

DELINEATION OF IN-VITRO SPINAL KINETICS USING A ROBOTICS-BASED

TESTING SYSTEM

by

Amy L. Loveless, M.S.

B.S.E. in Bioengineering, Arizona State University, 2001

Submitted to the Graduate Faculty of

the School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science in Bioengineering

University of Pittsburgh

2003

UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This thesis was presented

by

Amy L. Loveless

It was defended on

July 22, 2003

and approved by

Rakié Cham, Ph.D., Department of Bioengineering

James D. Kang, MD, Department of Orthopaedic Surgery

Patrick J. Smolinski, Ph.D., Department of Mechanical Engineering

Thesis Advisor: Lars G. Gilbertson, Ph.D., Department of Bioengineering

 ii

DELINEATION OF IN-VITRO SPINAL KINETICS USING A ROBOTICS-BASED
TESTING SYSTEM

Amy L. Loveless, M.S.

University of Pittsburgh, 2003

Delineation of the load-displacement characteristics of osteoligamentous spinal

specimens has become fundamental to the investigation of spinal biomechanics. Traditionally,

in-vitro kinetic parameters of the spine have been obtained through flexibility tests employing

open or closed loop “load control” methods, or stiffness tests employing “displacement control”

methods—each control method having attendant advantages and disadvantages. On the other

hand, the combination load control and displacement control methods into a new, “hybrid

control” method have advantages over load control or displacement control alone. Further,

physical evidence such as presence of certain receptors suggests that the human body may

employ a type of hybrid control method in the control of spinal movements.

In the present study, a robotics-based spine testing system with hybrid control was

developed to delineate the in-vitro kinetics of lumbar spine specimens. The testing system was

validated experimentally using a physical rigid-body-spring model of a spine specimen, as well

as analytically by computer simulations in Matlab. For systematic study, the two components

making up a hybrid control algorithm were analyzed separately: the outer “displacement

control” loop, and the inner “load control” loop. The outer loop applies a rotation (e.g.,

 iii

flexion/extension) to the specimen, while the inner loop minimizes unwanted coupled forces

(e.g., anterior/posterior shear and axial tension/compression).

The performance of existing standard hybrid control algorithms was tested in terms of a

number of parameters, including peak force, work done to a specimen, and number of iterations.

Based on these tests, a number of proposed changes to improve algorithm performance were

identified. Updating the user-defined center of rotation (COR) to reflect a specimen’s COR was

found to improve performance of the displacement control part of the hybrid control algorithm,

while using a more completely populated stiffness matrix improved performance of the load

control part. The re-combination of the displacement control and load control loops into the

fully constituted hybrid control algorithm revealed interesting interactions between these control

components that suggest a basis for spinal dysfunction.

 iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Lars G. Gilbertson, for all his help and guidance

over the past two years. He was always willing to answer my questions and steer me in the right

direction (and take people from the lab to Peter’s for a much needed break!). I would also like to

thank Dr. Pat Smolinski for ALL his help with simulation issues. I want to thank Kevin Bell.

He was one of the first friends I made in Pittsburgh and we worked very closely together on the

robot (good old Stuart). He, along with the rest of the Ferguson Lab, made Pittsburgh an

enjoyable place to work and live. And last, but certainly not least, I want to thank my parents,

Chuck and Wanda Loveless, and my fiancé, John Arthur, for listening to all my whining and

complaining over the last two years. I guess now I’ll just have to find something else to whine

and complain about. I would have made my thanks much longer, but you all know I’m not good

with the mushy stuff. I trust that you know how much I appreciate everyone without having to

read it.

 v

TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES .. x

NOMENCLATURE... xvi

1.0 INTRODUCTION... 1

1.1 Overview of Clinical Problems of Spine .. 1

1.2 Spinal “Stability” vs. “Instability”.. 1

1.3 In-Vitro Studies of Spinal Kinetics... 2

1.3.1 Controversy: Load Control vs. Displacement Control ... 3

1.3.2 Hybrid Control .. 4

2.0 BACKGROUND ... 6

2.1 Structure of Osteoligamentous Lumbar Spine.. 6

2.2 Application of Hybrid Control to In-Vitro Biomechanical Testing 8

2.2.1 Displacement Control Loop.. 8

2.2.2 Load Control Loop.. 9

3.0 SPECIFIC AIMS AND HYPOTHESES... 11

3.1 Specific Aim 1 .. 11

3.2 Specific Aim 2 .. 11

3.2.1 Specific Aim 2a... 11

3.2.2 Specific Aim 2b .. 12

4.0 DEVELOPMENT OF ANALYTICAL PLATFORM... 13

4.1 Description of General Rigid Body-Spring Model... 14

4.2 General Closed Form Solution ... 16

4.2.1 Homogeneous Transformation of ()0
xyz with Respect to XYZ 17

4.2.2 Homogeneous Transformation of () 0TCS
xyz with Respect to XYZ 18

4.2.3 Homogeneous Transformation of ()0
xyz with Respect to () 0TCS

xyz 19

 vi

4.2.4 Homogeneous Transformation of () 1TCS
xyz with Respect to () 0TCS

xyz 20

4.2.5 Homogeneous Transformation of () 1TCS
xyz with Respect to XYZ 23

4.2.6 Homogeneous Transformation of ()1xyz with Respect to () 1TCS
xyz 23

4.2.7 Homogeneous Transformation of ()1xyz with Respect to XYZ 24

4.2.8 Homogeneous Transformation of () 0i
xyz with Respect to ()0

xyz 25

4.2.9 Homogeneous Transformation of () 0i
xyz with Respect to XYZ 26

4.2.10 Homogeneous Transformation of () 1i
xyz with Respect to ()1xyz 27

4.2.11 Homogeneous Transformation of () 1i
xyz with Respect to XYZ 28

4.2.12 Homogeneous Transformation of () j
xyz with Respect to XYZ 29

4.2.13 Homogeneous Transformation of () j
xyz with Respect to () 0i

xyz 30

4.2.14 Homogeneous Transformation of () j
xyz with Respect to () 1i

xyz 31

4.2.15 Change in Length of Spring Attached to Node i and Fixed Node j 32

4.2.16 Loads on Rigid Body Due to Spring i ... 33

4.2.17 Global Stiffness Matrix, K .. 37

4.2.18 Work Done on Rigid Body by Spring i , Potential Energy in System.................. 40

4.3 General Closed Form Solution Applied to Rigid Body-Spring Model 40

5.0 DEVELOPMENT OF EXPERIMENTAL PLATFORM ... 46

5.1 Description of Robotics-Based Spine Testing System ... 46

5.2 Communication... 51

5.3 UFS Calibration .. 53

5.4 Manipulator Accuracy and Precision.. 59

5.5 Homogeneous Transformations Defined for Robot Testing System............................ 65

5.5.1 Homogeneous Transformation of ()TCS
xyz with Respect to ()UFS

xyz 65

5.5.2 Homogeneous Transformation of ()TCS
xyz with Respect to XYZ 66

5.5.3 Homogeneous Transformation of ()TCS
xyz with Respect to ()UFS

xyz 67

5.5.4 Homogeneous Transformation of ()i
xyz with Respect to ()0

xyz 68

 vii

5.5.5 Homogeneous Transformation of ()i
xyz with Respect to ()UFS

xyz 69

5.5.6 Homogeneous Transformation of ()0
xyz with Respect to ()UFS

xyz 70

5.5.7 Homogeneous Transformation of ()0
xyz with Respect to XYZ 71

5.5.8 Homogeneous Transformation of ()i
xyz with Respect to XYZ 72

6.0 APPLICATION OF ANALYTICAL PLATFORM TO DEVELOPMENT AND

TESTING OF NEW CONTROL METHODS... 74

6.1 Displacement Control Loop of Hybrid Control Algorithm .. 80

6.2 Load Control Loop of Hybrid Control Algorithm.. 108

6.3 Improved Hybrid Control Algorithm.. 124

7.0 DISCUSSION .. 128

7.1 Summary... 128

7.2 Limitations and Future Work.. 129

7.3 Conclusion .. 131

APPENDIX A.. 133

APPENDIX B .. 168

BIBLIOGRAPHY... 238

 viii

LIST OF TABLES

Table 1 Tabulated results of simulation sets 5a and 5b showing range of peak force (in
Newtons) and average number of force minimizing iterations for the current method (no
COR update), post hoc update of COR and feedback update of COR 108

Table 2 Tabulated results of simulation set 6 showing average number of force minimizing
iterations for the current method (diagonally populated stiffness matrix), proposed method
#1 (apply two perturbations parallel to global X and Y axes), proposed method #2 (apply
two orthogonal perturbations in global XY -plane), proposed method #3 (constrain force
minimizing translations to stairsteps parallel to global X and Y axes) and proposed method
#4 (constrain translations as in method #3 and apply one orthogonal perturbation) 124

Table 3 Tabulated results of simulation set 7 showing range of peak force (in Newtons) and
average number of force minimizing iterations for the current hybrid control algorithm (no
COR update and diagonally populated stiffness matrix) and the new hybrid control
algorithm (feedback COR update and fully populated stiffness matrix calculated using
method #3) .. 127

 ix

LIST OF FIGURES

Figure 1 Idealized load-displacement curve ... 4

Figure 2 Osteoligamentous functional spinal unit (FSU) ... 6

Figure 3 ISB spine joint coordinate system .. 7

Figure 4 Panjabi spine coordinate system... 8

Figure 5 Rigid body-spring model .. 14

Figure 6 General rigid body-spring model.. 15

Figure 7 Homogeneous transformation of ()0
xyz with respect to XYZ 18

Figure 8 Homogeneous transformation of () 0TCS
xyz with respect to XYZ 19

Figure 9 Homogeneous transformation of ()0
xyz with respect to () 0TCS

xyz 20

Figure 10 Homogeneous transformation of () 1TCS
xyz with respect to () 0TCS

xyz 22

Figure 11 Homogeneous transformation of ()1xyz with respect to () 1TCS
xyz 24

Figure 12 Homogeneous transformation of ()1xyz with respect to XYZ 25

Figure 13 Homogeneous transformation of () 0i
xyz with respect to ()0

xyz 26

Figure 14 Homogeneous transformation of () 0i
xyz with respect to XYZ 27

Figure 15 Homogeneous transformation of () 1i
xyz with respect to ()1xyz 28

Figure 16 Homogeneous transformation of () 1i
xyz with respect to XYZ 29

Figure 17 Homogeneous transformation of () j
xyz with respect to XYZ 30

 x

Figure 18 Homogeneous transformation of () j
xyz with respect to () 0i

xyz 31

Figure 19 Homogeneous transformation of () j
xyz with respect to () 1i

xyz 32

Figure 20 Force-couple equivalent ... 34

Figure 21 (a) force due to spring i at position 0, (b) equivalent force-couple system at position
0... 35

Figure 22 (a) force due to spring i at position 1, (b) equivalent force-couple system at position
1... 36

Figure 23 General rigid body-spring model.. 41

Figure 24 Matlab rigid body-spring model ... 42

Figure 25 Matlab physical rigid body-spring model... 44

Figure 26 Specimen fixtures in testing system ... 48

Figure 27 Robotic/UFS testing system ... 49

Figure 28 Data flow in testing system .. 52

Figure 29 Plot of output from UFS y -axis and z -axis force channel vs. UFS orientation (Θ)
when UFS is rotated in 1° increments about its x axis (with nothing attached) 54

Figure 30 Plot of known applied weight vs. UFS digital output... 54

Figure 31 Plots of average Fy and Fz error vs UFS orientation ... 56

Figure 32 Plot of UFS measured yF force vs. known yF force... 57

Figure 33 Plot of UFS measured zF force vs. known zF force.. 58

Figure 34 Position error, as measured by an external dial gauge, is a linear function of the
weight on the end-effector (blue line). This error may be corrected for (magenta line). 63

Figure 35 The ratio between the prescribed displacement of the end-effector and the actual
displacement is 1:1, as measured using a dial gauge. ... 64

Figure 36 The ratio between the prescribed displacement of the end-effector and the actual
displacement is 1:1, as measured using the robotic controller.. 65

 xi

Figure 37 Transformation of ()TCS
xyz with respect to ()UFS

xyz .. 66

Figure 38 Transformation of ()TCS
xyz with respect to XYZ .. 67

Figure 39 Transformation of ()TCS
xyz with respect to ()UFS

xyz .. 68

Figure 40 Transformation of (i)xyz with respect to ()0
xyz ... 69

Figure 41 Transformation of (i)xyz with respect to ()UFS
xyz .. 70

Figure 42 Transformation of ()0
xyz with respect to ()UFS

xyz ... 71

Figure 43 Transformation of ()0
xyz with respect to XYZ ... 72

Figure 44 Transformation of (i)xyz with respect to XYZ ... 73

Figure 45 Hybrid control flowchart .. 75

Figure 46 Validate Matlab simulations for rigid body-spring model ... 78

Figure 47 Characterize rigid body-spring model in displacement control.................................. 79

Figure 48 Characterize rigid body-spring model in load control.. 79

Figure 49 Comprehensive results showing validation of general spring model for translation of
center of bar without any rotation (simulation set 1a). (a) grid of points in the global XY -
plane that the center of the bar was translated to (b) force acting on bar in global X
direction (outcome 4a). (c) force acting on bar in global Y direction (outcome 4b). (d)
resultant force acting on bar in global XY -plane (outcome 4c). (e) moment acting on bar in
global Z direction (outcome 4d). (f) potential energy in system (outcome 5). (g)-(i) global
stiffness terms (outcomes 6a-6c). ... 82

Figure 50 Comprehensive results showing validation of general spring model for rotation of
center of bar about same grid of points shown in Figure 49, 30φΦ = = ° (simulation set
1b). (a) force acting on bar in global X direction (outcome 4a). (b) force acting on bar in
global Y direction (outcome 4b). (c) resultant force acting on bar in global XY -plane
(outcome 4c). (d) moment acting on bar in global Z direction (outcome 4d). (e) potential
energy in system (outcome 5). (f)-(h) global stiffness terms (outcomes 6a-6c).................. 84

Figure 51 Comprehensive results showing characterization of general spring model in
displacement control for 1φΦ = = ° (simulation set 2a). (a) force acting on bar in global X
direction (outcome 3a). (b) force acting on bar in global Y direction (outcome 3b). (c)

 xii

resultant force acting on bar in global XY -plane (outcome 3c). (d) moment acting on bar in
global Z direction (outcome 3d). (e) potential energy in system (outcome 4). (f)-(h) global
stiffness terms (outcomes 5a-5c). ... 86

°

,0.25°

φ 30= °

φ 30= °

Figure 52 Representative data showing that the force resulting from rotation about a non-
preferred COR can be relieved by translating the center of the bar to the origin (simulation
set 2x).. 87

Figure 53 Representative data for full characterization of the general rigid body-spring model
during displacement control (simulation set 2b) (a) rotated about the true COR located at
(0,0) in the global XY -plane in 1φ = increments up to 30Φ = ° (b) the top row of this plot
shows the resultant force acting on the bar after each incremental rotation (outcome 3a), the
middle plot shows the moment acting on the bar after each incremental rotation (outcome
3b) and the bottom plot shows the potential energy in the system after each incremental
rotation (outcome 4) (c) global stiffness terms plotted over total rotation angle (outcome 5)
... 89

Figure 54 Representative data for full characterization of the general rigid body-spring model
during displacement control (simulation set 2b) (a) rotated about a COR located at (-30,-60)
in the global XY -plane in 1 ,0.5φ = ° ° increments up to 30Φ = ° (b) the top row of
this plot shows the resultant force acting on the bar after each incremental rotation (outcome
3a), the middle plot shows the moment acting on the bar after each incremental rotation
(outcome 3b) and the bottom plot shows the potential energy in the system after each
incremental rotation (outcome 4) (c) top plot of (b) reproduced, resultant force on bar after
each rotation decreases for decreasing rotation increment (d) global stiffness terms plotted
over total rotation angle (outcome 5).. 90

Figure 55 Spiegelman and Woo.. 92

Figure 56 Challis... 94

Figure 57 Evaluation of proposed changes to displacement control (calculate preferred COR)
... 100

Figure 58 Representative data for characterization of performance of three different methods of
calculating the preferred COR, rotated about a COR located at (-20,20) in the global XY -
plane in 1= ° increments up to Φ , plots show the error vs. rotation angle for
conditions set in simulation set 4a (top left plot), simulation set 4b (top right plot),
simulations set 4c (bottom left plot) and simulation set 4d (bottom right plot) 101

Figure 59 Representative data for characterization of performance of three different methods of
calculating the preferred COR, rotated about a COR located at (-60,60) in the global XY -
plane in 1= ° increments up to Φ , plots show the error vs. rotation angle for
conditions set in simulation set 4a (top left plot), simulation set 4b (top right plot),
simulations set 4c (bottom left plot) and simulation set 4d (bottom right plot) 102

 xiii

Figure 60 Evaluation of proposed changes to displacement control (update COR)................. 104

Figure 61 Representative data for characterization of performance of two different methods of
updating the user-defined COR as compared with keeping the COR fixed locally
(simulation sets 5a and 5b), rotated about a COR located at (-60,60) in the global XY -plane
in 1φ = ° increments up to Φ = 30° , the left column shows data using the post hoc method
of updating the COR, the right column shows data using feedback to update the COR, the
top row of plots show the peak force (in Newtons) created during rotation about the COR
vs. rotation angle (outcome 1), the middle row shows the number of iterations required to
minimize force vs. rotation angle (outcome 2) and the bottom row shows the potential
energy (in Newton-mm) in the system vs. rotation angle (outcome 3)............................... 106

Figure 62 Representative data for characterization of performance of two different methods of
updating the user-defined COR as compared with keeping the COR fixed locally
(simulation sets 5a and 5b), rotated about a COR located at (-20,-40) in the global XY -
plane in 1φ = ° increments up to 30Φ = ° , the left column shows data using the post hoc
method of updating the COR, the right column shows data using feedback to update the
COR, the top row of plots show the peak force (in Newtons) created during rotation about
the COR vs. rotation angle (outcome 1), the middle row shows the number of iterations
required to minimize force vs. rotation angle (outcome 2) and the bottom row shows the
potential energy (in Newton-mm) in the system vs. rotation angle (outcome 3) 107

Figure 63 Representative data for full characterization of the general rigid body-spring model
during load control (simulation set 3), 1φ = ° increments up to 30Φ = ° , the top row of the
plots show the distance (in mm) of the final force minimized position from the true force
minimized position (the global origin) vs. rotation angle (outcome 1), the middle row shows
the number of iterations required to minimize force vs. rotation angle (outcome 2) and the
bottom row shows the potential energy in the system after each rotation (outcome 3) (a)
rotated about a COR located at (-60,0) in the global XY -plane (b) rotated about a COR
located at (10,20) in the global XY -plane.. 110

Figure 64 Evaluation of proposed changes to load control... 114

Figure 65 Values of XXK for different calculation methods (a) analytical solution (b) using
current method (c) using proposed method #1 (d) using proposed method #2 (e) using
proposed method #3 (f) using proposed method #4... 117

Figure 66 Values of XYK for different calculation methods (a) analytical solution (b) using
current method (c) using proposed method #1 (d) using proposed method #2 (e) using
proposed method #3 (f) using proposed method #4... 119

Figure 67 Values of YYK for different calculation methods (a) analytical solution (b) using
current method (c) using proposed method #1 (d) using proposed method #2 (e) using
proposed method #3 (f) using proposed method #4... 121

 xiv

Figure 68 Force created during rotation is minimized by using the current diagonal stiffness
matrix .. 122

Figure 69 Representative data for characterization of performance of four different methods of
calculating the fully populated stiffness matrix as compared with the current diagonal
stiffness matrix (simulation set 6), rotated about a COR located at (0,-60) in the global XY -
plane in 1φ = ° increments up to 30Φ = ° , the left column shows the distance (in mm) of
the final force minimized position from the true force minimized position (the global origin)
vs. rotation angle (outcome 1), the middle column shows the number of iterations required
to minimize force vs. rotation angle (outcome 2) and the right column shows the potential
energy (in Newton-mm) in the system vs. rotation angle (outcome 3), the top row of plots
shows results for proposed method #1, the next row shows results for proposed method #2,
the next row shows results for proposed method #3 and the bottom row shows results for
proposed method #4.. 123

Figure 70 Evaluation of new hybrid control algorithm... 125

Figure 71 Representative data for characterization of performance of new hybrid control
algorithm as compared with the old algorithm (simulation set 7), rotated about a COR
located at (0,20) in the global XY -plane in 1φ = ° increments up to 30Φ = ° , the top row of
the plot shows the peak force (in Newtons) created during rotation vs. rotation angle
(outcome 1), the second row shows the number of iterations required to minimize force vs.
rotation angle (outcome 2), the third row shows the distance (in mm) of the final force
minimized position from the true force minimized position (the global origin) vs. rotation
angle (outcome 3) and the bottom row shows the potential energy (in Newton-mm) in the
system vs. rotation angle (outcome 4). ... 126

 xv

NOMENCLATURE

ABBREVIATIONS

TCS = tool coordinate system

UFS = universal force-moment sensor

COORDINATE SYSTEMS

XYZ = global coordinate system

()0
xyz = local coordinate system of moveable rigid body M at position 0, before rigid

body rotation/translation

(1)xyz = local coordinate system of moveable rigid body M at position 1, after rigid

body rotation/translation

() 0TCS
xyz = tool coordinate system at position 0

() 1TCS
xyz = tool coordinate system at position 1

() 0i
xyz = local coordinate system of node i at position 0

() 1i
xyz = local coordinate system of node at position 1 i

() j
xyz = local coordinate system of node (fixed) j

φ = incremental rotation of rigid body M about COR

dydx, = rigid body translation of moveable rigid body M

Gθ = orientation of ()0
xyz with respect to XYZ

 xvi

CORθ = orientation of with respect to () 0TCS
xyz XYZ

iθ = orientation of () 0i
xyz with respect to ()0

xyz and () 1i
xyz with respect to ()1xyz

jθ = orientation of () j
xyz with respect to XYZ

00 , YX PP = position of ()0
xyz with respect to XYZ

,XCOX CORY = position of () (and
0TCS

xyz () 1TCS
xyz) with respect to XYZ

TRANSFORMATIONS FOR RIGID BODY ANALYSIS

0
GT = transformation of ()0

xyz with respect to XYZ

0TCS
GT = transformation of () with respect to

0TCS
xyz XYZ

0
0TCST = transformation of ()0

xyz with respect to () 0TCS
xyz

1
0

TCS
TCST = transformation of () with respect to

1TCS
xyz () 0TCS

xyz

1TCS
GT = transformation of () with respect to

1TCS
xyz XYZ

1
1TCST = transformation of ()1xyz with respect to () 1TCS

xyz

1
GT = transformation of ()1xyz with respect to XYZ

0
0
iT = transformation of () 0i

xyz with respect to ()0
xyz

0i
GT = transformation of () 0i

xyz with respect to XYZ

1
1
iT = transformation of () 1i

xyz with respect to ()1xyz

1i
GT = transformation of () 1i

xyz with respect to XYZ

j
GT = transformation of () j

xyz with respect to XYZ

j
iT 0 = transformation of () j

xyz with respect to () 0i
xyz

 xvii

j
iT 1 = transformation of () j

xyz with respect to () 1i
xyz

TRANSFORMATIONS FOR ROBOTIC SYSTEM

TCS
GT = transformation of TCS with respect to the base (global) robot coordinate system

TCS
UFST = transformation of TCS with respect to UFS coordinate system

UFS
GT = transformation of UFS coordinate system with respect to base coordinate system

i
UFST = transformation of point of interest on superior vertebra with respect to UFS

coordinate system

i
GT = transformation of point of interest with respect to base coordinate system

iT0 = transformation of point of interest with respect to centroid of superior vertebra

0
GT = transformation of centroid of superior vertebra with respect to base coordinate

system

0
UFST = transformation of centroid of superior vertebra with respect to UFS coordinate

system

 xviii

1.0 INTRODUCTION

Delineation of the load-displacement characteristics of osteoligamentous spinal

specimens has become fundamental to the investigation of spinal biomechanics and is key in

understanding the effects of spinal pathologies and their clinical treatments. In the following

sections, the basis for hybrid control as a testing algorithm is presented, as well as an

examination of the two distinct loops of the general hybrid control algorithm our lab has chosen

to employ.

1.1 Overview of Clinical Problems of Spine

Spinal disorders arising from injury, degeneration, aging or other causes is an expansive

and expensive problem. Back pain is the second most prevalent reason for a physician visit, with

nearly 13 million visits made annually specifically because of low back pain.(1) An estimated

$20 billion is spent annually in medical expenses directly related to low back pain.(2) Treatments

are far reaching, from a period of rest followed by a return to normal activities to chiropractic

visits to surgery. For possible future clinical treatments of degenerative disc disease, research is

being done to test the effectiveness of gene therapy.(3)

1.2 Spinal “Stability” vs. “Instability”

With severe degeneration or injury, one or more spinal segments can become unstable.

There is no consensus on the definition of clinical instability, but many have offered their

 1

opinions. Wyke described instability as abnormally large intervertebral motions that result in

deformation to neural elements or abnormal deformations of the segment’s soft tissue (as cited in

Panjabi(4)), while White and Panjabi (5) define it more specifically as “the loss of the ability of the

spine under physiologic loads to maintain its pattern of displacement so that there is no initial or

additional neurological deficit, no major deformity, and no incapacitating pain”.(5) Panjabi(4)

conceptualized the spinal stabilizing system as consisting of three subsystems: passive

(osteoligamentous spine), active (muscles and tendons), and control (neural elements and central

nervous system). It has further been hypothesized that the neural control subsystem receives

both position feedback and force feedback from various transducers located within the ligaments,

tendons, and muscles, hence the spine may operate in some form of hybrid control mode.

1.3 In-Vitro Studies of Spinal Kinetics

Delineation of the load-displacement characteristics of osteoligamentous spinal

specimens has become fundamental to the investigation of the biomechanics of the spine.

Traditionally, in-vitro kinetic parameters of the spine have been obtained through biomechanical

tests that are based on either the “flexibility method” or the “stiffness method”.(6) In flexibility

tests, loads (i.e., forces and moments) are applied singly(7,8) or in combination(9) to the free end of

a spinal specimen and the resulting unconstrained three-dimensional displacements (i.e.,

translations and rotations) are measured. In stiffness tests, displacements are applied and the

resulting loads are measured.(10,11) Kinetic parameters obtainable by these types of tests include

specimen flexibility/stiffness coefficients useful for characterizing the biomechanics of the

intact, injured, and stabilized spine.

 2

An impetus behind the use of hybrid control for testing spinal kinetics is the controversy

surrounding use of load-control versus displacement control methods for the biomechanical

testing of spinal specimens(12). The underlying hypothesis of work done previously(13) was that a

combination of load control and displacement control methods within a hybrid control method

would offer advantages over either load control or displacement control methods alone for the

delineation of the highly nonlinear spinal kinetics.

1.3.1 Controversy: Load Control vs. Displacement Control

In addition to testing machines(7,8,14-24) and devices for measuring loads(25-27) and

displacements(16,28-31), in vitro biomechanical testing of the spine requires implementation of a

control method to govern the application of loads/displacements to a specimen. Flexibility tests

employ open or closed loop “load control” methods, while stiffness tests employ “displacement

control” methods. The relative advantages and disadvantages of load control and displacement

control methods for the biomechanical testing of spinal specimens have been discussed by Goel

et al.(12). From a control perspective, it is apparent that load control is less appropriate than

displacement control in low stiffness regions of the load-displacement curve such as the neutral

zone (NZ) because large changes in displacement can occur with little or no change in applied

load (Figure 1). On the other hand, displacement control is less appropriate than load control in

high stiffness regions such as the elastic zone (EZ) because large changes in load can be

produced by small changes in applied displacement. For the in-vitro biomechanical testing of

spinal specimens, therefore, load control and displacement control methods are complementary

(in that one method or the other is viewed as being more applicable in certain regions of the load-

displacement curve).

 3

Figure 1 Idealized load-displacement curve

1.3.2 Hybrid Control

Hybrid control methods are a class of control algorithms that would appear to offer a

potentially useful alternative to load control or displacement control for the biomechanical

testing of spinal specimens. A hybrid control method combines aspects of load control and

displacement control methods to achieve a new, “hybrid” method that is better suited to a

particular application than either load control or displacement control alone. In the classical

robotics literature, a rigorous formulation of the hybrid force/position control method has been

performed by Raibert and Craig(32). Hybrid control methods have been applied previously to the

multi-DOF (degree-of-freedom) biomechanical testing of musculoskeletal joints (such as the

knee) using a robotic/UFS (universal force-moment sensor) testing system(33-36). Of particular

interest are the hybrid control algorithms described by Fujie et al.(33) and Doehring (13) that enable

the inherently position-controlled robot to achieve specified load targets in an iterative manner

through incrementally applied displacements. At each position along the path of motion, the

algorithm evaluates the relation between the change in specimen position (i.e., displacement) and

the change in UFS-measured loads, and uses this relation to plan the application of the next

 4

incremental displacement to achieve specified load targets. Control is thus based on the stiffness

of the specimen, and because the stiffness estimates are regularly updated along the path of

motion, this control algorithm appears to be well suited for delineation of the highly nonlinear in

vitro kinetics of the spine throughout its entire range-of-motion.

 5

2.0 BACKGROUND

2.1 Structure of Osteoligamentous Lumbar Spine

The function of the osteoligamentous spine is threefold: “(1) transfer the weights and the

resultant bending moments of the head, trunk and any weights being lifted to the pelvis, (2) allow

sufficient physiologic motions between these three body parts and (3) protect the spinal cord

from injury”.(5) The structure of a single functional spinal unit (FSU) is shown in Figure 2. The

two bony vertebral bodies are separated by an intervertebral disc. The nucleus pulposus is the

gelatinous center of the disc. The anulus fibrosus contains the nucleus with concentric layers of

collagen.

Figure 2 Osteoligamentous functional spinal unit (FSU)

3-dimensional joint motion is generally described as a combination of translations and

rotations along and about a set of axes. The ISB recommends defining a nonorthogonal joint

coordinate system based on the work of Grood and Suntay, in which two of the axes are defined

using anatomical landmarks and the third “floating” axis is perpendicular to the first two.(37-39)

 6

As applied to spinal motion segments, the e axis is parallel to a line connecting similar

landmarks on the bases of the right and left pedicles and points to the right, the e axis passes

through the centers of the upper and lower endplates and points cephalad and the axis is

perpendicular to and (Figure 3). Flexion/extension is about the axis, left and right

lateral bending is about the e axis and left and right axial rotation is about the e axis. The ISB

also recognizes Panjabi’s coordinate system. As shown in Figure 4, the

1

3

3

2e

1e 3e 1e

2

x axis points left, the

 axis points cephalad and the axis points anterior. Flexion/extension is about the y z x axis,

lateral bending is about the axis and axial rotation is about the axis. Our lab has chosen

Panjabi’s coordinate system to report data in for ease of comparison with other studies.

z y

Figure 3 ISB spine joint coordinate system

 7

Figure 4 Panjabi spine coordinate system

2.2 Application of Hybrid Control to In-Vitro Biomechanical Testing

In the following paragraphs, representative limitations of displacement control and load

control methods are contrasted with some of the apparent advantages of hybrid control methods.

2.2.1 Displacement Control Loop

A recognized limitation of displacement control methods for the biomechanical testing of

spinal specimens is that rotational displacements are often prescribed about a fixed axis that is

not the specimen’s preferred axis of rotation—thereby resulting in large, “unphysiological”

coupled loads(40). A specimen’s preferred axis of rotation is, of course, not known a priori, and a

further complication is that the location of the preferred axis is not constant but changes

throughout the path of passive motion. The hybrid control algorithm as described previously(13)

mitigates this problem by permitting an adaptive, “floating” axis of rotation, as follows. The

flexion/extension rotation increments applied within the applied rotation loop of the hybrid

 8

control algorithm are prescribed about an axis perpendicular to the sagittal plane that passes

through the user-specified center of rotation (COR), or the origin of the robot’s tool coordinate

system. If the user-chosen COR is not the specimen’s preferred COR, the rotation does not

result in the desired pure moment. Any coupled sagittal plane forces arising from an incremental

rotation about this axis are relieved within the force minimization subroutine of hybrid control by

incremental translations of the end-effector—automatically changing the location of the COR

globally. Thus, following each applied rotational displacement increment, the axis of applied

rotation moves incrementally to a position wherein residual coupled sagittal plane forces are

minimized. The user-defined COR is not allowed to move with respect to the specimen’s

coordinate system, therefore, the COR is locally fixed.

2.2.2 Load Control Loop

A recognized limitation of load control methods for the biomechanical testing of spinal

specimens is the difficulty of maintaining testing conditions in the neutral zone because the

displacements can change with no change in the load input.(12) When open-loop load control

tests are performed, the neutral zone is defined by the resting position of the specimen after the

application of a series of loads in the degree-of-freedom of interest(6)— thus kinetics of the

specimen within the neutral zone are not actually delineated. When closed-loop load control

tests are performed, low stiffness of a specimen can put a high demand on the response

characteristics of the control system — requiring the testing machine to respond to load control

commands quickly, over long distances.(21) Unanticipated delays or overshoot are potential

sources of load artifact generated by the response characteristics of a testing machine in a load

control mode.(21) The hybrid control method described previously(13) is based on the stiffness of

 9

the specimen, and because the stiffness estimates are regularly updated along the path of motion,

the robotic/UFS testing system with hybrid control is able to adapt to the extreme range of

stiffnesses presented by the highly nonlinear FSU—from near-zero stiffness in the “neutral zone”

to high stiffness with facet joint contact and at the extremes of the “elastic zones.” To simplify

calculation of the local specimen stiffness matrix, only the diagonal terms of the matrix are

calculated; the off-diagonal terms are set to zero. Delineation of the load-displacement response

of specimens can be achieved throughout the entire flexion/extension range-of-motion—

including the region of least stiffness or “neutral zone,” the regions of increasing stiffness or

“elastic zones,” and the transition between these regions.

As mentioned above, the user-defined COR remains locally fixed. However, clinical data

shows that the COR moves within the specimen during flexion/extension(41). The amount of

movement of the COR depends on the degree of flexion/extension and the extent of disc

degeneration. An algorithm that does not account for this requires more iterations to minimize

force during load control because the peak force may be higher than if the COR were allowed to

move locally. In addition, setting the off-diagonal terms of the stiffness (flexibility) matrix to

zero ignores the coupled stiffness terms. This attributes all the change in force in a certain

direction to the translation in that direction, but the specimen is a highly complex, coupled

system. To investigate the possibility of improving the current hybrid control algorithm, three

specific aims will be accomplished.

 10

3.0 SPECIFIC AIMS AND HYPOTHESES

3.1 Specific Aim 1

Develop analytical testing platform. This platform can be applied to testing control

algorithms using well-defined rigid body-spring model of a lumbar functional spinal unit (FSU).

Develop experimental testing platform. This platform may be used to experimentally test spinal

specimens.

3.2 Specific Aim 2

Apply these platforms to the development of testing of new control methods. New

control methods consist of changes to both the displacement control and load control loops.

3.2.1 Specific Aim 2a

To improve the displacement control loop, two methods of updating the user-defined

COR are proposed. To calculate the preferred COR, three methods found in the literature will be

investigated: Spiegelman and Woo(42), Crisco et al.(43) and Challis(44). The first proposed method

of updating the COR is a post hoc update in which the preferred COR will be calculated and

stored for replay during the next flexion/extension cycle. The second proposed method is using

feedback to update the COR. The preferred COR will be calculated every n degrees and updated

for use during the next nφ degrees. It is hypothesized that allowing the COR to move locally will

decrease the force resulting from rotation about a COR other than the preferred one, thereby

reducing the number of iterations required to minimize force.

 11

3.2.2 Specific Aim 2b

To improve the load control loop, the stiffness matrix will be fully populated. Three

methods of calculating the full stiffness matrix are proposed to accomplish this. The first method

is to perturb the rigid body in two orthogonal directions at each position, calculating all four

terms in the 2x2 stiffness matrix. The second method is to limit the translations to the force

minimized position in a stairstep fashion, calculating three terms in the 2x2 stiffness matrix at

each position. The third method is a combination of the first two: three terms in the 2x2 matrix

are calculated at each position by limiting the translations, while the fourth term is found by

perturbing the rigid body after translating it. It is hypothesized that using a fully populated the

stiffness matrix to calculate the translation necessary to minimize force will reduce the number

of iterations required to reach the force minimized position and provide a more accurate

description of specimen stiffness. The proposed methods of calculating the full stiffness matrix

were based on the knowledge that the full matrix could not be calculated using one translation or

perturbation, covered in more detail in section 6.2, and the hypothesis that the values of the terms

in the matrix may be closely approximated using small perturbations or small translations.

 12

4.0 DEVELOPMENT OF ANALYTICAL PLATFORM

The rigid body-spring model used experimentally is shown in Figure 5. Even though our

rigid body-spring model is quite simple, it still exhibits complex, nonlinear behavior as a real

specimen does. It was shown previously(13) that the model exhibits load-displacement

characteristics with distinct neutral and elastic zones, analogous to a lumbar FSU. This thesis

shows the nonlinearities present in load and stiffness data for our model and how the hybrid

control algorithm handles such nonlinearities. Friis(45) and Wilke(46) are developing more

sophisticated lumbar spine models. Our rigid body-spring model is used to validate experimental

protocols. An analytical solution to the rigid body-spring model is thus needed to validate

experimental results. This platform also provides a framework for formulating new clinical

hypotheses, for example, a specimen with a painful (or injured) structure may minimize

something other than force after the displacement control loop. Perhaps the specimen’s natural

reaction is to minimize the work done. To develop the analytical solution, a general rigid body-

spring model consisting of two rigid bodies and one spring is presented.

 13

Figure 5 Rigid body-spring model

4.1 Description of General Rigid Body-Spring Model

Suppose there is a spring, spring i , connecting two rigid bodies (Figure 6). One rigid

body (rigid body M) is allowed to move globally and the other (rigid body) is fixed in space.

As rigid body

F

M rotates and translates away from its equilibrium position, forces and moments

due to spring are created. We confine the rigid body-spring model to planar motion, so there

are three degrees of freedom: a rotation about the axis and two translations in the

i

z xy -plane.

In order to fully describe the model’s kinematics and kinetics, three points are defined. The

origin of a local coordinate system, xyz , is defined on rigid body M at some point . One end

of spring i is connected to rigid body

P

M at node , the origin of coordinate system (i)i
xyz . The

 14

other end of the spring is connected to rigid body at node F j , the origin of coordinate system

() j
xyz . The homogeneous transformation describing the position and orientation of ()i

xyz with

respect to xyz is constant throughout rigid body motion. If the body is not rigid, then the

transformation is not constant. In this case, individual nodes must be tracked or deformable

body principles must be applied to correct for rigid body deformation. Point is the same thing

as a node, but for clarity later, it is differentiated from the other nodes by calling it a point.

P

Y

0

y1

node i0

node i1

x

j

P0

P1

X

x
y0

x1

i1

yi1

xi0yi0

node j

y
xj

Figure 6 General rigid body-spring model

The general rigid body-spring model can be likened to a lumbar FSU. The rigid body M

represents the superior vertebra and rigid body represents the inferior vertebra. Point F P

 15

represents the center of the superior vertebra, node represents a point on the superior insertion

site of a ligament, node

i

j represents a point on the inferior insertion site of the ligament and

spring i loosely represents the ligament itself. More complex representations of ligaments are

available in the literature, but our interest lies in developing the general rigid body-spring model

kinematics for an (linear elastic) spring system, leading to analytical expressions for the loads

and stiffness coefficients developed during general rigid body motion. Additional nodes on

either vertebra may be defined. For example, suppose we want to define more nodes on the

insertion sites of a ligament as a better approximation of ligament deformation. The only

restriction on defining nodes is that they are confined to the vertebra they are measured with

respect to, i.e., nodes on the superior vertebra must be measured with respect to the superior

vertebra’s coordinate system because of the rigid body assumption.

n

4.2 General Closed Form Solution

Movement of nodes, including point , and all loads are referred to the global coordinate

system for purposes of simulation. Nodal displacements and loads may be reported in any

coordinate system, for example, the rigid body’s local coordinate system, as is done

experimentally. Because the coordinate system set at the COR is will be allowed to move both

locally and globally (discussed in later sections), loads and displacements should not be reported

in this coordinate system. To describe rigid body motion and the resulting loads, several

homogeneous transformations must be known. In the following transformations, the subscript is

the coordinate system that the superscript coordinate system is measured with respect to, for

example, T is the transformation of frame

P

B
A B with respect to frame . Also, the convention A

 16

[] []
0 0 0 1

B
A

R d
T

=

 is used, where []R is the rotation matrix describing the orientation of

frame B with respect to frame , [A]d is the position vector describing the distance from the

origin of frame to the origin of frame A B measured in frame coordinates and the row vector A

[]0 0 0 1 is added for mathematical convenience.

0
GT

=

0 ,XP P Gθ

()0
xyz

4.2.1 Homogeneous Transformation of ()0

xyz with Respect to XYZ

At initial position 0, before rigid body motion, point is denoted . P 0P

0

0

0
0

0 0 1 0
0 0 0 1

G G X

G G Y

c s P
s c P

−

,

where (is the initial global position of and 0Y 0P is the initial orientation of

 with respect to XYZ (Figure 7).

)

 17

P0

X

Y

x0

y0

ΘG

TG
0

Figure 7 Homogeneous transformation of ()0
xyz with respect to XYZ

4.2.2 Homogeneous Transformation of () 0TCS

xyz with Respect to XYZ

Experimentally, the COR is the origin of the robot’s tool coordinate system (TCS). For

development of the general rigid body-spring model, the coordinate system is used

interchangeably with (. At position 0, the COR is denoted CO .

()COR
xyz

)TCS
xyz 0R

0

00

0
0

0 0 1 0
0 0 0 1

COR COR X

COR COR YTCS
G

c s COR
s c COR

T

−

 =

,

where (is the initial global position of CO and)0Y0 ,XCOR COR 0R CORθ is the initial

orientation of () with respect to
0TCS

xyz XYZ (Figure 8).

 18

P0

oTCS

X

Y

x0

y0

ΘG

xTCS0
yTCS0

TCS0TG

ΘCOR

Figure 8 Homogeneous transformation of () 0TCS
xyz with respect to XYZ

4.2.3 Homogeneous Transformation of ()0

xyz with Respect to () 0TCS
xyz

 () 10 0

0
TCS

TCS G GT T
−

= 0T

See Figure 9.

 19

P0

oTCS

X

Y

x0

y0

ΘG

TG
0

ΘCOR

0TTCS0

TCS0TG

yTCS0 xTCS0

Figure 9 Homogeneous transformation of ()0
xyz with respect to () 0TCS

xyz

4.2.4 Homogeneous Transformation of () 1TCS

xyz with Respect to () 0TCS
xyz

 1
0

0
0

0 0 1 0
0 0 0 1

TCS
TCS

c s dx
s c dy

T

φ φ

φ φ

−

 =

At position 1, after rigid body motion, the TCS is denoted TCS . During the

displacement control loop, the rigid body rotates about the COR by

1

φ degrees, but does not

translate (Figure 10). Hence, frame TCS rotates about its origin with no translation:

. During the load control loop, the rigid body translates by

0

() 0, →dydx (),dx dy , but does not

 20

rotate: 0→φ . We can think of the relationship between frame TCS and frame as an

imaginary rigid link. If point

P

P translates by ()dydx,

)

, then so does the COR. (can either

be added to () and or equivalently it can be inserted into T .

)

Y

dy

1
0

S

dx,

TC
TCS,X YP P (,XCO CORR ()dydx,

is inserted in T for consistency. Now that 1
0

TCS
TCS ()dydx, has been used here, it is not used

elsewhere.

 21

yTCS0
xTCS0

oTCS

yTCS1

xTCS1

ΘCOR

φ

X

Y

TCS0TG

TCS1TTCS0

TCS1TG

yTCS0
xTCS0

oTCS

yTCS1

xTCS1

ΘCOR

φ

X

Y

TCS0TG

TCS1TG

generalized planar motion

pure rotation pure translation
yTCS0

xTCS0

oTCS

yTCS1 xTCS1

ΘCOR

X

Y

TCS0TG

TCS1TTCS0

TCS1TG

Figure 10 Homogeneous transformation of () 1TCS
xyz with respect to () 0TCS

xyz

 22

4.2.5 Homogeneous Transformation of () 1TCS
xyz with Respect to XYZ

Because the relationship between frame and frame TCS is constant, the global

position of the COR must be updated to reflect changes in position of point (Figure 10).

P

P

 1 0
0

TCS TCS TCS
G G TCT T T= 1

S

4.2.6 Homogeneous Transformation of ()1xyz with Respect to () 1TCS

xyz

As noted above, the relationship between frame and frame TCS is constant.

Therefore, (

P

)1xyz has the same relative position and orientation from ()xyz
1TCS
 as ()0

xyz has

from () (Figure 11):
0TCS

xyz

 . 1 0
1 0TCS TCST T=

 23

P0

P1

oTCS

φ

X

Y

x0

y0

ΘG

ΘG+φ
y1 x1

ΘCOR+φ

0TTCS0

1TTCS1

yTCS1

xTCS1

Figure 11 Homogeneous transformation of ()1xyz with respect to () 1TCS
xyz

4.2.7 Homogeneous Transformation of ()1xyz with Respect to XYZ

At final position 1, point is denoted . P 1P

1

11 1 1
1

0
0

0 0 1 0
0 0 0 1

G G X

G G YTCS
G G TCS

c s P
s c P

T T T

φ φ

φ φ

−

 = =

,

where (is the global position of and)1 1,X YP P 1P φθφ += GG is the orientation of ()1xyz

with respect to XYZ (Figure 12).

 24

P0

P1

oTCS

X

Y

x0

y0

ΘG

ΘG+φ
y1 x1

ΘCOR+φ

1TTCS1

yTCS1

xTCS1

TCS1TG

TG
1

Figure 12 Homogeneous transformation of ()1xyz with respect to XYZ

4.2.8 Homogeneous Transformation of () 0i

xyz with Respect to ()0
xyz

Now that the global position of point is known before and after rigid body motion, the

resulting global motion of node i is considered. The following transformations are easily

extended to any number of nodes on rigid body

P

M . Note that because the position and

orientation of node i remains fixed relative to xyz , there is no subscript on i and i to

differentiate between position 0 and position 1.

x y

 25

 0
0

0
0

0 0 1 0
0 0 0 1

i i x

i i yi

c s i
s c i

T

−

 =

,

where (is the local position of node i and),x yi i iθ is the orientation of (i)xyz with

respect to xyz (Figure 13).

P0

X

Y

x0

y0

node i0

xi0yi0

T0
i0

θi

Figure 13 Homogeneous transformation of () 0i
xyz with respect to ()0

xyz

4.2.9 Homogeneous Transformation of () 0i

xyz with Respect to XYZ

The global position and orientation of node i at initial position 0 is described by

0

00 0 0
0

0
0

0 0 1 0
0 0 0 1

Gi Gi X

Gi Gi Yi i
G G

c s i
s c i

T T T

−

 = =

,

 26

where (is the initial global position of node i and) i0 0,X Yi i GGi θ θ= + is the orientation

of () 0i
xyz with respect to XYZ (Figure 14). Even though the position and orientation of node i

remains fixed locally from position 0 to position 1, its global position changes.

P0

X

Y

x0

y0

node i0

xi0yi0

T0
i0

θi

TG
0

TG
i0

Figure 14 Homogeneous transformation of () 0i
xyz with respect to XYZ

4.2.10 Homogeneous Transformation of () 1i

xyz with Respect to ()1xyz

Because of the rigid body assumption, the position and orientation of () 1i

xyz with respect

to ()1xyz is the same as () 0i
xyz with respect to ()0

xyz (Figure 15). Therefore,

 . 1 0
1 0
i iT T=

 27

P0

P1

X

Y

x0

y0

y1 x1

node i0

node i1

xi1

yi1

xi0yi0

T1
i1

T0
i0

Figure 15 Homogeneous transformation of () 1i
xyz with respect to ()1xyz

4.2.11 Homogeneous Transformation of () 1i

xyz with Respect to XYZ

The global position and orientation of node i at position 1 is described by

1

11 1 1
1

0
0

0 0 1 0
0 0 0 1

Gi Gi X

Gi Gi Yi i
G G

c s i
s c i

T T T

φ φ

φ φ

−

 = =

,

where (is the global position of node i at position 1 and)1 1,X Yi i G iGiφ θ θ= + +φ is the

orientation of () 1i
xyz with respect to XYZ (Figure 16).

 28

P0

P1

X

Y

x0

y0

y1 x1

node i0

node i1

xi1

yi1

xi0yi0

TG
1

TG
i1

T1
i1

Figure 16 Homogeneous transformation of () 1i
xyz with respect to XYZ

4.2.12 Homogeneous Transformation of () j

xyz with Respect to XYZ

The global position and orientation of frame j on the fixed rigid body is known through

transformations similar to those shown above. For simplicity, the transformations leading to the

global position and orientation of node j are not shown. Experimentally, we must solve for

these coordinates using coordinate transformations. In simulations, we can define the global

coordinates of frame j and bypass the transformations necessary to calculate them.

 29

0
0

0 0 1 0
0 0 0 1

j j X

j j Yj
G

c s j
s c j

T

−

 =

,

where (are the global coordinates of node),X Yj j j and jθ is the orientation of () j
xyz

with respect to XYZ (Figure 17).

P0

X

Y

x0

y0

node j

yj
xj Θj

TG
j

node i0

xi0yi0

Figure 17 Homogeneous transformation of () j
xyz with respect to XYZ

4.2.13 Homogeneous Transformation of () j

xyz with Respect to () 0i
xyz

In order to fully define the loads acting on the rigid body due to spring i , we must know

the line of action of spring force. At any position of rigid body M , the direction of spring force

 30

is along a line between nodes i and j . Therefore, the transformation between frame i and

frame j must be known. At initial position 0,

 () 10
0
j i

i GT T T
−

= j
G .

See Figure 18.

P0

X

Y

x0

y0

node j

yj
xj Θj

TG
j

node i0

xi0yi0

TG
i0

Ti0
j

Figure 18 Homogeneous transformation of () j
xyz with respect to () 0i

xyz

4.2.14 Homogeneous Transformation of () j

xyz with Respect to () 1i
xyz

At position 1,

 () 11
1
j i

i GT T T
−

= j
G .

See Figure 19.

 31

P0

P1

X

Y

x0

y0

y1 x1

node i0

node i1

xi1

yi1

xi0yi0

node j

yj
xj Θj

TG
j

TG
i1

Ti1
j

Figure 19 Homogeneous transformation of () j
xyz with respect to () 1i

xyz

4.2.15 Change in Length of Spring Attached to Node i and Fixed Node j

To find the loads acting on rigid body M , we must know the elongation of spring i , iδ .

