
2

 3

.9
0

6
 9

.4
1

e
-0

5
 *

**
le

a
rn

e
rk

n
n

3
:p

ro
b

m
o

n
ks

3

1

.3
2

8
e

-0
2

1

.1
2

9
e

-0
2

 1

.1
7

7
 0

.2
3

9
1

5
9

le
a

rn
e

rs
vm

:p
ro

b
m

o
n

ks
3

 2

.1
2

0
e

-0
2

1

.1
2

9
e

-0
2

 1

.8
7

8
 0

.0
6

0
3

3
8

 .

le
a

rn
e

rt
re

e
:p

ro
b

m
o

n
ks

3

1

.2
3

1
e

-0
1

1

.1
2

9
e

-0
2

1

0
.9

0
8

<

 2
e

-1
6

 *
**

le
a

rn
e

rb
a

ye
s:

p
ro

b
o

ff
si

d
e

s1
1

-4

.3
6

4
e

-0
1

1

.1
2

9
e

-0
2

 -

3
8

.6
6

8

<

 2
e

-1
6

 *
**

le
a

rn
e

rf
o

rs
t:
p

ro
b

o
ff
si

d
e

s1
1

-3

.7
9

0
e

-0
1

1

.1
2

9
e

-0
2

 -

3
3

.5
7

8

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
1

0
:p

ro
b

o
ff
si

d
e

s1
1

-3

.6
0

3
e

-0
1

1

.1
2

9
e

-0
2

 -

3
1

.9
2

3

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
3

:p
ro

b
o

ff
si

d
e

s1
1

 -

2
.6

5
7

e
-0

1

1

.1
2

9
e

-0
2

 -

2
3

.5
4

2

<

 2
e

-1
6

 *
**

le
a

rn
e

rs
vm

:p
ro

b
o

ff
si

d
e

s1
1

-4

.3
8

0
e

-0
1

1

.1
2

9
e

-0
2

 -

3
8

.8
1

0

<

 2
e

-1
6

 *
**

le
a

rn
e

rt
re

e
:p

ro
b

o
ff
si

d
e

s1
1

 -

3
.0

8
3

e
-0

1

1

.1
2

9
e

-0
2

 -

2
7

.3
1

6

<

 2
e

-1
6

 *
**

le
a

rn
e

rb
a

ye
s:

p
ro

b
o

ff
si

d
e

s2

 -

3
.1

6
4

e
-0

1

1

.1
2

9
e

-0
2

 -

2
8

.0
3

5

<

 2
e

-1
6

 *
**

le
a

rn
e

rf
o

rs
t:
p

ro
b

o
ff
si

d
e

s2

 -

1
.9

4
8

e
-0

1

1

.1
2

9
e

-0
2

 -

1
7

.2
6

2

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
1

0
:p

ro
b

o
ff
si

d
e

s2

 -

3
.1

0
3

e
-0

1

1

.1
2

9
e

-0
2

 -

2
7

.4
9

3

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
3

:p
ro

b
o

ff
si

d
e

s2

-3

.0
5

7
e

-0
1

1

.1
2

9
e

-0
2

 -

2
7

.0
8

6

<

 2
e

-1
6

 *
**

le
a

rn
e

rs
vm

:p
ro

b
o

ff
si

d
e

s2

 -

3
.6

8
0

e
-0

1

1

.1
2

9
e

-0
2

 -

3
2

.6
0

7

<

 2
e

-1
6

 *
**

le
a

rn
e

rt
re

e
:p

ro
b

o
ff
si

d
e

s2

-2

.4
0

7
e

-0
1

1

.1
2

9
e

-0
2

 -

2
1

.3
3

0

<

 2
e

-1
6

 *
**

le
a

rn
e

rb
a

ye
s:

p
ro

b
o

ff
si

d
e

s5

 -

3
.9

6
4

e
-0

1

1

.1
2

9
e

-0
2

 -

3
5

.1
2

4

<

 2
e

-1
6

 *
**

le
a

rn
e

rf
o

rs
t:
p

ro
b

o
ff
si

d
e

s5

 -

2
.2

9
2

e
-0

1

1

.1
2

9
e

-0
2

 -

2
0

.3
0

7

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
1

0
:p

ro
b

o
ff
si

d
e

s5

 -

3
.3

0
3

e
-0

1

1

.1
2

9
e

-0
2

 -

2
9

.2
6

5

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
3

:p
ro

b
o

ff
si

d
e

s5

-3

.0
5

7
e

-0
1

1

.1
2

9
e

-0
2

 -

2
7

.0
8

6

<

 2
e

-1
6

 *
**

le
a

rn
e

rs
vm

:p
ro

b
o

ff
si

d
e

s5

 -

3
.4

8
0

e
-0

1

1

.1
2

9
e

-0
2

 -

3
0

.8
3

5

<

 2
e

-1
6

 *
**

le
a

rn
e

rt
re

e
:p

ro
b

o
ff
si

d
e

s5

-2

.9
3

4
e

-0
1

1

.1
2

9
e

-0
2

 -

2
5

.9
9

9

<

 2
e

-1
6

 *
**

le
a

rn
e

rb
a

ye
s:

p
ro

b
p

ro
m

o
te

r1

 -

6
.0

9
0

e
-0

2

1

.1
2

9
e

-0
2

-5

.3
9

6
 6

.9
1

e
-0

8
 *

**
le

a
rn

e
rf

o
rs

t:
p

ro
b

p
ro

m
o

te
r1

5

.3
1

6
e

-0
2

1

.1
2

9
e

-0
2

 4

.7
1

1
 2

.4
9

e
-0

6
 *

**
le

a
rn

e
rk

n
n

1
0

:p
ro

b
p

ro
m

o
te

r1

1

.7
3

8
e

-0
2

1

.1
2

9
e

-0
2

 1

.5
4

0
 0

.1
2

3
4

8
5

le
a

rn
e

rk
n

n
3

:p
ro

b
p

ro
m

o
te

r1

 1

.0
9

0
e

-0
2

1

.1
2

9
e

-0
2

 0

.9
6

6
 0

.3
3

4
2

4
3

le
a

rn
e

rs
vm

:p
ro

b
p

ro
m

o
te

r1

 -

1
.5

2
0

e
-0

2

1

.1
2

9
e

-0
2

-1

.3
4

7
 0

.1
7

8
0

5
9

le
a

rn
e

rt
re

e
:p

ro
b

p
ro

m
o

te
r1

 2

.8
4

0
e

-0
2

1

.1
2

9
e

-0
2

 2

.5
1

6
 0

.0
1

1
8

7
6

 *

le
a

rn
e

rb
a

ye
s:

p
ro

b
p

ro
m

o
te

r2

 -

6
.0

9
0

e
-0

2

1

.1
2

9
e

-0
2

-5

.3
9

6
 6

.9
1

e
-0

8
 *

**
le

a
rn

e
rf

o
rs

t:
p

ro
b

p
ro

m
o

te
r2

5

.6
8

0
e

-0
2

1

.1
2

9
e

-0
2

 5

.0
3

3
 4

.8
8

e
-0

7
 *

**
le

a
rn

e
rk

n
n

1
0

:p
ro

b
p

ro
m

o
te

r2

1

.7
3

8
e

-0
2

1

.1
2

9
e

-0
2

 1

.5
4

0
 0

.1
2

3
6

8
7

le
a

rn
e

rk
n

n
3

:p
ro

b
p

ro
m

o
te

r2

 1

.2
3

6
e

-0
2

1

.1
2

9
e

-0
2

 1

.0
9

5
 0

.2
7

3
4

7
0

le
a

rn
e

rs
vm

:p
ro

b
p

ro
m

o
te

r2

 -

1
.5

2
0

e
-0

2

1

.1
2

9
e

-0
2

-1

.3
4

7
 0

.1
7

8
0

5
9

le
a

rn
e

rt
re

e
:p

ro
b

p
ro

m
o

te
r2

 2

.9
1

1
e

-0
2

1

.1
2

9
e

-0
2

 2

.5
7

9
 0

.0
0

9
9

0
4

 *
*

le
a

rn
e

rb
a

ye
s:

p
ro

b
p

ro
m

o
te

r3

 -

6
.0

9
0

e
-0

2

1

.1
2

9
e

-0
2

-5

.3
9

6
 6

.9
1

e
-0

8
 *

**
le

a
rn

e
rf

o
rs

t:
p

ro
b

p
ro

m
o

te
r3

5

.6
3

0
e

-0
2

1

.1
2

9
e

-0
2

 4

.9
8

9
 6

.1
4

e
-0

7
 *

**
le

a
rn

e
rk

n
n

1
0

:p
ro

b
p

ro
m

o
te

r3

1

.7
6

7
e

-0
2

1

.1
2

9
e

-0
2

 1

.5
6

5
 0

.1
1

7
5

1
4

le
a

rn
e

rk
n

n
3

:p
ro

b
p

ro
m

o
te

r3

 1

.1
0

9
e

-0
2

1

.1
2

9
e

-0
2

 0

.9
8

2
 0

.3
2

5
9

7
2

le
a

rn
e

rs
vm

:p
ro

b
p

ro
m

o
te

r3

 -

1
.5

2
0

e
-0

2

1

.1
2

9
e

-0
2

-1

.3
4

7
 0

.1
7

8
0

5
9

le
a

rn
e

rt
re

e
:p

ro
b

p
ro

m
o

te
r3

 2

.7
2

3
e

-0
2

1

.1
2

9
e

-0
2

 2

.4
1

2
 0

.0
1

5
8

6
0

 *

le
a

rn
e

rb
a

ye
s:

p
ro

b
tt
t1

-4

.0
2

5
e

-0
1

1

.1
2

9
e

-0
2

 -

3
5

.6
6

4

<

 2
e

-1
6

 *
**

le
a

rn
e

rf
o

rs
t:
p

ro
b

tt
t1

-1

.0
3

3
e

-0
1

1

.1
2

9
e

-0
2

-9

.1
5

3

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
1

0
:p

ro
b

tt
t1

-1

.2
2

8
e

-0
1

1

.1
2

9
e

-0
2

 -

1
0

.8
7

9

<

 2
e

-1
6

 *
**

le
a

rn
e

rk
n

n
3

:p
ro

b
tt
t1

 -

1
.6

8
0

e
-0

1

1

.1
2

9
e

-0
2

 -

1
4

.8
9

0

<

 2
e

-1
6

 *
**

le
a

rn
e

rs
vm

:p
ro

b
tt
t1

-1

.1
4

9
e

-0
1

1

.1
2

9
e

-0
2

 -

1
0

.1
8

1

<

 2
e

-1
6

 *
**

Figure 52: Linear Model Page 1.

186

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
t
t
t
1

-
1
.
3
1
5
e
-
0
1

1
.
1
2
9
e
-
0
2

-
1
1
.
6
5
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
t
t
t
2

-
4
.
0
2
5
e
-
0
1

1
.
1
2
9
e
-
0
2

-
3
5
.
6
6
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
t
t
t
2

-
1
.
0
4
1
e
-
0
1

1
.
1
2
9
e
-
0
2

-
9
.
2
2
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
t
t
t
2

-
1
.
2
3
6
e
-
0
1

1
.
1
2
9
e
-
0
2

-
1
0
.
9
5
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
t
t
t
2

-
1
.
6
9
0
e
-
0
1

1
.
1
2
9
e
-
0
2

-
1
4
.
9
7
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
t
t
t
2

-
1
.
1
4
9
e
-
0
1

1
.
1
2
9
e
-
0
2

-
1
0
.
1
8
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
t
t
t
2

-
1
.
3
1
5
e
-
0
1

1
.
1
2
9
e
-
0
2

-
1
1
.
6
5
0

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
w
i
n
e

1
.
3
7
6
e
-
0
1

1
.
1
2
9
e
-
0
2

1
2
.
1
9
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
w
i
n
e

2
.
2
5
6
e
-
0
1

1
.
1
2
9
e
-
0
2

1
9
.
9
8
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
w
i
n
e

1
.
8
5
0
e
-
0
1

1
.
1
2
9
e
-
0
2

1
6
.
3
9
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
w
i
n
e

2
.
2
9
6
e
-
0
1

1
.
1
2
9
e
-
0
2

2
0
.
3
4
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
w
i
n
e

1
.
3
6
0
e
-
0
1

1
.
1
2
9
e
-
0
2

1
2
.
0
5
0

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
w
i
n
e

1
.
9
0
5
e
-
0
1

1
.
1
2
9
e
-
0
2

1
6
.
8
8
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
f
t
r
S
e
t
a
l
l

-
3
.
1
3
8
e
-
0
1

1
.
1
2
9
e
-
0
2

-
2
7
.
8
0
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
f
t
r
S
e
t
a
l
l

1
.
7
8
7
e
-
0
1

1
.
1
2
9
e
-
0
2

1
5
.
8
3
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
f
t
r
S
e
t
a
l
l

1
.
5
1
4
e
-
0
1

1
.
1
2
9
e
-
0
2

1
3
.
4
1
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
f
t
r
S
e
t
a
l
l

1
.
8
9
8
e
-
0
1

1
.
1
2
9
e
-
0
2

1
6
.
8
1
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
f
t
r
S
e
t
a
l
l

7
.
8
1
5
e
-
0
2

1
.
1
2
9
e
-
0
2

6
.
9
2
5

4
.
5
4
e
-
1
2

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
f
t
r
S
e
t
a
l
l

1
.
3
5
4
e
-
0
1

1
.
1
2
9
e
-
0
2

1
1
.
9
9
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
f
t
r
S
e
t
n
e
w

-
3
.
1
4
7
e
-
0
1

1
.
1
2
9
e
-
0
2

-
2
7
.
8
8
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
f
t
r
S
e
t
n
e
w

1
.
7
3
3
e
-
0
1

1
.
1
2
9
e
-
0
2

1
5
.
3
5
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
f
t
r
S
e
t
n
e
w

1
.
5
0
5
e
-
0
1

1
.
1
2
9
e
-
0
2

1
3
.
3
3
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
f
t
r
S
e
t
n
e
w

1
.
9
0
8
e
-
0
1

1
.
1
2
9
e
-
0
2

1
6
.
9
0
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
f
t
r
S
e
t
n
e
w

6
.
9
6
2
e
-
0
2

1
.
1
2
9
e
-
0
2

6
.
1
6
9

7
.
0
5
e
-
1
0

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
f
t
r
S
e
t
n
e
w

1
.
3
5
2
e
-
0
1

1
.
1
2
9
e
-
0
2

1
1
.
9
8
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
f
t
r
S
e
t
n
e
w
P
u
n

-
3
.
1
4
6
e
-
0
1

1
.
1
2
9
e
-
0
2

-
2
7
.
8
7
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
f
t
r
S
e
t
n
e
w
P
u
n

1
.
7
4
0
e
-
0
1

1
.
1
2
9
e
-
0
2

1
5
.
4
1
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
f
t
r
S
e
t
n
e
w
P
u
n

1
.
5
1
0
e
-
0
1

1
.
1
2
9
e
-
0
2

1
3
.
3
8
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
f
t
r
S
e
t
n
e
w
P
u
n

1
.
9
1
5
e
-
0
1

1
.
1
2
9
e
-
0
2

1
6
.
9
6
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
f
t
r
S
e
t
n
e
w
P
u
n

7
.
0
0
5
e
-
0
2

1
.
1
2
9
e
-
0
2

6
.
2
0
7

5
.
5
4
e
-
1
0

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
f
t
r
S
e
t
n
e
w
P
u
n

1
.
3
5
5
e
-
0
1

1
.
1
2
9
e
-
0
2

1
2
.
0
0
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
f
t
r
S
e
t
u
s
e
d
O

-
4
.
0
0
3
e
-
0
4

1
.
1
2
9
e
-
0
2

-
0
.
0
3
5

0
.
9
7
1
7
0
4

l
e
a
r
n
e
r
f
o
r
s
t
:
f
t
r
S
e
t
u
s
e
d
O

3
.
1
4
5
e
-
0
3

1
.
1
2
9
e
-
0
2

0
.
2
7
9

0
.
7
8
0
5
2
6

l
e
a
r
n
e
r
k
n
n
1
0
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
8
1
4
e
-
0
3

1
.
1
2
9
e
-
0
2

-
0
.
2
4
9

0
.
8
0
3
1
0
2

l
e
a
r
n
e
r
k
n
n
3
:
f
t
r
S
e
t
u
s
e
d
O

3
.
3
7
9
e
-
0
3

1
.
1
2
9
e
-
0
2

0
.
2
9
9

0
.
7
6
4
6
6
0

l
e
a
r
n
e
r
s
v
m
:
f
t
r
S
e
t
u
s
e
d
O

-
4
.
7
4
7
e
-
0
4

1
.
1
2
9
e
-
0
2

-
0
.
0
4
2

0
.
9
6
6
4
5
3

l
e
a
r
n
e
r
t
r
e
e
:
f
t
r
S
e
t
u
s
e
d
O

6
.
6
1
7
e
-
0
4

1
.
1
2
9
e
-
0
2

0
.
0
5
9

0
.
9
5
3
2
4
9

l
e
a
r
n
e
r
b
a
y
e
s
:
g
e
n
j
o
i
n

6
.
1
4
1
e
-
0
2

1
.
7
9
9
e
-
0
2

3
.
4
1
3

0
.
0
0
0
6
4
3

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
g
e
n
j
o
i
n

1
.
2
4
1
e
-
0
1

1
.
7
9
9
e
-
0
2

6
.
8
9
8

5
.
4
7
e
-
1
2

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
g
e
n
j
o
i
n

1
.
2
5
8
e
-
0
1

1
.
7
9
9
e
-
0
2

6
.
9
9
0

2
.
8
7
e
-
1
2

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
g
e
n
j
o
i
n

1
.
2
8
3
e
-
0
1

1
.
7
9
9
e
-
0
2

7
.
1
2
9

1
.
0
5
e
-
1
2

*
*
*

l
e
a
r
n
e
r
s
v
m
:
g
e
n
j
o
i
n

1
.
1
4
9
e
-
0
1

1
.
7
9
9
e
-
0
2

6
.
3
8
5

1
.
7
6
e
-
1
0

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
g
e
n
j
o
i
n

1
.
1
9
4
e
-
0
1

1
.
7
9
9
e
-
0
2

6
.
6
3
6

3
.
3
4
e
-
1
1

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
g
e
n
r
a
n
d
o
m

6
.
0
4
6
e
-
0
2

1
.
6
6
2
e
-
0
2

3
.
6
3
8

0
.
0
0
0
2
7
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
g
e
n
r
a
n
d
o
m

1
.
2
6
5
e
-
0
1

1
.
6
6
2
e
-
0
2

7
.
6
1
2

2
.
8
6
e
-
1
4

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
g
e
n
r
a
n
d
o
m

1
.
2
8
4
e
-
0
1

1
.
6
6
2
e
-
0
2

7
.
7
2
4

1
.
1
9
e
-
1
4

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
g
e
n
r
a
n
d
o
m

1
.
3
0
2
e
-
0
1

1
.
6
6
2
e
-
0
2

7
.
8
3
8

4
.
8
9
e
-
1
5

*
*
*

l
e
a
r
n
e
r
s
v
m
:
g
e
n
r
a
n
d
o
m

1
.
1
9
6
e
-
0
1

1
.
6
6
2
e
-
0
2

7
.
2
0
0

6
.
3
1
e
-
1
3

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
g
e
n
r
a
n
d
o
m

1
.
2
2
6
e
-
0
1

1
.
6
6
2
e
-
0
2

7
.
3
8
0

1
.
6
6
e
-
1
3

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
g
e
n
s
e
p

6
.
3
8
3
e
-
0
2

1
.
8
2
9
e
-
0
2

3
.
4
9
0

0
.
0
0
0
4
8
4

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
g
e
n
s
e
p

1
.
3
0
8
e
-
0
1

1
.
8
2
9
e
-
0
2

7
.
1
5
2

8
.
9
6
e
-
1
3

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
g
e
n
s
e
p

1
.
3
2
9
e
-
0
1

1
.
8
2
9
e
-
0
2

7
.
2
7
0

3
.
7
8
e
-
1
3

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
g
e
n
s
e
p

1
.
3
6
3
e
-
0
1

1
.
8
2
9
e
-
0
2

7
.
4
5
1

9
.
7
5
e
-
1
4

*
*
*

l
e
a
r
n
e
r
s
v
m
:
g
e
n
s
e
p

1
.
2
1
2
e
-
0
1

1
.
8
2
9
e
-
0
2

6
.
6
2
7

3
.
5
5
e
-
1
1

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
g
e
n
s
e
p

1
.
2
6
4
e
-
0
1

1
.
8
2
9
e
-
0
2

6
.
9
1
1

5
.
0
1
e
-
1
2

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
g
e
n
t
o
p

5
.
9
9
7
e
-
0
2

1
.
6
6
2
e
-
0
2

3
.
6
0
9

0
.
0
0
0
3
0
9

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
g
e
n
t
o
p

1
.
2
3
1
e
-
0
1

1
.
6
6
2
e
-
0
2

7
.
4
1
0

1
.
3
3
e
-
1
3

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
g
e
n
t
o
p

1
.
2
5
8
e
-
0
1

1
.
6
6
2
e
-
0
2

7
.
5
6
8

4
.
0
0
e
-
1
4

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
g
e
n
t
o
p

1
.
2
8
4
e
-
0
1

1
.
6
6
2
e
-
0
2

7
.
7
2
7

1
.
1
7
e
-
1
4

*
*
*

l
e
a
r
n
e
r
s
v
m
:
g
e
n
t
o
p

1
.
1
6
5
e
-
0
1

1
.
6
6
2
e
-
0
2

7
.
0
1
0

2
.
4
9
e
-
1
2

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
g
e
n
t
o
p

1
.
2
0
3
e
-
0
1

1
.
6
6
2
e
-
0
2

7
.
2
4
1

4
.
6
5
e
-
1
3

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
h
a
r
d
L
i
m
i
t

1
.
5
9
5
e
-
0
4

9
.
0
9
0
e
-
0
5

1
.
7
5
5

0
.
0
7
9
3
6
1

.

