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Delineation of the load-displacement characteristics of osteoligamentous spinal 

specimens has become fundamental to the investigation of spinal biomechanics.  Traditionally, 

in-vitro kinetic parameters of the spine have been obtained through flexibility tests employing 

open or closed loop “load control” methods, or stiffness tests employing “displacement control” 

methods—each control method having attendant advantages and disadvantages.  On the other 

hand, the combination load control and displacement control methods into a new, “hybrid 

control” method have advantages over load control or displacement control alone.  Further, 

physical evidence such as presence of certain receptors suggests that the human body may 

employ a type of hybrid control method in the control of spinal movements. 

 

In the present study, a robotics-based spine testing system with hybrid control was 

developed to delineate the in-vitro kinetics of lumbar spine specimens.  The testing system was 

validated experimentally using a physical rigid-body-spring model of a spine specimen, as well 

as analytically by computer simulations in Matlab.  For systematic study, the two components 

making up a hybrid control algorithm were analyzed separately:  the outer “displacement 

control” loop, and the inner “load control” loop.  The outer loop applies a rotation (e.g., 

 iii



flexion/extension) to the specimen, while the inner loop minimizes unwanted coupled forces 

(e.g., anterior/posterior shear and axial tension/compression). 

 

The performance of existing standard hybrid control algorithms was tested in terms of a 

number of parameters, including peak force, work done to a specimen, and number of iterations.  

Based on these tests, a number of proposed changes to improve algorithm performance were 

identified.  Updating the user-defined center of rotation (COR) to reflect a specimen’s COR was 

found to improve performance of the displacement control part of the hybrid control algorithm, 

while using a more completely populated stiffness matrix improved performance of the load 

control part.  The re-combination of the displacement control and load control loops into the 

fully constituted hybrid control algorithm revealed interesting interactions between these control 

components that suggest a basis for spinal dysfunction. 
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1.0 INTRODUCTION 

 
Delineation of the load-displacement characteristics of osteoligamentous spinal 

specimens has become fundamental to the investigation of spinal biomechanics and is key in 

understanding the effects of spinal pathologies and their clinical treatments.  In the following 

sections, the basis for hybrid control as a testing algorithm is presented, as well as an 

examination of the two distinct loops of the general hybrid control algorithm our lab has chosen 

to employ. 

 
 

1.1 Overview of Clinical Problems of Spine 

 
Spinal disorders arising from injury, degeneration, aging or other causes is an expansive 

and expensive problem.  Back pain is the second most prevalent reason for a physician visit, with 

nearly 13 million visits made annually specifically because of low back pain.(1)  An estimated 

$20 billion is spent annually in medical expenses directly related to low back pain.(2)  Treatments 

are far reaching, from a period of rest followed by a return to normal activities to chiropractic 

visits to surgery.  For possible future clinical treatments of degenerative disc disease, research is 

being done to test the effectiveness of gene therapy.(3) 

 
 

1.2 Spinal “Stability” vs. “Instability” 

 
With severe degeneration or injury, one or more spinal segments can become unstable.  

There is no consensus on the definition of clinical instability, but many have offered their 

 1



opinions.  Wyke described instability as abnormally large intervertebral motions that result in 

deformation to neural elements or abnormal deformations of the segment’s soft tissue (as cited in 

Panjabi(4)), while White and Panjabi (5) define it more specifically as “the loss of the ability of the 

spine under physiologic loads to maintain its pattern of displacement so that there is no initial or 

additional neurological deficit, no major deformity, and no incapacitating pain”.(5)  Panjabi(4) 

conceptualized the spinal stabilizing system as consisting of three subsystems:  passive 

(osteoligamentous spine), active (muscles and tendons), and control (neural elements and central 

nervous system).  It has further been hypothesized that the neural control subsystem receives 

both position feedback and force feedback from various transducers located within the ligaments, 

tendons, and muscles, hence the spine may operate in some form of hybrid control mode. 

 
 

1.3 In-Vitro Studies of Spinal Kinetics 

 
Delineation of the load-displacement characteristics of osteoligamentous spinal 

specimens has become fundamental to the investigation of the biomechanics of the spine.  

Traditionally, in-vitro kinetic parameters of the spine have been obtained through biomechanical 

tests that are based on either the “flexibility method” or the “stiffness method”.(6)  In flexibility 

tests, loads (i.e., forces and moments) are applied singly(7,8) or in combination(9) to the free end of 

a spinal specimen and the resulting unconstrained three-dimensional displacements (i.e., 

translations and rotations) are measured.  In stiffness tests, displacements are applied and the 

resulting loads are measured.(10,11)  Kinetic parameters obtainable by these types of tests include 

specimen flexibility/stiffness coefficients useful for characterizing the biomechanics of the 

intact, injured, and stabilized spine. 

 2



An impetus behind the use of hybrid control for testing spinal kinetics is the controversy 

surrounding use of load-control versus displacement control methods for the biomechanical 

testing of spinal specimens(12).  The underlying hypothesis of work done previously(13) was that a 

combination of load control and displacement control methods within a hybrid control method 

would offer advantages over either load control or displacement control methods alone for the 

delineation of the highly nonlinear spinal kinetics. 

 
1.3.1 Controversy: Load Control vs. Displacement Control 

 
In addition to testing machines(7,8,14-24) and devices for measuring loads(25-27) and 

displacements(16,28-31), in vitro biomechanical testing of the spine requires implementation of a 

control method to govern the application of loads/displacements to a specimen.  Flexibility tests 

employ open or closed loop “load control” methods, while stiffness tests employ “displacement 

control” methods.  The relative advantages and disadvantages of load control and displacement 

control methods for the biomechanical testing of spinal specimens have been discussed by Goel 

et al.(12).  From a control perspective, it is apparent that load control is less appropriate than 

displacement control in low stiffness regions of the load-displacement curve such as the neutral 

zone (NZ) because large changes in displacement can occur with little or no change in applied 

load (Figure 1).  On the other hand, displacement control is less appropriate than load control in 

high stiffness regions such as the elastic zone (EZ) because large changes in load can be 

produced by small changes in applied displacement.  For the in-vitro biomechanical testing of 

spinal specimens, therefore, load control and displacement control methods are complementary 

(in that one method or the other is viewed as being more applicable in certain regions of the load-

displacement curve). 
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Figure 1  Idealized load-displacement curve 
 
 
1.3.2 Hybrid Control 

 
Hybrid control methods are a class of control algorithms that would appear to offer a 

potentially useful alternative to load control or displacement control for the biomechanical 

testing of spinal specimens.  A hybrid control method combines aspects of load control and 

displacement control methods to achieve a new, “hybrid” method that is better suited to a 

particular application than either load control or displacement control alone.  In the classical 

robotics literature, a rigorous formulation of the hybrid force/position control method has been 

performed by Raibert and Craig(32).  Hybrid control methods have been applied previously to the 

multi-DOF (degree-of-freedom) biomechanical testing of musculoskeletal joints (such as the 

knee) using a robotic/UFS (universal force-moment sensor) testing system(33-36).  Of particular 

interest are the hybrid control algorithms described by Fujie et al.(33) and Doehring (13) that enable 

the inherently position-controlled robot to achieve specified load targets in an iterative manner 

through incrementally applied displacements.  At each position along the path of motion, the 

algorithm evaluates the relation between the change in specimen position (i.e., displacement) and 

the change in UFS-measured loads, and uses this relation to plan the application of the next 
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incremental displacement to achieve specified load targets.  Control is thus based on the stiffness 

of the specimen, and because the stiffness estimates are regularly updated along the path of 

motion, this control algorithm appears to be well suited for delineation of the highly nonlinear in 

vitro kinetics of the spine throughout its entire range-of-motion. 
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2.0 BACKGROUND 

 
 

2.1 Structure of Osteoligamentous Lumbar Spine 

 
The function of the osteoligamentous spine is threefold: “(1) transfer the weights and the 

resultant bending moments of the head, trunk and any weights being lifted to the pelvis, (2) allow 

sufficient physiologic motions between these three body parts and (3) protect the spinal cord 

from injury”.(5)  The structure of a single functional spinal unit (FSU) is shown in Figure 2.  The 

two bony vertebral bodies are separated by an intervertebral disc.  The nucleus pulposus is the 

gelatinous center of the disc.  The anulus fibrosus contains the nucleus with concentric layers of 

collagen. 

 
 

Figure 2  Osteoligamentous functional spinal unit (FSU) 
 
 

3-dimensional joint motion is generally described as a combination of translations and 

rotations along and about a set of axes.  The ISB recommends defining a nonorthogonal joint 

coordinate system based on the work of Grood and Suntay, in which two of the axes are defined 

using anatomical landmarks and the third “floating” axis is perpendicular to the first two.(37-39)  
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As applied to spinal motion segments, the e  axis is parallel to a line connecting similar 

landmarks on the bases of the right and left pedicles and points to the right, the e  axis passes 

through the centers of the upper and lower endplates and points cephalad and the  axis is 

perpendicular to  and  (Figure 3).  Flexion/extension is about the  axis, left and right 

lateral bending is about the e  axis and left and right axial rotation is about the e  axis.  The ISB 

also recognizes Panjabi’s coordinate system.  As shown in Figure 4, the 

1

3

3

2e

1e 3e 1e

2

x  axis points left, the 

 axis points cephalad and the  axis points anterior.  Flexion/extension is about the y z x  axis, 

lateral bending is about the  axis and axial rotation is about the  axis.  Our lab has chosen 

Panjabi’s coordinate system to report data in for ease of comparison with other studies. 

z y

 
 

Figure 3  ISB spine joint coordinate system 
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Figure 4  Panjabi spine coordinate system 
 
 
 

2.2 Application of Hybrid Control to In-Vitro Biomechanical Testing 

 
In the following paragraphs, representative limitations of displacement control and load 

control methods are contrasted with some of the apparent advantages of hybrid control methods. 

 
2.2.1 Displacement Control Loop 

 
A recognized limitation of displacement control methods for the biomechanical testing of 

spinal specimens is that rotational displacements are often prescribed about a fixed axis that is 

not the specimen’s preferred axis of rotation—thereby resulting in large, “unphysiological” 

coupled loads(40).  A specimen’s preferred axis of rotation is, of course, not known a priori, and a 

further complication is that the location of the preferred axis is not constant but changes 

throughout the path of passive motion.  The hybrid control algorithm as described previously(13) 

mitigates this problem by permitting an adaptive, “floating” axis of rotation, as follows.  The 

flexion/extension rotation increments applied within the applied rotation loop of the hybrid 
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control algorithm are prescribed about an axis perpendicular to the sagittal plane that passes 

through the user-specified center of rotation (COR), or the origin of the robot’s tool coordinate 

system.  If the user-chosen COR is not the specimen’s preferred COR, the rotation does not 

result in the desired pure moment.  Any coupled sagittal plane forces arising from an incremental 

rotation about this axis are relieved within the force minimization subroutine of hybrid control by 

incremental translations of the end-effector—automatically changing the location of the COR 

globally.  Thus, following each applied rotational displacement increment, the axis of applied 

rotation moves incrementally to a position wherein residual coupled sagittal plane forces are 

minimized.  The user-defined COR is not allowed to move with respect to the specimen’s 

coordinate system, therefore, the COR is locally fixed. 

 
2.2.2 Load Control Loop 

 
A recognized limitation of load control methods for the biomechanical testing of spinal 

specimens is the difficulty of maintaining testing conditions in the neutral zone because the 

displacements can change with no change in the load input.(12)  When open-loop load control 

tests are performed, the neutral zone is defined by the resting position of the specimen after the 

application of a series of loads in the degree-of-freedom of interest(6)— thus kinetics of the 

specimen within the neutral zone are not actually delineated.  When closed-loop load control 

tests are performed, low stiffness of a specimen can put a high demand on the response 

characteristics of the control system — requiring the testing machine to respond to load control 

commands quickly, over long distances.(21)  Unanticipated delays or overshoot are potential 

sources of load artifact generated by the response characteristics of a testing machine in a load 

control mode.(21)  The hybrid control method described previously(13) is based on the stiffness of 
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the specimen, and because the stiffness estimates are regularly updated along the path of motion, 

the robotic/UFS testing system with hybrid control is able to adapt to the extreme range of 

stiffnesses presented by the highly nonlinear FSU—from near-zero stiffness in the “neutral zone” 

to high stiffness with facet joint contact and at the extremes of the “elastic zones.”  To simplify 

calculation of the local specimen stiffness matrix, only the diagonal terms of the matrix are 

calculated; the off-diagonal terms are set to zero.  Delineation of the load-displacement response 

of specimens can be achieved throughout the entire flexion/extension range-of-motion—

including the region of least stiffness or “neutral zone,” the regions of increasing stiffness or 

“elastic zones,” and the transition between these regions. 

As mentioned above, the user-defined COR remains locally fixed.  However, clinical data 

shows that the COR moves within the specimen during flexion/extension(41).  The amount of 

movement of the COR depends on the degree of flexion/extension and the extent of disc 

degeneration.  An algorithm that does not account for this requires more iterations to minimize 

force during load control because the peak force may be higher than if the COR were allowed to 

move locally.  In addition, setting the off-diagonal terms of the stiffness (flexibility) matrix to 

zero ignores the coupled stiffness terms.  This attributes all the change in force in a certain 

direction to the translation in that direction, but the specimen is a highly complex, coupled 

system.  To investigate the possibility of improving the current hybrid control algorithm, three 

specific aims will be accomplished. 
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3.0 SPECIFIC AIMS AND HYPOTHESES 

 
 

3.1 Specific Aim 1 

 
Develop analytical testing platform.  This platform can be applied to testing control 

algorithms using well-defined rigid body-spring model of a lumbar functional spinal unit (FSU).  

Develop experimental testing platform.  This platform may be used to experimentally test spinal 

specimens. 

 
 

3.2 Specific Aim 2 

 
Apply these platforms to the development of testing of new control methods.  New 

control methods consist of changes to both the displacement control and load control loops. 

 
3.2.1 Specific Aim 2a 

 
To improve the displacement control loop, two methods of updating the user-defined 

COR are proposed.  To calculate the preferred COR, three methods found in the literature will be 

investigated: Spiegelman and Woo(42), Crisco et al.(43) and Challis(44).  The first proposed method 

of updating the COR is a post hoc update in which the preferred COR will be calculated and 

stored for replay during the next flexion/extension cycle.  The second proposed method is using 

feedback to update the COR.  The preferred COR will be calculated every n degrees and updated 

for use during the next nφ degrees.  It is hypothesized that allowing the COR to move locally will 

decrease the force resulting from rotation about a COR other than the preferred one, thereby 

reducing the number of iterations required to minimize force. 
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3.2.2 Specific Aim 2b 

 
To improve the load control loop, the stiffness matrix will be fully populated.  Three 

methods of calculating the full stiffness matrix are proposed to accomplish this.  The first method 

is to perturb the rigid body in two orthogonal directions at each position, calculating all four 

terms in the 2x2 stiffness matrix.  The second method is to limit the translations to the force 

minimized position in a stairstep fashion, calculating three terms in the 2x2 stiffness matrix at 

each position.  The third method is a combination of the first two: three terms in the 2x2 matrix 

are calculated at each position by limiting the translations, while the fourth term is found by 

perturbing the rigid body after translating it.  It is hypothesized that using a fully populated the 

stiffness matrix to calculate the translation necessary to minimize force will reduce the number 

of iterations required to reach the force minimized position and provide a more accurate 

description of specimen stiffness.  The proposed methods of calculating the full stiffness matrix 

were based on the knowledge that the full matrix could not be calculated using one translation or 

perturbation, covered in more detail in section 6.2, and the hypothesis that the values of the terms 

in the matrix may be closely approximated using small perturbations or small translations. 
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4.0 DEVELOPMENT OF ANALYTICAL PLATFORM 

 
The rigid body-spring model used experimentally is shown in Figure 5.  Even though our 

rigid body-spring model is quite simple, it still exhibits complex, nonlinear behavior as a real 

specimen does.  It was shown previously(13) that the model exhibits load-displacement 

characteristics with distinct neutral and elastic zones, analogous to a lumbar FSU.  This thesis 

shows the nonlinearities present in load and stiffness data for our model and how the hybrid 

control algorithm handles such nonlinearities.  Friis(45) and Wilke(46) are developing more 

sophisticated lumbar spine models.  Our rigid body-spring model is used to validate experimental 

protocols.  An analytical solution to the rigid body-spring model is thus needed to validate 

experimental results.  This platform also provides a framework for formulating new clinical 

hypotheses, for example, a specimen with a painful (or injured) structure may minimize 

something other than force after the displacement control loop.  Perhaps the specimen’s natural 

reaction is to minimize the work done.  To develop the analytical solution, a general rigid body-

spring model consisting of two rigid bodies and one spring is presented. 
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Figure 5  Rigid body-spring model 
 
 
 

4.1 Description of General Rigid Body-Spring Model 

 
Suppose there is a spring, spring i , connecting two rigid bodies (Figure 6).  One rigid 

body (rigid body M ) is allowed to move globally and the other (rigid body ) is fixed in space.  

As rigid body 

F

M  rotates and translates away from its equilibrium position, forces and moments 

due to spring  are created.  We confine the rigid body-spring model to planar motion, so there 

are three degrees of freedom: a rotation about the  axis and two translations in the 

i

z xy -plane.  

In order to fully describe the model’s kinematics and kinetics, three points are defined.  The 

origin of a local coordinate system, xyz , is defined on rigid body M  at some point .  One end 

of spring i  is connected to rigid body 

P

M  at node , the origin of coordinate system (i )i
xyz .  The 
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other end of the spring is connected to rigid body  at node F j , the origin of coordinate system 

( ) j
xyz .  The homogeneous transformation describing the position and orientation of ( )i

xyz  with 

respect to xyz  is constant throughout rigid body motion.  If the body is not rigid, then the 

transformation is not constant.  In this case, individual nodes must be tracked or deformable 

body principles must be applied to correct for rigid body deformation.  Point  is the same thing 

as a node, but for clarity later, it is differentiated from the other nodes by calling it a point. 

P

Y

0

y1

node i0

node i1

x

j

P0

P1

X

x
y0

x1

  

i1

yi1

xi0yi0

node j

y
xj

 
Figure 6  General rigid body-spring model 

 
 

The general rigid body-spring model can be likened to a lumbar FSU.  The rigid body M  

represents the superior vertebra and rigid body  represents the inferior vertebra.  Point  F P
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represents the center of the superior vertebra, node  represents a point on the superior insertion 

site of a ligament, node 

i

j  represents a point on the inferior insertion site of the ligament and 

spring i  loosely represents the ligament itself.  More complex representations of ligaments are 

available in the literature, but our interest lies in developing the general rigid body-spring model 

kinematics for an  (linear elastic) spring system, leading to analytical expressions for the loads 

and stiffness coefficients developed during general rigid body motion.  Additional nodes on 

either vertebra may be defined.  For example, suppose we want to define more nodes on the 

insertion sites of a ligament as a better approximation of ligament deformation.  The only 

restriction on defining nodes is that they are confined to the vertebra they are measured with 

respect to, i.e., nodes on the superior vertebra must be measured with respect to the superior 

vertebra’s coordinate system because of the rigid body assumption. 

n

 
 

4.2 General Closed Form Solution 

 
Movement of nodes, including point , and all loads are referred to the global coordinate 

system for purposes of simulation.  Nodal displacements and loads may be reported in any 

coordinate system, for example, the rigid body’s local coordinate system, as is done 

experimentally.  Because the coordinate system set at the COR is will be allowed to move both 

locally and globally (discussed in later sections), loads and displacements should not be reported 

in this coordinate system.  To describe rigid body motion and the resulting loads, several 

homogeneous transformations must be known.  In the following transformations, the subscript is 

the coordinate system that the superscript coordinate system is measured with respect to, for 

example, T  is the transformation of frame 

P

B
A B  with respect to frame .  Also, the convention A
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[ ] [ ]
0 0 0 1

B
A

R d
T

 
= 
 

  is used, where [ ]R  is the rotation matrix describing the orientation of 

frame B  with respect to frame , [A ]d  is the position vector describing the distance from the 

origin of frame  to the origin of frame A B  measured in frame  coordinates and the row vector A

[ ]0 0 0 1  is added for mathematical convenience. 

0
GT



=




0 ,XP P Gθ

( )0
xyz

 
4.2.1 Homogeneous Transformation of ( )0

xyz  with Respect to XYZ  

 
At initial position 0, before rigid body motion, point  is denoted . P 0P

 

0

0

0
0

0 0 1 0
0 0 0 1

G G X

G G Y

c s P
s c P

− 






, 

where (  is the initial global position of  and 0Y 0P  is the initial orientation of 

 with respect to XYZ  (Figure 7). 

)
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Figure 7  Homogeneous transformation of ( )0
xyz  with respect to XYZ  

 
 
4.2.2 Homogeneous Transformation of ( ) 0TCS

xyz  with Respect to XYZ  

 
Experimentally, the COR is the origin of the robot’s tool coordinate system (TCS).  For 

development of the general rigid body-spring model, the coordinate system  is used 

interchangeably with ( .  At position 0, the COR is denoted CO . 

( )COR
xyz

)TCS
xyz 0R

 

0

00

0
0

0 0 1 0
0 0 0 1

COR COR X

COR COR YTCS
G

c s COR
s c COR

T

− 
 
 =
 
 
 

, 

where (  is the initial global position of CO  and )0Y0 ,XCOR COR 0R CORθ  is the initial 

orientation of ( )  with respect to 
0TCS

xyz XYZ  (Figure 8). 
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Figure 8  Homogeneous transformation of ( ) 0TCS
xyz  with respect to XYZ  

 
 
4.2.3 Homogeneous Transformation of ( )0

xyz  with Respect to ( ) 0TCS
xyz  

 
 ( ) 10 0

0
TCS

TCS G GT T
−

= 0T  

See Figure 9. 
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Figure 9  Homogeneous transformation of ( )0
xyz  with respect to  ( ) 0TCS

xyz
 
 
4.2.4 Homogeneous Transformation of ( ) 1TCS

xyz  with Respect to ( ) 0TCS
xyz  

 

 1
0

0
0

0 0 1 0
0 0 0 1

TCS
TCS

c s dx
s c dy

T

φ φ

φ φ

− 
 
 =
 
 
 

 

At position 1, after rigid body motion, the TCS  is denoted TCS .  During the 

displacement control loop, the rigid body rotates about the COR by 

1

φ  degrees, but does not 

translate (Figure 10).  Hence, frame TCS  rotates about its origin with no translation: 

.  During the load control loop, the rigid body translates by 

0

( ) 0, →dydx ( ),dx dy , but does not 
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rotate: 0→φ .  We can think of the relationship between frame TCS  and frame  as an 

imaginary rigid link.  If point 

P

P  translates by ( )dydx,

)

, then so does the COR.  (  can either 

be added to ( )  and  or equivalently it can be inserted into T .  

)

Y

dy

1
0

S

dx,

TC
TCS,X YP P ( ,XCO CORR ( )dydx,  

is inserted in T  for consistency.  Now that 1
0

TCS
TCS ( )dydx,  has been used here, it is not used 

elsewhere. 
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Figure 10  Homogeneous transformation of ( ) 1TCS
xyz  with respect to  ( ) 0TCS

xyz
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4.2.5 Homogeneous Transformation of ( ) 1TCS
xyz  with Respect to XYZ  

 
Because the relationship between frame  and frame TCS  is constant, the global 

position of the COR must be updated to reflect changes in position of point  (Figure 10). 

P

P

  1 0
0

TCS TCS TCS
G G TCT T T= 1

S

 
4.2.6 Homogeneous Transformation of ( )1xyz  with Respect to ( ) 1TCS

xyz  

 
As noted above, the relationship between frame  and frame TCS  is constant.  

Therefore, (

P

)1xyz  has the same relative position and orientation from ( )xyz
1TCS
 as ( )0

xyz  has 

from ( )  (Figure 11): 
0TCS

xyz

 . 1 0
1 0TCS TCST T=
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Figure 11  Homogeneous transformation of ( )1xyz  with respect to  ( ) 1TCS
xyz

 
 
4.2.7 Homogeneous Transformation of ( )1xyz  with Respect to XYZ  

 
At final position 1, point  is denoted .   P 1P

 

1

11 1 1
1

0
0

0 0 1 0
0 0 0 1

G G X

G G YTCS
G G TCS

c s P
s c P

T T T

φ φ

φ φ

− 
 
 = =
 
 
 

, 

where (  is the global position of  and )1 1,X YP P 1P φθφ += GG  is the orientation of ( )1xyz  

with respect to XYZ  (Figure 12). 
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Figure 12  Homogeneous transformation of ( )1xyz  with respect to XYZ  
 
 
4.2.8 Homogeneous Transformation of ( ) 0i

xyz  with Respect to ( )0
xyz  

 
Now that the global position of point  is known before and after rigid body motion, the 

resulting global motion of node i  is considered.  The following transformations are easily 

extended to any number of nodes on rigid body 

P

M .  Note that because the position and 

orientation of node i  remains fixed relative to xyz , there is no subscript on i  and i  to 

differentiate between position 0 and position 1. 

x y
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T
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, 

where (  is the local position of node i  and ),x yi i iθ  is the orientation of ( i)xyz  with 

respect to xyz  (Figure 13). 

P0

X

Y

x0

y0

node i0

xi0yi0

T0
i0

θi

  
 

Figure 13  Homogeneous transformation of ( ) 0i
xyz  with respect to ( )0

xyz  
 
 
4.2.9 Homogeneous Transformation of ( ) 0i

xyz  with Respect to XYZ  

 
The global position and orientation of node i  at initial position 0 is described by 

 

0

00 0 0
0

0
0

0 0 1 0
0 0 0 1

Gi Gi X

Gi Gi Yi i
G G

c s i
s c i

T T T

− 
 
 = =
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where (  is the initial global position of node i  and ) i0 0,X Yi i GGi θ θ= +  is the orientation 

of ( ) 0i
xyz  with respect to XYZ  (Figure 14).  Even though the position and orientation of node i  

remains fixed locally from position 0 to position 1, its global position changes. 
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Figure 14  Homogeneous transformation of ( ) 0i
xyz  with respect to XYZ  

 
 
4.2.10 Homogeneous Transformation of ( ) 1i

xyz  with Respect to ( )1xyz  

 
Because of the rigid body assumption, the position and orientation of ( ) 1i

xyz  with respect 

to ( )1xyz  is the same as ( ) 0i
xyz  with respect to ( )0

xyz  (Figure 15).  Therefore, 

 . 1 0
1 0
i iT T=
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Figure 15  Homogeneous transformation of ( ) 1i
xyz  with respect to ( )1xyz  

 
 
4.2.11 Homogeneous Transformation of ( ) 1i

xyz  with Respect to XYZ  

 
The global position and orientation of node i  at position 1 is described by 

 

1

11 1 1
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0 0 1 0
0 0 0 1

Gi Gi X
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G G

c s i
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φ φ
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, 

where (  is the global position of node i  at position 1 and )1 1,X Yi i G iGiφ θ θ= + +φ  is the 

orientation of ( ) 1i
xyz  with respect to XYZ  (Figure 16). 

 28



P0

P1

X

Y

x0

y0

y1 x1

node i0

node i1

xi1

yi1

xi0yi0

TG
1

TG
i1

T1
i1

 
 

Figure 16  Homogeneous transformation of ( ) 1i
xyz  with respect to XYZ  

 
 
4.2.12 Homogeneous Transformation of ( ) j

xyz  with Respect to XYZ  

 
The global position and orientation of frame j  on the fixed rigid body is known through 

transformations similar to those shown above.  For simplicity, the transformations leading to the 

global position and orientation of node j  are not shown.  Experimentally, we must solve for 

these coordinates using coordinate transformations.  In simulations, we can define the global 

coordinates of frame j  and bypass the transformations necessary to calculate them. 
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where (  are the global coordinates of node ),X Yj j j  and jθ  is the orientation of ( ) j
xyz  

with respect to XYZ  (Figure 17). 
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Figure 17  Homogeneous transformation of ( ) j
xyz  with respect to XYZ  

 
 
4.2.13 Homogeneous Transformation of ( ) j

xyz  with Respect to ( ) 0i
xyz  

 
In order to fully define the loads acting on the rigid body due to spring i , we must know 

the line of action of spring force.  At any position of rigid body M , the direction of spring force 
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is along a line between nodes i  and j .  Therefore, the transformation between frame i  and 

frame j  must be known.  At initial position 0, 

 ( ) 10
0
j i

i GT T T
−

= j
G . 

See Figure 18. 
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Figure 18  Homogeneous transformation of ( ) j
xyz  with respect to ( ) 0i

xyz  

 
 
4.2.14 Homogeneous Transformation of ( ) j

xyz  with Respect to ( ) 1i
xyz  

 
At position 1, 

 ( ) 11
1
j i

i GT T T
−

= j
G . 

See Figure 19. 
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Figure 19  Homogeneous transformation of ( ) j
xyz  with respect to ( ) 1i

xyz  

 
 
4.2.15 Change in Length of Spring Attached to Node i and Fixed Node j 

 
To find the loads acting on rigid body M , we must know the elongation of spring i , iδ .  

The length of spring  at the initial position is the magnitude of the position vector of T , i j
i0 0il

K
, 

defined in the ( ) 0i
xyz  coordinate system.  The elongation of spring  at the initial position is i

0 0i ilδ = −
K

A r , where A  is the resting length of the spring.  The length of spring i  at the final r
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position is the magnitude of the position vector of T , j
i1 1il

K
, defined in the ( ) 1i

xyz  coordinate 

system.  The elongation of spring  at the final position is i 1 1i ilδ r= −
K

A . 
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4.2.16 Loads on Rigid Body Due to Spring  i

 
The total force acting on rigid body M  at node  due to spring  at the initial and final 

positions are 

i i

0if
K

 and 1if
K

, respectively. 

 0

0
i if k δ=
K

 

 i if k δ=
K

, 

where is the spring constant of spring i .  ik  and 1if
K

 are known in the ( ) 0i
xyz  and 

( ) 1i
xyz  coordinate systems, respectively, because  and l 1i

K
 are defined in those coordinate 

systems.  We want to know 0if
K

 and 1if
K

 in the global coordinate system, so we use 

transformations to convert them to the global coordinate system. 

 

( )
( )

0 0

0 0 0

0
0

0 0 1 0

i i xX Gi

i Gi Gi iY i y

fF c s
F s f

   −       =   
         






K

K
 

 

( )
( )

1 1

1 1 1

0
0

0 0 1 0

ii i xX Gi

i Gi Gi iY i y

fF c s
F s f

   −       =   
         






KK

KK
, 

where 0if
K

 and 1if
K

 are broken into local x  and  components and  and  are broken 

into global 

y 1iF
K

X  and Y  components. 
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If the force acting at node  due to spring i , i iF
K

, is replaced by an equal force acting at 

point , a couple P iM
K

 is necessary to make sure the external effects of the original force on rigid 

body M  are not changed (Figure 20). 

P

node i Fi
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node i
d
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Figure 20  Force-couple equivalent 
 
 

If  acts at point , 0iF
K

0P 0 0i i 0iM R F= ×
K K K

, where 0iR
K

 is the position vector of T  

transformed into the global coordinate system (Figure 21). 

0
0
i

 0
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K
 

 34



P0

X

Y

x0

y0

node i0

xi0yi0

node j

yj
xj

Ri0

Fi0

a 

P0

X

Y

x0

y0

node i0

xi0yi0

node j

yj
xj

Fi0

Mi0

b 

 
Figure 21  (a) force due to spring i  at position 0, (b) equivalent force-couple system at position 

0 
 
 

If  acts at point , 1iF
K

1P 1 1i i 1iM R F= ×
K K K

, where 1iR
K

 is the position vector of T  transformed 

into the global coordinate system (Figure 22). 
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Figure 22  (a) force due to spring i  at position 1, (b) equivalent force-couple system at position 

1 
 
 

To break forces and moment at points  and  into global 0P 1P X  and Y  components, 

 

( )
( )
( ) ( )

0
0

0 0

0 00

ˆ
ˆ

ˆ

i X i

i iY

i ii Z

F F i
F F j

R F kM

   ⋅     = ⋅  
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i X i

i iY

i ii Z

F F i
F F j

R F kM

   ⋅     = ⋅  
  



× ⋅     

K K
K K

K KK
, 

where i , ˆ ĵ  and  are unit vectors in the global k̂ X ,  and Y Z  directions, respectively.  

The forces and moments acting on the rigid body due to springs i 1,2, ,n= …  may be summed to 

find the total loads on the body: 
1

n

i
i

F F
=

= ∑
K K

, 
1

n

i
i

M M
=

= ∑
K K

. 

 36



 
4.2.17 Global Stiffness Matrix, K  

 
After developing the analytical solution for loads arising from rigid body motion, it is 

necessary to find the analytical solution for the global stiffness matrix for use during load 

control.  The analytical equations for each term in the matrix are valid at any position of rigid 

body M  even though the values of the terms are only valid over small ranges of motion.  

Consequently, translations of rigid body M  during load control should be limited because the 

calculated displacement depends on local stiffness values.  A large translation may move the 

rigid body outside the region of constant local stiffness.  We take the partial differential of the 

analytical expressions for ,  and XF YF ZM  with respect to ,  and XP YP PΦ  to find the global 

stiffness matrix, K : 

 
XX XY XZ

YX YY YZ

ZX ZY ZZ

K K K
K K K K

K K K

 
 =  
  

 

 

X X X

X Y
X X

Y Y Y
Y Y

X Y
Z

Z Z Z

X Y

F F F
P P PF P
F F FF K P P
P P P

X

Y

P

M P P
M M M
P P P

Φ

Φ
Φ Φ

Φ

 ∂ ∂ ∂
 ∂ ∂ ∂ ∆ ∆ ∆     
 ∂ ∂ ∂     ∆ = ∆ = ∆      ∂ ∂ ∂      ∆ ∆      ∂ ∂ ∂
 
∂ ∂ ∂  

∆
, 

where  and  are the global coordinates of point  at any position of rigid body XP YP P M , 

 is the orientation of PΦ xyz  with respect to XYZ  at any position and ,  and XF YF ZM  are the 

total force and moment acting on rigid body M  at any position. 

Ren et al.(47) also used partial derivates to calculate the tangent stiffness matrix for their 

rigid body-spring model.  They used three rigid bodies connected by springs that were allowed to 
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translate and rotate in the XY -plane.  Rigid body e  was connected to rigid body  by three 

springs: an axial spring (spring constant ), a shear spring (spring constant 

1e +

a
eK e

sK ) and a bending 

spring (spring constant eKθ ).  These spring constants were collectively referred to as .  

Similarly, rigid body  was connected to rigid body  by three springs with spring constant 

.  They developed equations to describe the sum of the forces and moments acting on rigid 

body  and took the partial derivatives of these expressions with respect to the translational and 

rotational motion of the centroid of each rigid body to find the tangent stiffness matrix.  They did 

not make any assumptions while developing their analytical stiffness matrix, so their method is 

completely general for any planar rigid body motion.  Their method is very similar to what is 

done above.  An axial spring connects two rigid bodies between node 

eK

1e − e

1eK −

e

j , located on a fixed rigid 

body ( ), and node , located on a rigid body ( ) that is allowed to move in the same plane 

as that in Ren et al.  In this case, we are only concerned with spring 

1−e i e

1
a
eK −  and the moveable rigid 

body , so the partial derivatives simplify to the above expression. e

To simplify the partial derivatives, several constants are defined: 

 1 *cos *sX x yc j i i inθ θ= − + , 

 2 *cos *sY y xc j i i inθ θ= − − , 

 3 Gc θ φ= + , 

 14 X Xc j P= − , 

 15 Y Yc j P= − . 

The stiffness matrix is symmetric, so YX XYK K= , ZXK KXZ=  and ZYK K= YZ .  The terms 

in the stiffness matrix are then: 
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Because only planar translations are considered during the load control loop, a 2x2 

stiffness matrix used. 
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4.2.18 Work Done on Rigid Body by Spring i , Potential Energy in System 

 
The magnitude of the force exerted on the rigid body by spring i  is i iF k iδ= −

( )
0

0

δ

δ

.  For a 

conservative force, such as a spring force, the potential energy is U U( ) ( )F dδ δ δ δ′ ′= − ∫ .  

By plugging in the equation for spring force, we can solve for the potential energy of spring i : 

( ) ( )
0

2
0 0

1 1
2 2

i

i
i i i i i i i i i iU U k d U k k

δ

δ

2
0δ δ δ δ δ′= − − = + −∫

0i 0i

δ .  If we do not make any simplifications to 

this equation, we must know U  for any value of δ .  To simplify the equation for potential in 

spring i  we arbitrarily set 0 0iδ = 0 0i.  Then U =  because there is no potential energy when the 

spring is at its resting length.  We are then left with ( ) 2
i ik1

2i iU δ δ= .  For a spring, work is equal 

in magnitude and opposite in sign to potential energy: 

( ) ( )
0

0
i

i
i i i i iW W W

δ

δ

2
0

1
2 2i ik 2

0
1

i ikik dδ δ δ δ= + =∫ δ− δ− + , or after simplification: ( ) 21
2 i ii iW kδ δ= −

)i

.  

For an n  spring system, the total potential energy is U U (
1

n

i
i

δ
=

=∑  and the total work done to 

the rigid body is W ( )i
1

n

i
iW δ

=

=∑ .  Both forms of ( )iiU δ  and ( )iiW δ  (simplified or not) give the 

same results, so the simplified form should be used because it requires less computation.  

 
 

4.3 General Closed Form Solution Applied to Rigid Body-Spring Model 

 
The general rigid body-spring model used for simulations is shown in Figure 23 and 

Figure 24.  This model is obviously different than the physical rigid body-spring model shown 

in Figure 5.  Point  is at the center of the bar and is the origin of the bar’s local coordinate P
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system, xyz .  Two nodes are defined on the bar for each attachment site of each spring.  Node  

is at the left side of the bar and is the origin of coordinate system 

a

( )a
xyz .  Node  is at the right 

side of the bar and is the origin of coordinate system 

b

( )b
xyz .  The positions and orientations of 

( )a
xyz  and ( )b

xyz  are described with respect to xyz

aA

.  The length of the bar is .  For spring , 

the resting length is , the equilibrium length is  and the spring constant is .  For spring 

, the resting length is , the equilibrium length is  and the spring constant is .  The 

system is conservative. 
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Figure 23  General rigid body-spring model 
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Figure 24  Matlab rigid body-spring model 
 
 

For convenience, , ar br=A A 0 0a b=A A , ak kb=  and all coordinate systems are aligned at 

the equilibrium position, i.e., 0θ θ θ= =G COR θ= =ji .  After one displacement control loop, 

θ θ= =G COR φ  and 0θ θ= =i j .  After  displacement control loops, n θ θ φ= =G COR n  and 

0θ θ= =i j .  In the equilibrium position, the XYZ  and ( )0
xyz  coordinate systems are coincident 

at point .  Therefore, T  is a 4  identity matrix.  This is only true at the equilibrium 

position.  After one incremental rotation, 

0P 0
G x4

( )1xyz  is rotated by φ  degrees from XYZ  and the 

origins are offset by an amount due to the rotation.  In a test, φ φ= , 0= =dx dy  for the 

displacement control loop and 0φ = , =dx  and dx =dy dy  for the subsequent load control loop.  
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The “physical” rigid body-spring model is shown in Figure 25.  This model is used to 

collect simulated data for comparison with experimental data.  To make comparisons, we take 

some measurements of the physical spring model.  First, we measure the resting length of each 

spring using calipers.   for spring  (the blue spring).  A  for 

spring b  (the red spring).  We also use calipers to measure the equilibrium length of each spring 

when they are in the physical spring model.  For spring , 

74.57 mm

A .  For spring b , 

.  The radius of the disc was measured with calipers as 28  mm.  We use 

Adobe Photoshop 6.0 to find , the angle that the local  axis makes with the global  axis: 

.  Now the positions of all nodes can be defined. 
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Figure 25  Matlab physical rigid body-spring model 
 
 

For simplicity, we set 0COR i jθ θ θ= = = .  After one displacement control loop, 

70Gθ φ= °+ , CORθ φ=  and 0θ θ= =i j n.  After  displacement control loops, 70G nθ φ= °+ , 

COR nθ φ=  and 0θ θ=i j = .  In the equilibrium position, the XYZ  and ( )0
xyz  coordinate systems 

are coincident at point .  For node , T T0P a 0 1
0 1

1 0 0 28
0 1 0
0 0 1 0
0 0 0 1

0
−

a a

 
 
 = =
 
 
 

 and 
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When the springs are inserted into the physical spring model, they are elongated.  This 

means that there is some initial tension in each spring, but the system is in equilibrium because 

the pretension in one spring negates the pretension in the other spring.  No forces or moments 

should be created when the robot is initially attached to the model.  After zeroing out bolt-up 

loads and loads due to the fixture (stainless steel disc, nuts, bolts, screws, etc.), the UFS will 

show that no other external loads are acting on it.  When the robot applies a rotation/translation, 

the UFS will show the loads exerted by the model due to the motion; the UFS will not show the 

initial pretension in the equilibrated system. 
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5.0 DEVELOPMENT OF EXPERIMENTAL PLATFORM 

 
Use of a robotics-based testing system allows for controlled application of six DOF 

displacements, facilitating determination of the in situ force and moment contribution of 

musculoskeletal joint structures.  After dissecting away extraneous soft tissue, the passive path of 

the intact joint is found using hybrid control.  The in situ contribution of a specific structure of 

interest is found by dissecting it away and replaying the passive path kinematics of the intact 

joint using pure displacement control, while recording loads.  By applying the principle of 

superposition, the loads of the cut specimen are subtracted from the loads of the intact specimen 

to find the in situ contribution of the dissected structure. 

 
 

5.1 Description of Robotics-Based Spine Testing System 

 
Low-level control of a robotic system involves input/output of position data to and from 

the robot and communication with external sensors, whereas high-level control is the processing 

of that data for robot manipulation.  The low-level control of our robotic/UFS testing system is 

performed using a robotic manipulator (Staubli, RX-90 model; Staubli Inc., Duncan, SC), 

computerized controller (Staubli, CS7 model, 40 MHz microprocessor, 33 MHz coprocessor, 4 

Mb RAM), Adept V+ software (version 11.1) and a six degree of freedom universal force-

moment sensor (UFS) (JR3, UFS Model 90M38A-I50 20L100; JR3, Woodland, CA).  The 

Staubli is a servo-controlled, six-joint serial-articulated manipulator with end-effector position 

repeatability of 0.02 mm translation at constant temperature and maximum payload of 6 kg at 

nominal speed(48).  The UFS, mounted to a custom machined piece on the end-effector of the 

Staubli (Figure 26) has a full-scale force capacity of 20 lbs for its x and y axes and 50 lbs for its 
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z axis, and a full scale moment capacity of 100 in-lbs for all axes.  Manufacturer-stated force and 

moment accuracy of the UFS is 2% of full scale for all axes(49).  The high-level computerized 

control system consists of a real time Staubli CS7 controller serially connected to a personal 

computer (Dell PC, dual Xeon 1.7 GHz processors, 1 GB RAM).  Communication is covered in 

more detail later.  The high-level control programs are performed using Matlab (version 6.1, The 

Mathworks, Inc., Natick, MA) on the PC.  Digital output from the six load channels of the UFS 

is fed directly to the PC through a DSP-based force sensor/receiver PCI card (JR3).  Dr. J. 

Norberto Pires wrote several Matlab-PCI interface modules for the JR3 PCI card(50).  The control 

programs written in Matlab and V+ perform a variety of tasks including establishing coordinate 

systems, reading UFS force-moment data, reading end-effector position data (calculated by the 

Staubli controller from the robotic joint angles obtained from the encoders of the servomotor of 

each joint), and issuing commands to the robot to move the end-effector.  Depending on the 

control programs that are executed, the robotic/UFS testing system can be made to operate in 

either a position (i.e., displacement) control mode, or a hybrid control mode. 
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machined 
part 

r

 
Figure 26  Specimen fixtures in testing system 

 
 

The manipulator sits on a 30” high stainless steel table that is bolted thro

runners to the floor (Figure 27).  A 3/8” thick stainless steel buffer is attached t

slots are attached to the table to provide flexibility of specimen placement in re

manipulator.  Custom fixtures for specimen mounting are attached to the stainle

and the T-slots (Figure 26). 
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Figure 27  Robotic/UFS testing system 
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The controller sends the commanded motion to the manipulator in terms of the tool 

coordinate system (TCS), while returning the global position and orientation of the TCS to the 

user in response to the “WHERE” or “HERE” commands.  The position and orientation of the 

TCS is measured with respect to the end-effector, which is at the back of the custom machined 

part (Figure 26).  If the user does not specify a TCS, the controller sets it at the end-effector so 

that the transformation describing the relationship between these two coordinate systems is an 

identity matrix.  As mentioned before, the origin of the TCS is set at the specimen COR.  The 

orientation of the TCS is aligned with the specimen’s coordinate system.  Planar 

flexion/extension is performed by rotating about the TCS x -axis.  When setting a TCS, its 

position is measured from the UFS face. 

If the UFS could be placed at the center of the superior vertebra, the loads would be read 

at point  as they are during simulations.  However, this is impossible so we need a 

transformation describing the superior vertebra’s coordinate system with respect to the UFS 

coordinate system.  Measuring the distance of the superior vertebra’s coordinate system from the 

UFS coordinate system presents an interesting situation for measurements in the z-direction 

because the position of UFS coordinate system is dependent on the software used to collect load 

cell data.  When using the PCI card to collect load cell data, the Matlab functions put the UFS 

coordinate system at the center of the UFS.  When using the robotic controller to collect load cell 

data, Adept puts the UFS coordinate system at the back of the UFS. 

P
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5.2 Communication 

 
 

Figure 28 shows the system components, with arrows depicting the data flow loop within 

the testing system.  The controller receives TCS position data from the manipulator and directs 

this data to the external PC via the serial line.  Serial communication is relatively slow, but it is 

convenient for this purpose since it is available on most commercially available controllers.  As 

mentioned before, load cell data is sent directly to the PC.  Directing the robot positions and UFS 

loads to the PC allows it to act as the high-level controller for the system.  For high-level control 

to occur once the flow of data has been established, a programming language is necessary to 

implement the desired control algorithm.  Matlab was chosen because of its many 

preprogrammed functions and toolboxes, its data analysis and graphing capabilities, and its 

readily available serial communication.  Once the PC has interpreted the position and load data, 

the desired robot motion is sent back to the controller via the serial line so low-level control can 

occur. 
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Figure 28  Data flow in testing system 
 
 

Because the serial line sends and receives data, it is necessary to establish a client/server 

relationship between the two devices.  Since limited use of the robot controller is desired for all 

high-level operations, it is best to have the external PC (client) request information from the 

controller (server).  This type of relationship necessitates that proper “handshaking” occurs to 

guarantee that all data is sent and received at the correct time and to the correct device.  This is 

ensured through a system of flags that indicate when the client/server platforms are in a state of 

proper operational mode, allowing information exchange to occur. 
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5.3 UFS Calibration 

 
It was shown previously that a large source of error in load cell data may due to 

“phantom” loads due to change in load cell orientation.(51)  The error in load cell data reported in 

Gilbertson et al. exceeded the manufacturer stated accuracy of 1% of full scale load capacity.  

For our load cell, the error due to load cell orientation was found within the manufacturer stated 

accuracy of 2% of full scale, but reproducing the methods in this paper still resulted in a 

significant improvement in accuracy. 

The UFS was rotated about its x -axis without any fixtures attached from 25θ = − °

yF

y

 to 

.  The digital output from the load cell in the - and -directions was found to vary linearly 

with rotation angle from about –0.25 N to about –1 N for  and from about 2 N to about 2.5 N 

for  (Figure 29).  This error was within the manufacturer stated accuracy for both  and .  

However, we proceeded with the protocol to see if the load cell accuracy could be improved 

further.  By following the procedure outlined in Gilbertson et al. it was found that the error could 

be significantly reduced.  The first step was to orient the UFS -axis down vertically and hang a 

set of six incremental weights while collecting digital UFS output.  Then the UFS was oriented 

such that the UFS -axis pointed toward the ceiling and the same incremental weights were 

stacked while collecting digital UFS output.  This procedure was repeated for the UFS -axis.  

The  and  digital output was plotted against the known weights applied in those directions 

(Figure 30) and linear relationships describing the - and -axis force calibration were found: 

25° y z

Fy

z

zF

yF

zF

z

z

zF

y

  0.0051733 0.29147
yy FF DO= −

 0.013194 0.26728
zz FF DO= − , 
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where  and  are the forces in the UFS - and -directions (in Newtons), 

respectively, and 

yF zF y z

yFDO  and 
zFDO  are the digital outputs from the UFS in the - and -

directions, respectively.  It is important to note that the above equations do not correct for 

orientation effects. 

y z

 
 

Figure 29  Plot of output from UFS -axis and -axis force channel vs. UFS orientation (y z Θ ) 
when UFS is rotated in 1  increments about its x axis (with nothing attached) °

 
 

 
Figure 30  Plot of known applied weight vs. UFS digital output 
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For the second part of the protocol, the incremental weights used in the first part were 

attached to the UFS.  The UFS was rotated about its x -axis from 25θ = − °  to  while 

collecting the digital output in the - and -directions.  

