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ABSTRACT

In this thesis, we determine and implement an optical propagation technique suitable for system-
level simulation of optical micro-systems. The Rayleigh-Sommerfeld formulation is selected as
the optical propagation modeling technique because it satisfies the requirements of a system-level
CAD tool and supports accurate modeling at propagation distances on the order of the wavelength
of light. We present an efficient solution to the Rayleigh-Sommerfeld formulation using the angu-
lar spectrum technique which uses the fast Fourier transform to decompose the complex optical
wavefront into plane waves propagating from the aperture to the observation plane. This tech-

nigque reduces the computational order of solving the Rayleigh-Sommerfeld formulation from a

brute force direct integration technique of O(N*) to a computational order of O(N2I ogN).

For use in a design environment, we present an error analysis of our technique. Errors are caused
by the discrete sampling of the optical wavefront over a finite range to approximate the infinite
continuous Fourier transform. Methods for reducing both aliasing and truncation errors are pre-

sented, along with techniques to estimate the remaining errors of the angular spectrum technique.



We perform a rigorous error estimate on several common optical wavefronts and provide tech-
niques to perform an error analysis on ageneral wavefront. The utility of this method is shown by
implementing the work into a mixed-signal, multi-domain CAD tool, in which we perform sys-

tem-level simulations and analyses of several optical MEM systems.

DESCRIPTORS
Optical Propagation Modeling Efficient Optical Propagation
Optica CAD System-Level Simulation

Angular Spectrum Optical Micro-Systems
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1.0 INTRODUCTION

1.1 Optical Modeling for Optical Micro-Systems

As micro-optical system applications transition from abstract ideas to marketable products,
the commercialization process is slowed by the cost of designing, prototyping, and testing these
systems. Instead of physically prototyping these optical micro-systems, computer aided design
(CAD) tools can greatly reduce the cost and time-to-market of an optical micro-system product,
asevident inthe VLS| CAD revolution of the past 30 years. Using CAD tools, integrated circuits
are designed, fabricated, and the time-to-market is decreased significantly, with the increase of
successful first physical prototypes.

However, as with many new technol ogies, design methods and tools for optical micro-systems
are ad-hoc. Currently, multi-domain micro-systems are simulated with point-tools using compo-
nent level models performed at the physical level. These tools are typically domain specific (opti-
cal, electrical, or mechanical) and computationally complex. Asaresult, smulation of the entire
system is computationally intensive, uses mixed tools and frameworks, and does not support
interactions between the different domains.

In contrast, system-level tools are designed to include multiple domains and allow efficient
system simulation, by modeling components with their functionality rather than their physical

construction. Established MEM (micro-€electrical-mechanical) system-level modeling tools exist,

in which physical device models are extracted to the system-level MO, However, optical models

are not easily integrated into these tools.



When light interacts with the small feature sizes of micro-systems, many of the common opti-

cal propagation modeling techniques are invalid, and full vector or scalar solutions to Maxwell’s

eguations are required ), However, these optical modeling techniques are computationally and
memory intensive, therefore, interactive design between system designer and CAD tool is almost
impossible. As the number of optical components increases in micro-system design, the demand
for computationally efficient simulation tools rises. Therefore, the optical modeling technique
that supports system-level simulation of MOEM (micro-electro-opto-mechanical) systems must
be a rigorous model, accurately modelling optical propagation through micro-systems, yet, the
technique must also be computationally efficient, supporting interactive design between the
designer and the simulation tool.

In thisthesis, we describe an optical propagation technique that is suitable for implementation
into system-level, multi-domain micro-system CAD tools. The techniqueis determined by exam-
ining typical optical micro-systems, along with the goals and requirements of the CAD simulation
tool. One of the main contributions of thisthesisis adetailed error analysis of using this efficient
technique. This work has been integrated with our free-space, mixed-signal, system-level CAD
tool Chatoyant, extending its ability to accurately model micro-optical systems.

In this introductory chapter, we present motivation for our work and define the goals of a
mixed-signal, multi-domain CAD tool. We define system-level simulation and present a problem
statement listing the contributions in the dissertation. We conclude this chapter with a outline for

the remainder of this dissertation.



1.2 Motivation

The thesis is motivated by the advancement of mixed-signal, multi-domain optical microsys-
tems and the need for a system-level modeling approach for these systems. In this section, we use
two specific micro-optical systems to motivate the necessity for an accurate system-level micro-
optical modeling tool: we examine an optical MEM switch and a display application using a
Grating Light Valve MEM S component. We follow by stating our definition of system-level anal-

ysis and the advantages of using this simulation methodology for optical micro-systems.

1.2.1 Optical MEM Switches

High-speed optical switching systems based on free-space optical MEM systems are a critical

backbone technology for next generation computer networks and systems 4. These devices are
capable of switching multiple optical channels using fiber ribbon cable as the input and output
medium, and free space optics in the switching component. OMEM devices are used to imple-
ment the switch function, using techniques such as physically deflecting each beam based on the
electrostatic displacement of a microscopic mirror. Systems built with these switches have
numerous advantages over typical waveguide or fiber switching systems, including the reduction

of coupling loss and crosstalk, and independence from wavelength, polarization, and data format
©), The switches have been reported as 10 times smaller and faster than typical fiber-based

switches, while requiring only 1/1001" of the operating power ©), Systems built with these

switches also have shown potential of increased system reliability and reduced system costs.



“Standing-Up” Mirror

“Lying-Down” Mirror

Input Fibers

Collimating Lenses

Output Fibers

Figurel Free-Space Micromachined Optical Switch

We examine typical optical MEM switching systems, such as Lin et al.’s (AT&T) microma-

chined switch presented in referefPe A drawing of their proposed 8x8 optical cross-connect is
seen in Figure 1. In this figure, eight input fibers are placed onto the switching chip from the left
side. This system implements a true crossbar switch, where each input can be routed to any of the
output fibers, lined across the bottom of the chip. In order to establish every connection available,
there are 64 hinged mirrors lying on the surface of the chip. Fiber switching is achieved by the

specified interconnect mirror “self assembling” off of the substrate surface, using conventional

scratch drive actuators (SDW) MEM components, into a standing position with a 45 degree
angle relative to the incoming light. In Figure 1, two example interconnects are achieved, with
the black mirrors representing assembled standing mirrors and the grey mirrors representing mir-
rors that remain lying down on the substrate. The mirrors in this switch have dimensions of
150x140um. This system has a switching speed of less thau3@® with negligible crosstalk
and is polarization independent.

The challenges of modeling a system like the one described are numerous. The most obvious

challenge is that we are modeling three distinct domains: the electrical, the optical, and the



mechanical. Each domain needs to be accurately modeled. Additionally, the smulation frame-
work must also support the modeling of the interactions between the domains. For example, in
the optical MEM switch presented here, electronic drivers actuate the mechanical mirrors, which
assemble and deflect the optical beam, completing the switching operation. Another modeling
challenge is that the design of the switch calls for the support of optical data to be modeled.
Therefore, system-level performance measures such as bit error rate, insertion loss, and crosstalk

are important to the system designer and must be modeled.

1.2.2 GratingLight Valve

To provide further motivation for our work, we next examine one of the more promising

MOEM components, the Grating Light Valve (GLV) ®), This device has many display applica

tions, including digital projection, HDTV, and vehicledisplays. The GLV issimply aMEM phase

grating made from parallel rows of reflective ribbons. When all the ribbons are in the same plane,

incident light that strikes normal to the surface reflects 180 degrees from the GLV. However, if
aternating ribbons are moved down a distance equal to a quarter of a wavelength of the incident

light, a “square-well” diffraction pattern is created, and the light is reflected at an angle from that
of the incident light. The angle of reflection depends on the width of the ribbons and the wave-
length of the incident light. Figure 2 shows the ribbons, from both a top and side view, and also
the reflection patterns for both positions of the ribbons.

The GLV component is fabricated using standard silicon VLSI technology, with ribbon

dimensions approximately 3450 wide and 20-10m Iong(s). Each ribbon moves through elec-

tro-static attraction between the ribbon and an electrode fabricated underneath the ribbon. This



el ectro-static attraction moves the ribbons only afew hundred nanometers, resulting in an approx-
imate switching time of 20 nsec.

Again, there are challenges in modeling and ssimulating a system using the GLV. Besides the
multi-domain modeling challenges seen in the optical MEM switch, the GLV depends on a dif-
fractive phenomenon to direct the light beam. Therefore, a rigorous modeling technique is
required for both the modeling of the GLV device and the optical propagation technique as light
diffracts off the surface of the ribbons.

Both of the above motivating examples, the optical MEM switch and the GLV based systems,
have been simulated with our system-level simulation tool. These examples and their ssimulation

results and analyses will be presented later, in Chapter 5 of the thesis.

1.2.3 System-Level Simulation

Typical modeling techniques for optical micro-systems can be seen in Figure 3. Most tools
that model micro-optical systems are based on device level physical models. Thisis seen as the
lowest level in the figure. These component models are typically solved using full 3D vector
solutions of Maxwell's equations. This leads to a “bottom-up” design flow, where the compo-

nents are very accurately modeled, however the computation complexity of these algorithms

Down ribbons Incident  Reflected  pefecteq  INCident  Reflected

Up ribbons
N B = = -----¢]J4)\

(€Y (b) (©

Figure2 GLV Device (a) Top View and Side View Operation for (b) Up Ribbonsand (c)
Down Ribbons



make system simulation prohibitive.
The second level of modeling abstraction is behavioral modeling, where component details
are extracted from the physical model to the behavioral model. These models are commonly

solved using reduced ordered models, typically ordinary differential equations. Common circuit

simulators such as SPICE and Saber use this level of modeling, along with AHDL ©) simulators,
such asVHDL-AMS. The simulation timeis greatly reduced from the physical models, however,
as the number of components increase or additional domains (that is, optical or mechanical) are
added to the system, this technique can become computationally inefficient and cannot support
the desired system-level performance measures.

The highest abstract modeling level is the system level, highlighed in Figure 3. This is the
modeling technique that is performed throughout this thesis. The system level is composed of an
ensemble of component behaviora models, and uses fast solvers at the component/behavioral
level. Using this modeling technique, we support domain specific signal propagation models,

along with modeling the interactions between the optical, electrical, and mechanical domains.
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Using this top-down modeling technique, ensemble performance measures, such as bit-error-rate
(BER), optical and electrical crosstalk, insertion loss, and packaging/alignment tolerances are

simulated and reported to the system designer.

1.3 Problem Statement

As seen in the previous examples, there are many challenges to enabling system-level simula-
tion and analysis for micro-optical systems. In this section, we describe the problems which are

addressed in thisthesis:

» Determine an optical propagation technique that is valid for the system-level simula-
tion of optical micro-systemsMany of the typical optical propagation simulation
techniques used for modeling macro-systems are not valid for micro-system smula-

tion.

« Determine a computationally efficient algorithm for the optical propagation method.
This is motivated by our desire to model and simulate complete systems in an interac-

tive design environment.

« Determine the error in implementing the efficient optical propagation technique in a
system-level CAD tool and show how it can be reduced. A major contribution of this
thesis is in determining the error of using an optical propagation model, and how this

error can be reduced.

* Implement thiswork in a system-level CAD tool. We show how the optical propaga-
tion modeling technique interfaces into a mixed-signal, multi-domain CAD tool, and

perform system-level simulations on selected optical MEM systems.

In this thesis, we dedicate a separate chapter to each of these stated problems and challenges.



1.4 Organization of Thesis

In Chapter 2, the thesis presents the requirements for determining an appropriate optical prop-
agation technique that is valid for micro-optical system modeling and simulation. In this section,
we present typical optical MEM components and systems, and determine the physical sizes,
geometries, and optical nature (refractive, diffractive, scattering, etc.) of the optical components.
We introduce the requirements of supporting system-level CAD and take these into consideration
when determining an optical propagation model appropriate for simulating optical micro-systems.
This chapter continues with a presentation of various levels of optical propagation techniques,
from simple ray tracing to full vector solutions. Advantages and disadvantages of each of the
techniques are presented, along with a comparison of their computational resources, until a con-
clusion is drawn determining the most appropriate system-level optical modeling technique for
optical micro-systems.

In Chapter 3, we present an efficient optical propagation technique suitable for system-level
simulations of micro-optical systems. The method is based on the angular spectrum technique,
which simplifies a propagating complex optical wavefront by propagating plane waves, each with
adifferent weight and direction. These plane waves are determined by the Fourier transform of
the complex optical wavefront and are based on their associated spatial frequencies. The angular
spectrum is an exact solution to the scalar Rayleigh-Sommerfeld formulation.

In Chapter 4, detailed error analysis of using the angular spectrum technique is presented.
This section begins with a explanation of using the discrete Fourier transform to perform the for-
ward and inverse Fourier transform. The analysis continues by relating the spatial and frequency

domains, and determining the error when computing the complex optical valuesin these domains.



Besides a specific error analysis of some common optical wavefronts, a general error estimation
technique is provided.

In Chapter 5, the implementation of the optical propagation techniques into our mixed-signal,
multi-domain framework, Chatoyant, is presented. Our modeling methodology is discussed,
along with abrief introduction to the modeling of the electrical and mechanical domains. We pro-
vide system-level ssimulations of an optical MEM switch and a display projection systems based
on the grating light valve technol ogy.

Chapter 6 presents a summary and draws conclusions of the work presented in this disserta-

tion. In thissection, we also present research areas in which this work can be expanded.
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2.0 OPTICAL REQUIREMENTSAND MODELS

In this chapter, we examine the requirements for the development of an optical propagation
modeling technique for a system-level CAD tool for the smulation of optical micro-systems. In
the first section, we define the goals and requirements of a mixed-signal CAD tool through a pre-
sentation of afew common optical MEM systems. We next examine the classical optical propa-
gation methods and state the advantages and disadvantages of using these techniques. This
chapter is concluded with the determination of the optical propagation technique most suitable for

system-level simulation of optical micro-systems.

2.1 Optical Propagation Requirements

The requirements of a free-space optical propagation technique for optical micro-systems are
defined by the goals of the CAD tool, the physical sizes of the components, the propagation dis-
tances between optical components, and the surface properties of the components from which the

light reflects, refracts, and/or diffracts. We introduce these requirementsin the following section.

2.1.1 System-level CAD Requirements

As stated previously, our goal isto create a system-level CAD tool for the interactive design
of optical MEM systems. Therefore, we are not only striving for accuracy, but we also require
computationally efficient device and propagation algorithms, enabling fast system-level smula-

tions. Additionally, a system-level tool needs to evaluate such system performance measures as
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BER (bit error rate), tolerancing, insertion loss, and crosstalk. From these requirements, the
model for light propagation must support optical power information, such as intensity, phase, and
frequency (wavelength) dependence. To further identify the appropriate optical modeling tech-
nique, we examine typical optical MEM systems and evaluate the available optical propagation

techniques which satisfy the requirements imposed by these systems.

2.1.2 Optical Micro-Systems Requirements

We now examine typical optical micro-systems to determine the optical propagation require-
ments that are established from typical components that comprise these systems. We first exam-
ine the optical MEM switch, described earlier in Figure 1. By using this system as a
representative OMEM switch, we can determine the type of optical modeling that is required for
modeling mixed-signal micro-systems.

The collimating lenses seen in Figure 1 could be either refractive or diffractive elements,
establishing the first requirement of the optical propagation method: the support of optical diffrac-
tion. Inthese optical MEM switches, the lenses are typically diffractive micro-Fresnel lenses due

to their ease of fabrication using standard CMOS facilities. However, Fresnel lenses are ineffi-
cient (theoretical 10% efficiency (5)) and greatly increase the optical insertion loss. Therefore, in

some systems, refractive lenses or fiber collimators are being considered ),
The sizes of the components and the propagation distances between the components also con-
strain the optical propagation model to support diffraction. For example, the mirrors in this

switch have dimensions of 150x140 um. Sizes of other optical MEM components are smaller, as
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Figure 4 Texas Instruments’s Digital Micro-mirror Device (DMD) (10)

in Texas Instruments’s digital micro-mirror device (DMD), seen in Figure 4, where over

1,000,000 projection mirrors on the chip surface each have a square side length of anly 16

(19 When these and other micro-mirrors are fabricated, the mirrors can be inherently curved,
with a small amount of surface roughness, adding to our list of requirements for the optical prop-
agation technique.

Since optical MEMS are fabricated with the same techniques as electronic VLSI design, the
size of an OMEMS chip does not usually exceed a couple of millimeters, therefore, typical dis-
tances between components (i.e., propagation distances) are approximately 1@r10G@r
example, the pitch between the switching mirrors in Figure 1 is1600With the sizes and dis-
tances on the order of only ten to a thousand times the wavelength of light, optical diffractive
models are required even for applications composed of purely refractive components.

An additional requirement, illustrated by examining the optical MEM switch, is that the opti-
cal models must easily interface with fiber-based CAD tools. This is seen by the light being
brought “on-" and “off-" chip through fibers or waveguides. We interface our free-space optical

propagation technique with existing fiber propagation software packages, such as RSoft's Beam-

PROP™) and Optiwave’s BPMCAD'?. These tools model light through the beam propagation

method (BPM) and/or finite difference (FD) modeling for optical propagation.
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We summarize the requirements of the optical propagation technigque in the following table.

Tablel Summary of Requirementsof Optical Propagation Technique

CA_D Tool Support for Optical PSrli) F:g;gg; Support for Surface
Requirements Components Distance Types
Accurate Refractive Near-Near Field Free-Space
Efficient Computation Diffractive Near Field Fiber
System-Level Perfor- Far Field Surface Roughness
mance M easurements and Curvature

After determining the requirements of the optical propagation model, we next examine the

classical modeling techniques and approximations to determine which is appropriate for optical

MEM simulation.

2.2 Optical Propagation Models

This section discusses many of the typical optical propagation techniques. As will be seen,
the common techniques for modeling optics for macro scale applications often cannot be used in

the micro-scale case. In Figure 5, we present an illustration of different optical propagation tech-

niques that we will present in this thesis 13, The complexity of the techniques range from the
bottom inner-circle to the top outer-circle in which the techniques solve the complete vectorial
Maxwell equations. We have determined for system-level resultsit isimportant to have accurate

results, yet still be computationally efficient. In this section, we evaluate the common techniques,
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Figure5 Optical Propagation M odeling Techniques

ray tracing, Gaussian propagation, scalar propagation and its corresponding approximations, and
vector propagation. At the end of each section, we summarize the propagation technique in a
table, stating the advantages and disadvantages of each technique, along with the computational

order of using the specified technique.

2.2.1 Ray Tracing Technique

Ray, or geometric, optics is the simplest of the optical propagation methods. This method
traces ideal rays of light through refractive elements. It has no inherent support for the optical
characteristics of light, such as intensity, phase, and power or for diffractive components. How-

ever, ray propagation does give a fast calculation of the direction of the beam as it propagates
through a system, therefore, many existing software packages, such as Code V 14, ZEMAX (19,

and OSLO 19, use this technique for directional propagation. These software packages, how-
ever, propagate thousands of rays through the systems in order to calculate a wavefront at the
desired observation point in the system. The computational complexity of ray propagation mod-

elsison the order of the number of beams that are being propagated, O(B). Although thereisno
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inherent support for diffraction in the ray optical models, limited diffraction modeling in the far-
field can be calculated by performing a Fourier transform on awavefront created with the trace of
many rays (7).

The advantages and disadvantages of the ray propagation method are summarized in the fol-

lowing table:

Table2 Advantagesand Disadvantages of Ray Propagation

Advantages Disadvantages Computation Speed
Computationally || No optical signal O(B)
Efficient characterization in
single beam

Limited diffractive
far-field support

2.2.2 Gaussian Techniques

Ray propagation can be improved by modeling an optical signal with a Gaussian beam. Using
Gaussian optics, the paraxial Helmholtz equation is satisfied. In this propagation technique, a
Gaussian beam is superimposed over the propagating geometric rays supporting optical parame-
ters such as waist size, depth of focus, intensity, and phase, meeting many of the criteria required
to model optical MEM systems. Using nine scalar parameters to define a Gaussian beam and the

ABCD matrix equations for optical interfaces of specific components, no explicit integration is

needed to calculate the resulting Gaussian beam at each component (13) Therefore, each optical
component can be seen as a “black box” in which the input and output are Gaussian beams, with

the component transferring the input beam to the output beam by altering the Gaussian parameters
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according to the functionality of the component. An additional benefit of using Gaussian analysis
isthat we can approximate the optical behavior and shape of laserstypically used as input sources
in optical micro-systems. Similar to the ray propagation technique, one of the largest advantages
of the Gaussian method is the fast computational speed of the simulation. Again, the computa-
tional complexity for the Gaussian propagation models is on the order of the number of beams
that are being propagated, O(B).

One of the biggest disadvantage of Gaussian propagation for optical micro-systemsisthe lack
of diffraction support. However, limited diffraction modeling for symmetrically circularly

clipped Gaussian beams can be supported in Gaussian optical methods at large propagation dis-

tances1®19)_ Further diffractive extensions could be performed with Hermite-Gaussian model -

ing for multi-mode Gaussian beams, and Laguerre-Gaussian modeling, which uses the Bessel

function in cylindrical coordinates 13 An additional disadvantage of using the Gaussian tech-
nique is that it is limited to paraxia systems, where the angle of the intersection of the optical
beam and a component is considered small enough to satisfy the approximation: sin(6)=6.

Even though Gaussian methods are ideal for interactive CAD design, the limited diffraction
support reduces the effectiveness of these optical techniques for modeling optical micro-systems.
However, for refractive macro-sized systems, both the Gaussian and Ray techniques are valid and
simulate efficiently.

The advantages and disadvantages of the Gaussian beam propagation method are summarized

in the following table:
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Table 3 Advantages and Disadvantages of Gaussian Propagation

Advantages Disadvantages Computation Speed
Computationally || Limited diffractive O(B)
Efficient support

Optical signal charff Limited to paraxial
acterization beam

Model with 9 scalar| Far field support
parameters

No integration
required for propa-
gation

2.2.3 Scalar Methods

Acknowledging that diffractive optical propagation models are required for optical micro-sys-
tems, we continue our search for the appropriate optical propagation method with scalar diffrac-
tion models.
Scalar approximations are developed by recasting Maxwell’s equations into a scalar form,

where all components in the electric and magnetic field can be summarized by a single scalar

wave equation. The Maxwell equations with the absence of free char&@?:are

Dsz—p%—T Dxﬁ:s%—'tE OBE=0 OOOuH =0

where,E is the electric field vector aktl  is the magnetic field vector, each with three recti-
linear components. Both vectors are functions of position and {ina@de are the permeability

and the permittivity of the medium in which the optical wavefront is propagating.
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These equations can be recast into the following form:

DZ_\_n_Zaz_E = o DZA_n_ZaZ_ﬁ - o
2ot 2ot

where, nisthe refractive index of the medium and c is the velocity of the light propagating in
avacuum, and is defined by:

1

~JHo€o

The subscripty’ denotes propagation in a vacuum.