The length of spring at the initial position is the magnitude of the position vector of T , i j
i0 0il

K
,

defined in the () 0i
xyz coordinate system. The elongation of spring at the initial position is i

0 0i ilδ = −
K

A r , where A is the resting length of the spring. The length of spring i at the final r

 32

position is the magnitude of the position vector of T , j
i1 1il

K
, defined in the () 1i

xyz coordinate

system. The elongation of spring at the final position is i 1 1i ilδ r= −
K

A .

0 0
i

i
i

l
l

K
K

1
1 1

1

i
i

i

l
l

K
K

0if
K

0il
K

()
()

0

0

i
Gi

c

K

K

()
()

1

0

Gi

c
φ φ

φ φ

0iF
K

4.2.16 Loads on Rigid Body Due to Spring i

The total force acting on rigid body M at node due to spring at the initial and final

positions are

i i

0if
K

 and 1if
K

, respectively.

 0

0
i if k δ=
K

 i if k δ=
K

,

where is the spring constant of spring i . ik and 1if
K

 are known in the () 0i
xyz and

() 1i
xyz coordinate systems, respectively, because and l 1i

K
 are defined in those coordinate

systems. We want to know 0if
K

 and 1if
K

 in the global coordinate system, so we use

transformations to convert them to the global coordinate system.

()
()

0 0

0 0 0

0
0

0 0 1 0

i i xX Gi

i Gi Gi iY i y

fF c s
F s f

 − =

K

K

()
()

1 1

1 1 1

0
0

0 0 1 0

ii i xX Gi

i Gi Gi iY i y

fF c s
F s f

 − =

KK

KK
,

where 0if
K

 and 1if
K

 are broken into local x and components and and are broken

into global

y 1iF
K

X and Y components.

 33

If the force acting at node due to spring i , i iF
K

, is replaced by an equal force acting at

point , a couple P iM
K

 is necessary to make sure the external effects of the original force on rigid

body M are not changed (Figure 20).

P

node i Fi

P

node i
d

P

node i

Mi

Fi

Fi Fi

-Fi

Figure 20 Force-couple equivalent

If acts at point , 0iF
K

0P 0 0i i 0iM R F= ×
K K K

, where 0iR
K

 is the position vector of T

transformed into the global coordinate system (Figure 21).

0
0
i

 0

0
0

0 0 1 0

G G x

i G G

c s i

yR s c i
−

 =

K

 34

P0

X

Y

x0

y0

node i0

xi0yi0

node j

yj
xj

Ri0

Fi0

a

P0

X

Y

x0

y0

node i0

xi0yi0

node j

yj
xj

Fi0

Mi0

b

Figure 21 (a) force due to spring i at position 0, (b) equivalent force-couple system at position

0

If acts at point , 1iF
K

1P 1 1i i 1iM R F= ×
K K K

, where 1iR
K

 is the position vector of T transformed

into the global coordinate system (Figure 22).

1
1
i

 1

0
0

0 0 1 0

G G x

i G G y

c s i
R s c i

φ φ

φ φ

−
 =

K

 35

P1

X

Y

y1 x1

node i1

xi1

yi1

node j

yj
xj

Fi1

Ri1

a

P1

X

Y

y1 x1

node i1

xi1

yi1

node j

yj
xj

Mi1

Fi1

b

Figure 22 (a) force due to spring i at position 1, (b) equivalent force-couple system at position

1

To break forces and moment at points and into global 0P 1P X and Y components,

()
()
() ()

0
0

0 0

0 00

ˆ
ˆ

ˆ

i X i

i iY

i ii Z

F F i
F F j

R F kM

 ⋅ = ⋅

× ⋅

K K
K K

K KK

()
()
() ()

1
1

1 1

1 11

ˆ
ˆ

ˆ

i X i

i iY

i ii Z

F F i
F F j

R F kM

 ⋅ = ⋅

× ⋅

K K
K K

K KK
,

where i , ˆ ĵ and are unit vectors in the global k̂ X , and Y Z directions, respectively.

The forces and moments acting on the rigid body due to springs i 1,2, ,n= … may be summed to

find the total loads on the body:
1

n

i
i

F F
=

= ∑
K K

,
1

n

i
i

M M
=

= ∑
K K

.

 36

4.2.17 Global Stiffness Matrix, K

After developing the analytical solution for loads arising from rigid body motion, it is

necessary to find the analytical solution for the global stiffness matrix for use during load

control. The analytical equations for each term in the matrix are valid at any position of rigid

body M even though the values of the terms are only valid over small ranges of motion.

Consequently, translations of rigid body M during load control should be limited because the

calculated displacement depends on local stiffness values. A large translation may move the

rigid body outside the region of constant local stiffness. We take the partial differential of the

analytical expressions for , and XF YF ZM with respect to , and XP YP PΦ to find the global

stiffness matrix, K :

XX XY XZ

YX YY YZ

ZX ZY ZZ

K K K
K K K K

K K K

 =

X X X

X Y
X X

Y Y Y
Y Y

X Y
Z

Z Z Z

X Y

F F F
P P PF P
F F FF K P P
P P P

X

Y

P

M P P
M M M
P P P

Φ

Φ
Φ Φ

Φ

 ∂ ∂ ∂
 ∂ ∂ ∂ ∆ ∆ ∆
 ∂ ∂ ∂ ∆ = ∆ = ∆ ∂ ∂ ∂ ∆ ∆ ∂ ∂ ∂

∂ ∂ ∂

∆
,

where and are the global coordinates of point at any position of rigid body XP YP P M ,

 is the orientation of PΦ xyz with respect to XYZ at any position and , and XF YF ZM are the

total force and moment acting on rigid body M at any position.

Ren et al.(47) also used partial derivates to calculate the tangent stiffness matrix for their

rigid body-spring model. They used three rigid bodies connected by springs that were allowed to

 37

translate and rotate in the XY -plane. Rigid body e was connected to rigid body by three

springs: an axial spring (spring constant), a shear spring (spring constant

1e +

a
eK e

sK) and a bending

spring (spring constant eKθ). These spring constants were collectively referred to as .

Similarly, rigid body was connected to rigid body by three springs with spring constant

. They developed equations to describe the sum of the forces and moments acting on rigid

body and took the partial derivatives of these expressions with respect to the translational and

rotational motion of the centroid of each rigid body to find the tangent stiffness matrix. They did

not make any assumptions while developing their analytical stiffness matrix, so their method is

completely general for any planar rigid body motion. Their method is very similar to what is

done above. An axial spring connects two rigid bodies between node

eK

1e − e

1eK −

e

j , located on a fixed rigid

body (), and node , located on a rigid body () that is allowed to move in the same plane

as that in Ren et al. In this case, we are only concerned with spring

1−e i e

1
a
eK − and the moveable rigid

body , so the partial derivatives simplify to the above expression. e

To simplify the partial derivatives, several constants are defined:

 1 *cos *sX x yc j i i inθ θ= − + ,

 2 *cos *sY y xc j i i inθ θ= − − ,

 3 Gc θ φ= + ,

 14 X Xc j P= − ,

 15 Y Yc j P= − .

The stiffness matrix is symmetric, so YX XYK K= , ZXK KXZ= and ZYK K= YZ . The terms

in the stiffness matrix are then:

 38

 ()
() ()

2

3 22 2

2

1 2

r Y
XX

X Y

k c P
K k

c P c P

−
= −
 − + −

A

 ()()
() ()

3 22 2

1 2

1 2

r X Y
XY YX

X Y

k c P c P
K K

c P c P

− −
= = −

 − + −

A

() () (()
() ()()

)2 2

3 22 2

5 4 5 5

5 4

r y G x G x y x y G x y G
XZ y G x G

y G x G x G y G

c i c i s i i c i c i c c i c i s
K k i c i s

c i c i s c i c i s

φ φ φ φ
φ φ

φ φ φ φ

− + + − − + + + −

= + +
 − + + + − +

A 4

 ()
() ()

2

3 22 2

1

1 2

r X
YY

X Y

k c P
K k

c P c P

−
= −
 − + −

A

() () (()
() ()()

)2 2

3 22 2

4 4 5 5

5 4

r x G y G x y x y G x y G
YZ x G y G

y G x G x G y G

c i c i s i i c i c i c c i c i s
K k i c i s

c i c i s c i c i s

φ φ φ φ
φ φ

φ φ φ φ

− + − − + + + −

= − + +
 − + + + − +

A 4

() ()()
() ()()

() ()()
() ()

2

3 22 2

2 2

5 4 4 5

5 4

4 5 5 4 1
5 4

r x y G x y G
zz

y G x G x G y G

r
x y G x y G

y G x G x G y G

k c i c i c c i c i s
K

c i c i s c i c i s

k c i c i c c i c i s
c i c i s c i c i s

φ φ

φ φ φ φ

φ φ

φ φ φ φ

− + + +
= −

− + + + − +

 + − − + − + −
 − + + + − +

A

A

Because only planar translations are considered during the load control loop, a 2x2

stiffness matrix used.

 39

4.2.18 Work Done on Rigid Body by Spring i , Potential Energy in System

The magnitude of the force exerted on the rigid body by spring i is i iF k iδ= −

()
0

0

δ

δ

. For a

conservative force, such as a spring force, the potential energy is U U() ()F dδ δ δ δ′ ′= − ∫ .

By plugging in the equation for spring force, we can solve for the potential energy of spring i :

() ()
0

2
0 0

1 1
2 2

i

i
i i i i i i i i i iU U k d U k k

δ

δ

2
0δ δ δ δ δ′= − − = + −∫

0i 0i

δ . If we do not make any simplifications to

this equation, we must know U for any value of δ . To simplify the equation for potential in

spring i we arbitrarily set 0 0iδ = 0 0i. Then U = because there is no potential energy when the

spring is at its resting length. We are then left with () 2
i ik1

2i iU δ δ= . For a spring, work is equal

in magnitude and opposite in sign to potential energy:

() ()
0

0
i

i
i i i i iW W W

δ

δ

2
0

1
2 2i ik 2

0
1

i ikik dδ δ δ δ= + =∫ δ− δ− + , or after simplification: () 21
2 i ii iW kδ δ= −

)i

.

For an n spring system, the total potential energy is U U (
1

n

i
i

δ
=

=∑ and the total work done to

the rigid body is W ()i
1

n

i
iW δ

=

=∑ . Both forms of ()iiU δ and ()iiW δ (simplified or not) give the

same results, so the simplified form should be used because it requires less computation.

4.3 General Closed Form Solution Applied to Rigid Body-Spring Model

The general rigid body-spring model used for simulations is shown in Figure 23 and

Figure 24. This model is obviously different than the physical rigid body-spring model shown

in Figure 5. Point is at the center of the bar and is the origin of the bar’s local coordinate P

 40

system, xyz . Two nodes are defined on the bar for each attachment site of each spring. Node

is at the left side of the bar and is the origin of coordinate system

a

()a
xyz . Node is at the right

side of the bar and is the origin of coordinate system

b

()b
xyz . The positions and orientations of

()a
xyz and ()b

xyz are described with respect to xyz

aA

. The length of the bar is . For spring ,

the resting length is , the equilibrium length is and the spring constant is . For spring

, the resting length is , the equilibrium length is and the spring constant is . The

system is conservative.

L

ak

2 a

Aar 0

0bAb Abr bk

ba

ka kbL L

la lb

Y

X
ba

ja

xa

xb

ybya

xja

y

xjb

yjb

x0

y0

P

P

Figure 23 General rigid body-spring model

 41

Figure 24 Matlab rigid body-spring model

For convenience, , ar br=A A 0 0a b=A A , ak kb= and all coordinate systems are aligned at

the equilibrium position, i.e., 0θ θ θ= =G COR θ= =ji . After one displacement control loop,

θ θ= =G COR φ and 0θ θ= =i j . After displacement control loops, n θ θ φ= =G COR n and

0θ θ= =i j . In the equilibrium position, the XYZ and ()0
xyz coordinate systems are coincident

at point . Therefore, T is a 4 identity matrix. This is only true at the equilibrium

position. After one incremental rotation,

0P 0
G x4

()1xyz is rotated by φ degrees from XYZ and the

origins are offset by an amount due to the rotation. In a test, φ φ= , 0= =dx dy for the

displacement control loop and 0φ = , =dx and dx =dy dy for the subsequent load control loop.

 42

For node a , T T0 1
0 1

1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

a a

L−

 = =

 and

()01 0 0
0 1 0 0
0 0 1 0
0 0 0 1

a

ja
G

L

T

 − +

 =

A

00
0 0
1 0

1

bL +

. For node b ,

 and T0 1
0 1
b bT T

1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

L

jb
G= =

1 0
0 1
0 0
0 0 0

 =

A

a br =

a 0 59.23 mma

.

49.53 mmar =A

=

0 84.40b =A mm L =

Gθ 0x X

70Gθ = °

The “physical” rigid body-spring model is shown in Figure 25. This model is used to

collect simulated data for comparison with experimental data. To make comparisons, we take

some measurements of the physical spring model. First, we measure the resting length of each

spring using calipers. for spring (the blue spring). A for

spring b (the red spring). We also use calipers to measure the equilibrium length of each spring

when they are in the physical spring model. For spring ,

74.57 mm

A . For spring b ,

. The radius of the disc was measured with calipers as 28 mm. We use

Adobe Photoshop 6.0 to find , the angle that the local axis makes with the global axis:

. Now the positions of all nodes can be defined.

 43

Figure 25 Matlab physical rigid body-spring model

For simplicity, we set 0COR i jθ θ θ= = = . After one displacement control loop,

70Gθ φ= °+ , CORθ φ= and 0θ θ= =i j n. After displacement control loops, 70G nθ φ= °+ ,

COR nθ φ= and 0θ θ=i j = . In the equilibrium position, the XYZ and ()0
xyz coordinate systems

are coincident at point . For node , T T0P a 0 1
0 1

1 0 0 28
0 1 0
0 0 1 0
0 0 0 1

0
−

a a

 = =

 and

 44

1 0 0 29.84
0 1 0 81.97
0 0 1 0
0 0 0 1

ja
GT

−
 − =

. For node b , T T0 1
0 1

1 0 0 28
0 1 0 0
0 0 1 0
0 0 0 1

b b

 = =

 and

.

1 0 0 38.45
0 1 0 105.63
0 0 1 0
0 0 0 1

jb
GT

 =

When the springs are inserted into the physical spring model, they are elongated. This

means that there is some initial tension in each spring, but the system is in equilibrium because

the pretension in one spring negates the pretension in the other spring. No forces or moments

should be created when the robot is initially attached to the model. After zeroing out bolt-up

loads and loads due to the fixture (stainless steel disc, nuts, bolts, screws, etc.), the UFS will

show that no other external loads are acting on it. When the robot applies a rotation/translation,

the UFS will show the loads exerted by the model due to the motion; the UFS will not show the

initial pretension in the equilibrated system.

 45

5.0 DEVELOPMENT OF EXPERIMENTAL PLATFORM

Use of a robotics-based testing system allows for controlled application of six DOF

displacements, facilitating determination of the in situ force and moment contribution of

musculoskeletal joint structures. After dissecting away extraneous soft tissue, the passive path of

the intact joint is found using hybrid control. The in situ contribution of a specific structure of

interest is found by dissecting it away and replaying the passive path kinematics of the intact

joint using pure displacement control, while recording loads. By applying the principle of

superposition, the loads of the cut specimen are subtracted from the loads of the intact specimen

to find the in situ contribution of the dissected structure.

5.1 Description of Robotics-Based Spine Testing System

Low-level control of a robotic system involves input/output of position data to and from

the robot and communication with external sensors, whereas high-level control is the processing

of that data for robot manipulation. The low-level control of our robotic/UFS testing system is

performed using a robotic manipulator (Staubli, RX-90 model; Staubli Inc., Duncan, SC),

computerized controller (Staubli, CS7 model, 40 MHz microprocessor, 33 MHz coprocessor, 4

Mb RAM), Adept V+ software (version 11.1) and a six degree of freedom universal force-

moment sensor (UFS) (JR3, UFS Model 90M38A-I50 20L100; JR3, Woodland, CA). The

Staubli is a servo-controlled, six-joint serial-articulated manipulator with end-effector position

repeatability of 0.02 mm translation at constant temperature and maximum payload of 6 kg at

nominal speed(48). The UFS, mounted to a custom machined piece on the end-effector of the

Staubli (Figure 26) has a full-scale force capacity of 20 lbs for its x and y axes and 50 lbs for its

 46

z axis, and a full scale moment capacity of 100 in-lbs for all axes. Manufacturer-stated force and

moment accuracy of the UFS is 2% of full scale for all axes(49). The high-level computerized

control system consists of a real time Staubli CS7 controller serially connected to a personal

computer (Dell PC, dual Xeon 1.7 GHz processors, 1 GB RAM). Communication is covered in

more detail later. The high-level control programs are performed using Matlab (version 6.1, The

Mathworks, Inc., Natick, MA) on the PC. Digital output from the six load channels of the UFS

is fed directly to the PC through a DSP-based force sensor/receiver PCI card (JR3). Dr. J.

Norberto Pires wrote several Matlab-PCI interface modules for the JR3 PCI card(50). The control

programs written in Matlab and V+ perform a variety of tasks including establishing coordinate

systems, reading UFS force-moment data, reading end-effector position data (calculated by the

Staubli controller from the robotic joint angles obtained from the encoders of the servomotor of

each joint), and issuing commands to the robot to move the end-effector. Depending on the

control programs that are executed, the robotic/UFS testing system can be made to operate in

either a position (i.e., displacement) control mode, or a hybrid control mode.

 47

Custom
machined
part

r

Figure 26 Specimen fixtures in testing system

The manipulator sits on a 30” high stainless steel table that is bolted thro

runners to the floor (Figure 27). A 3/8” thick stainless steel buffer is attached t

slots are attached to the table to provide flexibility of specimen placement in re

manipulator. Custom fixtures for specimen mounting are attached to the stainle

and the T-slots (Figure 26).

 48
end-effecto

ugh ¾” steel

o the UFS. T-

lation to the

ss steel buffer

Figure 27 Robotic/UFS testing system

 49

The controller sends the commanded motion to the manipulator in terms of the tool

coordinate system (TCS), while returning the global position and orientation of the TCS to the

user in response to the “WHERE” or “HERE” commands. The position and orientation of the

TCS is measured with respect to the end-effector, which is at the back of the custom machined

part (Figure 26). If the user does not specify a TCS, the controller sets it at the end-effector so

that the transformation describing the relationship between these two coordinate systems is an

identity matrix. As mentioned before, the origin of the TCS is set at the specimen COR. The

orientation of the TCS is aligned with the specimen’s coordinate system. Planar

flexion/extension is performed by rotating about the TCS x -axis. When setting a TCS, its

position is measured from the UFS face.

If the UFS could be placed at the center of the superior vertebra, the loads would be read

at point as they are during simulations. However, this is impossible so we need a

transformation describing the superior vertebra’s coordinate system with respect to the UFS

coordinate system. Measuring the distance of the superior vertebra’s coordinate system from the

UFS coordinate system presents an interesting situation for measurements in the z-direction

because the position of UFS coordinate system is dependent on the software used to collect load

cell data. When using the PCI card to collect load cell data, the Matlab functions put the UFS

coordinate system at the center of the UFS. When using the robotic controller to collect load cell

data, Adept puts the UFS coordinate system at the back of the UFS.

P

 50

5.2 Communication

Figure 28 shows the system components, with arrows depicting the data flow loop within

the testing system. The controller receives TCS position data from the manipulator and directs

this data to the external PC via the serial line. Serial communication is relatively slow, but it is

convenient for this purpose since it is available on most commercially available controllers. As

mentioned before, load cell data is sent directly to the PC. Directing the robot positions and UFS

loads to the PC allows it to act as the high-level controller for the system. For high-level control

to occur once the flow of data has been established, a programming language is necessary to

implement the desired control algorithm. Matlab was chosen because of its many

preprogrammed functions and toolboxes, its data analysis and graphing capabilities, and its

readily available serial communication. Once the PC has interpreted the position and load data,

the desired robot motion is sent back to the controller via the serial line so low-level control can

occur.

 51

V+

Robotic

Controller

Load Cell
Interface

Card

Positions

Movement
Commands

Loads

Load Cell

Robot End-Effector

Spine
Specimen

External
PC

Positions Movement
Commands

Figure 28 Data flow in testing system

Because the serial line sends and receives data, it is necessary to establish a client/server

relationship between the two devices. Since limited use of the robot controller is desired for all

high-level operations, it is best to have the external PC (client) request information from the

controller (server). This type of relationship necessitates that proper “handshaking” occurs to

guarantee that all data is sent and received at the correct time and to the correct device. This is

ensured through a system of flags that indicate when the client/server platforms are in a state of

proper operational mode, allowing information exchange to occur.

 52

5.3 UFS Calibration

It was shown previously that a large source of error in load cell data may due to

“phantom” loads due to change in load cell orientation.(51) The error in load cell data reported in

Gilbertson et al. exceeded the manufacturer stated accuracy of 1% of full scale load capacity.

For our load cell, the error due to load cell orientation was found within the manufacturer stated

accuracy of 2% of full scale, but reproducing the methods in this paper still resulted in a

significant improvement in accuracy.

The UFS was rotated about its x -axis without any fixtures attached from 25θ = − °

yF

y

 to

. The digital output from the load cell in the - and -directions was found to vary linearly

with rotation angle from about –0.25 N to about –1 N for and from about 2 N to about 2.5 N

for (Figure 29). This error was within the manufacturer stated accuracy for both and .

However, we proceeded with the protocol to see if the load cell accuracy could be improved

further. By following the procedure outlined in Gilbertson et al. it was found that the error could

be significantly reduced. The first step was to orient the UFS -axis down vertically and hang a

set of six incremental weights while collecting digital UFS output. Then the UFS was oriented

such that the UFS -axis pointed toward the ceiling and the same incremental weights were

stacked while collecting digital UFS output. This procedure was repeated for the UFS -axis.

The and digital output was plotted against the known weights applied in those directions

(Figure 30) and linear relationships describing the - and -axis force calibration were found:

25° y z

Fy

z

zF

yF

zF

z

z

zF

y

 0.0051733 0.29147
yy FF DO= −

 0.013194 0.26728
zz FF DO= − ,

 53

where and are the forces in the UFS - and -directions (in Newtons),

respectively, and

yF zF y z

yFDO and
zFDO are the digital outputs from the UFS in the - and -

directions, respectively. It is important to note that the above equations do not correct for

orientation effects.

y z

Figure 29 Plot of output from UFS -axis and -axis force channel vs. UFS orientation (y z Θ)
when UFS is rotated in 1 increments about its x axis (with nothing attached) °

Figure 30 Plot of known applied weight vs. UFS digital output

 54

For the second part of the protocol, the incremental weights used in the first part were

attached to the UFS. The UFS was rotated about its x -axis from 25θ = − ° to while

collecting the digital output in the - and -directions.

25°

y z
yFDO and

zFDO were inserted into the

above set of equations to obtain linearly calibrated and in Newtons. The known applied

weights were subtracted from the linearly calibrated and to get the error in - and -axis

force measurements. The errors for each incremental weight were averaged and plotted against

the rotation angle (Figure 31). The orientation error was found to be a linear function of the

rotation angle:

yF

yF

zF

zF y z

 0.0085025 0.14779yF error θ= +

 0.0012932 0.19311zF error θ= +

To correct for orientation effects, the first-order mean error function was subtracted from

the linear - and -axis calibration: y z

 () []corrected 0.0051733 0.29147 0.0085025 0.14779
yy FF DO θ = − − +

 () []corrected 0.013194 0.26728 0.0012932 0.19311
zz FF DO θ = − − +

 55

Figure 31 Plots of average Fy and Fz error vs UFS orientation

For the third part of the protocol, the two orientation correction equations were applied to

the digital output collected in the second part. Plots of and measured using (1) the linear

calibration equations and (2) the orientation corrected equations were plotted against the known

applied weights (Figure 32 and Figure 33). Linear regressions showed that both equations

resulted in a significant improvement over using raw UFS output for and . However, there

was not a significant improvement when using the orientation corrected equation versus the

linear calibration equation.

yF zF

yF zF

 56

Figure 32 Plot of UFS measured force vs. known force yF yF

 57

Figure 33 Plot of UFS measured force vs. known force zF zF

In conclusion, as long as the error in load cell output is within the manufacturer’s stated

accuracy, it is not necessary to perform calibration at the beginning of each testing day. If,

however, the load cell calibration protocol needs to be performed, a linear calibration equation

may be applied to digital output in the - and -directions without applying an orientation

correction. The entire calibration protocol takes a lot of time to complete, so not applying an

orientation correction cuts the time required to finish the protocol by more than half. If the UFS

y z

 58

is mishandled in any way, the entire protocol should be performed to verify orientation

correction does not need to be performed.

5.4 Manipulator Accuracy and Precision

Spatial resolution of a robot refers to the smallest change in position that the feedback

sensor can detect when a normal distribution of mechanical inaccuracies, such as backlash and

joint bending, are considered. Accuracy refers to the ability of the manipulator to get to a

commanded point in space and can be considered half of the spatial resolution. Precision

(repeatability) is the ability of the manipulator to repeatedly return to a point, regardless of

whether or not it is the correct point. It is possible for a robot to have high precision, but poor

accuracy. In fact, this is generally the case. Accuracy of robots is generally unreported and

assumed to be poor. This is well known, but it hasn’t been of too much concern because

industrial applications (spot welding, pick-and-place) usually rely on the robot’s precision, which

is typically very high, to repeatedly move to a taught point. If the commanded points are not

taught, but defined in Cartesian space, accuracy becomes an issue. With the integration of

robotic technology into biomedical applications, such as in vitro musculoskeletal joint testing,

robot assisted surgery and rehabilitation, high accuracy is necessary because the required motion

of the end-effector is not known beforehand.

In biomechanical testing of joints, the passive path of the specimen is not known a priori.

The force minimized points must be stored during pathseek so that they can be returned to

repeatedly for multiple replays. Our manipulator has high precision, so if no other factors are

considered, the robot would appear to be returning to the same force minimized positions for

every replay. However, a precise manipulator is not necessarily an accurate one. This means the

 59

manipulator returns to the same point in space again and again, even if the point is not the stored

force minimized one.

A manipulator’s compliance describes the degree of displacement of the wrist when a

load is applied or removed and is the inverse of stiffness. If a manipulator is very compliant, it is

not stiff, and vice versa. Manipulators that are compliant can generally make smaller motions

than manipulators that are very stiff, but the wrist can displace more when a static load is applied

or removed.

When cutting studies are performed, the load on the end-effector changes, typically

within the range of ± 30 N and ± 6 N-m. For an infinitely stiff robot (or least one with a very

high payload), this would not be an issue. However, our robot has a relatively low payload (6

kg) and the change in end-effector position with changes in load is visible. When cutting

structures on the specimen, and hence remove load from the end-effector, the end-effector

visibly springs up. If the robot cannot accurately tell the difference between its position before

and after a structure is cut, even though there is an obvious change, then it is unlikely the

manipulator will return to the force minimized positions stored for the intact specimen. This is a

problem because compliance in the arm may be causing additional loads in the intact structures,

which would cause us to underestimate the loads associated with cutting them.

It was hypothesized that significant differences exist in the positional accuracy for

varying fractions of payload, that a function exists to describe the relationship between position

error and weight for a unique end-effector position, and that this function may be used to correct

for position error based on external load cell data. If the manipulator is capable of making the

presumably small displacements required to correct for joint laxity/backlash, then an external

 60

measurement system can be used to correct for poor accuracy. To investigate our robot’s

accuracy and its ability to improve (if needed), three tests were devised.

Test 1: First, the relationship between positional accuracy and precision for varying

fractions of maximum load capacity was examined in one degree of freedom (DOF). The end-

effector was placed so that the y-axis pointed towards the ceiling. A weight equal to 1/2 of

maximum payload was attached to the end-effector. This weight was designated 1/2W. A dial

gauge (0.01 mm resolution, 10 mm travel) was rigidly fixed to a rigid table. The manipulator

was moved to a position such that the weight attached to the end-effector depressed the dial

gauge to 5 mm. This reference position (point A) was saved as a Cartesian coordinate. The

manipulator was then moved to a position 40 mm directly above point A. This ensured that there

was sufficient clearance between the dial gauge plunger and the weight on the end-effector so

that the weight did not touch the plunger when the manipulator was at this point. This position

(point B) was also saved as a Cartesian coordinate.

The end-effector moved from point B to point A 30n = times. Each time the end-

effector reached point A, the dial gauge reading and the manipulator’s own sense of position

were recorded. The dial gauge reading was within the manufacturer stated repeatability each

time the plunger was depressed. This process was repeated for weights equal to maximum

payload (W), 3/4 payload (3/4W), 1/4 payload (1/4W) and no load (0W). The mean dial gauge

reading for each fraction of payload was found, with the mean for 1/2W being the reference that

all other weights were compared to. The position error (difference between the mean dial gauge

reading and the reference mean) was plotted against fraction of payload. This gave the

relationship between position error and weight attached to the end-effector.

 61

Test 2: The position error from test 1 was significant, so the possibility of correcting this

error in one DOF was inspected. The end-effector moved from point B to point A times

with weight 0W, 1/4W, 3/4W or W attached. An incremental displacement of mm was

applied in the positive or negative y-direction (depending on the dial gauge reading) each time

the end-effector reached point A. The dial gauge reading and the robot’s sense of position were

recorded before and after each incremental displacement. The mean difference between the

prescribed displacement and the actual displacement for the dial gauge and the robot’s sense of

position was computed for each weight. The actual displacement was plotted against the

prescribed displacement for the dial gauge readings and the robot’s sense of position. A function

describing the relationship between the prescribed displacement and the actual displacement was

then found.

30n =

.01*0n

Test 3: Results from test 2 showed that it was possible to correct for poor positional

accuracy using prescribed displacements, so a final test was performed to determine if data from

an external load cell could be used to calculate the displacement necessary to correct for position

error. For all weights (0W, 1/4W, 1/2W, 3/4W, W), the end-effector moved from point B to

point A times. Using the relationship between position error and weight (from test 1), the

relationship between prescribed displacement and actual displacement (from test 2) and load cell

data, a displacement was applied in the y-direction if needed to move the end-effector to the

reference dial gauge position (5 mm). The dial gauge readings and the robot’s sense of position

were recorded before and after the displacements were applied. The dial gauge readings after the

displacements were applied were averaged. The difference between the mean dial gauge

readings after displacement and the reference mean were plotted against the fraction of weight,

as in test 1.

30n =

 62

Figure 34 shows that position error (in mm) is a linear function of the fraction of payload

attached to the end-effector:

 ()0.0058* % max payload 0.28error = −

Independent Measuring Device

y = 0.0058x - 0.28
R2 = 0.9944

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0 20 40 60 80 100

% payload

po
si

tio
n

er
ro

r (
m

m
)

uncorrected
corrected

Figure 34 Position error, as measured by an external dial gauge, is a linear function of the
weight on the end-effector (blue line). This error may be corrected for (magenta line).

Figure 35 shows that the actual displacement is linearly related to the prescribed

displacement for dial gauge measurements. It should have a unit slope with a zero intercept. t-

tests were performed to determine whether the slopes and intercepts of the linear regressions of

each weight are equal to one and zero, respectively. The slope of each linear regression is not

significantly different from one for every weight but 1/4W, and the intercept of each linear

regression is not significantly different from zero for every weight but W.

 63

Independent Measuring Device

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

-0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50

prescribed disp. (mm)

ac
tu

al
 d

is
p.

 (m
m

)

0w
1/4w
3/4w
w

Figure 35 The ratio between the prescribed displacement of the end-effector and the actual
displacement is 1:1, as measured using a dial gauge.

Figure 36 shows that the actual displacement is also linearly related to the prescribed

displacement for the robot’s own sense of position. t-tests were performed to determine whether

the slopes and intercepts of the linear regressions of each weight are equal to one and zero,

respectively. For every weight, the slope and intercept of each linear regression is not

significantly different from one and zero, respectively.

 64

Robot Measured

-0.400

-0.300

-0.200

-0.100

0.000

0.100

0.200

0.300

0.400

0.500

-0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50

prescribed disp. (mm)

ac
tu

al
 d

is
p.

 (m
m

)

0w
1/4w
3/4w
w

Figure 36 The ratio between the prescribed displacement of the end-effector and the actual
displacement is 1:1, as measured using the robotic controller.

Figure 34 shows that an algorithm using external load cell data can be applied to reduce

the position error to nearly zero.

5.5 Homogeneous Transformations Defined for Robot Testing System

Homogeneous transformations similar to those developed for the general rigid body-

spring model are now developed for the robotic testing system.

5.5.1 Homogeneous Transformation of ()TCS

xyz with Respect to ()UFS
xyz

 TCS

UFST

This transformation is user-defined. See Figure 37.

 65

X

Z

z

y

z

y

z

y

Base

UFS

TCS

superior
vertebra
centroid

z

y
digitized point

on superior
vertebra

TUFS
TCS

Figure 37 Transformation of ()TCS
xyz with respect to ()UFS

xyz

5.5.2 Homogeneous Transformation of ()TCS

xyz with Respect to XYZ

 TCS

GT

This transformation is known through the robot’s “WHERE” or “HERE” commands.

See Figure 38.

 66

X

Z

z

y

z

y

z

y

Base

UFS

TCS

superior
vertebra
centroid

z

y
digitized point

on superior
vertebra

TG
TCS

Figure 38 Transformation of ()TCS
xyz with respect to XYZ

5.5.3 Homogeneous Transformation of ()TCS

xyz with Respect to ()UFS
xyz

 () 1UFS TCS TCS

G G UFST T T
−

=

See Figure 39.

 67

X

Z

z

y

z

y

z

y

Base

UFS

TCS

superior
vertebra
centroid

z

y
digitized point

on superior
vertebra

TUFS
TCS

TG
TCS

TG
UFS

Figure 39 Transformation of ()TCS
xyz with respect to ()UFS

xyz

5.5.4 Homogeneous Transformation of ()i

xyz with Respect to ()0
xyz

 0

iT

This transformation is user-defined (known through X-rays). See Figure 40.

 68

X

Z

z

y

z

y

z

y

Base

UFS

TCS

superior
vertebra
centroid

z

ydigitized point
on superior

vertebra
T0

i

Figure 40 Transformation of ()i
xyz with respect to ()0

xyz

5.5.5 Homogeneous Transformation of ()i

xyz with Respect to ()UFS
xyz

 i

UFST

This transformation is known through digitizing points on the vertebra and UFS (or

fixture) with Microscribe. See Figure 41.

 69

X

Z

z

y

z

y

z

y

Base

UFS

TCS

superior
vertebra
centroid

z

y digitized point
on superior

vertebra

TUFS
i

Figure 41 Transformation of ()i
xyz with respect to ()UFS

xyz

5.5.6 Homogeneous Transformation of ()0

xyz with Respect to ()UFS
xyz

 () 10

0
i i

UFS UFST T T
−

=

See Figure 42.

 70

X

Z

z

y

z

y

z

y

Base

UFS

TCS

superior
vertebra
centroid

z

y digitized point
on superior

vertebraT0
i

TUFS
i

TUFS
0

Figure 42 Transformation of ()0
xyz with respect to ()UFS

xyz

5.5.7 Homogeneous Transformation of ()0

xyz with Respect to XYZ

 0 0UFS

G G UFT T T= S

See Figure 43.

 71

X

Z

z

y

z

y

z

y

Base

UFS

TCS

superior
vertebra
centroid

z

y
digitized point

on superior
vertebra

TG
0

TG
UFS

TUFS
0

Figure 43 Transformation of ()0
xyz with respect to XYZ

5.5.8 Homogeneous Transformation of ()i

xyz with Respect to XYZ

 0

0
i i

G GT T T=

See Figure 44.

 72

X

Z

z

y

z

y

z

y

Base

UFS

TCS

superior
vertebra
centroid

z

ydigitized point
on superior

vertebra
T0

i

TG
i

TG
0

Figure 44 Transformation of ()i
xyz with respect to XYZ

 73

6.0 APPLICATION OF ANALYTICAL PLATFORM TO DEVELOPMENT AND

TESTING OF NEW CONTROL METHODS

The robotic/UFS testing system is operated in a hybrid control mode for the

determination of the path of passive flexion/extension of a spinal specimen. The hybrid control

algorithm used in the current study is shown schematically in Figure 45.

 74

INPUT:
Estimated COR (tool c.s.)

Angle increment (dRx)
Max allowable sagittal plane forces

Max allowable flexion/extension moment
Estimated specimen stiffness

Start

MOVE: Apply rotation (dRx = angle increment) to
superior vertebra about estimated COR

MEASURE: Current position of COR wrt global c.s.
MEASURE: Forces and moments

COMPUTE: FSU stiffness from previous measured force/
moment and position

COMPUTE: Robot displacement vector to minimize sagittal
plane forces (from computed stiffness)

MOVE: Translate superior vertebra to new "corrected"
position

MEASURE: Forces and moments

j = 1,...,m

k = 1,...,p

Are the measured sagittal
plane forces < max allowable?

No

Is the moment > max
allowable?

No

i = 1,...,n

Yes

Yes

if i is even, flexion to extension
if i is odd, extension to flexion

K calculation

COR update #2

COR update #1

Figure 45 Hybrid control flowchart

 75

As shown in Figure 45, the hybrid control testing algorithm consists of an outer loop

(displacement control) and an inner loop (load control). There are several inputs to the

algorithm: TCS position and orientation, position and orientation of any nodes of interest,

rotation increment size, force threshold, maximum number of force minimizing iterations,

maximum flexion/extension moment and maximum number of flexion/extension cycles. Once

these parameters are input, the hybrid control algorithm begins. During hybrid control, the

passive path of the specimen is found and stored for replay. The specimen begins at a neutral

zero-load position. An incremental rotation is applied to the superior vertebra about the TCS x -

axis to produce planar flexion. If the force created during the rotation is above the user-defined

threshold, the superior vertebra translates in the TCS -plane until either the force is minimized

below the threshold or the maximum number of iterations is reached. When the load control

loop finishes, the force minimized position is stored for replay later and the flexion moment is

compared to the maximum flexion/extension moment. If the moment at the end of the load

control loop has not been greater than the maximum flexion/extension moment three times, the

rotation direction remains flexion and incremental rotations continue to be applied until full

flexion. If the moment has been greater than the maximum three times, the specimen is

considered to be at full flexion and the rotation direction changes to extension. The process is

the same for full flexion to full extension. One complete flexion/extension cycle is full flexion

 full extension full flexion. When finding the passive path of the specimen, it undergoes

preconditioning because the flexion/extension cycles continue until the maximum number of

flexion/extension cycles has been met or the moment and rotation angle at full flexion and full

extension from one cycle to the next do not change by more than 4%.

yz

→ →

 76

To fully validate and characterize the rigid body-spring model, 3 sets of comprehensive

simulations were performed:

Set 1: Use transformation development from section 4.2 to validate model. (Figure 46)

Set 2: Use transformation development to characterize model in pure displacement

control. (Figure 47)

Set 3: Use analytical stiffness matrix from section 4.2 to characterize model in load

control. (Figure 48)

Test # Input
parameter

varied

Testing
procedure

Output
parameter of

interest

Expected outcome

X,Y position of
center and both

ends of bar

X,Y position of bar matches grid
of points.

X,Y position of left end of bar is
–L cm away from the center.

X,Y position of right end of bar
is L cm away from the center.

For xlations along X axis: Fy=0,
Fx=neg. for pos. xlations,

Fx=pos. for neg. xlations, Mz=0
For xlations along Y axis: Fx=0,

Fy=neg. for pos. xlations,
Fy=pos. for neg. xlations, Mz=0
For xlations in 1st quad: Fx=neg.,

Fy=neg., Mz=pos.
For xlations in 2nd quad:

Fx=pos., Fy=neg., Mz=neg.
For xlations in 3rd quad:

Fx=pos., Fy=pos., Mz=pos.

Sign of Fx,Fy,Mz

For xlations in 4th quad:
Fx=neg., Fy=pos., Mz=neg.

Magnitude of
loads in each

spring

Large mag. for points far from
fixed end of spring, decreasing
mag. for points near fixed end

Magnitude of
loads on bar

Mag. grows for points far from
origin

1a Translation
of center of

bar

Create 13x13 grid
of points

(
mm and

mm). Translate
center of bar to

each point.

60 60X− ≤ ≤

60 60Y− ≤ ≤

Potential energy
(work)

High energy for points far from
origin

 77

 Analytical
stiffness matrix
(Kxx,Kxy,Kyy)

For xlations along X axis:
Kxx=sum of spring constants,

Kyy=0
X,Y position of
center and both

ends of bar

Check against hand calculations
for selected CORs.

Sign of Fx,Fy,Mz For COR in 1st quad:
Fx=neg.,Fy=pos.,Mz=pos.

For COR in 2nd quad:
Fx=neg.,Fy=neg.,Mz=neg.

For COR in 3rd quad:
Fx=pos.,Fy=neg.,Mz=pos.

For COR in 4th quad:
Fx=pos.,Fy=pos.,Mz=neg.

Magnitude of
loads in each

spring

Large mag. for points far from
fixed end of spring, decreasing
mag. for points near fixed end

Magnitude of
loads on bar

Mag. grows for points far from
origin

Potential energy
(work)

High energy for points far from
origin

1b Rotation
increment

Use same grid
from test 1a for
COR locations.

Rotate once
around random

CORs by
0 ,30 ,45 ,90

120 ,180 ,210 ,
270 ,360

φ = ° ° ° °
° ° °
° °

Analytical
stiffness matrix
(Kxx,Kxy,Kyy)

Nonlinear stiffness terms

Figure 46 Validate Matlab simulations for rigid body-spring model

Test # Input
parameter

varied

Testing
procedure

Output
parameter of

interest

Expected outcome

Sign of Fx,Fy,Mz
Magnitude of
loads in each

spring
Magnitude of
loads on bar

Potential energy
(work)

Results similar to test 1b. 2a COR
location

Create 13x13 grid
of CORs

(
mm and

mm). Rotate

around each COR
once by , 10

and 1 .

60 60X− ≤ ≤

60 60Y− ≤ ≤

30°
°

°
Analytical

stiffness matrix
(Kxx,Kxy,Kyy)

Results similar to test 1b.

2b Rotation
increment

Use CORs from
above grid.

Rotate about each

Magnitude of
loads in each

spring

Magnitude of loads (in each
spring and on bar) and energy

decreases with decreasing

 78

Magnitude of
loads on bar

Potential energy
(work)

Rotate about each
COR in

1 ,0.5 ,0.25φ = ° ° °

30Φ = °

increments until
reach .

After each
increment,

translate center of
bar to global

origin to
minimize forces.

Analytical
stiffness matrix
(Kxx,Kxy,Kyy)

decreases with decreasing
rotation increment. Stiffness

terms do not change.

Magnitude of
loads in each

spring
Magnitude of
loads on bar

Potential energy
(work)

2x COR
location

Use CORs from
above grid.

Rotate about each
COR in 1φ = °

5Φ = °

increments until
reach .

After each
increment,

translate center of
bar to global

origin to
minimize forces.

Analytical
stiffness matrix
(Kxx,Kxy,Kyy)

Use this test to show that force
can be minimized by translating

bar to global origin.

Figure 47 Characterize rigid body-spring model in displacement control

Test # Input
parameter

varied

Testing
procedure

Output
parameter of

interest

Expected outcome

No. of iterations
to reach

minimized force

Two iterations

Distance of center
of bar from true

force min.
position

Very close to zero

3 COR
location

Create 13x13 grid
of CORs

(
mm and

mm). Rotate

around each COR
by

60 60X− ≤ ≤

60 60Y− ≤ ≤

1φ = °
30Φ = °

 until
reach .
Use analytical
stiffness matrix
for load control.

Potential energy
(work)

Very similar to test 1b

Figure 48 Characterize rigid body-spring model in load control

 79

6.1 Displacement Control Loop of Hybrid Control Algorithm

In the following sections, the rigid body-spring model’s behavior during pure

displacement control will be fully characterized using Matlab simulations. Outcome measures

are the moment and peak force created during rotation, potential energy in the system and

analytical global stiffness matrix. After this characterization, several potential enhancements to

the displacement control loop will be investigated. Three methods of calculating the model’s

preferred COR are evaluated. Two methods of updating the user-chosen COR to the calculated

preferred COR are also examined. One method of calculating the preferred COR and one

method of updating the COR will be chosen and incorporated into a new hybrid control

algorithm.

Before the rigid body-spring model can be used to test potential enhancements to the

displacement or load control loops, it must be validated (Figure 46). The transformations

developed in section 4.2 to describe general rigid body motion were applied to the general rigid

body-spring model shown in Figure 24. For model symmetry, the following parameters were

set: mm, N/mm, 2 8L = 0 1a bk k= = 0 0 60ar a br b= = = =A A A A mm. The center of the bar in the

equilibrium position was set at the global origin. Because of symmetry and the equilibrium

position, the bar’s preferred COR, or the point about which a rotation will result in a pure

moment, is at the global origin. Figure 49 shows data for set 1a and Figure 50 shows

representative data for set 1b. Outcomes are expected. Many hand calculations were performed

to validate these results.

 80

a

b

c

d

e

f

 81

g

h

i

Figure 49 Comprehensive results showing validation of general spring model for translation of
center of bar without any rotation (simulation set 1a). (a) grid of points in the global XY -plane

that the center of the bar was translated to (b) force acting on bar in global X direction (outcome
4a). (c) force acting on bar in global direction (outcome 4b). (d) resultant force acting on bar

in global
Y

XY -plane (outcome 4c). (e) moment acting on bar in global Z direction (outcome
4d). (f) potential energy in system (outcome 5). (g)-(i) global stiffness terms (outcomes 6a-6c).

 82

a

b

c d

e

f

 83

g h

Figure 50 Comprehensive results showing validation of general spring model for rotation of

center of bar about same grid of points shown in Figure 49, 30φΦ = = ° (simulation set 1b). (a)
force acting on bar in global X direction (outcome 4a). (b) force acting on bar in global Y

direction (outcome 4b). (c) resultant force acting on bar in global XY -plane (outcome 4c). (d)
moment acting on bar in global Z direction (outcome 4d). (e) potential energy in system

(outcome 5). (f)-(h) global stiffness terms (outcomes 6a-6c).

After the model was validated, pure displacement control was applied in various rotation

increments about a 13x13 grid of CORs (Figure 47). Figure 51 shows the effect of varying

COR location for a given rotation increment (set 2a). These results are similar to those of set 1b

in that the farther the COR is from the rigid body’s preferred COR, the greater the force created

during rotation and the more work is put into the system. The force created during rotation may

be relieved by translating the center of the bar to the global origin in one step (Figure 52). This

is not load control because the force minimized position was known beforehand so the bar could

be placed there without regard to the loads acting on it.

 84

a

b

c d

e

f

 85

g

h

Figure 51 Comprehensive results showing characterization of general spring model in

displacement control for 1φΦ = (simulation set 2a). (a) force acting on bar in global = ° X
direction (outcome 3a). (b) force acting on bar in global Y direction (outcome 3b). (c) resultant

force acting on bar in global XY -plane (outcome 3c). (d) moment acting on bar in global Z
direction (outcome 3d). (e) potential energy in system (outcome 4). (f)-(h) global stiffness

terms (outcomes 5a-5c).

 86

Figure 52 Representative data showing that the force resulting from rotation about a non-
preferred COR can be relieved by translating the center of the bar to the origin (simulation set

2x)

Results for set 2b illustrate that the force created during rotation is a function of rotation

increment size. The magnitude of the resultant force decreases with decreasing increment size,

but the nonlinear trend for rotation about a given COR remains the same. The moment, potential

energy and global stiffness terms are not affected by the size of rotation increment.

Representative data is shown in Figure 53 and Figure 54. If the only change to displacement

control were decreasing the rotation increment (1≤ °), the peak force created during rotation

would decrease, as desired. Experimentally, this protects the specimen from potential damage,

but increases the time taken to complete a test, possibly introducing stress relaxation to the

specimen. Practically, the rotation increment should be kept to around . If the user notices 0.5°

 87

that the peak force is too high, the increment can be decreased, or if the user notices that the peak

force is low, the test can be sped up by increasing the increment size without compromising the

specimen’s safety. For the remainder of the simulations, a rotation increment of 1 is used to

reduce computation time.

°

 88

a b

c

Figure 53 Representative data for full characterization of the general rigid body-spring model

during displacement control (simulation set 2b) (a) rotated about the true COR located at (0,0) in
the global XY -plane in 1φ = ° increments up to 30Φ = ° (b) the top row of this plot shows the
resultant force acting on the bar after each incremental rotation (outcome 3a), the middle plot

shows the moment acting on the bar after each incremental rotation (outcome 3b) and the bottom
plot shows the potential energy in the system after each incremental rotation (outcome 4) (c)

global stiffness terms plotted over total rotation angle (outcome 5)

 89

a

b

c d

Figure 54 Representative data for full characterization of the general rigid body-spring model
during displacement control (simulation set 2b) (a) rotated about a COR located at (-30,-60) in
the global XY -plane in 1 ,0.5 ,0.25φ = ° ° ° increments up to 30Φ = ° (b) the top row of this plot

shows the resultant force acting on the bar after each incremental rotation (outcome 3a), the
middle plot shows the moment acting on the bar after each incremental rotation (outcome 3b)
and the bottom plot shows the potential energy in the system after each incremental rotation

(outcome 4) (c) top plot of (b) reproduced, resultant force on bar after each rotation decreases for
decreasing rotation increment (d) global stiffness terms plotted over total rotation angle

(outcome 5)

The penalty of rotating about a COR other than the model’s preferred COR while keeping

the user-defined COR fixed locally have now been shown. The farther the user-defined COR is

from the preferred COR, the more severe the penalty, i.e., the peak force is larger. It is

 90

hypothesized that the displacement control loop can be improved by allowing the COR to move

locally. To test this hypothesis, two methods of updating the COR are proposed (Figure 45).

One updates the COR post hoc, while the other method uses feedback to update the COR.

Outcome measures used to evaluate the effectiveness of the proposed changes are the peak force

created during rotation, the work put into the system and the number of iterations required to

reach the force minimized position. Either one of the proposed changes is deemed an

improvement over the current displacement control if the outcome measures decrease.

The first issue to be discussed is how to calculate the preferred COR. Three methods will

be considered: Spiegelman and Woo(42), Crisco et al.(43) and Challis(44). All three methods use

the motion of two markers attached to a moving rigid body to calculate the rigid body’s COR.

The equations reported in literature are reproduced below.