l
e
a
r
n
e
r
f
o
r
s
t
:
h
a
r
d
L
i
m
i
t

4
.
9
5
0
e
-
0
4

9
.
0
9
0
e
-
0
5

5
.
4
4
6

5
.
2
4
e
-
0
8

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
h
a
r
d
L
i
m
i
t

5
.
4
8
2
e
-
0
4

9
.
0
9
0
e
-
0
5

6
.
0
3
2

1
.
6
6
e
-
0
9

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
h
a
r
d
L
i
m
i
t

5
.
4
1
4
e
-
0
4

9
.
0
9
0
e
-
0
5

5
.
9
5
6

2
.
6
4
e
-
0
9

*
*
*

l
e
a
r
n
e
r
s
v
m
:
h
a
r
d
L
i
m
i
t

5
.
6
1
2
e
-
0
4

9
.
0
9
0
e
-
0
5

6
.
1
7
4

6
.
8
2
e
-
1
0

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
h
a
r
d
L
i
m
i
t

5
.
3
0
6
e
-
0
4

9
.
0
9
0
e
-
0
5

5
.
8
3
8

5
.
3
9
e
-
0
9

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
m
a
x
C
r
o
s
s

3
.
7
9
1
e
-
0
4

1
.
6
5
6
e
-
0
4

2
.
2
8
9

0
.
0
2
2
0
9
0

*

l
e
a
r
n
e
r
f
o
r
s
t
:
m
a
x
C
r
o
s
s

6
.
8
2
8
e
-
0
4

1
.
6
5
6
e
-
0
4

4
.
1
2
3

3
.
7
6
e
-
0
5

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
m
a
x
C
r
o
s
s

6
.
6
6
9
e
-
0
4

1
.
6
5
6
e
-
0
4

4
.
0
2
7

5
.
6
7
e
-
0
5

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
m
a
x
C
r
o
s
s

6
.
9
4
7
e
-
0
4

1
.
6
5
6
e
-
0
4

4
.
1
9
5

2
.
7
4
e
-
0
5

*
*
*

l
e
a
r
n
e
r
s
v
m
:
m
a
x
C
r
o
s
s

5
.
6
8
3
e
-
0
4

1
.
6
5
6
e
-
0
4

3
.
4
3
2

0
.
0
0
0
6
0
1

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
m
a
x
C
r
o
s
s

6
.
1
5
4
e
-
0
4

1
.
6
5
6
e
-
0
4

3
.
7
1
6

0
.
0
0
0
2
0
3

*
*
*

p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
a
l
l

-
5
.
5
1
6
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
8
9
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
a
l
l

-
4
.
5
5
2
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
0
3
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
a
l
l

-
5
.
0
2
6
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
4
5
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
a
l
l

-
4
.
8
9
9
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
3
4
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
a
l
l

-
5
.
3
1
9
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
7
1
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
a
l
l

-
5
.
7
8
4
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
1
3
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
a
l
l

-
5
.
5
3
6
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
9
1
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
a
l
l

-
6
.
4
0
2
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
6
7
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
a
l
l

-
4
.
6
0
1
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
0
8
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
a
l
l

-
6
.
1
1
4
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
4
2
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
a
l
l

-
6
.
2
3
9
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
5
3
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
a
l
l

-
6
.
6
5
9
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
9
0
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
a
l
l

-
6
.
2
7
7
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
5
6
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
a
l
l

-
5
.
7
9
1
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
1
3
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
n
e
w

-
5
.
5
5
7
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
9
2
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
n
e
w

-
3
.
5
6
3
e
-
1
6

1
.
1
2
9
e
-
0
2

-
3
.
1
6
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
n
e
w

-
5
.
9
3
8
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
2
6
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
n
e
w

-
3
.
3
7
6
e
-
1
6

1
.
1
2
9
e
-
0
2

-
2
.
9
9
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
n
e
w

-
5
.
6
8
9
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
0
4
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
n
e
w

-
5
.
4
7
3
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
8
5
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
n
e
w

-
4
.
4
3
2
e
-
1
6

1
.
1
2
9
e
-
0
2

-
3
.
9
3
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
n
e
w

-
4
.
3
5
8
e
-
1
6

1
.
1
2
9
e
-
0
2

-
3
.
8
6
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
n
e
w

-
4
.
1
5
6
e
-
1
6

1
.
1
2
9
e
-
0
2

-
3
.
6
8
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
n
e
w

-
5
.
1
5
4
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
5
7
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
n
e
w

-
4
.
7
2
6
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
1
9
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
n
e
w

-
5
.
0
5
9
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
4
8
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
n
e
w

-
6
.
6
3
1
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
8
8
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
n
e
w

-
3
.
6
8
5
e
-
1
6

1
.
1
2
9
e
-
0
2

-
3
.
2
6
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
n
e
w
P
u
n

-
5
.
3
3
2
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
7
2
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
n
e
w
P
u
n

-
3
.
3
4
3
e
-
1
6

1
.
1
2
9
e
-
0
2

-
2
.
9
6
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
5
.
7
8
5
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
1
3
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
3
.
6
0
7
e
-
1
6

1
.
1
2
9
e
-
0
2

-
3
.
2
0
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
n
e
w
P
u
n

-
4
.
2
8
1
e
-
1
6

1
.
1
2
9
e
-
0
2

-
3
.
7
9
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
5
.
0
2
1
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
4
5
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
5
.
5
0
0
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
8
7
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
n
e
w
P
u
n

-
4
.
8
2
4
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
2
7
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
4
.
0
0
6
e
-
1
6

1
.
1
2
9
e
-
0
2

-
3
.
5
5
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
5
.
0
7
8
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
5
0
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
n
e
w
P
u
n

-
4
.
4
1
9
e
-
1
6

1
.
1
2
9
e
-
0
2

-
3
.
9
2
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
5
.
5
5
6
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
9
2
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
6
.
4
1
0
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
6
8
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
n
e
w
P
u
n

-
5
.
4
3
7
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
8
2
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
u
s
e
d
O

-
5
.
7
8
9
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
1
3
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
u
s
e
d
O

-
3
.
8
1
4
e
-
1
6

1
.
1
2
9
e
-
0
2

-
3
.
3
8
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
u
s
e
d
O

-
6
.
0
3
9
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
3
5
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
u
s
e
d
O

-
5
.
0
8
4
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
5
1
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
u
s
e
d
O

-
5
.
5
6
5
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
9
3
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
u
s
e
d
O

-
5
.
8
0
3
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
1
4
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
u
s
e
d
O

-
5
.
9
7
8
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
3
0
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
u
s
e
d
O

-
5
.
5
2
9
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
9
0
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
u
s
e
d
O

-
4
.
8
2
3
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
2
7
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
u
s
e
d
O

-
6
.
3
0
4
e
-
1
6

1
.
1
2
9
e
-
0
2

-
5
.
5
9
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
u
s
e
d
O

-
5
.
3
1
2
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
7
1
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
u
s
e
d
O

-
7
.
8
4
5
e
-
1
6

1
.
1
2
9
e
-
0
2

-
6
.
9
5
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
u
s
e
d
O

-
7
.
5
0
4
e
-
1
6

1
.
1
2
9
e
-
0
2

-
6
.
6
5
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
u
s
e
d
O

-
5
.
3
8
8
e
-
1
6

1
.
1
2
9
e
-
0
2

-
4
.
7
7
e
-
1
4

1
.
0
0
0
0
0
0

p
r
o
b
i
r
i
s
:
g
e
n
j
o
i
n

-
5
.
0
0
5
e
-
0
2

2
.
6
3
4
e
-
0
2

-
1
.
9
0
1

0
.
0
5
7
3
7
7

.

p
r
o
b
i
s
o
c
:
g
e
n
j
o
i
n

-
6
.
4
4
7
e
-
0
2

2
.
6
3
4
e
-
0
2

-
2
.
4
4
8

0
.
0
1
4
3
7
9

*

p
r
o
b
m
o
n
k
s
1
:
g
e
n
j
o
i
n

1
.
8
0
1
e
-
0
1

2
.
6
3
4
e
-
0
2

6
.
8
3
8

8
.
3
5
e
-
1
2

*
*
*

p
r
o
b
m
o
n
k
s
2
:
g
e
n
j
o
i
n

8
.
0
3
5
e
-
0
2

2
.
6
3
4
e
-
0
2

3
.
0
5
1

0
.
0
0
2
2
8
5

*
*

p
r
o
b
m
o
n
k
s
3
:
g
e
n
j
o
i
n

4
.
9
0
6
e
-
0
2

2
.
6
3
4
e
-
0
2

1
.
8
6
3

0
.
0
6
2
5
2
6

.

p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
g
e
n
j
o
i
n

-
8
.
2
5
7
e
-
0
2

2
.
6
3
4
e
-
0
2

-
3
.
1
3
5

0
.
0
0
1
7
2
2

*
*

p
r
o
b
o
f
f
s
i
d
e
s
2
:
g
e
n
j
o
i
n

-
1
.
3
8
5
e
-
0
2

2
.
6
3
4
e
-
0
2

-
0
.
5
2
6

0
.
5
9
9
0
2
3

p
r
o
b
o
f
f
s
i
d
e
s
5
:
g
e
n
j
o
i
n

-
5
.
6
9
6
e
-
0
2

2
.
6
3
4
e
-
0
2

-
2
.
1
6
3

0
.
0
3
0
5
6
5

*

p
r
o
b
p
r
o
m
o
t
e
r
1
:
g
e
n
j
o
i
n

-
9
.
0
1
7
e
-
0
2

2
.
6
3
4
e
-
0
2

-
3
.
4
2
4

0
.
0
0
0
6
1
9

*
*
*

p
r
o
b
p
r
o
m
o
t
e
r
2
:
g
e
n
j
o
i
n

2
.
2
9
8
e
-
0
1

2
.
6
3
4
e
-
0
2

8
.
7
2
6

<

2
e
-
1
6

*
*
*

p
r
o
b
p
r
o
m
o
t
e
r
3
:
g
e
n
j
o
i
n

1
.
8
6
0
e
-
0
1

2
.
6
3
4
e
-
0
2

7
.
0
6
4

1
.
6
9
e
-
1
2

*
*
*

p
r
o
b
t
t
t
1
:
g
e
n
j
o
i
n

1
.
6
1
2
e
-
0
1

2
.
6
3
4
e
-
0
2

6
.
1
2
1

9
.
5
0
e
-
1
0

*
*
*

p
r
o
b
t
t
t
2
:
g
e
n
j
o
i
n

-
6
.
9
2
5
e
-
0
2

2
.
6
3
4
e
-
0
2

-
2
.
6
2
9

0
.
0
0
8
5
6
5

*
*

p
r
o
b
w
i
n
e
:
g
e
n
j
o
i
n

9
.
2
7
1
e
-
0
3

2
.
6
3
4
e
-
0
2

0
.
3
5
2

0
.
7
2
4
8
2
6

p
r
o
b
i
r
i
s
:
g
e
n
r
a
n
d
o
m

-
2
.
6
4
1
e
-
0
2

2
.
4
3
3
e
-
0
2

-
1
.
0
8
6

0
.
2
7
7
6
7
0

p
r
o
b
i
s
o
c
:
g
e
n
r
a
n
d
o
m

-
4
.
9
4
6
e
-
0
2

2
.
4
3
3
e
-
0
2

-
2
.
0
3
3

0
.
0
4
2
0
4
4

*

p
r
o
b
m
o
n
k
s
1
:
g
e
n
r
a
n
d
o
m

1
.
6
1
7
e
-
0
1

2
.
4
3
3
e
-
0
2

6
.
6
4
9

3
.
0
6
e
-
1
1

*
*
*

p
r
o
b
m
o
n
k
s
2
:
g
e
n
r
a
n
d
o
m

1
.
2
7
0
e
-
0
1

2
.
4
3
3
e
-
0
2

5
.
2
1
9

1
.
8
2
e
-
0
7

*
*
*

p
r
o
b
m
o
n
k
s
3
:
g
e
n
r
a
n
d
o
m

3
.
1
1
2
e
-
0
2

2
.
4
3
3
e
-
0
2

1
.
2
7
9

0
.
2
0
0
8
3
7

p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
g
e
n
r
a
n
d
o
m

-
6
.
5
9
3
e
-
0
2

2
.
4
3
3
e
-
0
2

-
2
.
7
1
0

0
.
0
0
6
7
2
8

*
*

p
r
o
b
o
f
f
s
i
d
e
s
2
:
g
e
n
r
a
n
d
o
m

2
.
9
7
9
e
-
0
3

2
.
4
3
3
e
-
0
2

0
.
1
2
2

0
.
9
0
2
5
4
7

p
r
o
b
o
f
f
s
i
d
e
s
5
:
g
e
n
r
a
n
d
o
m

-
4
.
4
9
8
e
-
0
2

2
.
4
3
3
e
-
0
2

-
1
.
8
4
9

0
.
0
6
4
4
4
7

.

p
r
o
b
p
r
o
m
o
t
e
r
1
:
g
e
n
r
a
n
d
o
m

-
6
.
7
4
1
e
-
0
2

2
.
4
3
3
e
-
0
2

-
2
.
7
7
1

0
.
0
0
5
5
9
5

*
*

p
r
o
b
p
r
o
m
o
t
e
r
2
:
g
e
n
r
a
n
d
o
m

2
.
6
8
7
e
-
0
1

2
.
4
3
3
e
-
0
2

1
1
.
0
4
5

<

2
e
-
1
6

*
*
*

p
r
o
b
p
r
o
m
o
t
e
r
3
:
g
e
n
r
a
n
d
o
m

2
.
2
1
1
e
-
0
1

2
.
4
3
3
e
-
0
2

9
.
0
8
7

<

2
e
-
1
6

*
*
*

p
r
o
b
t
t
t
1
:
g
e
n
r
a
n
d
o
m

1
.
9
0
7
e
-
0
1

2
.
4
3
3
e
-
0
2

7
.
8
3
7

4
.
9
0
e
-
1
5

*
*
*

p
r
o
b
t
t
t
2
:
g
e
n
r
a
n
d
o
m

-
4
.
8
1
8
e
-
0
2

2
.
4
3
3
e
-
0
2

-
1
.
9
8
1

0
.
0
4
7
6
5
2

*

p
r
o
b
w
i
n
e
:
g
e
n
r
a
n
d
o
m

2
.
1
4
1
e
-
0
2

2
.
4
3
3
e
-
0
2

0
.
8
8
0

0
.
3
7
8
6
9
0

p
r
o
b
i
r
i
s
:
g
e
n
s
e
p

-
4
.
0
8
3
e
-
0
2

2
.
6
7
7
e
-
0
2

-
1
.
5
2
5

0
.
1
2
7
2
6
0

p
r
o
b
i
s
o
c
:
g
e
n
s
e
p

-
6
.
0
0
5
e
-
0
2

2
.
6
7
7
e
-
0
2

-
2
.
2
4
3

0
.
0
2
4
9
0
0

*

p
r
o
b
m
o
n
k
s
1
:
g
e
n
s
e
p

1
.
9
2
6
e
-
0
1

2
.
6
7
7
e
-
0
2

7
.
1
9
3

6
.
6
4
e
-
1
3

*
*
*

p
r
o
b
m
o
n
k
s
2
:
g
e
n
s
e
p

1
.
0
5
7
e
-
0
1

2
.
6
7
7
e
-
0
2

3
.
9
4
9

7
.
8
9
e
-
0
5

*
*
*

p
r
o
b
m
o
n
k
s
3
:
g
e
n
s
e
p

5
.
7
1
7
e
-
0
2

2
.
6
7
7
e
-
0
2

2
.
1
3
5

0
.
0
3
2
7
4
1

*

p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
g
e
n
s
e
p

-
8
.
3
3
2
e
-
0
2

2
.
6
7
7
e
-
0
2

-
3
.
1
1
2

0
.
0
0
1
8
5
9

*
*

p
r
o
b
o
f
f
s
i
d
e
s
2
:
g
e
n
s
e
p

-
4
.
0
4
9
e
-
0
3

2
.
6
7
7
e
-
0
2

-
0
.
1
5
1

0
.
8
7
9
7
7
6

p
r
o
b
o
f
f
s
i
d
e
s
5
:
g
e
n
s
e
p

-
4
.
8
1
2
e
-
0
2

2
.
6
7
7
e
-
0
2

-
1
.
7
9
8

0
.
0
7
2
2
6
1

.

p
r
o
b
p
r
o
m
o
t
e
r
1
:
g
e
n
s
e
p

-
8
.
8
4
2
e
-
0
2

2
.
6
7
7
e
-
0
2

-
3
.
3
0
3

0
.
0
0
0
9
5
9

*
*
*

p
r
o
b
p
r
o
m
o
t
e
r
2
:
g
e
n
s
e
p

2
.
2
2
5
e
-
0
1

2
.
6
7
7
e
-
0
2

8
.
3
1
2

<

2
e
-
1
6

*
*
*

p
r
o
b
p
r
o
m
o
t
e
r
3
:
g
e
n
s
e
p

2
.
0
0
0
e
-
0
1

2
.
6
7
7
e
-
0
2

7
.
4
7
1

8
.
3
7
e
-
1
4

*
*
*

p
r
o
b
t
t
t
1
:
g
e
n
s
e
p

2
.
0
8
0
e
-
0
1

2
.
6
7
7
e
-
0
2

7
.
7
6
9

8
.
4
5
e
-
1
5

*
*
*

p
r
o
b
t
t
t
2
:
g
e
n
s
e
p

-
6
.
4
8
4
e
-
0
2

2
.
6
7
7
e
-
0
2

-
2
.
4
2
2

0
.
0
1
5
4
4
0

*

p
r
o
b
w
i
n
e
:
g
e
n
s
e
p

2
.
1
4
3
e
-
0
2

2
.
6
7
7
e
-
0
2

0
.
8
0
1

0
.
4
2
3
4
3
0

p
r
o
b
i
r
i
s
:
g
e
n
t
o
p

-
3
.
7
9
6
e
-
0
2

2
.
4
3
3
e
-
0
2

-
1
.
5
6
0

0
.
1
1
8
6
9
5

p
r
o
b
i
s
o
c
:
g
e
n
t
o
p

-
6
.
0
1
5
e
-
0
2

2
.
4
3
3
e
-
0
2

-
2
.
4
7
3

0
.
0
1
3
4
1
7

*

p
r
o
b
m
o
n
k
s
1
:
g
e
n
t
o
p

1
.
7
2
9
e
-
0
1

2
.
4
3
3
e
-
0
2

7
.
1
0
8

1
.
2
3
e
-
1
2

*
*
*

Figure 53: Linear Model Page 2.