Cc =

If we assume that the dielectric medium is linear, isotropic, homogeneous, and nondispersive,
(satisfied by the propagation through free-space) all components in the electric and magnetic field
can be summarized by the 2D scalar wave equation:

2

cl

29

I
o

ZA
Uu- n

O|3
N
(7]

For monochromatic light)(Pt) is the positional complex wave function, wheres the posi-
tion of a point in space:
U(P, 1) = a(P)e?®d?™

where,v is the optical frequency.

Similar to the vector solution, this complex scalar must also satisfy the wave equation, known

as the time-independent Helmholtz equatic(ﬁi2+k2)u =0 , Where, the wave number,
_ 21
k = N

It should be noted that scalar diffraction neglects the fundamental vector nature of the electric

field, therefore polarization effects are not characte?8d However, through such techniques
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as propagating two orthogonal polarized electric fields the polarization of light can be modeled,

even when performing scalar diffraction propagation (1),

With use of Green'’s theorem, the Rayleigh-Sommerfeld formulation can be derived from the

wave equation for the propagation of light in free-space (20).

jkr
U2(xy) = & [ULE M -ckan
z

where, k = AL

5 2 isthe areaof the aperture, zisthe distance that the light is propagated from

an aperture plane (z = 0) to an observation plane (at distance z), and r can be calculated as.

r = P+ (x=8)7 +(y-n)°

It is assumed that the two planes are parallel, with a coordinate system (&,n,0) in the aperture
plane and a coordinate system (x,y,z) in the observation plane, as seen in Figure 6. The formula-
tion is valid as long as both the propagation distance and the aperture size are greater than the
wavelength of light. These restrictions are based on the boundary conditions of the Rayleigh-

Sommerfeld formulation, and the fact that the el ectric and magnetic fields cannot be treated inde-

pendently at the boundaries of the aperture (20),
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This Rayleigh-Sommerfeld formulation mathematically describes the Huygens-Fresnel prin-
cipal, which states that each point on a complex wavefront acts as a source of spherical wave-

fronts propagating to the observation plane. These wavefronts inherit the intensity and phase

values of their source point in the original complex wavefront (23),
From these scalar equations, different approximations can be used to solve the resulting com-
plex wave function as light propagates through free-space to an observation plane. Figure 7 isa
tree that begins at the top with Maxwell’s equations and branches downward through the different
abstraction levels of scalar modeling techniques. Along the arrows, notes are added stating the

limitations and approximations that are made to get to the next, less accurate model.

Vector Wave Equations - Maxwell Equations

Diffracting element >> A
Observation plane not close
to diffracting element

Scalar Equations

Boundary conditions on
field strength and
normal derivative

Planar components only

Boundary conditions on
field strength or
normal derivative

Non-planar components

Rayleigh-Sommerfeld Fresnel-Kirchoff

Binomial expansion for distance from
aperture to observation plane

Spherical wave replaced by quadratic
phase exponentia (parabolic fronts)

Fresnel Approximation (Near-Field)

Quadratic-phase exponential = 1
Solve with a Fourier transform

Fraunhofer Approximation (Far-Field)

Figure7 Diffractive Modeling Techniques
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1550 nm 791 um 2.5mm

Examples: 50 um Aperture, 200 um Observation, A=850 nm, A=1550 nm

Figure8 Optical Propagation Distance, z, and Model Validity

Figure 8 showslight passing through an aperture plane (&,n), propagating a distance z past the
aperture, and striking an observation plane (x,y). The figure also presents equations calculating
the validity of the diffractive models and approximations, in terms of the distance propagated past
the aperture, z, the limits of the aperture and observation planes, the wavelength of light, A, and
the wave number, k=217A. Using these two figures as guides, we now examine the common sca-

lar approximations.

2.2.3.1 Fraunhofer (Far-Field) Approximation Working from the bottom to top of Figure 7

and from right to left of Figure 8, we first investigate the least accurate of the scalar approxima-
tions, the Fraunhofer approximation. The advantage of this technique is the ability to implement

a Fourier transform to solve the complex wave function. The Fraunhofer technique is valid when

the light striking the aperture plane can be assumed to be a plane wave (2. Most diffractive soft-

ware tools perform Fraunhofer propagation, using a common Fast Fourier Transform (FFT) rou-

tinefor efficient evaluation. The FFT has a computational complexity of O[NZI og(N)], whereN s
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the number of samples along one side of the input plane @) Asshown in Figure 8, the Fraun-

hofer approximation is valid in the “far-field”, where the light has propagated to a distance far
from the aperture, and the diffraction pattern is essentially the same as that at infinity. However,
for most optical MEM systems, the optical wavefront does not propagate far enough to reach the
far-field. To illustrate the problem of this method with respect to traditional micro-optical sys-
tems, we consider a system with an aperture plang ¢f 50x50um and an observation plane

(x,y) of 200x200um, using a 850 nm light source. Using these parameters and the equation of

minimum propagation distance for valid Fraunhofer approximation r8Ufsund in Figure 8,
the minimum propagation distance for the Fraunhofer approximation to be valid is 4.6 mm,
approximately 10 times the propagation pitch found in the switch example of Figure 1. With a
wavelength of 1550 nm, a typical wavelength for fiber applications, the propagation distance
needs to be approximately 2.5 mm for the Fraunhofer technique to be valid.

The advantages and disadvantages of the Fraunhofer (far field) approximation method for

optical propagation is summarized in the following table:

Table4 Advantagesand Disadvantages of the Fraunhofer Approximation

Advantages Disadvantages Computation Speed

Solve with a FFT || Limited to far field O(N2ogN)
support

Supports diffraction

2.2.3.2 Fresnel (Near-Field) Approximation To remove the plane-wave limitation of the far-

field, our study moves up the tree found in Figure 7 towards more rigorous optical models. We

next examine the Fresnel approximation, valid in both the far and near field, where the wavefront
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is assumed to be parabolic as it strikes the observation plane. The “near field” is defined as the
region closer to an aperture where the diffraction pattern differs from that observed at an infinite
distance. No longer can a straight-forward fast Fourier transform be used for this calculation, as
the light striking the aperture plane is no longer a plane wave and an explicit integration of the

wavefront must be calculated. It is to be noted, however, that with some extra pre-computation,

there are methods to perform an FFT algorithm for the Fresnel approxir??rghordVithout the

use of the Fourier transform, the complexity of the Fresnel approximation is on the order of
O(N2M2), whereN is the number of samples along one side of a square input pland,iaride

number of samples along one side of the square observation‘%‘?ankdsing the same example
as before, with 850 nm light propagating through an aperture join5@ an observation plane of
200um, we can solve for the minimum propagation distance for the Fresnel approximation, as
found in Figure 8. We find the propagated distance must be larger tham@gpproximately
twice the propagation distances found in the switch example of Figure 1, making this method
invalid for some optical MEM systems. Therefore, our search for an appropriate optical propaga-
tion method returns to the original scalar models to support the propagation region shorter than
the near field.

The advantages and disadvantages of the Fresnel (near field) approximation method for opti-

cal propagation are summarized in the following table:

Table5 Advantages and Disadvantages of the Fresnel Approximation

Advantages Disadvantages Computation Speed
Supports diffraction Computationally O(NZM 2)
slow
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Table5 Advantages and Disadvantages of the Fresnel Approximation

Advantages Disadvantages Computation Speed

Supportsnear-field || No near-near field
propagation support

2.2.3.3 Rayleigh-Sommer feld/Fresnel Kirchoff Formulations We return our examination of

optical propagation modeling techniques to the more rigorous scalar diffraction models, the
Fresnel-Kirchoff and Rayleigh-Sommerfeld scalar formulations. Both of these methods produce
similar, accurate results, again with the use of an explicit integration of the complex wavefront.
The difference between the two methods lie in their handling of the boundary conditions.
Fresnel-Kirchoff has boundary conditions on both the field strength and the normal derivative.
These boundary conditions state that for a complex wavefront striking a component with an aper-
ture surrounded by a screen, the field distribution and its derivative are the same as if the screen
did not exist. The second condition states that the screen can be neglected and only the field dis-
tribution over the aperture is a concern. However, both of these boundary conditions can not be
true, as the screen will perturb the fields on the aperture plane. The Rayleigh-Sommerfeld formu-
lation removes this inconsistency and imposes boundary conditions on either the field strength or
the normal derivative, since they are related. Unlike the Fresnel-Kirchoff formulation, the Ray-
leigh-Sommerfeld is limited to planar components. Both formulations are limited by the restric-
tion that the propagation distance and the aperture size must be greater than the wavelength of
light.

By satisfying the system requirements of accurately modeling diffraction, small propagation
distances, and refractive and diffractive components, we believe that these formulations are the

appropriate optical propagation methods to use for the modeling and simulation of current optical
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MEM systems.
The advantages and disadvantages of the Rayleigh-Sommerfeld and Fresnel-Kirchoff formu-

lations for optical propagation are summarized in the following table:

Table6 Advantages and Disadvantages of the Rayleigh-Sommerfeld and Fresnel-Kirchoff
Formulations

Advantages Disadvantages Computation Sdeed
Supports diffractior Computationally O(N2M 2)
slow

Supports propagasf Normal surfaces
tion larger tharh only

2.2.4 Vector Solutions

For completeness in our optical propagation survey, we include propagation modeling by

solving for both the electric field vector, E, and the magnetic field vector, H through solutionsto
Maxwell’'s equation@o). Although the most accurate, solving Maxwell’s equations is exceedingly

slow since complex vector operations are reqdﬂ'@ﬁzo)(z"'). This computation is performed in

3D, as each vector is composedgof, andz values. This method is valid for all micro-systems,
however, the computation time and memory requirements are extremely demanding. This tech-
nique is rarely used in free-space propagation, however, it is commonly used for optical simula-
tions confined by a boundary such as a waveguide or fiber. Solutions for these fields are typically

done with a Beam Propagation Method (BPM) using a Fourier Transform, or a finite-difference

time-domain (FDTD) algorithn(125)(26). As mentioned, the major drawback of the vector meth-

26



ods isthe simulation time of large systems and propagation distances, asisillustrated next.

The computation order for the vector solution depends on the numerical technigue imple-
mented, typically based on direct integration or a Fourier transform. However, it iskey to realize
that in using the vector methods, the algorithm solves for a 3D computation window (in terms of
time or propagation distance), instead of the static 2D complex wavefront at a particular propaga-
tion distance as implemented with the scalar methods. Beyond the meshing of the xy plane, these
vector algorithms require the meshing of the third dimension, in the case of optics, propagation

distance into Z sections. Vector solutions are required to be calculated every 1/20th of the optical

wavelength to minimize numerical dispersion and guarantee accurate results (27, Recall, that we

aso have to solve for each of the 3 electric and magnetic component fields (E,, Ey, E; and Hy, Hy,

H,) for each dynamic step in the solution. Therefore, the computational resources are intense,

resulting in a direct integration computational order of O(N2M 27).
The advantages and disadvantages of the vector solutions to Maxwell’'s equations for optical

propagation are summarized in the following table:

Table 7 Advantages and Disadvantages of the Full Vector Solutions to Maxwell’'s Equations

Advantages Disadvantages Computation Speed
Supports diffraction | Computationally O(N 2M ZZ)
very slow

Supports all propa-
gation

Supports al aper-
ture sizes
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2.2.5 Optical Propagation Summary

Concluding our survey of the common optical propagation techniques, we present Table 8
which provides a quick reference of the classical propagation techniques and the different optical
characteristics that can be modeled with each. Checks are placed in the boxes under the propaga-
tion method if they can support each feature. Some optical propagation methods can be extended
to model optical characteristics that they do not inherently support. These are filled in with the
word “Extend”. The last row of the table presents the computational order of the optical propaga-
tion algorithm, so the reader can compare the complexity of the algorithm. We will use this refer-
ence table when selecting an optical propagation technique suitable for system-level modeling of

micro-systems.

Table8 Free-Space Optical Propagation Techniques

Chacr)géitgrail sic Ray Gaussian | Fraunhofer Fresnel Ssr?/rlrzr%g d zﬁjﬁ Vector
Direction O O
Intensity O O O O O O
Diffraction Extend | Limited O O O O O
Propagation Field Far Far Near >A >A Anywhere
Phase g a d O a O
Scattering Extend Extend Extend Extend O
Polarization Extend Extend Extend Extend O
Non-Paraxial O O O O O
beams
Curvature of Sur- Flat Flat Flat Flat Flat Curved Curved
face
S?Qnefutati on O(B) O(B) O[NZog(N)] | O(N®M?) | O(N2M?) O(N°M?) | O(N°M?2)
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where:

B: number of beam propagated

N: number of samples on the side of aperture plane

M: number of samples on the side of the observation plane
Z: number of samplesin third dimension

2.3 Optical Components

While determining the optical propagation technique suitable for optical microsystems, it is
important to take into account the types of optical components that the different optical propaga-
tion techniques support. Therefore, as an additional way of comparing the optical propagation
techniques, the following table presents a list of common optical micro-system components. On
the top of the table are the optical propagation techniques that we have discussed in this chapter,
and a check is placed in the box for the optical propagation techniques that support these compo-
nents. It isimportant to note that this table is composed with the understanding that the optical
propagation techniques are used without extensions which might increase the optical component
which they can support. For example, with thousands of rays propagating through a system and
post processing of the rays, Ray tracing analysis has increase to support many optical characteris-
tics, which a single ray can not support. The optical propagation technique in the last column,
titled the angular spectrum technique, is an efficient calculation of the Rayleigh-Sommerfeld

technique, which is the subject of Chapter 3.
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Table9 Support for Optical Componentswith Non-Extended Optical Propagation

Techniques
Optical .

- . Rayleigh- Fresnel- Angular
Characteristic || Ray | Gaussian | Fraunhofer | Fresnel Sommerfeld | Kirchoff Vector Spectrum
or Component
Non-Paraxial O O O O O O
Surface O O
Roughness
Spherical Sur- g Slightly 0 O
face
Tilted O O O
Plane Mirror O O O O O O O O
Spherical Mir- g Slightly O O
ror
Refractive O O O O O O O
Lens
Diffractive O O O O O O
Lens
DOEs O O O O O O
Phase Mask/ O O O O O O
Holograms

2.4 Choosing an Appropriate Technique: Rayleigh-Sommerfeld For mulation

From our evaluation, we have determined that the required accuracy for optical micro-system

modeling requires the use of full scalar formulations or complete vector solutions. As seen above,

the vector solutions are computationally demanding, therefore, we choose to use the scalar

method. As we have determined, the far and near field approximations are not valid for typical

micro-system propagation distances or aperture sizes. Therefore, we must use the full scalar Ray-

leigh-Sommerfeld formulation. We now re-evaluate the computation efficiency of this scalar
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method to ensure our system-level CAD requirements are also satisfied.
Examining the Rayleigh-Sommerfeld equation(zs), which we have chosen over the Fresnel-

Kirchoff due to consistenciesin the boundary conditions (20) we recall that an explicit integration
isrequired:
7 ejkr
U2(x,y) = ) JUL(&, n)=—d&adn
b3
Since the scalar approximations mesh the aperture and observation planes to calculate the
complex wave function (seen previously in Figure 6), we further examine the 2D meshing. Using

a brute-force integration technique, the Rayleigh-Sommerfeld formulation is on the computa-
tional order of O(NZM 2) when cal culating the new complex wavefront. If the aperture and obser-

vation plane are the meshed with the same granularity, the order is O(N4). A computationally
intensive portion of this algorithm isin the calculation of the distance between the a point on the
aperture plane and a point on the observation plane, denoted as the distance r. Determining the
exponential of r requires alarge number of operations, slowing the algorithm. Many of the vari-
ables in the Rayleigh-Sommerfeld equation can be precomputed and reused, saving computation

time, however, r is calculated between every mesh point on the aperture and observation planes,

resulting in the computational order of O(N2M 2). In our coding of thisintegration, r is calculated
by determining the coordinates of each of the mesh points in both planes and then performing the
square root of the summed squares.

The computation time of this scalar technique is therefore based on the resolution of the mesh
imposed on both the aperture and observation plane. For each mesh point in the observation
plane, U(Xx,y), a double integration is performed over every mesh point in the aperture plane,

U(&,n). Thisiscostly in computation time, however, reductions can be made. First, computation
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time can be saved by decreasing the number of mesh points used to represent the complex wave
function, however, this usually resultsin a cost in accuracy. Second, in systems with radial sym-
metry, polar coordinates can be used which reduces the integration to a single integral. Finally,
the specific numerical algorithm performing the integration factors largely in the computation
time.

We see that with a brute force integration technique, this technique is computationally
demanding. Thisintegration can limit the interactive nature of a system-level CAD tool. There-
fore, in the next chapter, we introduce a solution to the Rayleigh-Sommerfeld formulation that

uses the Fourier transform to achieve the computational efficiency of the Fraunhofer technique,

O(N2I ogN), but maintains the accuracy of the full Rayleigh-Sommerfeld Formulation.
However, first we investigate the current research and commercial CAD tools available for
optical propagation and the CAD tools that are available for system-level smulation of mixed-

domain systems.

2.5 Related CAD Toolsand Research

In this section, we survey avariety of commercial and academic optical free-space CAD tools
and system-level mixed-signal CAD tools. From this discussion, we can see the current state of
multi-domain tools and see how our research differs and supports efficient system-level simula-
tion of optical micro-systems.

We first examine some free-space propagation tools. Code V, from Optical Research Associ-

ates (ORA), isastandard in the field of optical CAD modeling and simulation (2. They special-

ize in the design and optimization of lenses. CodeV is based on Ray propagation, where systems
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are ssimulated by the propagation of many rays through the system. An energy field is calculated
at the observation plane, and from this field, information and analysis about the optical light
(insertion loss, crosstalk, etc.) can be determined. ORA has recently added the capability for dif-
fraction effects and elements within Code V, however it does not model the light emitters, such as
LED or VCSELSs.

ASAP, Advanced Systems Analysis Program, from Breault Research Organization (BRO) is

another standard in optical software (29), Again, this system uses Ray tracing asits optical propa-

gation method. ASAP uses unconstrained 3-D component models, and analyzes the ray tracing of

multiple beams. BRO also incorporates a “source builder”, supporting user models of emitters
such as lasers and LEDs. With this feature, designers can implement and use realistic sources.

Researchers at the University of California, San Diego have looked into the needs for a free-

space opto-electronic CAD systéf’ﬂ). They presented an integrated CAD system for free-space
optical interconnects based on existing CAD technologies. Guidelines for developing compatible
tools were described, and two in-house OE CAD tools, one for developing computer-generated
holograms (CGH) and the other a VHDL simulator for FS-O/E systems, have been designed.

LightPipes, from the Electronic Instrumentation laboratory of TU Delft, is designed to model

diffractive effects in coherent optical devid@d. LightPipes consists of a number of filters that
represent optical elements for free-space light propagation. The filters include apertures, intensity
filters, beam-splitters, lenses, and models of free space diffraction. These filters are placed
together to display the diffractive effects found in a free space system. The propagation is based
on the Fresnel-Kirchoff scalar propagation.

iISmile and iFrost, developed by the University of lllinois, are two opto-electronic CAD tools.

The tools, techniques, and methodologies have been publisﬁ@d iWith these tools, users can
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simulate gate level device modeling in iSmile, and simulate systems in iFrost ©3), The system-

level fiber work is now available commercially within RSoft’s LinkSim CAD .

To simulate system-level mixed-domain behavior, two common techniques are to use Spice
and HDL languages. In Spice tools, electro-static gaps and mechanics can be simulated with a
combination of RCL components. However, for optical components, there is no real translation

from the electrical models to the optical domain, although work has been done in the modeling of

opto-electronic components, such as VCSELs and MSM photodet&f‘?&?@. Even in this

modeling work, the optical model is usually based only on emitted optical power.

The University of Toronto is developing 8ESpice®9. This CAD tool is used to design
and optimize opto-electronic integrated circuits (OEICs), based on fiber interconnects. This low-
level tool models devices with parameters such as temperature, materials, biases, duty cycles, and
inter-device spacings.

Since all photonic signals are described in terms of electrical signals, the physical shape of the
optical output, diffractive effects, and propagation of the beam are not modeled or simulated.
Therefore, this is not a successful transition from electrical modeling to a mixed-domain simula-
tor. Hardware description languages have had more success, as seen next.

Analog hardware description models (AHDL) have successfully been used for system-level

modeling of mixed-signal systerﬁ?é(35)(37). As a successful example of some optical modeling

using an HDL, Kazi et al. has shown results from modeling a wavelength division multiplexing

(WDM) communication system in VHD39), Optical fiber applications are more suitable for an
HDL language, as the shape of the optical beam constrained in the fiber is not as critical as it is in
free-space. Therefore, the optical signals are represented only by the amplitude, frequency, time,

and phase parameters.



During an internship at Microcosm Technologies during the summer of 1999, the author

implemented optical propagation, based on the free-space Gaussian optical propagation tech-

niques found in Chatoyant, into Coventor CAD framework (39 Coventor’s system-level tool,
MEMSys, is based on Avant!’'s Saber and has been successfully used to model mixed-signals of
mechanical, electrical, and fluidic nature. Saber is coded in MAST, Analogy’s AHDL language.
Mechanical parameters intdEMSys are extracted fro)nMEMCAD, Coventor’s finite element
device-level tool, and used in this system-level tddEMSys was expanded to support optical
models, since two of the three desired domains (electrical and mechanical) are already modeled,
and the research was concentrated on only the inclusion of the optical domain. An additional
advantage of usindlEMSys is that the model parameters for the electrical and mechanical
domains can be automatically extracted from physical MEMS models in MEMCAD and used in
these mixed-domain simulations.

