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DELINEATION OF IN-VITRO SPINAL KINETICS USING A ROBOTICS-BASED
TESTING SYSTEM

Amy L. Loveless, M.S.

University of Pittsburgh, 2003

Delineation of the load-displacement characteristics of osteoligamentous spinal
specimens has become fundamental to the investigation of spinal biomechanics. Traditionally,
in-vitro kinetic parameters of the spine have been obtained through flexibility tests employing
open or closed loop “load control” methods, or stiffness tests employing “displacement control”
methods—each control method having attendant advantages and disadvantages. On the other
hand, the combination load control and displacement control methods into a new, “hybrid
control” method have advantages over load control or displacement control alone. Further,
physical evidence such as presence of certain receptors suggests that the human body may

employ a type of hybrid control method in the control of spinal movements.

In the present study, a robotics-based spine testing system with hybrid control was
developed to delineate the in-vitro kinetics of lumbar spine specimens. The testing system was
validated experimentally using a physical rigid-body-spring model of a spine specimen, as well
as analytically by computer simulations in Matlab. For systematic study, the two components
making up a hybrid control algorithm were analyzed separately: the outer “displacement

control” loop, and the inner “load control” loop. The outer loop applies a rotation (e.g.,
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flexion/extension) to the specimen, while the inner loop minimizes unwanted coupled forces

(e.g., anterior/posterior shear and axial tension/compression).

The performance of existing standard hybrid control algorithms was tested in terms of a
number of parameters, including peak force, work done to a specimen, and number of iterations.
Based on these tests, a number of proposed changes to improve algorithm performance were
identified. Updating the user-defined center of rotation (COR) to reflect a specimen’s COR was
found to improve performance of the displacement control part of the hybrid control algorithm,
while using a more completely populated stiffness matrix improved performance of the load
control part. The re-combination of the displacement control and load control loops into the
fully constituted hybrid control algorithm revealed interesting interactions between these control

components that suggest a basis for spinal dysfunction.

v



ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Lars G. Gilbertson, for all his help and guidance
over the past two years. He was always willing to answer my questions and steer me in the right
direction (and take people from the lab to Peter’s for a much needed break!). I would also like to
thank Dr. Pat Smolinski for ALL his help with simulation issues. I want to thank Kevin Bell.
He was one of the first friends [ made in Pittsburgh and we worked very closely together on the
robot (good old Stuart). He, along with the rest of the Ferguson Lab, made Pittsburgh an
enjoyable place to work and live. And last, but certainly not least, I want to thank my parents,
Chuck and Wanda Loveless, and my fiancé, John Arthur, for listening to all my whining and
complaining over the last two years. I guess now I’ll just have to find something else to whine
and complain about. I would have made my thanks much longer, but you all know I’'m not good
with the mushy stuff. I trust that you know how much I appreciate everyone without having to

read it.



TABLE OF CONTENTS

LIST OF TABLES ....auuoiitiieiinuinseinenssicsensesssisssssssssssssssssssssssssssssssassssssssssssssssssssssssssssssssssssass ix
LIST OF FIGURES ..cuuuuiiiiiiniiiinnnnniicssssnnicsssssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss X
NOMENCLATURE.....cuuiuiitiiinsninsninsenssecssissssssessssssassssessssssssstsssssssssssssssssssssssssssssssssssssssssssesns Xvi
1.0 INTRODUCTION....couiiruirvensuicsenssesssnsssssesssnsssssssssessssssssssssssssssssssssssssssssssssssssssssssssssassass 1
1.1 Overview of Clinical Problems of SPINe ..........ccccoevieiiiiiiiiiiieiieeieeeeee e 1
1.2 Spinal “Stability” vs. “INStability™.........ccciiiiiiiieiiierieee e 1
1.3 In-Vitro Studies of Spinal KinetiCs........cceeeiiiiiiiieeiiieeiiieeiee et 2
1.3.1 Controversy: Load Control vs. Displacement Control ............ccceeveevirienienennicnnenne. 3
1.3.2 Hybrid COntrol....c.cieiiiiiieiieeie ettt et ebe e aeeensee e 4

2.0 BACKGROUND ....ccoviirinninsnissesssnssssssassssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 6
2.1 Structure of Osteoligamentous Lumbar SPine...........cceccveeeiiieeiiieiciieeieeeeeeeee e 6
2.2 Application of Hybrid Control to In-Vitro Biomechanical Testing ..........c.cccccceceevuennens 8
2.2.1 Displacement Control LOOP ......cceriiriiiiriiniiiinieitetee et 8
2.2.2  L0ad CONIOL LOOP...cuiiiiieiiieiieeiie ettt ettt ettt ettt eteeaeesebeesaeenseeneeenne 9

3.0 SPECIFIC AIMS AND HYPOTHESES......ccoonnitiennnnnniicsssnricsssssssecssssssessssssssssssssssssse 11
3.1 SPECIIIC ATM 1 o et e et e e e e ar e e eaaeeenaeeenaeesnneeas 11
3.2 SPECIIC AT 2 .ttt et sttt 11
3.2.1  SPECIIC ATM 28..cuuiiiiiiiiieiieiie ettt ettt et e et e et e sbeesaeeenbeensaeenseens 11
3.2.2 SPECIIC ATM 2D .oouiiiiiiiiiicieeee ettt ettt e et e e beesaeeebeesaeennaen 12

4.0 DEVELOPMENT OF ANALYTICAL PLATFORM........ccccvviinvvrrescnrcscnercssanscsnsees 13
4.1 Description of General Rigid Body-Spring Model...........ccccoceviiiinininiiniiiecnene 14
4.2 General Closed FOrm SOIUtION ......cceeruiiiiiiiniiiieiierieeieeereee et 16
4.2.1 Homogeneous Transformation of (xyz) with Respect to XYZ .......ccoocoorvvuerrinneee. 17
4.2.2  Homogeneous Transformation of (xyz), ., with Respectto XYZ .......ccccccoovveeeee.. 18
4.2.3 Homogeneous Transformation of (xyz), with Respect to (xyz) ., coereeerriverriennce. 19

vi



4.2.4 Homogeneous Transformation of (xyz), ., With Respect to (xyz), o werrresrrrennce. 20
4.2.5 Homogeneous Transformation of (xyz), ., with Respectto XYZ ........cccooorrvvnnece. 23
4.2.6 Homogeneous Transformation of (xyz), with Respect to (xyz), ¢, «ooervererrieerriennee. 23
4.2.7 Homogeneous Transformation of (xyz), with Respect to XYZ ......cccooocoorrvrerrinneee. 24
4.2.8 Homogeneous Transformation of (xyz) =~ with Respect to (xyz), w.ooevverrrveerrinnnee. 25
4.2.9 Homogeneous Transformation of (xyz) ~with Respect to XYZ ......cco.ccooovvrerrnnneee. 26
4.2.10  Homogeneous Transformation of (xyz) with Respect to (xyz), cocooorreeerreeneee. 27
42.11  Homogeneous Transformation of (xyz) with Respectto XYZ .......cccoccourveeneee. 28
4.2.12  Homogeneous Transformation of (xyz)j with Respectto XYZ ....cccocveivenninen. 29
42.13  Homogeneous Transformation of (xyz)i with Respect to (Xyz),, ooevvvvrrveenneee. 30
42.14  Homogeneous Transformation of (xyz)j with Respect to (Xyz). coovverrverrrinneee. 31
4.2.15  Change in Length of Spring Attached to Node i and Fixed Node j........c..cccoeu.e. 32
4.2.16  Loads on Rigid Body Due to SPring i .......c.ccccceveereeiinieniinieniineeieeeeseeeeeens 33
42.17  Global Stiffness MatriX, K .......c.ccccoovivieiiiiiiiieeeeiieee et e e 37
4.2.18  Work Done on Rigid Body by Spring i, Potential Energy in System.................. 40
4.3 General Closed Form Solution Applied to Rigid Body-Spring Model ........................ 40
5.0 DEVELOPMENT OF EXPERIMENTAL PLATFORM. ........cccccettttttieeeeeeeeeeeneeeceneenes 46
5.1 Description of Robotics-Based Spine Testing SyStem ..........cceecveviieriienieeniienieeieene 46
5.2 COMMUNICALION......teutte ittt ettt ettt ettt et et e eab e e bt e sab e e bt e sabeenbeesabeesbeeeareesaees 51
53 UFS Calibration .......coo.eiiiieiiiiiee ettt st 53
5.4  Manipulator Accuracy and PreciSion........cocueevieiieiiiiiiiienieeieee e 59
5.5  Homogeneous Transformations Defined for Robot Testing System............cccccueennennee. 65
5.5.1 Homogeneous Transformation of (xyz), ., with Respect to (xyz),,¢ «ooveeerrvverrenne. 65
5.5.2 Homogeneous Transformation of (xyz), ., with Respect to XYZ ......cc..coovvvunrrenne. 66
5.5.3 Homogeneous Transformation of (xyz), .. with Respect to (xyz),, cooveoerreeerreene. 67
5.5.4 Homogeneous Transformation of (xyz), with Respect to (xyz) ..oovveerrveerrieerreene. 68

Vil



5.5.5 Homogeneous Transformation of (xyz), with Respect to (xyz), . -wvvrrverrrverrnenn. 69
5.5.6  Homogeneous Transformation of (xyz), with Respect to (xXyz),, werrverrrverreenn. 70
5.5.7 Homogeneous Transformation of (xyz), with Respect to XYZ ........cccooomrrvrnrnenne. 71
5.5.8 Homogeneous Transformation of (xyz), with Respect to XYZ ........cccovvrmrrvrnrrenne. 72

6.0 APPLICATION OF ANALYTICAL PLATFORM TO DEVELOPMENT AND

TESTING OF NEW CONTROL METHODS .....ccuueviiniiruicsnsecssissenssecssnsesssecsssssesssssssssssssae 74
6.1 Displacement Control Loop of Hybrid Control Algorithm ...........cccceeciiniininiinniencns 80
6.2  Load Control Loop of Hybrid Control Algorithm............cccoecuieviiiniiiiiiniieiieieeiene 108
6.3 Improved Hybrid Control AlgOrithm............cccueeiviiiiiiiiiiiiciieciecee e 124

7.0 DISCUSSION ..uiiiiruiirensecsnissesssecssnssssssessssssesssesssssssssssssssssssssssssssssssssssssssassassssssssssssans 128
7.1 SUMIMATY ...ttt sttt et st e e b st e e s eeee 128
7.2 Limitations and FUture Work........c.ccooeeiiiiiniiiiiiecceee e 129
7.3 CONCIUSION ..ttt ettt ettt e s ee 131

APPENDIX A cuuiiiuiiiinensnicssisseissecssissesssesssssssssssssssssssssesssssssssssesssssssssssssssssssssssssssssssssssssssssans 133

NN i i D0 D] . G 168

BIBLIOGRAPHY ...cuuuiuiiuiniiiinsuinsnnsisssisssnssssssnsssssssssssssssssessssssssssssssssssssssssssssssssssssssssssssssssss 238

viil



LIST OF TABLES

Table 1 Tabulated results of simulation sets 5a and 5b showing range of peak force (in
Newtons) and average number of force minimizing iterations for the current method (no
COR update), post hoc update of COR and feedback update of COR ............ccoeurennnnnee. 108

Table 2 Tabulated results of simulation set 6 showing average number of force minimizing
iterations for the current method (diagonally populated stiffness matrix), proposed method
#1 (apply two perturbations parallel to global X and Y axes), proposed method #2 (apply
two orthogonal perturbations in global XY -plane), proposed method #3 (constrain force
minimizing translations to stairsteps parallel to global X and Y axes) and proposed method
#4 (constrain translations as in method #3 and apply one orthogonal perturbation).......... 124

Table 3 Tabulated results of simulation set 7 showing range of peak force (in Newtons) and
average number of force minimizing iterations for the current hybrid control algorithm (no
COR update and diagonally populated stiffness matrix) and the new hybrid control
algorithm (feedback COR update and fully populated stiffness matrix calculated using
METNOA #3) 1.ttt e et eaa e e be e st e eraeeabeenbeennes 127

X



Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

LIST OF FIGURES

Idealized load-diSplacement CUIVE ..........ccciieiiieiiieiieeie ettt 4
Osteoligamentous functional spinal unit (FSU) .......cccooieviiiiiiiniiiieieeeeeeeee, 6
ISB spine joint coOrdinate SYSLEIM .......cccueeriieriieiiieiieeteesiie ettt e et siee et eseeeeaeeas 7
Panjabi spine coordinate SYStEM........cccvieiiuiieriiieeriieeciee ettt e s 8
Rigid body-spring mMoOdel..........cccueiiiiiiiiiiiiieeee e 14
General rigid body-spring model...........ccooviieiiiiiieiieeiieeeceee e 15
Homogeneous transformation of (xyz) , Withrespect to XYZ ..o 18
Homogeneous transformation of (xyz)T s Withrespect to XYZ ..o 19
Homogeneous transformation of (xyz) , With respect to (xyz)T (5 e 20
Homogeneous transformation of (xyz), ., with respect to (xyz) . ooverrierrennnenn. 22
Homogeneous transformation of (xyz), with respect to (xyz). . worereeeriereerireneens 24
Homogeneous transformation of (xyz), with respect to XYZ ......cccccoovvvrrinrrinnnnne. 25
Homogeneous transformation of (xyz)l_ , With respect to (xyz) g e 26
Homogeneous transformation of (xyz)i , Withrespect to XYZ ..o 27
Homogeneous transformation of ( xyz)i . with respect to (xyz) e 28
Homogeneous transformation of (xyz)” with respect to XYZ ....ccooeviveiiiniiiiies 29
Homogeneous transformation of (xyz)j with respect to XYZ ....cccooviiiiiiiiiiiieie 30



Figure 18 Homogeneous transformation of (xyz)j with respect to (Xpz). woorvveerriierriieniinnnee. 31
Figure 19 Homogeneous transformation of (xyz)j with respect to (Xyz). wooevviereiieriiierinnee. 32
Figure 20 Force-couple €qUIVALENLT ..........ccuiiiiiiiiieiieie ettt ettt seae e 34
Figure 21 (a) force due to spring i at position 0, (b) equivalent force-couple system at position
0ttt ettt ettt h et e a e bt et e e a e e bt en b e ea e e bt enteeh e e bt en b e ehe e bt enteentebeenteeneenee 35
Figure 22 (a) force due to spring i at position 1, (b) equivalent force-couple system at position
OSSPSR PRSPPI 36
Figure 23 General rigid body-spring model............cccooiiiiiiriiiiiinieeee e 41
Figure 24 Matlab rigid body-spring model.............ccooiieiiiiiiiiiiiiiieieee e 42
Figure 25 Matlab physical rigid body-spring model.............ccoooiiriiiiiiiiiiieeeee e, 44
Figure 26 Specimen fixtures in teSting SYStEIM ......cccuviierieeeriieeiieeeieeeeieeeeieeeereeesaeeesveeesnseeens 48
Figure 27 RobotiC/UFS testiNg SYStEIM .....ccccuviieiiiieeiiieiiieeeiieesieeesieeesveeeeaeeeeeeessaeessseeessneeenns 49
Figure 28 Data flow in teStING SYSIEIM ....eevuiiiiiieiiieiieeieeite ettt ettt e eaeeteeeveeaeessneeneees 52
Figure 29 Plot of output from UFS y -axis and z -axis force channel vs. UFS orientation (® )
when UFS is rotated in 1° increments about its x axis (with nothing attached) .................. 54
Figure 30 Plot of known applied weight vs. UFS digital output...........ccceevveeeiiieeiiiencieeeieeens 54
Figure 31 Plots of average Fy and Fz error vs UFS orientation ...........ccccoeceeverieniencnnienienenne 56
Figure 32 Plot of UFS measured F), force vs. known F, fOrce.......ccoooviiniinninninninnns 57
Figure 33 Plot of UFS measured F, force vs. known F, force........cccocvvenenenceeviinicncncncnenne. 58
Figure 34 Position error, as measured by an external dial gauge, is a linear function of the
weight on the end-effector (blue line). This error may be corrected for (magenta line). .... 63
Figure 35 The ratio between the prescribed displacement of the end-effector and the actual
displacement is 1:1, as measured using a dial gauge. .........cccceevieeiiieiiiiiieiieeee e, 64
Figure 36 The ratio between the prescribed displacement of the end-effector and the actual
displacement is 1:1, as measured using the robotic controller............cccccoceeveriiniineniennne. 65

xi



Figure 37

Figure 38

Figure 39

Figure 40

Figure 41

Figure 42

Figure 43

Figure 44

Figure 45
Figure 46
Figure 47
Figure 48

Figure 49

Transformation of (xyz), . With respect to (Xyz),,.¢ corrrvrerrrrrrieeriiieriiesciesiines 66
Transformation of (xyz)TCS with respect to XYZ ....oooviiiiiiiieeeee e 67
Transformation of (xyz),.. With respect to (Xyz),,.¢ coorrererrerrrieeriiieriiierieseienes 68
Transformation of (xyz). with respect to (Xpz ), wovvveerreierrieeriieniiieciseses 69
Transformation of (xyz) with respect to (Xpz), . wwveorrrvorrimreriiereiiecisecieerenes 70
Transformation of (xyz), With 1eSpect t0 (Xyz), ¢ wrvrerrererresrriserriieriiseciieseienns 71
Transformation of (xyz), with respect t0 XYZ .........covvvvrvvorriieriierisess 72
Transformation of (xyz)l_ with respect to XYZ ....oooviiiiiiiiieee e, 73
Hybrid control floWChart ..........c.coooiiieiiieeiece e e 75
Validate Matlab simulations for rigid body-spring model ..............cccccvveeviiencrieennnenn. 78
Characterize rigid body-spring model in displacement control.............ccccceeervenenee. 79
Characterize rigid body-spring model in load control...........cccoceveeviinieniiieneenennee. 79

Comprehensive results showing validation of general spring model for translation of

center of bar without any rotation (simulation set 1a). (a) grid of points in the global XY -
plane that the center of the bar was translated to (b) force acting on bar in global X
direction (outcome 4a). (¢) force acting on bar in global Y direction (outcome 4b). (d)
resultant force acting on bar in global XY -plane (outcome 4c). (e) moment acting on bar in
global Z direction (outcome 4d). (f) potential energy in system (outcome 5). (g)-(i) global
stiffness terms (OULCOMES GA-0C). .....cccuvieeiurreeiiieeiiieeeitieeeieeeereeesbeeesaeeessseeessseeessseeesseesnnes 82

Figure 50

Comprehensive results showing validation of general spring model for rotation of

center of bar about same grid of points shown in Figure 49, ® = ¢ =30° (simulation set
1b). (a) force acting on bar in global X direction (outcome 4a). (b) force acting on bar in
global Y direction (outcome 4b). (c) resultant force acting on bar in global XY -plane
(outcome 4c¢). (d) moment acting on bar in global Z direction (outcome 4d). (e) potential

energy in system (outcome 5). (f)-(h) global stiffness terms (outcomes 6a-6c¢)..................

Figure 51

84

Comprehensive results showing characterization of general spring model in

displacement control for @ = ¢ =1° (simulation set 2a). (a) force acting on bar in global X

direction (outcome 3a). (b) force acting on bar in global Y direction (outcome 3b). (c¢)

Xii



resultant force acting on bar in global XY -plane (outcome 3¢). (d) moment acting on bar in
global Z direction (outcome 3d). (e) potential energy in system (outcome 4). (f)-(h) global
stiffness terms (OULCOMES 52-5C). c.uviviuiiriiiiieiieeiieeieete et e ere et e sve e e sbeesaeeebeensaesnnaens 86

Figure 52 Representative data showing that the force resulting from rotation about a non-
preferred COR can be relieved by translating the center of the bar to the origin (simulation
SEE 2X ) euuttteeeeiteeeeesteeeeeetteeeeetaeee e e e ta—eeeaaaa—aae e e t——aeeaaa—aaeeaaataeeeaabateeeaabaaeeaaaaaaeeaaraeeeeannraaaann 87

Figure 53 Representative data for full characterization of the general rigid body-spring model
during displacement control (simulation set 2b) (a) rotated about the true COR located at
(0,0) in the global XY -plane in ¢ =1° increments up to ® =30° (b) the top row of this plot
shows the resultant force acting on the bar after each incremental rotation (outcome 3a), the
middle plot shows the moment acting on the bar after each incremental rotation (outcome
3b) and the bottom plot shows the potential energy in the system after each incremental

rotation (outcome 4) (¢) global stiffness terms plotted over total rotation angle (outcome 5)
............................................................................................................................................... 89

Figure 54 Representative data for full characterization of the general rigid body-spring model
during displacement control (simulation set 2b) (a) rotated about a COR located at (-30,-60)
in the global XY -plane in ¢ =1°,0.5°,0.25° increments up to ® =30° (b) the top row of

this plot shows the resultant force acting on the bar after each incremental rotation (outcome
3a), the middle plot shows the moment acting on the bar after each incremental rotation
(outcome 3b) and the bottom plot shows the potential energy in the system after each
incremental rotation (outcome 4) (¢) top plot of (b) reproduced, resultant force on bar after
each rotation decreases for decreasing rotation increment (d) global stiffness terms plotted

over total rotation angle (OULCOME 5)....ccueiriiiiiiiiiieiieeiierie ettt et beestaeenseens 90
Figure 55 Spiegelman and W00 ..........cociiiiiiiiiiiieieeeee ettt 92
Figure 56 Challis......cccooiiiiiiiii ettt 94

Figure 57 Evaluation of proposed changes to displacement control (calculate preferred COR)
............................................................................................................................................. 100

Figure 58 Representative data for characterization of performance of three different methods of
calculating the preferred COR, rotated about a COR located at (-20,20) in the global XY -
plane in ¢ =1° increments up to @ =30°, plots show the error vs. rotation angle for

conditions set in simulation set 4a (top left plot), simulation set 4b (top right plot),
simulations set 4c (bottom left plot) and simulation set 4d (bottom right plot) ................. 101

Figure 59 Representative data for characterization of performance of three different methods of
calculating the preferred COR, rotated about a COR located at (-60,60) in the global XY -
plane in ¢ =1° increments up to @ =30°, plots show the error vs. rotation angle for

conditions set in simulation set 4a (top left plot), simulation set 4b (top right plot),
simulations set 4c (bottom left plot) and simulation set 4d (bottom right plot) ................. 102

xiil



Figure 60 Evaluation of proposed changes to displacement control (update COR)................. 104

Figure 61 Representative data for characterization of performance of two different methods of
updating the user-defined COR as compared with keeping the COR fixed locally
(simulation sets 5a and 5b), rotated about a COR located at (-60,60) in the global XY -plane
in ¢ =1° increments up to @ =30°, the left column shows data using the post hoc method
of updating the COR, the right column shows data using feedback to update the COR, the
top row of plots show the peak force (in Newtons) created during rotation about the COR
vs. rotation angle (outcome 1), the middle row shows the number of iterations required to
minimize force vs. rotation angle (outcome 2) and the bottom row shows the potential
energy (in Newton-mm) in the system vs. rotation angle (outcome 3).......ccceceveereenennne. 106

Figure 62 Representative data for characterization of performance of two different methods of
updating the user-defined COR as compared with keeping the COR fixed locally
(simulation sets 5a and 5b), rotated about a COR located at (-20,-40) in the global XY -
plane in ¢ =1° increments up to @ =30°, the left column shows data using the post hoc
method of updating the COR, the right column shows data using feedback to update the
COR, the top row of plots show the peak force (in Newtons) created during rotation about
the COR vs. rotation angle (outcome 1), the middle row shows the number of iterations
required to minimize force vs. rotation angle (outcome 2) and the bottom row shows the
potential energy (in Newton-mm) in the system vs. rotation angle (outcome 3) ............... 107

Figure 63 Representative data for full characterization of the general rigid body-spring model
during load control (simulation set 3), ¢ =1° increments up to ® =30°, the top row of the

plots show the distance (in mm) of the final force minimized position from the true force
minimized position (the global origin) vs. rotation angle (outcome 1), the middle row shows
the number of iterations required to minimize force vs. rotation angle (outcome 2) and the
bottom row shows the potential energy in the system after each rotation (outcome 3) (a)
rotated about a COR located at (-60,0) in the global XY -plane (b) rotated about a COR
located at (10,20) in the global XY -plane...........cccovveeiieiiiiiieiiecieceecee e 110

Figure 64 Evaluation of proposed changes to load control.............cccceeeieriieiiiniiienieieeee 114

Figure 65 Values of K,, for different calculation methods (a) analytical solution (b) using

current method (c¢) using proposed method #1 (d) using proposed method #2 (e) using
proposed method #3 (f) using proposed method #4...........cccoeeiieiiieiiiieiiinieceeee e 117

Figure 66 Values of K,, for different calculation methods (a) analytical solution (b) using

current method (c¢) using proposed method #1 (d) using proposed method #2 (e) using
proposed method #3 (f) using proposed method #4...........cccooiiiiiiiiiiiiiee e, 119

Figure 67 Values of K,, for different calculation methods (a) analytical solution (b) using

current method (c¢) using proposed method #1 (d) using proposed method #2 (e) using
proposed method #3 (f) using proposed method #4...........cccoeviiiiiiiiiiiiieeeece e 121

X1V



Figure 68 Force created during rotation is minimized by using the current diagonal stiffness
TIIALTLX ¢ttt ettt ettt ettt et e ae e e bt e bt e at e s bt et e e et e e et e bt et ea e eh e et e a e bt bt eateeb e e bt et eatenhe et e naeenee 122

Figure 69 Representative data for characterization of performance of four different methods of
calculating the fully populated stiffness matrix as compared with the current diagonal
stiffness matrix (simulation set 6), rotated about a COR located at (0,-60) in the global XY -
plane in ¢ =1° increments up to @ =30°, the left column shows the distance (in mm) of
the final force minimized position from the true force minimized position (the global origin)
vs. rotation angle (outcome 1), the middle column shows the number of iterations required
to minimize force vs. rotation angle (outcome 2) and the right column shows the potential
energy (in Newton-mm) in the system vs. rotation angle (outcome 3), the top row of plots
shows results for proposed method #1, the next row shows results for proposed method #2,
the next row shows results for proposed method #3 and the bottom row shows results for
Proposed METhOA H#4 ......c.eeiieiie ettt e e e e e e e aae e eraeeenaee s 123

Figure 70 Evaluation of new hybrid control algorithm..............ccccveviiiiiiiniiniicie e, 125

Figure 71 Representative data for characterization of performance of new hybrid control
algorithm as compared with the old algorithm (simulation set 7), rotated about a COR
located at (0,20) in the global XY -plane in ¢ =1° increments up to ® =30°, the top row of

the plot shows the peak force (in Newtons) created during rotation vs. rotation angle
(outcome 1), the second row shows the number of iterations required to minimize force vs.
rotation angle (outcome 2), the third row shows the distance (in mm) of the final force
minimized position from the true force minimized position (the global origin) vs. rotation
angle (outcome 3) and the bottom row shows the potential energy (in Newton-mm) in the
system vs. rotation angle (OULCOME 4). .....cccuievvieriieiiieeiieiie ettt ere e ese s 126

XV



NOMENCLATURE

ABBREVIATIONS

TCS = tool coordinate system

UFS = universal force-moment sensor
COORDINATE SYSTEMS

XYZ = global coordinate system

(xyz) , = local coordinate system of moveable rigid body M at position 0, before rigid

body rotation/translation

(xyz)1 = local coordinate system of moveable rigid body M at position 1, after rigid

body rotation/translation

(xyz), ., = tool coordinate system at position 0
(xyz),., = tool coordinate system at position 1

(xyz) , =local coordinate system of node i at position 0
(xyz)l_1 = local coordinate system of node i at position 1
(xyz)j = local coordinate system of node ; (fixed)

¢ = incremental rotation of rigid body M about COR

dx,dy =rigid body translation of moveable rigid body M

0, = orientation of (xyz)0 with respect to XYZ

XVi



O.or = orientation of (xyz) . with respect to XYZ

TCSO0

0, = orientation of (xyz)  with respect to (xyz), and (xyz) with respectto (xyz),

d i

0, = orientation of (xyz)j with respect to XYZ

X0°7Y

P,,,P,, = position of (xyz)o with respect to XYZ
COX ;,COR, = position of (xyz) .. (and (xyz). . ) with respect to XYZ

TRANSFORMATIONS FOR RIGID BODY ANALYSIS

T3 = transformation of (xyz), with respect to XYZ

T,<" = transformation of (xyz) . with respect to XYZ

TCSO

Tyeso = transformation of (xyz), with respect to (xyz), .,

TCs1
T

7cso = transformation of (xyz), .. with respect to (xyz)

TCS1 TCSO

TCS1
T,

e with respect to XYZ

= transformation of (xyz)TCS1

Tyesy = transformation of (xyz), with respect to(xyz). .

T, = transformation of (xyz), with respect to XYZ

T," = transformation of (xyz) ~with respect to (xyz),

Ty = transformation of (xyz), = with respect to XYZ
T!" = transformation of (xyz)  with respect to (xyz),

T; = transformation of (xyz) with respect to XYZ

T] = transformation of (xyz)j with respect to XYZ

T = transformation of (xyz)j with respect to (xyz)

Xvil



T, = transformation of (xyz), with respect to (xyz),

TRANSFORMATIONS FOR ROBOTIC SYSTEM

T} = transformation of TCS with respect to the base (global) robot coordinate system

T,)xs = transformation of TCS with respect to UFS coordinate system
T = transformation of UFS coordinate system with respect to base coordinate system
T, = transformation of point of interest on superior vertebra with respect to UFS

coordinate system

T = transformation of point of interest with respect to base coordinate system
T, = transformation of point of interest with respect to centroid of superior vertebra

T = transformation of centroid of superior vertebra with respect to base coordinate

system

T,.s = transformation of centroid of superior vertebra with respect to UFS coordinate

system

xviil



1.0 INTRODUCTION

Delineation of the load-displacement characteristics of osteoligamentous spinal
specimens has become fundamental to the investigation of spinal biomechanics and is key in
understanding the effects of spinal pathologies and their clinical treatments. In the following
sections, the basis for hybrid control as a testing algorithm is presented, as well as an
examination of the two distinct loops of the general hybrid control algorithm our lab has chosen

to employ.

1.1 Overview of Clinical Problems of Spine

Spinal disorders arising from injury, degeneration, aging or other causes is an expansive
and expensive problem. Back pain is the second most prevalent reason for a physician visit, with
nearly 13 million visits made annually specifically because of low back pain." An estimated
$20 billion is spent annually in medical expenses directly related to low back pain.”’ Treatments
are far reaching, from a period of rest followed by a return to normal activities to chiropractic
visits to surgery. For possible future clinical treatments of degenerative disc disease, research is

being done to test the effectiveness of gene therapy.”®

1.2 Spinal “Stability” vs. “Instability”

With severe degeneration or injury, one or more spinal segments can become unstable.

There is no consensus on the definition of clinical instability, but many have offered their



opinions. Wyke described instability as abnormally large intervertebral motions that result in
deformation to neural elements or abnormal deformations of the segment’s soft tissue (as cited in
Panjabi”), while White and Panjabi © define it more specifically as “the loss of the ability of the
spine under physiologic loads to maintain its pattern of displacement so that there is no initial or

additional neurological deficit, no major deformity, and no incapacitating pain”.*”) Panjabi

“4)
conceptualized the spinal stabilizing system as consisting of three subsystems: passive
(osteoligamentous spine), active (muscles and tendons), and control (neural elements and central
nervous system). It has further been hypothesized that the neural control subsystem receives

both position feedback and force feedback from various transducers located within the ligaments,

tendons, and muscles, hence the spine may operate in some form of hybrid control mode.

1.3 In-Vitro Studies of Spinal Kinetics

Delineation of the load-displacement characteristics of osteoligamentous spinal
specimens has become fundamental to the investigation of the biomechanics of the spine.
Traditionally, in-vitro kinetic parameters of the spine have been obtained through biomechanical
tests that are based on either the “flexibility method” or the “stiffness method”.© In flexibility
tests, loads (i.e., forces and moments) are applied singly”™® or in combination® to the free end of
a spinal specimen and the resulting unconstrained three-dimensional displacements (i.e.,
translations and rotations) are measured. In stiffness tests, displacements are applied and the
resulting loads are measured."*'" Kinetic parameters obtainable by these types of tests include
specimen flexibility/stiffness coefficients useful for characterizing the biomechanics of the

intact, injured, and stabilized spine.



An impetus behind the use of hybrid control for testing spinal kinetics is the controversy
surrounding use of load-control versus displacement control methods for the biomechanical

(13) \as that a

testing of spinal specimens''?. The underlying hypothesis of work done previously
combination of load control and displacement control methods within a hybrid control method

would offer advantages over either load control or displacement control methods alone for the

delineation of the highly nonlinear spinal kinetics.

1.3.1 Controversy: Load Control vs. Displacement Control

(7,8,14-24) (25-27)

In addition to testing machines and devices for measuring loads and

displacements'' %"

, in vitro biomechanical testing of the spine requires implementation of a
control method to govern the application of loads/displacements to a specimen. Flexibility tests
employ open or closed loop “load control” methods, while stiffness tests employ “displacement
control” methods. The relative advantages and disadvantages of load control and displacement
control methods for the biomechanical testing of spinal specimens have been discussed by Goel
et al."?. From a control perspective, it is apparent that load control is less appropriate than
displacement control in low stiffness regions of the load-displacement curve such as the neutral
zone (NZ) because large changes in displacement can occur with little or no change in applied
load (Figure 1). On the other hand, displacement control is less appropriate than load control in
high stiffness regions such as the elastic zone (EZ) because large changes in load can be
produced by small changes in applied displacement. For the in-vitro biomechanical testing of
spinal specimens, therefore, load control and displacement control methods are complementary

(in that one method or the other is viewed as being more applicable in certain regions of the load-

displacement curve).



Displacement

Figure 1 Idealized load-displacement curve

1.3.2 Hybrid Control

Hybrid control methods are a class of control algorithms that would appear to offer a
potentially useful alternative to load control or displacement control for the biomechanical
testing of spinal specimens. A hybrid control method combines aspects of load control and
displacement control methods to achieve a new, “hybrid” method that is better suited to a
particular application than either load control or displacement control alone. In the classical
robotics literature, a rigorous formulation of the hybrid force/position control method has been
performed by Raibert and Craig®?. Hybrid control methods have been applied previously to the
multi-DOF (degree-of-freedom) biomechanical testing of musculoskeletal joints (such as the
knee) using a robotic/UFS (universal force-moment sensor) testing system>>®. Of particular
interest are the hybrid control algorithms described by Fujie et al.®? and Doehring 13 that enable
the inherently position-controlled robot to achieve specified load targets in an iterative manner
through incrementally applied displacements. At each position along the path of motion, the
algorithm evaluates the relation between the change in specimen position (i.e., displacement) and

the change in UFS-measured loads, and uses this relation to plan the application of the next



incremental displacement to achieve specified load targets. Control is thus based on the stiffness
of the specimen, and because the stiffness estimates are regularly updated along the path of
motion, this control algorithm appears to be well suited for delineation of the highly nonlinear in

vitro kinetics of the spine throughout its entire range-of-motion.



2.0 BACKGROUND

2.1 Structure of Osteoligamentous Lumbar Spine

The function of the osteoligamentous spine is threefold: “(1) transfer the weights and the
resultant bending moments of the head, trunk and any weights being lifted to the pelvis, (2) allow
sufficient physiologic motions between these three body parts and (3) protect the spinal cord
from injury”.”® The structure of a single functional spinal unit (FSU) is shown in Figure 2. The
two bony vertebral bodies are separated by an intervertebral disc. The nucleus pulposus is the

gelatinous center of the disc. The anulus fibrosus contains the nucleus with concentric layers of

collagen.
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Figure 2 Osteoligamentous functional spinal unit (FSU)

3-dimensional joint motion is generally described as a combination of translations and
rotations along and about a set of axes. The ISB recommends defining a nonorthogonal joint
coordinate system based on the work of Grood and Suntay, in which two of the axes are defined

using anatomical landmarks and the third “floating” axis is perpendicular to the first two.*”>"



As applied to spinal motion segments, the e, axis is parallel to a line connecting similar
landmarks on the bases of the right and left pedicles and points to the right, the e, axis passes
through the centers of the upper and lower endplates and points cephalad and the e, axis is
perpendicular to ¢, and e, (Figure 3). Flexion/extension is about the e, axis, left and right
lateral bending is about the e, axis and left and right axial rotation is about the e, axis. The ISB

also recognizes Panjabi’s coordinate system. As shown in Figure 4, the x axis points left, the
v axis points cephalad and the z axis points anterior. Flexion/extension is about the x axis,
lateral bending is about the z axis and axial rotation is about the y axis. Our lab has chosen

Panjabi’s coordinate system to report data in for ease of comparison with other studies.

Figure 3 ISB spine joint coordinate system



Figure 4 Panjabi spine coordinate system

2.2 Application of Hybrid Control to In-Vitro Biomechanical Testing

In the following paragraphs, representative limitations of displacement control and load

control methods are contrasted with some of the apparent advantages of hybrid control methods.

2.2.1 Displacement Control Loop

A recognized limitation of displacement control methods for the biomechanical testing of
spinal specimens is that rotational displacements are often prescribed about a fixed axis that is
not the specimen’s preferred axis of rotation—thereby resulting in large, “unphysiological”
coupled loads“?. A specimen’s preferred axis of rotation is, of course, not known a priori, and a
further complication is that the location of the preferred axis is not constant but changes
throughout the path of passive motion. The hybrid control algorithm as described previously"”

mitigates this problem by permitting an adaptive, “floating” axis of rotation, as follows. The

flexion/extension rotation increments applied within the applied rotation loop of the hybrid



control algorithm are prescribed about an axis perpendicular to the sagittal plane that passes
through the user-specified center of rotation (COR), or the origin of the robot’s tool coordinate
system. If the user-chosen COR is not the specimen’s preferred COR, the rotation does not
result in the desired pure moment. Any coupled sagittal plane forces arising from an incremental
rotation about this axis are relieved within the force minimization subroutine of hybrid control by
incremental translations of the end-effector—automatically changing the location of the COR
globally. Thus, following each applied rotational displacement increment, the axis of applied
rotation moves incrementally to a position wherein residual coupled sagittal plane forces are
minimized. The user-defined COR is not allowed to move with respect to the specimen’s

coordinate system, therefore, the COR is locally fixed.

2.2.2 Load Control Loop

A recognized limitation of load control methods for the biomechanical testing of spinal
specimens is the difficulty of maintaining testing conditions in the neutral zone because the
displacements can change with no change in the load input."'” When open-loop load control
tests are performed, the neutral zone is defined by the resting position of the specimen after the
application of a series of loads in the degree-of-freedom of interest®— thus kinetics of the
specimen within the neutral zone are not actually delineated. When closed-loop load control
tests are performed, low stiffness of a specimen can put a high demand on the response
characteristics of the control system — requiring the testing machine to respond to load control
commands quickly, over long distances.*" Unanticipated delays or overshoot are potential
sources of load artifact generated by the response characteristics of a testing machine in a load

control mode.®" The hybrid control method described previously' is based on the stiffness of



the specimen, and because the stiffness estimates are regularly updated along the path of motion,
the robotic/UFS testing system with hybrid control is able to adapt to the extreme range of
stiffnesses presented by the highly nonlinear FSU—from near-zero stiffness in the “neutral zone”
to high stiffness with facet joint contact and at the extremes of the “elastic zones.” To simplify
calculation of the local specimen stiffness matrix, only the diagonal terms of the matrix are
calculated; the off-diagonal terms are set to zero. Delineation of the load-displacement response
of specimens can be achieved throughout the entire flexion/extension range-of-motion—
including the region of least stiffness or “neutral zone,” the regions of increasing stiffness or
“elastic zones,” and the transition between these regions.

As mentioned above, the user-defined COR remains locally fixed. However, clinical data

@D The amount of

shows that the COR moves within the specimen during flexion/extension
movement of the COR depends on the degree of flexion/extension and the extent of disc
degeneration. An algorithm that does not account for this requires more iterations to minimize
force during load control because the peak force may be higher than if the COR were allowed to
move locally. In addition, setting the off-diagonal terms of the stiffness (flexibility) matrix to
zero ignores the coupled stiffness terms. This attributes all the change in force in a certain
direction to the translation in that direction, but the specimen is a highly complex, coupled

system. To investigate the possibility of improving the current hybrid control algorithm, three

specific aims will be accomplished.

10



3.0 SPECIFIC AIMS AND HYPOTHESES

3.1 Specific Aim 1

Develop analytical testing platform. This platform can be applied to testing control
algorithms using well-defined rigid body-spring model of a lumbar functional spinal unit (FSU).
Develop experimental testing platform. This platform may be used to experimentally test spinal

specimens.

3.2 Specific Aim 2

Apply these platforms to the development of testing of new control methods. New

control methods consist of changes to both the displacement control and load control loops.

3.2.1 Specific Aim 2a

To improve the displacement control loop, two methods of updating the user-defined
COR are proposed. To calculate the preferred COR, three methods found in the literature will be
investigated: Spiegelman and Woo0*?, Crisco et al.*”) and Challis*?. The first proposed method
of updating the COR is a post hoc update in which the preferred COR will be calculated and
stored for replay during the next flexion/extension cycle. The second proposed method is using
feedback to update the COR. The preferred COR will be calculated every n degrees and updated
for use during the next n¢ degrees. It is hypothesized that allowing the COR to move locally will
decrease the force resulting from rotation about a COR other than the preferred one, thereby

reducing the number of iterations required to minimize force.

11



3.2.2 Specific Aim 2b

To improve the load control loop, the stiffness matrix will be fully populated. Three
methods of calculating the full stiffness matrix are proposed to accomplish this. The first method
is to perturb the rigid body in two orthogonal directions at each position, calculating all four
terms in the 2x2 stiffness matrix. The second method is to limit the translations to the force
minimized position in a stairstep fashion, calculating three terms in the 2x2 stiffness matrix at
each position. The third method is a combination of the first two: three terms in the 2x2 matrix
are calculated at each position by limiting the translations, while the fourth term is found by
perturbing the rigid body after translating it. It is hypothesized that using a fully populated the
stiffness matrix to calculate the translation necessary to minimize force will reduce the number
of iterations required to reach the force minimized position and provide a more accurate
description of specimen stiffness. The proposed methods of calculating the full stiffness matrix
were based on the knowledge that the full matrix could not be calculated using one translation or
perturbation, covered in more detail in section 6.2, and the hypothesis that the values of the terms

in the matrix may be closely approximated using small perturbations or small translations.

12



4.0 DEVELOPMENT OF ANALYTICAL PLATFORM

The rigid body-spring model used experimentally is shown in Figure 5. Even though our
rigid body-spring model is quite simple, it still exhibits complex, nonlinear behavior as a real
specimen does. It was shown previously!'? that the model exhibits load-displacement
characteristics with distinct neutral and elastic zones, analogous to a lumbar FSU. This thesis
shows the nonlinearities present in load and stiffness data for our model and how the hybrid
control algorithm handles such nonlinearities. Friis™ and Wilke“® are developing more
sophisticated lumbar spine models. Our rigid body-spring model is used to validate experimental
protocols. An analytical solution to the rigid body-spring model is thus needed to validate
experimental results. This platform also provides a framework for formulating new clinical
hypotheses, for example, a specimen with a painful (or injured) structure may minimize
something other than force after the displacement control loop. Perhaps the specimen’s natural
reaction is to minimize the work done. To develop the analytical solution, a general rigid body-

spring model consisting of two rigid bodies and one spring is presented.

13



Figure S Rigid body-spring model

4.1 Description of General Rigid Body-Spring Model

Suppose there is a spring, spring i, connecting two rigid bodies (Figure 6). One rigid
body (rigid body M ) is allowed to move globally and the other (rigid body F') is fixed in space.
As rigid body M rotates and translates away from its equilibrium position, forces and moments
due to spring i are created. We confine the rigid body-spring model to planar motion, so there

are three degrees of freedom: a rotation about the z axis and two translations in the xy -plane.

In order to fully describe the model’s kinematics and kinetics, three points are defined. The

origin of a local coordinate system, xyz, is defined on rigid body M at some point P. One end

of spring i is connected to rigid body M at node i, the origin of coordinate system (xyz) . The

i

14



other end of the spring is connected to rigid body F atnode j, the origin of coordinate system

(xyz)j . The homogeneous transformation describing the position and orientation of (xyz)i with

respect to xyz is constant throughout rigid body motion. If the body is not rigid, then the
transformation is not constant. In this case, individual nodes must be tracked or deformable
body principles must be applied to correct for rigid body deformation. Point P is the same thing

as a node, but for clarity later, it is differentiated from the other nodes by calling it a point.

Figure 6 General rigid body-spring model

The general rigid body-spring model can be likened to a lumbar FSU. The rigid body M

represents the superior vertebra and rigid body F' represents the inferior vertebra. Point P

15



represents the center of the superior vertebra, node i represents a point on the superior insertion

site of a ligament, node ;j represents a point on the inferior insertion site of the ligament and

spring i loosely represents the ligament itself. More complex representations of ligaments are
available in the literature, but our interest lies in developing the general rigid body-spring model
kinematics for an n (linear elastic) spring system, leading to analytical expressions for the loads
and stiffness coefficients developed during general rigid body motion. Additional nodes on
either vertebra may be defined. For example, suppose we want to define more nodes on the
insertion sites of a ligament as a better approximation of ligament deformation. The only
restriction on defining nodes is that they are confined to the vertebra they are measured with
respect to, i.e., nodes on the superior vertebra must be measured with respect to the superior

vertebra’s coordinate system because of the rigid body assumption.

4.2 General Closed Form Solution

Movement of nodes, including point P, and all loads are referred to the global coordinate
system for purposes of simulation. Nodal displacements and loads may be reported in any
coordinate system, for example, the rigid body’s local coordinate system, as is done
experimentally. Because the coordinate system set at the COR is will be allowed to move both
locally and globally (discussed in later sections), loads and displacements should not be reported
in this coordinate system. To describe rigid body motion and the resulting loads, several
homogeneous transformations must be known. In the following transformations, the subscript is

the coordinate system that the superscript coordinate system is measured with respect to, for

example, T, is the transformation of frame B with respect to frame 4. Also, the convention

16



R d
T} = {0 [0] 0 [ ]} is used, where [R] is the rotation matrix describing the orientation of

frame B with respect to frame A4, [d ] is the position vector describing the distance from the

origin of frame A to the origin of frame B measured in frame 4 coordinates and the row vector

[0 0 0 1] is added for mathematical convenience.
4.2.1 Homogeneous Transformation of (xyz)0 with Respect to XYZ

At initial position 0, before rigid body motion, point P is denoted F,.

¢ —Sq¢ 0 Ry
TGO: s¢ ¢ 0 R, ’

0 1 0

0 0 1

where (F,,, £, ) is the initial global position of P, and 6, is the initial orientation of

(xyz), with respect to XYZ (Figure 7).
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Figure 7 Homogeneous transformation of (xyz) , With respect to XYZ

4.2.2 Homogeneous Transformation of (xyz) with Respect to XYZ

TCSO

Experimentally, the COR is the origin of the robot’s tool coordinate system (TCS). For

development of the general rigid body-spring model, the coordinate system (xyz) cop 18 used

interchangeably with (xyz) .. At position 0, the COR is denoted COR, .

7CS *

Ccor “Scor 0 CORyy
TS0 _ Scor Ccon 0 CORyy
¢ 0 0 1 0o |
0 0 0 1

where (COR,,,COR,, ) is the initial global position of COR, and 6, is the initial

orientation of (xyz), .. with respectto XYZ (Figure 8).

TCSO

18



Y1eso Xpegpe”
Ocor

X

Figure 8 Homogeneous transformation of (xyz) with respect to XYZ

TCSO

4.2.3 Homogeneous Transformation of (xyz) with Respect to (xyz)_ .

TTOCSO = (TGTCSO )_1 T(?