187

p
r
o
b
m
o
n
k
s
2
:
g
e
n
t
o
p

7
.
9
8
9
e
-
0
2

2
.
4
3
3
e
-
0
2

3
.
2
8
4

0
.
0
0
1
0
2
6

*
*

p
r
o
b
m
o
n
k
s
3
:
g
e
n
t
o
p

4
.
3
8
0
e
-
0
2

2
.
4
3
3
e
-
0
2

1
.
8
0
0

0
.
0
7
1
8
1
4

.

p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
g
e
n
t
o
p

-
7
.
8
4
7
e
-
0
2

2
.
4
3
3
e
-
0
2

-
3
.
2
2
6

0
.
0
0
1
2
5
9

*
*

p
r
o
b
o
f
f
s
i
d
e
s
2
:
g
e
n
t
o
p

-
3
.
0
3
5
e
-
0
3

2
.
4
3
3
e
-
0
2

-
0
.
1
2
5

0
.
9
0
0
7
0
7

p
r
o
b
o
f
f
s
i
d
e
s
5
:
g
e
n
t
o
p

-
5
.
5
2
2
e
-
0
2

2
.
4
3
3
e
-
0
2

-
2
.
2
7
0

0
.
0
2
3
2
2
4

*

p
r
o
b
p
r
o
m
o
t
e
r
1
:
g
e
n
t
o
p

-
8
.
3
5
1
e
-
0
2

2
.
4
3
3
e
-
0
2

-
3
.
4
3
3

0
.
0
0
0
5
9
9

*
*
*

p
r
o
b
p
r
o
m
o
t
e
r
2
:
g
e
n
t
o
p

2
.
1
9
5
e
-
0
1

2
.
4
3
3
e
-
0
2

9
.
0
2
5

<

2
e
-
1
6

*
*
*

p
r
o
b
p
r
o
m
o
t
e
r
3
:
g
e
n
t
o
p

2
.
0
7
5
e
-
0
1

2
.
4
3
3
e
-
0
2

8
.
5
3
0

<

2
e
-
1
6

*
*
*

p
r
o
b
t
t
t
1
:
g
e
n
t
o
p

1
.
7
9
7
e
-
0
1

2
.
4
3
3
e
-
0
2

7
.
3
8
6

1
.
5
9
e
-
1
3

*
*
*

p
r
o
b
t
t
t
2
:
g
e
n
t
o
p

-
6
.
3
7
3
e
-
0
2

2
.
4
3
3
e
-
0
2

-
2
.
6
2
0

0
.
0
0
8
8
0
2

*
*

p
r
o
b
w
i
n
e
:
g
e
n
t
o
p

1
.
3
7
8
e
-
0
2

2
.
4
3
3
e
-
0
2

0
.
5
6
7

0
.
5
7
1
0
2
1

p
r
o
b
i
r
i
s
:
h
a
r
d
L
i
m
i
t

-
3
.
1
7
9
e
-
0
4

1
.
3
3
1
e
-
0
4

-
2
.
3
8
9

0
.
0
1
6
9
1
1

*

p
r
o
b
i
s
o
c
:
h
a
r
d
L
i
m
i
t

3
.
8
6
7
e
-
0
5

1
.
3
3
1
e
-
0
4

0
.
2
9
1

0
.
7
7
1
3
3
6

p
r
o
b
m
o
n
k
s
1
:
h
a
r
d
L
i
m
i
t

-
2
.
3
4
7
e
-
0
4

1
.
3
3
1
e
-
0
4

-
1
.
7
6
4

0
.
0
7
7
7
6
1

.

p
r
o
b
m
o
n
k
s
2
:
h
a
r
d
L
i
m
i
t

1
.
1
5
6
e
-
0
3

1
.
3
3
1
e
-
0
4

8
.
6
8
9

<

2
e
-
1
6

*
*
*

p
r
o
b
m
o
n
k
s
3
:
h
a
r
d
L
i
m
i
t

-
8
.
8
2
9
e
-
0
5

1
.
3
3
1
e
-
0
4

-
0
.
6
6
4

0
.
5
0
7
0
1
2

p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
h
a
r
d
L
i
m
i
t

-
4
.
9
8
7
e
-
0
5

1
.
3
3
1
e
-
0
4

-
0
.
3
7
5

0
.
7
0
7
7
9
4

p
r
o
b
o
f
f
s
i
d
e
s
2
:
h
a
r
d
L
i
m
i
t

1
.
9
5
7
e
-
0
4

1
.
3
3
1
e
-
0
4

1
.
4
7
1

0
.
1
4
1
3
7
1

p
r
o
b
o
f
f
s
i
d
e
s
5
:
h
a
r
d
L
i
m
i
t

-
1
.
9
3
0
e
-
0
5

1
.
3
3
1
e
-
0
4

-
0
.
1
4
5

0
.
8
8
4
6
6
6

p
r
o
b
p
r
o
m
o
t
e
r
1
:
h
a
r
d
L
i
m
i
t

2
.
5
5
2
e
-
0
5

1
.
3
3
1
e
-
0
4

0
.
1
9
2

0
.
8
4
7
9
1
7

p
r
o
b
p
r
o
m
o
t
e
r
2
:
h
a
r
d
L
i
m
i
t

2
.
2
4
0
e
-
0
3

1
.
3
3
1
e
-
0
4

1
6
.
8
3
8

<

2
e
-
1
6

*
*
*

p
r
o
b
p
r
o
m
o
t
e
r
3
:
h
a
r
d
L
i
m
i
t

2
.
5
1
7
e
-
0
3

1
.
3
3
1
e
-
0
4

1
8
.
9
1
4

<

2
e
-
1
6

*
*
*

p
r
o
b
t
t
t
1
:
h
a
r
d
L
i
m
i
t

6
.
4
6
7
e
-
0
4

1
.
3
3
1
e
-
0
4

4
.
8
6
0

1
.
1
8
e
-
0
6

*
*
*

p
r
o
b
t
t
t
2
:
h
a
r
d
L
i
m
i
t

1
.
0
6
8
e
-
0
4

1
.
3
3
1
e
-
0
4

0
.
8
0
3

0
.
4
2
2
2
4
5

p
r
o
b
w
i
n
e
:
h
a
r
d
L
i
m
i
t

4
.
1
5
2
e
-
0
4

1
.
3
3
1
e
-
0
4

3
.
1
2
0

0
.
0
0
1
8
1
0

*
*

p
r
o
b
i
r
i
s
:
m
a
x
C
r
o
s
s

2
.
1
0
2
e
-
0
5

2
.
4
2
4
e
-
0
4

0
.
0
8
7

0
.
9
3
0
9
0
5

p
r
o
b
i
s
o
c
:
m
a
x
C
r
o
s
s

-
4
.
9
9
1
e
-
0
4

2
.
4
2
4
e
-
0
4

-
2
.
0
5
9

0
.
0
3
9
5
1
3

*

p
r
o
b
m
o
n
k
s
1
:
m
a
x
C
r
o
s
s

1
.
6
1
9
e
-
0
3

2
.
4
2
4
e
-
0
4

6
.
6
7
8

2
.
5
0
e
-
1
1

*
*
*

p
r
o
b
m
o
n
k
s
2
:
m
a
x
C
r
o
s
s

-
1
.
8
2
8
e
-
0
4

2
.
4
2
4
e
-
0
4

-
0
.
7
5
4

0
.
4
5
0
7
9
4

p
r
o
b
m
o
n
k
s
3
:
m
a
x
C
r
o
s
s

4
.
3
7
3
e
-
0
4

2
.
4
2
4
e
-
0
4

1
.
8
0
4

0
.
0
7
1
2
3
9

.

p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
m
a
x
C
r
o
s
s

-
4
.
7
2
3
e
-
0
4

2
.
4
2
4
e
-
0
4

-
1
.
9
4
8

0
.
0
5
1
3
9
4

.

p
r
o
b
o
f
f
s
i
d
e
s
2
:
m
a
x
C
r
o
s
s

-
7
.
5
5
2
e
-
0
5

2
.
4
2
4
e
-
0
4

-
0
.
3
1
2

0
.
7
5
5
4
0
3

p
r
o
b
o
f
f
s
i
d
e
s
5
:
m
a
x
C
r
o
s
s

-
2
.
9
8
3
e
-
0
4

2
.
4
2
4
e
-
0
4

-
1
.
2
3
0

0
.
2
1
8
5
7
4

p
r
o
b
p
r
o
m
o
t
e
r
1
:
m
a
x
C
r
o
s
s

-
7
.
1
9
7
e
-
0
4

2
.
4
2
4
e
-
0
4

-
2
.
9
6
9

0
.
0
0
2
9
9
5

*
*

p
r
o
b
p
r
o
m
o
t
e
r
2
:
m
a
x
C
r
o
s
s

5
.
3
9
5
e
-
0
4

2
.
4
2
4
e
-
0
4

2
.
2
2
5

0
.
0
2
6
0
7
4

*

p
r
o
b
p
r
o
m
o
t
e
r
3
:
m
a
x
C
r
o
s
s

-
4
.
0
9
9
e
-
0
4

2
.
4
2
4
e
-
0
4

-
1
.
6
9
1

0
.
0
9
0
8
8
2

.

p
r
o
b
t
t
t
1
:
m
a
x
C
r
o
s
s

9
.
9
6
2
e
-
0
4

2
.
4
2
4
e
-
0
4

4
.
1
0
9

3
.
9
9
e
-
0
5

*
*
*

p
r
o
b
t
t
t
2
:
m
a
x
C
r
o
s
s

-
5
.
0
9
6
e
-
0
4

2
.
4
2
4
e
-
0
4

-
2
.
1
0
2

0
.
0
3
5
5
6
0

*

p
r
o
b
w
i
n
e
:
m
a
x
C
r
o
s
s

-
2
.
4
7
3
e
-
0
4

2
.
4
2
4
e
-
0
4

-
1
.
0
2
0

0
.
3
0
7
6
7
1

f
t
r
S
e
t
a
l
l
:
g
e
n
j
o
i
n

5
.
6
9
2
e
-
0
2

1
.
5
2
1
e
-
0
2

3
.
7
4
3

0
.
0
0
0
1
8
2

*
*
*

f
t
r
S
e
t
n
e
w
:
g
e
n
j
o
i
n

2
.
0
7
9
e
-
0
1

1
.
5
2
1
e
-
0
2

1
3
.
6
7
2

<

2
e
-
1
6

*
*
*

f
t
r
S
e
t
n
e
w
P
u
n
:
g
e
n
j
o
i
n

5
.
2
4
6
e
-
0
2

1
.
5
2
1
e
-
0
2

3
.
4
5
0

0
.
0
0
0
5
6
1

*
*
*

f
t
r
S
e
t
u
s
e
d
O
:
g
e
n
j
o
i
n

1
.
6
4
4
e
-
0
1

1
.
5
2
1
e
-
0
2

1
0
.
8
1
2

<

2
e
-
1
6

*
*
*

f
t
r
S
e
t
a
l
l
:
g
e
n
r
a
n
d
o
m

5
.
7
7
0
e
-
0
2

1
.
4
0
4
e
-
0
2

4
.
1
0
8

4
.
0
0
e
-
0
5

*
*
*

f
t
r
S
e
t
n
e
w
:
g
e
n
r
a
n
d
o
m

2
.
1
1
8
e
-
0
1

1
.
4
0
4
e
-
0
2

1
5
.
0
7
9

<

2
e
-
1
6

*
*
*

f
t
r
S
e
t
n
e
w
P
u
n
:
g
e
n
r
a
n
d
o
m

5
.
3
0
3
e
-
0
2

1
.
4
0
4
e
-
0
2

3
.
7
7
6

0
.
0
0
0
1
6
0

*
*
*

f
t
r
S
e
t
u
s
e
d
O
:
g
e
n
r
a
n
d
o
m

1
.
6
7
7
e
-
0
1

1
.
4
0
4
e
-
0
2

1
1
.
9
4
1

<

2
e
-
1
6

*
*
*

f
t
r
S
e
t
a
l
l
:
g
e
n
s
e
p

5
.
9
3
9
e
-
0
2

1
.
5
4
6
e
-
0
2

3
.
8
4
2

0
.
0
0
0
1
2
2

*
*
*

f
t
r
S
e
t
n
e
w
:
g
e
n
s
e
p

2
.
1
9
8
e
-
0
1

1
.
5
4
6
e
-
0
2

1
4
.
2
2
0

<

2
e
-
1
6

*
*
*

f
t
r
S
e
t
n
e
w
P
u
n
:
g
e
n
s
e
p

5
.
5
0
0
e
-
0
2

1
.
5
4
6
e
-
0
2

3
.
5
5
9

0
.
0
0
0
3
7
4

*
*
*

f
t
r
S
e
t
u
s
e
d
O
:
g
e
n
s
e
p

1
.
7
3
3
e
-
0
1

1
.
5
4
6
e
-
0
2

1
1
.
2
1
5

<

2
e
-
1
6

*
*
*

f
t
r
S
e
t
a
l
l
:
g
e
n
t
o
p

5
.
3
8
4
e
-
0
2

1
.
4
0
4
e
-
0
2

3
.
8
3
4

0
.
0
0
0
1
2
7

*
*
*

f
t
r
S
e
t
n
e
w
:
g
e
n
t
o
p

2
.
0
9
1
e
-
0
1

1
.
4
0
4
e
-
0
2

1
4
.
8
8
9

<

2
e
-
1
6

*
*
*

f
t
r
S
e
t
n
e
w
P
u
n
:
g
e
n
t
o
p

4
.
9
6
1
e
-
0
2

1
.
4
0
4
e
-
0
2

3
.
5
3
2

0
.
0
0
0
4
1
3

*
*
*

f
t
r
S
e
t
u
s
e
d
O
:
g
e
n
t
o
p

1
.
6
7
8
e
-
0
1

1
.
4
0
4
e
-
0
2

1
1
.
9
4
5

<

2
e
-
1
6

*
*
*

f
t
r
S
e
t
a
l
l
:
h
a
r
d
L
i
m
i
t

2
.
2
0
0
e
-
0
4

7
.
6
8
2
e
-
0
5

2
.
8
6
4

0
.
0
0
4
1
9
5

*
*

f
t
r
S
e
t
n
e
w
:
h
a
r
d
L
i
m
i
t

8
.
7
9
7
e
-
0
4

7
.
6
8
2
e
-
0
5

1
1
.
4
5
1

<

2
e
-
1
6

*
*
*

f
t
r
S
e
t
n
e
w
P
u
n
:
h
a
r
d
L
i
m
i
t

1
.
8
4
5
e
-
0
4

7
.
6
8
2
e
-
0
5

2
.
4
0
2

0
.
0
1
6
3
1
5

*

f
t
r
S
e
t
u
s
e
d
O
:
h
a
r
d
L
i
m
i
t

7
.
5
4
6
e
-
0
4

7
.
6
8
2
e
-
0
5

9
.
8
2
3

<

2
e
-
1
6

*
*
*

f
t
r
S
e
t
a
l
l
:
m
a
x
C
r
o
s
s

2
.
9
3
8
e
-
0
4

1
.
4
0
0
e
-
0
4

2
.
0
9
9

0
.
0
3
5
8
5
1

*

f
t
r
S
e
t
n
e
w
:
m
a
x
C
r
o
s
s

1
.
1
1
6
e
-
0
3

1
.
4
0
0
e
-
0
4

7
.
9
7
1

1
.
6
8
e
-
1
5

*
*
*

f
t
r
S
e
t
n
e
w
P
u
n
:
m
a
x
C
r
o
s
s

2
.
9
8
5
e
-
0
4

1
.
4
0
0
e
-
0
4

2
.
1
3
3

0
.
0
3
2
9
7
7

*

f
t
r
S
e
t
u
s
e
d
O
:
m
a
x
C
r
o
s
s

8
.
5
1
3
e
-
0
4

1
.
4
0
0
e
-
0
4

6
.
0
8
2

1
.
2
1
e
-
0
9

*
*
*

g
e
n
j
o
i
n
:
h
a
r
d
L
i
m
i
t

4
.
8
3
1
e
-
0
4

4
.
2
8
0
e
-
0
4

1
.
1
2
9

0
.
2
5
9
0
1
7

g
e
n
r
a
n
d
o
m
:
h
a
r
d
L
i
m
i
t

1
.
7
4
4
e
-
0
3

3
.
6
5
7
e
-
0
4

4
.
7
6
8

1
.
8
7
e
-
0
6

*
*
*

g
e
n
s
e
p
:
h
a
r
d
L
i
m
i
t

7
.
0
8
0
e
-
0
4

4
.
8
2
0
e
-
0
4

1
.
4
6
9

0
.
1
4
1
9
0
6

g
e
n
t
o
p
:
h
a
r
d
L
i
m
i
t

N
A

N
A

N
A

N
A

g
e
n
j
o
i
n
:
m
a
x
C
r
o
s
s

6
.
4
8
5
e
-
0
4

3
.
9
3
4
e
-
0
4

1
.
6
4
9

0
.
0
9
9
2
3
1

.

g
e
n
r
a
n
d
o
m
:
m
a
x
C
r
o
s
s

N
A

N
A

N
A

N
A

g
e
n
s
e
p
:
m
a
x
C
r
o
s
s

N
A

N
A

N
A

N
A

g
e
n
t
o
p
:
m
a
x
C
r
o
s
s

N
A

N
A

N
A

N
A

h
a
r
d
L
i
m
i
t
:
m
a
x
C
r
o
s
s

-
2
.
2
6
4
e
-
0
5

5
.
4
7
7
e
-
0
6

-
4
.
1
3
4

3
.
5
9
e
-
0
5

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
a
l
l

3
.
4
0
5
e
-
0
1

1
.
5
9
6
e
-
0
2

2
1
.
3
3
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
a
l
l

-
1
.
6
5
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
3
6
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
a
l
l

-
1
.
4
6
2
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
1
6
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
a
l
l

-
1
.
9
1
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
2
.
0
0
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
a
l
l

-
7
.
0
9
3
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
4
4
4

8
.
8
8
e
-
0
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
a
l
l

-
1
.
0
9
7
e
-
0
1

1
.
5
9
6
e
-
0
2

-
6
.
8
7
3

6
.
5
5
e
-
1
2

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
a
l
l

4
.
9
3
8
e
-
0
1

1
.
5
9
6
e
-
0
2

3
0
.
9
3
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
a
l
l

-
1
.
9
1
8
e
-
0
2

1
.
5
9
6
e
-
0
2

-
1
.
2
0
2

0
.
2
2
9
5
1
9

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
a
l
l

-
8
.
1
3
7
e
-
0
2

1
.
5
9
6
e
-
0
2

-
5
.
0
9
8

3
.
4
7
e
-
0
7

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
a
l
l

-
1
.
4
9
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
3
8
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
a
l
l

1
.
1
1
8
e
-
0
1

1
.
5
9
6
e
-
0
2

7
.
0
0
8

2
.
5
3
e
-
1
2

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
a
l
l

4
.
4
6
0
e
-
0
2

1
.
5
9
6
e
-
0
2

2
.
7
9
4

0
.
0
0
5
2
0
8

*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
a
l
l

5
.
4
1
3
e
-
0
1

1
.
5
9
6
e
-
0
2

3
3
.
9
1
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
a
l
l

-
1
.
2
7
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
7
.
9
9
0

1
.
4
5
e
-
1
5

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
a
l
l

-
6
.
0
0
8
e
-
0
2

1
.
5
9
6
e
-
0
2

-
3
.
7
6
4

0
.
0
0
0
1
6
8

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
a
l
l

-
5
.
3
7
4
e
-
0
2

1
.
5
9
6
e
-
0
2

-
3
.
3
6
7

0
.
0
0
0
7
6
1

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
a
l
l

-
7
.
8
1
5
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
8
9
7

9
.
8
5
e
-
0
7

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
a
l
l

-
8
.
9
6
9
e
-
0
2

1
.
5
9
6
e
-
0
2

-
5
.
6
1
9

1
.
9
5
e
-
0
8

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
a
l
l

3
.
3
2
3
e
-
0
1

1
.
5
9
6
e
-
0
2

2
0
.
8
2
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
a
l
l

7
.
8
9
4
e
-
0
3

1
.
5
9
6
e
-
0
2

0
.
4
9
5

0
.
6
2
0
9
0
9

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
a
l
l

-
3
.
6
5
7
e
-
0
4

1
.
5
9
6
e
-
0
2

-
0
.
0
2
3

0
.
9
8
1
7
2
2

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
a
l
l

-
1
.
2
1
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
7
.
6
0
3

3
.
0
6
e
-
1
4

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
a
l
l

1
.
1
0
9
e
-
0
1

1
.
5
9
6
e
-
0
2

6
.
9
4
9

3
.
8
4
e
-
1
2

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
a
l
l

1
.
5
9
8
e
-
0
1

1
.
5
9
6
e
-
0
2

1
0
.
0
1
0

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
a
l
l

3
.
1
3
8
e
-
0
1

1
.
5
9
6
e
-
0
2

1
9
.
6
5
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
a
l
l

-
1
.
9
9
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
2
.
5
1
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
a
l
l

-
1
.
0
6
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
6
.
6
6
1

2
.
8
1
e
-
1
1

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
a
l
l

-
8
.
8
0
8
e
-
0
2

1
.
5
9
6
e
-
0
2

-
5
.
5
1
8

3
.
4
8
e
-
0
8

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
a
l
l

-
7
.
8
1
5
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
8
9
7

9
.
8
5
e
-
0
7

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
a
l
l

-
1
.
3
5
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
4
8
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
a
l
l

3
.
3
2
2
e
-
0
1

1
.
5
9
6
e
-
0
2

2
0
.
8
1
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
a
l
l

-
1
.
5
0
2
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
4
0
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
a
l
l

-
1
.
5
4
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
6
5
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
a
l
l

-
2
.
3
0
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
4
.
4
0
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
a
l
l