However, there are disadvantages associated with system-level, mixed-domain modeling in an
AHDL. The first problem is in the accurate modeling of the optical domain. There are no inher-
ent through and across variables for the optical domain. Currently, optics are modeled using sca-
lar parameters, defining a Ray or Gaussian beam with parameters such as position, direction,
intensity, and phase. This leads towards a “data flow” analysis, within the “continuous” domain
of the electrical and mechanical simulations. When the data gets to the scheduled component, the
component will activate and pass its result to the next scheduled component. Within this domain,
the light propagation between components is considered instantaneous. Another disadvantage
when using Gaussian optical propagation is that the diffractive effects, commonly seen in optical

MEM systems, are not supported.
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We now proceed by presenting an efficient solution to the Rayleigh-Sommerfeld optical prop-
agation formulation, which can be used in a system-level CAD tool supporting optical micro-sys-

tems.
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3.0 EFFICIENT SCALAR PROPAGATION

In this chapter, we introduce the angular spectrum optical propagation technique, a method
that reduces the Rayleigh-Sommerfeld formulation from an brute force integration order of O(N#)

to order O(N?logN) with the use of a Fast Fourier Transform. Aswill be seen, in theory, the accu-
racy of the Rayleigh-Sommerfeld formulation is not compromised using this angular spectrum

technique.

3.1 Optical Propagation using the Angular Spectrum

As an dternative to direct integration over the surface of the wavefront, the Rayleigh-Som-
merfeld formulation can also be solved using a technique that is similar to solving linear, space
invariant systems. In this case, the complex wavefront is analyzed acrossits spatial surface with a
Fourier transform. As expected, the Fourier transform identifies the frequency components of the
gpatia input, however, these frequency components can also be realized in the angular spectrum

domain, where the spatial frequencies represent plane waves traveling in different directions away

from the origin of the transform (29 Therefore, by using the Fourier transform a complex optical
wavefront is reduced into a set of simple exponential functions (i.e., plane waves). Thisisillus-
trated in Figure 9.

As with the Rayleigh-Sommerfeld formulation, the angular spectrum optical propagation
technique models light propagating from an aperture plane at z=0 to a parallel observation plane

at adistance z from the aperture plane. The input complex wave function U(x,y,0) has a 2D Fou-

37



A
/o

A
(x.y) (V,oV,) /%////

Figure9 Angular Spectrum Decomposition of a Complex Optical Wavefront

rier transform in terms of spatial frequencies, v, and vy:
F{U(x y,0)} = A(v,, Vy, 0)
A(V,, vy, 0) = J’ I U(x, Y, 0) exp[— 2Tt(v, X + vyy)] oxoy

sinB,
A

where, v, =

V., =

siney
y A

>|Q
>

where, sin(6,)=a and sin(By)=( are the directional cosines of the plane wave propagating
from the origin of the coordinate system, as seen in Figure 10. These directional cosines and the
gpatia frequencies define the angular frequencies of the plane waves propagating from the aper-
ture plane to the observation plane, as seen above. Using the angular frequencies, the above equa-

tion can be rewritten as:

Figure10 Graphical Definition of Angular Frequencies
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AEK B 0D IJ’U(x Y, O)exp[—12ngx+§yﬂ0xay

The above function is called the angular spectrum of the function U(x,y,0).

Throughout this thesis, we use the terms spatial frequencies and angular frequencies almost
interchangeably, as they are simply related by the wavelength of optical wavefront. We continue
our discussion with the notation of the spatial frequencies, v, and vy, since thisis more failure to
the user of the Fourier transform, and is simpler in notation.

Theinverse 2D Fourier transform is defined as;
u(x,y,0) = I J’ A(Vvy, vy, 0) exp[j2m(v,x + vyy)]avxavy

In the above equations, A is the complex amplitude of the plane wave decomposition defined
by the specific spatial frequencies.

As previously mentioned, the forward Fourier transform maps the complex optical wavefront
into elementary plane waves. From examining the forward Fourier transform, the plane waves
are represented by:

exp[—j 2T(V,X + vy y)]

This same term, without the negative sign, can be seen in the inverse Fourier transform equa-
tion, as all the plane waves are summed together through the integration, creating the output com-
plex wavefunction.

The relationship of free-space propagation between two parallel planes, describing the trans-

formation between A(vy,vy,0) and A(vy,vy,z) has been computed by satisfying the Helmhotz

equation with the propagated complex wave function, U(X,y,z) (29 The Fourier transform of this

propagated waveis:
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A(v,, Vv,, 2) = A(v,,V,, 0)ex D'2211 i—VZ—VZE
o Y 2) = Al Yy 0)XP22TT 55—V~

This describes the phase difference that each of the plane waves, distinguished by the spatial
frequencies, experiences due to the propagation between the parallel aperture and observation
planes. Therefore, the wave function after propagation can be solved with the following inverse

Fourier transform:

O O
U(xy,z) = J’ I A(Vy, Vy, 0) expg’ 221 /)\12 - v)z( - vi%exp[j 21(V, X + vyy)] avxavy

It isinteresting and important to note that the above equation is simply the convolution of two
functions. The first function is the input complex wave function, and the second represents the
propagation effect. In fact, with careful examination of the following equivalent form of the Ray-
leigh-Sommerfeld equation, it can be seen that it is in the mathematical form of a two-function

convolution.
_ 1 A exp(—jkn) seo 1 exp(kn)zg, , 1
U(x,y,2) = _Z_TJ.Z[U(E’H’O)az ——0&0n = 3 ‘Z[U(E’H’O) " rak*' rEPEan

We now verify the complete angular spectrum equation by approaching the Rayleigh-Som-
merfeld formulation as a convolution of two terms. Itiswell known that a convolution in the spa-
tial domain is a multiplication in the frequency domain. This is mathematically seen for the

Rayleigh-Sommerfeld method by:

Uxy.2) = UEn,0)0 £ 28X = EHE(UE 0, 0)} xF

a o exp(—jkr)d
0z U

EPTZVD
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The term F%QM E is known as the free space transfer function, H. We can see by

Pz r £
taking the Fourier transform of this propagation term, that we achieve the same result as seen

above for the phase propagation term (17):

_ 0o exp(-jkn)o_ O, 1 2 24
H = FEOTZ - E— eXpE}—jZZT[ ¥ Vy vy%

From the above equation, it is seen that using the angular spectrum method, there is no longer
aneed to explicitly calculater, as there was in the direct integration technique. r is now encapsu-
lated by the spatial frequencies, representing plane waves propagating from the aperture to the
observation plane.

It is appropriate to discuss the physical effect when:

1 2 2
)\—Z—vx—vy>0.

When this occurs, these plane waves are defined as evanescent waves, which carry very little
power and die out within a propagation distance of a couple of wavelengths of the optical wave-

front9. In terms of the angular frequencies, the evanescent waves are defined below, which

simplify to an equation involving only the direction of propagation of the plane waves.

iz_g;g_%fgwm 1-a-B>0
A

In our simulations, we ignore these evanescent waves to reduce the ssimulation time. How-
ever, these waves can be model ed with the following free-space optical propagation transfer func-

tion:
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0. 1 2
H = exp#z2md =~ Vx— VYo
0 A dn

212 EIlDzortS——J forv +Vy >DlDz

where d = 1 for v, +VYSD\D

The angular spectrum method is restricted to propagation between parallel planes that share a

common center. Removing these restrictions has been the goal of recent research. Tommoasi and
Bianco have determined how to propagate to a plane that is tilted with respect to initial plane (41),

Delen and Hooker have determined away to alow offsets in the observation plane a7, we sum-
marize these two methods next.

For arbitrary angles between the aperture plane, U(§,n,{) and the observation plane, U(x,y,2),
amapping of the spatial frequenciesin each plane’s coordinates system must occur. This mapping
Is possible due to the fact that the phase accumulation term does not change when the waves prop-
agate to an observation plane that is not normal to the aperture plane. It can be found that the rota-
tional matrix M, relating rectilinear coordinates (§,n,{) to (x,y,z), can be used to relate spatial

frequenciesin tilted systems by (4):

x%.2" = MENQD (Ve Vy V) = MV, V)

For rotation around the specific axes, M is defined as:

1 0 0 cosp O-sing cosp sinp O
My axis = |0 cosB sin®| » Myais=| 0 1 0 | » Mpais= |—sinp cosp
0 —sinB coso sing 0 cosp 0 0 1

In the new tilted coordinate system, the incoming spatial frequencies are perceived as having
gpatial frequencies corresponding to the observation’s coordinate system. For example the

incoming aperture plane wave has spatial frequengieg € 0,0) corresponding to anghg{, =
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Figure1l Mapping of Spatial Frequencies

-,0) in the observation plane with only atilt of @ around the y-axis. This is graphically seen
through the diagram in Figure 11. In al cases, even if the spatia frequencies are re-mapped, the

amplitude stays the same.

For an observation plane whose center is offset from the propagation axis of the aperture
plane, the Fourier shifting theorem can be used to solve for the complex wave function 7, The
coordinate systems of the aperture and observation plane need to be related through the following:

X =&—Xg Yy =NnN-Yo

Thisrelationship is graphically defined in Figure 12.

With this relation between the offset of the coordinate systems, the function for free-space

propagation between offset planesis:
U(x,¥,0) = [[A (v, vy, 2)BEXpLi2T(vyX + v,y)] v, dv,
where, A’ (v,, Vy, z) = A(vy, Vy, 0) exp[j2n(vxx0—vyyo)]
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Figure 12 Relation of Offset Coordinate System
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The angular spectrum technique for modeling propagation between the aperture and observa-
tion plane is summarized graphically in Figure 13. First, the forward Fourier transform is applied
to the aperture surface, as seen in Figure 13(A). In stage B, each plane wave is multiplied by the
propagation phase term. If tilts are present, the remapping of spatial frequencies occurs, as
denoted by C. If offsets between the planes occur, then the shifting theorem is applied, as shown
in step D. Finally, stage E shows the inverse Fourier transform being applied, and the complex
wavefront on the surface of the observation plane is obtained.

The advantage of using the angular spectrum to model light propagation is that the method is

based on Fourier transforms. In CAD tools, the Fourier transform can be implemented by one of
the numerous Fast Fourier Transform (FFT) techniques “2) The computational order of a2D FFT
is O(N2I 0g,oN), which is obviously more computationally efficient than O(N*), the computational
order of the brute force direct integration method of solving the Rayleigh-Sommerfeld formula-
tion. We show this speed increase later through example.

Like the direct integration technique, the FFT technigque requires the aperture and observation

planes to be discretized into NXN meshes, where N isthe number of mesh points on the side of the

plane. Equal spacing meshing isrequired, and for ease of the FFT agorithm, a power of 2 is sug-

N\
A» \/>> E} exp(—j2mz f}liz—vxz —Vyz)
() ) 7

aX AXy
f=@ D E

xy)

Figure13 Angular Spectrum Algorithm Summary



gested for the number of mesh points. In thisthesis, we assume that the aperture and observation
planes are meshed with the same N, however, thisis not a requirement.

Choosing the size and resolution of the mesh is critical for accuracy and validity of the angu-
lar spectrum method. An error discussion of using the angular spectrum method to solve the Ray-

leigh-Sommerfeld formulation is the emphasis of the next chapter.

3.2 Angular Spectrum and Direct Integration Comparison

To examine the computational speed-up of using the angular spectrum method, compared to
direct integration of the Rayleigh-Sommerfeld formulation, we simulate a Gaussian beam propa-
gating in free-space using both techniques. In these simulations, a 5 um (diameter) Gaussian
shaped beam with awavelength of 1550 hm propagates 20 pum to a 10 um square detector, as seen
in Figure 14. Note that at 20 um this system is in the “near-near” field, requiring the calculation
of the complete Rayleigh-Sommerfeld formulation for accurate modeling. For the direct integra-
tion technique, a Gaussian Quadrature technique is used to solve the integration. In these simula-
tion, the aperture and observation planes are both meshed with NxN grid points, where N is equal
to 32, 64, 128, 256, and 512. Simulation results, in terms of total computation time and percent
difference of power detected on the detector compared with a “base case”, are reported in the fol-
lowing table. In lieu of a real “ground truth”, we use a simulation with a large mesh number of

[#

20/u > 10umI 20/um

7

<—— 20pm ——»

Figure 14 Gaussian Propagation Example System
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N=512 to compare with as the “correct” result. This meshing will be verified as a acceptable
ground truth in the following chapter detailing the error bounds of using the angular spectrum
technique for a solution to the Rayleigh-Sommerfeld formulation. By examining the following

table, it can be seen how the designer can trade-off simulation speed versus accuracy.

Table 10 Gaussian Beam Propagation using Angular Spectrum and Direct I ntegration

N (mesh side) 32 64 128 256 512
Angular Spectrum (FFT)
Computation (sec) 0.04 0.11 0.27 1.89 4.97
% Power Error 0.13%| 0.03% 0.01% 0.00%  0.00%

Direct Integration (Gaussian Quadrature)

Computation (sec)

1.81

29.4(

455.§

4

7080

116480

% Power Error

4.62%

0.97%

1.199

(o]

0.14%

0.00%

Examining the results of the N=256 case, a simulation that uses the brute force direct integra-
tion technique takes approximately two hours to simulate. Using the angular spectrum technique
using a 2D FFT, the same simulation takes approximately 2 seconds. The intensity contours of
this propagated beam in this simulation are seen in Figure 15. As can be seen, the results match
very well. The graph shown in Figure 16 is a plot of the computation times seen in Table 10. The
slope of the line indicates the advantage of using the angular spectrum technique.

With careful examination of the direct integration intensity contours in Figure 15(a), it is seen
that theA value between mesh points is not equal throughout the observation plane. This is due to
the numerical integration technique that is implemented to solve the Rayleigh-Sommerfeld inte-

gration. We use a N-point Gaussian Quadrature technique to solve for the integration in the direct
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Figure 15 Intensity Contours of Gaussian Propagation Example System

integration method, since it is one of the most accurate approximations for integration of smooth
functions. In this integration method, the distances between the mesh points are not equal, since
each mesh point has a weight associated with it. This technique has fine meshing at the edges of

the computational window and more course meshing in the center. Since the optical wavefront is
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Figure16 Computation Timevs. N for the Angular Spectrum and Direct I ntegration
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typically in the center of the computation window, this uneven meshing reduces the accuracy of
the direct integration method when compared to the angular spectrum method using the same

value of N, as can be seen in Table 10.

3.3 Validation of Angular Spectrum Technique

We now validate our angular spectrum technique by comparing simulation results versus

experimental results, full vector solutions, and analytical expressions.

3.3.1 Experimental Validation

We have been able to validate our technique by comparing our scalar simulation results with
experimental results and full vector simulations. With assistance from Dr. Dennis Prather at the

University of Delaware, we were able to compare our simulations with experimental data from

optical propagation through a precision pin-hole 43, The pin hole has a diameter of 71 um. The
light striking the pin hole has a wavelength of 632.8 nm, and is propagated past the aperture 1.5
mm. The experimental results and our scalar smulations are shown in Figure 17. Included in the
figure is a FDTD vector simulation, also performed by Dr. Prather. As can be seen, the scalar

simulation results match very well with the experimental data and the vector solutions.
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Figure 17 Scalar Simulation resultsvs. Experimental Data and Vector Solutions

3.3.2 Theoretical Validation

Due to the lack of experimental data to compare against our simulated results, we have also

used several classical theoretical examplesto verify our work.

3.3.2.1 Fresnel Diffraction by a Square Aperture In thisexample, we compare our simulation

results using the angular spectrum method against theoretical results of a plane wave propagating

through a square aperture. The square aperture has a side length of 2w = 50 um. The Fresnel
number is defined as Ni= W2/\z, and relates the size of the aperture (2w) and the distance that the
light propagates past the aperture (z). Using the Fresnel integrals, C() and (), the complex wave

field distribution of the plane wave propagating past the aperture is (20).

jkz

U(xy) = e;—J-{[C(O(z)—C(Oll)] +[S(az)-S(ay)]} * {[C(B2)-C(B1)] +[S(B2)-S(B1)]}
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where,

X X
Glz_ﬁ%/ﬁf’fz% Ay = /25 Nf_EE

Blz—ﬁ%/ﬁf’f%ﬁ B, = ﬁ%/ﬁf—%zg

Knowing that the intensity of the complex wavefront is simply related to the complex field by

2, an analytical expression of the intensity of the wavefront as the light passes

[(x,y) = [U(xy)

through the sguare aperture for a specific Fresnel number is (20).

1%,) = F{IC(0,)-Clap)]? + [S(0)-S(ay)]*} * {[C(B)-C(B)I” + [S(B,)-S(B)]*)

For three different Fresnel numbers, N¢ = 1, 4, and 10, corresponding to propagation distances

Z =625 um, 156.25 um, and 62.5 pum, respectively, we simulate the intensity profile of a plane
wave propagating through the square aperture using our angular spectrum method and compare
these results with the analytical results. These results are shown in Figure 18, with the analytical
resultsin the left column and the simulated results on the right. For the angular spectrum method,
the mesh gridding is 512x512 for N¢=1 and 4, and 4096x4096 for N;=10. When examining the
results, we find that our technique matches the expected values well with the lower order Fresnel
numbers, 1 and 4. In the ssimulation with a Fresnel number of 10, the results do not match exactly,
however, the shape of the waveform, with 10 peaks and 9 valleys, isthe samein the analytical and
the simulated results.

In Figure 19, we present a point-by-point absolute difference for the Ny=4 case between the
analytical results and the simulated results. It can be seen that the difference, plotted on the log

scale, islessthat 0.1. There are a couple of reasons for the difference. Thefirst isthat the slight
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Figure 18 Simulation Resultsvs. Analytical Data for Propagation Past a Square Aperture

differences are caused by the number of samples and the computational window size used in the

simulation. This leads to errors called aliasing and truncation, which are discussed in the next

chapter. Another reason for the difference between the analytical curve and the ssmulated curveis
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Figure 19 Point-Wise Difference Between Simulated and Theoretical Results
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the calculation of the Fresnel integrals used in the analytical results, which were calculated in
MathCAD. Therefore, MathCAD’s integration technique, resulting in the analytical results, com-
pared with the integration technique in the FFT, resulting in the angular spectrum results, are

responsible for the differences in the data.

3.3.2.2 Diffraction by a Double Slit In this example, we compare our simulated results against
theoretical results of a plane wave propagating through a double slit into the far field. The theo-

retical results are again provided through analytical equations for the intensity of the wavefront.

A full explanation of the double thin slit experiments can be found in many texts, <62h asd
IS not included here.

The double slits are defined by the width of the diifghe length], and the center-to-center
distance between the slits, Light propagates a distancezgbast the double slits. The intensity
envelope of the light propagating though a double slit into the far-field is the same intensity pro-

file of a plane wave propagating through a single slit, which has the same dimensions of one of

the double slits. The theoretical far-field intensity envelope is given by the fuklion

1(6) _ rsinBf = PO - atar
I Op O , Wheref3 = E(ngme an® = atani

The far-field intensity profile for the double-slit adds an interference term, as seen in:

1(8) _ CBINBLF (Losn)? - G _ atad
I = 0B D(com) , Wherea = B(ZEsme an® = atani

In our simulations, a plane wave=1000 nm) propagates through two thin slits, each with a
length of 100um and a width of 1um. The slits are separated center-to-center byn30 We

present our simulation results as light passes through the two slits, and propagates 5 mm to an

observation plane in the far-field. We simulate into the far field so that we can compare our simu-
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Figure20 Double Slit Diffraction Simulation Output (z =5 mm)

lated results with the analytical results described above. The simulation results, in both a 1D
cross-section and in 2D, are shown in Figure 20.

We verify our simulation results by comparing our intensity profile with the intensity enve-
lope of the single dlit and the expected intensity distribution of the double dlit. Our results match
well, as can be seen in Figure 21. The differences can be attributed to the number of sampling
points and size of the computation window. These can lead to aliasing and truncation in the

resulting function, especially at large propagation distances when a large observation plane is
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Figure21 Intensity Envelope of Analytical and Smulate Results
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required. Thiswill be explained more in the next chapter.
We aso verify the position of the +1 diffractive mode, that is the diffraction effects that result
in the intensity maximums +1 mode from the center. Far-field diffraction theory predicts a posi-

tion of:

Az

X+1st mode — E J

which, for our system, is 166 um. Our simulations show the first diffraction mode at a posi-
tion of approximately 161 um. Again, thisdight differenceis an artifact of the sampling rate and
window size chosen for the simulation.

We now move towards an understanding of the errors that can arise in using the angular spec-
trum method. We present common errorsin using adiscrete Fourier transform and discuss how to

minimize errors, when using a Fourier transform to perform the angular spectrum technique.



4.0 ACCURACY AND ERROR MEASUREMENTS OF THE ANGULAR SPECTRUM
METHOD

Using continuous Fourier transform theory, the angular spectrum method is an exact solution
of the Rayleigh-Sommerfeld scalar formulation. However, when solving the algorithm on a digi-
tal computer, the continuous function must be discretized, which can lead to errorsin both the for-
ward and inverse Fourier transform. In this chapter, we discuss the common errorsthat arise from
implementing a discrete Fourier transform (DFT) to approximate the Fourier transform of a con-
tinuous function. We examine the appropriate sampling of complex optical wavefronts to mini-
mize the error bounds. For those functions in which a stronger error bound is required, we
introduce a calculation of the order of error bounds when using a discrete Fourier transform for

the solution of the Rayleigh-Sommerfeld formulation with the angular spectrum technique.

4.1 Discrete Fourier Transform

In the study of error estimation of the DFT, it isimportant to have a good understanding of the
Fourier transform in both continuous and discrete theory. In this section, we first present the con-
tinuous and discrete transforms. We then introduce the spatial and frequency domains, and show

how these two domains are related.
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4.1.1 Discretevs. Continuous Fourier Transform

In 1D, the continuous Fourier transformis:

f(x) = I?(w)eiz"‘*’xdw - Hw) = If(x)e_jzmxdx, where, —0 < X, < .

As the function is discretized for digital computation, the integrations become summations,

and the Discrete Fourier transformis;

N
= 2mk 2 2mk
f(x)=Zer N @Fk:% Z fe N ,Where,—-';-l+1<n,k<_2'\-l_
—o0 —N+l
2

Asthese equations are shown in 1D, they also hold truein 2D. The forward and inverse trans-

formsin 2D are:

M N
2 2
1 -mj -nk
F, = — fo Wy W
jk NM Z Z mn-*M N
m=-Y+in=-F+1
M N
2 2
k
f = =FANIAN
mn Z Z jk*M YN
m:—%+ln:—g+1

We use these definitions to determine the error from using the DFT instead of the continuous
Fourier transform for the solution of the Rayleigh-Sommerfeld formulation using the angular
spectrum technique. Before the discussion of this error, we define the discrete nature of the spa-

tial and frequency domains and the relationship between these two domains.
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4.1.2 Relationship Between Spatial and Frequency Domains

In our use of the Fourier transform to decompose an 2D optical signal into spatial frequencies,
the forward Fourier transforms converts the computational domain between the spatial and the
frequency domains, and the inverse Fourier transform converts between the frequency and the
gpatial domain. To prepare our discussion of the error analysis in using the DFT in solve the
angular spectrum method, a clear understanding of the discrete nature of the 2D spatial and fre-
gquency domains, and how they relate, is required. We start with an introduction to the spatial
domain.