See Figure 9.
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Figure 9 Homogeneous transformation of (xyz), with respect to (xyz),

4.2.4 Homogeneous Transformation of (xyz) . with Respect to (xyz)

TCS1 TCSO

Cy =S, 0 dx
77est _ S, ¢ 0 dy
Y lo 0 100

O 0 0 1

At position 1, after rigid body motion, the TCS 1is denoted 7CS, . During the

displacement control loop, the rigid body rotates about the COR by ¢ degrees, but does not

translate (Figure 10). Hence, frame 7CS, rotates about its origin with no translation:

(dx, dy) — 0. During the load control loop, the rigid body translates by (dx, dy) , but does not

20



rotate: ¢ — 0. We can think of the relationship between frame 7CS and frame P as an
imaginary rigid link. If point P translates by (dx, dy) , then so does the COR. (dx, dy) can either

be added to (P, P,) and (COR,,COR, ) or equivalently it can be inserted into Ty (cx, dy)

TCcSO
is inserted in 7,5 for consistency. Now that (dx,dy) has been used here, it is not used

elsewhere.
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generalized planar motion

Yrcso

XTCso

pure rotation pure translation

Yreso
Yrcso X1Cs1

Figure 10 Homogeneous transformation of (xyz)

with respect to (xyz)

TCS1 TCSO
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4.2.5 Homogeneous Transformation of (xyz) . with Respect to XYZ

TCS1

Because the relationship between frame P and frame 7CS is constant, the global
position of the COR must be updated to reflect changes in position of point P (Figure 10).

TCS1 __ pTCSOpTCS1
TG _TG TTCSO

4.2.6 Homogeneous Transformation of (xyz) with Respect to (xyz).

As noted above, the relationship between frame P and frame TCS is constant.

Therefore, (xyz), has the same relative position and orientation from (xyz), .. as (xyz), has

TCS1

from (xyz) . (Figure 11):

TCSO

Tl — TO

TCS1 TCSO *
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Figure 11 Homogeneous transformation of (xyz), with respect to (xyz),

4.2.7 Homogeneous Transformation of (xyz)l with Respect to XYZ

At final position 1, point P is denoted £ .

Cos Sy 0 Ay
) C 0O P
TG1 = TGTCSITTICSI = g¢ (C);¢ 1 (I)Y s
0 0 0 1

where (B, B, ) is the global position of £, and G¢ = 6,; + ¢ is the orientation of (xyz)1

with respect to XYZ (Figure 12).
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Figure 12 Homogeneous transformation of (xyz), with respect to XYZ

1

4.2.8 Homogeneous Transformation of (xyz) with Respect to (xyz),

i0

Now that the global position of point P is known before and after rigid body motion, the
resulting global motion of node i is considered. The following transformations are easily
extended to any number of nodes on rigid body M . Note that because the position and

orientation of node i remains fixed relative to xyz, there is no subscript on i, and i, to

differentiate between position 0 and position 1.
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]
S = O O

where (ix,iy) is the local position of node i and 6, is the orientation of (xyz)l_ with

respect to xyz (Figure 13).

X

Figure 13 Homogeneous transformation of (xyz) =~ with respect to (xyz),

i0
4.2.9 Homogeneous Transformation of (xyz) , With Respect to XYZ

i

The global position and orientation of node i at initial position 0 is described by

Cei —Sa 0 oy
A . Ky c.. 0 i
TIO — TOTzO — Gi Gi ()4 ,
¢ e 0 0 1 0
0 0 0 1
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where (io Iy ) is the initial global position of node i and Gi =6, +6, is the orientation

of (xyz)l_ , Withrespect to XYZ (Figure 14). Even though the position and orientation of node i

remains fixed locally from position 0 to position 1, its global position changes.

Figure 14 Homogeneous transformation of (xyz) , With respect to XYZ

i

4.2.10 Homogeneous Transformation of (xyz) with Respect to (xyz),

i

Because of the rigid body assumption, the position and orientation of (xyz) , with respect

to (xyz), is the same as (xyz) = with respect to (xyz), (Figure 15). Therefore,

i

il _ i
=T,
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Figure 15 Homogeneous transformation of (xyz)  with respect to (xyz),

i

4.2.11 Homogeneous Transformation of (xyz) , with Respect to XYZ

i

The global position and orientation of node i at position 1 is described by

Coig Scig 0 iy
. . S, Cn, 0 1
wenm =y 0|

0 0 0 1

where (i,,,i,, ) is the global position of node i at position 1 and Gig =0, +6, +¢ is the

orientation of (xyz) with respect to XYZ (Figure 16).

i
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Figure 16 Homogeneous transformation of (xyz) , With respect to XYZ

4.2.12 Homogeneous Transformation of (xyz)j with Respect to XY/

The global position and orientation of frame j on the fixed rigid body is known through

transformations similar to those shown above. For simplicity, the transformations leading to the

global position and orientation of node ;j are not shown. Experimentally, we must solve for

these coordinates using coordinate transformations. In simulations, we can define the global

coordinates of frame ;j and bypass the transformations necessary to calculate them.
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¢, —=s; 0 Jjy
i = s; ¢ 0 Jy
1o o 1 o

0O 0 0 1

where (., j, ) are the global coordinates of node j and 6, is the orientation of (xyz)j

with respect to XYZ (Figure 17).

Figure 17 Homogeneous transformation of (xyz)j with respect to XYZ

4.2.13 Homogeneous Transformation of (xyz)j with Respect to (xyz)

In order to fully define the loads acting on the rigid body due to spring i, we must know

the line of action of spring force. At any position of rigid body M , the direction of spring force

30



is along a line between nodes i and ;. Therefore, the transformation between frame i and

frame j must be known. At initial position 0,
. A1 .
1) =(12) " 12,

See Figure 18.

Figure 18 Homogeneous transformation of (xyz)j with respect to (xyz)

4.2.14 Homogeneous Transformation of (xyz)i with Respect to (xyz)

il

At position 1,

1 =() 1.

See Figure 19.
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Figure 19 Homogeneous transformation of (xyz)j with respect to (xyz)

4.2.15 Change in Length of Spring Attached to Node i and Fixed Node j

To find the loads acting on rigid body M , we must know the elongation of spring i, ..

The length of spring i at the initial position is the magnitude of the position vector of T}/, |I,,

1

b

defined in the (xyz) , coordinate system. The elongation of spring / at the initial position is

i

0, = ‘ZO‘ — ¢, ,where ¢, is the resting length of the spring. The length of spring i at the final

32



position is the magnitude of the position vector of T/, |/,

il »

, defined in the (xyz), coordinate

i

system. The elongation of spring i at the final position is J,, = ‘Zl ‘ -/, .

4.2.16 Loads on Rigid Body Due to Spring i

The total force acting on rigid body M at node i due to spring i at the initial and final

positions are f,, and f,,, respectively.

fzo = ki5i0 ‘;_0‘
i0

]711 = ki5i1 % >
il

where k. is the spring constant of spring i. f,, and f, are known in the (xyz), and

(xyz)i1 coordinate systems, respectively, because /,, and , are defined in those coordinate
systems. We want to know f,, and £, in the global coordinate system, so we use

transformations to convert them to the global coordinate system.

(F;‘) )X ce; —Sg O (f’o )i0x
(F;o v Sei Cq O (f’o)ioy
0 0 0 0
(?1 )x Coip ~Scip 0 ( :“ )ilx
(E'l )Y =56y Caig O ( il )ﬂy )
0 0 0 1 0

where f,, and f, are broken into local x and y components and F,, and F, are broken

into global X and Y components.
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If the force acting at node i due to spring i, £, is replaced by an equal force acting at

point P, a couple M, is necessary to make sure the external effects of the original force on rigid

body M are not changed (Figure 20).

Figure 20 Force-couple equivalent

If F,, acts at point P,, M,, = R,,x F,,, where R, is the position vector of 7"

transformed into the global coordinate system (Figure 21).
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Figure 21 (a) force due to spring i at position 0, (b) equivalent force-couple system at position
0

If F, acts atpoint P, M, = R, x F,, where R, is the position vector of 7, transformed

into the global coordinate system (Figure 22).

Co —Sgs O |1,
Ry=\565 <5 O30,
0 0 11]0
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Figure 22 (a) force due to spring i at position 1, (b) equivalent force-couple system at position
1

To break forces and moment at points £, and F, into global X and Y components,

where i, j and k are unit vectors in the global X', Y and Z directions, respectively.

The forces and moments acting on the rigid body due to springs i =1,2,...,n may be summed to

find the total loads on the body: F = ZE M = 2]\7[[ .
i=1 i=1
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4.2.17 Global Stiffness Matrix, K

After developing the analytical solution for loads arising from rigid body motion, it is

necessary to find the analytical solution for the global stiffness matrix for use during load

control. The analytical equations for each term in the matrix are valid at any position of rigid

body M even though the values of the terms are only valid over small ranges of motion.

Consequently, translations of rigid body M during load control should be limited because the

calculated displacement depends on local stiffness values. A large translation may move the

rigid body outside the region of constant local stiffness. We take the partial differential of the

analytical expressions for F,, F, and M, with respectto P,, P, and P, to find the global

stiffness matrix, K :

Ky Ky Ky

K=Ky K, Ky

Ky Ky Ky
| OF, ©oF, OF,
AF, AP, oP, 0P, OPF,
AF Loxdap Lo oF, OF, OF,
AMYZ - AP; oP, 0P, 0P,
oM, oM, oM,
0P, 0B, OP,

X

Y (»

[

where P, and P, are the global coordinates of point P at any position of rigid body M ,

P, is the orientation of xyz with respect to XYZ at any position and F, , F, and M, are the

total force and moment acting on rigid body M at any position.

Ren et al.*” also used partial derivates to calculate the tangent stiffness matrix for their

rigid body-spring model. They used three rigid bodies connected by springs that were allowed to
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translate and rotate in the XY -plane. Rigid body e was connected to rigid body e+1 by three
springs: an axial spring (spring constant K ), a shear spring (spring constant K ) and a bending
spring (spring constant K’ ). These spring constants were collectively referred to as K, .
Similarly, rigid body e—1 was connected to rigid body e by three springs with spring constant
K, ,. They developed equations to describe the sum of the forces and moments acting on rigid
body e and took the partial derivatives of these expressions with respect to the translational and
rotational motion of the centroid of each rigid body to find the tangent stiffness matrix. They did
not make any assumptions while developing their analytical stiffness matrix, so their method is

completely general for any planar rigid body motion. Their method is very similar to what is

done above. An axial spring connects two rigid bodies between node j, located on a fixed rigid
body (e—1), and node i, located on a rigid body (e) that is allowed to move in the same plane
as that in Ren et al. In this case, we are only concerned with spring K, and the moveable rigid

body e, so the partial derivatives simplify to the above expression.
To simplify the partial derivatives, several constants are defined:
cl=jy—i *cos@+i, *sinb,

2= j,—i,*cosf—i *sinb,

c3=0,+¢,
c4=jy— By,
c5S=j,—Fhy.

The stiffness matrix is symmetric, so K,, =K ,,, K,, =K,, and K,, =K,,. The terms

in the stiffness matrix are then:
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ke, (2R,

K, = k

[(cl—PX ) +(c2-P, )ZT/Z )

kl,(c1-P)(c2—F,)

[(c1-P,) +(c2-R) ]

Ky =Ky =~ 32

. . .2 ) . . . .
P P l, (—05+1),CG¢ +leG¢)(—lx -1, +(c4z)C +cSzy)cG¢ +(051X —C4ly)SG¢)
Xz — y-G¢ x°G¢

. . 2 . . 2 3/2
((—05 +i,C55+ le0¢) + (c4 —iCoyt lySG¢) )

2
K, - kt,(c1-Py) i

[(c1-P,) +(c2-P, )ZT/z i

l, (c4—ixchj +inG¢)<—1f —ij +(c4ix +cSiy)cG¢ +(cSiX —C4iy)SG¢)

Ky, =k| —icgy+i,5645+ 7

2 2
((—05 +1,C55+ lst¢) + (04 —i.Coyt lySG¢) )

oo k., ((—cSix + c4iy)cG¢ + (c4ix +c5i, )SG¢ )2

zz

. . 2 . . 2 3/2
((—CS +1,Cq4 +1st¢) +(C4—GCG¢ +zysG¢) )

+k((—c4ix—c5iy)cG¢+(—05ix+c4iy)sG¢) 1- i

2 2
\/(—05 +1,C5 +1st¢) +(c4—1xcG¢ +zysG¢)

Because only planar translations are considered during the load control loop, a 2x2

stiffness matrix used.
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4.2.18 Work Done on Rigid Body by Spring i, Potential Energy in System

The magnitude of the force exerted on the rigid body by spring i is F, =—k,0,. Fora

5

conservative force, such as a spring force, the potential energy is U (5)=U (4,) —J‘ F(8')ds'.

(50
By plugging in the equation for spring force, we can solve for the potential energy of spring i:

PR I T o
Ui(5.):Ui(d0)—j —k5'dS =U, +—k6 ——k,5,, . If we do not make any simplifications to

o 2 2
this equation, we must know U, for any value of 0,,. To simplify the equation for potential in

spring i we arbitrarily set 5, =0. Then U,, =0 because there is no potential energy when the
spring is at its resting length. We are then left with U, (5,) = %klﬁf. For a spring, work is equal
in magnitude and opposite in sign to potential energy:

1

W.(5,)=W,(5,)+ IZO ~kodo=W, —%kl.é'f "‘%kﬁi) , or after simplification: W, (5, )= —%klb‘f :

For an n spring system, the total potential energy is U = ZU ; (5[) and the total work done to

i=l1

the rigid body is W = Zn: W,(8,). Both forms of U,(6,) and W,(5,) (simplified or not) give the

i
i=1

same results, so the simplified form should be used because it requires less computation.

4.3 General Closed Form Solution Applied to Rigid Body-Spring Model

The general rigid body-spring model used for simulations is shown in Figure 23 and
Figure 24. This model is obviously different than the physical rigid body-spring model shown

in Figure 5. Point P is at the center of the bar and is the origin of the bar’s local coordinate

40



system, xyz. Two nodes are defined on the bar for each attachment site of each spring. Node a

is at the left side of the bar and is the origin of coordinate system (xyz)a. Node b is at the right
side of the bar and is the origin of coordinate system (xyz) ,- The positions and orientations of

(xyz)a and (xyz)b are described with respect to xyz. The length of the bar is 2L . For spring a,

the resting length is ¢, the equilibrium length is 7, and the spring constant is k,. For spring

ar

b, the resting length is 7, , the equilibrium length is 7, and the spring constant is k,. The

system is conservative.

ka I L I‘ L I kb
AN\~
a P b
| l
la | A Ib
Y
A
Yia Ya Yo Yb Yio

Figure 23 General rigid body-spring model
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Figure 24 Matlab rigid body-spring model

For convenience, ¢, =¢, , { ,={,,, k, =k, and all coordinate systems are aligned at
the equilibrium position, i.e., 6; =6.,, =6, =6, =0. After one displacement control loop,

0; =0c0r =¢ and 6, =60, =0. After n displacement control loops, 6; =6, = n¢ and

6, =06, =0. In the equilibrium position, the XYZ and (xyz) , coordinate systems are coincident
at point P,. Therefore, T is a 4x4 identity matrix. This is only true at the equilibrium

position. After one incremental rotation, (xyz)1 is rotated by ¢ degrees from XYZ and the

origins are offset by an amount due to the rotation. In atest, g =¢, dx =dy =0 for the

displacement control loop and ¢ =0, dx =dx and dy =dy for the subsequent load control loop.
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1 00 -L 1 0 0 —(L+0,)
0O 1 0 O . 01 0 0
Fornode a, T =T" = and T)' = . Fornode b,
0 0 1 0 0 1 0
0 0 O 0 0 O 1
100 L 10 0 L+t
01 0 0 ‘ 010 0
T =T" = and T =
0 01 0 0 0 1 0
0 0 0 1 0 0 0 1

The “physical” rigid body-spring model is shown in Figure 25. This model is used to
collect simulated data for comparison with experimental data. To make comparisons, we take
some measurements of the physical spring model. First, we measure the resting length of each

spring using calipers. ¢, =49.53 mm for spring a (the blue spring). /¢, =74.57 mm for

spring b (the red spring). We also use calipers to measure the equilibrium length of each spring

when they are in the physical spring model. For spring a, ¢, =59.23 mm. For spring b,
l,, =84.40 mm. The radius of the disc was measured with calipers as L =28 mm. We use
Adobe Photoshop 6.0 to find 6, the angle that the local x, axis makes with the global X axis:

6, =70°. Now the positions of all nodes can be defined.
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Figure 25 Matlab physical rigid body-spring model

For simplicity, we set 6., =6, =6, =0. After one displacement control loop,
0, =70°+¢, 0.0, =¢ and 6, =60, =0. After n displacement control loops, 6, =70°+ng,

Ocor =n¢ and 6, =6, =0. In the equilibrium position, the XYZ and (xyz) , coordinate systems

1 0 0 -28
01 0 O
are coincident at point P,. Fornode a, T;" =T," = and
0 01 O
0 0 0 1
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1 0 0 —29.84 1 0 0 28
101 0 -81.97 o o |01 0 0
T = . Fornode b, I)" =T = and
0 0 1 0 001 0
0 0 0 1 00 0 1
[1 0 0 3845
. |0 1 0 105.63
T = .
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When the springs are inserted into the physical spring model, they are elongated. This
means that there is some initial tension in each spring, but the system is in equilibrium because
the pretension in one spring negates the pretension in the other spring. No forces or moments
should be created when the robot is initially attached to the model. After zeroing out bolt-up
loads and loads due to the fixture (stainless steel disc, nuts, bolts, screws, etc.), the UFS will
show that no other external loads are acting on it. When the robot applies a rotation/translation,
the UFS will show the loads exerted by the model due to the motion; the UFS will not show the

initial pretension in the equilibrated system.
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5.0 DEVELOPMENT OF EXPERIMENTAL PLATFORM

Use of a robotics-based testing system allows for controlled application of six DOF
displacements, facilitating determination of the in situ force and moment contribution of
musculoskeletal joint structures. After dissecting away extraneous soft tissue, the passive path of
the intact joint is found using hybrid control. The in situ contribution of a specific structure of
interest is found by dissecting it away and replaying the passive path kinematics of the intact
joint using pure displacement control, while recording loads. By applying the principle of
superposition, the loads of the cut specimen are subtracted from the loads of the intact specimen

to find the in situ contribution of the dissected structure.

5.1 Description of Robotics-Based Spine Testing System

Low-level control of a robotic system involves input/output of position data to and from
the robot and communication with external sensors, whereas high-level control is the processing
of that data for robot manipulation. The low-level control of our robotic/UFS testing system is
performed using a robotic manipulator (Staubli, RX-90 model; Staubli Inc., Duncan, SC),
computerized controller (Staubli, CS7 model, 40 MHz microprocessor, 33 MHz coprocessor, 4
Mb RAM), Adept V+ software (version 11.1) and a six degree of freedom universal force-
moment sensor (UFS) (JR3, UFS Model 90M38A-150 20L100; JR3, Woodland, CA). The
Staubli is a servo-controlled, six-joint serial-articulated manipulator with end-effector position
repeatability of 0.02 mm translation at constant temperature and maximum payload of 6 kg at
nominal speed®®. The UFS, mounted to a custom machined piece on the end-effector of the

Staubli (Figure 26) has a full-scale force capacity of 20 lbs for its x and y axes and 50 Ibs for its
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z axis, and a full scale moment capacity of 100 in-lbs for all axes. Manufacturer-stated force and
moment accuracy of the UFS is 2% of full scale for all axes””. The high-level computerized
control system consists of a real time Staubli CS7 controller serially connected to a personal
computer (Dell PC, dual Xeon 1.7 GHz processors, | GB RAM). Communication is covered in
more detail later. The high-level control programs are performed using Matlab (version 6.1, The
Mathworks, Inc., Natick, MA) on the PC. Digital output from the six load channels of the UFS
is fed directly to the PC through a DSP-based force sensor/receiver PCI card (JR3). Dr. J.
Norberto Pires wrote several Matlab-PCI interface modules for the JR3 PCI card®”. The control
programs written in Matlab and V+ perform a variety of tasks including establishing coordinate
systems, reading UFS force-moment data, reading end-effector position data (calculated by the
Staubli controller from the robotic joint angles obtained from the encoders of the servomotor of
each joint), and issuing commands to the robot to move the end-effector. Depending on the
control programs that are executed, the robotic/UFS testing system can be made to operate in

either a position (i.e., displacement) control mode, or a hybrid control mode.
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machined end-effector

part

Figure 26 Specimen fixtures in testing system

The manipulator sits on a 30 high stainless steel table that is bolted through 4" steel
runners to the floor (Figure 27). A 3/8” thick stainless steel buffer is attached to the UFS. T-
slots are attached to the table to provide flexibility of specimen placement in relation to the
manipulator. Custom fixtures for specimen mounting are attached to the stainless steel buffer

and the T-slots (Figure 26).
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Figure 27 Robotic/UFS testing system
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The controller sends the commanded motion to the manipulator in terms of the tool
coordinate system (TCS), while returning the global position and orientation of the TCS to the
user in response to the “WHERE” or “HERE” commands. The position and orientation of the
TCS is measured with respect to the end-effector, which is at the back of the custom machined
part (Figure 26). If the user does not specify a TCS, the controller sets it at the end-effector so
that the transformation describing the relationship between these two coordinate systems is an
identity matrix. As mentioned before, the origin of the TCS is set at the specimen COR. The
orientation of the TCS is aligned with the specimen’s coordinate system. Planar
flexion/extension is performed by rotating about the TCS x -axis. When setting a TCS, its
position is measured from the UFS face.

If the UFS could be placed at the center of the superior vertebra, the loads would be read
at point P as they are during simulations. However, this is impossible so we need a
transformation describing the superior vertebra’s coordinate system with respect to the UFS
coordinate system. Measuring the distance of the superior vertebra’s coordinate system from the
UFS coordinate system presents an interesting situation for measurements in the z-direction
because the position of UFS coordinate system is dependent on the software used to collect load
cell data. When using the PCI card to collect load cell data, the Matlab functions put the UFS
coordinate system at the center of the UFS. When using the robotic controller to collect load cell

data, Adept puts the UFS coordinate system at the back of the UFS.
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5.2 Communication

Figure 28 shows the system components, with arrows depicting the data flow loop within
the testing system. The controller receives TCS position data from the manipulator and directs
this data to the external PC via the serial line. Serial communication is relatively slow, but it is
convenient for this purpose since it is available on most commercially available controllers. As
mentioned before, load cell data is sent directly to the PC. Directing the robot positions and UFS
loads to the PC allows it to act as the high-level controller for the system. For high-level control
to occur once the flow of data has been established, a programming language is necessary to
implement the desired control algorithm. Matlab was chosen because of its many
preprogrammed functions and toolboxes, its data analysis and graphing capabilities, and its
readily available serial communication. Once the PC has interpreted the position and load data,
the desired robot motion is sent back to the controller via the serial line so low-level control can

OocCcCur.
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Figure 28 Data flow in testing system

Because the serial line sends and receives data, it is necessary to establish a client/server
relationship between the two devices. Since limited use of the robot controller is desired for all
high-level operations, it is best to have the external PC (client) request information from the
controller (server). This type of relationship necessitates that proper “handshaking” occurs to
guarantee that all data is sent and received at the correct time and to the correct device. This is
ensured through a system of flags that indicate when the client/server platforms are in a state of

proper operational mode, allowing information exchange to occur.
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5.3 UFS Calibration

It was shown previously that a large source of error in load cell data may due to
“phantom” loads due to change in load cell orientation.®” The error in load cell data reported in
Gilbertson et al. exceeded the manufacturer stated accuracy of 1% of full scale load capacity.
For our load cell, the error due to load cell orientation was found within the manufacturer stated
accuracy of 2% of full scale, but reproducing the methods in this paper still resulted in a
significant improvement in accuracy.

The UFS was rotated about its x -axis without any fixtures attached from 8 =-25° to

25°. The digital output from the load cell in the y - and z -directions was found to vary linearly

with rotation angle from about —0.25 N to about —1 N for F), and from about 2 N to about 2.5 N
for F, (Figure 29). This error was within the manufacturer stated accuracy for both F, and F,.

However, we proceeded with the protocol to see if the load cell accuracy could be improved
further. By following the procedure outlined in Gilbertson et al. it was found that the error could
be significantly reduced. The first step was to orient the UFS z -axis down vertically and hang a
set of six incremental weights while collecting digital UFS output. Then the UFS was oriented
such that the UFS z -axis pointed toward the ceiling and the same incremental weights were

stacked while collecting digital UFS output. This procedure was repeated for the UFS y -axis.
The F, and F, digital output was plotted against the known weights applied in those directions

(Figure 30) and linear relationships describing the y - and z -axis force calibration were found:

F,=0.0051733D0, —0.29147

F, =0.013194D0O, -0.26728,
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where £ and F, are the forces in the UFS y - and z -directions (in Newtons),
respectively, and DO, and DO, are the digital outputs from the UFS in the y - and z -

directions, respectively. It is important to note that the above equations do not correct for

orientation effects.
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Figure 29 Plot of output from UFS y -axis and z -axis force channel vs. UFS orientation (® )
when UFS is rotated in 1° increments about its x axis (with nothing attached)
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Figure 30 Plot of known applied weight vs. UFS digital output
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For the second part of the protocol, the incremental weights used in the first part were
attached to the UFS. The UFS was rotated about its x -axis from € =-25° to 25° while

collecting the digital output in the y - and z -directions. DO, and DO, were inserted into the
above set of equations to obtain linearly calibrated £, and F, in Newtons. The known applied

weights were subtracted from the linearly calibrated F, and F, to get the errorin y - and z -axis

force measurements. The errors for each incremental weight were averaged and plotted against
the rotation angle (Figure 31). The orientation error was found to be a linear function of the
rotation angle:

F, error =0.00850256 +0.14779

F. error=0.001293260 +0.19311

To correct for orientation effects, the first-order mean error function was subtracted from

the linear y - and z -axis calibration:

F, (corrected) = [ 0.0051733D0, -0.29147 | ~[0.00850250 +0.14779]

F. (corrected) = 0.013194D0,, —0.26728]—[0.00129320 +0.19311]
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Figure 31 Plots of average Fy and Fz error vs UFS orientation

For the third part of the protocol, the two orientation correction equations were applied to

the digital output collected in the second part. Plots of F and F, measured using (1) the linear

calibration equations and (2) the orientation corrected equations were plotted against the known
applied weights (Figure 32 and Figure 33). Linear regressions showed that both equations

resulted in a significant improvement over using raw UFS output for F and F,. However, there

was not a significant improvement when using the orientation corrected equation versus the

linear calibration equation.
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Figure 33 Plot of UFS measured F, force vs. known F, force

In conclusion, as long as the error in load cell output is within the manufacturer’s stated
accuracy, it is not necessary to perform calibration at the beginning of each testing day. If,
however, the load cell calibration protocol needs to be performed, a linear calibration equation
may be applied to digital output in the y - and z -directions without applying an orientation
correction. The entire calibration protocol takes a lot of time to complete, so not applying an

orientation correction cuts the time required to finish the protocol by more than half. If the UFS
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is mishandled in any way, the entire protocol should be performed to verify orientation

correction does not need to be performed.

5.4 Manipulator Accuracy and Precision

Spatial resolution of a robot refers to the smallest change in position that the feedback
sensor can detect when a normal distribution of mechanical inaccuracies, such as backlash and
joint bending, are considered. Accuracy refers to the ability of the manipulator to get to a
commanded point in space and can be considered half of the spatial resolution. Precision
(repeatability) is the ability of the manipulator to repeatedly return to a point, regardless of
whether or not it is the correct point. It is possible for a robot to have high precision, but poor
accuracy. In fact, this is generally the case. Accuracy of robots is generally unreported and
assumed to be poor. This is well known, but it hasn’t been of too much concern because
industrial applications (spot welding, pick-and-place) usually rely on the robot’s precision, which
is typically very high, to repeatedly move to a taught point. If the commanded points are not
taught, but defined in Cartesian space, accuracy becomes an issue. With the integration of
robotic technology into biomedical applications, such as in vitro musculoskeletal joint testing,
robot assisted surgery and rehabilitation, high accuracy is necessary because the required motion
of the end-effector is not known beforehand.

In biomechanical testing of joints, the passive path of the specimen is not known a priori.
The force minimized points must be stored during pathseek so that they can be returned to
repeatedly for multiple replays. Our manipulator has high precision, so if no other factors are
considered, the robot would appear to be returning to the same force minimized positions for

every replay. However, a precise manipulator is not necessarily an accurate one. This means the
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manipulator returns to the same point in space again and again, even if the point is not the stored
force minimized one.

A manipulator’s compliance describes the degree of displacement of the wrist when a
load is applied or removed and is the inverse of stiffness. If a manipulator is very compliant, it is
not stiff, and vice versa. Manipulators that are compliant can generally make smaller motions
than manipulators that are very stiff, but the wrist can displace more when a static load is applied
or removed.

When cutting studies are performed, the load on the end-effector changes, typically
within the range of £ 30 N and = 6 N-m. For an infinitely stiff robot (or least one with a very
high payload), this would not be an issue. However, our robot has a relatively low payload (6
kg) and the change in end-effector position with changes in load is visible. When cutting
structures on the specimen, and hence remove load from the end-effector, the end-effector
visibly springs up. If the robot cannot accurately tell the difference between its position before
and after a structure is cut, even though there is an obvious change, then it is unlikely the
manipulator will return to the force minimized positions stored for the intact specimen. This is a
problem because compliance in the arm may be causing additional loads in the intact structures,
which would cause us to underestimate the loads associated with cutting them.

It was hypothesized that significant differences exist in the positional accuracy for
varying fractions of payload, that a function exists to describe the relationship between position
error and weight for a unique end-effector position, and that this function may be used to correct
for position error based on external load cell data. If the manipulator is capable of making the

presumably small displacements required to correct for joint laxity/backlash, then an external
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measurement system can be used to correct for poor accuracy. To investigate our robot’s
accuracy and its ability to improve (if needed), three tests were devised.

Test 1: First, the relationship between positional accuracy and precision for varying
fractions of maximum load capacity was examined in one degree of freedom (DOF). The end-
effector was placed so that the y-axis pointed towards the ceiling. A weight equal to 1/2 of
maximum payload was attached to the end-effector. This weight was designated 1/2W. A dial
gauge (0.01 mm resolution, 10 mm travel) was rigidly fixed to a rigid table. The manipulator
was moved to a position such that the weight attached to the end-effector depressed the dial
gauge to 5 mm. This reference position (point A) was saved as a Cartesian coordinate. The
manipulator was then moved to a position 40 mm directly above point A. This ensured that there
was sufficient clearance between the dial gauge plunger and the weight on the end-effector so
that the weight did not touch the plunger when the manipulator was at this point. This position
(point B) was also saved as a Cartesian coordinate.

The end-effector moved from point B to point A n =30 times. Each time the end-
effector reached point A, the dial gauge reading and the manipulator’s own sense of position
were recorded. The dial gauge reading was within the manufacturer stated repeatability each
time the plunger was depressed. This process was repeated for weights equal to maximum
payload (W), 3/4 payload (3/4W), 1/4 payload (1/4W) and no load (OW). The mean dial gauge
reading for each fraction of payload was found, with the mean for 1/2W being the reference that
all other weights were compared to. The position error (difference between the mean dial gauge
reading and the reference mean) was plotted against fraction of payload. This gave the

relationship between position error and weight attached to the end-effector.
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Test 2: The position error from test 1 was significant, so the possibility of correcting this
error in one DOF was inspected. The end-effector moved from point B to point A n =30 times
with weight OW, 1/4W, 3/4W or W attached. An incremental displacement of #»*0.01 mm was
applied in the positive or negative y-direction (depending on the dial gauge reading) each time
the end-effector reached point A. The dial gauge reading and the robot’s sense of position were
recorded before and after each incremental displacement. The mean difference between the
prescribed displacement and the actual displacement for the dial gauge and the robot’s sense of
position was computed for each weight. The actual displacement was plotted against the
prescribed displacement for the dial gauge readings and the robot’s sense of position. A function
describing the relationship between the prescribed displacement and the actual displacement was
then found.

Test 3: Results from test 2 showed that it was possible to correct for poor positional
accuracy using prescribed displacements, so a final test was performed to determine if data from
an external load cell could be used to calculate the displacement necessary to correct for position
error. For all weights (OW, 1/4W, 1/2W, 3/4W, W), the end-effector moved from point B to
point A n =30 times. Using the relationship between position error and weight (from test 1), the
relationship between prescribed displacement and actual displacement (from test 2) and load cell
data, a displacement was applied in the y-direction if needed to move the end-effector to the
reference dial gauge position (5 mm). The dial gauge readings and the robot’s sense of position
were recorded before and after the displacements were applied. The dial gauge readings after the
displacements were applied were averaged. The difference between the mean dial gauge
readings after displacement and the reference mean were plotted against the fraction of weight,

as in test 1.
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Figure 34 shows that position error (in mm) is a linear function of the fraction of payload

attached to the end-effector:

error =0.0058 * (% max payload ) —0.28

Independent Measuring Device

0.40
y = 0.0058x - 0.28 8

0.30 R? = 0.9944 /
0.20
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- ——a—
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—— .
I
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I
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4/
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-0.40
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Figure 34 Position error, as measured by an external dial gauge, is a linear function of the
weight on the end-effector (blue line). This error may be corrected for (magenta line).

Figure 35 shows that the actual displacement is linearly related to the prescribed
displacement for dial gauge measurements. It should have a unit slope with a zero intercept. t-
tests were performed to determine whether the slopes and intercepts of the linear regressions of
each weight are equal to one and zero, respectively. The slope of each linear regression is not
significantly different from one for every weight but 1/4W, and the intercept of each linear

regression is not significantly different from zero for every weight but W.
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Figure 35 The ratio between the prescribed displacement of the end-effector and the actual
displacement is 1:1, as measured using a dial gauge.

Figure 36 shows that the actual displacement is also linearly related to the prescribed
displacement for the robot’s own sense of position. t-tests were performed to determine whether
the slopes and intercepts of the linear regressions of each weight are equal to one and zero,
respectively. For every weight, the slope and intercept of each linear regression is not

significantly different from one and zero, respectively.
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Figure 36 The ratio between the prescribed displacement of the end-effector and the actual
displacement is 1:1, as measured using the robotic controller.
Figure 34 shows that an algorithm using external load cell data can be applied to reduce

the position error to nearly zero.

5.5 Homogeneous Transformations Defined for Robot Testing System

Homogeneous transformations similar to those developed for the general rigid body-

spring model are now developed for the robotic testing system.

5.5.1 Homogeneous Transformation of (xyz)  with Respect to (x)z)

TCS UFS

TCS
TUFS

This transformation is user-defined. See Figure 37.
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Figure 37 Transformation of (xyz), . with respect to (xyz),,

5.5.2 Homogeneous Transformation of (xyz) with Respect to XYZ

TCS

rcs
T G

This transformation is known through the robot’s “WHERE” or “HERE” commands.

See Figure 38.
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Figure 38 Transformation of (xyz), . with respect to XYZ

5.5.3 Homogeneous Transformation of (xyz) . with Respect to (x)z)

TCS UFS

TgFS _ TGTCS (TTCS )“

UFS

See Figure 39.
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Figure 39 Transformation of (xyz)

s With respect to (xyz)

UFS

5.5.4 Homogeneous Transformation of (xyz) with Respect to (xyz),

Ty

This transformation is user-defined (known through X-rays). See Figure 40.

68



superior
vertebra

centroid ydigitized point

on superior
vertebra

UFS

Z TCS

Base

Figure 40 Transformation of (xyz). with respect to (xyz),

5.5.5 Homogeneous Transformation of (xyz) with Respect to (xyz),,.

i
TUFS

This transformation is known through digitizing points on the vertebra and UFS (or

fixture) with Microscribe. See Figure 41.

69



y

superior

vertebra

centroid z Y digitized point
on superior

vertebra

V4 TCS

Base

Figure 41 Transformation of (xyz) with respectto (xyz)
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5.5.6 Homogeneous Transformation of (xyz) with Respect to (xyz),

=T

TS =T (T0)

UFS

See Figure 42.
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Figure 42 Transformation of (xyz), with respect to (xyz),

5.5.7 Homogeneous Transformation of (xyz)0 with Respect to XYZ

TGO — TGUFSTO

UFS

See Figure 43.
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Figure 43 Transformation of (xyz), with respect to XYZ

5.5.8 Homogeneous Transformation of (xyz)l, with Respect to XYZ

T =T5Ty

See Figure 44.
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Figure 44 Transformation of (xyz). with respectto XYZ
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6.0 APPLICATION OF ANALYTICAL PLATFORM TO DEVELOPMENT AND

TESTING OF NEW CONTROL METHODS

The robotic/UFS testing system is operated in a hybrid control mode for the
determination of the path of passive flexion/extension of a spinal specimen. The hybrid control

algorithm used in the current study is shown schematically in Figure 45.
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INPUT:
Estimated COR (tool c.s.)
Angle increment (dRx)
Max allowable sagittal plane forces
Max allowable flexion/extension moment

Estimated specimen stiffness e s . .
o if i is even, flexion to extension
» i=1,.,n e . .
if i is odd, extension to flexion
» j=1,...m

MOVE: Apply rotation (dRx = angle increment) to
superior vertebra about estimated COR
MEASURE: Current position of COR wrt global c.s.
MEASURE: Forces and moments

COMPUTE: FSU stiffness from previous measured force/
moment and position
COMPUTE: Robot displacement vector to minimize sagittal
plane forces (from computed stiffness)

= K calculation

MOVE: Translate superior vertebra to new "corrected"
position
MEASURE: Forces and moments

No Are the measured sagittal
plane forces < max allowable?
COR update #2
No Is the moment > max
allowable?
Yes

COR update #1

Figure 45 Hybrid control flowchart
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As shown in Figure 45, the hybrid control testing algorithm consists of an outer loop
(displacement control) and an inner loop (load control). There are several inputs to the
algorithm: TCS position and orientation, position and orientation of any nodes of interest,
rotation increment size, force threshold, maximum number of force minimizing iterations,
maximum flexion/extension moment and maximum number of flexion/extension cycles. Once
these parameters are input, the hybrid control algorithm begins. During hybrid control, the
passive path of the specimen is found and stored for replay. The specimen begins at a neutral
zero-load position. An incremental rotation is applied to the superior vertebra about the TCS x -
axis to produce planar flexion. If the force created during the rotation is above the user-defined

threshold, the superior vertebra translates in the TCS yz -plane until either the force is minimized

below the threshold or the maximum number of iterations is reached. When the load control
loop finishes, the force minimized position is stored for replay later and the flexion moment is
compared to the maximum flexion/extension moment. If the moment at the end of the load
control loop has not been greater than the maximum flexion/extension moment three times, the
rotation direction remains flexion and incremental rotations continue to be applied until full
flexion. If the moment /as been greater than the maximum three times, the specimen is
considered to be at full flexion and the rotation direction changes to extension. The process is
the same for full flexion to full extension. One complete flexion/extension cycle is full flexion
— full extension — full flexion. When finding the passive path of the specimen, it undergoes
preconditioning because the flexion/extension cycles continue until the maximum number of
flexion/extension cycles has been met or the moment and rotation angle at full flexion and full

extension from one cycle to the next do not change by more than 4%.
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To fully validate and characterize the rigid body-spring model, 3 sets of comprehensive

simulations were performed:

Set 1: Use transformation development from section 4.2 to validate model. (Figure 46)

Set 2: Use transformation development to characterize model in pure displacement

control. (Figure 47)

Set 3: Use analytical stiffness matrix from section 4.2 to characterize model in load

control. (Figure 48)

Test # Input Testing Output Expected outcome
parameter procedure parameter of
varied interest
la Translation | Create 13x13 grid | X,Y position of | X,Y position of bar matches grid
of center of of points center and both of points.
bar (-60< X <60 ends of bar X,Y position of left end of bar is
mm and —L cm away from the center.
-60<Y <60 X.,Y position of right end of bar
mm). Translate is L cm away from the center.
center of bar to | Sign of Fx,Fy,Mz | For xlations along X axis: Fy=0,
each point. Fx=neg. for pos. xlations,
Fx=pos. for neg. xlations, Mz=0
For xlations along Y axis: Fx=0,
Fy=neg. for pos. xlations,
Fy=pos. for neg. xlations, Mz=0
For xlations in 1** quad: Fx=neg.,
Fy=neg., Mz=pos.
For xlations in 2" quad:
Fx=pos., Fy=neg., Mz=neg.
For xlations in 3" quad:
Fx=pos., Fy=pos., Mz=pos.
For xlations in 4™ quad:
Fx=neg., Fy=pos., Mz=neg.
Magnitude of Large mag. for points far from
loads in each fixed end of spring, decreasing
spring mag. for points near fixed end
Magnitude of Mag. grows for points far from
loads on bar origin
Potential energy | High energy for points far from
(work) origin
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Analytical
stiffness matrix

For xlations along X axis:
Kxx=sum of spring constants,

(Kxx,Kxy,Kyy) Kyy=0
1b Rotation Use same grid X,Y position of | Check against hand calculations
increment from test 1a for center and both for selected CORs.
COR locations. ends of bar
Rotate once Sign of Fx,Fy,Mz For COR in 1* quad:
around random Fx=neg.,Fy=pos.,Mz=pos.
CORs by For COR in 2™ quad:
¢ =0°,30°,45°,90° Fx=neg.,Fy=neg.,Mz=neg.
1200,1800, 2100’ For COR in 3rd quad:
o o Fx=pos.,Fy=neg.,Mz=pos.
270°,360 For COR in 4™ quad:
Fx=pos.,Fy=pos.,Mz=neg.
Magnitude of Large mag. for points far from
loads in each fixed end of spring, decreasing
spring mag. for points near fixed end
Magnitude of Mag. grows for points far from
loads on bar origin
Potential energy | High energy for points far from
(work) origin
Analytical Nonlinear stiffness terms
stiffness matrix
(Kxx,Kxy.Kyy)
Figure 46 Validate Matlab simulations for rigid body-spring model
Test # Input Testing Output Expected outcome
parameter procedure parameter of
varied interest
2a COR Create 13x13 grid | Sign of Fx,Fy,Mz Results similar to test 1b.
location of CORs Magnitude of
(-60< X <60 loads in each
mm and spring
-60<Y <60 Magnitude of
mm). Rotate loads on bar
around each COR | Potential energy
once by 30°, 10° (work)
and 1°. Analytical Results similar to test 1b.
stiffness matrix
(Kxx,Kxy,Kyy)
2b Rotation Use CORs from Magnitude of Magnitude of loads (in each
increment above grid. loads in each spring and on bar) and energy
Rotate about each spring decreases with decreasing
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Rotate about each
COR in
¢ =1°0.5°,0.25°

Magnitude of
loads on bar

Potential energy

decreases with decreasing
rotation increment. Stiffness
terms do not change.

increments until (work)
reach ® =30°. Analytical
After each stiffness matrix
increment, (Kxx,Kxy,Kyy)
translate center of
bar to global
origin to
minimize forces.
2x COR Use CORs from Magnitude of Use this test to show that force
location above grid. loads in each can be minimized by translating
Rotate about each spring bar to global origin.
CORin ¢g=1° Magnitude of
increments until loads on bar
reach @ =5°.
After each Potential energy
increment, (work)
translate center of
bar to global Analytical
origin to stiffness matrix
minimize forces. | (Kxx,Kxy,Kyy)
Figure 47 Characterize rigid body-spring model in displacement control
Test # Input Testing Output Expected outcome
parameter procedure parameter of
varied interest
3 COR Create 13x13 grid | No. of iterations Two iterations
location of CORs to reach
(-60< X <60 minimized force
mm and Distance of center Very close to zero
-60<Y <60 of bar from true
mm). Rotate force min.
around each COR position
by ¢ =1° until Potential energy Very similar to test 1b
reach ® =30°. (work)

Use analytical
stiffness matrix
for load control.

Figure 48 Characterize rigid body-spring model in load control
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6.1 Displacement Control Loop of Hybrid Control Algorithm

In the following sections, the rigid body-spring model’s behavior during pure
displacement control will be fully characterized using Matlab simulations. Outcome measures
are the moment and peak force created during rotation, potential energy in the system and
analytical global stiffness matrix. After this characterization, several potential enhancements to
the displacement control loop will be investigated. Three methods of calculating the model’s
preferred COR are evaluated. Two methods of updating the user-chosen COR to the calculated
preferred COR are also examined. One method of calculating the preferred COR and one
method of updating the COR will be chosen and incorporated into a new hybrid control
algorithm.

Before the rigid body-spring model can be used to test potential enhancements to the
displacement or load control loops, it must be validated (Figure 46). The transformations
developed in section 4.2 to describe general rigid body motion were applied to the general rigid
body-spring model shown in Figure 24. For model symmetry, the following parameters were

set: 2L =80 mm, k, =k, =1 N/'mm, ¢/ =/( , =/, ={,, =60 mm. The center of the bar in the

equilibrium position was set at the global origin. Because of symmetry and the equilibrium
position, the bar’s preferred COR, or the point about which a rotation will result in a pure
moment, is at the global origin. Figure 49 shows data for set 1a and Figure 50 shows
representative data for set 1b. Outcomes are expected. Many hand calculations were performed

to validate these results.
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Figure 49 Comprehensive results showing validation of general spring model for translation of
center of bar without any rotation (simulation set 1a). (a) grid of points in the global XY -plane
that the center of the bar was translated to (b) force acting on bar in global X direction (outcome
4a). (c) force acting on bar in global Y direction (outcome 4b). (d) resultant force acting on bar
in global XY -plane (outcome 4c). (e) moment acting on bar in global Z direction (outcome
4d). (f) potential energy in system (outcome 5). (g)-(i) global stiffness terms (outcomes 6a-6¢).
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Figure 50 Comprehensive results showing validation of general spring model for rotation of
center of bar about same grid of points shown in Figure 49, ® = ¢ =30° (simulation set 1b). (a)

force acting on bar in global X direction (outcome 4a). (b) force acting on bar in global ¥
direction (outcome 4b). (¢) resultant force acting on bar in global XY -plane (outcome 4c¢). (d)
moment acting on bar in global Z direction (outcome 4d). (e) potential energy in system
(outcome 5). (f)-(h) global stiffness terms (outcomes 6a-6¢).

After the model was validated, pure displacement control was applied in various rotation
increments about a 13x13 grid of CORs (Figure 47). Figure 51 shows the effect of varying
COR location for a given rotation increment (set 2a). These results are similar to those of set 1b
in that the farther the COR is from the rigid body’s preferred COR, the greater the force created
during rotation and the more work is put into the system. The force created during rotation may
be relieved by translating the center of the bar to the global origin in one step (Figure 52). This

is not load control because the force minimized position was known beforehand so the bar could

be placed there without regard to the loads acting on it.
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Figure 51 Comprehensive results showing characterization of general spring model in
displacement control for ® = ¢ =1° (simulation set 2a). (a) force acting on bar in global X
direction (outcome 3a). (b) force acting on bar in global Y direction (outcome 3b). (c¢) resultant
force acting on bar in global XY -plane (outcome 3c). (d) moment acting on bar in global Z

direction (outcome 3d). (e) potential energy in system (outcome 4). (f)-(h) global stiffness
terms (outcomes 5a-5¢).
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Figure 52 Representative data showing that the force resulting from rotation about a non-
preferred COR can be relieved by translating the center of the bar to the origin (simulation set
2x)

Results for set 2b illustrate that the force created during rotation is a function of rotation
increment size. The magnitude of the resultant force decreases with decreasing increment size,
but the nonlinear trend for rotation about a given COR remains the same. The moment, potential
energy and global stiffness terms are not affected by the size of rotation increment.
Representative data is shown in Figure 53 and Figure 54. If the only change to displacement
control were decreasing the rotation increment (<1°), the peak force created during rotation
would decrease, as desired. Experimentally, this protects the specimen from potential damage,

but increases the time taken to complete a test, possibly introducing stress relaxation to the

specimen. Practically, the rotation increment should be kept to around 0.5°. If the user notices
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that the peak force is too high, the increment can be decreased, or if the user notices that the peak
force is low, the test can be sped up by increasing the increment size without compromising the
specimen’s safety. For the remainder of the simulations, a rotation increment of 1° is used to

reduce computation time.
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Figure 53 Representative data for full characterization of the general rigid body-spring model
during displacement control (simulation set 2b) (a) rotated about the true COR located at (0,0) in
the global XY -plane in ¢ =1° increments up to @ =30° (b) the top row of this plot shows the
resultant force acting on the bar after each incremental rotation (outcome 3a), the middle plot
shows the moment acting on the bar after each incremental rotation (outcome 3b) and the bottom
plot shows the potential energy in the system after each incremental rotation (outcome 4) (¢)
global stiffness terms plotted over total rotation angle (outcome 5)
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Figure 54 Representative data for full characterization of the general rigid body-spring model
during displacement control (simulation set 2b) (a) rotated about a COR located at (-30,-60) in
the global XY -plane in ¢ =1°,0.5°,0.25° increments up to @ =30° (b) the top row of this plot
shows the resultant force acting on the bar after each incremental rotation (outcome 3a), the
middle plot shows the moment acting on the bar after each incremental rotation (outcome 3b)
and the bottom plot shows the potential energy in the system after each incremental rotation
(outcome 4) (c) top plot of (b) reproduced, resultant force on bar after each rotation decreases for
decreasing rotation increment (d) global stiffness terms plotted over total rotation angle
(outcome 5)

The penalty of rotating about a COR other than the model’s preferred COR while keeping
the user-defined COR fixed locally have now been shown. The farther the user-defined COR is

from the preferred COR, the more severe the penalty, i.e., the peak force is larger. It is
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hypothesized that the displacement control loop can be improved by allowing the COR to move
locally. To test this hypothesis, two methods of updating the COR are proposed (Figure 45).
One updates the COR post hoc, while the other method uses feedback to update the COR.
Outcome measures used to evaluate the effectiveness of the proposed changes are the peak force
created during rotation, the work put into the system and the number of iterations required to
reach the force minimized position. Either one of the proposed changes is deemed an
improvement over the current displacement control if the outcome measures decrease.