25°

y z
yFDO  and 

zFDO  were inserted into the 

above set of equations to obtain linearly calibrated  and  in Newtons.  The known applied 

weights were subtracted from the linearly calibrated  and  to get the error in - and -axis 

force measurements.  The errors for each incremental weight were averaged and plotted against 

the rotation angle (Figure 31).  The orientation error was found to be a linear function of the 

rotation angle: 

yF

yF

zF

zF y z

 0.0085025 0.14779yF error θ= +  

 0.0012932 0.19311zF error θ= +  

To correct for orientation effects, the first-order mean error function was subtracted from 

the linear - and -axis calibration: y z

 ( ) [ ]corrected 0.0051733 0.29147 0.0085025 0.14779
yy FF DO θ = − − +   

 ( ) [ ]corrected 0.013194 0.26728 0.0012932 0.19311
zz FF DO θ = − − +   
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Figure 31  Plots of average Fy and Fz error vs UFS orientation 
 
 

For the third part of the protocol, the two orientation correction equations were applied to 

the digital output collected in the second part.  Plots of  and  measured using (1) the linear 

calibration equations and (2) the orientation corrected equations were plotted against the known 

applied weights (Figure 32 and Figure 33).  Linear regressions showed that both equations 

resulted in a significant improvement over using raw UFS output for  and .  However, there 

was not a significant improvement when using the orientation corrected equation versus the 

linear calibration equation. 

yF zF

yF zF
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Figure 32  Plot of UFS measured  force vs. known  force yF yF
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Figure 33  Plot of UFS measured  force vs. known  force zF zF
 
 

In conclusion, as long as the error in load cell output is within the manufacturer’s stated 

accuracy, it is not necessary to perform calibration at the beginning of each testing day.  If, 

however, the load cell calibration protocol needs to be performed, a linear calibration equation 

may be applied to digital output in the - and -directions without applying an orientation 

correction.  The entire calibration protocol takes a lot of time to complete, so not applying an 

orientation correction cuts the time required to finish the protocol by more than half.  If the UFS 

y z
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is mishandled in any way, the entire protocol should be performed to verify orientation 

correction does not need to be performed. 

 
 

5.4 Manipulator Accuracy and Precision 

 
Spatial resolution of a robot refers to the smallest change in position that the feedback 

sensor can detect when a normal distribution of mechanical inaccuracies, such as backlash and 

joint bending, are considered.  Accuracy refers to the ability of the manipulator to get to a 

commanded point in space and can be considered half of the spatial resolution.  Precision 

(repeatability) is the ability of the manipulator to repeatedly return to a point, regardless of 

whether or not it is the correct point.  It is possible for a robot to have high precision, but poor 

accuracy.  In fact, this is generally the case.  Accuracy of robots is generally unreported and 

assumed to be poor.  This is well known, but it hasn’t been of too much concern because 

industrial applications (spot welding, pick-and-place) usually rely on the robot’s precision, which 

is typically very high, to repeatedly move to a taught point.  If the commanded points are not 

taught, but defined in Cartesian space, accuracy becomes an issue.  With the integration of 

robotic technology into biomedical applications, such as in vitro musculoskeletal joint testing, 

robot assisted surgery and rehabilitation, high accuracy is necessary because the required motion 

of the end-effector is not known beforehand. 

In biomechanical testing of joints, the passive path of the specimen is not known a priori.  

The force minimized points must be stored during pathseek so that they can be returned to 

repeatedly for multiple replays.  Our manipulator has high precision, so if no other factors are 

considered, the robot would appear to be returning to the same force minimized positions for 

every replay.  However, a precise manipulator is not necessarily an accurate one.  This means the 
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manipulator returns to the same point in space again and again, even if the point is not the stored 

force minimized one. 

A manipulator’s compliance describes the degree of displacement of the wrist when a 

load is applied or removed and is the inverse of stiffness.  If a manipulator is very compliant, it is 

not stiff, and vice versa.  Manipulators that are compliant can generally make smaller motions 

than manipulators that are very stiff, but the wrist can displace more when a static load is applied 

or removed. 

When cutting studies are performed, the load on the end-effector changes, typically 

within the range of ± 30 N and ± 6 N-m.  For an infinitely stiff robot (or least one with a very 

high payload), this would not be an issue.  However, our robot has a relatively low payload (6 

kg) and the change in end-effector position with changes in load is visible.  When cutting 

structures on the specimen, and hence remove load from the end-effector, the end-effector 

visibly springs up.  If the robot cannot accurately tell the difference between its position before 

and after a structure is cut, even though there is an obvious change, then it is unlikely the 

manipulator will return to the force minimized positions stored for the intact specimen.  This is a 

problem because compliance in the arm may be causing additional loads in the intact structures, 

which would cause us to underestimate the loads associated with cutting them. 

It was hypothesized that significant differences exist in the positional accuracy for 

varying fractions of payload, that a function exists to describe the relationship between position 

error and weight for a unique end-effector position, and that this function may be used to correct 

for position error based on external load cell data.  If the manipulator is capable of making the 

presumably small displacements required to correct for joint laxity/backlash, then an external 
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measurement system can be used to correct for poor accuracy.  To investigate our robot’s 

accuracy and its ability to improve (if needed), three tests were devised. 

Test 1: First, the relationship between positional accuracy and precision for varying 

fractions of maximum load capacity was examined in one degree of freedom (DOF).  The end-

effector was placed so that the y-axis pointed towards the ceiling.  A weight equal to 1/2 of 

maximum payload was attached to the end-effector.  This weight was designated 1/2W.  A dial 

gauge (0.01 mm resolution, 10 mm travel) was rigidly fixed to a rigid table.  The manipulator 

was moved to a position such that the weight attached to the end-effector depressed the dial 

gauge to 5 mm.  This reference position (point A) was saved as a Cartesian coordinate.  The 

manipulator was then moved to a position 40 mm directly above point A.  This ensured that there 

was sufficient clearance between the dial gauge plunger and the weight on the end-effector so 

that the weight did not touch the plunger when the manipulator was at this point.  This position 

(point B) was also saved as a Cartesian coordinate. 

The end-effector moved from point B to point A 30n =  times.  Each time the end-

effector reached point A, the dial gauge reading and the manipulator’s own sense of position 

were recorded.  The dial gauge reading was within the manufacturer stated repeatability each 

time the plunger was depressed.  This process was repeated for weights equal to maximum 

payload (W), 3/4 payload (3/4W), 1/4 payload (1/4W) and no load (0W).  The mean dial gauge 

reading for each fraction of payload was found, with the mean for 1/2W being the reference that 

all other weights were compared to.  The position error (difference between the mean dial gauge 

reading and the reference mean) was plotted against fraction of payload.  This gave the 

relationship between position error and weight attached to the end-effector. 
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Test 2: The position error from test 1 was significant, so the possibility of correcting this 

error in one DOF was inspected.  The end-effector moved from point B to point A  times 

with weight 0W, 1/4W, 3/4W or W attached.  An incremental displacement of  mm was 

applied in the positive or negative y-direction (depending on the dial gauge reading) each time 

the end-effector reached point A.  The dial gauge reading and the robot’s sense of position were 

recorded before and after each incremental displacement.  The mean difference between the 

prescribed displacement and the actual displacement for the dial gauge and the robot’s sense of 

position was computed for each weight.  The actual displacement was plotted against the 

prescribed displacement for the dial gauge readings and the robot’s sense of position.  A function 

describing the relationship between the prescribed displacement and the actual displacement was 

then found. 

30n =

.01*0n

Test 3: Results from test 2 showed that it was possible to correct for poor positional 

accuracy using prescribed displacements, so a final test was performed to determine if data from 

an external load cell could be used to calculate the displacement necessary to correct for position 

error.  For all weights (0W, 1/4W, 1/2W, 3/4W, W), the end-effector moved from point B to 

point A  times.  Using the relationship between position error and weight (from test 1), the 

relationship between prescribed displacement and actual displacement (from test 2) and load cell 

data, a displacement was applied in the y-direction if needed to move the end-effector to the 

reference dial gauge position (5 mm).  The dial gauge readings and the robot’s sense of position 

were recorded before and after the displacements were applied.  The dial gauge readings after the 

displacements were applied were averaged.  The difference between the mean dial gauge 

readings after displacement and the reference mean were plotted against the fraction of weight, 

as in test 1. 

30n =
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Figure 34 shows that position error (in mm) is a linear function of the fraction of payload 

attached to the end-effector: 

 ( )0.0058* % max payload 0.28error = −  

Independent Measuring Device

y = 0.0058x - 0.28
R2 = 0.9944

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0 20 40 60 80 100

% payload

po
si

tio
n 

er
ro

r (
m

m
)

uncorrected
corrected

 
 

Figure 34  Position error, as measured by an external dial gauge, is a linear function of the 
weight on the end-effector (blue line).  This error may be corrected for (magenta line). 

 
 

 
Figure 35 shows that the actual displacement is linearly related to the prescribed 

displacement for dial gauge measurements.  It should have a unit slope with a zero intercept.  t-

tests were performed to determine whether the slopes and intercepts of the linear regressions of 

each weight are equal to one and zero, respectively.  The slope of each linear regression is not 

significantly different from one for every weight but 1/4W, and the intercept of each linear 

regression is not significantly different from zero for every weight but W. 
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Figure 35  The ratio between the prescribed displacement of the end-effector and the actual 
displacement is 1:1, as measured using a dial gauge. 

 
 

Figure 36 shows that the actual displacement is also linearly related to the prescribed 

displacement for the robot’s own sense of position.  t-tests were performed to determine whether 

the slopes and intercepts of the linear regressions of each weight are equal to one and zero, 

respectively.  For every weight, the slope and intercept of each linear regression is not 

significantly different from one and zero, respectively. 
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Figure 36  The ratio between the prescribed displacement of the end-effector and the actual 
displacement is 1:1, as measured using the robotic controller. 

 
 

Figure 34 shows that an algorithm using external load cell data can be applied to reduce 

the position error to nearly zero. 

 
 

5.5 Homogeneous Transformations Defined for Robot Testing System 

 
Homogeneous transformations similar to those developed for the general rigid body-

spring model are now developed for the robotic testing system. 

 
5.5.1 Homogeneous Transformation of ( )TCS

xyz  with Respect to ( )UFS
xyz  

 
  TCS

UFST

This transformation is user-defined.  See Figure 37. 
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Figure 37  Transformation of ( )TCS
xyz  with respect to ( )UFS

xyz  
 
 
5.5.2 Homogeneous Transformation of ( )TCS

xyz  with Respect to XYZ  

 
  TCS

GT

This transformation is known through the robot’s “WHERE” or “HERE” commands.  

See Figure 38. 
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Figure 38  Transformation of ( )TCS
xyz  with respect to XYZ  

 
 
5.5.3 Homogeneous Transformation of ( )TCS

xyz  with Respect to ( )UFS
xyz  

 
 ( ) 1UFS TCS TCS

G G UFST T T
−

=  

See Figure 39. 
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Figure 39  Transformation of ( )TCS
xyz  with respect to ( )UFS

xyz  
 
 
5.5.4 Homogeneous Transformation of ( )i

xyz  with Respect to ( )0
xyz  

 
  0

iT

This transformation is user-defined (known through X-rays).  See Figure 40. 
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Figure 40  Transformation of ( )i
xyz  with respect to ( )0

xyz  
 
 
5.5.5 Homogeneous Transformation of ( )i

xyz  with Respect to ( )UFS
xyz  

 
  i

UFST

This transformation is known through digitizing points on the vertebra and UFS (or 

fixture) with Microscribe.  See Figure 41. 
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Figure 41  Transformation of ( )i
xyz  with respect to ( )UFS

xyz  
 
 
5.5.6 Homogeneous Transformation of ( )0

xyz  with Respect to ( )UFS
xyz  

 
 ( ) 10

0
i i

UFS UFST T T
−

=  

See Figure 42. 
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Figure 42  Transformation of ( )0
xyz  with respect to ( )UFS

xyz  
 
 
5.5.7 Homogeneous Transformation of ( )0

xyz  with Respect to XYZ  

 
  0 0UFS

G G UFT T T= S

See Figure 43. 
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Figure 43  Transformation of ( )0
xyz  with respect to XYZ  

 
 
5.5.8 Homogeneous Transformation of ( )i

xyz  with Respect to XYZ  

 
  0

0
i i

G GT T T=

See Figure 44. 
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Figure 44  Transformation of ( )i
xyz  with respect to XYZ  
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6.0 APPLICATION OF ANALYTICAL PLATFORM TO DEVELOPMENT AND 

TESTING OF NEW CONTROL METHODS 

 
The robotic/UFS testing system is operated in a hybrid control mode for the 

determination of the path of passive flexion/extension of a spinal specimen.  The hybrid control 

algorithm used in the current study is shown schematically in Figure 45. 
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INPUT:
Estimated COR (tool c.s.)

Angle increment (dRx)
Max allowable sagittal plane forces

Max allowable flexion/extension moment
Estimated specimen stiffness

Start

MOVE: Apply rotation (dRx = angle increment) to
superior vertebra about estimated COR

MEASURE: Current position of COR wrt global c.s.
MEASURE: Forces and moments

COMPUTE: FSU stiffness from previous measured force/
moment and position

COMPUTE: Robot displacement vector to minimize sagittal
plane forces (from computed stiffness)

MOVE: Translate superior vertebra to new "corrected"
position

MEASURE: Forces and moments

j = 1,...,m

k = 1,...,p

Are the measured sagittal
plane forces < max allowable?

No

Is the moment > max
allowable?

No

i = 1,...,n

Yes

Yes

if i is even, flexion to extension
if i is odd, extension to flexion

K calculation

COR update #2

COR update #1  
 

Figure 45  Hybrid control flowchart 
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As shown in Figure 45, the hybrid control testing algorithm consists of an outer loop 

(displacement control) and an inner loop (load control).  There are several inputs to the 

algorithm: TCS position and orientation, position and orientation of any nodes of interest, 

rotation increment size, force threshold, maximum number of force minimizing iterations, 

maximum flexion/extension moment and maximum number of flexion/extension cycles.  Once 

these parameters are input, the hybrid control algorithm begins.  During hybrid control, the 

passive path of the specimen is found and stored for replay.  The specimen begins at a neutral 

zero-load position.  An incremental rotation is applied to the superior vertebra about the TCS x -

axis to produce planar flexion.  If the force created during the rotation is above the user-defined 

threshold, the superior vertebra translates in the TCS -plane until either the force is minimized 

below the threshold or the maximum number of iterations is reached.  When the load control 

loop finishes, the force minimized position is stored for replay later and the flexion moment is 

compared to the maximum flexion/extension moment.  If the moment at the end of the load 

control loop has not been greater than the maximum flexion/extension moment three times, the 

rotation direction remains flexion and incremental rotations continue to be applied until full 

flexion.  If the moment has been greater than the maximum three times, the specimen is 

considered to be at full flexion and the rotation direction changes to extension.  The process is 

the same for full flexion to full extension.  One complete flexion/extension cycle is full flexion 

 full extension  full flexion.  When finding the passive path of the specimen, it undergoes 

preconditioning because the flexion/extension cycles continue until the maximum number of 

flexion/extension cycles has been met or the moment and rotation angle at full flexion and full 

extension from one cycle to the next do not change by more than 4%. 

yz

→ →
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To fully validate and characterize the rigid body-spring model, 3 sets of comprehensive 

simulations were performed: 

Set 1: Use transformation development from section 4.2 to validate model. (Figure 46) 

Set 2: Use transformation development to characterize model in pure displacement 

control. (Figure 47) 

Set 3: Use analytical stiffness matrix from section 4.2 to characterize model in load 

control. (Figure 48) 

Test # Input 
parameter 

varied 

Testing 
procedure 

Output 
parameter of 

interest 

Expected outcome 

X,Y position of 
center and both 

ends of bar 

X,Y position of bar matches grid 
of points. 

X,Y position of left end of bar is 
–L cm away from the center. 

X,Y position of right end of bar 
is L cm away from the center. 

For xlations along X axis: Fy=0, 
Fx=neg. for pos. xlations, 

Fx=pos. for neg. xlations, Mz=0 
For xlations along Y axis: Fx=0, 

Fy=neg. for pos. xlations, 
Fy=pos. for neg. xlations, Mz=0 
For xlations in 1st quad: Fx=neg., 

Fy=neg., Mz=pos. 
For xlations in 2nd quad: 

Fx=pos., Fy=neg., Mz=neg. 
For xlations in 3rd quad: 

Fx=pos., Fy=pos., Mz=pos. 

Sign of Fx,Fy,Mz 

For xlations in 4th quad: 
Fx=neg., Fy=pos., Mz=neg. 

Magnitude of 
loads in each 

spring 

Large mag. for points far from 
fixed end of spring, decreasing 
mag. for points near fixed end 

Magnitude of 
loads on bar 

Mag. grows for points far from 
origin 

1a Translation 
of center of 

bar 

Create 13x13 grid 
of points 

(  
mm and 

 
mm).  Translate 
center of bar to 

each point. 

60 60X− ≤ ≤

60 60Y− ≤ ≤

Potential energy 
(work) 

High energy for points far from 
origin 
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   Analytical 
stiffness matrix 
(Kxx,Kxy,Kyy) 

For xlations along X axis: 
Kxx=sum of spring constants, 

Kyy=0 
X,Y position of 
center and both 

ends of bar 

Check against hand calculations 
for selected CORs. 

Sign of Fx,Fy,Mz For COR in 1st quad: 
Fx=neg.,Fy=pos.,Mz=pos. 

For COR in 2nd quad: 
Fx=neg.,Fy=neg.,Mz=neg. 

For COR in 3rd quad: 
Fx=pos.,Fy=neg.,Mz=pos. 

For COR in 4th quad: 
Fx=pos.,Fy=pos.,Mz=neg. 

Magnitude of 
loads in each 

spring 

Large mag. for points far from 
fixed end of spring, decreasing 
mag. for points near fixed end 

Magnitude of 
loads on bar 

Mag. grows for points far from 
origin 

Potential energy 
(work) 

High energy for points far from 
origin 

1b Rotation 
increment 

Use same grid 
from test 1a for 
COR locations.  

Rotate once 
around random 

CORs by 
0 ,30 ,45 ,90

120 ,180 ,210 ,
270 ,360

φ = ° ° ° °
° ° °
° °

 

Analytical 
stiffness matrix 
(Kxx,Kxy,Kyy) 

Nonlinear stiffness terms 

 
Figure 46  Validate Matlab simulations for rigid body-spring model 

 
 

Test # Input 
parameter 

varied 

Testing 
procedure 

Output 
parameter of 

interest 

Expected outcome 

Sign of Fx,Fy,Mz 
Magnitude of 
loads in each 

spring 
Magnitude of 
loads on bar 

Potential energy 
(work) 

Results similar to test 1b. 2a COR 
location 

Create 13x13 grid 
of CORs 

(  
mm and 

 
mm).  Rotate 

around each COR 
once by , 10  

and 1 . 

60 60X− ≤ ≤

60 60Y− ≤ ≤

30°
°

°
Analytical 

stiffness matrix 
(Kxx,Kxy,Kyy) 

Results similar to test 1b. 

2b Rotation 
increment 

Use CORs from 
above grid.  

Rotate about each 

Magnitude of 
loads in each 

spring 

Magnitude of loads (in each 
spring and on bar) and energy 

decreases with decreasing 
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Magnitude of 
loads on bar 

Potential energy 
(work) 

Rotate about each 
COR in 

1 ,0.5 ,0.25φ = ° ° °

30Φ = °

 
increments until 
reach .  

After each 
increment, 

translate center of 
bar to global 

origin to 
minimize forces. 

Analytical 
stiffness matrix 
(Kxx,Kxy,Kyy) 

decreases with decreasing 
rotation increment.  Stiffness 

terms do not change. 

Magnitude of 
loads in each 

spring 
Magnitude of 
loads on bar 

Potential energy 
(work) 

2x COR 
location 

Use CORs from 
above grid.  

Rotate about each 
COR in 1φ = °

5Φ = °

 
increments until 
reach .  

After each 
increment, 

translate center of 
bar to global 

origin to 
minimize forces. 

Analytical 
stiffness matrix 
(Kxx,Kxy,Kyy) 

Use this test to show that force 
can be minimized by translating 

bar to global origin. 

  

 
Figure 47  Characterize rigid body-spring model in displacement control 

 
 

Test # Input 
parameter 

varied 

Testing 
procedure 

Output 
parameter of 

interest 

Expected outcome 

No. of iterations 
to reach 

minimized force 

Two iterations 

Distance of center 
of bar from true 

force min. 
position 

Very close to zero 

3 COR 
location 

Create 13x13 grid 
of CORs 

(  
mm and 

 
mm).  Rotate 

around each COR 
by 

60 60X− ≤ ≤

60 60Y− ≤ ≤

1φ = °
30Φ = °

 until 
reach .  
Use analytical 
stiffness matrix 
for load control. 

Potential energy 
(work) 

Very similar to test 1b 

 
Figure 48  Characterize rigid body-spring model in load control 
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6.1 Displacement Control Loop of Hybrid Control Algorithm 

 
In the following sections, the rigid body-spring model’s behavior during pure 

displacement control will be fully characterized using Matlab simulations.  Outcome measures 

are the moment and peak force created during rotation, potential energy in the system and 

analytical global stiffness matrix.  After this characterization, several potential enhancements to 

the displacement control loop will be investigated.  Three methods of calculating the model’s 

preferred COR are evaluated.  Two methods of updating the user-chosen COR to the calculated 

preferred COR are also examined.  One method of calculating the preferred COR and one 

method of updating the COR will be chosen and incorporated into a new hybrid control 

algorithm. 

Before the rigid body-spring model can be used to test potential enhancements to the 

displacement or load control loops, it must be validated (Figure 46).  The transformations 

developed in section 4.2 to describe general rigid body motion were applied to the general rigid 

body-spring model shown in Figure 24.  For model symmetry, the following parameters were 

set:  mm,  N/mm, 2 8L = 0 1a bk k= = 0 0 60ar a br b= = = =A A A A  mm.  The center of the bar in the 

equilibrium position was set at the global origin.  Because of symmetry and the equilibrium 

position, the bar’s preferred COR, or the point about which a rotation will result in a pure 

moment, is at the global origin.  Figure 49 shows data for set 1a and Figure 50 shows 

representative data for set 1b.  Outcomes are expected.  Many hand calculations were performed 

to validate these results. 
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Figure 49  Comprehensive results showing validation of general spring model for translation of 
center of bar without any rotation (simulation set 1a).  (a) grid of points in the global XY -plane 

that the center of the bar was translated to (b) force acting on bar in global X  direction (outcome 
4a).  (c) force acting on bar in global  direction (outcome 4b).  (d) resultant force acting on bar 

in global 
Y

XY -plane (outcome 4c).  (e) moment acting on bar in global Z  direction (outcome 
4d).  (f) potential energy in system (outcome 5).  (g)-(i) global stiffness terms (outcomes 6a-6c). 

 
 

 82



 
a 

 
b 

 
c d 

e 
 

f 

 83



 
g h 

 
Figure 50  Comprehensive results showing validation of general spring model for rotation of 

center of bar about same grid of points shown in Figure 49, 30φΦ = = °  (simulation set 1b).  (a) 
force acting on bar in global X  direction (outcome 4a).  (b) force acting on bar in global Y  

direction (outcome 4b).  (c) resultant force acting on bar in global XY -plane (outcome 4c).  (d) 
moment acting on bar in global Z  direction (outcome 4d).  (e) potential energy in system 

(outcome 5).  (f)-(h) global stiffness terms (outcomes 6a-6c). 
 
 

After the model was validated, pure displacement control was applied in various rotation 

increments about a 13x13 grid of CORs (Figure 47).  Figure 51 shows the effect of varying 

COR location for a given rotation increment (set 2a).  These results are similar to those of set 1b 

in that the farther the COR is from the rigid body’s preferred COR, the greater the force created 

during rotation and the more work is put into the system.  The force created during rotation may 

be relieved by translating the center of the bar to the global origin in one step (Figure 52).  This 

is not load control because the force minimized position was known beforehand so the bar could 

be placed there without regard to the loads acting on it. 

 84



 
a 

 
b 

c d 

 
e 

 
f 

 85



 
g 

 
h 

 
Figure 51  Comprehensive results showing characterization of general spring model in 

displacement control for 1φΦ =  (simulation set 2a).  (a) force acting on bar in global = ° X  
direction (outcome 3a).  (b) force acting on bar in global Y  direction (outcome 3b).  (c) resultant 

force acting on bar in global XY -plane (outcome 3c).  (d) moment acting on bar in global Z  
direction (outcome 3d).  (e) potential energy in system (outcome 4).  (f)-(h) global stiffness 

terms (outcomes 5a-5c). 
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Figure 52  Representative data showing that the force resulting from rotation about a non-
preferred COR can be relieved by translating the center of the bar to the origin (simulation set 

2x) 
 
 

Results for set 2b illustrate that the force created during rotation is a function of rotation 

increment size.  The magnitude of the resultant force decreases with decreasing increment size, 

but the nonlinear trend for rotation about a given COR remains the same.  The moment, potential 

energy and global stiffness terms are not affected by the size of rotation increment.  

Representative data is shown in Figure 53 and Figure 54.  If the only change to displacement 

control were decreasing the rotation increment ( 1≤ ° ), the peak force created during rotation 

would decrease, as desired.  Experimentally, this protects the specimen from potential damage, 

but increases the time taken to complete a test, possibly introducing stress relaxation to the 

specimen.  Practically, the rotation increment should be kept to around .  If the user notices 0.5°
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that the peak force is too high, the increment can be decreased, or if the user notices that the peak 

force is low, the test can be sped up by increasing the increment size without compromising the 

specimen’s safety.  For the remainder of the simulations, a rotation increment of 1  is used to 

reduce computation time. 

°
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Figure 53  Representative data for full characterization of the general rigid body-spring model 

during displacement control (simulation set 2b) (a) rotated about the true COR located at (0,0) in 
the global XY -plane in 1φ = °  increments up to 30Φ = °  (b) the top row of this plot shows the 
resultant force acting on the bar after each incremental rotation (outcome 3a), the middle plot 

shows the moment acting on the bar after each incremental rotation (outcome 3b) and the bottom 
plot shows the potential energy in the system after each incremental rotation (outcome 4) (c) 

global stiffness terms plotted over total rotation angle (outcome 5) 
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Figure 54  Representative data for full characterization of the general rigid body-spring model 
during displacement control (simulation set 2b) (a) rotated about a COR located at (-30,-60) in 
the global XY -plane in 1 ,0.5 ,0.25φ = ° ° °  increments up to 30Φ = °  (b) the top row of this plot 

shows the resultant force acting on the bar after each incremental rotation (outcome 3a), the 
middle plot shows the moment acting on the bar after each incremental rotation (outcome 3b) 
and the bottom plot shows the potential energy in the system after each incremental rotation 

(outcome 4) (c) top plot of (b) reproduced, resultant force on bar after each rotation decreases for 
decreasing rotation increment (d) global stiffness terms plotted over total rotation angle 

(outcome 5) 
 
 

The penalty of rotating about a COR other than the model’s preferred COR while keeping 

the user-defined COR fixed locally have now been shown.  The farther the user-defined COR is 

from the preferred COR, the more severe the penalty, i.e., the peak force is larger.  It is 

 90



hypothesized that the displacement control loop can be improved by allowing the COR to move 

locally.  To test this hypothesis, two methods of updating the COR are proposed (Figure 45).  

One updates the COR post hoc, while the other method uses feedback to update the COR.  

Outcome measures used to evaluate the effectiveness of the proposed changes are the peak force 

created during rotation, the work put into the system and the number of iterations required to 

reach the force minimized position.  Either one of the proposed changes is deemed an 

improvement over the current displacement control if the outcome measures decrease. 

The first issue to be discussed is how to calculate the preferred COR.  Three methods will 

be considered: Spiegelman and Woo(42), Crisco et al.(43) and Challis(44).  All three methods use 

the motion of two markers attached to a moving rigid body to calculate the rigid body’s COR.  

The equations reported in literature are reproduced below. 

Method #1: Spiegelman and Woo(42) 

 1 3S X X= − , 2 4S X X′ = −  

 1 3T Y Y= − , T Y2 4Y′ = −  

 2 2cos S S T T
S T
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′ ′−
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+

, 2 2

S T T S
S T

φsin
′ ′−
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+
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−
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where ( )1 1,X Y  are the initial global coordinates of the first marker, ( )2 2,X Y  are the final 

global coordinates of the first marker, ( )3 3,X Y  are the initial global coordinates of the second 

marker, ( 4 , )4X Y  are the final global coordinates of the second marker, φ  is the incremental 

rotation and ( ,cor cor )X Y  are the global coordinates of the preferred COR (Figure 55). 

 
 

Figure 55  Spiegelman and Woo 
 
 

Method #2: Crisco et al.(43) 

 ( )1 1,A x y= , ( )2 2,A x y′ =  

 ( )3 3,B x y= , ( )4 4,B x y′ =  

 u A B= − , u A B′ ′ ′= −  

 cos u u
u u

φ
′⋅

=
′

, 21 cossinφ φ= −  
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,  

where ( )1 1,x y  are the initial global coordinates of marker , A ( )2 2,x y  are the final global 

coordinates of marker , (A )3 3,x y  are the initial global coordinate of marker B , ( 4 4, )x y  are the 

final global coordinate of marker B , φ  is the incremental rotation and ( ),cor corX Y  are the global 

coordinates of the preferred COR. 

Method #3: Challis(44) 

 [ ]v y R x= −  

 
1

1 n

i
i

x x
n =

= ∑ , 
1

1 n

i
i

y y
n =

= ∑  

where ix  is the global position vector of marker ,  is the local position vector of 

marker , , [

i iy

i 2,3i ,...= n ]R  is the rotation matrix describing the orientation of the local coordinate 

system with respect to the global coordinate system and v  is the global location of the local 

coordinate system origin. 

 i ix x x′ = − , i iy y y′ = −  
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xi yi yi xi
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where φ  is the incremental rotation.  φ  is inserted into [ ]R  in the first equation to 

determine v . 

 ( ) ( )1
2 tan 2 90FCR p R vφ

−
   = + ° ∆     

 ( )1corX FCR= , ( )2cor CR=Y F , 

where ( ) ( )( 1 2
1
2

)p v t v t= + , ( )90R °

)

 is a rotation matrix describing a rotation, 

 and (

90°

( )2v v t∆ = − ( )1v t ,cor corX Y  are the global coordinates of the preferred COR (Figure 56).  

For every method, 2
corX= 2

corY+error  because the true COR is at the origin of the global 

coordinate system. 

 
 

Figure 56  Challis 
 
 

Several variables must be considered when calculating the preferred COR.  The error is a 

function of the distance of the final force minimized position from the actual force minimized 

position, noisy marker position data and the size of rotation increment that the COR is calculated 

over.  Any of the methods will calculate the rigid body’s preferred COR when the actual force 
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minimized position of the rigid body is used.  If the position of the rigid body at the end of the 

load control loop is not the true force minimized position or is not close to it, the preferred COR 

will not be calculated.  In addition, all methods are susceptible to error when marker position 

data is noisy, especially if calculated over small rotation angles, as shown by the authors.  If the 

rigid body reaches its force minimized position and marker position data is known exactly, all 

methods calculate the rigid body’s preferred COR to within a very small error, even at small 

rotation angles. 

Experimentally, marker position data will be noisy.  Crisco et al. showed that the error 

increased exponentially for decreasing rotation angles when normally distributed noise (mean = 

0 mm, s.d. = 0.5 mm) is added to marker position for their method and Spiegelman and Woo’s 

method.  While Crisco’s method performed better, the error for both methods didn’t fall into an 

acceptable range until the rotation angle was .  Challis showed that his method of 

calculating the COR results in the least error of the three methods when noise is introduced, but 

the error still increased exponentially for decreasing rotation angles when the same normally 

distributed noise is added.  Again, the error in this method didn’t fall into an acceptable range 

until ∼ . 

20°∼

20°

To test the methods of calculating the preferred COR of the analytical rigid body-spring 

model, noise may be added to marker position, as done in the literature, or it may be added to the 

loads acting on the rigid body because this will affect the final force minimized position.  The 

experimental system is considered to guide the choice of where to add noise in the analytical 

simulations.  As shown previously, the positional inaccuracy of the manipulator is not random, 

but is a function of the weight on the end-effector.  The robot is told to move by a certain amount 

to reach the minimum force position.  This relies on the robot’s precision,  mm, so the 0.02±

 95



position inaccuracy due to the weight on the end-effector should only be a concern when the 

“WHERE” command is issued (when we want to know the marker positions).  As illustrated by 

preliminary experiments, the specimen is able to reach its force minimized position even though 

the load cell data may be quite noisy near the force minimized position.  Therefore, it is assumed 

that the position inaccuracy will be a larger source of noise experimentally and confound COR 

calculation more than UFS noise.  During simulations, noise is added to marker position; noisy 

load data is not considered. 

To add noise to marker position in simulations, the simple accuracy experiment from 

section 5.4 is used.  Recall the linear relationship between percent payload and position error in 

the UFS -direction (global y Z -direction): 

 ( )0.0058* % max payload 0.28error = −  

If the above equation were also applied to the UFS -direction, the position error (in 

mm) would be overestimated because the UFS -direction had the most slop when performing 

the experiment.  However, extending the above equation to the -direction is an acceptable 

approximation.  The percent of maximum payload that is acting on the bar (in the Matlab 

z

y

z

X - 

and Y -direction) is calculated and inserted into the above equation to obtain position error in the 

- and Y Z -directions.  The calculated errors are then added to the analytically known marker 

positions.   

As mentioned above, all methods result in very large error if noisy markers are used to 

calculate the preferred COR over small rotation increments.  To try to correct this, we can 

calculate the COR over larger rotation angles ( ) instead of after every increment ( ).  We 

can also limit the amount the COR is allowed to change. 

5°∼ 1°∼
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The three methods of calculating the preferred COR need to be evaluated for several 

cases (Figure 57).  Set 4a does not simulate the experimental system because the analytical 

solution to the global stiffness matrix used for load control cannot be known.  Set 4b does not 

simulate the experimental system either because it is highly unlikely that marker position data is 

not noisy.  Even though these evaluations do not simulate the experimental system, they are 

useful for simulation validation.  Sets 4c and 4d more closely simulate the experimental system 

because noise is added to marker position and the stiffness matrix is calculated numerically (even 

though the stiffness matrix in simulations is more exact than what would be encountered 

experimentally because the forces and moment are known analytically during simulations).  The 

numerical calculation of the global stiffness matrix is the one currently used for experiments (the 

diagonal terms are calculated as F d∆ ∆  and the off-diagonal terms are set to zero). 
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Test # Input 
parameter 

varied 

Testing 
procedure 

Output 
parameter of 

interest 

Expected outcome 

4a COR 
location 

Create 13x13 grid 
of CORs 

(  
mm and 

 
mm).  Rotate 

about each COR 
in 

60 60X− ≤ ≤

60 60Y− ≤ ≤

1φ = °

30Φ = °

 
increments until 
reach .  

After each 
increment, 

translate center of 
bar to global 

origin to 
minimize forces.  

Calculate 
preferred COR 

after each 
increment using 
each proposed 

method.  Do not 
add noise to 

marker position. 

Distance of 
calculated 

preferred COR 
from true 

preferred COR. 

Because noise is not added to 
marker position and forces are 

relieved without using load 
control, all methods should 

calculate true preferred COR. 
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4b COR 
location 

Use CORs from 
above grid.  

Rotate about each 
COR in 1φ = °

30Φ = °

 
increments until 
reach .  

After each 
increment, use 

diagonal stiffness 
matrix to translate 
bar to minimize 

forces.  Calculate 
preferred COR 

after each 
increment using 
each proposed 

method.  Do not 
add noise to 

marker position. 

Distance of 
calculated 

preferred COR 
from true 

preferred COR. 

Because noise is not added to 
marker position, all methods 

should calculate the same 
preferred COR.  As long as the 

center of the bar reaches the 
global origin in 20 iterations or 

less, all methods should calculate 
true preferred COR. 

4c COR 
location 

Use CORs from 
above grid.  

Rotate about each 
COR in 1φ = °

30Φ = °

 
increments until 
reach .  

After each 
increment, use 

diagonal stiffness 
matrix to translate 
bar to minimize 

forces.  Calculate 
preferred COR 

after each 
increment using 
each proposed 
method.  Add 

noise to marker 
position. 

Distance of 
calculated 

preferred COR 
from true 

preferred COR. 

Because noise is added to marker 
position, no method will exactly 
calculate true COR.  Same noise 
is added to marker position, so 
all methods will calculate the 

same preferred CORs.   
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4d COR 
location 

Use CORs from 
above grid.  

Rotate about each 
COR in 1φ = °

30Φ = °

°

 
increments until 
reach .  

After each 
increment, use 

diagonal stiffness 
matrix to translate 
bar to minimize 

forces.  Calculate 
preferred COR 
after each 5  

increment using 
each proposed 
method.  Add 

noise to marker 
position. 

Distance of 
calculated 

preferred COR 
from true 

preferred COR. 

Because noise is added to marker 
position, no method will exactly 
calculate true COR.  Same noise 
is added to marker position, so 
all methods will calculate the 

same preferred CORs.  
Calculated preferred CORs will 
be closer to true COR because 

CORs are calculate over a larger 
increment. 

 
Figure 57  Evaluation of proposed changes to displacement control (calculate preferred COR) 

 
 

Figure 58 and Figure 59 show representative data for sets 4a – 4d.  As expected, all 

three methods calculate the true preferred COR to within a very small error, on the order of 10 14−  

mm, when the bar is translated to the global origin in one step and noise is not added to marker 

position (set 4a).  Also as expected, all three methods calculate the same preferred COR when 

the currently used numerically calculated diagonal stiffness matrix is used in load control, noise 

is not added to marker position and the preferred COR is calculated over 1  increments (set 4b).  

As long as the bar reaches the global origin within the allowed number of iterations, the error in 

calculating the preferred COR is relatively small (Figure 58).  If the bar does not reach the force 

minimized position, there is more error in COR calculation (Figure 59).  When noise is added to 

marker position (set 4c), all three methods calculate the same preferred COR, again within a 

relatively small error if the bar reaches the force minimized position.  This is not surprising 

because the same noisy marker positions are used to calculate the COR for all methods.  When 

°
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the preferred COR is calculated using noisy markers over a larger rotation increment (set 4d), the 

error remains relatively small, as in Figure 58, or it decreases from a large error, as in Figure 59.  

Experimentally, calculating the COR over a larger rotation increment is preferred because there 

will be additional noise in the system: load cell noise and any end-effector noise that is 

unaccounted for. 

 
 

Figure 58  Representative data for characterization of performance of three different methods of 
calculating the preferred COR, rotated about a COR located at (-20,20) in the global XY -plane 
in 1φ = °  increments up to Φ = , plots show the error vs. rotation angle for conditions set in 
simulation set 4a (top left plot), simulation set 4b (top right plot), simulations set 4c (bottom left 

plot) and simulation set 4d (bottom right plot) 

30°
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Figure 59  Representative data for characterization of performance of three different methods of 
calculating the preferred COR, rotated about a COR located at (-60,60) in the global XY -plane 
in 1φ = °  increments up to Φ = , plots show the error vs. rotation angle for conditions set in 
simulation set 4a (top left plot), simulation set 4b (top right plot), simulations set 4c (bottom left 

plot) and simulation set 4d (bottom right plot) 

30°

 
 

The effect of noise in marker position on the ability of the three methods to calculate the 

preferred COR has been shown.  Because all three methods calculate the same preferred COR, 

only the Challis method will be considered for further simulations.  Even though this method is 

more computationally intense than the other two, it is hypothesized that it will perform better in 

the experimental system based on performance reported in the literature.  Next, proposed 

methods of updating the COR are investigated. 
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To illustrate the difference between post hoc and feedback COR updating, consider the 

following.  Suppose that we are performing the first cycle of pathseek, going from full flexion 

( ) to full extension (∼ ) and the COR is calculated in 5 degree increments, i.e., COR1 

is calculated using force minimized positions at 15  and 10  of flexion, COR2 is calculated 

using force minimized positions at 10  and 5  of flexion, and so on.  If the COR is updated post 

hoc, COR1 is stored for use in the second pathseek cycle.  The user-chosen COR is not updated 

to COR1; it is kept the same for ( )

15°∼ 15− °

° °

°

10

°

φ+ °  to 5 , where COR2 is calculated.  Again, COR2 is 

stored for use in the second pathseek cycle, but the user-chosen COR is not updated to reflect 

COR2.  This algorithm is still stubborn because the initial user-chosen COR is used for the entire 

first pathseek cycle.  Then, for the second pathseek cycle, COR1 is fixed globally for 15  to 10  

of flexion, COR2 is fixed globally for 

°

° °

( )10 φ+ °  to 5 , etc.  If a certain criteria is not met during 

the second pathseek cycle, new CORs can be calculated again as in the first pathseek cycle.  If 

the COR is updated using feedback, then the user-chosen COR is updated in the first pathseek 

cycle to COR1 at 10  and fixed locally from 

°

° ( )10 φ+ °  to 5 .  Then COR2 is calculated and 

used from (

°

)5 φ+ °  to .  This process is repeated for the entire pathseek test if a certain criteria 

is not met.  Experimentally, the distance the COR is allowed to move will be limited to 5 mm in 

each direction because the calculated preferred COR may be far away from the true preferred 

COR. 

0°

Test # Input 
parameter 

varied 

Testing 
procedure 

Output 
parameter of 

interest 

Expected outcome 

5a COR 
location 

Create 13x13 grid 
of CORs 

(

Peak force 
created during 

rotation 

Peak force will be reduced. 

60 60X− ≤ ≤
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Number of 
iterations to 

minimize force. 

Number of iterations will be 
reduced. 

(  
mm and 

 
mm).  Rotate 

about each COR 
in 

60 60X− ≤ ≤

60 60Y− ≤ ≤

1φ = °

30Φ = °

°

 
increments until 
reach .  

After each 
increment, use 

diagonal stiffness 
matrix to translate 
bar to minimize 

forces.  Calculate 
preferred COR 
after each 5  

increment using 
Challis method.  

Add noise to 
marker position.  

Use post hoc 
method to update 
COR.  Amount 
COR is allowed 

to change is 
limited to 5 mm 

in each direction. 

Work put into 
system 

Work will remain unchanged. 

Peak force 
created during 

rotation. 

Peak force will be reduced. 

Number of 
iterations to 

minimize force. 

Number of iterations will be 
reduced. 

5b COR 
location 

Use same testing 
method as test 5a, 
but use feedback 
to update COR. 

Work put into 
system 

Work will remain unchanged. 

  

 
Figure 60  Evaluation of proposed changes to displacement control (update COR) 

 
 

Matlab simulations were performed to evaluate the two proposed methods of updating the 

COR (Figure 60).  Outcome measures for testing proposed improvements are peak force created 

during rotation, number of iterations required to minimize force and work put into system 

(Figure 61 and Figure 62).  The work remains unchanged across varying COR location, COR 
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calculation method and COR update method because the rigid body-spring model ends up at the 

same force minimized position within the limited number of iterations; the work done to the bar 

in load control cancels the work done to the bar in displacement control.  The results of this test 

are not entirely expected.  It was hypothesized that using feedback to update the COR would 

perform better (smaller peak force and fewer iterations) than updating the COR post hoc.  For 

most of the CORs in the 13x13 grid, this is true (Figure 62), but for some CORs it is not (Figure 

61).  Overall, the feedback method is superior, so it will be used in the new hybrid control 

algorithm. 
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Figure 61  Representative data for characterization of performance of two different methods of 
updating the user-defined COR as compared with keeping the COR fixed locally (simulation sets 
5a and 5b), rotated about a COR located at (-60,60) in the global XY -plane in 1φ = °  increments 
up to Φ = , the left column shows data using the post hoc method of updating the COR, the 
right column shows data using feedback to update the COR, the top row of plots show the peak 
force (in Newtons) created during rotation about the COR vs. rotation angle (outcome 1), the 

middle row shows the number of iterations required to minimize force vs. rotation angle 
(outcome 2) and the bottom row shows the potential energy (in Newton-mm) in the system vs. 

rotation angle (outcome 3) 

30°
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Figure 62  Representative data for characterization of performance of two different methods of 
updating the user-defined COR as compared with keeping the COR fixed locally (simulation sets 

5a and 5b), rotated about a COR located at (-20,-40) in the global XY -plane in 1φ = °  
increments up to Φ = , the left column shows data using the post hoc method of updating the 
COR, the right column shows data using feedback to update the COR, the top row of plots show 
the peak force (in Newtons) created during rotation about the COR vs. rotation angle (outcome 
1), the middle row shows the number of iterations required to minimize force vs. rotation angle 
(outcome 2) and the bottom row shows the potential energy (in Newton-mm) in the system vs. 

rotation angle (outcome 3) 

30°
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Table 1  Tabulated results of simulation sets 5a and 5b showing range of peak force (in 
Newtons) and average number of force minimizing iterations for the current method (no COR 

update), post hoc update of COR and feedback update of COR 
 

 Range of 
peak force (N) 

Average 
iterations 

Current method 1.7611 – 2.7476 5.3 

Post hoc 0.1386 – 2.7476 3.4 

Feedback 0.1563 – 2.3902 2.3 

 
 
 

6.2 Load Control Loop of Hybrid Control Algorithm 

 
The general rigid body-spring model is a coupled nonlinear system that can be described 

by two continuous functions, ( , )f x y  and ( ),g x y , where ( ),f x y  is the analytical solution for 

 developed in section 4.2 and  is the analytical solution for , also developed in 

section 4.2.  The goal of the load control loop is to find the values 

XF ( ,g x )y YF

*x x=  and  such that 

 and .  Newton’s method for minimizing two coupled nonlinear 

equations is an appropriate method of iteratively calculating the translations 

*y y=

i

( )* *, 0y =f x ( * *,g x y ) 0=

x∆  and  of the 

rigid body to minimize the resultant force

iy∆

(52): 

 
x i y ii i

x i y ii i

i

i

f x f y f

g x g y g

 ∆ + ∆ = −


∆ + ∆ = −
, 

where *
i ix x x∆ = − , , and the subscript on functions *

iy y y∆ = − i f  and  denote the 

first derivative of the function with respect to the subscript, i.e., 

g

xf  is the first derivative of f  

with respect to x .  The above set of equations can be rewritten as 
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 XiXX XY i

YiYX YY i

FxK K
FyK K

− ∆    =     −∆       
. 

Once ix∆  and  are known, the new coordinates of the rigid body can be written as iy∆

 1

1

i i

i i

i

i

x x x
y y
+

+ y
= + ∆

 = + ∆
, 

This process is repeated iteratively until the rigid body reaches the force minimized 

position.  Because the stiffness matrix K  is only linear over a small range, the magnitudes of 

ix∆  and  are limited.  The above equations assume that iy∆ K  is known.  Because the analytical 

solution for K  cannot be known experimentally, it must be calculated numerically.  Several 

methods of finding K  are covered in more detail later. 

Before examining any numerical calculations of the stiffness matrix, Newton’s method is 

applied to the rigid body-spring model in load control to fully characterize the model.  To 

accomplish this, two outcome measures are needed: the number of iterations required to 

minimize force on the bar and the distance of the final position of the center of the bar from the 

true force minimized position (Figure 48).  The fully populated analytical stiffness matrix was 

used and translations were limited to 1 mm in each direction.  When the resultant force on the 

bar was less than 10  N, the load control loop ended.  Figure 63 shows the distance of the 

center of the bar from the global origin, the number of iterations required to minimize force and 

the potential energy of the system for two randomly chosen CORs.  This data is representative of 

the full 13x13 grid of CORs. 

5−
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a b 

 
Figure 63  Representative data for full characterization of the general rigid body-spring model 

during load control (simulation set 3), 1φ = °  increments up to 30Φ = ° , the top row of the plots 
show the distance (in mm) of the final force minimized position from the true force minimized 
position (the global origin) vs. rotation angle (outcome 1), the middle row shows the number of 
iterations required to minimize force vs. rotation angle (outcome 2) and the bottom row shows 

the potential energy in the system after each rotation (outcome 3) (a) rotated about a COR 
located at (-60,0) in the global XY -plane (b) rotated about a COR located at (10,20) in the 

global XY -plane 
 
 

The osteoligamentous spine is a highly nonlinear, coupled system.  Traditionally, in vitro 

biomechanical testing has been performed using either the flexibility method or the stiffness 

method.  The flexibility method applies loads, either singly or in combinations, to the FSU and 

the resulting unconstrained motions are measured.  The stiffness method applies displacements 

and the resulting loads are measured.  Flexibility/stiffness coefficients can then be determined.  