The spatial domain is defined with side lengths A and B, and the number of discretization (or
mesh points) in each direction, N and M respectively, resulting in sample spacings of Ax = A/N
and Ay = B/M. In this discussion, it is assumed the side length A is in the “x” direction and the
side length B is in the “y” direction. Therefore, the boundaries of the spatial domain are: {-A/2 <
X <A/2, -B/2 <y <B/2}. The 2D spatial domain is shown in Figure 22(a).

In the frequency domain, the corresponding side lengths are defifeadmy/A\, N and M are
the same number of discretization asin the spatial domain, and the spacing between discretization
is equal to Aw andAc. While performing the forward and inverse Fourier transforms, N and M
do not have to be the same number in both domains, however, in this discussion of the relation-
ship between both domains, we keep them then same (N=M). In the frequency domain, the
boundaries are: /2 <w<Q/2, -ANl2 <o <N\/2}. The frequency domain is shown next to the

spatial domain in Figure 22(b).

57



N Samples N Samples

- | - |
y
(e)
A2 A Al2g), a2 A o,
A A
M Samples
M Samples .
> X - ©
Y _B/2 YAl
Ax Aw
(a (b)

Figure22 (a) 2D Spatial Domain and (b) 2D Frequency Domain

The gpatial and frequency domains are related through the forward and the inverse Fourier

transforms. Assuming that the grid length N is the samein both the spatial and frequency domain,

the following reciprocity relations hold true (4);
_ 1 _ _1
Q—AX—NAoo Awa—N
and
_ 1 _ _1
/\—Ay—NAo AyAcr—N

This states that the lengths and the grid spacings of the spatial and frequency domains vary
inversely with each other. Figure 23 illustrates the relationship between the spacing in the spatial
domain and the frequency domain for specific spatial lengths and number of discretization grid
points. For simplicity, Figure 23 is presented in 1D, however, the same properties hold true for
2D Fourier transforms. These relationships, possibly counterintuitive to the reader, are important

for the understanding of the error estimates made later in this chapter.
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In the first case Figure 23(a), we see that sampling in the spatial domain, with a length of A,
N=8, and Ax, results in the sampling in the frequency domain with Aw and a length of NAw=Q.
With N held constant and Ax doubled, asin case (b), Awishalved. In other words, as the range of
the spatial domain is doubled, the range of the frequency domain is halved. Therefore, by using a
larger spatial domain, the frequency domain is decreased, as these domain sizes are inversely pro-
portional.

Using the same reciprocity relations as seen before, we next examine the case when N is dou-
bled, and A remains constant, resulting in Ax being halved. Thisresultsin the frequency domain,
Q, being doubled, asis seenin case (c) in Figure 23. In summary, to get double the refinement in
the frequency domain, that is halving Aw, while retaining the origina size of the frequency
domain (NAw), N and A must be doubled while keeping Ax constant.

This brief introduction gives an important understanding to the relationship between the two

different domains. This intuition will help us when we start our discussion of error reduction.
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However, we first examine the common errors that occur when performing a DFT.

4.2 Errorsusing a DFT

During the implementation of a DFT, errors are caused by the sampling of the function (in
either or both of the spatial or frequency domains) and the size of the computation window in
which the function is sampled. We summarize the common DFT errors in this section: aliasing,
truncation, and averaging at end-points. Further details and estimations of these errors, with
respect to the angular spectrum method are given later in this chapter. We begin this section with
adiscussion of the sampling theorem for the Fourier transform. Although, this sampling theorem

isfor ideal bandlimited signals, it is useful in determining error termsin using the DFT.

4.2.1 Sampling Theorem

For bandlimited signals, the sampling rate to guarantee that a function in the spatial domain

f(x,y) can be reconstructed exactly from its frequency samples F,, has been defined by Claude

Shannon ). A bandlimited signal is defined as one whose Fourier transform is zero outside of a

critical frequency, f., as seen graphically in Figure 24. This frequency is known as the Nyquist

| g
fe 0 fe
Figure24 Bandlimited Signal
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frequency, and is the highest frequency that can be resolved using the specified number of sample
points. The sampling theory states that if two spatial samples are taken per cycle of the highest
frequency component present in the frequency domain, the wave can be completely recon-

structed. In mathematical terms, the theorem statesin 1D:

1
< —
Ax_2fc

where Ax is the sampling in the spatial domain.

Most signals, including most of the complex optical signals that we simulate propagating
through free-space, are not bandlimited signals. However, there are still opportunities to use the
sampling theorem for our purpose of propagating optical wavefronts. We will examine these
cases later in the chapter during our discussion about the characteristics of an optical wavefront.

In practice, or “real world” sampling, there is a standard rule to sample the critical frequency
by at least “a few” samples. This accounts for the fact that realistic signals are rarely ideally

bandlimited, as described above. Weaver suggests that the highest frequency should be sampled
about 10 times/cycle for accurate samdﬁ??g Wilhelm states this sampling requirement at

approximately 5 samples/cyc(f@).
In the remainder of this chapter, we will specifically examine the errors that occur while using
an input such as an optical wave. However, first, we continue the introduction of the common

errors from using the DFT.
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4.2.2 Aliasingin the Frequency Domain

The most common error in using the DFT isaiasing. Aliasing occurs when frequencies exist
that are greater than, or outside, the largest sampled frequency, referred to previously as the criti-

cal sampling frequency, f.. These frequencies outside the sampling region are falsely trandated

(or aliased) into the sampling region by using adiscrete transform. Once asignal isaliased, it can
not be recovered. In this case, these high frequencies are “folded over” into the sampled fre-
quency rang&®).

We graphically show the effects of aliasing in Figure 25. On the left of the figure, case (a), we
show the 1D frequency domain of a signal, whose critical frequency (determined by the sampling
in the spatial domain), ist¥/2. Since the frequency domain is completely defined in the range {-
Q/2 <w < Q/2}, aliasing can be avoided, and the samples can be completely transformed from the
spatial to the frequency domain (or vise-versa) with no error by satisfying the sampling theorem.
However, on the right side of Figure 25(b), aliasing occurs. Again we show a 1D frequency
domain of a signal, however, in this case, the signal contains frequencies that are outside of the

critical or largest sampled frequency. In this case these frequencies outside the sampled window

Sampling Window

PR

-Q/i2 0 Q/2 -Q/2\ 0 Q/2
Aliasing
(@ (b)

Figure25 Aliased Frequency Effects
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are aliased into the frequency range. Graphically, this is seen as the aliased frequencies being
folded back from the edges of the sampled window into the sampled frequency range, as seen in
Figure 25(b). The net effect of this aliasing, is the summation of the frequencies in the sampled
range and the aliased frequencies. Therefore, the aliased frequency signa is represented by the
bold line.

A common technique to avoid aliasing is to ensure that the frequency domains’ sampling area
or computation window is large enough such that all the frequencies from the Fourier transform
are within the sampled range. As can be recalled from Figure 22(c), to double the size of the fre-
guency region, it is required to half the spatial samplng,by doubling N, while keeping the
spatial windowA constant We will find throughout this chapter that the technique of doubling N

is a common fix to most errors in the discrete Fourier transforms.

4.2.3 Truncation in the Spatial Domain

Truncation is a similar and related error to aliasing that is commonly seen when the signal is
transformed back from the frequency domain to the spatial domain. However, in this case, the
frequency domain now defines the size of the window in the spatial domain through the inverse
Fourier transform. This transforms the spatial frequencies into a spatial wavefront, and, as seen in
aliased frequency signals, the corresponding spatial transform can be outside of the defined spa-
tial window. This error is called truncation. In this case, the spatial waveforms are folded into the
spatial window, causing errors as the spatial signal is summed with the truncated waveforms.

An example of truncation is seen in Figure 26. Showing the similarity between aliasing and

truncation, this graphic is a copy of Figure 25, however, now both waveforms are shown in the
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gpatial domain. The explanation for both cases, (a) and (b), is analogous to the aiasing discus-

sion. Inthefirst case, Figure 26(a), the spatial window is large enough to support the entire wave-

front, therefore no truncation occurs. However, in the second case, Figure 26(b), the spatial
wavefront is being “clipped” by the spatial window, and truncation occurs, as the wavefront out-
side of the window is folded back into the spatial domain. The truncated signal is shown as the
bold line. From a graphical example like this, the term “windowing”, an analogous term for trun-
cation, gets it name.

Since the spatial window size is defined at the beginning of the angular spectrum forward-
inverse Fourier transfer pair (also referred to as the DFT-IDFT pair), truncation can be avoided by
ensuring that the initial spatial window is large enough to support the entire input optical wave-
front. This initial spatial domain must also be large enough to support the output spatial domain
that is converted from the inverse transform after the optical wavefront has propagated from the
aperture plane to the observation plane. If the initial spatial window is not large enough to sup-
port the entire propagated beam, truncation will occur.

However, when increasing the spatial window to avoid truncation, it is important to realize the
effect this has on the frequency domain. Recalling the reciprocity relations between the spatial
and frequency domains, an increase in the spatial window causes the frequency domain to

decrease. Therefore, it is common for aliasing errors to arise in the forward Fourier transform

-Al2 0 Al2 -Al2 0 Al2

@ (b)
Figure26 Spatial Truncation Effects



when trying to avoid truncation in the inverse Fourier transform. To avoid this case, when
increasing the spatial window size A, the value of N should also increase to keep Ax constant at 1/
2f...
To minimize both truncation and aiasing errors, it is common to pad the original wavefunc-
tion with zeros. From our earlier discussion of increasing A with the same number of samples, N,
results in the more refined, but smaller, frequency spectrum. Aslong as the frequency sampling
domain islarge enough to contain all the frequencies, and the sampling theorem applies, aliasing
will not occur. However, if the resulting waveform in the spatial domain after the inverse trans-
form is not spatially limited and there are “ripples” in the waveform, it should be noted that this is
a common sign that aliasing and/or truncation has occurred. In this case, the sampling parameters

(Ax, A, and N) will have to be rethought and the system re-simulated.

4.2.4 Averaging at Endpoints

Errors also can be caused in the DFT at the endpoints of the function to be transformed. When

using the FFT algorithm, one data value contains the value for both spatial frequencies at the end-

points_+2—i)—( (42)_|f the function has discontinuities at the endpoints, the endpoints must be aver-

aged and these values used for the endpoints, or the DFT is subject to errors. Common optical
signals are spatially limited, where their endpoints are essentially zero, as will be described in the

next section. In this case, no averaging of the endpoints needs to occur. Therefore, the errors
caused by discontinuous end points are not common when using the DFT to propagate a complex

optical function through free-space. Since this is the case, we do not go further into the details of

65



the averaging of end pointsin thisanalysis.

4.3 Optical Wavefront and the DFT

To better understand the errors that we expect to have in performing the DFT specifically for
the angular spectrum optical propagation method, we analyze the complex optical wavefront
which is being propagated from the aperture to the observation plane. The complex optical wave-
front is not typically bandlimited, and the period of the function across a 2D surface is not easy to
define, if one is even present. Therefore using the Shannon Sampling Theorem is not always
applicable for the case of optical propagation. However, further investigations of the characteris-
tics of the optical wavefront lead to a sampling rate which provides good accuracy. We now
examine these concepts.

Typically, the optical waveforms propagating in micro-optical systems are compactly sup-
ported, which is also known as spatially limited functions. Thisis an important assumption that
we will use throughout this discussion of errorsin the angular spectrum method. These functions

have the property that
f(x) 0O for |x| >§‘.

If the optical wavefront is not spatially limited in the computation window, a common tech-
nique isto increase the window size until the wavefront is spatially limited, with the caveat that N

might also need to be increased to minimize aliasing.
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Since compactly supported optical wavefronts are important in our error evaluation, we define

some characteristics of these functions. Although the function is not periodic, when sampled on

the interval of support (|x| > '%), and since it is assumed zero outside of that interval, itisasif a

periodic signal has been sampled, and periodic Fourier characteristics apply (45),

On the other hand, if afunction is spatially limited, the function is not bandlimited in the fre-
guency domain. Sincethisisthe casefor the optical function, aliasing is expected to occur. How-
ever, if the modulus, or magnitude, of the spatial frequencies are essentially bandlimited in the
frequency domain, the Shannon’s sampling theorem can still apply, with only small errors. To the
advantage of the angular spectrum technique, this is true for many optical signals. We examine
this concept a little further by investigating two optical functions commonly seen in optical
micro-systems. The first is the Gaussian beam, and the second is an optical wavefront that is

clipped by an aperture.

4.3.1 Example: Gaussian Beam

We first examine a Gaussian beam in the spatial and frequency domains as the Gaussian beam

is a common wavefront in optical micro-systems. The Gaussian beam is defined spatially by:

X2 + 2
DY) = expEEA0
w

wherew is the waist radius measured where the intensity of the beam regglies IRecall

that the intensity 1(X,y) = [U(X,\A|
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Figure27 Gaussian Beam and its Fourier Transform

Mathematically, the 1D Fourier transform of the Gaussian beamis:
1
2,2 2 2
F{U(X)} = (Tw") exp(=TT (vi)w")

Therefore, the Fourier transform of a Gaussian beam in the spatial domain is, in fact, a Gauss-

lan beam in the frequency domain 9. In the specia case of the Gaussian beam, we consider
both the spatial domain and the frequency domain to be limited, by assuming that the tails of the
Gaussian beam die out and approach zero establishing compact limited signals in both domains.
With this assumption in the frequency domain, the function appears bandlimited and the sampling
theorem can be used to reduce aliasing. Since the function is only “essentially” bandlimited, that
is, the spatial frequencies are approximately zero outside the largest sampling frequent, slight
aliasing errors are expected to occur.

A 1D cross-section of a Gaussian beams um, A= 1 um) and its Fourier transform are
shown in Figure 27. In the spatial domain, a spatial bounding box of %@w5®ith N=128 is
used, as seen in Figure 27(a). This transforms to a frequency bounding box of 2,560,000, seen in

Figure 27(b). Notice how the Gaussian function in both domains are compactly limited. Since
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the frequency domain is limited by a frequency of approximately +500000, a required minimum

sampling could be established by that sampling theorem of:

AX < = ——— = 1.0um

1 1
2f. ~ 2(500,000)

Therefore, for accurate sampling of this Gaussian function, a sample size of less than 1.0 um
isrequired. If theinitial guess of the sampling size in the spatial domain did not support an essen-
tially bandlimited function, the Fourier transform would be recal culated with alarger window size
in the spatial domain. A full error analysis, including aliasing, truncation, and the calculation of
the error is presented later in this chapter.

We now examine another spatially limited function that is common in optical micro-systems,

awavefront that passes through an aperture.

4.3.2 Example: Propagation Through an Aperture

In the case when an optical wavefront passes through an aperture, the function is spatially lim-
ited. In this case, the aperture clips the size of the optical wavefront to its physical dimensions.

The optical wavefront is now piece-wise continuous and is defined at the aperture by:

_ (x,y) forx,yinside of aperture

f(x, i -
( y)cllppEd E 0 for x,y outside of aperture

This clipped function is similar to that of arectangular function, which is zero outside of some
value |x|, and is one inside of |x|. To estimate the Fourier transform of the clipped function, we
examine the Fourier transform of the rectangular function. The Fourier transform of the rectangu-

lar function is the decaying sinc(x,y). The sinc(x) in 1D is defined by:
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Figure28 Fourier Transform of Wavefront Propagating Through a Square Aperture

sin(T1x)
X

sinc(x) =

We simulate aincident plane wave (A=1 um) propagating through a 10x10 um square aperture
to show the frequency response of performing the Fourier transform. The spatial computation
window is 50x50 um. After the forward Fourier transform is performed, the magnitude of the
complex spatial frequencies in the frequency domain are shown in Figure 28. It can be seen, that
even though the [sinc(x,y)| function is dying out in the frequency domain, this function is not
bandlimited. However, the function is close to zero at the endpoints, therefore, we can assume it
is bandlimited, and apply the sampling theorem to give us an idea of the minimum sampling.
With this assumption, we expect that the signal will be aliased and slight errors to occur. A com-
mon technique to reduce the aliasing errors is to increase the size of the frequency domain, until
the tails of the frequency signal are even closer to zero, making our bandlimited assumption stron-
ger.

Now that we have defined typical optical wavefronts in microsystems to be spatially limited

and essentially bandlimited, allowing the use of the sampling theorem to reduce aliasing, we dis-
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cuss the sampling required for ageneral optical wavefront.

4.4 General Sampling for the Angular Spectrum Method

In this section, we examine sampling requirements that are specific to the angular spectrum
technique to reduce aliasing and truncation errors. As we have throughout this thesis, we discuss
the sampling in terms of the spatial frequencies, recalling that the angular frequencies are simply
calculated by dividing the spatial frequencies by the wavelength of the optical wavefront. We
analyze each of the three portions of the angular spectrum method, the forward DFT, the propaga-
tion term, and the inverse DFT, to determine the sampling and window size required for each sec-
tion to minimize the errors in using the Discrete Fourier transform in the angular spectrum
method. For each method, we will determine the minimum sampling, AX. From these minimum
sampling values, the minimum value of Ax will be used to describe the general sampling rule for

the complete angular spectrum method.

4.4.1 Sampling of 2D Forward Fourier Transform

Aswe have already discussed, when taking the forward Fourier transform, the complex wave-
front is decomposed into spatial frequencieswhich can be represented as plane waves, each with a
weight, or magnitude, and a direction. In this discussion we analyze the required sampling of the

decomposition of the complex wavefront at the aperture plane using the Fourier transform.
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Recall the Fourier transform on an optical wavefront:
u(x,y,0) = I J’ A(Vy, vy, 0) exp[—j 2m(v,x + vyy)] avxavy

From this equation, the plane waves decomposed from the complex 2D optical wavefront

U(x,y) are characterized by the function:

exp[—j (vx + V)],

where v, and v, are the spatial frequencies corresponding to the specific plane wave.

Each propagating plane wave, or spatial frequency pair (vy, Vy), has a zero phase, or a phase
with an integer multiple of 21t across the aperture x,y plane. Lines of equal phase (i.e., 2m) can be

drawn on the x,y aperture plane, as illustrated in Figure 29. The constant phase lines can be

described as:
Vi X+wy = P, where P is a constant common phase. This equation, in terms of the slope of

thelinesisrewritten as;

Vg, P
y = __XX + —
Vy Vy
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Therefore, the slope of these lines is -v,/vy, or as seen in Figure 29, Ay/A,, introducing the
relation v=1/A. They intercepts of the constant phase lines equal A/vy=AA/2m, at constant phase

points along the x,y wave front at the aperture plane.
The angle between the normal of the constant phase lines, graphically illustrated as k in Figure

29, and the x axis is defined by the perceived wavelengths and the spatial frequencies:

0, = aIand\XD = gy%

The normal k has a magnitude of 21vA.

The spatial period or the spatial wavelength, Ag, is defined by:

A. = 1 _ 1
0= =
i+i /V)2(+V)2(
2 2
A A

Thisleads to the spatial frequency of k:

_ |22
kK = Vi +V

To ensure that no aliasing occurs during the forward FFT, we use the Shannon sampling theo-

rem, as the optical wavefronts of interest to us are essentially bandlimited signals, as we discussed
previoudly. The spacing in the spatial domain depends on the maximum spatial frequency as seen
in:

1
,2V,

max y ‘ max

1
AX,Ay < >y = >v

g
In our angular spectrum method, we are only interested in propagating an optical wavefront in

a half sphere toward the observation plane, that is, there is no backward wave propagation. In

other words, the maximum spatial frequencies can be determined from the plane waves, which are
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decomposed from the Fourier transform. Since we are only concerned with the waves propagat-
ing in the half circle, the plane waves propagating in the x and y axes (+90 degrees, or +A/2 radi-
ans) define the maximum spatial frequencies. Since the wavelength relates the spatial frequencies

to the angular frequencies by:

inCAO inCAD
_sne, MO g _sne, M0 4
"I T TR Tr WTTR T TR T

Therefore, with respect to the sampling theorem, the minimum spacing in the spatial domain

1
2V max

Ax = Ay <

N>

In summary, with the assumptions that the optical wavefront is essentially bandlimited and we
are only propagating in a half-circle, the following can be followed as a way to ensure that alias-
ing does not occur: Find two adjacent phase lines, as we presented above. The maximum dis-
tance in either the Ax and Ay directions between the phase lines will determine the sampling. In
the case that we just presented, this distance was equal to A. According to the sampling theorem,
the complex waveform will have to be sampled at one-half this distance in each direction.

We now move to the propagation of the plane waves, and see what type of sampling con-

straints there are on this part of the angular spectrum method.

4.4.2 Free-Space Transfer Function: Plane Wave Propagation

To find the sampling requirements of the free-space transfer function, we must carefully

examine the plane waves that propagate from the aperture plane to the observation plane. Aswe
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previously discussed in Chapter 3, the direction of the plane waves as they propagate from the ori-
gin of the coordinate system is dependant on the spatial frequencies and how these relate to the
angular frequencies. We now expand on that discussion.