The first issue to be discussed is how to calculate the preferred COR. Three methods will
be considered: Spiegelman and Woo*?, Crisco et al.**» and Challis*?. All three methods use
the motion of two markers attached to a moving rigid body to calculate the rigid body’s COR.
The equations reported in literature are reproduced below.

Method #1: Spiegelman and Woo™*?

S=X-X,,S=X,-X,

T=Y-Y, T'=Y,-Y,

COS¢_S’S—T’T Sin¢_S’T—T’S
S*+T1* 7 S*+T?
U=Yl+Yz+sin¢(Xl—X2)
2 2[1-cos¢]
V:X1+X2_Sin¢(Yl_Y2)
2 2[1—cos¢]
Xcor:Xl+)/;-_U_COS¢.(YI_U)
sin ¢ sin ¢
- cosg( X, -V
CU}':YI_X% V+ ¢(' 1 )
sin ¢ sin ¢
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where (X b Y1) are the initial global coordinates of the first marker, (X 5o Yz) are the final
global coordinates of the first marker, (X,,Y;) are the initial global coordinates of the second

marker, (X 4 Y4) are the final global coordinates of the second marker, ¢ is the incremental

rotation and (X Y ) are the global coordinates of the preferred COR (Figure 55).

cor?® ~ cor

_Rigid Body

P
-

Coordinotes
A (X.Y))
A !Xz.Yz:l
B (X3,Y3)
B' (X4,Yq)

Figure 55 Spiegelman and Woo

Method #2: Crisco et al.*>
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(yl _yz)sm¢

1
X _E(XI )t 2(1-cos¢)

cor

1 (x, —x,)sing
Y =— B i -V
cor 2(y1+y2) 2(1—COS¢) s

where (x,,y,) are the initial global coordinates of marker 4, (x,,y,) are the final global

coordinates of marker 4, (x;,y,) are the initial global coordinate of marker B, (x,,y,) are the

final global coordinate of marker B, ¢ is the incremental rotation and (X cor> YW) are the global

coordinates of the preferred COR.

Method #3: Challis“?

v:f—[R]x

_ 1 n _ 1 n

X =— xi’ y=_ yl
n o n o

where x; is the global position vector of marker 7, y, is the local position vector of
marker i, i=2,3,..n, [R] is the rotation matrix describing the orientation of the local coordinate
system with respect to the global coordinate system and v is the global location of the local

coordinate system origin.

P= Z(y;ix;i - y;’ix””')

i=1
n

! ’ 1 ’
Z (yxixxi + VX, )

i=l1

P
¢ =—tan (QJ’
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where ¢ is the incremental rotation. ¢ is inserted into [R] in the first equation to
determine v .
FCR = p+[2tan(¢/2)] [R(90°)]Av

X, =FCR(1), Y, =FCR(2),

where p = %(v(z‘1 )+v(t, )) , R(90°) is a rotation matrix describing a 90° rotation,

Av=v(t,)-v(t) and (X,,.Y,

cor?® ~ cor

) are the global coordinates of the preferred COR (Figure 56).

For every method, error =/ X’ +Y_. because the true COR is at the origin of the global

cor cor

coordinate system.

Figure 56 Challis

Several variables must be considered when calculating the preferred COR. The error is a
function of the distance of the final force minimized position from the actual force minimized
position, noisy marker position data and the size of rotation increment that the COR is calculated

over. Any of the methods will calculate the rigid body’s preferred COR when the actual force

94



minimized position of the rigid body is used. If the position of the rigid body at the end of the
load control loop is not the true force minimized position or is not close to it, the preferred COR
will not be calculated. In addition, all methods are susceptible to error when marker position
data is noisy, especially if calculated over small rotation angles, as shown by the authors. If the
rigid body reaches its force minimized position and marker position data is known exactly, all
methods calculate the rigid body’s preferred COR to within a very small error, even at small
rotation angles.

Experimentally, marker position data will be noisy. Crisco et al. showed that the error
increased exponentially for decreasing rotation angles when normally distributed noise (mean =
0 mm, s.d. = 0.5 mm) is added to marker position for their method and Spiegelman and Woo’s
method. While Crisco’s method performed better, the error for both methods didn’t fall into an
acceptable range until the rotation angle was ~ 20°. Challis showed that his method of
calculating the COR results in the least error of the three methods when noise is introduced, but
the error still increased exponentially for decreasing rotation angles when the same normally
distributed noise is added. Again, the error in this method didn’t fall into an acceptable range
until ~20°.

To test the methods of calculating the preferred COR of the analytical rigid body-spring
model, noise may be added to marker position, as done in the literature, or it may be added to the
loads acting on the rigid body because this will affect the final force minimized position. The
experimental system is considered to guide the choice of where to add noise in the analytical
simulations. As shown previously, the positional inaccuracy of the manipulator is not random,
but is a function of the weight on the end-effector. The robot is told to move by a certain amount

to reach the minimum force position. This relies on the robot’s precision, £0.02 mm, so the
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position inaccuracy due to the weight on the end-effector should only be a concern when the
“WHERE” command is issued (when we want to know the marker positions). As illustrated by
preliminary experiments, the specimen is able to reach its force minimized position even though
the load cell data may be quite noisy near the force minimized position. Therefore, it is assumed
that the position inaccuracy will be a larger source of noise experimentally and confound COR
calculation more than UFS noise. During simulations, noise is added to marker position; noisy
load data is not considered.

To add noise to marker position in simulations, the simple accuracy experiment from
section 5.4 is used. Recall the linear relationship between percent payload and position error in

the UFS y -direction (global Z -direction):
error =0.0058 * (% max payload ) —0.28

If the above equation were also applied to the UFS z -direction, the position error (in

mm) would be overestimated because the UFS y -direction had the most slop when performing

the experiment. However, extending the above equation to the z -direction is an acceptable
approximation. The percent of maximum payload that is acting on the bar (in the Matlab X -
and Y -direction) is calculated and inserted into the above equation to obtain position error in the
Y - and Z -directions. The calculated errors are then added to the analytically known marker
positions.

As mentioned above, all methods result in very large error if noisy markers are used to
calculate the preferred COR over small rotation increments. To try to correct this, we can
calculate the COR over larger rotation angles (~ 5°) instead of after every increment (~1°). We

can also limit the amount the COR is allowed to change.
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The three methods of calculating the preferred COR need to be evaluated for several
cases (Figure 57). Set 4a does not simulate the experimental system because the analytical
solution to the global stiffness matrix used for load control cannot be known. Set 4b does not
simulate the experimental system either because it is highly unlikely that marker position data is
not noisy. Even though these evaluations do not simulate the experimental system, they are
useful for simulation validation. Sets 4c and 4d more closely simulate the experimental system
because noise is added to marker position and the stiffness matrix is calculated numerically (even
though the stiffness matrix in simulations is more exact than what would be encountered
experimentally because the forces and moment are known analytically during simulations). The
numerical calculation of the global stiffness matrix is the one currently used for experiments (the

diagonal terms are calculated as AF/Ad and the off-diagonal terms are set to zero).
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Test #

Input
parameter
varied

Testing
procedure

Output
parameter of
interest

Expected outcome

4a

COR
location

Create 13x13 grid
of CORs
(-60< X <60
mm and
-60<Y <60
mm). Rotate
about each COR
ing=1°
increments until
reach @ =30°.
After each
increment,
translate center of
bar to global
origin to
minimize forces.
Calculate
preferred COR
after each
increment using
each proposed
method. Do not
add noise to
marker position.

Distance of
calculated
preferred COR
from true

preferred COR.

Because noise is not added to
marker position and forces are
relieved without using load
control, all methods should
calculate true preferred COR.
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4b COR Use CORs from Distance of Because noise is not added to
location above grid. calculated marker position, all methods
Rotate about each | preferred COR should calculate the same
COR in ¢g=1° from true preferred COR. As long as the
increments until preferred COR. center of the bar reaches the
reach @ =30°. global origin in 20 iterations or
After each less, all methods should calculate
increment, use true preferred COR.
diagonal stiffness
matrix to translate
bar to minimize
forces. Calculate
preferred COR
after each
increment using
each proposed
method. Do not
add noise to
marker position.
4c COR Use CORs from Distance of Because noise is added to marker
location above grid. calculated position, no method will exactly
Rotate about each | preferred COR | calculate true COR. Same noise
CORin ¢=1° from true is added to marker position, so
increments until preferred COR. all methods will calculate the
reach ® =30°. same preferred CORs.
After each

increment, use
diagonal stiffness
matrix to translate
bar to minimize
forces. Calculate
preferred COR
after each
increment using
each proposed
method. Add
noise to marker
position.
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4d COR Use CORs from Distance of Because noise is added to marker

location above grid. calculated position, no method will exactly
Rotate about each | preferred COR | calculate true COR. Same noise
CORin ¢ =1° from true is added to marker position, so
increments until preferred COR. all methods will calculate the
reach @ =30°. same preferred CORs.
After each Calculated preferred CORs will
increment, use be closer to true COR because
diagonal stiffness CORs are calculate over a larger
matrix to translate increment.

bar to minimize
forces. Calculate
preferred COR
after each 5°
increment using
each proposed
method. Add
noise to marker
position.

Figure 57 Evaluation of proposed changes to displacement control (calculate preferred COR)

Figure 58 and Figure 59 show representative data for sets 4a — 4d. As expected, all

three methods calculate the true preferred COR to within a very small error, on the order of 10~
mm, when the bar is translated to the global origin in one step and noise is not added to marker
position (set 4a). Also as expected, all three methods calculate the same preferred COR when
the currently used numerically calculated diagonal stiffness matrix is used in load control, noise
is not added to marker position and the preferred COR is calculated over 1° increments (set 4b).
As long as the bar reaches the global origin within the allowed number of iterations, the error in
calculating the preferred COR is relatively small (Figure 58). If the bar does not reach the force
minimized position, there is more error in COR calculation (Figure 59). When noise is added to
marker position (set 4c), all three methods calculate the same preferred COR, again within a
relatively small error if the bar reaches the force minimized position. This is not surprising

because the same noisy marker positions are used to calculate the COR for all methods. When
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the preferred COR is calculated using noisy markers over a larger rotation increment (set 4d), the

error remains relatively small, as in Figure 58, or it decreases from a large error, as in Figure 59.

Experimentally, calculating the COR over a larger rotation increment is preferred because there

will be additional noise in the system: load cell noise and any end-effector noise that is

unaccounted for.

Ratated about (-20,20) in ¢ = 1 deg. increments
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3a¢
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24af
T 2t
£ 2
515t
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1 L
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[ A e s e a2
] 8 10 15 20 25 30
& (degrees)
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Figure 58 Representative data for characterization of performance of three different methods of
calculating the preferred COR, rotated about a COR located at (-20,20) in the global XY -plane
in ¢ =1° increments up to @ =30°, plots show the error vs. rotation angle for conditions set in

simulation set 4a (top left plot), simulation set 4b (top right plot), simulations set 4c (bottom left
plot) and simulation set 4d (bottom right plot)
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Rotated about (60,600 in 1 dey. increrments Rotated about (60 60 in 1 dey. increments
11
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Figure 59 Representative data for characterization of performance of three different methods of
calculating the preferred COR, rotated about a COR located at (-60,60) in the global XY -plane
in ¢ =1° increments up to @ =30°, plots show the error vs. rotation angle for conditions set in

simulation set 4a (top left plot), simulation set 4b (top right plot), simulations set 4c (bottom left
plot) and simulation set 4d (bottom right plot)

The effect of noise in marker position on the ability of the three methods to calculate the
preferred COR has been shown. Because all three methods calculate the same preferred COR,
only the Challis method will be considered for further simulations. Even though this method is
more computationally intense than the other two, it is hypothesized that it will perform better in
the experimental system based on performance reported in the literature. Next, proposed

methods of updating the COR are investigated.
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To illustrate the difference between post hoc and feedback COR updating, consider the
following. Suppose that we are performing the first cycle of pathseek, going from full flexion
(~15°) to full extension (~ —15°) and the COR is calculated in 5 degree increments, i.e., COR1
is calculated using force minimized positions at 15° and 10° of flexion, COR2 is calculated
using force minimized positions at 10° and 5° of flexion, and so on. If the COR is updated post

hoc, COR1 is stored for use in the second pathseek cycle. The user-chosen COR is not updated

to COR1; it is kept the same for (10 + ¢)° to 5°, where COR2 is calculated. Again, COR2 is

stored for use in the second pathseek cycle, but the user-chosen COR is not updated to reflect
COR2. This algorithm is still stubborn because the initial user-chosen COR is used for the entire

first pathseek cycle. Then, for the second pathseek cycle, COR1 is fixed globally for 15° to 10°

of flexion, COR2 is fixed globally for (10 + ¢)° to 5°, etc. If a certain criteria is not met during

the second pathseek cycle, new CORs can be calculated again as in the first pathseek cycle. If

the COR is updated using feedback, then the user-chosen COR is updated in the first pathseek
cycle to CORI at 10° and fixed locally from (10+¢)° to 5°. Then COR2 is calculated and
used from (5 + ¢)° to 0°. This process is repeated for the entire pathseek test if a certain criteria

is not met. Experimentally, the distance the COR is allowed to move will be limited to 5 mm in

each direction because the calculated preferred COR may be far away from the true preferred

COR.
Test # Input Testing Output Expected outcome
parameter procedure parameter of
varied interest
Sa COR Create 13x13 grid Peak force Peak force will be reduced.
location of CORs created during
(-60< X <60 rotation
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(-60< X <60 Number of Number of iterations will be

mm and iterations to reduced.
—-60<Y <60 minimize force.
mm). Rotate Work put into Work will remain unchanged.
about each COR system
in g=1°
increments until
reach @ =30°.
After each

increment, use
diagonal stiffness
matrix to translate
bar to minimize
forces. Calculate
preferred COR
after each 5°
increment using
Challis method.
Add noise to
marker position.
Use post hoc
method to update
COR. Amount
COR is allowed
to change is
limited to 5 mm
in each direction.

5b COR Use same testing Peak force Peak force will be reduced.
location | method as test 5a, created during
but use feedback rotation.
to update COR. Number of Number of iterations will be
iterations to reduced.
minimize force.
Work put into Work will remain unchanged.
system

Figure 60 Evaluation of proposed changes to displacement control (update COR)

Matlab simulations were performed to evaluate the two proposed methods of updating the
COR (Figure 60). Outcome measures for testing proposed improvements are peak force created
during rotation, number of iterations required to minimize force and work put into system

(Figure 61 and Figure 62). The work remains unchanged across varying COR location, COR
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calculation method and COR update method because the rigid body-spring model ends up at the
same force minimized position within the limited number of iterations; the work done to the bar
in load control cancels the work done to the bar in displacement control. The results of this test
are not entirely expected. It was hypothesized that using feedback to update the COR would
perform better (smaller peak force and fewer iterations) than updating the COR post hoc. For
most of the CORs in the 13x13 grid, this is true (Figure 62), but for some CORs it is not (Figure
61). Overall, the feedback method is superior, so it will be used in the new hybrid control

algorithm.
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Figure 61 Representative data for characterization of performance of two different methods of
updating the user-defined COR as compared with keeping the COR fixed locally (simulation sets
5a and 5b), rotated about a COR located at (-60,60) in the global XY -plane in ¢ =1° increments

up to @ =30°, the left column shows data using the post hoc method of updating the COR, the

right column shows data using feedback to update the COR, the top row of plots show the peak
force (in Newtons) created during rotation about the COR vs. rotation angle (outcome 1), the
middle row shows the number of iterations required to minimize force vs. rotation angle

(outcome 2) and the bottom row shows the potential energy (in Newton-mm) in the system vs.

rotation angle (outcome 3)
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Figure 62 Representative data for characterization of performance of two different methods of
updating the user-defined COR as compared with keeping the COR fixed locally (simulation sets
5a and 5b), rotated about a COR located at (-20,-40) in the global XY -plane in ¢ =1°

increments up to @ =30°, the left column shows data using the post hoc method of updating the
COR, the right column shows data using feedback to update the COR, the top row of plots show
the peak force (in Newtons) created during rotation about the COR vs. rotation angle (outcome
1), the middle row shows the number of iterations required to minimize force vs. rotation angle
(outcome 2) and the bottom row shows the potential energy (in Newton-mm) in the system vs.
rotation angle (outcome 3)
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Table 1 Tabulated results of simulation sets 5a and 5b showing range of peak force (in
Newtons) and average number of force minimizing iterations for the current method (no COR
update), post hoc update of COR and feedback update of COR

Range of Average

peak force (N) iterations
Current method 1.7611 —-2.7476 53
Post hoc 0.1386 —2.7476 34
Feedback 0.1563 —2.3902 23

6.2 Load Control Loop of Hybrid Control Algorithm

The general rigid body-spring model is a coupled nonlinear system that can be described

by two continuous functions, f (x, y) and g (x, y) , where f (x, y) is the analytical solution for
F, developed in section 4.2 and g (x, y) is the analytical solution for F, , also developed in
section 4.2. The goal of the load control loop is to find the values x=x" and y =" such that
f (x*, y*) =0 and g (x*, y*) =0. Newton’s method for minimizing two coupled nonlinear
equations is an appropriate method of iteratively calculating the translations Ax; and Ay, of the

rigid body to minimize the resultant force®:

I

&

,'Ax[+f;/|i Ay, =-/,

iAx[+gy

>

; Ay, =-g,

where Ax, =x —x,, Ay, =y —y,, and the subscript on functions f and g denote the
first derivative of the function with respect to the subscript, i.e., f, is the first derivative of f

with respect to x. The above set of equations can be rewritten as

108



|:KXX KXY}{AXI'}: _FX|,~
Ky Ky (A —Fy |,-
Once Ax; and Ay, are known, the new coordinates of the rigid body can be written as

X, =x +Ax,
{ym =y, +Ay

This process is repeated iteratively until the rigid body reaches the force minimized
position. Because the stiffness matrix K is only linear over a small range, the magnitudes of
Ax;, and Ay, are limited. The above equations assume that K is known. Because the analytical
solution for K cannot be known experimentally, it must be calculated numerically. Several
methods of finding K are covered in more detail later.

Before examining any numerical calculations of the stiffness matrix, Newton’s method is
applied to the rigid body-spring model in load control to fully characterize the model. To
accomplish this, two outcome measures are needed: the number of iterations required to
minimize force on the bar and the distance of the final position of the center of the bar from the
true force minimized position (Figure 48). The fully populated analytical stiffness matrix was
used and translations were limited to 1 mm in each direction. When the resultant force on the
bar was less than 10~ N, the load control loop ended. Figure 63 shows the distance of the
center of the bar from the global origin, the number of iterations required to minimize force and

the potential energy of the system for two randomly chosen CORs. This data is representative of

the full 13x13 grid of CORs.
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Figure 63 Representative data for full characterization of the general rigid body-spring model
during load control (simulation set 3), ¢ =1° increments up to @ =30°, the top row of the plots

show the distance (in mm) of the final force minimized position from the true force minimized
position (the global origin) vs. rotation angle (outcome 1), the middle row shows the number of
iterations required to minimize force vs. rotation angle (outcome 2) and the bottom row shows
the potential energy in the system after each rotation (outcome 3) (a) rotated about a COR
located at (-60,0) in the global XY -plane (b) rotated about a COR located at (10,20) in the
global XY -plane
The osteoligamentous spine is a highly nonlinear, coupled system. Traditionally, in vitro
biomechanical testing has been performed using either the flexibility method or the stiffness
method. The flexibility method applies loads, either singly or in combinations, to the FSU and
the resulting unconstrained motions are measured. The stiffness method applies displacements
and the resulting loads are measured. Flexibility/stiffness coefficients can then be determined.
Assembling the flexibility/stiffness matrix is usually simplified by setting coefficients to zero or
equating them to one another by assuming specimen symmetry. To examine the importance of
coupled flexibility coefficients in modeling cervical spine motion, Winkelstein and Myers®™™ fit

linear, piecewise nonlinear and logarithmic functions to cervical spine data to assemble the full

flexibility matrix. They found that including the coupled terms improved model performance.
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For the load control loop of our hybrid control algorithm, a stiffness matrix is calculated
numerically and inverted to find the translation necessary to reach the force minimized position
(Figure 45). Currently, the diagonal terms of the matrix are calculated using one force

minimizing translation: K ,, = AF, /Ax and K,, =AF, /Ay, where Ax and Ay are the

components of a single translation of the rigid body. This attributes all the change in force in a
certain direction to the displacement in that direction. However, we know that the specimen is a
coupled system. It is hypothesized that including the off-diagonal (coupled) terms in the
stiffness matrix will allow the load control loop to converge to the force minimized position

faster, but the matrix cannot be fully populated using only one translation. Consider a translation

that is some linear combination of x and y: Ad = {Ax, Ay}T. This translation results in a

change in force in both the x - and y -directions: AF = {AF,,AF, }T . We use the linear

relationship AF = KAd to calculate K :

AF, Ky Ky [(Ay
AF, =K, Ax+K Ay
AF, =K, Ax+ K, Ay
If we set K, =K,, =0, then there are two equations and two unknowns:

K, =AF,/Ax and K,, =AF, /Ay. If we do notset K ,, = K,, =0, then we have two

equations and four unknowns. Thus, the system is underdetermined and we cannot solve for any
of the terms in the stiffness matrix without another translation. However, we shouldn’t wait to

calculate K until after every other translation because this would be a poor approximation to K,
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resulting in inaccurate values for the calculated force minimizing translations. To fully populate
the stiffness matrix, four methods are proposed.

Method #1: apply two perturbations (~1 mm) at each position, with one perturbation
being parallel to the global X axis and the other being parallel to the global Y axis. This allows
the full stiffness matrix to be calculated at each position:

Perturbation #1: Ax, #0,Ay, =0 — AF,,AF,,

Perturbation #2: Ax, =0,Ay, # 0 —> AF,,,AF,,

5

g

5

Y2

K. —
v Ay,

Method #2: apply two perturbations (~ 1 mm) at each position, with one perturbation
being a linear combination of global X and Y and the other perturbation being orthogonal to the
first one. By using global components of the perturbations, we can calculate the full stiffness
matrix at each position.

Perturbation #1: Ax, #0,Ay, # 0 —> AF,,AF,,
Perturbation #2: Ax, #0,Ay, #0—> AF,,,AF,,

_ AFy,Ay, —AF} Ay,

K. —
XX —Ax,Ay, + Ax Ay,
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_(_AszAxl +AFX1Ax2)

K, =
—Ax,Ay, + Ax, Ay,
_ _(AFyzAJﬁ _AFnAyz)
" —Ax,Ay, + Ax Ay,
K. = _(_AFyzAxl +AFY1sz)
oy =

—Ax, Ay, + Ax,Ay,

Method #3: Limit the force minimizing translations in a stepwise fashion:
iteration 1: Ax, # 0,Ay, =0 — AF,,AF},
iteration 2: Ax, =0,Ay, #0—> AF,,,AF,

X2 Y2

Three of the four terms in the stiffness matrix may be calculated at each position. Refer
to method #1 to see that only two of the terms may be calculated when the displacement in one

direction is zero. The third term is known through symmetry:

. . AF AF,
iteration 1: K,, =—*, K, =— K, =K,,
1 1
iteration 2: K, = AFy, , K,y = Aly, , K, =K,
Ay, Ay,

The fourth term ( K,, for odd numbered iterations, K,, for even numbered iterations) is

carried over from the previous calculation. Clearly, an initial guess for K is required for this

method to work.

Method #4: Limit the translations in a stepwise fashion to calculate three of the four

stiffness terms, as in method #3, but apply a perturbation in the orthogonal direction to find the
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fourth term. This method is similar to method #1 expect that only one perturbation is applied in
this method, whereas two perturbations are applied in method #1.

To evaluate the proposed change to stiffness matrix population (Figure 64), outcome
measures are the calculated global stiffness terms (compared to analytical stiffness), the distance
of the final load control position from the true force minimized position (for simulations only),
the number of iterations required to minimize the force and the amount of work put into the
system. For simulations, the work of each spring can be summed to find the total work in the
system. However, this isn’t convenient for the experimental system, so it will have to be

approximated as F, Ax+ F,Ay. The outcome measures are compared to the currently used

diagonal stiffness matrix to draw a conclusion about which method to use in the new hybrid

control algorithm.

Test # Input Testing Output Expected outcome
parameter procedure parameter of
varied interest
6 COR Create 13x13 grid | Stiffness matrix Similar to analytical stiffness
location of CORs (Kxx,Kxy,Kyy) terms
(—60< X <60
mm and No. of iterations > 2 iterations
—60<Y <60 to reach
mm). Rotate minimized force
around each COR | pjstance of center Very close to zero
by 1 degree until | o par from true
reach 30 degrees. force min.
Use numerical position
matrices 1-4 for  "potential energy Very similar to test 1b
load control. (work)

Figure 64 Evaluation of proposed changes to load control

Figure 65 - Figure 69 show representative data for test 6. Figure 65 - Figure 67 show

that methods #1 and #2 calculate the correct stiffness values for K., K,, and K,, as compared
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to the analytical values. Methods #3 and #4 also calculate correct values for K,, , K,, and X,,,

except for translations of the bar along the global X or Y axes, while the current diagonal

stiffness calculation does not calculate the correct stiffness values for X, , K, and K,, atany

COR location.
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Figure 65 Values of K,, for different calculation methods (a) analytical solution (b) using

current method (¢) using proposed method #1 (d) using proposed method #2 (e) using
proposed method #3 (f) using proposed method #4
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Figure 66 Values of K,, for different calculation methods (a) analytical solution (b) using

current method (¢) using proposed method #1 (d) using proposed method #2 (e) using
proposed method #3 (f) using proposed method #4
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Figure 67 Values of K,, for different calculation methods (a) analytical solution (b) using
current method (c¢) using proposed method #1 (d) using proposed method #2 (e) using

proposed method #3 (f) using proposed method #4

Figure 68 shows that forces created during rotation are reduced using the current
diagonal stiffness matrix, even if the correct stiffness values are not calculated. This plot is
representative of the full grid of CORs and for each proposed method of stiffness calculation.
Figure 69 shows that method #3 results in the smallest error and few iterations. Methods #1 and
#2 take the fewest iterations to minimize force at large rotation angles, but method #3 only takes
one or two iterations longer. Method #4 consistently results in a much higher number of
iterations even though the error is comparable to the other three methods. It can also be seen in
Figure 69 that when the diagonal stiffness matrix is used during load control, the number of
iterations suddenly drops from about 20 iterations at about 2 iterations at 18°, whereas the
iterations either decrease predictably or remain low when using one of the full stiffness matrices.
There are several CORs in the grid for which this is true. It is reasonable to say that for these
CORs the diagonal stiffness terms are either underestimated or overestimated. If the stiffness
terms are underestimated, then a large displacement is calculated when the matrix is inverted.
The center of the bar is limited to a translation of 1 mm in each direction, so the bar is
overshooting the true force minimized position in this case. If the stiffness terms are
overestimated, then a small displacement is calculated when the matrix is inverted. The center of
the bar then is undershooting the true force minimized position on the first iteration, but is able to

minimize force within 2 or 3 iterations because the displacements are not too small.
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Figure 68 Force created during rotation is minimized by using the current diagonal stiffness
matrix
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Figure 69 Representative data for characterization of performance of four different methods of
calculating the fully populated stiffness matrix as compared with the current diagonal stiffness
matrix (simulation set 6), rotated about a COR located at (0,-60) in the global XY -plane in
¢ =1° increments up to ® =30°, the left column shows the distance (in mm) of the final force

minimized position from the true force minimized position (the global origin) vs. rotation angle
(outcome 1), the middle column shows the number of iterations required to minimize force vs.
rotation angle (outcome 2) and the right column shows the potential energy (in Newton-mm) in
the system vs. rotation angle (outcome 3), the top row of plots shows results for proposed
method #1, the next row shows results for proposed method #2, the next row shows results for
proposed method #3 and the bottom row shows results for proposed method #4
Choosing which method to use for calculating the stiffness matrix experimentally
depends on the desired use of the matrix. If the user simply wishes to use the matrix for load
control without concern to the actual stiffness values that are being calculated, method #3 should

be used because it results in the least error, takes a small number of iterations to minimize force

and results in a faster test because perturbations do not need to be applied at every position.
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However, if the user wants to approximate the specimen’s stiffness, method #1 or method #2
should be used because these methods not only perform well during load control, but also closely

match the analytical stiffness. Method #3 will be used in the new hybrid control algorithm.

Table 2 Tabulated results of simulation set 6 showing average number of force minimizing
iterations for the current method (diagonally populated stiffness matrix), proposed method #1
(apply two perturbations parallel to global X and Y axes), proposed method #2 (apply two
orthogonal perturbations in global XY -plane), proposed method #3 (constrain force minimizing
translations to stairsteps parallel to global X and Y axes) and proposed method #4 (constrain
translations as in method #3 and apply one orthogonal perturbation)

Average

iterations
Current method 53
Method #1 4.7
Method #2 4.8
Method #3 52
Method #4 12.7

6.3 Improved Hybrid Control Algorithm

After identifying the best performing changes to displacement and load control, they
were combined into a new hybrid control system and the new algorithm is compared with the old
one. (Figure 70) A 13x13 grid of CORs (—60< X <60 mm and —60 <Y <60 mm) was

created. The center of the bar was rotated about each COR by ¢ =1° increments until @ =30°.

After each incremental rotation, method #3 was used during the load control loop to calculate the
global stiffness terms and the force minimizing translations. The preferred COR was calculated

using Challis’ method by using the force minimized positions at 0° and 5°, 5° and 10°, etc.
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The COR was updated using feedback. Outcome measures for evaluating the new hybrid control

algorithm are the peak force created during rotation, the number of iterations required to

minimize force, the distance of the center of the bar from the global origin at the final load

control step and the work done to the system.

Test # Input Testing Output Expected outcome
parameter procedure parameter of
varied interest
7 COR Create 13x13 grid Peak loads Peak loads decreased with new
location of CORs generated during hybrid control algorithm.
(-60< X <60 rotation
mm and Number of Number of iterations to reach
—60<Y <60 iterations to reach minimum force reduced with
mm). Rotate minimum force new hybrid control algorithm.
around each COR [ pjstance of center Because forces and marker
by ¢=1° of bar from global | positions are known analytically,
increments until origin. the error will not change much
reach @ =30°. from old algorithm to new.
Calculate Work done to Work done to model unchanged
stiffness using model with new hybrid control system
method #3.
Calculate
preferred COR
every 5° using
Challis method.
Add noise to
marker position.
Update COR
using feedback
method.

Figure 70 Evaluation of new hybrid control algorithm

Figure 71 shows a representative plot for comparing old and new algorithm outcome

measures for simulations. As expected, the work remained unchanged from the old algorithm to

the new one. The peak force decreased when using the new algorithm, but the number of

iterations increased. However, this increase is still within an acceptable range. The distance of
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the center of the bar from the global origin is very small, on the order of 10~ mm. The plots
generated for the full grid of CORs show that the new hybrid control algorithm decreases the
peak force created during rotation, does not add additional work to the system, results in very
little error during load control and takes a relatively small number of iterations to minimize

force.

Rotated about (0,20) in 1 deg. increments
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Figure 71 Representative data for characterization of performance of new hybrid control
algorithm as compared with the old algorithm (simulation set 7), rotated about a COR located at
(0,20) in the global XY -plane in ¢ =1° increments up to @ =30°, the top row of the plot shows

the peak force (in Newtons) created during rotation vs. rotation angle (outcome 1), the second
row shows the number of iterations required to minimize force vs. rotation angle (outcome 2),
the third row shows the distance (in mm) of the final force minimized position from the true
force minimized position (the global origin) vs. rotation angle (outcome 3) and the bottom row
shows the potential energy (in Newton-mm) in the system vs. rotation angle (outcome 4).
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Table 3 Tabulated results of simulation set 7 showing range of peak force (in Newtons) and
average number of force minimizing iterations for the current hybrid control algorithm (no COR
update and diagonally populated stiffness matrix) and the new hybrid control algorithm
(feedback COR update and fully populated stiffness matrix calculated using method #3)

Range of Average

peak force (N) iterations
Old algorithm 1.7611 - 2.7476 53
New algorithm 0.1563 —2.3866 4.9
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7.0 DISCUSSION

7.1 Summary

A tabletop robotic/UFS testing system that interacts with Matlab to apply hybrid control
to testing of lumbar spines was developed. The experimental system was validated analytically
using rigid body transformations simulated in Matlab. Changes to displacement control and load
control were tested and an improved hybrid control algorithm was developed that may be used
for delineating biomechanical properties of the human lumbar spine. Specific aim 2a was
performed to test the hypothesis that allowing the user-defined COR to move locally as well as
globally would decrease the peak force created during rotation and decrease the number of
iterations required to minimize that force. Results from section 6.1 show that the general rigid
body-spring model used during simulations supported this hypothesis. Specific aim 2b was
performed to test the hypotheses that fully populating the stiffness matrix would decrease the
number of iterations required to minimize force created during rotation and that the fully
populated matrix would provide a better approximation of the true stiffness values than the
diagonal stiffness matrix. Results from section 6.2 show that the number of iterations was
reduced for proposed methods #1 - #3, while the iterations increased for proposed method #4.
Results from this section also show that methods #1 and #2 provided the best approximation to
the true stiffness values of the general rigid body-spring model for all CORs in the grid, while
methods #3 and #4 closely approximated the true stiffness values for most of the CORs in the
grid. Results from section 6.3 show that after combining the proposed changes to both the
displacement and load control loops, the range of peak force created during rotation about the

grid of user-defined CORs and the number of iterations required to minimize that force both
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decreased. The analytical and experimental platforms will work in conjunction for future studies
of advanced control methods for spine testing. Because Matlab was used both analytically and

experimentally, the programs may be executed on any PC.

7.2 Limitations and Future Work

Despite some apparent limitations of using hybrid control with a robotic/UFS testing
system, including specimen viscoelasticity and some slop in the manipulator’s joints, the testing
system described in the above sections provides a controllable testing apparatus with a control
algorithm that is hypothesized to be similar to what the body employs in vivo. Control
algorithms can always be improved and the research done in this thesis is no exception. For
further improvement to the displacement control loop, another method of updating the COR
should be considered: feedforward. Feedforward can be used if some pattern is recognized in the
path of the calculated CORs. Suppose that the preferred COR is calculated every 5° and the
path made by n¢/5 calculated CORs looks approximately quadratic. Then a quadratic function
can be fit to the path of CORs and the position of the next COR can be predicted. This predicted
COR is fed forward and used for the next rotation. Least squares is one possible method of

fitting a function to the COR path. To use least squares, a curve is fit to a set of data points:

(xl., Yi) for i=1,2,...,n. The least squares approximation to the data is a function of x; :

y=f (xl.) . In order to ideally use least squares with feedforward control, we should know the

form of y a priori. However, this is highly unlikely unless many specimens have been tested

and a pattern emerges. One option is to plot the COR path during the test. If a pattern emerges

from the plot, the user would have to be allowed to stop the test and suggest the form of y to the
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Matlab program. Problems with this include longer tests and keeping the specimen at some
position other than neutral for extended periods of time. Another option is to fit a linear function
between two successive CORs. This may be a poor approximation, but further tests will have to
elucidate that.

Another improvement to displacement control involves fully characterizing the
manipulator’s position inaccuracy. The simple one DOF experiment from section 5.4 shows that
the manipulator’s position inaccuracy due to varying weight on the end-effector may be
corrected using load cell data for a certain position in space. Future work should be done to fully
characterize the position inaccuracy in each direction for the workspace encountered during
specimen testing. This will improve COR calculation because marker position noise will be
reduced to nearly zero.

A further limitation of the current study is the tacit assumption of sagittal plane symmetry
of the specimens. The hybrid control algorithm constrains motions to the mid-sagittal plane—

thus non-sagittal force (£, ) and moments (M, and M) are not explicitly controlled, even

though coupled loads in these non-sagittal DOF have been found to be rather minimal."® In the
future, we would like to extend the control algorithm to three dimensions to enable minimization
of all coupled loads. One approach may be to base the three-dimensional hybrid control
algorithm on finite rotations about and translations along a continually updated screw
displacement axis (SDA) or helical axis of motion (HAM). In addition to correcting for sagittal
plane asymmetry, full three-dimensional motion can elucidate the altered kinematics of clinically
unstable specimens. The hybrid control algorithm itself can elucidate the kinematics of either
clinically stable or unstable specimens because it finds the passive path of the specimen.

However, suppose that a specimen has undergone a unilateral facetectomy. In this case,
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confining motion to the sagittal plane may not find the passive path during flexion/extension
because it is possible that the passive path does not lie in this plane. Finding the altered passive

path moments then requires full three-dimensional motion.

7.3 Conclusion

This thesis has described development of analytical and experimental platforms and
refinement of the testing algorithm for delineating spine kinetics. The analytical platform
provides the ability to test experimental protocols and elucidate subtle complexities of any given
change to the testing algorithm that may be lost in the experimental system. The robotic/UFS
testing system provides a system that is totally controlled with the regulated application of six
DOF loads and displacements. The refined hybrid control algorithm produces better data by
reducing imposition of a COR that the specimen does not prefer and including coupled stiffness
terms that had previously been ignored. Utilizing an off the shelf, readily available language
such as Matlab introduces uniformity into robotic systems. Built-in functions in Matlab and a
PC with a fast processor allow the user to simplify the program and implement complicated
control systems. If several different types of controllers are to be used together, each with its
own language, a single PC-based language can be used to standardize the system. This allows
programs to be written and shared between any number of users with an external PC interface
system. In summary, the robotic/UFS testing system with refined hybrid control facilitates
improved biomechanical testing of spinal segments, thus leading to a better understanding and

treatment of spinal pathologies.
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APPENDIX A

Matlab code for simulations

hand14a.m is a Matlab script that simulates hybrid control of a rigid body-spring model.
Parameters for the spring model are input at the beginning of the script. Several functions are
called by hand14a.m. They are included in this appendix after hand14a.m in the order in which

they appear in the script.

oe

handl4a.m

analytical rigid body-spring model

rotate about COR in phi degree increments
Amy Loveless

3/12/2003

o oo oe

o

clear all

o\°

o

General model parameters
spring constants (N/mm)

oe

ka = 1;

kb = 1;

% resting length of springs (mm)
lar = 60;

lbr = 60;

o)

% length of spring when inserted into system (mm)
la init = 60;

lb_init = 60;

% length of half of bar (mm)

= 40;

% local positions of nodes attached to rigid body (mm)
axy = [-L 0];

bxy = [L 0];

% global positions of fixed nodes (mm)

jaXY = [-(L+la init) 0];

JbXY [L+1b_init 0];

theta = 0;

=

%% Physical model parameters

%% spring constants (N/mm)

a = 12.033; % blue

b = 11.55; % red

%% resting length of springs (mm)
$lar = 1.955%2.54*10; % blue
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r = 2.936%2.54*10; % red
%% length of springs when inserted into system (mm)

%la _init = lar + 0.382*%2.54*10; % blue

$1lb init = lbr + 0.387*%2.54*10; % red

%% length of half of bar (mm)

L = 28;

%% local positions of nodes attached to rigid body (mm)

saxy = [-L 0];

sbxy = [L 0];

%% global positions of fixed nodes (mm)

$jaXY = [-cos(70*pi/180)* (L+la init) -sin(70*pi/180)* (L+la init)];
$JbXY = [cos (70*pi/180)* (L+1lb init) sin(70*pi/180)* (L+lb init)];
stheta = 70;

% local positions of markers attached to rigid body (mm)
marklxy = [-L 0];
mark2xy = [L 0];

% amount of rotation from resting position (rad)
phi = deg2rad(l);

o)

% limit magnitude of translations
t lim = 1; % mm
const stiff = 10; % N/mm

cor lim = 5; % mm
ftarget = 107-5; $ N
iterations = 20;
tick = 0;

index = 1;

Q

% define unit vectors
ihat = [1; 0; 07;
jhat = [0; 1; 0];
khat [0; 0; 1717

o

% initialize graph display for forces and moments

fh = figure('Position', [150 100 600 600], 'Color', 'w', 'doublebuffer',
on');
% fgraph = axes('Parent', fh, 'Position', [.1 .6 .8 .35], 'XLim', [O
iterations], 'YLim', [-50 50], 'nextplot', 'add');
% forceufs = line('XData', 0, 'YData', 0, 'Color', 'k', 'Marker',K '.',
'markersize', 8, 'erasemode', 'none');

- 0o

o\

o©

% initialize variables for drawing position of bar

% ah = axes('Position', [.1 .05 .5 .5], 'GridLineStyle', ':', 'XLim', [-110
1101, 'YLim', [-110 110], 'nextplot', 'add');

% set (ah, 'XColor', [.7 .7 .7], 'YColor', [.7 .7 .7], 'XGrid', 'on', '¥YGrid',
'on');

% bar = line('xdata', [0 0], 'ydata', [0 0], 'color', 'k', 'linewidth', 10);
% springa = line('xdata', [0 0], 'ydata', [0 0], 'color', 'b', 'linewidth',
3);

% springb = line('xdata', [0 0], 'ydata', [0 0], 'color', 'r', 'linewidth',
3);
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o\

% handles

[fh, fgraph, forceufs, ah, bar, springa, springbl];

for var = 1:1:13
for cycle = 1:2
for z = 6:5:11
for i = 13:13
for j = var:var

if (z == 11) & (cycle == 1)
break

elseif (z == 6) & (cycle == 2)
break

end

theta = deg2rad(0);
thetaG(i,j) = theta;
temp = theta;

thetaCOR(i,3j) = 0;
thetaa(i,j) = 0;
thetab(i,]J) = 0;
thetaja(i,j) = 0;
thetajb(i,j) = 0;

% make 13x13 grid of points for COR and translation of center of bar

(mm)
% these points are defined FROM X,Y TO xTCS0,yTCSO
PXY = [0 0];
if (cycle == 1) | (cycle == 2)
corX(i,j) = (-60+(3-1)*10) *cos (theta)+ (60-(i-1)*10)*sin(theta);
corY(i,3) = (60-(i-1)*10)*cos(theta)-(-60+(j-1)*10) *sin (theta);
corXY = [corX(i,3j) cor¥(i,j)1;
end
% dxy = [-60+(J-1)*10 60-(i-1)*101];
dxy = [0 0];
% initialize variables
work = 0;
u = 0;
f temp = O*ones(1,6);
fmw = £ temp;
index = 1;
numdiagK2 = -ones(2,2);, numfullK2 = -ones(2,2);, numdiagK3 = -
ones (3,3);, numfullK3 = -ones(3,3);
pertK = -ones(2,2);
fminmzd (j,1l:kk) = 0;

for k = 1:kk

o
o\

COR update option 1:
store calculated CORs to be replayed in the next cycle
if cycle ~= 1
corXY = [cXY(l,index) cXY(2,index)];
end

o° o oP
o\°

o\

o\°

COR update option 2:
calculate & update COR every 5 degrees

o\
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% if (isequal (int2str ((k+4)/5), num2str ((k+4)/5) & (k> 1) &
(

if (isequal (int2str((k+4)/5), num2str((k+4)/5))) & (k > 1) &
(cycle ~= 1) & (z == 11)
corXY = [cXY(l,index-1) cXY(2,index-1)1];
end

% TRANSFORMATIONS

% (P1X, P1lY) is the global position of reference point P after
planar motion
[P1X(i,3), P1lY(i,3j), TGO, TGl, corXY] =
refpointtrans (thetaG(i,j), PXY, thetaCOR(i,j), corXY, phi, dxy, 'g');
X(k,1) = P1X(i,3);, PY(k,1) = P1Y(i,3]);

[

% call node 1 "node a" and node 2 "node b"
% (alX, alY) is the global position of node a after planar motion
(from X,Y to xal,yal)

% La0 and Lal are the lengths of spring a at time t0 and time tl
(mm)

[alX(i,]), alY(i,j), la0O, lal, T0alO, Tlal] =
nodaltrans (thetaa (i, j), axy, thetaja(i, j), jaXy, TGO, TGl)

if isequal (int2str ((k+4)/5), num2str((k+4)/5)), TGa0 = TGO*T0aol;,
al0X = TGa0(1,4);, a0y = TGaO(2,4),, end
% TGa0 = TGO*T0al0;, a0X = TGaO(1l,4);, a0Y = TGa0(2,4);

% (b1X, blY) is the global position of node b after planar motion
(from X,Y to xbl,ybl)

% Lb0 and Lbl are the lengths of spring b at time t0 and time tl
(mm)

[b1X(i,j), blY(i,j), 1b0O, 1bl, TO0bO, Tlbl] =
nodaltrans (thetab (i, j), bxy, thetajb (i, j), jbXY, TGO, TGl)

if isequal (int2str ((k+4)/5), num2str((k+4)/5)), TGb0 = TGO*TO0boO;,
b0X = TGbO0(1,4);, b0y = TGbO(2,4),, end
% TGb0 = TGO*TO0b0O;, bOX = TGbO(1,4);, b0Y = TGbO(2,4);

[

% calculate change in length of spring a at time t0 and time tl

(mm)

deltaal(i,j) = sgrt(lal0'*1la0) - lar;

deltaa(i,j) = sqgrt(lal'*lal) - lar;

% calculate change in length of spring b at time t0 and time tl
(mm)

deltab0(i,j) = sqrt(lb0'*1b0) - 1lbr;

deltab(i,j) = sqrt(lbl'*1lbl) - lbr;

% (marklX, marklY) & (mark2X, mark2Y) are the global positions of

N

markers 1 &
if isequal (int2str ((k+4)/5), num2str ((k+4)/5)
TOmarkl = trans (0, marklxy(l), marklxy(Z), 0);, TGmarkl =
TGO*TOmarkl;

TOmark2 = trans (0, mark2xy(l), mark2xy(2), 0);, TGmark2
TGO*TOmark?2;

marklX (k) = TGmarkl(1l,4);, marklY (k) = TGmarkl (2,4);

mark2X (k) TGmark2 (1,4);, mark2Y (k) TGmark2 (2,4) ;
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4bXY, TGO,

JbXY, TGO,

end
[marklX (k+1), marklY(k+1l)] = nodaltrans (0, marklxy, thetajb(i

TG1l) ;

[mark2X (k+1), mark2Y (k+1)]

nodaltrans (0, mark2xy, thetajb(i,j

TG1l) ;

% FORCES/MOMENTS

rotation

o

calculate global force at time t0O due to spring a
this is the force present in the system at time t0, but would

o\

oe

appear in the UFS when the robot is initially attached to the

Fa0 = force2(ka, deltaalO(i,j), la0, thetaG(i,j)+thetaa(i,j), O,
% calculate global force at time tl due to spring a
Fal = force2(ka, deltaa(i,j), lal, thetaG(i,]j)+thetaa(i, ) +phi,

% calculate global force at time t0 and time tl due to spring b
Fb0 = force2(kb, deltabO(i,j), 1b0, thetaG(i,j)+thetab(i,j), O,

Fbl = force2(kb, deltab(i,j), 1lbl, thetaG(i,]j)+thetab (i, j)+phi,

% calculate global forces and moment at point P at time tO
FOX(i,3) = dot(Fa0+Fb0O,ihat);, FOY(i,]j) = dot(FaO+FbO jhat) ;
Ma0 = momentl (thetaG(i,3j), 0, 0, 0, TOaO(1l 4), Fa0O, khat);
Mb0O = momentl (thetaG(i,3j), 0, 0, 0, TObO (1l 3 4), Fb0O, khat);
MOZ(i,3) = MaO + MbO;

% calculate global forces and moment at point P at time tl
F1X(i,3J) = dot(Fal+Fbl,ihat);, F1Y¥(i,j) = dot(Fal+Fbl,jhat);

Ij)l

)y

Mal = momentl (thetaG(i,j)+phi, 0, 0, 0, Tlal(l:3,4), Fal, khat);
Mbl = momentl (thetaG(i,j)+phi, 0, 0, 0, Tlb1l(1:3,4), Fbl, khat);

M1Z(i,9) = Mal + Mbl;

fmw = [F1X(i,3) FlY(i,j) 000 MlZ( )

X(k,1) = F1X(i,3):, FY(k,1) = F1Y(i,3);
F(j,k) = sqrt(FlX(' 9)r2 + F1Y (4 ) 2

F(k,1) = sqrt(FlX(i,j)AZ + F1Y (i ')Az)

[

% find the magnitude of the peak force for each degree of
magf (k,1l) = sqrt(F1X(i,j)"2 + F1Y(i,73)"2);

work = (-0.5)*ka*deltaa(i,j)"2 + (-0.5)*kb*deltab(i,]J)"2;
u = 0.5*ka*deltaa(i,j)"2 + 0.5*kb*deltab(i,j)"2;

% STIFFNESS

lar, jaXy,

% use analytical solution to find stiffness
PXYstiff = [P1X(i,3) PLlY(i,3)1:
if (z == 2) | (z == 3)
[Kxx1(i,3), Kxyl(i,3J), Kyx1(i,J), Kyyl(i,j)] = stiff(z, ka,
axy, PXYstiff, thetaG(i,J)+phi, kb, lbr, jbXY, bxy);
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anadiagK2 = [Kxx1(i,3j) 0; O Kyyl( J)
anafullK2 [Kxx1(i,3) Kxyl(i,j); Kyx
end

S —
A‘

j) Kyyl(i,3)1;

o)

% use numerical method to find stiffness
if (z == 6) | (z == 8)
if ((z == 6) | (z == 8)) & (cycle == 1)
diffload [fmw (1) -f temp(l) fmw(2)-f temp(2) fmw(6)-

f temp(6)];

diffdisp = [P1X(1i,])-PXY(1l) PlY(i,J)-PXY(2) phil;
[Kxx, Kyy, Kzz] = stiff(z, diffload, diffdisp, fmw,

numdiagK3) ;

o° o

o\°

t
T

hetaG (i, j) +thetaa (i, J)+phi, lal, thetaG

lal(1:3,4), Tlb1(1:3,4), M1z (i,3), [P1X

Q

% 2x2 matrix

numdiagK2 = [Kxx 0; 0 Kyyl;
% 3x3 matrix

numdiagK3 = [Kxx 0 0; 0 Kyy 0; 0 0 Kzz];

end

% perturb bar to find stiffness
if (z == 10) | (z == 11)
[Kxxp(llj)l nyp(llj)l nyp(llj)l Kyyp(llj)] = stiff(z, 2,
(1 j)+thetab(i,j)+phi, 1b1,
lar, 1lbr, ka, kb, [FlX i,3) F1Y(i,3)]
(1,3) P1Y(i,3)1,
thetaCOR (1, J) +phi, corXY, thetaa(i,3j), axy,

thetaja(i,j), jaX¥Y, thetab(i,]j), bxy, thetajb(i,]j), JbXY);

o

o
°

pertK = [Kxxp(i,Jj), Kxyp(i,j); Kyxp(i,]j), Kyyp(i,]J)1;

pertK = [Kxxp(i,]J), Kxyp(i,J) Kzxp(i,]); Kyxp(i,J), Kyyp(i,J)

Kyzp(i,3J); Kzxp(i,]J) Kzyp(i,J) Kzzp(i,J)];

o°

o

o\°

o

end

% store current force and position
f temp = fmw;
PXY = [P1X(i,3) P1Y(i,3)];

o)

% housekeeping variables

KXX(k,1) = pertK(l,1);, KXY (k,1) = pertK(l,2);
KYX(k,1l) = pertK(2,1);, KYY(k,1) = pertK( ,2);
anK = pinv([numfullK2(1,1) numfullK2(1l,2); numfullK2(2,1)
numfullK2 (2,2)]);
invkKXX (k,1) = invK(1l,1);, invKXY(k,1l) = invK(1l,2);
invkKYX (k,1) = invK(2,1);, invKYY(k,1l) = invK(2,2);

oe

— o° — o

i, J), aly

% draw position of bar
drawZ(handles, [P1X(i,3), P1Y(i,73)]1, [corX(i,]j) corY(i,j)1,
(i,9)1, [b1X(i,3), b1Y¥(i,3)], jaXy, 3IbXY, temp,...