Assembling the flexibility/stiffness matrix is usually simplified by setting coefficients to zero or 

equating them to one another by assuming specimen symmetry.  To examine the importance of 

coupled flexibility coefficients in modeling cervical spine motion, Winkelstein and Myers(53) fit 

linear, piecewise nonlinear and logarithmic functions to cervical spine data to assemble the full 

flexibility matrix.  They found that including the coupled terms improved model performance. 
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For the load control loop of our hybrid control algorithm, a stiffness matrix is calculated 

numerically and inverted to find the translation necessary to reach the force minimized position 

(Figure 45).  Currently, the diagonal terms of the matrix are calculated using one force 

minimizing translation: XX XK F= ∆ ∆x  and YY YK F y= ∆ ∆ , where x∆  and y are the 

components of a single translation of the rigid body.  This attributes all the change in force in a 

certain direction to the displacement in that direction.  However, we know that the specimen is a 

coupled system.  It is hypothesized that including the off-diagonal (coupled) terms in the 

stiffness matrix will allow the load control loop to converge to the force minimized position 

faster, but the matrix cannot be fully populated using only one translation.  Consider a translation 

that is some linear combination of 

∆

x  and : .  This translation results in a 

change in force in both the 

y { , Td x∆ = ∆ ∆ }y

x - and -directions: .  We use the linear 

relationship  to calculate 

y { , }T
X YF∆F F∆ = ∆

F K d∆ = ∆ K : 

 X XX XY

Y YX YY

F K K x
F K K y

∆ ∆     
=   ∆ ∆    

 

 X XX XY

Y YX YY

F K x K
F K x K y

y∆ = ∆ + ∆
 ∆ = ∆ + ∆

 

If we set , then there are two equations and two unknowns: 0XY YXK K= =

XX XK F= ∆ ∆x  and YY YK = ∆F ∆y .  If we do not set 0XY YXK K= = , then we have two 

equations and four unknowns.  Thus, the system is underdetermined and we cannot solve for any 

of the terms in the stiffness matrix without another translation.  However, we shouldn’t wait to 

calculate K  until after every other translation because this would be a poor approximation to K , 
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resulting in inaccurate values for the calculated force minimizing translations.  To fully populate 

the stiffness matrix, four methods are proposed. 

Method #1: apply two perturbations (  mm) at each position, with one perturbation 

being parallel to the global 

1∼

X  axis and the other being parallel to the global Y  axis.  This allows 

the full stiffness matrix to be calculated at each position: 

Perturbation #1: 1 1 10, 0 ,X Y1x y F F∆ ≠ ∆ = → ∆ ∆  

Perturbation #2: 2 2 20, 0 ,X Y 2x y F F∆ = ∆ ≠ → ∆ ∆  

 1

1

X
XX

FK
x

∆
=

∆
 

 2

2

X
XY

FK
y

∆
=

∆
 

 1

1

Y
YX

FK
x

∆
=

∆
 

 2

2

Y
YY

FK
y

∆
=

∆
 

Method #2: apply two perturbations (  mm) at each position, with one perturbation 

being a linear combination of global 

1∼

X  and Y  and the other perturbation being orthogonal to the 

first one.  By using global components of the perturbations, we can calculate the full stiffness 

matrix at each position. 

Perturbation #1: 1 1 10, 0 ,X Y1x y F F∆ ≠ ∆ ≠ → ∆ ∆  

Perturbation #2: 2 2 20, 0 ,X Y 2x y F F∆ ≠ ∆ ≠ → ∆ ∆  

 2 1 1 2

2 1 1 2

X X
XX

F y F yK
x y x y

∆ ∆ −∆ ∆
= −

−∆ ∆ + ∆ ∆
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 ( )2 1 1 2

2 1 1 2

X X
XY

F x F x
K

x y x y
− −∆ ∆ + ∆ ∆

=
−∆ ∆ + ∆ ∆

 

 ( )2 1 1 2

2 1 1 2

Y Y
YX

F y F y
K

x y x y
− ∆ ∆ −∆ ∆

=
−∆ ∆ + ∆ ∆

 

 ( )2 1 1 2

2 1 1 2

Y Y
YY

F x F x
K

x y x y
− −∆ ∆ + ∆ ∆

=
−∆ ∆ + ∆ ∆

 

Method #3: Limit the force minimizing translations in a stepwise fashion: 

iteration 1: 1 1 10, 0 ,X Y1x y F F∆ ≠ ∆ = → ∆ ∆  

iteration 2: 2 2 20, 0 ,X Y 2x y F F∆ = ∆ ≠ → ∆ ∆  

  #

Three of the four terms in the stiffness matrix may be calculated at each position.  Refer 

to method #1 to see that only two of the terms may be calculated when the displacement in one 

direction is zero.  The third term is known through symmetry: 

iteration 1: 1

1

X
XX

FK
x

∆
=

∆
, 1

1

Y
YX

FK
x

∆
=

∆
, XY YXK K=  

iteration 2: 2

2

X
XY

FK
y

∆
=

∆
, 2

2

Y
YY

FK
y

∆
=

∆
, YX XYK K=  

  #

The fourth term (  for odd numbered iterations,  for even numbered iterations) is 

carried over from the previous calculation.  Clearly, an initial guess for 

YYK XXK

K  is required for this 

method to work. 

Method #4: Limit the translations in a stepwise fashion to calculate three of the four 

stiffness terms, as in method #3, but apply a perturbation in the orthogonal direction to find the 
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fourth term.  This method is similar to method #1 expect that only one perturbation is applied in 

this method, whereas two perturbations are applied in method #1. 

To evaluate the proposed change to stiffness matrix population (Figure 64), outcome 

measures are the calculated global stiffness terms (compared to analytical stiffness), the distance 

of the final load control position from the true force minimized position (for simulations only), 

the number of iterations required to minimize the force and the amount of work put into the 

system.  For simulations, the work of each spring can be summed to find the total work in the 

system.  However, this isn’t convenient for the experimental system, so it will have to be 

approximated as .  The outcome measures are compared to the currently used 

diagonal stiffness matrix to draw a conclusion about which method to use in the new hybrid 

control algorithm. 

X YF x F y∆ + ∆

Test # Input 
parameter 

varied 

Testing 
procedure 

Output 
parameter of 

interest 

Expected outcome 

Stiffness matrix 
(Kxx,Kxy,Kyy) 

Similar to analytical stiffness 
terms 

No. of iterations 
to reach 

minimized force 

2>  iterations 

Distance of center 
of bar from true 

force min. 
position 

Very close to zero 

6 COR 
location 

Create 13x13 grid 
of CORs 

(  
mm and 

 
mm).  Rotate 

around each COR 
by 1 degree until 
reach 30 degrees.  

Use numerical 
matrices 1-4 for 

load control. 

60 60X− ≤ ≤

60 60Y− ≤ ≤

Potential energy 
(work) 

Very similar to test 1b 

 
Figure 64  Evaluation of proposed changes to load control 

 
 

Figure 65 - Figure 69 show representative data for test 6.  Figure 65 - Figure 67 show 

that methods #1 and #2 calculate the correct stiffness values for ,  and  as compared XXK XYK YYK
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to the analytical values.  Methods #3 and #4 also calculate correct values for ,  and , 

except for translations of the bar along the global X or Y axes, while the current diagonal 

stiffness calculation does not calculate the correct stiffness values for ,  and  at any 

COR location. 

XXK

XYK

XYK

K

YYK

XXK YY
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Figure 65  Values of  for different calculation methods  (a) analytical solution  (b) using 
current method  (c) using proposed method #1  (d) using proposed method #2  (e) using 

proposed method #3  (f) using proposed method #4 

XXK
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Figure 66  Values of  for different calculation methods  (a) analytical solution  (b) using 
current method  (c) using proposed method #1  (d) using proposed method #2  (e) using 

proposed method #3  (f) using proposed method #4 

XYK
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Figure 67  Values of  for different calculation methods  (a) analytical solution  (b) using 

current method  (c) using proposed method #1  (d) using proposed method #2  (e) using 
proposed method #3  (f) using proposed method #4 

YYK

 
 

Figure 68 shows that forces created during rotation are reduced using the current 

diagonal stiffness matrix, even if the correct stiffness values are not calculated.  This plot is 

representative of the full grid of CORs and for each proposed method of stiffness calculation.  

Figure 69 shows that method #3 results in the smallest error and few iterations.  Methods #1 and 

#2 take the fewest iterations to minimize force at large rotation angles, but method #3 only takes 

one or two iterations longer.  Method #4 consistently results in a much higher number of 

iterations even though the error is comparable to the other three methods.  It can also be seen in 

Figure 69 that when the diagonal stiffness matrix is used during load control, the number of 

iterations suddenly drops from about 20 iterations at about 2 iterations at 18°, whereas the 

iterations either decrease predictably or remain low when using one of the full stiffness matrices.  

There are several CORs in the grid for which this is true.  It is reasonable to say that for these 

CORs the diagonal stiffness terms are either underestimated or overestimated.  If the stiffness 

terms are underestimated, then a large displacement is calculated when the matrix is inverted.  

The center of the bar is limited to a translation of 1 mm in each direction, so the bar is 

overshooting the true force minimized position in this case.  If the stiffness terms are 

overestimated, then a small displacement is calculated when the matrix is inverted.  The center of 

the bar then is undershooting the true force minimized position on the first iteration, but is able to 

minimize force within 2 or 3 iterations because the displacements are not too small. 
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Figure 68  Force created during rotation is minimized by using the current diagonal stiffness 
matrix 
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Figure 69  Representative data for characterization of performance of four different methods of 
calculating the fully populated stiffness matrix as compared with the current diagonal stiffness 

matrix (simulation set 6), rotated about a COR located at (0,-60) in the global XY -plane in 
1φ = °  increments up to Φ = , the left column shows the distance (in mm) of the final force 

minimized position from the true force minimized position (the global origin) vs. rotation angle 
(outcome 1), the middle column shows the number of iterations required to minimize force vs. 
rotation angle (outcome 2) and the right column shows the potential energy (in Newton-mm) in 

the system vs. rotation angle (outcome 3), the top row of plots shows results for proposed 
method #1, the next row shows results for proposed method #2, the next row shows results for 

proposed method #3 and the bottom row shows results for proposed method #4 

30°

 
 

Choosing which method to use for calculating the stiffness matrix experimentally 

depends on the desired use of the matrix.  If the user simply wishes to use the matrix for load 

control without concern to the actual stiffness values that are being calculated, method #3 should 

be used because it results in the least error, takes a small number of iterations to minimize force 

and results in a faster test because perturbations do not need to be applied at every position.  
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However, if the user wants to approximate the specimen’s stiffness, method #1 or method #2 

should be used because these methods not only perform well during load control, but also closely 

match the analytical stiffness.  Method #3 will be used in the new hybrid control algorithm. 

 
Table 2  Tabulated results of simulation set 6 showing average number of force minimizing 

iterations for the current method (diagonally populated stiffness matrix), proposed method #1 
(apply two perturbations parallel to global X  and Y  axes), proposed method #2 (apply two 

orthogonal perturbations in global XY -plane), proposed method #3 (constrain force minimizing 
translations to stairsteps parallel to global X  and Y  axes) and proposed method #4 (constrain 

translations as in method #3 and apply one orthogonal perturbation) 
 

 Average 
iterations 

Current method 5.3 

Method #1 4.7 

Method #2 4.8 

Method #3 5.2 

Method #4 12.7 

 
 
 

6.3 Improved Hybrid Control Algorithm 

 
After identifying the best performing changes to displacement and load control, they 

were combined into a new hybrid control system and the new algorithm is compared with the old 

one. (Figure 70)  A 13x13 grid of CORs ( 60 60X− ≤ ≤  mm and 60 60Y− ≤ ≤

1

 mm) was 

created.  The center of the bar was rotated about each COR by φ = °  increments until 30Φ = °

°

.  

After each incremental rotation, method #3 was used during the load control loop to calculate the 

global stiffness terms and the force minimizing translations.  The preferred COR was calculated 

using Challis’ method by using the force minimized positions at  and 5 , 5  and 10 , etc.  0° ° °
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The COR was updated using feedback.  Outcome measures for evaluating the new hybrid control 

algorithm are the peak force created during rotation, the number of iterations required to 

minimize force, the distance of the center of the bar from the global origin at the final load 

control step and the work done to the system. 

Test # Input 
parameter 

varied 

Testing 
procedure 

Output 
parameter of 

interest 

Expected outcome 

Peak loads 
generated during 

rotation 

Peak loads decreased with new 
hybrid control algorithm. 

Number of 
iterations to reach 

minimum force 

Number of iterations to reach 
minimum force reduced with 
new hybrid control algorithm. 

Distance of center 
of bar from global 

origin. 

Because forces and marker 
positions are known analytically, 
the error will not change much 

from old algorithm to new. 

7 COR 
location 

Create 13x13 grid 
of CORs 

(  
mm and 

 
mm).  Rotate 

around each COR 
by 

60 60X− ≤ ≤

60 60Y− ≤ ≤

1φ = °

30Φ = °

°

 
increments until 
reach .  

Calculate 
stiffness using 

method #3.  
Calculate 

preferred COR 
every 5  using 
Challis method.  

Add noise to 
marker position.  

Update COR 
using feedback 

method.  

Work done to 
model 

Work done to model unchanged 
with new hybrid control system 

 
Figure 70  Evaluation of new hybrid control algorithm 

 
 

 
Figure 71 shows a representative plot for comparing old and new algorithm outcome 

measures for simulations.  As expected, the work remained unchanged from the old algorithm to 

the new one.  The peak force decreased when using the new algorithm, but the number of 

iterations increased.  However, this increase is still within an acceptable range.  The distance of 
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the center of the bar from the global origin is very small, on the order of 10  mm.  The plots 

generated for the full grid of CORs show that the new hybrid control algorithm decreases the 

peak force created during rotation, does not add additional work to the system, results in very 

little error during load control and takes a relatively small number of iterations to minimize 

force. 

3−

 
 

Figure 71  Representative data for characterization of performance of new hybrid control 
algorithm as compared with the old algorithm (simulation set 7), rotated about a COR located at 
(0,20) in the global XY -plane in 1φ = °  increments up to 30Φ = ° , the top row of the plot shows 

the peak force (in Newtons) created during rotation vs. rotation angle (outcome 1), the second 
row shows the number of iterations required to minimize force vs. rotation angle (outcome 2), 
the third row shows the distance (in mm) of the final force minimized position from the true 

force minimized position (the global origin) vs. rotation angle (outcome 3) and the bottom row 
shows the potential energy (in Newton-mm) in the system vs. rotation angle (outcome 4). 
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Table 3  Tabulated results of simulation set 7 showing range of peak force (in Newtons) and 

average number of force minimizing iterations for the current hybrid control algorithm (no COR 
update and diagonally populated stiffness matrix) and the new hybrid control algorithm 
(feedback COR update and fully populated stiffness matrix calculated using method #3) 

 
 Range of 

peak force (N) 
Average 
iterations 

Old algorithm 1.7611 – 2.7476 5.3 

New algorithm 0.1563 – 2.3866 4.9 
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7.0 DISCUSSION 

 
 

7.1 Summary 

 
A tabletop robotic/UFS testing system that interacts with Matlab to apply hybrid control 

to testing of lumbar spines was developed.  The experimental system was validated analytically 

using rigid body transformations simulated in Matlab.  Changes to displacement control and load 

control were tested and an improved hybrid control algorithm was developed that may be used 

for delineating biomechanical properties of the human lumbar spine.  Specific aim 2a was 

performed to test the hypothesis that allowing the user-defined COR to move locally as well as 

globally would decrease the peak force created during rotation and decrease the number of 

iterations required to minimize that force.  Results from section 6.1 show that the general rigid 

body-spring model used during simulations supported this hypothesis.  Specific aim 2b was 

performed to test the hypotheses that fully populating the stiffness matrix would decrease the 

number of iterations required to minimize force created during rotation and that the fully 

populated matrix would provide a better approximation of the true stiffness values than the 

diagonal stiffness matrix.  Results from section 6.2 show that the number of iterations was 

reduced for proposed methods #1 - #3, while the iterations increased for proposed method #4.  

Results from this section also show that methods #1 and #2 provided the best approximation to 

the true stiffness values of the general rigid body-spring model for all CORs in the grid, while 

methods #3 and #4 closely approximated the true stiffness values for most of the CORs in the 

grid.  Results from section 6.3 show that after combining the proposed changes to both the 

displacement and load control loops, the range of peak force created during rotation about the 

grid of user-defined CORs and the number of iterations required to minimize that force both 
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decreased.  The analytical and experimental platforms will work in conjunction for future studies 

of advanced control methods for spine testing.  Because Matlab was used both analytically and 

experimentally, the programs may be executed on any PC. 

 
 

7.2 Limitations and Future Work 

 
Despite some apparent limitations of using hybrid control with a robotic/UFS testing 

system, including specimen viscoelasticity and some slop in the manipulator’s joints, the testing 

system described in the above sections provides a controllable testing apparatus with a control 

algorithm that is hypothesized to be similar to what the body employs in vivo.  Control 

algorithms can always be improved and the research done in this thesis is no exception.  For 

further improvement to the displacement control loop, another method of updating the COR 

should be considered: feedforward.  Feedforward can be used if some pattern is recognized in the 

path of the calculated CORs.  Suppose that the preferred COR is calculated every 5  and the 

path made by 

°

5nφ  calculated CORs looks approximately quadratic.  Then a quadratic function 

can be fit to the path of CORs and the position of the next COR can be predicted.  This predicted 

COR is fed forward and used for the next rotation.  Least squares is one possible method of 

fitting a function to the COR path.  To use least squares, a curve is fit to a set of data points: 

( ,i i )x Y  for .  The least squares approximation to the data is a function of 1, 2,...,i = n ix : 

.  In order to ideally use least squares with feedforward control, we should know the 

form of  a priori.  However, this is highly unlikely unless many specimens have been tested 

and a pattern emerges.  One option is to plot the COR path during the test.  If a pattern emerges 

from the plot, the user would have to be allowed to stop the test and suggest the form of  to the 

( )ix

y

y f=

y

 129



Matlab program.  Problems with this include longer tests and keeping the specimen at some 

position other than neutral for extended periods of time.  Another option is to fit a linear function 

between two successive CORs.  This may be a poor approximation, but further tests will have to 

elucidate that. 

Another improvement to displacement control involves fully characterizing the 

manipulator’s position inaccuracy.  The simple one DOF experiment from section 5.4 shows that 

the manipulator’s position inaccuracy due to varying weight on the end-effector may be 

corrected using load cell data for a certain position in space.  Future work should be done to fully 

characterize the position inaccuracy in each direction for the workspace encountered during 

specimen testing.  This will improve COR calculation because marker position noise will be 

reduced to nearly zero. 

A further limitation of the current study is the tacit assumption of sagittal plane symmetry 

of the specimens.  The hybrid control algorithm constrains motions to the mid-sagittal plane—

thus non-sagittal force ( ) and moments (xF yM  and zM ) are not explicitly controlled, even 

though coupled loads in these non-sagittal DOF have been found to be rather minimal.(13)  In the 

future, we would like to extend the control algorithm to three dimensions to enable minimization 

of all coupled loads.  One approach may be to base the three-dimensional hybrid control 

algorithm on finite rotations about and translations along a continually updated screw 

displacement axis (SDA) or helical axis of motion (HAM).  In addition to correcting for sagittal 

plane asymmetry, full three-dimensional motion can elucidate the altered kinematics of clinically 

unstable specimens.  The hybrid control algorithm itself can elucidate the kinematics of either 

clinically stable or unstable specimens because it finds the passive path of the specimen.  

However, suppose that a specimen has undergone a unilateral facetectomy.  In this case, 
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confining motion to the sagittal plane may not find the passive path during flexion/extension 

because it is possible that the passive path does not lie in this plane.  Finding the altered passive 

path moments then requires full three-dimensional motion. 

 
 

7.3 Conclusion 

 
This thesis has described development of analytical and experimental platforms and 

refinement of the testing algorithm for delineating spine kinetics.  The analytical platform 

provides the ability to test experimental protocols and elucidate subtle complexities of any given 

change to the testing algorithm that may be lost in the experimental system.  The robotic/UFS 

testing system provides a system that is totally controlled with the regulated application of six 

DOF loads and displacements.  The refined hybrid control algorithm produces better data by 

reducing imposition of a COR that the specimen does not prefer and including coupled stiffness 

terms that had previously been ignored.  Utilizing an off the shelf, readily available language 

such as Matlab introduces uniformity into robotic systems.  Built-in functions in Matlab and a 

PC with a fast processor allow the user to simplify the program and implement complicated 

control systems.  If several different types of controllers are to be used together, each with its 

own language, a single PC-based language can be used to standardize the system.  This allows 

programs to be written and shared between any number of users with an external PC interface 

system.  In summary, the robotic/UFS testing system with refined hybrid control facilitates 

improved biomechanical testing of spinal segments, thus leading to a better understanding and 

treatment of spinal pathologies. 
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APPENDICES 



 
 

 
APPENDIX A 

 
 
 
Matlab code for simulations 

hand14a.m is a Matlab script that simulates hybrid control of a rigid body-spring model.  

Parameters for the spring model are input at the beginning of the script.  Several functions are 

called by hand14a.m.  They are included in this appendix after hand14a.m in the order in which 

they appear in the script. 

% hand14a.m 
% analytical rigid body-spring model 
% rotate about COR in phi degree increments 
% Amy Loveless 
% 3/12/2003 
 
clear all 
 
% ====================================================== 
% General model parameters 
% spring constants (N/mm) 
ka = 1; 
kb = 1; 
% resting length of springs (mm) 
lar = 60; 
lbr = 60; 
% length of spring when inserted into system (mm) 
la_init = 60; 
lb_init = 60; 
% length of half of bar (mm) 
L = 40; 
% local positions of nodes attached to rigid body (mm) 
axy = [-L 0]; 
bxy = [L 0]; 
% global positions of fixed nodes (mm) 
jaXY = [-(L+la_init) 0]; 
jbXY = [L+lb_init 0]; 
theta = 0; 
 
%% ====================================================== 
%% Physical model parameters 
%% spring constants (N/mm) 
%ka = 12.033; % blue 
%kb = 11.55;  % red 
%% resting length of springs (mm) 
%lar = 1.955*2.54*10; % blue 
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%lbr = 2.936*2.54*10; % red 
%% length of springs when inserted into system (mm) 
%la_init = lar + 0.382*2.54*10; % blue 
%lb_init = lbr + 0.387*2.54*10; % red 
%% length of half of bar (mm) 
%L = 28; 
%% local positions of nodes attached to rigid body (mm) 
%axy = [-L 0]; 
%bxy = [L 0]; 
%% global positions of fixed nodes (mm) 
%jaXY = [-cos(70*pi/180)*(L+la_init) -sin(70*pi/180)*(L+la_init)]; 
%jbXY = [cos(70*pi/180)*(L+lb_init) sin(70*pi/180)*(L+lb_init)]; 
%theta = 70; 
%% ====================================================== 
 
% local positions of markers attached to rigid body (mm) 
mark1xy = [-L 0]; 
mark2xy = [L 0]; 
 
% amount of rotation from resting position (rad) 
phi = deg2rad(1); 
PHI = 30; 
kk = round(PHI/rad2deg(phi)); 
 
% limit magnitude of translations 
t_lim = 1; % mm 
const_stiff = 10; % N/mm 
 
cor_lim = 5; % mm 
ftarget = 10^-5; % N 
iterations = 20; 
tick = 0; 
index = 1; 
 
% define unit vectors 
ihat = [1; 0; 0]; 
jhat = [0; 1; 0]; 
khat = [0; 0; 1]; 
 
% % initialize graph display for forces and moments 
% fh = figure('Position', [150 100 600 600], 'Color', 'w', 'doublebuffer', 
'on'); 
% fgraph = axes('Parent', fh, 'Position', [.1 .6 .8 .35], 'XLim', [0 
iterations], 'YLim', [-50 50], 'nextplot', 'add'); 
% forceufs = line('XData', 0, 'YData', 0, 'Color', 'k', 'Marker', '.', 
'markersize', 8, 'erasemode', 'none'); 
% 
% % initialize variables for drawing position of bar 
% ah = axes('Position', [.1 .05 .5 .5], 'GridLineStyle', ':', 'XLim', [-110 
110], 'YLim', [-110 110], 'nextplot', 'add'); 
% set(ah, 'XColor', [.7 .7 .7], 'YColor', [.7 .7 .7], 'XGrid', 'on', 'YGrid', 
'on'); 
% bar = line('xdata', [0 0], 'ydata', [0 0], 'color', 'k', 'linewidth', 10); 
% springa = line('xdata', [0 0], 'ydata', [0 0], 'color', 'b', 'linewidth', 
3); 
% springb = line('xdata', [0 0], 'ydata', [0 0], 'color', 'r', 'linewidth', 
3); 
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%  
% handles = [fh, fgraph, forceufs, ah, bar, springa, springb]; 
 
for var = 1:1:13 
for cycle = 1:2 
for z = 6:5:11 
  for i = 13:13 
     for j = var:var 
         
        if (z == 11) & (cycle == 1) 
           break 
        elseif (z == 6) & (cycle == 2) 
           break 
        end 
         
        theta = deg2rad(0); 
        thetaG(i,j) = theta; 
        temp = theta; 
        thetaCOR(i,j) = 0; 
        thetaa(i,j) = 0; 
        thetab(i,j) = 0; 
        thetaja(i,j) = 0; 
        thetajb(i,j) = 0; 
         
        % make 13x13 grid of points for COR and translation of center of bar 
(mm) 
        % these points are defined FROM X,Y TO xTCS0,yTCS0 
        PXY = [0 0]; 
        if (cycle == 1) | (cycle == 2) 
            corX(i,j) = (-60+(j-1)*10)*cos(theta)+(60-(i-1)*10)*sin(theta); 
            corY(i,j) = (60-(i-1)*10)*cos(theta)-(-60+(j-1)*10)*sin(theta); 
            corXY = [corX(i,j) corY(i,j)]; 
        end 
%         dxy = [-60+(j-1)*10 60-(i-1)*10]; 
        dxy = [0 0]; 
         
        % initialize variables 
        work = 0; 
        u = 0; 
        f_temp = 0*ones(1,6); 
        fmw = f_temp; 
        index = 1; 
        numdiagK2 = -ones(2,2);, numfullK2 = -ones(2,2);, numdiagK3 = -
ones(3,3);, numfullK3 = -ones(3,3); 
        pertK = -ones(2,2); 
        fminmzd(j,1:kk) = 0; 
         
        for k = 1:kk 
             
%             % COR update option 1: 
%             % store calculated CORs to be replayed in the next cycle 
%             if cycle ~= 1 
%                 corXY = [cXY(1,index) cXY(2,index)]; 
%             end 
 
            % COR update option 2: 
            % calculate & update COR every 5 degrees 

 135



%             if (isequal(int2str((k+4)/5), num2str((k+4)/5))) & (k > 1) & 
(cycle ~= 1) 
            if (isequal(int2str((k+4)/5), num2str((k+4)/5))) & (k > 1) & 
(cycle ~= 1) & (z == 11) 
                corXY = [cXY(1,index-1) cXY(2,index-1)]; 
            end 
 
            % TRANSFORMATIONS 
======================================================= 
             
            % (P1X, P1Y) is the global position of reference point P after 
planar motion 
            [P1X(i,j), P1Y(i,j), TG0, TG1, corXY] = 
refpointtrans(thetaG(i,j), PXY, thetaCOR(i,j), corXY, phi, dxy, 'g'); 
            PX(k,1) = P1X(i,j);, PY(k,1) = P1Y(i,j); 
             
            % call node 1 "node a" and node 2 "node b" 
             
            % (a1X, a1Y) is the global position of node a after planar motion 
(from X,Y to xa1,ya1) 
            % La0 and La1 are the lengths of spring a at time t0 and time t1 
(mm) 
            [a1X(i,j), a1Y(i,j), la0, la1, T0a0, T1a1] = 
nodaltrans(thetaa(i,j), axy, thetaja(i,j), jaXY, TG0, TG1); 
            if isequal(int2str((k+4)/5), num2str((k+4)/5)), TGa0 = TG0*T0a0;, 
a0X = TGa0(1,4);, a0Y = TGa0(2,4);, end 
%             TGa0 = TG0*T0a0;, a0X = TGa0(1,4);, a0Y = TGa0(2,4); 
             
            % (b1X, b1Y) is the global position of node b after planar motion 
(from X,Y to xb1,yb1) 
            % Lb0 and Lb1 are the lengths of spring b at time t0 and time t1 
(mm) 
            [b1X(i,j), b1Y(i,j), lb0, lb1, T0b0, T1b1] = 
nodaltrans(thetab(i,j), bxy, thetajb(i,j), jbXY, TG0, TG1); 
            if isequal(int2str((k+4)/5), num2str((k+4)/5)), TGb0 = TG0*T0b0;, 
b0X = TGb0(1,4);, b0Y = TGb0(2,4);, end 
%             TGb0 = TG0*T0b0;, b0X = TGb0(1,4);, b0Y = TGb0(2,4); 
             
            % calculate change in length of spring a at time t0 and time t1 
(mm) 
            deltaa0(i,j) = sqrt(la0'*la0) - lar; 
            deltaa(i,j) = sqrt(la1'*la1) - lar; 
             
            % calculate change in length of spring b at time t0 and time t1 
(mm) 
            deltab0(i,j) = sqrt(lb0'*lb0) - lbr; 
            deltab(i,j) = sqrt(lb1'*lb1) - lbr; 
             
            % (mark1X, mark1Y) & (mark2X, mark2Y) are the global positions of 
markers 1 & 2 
            if isequal(int2str((k+4)/5), num2str((k+4)/5)) 
                T0mark1 = trans(0, mark1xy(1), mark1xy(2), 0);, TGmark1 = 
TG0*T0mark1; 
                T0mark2 = trans(0, mark2xy(1), mark2xy(2), 0);, TGmark2 = 
TG0*T0mark2; 
                mark1X(k) = TGmark1(1,4);, mark1Y(k) = TGmark1(2,4); 
                mark2X(k) = TGmark2(1,4);, mark2Y(k) = TGmark2(2,4); 
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            end 
            [mark1X(k+1), mark1Y(k+1)] = nodaltrans(0, mark1xy, thetajb(i,j), 
jbXY, TG0, TG1); 
            [mark2X(k+1), mark2Y(k+1)] = nodaltrans(0, mark2xy, thetajb(i,j), 
jbXY, TG0, TG1); 
             
            % FORCES/MOMENTS 
======================================================== 
             
            % calculate global force at time t0 due to spring a 
            % this is the force present in the system at time t0, but would 
not 
            % appear in the UFS when the robot is initially attached to the 
model. 
            Fa0 = force2(ka, deltaa0(i,j), la0, thetaG(i,j)+thetaa(i,j), 0, 
0, 0); 
            % calculate global force at time t1 due to spring a 
            Fa1 = force2(ka, deltaa(i,j), la1, thetaG(i,j)+thetaa(i,j)+phi, 
0, 0, 0); 
             
            % calculate global force at time t0 and time t1 due to spring b 
            Fb0 = force2(kb, deltab0(i,j), lb0, thetaG(i,j)+thetab(i,j), 0, 
0, 0); 
            Fb1 = force2(kb, deltab(i,j), lb1, thetaG(i,j)+thetab(i,j)+phi, 
0, 0, 0); 
             
            % calculate global forces and moment at point P at time t0 
            F0X(i,j) = dot(Fa0+Fb0,ihat);, F0Y(i,j) = dot(Fa0+Fb0,jhat); 
            Ma0 = moment1(thetaG(i,j), 0, 0, 0, T0a0(1:3,4), Fa0, khat); 
            Mb0 = moment1(thetaG(i,j), 0, 0, 0, T0b0(1:3,4), Fb0, khat); 
            M0Z(i,j) = Ma0 + Mb0; 
             
            % calculate global forces and moment at point P at time t1 
            F1X(i,j) = dot(Fa1+Fb1,ihat);, F1Y(i,j) = dot(Fa1+Fb1,jhat); 
            Ma1 = moment1(thetaG(i,j)+phi, 0, 0, 0, T1a1(1:3,4), Fa1, khat); 
            Mb1 = moment1(thetaG(i,j)+phi, 0, 0, 0, T1b1(1:3,4), Fb1, khat); 
            M1Z(i,j) = Ma1 + Mb1; 
             
            fmw = [F1X(i,j) F1Y(i,j) 0 0 0 M1Z(i,j)]; 
            FX(k,1) = F1X(i,j);, FY(k,1) = F1Y(i,j);, MZ(1) = M1Z(i,j); 
%             F(j,k) = sqrt(F1X(i,j)^2 + F1Y(i,j)^2); 
            F(k,1) = sqrt(F1X(i,j)^2 + F1Y(i,j)^2); 
             
            % find the magnitude of the peak force for each degree of 
rotation 
            magf(k,1) = sqrt(F1X(i,j)^2 + F1Y(i,j)^2); 
            work = (-0.5)*ka*deltaa(i,j)^2 + (-0.5)*kb*deltab(i,j)^2; 
            u = 0.5*ka*deltaa(i,j)^2 + 0.5*kb*deltab(i,j)^2; 
             
            % STIFFNESS 
============================================================= 
             
            % use analytical solution to find stiffness 
            PXYstiff = [P1X(i,j) P1Y(i,j)]; 
            if (z == 2) | (z == 3) 
                [Kxx1(i,j), Kxy1(i,j), Kyx1(i,j), Kyy1(i,j)] = stiff(z, ka, 
lar, jaXY, axy, PXYstiff, thetaG(i,j)+phi, kb, lbr, jbXY, bxy); 
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                anadiagK2 = [Kxx1(i,j) 0; 0 Kyy1(i,j)]; 
                anafullK2 = [Kxx1(i,j) Kxy1(i,j); Kyx1(i,j) Kyy1(i,j)]; 
            end 
             
            % use numerical method to find stiffness 
%             if (z == 6) | (z == 8) 
            if ((z == 6) | (z == 8)) & (cycle == 1) 
                diffload = [fmw(1)-f_temp(1) fmw(2)-f_temp(2) fmw(6)-
f_temp(6)]; 
                diffdisp = [P1X(i,j)-PXY(1) P1Y(i,j)-PXY(2) phi]; 
                [Kxx, Kyy, Kzz] = stiff(z, diffload, diffdisp, fmw, 
numdiagK3); 
                % 2x2 matrix 
                numdiagK2 = [Kxx 0; 0 Kyy]; 
                % 3x3 matrix 
                numdiagK3 = [Kxx 0 0; 0 Kyy 0; 0 0 Kzz]; 
            end 
             
%             % perturb bar to find stiffness 
%             if (z == 10) | (z == 11) 
%             [Kxxp(i,j), Kxyp(i,j), Kyxp(i,j), Kyyp(i,j)] = stiff(z, 2, 
thetaG(i,j)+thetaa(i,j)+phi, la1, thetaG(i,j)+thetab(i,j)+phi, lb1,... 
%                     lar, lbr, ka, kb, [F1X(i,j) F1Y(i,j)], thetaG(i,j)+phi, 
T1a1(1:3,4), T1b1(1:3,4), M1Z(i,j), [P1X(i,j) P1Y(i,j)],... 
%                     thetaCOR(i,j)+phi, corXY, thetaa(i,j), axy, 
thetaja(i,j), jaXY, thetab(i,j), bxy, thetajb(i,j), jbXY); 
%             pertK = [Kxxp(i,j), Kxyp(i,j); Kyxp(i,j), Kyyp(i,j)]; 
% %             pertK = [Kxxp(i,j), Kxyp(i,j) Kzxp(i,j); Kyxp(i,j), Kyyp(i,j) 
Kyzp(i,j); Kzxp(i,j) Kzyp(i,j) Kzzp(i,j)]; 
%             end 
             
            % store current force and position 
            f_temp = fmw; 
            PXY = [P1X(i,j) P1Y(i,j)]; 
             
            % housekeeping variables 
            KXX(k,1) = pertK(1,1);, KXY(k,1) = pertK(1,2); 
            KYX(k,1) = pertK(2,1);, KYY(k,1) = pertK(2,2); 
%             invK = pinv([numfullK2(1,1) numfullK2(1,2); numfullK2(2,1) 
numfullK2(2,2)]); 
%             invKXX(k,1) = invK(1,1);, invKXY(k,1) = invK(1,2); 
%             invKYX(k,1) = invK(2,1);, invKYY(k,1) = invK(2,2); 
 
%             % draw position of bar 
%             draw2(handles, [P1X(i,j), P1Y(i,j)], [corX(i,j) corY(i,j)], 
[a1X(i,j), a1Y(i,j)], [b1X(i,j), b1Y(i,j)], jaXY, jbXY, temp,... 
%                 [mark1X(k+1), mark1Y(k+1)], [mark2X(k+1), mark2Y(k+1)], 
[F1X(i,j), F1Y(i,j)], tick); 
 
            % update total rotation angle 
            theta = theta + phi; 
            thetaG(i,j) = theta; 
            thetaCOR(i,j) = theta - thetaG(i,j) + k*phi; 
 
            % FORCE MINIMIZATION 
===================================================== 
            for counter = 1:iterations 
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%                 if (z == 13) | (z == 12) | (z == 11) | (z == 10) 
                if ((z == 13) | (z == 12) | (z == 11) | (z == 10)) & (cycle > 
1) 
                    dXY = fmin(z, pertK, [fmw(1:2) fmw(6)]', 'y', t_lim); 
                    % if counter is even, set translation in X direction to 
zero 
                    % if counter is odd, set translation in Y direction to 
zero 
                    if isequal(num2str(counter/2), int2str(counter/2)) % 
counter is even 
                        dXY(1) = 0; 
                    else % counter is odd 
                        dXY(2) = 0; 
                    end 
                elseif z == 9 
                    dXY = fmin(z, numfullK3, [fmw(1:2) fmw(6)]', 'y', t_lim); 
                elseif z == 8 
                    dXY = fmin(z, numdiagK3, [fmw(1:2) fmw(6)]', 'y', t_lim); 
                elseif z == 7 
                    dXY = fmin(z, numfullK2, [fmw(1:2) fmw(6)]', 'y', t_lim); 
%                 elseif z == 6 
                elseif (z == 6) & (cycle == 1) 
                    dXY = fmin(z, numdiagK2, [fmw(1:2) fmw(6)]', 'y', t_lim); 
                elseif z == 5 
                    dXY = fmin(z, anafullK3, [fmw(1:2) fmw(6)]', 'y', t_lim); 
                elseif z == 4 
                    dXY = fmin(z, anadiagK3, [fmw(1:2) fmw(6)]', 'y', t_lim); 
                elseif z == 3 
                    dXY = fmin(z, anafullK2, [fmw(1:2) fmw(6)]', 'y', t_lim); 
                elseif z == 2 
                    dXY = fmin(z, anadiagK2, [fmw(1:2) fmw(6)]', 'y', t_lim); 
                elseif z == 1 
                    dXY = fmin(z, F1X(i,j), F1Y(i,j), const_stiff); 
                end 
                 
%                 dXY = [-P1X(i,j) -P1Y(i,j)]'; 
                 
                ddXY(:,1) = dXY; 
                dX(k,counter) = dXY(1); 
                dY(k,counter) = dXY(2); 
 
                % find global positions of point P, nodes a & b, and markers 
1 & 2 at new force minimized position 
                [P1X(i,j), P1Y(i,j), TG0, TG1, corXY] = 
refpointtrans(thetaG(i,j), PXY, thetaCOR(i,j), corXY, 0, [dXY(1) dXY(2)], 
'g'); 
                PX(k,counter+1) = P1X(i,j);, PY(k,counter+1) = P1Y(i,j); 
                 
                [a1X(i,j), a1Y(i,j), la0, la1, T0a0, T1a1] = 
nodaltrans(thetaa(i,j), axy, thetaja(i,j), jaXY, TG0, TG1); 
                [b1X(i,j), b1Y(i,j), lb0, lb1, T0b0, T1b1] = 
nodaltrans(thetab(i,j), bxy, thetajb(i,j), jbXY, TG0, TG1); 
                deltaa(i,j) = sqrt(la1'*la1) - lar; 
                deltab(i,j) = sqrt(lb1'*lb1) - lbr; 
                [mark1X(k+2), mark1Y(k+2)] = nodaltrans(0, mark1xy, 
thetajb(i,j), jbXY, TG0, TG1); 
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                [mark2X(k+2), mark2Y(k+2)] = nodaltrans(0, mark2xy, 
thetajb(i,j), jbXY, TG0, TG1); 
%                 corX(i,j) = corXY(1);, corY(i,j) = corXY(2); 
                 
%                 % draw position of bar 
%                 tick = tick + 1; 
%                 draw2(handles, [P1X(i,j), P1Y(i,j)], [corX(i,j) corY(i,j)], 
[a1X(i,j), a1Y(i,j)], [b1X(i,j), b1Y(i,j)], jaXY, jbXY, temp,... 
%                     [mark1X(end), mark1Y(end)], [mark2X(end), mark2Y(end)], 
[F1X(i,j), F1Y(i,j)], tick); 
                 
                % find forces & moment at new position 
                Fa1 = force2(ka, deltaa(i,j), la1, thetaG(i,j)+thetaa(i,j), 
0, 0, 0); 
                Fb1 = force2(kb, deltab(i,j), lb1, thetaG(i,j)+thetab(i,j), 
0, 0, 0); 
                F1X(i,j) = dot(Fa1+Fb1,ihat);, F1Y(i,j) = dot(Fa1+Fb1,jhat); 
                Ma1 = moment1(thetaG(i,j), 0, 0, 0, T1a1(1:3,4), Fa1, khat); 
                Mb1 = moment1(thetaG(i,j), 0, 0, 0, T1b1(1:3,4), Fb1, khat); 
                M1Z(i,j) = Ma1 + Mb1; 
                 
                fmw = [F1X(i,j) F1Y(i,j) 0 0 0 M1Z(i,j)]; 
                FX(k,counter+1) = F1X(i,j);, FY(k,counter+1) = F1Y(i,j);, 
MZ(counter+1) = M1Z(i,j); 
                F(k,counter+1) = sqrt(F1X(i,j)^2 + F1Y(i,j)^2); 
                 
                if (sqrt(FX(k,counter+1)^2 + FY(k,counter+1)^2) <= ftarget) & 
(fminmzd(j,k) == 0) 
                    fminmzd(j,k) = counter; 
                end 
                if (counter == iterations) & (fminmzd(j,k) == 0) 
                    fminmzd(j,k) = counter; 
                end 
                 
                magf(k,1) = sqrt(F1X(i,j)^2 + F1Y(i,j)^2); 
                work = (-0.5)*ka*deltaa(i,j)^2 + (-0.5)*kb*deltab(i,j)^2; 
                u = 0.5*ka*deltaa(i,j)^2 + 0.5*kb*deltab(i,j)^2; 
     
                % use analytical method to calculate stiffness at new 
position 
                if (z == 2) | (z == 3) 
                    PXYstiff = [P1X(i,j) P1Y(i,j)]; 
                    [Kxx1(i,j), Kxy1(i,j), Kyx1(i,j), Kyy1(i,j)] = stiff(z, 
ka, lar, jaXY, axy, PXYstiff, thetaG(i,j), kb, lbr, jbXY, bxy); 
                    anadiagK2 = [Kxx1(i,j) 0; 0 Kyy1(i,j)]; 
                    anafullK2 = [Kxx1(i,j) Kxy1(i,j); Kyx1(i,j) Kyy1(i,j)]; 
                end 
 
                % use numerical method to find stiffness 
%                 if (z == 6) | (z == 8) 
                if ((z == 6) | (z == 8)) & (cycle == 1) 
                    diffload = [fmw(1)-f_temp(1) fmw(2)-f_temp(2) fmw(6)-
f_temp(6)]; 
                    diffdisp = [P1X(i,j)-PXY(1) P1Y(i,j)-PXY(2) phi]; 
                    [Kxx, Kyy, Kzz] = stiff(z, diffload, diffdisp, fmw, 
numdiagK3); 
                    % 2x2 matrix 
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                    numdiagK2 = [Kxx 0; 0 Kyy]; 
                    % 3x3 matrix 
                    numdiagK3 = [Kxx 0 0; 0 Kyy 0; 0 0 Kzz]; 
                end 
                 
%                 % perturb bar to find stiffness 
%                 % use one translation (in either X or Y) to find 3 of 4 
stiffness terms OR  
%                 % use one translation (in either X or Y) and one applied 
perturbation to find full stiffness matrix OR 
%                 % apply two perturbations to find full stiffness matrix 
%                 if (z == 10) | (z == 11) 
                if ((z == 10) | (z == 11)) & (cycle > 1) 
                    [Kxxp(i,j), Kxyp(i,j), Kyxp(i,j), Kyyp(i,j)] = stiff(z, 
3, fmw, f_temp, dXY, pertK); 
                    pertK = [Kxxp(i,j) Kxyp(i,j); Kyxp(i,j) Kyyp(i,j)]; 
%                  pertK = [Kxxp(i,j), Kxyp(i,j) Kzxp(i,j); Kyxp(i,j), 
Kyyp(i,j) Kyzp(i,j); Kzxp(i,j) Kzyp(i,j) Kzzp(i,j)]; 
                end 
 
%                 if (z == 10) | (z == 11) 
%%                     [Kxxp(i,j), Kxyp(i,j), Kyxp(i,j), Kyyp(i,j)] = 
stiff(z, 2, thetaG(i,j)+thetaa(i,j)+phi, la1, thetaG(i,j)+thetab(i,j)+phi, 
lb1,... 
%%                         lar, lbr, ka, kb, [F1X(i,j) F1Y(i,j)], 
thetaG(i,j)+phi, T1a1(1:3,4), T1b1(1:3,4), M1Z(i,j), [P1X(i,j) P1Y(i,j)],... 
%%                         thetaCOR(i,j)+phi, corXY, thetaa(i,j), axy, 
thetaja(i,j), jaXY, thetab(i,j), bxy, thetajb(i,j), jbXY); 
%                     [Kxxp(i,j), Kxyp(i,j), Kyxp(i,j), Kyyp(i,j)] = stiff(z, 
4, thetaG(i,j)+thetaa(i,j)+phi, la1, thetaG(i,j)+thetab(i,j)+phi, lb1,... 
%                         lar, lbr, ka, kb, [F1X(i,j) F1Y(i,j)], 
thetaG(i,j)+phi, T1a1(1:3,4), T1b1(1:3,4), M1Z(i,j), [P1X(i,j) P1Y(i,j)],... 
%                         thetaCOR(i,j)+phi, corXY, thetaa(i,j), axy, 
thetaja(i,j), jaXY, thetab(i,j), bxy, thetajb(i,j), jbXY,... 
%                         fmw, f_temp, dXY, pertK); 
%                     pertK = [Kxxp(i,j), Kxyp(i,j); Kyxp(i,j), Kyyp(i,j)]; 
% %                  pertK = [Kxxp(i,j), Kxyp(i,j) Kzxp(i,j); Kyxp(i,j), 
Kyyp(i,j) Kyzp(i,j); Kzxp(i,j) Kzyp(i,j) Kzzp(i,j)]; 
%                 end 
                 
                % store current force and position 
                f_temp = fmw; 
                PXY = [P1X(i,j) P1Y(i,j)]; 
                 
                % housekeeping variables 
                KXX(k,counter+1) = pertK(1,1);, KXY(k,counter+1) = 
pertK(1,2); 
                KYX(k,counter+1) = pertK(2,1);, KYY(k,counter+1) = 
pertK(2,2); 
%                 invK = pinv([numfullK2(1,1) numfullK2(1,2); numfullK2(2,1) 
numfullK2(2,2)]); 
%                 invKXX(k,counter+1) = invK(1,1);, invKXY(k,counter+1) = 
invK(1,2); 
%                 invKYX(k,counter+1) = invK(2,1);, invKYY(k,counter+1) = 
invK(2,2); 
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                if (sqrt(FX(k,counter+1)^2 + FY(k,counter+1)^2) <= ftarget), 
break, end 
            end 
             
            loadctlerror(j,k) = sqrt(P1X(i,j)^2+P1Y(i,j)^2); 
            avgiter(j,z) = sum(fminmzd(j,:))/k; 
            Utotal(j,k) = u; 
            peakF(j,z) = max(max(F)); 
            maxF(j,z) = max(max(F)); 
            minF(j,z) = min(min(F(k,counter+1))); 
%             avgiter(i,j) = sum(fminmzd(j,:))/k; 
             