-
7
.
2
6
9
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
5
5
4

5
.
3
0
e
-
0
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
a
l
l

-
1
.
2
3
1
e
-
0
1

1
.
5
9
6
e
-
0
2

-
7
.
7
1
3

1
.
3
1
e
-
1
4

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
a
l
l

3
.
1
6
8
e
-
0
1

1
.
5
9
6
e
-
0
2

1
9
.
8
4
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
a
l
l

-
1
.
6
7
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
4
6
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
a
l
l

-
1
.
1
0
6
e
-
0
1

1
.
5
9
6
e
-
0
2

-
6
.
9
3
2

4
.
3
2
e
-
1
2

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
a
l
l

-
1
.
4
9
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
3
6
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
a
l
l

-
1
.
0
3
2
e
-
0
2

1
.
5
9
6
e
-
0
2

-
0
.
6
4
7

0
.
5
1
7
8
6
5

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
a
l
l

-
9
.
4
0
0
e
-
0
2

1
.
5
9
6
e
-
0
2

-
5
.
8
9
0

3
.
9
5
e
-
0
9

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
a
l
l

3
.
5
3
1
e
-
0
1

1
.
5
9
6
e
-
0
2

2
2
.
1
2
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
a
l
l

-
1
.
7
7
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
1
2
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
a
l
l

-
1
.
5
0
7
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
4
4
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
a
l
l

-
1
.
9
0
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
9
2
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
a
l
l

-
9
.
9
5
2
e
-
0
2

1
.
5
9
6
e
-
0
2

-
6
.
2
3
5

4
.
6
3
e
-
1
0

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
a
l
l

-
1
.
2
2
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
7
.
6
9
6

1
.
4
9
e
-
1
4

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
a
l
l

2
.
5
1
7
e
-
0
1

1
.
5
9
6
e
-
0
2

1
5
.
7
7
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
a
l
l

-
1
.
8
0
9
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
3
3
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
a
l
l

-
1
.
4
5
2
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
0
9
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
a
l
l

-
1
.
8
5
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
5
8
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
a
l
l

-
7
.
5
9
3
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
7
5
7

1
.
9
8
e
-
0
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
a
l
l

-
1
.
3
4
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
4
4
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
a
l
l

3
.
2
4
5
e
-
0
1

1
.
5
9
6
e
-
0
2

2
0
.
3
3
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
a
l
l

-
1
.
6
6
2
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
4
1
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
a
l
l

-
1
.
3
8
6
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
6
8
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
a
l
l

-
1
.
7
3
9
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
8
9
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
a
l
l

-
6
.
9
0
1
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
3
2
4

1
.
5
4
e
-
0
5

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
a
l
l

-
1
.
1
1
7
e
-
0
1

1
.
5
9
6
e
-
0
2

-
7
.
0
0
0

2
.
6
7
e
-
1
2

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
a
l
l

2
.
6
3
7
e
-
0
1

1
.
5
9
6
e
-
0
2

1
6
.
5
2
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
a
l
l

-
1
.
6
9
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
6
2
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
a
l
l

-
1
.
3
1
7
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
2
5
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
a
l
l

-
1
.
6
9
2
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
5
9
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
a
l
l

-
6
.
5
6
5
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
1
1
3

3
.
9
2
e
-
0
5

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
a
l
l

-
1
.
0
7
2
e
-
0
1

1
.
5
9
6
e
-
0
2

-
6
.
7
1
9

1
.
9
0
e
-
1
1

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
a
l
l

3
.
5
4
4
e
-
0
1

1
.
5
9
6
e
-
0
2

2
2
.
2
0
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
a
l
l

-
1
.
4
3
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
9
7
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
a
l
l

-
9
.
9
4
8
e
-
0
2

1
.
5
9
6
e
-
0
2

-
6
.
2
3
3

4
.
6
9
e
-
1
0

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
a
l
l

-
7
.
7
5
3
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
8
5
8

1
.
2
0
e
-
0
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
a
l
l

-
7
.
9
8
4
e
-
0
2

1
.
5
9
6
e
-
0
2

-
5
.
0
0
3

5
.
7
2
e
-
0
7

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
a
l
l

-
6
.
2
0
6
e
-
0
2

1
.
5
9
6
e
-
0
2

-
3
.
8
8
8

0
.
0
0
0
1
0
1

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
a
l
l

2
.
9
8
1
e
-
0
1

1
.
5
9
6
e
-
0
2

1
8
.
6
7
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
a
l
l

-
1
.
8
2
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
4
2
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
a
l
l

-
1
.
3
7
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
6
0
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
a
l
l

-
1
.
5
8
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
9
0
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
a
l
l

-
8
.
0
2
8
e
-
0
2

1
.
5
9
6
e
-
0
2

-
5
.
0
3
0

4
.
9
7
e
-
0
7

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
a
l
l

-
1
.
1
3
9
e
-
0
1

1
.
5
9
6
e
-
0
2

-
7
.
1
3
7

9
.
9
5
e
-
1
3

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
a
l
l

3
.
0
0
6
e
-
0
1

1
.
5
9
6
e
-
0
2

1
8
.
8
3
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
a
l
l

-
1
.
8
5
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
6
2
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
a
l
l

-
1
.
4
0
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
7
9
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
a
l
l

-
1
.
8
3
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
4
6
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
a
l
l

-
7
.
8
4
3
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
9
1
4

9
.
0
3
e
-
0
7

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
a
l
l

-
1
.
3
4
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
3
9
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
n
e
w

3
.
1
5
9
e
-
0
1

1
.
5
9
6
e
-
0
2

1
9
.
7
9
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
n
e
w

-
1
.
8
6
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
7
0
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
n
e
w

-
1
.
7
0
7
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
6
9
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
n
e
w

-
2
.
1
4
7
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
3
.
4
5
0

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
n
e
w

-
9
.
5
3
8
e
-
0
2

1
.
5
9
6
e
-
0
2

-
5
.
9
7
6

2
.
3
4
e
-
0
9

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
n
e
w

-
1
.
3
3
1
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
3
3
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
n
e
w

5
.
1
4
7
e
-
0
1

1
.
5
9
6
e
-
0
2

3
2
.
2
4
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
n
e
w

-
1
.
3
2
6
e
-
0
2

1
.
5
9
6
e
-
0
2

-
0
.
8
3
1

0
.
4
0
5
9
8
4

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
n
e
w

-
8
.
0
5
3
e
-
0
2

1
.
5
9
6
e
-
0
2

-
5
.
0
4
5

4
.
5
8
e
-
0
7

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
n
e
w

-
1
.
5
0
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
4
4
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
n
e
w

1
.
2
0
4
e
-
0
1

1
.
5
9
6
e
-
0
2

7
.
5
4
2

4
.
8
8
e
-
1
4

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
n
e
w

4
.
4
7
8
e
-
0
2

1
.
5
9
6
e
-
0
2

2
.
8
0
6

0
.
0
0
5
0
2
4

*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
n
e
w

5
.
2
7
8
e
-
0
1

1
.
5
9
6
e
-
0
2

3
3
.
0
7
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
n
e
w

-
1
.
5
7
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
8
5
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
n
e
w

-
9
.
1
6
5
e
-
0
2

1
.
5
9
6
e
-
0
2

-
5
.
7
4
2

9
.
5
4
e
-
0
9

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
n
e
w

-
7
.
9
7
6
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
9
9
7

5
.
8
8
e
-
0
7

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
n
e
w

-
1
.
1
0
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
6
.
9
1
0

5
.
0
3
e
-
1
2

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
n
e
w

-
1
.
2
4
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
7
.
8
2
1

5
.
6
0
e
-
1
5

*
*
*

Figure 54: Linear Model Page 3.

188

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
n
e
w

3
.
3
7
8
e
-
0
1

1
.
5
9
6
e
-
0
2

2
1
.
1
6
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
n
e
w

-
1
.
2
9
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
0
8
0

6
.
9
7
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
n
e
w

-
1
.
6
5
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
3
5
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
n
e
w

-
2
.
8
1
2
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
7
.
6
1
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
n
e
w

-
1
.
7
1
8
e
-
0
2

1
.
5
9
6
e
-
0
2

-
1
.
0
7
7

0
.
2
8
1
6
5
3

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
n
e
w

-
1
.
0
6
1
e
-
0
1

1
.
5
9
6
e
-
0
2

-
6
.
6
4
6

3
.
1
1
e
-
1
1

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
n
e
w

3
.
0
5
4
e
-
0
1

1
.
5
9
6
e
-
0
2

1
9
.
1
3
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
n
e
w

-
2
.
0
4
7
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
2
.
8
2
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
n
e
w

-
1
.
3
3
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
3
5
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
n
e
w

-
1
.
3
6
1
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
5
2
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
n
e
w

-
1
.
0
3
6
e
-
0
1

1
.
5
9
6
e
-
0
2

-
6
.
4
9
3

8
.
6
9
e
-
1
1

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
n
e
w

-
1
.
4
4
1
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
0
2
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
n
e
w

3
.
4
8
2
e
-
0
1

1
.
5
9
6
e
-
0
2

2
1
.
8
1
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
n
e
w

-
1
.
1
9
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
7
.
4
7
2

8
.
3
1
e
-
1
4

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
n
e
w

-
1
.
4
1
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
8
5
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
n
e
w

-
2
.
3
2
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
4
.
5
3
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
n
e
w

-
4
.
6
3
9
e
-
0
2

1
.
5
9
6
e
-
0
2

-
2
.
9
0
6

0
.
0
0
3
6
6
2

*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
n
e
w

-
1
.
2
8
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
0
2
1

1
.
1
3
e
-
1
5

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
n
e
w

2
.
8
2
1
e
-
0
1

1
.
5
9
6
e
-
0
2

1
7
.
6
7
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
n
e
w

-
2
.
6
2
2
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
6
.
4
2
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
n
e
w

-
1
.
4
1
9
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
8
8
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
n
e
w

-
1
.
7
8
6
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
1
8
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
n
e
w

-
4
.
9
3
9
e
-
0
2

1
.
5
9
6
e
-
0
2

-
3
.
0
9
4

0
.
0
0
1
9
7
6

*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
n
e
w

-
1
.
7
2
2
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
7
9
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
n
e
w

3
.
1
5
6
e
-
0
1

1
.
5
9
6
e
-
0
2

1
9
.
7
7
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
n
e
w

-
2
.
6
7
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
6
.
7
5
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
n
e
w

-
1
.
7
7
1
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
0
9
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
n
e
w

-
2
.
2
9
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
4
.
3
4
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
n
e
w

-
1
.
1
7
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
7
.
3
5
1

2
.
0
7
e
-
1
3

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
n
e
w

-
1
.
5
7
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
8
8
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
n
e
w

2
.
1
1
7
e
-
0
1

1
.
5
9
6
e
-
0
2

1
3
.
2
6
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
n
e
w

-
2
.
5
6
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
6
.
0
5
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
n
e
w

-
2
.
3
5
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
4
.
7
2
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
n
e
w

-
2
.
5
7
2
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
6
.
1
1
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
n
e
w

-
1
.
6
8
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
5
2
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
n
e
w

-
1
.
7
6
2
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
0
3
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
n
e
w

4
.
1
8
3
e
-
0
2

1
.
5
9
6
e
-
0
2

2
.
6
2
1

0
.
0
0
8
7
7
8

*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
n
e
w

-
4
.
6
3
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
2
9
.
0
6
0

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
n
e
w

-
4
.
2
7
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
2
6
.
7
7
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
n
e
w

-
4
.
3
0
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
2
6
.
9
4
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
n
e
w

-
3
.
8
9
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
2
4
.
4
2
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
n
e
w

-
3
.
7
4
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
2
3
.
4
3
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
n
e
w

8
.
7
5
2
e
-
0
2

1
.
5
9
6
e
-
0
2

5
.
4
8
4

4
.
2
4
e
-
0
8

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
n
e
w

-
3
.
6
9
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
2
3
.
1
7
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
n
e
w

-
3
.
3
9
6
e
-
0
1

1
.
5
9
6
e
-
0
2

-
2
1
.
2
7
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
n
e
w

-
3
.
4
8
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
2
1
.
8
5
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
n
e
w

-
2
.
9
5
7
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
8
.
5
2
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
n
e
w

-
2
.
7
8
1
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
7
.
4
2
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
n
e
w

4
.
1
3
5
e
-
0
1

1
.
5
9
6
e
-
0
2

2
5
.
9
0
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
n
e
w

-
2
.
0
9
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
3
.
1
2
0

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
n
e
w

-
2
.
0
7
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
2
.
9
8
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
n
e
w

-
1
.
7
1
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
7
1
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
n
e
w

-
2
.
0
8
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
3
.
0
6
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
n
e
w

-
1
.
2
3
7
e
-
0
1

1
.
5
9
6
e
-
0
2

-
7
.
7
4
7

9
.
9
7
e
-
1
5

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
n
e
w

2
.
9
5
0
e
-
0
1

1
.
5
9
6
e
-
0
2

1
8
.
4
8
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
n
e
w

-
3
.
6
7
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
2
3
.
0
2
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
n
e
w

-
3
.
7
9
9
e
-
0
1

1
.
5
9
6
e
-
0
2

-
2
3
.
8
0
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
n
e
w

-
3
.
5
9
2
e
-
0
1

1
.
5
9
6
e
-
0
2

-
2
2
.
5
0
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
n
e
w

-
3
.
5
5
6
e
-
0
1

1
.
5
9
6
e
-
0
2

-
2
2
.
2
8
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
n
e
w

-
2
.
7
6
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
7
.
3
4
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
n
e
w

2
.
2
4
6
e
-
0
1

1
.
5
9
6
e
-
0
2

1
4
.
0
7
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
n
e
w

-
2
.
4
1
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
5
.
1
5
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
n
e
w

-
1
.
9
6
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
2
.
3
0
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
n
e
w

-
2
.
5
0
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
5
.
6
6
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
n
e
w

-
1
.
4
0
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
8
0
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
n
e
w

-
1
.
6
5
2
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
3
5
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
n
e
w
P
u
n

3
.
4
0
4
e
-
0
1

1
.
5
9
6
e
-
0
2

2
1
.
3
2
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
6
1
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
1
0
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
4
4
6
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
0
5
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
8
9
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
8
7
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
n
e
w
P
u
n

-
6
.
9
5
0
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
3
5
4

1
.
3
4
e
-
0
5

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
0
8
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
6
.
7
8
8

1
.
1
8
e
-
1
1

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
n
e
w
P
u
n

5
.
1
4
6
e
-
0
1

1
.
5
9
6
e
-
0
2

3
2
.
2
4
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
3
9
9
e
-
0
2

1
.
5
9
6
e
-
0
2

-
0
.
8
7
6

0
.
3
8
0
8
1
1

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
n
e
w
P
u
n

-
8
.
1
0
3
e
-
0
2

1
.
5
9
6
e
-
0
2

-
5
.
0
7
7

3
.
8
8
e
-
0
7

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
5
1
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
4
9
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
n
e
w
P
u
n

1
.
1
9
9
e
-
0
1

1
.
5
9
6
e
-
0
2

7
.
5
1
5

6
.
0
0
e
-
1
4

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
n
e
w
P
u
n

4
.
4
4
9
e
-
0
2

1
.
5
9
6
e
-
0
2

2
.
7
8
7

0
.
0
0
5
3
2
3

*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
n
e
w
P
u
n

5
.
4
2
2
e
-
0
1

1
.
5
9
6
e
-
0
2

3
3
.
9
7
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
2
3
2
e
-
0
1

1
.
5
9
6
e
-
0
2

-
7
.
7
2
0

1
.
2
4
e
-
1
4

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
5
.
8
2
8
e
-
0
2

1
.
5
9
6
e
-
0
2

-
3
.
6
5
2

0
.
0
0
0
2
6
1

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
5
.
1
8
5
e
-
0
2

1
.
5
9
6
e
-
0
2

-
3
.
2
4
8

0
.
0
0
1
1
6
3

*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
7
.
0
0
5
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
3
8
9

1
.
1
5
e
-
0
5

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
8
.
9
8
0
e
-
0
2

1
.
5
9
6
e
-
0
2

-
5
.
6
2
6

1
.
8
7
e
-
0
8

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
n
e
w
P
u
n

3
.
3
7
3
e
-
0
1

1
.
5
9
6
e
-
0
2

2
1
.
1
3
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
n
e
w
P
u
n

6
.
0
2
1
e
-
0
2

1
.
5
9
6
e
-
0
2

3
.
7
7
2

0
.
0
0
0
1
6
2

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
n
e
w
P
u
n

3
.
4
8
6
e
-
0
2

1
.
5
9
6
e
-
0
2

2
.
1
8
4

0
.
0
2
8
9
7
3

*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
4
.
7
8
9
e
-
0
2

1
.
5
9
6
e
-
0
2

-
3
.
0
0
1

0
.
0
0
2
6
9
9

*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
n
e
w
P
u
n

1
.
4
8
8
e
-
0
1

1
.
5
9
6
e
-
0
2

9
.
3
2
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
n
e
w
P
u
n

1
.
5
7
3
e
-
0
1

1
.
5
9
6
e
-
0
2

9
.
8
5
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
n
e
w
P
u
n

3
.
1
4
3
e
-
0
1

1
.
5
9
6
e
-
0
2

1
9
.
6
8
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
9
3
9
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
2
.
1
4
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
1
7
9
e
-
0
1

1
.
5
9
6
e
-
0
2

-
7
.
3
8
8

1
.
5
7
e
-
1
3

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
0
4
9
e
-
0
1

1
.
5
9
6
e
-
0
2

-
6
.
5
7
3

5
.
0
9
e
-
1
1

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
n
e
w
P
u
n

-
8
.
4
8
1
e
-
0
2

1
.
5
9
6
e
-
0
2

-
5
.
3
1
4

1
.
0
9
e
-
0
7

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
3
5
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
4
9
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
n
e
w
P
u
n

3
.
3
0
8
e
-
0
1

1
.
5
9
6
e
-
0
2

2
0
.
7
2
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
4
8
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
2
9
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
5
7
6
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
8
7
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
2
.
3
9
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
5
.
0
0
0

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
6
.
4
7
5
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
0
5
7

5
.
0
0
e
-
0
5

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
0
8
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
6
.
8
0
1

1
.
0
8
e
-
1
1

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
n
e
w
P
u
n

3
.
1
6
6
e
-
0
1

1
.
5
9
6
e
-
0
2

1
9
.
8
3
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
7
4
6
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
9
3
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
0
9
6
e
-
0
1

1
.
5
9
6
e
-
0
2

-
6
.
8
6
7

6
.
8
1
e
-
1
2

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
4
4
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
0
5
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
2
.
5
8
5
e
-
0
3

1
.
5
9
6
e
-
0
2

-
0
.
1
6
2

0
.
8
7
1
3
2
2

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
0
3
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
6
.
5
0
4

8
.
0
4
e
-
1
1

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
n
e
w
P
u
n

3
.
4
8
6
e
-
0
1

1
.
5
9
6
e
-
0
2

2
1
.
8
4
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
7
9
6
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
2
5
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
4
7
1
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
2
1
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
9
3
1
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
2
.
0
9
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
n
e
w
P
u
n

-
9
.
3
7
5
e
-
0
2

1
.
5
9
6
e
-
0
2

-
5
.
8
7
4

4
.
3
4
e
-
0
9

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
1
8
9
e
-
0
1

1
.
5
9
6
e
-
0
2

-
7
.
4
5
1

9
.
8
0
e
-
1
4

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
n
e
w
P
u
n

2
.
5
2
2
e
-
0
1

1
.
5
9
6
e
-
0
2

1
5
.
7
9
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
7
7
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
1
4
0

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
4
5
9
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
1
4
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
8
7
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
7
4
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
6
.
8
6
2
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
3
0
0

1
.
7
2
e
-
0
5

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
3
5
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
4
7
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
n
e
w
P
u
n

3
.
1
7
4
e
-
0
1

1
.
5
9
6
e
-
0
2

1
9
.
8
8
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
6
9
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
6
0
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
4
8
6
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
3
0
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
8
5
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
6
1
7

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
7
.
0
4
4
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
4
1
3

1
.
0
2
e
-
0
5

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
1
1
1
e
-
0
1

1
.
5
9
6
e
-
0
2

-
6
.
9
6
2

3
.
5
0
e
-
1
2

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
n
e
w
P
u
n

2
.
5
7
0
e
-
0
1

1
.
5
9
6
e
-
0
2

1
6
.
1
0
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
7
4
7
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
9
4
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
4
7
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
9
.
2
3
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
8
4
1
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
5
3
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
n
e
w
P
u
n

-
6
.
8
7
5
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
3
0
7

1
.
6
6
e
-
0
5

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
0
7
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
6
.
7
5
4

1
.
4
9
e
-
1
1

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
n
e
w
P
u
n

3
.
9
4
6
e
-
0
1

1
.
5
9
6
e
-
0
2

2
4
.
7
2
0

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
6
9
6
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
6
2
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
2
.
2
0
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
3
.
8
1
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
7
0
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
6
6
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
9
9
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
2
.
4
9
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
n
e
w
P
u
n

-
9
.
8
4
2
e
-
0
2

1
.
5
9
6
e
-
0
2

-
6
.
1
6
7

7
.
1
5
e
-
1
0

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
n
e
w
P
u
n

3
.
0
0
0
e
-
0
1

1
.
5
9
6
e
-
0
2

1
8
.
7
9
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
8
7
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
7
1
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
2
.
0
9
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
3
.
1
1
8

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
2
.
1
9
7
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
3
.
7
6
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
2
8
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
0
3
9

9
.
6
9
e
-
1
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
3
0
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
1
7
5

3
.
1
9
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
n
e
w
P
u
n

2
.
9
9
9
e
-
0
1

1
.
5
9
6
e
-
0
2

1
8
.
7
9
0

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
8
7
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
7
3
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
4
1
7
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
8
7
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
8
6
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
6
8
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
n
e
w
P
u
n

-
7
.
3
8
9
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
6
3
0

3
.
6
9
e
-
0
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
n
e
w
P
u
n

-
1
.
3
3
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
3
6
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
4
1
5
e
-
0
2

1
.
5
9
6
e
-
0
2

-
1
.
5
1
3

0
.
1
3
0
3
0
1

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
9
1
7
e
-
0
2

1
.
5
9
6
e
-
0
2

-
1
.
8
2
8

0
.
0
6
7
6
1
6

.