Method #1: Spiegelman and Woo(42)

 1 3S X X= − , 2 4S X X′ = −

 1 3T Y Y= − , T Y2 4Y′ = −

 2 2cos S S T T
S T

φ
′ ′−

=
+

, 2 2

S T T S
S T

φsin
′ ′−

=
+

 ()
[]

1 21 2 sin
2 2 1 cos

X XY YU
φ

φ
−+

= +
−

 ()
[]

1 21 2 sin
2 2 1 cos

Y YX XV
φ

φ
−+

= −
−

 ()12
1

cos
sin sincor

Y UY UX X
φ

φ φ
−−

= + −

 ()12
1

cos
sin sincor

X VX VY Y
φ

φ φ
−−

= − + ,

 91

where ()1 1,X Y are the initial global coordinates of the first marker, ()2 2,X Y are the final

global coordinates of the first marker, ()3 3,X Y are the initial global coordinates of the second

marker, (4 ,)4X Y are the final global coordinates of the second marker, φ is the incremental

rotation and (,cor cor)X Y are the global coordinates of the preferred COR (Figure 55).

Figure 55 Spiegelman and Woo

Method #2: Crisco et al.(43)

 ()1 1,A x y= , ()2 2,A x y′ =

 ()3 3,B x y= , ()4 4,B x y′ =

 u A B= − , u A B′ ′ ′= −

 cos u u
u u

φ
′⋅

=
′

, 21 cossinφ φ= −

 92

 () ()
()

1 2
1 2

sin1
2 2 1 cocor

y y
X x x

s
φ

φ
−

= + +
−

 () ()
()

1 2
1 2

sin1
2 2 1 cocor

x x
Y y y

s
φ

φ
−

= + −
−

,

where ()1 1,x y are the initial global coordinates of marker , A ()2 2,x y are the final global

coordinates of marker , (A)3 3,x y are the initial global coordinate of marker B , (4 4,)x y are the

final global coordinate of marker B , φ is the incremental rotation and (),cor corX Y are the global

coordinates of the preferred COR.

Method #3: Challis(44)

 []v y R x= −

1

1 n

i
i

x x
n =

= ∑ ,
1

1 n

i
i

y y
n =

= ∑

where ix is the global position vector of marker , is the local position vector of

marker , , [

i iy

i 2,3i ,...= n]R is the rotation matrix describing the orientation of the local coordinate

system with respect to the global coordinate system and v is the global location of the local

coordinate system origin.

 i ix x x′ = − , i iy y y′ = −

 ()
1

n

xi yi yi xi
i

P y x y x
=

′ ′ ′ ′= −∑

 ()
1

n

xi xi yi yi
i

Q y x y x
=

′ ′ ′ ′= +∑

 1tan P
Q

φ −
= −

,

 93

where φ is the incremental rotation. φ is inserted into []R in the first equation to

determine v .

 () ()1
2 tan 2 90FCR p R vφ

−
 = + ° ∆

 ()1corX FCR= , ()2cor CR=Y F ,

where () ()(1 2
1
2

)p v t v t= + , ()90R °

)

 is a rotation matrix describing a rotation,

 and (

90°

()2v v t∆ = − ()1v t ,cor corX Y are the global coordinates of the preferred COR (Figure 56).

For every method, 2
corX= 2

corY+error because the true COR is at the origin of the global

coordinate system.

Figure 56 Challis

Several variables must be considered when calculating the preferred COR. The error is a

function of the distance of the final force minimized position from the actual force minimized

position, noisy marker position data and the size of rotation increment that the COR is calculated

over. Any of the methods will calculate the rigid body’s preferred COR when the actual force

 94

minimized position of the rigid body is used. If the position of the rigid body at the end of the

load control loop is not the true force minimized position or is not close to it, the preferred COR

will not be calculated. In addition, all methods are susceptible to error when marker position

data is noisy, especially if calculated over small rotation angles, as shown by the authors. If the

rigid body reaches its force minimized position and marker position data is known exactly, all

methods calculate the rigid body’s preferred COR to within a very small error, even at small

rotation angles.

Experimentally, marker position data will be noisy. Crisco et al. showed that the error

increased exponentially for decreasing rotation angles when normally distributed noise (mean =

0 mm, s.d. = 0.5 mm) is added to marker position for their method and Spiegelman and Woo’s

method. While Crisco’s method performed better, the error for both methods didn’t fall into an

acceptable range until the rotation angle was . Challis showed that his method of

calculating the COR results in the least error of the three methods when noise is introduced, but

the error still increased exponentially for decreasing rotation angles when the same normally

distributed noise is added. Again, the error in this method didn’t fall into an acceptable range

until ∼ .

20°∼

20°

To test the methods of calculating the preferred COR of the analytical rigid body-spring

model, noise may be added to marker position, as done in the literature, or it may be added to the

loads acting on the rigid body because this will affect the final force minimized position. The

experimental system is considered to guide the choice of where to add noise in the analytical

simulations. As shown previously, the positional inaccuracy of the manipulator is not random,

but is a function of the weight on the end-effector. The robot is told to move by a certain amount

to reach the minimum force position. This relies on the robot’s precision, mm, so the 0.02±

 95

position inaccuracy due to the weight on the end-effector should only be a concern when the

“WHERE” command is issued (when we want to know the marker positions). As illustrated by

preliminary experiments, the specimen is able to reach its force minimized position even though

the load cell data may be quite noisy near the force minimized position. Therefore, it is assumed

that the position inaccuracy will be a larger source of noise experimentally and confound COR

calculation more than UFS noise. During simulations, noise is added to marker position; noisy

load data is not considered.

To add noise to marker position in simulations, the simple accuracy experiment from

section 5.4 is used. Recall the linear relationship between percent payload and position error in

the UFS -direction (global y Z -direction):

 ()0.0058* % max payload 0.28error = −

If the above equation were also applied to the UFS -direction, the position error (in

mm) would be overestimated because the UFS -direction had the most slop when performing

the experiment. However, extending the above equation to the -direction is an acceptable

approximation. The percent of maximum payload that is acting on the bar (in the Matlab

z

y

z

X -

and Y -direction) is calculated and inserted into the above equation to obtain position error in the

- and Y Z -directions. The calculated errors are then added to the analytically known marker

positions.

As mentioned above, all methods result in very large error if noisy markers are used to

calculate the preferred COR over small rotation increments. To try to correct this, we can

calculate the COR over larger rotation angles () instead of after every increment (). We

can also limit the amount the COR is allowed to change.

5°∼ 1°∼

 96

The three methods of calculating the preferred COR need to be evaluated for several

cases (Figure 57). Set 4a does not simulate the experimental system because the analytical

solution to the global stiffness matrix used for load control cannot be known. Set 4b does not

simulate the experimental system either because it is highly unlikely that marker position data is

not noisy. Even though these evaluations do not simulate the experimental system, they are

useful for simulation validation. Sets 4c and 4d more closely simulate the experimental system

because noise is added to marker position and the stiffness matrix is calculated numerically (even

though the stiffness matrix in simulations is more exact than what would be encountered

experimentally because the forces and moment are known analytically during simulations). The

numerical calculation of the global stiffness matrix is the one currently used for experiments (the

diagonal terms are calculated as F d∆ ∆ and the off-diagonal terms are set to zero).

 97

Test # Input
parameter

varied

Testing
procedure

Output
parameter of

interest

Expected outcome

4a COR
location

Create 13x13 grid
of CORs

(
mm and

mm). Rotate

about each COR
in

60 60X− ≤ ≤

60 60Y− ≤ ≤

1φ = °

30Φ = °

increments until
reach .

After each
increment,

translate center of
bar to global

origin to
minimize forces.

Calculate
preferred COR

after each
increment using
each proposed

method. Do not
add noise to

marker position.

Distance of
calculated

preferred COR
from true

preferred COR.

Because noise is not added to
marker position and forces are

relieved without using load
control, all methods should

calculate true preferred COR.

 98

4b COR
location

Use CORs from
above grid.

Rotate about each
COR in 1φ = °

30Φ = °

increments until
reach .

After each
increment, use

diagonal stiffness
matrix to translate
bar to minimize

forces. Calculate
preferred COR

after each
increment using
each proposed

method. Do not
add noise to

marker position.

Distance of
calculated

preferred COR
from true

preferred COR.

Because noise is not added to
marker position, all methods

should calculate the same
preferred COR. As long as the

center of the bar reaches the
global origin in 20 iterations or

less, all methods should calculate
true preferred COR.

4c COR
location

Use CORs from
above grid.

Rotate about each
COR in 1φ = °

30Φ = °

increments until
reach .

After each
increment, use

diagonal stiffness
matrix to translate
bar to minimize

forces. Calculate
preferred COR

after each
increment using
each proposed
method. Add

noise to marker
position.

Distance of
calculated

preferred COR
from true

preferred COR.

Because noise is added to marker
position, no method will exactly
calculate true COR. Same noise
is added to marker position, so
all methods will calculate the

same preferred CORs.

 99

4d COR
location

Use CORs from
above grid.

Rotate about each
COR in 1φ = °

30Φ = °

°

increments until
reach .

After each
increment, use

diagonal stiffness
matrix to translate
bar to minimize

forces. Calculate
preferred COR
after each 5

increment using
each proposed
method. Add

noise to marker
position.

Distance of
calculated

preferred COR
from true

preferred COR.

Because noise is added to marker
position, no method will exactly
calculate true COR. Same noise
is added to marker position, so
all methods will calculate the

same preferred CORs.
Calculated preferred CORs will
be closer to true COR because

CORs are calculate over a larger
increment.

Figure 57 Evaluation of proposed changes to displacement control (calculate preferred COR)

Figure 58 and Figure 59 show representative data for sets 4a – 4d. As expected, all

three methods calculate the true preferred COR to within a very small error, on the order of 10 14−

mm, when the bar is translated to the global origin in one step and noise is not added to marker

position (set 4a). Also as expected, all three methods calculate the same preferred COR when

the currently used numerically calculated diagonal stiffness matrix is used in load control, noise

is not added to marker position and the preferred COR is calculated over 1 increments (set 4b).

As long as the bar reaches the global origin within the allowed number of iterations, the error in

calculating the preferred COR is relatively small (Figure 58). If the bar does not reach the force

minimized position, there is more error in COR calculation (Figure 59). When noise is added to

marker position (set 4c), all three methods calculate the same preferred COR, again within a

relatively small error if the bar reaches the force minimized position. This is not surprising

because the same noisy marker positions are used to calculate the COR for all methods. When

°

 100

the preferred COR is calculated using noisy markers over a larger rotation increment (set 4d), the

error remains relatively small, as in Figure 58, or it decreases from a large error, as in Figure 59.

Experimentally, calculating the COR over a larger rotation increment is preferred because there

will be additional noise in the system: load cell noise and any end-effector noise that is

unaccounted for.

Figure 58 Representative data for characterization of performance of three different methods of
calculating the preferred COR, rotated about a COR located at (-20,20) in the global XY -plane
in 1φ = ° increments up to Φ = , plots show the error vs. rotation angle for conditions set in
simulation set 4a (top left plot), simulation set 4b (top right plot), simulations set 4c (bottom left

plot) and simulation set 4d (bottom right plot)

30°

 101

Figure 59 Representative data for characterization of performance of three different methods of
calculating the preferred COR, rotated about a COR located at (-60,60) in the global XY -plane
in 1φ = ° increments up to Φ = , plots show the error vs. rotation angle for conditions set in
simulation set 4a (top left plot), simulation set 4b (top right plot), simulations set 4c (bottom left

plot) and simulation set 4d (bottom right plot)

30°

The effect of noise in marker position on the ability of the three methods to calculate the

preferred COR has been shown. Because all three methods calculate the same preferred COR,

only the Challis method will be considered for further simulations. Even though this method is

more computationally intense than the other two, it is hypothesized that it will perform better in

the experimental system based on performance reported in the literature. Next, proposed

methods of updating the COR are investigated.

 102

To illustrate the difference between post hoc and feedback COR updating, consider the

following. Suppose that we are performing the first cycle of pathseek, going from full flexion

() to full extension (∼) and the COR is calculated in 5 degree increments, i.e., COR1

is calculated using force minimized positions at 15 and 10 of flexion, COR2 is calculated

using force minimized positions at 10 and 5 of flexion, and so on. If the COR is updated post

hoc, COR1 is stored for use in the second pathseek cycle. The user-chosen COR is not updated

to COR1; it is kept the same for ()

15°∼ 15− °

° °

°

10

°

φ+ ° to 5 , where COR2 is calculated. Again, COR2 is

stored for use in the second pathseek cycle, but the user-chosen COR is not updated to reflect

COR2. This algorithm is still stubborn because the initial user-chosen COR is used for the entire

first pathseek cycle. Then, for the second pathseek cycle, COR1 is fixed globally for 15 to 10

of flexion, COR2 is fixed globally for

°

° °

()10 φ+ ° to 5 , etc. If a certain criteria is not met during

the second pathseek cycle, new CORs can be calculated again as in the first pathseek cycle. If

the COR is updated using feedback, then the user-chosen COR is updated in the first pathseek

cycle to COR1 at 10 and fixed locally from

°

° ()10 φ+ ° to 5 . Then COR2 is calculated and

used from (

°

)5 φ+ ° to . This process is repeated for the entire pathseek test if a certain criteria

is not met. Experimentally, the distance the COR is allowed to move will be limited to 5 mm in

each direction because the calculated preferred COR may be far away from the true preferred

COR.

0°

Test # Input
parameter

varied

Testing
procedure

Output
parameter of

interest

Expected outcome

5a COR
location

Create 13x13 grid
of CORs

(

Peak force
created during

rotation

Peak force will be reduced.

60 60X− ≤ ≤

 103

Number of
iterations to

minimize force.

Number of iterations will be
reduced.

(
mm and

mm). Rotate

about each COR
in

60 60X− ≤ ≤

60 60Y− ≤ ≤

1φ = °

30Φ = °

°

increments until
reach .

After each
increment, use

diagonal stiffness
matrix to translate
bar to minimize

forces. Calculate
preferred COR
after each 5

increment using
Challis method.

Add noise to
marker position.

Use post hoc
method to update
COR. Amount
COR is allowed

to change is
limited to 5 mm

in each direction.

Work put into
system

Work will remain unchanged.

Peak force
created during

rotation.

Peak force will be reduced.

Number of
iterations to

minimize force.

Number of iterations will be
reduced.

5b COR
location

Use same testing
method as test 5a,
but use feedback
to update COR.

Work put into
system

Work will remain unchanged.

Figure 60 Evaluation of proposed changes to displacement control (update COR)

Matlab simulations were performed to evaluate the two proposed methods of updating the

COR (Figure 60). Outcome measures for testing proposed improvements are peak force created

during rotation, number of iterations required to minimize force and work put into system

(Figure 61 and Figure 62). The work remains unchanged across varying COR location, COR

 104

calculation method and COR update method because the rigid body-spring model ends up at the

same force minimized position within the limited number of iterations; the work done to the bar

in load control cancels the work done to the bar in displacement control. The results of this test

are not entirely expected. It was hypothesized that using feedback to update the COR would

perform better (smaller peak force and fewer iterations) than updating the COR post hoc. For

most of the CORs in the 13x13 grid, this is true (Figure 62), but for some CORs it is not (Figure

61). Overall, the feedback method is superior, so it will be used in the new hybrid control

algorithm.

 105

Figure 61 Representative data for characterization of performance of two different methods of
updating the user-defined COR as compared with keeping the COR fixed locally (simulation sets
5a and 5b), rotated about a COR located at (-60,60) in the global XY -plane in 1φ = ° increments
up to Φ = , the left column shows data using the post hoc method of updating the COR, the
right column shows data using feedback to update the COR, the top row of plots show the peak
force (in Newtons) created during rotation about the COR vs. rotation angle (outcome 1), the

middle row shows the number of iterations required to minimize force vs. rotation angle
(outcome 2) and the bottom row shows the potential energy (in Newton-mm) in the system vs.

rotation angle (outcome 3)

30°

 106

Figure 62 Representative data for characterization of performance of two different methods of
updating the user-defined COR as compared with keeping the COR fixed locally (simulation sets

5a and 5b), rotated about a COR located at (-20,-40) in the global XY -plane in 1φ = °
increments up to Φ = , the left column shows data using the post hoc method of updating the
COR, the right column shows data using feedback to update the COR, the top row of plots show
the peak force (in Newtons) created during rotation about the COR vs. rotation angle (outcome
1), the middle row shows the number of iterations required to minimize force vs. rotation angle
(outcome 2) and the bottom row shows the potential energy (in Newton-mm) in the system vs.

rotation angle (outcome 3)

30°

 107

Table 1 Tabulated results of simulation sets 5a and 5b showing range of peak force (in
Newtons) and average number of force minimizing iterations for the current method (no COR

update), post hoc update of COR and feedback update of COR

 Range of
peak force (N)

Average
iterations

Current method 1.7611 – 2.7476 5.3

Post hoc 0.1386 – 2.7476 3.4

Feedback 0.1563 – 2.3902 2.3

6.2 Load Control Loop of Hybrid Control Algorithm

The general rigid body-spring model is a coupled nonlinear system that can be described

by two continuous functions, (,)f x y and (),g x y , where (),f x y is the analytical solution for

 developed in section 4.2 and is the analytical solution for , also developed in

section 4.2. The goal of the load control loop is to find the values

XF (,g x)y YF

*x x= and such that

 and . Newton’s method for minimizing two coupled nonlinear

equations is an appropriate method of iteratively calculating the translations

*y y=

i

()* *, 0y =f x (* *,g x y) 0=

x∆ and of the

rigid body to minimize the resultant force

iy∆

(52):

x i y ii i

x i y ii i

i

i

f x f y f

g x g y g

 ∆ + ∆ = −

∆ + ∆ = −
,

where *
i ix x x∆ = − , , and the subscript on functions *

iy y y∆ = − i f and denote the

first derivative of the function with respect to the subscript, i.e.,

g

xf is the first derivative of f

with respect to x . The above set of equations can be rewritten as

 108

 XiXX XY i

YiYX YY i

FxK K
FyK K

− ∆ = −∆
.

Once ix∆ and are known, the new coordinates of the rigid body can be written as iy∆

 1

1

i i

i i

i

i

x x x
y y
+

+ y
= + ∆

 = + ∆
,

This process is repeated iteratively until the rigid body reaches the force minimized

position. Because the stiffness matrix K is only linear over a small range, the magnitudes of

ix∆ and are limited. The above equations assume that iy∆ K is known. Because the analytical

solution for K cannot be known experimentally, it must be calculated numerically. Several

methods of finding K are covered in more detail later.

Before examining any numerical calculations of the stiffness matrix, Newton’s method is

applied to the rigid body-spring model in load control to fully characterize the model. To

accomplish this, two outcome measures are needed: the number of iterations required to

minimize force on the bar and the distance of the final position of the center of the bar from the

true force minimized position (Figure 48). The fully populated analytical stiffness matrix was

used and translations were limited to 1 mm in each direction. When the resultant force on the

bar was less than 10 N, the load control loop ended. Figure 63 shows the distance of the

center of the bar from the global origin, the number of iterations required to minimize force and

the potential energy of the system for two randomly chosen CORs. This data is representative of

the full 13x13 grid of CORs.

5−

 109

a b

Figure 63 Representative data for full characterization of the general rigid body-spring model

during load control (simulation set 3), 1φ = ° increments up to 30Φ = ° , the top row of the plots
show the distance (in mm) of the final force minimized position from the true force minimized
position (the global origin) vs. rotation angle (outcome 1), the middle row shows the number of
iterations required to minimize force vs. rotation angle (outcome 2) and the bottom row shows

the potential energy in the system after each rotation (outcome 3) (a) rotated about a COR
located at (-60,0) in the global XY -plane (b) rotated about a COR located at (10,20) in the

global XY -plane

The osteoligamentous spine is a highly nonlinear, coupled system. Traditionally, in vitro

biomechanical testing has been performed using either the flexibility method or the stiffness

method. The flexibility method applies loads, either singly or in combinations, to the FSU and

the resulting unconstrained motions are measured. The stiffness method applies displacements

and the resulting loads are measured. Flexibility/stiffness coefficients can then be determined.

Assembling the flexibility/stiffness matrix is usually simplified by setting coefficients to zero or

equating them to one another by assuming specimen symmetry. To examine the importance of

coupled flexibility coefficients in modeling cervical spine motion, Winkelstein and Myers(53) fit

linear, piecewise nonlinear and logarithmic functions to cervical spine data to assemble the full

flexibility matrix. They found that including the coupled terms improved model performance.

 110

For the load control loop of our hybrid control algorithm, a stiffness matrix is calculated

numerically and inverted to find the translation necessary to reach the force minimized position

(Figure 45). Currently, the diagonal terms of the matrix are calculated using one force

minimizing translation: XX XK F= ∆ ∆x and YY YK F y= ∆ ∆ , where x∆ and y are the

components of a single translation of the rigid body. This attributes all the change in force in a

certain direction to the displacement in that direction. However, we know that the specimen is a

coupled system. It is hypothesized that including the off-diagonal (coupled) terms in the

stiffness matrix will allow the load control loop to converge to the force minimized position

faster, but the matrix cannot be fully populated using only one translation. Consider a translation

that is some linear combination of

∆

x and : . This translation results in a

change in force in both the

y { , Td x∆ = ∆ ∆ }y

x - and -directions: . We use the linear

relationship to calculate

y { , }T
X YF∆F F∆ = ∆

F K d∆ = ∆ K :

 X XX XY

Y YX YY

F K K x
F K K y

∆ ∆
= ∆ ∆

 X XX XY

Y YX YY

F K x K
F K x K y

y∆ = ∆ + ∆
 ∆ = ∆ + ∆

If we set , then there are two equations and two unknowns: 0XY YXK K= =

XX XK F= ∆ ∆x and YY YK = ∆F ∆y . If we do not set 0XY YXK K= = , then we have two

equations and four unknowns. Thus, the system is underdetermined and we cannot solve for any

of the terms in the stiffness matrix without another translation. However, we shouldn’t wait to

calculate K until after every other translation because this would be a poor approximation to K ,

 111

resulting in inaccurate values for the calculated force minimizing translations. To fully populate

the stiffness matrix, four methods are proposed.

Method #1: apply two perturbations (mm) at each position, with one perturbation

being parallel to the global

1∼

X axis and the other being parallel to the global Y axis. This allows

the full stiffness matrix to be calculated at each position:

Perturbation #1: 1 1 10, 0 ,X Y1x y F F∆ ≠ ∆ = → ∆ ∆

Perturbation #2: 2 2 20, 0 ,X Y 2x y F F∆ = ∆ ≠ → ∆ ∆

 1

1

X
XX

FK
x

∆
=

∆

 2

2

X
XY

FK
y

∆
=

∆

 1

1

Y
YX

FK
x

∆
=

∆

 2

2

Y
YY

FK
y

∆
=

∆

Method #2: apply two perturbations (mm) at each position, with one perturbation

being a linear combination of global

1∼

X and Y and the other perturbation being orthogonal to the

first one. By using global components of the perturbations, we can calculate the full stiffness

matrix at each position.

Perturbation #1: 1 1 10, 0 ,X Y1x y F F∆ ≠ ∆ ≠ → ∆ ∆

Perturbation #2: 2 2 20, 0 ,X Y 2x y F F∆ ≠ ∆ ≠ → ∆ ∆

 2 1 1 2

2 1 1 2

X X
XX

F y F yK
x y x y

∆ ∆ −∆ ∆
= −

−∆ ∆ + ∆ ∆

 112

 ()2 1 1 2

2 1 1 2

X X
XY

F x F x
K

x y x y
− −∆ ∆ + ∆ ∆

=
−∆ ∆ + ∆ ∆

 ()2 1 1 2

2 1 1 2

Y Y
YX

F y F y
K

x y x y
− ∆ ∆ −∆ ∆

=
−∆ ∆ + ∆ ∆

 ()2 1 1 2

2 1 1 2

Y Y
YY

F x F x
K

x y x y
− −∆ ∆ + ∆ ∆

=
−∆ ∆ + ∆ ∆

Method #3: Limit the force minimizing translations in a stepwise fashion:

iteration 1: 1 1 10, 0 ,X Y1x y F F∆ ≠ ∆ = → ∆ ∆

iteration 2: 2 2 20, 0 ,X Y 2x y F F∆ = ∆ ≠ → ∆ ∆

 #

Three of the four terms in the stiffness matrix may be calculated at each position. Refer

to method #1 to see that only two of the terms may be calculated when the displacement in one

direction is zero. The third term is known through symmetry:

iteration 1: 1

1

X
XX

FK
x

∆
=

∆
, 1

1

Y
YX

FK
x

∆
=

∆
, XY YXK K=

iteration 2: 2

2

X
XY

FK
y

∆
=

∆
, 2

2

Y
YY

FK
y

∆
=

∆
, YX XYK K=

 #

The fourth term (for odd numbered iterations, for even numbered iterations) is

carried over from the previous calculation. Clearly, an initial guess for

YYK XXK

K is required for this

method to work.

Method #4: Limit the translations in a stepwise fashion to calculate three of the four

stiffness terms, as in method #3, but apply a perturbation in the orthogonal direction to find the

 113

fourth term. This method is similar to method #1 expect that only one perturbation is applied in

this method, whereas two perturbations are applied in method #1.

To evaluate the proposed change to stiffness matrix population (Figure 64), outcome

measures are the calculated global stiffness terms (compared to analytical stiffness), the distance

of the final load control position from the true force minimized position (for simulations only),

the number of iterations required to minimize the force and the amount of work put into the

system. For simulations, the work of each spring can be summed to find the total work in the

system. However, this isn’t convenient for the experimental system, so it will have to be

approximated as . The outcome measures are compared to the currently used

diagonal stiffness matrix to draw a conclusion about which method to use in the new hybrid

control algorithm.

X YF x F y∆ + ∆

Test # Input
parameter

varied

Testing
procedure

Output
parameter of

interest

Expected outcome

Stiffness matrix
(Kxx,Kxy,Kyy)

Similar to analytical stiffness
terms

No. of iterations
to reach

minimized force

2> iterations

Distance of center
of bar from true

force min.
position

Very close to zero

6 COR
location

Create 13x13 grid
of CORs

(
mm and

mm). Rotate

around each COR
by 1 degree until
reach 30 degrees.

Use numerical
matrices 1-4 for

load control.

60 60X− ≤ ≤

60 60Y− ≤ ≤

Potential energy
(work)

Very similar to test 1b

Figure 64 Evaluation of proposed changes to load control

Figure 65 - Figure 69 show representative data for test 6. Figure 65 - Figure 67 show

that methods #1 and #2 calculate the correct stiffness values for , and as compared XXK XYK YYK

 114

to the analytical values. Methods #3 and #4 also calculate correct values for , and ,

except for translations of the bar along the global X or Y axes, while the current diagonal

stiffness calculation does not calculate the correct stiffness values for , and at any

COR location.

XXK

XYK

XYK

K

YYK

XXK YY

 115

a

b

c d

e

f

 116

Figure 65 Values of for different calculation methods (a) analytical solution (b) using
current method (c) using proposed method #1 (d) using proposed method #2 (e) using

proposed method #3 (f) using proposed method #4

XXK

 117

a

b

c

d

e f

 118

Figure 66 Values of for different calculation methods (a) analytical solution (b) using
current method (c) using proposed method #1 (d) using proposed method #2 (e) using

proposed method #3 (f) using proposed method #4

XYK

 119

a

b

c

d

e f

 120

Figure 67 Values of for different calculation methods (a) analytical solution (b) using

current method (c) using proposed method #1 (d) using proposed method #2 (e) using
proposed method #3 (f) using proposed method #4

YYK

Figure 68 shows that forces created during rotation are reduced using the current

diagonal stiffness matrix, even if the correct stiffness values are not calculated. This plot is

representative of the full grid of CORs and for each proposed method of stiffness calculation.

Figure 69 shows that method #3 results in the smallest error and few iterations. Methods #1 and

#2 take the fewest iterations to minimize force at large rotation angles, but method #3 only takes

one or two iterations longer. Method #4 consistently results in a much higher number of

iterations even though the error is comparable to the other three methods. It can also be seen in

Figure 69 that when the diagonal stiffness matrix is used during load control, the number of

iterations suddenly drops from about 20 iterations at about 2 iterations at 18°, whereas the

iterations either decrease predictably or remain low when using one of the full stiffness matrices.

There are several CORs in the grid for which this is true. It is reasonable to say that for these

CORs the diagonal stiffness terms are either underestimated or overestimated. If the stiffness

terms are underestimated, then a large displacement is calculated when the matrix is inverted.

The center of the bar is limited to a translation of 1 mm in each direction, so the bar is

overshooting the true force minimized position in this case. If the stiffness terms are

overestimated, then a small displacement is calculated when the matrix is inverted. The center of

the bar then is undershooting the true force minimized position on the first iteration, but is able to

minimize force within 2 or 3 iterations because the displacements are not too small.

 121

Figure 68 Force created during rotation is minimized by using the current diagonal stiffness
matrix

 122

Figure 69 Representative data for characterization of performance of four different methods of
calculating the fully populated stiffness matrix as compared with the current diagonal stiffness

matrix (simulation set 6), rotated about a COR located at (0,-60) in the global XY -plane in
1φ = ° increments up to Φ = , the left column shows the distance (in mm) of the final force

minimized position from the true force minimized position (the global origin) vs. rotation angle
(outcome 1), the middle column shows the number of iterations required to minimize force vs.
rotation angle (outcome 2) and the right column shows the potential energy (in Newton-mm) in

the system vs. rotation angle (outcome 3), the top row of plots shows results for proposed
method #1, the next row shows results for proposed method #2, the next row shows results for

proposed method #3 and the bottom row shows results for proposed method #4

30°

Choosing which method to use for calculating the stiffness matrix experimentally

depends on the desired use of the matrix. If the user simply wishes to use the matrix for load

control without concern to the actual stiffness values that are being calculated, method #3 should

be used because it results in the least error, takes a small number of iterations to minimize force

and results in a faster test because perturbations do not need to be applied at every position.

 123

However, if the user wants to approximate the specimen’s stiffness, method #1 or method #2

should be used because these methods not only perform well during load control, but also closely

match the analytical stiffness. Method #3 will be used in the new hybrid control algorithm.

Table 2 Tabulated results of simulation set 6 showing average number of force minimizing

iterations for the current method (diagonally populated stiffness matrix), proposed method #1
(apply two perturbations parallel to global X and Y axes), proposed method #2 (apply two

orthogonal perturbations in global XY -plane), proposed method #3 (constrain force minimizing
translations to stairsteps parallel to global X and Y axes) and proposed method #4 (constrain

translations as in method #3 and apply one orthogonal perturbation)

 Average
iterations

Current method 5.3

Method #1 4.7

Method #2 4.8

Method #3 5.2

Method #4 12.7

6.3 Improved Hybrid Control Algorithm

After identifying the best performing changes to displacement and load control, they

were combined into a new hybrid control system and the new algorithm is compared with the old

one. (Figure 70) A 13x13 grid of CORs (60 60X− ≤ ≤ mm and 60 60Y− ≤ ≤

1

 mm) was

created. The center of the bar was rotated about each COR by φ = ° increments until 30Φ = °

°

.

After each incremental rotation, method #3 was used during the load control loop to calculate the

global stiffness terms and the force minimizing translations. The preferred COR was calculated

using Challis’ method by using the force minimized positions at and 5 , 5 and 10 , etc. 0° ° °

 124

The COR was updated using feedback. Outcome measures for evaluating the new hybrid control

algorithm are the peak force created during rotation, the number of iterations required to

minimize force, the distance of the center of the bar from the global origin at the final load

control step and the work done to the system.

Test # Input
parameter

varied

Testing
procedure

Output
parameter of

interest

Expected outcome

Peak loads
generated during

rotation

Peak loads decreased with new
hybrid control algorithm.

Number of
iterations to reach

minimum force

Number of iterations to reach
minimum force reduced with
new hybrid control algorithm.

Distance of center
of bar from global

origin.

Because forces and marker
positions are known analytically,
the error will not change much

from old algorithm to new.

7 COR
location

Create 13x13 grid
of CORs

(
mm and

mm). Rotate

around each COR
by

60 60X− ≤ ≤

60 60Y− ≤ ≤

1φ = °

30Φ = °

°

increments until
reach .

Calculate
stiffness using

method #3.
Calculate

preferred COR
every 5 using
Challis method.

Add noise to
marker position.

Update COR
using feedback

method.

Work done to
model

Work done to model unchanged
with new hybrid control system

Figure 70 Evaluation of new hybrid control algorithm

Figure 71 shows a representative plot for comparing old and new algorithm outcome

measures for simulations. As expected, the work remained unchanged from the old algorithm to

the new one. The peak force decreased when using the new algorithm, but the number of

iterations increased. However, this increase is still within an acceptable range. The distance of

 125

the center of the bar from the global origin is very small, on the order of 10 mm. The plots

generated for the full grid of CORs show that the new hybrid control algorithm decreases the

peak force created during rotation, does not add additional work to the system, results in very

little error during load control and takes a relatively small number of iterations to minimize

force.

3−

Figure 71 Representative data for characterization of performance of new hybrid control
algorithm as compared with the old algorithm (simulation set 7), rotated about a COR located at
(0,20) in the global XY -plane in 1φ = ° increments up to 30Φ = ° , the top row of the plot shows

the peak force (in Newtons) created during rotation vs. rotation angle (outcome 1), the second
row shows the number of iterations required to minimize force vs. rotation angle (outcome 2),
the third row shows the distance (in mm) of the final force minimized position from the true

force minimized position (the global origin) vs. rotation angle (outcome 3) and the bottom row
shows the potential energy (in Newton-mm) in the system vs. rotation angle (outcome 4).

 126

Table 3 Tabulated results of simulation set 7 showing range of peak force (in Newtons) and

average number of force minimizing iterations for the current hybrid control algorithm (no COR
update and diagonally populated stiffness matrix) and the new hybrid control algorithm
(feedback COR update and fully populated stiffness matrix calculated using method #3)

 Range of

peak force (N)
Average
iterations

Old algorithm 1.7611 – 2.7476 5.3

New algorithm 0.1563 – 2.3866 4.9

 127

7.0 DISCUSSION

7.1 Summary

A tabletop robotic/UFS testing system that interacts with Matlab to apply hybrid control

to testing of lumbar spines was developed. The experimental system was validated analytically

using rigid body transformations simulated in Matlab. Changes to displacement control and load

control were tested and an improved hybrid control algorithm was developed that may be used

for delineating biomechanical properties of the human lumbar spine. Specific aim 2a was

performed to test the hypothesis that allowing the user-defined COR to move locally as well as

globally would decrease the peak force created during rotation and decrease the number of

iterations required to minimize that force. Results from section 6.1 show that the general rigid

body-spring model used during simulations supported this hypothesis. Specific aim 2b was

performed to test the hypotheses that fully populating the stiffness matrix would decrease the

number of iterations required to minimize force created during rotation and that the fully

populated matrix would provide a better approximation of the true stiffness values than the

diagonal stiffness matrix. Results from section 6.2 show that the number of iterations was

reduced for proposed methods #1 - #3, while the iterations increased for proposed method #4.

Results from this section also show that methods #1 and #2 provided the best approximation to

the true stiffness values of the general rigid body-spring model for all CORs in the grid, while

methods #3 and #4 closely approximated the true stiffness values for most of the CORs in the

grid. Results from section 6.3 show that after combining the proposed changes to both the

displacement and load control loops, the range of peak force created during rotation about the

grid of user-defined CORs and the number of iterations required to minimize that force both

 128

decreased. The analytical and experimental platforms will work in conjunction for future studies

of advanced control methods for spine testing. Because Matlab was used both analytically and

experimentally, the programs may be executed on any PC.

7.2 Limitations and Future Work

Despite some apparent limitations of using hybrid control with a robotic/UFS testing

system, including specimen viscoelasticity and some slop in the manipulator’s joints, the testing

system described in the above sections provides a controllable testing apparatus with a control

algorithm that is hypothesized to be similar to what the body employs in vivo. Control

algorithms can always be improved and the research done in this thesis is no exception. For

further improvement to the displacement control loop, another method of updating the COR

should be considered: feedforward. Feedforward can be used if some pattern is recognized in the

path of the calculated CORs. Suppose that the preferred COR is calculated every 5 and the

path made by

°

5nφ calculated CORs looks approximately quadratic. Then a quadratic function

can be fit to the path of CORs and the position of the next COR can be predicted. This predicted

COR is fed forward and used for the next rotation. Least squares is one possible method of

fitting a function to the COR path. To use least squares, a curve is fit to a set of data points:

(,i i)x Y for . The least squares approximation to the data is a function of 1, 2,...,i = n ix :

. In order to ideally use least squares with feedforward control, we should know the

form of a priori. However, this is highly unlikely unless many specimens have been tested

and a pattern emerges. One option is to plot the COR path during the test. If a pattern emerges

from the plot, the user would have to be allowed to stop the test and suggest the form of to the

()ix

y

y f=

y

 129

Matlab program. Problems with this include longer tests and keeping the specimen at some

position other than neutral for extended periods of time. Another option is to fit a linear function

between two successive CORs. This may be a poor approximation, but further tests will have to

elucidate that.

Another improvement to displacement control involves fully characterizing the

manipulator’s position inaccuracy. The simple one DOF experiment from section 5.4 shows that

the manipulator’s position inaccuracy due to varying weight on the end-effector may be

corrected using load cell data for a certain position in space. Future work should be done to fully

characterize the position inaccuracy in each direction for the workspace encountered during

specimen testing. This will improve COR calculation because marker position noise will be

reduced to nearly zero.

A further limitation of the current study is the tacit assumption of sagittal plane symmetry

of the specimens. The hybrid control algorithm constrains motions to the mid-sagittal plane—

thus non-sagittal force () and moments (xF yM and zM) are not explicitly controlled, even

though coupled loads in these non-sagittal DOF have been found to be rather minimal.(13) In the

future, we would like to extend the control algorithm to three dimensions to enable minimization

of all coupled loads. One approach may be to base the three-dimensional hybrid control

algorithm on finite rotations about and translations along a continually updated screw

displacement axis (SDA) or helical axis of motion (HAM). In addition to correcting for sagittal

plane asymmetry, full three-dimensional motion can elucidate the altered kinematics of clinically

unstable specimens. The hybrid control algorithm itself can elucidate the kinematics of either

clinically stable or unstable specimens because it finds the passive path of the specimen.

However, suppose that a specimen has undergone a unilateral facetectomy. In this case,

 130

confining motion to the sagittal plane may not find the passive path during flexion/extension

because it is possible that the passive path does not lie in this plane. Finding the altered passive

path moments then requires full three-dimensional motion.

7.3 Conclusion

This thesis has described development of analytical and experimental platforms and

refinement of the testing algorithm for delineating spine kinetics. The analytical platform

provides the ability to test experimental protocols and elucidate subtle complexities of any given

change to the testing algorithm that may be lost in the experimental system. The robotic/UFS

testing system provides a system that is totally controlled with the regulated application of six

DOF loads and displacements. The refined hybrid control algorithm produces better data by

reducing imposition of a COR that the specimen does not prefer and including coupled stiffness

terms that had previously been ignored. Utilizing an off the shelf, readily available language

such as Matlab introduces uniformity into robotic systems. Built-in functions in Matlab and a

PC with a fast processor allow the user to simplify the program and implement complicated

control systems. If several different types of controllers are to be used together, each with its

own language, a single PC-based language can be used to standardize the system. This allows

programs to be written and shared between any number of users with an external PC interface

system. In summary, the robotic/UFS testing system with refined hybrid control facilitates

improved biomechanical testing of spinal segments, thus leading to a better understanding and

treatment of spinal pathologies.

 131

APPENDICES

APPENDIX A

Matlab code for simulations

hand14a.m is a Matlab script that simulates hybrid control of a rigid body-spring model.

Parameters for the spring model are input at the beginning of the script. Several functions are

called by hand14a.m. They are included in this appendix after hand14a.m in the order in which

they appear in the script.

% hand14a.m
% analytical rigid body-spring model
% rotate about COR in phi degree increments
% Amy Loveless
% 3/12/2003

clear all

% ==
% General model parameters
% spring constants (N/mm)
ka = 1;
kb = 1;
% resting length of springs (mm)
lar = 60;
lbr = 60;
% length of spring when inserted into system (mm)
la_init = 60;
lb_init = 60;
% length of half of bar (mm)
L = 40;
% local positions of nodes attached to rigid body (mm)
axy = [-L 0];
bxy = [L 0];
% global positions of fixed nodes (mm)
jaXY = [-(L+la_init) 0];
jbXY = [L+lb_init 0];
theta = 0;

%% ==
%% Physical model parameters
%% spring constants (N/mm)
%ka = 12.033; % blue
%kb = 11.55; % red
%% resting length of springs (mm)
%lar = 1.955*2.54*10; % blue

 133

%lbr = 2.936*2.54*10; % red
%% length of springs when inserted into system (mm)
%la_init = lar + 0.382*2.54*10; % blue
%lb_init = lbr + 0.387*2.54*10; % red
%% length of half of bar (mm)
%L = 28;
%% local positions of nodes attached to rigid body (mm)
%axy = [-L 0];
%bxy = [L 0];
%% global positions of fixed nodes (mm)
%jaXY = [-cos(70*pi/180)*(L+la_init) -sin(70*pi/180)*(L+la_init)];
%jbXY = [cos(70*pi/180)*(L+lb_init) sin(70*pi/180)*(L+lb_init)];
%theta = 70;
%% ==

% local positions of markers attached to rigid body (mm)
mark1xy = [-L 0];
mark2xy = [L 0];

% amount of rotation from resting position (rad)
phi = deg2rad(1);
PHI = 30;
kk = round(PHI/rad2deg(phi));

% limit magnitude of translations
t_lim = 1; % mm
const_stiff = 10; % N/mm

cor_lim = 5; % mm
ftarget = 10^-5; % N
iterations = 20;
tick = 0;
index = 1;

% define unit vectors
ihat = [1; 0; 0];
jhat = [0; 1; 0];
khat = [0; 0; 1];

% % initialize graph display for forces and moments
% fh = figure('Position', [150 100 600 600], 'Color', 'w', 'doublebuffer',
'on');
% fgraph = axes('Parent', fh, 'Position', [.1 .6 .8 .35], 'XLim', [0
iterations], 'YLim', [-50 50], 'nextplot', 'add');
% forceufs = line('XData', 0, 'YData', 0, 'Color', 'k', 'Marker', '.',
'markersize', 8, 'erasemode', 'none');
%
% % initialize variables for drawing position of bar
% ah = axes('Position', [.1 .05 .5 .5], 'GridLineStyle', ':', 'XLim', [-110
110], 'YLim', [-110 110], 'nextplot', 'add');
% set(ah, 'XColor', [.7 .7 .7], 'YColor', [.7 .7 .7], 'XGrid', 'on', 'YGrid',
'on');
% bar = line('xdata', [0 0], 'ydata', [0 0], 'color', 'k', 'linewidth', 10);
% springa = line('xdata', [0 0], 'ydata', [0 0], 'color', 'b', 'linewidth',
3);
% springb = line('xdata', [0 0], 'ydata', [0 0], 'color', 'r', 'linewidth',
3);

 134

%
% handles = [fh, fgraph, forceufs, ah, bar, springa, springb];

for var = 1:1:13
for cycle = 1:2
for z = 6:5:11
 for i = 13:13
 for j = var:var

 if (z == 11) & (cycle == 1)
 break
 elseif (z == 6) & (cycle == 2)
 break
 end

 theta = deg2rad(0);
 thetaG(i,j) = theta;
 temp = theta;
 thetaCOR(i,j) = 0;
 thetaa(i,j) = 0;
 thetab(i,j) = 0;
 thetaja(i,j) = 0;
 thetajb(i,j) = 0;

 % make 13x13 grid of points for COR and translation of center of bar
(mm)
 % these points are defined FROM X,Y TO xTCS0,yTCS0
 PXY = [0 0];
 if (cycle == 1) | (cycle == 2)
 corX(i,j) = (-60+(j-1)*10)*cos(theta)+(60-(i-1)*10)*sin(theta);
 corY(i,j) = (60-(i-1)*10)*cos(theta)-(-60+(j-1)*10)*sin(theta);
 corXY = [corX(i,j) corY(i,j)];
 end
% dxy = [-60+(j-1)*10 60-(i-1)*10];
 dxy = [0 0];

 % initialize variables
 work = 0;
 u = 0;
 f_temp = 0*ones(1,6);
 fmw = f_temp;
 index = 1;
 numdiagK2 = -ones(2,2);, numfullK2 = -ones(2,2);, numdiagK3 = -
ones(3,3);, numfullK3 = -ones(3,3);
 pertK = -ones(2,2);
 fminmzd(j,1:kk) = 0;

 for k = 1:kk

% % COR update option 1:
% % store calculated CORs to be replayed in the next cycle
% if cycle ~= 1
% corXY = [cXY(1,index) cXY(2,index)];
% end

 % COR update option 2:
 % calculate & update COR every 5 degrees

 135

% if (isequal(int2str((k+4)/5), num2str((k+4)/5))) & (k > 1) &
(cycle ~= 1)
 if (isequal(int2str((k+4)/5), num2str((k+4)/5))) & (k > 1) &
(cycle ~= 1) & (z == 11)
 corXY = [cXY(1,index-1) cXY(2,index-1)];
 end

 % TRANSFORMATIONS
===

 % (P1X, P1Y) is the global position of reference point P after
planar motion
 [P1X(i,j), P1Y(i,j), TG0, TG1, corXY] =
refpointtrans(thetaG(i,j), PXY, thetaCOR(i,j), corXY, phi, dxy, 'g');
 PX(k,1) = P1X(i,j);, PY(k,1) = P1Y(i,j);

 % call node 1 "node a" and node 2 "node b"

 % (a1X, a1Y) is the global position of node a after planar motion
(from X,Y to xa1,ya1)
 % La0 and La1 are the lengths of spring a at time t0 and time t1
(mm)
 [a1X(i,j), a1Y(i,j), la0, la1, T0a0, T1a1] =
nodaltrans(thetaa(i,j), axy, thetaja(i,j), jaXY, TG0, TG1);
 if isequal(int2str((k+4)/5), num2str((k+4)/5)), TGa0 = TG0*T0a0;,
a0X = TGa0(1,4);, a0Y = TGa0(2,4);, end
% TGa0 = TG0*T0a0;, a0X = TGa0(1,4);, a0Y = TGa0(2,4);

 % (b1X, b1Y) is the global position of node b after planar motion
(from X,Y to xb1,yb1)
 % Lb0 and Lb1 are the lengths of spring b at time t0 and time t1
(mm)
 [b1X(i,j), b1Y(i,j), lb0, lb1, T0b0, T1b1] =
nodaltrans(thetab(i,j), bxy, thetajb(i,j), jbXY, TG0, TG1);
 if isequal(int2str((k+4)/5), num2str((k+4)/5)), TGb0 = TG0*T0b0;,
b0X = TGb0(1,4);, b0Y = TGb0(2,4);, end
% TGb0 = TG0*T0b0;, b0X = TGb0(1,4);, b0Y = TGb0(2,4);

 % calculate change in length of spring a at time t0 and time t1
(mm)
 deltaa0(i,j) = sqrt(la0'*la0) - lar;
 deltaa(i,j) = sqrt(la1'*la1) - lar;

 % calculate change in length of spring b at time t0 and time t1
(mm)
 deltab0(i,j) = sqrt(lb0'*lb0) - lbr;
 deltab(i,j) = sqrt(lb1'*lb1) - lbr;

 % (mark1X, mark1Y) & (mark2X, mark2Y) are the global positions of
markers 1 & 2
 if isequal(int2str((k+4)/5), num2str((k+4)/5))
 T0mark1 = trans(0, mark1xy(1), mark1xy(2), 0);, TGmark1 =
TG0*T0mark1;
 T0mark2 = trans(0, mark2xy(1), mark2xy(2), 0);, TGmark2 =
TG0*T0mark2;
 mark1X(k) = TGmark1(1,4);, mark1Y(k) = TGmark1(2,4);
 mark2X(k) = TGmark2(1,4);, mark2Y(k) = TGmark2(2,4);

 136

 end
 [mark1X(k+1), mark1Y(k+1)] = nodaltrans(0, mark1xy, thetajb(i,j),
jbXY, TG0, TG1);
 [mark2X(k+1), mark2Y(k+1)] = nodaltrans(0, mark2xy, thetajb(i,j),
jbXY, TG0, TG1);

 % FORCES/MOMENTS
==

 % calculate global force at time t0 due to spring a
 % this is the force present in the system at time t0, but would
not
 % appear in the UFS when the robot is initially attached to the
model.
 Fa0 = force2(ka, deltaa0(i,j), la0, thetaG(i,j)+thetaa(i,j), 0,
0, 0);
 % calculate global force at time t1 due to spring a
 Fa1 = force2(ka, deltaa(i,j), la1, thetaG(i,j)+thetaa(i,j)+phi,
0, 0, 0);

 % calculate global force at time t0 and time t1 due to spring b
 Fb0 = force2(kb, deltab0(i,j), lb0, thetaG(i,j)+thetab(i,j), 0,
0, 0);
 Fb1 = force2(kb, deltab(i,j), lb1, thetaG(i,j)+thetab(i,j)+phi,
0, 0, 0);

 % calculate global forces and moment at point P at time t0
 F0X(i,j) = dot(Fa0+Fb0,ihat);, F0Y(i,j) = dot(Fa0+Fb0,jhat);
 Ma0 = moment1(thetaG(i,j), 0, 0, 0, T0a0(1:3,4), Fa0, khat);
 Mb0 = moment1(thetaG(i,j), 0, 0, 0, T0b0(1:3,4), Fb0, khat);
 M0Z(i,j) = Ma0 + Mb0;

 % calculate global forces and moment at point P at time t1
 F1X(i,j) = dot(Fa1+Fb1,ihat);, F1Y(i,j) = dot(Fa1+Fb1,jhat);
 Ma1 = moment1(thetaG(i,j)+phi, 0, 0, 0, T1a1(1:3,4), Fa1, khat);
 Mb1 = moment1(thetaG(i,j)+phi, 0, 0, 0, T1b1(1:3,4), Fb1, khat);
 M1Z(i,j) = Ma1 + Mb1;

 fmw = [F1X(i,j) F1Y(i,j) 0 0 0 M1Z(i,j)];
 FX(k,1) = F1X(i,j);, FY(k,1) = F1Y(i,j);, MZ(1) = M1Z(i,j);
% F(j,k) = sqrt(F1X(i,j)^2 + F1Y(i,j)^2);
 F(k,1) = sqrt(F1X(i,j)^2 + F1Y(i,j)^2);