            % COR CALCULATION 
======================================================= 
             
%             if (round(k*rad2deg(phi)/5) == k*rad2deg(phi)/5) 
%             if (round(k*rad2deg(phi)/5) == k*rad2deg(phi)/5) & (cycle ~= 1) 
            if (round(k*rad2deg(phi)/5) == k*rad2deg(phi)/5) & (cycle > 1) & 
(z == 11) 
%                 % find the true COR using Spiegelman and Woo 
%                 for n = 1:1 
%                 [tcorX(n), tcorY(n)] = spieg(a0X, a0Y, a1X(i,j), a1Y(i,j), 
b0X, b0Y, b1X(i,j), b1Y(i,j), fmw(1), fmw(2)); 
%                 end 
%                 tcorX = sum(tcorX)/n;, tcorY = sum(tcorY)/n; 
%                 tcorXspieg(j,k) = tcorX;, tcorYspieg(j,k) = tcorY; 
%                 errorspieg(j,k) = sqrt(tcorXspieg(j,k)^2 + 
tcorYspieg(j,k)^2); 
%                 Xsignspieg(j,k) = isequal(sign(-corX(i,j)),sign(-
tcorXspieg(j,k))); 
%                 Ysignspieg(j,k) = isequal(sign(-corY(i,j)),sign(-
tcorYspieg(j,k))); 
%                  
%                 % find the true COR using Crisco et al. 
%                 for n = 1:1 
%                 [tcorX(n), tcorY(n)] = crisco(a0X, a0Y, b0X, b0Y, a1X(i,j), 
a1Y(i,j), b1X(i,j), b1Y(i,j), fmw(1), fmw(2)); 
%                 end 
%                 tcorX = sum(tcorX)/n;, tcorY = sum(tcorY)/n; 
%                 tcorXcrisco(j,k) = tcorX;, tcorYcrisco(j,k) = tcorY; 
%                 errorcrisco(j,k) = sqrt(tcorXcrisco(j,k)^2 + 
tcorYcrisco(j,k)^2); 
%                 Xsigncrisco(j,k) = isequal(sign(-corX(i,j)),sign(-
tcorXcrisco(j,k))); 
%                 Ysigncrisco(j,k) = isequal(sign(-corY(i,j)),sign(-
tcorYcrisco(j,k))); 
%                  
                % find the true COR using Challis 
                for n = 1:1 
                [tcorX(n), tcorY(n)] = challis(axy, a0X, a0Y, a1X(i,j), 
a1Y(i,j), bxy, b0X, b0Y, b1X(i,j), b1Y(i,j), fmw(1), fmw(2)); 
                end 
                tcorX = sum(tcorX)/n;, tcorY = sum(tcorY)/n; 
                tcorXchallis(j,k) = tcorX;, tcorYchallis(j,k) = tcorY; 
                errorchallis(j,k) = sqrt(tcorXchallis(j,k)^2 + 
tcorYchallis(j,k)^2); 
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                Xsignchallis(j,k) = isequal(sign(-corX(i,j)),sign(-
tcorXchallis(j,k))); 
                Ysignchallis(j,k) = isequal(sign(-corY(i,j)),sign(-
tcorYchallis(j,k))); 
            end 
             
            tick = 0; 
             
%             if k ~= kk 
%                 delete(fgraph) 
%                 fgraph = axes('Parent', fh, 'Position', [.1 .6 .8 .35], 
'YLim', [-50 50], 'XLim', [0 iterations]); 
%                 forceufs = line('XData', 0, 'YData', 0, 'Color', 'k', 
'Marker', '.', 'markersize', 8, 'erasemode', 'none'); 
%             end 
 
            % COR update option 1: calculate COR every 5 degrees & store to 
be replayed in next cycle 
            % COR update option 2: calculate & update COR every 5 degrees 
%             if (round(k*rad2deg(phi)/5) == k*rad2deg(phi)/5) 
%             if (round(k*rad2deg(phi)/5) == k*rad2deg(phi)/5) & (cycle ~= 1) 
            if (round(k*rad2deg(phi)/5) == k*rad2deg(phi)/5) & (cycle ~= 1) & 
(z == 11) 
                cXY(:,index) = corupdate(corXY(1), corXY(2), 
tcorXchallis(j,k), tcorYchallis(j,k), 'y', cor_lim); 
                index = index + 1; 
            end 
        end 
         
        % find the average magnitude of the peak force for each COR 
        peakw(i,j) = work; 
        peaku(i,j) = u; 
        poteng(j,z) = u; 
    end 
end 
 
% % PLOTS FOR TEST 3 USING PHYSICAL MODEL 
% figure 
% subplot(2,1,1), plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-
b'), ylabel('iterations'),... 
%     title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)), 
') in ', num2str(phi*180/pi), ' deg. increments']) 
% subplot(2,1,2), plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-
b'), ylabel('potential energy (N-mm)'), xlabel('\Phi (degrees)') 
 
% % % PLOTS FOR TEST 4A & 4B & 4C 
% figure, hold on 
%  plot((1:length(errorspieg(j,:)))*rad2deg(phi),errorspieg(j,:),'.-b'); 
%  plot((1:length(errorcrisco(j,:)))*rad2deg(phi),errorcrisco(j,:),'.-r'); 
%  plot((1:length(errorchallis(j,:)))*rad2deg(phi),errorchallis(j,:),'.-m'); 
% % % PLOTS FOR TEST 4D 
% % plot((5:5:30)*rad2deg(phi), errorspieg(j,5:5:end), '.-b') 
% % plot((5:5:30)*rad2deg(phi), errorcrisco(j,5:5:end), '.-r') 
% % plot((5:5:30)*rad2deg(phi), errorchallis(j,5:5:end), '.-m') 
% xlabel('\Phi (degrees)'), ylabel('error (mm)'), title(['Rotated about (', 
num2str(corX(i,j)), ',', num2str(corY(i,j)), ') in ',... 
%         num2str(phi*180/pi), ' deg. increments']) 
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% legend('spieg', 'crisco', 'challis') 
 
% % PLOTS FOR TESTS 5A & 5B 
% if cycle == 1 
%  figure 
%     subplot(3,1,1), hold on, plot((1:kk)*rad2deg(phi), F(:,1), '.-b'), 
ylabel('peak force (N)'), title(['Rotated about (', num2str(corX(i,j)), ',', 
num2str(corY(i,j)), ') in ',... 
%             num2str(phi*180/pi), ' deg. increments']) 
%     subplot(3,1,2), hold on, 
plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-b'), 
ylabel('iterations') 
%     subplot(3,1,3), hold on, 
plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-b'), 
ylabel('potential energy (N-mm)'), xlabel('\Phi (degrees)') 
% elseif cycle == 2 
%     subplot(3,1,1), plot((1:kk)*rad2deg(phi), F(:,1), '.-r'), ylabel('peak 
force (N)'), title(['Rotated about (', num2str(corX(i,j)), ',', 
num2str(corY(i,j)), ') in ',... 
%             num2str(phi*180/pi), ' deg. increments']) 
% %     legend('cycle 1', 'cycle 2') 
%     legend('no COR update', 'COR update') 
%     subplot(3,1,2), 
plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-r'), 
ylabel('iterations') 
% %     legend('cycle 1', 'cycle 2') 
%     legend('no COR update', 'COR update') 
%     subplot(3,1,3), 
plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-r'), 
ylabel('potential energy (N-mm)'), xlabel('\Phi (degrees)') 
% %     legend('cycle 1', 'cycle 2') 
%     legend('no COR update', 'COR update') 
% end 
 
% % PLOTS FOR TEST 7 USING GENERAL MODEL 
% if (cycle == 1) & (z == 6) 
%     figure('position', [149   359   771   575]) 
%     subplot(4,1,1), hold on, plot((1:kk)*rad2deg(phi), F(:,1), '.-b'), 
ylabel('peak force (N)'), title(['Rotated about (', num2str(corX(i,j)), ',', 
num2str(corY(i,j)), ') in ',... 
%             num2str(phi*180/pi), ' deg. increments']) 
%     subplot(4,1,2), hold on, plot((1:length(fminmzd(j,:)))*rad2deg(phi), 
fminmzd(j,:), '.-b'), ylabel('iterations') 
%     subplot(4,1,3), hold on, 
plot((1:length(loadctlerror(j,:)))*rad2deg(phi), loadctlerror(j,:), '.-b'), 
ylabel('error (mm)') 
%     subplot(4,1,4), hold on, plot((1:length(Utotal(j,:)))*rad2deg(phi), 
Utotal(j,:), '.-b'), ylabel('potential energy (N-mm)'), xlabel('\Phi 
(degrees)') 
% elseif (cycle == 2) & (z == 11) 
% %     figure 
%     subplot(4,1,1), hold on, plot((1:kk)*rad2deg(phi), F(:,1), '.-r'), 
ylabel('peak force (N)') 
%     legend('old', 'new') 
%     subplot(4,1,2), hold on, plot((1:length(fminmzd(j,:)))*rad2deg(phi), 
fminmzd(j,:), '.-r'), ylabel('iterations') 
%     legend('old', 'new') 
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%     subplot(4,1,3), hold on, 
plot((1:length(loadctlerror(j,:)))*rad2deg(phi), loadctlerror(j,:), '.-r'), 
ylabel('error (mm)') 
%     legend('old', 'new') 
%     subplot(4,1,4), hold on, plot((1:length(Utotal(j,:)))*rad2deg(phi), 
Utotal(j,:), '.-r'), ylabel('potential energy (N-mm)') 
%     legend('old', 'new') 
% end 
 
%% PLOTS FOR TEST 7 USING PHYSICAL MODEL 
%if (cycle == 1) & (z == 6) 
%    figure('position', [149   359   771   575]) 
%    subplot(3,1,1), hold on, plot((1:kk)*rad2deg(phi), F(:,1), '.-b'), 
ylabel('peak force (N)'), title(['Rotated about (', num2str(corX(i,j)), ',', 
num2str(corY(i,j)), ') in ',... 
%            num2str(phi*180/pi), ' deg. increments']) 
%    subplot(3,1,2), hold on, plot((1:length(fminmzd(j,:)))*rad2deg(phi), 
fminmzd(j,:), '.-b'), ylabel('iterations') 
%    subplot(3,1,3), hold on, plot((1:length(Utotal(j,:)))*rad2deg(phi), 
Utotal(j,:), '.-b'), ylabel('potential energy (N-mm)'), xlabel('\Phi 
(degrees)') 
%elseif (cycle == 2) & (z == 11) 
%%     figure 
%    subplot(3,1,1), hold on, plot((1:kk)*rad2deg(phi), F(:,1), '.-r'), 
ylabel('peak force (N)') 
%    legend('old', 'new') 
%    subplot(3,1,2), hold on, plot((1:length(fminmzd(j,:)))*rad2deg(phi), 
fminmzd(j,:), '.-r'), ylabel('iterations') 
%    legend('old', 'new') 
%    subplot(3,1,3), hold on, plot((1:length(Utotal(j,:)))*rad2deg(phi), 
Utotal(j,:), '.-r'), ylabel('potential energy (N-mm)') 
%    legend('old', 'new') 
%end 
 
if z == 1 
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-b'); 
elseif z == 2 
figure 
% plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-r'); 
subplot(3,1,1), hold on, 
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-r'), 
ylabel('error (mm)'),... 
    title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)), ') 
in ', num2str(phi*180/pi), ' deg. increments']) 
subplot(3,1,2), hold on, 
plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-r'), 
ylabel('iterations') 
subplot(3,1,3), hold on, 
plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-r'), 
ylabel('potential energy (N-mm)'), xlabel('\Phi (degrees)') 
elseif z == 3 
% plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-m'); 
% subplot(3,1,1), 
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-m'), 
legend('diag 2x2 (a)', 'full 2x2 (a)') 
% subplot(3,1,2), plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-
m'), legend('diag 2x2 (a)', 'full 2x2 (a)') 
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% subplot(3,1,3), plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-
m'), legend('diag 2x2 (a)', 'full 2x2 (a)') 
elseif z == 4 
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-g'); 
elseif z == 5 
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-r'); 
elseif z == 6 
% % PLOTS FOR TEST 6 USING GENERAL MODEL    
% % plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-r'); 
% figure 
% subplot(3,1,1), hold on, 
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-r'), 
ylabel('error (mm)'),... 
%     title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)), 
') in ', num2str(phi*180/pi), ' deg. increments']) 
% subplot(3,1,2), hold on, 
plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-r'), 
ylabel('iterations') 
% subplot(3,1,3), hold on, 
plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-r'), 
ylabel('potential energy (N-mm)'), xlabel('\Phi (degrees)') 
 
% % PLOTS FOR TEST 6 USING PHYSICAL MODEL 
% figure 
% subplot(2,1,1), hold on, 
plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-r'), 
ylabel('iterations'),... 
%     title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)), 
') in ', num2str(phi*180/pi), ' deg. increments']) 
% subplot(2,1,2), hold on, 
plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-r'), 
ylabel('potential energy (N-mm)'), xlabel('\Phi (degrees)') 
elseif z == 7 
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-r'); 
elseif z == 8 
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-', 
'markerfacecolor', [0 .75 0]); 
elseif z == 9 
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-m'); 
elseif z == 10 
figure, hold on 
% plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-r'); 
elseif z == 11 
% % PLOTS FOR TEST 6 USING GENERAL MODEL    
% plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-m'); 
% subplot(3,1,1), hold on, 
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-m'), 
ylabel('error (mm)'),... 
%     title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)), 
') in ', num2str(phi*180/pi), ' deg. increments']) 
% legend('diag 2x2 (n)', 'full 2x2 (p4)') 
% subplot(3,1,2), hold on, 
plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-m'), 
ylabel('iterations') 
% legend('diag 2x2 (n)', 'full 2x2 (p4)') 
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% subplot(3,1,3), hold on, 
plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-m'), 
ylabel('potential energy (N-mm)'), xlabel('\Phi (degrees)') 
% legend('diag 2x2 (n)', 'full 2x2 (p4)') 
 
% % PLOTS FOR TEST 6 USING PHYSICAL MODEL 
% subplot(2,1,1), plot((1:length(fminmzd(j,:)))*rad2deg(phi),fminmzd(j,:),'.-
m'), ylabel('iterations'),... 
%     title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)), 
') in ', num2str(phi*180/pi), ' deg. increments']) 
% legend('diag 2x2 (n)', 'full 2x2 (p4)') 
% subplot(2,1,2), plot((1:length(Utotal(j,:)))*rad2deg(phi),Utotal(j,:),'.-
m'), ylabel('potential energy (N-mm)'), xlabel('\Phi (degrees)') 
% legend('diag 2x2 (n)', 'full 2x2 (p4)') 
elseif z == 12 
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-r'); 
elseif z == 13 
plot((1:length(loadctlerror(j,:)))*rad2deg(phi),loadctlerror(j,:),'.-m'); 
end 
 
% % PLOTS FOR TEST 6 
% figure, hold on 
% for m = 1:kk 
%     phb = plot([m m], [F(m,1) F(m,fminmzd(j,m)+1)], '-ob'); 
%     phe = plot([m m], [F(m,fminmzd(j,m)+1) F(m,fminmzd(j,m)+1)], '*r'); 
% end 
% title(['Rotated about (', num2str(corX(i,j)), ',', num2str(corY(i,j)), ') 
in ', num2str(phi*180/pi), ' deg. increments']) 
% xlabel('\Phi (degrees)'), ylabel('resultant force (N)') 
% legend_handles = [phb; phe]; 
% legend(legend_handles, 'beginning force', 'ending force'); 
 
end 
end 
end 
 
% figure 
% subplot(3,1,1), plot(1:length(FX), FX), ylabel('FX (N)'); 
% subplot(3,1,2), plot(1:length(FY), FY), ylabel('FY (N)'); 
% subplot(3,1,3), plot(1:length(MZ), MZ), ylabel('MZ (N-m)');, 
xlabel('iterations'); 
%  
% figure 
% subplot(2,1,1), plot(1:length(KXX), KXX), ylabel('KXX (N/mm)') 
% subplot(2,1,2), plot(1:length(KYY), KYY), ylabel('KYY (N/mm)');, 
xlabel('iterations'); 
 
% [xx, yy]=meshgrid(-60:10:60,60:-10:-60); 
% draw(xx, yy, F1X, F1Y, M1Z, F, peaku, P1X, P1Y, Kxxp, Kxyp, Kyyp, PHI, phi, 
1); 
% draw(xx, yy, F1X, F1Y, M1Z, F, peaku, P1X, P1Y, Kxx1, Kxy1, Kyy1, PHI, phi, 
2); 
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refpointtrans.m is a function called by hand14a.m.  It uses the rigid body 

transformations developed in sections 4.2.1 - 4.2.7 to track the movement of the center of the 

bar. 

function [P1X, P1Y, TG0, TG1, corXY] = refpointtrans(thetaG, PXY, thetaCOR, 
corXY, phi, dxy, cs) 
 
% define xformation from X,Y to x0,y0 
TG0 = trans(thetaG, PXY(1), PXY(2), 0); 
 
% define xformation from X,Y to xTCS0,yTCS0 
TGTCS0 = trans(thetaCOR, corXY(1), corXY(2), 0); 
 
% calculate xformation from xTCS0,yTCS0 to x0,y0 
TTCS00 = inv(TGTCS0)*TG0; 
 
% define xformation from xTCS0,yTCS0 to xTCS1,yTCS1 
% here dxy is defined in the TCS0 c.s. 
% if the translation (dxy) is defined in the global c.s., 
% it must first be transformed to the TCS0 c.s. 
if cs == 'g' 
    dxy = (TGTCS0(1:3,1:3))'*[dxy 0]'; 
    dxy(3) = []; 
end 
TTCS0TCS1 = trans(phi, dxy(1), dxy(2), 0); 
 
% calculate xformation from X,Y to xTCS1,yTCS1 
TGTCS1 = TGTCS0*TTCS0TCS1; 
corXY = [TGTCS1(1,4) TGTCS1(2,4)]; 
 
% define xformation from xTCS1,yTCS1 to x1,y1 
TTCS11 = TTCS00; 
 
% calculate xformation from X,Y to x1,y1 
TG1 = TGTCS1*TTCS11; 
P1X = TG1(1,4); 
P1Y = TG1(2,4); 

 

nodaltrans.m is a function called by hand14a.m.  It uses the rigid body transformations 

developed in sections 4.2.8 - 4.2.14 to track the movement of the ends of the bar. 

function [i1X, i1Y, l0, l1, T0i0, T1i1] = nodaltrans(thetai, ixy, thetaj, 
jXY, TG0, TG1); 
 
% define xformation from x0,y0 to xi0,yi0 
T0i0 = trans(thetai, ixy(1), ixy(2), 0); 
 
% calculate xformation from X,Y to xi0,yi0 
TGi0 = TG0*T0i0; 
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% define xformation from x1,y1 to xi1,yi1 
T1i1 = T0i0; 
 
% calculate xformation from X,Y to xi1,yi1 
TGi1 = TG1*T1i1; 
i1X = TGi1(1,4); 
i1Y = TGi1(2,4); 
 
% define xformation from X,Y to xj,yj 
TGj = trans(thetaj, jXY(1), jXY(2), 0); 
 
% calculate xformation from xi0,yi0 to xj,yj 
Ti0j = inv(TGi0)*TGj; 
% calculate length of spring 1 at time t0 (mm) 
l0 = Ti0j(1:3,4); 
% L0 is the vector pointing from node i to node j in local coordinates 
% later, this is the force acting on the bar.  if we want the force 
% that the spring exerts, we would use -L0 
% calculate xformation from xi1,yi1, to xj,yj 
Ti1j = inv(TGi1)*TGj; 
% calculate length of spring 1 at time t1 (mm) 
l1 = Ti1j(1:3,4); 

 

force2.m is a short function called by hand14a.m that calculates the force in coordinates. 

function F = force2(k, delta, l, theta, X, Y, Z) 
 
f = k*delta*l/(sqrt(l'*l)); 
F = trans(theta, X, Y, Z)*[f; 1]; 
F(4,:) = []; 

 

moment1.m is a short function called by hand14a.m that calculates the moment in global 

coordinates. 

function M = moment1(theta, X, Y, Z, L, F, unit); 
 
R = trans(theta, X, Y, Z)*[L; 1]; 
R(4) = []; 
M = dot(cross(R,F),unit)/1000; 

 

stiff.m is a function called by hand14a.m that calculates the global stiffness terms using 

the method of choice (defined by the input variable “flag”). 

function varargout = stiff(flag, varargin) 
 
switch flag 
case {2, 3, 4, 5} 
    % calculate analytical stiffness matrix 
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    ka = varargin{1}; 
    lar = varargin{2}; 
    jaXY = varargin{3}; 
    axy = varargin{4}; 
    PXYstiff = varargin{5}; 
    angle = varargin{6}; 
    kb = varargin{7}; 
    lbr = varargin{8}; 
    jbXY = varargin{9}; 
    bxy = varargin{10}; 
    [kxxa, kxya, kxza, kyxa, kyya, kyza, kzxa, kzya, kzza] = anastiff(ka, 
lar, jaXY, axy, PXYstiff, angle); 
    [kxxb, kxyb, kxzb, kyxb, kyyb, kyzb, kzxb, kzyb, kzzb] = anastiff(kb, 
lbr, jbXY, bxy, PXYstiff, angle); 
    Kxx = kxxa + kxxb;, Kxy = kxya + kxyb;, Kxz = kxza + kxzb; 
    Kyx = kyxa + kyxb;, Kyy = kyya + kyyb;, Kyz = kyza + kyzb; 
    Kzx = kzxa + kzxb;, Kzy = kzya + kzyb;, Kzz = kzza + kzzb; 
    if (flag == 2) | (flag == 3) 
        varargout = {Kxx, Kxy, Kyx, Kyy}; 
    elseif (flag == 4) | (flag == 5) 
        varargout = {Kxx, Kxy, Kxz, Kyx, Kyy, Kyz, Kzx, Kzy, Kzz}; 
    end 
     
case {6, 7, 8, 9} 
    % calculate numerical stiffness matrix 
    diffload = varargin{1}; 
    diffdisp = varargin{2}; 
    fmw = varargin{3}; 
    if (diffload ~= [0 0 0]) & (diffdisp ~= [0 0 0]) & (fmw(1)~=0 | fmw(2)~=0 
| fmw(6)~=0) 
        Kxx = diffload(1)/diffdisp(1); 
        Kyy = diffload(2)/diffdisp(2); 
        Kzz = diffload(3)/diffdisp(3); 
    else 
        K = varargin{4}; 
        Kxx = K(1,1); 
        Kyy = K(2,2); 
        Kzz = K(3,3); 
    end 
    varargout = {Kxx, Kyy, Kzz}; 
     
case {10, 11} 
    method = varargin{1}; 
     
    if (method == 1) | (method == 2) | (method == 4) 
        angle = varargin{2}; 
        la1 = varargin{3}; 
        La1 = [cos(angle) -sin(angle) 0; sin(angle) cos(angle) 0; 0 0 1] * 
la1; 
         
        angle = varargin{4}; 
        lb1 = varargin{5}; 
        Lb1 = [cos(angle) -sin(angle) 0; sin(angle) cos(angle) 0; 0 0 1] * 
lb1; 
    end 
     
    if (method == 1) | (method == 2) 
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        lar = varargin{6}; 
        lbr = varargin{7}; 
        ka = varargin{8}; 
        kb = varargin{9}; 
        FXY = varargin{10}; 
        thetaGphi = varargin{11}; 
        T1a1 = varargin{12}; 
        T1b1 = varargin{13}; 
        MZ = varargin{14}; 
        PXY = varargin{15}; 
        thetaCORphi = varargin{16}; 
        corXY = varargin{17}; 
        thetaa = varargin{18}; 
        axy = varargin{19}; 
        thetaja = varargin{20}; 
        jaXY = varargin{21}; 
        thetab = varargin{22}; 
        bxy = varargin{23}; 
        thetajb = varargin{24}; 
        jbXY = varargin{25}; 
         
        if method == 1 
            % calculate full 2x2 perturbed matrix w/ method #1 (two global 
pert., one parallel to X, other parallel to Y) 
            [Kxx, Kxy, Kyx, Kyy, Kzx, Kzy, Kxz, Kyz, Kzz] = pertstiff(La1, 
Lb1, lar, lbr, ka, kb,... 
                FXY, thetaGphi, T1a1, T1b1, MZ, PXY, thetaCORphi, corXY, 
thetaa, axy, thetaja, jaXY, thetab, bxy, thetajb, jbXY); 
        elseif method == 2 
            % calculate full 2x2 perturbed matrix w/ method #2 (two global 
pert., one in XY-plane, other orthogonal) 
            [Kxx, Kxy, Kyx, Kyy, Kzx, Kzy, Kxz, Kyz, Kzz] = pertstiff2(La1, 
Lb1, lar, lbr, ka, kb,... 
                FXY, thetaGphi, T1a1, T1b1, MZ, PXY, thetaCORphi, corXY, 
thetaa, axy, thetaja, jaXY, thetab, bxy, thetajb, jbXY); 
        end 
 end 
     
    if method == 3 
       % calculate full 2x2 perturbed matrix w/ method #3 (one global 
translation, parallel to either X or Y)  
       fmw = varargin{2}; 
       f_temp = varargin{3}; 
       dXY = varargin{4}; 
       K = varargin{5}; 
        
       dFXY = [fmw(1)-f_temp(1) fmw(2)-f_temp(2)]; 
       if (dXY(1) == 0) & (dFXY ~= [0 0]) & (dXY(2) ~= 0) & (fmw(1) ~= 0 | 
fmw(2)~= 0) 
            Kxy = dFXY(1)/dXY(2); 
            Kyy = dFXY(2)/dXY(2); 
            Kyx = Kxy; 
            Kxx = K(1,1); 
        elseif (dXY(2) == 0) & (dFXY ~= [0 0]) & (dXY(1) ~= 0) & (fmw(1) ~= 0 
| fmw(2)~= 0) 
            Kxx = dFXY(1)/dXY(1); 
            Kyx = dFXY(2)/dXY(1); 
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            Kxy = Kyx; 
            Kyy = K(2,2); 
        else 
            Kxx = K(1,1); 
            Kxy = K(1,2); 
            Kyx = K(2,1); 
            Kyy = K(2,2); 
        end 
    elseif method == 4 
        % calculate full 2x2 perturbed matrix w/ method #4 (one global 
translation, one global pert. orthogonal to translation) 
        lar = varargin{6}; 
        lbr = varargin{7}; 
        ka = varargin{8}; 
        kb = varargin{9}; 
        FXY = varargin{10}; 
        thetaGphi = varargin{11}; 
        T1a1 = varargin{12}; 
        T1b1 = varargin{13}; 
        MZ = varargin{14}; 
        PXY = varargin{15}; 
        thetaCORphi = varargin{16}; 
        corXY = varargin{17}; 
        thetaa = varargin{18}; 
        axy = varargin{19}; 
        thetaja = varargin{20}; 
        jaXY = varargin{21}; 
        thetab = varargin{22}; 
        bxy = varargin{23}; 
        thetajb = varargin{24}; 
        jbXY = varargin{25}; 
 
        fmw = varargin{26}; 
        f_temp = varargin{27}; 
        dXY = varargin{28}; 
        K = varargin{29}; 
         
       dFXY = [fmw(1)-f_temp(1) fmw(2)-f_temp(2)]; 
       if (dXY(1) == 0) & (dFXY ~= [0 0]) & (dXY(2) ~= 0) & (fmw(1) ~= 0 | 
fmw(2)~= 0) 
            Kxy = dFXY(1)/dXY(2); 
            Kyy = dFXY(2)/dXY(2); 
            Kyx = Kxy; 
            Kxx = pertstiff3(La1, Lb1, lar, lbr, ka, kb, FXY, thetaGphi, 
T1a1, T1b1, MZ, PXY, thetaCORphi, corXY,... 
                thetaa, axy, thetaja, jaXY, thetab, bxy, thetajb, jbXY, 
dXY(2), 'even'); 
        elseif (dXY(2) == 0) & (dFXY ~= [0 0]) & (dXY(1) ~= 0) & (fmw(1) ~= 0 
| fmw(2)~= 0) 
            Kxx = dFXY(1)/dXY(1); 
            Kyx = dFXY(2)/dXY(1); 
            Kxy = Kyx; 
            Kyy = pertstiff3(La1, Lb1, lar, lbr, ka, kb, FXY, thetaGphi, 
T1a1, T1b1, MZ, PXY, thetaCORphi, corXY,... 
                thetaa, axy, thetaja, jaXY, thetab, bxy, thetajb, jbXY, 
dXY(1), 'odd'); 
        else 
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            Kxx = K(1,1); 
            Kxy = K(1,2); 
            Kyx = K(2,1); 
            Kyy = K(2,2); 
        end 
    end 
 
    varargout = {Kxx, Kxy, Kyx, Kyy}; 
     
end 

 

anastiff.m is a function called by stiff.m to calculate the global stiffness terms 

analytically. 

function [kxx, kxy, kxz, kyx, kyy, kyz, kzx, kzy, kzz] = anastiff(k, lr, jXY, 
ixy, PXY, angle) 
 
c1 = jXY(1) - ixy(1)*cos(angle) + ixy(2)*sin(angle); 
c2 = jXY(2) - ixy(2)*cos(angle) - ixy(1)*sin(angle); 
c4 = jXY(1) - PXY(1); 
c5 = jXY(2) - PXY(2); 
 
kxx = k*(-1 + (lr*(c2-PXY(2))^2)/(((c1-PXY(1))^2+(c2-PXY(2))^2)^(3/2))); 
kxy = -k*lr*(c1-PXY(1))*(c2-PXY(2))/(((c1-PXY(1))^2+(c2-PXY(2))^2)^(3/2)); 
kxz = k*(ixy(2)*cos(angle) + ixy(1)*sin(angle) + lr*(-
c5+ixy(2)*cos(angle)+ixy(1)*sin(angle))*... 
    (-ixy(1)^2-ixy(2)^2+(c4*ixy(1)+c5*ixy(2))*cos(angle)+(c5*ixy(1)-
c4*ixy(2))*sin(angle))/... 
    (((-c5+ixy(2)*cos(angle)+ixy(1)*sin(angle))^2 + (c4-
ixy(1)*cos(angle)+ixy(2)*sin(angle))^2)^(3/2))); 
 
kyx = kxy; 
kyy = k*(-1 + (lr*(c1-PXY(1))^2)/(((c1-PXY(1))^2+(c2-PXY(2))^2)^(3/2))); 
kyz = k*(-ixy(1)*cos(angle) + ixy(2)*sin(angle) + lr*(c4-
ixy(1)*cos(angle)+ixy(2)*sin(angle))*... 
    (-ixy(1)^2-ixy(2)^2+(c4*ixy(1)+c5*ixy(2))*cos(angle)+(c5*ixy(1)-
c4*ixy(2))*sin(angle))/... 
    (((-c5+ixy(2)*cos(angle)+ixy(1)*sin(angle))^2 + (c4-
ixy(1)*cos(angle)+ixy(2)*sin(angle))^2)^(3/2))); 
 
kzx = kxz; 
kzy = kyz; 
kzz = -k*lr*(((-c5*ixy(1)+c4*ixy(2))*cos(angle) + 
(c4*ixy(1)+c5*ixy(2))*sin(angle))^2)/... 
    (((-c5+ixy(2)*cos(angle)+ixy(1)*sin(angle))^2 + (c4-
ixy(1)*cos(angle)+ixy(2)*sin(angle))^2)^(3/2)) + ... 
    k*((-c4*ixy(1)-c5*ixy(2))*cos(angle) + (-
c5*ixy(1)+c4*ixy(2))*sin(angle))*... 
    (1 - lr/sqrt((-c5+ixy(2)*cos(angle)+ixy(1)*sin(angle))^2 + (c4-
ixy(1)*cos(angle)+ixy(2)*sin(angle))^2)); 
kzz = kzz/1000; 
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pertstiff.m is a function called by stiff.m that calculates the global stiffness terms using 

proposed method #1. 

function [Kxx, Kxy, Kyx, Kyy, Kzx, Kzy, Kxz, Kyz, Kzz] = pertstiff(La1, Lb1, 
lar, lbr, ka, kb, FXY,... 
    thetaGphi, T1a1, T1b1, MZ, PXY, thetaCORphi, corXY, thetaa, axy, thetaja, 
jaXY, thetab, bxy, thetajb, jbXY) 
 
ihat = [1 0 0]'; 
jhat = [0 1 0]'; 
khat = [0 0 1]'; 
 
% perturb the bar in each direction to find full stiffness matrix 
pert = 0.5; % mm 
 
% Only consider the perturbation along the global X axis 
% La is a vector pointing from node a to node ja in X,Y coordinates 
La = La1 - [pert 0 0]'; 
delta = sqrt(La'*La) - lar; 
Fa = ka*delta*La/sqrt(La'*La); 
Ma = moment1(thetaGphi, 0, 0, 0, T1a1, Fa, khat); 
% Lb is a vector pointing from node b to node jb in X,Y coordinates 
Lb = Lb1 - [pert 0 0]'; 
delta = sqrt(Lb'*Lb) - lbr; 
Fb = kb*delta*Lb/sqrt(Lb'*Lb); 
Mb = moment1(thetaGphi, 0, 0, 0, T1b1, Fb, khat); 
% find Kxx and Kyx 
FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) + 
dot(Fb,jhat);, MZ(2,1) = Ma + Mb; 
dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) - 
MZ(1,1); 
Kxx = dFX/pert; % N/mm 
Kyx = dFY/pert; % N/mm 
Kzx = dMZ*1000/pert; % N-mm/mm 
 
% Now consider the perturbation along the global Y axis 
% La is a vector pointing from node a to node ja in X,Y coordinates 
La = La1 - [0 pert 0]'; 
delta = sqrt(La'*La) - lar; 
Fa = ka*delta*La/sqrt(La'*La); 
Ma = moment1(thetaGphi, 0, 0, 0, T1a1, Fa, khat); 
% Lb is a vector pointing from node b to node jb in X,Y coordinates 
Lb = Lb1 - [0 pert 0]'; 
delta = sqrt(Lb'*Lb) - lbr; 
Fb = kb*delta*Lb/sqrt(Lb'*Lb); 
Mb = moment1(thetaGphi, 0, 0, 0, T1b1, Fb, khat); 
% find Kxy and Kyy 
FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) + 
dot(Fb,jhat);, MZ(2,1) = Ma + Mb; 
dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) - 
MZ(1,1); 
Kxy = dFX/pert; % N/mm 
Kyy = dFY/pert; % N/mm 
Kzy = dMZ*1000/pert; % N-mm/mm 
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% Consider a perturbation about the global Z axis 
%pert = deg2rad(0.1); % radians 
pert = 0.1*pi/180; 
[P1X, P1Y, TG0, TG1] = refpointtrans(thetaGphi, PXY, thetaCORphi, corXY, 
pert, [0 0], 'g'); 
[a1X, a1Y, la0, la1, T0a0, T1a1] = nodaltrans(thetaa, axy, thetaja, jaXY, 
TG0, TG1); 
[b1X, b1Y, lb0, lb1, T0b0, T1b1] = nodaltrans(thetab, bxy, thetajb, jbXY, 
TG0, TG1); 
deltaa = sqrt(la1'*la1) - lar; 
deltab = sqrt(lb1'*lb1) - lbr; 
% find forces & moment at new position 
Fa = force2(ka, deltaa, la1, thetaGphi+thetaa+pert, 0, 0, 0); 
Fb = force2(kb, deltab, lb1, thetaGphi+thetab+pert, 0, 0, 0); 
Ma = moment1(thetaGphi+pert, 0, 0, 0, T1a1(1:3,4), Fa, khat); 
Mb = moment1(thetaGphi+pert, 0, 0, 0, T1b1(1:3,4), Fb, khat); 
FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) + 
dot(Fb,jhat);, MZ(2,1) = Ma + Mb; 
dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) - 
MZ(1,1); 
Kxz = dFX/pert; % N/rad 
Kyz = dFY/pert; % N/rad 
Kzz = dMZ/pert; % N-m/rad 

 

pertstiff2.m is a function called by stiff.m that calculates the global stiffness terms using 

proposed method #2. 

function [Kxx, Kxy, Kyx, Kyy, Kzx, Kzy, Kxz, Kyz, Kzz] = pertstiff2(La1, Lb1, 
lar, lbr, ka, kb, FXY,... 
    thetaGphi, T1a1, T1b1, MZ, PXY, thetaCORphi, corXY, thetaa, axy, thetaja, 
jaXY, thetab, bxy, thetajb, jbXY) 
 
ihat = [1 0 0]'; 
jhat = [0 1 0]'; 
khat = [0 0 1]'; 
 
% perturb the bar in each direction to find full stiffness matrix 
% perturbations are orthogonal linear combinations of X and Y 
pert = 0.5; % mm 
 
% Consider a perturbation in the global XY plane 
% La is a vector pointing from node a to node ja in X,Y coordinates 
La = La1 - [pert pert 0]'; 
delta = sqrt(La'*La) - lar; 
Fa = ka*delta*La/sqrt(La'*La); 
Ma = moment1(thetaGphi, 0, 0, 0, T1a1, Fa, khat); 
% Lb is a vector pointing from node b to node jb in X,Y coordinates 
Lb = Lb1 - [pert pert 0]'; 
delta = sqrt(Lb'*Lb) - lbr; 
Fb = kb*delta*Lb/sqrt(Lb'*Lb); 
Mb = moment1(thetaGphi, 0, 0, 0, T1b1, Fb, khat); 
% find dF and dM 
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FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) + 
dot(Fb,jhat);, MZ(2,1) = Ma + Mb; 
dFX1 = FXY(2,1) - FXY(1,1);, dFY1 = FXY(2,2) - FXY(1,2);, dMZ1 = MZ(2,1) - 
MZ(1,1); 
 
% Consider another perturbation in the global XY axis, perpendicular to the 
first pert. 
% La is a vector pointing from node a to node ja in X,Y coordinates 
La = La1 - [-pert pert 0]'; 
delta = sqrt(La'*La) - lar; 
Fa = ka*delta*La/sqrt(La'*La); 
Ma = moment1(thetaGphi, 0, 0, 0, T1a1, Fa, khat); 
% Lb is a vector pointing from node b to node jb in X,Y coordinates 
Lb = Lb1 - [-pert pert 0]'; 
delta = sqrt(Lb'*Lb) - lbr; 
Fb = kb*delta*Lb/sqrt(Lb'*Lb); 
Mb = moment1(thetaGphi, 0, 0, 0, T1b1, Fb, khat); 
% find dF and dM 
FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) + 
dot(Fb,jhat);, MZ(2,1) = Ma + Mb; 
dFX2 = FXY(2,1) - FXY(1,1);, dFY2 = FXY(2,2) - FXY(1,2);, dMZ2 = MZ(2,1) - 
MZ(1,1); 
 
dX1 = pert;,  dY1 = pert; 
dX2 = -pert;, dY2 = pert; 
 
Kxx = -(dFX2*dY1 - dFX1*dY2) / (-dX2*dY1 + dX1*dY2);  % N/mm 
Kxy = -(-dFX2*dX1 + dFX1*dX2) / (-dX2*dY1 + dX1*dY2); % N/mm 
Kyx = -(dFY2*dY1 - dFY1*dY2) / (-dX2*dY1 + dX1*dY2);  % N/mm 
Kyy = -(-dFY2*dX1 + dFY1*dX2) / (-dX2*dY1 + dX1*dY2); % N/mm 
 
Kzx = 1; 
Kzy = 1; 
 
% Consider a perturbation about the global Z axis 
pert = deg2rad(0.1); % radians 
[P1X, P1Y, TG0, TG1] = refpointtrans(thetaGphi, PXY, thetaCORphi, corXY, 
pert, [0 0], 'g'); 
[a1X, a1Y, la0, la1, T0a0, T1a1] = nodaltrans(thetaa, axy, thetaja, jaXY, 
TG0, TG1); 
[b1X, b1Y, lb0, lb1, T0b0, T1b1] = nodaltrans(thetab, bxy, thetajb, jbXY, 
TG0, TG1); 
deltaa = sqrt(la1'*la1) - lar; 
deltab = sqrt(lb1'*lb1) - lbr; 
% find forces & moment at new position 
Fa = force2(ka, deltaa, la1, thetaGphi+thetaa+pert, 0, 0, 0); 
Fb = force2(kb, deltab, lb1, thetaGphi+thetab+pert, 0, 0, 0); 
Ma = moment1(thetaGphi+pert, 0, 0, 0, T1a1(1:3,4), Fa, khat); 
Mb = moment1(thetaGphi+pert, 0, 0, 0, T1b1(1:3,4), Fb, khat); 
FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) + 
dot(Fb,jhat);, MZ(2,1) = Ma + Mb; 
dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) - 
MZ(1,1); 
Kxz = dFX/pert; % N/rad 
Kyz = dFY/pert; % N/rad 
Kzz = dMZ/pert; % N-m/rad 
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pertstiff3.m is a function called by stiff.m that calculates the global stiffness terms using 

proposed method #3. 

function [varargout] = pertstiff3(La1, Lb1, lar, lbr, ka, kb, FXY,... 
    thetaGphi, T1a1, T1b1, MZ, PXY, thetaCORphi, corXY, thetaa, axy, thetaja, 
jaXY, thetab, bxy, thetajb, jbXY, pert, flag) 
 
ihat = [1 0 0]'; 
jhat = [0 1 0]'; 
khat = [0 0 1]'; 
 
% use translation AND applied perturbation to find full stiffness matrix at a 
given position 
% perturb the bar in each direction to find full stiffness matrix 
pert = 0.5; % mm 
 
% if counter is odd, translation in Y is set to zero, only solve for Kxx, 
Kxy, Kyx 
% if counter is even, translation in X is set to zero, only solve for Kxy, 
Kyx, Kyy 
switch flag 
case 'even' 
    % Only consider the perturbation along the global X axis 
    % La is a vector pointing from node a to node ja in X,Y coordinates 
    La = La1 - [pert 0 0]'; 
    delta = sqrt(La'*La) - lar; 
    Fa = ka*delta*La/sqrt(La'*La); 
    Ma = moment1(thetaGphi, 0, 0, 0, T1a1, Fa, khat); 
    % Lb is a vector pointing from node b to node jb in X,Y coordinates 
    Lb = Lb1 - [pert 0 0]'; 
    delta = sqrt(Lb'*Lb) - lbr; 
    Fb = kb*delta*Lb/sqrt(Lb'*Lb); 
    Mb = moment1(thetaGphi, 0, 0, 0, T1b1, Fb, khat); 
    % find Kxx and Kyx 
    FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) + 
dot(Fb,jhat);, MZ(2,1) = Ma + Mb; 
    dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) - 
MZ(1,1); 
    Kxx = dFX/pert; % N/mm 
    Kyx = dFY/pert; % N/mm 
    Kxy = Kyx; 
    Kzx = dMZ*1000/pert; % N-mm/mm 
    varargout = {Kxx}; 
case 'odd' 
    % Only consider the perturbation along the global Y axis 
    % La is a vector pointing from node a to node ja in X,Y coordinates 
    La = La1 - [0 pert 0]'; 
    delta = sqrt(La'*La) - lar; 
    Fa = ka*delta*La/sqrt(La'*La); 
    Ma = moment1(thetaGphi, 0, 0, 0, T1a1, Fa, khat); 
    % Lb is a vector pointing from node b to node jb in X,Y coordinates 
    Lb = Lb1 - [0 pert 0]'; 
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    delta = sqrt(Lb'*Lb) - lbr; 
    Fb = kb*delta*Lb/sqrt(Lb'*Lb); 
    Mb = moment1(thetaGphi, 0, 0, 0, T1b1, Fb, khat); 
    % find Kxy and Kyy 
    FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) + 
dot(Fb,jhat);, MZ(2,1) = Ma + Mb; 
    dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) - 
MZ(1,1); 
    Kxy = dFX/pert; % N/mm 
    Kyy = dFY/pert; % N/mm 
    Kyx = Kxy; 
    Kzy = dMZ*1000/pert; % N-mm/mm 
    varargout = {Kyy}; 
end 
 
% Consider a perturbation about the global Z axis 
pert = deg2rad(0.1); % radians 
[P1X, P1Y, TG0, TG1] = refpointtrans(thetaGphi, PXY, thetaCORphi, corXY, 
pert, [0 0], 'g'); 
[a1X, a1Y, la0, la1, T0a0, T1a1] = nodaltrans(thetaa, axy, thetaja, jaXY, 
TG0, TG1); 
[b1X, b1Y, lb0, lb1, T0b0, T1b1] = nodaltrans(thetab, bxy, thetajb, jbXY, 
TG0, TG1); 
deltaa = sqrt(la1'*la1) - lar; 
deltab = sqrt(lb1'*lb1) - lbr; 
% find forces & moment at new position 
Fa = force2(ka, deltaa, la1, thetaGphi+thetaa+pert, 0, 0, 0); 
Fb = force2(kb, deltab, lb1, thetaGphi+thetab+pert, 0, 0, 0); 
Ma = moment1(thetaGphi+pert, 0, 0, 0, T1a1(1:3,4), Fa, khat); 
Mb = moment1(thetaGphi+pert, 0, 0, 0, T1b1(1:3,4), Fb, khat); 
FXY(2,1) = dot(Fa,ihat) + dot(Fb,ihat);, FXY(2,2) = dot(Fa,jhat) + 
dot(Fb,jhat);, MZ(2,1) = Ma + Mb; 
dFX = FXY(2,1) - FXY(1,1);, dFY = FXY(2,2) - FXY(1,2);, dMZ = MZ(2,1) - 
MZ(1,1); 
Kxz = dFX/pert; % N/rad 
Kyz = dFY/pert; % N/rad 
Kzz = dMZ/pert; % N-m/rad 

 

fmin.m is a function called by hand14a.m that calculates the translation required to 

minimize force using the method of choice (defined by the input variable “flag”). 

function dXY = fmin(flag, varargin) 
 
switch flag 
case 1 
    % let bar follow force without using constant user-defined stiffness 
    FX = varargin{1}; 
    FY = varargin{2}; 
    const_stiff = varargin{3}; 
    dXY = [FX/const_stiff FY/const_stiff]'; 
case {2, 4} 
    % calculate global displacement to force minimized position using 
analytical diagonal K matrix (either 2x2 or 3x3) 
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    K = varargin{1}; 
    fmw = varargin{2}; 
    limit = varargin{3}; 
    if size(K,1) == 2, fmw(3) = [];, end 
    dXY = -K\fmw; 
    if limit == 'y' 
        t_lim = varargin{4}; 
        if abs(dXY(1)) > t_lim, dXY(1) = sign(dXY(1))*t_lim; end 
        if abs(dXY(2)) > t_lim, dXY(2) = sign(dXY(2))*t_lim; end 
    end 
    if size(dXY,1) == 3, dXY(3) = [];, end 
case {3, 5} 
    % calculate global displacement to force minimized position using 
analytical full K matrix (either 2x2 or 3x3) 
    K = varargin{1}; 
    fmw = varargin{2}; 
    limit = varargin{3}; 
    if size(K,1) == 2, fmw(3) = [];, end 
    dXY = -K\fmw; 
    if limit == 'y' 
        t_lim = varargin{4}; 
        if abs(dXY(1)) > t_lim, dXY(1) = sign(dXY(1))*t_lim; end 
        if abs(dXY(2)) > t_lim, dXY(2) = sign(dXY(2))*t_lim; end 
    end 
    if size(dXY,1) == 3, dXY(3) = [];, end 
case {6, 8} 
    % calculate global displacement to force minimized position using 
numerical diagonal K matrix method (either 2x2 or 3x3) 
    K = varargin{1}; 
    fmw = varargin{2}; 
    limit = varargin{3}; 
    if size(K,1) == 2, fmw(3) = [];, end 
    dXY = -K\fmw; 
    if limit == 'y' 
        t_lim = varargin{4}; 
        if abs(dXY(1)) > t_lim, dXY(1) = sign(dXY(1))*t_lim; end 
        if abs(dXY(2)) > t_lim, dXY(2) = sign(dXY(2))*t_lim; end 
    end 
    if size(dXY,1) == 3, dXY(3) = [];, end 
case {7, 9} 
    % calculate global displacement to force minimized position using 
numerical full K matrix method (either 2x2 or 3x3) 
    K = varargin{1}; 
    fmw = varargin{2}; 
    limit = varargin{3}; 
    if size(K,1) == 2, fmw(3) = [];, end 
    dXY = -pinv(K)*fmw; 
    if limit == 'y' 
        t_lim = varargin{4}; 
        if abs(dXY(1)) > t_lim, dXY(1) = sign(dXY(1))*t_lim; end 
        if abs(dXY(2)) > t_lim, dXY(2) = sign(dXY(2))*t_lim; end 
    end 
    if size(dXY,1) == 3, dXY(3) = [];, end 
case 10 
    % calculate global displacement to force minimized position using 
perturbations (diagonal 2x2) 
    pertk = varargin{1}; 
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    fmw = varargin{2}; 
    limit = varargin{3}; 
    if size(pertk,1) == 2, fmw(3) = [];, end 
    dXY = -[pertk(1,1) 0; 0 pertk(2,2)]\fmw; 
    if limit == 'y' 
        t_lim = varargin{4}; 
        if abs(dXY(1)) > t_lim, dXY(1) = sign(dXY(1))*t_lim; end 
        if abs(dXY(2)) > t_lim, dXY(2) = sign(dXY(2))*t_lim; end 
    end 
    if size(dXY,1) == 3, dXY(3) = [];, end 
case {11, 13} 
    % calculate global displacement to force minimized position using 
perturbations (full 2x2 or full 3x3) 
    pertk = varargin{1}; 
    fmw = varargin{2}; 
    limit = varargin{3}; 
    if size(pertk,1) == 2, fmw(3) = [];, end 
    dXY = -pinv(pertk)*fmw; 
    if limit == 'y' 
        t_lim = varargin{4}; 
        if abs(dXY(1)) > t_lim, dXY(1) = sign(dXY(1))*t_lim; end 
        if abs(dXY(2)) > t_lim, dXY(2) = sign(dXY(2))*t_lim; end 
    end 
    if size(dXY,1) == 3, dXY(3) = [];, end 
case 12 
    % calculate global displacement to force minimized position using 
perturbations (diagonal 3x3) 
    pertk = varargin{1}; 
    fmw = varargin{2}; 
    limit = varargin{3}; 
    if size(pertk,1) == 2, fmw(3) = [];, end 
    dXY = -[pertk(1,1) 0 0; 0 pertk(2,2) 0; 0 0 pertk(3,3)]\fmw; 
    if limit == 'y' 
        t_lim = varargin{4}; 
        if abs(dXY(1)) > t_lim, dXY(1) = sign(dXY(1))*t_lim; end 
        if abs(dXY(2)) > t_lim, dXY(2) = sign(dXY(2))*t_lim; end 
    end 
    if size(dXY,1) == 3, dXY(3) = [];, end 
end 

 

spieg.m is a function called by hand14a.m that calculates the preferred COR using the 

method described by Spiegelman and Woo. 

function [corX, corY] = spieg(mark1X, mark1Y, mark1Xp, mark1Yp, mark2X, 
mark2Y, mark2Xp, mark2Yp, fx, fy) 
 
% find the true COR using Spiegelman and Woo 
 
% (X1,Y1) & (X2,Y2) are the initial and final global coordinates of marker 1 
% (X3,Y3) & (X4,Y4) are the initial and final global coordinates of marker 2 
% node a = first marker, node b = second marker 
 
% % noise is normally distributed with mean = 0 mm and std = 0.5 mm 
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% X1 = mark1X+normrnd(0,0.5);, Y1 = mark1Y+normrnd(0,0.5); 
% X2 = mark1Xp+normrnd(0,0.5);, Y2 = mark1Yp+normrnd(0,0.5); 
% X3 = mark2X+normrnd(0,0.5);, Y3 = mark2Y+normrnd(0,0.5); 
% X4 = mark2Xp+normrnd(0,0.5);, Y4 = mark2Yp+normrnd(0,0.5); 
 
% noise is assumed to be due to weight on end-effector 
% calculate how much noise should be added 
pctpay = fx/(6*9.81)*100;, xnoise = 0.0058*pctpay - 0.28; 
pctpay = fy/(6*9.81)*100;, ynoise = 0.0058*pctpay - 0.28; 
X1 = mark1X+xnoise;, Y1 = mark1Y+ynoise; 
X2 = mark1Xp+xnoise;, Y2 = mark1Yp+ynoise; 
X3 = mark2X+xnoise;, Y3 = mark2Y+ynoise; 
X4 = mark2Xp+xnoise;, Y4 = mark2Yp+ynoise; 
 
% % no noise added 
% X1 = mark1X;, Y1 = mark1Y; 
% X2 = mark1Xp;, Y2 = mark1Yp; 
% X3 = mark2X;, Y3 = mark2Y; 
% X4 = mark2Xp;, Y4 = mark2Yp; 
 
S = X1-X3;, Sp = X2-X4; 
T = Y1-Y3;, Tp = Y2-Y4; 
cosphi = (Sp*S + Tp*T)/(S^2 + T^2); 
sinphi = (Sp*T - Tp*S)/(S^2 + T^2); 
U = (Y1+Y2)/2 + sinphi*(X1-X2)/(2*(1-cosphi)); 
V = (X1+X2)/2 - sinphi*(Y1-Y2)/(2*(1-cosphi)); 
corX = X1 + (Y2-U)/sinphi - cosphi*(Y1-U)/sinphi; 
corY = Y1 - (X2-V)/sinphi + cosphi*(X1-V)/sinphi; 

 

 

crisco.m is a function called by hand14a.m that calculates the preferred COR using the 

method described by Crisco et al. 

function [corX, corY] = crisco(mark1X, mark1Y, mark2X, mark2Y, mark1Xp, 
mark1Yp, mark2Xp, mark2Yp, fx, fy) 
 
% find the true COR using Crisco et al. 
 