[marklX (k+1), marklY(k+1)], [mark2X(k+1), mark2Y (k+1)1],

F1X(i,3), F1Y¥Y(i,3)], tick);

[o)

% update total rotation angle

theta = theta + phi;

thetaG(i,J) = theta;

thetaCOR(i,j) = theta - thetaG(i,]j) + k*phi;

% FORCE MINIMIZATION

for counter = l:iterations
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o\

if (z == 13)
if ((z == 13)

(z == 12) | (z
(z == 12) | (z

dXY = fmin(z, pertK, [fmw(l

o)

zero

% if counter is odd,

zero

if isequal (num2str (counter/2),

counter 1s even
dxy (1)

[

% if counter is even,

= 0;

else % counter is odd

dXY (2)
end
elseif z ==

0;

== 11)
== 11)

| (z == 10)
| (z == 10)) &

(cycle >

:2) fmw(6)1', 'y', t lim);

dXY = fmin(z, numfullK3, [fmw(1:2)

elseif z ==

dXY = fmin(z, numdiagK3, [fmw(l:2)

elseif z ==

dXY = fmin(z, numfullK2, [fmw(1:2)

o\°

elseif z ==
elseif (z ==

)

& (cycle == 1)

dXY = fmin(z, numdiagK2, [fmw(1l:2)

elseif z ==

dXY = fmin(z, anafullK3, [fmw(1:2)
elseif z ==

dXY = fmin(z, anadiagK3, [fmw(l:2)
elseif z ==

dXY = fmin(z, anafullK2, [fmw(1:2)
elseif z ==

dXY = fmin(z, anadiagK2, [fmw(1l:2)
elseif z ==

dXY = fmin(z, F1X(i,3), F1Y(i,3),
end

% dXYy = [-P1X(i,3) -PlY(i,3)1"';

ddXyY (:,1) = dXY;
dX (k, counter) = dXY (1) ;
dY (k, counter) = dXY (2);

% find global

positions of point P,

1 & 2 at new force minimized position
[P1X(i,3), P1lY(i,3j), TGO, TG1,
refpointtrans (thetaG(i,j), PXY,

'g');

PX (k, counter+1)

[alX(i,]), alYy(i,]j), lal0, 1lal,

nodaltrans (thetaa(i,j), axy, thetaja(i,]),

[b1X(i,3), blY(i,3), 1b0, 1bl,

nodaltrans (thetab (i, J), bxy, thetajb(i,j),

deltaa (i, J)
deltab (i, J)
[marklX (k+2),

thetajb(i,j), jbXY, TGO, TGl);

sqgrt (1bl'*1bl) -
marklY (k+2)] =
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nodes a & b,

int2str (counter/2))

fmw(6)]', 'y',
fw (6)]1', 'v',

fmw (6)1', 'v',

fmw(6)1', 'v',
fmw (6)1', 'y',
fmw(6)1', 'v',
fmw(6)1', 'v',
fmw (6) 1", 'v',

const stiff);

nodaltrans (0, marklxy,

set translation in X direction to

set translation in Y direction to

o

t lim);
t lim);

t 1lim);

t lim);
t lim);
t lim);
t lim);

t lim);

and markers

corXY] =
thetaCOR(i,Jj), corXY, 0, [dXY(l) dXY(2)],
= P1X(i,7j):, PY(k,counter+l) = P1lY(i,7);
T0a0, Tlal] =
jaxXy, TGO, TGl);
TOb0, Tlbl] =
jbxy, TGO, TGl);
= sqgrt(lal'*lal) - lar;
lbr;



[markZX(k+2), mark2Y (k+2)] = nodaltrans (0, mark2xy,
thetajb(i,J), jbXYy, TGO, TGl);
% corX(',j) = corXY(l);, corY¥(i,j) = corXY(2);

o

% draw position of bar

tick = tick + 1;

draw?2 (handles, [P1X(i,]
alX(i,3), aly(i,3)], [blX(i,3), blY(i,])

o\°

jaXy, jbXy, temp,...

— o° — o°

le(llj)l Fly(llj)Jl tick);

[

% find forces & moment at new position
Fal = force2(ka, deltaa(i,j), lal, thetaG(i,]j)+thetaa(i,]),

0, 0, 0);

Fbl = force2(kb, deltab(i,j), 1lbl, thetaG(i,]j)+thetab(i,]),
0, 0, 0);

F1X(i,J) = dot(Fal+Fbl,ihat);, F1Y(i,]j) = dot(Fal+Fbl,jhat);

Mal = momentl (thetaG(i,j), 0, 0, 0, Tlal(1:3,4), Fal, khat);

Mbl = momentl (thetaG(i,j), 0, 0, 0, Tlb1l(1:3,4), Fbl, khat);

M1Z(i,]3) = Mal + Mbl;

fmw = [F1X(i,3) F1Y(i,3) 0 0 0 M1z (i,]J)1;

X (k,counter+l) = F1X(i,3);, FY(k,counter+l) = F1Y(i,7);,
MZ (counter+1l) = M1Z(i,]j);

F(k,counter+l) = sqrt(F1X(i,j)"2 + F1Y(i,])"2);

if (sgrt (FX(k,counter+l)”2 + FY(k,counter+l)”"2) <= ftarget)
(fminmzd (j, k) == 0)
fminmzd (j, k) = counter;
end
if (counter == iterations) & (fminmzd(j,k) == 0)
fminmzd (j, k) = counter;
end

magf (k,1) = sqrt(F1X(i,3)"2 + F1lY(i,])"2);
work = (-0.5)*ka*deltaa(i,j)”"2 + (-0.5)*kb*deltab(i,]j)"2;
u = 0.5*ka*deltaa(i,J)"2 + 0.5*kb*deltab(i,j)"2;

% use analytical method to calculate stiffness at new
position
if (z == 2) | (z == 3)
PXYstiff = [P1X(i,3) P1Y(i,3)]1:
[Kxx1(i,3), Kxyl(i, j), Kyx1(i,j), Kyyl(i,3J)] = stiff(z
ka, lar, jaXyY, axy, PXYstiff, thetaG(i,]j), kb, lbr, jbXyY, bxy);
anadiagK2 = [Kxxl( ,J) 0; O Kyyl i, j)],
anafullK2 = [Kxx1(i,]J) Kxyl(i,3J); Kyx1l(i,J) Kyyl(i,j)1:;
end

% use numerical method to find stiffness
if (z == 6) | (z == 8)
if ((z == 6) | (z == 8)) & (cycle == 1)
diffload = [fmw(l)-f temp(l) fmw(2)-f temp(2) fmw(6)-

oo

f_temp(6)];
diffdisp = [P1X(i,])-PXY (1) P1lY(i,J)-PXY(2) phi];
[Kxx, Kyy, Kzz] = stiff(z, diffload, diffdisp, fmw,
numdiagK3) ;
% 2x2 matrix
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P1Y(i,3)1, [corX(i,j) corY(i,j)],

)
1,
[marklX (end), marklY (end)], [mark2X(end), mark2Y (end)],

&



numdiagK2 = [Kxx 0; 0 Kyy];
% 3x3 matrix
numdiagK3 = [Kxx 0 0; 0 Kyy 0; 0 0 Kzz];

end

o\°
o\

perturb bar to find stiffness
use one translation (in either X or Y) to find 3 of 4

o
o

stiffness terms OR
% % use one translation (in either X or Y) and one applied
perturbation to find full stiffness matrix OR
% apply two perturbations to find full stiffness matrix
if (z == 10) | (z == 11)

if ((z == 10) | (z == 11)) & (cycle > 1)

[Kxxp(i,3), Kxyp(i,J), Kyxp(i,]), Kyyp(i,Jj)] = stiff(z,
3, fmw, f temp, dXY, pertK);

pertK = [Kxxp(i,j) Kxyp(i,Jj); Kyxp(i,j) Kyyp(i,j)1;

o\

o

% pertK = [Kxxp(i,]j), Kxyp(i,]J) Kzxp(i,Jj); Kyxp(i,]j),
Kyyp(i,3) Kyzp(i,J); Kzxp(i,J) Kzyp(i,J) Kzzp(i,Jj)1;

end
% if (z == 10) | (z == 11)

o\
o

[Kxxp (1,7), Kxyp(i,]J), Kyxp(i,J), Kyyp(i,j)] =
iff(z, 2, thetaG(i,j)+thetaa(i,]j)+phi, lal, thetaG(i,j)+thetab(i,j) +phi,
1,...

o° H— W
oo Ot

lar, lbr, ka, kb, [F1X(i,j) F1Y(i,73)],
thetaG (i, J)+phi, Tlal(1:3,4), Tlbl(1:3,4), M1z(i,3), [PI1X(i,3) PLY(i,3)1,...
%% thetaCOR (i, J)+phi, corXY, thetaa(i,j), axy,
thetaja(i,J), jaXyY, thetab(i,j), bxy, thetajb(i,]j), JbXY);

[Kxxp(1,]), Kxyp(i,J), Kyxp(i,J), Kyyp(i,])] = stiff(z,
4, thetaG(i,j)+thetaa(i,j)+phi, lal, thetaG(i,]j)+thetab(i,]j)+phi, 1bl, ...
lar, lbr, ka, kb, [F1X(i,]3) F1Y(i,3)1,
thetaG(i,j)+phi, Tlal(1:3,4), Tlb1(1:3,4), M1Z(i,7J), [P1X(i,3) P1Y(i,3)1,...
% thetaCOR (i, J)+phi, corXY, thetaa(i,j), axy,
thetaja(i,J), jaXy, thetab(i,j), bxy, thetajb(i,]j), JbXY,...

fmw, f temp, dXY, pertK);

oe

o\°

o

s pertK = [Kxxp(i,3), Kxyp(i,3); Kyxp(i,3), Kyyp(i,3)1;
% pertK = [Kxxp(i,]j), Kxyp(i,]J) Kzxp(i,Jj); Kyxp(i,]j),
Kyyp(i,3) Kyzp(i,Jj); Kzxp(i,Jj) Kzyp(i,Jj) Kzzp(i,Jj)];

% end

% store current force and position
_temp = fmw;
XY = [P1X(i,3) P1Y(i,9)]1;

g

o)

% housekeeping variables
KXX (k,counter+l) = pertK(1l,1);, KXY (k,counter+1l)

pertK(1,2);
KYX (k, counter+l) = pertK(2,1);, KYY(k,counter+l) =
pertK(2,2);

% invkK = pinv ([numfullK2 (1,1) numfullK2(1l,2); numfullK2(2,1)
numfullK2(2,2)]);

% invKXX (k, counter+1l) = invK(1l,1);, invKXY (k,counter+l) =
invK(1l,2);

% invKYX (k, counter+1l) = invK(2,1);, invKYY (k,counter+l) =

invK(2,2);
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if (sgrt (FX(k,counter+l)”2 + FY(k,counter+l)”"2) <= ftarget),
break, end

end

loadctlerror (3, k) = sqrt(PlX(i J)"N2+P1Y (i,3)"2);
avgiter(j,z) = m(fminmzd (j, :)) /k;

Utotal (j,k) = u;

peakF (j,z) = max(max(F));

maxF (j,z) = max(max(F));

minF (j,z) = min(min (F (k, counter+l)));
avgiter (i, j) = sum(fminmzd(j,:))/k;

o\

% COR CALCULATION

% if (round(k*rad2deg (phi)/5) == k*rad2deg (phi) /5)

% if (round(k*rad2deg (phi) /5 ) == k*rad2deg (phi)/5) & (cycle ~= 1)
if (round(k*rad2deg(phi)/5) == k*rad2deg(phl)/5) & (cycle > 1) &

(z == 11)

% % find the true COR using Spiegelman and Woo

% for n = 1:1

% [tcorX(n), tcorY(n)] = spieg(alX, al0¥Y, alX(i,j), aly(i,]j),

b0X, b0Y, blX(i,j), bly(i,3), fmw(l), fmw(2));

% end

% tcorX = sum(tcorX)/n;, tcorY = sum(tcorY)/n

% tcorXspieg(j, k) = tcorX;, tcorYspieg(j,k) = tcor¥Y;

% errorspieg(j, k) = sqgrt(tcorXspieg(j,k)"2 +

tcor¥Yspieg(j, k) "2);

% Xsignspieg(j,k) = isequal (sign(-corX(i,Jj)),sign(-

tcorXspieg(j,k)));

% Ysignspieg(j,k) = isequal (sign(-corY (i, J)),sign (-

tcorYspieg(j,k)));

o©

oe

% find the true COR using Crisco et al.
for n = 1:1
[

o

% tcorX( ), tcorY(n)] = crisco(al0X, alY, b0X, b0y, alX(i,]),
alY(i,J), blX(i,3), blY(i,3), fmw(l), fmw(2));
% end
% tcorX = sum(tcorX)/n;, tcorY = sum(tcorY)/n;
% tcorXcrisco(j,k) = tcorX;, tcochrisco(j,k) = tcorY;
% errorcrisco(j,k) = sqrt(tcorXcrisco(j,k)”"2 +
tcorYcrisco (3, k) "2);
% Xsigncrisco(j,k) = isequal (sign(-corX(i,j)),sign (-
tcorXcrisco(j,k)));
S Ysigncrisco(j,k) = isequal (sign(-corY (i,]J)),sign (-
tcorYcrisco(j,k)));
% find the true COR using Challis
for n = 1:1
[tcorX(n), tcorY(n)] = challis(axy, a0X, a0Y, alX(i,3j),
alY (i, j), bxy, b0X, b0Y, blX(i,j), blY(i,]j), fmw(l), fmw(2));
end
tcorX = sum(tcorX)/n;, tcorY = sum(tcorY)/n;
tcorXchallis(j,k) = tcorX;, tcorYchallis(j,k) = tcoryY;
errorchallis(j,k) = sqgrt(tcorXchallis(j,k)"*2 +

tcorYchallis (3, k) "2);
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Xsignchallis(j,k) = isequal (sign(-corX(i,j)),sign (-
tcorXchallis(j,k)));
Ysignchallis (j,k) = isequal (sign(-corY(i,j)),sign (-
tcorYchallis(j,k)));
end

tick = 0;

oe

if k ~= kk
delete (fgraph)
fgraph = axes('Parent', fh, 'Position', [.1 .6 .8 .35],
YLim', [-50 50], 'XLim', [0 iterations]);

o

- oe

% forceufs = line('XData', 0, 'YDbata', 0, 'Color', 'k',
'Marker', '.', 'markersize', 8, 'erasemode', 'none');
% end

[

% COR update option 1: calculate COR every 5 degrees & store to
be replayed in next cycle

o)

% COR update option 2: calculate & update COR every 5 degrees

% if (round(k*rad2deg(phi)/5) == k*rad2deg (phi)/5)
% if (round(k*rad2deg(phi)/5) == k*rad2deg(phi)/5) & (cycle ~= 1)
if (round(k*rad2deg(phi)/5) == k*rad2deg(phi)/5) & (cycle ~= 1) &
(z == 11)
cXY (:,1index) = corupdate(corXY(l), corXY(2),
tcorXchallis(j, k), tcor¥Ychallis(j,k), 'y', cor lim);
index = index + 1;
end
end

o)

% find the average magnitude of the peak force for each COR

peakw(i,j) = work;
peaku(i,j) = u;
poteng(j,z) = u;
end
end
% % PLOTS FOR TEST 3 USING PHYSICAL MODEL
% figure
% subplot(2,1,1), plot((l:length(fminmzd(j, :))) *rad2deg(phi), fminmzd(j,:),"'.-
b'"), ylabel ('iterations'), ...
% title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY¥Y(i,j)),
') in ', num2str (phi*180/pi), ' deg. increments'])
subplot(2,1,2), plot((l:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),"'.~-

O oo

'), ylabel ('potential energy (N-mm)'), xlabel ('\Phi (degrees)')

o\

% % PLOTS FOR TEST 4A & 4B & 4C
figure, hold on

o\

% plot((l:length(errorspieg(j,:))) *rad2deg(phi),errorspieg(j,:),"'.-b");

% plot((l:length(errorcrisco(j,:))) *rad2deg(phi),errorcrisco(j,:),"'.-r");

% plot((l:length(errorchallis(j,:))) *rad2deg(phi),errorchallis(j,:),"'.-m");
% % % PLOTS FOR TEST 4D

% % plot((5:5:30)*rad2deg(phi), errorspieg(j,5:5:end), '.-b')

% % plot((5:5:30)*rad2deg(phi), errorcrisco(j,5:5:end), '.-r'")

% % plot((5:5:30) *rad2deg (phi), errorchallis(j,5:5:end), '.-m'")

% xlabel ("\Phi (degrees)'), ylabel('error (mm)'), title(['Rotated about (',
num2str (corxX(i,j)), ', ', num2str(corY(i,3j)), ') in ', ...

% num2str (phi*180/pi), ' deg. increments'])
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legend ('spieg', 'crisco', 'challis')

o\

oo

% PLOTS FOR TESTS 5A & 5B

% if cycle ==

% figure

% subplot(3,1,1), hold on, plot((l:kk)*rad2deg(phi), F(:,1), '.-b"),
ylabel ('peak force (N)'), title(['Rotated about (', num2str(corX(i,3j)), ',
num2str (corY(i,3)), ') in ', ...

% num2str (phi*180/pi), ' deg. increments'])

% subplot(3,1,2), hold on,

plot ((l:length (fminmzd(j, :))) *rad2deg (phi), fminmzd(j,:),"'.-b"),

ylabel ('iterations')

% subplot(3,1,3), hold on,

plot ((l:1length (Utotal(j,:))) *rad2deg(phi),Utotal(j,:),"'.-b"),

ylabel ('potential energy (N-mm)'), xlabel ('\Phi (degrees)"')
% elseif cycle ==

% subplot (3,1,1), plot((l:kk)*rad2deg(phi), F(:,1), '.-r'"), ylabel ('peak
force (N)'), title(['Rotated about (', num2str(corX(i,j)), ',',
num2str (corY(i,3)), ') in ', ...

% num2str (phi*180/pi), ' deg. increments'])

% % legend('cycle 1', 'cycle 2")

% legend ('no COR update', 'COR update')

% subplot(3,1,2),

plot ((l:length (fminmzd(j, :))) *rad2deg (phi), fminmzd(j,:),"'.-r"),
ylabel ('iterations')

% % legend('cycle 1', 'cycle 2")

% legend ('no COR update', 'COR update')

% subplot (3,1,3),

plot ((l:1length (Utotal(j,:))) *rad2deg(phi),Utotal(j,:),"'.-r"),
ylabel ('potential energy (N-mm)'), xlabel ('\Phi (degrees)"')

% % legend('cycle 1', 'cycle 2")

% legend ('no COR update', 'COR update')

% end

% % PLOTS FOR TEST 7 USING GENERAL MODEL

% 1f (cycle == 1) & (z == 06)

% figure ('position', [149 359 771 5751)

% subplot (4,1,1), hold on, plot((l:kk)*rad2deg(phi), F(:,1), '.-b'"),
ylabel ('peak force (N)'), title(['Rotated about (', num2str(corX(i,3j)), ',
num2str (corY(i,j)), ') in ', ...

% num2str (phi*180/pi), ' deg. increments'])

% subplot (4,1,2), hold on, plot((l:length(fminmzd(j,:)))*rad2deg(phi),
fminmzd(j,:), '.-b'), ylabel('iterations')

% subplot(4,1,3), hold on,

plot((l:length(loadctlerror(j,:))) *rad2deg(phi), loadctlerror(j,:), '.-b'),
ylabel ('error (mm) ")

% subplot (4,1,4), hold on, plot((l:length(Utotal(j,:)))*rad2deg(phi),
Utotal(j,:), '.-b'), ylabel ('potential energy (N-mm)'), xlabel ('\Phi
(degrees) ')

% elseif (cycle == 2) & (z == 11)

% % figure

% subplot (4,1,1), hold on, plot((l:kk)*rad2deg(phi), F(:,1), '.-xr'"),
ylabel ('peak force (N)')

% legend('old', 'new')

% subplot(4,1,2), hold on, plot((l:length(fminmzd(j,:)))*rad2deqg (phi),
fminmzd(j,:), '.-r'), ylabel('iterations')

% legend('old', 'new')
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% subplot(4,1,3), hold on,

plot ((l:1length(loadctlerror(j, :))) *rad2deg(phi), loadctlerror(j,:), '.-r'),
ylabel ('error (mm)"')

% legend('old', 'new')

subplot(4,1,4), hold on, plot((l:length(Utotal(j,:)))*rad2deg(phi),
Utotal(j,:), '.-r'), ylabel ('potential energy (N-mm) ')
% legend('old', 'new')

%% PLOTS FOR TEST 7 USING PHYSICAL MODEL

%if (cycle == 1) & (z == 6)
% figure ('position', [149 359 771 5751)
% subplot (3,1,1), hold on, plot((l:kk)*rad2deg(phi), F(:,1), '.-b'"),
ylabel ('peak force (N)'), title(['Rotated about (', num2str(corX(i,j)), ', ',
num2str (corY(i,j)), ') in ', ...
% num2str (phi*180/pi), ' deg. increments'])
% subplot (3,1,2), hold on, plot((l:length(fminmzd(j,:)))*rad2deg(phi),
fminmzd(j,:), '.-b'), ylabel('iterations')
% subplot (3,1,3), hold on, plot((l:length(Utotal(j,:)))*rad2deg(phi),
Utotal(j,:), '.-b'), ylabel ('potential energy (N-mm)'), xlabel ('\Phi
(degrees) ")
%elseif (cycle == 2) & (z == 11)
%% figure
% subplot (3,1,1), hold on, plot((l:kk)*rad2deg(phi), F(:,1), '.-x'"),
ylabel ('peak force (N)"')
% legend('old', 'new')
% subplot(3,1,2), hold on, plot((l:length(fminmzd(j,:)))*rad2deg(phi),
fminmzd(j,:), '.-r'), ylabel('iterations')
% legend('old', 'new')
% subplot(3,1,3), hold on, plot((l:length(Utotal(j,:)))*rad2deg(phi),
Utotal(j,:), '.-r'), ylabel ('potential energy (N-mm) ')
% legend('old', 'new')
$end
if z ==
plot((l:1length(loadctlerror(j, :))) *rad2deg(phi),loadctlerror(j,:),"'.-b");
elseif z ==
figure
% plot((l:length(loadctlerror(j,:))) *rad2deg(phi), loadctlerror(j,:),"'.-r');
subplot(3,1,1), hold on,
plot((l:length(loadctlerror(j, :))) *rad2deg(phi),loadctlerror(j,:),"'.-r'"),
ylabel ('error (mm)"'),...

title(['Rotated about (', num2str(corX(i,j)), ',', num2str(cor¥Y(i,j)), ")
in ', num2str (phi*180/pi), ' deg. increments'])
subplot(3,1,2), hold on,
plot ((l:length (fminmzd(j, :))) *rad2deg (phi), fminmzd(j,:),"'.-r'),

ylabel ('iterations')
subplot(3,1,3), hold on,

plot((l:length(Utotal(j,:))) *rad2deg(phi),Utotal(j,:),"'.-r"),

ylabel ('potential energy (N-mm)'), xlabel ('\Phi (degrees)"')

elseif z ==

% plot((l:length(loadctlerror(j,:))) *rad2deg(phi), loadctlerror(j,:),"'.-m');

% subplot(3,1,1),
plot((l:length(loadctlerror(j,:))) *rad2deg(phi), loadctlerror(j,:),"'.-m"),
legend('diag 2x2 (a)', 'full 2x2 (a)'")

% subplot(3,1,2), plot((l:length(fminmzd(j, :)))*rad2deg(phi), fminmzd (3, :),"'.-

m'), legend('diag 2x2 (a)', 'full 2x2 (a)'")
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% subplot(3,1,3), plot((l:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:)," .-
m'), legend('diag 2x2 (a)', 'full 2x2 (a)')

elseif z ==

plot ((l:1length(loadctlerror(j, :))) *rad2deg(phi),loadctlerror(j,:),"'.-g');
elseif z ==
plot((l:1length(loadctlerror(j, :))) *rad2deg(phi),loadctlerror(j,:),"'.-r'");
elseif z ==

% % PLOTS FOR TEST 6 USING GENERAL MODEL

% % plot((l:length(loadctlerror(j,:))) *rad2deg(phi), loadctlerror(j,:),"'.-r');

% figure
% subplot(3,1,1), hold on,

plot ((l:length(loadctlerror(j,:))) *rad2deg(phi), loadctlerror(j,:),"'.-r'),
ylabel ('error (mm)"'),...

% title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)),
') in ', num2str (phi*180/pi), ' deg. increments'])

% subplot(3,1,2), hold on,

plot ((l:length (fminmzd(j, :))) *rad2deg (phi), fminmzd(j,:),"'.-r"),

ylabel ('iterations')

% subplot(3,1,3), hold on,

plot((l:length(Utotal(j,:))) *rad2deg(phi),Utotal(j,:),"'.-r"),
ylabel ('potential energy (N-mm)'), xlabel ('\Phi (degrees)"')

oe

% PLOTS FOR TEST 6 USING PHYSICAL MODEL

% figure

% subplot(2,1,1), hold on,

plot((l:length (fminmzd(j, :))) *rad2deg(phi), fminmzd(j,:),"'.-r"),

ylabel ('iterations'), ...

% title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)),
') in ', num2str (phi*180/pi), ' deg. increments'])

% subplot(2,1,2), hold on,

plot((l:1length(Utotal(]j,:))) *rad2deg(phi),Utotal(j,:),"'.-r"),

ylabel ('"potential energy (N-mm) '), xlabel ('\Phi (degrees)"')

elseif z ==

plot ((l:1length(loadctlerror(j, :))) *rad2deg(phi),loadctlerror(j,:),"'.-r');
elseif z ==

plot ((l:1length(loadctlerror(j,:))) *rad2deg(phi), loadctlerror(j,:),"'.-",
'markerfacecolor', [0 .75 0]);

elseif z ==

plot ((l:1length(loadctlerror(j, :))) *rad2deg(phi),loadctlerror(j,:),"'.-m");
elseif z == 10

figure, hold on

% plot((l:length(loadctlerror(j,:))) *rad2deg(phi), loadctlerror(j,:),"'.-r');
elseif z == 11

% % PLOTS FOR TEST 6 USING GENERAL MODEL

% plot((l:length(loadctlerror(j, :))) *rad2deg(phi), loadctlerror(j,:),"'.-m");
% subplot(3,1,1), hold on,

plot ((l:1length(loadctlerror(j,:))) *rad2deg(phi), loadctlerror(j,:),"'.-m"),
ylabel ('error (mm)"'),...

S title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY¥(i,3j)),
') in ', num2str (phi*180/pi), ' deg. increments'])

% legend('diag 2x2 (n)', 'full 2x2 (p4)")

% subplot(3,1,2), hold on,

plot ((l:length (fminmzd(j, :))) *rad2deg (phi), fminmzd(j,:),"'.-m"),
ylabel ('iterations')

% legend('diag 2x2 (n)', 'full 2x2 (p4)")
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% subplot(3,1,3), hold on,

lot ((l:length(Utotal(j, :))) *rad2deg (phi),Utotal(j,:),"'.-m"),
label ('potential energy (N-mm) '), xlabel ('\Phi (degrees)"')
legend('diag 2x2 (n)', 'full 2x2 (p4)")

o0 T

o\

% PLOTS FOR TEST 6 USING PHYSICAL MODEL

% subplot(2,1,1), plot((l:length(fminmzd(j, :))) *rad2deg(phi), fminmzd(j,:),"'.-
m'), ylabel('iterations'), ...

% title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)),
') in ', num2str (phi*180/pi), ' deg. increments'])

% legend('diag 2x2 (n)', 'full 2x2 (p4)")

% subplot(2,1,2), plot((l:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),"'.-
m'), ylabel ('potential energy (N-mm)'), xlabel ('\Phi (degrees)')

% legend('diag 2x2 (n)', 'full 2x2 (p4)")

elseif z == 12
plot((l:1length(loadctlerror(j, :))) *rad2deg(phi),loadctlerror(j,:),"'.-r');
elseif z == 13

plot ((l:1length(loadctlerror(j, :))) *rad2deg(phi),loadctlerror(j,:),"'.-m");
end

o\

% PLOTS FOR TEST 6
figure, hold on
for m = 1:kk
phb = plot([m m], [F(m,1l) F(m,fminmzd(j,m)+1)], '-ob');
phe = plot([m m], [F(m,fminmzd(j,m)+1) F(m, fminmzd(j,m)+1)], '*xr');
end

o° 0o o oe

o\°

% title(['Rotated about (', num2str(corX(i,3j)), ',', num2str(corY(i,j)), ")
in ', num2str (phi*180/pi), ' deg. increments'])

% xlabel ("\Phi (degrees)'), ylabel ('resultant force (N)")

% legend handles = [phb; phe];

% legend(legend handles, 'beginning force', 'ending force');

end

end

end

(3,1,1), plot(l:length(FX), FX), ylabel ('FX (N)');
% subplot(3,1,2), plot(l:length(FY), FY), ylabel ('FY (N)'");
(3,1,3), plot(l:length(MZ), MZ), ylabel ('MZ (N-m)'

% figure

% subplot(2,1,1), plot(l:length(KXX), KXX), ylabel ('"KXX (N/mm) ")

% subplot(2,1,2), plot(l:length(KYY), KYY), ylabel ('KYY (N/mm)');,
xlabel ('iterations');

[xx, yyl=meshgrid(-60:10:60,60:-10:-60) ;

% draw (xx, yy, F1X, FlY, M1Z, F, peaku, P1X, PlY, Kxxp, Kxyp, Kyyp, PHI, phi,
1);

% draw (xx, yy, F1X, FlY, M1Z, F, peaku, P1X, PlY, Kxxl, Kxyl, Kyyl, PHI, phi,
2);
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refpointtrans.m is a function called by hand14a.m. It uses the rigid body
transformations developed in sections 4.2.1 - 4.2.7 to track the movement of the center of the

bar.

function [P1X, P1lY, TGO, TGl, corXY] = refpointtrans (thetaG, PXY, thetaCOR,
corXY, phi, dxy, cs)

% define xformation from X,Y to x0,y0
TGO = trans(thetaG, PXY (1), PXY(2), 0);

% define xformation from X,Y to xTCS0,yTCSO
TGTCSO = trans (thetaCOR, corXY (l), corXY(2), 0):
% calculate xformation from xTCSO,yTCSO to x0,y0
TTCS00 = inv (TGTCSO0) *TGO;

% define xformation from xTCS0,yTCSO to xTCS1l,yTCS1

% here dxy is defined in the TCSO c.s.

% 1f the translation (dxy) is defined in the global c.s.,
% it must first be transformed to the TCSO c.s.

if ¢cs == 'g'
dxy = (TGTCSO0(1:3,1:3))'"*[dxy 0]"';
dxy(3) = [1;

end

TTCSOTCS1 = trans (phi, dxy(l), dxy(2), 0);

% calculate xformation from X,Y to xTCS1l,yTCSl
TGTCS1 = TGTCSO*TTCSOTCS1;
corXY = [TGTCS1(1l,4) TGTCS1(2,4)];

% define xformation from xTCS1,yTCS1l to x1,yl
TTCS11l = TTCS00;

% calculate xformation from X,Y to x1,yl
TGl = TGTCS1*TTCS11;

P1X TG1(1,4);

PlY = TGl (2,4);

nodaltrans.m is a function called by hand14a.m. It uses the rigid body transformations

developed in sections 4.2.8 - 4.2.14 to track the movement of the ends of the bar.

function [ilX, 4i1Y, 10, 11, T0i0, T1lil] = nodaltrans(thetai, ixy, thetaj,
XY, TGO, TG1);

% define xformation from x0,y0 to xi0,yi0
T0i0 = trans(thetai, ixy(l), ixy(2), 0);

o)

% calculate xformation from X,Y to xi0,yiO0
TGi0 = TGO*T010;
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% define xformation from x1,yl to xil,yil
T1il = T0iO0;

% calculate xformation from X,Y to xil,yil
TGil = TG1*T1il;

11X TGil (1,4);

i1y = TGil(2,4);

% define xformation from X,Y to xj,v]
TGj = trans (thetaj, jXY (1), jXY(2), 0);

% calculate xformation from xi0O,yi0 to xJ,Vy]

Ti0j = inv (TGi0) *TGj;

% calculate length of spring 1 at time tO0 (mm)

10 = Ti0j(1:3,4);

% L0 is the vector pointing from node i to node j in local coordinates
% later, this is the force acting on the bar. if we want the force
% that the spring exerts, we would use -LO

% calculate xformation from xil,yil, to x3,V]

Tilj = inv(TGil) *TGj;

% calculate length of spring 1 at time tl (mm)

11 = Tilj(1:3,4);

force2.m is a short function called by hand14a.m that calculates the force in coordinates.

function F = force2(k, delta, 1, theta, X, Y, Z)
f = k*delta*1l/(sqrt(l1'*1));

F = trans(theta, X, Y, 2)*[f; 1];
F(4,:) = [1;

momentl.m is a short function called by hand14a.m that calculates the moment in global

coordinates.
function M = momentl (theta, X, Y, Z, L, F, unit);
trans (theta, X, Y, Z2)*[L; 1];

) = [1;
dot (cross (R, F),unit)/1000;

s

R
R (
M

stiff.m is a function called by hand14a.m that calculates the global stiffness terms using

the method of choice (defined by the input variable “flag”).

function varargout = stiff(flag, varargin)
switch flag

case {2, 3, 4, 5}
% calculate analytical stiffness matrix
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ka = varargin{l};

lar = varargin{2};

jaXY = varargin{3};

axy = varargin{4};
PXYstiff = varargin{5};
angle = varargin{6};

kb = varargin{7};

lbr = varargin{8};
JbXY = varargin{9};
bxy = varargin{10};
[kxxa, kxya, kxza, kyxa, kyya, kyza, kzxa, kzya, kzzal] = anastiff (ka,
lar, jaXyY, axy, PXY¥stiff, angle);
[kxxb, kxyb, kxzb, kyxb, kyyb, kyzb, kzxb, kzyb, kzzb] = anastiff (kb,
1lbr, jbXY, bxy, PXYstiff, angle);
Kxx = kxxa + kxxb;, Kxy = kxya + kxyb;, Kxz = kxza + kxzb;
Kyx = kyxa + kyxb;, Kyy = kyya + kyyb;, Kyz = kyza + kyzb;
Kzx = kzxa + kzxb;, Kzy = kzya + kzyb;, Kzz = kzza + kzzb;
if (flag == 2) | (flag == 3)
varargout = {Kxx, Kxy, Kyx, Kyy};
elseif (flag == 4) | (flag == 5)
varargout = {Kxx, Kxy, Kxz, Kyx, Kyy, Kyz, Kzx, Kzy, Kzz};
end
case {6, 7, 8, 9}
% calculate numerical stiffness matrix
diffload = varargin{l};
diffdisp = varargin{2};
frw = varargin{3};
if (diffload ~= [0 0 0]) & (diffdisp ~= [0 O 0]) & (fmw(l)~=0 | fmw(2)
| fmw (6)~=0)
Kxx = diffload(l)/diffdisp(1);
Kyy = diffload(2)/diffdisp(2);
Kzz = diffload(3)/diffdisp(3);
else
K = varargin{4};
Kxx = K(1,1);
Kyy = K(2,2);
Kzz = K(3,3);
end
varargout = {Kxx, Kyy, Kzz};
case {10, 11}
method = varargin{l};
if (method == 1) | (method == 2) | (method == 4)
angle = varargin{2};
lal = varargin{3};
Lal = [cos(angle) -sin(angle) 0; sin(angle) cos(angle) 0; 0 0 1] *
lal;
angle = varargin{4};
1bl = varargin{5};
Lbl = [cos(angle) -sin(angle) 0; sin(angle) cos(angle) 0; 0 0 1] *
1bl;
end
if (method == 1) | (method == 2)
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lar = varargin{6};

lbr = varargin{7};

ka = varargin{8};

kb = varargin{9};

FXY = varargin{1l0};
thetaGphi = varargin{1l1l};
Tlal = varargin{l2};

Tlbl = varargin{l1l3};

MZ = varargin{1l4};

PXY = varargin{1l5};
thetaCORphi = varargin{l6};
corXY = varargin{l7};
thetaa = varargin{18};
axy = varargin{1l9};
thetaja = varargin{20};
JjaXY = varargin{21};
thetab = varargin{22};
bxy = varargin{23};
thetajb = varargin{24};
JbXY = varargin{25};

if method ==
% calculate full 2x2 perturbed matrix w/ method #1 (two global
pert., one parallel to X, other parallel to Y)
[Kxx, Kxy, Kyx, Kyy, Kzx, Kzy, Kxz, Kyz, Kzz] = pertstiff (Lal,
Lbl, lar, lbr, ka, kb,...
FXY, thetaGphi, Tlal, T1lbl, MZ, PXY, thetaCORphi, corXy,
thetaa, axy, thetaja, jaXyY, thetab, bxy, thetajb, JbXY);
elseif method ==
% calculate full 2x2 perturbed matrix w/ method #2 (two global
pert., one in XY-plane, other orthogonal)
[Kxx, Kxy, Kyx, Kyy, Kzx, Kzy, Kxz, Kyz, Kzz] = pertstiff2(Lal
Lbl, lar, lbr, ka, kb,...
FXY, thetaGphi, Tlal, Tlbl, MZ, PXY, thetaCORphi, corXy,
thetaa, axy, thetaja, jaXY, thetab, bxy, thetajb, jbXY);
end
end

if method ==
% calculate full 2x2 perturbed matrix w/ method #3 (one global
translation, parallel to either X or Y)
fmw = varargin{2};
f temp = varargin{3};
dXY = varargin{4};
K = varargin{5};

dFXY = [fmw(1l)-f temp(l) fmw(2)-f temp(2)];
if (dXY (1) == 0) & (dFXY ~= [0 0]) & (dXY(2) ~= 0) & (fmw(l) ~= 0 |
fmw (2)~= 0)
Kxy = dFXY (1) /dXY (2);
Kyy = dFXY (2)/dXY (2);

Kyx = Kxy;
Kxx = K(1,1);
elseif (dXY(2) == 0) & (dFXY ~= [0 0]) & (dXY(1l) ~= 0) & (fmw(1l) ~
| fmw (2)~= 0)

Kxx = dFXY (1) /dXY (1) ;
Kyx = dFXY (2)/dXY (1) ;

151

14



else

end

Kxy =
Kyy =

Kxx
Kxy
Kyx
Kyy

elseif method == 4

o)

translation,

lar =

lbr
ka =
kb =
FXY

on
v
= Vv
va
va
= Vv

% calculate full 2x2 perturbed matrix w/ method #4

e global pert. orthogonal to translation)

arargin{6};
arargin{7};
rargin{8};
rargin{9};
arargin{10};

thetaGphi = varargin{ll};
= varargin{1l2};

Tlal
Tlbl
MZ =
PXY

va
= Vv

varargin{13};
rargin{1l4};
arargin{15};

thetaCORphi = varargin{l6};

corX
thet
axy

thet
jaXy
thet
bxy

thet
JbXY

fmw
f te
dxy
K:

dFXY

Tlal, T1bl,

dxy (2),

Y =
aa
= VvV
aja

ab
= v
ajb

= Vv
mp

= Vv
var

= [

Kxy =

Kyy
Kyx

Kxx =

MZ,

varargin{17};

= varargin{18};
arargin{19};

= varargin{20};
varargin{21l};

= varargin{22};
arargin{23};

= varargin{24};
varargin{25};

arargin{26};

= varargin{27};
arargin{28};
argin{29};

fmw (1) -f temp(l) fmw(2)-f temp(2)];
if (dXY (1) == 0) & (dFXY ~= [0
fmw (2)~= 0)

dFXY (1) /dXY (2) ;

= dFXY (2) /dXY (2);

= Kxy;

pertstiff3(Lal, Lbl,

0]) &

lar,

PXY, thetaCORphi, corXy,...

thetaa, axy, thetaja,

'even');

else

if

| fmw (2)~= 0)

Tlal, T1bl,

dxy (1),

'odd
else

Kxx
Kyx
Kxy

Kyy
MZ,

")

(dXY (2) == 0) & (dFXY ~=

= dFXY (1) /dXY (1) ;

= dFXY (2) /dXY (1) ;

= Kyx;

= pertstiff3(Lal, Lbl,

Jjaxy,

lar,

PXY, thetaCORphi, corXy,...

thetaa, axy, thetaja,

jaxy,
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(dXY (2)

1lbr,

ka,

-= 0)

kb,

thetab, bxy,

[0 0]) &

1lbr,

(dXY (1)

ka,

kb,

thetab, bxy,

FXY,

(one global

thetaGphi,

thetajb, jbXy,

-= 0)

FXY,

& (fmw (1)

thetaGphi,

thetajb, jbXy,

0



Kxx =
Kxy =
Kyx =
Kyy =
end
end

varargout = {Kxx, Kxy, Kyx, Kyy};

end

anastiff.m is a function called by stiff.m to calculate the global stiffness terms

analytically.

function [kxx, kxy, kxz, kyx, kyy, kyz, kzx, kzy, kzz] = anastiff(k, 1lr,
ixy, PXY, angle)

cl = XY (1) - ixy(l)*cos(angle) + ixy(2)*sin(angle);
c2 = JXY(2) - ixy(2)*cos(angle) - ixy(l)*sin(angle);
cd = JXY (1) - PXY(1);
ch = JXY (2) - PXY(2);

kxx = k* (-1 + (1lr*(c2-PXY(2))"2)/ (((cl-PXY (1)) 2+ (c2-PXY (2))"2)"(3/2))):
kxy = —k*1r* (cl-PXY (1)) * (c2-PXY (2))/ (((cl-PXY (1)) 2+ (c2-PXY (2))"2)"(3/2
kxz = k* (ixy(2)*cos (angle) + ixy(1l)*sin(angle) + 1lr* (-
c5+ixy (2) *cos (angle) +ixy (1) *sin (angle)) *...

(—ixy (1) "2-ixy(2) "2+ (cd*ixy (1) +c5*ixy (2)) *cos (angle) + (c5*ixy (1) -
cd4*ixy (2)) *sin(angle)) /...

(((-cb+ixy (2) *cos (angle) +ixy (1) *sin (angle)) "2 + (c4-
ixy (1) *cos (angle) +ixy (2) *sin (angle))"2) "~ (3/2)));

kyx = kxy;
kyy = k* (=1 + (1lr*(cl-PXY(1))"2)/ (((cl=PXY (1)) 2+ (c2=-PXY (2))"2)"(3/2)));
kyz = k* (-ixy (1) *cos (angle) + ixy(2)*sin(angle) + 1lr* (c4d-
ixy (1) *cos (angle) +ixy (2) *sin (angle) ) *...

(=ixy (1) "2-ixy(2) "2+ (cd*ixy (1) +c5*ixy (2)) *cos (angle) + (c5*ixy (1) -
cd*ixy(2))*sin(angle)) /...