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
2
8
0
e
-
0
2

1
.
5
9
6
e
-
0
2

-
1
.
4
2
9

0
.
1
5
3
1
6
4

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
u
s
e
d
O

-
3
.
0
9
7
e
-
0
2

1
.
5
9
6
e
-
0
2

-
1
.
9
4
1

0
.
0
5
2
3
1
9

.

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
8
3
5
e
-
0
2

1
.
5
9
6
e
-
0
2

-
1
.
7
7
6

0
.
0
7
5
7
0
2

.

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
i
r
i
s
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
5
4
2
e
-
0
2

1
.
5
9
6
e
-
0
2

-
1
.
5
9
3

0
.
1
1
1
2
6
4

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
u
s
e
d
O

1
.
9
8
7
e
-
0
2

1
.
5
9
6
e
-
0
2

1
.
2
4
5

0
.
2
1
3
2
4
2

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
u
s
e
d
O

1
.
3
1
9
e
-
0
1

1
.
5
9
6
e
-
0
2

8
.
2
6
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
u
s
e
d
O

4
.
1
7
5
e
-
0
2

1
.
5
9
6
e
-
0
2

2
.
6
1
6

0
.
0
0
8
9
1
5

*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
u
s
e
d
O

2
.
5
8
2
e
-
0
2

1
.
5
9
6
e
-
0
2

1
.
6
1
8

0
.
1
0
5
7
2
3

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
8
7
3
e
-
0
2

1
.
5
9
6
e
-
0
2

-
1
.
8
0
0

0
.
0
7
1
9
1
8

.

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
i
s
o
c
:
f
t
r
S
e
t
u
s
e
d
O

1
.
8
8
1
e
-
0
2

1
.
5
9
6
e
-
0
2

1
.
1
7
8

0
.
2
3
8
7
3
0

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
u
s
e
d
O

-
1
.
4
6
7
e
-
0
2

1
.
5
9
6
e
-
0
2

-
0
.
9
1
9

0
.
3
5
7
9
8
3

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
u
s
e
d
O

1
.
2
7
7
e
-
0
2

1
.
5
9
6
e
-
0
2

0
.
8
0
0

0
.
4
2
3
5
3
5

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
u
s
e
d
O

6
.
3
3
3
e
-
0
2

1
.
5
9
6
e
-
0
2

3
.
9
6
8

7
.
2
9
e
-
0
5

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
u
s
e
d
O

1
.
0
8
2
e
-
0
1

1
.
5
9
6
e
-
0
2

6
.
7
8
0

1
.
2
4
e
-
1
1

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
u
s
e
d
O

-
4
.
0
2
0
e
-
0
2

1
.
5
9
6
e
-
0
2

-
2
.
5
1
9

0
.
0
1
1
7
9
0

*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
m
o
n
k
s
1
:
f
t
r
S
e
t
u
s
e
d
O

9
.
7
3
2
e
-
0
3

1
.
5
9
6
e
-
0
2

0
.
6
1
0

0
.
5
4
2
0
2
2

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
u
s
e
d
O

9
.
2
1
8
e
-
0
3

1
.
5
9
6
e
-
0
2

0
.
5
7
8

0
.
5
6
3
5
6
4

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
u
s
e
d
O

-
3
.
6
2
6
e
-
0
2

1
.
5
9
6
e
-
0
2

-
2
.
2
7
2

0
.
0
2
3
1
2
0

*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
u
s
e
d
O

-
1
.
0
8
6
e
-
0
1

1
.
5
9
6
e
-
0
2

-
6
.
8
0
2

1
.
0
7
e
-
1
1

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
u
s
e
d
O

-
1
.
7
4
9
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
9
5
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
u
s
e
d
O

-
3
.
4
4
4
e
-
0
2

1
.
5
9
6
e
-
0
2

-
2
.
1
5
8

0
.
0
3
0
9
6
9

*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
m
o
n
k
s
2
:
f
t
r
S
e
t
u
s
e
d
O

-
9
.
3
2
5
e
-
0
2

1
.
5
9
6
e
-
0
2

-
5
.
8
4
2

5
.
2
6
e
-
0
9

*
*
*

Figure 55: Linear Model Page 4.

189

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
u
s
e
d
O

-
8
.
4
7
8
e
-
0
3

1
.
5
9
6
e
-
0
2

-
0
.
5
3
1

0
.
5
9
5
3
1
4

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
u
s
e
d
O

-
3
.
3
8
1
e
-
0
2

1
.
5
9
6
e
-
0
2

-
2
.
1
1
9

0
.
0
3
4
1
4
7

*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
u
s
e
d
O

2
.
2
4
3
e
-
0
2

1
.
5
9
6
e
-
0
2

1
.
4
0
5

0
.
1
5
9
9
5
5

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
u
s
e
d
O

7
.
7
4
2
e
-
0
2

1
.
5
9
6
e
-
0
2

4
.
8
5
1

1
.
2
4
e
-
0
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
u
s
e
d
O

-
3
.
2
7
8
e
-
0
2

1
.
5
9
6
e
-
0
2

-
2
.
0
5
4

0
.
0
4
0
0
3
8

*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
m
o
n
k
s
3
:
f
t
r
S
e
t
u
s
e
d
O

-
9
.
5
4
0
e
-
0
3

1
.
5
9
6
e
-
0
2

-
0
.
5
9
8

0
.
5
5
0
0
4
8

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
u
s
e
d
O

2
.
3
3
0
e
-
0
2

1
.
5
9
6
e
-
0
2

1
.
4
6
0

0
.
1
4
4
3
4
8

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
u
s
e
d
O

4
.
7
4
2
e
-
0
2

1
.
5
9
6
e
-
0
2

2
.
9
7
1

0
.
0
0
2
9
7
1

*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
u
s
e
d
O

4
.
0
4
7
e
-
0
3

1
.
5
9
6
e
-
0
2

0
.
2
5
4

0
.
7
9
9
8
2
1

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
u
s
e
d
O

-
4
.
9
7
5
e
-
0
2

1
.
5
9
6
e
-
0
2

-
3
.
1
1
7

0
.
0
0
1
8
3
2

*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
u
s
e
d
O

1
.
0
2
7
e
-
0
2

1
.
5
9
6
e
-
0
2

0
.
6
4
4

0
.
5
1
9
7
4
6

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
o
f
f
s
i
d
e
s
1
1
:
f
t
r
S
e
t
u
s
e
d
O

2
.
3
8
3
e
-
0
4

1
.
5
9
6
e
-
0
2

0
.
0
1
5

0
.
9
8
8
0
8
6

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
u
s
e
d
O

-
3
.
8
7
0
e
-
0
2

1
.
5
9
6
e
-
0
2

-
2
.
4
2
5

0
.
0
1
5
3
3
3

*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
u
s
e
d
O

-
7
.
9
5
4
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
9
8
4

6
.
3
0
e
-
0
7

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
u
s
e
d
O

9
.
8
0
7
e
-
0
4

1
.
5
9
6
e
-
0
2

0
.
0
6
1

0
.
9
5
1
0
0
7

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
u
s
e
d
O

5
.
4
5
5
e
-
0
3

1
.
5
9
6
e
-
0
2

0
.
3
4
2

0
.
7
3
2
5
3
8

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
u
s
e
d
O

1
.
5
6
1
e
-
0
2

1
.
5
9
6
e
-
0
2

0
.
9
7
8

0
.
3
2
8
1
3
5

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
o
f
f
s
i
d
e
s
2
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
4
8
9
e
-
0
2

1
.
5
9
6
e
-
0
2

-
1
.
5
6
0

0
.
1
1
8
8
3
3

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
u
s
e
d
O

-
6
.
3
3
0
e
-
0
4

1
.
5
9
6
e
-
0
2

-
0
.
0
4
0

0
.
9
6
8
3
6
5

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
u
s
e
d
O

-
7
.
2
1
1
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
5
1
8

6
.
2
9
e
-
0
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
6
9
2
e
-
0
2

1
.
5
9
6
e
-
0
2

-
1
.
6
8
7

0
.
0
9
1
6
9
9

.

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
u
s
e
d
O

-
3
.
1
8
5
e
-
0
2

1
.
5
9
6
e
-
0
2

-
1
.
9
9
5

0
.
0
4
6
0
3
4

*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
u
s
e
d
O

-
5
.
5
7
6
e
-
0
2

1
.
5
9
6
e
-
0
2

-
3
.
4
9
4

0
.
0
0
0
4
7
8

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
o
f
f
s
i
d
e
s
5
:
f
t
r
S
e
t
u
s
e
d
O

-
1
.
1
7
3
e
-
0
2

1
.
5
9
6
e
-
0
2

-
0
.
7
3
5

0
.
4
6
2
4
5
4

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
u
s
e
d
O

-
4
.
5
7
3
e
-
0
2

1
.
5
9
6
e
-
0
2

-
2
.
8
6
5

0
.
0
0
4
1
7
4

*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
u
s
e
d
O

-
8
.
4
7
0
e
-
0
2

1
.
5
9
6
e
-
0
2

-
5
.
3
0
7

1
.
1
3
e
-
0
7

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
u
s
e
d
O

-
8
.
4
0
2
e
-
0
2

1
.
5
9
6
e
-
0
2

-
5
.
2
6
4

1
.
4
3
e
-
0
7

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
u
s
e
d
O

-
6
.
8
0
1
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
2
6
1

2
.
0
5
e
-
0
5

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
u
s
e
d
O

-
9
.
7
1
6
e
-
0
2

1
.
5
9
6
e
-
0
2

-
6
.
0
8
7

1
.
1
8
e
-
0
9

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
p
r
o
m
o
t
e
r
1
:
f
t
r
S
e
t
u
s
e
d
O

-
4
.
4
8
3
e
-
0
2

1
.
5
9
6
e
-
0
2

-
2
.
8
0
9

0
.
0
0
4
9
7
5

*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
7
7
6
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
7
.
3
9
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
9
9
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
8
.
7
6
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
8
3
8
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
7
.
7
8
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
4
9
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
5
.
6
0
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
u
s
e
d
O

-
3
.
2
0
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
2
0
.
0
7
4

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
p
r
o
m
o
t
e
r
2
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
5
8
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
6
.
1
9
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
u
s
e
d
O

-
1
.
7
9
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
2
4
3

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
0
2
3
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
2
.
6
7
6

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
u
s
e
d
O

-
1
.
9
4
0
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
2
.
1
5
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
u
s
e
d
O

-
1
.
6
8
7
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
5
6
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
2
1
1
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
3
.
8
5
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
p
r
o
m
o
t
e
r
3
:
f
t
r
S
e
t
u
s
e
d
O

-
1
.
6
3
4
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
2
3
9

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
u
s
e
d
O

5
.
9
9
1
e
-
0
3

1
.
5
9
6
e
-
0
2

0
.
3
7
5

0
.
7
0
7
3
9
7

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
u
s
e
d
O

-
6
.
2
4
2
e
-
0
2

1
.
5
9
6
e
-
0
2

-
3
.
9
1
1

9
.
2
3
e
-
0
5

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
u
s
e
d
O

-
7
.
1
2
6
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
4
6
4

8
.
0
9
e
-
0
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
u
s
e
d
O

-
1
.
8
5
8
e
-
0
2

1
.
5
9
6
e
-
0
2

-
1
.
1
6
4

0
.
2
4
4
3
1
1

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
u
s
e
d
O

-
1
.
2
5
1
e
-
0
1

1
.
5
9
6
e
-
0
2

-
7
.
8
3
7

4
.
9
0
e
-
1
5

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
t
t
t
1
:
f
t
r
S
e
t
u
s
e
d
O

-
4
.
3
2
2
e
-
0
2

1
.
5
9
6
e
-
0
2

-
2
.
7
0
8

0
.
0
0
6
7
8
4

*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
u
s
e
d
O

-
4
.
4
4
4
e
-
0
3

1
.
5
9
6
e
-
0
2

-
0
.
2
7
8

0
.
7
8
0
6
9
8

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
u
s
e
d
O

-
1
.
8
9
9
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
1
.
8
9
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
2
2
7
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
3
.
9
5
2

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
u
s
e
d
O

-
1
.
7
2
9
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
0
.
8
3
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
u
s
e
d
O

-
2
.
7
4
5
e
-
0
1

1
.
5
9
6
e
-
0
2

-
1
7
.
2
0
1

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
t
t
t
2
:
f
t
r
S
e
t
u
s
e
d
O

-
1
.
3
6
1
e
-
0
1

1
.
5
9
6
e
-
0
2

-
8
.
5
2
5

<

2
e
-
1
6

*
*
*

l
e
a
r
n
e
r
b
a
y
e
s
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
u
s
e
d
O

-
7
.
7
6
9
e
-
0
2

1
.
5
9
6
e
-
0
2

-
4
.
8
6
8

1
.
1
4
e
-
0
6

*
*
*

l
e
a
r
n
e
r
f
o
r
s
t
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
u
s
e
d
O

-
5
.
4
6
5
e
-
0
2

1
.
5
9
6
e
-
0
2

-
3
.
4
2
4

0
.
0
0
0
6
1
8

*
*
*

l
e
a
r
n
e
r
k
n
n
1
0
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
u
s
e
d
O

-
3
.
4
3
4
e
-
0
2

1
.
5
9
6
e
-
0
2

-
2
.
1
5
1

0
.
0
3
1
4
6
0

*

l
e
a
r
n
e
r
k
n
n
3
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
u
s
e
d
O

-
5
.
5
7
8
e
-
0
2

1
.
5
9
6
e
-
0
2

-
3
.
4
9
5

0
.
0
0
0
4
7
6

*
*
*

l
e
a
r
n
e
r
s
v
m
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
u
s
e
d
O

-
4
.
5
8
2
e
-
0
2

1
.
5
9
6
e
-
0
2

-
2
.
8
7
1

0
.
0
0
4
0
9
8

*
*

l
e
a
r
n
e
r
t
r
e
e
:
p
r
o
b
w
i
n
e
:
f
t
r
S
e
t
u
s
e
d
O

-
1
.
8
2
6
e
-
0
2

1
.
5
9
6
e
-
0
2

-
1
.
1
4
4

0
.
2
5
2
6
4
0

g
e
n
j
o
i
n
:
h
a
r
d
L
i
m
i
t
:
m
a
x
C
r
o
s
s

-
6
.
0
7
2
e
-
0
7

7
.
1
8
5
e
-
0
6

-
0
.
0
8
5

0
.
9
3
2
6
5
0

g
e
n
r
a
n
d
o
m
:
h
a
r
d
L
i
m
i
t
:
m
a
x
C
r
o
s
s

-
3
.
0
2
7
e
-
0
5

7
.
7
4
6
e
-
0
6

-
3
.
9
0
8

9
.
3
6
e
-
0
5

*
*
*

g
e
n
s
e
p
:
h
a
r
d
L
i
m
i
t
:
m
a
x
C
r
o
s
s

-
2
.
0
0
9
e
-
0
5

1
.
4
7
3
e
-
0
5

-
1
.
3
6
4

0
.
1
7
2
5
4
3

g
e
n
t
o
p
:
h
a
r
d
L
i
m
i
t
:
m
a
x
C
r
o
s
s

N
A

N
A

N
A

N
A

-
-
-

S
i
g
n
i
f
.

c
o
d
e
s
:

0

’
*
*
*
’

0
.
0
0
1

’
*
*
’

0
.
0
1

’
*
’

0
.
0
5

’
.
’

0
.
1

’

’

1

R
e
s
i
d
u
a
l

s
t
a
n
d
a
r
d

e
r
r
o
r
:

0
.
0
3
0
9
1

o
n

1
5
0
6
7

d
e
g
r
e
e
s

o
f

f
r
e
e
d
o
m

M
u
l
t
i
p
l
e

R
-
S
q
u
a
r
e
d
:

0
.
9
7
1
7
,

A
d
j
u
s
t
e
d

R
-
s
q
u
a
r
e
d
:

0
.
9
7
0
4

F
-
s
t
a
t
i
s
t
i
c
:

7
5
8
.
2

o
n

6
8
2

a
n
d

1
5
0
6
7

D
F
,

p
-
v
a
l
u
e
:

<

2
.
2
e
-
1
6

Figure 56: Linear Model Page 5.