% (x1,y1) & (x2,y2) are the initial & final global coordinates of marker 1 
% (x3,y3) & (x4,y4) are the initial & final global coordinates of marker 2 
 
% % noise is normally distributed with mean = 0 mm and std = 0.5 mm 
% x1 = mark1X+normrnd(0,0.5);,  y1 = mark1Y+normrnd(0,0.5);,  A  = [x1; y1]; 
% x2 = mark1Xp+normrnd(0,0.5);, y2 = mark1Yp+normrnd(0,0.5);, Ap = [x2; y2]; 
% x3 = mark2X+normrnd(0,0.5);,  y3 = mark2Y+normrnd(0,0.5);,  B  = [x3; y3]; 
% x4 = mark2Xp+normrnd(0,0.5);, y4 = mark2Yp+normrnd(0,0.5);, Bp = [x4; y4]; 
 
% noise is assumed to be due to weight on end-effector 
% calculate how much noise should be added 
pctpay = fx/(6*9.81)*100;, xnoise = 0.0058*pctpay - 0.28; 
pctpay = fy/(6*9.81)*100;, ynoise = 0.0058*pctpay - 0.28; 
x1 = mark1X+xnoise;,  y1 = mark1Y+ynoise;,  A  = [x1; y1]; 
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x2 = mark1Xp+xnoise;, y2 = mark1Yp+ynoise;, Ap = [x2; y2]; 
x3 = mark2X+xnoise;,  y3 = mark2Y+ynoise;,  B  = [x3; y3]; 
x4 = mark2Xp+xnoise;, y4 = mark2Yp+ynoise;, Bp = [x4; y4]; 
 
% % no noise added 
% x1 = mark1X;,  y1 = mark1Y;,  A  = [x1; y1]; 
% x2 = mark1Xp;, y2 = mark1Yp;, Ap = [x2; y2]; 
% x3 = mark2X;,  y3 = mark2Y;,  B  = [x3; y3]; 
% x4 = mark2Xp;, y4 = mark2Yp;, Bp = [x4; y4]; 
 
u = A-B; 
up = Ap-Bp; 
cosphi = dot(u,up)/(sqrt(u'*u)*sqrt(up'*up)); 
sinphi = sqrt(1-(cosphi)^2); 
cp = cross([u;0],[up;0]); 
if sign(cp(3)) > 0 
    sinphi = sinphi; 
elseif sign(cp(3)) < 0 
    sinphi = -sinphi; 
end 
corX = (1/2)*(x1+x2) + (y1-y2)*sinphi/(2*(1-cosphi)); 
corY = (1/2)*(y1+y2) - (x1-x2)*sinphi/(2*(1-cosphi)); 

 

challis.m is a function called by hand14a.m that calculates the preferred COR using the 

method described by Challis. 

function [corX, corY, xnoise, ynoise] = challis(axy, a0X, a0Y, a1X, a1Y, bxy, 
b0X, b0Y, b1X, b1Y, fx, fy); 
 
% find the true COR using Challis 
 
% x(t)i is the position of point i on the rigid body measured in the rigid 
body ref. frame 
% y(t)i is the position of point i on the rigid body measured in the inertial 
ref. frame 
% x(t)i and y(t)i are vectors, not single points 
% node a: i = 1 (initial) & 3 (final) 
% node b: i = 2 (initial) & 4 (final) 
 
% % noise is normally distributed with mean = 0 mm and std = 0.5 mm 
% x1 = [axy(1); axy(2)] + normrnd(0,0.5,2,1);, y1 = [a0X; a0Y] + 
normrnd(0,0.5,2,1); 
% x2 = [bxy(1); bxy(2)] + normrnd(0,0.5,2,1);, y2 = [b0X; b0Y] + 
normrnd(0,0.5,2,1); 
% x3 = [axy(1); axy(2)] + normrnd(0,0.5,2,1);, y3 = [a1X; a1Y] + 
normrnd(0,0.5,2,1); 
% x4 = [bxy(1); bxy(2)] + normrnd(0,0.5,2,1);, y4 = [b1X; b1Y] + 
normrnd(0,0.5,2,1); 
 
% noise is assumed to be due to weight on end-effector 
% calculate how much noise should be added 
pctpay = fx/(6*9.81)*100;, xnoise = 0.0058*pctpay - 0.28; 
pctpay = fy/(6*9.81)*100;, ynoise = 0.0058*pctpay - 0.28; 
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x1 = [axy(1); axy(2)] + [xnoise; ynoise];, y1 = [a0X; a0Y] + [xnoise; 
ynoise]; 
x2 = [bxy(1); bxy(2)] + [xnoise; ynoise];, y2 = [b0X; b0Y] + [xnoise; 
ynoise]; 
x3 = [axy(1); axy(2)] + [xnoise; ynoise];, y3 = [a1X; a1Y] + [xnoise; 
ynoise]; 
x4 = [bxy(1); bxy(2)] + [xnoise; ynoise];, y4 = [b1X; b1Y] + [xnoise; 
ynoise]; 
 
% % no noise added 
% x1 = [axy(1); axy(2)];, y1 = [a0X; a0Y]; 
% x2 = [bxy(1); bxy(2)];, y2 = [b0X; b0Y]; 
% x3 = [axy(1); axy(2)];, y3 = [a1X; a1Y]; 
% x4 = [bxy(1); bxy(2)];, y4 = [b1X; b1Y]; 
 
xbar = (x1+x2)/2;, ybar = (y1+y2)/2; 
x1p = x1-xbar;, y1p = y1-ybar; 
x2p = x2-xbar;, y2p = y2-ybar; 
P = y1p(1)*x1p(2)-y1p(2)*x1p(1) + y2p(1)*x2p(2)-y2p(2)*x2p(1); 
Q = y1p(1)*x1p(1)+y1p(2)*x1p(2) + y2p(1)*x2p(1)+y2p(2)*x2p(2); 
phi = -atan(P/Q);, phi0 = phi; 
v0 = (y1+y2)/2 - [cos(phi) -sin(phi); sin(phi) cos(phi)]*(x1+x2)/2; 
 
xbar = (x3+x4)/2;, ybar = (y3+y4)/2; 
x3p = x3-xbar;, y3p = y3-ybar; 
x4p = x4-xbar;, y4p = y4-ybar; 
P = y3p(1)*x3p(2)-y3p(2)*x3p(1) + y4p(1)*x4p(2)-y4p(2)*x4p(1); 
Q = y3p(1)*x3p(1)+y3p(2)*x3p(2) + y4p(1)*x4p(1)+y4p(2)*x4p(2); 
phi = -atan(P/Q);, phi1 = phi; 
v1 = (y3+y4)/2 - [cos(phi) -sin(phi); sin(phi) cos(phi)]*(x3+x4)/2; 
 
dv = v1-v0; 
p = (v0+v1)/2; 
phi = phi1 - phi0; 
FCR = p + 1/(2*tan(phi/2))*[cos(pi/2) -sin(pi/2); sin(pi/2) cos(pi/2)]*dv; 
corX = FCR(1); 
corY = FCR(2); 

 

corupdate.m is a short function called by hand14a.m that updates the user-defined COR 

to the calculated preferred COR. 

function corXY = corupdate(corX, corY, corXtemp, corYtemp, limit, cor_lim) 
 
dcorX = corXtemp-corX; 
dcorY = corYtemp-corY; 
if limit == 'y' 
    if abs(dcorX) > cor_lim, dcorX = sign(dcorX)*cor_lim;, end 
    if abs(dcorY) > cor_lim, dcorY = sign(dcorY)*cor_lim;, end 
end 
corX = corX+dcorX;, corY = corY+dcorY;, corXY = [corX corY]'; 
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draw.m is a function called by hand14a.m that makes 3D plots or contour plots, 

depending on the input variable “flag”. 

function draw(xx, yy, FX, FY, MZ, F, u, PX, PY, K1, K2, K3, PHI, phi, flag); 
 
switch flag 
 case 1 
  fh = figure; 
  surfc(xx, yy, FX); 
  xlabel('X COR location (mm)'); 
  ylabel('Y COR location (mm)'); 
  zlabel('FX (N)'); 
  title(['Total rotation = ',num2str(PHI),' deg., ', num2str(phi*180/pi), 
' deg. increments']); 
  view(-58.50, 46); 
   
  fh = figure; 
  surfc(xx, yy, FY); 
  xlabel('X COR location (mm)'); 
  ylabel('Y COR location (mm)'); 
  zlabel('FY (N)'); 
  title(['Total rotation = ',num2str(PHI),' deg., ', num2str(phi*180/pi), 
' deg. increments']); 
  view(-58.50, 46); 
   
  fh = figure; 
  surfc(xx, yy, MZ); 
  xlabel('X COR location (mm)'); 
  ylabel('Y COR location (mm)'); 
  zlabel('MZ (N-m)'); 
  title(['Total rotation = ',num2str(PHI),' deg., ', num2str(phi*180/pi), 
' deg. increments']); 
  view(-58.50, 46); 
   
  fh = figure; 
  surfc(xx, yy, F); 
  xlabel('X COR location (mm)'); 
  ylabel('Y COR location (mm)'); 
  zlabel('Resultant force magnitude (N)'); 
  title(['Total rotation = ',num2str(PHI),' deg., ', num2str(phi*180/pi), 
' deg. increments']); 
  view(-58.50, 46); 
         
        fh = figure; 
        surfc(xx, yy, u); 
        xlabel('X COR location (mm)'); 
  ylabel('Y COR location (mm)'); 
  zlabel('Potential energy (N-mm)'); 
  title(['Total rotation = ',num2str(PHI),' deg., ', num2str(phi*180/pi), 
' deg. increments']); 
  view(-58.50, 46); 
   
  fh = figure; 
  surfc(PX, PY, K1); 
  xlabel('PX location (mm)'); 
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  ylabel('PY location (mm)'); 
  zlabel('Kxx (N/mm)'); 
  title(['Total rotation = ',num2str(PHI),' deg., ', num2str(phi*180/pi), 
' deg. increments']); 
  view(-58.50, 46); 
         
        fh = figure; 
        surfc(PX, PY, K2); 
        xlabel('PX location (mm)'); 
        ylabel('PY location (mm)'); 
        zlabel('Kxy (N/mm)'); 
        title(['Total rotation = ',num2str(PHI),' deg., 
',num2str(phi*180/pi),' deg. increments']); 
        view(-58.50, 46); 
   
  fh = figure; 
  surfc(PX, PY, K3); 
  xlabel('PX location (mm)'); 
  ylabel('PY location (mm)'); 
  zlabel('Kyy (N/mm)'); 
  title(['Total rotation = ',num2str(PHI),' deg., ', num2str(phi*180/pi), 
' deg. increments']); 
  view(-58.50, 46); 
     
 case 2 
  fh = figure; 
  [C,h] = contour(xx, yy, FX); 
  xline = line('xdata', [xx(1) xx(end)], 'ydata', [0 0], 'color', 'k'); 
  yline = line('xdata', [0 0], 'ydata', [yy(1) yy(end)], 'color', 'k'); 
  xlabel('X COR location (mm)'); 
  ylabel('Y COR location (mm)'); 
  title(['FX (N), Total rotation = ',num2str(PHI),' deg., ', 
num2str(phi*180/pi), ' deg. increments']); 
  clabel(C,h); 
   
  fh = figure; 
  [C,h] = contour(xx, yy, FY); 
        xline = line('xdata', [xx(1) xx(end)], 'ydata', [0 0], 'color', 'k'); 
  yline = line('xdata', [0 0], 'ydata', [yy(1) yy(end)], 'color', 'k'); 
  xlabel('X COR location (mm)'); 
  ylabel('Y COR location (mm)'); 
  title(['FY (N), Total rotation = ',num2str(PHI),' deg., ', 
num2str(phi*180/pi), ' deg. increments']); 
  clabel(C,h); 
   
  fh = figure; 
  [C,h] = contour(xx, yy, MZ); 
        xline = line('xdata', [xx(1) xx(end)], 'ydata', [0 0], 'color', 'k'); 
  yline = line('xdata', [0 0], 'ydata', [yy(1) yy(end)], 'color', 'k'); 
  xlabel('X COR location (mm)'); 
  ylabel('Y COR location (mm)'); 
  title(['MZ (N-m), Total rotation = ',num2str(PHI),' deg., ', 
num2str(phi*180/pi), ' deg. increments']); 
  clabel(C,h); 
   
  fh = figure; 
  [C,h] = contour(xx, yy, avgf); 
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        xline = line('xdata', [xx(1) xx(end)], 'ydata', [0 0], 'color', 'k'); 
  yline = line('xdata', [0 0], 'ydata', [yy(1) yy(end)], 'color', 'k'); 
  xlabel('X COR location (mm)'); 
  ylabel('Y COR location (mm)'); 
  title(['Resultant force magnitude (N), Total rotation = ', ... 
                num2str(PHI),' deg., ', num2str(phi*180/pi), ' deg. 
increments']); 
  clabel(C,h); 
         
        fh = figure; 
        [C,h] = contour(xx, yy, u); 
        xline = line('xdata', [xx(1) xx(end)], 'ydata', [0 0], 'color', 'k'); 
  yline = line('xdata', [0 0], 'ydata', [yy(1) yy(end)], 'color', 'k'); 
  xlabel('X COR location (mm)'); 
  ylabel('Y COR location (mm)'); 
  title(['Potential energy (N-mm), Total rotation = ',num2str(PHI),' 
deg., ', num2str(phi*180/pi), ' deg. increments']); 
  clabel(C,h); 
   
  fh = figure; 
  [C,h] = contour(PX, PY, Kxx); 
        xline = line('xdata', [xx(1) xx(end)], 'ydata', [0 0], 'color', 'k'); 
  yline = line('xdata', [0 0], 'ydata', [yy(1) yy(end)], 'color', 'k'); 
  xlabel('PX location (mm)'); 
  ylabel('PY location (mm)'); 
  title(['Kxx (N/mm), Total rotation = ',num2str(PHI),' deg., ', 
num2str(phi*180/pi), ' deg. increments']); 
  clabel(C,h); 
   
  fh = figure; 
  [C,h] = contour(PX, PY, Kyy); 
        xline = line('xdata', [xx(1) xx(end)], 'ydata', [0 0], 'color', 'k'); 
  yline = line('xdata', [0 0], 'ydata', [yy(1) yy(end)], 'color', 'k'); 
  xlabel('PX location (mm)'); 
  ylabel('PY location (mm)'); 
  title(['Kyy (N/mm), Total rotation = ',num2str(PHI),' deg., ', 
num2str(phi*180/pi), ' deg. increments']); 
  clabel(C,h); 
end 

 

draw2.m is a function called by hand14a.m that plots the current position of the bar and 

the resultant force acting at the center of the bar. 

function draw2(handles, PXY, corXY, aXY, bXY, jaXY, jbXY, angle, mark1XY, 
mark2XY, FXY, tick) 
 
fh = handles(1); 
fgraph = handles(2); 
forceufs = handles(3); 
ah = handles(4); 
bar = handles(5); 
springa = handles(6); 
springb = handles(7); 
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xbar = [aXY(1) bXY(1)]; 
ybar = [aXY(2) bXY(2)]; 
set(bar, 'xdata', xbar, 'ydata', ybar); 
set(springa, 'xdata', [aXY(1) jaXY(1)], 'ydata', [aXY(2) jaXY(2)]); 
set(springb, 'xdata', [jbXY(1) bXY(1)], 'ydata', [jbXY(2) bXY(2)]); 
drawnow 
plot(corXY(1)*cos(2*angle)-corXY(2)*sin(2*angle), 
corXY(1)*sin(2*angle)+corXY(2)*cos(2*angle), '.',... 
    'markeredgecolor', [0 .75 0], 'markersize', 20); 
plot(PXY(1), PXY(2), '.', 'markeredgecolor', [.827 .122 .592]); 
plot(0, 0, '.g', mark1XY(1), mark1XY(2), '.m', mark2XY(1), mark2XY(2), '.m'); 
set(fh, 'currentaxes', fgraph) 
hold on 
plot(tick, sqrt(FXY(1)^2+FXY(2)^2), '.k', 'markersize', 8); 
set(fh, 'currentaxes', ah) 
for m = 1:100000, ; end 
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APPENDIX B 
 
 
 
Matlab code for experimental tests 

spine_display.m is a function called by the Matlab GUI developed to allow any user to 

control the experimental tests. 

 function varargout = spine_display2(varargin) 
% SPINE_DISPLAY2 Application M-file for spine_display2.fig 
%    FIG = SPINE_DISPLAY2 launch spine_display2 GUI. 
%    SPINE_DISPLAY2('callback_name', ...) invoke the named callback. 
 
% Amy Loveless 
% Last Modified by GUIDE v2.0 05-Jun-2003 14:06:37 
 
if nargin == 0  % LAUNCH GUI 
 
 fig = openfig(mfilename,'reuse'); 
 
 % Use system color scheme for figure: 
 set(fig,'Color',get(0,'defaultUicontrolBackgroundColor')); 
 
 % Generate a structure of handles to pass to callbacks, and store it.  
 handles = guihandles(fig); 
 guidata(fig, handles); 
     
    assignin('base', 'guihandles', handles) 
     
%     assignin('base', 'hok', handles.ok_push_button); 
%     assignin('base', 'hbolt', handles.boltup_push_button); 
%     assignin('base', 'hbefore', handles.fm_before_push_button); 
%     assignin('base', 'hafter', handles.load_control_push_button); 
%     assignin('base', 'hpath', handles.pathseek_push_button); 
%     assignin('base', 'hval', handles.val_path_push_button); 
%     assignin('base', 'hreplay', handles.replay_push_button); 
%     assignin('base', 'hend', handles.end_push_button); 
     
    global ok_flag 
    ok_flag = 0; 
 
 if nargout > 0 
  varargout{1} = fig; 
 end 
 
elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK 
 
 try 
  if (nargout) 
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   [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard 
  else 
   feval(varargin{:}); % FEVAL switchyard 
  end 
 catch 
  disp(lasterr); 
 end 
 
end 
 
%| ABOUT CALLBACKS: 
%| GUIDE automatically appends subfunction prototypes to this file, and  
%| sets objects' callback properties to call them through the FEVAL  
%| switchyard above. This comment describes that mechanism. 
%| 
%| Each callback subfunction declaration has the following form: 
%| <SUBFUNCTION_NAME>(H, EVENTDATA, HANDLES, VARARGIN) 
%| 
%| The subfunction name is composed using the object's Tag and the  
%| callback type separated by '_', e.g. 'slider2_Callback', 
%| 'figure1_CloseRequestFcn', 'axis1_ButtondownFcn'. 
%| 
%| H is the callback object's handle (obtained using GCBO). 
%| 
%| EVENTDATA is empty, but reserved for future use. 
%| 
%| HANDLES is a structure containing handles of components in GUI using 
%| tags as fieldnames, e.g. handles.figure1, handles.slider2. This 
%| structure is created at GUI startup using GUIHANDLES and stored in 
%| the figure's application data using GUIDATA. A copy of the structure 
%| is passed to each callback.  You can store additional information in 
%| this structure at GUI startup, and you can change the structure 
%| during callbacks.  Call guidata(h, handles) after changing your 
%| copy to replace the stored original so that subsequent callbacks see 
%| the updates. Type "help guihandles" and "help guidata" for more 
%| information. 
%| 
%| VARARGIN contains any extra arguments you have passed to the 
%| callback. Specify the extra arguments by editing the callback 
%| property in the inspector. By default, GUIDE sets the property to: 
%| <MFILENAME>('<SUBFUNCTION_NAME>', gcbo, [], guidata(gcbo)) 
%| Add any extra arguments after the last argument, before the final 
%| closing parenthesis. 
 
% -------------------------------------------------------------------- 
function varargout = default_push_button_Callback(h, eventdata, handles, 
varargin) 
set(handles.corx_edit,'String','0') 
set(handles.cory_edit,'String','15') 
set(handles.corz_edit,'String','110') 
set(handles.corrx_edit,'String','0') 
set(handles.corry_edit,'String','0') 
set(handles.corrz_edit,'String','0') 
set(handles.sup_vert_x,'String','0') 
set(handles.sup_vert_y,'String','15') 
set(handles.sup_vert_z,'String','110') 
set(handles.sup_vert_rx,'String','0') 
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set(handles.sup_vert_ry,'String','0') 
set(handles.sup_vert_rz,'String','0') 
set(handles.start_edit,'String','0') 
set(handles.inc_edit,'String','0.5') 
set(handles.fxtarget_edit,'String','0.5') 
set(handles.fytarget_edit,'String','0.5') 
set(handles.fztarget_edit,'String','0.5') 
set(handles.mxtarget_edit,'String','0.25') 
set(handles.mytarget_edit,'String','0.25') 
set(handles.mztarget_edit,'String','0.25') 
 
set(handles.default_push_button,'Enable','off') 
 
% -------------------------------------------------------------------- 
function varargout = ok_push_button_Callback(h, eventdata, handles, varargin) 
corx = str2num(get(handles.corx_edit,'String')); 
cory = str2num(get(handles.cory_edit,'String')); 
corz = str2num(get(handles.corz_edit,'String')); 
corrx = str2num(get(handles.corrx_edit,'String')); 
corry = str2num(get(handles.corry_edit,'String')); 
corrz = str2num(get(handles.corrz_edit,'String')); 
supvertx = str2num(get(handles.sup_vert_x,'String')); 
supverty = str2num(get(handles.sup_vert_y,'String')); 
supvertz = str2num(get(handles.sup_vert_z,'String')); 
supvertrx = str2num(get(handles.sup_vert_rx,'String')); 
supvertry = str2num(get(handles.sup_vert_ry,'String')); 
supvertrz = str2num(get(handles.sup_vert_rz,'String')); 
start = str2num(get(handles.start_edit,'String')); 
inc = str2num(get(handles.inc_edit,'String')); 
fxtarget = str2num(get(handles.fxtarget_edit,'String')); 
fytarget = str2num(get(handles.fytarget_edit,'String')); 
fztarget = str2num(get(handles.fztarget_edit,'String')); 
mxtarget = str2num(get(handles.mxtarget_edit,'String')); 
mytarget = str2num(get(handles.mytarget_edit,'String')); 
mztarget = str2num(get(handles.mztarget_edit,'String')); 
 
assignin('base','x1',corx/1000) 
assignin('base','y1',cory/1000) 
assignin('base','z1',(corz+64)/1000) 
if corrx == 0, assignin('base','rx1',0.0000001), else, 
assignin('base','rx1',corrx), end 
if corry == 0, assignin('base','ry1',0.0000001), else, 
assignin('base','ry1',corry), end 
if corrz == 0, assignin('base','rz1',0.0000001), else, 
assignin('base','rz1',corrz), end 
assignin('base','x2',supvertx/1000) 
assignin('base','y2',supverty/1000) 
assignin('base','z2',(supvertz+64)/1000) 
if supvertrx == 0, assignin('base','rx2',0.0000001), else, 
assignin('base','rx2',supvertrx), end 
if supvertry == 0, assignin('base','ry2',0.0000001), else, 
assignin('base','ry2',supvertry), end 
if supvertrz == 0, assignin('base','rz2',0.0000001), else, 
assignin('base','rz2',supvertrz), end 
assignin('base','w_start',start) 
assignin('base','w_ang',inc) 
assignin('base','w_neg',-inc) 
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assignin('base','z_target',[fxtarget fytarget fztarget mxtarget mytarget 
mztarget]) 
assignin('base','cuts',0) 
 
global ok_flag 
if ok_flag == 0 
    % Initiate communication with the UFS 
    a = matjr3pci('init_jr3',0,0,0,0,0); 
     
    % Create, configure and open serial port object 
    port1 = Serial('COM1'); 
    set(port1, 'BaudRate',19200, 'Terminator','CR/LF', 'Timeout', 900); 
    fopen(port1); 
    assignin('base','port1',port1) 
end 
     
set(handles.boltup_push_button,'Enable','on') 
set(handles.fm_before_push_button,'Enable','on') 
set(handles.load_control_push_button,'Enable','on') 
set(handles.pathseek_push_button,'Enable','on') 
set(handles.val_path_push_button,'Enable','on') 
set(handles.replay_push_button,'Enable','on') 
set(handles.end_push_button,'Enable','on') 
 
ok_flag = ok_flag + 1; 
 
% -------------------------------------------------------------------- 
function varargout = end_push_button_Callback(h, eventdata, handles, 
varargin) 
% launch dialog box to confirm close 
pos_size = get(handles.figure1,'Position'); 
pos_size = [55 15 pos_size(3) pos_size(4)]; 
user_response = modaldlg([pos_size(1)+pos_size(3)/5 
pos_size(2)+pos_size(4)/5]); 
switch user_response 
case {'no','cancel'} 
 % take no action 
case 'yes' 
 % Prepare to close GUI application window 
    % Halt communication with the UFS 
    matjr3pci('close_jr3'); 
     
    % Close the serial port 
    port1 = evalin('base', 'port1'); 
    fclose(port1); 
     
    delete(handles.figure1) 
end 
 
% -------------------------------------------------------------------- 
function varargout = file_menu_Callback(h, eventdata, handles, varargin) 
 
 
% -------------------------------------------------------------------- 
function varargout = print_file_sub_menu_Callback(h, eventdata, handles, 
varargin) 
% List dialog box to select figure to print 
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str = {'Figure 1'; 'Figure 2'}; 
[selection, ok] = listdlg('ListString',str, 'Name','Print Figure',... 
    'PromptString','Select a figure to print') 
 
% Set current figure to selected figure 
% set(gcf,handles.figure2) 
 
% Print figure 
% print 
 
% Set current figure back to GUI 
% set(gcf,handles.figure1) 
 
% -------------------------------------------------------------------- 
function varargout = tool_menu_Callback(h, eventdata, handles, varargin) 
 
% -------------------------------------------------------------------- 
function varargout = stop_tools_sub_menu_Callback(h, eventdata, handles, 
varargin) 
monitor_flag = 1; 
assignin('base', 'monitor_flag', monitor_flag) 
 
% -------------------------------------------------------------------- 
function varargout = help_menu_Callback(h, eventdata, handles, varargin) 
 
 
 
 
% -------------------------------------------------------------------- 
function varargout = protocol_help_sub_menu_Callback(h, eventdata, handles, 
varargin) 
 
 
 
 

 

The user must follow several steps in the GUI before getting to the hybrid control 

algorithm: remove bolt-up loads (boltup_flex_ext3.m) and minimize any loads arising from the 

attachement of the end-effector to the superior fixture (initial_loads2.m and boltup_leash2.m). 

boltup_flex_ext3.m is a script called by the GUI to calculate the loads on the UFS due to 

bolt-up, the weight of the attachments on the UFS and the center of gravity of the attachments. 

%function [avg, x0, y0, z0, w_mg] = boltup_flex_ext3; 
 
% boltup_flex_ext3 
%controller moves robot into #pp1-6 
%function to read forces/moments at each #pp 
 
% % Disable buttons on GUI until boltup_flxn_ext.m is done running 
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% set(hok, 'Enable', 'off'); 
% set(hbolt, 'Enable', 'off'); 
% set(hbefore, 'Enable', 'off'); 
% set(hafter, 'Enable', 'off'); 
% set(hpath, 'Enable', 'off'); 
% set(hval, 'Enable', 'off'); 
% set(hreplay, 'Enable', 'off'); 
% set(hend, 'Enable', 'off'); 
 
% Disable buttons on GUI until spine3h_pathseek7.m is done running 
buttons(guihandles, 'off'); 
 
pp(1,1:6) = [0,-45.005,135.001,0,-.05,-180.145]; 
pp(2,1:6) = [0,-45.005,135.001,0,-.05,-.142]; 
pp(3,1:6) = [0,-45.005,135.001,0,-.05,89.855]; 
pp(4,1:6) = [0,-45.005,135.001,0,-.05,-90.147]; 
pp(5,1:6) = [0,-45.005,135.001,0,-90.05,-90.15]; 
pp(6,1:6) = [0,-45.005,135.001,0,89.95,-90.15]; 
 
% % set transformation for COR from UFS face (remember that the UFS has a 
left-hand rule, so positive z axis points toward the robot) 
% trans_ufst = [1,round(x1*1000/0.0254), 2,round(y1*1000/0.0254), 3,round(-
(z1-0.045)*1000/0.0254), 4,round(rx1*32768/180), 5,round(ry1*32768/180), 
6,round(rz1*32768/180),0]; 
% b = matjr3pci('set_transforms', 0, 'trans_ufst', 13, 0); 
%  
% % use transformation 
% b = matjr3pci('use_transforms', 0, 0); 
%  
% % only use pause if updating COR 
% pause(1); 
 
for p = 1:6 
    fprintf(port1, pp(p,1:6)); 
    flag = 0; 
    flag = fscanf(port1); 
    newflag = sscanf(flag, '%f'); 
    if newflag == 1 
        get_loads; 
        % fm_ufs = get_loads; 
        pp_fin(1:3,p)=fm_ufs(1:3)'; 
        pp_min(1:3,p)=fm_ufs(4:6)'; 
        cg_fin(1:3,p)=fm_ufs(1:3)'; 
        cg_min(1:3,p)=fm_ufs(4:6)'; 
    else 
        var = 1 
    end 
end 
 
fprintf(port1, pp(3,1:6)); 
 
% FSU forces/moments=UFS forces/moments[]-avg[]-fixture wt[] 
favgx = (pp_fin(1,3)+pp_fin(1,4)+pp_fin(1,5)+pp_fin(1,6))/4; 
favgy = (pp_fin(2,1)+pp_fin(2,2)+pp_fin(2,5)+pp_fin(2,6))/4; 
favgz = (pp_fin(3,1)+pp_fin(3,2)+pp_fin(3,3)+pp_fin(3,4))/4; 
mavgx = (pp_min(1,1)+pp_min(1,2))/2; 
mavgy = (pp_min(2,3)+pp_min(2,4)+pp_min(2,5)+pp_min(2,6))/4; 
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mavgz = (pp_min(3,3)+pp_min(3,4)+pp_min(3,5)+pp_min(3,6))/4; 
 
avg = -[favgx favgy favgz mavgx mavgy mavgz]; 
avg_dig(2) = avg(2)*16384/20/4.44; 
avg_dig(3) = avg(3)*16384/50/4.44; 
 
% FSU forces/moments=UFS forces/moments[]-avg[]-fixture wt[] 
cg_favgx = (cg_fin(1,3)+cg_fin(1,4)+cg_fin(1,5)+cg_fin(1,6))/4; 
cg_favgy = (cg_fin(2,1)+cg_fin(2,2)+cg_fin(2,5)+cg_fin(2,6))/4; 
cg_favgz = (cg_fin(3,1)+cg_fin(3,2)+cg_fin(3,3)+cg_fin(3,4))/4; 
cg_mavgx = (cg_min(1,1)+cg_min(1,2))/2; 
cg_mavgy = (cg_min(2,3)+cg_min(2,4)+cg_min(2,5)+cg_min(2,6))/4; 
cg_mavgz = (cg_min(3,3)+cg_min(3,4)+cg_min(3,5)+cg_min(3,6))/4; 
 
% Calculate the center of gravity and mass of top fixture. 
 
% 3 and 4 : d = z 
% 3 : dz = -mx/fy 
% 4 : dz = -mx/fy 
fy_cg3 = -cg_fin(2,3) + cg_favgy; 
fy_cg4 = -cg_fin(2,4) + cg_favgy; 
mx_cg3 = -cg_min(1,3) + cg_mavgx; 
mx_cg4 = -cg_min(1,4) + cg_mavgx; 
momarm_z1 = -(mx_cg3/fy_cg3)*1000; 
momarm_z2 = -(mx_cg4/fy_cg4)*1000; 
momarm_z = (momarm_z1 + momarm_z2)/2; 
z0 = momarm_z/1000; 
 
% 1 and 2 : d = y 
% 1 : dy = -mz/fx 
% 2 : dy = -mz/fxfy_cg3 = cg_fin(2,3); 
fx_cg1 = -cg_fin(1,1) + cg_favgx; 
fx_cg2 = -cg_fin(1,2) + cg_favgx; 
mz_cg1 = -cg_min(3,1) + cg_mavgz; 
mz_cg2 = -cg_min(3,2) + cg_mavgz; 
momarm_y1 = -(mz_cg1/fx_cg1)*1000; 
momarm_y2 = -(mz_cg2/fx_cg2)*1000; 
momarm_y = (momarm_y1 + momarm_y2)/2; 
y0 = momarm_y/1000; 
 
% 5 and 6 : d = x 
% 5 : dx = -my/fz 
% 6 : dx = -my/fzfy_cg3 = cg_fin(2,3); 
fz_cg5 = -cg_fin(3,5) + cg_favgz; 
fz_cg6 = -cg_fin(3,6) + cg_favgz; 
my_cg5 = -cg_min(2,5) + cg_mavgy; 
my_cg6 = -cg_min(2,6) + cg_mavgy; 
momarm_x1 = -(my_cg5/fz_cg5*1000); 
momarm_x2 = -(my_cg6/fz_cg6*1000); 
momarm_x = (momarm_x1 + momarm_x2)/2; 
x0 = momarm_x/1000; 
 
% mass = 3(-fy), 4(fy), 1(-fx), 2(fx), 5(-fz), 6(fz) 
mass_calc = ((-fy_cg3) + (fy_cg4) + (-fx_cg1) + (fx_cg2) + (-fz_cg5) + 
(fz_cg6))/6; 
mass_calc = -mass_calc; 
w_mg = [0 0 mass_calc]'; 
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filename = ['c:\robot\temp\temp ', date]; 
save(filename); 
 
% % Enable buttons on GUI when boltup_flex_ext3.m is done running 
% set(hok, 'Enable', 'on'); 
% set(hbolt, 'Enable', 'on'); 
% set(hbefore, 'Enable', 'on'); 
% set(hafter, 'Enable', 'on'); 
% set(hpath, 'Enable', 'on'); 
% set(hval, 'Enable', 'on'); 
% set(hreplay, 'Enable', 'on'); 
% set(hend, 'Enable', 'on'); 
 
% Enable buttons on GUI when spine3h_pathseek7.m is done running 
buttons(guihandles, 'on'); 

 

get_loads.m is a script called by several other scripts to read the loads from the JR3 PCI 

card. 

% function fm_ufs = get_loads; 
 
% get_loads  
% Kevin M. Bell 
% 03/18/02 
 
% % Commented out on 09-04-02. 
% % We are having a problem inplementing the set and use transformation 
functions.  It appears that the transformation is randomly used and not used, 
% % meaning that sometimes the loads are read at the c.s. we set (the 
specimen COR) and sometimes they are read at the center of the UFS. 
% % There does not seem to be any kind of pattern to this behavior, so we 
just took the transformation functions out.  Now we read all loads at the 
center 
% % of the UFS and transform them later to the COR.  If we can get the 
transformation functions to work later, we may go back to using them. 
 
% % set transformation for COR from center of UFS (remember that the UFS has 
a left-hand rule, so positive z axis points toward the robot) 
% trans_ufst = [1,round(x1*1000/0.0254), 2,round(y1*1000/0.0254), 3,round(-
(z1-0.045)*1000/0.0254), 4,round(rx1*32768/180), 5,round(ry1*32768/180), 
6,round(rz1*32768/180),0]; 
% b = matjr3pci('set_transforms', 0, 'trans_ufst', 13, 0); 
%  
% % use transformation 
% b = matjr3pci('use_transforms', 0, 0); 
%  
% pause(1); 
 
araw = 0; 
%read in full scales 
full = matjr3pci('get_full_scales',0); 
 

 175



% read in raw data from UFS at center of UFS 
for i = 1:30 
    raw(i,:) = matjr3pci('read_ftdata',3,0); 
    % flip y to make right hand c.s. 
    raw(i,2) = -raw(i,2);  
    raw(i,5) = -raw(i,5); 
    araw = araw + raw(i,:); 
    % pause added so that data from pci card is not read too quickly, 
    % otherwise, all forces and moments in raw() are the same 
%     pause(0.01); 
end 
 
% average 30 readings 
araw = araw/30; 
 
% Calculate forces/moments in pounds/inch-pounds 
% Negative sign to show f/m in robot point of view 
fm_ufs = -araw.*full/16384; 
 
% Remember that fm_ufs[] are loads at the center of the UFS.  They are 
transformed to the COR later. 
% seperate and convert forces and moments 
fm_ufs(1:3) = fm_ufs(1:3)*4.44; 
fm_ufs(4:6) = fm_ufs(4:6)*4.44*.0254; 
fm_ufs(7:8) = []; 

 

initial_loads2.m is a script called by the GUI to find the loads on the UFS before 

attaching the superior fixture to the end-effector. 

% Disable buttons on GUI until initial_loads2.m is done running 
buttons(guihandles, 'off'); 
 
fm_before = [0 0 0 0 0 0]; 
 
for j = 1:100 
 
    get_loads; 
    fm_before = fm_before + fm_ufs; 
 
end 
 
fm_before = fm_before'/100; 
 
filename = ['c:\robot\temp\temp ', date]; 
save(filename); 
 
% Enable buttons on GUI when spine3h_pathseek7.m is done running 
buttons(guihandles, 'on'); 
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boltup_leash2.m is a script called by the GUI that relieves the loads created during 

attachment of the superior fixture to the end-effector. 