(((-c5+ixy(2) *cos (angle)+ixy (1) *sin (angle)) "2 + (c4-
ixy (1) *cos (angle) +ixy (2) *sin (angle))~2) "~ (3/2)));

kzx = kxz;
kzy = kyz;
kzz = -k*1r* (((-c5*ixy(1l)+cd*ixy(2)) *cos (angle) +

(cd*ixy (1) +ch*ixy (2)) *sin (angle))"2) /...
(((-cb+ixy (2) *cos (angle) +ixy (1) *sin (angle)) "2 + (cd-
ixy (1) *cos (angle)+ixy (2) *sin (angle))"2) "~ (3/2)) + ...
k* ((-cd4*ixy (1) -c5*ixy(2)) *cos (angle) + (-
chb*ixy (1) +cd*ixy (2)) *sin(angle) ) *...
(1 - lr/sqrt((-c5+ixy(2)*cos(angle)+ixy (1) *sin (angle)) "2 + (c4-
ixy (1) *cos (angle) +ixy (2) *sin (angle)) "2));
kzz = kzz/1000;
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pertstiff.m is a function called by stiff.m that calculates the global stiffness terms using

proposed method #1.

function [Kxx, Kxy, Kyx, Kyy, Kzx, Kzy, Kxz, Kyz, Kzz] = pertstiff(Lal, Lbl,
lar, lbr, ka, kb, FXY,...

thetaGphi, Tlal, Tlbl, MZ, PXY, thetaCORphi, corXY, thetaa, axy, thetaja,
jaXyY, thetab, bxy, thetajb, jbXY)

ihat = [1 0 0]"';
jhat (01 01"';
khat (00 11"';

% perturb the bar in each direction to find full stiffness matrix
pert = 0.5; % mm

oe

Only consider the perturbation along the global X axis

% La 1s a vector pointing from node a to node ja in X,Y coordinates
La = Lal - [pert 0 0]';

delta = sgrt(La'*La) - lar;

Fa = ka*delta*La/sqrt(La'*La);

Ma = momentl (thetaGphi, 0, 0, 0, Tlal, Fa, khat);

[

% Lb is a vector pointing from node b to node jb in X,Y coordinates

ILb = Lbl - [pert 0 0]';
delta = sqgrt(Lb'*Lb) - lbr;
Fb = kb*delta*Lb/sqrt (Lb'*Lb) ;

Mb = momentl (thetaGphi, 0, 0, 0, Tlbl, Fb, khat);

% find Kxx and Kyx

FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) +

dot (Fb, jhat);, MZ(2,1) = Ma + Mb;

dFX = FXY(2,1) - FXY(1l,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) -
MZ(1,1);

Kxx = dFX/pert; % N/mm
Kyx = dFY/pert; % N/mm
Kzx = dMZ*1000/pert; % N-mm/mm

% Now consider the perturbation along the global Y axis

% La 1s a vector pointing from node a to node ja in X,Y coordinates
La = Lal - [0 pert 0]';

delta = sgrt(La'*La) - lar;

Fa = ka*delta*La/sqrt(La'*La);

Ma = momentl (thetaGphi, 0, 0, 0, Tlal, Fa, khat);

% Lb is a vector pointing from node b to node jb in X,Y coordinates
ILb = Lbl - [0 pert 0]';

delta = sqgrt(Lb'*Lb) - lbr;

Fb = kb*delta*Lb/sqrt (Lb'*Lb) ;

Mb = momentl (thetaGphi, 0, 0, 0, Tlbl, Fb, khat);

[

% find Kxy and Kyy

FXY(2,1) = dot(Fa,ihat) + dot (Fb,ihat);, FXY(2,2) = dot(Fa,jhat) +
dot (Fb, jhat);, MZ(2,1) = Ma + Mb;

dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = Mz (2,1)
MZ(1,1);

Kxy = dFX/pert; % N/mm
Kyy = dFY/pert; % N/mm
Kzy dMZ*1000/pert; % N-mm/mm
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% Consider a perturbation about the global 7 axis
$pert = deg2rad(0.1); % radians
pert = 0.1*pi/180;

[P1X, PlY, TGO, TGl] = refpointtrans (thetaGphi, PXY, thetaCORphi, corXy,
pert, [0 0], 'g");

[alX, alY, 1la0, lal, TO0a0O, Tlal] = nodaltrans(thetaa, axy, thetaja, jaXy,
TGO, TG1):;

[b1X, blyY, 1b0, 1bl, TO0bO, Tlbl] = nodaltrans(thetab, bxy, thetajb, jbXy,
TGO, TG1):;

deltaa = sqgrt(lal'*lal) - lar;

deltab = sqgrt (lbl'*1bl) - lbr;

[

% find forces & moment at new position
Fa force2 (ka, deltaa, lal, thetaGphi+thetaa+pert, 0, O,
Fb = force2(kb, deltab, 1lbl, thetaGphi+thetab+pert, 0, O,

’

)
)7
)

0
0

Ma = momentl (thetaGphi+pert, 0, 0, 0, Tlal(l:3,4), Fa, khat);

Mb = momentl (thetaGphi+pert, 0, 0, 0, Tlb1(1:3,4), Fb, khat);

FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) +

dot (Fb, jhat);, MZ(2,1) = Ma + Mb;

dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) -
Mz (1,1);

Kxz = dFX/pert; % N/rad

Kyz = dFY/pert; % N/rad
Kzz = dMZ/pert; % N-m/rad
pertstiff2.m is a function called by stiff.m that calculates the global stiffness terms using
proposed method #2.
function [Kxx, Kxy, Kyx, Kyy, Kzx, Kzy, Kxz, Kyz, Kzz] = pertstiff2(Lal, Lbl,

lar, lbr, ka, kb, FXY,...
thetaGphi, Tlal, Tlbl, MZ, PXY, thetaCORphi, corXY, thetaa, axy, thetaja,
jaXyY, thetab, bxy, thetajb, jbXY)

ihat = [1 0 01';
Jhat = [0 1 0]"';
khat = [0 O 1]°';

% perturb the bar in each direction to find full stiffness matrix
% perturbations are orthogonal linear combinations of X and Y
pert = 0.5; % mm

% Consider a perturbation in the global XY plane

% La 1s a vector pointing from node a to node ja in X,Y coordinates
La = Lal - [pert pert 0]';

delta = sgrt(La'*La) - lar;

Fa = ka*delta*La/sqgrt(La'*La);

Ma = momentl (thetaGphi, 0, 0, 0, Tlal, Fa, khat);

% Lb is a vector pointing from node b to node jb in X,Y coordinates
Lb = Lbl - [pert pert 0]';

delta = sgrt(Lb'*Lb) - lbr;

Fb = kb*delta*Lb/sqrt (Lb'*Lb) ;

Mb = momentl (thetaGphi, 0, 0, 0, Tlbl, Fb, khat);
% find dF and dM
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FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) +

dot (Fb, jhat);, MZ(2,1) = Ma + Mb;
dFX1 = FXY(2,1) - FXY(1,1);, dFYl = FXY(2,2) - FXY(1,2);, dMZl = MZ(2,1) -
MZ(1,1);

o)

% Consider another perturbation in the global XY axis, perpendicular to the
first pert.

% La 1s a vector pointing from node a to node ja in X,Y coordinates
La = Lal - [-pert pert 0]';

delta = sgrt(La'*La) - lar;

Fa = ka*delta*La/sqgrt(La'*La);

Ma = momentl (thetaGphi, 0, 0, 0, Tlal, Fa, khat);

% Lb is a vector pointing from node b to node jb in X,Y coordinates
Ib = 1Lbl - [-pert pert 0]';

delta = sqgrt(Lb'*Lb) - lbr;

Fb = kb*delta*Lb/sqrt (Lb'*Lb) ;

Mb = momentl (thetaGphi, 0, 0, 0, Tlbl, Fb, khat);

% find dF and dM

FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) +

dot (Fb, jhat);, MZ(2,1) = Ma + Mb;

dFX2 = FXY(2,1) - FXY(1,1);, dFY2 = FXY(2,2) - FXY(1,2);, dMZ2 = MZ(2,1) -
MZ(1,1);

dX1l = pert;, dY1l = pert;

dX2 = -pert;, dY2 = pert;

Kxx = —(dFX2*dY1l - dFX1*dY2) / (-dX2*dYl + dX1*dy2); % N/mm
Kxy = - (-dFX2*dxX1 + dFX1*dX2) / (-dx2*dyl + dX1*dY2); % N/mm
Kyx = - (dFY2*dYl - dFY1*dY2) / (-dX2*dYl + dx1x*dy2); % N/mm
Kyy = - (-dFY2*dxX1 + dFY1*dx2) / (-dX2*dyl + dX1*dy2); % N/mm
Kzx = 1;

Kzy = 1;

% Consider a perturbation about the global Z axis

pert = deg2rad(0.1); % radians

[P1X, PlY, TGO, TGl] = refpointtrans (thetaGphi, PXY, thetaCORphi, corXy,
pert, [0 0], 'g');

[alX, alY, 1la0O, lal, T0aO, Tlal]

nodaltrans (thetaa, axy, thetaja, jaXy,

TGO, TG1);

[b1X, blY, 1b0, 1bl, TObO, Tlbl] = nodaltrans(thetab, bxy, thetajb, jbXY,
TGO, TG1);

deltaa = sqgrt(lal'*lal) - lar;

deltab = sqrt(lbl'*1bl) - lbr;

o)

% find forces & moment at new position

Fa = force2(ka, deltaa, lal, thetaGphit+thetaatpert, 0, O,
Fb force2 (kb, deltab, 1lbl, thetaGphi+thetab+pert, 0, O,
Ma = momentl (thetaGphi+pert, 0, 0, 0, Tlal(l:3,4), Fa, khat

Mb = momentl (thetaGphi+pert, 0, 0, 0, Tlbl1(1:3,4), Fb, khat);
FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) +
dot (Fb, jhat);, Mz(2,1) = Ma + Mb;

dFX = FXY(2,1) - FXY(1l,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1)
MZ(1,1);

Kxz = dFX/pert; % N/rad
Kyz = dFY/pert; % N/rad
Kzz = dMZ/pert; % N-m/rad
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pertstiff3.m is a function called by stiff.m that calculates the global stiffness terms using

proposed method #3.

function [varargout] = pertstiff3(Lal, Lbl, lar, lbr, ka, kb, FXY,...
thetaGphi, Tlal, Tlbl, MZ, PXY, thetaCORphi, corXY, thetaa, axy, thetaja,
jaXyY, thetab, bxy, thetajb, jbXY, pert, flag)

ihat [1 0 01"';
jhat = [0 1 0]';
khat = [0 O 11';

% use translation AND applied perturbation to find full stiffness matrix at a
given position

% perturb the bar in each direction to find full stiffness matrix

pert = 0.5; % mm

% 1f counter is odd, translation in Y is set to zero, only solve for Kxx,
Kxy, Kyx

% 1if counter is even, translation in X is set to zero, only solve for Kxy,
Kyx, Kyy

switch flag

case 'even'

Only consider the perturbation along the global X axis

La 1s a vector pointing from node a to node ja in X,Y coordinates
La = Lal - [pert 0 0]';

delta = sqgrt(La'*La) - lar;

Fa = ka*delta*La/sqrt(La'*La);

Ma = momentl (thetaGphi, 0, 0, 0, Tlal, Fa, khat);

% Lb is a vector pointing from node b to node jb in X,Y coordinates
b = Lbl - [pert 0 0]';

delta = sqrt(Lb'*Lb) - 1lbr;

Fb = kb*delta*Lb/sqgrt (Lb'*Lb);

Mb = momentl (thetaGphi, 0, 0, 0, Tlbl, Fb, khat);

o)

% find Kxx and Kyx

o

o\°

FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) +
dot (Fb, jhat);, MZ(2,1) = Ma + Mb;

dFX = FXY(2,1) - FXY(1l,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) -
Mz (1,1);

Kxx = dFX/pert; % N/mm

Kyx = dFY/pert; % N/mm

Kxy = Kyx;
Kzx = dMZ*1000/pert; % N-mm/mm
varargout = {Kxx};

case 'odd'

Only consider the perturbation along the global Y axis

La 1s a vector pointing from node a to node ja in X,Y coordinates
La = Lal - [0 pert 0]';

delta = sqgrt(La'*La) - lar;

Fa ka*delta*La/sqrt (La'*La) ;

Ma momentl (thetaGphi, 0, 0, 0, Tlal, Fa, khat);

% Lb is a vector pointing from node b to node jb in X,Y coordinates
Ib = 1Lbl - [0 pert 0]';

o\

o©
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delta sgrt (Lb'*Lb) - lbr;
Fb = kb*delta*Lb/sqrt (Lb'*Lb) ;

Mb = momentl (thetaGphi, 0, 0, 0, Tlbl, Fb, kha

% find Kxy and Kyy

FXY(2,1) = dot(Fa,ihat) + dot (Fb,ihat);, FXY(2
dot (Fb, jhat);, MZ(2,1) = Ma + Mb;

dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - F
MZ(1,1);

Kxy = dFX/pert; % N/mm

Kyy = dFY/pert; % N/mm

Kyx = Kxy;

Kzy = dMZ*1000/pert; % N-mm/mm

varargout = {Kyy};

end

% Consider a perturbation about the global 7 axis

pert = deg2rad(0.1); % radians

[P1X, PlY, TGO, TGl] = refpointtrans (thetaGphi, PX
pert, [0 0], 'g');

[alX, alY, 1la0O, lal, TO0a0O, Tlal] = nodaltrans (thet
TGO, TG1);

[b1X, blY, 1b0, 1bl, TObO, Tlbl] = nodaltrans(thet
TGO, TG1):;

deltaa = sqrt(lal'*lal) - lar;

deltab = sqrt(lbl'*1bl) - lbr;

o)

% find forces & moment at new position

Fa = force2(ka, deltaa, lal, thetaGphi+thetaa+pert
Fb = force2(kb, deltab, 1lbl, thetaGphi+thetab+pert
Ma = momentl (thetaGphi+pert, 0, 0, 0, Tlal(l:3,4),
Mb = momentl (thetaGphi+pert, 0, 0, 0, Tlb1l(1:3,4),
FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FEXY(2,2)
dot (Fb, jhat);, MZ(2,1) = Ma + Mb;

dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1l
MZ(1,1);

Kxz = dFX/pert; % N/rad

Kyz = dFY/pert; % N/rad

Kzz = dMZ/pert; % N-m/rad

fmin.m is a function called by hand14a.m that calculates the translation required to

t)

,2) = dot (Fa,jhat) +
XY (1,2);, dMZ = MZ(2,1)
Y, thetaCORphi, corXy,
aa, axy, thetaja, jaXy,
ab, bxy, thetajb, jbXy,
4 OI OI O);

14 OI OI O);

Fa, khat);

Fb, khat);
= dot (Fa, jhat) +

,2);, dMZ = MZ(2,1) -

minimize force using the method of choice (defined by the input variable “flag”™).

function dXY

fmin (flag, varargin)

switch flag
case 1

% let bar follow force without using constant user-defined stiffness

FX = varargin{l};

FY varargin{2};

const stiff varargin{3};

dxy [FX/const stiff FY/const stiff]';

case {2, 4}

[

analytical diagonal K matrix (either 2x2 or 3x3)
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K = varargin{l};
fmw = varargin{2};
limit = varargin{3};

if size(K,1l) == 2, fmw(3) = [];, end
dXY = -K\fmw;
if limit == 'y'

t lim vararg1n{4},

if abs(dXY (1)) > t 1lim, dXY(l) = sign(dX¥(1l))*t lim; end
if abs(dXY(2)) > t lim, dXY(2) sign (dXY (2))*t lim; end
end
if size(dXY,1l) == 3, dXY(3) = [];, end
case {3, 5}
% calculate global displacement to force minimized position using
analytical full K matrix (either 2x2 or 3x3)
K = varargin{l};
fmw = varargin{2};
limit = varargin{3};

if size(K,1l) == 2, fmw(3) = [];, end
dXYy = -K\fmw;
if limit == 'y'
t lim = vararg1n{4},
if abs(dXY (1)) > t 1lim, dXY(l) = sign(dX¥(l))*t lim; end
if abs(dXY(2)) > t 1lim, dXY(2) = sign(dXY(2))*t lim; end
end
if size(dXY,1l) == 3, dXY(3) = [];, end

case {6, 8}

% calculate global displacement to force minimized position using
numerical diagonal K matrix method (either 2x2 or 3x3)

K = varargin{l};

fmw = varargin{2};
limit = varargin{3};
if size(K,1l) == 2, fmw(3) = [];, end
dXYy = -K\fmw;
if limit == 'y'
t lim = arargln{4},
if abs(dXY(1l)) > t lim, dXY(l) = sign(dXY(l))*t lim; end
if abs(dXY(2)) > t 1lim, dXY(2) = sign(dXY(2))*t lim; end
end
if size(dXY,1l) == 3, dXY(3) = [];, end

case {7, 9}

% calculate global displacement to force minimized position using
numerical full K matrix method (either 2x2 or 3x3)

K = varargin{l};

frw = varargin{2};

limit = varargin{3};

if size(K,1l) == 2, fmw(3) = [];, end

dXY = -pinv (K) *fmw;

if limit == 'y'
t lim = arargln{4},
if abs(dXY (1)) > t lim, dXY(l) = sign(dXY(1l))*t lim; end
if abs(dXY(2)) > t lim, dXY(2) = sign(dXY(2))*t lim; end

end

if size(dXY,1l) == 3, dXY(3) = [];, end

case 10

% calculate global displacement to force minimized position using
perturbations (diagonal 2x2)
pertk = varargin{l};
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fmw = varargin{2};
limit = varargin{3};

if size(pertk,l) == 2, fmw(3) = [];, end
dXYy = -[pertk(1l,1) 0; 0 pertk(2,2)]\fmw;
if limit == 'y'
t lim = ararg1n{4},
if abs (dXY (1 )) > t lim, dXY (1) = sign(dX¥(1l))*t lim;
if abs(dXY(2)) > t 1lim, dXY(2) = sign(dXY(2))*t lim;
end
if size(dXY,1l) == 3, dXY(3) = [];, end

case {11, 13}
% calculate global displacement to force minimized position using
perturbations (full 2x2 or full 3x3)

pertk = varargin{l};

fmw = varargin{2};

limit = varargin{3};

if size(pertk,l) == 2, fmw(3) = [];, end

dXY = -pinv (pertk) *fmw;

if limit == 'y'
t lim = Varargln{4},
if abs(dXY(1l)) > t 1lim, dXY(l) = sign(dXY(1l))*t lim;
if abs(dXY(2)) > t 1lim, dXY(2) = sign(dXY(2))*t lim;

end

if size(dXY,1l) == 3, dXY(3) = [];, end

case 12

% calculate global displacement to force minimized position using

perturbations (diagonal 3x3)

end

pertk = varargin{l};

end
end

end
end

frw = varargin{2};
limit = varargin{3};
if size(pertk,1l) == 2, fmw(3) = [];, end
dXY = -[pertk(1l,1) 0 0; O pertk(2,2) 0; 0 O pertk(3,3)]\fmw;
if limit == 'y'
t lim = Varargln{4},
if abs(dXY (1)) > t 1lim, dXY(l) = sign(dXY(1l))*t lim; end
if abs(dXY(2)) > t lim, dXY(2) = sign(dXY(2))*t lim; end
end
if size(dXY,1l) == 3, dXY(3) = [];, end

spieg.m is a function called by hand14a.m that calculates the preferred COR using the

method described by Spiegelman and Woo.

function [corX, corY] = spieg(marklX, marklY, marklXp, marklYp,

mark2¥, mark2Xp, mark2Y¥p, fx, fy)

o° oe o

o\

oe

find the true COR using Spiegelman and Woo

(X1,Y1l) & (X2,Y2) are the initial and final global coordinates of marker 1
(X3,Y3) & (X4,Y4) are the initial and final global coordinates of marker 2

node a = first marker, node b = second marker

o

°

noise is normally distributed with mean = 0 mm and std =
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0.5 mm

mark2X,



o\

X1 = marklX+normrnd(0,0.5);, Yl = marklY+normrnd(0,0.5);
X2 = marklXp+normrnd(0,0.5);, Y2 = marklYp+normrnd(0,0.5);
X3 = mark2X+normrnd(0,0.5);, Y3 = mark2Y¥+normrnd(0,0.5);
X4 = mark2Xp+normrnd(0,0.5);, Y4 = mark2Y¥p+normrnd(0,0.5);

o° oP

oe

o\°

noise is assumed to be due to weight on end-effector
calculate how much noise should be added

pctpay = fx/(6*9.81)*100;, xnoise = 0.0058*pctpay - 0.28;
pctpay = fy/(6*9.81)*100;, ynoise = 0.0058*pctpay - 0.28;
X1 = marklX+xnoise;, Y1 = marklY+ynoise;

X2 = marklXp+xnoise;, Y2 = marklYp+ynoise;

X3 = mark2X+xnoise;, Y3 = mark2Y¥+ynoise;

X4 = mark2Xp+xnoise;, Y4 = mark2Y¥p+ynoise;

o

o)

% no noise added

X1l = marklX;, Y1 = marklY;
X2 = marklXp;, Y2 = marklYp;
X3 = mark2X;, Y3 = mark2Y;
X4 = mark2Xp;, Y4 = mark2¥p;

o o° o© o°

oe

S = X1-X3;, Sp = X2-X4;

T = Y1-Y3;, Tp = Y2-Y4;

cosphi = (Sp*S + Tp*T)/(S"2 + T"2);

sinphi = (Sp*T - Tp*S)/(S"2 + T"2);

U = (Y1+Y2)/2 + sinphi* (X1-X2)/(2* (1-cosphi));
V = (X1+X2)/2 - sinphi* (Y1-Y2)/(2* (1-cosphi));

corX = X1 + (Y2-U)/sinphi - cosphi* (Y1-U)/sinphi;
corY = Y1 - (X2-V)/sinphi + cosphi* (X1-V)/sinphi;

crisco.m is a function called by hand14a.m that calculates the preferred COR using the

method described by Crisco et al.

function [corX, corY] = crisco(marklX, marklY, mark2X, mark2Y, marklXp,
marklYp, mark2Xp, mark2Y¥p, fx, fy)

% find the true COR using Crisco et al.

% (x1,yl) & (x2,y2) are the initial & final global coordinates of marker 1

% (x3,v3) & (x4,y4) are the initial & final global coordinates of marker 2

% % noise is normally distributed with mean = 0 mm and std = 0.5 mm

% x1 = marklX+normrnd(0,0.5);, vyl = marklY+normrnd(0,0.5);, A [x1; y1];
% x2 = marklXp+normrnd(0,0.5);, y2 = marklYp+normrnd(0,0.5);, Ap = [x2; vy2];
% x3 = mark2X+normrnd(0,0.5);, y3 = mark2Y¥+normrnd(0,0.5);, B = [x3; y3];
% x4 = mark2Xp+normrnd(0,0.5);, y4 = mark2Y¥p+normrnd(0,0.5);, Bp = [x4; v4];

oe

noise is assumed to be due to weight on end-effector
calculate how much noise should be added

pctpay = fx/(6*9.81)*100;, xnoise = 0.0058*pctpay - 0.28;
pctpay = fy/(6%*9.81)*100;, ynoise = 0.0058*pctpay - 0.28;
x1 = marklX+xnoise;, vyl = marklY+ynoise;, A = [x1; yl];

o©
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x2 = marklXp+xnoise;, y2 = marklYp+ynoise;, Ap = [x2; y2];
x3 mark2X+xnoise;, vy3 mark2¥+ynoise;, B [x3; v31;
x4 = mark2Xp+xnoise;, y4 = mark2Yp+ynoise;, Bp = [x4; vy4];

o)

% no noise added

o

% x1 = marklX;, yl = marklY;, A = [x1; yl];
% x2 = marklXp;, y2 = markl¥p;, Ap = [x2; y2];
% x3 = mark2X;, y3 = mark2Y;, B = [x3; vy3];
% x4 = mark2Xp;, y4 = mark2Y¥p;, Bp = [x4; v4];
u = A-B;

up = Ap-Bp;

cosphi = dot (u,up)/ (sqgrt(u'*u)*sqrt (up'*up)) ;
sinphi = sqgrt(l-(cosphi)*2);
cp = cross([u;0], [up;0])
if sign(cp(3)) > 0
sinphi = sinphi;

elseif sign(cp(3)) < 0
sinphi = —51nphl,
end
corX = (1/2)*(x1+x2) + (yl-y2)*sinphi/ (2* (1-cosphi));
corY = (1/2)*(yl+y2) - (x1-x2)*sinphi/ (2* (1-cosphi));

challis.m is a function called by hand14a.m that calculates the preferred COR using the

method described by Challis.

function [corX, corY, xnoise, ynoise] = challis(axy, a0X, alY, alX, alY, bxy,
b0X, b0y, blX, bly, fx, fy);

% find the true COR using Challis

% x(t)i is the position of point i on the rigid body measured in the rigid
body ref. frame

% y(t)i is the position of point i on the rigid body measured in the inertial
ref. frame

x(t)i and y(t)i are vectors, not single points

node a: i = 1 (initial) & 3 (final)

node b: i = 2 (initial) & 4 (final)

o oP

oe

o\°
o\°

noise is normally distributed with mean = 0 mm and std = 0.5 mm
1 = [axy(l); axy(2)] + normrnd(0,0.5,2,1);, vl = [a0X; aOY] +
normrnd (0,0.5,2,1);

o\
b

[

(
% x2 = [bxy(l); bxy(2)] + normrnd(0,0.5,2,1);, y2 = [b0X; b0Y] +
normrnd(0,0.5,2,1);
$ x3 l[axy(1l); axy(2)] + normrnd(0,0.5,2,1);, y3 = [alX; alY] +
normrnd(0,0.5,2,1);
s x4 = [bxy(l); bxy(2)] + normrnd(0,0.5,2,1);, y4 = [blX; blY] +
normrnd(0,0.5,2,1);

% noise 1s assumed to be due to weight on end-effector

% calculate how much noise should be added

pctpay = fx/(6*9.81)*100;, xnoise = 0.0058*pctpay - 0.28;
pctpay = fy/(6*9.81)*100;, ynoise = 0.0058*pctpay - 0.28;
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x1 = [axy(l); axy(2)] + [xnoise; ynoisel;, yl [a0X; a0¥Y] + [xnoise;
ynoise];

x2 = [bxy(l); bxy(2)] + [xnoise; ynoisel;, y2 = [b0X; bOY] + [xnoise;
ynoise];

x3 = [axy(l); axy(2)] + [xnoise; ynoise];, y3
ynoise];

x4 = [bxy(l); bxy(2)] + [xnoise; ynoisel;, y4 = [blX; blY] + [xnoise;
ynoise];

[alX; alY] + [xnoise;

o

% no noise added

$ x1 = [axy(1l); axy(2)];, yl = [a0X; a0Y];
5 x2 = [bxy(1l); bxy(2)];, y2 = [b0X; b0Y];
% x3 = [axy(l); axy(2)];, y3 = [alX; alY];
s x4 = [bxy(l); bxy(2)];, y4 = [blX; blY];
xbar = (x1+x2)/2;, ybar = (yl+y2)/2;

x1lp = xl-xbar;, ylp = yl-ybar;

x2p = x2-xbar;, y2p = y2-ybar;

P = ylp(1)*x1p(2)-ylp(2) *x1p (1) + y2p(1l)*x2p(2)-y2p(2)*x2p(1);

Q = ylp(1)*x1p (1) +ylp(2) *x1p(2) + y2p (1) *x2p(1)+y2p(2) *x2p(2);

phi = -atan(P/Q);, phi0 = phi;

v0 = (yl+y2)/2 - [cos(phi) -sin(phi); sin(phi) cos(phi)]*(x1+x2)/2;

xbar = (x3+x4)/2;, ybar = (y3+y4)/2;

x3p = x3-xbar;, y3p = y3-ybar;

x4p = x4-xbar;, yidp = yéd-ybar;

P = y3p (1) *x3p (2)-y3p (2) *x3p (1) + y4p (1) *x4p(2)-y4p(2) *x4p(1);

Q = y3p (1) *x3p (1) +y3p (2) *x3p (2) + y4p (1) *x4p (1) +y4p (2) *x4p(2) ;

phi = —-atan(P/Q);, phil = phi;

vl = (y3+y4)/2 - [cos(phi) -sin(phi); sin(phi) cos(phi)]* (x3+x4)/2;

dv = v1-v0;

p = (vO+vl)/2;

phi = phil - phiO0;

FCR = p + 1/(2*tan(phi/2))*[cos(pi/2) -sin(pi/2); sin(pi/2) cos(pi/2)]1*dv;
corX = FCR(1);

corY = FCR(2);

corupdate.m is a short function called by hand14a.m that updates the user-defined COR

to the calculated preferred COR.

function corXY = corupdate (corX, corY, corXtemp, corYtemp, limit, cor lim)

dcorX = corXtemp-corX;
dcorY = corYtemp-corY;

if limit == 'y'
if abs(dcorX) > cor lim, dcorX = sign(dcorX)*cor lim;, end
if abs(dcorY) > cor lim, dcorY = sign(dcorY)*cor lim;, end
end
corX = corX+dcorX;, corY = corY+dcorY;, corXY = [corX corY]';
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draw.m is a function called by hand14a.m that makes 3D plots or contour plots,

depending on the input variable “flag”.

function draw (xx, yy, FX, FY,
switch flag
case 1
fh = figure;
surfc (xx, yy, FX);

deg.

deg.

deg.

deg.

deg.

xlabel ('X COR location
ylabel ('Y COR location
zlabel ('FX (N)'");

title(['Total rotation =

increments']);

view (-58.50, 46);
th = figure;
surfc (xx, yy, FY);

xlabel ('X COR location
ylabel ('Y COR location
zlabel ('FY (N)'");
title(['Total rotation
increments']) ;

view (-58.50, 46);
th = figure;
surfc (xx, yy, MZ);

xlabel ('X COR location
ylabel ('Y COR location
zlabel ('MZ (N-m)');

title(['Total rotation =

increments']):;

view (-58.50, 46);
th = figure;
surfc(xx, yy, F);

xlabel ('X COR location
ylabel ('Y COR location

zlabel ('Resultant force magnitude
= ',num2str (PHI),"'

title(['Total rotation
increments']):;

view (-58.50, 46);
fh = figure;
surfc (xx, yy, u);

xlabel ('X COR location

ylabel ('Y COR location

zlabel ('Potential energy
title(['Total rotation =

increments']):;
view (-58.50, 46);
fh = figure;

surfc (PX, PY, K1);

xlabel ("PX location

Mz, F, u, PX, PY, K1, K2, K3, PHI, phi, flag);
(mm) ") ;
(mm) ") ;

',num2str (PHI),"' deg., ', num2str (phi*180/pi),
(mm) ") ;
(mm) ") ;
= ',num2str (PHI),' deg., ', num2str (phi*180/pi),
(mm) ") ;
(mm) ") ;

',num2str (PHI),"' deg., ', num2str (phi*180/pi),

(mm) ") ;

(mm) ") ;

(N) ") 7

deg., ', num2str (phi*180/pi),

(mm) ') ;

(mm) ') ;

(N-mm) ') ;

', num2str (PHI),"'

deg., ', num2str (phi*180/pi),

(mm) ') ;
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ylabel ('PY location (mm
zlabel ('Kxx (N/mm) ') ;

title(['Total rotation =

' deg. increments']);
view (-58.50, 46);
th = figure;
surfc (PX, PY, K2);

xlabel ('"PX location
ylabel ('PY location
zlabel ('Kxy (N/mm) ') ;

title(['Total rotation = ',num2str (PHI),' deg.,
',num2str (phi*180/pi), ' deg. increments']);
view (-58.50, 46);
th = figure;
surfc (PX, PY, K3);
xlabel ('PX location (mm)"'");
ylabel ('PY location (mm)"'");
zlabel ('Kyy (N/mm) ') ;
title(['Total rotation = ',num2str(PHI),' deg., ', num2str(phi*180/pi),
' deg. increments']);
view (-58.50, 46);
case 2
th = figure;
[C,h] = contour(xx, vy, FX);
xline = line('xdata', [xx(l) xx(end)], 'ydata', [0 0], 'color', 'k');
yline = line('xdata', [0 0], 'ydata', [yy(l) yy(end)], 'color', 'k'");
xlabel ("X COR location (mm)");
ylabel ('Y COR location (mm)"'");
title(['FX (N), Total rotation = ',num2str(PHI),' deg., ',
num2str (phi*180/pi), ' deg. increments']);
clabel (C,h);
th = figure;
[C,h] = contour(xx, vy, FY);
xline = line('xdata', [xx(l) xx(end)], 'ydata', [0 0], 'color', 'k');
yline = line('xdata', [0 0], 'ydata', [yy(l) yy(end)], 'color', 'k'");
xlabel ("X COR location (mm)");
ylabel ('Y COR location (mm)");
title(['FY (N), Total rotation = ', num2str(PHI),' deg., ',
num2str (phi*180/pi), ' deg. increments']);
clabel (C,h);
th = figure;
[C,h] = contour(xx, vy, MZ);
xline = line('xdata', [xx(l) xx(end)], 'ydata', [0 0], 'color', 'k');
yline = line('xdata', [0 0], 'vydata', [yy(l) yy(end)], 'color', 'k'");
xlabel ("X COR location (mm)");
ylabel ('Y COR location (mm) ") ;
title(['MZ (N-m), Total rotation = ',num2str (PHI),' deg., ',
num2str (phi*180/pi), ' deg. increments']);

clabel (C,h);

fh = figure;
[C,h] contour (xx,

YYr

) ")

'
4

', num2str (PHI), ' deg., num2str (phi*180/pi),

(mm) ') ;
(mm) ") ;

avgf) ;
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xline = llne('xdata', [xx(1) xx(end)], 'ydata', [0 0], 'color', 'k');
yline = line('xdata', [0 0], 'ydata', [yy(l) yy(end)], 'color', 'k'");
xlabel ('X OR location (mm) ') ;
ylabel ('Y COR location (mm)"');
title(['Resultant force magnitude (N), Total rotation ="', ...

num2str (PHI),' deg., ', num2str (phi*180/pi), ' deg.
increments']);
clabel (C,h);

fh = figure;

[C,h] = contour(xx, vy, u);

xline = line('xdata', [xx(l) xx(end)], 'ydata', [0 0], 'color', 'k');

deg.,

yline = line('xdata', [0 0], 'ydata', [yy(l) yy(end)], 'color', 'k'");
xlabel ("X COR location (mm)"');

ylabel ('Y COR location (mm)");

title(['Potential energy (N-mm), Total rotation = ',num2str (PHI),

', num2str (phi*180/pi), ' deg. increments']);

clabel (C,h);

fh = figure;
[C,h] = contour (PX, PY, Kxx);

xline = line('xdata', [xx(l) xx(end)], 'ydata', [0 0], 'color', 'k');
yline = line('xdata', [0 0], 'ydata', [yy(l) yy(end)], 'color', 'k'");
xlabel ('PX location (mm)"'");
ylabel ('PY location (mm)"'");

title(['Kxx (N/mm), Total rotation = ',num2str (PHI),' deg., ',
num2str (phi*180/pi) ' deg. increments']);
clabel (C,h);
fh = figure;
[C,h] = contour (PX, PY, Kyy);
xline = line('xdata', [xx(l) xx(end)], 'ydata', [0 0], 'color', 'k');

num2str (phi*180/pi),

end

yline = line('xdata', [0 0], 'ydata', [yy(l) yy(end)], 'color', 'k'");
xlabel ('PX location (mm)"'");

ylabel ('PY location (mm)"'");

title(['Kyy (N/mm), Total rotation = ',num2str (PHI),' deg., ',

' deg. increments']);

clabel (C,h);

draw2.m is a function called by hand14a.m that plots the current position of the bar and

the resultant force acting at the center of the bar.

function draw2 (handles, PXY, corXY, aXY, bXY, jaXY, jbXY¥Y, angle, marklXY,
mark2Xy, FXY, tick)

th =

handles (1) ;

fgraph = handles (2);
forceufs = handles (3);

ah =

bar =

handles (4) ;
handles (5) ;

springa = handles (6);
springb = handles(7);
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xbar = [aXY (1) bXY(1)1;

ybar = [aXY(2) bXY(2)];

set (bar, 'xdata', xbar, 'ydata', ybar):;

set (springa, 'xdata', [aXY(l) jaXY(l)], 'ydata', [aXY(2) JaXY(2)]):

set (springb, 'xdata', [JbXY (1) bXY(1l)], 'ydata', [JbXY(2) bXY(2)]):
drawnow
plot (corXY (1) *cos (2*angle) -corXY (2) *sin (2*angle),

corXY (1) *sin(2*angle) +corXY (2) *cos (2*angle), '.',...
'markeredgecolor', [0 .75 0], 'markersize', 20);
plot (PXY (1), PXY(2), '.', 'markeredgecolor', [.827 .122 .592]);

plot (0, 0, '.g', marklXY(l), marklXY(2), '.m', mark2XY(l), mark2XY(2),
set (fh, 'currentaxes', fgraph)

hold on

plot(tick, sqgrt (FXY (1) "2+FXY(2)"2), '.k', 'markersize', 8);

set (fh, 'currentaxes', ah)

for m = 1:100000, ; end
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APPENDIX B

Matlab code for experimental tests
spine_display.m is a function called by the Matlab GUI developed to allow any user to

control the experimental tests.

function varargout = spine display2(varargin)
SPINE DISPLAY2 Application M-file for spine display2.fig
FIG = SPINE DISPLAY2 launch spine display2 GUI.
SPINE DISPLAY2 ('callback name', ...) invoke the named callback.

o° oo

o\°

oe

Amy Loveless
Last Modified by GUIDE v2.0 05-Jun-2003 14:06:37

o°

if nargin == % LAUNCH GUI

fig = openfig(mfilename, 'reuse');
% Use system color scheme for figure:

set (fig, 'Color',get (0, 'defaultUicontrolBackgroundColor'));

% Generate a structure of handles to pass to callbacks, and store it.
handles = guihandles (fig);

guidata(fig, handles);

assignin('base', 'guihandles', handles)

% assignin('base', 'hok', handles.ok push button);
% assignin('base', 'hbolt', handles.boltup push button);
% assignin('base', 'hbefore', handles.fm before push button);

o

% assignin('base', 'hpath', handles.pathsgekipush:button);
% assignin('base', 'hval', handles.val path push button);
% assignin('base', 'hreplay', handles.replay push button);

oo

(
(
(
assignin('base', 'hafter', handles.load control push button);
(
(
(
assignin('base', 'hend', handles.end push button);

global ok flag
ok flag = 0;

if nargout > 0
varargout{l} = fig;
end

elseif ischar (varargin{l}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

try
if (nargout)
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fun
var
set
set
set
set
set
set
set
set
set
set

o)

[varargout{l:nargout}] = feval (varargin{:}); % FEVAL switchyard
else
feval (varargin{:}); % FEVAL switchyard
end
catch
disp(lasterr);
end

ABOUT CALLBACKS:

GUIDE automatically appends subfunction prototypes to this file, and
sets objects' callback properties to call them through the FEVAL
switchyard above. This comment describes that mechanism.

Each callback subfunction declaration has the following form:
<SUBFUNCTION NAME> (H, EVENTDATA, HANDLES, VARARGIN)

The subfunction name is composed using the object's Tag and the
callback type separated by ' ', e.g. 'slider2 Callback',
'figurel CloseRequestFcn', 'axisl ButtondownFcn'.

H is the callback object's handle (obtained using GCRO) .
EVENTDATA is empty, but reserved for future use.

HANDLES is a structure containing handles of components in GUI using
tags as fieldnames, e.g. handles.figurel, handles.slider2. This
structure is created at GUI startup using GUIHANDLES and stored in
the figure's application data using GUIDATA. A copy of the structure
is passed to each callback. You can store additional information in
this structure at GUI startup, and you can change the structure
during callbacks. Call guidata(h, handles) after changing your

copy to replace the stored original so that subsequent callbacks see
the updates. Type "help guihandles" and "help guidata" for more
information.

VARARGIN contains any extra arguments you have passed to the
callback. Specify the extra arguments by editing the callback
property in the inspector. By default, GUIDE sets the property to:
<MFILENAME> ('<SUBFUNCTION NAME>', gcbo, [], guidata (gcbo))

Add any extra arguments after the last argument, before the final
closing parenthesis.

ction varargout = default push button Callback(h, eventdata, handles,
argin)
(handles.corx edit, 'String','0")
(handles.cory edit, 'String', '15")
(handles.corz edit, 'String', '110")
(handles.corrx edit, 'String','0")
(handles.corry edit, 'String','0")
(handles.corrz edit, 'String','0")
(handles.sup vert x,'String','0")
(handles.sup vert y,'String',"'15")
(handles.sup_vert z,'String','110")
(handles.sup vert rx,'String','0")
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set (handles.sup vert ry, 'String','0")
set (handles.sup vert rz, 'String','0")
set (handles.start edit, 'String','0")
set (handles.inc edit, 'String','0.5")
set (handles. fxtarget edit, 'String','0.5")
set (handles.fytarget edit, 'String','0.5")
set (handles.fztarget edit, 'String','0.5")
set (handles.mxtarget edit, 'String','0.25")
set (handles.mytarget edit, 'String','0.25")
set (handles.mztarget edit, 'String','0.25")

set (handles.default push button, 'Enable', 'off")

function varargout = ok push button Callback(h, eventdata,
corx = str2num(get (handles.corx edit, 'String'));

cory = str2num(get (handles.cory edit, 'String'));

corz = str2num(get (handles.corz edit, 'String'));

corrx = str2num(get (handles.corrx edit, 'String'));

corry = strZnum(get (handles.corry edit, 'String'));

corrz = str2num(get (handles.corrz edit, 'String'));
supvertx = str2num(get (handles.sup vert x,'String'));
supverty = str2num(get (handles.sup vert y,'String'));
supvertz = str2num(get (handles.sup vert z,'String'));
supvertrx = str2num(get (handles.sup vert rx, 'String'));
supvertry = str2num(get (handles.sup vert ry, 'String'));
supvertrz = str2num(get (handles.sup vert rz, 'String'));
start = str2num(get (handles.start edit, 'String'));

inc = str2num(get (handles.inc edit, 'String'));

fxtarget = strZ2num(get (handles.fxtarget edit, 'String'));
fytarget = str2num(get (handles.fytarget edit, 'String'));
fztarget = str2num(get (handles.fztarget edit, 'String'));
mxtarget = str2num(get (handles.mxtarget edit, 'String'));
mytarget = str2num(get (handles.mytarget edit, 'String'));
mztarget = str2num(get (handles.mztarget edit, 'String'));

assignin('b
assignin('b
assignin('b
if corrx ==
assignin('b
if corry ==
assignin('b
if corrz ==

assignin('b
assignin('b
assignin('b

assignin('b
if supvertr
assignin('b
if supvertr
assignin('b
if supvertr

assignin('b
assignin('b
assignin('b
assignin('b

ase','x1',corx/1000)
ase','yl',cory/1000)
ase','z1l', (corz+64)/1000)

0, assignin('base','rx1',0.0000001),
ase','rxl',corrx), end

, assignin('base','ryl',0.0000001),

ase','ryl',corry), end

0, assignin('base','rz1',0.0000001),
ase','rz1l',corrz), end
ase', 'x2',supvertx/1000)
ase', 'y2',supverty/1000)
ase','z2', (supvertz+64) /1000)
x == 0, assignin('base','rx2',0.0000001),
ase', 'rx2',supvertrx), end
y == 0, assignin('base', 'ry2',0.0000001),
ase','ry2',supvertry), end

z == 0, assignin('base','rz2',0.0000001),
ase','rz2',supvertrz), end
ase','w start',start)
ase','w_ang', inc)
ase','w_neg',-inc)

else,
else,

else,

else,
else,

else,
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assignin('base', 'z target', [fxtarget fytarget fztarget mxtarget mytarget
mztarget])
assignin('base', 'cuts',0)

global ok flag
if ok flag ==

% Initiate communication with the UFS
a = matjr3pci('init jr3',0,0,0,0,0);

% Create, configure and open serial port object
portl = Serial ('COM1');
set (portl, 'BaudRate',19200, 'Terminator', 'CR/LF', 'Timeout',6 900);
fopen (portl);
assignin('base', 'portl',portl)
end
set (handles.boltup push button, 'Enable', 'on')
set (handles.fm before push button, 'Enable', 'on'")
set (handles.load control push button, 'Enable', 'on')
set (handles.pathseek push button, 'Enable', 'on')
set (handles.val path push button, 'Enable', 'on'")
set (handles.replay push button, 'Enable', 'on')
set (handles.end push button, 'Enable', 'on')

ok flag = ok flag + 1;

function varargout = end push button Callback(h, eventdata, handles,
varargin)
% launch dialog box to confirm close
pos_size = get (handles.figurel, "Position');
pos_size [55 15 pos size(3) pos_size(4)];
user response = modaldlg([pos size(l)+pos size(3)/5
pos_size(2)+pos size(4)/5]);
switch user response
case {'no','cancel'}
% take no action
case 'yes'
% Prepare to close GUI application window
% Halt communication with the UFS

matjr3pci('close jr3');

[

% Close the serial port
portl = evalin('base', 'portl');
fclose (portl) ;

delete (handles.figurel)

function varargout = print file sub menu Callback(h, eventdata, handles,
varargin)

[)

% List dialog box to select figure to print

171



str = {'Figure 1'; 'Figure 2'};
[selection, ok] = listdlg('ListString',str, 'Name', 'Print Figure', ...
'PromptString', 'Select a figure to print')

o

Set current figure to selected figure
set (gcf,handles.figure?2)

o\

oe

Print figure
print

oe

o\°

Set current figure back to GUI
set (gcf,handles.figurel)

o

function varargout = tool menu Callback(h, eventdata, handles, varargin)
function varargout = stop tools sub menu Callback(h, eventdata, handles,
varargin)

monitor flag = 1;

assignin('base', 'monitor flag', monitor flag)

function varargout = help menu Callback(h, eventdata, handles, varargin)

function varargout = protocol help sub menu Callback(h, eventdata, handles,
varargin)

The user must follow several steps in the GUI before getting to the hybrid control
algorithm: remove bolt-up loads (boltup flex ext3.m) and minimize any loads arising from the
attachement of the end-effector to the superior fixture (initial loads2.m and boltup leash2.m).

boltup flex ext3.m is a script called by the GUI to calculate the loads on the UFS due to

bolt-up, the weight of the attachments on the UFS and the center of gravity of the attachments.
$function [avg, x0, y0, z0, w mg] = boltup flex ext3;
% boltup flex ext3

%$controller moves robot into #ppl-6
$function to read forces/moments at each #pp

o o

% % Disable buttons on GUI until boltup flxn ext.m is done running
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set (hok, 'Enable', 'off');

set (hbolt, 'Enable', 'off');
set (hbefore, 'Enable', 'off');
set (hafter, 'Enable', 'off');
(
(
(
(

o° o oe

o

set (hpath, 'Enable', 'off');
set (hval, 'Enable', 'off');
set (hreplay, 'Enable', 'off');
set (hend, 'Enable', 'off');

o oo

oe

% Disable buttons on GUI until spine3h pathseek7.m is done running
buttons (guihandles, 'off');

(1,1:6) = [0,-45.005,135.001,0,-.05,-180.145];
(2,1:6) = [0,-45.005,135.001,0,-.05,-.142];
p(3,1:6) = [0,-45.005,135.001,0,-.05,89.855];
p(4,1:6) = [0,-45.005,135.001,0,-.05,-90.147];
(5,1:6) = [0,-45.005,135.001,0,-90.05,-90.15];
(6,1:6) = [0,-45.005,135.001,0,89.95,-90.15];

o Qo

% % set transformation for COR from UFS face (remember that the UFS has a
left-hand rule, so positive z axis points toward the robot)

% trans_ufst = [1, round (x1*1000/0.0254), 2,round(yl1*1000/0.0254), 3,round(-
(z1-0.045) *1000/0.0254), 4,round(rx1*32768/180), 5,round(ryl*32768/180)
,round(rz1*32768/180),0];

b = matjr3pci('set transforms', 0, 'trans ufst', 13, 0);

o° o° O

o\

% use transformation
b = matjr3pci('use transforms', 0, 0);

oe

oe

o)

% only use pause if updating COR
pause (1) ;

o

o\°

for p =1:6
fprintf (portl, pp(p,1:6));
flag = 0;
flag = fscanf (portl);
newflag = sscanf(flag, '%f');

if newflag ==
get loads;
% fm ufs = get loads;
pp_fin(1l: 3,p) =fm ufs(1:3)"';
pp_min (1 p)=fm ufs(4:6)"';
cg fin(1:3,p)=fm ufs(1:3)"';
cg min(1 p)=fm ufs(4:6)"';
else
var = 1
end

end

fprintf (portl, pp(3,1:6));

[

% FSU forces/moments=UFS forces/moments|[]-avg[]-fixture wt[]

[]
favgx = (pp_fin(1, 3)+pp_fin(l 4)+pp_fin(l,5)+pp fin(1,6))/4;
favgy = (pp_fin(2,1)+pp fin(2,2)+pp fin(2,5)+pp fin(2,6))/4;
favgz = (pp fln(3,l)+pp_fin(3,2)+pp_fin(3,3)+pp fin(3,4))/4;
mavgx = (pp min(l,1)+pp min(1,2))/2;
mavgy = (pp_min(2,3)+pp min(2,4)+pp min(2,5)+pp min(2,6)) /4
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mavgz = (pp _min(3,3)+pp min(3,4)+pp min(3,5)+pp min(3,6)) /4

avg = -[favgx favgy favgz mavgx mavgy mavgz];

avg dig(2) = avg(2)*16384/20/4.44;

avg _dig(3) = avg(3)*16384/50/4.44;

% FSU forces/moments=UFS forces/moments[]-avg[]-fixture wt[]

cg favgx = (cg fin(1, 3)+cg7fin(l 4)+cg fin(1,5)+cg fin(1,6))/4;
cg favgy = (cg fin(2,1)+cg fin(2,2)+cg fin(2,5)+cg fin(2,6))/4;
cg favgz = (cg_fin(3,l)+cg_fin(3,2)+cg_f1n 3,3)+cg_fin(3,4))/4;
cg mavgx = (cg min(l,1)+cg min(1,2))/2;

cg mavgy = (cg min(2,3)+cg min(2,4)+cg min(2,5)+cg min(2,6))/4;
cg mavgz = (cg min(3,3)+cg min(3,4)+cg min(3,5)+cg min(3,6))/4;

Calculate the center of gravity and mass of top fixture.

o

$ 3 and 4 : d = z

% 3 : dz = -mx/fy

% 4 : dz = -mx/fy

fy cg3 = -cg fin(2,3) + cg favgy;

fy cg4 = -cg fin(2,4) + cg favgy;

mx _cg3 = -cg min(l,3) + cg mavgx;

mx cg4 = -cg min(1l,4) + cg mavgx;
momarm zl = —(mxicg3/fy7cg3)*lOOO;
momarm z2 = - (mx_cgd4/fy cg4)*1000;
momarm z = (momarm zl + momarm z2)/2;

z0 = momarm z/1000;

1l and 2 : d =y
$ 1 : dy = -mz/fx
2

% dy = -mz/fxfy cg3 = cg fin(2,3);
fx cgl = -cg fin(1,1) + cg favgx;

fx cg2 = -cg fin(1,2) + cg favgx;

mz cgl = -cg min(3,1) + cg mavgz;

mz cg2 = -cg min(3,2) + cg mavgz;
momarm yl = -(mz cgl/fx cgl)*1000;
momarm y2 = -(mz_cg2/fx _cg2)*1000;
momarm y = (momarm yl + momarm y2)/2;

y0 = momarm y/1000;

5 and 6 : d = x
% 5 : dx = —-my/fz
6 dx = -my/fzfy cg3 = cg fin(2,3);

fz cgb = -cg fin(3,5) + cg favgz;

fz cg6 = -cg fin(3 + cg_favgz;

my cg5 = -cg min(2,5) + cg mavgy;

my cg6 = -cg min(2,6) + cg mavgy;
momarm x1 = -(my cg5/fz cg5*1000);
momarm x2 = -(my cg6/fz cg6*1000);
momarm X = (momarm X1 + momarm x2) /2;

x0 = momarm x/1000;

% mass = 3(-fy), 4(fy), 1(-fx), 2(fx), 5(-fz), 6(fz)

mass _calc = ((-fy cg3) + (fy cg4) + (-fx cgl) + (fx cg2) + (-fz cgb) +
(fz_cg6))/6;

mass_calc = -mass_calc;

w mg = [0 0 mass _calc]';
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filename = ['c:\robot\temp\temp ', datel;
save (filename) ;

% Enable buttons on GUI when boltup flex ext3.m is done running
set (hok, 'Enable', 'on');

set (hbolt, 'Enable', 'on');

set (hbefore, 'Enable', 'on');

set (hafter, 'Enable', 'on');

set (hpath, 'Enable', 'on');
(
(
(

o° 0O d° o o° o°

o\

set (hval, 'Enable', 'on');
set (hreplay, 'Enable', 'on');
set (hend, 'Enable', 'on');

o

oe

% Enable buttons on GUI when spine3h pathseek7.m is done running
buttons (guihandles, 'on');

get_loads.m is a script called by several other scripts to read the loads from the JR3 PCI

card.

o

function fm ufs = get loads;

oe

get loads
Kevin M. Bell
03/18/02

o

o\

oe

% Commented out on 09-04-02.