190

A.3 COMPARISON OF DIFFERENT GENERATORS AND FEATURE SETS OVER

INDIVIDUAL LEARNERS

A.3.1 Additional Results for 10-Fold C.V. Accuracy
3
N
N

1
0
N
N

N
B

B
ase

0
.8
0

B
ase

0
.8
2

B
ase

0
.7
8

A
ll

N
ew

C
o
n
R
IF

C
C
F

A
ll

N
ew

C
o
n
R
IF

C
C
F

A
ll

N
ew

C
o
n
R
IF

C
C
F

E
x
h
au
stiv
e

1
5
0

1
5
0

0
.8
7

0
.8
3

0
.8
6

0
.7
9

0
.8
9

0
.8
4

0
.8
8

0
.8
1

0
.7
8

0
.7
8

0
.7
8

0
.7
9

Jo
in

5
1
0

0
.8
3

0
.7
2

0
.8
2

0
.7
1

0
.8
5

0
.7
3

0
.8
4

0
.7
2

0
.8
0

0
.7
2

0
.8
0

0
.7
1

Jo
in

5
2
0

0
.8
3

0
.7
4

0
.8
3

0
.7
3

0
.8
6

0
.7
5

0
.8
5

0
.7
4

0
.7
9

0
.7
4

0
.7
9

0
.7
3

Jo
in

5
4
0

0
.8
3

0
.7
5

0
.8
3

0
.7
3

0
.8
6

0
.7
6

0
.8
5

0
.7
4

0
.7
8

0
.7
4

0
.7
8

0
.7
4

Jo
in

1
0

2
0

0
.8
4

0
.7
5

0
.8
3

0
.7
3

0
.8
7

0
.7
6

0
.8
5

0
.7
5

0
.8
0

0
.7
4

0
.8
0

0
.7
3

Jo
in

1
0

4
0

0
.8
5

0
.7
9

0
.8
4

0
.7
6

0
.8
8

0
.8
0

0
.8
5

0
.7
8

0
.7
9

0
.7
6

0
.7
9

0
.7
6

Jo
in

2
0

4
0

0
.8
6

0
.8
0

0
.8
5

0
.7
8

0
.8
8

0
.8
2

0
.8
7

0
.7
9

0
.7
9

0
.7
8

0
.8
0

0
.7
7

Jo
in

2
0

6
0

0
.8
6

0
.8
2

0
.8
6

0
.7
8

0
.8
9

0
.8
3

0
.8
7

0
.8
0

0
.7
9

0
.7
9

0
.7
9

0
.7
8

Jo
in

2
0

8
0

0
.8
6

0
.8
2

0
.8
5

0
.7
8

0
.8
8

0
.8
3

0
.8
6

0
.8
0

0
.7
8

0
.7
8

0
.7
9

0
.7
8

R
an
d
o
m

5
5

0
.8
2

0
.7
0

0
.8
2

0
.6
9

0
.8
4

0
.7
2

0
.8
4

0
.7
0

0
.7
9

0
.7
1

0
.7
9

0
.7
0

R
an
d
o
m

1
0

1
0

0
.8
4

0
.7
6

0
.8
4

0
.7
5

0
.8
6

0
.7
7

0
.8
5

0
.7
6

0
.8
0

0
.7
5

0
.8
0

0
.7
3

R
an
d
o
m

2
0

2
0

0
.8
5

0
.7
9

0
.8
5

0
.7
7

0
.8
7

0
.8
0

0
.8
6

0
.7
8

0
.8
0

0
.7
6

0
.8
0

0
.7
5

R
an
d
o
m

4
0

4
0

0
.8
6

0
.8
0

0
.8
5

0
.7
8

0
.8
8

0
.8
3

0
.8
7

0
.7
9

0
.7
9

0
.7
8

0
.7
9

0
.7
8

S
ep

3
6

0
.8
3

0
.7
2

0
.8
1

0
.7
1

0
.8
5

0
.7
3

0
.8
3

0
.7
2

0
.8
0

0
.7
4

0
.8
1

0
.7
2

S
ep

3
1
0

0
.8
4

0
.7
5

0
.8
4

0
.7
3

0
.8
6

0
.7
6

0
.8
5

0
.7
4

0
.8
0

0
.7
4

0
.8
0

0
.7
2

S
ep

3
1
5

0
.8
4

0
.7
5

0
.8
3

0
.7
4

0
.8
6

0
.7
6

0
.8
4

0
.7
5

0
.7
9

0
.7
4

0
.7
9

0
.7
3

S
ep

3
2
0

0
.8
4

0
.7
6

0
.8
3

0
.7
4

0
.8
7

0
.7
7

0
.8
5

0
.7
5

0
.8
0

0
.7
5

0
.8
0

0
.7
3

S
ep

3
3
0

0
.8
4

0
.7
6

0
.8
3

0
.7
5

0
.8
7

0
.7
8

0
.8
5

0
.7
6

0
.7
9

0
.7
5

0
.7
9

0
.7
4

S
ep

5
1
0

0
.8
4

0
.7
5

0
.8
3

0
.7
3

0
.8
6

0
.7
6

0
.8
4

0
.7
5

0
.8
0

0
.7
5

0
.8
0

0
.7
4

S
ep

5
1
5

0
.8
4

0
.7
4

0
.8
4

0
.7
2

0
.8
6

0
.7
5

0
.8
5

0
.7
4

0
.7
9

0
.7
4

0
.7
9

0
.7
3

S
ep

5
2
0

0
.8
4

0
.7
6

0
.8
4

0
.7
4

0
.8
6

0
.7
7

0
.8
6

0
.7
5

0
.8
0

0
.7
5

0
.8
0

0
.7
3

S
ep

5
3
0

0
.8
5

0
.7
8

0
.8
5

0
.7
5

0
.8
7

0
.7
9

0
.8
7

0
.7
7

0
.8
0

0
.7
6

0
.8
0

0
.7
5

S
ep

1
0

1
5

0
.8
5

0
.7
7

0
.8
4

0
.7
4

0
.8
7

0
.7
8

0
.8
5

0
.7
5

0
.7
9

0
.7
5

0
.8
0

0
.7
3

S
ep

1
0

2
0

0
.8
5

0
.7
8

0
.8
4

0
.7
5

0
.8
7

0
.7
9

0
.8
5

0
.7
5

0
.7
9

0
.7
5

0
.7
9

0
.7
3

S
ep

1
0

3
0

0
.8
5

0
.7
9

0
.8
5

0
.7
6

0
.8
7

0
.8
0

0
.8
6

0
.7
7

0
.7
8

0
.7
6

0
.7
9

0
.7
5

S
ep

1
0

4
0

0
.8
5

0
.7
8

0
.8
5

0
.7
7

0
.8
7

0
.8
0

0
.8
6

0
.7
8

0
.7
9

0
.7
5

0
.7
9

0
.7
6

T
o
p

5
5

0
.8
3

0
.7
2

0
.8
1

0
.7
2

0
.8
5

0
.7
4

0
.8
3

0
.7
3

0
.8
0

0
.7
4

0
.8
0

0
.7
3

T
o
p

1
0

1
0

0
.8
4

0
.7
5

0
.8
4

0
.7
4

0
.8
6

0
.7
6

0
.8
5

0
.7
5

0
.7
9

0
.7
5

0
.7
9

0
.7
4

T
o
p

2
0

2
0

0
.8
5

0
.7
8

0
.8
4

0
.7
5

0
.8
7

0
.7
9

0
.8
5

0
.7
7

0
.7
8

0
.7
5

0
.7
9

0
.7
4

T
o
p

4
0

4
0

0
.8
5

0
.7
9

0
.8
4

0
.7
7

0
.8
7

0
.8
1

0
.8
6

0
.7
8

0
.7
9

0
.7
7

0
.7
9

0
.7
6

S
u
ccesso

r
F
u
n
ctio
n

M
ax
im
u
m

C
ro
ss

H
ard

L
im
it

Table 42: 10CVA Averaged over Run and CLP by Successor Function and Feature Set for 3NN,

10NN, and NB.

191

T
R
E
E

S
V
M

F
O
R
S
T

B
ase

0
.7
9

B
ase

0
.8
5

B
ase

0
.8
3

A
ll

N
ew

C
o
n
R
IF

C
C
F

A
ll

N
ew

C
o
n
R
IF

C
C
F

A
ll

N
ew

C
o
n
R
IF

C
C
F

E
x
h
au
stiv
e

1
5
0

1
5
0

0
.8
7

0
.8
4

0
.8
7

0
.7
8

0
.9
0

0
.8
6

0
.8
9

0
.8
3

0
.8
9

0
.8
5

0
.8
8

0
.8
2

Jo
in

5
1
0

0
.8
4

0
.7
3

0
.8
4

0
.7
0

0
.8
8

0
.7
5

0
.8
7

0
.7
3

0
.8
6

0
.7
4

0
.8
6

0
.7
3

Jo
in

5
2
0

0
.8
4

0
.7
5

0
.8
4

0
.7
2

0
.8
8

0
.7
6

0
.8
7

0
.7
5

0
.8
7

0
.7
5

0
.8
6

0
.7
5

Jo
in

5
4
0

0
.8
5

0
.7
5

0
.8
5

0
.7
2

0
.8
9

0
.7
7

0
.8
8

0
.7
5

0
.8
7

0
.7
6

0
.8
6

0
.7
5

Jo
in

1
0

2
0

0
.8
5

0
.7
6

0
.8
5

0
.7
3

0
.8
9

0
.7
8

0
.8
7

0
.7
6

0
.8
7

0
.7
7

0
.8
7

0
.7
6

Jo
in

1
0

4
0

0
.8
6

0
.8
0

0
.8
6

0
.7
6

0
.9
0

0
.8
1

0
.8
7

0
.7
9

0
.8
8

0
.8
1

0
.8
7

0
.7
9

Jo
in

2
0

4
0

0
.8
6

0
.8
2

0
.8
6

0
.7
7

0
.9
0

0
.8
3

0
.8
8

0
.8
0

0
.8
9

0
.8
3

0
.8
8

0
.8
0

Jo
in

2
0

6
0

0
.8
7

0
.8
2

0
.8
7

0
.7
8

0
.9
1

0
.8
4

0
.8
9

0
.8
2

0
.8
9

0
.8
3

0
.8
8

0
.8
1

Jo
in

2
0

8
0

0
.8
7

0
.8
3

0
.8
7

0
.7
7

0
.9
0

0
.8
5

0
.8
9

0
.8
1

0
.8
9

0
.8
4

0
.8
8

0
.8
1

R
an
d
o
m

5
5

0
.8
4

0
.7
1

0
.8
4

0
.6
9

0
.8
8

0
.7
3

0
.8
7

0
.7
1

0
.8
6

0
.7
2

0
.8
6

0
.7
1

R
an
d
o
m

1
0

1
0

0
.8
6

0
.7
8

0
.8
5

0
.7
4

0
.8
9

0
.7
9

0
.8
8

0
.7
6

0
.8
7

0
.7
8

0
.8
7

0
.7
7

R
an
d
o
m

2
0

2
0

0
.8
6

0
.8
0

0
.8
5

0
.7
6

0
.9
0

0
.8
2

0
.8
8

0
.7
9

0
.8
8

0
.8
1

0
.8
7

0
.7
8

R
an
d
o
m

4
0

4
0

0
.8
7

0
.8
2

0
.8
7

0
.7
8

0
.9
0

0
.8
4

0
.8
9

0
.8
1

0
.8
8

0
.8
3

0
.8
8

0
.8
1

S
ep

3
6

0
.8
4

0
.7
3

0
.8
4

0
.7
1

0
.8
8

0
.7
5

0
.8
6

0
.7
3

0
.8
6

0
.7
3

0
.8
5

0
.7
3

S
ep

3
1
0

0
.8
5

0
.7
5

0
.8
5

0
.7
2

0
.8
8

0
.7
7

0
.8
7

0
.7
5

0
.8
7

0
.7
7

0
.8
7

0
.7
5

S
ep

3
1
5

0
.8
5

0
.7
6

0
.8
5

0
.7
3

0
.8
9

0
.7
8

0
.8
7

0
.7
5

0
.8
7

0
.7
7

0
.8
6

0
.7
5

S
ep

3
2
0

0
.8
5

0
.7
7

0
.8
4

0
.7
4

0
.8
9

0
.7
9

0
.8
7

0
.7
6

0
.8
7

0
.7
8

0
.8
7

0
.7
6

S
ep

3
3
0

0
.8
6

0
.7
8

0
.8
5

0
.7
5

0
.9
0

0
.7
9

0
.8
8

0
.7
6

0
.8
7

0
.7
9

0
.8
7

0
.7
7

S
ep

5
1
0

0
.8
5

0
.7
6

0
.8
4

0
.7
3

0
.8
8

0
.7
8

0
.8
7

0
.7
6

0
.8
7

0
.7
7

0
.8
6

0
.7
5

S
ep

5
1
5

0
.8
5

0
.7
5

0
.8
5

0
.7
3

0
.8
9

0
.7
7

0
.8
8

0
.7
5

0
.8
6

0
.7
6

0
.8
6

0
.7
5

S
ep

5
2
0

0
.8
5

0
.7
6

0
.8
5

0
.7
3

0
.8
9

0
.7
8

0
.8
8

0
.7
6

0
.8
7

0
.7
7

0
.8
7

0
.7
6

S
ep

5
3
0

0
.8
6

0
.7
9

0
.8
6

0
.7
4

0
.9
0

0
.8
0

0
.8
9

0
.7
8

0
.8
7

0
.7
9

0
.8
8

0
.7
8

S
ep

1
0

1
5

0
.8
5

0
.7
7

0
.8
5

0
.7
4

0
.8
9

0
.7
9

0
.8
8

0
.7
6

0
.8
8

0
.7
9

0
.8
8

0
.7
6

S
ep

1
0

2
0

0
.8
5

0
.7
8

0
.8
5

0
.7
4

0
.8
9

0
.8
0

0
.8
7

0
.7
7

0
.8
8

0
.8
0

0
.8
8

0
.7
6

S
ep

1
0

3
0

0
.8
6

0
.7
9

0
.8
5

0
.7
5

0
.8
9

0
.8
1

0
.8
8

0
.7
8

0
.8
7

0
.8
1

0
.8
7

0
.7
8

S
ep

1
0

4
0

0
.8
6

0
.7
9

0
.8
6

0
.7
5

0
.8
9

0
.8
1

0
.8
8

0
.7
9

0
.8
8

0
.8
0

0
.8
7

0
.7
8

T
o
p

5
5

0
.8
4

0
.7
4

0
.8
4

0
.7
2

0
.8
8

0
.7
6

0
.8
6

0
.7
4

0
.8
6

0
.7
5

0
.8
5

0
.7
4

T
o
p

1
0

1
0

0
.8
5

0
.7
6

0
.8
4

0
.7
3

0
.8
8

0
.7
8

0
.8
8

0
.7
6

0
.8
6

0
.7
7

0
.8
6

0
.7
6

T
o
p

2
0

2
0

0
.8
6

0
.7
8

0
.8
5

0
.7
5

0
.8
9

0
.8
0

0
.8
8

0
.7
8

0
.8
7

0
.8
0

0
.8
7

0
.7
7

T
o
p

4
0

4
0

0
.8
6

0
.8
0

0
.8
6

0
.7
6

0
.9
0

0
.8
2

0
.8
8

0
.7
9

0
.8
8

0
.8
1

0
.8
8

0
.7
9

S
u
ccesso

r
F
u
n
ctio
n

M
ax
im
u
m

C
ro
ss

H
ard

L
im
it

Table 43: 10CVA Averaged over Run and CLP by Successor Function and Feature Set for TREE,

SVM, and FORST.

192

A.3.2 Additional Results for AUC

Table 44: AUC Averaged over Run and CLP by Successor and Feature Set for 3NN, 10NN, and

NB.
3
N
N

1
0
N
N

N
B

A
ll

N
ew

C
o
n
R
IF

C
C
F

A
ll

N
ew

C
o
n
R
IF

C
C
F

A
ll

N
ew

C
o
n
R
IF

C
C
F

E
x
h
au
stiv
e

1
5
0

1
5
0

0
.9
1

0
.8
6

0
.9
0

0
.8
3

0
.9
2

0
.8
7

0
.9
1

0
.8
5

0
.7
9

0
.7
9

0
.7
9

0
.8
0

Jo
in

5
1
0

0
.8
9

0
.7
4

0
.8
7

0
.7
3

0
.9
0

0
.7
5

0
.8
8

0
.7
4

0
.8
3

0
.7
4

0
.8
3

0
.7
1

Jo
in

5
2
0

0
.8
9

0
.7
6

0
.8
8

0
.7
5

0
.9
0

0
.7
7

0
.8
9

0
.7
6

0
.8
2

0
.7
5

0
.8
2

0
.7
3

Jo
in

5
4
0

0
.8
9

0
.7
7

0
.8
8

0
.7
5

0
.9
1

0
.7
8

0
.8
9

0
.7
7

0
.7
9

0
.7
4

0
.7
9

0
.7
4

Jo
in

1
0

2
0

0
.8
9

0
.7
8

0
.8
8

0
.7
7

0
.9
1

0
.7
9

0
.8
9

0
.7
8

0
.8
2

0
.7
6

0
.8
2

0
.7
4

Jo
in

1
0

4
0

0
.9
0

0
.8
1

0
.8
8

0
.8
0

0
.9
1

0
.8
2

0
.8
9

0
.8
1

0
.8
0

0
.7
7

0
.8
0

0
.7
6

Jo
in

2
0

4
0

0
.9
0

0
.8
3

0
.8
9

0
.8
1

0
.9
2

0
.8
4

0
.9
0

0
.8
3

0
.8
1

0
.7
8

0
.8
1

0
.7
7

Jo
in

2
0

6
0

0
.9
1

0
.8
5

0
.9
0

0
.8
2

0
.9
2

0
.8
6

0
.9
1

0
.8
4

0
.8
0

0
.7
9

0
.8
0

0
.7
9

Jo
in

2
0

8
0

0
.9
0

0
.8
5

0
.8
9

0
.8
2

0
.9
2

0
.8
6

0
.9
0

0
.8
4

0
.7
9

0
.7
8

0
.7
9

0
.7
9

R
an
d
o
m

5
5

0
.8
8

0
.7
3

0
.8
7

0
.7
2

0
.9
0

0
.7
4

0
.8
9

0
.7
3

0
.8
3

0
.7
2

0
.8
3

0
.7
0

R
an
d
o
m

1
0

1
0

0
.8
9

0
.7
9

0
.8
8

0
.7
8

0
.9
1

0
.8
0

0
.8
9

0
.7
9

0
.8
4

0
.7
7

0
.8
4

0
.7
3

R
an
d
o
m

2
0

2
0

0
.9
0

0
.8
2

0
.8
9

0
.8
0

0
.9
1

0
.8
3

0
.9
0

0
.8
1

0
.8
3

0
.7
8

0
.8
3

0
.7
5

R
an
d
o
m

4
0

4
0

0
.9
0

0
.8
4

0
.8
9

0
.8
2

0
.9
2

0
.8
5

0
.9
0

0
.8
4

0
.8
1

0
.7
9

0
.8
1

0
.7
8

S
ep

3
6

0
.8
8

0
.7
4

0
.8
6

0
.7
3

0
.9
0

0
.7
6

0
.8
7

0
.7
5

0
.8
4

0
.7
5

0
.8
4

0
.7
2

S
ep

3
1
0

0
.8
9

0
.7
8

0
.8
8

0
.7
6

0
.9
1

0
.7
9

0
.9
0

0
.7
7

0
.8
4

0
.7
7

0
.8
4

0
.7
3

S
ep

3
1
5

0
.8
9

0
.7
8

0
.8
7

0
.7
7

0
.9
1

0
.7
9

0
.8
9

0
.7
8

0
.8
2

0
.7
5

0
.8
2

0
.7
4

S
ep

3
2
0

0
.8
9

0
.7
9

0
.8
8

0
.7
7

0
.9
1

0
.8
0

0
.8
9

0
.7
9

0
.8
2

0
.7
6

0
.8
2

0
.7
4

S
ep

3
3
0

0
.9
0

0
.8
0

0
.8
8

0
.7
8

0
.9
1

0
.8
1

0
.8
9

0
.8
0

0
.8
0

0
.7
5

0
.8
0

0
.7
5

S
ep

5
1
0

0
.8
9

0
.7
7

0
.8
7

0
.7
6

0
.9
1

0
.7
8

0
.8
9

0
.7
8

0
.8
2

0
.7
6

0
.8
2

0
.7
4

S
ep

5
1
5

0
.8
9

0
.7
8

0
.8
9

0
.7
5

0
.9
1

0
.7
9

0
.9
0

0
.7
7

0
.8
1

0
.7
5

0
.8
1

0
.7
3

S
ep

5
2
0

0
.8
9

0
.7
9

0
.8
9

0
.7
7

0
.9
0

0
.8
0

0
.9
0

0
.7
8

0
.8
1

0
.7
6

0
.8
1

0
.7
4

S
ep

5
3
0

0
.9
0

0
.8
1

0
.9
0

0
.7
8

0
.9
2

0
.8
2

0
.9
1

0
.8
0

0
.8
1

0
.7
6

0
.8
1

0
.7
5

S
ep

1
0

1
5

0
.8
9

0
.8
0

0
.8
8

0
.7
8

0
.9
1

0
.8
1

0
.8
9

0
.7
9

0
.8
1

0
.7
6

0
.8
1

0
.7
4

S
ep

1
0

2
0

0
.9
0

0
.8
0

0
.8
8

0
.7
8

0
.9
1

0
.8
1

0
.8
9

0
.7
9

0
.8
1

0
.7
5

0
.8
1

0
.7
4

S
ep

1
0

3
0

0
.9
0

0
.8
1

0
.8
9

0
.7
9

0
.9
1

0
.8
2

0
.9
0

0
.8
0

0
.7
9

0
.7
6

0
.7
9

0
.7
6

S
ep

1
0

4
0

0
.9
0

0
.8
2

0
.8
9

0
.8
0

0
.9
1

0
.8
3

0
.9
0

0
.8
1

0
.8
0

0
.7
6

0
.8
0

0
.7
6

T
o
p

5
5

0
.8
8

0
.7
5

0
.8
5

0
.7
4

0
.9
0

0
.7
6

0
.8
7

0
.7
6

0
.8
1

0
.7
4

0
.8
1

0
.7
3

T
o
p

1
0

1
0

0
.8
9

0
.7
8

0
.8
8

0
.7
7

0
.9
0

0
.7
9

0
.8
9

0
.7
9

0
.8
0

0
.7
5

0
.8
0

0
.7
5

T
o
p

2
0

2
0

0
.8
9

0
.8
0

0
.8
8

0
.7
8

0
.9
1

0
.8
1

0
.9
0

0
.8
0

0
.8
0

0
.7
6

0
.8
0

0
.7
5

T
o
p

4
0

4
0

0
.9
0

0
.8
2

0
.8
8

0
.8
1

0
.9
1

0
.8
4

0
.9
0

0
.8
2

0
.7
9

0
.7
6

0
.7
9

0
.7
7

S
u
ccesso

r
F
u
n
ctio
n

M
ax
im
u
m

C
ro
ss

H
ard

L
im
it

193

Table 45: AUC Averaged over Run and CLP by Successor and Feature Set for TREE, SVM, and

FORST.