The plane waves that propagate from aperture to observation plane are characterized by the
function:

exp[—i(v,x+ vy + v,z)] , where v, and vy are the spatial frequenciesina2D plane, and v, is

defined as the spatial frequency in the direction of the propagation. The phasor representation of

the plane waves can be described as:

_ iZax+py) i3y _ _
P(x,y,2z) = exp(J(REF)) = e e , Where k is the wave function and has a mag-

nitude of 217A.
a, B, y are the directional cosines as seen previously in Chapter 3, and the spatial frequencies

are defined from these directional cosines as:

o = AV, B =y, y = J1-a’—p°

In Figure 30, a propagating plane wave is shown in the x-z direction. Similar to the wavesin
the aperture plane, each of the plane wave lines are shown at lines of constant phase. Also seenin
Figure 30, isthe direction vector, k, of the plane wave which has a magnitude of 217A, and in the
case of the 3D optical propagation of a plane wave,

k= 21/ (AL +AS+ 1)

Recall, the free-space propagation transfer function is ssmply the phase term:
H(v,,Vv,) = ex E)—'ZZH S —v2—v2E
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Figure30 Constant Phase Propagation Lines between Aperture and Observation Planes

Thisfunctionisacircularly symmetric complex function of the spatial frequencies, with mag-
nitude and phase shown in Figure 31 (13), By examining the free-space transfer function, for the
frequencies lying inside of the circle:

2.2
Vi FVy <

1
A

N

the magnitude of ‘H(VX, vy)| =1 and the phase of H is defined by function of the spatial fre-

quencies. For spatial frequencies outside of the circle, the propagating plane wave are evanes-

H| -arg{ H}
S~ N e
/
\/
Vy Vy
V \Y/

X X

Figure31 Magnitude and Phase of Free-Space Propagation Transfer Function
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cent, and the transfer function represents an attenuation factor. As stated earlier, in this case, we
ignore these waves, and set their spatial valuesto zero, which resultsin abandlimited signal in the
frequency domain. Therefore, during free-space propagation, 1/A isthe cutoff (or maximum) spa-
tial frequency of the system making the spatial bandwidth of the propagating wavefront 1/A
cycles.

Using the sampling theorem, since the complex optical wave is now bandlimited, we can find

that the sampling required to remove aliasing is.

We now evaluate the inverse Fourier transform with regards to the angular spectrum method

and the minimization of errors.

4.4.3 2D Inverse Fourier Transform Sampling

During the inverse Fourier transform, a summation of all the propagating plane waves occurs,
asthe signa in the frequency domain is transformed back into the spatial domain. The sampling
requirements of the inverse transform are similar to the sampling requirements of the forward
Fourier transform. However, the difference in this case is that the signal is now bandlimited, since
the evanescent waves are removed in our algorithm before the inverse Fourier transform is per-
formed, as explained in the last section. Sincethe signal is bandlimited, the sampling theorem can
be used, if the critical frequency can be determined. However, since the angular spectrum use the
DFT-IDFT pair, the initial specifications of the forward DFT determine the size of the frequency

domain, and this size defines the output of the observation spatial domain. Therefore, aslong as
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the original complex value is sampled correctly, then the IDFT can reconstruct the bandlimited
signal exactly. However, truncation errors are common when propagating optical wavefronts and
can still occur even with proper sampling, therefore the transformed signal from the inverse Fou-

rier transform will have to be examined for truncation.

4.4.4 Summary of Sampling the Angular Spectrum Technique

We summarize the required sampling to avoid aliasing in the angular spectrum method in the

following table.

Table11 Sampling for the Angular Spectrum Method to Avoid Aliasing

Required Ax
Sampling

Forward DFT A

2
Propagation A

2
Inverse DFT S A

=2

Since the angular spectrum isa DFT-IDFT pair, theinitial sampling size and computation win-
dow defines both the spatial and frequency domain for the entire simulation even before the first
Fourier transform is performed. Therefore the smallest required sampling size of the entire angu-
lar spectrum technique should be chosen to avoid aliasing in the system. Therefore, the sampling

of the system is defined to be the same for both the forward DFT and the propagation distance and
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we will use this minimum sampling size in our simulations:

Ax = Ay =

N>

There are two important notes regarding sampling in the angular spectrum technique. The
first isthat these are the minimum values to minimize aliasing with the assumptions that we made
that the optical signal can be considered limited in both the spatia and frequency domain. We
have found in practice, that these values typically do not have to be this small for accurate results
with negligible error. The second, and most important note, is the assumption that the optical
wavefront can be considered a compact bandlimited function. This allowed us to use the sam-
pling theorem to make our sampling conditions. Recall, even using the specified sampling, with
these assumptions, aliasing will occur, leading to errorsin the result. Therefore, in summary, we
suggest the designer use the above minimum sampling for ageneral rule of thumb for the discret-
ization of the optical function. However, since the calculation of the error is also of interest, we

next describe a method for determining these errors when using the angular spectrum technique.

45 Error Estimates of the DFT

In the previous section, we presented minimum sampling requirements to reduce aliasing in
the angular spectrum technique. These were based on the assumptions that the complex optical
signal is both bandlimited and spatially limited. With these assumptions, slight errors do occur.
In this section, we begin a point-wise error bound analysis of this technique to estimate these
errors in the angular spectrum technique. These errors are based on aliasing, truncation, and the

fact that we are using a discrete integration technique to approximate a continuous integration.
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We break this section into the error analysis of the forward DFT and the inverse DFT.

45.1 Forward DFT

We have seen in our previous discussions in this chapter that the complex optical wavefunc-
tions are essentially spatialy limited and bandlimited functions, and aliasing will occur. Before
we start our mathematical approach to determining the point-wise error bounds found in the angu-
lar spectrum method, it isimportant to examine and understand the Replication of a complex sig-

nal and also the Poisson Summation Formula (42,

These two formula provide a method for
determining the errors of using the DFT for the angular spectrum technique for optical propaga-
tion.

The replication is the superposition, or summation, of copies of the complex optical function,
f, each displaced by multiples of aperiod, A. The replication of period A for the complex optical

function, f, is shown in the spatial domain, resulting in a new complex function:

00

Oalf00} = 5 f(x+jA)

j = —00
The replication can also be seen with a discrete sequence, such as the Fourier series coeffi-
cients, ¢

0

Onfcyt = Z c,+kN

K = -0

The replication function can also be used in the frequency domain, as a replicated Fourier

transform, g, is calculated by a summation of the Fourier transform of f, denoted by f, each
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shifted by a period of Q=1/Ax. This can be seen in the equation:

§(0) = Ogff(w)} =y Ro-20

j =

Since g is now a periodic function, it has a discrete Fourier Series of:

(::](00) — z CneiZTmAxoo

n=—w

Determining the Fourier coefficients for c,, is seen through the standard Fourier transform:

1 1
o j2mnA m% . ] . j2mnA
_ A TINAXW _ 2 TNAXW
Cy = O | g(w)ée dw = Ax [ 5 f%n—A—X%‘ dw
-1 b= .
2Ax 2AX

With the substitution x,=nAx, and the limits of the summation overriding the limits of the

integration, the replication equation becomes:

c, = AxJ’f(w)ejzm(”wdw = Axf(x_,) -

—00

Now, substituting back into previous equations, the Fourier transform of the Replication g is
verified:

(o]

6(@) = Ax § 1) = X §f(x,) = 3 A0

n=—o n=—o j=—00

e—j 21X, 0

We now introduce the Poisson Summation Formulation (45), which states: If function f is

defined for —o < x < o0, its Fourier transform is defined for —co < w < o0, and its sample points are

given by X, = nAX for —eo <n<oo, then
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Bx 3 e = 5 -4

j:_oo j:—oo

With w set to 0, the aboveis equal to:

My fx) =y THLE
j=—00 j=—0

This states that the sum of the samples of f isa constant times the sum of the Fourier transform
of fat multiples of the cut-off frequency.

Putting the Replication, DFT, and the Poisson Summation Formulas together, the following is

obtained (4®:

AD{ O\{f}}, = Opn{fid,

where D isthe DFT operator.

Thisis an important fact, since we have shown that the N point DFT of the sampled replica-
tion of f isthe sampled replication of the Fourier transform of f.

In optical signalswith compact support, replication of the period N does not change the func-

tion f,. Therefore, the Poisson Summation Formulalooks like:

AF, = Opn{fid = g(wy)
To evaluate the error of using the DFT to represent the continuous Fourier transform, we start

by examining the difference between the Fourier transform using a DFT (AF) and the continuous

Fourier transform, as seenin:

AR —F(w)| = |AF—a(0) + 3l —F(ey)
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which can be rewritten as:
AR =T(w)] = [AF—g(w)]| + |a(e) —F(ey)
Thisreduction isinteresting as the first absolute value term is equal to the Poisson Summation

Formula, and isequal to zero. The second termisthe error that is dueto sampling. Thisissimply

the difference between the Fourier transform of the function f and the Fourier transform of the
function f's replication, denoted ag . Therefore the error in the forward Fourier transform is:
AR =T = [a(e) —F(wy)
If f(X) is a spatially limited function and the periodic extensiohhafs (p-1) continuous deriv-

atives for p >1 and thaf® is bounded and piece-wise monotone on the sampling range[-A/2,A/2],

the error in the DFT is:

2 C
|AFk_f(wk)|SNp+1
N N

= ——+1..=
for k > 1 5

where,C is a constant that is independenkaind N

We state a proof neXt® for the error in the forward Fourier transform. With a spatially lim-

ited signal, the Poisson Summation Formulation states:

N2

AX z f(xn)e_jzmx”wk: Z ank—Aj—XE,

N
= — =+
n 5 1

wherew is evaluated aby=k/A.
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Reorganizing,

AR Tl = 5 %?BDK_AJ_XH +

i=1

o+ Aj_xag = > (CM RG]
j=1

With the previous substitutions, we can see that:

[ee]

AR, —T(w)| < > (lek_jnl * [+ jnl)
=1

Now using the Rate of Decay of Fourier Coefficients (49) which statesthat if f and its first p-1

derivatives are periodic and continuous on [-A/2, A/2], then the Fourier coefficients of f satisfy

for all k, and C is constant and independent of k. Remember that, the replication of a com-
pactly limited optical signa is periodic, therefore, the Rate of Decay of Fourier Coefficients is
valid.

Concluding our proof, we can the state the end result:

C

AR, —T(wy)| < NCES

- _N
for k = 2+1...

N2

To draw a conclusion to this error estimate discussion, we must define the constant C. C is

dependant on the convergence of the Fourier coefficients. Even with the popularity of the FFT,

Fourier convergence is still a difficult subject to completely define (49) " For thisfact, the constant

C is not well defined, as the authors of many books seem content with the flexibility of an unde-

fined constant 42)(0)(51)

However, it is our goal to find the order of magnitude of the error in
using a DFT to represent the Fourier transform of asignal. In texts, the constant C has been found

to be dependant and bounded by the least upper bound of the magnitude of the function to be



transformed “®1 This can be written mathematically as:
M = SUF{_A/Z,A/Z]“(X)L
where the function “sup” stands for supremum, which is the least upper bound & alset,

defined to be the smallest real number that is greater than or equal to every nusifer in

The constant C is simply a scaling factor for the magnitude of the initial function, such that the
determined error bounds correspond to the input. In this thesis, we analyze normalized functions,
therefore, the least upper bound of a functf¢x), in the range [-A/2,A/2] will be 1. Therefore,
for the functions that we examine<C<1 . Since we are interested in the bounds of the maxi-
mum error for the normalized functions we consider, the largest error will be defined when C=1.
Therefore the error bounds of the difference between the DFT approximation and the continuous

Fourier transform is dependant on:

1

‘AFk —,f((k)k)‘ — < W_

Therefore, we conclude that for our application, the order of the error bound is only dependant
on the number of points that are taken and the smoothness of the function that is being trans-
formed. The smoothness of a function is determined by the number of continuous derivatives the
function has on the sampling range[-A/2,A/2]. We will look into the determinatigniaiér in

this chapter.

45.2 Inverse DFT

For the inverse DFT, we begin our error discussion with the assumption that we have a func-

tion, ¥ (or Fourier coefficients, & in the frequency domain. The frequency domain range is
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defined as{-Q/2 < w< Q/2,-N/I2 <0 <N\/2}, and transforms to the spatial domain {-A/2<x <A/
2, -B/2 <y <B/2}, through the inverse DFT. If the reconstructed function f has a finite number of
frequencies, that is, all the frequencies can be included in the IDFT, then f can be exactly recon-

structed, assuming that no frequencies have been aliased. Recall the IDFT:

N N
2 2 .
. Nk . JZHI‘IE
fn: z fk(A)N = z fre
__N __N
k= 2+1 k= 2+1

Similar to the forward DFT, we use the Inverse Poisson Summation Formulato help our error
analysis. The Inverse Poisson Summation Formulais stated here (4°):

[oe] [oe]

Aoy e " = Y f(x-iA)

k= j=—00

A

In the case of the inverse Poisson Summation Formula, samples in the Fourier Domain, f, are
related to the replication of the signal f. For a bandlimited, the error in using the IDFT involves
the values of f transformed outside the interval [-A/2, A/2]. Recall that the spatia window is
defined by the sampling of the frequency domain, Aw, therefore this choice of sampling iscritical.
If the function f is reconstructed outside of the range [-A/2, A/2], then those parts outside of the
range are folded back into the sampled range, as seen in the truncation error presented earlier. We
previoudly reduced this error by increasing N with Q fixed (i.e., reducing Aw), which increases
the spatial boundary A, therefore, reducing the overlap in the replicated values of f(x-jA). From

this overlap of replicated values, we approximate the error bound:

Aty —f(x,)| < S (X =JA)

lilz1
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The error of the inverse DFT, based on the overlap of the replications of the function is more
difficult and not as straight forward to calculate as the error in the forward transform. However,
since theinitial spatial domain (aperture plane) defines both the frequency domain and the output
gpatial domain (observation plane), we make the argument that the error in using the discrete Fou-
rier transform to approximate the continuous Fourier transform should be on the same order. The
error that remainsin the inverse DFT should be based on truncation. With the removal of the eva-
nescent waves in the angular spectrum technique, the frequency function is bandlimited and with
proper sampling, the error in the inverse DFT isnegligible.

We now summarize the point-by-point errors bounds that were determined in the forward and

inverse Fourier transformations in terms of the angular spectrum method.

4.5.3 Summary: Point-Wise Errorsof Angular Spectrum Method

For the general case, we can determine how much error is in our simulations, by using the
point-wise error equations for the forward and the inverse Fourier transform that we presented in
this chapter. It should be noted, that the error calculation will add computation time to the angular
spectrum method, possibly eliminating the interactive response between the simulation tool and
the designer. Before starting the simulation, the user should first reduce aliasing and truncation,
by using the sampling guidelines presented earlier in this chapter. As previously determined, the
minimum sampling in both the x and y directions should be initially set at A/2. To calculate the
error in any wavefront propagating from the aperture to the observation plane, we follow with
steps of the angular spectrum technique, determining the error at each point along the path, shown

through the flowchart in Figure 32. We explain the details next.
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Figure32 Angular Spectrum Algorithm with Error Determination

After setting the initial sampling to reduce aliasing and truncation, the smoothness (denoted
by the variable p in the previous error discussion) of the optical wavefront function must be deter-
mined, by calculating the number of continuous and non-zero derivatives in the range of the com-
putational window. The derivative of a function can be performed with a standard numerical

algorithm, such as a Newton-Raphson algorithm, found in many numerical methods references

such as 2. The derivative can easily be checked for discontinuities, and if the derivativeis con-

88



tinuous, the next derivative of the function can be determined. The process continues, until a
derivative is found to be discontinuous, and p is determined. Another way of determining the
smoothness of a function is to determine the gradient, or directional derivative, of the function.
Using this, the rate of change in a specified direction is known. From this, it is possible to deter-
mine discontinuities in afunction, or in this case, its derivative. Knowing the number of continu-

ous derivatives will provide us with the order of the error of approximating the forward Fourier

transform with a discrete Fourier transform (I/NP*Y).  After the forward Fourier transform is
implemented, the spatial frequencies are multiplied by the propagation phase term. We then per-
form the inverse Fourier transform, which returns the optical wavefront to the spatial domain.
The error of the inverse DFT, based on the overlap of the replications of the function, has been
presented earlier, however, since the signal is bandlimited, and if care has been taken in the origi-
nal choosing of the window size and the number of discretizations, N, this error should be negligi-
ble and the error of the overall angular spectrum method should be on the order of the error from
the forward Fourier transform.

With the propagation term typically expanding the optical wavefront, a check for truncation
must occur at the conclusion of the angular spectrum technique. Thisis performed by an exami-
nation of the wavefront determining that the tail-ends of the function are decreasing towards zero,
and that the ends of the function are essentialy zero. Recall, if the wavefront has ripples at the
ends of the function, similar to Figure 34, thisis a common sign that truncation has occurred and
re-simulation with a different window size and N should occur. In the future work of this thesis,
we describe how this could be done automatically in the software. To remove truncation, the ini-
tial spatial domain (A and B) needs to be increased, however, the initial sampling requirements

still need to be satisfied, therefore, N typically needs to be increased as well.
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If thisisthefirst and only free-space propagation gap, the calculated error bound from the for-
ward Fourier transform isthe error bound of the system. If thisis not the only free-space propaga-
tion gap, this value is stored, and the algorithm presented in the flow chart begins again. When
the error-bound of this pass through the algorithm is calculated, this error is added to the previous
error bound, and the algorithm either endsif there are no more propagation gaps or repeats.

We now present a few examples, summarizing our work in this chapter.

4.6 Example Error Analysis

We now perform an error analysis of the angular spectrum technique using optical wavefronts
that are used in micro-optical systems. We first examine the Gaussian beam, starting with an
analysis of aliasing and truncation. We then perform a point-by-point comparison between simu-
lated results and analytical data, and compare these results to expected error theory presented in
the last section. As a second example, we examine a clipped optical wavefront, and present an
error analysis of this system. This section is concluded with an algorithm to perform an error
analysis on a general optical wavefront propagating from the aperture plane to the observation

plane.

4.6.1 Gaussian Beam

We first examine a Gaussian beam, a common optical input into micro-optical systems, and
determine how to reduce aliasing and truncation to a minimum. Since we know that these errors

can not be completely eliminated, we also provide a point-wise error analysis of propagating this
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beam from an aperture to an observation plane using the DFT to approximate the continuous Fou-
rier transform.

Recall from our earlier discussion, the spatial Gaussian beam equation, in 2D is:

2 + 2
U(xy) = expFEY0
W

where w is the waist radius.

For illustrative purposes, in the first part of this example, we describe how to reduce aliasing
and truncation. Recall, from our earlier sampling conditions of the angular spectrum technique,
the spacing in the spatial domain should be A/2. However, in this first example, we are going to
use aeven smaller spacing, to show another way of determining the required spacing.

In this example, we examine a Gaussian beam with a spot size (which equals 2w) of 10 um
and a wavelength of 1000nm, which is a common source for optical micro-systems. We first
examine the beam with a bounding spatial box of A=B=50 pum, with N=512. Thisresultsin a Ax
and Ay of approximately 0.098 um. The spatial domain in a 1D cross-section is seen at the top of
the column in Figure 33(a). These spatial domain parameters correspond to a frequency domain
with Q=A=10,240,000 and aAw and Ac of 20,000. Moving down the column in Figure 33(a), we
present 1D cross-sections of the frequency domain after the forward Fourier transform is per-
formed, and again the spatial domain after the inverse Fourier transform is performed. Note that
there is no propagation in these optical wavefronts, as thisis simply an example to see if we can
recover the exact spatial wavefront that we converted into the frequency domain.

Since the Fourier transform of a spatial Gaussian beam has spatial frequencies in the shape of
a Gaussian beam in the frequency domain, we assume both the spatial domain and the frequency

domain to be limited. With this bandlimited assumption, the sampling theorem can be used to
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reduce aliasing. Thisis graphically seen in the middle row of Figure 33(a), where the Gaussian

beam appears to be essentially bandlimited, as the frequencies outside of approximately +106
cycles/meter are essentialy 0.
Using the bandlimited assumption, the sampling theorem states the spacing in the spatial

domain must be:
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Figure 33 Gaussian Beam Sampling Example
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1-__ 1 0.5um

<
AX< oF = 3(1,000,000)

With our initial guess of N=512 and A=50um, we have oversampled the complex wave func-
tion. Of course, this does not hurt our calculation of the DFT, as we were able to recover the input
when the inverse Fourier transform was performed. However, we could achieve the same accu-

racy without as many sample points, which will decrease the computation time.

Note, that the efficient sampling value that we just calculated (Ax < % = 0.5um) equals our
C

anti-aliasing A/2 rule-of-thumb (AXS)—Z\ = 0.5um), seen previoudy in this chapter. Therefore,

we should have begun our example with this sampling value, however, we were able to achieve
the same results by graphically examining the essentially band-limited signal and determining its
critical frequency.

Continuing our example with the same size of A=50um, we can find the maximum N that is
needed to satisfy the Sampling Theorem by using the calculated sampling value and the reciproc-

ity relations that we described earlier:

Since our DFT algorithm requires N be afactor of 2, we choose to use N=128 points. There-
fore we can retain the same accuracy in our smulation, but with increased computation speed of
the system simulation by reducing the value of N. In Figure 33(b), we show results from this sim-
ulation with the new value of N. By looking at the curves, it can be seen that the input function is

recovered in the spatial domain when implementing the inverse Fourier transform.
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Figure34 Truncated Gaussian Beam at Observation Plane

For comparison, we show an example of the same Gaussian beam being undersampled, with
N=32. Thisisshown in Figure 33(c). In the example, the input Gaussian function is not recon-
structed with the undersampled frequency domain.

Optical propagation with the angular spectrum method is achieved by multiplying a phase
function to each set of spatial frequencies, which, as we presented previously, represent plane
waves propagating from the aperture to the observation planes. When an optical wavefront prop-
agates, the optical beam can diverge, causing possible truncation at the observation plane. It is
common when both the aperture and the observation planes are the same size, that an optical
beam that was untruncated in the aperture plane becomes truncated at the observation plane after
propagation.

An example of thistruncation effect is shown in Figure 34. In this example, the same Gauss-
lan beam that we examined previously in Figure 33(b) has now been propagated 300 um between
the aperture and the observation planes. It can be seen that the observation plane has truncated the

gpatial output and caused errors, as we know that a propagating Gaussian beam remains Gaussian
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in shape. Asthe spatial domain is being reconstructed from the frequency domain, the complex
optical wavefront that is outside the window is folded back into the window, causing the rippling
effect of the waveform.

To rectify the truncation problem, the size of the observation spatial window needs to be
increased, which can be done by reducing Aw in the frequency domain. This can be done by
reducing the size of the frequency domain (Q), keeping N constant (or vise versa), and using an
interpolation technique to find values for the frequency points that are not determined from the
forward Fourier transform. Of course, an interpolation technique would add to the errorsfound in
the angular spectrum technique and add to the system simulation computation time. For these
reasons, we do not take this approach.

A simpler way of removing truncation in the observation plane is to make the original aper-
ture plane large enough to capture the propagation divergence in the observation plane. This can
be done by increasing the spatial size A in the aperture plane, with the caveat that this could intro-
duce an aliasing error, as describe earlier.