% We are having a problem inplementing the set and use transformation
functions. It appears that the transformation is randomly used and not used,
% % meaning that sometimes the loads are read at the c.s. we set (the
specimen COR) and sometimes they are read at the center of the UFS.

% % There does not seem to be any kind of pattern to this behavior, so we
just took the transformation functions out. Now we read all loads at the
center

% % of the UFS and transform them later to the COR. If we can get the

transformation functions to work later, we may go back to using them.

oe

Q

% set transformation for COR from center of UFS (remember that the UFS has
left-hand rule, so positive z axis points toward the robot)

trans ufst = [1,round(x1*1000/0.0254), 2,round(yl1*1000/0.0254), 3,round(-
z1-0.045)*1000/0.0254), 4,round(rx1*32768/180), 5,round(ryl*32768/180),
,round(rz1*32768/180),0];

b = matjr3pci('set transforms', 0, 'trans ufst', 13, 0);

oe

o0 O —~ o° QU

o

o\

% use transformation
b = matjr3pci('use transforms', 0, 0);

o oP

o©

pause (1) ;
araw = 0;

$read in full scales
full = matjr3pci('get full scales',0);
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% read in raw data from UFS at center of UFS
for i = 1:30

raw(i,:) = matjr3pci('read ftdata',3,0);
% flip y to make right hand c.s.
raw(i,2) = -raw(i,2);
raw(i,5) = -raw(i,5);
araw = araw + raw(i,:);
% pause added so that data from pci card is not read too quickly,
% otherwise, all forces and moments in raw() are the same
% pause (0.01) ;

end

[

% average 30 readings
araw = araw/30;

% Calculate forces/moments in pounds/inch-pounds
% Negative sign to show f/m in robot point of view

fm ufs = -araw.*full/16384;
% Remember that fm ufs[] are loads at the center of the UFS. They are

transformed to the COR later.

[

% seperate and convert forces and moments

fm ufs(1:3) = fm ufs(1l:3)*4.44;
fm ufs(4:6) = fm ufs(4:6)*4.44*.0254;
fm ufs(7:8) = []1;

initial loads2.m is a script called by the GUI to find the loads on the UFS before

attaching the superior fixture to the end-effector.

o)

% Disable buttons on GUI until initial loads2.m is done running
buttons (guihandles, 'off');

fm before = [0 0 0 0 0 0];
for 3 = 1:100

get loads;
fm before = fm before + fm ufs;

end
fm before = fm before'/100;

filename = ['c:\robot\temp\temp ', date];
save (filename) ;

[

% Enable buttons on GUI when spine3h pathseek7.m is done running
buttons (guihandles, 'on');
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boltup leash2.m is a script called by the GUI that relieves the loads created during

achment of the superior fixture to the end-effector.

boltup leash2.m

use load control to make sure that no f/m are added when fixture 1is
tached to UFS

modified from trpy.m by Lianfang Tian

July 28, 2002

Disable buttons on GUI until boltup leash2.m is done running

ttons (guihandles, 'off');
setup figure to graphically monitor loads
x, fy, fz, mx, my, mz, fh] = attach displayl;

Define the threshold value for force and moment

f min = 0.5; % N

o)

m min = 0.25; % N-m

o

°

Limit for displacements

lim dis = 0.1; % mm

[

lim mdis = 0.1; % degrees

o

°

fo
en
fo

en

o

°

eu

ok
fl
fp
fp
eu

do
do

ze
kk

wh

Define stiffness

r n=1:3
stiff(n) = 10.00001; % N/mm
d
r n=4:6
stiff(n) = 10.00001; % N-m/degrees
d

convert rotations about tool x,y,z axes to Euler angles
1 = rad2deg(tr2eul (rpy2tr(deg2rad(rzl), deg2rad(ryl), deg2rad(rxl)))):;

send x1, vyl, z1, rxl, ryl, rzl to V+ to make tool transformation
= 0;
ag = 0.1;

rintf (portl, [ok, flagl);

rintf (portl, [(x1*1000)+.1, (yl1*1000)+.1, (z1*1000)+.1, eul(l)+.1,
1(2)+.1, eul(3)+.11);

ne moving = fscanf (portl);

ne moving = sscanf (done_moving, 'S$f');

ro flag = 0;
= 0;

ile zero flag ==
kk = kk + 1;

fm after = [0 0 0 O O O];

pause (2) ;
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% Read forces/moments
for 3 = 1:100
get loads;
fm after = fm after + fm ufs;
end
% Average forces/moments
fm after = fm after'/100;
total fm after(l:6,kk) = fm after;
% Remove forces/moments present before fixture attachment
fm diff = fm after - fm before;
% Display forces and moments
attach display2([fm diff', fx, fy, fz], [mx, my, mz], [f min, m min]);

°

[

% Find translations in UFS c.s.

for kl=1:3
if (abs(fm diff(kl)) < abs(f min))
dis(kl) = 0;
else
dis(kl) = fm diff(kl)/stiff (kl);
end

if abs(dis(kl)) > lim dis
dis(kl) = sign(dis(kl))*1lim dis;

end
end
% out disl, out dis2, out dis3 are translations in UFS c.s.
out disl (kk)=dis(1);
out dis2 (kk)=dis(2);
out dis3 (kk)=dis(3);

%

[)

% Find rotations in UFS c.s.

for kl=4:6
if (abs(fm diff (kl))<abs(m min))
dis(kl) = 0.0000001;
else
dis(kl) = fm diff(kl)/stiff (kl);
end

if abs(dis(kl)) > lim mdis
dis(kl) = sign(dis(kl))*1lim mdis;
end
end

% out mdisl, out mdis2, out mdis3 are rotations about tool c.s. axes

% need to convert to Euler angles

out mdis = rad2deg(tr2eul (rpy2tr (deg2rad(dis(6)), deg2rad(dis(5)),
deg2rad(dis(4)))));

out mdisl (kk)=out mdis (1) ;

out mdis2 (kk)=out mdis(2);

out mdis3 (kk)=out mdis(3);

°
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% Send position data to robot
% motions need to be negative to account for forces

send = —-[out disl(kk), out dis2(kk), out dis3(kk), out mdisl (kk),
out mdis2 (kk), out mdis3(kk)];

ok = 0;

flag = 2.1;

fprintf (portl, [ok, flag]l);
fprintf (portl, send);

done moving = fscanf (portl);
done moving sscanf (done moving, '%f');

[

% end while loop if done minimizing forces or if reach too many
iterations (kk)

if send == -[0 0 0 rad2deg(tr2eul (rpy2tr (deg2rad(0.0000001),
deg2rad(0.0000001), deg2rad(0.0000001))))1 | kk == 50;
zero flag = 1;
end

end
% remove monitor loads figure from screen
delete (fh)

% Enable buttons on GUI when boltup leash2.m is done running
buttons (guihandles, 'on');

buttons.m is a function called by several scripts to disable and enable the buttons on the

GUL

function buttons (handles, flag)

hok = handles.ok push button;

hbolt = handles.boltup push button;
hbefore = handles.fm before push button;
hafter = handles.load control push button;
hpath = handles.pathseek push button;

hval = handles.val path push button;
hreplay = handles.replay push button;

hend = handles.end push button;

switch flag
case 'on'
% Enable buttons on GUI when spine3h pathseek6.m is done running

set (hok, 'Enable', 'on');

set (hbolt, 'Enable', 'on');
set (hbefore, 'Enable', 'on');
set (hafter, 'Enable', 'on');
set (hpath, 'Enable', 'on');
set (hval, 'Enable', 'on');
set (hreplay, 'Enable', 'on');
set (hend, 'Enable', 'on');

case 'off'
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% Disable buttons on GUI until spine3h pathseek4.m is done running
set (hok, 'Enable', 'off'");
set (hbolt, 'Enable', 'off');
set (hbefore, 'Enable', 'off');
set (hafter, 'Enable', 'off');
set (hpath, 'Enable', 'off'");
set (hval, 'Enable', 'off');
set (hreplay, 'Enable', 'off');
set (hend, 'Enable', 'off');
end

spine3h pathseek4.m is a script called by the GUI to perform pathseek. Several other

scripts are called during execution of spine3h_pathseek4.m and follow in this appendix in the

order in which they appear in spine3h pathseek4.m

o\

spine3h pathseek4.m

perform flexion/extension with all position and load data stored
converted from spine3h.v2

Amy Loveless

7/4/2002

o° o oe

o

[

% Disable buttons on GUI until spine3h pathseek4.m is done running
buttons (guihandles, 'off');
% Input dialog box to get the filename for data storage
prompt = {'Enter Filename'};
title = 'Filename';
lines = 1;
def = {'c:\robot'};
answer = inputdlg (prompt,title,lines,def);
if isequal (answer,{}) == 1
% Enable buttons on GUI
buttons (guihandles, 'on');
else
filename = answer{l};
end
% Clear variables created for inputdlg
clear prompt title lines def answer;

% initialize stiffness, target f/m, temp. f/m, temp positions
z stiff = [100 100 100 10 10 10];

z flag = [0 0 0 0 0 0];

z stop = [30 30 30 9 9 9];

f temp = [0 0 0 O O O];

p temp = [0 0 00 0O0O0O0O0O0O0O0]";

% initialize iterations

z ct = 1; % keeps track of no. of iterations to reach min. force
z _count = 10 % limit to z count iterations
z ct temp =

’
z_count; % keeps track of no. of iterations to reach min. force
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z step = 1; % index to keep track of what direction and angle data
gathered was at

z xform = 1; % index to keep track of global c.s. to tool c.s. xform info
sent to Matlab

z mom_ flag = 1; % how many rotation angles the moment > max.mom

z _index = 1; % index to keep track of number of iterations per angle

[

% initialize direction

dir flag = 0; % change direction if dir flag <> 0
dir = 0; % begin with start -> flxn

% initialize stablity check

stable flag = 0;

stable flag flxn = 0;

stable flag extn = 0;
start counter = 0;
flxn counter = 0;
extn counter = 0;

% define the limits for displacement, rotation, f/e moment and pathseek limit
lim dis = 1; % mm

lim mdis = 3; % degrees
max mom = 2.40; % N-m

path limit = 4;
% initialize work
work = 0;

% initialize timer
tic;

% setup figure to graphically monitor loads
[fx, fy, fz, mx, my, mz, handles, fh] = pathseek displayl;

% send x1, yl, zl1, rxl, ryl, rzl to V+ to make tool transformation

ok = 0;

flag = 0.1;

fprintf (portl, [ok, flagl):;

fprintf (portl, [(x1*1000)+.1, (y1*1000)+.1, (z1*1000)+.1, rxl+.1, ryl+.1,
rzl+.11);

done moving = fscanf (portl);
done moving sscanf (done moving, '%f');

=== oo oo oo o= ———————————=———====

while stable flag ~= 100

if dir ==
w_begin = w_start;
w_inc = w_neg;
start_counter = start_counter + 1;
end
if dir == 400
w_begin = w_current;
w_inc = w_ang;
flxn counter = flxn counter + 1;
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stable flag flxn = 0;

stable flag extn = 0;
end
if dir == 800
w_begin = w_current;
w_inc = w_neg;
extn counter = extn counter + 1;
end
if dir == 900
w_begin = w_current;
w _end = w_start;
w_inc = w_ang;
stable flag = 100;
start counter = start counter + 1;
end
w_now = w_begin;

while dir flag ==
ok = 0;
flag = 1.1;
fprintf (portl, [ok, flagl):;
gt jt angles = fscanf (portl);
gt _jt angles = sscanf(gt jt angles, 'Sf');

if dir == | dir == 900

z gt0(1l:6,z xform,start counter) = gt jt angles(l:6);

z Jjt _anglesO0(l:6,z xform,start counter) = gt jt angles(7:12);
elseif dir == 400

z gtd400(1:6,z xform,flxn counter) = gt jt angles(l:6);

z _Jjt angles400(l:6,z xform, flxn counter) = gt jt angles(7:12);
elseif dir == 800

z gt800(1l:6,z xform,extn counter) = gt jt angles(l:6);

z Jjt angles800(1l:6,z xform,extn counter) = gt jt angles(7:12);
end
z xform = z xform + 1;
for n = 1:6

z sign(n) = 0;

z flag(n) 0;
end
ct = 1;

[

load control first3; % load control (inner) loop

o)

% are the measured sagittal plane forces < max allowable?

if no, begin load control loop again

if yes, put data in matrices

limit to 8 iterations (will want to change to time limit)

while z ct < z_ count

if sqgrt(fa(2)”2 + fa(3)"2) > z_ target(2)

if (abs(fa(2)) > z target(2)) | (abs(fa(3)) > z target(3))

z ct =z ct + 1;

z step = z step + 1;

z xform = z xform + 1;

o

°

o oP

oo

load control3; % load control (inner) loop
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else

z ct temp = z ct;
z ct = z count;
end
end
z ct = z ct temp;
if dir ==

o)

% Build array of start position data that could be for replay
start replayl(l:6,z index) =
z gt0(1:6,z xform,start counter)+0.000001;
% Build array of rotation angles at last iteration
rot angle0 end pts(l,z index,start counter) = w_now;
% Build array of loads at last iteration
start load end pts(l:6,z index,start counter) =
load0O(1l:6,z step,start counter);
% Build array of work at last iteration
worksOend (1, z_index,start counter) = work;
elseif dir == 400
% Build array of flxn position data to be written to V+ for
replay
flxn replay(l:6,z index) =
z gt400(1:6,z xform,flxn counter)+0.000001;
% Build array of rotation angles at last iterations
rot angle400 end pts(l,z index, flxn counter) = w now;
% Build array of loads at last iterations
flxn load end pts(l:6,z index, flxn counter) =
load400(1:6,z step, f1xn counter);
elseif dir == 800
% Build array of extn position data to be written to V+ for
replay
extn replay(l:6,z index) =
z gt800(1:6,z xform,extn counter)+0.000001;
% Build array of rotation angles at last iterations
rot angle800 end pts(l,z index,extn counter) = w now;
% Build array of loads at last iterations
extn load end pts(l:6,z index,extn counter) =
1load800(1:6,z step,extn counter);
elseif dir == 900
% Build array of start position data that could be for replay
will not)
start replay2(l:6,z index) =
z gt0(1:6,z xform,start counter)+0.000001;
% Build array of rotation angles at last iterations
rot _angle0 end pts(l,z index,start counter) = w_now;
% Build array of loads at last iterations
start load end pts(l:6,z index,start counter) =

load0O(1:6,z step,start counter);

end
if dir == | dir == 900

z ct0 total(l,z index,start counter) = z ct;
elseif dir == 400

z ctd400 total(l,z index, flxn counter) = z ct;
elseif dir == 800
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z ct800 total(l,z index,extn counter) = z ct;

end

z ct = 1;

z step = z step + 1;

z xform = z xform + 1;
z index = z_index + 1;

z ct _temp = z count;

[

°

max moment2; % max moment loop

[

% this part added for testing
if w now < -0.9
dir flag = 1;

o)

if dir flag == % continue with current direction
% for planar f/e program, displacement control should be a pure
rotation about the x axis, but tr2eul does not give us correct
% yaw,pitch,roll for a pure rotation about the x axis, therefore,
we have to have a very small rotation about the y and z axes, too.

% (see the m file for tr2eul.m to see how the Euler angles are

calculated.)
% rot inc x = rotx(deg2rad(w_inc));
% rot inc y = roty(deg2rad(0.0000001));
% rot inc z = rotz(deg2rad(0.0000001));
% rot inc = rot inc x*rot inc y*rot inc z;
% rotate inc = tr2eul (rot inc);
% rotate inc = rad2deg(rotate inc);
rotate inc = rad2deg(tr2eul (rpy2tr(deg2rad([0.0000001, 0.0000001,
w inc])))) + 0.0000001;
ok = 0;
flag = 2.1;

fprintf (portl, [ok, flagl):;
fprintf (portl, [0 0O O rotate inc(l) rotate inc(2)
rotate inc(3)1]);

done moving = fscanf (portl);
done moving = sscanf (done_moving, 'S$f');
W now = w now + w_inc;

end

if dir flag == % change direction
wW_current = w_now;
break

end

end

% stability check
if dir == 800 & extn counter > 1
% use flxn load end pts & rot angled400 end pts
flxn mx percent = 100*abs((flxn load end pts(4,1,flxn counter-1)-
flxn_load_end_pts(4,l,flxn_counter))/flxn_load_end_pts(4,l,flxn_counter));
flxn rot angle percent =
100*abs ((rot angle400 end pts(l,1,flxn counter-1)-
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rot_angled400_end pts(1l,1,flxn counter))/rot_angle400_end pts(l,1,flxn_counter
)i
if flxn mx percent < 4 & flxn rot angle percent < 4
stable flag flxn = 25;
end
% use extn load end pts & rot angle800 end pts
extn mx percent = 100*abs((extn load end pts(4,1,extn counter-1)-
extn load end pts(4,1,extn counter))/extn load end pts(4,1,extn counter));
extn rot angle percent =
100*abs ((rot _angle800 end pts(l,1,extn counter-1)-
rot_angle800_end pts(l,1,extn counter))/rot_angle800_end pts(l,1,extn_counter
)i
if extn mx percent < 4 & extn rot angle percent < 4
stable flag extn = 25;
end
end

% 1f stable flag == 100, then the while loop will end
if stable flag ~= 100

stable flag = stable flag flxn + stable flag extn;
end

% added to test program with only one pathseek
if dir == 800

dir = 900;
end

[

% commented so that we can test program with only pathseek

% if stable flag == 50 | extn counter > path limit
% dir = 900;
3 end

w_current = w_now;

o)

% this part added for testing
if dir ==
stable flag

100;

% commented out for testing

% if dir == 0 | dir == 400
% dir = dir + 400;

% elseif dir == 800

% dir = 400;

o©
0]
o]
(o}

dir flag = 0;
z xform = 1;
z step = 1;

z _index = 1;

end
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o)

% remove monitor loads figure from screen
delete (fh);

% Save workspace
save (filename)
disp('Data has been saved.')

oe

[

data display pathseek4; % display data

oe

o

% Enable buttons on GUI when spine3h pathseek4.m is done running
buttons (guihandles, 'on');

pathseek displayl.m is a function called by spine3h pathseek4.m that sets up the plot

for UFS loads.
function [fx, fy, fz, mx, my, mz, handles, fh] = pathseek displayl

% setup figure to graphically monitor loads

tfh = figure('Position', [400 300 600 600], 'Color','w");

subplot(2,1,1)

set (gca, 'XLim', [-30 30], 'YLim', [O 4], 'YTick', [1 2 3], 'YTickLabel', 'Fz
(N) [Fy (N)|Fx (N)")

title('Forces')

fx = line('XData', [0 0], '¥YData', [3 31, 'LinewWidth', 24, 'Color', [0 0.75
01):

I~

fy line ('XData', [0 0], 'YDhata', [2 2], 'Linewidth', 24, 'Color', [0 0.75
01);
fz = line('XData', [0 0], '¥YDbata', [1 1], 'LineWidth', 24, 'Color', [0 0.75
01)»

origin = line('XData', [0 0], 'YData', [0 4]);

subplot(2,1,2)

set (gca, 'XLim', [-10 10], 'YLim', [O 4], '¥YTick', [1 2 3], 'YTickLabel', 'Mz
(Nm) [My (Nm) [Mx (Nm) ")

title ('Moments')

mx = line('XData', [0 0], '¥YDbata', [3 3], 'LineWidth', 24, 'Color', [0 0.75
01)7

my line('XData', [0 0], 'YData', [2 2], 'Linewidth', 24, 'Color', [0 0.75
01)s
mz = line('XData', [0 0], 'YData', [1 1], 'LineWidth', 24, 'Color', [0 0.75
01);

origin = line('XData', [0 0], 'YData', [0 4]);

uicontrol ('Style', 'text', 'Tag', 'current text',...

'Position', [20 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Current:');
uicontrol ('Style', 'edit', 'Tag', 'w now edit',...

'Position', [135 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12);
uicontrol ('Style', 'text', 'Tag', 'w now text',...

'Position', [135 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Angle');
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uicontrol ('Style', 'edit', 'Tag', 'iterations edit',...

'"Position', [235 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12);
uicontrol ('Style', 'text', 'Tag', 'iteration text',...

'"Position', [235 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Iteration');
uicontrol ('Style', 'edit', 'Tag', 'pathseek edit',...

'"Position', [335 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize',6 12);
uicontrol ('Style', 'text', 'Tag', 'pathseek text',...

'Position', [335 0 70 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Pathseek #');
uicontrol ('Style', 'edit', 'Tag', 'stable edit',...

'"Position', [435 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize',6 12);
uicontrol ('Style', 'text', 'Tag', 'stable text',...

'Position', [435 0 65 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Stability %'");
handles = guihandles (fh) ;
guidata (fh, handles);

% any of these changes should make simple animations smooth

% zbuffer can be very slow and on my computer none of these are necessary to
stop flashing

set (fh, 'doublebuffer', 'on');

set (fh, 'renderer', 'zbuffer');

set (hfig, 'renderer', 'opengl');

oe

oe

load control first3.m is a script called by spine3h pathseek4.m.

o

load control first3.m

load control (inner) loop
Amy Loveless

converted to Matlab 7/10/02

o° oo

oe

o

o)

get loads; % measure: forces and moments
% fm ufs = get loads;

oe

%

o)

fm tareb5; $ tare out bolt-up and fixture wt

% Tx, fa, fmw, rGT] = fm tareb5(w mg, x0, yO0, zO0, x1, yl, zl, rxl, ryl, rzl,
fm ufs, avg)

o

°

time = toc;
tic;

% store current position
for i = 1:6

p_temp (i) = x(i);
end

% compute: FSU stiffness from previous measured force and position
if z flag(l) ==

% compute: robot displacement vector to minimize sagittal forces and
moments (from computed stiffness)
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i) = 1;
f temp (i) = fmw(i); 3 keep previous f/m
dis(i) = fmw(i)/z stiff(i)/(1+1*z sign(i));
end
else
for i = 1:6
if (fmw (i) ~= £ temp(i)) & (ds(i) ~= 0) & (fmw(i) ~= 0)
% STIFFNESS = Old*l/3 +ABS (df/ds) *2/3
z stiff (i) = z stiff(i)/3+abs((fmw(i)-f temp(i))/ds(i))*2/3;
% we changed to ds (1) from dis_tool actual (i) on 07- 29 02
end

if z stiff (i) > 99999
z stiff (i) = 100000; % maximum z stiff
end

if sign(f temp (i) *fmw(i)) < 1
z sign(i) = 1;
end

% compute: robot displacement vector to minimize sagittal forces and
moments (from computed stiffness)

z flag(i) = 1;
f_temp(') = fmw(i) % keep previous f/m
dis(i) = fmw(i)/z stiff(i)/(1+1*z sign(i));
end
end

Q

% determine translations based on forces
for i = 1:3
if abs(dis(i)) > 1lim dis
dis (i) = sign(dis(i))*1lim dis;
end
end
% transform from global c.s. to tool c.s.
dis tool calc(l:3) = rGT'*dis(1:3)'
% determine rotations based on moments
for i = 4:6
if abs(dis(i)) > lim mdis
dis (i) = sign(dis(i))*1lim mdis;
dis (i) = deg2rad(dis(i));
end
end

[

% transform from global c.s. to tool c.s.

dis tool calc(4:6) = rGT'*dis(4:6)'

% disal4]-[6] are rotations about x,y,z, not y,p,r, so need to make them
V.o, T

rot x = rotx(dis tool calc(4))

rot y = roty(dis_ tool calc(5)

rot z = rotz(dis_tool calc(6)

rot xyz = rot z*rot y*rot x;

rotate = tr2eul(rot xyz);
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rotate = rad2deg(rotate);

% ask for current position

ok = 0;

flag = 1.1;

fprintf (portl, [ok, flagl):;

gt _jt angles = fscanf (portl);

gt jt angles = sscanf (gt jt angles, 'S%f');
% display f/m after taring out bolt-up and fixture wt

pathseek display2([fa, fx, fy, fz], [mx, my, mz], handles, [w _now, z ct,
flxn counter, stable flag, z target]);

% find actual translations and rotations in global c.s., transform to tool

c.s.
for i = 1:6

ds (i) = x(i)-p_temp(i);

p_temp (i) = x(i);
end
dis tool actual(l:3) = rGT'*ds(1:3)"';
dis tool actual(4:6) = rGT'*ds(4:6)"';

swork done by the bar
work=work+abs (0. 5*(fmw(l)+f_temp(l))*ds(l))

+abs (0.5* (fmw (3) +f_temp (3)) *ds (3))

+abs (0.5* (fmw (5) +£ temp (5)) *deg2rad(w_inc));
worksO (z_index, z ct)=work;

[

% peak force

peak(z_index,z ct) = sqgrt(fmw(l)"2+fmw(3)"2);
peakX(z_index,z ct) = fmw(1l);
peakZ(z_index,z ct) = fmw(3);

[

% put data in matrices

if dir == | dir == 900

eval (['dis calc',int2str(dir),'(l:6,z step,start counter) = [0; 0; 0; 0;
0; 01;'1)

eval(['dis actual tool',int2str(dir),'(1:6,z step,start counter) =
transpose (dis_tool actual);'])

eval (['dis actual global',int2str(dir),'(1l:6,z step,start counter) =
transpose(ds);'])

eval (['load',int2str(dir),'(1l:6,z step,start counter) = transpose(fa);'])

eval (['stiff',int2str(dir),'(1:6,z step,start counter) =
transpose(z_stiff);'])

eval (['time total',int2str(dir),'(l,z step,start counter) = time;'])

eval (['rot angle',int2str(dir),'(l,z step,start counter) = w now;'])

eval(['z gt',int2str(dir),'(1l:6,z xform,start counter) =
gt jt angles(1l:6);'])

eval(['z jt angles',int2str(dir),'(1:6,z xform,start counter) =
gt jt angles(7:12);'])

elseif dir == 400 | dir == 800

eval(['dis calc',int2str(dir),'(1l:6,z step,flxn counter) = [0; 0; 0; O;
0; 01;'1)

eval (['dis actual tool',int2str(dir),'(1l:6,z step,flxn counter) =
transpose (dis_tool actual);'])

eval ([' dls_actual_global',1nt25tr(dir),'(1:6,z_step,flxn_counter) =
transpose (ds);'])
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eval (['load',int2str(dir),'(1:6,z step, flxn counter) = transpose(fa);'])
eval (['stiff',int2str(dir), '(1:6,z step,flxn counter) =

transpose(z stiff);'])
eval (['time total',int2str(dir),'(l,z step, flxn counter) = time;'])
eval (['rot angle',int2str(dir),'(l,z step,flxn counter) = w now;'])
eval(['z gt',int2str(dir),'(1:6,z xform,flxn counter) =

gt _jt _angles(l:6);'])
eval(['z jt angles',int2str(dir),'(1:6,z xform,flxn counter) =

gt jt angles(7:12);'])

end

o

% put data in matrices
if dir == | dir == 900
dis calcO(1l:6,z step,start counter) = [0 O 0 0 O O]'";
dis actual tool0O(l:6,z step,start counter) = dis tool actual';
dis_actual globalO(l:6,z step,start counter) = ds';
load0(1:6,z step,start counter) = fa';
stiff0(1l:6,z step,start counter) = z stiff';
time totall(l,z step,start counter) = time;
rot angleO(1l,z step,start counter) = w_now;
z gt0(1l:6,z xform,start counter) = gt jt angles(l:6);
z Jjt _anglesO(l:6,z xform,start counter) = gt jt angles(7:12);
elseif dir == 400
dis calc400(l:6,z step,flxn counter) = [0 0 O 0 O O]";
dis actual tool400(1:6,z step,flxn counter) = dis tool actual';
dis_actual global400(1l:6,z step,flxn counter) = ds';
load400(1:6,z step,flxn counter) = fa';
stiff400(1:6,z step,flxn counter) = z stiff';
time totald00(l,z step,flxn counter) = time;
rot angle400(1,z step,flxn counter) = w now;
z gtd400(1:6,z xform,flxn counter) = gt jt angles(l:6);
z Jjt _angles400(l:6,z xform, flxn counter) = gt jt angles(7:12);
elseif dir == 800
dis calc800(l:6,z step,flxn counter) = [0 0 O 0 O O]";
dis actual tool800(1:6,z step,flxn counter) = dis tool actual';
dis_actual global800(l:6,z step,flxn counter) = ds';
load800(1:6,z step,flxn counter) = fa';
stiff800(1:6,z step,flxn counter) = z stiff';
time total800(l,z step,flxn counter) = time;
rot angle800(1,z step,flxn counter) = w now;
z gt800(1:6,z xform,flxn counter) = gt jt angles(1l:6);
z Jjt _angles800(l:6,z xform, flxn counter) = gt jt angles(7:12);
end

d° d° o ° A° O° A° O O A A A O A A° A° A° A° A° A O O O° A° A° A° A° A oP° o°

oe

fm_tareS.m is a script called by load control first3.m and load control3.m to tare out
the weight of the attachments on the UFS. This is done to know what loads on the UFS are due

to the specimen.

Q

% function [x, fa, fmw, rGTCS] = fm tare5(w mg, x0, yO0, z0, x1, yl, zl, rxl,
ryl, rzl, fm ufs, avg)

% fm tare5.m
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o oo

oe

Amy Loveles
3/3/2003

o 0P o° o° oe

oe

o\

yaw, pitch,
ok = 0;

flag = 1.1;
fprintf (portl

tare out bolt-up f/m and fixture wt
this program can be used if yaw, pitch, roll <> 0 from UFS to tool

S

the f/m are read in UFS c.s.

bolt-up and weight are subtracted from f/m

the positions are read in tool c.s. wrt global c.s.
resulting forces transformed to global c.s.
resulting moments transformed to global c.s.

roll store position and orientation of end-effector

, [ok, flag]):;

x = fscanf (portl);
x = gscanf(x, '$f');
yaw = deg2rad(x (4)

pitch = deg2rad(x(
roll = deg2rad(x (6

% tGTICS[] 1is

)
);
5));
));

the transformation matrix of tool c.s. wrt global c.s.

TGTCS = eul2tr(yaw, pitch, roll);

TGTCS(1:3,4)

$ rGTCS[] is
rGTCS = TGTCS
rGTCS (:,4)
rGTCS(4,:) =
rGT = rGTCS;

% tUFSTCS 1is

= [x(1) x(2) x(3)1";

the rotation matrix of tool c.s. wrt global c.s.
[1:
[1:

the transformation matix of UFS face c.s. to tool c.s.

a constant transformation)
rot rxl = rotx(deg2rad(rxl));
rot ryl = roty(deg2rad(ryl));

rot rzl

rotz (deg2rad(rzl));

TUFSTCS = rot rzl*rot ryl*rot rxl;
% Need to subtract (64-19) back off of zl because values are compared from

face 08-12-02
TUFSTCS(1:3,14

% rUFSTCS 1is

rUFSTCS (:,4)
rUFSTCS (4, :)

) = [x1 yl1 (z1 - 45/1000)]1';

(this 1is

the rotation matrix of UFS face c.s. to tool c.s. (this is a
constant rotation)
rUFSTCS = TUFSTCS;

[1;
= [1;

% tGUFS is the transformation matrix of UFS c.s. wrt global c.s.
TGUFS = TGTCS*inv (TUFSTCS) ;
% rGUFS 1is the rotation matrix of global c.s. to UFS face c.s.

% if rUFSTCS

is an identity matrix, rGUFS = rGTCS

rGUFS = TGUFS;

rGUFS (:,4)
rGUFS (4, :)

[1;
[1;

% If we use the loads at the COR to calculate x0, y0, z0, then xO0,
the vector from the COR to c.g. (cg rot).
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% cg_rot is only used if we can get the transformation functions for the pci
card to work.

% cg _rot is only calculated if the loads are read at the COR.

% transform c.g. coordinates from UFS face c.s. to tool c.s.

% cg_rot = pinv (tUFST)*[x0 y0 z0 1]'

% w mgl] are the loads from the fixture (c.g.) defined in the global c.s.

% w mg rot[] are the loads from the fixture (c.g.) defined in the UFS c.s.

% If the loads are found at the center of the UFS, x0,y0,z0 is the coordinate
of the c.g. measured in the UFS c.s.,

% which is centered in the UFS.

% Use [x0 y0 z0]' to find the moment of the c.g. about the center of the UFS
(where all the loads are found).

w mg rot(l:3) = rGUFS'*w mg;

w mg rot(4:6) = cross([x0; yO0; z0],w mg rot(1l:3));

% Commented out on 09-04-02 (see notes above).

% w_mg rot(4:6) = cross(cg rot(l:3),w mg rot(1l:3));

% convert fm ufs[] to digital

% fm ufs dig(2) = fm ufs(2)*16384/20/4.44;

o\°

fm_ufs _dig(3) = fm_ufs(3)*16384/50/4.44;

% fa unrot[l]-fa unrot[3] are forces after bolt-up and fixture wt removed
from forces (in the UFS c.s.).

fa unrot(l) = -(fm ufs(l))-(avg(l))-(w _mg rot(l));
fa unrot(2) = -(fm ufs(2))-(avg(2))-(w_mg rot(2));
fa unrot (3) = -(fm ufs(3))-(avg(3))-(w_mg rot(3)):;
% fa unrot(2) = y eqg(l)*(fm ufs dig(2)-avg dig(2))+y eq(2)-w mg rot(2);
% fa unrot(3) = z eqg(l)*(fm ufs dig(3)-avg dig(3))+z eq(2)-w mg rot(3);

$ fa[l]-fa[3] are forces rotated to the tool c.s.
fa(l:3) = rUFSTCS'*fa unrot (1:3)'

% fmw[l]-fmw([3] are forces in global c.s., rotated because calculations are
made in global c.s.

S fmw(l:3) = rotGT*fa (1:3)"'
fmw(1:3) = rGUFS*fa unrot (1:3)'

% fa unrot[4]-fa unrot[6] are moments after bolt-up and fixture wt removed
from moments (in the UFS c.s.).

fa unrot(4) = -(fm ufs(4))-(avg(4))-(w_mg rot(4));
fa unrot(5) = -(fm ufs(5))-(avg(5))-(w _mg rot(5));
fa unrot (6) = -(fm ufs(6))-(avg(6))-(w _mg rot(6)):;

% fal[4]-fa[6] are moments rotated to tool c.s.
a(4:6) = cross(-TUFSTCS(1:3,4),fa(l:3))"' + rUFSTCS'*fa unrot(4:6)"'

% frmw[4]-fmw[6] are moments in global c.s., rotate because calculations are
made in global c.s.
fmw(4:6) = rGTCS*fa(4:6)"'

% added for updating COR
TUFSa = rpy2tr(deg2rad([rza, rya, rxal));

TUFSa(1l:3,4) = [xa, ya, zal';
$ TGa = TGUFS*TUFSa;
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TUFSb = rpy2tr(deg2rad([rzb, ryb, rxbl));
TUFSb(1:3,4) = [xb, yb, zbl'
% TGb = TGUFS*TUFSb;

pathseek display2.m is a function called by load control first3.m and load control3.m

that plots the load on the UFS.

function pathseek display2(forces, moments, handles, misc)

fa = forces(1:6);
fx = forces(7);
fy = forces(8)
fz = forces (9)

mx = moments (1) ;
my = moments(2);
mz = moments (3);

w_now = misc(
zZz ct = misc(2
flxn counter misc(3);
stable flag = misc(4);
limit = misc(5:10);

1)
)

for i = 1:3

if abs(fa(i)) > limit (1)

line color(i,1:3) = [1 0 0];
else

line color(i,1:3) = [0 0.75 0];
end

end

for 1 = 4:6

if abs(fa(i)) > limit (1)
line color(i,1:3) = [1 0 0];
else
line color(i,1:3) = [0 0.75 0];
end
end
subplot(2,1,1), set(fx, 'Xbata', [0 fa(l)], 'Color', line color(l,:));
subplot(2,1,1), set(fy, 'XData' [0 fa(2)], 'Color', line color(2,:));
subplot(2,1,1), set(fz, 'XData' [0 fa(3)], 'Color', line color(3,:)):;
subplot(2,1,2), set(mx, 'XData' [0 fa(4)], 'Color', line color(4,:));
subplot(2,1,2), set(my, 'Xbata', [0 fa(5)], 'Color', line color(5,:));
subplot(2,1,2), set(mz, 'XData', [0 fa(6)], 'Color', line color(6,:));
)

set (handles.w now edit, 'String', w_now
set (handles.iterations edit, 'String', z ct);
if flxn counter ==
set (handles.pathseek edit, 'String', 1);
else
set (handles.pathseek edit, 'String', flxn counter);

end
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set (handles.stable edit, 'String', stable flag);

drawnow

load_control3.m is a script called by spine3h_pathseek4.m that calculates the translation

required to minimize force and commands the manipulator to displace by the calculated amount.

oe

load control3.m

load control (inner) loop
Amy Loveless

converted to Matlab 7/10/02

o° oo

o

time = toc;
tic;
% store current position
for 1 = 1:6

p_temp(i) = x(1);
end

% compute: FSU stiffness from previous measured force and position
if z flag(l) ==

% compute: robot displacement vector to minimize sagittal forces and
moments (from computed stiffness)

for 1 = 1:6

z flag(i) = 1;
f temp(i) = fmw(i); % keep previous f/m
dis(i) = fmw(i)/z stiff(i)/(1+1*z sign(i));
end
else
for i = 1:6
if (fmw(i) ~= £ temp(i)) & (ds(i) ~= 0) & (fmw(i) ~= 0)
% STIFFNESS = old*1/3 +ABS (df/ds) *2/3
z stiff (i) = z stiff(i)/3+abs((fmw(i)-f temp(i))/ds(i))*2/3;
% we changed to ds (i) from dis tool actual(i) on 07-29-02
end

if z stiff (i) > 99999
z stiff (i) = 100000; % maximum z stiff
end

if sign(f temp(i)*fmw(i)) < 1
z sign(i) = 1;
end

% compute: robot displacement vector to minimize sagittal forces and
moments (from computed stiffness)

z flag(i) = 1;
f temp (i) = fmw(i); % keep previous f/m
dis(i) = fmw(i)/z stiff(i)/(1+1*z sign(i));
end
end
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o)

% determine translations based on forces
for i = 1:3
if abs(dis(i)) > lim dis
dis (i) = sign(dis(i))*1lim dis;
end
end

% transform from global c.s. to tool c.s.
dis tool calc(1l:3) = rGT'*dis(1:3)"';

% determine rotations based on moments
for i = 4:6

if abs(dis(i)) > lim mdis
dis (i) = sign(dis(i))*1lim mdis;
dis (i) = deg2rad(dis(i));

end
end

% transform from global c.s. to tool c.s.

dis tool calc(4:6) = rGT'*dis(4:6)"';

% disal[4]-[6] are rotations about x,y,z, not vy,p,r, so need to make them
Yrp,sr

rot x = rotx(dis tool calc(4));

rot y = roty(dis tool calc(5));

rot z = rotz(dis_tool calc(6));

rot xyz = rot z*rot y*rot x;

rotate = tr2eul (rot xyz);

rotate = rad2deg(rotate);

% move: translate superior vertebra to new "corrected" position
ok = 0;

flag = 2.1;

fprintf (portl, [ok, flagl):;

fprintf (portl, [0 dis tool calc(2) dis tool calc(3) 0 0 0]);

done moving = fscanf (portl);
done moving = sscanf (done moving, '%f');

o)

% ask for current position

ok = 0;

flag = 1.1;

fprintf (portl, [ok, flag]l):;

gt jt angles = fscanf (portl);

gt _jt angles = sscanf(gt jt angles, 'Sf');

[

o
get loads; % measure: forces and moments
% fm ufs = get loads;

o\

o

°

fm tareb; % tare out bolt-up and fixture wt
% [x, fa, fmw, rGT] = fm tare5(w mg, x0, y0, z0, x1, yl1, zl, rxl, ryl,
fm ufs, avg)

°
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% display f/m after taring out bolt-up and fixture wt
pathseek display2([fa, fx, fy, fz], [mx, my, mz], handles, [w _now, z ct,
flxn counter, stable flag, z target]);

% find actual translations and rotations in global c.s., transform to tool

c.s.
for i = 1:6
ds (i) = x(i)-p_temp(i);
p_temp (i) = x(1);
end
dis tool actual(l:3) = rGT'*ds(1:3)"';

dis tool actual(4:6)

|
I
@
]

>*
0.
0n
(o))

swork done by the bar
work=work+abs (0.5* (fmw (1) +f temp (1)) *ds (1))
+abs (0.5* (fmw (3) +f_temp (3)) *ds (3))
+abs (0.5* (fmw (5) +f temp (5)) *deg2rad(0)) ;
worksO (z_index, z ct)=work;

o)

% peak force

peak(z_index,z ct) = sqgrt(fmw(l)"2+fmw(3)"2);
peakX(z index,z ct) = fmw(l);
peakZ(z_index,z ct) = fmw(3);

% put data in matrices

if dir == | dir == 900

eval(['dis calc',int2str(dir),'(l:6,z step,start counter) = [0; 0; 0; 0;
0; 01;'1)

eval(['dis actual tool',int2str(dir),'(1:6,z step,start counter) =
transpose (dis_tool actual);'])

eval ([' dls_actual_global',1nt23tr(dir),'(1:6,z_step,start_counter) =
transpose (ds); '])

eval(['load',int2str(dir),'(1l:6,z step,start counter) = transpose(fa);'])
eval (['stiff',int2str(dir),'(1:6,z step,start counter) =
transpose (z stiff);'])
eval (['time total',int2str(dir),'(l,z step,start counter) = time;'])
eval (['rot angle',int2str(dir),'(l,z step,start counter) = w _now;'])

eval(['z gt',int2str(dir),'(1l:6,z xform,start counter) =
gt _jt angles(1l:6);'])
eval(['z jt angles',int2str(dir),'(1:6,z xform,start counter) =
gt jt angles(7:12);'])
elseif dir == 400 | dir == 800
eval(['dis calc',int2str(dir),'(1l:6,z step,flxn counter) = [0; 0; 0; O;
0; 0];'1)
eval (['dis actual tool',intZ2str(dir),'(1:6,z step,flxn counter) =
transpose (dis_tool actual);'])
eval (['dis_actual global',int2str(dir),'(1:6,z step,flxn counter) =
transpose(ds);'])
eval (['load',int2str(dir),'(1:6,z step, flxn counter) = transpose(fa);'])
eval (['stiff',int2str(dir),'(1:6,z step,flxn counter) =
transpose (z_stiff);'])
eval (['time total',int2str(dir),'(l,z step, flxn counter) = time;'])
eval (['rot angle',int2str(dir),'(l,z step,flxn counter) = w now;'])
eval(['z gt',int2str(dir),'(1:6,z xform,flxn counter) =
gt _jt angles(1:6);'])
eval(['z jt angles',int2str(dir),'(1:6,z xform,flxn counter) =
gt _jt _angles(7:12);'])
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end

% % put data in matrices

% if dir == | dir == 900

% dis calcO(l:6,z step,start counter) = [dis tool calc(1l:3)
rotate(1:3)]1"';

% dis _actual toolO(l:6,z step,start counter) = dis tool actual';
% dis_actual global0O(l:6,z step,start counter) = ds';

% loadO(l:6,z step,start counter) = fa';

% stiff0(l:6,z step,start counter) = z stiff';

% time totalO(l,z step,start counter) = time;

% rot _anglel(l,z step,start counter) = w_now;

% z gt0(l:6,z xform,start counter) = gt jt angles(1:6);

% z Jjt angles0(l:6,z xform,start counter) = gt jt angles(7:12);
% elseif dir == 400

% dis calc400(l:6,z step,flxn counter) = [dis tool calc(1l:3)
rotate(1:3)1"';

% dis _actual tool400(1l:6,z step,flxn counter) = dis tool actual';
% dis_actual global400(1:6,z step,flxn counter) = ds';

% 1load400(1:6,z step,flxn counter) = fa';

% stiff400(1l:6,z step, flxn counter) = z stiff';

% time totald00(1l,z step,flxn counter) = time;

% rot angled00(l,z step,flxn counter) = w_now;

% z gtd400(1l:6,z xform,flxn counter) = gt jt angles(l:6);

% z Jt angles400(1l:6,z xform,flxn counter) = gt jt angles(7:12);
% elseif dir == 800

% dis calc800(l:6,z step,flxn counter) = [dis tool calc(1l:3)
rotate (1:3)]1"';

% dis _actual tool800(l:6,z step,flxn counter) = dis tool actual';
% dis actual global800(l:6,z step,flxn counter) = ds';

% load800(1:6,z step,flxn counter) = fa';

% stiff800(1l:6,z step,flxn counter) = z stiff';

% time total800(1l,z step,flxn counter) = time;

% rot angle800(l,z step,flxn counter) = w_now;

% z gt800(1:6,z xform,flxn counter) = gt jt angles(1l:6);