T
R
E
E

S
V
M

F
O
R
S
T

A
ll

N
ew

C
o
n
R
IF

C
C
F

A
ll

N
ew

C
o
n
R
IF

C
C
F

A
ll

N
ew

C
o
n
R
IF

C
C
F

E
x
h
au
stiv
e

1
5
0

1
5
0

0
.8
8

0
.8
6

0
.8
8

0
.8
0

0
.9
0

0
.8
5

0
.8
9

0
.7
9

0
.9
3

0
.8
8

0
.9
2

0
.8
7

Jo
in

5
1
0

0
.8
6

0
.7
4

0
.8
5

0
.7
2

0
.8
7

0
.7
3

0
.8
6

0
.6
9

0
.9
2

0
.7
6

0
.9
1

0
.7
5

Jo
in

5
2
0

0
.8
6

0
.7
6

0
.8
6

0
.7
4

0
.8
8

0
.7
5

0
.8
7

0
.7
1

0
.9
2

0
.7
8

0
.9
2

0
.7
7

Jo
in

5
4
0

0
.8
7

0
.7
7

0
.8
7

0
.7
4

0
.8
9

0
.7
6

0
.8
8

0
.7
2

0
.9
3

0
.7
8

0
.9
2

0
.7
8

Jo
in

1
0

2
0

0
.8
6

0
.7
8

0
.8
6

0
.7
5

0
.8
8

0
.7
7

0
.8
6

0
.7
3

0
.9
3

0
.8
0

0
.9
2

0
.7
9

Jo
in

1
0

4
0

0
.8
7

0
.8
2

0
.8
7

0
.7
8

0
.8
9

0
.8
0

0
.8
7

0
.7
5

0
.9
3

0
.8
3

0
.9
2

0
.8
3

Jo
in

2
0

4
0

0
.8
8

0
.8
4

0
.8
8

0
.7
9

0
.9
0

0
.8
2

0
.8
8

0
.7
7

0
.9
3

0
.8
5

0
.9
2

0
.8
4

Jo
in

2
0

6
0

0
.8
8

0
.8
4

0
.8
8

0
.8
0

0
.9
0

0
.8
4

0
.8
9

0
.7
8

0
.9
3

0
.8
6

0
.9
3

0
.8
5

Jo
in

2
0

8
0

0
.8
8

0
.8
4

0
.8
8

0
.7
9

0
.9
0

0
.8
4

0
.8
8

0
.7
8

0
.9
3

0
.8
6

0
.9
2

0
.8
5

R
an
d
o
m

5
5

0
.8
6

0
.7
3

0
.8
6

0
.7
0

0
.8
8

0
.7
2

0
.8
7

0
.6
8

0
.9
2

0
.7
5

0
.9
2

0
.7
4

R
an
d
o
m

1
0

1
0

0
.8
7

0
.7
9

0
.8
7

0
.7
6

0
.8
9

0
.7
8

0
.8
7

0
.7
3

0
.9
3

0
.8
1

0
.9
2

0
.8
0

R
an
d
o
m

2
0

2
0

0
.8
7

0
.8
1

0
.8
7

0
.7
7

0
.9
0

0
.8
1

0
.8
8

0
.7
5

0
.9
3

0
.8
3

0
.9
2

0
.8
3

R
an
d
o
m

4
0

4
0

0
.8
8

0
.8
4

0
.8
8

0
.7
9

0
.9
0

0
.8
3

0
.8
8

0
.7
8

0
.9
3

0
.8
6

0
.9
2

0
.8
5

S
ep

3
6

0
.8
6

0
.7
5

0
.8
5

0
.7
3

0
.8
7

0
.7
4

0
.8
5

0
.7
0

0
.9
2

0
.7
6

0
.9
1

0
.7
6

S
ep

3
1
0

0
.8
6

0
.7
8

0
.8
6

0
.7
5

0
.8
7

0
.7
7

0
.8
6

0
.7
2

0
.9
2

0
.8
0

0
.9
2

0
.7
9

S
ep

3
1
5

0
.8
6

0
.7
9

0
.8
6

0
.7
5

0
.8
8

0
.7
7

0
.8
6

0
.7
2

0
.9
2

0
.8
0

0
.9
2

0
.7
9

S
ep

3
2
0

0
.8
6

0
.7
9

0
.8
6

0
.7
6

0
.8
8

0
.7
8

0
.8
7

0
.7
3

0
.9
3

0
.8
1

0
.9
2

0
.8
0

S
ep

3
3
0

0
.8
7

0
.8
0

0
.8
7

0
.7
7

0
.8
9

0
.7
9

0
.8
7

0
.7
3

0
.9
3

0
.8
1

0
.9
2

0
.8
1

S
ep

5
1
0

0
.8
6

0
.7
8

0
.8
6

0
.7
5

0
.8
8

0
.7
6

0
.8
6

0
.7
2

0
.9
2

0
.8
0

0
.9
2

0
.7
9

S
ep

5
1
5

0
.8
7

0
.7
8

0
.8
7

0
.7
5

0
.8
8

0
.7
6

0
.8
7

0
.7
2

0
.9
2

0
.7
9

0
.9
2

0
.7
9

S
ep

5
2
0

0
.8
6

0
.7
9

0
.8
6

0
.7
6

0
.8
8

0
.7
7

0
.8
7

0
.7
3

0
.9
2

0
.8
0

0
.9
2

0
.8
0

S
ep

5
3
0

0
.8
8

0
.8
1

0
.8
7

0
.7
7

0
.8
9

0
.8
0

0
.8
8

0
.7
4

0
.9
3

0
.8
2

0
.9
3

0
.8
1

S
ep

1
0

1
5

0
.8
6

0
.8
0

0
.8
6

0
.7
6

0
.8
8

0
.7
8

0
.8
7

0
.7
3

0
.9
2

0
.8
2

0
.9
2

0
.8
0

S
ep

1
0

2
0

0
.8
7

0
.8
1

0
.8
6

0
.7
6

0
.8
8

0
.7
9

0
.8
7

0
.7
3

0
.9
3

0
.8
2

0
.9
2

0
.8
0

S
ep

1
0

3
0

0
.8
7

0
.8
1

0
.8
7

0
.7
7

0
.8
9

0
.8
0

0
.8
7

0
.7
5

0
.9
2

0
.8
3

0
.9
2

0
.8
2

S
ep

1
0

4
0

0
.8
8

0
.8
1

0
.8
7

0
.7
7

0
.8
9

0
.8
0

0
.8
7

0
.7
5

0
.9
3

0
.8
3

0
.9
2

0
.8
2

T
o
p

5
5

0
.8
6

0
.7
5

0
.8
5

0
.7
4

0
.8
7

0
.7
4

0
.8
5

0
.7
1

0
.9
2

0
.7
7

0
.9
1

0
.7
7

T
o
p

1
0

1
0

0
.8
6

0
.7
8

0
.8
6

0
.7
6

0
.8
8

0
.7
7

0
.8
7

0
.7
3

0
.9
2

0
.8
0

0
.9
2

0
.8
0

T
o
p

2
0

2
0

0
.8
7

0
.8
1

0
.8
7

0
.7
7

0
.8
8

0
.7
9

0
.8
7

0
.7
4

0
.9
2

0
.8
3

0
.9
2

0
.8
1

T
o
p

4
0

4
0

0
.8
8

0
.8
3

0
.8
8

0
.7
8

0
.8
9

0
.8
1

0
.8
8

0
.7
6

0
.9
3

0
.8
4

0
.9
2

0
.8
3

S
u
ccesso

r
F
u
n
ctio
n

M
ax
im
u
m

C
ro
ss

H
ard

L
im
it

194

Table 46: Obscured Benefits of Feature Construction. Certain feature sets may be better on a per

problem or per learner basis. Averages of behavior can obscure the optimal use of feature set for a

given problem.

New All ConRIF Best

Problem 1 .5 .75 1.0 1.0

Problem 2 1.0 .5 .75 1.0

Problem 3 .75 1.0 .5 1.0

Average .75 .75 .75 1.0

A.3.3 Benefits Obscured by Feature Set Choice

One additional method of using the constructed features is to consider the best of conditions New,

All, and New+Unused. Evaluating the best of the three is useful because none of the feature sets

are dominant over any other1. An example of the situation is shown in Table 46. Hence, one of the

conditions may be good for certain CLPs and bad for others. The variability obscures the benefits

of feature construction when averaged over several CLPs. The Best method is also justified because

the time invested into generating the new features is not duplicated for the different methods when

they are used in learning. So, with a large investment of time in the feature construction process

and a comparatively small amount of time to use the feature construction results, there is little cost

(specifically, three times the learning time) to finding the best method of using the constructed

features for a particular CLP.

A table of Best results is shown in Table 47. Comparing Table 47 with the tables in Section

A.3.1 we see that there are some gains to be made trying each feature set and using the best of

those feature sets for task performance. Further analysis is required to determine whether better

combinations of Base and New features could mimic Best or if CLP characteristics could lead to

the choice of a dominant feature set.

1Even New, a generally poor performer, has some wins on a per run basis.

195

Table 47: Best Feature Set Usage Results. The entries under each learning method show the

accuracy of the optimal feature set after averaging each feature set over CLP and run over the

given learner and successor function.

Successor 3NN 10NN NB TREE SVM FORST

Base Rate 0.80 0.82 0.78 0.79 0.85 0.83

Exh 150 150 0.89 0.90 0.84 0.88 0.91 0.90

Join 5 10 0.85 0.86 0.83 0.85 0.89 0.87

Join 10 20 0.86 0.88 0.83 0.86 0.90 0.89

Join 5 20 0.85 0.87 0.83 0.86 0.89 0.88

Join 10 40 0.87 0.89 0.84 0.87 0.90 0.89

Join 20 40 0.88 0.89 0.84 0.88 0.91 0.90

Join 5 40 0.85 0.88 0.82 0.86 0.91 0.88

Join 20 60 0.88 0.90 0.84 0.88 0.91 0.90

Join 20 80 0.88 0.90 0.84 0.88 0.91 0.90

Random 10 10 0.86 0.88 0.83 0.86 0.90 0.89

Random 20 20 0.87 0.89 0.84 0.87 0.91 0.89

Random 40 40 0.87 0.89 0.84 0.88 0.91 0.90

Random 5 5 0.83 0.86 0.82 0.85 0.89 0.88

Sep 3 10 0.85 0.87 0.83 0.86 0.89 0.88

Sep 5 10 0.85 0.87 0.83 0.85 0.89 0.88

Sep 10 15 0.86 0.88 0.83 0.86 0.90 0.89

Sep 3 15 0.85 0.87 0.83 0.86 0.89 0.88

Sep 5 15 0.85 0.87 0.83 0.86 0.90 0.88

Sep 10 20 0.86 0.88 0.83 0.86 0.90 0.89

Sep 3 20 0.85 0.88 0.83 0.86 0.90 0.88

Sep 5 20 0.86 0.88 0.83 0.86 0.90 0.88

Sep 10 30 0.87 0.89 0.83 0.86 0.90 0.89

Sep 3 30 0.86 0.88 0.83 0.87 0.90 0.89

Sep 5 30 0.87 0.89 0.84 0.87 0.91 0.89

Sep 10 40 0.88 0.89 0.84 0.87 0.90 0.89

Sep 3 6 0.84 0.86 0.83 0.85 0.88 0.87

Top 10 10 0.86 0.88 0.83 0.86 0.90 0.88

Top 20 20 0.86 0.88 0.83 0.87 0.90 0.89

Top 40 40 0.87 0.89 0.84 0.87 0.91 0.89

Top 5 5 0.84 0.86 0.82 0.85 0.88 0.87

Hard
Limit

Maximum
Cross

196

APPENDIX B

SYNTHETIC DATA GENERATION

B.1 DESCRIPTION OF THE WEATHER PROBLEM FOR SYNTHETIC

GENERATOR

197

0:
1: precipValues = ["Rainy", "Cloudy", "PartCl", "Sunny"]
2: tempValues = ["Cold", "Cool", "Mod", "Warm", "Hot"]
3: windValues = ["Windy", "Breezy", "Calm"]
4: humidityValues = ["Arid", "Mod", "Humid"]
5:
6:
7: def makeHI(t, h):
8: adj = humidityValues.index(h) - 1
9: newt = tempValues.index(t) + adj

10: return newt
11:
12: def makeWC(t, w):
13: adj = windValues.index(w) - 2
14: newt = tempValues.index(t) + adj
15: return newt
16:
17: def twoMean(a,b):
18: return (a+b)/2.0
19:
20:
21: def makeTennis(p, c):
22: c = int(c)+2
23: if p == "Rainy":
24: return False
25:
26: prob = uniform(0,1)
27: if p == "Cloudy" and c in [3,4] and prob > .3:
28: return True
29: elif p == "PartCl" and c in [3,4] and prob > .2:
30: return True
31: elif p == "Sunny" and c in [2,3,4] and prob > .1:
32: return True
33:
34: if prob > .8:
35: return True
36:
37: return False
38:
39: basevars = [("Precip", ’choice(precipValues)’),
40: ("Temp", ’choice(tempValues)’),
41: ("Wind", ’choice(windValues)’),
42: ("Humidity", ’choice(humidityValues)’)]
43:
44:
45:
46: derivedvars = [("HI", makeHI, "Temp", "Humidity"),
47: ("WC", makeWC, "Temp", "Wind"),
48: ("Comfort", twoMean, "HI", "WC"),
49: ("Tennis", makeTennis, "Precip", "Comfort")]
50:
51:
52: model = {"dist":basevars,
53: "func":derivedvars,
54: "cons":[],
55: "prop":1.0}
56: models = [model]
57:
58: shown = ["Precip", "Temp", "Wind", "Humidity", "Tennis"]
59: targetFeature = "Tennis"
60:
61: numTrainExamples = 100
62: numTestExamples = 0
63:
64: dataFormat = FormatDict(defaultDataFormat="%s")

Figure 57: Weather Dataset Description for Synthetic Generation.

198

B.2 DESCRIPTION OF THE AREA PROBLEM FOR SYNTHETIC GENERATOR

0:
1: def newside(s1, s2, cosv):
2: # c^2 = a^2 + b^2 - 2 ab cos(theta)
3: return sqrt(s1**2 + s2**2 - \
4: 2*s1*s2*cosv)
5:
6: def herron(a, b, c):
7: s = (a+b+c)/2.0
8: area = sqrt(s*(s-a)*(s-b)*(s-c))
9: return area

10:
11: def circA(radius):
12: area = pi * pow(radius, 2)
13: return area
14:
15: def msum(*args):
16: return sum(args)
17:
18: def largest(tri, rect, circ):
19: tmp = [(tri, "tri"),
20: (rect, "rect"),
21: (circ, "circ")]
22:
23: return max(tmp)[1]
24:
25: basevars = [(’tri_A’, ’uniform(1,10.2)’),
26: (’tri_B’, ’uniform(1,10.2)’),
27: (’tri_cos’, ’uniform(-1,1)’),
28:
29: (’rect_A’, ’uniform(1,6)’),
30: (’rect_B’, ’uniform(1,6)’),
31:
32: (’circ_R’, ’uniform(1,2.8)’)]
33:
34: derivedvars = [(’tri_C’, newside, ’tri_A’, ’tri_B’, ’tri_cos’),
35: (’tri_area’, herron, ’tri_A’, ’tri_B’, ’tri_C’),
36: (’rect_area’, mul, ’rect_A’, ’rect_B’),
37: (’circ_area’, circA, ’circ_R’),
38: (’largest?’, largest, ’tri_area’, ’rect_area’, ’circ_area’)]
39:
40: model = {"dist":basevars,
41: "func":derivedvars,
42: "cons":[],
43: "prop":1.0}
44:
45: models = [model]
46:
47: shown = [’tri_A’, ’tri_B’, ’tri_C’,
48: ’rect_A’, ’rect_B’,
49: ’circ_R’]
50: # shown = [’tri_area’, ’rect_area’, ’circ_area’]
51:
52: targetFeature = ’largest?’
53:
54: numTrainExamples = 480
55: numTestExamples = 0

Figure 58: Area Dataset Description for Synthetic Generation.

199

BIBLIOGRAPHY

Aronis, J. M. and Provost, F. J. (1994). Efficiently constructing relational features from background
knowledge for inductive machine learning. In Knowledge Discovery in Databases: Papers from
the 1994 AAAI Workshop, pages 347–358, Seattle, WA. AAAI Press, Menlo Park, CA.

Aronis, J. M. and Provost, F. J. (1997). Increasing the efficiency of data mining algorithms with
breadth-first marker propagation. In Knowledge Discovery and Data Mining, pages 119–122,
Newport Beach, CA. AAAI Press, Menlo Park, CA.

Ben-Bassat, M. (1982). Use of distance measures, information measures and error bounds in fea-
ture evaluation. In Krishnaiah, P. R. and Kanal, L. N., editors, Handbook of Statistics, volume 2,
chapter 35, pages 773–791. North–Holland Publishing Company, Amsterdam.

Bloedorn, E. and Michalski, R. S. (1998a). Data-driven constructive induction. IEEE Intelligent
Systems, 13(2):30–7.

Bloedorn, E. and Michalski, R. S. (1998b). Data-driven constructive induction: Methodology and
applications. In Feature Extraction, Construction and Selection: A Data Mining Perspective,
chapter 4, pages 51–68. Kluwer Academic Publishers, Norwell, MA.

Blum, A. and Langley, P. (1997). Selection of relevant features and examples in machine learning.
Artificial Intelligence, 97(1-2):245–271.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and regression trees.
Wadsworth, Pacific Grove, CA.

Buchanan, B. (1982). Mechanizing the search for explanatory hypotheses. In Asquith, P. and
Nickles, T., editors, PSA 1982, volume 2, pages 129–146. Philosophy of Science Association,
East Lansing, Michigan.

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2(2):121–167.

Callan, J. P. (1989). Knowledge-based feature generation. In Spatz, B., editor, Proceedings of
the Sixth International Workshop on Machine Learning, Cornell Univeristy, Ithaca, NY. Morgan
Kaufmann Publishers, San Francisco, CA.

200

Callan, J. P. (1990). Use of domain knowledge in constructive induction. Technical Report 90-95,
COINS, Department of Computer Science, University of Massachusetts, Amherst, MA.

Carbonell, J. G., Michalski, R. S., and Mitchell, T. M. (1983). An overview of machine learning. In
Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., editors, Machine Learning: An Artificial
Intelligence Approach. Morgan Kaufmann, Los Altos, CA.

Chang, C. and Lin, C. (2006). LIBSVM: A Library for Support Vector Machines. Department of
Computer Science and Information Engineering, National Taiwai University.

Cohen, W. W. (1990). An analysis of representation shift in concept learning. In Proceedings
of the Seventh International Conference on Machine Learning, pages 104–112, Austin, Texas.
Morgan Kaufmann Publishers, San Francisco, CA.

Darden, L. (1991). Theory change in science. Oxford University Press, New York.

Demsar, J., Zupan, B., and Leban, G. (2004). Orange: From experimental machine learning to
interactive data mining. http://www.ailab.si/orange. White Paper, Faculty of Computer and
Information Sciences, University of Llubjana.

Dietterich, T. G. and Michalski, R. S. (1983). A comparative review of selected methods for
learning from examples. In Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., editors,
Machine Learning: An Artificial Intelligence Approach. Morgan Kaufmann, Los Altos, CA.

Dobson, A. J. (2002). An Introduction to Generalized Linear Models. Texts in Statistical Science.
Chapman and Hall/CRC, Boca Raton FL, 2nd edition.

Donoho, S. and Rendell, L. (1998). Feature construction using fragmentary knowledge. In Liu,
H. and Motoda, H., editors, Feature Extraction, Construction and Selection: A Data Mining
Perspective, chapter 17, pages 272–288. Kluwer Academic Publishers, Norwell, MA.

Donoho, S. K. (1996). Knowledge-Guided Constructive Induction. PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois.

Drastal, G. and Raatz, S. (1989). Empirical results on learning in an abstraction space. In Proceed-
ings of the 1989 Internation Joint Conference on Artificial Intelligence, pages 708–712, Detroit,
MI. Morgan Kaufmann Publishers, San Francisco, CA.

Dzeroski, S. and Todorovski, L. (1995). Discovering dynamics: From inductive logic program-
ming to machine discovery. Journal of Intelligent Information Systems, 4(1):89–108.

Fayyad, U. M. and Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes
for classi cation learning. In Proceedings of the 13th International Joint Conference on Artificial
Intelligence, pages 1022–1029, Syndney, Australia. Morgan Kaufmann, San Francisco, CA.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R., editors (1996). Advances in
Knowledge Discovery and Data Mining. AAAI/MIT Press, Cambridge, MA.

201

Fenner, M. E. (2002). Feature selection metrics and the feature construction task. Master’s thesis,
Department of Computer Science, University of Pittsburgh.

Gillies, D. (1996). Artificial Intelligence and Scientific Method. Oxford University Press, New
York.

Hand, D. J., Blunt, G., Kelly, M. G., and Adams, N. M. (2000). Data mining for fun and profit.
Statistical Sciences, 15(2):111–131.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The elements of statistical learning: data
mining, inference, and prediction. Springer series in statistics. Springer-Verlag, New York.

Hochberg, Y. and Tamhane, A. C. (1987). Multiple Comparisons Procedures. John Wiley and
Sons, New York, NY.

Klemke, E. D. (1980). Part i. science and nonscience: Introduction. In Klemke, E. D., Hollinger,
R., and Kline, A. D., editors, Introductory Readings in the Philosophy of Science. Prometheus
Books, Buffalo, New York.