Returning to our example, we re-simulate the system with an input spatial window of 100x100
pum, instead of 50x50 um. With N still equal to 128 mesh points, the input sampling does not
cause significant aliasing. We validate this statement by examine the frequency domain, and eval-
uating the essentially bandlimited function. By calculating the spacing Ax = 100um/128 =
0.78125 pm, the frequency domain is defined by Q=A=1,280,000 with a Aw and Ac of 10,000.
Our rule of thumb rules states that we should have a sampling less than A/2=0.5um. In this exam-
ple, we present a case when our general sampling rule istoo conservative.

Examining the frequency response of the propagated beam in Figure 35(a), we find an essen-

tially band limited signal with a critical frequency of approximately 300,000. Thisleadsto asam-
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Our sampling in this example of 0.78125 um is below this value, therefore we expect the
aliasing to be negligible. Therefore, output at the observation plane for the Gaussian beam propa-
gated 300 um is no longer truncated, and has minimized aiasing. The result is shown in Figure
35(b).

Note that the sampling in thisfinal non-truncation case is greater than our specified anti-alias-
ing spacing of A/2 (1.67um > 0.5um). This shows how the required sampling of A/2 is a conser-
vative result and in practice, the sampling can be larger, especially for a smooth function, such as
a Gaussian beam.

Using the techniques seen above, we have reduced aliasing and truncation errors. However,
we now calculate the order of the remaining error, caused by both aliasing and the fact that we are
using a discrete integration technique to approximate a continuous integration with the DFT.

We continue our Gaussian beam example, this time predicting the error at each discretization

point. We use the same Gaussian beam as before with a bounding spatial box of A=B=50 um,
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with N=128. Thisresultsin a Ax and Ay sampling of approximately 0.5 um. These spatial inputs
correspond to a frequency domain with Q=A=1,000,000 with aAw and Ac of 7812.5. Thisisthe
case that we looked at previously in Figure 33(b).

Recall, the 1D Fourier transform of the Gaussian beam is:

1
F{UKXY)} = (w?) exp(-TE(v2)w?)

In our ssimulations, we are going to use this analytical expression to compare against our sim-
ulated results. We can then determine point-wise error measurement of our technique and the
analytical results and compare these results with the expected error bounds for this system.

We first review the expected error theory. Since the Gaussian beam is a even exponential

function and the first derivative of the function can lead to discontinuities at the end-pointsin the

sampled region, p=1. From this, the point-wise error function is expected (45).

Again, we assume that to find the maximum error, that C is based on the largest bound of the

function to be transformed. Since we are transforming a normalized Gaussian beam, with a max-

imum value of 1, we expect the error to be on the order of 1/N2.

We now want to measure the error that is obtained when comparing our simulated results
against the analytical solution of the Fourier transform of a Gaussian beam. We compare only in
the 1D case, since the Gaussian beam is symmetrical. In Figure 36(a) the 1D normalized fre-
quency domain is presented for the analytical results and our simulated DFT algorithm of per-
forming the forward Fourier transform on the Gaussian beam described above. Notice that this

graph isjust the positive spatial frequencies. Since the Gaussian function is symmetrical, the neg-
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ative frequencies are identical to the positive. From examining the outputs, the results are graphi-
caly identical.
We perform a point-by-point difference of the simulation results compared to the analytical

results. These are plotted on the log scale, as seen in Figure 36(b). The error analysis states that
with N=128, the point-to-point difference should be on the order of 1/N2=10°. Ascan be seen,

our results between the simulated and analytical are lower than that, approximately 10°8,
Continuing with the N=128 example, we perform the inverse Fourier transform, and again
evaluate the error of the function asit is transformed back from the frequency domain to the spa-
tial domain. In Figure 37(a), we show the normalized the Gaussian beam after a forward and
inverse Fourier transform. Figure 37(b) shows the point-wise error difference between the analyt-
ical results and our simulation results using the angular spectrum technique. It can seen that again

our technique matches well with the analytical results, as we predicted that the error would be on

the order of 10°. Again, our error measurements were less than 10°7. As we mentioned before,

and now can be seen graphicaly, the error difference was not increased by the inverse Fourier
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transform.

Our last ssimulation with this Gaussian beam is the case when it propagates from aperture to
observation plane. To avoid the truncation that we presented in Figure 34, we increase the com-
putation window to 100 pum, and we propagate the optical beam 300 um. Again, we compare this
result with analytical results of a propagating Gaussian beam.

We digressjust alittle to show our analytical determination of a propagating Gaussian beam.
A Gaussian beam isdefined by itsinitial waist, w, and Rayleigh Range, zj:

™
=5
As a beam propagates, the Gaussian beam diverges, and a waist can be calculated dependent

of the length of propagation. Thisis described by:
nz?

w(z) =w |1+ 3.0 , Where z is the propagation distance.
0

From this equation, the Gaussian wavefront is defined by:

2 2
Wo [l X +y [l
Gauss(x, Y, z) = w0 expE- > -
0 w(z)° O
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Forward and Inverse Fourier Transform of Error Between Angular Spectrum and
Gaussian Beam Analytical Results
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The intensity of the Gaussian beam is defined by the square of the magnitude, as seen:

W 042 12 2
IGaUSS(X' y' Z) = W(g)expgw(z)yza '

A graph comparing our simulated results with the analytical results are seen in Figure 38(a),

again in 1D. As can be seen, the results match well. A point-by-point error difference is pre-

sented in Figure 38(b). We predicted the forward error to be on the order of 107 and, as seen, our
results meet this expectation. However, the errors are larger than we have seen previoudly, in the
cases of only examining the forward and inverse Fourier transforms, presented in Figure 36 and
Figure 37. Thisisdue to a couple of reasons. The obvious difference is that there is now propa-
gation in this example. With the addition of propagation comes the possibility of a truncation
error. In this example, the output signal is slightly truncated, and this causes the increase of the
errors in the ssimulations. This can be reduced by increasing the spatial window, along with the
value of N. A second reason for the difference is that even though the magnitude of the function
in the frequency domain does not change with the multiplication of the propagation exponential,

the phase term of the function is effected. Therefore, aliasing errors can occur in the frequency’s
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phase term when only assuming that the magnitude of a frequency signal is bandlimited.

4.6.2 Clipped Gaussian Beam

A common optical wavefront found in micro-systems is the case of when the wavefront is
piece-wise continuous. This happens when optical wavefronts are clipped by micro-components,
such as mirrors, apertures, or screens. When optical beams are clipped, part of the function con-
tinues propagating its optical wave shape. However, the aperture blocks the remaining light, and

these valuesin the optical wavefront are set to zero. Thisresultsin discontinuitiesin the function.

In this case, the number of continuous differentialsis p=0 (45) Mathematical ly, our evaluation of
the piece-wise error between continuous and discrete transforms does not directly support the
case when p=0, since the Rate of Decay of Fourier Coefficients formulation converges for p>1.
However, with a little more development of the error bound, it has been shown for piece-wise

continuous functions like these, that with extensions to the error approach that we presented, the

error is on the order 49):

Ck _ N
le—Fy < Eé,wherek =5

N2

again, where C is a constant independent of k and N, with a maximum of 1 for a normalized

input functions. For the low frequency coefficients (k much smaller than the limit of +N/2), the
error acts as CN2. For the high frequency coefficients (k close to +N/2), the error approaches

CNL, dueto al iasing in the frequency domain. Therefore, the maximum error bound in the case

when p=0isequal to, |c, —F| < CN:
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Figure39 Forward and Inverse Fourier Transform of a Clipped Gaussian Beam (N=128,
window=50 pm)

When attempting to reconstruct the spatial domain from the spatial frequencies using the
inverse Fourier transform, we expect to see the largest errors at the points of discontinuities. Itis
well known that the Fourier transform has a difficult time reconstructing sharp edges of a func-
tion. The common Gibbs phenomenon occurs, which is represented by the function “ringing” at
the discontinuitie&*".

We present an example in which we simulate a Gaussian beam that is clipped in half. In this
example, a Gaussian beam with a spot size (which equptsf 20um and a wavelength ofdm
Is used. We first examine the beam with a bounding spatial box of A=pa5@vith N=128.
With these values, our sampling is below our general sampling ral@.o\We do not propagate
the beam past the screen, however, we perform the forward Fourier transform and the inverse
Fourier transform to recover the clipped beam. We first examine the spatial domain of the clipped
beam, as seen in Figure 39(a). The frequency domain, the result of performing the forward Fou-
rier transform on the spatial domain, is shown in Figure 39(b). Note that the frequency domain

does not reach zero at each end. This indicates that aliasing is occurring, and errors in the results
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Figure40 Observation Spatial Domain with N=128, 256, 512, and 1024

can be expected, since the higher order frequencies are being folded over into the lower orders.

From our theoretical error analysis, the spatial frequenciesin these tails have the order of error, 1/

N, where the spatial frequenciesin the middle are on the order of 1/N2. The recovered spatial out-
put from this frequency domain is seen in Figure (). Notice the errors in the spatial domain, as
shown by the jagged wavefront, a sign of the Gibbs effect.

We next increase the frequency domain window, by increasing the size of N and keeping the
gpatial domain the original size to determine if this will help the recovery of the signal. Recall
from the Fourier transform reciprocity relations, this is achieved by decreasing Ax. However, as
we increase the number of sample points in our simulations, the same jagged Gibbs effect result
remains. This can be seen in Figure 40, which shows the same spatial response as above with
N=128, 256, 512, and 1024.

Recall that in the angular spectrum method, the evanescent waves are removed in the fre-

guency domain with spatial frequencies defined in the range:
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Since we remove the evanescent waves in the angular spectrum technique, many of the fre-
guencies are being removed which are required to recover the initial signal, resulting in the Gibbs
effect. Therefore, we expect not to recover the exact signal from the aperture spatial domain, as
stated before. In Figure 39(b), the evanescent waves are shown, in the tail of the frequency wave-
form. Figure 39(b) actualy shows two frequency functions, superimposed on top of each other.
The first is the frequency domain with the evanescent waves, and the second has them removed.
We use this second frequency waveform to recover the function in the angular spectrum method.

With this explanation, the results in Figure 40 are expected. For each simulation, the evanes-
cent waves are aways removed, the non-zero frequency domain is the same size for each simula-
tion, and the same Gibbs effect isseenin al the cases. Therefore, in the case with no propagation
between aperture and observation plane, increasing N does not help.

To determine if the Gibbs effect can be reduced with more granularity in the frequency
domain, we half the sampling width, Aw, by doubling both the spatial window and the number of
mesh points. In Figure 41, the observation spatial window is shown for three simulations. The
first isthe original simulation, with N=128 and A=50 pm (Ax=0.39 pm), which results in a sam-
pling in the frequency domain of Aw=20000. The second simulation has N=256 and A=100 pum
(Ax=0.39 um), which results in a sampling in the frequency domain of Aw=10000. In the last
simulation, N=512 and A=200 um (Ax=0.39 um), which results in a sampling in the frequency
domain of Aw=5000. Examining the output in Figure 41, we see that all 3 curves overlap each
other exactly. Thisinfersacouple of interesting facts. First, increased sampling in the frequency

domain does not help the Gibbs effect. That is because our initially (0.39 um) sampling was
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aready below our rule-of-thumb A/2 sampling (0.5 um). Therefore, the effect that we are seeing
with the Gibbs effect is the limitation of the Rayleigh-Sommerfeld formulation, which shows the
techniqueis not valid for propagation distances |ess than the wavelength of light. However, aswe
propagate the signal, the Rayleigh-Sommerfeld formulation becomes valid, and we can get accu-
rate results. This has been seen previously, as we have presented accurate results of clipped opti-
cal wavefronts propagating past square aperturesin Figure 18.

We next simulate the wavefront propagating past the screen. The observation spatial domain
Is shown for 4 different examples, when the light has propagated 20, 40, 60, and 80 pum past the
screen, in Figure 42. For each simulation, we ensured that the general rule-of-thumb sampling
requirement (Ax<A/2) was met, and that there was no truncation. Therefore, for 20 pum of propa-
gation, A=100 and N=256. For 40, 60, and 80 um of propagation, N was 512, and A was 150,
200, and 250 pm, respectively. As can be seen in the diagram, the Rayleigh-Sommerfeld formu-
lation becomes valid with propagation between the aperture and observation plane. Notice how

the beam return to a Gaussian-like shape, with anew position for the maximum intensity.
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In summary, when an aperture clips a beam, discontinuities occur in the wavefront. These dis-
continuities are difficult for the discrete Fourier transform to model, therefore, the original optical
wavefront can not always be reconstructed, as we saw in Figure 39. The Rayleigh-Sommerfeldis
not valid for distances of propagation less than the wavelength of light. Therefore, inaccurate
results are expected when looking at waveforms without any propagation. However, we can still
retain accurate results using the angular spectrum technique to solve the Rayleigh-Sommerfeld
formulation when we propagate the wavefront. The angular spectrum algorithm removes the eva-
nescent waves, resulting in a bandlimited signal, which enables the propagating plane waves in
the Fourier domain to reconstruct and give an accurate signal within the stated error bound of C/

N.
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Figure42 1D Cross-section of Observation Spatial Window for Propagation Past the
Screen of 20, 40, 60 and 80 pum
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4.6.3 General Example

In the case where we have a general function, the process of determining the error becomes
more difficult. In this case, the number of continuous derivatives or smoothness (denoted aspin
our error discussion) of the function needs to be determined, and this value will correspond to the
order of the error bound of the Fourier transform. As previously mentioned, the determination of
the functions continuous derivatives could be determined with a standard numerical algorithm
performed on the function. However, this comes at the cost of the simulation time.

In Figure 43, we present a flow chart of the technique that we take to estimate the errorsin

performing the angular spectrum technique to solve the Rayleigh-Sommerfeld approximation. At
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the top of the flow chart, we start with the input optical wavefront. Since we have characterized
the errors of two of the most common optical wavefronts, a Gaussian beam propagation and a
piece-wise continuous wavefront, we first check to see if the optical wavefront is either of these
cases. If it is, the proper error calculation for the case is applied, and we add appropriate error
estimate to the existing error bound of the system. If thisisthe first propagation, and there is no
established error bound, one is created. We add the error from the current propagation gap to the
error bound, since the total system error gets worse as the error propagates through the system.  If
the function does not fall into one of the two cases, the function is a general complex wavefront.
In this case, the smoothness of the complex wavefront is determined though cal culating the deriv-
ative of the function. The proper error value is then determined, and added to the error bound of
the system.

The algorithm continues by determining if there are more free-space propagation gaps in
which the wavefront needsto propagate. If thisistrue, we return towards the top of the algorithm,
however, we first determine if the function has ever been clipped through an aperture. If thisis
the case, it can no longer propagate as a Gaussian beam, and we do not have to perform the Gaus-
sian check. The error of the next propagation is calculated by one of the standard error conditions
or the general function and is added to the existing system error bound. This continues until the
simulation through the system is complete, and we are left with the output complex optical func-
tion, and system error bounds of the resullt.

It isinteresting to note, that if the optical wave ever propagates through an aperture, this will
extend the error bounds to C/N, the largest error bound that we have encountered. Therefore, if
this is the case in the system, then the error margin is known, before the ssimulation is even per-

formed. Since this error bound is ahigh error value, it isimportant to note that the error could be

108



(and often is, as seen in the previous error calculations) much less than the maximum error bound.
We next show how we have implemented our angular spectrum technique into our mixed-sig-
nal, multi-domain CAD tool, Chatoyant. We illustrate system-level simulations of aoptical MEM

switch and an digital display device using the grating light valve.
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5.0 IMPLEMENTATION INTO A SYSTEM-LEVEL CAD TOOL

In this chapter, we describe the implementation of our efficient optical propagation technique
into a mixed-signal, multi-domain, system-level CAD tool. We first introduce our system-level
CAD tool, Chatoyant, which supports systems containing the optical, electrical, and mechanical
domains. We describe the current modeling methodol ogies for the creation of such atool. A dis-
cussion of the implementation of the new optical technique into the tool follows. Thisisfollowed
by a brief description of the other optical modeling techniques, along with the electrical and
mechanical models, found in Chatoyant. This chapter concludes with two system-level ssimula-
tion examples. The first is a simulation of a 2x2 optical MEM switch, with the use of a mirror
fabricated on a cantilever beam which is electro-statically actuated to switch light from one path
to another. The second exampleisadigital display projection system. Thisisenabled by the use
of adiffractive GLV device. Careful examination of light diffracting off of the bending ribbonsis
presented. However, before we present the simulations, we introduce the simulation environ-

ment.

5.1 Our Mixed-Signal Multi-Domain CAD Tool: Chatoyant

At the University of Pittsburgh, we have developed a multi-domain, mixed-signal CAD tool,

Chatoyant, to support the system-level modeling and ssimulating of micro-opto-el ectro-mechani-

cal systems (18)53)(54)(35) chatoyant has been successfully used to design and simulate free space
optoelectronic interconnect systems performing static and dynamic simulations. Static ssmula-

tions analyze such system-performance measures as mechanical tolerancing, power 10ss, insertion
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loss, and crosstalk, while dynamic simulations are used to analyze data streams with techniques
such as noise analysis and bit error rate (BER) estimation. Chatoyant is built upon the object-ori-

ented simulation engine Ptolemy, a CAD tool from the University of Berkeley, originally created

for signal processing CAD under the DARPA funded RASP program (56),

As a example of the framework, a Chatoyant schematic of a free-space 1x2 optical MEM
cross-connect is shown in Figure 44. In Chatoyant, each icon represents a component, or behav-
ioral, model. Each of the component models are written in C++ with sets of user defined parame-
ters for the characteristics of each module instance. Each line, or “wire” represents a signal path
(either optical, mechanical, or electrical) connecting the outputs of one component to the inputs of
the next. This system shows an optical fiber emitting light into a free space medium. The light
then travels through a collimating lens and is reflected off of a switching mirror, into the path of
one of the outgoing fibers. Each optical path contains a second collimating lens, which focuses
the light into the corresponding outgoing fiber. The mirror is assembled on an anchored cantile-
ver beam, which bends into and out of the optical path by electrostatic attraction between the

beam and the substrate. Three electrostatic forces are placed on the beam/mirror icon; on the x
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and z positions and atorque around the z axis. Above the schematic, we show an optical intensity
distribution as light strikes one of the outgoing fibers, while, on the right of the figure, we show a
dynamic waveform and eye-diagram from a data signal being passed through the switch. Details
of this system are given during afull analysis of the system later in this chapter.

The actual approach for our modeling of mixed signal multi-domain systems is a discrete
event driven simulation model, which operates over the global system. We choose the “Dynamic
Data Flow” (DDF) Ptolemy simulation method as our discrete event engine. Timing information
is added to support multiple and run-time-rate variable streams of data flowing through the sys-
tem. In this model of computation, the simulation scheduler creates a dynamic schedule based on
the flow of data between the modules. In other words, the order of execution of modules is set
during run time. This allows modeling of multi-dynamic systems where every component can
alter the rate of consumed/produced data at any time during simulation. The scheduler also pro-

vides the system with buffering capability. This allows the system to keep track of all the particles

arriving at one module when multiple input streams of data are inveiled

The information flow is handled using a “message class”. The parameters that characterize
the signals are encapsulated in the message class to be sent and received throughout the system.
As previously mentioned, the message class carries time information for each message in the
stream of data. This allows for the dynamic insertion and deletion of samples at any time in the
system by any component. Modules that operate on multiple data streams of different rates use
this time information to maintain the order in the stream of incoming data. To maximize our mod-
eling flexibility, our signals are composite types, representing the attributes of force, displace-
ment, velocity, and acceleration for mechanical signals, voltages and impedances for electronic

signals, and wavefront, phase, orientation, and intensity for optical signals. The composite type is
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extensible, allowing usto add new signal characteristics as needed.

Recall that Chatoyant is a system-level CAD tool, analyzing systems through such system-
performance measures as bit-error-rate, insertion loss, and tolerancing. Although, in a system-
level CAD tool, accurate and interactive results are both primary goals. This allows adesigner to
get feedback in a “reasonable” amount of time, therefore, an interactive system level tool, such as
Chatoyant, occasionally might sacrifice a degree of accuracy to support faster simulation time.
These user-defined trade-offs between speed and accuracy can be useful to the designers using
our tool.

Component models are based on three modeling techniques. The first is a “derived model”

technique. That is, analytic models based on an underlying physical model of the device. These

can be very abstract "3order” models, or more complex models involving time varying func-
tions, internal state, or memory. The second class of models is based on empirical measurements
from fabricated devices. These models use measured data and interpolation techniques to directly
map input signal values to output values. The third technique is reduced order or response surface
models. For these models, we use the results of low level simulations, such as finite element solv-
ers or Spice, and generate a reduced order model, which covers the range of operating points for
the component by producing a polynomial curve fit, or simple interpolation over the range of
operation.

We have successfully used all three of these methods in the creation of four component librar-
ies. The Optoelectronic Library includes vertical cavity surface emitting lasers (VCSELS), multi-
ple quantum well (MQW) modulators, and p-i-n detectors. The Optical Library contains
components such as refractive and diffractive lenses, lenslets, mirrors, and apertures. The Electri-

cal Library includes CMOS drivers and transimpedance amplifiers, and the Mechanical Library
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contains scratch drive actuators and other electro-static devices.
We now briefly introduce the signal (optical, electrical, and mechanical) modelling techniques
that are used in Chatoyant. We first show the implementation of the Rayleigh-Sommerfeld for-

mulation into Chatoyant.

5.2 Implementation of Rayleigh-Sommerfeld Optical Propagation into Chatoyant

As been stated, the author’s main research has been concentrated on the optical devices and
propagation models. Throughout this thesis, we have shown that the Rayleigh-Sommerfeld for-
mulation is an accurate optical propagation technique that is appropriate for the simulation of
optical microsystems. This technique has been computationally improved with the use of the
angular spectrum method, which is an exact solution to the Rayleigh-Sommerfeld formulation.

For the implementation of this technique into Chatoyant, additions were made to the message
class. Support for a complex wavefront is added to the message class. This is a NxN 2D array, in
which each cells holds a complex value of the optical wavefront. The complex optical wavefront
is meshed into discrete values, and placed into the array, as it is passed from component to com-
ponent. Also in the message class is the actual code of the Rayleigh-Sommerfeld optical propaga-
tion algorithm. Since each optical component uses the same optical propagation algorithm, it was
advantageous to put the code in the message class, instead of repeating the code in each compo-
nent.