% z Jjt angles800(1l:6,z xform,flxn counter) = gt jt angles(7:12);
% end

max_moment2.m is a script called by spine3h pathseek4.m that compares the current

moment to the user-defined maximum moment. If the maximum moment has been greater than

the user-defined maximum three times, the test changes direction.

oe

max moment2.m

max moment loop

Amy Loveless

converted to Matlab 7/10/02

o° o

o\

oe

is the measured f/e moment < max allowable?
if yes, correct COR

if no, go on to next direction

if abs(fa(4)) < max_mom

% compute: corrected COR

oe

o
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% when chgs made to COR, x1, yl, zl, yawl, pitchl, rolll will be chged
% disp('This is where I would correct the COR')
elseif (abs(fa(l)) > z stop(l)) | (abs(fa(2)) > z stop(2)) | (abs(fa(3)) >
z stop(3)) | (abs(fa(4)) > z stop(4)) | (abs(fa(5)) > z stop(5)) |
(abs (fa(6)) > z stop(6))
% 1if f/m are > max allowable, change direction
disp('Forces/moments are too high.'")
disp(l********** CHANGING DIRECTION *‘k**‘k‘k****')
z mom flag = 1;
dir flag = 1;
continue % change direction
else
z mom flag = z mom flag + 1;
if z mom flag ==
z mom_ flag = 1;
dir flag = 1;
disp(l********** CHANGING DIRECTION **********')
continue % change direction
else
% compute: corrected COR
% when chgs made to COR, x1, yl, zl, yawl, pitchl, rolll will be

chged
% disp('This is where I would correct the COR')
end
end
if (w_now >= w_start & dir == 900)

dir flag = 1;
disp('********** CHANGING DIRECTION **********')

continue % change direction
end

data_display pathseek4.m is a script called by spine3h pathseek4.m that makes almost

every conceivable plot from the gathered data.

o

data display pathseek4.m
display data

Amy Loveless

from data sto flxn (7/10/02)

o oP

o

o

BUILD TRANSFORMATIONS

% Build transformation for UFS to tool c.s. (this is a constant
transformation)
rot rxl = rotx(deg2rad(rxl));

rot ryl = roty(deg2rad(ryl));

rot rzl = rotz(deg2rad(rzl));

tUFST = rot rxl*rot ryl*rot rzl;

tUFST(1:3,4) = [x1*1000 y1*1000 z1*1000]"';

% Build transformation for UFS to pt. of interest (this is a constant
transformation)

rot rx2 = rotx(deg2rad(rx2)):;

rot ry2 = roty(deg2rad(ry2)):;
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rot rz2 rotz (deg2rad(rz2));
tUFSPOI rot rx2*rot ry2*rot rz2;
tUFSPOI(1:3,4) = [x2*1000 y2*1000 z2*1000]"';

% BUILD TRANSFORMATIONS OF TOOL C.S. WRT GLOBAL C.S.
% Find where to truncate matrices that have been padded with zeros at the end
for flxn -> start
test = [0 0 0 O O 01",
size z gt0 = 0;
for i = l:size(z_gt0,2)
tf = isequal(z_gt0(1l:6,1i,end),test);

if tf ==
size z gt0 = i-1;
break
end
end
if size z gt0 == 0
size z gt0 = size(z gt0,2);
end

o)

% Build transformations of tool c.s. wrt global c.s. each location for flxn -
> start
for i = l:size z gto

tGTO0(1:4,1i*4-3:4*%1) = eul2tr([deg2rad(z gt0(4,1i,end)),
deg2rad(z gt0(5,i,end)), deg2rad(z gtO(6,i,end))]);
tGTO0(1:3,4*1) = z gt0(1:3,1i,end);

end
% Find where to truncate matrices that have been padded with zeros at the end
for flxn -> extn
size z gtd400 = 0;
for i = l:size(z_gt400,2)
tf = isequal(z_gt400(1:6,1i,end),test);

if tf ==
size z gt400 = i-1;
break
end
end
if size z gt400 == 0
size z gt400 = size(z gt400,2);
end

o)

% Build transformations of tool c.s. wrt global c.s. for each location for
flxn -> extn
for 1 = l:size z gt400

tGT400(1:4,1*4-3:4*1) = eul2tr([deg2rad(z gt400(4,1i,end)),
deg2rad(z_gt400(5,1i,end)), deg2rad(z gtd400(6,1i,end))]);
tGT400(1:3,4*1) = z gt400(1:3,1i,end);

end
% Find where to truncate matrices that have been padded with zeros at the end
for extn -> flxn
size z gt800 = 0;
for i = l:size(z _gt800,2)

tf = isequal(z gt800(l:6,1i,end), test);

if tf ==
size z gt800 = i-1;
break

end
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end
if size z gt800 == 0

size z gt800 = size(z gt800,2);
end
% Build transformations of tool c.s. wrt global c.s. for each location for
extn -> flxn

for i = l:size z gt800

tGT800(1:4,1i*4-3:4*1) = eul2tr([deg2rad(z gt800(4,1i,end)),
deg2rad(z _gt800(5,i,end)), deg2rad(z gt800(6,i,end))]);
tGT800(1:3,4*1) = z gt800(1:3,1i,end);

end
% Build array of position vectors of tool c.s. from tGL for flxn -> start
for 1 = 1l:size(tGT0,2)/4
tGTO0 posn(l:4,1i) = tGTO0(1:4,1i*4);
end
% Build array of position vectors of tool c.s. from tGL for flxn -> extn
for 1 = 1l:size(tGT400,2)/4
tGT400 posn(l:4,1i) = tGT400(1:4,1i*4);
end
% Build array of position vectors of tool c.s. from tGL for extn -> flxn
for 1 = l:size (tGT800,2)/4
tGT800 posn(l:4,1i) = tGT800(1:4,1i*4);
end

% BUILD TRANSFORMATIONS OF UFS WRT GLOBAL C.S.
% Build transformations of UFS wrt global c.s. for each location for start ->
flxn & flxn -> start
for 1 = 1l:size (tGT0,2)/4
tGUFSO0(1:4,1%4-3:4%1) = tGT0(1:4,i*4-3:1*4) *pinv (tUFST) ;
end
% Build transformations of UFS wrt global c.s. for each location for flxn ->
extn
for 1 = 1l:size (tGT400,2)/4
tGUFS400(1:4,1%4-3:4*1) = tGT400(1:4,i*4-3:1*4) *pinv (tUFST) ;
end
% Build transformations of UFS wrt global c.s. for each location for extn ->
flxn
for 1 = l:size (tGT800,2)/4
tGUFS800(1:4,1*4-3:4*1) = tGT800(1:4,i*4-3:1*4) *pinv (tUFST) ;
end
% Build array of position vectors of UFS from tGUFS for start -> flxn & flxn
-> start
for i = 1l:size(tGUFS0,2)/4
tGUFSO0 posn(l:4,1i) = tGUFS0(1l:4,1i*4);
end
% Build array of position vectors of UFS from tGUFS for flxn -> extn
for i = l:size (tGUFS400,2)/4
tGUFS400 posn(l:4,1) = tGUFS400(1:4,1i*4);
end
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% Build array of position vectors of UFS from tGUFS for extn -> flxn
for 1 = l:size (tGUFS800,2)/4

tGUFS800 posn(l:4,1i) = tGUFS800(1:4,1i*4);
end

o\°

BUILD TRANSFORMATIONS OF PT. OF INTEREST WRT GLOBAL C.S.
% Build transformations of pt. of interest wrt global c.s. for each location
for flxn -> start
for 1 = 1l:size(tGT0,2)/4
tGPOIO(1:4,1*4-3:4%i) = tGUFS0(1:4,1i*4-3:i*4) *tUFSPOI;
end
% Build transformations of pt. of interest wrt global c.s. for each location
for flxn -> extn
for 1 = l:size (tGT400,2)/4
tGPOI400(1:4,1i*4-3:4*1) = tGUFS400(1:4,1i*4-3:1*4)*tUFSPOI;
end

% Build transformations of pt. of interest wrt global c.s. for each location
for extn -> flxn
for 1 = 1l:size (tGT800,2)/4
tGPOI800(1:4,1i*4-3:4*1) = tGUFS800(1:4,1i*4-3:1*%4) *tUFSPOI;
end

% Build array of position vectors of pt. of interest from tGUFS for flxn ->
start
for 1 = l:size (tGP0OIO0,2)/4
tGPOIO posn(l:4,i) = tGPOIO(1l:4,1i*4);
end

% Build array of position vectors of pt. of interest from tGUFS for flxn ->
extn
for 1 = 1l:size (tGP0OI400,2)/4
tGPOI400 posn(l:4,1i) = tGPOI400(1:4,1i*4);
end
% Build array of position vectors of pt. of interest from tGUFS for extn ->
flxn
for 1 = l:size (tGP0OI800,2)/4
tGPOIB00 posn(l:4,1i) = tGPOIBO0(1l:4,1i*4);
end

o\

% BUILD ARRAYS OF DATA TO BE USED FOR PLOTTING

% Find where to truncate matrices that have been padded with zeros at the end
for start -> flxn & flxn -> start

test = [0 0 0 0 O 01"

for i = l:start counter
size start(l,i) = 0;
size start end pts(l,i) = 0;
end
for j = l:start counter
for i = l:size(load0,2)
tf = isequal(load0(1l:6,1i,3),test);
if tf == 1
size start(l,j) = i-1;
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break

end
end
if size start(l,j) == 0
size start(l,j) = size(load0l,2);
end
end
for j = l:start counter

for i = l:size(start load end pts,2)
tf = isequal(start load end pts(l:6,1i,]),test);

if tf == 1
size start end pts(l,j) = i-1;
break
end
end
if size start end pts(l,j) == 0
size start end pts(l,j) = size(start load end pts,2);
end

end

% Find where to truncate matrices that have been padded with zeros at the end
for flxn -> extn
for i = 1:flxn counter

size flxn(l,1i) = 0;

size flxn end pts(l,i) = 0;
end
for j = 1:flxn counter

for 1 = 1l:size(load400,2)

tf = isequal (load400(1l:6,1i,7j),test);

if tf ==
size flxn(l,3j) = i-1;
break
end
end
if size flxn(l,j) == 0
size flxn(l,j) = size(load400,2);
end
end
for j = 1:flxn counter
for i = l:size(flxn load end pts,2)
tf = isequal(flxn_load end pts(l:6,1i,]J),test);
if tf ==
size flxn end pts(l,j) = i-1;
break
end
end
if size flxn end pts(l,j) == 0
size flxn end pts(l,J) = size(flxn load end pts,2);
end
end

% Find where to truncate matrices that have been padded with zeros at the end
for extn -> flxn
for i = l:extn counter
size extn(l,i) = 0;
size extn end pts(l,i) = 0;
end
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for j = l:extn counter
for 1 = 1:size(1load800,2)
tf = isequal (load800(l:6,i,7j),test);

if tf ==
size extn(l,3j) = i-1;
break
end
end
if size extn(l,j) == 0
size extn(l,j) = size(load800,2);
end
end
for j = 1:flxn counter
for i = l:size(extn load end pts,2)
tf = isequal (extn load end pts(l:6,1,]J),test);
if tf ==
size extn end pts(l,j) = i-1;
break
end
end
if size extn end pts(l,j) == 0
size extn end pts(l,Jj) = size(extn load end pts,2);
end
end

o)

% Arrays of fy, fz & mx (all data points of last pathseek)
start fy = load0(2,1l:size start(end),end);

start fz = load0(3,1l:size start(end),end);

start mx 1 = load0(4,1l:size start(l),1);

start mx 2 load0O(4,1:size start(end),end);

flxn fy = load400(2,1:size flxn(end),end);
flxn fz = load400(3,1:size flxn(end),end);
flxn mx = load400(4,1l:size flxn(end),end);

extn fy = load800(2,1:size _extn(end),end);
extn fz = load800(3,1:size extn(end),end);
extn mx = load800(4,1:size extn(end),end);

fy = [flxn fy extn fy start fy];
fz [flxn fz extn fz start fz];
mx [flxn mx extn mx start mx 2];

[

% Array of mx of all data points of all pathseeks

flxn extn mx = [];
for i = 1:flxn counter
flxn extn mx = [flxn extn mx load400(4,1l:size flxn(i),1i)
1load800(4,1:size extn(i),i)];
end
all mx = [start mx 1, flxn extn mx, start mx 2];

[

% Arrays of fy, fz, mx (only at end of iterations for last pathseek)
start fy end pts = start load end pts(2,1l:size start end pts(end),end);
start fz end pts = start load end pts(3,1l:size start end pts(end),end);
start mx end pts 1 = start load end pts(4,l:size start end pts(1l),1);
start mx end pts 2 = start load end pts(4,l:size start end pts(end),end);
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flxn fy end pts = flxn load end pts(2,1l:size flxn end pts(end),end);
flxn fz end pts flxn load end pts(3,1l:size flxn end pts(end),end);
flxn mx end pts = flxn load end pts(4,l:size flxn end pts(end),end);

extn fy end pts = extn load end pts(2,1l:size extn end pts(end),end);
extn fz end pts extn load end pts(3,1l:size extn end pts(end),end);

extn mx end pts = extn load end pts(4,l:size extn end pts(end),end);
fy end pts = [flxn fy end pts extn fy end pts start fy end pts];

fz end pts = [flxn fz end pts extn fz end pts start fz end pts];
mx_end pts = [flxn mx end pts extn mx end pts start mx end pts 2];

oe

Array of mx of end data points of all pathseeks
flxn extn mx end pts = [];
for i = 1:flxn counter

flxn extn mx end pts = [flxn extn mx end pts
flxn load end pts(4,1l:size flxn end pts(i),1i)
extn load end pts(4,l:size extn end pts(i),1)];

o° oo

o\°

% end
% all mx end pts = [start mx end pts 1, flxn extn mx end pts,
start mx end pts 2];
begin mx end pts = [start mx end pts 1,...
flxn load end pts(4,l:size flxn end pts(l),1),...
extn load end pts(4,l:size extn end pts(l),1)];
end mx end pts = [flxn load end pts(4,l:size flxn end pts(end),end), ...

extn load end pts(4,l:size extn end pts(end),end), ...
start mx end pts 2];
% Arrays of calculated and actual displacements in local y and z dir.
start dy calc = dis calc0(2,1l:size start(end),end);

start dy actual = dis_actual tool0(2,1l:size_ start(end),end);
start dz calc = dis _calc0(3,1l:size start(end),end);
start dz actual = dis actual tool0(3,1l:size start(end),end);

flxn dy calc = dis calc400(2,1:size flxn(end),end);
flxn dy actual = dis actual tool400(2,1:size flxn(end),end);

flxn dz calc = dis calc400(3,1:size flxn(end),end);
flxn dz actual = dis actual tool400(3,1:size flxn(end),end);

extn dy calc = dis calc800(2,1:size extn(end),end);

extn dy actual = dis_actual tool800(2,1l:size extn(end),end);
extn dz calc = dis _calc800(3,1:size_extn(end),end);
extn dz actual = dis actual tool800(3,1l:size extn(end),end);
dy calc = [flxn dy calc extn dy calc start dy calc];
dz calc = [flxn dz calc extn dz calc start dz calc];
dy actual = [flxn dy actual extn dy actual start dy actuall;
dz_actual = [flxn dz actual extn dz actual start dz actual]l;

o)

% Array of time for all iterations of last pathseek
time0 = time totalO(l,l:size start(end),end);
time400 = time totald400(1l,1l:size flxn(end),end);
time800 = time total800(1l,1l:size extn(end),end);
last time = [timed400 time800 timeO];

last time = cumsum(last time);

% Array of rotation angles for all data points of last pathseek
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last rot angle0 = rot angle0O(l,l:size start(end),end);

last rot angle400 = rot angled400(1l,1l:size flxn(end),end);

last rot angle800 = rot angle800(l,l:size extn(end),end);
last rot angle = [last rot angle400 last rot angle800 last rot angleO];

% Array of rotation angles for end points of last pathseek
last rot angle end pts =

[rot angled400 end pts(:,l:size flxn end pts(end),end),

rot angle800 end pts(:,l:size extn end pts(end),end),

rot angle0 end pts(:,1l:size start end pts(end),end)];

o

Array of rotation angles for end points of all pathseeks
rot angle 400 800 end pts = [];
for i = 1:flxn counter
rot angle 400 800 end pts = [rot angle 400 800 end pts
rot angled400 end pts(:,l:size flxn end pts(i), i)
rot angle800 end pts(:,l:size extn end pts(i),i)];
% end
% all rot angle end pts = [rot angle0 end pts(:,l:size start end pts(l),1),
rot angle 400 800 end pts,
rot _angle0 end pts(:,l:size start end pts(end),end)];
begin rot angle end pts =
[rot angle0 end pts(:,l:size start end pts(l),1),...
rot angle400 end pts(:,l:size flxn end pts(l),1),.
rot angle800 end pts(:,l:size extn end pts(l),1)];
end rot angle end pts =
[rot angled400 end pts(:,1l:size flxn end pts(end),end), ...
rot angle800 end pts(:,l:size extn end pts(end),end), ...
rot angle0 end pts(:,l:size start end pts(end),end)];

o oe

o

% Arrays of constants
l:length(last _rot angle);

x =
for i = 1l:length(last rot angle)
y(i) = 0;
end
for i = l:length(fy end pts)
y_end pts(i) = 0;
end
% for 1 = l:length(all mx end pts)
% all y end pts(i) = 0;
% end

o©

Cumulative sum of iterations for each direction of last pathseek
test = 0;
size z ct0 = 0;
for i = l:size(z_ct0_total,2)
tf = isequal(z_ct0 total(l,i,end),test);
if tf ==
size z ct0 = i-1;
break
end
end
if size z ct0 == 0
size z ct0 = size(z ctO_total,2);
end

size z ct400 = 0;
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for i = l:size(z _ctd400 total,2)
tf = isequal(z_ct400 total(l,i,end),test);

if tf ==
size z ct400 = i-1;
break

end

if size z ct400 == 0
size z ct400 = size(z ct400 total,2);

end
end

size z ct800 = 0;
for 1 = l:size(z ct800 total,2)
tf = isequal(z ct800 total(l,i,end),test);

if tf ==
size z ct800 = i-1;
break
end
end
if size z ct800 == 0
size z ct800 = size(z ct800 total,2);
end

z ct0 sum = cumsum(z ctO total(l,l:size z ctO(end),end));
z ct400 sum = cumsum(z ct400 total(l,l:size z ct400(end),end));
z ct800 sum = cumsum(z_ ct800 total(l,l:size z ct800(end),end));

% Save workspace
ave (filename)
isp('Data has been saved.')

SR O ()]

% F/M PLOTS

% Plots of f/m vs. time for last pathseek

fh=figure ('Position', [150 100 1000 900], 'Color','w");

subplot(3,1,1), plot(last time, fy, last time, y, '-k'), title('Fy vs. time
for last pathseek'), xlabel('time (sec)'), ylabel('Fy (N)'");

set (gca, 'XLim', [0 length(last time)]);

subplot(3,1,2), plot(last time, fz, last time, y, '-k'), title('Fz vs. time
for last pathseek'), xlabel('time (sec)'), ylabel('Fz (N)");

set (gca, 'XLim', [0 length(last time)]);

subplot (3,1,3), plot(last time, mx, last time, y, '-k'), title('Mx vs. time
for last pathseek'), xlabel('time (sec)'), ylabel ('Mx (Nm)');

set (gca, 'XLim', [0 length(last time)]);

% Plots of rotation angle and fy vs. length(rot angle) for last pathseek
fh=figure ('Position', [150 100 1000 900], 'Color','w");

subplot(3,1,1), plot(x, -last rot angle), title('rotation angle vs.

length (rotation angle) for last pathseek');

set (gca, 'XLim', [0 x(end)]);

subplot(3,1,2), plot(x, fy, x, y, '-k'), title('Fy vs. length(Fy) for last
pathseek'), ylabel ('Fy (N)'");

set (gca, 'XLim', [0 x(end)]);

% Plots of rotation angle and fz vs. length(rot angle) for last pathseek
fth=figure('Position', [150 100 1000 900], 'Color','w");
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subplot(3,1,1), plot(x, -last rot angle), title('rotation angle vs.
length (rotation angle) for last pathseek');
set (gca, 'XLim', [0 x(end)]);
subplot(3,1,2), plot(x, fz, x, y, '-k'), title('Fz vs. length(Fz) for last
pathseek'), ylabel ('Fz (N)'");
set (gca, 'XLim', [0 x(end)]);
% Plots of rotation angle and mx vs. length(rot angle) for last pathseek
fh=figure ('Position', [150 100 1000 900], 'Color','w");
subplot(3,1,1), plot(x, -last rot angle), title('rotation angle vs.
length (rotation angle) for last pathseek');
set (gca, 'XLim', [0 x(end)]);
subplot(3,1,2), plot(x, mx, x, y, '-k'), title('Mx vs. length(Mx) for last
pathseek'), ylabel ('Mx (Nm)');
set (gca, 'XLim', [0 x(end)]);
% Plots of rotation angle vs. mx (end points from every pathseek)
fh=figure ('Position', [150 100 1000 900], 'Color','w");
set (gca, 'NextPlot', 'add');
plot (-begin rot angle end pts, begin mx end pts, 's-r', 'MarkerEdgeColor',
'r', 'MarkerFaceColor', 'r', 'MarkerSize', 4);
for 1 = 2:flxn counter-1
plot (-rot angle400 end pts(:,l:size flxn end pts(i),i),
flxn load end pts(4,1l:size flxn end pts(i),i), '.-");
plot (-rot angle800 end pts(:,l:size extn end pts(i),i),
extn load end pts(4,l:size extn end pts(i),i), '"*-');
end
plot (-end rot angle end pts, end mx end pts, 'o-', 'Color', [0 0.75 0],
'MarkerEdgeColor', [0 0.75 0], 'MarkerFaceColor', [0 0.75 0], 'MarkerSize',
5);
line ('XData', get(gca, 'XLim'), '¥YData', [0 01]);
line ('XData', [0 0], '¥YData', get(gca, 'YLim'"));
title('Mx vs. rotation angle for every pathseek'), xlabel ('rotation angle
(deg) '), ylabel ("Mx (Nm)');
legend handles = get(gca, 'Children');

for i = 2:flxn counter-1
legend string flxn(i-1,1:15) = ['pathseek ', int2str(i), ' flxn'];
legend string extn(i-1,1:15) = ['pathseek ', int2str(i), ' extn'];
end
legend string flxn extn = [];
for i = 1:flxn counter-2
legend string flxn extn = [legend string flxn extn;
legend string flxn(i,:); legend string extn(i,:)];
end
legend string = ['pathseek 1 '; legend string flxn extn; ['pathseek ',
int2str(flxn counter), ' 11

legend(flipdim(legend handles(3:end),1l), legend string, 2);

% text(l, -2, 'flexion', 'Rotation', 30, 'FontSize', 14);

$ text(l, 2, 'extension', 'Rotation', 30, 'FontSize', 14);

% Plots of rotation angle vs. mx, fy & fz (end points of last pathseek)
th=figure('Position', [150 100 1000 900], 'Color','w");

subplot(3,1,1), plot(-last rot angle end pts, fy end pts, '.-b',

last rot angle end pts, y end pts, '-k'), title('Fy vs. rot angle for last
pathseek'), xlabel('rotation angle (deg)'), ylabel('Fy (N)');
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subplot(3,1,2), plot(-last rot angle end pts, fz end pts, '.-b',

last rot angle end pts, y end pts, '-k'), title('Fz vs. rot angle for last
pathseek'), xlabel('rotation angle (deg)'), ylabel('Fz (N)"');
subplot(3,1,3), plot(-last rot angle end pts, mx end pts, '.-b',

last rot angle end pts, y end pts, '-k'), title('Mx vs. rot angle for last
pathseek'), xlabel ('rotation angle (deg)'), ylabel('Mx (Nm)');

% Plots of first and last points of each rotation angle for fy for last
pathseek
fh=figure('Position', [150 100 1000 900], 'Color','w');
for i = 2:1length(z _ct400_ sum)
hold on
subplot(3,1,1), plot handles begin = plot (-
[rot angle400(1l,z ct400 sum(l),end), rot angled400(l,z ct400 sum(l),end)],
[flxn fy(1l,1,end), flxn fy(l,z ct400 sum(l),end)], '-ob');
subplot(3,1,1), plot(-[rot angle400(1l,z ct400 sum(i),end),
rot angled400(1,z ctd400 sum(i),end)], [flxn fy(l,z ct400 sum(i-1)+1,end),
flxn fy(l,z ct400 sum(i),end)], '-ob');
subplot(3,1,1), plot handles end = plot (-
rot angle400(1,z ct400 sum(l),end), flxn fy(l,z ct400 sum(l),end),
'*r', '"MarkerSize',10);
subplot(3,1,1), plot(-rot angle400(l,z ct400 sum(i),end),
flxn fy(l,z ct400 sum(i),end), '*r','MarkerSize',10);
subplot(3,1,1), line('XData', get(gca, 'XLim'"'), '¥YData', [0.5 0.5],
'LineWidth', 2);
subplot(3,1,1), line('XData', get(gca, 'XLim'), '¥YData', [-0.5 -0.5],
'LineWidth', 2):;
hold off
end
title('fy vs. rotation angle for last pathseek'), xlabel('rotation angle
(deg) '), ylabel ('Fy (N)"');
legend handles = [plot handles begin; plot handles end];
legend (legend handles, 'beginning force', 'ending force');
for i = 2:length(z ct800 sum)
hold on
subplot(3,1,2), plot handles begin = plot (-
[rot angle800(l,z ct800 sum(l),end), rot angle800(l,z ct800 sum(l),end)],
[extn fy(1,1,end), extn fy(l,z ct800 sum(l),end)], '-ob');
subplot(3,1,2), plot(-[rot angle800(1l,z ct800 sum(i),end),
rot angle800(1,z ct800 sum(i),end)], [extn fy(l,z ct800 sum(i-1)+1,end),
extn fy(l,z ct800 sum(i),end)], '-ob');
subplot(3,1,2), plot handles end = plot (-
rot angle800(1l,z ct800 sum(l),end), extn fy(l,z ct800 sum(l),end),
'*r', "MarkerSize',10);
subplot(3,1,2), plot(-rot angle800(l,z ct800 sum(i),end),
extn fy(l,z ct800 sum(i),end), '*r','MarkerSize',10);
subplot(3,1,2), line('XData', get(gca, 'XLim'), '¥YData', [0.5 0.5],
'LineWidth', 2);
subplot(3,1,2), line('XData', get(gca, 'XLim'), '¥YData', [-0.5 -0.5],
'LineWidth', 2);
hold off
end
title('fy vs. rotation angle for last pathseek'), xlabel('rotation angle
(deg) "), ylabel ('Fy (N)"');
legend handles = [plot handles begin; plot handles end];
legend (legend handles, 'beginning force', 'ending force');
for i = 2:1length(z_ct0_sum)
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hold on
subplot(3,1,3), plot handles begin = plot (-
[rot angleO(1l,z ct0 sum(l),end), rot angleO(l,z ctO0 sum(l),end)],
[start fy(l,1,end), start fy(l,z ctO sum(l),end)], '-ob');
subplot(3,1,3), plot(-[rot anglel0(l,z ct0 sum(i),end),
rot angleO(1l,z ct0 sum(i),end)], [start fy(l,z ctO0 sum(i-1)+1,end),
start fy(l,z ct0 sum(i),end)], '-ob');
subplot (3,1,3), plot handles end = plot(-rot angleO(l,z ctO sum(l),end),
start fy(l,z ctO sum(l),end), '*r', 'MarkerSize',6 10);
subplot(3,1,3), plot(-rot angleO(l,z ct0 sum(i),end),
start fy(z ct0 sum(i)), '*r', 'MarkerSize', 10);
subplot(3,1,3), line('XData', get(gca, 'XLim'), '¥YData', [0.5 0.5],
'LineWidth', 2);
subplot(3,1,3), line('XData', get(gca, 'XLim'), '¥YData', [-0.5 -0.5],
'LineWidth', 2);
hold off
end
title('fy vs. rotation angle for last pathseek'), xlabel ('rotation angle
(deg) '), ylabel ('Fy (N)');
legend handles = [plot handles begin; plot handles end];
legend (legend handles, 'beginning force', 'ending force');

% Plots of first and last points of each rotation angle for fz for last
pathseek
fh=figure('Position', [150 100 1000 900], 'Color','w');
for i = 2:length(z_ct400_ sum)
hold on
subplot(3,1,1), plot handles begin = plot (-
[rot angle400(1l,z ct400 sum(l),end), rot angled400(l,z ct400 sum(l),end)],
[flxn fz(1l,1,end), flxn fz(l,z ct400 sum(l),end)], '-ob');
subplot(3,1,1), plot(-[rot angle400(1l,z ct400 sum(i),end),
rot angled400(1,z ct400 sum(i),end)], [flxn fz(l,z ct400 sum(i-1)+1,end),
flxn fz(l,z ct400 sum(i),end)], '-ob');
subplot(3,1,1), plot handles end = plot (-
rot angle400(1,z ct400 sum(l),end), flxn fz(l,z ct400 sum(l),end),
'*r', '"MarkerSize',10);
subplot(3,1,1), plot(-rot angle400(l,z ct400 sum(i),end),
flxn fz(l,z ct400 sum(i),end), '*r','MarkerSize',610);
subplot(3,1,1), line('XData', get(gca, 'XLim'), '¥YData', [0.5 0.5],
'LineWidth', 2);
subplot(3,1,1), line('XData', get(gca, 'XLim'), '¥YData', [-0.5 -0.5],
'LineWidth', 2):;
hold off
end
title('fz vs. rotation angle for last pathseek'), xlabel('rotation angle
(deg) "), ylabel ('Fz (N)');
legend handles = [plot handles begin; plot handles end];
legend (legend handles, 'beginning force', 'ending force');
for i = 2:1length(z ct800_ sum)
hold on
subplot(3,1,2), plot handles begin = plot (-
[rot angle800(l,z ct800 sum(l),end), rot angle800(l,z ct800 sum(l),end)],
[extn fz(1,1,end), extn fz(l,z ct800 sum(l),end)], '-ob');
subplot(3,1,2), plot(-[rot angle800(1l,z ct800 sum(i),end),
rot angle800(1,z ct800 sum(i),end)], [extn fz(l,z ct800 sum(i-1)+1,end),
extn fz(l,z ct800 sum(i),end)], '-ob');
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subplot(3,1,2), plot handles end = plot (-
rot angle800(1,z ct800 sum(l),end), extn fz(l,z ct800 sum(l),end),
'*r', "MarkerSize',10);
subplot(3,1,2), plot(-rot angle800(l,z ct800 sum(i),end),
extn fz(l,z ct800 sum(i),end), '*r','MarkerSize',10);
subplot(3,1,2), line('XData', get(gca, 'XLim'), '¥YData', [0.5 0.5],
'LineWidth', 2):;
subplot(3,1,2), line('XData', get(gca, 'XLim'), '¥YData', [-0.5 -0.5],
'LineWidth', 2);
hold off
end
title('fz vs. rotation angle for last pathseek'), xlabel('rotation angle
(deg) '), ylabel('Fz (N)'");
legend handles = [plot handles begin; plot handles end];
legend (legend handles, 'beginning force', 'ending force');
for i = 2:length(z_ct0_sum)
hold on
subplot(3,1,3), plot handles begin = plot (-
[rot angleO(1l,z ct0 sum(l),end), rot angleO(l,z ctO0 sum(l),end)],
[start fz(1l,1,end), start fz(l,z ctO0 sum(l),end)], '-ob');
subplot(3,1,3), plot(-[rot anglel(l,z ct0 sum(i),end),
rot angleO(l,z ct0 sum(i),end)], [start fz(l,z ctO sum(i-1)+1,end),
start fz(l,z ct0 sum(i),end)], '-ob');
subplot(3,1,3), plot handles end = plot(-rot angleO(l,z ctO sum(l),end),
start fz(l,z ct0 sum(l),end), '*r', 'MarkerSize',6 10);
subplot(3,1,3), plot(-rot angleO(l,z ct0 sum(i),end),
start fz(z ct0 sum(i)), '*r', 'MarkerSize', 10);
subplot(3,1,3), line('XData', get(gca, 'XLim'), '¥YData', [0.5 0.5],
'LineWidth', 2);
subplot(3,1,3), line('XData', get(gca, 'XLim'), '¥YData', [-0.5 -0.5],
'LineWidth', 2);
hold off
end
title('fz vs. rotation angle for last pathseek'), xlabel ('rotation angle
(deg) "), ylabel ('Fz (N)');
legend handles = [plot handles begin; plot handles end];
legend(legend handles, 'beginning force', 'ending force');

% Plots of first and last points of each rotation angle for mx for last
pathseek
fh=figure('Position', [150 100 1000 900], 'Color','w');
for i = 2:length(z_ct400_ sum)
hold on
subplot(3,1,1), plot handles begin = plot (-
[rot angled400(1l,z ct400 sum(l),end), rot angled400(l,z ct400 sum(l),end)],
[flxn mx(1l,1,end), flxn mx(l,z ct400 sum(l),end)], '-ob');
subplot(3,1,1), plot(-[rot angle400(1l,z ct400 sum(i),end),
rot angle400(1,z ct400 sum(i),end)], [flxn mx(l,z ct400 sum(i-1)+1,end),
flxn mx(1l,z ct400 sum(i),end)], '-ob');
subplot(3,1,1), plot handles end = plot (-
rot angle400(1,z ct400 sum(l),end), flxn mx(l,z ct400 sum(l),end),
'*r', "MarkerSize',10);
subplot(3,1,1), plot(-rot angle400(l,z ct400 sum(i),end),
flxn mx(1l,z ct400 sum(i),end), '*r','MarkerSize',610);
hold off
end
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title('mx vs. rotation angle for last pathseek'), xlabel('rotation angle
(deg) '), ylabel ('"Mx (Nm)'");
legend handles = [plot handles begin; plot handles end];
legend (legend handles, 'beginning moment', 'ending moment');
for i = 2:1length(z ct800_ sum)
hold on
subplot(3,1,2), plot handles begin = plot (-
[rot angle800(1l,z ct800 sum(l),end), rot angle800(l,z ct800 sum(l),end)],
[extn mx(1,1,end), extn mx(l,z ct800 sum(l),end)], '-ob');
subplot(3,1,2), plot(-[rot angle800(1l,z ct800 sum(i),end),
rot angle800(l,z ct800 sum(i),end)], [extn mx(l,z ct800 sum(i-1)+1,end),
extn mx(l,z ct800 sum(i),end)], '-ob'");
subplot(3,1,2), plot handles end = plot (-
rot angle800(1l,z ct800 sum(l),end), extn mx(l,z ct800 sum(l),end),
'*r', "MarkerSize',10);
subplot(3,1,2), plot(-rot angle800(l,z ct800 sum(i),end),
extn mx(l,z ct800 sum(i),end), '*r','MarkerSize',10);
hold off
end
title('mx vs. rotation angle for last pathseek'), xlabel('rotation angle
(deg) '), ylabel('Mx (Nm)'");
legend handles = [plot handles begin; plot handles end];
legend (legend handles, 'beginning moment', 'ending moment');
for i = 2:length(z ct0 sum)
hold on
subplot(3,1,3), plot handles begin = plot (-
[rot _angleO(l,z ctO sum(l),end), rot angleO(1l,z ctO_sum(l),end)],
[start mx 2(1,1,end), start mx 2(1,z ctO0 sum(l),end)], '-ob');
subplot(3,1,3), plot(-[rot anglelO(l,z ct0 sum(i),end),
rot _angle0(1l,z ct0 sum(i),end)], [start mx 2(1l,z ctO0 sum(i-1)+1,end),
start mx 2(1,z ct0 sum(i),end)], '-ob');
subplot(3,1,3), plot handles end = plot(-rot angleO(l,z ct0 sum(l),end),
start mx 2(1,z ct0 sum(l),end), '*r', 'MarkerSize',6 10);
subplot(3,1,3), plot(-rot angleO(l,z ct0 sum(i),end),
start mx 2(z ct0 sum(i)), '*r', 'MarkerSize', 10);
hold off
end
title('mx vs. rotation angle for last pathseek'), xlabel ('rotation angle
(deg) '), ylabel ("Mx (Nm) ') ;
legend handles = [plot handles begin; plot handles end];
legend (legend handles, 'beginning moment', 'ending moment');

o

°

% PLOTS OF DISPLACEMENTS IN LOCAL Y AND Z DIR.

% Plots of dy/dz calc/actual vs. time for last pathseek

fth=figure ('Position', [150 100 1000 900], 'Color','w");

subplot(2,2,1), plot(last time, dy calc), title('dy calc vs. time for last
pathseek'), xlabel('time (sec)'), ylabel('dy (mm)"'");

subplot(2,2,3), plot(last time, dz calc), title('dz calc vs. time for last
pathseek'), xlabel('time (sec)'), ylabel('dz (mm)"'");

subplot(2,2,2), plot(last time, dy actual), title('dy actual vs. time for
last pathseek'), xlabel('time (sec)'), ylabel('dy (mm)");

subplot(2,2,4), plot(last time, dz actual), title('dz actual vs. time for
last pathseek'), xlabel('time (sec)'), ylabel('dz (mm)"'");
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% Plots of rotation angle and dy calc/actual vs. length(rot angle) for last
pathseek

fh=figure ('Position', [150 100 1000 900], 'Color','w");

subplot (3,1,1), plot(x, -last rot angle), title('rotation angle vs length (rot
angle) for last pathseek'), ylabel ('rotation angle (deg)');

set (gca, 'XLim', [0 length(last rot angle)]);

subplot(3,1,2), plot(x, dy calc, 'b', x, y, 'k'), title('dy calc vs
length(dy) for last pathseek'), ylabel('dy (mm)"');

set (gca, 'XLim', [0 length(last rot angle)]);

subplot(3,1,3), plot(x, dy actual, 'b', x, y, 'k'"), title('dy actual vs
length(dy) for last pathseek'), ylabel('dy (mm)"');

set (gca, 'XLim', [0 length(last rot angle)]);

% Plots of rotation angle and dz calc/actual vs. length(rot angle) for last
pathseek

fh=figure('Position', [150 100 1000 900], 'Color','w");

subplot(3,1,1), plot(x, -last rot angle), title('rotation angle vs length(rot
angle) for last pathseek'), ylabel('rotation angle (deg)');

set (gca, 'XLim', [0 length(last rot angle)]);

subplot(3,1,2), plot(x, dz calc, 'b', x, y, 'k'") title('dz calc vs
length(dz) for last pathseek'), ylabel('dz (mm)"');

set (gca, 'XLim', [0 length(last rot angle)]);

subplot(3,1,3), plot(x, dz actual, 'b', x, y, 'k'), title('dz actual vs
length(dz) for last pathseek'), ylabel('dz (mm)"');

set (gca, 'XLim', [0 length(last rot angle)]);

% Plots of dy/dz calc vs. dy/dz actual for last pathseek
fh=figure('Position', [150 100 1000 900], 'Color','w'");
subplot(2,1,1), plot(dy calc, dy actual), title('dy actual vs. dy calc for

(
last pathseek'), xlabel('dy (mm)'), ylabel('dy (mm)"');
subplot(2,1,2), plot(dz calc, dz_ actual), title('dz actual vs. dz calc for
last pathseek'), xlabel('dz (mm) '), ylabel('dz (mm)"');

o _______________

°

% PLOTS OF RX, TY, TZ VS. MX (END POINTS FROM LAST PATHSEEK)
% Plots of Rx, Ty, Tz vs. mx (end points from last pathseek)
fh=figure('Position', [150 100 1000 900], 'Color','w');

hold on
for i = l:size(z_ct0 sum,2)
plot(-last rot angle end pts, mx end pts, '.-b',...
-last _rot angle end pts (i), start dy actual(z ct0 sum(i)),'.b',...
-last rot angle end pts(i), start dz actual(z ctO sum(i)),'*r");
end
for i = l:size(z_ct400 sum,2)
plot(-last rot angle end pts, mx end pts, '.-b',...
-last rot angle end pts(i), flxn dy actual(z ct400 sum(i)),'.b',...
-last rot angle end pts(i), flxn dz actual(z ct400 sum(i)), '*r');
end
for i = l:size(z_ct800 sum,2)
plot handles = plot(-last rot angle end pts, mx end pts, '.-b',...
-last _rot angle end pts (i), extn dy actual(z ct800 sum(i)),'.b',...
-last rot angle end pts(i), extn dz actual(z ct800 sum(i)),'*r');
end

line ('XData', get(gca, 'XLim'), 'YData', [0 0]);
line ('XData', [0 0], '¥YData', get(gca, 'YLim'));
hold off
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title('Rx, Ty, Tz vs. Mx for last pathseek'), ylabel('displacement (deg or
mm) '), xlabel ('Mx (Nm)"'");
legend (plot handles, 'Mx', 'Ty', 'Tz');

=== === oo o= —————————————————=—=—=—=

% PLOT OF MOVEMENT OF POINT OF INTEREST IN GLOBAL C.S.

% Z vs. X in global c.s. (start, extn & flxn together, starting & ending
points only) for last pathseek

fh=figure('Position', [150 100 1000 900], 'Color','w');

temp = 0;
hold on
for 1 = l:size(z ct0 sum,2)

plot handles 3 = plot([tGPOIO posn(l,temp+l),
tGPOIO posn(l,temp+l+z ct0 total(l,i,end))], ...
[EtGPOIO posn (3, temp+l), tGPOIO posn(3,temp+l+z ctO total(l,i,end))],

'-ob'");
temp = temp + 1 + z ctO total(l,i,end);
end
temp = 0;
for i = l:size(z_ct400 sum,2)

plot handles 1 = plot([tGPOI400 posn(l,temp+l),
tGPOI400 posn(l,temp+l+z ct400 total(l,i,end))], ...
[EtGPOI400 posn (3, temp+l),
tGPOI400 posn (3, temp+l+z ct400 total(l,i,end))], '-or');
temp = temp + 1 + z ct400 total(l,i,end);

end
temp = 0;
for 1 = l:size(z ct800 sum,2)

plot handles 2 = plot([tGPOI800 posn(l,temp+l),

tGPOIB00 posn(l,temp+l+z ct800 total(l,i,end))], ...
[tGPOIB00 posn (3, temp+l),

tGPOI800 posn (3, temp+l+z ct800 total(l,i,end))], '-ok');

temp = temp + 1 + z ct800 total(l,i,end);
end
hold off
title('Z vs. X for point of interest for last pathseek'), xlabel ('X (mm)'),
ylabel ('Z (mm) ') ;
legend handles = [plot handles 1; plot handles 2; plot handles 3];
legend(legend handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn',
'flxn \rightarrow start');

o
oo s s s s s s s s s s s s s s e s s s = == = === === —————=—=—=

% PLOT OF MOVEMENT OF UFS IN GLOBAL C.S.

% Z vs. X in global c.s. (start, extn & flxn together, starting & ending
points only) for last pathseek

fh=figure ('Position', [150 100 1000 900], 'Color','w");

temp = 0;
hold on
for i = l:size(z_ct0_sum,2)

plot handles 3 = plot ([tGUFSO posn(l,temp+l),
tGUFS0 posn(l,temp+l+z ct0 total(l,i,end))],...
[tGUFS0_posn (3, temp+l), tGUFSO posn (3, temp+l+z ctO total(l,i,end))],
'-ob');
temp = temp + 1 + z ct0 total(l,i,end);
end
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temp = 0;
for i = l:size(z ct400 sum,2)
plot handles 1 = plot ([tGUFS400 posn (1, temp+l),
tGUFS400 posn(l,temp+l+z ct400 total(l,i,end))],...
[tGUFS400 posn (3, temp+l),
tGUFS400 posn (3, temp+l+z ct400 total(l,i,end))], '-or');
temp = temp + 1 + z ct400 total(l,i,end);

end
temp = 0;
for i = l:size(z_ ct800 sum,2)

plot handles 2 = plot([tGUFS800 posn(l,temp+l),

tGUFS800 posn(l,temp+l+z ct800 total(l,i,end))], ...
[tGUFS800 posn (3, temp+1),

tGUFS800 posn (3, temp+l+z ct800 total(l,i,end))], '-ok'");

temp = temp + 1 + z ct800 total(l,i,end);
end
hold off
title('Z vs. X for UFS for last pathseek'), xlabel ('X (mm)'), ylabel('Z
(mm) ") ;
legend handles = [plot handles 1; plot handles 2; plot handles 3];
legend(legend handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn',
'flxn \rightarrow start');

o __________
S T e s e e e

% PLOT OF MOVEMENT OF COR IN GLOBAL C.S.

% Z vs. X in global c.s. (start, extn & flxn together, starting & ending
points only) for last pathseek

fh=figure('Position', [150 100 1000 900], 'Color','w');

temp = 0;
hold on
for i = l:size(z_ct0 sum,2)

plot handles 3 = plot ([tGTO0 posn(1l,temp+l),
tGTO0 posn(l,temp+l+z ct0 total(l,i,end))],...
[EtGTO_posn (3, temp+l), tGTO posn(3,temp+l+z ctO total(l,i,end))], '-

ob'");
temp = temp + 1 + z ct0 total(l,i,end);
end
temp = 0;
for i = l:size(z_ct400 sum,2)

plot handles 1 = plot([tGT400 posn(l, temp+l),
tGT400 posn(l,temp+l+z ct400 total(l,i,end))], ...
[tGT400 posn (3, temp+l),
tGT400 posn (3, temp+l+z ct400 total(l,i,end))], '-or');
temp = temp + 1 + z ct400 total(l,i,end);

end
temp = 0;
for i = l:size(z ct800 sum,2)

plot handles 2 = plot([tGT800 posn(l,temp+l),
tGT800 posn (1, temp+l+z ct800 total(l,i,end))], ...
[EtGT800 posn (3, temp+l),
tGT800 posn (3, temp+l+z ct800 total(l,i,end))], '-ok');
temp = temp + 1 + z ct800 total(l,i,end);
end
hold off
title('Z vs. X for COR for last pathseek'), xlabel('X (mm)'), ylabel('Z
(mm) ") ;

214



legend handles = [plot handles 1; plot handles 2; plot handles 3];
legend(legend handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn',
'flxn \rightarrow start');

© - _______________ ______________________ . _______________________________
s ———————————————————————————————————=—

% PLOT OF MOVEMENT OF pt. of interest, UFS & COR IN GLOBAL C.S.

% Z vs. X in global c.s. (start, extn & flxn together, starting & ending
points only) for last pathseek

fh=figure('Position', [150 100 1000 900], 'Color','w');

temp = 0;
hold on
for i = l:size(z ctO sum,2)

plot handles 3 = plot ([tGTO0 posn(1l, temp+l),
tGTO0 _posn (1, temp+l+z ct0 total(l,i,end))],...
[EtGTO_posn (3, temp+l), tGTO0 posn(3,temp+l+z ctO0 total(l,i,end))], '.-
b', ...
[tGUFSO0 posn (1, temp+l),
tGUFSO0 posn(l,temp+l+z ct0 total(l,i,end))],...
[tGUFSO0_posn (3, temp+l), tGUFSO posn(3,temp+l+z ctO total(l,i,end))],
'-ob', ...
[tGPOIO posn(l, temp+l),
tGPOIO posn(l,temp+l+z ct0 total(l,i,end))],...
[tGPOIO posn (3, temp+l), tGPOIO posn(3,temp+l+z ctO total(l,i,end))],
'-sb', 'MarkerSize', 5);
temp = temp + 1 + z ct0 total(l,i,end);

end
temp = 0;
for i = l:size(z ct400 sum,2)

plot handles 1 = plot([tGT400 posn(1l, temp+l),
tGT400 posn(l,temp+l+z ct400 total(l,i,end))], ...
[tGT400 posn (3, temp+1l),
tGT400 posn(3,temp+l+z ct400 total(l,i,end))], '.-b',...
[tGUFS400 posn (1, temp+1),
tGUFS400 posn (1, temp+l+z ct400 total(l,i,end))], ...
[EtGUFS400 posn (3, temp+l),
tGUFS400 posn (3, temp+l+z ct400 total(l,i,end))], '-or',...
[tGPOI400 posn(1l,temp+l),
tGPOI400 posn(l,temp+l+z ct400 total(l,i,end))], ...
[tGPOI400 posn (3, temp+l),
tGPOI400 posn (3, temp+l+z ct400 total(l,i,end))], '-sr', 'MarkerSize', 5);
temp = temp + 1 + z ct400 total(l,i,end);

end
temp = 0;
for i = l:size(z_ct800 sum,2)

plot handles 2 = plot([tGT800 posn(l,temp+l),

tGT800 posn(l,temp+l+z ct800 total(l,i,end))], ...
[tGT800 posn (3, temp+l),

tGT800 posn (3, temp+l+z ct800 total(l,i,end))], '.-b',...
[tGUFS800 posn (1, temp+l),

tGUFS800 posn (1, temp+l+z ct800 total(l,i,end))], ...
[tGUFS800 posn (3, temp+l),

tGUFS800 posn (3, temp+l+z ct800 total(l,i,end))], '-ok',...
[tGPOIBO0 posn (1, temp+l),

tGPOIB00 posn(l,temp+l+z ct800 total(l,i,end))], ...
[EtGPOIBO0 posn (3, temp+l),

tGPOIB00 posn (3, temp+l+z ct800 total(l,i,end))], '-sk', 'MarkerSize', 5);
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temp = temp + 1 + z ct800 total(l,i,end);
end
hold off
title('Z vs. X for point of interest, UFS & COR for last pathseek'),
xlabel ('X (mm) '), ylabel('Z (mm)"'");
legend handles = [plot handles 1; plot handles 2; plot handles 3];
legend(legend handles, 'COR: flxn \rightarrow extn ', 'UFS: flxn \rightarrow
extn', 'POI: flxn \rightarrow extn', ...