Kokar, M. M. (1986). Discoverying functional formulas through changing represenation base. In
Proceedings of AAAI-86: The 5th National Conference on Artificial Intelligence, pages 455–459,
Philadelpha, PA. AAAI Press, Menlo Park, CA.

Kramer, S. (1994). Cn2-mci: A two-step method for constructive induction. In Proceedings
of the ML-COLT-94 Workshop on Constructive Induction and Change of Representation, New
Brunswick, NJ.

Kramer, S. (1995). Predicate invention: A comprehensive view. Technical Report OFAI-TR-95-32,
Austrian research Institute for Artificial Intelligence.

Kuhn, T. S. (1996). The Structure of Scientific Revolutions. University Of Chicago Press, Chicago,
IL.

Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987). Soar: An architecture for general intelli-
gence. Artificial Intelligence, 33:1–64.

Langley, P., Simon, H. A., Bradshaw, C. L., and Zytkow, J. M. (1987). Scientific Discovery:
Computational Explorations of the Creative Processes. MIT Press, Cambridge, MA.

Lavrac, N. and Dzeroski, S. (1994). Inductive logic programming: Techniques and applications.
Ellis Horwood, New York.

Lavrac, N. and Flach, P. A. (2001). An extended transformation approach to inductive logic pro-
gramming. ACM Trans. Comput. Logic, 2(4):458–494.

Levesque, H. and Brachman, R. (1985). A fundamental tradeoff in knowledge representation and
reasoning. In Levesque, H. and Brachman, R., editors, Readings in Knowledge Representation,
pages 41–70. Morgan Kaufmann Publishers, San Francisco, CA.

202

Liu, H. and Motoda, H. (1998a). Feature Extraction, Construction and Selection: A Data Mining
Approach. Kluwer Academic Publishers, Norwell, MA.

Liu, H. and Motoda, H. (1998b). Less is more. In Liu, H. and Motoda, H., editors, Feature
Extraction, Construction and Selection: A Data Mining Perspective, chapter 1, pages 3–12.
Kluwer Academic Publishers, Norwell, MA.

Markovitch, S. and Rosenstein, D. (2002). Feature generation using general constructor functions.
Machine Learning, 49:59–98.

Matheus, C. J. (1989). Feature Construction: An Analytic Framework and an Application to
Decision Tree. PhD thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois.

Matheus, C. J. and Rendell, L. A. (1989). Constructive induction on decision trees. In Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence, pages 645–650, Detroit,
MI. Morgan Kaufmann, San Francisco, CA.

Michalski, R. S. (1983). A theory and methodology of inductive learning. In Michalski, R. S.,
Carbonell, J. G., and Mitchell, T. M., editors, Machine Learning: An Artificial Intelligence
Approach. Morgan Kaufmann, Los Altos, CA.

Minsky, M. and Papert, S. (1969). Perceptrons. MIT Press, Cambridge, MA.

Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18:203–226.

Mitchell, T. M. (1990). The need for biases in learning generalizations. In Shavlik, J. W. and
Dietterich, T. G., editors, Readings in Machine Learning. Morgan Kaufmann, San Mateo, CA.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York, NY.

Mitchell, T. M., Utgoff, P. E., and Banerji, R. (1983). Learning by experimentation: Acquiring
and refining problem-solving heuristics. In Michalski, R. S., Carbonell, J. G., and Mitchell,
T. M., editors, Machine Learning: An Artificial Intelligence Approach, pages 163–190. Morgan
Kaufmann, Los Altos, CA.

Muggleton, S. H. (1989). DUCE: An oracle-based approach to constructive induction. In Proceed-
ings of the Tenth International Joint Conference on Artificial Intelligence, pages 287–292, San
Mateo, CA. Morgan Kaufmann Publishers, San Francisco, CA.

Newell, A. (1990). Unified Theories of Cognition. Harvard University Press, Cambridge, MA.

Newell, A. and Simon, H. (1963). Gps, a program that simulates human thought. In Feigenbaum,
E. A. and Feldman, J., editors, Computers and Thought. McGraw-Hill, New York.

Newell, A. and Simon, H. (1972). Human Problem Solving. Prentice-Hall, New Jersey.

203

Newman, D., Hettich, S., Blake, C., and Merz, C. (1998). UCI repository of machine learning
databases. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Niles, I. and Pease, A. (2001). Towards a standard upper ontology. In Proceedings of the 2nd
International Conference on Formal Ontology in Information Systems, Ogunquit, Maine. ACM,
New York, NY.

Pagallo, G. and Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine
Learning, 5:71–99.

Pazzani, M. J. (1998). Constructive induction of cartesian product attributes. In Feature Extraction,
Construction and Selection: A Data Mining Perspective, chapter 21, pages 341–354. Kluwer
Academic Publishers, Norwell, MA.

Popper, K. (1965). The Logic of Scientific Discovery. Harper Torchbooks, New York.

Provost, F., Aronis, J., and Buchanan, B. (1999). Rule-space search for knowledge-based discov-
ery. CIIO Working Paper IS 99-012, Stern School of Business, New York University, New York,
NY.

Provost, F. J. (1992). Policies for the Selection of Bias in Inductive Machine Learning. PhD thesis,
Department of Computer Science, University of Pittsburgh.

Provost, F. J. and Buchanan, B. G. (1995). Inductive policy: The pragmatics of bias selection.
Machine Learning, 20(1-2):35–61.

PSF (2006). Python programming language – official website. http://www.python.org.

Pudil, P. and Novovicova, J. (1998). Novel methods for feature subset selection with respect
to problem knowledge. In Feature Extraction, Construction and Selection: A Data Mining
Perspective, chapter 7, pages 101–116. Kluwer Academic Publishers, Norwell, MA.

Quinlan, J. R. (1995). C4.5; Programs for Machine Learning. Morgan Kaufmann, San Francisco,
CA.

Rendell, L. and Seshu, R. (1990). Learning hard concepts through constructive induction: frame-
work and rationale. Computational Intelligence, 6(247-270).

Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge University Press.

Russell, S. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs.

Samuel, A. L. (1963). Some studies in machine learning using the game of checkers. In Feigen-
baum, E. A. and Feldman, J., editors, Computers and Though. McGraw-Hill, New York.

204

Setiono, R. and Liu, H. (1998). Fragmentation problem and automated feature construction. In
Proceedings of the 10th International Conference on Tools with Artificial Intelligence, pages
208–215, Taipei, Taiwan. IEEE.

Sutton, R. S. and Matheus, C. J. (1991). Learning polynomial functions by feature construction. In
Eighth International Workshop on Machine Learning, pages 208–212, Chicago, Illinois. Morgan
Kaufmann, San Francisco, CA.

Todorovski, L. and Džeroski, S. (1997). Declarative bias in equation discovery. In Proceedings of
the 14th International Conference on Machine Learning, pages 376–384, Nashville, TN. Morgan
Kaufmann, San Francisco, CA.

Utgoff, P. and Mitchell, T. M. (1982). Acquisition of appropriate bias for inductive concept learn-
ing. In Proceedings of AAAI-82, pages 414–417, Pittsburgh, PA. Morgan Kaufmann Publishers,
San Francisco, CA.

Wnek, J. and Michalski, R. S. (1994). Hypothesis-driven constructive induction in aq17-hci: A
method and experiments. Machine Learning, 14(1):139–168.

Zheng, Z. (1998). A comparison of constructing different types of new feature for decision tree
learning. In Liu, H. and Motoda, H., editors, Feature Extraction, Construction and Selection:
A Data Mining Perspective, chapter 15, pages 239–255. Kluwer Academic Publishers, Norwell,
MA.

Zupan, B., Bohanec, M., Demsar, J., and Bratko, I. (1998). Feature transformation by function
decomposition. In Feature Extraction, Construction and Selection: A Data Mining Perspective,
chapter 20, pages 328–340. Kluwer Academic Publishers, Norwell, MA.

Zytkow, J. M. and Simon, H. A. (1986). A theory of historical discovery: The construction of
componential models. Machine Learning, 1(1):107–136.

205

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Base Tennis Weather Dataset
	2. Improvement in Weather Classification given Constructed Features
	3. Comfort Index Calculations
	4. Modified Tennis Data
	5. Ten Examples from the UCI Wine Dataset
	6. New Features Constructed by ISAK for Wine CLP
	7. Counts of Features in Data Flow for the Wine CLP
	8. Seven Examples from the Tic-Tac-Toe UCI Dataset
	9. Balance Dataset
	10. Differences among Aggregate Types
	11. Various Constraints for FCFs in the Pressure Problem
	12. A Typical ILP Learning Problem
	13. Compressing a Partition of Variable Values
	14. FICUS Operators.
	15. The Semantic Types of ISAK and Their Semantic Properties
	16. Built-in Constraints of ISAK
	17. Built-in Feature Constructors
	18. Equality Testing
	19. Search Parameters for ISAK
	20. Description of Closed Form Datasets
	21. Description of Open Form Datasets
	22. Search Parameters
	23. Base Accuracy Rates for Example Datasets
	24. Feature Set Composition
	25. Experimental Conditions for the First Set of Experiments
	26. 10CVA Averaged over Learner, CLP, and Run by Feature Set
	27. 10CVA Averaged over Learner, CLP, and Run by Successor
	28. 10CVA Averaged over CLP and Run by Successor Function and Feature Set for TREE and SVM
	29. ANOVA for Linear Models of the First Set of Experiments
	30. Average 10CVA by Feature Set within Learners
	31. Average 10CVA by Successor within Learners
	32. Average 10CVA by Feature Set within CLPs
	33. Average 10CVA by Successor within a CLP
	34. Overall Cost to Benefit
	35. Cost to Benefit of ConRIF Feature Set for Different Generators
	36. Examples from the Area Problem in the Point Representation
	37. Examples from the Area Problem in the Length Representation
	38. Features Examined and Search Times for Different KBs
	39. Results of Learning with RL on the Perimeter CLP
	40. 10CVA Averaged over Learner, Run, and CLP by Successor and Features Set
	41. AUCs Averaged over Learner, Run, and CLP by Successor and Features Set
	42. 10CVA Averaged over Run and CLP by Successor Function and Feature Set for 3NN, 10NN, and NB
	43. 10CVA Averaged over Run and CLP by Successor Function and Feature Set for TREE, SVM, and FORST
	44. AUC Averaged over Run and CLP by Successor and Feature Set for 3NN, 10NN, and NB
	45. AUC Averaged over Run and CLP by Successor and Feature Set for TREE, SVM, and FORST
	46. Obscured Benefits of Feature Construction
	47. Best Feature Set Usage Results

	LIST OF FIGURES
	1. Four Constructed Features for the Weather Problem
	2. A Decision Tree for xor and a Reduced Tree
	3. SVM Feature Space Modification
	4. XOR in Two Feature Spaces
	5. Overview of ISAK Input and Output
	6. A Knowledge Base Used by ISAK for the UCI Wine Dataset
	7. Semantic Hierarchy for Wine CLP
	8. Operations for the Wine CLP
	9. Data Flow through Generation of Features from Round to Round
	10. Path to Resulting Wine Features
	11. Trace of Wine CLP for Three Initial Features
	12. Trace of Wine CLP for Three Initial Features (Continued)
	13. Instance, Example, and Sample Space Relationships
	14. Relationships Among Selective and Constructive Induction and Feature Construction
	15. Feature Construction Types in Classification Learning
	16. Sources of Semantic Feature Construction Knowledge from Features
	17. Semantic Feature Construction Knowledge and Feature Constructor Functions
	18. Additional Specifications for a Feature Construction System
	19. Abstract View of Feature Construction as Operations on Objects
	20. Four Examples from the Balance Universe
	21. Four Examples of Abstract Relations
	22. Top Level Type Ontology
	23. Ontology for Symbolic Types
	24. Ontology for Numeric Types
	25. Ontology for Aggregate Types
	26. Tipped Boxes
	27. Constructed Features as Trees
	28. FICUS Pseudo-code
	29. FICUS Application of Feature Constructor Functions
	30. ISAK Beam Search Pseudo-code
	31. Duplicate Feature Checking via MD5 Hash
	32. Top-N and Random-N Successor Functions
	33. Pseudo-code for the Windowed Successor Generators
	34. matchFormulaToFeatures Pseudo-code
	35. Relationships among Experimental Variables
	36. Histogram of Standard Errors for Single Runs of Experimental Setups
	37. Histogram of Standard Errors for Repeated Runs of Experimental Conditions
	38. Histogram of Standard Errors of Average CA over Runs and Problems
	39. Histogram of Standard Errors of Average CA over Runs, Problems, and Learners
	40. Tukey's HSD for Pairwise Differences between Feature Sets given Learners
	41. Tukey's HSD for Pairwise Differences between Successors given Learners
	42. Tukey's HSD for Pairwise Differences between Feature Sets given CLPs
	43. Tukey's HSD for Pairwise Differences between Generators Given Problems
	44. The Two Representations of the Area Problem
	45. Learning Curves for the Point Representation of the Area Problem
	46. Learning Curves for the Length Representation of the Area Problem
	47. Original Point Dataset Compared to Unrestricted Constructions
	48. Original Point Dataset versus Constructions Limited to XY Coordinate and Constructions Limited to Shape
	49. Original Point Dataset Compared to Constructions Limited to Shape and Constructions Limited to XY Coordinate & Shape
	50. Comparison of Base Point, Base Length, and Detailed KB Constructions
	51. Sampling Effects on Datasets Evaluated by SVM Learning Curves
	52. Linear Model Page 1
	53. Linear Model Page 2
	54. Linear Model Page 3
	55. Linear Model Page 4
	56. Linear Model Page 5
	57. Weather Dataset Description for Synthetic Generation
	58. Area Dataset Description for Synthetic Generation

	1.0 INTRODUCTION
	1.1 Feature Construction, Machine Learning, and Empirical Science
	1.2 An Example of Feature Construction
	1.2.1 Automatic Construction of Meteorological Features
	1.2.2 Manual Construction of Meteorological Features
	1.2.3 Why Create Features for Weather Problems?

	1.3 Utility of Feature Construction in Learning
	1.3.1 Inductive Bias of Learners
	1.3.2 Modification of Bias by Feature Construction

	1.4 Contrasting Feature Construction and Related Methods
	1.4.1 Modifying Data Representation
	1.4.2 Feature Selection and Feature Extraction
	1.4.3 Constructive Induction
	1.4.4 Statistical Vector Space Methods

	1.5 Semantic Feature Construction
	1.6 Hypotheses
	1.7 Overview and Summary

	2.0 ANNOTATED EXAMPLES OF SEMANTIC FEATURE CONSTRUCTION BY ISAK
	2.1 High Level Description and the Wine Problem
	2.1.0.1 Trace of ISAK on the Wine CLP

	2.2 Tic-Tac-Toe Problem

	3.0 BACKGROUND
	3.1 Inductive Learning from Examples
	3.2 Inductive Bias and Feature Construction
	3.2.1 Inductive Bias
	3.2.2 Inductive Bias of Decision Trees
	3.2.3 Bias and Feature Construction
	3.2.4 Clarifying the Selective and Constructive Induction Dichotomy

	3.3 Feature Construction
	3.3.1 Feature Construction
	3.3.2 Form of the Dataset
	3.3.3 Utility of Feature Construction, Feature Space Flaws and Troublesome Concepts
	3.3.3.1 Instance Space Flaws
	3.3.3.2 Hypothesis Flaws in Decision Trees

	4.0 FRAMEWORK: A KNOWLEDGE LEVEL DESCRIPTION FOR FEATURE CONSTRUCTION
	4.1 Characteristics of Features, Algorithms, and Constructors used in Feature Construction
	4.1.1 Sources of Knowledge from Features
	4.1.2 Knowledge Use in Feature Constructor Functions
	4.1.3 Input and Processing of Feature Construction Algorithms

	4.2 A Knowledge Level Description of ISAK
	4.2.1 Identification of Objects in the Learning Domain

	4.3 An Ontology for Semantic Types
	4.3.1 Semantic Classes
	4.3.2 Feature Constructor Functions
	4.3.2.1 Constraints on the Search Space by the Available FCFs
	4.3.2.2 Object Constraints
	4.3.2.3 Constraints from Semantic Types
	4.3.2.4 Effects of Constraints on the Number of Constructable Features
	4.3.2.5 Constraints by Semantic Class
	4.3.2.6 Resulting Values and Semantics

	4.3.3 Formal Description of Features and Feature Constructor Functions

	4.4 Constructed Features as Trees

	5.0 RELATED WORK
	5.1 Learning from Relational Descriptions and Inductive Logic Programming
	5.1.1 A Predicate Invention Example
	5.1.2 Constructive Induction Operators
	5.1.3 Michalski's Constructive Induction Divisions
	5.1.4 Constructive Induction and Knowledge

	5.2 Learning and Representation in Attribute-Value Contexts
	5.2.1 Prior Work
	5.2.2 CITRE
	5.2.3 Various Systems
	5.2.4 FICUS Overview
	5.2.4.1 FICUS Input
	5.2.4.2 FICUS Algorithm
	5.2.4.3 FICUS and Problem Domains

	5.2.5 Representation and Modification in Other Learning Contexts

	5.3 Knowledge in Feature Construction
	5.3.1 Knowledge in Explanation Based Learning and Problem Solving
	5.3.2 Knowledge in Feature Construction
	5.3.3 Donoho's Knowledge Framework
	5.3.4 Other Knowledge-Driven Feature Construction Systems

	6.0 IMPLEMENTING ISAK: INPUT SPECIFICATION AND ALGORITHMS
	6.1 Addition and the Interaction between Semantic Types and Feature Constructor Functions
	6.2 Details of the Input Specification
	6.2.1 Semantic Types and Semantic Properties
	6.2.2 Semantic Class Hierarchy
	6.2.3 Feature Description
	6.2.4 Constraint Specification
	6.2.5 Specification of Feature Constructor Functions
	6.2.6 Search Parameters
	6.2.7 Aggregate Features

	6.3 Algorithmic Description
	6.3.1 Beam Search Algorithm
	6.3.2 Formula and Value Pruning
	6.3.3 Evaluation Pruning
	6.3.4 Successor Function for the Beam Search
	6.3.5 Windowed Selection of Features in the Successor Function
	6.3.6 Type and Constraint Processing
	6.3.7 Output Type Generation

	6.4 Complexity of Beam Search and Matching
	6.4.1 Complexity of Beam Search
	6.4.2 Complexity of Matching Feature to Feature Constructor Functions
	6.4.3 Total Complexity for Top and Random Successor Functions

	7.0 EXPERIMENTS
	7.1 A Set of Experiments Describing the Behavior of ISAK on Multiple Learning Problems using Multiple Successor Functions and Feature Sets
	7.1.1 Construction and Learning Problems: Datasets, Knowledge Bases, and Search Parameters
	7.1.2 Generation of Synthetic Datasets
	7.1.3 Learners
	7.1.4 Use of Base and Constructed Features in Learning
	7.1.5 Successor Functions

	7.2 ISAK: Concept Description Abilities, Benchmark Performance Improvements, and Successor Function Effects
	7.2.1 Experimental Variables, Parameters, and Method
	7.2.2 An Experiment Comparing Feature Sets Averaged over All Learners
	7.2.3 An Experiment Comparing Successors Averaged over All Learners
	7.2.4 An Experiment Comparing Different Generators and Feature Sets over Individual Learners
	7.2.5 Variance in Experiments
	7.2.6 A Linear Model for Experimental Variables
	7.2.7 An Experiment Comparing the Effect of Different Feature Sets within Each Individual Learner
	7.2.8 An Experiment Comparing the Effect of Different Successor Functions within Each Individual Learner
	7.2.9 An Experiment Comparing the Effect of Different Feature Sets within Each Individual CLP
	7.2.10 An Experiment Comparing the Effect of Different Successor Functions within Each Individual CLP
	7.2.11 An Experiment Comparing the Cost and Benefit of Different Successor Functions

	7.3 Experiments with Levels of Knowledge
	7.3.1 The Area Construction and Learning Problems
	7.3.2 Sampling Effects

	7.4 The Behavior of ISAK on a Novel Problem with a Novel Learner

	8.0 RESULTS AND CONCLUSIONS
	8.1 Results
	8.2 Future Work
	8.3 Conclusions

	APPENDIX A. ADDITIONAL EXPERIMENTAL DATA
	 A.1 Comparison of Different Generators and Feature Sets Averaged over Learners
	 A.2 A Linear Model of the Experimental Variables for the First Set of Experiments
	 A.3 Comparison of Different Generators and Feature Sets over Individual Learners
	 A.3.1 Additional Results for 10-Fold C.V. Accuracy
	 A.3.2 Additional Results for AUC
	 A.3.3 Benefits Obscured by Feature Set Choice

	APPENDIX B. SYNTHETIC DATA GENERATION
	 B.1 Description of the Weather Problem for Synthetic Generator
	 B.2 Description of the Area Problem for Synthetic Generator

	BIBLIOGRAPHY