% boltup_leash2.m 
% use load control to make sure that no f/m are added when fixture is 
attached to UFS 
% modified from trpy.m by Lianfang Tian 
% July 28, 2002 
 
% Disable buttons on GUI until boltup_leash2.m is done running 
buttons(guihandles, 'off'); 
 
% setup figure to graphically monitor loads 
[fx, fy, fz, mx, my, mz, fh] = attach_display1; 
 
% Define the threshold value for force and moment 
f_min = 0.5; % N 
m_min = 0.25; % N-m 
 
% Limit for displacements 
lim_dis = 0.1; % mm 
lim_mdis = 0.1; % degrees 
 
% Define stiffness 
for n=1:3 
    stiff(n) = 10.00001; % N/mm 
end 
 
for n=4:6 
    stiff(n) = 10.00001; % N-m/degrees 
end 
 
% convert rotations about tool x,y,z axes to Euler angles 
eul = rad2deg(tr2eul(rpy2tr(deg2rad(rz1), deg2rad(ry1), deg2rad(rx1)))); 
 
% send x1, y1, z1, rx1, ry1, rz1 to V+ to make tool transformation 
ok = 0; 
flag = 0.1; 
fprintf(port1, [ok, flag]); 
fprintf(port1, [(x1*1000)+.1, (y1*1000)+.1, (z1*1000)+.1, eul(1)+.1, 
eul(2)+.1, eul(3)+.1]); 
 
done_moving = fscanf(port1); 
done_moving = sscanf(done_moving, '%f'); 
 
zero_flag = 0; 
kk = 0; 
 
while zero_flag == 0 
    kk = kk + 1; 
     
    fm_after = [0 0 0 0 0 0]; 
     
    pause(2); 
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    % Read forces/moments 
    for j = 1:100 
        get_loads; 
        fm_after = fm_after + fm_ufs; 
    end 
     
    % Average forces/moments 
    fm_after = fm_after'/100; 
    total_fm_after(1:6,kk) = fm_after; 
     
    % Remove forces/moments present before fixture attachment 
    fm_diff = fm_after - fm_before; 
     
    % Display forces and moments 
    attach_display2([fm_diff', fx, fy, fz], [mx, my, mz], [f_min, m_min]); 
    %========================================================= 
     
    % Find translations in UFS c.s. 
    for k1=1:3 
        if (abs(fm_diff(k1)) < abs(f_min)) 
            dis(k1) = 0; 
        else 
            dis(k1) = fm_diff(k1)/stiff(k1); 
        end 
         
        if abs(dis(k1)) > lim_dis 
            dis(k1) = sign(dis(k1))*lim_dis; 
        end             
    end 
     
    % out_dis1, out_dis2, out_dis3 are translations in UFS c.s. 
    out_dis1(kk)=dis(1); 
    out_dis2(kk)=dis(2); 
    out_dis3(kk)=dis(3); 
    %========================================================= 
     
    % Find rotations in UFS c.s. 
    for k1=4:6 
        if (abs(fm_diff(k1))<abs(m_min))                               
            dis(k1) = 0.0000001; 
        else 
            dis(k1) = fm_diff(k1)/stiff(k1); 
        end 
         
        if abs(dis(k1)) > lim_mdis 
            dis(k1) = sign(dis(k1))*lim_mdis; 
        end             
    end 
     
    % out_mdis1, out_mdis2, out_mdis3 are rotations about tool c.s. axes 
    % need to convert to Euler angles 
    out_mdis = rad2deg(tr2eul(rpy2tr(deg2rad(dis(6)), deg2rad(dis(5)), 
deg2rad(dis(4))))); 
    out_mdis1(kk)=out_mdis(1); 
    out_mdis2(kk)=out_mdis(2); 
    out_mdis3(kk)=out_mdis(3); 
    %========================================================= 

 178



     
 % Send position data to robot 
 % motions need to be negative to account for forces 
 send = -[out_dis1(kk), out_dis2(kk), out_dis3(kk), out_mdis1(kk), 
out_mdis2(kk), out_mdis3(kk)]; 
    ok = 0; 
    flag = 2.1; 
    fprintf(port1, [ok, flag]); 
 fprintf(port1, send); 
     
    done_moving = fscanf(port1); 
    done_moving = sscanf(done_moving, '%f'); 
     
    % end while loop if done minimizing forces or if reach too many 
iterations (kk) 
    if send == -[0 0 0 rad2deg(tr2eul(rpy2tr(deg2rad(0.0000001), 
deg2rad(0.0000001), deg2rad(0.0000001))))] | kk == 50; 
        zero_flag = 1; 
    end 
end 
 
% remove monitor loads figure from screen 
delete(fh) 
 
% Enable buttons on GUI when boltup_leash2.m is done running 
buttons(guihandles, 'on'); 

 

buttons.m is a function called by several scripts to disable and enable the buttons on the 

GUI. 

function buttons(handles, flag) 
 
hok = handles.ok_push_button; 
hbolt = handles.boltup_push_button; 
hbefore = handles.fm_before_push_button; 
hafter = handles.load_control_push_button; 
hpath = handles.pathseek_push_button; 
hval = handles.val_path_push_button; 
hreplay = handles.replay_push_button; 
hend = handles.end_push_button; 
 
switch flag 
case 'on' 
    % Enable buttons on GUI when spine3h_pathseek6.m is done running 
 set(hok, 'Enable', 'on'); 
 set(hbolt, 'Enable', 'on'); 
 set(hbefore, 'Enable', 'on'); 
 set(hafter, 'Enable', 'on'); 
 set(hpath, 'Enable', 'on'); 
 set(hval, 'Enable', 'on'); 
 set(hreplay, 'Enable', 'on'); 
 set(hend, 'Enable', 'on'); 
case 'off' 
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    % Disable buttons on GUI until spine3h_pathseek4.m is done running 
 set(hok, 'Enable', 'off'); 
 set(hbolt, 'Enable', 'off'); 
 set(hbefore, 'Enable', 'off'); 
 set(hafter, 'Enable', 'off'); 
 set(hpath, 'Enable', 'off'); 
 set(hval, 'Enable', 'off'); 
 set(hreplay, 'Enable', 'off'); 
 set(hend, 'Enable', 'off'); 
end 

 

spine3h_pathseek4.m is a script called by the GUI to perform pathseek.  Several other 

scripts are called during execution of spine3h_pathseek4.m and follow in this appendix in the 

order in which they appear in spine3h_pathseek4.m 

% spine3h_pathseek4.m 
% perform flexion/extension with all position and load data stored 
% converted from spine3h.v2 
% Amy Loveless 
% 7/4/2002 
 
% Disable buttons on GUI until spine3h_pathseek4.m is done running 
buttons(guihandles, 'off'); 
 
% Input dialog box to get the filename for data storage 
prompt = {'Enter Filename'}; 
title = 'Filename'; 
lines = 1; 
def = {'c:\robot'}; 
answer = inputdlg(prompt,title,lines,def); 
if isequal(answer,{}) == 1 
    % Enable buttons on GUI 
    buttons(guihandles, 'on'); 
else 
    filename = answer{1}; 
end 
 
% Clear variables created for inputdlg 
clear prompt title lines def answer; 
 
% initialize stiffness, target f/m, temp. f/m, temp positions 
z_stiff = [100 100 100 10 10 10]; 
z_flag = [0 0 0 0 0 0]; 
z_stop = [30 30 30 9 9 9]; 
f_temp = [0 0 0 0 0 0]; 
p_temp = [0 0 0 0 0 0 0 0 0 0 0 0]'; 
 
% initialize iterations 
z_ct = 1;       % keeps track of no. of iterations to reach min. force 
z_count = 10;    % limit to z_count iterations 
z_ct_temp = z_count;  % keeps track of no. of iterations to reach min. force 
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z_step = 1;     % index to keep track of what direction and angle data 
gathered was at 
z_xform = 1;    % index to keep track of global c.s. to tool c.s. xform info 
sent to Matlab 
z_mom_flag = 1;     % how many rotation angles the moment > max.mom 
z_index = 1;    % index to keep track of number of iterations per angle 
 
% initialize direction 
dir_flag = 0;   % change direction if dir_flag <> 0 
dir = 0; % begin with start -> flxn 
 
% initialize stablity check 
stable_flag = 0; 
stable_flag_flxn = 0; 
stable_flag_extn = 0; 
start_counter = 0; 
flxn_counter = 0; 
extn_counter = 0; 
 
% define the limits for displacement, rotation, f/e moment and pathseek limit 
lim_dis = 1; % mm 
lim_mdis = 3; % degrees 
max_mom = 2.40; % N-m 
path_limit = 4; 
 
% initialize work 
work = 0; 
 
% initialize timer 
tic; 
 
% setup figure to graphically monitor loads 
[fx, fy, fz, mx, my, mz, handles, fh] = pathseek_display1; 
 
% send x1, y1, z1, rx1, ry1, rz1 to V+ to make tool transformation 
ok = 0; 
flag = 0.1; 
fprintf(port1, [ok, flag]); 
fprintf(port1, [(x1*1000)+.1, (y1*1000)+.1, (z1*1000)+.1, rx1+.1, ry1+.1, 
rz1+.1]); 
 
done_moving = fscanf(port1); 
done_moving = sscanf(done_moving, '%f'); 
%============================================================================
==================================== 
 
while stable_flag ~= 100 
                 
    if dir == 0 
        w_begin = w_start; 
        w_inc = w_neg; 
        start_counter = start_counter + 1; 
 end 
 if dir == 400 
        w_begin = w_current; 
        w_inc = w_ang; 
        flxn_counter = flxn_counter + 1; 
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        stable_flag_flxn = 0; 
        stable_flag_extn = 0; 
 end 
 if dir == 800 
        w_begin = w_current; 
        w_inc = w_neg; 
        extn_counter = extn_counter + 1; 
 end 
    if dir == 900 
        w_begin = w_current; 
        w_end = w_start; 
        w_inc = w_ang; 
        stable_flag = 100; 
        start_counter = start_counter + 1; 
    end 
     
    w_now = w_begin; 
 
    while dir_flag == 0 
        ok = 0; 
        flag = 1.1; 
        fprintf(port1, [ok, flag]); 
        gt_jt_angles = fscanf(port1); 
        gt_jt_angles = sscanf(gt_jt_angles, '%f'); 
        if dir == 0 | dir == 900 
            z_gt0(1:6,z_xform,start_counter) = gt_jt_angles(1:6); 
            z_jt_angles0(1:6,z_xform,start_counter) = gt_jt_angles(7:12); 
        elseif dir == 400 
            z_gt400(1:6,z_xform,flxn_counter) = gt_jt_angles(1:6); 
            z_jt_angles400(1:6,z_xform,flxn_counter) = gt_jt_angles(7:12); 
        elseif dir == 800 
            z_gt800(1:6,z_xform,extn_counter) = gt_jt_angles(1:6); 
            z_jt_angles800(1:6,z_xform,extn_counter) = gt_jt_angles(7:12); 
        end 
        z_xform = z_xform + 1; 
        for n = 1:6 
            z_sign(n) = 0; 
            z_flag(n) = 0; 
        end 
         
        ct = 1; 
  %=============================================== 
  load_control_first3; % load control (inner) loop 
  %=============================================== 
   
        % are the measured sagittal plane forces < max allowable? 
  % if no, begin load control loop again 
  % if yes, put data in matrices 
  % limit to 8 iterations (will want to change to time limit) 
        while z_ct < z_count 
            if sqrt(fa(2)^2 + fa(3)^2) > z_target(2) 
%             if (abs(fa(2)) > z_target(2)) | (abs(fa(3)) > z_target(3)) 
                z_ct = z_ct + 1; 
    z_step = z_step + 1; 
    z_xform = z_xform + 1; 
                %=========================================== 
    load_control3; % load control (inner) loop 
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                %=========================================== 
            else 
                z_ct_temp = z_ct; 
                z_ct = z_count; 
            end 
        end 
         
        z_ct = z_ct_temp; 
         
        if dir == 0 
            % Build array of start position data that could be for replay 
            start_replay1(1:6,z_index) = 
z_gt0(1:6,z_xform,start_counter)+0.000001; 
            % Build array of rotation angles at last iteration 
            rot_angle0_end_pts(1,z_index,start_counter) = w_now; 
            % Build array of loads at last iteration 
            start_load_end_pts(1:6,z_index,start_counter) = 
load0(1:6,z_step,start_counter); 
            % Build array of work at last iteration 
            works0end(1,z_index,start_counter) = work; 
        elseif dir == 400 
            % Build array of flxn position data to be written to V+ for 
replay 
            flxn_replay(1:6,z_index) = 
z_gt400(1:6,z_xform,flxn_counter)+0.000001; 
            % Build array of rotation angles at last iterations 
            rot_angle400_end_pts(1,z_index,flxn_counter) = w_now; 
            % Build array of loads at last iterations 
            flxn_load_end_pts(1:6,z_index,flxn_counter) = 
load400(1:6,z_step,flxn_counter); 
        elseif dir == 800 
            % Build array of extn position data to be written to V+ for 
replay 
            extn_replay(1:6,z_index) = 
z_gt800(1:6,z_xform,extn_counter)+0.000001; 
            % Build array of rotation angles at last iterations 
            rot_angle800_end_pts(1,z_index,extn_counter) = w_now; 
            % Build array of loads at last iterations 
            extn_load_end_pts(1:6,z_index,extn_counter) = 
load800(1:6,z_step,extn_counter); 
        elseif dir == 900 
            % Build array of start position data that could be for replay (it 
will not) 
            start_replay2(1:6,z_index) = 
z_gt0(1:6,z_xform,start_counter)+0.000001; 
            % Build array of rotation angles at last iterations 
            rot_angle0_end_pts(1,z_index,start_counter) = w_now; 
            % Build array of loads at last iterations 
            start_load_end_pts(1:6,z_index,start_counter) = 
load0(1:6,z_step,start_counter); 
        end 
         
        if dir == 0 | dir == 900 
            z_ct0_total(1,z_index,start_counter) = z_ct; 
        elseif dir == 400 
            z_ct400_total(1,z_index,flxn_counter) = z_ct; 
        elseif dir == 800 
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            z_ct800_total(1,z_index,extn_counter) = z_ct; 
        end 
        z_ct = 1; 
        z_step = z_step + 1; 
        z_xform = z_xform + 1; 
        z_index = z_index + 1; 
        z_ct_temp = z_count; 
 
        %=========================================== 
        max_moment2; % max moment loop 
        %=========================================== 
         
        % ------------------------------------------- 
        % this part added for testing 
        if w_now < -0.9 
            dir_flag = 1; 
        end 
        % ------------------------------------------- 
     
        if dir_flag == 0  % continue with current direction 
            % for planar f/e program, displacement control should be a pure 
rotation about the x axis, but tr2eul does not give us correct 
            % yaw,pitch,roll for a pure rotation about the x axis, therefore, 
we have to have a very small rotation about the y and z axes, too. 
            % (see the m file for tr2eul.m to see how the Euler angles are 
calculated.) 
%             rot_inc_x = rotx(deg2rad(w_inc)); 
%             rot_inc_y = roty(deg2rad(0.0000001)); 
%             rot_inc_z = rotz(deg2rad(0.0000001)); 
%             rot_inc = rot_inc_x*rot_inc_y*rot_inc_z; 
%             rotate_inc = tr2eul(rot_inc); 
%             rotate_inc = rad2deg(rotate_inc); 
            rotate_inc = rad2deg(tr2eul(rpy2tr(deg2rad([0.0000001, 0.0000001, 
w_inc])))) + 0.0000001; 
            ok = 0; 
            flag = 2.1; 
            fprintf(port1, [ok, flag]); 
            fprintf(port1, [0 0 0 rotate_inc(1) rotate_inc(2) 
rotate_inc(3)]); 
            done_moving = fscanf(port1); 
            done_moving = sscanf(done_moving, '%f'); 
            w_now = w_now + w_inc; 
        end 
         
        if dir_flag == 1  % change direction 
            w_current = w_now; 
            break          
        end 
    end 
     
    % stability check 
    if dir == 800 & extn_counter > 1 
        % use flxn_load_end_pts & rot_angle400_end_pts 
        flxn_mx_percent = 100*abs((flxn_load_end_pts(4,1,flxn_counter-1)-
flxn_load_end_pts(4,1,flxn_counter))/flxn_load_end_pts(4,1,flxn_counter)); 
        flxn_rot_angle_percent = 
100*abs((rot_angle400_end_pts(1,1,flxn_counter-1)-
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rot_angle400_end_pts(1,1,flxn_counter))/rot_angle400_end_pts(1,1,flxn_counter
)); 
        if flxn_mx_percent < 4 & flxn_rot_angle_percent < 4 
            stable_flag_flxn = 25; 
        end 
        % use extn_load_end_pts & rot_angle800_end_pts 
        extn_mx_percent = 100*abs((extn_load_end_pts(4,1,extn_counter-1)-
extn_load_end_pts(4,1,extn_counter))/extn_load_end_pts(4,1,extn_counter)); 
        extn_rot_angle_percent = 
100*abs((rot_angle800_end_pts(1,1,extn_counter-1)-
rot_angle800_end_pts(1,1,extn_counter))/rot_angle800_end_pts(1,1,extn_counter
)); 
        if extn_mx_percent < 4 & extn_rot_angle_percent < 4 
            stable_flag_extn = 25; 
        end  
    end 
         
    % if stable_flag == 100, then the while loop will end 
    if stable_flag ~= 100 
        stable_flag = stable_flag_flxn + stable_flag_extn; 
    end 
     
    % added to test program with only one pathseek     
    if dir == 800 
        dir = 900; 
    end 
     
    % commented so that we can test program with only pathseek 
%     if stable_flag == 50 | extn_counter > path_limit 
%         dir = 900; 
%     end 
%              
    w_current = w_now; 
     
    %------------------------------------------------------- 
    % this part added for testing 
    if dir == 0 
        stable_flag = 100; 
    end 
    %------------------------------------------------------- 
 
    % ----------------------------- 
    % commented out for testing 
%     if dir == 0 | dir == 400 
%         dir = dir + 400; 
%     elseif dir == 800 
%         dir = 400; 
%     end 
    % ---------------------------- 
 
    dir_flag = 0; 
    z_xform = 1; 
    z_step = 1; 
    z_index = 1; 
     
end 
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% remove monitor loads figure from screen 
delete(fh); 
 
% Save workspace 
save(filename) 
disp('Data has been saved.') 
 
%=========================================== 
% data_display_pathseek4; % display data 
%=========================================== 
 
% Enable buttons on GUI when spine3h_pathseek4.m is done running 
buttons(guihandles, 'on'); 

 

pathseek_display1.m is a function called by spine3h_pathseek4.m that sets up the plot 

for UFS loads. 

function [fx, fy, fz, mx, my, mz, handles, fh] = pathseek_display1 
 
% setup figure to graphically monitor loads 
fh = figure('Position',[400 300 600 600],'Color','w'); 
subplot(2,1,1) 
set(gca,'XLim', [-30 30], 'YLim', [0 4], 'YTick', [1 2 3], 'YTickLabel', 'Fz 
(N)|Fy (N)|Fx (N)') 
title('Forces') 
fx = line('XData', [0 0], 'YData', [3 3], 'LineWidth', 24, 'Color', [0 0.75 
0]); 
fy = line('XData', [0 0], 'YData', [2 2], 'LineWidth', 24, 'Color', [0 0.75 
0]); 
fz = line('XData', [0 0], 'YData', [1 1], 'LineWidth', 24, 'Color', [0 0.75 
0]); 
origin = line('XData', [0 0], 'YData', [0 4]); 
 
subplot(2,1,2) 
set(gca,'XLim', [-10 10], 'YLim', [0 4], 'YTick', [1 2 3], 'YTickLabel', 'Mz 
(Nm)|My (Nm)|Mx (Nm)') 
title('Moments') 
mx = line('XData', [0 0], 'YData', [3 3], 'LineWidth', 24, 'Color', [0 0.75 
0]); 
my = line('XData', [0 0], 'YData', [2 2], 'LineWidth', 24, 'Color', [0 0.75 
0]); 
mz = line('XData', [0 0], 'YData', [1 1], 'LineWidth', 24, 'Color', [0 0.75 
0]); 
origin = line('XData', [0 0], 'YData', [0 4]); 
 
uicontrol('Style', 'text', 'Tag', 'current_text',... 
    'Position', [20 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12, 
'String', 'Current:'); 
uicontrol('Style', 'edit', 'Tag', 'w_now_edit',... 
    'Position', [135 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12); 
uicontrol('Style', 'text', 'Tag', 'w_now_text',... 
    'Position', [135 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12, 
'String', 'Angle'); 
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uicontrol('Style', 'edit', 'Tag', 'iterations_edit',... 
    'Position', [235 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12); 
uicontrol('Style', 'text', 'Tag', 'iteration_text',... 
    'Position', [235 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12, 
'String', 'Iteration'); 
uicontrol('Style', 'edit', 'Tag', 'pathseek_edit',... 
    'Position', [335 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12); 
uicontrol('Style', 'text', 'Tag', 'pathseek_text',... 
    'Position', [335 0 70 20], 'BackgroundColor', [1 1 1], 'FontSize', 12, 
'String', 'Pathseek #'); 
uicontrol('Style', 'edit', 'Tag', 'stable_edit',... 
    'Position', [435 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12); 
uicontrol('Style', 'text', 'Tag', 'stable_text',... 
    'Position', [435 0 65 20], 'BackgroundColor', [1 1 1], 'FontSize', 12, 
'String', 'Stability %'); 
handles = guihandles(fh); 
guidata(fh, handles); 
 
% any of these changes should make simple animations smooth 
% zbuffer can be very slow and on my computer none of these are necessary to 
stop flashing 
set(fh,'doublebuffer','on'); 
% set(fh,'renderer','zbuffer'); 
% set(hfig,'renderer','opengl'); 

 

load_control_first3.m is a script called by spine3h_pathseek4.m. 

% load_control_first3.m 
% load control (inner) loop 
% Amy Loveless 
% converted to Matlab 7/10/02 
 
%=========================================== 
get_loads; % measure: forces and moments 
% fm_ufs = get_loads; 
%=========================================== 
 
%=========================================== 
fm_tare5; % tare out bolt-up and fixture wt 
% [x, fa, fmw, rGT] = fm_tare5(w_mg, x0, y0, z0, x1, y1, z1, rx1, ry1, rz1, 
fm_ufs, avg) 
%=========================================== 
 
time = toc; 
tic; 
 
% store current position 
for i = 1:6 
    p_temp(i) = x(i); 
end 
 
% compute: FSU stiffness from previous measured force and position 
if z_flag(1) == 0 
 % compute: robot displacement vector to minimize sagittal forces and 
moments (from computed stiffness) 
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 for i = 1:6 
        z_flag(i) = 1; 
        f_temp(i) = fmw(i); % keep previous f/m 
        dis(i) = fmw(i)/z_stiff(i)/(1+1*z_sign(i)); 
 end 
else 
 for i = 1:6 
        if (fmw(i) ~= f_temp(i)) & (ds(i) ~= 0) & (fmw(i) ~= 0) 
            % STIFFNESS = old*1/3    +ABS(df/ds)*2/3 
            z_stiff(i) = z_stiff(i)/3+abs((fmw(i)-f_temp(i))/ds(i))*2/3; 
            % we changed to ds(i) from dis_tool_actual(i) on 07-29-02 
        end 
  
  if z_stiff(i) > 99999 
            z_stiff(i) = 100000; % maximum z_stiff 
  end 
  
  if sign(f_temp(i)*fmw(i)) < 1 
   z_sign(i) = 1; 
  end 
         
        % compute: robot displacement vector to minimize sagittal forces and 
moments (from computed stiffness) 
        z_flag(i) = 1; 
        f_temp(i) = fmw(i); % keep previous f/m 
        dis(i) = fmw(i)/z_stiff(i)/(1+1*z_sign(i)); 
 end 
end 
 
% determine translations based on forces 
for i = 1:3 
    if abs(dis(i)) > lim_dis 
        dis(i) = sign(dis(i))*lim_dis; 
    end 
end 
 
% transform from global c.s. to tool c.s. 
dis_tool_calc(1:3) = rGT'*dis(1:3)'; 
 
% determine rotations based on moments 
for i = 4:6 
    if abs(dis(i)) > lim_mdis 
        dis(i) = sign(dis(i))*lim_mdis; 
        dis(i) = deg2rad(dis(i)); 
    end 
end 
 
% transform from global c.s. to tool c.s. 
dis_tool_calc(4:6) = rGT'*dis(4:6)'; 
 
% disa[4]-[6] are rotations about x,y,z, not y,p,r, so need to make them 
y,p,r 
rot_x = rotx(dis_tool_calc(4)); 
rot_y = roty(dis_tool_calc(5)); 
rot_z = rotz(dis_tool_calc(6)); 
rot_xyz = rot_z*rot_y*rot_x; 
rotate = tr2eul(rot_xyz); 
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rotate = rad2deg(rotate); 
 
% ask for current position 
ok = 0; 
flag = 1.1; 
fprintf(port1, [ok, flag]); 
gt_jt_angles = fscanf(port1); 
gt_jt_angles = sscanf(gt_jt_angles, '%f'); 
 
% display f/m after taring out bolt-up and fixture wt 
pathseek_display2([fa, fx, fy, fz], [mx, my, mz], handles, [w_now, z_ct, 
flxn_counter, stable_flag, z_target]); 
 
% find actual translations and rotations in global c.s., transform to tool 
c.s. 
for i = 1:6 
    ds(i) = x(i)-p_temp(i); 
    p_temp(i) = x(i); 
end 
dis_tool_actual(1:3) = rGT'*ds(1:3)'; 
dis_tool_actual(4:6) = rGT'*ds(4:6)'; 
 
%work done by the bar 
work=work+abs(0.5*(fmw(1)+f_temp(1))*ds(1)) ... 
    +abs(0.5*(fmw(3)+f_temp(3))*ds(3)) ... 
    +abs(0.5*(fmw(5)+f_temp(5))*deg2rad(w_inc)); 
works0(z_index, z_ct)=work; 
 
% peak force 
peak(z_index,z_ct) = sqrt(fmw(1)^2+fmw(3)^2); 
peakX(z_index,z_ct) = fmw(1); 
peakZ(z_index,z_ct) = fmw(3); 
 
% put data in matrices 
if dir == 0 | dir == 900 
 eval(['dis_calc',int2str(dir),'(1:6,z_step,start_counter) = [0; 0; 0; 0; 
0; 0];']) 
 eval(['dis_actual_tool',int2str(dir),'(1:6,z_step,start_counter) = 
transpose(dis_tool_actual);']) 
 eval(['dis_actual_global',int2str(dir),'(1:6,z_step,start_counter) = 
transpose(ds);']) 
 eval(['load',int2str(dir),'(1:6,z_step,start_counter) = transpose(fa);']) 
 eval(['stiff',int2str(dir),'(1:6,z_step,start_counter) = 
transpose(z_stiff);']) 
 eval(['time_total',int2str(dir),'(1,z_step,start_counter) = time;']) 
 eval(['rot_angle',int2str(dir),'(1,z_step,start_counter) = w_now;']) 
 eval(['z_gt',int2str(dir),'(1:6,z_xform,start_counter) = 
gt_jt_angles(1:6);']) 
 eval(['z_jt_angles',int2str(dir),'(1:6,z_xform,start_counter) = 
gt_jt_angles(7:12);']) 
elseif dir == 400 | dir == 800 
    eval(['dis_calc',int2str(dir),'(1:6,z_step,flxn_counter) = [0; 0; 0; 0; 
0; 0];']) 
 eval(['dis_actual_tool',int2str(dir),'(1:6,z_step,flxn_counter) = 
transpose(dis_tool_actual);']) 
 eval(['dis_actual_global',int2str(dir),'(1:6,z_step,flxn_counter) = 
transpose(ds);']) 
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 eval(['load',int2str(dir),'(1:6,z_step,flxn_counter) = transpose(fa);']) 
 eval(['stiff',int2str(dir),'(1:6,z_step,flxn_counter) = 
transpose(z_stiff);']) 
 eval(['time_total',int2str(dir),'(1,z_step,flxn_counter) = time;']) 
 eval(['rot_angle',int2str(dir),'(1,z_step,flxn_counter) = w_now;']) 
 eval(['z_gt',int2str(dir),'(1:6,z_xform,flxn_counter) = 
gt_jt_angles(1:6);']) 
 eval(['z_jt_angles',int2str(dir),'(1:6,z_xform,flxn_counter) = 
gt_jt_angles(7:12);']) 
end 
 
% % put data in matrices 
% if dir == 0 | dir == 900 
%     dis_calc0(1:6,z_step,start_counter) = [0 0 0 0 0 0]'; 
%  dis_actual_tool0(1:6,z_step,start_counter) = dis_tool_actual'; 
%  dis_actual_global0(1:6,z_step,start_counter) = ds'; 
%  load0(1:6,z_step,start_counter) = fa'; 
%  stiff0(1:6,z_step,start_counter) = z_stiff'; 
%  time_total0(1,z_step,start_counter) = time; 
%  rot_angle0(1,z_step,start_counter) = w_now; 
%  z_gt0(1:6,z_xform,start_counter) = gt_jt_angles(1:6); 
%  z_jt_angles0(1:6,z_xform,start_counter) = gt_jt_angles(7:12); 
% elseif dir == 400 
%     dis_calc400(1:6,z_step,flxn_counter) = [0 0 0 0 0 0]'; 
%  dis_actual_tool400(1:6,z_step,flxn_counter) = dis_tool_actual'; 
%  dis_actual_global400(1:6,z_step,flxn_counter) = ds'; 
%  load400(1:6,z_step,flxn_counter) = fa'; 
%  stiff400(1:6,z_step,flxn_counter) = z_stiff'; 
%  time_total400(1,z_step,flxn_counter) = time; 
%  rot_angle400(1,z_step,flxn_counter) = w_now; 
%  z_gt400(1:6,z_xform,flxn_counter) = gt_jt_angles(1:6); 
%  z_jt_angles400(1:6,z_xform,flxn_counter) = gt_jt_angles(7:12); 
% elseif dir == 800 
%     dis_calc800(1:6,z_step,flxn_counter) = [0 0 0 0 0 0]'; 
%  dis_actual_tool800(1:6,z_step,flxn_counter) = dis_tool_actual'; 
%  dis_actual_global800(1:6,z_step,flxn_counter) = ds'; 
%  load800(1:6,z_step,flxn_counter) = fa'; 
%  stiff800(1:6,z_step,flxn_counter) = z_stiff'; 
%  time_total800(1,z_step,flxn_counter) = time; 
%  rot_angle800(1,z_step,flxn_counter) = w_now; 
%  z_gt800(1:6,z_xform,flxn_counter) = gt_jt_angles(1:6); 
%  z_jt_angles800(1:6,z_xform,flxn_counter) = gt_jt_angles(7:12); 
% end 

 

fm_tare5.m is a script called by load_control_first3.m and load_control3.m to tare out 

the weight of the attachments on the UFS.  This is done to know what loads on the UFS are due 

to the specimen. 

% function [x, fa, fmw, rGTCS] = fm_tare5(w_mg, x0, y0, z0, x1, y1, z1, rx1, 
ry1, rz1, fm_ufs, avg) 
 
% fm_tare5.m 

 190



% tare out bolt-up f/m and fixture wt 
% this program can be used if yaw, pitch, roll <> 0 from UFS to tool 
% Amy Loveless 
% 3/3/2003 
% the f/m are read in UFS c.s. 
% bolt-up and weight are subtracted from f/m 
% the positions are read in tool c.s. wrt global c.s. 
% resulting forces transformed to global c.s. 
% resulting moments transformed to global c.s. 
 
% yaw, pitch, roll store position and orientation of end-effector 
ok = 0; 
flag = 1.1; 
fprintf(port1, [ok, flag]); 
x = fscanf(port1); 
x = sscanf(x, '%f'); 
yaw = deg2rad(x(4)); 
pitch = deg2rad(x(5)); 
roll = deg2rad(x(6)); 
 
% tGTCS[] is the transformation matrix of tool c.s. wrt global c.s. 
TGTCS = eul2tr(yaw, pitch, roll); 
TGTCS(1:3,4) = [x(1) x(2) x(3)]'; 
 
% rGTCS[] is the rotation matrix of tool c.s. wrt global c.s. 
rGTCS = TGTCS; 
rGTCS(:,4) = []; 
rGTCS(4,:) = []; 
rGT = rGTCS; 
 
% tUFSTCS is the transformation matix of UFS face c.s. to tool c.s. (this is 
a constant transformation) 
rot_rx1 = rotx(deg2rad(rx1)); 
rot_ry1 = roty(deg2rad(ry1)); 
rot_rz1 = rotz(deg2rad(rz1)); 
TUFSTCS = rot_rz1*rot_ry1*rot_rx1; 
% Need to subtract (64-19) back off of z1 because values are compared from 
face 08-12-02 
TUFSTCS(1:3,4) = [x1 y1 (z1 - 45/1000)]'; 
 
% rUFSTCS is the rotation matrix of UFS face c.s. to tool c.s. (this is a 
constant rotation) 
rUFSTCS = TUFSTCS; 
rUFSTCS(:,4) = []; 
rUFSTCS(4,:) = []; 
 
% tGUFS is the transformation matrix of UFS c.s. wrt global c.s. 
TGUFS = TGTCS*inv(TUFSTCS); 
% rGUFS is the rotation matrix of global c.s. to UFS face c.s. 
% if rUFSTCS is an identity matrix, rGUFS = rGTCS 
rGUFS = TGUFS; 
rGUFS(:,4) = []; 
rGUFS(4,:) = []; 
 
% If we use the loads at the COR to calculate x0, y0, z0, then x0, y0, z0 is 
the vector from the COR to c.g. (cg_rot). 
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% cg_rot is only used if we can get the transformation functions for the pci 
card to work. 
% cg_rot is only calculated if the loads are read at the COR. 
% transform c.g. coordinates from UFS face c.s. to tool c.s. 
% cg_rot = pinv(tUFST)*[x0 y0 z0 1]'; 
 
% w_mg[] are the loads from the fixture (c.g.) defined in the global c.s. 
% w_mg_rot[] are the loads from the fixture (c.g.) defined in the UFS c.s. 
% If the loads are found at the center of the UFS, x0,y0,z0 is the coordinate 
of the c.g. measured in the UFS c.s., 
% which is centered in the UFS. 
% Use [x0 y0 z0]' to find the moment of the c.g. about the center of the UFS 
(where all the loads are found). 
w_mg_rot(1:3) = rGUFS'*w_mg; 
w_mg_rot(4:6) = cross([x0; y0; z0],w_mg_rot(1:3)); 
% Commented out on 09-04-02 (see notes above). 
% w_mg_rot(4:6) = cross(cg_rot(1:3),w_mg_rot(1:3)); 
 
% convert fm_ufs[] to digital 
% fm_ufs_dig(2) = fm_ufs(2)*16384/20/4.44; 
% fm_ufs_dig(3) = fm_ufs(3)*16384/50/4.44; 
 
% fa_unrot[1]-fa_unrot[3] are forces after bolt-up and fixture wt removed 
from forces (in the UFS c.s.). 
fa_unrot(1) = -(fm_ufs(1))-(avg(1))-(w_mg_rot(1)); 
fa_unrot(2) = -(fm_ufs(2))-(avg(2))-(w_mg_rot(2)); 
fa_unrot(3) = -(fm_ufs(3))-(avg(3))-(w_mg_rot(3)); 
% fa_unrot(2) = y_eq(1)*(fm_ufs_dig(2)-avg_dig(2))+y_eq(2)-w_mg_rot(2); 
% fa_unrot(3) = z_eq(1)*(fm_ufs_dig(3)-avg_dig(3))+z_eq(2)-w_mg_rot(3); 
 
% fa[1]-fa[3] are forces rotated to the tool c.s. 
fa(1:3) = rUFSTCS'*fa_unrot(1:3)'; 
 
% fmw[1]-fmw[3] are forces in global c.s., rotated because calculations are 
made in global c.s. 
% fmw(1:3) = rotGT*fa(1:3)'; 
fmw(1:3) = rGUFS*fa_unrot(1:3)'; 
 
% fa_unrot[4]-fa_unrot[6] are moments after bolt-up and fixture wt removed 
from moments (in the UFS c.s.). 
fa_unrot(4) = -(fm_ufs(4))-(avg(4))-(w_mg_rot(4)); 
fa_unrot(5) = -(fm_ufs(5))-(avg(5))-(w_mg_rot(5)); 
fa_unrot(6) = -(fm_ufs(6))-(avg(6))-(w_mg_rot(6)); 
 
% fa[4]-fa[6] are moments rotated to tool c.s. 
fa(4:6) = cross(-TUFSTCS(1:3,4),fa(1:3))' + rUFSTCS'*fa_unrot(4:6)'; 
 
% fmw[4]-fmw[6] are moments in global c.s., rotate because calculations are 
made in global c.s. 
fmw(4:6) = rGTCS*fa(4:6)'; 
 
% =============================================== 
% added for updating COR 
TUFSa = rpy2tr(deg2rad([rza, rya, rxa])); 
TUFSa(1:3,4) = [xa, ya, za]'; 
% TGa = TGUFS*TUFSa; 
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TUFSb = rpy2tr(deg2rad([rzb, ryb, rxb])); 
TUFSb(1:3,4) = [xb, yb, zb]'; 
% TGb = TGUFS*TUFSb; 

 

pathseek_display2.m is a function called by load_control_first3.m and load_control3.m 

that plots the load on the UFS. 

function pathseek_display2(forces, moments, handles, misc) 
 
fa = forces(1:6); 
fx = forces(7); 
fy = forces(8); 
fz = forces(9); 
 
mx = moments(1); 
my = moments(2); 
mz = moments(3); 
 
w_now = misc(1); 
z_ct = misc(2); 
flxn_counter = misc(3); 
stable_flag = misc(4); 
limit = misc(5:10); 
 
for i = 1:3 
    if abs(fa(i)) > limit(i) 
        line_color(i,1:3) = [1 0 0]; 
    else 
        line_color(i,1:3) = [0 0.75 0]; 
    end 
end 
 
for i = 4:6 
    if abs(fa(i)) > limit(i) 
        line_color(i,1:3) = [1 0 0]; 
    else 
        line_color(i,1:3) = [0 0.75 0]; 
    end 
end 
 
subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:)); 
subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:)); 
subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:)); 
subplot(2,1,2), set(mx, 'XData', [0 fa(4)], 'Color', line_color(4,:)); 
subplot(2,1,2), set(my, 'XData', [0 fa(5)], 'Color', line_color(5,:)); 
subplot(2,1,2), set(mz, 'XData', [0 fa(6)], 'Color', line_color(6,:)); 
set(handles.w_now_edit, 'String', w_now); 
set(handles.iterations_edit, 'String', z_ct); 
if flxn_counter == 0 
    set(handles.pathseek_edit, 'String', 1); 
else 
    set(handles.pathseek_edit, 'String', flxn_counter); 
end 
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set(handles.stable_edit, 'String', stable_flag); 
 
drawnow 

 

load_control3.m is a script called by spine3h_pathseek4.m that calculates the translation 

required to minimize force and commands the manipulator to displace by the calculated amount. 

% load_control3.m 
% load control (inner) loop 
% Amy Loveless 
% converted to Matlab 7/10/02 
 
time = toc; 
tic; 
 
% store current position 
for i = 1:6 
    p_temp(i) = x(i); 
end 
 
% compute: FSU stiffness from previous measured force and position 
if z_flag(1) == 0 
 % compute: robot displacement vector to minimize sagittal forces and 
moments (from computed stiffness) 
 for i = 1:6 
        z_flag(i) = 1; 
        f_temp(i) = fmw(i); % keep previous f/m 
        dis(i) = fmw(i)/z_stiff(i)/(1+1*z_sign(i)); 
 end 
else 
 for i = 1:6 
        if (fmw(i) ~= f_temp(i)) & (ds(i) ~= 0) & (fmw(i) ~= 0) 
            % STIFFNESS = old*1/3    +ABS(df/ds)*2/3 
            z_stiff(i) = z_stiff(i)/3+abs((fmw(i)-f_temp(i))/ds(i))*2/3; 
            % we changed to ds(i) from dis_tool_actual(i) on 07-29-02 
        end 
  
  if z_stiff(i) > 99999 
            z_stiff(i) = 100000; % maximum z_stiff 
  end 
  
  if sign(f_temp(i)*fmw(i)) < 1 
   z_sign(i) = 1; 
  end 
         
        % compute: robot displacement vector to minimize sagittal forces and 
moments (from computed stiffness) 
        z_flag(i) = 1; 
        f_temp(i) = fmw(i); % keep previous f/m 
        dis(i) = fmw(i)/z_stiff(i)/(1+1*z_sign(i)); 
 end 
end 
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% determine translations based on forces 
for i = 1:3 
    if abs(dis(i)) > lim_dis 
        dis(i) = sign(dis(i))*lim_dis; 
    end 
end 
 
% transform from global c.s. to tool c.s. 
dis_tool_calc(1:3) = rGT'*dis(1:3)'; 
 
% determine rotations based on moments 
for i = 4:6 
    if abs(dis(i)) > lim_mdis 
        dis(i) = sign(dis(i))*lim_mdis; 
        dis(i) = deg2rad(dis(i)); 
    end 
end 
 
% transform from global c.s. to tool c.s. 
dis_tool_calc(4:6) = rGT'*dis(4:6)'; 
 
% disa[4]-[6] are rotations about x,y,z, not y,p,r, so need to make them 
y,p,r 
rot_x = rotx(dis_tool_calc(4)); 
rot_y = roty(dis_tool_calc(5)); 
rot_z = rotz(dis_tool_calc(6)); 
rot_xyz = rot_z*rot_y*rot_x; 
rotate = tr2eul(rot_xyz); 
rotate = rad2deg(rotate); 
 
% move: translate superior vertebra to new "corrected" position 
ok = 0; 
flag = 2.1; 
fprintf(port1, [ok, flag]); 
fprintf(port1, [0 dis_tool_calc(2) dis_tool_calc(3) 0 0 0]); 
 
done_moving = fscanf(port1); 
done_moving = sscanf(done_moving, '%f'); 
 
% ask for current position 
ok = 0; 
flag = 1.1; 
fprintf(port1, [ok, flag]); 
gt_jt_angles = fscanf(port1); 
gt_jt_angles = sscanf(gt_jt_angles, '%f'); 
 
%=========================================== 
get_loads; % measure: forces and moments 
% fm_ufs = get_loads; 
%=========================================== 
 
%=========================================== 
fm_tare5; % tare out bolt-up and fixture wt 
% [x, fa, fmw, rGT] = fm_tare5(w_mg, x0, y0, z0, x1, y1, z1, rx1, ry1, rz1, 
fm_ufs, avg) 
%=========================================== 
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% display f/m after taring out bolt-up and fixture wt 
pathseek_display2([fa, fx, fy, fz], [mx, my, mz], handles, [w_now, z_ct, 
flxn_counter, stable_flag, z_target]); 
 
% find actual translations and rotations in global c.s., transform to tool 
c.s. 
for i = 1:6 
    ds(i) = x(i)-p_temp(i); 
    p_temp(i) = x(i); 
end 
dis_tool_actual(1:3) = rGT'*ds(1:3)'; 
dis_tool_actual(4:6) = rGT'*ds(4:6)'; 
 
%work done by the bar 
work=work+abs(0.5*(fmw(1)+f_temp(1))*ds(1)) ... 
    +abs(0.5*(fmw(3)+f_temp(3))*ds(3)) ... 
    +abs(0.5*(fmw(5)+f_temp(5))*deg2rad(0)); 
works0(z_index, z_ct)=work; 
 
% peak force 
peak(z_index,z_ct) = sqrt(fmw(1)^2+fmw(3)^2); 
peakX(z_index,z_ct) = fmw(1); 
peakZ(z_index,z_ct) = fmw(3); 
 
% put data in matrices 
if dir == 0 | dir == 900 
 eval(['dis_calc',int2str(dir),'(1:6,z_step,start_counter) = [0; 0; 0; 0; 
0; 0];']) 
 eval(['dis_actual_tool',int2str(dir),'(1:6,z_step,start_counter) = 
transpose(dis_tool_actual);']) 
 eval(['dis_actual_global',int2str(dir),'(1:6,z_step,start_counter) = 
transpose(ds);']) 
 eval(['load',int2str(dir),'(1:6,z_step,start_counter) = transpose(fa);']) 
 eval(['stiff',int2str(dir),'(1:6,z_step,start_counter) = 
transpose(z_stiff);']) 
 eval(['time_total',int2str(dir),'(1,z_step,start_counter) = time;']) 
 eval(['rot_angle',int2str(dir),'(1,z_step,start_counter) = w_now;']) 
 eval(['z_gt',int2str(dir),'(1:6,z_xform,start_counter) = 
gt_jt_angles(1:6);']) 
 eval(['z_jt_angles',int2str(dir),'(1:6,z_xform,start_counter) = 
gt_jt_angles(7:12);']) 
elseif dir == 400 | dir == 800 
    eval(['dis_calc',int2str(dir),'(1:6,z_step,flxn_counter) = [0; 0; 0; 0; 
0; 0];']) 
 eval(['dis_actual_tool',int2str(dir),'(1:6,z_step,flxn_counter) = 
transpose(dis_tool_actual);']) 
 eval(['dis_actual_global',int2str(dir),'(1:6,z_step,flxn_counter) = 
transpose(ds);']) 
 eval(['load',int2str(dir),'(1:6,z_step,flxn_counter) = transpose(fa);']) 
 eval(['stiff',int2str(dir),'(1:6,z_step,flxn_counter) = 
transpose(z_stiff);']) 
 eval(['time_total',int2str(dir),'(1,z_step,flxn_counter) = time;']) 
 eval(['rot_angle',int2str(dir),'(1,z_step,flxn_counter) = w_now;']) 
 eval(['z_gt',int2str(dir),'(1:6,z_xform,flxn_counter) = 
gt_jt_angles(1:6);']) 
 eval(['z_jt_angles',int2str(dir),'(1:6,z_xform,flxn_counter) = 
gt_jt_angles(7:12);']) 
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end 
 
% % put data in matrices 
% if dir == 0 | dir == 900 
%     dis_calc0(1:6,z_step,start_counter) = [dis_tool_calc(1:3) 
rotate(1:3)]'; 
%  dis_actual_tool0(1:6,z_step,start_counter) = dis_tool_actual'; 
%  dis_actual_global0(1:6,z_step,start_counter) = ds'; 
%  load0(1:6,z_step,start_counter) = fa'; 
%  stiff0(1:6,z_step,start_counter) = z_stiff'; 
%  time_total0(1,z_step,start_counter) = time; 
%  rot_angle0(1,z_step,start_counter) = w_now; 
%  z_gt0(1:6,z_xform,start_counter) = gt_jt_angles(1:6); 
%  z_jt_angles0(1:6,z_xform,start_counter) = gt_jt_angles(7:12); 
% elseif dir == 400 
%     dis_calc400(1:6,z_step,flxn_counter) = [dis_tool_calc(1:3) 
rotate(1:3)]'; 
%  dis_actual_tool400(1:6,z_step,flxn_counter) = dis_tool_actual'; 
%  dis_actual_global400(1:6,z_step,flxn_counter) = ds'; 
%  load400(1:6,z_step,flxn_counter) = fa'; 
%  stiff400(1:6,z_step,flxn_counter) = z_stiff'; 
%  time_total400(1,z_step,flxn_counter) = time; 
%  rot_angle400(1,z_step,flxn_counter) = w_now; 
%  z_gt400(1:6,z_xform,flxn_counter) = gt_jt_angles(1:6); 
%  z_jt_angles400(1:6,z_xform,flxn_counter) = gt_jt_angles(7:12); 
% elseif dir == 800 
%     dis_calc800(1:6,z_step,flxn_counter) = [dis_tool_calc(1:3) 
rotate(1:3)]'; 
%  dis_actual_tool800(1:6,z_step,flxn_counter) = dis_tool_actual'; 
%  dis_actual_global800(1:6,z_step,flxn_counter) = ds'; 
%  load800(1:6,z_step,flxn_counter) = fa'; 
%  stiff800(1:6,z_step,flxn_counter) = z_stiff'; 
%  time_total800(1,z_step,flxn_counter) = time; 
%  rot_angle800(1,z_step,flxn_counter) = w_now; 
%  z_gt800(1:6,z_xform,flxn_counter) = gt_jt_angles(1:6); 
%  z_jt_angles800(1:6,z_xform,flxn_counter) = gt_jt_angles(7:12); 
% end 

 

max_moment2.m is a script called by spine3h_pathseek4.m that compares the current 

moment to the user-defined maximum moment.  If the maximum moment has been greater than 

the user-defined maximum three times, the test changes direction. 

% max_moment2.m 
% max moment loop 
% Amy Loveless 
% converted to Matlab 7/10/02 
 
% is the measured f/e moment < max allowable? 
% if yes, correct COR 
% if no, go on to next direction 
if abs(fa(4)) < max_mom 
    % compute: corrected COR 

 197



    % when chgs made to COR, x1, y1, z1, yaw1, pitch1, roll1 will be chged 
    % disp('This is where I would correct the COR') 
elseif (abs(fa(1)) > z_stop(1)) | (abs(fa(2)) > z_stop(2)) | (abs(fa(3)) > 
z_stop(3)) | (abs(fa(4)) > z_stop(4)) | (abs(fa(5)) > z_stop(5)) | 
(abs(fa(6)) > z_stop(6)) 
    % if f/m are > max allowable, change direction 
    disp('Forces/moments are too high.') 
    disp('********** CHANGING DIRECTION **********') 
    z_mom_flag = 1; 
    dir_flag = 1; 
    continue % change direction 
else 
    z_mom_flag = z_mom_flag + 1; 
    if z_mom_flag == 3 
        z_mom_flag = 1; 
        dir_flag = 1; 
        disp('********** CHANGING DIRECTION **********') 
        continue % change direction 
    else 
        % compute: corrected COR 
        % when chgs made to COR, x1, y1, z1, yaw1, pitch1, roll1 will be 
chged 
        % disp('This is where I would correct the COR') 
    end 
end 
 
if (w_now >= w_start & dir == 900) 
    dir_flag = 1; 
    disp('********** CHANGING DIRECTION **********') 
    continue % change direction 
end 

 

data_display_pathseek4.m is a script called by spine3h_pathseek4.m that makes almost 

every conceivable plot from the gathered data. 