 % find the magnitude of the peak force for each degree of
rotation
 magf(k,1) = sqrt(F1X(i,j)^2 + F1Y(i,j)^2);
 work = (-0.5)*ka*deltaa(i,j)^2 + (-0.5)*kb*deltab(i,j)^2;
 u = 0.5*ka*deltaa(i,j)^2 + 0.5*kb*deltab(i,j)^2;

 % STIFFNESS
===

 % use analytical solution to find stiffness
 PXYstiff = [P1X(i,j) P1Y(i,j)];
 if (z == 2) | (z == 3)
 [Kxx1(i,j), Kxy1(i,j), Kyx1(i,j), Kyy1(i,j)] = stiff(z, ka,
lar, jaXY, axy, PXYstiff, thetaG(i,j)+phi, kb, lbr, jbXY, bxy);

 137

 anadiagK2 = [Kxx1(i,j) 0; 0 Kyy1(i,j)];
 anafullK2 = [Kxx1(i,j) Kxy1(i,j); Kyx1(i,j) Kyy1(i,j)];
 end

 % use numerical method to find stiffness
% if (z == 6) | (z == 8)
 if ((z == 6) | (z == 8)) & (cycle == 1)
 diffload = [fmw(1)-f_temp(1) fmw(2)-f_temp(2) fmw(6)-
f_temp(6)];
 diffdisp = [P1X(i,j)-PXY(1) P1Y(i,j)-PXY(2) phi];
 [Kxx, Kyy, Kzz] = stiff(z, diffload, diffdisp, fmw,
numdiagK3);
 % 2x2 matrix
 numdiagK2 = [Kxx 0; 0 Kyy];
 % 3x3 matrix
 numdiagK3 = [Kxx 0 0; 0 Kyy 0; 0 0 Kzz];
 end

% % perturb bar to find stiffness
% if (z == 10) | (z == 11)
% [Kxxp(i,j), Kxyp(i,j), Kyxp(i,j), Kyyp(i,j)] = stiff(z, 2,
thetaG(i,j)+thetaa(i,j)+phi, la1, thetaG(i,j)+thetab(i,j)+phi, lb1,...
% lar, lbr, ka, kb, [F1X(i,j) F1Y(i,j)], thetaG(i,j)+phi,
T1a1(1:3,4), T1b1(1:3,4), M1Z(i,j), [P1X(i,j) P1Y(i,j)],...
% thetaCOR(i,j)+phi, corXY, thetaa(i,j), axy,
thetaja(i,j), jaXY, thetab(i,j), bxy, thetajb(i,j), jbXY);
% pertK = [Kxxp(i,j), Kxyp(i,j); Kyxp(i,j), Kyyp(i,j)];
% % pertK = [Kxxp(i,j), Kxyp(i,j) Kzxp(i,j); Kyxp(i,j), Kyyp(i,j)
Kyzp(i,j); Kzxp(i,j) Kzyp(i,j) Kzzp(i,j)];
% end

 % store current force and position
 f_temp = fmw;
 PXY = [P1X(i,j) P1Y(i,j)];

 % housekeeping variables
 KXX(k,1) = pertK(1,1);, KXY(k,1) = pertK(1,2);
 KYX(k,1) = pertK(2,1);, KYY(k,1) = pertK(2,2);
% invK = pinv([numfullK2(1,1) numfullK2(1,2); numfullK2(2,1)
numfullK2(2,2)]);
% invKXX(k,1) = invK(1,1);, invKXY(k,1) = invK(1,2);
% invKYX(k,1) = invK(2,1);, invKYY(k,1) = invK(2,2);

% % draw position of bar
% draw2(handles, [P1X(i,j), P1Y(i,j)], [corX(i,j) corY(i,j)],
[a1X(i,j), a1Y(i,j)], [b1X(i,j), b1Y(i,j)], jaXY, jbXY, temp,...
% [mark1X(k+1), mark1Y(k+1)], [mark2X(k+1), mark2Y(k+1)],
[F1X(i,j), F1Y(i,j)], tick);

 % update total rotation angle
 theta = theta + phi;
 thetaG(i,j) = theta;
 thetaCOR(i,j) = theta - thetaG(i,j) + k*phi;

 % FORCE MINIMIZATION
===
 for counter = 1:iterations

 138

% if (z == 13) | (z == 12) | (z == 11) | (z == 10)
 if ((z == 13) | (z == 12) | (z == 11) | (z == 10)) & (cycle >
1)
 dXY = fmin(z, pertK, [fmw(1:2) fmw(6)]', 'y', t_lim);
 % if counter is even, set translation in X direction to
zero
 % if counter is odd, set translation in Y direction to
zero
 if isequal(num2str(counter/2), int2str(counter/2)) %
counter is even
 dXY(1) = 0;
 else % counter is odd
 dXY(2) = 0;
 end
 elseif z == 9
 dXY = fmin(z, numfullK3, [fmw(1:2) fmw(6)]', 'y', t_lim);
 elseif z == 8
 dXY = fmin(z, numdiagK3, [fmw(1:2) fmw(6)]', 'y', t_lim);
 elseif z == 7
 dXY = fmin(z, numfullK2, [fmw(1:2) fmw(6)]', 'y', t_lim);
% elseif z == 6
 elseif (z == 6) & (cycle == 1)
 dXY = fmin(z, numdiagK2, [fmw(1:2) fmw(6)]', 'y', t_lim);
 elseif z == 5
 dXY = fmin(z, anafullK3, [fmw(1:2) fmw(6)]', 'y', t_lim);
 elseif z == 4
 dXY = fmin(z, anadiagK3, [fmw(1:2) fmw(6)]', 'y', t_lim);
 elseif z == 3
 dXY = fmin(z, anafullK2, [fmw(1:2) fmw(6)]', 'y', t_lim);
 elseif z == 2
 dXY = fmin(z, anadiagK2, [fmw(1:2) fmw(6)]', 'y', t_lim);
 elseif z == 1
 dXY = fmin(z, F1X(i,j), F1Y(i,j), const_stiff);
 end

% dXY = [-P1X(i,j) -P1Y(i,j)]';

 ddXY(:,1) = dXY;
 dX(k,counter) = dXY(1);
 dY(k,counter) = dXY(2);

 % find global positions of point P, nodes a & b, and markers
1 & 2 at new force minimized position
 [P1X(i,j), P1Y(i,j), TG0, TG1, corXY] =
refpointtrans(thetaG(i,j), PXY, thetaCOR(i,j), corXY, 0, [dXY(1) dXY(2)],
'g');
 PX(k,counter+1) = P1X(i,j);, PY(k,counter+1) = P1Y(i,j);

 [a1X(i,j), a1Y(i,j), la0, la1, T0a0, T1a1] =
nodaltrans(thetaa(i,j), axy, thetaja(i,j), jaXY, TG0, TG1);
 [b1X(i,j), b1Y(i,j), lb0, lb1, T0b0, T1b1] =
nodaltrans(thetab(i,j), bxy, thetajb(i,j), jbXY, TG0, TG1);
 deltaa(i,j) = sqrt(la1'*la1) - lar;
 deltab(i,j) = sqrt(lb1'*lb1) - lbr;
 [mark1X(k+2), mark1Y(k+2)] = nodaltrans(0, mark1xy,
thetajb(i,j), jbXY, TG0, TG1);

 139

 [mark2X(k+2), mark2Y(k+2)] = nodaltrans(0, mark2xy,
thetajb(i,j), jbXY, TG0, TG1);
% corX(i,j) = corXY(1);, corY(i,j) = corXY(2);

% % draw position of bar
% tick = tick + 1;
% draw2(handles, [P1X(i,j), P1Y(i,j)], [corX(i,j) corY(i,j)],
[a1X(i,j), a1Y(i,j)], [b1X(i,j), b1Y(i,j)], jaXY, jbXY, temp,...
% [mark1X(end), mark1Y(end)], [mark2X(end), mark2Y(end)],
[F1X(i,j), F1Y(i,j)], tick);

 % find forces & moment at new position
 Fa1 = force2(ka, deltaa(i,j), la1, thetaG(i,j)+thetaa(i,j),
0, 0, 0);
 Fb1 = force2(kb, deltab(i,j), lb1, thetaG(i,j)+thetab(i,j),
0, 0, 0);
 F1X(i,j) = dot(Fa1+Fb1,ihat);, F1Y(i,j) = dot(Fa1+Fb1,jhat);
 Ma1 = moment1(thetaG(i,j), 0, 0, 0, T1a1(1:3,4), Fa1, khat);
 Mb1 = moment1(thetaG(i,j), 0, 0, 0, T1b1(1:3,4), Fb1, khat);
 M1Z(i,j) = Ma1 + Mb1;

 fmw = [F1X(i,j) F1Y(i,j) 0 0 0 M1Z(i,j)];
 FX(k,counter+1) = F1X(i,j);, FY(k,counter+1) = F1Y(i,j);,
MZ(counter+1) = M1Z(i,j);
 F(k,counter+1) = sqrt(F1X(i,j)^2 + F1Y(i,j)^2);

 if (sqrt(FX(k,counter+1)^2 + FY(k,counter+1)^2) <= ftarget) &
(fminmzd(j,k) == 0)
 fminmzd(j,k) = counter;
 end
 if (counter == iterations) & (fminmzd(j,k) == 0)
 fminmzd(j,k) = counter;
 end

 magf(k,1) = sqrt(F1X(i,j)^2 + F1Y(i,j)^2);
 work = (-0.5)*ka*deltaa(i,j)^2 + (-0.5)*kb*deltab(i,j)^2;
 u = 0.5*ka*deltaa(i,j)^2 + 0.5*kb*deltab(i,j)^2;

 % use analytical method to calculate stiffness at new
position
 if (z == 2) | (z == 3)
 PXYstiff = [P1X(i,j) P1Y(i,j)];
 [Kxx1(i,j), Kxy1(i,j), Kyx1(i,j), Kyy1(i,j)] = stiff(z,
ka, lar, jaXY, axy, PXYstiff, thetaG(i,j), kb, lbr, jbXY, bxy);
 anadiagK2 = [Kxx1(i,j) 0; 0 Kyy1(i,j)];
 anafullK2 = [Kxx1(i,j) Kxy1(i,j); Kyx1(i,j) Kyy1(i,j)];
 end

 % use numerical method to find stiffness
% if (z == 6) | (z == 8)
 if ((z == 6) | (z == 8)) & (cycle == 1)
 diffload = [fmw(1)-f_temp(1) fmw(2)-f_temp(2) fmw(6)-
f_temp(6)];
 diffdisp = [P1X(i,j)-PXY(1) P1Y(i,j)-PXY(2) phi];
 [Kxx, Kyy, Kzz] = stiff(z, diffload, diffdisp, fmw,
numdiagK3);
 % 2x2 matrix

 140

 numdiagK2 = [Kxx 0; 0 Kyy];
 % 3x3 matrix
 numdiagK3 = [Kxx 0 0; 0 Kyy 0; 0 0 Kzz];
 end

% % perturb bar to find stiffness
% % use one translation (in either X or Y) to find 3 of 4
stiffness terms OR
% % use one translation (in either X or Y) and one applied
perturbation to find full stiffness matrix OR
% % apply two perturbations to find full stiffness matrix
% if (z == 10) | (z == 11)
 if ((z == 10) | (z == 11)) & (cycle > 1)
 [Kxxp(i,j), Kxyp(i,j), Kyxp(i,j), Kyyp(i,j)] = stiff(z,
3, fmw, f_temp, dXY, pertK);
 pertK = [Kxxp(i,j) Kxyp(i,j); Kyxp(i,j) Kyyp(i,j)];
% pertK = [Kxxp(i,j), Kxyp(i,j) Kzxp(i,j); Kyxp(i,j),
Kyyp(i,j) Kyzp(i,j); Kzxp(i,j) Kzyp(i,j) Kzzp(i,j)];
 end

% if (z == 10) | (z == 11)
%% [Kxxp(i,j), Kxyp(i,j), Kyxp(i,j), Kyyp(i,j)] =
stiff(z, 2, thetaG(i,j)+thetaa(i,j)+phi, la1, thetaG(i,j)+thetab(i,j)+phi,
lb1,...
%% lar, lbr, ka, kb, [F1X(i,j) F1Y(i,j)],
thetaG(i,j)+phi, T1a1(1:3,4), T1b1(1:3,4), M1Z(i,j), [P1X(i,j) P1Y(i,j)],...
%% thetaCOR(i,j)+phi, corXY, thetaa(i,j), axy,
thetaja(i,j), jaXY, thetab(i,j), bxy, thetajb(i,j), jbXY);
% [Kxxp(i,j), Kxyp(i,j), Kyxp(i,j), Kyyp(i,j)] = stiff(z,
4, thetaG(i,j)+thetaa(i,j)+phi, la1, thetaG(i,j)+thetab(i,j)+phi, lb1,...
% lar, lbr, ka, kb, [F1X(i,j) F1Y(i,j)],
thetaG(i,j)+phi, T1a1(1:3,4), T1b1(1:3,4), M1Z(i,j), [P1X(i,j) P1Y(i,j)],...
% thetaCOR(i,j)+phi, corXY, thetaa(i,j), axy,
thetaja(i,j), jaXY, thetab(i,j), bxy, thetajb(i,j), jbXY,...
% fmw, f_temp, dXY, pertK);
% pertK = [Kxxp(i,j), Kxyp(i,j); Kyxp(i,j), Kyyp(i,j)];
% % pertK = [Kxxp(i,j), Kxyp(i,j) Kzxp(i,j); Kyxp(i,j),
Kyyp(i,j) Kyzp(i,j); Kzxp(i,j) Kzyp(i,j) Kzzp(i,j)];
% end

 % store current force and position
 f_temp = fmw;
 PXY = [P1X(i,j) P1Y(i,j)];

 % housekeeping variables
 KXX(k,counter+1) = pertK(1,1);, KXY(k,counter+1) =
pertK(1,2);
 KYX(k,counter+1) = pertK(2,1);, KYY(k,counter+1) =
pertK(2,2);
% invK = pinv([numfullK2(1,1) numfullK2(1,2); numfullK2(2,1)
numfullK2(2,2)]);
% invKXX(k,counter+1) = invK(1,1);, invKXY(k,counter+1) =
invK(1,2);
% invKYX(k,counter+1) = invK(2,1);, invKYY(k,counter+1) =
invK(2,2);

 141

 if (sqrt(FX(k,counter+1)^2 + FY(k,counter+1)^2) <= ftarget),
break, end
 end

 loadctlerror(j,k) = sqrt(P1X(i,j)^2+P1Y(i,j)^2);
 avgiter(j,z) = sum(fminmzd(j,:))/k;
 Utotal(j,k) = u;
 peakF(j,z) = max(max(F));
 maxF(j,z) = max(max(F));
 minF(j,z) = min(min(F(k,counter+1)));
% avgiter(i,j) = sum(fminmzd(j,:))/k;

 % COR CALCULATION
===

% if (round(k*rad2deg(phi)/5) == k*rad2deg(phi)/5)
% if (round(k*rad2deg(phi)/5) == k*rad2deg(phi)/5) & (cycle ~= 1)
 if (round(k*rad2deg(phi)/5) == k*rad2deg(phi)/5) & (cycle > 1) &
(z == 11)
% % find the true COR using Spiegelman and Woo
% for n = 1:1
% [tcorX(n), tcorY(n)] = spieg(a0X, a0Y, a1X(i,j), a1Y(i,j),
b0X, b0Y, b1X(i,j), b1Y(i,j), fmw(1), fmw(2));
% end
% tcorX = sum(tcorX)/n;, tcorY = sum(tcorY)/n;
% tcorXspieg(j,k) = tcorX;, tcorYspieg(j,k) = tcorY;
% errorspieg(j,k) = sqrt(tcorXspieg(j,k)^2 +
tcorYspieg(j,k)^2);
% Xsignspieg(j,k) = isequal(sign(-corX(i,j)),sign(-
tcorXspieg(j,k)));
% Ysignspieg(j,k) = isequal(sign(-corY(i,j)),sign(-
tcorYspieg(j,k)));
%
% % find the true COR using Crisco et al.
% for n = 1:1
% [tcorX(n), tcorY(n)] = crisco(a0X, a0Y, b0X, b0Y, a1X(i,j),
a1Y(i,j), b1X(i,j), b1Y(i,j), fmw(1), fmw(2));
% end
% tcorX = sum(tcorX)/n;, tcorY = sum(tcorY)/n;
% tcorXcrisco(j,k) = tcorX;, tcorYcrisco(j,k) = tcorY;
% errorcrisco(j,k) = sqrt(tcorXcrisco(j,k)^2 +
tcorYcrisco(j,k)^2);
% Xsigncrisco(j,k) = isequal(sign(-corX(i,j)),sign(-
tcorXcrisco(j,k)));
% Ysigncrisco(j,k) = isequal(sign(-corY(i,j)),sign(-
tcorYcrisco(j,k)));
%
 % find the true COR using Challis
 for n = 1:1
 [tcorX(n), tcorY(n)] = challis(axy, a0X, a0Y, a1X(i,j),
a1Y(i,j), bxy, b0X, b0Y, b1X(i,j), b1Y(i,j), fmw(1), fmw(2));
 end
 tcorX = sum(tcorX)/n;, tcorY = sum(tcorY)/n;
 tcorXchallis(j,k) = tcorX;, tcorYchallis(j,k) = tcorY;
 errorchallis(j,k) = sqrt(tcorXchallis(j,k)^2 +
tcorYchallis(j,k)^2);

 142

 Xsignchallis(j,k) = isequal(sign(-corX(i,j)),sign(-
tcorXchallis(j,k)));
 Ysignchallis(j,k) = isequal(sign(-corY(i,j)),sign(-
tcorYchallis(j,k)));
 end

 tick = 0;

% if k ~= kk
% delete(fgraph)
% fgraph = axes('Parent', fh, 'Position', [.1 .6 .8 .35],
'YLim', [-50 50], 'XLim', [0 iterations]);
% forceufs = line('XData', 0, 'YData', 0, 'Color', 'k',
'Marker', '.', 'markersize', 8, 'erasemode', 'none');
% end

 % COR update option 1: calculate COR every 5 degrees & store to
be replayed in next cycle
 % COR update option 2: calculate & update COR every 5 degrees
% if (round(k*rad2deg(phi)/5) == k*rad2deg(phi)/5)
% if (round(k*rad2deg(phi)/5) == k*rad2deg(phi)/5) & (cycle ~= 1)
 if (round(k*rad2deg(phi)/5) == k*rad2deg(phi)/5) & (cycle ~= 1) &
(z == 11)
 cXY(:,index) = corupdate(corXY(1), corXY(2),
tcorXchallis(j,k), tcorYchallis(j,k), 'y', cor_lim);
 index = index + 1;
 end
 end

 % find the average magnitude of the peak force for each COR
 peakw(i,j) = work;
 peaku(i,j) = u;
 poteng(j,z) = u;
 end
end

% % PLOTS FOR TEST 3 USING PHYSICAL MODEL
% figure
% subplot(2,1,1), plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-
b'), ylabel('iterations'),...
% title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)),
') in ', num2str(phi*180/pi), ' deg. increments'])
% subplot(2,1,2), plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-
b'), ylabel('potential energy (N-mm)'), xlabel('\Phi (degrees)')

% % % PLOTS FOR TEST 4A & 4B & 4C
% figure, hold on
% plot((1:length(errorspieg(j,:)))*rad2deg(phi),errorspieg(j,:),'.-b');
% plot((1:length(errorcrisco(j,:)))*rad2deg(phi),errorcrisco(j,:),'.-r');
% plot((1:length(errorchallis(j,:)))*rad2deg(phi),errorchallis(j,:),'.-m');
% % % PLOTS FOR TEST 4D
% % plot((5:5:30)*rad2deg(phi), errorspieg(j,5:5:end), '.-b')
% % plot((5:5:30)*rad2deg(phi), errorcrisco(j,5:5:end), '.-r')
% % plot((5:5:30)*rad2deg(phi), errorchallis(j,5:5:end), '.-m')
% xlabel('\Phi (degrees)'), ylabel('error (mm)'), title(['Rotated about (',
num2str(corX(i,j)), ',', num2str(corY(i,j)), ') in ',...
% num2str(phi*180/pi), ' deg. increments'])

 143

% legend('spieg', 'crisco', 'challis')

% % PLOTS FOR TESTS 5A & 5B
% if cycle == 1
% figure
% subplot(3,1,1), hold on, plot((1:kk)*rad2deg(phi), F(:,1), '.-b'),
ylabel('peak force (N)'), title(['Rotated about (', num2str(corX(i,j)), ',',
num2str(corY(i,j)), ') in ',...
% num2str(phi*180/pi), ' deg. increments'])
% subplot(3,1,2), hold on,
plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-b'),
ylabel('iterations')
% subplot(3,1,3), hold on,
plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-b'),
ylabel('potential energy (N-mm)'), xlabel('\Phi (degrees)')
% elseif cycle == 2
% subplot(3,1,1), plot((1:kk)*rad2deg(phi), F(:,1), '.-r'), ylabel('peak
force (N)'), title(['Rotated about (', num2str(corX(i,j)), ',',
num2str(corY(i,j)), ') in ',...
% num2str(phi*180/pi), ' deg. increments'])
% % legend('cycle 1', 'cycle 2')
% legend('no COR update', 'COR update')
% subplot(3,1,2),
plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-r'),
ylabel('iterations')
% % legend('cycle 1', 'cycle 2')
% legend('no COR update', 'COR update')
% subplot(3,1,3),
plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-r'),
ylabel('potential energy (N-mm)'), xlabel('\Phi (degrees)')
% % legend('cycle 1', 'cycle 2')
% legend('no COR update', 'COR update')
% end

% % PLOTS FOR TEST 7 USING GENERAL MODEL
% if (cycle == 1) & (z == 6)
% figure('position', [149 359 771 575])
% subplot(4,1,1), hold on, plot((1:kk)*rad2deg(phi), F(:,1), '.-b'),
ylabel('peak force (N)'), title(['Rotated about (', num2str(corX(i,j)), ',',
num2str(corY(i,j)), ') in ',...
% num2str(phi*180/pi), ' deg. increments'])
% subplot(4,1,2), hold on, plot((1:length(fminmzd(j,:)))*rad2deg(phi),
fminmzd(j,:), '.-b'), ylabel('iterations')
% subplot(4,1,3), hold on,
plot((1:length(loadctlerror(j,:)))*rad2deg(phi), loadctlerror(j,:), '.-b'),
ylabel('error (mm)')
% subplot(4,1,4), hold on, plot((1:length(Utotal(j,:)))*rad2deg(phi),
Utotal(j,:), '.-b'), ylabel('potential energy (N-mm)'), xlabel('\Phi
(degrees)')
% elseif (cycle == 2) & (z == 11)
% % figure
% subplot(4,1,1), hold on, plot((1:kk)*rad2deg(phi), F(:,1), '.-r'),
ylabel('peak force (N)')
% legend('old', 'new')
% subplot(4,1,2), hold on, plot((1:length(fminmzd(j,:)))*rad2deg(phi),
fminmzd(j,:), '.-r'), ylabel('iterations')
% legend('old', 'new')

 144

% subplot(4,1,3), hold on,
plot((1:length(loadctlerror(j,:)))*rad2deg(phi), loadctlerror(j,:), '.-r'),
ylabel('error (mm)')
% legend('old', 'new')
% subplot(4,1,4), hold on, plot((1:length(Utotal(j,:)))*rad2deg(phi),
Utotal(j,:), '.-r'), ylabel('potential energy (N-mm)')
% legend('old', 'new')
% end

%% PLOTS FOR TEST 7 USING PHYSICAL MODEL
%if (cycle == 1) & (z == 6)
% figure('position', [149 359 771 575])
% subplot(3,1,1), hold on, plot((1:kk)*rad2deg(phi), F(:,1), '.-b'),
ylabel('peak force (N)'), title(['Rotated about (', num2str(corX(i,j)), ',',
num2str(corY(i,j)), ') in ',...
% num2str(phi*180/pi), ' deg. increments'])
% subplot(3,1,2), hold on, plot((1:length(fminmzd(j,:)))*rad2deg(phi),
fminmzd(j,:), '.-b'), ylabel('iterations')
% subplot(3,1,3), hold on, plot((1:length(Utotal(j,:)))*rad2deg(phi),
Utotal(j,:), '.-b'), ylabel('potential energy (N-mm)'), xlabel('\Phi
(degrees)')
%elseif (cycle == 2) & (z == 11)
%% figure
% subplot(3,1,1), hold on, plot((1:kk)*rad2deg(phi), F(:,1), '.-r'),
ylabel('peak force (N)')
% legend('old', 'new')
% subplot(3,1,2), hold on, plot((1:length(fminmzd(j,:)))*rad2deg(phi),
fminmzd(j,:), '.-r'), ylabel('iterations')
% legend('old', 'new')
% subplot(3,1,3), hold on, plot((1:length(Utotal(j,:)))*rad2deg(phi),
Utotal(j,:), '.-r'), ylabel('potential energy (N-mm)')
% legend('old', 'new')
%end

if z == 1
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-b');
elseif z == 2
figure
% plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-r');
subplot(3,1,1), hold on,
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-r'),
ylabel('error (mm)'),...
 title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)), ')
in ', num2str(phi*180/pi), ' deg. increments'])
subplot(3,1,2), hold on,
plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-r'),
ylabel('iterations')
subplot(3,1,3), hold on,
plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-r'),
ylabel('potential energy (N-mm)'), xlabel('\Phi (degrees)')
elseif z == 3
% plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-m');
% subplot(3,1,1),
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-m'),
legend('diag 2x2 (a)', 'full 2x2 (a)')
% subplot(3,1,2), plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-
m'), legend('diag 2x2 (a)', 'full 2x2 (a)')

 145

% subplot(3,1,3), plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-
m'), legend('diag 2x2 (a)', 'full 2x2 (a)')
elseif z == 4
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-g');
elseif z == 5
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-r');
elseif z == 6
% % PLOTS FOR TEST 6 USING GENERAL MODEL
% % plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-r');
% figure
% subplot(3,1,1), hold on,
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-r'),
ylabel('error (mm)'),...
% title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)),
') in ', num2str(phi*180/pi), ' deg. increments'])
% subplot(3,1,2), hold on,
plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-r'),
ylabel('iterations')
% subplot(3,1,3), hold on,
plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-r'),
ylabel('potential energy (N-mm)'), xlabel('\Phi (degrees)')

% % PLOTS FOR TEST 6 USING PHYSICAL MODEL
% figure
% subplot(2,1,1), hold on,
plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-r'),
ylabel('iterations'),...
% title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)),
') in ', num2str(phi*180/pi), ' deg. increments'])
% subplot(2,1,2), hold on,
plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-r'),
ylabel('potential energy (N-mm)'), xlabel('\Phi (degrees)')
elseif z == 7
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-r');
elseif z == 8
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-',
'markerfacecolor', [0 .75 0]);
elseif z == 9
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-m');
elseif z == 10
figure, hold on
% plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-r');
elseif z == 11
% % PLOTS FOR TEST 6 USING GENERAL MODEL
% plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-m');
% subplot(3,1,1), hold on,
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-m'),
ylabel('error (mm)'),...
% title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)),
') in ', num2str(phi*180/pi), ' deg. increments'])
% legend('diag 2x2 (n)', 'full 2x2 (p4)')
% subplot(3,1,2), hold on,
plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-m'),
ylabel('iterations')
% legend('diag 2x2 (n)', 'full 2x2 (p4)')

 146

% subplot(3,1,3), hold on,
plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-m'),
ylabel('potential energy (N-mm)'), xlabel('\Phi (degrees)')
% legend('diag 2x2 (n)', 'full 2x2 (p4)')

% % PLOTS FOR TEST 6 USING PHYSICAL MODEL
% subplot(2,1,1), plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-
m'), ylabel('iterations'),...
% title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)),
') in ', num2str(phi*180/pi), ' deg. increments'])
% legend('diag 2x2 (n)', 'full 2x2 (p4)')
% subplot(2,1,2), plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-
m'), ylabel('potential energy (N-mm)'), xlabel('\Phi (degrees)')
% legend('diag 2x2 (n)', 'full 2x2 (p4)')
elseif z == 12
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-r');
elseif z == 13
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-m');
end

% % PLOTS FOR TEST 6
% figure, hold on
% for m = 1:kk
% phb = plot([m m], [F(m,1) F(m,fminmzd(j,m)+1)], '-ob');
% phe = plot([m m], [F(m,fminmzd(j,m)+1) F(m,fminmzd(j,m)+1)], '*r');
% end
% title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)), ')
in ', num2str(phi*180/pi), ' deg. increments'])
% xlabel('\Phi (degrees)'), ylabel('resultant force (N)')
% legend_handles = [phb; phe];
% legend(legend_handles, 'beginning force', 'ending force');

end
end
end

% figure
% subplot(3,1,1), plot(1:length(FX), FX), ylabel('FX (N)');
% subplot(3,1,2), plot(1:length(FY), FY), ylabel('FY (N)');
% subplot(3,1,3), plot(1:length(MZ), MZ), ylabel('MZ (N-m)');,
xlabel('iterations');
%
% figure
% subplot(2,1,1), plot(1:length(KXX), KXX), ylabel('KXX (N/mm)')
% subplot(2,1,2), plot(1:length(KYY), KYY), ylabel('KYY (N/mm)');,
xlabel('iterations');

% [xx, yy]=meshgrid(-60:10:60,60:-10:-60);
% draw(xx, yy, F1X, F1Y, M1Z, F, peaku, P1X, P1Y, Kxxp, Kxyp, Kyyp, PHI, phi,
1);
% draw(xx, yy, F1X, F1Y, M1Z, F, peaku, P1X, P1Y, Kxx1, Kxy1, Kyy1, PHI, phi,
2);

 147

refpointtrans.m is a function called by hand14a.m. It uses the rigid body

transformations developed in sections 4.2.1 - 4.2.7 to track the movement of the center of the

bar.

function [P1X, P1Y, TG0, TG1, corXY] = refpointtrans(thetaG, PXY, thetaCOR,
corXY, phi, dxy, cs)

% define xformation from X,Y to x0,y0
TG0 = trans(thetaG, PXY(1), PXY(2), 0);

% define xformation from X,Y to xTCS0,yTCS0
TGTCS0 = trans(thetaCOR, corXY(1), corXY(2), 0);

% calculate xformation from xTCS0,yTCS0 to x0,y0
TTCS00 = inv(TGTCS0)*TG0;

% define xformation from xTCS0,yTCS0 to xTCS1,yTCS1
% here dxy is defined in the TCS0 c.s.
% if the translation (dxy) is defined in the global c.s.,
% it must first be transformed to the TCS0 c.s.
if cs == 'g'
 dxy = (TGTCS0(1:3,1:3))'*[dxy 0]';
 dxy(3) = [];
end
TTCS0TCS1 = trans(phi, dxy(1), dxy(2), 0);

% calculate xformation from X,Y to xTCS1,yTCS1
TGTCS1 = TGTCS0*TTCS0TCS1;
corXY = [TGTCS1(1,4) TGTCS1(2,4)];

% define xformation from xTCS1,yTCS1 to x1,y1
TTCS11 = TTCS00;

% calculate xformation from X,Y to x1,y1
TG1 = TGTCS1*TTCS11;
P1X = TG1(1,4);
P1Y = TG1(2,4);

nodaltrans.m is a function called by hand14a.m. It uses the rigid body transformations

developed in sections 4.2.8 - 4.2.14 to track the movement of the ends of the bar.

function [i1X, i1Y, l0, l1, T0i0, T1i1] = nodaltrans(thetai, ixy, thetaj,
jXY, TG0, TG1);

% define xformation from x0,y0 to xi0,yi0
T0i0 = trans(thetai, ixy(1), ixy(2), 0);

% calculate xformation from X,Y to xi0,yi0
TGi0 = TG0*T0i0;

 148

% define xformation from x1,y1 to xi1,yi1
T1i1 = T0i0;

% calculate xformation from X,Y to xi1,yi1
TGi1 = TG1*T1i1;
i1X = TGi1(1,4);
i1Y = TGi1(2,4);

% define xformation from X,Y to xj,yj
TGj = trans(thetaj, jXY(1), jXY(2), 0);

% calculate xformation from xi0,yi0 to xj,yj
Ti0j = inv(TGi0)*TGj;
% calculate length of spring 1 at time t0 (mm)
l0 = Ti0j(1:3,4);
% L0 is the vector pointing from node i to node j in local coordinates
% later, this is the force acting on the bar. if we want the force
% that the spring exerts, we would use -L0
% calculate xformation from xi1,yi1, to xj,yj
Ti1j = inv(TGi1)*TGj;
% calculate length of spring 1 at time t1 (mm)
l1 = Ti1j(1:3,4);

force2.m is a short function called by hand14a.m that calculates the force in coordinates.

function F = force2(k, delta, l, theta, X, Y, Z)

f = k*delta*l/(sqrt(l'*l));
F = trans(theta, X, Y, Z)*[f; 1];
F(4,:) = [];

moment1.m is a short function called by hand14a.m that calculates the moment in global

coordinates.

function M = moment1(theta, X, Y, Z, L, F, unit);

R = trans(theta, X, Y, Z)*[L; 1];
R(4) = [];
M = dot(cross(R,F),unit)/1000;

stiff.m is a function called by hand14a.m that calculates the global stiffness terms using

the method of choice (defined by the input variable “flag”).

function varargout = stiff(flag, varargin)

switch flag
case {2, 3, 4, 5}
 % calculate analytical stiffness matrix

 149

 ka = varargin{1};
 lar = varargin{2};
 jaXY = varargin{3};
 axy = varargin{4};
 PXYstiff = varargin{5};
 angle = varargin{6};
 kb = varargin{7};
 lbr = varargin{8};
 jbXY = varargin{9};
 bxy = varargin{10};
 [kxxa, kxya, kxza, kyxa, kyya, kyza, kzxa, kzya, kzza] = anastiff(ka,
lar, jaXY, axy, PXYstiff, angle);
 [kxxb, kxyb, kxzb, kyxb, kyyb, kyzb, kzxb, kzyb, kzzb] = anastiff(kb,
lbr, jbXY, bxy, PXYstiff, angle);
 Kxx = kxxa + kxxb;, Kxy = kxya + kxyb;, Kxz = kxza + kxzb;
 Kyx = kyxa + kyxb;, Kyy = kyya + kyyb;, Kyz = kyza + kyzb;
 Kzx = kzxa + kzxb;, Kzy = kzya + kzyb;, Kzz = kzza + kzzb;
 if (flag == 2) | (flag == 3)
 varargout = {Kxx, Kxy, Kyx, Kyy};
 elseif (flag == 4) | (flag == 5)
 varargout = {Kxx, Kxy, Kxz, Kyx, Kyy, Kyz, Kzx, Kzy, Kzz};
 end

case {6, 7, 8, 9}
 % calculate numerical stiffness matrix
 diffload = varargin{1};
 diffdisp = varargin{2};
 fmw = varargin{3};
 if (diffload ~= [0 0 0]) & (diffdisp ~= [0 0 0]) & (fmw(1)~=0 | fmw(2)~=0
| fmw(6)~=0)
 Kxx = diffload(1)/diffdisp(1);
 Kyy = diffload(2)/diffdisp(2);
 Kzz = diffload(3)/diffdisp(3);
 else
 K = varargin{4};
 Kxx = K(1,1);
 Kyy = K(2,2);
 Kzz = K(3,3);
 end
 varargout = {Kxx, Kyy, Kzz};

case {10, 11}
 method = varargin{1};

 if (method == 1) | (method == 2) | (method == 4)
 angle = varargin{2};
 la1 = varargin{3};
 La1 = [cos(angle) -sin(angle) 0; sin(angle) cos(angle) 0; 0 0 1] *
la1;

 angle = varargin{4};
 lb1 = varargin{5};
 Lb1 = [cos(angle) -sin(angle) 0; sin(angle) cos(angle) 0; 0 0 1] *
lb1;
 end

 if (method == 1) | (method == 2)

 150

 lar = varargin{6};
 lbr = varargin{7};
 ka = varargin{8};
 kb = varargin{9};
 FXY = varargin{10};
 thetaGphi = varargin{11};
 T1a1 = varargin{12};
 T1b1 = varargin{13};
 MZ = varargin{14};
 PXY = varargin{15};
 thetaCORphi = varargin{16};
 corXY = varargin{17};
 thetaa = varargin{18};
 axy = varargin{19};
 thetaja = varargin{20};
 jaXY = varargin{21};
 thetab = varargin{22};
 bxy = varargin{23};
 thetajb = varargin{24};
 jbXY = varargin{25};

 if method == 1
 % calculate full 2x2 perturbed matrix w/ method #1 (two global
pert., one parallel to X, other parallel to Y)
 [Kxx, Kxy, Kyx, Kyy, Kzx, Kzy, Kxz, Kyz, Kzz] = pertstiff(La1,
Lb1, lar, lbr, ka, kb,...
 FXY, thetaGphi, T1a1, T1b1, MZ, PXY, thetaCORphi, corXY,
thetaa, axy, thetaja, jaXY, thetab, bxy, thetajb, jbXY);
 elseif method == 2
 % calculate full 2x2 perturbed matrix w/ method #2 (two global
pert., one in XY-plane, other orthogonal)
 [Kxx, Kxy, Kyx, Kyy, Kzx, Kzy, Kxz, Kyz, Kzz] = pertstiff2(La1,
Lb1, lar, lbr, ka, kb,...
 FXY, thetaGphi, T1a1, T1b1, MZ, PXY, thetaCORphi, corXY,
thetaa, axy, thetaja, jaXY, thetab, bxy, thetajb, jbXY);
 end
 end

 if method == 3
 % calculate full 2x2 perturbed matrix w/ method #3 (one global
translation, parallel to either X or Y)
 fmw = varargin{2};
 f_temp = varargin{3};
 dXY = varargin{4};
 K = varargin{5};

 dFXY = [fmw(1)-f_temp(1) fmw(2)-f_temp(2)];
 if (dXY(1) == 0) & (dFXY ~= [0 0]) & (dXY(2) ~= 0) & (fmw(1) ~= 0 |
fmw(2)~= 0)
 Kxy = dFXY(1)/dXY(2);
 Kyy = dFXY(2)/dXY(2);
 Kyx = Kxy;
 Kxx = K(1,1);
 elseif (dXY(2) == 0) & (dFXY ~= [0 0]) & (dXY(1) ~= 0) & (fmw(1) ~= 0
| fmw(2)~= 0)
 Kxx = dFXY(1)/dXY(1);
 Kyx = dFXY(2)/dXY(1);

 151

 Kxy = Kyx;
 Kyy = K(2,2);
 else
 Kxx = K(1,1);
 Kxy = K(1,2);
 Kyx = K(2,1);
 Kyy = K(2,2);
 end
 elseif method == 4
 % calculate full 2x2 perturbed matrix w/ method #4 (one global
translation, one global pert. orthogonal to translation)
 lar = varargin{6};
 lbr = varargin{7};
 ka = varargin{8};
 kb = varargin{9};
 FXY = varargin{10};
 thetaGphi = varargin{11};
 T1a1 = varargin{12};
 T1b1 = varargin{13};
 MZ = varargin{14};
 PXY = varargin{15};
 thetaCORphi = varargin{16};
 corXY = varargin{17};
 thetaa = varargin{18};
 axy = varargin{19};
 thetaja = varargin{20};
 jaXY = varargin{21};
 thetab = varargin{22};
 bxy = varargin{23};
 thetajb = varargin{24};
 jbXY = varargin{25};

 fmw = varargin{26};
 f_temp = varargin{27};
 dXY = varargin{28};
 K = varargin{29};

 dFXY = [fmw(1)-f_temp(1) fmw(2)-f_temp(2)];
 if (dXY(1) == 0) & (dFXY ~= [0 0]) & (dXY(2) ~= 0) & (fmw(1) ~= 0 |
fmw(2)~= 0)
 Kxy = dFXY(1)/dXY(2);
 Kyy = dFXY(2)/dXY(2);
 Kyx = Kxy;
 Kxx = pertstiff3(La1, Lb1, lar, lbr, ka, kb, FXY, thetaGphi,
T1a1, T1b1, MZ, PXY, thetaCORphi, corXY,...
 thetaa, axy, thetaja, jaXY, thetab, bxy, thetajb, jbXY,
dXY(2), 'even');
 elseif (dXY(2) == 0) & (dFXY ~= [0 0]) & (dXY(1) ~= 0) & (fmw(1) ~= 0
| fmw(2)~= 0)
 Kxx = dFXY(1)/dXY(1);
 Kyx = dFXY(2)/dXY(1);
 Kxy = Kyx;
 Kyy = pertstiff3(La1, Lb1, lar, lbr, ka, kb, FXY, thetaGphi,
T1a1, T1b1, MZ, PXY, thetaCORphi, corXY,...
 thetaa, axy, thetaja, jaXY, thetab, bxy, thetajb, jbXY,
dXY(1), 'odd');
 else

 152

 Kxx = K(1,1);
 Kxy = K(1,2);
 Kyx = K(2,1);
 Kyy = K(2,2);
 end
 end

 varargout = {Kxx, Kxy, Kyx, Kyy};

end

anastiff.m is a function called by stiff.m to calculate the global stiffness terms

analytically.

function [kxx, kxy, kxz, kyx, kyy, kyz, kzx, kzy, kzz] = anastiff(k, lr, jXY,
ixy, PXY, angle)

c1 = jXY(1) - ixy(1)*cos(angle) + ixy(2)*sin(angle);
c2 = jXY(2) - ixy(2)*cos(angle) - ixy(1)*sin(angle);
c4 = jXY(1) - PXY(1);
c5 = jXY(2) - PXY(2);

kxx = k*(-1 + (lr*(c2-PXY(2))^2)/(((c1-PXY(1))^2+(c2-PXY(2))^2)^(3/2)));
kxy = -k*lr*(c1-PXY(1))*(c2-PXY(2))/(((c1-PXY(1))^2+(c2-PXY(2))^2)^(3/2));
kxz = k*(ixy(2)*cos(angle) + ixy(1)*sin(angle) + lr*(-
c5+ixy(2)*cos(angle)+ixy(1)*sin(angle))*...
 (-ixy(1)^2-ixy(2)^2+(c4*ixy(1)+c5*ixy(2))*cos(angle)+(c5*ixy(1)-
c4*ixy(2))*sin(angle))/...
 (((-c5+ixy(2)*cos(angle)+ixy(1)*sin(angle))^2 + (c4-
ixy(1)*cos(angle)+ixy(2)*sin(angle))^2)^(3/2)));

kyx = kxy;
kyy = k*(-1 + (lr*(c1-PXY(1))^2)/(((c1-PXY(1))^2+(c2-PXY(2))^2)^(3/2)));
kyz = k*(-ixy(1)*cos(angle) + ixy(2)*sin(angle) + lr*(c4-
ixy(1)*cos(angle)+ixy(2)*sin(angle))*...
 (-ixy(1)^2-ixy(2)^2+(c4*ixy(1)+c5*ixy(2))*cos(angle)+(c5*ixy(1)-
c4*ixy(2))*sin(angle))/...
 (((-c5+ixy(2)*cos(angle)+ixy(1)*sin(angle))^2 + (c4-
ixy(1)*cos(angle)+ixy(2)*sin(angle))^2)^(3/2)));

kzx = kxz;
kzy = kyz;
kzz = -k*lr*(((-c5*ixy(1)+c4*ixy(2))*cos(angle) +
(c4*ixy(1)+c5*ixy(2))*sin(angle))^2)/...
 (((-c5+ixy(2)*cos(angle)+ixy(1)*sin(angle))^2 + (c4-
ixy(1)*cos(angle)+ixy(2)*sin(angle))^2)^(3/2)) + ...
 k*((-c4*ixy(1)-c5*ixy(2))*cos(angle) + (-
c5*ixy(1)+c4*ixy(2))*sin(angle))*...
 (1 - lr/sqrt((-c5+ixy(2)*cos(angle)+ixy(1)*sin(angle))^2 + (c4-
ixy(1)*cos(angle)+ixy(2)*sin(angle))^2));
kzz = kzz/1000;

 153

pertstiff.m is a function called by stiff.m that calculates the global stiffness terms using

proposed method #1.

function [Kxx, Kxy, Kyx, Kyy, Kzx, Kzy, Kxz, Kyz, Kzz] = pertstiff(La1, Lb1,
lar, lbr, ka, kb, FXY,...
 thetaGphi, T1a1, T1b1, MZ, PXY, thetaCORphi, corXY, thetaa, axy, thetaja,
jaXY, thetab, bxy, thetajb, jbXY)

ihat = [1 0 0]';
jhat = [0 1 0]';
khat = [0 0 1]';

% perturb the bar in each direction to find full stiffness matrix
pert = 0.5; % mm

% Only consider the perturbation along the global X axis
% La is a vector pointing from node a to node ja in X,Y coordinates
La = La1 - [pert 0 0]';
delta = sqrt(La'*La) - lar;
Fa = ka*delta*La/sqrt(La'*La);
Ma = moment1(thetaGphi, 0, 0, 0, T1a1, Fa, khat);
% Lb is a vector pointing from node b to node jb in X,Y coordinates
Lb = Lb1 - [pert 0 0]';
delta = sqrt(Lb'*Lb) - lbr;
Fb = kb*delta*Lb/sqrt(Lb'*Lb);
Mb = moment1(thetaGphi, 0, 0, 0, T1b1, Fb, khat);
% find Kxx and Kyx
FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) +
dot(Fb,jhat);, MZ(2,1) = Ma + Mb;
dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) -
MZ(1,1);
Kxx = dFX/pert; % N/mm
Kyx = dFY/pert; % N/mm
Kzx = dMZ*1000/pert; % N-mm/mm

% Now consider the perturbation along the global Y axis
% La is a vector pointing from node a to node ja in X,Y coordinates
La = La1 - [0 pert 0]';
delta = sqrt(La'*La) - lar;
Fa = ka*delta*La/sqrt(La'*La);
Ma = moment1(thetaGphi, 0, 0, 0, T1a1, Fa, khat);
% Lb is a vector pointing from node b to node jb in X,Y coordinates
Lb = Lb1 - [0 pert 0]';
delta = sqrt(Lb'*Lb) - lbr;
Fb = kb*delta*Lb/sqrt(Lb'*Lb);
Mb = moment1(thetaGphi, 0, 0, 0, T1b1, Fb, khat);
% find Kxy and Kyy
FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) +
dot(Fb,jhat);, MZ(2,1) = Ma + Mb;
dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) -
MZ(1,1);
Kxy = dFX/pert; % N/mm
Kyy = dFY/pert; % N/mm
Kzy = dMZ*1000/pert; % N-mm/mm

 154

% Consider a perturbation about the global Z axis
%pert = deg2rad(0.1); % radians
pert = 0.1*pi/180;
[P1X, P1Y, TG0, TG1] = refpointtrans(thetaGphi, PXY, thetaCORphi, corXY,
pert, [0 0], 'g');
[a1X, a1Y, la0, la1, T0a0, T1a1] = nodaltrans(thetaa, axy, thetaja, jaXY,
TG0, TG1);
[b1X, b1Y, lb0, lb1, T0b0, T1b1] = nodaltrans(thetab, bxy, thetajb, jbXY,
TG0, TG1);
deltaa = sqrt(la1'*la1) - lar;
deltab = sqrt(lb1'*lb1) - lbr;
% find forces & moment at new position
Fa = force2(ka, deltaa, la1, thetaGphi+thetaa+pert, 0, 0, 0);
Fb = force2(kb, deltab, lb1, thetaGphi+thetab+pert, 0, 0, 0);
Ma = moment1(thetaGphi+pert, 0, 0, 0, T1a1(1:3,4), Fa, khat);
Mb = moment1(thetaGphi+pert, 0, 0, 0, T1b1(1:3,4), Fb, khat);
FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) +
dot(Fb,jhat);, MZ(2,1) = Ma + Mb;
dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) -
MZ(1,1);
Kxz = dFX/pert; % N/rad
Kyz = dFY/pert; % N/rad
Kzz = dMZ/pert; % N-m/rad

pertstiff2.m is a function called by stiff.m that calculates the global stiffness terms using

proposed method #2.

function [Kxx, Kxy, Kyx, Kyy, Kzx, Kzy, Kxz, Kyz, Kzz] = pertstiff2(La1, Lb1,
lar, lbr, ka, kb, FXY,...
 thetaGphi, T1a1, T1b1, MZ, PXY, thetaCORphi, corXY, thetaa, axy, thetaja,
jaXY, thetab, bxy, thetajb, jbXY)

ihat = [1 0 0]';
jhat = [0 1 0]';
khat = [0 0 1]';

% perturb the bar in each direction to find full stiffness matrix
% perturbations are orthogonal linear combinations of X and Y
pert = 0.5; % mm

% Consider a perturbation in the global XY plane
% La is a vector pointing from node a to node ja in X,Y coordinates
La = La1 - [pert pert 0]';
delta = sqrt(La'*La) - lar;
Fa = ka*delta*La/sqrt(La'*La);
Ma = moment1(thetaGphi, 0, 0, 0, T1a1, Fa, khat);
% Lb is a vector pointing from node b to node jb in X,Y coordinates
Lb = Lb1 - [pert pert 0]';
delta = sqrt(Lb'*Lb) - lbr;
Fb = kb*delta*Lb/sqrt(Lb'*Lb);
Mb = moment1(thetaGphi, 0, 0, 0, T1b1, Fb, khat);
% find dF and dM

 155

FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) +
dot(Fb,jhat);, MZ(2,1) = Ma + Mb;
dFX1 = FXY(2,1) - FXY(1,1);, dFY1 = FXY(2,2) - FXY(1,2);, dMZ1 = MZ(2,1) -
MZ(1,1);

% Consider another perturbation in the global XY axis, perpendicular to the
first pert.
% La is a vector pointing from node a to node ja in X,Y coordinates
La = La1 - [-pert pert 0]';
delta = sqrt(La'*La) - lar;
Fa = ka*delta*La/sqrt(La'*La);
Ma = moment1(thetaGphi, 0, 0, 0, T1a1, Fa, khat);
% Lb is a vector pointing from node b to node jb in X,Y coordinates
Lb = Lb1 - [-pert pert 0]';
delta = sqrt(Lb'*Lb) - lbr;
Fb = kb*delta*Lb/sqrt(Lb'*Lb);
Mb = moment1(thetaGphi, 0, 0, 0, T1b1, Fb, khat);
% find dF and dM
FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) +
dot(Fb,jhat);, MZ(2,1) = Ma + Mb;
dFX2 = FXY(2,1) - FXY(1,1);, dFY2 = FXY(2,2) - FXY(1,2);, dMZ2 = MZ(2,1) -
MZ(1,1);

dX1 = pert;, dY1 = pert;
dX2 = -pert;, dY2 = pert;