As seen through the description of the angular spectrum method, the computational load is
dominated by the FFT. Like the direct integration technique, the FFT technique requires the aper-

ture and observation planes to be discretized into a NxN meshes, where N is the number of mesh
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points on the side of the plane. Equal spacing meshing is required, and for ease of the FFT algo-

rithm, a power of 2 is required for the number of mesh points in the algorithm that we are using

from Numerical Recipesin C 42 1n our discussions and simulations, the aperture and observa-
tion planes are meshed with the same N, however.

The angular spectrum algorithm was described in Chapter 3, with a graphical description in
Figure 13. We summarize our algorithm for the implementation of this technique here. First the
forward FFT is applied to the aperture surface. Thisisthen multiplied by the propagation phase
term. If tilts are present, the aperture plane’s spatia frequencies are mapped into the observation
plane’s spatial frequencies. |If offsets between the planes occur, then the shifting theorem is
applied. Finally, the inverse FFT is applied, and the complex wavefront on the surface of the
observation plane is obtained.

Supporting the algorithm and the complex array of values representing the optical wavefront,
the angular method has been successfully integrated into Chatoyant. We now briefly introduce
other optical modeling techniques, along with modeling techniques for the electrical and mechan-

ical domain.

5.3 Modeling Techniquesfor Signalsin Chatoyant

In this section, we describe the signal modeling for the other domains found in Chatoyant. We
first describe other optical propagation techniques that are found in Chatoyant, besides that new
angular spectrum solution to the Rayleigh-Sommerfeld formulation. We next briefly introduce

the electrical and mechanical modeling techniques that are found in Chatoyant. The electrical and

mechanical work is not the authors work and details can be found in 7).
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5.3.1 Additional Optical Propagation Modeling

Besides the Rayleigh-Sommerfeld optical propagation technique, Chatoyant has continued
support for other optical propagation techniques. These techniques were developed when
Chatoyant was used for optical macro-system modeling. For macro-systems, a mixture of ray and
Gaussian optics can be ideal for system-level modelling. We calculate the position and direction

of the center of the Gaussian beam using ray propagation methods. The Gaussian beam is “super-

imposed” over the ray-traced beam to model the intensity, waist, and phase of the Iigﬂtsbeam

The advantage of using Gaussian beam analysis is the fast computational speed in which light is
modeled and propagated, allowing for interactive system-level design. This method has worked
well for macro-scale systems, defined as systems without strong diffractive effects. This work
has been the basis of Coventor’s optical system level modeling, where the author has converted

our Chatoyant models into Saber’'s MAST, an AHDL (analog hardware description language)

based programming Iangua@@.

As we have explained in the thesis, for many micro-systems, diffractive effects can dominate,
and the Gaussian propagation will not always be accurate. For these systems, the scalar methods,
using both brute force integration and the angular spectrum optical methods must be used. As

mentioned in the above section, the angular spectrum technique has been implemented into
Chatoyanf58). We also include the brute-force Rayleigh-Sommerfeld integration which has been
implemented in Chatoyant, as seerf3n The direct integration approach is performed with a

Gaussian Quadrature numerical metfS  We have extended the brute force direct integration

technigue solving the Rayleigh-Sommerfeld propagation formulation to support optical surfaces

which are slightly curve9). Although this extension uses the computationally slower Rayleigh-
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Sommerfeld agorithm, it does allow some flexibility in the systems that can be modeled. We
now give a description of the extension.

The Rayleigh-Sommerfeld formulation for scalar optical propagation assumes no curvatures
in either the observation or the aperture plane. Thisis due to the general formulation not recal cu-
lating the distance of propagation for a curved surface. By again examining the Rayleigh-Som-

merfeld equation, and Figure 6, we can easily seethis:

U2(xy) = Z[[U1G n)eJTkrdzdn r = 7+ (k=87 (y-n)’
s

Through the equation and the diagram, it is seen that the aperture and observation planes are
flat, with the value of z being constant. However, in our use of the Gaussian Quadrature method
to calculate the Rayleigh-Sommerfeld integration, we are easily able to determine the (X, vy, 2)
center position for each mesh. This enables us to expand the Rayleigh-Sommerfeld formulation
to support slight curvatures. Therefore, we are able to exactly calculate the distance that each
wavefront travels (r) to get from aperture to observation plane. This allows us to model curved
surfaces using an extension of the Rayleigh-Sommerfeld formulation, now using and solving

three position values, with the following equation:

jkr
U2(xy) = 5 [ULEmEdEn 1 = -0 -8+ (y—n)’
2

Examples of curvature will be seen later in this chapter with smulating an optical MEM

switch.
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5.3.2 Electrical and M echanical Modeling

As mentioned, Chatoyant is a multi-domain CAD tool, supporting optics, electronics, and
mechanics and the interactions between these domains. The electrical modeling is based on

piece-wise linear modeling and modified nodal analysis (MNA) matrices, as described in Mar-

tinez's Masters of Science the&§d and in the journa‘m. The approach for modeling mechani-

cal elements is to reduce a mechanical ODE representation for a component into a form matching

the solver used for the electrical domain. This enables the use of our same piece-wise linear

solver for the mechanical models as for simulating the dynamic behavior of electrical systems.
These techniques, along with the optical modeling methods simulate together in a single

framework to give the designer and complete CAD tool for mixed-signal, multi-domain modeling

of optical micro-systems.

5.4 System-Level Examples

In this section we provide some system-level examples of modeling multi-domain micro-sys-
tems with our CAD tool Chatoyant. In the first example, we simulate a 2x2 optical MEM switch.
In particular, we analyze the switching speed of the switch, and how this effects the optical effi-
ciency of the complete system. In the second example, we simulate and analyze a digital display
using a GLV device. Many different simulations are performed with this GLV systems, resulting
in design information of the fabrication of the mechanical ribbons, the optical input, and the dis-
tance that the ribbons must be electro-statically attracted to the substrate, and their resulting

shape. These examples show how we model all three domains, optical, electrical, and mechani-
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cal, and the interactions between the domains. Since the author’s research and focus of the thesis
Is regarding accurate and efficient optical propagation, this will be the focus of the simulation and

analysis of the example systems.

5.4.1 2x2 Optical MEM Switch

In this first simulation, we perform both static and dynamic simulations of a 2x2 optical MEM

switch. The simulated system is similar to those being researched by such companies and institu-

tions as Bell-Lab$®d, UCLA 3, and University of Neuchael, Switzerlaff®. This architec-

ture consists of a set of four optical fibers in the shape of a “+” sign, with the input and output
fibers facing each other through a free-space gap, as seen in Figure 45. The switch is in the
“cross” state when light is passed straight across the gap. To achieve the “bar” state, a mirror is
inserted between the fibers at a 45 degree angle and, the light is reflected to the alternate output.

The mirror fabrication and positioning can be achieved in a variety of ways. For example, Bell-

labs(®? inserts a “see-saw” pivoting mirror into the optical path, which is also seen in Figure 45,

with the mirror in position to achieve the bar state. UCLA and AT&T use scratch drive actuators

1

Figure45 2x2 Optical MEM Switch (from Bell-L abs)

Cross Bar
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to assemble and position the mirror between the fibers, and the University of Neuchael, Switzer-
land uses a combdrive actuator to dlide the mirror into place.

In the following simulations, the input and output fibers are both 10 um core, single mode
fibers with an index difference of 0.006 between the core and cladding, length of 1000 um, and
support 1550 nm wavelength light. A 1550 nm Gaussian beam with a 10 um (almost the idea

“mode” of the fiber) waist is used as a source to the first fiber.

The system, as seen in the Chatoyant GUI, can be seen in Figure 46. RSoft's Be&HPROP
is used to simulate the light through the fiber. We have developed an interface between the fiber
propagation (BeamPROP) and free-space (Chatoyant) through a data file.

The optical MEM switching system that we simulate is based on a fabricated device from

UCLA 9 This 2x2 switch is based on four fibers coming to a 4-way free-space intersection. In
the UCLA design, a hinged micro-mirror is fabricated at the end of an anchored mechanical
beam. In the steady state, the beam is resting in the optical switching path, and the system is in
the bar state. Through electrostatic attraction between the beam and the substrate of the surface,
the mechanical beam can be bent towards the substrate, moving the mirror out of the optical path

completing the cross state of the system.
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Figure46 2x2 Optical MEM Switch as seen in Chatoyant
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For simplicity, we simulate only a single input switching to either the cross or bar state
throughout this example. The mirror is 100 x 100 um, and is positioned at the end of a 700 um
cantilever beam. Both beam and mirror are fabricated with polysilicon, with the mirror having an
ideal reflectivity of 100%. The beam is 2 pum thick and 100 um wide, while the mirror is 4 um
thick, to counteract the induced residual stressthat otherwise would curve the mirror. Collimating
lenses (f = 50 um) are placed 50 um from the fiber ends, and there is a free-space gap of 100 um
between the lenses. The mirror, when placed in the optical path, is positioned in the center of the

free-space gap, 50 um from each lens.

5.4.1.1 Static Simulations  We first examine a static simulation of the switch working in both
the bar and cross states. The system set-up and simulation results for both switching states are
seenin Figure 47. Chatoyant presents intensity outputs at each component throughout the system,
and the intensity profiles of the light propagating through the fibers is from BeamPROP. If no

mirror is present, the light propagates straight through and achieves a cross connection, as shown

==0-==0- 0§
;OOum ;OO[;m ;Oolgm ;OO[;m ]
[\

Figure47 Static Switch Smulation
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by the top “light” arrow. However, with the addition of the mirror, the optical path is reflected 90
degrees, as shown by the “dark” arrow, and the bar state is connected. In these simulations, the
mirror model is assumed to be ideal, with a 100% reflectivity. The additional arrows in the figure
show at which point in the system each of the intensity distributions is from. As the light propa-
gates through free-space, notice how the beam waist expands. Also notice, how the beam waist
appears oval on the tilted 45 degree mirror. Both the cross and the bar states have less than 1dB of
loss through the free-space switching system, and fit well back into the output fiber.

When fabricating micro-mirror MEM devices for an optical MEM switch, the flatness of the
mirror is essential, since curvature and deformities can result in errors in the system. However,
curved surfaces are common in optical MEM systems, since many thin components experience an
inherent curvature due to factors including the fabrication material, the fabrication processes, and

internal residual stress. Gold is commonly used as the top material of the mirror, increasing the

reflectivity, however, this metal can still suffer from curvature probl@nsAs the size of the
mirror increases, usually so does the curvature. Many techniques are commonly practiced in
attempting to keep the mirror flat, including smaller sizes (widths and lengths) of the mechanical
pieces. Another mirror-flatting fabrication technique is to create a sandwich of polysilicon-phos-
phosilicon-polysilicon, resulting in a mirror thickness of approximatelym This structure
causes the mirror to remain rigid, even when a metal layer (Au) is added to increase the reflectiv-
ity of the mirror. However, even with these precautions, micro-mirrors can still have serious cur-
vature, and we need to be able to model its effects in our CAD system.

We next present simulations that show the effect of using curved optical components in a
micro-optical system. In these simulations, we again model reflection off of a 10x10 mm mirror,

however, we now simulate a curvature (R=1mm) in the mirror. For these examples, we assume a
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Figure48 Intensity Distributions of Propagation off a Curved Mirror

surface roughness of zero. In Figure 48, we show intensity surface and contour distributions of
light reflecting from the mirror and being detected on a 15x15 pum observation plane. The simula-
tion result at the left of the Figure 48, (A), shows the result of reflection from an ideally flat mir-
ror, as a basis for comparison. In the intensity distribution in the center, (B), the curvature is
concave (-R), so the beam starts to converge towards the focus point of the mirror (f=R/2). In the
third distribution, (C), the light strikes a convex mirror (+R), with the same degree of curvature,
resulting in the divergence or spreading of the light. The ssimulated power detected on each of
these observation planes is essentially the same, although the shape and focus (i.e., convergent or
divergent) of the reflected beam is different. These effects can cause insertion loss as the beam

propagates further down the optical path.

5.4.1.2 Dynamic Simulations  Returning to our simulation of the 1x2 switch, we next use
Chatoyant to analyze the dynamic mechanical movement of the cantilever beam on which the
mirror is fabricated. The more significant mode frequencies of the beam, including the mirror

mass, are determined to be 3.7 kHz and 27.1 kHz. These results are within 5% of the solution

given from the mechanical finite element CAD tool, ANSY S 68 For a switching speed of 400

psec, the response of the beam, in terms of the center position of the mirror from the original
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steady-state value, is shown in Figure 49 (b). The switching electro-static force applied to the
cantilever beam is aso included in Figure 49 (b), represented by the dashed line.

We next examine the optical power that is detected on a 100 um sguare observation plane at
the bar fiber. Optical intensity distributions at the observation plane are included for three points
on the response curve, labeled A, B, and C. A is when the mirror is completely inserted in the
optical path, achieving the bar state in the system. B is at the point where the mirror istotally out
of the optical path, achieving the cross state. As seen in the intensity distribution, no substantial
power reaches the bar fiber observation plane. Asthe mirror bounces, C is measured as the mirror
partially moves back into the optical path, causing some light to be reflected off the mirror and be
detected at the bar fiber. However, at thistime, the switch is set in the cross state, causing the pos-
sibility of crosstalk or the detection of a false “1” on the bar fiber. This problem is further exem-
plified in Figure 50 (a). This shows a graph of the power detected on the bar fiber ¢md (10
diameter) in terms of dB lost. As expected, the power detected corresponds to the mirror position
movement seen in Figure 49 (b). With the mirror response, @diat a power loss of only 3 dB

at the bar fiber end, resulting in 50% of the power still being detected at the bar fiber.

Center Position Of Miror

\_1
L

-

Figure49 (a) Switching System(b) Mirror Response and I ntensity Distributions (Switch-
ing Time = 400 psec)
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Thethree intensity contours for each of the points are seen in Figure 50 (b), along with acircle
drawn to represent the fiber end. For case A, the light strikes the mirror in the center and reflects
directly into the bar fiber. As seen through Figure 50 (a) and (b), the contour for A is directly on
the fiber, and we consider this full detected power (0 dB loss). For case B, the mirror is moved
totally out of the optical path, resulting in virtually no power being detected on the fiber (61 dB of
loss). However, it isinteresting to note that even though almost no power is received at the fiber
end, there is still adiffractive effect, with very low power, striking the observation plane, approx-
imately 28 um away from the fiber center. In this system, this diffractive effect is not destructive,
however, an effect like this could introduce crosstalk in larger scaled systems. For case C, when
half the optical beams reflects off the mirror, the power is still concentrated, however, it is cen-
tered 3 um from the fiber center, resulting in a 3 dB loss of power at the bar fiber end.

With the switching speed of 400 psec, it has been seen that the ringing of the cantilever beam
can deteriorate the effectiveness of the entire system. To show the switch work without the possi-
bilities of significant crosstalk between the cross and bar states, the switching time is reduced to

600 psec. The bounce of the cantilever is no longer significant, and the system experiences close
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Figure51 Mirror Response and Intensity Distributions (Switching Time = 600 sec)

to zero crosstalk, as can be seen in Figure 51. In this figure, we show the input electrical force,
seen in the upper left hand corner, and how this effects the movement of the center of the mirror.
The mirror movement is seen in the center of the figure. In the lower right hand corner, is the
optical power that is detected at the bar fiber. The ringing in the cantilever, with the slower
switching speed, no longer bounces the mirror into the optical path, and the power detected in the

bar state, even though the power should be in the cross state, is minimal (less than -25 dB).

5.4.2 Projection Display Systems Using the Grating Light Valve (GLV)

In the second example, we simulate a projection system based on the GLV component, that
was described previously in Chapter 2. Although this example clearly shows the benefit of using
a mixed-signal, multi-domain CAD toal, it also shows the advantages of using the angular spec-
trum method to solve the Rayleigh-Sommerfeld formulation. We first smulate the system with
an ideal GLV device, that is, a GLV device that ribbons move without any bending or curvature.

Thisis followed by a ssmulation of the realistic bending of the GLV ribbons, how light diffracts
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off of these ribbons, and the effect that this has on the entire system performance.

In the simulations of the GLV system, we examine one optical pixel. A projected pixel isdif-

fracted from a GLV composed of 4 ribbons, two stationary and two that are movable ®), Eachrib-
bon has a length of 20 um and a width of 5 um. Ideally, there is no gap between the ribbons,
however, in reality, agap is present and is a function of the feature size of the fabrication. This
gap can be modeled in our simulations and an example of gap size versus power efficiency will be
presented |ater.

The GLV is modeled as a phase grating, where the light that strikes the down ribbons propa-
gates ahalf of awavelength more than the light that strikes the up ribbons. 1n our model, the light
reflecting from the down ribbons are multiplied by a phase term. The phase term is similar to a

propagation term through a medium:
U down ribbon = U €xp(j2kd) , where, d is the distance that the ribbon is moved down.
Through far-field diffraction grating theory, the diffracted angle reflected from the square-

well grating is (%)

e:(:]a,

where, q is the diffraction order (O, +1, +2, +3,...), a is the period of the diffractive grating,
and® is in radians. In most diffractive gratings, all the modes are filled. However, in the case
when light is diffracted by a grating with a displacement/df resulting in a/2 optical path dif-

ference after the reflection, the diffractive interference removes all the power from the even

modes, and places the power into the odd m&des

5.4.2.1 Standard GLV Operation In the first simulation, the standard operation of the GLV is

presented. We assume an incident plane wave of greenN&gi2{ nm) striking the grating, with
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Figure52 GLV Operation (a) All Ribbons Up (b) Alter nating Ribbons Down
(c) Fraunhofer Approximation

the square-well period defined by the ribbon width, and no gap. We simulate the GLV in both
cases, that is, when al the ribbons are on the same plane and when the alternating ribbons are
moved towards the substrate a distance of A/4. In this example, the light is reflected off of the
grating and propagated 1000 pm to an observation plane. A computation window of 400x400 pm
isused, with N equal to 2048. Intensity contours of the observation plane are presented in Figure
52(a) for when the ribbons are all on the same plane, and in Figure 52(b), for when alternating rib-
bons are pulled down a quarter of the wavelength of the incident light.

Notice when the grating is in the down position, all of the power is not transferred into the
+1st diffractive modes, as other optical power is scattered between the first modes. These are

near field effects, and demonstrate that in this system, light propagated 1000 um is not in the far-

field. LightPipes (31) a2 CAD tool usi ng the Fraunhofer approximations, is also used to simulate
this example for comparison, as seen in Figure 52(c). Using the Fraunhofer technique, the near
field diffraction is incorrectly modeled, as only the far field effect of light moving into the +1st

and +3rd modes in seen.
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5.4.2.2 Simulation of the Gaps between GLV Ribbons To show system-level multi-domain

modeling and the ability to trade-off different technologies, we next examine realistic gaps

between the GLV ribbons. The gap between the ribbons is usually the feature size of the litho-

graphic tools used to fabricate the MEM S device (68) " n this simulation, we use the same setup as
before. However, this time, we simulate the normalized power efficiency captured in the 1st dif-
fraction mode for different gap sizes. We detect the power in a circle with a radius of 12.5 um
centered on the positive 1st mode. For propagation of 1000 um, the power meter is centered
approximately 52 um (2.98 degrees) away from the origin. Simulations are performed for com-
mon fabrication technologies (1.2, 1, 0.8, 0.6, 0.5, 0.35 um), defining the size of the gap between

the GLV ribbons. These results are compared with geometrical calculations of the estimate power

efficiency for ribbon gaps (68) asseenin Figure 53. The geometrical calculations were based on
the fill factor of a25 um pixel. The diffractive effects of simulating the wavefront into the near
field account for the slight differences. As seen in the previous example, all the light does not end

up in the 1st diffractive modes, and is diffracted elsewhere.

5.4.2.3 Transient Sweep of the Ribbon Movement In the next ssmulation, we perform a tran-

sient sweep of the ribbon movement, from 0 to 150 nm. Therest of the system setup is exactly the
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Figure54 Transient Analysisof Ribbon Movement and I ntensity Contours

same as before, with no gap between the ribbons. Again, we determine the normalized power
efficiency in the 1st mode, using the same technique as in the previous example. Figure 54 isa
graph that shows the simulated normalized power efficiency in the first mode. Asthe ribbons are
moved downward, more optical power is diffracted into the non-zero modes. As the ribbons
reach the A/4 point, almost all the diffractive power isin the +1st mode. Figure 54 also includes
intensity contours of selective wavefronts during the transient ssmulation, on which the detector
position is marked with a circle and hashmarks denote the center of the system. From these wave-
fronts, interesting diffractive effects can be noted. As expected, when there is little or no ribbon
movement, the al the light is in the Oth mode. With a little ribbon movement, it is interesting to

note that the Oth mode can be steered at an angle. This beam steering effect is used in systems

using similar grating technology created with multiple quantum well (MWQ) devices 69, Asthe
ribbons move downward about A/8, the energy in the +1st modes are clearly defined. Asthe grat-
ings move closer to the A/4 point, the power is shifted from the Oth mode into the +1st modes,
until thereisacomplete switch. Asthe ribbons move past the A/4 point, optical power shifts back

into the Oth mode.
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Figure55 End-to-end GLV Display Link

5.4.2.4 System-level Smulation In the next simulation, we present afull system-level example
as we expand the system to show a complete end-to-end link used in a configuration of a color
projection system. The system is shown in Figure 55. In this system, we model light, passing

through a color wheel, striking a prism, reflecting off the GLV device, past a screen, focused by a

lens, and striking a detector 69 n this system, when the GLV ribbons are all up, the screen
blocks the light's Oth mode and the pixel is not displayed. When the alternating ribbons are pulled
down, the lens focuses the light found in the +1st modes and converges them to the center of the
system, displaying the pixel. Using a spinning color wheel to change the wavelength of the inci-

dent light, aframe-sequential GLV projection system uses red (680 nm), green (530 nm), and blue

(470 nm) light on the same grating (69 Since the same grating is used for all wavelengths of
light, the grating movement is tuned for the middle frequency: 130 nm (Agreen/4). During this
simulation, we use a hybrid approach for the optical modeling. For the propagation through the
color wheel and the prism, we use Gaussian propagation. Since propagating through these com-
ponents does not diffract the beam, this Gaussian technique is not only efficient, but valid. How-
ever, as soon as the light propagates past the prism component, we switch the optical propagation

technique to our full scalar method to accurately model the diffraction off of the GLV device. The
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remainder of the simulation is propagated with the scalar technique.