% data_display_pathseek4.m 
% display data 
% Amy Loveless 
% from data_sto_flxn (7/10/02) 
 
% BUILD TRANSFORMATIONS 
% Build transformation for UFS to tool c.s. (this is a constant 
transformation) 
rot_rx1 = rotx(deg2rad(rx1)); 
rot_ry1 = roty(deg2rad(ry1)); 
rot_rz1 = rotz(deg2rad(rz1)); 
tUFST = rot_rx1*rot_ry1*rot_rz1; 
tUFST(1:3,4) = [x1*1000 y1*1000 z1*1000]'; 
 
% Build transformation for UFS to pt. of interest (this is a constant 
transformation) 
rot_rx2 = rotx(deg2rad(rx2)); 
rot_ry2 = roty(deg2rad(ry2)); 
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rot_rz2 = rotz(deg2rad(rz2)); 
tUFSPOI = rot_rx2*rot_ry2*rot_rz2; 
tUFSPOI(1:3,4) = [x2*1000 y2*1000 z2*1000]'; 
 
% BUILD TRANSFORMATIONS OF TOOL C.S. WRT GLOBAL C.S. 
% Find where to truncate matrices that have been padded with zeros at the end 
for flxn -> start 
test = [0 0 0 0 0 0]'; 
size_z_gt0 = 0; 
for i = 1:size(z_gt0,2) 
    tf = isequal(z_gt0(1:6,i,end),test); 
    if tf == 1 
        size_z_gt0 = i-1; 
        break 
    end 
end 
if size_z_gt0 == 0 
    size_z_gt0 = size(z_gt0,2); 
end 
% Build transformations of tool c.s. wrt global c.s. each location for flxn -
> start 
for i = 1:size_z_gt0 
    tGT0(1:4,i*4-3:4*i) = eul2tr([deg2rad(z_gt0(4,i,end)), 
deg2rad(z_gt0(5,i,end)), deg2rad(z_gt0(6,i,end))]); 
    tGT0(1:3,4*i) = z_gt0(1:3,i,end); 
end 
 
% Find where to truncate matrices that have been padded with zeros at the end 
for flxn -> extn 
size_z_gt400 = 0; 
for i = 1:size(z_gt400,2) 
    tf = isequal(z_gt400(1:6,i,end),test); 
    if tf == 1 
        size_z_gt400 = i-1; 
        break 
    end 
end 
if size_z_gt400 == 0 
    size_z_gt400 = size(z_gt400,2); 
end 
% Build transformations of tool c.s. wrt global c.s. for each location for 
flxn -> extn 
for i = 1:size_z_gt400 
    tGT400(1:4,i*4-3:4*i) = eul2tr([deg2rad(z_gt400(4,i,end)), 
deg2rad(z_gt400(5,i,end)), deg2rad(z_gt400(6,i,end))]); 
    tGT400(1:3,4*i) = z_gt400(1:3,i,end); 
end 
 
% Find where to truncate matrices that have been padded with zeros at the end 
for extn -> flxn 
size_z_gt800 = 0; 
for i = 1:size(z_gt800,2) 
    tf = isequal(z_gt800(1:6,i,end),test); 
    if tf == 1 
        size_z_gt800 = i-1; 
        break 
    end 
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end 
if size_z_gt800 == 0 
    size_z_gt800 = size(z_gt800,2); 
end 
% Build transformations of tool c.s. wrt global c.s. for each location for 
extn -> flxn 
for i = 1:size_z_gt800 
    tGT800(1:4,i*4-3:4*i) = eul2tr([deg2rad(z_gt800(4,i,end)), 
deg2rad(z_gt800(5,i,end)), deg2rad(z_gt800(6,i,end))]); 
    tGT800(1:3,4*i) = z_gt800(1:3,i,end); 
end 
 
% Build array of position vectors of tool c.s. from tGL for flxn -> start 
for i = 1:size(tGT0,2)/4 
    tGT0_posn(1:4,i) = tGT0(1:4,i*4); 
end 
 
% Build array of position vectors of tool c.s. from tGL for flxn -> extn 
for i = 1:size(tGT400,2)/4 
    tGT400_posn(1:4,i) = tGT400(1:4,i*4); 
end 
 
% Build array of position vectors of tool c.s. from tGL for extn -> flxn 
for i = 1:size(tGT800,2)/4 
    tGT800_posn(1:4,i) = tGT800(1:4,i*4); 
end 
 
% BUILD TRANSFORMATIONS OF UFS WRT GLOBAL C.S. 
% Build transformations of UFS wrt global c.s. for each location for start -> 
flxn & flxn -> start 
for i = 1:size(tGT0,2)/4 
    tGUFS0(1:4,i*4-3:4*i) = tGT0(1:4,i*4-3:i*4)*pinv(tUFST); 
end 
 
% Build transformations of UFS wrt global c.s. for each location for flxn -> 
extn 
for i = 1:size(tGT400,2)/4 
    tGUFS400(1:4,i*4-3:4*i) = tGT400(1:4,i*4-3:i*4)*pinv(tUFST); 
end 
 
% Build transformations of UFS wrt global c.s. for each location for extn -> 
flxn 
for i = 1:size(tGT800,2)/4 
    tGUFS800(1:4,i*4-3:4*i) = tGT800(1:4,i*4-3:i*4)*pinv(tUFST); 
end 
 
% Build array of position vectors of UFS from tGUFS for start -> flxn & flxn 
-> start 
for i = 1:size(tGUFS0,2)/4 
    tGUFS0_posn(1:4,i) = tGUFS0(1:4,i*4); 
end 
 
% Build array of position vectors of UFS from tGUFS for flxn -> extn 
for i = 1:size(tGUFS400,2)/4 
    tGUFS400_posn(1:4,i) = tGUFS400(1:4,i*4); 
end 
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% Build array of position vectors of UFS from tGUFS for extn -> flxn 
for i = 1:size(tGUFS800,2)/4 
 tGUFS800_posn(1:4,i) = tGUFS800(1:4,i*4); 
end 
 
% BUILD TRANSFORMATIONS OF PT. OF INTEREST WRT GLOBAL C.S. 
% Build transformations of pt. of interest wrt global c.s. for each location 
for flxn -> start 
for i = 1:size(tGT0,2)/4 
    tGPOI0(1:4,i*4-3:4*i) = tGUFS0(1:4,i*4-3:i*4)*tUFSPOI; 
end 
 
% Build transformations of pt. of interest wrt global c.s. for each location 
for flxn -> extn 
for i = 1:size(tGT400,2)/4 
    tGPOI400(1:4,i*4-3:4*i) = tGUFS400(1:4,i*4-3:i*4)*tUFSPOI; 
end 
 
% Build transformations of pt. of interest wrt global c.s. for each location 
for extn -> flxn 
for i = 1:size(tGT800,2)/4 
    tGPOI800(1:4,i*4-3:4*i) = tGUFS800(1:4,i*4-3:i*4)*tUFSPOI; 
end 
 
% Build array of position vectors of pt. of interest from tGUFS for flxn -> 
start 
for i = 1:size(tGPOI0,2)/4 
    tGPOI0_posn(1:4,i) = tGPOI0(1:4,i*4); 
end 
 
% Build array of position vectors of pt. of interest from tGUFS for flxn -> 
extn 
for i = 1:size(tGPOI400,2)/4 
    tGPOI400_posn(1:4,i) = tGPOI400(1:4,i*4); 
end 
 
% Build array of position vectors of pt. of interest from tGUFS for extn -> 
flxn 
for i = 1:size(tGPOI800,2)/4 
    tGPOI800_posn(1:4,i) = tGPOI800(1:4,i*4); 
end 
%============================================================================
===================================== 
 
% BUILD ARRAYS OF DATA TO BE USED FOR PLOTTING 
% Find where to truncate matrices that have been padded with zeros at the end 
for start -> flxn & flxn -> start 
test = [0 0 0 0 0 0]'; 
for i = 1:start_counter 
    size_start(1,i) = 0; 
    size_start_end_pts(1,i) = 0; 
end 
for j = 1:start_counter 
 for i = 1:size(load0,2) 
        tf = isequal(load0(1:6,i,j),test); 
        if tf == 1 
            size_start(1,j) = i-1; 
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            break 
        end 
 end 
    if size_start(1,j) == 0 
        size_start(1,j) = size(load0,2); 
    end 
end 
for j = 1:start_counter 
    for i = 1:size(start_load_end_pts,2) 
        tf = isequal(start_load_end_pts(1:6,i,j),test); 
        if tf == 1 
            size_start_end_pts(1,j) = i-1; 
            break 
        end 
    end 
    if size_start_end_pts(1,j) == 0 
        size_start_end_pts(1,j) = size(start_load_end_pts,2); 
    end 
end 
 
% Find where to truncate matrices that have been padded with zeros at the end 
for flxn -> extn 
for i = 1:flxn_counter 
    size_flxn(1,i) = 0; 
    size_flxn_end_pts(1,i) = 0; 
end 
for j = 1:flxn_counter 
 for i = 1:size(load400,2) 
        tf = isequal(load400(1:6,i,j),test); 
        if tf == 1 
            size_flxn(1,j) = i-1; 
            break 
        end 
 end 
    if size_flxn(1,j) == 0 
        size_flxn(1,j) = size(load400,2); 
 end 
end 
for j = 1:flxn_counter 
 for i = 1:size(flxn_load_end_pts,2) 
        tf = isequal(flxn_load_end_pts(1:6,i,j),test); 
        if tf == 1 
            size_flxn_end_pts(1,j) = i-1; 
            break 
        end 
 end 
    if size_flxn_end_pts(1,j) == 0 
        size_flxn_end_pts(1,j) = size(flxn_load_end_pts,2); 
 end 
end 
 
% Find where to truncate matrices that have been padded with zeros at the end 
for extn -> flxn 
for i = 1:extn_counter 
    size_extn(1,i) = 0; 
    size_extn_end_pts(1,i) = 0; 
end 
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for j = 1:extn_counter 
 for i = 1:size(load800,2) 
        tf = isequal(load800(1:6,i,j),test); 
        if tf == 1 
            size_extn(1,j) = i-1; 
            break 
        end 
 end 
    if size_extn(1,j) == 0 
        size_extn(1,j) = size(load800,2); 
 end 
end 
for j = 1:flxn_counter 
 for i = 1:size(extn_load_end_pts,2) 
        tf = isequal(extn_load_end_pts(1:6,i,j),test); 
        if tf == 1 
            size_extn_end_pts(1,j) = i-1; 
            break 
        end 
 end 
    if size_extn_end_pts(1,j) == 0 
        size_extn_end_pts(1,j) = size(extn_load_end_pts,2); 
 end 
end 
 
% Arrays of fy, fz & mx (all data points of last pathseek) 
start_fy = load0(2,1:size_start(end),end); 
start_fz = load0(3,1:size_start(end),end); 
start_mx_1 = load0(4,1:size_start(1),1); 
start_mx_2 = load0(4,1:size_start(end),end); 
 
flxn_fy = load400(2,1:size_flxn(end),end); 
flxn_fz = load400(3,1:size_flxn(end),end); 
flxn_mx = load400(4,1:size_flxn(end),end); 
 
extn_fy = load800(2,1:size_extn(end),end); 
extn_fz = load800(3,1:size_extn(end),end); 
extn_mx = load800(4,1:size_extn(end),end); 
 
fy = [flxn_fy extn_fy start_fy]; 
fz = [flxn_fz extn_fz start_fz]; 
mx = [flxn_mx extn_mx start_mx_2]; 
 
% Array of mx of all data points of all pathseeks 
flxn_extn_mx = []; 
for i = 1:flxn_counter 
    flxn_extn_mx = [flxn_extn_mx load400(4,1:size_flxn(i),i) 
load800(4,1:size_extn(i),i)]; 
end 
all_mx = [start_mx_1, flxn_extn_mx, start_mx_2]; 
 
% Arrays of fy, fz, mx (only at end of iterations for last pathseek) 
start_fy_end_pts = start_load_end_pts(2,1:size_start_end_pts(end),end); 
start_fz_end_pts = start_load_end_pts(3,1:size_start_end_pts(end),end); 
start_mx_end_pts_1 = start_load_end_pts(4,1:size_start_end_pts(1),1); 
start_mx_end_pts_2 = start_load_end_pts(4,1:size_start_end_pts(end),end); 
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flxn_fy_end_pts = flxn_load_end_pts(2,1:size_flxn_end_pts(end),end); 
flxn_fz_end_pts = flxn_load_end_pts(3,1:size_flxn_end_pts(end),end); 
flxn_mx_end_pts = flxn_load_end_pts(4,1:size_flxn_end_pts(end),end); 
 
extn_fy_end_pts = extn_load_end_pts(2,1:size_extn_end_pts(end),end); 
extn_fz_end_pts = extn_load_end_pts(3,1:size_extn_end_pts(end),end); 
extn_mx_end_pts = extn_load_end_pts(4,1:size_extn_end_pts(end),end); 
 
fy_end_pts = [flxn_fy_end_pts extn_fy_end_pts start_fy_end_pts]; 
fz_end_pts = [flxn_fz_end_pts extn_fz_end_pts start_fz_end_pts]; 
mx_end_pts = [flxn_mx_end_pts extn_mx_end_pts start_mx_end_pts_2]; 
 
% Array of mx of end data points of all pathseeks 
% flxn_extn_mx_end_pts = []; 
% for i = 1:flxn_counter 
%     flxn_extn_mx_end_pts = [flxn_extn_mx_end_pts 
flxn_load_end_pts(4,1:size_flxn_end_pts(i),i) 
extn_load_end_pts(4,1:size_extn_end_pts(i),i)]; 
% end 
% all_mx_end_pts = [start_mx_end_pts_1, flxn_extn_mx_end_pts, 
start_mx_end_pts_2]; 
begin_mx_end_pts = [start_mx_end_pts_1,... 
        flxn_load_end_pts(4,1:size_flxn_end_pts(1),1),... 
        extn_load_end_pts(4,1:size_extn_end_pts(1),1)]; 
end_mx_end_pts = [flxn_load_end_pts(4,1:size_flxn_end_pts(end),end),... 
        extn_load_end_pts(4,1:size_extn_end_pts(end),end),... 
        start_mx_end_pts_2]; 
 
% Arrays of calculated and actual displacements in local y and z dir. 
start_dy_calc = dis_calc0(2,1:size_start(end),end); 
start_dy_actual = dis_actual_tool0(2,1:size_start(end),end); 
start_dz_calc = dis_calc0(3,1:size_start(end),end); 
start_dz_actual = dis_actual_tool0(3,1:size_start(end),end); 
 
flxn_dy_calc = dis_calc400(2,1:size_flxn(end),end); 
flxn_dy_actual = dis_actual_tool400(2,1:size_flxn(end),end); 
flxn_dz_calc = dis_calc400(3,1:size_flxn(end),end); 
flxn_dz_actual = dis_actual_tool400(3,1:size_flxn(end),end); 
 
extn_dy_calc = dis_calc800(2,1:size_extn(end),end); 
extn_dy_actual = dis_actual_tool800(2,1:size_extn(end),end); 
extn_dz_calc = dis_calc800(3,1:size_extn(end),end); 
extn_dz_actual = dis_actual_tool800(3,1:size_extn(end),end); 
 
dy_calc = [flxn_dy_calc extn_dy_calc start_dy_calc]; 
dz_calc = [flxn_dz_calc extn_dz_calc start_dz_calc]; 
dy_actual = [flxn_dy_actual extn_dy_actual start_dy_actual]; 
dz_actual = [flxn_dz_actual extn_dz_actual start_dz_actual]; 
 
% Array of time for all iterations of last pathseek 
time0 = time_total0(1,1:size_start(end),end); 
time400 = time_total400(1,1:size_flxn(end),end); 
time800 = time_total800(1,1:size_extn(end),end); 
last_time = [time400 time800 time0]; 
last_time = cumsum(last_time); 
 
% Array of rotation angles for all data points of last pathseek 
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last_rot_angle0 = rot_angle0(1,1:size_start(end),end); 
last_rot_angle400 = rot_angle400(1,1:size_flxn(end),end); 
last_rot_angle800 = rot_angle800(1,1:size_extn(end),end); 
last_rot_angle = [last_rot_angle400 last_rot_angle800 last_rot_angle0]; 
 
% Array of rotation angles for end points of last pathseek 
last_rot_angle_end_pts = 
[rot_angle400_end_pts(:,1:size_flxn_end_pts(end),end), 
rot_angle800_end_pts(:,1:size_extn_end_pts(end),end), 
rot_angle0_end_pts(:,1:size_start_end_pts(end),end)]; 
 
% Array of rotation angles for end points of all pathseeks 
% rot_angle_400_800_end_pts = []; 
% for i = 1:flxn_counter 
%     rot_angle_400_800_end_pts = [rot_angle_400_800_end_pts 
rot_angle400_end_pts(:,1:size_flxn_end_pts(i),i) 
rot_angle800_end_pts(:,1:size_extn_end_pts(i),i)]; 
% end 
% all_rot_angle_end_pts = [rot_angle0_end_pts(:,1:size_start_end_pts(1),1), 
rot_angle_400_800_end_pts, 
rot_angle0_end_pts(:,1:size_start_end_pts(end),end)]; 
begin_rot_angle_end_pts = 
[rot_angle0_end_pts(:,1:size_start_end_pts(1),1),... 
        rot_angle400_end_pts(:,1:size_flxn_end_pts(1),1),... 
        rot_angle800_end_pts(:,1:size_extn_end_pts(1),1)]; 
end_rot_angle_end_pts = 
[rot_angle400_end_pts(:,1:size_flxn_end_pts(end),end),... 
        rot_angle800_end_pts(:,1:size_extn_end_pts(end),end),... 
        rot_angle0_end_pts(:,1:size_start_end_pts(end),end)]; 
 
% Arrays of constants 
x = 1:length(last_rot_angle); 
for i = 1:length(last_rot_angle) 
    y(i) = 0; 
end 
for i = 1:length(fy_end_pts) 
    y_end_pts(i) = 0; 
end 
% for i = 1:length(all_mx_end_pts) 
%     all_y_end_pts(i) = 0; 
% end 
 
% Cumulative sum of iterations for each direction of last pathseek 
test = 0; 
size_z_ct0 = 0; 
for i = 1:size(z_ct0_total,2) 
    tf = isequal(z_ct0_total(1,i,end),test); 
    if tf == 1 
        size_z_ct0 = i-1; 
        break 
    end 
end 
if size_z_ct0 == 0 
    size_z_ct0 = size(z_ct0_total,2); 
end 
 
size_z_ct400 = 0; 
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for i = 1:size(z_ct400_total,2) 
    tf = isequal(z_ct400_total(1,i,end),test); 
    if tf == 1 
        size_z_ct400 = i-1; 
        break 
    end 
    if size_z_ct400 == 0 
        size_z_ct400 = size(z_ct400_total,2); 
 end 
end 
 
size_z_ct800 = 0; 
for i = 1:size(z_ct800_total,2) 
    tf = isequal(z_ct800_total(1,i,end),test); 
    if tf == 1 
        size_z_ct800 = i-1; 
        break 
    end 
end 
if size_z_ct800 == 0 
    size_z_ct800 = size(z_ct800_total,2); 
end 
 
z_ct0_sum = cumsum(z_ct0_total(1,1:size_z_ct0(end),end)); 
z_ct400_sum = cumsum(z_ct400_total(1,1:size_z_ct400(end),end)); 
z_ct800_sum = cumsum(z_ct800_total(1,1:size_z_ct800(end),end)); 
 
% Save workspace 
save(filename) 
disp('Data has been saved.') 
%============================================================================
===================================== 
 
% F/M PLOTS 
% Plots of f/m vs. time for last pathseek 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
subplot(3,1,1), plot(last_time, fy, last_time, y, '-k'), title('Fy vs. time 
for last pathseek'), xlabel('time (sec)'), ylabel('Fy (N)'); 
set(gca,'XLim',[0 length(last_time)]); 
subplot(3,1,2), plot(last_time, fz, last_time, y, '-k'), title('Fz vs. time 
for last pathseek'), xlabel('time (sec)'), ylabel('Fz (N)'); 
set(gca,'XLim',[0 length(last_time)]); 
subplot(3,1,3), plot(last_time, mx, last_time, y, '-k'), title('Mx vs. time 
for last pathseek'), xlabel('time (sec)'), ylabel('Mx (Nm)'); 
set(gca,'XLim',[0 length(last_time)]); 
 
% Plots of rotation angle and fy vs. length(rot_angle) for last pathseek 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
subplot(3,1,1), plot(x, -last_rot_angle), title('rotation angle vs. 
length(rotation angle) for last pathseek'); 
set(gca,'XLim',[0 x(end)]); 
subplot(3,1,2), plot(x, fy, x, y, '-k'), title('Fy vs. length(Fy) for last 
pathseek'), ylabel('Fy (N)'); 
set(gca,'XLim',[0 x(end)]); 
 
% Plots of rotation angle and fz vs. length(rot_angle) for last pathseek 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
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subplot(3,1,1), plot(x, -last_rot_angle), title('rotation angle vs. 
length(rotation angle) for last pathseek'); 
set(gca,'XLim',[0 x(end)]); 
subplot(3,1,2), plot(x, fz, x, y, '-k'), title('Fz vs. length(Fz) for last 
pathseek'), ylabel('Fz (N)'); 
set(gca,'XLim',[0 x(end)]); 
 
% Plots of rotation angle and mx vs. length(rot_angle) for last pathseek 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
subplot(3,1,1), plot(x, -last_rot_angle), title('rotation angle vs. 
length(rotation angle) for last pathseek'); 
set(gca,'XLim',[0 x(end)]); 
subplot(3,1,2), plot(x, mx, x, y, '-k'), title('Mx vs. length(Mx) for last 
pathseek'), ylabel('Mx (Nm)'); 
set(gca,'XLim',[0 x(end)]); 
 
% Plots of rotation angle vs. mx (end points from every pathseek) 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
set(gca, 'NextPlot', 'add'); 
plot(-begin_rot_angle_end_pts, begin_mx_end_pts, 's-r', 'MarkerEdgeColor', 
'r', 'MarkerFaceColor', 'r', 'MarkerSize', 4); 
for i = 2:flxn_counter-1 
    plot(-rot_angle400_end_pts(:,1:size_flxn_end_pts(i),i), 
flxn_load_end_pts(4,1:size_flxn_end_pts(i),i), '.-'); 
    plot(-rot_angle800_end_pts(:,1:size_extn_end_pts(i),i), 
extn_load_end_pts(4,1:size_extn_end_pts(i),i), '*-'); 
end 
plot(-end_rot_angle_end_pts, end_mx_end_pts, 'o-', 'Color', [0 0.75 0], 
'MarkerEdgeColor', [0 0.75 0], 'MarkerFaceColor', [0 0.75 0], 'MarkerSize', 
5); 
line('XData', get(gca, 'XLim'), 'YData', [0 0]); 
line('XData', [0 0], 'YData', get(gca, 'YLim')); 
title('Mx vs. rotation angle for every pathseek'), xlabel('rotation angle 
(deg)'), ylabel('Mx (Nm)'); 
legend_handles = get(gca, 'Children'); 
for i = 2:flxn_counter-1 
    legend_string_flxn(i-1,1:15) = ['pathseek ', int2str(i), ' flxn']; 
    legend_string_extn(i-1,1:15) = ['pathseek ', int2str(i), ' extn']; 
end 
legend_string_flxn_extn = []; 
for i = 1:flxn_counter-2 
    legend_string_flxn_extn = [legend_string_flxn_extn; 
legend_string_flxn(i,:); legend_string_extn(i,:)]; 
end 
legend_string = ['pathseek 1     '; legend_string_flxn_extn; ['pathseek ', 
int2str(flxn_counter), '     ']]; 
legend(flipdim(legend_handles(3:end),1), legend_string, 2); 
% text(1, -2, 'flexion', 'Rotation', 30, 'FontSize', 14); 
% text(1, 2, 'extension', 'Rotation', 30, 'FontSize', 14); 
 
% Plots of rotation angle vs. mx, fy & fz (end points of last pathseek) 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
subplot(3,1,1), plot(-last_rot_angle_end_pts, fy_end_pts, '.-b', 
last_rot_angle_end_pts, y_end_pts, '-k'), title('Fy vs. rot angle for last 
pathseek'), xlabel('rotation angle (deg)'), ylabel('Fy (N)'); 
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subplot(3,1,2), plot(-last_rot_angle_end_pts, fz_end_pts, '.-b', 
last_rot_angle_end_pts, y_end_pts, '-k'), title('Fz vs. rot angle for last 
pathseek'), xlabel('rotation angle (deg)'), ylabel('Fz (N)'); 
subplot(3,1,3), plot(-last_rot_angle_end_pts, mx_end_pts, '.-b', 
last_rot_angle_end_pts, y_end_pts, '-k'), title('Mx vs. rot angle for last 
pathseek'), xlabel('rotation angle (deg)'), ylabel('Mx (Nm)'); 
 
% Plots of first and last points of each rotation angle for fy for last 
pathseek 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
for i = 2:length(z_ct400_sum) 
    hold on 
    subplot(3,1,1), plot_handles_begin = plot(-
[rot_angle400(1,z_ct400_sum(1),end), rot_angle400(1,z_ct400_sum(1),end)], 
[flxn_fy(1,1,end), flxn_fy(1,z_ct400_sum(1),end)], '-ob'); 
    subplot(3,1,1), plot(-[rot_angle400(1,z_ct400_sum(i),end), 
rot_angle400(1,z_ct400_sum(i),end)], [flxn_fy(1,z_ct400_sum(i-1)+1,end), 
flxn_fy(1,z_ct400_sum(i),end)], '-ob'); 
    subplot(3,1,1), plot_handles_end = plot(-
rot_angle400(1,z_ct400_sum(1),end), flxn_fy(1,z_ct400_sum(1),end), 
'*r','MarkerSize',10); 
    subplot(3,1,1), plot(-rot_angle400(1,z_ct400_sum(i),end), 
flxn_fy(1,z_ct400_sum(i),end), '*r','MarkerSize',10); 
    subplot(3,1,1), line('XData', get(gca, 'XLim'), 'YData', [0.5 0.5], 
'LineWidth', 2); 
    subplot(3,1,1), line('XData', get(gca, 'XLim'), 'YData', [-0.5 -0.5], 
'LineWidth', 2); 
    hold off 
end 
title('fy vs. rotation angle for last pathseek'), xlabel('rotation angle 
(deg)'), ylabel('Fy (N)'); 
legend_handles = [plot_handles_begin; plot_handles_end]; 
legend(legend_handles, 'beginning force', 'ending force'); 
for i = 2:length(z_ct800_sum) 
    hold on 
    subplot(3,1,2), plot_handles_begin = plot(-
[rot_angle800(1,z_ct800_sum(1),end), rot_angle800(1,z_ct800_sum(1),end)], 
[extn_fy(1,1,end), extn_fy(1,z_ct800_sum(1),end)], '-ob'); 
    subplot(3,1,2), plot(-[rot_angle800(1,z_ct800_sum(i),end), 
rot_angle800(1,z_ct800_sum(i),end)], [extn_fy(1,z_ct800_sum(i-1)+1,end), 
extn_fy(1,z_ct800_sum(i),end)], '-ob'); 
    subplot(3,1,2), plot_handles_end = plot(-
rot_angle800(1,z_ct800_sum(1),end), extn_fy(1,z_ct800_sum(1),end), 
'*r','MarkerSize',10); 
    subplot(3,1,2), plot(-rot_angle800(1,z_ct800_sum(i),end), 
extn_fy(1,z_ct800_sum(i),end), '*r','MarkerSize',10); 
    subplot(3,1,2), line('XData', get(gca, 'XLim'), 'YData', [0.5 0.5], 
'LineWidth', 2); 
    subplot(3,1,2), line('XData', get(gca, 'XLim'), 'YData', [-0.5 -0.5], 
'LineWidth', 2); 
    hold off 
end 
title('fy vs. rotation angle for last pathseek'), xlabel('rotation angle 
(deg)'), ylabel('Fy (N)'); 
legend_handles = [plot_handles_begin; plot_handles_end]; 
legend(legend_handles, 'beginning force', 'ending force'); 
for i = 2:length(z_ct0_sum) 
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    hold on 
    subplot(3,1,3), plot_handles_begin = plot(-
[rot_angle0(1,z_ct0_sum(1),end), rot_angle0(1,z_ct0_sum(1),end)], 
[start_fy(1,1,end), start_fy(1,z_ct0_sum(1),end)], '-ob'); 
    subplot(3,1,3), plot(-[rot_angle0(1,z_ct0_sum(i),end), 
rot_angle0(1,z_ct0_sum(i),end)], [start_fy(1,z_ct0_sum(i-1)+1,end), 
start_fy(1,z_ct0_sum(i),end)], '-ob'); 
    subplot(3,1,3), plot_handles_end = plot(-rot_angle0(1,z_ct0_sum(1),end), 
start_fy(1,z_ct0_sum(1),end), '*r', 'MarkerSize', 10); 
    subplot(3,1,3), plot(-rot_angle0(1,z_ct0_sum(i),end), 
start_fy(z_ct0_sum(i)), '*r', 'MarkerSize', 10); 
    subplot(3,1,3), line('XData', get(gca, 'XLim'), 'YData', [0.5 0.5], 
'LineWidth', 2); 
    subplot(3,1,3), line('XData', get(gca, 'XLim'), 'YData', [-0.5 -0.5], 
'LineWidth', 2); 
    hold off 
end 
title('fy vs. rotation angle for last pathseek'), xlabel('rotation angle 
(deg)'), ylabel('Fy (N)'); 
legend_handles = [plot_handles_begin; plot_handles_end]; 
legend(legend_handles, 'beginning force', 'ending force'); 
 
% Plots of first and last points of each rotation angle for fz for last 
pathseek 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
for i = 2:length(z_ct400_sum) 
    hold on 
    subplot(3,1,1), plot_handles_begin = plot(-
[rot_angle400(1,z_ct400_sum(1),end), rot_angle400(1,z_ct400_sum(1),end)], 
[flxn_fz(1,1,end), flxn_fz(1,z_ct400_sum(1),end)], '-ob'); 
    subplot(3,1,1), plot(-[rot_angle400(1,z_ct400_sum(i),end), 
rot_angle400(1,z_ct400_sum(i),end)], [flxn_fz(1,z_ct400_sum(i-1)+1,end), 
flxn_fz(1,z_ct400_sum(i),end)], '-ob'); 
    subplot(3,1,1), plot_handles_end = plot(-
rot_angle400(1,z_ct400_sum(1),end), flxn_fz(1,z_ct400_sum(1),end), 
'*r','MarkerSize',10); 
    subplot(3,1,1), plot(-rot_angle400(1,z_ct400_sum(i),end), 
flxn_fz(1,z_ct400_sum(i),end), '*r','MarkerSize',10); 
    subplot(3,1,1), line('XData', get(gca, 'XLim'), 'YData', [0.5 0.5], 
'LineWidth', 2); 
    subplot(3,1,1), line('XData', get(gca, 'XLim'), 'YData', [-0.5 -0.5], 
'LineWidth', 2); 
    hold off 
end 
title('fz vs. rotation angle for last pathseek'), xlabel('rotation angle 
(deg)'), ylabel('Fz (N)'); 
legend_handles = [plot_handles_begin; plot_handles_end]; 
legend(legend_handles, 'beginning force', 'ending force'); 
for i = 2:length(z_ct800_sum) 
    hold on 
    subplot(3,1,2), plot_handles_begin = plot(-
[rot_angle800(1,z_ct800_sum(1),end), rot_angle800(1,z_ct800_sum(1),end)], 
[extn_fz(1,1,end), extn_fz(1,z_ct800_sum(1),end)], '-ob'); 
    subplot(3,1,2), plot(-[rot_angle800(1,z_ct800_sum(i),end), 
rot_angle800(1,z_ct800_sum(i),end)], [extn_fz(1,z_ct800_sum(i-1)+1,end), 
extn_fz(1,z_ct800_sum(i),end)], '-ob'); 
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    subplot(3,1,2), plot_handles_end = plot(-
rot_angle800(1,z_ct800_sum(1),end), extn_fz(1,z_ct800_sum(1),end), 
'*r','MarkerSize',10); 
    subplot(3,1,2), plot(-rot_angle800(1,z_ct800_sum(i),end), 
extn_fz(1,z_ct800_sum(i),end), '*r','MarkerSize',10); 
    subplot(3,1,2), line('XData', get(gca, 'XLim'), 'YData', [0.5 0.5], 
'LineWidth', 2); 
    subplot(3,1,2), line('XData', get(gca, 'XLim'), 'YData', [-0.5 -0.5], 
'LineWidth', 2); 
    hold off 
end 
title('fz vs. rotation angle for last pathseek'), xlabel('rotation angle 
(deg)'), ylabel('Fz (N)'); 
legend_handles = [plot_handles_begin; plot_handles_end]; 
legend(legend_handles, 'beginning force', 'ending force'); 
for i = 2:length(z_ct0_sum) 
    hold on 
    subplot(3,1,3), plot_handles_begin = plot(-
[rot_angle0(1,z_ct0_sum(1),end), rot_angle0(1,z_ct0_sum(1),end)], 
[start_fz(1,1,end), start_fz(1,z_ct0_sum(1),end)], '-ob'); 
    subplot(3,1,3), plot(-[rot_angle0(1,z_ct0_sum(i),end), 
rot_angle0(1,z_ct0_sum(i),end)], [start_fz(1,z_ct0_sum(i-1)+1,end), 
start_fz(1,z_ct0_sum(i),end)], '-ob'); 
    subplot(3,1,3), plot_handles_end = plot(-rot_angle0(1,z_ct0_sum(1),end), 
start_fz(1,z_ct0_sum(1),end), '*r', 'MarkerSize', 10); 
    subplot(3,1,3), plot(-rot_angle0(1,z_ct0_sum(i),end), 
start_fz(z_ct0_sum(i)), '*r', 'MarkerSize', 10); 
    subplot(3,1,3), line('XData', get(gca, 'XLim'), 'YData', [0.5 0.5], 
'LineWidth', 2); 
    subplot(3,1,3), line('XData', get(gca, 'XLim'), 'YData', [-0.5 -0.5], 
'LineWidth', 2); 
    hold off 
end 
title('fz vs. rotation angle for last pathseek'), xlabel('rotation angle 
(deg)'), ylabel('Fz (N)'); 
legend_handles = [plot_handles_begin; plot_handles_end]; 
legend(legend_handles, 'beginning force', 'ending force'); 
 
% Plots of first and last points of each rotation angle for mx for last 
pathseek 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
for i = 2:length(z_ct400_sum) 
    hold on 
    subplot(3,1,1), plot_handles_begin = plot(-
[rot_angle400(1,z_ct400_sum(1),end), rot_angle400(1,z_ct400_sum(1),end)], 
[flxn_mx(1,1,end), flxn_mx(1,z_ct400_sum(1),end)], '-ob'); 
    subplot(3,1,1), plot(-[rot_angle400(1,z_ct400_sum(i),end), 
rot_angle400(1,z_ct400_sum(i),end)], [flxn_mx(1,z_ct400_sum(i-1)+1,end), 
flxn_mx(1,z_ct400_sum(i),end)], '-ob'); 
    subplot(3,1,1), plot_handles_end = plot(-
rot_angle400(1,z_ct400_sum(1),end), flxn_mx(1,z_ct400_sum(1),end), 
'*r','MarkerSize',10); 
    subplot(3,1,1), plot(-rot_angle400(1,z_ct400_sum(i),end), 
flxn_mx(1,z_ct400_sum(i),end), '*r','MarkerSize',10); 
    hold off 
end 
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title('mx vs. rotation angle for last pathseek'), xlabel('rotation angle 
(deg)'), ylabel('Mx (Nm)'); 
legend_handles = [plot_handles_begin; plot_handles_end]; 
legend(legend_handles, 'beginning moment', 'ending moment'); 
for i = 2:length(z_ct800_sum) 
    hold on 
    subplot(3,1,2), plot_handles_begin = plot(-
[rot_angle800(1,z_ct800_sum(1),end), rot_angle800(1,z_ct800_sum(1),end)], 
[extn_mx(1,1,end), extn_mx(1,z_ct800_sum(1),end)], '-ob'); 
    subplot(3,1,2), plot(-[rot_angle800(1,z_ct800_sum(i),end), 
rot_angle800(1,z_ct800_sum(i),end)], [extn_mx(1,z_ct800_sum(i-1)+1,end), 
extn_mx(1,z_ct800_sum(i),end)], '-ob'); 
    subplot(3,1,2), plot_handles_end = plot(-
rot_angle800(1,z_ct800_sum(1),end), extn_mx(1,z_ct800_sum(1),end), 
'*r','MarkerSize',10); 
    subplot(3,1,2), plot(-rot_angle800(1,z_ct800_sum(i),end), 
extn_mx(1,z_ct800_sum(i),end), '*r','MarkerSize',10); 
    hold off 
end 
title('mx vs. rotation angle for last pathseek'), xlabel('rotation angle 
(deg)'), ylabel('Mx (Nm)'); 
legend_handles = [plot_handles_begin; plot_handles_end]; 
legend(legend_handles, 'beginning moment', 'ending moment'); 
for i = 2:length(z_ct0_sum) 
    hold on 
    subplot(3,1,3), plot_handles_begin = plot(-
[rot_angle0(1,z_ct0_sum(1),end), rot_angle0(1,z_ct0_sum(1),end)], 
[start_mx_2(1,1,end), start_mx_2(1,z_ct0_sum(1),end)], '-ob'); 
    subplot(3,1,3), plot(-[rot_angle0(1,z_ct0_sum(i),end), 
rot_angle0(1,z_ct0_sum(i),end)], [start_mx_2(1,z_ct0_sum(i-1)+1,end), 
start_mx_2(1,z_ct0_sum(i),end)], '-ob'); 
    subplot(3,1,3), plot_handles_end = plot(-rot_angle0(1,z_ct0_sum(1),end), 
start_mx_2(1,z_ct0_sum(1),end), '*r', 'MarkerSize', 10); 
    subplot(3,1,3), plot(-rot_angle0(1,z_ct0_sum(i),end), 
start_mx_2(z_ct0_sum(i)), '*r', 'MarkerSize', 10); 
    hold off 
end 
title('mx vs. rotation angle for last pathseek'), xlabel('rotation angle 
(deg)'), ylabel('Mx (Nm)'); 
legend_handles = [plot_handles_begin; plot_handles_end]; 
legend(legend_handles, 'beginning moment', 'ending moment'); 
%============================================================================
===================================== 
 
% PLOTS OF DISPLACEMENTS IN LOCAL Y AND Z DIR. 
% Plots of dy/dz calc/actual vs. time for last pathseek 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
subplot(2,2,1), plot(last_time, dy_calc), title('dy calc vs. time for last 
pathseek'), xlabel('time (sec)'), ylabel('dy (mm)'); 
subplot(2,2,3), plot(last_time, dz_calc), title('dz calc vs. time for last 
pathseek'), xlabel('time (sec)'), ylabel('dz (mm)'); 
subplot(2,2,2), plot(last_time, dy_actual), title('dy actual vs. time for 
last pathseek'), xlabel('time (sec)'), ylabel('dy (mm)'); 
subplot(2,2,4), plot(last_time, dz_actual), title('dz actual vs. time for 
last pathseek'), xlabel('time (sec)'), ylabel('dz (mm)'); 
 

 211



% Plots of rotation angle and dy calc/actual vs. length(rot_angle) for last 
pathseek 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
subplot(3,1,1), plot(x, -last_rot_angle), title('rotation angle vs length(rot 
angle) for last pathseek'), ylabel('rotation angle (deg)'); 
set(gca,'XLim',[0 length(last_rot_angle)]); 
subplot(3,1,2), plot(x, dy_calc, 'b', x, y, 'k'), title('dy calc vs 
length(dy) for last pathseek'), ylabel('dy (mm)'); 
set(gca,'XLim',[0 length(last_rot_angle)]); 
subplot(3,1,3), plot(x, dy_actual, 'b', x, y, 'k'), title('dy actual vs 
length(dy) for last pathseek'), ylabel('dy (mm)'); 
set(gca,'XLim',[0 length(last_rot_angle)]); 
 
% Plots of rotation angle and dz calc/actual vs. length(rot_angle) for last 
pathseek 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
subplot(3,1,1), plot(x, -last_rot_angle), title('rotation angle vs length(rot 
angle) for last pathseek'), ylabel('rotation angle (deg)'); 
set(gca,'XLim',[0 length(last_rot_angle)]); 
subplot(3,1,2), plot(x, dz_calc, 'b', x, y, 'k'), title('dz calc vs 
length(dz) for last pathseek'), ylabel('dz (mm)'); 
set(gca,'XLim',[0 length(last_rot_angle)]); 
subplot(3,1,3), plot(x, dz_actual, 'b', x, y, 'k'), title('dz actual vs 
length(dz) for last pathseek'), ylabel('dz (mm)'); 
set(gca,'XLim',[0 length(last_rot_angle)]); 
 
% Plots of dy/dz calc vs. dy/dz actual for last pathseek 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
subplot(2,1,1), plot(dy_calc, dy_actual), title('dy actual vs. dy calc for 
last pathseek'), xlabel('dy (mm)'), ylabel('dy (mm)'); 
subplot(2,1,2), plot(dz_calc, dz_actual), title('dz actual vs. dz calc for 
last pathseek'), xlabel('dz (mm)'), ylabel('dz (mm)'); 
%============================================================================
===================================== 
 
% PLOTS OF RX, TY, TZ VS. MX (END POINTS FROM LAST PATHSEEK) 
% Plots of Rx, Ty, Tz vs. mx (end points from last pathseek) 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
hold on 
for i = 1:size(z_ct0_sum,2) 
    plot(-last_rot_angle_end_pts, mx_end_pts, '.-b',... 
        -last_rot_angle_end_pts(i), start_dy_actual(z_ct0_sum(i)),'.b',... 
        -last_rot_angle_end_pts(i), start_dz_actual(z_ct0_sum(i)),'*r'); 
end 
for i = 1:size(z_ct400_sum,2) 
    plot(-last_rot_angle_end_pts, mx_end_pts, '.-b',... 
        -last_rot_angle_end_pts(i), flxn_dy_actual(z_ct400_sum(i)),'.b',... 
        -last_rot_angle_end_pts(i), flxn_dz_actual(z_ct400_sum(i)),'*r'); 
end 
for i = 1:size(z_ct800_sum,2) 
    plot_handles = plot(-last_rot_angle_end_pts, mx_end_pts, '.-b',... 
        -last_rot_angle_end_pts(i), extn_dy_actual(z_ct800_sum(i)),'.b',... 
        -last_rot_angle_end_pts(i), extn_dz_actual(z_ct800_sum(i)),'*r'); 
end 
line('XData', get(gca, 'XLim'), 'YData', [0 0]); 
line('XData', [0 0], 'YData', get(gca, 'YLim')); 
hold off 
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title('Rx, Ty, Tz vs. Mx for last pathseek'), ylabel('displacement (deg or 
mm)'), xlabel('Mx (Nm)'); 
legend(plot_handles, 'Mx', 'Ty', 'Tz'); 
%============================================================================
===================================== 

legend(legend_handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn', 
'flxn \rightarrow start'); 

    plot_handles_3 = plot([tGUFS0_posn(1,temp+1), 
tGUFS0_posn(1,temp+1+z_ct0_total(1,i,end))],... 

 
% PLOT OF MOVEMENT OF POINT OF INTEREST IN GLOBAL C.S. 
% Z vs. X in global c.s. (start, extn & flxn together, starting & ending 
points only) for last pathseek 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
temp = 0; 
hold on 
for i = 1:size(z_ct0_sum,2) 
    plot_handles_3 = plot([tGPOI0_posn(1,temp+1), 
tGPOI0_posn(1,temp+1+z_ct0_total(1,i,end))],... 
        [tGPOI0_posn(3,temp+1), tGPOI0_posn(3,temp+1+z_ct0_total(1,i,end))], 
'-ob'); 
    temp = temp + 1 + z_ct0_total(1,i,end); 
end 
temp = 0; 
for i = 1:size(z_ct400_sum,2) 
    plot_handles_1 = plot([tGPOI400_posn(1,temp+1), 
tGPOI400_posn(1,temp+1+z_ct400_total(1,i,end))],... 
        [tGPOI400_posn(3,temp+1), 
tGPOI400_posn(3,temp+1+z_ct400_total(1,i,end))], '-or'); 
    temp = temp + 1 + z_ct400_total(1,i,end); 
end 
temp = 0; 
for i = 1:size(z_ct800_sum,2) 
    plot_handles_2 = plot([tGPOI800_posn(1,temp+1), 
tGPOI800_posn(1,temp+1+z_ct800_total(1,i,end))],... 
        [tGPOI800_posn(3,temp+1), 
tGPOI800_posn(3,temp+1+z_ct800_total(1,i,end))], '-ok'); 
    temp = temp + 1 + z_ct800_total(1,i,end); 
end 
hold off 
title('Z vs. X for point of interest for last pathseek'), xlabel('X (mm)'), 
ylabel('Z (mm)'); 
legend_handles = [plot_handles_1; plot_handles_2; plot_handles_3]; 

%============================================================================
===================================== 
 
% PLOT OF MOVEMENT OF UFS IN GLOBAL C.S. 
% Z vs. X in global c.s. (start, extn & flxn together, starting & ending 
points only) for last pathseek 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
temp = 0; 
hold on 
for i = 1:size(z_ct0_sum,2) 

        [tGUFS0_posn(3,temp+1), tGUFS0_posn(3,temp+1+z_ct0_total(1,i,end))], 
'-ob'); 
    temp = temp + 1 + z_ct0_total(1,i,end); 
end 
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temp = 0; 
for i = 1:size(z_ct400_sum,2) 

end 

hold off 

    plot_handles_1 = plot([tGUFS400_posn(1,temp+1), 
tGUFS400_posn(1,temp+1+z_ct400_total(1,i,end))],... 
        [tGUFS400_posn(3,temp+1), 
tGUFS400_posn(3,temp+1+z_ct400_total(1,i,end))], '-or'); 
    temp = temp + 1 + z_ct400_total(1,i,end); 
end 
temp = 0; 
for i = 1:size(z_ct800_sum,2) 
    plot_handles_2 = plot([tGUFS800_posn(1,temp+1), 
tGUFS800_posn(1,temp+1+z_ct800_total(1,i,end))],... 
        [tGUFS800_posn(3,temp+1), 
tGUFS800_posn(3,temp+1+z_ct800_total(1,i,end))], '-ok'); 
    temp = temp + 1 + z_ct800_total(1,i,end); 
end 
hold off 
title('Z vs. X for UFS for last pathseek'), xlabel('X (mm)'), ylabel('Z 
(mm)'); 
legend_handles = [plot_handles_1; plot_handles_2; plot_handles_3]; 
legend(legend_handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn', 
'flxn \rightarrow start'); 
%============================================================================
===================================== 
 
% PLOT OF MOVEMENT OF COR IN GLOBAL C.S. 
% Z vs. X in global c.s. (start, extn & flxn together, starting & ending 
points only) for last pathseek 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
temp = 0; 
hold on 
for i = 1:size(z_ct0_sum,2) 
    plot_handles_3 = plot([tGT0_posn(1,temp+1), 
tGT0_posn(1,temp+1+z_ct0_total(1,i,end))],... 
        [tGT0_posn(3,temp+1), tGT0_posn(3,temp+1+z_ct0_total(1,i,end))], '-
ob'); 
    temp = temp + 1 + z_ct0_total(1,i,end); 

temp = 0; 
for i = 1:size(z_ct400_sum,2) 
    plot_handles_1 = plot([tGT400_posn(1,temp+1), 
tGT400_posn(1,temp+1+z_ct400_total(1,i,end))],... 
        [tGT400_posn(3,temp+1), 
tGT400_posn(3,temp+1+z_ct400_total(1,i,end))], '-or'); 
    temp = temp + 1 + z_ct400_total(1,i,end); 
end 
temp = 0; 
for i = 1:size(z_ct800_sum,2) 
    plot_handles_2 = plot([tGT800_posn(1,temp+1), 
tGT800_posn(1,temp+1+z_ct800_total(1,i,end))],... 
        [tGT800_posn(3,temp+1), 
tGT800_posn(3,temp+1+z_ct800_total(1,i,end))], '-ok'); 
    temp = temp + 1 + z_ct800_total(1,i,end); 
end 

title('Z vs. X for COR for last pathseek'), xlabel('X (mm)'), ylabel('Z 
(mm)'); 
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legend_handles = [plot_handles_1; plot_handles_2; plot_handles_3]; 
legend(legend_handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn', 
'flxn \rightarrow start'); 
%============================================================================
===================================== 
 
% PLOT OF MOVEMENT OF pt. of interest, UFS & COR IN GLOBAL C.S. 

        [tGPOI400_posn(3,temp+1), 
tGPOI400_posn(3,temp+1+z_ct400_total(1,i,end))], '-sr', 'MarkerSize', 5); 

% Z vs. X in global c.s. (start, extn & flxn together, starting & ending 
points only) for last pathseek 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
temp = 0; 
hold on 
for i = 1:size(z_ct0_sum,2) 
    plot_handles_3 = plot([tGT0_posn(1,temp+1), 
tGT0_posn(1,temp+1+z_ct0_total(1,i,end))],... 
        [tGT0_posn(3,temp+1), tGT0_posn(3,temp+1+z_ct0_total(1,i,end))], '.-
b',... 
        [tGUFS0_posn(1,temp+1), 
tGUFS0_posn(1,temp+1+z_ct0_total(1,i,end))],... 
        [tGUFS0_posn(3,temp+1), tGUFS0_posn(3,temp+1+z_ct0_total(1,i,end))], 
'-ob',... 
        [tGPOI0_posn(1,temp+1), 
tGPOI0_posn(1,temp+1+z_ct0_total(1,i,end))],... 
        [tGPOI0_posn(3,temp+1), tGPOI0_posn(3,temp+1+z_ct0_total(1,i,end))], 
'-sb', 'MarkerSize', 5); 
    temp = temp + 1 + z_ct0_total(1,i,end); 
end 
temp = 0; 
for i = 1:size(z_ct400_sum,2) 
    plot_handles_1 = plot([tGT400_posn(1,temp+1), 
tGT400_posn(1,temp+1+z_ct400_total(1,i,end))],... 
        [tGT400_posn(3,temp+1), 
tGT400_posn(3,temp+1+z_ct400_total(1,i,end))], '.-b',... 
        [tGUFS400_posn(1,temp+1), 
tGUFS400_posn(1,temp+1+z_ct400_total(1,i,end))],... 
        [tGUFS400_posn(3,temp+1), 
tGUFS400_posn(3,temp+1+z_ct400_total(1,i,end))], '-or',... 
        [tGPOI400_posn(1,temp+1), 
tGPOI400_posn(1,temp+1+z_ct400_total(1,i,end))],... 

    temp = temp + 1 + z_ct400_total(1,i,end); 
end 
temp = 0; 
for i = 1:size(z_ct800_sum,2) 
    plot_handles_2 = plot([tGT800_posn(1,temp+1), 
tGT800_posn(1,temp+1+z_ct800_total(1,i,end))],... 
        [tGT800_posn(3,temp+1), 
tGT800_posn(3,temp+1+z_ct800_total(1,i,end))], '.-b',... 
        [tGUFS800_posn(1,temp+1), 
tGUFS800_posn(1,temp+1+z_ct800_total(1,i,end))],... 
        [tGUFS800_posn(3,temp+1), 
tGUFS800_posn(3,temp+1+z_ct800_total(1,i,end))], '-ok',... 
        [tGPOI800_posn(1,temp+1), 
tGPOI800_posn(1,temp+1+z_ct800_total(1,i,end))],... 
        [tGPOI800_posn(3,temp+1), 
tGPOI800_posn(3,temp+1+z_ct800_total(1,i,end))], '-sk', 'MarkerSize', 5); 
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    temp = temp + 1 + z_ct800_total(1,i,end); 
end 
hold off 
title('Z vs. X for point of interest, UFS & COR for last pathseek'), 
xlabel('X (mm)'), ylabel('Z (mm)'); 
legend_handles = [plot_handles_1; plot_handles_2; plot_handles_3]; 
legend(legend_handles, 'COR: flxn \rightarrow extn ', 'UFS: flxn \rightarrow 
extn', 'POI: flxn \rightarrow extn',... 
    'COR: extn \rightarrow flxn', 'UFS: extn \rightarrow flxn', 'POI: extn 
\rightarrow flxn',... 
    'COR: flxn \rightarrow start', 'UFS: flxn \rightarrow start', 'POI: flxn 
\rightarrow start', 0); 

 

After finding the final passive path of the specimen, it is replayed to make sure no more 

pre-conditioning needs to be done (spine3h_val_path2.m). 