Kxx = -(dFX2*dY1 - dFX1*dY2) / (-dX2*dY1 + dX1*dY2); % N/mm
Kxy = -(-dFX2*dX1 + dFX1*dX2) / (-dX2*dY1 + dX1*dY2); % N/mm
Kyx = -(dFY2*dY1 - dFY1*dY2) / (-dX2*dY1 + dX1*dY2); % N/mm
Kyy = -(-dFY2*dX1 + dFY1*dX2) / (-dX2*dY1 + dX1*dY2); % N/mm

Kzx = 1;
Kzy = 1;

% Consider a perturbation about the global Z axis
pert = deg2rad(0.1); % radians
[P1X, P1Y, TG0, TG1] = refpointtrans(thetaGphi, PXY, thetaCORphi, corXY,
pert, [0 0], 'g');
[a1X, a1Y, la0, la1, T0a0, T1a1] = nodaltrans(thetaa, axy, thetaja, jaXY,
TG0, TG1);
[b1X, b1Y, lb0, lb1, T0b0, T1b1] = nodaltrans(thetab, bxy, thetajb, jbXY,
TG0, TG1);
deltaa = sqrt(la1'*la1) - lar;
deltab = sqrt(lb1'*lb1) - lbr;
% find forces & moment at new position
Fa = force2(ka, deltaa, la1, thetaGphi+thetaa+pert, 0, 0, 0);
Fb = force2(kb, deltab, lb1, thetaGphi+thetab+pert, 0, 0, 0);
Ma = moment1(thetaGphi+pert, 0, 0, 0, T1a1(1:3,4), Fa, khat);
Mb = moment1(thetaGphi+pert, 0, 0, 0, T1b1(1:3,4), Fb, khat);
FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) +
dot(Fb,jhat);, MZ(2,1) = Ma + Mb;
dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) -
MZ(1,1);
Kxz = dFX/pert; % N/rad
Kyz = dFY/pert; % N/rad
Kzz = dMZ/pert; % N-m/rad

 156

pertstiff3.m is a function called by stiff.m that calculates the global stiffness terms using

proposed method #3.

function [varargout] = pertstiff3(La1, Lb1, lar, lbr, ka, kb, FXY,...
 thetaGphi, T1a1, T1b1, MZ, PXY, thetaCORphi, corXY, thetaa, axy, thetaja,
jaXY, thetab, bxy, thetajb, jbXY, pert, flag)

ihat = [1 0 0]';
jhat = [0 1 0]';
khat = [0 0 1]';

% use translation AND applied perturbation to find full stiffness matrix at a
given position
% perturb the bar in each direction to find full stiffness matrix
pert = 0.5; % mm

% if counter is odd, translation in Y is set to zero, only solve for Kxx,
Kxy, Kyx
% if counter is even, translation in X is set to zero, only solve for Kxy,
Kyx, Kyy
switch flag
case 'even'
 % Only consider the perturbation along the global X axis
 % La is a vector pointing from node a to node ja in X,Y coordinates
 La = La1 - [pert 0 0]';
 delta = sqrt(La'*La) - lar;
 Fa = ka*delta*La/sqrt(La'*La);
 Ma = moment1(thetaGphi, 0, 0, 0, T1a1, Fa, khat);
 % Lb is a vector pointing from node b to node jb in X,Y coordinates
 Lb = Lb1 - [pert 0 0]';
 delta = sqrt(Lb'*Lb) - lbr;
 Fb = kb*delta*Lb/sqrt(Lb'*Lb);
 Mb = moment1(thetaGphi, 0, 0, 0, T1b1, Fb, khat);
 % find Kxx and Kyx
 FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) +
dot(Fb,jhat);, MZ(2,1) = Ma + Mb;
 dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) -
MZ(1,1);
 Kxx = dFX/pert; % N/mm
 Kyx = dFY/pert; % N/mm
 Kxy = Kyx;
 Kzx = dMZ*1000/pert; % N-mm/mm
 varargout = {Kxx};
case 'odd'
 % Only consider the perturbation along the global Y axis
 % La is a vector pointing from node a to node ja in X,Y coordinates
 La = La1 - [0 pert 0]';
 delta = sqrt(La'*La) - lar;
 Fa = ka*delta*La/sqrt(La'*La);
 Ma = moment1(thetaGphi, 0, 0, 0, T1a1, Fa, khat);
 % Lb is a vector pointing from node b to node jb in X,Y coordinates
 Lb = Lb1 - [0 pert 0]';

 157

 delta = sqrt(Lb'*Lb) - lbr;
 Fb = kb*delta*Lb/sqrt(Lb'*Lb);
 Mb = moment1(thetaGphi, 0, 0, 0, T1b1, Fb, khat);
 % find Kxy and Kyy
 FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) +
dot(Fb,jhat);, MZ(2,1) = Ma + Mb;
 dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) -
MZ(1,1);
 Kxy = dFX/pert; % N/mm
 Kyy = dFY/pert; % N/mm
 Kyx = Kxy;
 Kzy = dMZ*1000/pert; % N-mm/mm
 varargout = {Kyy};
end

% Consider a perturbation about the global Z axis
pert = deg2rad(0.1); % radians
[P1X, P1Y, TG0, TG1] = refpointtrans(thetaGphi, PXY, thetaCORphi, corXY,
pert, [0 0], 'g');
[a1X, a1Y, la0, la1, T0a0, T1a1] = nodaltrans(thetaa, axy, thetaja, jaXY,
TG0, TG1);
[b1X, b1Y, lb0, lb1, T0b0, T1b1] = nodaltrans(thetab, bxy, thetajb, jbXY,
TG0, TG1);
deltaa = sqrt(la1'*la1) - lar;
deltab = sqrt(lb1'*lb1) - lbr;
% find forces & moment at new position
Fa = force2(ka, deltaa, la1, thetaGphi+thetaa+pert, 0, 0, 0);
Fb = force2(kb, deltab, lb1, thetaGphi+thetab+pert, 0, 0, 0);
Ma = moment1(thetaGphi+pert, 0, 0, 0, T1a1(1:3,4), Fa, khat);
Mb = moment1(thetaGphi+pert, 0, 0, 0, T1b1(1:3,4), Fb, khat);
FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) +
dot(Fb,jhat);, MZ(2,1) = Ma + Mb;
dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) -
MZ(1,1);
Kxz = dFX/pert; % N/rad
Kyz = dFY/pert; % N/rad
Kzz = dMZ/pert; % N-m/rad

fmin.m is a function called by hand14a.m that calculates the translation required to

minimize force using the method of choice (defined by the input variable “flag”).

function dXY = fmin(flag, varargin)

switch flag
case 1
 % let bar follow force without using constant user-defined stiffness
 FX = varargin{1};
 FY = varargin{2};
 const_stiff = varargin{3};
 dXY = [FX/const_stiff FY/const_stiff]';
case {2, 4}
 % calculate global displacement to force minimized position using
analytical diagonal K matrix (either 2x2 or 3x3)

 158

 K = varargin{1};
 fmw = varargin{2};
 limit = varargin{3};
 if size(K,1) == 2, fmw(3) = [];, end
 dXY = -K\fmw;
 if limit == 'y'
 t_lim = varargin{4};
 if abs(dXY(1)) > t_lim, dXY(1) = sign(dXY(1))*t_lim; end
 if abs(dXY(2)) > t_lim, dXY(2) = sign(dXY(2))*t_lim; end
 end
 if size(dXY,1) == 3, dXY(3) = [];, end
case {3, 5}
 % calculate global displacement to force minimized position using
analytical full K matrix (either 2x2 or 3x3)
 K = varargin{1};
 fmw = varargin{2};
 limit = varargin{3};
 if size(K,1) == 2, fmw(3) = [];, end
 dXY = -K\fmw;
 if limit == 'y'
 t_lim = varargin{4};
 if abs(dXY(1)) > t_lim, dXY(1) = sign(dXY(1))*t_lim; end
 if abs(dXY(2)) > t_lim, dXY(2) = sign(dXY(2))*t_lim; end
 end
 if size(dXY,1) == 3, dXY(3) = [];, end
case {6, 8}
 % calculate global displacement to force minimized position using
numerical diagonal K matrix method (either 2x2 or 3x3)
 K = varargin{1};
 fmw = varargin{2};
 limit = varargin{3};
 if size(K,1) == 2, fmw(3) = [];, end
 dXY = -K\fmw;
 if limit == 'y'
 t_lim = varargin{4};
 if abs(dXY(1)) > t_lim, dXY(1) = sign(dXY(1))*t_lim; end
 if abs(dXY(2)) > t_lim, dXY(2) = sign(dXY(2))*t_lim; end
 end
 if size(dXY,1) == 3, dXY(3) = [];, end
case {7, 9}
 % calculate global displacement to force minimized position using
numerical full K matrix method (either 2x2 or 3x3)
 K = varargin{1};
 fmw = varargin{2};
 limit = varargin{3};
 if size(K,1) == 2, fmw(3) = [];, end
 dXY = -pinv(K)*fmw;
 if limit == 'y'
 t_lim = varargin{4};
 if abs(dXY(1)) > t_lim, dXY(1) = sign(dXY(1))*t_lim; end
 if abs(dXY(2)) > t_lim, dXY(2) = sign(dXY(2))*t_lim; end
 end
 if size(dXY,1) == 3, dXY(3) = [];, end
case 10
 % calculate global displacement to force minimized position using
perturbations (diagonal 2x2)
 pertk = varargin{1};

 159

 fmw = varargin{2};
 limit = varargin{3};
 if size(pertk,1) == 2, fmw(3) = [];, end
 dXY = -[pertk(1,1) 0; 0 pertk(2,2)]\fmw;
 if limit == 'y'
 t_lim = varargin{4};
 if abs(dXY(1)) > t_lim, dXY(1) = sign(dXY(1))*t_lim; end
 if abs(dXY(2)) > t_lim, dXY(2) = sign(dXY(2))*t_lim; end
 end
 if size(dXY,1) == 3, dXY(3) = [];, end
case {11, 13}
 % calculate global displacement to force minimized position using
perturbations (full 2x2 or full 3x3)
 pertk = varargin{1};
 fmw = varargin{2};
 limit = varargin{3};
 if size(pertk,1) == 2, fmw(3) = [];, end
 dXY = -pinv(pertk)*fmw;
 if limit == 'y'
 t_lim = varargin{4};
 if abs(dXY(1)) > t_lim, dXY(1) = sign(dXY(1))*t_lim; end
 if abs(dXY(2)) > t_lim, dXY(2) = sign(dXY(2))*t_lim; end
 end
 if size(dXY,1) == 3, dXY(3) = [];, end
case 12
 % calculate global displacement to force minimized position using
perturbations (diagonal 3x3)
 pertk = varargin{1};
 fmw = varargin{2};
 limit = varargin{3};
 if size(pertk,1) == 2, fmw(3) = [];, end
 dXY = -[pertk(1,1) 0 0; 0 pertk(2,2) 0; 0 0 pertk(3,3)]\fmw;
 if limit == 'y'
 t_lim = varargin{4};
 if abs(dXY(1)) > t_lim, dXY(1) = sign(dXY(1))*t_lim; end
 if abs(dXY(2)) > t_lim, dXY(2) = sign(dXY(2))*t_lim; end
 end
 if size(dXY,1) == 3, dXY(3) = [];, end
end

spieg.m is a function called by hand14a.m that calculates the preferred COR using the

method described by Spiegelman and Woo.

function [corX, corY] = spieg(mark1X, mark1Y, mark1Xp, mark1Yp, mark2X,
mark2Y, mark2Xp, mark2Yp, fx, fy)

% find the true COR using Spiegelman and Woo

% (X1,Y1) & (X2,Y2) are the initial and final global coordinates of marker 1
% (X3,Y3) & (X4,Y4) are the initial and final global coordinates of marker 2
% node a = first marker, node b = second marker

% % noise is normally distributed with mean = 0 mm and std = 0.5 mm

 160

% X1 = mark1X+normrnd(0,0.5);, Y1 = mark1Y+normrnd(0,0.5);
% X2 = mark1Xp+normrnd(0,0.5);, Y2 = mark1Yp+normrnd(0,0.5);
% X3 = mark2X+normrnd(0,0.5);, Y3 = mark2Y+normrnd(0,0.5);
% X4 = mark2Xp+normrnd(0,0.5);, Y4 = mark2Yp+normrnd(0,0.5);

% noise is assumed to be due to weight on end-effector
% calculate how much noise should be added
pctpay = fx/(6*9.81)*100;, xnoise = 0.0058*pctpay - 0.28;
pctpay = fy/(6*9.81)*100;, ynoise = 0.0058*pctpay - 0.28;
X1 = mark1X+xnoise;, Y1 = mark1Y+ynoise;
X2 = mark1Xp+xnoise;, Y2 = mark1Yp+ynoise;
X3 = mark2X+xnoise;, Y3 = mark2Y+ynoise;
X4 = mark2Xp+xnoise;, Y4 = mark2Yp+ynoise;

% % no noise added
% X1 = mark1X;, Y1 = mark1Y;
% X2 = mark1Xp;, Y2 = mark1Yp;
% X3 = mark2X;, Y3 = mark2Y;
% X4 = mark2Xp;, Y4 = mark2Yp;

S = X1-X3;, Sp = X2-X4;
T = Y1-Y3;, Tp = Y2-Y4;
cosphi = (Sp*S + Tp*T)/(S^2 + T^2);
sinphi = (Sp*T - Tp*S)/(S^2 + T^2);
U = (Y1+Y2)/2 + sinphi*(X1-X2)/(2*(1-cosphi));
V = (X1+X2)/2 - sinphi*(Y1-Y2)/(2*(1-cosphi));
corX = X1 + (Y2-U)/sinphi - cosphi*(Y1-U)/sinphi;
corY = Y1 - (X2-V)/sinphi + cosphi*(X1-V)/sinphi;

crisco.m is a function called by hand14a.m that calculates the preferred COR using the

method described by Crisco et al.

function [corX, corY] = crisco(mark1X, mark1Y, mark2X, mark2Y, mark1Xp,
mark1Yp, mark2Xp, mark2Yp, fx, fy)

% find the true COR using Crisco et al.

% (x1,y1) & (x2,y2) are the initial & final global coordinates of marker 1
% (x3,y3) & (x4,y4) are the initial & final global coordinates of marker 2

% % noise is normally distributed with mean = 0 mm and std = 0.5 mm
% x1 = mark1X+normrnd(0,0.5);, y1 = mark1Y+normrnd(0,0.5);, A = [x1; y1];
% x2 = mark1Xp+normrnd(0,0.5);, y2 = mark1Yp+normrnd(0,0.5);, Ap = [x2; y2];
% x3 = mark2X+normrnd(0,0.5);, y3 = mark2Y+normrnd(0,0.5);, B = [x3; y3];
% x4 = mark2Xp+normrnd(0,0.5);, y4 = mark2Yp+normrnd(0,0.5);, Bp = [x4; y4];

% noise is assumed to be due to weight on end-effector
% calculate how much noise should be added
pctpay = fx/(6*9.81)*100;, xnoise = 0.0058*pctpay - 0.28;
pctpay = fy/(6*9.81)*100;, ynoise = 0.0058*pctpay - 0.28;
x1 = mark1X+xnoise;, y1 = mark1Y+ynoise;, A = [x1; y1];

 161

x2 = mark1Xp+xnoise;, y2 = mark1Yp+ynoise;, Ap = [x2; y2];
x3 = mark2X+xnoise;, y3 = mark2Y+ynoise;, B = [x3; y3];
x4 = mark2Xp+xnoise;, y4 = mark2Yp+ynoise;, Bp = [x4; y4];

% % no noise added
% x1 = mark1X;, y1 = mark1Y;, A = [x1; y1];
% x2 = mark1Xp;, y2 = mark1Yp;, Ap = [x2; y2];
% x3 = mark2X;, y3 = mark2Y;, B = [x3; y3];
% x4 = mark2Xp;, y4 = mark2Yp;, Bp = [x4; y4];

u = A-B;
up = Ap-Bp;
cosphi = dot(u,up)/(sqrt(u'*u)*sqrt(up'*up));
sinphi = sqrt(1-(cosphi)^2);
cp = cross([u;0],[up;0]);
if sign(cp(3)) > 0
 sinphi = sinphi;
elseif sign(cp(3)) < 0
 sinphi = -sinphi;
end
corX = (1/2)*(x1+x2) + (y1-y2)*sinphi/(2*(1-cosphi));
corY = (1/2)*(y1+y2) - (x1-x2)*sinphi/(2*(1-cosphi));

challis.m is a function called by hand14a.m that calculates the preferred COR using the

method described by Challis.

function [corX, corY, xnoise, ynoise] = challis(axy, a0X, a0Y, a1X, a1Y, bxy,
b0X, b0Y, b1X, b1Y, fx, fy);

% find the true COR using Challis

% x(t)i is the position of point i on the rigid body measured in the rigid
body ref. frame
% y(t)i is the position of point i on the rigid body measured in the inertial
ref. frame
% x(t)i and y(t)i are vectors, not single points
% node a: i = 1 (initial) & 3 (final)
% node b: i = 2 (initial) & 4 (final)

% % noise is normally distributed with mean = 0 mm and std = 0.5 mm
% x1 = [axy(1); axy(2)] + normrnd(0,0.5,2,1);, y1 = [a0X; a0Y] +
normrnd(0,0.5,2,1);
% x2 = [bxy(1); bxy(2)] + normrnd(0,0.5,2,1);, y2 = [b0X; b0Y] +
normrnd(0,0.5,2,1);
% x3 = [axy(1); axy(2)] + normrnd(0,0.5,2,1);, y3 = [a1X; a1Y] +
normrnd(0,0.5,2,1);
% x4 = [bxy(1); bxy(2)] + normrnd(0,0.5,2,1);, y4 = [b1X; b1Y] +
normrnd(0,0.5,2,1);

% noise is assumed to be due to weight on end-effector
% calculate how much noise should be added
pctpay = fx/(6*9.81)*100;, xnoise = 0.0058*pctpay - 0.28;
pctpay = fy/(6*9.81)*100;, ynoise = 0.0058*pctpay - 0.28;

 162

x1 = [axy(1); axy(2)] + [xnoise; ynoise];, y1 = [a0X; a0Y] + [xnoise;
ynoise];
x2 = [bxy(1); bxy(2)] + [xnoise; ynoise];, y2 = [b0X; b0Y] + [xnoise;
ynoise];
x3 = [axy(1); axy(2)] + [xnoise; ynoise];, y3 = [a1X; a1Y] + [xnoise;
ynoise];
x4 = [bxy(1); bxy(2)] + [xnoise; ynoise];, y4 = [b1X; b1Y] + [xnoise;
ynoise];

% % no noise added
% x1 = [axy(1); axy(2)];, y1 = [a0X; a0Y];
% x2 = [bxy(1); bxy(2)];, y2 = [b0X; b0Y];
% x3 = [axy(1); axy(2)];, y3 = [a1X; a1Y];
% x4 = [bxy(1); bxy(2)];, y4 = [b1X; b1Y];

xbar = (x1+x2)/2;, ybar = (y1+y2)/2;
x1p = x1-xbar;, y1p = y1-ybar;
x2p = x2-xbar;, y2p = y2-ybar;
P = y1p(1)*x1p(2)-y1p(2)*x1p(1) + y2p(1)*x2p(2)-y2p(2)*x2p(1);
Q = y1p(1)*x1p(1)+y1p(2)*x1p(2) + y2p(1)*x2p(1)+y2p(2)*x2p(2);
phi = -atan(P/Q);, phi0 = phi;
v0 = (y1+y2)/2 - [cos(phi) -sin(phi); sin(phi) cos(phi)]*(x1+x2)/2;

xbar = (x3+x4)/2;, ybar = (y3+y4)/2;
x3p = x3-xbar;, y3p = y3-ybar;
x4p = x4-xbar;, y4p = y4-ybar;
P = y3p(1)*x3p(2)-y3p(2)*x3p(1) + y4p(1)*x4p(2)-y4p(2)*x4p(1);
Q = y3p(1)*x3p(1)+y3p(2)*x3p(2) + y4p(1)*x4p(1)+y4p(2)*x4p(2);
phi = -atan(P/Q);, phi1 = phi;
v1 = (y3+y4)/2 - [cos(phi) -sin(phi); sin(phi) cos(phi)]*(x3+x4)/2;

dv = v1-v0;
p = (v0+v1)/2;
phi = phi1 - phi0;
FCR = p + 1/(2*tan(phi/2))*[cos(pi/2) -sin(pi/2); sin(pi/2) cos(pi/2)]*dv;
corX = FCR(1);
corY = FCR(2);

corupdate.m is a short function called by hand14a.m that updates the user-defined COR

to the calculated preferred COR.

function corXY = corupdate(corX, corY, corXtemp, corYtemp, limit, cor_lim)

dcorX = corXtemp-corX;
dcorY = corYtemp-corY;
if limit == 'y'
 if abs(dcorX) > cor_lim, dcorX = sign(dcorX)*cor_lim;, end
 if abs(dcorY) > cor_lim, dcorY = sign(dcorY)*cor_lim;, end
end
corX = corX+dcorX;, corY = corY+dcorY;, corXY = [corX corY]';

 163

draw.m is a function called by hand14a.m that makes 3D plots or contour plots,

depending on the input variable “flag”.

function draw(xx, yy, FX, FY, MZ, F, u, PX, PY, K1, K2, K3, PHI, phi, flag);

switch flag
 case 1
 fh = figure;
 surfc(xx, yy, FX);
 xlabel('X COR location (mm)');
 ylabel('Y COR location (mm)');
 zlabel('FX (N)');
 title(['Total rotation = ',num2str(PHI),' deg., ', num2str(phi*180/pi),
' deg. increments']);
 view(-58.50, 46);

 fh = figure;
 surfc(xx, yy, FY);
 xlabel('X COR location (mm)');
 ylabel('Y COR location (mm)');
 zlabel('FY (N)');
 title(['Total rotation = ',num2str(PHI),' deg., ', num2str(phi*180/pi),
' deg. increments']);
 view(-58.50, 46);

 fh = figure;
 surfc(xx, yy, MZ);
 xlabel('X COR location (mm)');
 ylabel('Y COR location (mm)');
 zlabel('MZ (N-m)');
 title(['Total rotation = ',num2str(PHI),' deg., ', num2str(phi*180/pi),
' deg. increments']);
 view(-58.50, 46);

 fh = figure;
 surfc(xx, yy, F);
 xlabel('X COR location (mm)');
 ylabel('Y COR location (mm)');
 zlabel('Resultant force magnitude (N)');
 title(['Total rotation = ',num2str(PHI),' deg., ', num2str(phi*180/pi),
' deg. increments']);
 view(-58.50, 46);

 fh = figure;
 surfc(xx, yy, u);
 xlabel('X COR location (mm)');
 ylabel('Y COR location (mm)');
 zlabel('Potential energy (N-mm)');
 title(['Total rotation = ',num2str(PHI),' deg., ', num2str(phi*180/pi),
' deg. increments']);
 view(-58.50, 46);

 fh = figure;
 surfc(PX, PY, K1);
 xlabel('PX location (mm)');

 164

 ylabel('PY location (mm)');
 zlabel('Kxx (N/mm)');
 title(['Total rotation = ',num2str(PHI),' deg., ', num2str(phi*180/pi),
' deg. increments']);
 view(-58.50, 46);

 fh = figure;
 surfc(PX, PY, K2);
 xlabel('PX location (mm)');
 ylabel('PY location (mm)');
 zlabel('Kxy (N/mm)');
 title(['Total rotation = ',num2str(PHI),' deg.,
',num2str(phi*180/pi),' deg. increments']);
 view(-58.50, 46);

 fh = figure;
 surfc(PX, PY, K3);
 xlabel('PX location (mm)');
 ylabel('PY location (mm)');
 zlabel('Kyy (N/mm)');
 title(['Total rotation = ',num2str(PHI),' deg., ', num2str(phi*180/pi),
' deg. increments']);
 view(-58.50, 46);

 case 2
 fh = figure;
 [C,h] = contour(xx, yy, FX);
 xline = line('xdata', [xx(1) xx(end)], 'ydata', [0 0], 'color', 'k');
 yline = line('xdata', [0 0], 'ydata', [yy(1) yy(end)], 'color', 'k');
 xlabel('X COR location (mm)');
 ylabel('Y COR location (mm)');
 title(['FX (N), Total rotation = ',num2str(PHI),' deg., ',
num2str(phi*180/pi), ' deg. increments']);
 clabel(C,h);

 fh = figure;
 [C,h] = contour(xx, yy, FY);
 xline = line('xdata', [xx(1) xx(end)], 'ydata', [0 0], 'color', 'k');
 yline = line('xdata', [0 0], 'ydata', [yy(1) yy(end)], 'color', 'k');
 xlabel('X COR location (mm)');
 ylabel('Y COR location (mm)');
 title(['FY (N), Total rotation = ',num2str(PHI),' deg., ',
num2str(phi*180/pi), ' deg. increments']);
 clabel(C,h);

 fh = figure;
 [C,h] = contour(xx, yy, MZ);
 xline = line('xdata', [xx(1) xx(end)], 'ydata', [0 0], 'color', 'k');
 yline = line('xdata', [0 0], 'ydata', [yy(1) yy(end)], 'color', 'k');
 xlabel('X COR location (mm)');
 ylabel('Y COR location (mm)');
 title(['MZ (N-m), Total rotation = ',num2str(PHI),' deg., ',
num2str(phi*180/pi), ' deg. increments']);
 clabel(C,h);

 fh = figure;
 [C,h] = contour(xx, yy, avgf);

 165

 xline = line('xdata', [xx(1) xx(end)], 'ydata', [0 0], 'color', 'k');
 yline = line('xdata', [0 0], 'ydata', [yy(1) yy(end)], 'color', 'k');
 xlabel('X COR location (mm)');
 ylabel('Y COR location (mm)');
 title(['Resultant force magnitude (N), Total rotation = ', ...
 num2str(PHI),' deg., ', num2str(phi*180/pi), ' deg.
increments']);
 clabel(C,h);

 fh = figure;
 [C,h] = contour(xx, yy, u);
 xline = line('xdata', [xx(1) xx(end)], 'ydata', [0 0], 'color', 'k');
 yline = line('xdata', [0 0], 'ydata', [yy(1) yy(end)], 'color', 'k');
 xlabel('X COR location (mm)');
 ylabel('Y COR location (mm)');
 title(['Potential energy (N-mm), Total rotation = ',num2str(PHI),'
deg., ', num2str(phi*180/pi), ' deg. increments']);
 clabel(C,h);

 fh = figure;
 [C,h] = contour(PX, PY, Kxx);
 xline = line('xdata', [xx(1) xx(end)], 'ydata', [0 0], 'color', 'k');
 yline = line('xdata', [0 0], 'ydata', [yy(1) yy(end)], 'color', 'k');
 xlabel('PX location (mm)');
 ylabel('PY location (mm)');
 title(['Kxx (N/mm), Total rotation = ',num2str(PHI),' deg., ',
num2str(phi*180/pi), ' deg. increments']);
 clabel(C,h);

 fh = figure;
 [C,h] = contour(PX, PY, Kyy);
 xline = line('xdata', [xx(1) xx(end)], 'ydata', [0 0], 'color', 'k');
 yline = line('xdata', [0 0], 'ydata', [yy(1) yy(end)], 'color', 'k');
 xlabel('PX location (mm)');
 ylabel('PY location (mm)');
 title(['Kyy (N/mm), Total rotation = ',num2str(PHI),' deg., ',
num2str(phi*180/pi), ' deg. increments']);
 clabel(C,h);
end

draw2.m is a function called by hand14a.m that plots the current position of the bar and

the resultant force acting at the center of the bar.

function draw2(handles, PXY, corXY, aXY, bXY, jaXY, jbXY, angle, mark1XY,
mark2XY, FXY, tick)

fh = handles(1);
fgraph = handles(2);
forceufs = handles(3);
ah = handles(4);
bar = handles(5);
springa = handles(6);
springb = handles(7);

 166

xbar = [aXY(1) bXY(1)];
ybar = [aXY(2) bXY(2)];
set(bar, 'xdata', xbar, 'ydata', ybar);
set(springa, 'xdata', [aXY(1) jaXY(1)], 'ydata', [aXY(2) jaXY(2)]);
set(springb, 'xdata', [jbXY(1) bXY(1)], 'ydata', [jbXY(2) bXY(2)]);
drawnow
plot(corXY(1)*cos(2*angle)-corXY(2)*sin(2*angle),
corXY(1)*sin(2*angle)+corXY(2)*cos(2*angle), '.',...
 'markeredgecolor', [0 .75 0], 'markersize', 20);
plot(PXY(1), PXY(2), '.', 'markeredgecolor', [.827 .122 .592]);
plot(0, 0, '.g', mark1XY(1), mark1XY(2), '.m', mark2XY(1), mark2XY(2), '.m');
set(fh, 'currentaxes', fgraph)
hold on
plot(tick, sqrt(FXY(1)^2+FXY(2)^2), '.k', 'markersize', 8);
set(fh, 'currentaxes', ah)
for m = 1:100000, ; end

 167

APPENDIX B

Matlab code for experimental tests

spine_display.m is a function called by the Matlab GUI developed to allow any user to

control the experimental tests.

 function varargout = spine_display2(varargin)
% SPINE_DISPLAY2 Application M-file for spine_display2.fig
% FIG = SPINE_DISPLAY2 launch spine_display2 GUI.
% SPINE_DISPLAY2('callback_name', ...) invoke the named callback.

% Amy Loveless
% Last Modified by GUIDE v2.0 05-Jun-2003 14:06:37

if nargin == 0 % LAUNCH GUI

 fig = openfig(mfilename,'reuse');

 % Use system color scheme for figure:
 set(fig,'Color',get(0,'defaultUicontrolBackgroundColor'));

 % Generate a structure of handles to pass to callbacks, and store it.
 handles = guihandles(fig);
 guidata(fig, handles);

 assignin('base', 'guihandles', handles)

% assignin('base', 'hok', handles.ok_push_button);
% assignin('base', 'hbolt', handles.boltup_push_button);
% assignin('base', 'hbefore', handles.fm_before_push_button);
% assignin('base', 'hafter', handles.load_control_push_button);
% assignin('base', 'hpath', handles.pathseek_push_button);
% assignin('base', 'hval', handles.val_path_push_button);
% assignin('base', 'hreplay', handles.replay_push_button);
% assignin('base', 'hend', handles.end_push_button);

 global ok_flag
 ok_flag = 0;

 if nargout > 0
 varargout{1} = fig;
 end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

 try
 if (nargout)

 168

 [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard
 else
 feval(varargin{:}); % FEVAL switchyard
 end
 catch
 disp(lasterr);
 end

end

%| ABOUT CALLBACKS:
%| GUIDE automatically appends subfunction prototypes to this file, and
%| sets objects' callback properties to call them through the FEVAL
%| switchyard above. This comment describes that mechanism.
%|
%| Each callback subfunction declaration has the following form:
%| <SUBFUNCTION_NAME>(H, EVENTDATA, HANDLES, VARARGIN)
%|
%| The subfunction name is composed using the object's Tag and the
%| callback type separated by '_', e.g. 'slider2_Callback',
%| 'figure1_CloseRequestFcn', 'axis1_ButtondownFcn'.
%|
%| H is the callback object's handle (obtained using GCBO).
%|
%| EVENTDATA is empty, but reserved for future use.
%|
%| HANDLES is a structure containing handles of components in GUI using
%| tags as fieldnames, e.g. handles.figure1, handles.slider2. This
%| structure is created at GUI startup using GUIHANDLES and stored in
%| the figure's application data using GUIDATA. A copy of the structure
%| is passed to each callback. You can store additional information in
%| this structure at GUI startup, and you can change the structure
%| during callbacks. Call guidata(h, handles) after changing your
%| copy to replace the stored original so that subsequent callbacks see
%| the updates. Type "help guihandles" and "help guidata" for more
%| information.
%|
%| VARARGIN contains any extra arguments you have passed to the
%| callback. Specify the extra arguments by editing the callback
%| property in the inspector. By default, GUIDE sets the property to:
%| <MFILENAME>('<SUBFUNCTION_NAME>', gcbo, [], guidata(gcbo))
%| Add any extra arguments after the last argument, before the final
%| closing parenthesis.

% --
function varargout = default_push_button_Callback(h, eventdata, handles,
varargin)
set(handles.corx_edit,'String','0')
set(handles.cory_edit,'String','15')
set(handles.corz_edit,'String','110')
set(handles.corrx_edit,'String','0')
set(handles.corry_edit,'String','0')
set(handles.corrz_edit,'String','0')
set(handles.sup_vert_x,'String','0')
set(handles.sup_vert_y,'String','15')
set(handles.sup_vert_z,'String','110')
set(handles.sup_vert_rx,'String','0')

 169

set(handles.sup_vert_ry,'String','0')
set(handles.sup_vert_rz,'String','0')
set(handles.start_edit,'String','0')
set(handles.inc_edit,'String','0.5')
set(handles.fxtarget_edit,'String','0.5')
set(handles.fytarget_edit,'String','0.5')
set(handles.fztarget_edit,'String','0.5')
set(handles.mxtarget_edit,'String','0.25')
set(handles.mytarget_edit,'String','0.25')
set(handles.mztarget_edit,'String','0.25')

set(handles.default_push_button,'Enable','off')

% --
function varargout = ok_push_button_Callback(h, eventdata, handles, varargin)
corx = str2num(get(handles.corx_edit,'String'));
cory = str2num(get(handles.cory_edit,'String'));
corz = str2num(get(handles.corz_edit,'String'));
corrx = str2num(get(handles.corrx_edit,'String'));
corry = str2num(get(handles.corry_edit,'String'));
corrz = str2num(get(handles.corrz_edit,'String'));
supvertx = str2num(get(handles.sup_vert_x,'String'));
supverty = str2num(get(handles.sup_vert_y,'String'));
supvertz = str2num(get(handles.sup_vert_z,'String'));
supvertrx = str2num(get(handles.sup_vert_rx,'String'));
supvertry = str2num(get(handles.sup_vert_ry,'String'));
supvertrz = str2num(get(handles.sup_vert_rz,'String'));
start = str2num(get(handles.start_edit,'String'));
inc = str2num(get(handles.inc_edit,'String'));
fxtarget = str2num(get(handles.fxtarget_edit,'String'));
fytarget = str2num(get(handles.fytarget_edit,'String'));
fztarget = str2num(get(handles.fztarget_edit,'String'));
mxtarget = str2num(get(handles.mxtarget_edit,'String'));
mytarget = str2num(get(handles.mytarget_edit,'String'));
mztarget = str2num(get(handles.mztarget_edit,'String'));

assignin('base','x1',corx/1000)
assignin('base','y1',cory/1000)
assignin('base','z1',(corz+64)/1000)
if corrx == 0, assignin('base','rx1',0.0000001), else,
assignin('base','rx1',corrx), end
if corry == 0, assignin('base','ry1',0.0000001), else,
assignin('base','ry1',corry), end
if corrz == 0, assignin('base','rz1',0.0000001), else,
assignin('base','rz1',corrz), end
assignin('base','x2',supvertx/1000)
assignin('base','y2',supverty/1000)
assignin('base','z2',(supvertz+64)/1000)
if supvertrx == 0, assignin('base','rx2',0.0000001), else,
assignin('base','rx2',supvertrx), end
if supvertry == 0, assignin('base','ry2',0.0000001), else,
assignin('base','ry2',supvertry), end
if supvertrz == 0, assignin('base','rz2',0.0000001), else,
assignin('base','rz2',supvertrz), end
assignin('base','w_start',start)
assignin('base','w_ang',inc)
assignin('base','w_neg',-inc)

 170

assignin('base','z_target',[fxtarget fytarget fztarget mxtarget mytarget
mztarget])
assignin('base','cuts',0)

global ok_flag
if ok_flag == 0
 % Initiate communication with the UFS
 a = matjr3pci('init_jr3',0,0,0,0,0);

 % Create, configure and open serial port object
 port1 = Serial('COM1');
 set(port1, 'BaudRate',19200, 'Terminator','CR/LF', 'Timeout', 900);
 fopen(port1);
 assignin('base','port1',port1)
end

set(handles.boltup_push_button,'Enable','on')
set(handles.fm_before_push_button,'Enable','on')
set(handles.load_control_push_button,'Enable','on')
set(handles.pathseek_push_button,'Enable','on')
set(handles.val_path_push_button,'Enable','on')
set(handles.replay_push_button,'Enable','on')
set(handles.end_push_button,'Enable','on')

ok_flag = ok_flag + 1;

% --
function varargout = end_push_button_Callback(h, eventdata, handles,
varargin)
% launch dialog box to confirm close
pos_size = get(handles.figure1,'Position');
pos_size = [55 15 pos_size(3) pos_size(4)];
user_response = modaldlg([pos_size(1)+pos_size(3)/5
pos_size(2)+pos_size(4)/5]);
switch user_response
case {'no','cancel'}
 % take no action
case 'yes'
 % Prepare to close GUI application window
 % Halt communication with the UFS
 matjr3pci('close_jr3');

 % Close the serial port
 port1 = evalin('base', 'port1');
 fclose(port1);

 delete(handles.figure1)
end

% --
function varargout = file_menu_Callback(h, eventdata, handles, varargin)

% --
function varargout = print_file_sub_menu_Callback(h, eventdata, handles,
varargin)
% List dialog box to select figure to print

 171

str = {'Figure 1'; 'Figure 2'};
[selection, ok] = listdlg('ListString',str, 'Name','Print Figure',...
 'PromptString','Select a figure to print')

% Set current figure to selected figure
% set(gcf,handles.figure2)

% Print figure
% print

% Set current figure back to GUI
% set(gcf,handles.figure1)

% --
function varargout = tool_menu_Callback(h, eventdata, handles, varargin)

% --
function varargout = stop_tools_sub_menu_Callback(h, eventdata, handles,
varargin)
monitor_flag = 1;
assignin('base', 'monitor_flag', monitor_flag)

% --
function varargout = help_menu_Callback(h, eventdata, handles, varargin)

% --
function varargout = protocol_help_sub_menu_Callback(h, eventdata, handles,
varargin)

The user must follow several steps in the GUI before getting to the hybrid control

algorithm: remove bolt-up loads (boltup_flex_ext3.m) and minimize any loads arising from the

attachement of the end-effector to the superior fixture (initial_loads2.m and boltup_leash2.m).

boltup_flex_ext3.m is a script called by the GUI to calculate the loads on the UFS due to

bolt-up, the weight of the attachments on the UFS and the center of gravity of the attachments.

%function [avg, x0, y0, z0, w_mg] = boltup_flex_ext3;

% boltup_flex_ext3
%controller moves robot into #pp1-6
%function to read forces/moments at each #pp

% % Disable buttons on GUI until boltup_flxn_ext.m is done running

 172

% set(hok, 'Enable', 'off');
% set(hbolt, 'Enable', 'off');
% set(hbefore, 'Enable', 'off');
% set(hafter, 'Enable', 'off');
% set(hpath, 'Enable', 'off');
% set(hval, 'Enable', 'off');
% set(hreplay, 'Enable', 'off');
% set(hend, 'Enable', 'off');

% Disable buttons on GUI until spine3h_pathseek7.m is done running
buttons(guihandles, 'off');

pp(1,1:6) = [0,-45.005,135.001,0,-.05,-180.145];
pp(2,1:6) = [0,-45.005,135.001,0,-.05,-.142];
pp(3,1:6) = [0,-45.005,135.001,0,-.05,89.855];
pp(4,1:6) = [0,-45.005,135.001,0,-.05,-90.147];
pp(5,1:6) = [0,-45.005,135.001,0,-90.05,-90.15];
pp(6,1:6) = [0,-45.005,135.001,0,89.95,-90.15];

% % set transformation for COR from UFS face (remember that the UFS has a
left-hand rule, so positive z axis points toward the robot)
% trans_ufst = [1,round(x1*1000/0.0254), 2,round(y1*1000/0.0254), 3,round(-
(z1-0.045)*1000/0.0254), 4,round(rx1*32768/180), 5,round(ry1*32768/180),
6,round(rz1*32768/180),0];
% b = matjr3pci('set_transforms', 0, 'trans_ufst', 13, 0);
%
% % use transformation
% b = matjr3pci('use_transforms', 0, 0);
%
% % only use pause if updating COR
% pause(1);

for p = 1:6
 fprintf(port1, pp(p,1:6));
 flag = 0;
 flag = fscanf(port1);
 newflag = sscanf(flag, '%f');
 if newflag == 1
 get_loads;
 % fm_ufs = get_loads;
 pp_fin(1:3,p)=fm_ufs(1:3)';
 pp_min(1:3,p)=fm_ufs(4:6)';
 cg_fin(1:3,p)=fm_ufs(1:3)';
 cg_min(1:3,p)=fm_ufs(4:6)';
 else
 var = 1
 end
end

fprintf(port1, pp(3,1:6));

% FSU forces/moments=UFS forces/moments[]-avg[]-fixture wt[]
favgx = (pp_fin(1,3)+pp_fin(1,4)+pp_fin(1,5)+pp_fin(1,6))/4;
favgy = (pp_fin(2,1)+pp_fin(2,2)+pp_fin(2,5)+pp_fin(2,6))/4;
favgz = (pp_fin(3,1)+pp_fin(3,2)+pp_fin(3,3)+pp_fin(3,4))/4;
mavgx = (pp_min(1,1)+pp_min(1,2))/2;
mavgy = (pp_min(2,3)+pp_min(2,4)+pp_min(2,5)+pp_min(2,6))/4;

 173

mavgz = (pp_min(3,3)+pp_min(3,4)+pp_min(3,5)+pp_min(3,6))/4;

avg = -[favgx favgy favgz mavgx mavgy mavgz];
avg_dig(2) = avg(2)*16384/20/4.44;
avg_dig(3) = avg(3)*16384/50/4.44;

% FSU forces/moments=UFS forces/moments[]-avg[]-fixture wt[]
cg_favgx = (cg_fin(1,3)+cg_fin(1,4)+cg_fin(1,5)+cg_fin(1,6))/4;
cg_favgy = (cg_fin(2,1)+cg_fin(2,2)+cg_fin(2,5)+cg_fin(2,6))/4;
cg_favgz = (cg_fin(3,1)+cg_fin(3,2)+cg_fin(3,3)+cg_fin(3,4))/4;
cg_mavgx = (cg_min(1,1)+cg_min(1,2))/2;
cg_mavgy = (cg_min(2,3)+cg_min(2,4)+cg_min(2,5)+cg_min(2,6))/4;
cg_mavgz = (cg_min(3,3)+cg_min(3,4)+cg_min(3,5)+cg_min(3,6))/4;

% Calculate the center of gravity and mass of top fixture.

% 3 and 4 : d = z
% 3 : dz = -mx/fy
% 4 : dz = -mx/fy
fy_cg3 = -cg_fin(2,3) + cg_favgy;
fy_cg4 = -cg_fin(2,4) + cg_favgy;
mx_cg3 = -cg_min(1,3) + cg_mavgx;
mx_cg4 = -cg_min(1,4) + cg_mavgx;
momarm_z1 = -(mx_cg3/fy_cg3)*1000;
momarm_z2 = -(mx_cg4/fy_cg4)*1000;
momarm_z = (momarm_z1 + momarm_z2)/2;
z0 = momarm_z/1000;

% 1 and 2 : d = y
% 1 : dy = -mz/fx
% 2 : dy = -mz/fxfy_cg3 = cg_fin(2,3);
fx_cg1 = -cg_fin(1,1) + cg_favgx;
fx_cg2 = -cg_fin(1,2) + cg_favgx;
mz_cg1 = -cg_min(3,1) + cg_mavgz;
mz_cg2 = -cg_min(3,2) + cg_mavgz;
momarm_y1 = -(mz_cg1/fx_cg1)*1000;
momarm_y2 = -(mz_cg2/fx_cg2)*1000;
momarm_y = (momarm_y1 + momarm_y2)/2;
y0 = momarm_y/1000;

% 5 and 6 : d = x
% 5 : dx = -my/fz
% 6 : dx = -my/fzfy_cg3 = cg_fin(2,3);
fz_cg5 = -cg_fin(3,5) + cg_favgz;
fz_cg6 = -cg_fin(3,6) + cg_favgz;
my_cg5 = -cg_min(2,5) + cg_mavgy;
my_cg6 = -cg_min(2,6) + cg_mavgy;
momarm_x1 = -(my_cg5/fz_cg5*1000);
momarm_x2 = -(my_cg6/fz_cg6*1000);
momarm_x = (momarm_x1 + momarm_x2)/2;
x0 = momarm_x/1000;

% mass = 3(-fy), 4(fy), 1(-fx), 2(fx), 5(-fz), 6(fz)
mass_calc = ((-fy_cg3) + (fy_cg4) + (-fx_cg1) + (fx_cg2) + (-fz_cg5) +
(fz_cg6))/6;
mass_calc = -mass_calc;
w_mg = [0 0 mass_calc]';

 174

filename = ['c:\robot\temp\temp ', date];
save(filename);

% % Enable buttons on GUI when boltup_flex_ext3.m is done running
% set(hok, 'Enable', 'on');
% set(hbolt, 'Enable', 'on');
% set(hbefore, 'Enable', 'on');
% set(hafter, 'Enable', 'on');
% set(hpath, 'Enable', 'on');
% set(hval, 'Enable', 'on');
% set(hreplay, 'Enable', 'on');
% set(hend, 'Enable', 'on');

% Enable buttons on GUI when spine3h_pathseek7.m is done running
buttons(guihandles, 'on');

get_loads.m is a script called by several other scripts to read the loads from the JR3 PCI

card.

% function fm_ufs = get_loads;

% get_loads
% Kevin M. Bell
% 03/18/02

% % Commented out on 09-04-02.
% % We are having a problem inplementing the set and use transformation
functions. It appears that the transformation is randomly used and not used,
% % meaning that sometimes the loads are read at the c.s. we set (the
specimen COR) and sometimes they are read at the center of the UFS.
% % There does not seem to be any kind of pattern to this behavior, so we
just took the transformation functions out. Now we read all loads at the
center
% % of the UFS and transform them later to the COR. If we can get the
transformation functions to work later, we may go back to using them.

% % set transformation for COR from center of UFS (remember that the UFS has
a left-hand rule, so positive z axis points toward the robot)
% trans_ufst = [1,round(x1*1000/0.0254), 2,round(y1*1000/0.0254), 3,round(-
(z1-0.045)*1000/0.0254), 4,round(rx1*32768/180), 5,round(ry1*32768/180),
6,round(rz1*32768/180),0];
% b = matjr3pci('set_transforms', 0, 'trans_ufst', 13, 0);
%
% % use transformation
% b = matjr3pci('use_transforms', 0, 0);
%
% pause(1);

araw = 0;
%read in full scales
full = matjr3pci('get_full_scales',0);

 175

% read in raw data from UFS at center of UFS
for i = 1:30
 raw(i,:) = matjr3pci('read_ftdata',3,0);
 % flip y to make right hand c.s.
 raw(i,2) = -raw(i,2);
 raw(i,5) = -raw(i,5);
 araw = araw + raw(i,:);
 % pause added so that data from pci card is not read too quickly,
 % otherwise, all forces and moments in raw() are the same
% pause(0.01);
end

% average 30 readings
araw = araw/30;

% Calculate forces/moments in pounds/inch-pounds
% Negative sign to show f/m in robot point of view
fm_ufs = -araw.*full/16384;

% Remember that fm_ufs[] are loads at the center of the UFS. They are
transformed to the COR later.
% seperate and convert forces and moments
fm_ufs(1:3) = fm_ufs(1:3)*4.44;
fm_ufs(4:6) = fm_ufs(4:6)*4.44*.0254;
fm_ufs(7:8) = [];

initial_loads2.m is a script called by the GUI to find the loads on the UFS before

attaching the superior fixture to the end-effector.

% Disable buttons on GUI until initial_loads2.m is done running
buttons(guihandles, 'off');

fm_before = [0 0 0 0 0 0];

for j = 1:100

 get_loads;
 fm_before = fm_before + fm_ufs;

end

fm_before = fm_before'/100;

filename = ['c:\robot\temp\temp ', date];
save(filename);

% Enable buttons on GUI when spine3h_pathseek7.m is done running
buttons(guihandles, 'on');

 176

boltup_leash2.m is a script called by the GUI that relieves the loads created during

attachment of the superior fixture to the end-effector.