We analyze the system by looking at the amount of optical power that is being received on a
centered circular detector (radius 10um) for the different wavelengths of light, since we are using
the same GLV that istuned for the green wavelength for all wavelengths. A sweep of the distance
between the focusing lens and the detector plane is simulated for 0 to 1500 um, when the GLV
ribbons are pulled down. The graph in Figure 56 shows the normalized power received on the cir-
cular detector for each wavelength along with selected intensity contours of the green wavefront
as the beam propagates past the lens. For clarity, the detector’s size and position is added onto the
intensity contours. For distances under 600 pm, the light remainsin its two positive and negative
1st modes, as the convergence of the beams has not occurred, resulting in zero power being
received on the center detector. As expected, each of the wavelengths focuses at a different rate,
as shown by each the wavelength's specific curve in Figure 56. However, it is seen that all wave-
lengths focus and achieve detected maximum power at a distance past the lens of 1000 pm, or
twice the lens focal length. At this point, all three colors project on top of each other, creating a

color pixel in the focal plane. With additional optics, this focal plane can be projected to a screen
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outside the projector. This simulation has shown that the grating, although tuned for the green

wavelength, can be used for all three wavelengths.

5.4.2.5 Electro-Static Ribbon Movement and Bending We now simulate the GLV using the
mechanica modeling support found in Chatoyant. Again, we only examine one optical pixel. In
these simulations, each ribbon now has alength of 60 um, awidth of 5 um, and a thickness of 1.5

um, for atotal GLV pixel size of 60x20 um. The ribbons are made of silicon nitrite (density 3950

Kgm3, Young's modulus 290x10° Nm3), and coated with aluminum for smoothness and reflectiv-
ity. Inthese simulations, we assume there is no gap between the ribbons.

The model of the GLV istwo fold: an electro-mechanical model simulating the movement of
the ribbons towards the substrate, and the optical model, simulating the reflection of the optical
wavefront off of the ribbons. Each ribbon is modeled as a thin cantilever beam anchored on each
end. The beam ismodeled in PWL segments, and is electro-statically attracted to the silicon sub-
strate, which is covered with 500 nm of oxide. The air gap between the ribbons and the substrate
is 0.65 um. This electro-static model is connected to the optical GLV model through a “wire”
containing the displacement of each node that comprise the model of the ribbon. A linear interpo-
lation between the nodes is required for the optical mesh points that do not fall on the ribbon's
nodes. The effect of the ribbon movement is optically modeled as a phase grating, as described
earlier in the section.

In the first simulation, the standard operation of the GLV is verified, as performed before.
Again ideal alternating flat, non-anchored ribbons move toward the substrate, however this time,
the ribbons are longer, §gn. We simulate the GLV in both cases, that is, when all the ribbons

are on the same plane and when the alternating ribbons are moved downward a distance of 130

133



1 0.4 0.8
0.8 — 03— 0.5 —
0,6 — 0,2 — 0,4 —

-0,000§, 4 -0,0008 4 -0,0002, 7
o.0fif— s ] o od—
h 0.0015 + 0.00015 0.00
0" Mode +1% Modes )
=0, 0001 —0, 0001 -0,0001
-Be-05 —~Be—05 -5e-05
) :
g . = 2 o = He 0
Be-05 Ge—05 Be-05
1e-04 1e—0d le-i4
000015 0. 00015 0.00015
nnnnnan e N | N, nnnnn b
=0, 0803 O0BB50085e-05 0 De—0Re-0K, QOOLHO00Z =i, OE02 O0BES006Fe-00 0 Se-0F e—il, 000LHO0OZ =0, 0802 008050085e-00  Se-0Ge-0d, 000LH 0002
|Close|[Hardcony]  Beam Node’s displacement snapshots
vx10 3
0.00; —\_\ Set 0
~100.00 \ /
1078

0.00 10.00 20.00 30.00 4000 50.00 60.00

Figure57 GLV Operation (a) Ribbonsall up (b) Ideal Ribbon Displacement
(c) Curved Ribbon Displacement

nm, or A/4. A optical window of 400x400 pm is used, with an optical meshing equal to 256x256.
Intensity contours of the optical waveform at the observation plane are presented in Figure 57, for
when the ribbons are all aligned, (a), and when aternating ribbons are pulled down, (b). As
expected, the output optical waveform’s height and widths are not equal. Thisis due to the total
size of the GLV pixel being 60x20 um. Notice that the optical waveform appears to be in two
lobes. Thisis anear-field optical effect of light propagating through a square aperture and dem-
onstrates that in this system, light propagating 1000 um is not in the far-field.

However, in real systems, the ribbon ends are anchored, the alternating ribbons are not flat as
they are electro-statically attracted to the substrate. The exampleis now re-simulated with realis-
tic anchored ribbons, which bend as the ribbons are electro-statically attracted to the substrate, as
can be seen in the intensity contour of Figure 57(c). The shape of the curved beam is seen below
the intensity contours in the Figure 57. Since the beam is curved from the anchors, a square well

diffraction pattern is no longer achieved, and the optical intensity contour appears to be a mix of
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the ideal cases seen in (@) and (b). The light reflecting from the center of the ribbon, which is

pulled down approximately A/4 (130 nm), creates the +1% modes. These modes are now circular,
since approximately a 20x20 pum square well is effectively created in the center of the GLV
device. Theremainder of the light reflecting off the ribbons reflects straight off the GLV and cre-
ates the light found in the 0! mode.

We now simulate the dynamic nature of the GLV system. The input signal to the system is
conditioned by a 2-stage CMOS amplifier seen in Figure 58. The input voltage is ramped
between 0 and 5 volts with a switching time of 600 usec, resulting in the output voltage applied
between the ribbons and the substrate being ramped between 0 and 12 volts. Since the ribbon
ends are anchored, the aternating ribbons are not flat as they are electro-statically attracted to the
substrate. In the simulations, the ribbon is represented by 10 equal sized segments, totaling 11
nodes. Simulation output data show the shape of the curved beams as the voltage ramped
between 0 and 12 volts. In thefirst graph of Figure 59, individual node deflection versus applied

voltage is shown. The node displacement is symmetric around the center of the beam, therefore,
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Figure59 Beam Displacement and Node Displacement vs. Voltage
only nodes on half of the beam are shown. The second graph presents the bending of the entire

beam versus input applied voltage. Note that in both graphs, the y-axis is in nanometers and the

X-axisisin microns.

Figure 60 presents three graphs presenting multi-domain simulation of the system. The first

graph shows the displacement of the center ribbon node and the input voltage with respect to time.

As expected, the driver and response of the ribbon movement causes the center node to lag behind

the electrical input due to the capacitive load and frequency response of the ribbons.

Ribbon Displacement & Input Voltage Optical Power & Ribbon Displacement Optical Power & Input Voltage vs. Time
vs. Time vs. Time 1.2E400 15
. 00E0 ‘ ‘ ‘ 15 1.2E+00 r— 0.0E+00 5 10E400 | ®
g / - LOE+00 < 2 2
£ so0E08 N | IR I v \N/ 1Y | 50E08 §|| S BOEOLH TS
£8E { X o8 Yy 15 55| £ 60E011 S
€< 10207 3 8|| % 60E0L A0E07 5¢| | B -
& 108 e N AN i N 25| g somoL—ff W\ 5 3
15°5||8 J =y 1507 | & 20801 N\ 5
-1.5E-07 2.0E-01 I \ . £
20507 \. 0 0.0E+00 ‘ — g \m% 0.0E+00 "#'—'—'—'7’ 0
ol 0 5E-04 0.001 0.002 0.002 0.003
0 SE04 0001 0002 0002 0.003 5E/04 0.091 0002 0.002 0.00
Time (s) Time ($) Time (s)
—+— Ribbon Displacement —- Input Voltage ‘ X —— Optical Pfomer - Ribbbn Displacemem‘ —— Optical Power —=- Input Voltage ‘
] I v T
R Y =Be | afte | -
w A =N i

Figure60 GLV Simulation Graphsand Intensity Contours

136



From this result, we present the second graph in Figure 60, in which we show the ribbon
movement of the center node affecting the normalized optical power captured on acircular detec-
tor (radius=10 um) placed at the location of the positive 1st diffractive mode. Asthe ribbons are
attracted to the substrate, more optical power is diffracted into the non-zero modes. Asthe center
of the ribbons reach the A/4 point (130 nm), the diffractive power peaks in the +1st mode.

Beneath this graph are intensity contours of selected wavefronts during the transient ssmulation,

along with markings of the center of the 0" mode and circular detector position. As can be seen,
the diffractive optical output isnot ideal, since the beams are curved from the anchors and a com-
plete square well diffraction pattern is not achieved, as previously seen in Figure 57. From these

wavefronts, interesting diffractive effects can be noted. As expected, when there is little voltage
applied, al the light isin the 0" mode. As the ribbons move downward about A/8 (65 nm), the
energy in the +1% modes is clearly defined. As the gratings move closer to the A/4 point, more
power is shifted from the 0" mode into the +1 modes. Asthe ribbons start to return to their orig-

inal position, the optical power shifts back into the 0" mode.

In the third graph of Figure 60, we show the applied voltage and the normalized encircled
power verses time. We show in this graph that the switching of power from the o diffractive
mode to the 1% mode occurs at around 12 volts applied between the ribbon and the substrate. In
summary, we have been able to smulate and analyze a complete optical MEM system where a
dynamic electrical input modulates a mechanical device, diffracting optical power in asinglesm-

ulation.
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6.0 SUMMARY, CONCLUSIONS, AND FUTURE WORK

6.1 Summary

In this thesis, we have determined an appropriate optical propagation technique suitable for
system-level optical micro-system simulation. The Rayleigh-Sommerfeld formulation was cho-
sen as the optical propagation modeling technique by satisfying the requirements of a system-
level CAD tool and supporting accurate modeling at small propagation distances and through
small component sizes. This technique is valid as long as both the propagation distance and the

aperture size are greater than the wavelength of the propagating light. Using a brute force direct
integration technique, the Rayleigh-Sommerfeld formulation has a computation order of O(N%).

In this thesis, we have shown how this computational order can be decreased to O(N?logN) using
the angular spectrum method, which uses the fast Fourier transform to decompose the complex
optical wavefront into plane waves, propagating from the aperture to the observation plane. Each
plane wave has a different magnitude or weight, based on its angular frequency components.
In continuous theory, the angular spectrum approach is an exact solution to the Rayleigh-Som-
merfeld technique. However, when solving for the Fourier transform using a digital computer,
errors can arise. The most common errors are aliasing and truncation, and as a general rule, these
errors can be greatly reduced, if not eliminated, by increasing the number of mesh points used in
discretizing the complex optical wavefront, or by “padding” the wavefront with zeros. Through-
out the discussion of the errors bounds in using the angular spectrum method, we presented sev-
eral examples, and showed how to reduce the errors. We also presented techniques on the

estimation of the errors that do occur in the angular spectrum technique.

138



The angular spectrum technique has been implemented in our mixed-signal, multi-domain
CAD tool Chatoyant. In this thesis, we have included simulations and analyses of two typical
optical MEM systems. The first was an optical MEM switch, where the results showed the
switching speed, and diffractive effects of using a static-electric MEMS switching mirror. We
also presented simulations that used the promising grating light valve MEM S component for dis-
play applications. We showed system-level results of using this device for a digital display pro-

jector, along with athorough analysis of the light reflecting from curved GLV ribbons.

6.2 Conclusions

From the research in this thesis, we have filled the void in the lack of a system-level modeling
tool for optical micro-systems. The key to success was determining the appropriate optical prop-
agation technique that enabled accurate yet efficient smulation of optical micro-systems. With
efficient optical propagation techniques, large mixed-signal systems can be smulated in afraction
of the time that previous single-domain simulators took, and give the accurate results that is suit-
able for optical micro-systems. Using atool, like the one presented in this thesis, system design-
ers can reduce the cost of designing, prototyping, and testing multi-domain systems.

The major contributions in this thesis have been the following:

» Determined an optical propagation technique that is valid for the system-level simula-
tion of optical micro-systemst has been determined for a system-level optical micro-
system CAD tool that the Rayleigh-Sommerfeld formulation is the most appropriate
modeling technique for optical propagation. This technique is accurate for optical
micro-systems, as its validity is limited by the requirement that the propagation dis-

tance and aperture size must be larger than the wavelength of light. Using a brute
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force integration technique, the computationally order of thistechniqueis O(N%). This

limits the interactive nature of the CAD tool.

Determined a computationally efficient algorithm for the optical propagation method.

With the angular spectrum technique, the Rayleigh-Sommerfeld formulation can be
solved exactly by using continuous Fourier transformation theory. Using the Fourier
transform reduces the complex wavefront into plane waves propagating from the aper-
ture to the observation plane. The inverse Fourier transform sums all the propagating
plane waves and produces the propagated complex optical wavefunction. With the use

of a Fast Fourier transform, the Rayleigh-Sommerfeld formulation can be solved effi-

ciently. The computational order of the technique is reduced tﬁlﬁip(INl), enabling

interactive design between the system designer and the CAD tool.

Determined the error of using the optical propagation technique and how it can be
minimized. We have shown in implementing the angular spectrum technique that
errors exist due to discrete sampling sizes of the functions (i.e., aliasing and trunca-
tion) and using a discrete Fourier transform to approximate a continuous Fourier trans-
form. However, we have presented techniques for calculating these errors, along with
techniques for reducing the common aliasing and truncation errors. We have showed

that to remove aliasing errors in most micro-optical systems, that the spatial domain

needs to be sampled by at Ie%st . We have also present a point-wise error analysis of

C

a Gaussian beanrcﬁ— Fk| == ), a optical wavefront propagating through an aperture

N

(|ck— Fk| < CWk), and a general optical wavefront propagating through a optical micro-

system [ck—Fk\ < ). In our simulations, we have normalized our input wave-

NP+

forms, therefore we determined the maximum error bounds by restrictBx0<

Implemented this research into a system-level CAD tool. We have demonstrated how

we implemented our efficient optical propagation into our mixed-signal, multi-domain
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CAD tool, Chatoyant. We presented two system-level examples. The first smulation
was an optical MEM switch. In this example, the resonance of the cantilever beam
caused light to be reflected into the wrong path. This was rectified by slowing the
switching speed of the system. The second simulation presented a system-level simu-
lation of a digital display projector using a grating light valve MEMS component.
From this, we showed the effect that realistic curved ribbons have on the performance

of the system when compared to idealistically flat ribbons.

6.3 Future Work

In this section, we discuss future work and expansions that can be built on from the work pre-
sented in thisthesis. To present the future work more clearly, we break this section into multiple

sub-sections.

6.3.1 Simulation of Large Systems

The expansion of this work starts simply enough with the modeling and simulation of larger,
more complex systems. For example, wavelength divison multiplexing (WDM) systems are a
common technique to achieve high data rates on fiber-based systems. In these types of systems,
an optical signal, containing multiple wavelengths, strikes a grating in free-space and separates
into the specific wavelengths (70) each propagating with its own complex wavefront. Each differ-
ent wavelength carries a separate signal. Not only will a diffractive wavelength grating compo-
nent have to be modeled, a optical model supporting multiple wavelengths will have to be used.

If each wavelength could be modeled separately, the angular spectrum solution of the Rayleigh-
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Sommerfeld formulation would be valid. However, the support of a multi-wavelength signal
would need to modeled by a different technique.

The support for systems with arrays of sources, such is common in micro-optical systemswith
aVCSEL array input, is being added to our CAD tool. We have two approaches for accomplish-
ing support for optical arrays. The first method models each beam of the array individualy,
which we can currently support with our angular spectrum technique. A drawback of this method
is that the model does not support the interference between the beams as they strike the observa-

tion plane. An additional disadvantage is that a separate complex wave will have to propagated

for each beam, causing the computation order of the system to increase to O(BNZI ogN), where B
is the number of sourcesin the array. The second approach uses a computation window that is
large enough to fit all the beams of the optical array. Our angular spectrum technique can be used
to model this case, as support for the beam interference is inherent to this model. However, this
technique has the drawback that the computation window size increases to capture all the beams
inthe array. Since the angular spectrum method requires even meshing across the computational
window, as the computation window size grows, so does that computation time. For the case of
VCSEL arrays, typical spot size are less than 10 um and the beams are spaced on the array by 250
um. Therefore, to retain the sampling accuracy for each optical beam, the entire computational
window needs to be sampled at that rate. This problem could be solved with uneven meshing in

the computation window, which is not supported by the angular spectrum method.
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6.3.2 Limitations of the Rayleigh-Sommerfeld Technique

Future work is required to determine exactly under what circumstances the Rayleigh-Som-
merfeld formulation becomes invalid. Recall the Rayleigh-Sommerfeld technique is limited by
the propagation distance and the aperture sizes must be “much larger than” the wavelength of
light. There has been some early results determining exactly what propagation distances and
component sizes constitute “much larger than” the wavelength of light. Component sizes and

propagation lengths that are too small for valid Rayleigh-Sommerfeld propagation through dif-

fractive optical elements (DOE) have been reporte@l?n This research is important to deter-
mine where our optical propagation technique will become invalid in free-space systems, and
when full vector solutions will be required.

As optical micro-systems continue to shrink and transition into nano-systems, propagation
distances and the component sizes become smaller than the wavelength of light. It is our belief
that supporting systems on the nano-scale is the future trend that system-level CAD tools, like
Chatoyant, will take. Therefore, with the systems shrinking is size towards the nano-scale, the
process to find an appropriate optical modeling technique will begin again. Our initial thought is
that vector solutions will be required. This is typically computationally intensive, since we are
meshing not only the x-y plane, but also the third dimension. However, since the propagation gap
is on the scale of nano-meters, the meshing in the third propagation dimension will be less prohib-

itive as it was for micro-systems.
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6.3.3 Continued Error Analysis

In future efforts, we would like accomplish two major additions to strengthen the error bounds
presented in thisthesis. Thefirst isto better define the constant C in our error analysis. With the
normalization of the functions and the goal to find the maximum value of the error bound, we
have avoided explicitly calculating the value of C. To more clearly define C, further investigation
into the convergence of the Fourier series is required. A second way to strengthen the error
bounds isto have a sense of the error that occurs by propagating plane waves from the aperture to
the observation plane. Thiserror will be dependant on the distance the plane waves propagate to
the observation plane and the angle in which they strike the observation plane.

In other future error analysis efforts, we would like to add a completely automated error
reduction and computation within our system-level CAD tool. Currently, the user needs to mini-
mize aliasing and truncation by simulating the system and inspecting both the spatial and the fre-
gquency domains. We would like to include in our error analysis algorithm an automated aliasing
check, implemented by comparing the ends of the function in the frequency domain to ensure an
essentially bandlimited function. Also, the algorithm would approximate the Nyquist frequency
and determine the appropriate sampling size to reduce aliasing. From these determinationsin the
frequency domain, corresponding corrections in the window size and sampling points can be
implemented, and the system would be re-simulated, checking again for aliasing. An automatic
truncation test could be implemented by checking the ends of the function as it is returned to the
gpatial domain by the inverse Fourier transform. |If the ends are both approaching zero, within
some established tolerance, the signal can be considered untruncated. However, if thisis not the

case, changes to the original sampling and window sizes would be performed, and the system
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would be re-simulated. The only negative aspect to this automatic error checking isthat it would
add to the simulation time of the system evaluation. However, if efficiency is not a concern, an

error algorithm with the proposed suggestions would benefit the user.

6.3.4 Angular Spectrum Support for Curved Surfaces and Surface Roughness

In the thesis, we showed our extensions to the direct integration technique of the Rayleigh-
Sommerfeld formulation to support slightly curved surfaces. We would also like to implement
this support in the angular spectrum method, since if we currently want to simulate these effects,
we have to use the slower direct integration method. We believe that if the aperture surface and
the observation surface are both curved with the same radius, the angular spectrum technique, as
IS, could work. Itiscurrently not clear how the angular spectrum technigque would support optical
propagation from a planar surface to one that is curved.

To support surface roughness in the angular spectrum technique, one can consider running
simulations without a surface roughness analysis, as shown in this thesis, and approximate the
power that islost through surface roughness after the simulation. The power loss would be deter-
mined by a complete and detailed study of light scattering off of rough surfaces using full EM

vector solutions. From this a statistical value of the amount of optical power that is lost with a

specific surface roughness could be calculated (72 Therefore, probability distributions for the
amount of power lost due to scattering are pre-calculated, and added at the end of the simulation.
This alows atypical simulation to proceed, for example, with an ideal flat mirror, and at the end
of the simulation, the insertion loss analysi s uses the pre-determined surface roughness loss value.

However, while the technique would work well for ssmple calculations of insertion loss, it would
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not be good for calculations of crosstalk or back scattering. For those analyses, propagating a

complex wavefront of the scattered light thought the system is necessary.

6.3.5 Verification

One of the greatest challenges of the work presented here is experimentaly validating our
results and calculating the error margin throughout the system-level simulation. Asis the case
with many new technologies, experimental results for optical micro-systems are difficult to
obtain. For example, there are no established “benchmarks” for optical MEM switches. There
are two factors limiting the amount of experimental results. The first is that results from system
level fabrication and testing is not overly abundant, as the cost and time to accurately design, fab-
ricate, and test is very high. This illustrates the motives behind creating a system-level modeling
tool such as Chatoyant. The second factor is that if the system is fabricated and tested, commonly
in industry, much of the information is not available to the general public due to the company’s
desire to market the product and not share their trade-secrets with possible competitors. Verifying
our models is an important part of the CAD design process and where we have the least informa-
tion.

Therefore, our remaining future work is to verify this work though experimental data. Data
could be obtained from different sources. We could design and fabricate some simple optical

MEM devices, and characterize light reflecting and diffracting from these components. We are

also part of a DARPA consortiuf®®, in which we hope to get experimental data from military

optical micro-system applications that we can compare with our simulations.

146



6.3.6 Future Work Summary

The future of optical micro-systemsis bright. More universities and companies are designing
mixed-signal, multi-domain micro-systems to perform a variety of applications. The need for a
CAD tool to support system-level simulation isamust for these optical micro-systemsto advance
and grow as quickly as integrated circuits did in the previous 30 years. As the constant desire to
make systems faster, cheaper, and smaller drive the industry, CAD tools are required to adapt to
new technologies. A concern for an optical modeler is that as systems continue to shrink to the
nano-scale, new optical models in terms of propagation and components will need to be sup-
ported. Inthat case, the search for an appropriate optical modeling technique to support these sys-

temswill begin again.
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