"COR: extn \rightarrow flxn', 'UFS: extn \rightarrow flxn', 'POI: extn
\rightarrow flxn', ...

'"COR: flxn \rightarrow start', 'UFS: flxn \rightarrow start', 'POI: flxn
\rightarrow start', 0);

After finding the final passive path of the specimen, it is replayed to make sure no more

pre-conditioning needs to be done (spine3h _val path2.m).

oe

spine3h val path2.m
replay flexion/extension
converted from spine3h.v2
Amy Loveless

7/31/2002

o oo oe

o

[

% Disable buttons on GUI until spine3h val path2.m is done running
buttons (guihandles, 'off');

% Input dialog box to get the number of times to run replay

prompt = {'Enter the number of times you want to run the replay'};

title = 'Number of Replays';

lines= 1;

def = {'""};

answer = inputdlg(prompt,title,lines,def);

if isequal (answer, {}) ==
% Enable buttons on GUI
buttons (guihandles, 'on');

else

plays = str2num(answer{l});
end
% plays = str2num(answer{l});

[)

% Clear variables created for inputdlg
clear prompt title lines def answer;

o)

% Input dialog box to get the filename for data storage

prompt = {'Enter Filename'};

title = 'Filename';

lines= 1;

def = {'c:\robot'};

answer = inputdlg(prompt,title,lines,def);

if isequal (answer, {}) ==
% Enable buttons on GUI
buttons (guihandles, 'on');
else
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filename = answer{l};
end
% Clear variables created for inputdlg
clear prompt title lines def answer;

% setup figure to graphically monitor loads
[fx, fy, fz, mx, my, mz, handles, fh] = val path displayl;
% Arrays of constants
rot angle(0 replay =
flipdim(rot angle0O end pts(:,l:size start end pts(end),end),l);
rot angle400 replay = rot angle400 end pts(:,l:size flxn end pts(end),end);
rot angle800 replay = rot angle800 end pts(:,l:size extn end pts(end),end);
rot angle replay = [rot angle400 replay rot angle800 replayl];
% move specimen to flxn in incremental movements
for p = l:size(start replayl, 2)
ok = 0;
flag = 3.1;
fprintf (portl, [ok, flagl):;
fprintf (portl, start replayl(l:6,p));

done moving fscanf (portl);
done moving = sscanf (done moving, 'S$f');

°

[

get loads; % measure: forces and moments
o)

°

o

°

fm tareb5; % tare out bolt-up and fixture wt

o

°

% display f/m after taring out bolt-up and fixture wt
val path display2([fm tcs, fx, fy, fz], [mx, my, mz], handles,
[rot _angle0 replay(p), z_target(2)]):;
for 1 = 1:3
if abs(fa(i)) > 0.5

oe

o©

% line color(i,1:3) = [1 0 0];

% else

% line color(i,1:3) = [0 0.75 0];

% end

% end

% subplot(2,1,1), set(fx, 'XData', [0 fa(l)], 'Color', line color(l,:));
% subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line color(2,:));
% subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line color(3,:));
% subplot(2,1,2), set(mx, 'XData', [0 fa(4)]);

% subplot(2,1,2), set(my, 'XData', [0 fa(5)]);

% subplot(2,1,2), set(mz, 'XData', [0 fa(6)]);

o\°

set (handles.w now _edit, 'String', rot angleO replay(p)):;

o

oe

drawnow
end

for j = l:plays
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[

°

Read position and load data for dir = 1200 (flxn -> extn, replay)

for p = l:size(flxn replay,2)

ok = 0
flag = 3.1;
(
(

fprintf (portl, [ok, flagl):;
fprintf (portl, flxn replay(l:6,p));

done moving fscanf (portl);
done moving = sscanf (done moving, 'S$f');

ok = 0;

flag = 1.1;

fprintf (portl, [ok flagl):
flxnl = fscanf (portl);

flxnl = sscanf (flxnl, '$f');
z gtl200 val(l:6,p,J) = flxnl(1l:6);
flxn val jt angles(l:6,p,J) = flxnl(7:12);

%

get loads; $ measure: forces and moments
o

°

o

°

fm tareb5; % tare out bolt-up and fixture wt

o

°

[

% display f/m after taring out bolt-up and fixture wt
val_path_display2([fm_tcs, fx, fy, fz], [mx, my, mz], handles,

[rot angled400 replay(p), z_ target(2)]);

A° dO A 0° 0 O° A° A° Ad° A A° o° o° J° o° o

o\

end

o

°

for 1 = 1:3
if abs(fa(i)) > 0.5

line color(i,1:3) = [1 0 0];
else
line color(i,1:3) = [0 0.75 0];
end
end
subplot(2,1,1), set(fx, 'XData', [0 fa(l)], 'Color', line color(l,:
subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line color(2,:
subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line color(3,:
subplot(2,1,2), set(mx, 'XData', [0 fa(4)]);
subplot(2,1,2), set(my, 'XData', [0 fa(5)]);
subplot(2,1,2), set(mz, 'XData', [0 fa(6)]);
set (handles.w now edit, 'String', rot angle400 replay(p)):;
set (handles.valpath edit, 'String', J);
drawnow
loadl200 val(l:6,p,]j) = fa';

Read position and load data for dir = 1600 (extn -> flxn, replay)

for p = l:size(extn replay,2)

ok = 0;
flag = 3.1;
fprintf (portl, [ok, flagl);
fprintf (portl, extn replay(l:6,p));
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done moving fscanf (portl) ;

done moving = sscanf (done moving, '%f');
ok = 0;

flag = 1.1;

fprintf (portl, [ok flagl):

extnl = fscanf (portl);

extnl = sscanf (extnl, 'Sf');

z gtle00 val(l:6,p,J) = extnl(l:06);

extn val jt angles(l:6,p,J) = extnl(7:12);

Q

°

get loads; % measure: forces and moments

%

o

°

fm tareb5; % tare out bolt-up and fixture wt

o

°

o)

% display f/m after taring out bolt-up and fixture wt
val path display2([fm tcs, fx, fy, fz], [mx, my, mz], handles,
[rot angle800 replay(p), z target(2)]);
for i = 1:3
if abs(fa(i)) > 0.5

oe

o

% line color(i,1:3) = [1 0 0];
% else
% line color(i,1:3) = [0 0.75 0];
% end
% end
% subplot(2,1,1), set(fx, 'XData', [0 fa(l)], 'Color', line color(l,:
% subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line color(2,:
% subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line color(3,:
% subplot(2,1,2), set(mx, 'XData', [0 fa(4)]);
% subplot(2,1,2), set(my, 'XData', [0 fa(5)]);
% subplot(2,1,2), set(mz, 'XData', [0 fa(6)]);
% set (handles.w now _edit, 'String', rot angle800 replay(p));
% set (handles.valpath edit, 'String', 3J);
% drawnow
loadl600 val(l:6,p,]j) = fa';

end
end
% move specimen back to rotation angle = 0 in incremental movements
for p = l:size(start replay2,2)

ok = 0;

flag = 3.1;
fprintf (portl, [ok, flagl);
fprintf (portl, start replay2(l:6,p));

done moving fscanf (portl);
done moving = sscanf (done moving, 'S$f');

o\
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get loads; $ measure: forces and moments
o

fm tareb5; % tare out bolt-up and fixture wt

3 display f/m after taring out bolt-up and fixture wt

val path display2([fm tecs, fx, fy, fz], [mx, my, mz], handles,
[rot angled00 replay(p), z_ target(2)]);
% for i = 1:3
% if abs(fa(i)) > 0.5
% line color(i,1:3) = [1 0 0];
% else
% line color(i,1:3) = [0 0.75 0];
% end
% end
% subplot(2,1,1), set(fx, 'XData', [0 fa(l)], 'Color', line color(l,:));
% subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line color(2,:));
% subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line color(3,:));
% subplot(2,1,2), set(mx, 'XData', [0 fa(4)]);
% subplot(2,1,2), set(my, 'XData', [0 fa(5)]);
% subplot(2,1,2), set(mz, 'XData', [0 fa(6)]);
% set (handles.w now edit, 'String', rot angle400 replay(p)):;
% drawnow
end

[

% remove monitor loads figure from screen
delete(fh);

[

[

data display val path2; %

°

display data

o)

% Enable buttons on GUI when spine3h val path2.m is done running
buttons (guihandles, 'on');

val path displayl.m is a function called by spine3h val path2.m that sets up the plot to

graphically monitor UFS loads.

function [fx, fy, fz, mx, my, mz, handles, fh] = val path displayl;

% setup figure to graphically monitor loads
fh = figure('Position', [400 300 600 600], 'Color','w");
subplot(2,1,1)

set (gca, 'XLim', [-50 50], 'YLim', [O 4], 'YTick', [1 2 3], 'YTickLabel', 'Fz
(N) [Fy (N)|Fx (N)"')

title('Forces')

fx = line('XData', [0 0], '¥YDbata', [3 3], 'LineWidth', 24, 'Color', [0 0.75
01):

fy = line('XData', [0 0], '¥YDbata', [2 2], 'LineWidth', 24, 'Color', [0 0.75
01);
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fz = line('XData', [0 0], '¥YDbata', [1 1], 'LineWidth', 24, 'Color', [0 0.75
01):;
origin = line('XData', [0 0], 'YData', [0 4]);

subplot(2,1,2)

set (gca, 'XLim', [-10 10], 'YLim', [O 4], '¥YTick', [1 2 3], 'YTickLabel', 'Mz
(Nm) |[My (Nm) [Mx (Nm) ")

title ("Moments')

mx = line('XData', [0 0], '¥YData', [3 3], 'LineWidth', 24, 'Color', [0 0.75
01);

I~

my line('XData', [0 0], 'YData', [2 2], 'Linewidth', 24, 'Color', [0 0.75
01):
mz = line('XData', [0 0], '¥YData', [1 1], 'LineWidth', 24, 'Color', [0 0.75
01);

origin = line('XData', [0 0], 'YData', [0 4]);

uicontrol ('Style', 'text', 'Tag', 'current text',...

'Position', [20 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Current:');
uicontrol ('Style', 'edit', 'Tag', 'w now edit',...

'Position', [135 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12);
uicontrol ('Style', 'text', 'Tag', 'w now text',...

'Position', [135 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Angle');
uicontrol ('Style', 'edit', 'Tag', 'valpath edit',...

'Position', [335 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12);
uicontrol ('Style', 'text', 'Tag', 'valpath text',...

'Position', [335 0 70 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Replay #');
handles = guihandles (fh);
guidata (fh, handles);

o

any of these changes should make simple animations smooth

% zbuffer can be very slow and on my computer none of these are
necessary to stop flashing

set (fh, "doublebuffer', 'on'");

% set (fh, 'renderer', 'zbuffer');

% set (hfig, 'renderer', 'opengl');

o

val path display2.m is a function called by spine3h val path2.m that plots UFS loads.

function val path display2(forces, moments, handles, misc)

fa = forces(1:6);
fx = forces(7);
fy = forces(8);
fz = forces(9);

mx = moments (1) ;
my = moments (2);
mz = moments (3);

rot angle replay = misc(1);
limit = misc(2);
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for i = 1:3
if abs(fa(i)) > limit

line color(i,1:3) = [1 0 0];
else
line color(i,1:3) = [0 0.75 0];
end
end
subplot(2,1,1), set(fx, 'XData' [0 fa(l)], 'Color', line color(l,:));
subplot(2,1,1), set(fy, 'XData' [0 fa(2)], 'Color', line color(2,:));
subplot(2,1,1), set(fz, 'XData' [0 fa(3)], 'Color', line color(3,:));
subplot(2,1,2), set(mx, 'XData', [0 fa(4)]):;
subplot(2,1,2), set(my, 'XData' [0 fa(5)1);
subplot(2,1,2), set(mz, 'XData' [0 fa(6)]):
1

set (handles.w now edit, 'String', rot _angle replay);

drawnow

data_display val path2.m is a script called by spine3h val path2.m that plots the data

gathered during pathseek validation.

o

data display val path2.m
display data

Amy Loveless

7/31/02

o oe

o

o

BUILD ARRAYS TO BE USED FOR PLOTTING
Arrays of mx
for i = 1l:plays
mx1200 val(l,1:size(loadl200 val,2),1i) =
loadl200 val(4,1:size(loadl200 val,2),1i);
mx1600 val(l,1l:size(loadl600 val,2),1i)
loadl600 val(4,1:size(loadl600 val,2),1i);
end

oe

mx _end pts = [flxn mx end pts extn mx end pts];

% Arrays of constants

rot angled400 val = rot angle400 end pts(:,l:size flxn end pts(end),end);
rot angle800 val = rot angle800 end pts(:,l:size extn end pts(end),end);
rot _angle val = [rot angled400 val rot angle800 val]l;

for i = l:length(rot angle400 val)
y replay2(i) = 0;
end

clear legend string
for i = 1l:plays
legend string(i,1:8) = ['replay ', int2str(i)];
end
% Save workspace
save (filename)
disp('Data has been saved.')
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o\

[

% Plot of rotation angle vs. mx for passive pathseek (mx end pts) & first
replay (mx1200 val, mx1600 val)
fh=figure ('Position', [150 100 1000 900], 'Color','w");
set (gca, 'NextPlot', 'add');
plot (-rot angle val, mx end pts, '.-', -rot angle val, [mx1200 val(:,:,1)
mx1600 val(:,:,1)], '-o");
line ('XData', get(gca, 'XLim'), 'YData', [0 0]);
line ('XData', [0 0], '¥YData', get(gca, 'YLim'"));
title('Mx vs. rotation angle'), xlabel('rotation angle (deg) '), ylabel ('Mx
(Nm) ") ;
legend handles = get(gca, 'Children');
legend (flipdim(legend handles (3:4),1), 'last pathseek', 'intact replay', 2);
text (1, -2, 'flexion', 'Rotation', 30, 'FontSize',6 14);
text (1, 2, 'extension', 'Rotation', 30, 'FontSize', 14);
% Plots of mx vs. rotation angle (for all replays, flxn -> extn)
fh=figure('Position', [150 100 1000 900], 'Color','w');
set (gca, 'NextPlot', 'add'");
line color = get(gca, 'ColorOrder');
for 1 = 1l:plays
plot (-rot angle val, [mx1200 val(:,:,i) mx1600 val(:,:,i)], '.-'",
'Color', line color(i,:));
end
line ('XData', get(gca, 'XLim'), '¥YData', [0 01);
line ('XData', [0 0], '¥YData', get(gca, 'YLim'"));
title('Mx vs. rotation angle'), xlabel('rotation angle (deg)'), ylabel ('Mx
(Nm) ") ;
legend handles = get(gca, 'Children');
legend(flipdim(legend handles (3:plays+2),1), legend string, 2);
text (1, -2, 'flexion', 'Rotation', 30, 'FontSize', 14);
text (1, 2, 'extension', 'Rotation', 30, 'FontSize',6 14);

After the passive path has been validated, the cutting study begins using

spine3h replav2.m.

o\

spine3h replay2.m

replay flexion/extension
converted from spine3h.v2
Amy Loveless

7/4/2002

o° o oe

o

[

% Disable buttons on GUI until spine3h replay.m is done running
set (hok, 'Enable', 'off');

set
set

hval, 'Enable', 'off');
hreplay, 'Enable', 'off');

set (hbolt, 'Enable', 'off');
set (hbefore, 'Enable', 'off');
set (hafter, 'Enable', 'off');
set (hpath, 'Enable', 'off'");

(

(
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set (hend, 'Enable', 'off');

[

% Input dialog box to get the filename for data storage

prompt = {'Enter Filename'};

title = 'Filename';

lines= 1;

def = {'c:\robot'};

answer = inputdlg(prompt,title,lines,def);
filename = answer{l};

o)

% Clear variables created for inputdlg
clear prompt title lines def answer;

% setup figure to graphically monitor loads

fh = figure('Position', [400 300 600 600], "Coloxr','w');

subplot(2,1,1)

set (gca, 'XLim', [-50 50], 'YLim', [O 4], 'YTick', [1 2 3], 'YTickLabel', 'Fz
(N) [Fy (N) |Fx (N)")

title('Forces')

fx = line('XData', [0 0], 'YDbata', [3 3], 'LineWidth', 24, 'Color', [0 0.75
01);

fy line ('XData', [0 0], '¥YData', [2 2], 'LineWidth', 24, 'Color', [0 0.75
01);
fz = line('XData', [0 0], '¥YDbata', [1 1], 'LineWidth', 24, 'Color', [0 0.75
01)7

origin = line('XData', [0 0], 'YData', [0 4]);

subplot(2,1,2)

set (gca, 'XLim', [-10 10], 'YLim', [O 4], 'YTick', [1 2 3], 'YTickLabel', 'Mz
(Nm) [My (Nm) |[Mx (Nm) ")

title ('Moments"')

mx = line('XData', [0 0], '¥YDbata', [3 3], 'LineWidth', 24, 'Color', [0 0.75
01):

I~

my line('XData', [0 0], 'YDhata', [2 2], 'Linewidth', 24, 'Color', [0 0.75
01)7
mz = line('XData', [0 0], 'YData', [1 1], 'LineWidth', 24, 'Color', [0 0.75
01)s

origin = line('XData', [0 0], 'YData', [0 4]);

uicontrol ('Style', 'text', 'Tag', 'current text',...

'Position', [20 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Current:');
uicontrol ('Style', 'edit', 'Tag', 'w now edit',...

'"Position', [135 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize',6 12);
uicontrol ('Style', 'text', 'Tag', 'w now text',...

'Position', [135 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Angle');
handles = guihandles (fh);
guidata (fh, handles);

% any of these changes should make simple animations smooth

% zbuffer can be very slow and on my computer none of these are
necessary to stop flashing

set (fh, '"doublebuffer', 'on');

% set (fh, 'renderer', '"zbuffer');

% set (hfig, 'renderer', 'opengl');

oe
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% Arrays of constants

rot angle0 replay =

flipdim(rot angleO end pts(:,l:size start end pts(end),end),1l);

rot angle400 replay = rot angled400 end pts(:,l:size flxn end pts(end),end);
rot angle800 replay = rot angle800 end pts(:,l:size extn end pts(end),end);
rot _angle replay = [rot angle400 replay rot angle800 replayl];

% move specimen to flxn in incremental movements
for p = l:size(start replayl, 2)

ok = 0;

flag = 3.1;

fprintf (portl, [ok, flagl):;

fprintf (portl, start replayl(l:6,p));

done moving = fscanf (portl);
done moving = sscanf (done_moving, 'S$f');

°

get loads; % measure: forces and moments
o)

o°

o

fm tareb5; % tare out bolt-up and fixture wt

°

o)

% display f/m after taring out bolt-up and fixture wt
for i = 1:3
if abs(fa(i)) > 0.5

line color(i,1:3) = [1 0 0];
else
line color(i,1:3) = [0 0.75 0];
end
end
subplot(2,1,1), set(fx, 'XData', [0 fa(l)], 'Color', line color(l,:));
subplot(2,1,1), set(fy, 'Xbata', [0 fa(2)], 'Color', line color(2,:));
subplot(2,1,1), set(fz, 'Xbata', [0 fa(3)], 'Color', line color(3,:));
subplot(2,1,2), set(mx, 'XData', [0 fa(4)]);
subplot(2,1,2), set(my, 'XData', [0 fa(5)]);
subplot(2,1,2), set(mz, 'XData', [0 fa(6)]):;

set (handles.w now _edit, 'String', rot angleO replay(p)):;

drawnow

% Read position and load data for dir = 1200 (flxn -> extn, replay)

% cuts = page number of matrix
% cuts = cuts + 1 is for use with Matlab interface only
cuts = cuts + 1;

for p = l:size(flxn replay,2)
ok = 0;
flag = 3.1;
fprintf (portl, [ok, flag]l);
fprintf (portl, flxn replay(l:6,p));

done moving = fscanf (portl);
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done moving =

ok = 0;

flag = 1.1;
fprintf (portl,
flxnl = fscanf (portl);
flxnl = sscanf (flxnl, '
z gtl1200(1:6,p,cuts) =
flxn replay jt angles (1

o)

o)

sscanf (done moving, '%f');

[ok flag]);

st
flxnl (1:6);

:6,p,cuts) = flxnl(7:12);

°

get loads; % measure:
o)

forces and moments

°

o)

o

°

fm tareb5; %

[

tare out bolt-up and fixture wt

°

10adl200(1:6,p,cuts) = fa';
fm ufs1200(1:6,p,cuts) = fm ufs';
% display f/m after taring out bolt-up and fixture wt
for i = 1:3
if abs(fa(i)) > 0.5
line color(i,1:3) = [1 0 0];
else
line color(i,1:3) = [0 0.75 0];
end
end
subplot(2,1,1), set(fx, 'Xbata', [0 fa(l)], 'Color', line color(l,
subplot(2,1,1), set(fy, 'Xbata', [0 fa(2)], 'Color', line color (2,
subplot(2,1,1), set(fz, 'Xbata', [0 fa(3)], 'Color', line color (3,
subplot(2,1,2), set(mx, 'XData', [0 fa(4)]);
subplot(2,1,2), set(my, 'XData', [0 fa(5)]);
subplot(2,1,2), set(mz, 'XData', [0 fa(6)]);

set (handles.w _now_edit,

drawnow
end

% Read position and load data for dir =

'String', rot angle400 replay(p)):;

1600 (extn -> flxn, replay)

% cuts = page number of matrix
for p = l:size(extn replay,2)
ok = 0;
flag = 3.1;

fprintf (portl,
fprintf (portl,

done moving =
done moving =

ok = 0;

flag = 1.1;
fprintf (portl,
extnl = fscanf (portl);
extnl = sscanf (extnl, '
z gtle00(l:6,p,cuts) =

[ok, flagl);
extn replay(l:6,p));

fscanf (portl) ;
sscanf (done moving, '%f');

Q

[ok flag]);

st
extnl (1:06);
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extn replay jt angles(l:6,p,cuts) = extnl(7:12);

get loads; % measure: forces and moments
o)

fm tareb5; % tare out bolt-up and fixture wt

loadl6e00(l:6,p,cuts) = fa';

% display f/m after taring out bolt-up and fixture wt
for 1 = 1:3
if abs(fa(i)) > 0.5

line color(i,1:3) = [1 0 0];
else
line color(i,1:3) = [0 0.75 0];
end
end
subplot(2,1,1), set(fx, 'Xbata', [0 fa(l)], 'Color', line color(l,:));
subplot(2,1,1), set(fy, 'Xbata', [0 fa(2)], 'Color', line color(2,:));
subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line color(3,:));
subplot(2,1,2), set(mx, 'XData', [0 fa(4)]):;
subplot(2,1,2), set(my, 'XData', [0 fa(5)]);
subplot(2,1,2), set(mz, 'XData', [0 fa(6)]);

set (handles.w now _edit, 'String', rot angle800 replay(p)):;

drawnow
end
% move specimen back to rotation angle = 0 in incremental movements
for p = l:size(start replay2,2)

ok = 0;

flag = 3.1;
fprintf (portl, [ok, flagl):;
fprintf (portl, start replay2(l:6,p));

done moving = fscanf (portl);
done moving = sscanf (done _moving, 'S$f');

°

[

get loads; % measure: forces and moments
o)

°

o

°

fm tareb5; % tare out bolt-up and fixture wt

°

% display f/m after taring out bolt-up and fixture wt
for i = 1:3
if abs(fa(i)) > 0.5
line color(i,1:3)
else
line color(i,1:3) = [0 0.75 0];
end

[1 0 0];

end
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subplot(2,1,1), set(fx, 'Xbata', [0 fa(l)], 'Color', line color(l,:
subplot(2,1,1), set(fy, 'Xbata', [0 fa(2)], 'Color', line color(Z2,:
subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line color(3,:
subplot(2,1,2), set(mx, 'XData', [0 fa(4)]):
subplot(2,1,2), set(my, 'XData', [0 fa(5)]);
subplot(2,1,2), set(mz, 'XData', [0 fa(6)]);

set (handles.w now _edit, 'String', rot angle400 replay(p)):;
drawnow
end

delete (fh) ;

%

o)

data display replay3; % display data

°

[

% Enable buttons on GUI when spine3h replay.m is done running
set (hok, 'Enable', 'on');

set (hbolt, 'Enable', 'on');

set (hbefore, 'Enable', 'on');

set (hafter, 'Enable', 'on');

set (hpath, 'Enable', 'on');

set (hval, 'Enable', 'on');

set (hreplay, 'Enable', 'on');

set (hend, 'Enable', 'on');

data display replay3.m is a script called by spine3h_replay2.m that plots the data

gathered during the cutting study.

oe

data display replay3.m
display data

Amy Loveless

from data sto3c flxn (7/10/02)

o° o

o\

oe

BUILD TRANSFORMATIONS OF TOOL C.S. WRT GLOBAL C.S.

oe

flxn -> extn
for i = l:size(z _gtl1200,2)

tGT1200(1:4,1i*4-3:4*i,cuts) = eul2tr([deg2rad(z_gtl200(4,1i,cuts)),
deg2rad(z gtl1200(5,1i,cuts)), deg2rad(z gtl200(6,1i,cuts))]);
tGT1200(1:3,4*i,cuts) = [z gtl200(1,i,cuts) z gtl200(2,1i,cuts)
z gtl200(3,1i,cuts)]"';

end

[

extn -> flxn
for i = l:size(z gtle00,2)

tGT1600(1:4,1i*4-3:4*i,cuts) = eul2tr([deg2rad(z_gtl600(4,1i,cuts)),
deg2rad(z_gtl600(5,1i,cuts)), deg2rad(z gtle00(6,1i,cuts))]);
tGT1600(1:3,4*i,cuts) = [z gtl600(1l,i,cuts) z gtl600(2,1i,cuts)

z gtl600(3,1i,cuts)]"';
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Build transformations of tool c.s. wrt global c.s. for each location

% Build transformations of tool c.s. wrt global c.s. for each location

for

for



end
% Build array of position vectors of tool c.s. from tGT for flxn -> extn
for 1 = 1:s1ize(tGT1200,2)/4
tGT1200 posn(l:4,1i,cuts) = tGT1200(:,i*4,cuts);
end
% Build array of position vectors of tool c.s. from tGT for extn -> flxn
for 1 = 1:s1ize(tGT1600,2)/4
tGT1600 posn(l:4,1i,cuts) = tGT1600(:,i*4,cuts);
end

% BUILD TRANSFORMATIONS OF UFS WRT GLOBAL C.S.
% Build transformations of UFS wrt global c.s. for each location for flxn ->

for 1 = 1l:size(tGT1200,2)/4
tGUFS1200(1:4,1i*4-3:4*1i,cuts) = tGT1200(1:4,1i*4-3:1*4,cuts) *pinv (tUFST) ;
end
% Build transformations of UFS wrt global c.s. for each location for extn ->
flxn
for 1 = 1l:size(tGT1600,2)/4
tGUFS1600(1:4,1i*4-3:4*1i,cuts) = tGT1600(1:4,1i*4-3:1*4,cuts) *pinv (tUFST) ;
end
% Build array of position vectors of UFS from tGUFS for flxn -> extn
for 1 = l:size (tGUFS1200,2)/4
tGUFS1200 posn(l:4,1i,cuts) = tGUFS1200(1:4,1i*4,cuts);
end
% Build array of position vectors of UFS from tGUFS for extn -> flxn
for 1 = l:size (tGUFS1600,2)/4
tGUFS1600 posn(l:4,1i,cuts) = tGUFS1600(1:4,1i*4,cuts);
end

o\°

BUILD TRANSFORMATIONS OF PT. OF INTEREST WRT GLOBAL C.S.
% Build transformations of pt. of interest wrt global c.s. for each location
for flxn -> extn
for 1 = 1:size(tGT1200,2)/4

tGPOI1200(1:4,i*4-3:4*i,cuts) = tGUFS1200(1:4,i*4-3:i*4,cuts) *tUFSPOI;
end
% Build transformations of pt. of interest wrt global c.s. for each location
for extn -> flxn
for i = 1:size(tGT1600,2)/4

tGPOI1600(1:4,1i*4-3:4*1i,cuts) = tGUFS1600(1:4,1i*4-3:1*4,cuts) *tUFSPOI;
end
% Build array of position vectors of pt. of interest from tGUFS for flxn ->
extn
for 1 = l:size (tGP0OI1200,2)/4

tGPOI1200 posn(l:4,1i,cuts) = tGPOI1200(1:4,i*4,cuts);
end
% Build array of position vectors of pt. of interest from tGUFS for extn ->
flxn
for 1 = l:size (tGP0OI1600,2)/4
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tGPOI1600 posn(l:4,1i,cuts) = tGPOI1600(1l:4,i*4,cuts);
end

oe

% BUILD ARRAYS TO BE USED FOR PLOTTING
% Arrays of fy, fz & mx

fy1200(1,1l:size(loadl1200,2),cuts) = loadl200(2,1l:size(loadl200,2),cuts);
£2z1200(1,1l:size(loadl200,2),cuts) = loadl200(3,1l:size(loadl200,2),cuts);
mx1200(1,1l:size(loadl200,2),cuts) = loadl200(4,1l:size(loadl200,2),cuts);
fy1600(1l,1l:size(loadl600,2),cuts) = loadle00(2,1l:size(loadl600,2),cuts);
£fz1600(1,1l:size(loadl600,2),cuts) = loadl600(3,1l:size(loadl600,2),cuts);
mx1600(1,1:size(loadl600,2),cuts) = loadl600(4,1:size(loadl600,2),cuts);
mx _end pts = [flxn mx end pts extn mx end pts];

% Arrays of cut fy, fz & mx resultant force (for flxn -> extn only)
if cuts ~=1
for i = 1l:size(£fy1200,2)
fy cut(l,i,cuts-1) fy1200 (1,1, cuts-1
fz cut(l,i,cuts-1) = £z1200(1,1i,cuts-1

- fy1200(1,i,cuts);

)
) - £z1200(1,1i,cuts);

mx_cut(l,i,cuts-1) = mx1200(1,1i,cuts-1) - mx1200(1,1i,cuts);
fyz(1,i,cuts-1) = sqgrt(fy cut(l,i,cuts-1)"2 + fz cut(l,i,cuts-1)"2);
end
end
% Arrays of moment arms
if cuts ~=1
for i = l:size(fy cut,?2)
dyhero(l,1i,cuts-1) = fz cut(l,i,cuts-1)*mx cut(l,i,cuts-
1)/ (fyz (1,1, cuts-1)"2);
dzhero(l,i,cuts-1) = -fy cut(l,i,cuts-1)*mx cut(l,i,cuts-

1)/ (fyz (1,1, cuts-1)"2);
dyz(1l,i,cuts-1) mx_cut(l,i,cuts-1)/fyz(1l,1i,cuts-1);
dzz(1l,i,cuts-1) = -mx cut(l,i,cuts-1)/fy cut(l,i,cuts-1);
dyy(l,i,cuts-1) = mx cut(l,i,cuts-1)/fz cut(l,i,cuts-1);
end
end

o)

% Arrays of constants
for i = l:length(last rot angle end pts)

y_replay(i) = 0;

end

for i = l:length(rot _angle400 replay)
y_replay2(i) = 0;

end

% Build strings to be used in plot legends
clear legend string
if cuts < 10

for i = l:cuts
legend string(i,1:9) = ['replay 0', int2str(i)];
end
else
for i = 10:cuts
legend string(i,1:9) = ['replay ', int2str(i)];
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end
end

if cuts < 10

for 1 = 2:cuts
cut_string(i-1,1:9) = ['replay 0', int2str(i)];
end
else
for i = 10:cuts
cut string(i-1,1:9) = ['replay ', int2str(i)];
end

end

% Save workspace
ave (filename)
isp('Data has been saved.')

o Q. W

% BUILD PLOTS LIKE THOSE IN TODD'S MATHEMATICA PROGRAM
% Plot of rotation angle vs. mx for passive pathseek (mx end pts) & intact
replay (mx1200, mx1600)
if cuts ==
fh=figure ('Position', [150 100 1000 900], 'Color','w");
set (gca, 'NextPlot', 'add');

’

% plot(-rot angle replay, mx _end pts, '.-', -rot angle replay,
[mx1200(:,:,1) mx1600(:,:,1)], '-o")
plot (-rot angled400 replay, mx end pts(l:length(mx1200)), '.-");
plot (-rot angle800 replay, mx end pts(length(mx1200)+l:end), '*-");
plot (-rot angle400 replay, mx1200¢(:,:,1), '.-', 'Color', [0 0.5 0]);
( 1)

0
plot (-rot angle800 replay, mx1600(:,:,1), '*-', 'Color', [0 0.5 0
line ('XData', get(gca, 'XLim'), '¥YData', [0 01]);
line ('XData', [0 0], 'YData', get(gca, 'YLim'"));
title('Mx vs. rotation angle'), xlabel('rotation angle (deg)'), ylabel ('Mx
(Nm) ") ;
legend handles = get(gca, 'Children');
legend(flipdim(legend handles (3:6),1), 'last pathseek (flxn \rightarrow
extn) ', 'last pathseek (extn \rightarrow flxn)"',...
'intact replay (flxn \rightarrow extn)', 'intact replay (extn
\rightarrow flxn)', 2);
$ text(l, -2, 'flexion', 'Rotation', 30, 'FontSize', 14);
% text(l, 2, 'extension', 'Rotation', 30, 'FontSize', 14);
nd

[0)

% Plots of fy vs. rotation angle (flxn -> extn)
% put negative sign on fy1200 on 08-21-02 (why does this have to be done? is
it related to the difference in testing axes and specimen axes?)
fh=figure ('Position', [150 100 1000 900], 'Color','w");
set (gca, 'NextPlot', 'add');
for i = 1l:cuts
plot (-rot angle400 replay, £fyl200(1,1l:size(fy1200,2),1), '.-")
end
plot (-rot angle400 replay, -fyl200(1,1:size(£fy1200,2),cuts), '.-");
line ('XData', get(gca, 'XLim'), 'YData', [0 0]);
line ('XData', [0 0], '¥YData', get(gca, 'YLim'));
title('Fy vs. rotation angle'), xlabel('rotation angle (deq) '), ylabel ('Fy
(N) ")

o° oo

o\
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legend handles = get(gca, 'Children');

% legend(flipdim(legend handles (3:cuts+2),1), legend string, 2);

% legend(flipdim(legend handles(3),1), legend string(cuts,1:9), 2);
legend(legend handles (3), legend string(cuts,1:9), 2);

% Plots of fz vs. rotation angle (flxn -> extn)
fth=figure('Position', [150 100 1000 900], 'Color','w");
set (gca, 'NextPlot', 'add');

% for i = l:cuts

% plot (-rot angle400 replay, £fz1200(1,1l:size(£z1200,2),1), '.-")
% end

plot (-rot angle400 replay, £fz1200(1,1l:size(£fz1200,2),cuts), '.-');

line ('XData', get(gca, 'XLim'), '¥YData', [0 01]);
line ('XData', [0 0], 'YData', get(gca, 'YLim'"));
title('Fz vs. rotation angle'), xlabel('rotation angle (deg)'), ylabel('Fz
(N) ") ;
legend handles = get(gca, 'Children');
% legend(flipdim(legend handles (3:cuts+2),1), legend string, 2);
% legend(flipdim(legend handles(3),1), legend string(cuts,1:9), 2);
legend (legend handles (3), legend string(cuts,1:9), 2);
% Plots of mx vs. rotation angle (flxn -> extn)
fh=figure ('Position', [150 100 1000 900], 'Color','w");
set (gca, 'NextPlot', 'add');
% for i = 1l:cuts
plot (-rot angle400 replay, mx1200(1,1l:size(mx1200,2),1), '.-")
end
plot (-rot angle400 replay, mx1200(1,1:size(mx1200,2),cuts), '.-');
line ('XData', get(gca, 'XLim'), '¥YData', [0 01]);
line ('XData', [0 0], '¥YData', get(gca, 'YLim'));
title('Mx vs. rotation angle'), xlabel('rotation angle (deg) '), ylabel ('Mx
(Nm) ") ;
legend handles = get(gca, 'Children');
% legend(flipdim(legend handles(3:cuts+2),1), legend string, 2);
% legend(flipdim(legend handles (3),1), legend string(cuts,1:9), 2);
legend (legend handles (3), legend string(cuts,1:9), 2);

o\

oo

if cuts ~=1

[

% Plots of fy vs. rotation angle for cuts

% put negative sign on fy cut on 08-21-02 (why does this have to be done?

is it related to the difference in testing axes and specimen axes?)
fth=figure('Position', [150 100 1000 900], 'Color','w");

set (gca, 'NextPlot', 'add');

% for 1 = 2:cuts
% plot (-rot angled400 replay, fy cut(l,l:size(fy cut,2),i-1), '.-")
% end

plot (-rot _angle400 replay, -fy cut(l,l:size(fy cut,2),cuts-1), '.-");

line ('XData', get(gca, 'XLim'), '¥YData', [0 01]);
line('XData', [0 0], '¥YData', get(gca, 'YLim'));
title('Fy of cut structure vs. rotation angle'),
(deg) '), ylabel ('Fy (N)"');
legend handles = get(gca, 'Children');
legend (flipdim(legend handles (3:cuts+1l),1), cut string, 2);
legend (flipdim(legend handles (3),1), legend string(cuts,1:9), 2);
legend (legend handles (3), legend string(cuts,1:9), 2);

xlabel ('rotation angle

oe

o\

[)

% Plots of fz vs. rotation angle for cuts
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fh=figure('Position', [150 100 1000 900], 'Color','w");
set (gca, 'NextPlot', 'add');

% for i = 2:cuts
% plot (-rot angled400 replay, fz cut(l,l:size(fz cut,2),i-1), '.-")
% end

plot (-rot _angled400 replay, fz cut(l,l:size(fz cut,2),cuts-1), '.-');

line ('XData', get(gca, 'XLim'), '¥YData', [0 01);
line ('XData', [0 0], 'YData', get(gca, 'YLim'"));
title('Fz of cut structure vs. rotation angle'), xlabel ('rotation angle
(deg) '), ylabel ('Fz (N)');
legend handles = get(gca, 'Children');
legend (flipdim(legend handles (3:cuts+1l),1), cut string, 2);
legend (flipdim(legend handles(3),1), legend string(cuts,1:9), 2);
legend(legend handles (3), legend string(cuts,1:9), 2);

o

oe

o)

% Plots of mx vs. rotation angle for cuts
fh=figure('Position', [150 100 1000 900], 'Color','w");
set (gca, 'NextPlot', 'add');

% for 1 = 2:cuts
% plot (-rot angled400 replay, mx cut(l,l:size(mx cut,2),i-1), '.-")
% end

plot (-rot angled400 replay, mx cut(l,l:size(mx cut,2),cuts-1), '.-');

line ('XData', get(gca, 'XLim'), '¥YData', [0 0]);
line ('XData', [0 0], '¥YData', get(gca, 'YLim'"));
title('Mx of cut structure vs. rotation angle'), xlabel('rotation angle
(deg) "), ylabel ('Mx (Nm)');
legend handles = get(gca, 'Children');
legend (flipdim(legend handles (3:cuts+1l),1), cut string, 2);
legend (flipdim(legend handles(3),1), legend string(cuts,1:9), 2);
legend (legend handles (3), legend string(cuts,1:9), 2);

oe

oe

[

% Plot of resultant force vs. rotation angle
fh=figure('Position', [150 100 1000 900], 'Color','w'");
set (gca, 'NextPlot', 'add');

% for i = 2:cuts
% plot (-rot angle400 replay, fyz(l,l:size(fyz,2),i-1), '.-")
% end

plot (-rot angle400 replay, fyz(l,l:size(fyz,2),cuts-1), '.-");

line ('XData', get(gca, 'XLim'), '¥YData', [0 01]);
line ('XData', [0 0], '¥YData', get(gca, 'YLim'));
title('force resultant of cut structure vs. rotation angle'),
xlabel ('rotation angle (deg) '), ylabel('Fyz (N)');
legend handles = get(gca, 'Children');
legend (flipdim(legend handles (3:cuts+1l),1), cut string, 2);
legend (flipdim(legend handles (3),1), legend string(cuts,1:9), 2);
legend (legend handles (3), legend string(cuts,1:9), 2);

o

o\

[

% Plots of moment arm (dyz) vs. rotation angle
fh=figure('Position', [150 100 1000 900], 'Coloxr','w');

hold on

for i = l:cuts

plot (rot angled400 replay, dyz(l,l:size(dyz,2),cuts-1), '.-',...
rot angle400 replay, y replay2, '-k', y replay2,
dyz(1l,1:size(dyz,2),cuts-1), '-k"'),...
title('moment arm vs. rotation angle'), xlabel('rotation angle

deg) '), ylabel ('moment arm (mm)"');
end

o P o° oP° oe

oe

o0 —~ o°
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o\

hold off

o

Q

% Plots of moment arm (dyy) vs. rotation angle
fh=figure ('Position', [150 100 1000 900], 'Coloxr', 'w'");
hold on
for i = l:cuts
plot (rot angled400 replay, dyy(l,l:size(dyy,2),cuts-1), '.=-',...
rot angle400 replay, y replay2, '-k', y replay2,
dyz(1,1:size(dyz,2),cuts-1), '-k'),...
title ('moment arm vs. rotation angle'), xlabel ('rotation angle
deg) '), ylabel ('moment arm (mm)"');
end
hold off

o 0P o° 0P oe

oo

o° —~ o°

oo

oo

Q

% Plots of moment arm (dzz) vs. rotation angle
fh=figure('Position', [150 100 1000 900], 'Color','w');

o

o\

% hold on

% for i = 1l:cuts

% plot (rot angle400 replay, dzz(l,l:size(dzz,2),cuts-1), '.-',...

% rot angled400 replay, y replay2, '-k', y replayZ2,
dzz(l,1:size(dzz,2),cuts-1), '-k'),...

% title ('moment arm vs. rotation angle'), xlabel ('rotation angle
(deg) '), ylabel ('moment arm (mm)');

% end

% hold off

o\°

[)

% Plots of moment arm (dzhero) vs. rotation angle
fh=figure ('Position', [150 100 1000 900], 'Coloxr', 'w'");
hold on
for 1 = 1l:cuts
plot (rot angled400 replay, dzhero(l,l:size(dzhero,2),cuts-1), '.-

o° 0O o oe

- g

oo e
o

rot angle400 replay, y replay2, '-k', y replay2,

dzhero(1l,1:size(dzhero,2),cuts-1), '-k'"),...

% title('moment arm vs. rotation angle'), xlabel ('rotation angle
(deg) '), ylabel ('moment arm (mm)"');

% end

% hold off

oe

o)

% Plots of moment arm (dyhero) vs. rotation angle
fh=figure('Position', [150 100 1000 9001, 'Color','w');

hold on

for 1 = 1l:cuts
plot (rot angle400 replay, dyhero(l,l:size(dyhero,2),cuts-1), '.-

o 0P o° o° o°

% rot angled400 replay, y replay2, '-k', y replayZ2,
dyhero(1l,1l:size (dyhero,2),cuts-1), '-k'),...

2 title ('moment arm vs. rotation angle'), xlabel ('rotation angle

(deg) '), ylabel ('moment arm (mm)"');
% end

% hold off

end

% % PLOT OF MOVEMENT OF POINT OF INTEREST IN GLOBAL C.S.
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% % Z vs. X in global c.s. (start, extn & flxn together, starting & ending
points only)
fh=figure ('Position', [150 100 1000 900], 'Coloxr','w'");
set (gca, 'NextPlot', 'add')
for i = 1:size(tGPOI1200 posn,2)

plot handles 1 = plot (tGPOI1200 posn(l,i,cuts),
tGPOI1200 posn(3,i,cuts), '-or');
end
for i = 1:size(tGPOI1600 posn,2)

plot handles 2 = plot (tGPOI1600 posn(l,i,cuts),
tGPOI1600 posn(3,i,cuts), '-ok'");

o° 0o oe

o\

o° oo

o

% end
% title('Z vs. X for point of interest'), xlabel('X (mm)'), ylabel('Z (mm)');
% legend handles = [plot handles 1; plot handles 2];

% legend(legend handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn');

% % PLOT OF MOVEMENT OF UFS IN GLOBAL C.S.

% % Z vs. X in global c.s. (start, extn & flxn together, starting & ending
points only)

% fh=figure('Position', [150 100 1000 900], '"Coloxr','w');

% set(gca, 'NextPlot', 'add')

% for i = 1l:size(tGUFS1200 posn,2)

% plot handles 1 = plot (tGUFS1200 posn(l,i,cuts),

tGUFS1200 posn(3,1i,cuts), '-or');

% end

% for i = 1l:size(tGUFS1600 posn,2)

% plot handles 2 = plot (tGUFS1600 posn(l,i,cuts),

tGUFS1600 posn(3,1i,cuts), '-ok');

% end

% title('Z vs. X for UFS'), xlabel('X (mm)'), ylabel('Z (mm)"');
% legend handles = [plot handles 1; plot handles 2];

% legend(legend handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn');

% % PLOT OF MOVEMENT OF COR IN GLOBAL C.S.

% % Z vs. X in global c.s. (start, extn & flxn together, starting & ending
points only)

% fh=figure('Position', [150 100 1000 900], '"Color', 'w'");

% set(gca, 'NextPlot', 'add')

% for i = 1:size(tGT1200 posn,2)

% plot handles 1 = plot(tGT1200 posn(l,i,cuts), tGT1200 posn(3,1i,cuts),
'-or');

% end

% for i = 1:size(tGT1600 posn,2)

% plot handles 2 = plot (tGT1600 posn(l,i,cuts), tGT1600 posn(3,i,cuts),
'-ok");

% end

% title('Z vs. X for COR'), xlabel ('X (mm)'), ylabel('Z (mm)"');

% legend handles = [plot handles 1; plot handles 2];

% legend(legend handles, 'flxn \Eightarrow extn', 'extn \rightarrow flxn');

o\
o\

PLOT OF MOVEMENT OF pt. of interest, UFS & COR IN GLOBAL C.S.

Z vs. X in global c.s. (start, extn & flxn together, starting & ending
points only)

fh=figure('Position', [150 100 1000 900], 'Coloxr','w');

set (gca, 'NextPlot', 'add')

for i = 1:size(tGT1200 posn,2)

oo
o\

o° oo

o\
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% plot handles 1 = plot(tGT1200 posn(l,i,cuts),

tGT1200 posn(3,1i,cuts),

b=,
% tGUFS1200 posn(l,i,cuts), tGUFS1200 posn(3,i,cuts), '-or',
% tGPOI1200 posn(l,i,cuts), tGPOI1200 posn(3,i,cuts), '-sr');
% end
% for i = 1:size(tGT1600 posn,2)
% plot handles 2 = plot (tGT1600 posn(l,i,cuts), tGT1600 posn(3,i,cuts),
b=, L.
% tGUFS1600 posn(l,i,cuts), tGUFS1600 posn(3,i,cuts), '-ok',...
% tGPOI1600 posn(l,i,cuts), tGPOI1600 posn(3,i,cuts), '-sk');
% end
% title('Z vs. X for point of interest, COR & UFS'), xlabel('X (mm)'),
ylabel ('Z (mm)');
% legend handles = [plot handles 1; plot handles 2];
% legend(legend handles, 'COR: flxn \rightarrow extn ', 'UFS: flxn
\rightarrow extn', 'POI: flxn \rightarrow extn',...
% "COR: extn \rightarrow flxn', 'UFS: extn \rightarrow flxn', 'POI: extn
\rightarrow flxn', 0);
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