% boltup_leash2.m
% use load control to make sure that no f/m are added when fixture is
attached to UFS
% modified from trpy.m by Lianfang Tian
% July 28, 2002

% Disable buttons on GUI until boltup_leash2.m is done running
buttons(guihandles, 'off');

% setup figure to graphically monitor loads
[fx, fy, fz, mx, my, mz, fh] = attach_display1;

% Define the threshold value for force and moment
f_min = 0.5; % N
m_min = 0.25; % N-m

% Limit for displacements
lim_dis = 0.1; % mm
lim_mdis = 0.1; % degrees

% Define stiffness
for n=1:3
 stiff(n) = 10.00001; % N/mm
end

for n=4:6
 stiff(n) = 10.00001; % N-m/degrees
end

% convert rotations about tool x,y,z axes to Euler angles
eul = rad2deg(tr2eul(rpy2tr(deg2rad(rz1), deg2rad(ry1), deg2rad(rx1))));

% send x1, y1, z1, rx1, ry1, rz1 to V+ to make tool transformation
ok = 0;
flag = 0.1;
fprintf(port1, [ok, flag]);
fprintf(port1, [(x1*1000)+.1, (y1*1000)+.1, (z1*1000)+.1, eul(1)+.1,
eul(2)+.1, eul(3)+.1]);

done_moving = fscanf(port1);
done_moving = sscanf(done_moving, '%f');

zero_flag = 0;
kk = 0;

while zero_flag == 0
 kk = kk + 1;

 fm_after = [0 0 0 0 0 0];

 pause(2);

 177

 % Read forces/moments
 for j = 1:100
 get_loads;
 fm_after = fm_after + fm_ufs;
 end

 % Average forces/moments
 fm_after = fm_after'/100;
 total_fm_after(1:6,kk) = fm_after;

 % Remove forces/moments present before fixture attachment
 fm_diff = fm_after - fm_before;

 % Display forces and moments
 attach_display2([fm_diff', fx, fy, fz], [mx, my, mz], [f_min, m_min]);
 %===

 % Find translations in UFS c.s.
 for k1=1:3
 if (abs(fm_diff(k1)) < abs(f_min))
 dis(k1) = 0;
 else
 dis(k1) = fm_diff(k1)/stiff(k1);
 end

 if abs(dis(k1)) > lim_dis
 dis(k1) = sign(dis(k1))*lim_dis;
 end
 end

 % out_dis1, out_dis2, out_dis3 are translations in UFS c.s.
 out_dis1(kk)=dis(1);
 out_dis2(kk)=dis(2);
 out_dis3(kk)=dis(3);
 %===

 % Find rotations in UFS c.s.
 for k1=4:6
 if (abs(fm_diff(k1))<abs(m_min))
 dis(k1) = 0.0000001;
 else
 dis(k1) = fm_diff(k1)/stiff(k1);
 end

 if abs(dis(k1)) > lim_mdis
 dis(k1) = sign(dis(k1))*lim_mdis;
 end
 end

 % out_mdis1, out_mdis2, out_mdis3 are rotations about tool c.s. axes
 % need to convert to Euler angles
 out_mdis = rad2deg(tr2eul(rpy2tr(deg2rad(dis(6)), deg2rad(dis(5)),
deg2rad(dis(4)))));
 out_mdis1(kk)=out_mdis(1);
 out_mdis2(kk)=out_mdis(2);
 out_mdis3(kk)=out_mdis(3);
 %===

 178

 % Send position data to robot
 % motions need to be negative to account for forces
 send = -[out_dis1(kk), out_dis2(kk), out_dis3(kk), out_mdis1(kk),
out_mdis2(kk), out_mdis3(kk)];
 ok = 0;
 flag = 2.1;
 fprintf(port1, [ok, flag]);
 fprintf(port1, send);

 done_moving = fscanf(port1);
 done_moving = sscanf(done_moving, '%f');

 % end while loop if done minimizing forces or if reach too many
iterations (kk)
 if send == -[0 0 0 rad2deg(tr2eul(rpy2tr(deg2rad(0.0000001),
deg2rad(0.0000001), deg2rad(0.0000001))))] | kk == 50;
 zero_flag = 1;
 end
end

% remove monitor loads figure from screen
delete(fh)

% Enable buttons on GUI when boltup_leash2.m is done running
buttons(guihandles, 'on');

buttons.m is a function called by several scripts to disable and enable the buttons on the

GUI.

function buttons(handles, flag)

hok = handles.ok_push_button;
hbolt = handles.boltup_push_button;
hbefore = handles.fm_before_push_button;
hafter = handles.load_control_push_button;
hpath = handles.pathseek_push_button;
hval = handles.val_path_push_button;
hreplay = handles.replay_push_button;
hend = handles.end_push_button;

switch flag
case 'on'
 % Enable buttons on GUI when spine3h_pathseek6.m is done running
 set(hok, 'Enable', 'on');
 set(hbolt, 'Enable', 'on');
 set(hbefore, 'Enable', 'on');
 set(hafter, 'Enable', 'on');
 set(hpath, 'Enable', 'on');
 set(hval, 'Enable', 'on');
 set(hreplay, 'Enable', 'on');
 set(hend, 'Enable', 'on');
case 'off'

 179

 % Disable buttons on GUI until spine3h_pathseek4.m is done running
 set(hok, 'Enable', 'off');
 set(hbolt, 'Enable', 'off');
 set(hbefore, 'Enable', 'off');
 set(hafter, 'Enable', 'off');
 set(hpath, 'Enable', 'off');
 set(hval, 'Enable', 'off');
 set(hreplay, 'Enable', 'off');
 set(hend, 'Enable', 'off');
end

spine3h_pathseek4.m is a script called by the GUI to perform pathseek. Several other

scripts are called during execution of spine3h_pathseek4.m and follow in this appendix in the

order in which they appear in spine3h_pathseek4.m

% spine3h_pathseek4.m
% perform flexion/extension with all position and load data stored
% converted from spine3h.v2
% Amy Loveless
% 7/4/2002

% Disable buttons on GUI until spine3h_pathseek4.m is done running
buttons(guihandles, 'off');

% Input dialog box to get the filename for data storage
prompt = {'Enter Filename'};
title = 'Filename';
lines = 1;
def = {'c:\robot'};
answer = inputdlg(prompt,title,lines,def);
if isequal(answer,{}) == 1
 % Enable buttons on GUI
 buttons(guihandles, 'on');
else
 filename = answer{1};
end

% Clear variables created for inputdlg
clear prompt title lines def answer;

% initialize stiffness, target f/m, temp. f/m, temp positions
z_stiff = [100 100 100 10 10 10];
z_flag = [0 0 0 0 0 0];
z_stop = [30 30 30 9 9 9];
f_temp = [0 0 0 0 0 0];
p_temp = [0 0 0 0 0 0 0 0 0 0 0 0]';

% initialize iterations
z_ct = 1; % keeps track of no. of iterations to reach min. force
z_count = 10; % limit to z_count iterations
z_ct_temp = z_count; % keeps track of no. of iterations to reach min. force

 180

z_step = 1; % index to keep track of what direction and angle data
gathered was at
z_xform = 1; % index to keep track of global c.s. to tool c.s. xform info
sent to Matlab
z_mom_flag = 1; % how many rotation angles the moment > max.mom
z_index = 1; % index to keep track of number of iterations per angle

% initialize direction
dir_flag = 0; % change direction if dir_flag <> 0
dir = 0; % begin with start -> flxn

% initialize stablity check
stable_flag = 0;
stable_flag_flxn = 0;
stable_flag_extn = 0;
start_counter = 0;
flxn_counter = 0;
extn_counter = 0;

% define the limits for displacement, rotation, f/e moment and pathseek limit
lim_dis = 1; % mm
lim_mdis = 3; % degrees
max_mom = 2.40; % N-m
path_limit = 4;

% initialize work
work = 0;

% initialize timer
tic;

% setup figure to graphically monitor loads
[fx, fy, fz, mx, my, mz, handles, fh] = pathseek_display1;

% send x1, y1, z1, rx1, ry1, rz1 to V+ to make tool transformation
ok = 0;
flag = 0.1;
fprintf(port1, [ok, flag]);
fprintf(port1, [(x1*1000)+.1, (y1*1000)+.1, (z1*1000)+.1, rx1+.1, ry1+.1,
rz1+.1]);

done_moving = fscanf(port1);
done_moving = sscanf(done_moving, '%f');
%==
====================================

while stable_flag ~= 100

 if dir == 0
 w_begin = w_start;
 w_inc = w_neg;
 start_counter = start_counter + 1;
 end
 if dir == 400
 w_begin = w_current;
 w_inc = w_ang;
 flxn_counter = flxn_counter + 1;

 181

 stable_flag_flxn = 0;
 stable_flag_extn = 0;
 end
 if dir == 800
 w_begin = w_current;
 w_inc = w_neg;
 extn_counter = extn_counter + 1;
 end
 if dir == 900
 w_begin = w_current;
 w_end = w_start;
 w_inc = w_ang;
 stable_flag = 100;
 start_counter = start_counter + 1;
 end

 w_now = w_begin;

 while dir_flag == 0
 ok = 0;
 flag = 1.1;
 fprintf(port1, [ok, flag]);
 gt_jt_angles = fscanf(port1);
 gt_jt_angles = sscanf(gt_jt_angles, '%f');
 if dir == 0 | dir == 900
 z_gt0(1:6,z_xform,start_counter) = gt_jt_angles(1:6);
 z_jt_angles0(1:6,z_xform,start_counter) = gt_jt_angles(7:12);
 elseif dir == 400
 z_gt400(1:6,z_xform,flxn_counter) = gt_jt_angles(1:6);
 z_jt_angles400(1:6,z_xform,flxn_counter) = gt_jt_angles(7:12);
 elseif dir == 800
 z_gt800(1:6,z_xform,extn_counter) = gt_jt_angles(1:6);
 z_jt_angles800(1:6,z_xform,extn_counter) = gt_jt_angles(7:12);
 end
 z_xform = z_xform + 1;
 for n = 1:6
 z_sign(n) = 0;
 z_flag(n) = 0;
 end

 ct = 1;
 %===
 load_control_first3; % load control (inner) loop
 %===

 % are the measured sagittal plane forces < max allowable?
 % if no, begin load control loop again
 % if yes, put data in matrices
 % limit to 8 iterations (will want to change to time limit)
 while z_ct < z_count
 if sqrt(fa(2)^2 + fa(3)^2) > z_target(2)
% if (abs(fa(2)) > z_target(2)) | (abs(fa(3)) > z_target(3))
 z_ct = z_ct + 1;
 z_step = z_step + 1;
 z_xform = z_xform + 1;
 %===
 load_control3; % load control (inner) loop

 182

 %===
 else
 z_ct_temp = z_ct;
 z_ct = z_count;
 end
 end

 z_ct = z_ct_temp;

 if dir == 0
 % Build array of start position data that could be for replay
 start_replay1(1:6,z_index) =
z_gt0(1:6,z_xform,start_counter)+0.000001;
 % Build array of rotation angles at last iteration
 rot_angle0_end_pts(1,z_index,start_counter) = w_now;
 % Build array of loads at last iteration
 start_load_end_pts(1:6,z_index,start_counter) =
load0(1:6,z_step,start_counter);
 % Build array of work at last iteration
 works0end(1,z_index,start_counter) = work;
 elseif dir == 400
 % Build array of flxn position data to be written to V+ for
replay
 flxn_replay(1:6,z_index) =
z_gt400(1:6,z_xform,flxn_counter)+0.000001;
 % Build array of rotation angles at last iterations
 rot_angle400_end_pts(1,z_index,flxn_counter) = w_now;
 % Build array of loads at last iterations
 flxn_load_end_pts(1:6,z_index,flxn_counter) =
load400(1:6,z_step,flxn_counter);
 elseif dir == 800
 % Build array of extn position data to be written to V+ for
replay
 extn_replay(1:6,z_index) =
z_gt800(1:6,z_xform,extn_counter)+0.000001;
 % Build array of rotation angles at last iterations
 rot_angle800_end_pts(1,z_index,extn_counter) = w_now;
 % Build array of loads at last iterations
 extn_load_end_pts(1:6,z_index,extn_counter) =
load800(1:6,z_step,extn_counter);
 elseif dir == 900
 % Build array of start position data that could be for replay (it
will not)
 start_replay2(1:6,z_index) =
z_gt0(1:6,z_xform,start_counter)+0.000001;
 % Build array of rotation angles at last iterations
 rot_angle0_end_pts(1,z_index,start_counter) = w_now;
 % Build array of loads at last iterations
 start_load_end_pts(1:6,z_index,start_counter) =
load0(1:6,z_step,start_counter);
 end

 if dir == 0 | dir == 900
 z_ct0_total(1,z_index,start_counter) = z_ct;
 elseif dir == 400
 z_ct400_total(1,z_index,flxn_counter) = z_ct;
 elseif dir == 800

 183

 z_ct800_total(1,z_index,extn_counter) = z_ct;
 end
 z_ct = 1;
 z_step = z_step + 1;
 z_xform = z_xform + 1;
 z_index = z_index + 1;
 z_ct_temp = z_count;

 %===
 max_moment2; % max moment loop
 %===

 % ---
 % this part added for testing
 if w_now < -0.9
 dir_flag = 1;
 end
 % ---

 if dir_flag == 0 % continue with current direction
 % for planar f/e program, displacement control should be a pure
rotation about the x axis, but tr2eul does not give us correct
 % yaw,pitch,roll for a pure rotation about the x axis, therefore,
we have to have a very small rotation about the y and z axes, too.
 % (see the m file for tr2eul.m to see how the Euler angles are
calculated.)
% rot_inc_x = rotx(deg2rad(w_inc));
% rot_inc_y = roty(deg2rad(0.0000001));
% rot_inc_z = rotz(deg2rad(0.0000001));
% rot_inc = rot_inc_x*rot_inc_y*rot_inc_z;
% rotate_inc = tr2eul(rot_inc);
% rotate_inc = rad2deg(rotate_inc);
 rotate_inc = rad2deg(tr2eul(rpy2tr(deg2rad([0.0000001, 0.0000001,
w_inc])))) + 0.0000001;
 ok = 0;
 flag = 2.1;
 fprintf(port1, [ok, flag]);
 fprintf(port1, [0 0 0 rotate_inc(1) rotate_inc(2)
rotate_inc(3)]);
 done_moving = fscanf(port1);
 done_moving = sscanf(done_moving, '%f');
 w_now = w_now + w_inc;
 end

 if dir_flag == 1 % change direction
 w_current = w_now;
 break
 end
 end

 % stability check
 if dir == 800 & extn_counter > 1
 % use flxn_load_end_pts & rot_angle400_end_pts
 flxn_mx_percent = 100*abs((flxn_load_end_pts(4,1,flxn_counter-1)-
flxn_load_end_pts(4,1,flxn_counter))/flxn_load_end_pts(4,1,flxn_counter));
 flxn_rot_angle_percent =
100*abs((rot_angle400_end_pts(1,1,flxn_counter-1)-

 184

rot_angle400_end_pts(1,1,flxn_counter))/rot_angle400_end_pts(1,1,flxn_counter
));
 if flxn_mx_percent < 4 & flxn_rot_angle_percent < 4
 stable_flag_flxn = 25;
 end
 % use extn_load_end_pts & rot_angle800_end_pts
 extn_mx_percent = 100*abs((extn_load_end_pts(4,1,extn_counter-1)-
extn_load_end_pts(4,1,extn_counter))/extn_load_end_pts(4,1,extn_counter));
 extn_rot_angle_percent =
100*abs((rot_angle800_end_pts(1,1,extn_counter-1)-
rot_angle800_end_pts(1,1,extn_counter))/rot_angle800_end_pts(1,1,extn_counter
));
 if extn_mx_percent < 4 & extn_rot_angle_percent < 4
 stable_flag_extn = 25;
 end
 end

 % if stable_flag == 100, then the while loop will end
 if stable_flag ~= 100
 stable_flag = stable_flag_flxn + stable_flag_extn;
 end

 % added to test program with only one pathseek
 if dir == 800
 dir = 900;
 end

 % commented so that we can test program with only pathseek
% if stable_flag == 50 | extn_counter > path_limit
% dir = 900;
% end
%
 w_current = w_now;

 %---
 % this part added for testing
 if dir == 0
 stable_flag = 100;
 end
 %---

 % -----------------------------
 % commented out for testing
% if dir == 0 | dir == 400
% dir = dir + 400;
% elseif dir == 800
% dir = 400;
% end
 % ----------------------------

 dir_flag = 0;
 z_xform = 1;
 z_step = 1;
 z_index = 1;

end

 185

% remove monitor loads figure from screen
delete(fh);

% Save workspace
save(filename)
disp('Data has been saved.')

%===
% data_display_pathseek4; % display data
%===

% Enable buttons on GUI when spine3h_pathseek4.m is done running
buttons(guihandles, 'on');

pathseek_display1.m is a function called by spine3h_pathseek4.m that sets up the plot

for UFS loads.

function [fx, fy, fz, mx, my, mz, handles, fh] = pathseek_display1

% setup figure to graphically monitor loads
fh = figure('Position',[400 300 600 600],'Color','w');
subplot(2,1,1)
set(gca,'XLim', [-30 30], 'YLim', [0 4], 'YTick', [1 2 3], 'YTickLabel', 'Fz
(N)|Fy (N)|Fx (N)')
title('Forces')
fx = line('XData', [0 0], 'YData', [3 3], 'LineWidth', 24, 'Color', [0 0.75
0]);
fy = line('XData', [0 0], 'YData', [2 2], 'LineWidth', 24, 'Color', [0 0.75
0]);
fz = line('XData', [0 0], 'YData', [1 1], 'LineWidth', 24, 'Color', [0 0.75
0]);
origin = line('XData', [0 0], 'YData', [0 4]);

subplot(2,1,2)
set(gca,'XLim', [-10 10], 'YLim', [0 4], 'YTick', [1 2 3], 'YTickLabel', 'Mz
(Nm)|My (Nm)|Mx (Nm)')
title('Moments')
mx = line('XData', [0 0], 'YData', [3 3], 'LineWidth', 24, 'Color', [0 0.75
0]);
my = line('XData', [0 0], 'YData', [2 2], 'LineWidth', 24, 'Color', [0 0.75
0]);
mz = line('XData', [0 0], 'YData', [1 1], 'LineWidth', 24, 'Color', [0 0.75
0]);
origin = line('XData', [0 0], 'YData', [0 4]);

uicontrol('Style', 'text', 'Tag', 'current_text',...
 'Position', [20 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Current:');
uicontrol('Style', 'edit', 'Tag', 'w_now_edit',...
 'Position', [135 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12);
uicontrol('Style', 'text', 'Tag', 'w_now_text',...
 'Position', [135 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Angle');

 186

uicontrol('Style', 'edit', 'Tag', 'iterations_edit',...
 'Position', [235 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12);
uicontrol('Style', 'text', 'Tag', 'iteration_text',...
 'Position', [235 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Iteration');
uicontrol('Style', 'edit', 'Tag', 'pathseek_edit',...
 'Position', [335 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12);
uicontrol('Style', 'text', 'Tag', 'pathseek_text',...
 'Position', [335 0 70 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Pathseek #');
uicontrol('Style', 'edit', 'Tag', 'stable_edit',...
 'Position', [435 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12);
uicontrol('Style', 'text', 'Tag', 'stable_text',...
 'Position', [435 0 65 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Stability %');
handles = guihandles(fh);
guidata(fh, handles);

% any of these changes should make simple animations smooth
% zbuffer can be very slow and on my computer none of these are necessary to
stop flashing
set(fh,'doublebuffer','on');
% set(fh,'renderer','zbuffer');
% set(hfig,'renderer','opengl');

load_control_first3.m is a script called by spine3h_pathseek4.m.

% load_control_first3.m
% load control (inner) loop
% Amy Loveless
% converted to Matlab 7/10/02

%===
get_loads; % measure: forces and moments
% fm_ufs = get_loads;
%===

%===
fm_tare5; % tare out bolt-up and fixture wt
% [x, fa, fmw, rGT] = fm_tare5(w_mg, x0, y0, z0, x1, y1, z1, rx1, ry1, rz1,
fm_ufs, avg)
%===

time = toc;
tic;

% store current position
for i = 1:6
 p_temp(i) = x(i);
end

% compute: FSU stiffness from previous measured force and position
if z_flag(1) == 0
 % compute: robot displacement vector to minimize sagittal forces and
moments (from computed stiffness)

 187

 for i = 1:6
 z_flag(i) = 1;
 f_temp(i) = fmw(i); % keep previous f/m
 dis(i) = fmw(i)/z_stiff(i)/(1+1*z_sign(i));
 end
else
 for i = 1:6
 if (fmw(i) ~= f_temp(i)) & (ds(i) ~= 0) & (fmw(i) ~= 0)
 % STIFFNESS = old*1/3 +ABS(df/ds)*2/3
 z_stiff(i) = z_stiff(i)/3+abs((fmw(i)-f_temp(i))/ds(i))*2/3;
 % we changed to ds(i) from dis_tool_actual(i) on 07-29-02
 end

 if z_stiff(i) > 99999
 z_stiff(i) = 100000; % maximum z_stiff
 end

 if sign(f_temp(i)*fmw(i)) < 1
 z_sign(i) = 1;
 end

 % compute: robot displacement vector to minimize sagittal forces and
moments (from computed stiffness)
 z_flag(i) = 1;
 f_temp(i) = fmw(i); % keep previous f/m
 dis(i) = fmw(i)/z_stiff(i)/(1+1*z_sign(i));
 end
end

% determine translations based on forces
for i = 1:3
 if abs(dis(i)) > lim_dis
 dis(i) = sign(dis(i))*lim_dis;
 end
end

% transform from global c.s. to tool c.s.
dis_tool_calc(1:3) = rGT'*dis(1:3)';

% determine rotations based on moments
for i = 4:6
 if abs(dis(i)) > lim_mdis
 dis(i) = sign(dis(i))*lim_mdis;
 dis(i) = deg2rad(dis(i));
 end
end

% transform from global c.s. to tool c.s.
dis_tool_calc(4:6) = rGT'*dis(4:6)';

% disa[4]-[6] are rotations about x,y,z, not y,p,r, so need to make them
y,p,r
rot_x = rotx(dis_tool_calc(4));
rot_y = roty(dis_tool_calc(5));
rot_z = rotz(dis_tool_calc(6));
rot_xyz = rot_z*rot_y*rot_x;
rotate = tr2eul(rot_xyz);

 188

rotate = rad2deg(rotate);

% ask for current position
ok = 0;
flag = 1.1;
fprintf(port1, [ok, flag]);
gt_jt_angles = fscanf(port1);
gt_jt_angles = sscanf(gt_jt_angles, '%f');

% display f/m after taring out bolt-up and fixture wt
pathseek_display2([fa, fx, fy, fz], [mx, my, mz], handles, [w_now, z_ct,
flxn_counter, stable_flag, z_target]);

% find actual translations and rotations in global c.s., transform to tool
c.s.
for i = 1:6
 ds(i) = x(i)-p_temp(i);
 p_temp(i) = x(i);
end
dis_tool_actual(1:3) = rGT'*ds(1:3)';
dis_tool_actual(4:6) = rGT'*ds(4:6)';

%work done by the bar
work=work+abs(0.5*(fmw(1)+f_temp(1))*ds(1)) ...
 +abs(0.5*(fmw(3)+f_temp(3))*ds(3)) ...
 +abs(0.5*(fmw(5)+f_temp(5))*deg2rad(w_inc));
works0(z_index, z_ct)=work;

% peak force
peak(z_index,z_ct) = sqrt(fmw(1)^2+fmw(3)^2);
peakX(z_index,z_ct) = fmw(1);
peakZ(z_index,z_ct) = fmw(3);

% put data in matrices
if dir == 0 | dir == 900
 eval(['dis_calc',int2str(dir),'(1:6,z_step,start_counter) = [0; 0; 0; 0;
0; 0];'])
 eval(['dis_actual_tool',int2str(dir),'(1:6,z_step,start_counter) =
transpose(dis_tool_actual);'])
 eval(['dis_actual_global',int2str(dir),'(1:6,z_step,start_counter) =
transpose(ds);'])
 eval(['load',int2str(dir),'(1:6,z_step,start_counter) = transpose(fa);'])
 eval(['stiff',int2str(dir),'(1:6,z_step,start_counter) =
transpose(z_stiff);'])
 eval(['time_total',int2str(dir),'(1,z_step,start_counter) = time;'])
 eval(['rot_angle',int2str(dir),'(1,z_step,start_counter) = w_now;'])
 eval(['z_gt',int2str(dir),'(1:6,z_xform,start_counter) =
gt_jt_angles(1:6);'])
 eval(['z_jt_angles',int2str(dir),'(1:6,z_xform,start_counter) =
gt_jt_angles(7:12);'])
elseif dir == 400 | dir == 800
 eval(['dis_calc',int2str(dir),'(1:6,z_step,flxn_counter) = [0; 0; 0; 0;
0; 0];'])
 eval(['dis_actual_tool',int2str(dir),'(1:6,z_step,flxn_counter) =
transpose(dis_tool_actual);'])
 eval(['dis_actual_global',int2str(dir),'(1:6,z_step,flxn_counter) =
transpose(ds);'])

 189

 eval(['load',int2str(dir),'(1:6,z_step,flxn_counter) = transpose(fa);'])
 eval(['stiff',int2str(dir),'(1:6,z_step,flxn_counter) =
transpose(z_stiff);'])
 eval(['time_total',int2str(dir),'(1,z_step,flxn_counter) = time;'])
 eval(['rot_angle',int2str(dir),'(1,z_step,flxn_counter) = w_now;'])
 eval(['z_gt',int2str(dir),'(1:6,z_xform,flxn_counter) =
gt_jt_angles(1:6);'])
 eval(['z_jt_angles',int2str(dir),'(1:6,z_xform,flxn_counter) =
gt_jt_angles(7:12);'])
end

% % put data in matrices
% if dir == 0 | dir == 900
% dis_calc0(1:6,z_step,start_counter) = [0 0 0 0 0 0]';
% dis_actual_tool0(1:6,z_step,start_counter) = dis_tool_actual';
% dis_actual_global0(1:6,z_step,start_counter) = ds';
% load0(1:6,z_step,start_counter) = fa';
% stiff0(1:6,z_step,start_counter) = z_stiff';
% time_total0(1,z_step,start_counter) = time;
% rot_angle0(1,z_step,start_counter) = w_now;
% z_gt0(1:6,z_xform,start_counter) = gt_jt_angles(1:6);
% z_jt_angles0(1:6,z_xform,start_counter) = gt_jt_angles(7:12);
% elseif dir == 400
% dis_calc400(1:6,z_step,flxn_counter) = [0 0 0 0 0 0]';
% dis_actual_tool400(1:6,z_step,flxn_counter) = dis_tool_actual';
% dis_actual_global400(1:6,z_step,flxn_counter) = ds';
% load400(1:6,z_step,flxn_counter) = fa';
% stiff400(1:6,z_step,flxn_counter) = z_stiff';
% time_total400(1,z_step,flxn_counter) = time;
% rot_angle400(1,z_step,flxn_counter) = w_now;
% z_gt400(1:6,z_xform,flxn_counter) = gt_jt_angles(1:6);
% z_jt_angles400(1:6,z_xform,flxn_counter) = gt_jt_angles(7:12);
% elseif dir == 800
% dis_calc800(1:6,z_step,flxn_counter) = [0 0 0 0 0 0]';
% dis_actual_tool800(1:6,z_step,flxn_counter) = dis_tool_actual';
% dis_actual_global800(1:6,z_step,flxn_counter) = ds';
% load800(1:6,z_step,flxn_counter) = fa';
% stiff800(1:6,z_step,flxn_counter) = z_stiff';
% time_total800(1,z_step,flxn_counter) = time;
% rot_angle800(1,z_step,flxn_counter) = w_now;
% z_gt800(1:6,z_xform,flxn_counter) = gt_jt_angles(1:6);
% z_jt_angles800(1:6,z_xform,flxn_counter) = gt_jt_angles(7:12);
% end

fm_tare5.m is a script called by load_control_first3.m and load_control3.m to tare out

the weight of the attachments on the UFS. This is done to know what loads on the UFS are due

to the specimen.

% function [x, fa, fmw, rGTCS] = fm_tare5(w_mg, x0, y0, z0, x1, y1, z1, rx1,
ry1, rz1, fm_ufs, avg)

% fm_tare5.m

 190

% tare out bolt-up f/m and fixture wt
% this program can be used if yaw, pitch, roll <> 0 from UFS to tool
% Amy Loveless
% 3/3/2003
% the f/m are read in UFS c.s.
% bolt-up and weight are subtracted from f/m
% the positions are read in tool c.s. wrt global c.s.
% resulting forces transformed to global c.s.
% resulting moments transformed to global c.s.

% yaw, pitch, roll store position and orientation of end-effector
ok = 0;
flag = 1.1;
fprintf(port1, [ok, flag]);
x = fscanf(port1);
x = sscanf(x, '%f');
yaw = deg2rad(x(4));
pitch = deg2rad(x(5));
roll = deg2rad(x(6));

% tGTCS[] is the transformation matrix of tool c.s. wrt global c.s.
TGTCS = eul2tr(yaw, pitch, roll);
TGTCS(1:3,4) = [x(1) x(2) x(3)]';

% rGTCS[] is the rotation matrix of tool c.s. wrt global c.s.
rGTCS = TGTCS;
rGTCS(:,4) = [];
rGTCS(4,:) = [];
rGT = rGTCS;

% tUFSTCS is the transformation matix of UFS face c.s. to tool c.s. (this is
a constant transformation)
rot_rx1 = rotx(deg2rad(rx1));
rot_ry1 = roty(deg2rad(ry1));
rot_rz1 = rotz(deg2rad(rz1));
TUFSTCS = rot_rz1*rot_ry1*rot_rx1;
% Need to subtract (64-19) back off of z1 because values are compared from
face 08-12-02
TUFSTCS(1:3,4) = [x1 y1 (z1 - 45/1000)]';

% rUFSTCS is the rotation matrix of UFS face c.s. to tool c.s. (this is a
constant rotation)
rUFSTCS = TUFSTCS;
rUFSTCS(:,4) = [];
rUFSTCS(4,:) = [];

% tGUFS is the transformation matrix of UFS c.s. wrt global c.s.
TGUFS = TGTCS*inv(TUFSTCS);
% rGUFS is the rotation matrix of global c.s. to UFS face c.s.
% if rUFSTCS is an identity matrix, rGUFS = rGTCS
rGUFS = TGUFS;
rGUFS(:,4) = [];
rGUFS(4,:) = [];

% If we use the loads at the COR to calculate x0, y0, z0, then x0, y0, z0 is
the vector from the COR to c.g. (cg_rot).

 191

% cg_rot is only used if we can get the transformation functions for the pci
card to work.
% cg_rot is only calculated if the loads are read at the COR.
% transform c.g. coordinates from UFS face c.s. to tool c.s.
% cg_rot = pinv(tUFST)*[x0 y0 z0 1]';

% w_mg[] are the loads from the fixture (c.g.) defined in the global c.s.
% w_mg_rot[] are the loads from the fixture (c.g.) defined in the UFS c.s.
% If the loads are found at the center of the UFS, x0,y0,z0 is the coordinate
of the c.g. measured in the UFS c.s.,
% which is centered in the UFS.
% Use [x0 y0 z0]' to find the moment of the c.g. about the center of the UFS
(where all the loads are found).
w_mg_rot(1:3) = rGUFS'*w_mg;
w_mg_rot(4:6) = cross([x0; y0; z0],w_mg_rot(1:3));
% Commented out on 09-04-02 (see notes above).
% w_mg_rot(4:6) = cross(cg_rot(1:3),w_mg_rot(1:3));

% convert fm_ufs[] to digital
% fm_ufs_dig(2) = fm_ufs(2)*16384/20/4.44;
% fm_ufs_dig(3) = fm_ufs(3)*16384/50/4.44;

% fa_unrot[1]-fa_unrot[3] are forces after bolt-up and fixture wt removed
from forces (in the UFS c.s.).
fa_unrot(1) = -(fm_ufs(1))-(avg(1))-(w_mg_rot(1));
fa_unrot(2) = -(fm_ufs(2))-(avg(2))-(w_mg_rot(2));
fa_unrot(3) = -(fm_ufs(3))-(avg(3))-(w_mg_rot(3));
% fa_unrot(2) = y_eq(1)*(fm_ufs_dig(2)-avg_dig(2))+y_eq(2)-w_mg_rot(2);
% fa_unrot(3) = z_eq(1)*(fm_ufs_dig(3)-avg_dig(3))+z_eq(2)-w_mg_rot(3);

% fa[1]-fa[3] are forces rotated to the tool c.s.
fa(1:3) = rUFSTCS'*fa_unrot(1:3)';

% fmw[1]-fmw[3] are forces in global c.s., rotated because calculations are
made in global c.s.
% fmw(1:3) = rotGT*fa(1:3)';
fmw(1:3) = rGUFS*fa_unrot(1:3)';

% fa_unrot[4]-fa_unrot[6] are moments after bolt-up and fixture wt removed
from moments (in the UFS c.s.).
fa_unrot(4) = -(fm_ufs(4))-(avg(4))-(w_mg_rot(4));
fa_unrot(5) = -(fm_ufs(5))-(avg(5))-(w_mg_rot(5));
fa_unrot(6) = -(fm_ufs(6))-(avg(6))-(w_mg_rot(6));

% fa[4]-fa[6] are moments rotated to tool c.s.
fa(4:6) = cross(-TUFSTCS(1:3,4),fa(1:3))' + rUFSTCS'*fa_unrot(4:6)';

% fmw[4]-fmw[6] are moments in global c.s., rotate because calculations are
made in global c.s.
fmw(4:6) = rGTCS*fa(4:6)';

% ===
% added for updating COR
TUFSa = rpy2tr(deg2rad([rza, rya, rxa]));
TUFSa(1:3,4) = [xa, ya, za]';
% TGa = TGUFS*TUFSa;

 192

TUFSb = rpy2tr(deg2rad([rzb, ryb, rxb]));
TUFSb(1:3,4) = [xb, yb, zb]';
% TGb = TGUFS*TUFSb;

pathseek_display2.m is a function called by load_control_first3.m and load_control3.m

that plots the load on the UFS.

function pathseek_display2(forces, moments, handles, misc)

fa = forces(1:6);
fx = forces(7);
fy = forces(8);
fz = forces(9);

mx = moments(1);
my = moments(2);
mz = moments(3);

w_now = misc(1);
z_ct = misc(2);
flxn_counter = misc(3);
stable_flag = misc(4);
limit = misc(5:10);

for i = 1:3
 if abs(fa(i)) > limit(i)
 line_color(i,1:3) = [1 0 0];
 else
 line_color(i,1:3) = [0 0.75 0];
 end
end

for i = 4:6
 if abs(fa(i)) > limit(i)
 line_color(i,1:3) = [1 0 0];
 else
 line_color(i,1:3) = [0 0.75 0];
 end
end

subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:));
subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:));
subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:));
subplot(2,1,2), set(mx, 'XData', [0 fa(4)], 'Color', line_color(4,:));
subplot(2,1,2), set(my, 'XData', [0 fa(5)], 'Color', line_color(5,:));
subplot(2,1,2), set(mz, 'XData', [0 fa(6)], 'Color', line_color(6,:));
set(handles.w_now_edit, 'String', w_now);
set(handles.iterations_edit, 'String', z_ct);
if flxn_counter == 0
 set(handles.pathseek_edit, 'String', 1);
else
 set(handles.pathseek_edit, 'String', flxn_counter);
end

 193

set(handles.stable_edit, 'String', stable_flag);

drawnow

load_control3.m is a script called by spine3h_pathseek4.m that calculates the translation

required to minimize force and commands the manipulator to displace by the calculated amount.

% load_control3.m
% load control (inner) loop
% Amy Loveless
% converted to Matlab 7/10/02

time = toc;
tic;

% store current position
for i = 1:6
 p_temp(i) = x(i);
end

% compute: FSU stiffness from previous measured force and position
if z_flag(1) == 0
 % compute: robot displacement vector to minimize sagittal forces and
moments (from computed stiffness)
 for i = 1:6
 z_flag(i) = 1;
 f_temp(i) = fmw(i); % keep previous f/m
 dis(i) = fmw(i)/z_stiff(i)/(1+1*z_sign(i));
 end
else
 for i = 1:6
 if (fmw(i) ~= f_temp(i)) & (ds(i) ~= 0) & (fmw(i) ~= 0)
 % STIFFNESS = old*1/3 +ABS(df/ds)*2/3
 z_stiff(i) = z_stiff(i)/3+abs((fmw(i)-f_temp(i))/ds(i))*2/3;
 % we changed to ds(i) from dis_tool_actual(i) on 07-29-02
 end

 if z_stiff(i) > 99999
 z_stiff(i) = 100000; % maximum z_stiff
 end

 if sign(f_temp(i)*fmw(i)) < 1
 z_sign(i) = 1;
 end

 % compute: robot displacement vector to minimize sagittal forces and
moments (from computed stiffness)
 z_flag(i) = 1;
 f_temp(i) = fmw(i); % keep previous f/m
 dis(i) = fmw(i)/z_stiff(i)/(1+1*z_sign(i));
 end
end

 194

% determine translations based on forces
for i = 1:3
 if abs(dis(i)) > lim_dis
 dis(i) = sign(dis(i))*lim_dis;
 end
end

% transform from global c.s. to tool c.s.
dis_tool_calc(1:3) = rGT'*dis(1:3)';

% determine rotations based on moments
for i = 4:6
 if abs(dis(i)) > lim_mdis
 dis(i) = sign(dis(i))*lim_mdis;
 dis(i) = deg2rad(dis(i));
 end
end

% transform from global c.s. to tool c.s.
dis_tool_calc(4:6) = rGT'*dis(4:6)';

% disa[4]-[6] are rotations about x,y,z, not y,p,r, so need to make them
y,p,r
rot_x = rotx(dis_tool_calc(4));
rot_y = roty(dis_tool_calc(5));
rot_z = rotz(dis_tool_calc(6));
rot_xyz = rot_z*rot_y*rot_x;
rotate = tr2eul(rot_xyz);
rotate = rad2deg(rotate);

% move: translate superior vertebra to new "corrected" position
ok = 0;
flag = 2.1;
fprintf(port1, [ok, flag]);
fprintf(port1, [0 dis_tool_calc(2) dis_tool_calc(3) 0 0 0]);

done_moving = fscanf(port1);
done_moving = sscanf(done_moving, '%f');

% ask for current position
ok = 0;
flag = 1.1;
fprintf(port1, [ok, flag]);
gt_jt_angles = fscanf(port1);
gt_jt_angles = sscanf(gt_jt_angles, '%f');

%===
get_loads; % measure: forces and moments
% fm_ufs = get_loads;
%===

%===
fm_tare5; % tare out bolt-up and fixture wt
% [x, fa, fmw, rGT] = fm_tare5(w_mg, x0, y0, z0, x1, y1, z1, rx1, ry1, rz1,
fm_ufs, avg)
%===

 195

% display f/m after taring out bolt-up and fixture wt
pathseek_display2([fa, fx, fy, fz], [mx, my, mz], handles, [w_now, z_ct,
flxn_counter, stable_flag, z_target]);

% find actual translations and rotations in global c.s., transform to tool
c.s.
for i = 1:6
 ds(i) = x(i)-p_temp(i);
 p_temp(i) = x(i);
end
dis_tool_actual(1:3) = rGT'*ds(1:3)';
dis_tool_actual(4:6) = rGT'*ds(4:6)';

%work done by the bar
work=work+abs(0.5*(fmw(1)+f_temp(1))*ds(1)) ...
 +abs(0.5*(fmw(3)+f_temp(3))*ds(3)) ...
 +abs(0.5*(fmw(5)+f_temp(5))*deg2rad(0));
works0(z_index, z_ct)=work;

% peak force
peak(z_index,z_ct) = sqrt(fmw(1)^2+fmw(3)^2);
peakX(z_index,z_ct) = fmw(1);
peakZ(z_index,z_ct) = fmw(3);

% put data in matrices
if dir == 0 | dir == 900
 eval(['dis_calc',int2str(dir),'(1:6,z_step,start_counter) = [0; 0; 0; 0;
0; 0];'])
 eval(['dis_actual_tool',int2str(dir),'(1:6,z_step,start_counter) =
transpose(dis_tool_actual);'])
 eval(['dis_actual_global',int2str(dir),'(1:6,z_step,start_counter) =
transpose(ds);'])
 eval(['load',int2str(dir),'(1:6,z_step,start_counter) = transpose(fa);'])
 eval(['stiff',int2str(dir),'(1:6,z_step,start_counter) =
transpose(z_stiff);'])
 eval(['time_total',int2str(dir),'(1,z_step,start_counter) = time;'])
 eval(['rot_angle',int2str(dir),'(1,z_step,start_counter) = w_now;'])
 eval(['z_gt',int2str(dir),'(1:6,z_xform,start_counter) =
gt_jt_angles(1:6);'])
 eval(['z_jt_angles',int2str(dir),'(1:6,z_xform,start_counter) =
gt_jt_angles(7:12);'])
elseif dir == 400 | dir == 800
 eval(['dis_calc',int2str(dir),'(1:6,z_step,flxn_counter) = [0; 0; 0; 0;
0; 0];'])
 eval(['dis_actual_tool',int2str(dir),'(1:6,z_step,flxn_counter) =
transpose(dis_tool_actual);'])
 eval(['dis_actual_global',int2str(dir),'(1:6,z_step,flxn_counter) =
transpose(ds);'])
 eval(['load',int2str(dir),'(1:6,z_step,flxn_counter) = transpose(fa);'])
 eval(['stiff',int2str(dir),'(1:6,z_step,flxn_counter) =
transpose(z_stiff);'])
 eval(['time_total',int2str(dir),'(1,z_step,flxn_counter) = time;'])
 eval(['rot_angle',int2str(dir),'(1,z_step,flxn_counter) = w_now;'])
 eval(['z_gt',int2str(dir),'(1:6,z_xform,flxn_counter) =
gt_jt_angles(1:6);'])
 eval(['z_jt_angles',int2str(dir),'(1:6,z_xform,flxn_counter) =
gt_jt_angles(7:12);'])

 196

end

% % put data in matrices
% if dir == 0 | dir == 900
% dis_calc0(1:6,z_step,start_counter) = [dis_tool_calc(1:3)
rotate(1:3)]';
% dis_actual_tool0(1:6,z_step,start_counter) = dis_tool_actual';
% dis_actual_global0(1:6,z_step,start_counter) = ds';
% load0(1:6,z_step,start_counter) = fa';
% stiff0(1:6,z_step,start_counter) = z_stiff';
% time_total0(1,z_step,start_counter) = time;
% rot_angle0(1,z_step,start_counter) = w_now;
% z_gt0(1:6,z_xform,start_counter) = gt_jt_angles(1:6);
% z_jt_angles0(1:6,z_xform,start_counter) = gt_jt_angles(7:12);
% elseif dir == 400
% dis_calc400(1:6,z_step,flxn_counter) = [dis_tool_calc(1:3)
rotate(1:3)]';
% dis_actual_tool400(1:6,z_step,flxn_counter) = dis_tool_actual';
% dis_actual_global400(1:6,z_step,flxn_counter) = ds';
% load400(1:6,z_step,flxn_counter) = fa';
% stiff400(1:6,z_step,flxn_counter) = z_stiff';
% time_total400(1,z_step,flxn_counter) = time;
% rot_angle400(1,z_step,flxn_counter) = w_now;
% z_gt400(1:6,z_xform,flxn_counter) = gt_jt_angles(1:6);
% z_jt_angles400(1:6,z_xform,flxn_counter) = gt_jt_angles(7:12);
% elseif dir == 800
% dis_calc800(1:6,z_step,flxn_counter) = [dis_tool_calc(1:3)
rotate(1:3)]';
% dis_actual_tool800(1:6,z_step,flxn_counter) = dis_tool_actual';
% dis_actual_global800(1:6,z_step,flxn_counter) = ds';
% load800(1:6,z_step,flxn_counter) = fa';
% stiff800(1:6,z_step,flxn_counter) = z_stiff';
% time_total800(1,z_step,flxn_counter) = time;
% rot_angle800(1,z_step,flxn_counter) = w_now;
% z_gt800(1:6,z_xform,flxn_counter) = gt_jt_angles(1:6);
% z_jt_angles800(1:6,z_xform,flxn_counter) = gt_jt_angles(7:12);
% end

max_moment2.m is a script called by spine3h_pathseek4.m that compares the current

moment to the user-defined maximum moment. If the maximum moment has been greater than

the user-defined maximum three times, the test changes direction.

% max_moment2.m
% max moment loop
% Amy Loveless
% converted to Matlab 7/10/02

% is the measured f/e moment < max allowable?
% if yes, correct COR
% if no, go on to next direction
if abs(fa(4)) < max_mom
 % compute: corrected COR

 197

 % when chgs made to COR, x1, y1, z1, yaw1, pitch1, roll1 will be chged
 % disp('This is where I would correct the COR')
elseif (abs(fa(1)) > z_stop(1)) | (abs(fa(2)) > z_stop(2)) | (abs(fa(3)) >
z_stop(3)) | (abs(fa(4)) > z_stop(4)) | (abs(fa(5)) > z_stop(5)) |
(abs(fa(6)) > z_stop(6))
 % if f/m are > max allowable, change direction
 disp('Forces/moments are too high.')
 disp('********** CHANGING DIRECTION **********')
 z_mom_flag = 1;
 dir_flag = 1;
 continue % change direction
else
 z_mom_flag = z_mom_flag + 1;
 if z_mom_flag == 3
 z_mom_flag = 1;
 dir_flag = 1;
 disp('********** CHANGING DIRECTION **********')
 continue % change direction
 else
 % compute: corrected COR
 % when chgs made to COR, x1, y1, z1, yaw1, pitch1, roll1 will be
chged
 % disp('This is where I would correct the COR')
 end
end

if (w_now >= w_start & dir == 900)
 dir_flag = 1;
 disp('********** CHANGING DIRECTION **********')
 continue % change direction
end

data_display_pathseek4.m is a script called by spine3h_pathseek4.m that makes almost

every conceivable plot from the gathered data.