% spine3h_val_path2.m 
% replay flexion/extension 
% converted from spine3h.v2 
% Amy Loveless 
% 7/31/2002 
 
% Disable buttons on GUI until spine3h_val_path2.m is done running 
buttons(guihandles, 'off'); 
 
% Input dialog box to get the number of times to run replay 
prompt  = {'Enter the number of times you want to run the replay'}; 
title   = 'Number of Replays'; 
lines= 1; 
def     = {''}; 
answer  = inputdlg(prompt,title,lines,def); 
if isequal(answer,{}) == 1 
    % Enable buttons on GUI 
    buttons(guihandles, 'on'); 
else 
    plays = str2num(answer{1}); 
end 
 
% plays = str2num(answer{1}); 
 
% Clear variables created for inputdlg 
clear prompt title lines def answer; 
 
% Input dialog box to get the filename for data storage 
prompt  = {'Enter Filename'}; 
title   = 'Filename'; 
lines= 1; 
def     = {'c:\robot'}; 
answer  = inputdlg(prompt,title,lines,def); 
if isequal(answer,{}) == 1 
    % Enable buttons on GUI 
    buttons(guihandles, 'on'); 
else 
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    filename = answer{1}; 
end 
 
% Clear variables created for inputdlg 
clear prompt title lines def answer; 
 
% setup figure to graphically monitor loads 
[fx, fy, fz, mx, my, mz, handles, fh] = val_path_display1; 
 
% Arrays of constants 
rot_angle0_replay = 
flipdim(rot_angle0_end_pts(:,1:size_start_end_pts(end),end),1); 
rot_angle400_replay = rot_angle400_end_pts(:,1:size_flxn_end_pts(end),end); 
rot_angle800_replay = rot_angle800_end_pts(:,1:size_extn_end_pts(end),end); 
rot_angle_replay = [rot_angle400_replay rot_angle800_replay]; 
 
% move specimen to flxn in incremental movements 
for p = 1:size(start_replay1,2) 
    ok = 0; 
 flag = 3.1; 
 fprintf(port1, [ok, flag]); 
 fprintf(port1, start_replay1(1:6,p)); 
     
    done_moving = fscanf(port1); 
    done_moving = sscanf(done_moving, '%f'); 
     
    %=========================================== 
 get_loads;  % measure: forces and moments 
 %=========================================== 
  
 %=========================================== 
 fm_tare5;  % tare out bolt-up and fixture wt 
 %=========================================== 
  
 % display f/m after taring out bolt-up and fixture wt 
    val_path_display2([fm_tcs, fx, fy, fz], [mx, my, mz], handles, 
[rot_angle0_replay(p), z_target(2)]); 
%     for i = 1:3 
%         if abs(fa(i)) > 0.5 
%             line_color(i,1:3) = [1 0 0]; 
%         else 
%             line_color(i,1:3) = [0 0.75 0]; 
%         end 
%  end 
%  subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:)); 
%  subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:)); 
%  subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:)); 
%  subplot(2,1,2), set(mx, 'XData', [0 fa(4)]); 
%  subplot(2,1,2), set(my, 'XData', [0 fa(5)]); 
%  subplot(2,1,2), set(mz, 'XData', [0 fa(6)]); 
%     set(handles.w_now_edit, 'String', rot_angle0_replay(p)); 
%      
%     drawnow 
     
end 
 
for j = 1:plays 
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    % Read position and load data for dir = 1200 (flxn -> extn, replay) 
    for p = 1:size(flxn_replay,2) 
        ok = 0; 
  flag = 3.1; 
  fprintf(port1, [ok, flag]); 
  fprintf(port1, flxn_replay(1:6,p)); 
         
        done_moving = fscanf(port1); 
        done_moving = sscanf(done_moving, '%f'); 
  
        ok = 0; 
        flag = 1.1; 
        fprintf(port1, [ok flag]); 
        flxn1 = fscanf(port1); 
        flxn1 = sscanf(flxn1, '%f'); 
        z_gt1200_val(1:6,p,j) = flxn1(1:6); 
        flxn_val_jt_angles(1:6,p,j) = flxn1(7:12); 
  
  %=========================================== 
  get_loads;  % measure: forces and moments 
  %=========================================== 
   
  %=========================================== 
  fm_tare5;  % tare out bolt-up and fixture wt 
  %=========================================== 
   
  % display f/m after taring out bolt-up and fixture wt 
        val_path_display2([fm_tcs, fx, fy, fz], [mx, my, mz], handles, 
[rot_angle400_replay(p), z_target(2)]); 
%   for i = 1:3 
%             if abs(fa(i)) > 0.5 
%                 line_color(i,1:3) = [1 0 0]; 
%             else 
%                 line_color(i,1:3) = [0 0.75 0]; 
%             end 
%   end 
%   subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:)); 
%   subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:)); 
%   subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:)); 
%   subplot(2,1,2), set(mx, 'XData', [0 fa(4)]); 
%   subplot(2,1,2), set(my, 'XData', [0 fa(5)]); 
%   subplot(2,1,2), set(mz, 'XData', [0 fa(6)]); 
%         set(handles.w_now_edit, 'String', rot_angle400_replay(p)); 
%         set(handles.valpath_edit, 'String', j); 
%    
%   drawnow 
         
        load1200_val(1:6,p,j) = fa'; 
 end 
     
    % Read position and load data for dir = 1600 (extn -> flxn, replay) 
 for p = 1:size(extn_replay,2) 
        ok = 0; 
  flag = 3.1; 
  fprintf(port1, [ok, flag]); 
  fprintf(port1, extn_replay(1:6,p)); 
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        done_moving = fscanf(port1); 
        done_moving = sscanf(done_moving, '%f'); 
         
        ok = 0; 
        flag = 1.1; 
        fprintf(port1, [ok flag]); 
        extn1 = fscanf(port1); 
        extn1 = sscanf(extn1, '%f'); 
        z_gt1600_val(1:6,p,j) = extn1(1:6); 
        extn_val_jt_angles(1:6,p,j) = extn1(7:12); 
         

     

  %=========================================== 
  get_loads;  % measure: forces and moments 
  %=========================================== 
   
  %=========================================== 
  fm_tare5;  % tare out bolt-up and fixture wt 
  %=========================================== 
   
  % display f/m after taring out bolt-up and fixture wt 
        val_path_display2([fm_tcs, fx, fy, fz], [mx, my, mz], handles, 
[rot_angle800_replay(p), z_target(2)]); 
%         for i = 1:3 
%             if abs(fa(i)) > 0.5 
%                 line_color(i,1:3) = [1 0 0]; 
%             else 
%                 line_color(i,1:3) = [0 0.75 0]; 
%             end 
%   end 
%   subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:)); 
%   subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:)); 
%   subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:)); 
%   subplot(2,1,2), set(mx, 'XData', [0 fa(4)]); 
%   subplot(2,1,2), set(my, 'XData', [0 fa(5)]); 
%   subplot(2,1,2), set(mz, 'XData', [0 fa(6)]); 
%         set(handles.w_now_edit, 'String', rot_angle800_replay(p)); 
%         set(handles.valpath_edit, 'String', j); 
%    
%   drawnow 
         
        load1600_val(1:6,p,j) = fa'; 
 end 
     
end 
 
% move specimen back to rotation angle = 0 in incremental movements 
for p = 1:size(start_replay2,2) 
    ok = 0; 
 flag = 3.1; 
 fprintf(port1, [ok, flag]); 
 fprintf(port1, start_replay2(1:6,p)); 
     
    done_moving = fscanf(port1); 
    done_moving = sscanf(done_moving, '%f'); 

 %=========================================== 
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 get_loads;  % measure: forces and moments 
 %=========================================== 
  
 %=========================================== 

 

 fm_tare5;  % tare out bolt-up and fixture wt 
 %=========================================== 
  
 % display f/m after taring out bolt-up and fixture wt 
    val_path_display2([fm_tcs, fx, fy, fz], [mx, my, mz], handles, 
[rot_angle400_replay(p), z_target(2)]); 
%     for i = 1:3 
%         if abs(fa(i)) > 0.5 
%             line_color(i,1:3) = [1 0 0]; 
%         else 
%             line_color(i,1:3) = [0 0.75 0]; 
%         end 
%  end 
%  subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:)); 
%  subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:)); 
%  subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:)); 
%  subplot(2,1,2), set(mx, 'XData', [0 fa(4)]); 
%  subplot(2,1,2), set(my, 'XData', [0 fa(5)]); 
%  subplot(2,1,2), set(mz, 'XData', [0 fa(6)]); 
%     set(handles.w_now_edit, 'String', rot_angle400_replay(p)); 
%   
%  drawnow 
end 
 
% remove monitor loads figure from screen 
delete(fh); 
 
%=========================================== 
data_display_val_path2; % display data 
%=========================================== 
 
% Enable buttons on GUI when spine3h_val_path2.m is done running 
buttons(guihandles, 'on'); 

val_path_display1.m is a function called by spine3h_val_path2.m that sets up the plot to 

graphically monitor UFS loads. 

function [fx, fy, fz, mx, my, mz, handles, fh] = val_path_display1; 
 
% setup figure to graphically monitor loads 
fh = figure('Position',[400 300 600 600],'Color','w'); 
subplot(2,1,1) 
set(gca,'XLim', [-50 50], 'YLim', [0 4], 'YTick', [1 2 3], 'YTickLabel', 'Fz 
(N)|Fy (N)|Fx (N)') 
title('Forces') 
fx = line('XData', [0 0], 'YData', [3 3], 'LineWidth', 24, 'Color', [0 0.75 
0]); 
fy = line('XData', [0 0], 'YData', [2 2], 'LineWidth', 24, 'Color', [0 0.75 
0]); 
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fz = line('XData', [0 0], 'YData', [1 1], 'LineWidth', 24, 'Color', [0 0.75 
0]); 
origin = line('XData', [0 0], 'YData', [0 4]); 
 
subplot(2,1,2) 
set(gca,'XLim', [-10 10], 'YLim', [0 4], 'YTick', [1 2 3], 'YTickLabel', 'Mz 
(Nm)|My (Nm)|Mx (Nm)') 
title('Moments') 
mx = line('XData', [0 0], 'YData', [3 3], 'LineWidth', 24, 'Color', [0 0.75 
0]); 
my = line('XData', [0 0], 'YData', [2 2], 'LineWidth', 24, 'Color', [0 0.75 
0]); 
mz = line('XData', [0 0], 'YData', [1 1], 'LineWidth', 24, 'Color', [0 0.75 
0]); 
origin = line('XData', [0 0], 'YData', [0 4]); 
 
uicontrol('Style', 'text', 'Tag', 'current_text',... 
    'Position', [20 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12, 
'String', 'Current:'); 
uicontrol('Style', 'edit', 'Tag', 'w_now_edit',... 
    'Position', [135 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12); 
uicontrol('Style', 'text', 'Tag', 'w_now_text',... 
    'Position', [135 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12, 
'String', 'Angle'); 
uicontrol('Style', 'edit', 'Tag', 'valpath_edit',... 
    'Position', [335 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12); 
uicontrol('Style', 'text', 'Tag', 'valpath_text',... 
    'Position', [335 0 70 20], 'BackgroundColor', [1 1 1], 'FontSize', 12, 
'String', 'Replay #'); 
handles = guihandles(fh); 
guidata(fh, handles); 
 
% any of these changes should make simple animations smooth 
% zbuffer can be very slow and on my computer none of these are  

 

% necessary to stop flashing 
set(fh,'doublebuffer','on'); 
% set(fh,'renderer','zbuffer'); 
% set(hfig,'renderer','opengl'); 

val_path_display2.m is a function called by spine3h_val_path2.m that plots UFS loads. 

function val_path_display2(forces, moments, handles, misc) 
 
fa = forces(1:6); 
fx = forces(7); 
fy = forces(8); 
fz = forces(9); 
 
mx = moments(1); 
my = moments(2); 
mz = moments(3); 
 
rot_angle_replay = misc(1); 
limit = misc(2); 
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for i = 1:3 
    if abs(fa(i)) > limit 
        line_color(i,1:3) = [1 0 0]; 
    else 
        line_color(i,1:3) = [0 0.75 0]; 
    end 
end 
subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:)); 
subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:)); 
subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:)); 
subplot(2,1,2), set(mx, 'XData', [0 fa(4)]); 
subplot(2,1,2), set(my, 'XData', [0 fa(5)]); 
subplot(2,1,2), set(mz, 'XData', [0 fa(6)]); 
set(handles.w_now_edit, 'String', rot_angle_replay); 
 
drawnow 

 

data_display_val_path2.m is a script called by spine3h_val_path2.m that plots the data 

gathered during pathseek validation. 

% data_display_val_path2.m 
% display data 
% Amy Loveless 
% 7/31/02 
 
% BUILD ARRAYS TO BE USED FOR PLOTTING 
% Arrays of mx 
for i = 1:plays 

    legend_string(i,1:8) = ['replay ', int2str(i)]; 

    mx1200_val(1,1:size(load1200_val,2),i) = 
load1200_val(4,1:size(load1200_val,2),i); 
    mx1600_val(1,1:size(load1600_val,2),i) = 
load1600_val(4,1:size(load1600_val,2),i); 
end 
 
mx_end_pts = [flxn_mx_end_pts extn_mx_end_pts]; 
 
% Arrays of constants 
rot_angle400_val = rot_angle400_end_pts(:,1:size_flxn_end_pts(end),end); 
rot_angle800_val = rot_angle800_end_pts(:,1:size_extn_end_pts(end),end); 
rot_angle_val = [rot_angle400_val rot_angle800_val]; 
 
for i = 1:length(rot_angle400_val) 
    y_replay2(i) = 0; 
end 
 
clear legend_string 
for i = 1:plays 

end 
 
% Save workspace 
save(filename) 
disp('Data has been saved.') 
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%============================================================================
===================================== 
 
% Plot of rotation angle vs. mx for passive pathseek (mx_end_pts) & first 
replay (mx1200_val, mx1600_val) 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
set(gca, 'NextPlot', 'add'); 
plot(-rot_angle_val, mx_end_pts, '.-', -rot_angle_val, [mx1200_val(:,:,1) 
mx1600_val(:,:,1)], '-o'); 
line('XData', get(gca, 'XLim'), 'YData', [0 0]); 
line('XData', [0 0], 'YData', get(gca, 'YLim')); 
title('Mx vs. rotation angle'), xlabel('rotation angle (deg)'), ylabel('Mx 
(Nm)'); 
legend_handles = get(gca, 'Children'); 
legend(flipdim(legend_handles(3:4),1), 'last pathseek', 'intact replay', 2); 
text(1, -2, 'flexion', 'Rotation', 30, 'FontSize', 14); 
text(1, 2, 'extension', 'Rotation', 30, 'FontSize', 14); 
 
% Plots of mx vs. rotation angle (for all replays, flxn -> extn) 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
set(gca, 'NextPlot', 'add'); 

 

line_color = get(gca, 'ColorOrder'); 
for i = 1:plays 
    plot(-rot_angle_val, [mx1200_val(:,:,i) mx1600_val(:,:,i)], '.-', 
'Color', line_color(i,:)); 
end 
line('XData', get(gca, 'XLim'), 'YData', [0 0]); 
line('XData', [0 0], 'YData', get(gca, 'YLim')); 
title('Mx vs. rotation angle'), xlabel('rotation angle (deg)'), ylabel('Mx 
(Nm)'); 
legend_handles = get(gca, 'Children'); 
legend(flipdim(legend_handles(3:plays+2),1), legend_string, 2); 
text(1, -2, 'flexion', 'Rotation', 30, 'FontSize', 14); 
text(1, 2, 'extension', 'Rotation', 30, 'FontSize', 14); 
 

After the passive path has been validated, the cutting study begins using 

spine3h_replay2.m. 

% spine3h_replay2.m 
% replay flexion/extension 
% converted from spine3h.v2 
% Amy Loveless 
% 7/4/2002 
 
% Disable buttons on GUI until spine3h_replay.m is done running 
set(hok, 'Enable', 'off'); 
set(hbolt, 'Enable', 'off'); 
set(hbefore, 'Enable', 'off'); 
set(hafter, 'Enable', 'off'); 
set(hpath, 'Enable', 'off'); 
set(hval, 'Enable', 'off'); 
set(hreplay, 'Enable', 'off'); 
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set(hend, 'Enable', 'off'); 
 
% Input dialog box to get the filename for data storage 
prompt  = {'Enter Filename'}; 
title   = 'Filename'; 
lines= 1; 
def     = {'c:\robot'}; 
answer  = inputdlg(prompt,title,lines,def); 
filename = answer{1}; 
 
% Clear variables created for inputdlg 
clear prompt title lines def answer; 

fy = line('XData', [0 0], 'YData', [2 2], 'LineWidth', 24, 'Color', [0 0.75 
0]); 

 
subplot(2,1,2) 
set(gca,'XLim', [-10 10], 'YLim', [0 4], 'YTick', [1 2 3], 'YTickLabel', 'Mz 
(Nm)|My (Nm)|Mx (Nm)') 
title('Moments') 

mz = line('XData', [0 0], 'YData', [1 1], 'LineWidth', 24, 'Color', [0 0.75 
0]); 
origin = line('XData', [0 0], 'YData', [0 4]); 
 
uicontrol('Style', 'text', 'Tag', 'current_text',... 

handles = guihandles(fh); 

 
% setup figure to graphically monitor loads 
fh = figure('Position',[400 300 600 600],'Color','w'); 
subplot(2,1,1) 
set(gca,'XLim', [-50 50], 'YLim', [0 4], 'YTick', [1 2 3], 'YTickLabel', 'Fz 
(N)|Fy (N)|Fx (N)') 
title('Forces') 
fx = line('XData', [0 0], 'YData', [3 3], 'LineWidth', 24, 'Color', [0 0.75 
0]); 

fz = line('XData', [0 0], 'YData', [1 1], 'LineWidth', 24, 'Color', [0 0.75 
0]); 
origin = line('XData', [0 0], 'YData', [0 4]); 

mx = line('XData', [0 0], 'YData', [3 3], 'LineWidth', 24, 'Color', [0 0.75 
0]); 
my = line('XData', [0 0], 'YData', [2 2], 'LineWidth', 24, 'Color', [0 0.75 
0]); 

    'Position', [20 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12, 
'String', 'Current:'); 
uicontrol('Style', 'edit', 'Tag', 'w_now_edit',... 
    'Position', [135 20 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12); 
uicontrol('Style', 'text', 'Tag', 'w_now_text',... 
    'Position', [135 0 60 20], 'BackgroundColor', [1 1 1], 'FontSize', 12, 
'String', 'Angle'); 

guidata(fh, handles); 
 
% any of these changes should make simple animations smooth 
% zbuffer can be very slow and on my computer none of these are  
% necessary to stop flashing 
set(fh,'doublebuffer','on'); 
% set(fh,'renderer','zbuffer'); 
% set(hfig,'renderer','opengl'); 
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% Arrays of constants 
rot_angle0_replay = 
flipdim(rot_angle0_end_pts(:,1:size_start_end_pts(end),end),1); 
rot_angle400_replay = rot_angle400_end_pts(:,1:size_flxn_end_pts(end),end); 
rot_angle800_replay = rot_angle800_end_pts(:,1:size_extn_end_pts(end),end); 
rot_angle_replay = [rot_angle400_replay rot_angle800_replay]; 

    done_moving = sscanf(done_moving, '%f'); 

 % display f/m after taring out bolt-up and fixture wt 

     

 flag = 3.1; 

 
% move specimen to flxn in incremental movements 
for p = 1:size(start_replay1,2) 
    ok = 0; 
 flag = 3.1; 
 fprintf(port1, [ok, flag]); 
 fprintf(port1, start_replay1(1:6,p)); 
     
    done_moving = fscanf(port1); 

     
    %=========================================== 
 get_loads;  % measure: forces and moments 
 %=========================================== 
  
 %=========================================== 
 fm_tare5;  % tare out bolt-up and fixture wt 
 %=========================================== 
  

    for i = 1:3 
        if abs(fa(i)) > 0.5 
            line_color(i,1:3) = [1 0 0]; 
        else 
            line_color(i,1:3) = [0 0.75 0]; 
        end 
 end 
 subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:)); 
 subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:)); 
 subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:)); 
 subplot(2,1,2), set(mx, 'XData', [0 fa(4)]); 
 subplot(2,1,2), set(my, 'XData', [0 fa(5)]); 
 subplot(2,1,2), set(mz, 'XData', [0 fa(6)]); 
    set(handles.w_now_edit, 'String', rot_angle0_replay(p)); 
     
    drawnow 

end 
 
% Read position and load data for dir = 1200 (flxn -> extn, replay) 
% cuts = page number of matrix 
% cuts = cuts + 1 is for use with Matlab interface only 
cuts = cuts + 1; 
 
for p = 1:size(flxn_replay,2) 
    ok = 0; 

 fprintf(port1, [ok, flag]); 
 fprintf(port1, flxn_replay(1:6,p)); 
     
    done_moving = fscanf(port1); 
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    done_moving = sscanf(done_moving, '%f'); 
 
    ok = 0; 
    flag = 1.1; 
    fprintf(port1, [ok flag]); 
    flxn1 = fscanf(port1); 
    flxn1 = sscanf(flxn1, '%f'); 
    z_gt1200(1:6,p,cuts) = flxn1(1:6); 

 

     

    flxn_replay_jt_angles(1:6,p,cuts) = flxn1(7:12); 

 %=========================================== 
 get_loads;  % measure: forces and moments 
 %=========================================== 
  
 %=========================================== 
 fm_tare5;  % tare out bolt-up and fixture wt 
 %=========================================== 
  
    load1200(1:6,p,cuts) = fa'; 
    fm_ufs1200(1:6,p,cuts) = fm_ufs'; 
     
 % display f/m after taring out bolt-up and fixture wt 
    for i = 1:3 
        if abs(fa(i)) > 0.5 
            line_color(i,1:3) = [1 0 0]; 
        else 
            line_color(i,1:3) = [0 0.75 0]; 
        end 
 end 
 subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:)); 
 subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:)); 
 subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:)); 
 subplot(2,1,2), set(mx, 'XData', [0 fa(4)]); 
 subplot(2,1,2), set(my, 'XData', [0 fa(5)]); 
 subplot(2,1,2), set(mz, 'XData', [0 fa(6)]); 
    set(handles.w_now_edit, 'String', rot_angle400_replay(p)); 
     
    drawnow 
end 
 
% Read position and load data for dir = 1600 (extn -> flxn, replay) 
% cuts = page number of matrix 
for p = 1:size(extn_replay,2) 
    ok = 0; 
 flag = 3.1; 
 fprintf(port1, [ok, flag]); 
 fprintf(port1, extn_replay(1:6,p)); 
     
    done_moving = fscanf(port1); 
    done_moving = sscanf(done_moving, '%f'); 

    ok = 0; 
    flag = 1.1; 
    fprintf(port1, [ok flag]); 
    extn1 = fscanf(port1); 
    extn1 = sscanf(extn1, '%f'); 
    z_gt1600(1:6,p,cuts) = extn1(1:6); 
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    extn_replay_jt_angles(1:6,p,cuts) = extn1(7:12); 
     
 %=========================================== 
 get_loads;  % measure: forces and moments 
 %=========================================== 
  
 %=========================================== 
 fm_tare5;  % tare out bolt-up and fixture wt 
 %=========================================== 
  

 subplot(2,1,2), set(mx, 'XData', [0 fa(4)]); 

for p = 1:size(start_replay2,2) 

  

        if abs(fa(i)) > 0.5 

    load1600(1:6,p,cuts) = fa'; 
 
 % display f/m after taring out bolt-up and fixture wt 
    for i = 1:3 
        if abs(fa(i)) > 0.5 
            line_color(i,1:3) = [1 0 0]; 
        else 
            line_color(i,1:3) = [0 0.75 0]; 
        end 
 end 
 subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:)); 
 subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:)); 
 subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:)); 

 subplot(2,1,2), set(my, 'XData', [0 fa(5)]); 
 subplot(2,1,2), set(mz, 'XData', [0 fa(6)]); 
    set(handles.w_now_edit, 'String', rot_angle800_replay(p)); 
     
    drawnow 
end 
 
% move specimen back to rotation angle = 0 in incremental movements 

    ok = 0; 
 flag = 3.1; 
 fprintf(port1, [ok, flag]); 
 fprintf(port1, start_replay2(1:6,p)); 
     
    done_moving = fscanf(port1); 
    done_moving = sscanf(done_moving, '%f'); 
     
    %=========================================== 
 get_loads;  % measure: forces and moments 
 %=========================================== 
  
 %=========================================== 
 fm_tare5;  % tare out bolt-up and fixture wt 
 %=========================================== 

 % display f/m after taring out bolt-up and fixture wt 
    for i = 1:3 

            line_color(i,1:3) = [1 0 0]; 
        else 
            line_color(i,1:3) = [0 0.75 0]; 
        end 
 end 
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 subplot(2,1,1), set(fx, 'XData', [0 fa(1)], 'Color', line_color(1,:)); 
 subplot(2,1,1), set(fy, 'XData', [0 fa(2)], 'Color', line_color(2,:)); 
 subplot(2,1,1), set(fz, 'XData', [0 fa(3)], 'Color', line_color(3,:)); 
 subplot(2,1,2), set(mx, 'XData', [0 fa(4)]); 
 subplot(2,1,2), set(my, 'XData', [0 fa(5)]); 
 subplot(2,1,2), set(mz, 'XData', [0 fa(6)]); 
    set(handles.w_now_edit, 'String', rot_angle400_replay(p)); 
     
    drawnow 
     
end 
 
delete(fh); 
 
%=========================================== 
data_display_replay3; % display data 
%=========================================== 

% Enable buttons on GUI when spine3h_replay.m is done running 

set(hpath, 'Enable', 'on'); 

 

 

set(hok, 'Enable', 'on'); 
set(hbolt, 'Enable', 'on'); 
set(hbefore, 'Enable', 'on'); 
set(hafter, 'Enable', 'on'); 

set(hval, 'Enable', 'on'); 
set(hreplay, 'Enable', 'on'); 
set(hend, 'Enable', 'on'); 

data_display_replay3.m is a script called by spine3h_replay2.m that plots the data 

gathered during the cutting study. 

% data_display_replay3.m 
% display data 
% Amy Loveless 
% from data_sto3c_flxn (7/10/02) 

for i = 1:size(z_gt1600,2) 

 
% BUILD TRANSFORMATIONS OF TOOL C.S. WRT GLOBAL C.S. 
% Build transformations of tool c.s. wrt global c.s. for each location for 
flxn -> extn 
for i = 1:size(z_gt1200,2) 
    tGT1200(1:4,i*4-3:4*i,cuts) = eul2tr([deg2rad(z_gt1200(4,i,cuts)), 
deg2rad(z_gt1200(5,i,cuts)), deg2rad(z_gt1200(6,i,cuts))]); 
    tGT1200(1:3,4*i,cuts) = [z_gt1200(1,i,cuts) z_gt1200(2,i,cuts) 
z_gt1200(3,i,cuts)]'; 
end 
 
% Build transformations of tool c.s. wrt global c.s. for each location for 
extn -> flxn 

    tGT1600(1:4,i*4-3:4*i,cuts) = eul2tr([deg2rad(z_gt1600(4,i,cuts)), 
deg2rad(z_gt1600(5,i,cuts)), deg2rad(z_gt1600(6,i,cuts))]); 
    tGT1600(1:3,4*i,cuts) = [z_gt1600(1,i,cuts) z_gt1600(2,i,cuts) 
z_gt1600(3,i,cuts)]'; 
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end 
 
% Build array of position vectors of tool c.s. from tGT for flxn -> extn 
for i = 1:size(tGT1200,2)/4 
    tGT1200_posn(1:4,i,cuts) = tGT1200(:,i*4,cuts); 
end 
 
% Build array of position vectors of tool c.s. from tGT for extn -> flxn 
for i = 1:size(tGT1600,2)/4 
    tGT1600_posn(1:4,i,cuts) = tGT1600(:,i*4,cuts); 
end 
 
% BUILD TRANSFORMATIONS OF UFS WRT GLOBAL C.S. 
% Build transformations of UFS wrt global c.s. for each location for flxn -> 
extn 
for i = 1:size(tGT1200,2)/4 
    tGUFS1200(1:4,i*4-3:4*i,cuts) = tGT1200(1:4,i*4-3:i*4,cuts)*pinv(tUFST); 
end 
 
% Build transformations of UFS wrt global c.s. for each location for extn -> 
flxn 
for i = 1:size(tGT1600,2)/4 
    tGUFS1600(1:4,i*4-3:4*i,cuts) = tGT1600(1:4,i*4-3:i*4,cuts)*pinv(tUFST); 
end 
 
% Build array of position vectors of UFS from tGUFS for flxn -> extn 
for i = 1:size(tGUFS1200,2)/4 
    tGUFS1200_posn(1:4,i,cuts) = tGUFS1200(1:4,i*4,cuts); 
end 
 
% Build array of position vectors of UFS from tGUFS for extn -> flxn 
for i = 1:size(tGUFS1600,2)/4 
    tGUFS1600_posn(1:4,i,cuts) = tGUFS1600(1:4,i*4,cuts); 
end 
 
% BUILD TRANSFORMATIONS OF PT. OF INTEREST WRT GLOBAL C.S. 
% Build transformations of pt. of interest wrt global c.s. for each location 
for flxn -> extn 
for i = 1:size(tGT1200,2)/4 
    tGPOI1200(1:4,i*4-3:4*i,cuts) = tGUFS1200(1:4,i*4-3:i*4,cuts)*tUFSPOI; 
end 
 
% Build transformations of pt. of interest wrt global c.s. for each location 
for extn -> flxn 
for i = 1:size(tGT1600,2)/4 
    tGPOI1600(1:4,i*4-3:4*i,cuts) = tGUFS1600(1:4,i*4-3:i*4,cuts)*tUFSPOI; 
end 
 
% Build array of position vectors of pt. of interest from tGUFS for flxn -> 
extn 
for i = 1:size(tGPOI1200,2)/4 
    tGPOI1200_posn(1:4,i,cuts) = tGPOI1200(1:4,i*4,cuts); 
end 
 
% Build array of position vectors of pt. of interest from tGUFS for extn -> 
flxn 
for i = 1:size(tGPOI1600,2)/4 
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    tGPOI1600_posn(1:4,i,cuts) = tGPOI1600(1:4,i*4,cuts); 
end 
%============================================================================
===================================== 
 
% BUILD ARRAYS TO BE USED FOR PLOTTING 
% Arrays of fy, fz & mx 
fy1200(1,1:size(load1200,2),cuts) = load1200(2,1:size(load1200,2),cuts); 
fz1200(1,1:size(load1200,2),cuts) = load1200(3,1:size(load1200,2),cuts); 
mx1200(1,1:size(load1200,2),cuts) = load1200(4,1:size(load1200,2),cuts); 
 
fy1600(1,1:size(load1600,2),cuts) = load1600(2,1:size(load1600,2),cuts); 
fz1600(1,1:size(load1600,2),cuts) = load1600(3,1:size(load1600,2),cuts); 
mx1600(1,1:size(load1600,2),cuts) = load1600(4,1:size(load1600,2),cuts); 
 
mx_end_pts = [flxn_mx_end_pts extn_mx_end_pts]; 
 
% Arrays of cut fy, fz & mx resultant force (for flxn -> extn only) 
if cuts ~= 1 
    for i = 1:size(fy1200,2) 
        fy_cut(1,i,cuts-1) = fy1200(1,i,cuts-1) - fy1200(1,i,cuts); 
        fz_cut(1,i,cuts-1) = fz1200(1,i,cuts-1) - fz1200(1,i,cuts); 
        mx_cut(1,i,cuts-1) = mx1200(1,i,cuts-1) - mx1200(1,i,cuts); 
        fyz(1,i,cuts-1) = sqrt(fy_cut(1,i,cuts-1)^2 + fz_cut(1,i,cuts-1)^2); 
    end 
end 
 
% Arrays of moment arms 
if cuts ~= 1 
 for i = 1:size(fy_cut,2) 
        dyhero(1,i,cuts-1) = fz_cut(1,i,cuts-1)*mx_cut(1,i,cuts-
1)/(fyz(1,i,cuts-1)^2); 
        dzhero(1,i,cuts-1) = -fy_cut(1,i,cuts-1)*mx_cut(1,i,cuts-
1)/(fyz(1,i,cuts-1)^2); 
        dyz(1,i,cuts-1) = mx_cut(1,i,cuts-1)/fyz(1,i,cuts-1); 
        dzz(1,i,cuts-1) = -mx_cut(1,i,cuts-1)/fy_cut(1,i,cuts-1); 
        dyy(1,i,cuts-1) = mx_cut(1,i,cuts-1)/fz_cut(1,i,cuts-1); 
    end 
end 
 
% Arrays of constants 
for i = 1:length(last_rot_angle_end_pts) 
    y_replay(i) = 0; 
end 
for i = 1:length(rot_angle400_replay) 
    y_replay2(i) = 0; 
end 
 
% Build strings to be used in plot legends 
clear legend_string 
if cuts < 10 
    for i = 1:cuts 
        legend_string(i,1:9) = ['replay 0', int2str(i)]; 
    end 
else 
    for i = 10:cuts 
        legend_string(i,1:9) = ['replay ', int2str(i)]; 
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    end 
end 
 
if cuts < 10 
    for i = 2:cuts 

if cuts == 1 

%     plot(-rot_angle400_replay, fy1200(1,1:size(fy1200,2),i), '.-') 

        cut_string(i-1,1:9) = ['replay 0', int2str(i)]; 
    end 
else 
    for i = 10:cuts 
        cut_string(i-1,1:9) = ['replay ', int2str(i)]; 
    end 
end 
 
% Save workspace 
save(filename) 
disp('Data has been saved.') 
%============================================================================
===================================== 
 
% BUILD PLOTS LIKE THOSE IN TODD'S MATHEMATICA PROGRAM 
% Plot of rotation angle vs. mx for passive pathseek (mx_end_pts) & intact 
replay (mx1200, mx1600) 

 fh=figure('Position',[150 100 1000 900],'Color','w'); 
 set(gca, 'NextPlot', 'add'); 
%  plot(-rot_angle_replay, mx_end_pts, '.-', -rot_angle_replay, 
[mx1200(:,:,1) mx1600(:,:,1)], '-o') 
    plot(-rot_angle400_replay, mx_end_pts(1:length(mx1200)), '.-'); 
    plot(-rot_angle800_replay, mx_end_pts(length(mx1200)+1:end), '*-'); 
    plot(-rot_angle400_replay, mx1200(:,:,1), '.-', 'Color', [0 0.5 0]); 
    plot(-rot_angle800_replay, mx1600(:,:,1), '*-', 'Color', [0 0.5 0]); 
 line('XData', get(gca, 'XLim'), 'YData', [0 0]); 
 line('XData', [0 0], 'YData', get(gca, 'YLim')); 
 title('Mx vs. rotation angle'), xlabel('rotation angle (deg)'), ylabel('Mx 
(Nm)'); 
 legend_handles = get(gca, 'Children'); 
 legend(flipdim(legend_handles(3:6),1), 'last pathseek (flxn \rightarrow 
extn)', 'last pathseek (extn \rightarrow flxn)',... 
        'intact replay (flxn \rightarrow extn)', 'intact replay (extn 
\rightarrow flxn)', 2); 
%  text(1, -2, 'flexion', 'Rotation', 30, 'FontSize', 14); 
%  text(1, 2, 'extension', 'Rotation', 30, 'FontSize', 14); 
end 
 
% Plots of fy vs. rotation angle (flxn -> extn) 
% put negative sign on fy1200 on 08-21-02 (why does this have to be done? is 
it related to the difference in testing axes and specimen axes?) 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
set(gca, 'NextPlot', 'add'); 
% for i = 1:cuts 

% end 
plot(-rot_angle400_replay, -fy1200(1,1:size(fy1200,2),cuts), '.-'); 
line('XData', get(gca, 'XLim'), 'YData', [0 0]); 
line('XData', [0 0], 'YData', get(gca, 'YLim')); 
title('Fy vs. rotation angle'), xlabel('rotation angle (deg)'), ylabel('Fy 
(N)'); 
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legend_handles = get(gca, 'Children'); 
% legend(flipdim(legend_handles(3:cuts+2),1), legend_string, 2); 
% legend(flipdim(legend_handles(3),1), legend_string(cuts,1:9), 2); 
legend(legend_handles(3), legend_string(cuts,1:9), 2); 
 
% Plots of fz vs. rotation angle (flxn -> extn) 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
set(gca, 'NextPlot', 'add'); 
% for i = 1:cuts 
%     plot(-rot_angle400_replay, fz1200(1,1:size(fz1200,2),i), '.-') 
% end 
plot(-rot_angle400_replay, fz1200(1,1:size(fz1200,2),cuts), '.-'); 
line('XData', get(gca, 'XLim'), 'YData', [0 0]); 
line('XData', [0 0], 'YData', get(gca, 'YLim')); 
title('Fz vs. rotation angle'), xlabel('rotation angle (deg)'), ylabel('Fz 
(N)'); 
legend_handles = get(gca, 'Children'); 
% legend(flipdim(legend_handles(3:cuts+2),1), legend_string, 2); 
% legend(flipdim(legend_handles(3),1), legend_string(cuts,1:9), 2); 
legend(legend_handles(3), legend_string(cuts,1:9), 2); 
 
% Plots of mx vs. rotation angle (flxn -> extn) 
fh=figure('Position',[150 100 1000 900],'Color','w'); 
set(gca, 'NextPlot', 'add'); 
% for i = 1:cuts 
%     plot(-rot_angle400_replay, mx1200(1,1:size(mx1200,2),i), '.-') 
% end 
plot(-rot_angle400_replay, mx1200(1,1:size(mx1200,2),cuts), '.-'); 
line('XData', get(gca, 'XLim'), 'YData', [0 0]); 
line('XData', [0 0], 'YData', get(gca, 'YLim')); 
title('Mx vs. rotation angle'), xlabel('rotation angle (deg)'), ylabel('Mx 
(Nm)'); 
legend_handles = get(gca, 'Children'); 
% legend(flipdim(legend_handles(3:cuts+2),1), legend_string, 2); 
% legend(flipdim(legend_handles(3),1), legend_string(cuts,1:9), 2); 
legend(legend_handles(3), legend_string(cuts,1:9), 2); 
 
if cuts ~= 1 
    % Plots of fy vs. rotation angle for cuts 
    % put negative sign on fy_cut on 08-21-02 (why does this have to be done? 
is it related to the difference in testing axes and specimen axes?) 
    fh=figure('Position',[150 100 1000 900],'Color','w'); 
    set(gca, 'NextPlot', 'add'); 
%     for i = 2:cuts 
%         plot(-rot_angle400_replay, fy_cut(1,1:size(fy_cut,2),i-1), '.-') 
%     end 
    plot(-rot_angle400_replay, -fy_cut(1,1:size(fy_cut,2),cuts-1), '.-'); 
    line('XData', get(gca, 'XLim'), 'YData', [0 0]); 
    line('XData', [0 0], 'YData', get(gca, 'YLim')); 
    title('Fy of cut structure vs. rotation angle'), xlabel('rotation angle 
(deg)'), ylabel('Fy (N)'); 
    legend_handles = get(gca, 'Children'); 
%     legend(flipdim(legend_handles(3:cuts+1),1), cut_string, 2); 
%     legend(flipdim(legend_handles(3),1), legend_string(cuts,1:9), 2); 
    legend(legend_handles(3), legend_string(cuts,1:9), 2); 
 
    % Plots of fz vs. rotation angle for cuts        
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 fh=figure('Position',[150 100 1000 900],'Color','w'); 
    set(gca, 'NextPlot', 'add'); 
%     for i = 2:cuts 
%         plot(-rot_angle400_replay, fz_cut(1,1:size(fz_cut,2),i-1), '.-') 
%     end 
    plot(-rot_angle400_replay, fz_cut(1,1:size(fz_cut,2),cuts-1), '.-'); 
    line('XData', get(gca, 'XLim'), 'YData', [0 0]); 
    line('XData', [0 0], 'YData', get(gca, 'YLim')); 
    title('Fz of cut structure vs. rotation angle'), xlabel('rotation angle 
(deg)'), ylabel('Fz (N)'); 
    legend_handles = get(gca, 'Children'); 
%     legend(flipdim(legend_handles(3:cuts+1),1), cut_string, 2); 
%     legend(flipdim(legend_handles(3),1), legend_string(cuts,1:9), 2); 
    legend(legend_handles(3), legend_string(cuts,1:9), 2); 
     
    % Plots of mx vs. rotation angle for cuts 
   fh=figure('Position',[150 100 1000 900],'Color','w'); 
    set(gca, 'NextPlot', 'add'); 
%     for i = 2:cuts 
%         plot(-rot_angle400_replay, mx_cut(1,1:size(mx_cut,2),i-1), '.-') 
%     end 
    plot(-rot_angle400_replay, mx_cut(1,1:size(mx_cut,2),cuts-1), '.-'); 
    line('XData', get(gca, 'XLim'), 'YData', [0 0]); 
    line('XData', [0 0], 'YData', get(gca, 'YLim')); 
    title('Mx of cut structure vs. rotation angle'), xlabel('rotation angle 
(deg)'), ylabel('Mx (Nm)'); 
    legend_handles = get(gca, 'Children'); 
%     legend(flipdim(legend_handles(3:cuts+1),1), cut_string, 2); 
%     legend(flipdim(legend_handles(3),1), legend_string(cuts,1:9), 2); 
    legend(legend_handles(3), legend_string(cuts,1:9), 2); 
 
 % Plot of resultant force vs. rotation angle 
 fh=figure('Position',[150 100 1000 900],'Color','w'); 
    set(gca, 'NextPlot', 'add'); 
%     for i = 2:cuts 
%         plot(-rot_angle400_replay, fyz(1,1:size(fyz,2),i-1), '.-') 
%     end 
    plot(-rot_angle400_replay, fyz(1,1:size(fyz,2),cuts-1), '.-'); 
    line('XData', get(gca, 'XLim'), 'YData', [0 0]); 
    line('XData', [0 0], 'YData', get(gca, 'YLim')); 
    title('force resultant of cut structure vs. rotation angle'), 
xlabel('rotation angle (deg)'), ylabel('Fyz (N)'); 
    legend_handles = get(gca, 'Children'); 
%     legend(flipdim(legend_handles(3:cuts+1),1), cut_string, 2); 
%     legend(flipdim(legend_handles(3),1), legend_string(cuts,1:9), 2); 
    legend(legend_handles(3), legend_string(cuts,1:9), 2); 
 
%  % Plots of moment arm (dyz) vs. rotation angle 
%  fh=figure('Position',[150 100 1000 900],'Color','w'); 
%     hold on 
%     for i = 1:cuts 
%         plot(rot_angle400_replay, dyz(1,1:size(dyz,2),cuts-1), '.-',... 
%             rot_angle400_replay, y_replay2, '-k', y_replay2, 
dyz(1,1:size(dyz,2),cuts-1), '-k'),... 
%             title('moment arm vs. rotation angle'), xlabel('rotation angle 
(deg)'), ylabel('moment arm (mm)'); 
%     end 
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%     hold off 
%  
%     % Plots of moment arm (dyy) vs. rotation angle 
%  fh=figure('Position',[150 100 1000 900],'Color','w'); 
%     hold on 
%     for i = 1:cuts 
%         plot(rot_angle400_replay, dyy(1,1:size(dyy,2),cuts-1), '.-',... 
%             rot_angle400_replay, y_replay2, '-k', y_replay2, 
dyz(1,1:size(dyz,2),cuts-1), '-k'),... 
%             title('moment arm vs. rotation angle'), xlabel('rotation angle 
(deg)'), ylabel('moment arm (mm)'); 
%     end 
%     hold off 
%      
%     % Plots of moment arm (dzz) vs. rotation angle 
%     fh=figure('Position',[150 100 1000 900],'Color','w'); 
%     hold on 
%     for i = 1:cuts 
%         plot(rot_angle400_replay, dzz(1,1:size(dzz,2),cuts-1), '.-',... 
%             rot_angle400_replay, y_replay2, '-k', y_replay2, 
dzz(1,1:size(dzz,2),cuts-1), '-k'),... 
%             title('moment arm vs. rotation angle'), xlabel('rotation angle 
(deg)'), ylabel('moment arm (mm)'); 
%     end 
%     hold off 
%      
%     % Plots of moment arm (dzhero) vs. rotation angle 
%  fh=figure('Position',[150 100 1000 900],'Color','w'); 
%     hold on 
%     for i = 1:cuts 
%         plot(rot_angle400_replay, dzhero(1,1:size(dzhero,2),cuts-1), '.-
',... 
%             rot_angle400_replay, y_replay2, '-k', y_replay2, 
dzhero(1,1:size(dzhero,2),cuts-1), '-k'),... 
%             title('moment arm vs. rotation angle'), xlabel('rotation angle 
(deg)'), ylabel('moment arm (mm)'); 
%     end 
%     hold off 
%  
%     % Plots of moment arm (dyhero) vs. rotation angle 
%  fh=figure('Position',[150 100 1000 900],'Color','w'); 
%     hold on 
%     for i = 1:cuts 
%         plot(rot_angle400_replay, dyhero(1,1:size(dyhero,2),cuts-1), '.-
',... 
%             rot_angle400_replay, y_replay2, '-k', y_replay2, 
dyhero(1,1:size(dyhero,2),cuts-1), '-k'),... 
%             title('moment arm vs. rotation angle'), xlabel('rotation angle 
(deg)'), ylabel('moment arm (mm)'); 
%     end 
%     hold off 
end 
%============================================================================
===================================== 
 
% % PLOT OF MOVEMENT OF POINT OF INTEREST IN GLOBAL C.S. 

 234



% % Z vs. X in global c.s. (start, extn & flxn together, starting & ending 
points only) 
% fh=figure('Position',[150 100 1000 900],'Color','w'); 
% set(gca, 'NextPlot', 'add') 
% for i = 1:size(tGPOI1200_posn,2) 
%     plot_handles_1 = plot(tGPOI1200_posn(1,i,cuts), 
tGPOI1200_posn(3,i,cuts), '-or'); 
% end 
% for i = 1:size(tGPOI1600_posn,2) 
%     plot_handles_2 = plot(tGPOI1600_posn(1,i,cuts), 
tGPOI1600_posn(3,i,cuts), '-ok'); 
% end 
% title('Z vs. X for point of interest'), xlabel('X (mm)'), ylabel('Z (mm)'); 
% legend_handles = [plot_handles_1; plot_handles_2]; 
% legend(legend_handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn'); 
%  
% % PLOT OF MOVEMENT OF UFS IN GLOBAL C.S. 
% % Z vs. X in global c.s. (start, extn & flxn together, starting & ending 
points only) 
% fh=figure('Position',[150 100 1000 900],'Color','w'); 
% set(gca, 'NextPlot', 'add') 
% for i = 1:size(tGUFS1200_posn,2) 
%     plot_handles_1 = plot(tGUFS1200_posn(1,i,cuts), 
tGUFS1200_posn(3,i,cuts), '-or'); 
% end 
% for i = 1:size(tGUFS1600_posn,2) 
%     plot_handles_2 = plot(tGUFS1600_posn(1,i,cuts), 
tGUFS1600_posn(3,i,cuts), '-ok'); 
% end 
% title('Z vs. X for UFS'), xlabel('X (mm)'), ylabel('Z (mm)'); 
% legend_handles = [plot_handles_1; plot_handles_2]; 
% legend(legend_handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn'); 
%  
% % PLOT OF MOVEMENT OF COR IN GLOBAL C.S. 
% % Z vs. X in global c.s. (start, extn & flxn together, starting & ending 
points only) 
% fh=figure('Position',[150 100 1000 900],'Color','w'); 
% set(gca, 'NextPlot', 'add') 
% for i = 1:size(tGT1200_posn,2) 
%     plot_handles_1 = plot(tGT1200_posn(1,i,cuts), tGT1200_posn(3,i,cuts), 
'-or'); 
% end 
% for i = 1:size(tGT1600_posn,2) 
%     plot_handles_2 = plot(tGT1600_posn(1,i,cuts), tGT1600_posn(3,i,cuts), 
'-ok'); 
% end 
% title('Z vs. X for COR'), xlabel('X (mm)'), ylabel('Z (mm)'); 
% legend_handles = [plot_handles_1; plot_handles_2]; 
% legend(legend_handles, 'flxn \rightarrow extn', 'extn \rightarrow flxn'); 
%  
% % PLOT OF MOVEMENT OF pt. of interest, UFS & COR IN GLOBAL C.S. 
% % Z vs. X in global c.s. (start, extn & flxn together, starting & ending 
points only) 
% fh=figure('Position',[150 100 1000 900],'Color','w'); 
% set(gca, 'NextPlot', 'add') 
% for i = 1:size(tGT1200_posn,2) 
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%     plot_handles_1 = plot(tGT1200_posn(1,i,cuts), tGT1200_posn(3,i,cuts), 
'.b-',... 
%         tGUFS1200_posn(1,i,cuts), tGUFS1200_posn(3,i,cuts), '-or',... 
%         tGPOI1200_posn(1,i,cuts), tGPOI1200_posn(3,i,cuts), '-sr'); 
% end 
% for i = 1:size(tGT1600_posn,2) 
%     plot_handles_2 = plot(tGT1600_posn(1,i,cuts), tGT1600_posn(3,i,cuts), 
'.b-',... 
%         tGUFS1600_posn(1,i,cuts), tGUFS1600_posn(3,i,cuts), '-ok',... 
%         tGPOI1600_posn(1,i,cuts), tGPOI1600_posn(3,i,cuts), '-sk'); 
% end 
% title('Z vs. X for point of interest, COR & UFS'), xlabel('X (mm)'), 
ylabel('Z (mm)'); 
% legend_handles = [plot_handles_1; plot_handles_2]; 
% legend(legend_handles, 'COR: flxn \rightarrow extn ', 'UFS: flxn 
\rightarrow extn', 'POI: flxn \rightarrow extn',... 
%     'COR: extn \rightarrow flxn', 'UFS: extn \rightarrow flxn', 'POI: extn 
\rightarrow flxn', 0); 
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