% data_display_pathseek4.m
% display data
% Amy Loveless
% from data_sto_flxn (7/10/02)

% BUILD TRANSFORMATIONS
% Build transformation for UFS to tool c.s. (this is a constant
transformation)
rot_rx1 = rotx(deg2rad(rx1));
rot_ry1 = roty(deg2rad(ry1));
rot_rz1 = rotz(deg2rad(rz1));
tUFST = rot_rx1*rot_ry1*rot_rz1;
tUFST(1:3,4) = [x1*1000 y1*1000 z1*1000]';

% Build transformation for UFS to pt. of interest (this is a constant
transformation)
rot_rx2 = rotx(deg2rad(rx2));
rot_ry2 = roty(deg2rad(ry2));

 198

rot_rz2 = rotz(deg2rad(rz2));
tUFSPOI = rot_rx2*rot_ry2*rot_rz2;
tUFSPOI(1:3,4) = [x2*1000 y2*1000 z2*1000]';

% BUILD TRANSFORMATIONS OF TOOL C.S. WRT GLOBAL C.S.
% Find where to truncate matrices that have been padded with zeros at the end
for flxn -> start
test = [0 0 0 0 0 0]';
size_z_gt0 = 0;
for i = 1:size(z_gt0,2)
 tf = isequal(z_gt0(1:6,i,end),test);
 if tf == 1
 size_z_gt0 = i-1;
 break
 end
end
if size_z_gt0 == 0
 size_z_gt0 = size(z_gt0,2);
end
% Build transformations of tool c.s. wrt global c.s. each location for flxn -
> start
for i = 1:size_z_gt0
 tGT0(1:4,i*4-3:4*i) = eul2tr([deg2rad(z_gt0(4,i,end)),
deg2rad(z_gt0(5,i,end)), deg2rad(z_gt0(6,i,end))]);
 tGT0(1:3,4*i) = z_gt0(1:3,i,end);
end

% Find where to truncate matrices that have been padded with zeros at the end
for flxn -> extn
size_z_gt400 = 0;
for i = 1:size(z_gt400,2)
 tf = isequal(z_gt400(1:6,i,end),test);
 if tf == 1
 size_z_gt400 = i-1;
 break
 end
end
if size_z_gt400 == 0
 size_z_gt400 = size(z_gt400,2);
end
% Build transformations of tool c.s. wrt global c.s. for each location for
flxn -> extn
for i = 1:size_z_gt400
 tGT400(1:4,i*4-3:4*i) = eul2tr([deg2rad(z_gt400(4,i,end)),
deg2rad(z_gt400(5,i,end)), deg2rad(z_gt400(6,i,end))]);
 tGT400(1:3,4*i) = z_gt400(1:3,i,end);
end

% Find where to truncate matrices that have been padded with zeros at the end
for extn -> flxn
size_z_gt800 = 0;
for i = 1:size(z_gt800,2)
 tf = isequal(z_gt800(1:6,i,end),test);
 if tf == 1
 size_z_gt800 = i-1;
 break
 end

 199

end
if size_z_gt800 == 0
 size_z_gt800 = size(z_gt800,2);
end
% Build transformations of tool c.s. wrt global c.s. for each location for
extn -> flxn
for i = 1:size_z_gt800
 tGT800(1:4,i*4-3:4*i) = eul2tr([deg2rad(z_gt800(4,i,end)),
deg2rad(z_gt800(5,i,end)), deg2rad(z_gt800(6,i,end))]);
 tGT800(1:3,4*i) = z_gt800(1:3,i,end);
end

% Build array of position vectors of tool c.s. from tGL for flxn -> start
for i = 1:size(tGT0,2)/4
 tGT0_posn(1:4,i) = tGT0(1:4,i*4);
end

% Build array of position vectors of tool c.s. from tGL for flxn -> extn
for i = 1:size(tGT400,2)/4
 tGT400_posn(1:4,i) = tGT400(1:4,i*4);
end

% Build array of position vectors of tool c.s. from tGL for extn -> flxn
for i = 1:size(tGT800,2)/4
 tGT800_posn(1:4,i) = tGT800(1:4,i*4);
end

% BUILD TRANSFORMATIONS OF UFS WRT GLOBAL C.S.
% Build transformations of UFS wrt global c.s. for each location for start ->
flxn & flxn -> start
for i = 1:size(tGT0,2)/4
 tGUFS0(1:4,i*4-3:4*i) = tGT0(1:4,i*4-3:i*4)*pinv(tUFST);
end

% Build transformations of UFS wrt global c.s. for each location for flxn ->
extn
for i = 1:size(tGT400,2)/4
 tGUFS400(1:4,i*4-3:4*i) = tGT400(1:4,i*4-3:i*4)*pinv(tUFST);
end

% Build transformations of UFS wrt global c.s. for each location for extn ->
flxn
for i = 1:size(tGT800,2)/4
 tGUFS800(1:4,i*4-3:4*i) = tGT800(1:4,i*4-3:i*4)*pinv(tUFST);
end

% Build array of position vectors of UFS from tGUFS for start -> flxn & flxn
-> start
for i = 1:size(tGUFS0,2)/4
 tGUFS0_posn(1:4,i) = tGUFS0(1:4,i*4);
end

% Build array of position vectors of UFS from tGUFS for flxn -> extn
for i = 1:size(tGUFS400,2)/4
 tGUFS400_posn(1:4,i) = tGUFS400(1:4,i*4);
end

 200

% Build array of position vectors of UFS from tGUFS for extn -> flxn
for i = 1:size(tGUFS800,2)/4
 tGUFS800_posn(1:4,i) = tGUFS800(1:4,i*4);
end

% BUILD TRANSFORMATIONS OF PT. OF INTEREST WRT GLOBAL C.S.
% Build transformations of pt. of interest wrt global c.s. for each location
for flxn -> start
for i = 1:size(tGT0,2)/4
 tGPOI0(1:4,i*4-3:4*i) = tGUFS0(1:4,i*4-3:i*4)*tUFSPOI;
end

% Build transformations of pt. of interest wrt global c.s. for each location
for flxn -> extn
for i = 1:size(tGT400,2)/4
 tGPOI400(1:4,i*4-3:4*i) = tGUFS400(1:4,i*4-3:i*4)*tUFSPOI;
end

% Build transformations of pt. of interest wrt global c.s. for each location
for extn -> flxn
for i = 1:size(tGT800,2)/4
 tGPOI800(1:4,i*4-3:4*i) = tGUFS800(1:4,i*4-3:i*4)*tUFSPOI;
end

% Build array of position vectors of pt. of interest from tGUFS for flxn ->
start
for i = 1:size(tGPOI0,2)/4
 tGPOI0_posn(1:4,i) = tGPOI0(1:4,i*4);
end

% Build array of position vectors of pt. of interest from tGUFS for flxn ->
extn
for i = 1:size(tGPOI400,2)/4
 tGPOI400_posn(1:4,i) = tGPOI400(1:4,i*4);
end

% Build array of position vectors of pt. of interest from tGUFS for extn ->
flxn
for i = 1:size(tGPOI800,2)/4
 tGPOI800_posn(1:4,i) = tGPOI800(1:4,i*4);
end
%==
=====================================

% BUILD ARRAYS OF DATA TO BE USED FOR PLOTTING
% Find where to truncate matrices that have been padded with zeros at the end
for start -> flxn & flxn -> start
test = [0 0 0 0 0 0]';
for i = 1:start_counter
 size_start(1,i) = 0;
 size_start_end_pts(1,i) = 0;
end
for j = 1:start_counter
 for i = 1:size(load0,2)
 tf = isequal(load0(1:6,i,j),test);
 if tf == 1
 size_start(1,j) = i-1;

 201

 break
 end
 end
 if size_start(1,j) == 0
 size_start(1,j) = size(load0,2);
 end
end
for j = 1:start_counter
 for i = 1:size(start_load_end_pts,2)
 tf = isequal(start_load_end_pts(1:6,i,j),test);
 if tf == 1
 size_start_end_pts(1,j) = i-1;
 break
 end
 end
 if size_start_end_pts(1,j) == 0
 size_start_end_pts(1,j) = size(start_load_end_pts,2);
 end
end

% Find where to truncate matrices that have been padded with zeros at the end
for flxn -> extn
for i = 1:flxn_counter
 size_flxn(1,i) = 0;
 size_flxn_end_pts(1,i) = 0;
end
for j = 1:flxn_counter
 for i = 1:size(load400,2)
 tf = isequal(load400(1:6,i,j),test);
 if tf == 1
 size_flxn(1,j) = i-1;
 break
 end
 end
 if size_flxn(1,j) == 0
 size_flxn(1,j) = size(load400,2);
 end
end
for j = 1:flxn_counter
 for i = 1:size(flxn_load_end_pts,2)
 tf = isequal(flxn_load_end_pts(1:6,i,j),test);
 if tf == 1
 size_flxn_end_pts(1,j) = i-1;
 break
 end
 end
 if size_flxn_end_pts(1,j) == 0
 size_flxn_end_pts(1,j) = size(flxn_load_end_pts,2);
 end
end

% Find where to truncate matrices that have been padded with zeros at the end
for extn -> flxn
for i = 1:extn_counter
 size_extn(1,i) = 0;
 size_extn_end_pts(1,i) = 0;
end

 202

for j = 1:extn_counter
 for i = 1:size(load800,2)
 tf = isequal(load800(1:6,i,j),test);
 if tf == 1
 size_extn(1,j) = i-1;
 break
 end
 end
 if size_extn(1,j) == 0
 size_extn(1,j) = size(load800,2);
 end
end
for j = 1:flxn_counter
 for i = 1:size(extn_load_end_pts,2)
 tf = isequal(extn_load_end_pts(1:6,i,j),test);
 if tf == 1
 size_extn_end_pts(1,j) = i-1;
 break
 end
 end
 if size_extn_end_pts(1,j) == 0
 size_extn_end_pts(1,j) = size(extn_load_end_pts,2);
 end
end

% Arrays of fy, fz & mx (all data points of last pathseek)
start_fy = load0(2,1:size_start(end),end);
start_fz = load0(3,1:size_start(end),end);
start_mx_1 = load0(4,1:size_start(1),1);
start_mx_2 = load0(4,1:size_start(end),end);

flxn_fy = load400(2,1:size_flxn(end),end);
flxn_fz = load400(3,1:size_flxn(end),end);
flxn_mx = load400(4,1:size_flxn(end),end);

extn_fy = load800(2,1:size_extn(end),end);
extn_fz = load800(3,1:size_extn(end),end);
extn_mx = load800(4,1:size_extn(end),end);

fy = [flxn_fy extn_fy start_fy];
fz = [flxn_fz extn_fz start_fz];
mx = [flxn_mx extn_mx start_mx_2];

% Array of mx of all data points of all pathseeks
flxn_extn_mx = [];
for i = 1:flxn_counter
 flxn_extn_mx = [flxn_extn_mx load400(4,1:size_flxn(i),i)
load800(4,1:size_extn(i),i)];
end
all_mx = [start_mx_1, flxn_extn_mx, start_mx_2];

% Arrays of fy, fz, mx (only at end of iterations for last pathseek)
start_fy_end_pts = start_load_end_pts(2,1:size_start_end_pts(end),end);
start_fz_end_pts = start_load_end_pts(3,1:size_start_end_pts(end),end);
start_mx_end_pts_1 = start_load_end_pts(4,1:size_start_end_pts(1),1);
start_mx_end_pts_2 = start_load_end_pts(4,1:size_start_end_pts(end),end);

 203

flxn_fy_end_pts = flxn_load_end_pts(2,1:size_flxn_end_pts(end),end);
flxn_fz_end_pts = flxn_load_end_pts(3,1:size_flxn_end_pts(end),end);
flxn_mx_end_pts = flxn_load_end_pts(4,1:size_flxn_end_pts(end),end);

extn_fy_end_pts = extn_load_end_pts(2,1:size_extn_end_pts(end),end);
extn_fz_end_pts = extn_load_end_pts(3,1:size_extn_end_pts(end),end);
extn_mx_end_pts = extn_load_end_pts(4,1:size_extn_end_pts(end),end);

fy_end_pts = [flxn_fy_end_pts extn_fy_end_pts start_fy_end_pts];
fz_end_pts = [flxn_fz_end_pts extn_fz_end_pts start_fz_end_pts];
mx_end_pts = [flxn_mx_end_pts extn_mx_end_pts start_mx_end_pts_2];

% Array of mx of end data points of all pathseeks
% flxn_extn_mx_end_pts = [];
% for i = 1:flxn_counter
% flxn_extn_mx_end_pts = [flxn_extn_mx_end_pts
flxn_load_end_pts(4,1:size_flxn_end_pts(i),i)
extn_load_end_pts(4,1:size_extn_end_pts(i),i)];
% end
% all_mx_end_pts = [start_mx_end_pts_1, flxn_extn_mx_end_pts,
start_mx_end_pts_2];
begin_mx_end_pts = [start_mx_end_pts_1,...
 flxn_load_end_pts(4,1:size_flxn_end_pts(1),1),...
 extn_load_end_pts(4,1:size_extn_end_pts(1),1)];
end_mx_end_pts = [flxn_load_end_pts(4,1:size_flxn_end_pts(end),end),...
 extn_load_end_pts(4,1:size_extn_end_pts(end),end),...
 start_mx_end_pts_2];

% Arrays of calculated and actual displacements in local y and z dir.
start_dy_calc = dis_calc0(2,1:size_start(end),end);
start_dy_actual = dis_actual_tool0(2,1:size_start(end),end);
start_dz_calc = dis_calc0(3,1:size_start(end),end);
start_dz_actual = dis_actual_tool0(3,1:size_start(end),end);

flxn_dy_calc = dis_calc400(2,1:size_flxn(end),end);
flxn_dy_actual = dis_actual_tool400(2,1:size_flxn(end),end);
flxn_dz_calc = dis_calc400(3,1:size_flxn(end),end);
flxn_dz_actual = dis_actual_tool400(3,1:size_flxn(end),end);

extn_dy_calc = dis_calc800(2,1:size_extn(end),end);
extn_dy_actual = dis_actual_tool800(2,1:size_extn(end),end);
extn_dz_calc = dis_calc800(3,1:size_extn(end),end);
extn_dz_actual = dis_actual_tool800(3,1:size_extn(end),end);

dy_calc = [flxn_dy_calc extn_dy_calc start_dy_calc];
dz_calc = [flxn_dz_calc extn_dz_calc start_dz_calc];
dy_actual = [flxn_dy_actual extn_dy_actual start_dy_actual];
dz_actual = [flxn_dz_actual extn_dz_actual start_dz_actual];

% Array of time for all iterations of last pathseek
time0 = time_total0(1,1:size_start(end),end);
time400 = time_total400(1,1:size_flxn(end),end);
time800 = time_total800(1,1:size_extn(end),end);
last_time = [time400 time800 time0];
last_time = cumsum(last_time);

% Array of rotation angles for all data points of last pathseek

 204

last_rot_angle0 = rot_angle0(1,1:size_start(end),end);
last_rot_angle400 = rot_angle400(1,1:size_flxn(end),end);
last_rot_angle800 = rot_angle800(1,1:size_extn(end),end);
last_rot_angle = [last_rot_angle400 last_rot_angle800 last_rot_angle0];

% Array of rotation angles for end points of last pathseek
last_rot_angle_end_pts =
[rot_angle400_end_pts(:,1:size_flxn_end_pts(end),end),
rot_angle800_end_pts(:,1:size_extn_end_pts(end),end),
rot_angle0_end_pts(:,1:size_start_end_pts(end),end)];

% Array of rotation angles for end points of all pathseeks
% rot_angle_400_800_end_pts = [];
% for i = 1:flxn_counter
% rot_angle_400_800_end_pts = [rot_angle_400_800_end_pts
rot_angle400_end_pts(:,1:size_flxn_end_pts(i),i)
rot_angle800_end_pts(:,1:size_extn_end_pts(i),i)];
% end
% all_rot_angle_end_pts = [rot_angle0_end_pts(:,1:size_start_end_pts(1),1),
rot_angle_400_800_end_pts,
rot_angle0_end_pts(:,1:size_start_end_pts(end),end)];
begin_rot_angle_end_pts =
[rot_angle0_end_pts(:,1:size_start_end_pts(1),1),...
 rot_angle400_end_pts(:,1:size_flxn_end_pts(1),1),...
 rot_angle800_end_pts(:,1:size_extn_end_pts(1),1)];
end_rot_angle_end_pts =
[rot_angle400_end_pts(:,1:size_flxn_end_pts(end),end),...
 rot_angle800_end_pts(:,1:size_extn_end_pts(end),end),...
 rot_angle0_end_pts(:,1:size_start_end_pts(end),end)];

% Arrays of constants
x = 1:length(last_rot_angle);
for i = 1:length(last_rot_angle)
 y(i) = 0;
end
for i = 1:length(fy_end_pts)
 y_end_pts(i) = 0;
end
% for i = 1:length(all_mx_end_pts)
% all_y_end_pts(i) = 0;
% end

% Cumulative sum of iterations for each direction of last pathseek
test = 0;
size_z_ct0 = 0;
for i = 1:size(z_ct0_total,2)
 tf = isequal(z_ct0_total(1,i,end),test);
 if tf == 1
 size_z_ct0 = i-1;
 break
 end
end
if size_z_ct0 == 0
 size_z_ct0 = size(z_ct0_total,2);
end

size_z_ct400 = 0;

 205

for i = 1:size(z_ct400_total,2)
 tf = isequal(z_ct400_total(1,i,end),test);
 if tf == 1
 size_z_ct400 = i-1;
 break
 end
 if size_z_ct400 == 0
 size_z_ct400 = size(z_ct400_total,2);
 end
end

size_z_ct800 = 0;
for i = 1:size(z_ct800_total,2)
 tf = isequal(z_ct800_total(1,i,end),test);
 if tf == 1
 size_z_ct800 = i-1;
 break
 end
end
if size_z_ct800 == 0
 size_z_ct800 = size(z_ct800_total,2);
end

z_ct0_sum = cumsum(z_ct0_total(1,1:size_z_ct0(end),end));
z_ct400_sum = cumsum(z_ct400_total(1,1:size_z_ct400(end),end));
z_ct800_sum = cumsum(z_ct800_total(1,1:size_z_ct800(end),end));

% Save workspace
save(filename)
disp('Data has been saved.')
%==
=====================================

% F/M PLOTS
% Plots of f/m vs. time for last pathseek
fh=figure('Position',[150 100 1000 900],'Color','w');
subplot(3,1,1), plot(last_time, fy, last_time, y, '-k'), title('Fy vs. time
for last pathseek'), xlabel('time (sec)'), ylabel('Fy (N)');
set(gca,'XLim',[0 length(last_time)]);
subplot(3,1,2), plot(last_time, fz, last_time, y, '-k'), title('Fz vs. time
for last pathseek'), xlabel('time (sec)'), ylabel('Fz (N)');
set(gca,'XLim',[0 length(last_time)]);
subplot(3,1,3), plot(last_time, mx, last_time, y, '-k'), title('Mx vs. time
for last pathseek'), xlabel('time (sec)'), ylabel('Mx (Nm)');
set(gca,'XLim',[0 length(last_time)]);

% Plots of rotation angle and fy vs. length(rot_angle) for last pathseek
fh=figure('Position',[150 100 1000 900],'Color','w');
subplot(3,1,1), plot(x, -last_rot_angle), title('rotation angle vs.
length(rotation angle) for last pathseek');
set(gca,'XLim',[0 x(end)]);
subplot(3,1,2), plot(x, fy, x, y, '-k'), title('Fy vs. length(Fy) for last
pathseek'), ylabel('Fy (N)');
set(gca,'XLim',[0 x(end)]);

% Plots of rotation angle and fz vs. length(rot_angle) for last pathseek
fh=figure('Position',[150 100 1000 900],'Color','w');

 206

subplot(3,1,1), plot(x, -last_rot_angle), title('rotation angle vs.
length(rotation angle) for last pathseek');
set(gca,'XLim',[0 x(end)]);
subplot(3,1,2), plot(x, fz, x, y, '-k'), title('Fz vs. length(Fz) for last
pathseek'), ylabel('Fz (N)');
set(gca,'XLim',[0 x(end)]);

% Plots of rotation angle and mx vs. length(rot_angle) for last pathseek
fh=figure('Position',[150 100 1000 900],'Color','w');
subplot(3,1,1), plot(x, -last_rot_angle), title('rotation angle vs.
length(rotation angle) for last pathseek');
set(gca,'XLim',[0 x(end)]);
subplot(3,1,2), plot(x, mx, x, y, '-k'), title('Mx vs. length(Mx) for last
pathseek'), ylabel('Mx (Nm)');
set(gca,'XLim',[0 x(end)]);

% Plots of rotation angle vs. mx (end points from every pathseek)
fh=figure('Position',[150 100 1000 900],'Color','w');
set(gca, 'NextPlot', 'add');
plot(-begin_rot_angle_end_pts, begin_mx_end_pts, 's-r', 'MarkerEdgeColor',
'r', 'MarkerFaceColor', 'r', 'MarkerSize', 4);
for i = 2:flxn_counter-1
 plot(-rot_angle400_end_pts(:,1:size_flxn_end_pts(i),i),
flxn_load_end_pts(4,1:size_flxn_end_pts(i),i), '.-');
 plot(-rot_angle800_end_pts(:,1:size_extn_end_pts(i),i),
extn_load_end_pts(4,1:size_extn_end_pts(i),i), '*-');
end
plot(-end_rot_angle_end_pts, end_mx_end_pts, 'o-', 'Color', [0 0.75 0],
'MarkerEdgeColor', [0 0.75 0], 'MarkerFaceColor', [0 0.75 0], 'MarkerSize',
5);
line('XData', get(gca, 'XLim'), 'YData', [0 0]);
line('XData', [0 0], 'YData', get(gca, 'YLim'));
title('Mx vs. rotation angle for every pathseek'), xlabel('rotation angle
(deg)'), ylabel('Mx (Nm)');
legend_handles = get(gca, 'Children');
for i = 2:flxn_counter-1
 legend_string_flxn(i-1,1:15) = ['pathseek ', int2str(i), ' flxn'];
 legend_string_extn(i-1,1:15) = ['pathseek ', int2str(i), ' extn'];
end
legend_string_flxn_extn = [];
for i = 1:flxn_counter-2
 legend_string_flxn_extn = [legend_string_flxn_extn;
legend_string_flxn(i,:); legend_string_extn(i,:)];
end
legend_string = ['pathseek 1 '; legend_string_flxn_extn; ['pathseek ',
int2str(flxn_counter), ' ']];
legend(flipdim(legend_handles(3:end),1), legend_string, 2);
% text(1, -2, 'flexion', 'Rotation', 30, 'FontSize', 14);
% text(1, 2, 'extension', 'Rotation', 30, 'FontSize', 14);

% Plots of rotation angle vs. mx, fy & fz (end points of last pathseek)
fh=figure('Position',[150 100 1000 900],'Color','w');
subplot(3,1,1), plot(-last_rot_angle_end_pts, fy_end_pts, '.-b',
last_rot_angle_end_pts, y_end_pts, '-k'), title('Fy vs. rot angle for last
pathseek'), xlabel('rotation angle (deg)'), ylabel('Fy (N)');

 207

subplot(3,1,2), plot(-last_rot_angle_end_pts, fz_end_pts, '.-b',
last_rot_angle_end_pts, y_end_pts, '-k'), title('Fz vs. rot angle for last
pathseek'), xlabel('rotation angle (deg)'), ylabel('Fz (N)');
subplot(3,1,3), plot(-last_rot_angle_end_pts, mx_end_pts, '.-b',
last_rot_angle_end_pts, y_end_pts, '-k'), title('Mx vs. rot angle for last
pathseek'), xlabel('rotation angle (deg)'), ylabel('Mx (Nm)');

% Plots of first and last points of each rotation angle for fy for last
pathseek
fh=figure('Position',[150 100 1000 900],'Color','w');
for i = 2:length(z_ct400_sum)
 hold on
 subplot(3,1,1), plot_handles_begin = plot(-
[rot_angle400(1,z_ct400_sum(1),end), rot_angle400(1,z_ct400_sum(1),end)],
[flxn_fy(1,1,end), flxn_fy(1,z_ct400_sum(1),end)], '-ob');
 subplot(3,1,1), plot(-[rot_angle400(1,z_ct400_sum(i),end),
rot_angle400(1,z_ct400_sum(i),end)], [flxn_fy(1,z_ct400_sum(i-1)+1,end),
flxn_fy(1,z_ct400_sum(i),end)], '-ob');
 subplot(3,1,1), plot_handles_end = plot(-
rot_angle400(1,z_ct400_sum(1),end), flxn_fy(1,z_ct400_sum(1),end),
'*r','MarkerSize',10);
 subplot(3,1,1), plot(-rot_angle400(1,z_ct400_sum(i),end),
flxn_fy(1,z_ct400_sum(i),end), '*r','MarkerSize',10);
 subplot(3,1,1), line('XData', get(gca, 'XLim'), 'YData', [0.5 0.5],
'LineWidth', 2);
 subplot(3,1,1), line('XData', get(gca, 'XLim'), 'YData', [-0.5 -0.5],
'LineWidth', 2);
 hold off
end
title('fy vs. rotation angle for last pathseek'), xlabel('rotation angle
(deg)'), ylabel('Fy (N)');
legend_handles = [plot_handles_begin; plot_handles_end];
legend(legend_handles, 'beginning force', 'ending force');
for i = 2:length(z_ct800_sum)
 hold on
 subplot(3,1,2), plot_handles_begin = plot(-
[rot_angle800(1,z_ct800_sum(1),end), rot_angle800(1,z_ct800_sum(1),end)],
[extn_fy(1,1,end), extn_fy(1,z_ct800_sum(1),end)], '-ob');
 subplot(3,1,2), plot(-[rot_angle800(1,z_ct800_sum(i),end),
rot_angle800(1,z_ct800_sum(i),end)], [extn_fy(1,z_ct800_sum(i-1)+1,end),
extn_fy(1,z_ct800_sum(i),end)], '-ob');
 subplot(3,1,2), plot_handles_end = plot(-
rot_angle800(1,z_ct800_sum(1),end), extn_fy(1,z_ct800_sum(1),end),
'*r','MarkerSize',10);
 subplot(3,1,2), plot(-rot_angle800(1,z_ct800_sum(i),end),
extn_fy(1,z_ct800_sum(i),end), '*r','MarkerSize',10);
 subplot(3,1,2), line('XData', get(gca, 'XLim'), 'YData', [0.5 0.5],
'LineWidth', 2);
 subplot(3,1,2), line('XData', get(gca, 'XLim'), 'YData', [-0.5 -0.5],
'LineWidth', 2);
 hold off
end
title('fy vs. rotation angle for last pathseek'), xlabel('rotation angle
(deg)'), ylabel('Fy (N)');
legend_handles = [plot_handles_begin; plot_handles_end];
legend(legend_handles, 'beginning force', 'ending force');
for i = 2:length(z_ct0_sum)

 208

 hold on
 subplot(3,1,3), plot_handles_begin = plot(-
[rot_angle0(1,z_ct0_sum(1),end), rot_angle0(1,z_ct0_sum(1),end)],
[start_fy(1,1,end), start_fy(1,z_ct0_sum(1),end)], '-ob');
 subplot(3,1,3), plot(-[rot_angle0(1,z_ct0_sum(i),end),
rot_angle0(1,z_ct0_sum(i),end)], [start_fy(1,z_ct0_sum(i-1)+1,end),
start_fy(1,z_ct0_sum(i),end)], '-ob');
 subplot(3,1,3), plot_handles_end = plot(-rot_angle0(1,z_ct0_sum(1),end),
start_fy(1,z_ct0_sum(1),end), '*r', 'MarkerSize', 10);
 subplot(3,1,3), plot(-rot_angle0(1,z_ct0_sum(i),end),
start_fy(z_ct0_sum(i)), '*r', 'MarkerSize', 10);
 subplot(3,1,3), line('XData', get(gca, 'XLim'), 'YData', [0.5 0.5],
'LineWidth', 2);
 subplot(3,1,3), line('XData', get(gca, 'XLim'), 'YData', [-0.5 -0.5],
'LineWidth', 2);
 hold off
end
title('fy vs. rotation angle for last pathseek'), xlabel('rotation angle
(deg)'), ylabel('Fy (N)');
legend_handles = [plot_handles_begin; plot_handles_end];
legend(legend_handles, 'beginning force', 'ending force');

% Plots of first and last points of each rotation angle for fz for last
pathseek
fh=figure('Position',[150 100 1000 900],'Color','w');
for i = 2:length(z_ct400_sum)
 hold on
 subplot(3,1,1), plot_handles_begin = plot(-
[rot_angle400(1,z_ct400_sum(1),end), rot_angle400(1,z_ct400_sum(1),end)],
[flxn_fz(1,1,end), flxn_fz(1,z_ct400_sum(1),end)], '-ob');
 subplot(3,1,1), plot(-[rot_angle400(1,z_ct400_sum(i),end),
rot_angle400(1,z_ct400_sum(i),end)], [flxn_fz(1,z_ct400_sum(i-1)+1,end),
flxn_fz(1,z_ct400_sum(i),end)], '-ob');
 subplot(3,1,1), plot_handles_end = plot(-
rot_angle400(1,z_ct400_sum(1),end), flxn_fz(1,z_ct400_sum(1),end),
'*r','MarkerSize',10);
 subplot(3,1,1), plot(-rot_angle400(1,z_ct400_sum(i),end),
flxn_fz(1,z_ct400_sum(i),end), '*r','MarkerSize',10);
 subplot(3,1,1), line('XData', get(gca, 'XLim'), 'YData', [0.5 0.5],
'LineWidth', 2);
 subplot(3,1,1), line('XData', get(gca, 'XLim'), 'YData', [-0.5 -0.5],
'LineWidth', 2);
 hold off
end
title('fz vs. rotation angle for last pathseek'), xlabel('rotation angle
(deg)'), ylabel('Fz (N)');
legend_handles = [plot_handles_begin; plot_handles_end];
legend(legend_handles, 'beginning force', 'ending force');
for i = 2:length(z_ct800_sum)
 hold on
 subplot(3,1,2), plot_handles_begin = plot(-
[rot_angle800(1,z_ct800_sum(1),end), rot_angle800(1,z_ct800_sum(1),end)],
[extn_fz(1,1,end), extn_fz(1,z_ct800_sum(1),end)], '-ob');
 subplot(3,1,2), plot(-[rot_angle800(1,z_ct800_sum(i),end),
rot_angle800(1,z_ct800_sum(i),end)], [extn_fz(1,z_ct800_sum(i-1)+1,end),
extn_fz(1,z_ct800_sum(i),end)], '-ob');

 209

 subplot(3,1,2), plot_handles_end = plot(-
rot_angle800(1,z_ct800_sum(1),end), extn_fz(1,z_ct800_sum(1),end),
'*r','MarkerSize',10);
 subplot(3,1,2), plot(-rot_angle800(1,z_ct800_sum(i),end),
extn_fz(1,z_ct800_sum(i),end), '*r','MarkerSize',10);
 subplot(3,1,2), line('XData', get(gca, 'XLim'), 'YData', [0.5 0.5],
'LineWidth', 2);
 subplot(3,1,2), line('XData', get(gca, 'XLim'), 'YData', [-0.5 -0.5],
'LineWidth', 2);
 hold off
end
title('fz vs. rotation angle for last pathseek'), xlabel('rotation angle
(deg)'), ylabel('Fz (N)');
legend_handles = [plot_handles_begin; plot_handles_end];
legend(legend_handles, 'beginning force', 'ending force');
for i = 2:length(z_ct0_sum)
 hold on
 subplot(3,1,3), plot_handles_begin = plot(-
[rot_angle0(1,z_ct0_sum(1),end), rot_angle0(1,z_ct0_sum(1),end)],
[start_fz(1,1,end), start_fz(1,z_ct0_sum(1),end)], '-ob');
 subplot(3,1,3), plot(-[rot_angle0(1,z_ct0_sum(i),end),
rot_angle0(1,z_ct0_sum(i),end)], [start_fz(1,z_ct0_sum(i-1)+1,end),
start_fz(1,z_ct0_sum(i),end)], '-ob');
 subplot(3,1,3), plot_handles_end = plot(-rot_angle0(1,z_ct0_sum(1),end),
start_fz(1,z_ct0_sum(1),end), '*r', 'MarkerSize', 10);
 subplot(3,1,3), plot(-rot_angle0(1,z_ct0_sum(i),end),
start_fz(z_ct0_sum(i)), '*r', 'MarkerSize', 10);
 subplot(3,1,3), line('XData', get(gca, 'XLim'), 'YData', [0.5 0.5],
'LineWidth', 2);
 subplot(3,1,3), line('XData', get(gca, 'XLim'), 'YData', [-0.5 -0.5],
'LineWidth', 2);
 hold off
end
title('fz vs. rotation angle for last pathseek'), xlabel('rotation angle
(deg)'), ylabel('Fz (N)');
legend_handles = [plot_handles_begin; plot_handles_end];
legend(legend_handles, 'beginning force', 'ending force');

% Plots of first and last points of each rotation angle for mx for last
pathseek
fh=figure('Position',[150 100 1000 900],'Color','w');
for i = 2:length(z_ct400_sum)
 hold on
 subplot(3,1,1), plot_handles_begin = plot(-
[rot_angle400(1,z_ct400_sum(1),end), rot_angle400(1,z_ct400_sum(1),end)],
[flxn_mx(1,1,end), flxn_mx(1,z_ct400_sum(1),end)], '-ob');
 subplot(3,1,1), plot(-[rot_angle400(1,z_ct400_sum(i),end),
rot_angle400(1,z_ct400_sum(i),end)], [flxn_mx(1,z_ct400_sum(i-1)+1,end),
flxn_mx(1,z_ct400_sum(i),end)], '-ob');
 subplot(3,1,1), plot_handles_end = plot(-
rot_angle400(1,z_ct400_sum(1),end), flxn_mx(1,z_ct400_sum(1),end),
'*r','MarkerSize',10);
 subplot(3,1,1), plot(-rot_angle400(1,z_ct400_sum(i),end),
flxn_mx(1,z_ct400_sum(i),end), '*r','MarkerSize',10);
 hold off
end

 210

title('mx vs. rotation angle for last pathseek'), xlabel('rotation angle
(deg)'), ylabel('Mx (Nm)');
legend_handles = [plot_handles_begin; plot_handles_end];
legend(legend_handles, 'beginning moment', 'ending moment');
for i = 2:length(z_ct800_sum)
 hold on
 subplot(3,1,2), plot_handles_begin = plot(-
[rot_angle800(1,z_ct800_sum(1),end), rot_angle800(1,z_ct800_sum(1),end)],
[extn_mx(1,1,end), extn_mx(1,z_ct800_sum(1),end)], '-ob');
 subplot(3,1,2), plot(-[rot_angle800(1,z_ct800_sum(i),end),
rot_angle800(1,z_ct800_sum(i),end)], [extn_mx(1,z_ct800_sum(i-1)+1,end),
extn_mx(1,z_ct800_sum(i),end)], '-ob');
 subplot(3,1,2), plot_handles_end = plot(-
rot_angle800(1,z_ct800_sum(1),end), extn_mx(1,z_ct800_sum(1),end),
'*r','MarkerSize',10);
 subplot(3,1,2), plot(-rot_angle800(1,z_ct800_sum(i),end),
extn_mx(1,z_ct800_sum(i),end), '*r','MarkerSize',10);
 hold off
end
title('mx vs. rotation angle for last pathseek'), xlabel('rotation angle
(deg)'), ylabel('Mx (Nm)');
legend_handles = [plot_handles_begin; plot_handles_end];
legend(legend_handles, 'beginning moment', 'ending moment');
for i = 2:length(z_ct0_sum)
 hold on
 subplot(3,1,3), plot_handles_begin = plot(-
[rot_angle0(1,z_ct0_sum(1),end), rot_angle0(1,z_ct0_sum(1),end)],
[start_mx_2(1,1,end), start_mx_2(1,z_ct0_sum(1),end)], '-ob');
 subplot(3,1,3), plot(-[rot_angle0(1,z_ct0_sum(i),end),
rot_angle0(1,z_ct0_sum(i),end)], [start_mx_2(1,z_ct0_sum(i-1)+1,end),
start_mx_2(1,z_ct0_sum(i),end)], '-ob');
 subplot(3,1,3), plot_handles_end = plot(-rot_angle0(1,z_ct0_sum(1),end),
start_mx_2(1,z_ct0_sum(1),end), '*r', 'MarkerSize', 10);
 subplot(3,1,3), plot(-rot_angle0(1,z_ct0_sum(i),end),
start_mx_2(z_ct0_sum(i)), '*r', 'MarkerSize', 10);
 hold off
end
title('mx vs. rotation angle for last pathseek'), xlabel('rotation angle
(deg)'), ylabel('Mx (Nm)');
legend_handles = [plot_handles_begin; plot_handles_end];
legend(legend_handles, 'beginning moment', 'ending moment');
%==
=====================================

% PLOTS OF DISPLACEMENTS IN LOCAL Y AND Z DIR.
% Plots of dy/dz calc/actual vs. time for last pathseek
fh=figure('Position',[150 100 1000 900],'Color','w');
subplot(2,2,1), plot(last_time, dy_calc), title('dy calc vs. time for last
pathseek'), xlabel('time (sec)'), ylabel('dy (mm)');
subplot(2,2,3), plot(last_time, dz_calc), title('dz calc vs. time for last
pathseek'), xlabel('time (sec)'), ylabel('dz (mm)');
subplot(2,2,2), plot(last_time, dy_actual), title('dy actual vs. time for
last pathseek'), xlabel('time (sec)'), ylabel('dy (mm)');
subplot(2,2,4), plot(last_time, dz_actual), title('dz actual vs. time for
last pathseek'), xlabel('time (sec)'), ylabel('dz (mm)');

 211

% Plots of rotation angle and dy calc/actual vs. length(rot_angle) for last
pathseek
fh=figure('Position',[150 100 1000 900],'Color','w');
subplot(3,1,1), plot(x, -last_rot_angle), title('rotation angle vs length(rot
angle) for last pathseek'), ylabel('rotation angle (deg)');
set(gca,'XLim',[0 length(last_rot_angle)]);
subplot(3,1,2), plot(x, dy_calc, 'b', x, y, 'k'), title('dy calc vs
length(dy) for last pathseek'), ylabel('dy (mm)');
set(gca,'XLim',[0 length(last_rot_angle)]);
subplot(3,1,3), plot(x, dy_actual, 'b', x, y, 'k'), title('dy actual vs
length(dy) for last pathseek'), ylabel('dy (mm)');
set(gca,'XLim',[0 length(last_rot_angle)]);

% Plots of rotation angle and dz calc/actual vs. length(rot_angle) for last
pathseek
fh=figure('Position',[150 100 1000 900],'Color','w');
subplot(3,1,1), plot(x, -last_rot_angle), title('rotation angle vs length(rot
angle) for last pathseek'), ylabel('rotation angle (deg)');
set(gca,'XLim',[0 length(last_rot_angle)]);
subplot(3,1,2), plot(x, dz_calc, 'b', x, y, 'k'), title('dz calc vs
length(dz) for last pathseek'), ylabel('dz (mm)');
set(gca,'XLim',[0 length(last_rot_angle)]);
subplot(3,1,3), plot(x, dz_actual, 'b', x, y, 'k'), title('dz actual vs
length(dz) for last pathseek'), ylabel('dz (mm)');
set(gca,'XLim',[0 length(last_rot_angle)]);

% Plots of dy/dz calc vs. dy/dz actual for last pathseek
fh=figure('Position',[150 100 1000 900],'Color','w');
subplot(2,1,1), plot(dy_calc, dy_actual), title('dy actual vs. dy calc for
last pathseek'), xlabel('dy (mm)'), ylabel('dy (mm)');
subplot(2,1,2), plot(dz_calc, dz_actual), title('dz actual vs. dz calc for
last pathseek'), xlabel('dz (mm)'), ylabel('dz (mm)');
%==
=====================================

% PLOTS OF RX, TY, TZ VS. MX (END POINTS FROM LAST PATHSEEK)
% Plots of Rx, Ty, Tz vs. mx (end points from last pathseek)
fh=figure('Position',[150 100 1000 900],'Color','w');
hold on
for i = 1:size(z_ct0_sum,2)
 plot(-last_rot_angle_end_pts, mx_end_pts, '.-b',...
 -last_rot_angle_end_pts(i), start_dy_actual(z_ct0_sum(i)),'.b',...
 -last_rot_angle_end_pts(i), start_dz_actual(z_ct0_sum(i)),'*r');
end
for i = 1:size(z_ct400_sum,2)
 plot(-last_rot_angle_end_pts, mx_end_pts, '.-b',...
 -last_rot_angle_end_pts(i), flxn_dy_actual(z_ct400_sum(i)),'.b',...
 -last_rot_angle_end_pts(i), flxn_dz_actual(z_ct400_sum(i)),'*r');
end
for i = 1:size(z_ct800_sum,2)
 plot_handles = plot(-last_rot_angle_end_pts, mx_end_pts, '.-b',...
 -last_rot_angle_end_pts(i), extn_dy_actual(z_ct800_sum(i)),'.b',...
 -last_rot_angle_end_pts(i), extn_dz_actual(z_ct800_sum(i)),'*r');
end
line('XData', get(gca, 'XLim'), 'YData', [0 0]);
line('XData', [0 0], 'YData', get(gca, 'YLim'));
hold off

 212

title('Rx, Ty, Tz vs. Mx for last pathseek'), ylabel('displacement (deg or
mm)'), xlabel('Mx (Nm)');
legend(plot_handles, 'Mx', 'Ty', 'Tz');
%==
=====================================

legend(legend_handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn',
'flxn \rightarrow start');

 plot_handles_3 = plot([tGUFS0_posn(1,temp+1),
tGUFS0_posn(1,temp+1+z_ct0_total(1,i,end))],...

% PLOT OF MOVEMENT OF POINT OF INTEREST IN GLOBAL C.S.
% Z vs. X in global c.s. (start, extn & flxn together, starting & ending
points only) for last pathseek
fh=figure('Position',[150 100 1000 900],'Color','w');
temp = 0;
hold on
for i = 1:size(z_ct0_sum,2)
 plot_handles_3 = plot([tGPOI0_posn(1,temp+1),
tGPOI0_posn(1,temp+1+z_ct0_total(1,i,end))],...
 [tGPOI0_posn(3,temp+1), tGPOI0_posn(3,temp+1+z_ct0_total(1,i,end))],
'-ob');
 temp = temp + 1 + z_ct0_total(1,i,end);
end
temp = 0;
for i = 1:size(z_ct400_sum,2)
 plot_handles_1 = plot([tGPOI400_posn(1,temp+1),
tGPOI400_posn(1,temp+1+z_ct400_total(1,i,end))],...
 [tGPOI400_posn(3,temp+1),
tGPOI400_posn(3,temp+1+z_ct400_total(1,i,end))], '-or');
 temp = temp + 1 + z_ct400_total(1,i,end);
end
temp = 0;
for i = 1:size(z_ct800_sum,2)
 plot_handles_2 = plot([tGPOI800_posn(1,temp+1),
tGPOI800_posn(1,temp+1+z_ct800_total(1,i,end))],...
 [tGPOI800_posn(3,temp+1),
tGPOI800_posn(3,temp+1+z_ct800_total(1,i,end))], '-ok');
 temp = temp + 1 + z_ct800_total(1,i,end);
end
hold off
title('Z vs. X for point of interest for last pathseek'), xlabel('X (mm)'),
ylabel('Z (mm)');
legend_handles = [plot_handles_1; plot_handles_2; plot_handles_3];

%==
=====================================

% PLOT OF MOVEMENT OF UFS IN GLOBAL C.S.
% Z vs. X in global c.s. (start, extn & flxn together, starting & ending
points only) for last pathseek
fh=figure('Position',[150 100 1000 900],'Color','w');
temp = 0;
hold on
for i = 1:size(z_ct0_sum,2)

 [tGUFS0_posn(3,temp+1), tGUFS0_posn(3,temp+1+z_ct0_total(1,i,end))],
'-ob');
 temp = temp + 1 + z_ct0_total(1,i,end);
end

 213

temp = 0;
for i = 1:size(z_ct400_sum,2)

end

hold off

 plot_handles_1 = plot([tGUFS400_posn(1,temp+1),
tGUFS400_posn(1,temp+1+z_ct400_total(1,i,end))],...
 [tGUFS400_posn(3,temp+1),
tGUFS400_posn(3,temp+1+z_ct400_total(1,i,end))], '-or');
 temp = temp + 1 + z_ct400_total(1,i,end);
end
temp = 0;
for i = 1:size(z_ct800_sum,2)
 plot_handles_2 = plot([tGUFS800_posn(1,temp+1),
tGUFS800_posn(1,temp+1+z_ct800_total(1,i,end))],...
 [tGUFS800_posn(3,temp+1),
tGUFS800_posn(3,temp+1+z_ct800_total(1,i,end))], '-ok');
 temp = temp + 1 + z_ct800_total(1,i,end);
end
hold off
title('Z vs. X for UFS for last pathseek'), xlabel('X (mm)'), ylabel('Z
(mm)');
legend_handles = [plot_handles_1; plot_handles_2; plot_handles_3];
legend(legend_handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn',
'flxn \rightarrow start');
%==
=====================================

% PLOT OF MOVEMENT OF COR IN GLOBAL C.S.
% Z vs. X in global c.s. (start, extn & flxn together, starting & ending
points only) for last pathseek
fh=figure('Position',[150 100 1000 900],'Color','w');
temp = 0;
hold on
for i = 1:size(z_ct0_sum,2)
 plot_handles_3 = plot([tGT0_posn(1,temp+1),
tGT0_posn(1,temp+1+z_ct0_total(1,i,end))],...
 [tGT0_posn(3,temp+1), tGT0_posn(3,temp+1+z_ct0_total(1,i,end))], '-
ob');
 temp = temp + 1 + z_ct0_total(1,i,end);

temp = 0;
for i = 1:size(z_ct400_sum,2)
 plot_handles_1 = plot([tGT400_posn(1,temp+1),
tGT400_posn(1,temp+1+z_ct400_total(1,i,end))],...
 [tGT400_posn(3,temp+1),
tGT400_posn(3,temp+1+z_ct400_total(1,i,end))], '-or');
 temp = temp + 1 + z_ct400_total(1,i,end);
end
temp = 0;
for i = 1:size(z_ct800_sum,2)
 plot_handles_2 = plot([tGT800_posn(1,temp+1),
tGT800_posn(1,temp+1+z_ct800_total(1,i,end))],...
 [tGT800_posn(3,temp+1),
tGT800_posn(3,temp+1+z_ct800_total(1,i,end))], '-ok');
 temp = temp + 1 + z_ct800_total(1,i,end);
end

title('Z vs. X for COR for last pathseek'), xlabel('X (mm)'), ylabel('Z
(mm)');

 214

legend_handles = [plot_handles_1; plot_handles_2; plot_handles_3];
legend(legend_handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn',
'flxn \rightarrow start');
%==
=====================================

% PLOT OF MOVEMENT OF pt. of interest, UFS & COR IN GLOBAL C.S.

 [tGPOI400_posn(3,temp+1),
tGPOI400_posn(3,temp+1+z_ct400_total(1,i,end))], '-sr', 'MarkerSize', 5);

% Z vs. X in global c.s. (start, extn & flxn together, starting & ending
points only) for last pathseek
fh=figure('Position',[150 100 1000 900],'Color','w');
temp = 0;
hold on
for i = 1:size(z_ct0_sum,2)
 plot_handles_3 = plot([tGT0_posn(1,temp+1),
tGT0_posn(1,temp+1+z_ct0_total(1,i,end))],...
 [tGT0_posn(3,temp+1), tGT0_posn(3,temp+1+z_ct0_total(1,i,end))], '.-
b',...
 [tGUFS0_posn(1,temp+1),
tGUFS0_posn(1,temp+1+z_ct0_total(1,i,end))],...
 [tGUFS0_posn(3,temp+1), tGUFS0_posn(3,temp+1+z_ct0_total(1,i,end))],
'-ob',...
 [tGPOI0_posn(1,temp+1),
tGPOI0_posn(1,temp+1+z_ct0_total(1,i,end))],...
 [tGPOI0_posn(3,temp+1), tGPOI0_posn(3,temp+1+z_ct0_total(1,i,end))],
'-sb', 'MarkerSize', 5);
 temp = temp + 1 + z_ct0_total(1,i,end);
end
temp = 0;
for i = 1:size(z_ct400_sum,2)
 plot_handles_1 = plot([tGT400_posn(1,temp+1),
tGT400_posn(1,temp+1+z_ct400_total(1,i,end))],...
 [tGT400_posn(3,temp+1),
tGT400_posn(3,temp+1+z_ct400_total(1,i,end))], '.-b',...
 [tGUFS400_posn(1,temp+1),
tGUFS400_posn(1,temp+1+z_ct400_total(1,i,end))],...
 [tGUFS400_posn(3,temp+1),
tGUFS400_posn(3,temp+1+z_ct400_total(1,i,end))], '-or',...
 [tGPOI400_posn(1,temp+1),
tGPOI400_posn(1,temp+1+z_ct400_total(1,i,end))],...

 temp = temp + 1 + z_ct400_total(1,i,end);
end
temp = 0;
for i = 1:size(z_ct800_sum,2)
 plot_handles_2 = plot([tGT800_posn(1,temp+1),
tGT800_posn(1,temp+1+z_ct800_total(1,i,end))],...
 [tGT800_posn(3,temp+1),
tGT800_posn(3,temp+1+z_ct800_total(1,i,end))], '.-b',...
 [tGUFS800_posn(1,temp+1),
tGUFS800_posn(1,temp+1+z_ct800_total(1,i,end))],...
 [tGUFS800_posn(3,temp+1),
tGUFS800_posn(3,temp+1+z_ct800_total(1,i,end))], '-ok',...
 [tGPOI800_posn(1,temp+1),
tGPOI800_posn(1,temp+1+z_ct800_total(1,i,end))],...
 [tGPOI800_posn(3,temp+1),
tGPOI800_posn(3,temp+1+z_ct800_total(1,i,end))], '-sk', 'MarkerSize', 5);

 215

 temp = temp + 1 + z_ct800_total(1,i,end);
end
hold off
title('Z vs. X for point of interest, UFS & COR for last pathseek'),
xlabel('X (mm)'), ylabel('Z (mm)');
legend_handles = [plot_handles_1; plot_handles_2; plot_handles_3];
legend(legend_handles, 'COR: flxn \rightarrow extn ', 'UFS: flxn \rightarrow
extn', 'POI: flxn \rightarrow extn',...
 'COR: extn \rightarrow flxn', 'UFS: extn \rightarrow flxn', 'POI: extn
\rightarrow flxn',...
 'COR: flxn \rightarrow start', 'UFS: flxn \rightarrow start', 'POI: flxn
\rightarrow start', 0);

After finding the final passive path of the specimen, it is replayed to make sure no more

pre-conditioning needs to be done (spine3h_val_path2.m).

% spine3h_val_path2.m
% replay flexion/extension
% converted from spine3h.v2
% Amy Loveless
% 7/31/2002

% Disable buttons on GUI until spine3h_val_path2.m is done running
buttons(guihandles, 'off');

% Input dialog box to get the number of times to run replay
prompt = {'Enter the number of times you want to run the replay'};
title = 'Number of Replays';
lines= 1;
def = {''};
answer = inputdlg(prompt,title,lines,def);
if isequal(answer,{}) == 1
 % Enable buttons on GUI
 buttons(guihandles, 'on');
else
 plays = str2num(answer{1});
end

% plays = str2num(answer{1});

% Clear variables created for inputdlg
clear prompt title lines def answer;

% Input dialog box to get the filename for data storage
prompt = {'Enter Filename'};
title = 'Filename';
lines= 1;
def = {'c:\robot'};
answer = inputdlg(prompt,title,lines,def);
if isequal(answer,{}) == 1
 % Enable buttons on GUI
 buttons(guihandles, 'on');
else

 216

 filename = answer{1};
end

% Clear variables created for inputdlg
clear prompt title lines def answer;

% setup figure to graphically monitor loads
[fx, fy, fz, mx, my, mz, handles, fh] = val_path_display1;

% Arrays of constants
rot_angle0_replay =
flipdim(rot_angle0_end_pts(:,1:size_start_end_pts(end),end),1);
rot_angle400_replay = rot_angle400_end_pts(:,1:size_flxn_end_pts(end),end);
rot_angle800_replay = rot_angle800_end_pts(:,1:size_extn_end_pts(end),end);
rot_angle_replay = [rot_angle400_replay rot_angle800_replay];

% move specimen to flxn in incremental movements
for p = 1:size(start_replay1,2)
 ok = 0;
 flag = 3.1;
 fprintf(port1, [ok, flag]);
 fprintf(port1, start_replay1(1:6,p));

 done_moving = fscanf(port1);
 done_moving = sscanf(done_moving, '%f');

 %===
 get_loads; % measure: forces and moments
 %===

 %===
 fm_tare5; % tare out bolt-up and fixture wt
 %===

 % display f/m after taring out bolt-up and fixture wt
 val_path_display2([fm_tcs, fx, fy, fz], [mx, my, mz], handles,
[rot_angle0_replay(p), z_target(2)]);
% for i = 1:3
% if abs(fa(i)) > 0.5
% line_color(i,1:3) = [1 0 0];
% else
% line_color(i,1:3) = [0 0.75 0];
% end
% end
% subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:));
% subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:));
% subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:));
% subplot(2,1,2), set(mx, 'XData', [0 fa(4)]);
% subplot(2,1,2), set(my, 'XData', [0 fa(5)]);
% subplot(2,1,2), set(mz, 'XData', [0 fa(6)]);
% set(handles.w_now_edit, 'String', rot_angle0_replay(p));
%
% drawnow

end

for j = 1:plays

 217

 % Read position and load data for dir = 1200 (flxn -> extn, replay)
 for p = 1:size(flxn_replay,2)
 ok = 0;
 flag = 3.1;
 fprintf(port1, [ok, flag]);
 fprintf(port1, flxn_replay(1:6,p));

 done_moving = fscanf(port1);
 done_moving = sscanf(done_moving, '%f');

 ok = 0;
 flag = 1.1;
 fprintf(port1, [ok flag]);
 flxn1 = fscanf(port1);
 flxn1 = sscanf(flxn1, '%f');
 z_gt1200_val(1:6,p,j) = flxn1(1:6);
 flxn_val_jt_angles(1:6,p,j) = flxn1(7:12);

 %===
 get_loads; % measure: forces and moments
 %===

 %===
 fm_tare5; % tare out bolt-up and fixture wt
 %===

 % display f/m after taring out bolt-up and fixture wt
 val_path_display2([fm_tcs, fx, fy, fz], [mx, my, mz], handles,
[rot_angle400_replay(p), z_target(2)]);
% for i = 1:3
% if abs(fa(i)) > 0.5
% line_color(i,1:3) = [1 0 0];
% else
% line_color(i,1:3) = [0 0.75 0];
% end
% end
% subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:));
% subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:));
% subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:));
% subplot(2,1,2), set(mx, 'XData', [0 fa(4)]);
% subplot(2,1,2), set(my, 'XData', [0 fa(5)]);
% subplot(2,1,2), set(mz, 'XData', [0 fa(6)]);
% set(handles.w_now_edit, 'String', rot_angle400_replay(p));
% set(handles.valpath_edit, 'String', j);
%
% drawnow

 load1200_val(1:6,p,j) = fa';
 end

 % Read position and load data for dir = 1600 (extn -> flxn, replay)
 for p = 1:size(extn_replay,2)
 ok = 0;
 flag = 3.1;
 fprintf(port1, [ok, flag]);
 fprintf(port1, extn_replay(1:6,p));

 218

 done_moving = fscanf(port1);
 done_moving = sscanf(done_moving, '%f');

 ok = 0;
 flag = 1.1;
 fprintf(port1, [ok flag]);
 extn1 = fscanf(port1);
 extn1 = sscanf(extn1, '%f');
 z_gt1600_val(1:6,p,j) = extn1(1:6);
 extn_val_jt_angles(1:6,p,j) = extn1(7:12);

 %===
 get_loads; % measure: forces and moments
 %===

 %===
 fm_tare5; % tare out bolt-up and fixture wt
 %===

 % display f/m after taring out bolt-up and fixture wt
 val_path_display2([fm_tcs, fx, fy, fz], [mx, my, mz], handles,
[rot_angle800_replay(p), z_target(2)]);
% for i = 1:3
% if abs(fa(i)) > 0.5
% line_color(i,1:3) = [1 0 0];
% else
% line_color(i,1:3) = [0 0.75 0];
% end
% end
% subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:));
% subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:));
% subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:));
% subplot(2,1,2), set(mx, 'XData', [0 fa(4)]);
% subplot(2,1,2), set(my, 'XData', [0 fa(5)]);
% subplot(2,1,2), set(mz, 'XData', [0 fa(6)]);
% set(handles.w_now_edit, 'String', rot_angle800_replay(p));
% set(handles.valpath_edit, 'String', j);
%
% drawnow

 load1600_val(1:6,p,j) = fa';
 end

end

% move specimen back to rotation angle = 0 in incremental movements
for p = 1:size(start_replay2,2)
 ok = 0;
 flag = 3.1;
 fprintf(port1, [ok, flag]);
 fprintf(port1, start_replay2(1:6,p));

 done_moving = fscanf(port1);
 done_moving = sscanf(done_moving, '%f');

 %===

 219

 get_loads; % measure: forces and moments
 %===

 %===

 fm_tare5; % tare out bolt-up and fixture wt
 %===

 % display f/m after taring out bolt-up and fixture wt
 val_path_display2([fm_tcs, fx, fy, fz], [mx, my, mz], handles,
[rot_angle400_replay(p), z_target(2)]);
% for i = 1:3
% if abs(fa(i)) > 0.5
% line_color(i,1:3) = [1 0 0];
% else
% line_color(i,1:3) = [0 0.75 0];
% end
% end
% subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:));
% subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:));
% subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:));
% subplot(2,1,2), set(mx, 'XData', [0 fa(4)]);
% subplot(2,1,2), set(my, 'XData', [0 fa(5)]);
% subplot(2,1,2), set(mz, 'XData', [0 fa(6)]);
% set(handles.w_now_edit, 'String', rot_angle400_replay(p));
%
% drawnow
end

% remove monitor loads figure from screen
delete(fh);

%===
data_display_val_path2; % display data
%===

% Enable buttons on GUI when spine3h_val_path2.m is done running
buttons(guihandles, 'on');

val_path_display1.m is a function called by spine3h_val_path2.m that sets up the plot to

graphically monitor UFS loads.

function [fx, fy, fz, mx, my, mz, handles, fh] = val_path_display1;

% setup figure to graphically monitor loads
fh = figure('Position',[400 300 600 600],'Color','w');
subplot(2,1,1)
set(gca,'XLim', [-50 50], 'YLim', [0 4], 'YTick', [1 2 3], 'YTickLabel', 'Fz
(N)|Fy (N)|Fx (N)')
title('Forces')
fx = line('XData', [0 0], 'YData', [3 3], 'LineWidth', 24, 'Color', [0 0.75
0]);
fy = line('XData', [0 0], 'YData', [2 2], 'LineWidth', 24, 'Color', [0 0.75
0]);

 220

fz = line('XData', [0 0], 'YData', [1 1], 'LineWidth', 24, 'Color', [0 0.75
0]);
origin = line('XData', [0 0], 'YData', [0 4]);

subplot(2,1,2)
set(gca,'XLim', [-10 10], 'YLim', [0 4], 'YTick', [1 2 3], 'YTickLabel', 'Mz
(Nm)|My (Nm)|Mx (Nm)')
title('Moments')
mx = line('XData', [0 0], 'YData', [3 3], 'LineWidth', 24, 'Color', [0 0.75
0]);
my = line('XData', [0 0], 'YData', [2 2], 'LineWidth', 24, 'Color', [0 0.75
0]);
mz = line('XData', [0 0], 'YData', [1 1], 'LineWidth', 24, 'Color', [0 0.75
0]);
origin = line('XData', [0 0], 'YData', [0 4]);

uicontrol('Style', 'text', 'Tag', 'current_text',...
 'Position', [20 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Current:');
uicontrol('Style', 'edit', 'Tag', 'w_now_edit',...
 'Position', [135 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12);
uicontrol('Style', 'text', 'Tag', 'w_now_text',...
 'Position', [135 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Angle');
uicontrol('Style', 'edit', 'Tag', 'valpath_edit',...
 'Position', [335 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12);
uicontrol('Style', 'text', 'Tag', 'valpath_text',...
 'Position', [335 0 70 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Replay #');
handles = guihandles(fh);
guidata(fh, handles);

% any of these changes should make simple animations smooth
% zbuffer can be very slow and on my computer none of these are

% necessary to stop flashing
set(fh,'doublebuffer','on');
% set(fh,'renderer','zbuffer');
% set(hfig,'renderer','opengl');

val_path_display2.m is a function called by spine3h_val_path2.m that plots UFS loads.

function val_path_display2(forces, moments, handles, misc)

fa = forces(1:6);
fx = forces(7);
fy = forces(8);
fz = forces(9);

mx = moments(1);
my = moments(2);
mz = moments(3);

rot_angle_replay = misc(1);
limit = misc(2);

 221

for i = 1:3
 if abs(fa(i)) > limit
 line_color(i,1:3) = [1 0 0];
 else
 line_color(i,1:3) = [0 0.75 0];
 end
end
subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:));
subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:));
subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:));
subplot(2,1,2), set(mx, 'XData', [0 fa(4)]);
subplot(2,1,2), set(my, 'XData', [0 fa(5)]);
subplot(2,1,2), set(mz, 'XData', [0 fa(6)]);
set(handles.w_now_edit, 'String', rot_angle_replay);

drawnow

data_display_val_path2.m is a script called by spine3h_val_path2.m that plots the data

gathered during pathseek validation.

% data_display_val_path2.m
% display data
% Amy Loveless
% 7/31/02

% BUILD ARRAYS TO BE USED FOR PLOTTING
% Arrays of mx
for i = 1:plays

 legend_string(i,1:8) = ['replay ', int2str(i)];

 mx1200_val(1,1:size(load1200_val,2),i) =
load1200_val(4,1:size(load1200_val,2),i);
 mx1600_val(1,1:size(load1600_val,2),i) =
load1600_val(4,1:size(load1600_val,2),i);
end

mx_end_pts = [flxn_mx_end_pts extn_mx_end_pts];

% Arrays of constants
rot_angle400_val = rot_angle400_end_pts(:,1:size_flxn_end_pts(end),end);
rot_angle800_val = rot_angle800_end_pts(:,1:size_extn_end_pts(end),end);
rot_angle_val = [rot_angle400_val rot_angle800_val];

for i = 1:length(rot_angle400_val)
 y_replay2(i) = 0;
end

clear legend_string
for i = 1:plays

end

% Save workspace
save(filename)
disp('Data has been saved.')

 222

%==
=====================================

% Plot of rotation angle vs. mx for passive pathseek (mx_end_pts) & first
replay (mx1200_val, mx1600_val)
fh=figure('Position',[150 100 1000 900],'Color','w');
set(gca, 'NextPlot', 'add');
plot(-rot_angle_val, mx_end_pts, '.-', -rot_angle_val, [mx1200_val(:,:,1)
mx1600_val(:,:,1)], '-o');
line('XData', get(gca, 'XLim'), 'YData', [0 0]);
line('XData', [0 0], 'YData', get(gca, 'YLim'));
title('Mx vs. rotation angle'), xlabel('rotation angle (deg)'), ylabel('Mx
(Nm)');
legend_handles = get(gca, 'Children');
legend(flipdim(legend_handles(3:4),1), 'last pathseek', 'intact replay', 2);
text(1, -2, 'flexion', 'Rotation', 30, 'FontSize', 14);
text(1, 2, 'extension', 'Rotation', 30, 'FontSize', 14);

% Plots of mx vs. rotation angle (for all replays, flxn -> extn)
fh=figure('Position',[150 100 1000 900],'Color','w');
set(gca, 'NextPlot', 'add');

line_color = get(gca, 'ColorOrder');
for i = 1:plays
 plot(-rot_angle_val, [mx1200_val(:,:,i) mx1600_val(:,:,i)], '.-',
'Color', line_color(i,:));
end
line('XData', get(gca, 'XLim'), 'YData', [0 0]);
line('XData', [0 0], 'YData', get(gca, 'YLim'));
title('Mx vs. rotation angle'), xlabel('rotation angle (deg)'), ylabel('Mx
(Nm)');
legend_handles = get(gca, 'Children');
legend(flipdim(legend_handles(3:plays+2),1), legend_string, 2);
text(1, -2, 'flexion', 'Rotation', 30, 'FontSize', 14);
text(1, 2, 'extension', 'Rotation', 30, 'FontSize', 14);

After the passive path has been validated, the cutting study begins using

spine3h_replay2.m.

% spine3h_replay2.m
% replay flexion/extension
% converted from spine3h.v2
% Amy Loveless
% 7/4/2002

% Disable buttons on GUI until spine3h_replay.m is done running
set(hok, 'Enable', 'off');
set(hbolt, 'Enable', 'off');
set(hbefore, 'Enable', 'off');
set(hafter, 'Enable', 'off');
set(hpath, 'Enable', 'off');
set(hval, 'Enable', 'off');
set(hreplay, 'Enable', 'off');

 223

set(hend, 'Enable', 'off');

% Input dialog box to get the filename for data storage
prompt = {'Enter Filename'};
title = 'Filename';
lines= 1;
def = {'c:\robot'};
answer = inputdlg(prompt,title,lines,def);
filename = answer{1};

% Clear variables created for inputdlg
clear prompt title lines def answer;

fy = line('XData', [0 0], 'YData', [2 2], 'LineWidth', 24, 'Color', [0 0.75
0]);

subplot(2,1,2)
set(gca,'XLim', [-10 10], 'YLim', [0 4], 'YTick', [1 2 3], 'YTickLabel', 'Mz
(Nm)|My (Nm)|Mx (Nm)')
title('Moments')

mz = line('XData', [0 0], 'YData', [1 1], 'LineWidth', 24, 'Color', [0 0.75
0]);
origin = line('XData', [0 0], 'YData', [0 4]);

uicontrol('Style', 'text', 'Tag', 'current_text',...

handles = guihandles(fh);

% setup figure to graphically monitor loads
fh = figure('Position',[400 300 600 600],'Color','w');
subplot(2,1,1)
set(gca,'XLim', [-50 50], 'YLim', [0 4], 'YTick', [1 2 3], 'YTickLabel', 'Fz
(N)|Fy (N)|Fx (N)')
title('Forces')
fx = line('XData', [0 0], 'YData', [3 3], 'LineWidth', 24, 'Color', [0 0.75
0]);

fz = line('XData', [0 0], 'YData', [1 1], 'LineWidth', 24, 'Color', [0 0.75
0]);
origin = line('XData', [0 0], 'YData', [0 4]);

mx = line('XData', [0 0], 'YData', [3 3], 'LineWidth', 24, 'Color', [0 0.75
0]);
my = line('XData', [0 0], 'YData', [2 2], 'LineWidth', 24, 'Color', [0 0.75
0]);

 'Position', [20 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Current:');
uicontrol('Style', 'edit', 'Tag', 'w_now_edit',...
 'Position', [135 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12);
uicontrol('Style', 'text', 'Tag', 'w_now_text',...
 'Position', [135 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12,
'String', 'Angle');

guidata(fh, handles);

% any of these changes should make simple animations smooth
% zbuffer can be very slow and on my computer none of these are
% necessary to stop flashing
set(fh,'doublebuffer','on');
% set(fh,'renderer','zbuffer');
% set(hfig,'renderer','opengl');

 224

% Arrays of constants
rot_angle0_replay =
flipdim(rot_angle0_end_pts(:,1:size_start_end_pts(end),end),1);
rot_angle400_replay = rot_angle400_end_pts(:,1:size_flxn_end_pts(end),end);
rot_angle800_replay = rot_angle800_end_pts(:,1:size_extn_end_pts(end),end);
rot_angle_replay = [rot_angle400_replay rot_angle800_replay];

 done_moving = sscanf(done_moving, '%f');

 % display f/m after taring out bolt-up and fixture wt

 flag = 3.1;

% move specimen to flxn in incremental movements
for p = 1:size(start_replay1,2)
 ok = 0;
 flag = 3.1;
 fprintf(port1, [ok, flag]);
 fprintf(port1, start_replay1(1:6,p));

 done_moving = fscanf(port1);

 %===
 get_loads; % measure: forces and moments
 %===

 %===
 fm_tare5; % tare out bolt-up and fixture wt
 %===

 for i = 1:3
 if abs(fa(i)) > 0.5
 line_color(i,1:3) = [1 0 0];
 else
 line_color(i,1:3) = [0 0.75 0];
 end
 end
 subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:));
 subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:));
 subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:));
 subplot(2,1,2), set(mx, 'XData', [0 fa(4)]);
 subplot(2,1,2), set(my, 'XData', [0 fa(5)]);
 subplot(2,1,2), set(mz, 'XData', [0 fa(6)]);
 set(handles.w_now_edit, 'String', rot_angle0_replay(p));

 drawnow

end

% Read position and load data for dir = 1200 (flxn -> extn, replay)
% cuts = page number of matrix
% cuts = cuts + 1 is for use with Matlab interface only
cuts = cuts + 1;

for p = 1:size(flxn_replay,2)
 ok = 0;

 fprintf(port1, [ok, flag]);
 fprintf(port1, flxn_replay(1:6,p));

 done_moving = fscanf(port1);

 225

 done_moving = sscanf(done_moving, '%f');

 ok = 0;
 flag = 1.1;
 fprintf(port1, [ok flag]);
 flxn1 = fscanf(port1);
 flxn1 = sscanf(flxn1, '%f');
 z_gt1200(1:6,p,cuts) = flxn1(1:6);

 flxn_replay_jt_angles(1:6,p,cuts) = flxn1(7:12);

 %===
 get_loads; % measure: forces and moments
 %===

 %===
 fm_tare5; % tare out bolt-up and fixture wt
 %===

 load1200(1:6,p,cuts) = fa';
 fm_ufs1200(1:6,p,cuts) = fm_ufs';

 % display f/m after taring out bolt-up and fixture wt
 for i = 1:3
 if abs(fa(i)) > 0.5
 line_color(i,1:3) = [1 0 0];
 else
 line_color(i,1:3) = [0 0.75 0];
 end
 end
 subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:));
 subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:));
 subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:));
 subplot(2,1,2), set(mx, 'XData', [0 fa(4)]);
 subplot(2,1,2), set(my, 'XData', [0 fa(5)]);
 subplot(2,1,2), set(mz, 'XData', [0 fa(6)]);
 set(handles.w_now_edit, 'String', rot_angle400_replay(p));

 drawnow
end

% Read position and load data for dir = 1600 (extn -> flxn, replay)
% cuts = page number of matrix
for p = 1:size(extn_replay,2)
 ok = 0;
 flag = 3.1;
 fprintf(port1, [ok, flag]);
 fprintf(port1, extn_replay(1:6,p));

 done_moving = fscanf(port1);
 done_moving = sscanf(done_moving, '%f');

 ok = 0;
 flag = 1.1;
 fprintf(port1, [ok flag]);
 extn1 = fscanf(port1);
 extn1 = sscanf(extn1, '%f');
 z_gt1600(1:6,p,cuts) = extn1(1:6);

 226

 extn_replay_jt_angles(1:6,p,cuts) = extn1(7:12);

 %===
 get_loads; % measure: forces and moments
 %===

 %===
 fm_tare5; % tare out bolt-up and fixture wt
 %===

 subplot(2,1,2), set(mx, 'XData', [0 fa(4)]);

for p = 1:size(start_replay2,2)

 if abs(fa(i)) > 0.5

 load1600(1:6,p,cuts) = fa';

 % display f/m after taring out bolt-up and fixture wt
 for i = 1:3
 if abs(fa(i)) > 0.5
 line_color(i,1:3) = [1 0 0];
 else
 line_color(i,1:3) = [0 0.75 0];
 end
 end
 subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:));
 subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:));
 subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:));

 subplot(2,1,2), set(my, 'XData', [0 fa(5)]);
 subplot(2,1,2), set(mz, 'XData', [0 fa(6)]);
 set(handles.w_now_edit, 'String', rot_angle800_replay(p));

 drawnow
end

% move specimen back to rotation angle = 0 in incremental movements

 ok = 0;
 flag = 3.1;
 fprintf(port1, [ok, flag]);
 fprintf(port1, start_replay2(1:6,p));

 done_moving = fscanf(port1);
 done_moving = sscanf(done_moving, '%f');

 %===
 get_loads; % measure: forces and moments
 %===

 %===
 fm_tare5; % tare out bolt-up and fixture wt
 %===

 % display f/m after taring out bolt-up and fixture wt
 for i = 1:3

 line_color(i,1:3) = [1 0 0];
 else
 line_color(i,1:3) = [0 0.75 0];
 end
 end

 227

 subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:));
 subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:));
 subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:));
 subplot(2,1,2), set(mx, 'XData', [0 fa(4)]);
 subplot(2,1,2), set(my, 'XData', [0 fa(5)]);
 subplot(2,1,2), set(mz, 'XData', [0 fa(6)]);
 set(handles.w_now_edit, 'String', rot_angle400_replay(p));

 drawnow

end

delete(fh);

%===
data_display_replay3; % display data
%===

% Enable buttons on GUI when spine3h_replay.m is done running

set(hpath, 'Enable', 'on');

set(hok, 'Enable', 'on');
set(hbolt, 'Enable', 'on');
set(hbefore, 'Enable', 'on');
set(hafter, 'Enable', 'on');

set(hval, 'Enable', 'on');
set(hreplay, 'Enable', 'on');
set(hend, 'Enable', 'on');

data_display_replay3.m is a script called by spine3h_replay2.m that plots the data

gathered during the cutting study.

% data_display_replay3.m
% display data
% Amy Loveless
% from data_sto3c_flxn (7/10/02)

for i = 1:size(z_gt1600,2)

% BUILD TRANSFORMATIONS OF TOOL C.S. WRT GLOBAL C.S.
% Build transformations of tool c.s. wrt global c.s. for each location for
flxn -> extn
for i = 1:size(z_gt1200,2)
 tGT1200(1:4,i*4-3:4*i,cuts) = eul2tr([deg2rad(z_gt1200(4,i,cuts)),
deg2rad(z_gt1200(5,i,cuts)), deg2rad(z_gt1200(6,i,cuts))]);
 tGT1200(1:3,4*i,cuts) = [z_gt1200(1,i,cuts) z_gt1200(2,i,cuts)
z_gt1200(3,i,cuts)]';
end

% Build transformations of tool c.s. wrt global c.s. for each location for
extn -> flxn

 tGT1600(1:4,i*4-3:4*i,cuts) = eul2tr([deg2rad(z_gt1600(4,i,cuts)),
deg2rad(z_gt1600(5,i,cuts)), deg2rad(z_gt1600(6,i,cuts))]);
 tGT1600(1:3,4*i,cuts) = [z_gt1600(1,i,cuts) z_gt1600(2,i,cuts)
z_gt1600(3,i,cuts)]';

 228

end

% Build array of position vectors of tool c.s. from tGT for flxn -> extn
for i = 1:size(tGT1200,2)/4
 tGT1200_posn(1:4,i,cuts) = tGT1200(:,i*4,cuts);
end

% Build array of position vectors of tool c.s. from tGT for extn -> flxn
for i = 1:size(tGT1600,2)/4
 tGT1600_posn(1:4,i,cuts) = tGT1600(:,i*4,cuts);
end

% BUILD TRANSFORMATIONS OF UFS WRT GLOBAL C.S.
% Build transformations of UFS wrt global c.s. for each location for flxn ->
extn
for i = 1:size(tGT1200,2)/4
 tGUFS1200(1:4,i*4-3:4*i,cuts) = tGT1200(1:4,i*4-3:i*4,cuts)*pinv(tUFST);
end

% Build transformations of UFS wrt global c.s. for each location for extn ->
flxn
for i = 1:size(tGT1600,2)/4
 tGUFS1600(1:4,i*4-3:4*i,cuts) = tGT1600(1:4,i*4-3:i*4,cuts)*pinv(tUFST);
end

% Build array of position vectors of UFS from tGUFS for flxn -> extn
for i = 1:size(tGUFS1200,2)/4
 tGUFS1200_posn(1:4,i,cuts) = tGUFS1200(1:4,i*4,cuts);
end

% Build array of position vectors of UFS from tGUFS for extn -> flxn
for i = 1:size(tGUFS1600,2)/4
 tGUFS1600_posn(1:4,i,cuts) = tGUFS1600(1:4,i*4,cuts);
end

% BUILD TRANSFORMATIONS OF PT. OF INTEREST WRT GLOBAL C.S.
% Build transformations of pt. of interest wrt global c.s. for each location
for flxn -> extn
for i = 1:size(tGT1200,2)/4
 tGPOI1200(1:4,i*4-3:4*i,cuts) = tGUFS1200(1:4,i*4-3:i*4,cuts)*tUFSPOI;
end

% Build transformations of pt. of interest wrt global c.s. for each location
for extn -> flxn
for i = 1:size(tGT1600,2)/4
 tGPOI1600(1:4,i*4-3:4*i,cuts) = tGUFS1600(1:4,i*4-3:i*4,cuts)*tUFSPOI;
end

% Build array of position vectors of pt. of interest from tGUFS for flxn ->
extn
for i = 1:size(tGPOI1200,2)/4
 tGPOI1200_posn(1:4,i,cuts) = tGPOI1200(1:4,i*4,cuts);
end

% Build array of position vectors of pt. of interest from tGUFS for extn ->
flxn
for i = 1:size(tGPOI1600,2)/4

 229

 tGPOI1600_posn(1:4,i,cuts) = tGPOI1600(1:4,i*4,cuts);
end
%==
=====================================

% BUILD ARRAYS TO BE USED FOR PLOTTING
% Arrays of fy, fz & mx
fy1200(1,1:size(load1200,2),cuts) = load1200(2,1:size(load1200,2),cuts);
fz1200(1,1:size(load1200,2),cuts) = load1200(3,1:size(load1200,2),cuts);
mx1200(1,1:size(load1200,2),cuts) = load1200(4,1:size(load1200,2),cuts);

fy1600(1,1:size(load1600,2),cuts) = load1600(2,1:size(load1600,2),cuts);
fz1600(1,1:size(load1600,2),cuts) = load1600(3,1:size(load1600,2),cuts);
mx1600(1,1:size(load1600,2),cuts) = load1600(4,1:size(load1600,2),cuts);

mx_end_pts = [flxn_mx_end_pts extn_mx_end_pts];

% Arrays of cut fy, fz & mx resultant force (for flxn -> extn only)
if cuts ~= 1
 for i = 1:size(fy1200,2)
 fy_cut(1,i,cuts-1) = fy1200(1,i,cuts-1) - fy1200(1,i,cuts);
 fz_cut(1,i,cuts-1) = fz1200(1,i,cuts-1) - fz1200(1,i,cuts);
 mx_cut(1,i,cuts-1) = mx1200(1,i,cuts-1) - mx1200(1,i,cuts);
 fyz(1,i,cuts-1) = sqrt(fy_cut(1,i,cuts-1)^2 + fz_cut(1,i,cuts-1)^2);
 end
end

% Arrays of moment arms
if cuts ~= 1
 for i = 1:size(fy_cut,2)
 dyhero(1,i,cuts-1) = fz_cut(1,i,cuts-1)*mx_cut(1,i,cuts-
1)/(fyz(1,i,cuts-1)^2);
 dzhero(1,i,cuts-1) = -fy_cut(1,i,cuts-1)*mx_cut(1,i,cuts-
1)/(fyz(1,i,cuts-1)^2);
 dyz(1,i,cuts-1) = mx_cut(1,i,cuts-1)/fyz(1,i,cuts-1);
 dzz(1,i,cuts-1) = -mx_cut(1,i,cuts-1)/fy_cut(1,i,cuts-1);
 dyy(1,i,cuts-1) = mx_cut(1,i,cuts-1)/fz_cut(1,i,cuts-1);
 end
end

% Arrays of constants
for i = 1:length(last_rot_angle_end_pts)
 y_replay(i) = 0;
end
for i = 1:length(rot_angle400_replay)
 y_replay2(i) = 0;
end

% Build strings to be used in plot legends
clear legend_string
if cuts < 10
 for i = 1:cuts
 legend_string(i,1:9) = ['replay 0', int2str(i)];
 end
else
 for i = 10:cuts
 legend_string(i,1:9) = ['replay ', int2str(i)];

 230

 end
end

if cuts < 10
 for i = 2:cuts

if cuts == 1

% plot(-rot_angle400_replay, fy1200(1,1:size(fy1200,2),i), '.-')

 cut_string(i-1,1:9) = ['replay 0', int2str(i)];
 end
else
 for i = 10:cuts
 cut_string(i-1,1:9) = ['replay ', int2str(i)];
 end
end

% Save workspace
save(filename)
disp('Data has been saved.')
%==
=====================================

% BUILD PLOTS LIKE THOSE IN TODD'S MATHEMATICA PROGRAM
% Plot of rotation angle vs. mx for passive pathseek (mx_end_pts) & intact
replay (mx1200, mx1600)

 fh=figure('Position',[150 100 1000 900],'Color','w');
 set(gca, 'NextPlot', 'add');
% plot(-rot_angle_replay, mx_end_pts, '.-', -rot_angle_replay,
[mx1200(:,:,1) mx1600(:,:,1)], '-o')
 plot(-rot_angle400_replay, mx_end_pts(1:length(mx1200)), '.-');
 plot(-rot_angle800_replay, mx_end_pts(length(mx1200)+1:end), '*-');
 plot(-rot_angle400_replay, mx1200(:,:,1), '.-', 'Color', [0 0.5 0]);
 plot(-rot_angle800_replay, mx1600(:,:,1), '*-', 'Color', [0 0.5 0]);
 line('XData', get(gca, 'XLim'), 'YData', [0 0]);
 line('XData', [0 0], 'YData', get(gca, 'YLim'));
 title('Mx vs. rotation angle'), xlabel('rotation angle (deg)'), ylabel('Mx
(Nm)');
 legend_handles = get(gca, 'Children');
 legend(flipdim(legend_handles(3:6),1), 'last pathseek (flxn \rightarrow
extn)', 'last pathseek (extn \rightarrow flxn)',...
 'intact replay (flxn \rightarrow extn)', 'intact replay (extn
\rightarrow flxn)', 2);
% text(1, -2, 'flexion', 'Rotation', 30, 'FontSize', 14);
% text(1, 2, 'extension', 'Rotation', 30, 'FontSize', 14);
end

% Plots of fy vs. rotation angle (flxn -> extn)
% put negative sign on fy1200 on 08-21-02 (why does this have to be done? is
it related to the difference in testing axes and specimen axes?)
fh=figure('Position',[150 100 1000 900],'Color','w');
set(gca, 'NextPlot', 'add');
% for i = 1:cuts

% end
plot(-rot_angle400_replay, -fy1200(1,1:size(fy1200,2),cuts), '.-');
line('XData', get(gca, 'XLim'), 'YData', [0 0]);
line('XData', [0 0], 'YData', get(gca, 'YLim'));
title('Fy vs. rotation angle'), xlabel('rotation angle (deg)'), ylabel('Fy
(N)');

 231

legend_handles = get(gca, 'Children');
% legend(flipdim(legend_handles(3:cuts+2),1), legend_string, 2);
% legend(flipdim(legend_handles(3),1), legend_string(cuts,1:9), 2);
legend(legend_handles(3), legend_string(cuts,1:9), 2);

% Plots of fz vs. rotation angle (flxn -> extn)
fh=figure('Position',[150 100 1000 900],'Color','w');
set(gca, 'NextPlot', 'add');
% for i = 1:cuts
% plot(-rot_angle400_replay, fz1200(1,1:size(fz1200,2),i), '.-')
% end
plot(-rot_angle400_replay, fz1200(1,1:size(fz1200,2),cuts), '.-');
line('XData', get(gca, 'XLim'), 'YData', [0 0]);
line('XData', [0 0], 'YData', get(gca, 'YLim'));
title('Fz vs. rotation angle'), xlabel('rotation angle (deg)'), ylabel('Fz
(N)');
legend_handles = get(gca, 'Children');
% legend(flipdim(legend_handles(3:cuts+2),1), legend_string, 2);
% legend(flipdim(legend_handles(3),1), legend_string(cuts,1:9), 2);
legend(legend_handles(3), legend_string(cuts,1:9), 2);

% Plots of mx vs. rotation angle (flxn -> extn)
fh=figure('Position',[150 100 1000 900],'Color','w');
set(gca, 'NextPlot', 'add');
% for i = 1:cuts
% plot(-rot_angle400_replay, mx1200(1,1:size(mx1200,2),i), '.-')
% end
plot(-rot_angle400_replay, mx1200(1,1:size(mx1200,2),cuts), '.-');
line('XData', get(gca, 'XLim'), 'YData', [0 0]);
line('XData', [0 0], 'YData', get(gca, 'YLim'));
title('Mx vs. rotation angle'), xlabel('rotation angle (deg)'), ylabel('Mx
(Nm)');
legend_handles = get(gca, 'Children');
% legend(flipdim(legend_handles(3:cuts+2),1), legend_string, 2);
% legend(flipdim(legend_handles(3),1), legend_string(cuts,1:9), 2);
legend(legend_handles(3), legend_string(cuts,1:9), 2);

if cuts ~= 1
 % Plots of fy vs. rotation angle for cuts
 % put negative sign on fy_cut on 08-21-02 (why does this have to be done?
is it related to the difference in testing axes and specimen axes?)
 fh=figure('Position',[150 100 1000 900],'Color','w');
 set(gca, 'NextPlot', 'add');
% for i = 2:cuts
% plot(-rot_angle400_replay, fy_cut(1,1:size(fy_cut,2),i-1), '.-')
% end
 plot(-rot_angle400_replay, -fy_cut(1,1:size(fy_cut,2),cuts-1), '.-');
 line('XData', get(gca, 'XLim'), 'YData', [0 0]);
 line('XData', [0 0], 'YData', get(gca, 'YLim'));
 title('Fy of cut structure vs. rotation angle'), xlabel('rotation angle
(deg)'), ylabel('Fy (N)');
 legend_handles = get(gca, 'Children');
% legend(flipdim(legend_handles(3:cuts+1),1), cut_string, 2);
% legend(flipdim(legend_handles(3),1), legend_string(cuts,1:9), 2);
 legend(legend_handles(3), legend_string(cuts,1:9), 2);

 % Plots of fz vs. rotation angle for cuts

 232

 fh=figure('Position',[150 100 1000 900],'Color','w');
 set(gca, 'NextPlot', 'add');
% for i = 2:cuts
% plot(-rot_angle400_replay, fz_cut(1,1:size(fz_cut,2),i-1), '.-')
% end
 plot(-rot_angle400_replay, fz_cut(1,1:size(fz_cut,2),cuts-1), '.-');
 line('XData', get(gca, 'XLim'), 'YData', [0 0]);
 line('XData', [0 0], 'YData', get(gca, 'YLim'));
 title('Fz of cut structure vs. rotation angle'), xlabel('rotation angle
(deg)'), ylabel('Fz (N)');
 legend_handles = get(gca, 'Children');
% legend(flipdim(legend_handles(3:cuts+1),1), cut_string, 2);
% legend(flipdim(legend_handles(3),1), legend_string(cuts,1:9), 2);
 legend(legend_handles(3), legend_string(cuts,1:9), 2);

 % Plots of mx vs. rotation angle for cuts
 fh=figure('Position',[150 100 1000 900],'Color','w');
 set(gca, 'NextPlot', 'add');
% for i = 2:cuts
% plot(-rot_angle400_replay, mx_cut(1,1:size(mx_cut,2),i-1), '.-')
% end
 plot(-rot_angle400_replay, mx_cut(1,1:size(mx_cut,2),cuts-1), '.-');
 line('XData', get(gca, 'XLim'), 'YData', [0 0]);
 line('XData', [0 0], 'YData', get(gca, 'YLim'));
 title('Mx of cut structure vs. rotation angle'), xlabel('rotation angle
(deg)'), ylabel('Mx (Nm)');
 legend_handles = get(gca, 'Children');
% legend(flipdim(legend_handles(3:cuts+1),1), cut_string, 2);
% legend(flipdim(legend_handles(3),1), legend_string(cuts,1:9), 2);
 legend(legend_handles(3), legend_string(cuts,1:9), 2);

 % Plot of resultant force vs. rotation angle
 fh=figure('Position',[150 100 1000 900],'Color','w');
 set(gca, 'NextPlot', 'add');
% for i = 2:cuts
% plot(-rot_angle400_replay, fyz(1,1:size(fyz,2),i-1), '.-')
% end
 plot(-rot_angle400_replay, fyz(1,1:size(fyz,2),cuts-1), '.-');
 line('XData', get(gca, 'XLim'), 'YData', [0 0]);
 line('XData', [0 0], 'YData', get(gca, 'YLim'));
 title('force resultant of cut structure vs. rotation angle'),
xlabel('rotation angle (deg)'), ylabel('Fyz (N)');
 legend_handles = get(gca, 'Children');
% legend(flipdim(legend_handles(3:cuts+1),1), cut_string, 2);
% legend(flipdim(legend_handles(3),1), legend_string(cuts,1:9), 2);
 legend(legend_handles(3), legend_string(cuts,1:9), 2);

% % Plots of moment arm (dyz) vs. rotation angle
% fh=figure('Position',[150 100 1000 900],'Color','w');
% hold on
% for i = 1:cuts
% plot(rot_angle400_replay, dyz(1,1:size(dyz,2),cuts-1), '.-',...
% rot_angle400_replay, y_replay2, '-k', y_replay2,
dyz(1,1:size(dyz,2),cuts-1), '-k'),...
% title('moment arm vs. rotation angle'), xlabel('rotation angle
(deg)'), ylabel('moment arm (mm)');
% end

 233

% hold off
%
% % Plots of moment arm (dyy) vs. rotation angle
% fh=figure('Position',[150 100 1000 900],'Color','w');
% hold on
% for i = 1:cuts
% plot(rot_angle400_replay, dyy(1,1:size(dyy,2),cuts-1), '.-',...
% rot_angle400_replay, y_replay2, '-k', y_replay2,
dyz(1,1:size(dyz,2),cuts-1), '-k'),...
% title('moment arm vs. rotation angle'), xlabel('rotation angle
(deg)'), ylabel('moment arm (mm)');
% end
% hold off
%
% % Plots of moment arm (dzz) vs. rotation angle
% fh=figure('Position',[150 100 1000 900],'Color','w');
% hold on
% for i = 1:cuts
% plot(rot_angle400_replay, dzz(1,1:size(dzz,2),cuts-1), '.-',...
% rot_angle400_replay, y_replay2, '-k', y_replay2,
dzz(1,1:size(dzz,2),cuts-1), '-k'),...
% title('moment arm vs. rotation angle'), xlabel('rotation angle
(deg)'), ylabel('moment arm (mm)');
% end
% hold off
%
% % Plots of moment arm (dzhero) vs. rotation angle
% fh=figure('Position',[150 100 1000 900],'Color','w');
% hold on
% for i = 1:cuts
% plot(rot_angle400_replay, dzhero(1,1:size(dzhero,2),cuts-1), '.-
',...
% rot_angle400_replay, y_replay2, '-k', y_replay2,
dzhero(1,1:size(dzhero,2),cuts-1), '-k'),...
% title('moment arm vs. rotation angle'), xlabel('rotation angle
(deg)'), ylabel('moment arm (mm)');
% end
% hold off
%
% % Plots of moment arm (dyhero) vs. rotation angle
% fh=figure('Position',[150 100 1000 900],'Color','w');
% hold on
% for i = 1:cuts
% plot(rot_angle400_replay, dyhero(1,1:size(dyhero,2),cuts-1), '.-
',...
% rot_angle400_replay, y_replay2, '-k', y_replay2,
dyhero(1,1:size(dyhero,2),cuts-1), '-k'),...
% title('moment arm vs. rotation angle'), xlabel('rotation angle
(deg)'), ylabel('moment arm (mm)');
% end
% hold off
end
%==
=====================================

% % PLOT OF MOVEMENT OF POINT OF INTEREST IN GLOBAL C.S.

 234

% % Z vs. X in global c.s. (start, extn & flxn together, starting & ending
points only)
% fh=figure('Position',[150 100 1000 900],'Color','w');
% set(gca, 'NextPlot', 'add')
% for i = 1:size(tGPOI1200_posn,2)
% plot_handles_1 = plot(tGPOI1200_posn(1,i,cuts),
tGPOI1200_posn(3,i,cuts), '-or');
% end
% for i = 1:size(tGPOI1600_posn,2)
% plot_handles_2 = plot(tGPOI1600_posn(1,i,cuts),
tGPOI1600_posn(3,i,cuts), '-ok');
% end
% title('Z vs. X for point of interest'), xlabel('X (mm)'), ylabel('Z (mm)');
% legend_handles = [plot_handles_1; plot_handles_2];
% legend(legend_handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn');
%
% % PLOT OF MOVEMENT OF UFS IN GLOBAL C.S.
% % Z vs. X in global c.s. (start, extn & flxn together, starting & ending
points only)
% fh=figure('Position',[150 100 1000 900],'Color','w');
% set(gca, 'NextPlot', 'add')
% for i = 1:size(tGUFS1200_posn,2)
% plot_handles_1 = plot(tGUFS1200_posn(1,i,cuts),
tGUFS1200_posn(3,i,cuts), '-or');
% end
% for i = 1:size(tGUFS1600_posn,2)
% plot_handles_2 = plot(tGUFS1600_posn(1,i,cuts),
tGUFS1600_posn(3,i,cuts), '-ok');
% end
% title('Z vs. X for UFS'), xlabel('X (mm)'), ylabel('Z (mm)');
% legend_handles = [plot_handles_1; plot_handles_2];
% legend(legend_handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn');
%
% % PLOT OF MOVEMENT OF COR IN GLOBAL C.S.
% % Z vs. X in global c.s. (start, extn & flxn together, starting & ending
points only)
% fh=figure('Position',[150 100 1000 900],'Color','w');
% set(gca, 'NextPlot', 'add')
% for i = 1:size(tGT1200_posn,2)
% plot_handles_1 = plot(tGT1200_posn(1,i,cuts), tGT1200_posn(3,i,cuts),
'-or');
% end
% for i = 1:size(tGT1600_posn,2)
% plot_handles_2 = plot(tGT1600_posn(1,i,cuts), tGT1600_posn(3,i,cuts),
'-ok');
% end
% title('Z vs. X for COR'), xlabel('X (mm)'), ylabel('Z (mm)');
% legend_handles = [plot_handles_1; plot_handles_2];
% legend(legend_handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn');
%
% % PLOT OF MOVEMENT OF pt. of interest, UFS & COR IN GLOBAL C.S.
% % Z vs. X in global c.s. (start, extn & flxn together, starting & ending
points only)
% fh=figure('Position',[150 100 1000 900],'Color','w');
% set(gca, 'NextPlot', 'add')
% for i = 1:size(tGT1200_posn,2)

 235

% plot_handles_1 = plot(tGT1200_posn(1,i,cuts), tGT1200_posn(3,i,cuts),
'.b-',...
% tGUFS1200_posn(1,i,cuts), tGUFS1200_posn(3,i,cuts), '-or',...
% tGPOI1200_posn(1,i,cuts), tGPOI1200_posn(3,i,cuts), '-sr');
% end
% for i = 1:size(tGT1600_posn,2)
% plot_handles_2 = plot(tGT1600_posn(1,i,cuts), tGT1600_posn(3,i,cuts),
'.b-',...
% tGUFS1600_posn(1,i,cuts), tGUFS1600_posn(3,i,cuts), '-ok',...
% tGPOI1600_posn(1,i,cuts), tGPOI1600_posn(3,i,cuts), '-sk');
% end
% title('Z vs. X for point of interest, COR & UFS'), xlabel('X (mm)'),
ylabel('Z (mm)');
% legend_handles = [plot_handles_1; plot_handles_2];
% legend(legend_handles, 'COR: flxn \rightarrow extn ', 'UFS: flxn
\rightarrow extn', 'POI: flxn \rightarrow extn',...
% 'COR: extn \rightarrow flxn', 'UFS: extn \rightarrow flxn', 'POI: extn
\rightarrow flxn', 0);

 236

BIBLIOGRAPHY

BIBLIOGRAPHY

1. Wiesel, S. W., and International Society for Study of the Lumbar Spine. 1996. The

Lumbar spine. 2nd ed. 2 vols. Philadelphia: Saunders.

2. Frymoyer, J. W., and T. B. Ducker. 1991. The adult spine : principles and practice. New

York: Raven Press.

3. Nishida, K., J. D. Kang, et al. 1999. Modulation of the biologic activity of the rabbit

intervertebral disc by gene therapy: An in vivo study of adenovirus-mediated transfer of
the human transforming growth factor beta 1 encoding gene. Spine 24 (23):2419-2425.

4. Panjabi, M. M. 1992. The stabilizing system of the spine. Part I. Function, dysfunction,

adaptation, and enhancement. Journal of Spinal Disorders 5 (4):383-9; discussion 397.

5. White, A. A., and M. M. Panjabi. 1990. Clinical biomechanics of the spine. 2nd ed.

Philadelphia: Lippincott.

6. Panjabi, M. M. 1988. Biomechanical evaluation of spinal fixation devices: I. A

conceptual framework. Spine 13:1129-1134.

7. Panjabi, M. M., R. A. Brand, et al. 1976a. Mechanical properties of the human thoracic

spine as shown by three-dimensional load-displacement curves. Journal of Bone & Joint
Surgery - American Volume 58:642-652.

8. Panjabi, M. M., R. A. Brand, et al. 1976b. Three-dimensional flexibility and stiffness

properties of the human thoracic spine. Journal of Biomechanics 9:185-192.

9. Edwards, W. T., W. C. Hayes, et al. 1987. Variation of lumbar spine stiffness with load.

Journal of Biomechanical Engineering 109:35-42.

10. Adams, M., and W. Hutton. 1981. The relevance of torsion to the mechanical

derangement of the lumbar spine. Spine 6:241-248.

11. Goodwin, R. R., K. S. James, et al. 1994. Distraction and Compression Loads Enhance

Spine Torsional Stiffness. Journal of Biomechanics 27 (8):1049-1057.

12. Goel, V. K., D. G. Wilder, et al. 1995. Biomechanical testing of the spine. Load-

controlled versus displacement-controlled analysis. Spine 20 (21):2354-7.

 238

13. Doehring, T. C., Ph.D. 2000. Delineation of In-Vitro Lumbar Spine Structural Properties
Using a Robotic/UFS Testing System with Hybrid Control: Experiments and Analytical
Simulation. Doctoral, University of Pittsburgh, Pittsburgh.

14. Brown, T., R. J. Hansen, et al. 1957. Some mechanical tests on the lumbosacral spine

with particular reference to the intervertebral discs. A preliminary report. Journal of
Bone & Joint Surgery - American Volume 39:1135-1164.

15. Markolf, K. L. 1972. Deformation of the thoracolumbar intervertebral joints in response

to external loads: a biomechanical study using autopsy material. Journal of Bone & Joint
Surgery - American Volume 54 (3):511-33.

16. Tencer, A. F., and A. M. Ahmed. 1981. The role of secondary variables in the

measurement of the mechanical properties of the lumbar intervertebral joint. Journal of
Biomechanical Engineering 103:129-137.

17. Lee, C. K., and N. A. Langrana. 1984. Lumbosacral spinal fusion. A biomechanical

study. Spine 9 (6):574-81.

18. Goel, V. K., S. Goyal, et al. 1985. Kinematics of the whole lumbar spine. Effect of

discectomy. Spine 10 (6):543-54.

19. Yamamoto, I., M. M. Panjabi, et al. 1989. Three-dimensional movements of the whole

lumbar spine and lumbosacral joint. Spine 14 (11):1256-60.

20. Shea, M., W. T. Edwards, et al. 1992. Variations of Stiffness and Strength Along the

Human Cervical-Spine - Response. Journal of Biomechanics 25 (6):690-690.

21. Kunz, D. N., R. P. Mccabe, et al. 1994. A Multi-Degree-of-Freedom System for

Biomechanical Testing. Journal of Biomechanical Engineering-Transactions of the Asme
116 (3):371-373.

22. Wilke, H. J., L. Claes, et al. 1994. A universal spine tester for in vitro experiments with

muscle force simulation. European Spine Journal 3 (2):91-7.

23. Crawford, N. R., A. G. U. Brantley, et al. 1995. An Apparatus for Applying Pure

Nonconstraining Moments to Spine Segments in-Vitro. Spine 20 (19):2097-2100.

24. Patwardhan, A. G., R. M. Havey, et al. 1999. A follower load increases the load-carrying

capacity of the lumbar spine in compression. Spine 24 (10):1003-1009.

25. Cobbold, R. S. C. 1974. Transducers for biomedical measurements: Principles and

applications. New York: John Wiley & Sons.

26. Norton, H. N. 1989. Handbook of transducers. Englewood Cliffs: Prentice-Hall, Inc.

 239

27. Fujie, H., G. A. Livesay, et al. 1995. The use of a universal force-moment sensor to
determine in-situ forces in ligaments: a new methodology. Journal of Biomechanical
Engineering 117 (1):1-7.

28. Koogle, T. A., R. L. Piziali, et al. 1977. A motion transducer for use in the intact in-vitro

human lumbar spine. Journal of Biomechanical Engineering 99:160-165.

29. Panjabi, M. M., M. H. Krag, et al. 1981. A technique for measurement and description of

three-dimensional six degree-of-freedom motion of a body joint with an application to the
human spine. Journal of Biomechanics 14:447-460.

30. Goel, V. K., T. A. Nye, et al. 1987. A technique to evaluate an internal spinal device by

use of the Selspot system: An application to the Luque closed loop. Spine 12:150-159.

31. Moeini, S. M. R., J. E. Lemons, et al. 1996. Investigation of video techniques for

dynamic measurements of relative vertebral-body motion in vitro. Biomedical
Instrumentation and Technology 30:62-70.

32. Raibert, M. H., and J. J. Craig. 1981. Hybrid position/force control of manipulators.

Journal of Dynamic Systems, Measurement and Control 102:375-382.

36. Livesay, G. A., H. Fujie, et al. 1995. Determination of the in-Situ Forces and Force
Distribution within the Human Anterior Cruciate Ligament. Annals of Biomedical
Engineering 23 (4):467-474.

33. Fujie, H., K. Mabuchi, et al. 1993. The Use of Robotics Technology to Study Human
Joint Kinematics - a New Methodology. Journal of Biomechanical Engineering-
Transactions of the Asme 115 (3):211-217.

34. Rudy, T. W., G. A. Livesay, et al. 1996. A combined robotic/universal force sensor

approach to determine in situ forces of knee ligaments. Journal of Biomechanics 29
(10):1357-1360.

35. Carlin, G. J., G. A. Livesay, et al. 1996. In-situ forces in the human posterior cruciate

ligament in response to posterior tibial loading. Annals of Biomedical Engineering 24
(2):193-197.

37. Wu, G., S. Siegler, et al. 2002. ISB recommendation on definitions of joint coordinate

system of various joints for the reporting of human joint motion - part 1: ankle, hip, and
spine. Journal of Biomechanics 35 (4):543-548.

38. Wu, G., and P. R. Cavanagh. 1995. Isb Recommendations for Standardization in the
Reporting of Kinematic Data. Journal of Biomechanics 28 (10):1257-1260.

 240

39. Grood, E. S., and W. J. Suntay. 1983. A joint coordinate system for the clinical
description of three-dimensional motions: application to the knee. Journal of
Biomechanical Engineering 105 (2):136-44.

40. Grassmann, S., T. R. Oxland, et al. 1998. Constrained testing conditions affect the axial

rotation response of lumbar functional spinal units. Spine 23 (10):1155-1162.

41. Goel, V. K., and J. N. Weinstein, eds. 1990. Biomechanics of the spine : clinical and

surgical perspective. Boca Raton, FL: CRC Press.

42. Spiegelman, J. J., and S. L.-Y. Woo. 1987. A rigid-body method for finding centers of

rotation and angular displacements of planar joint motion. Journal of Biomechanics 20
(7):715-721.

43. Crisco, J. J., X. B. Chen, et al. 1994. Optimal Marker Placement for Calculating the

Instantaneous Center of Rotation. Journal of Biomechanics 27 (9):1183-1187.

44. Challis, J. H. 2001. Estimation of the finite center of rotation in planar movements.

Medical Engineering & Physics 23 (3):227-233.

45. Melkerson, M. N., S. L. Griffith, et al. 2003. Spinal implants : are we evaluating them

appropriately? West Conshohocken, PA: ASTM International.

46. Wilke, H. J., G. Russo, et al. 1997. A mechanical model of human spinal motion

segments. Biomedizinische Technik 42 (11):327-331.

47. Ren, W. X., X. G. Tan, et al. 1999. Nonlinear analysis of plane frames using rigid body-

spring discrete element method. Computers & Structures 71 (1):105-119.

48. Staubli. 1997. RX90 Family Robot CS7 Instruction Manual. D.280.190.54.G - 11/99 ed:

Staubli Faverges.

49. Adept. 1995. AdeptForce VME User's Guide. Part Number 00211-00000, Rev. B ed:

Adept Technology, Inc.

50. Pires, N. J., MATJR3PCI for MATLAB 5, 2001. Mechanical Engineering Department,

Laboratory, Internal Report No GCG.RCL.001.02, Coimbra, Portugal.

51. Gilbertson, L. G., T. C. Doehring, et al. 1999. Improvement of accuracy in a high-

capacity, six degree-of-freedom load cell: Application to robotic testing of
musculoskeletal joints. Annals of Biomedical Engineering 27 (6):839-843.

52. Hoffman, J. D. 2001. Numerical methods for engineers and scientists. 2nd , rev. and

expand ed. New York: Marcel Dekker.

 241

53. Winkelstein, B. A., and B. S. Myers. 2002. Importance of nonlinear and multivariable
flexibility coefficients in the prediction of human cervical spine motion. Journal of
Biomechanical Engineering 124 (5):504-11.

 242

	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	INTRODUCTION
	Overview of Clinical Problems of Spine
	Spinal “Stability” vs. “Instability”
	In-Vitro Studies of Spinal Kinetics
	Controversy: Load Control vs. Displacement Control
	Hybrid Control

	BACKGROUND
	Structure of Osteoligamentous Lumbar Spine
	Application of Hybrid Control to In-Vitro Biomechanical Testing
	Displacement Control Loop
	Load Control Loop

	SPECIFIC AIMS AND HYPOTHESES
	Specific Aim 1
	Specific Aim 2
	Specific Aim 2a
	Specific Aim 2b

	DEVELOPMENT OF ANALYTICAL PLATFORM
	Description of General Rigid Body-Spring Model
	General Closed Form Solution
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Change in Length of Spring Attached to Node i and Fixed Node j
	Loads on Rigid Body Due to Spring
	Global Stiffness Matrix,
	Work Done on Rigid Body by Spring �, Potential Energy in System

	General Closed Form Solution Applied to Rigid Body-Spring Model

	DEVELOPMENT OF EXPERIMENTAL PLATFORM
	Description of Robotics-Based Spine Testing System
	Communication
	UFS Calibration
	Manipulator Accuracy and Precision
	Homogeneous Transformations Defined for Robot Testing System
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to
	Homogeneous Transformation of � with Respect to

	APPLICATION OF ANALYTICAL PLATFORM TO DEVELOPMENT AND TESTING OF NEW CONTROL METHODS
	Displacement Control Loop of Hybrid Control Algorithm
	Load Control Loop of Hybrid Control Algorithm
	Improved Hybrid Control Algorithm

	DISCUSSION
	Summary
	Limitations and Future Work
	Conclusion

	APPENDIX A
	APPENDIX B
	BIBLIOGRAPHY

