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INTERACTION OF EXCITONS IN TWO-DIMENSIONAL POTENTIALS

Zoltán Vörös, PhD

University of Pittsburgh, 2008

In the present thesis we discuss experimental work related to the Bose-Einstein condensa-

tion (BEC) of bound electron-hole pairs (excitons) in GaAs coupled quantum wells. Coupled

quantum wells were chosen because in these structures the lifetime of excitons can be ex-

tended to the µs range. In the experiments, by measuring their diffusion, we have proved

that excitons can move freely in two dimensions, and we have proved that they can reach

thermal equilibrium during their lifetime in a confining stress potential in the plane of the

quantum wells. Having an equilibrium ensemble of these quasi-particles enabled us to mea-

sure their interaction potential in a controlled environment. We also introduce a simple

theoretical model that accounts for the experimental findings on interaction. In the final

chapter we discuss a new phenomenon at high stress, and evaluate its possible relation to

excitonic BEC.
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1.0 INTRODUCTION

The motivation behind this work stems from the general phenomenon of Bose-Einstein con-

densation (BEC). There are various bosonic entities that could undergo this intriguing phase

transition, such as superfluid He [1] and alkali atoms [2, 3]. More recently, BEC has been

reported in a semiconductor system, microcavity polaritons [4, 5, 6, 7]. The present thesis is

a summary of the experimental work that we have done on another bosonic semiconductor

system, that of quantum well excitons.

On the following pages, first we discuss BEC in general, with emphasis on two-dimen-

sional systems, then introduce the system that we studied and give the details of the ex-

perimental techniques that we used. In Chapter 2 we demonstrate that the particles under

study behave as a free gas, fulfilling the first requirement for BEC. In Chapter 3 we demon-

strate how the temperature of excitons can be measured in an artificial potential created by

inhomogeneous stress. The next chapter introduces a different trapping principle, that of

electrostatic confinement. Since, according to the results of Chapter 3, excitons reach equi-

librium in stress traps, we can investigate their interaction under equilibrium conditions.

The results, and the a simple theory accounting for the experimental findings is given in

Chapter 5. In the following chapter we investigate a new phenomenon, the reduction of

luminescence intensity in deep stress traps, which can potentially be related to excitonic

BEC. The findings in this chapter are scrutinized from the point of view of condensation.

We close the thesis with a short outlook and in the appendix we discuss various numerical

models describing exciton diffusion and the effect of exciton-exciton interaction on BEC.
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1.1 EXCITONS AS CANDIDATES FOR BOSE-EINSTEIN

CONDENSATION

Excitonic BEC in quantum wells is a recurring claim in the literature, but a thorough

demonstration of the fulfillment of the four major requirements of this phase transition is

still missing. These requirements are general and apply to any bosonic system, and can be

summarized as follows.

1. First we need free particles which are not localized. It might happen that at low tem-

peratures particles become trapped in local minima in a disordered potential, and they

do not behave as a gas at all.

2. Second, in the case of quasi-particles, like excitons, the lifetime must be long compared

to the equilibration time. Atoms also evaporate from magneto-optical traps, but the

timescale of this process is of the order of seconds, compared to the equilibration time

of tenths of seconds [2, 3].

3. Third, a suitable macroscopic trapping potential must be created.

4. Finally, it must be shown that thermal particles can sample this trapping potential during

their lifetime, and that they reach equilibrium not only locally, but globally. The system

evolves into the equilibrium distribution through drift and diffusion.

The first two points are trivial, but the third one needs further explanation. (The fourth

is simply linked to the existence of a suitable trapping potential and adequate diffusion.)

In an ensemble of noninteracting particles, BEC sets in when the number of bosons

reaches some threshold value, given by the number of particles that the excited states can

support, i.e.,

Ncr =

∫
D(E) dE

eβ(E−µ) − 1
. (1.1)

In order for the distribution function to be defined, µ < 0, i.e., the chemical potential is

lower than the ground state.

In 3D, neglecting the spin degeneracy, for particles of mass m and of system volume V ,

the density of states is

D(E) =
V

2π2

√
2m3/2

h̄3

√
E , (1.2)

2



thus the integral at µ→ 0 leads to

Ncr = ζ(3/2)

(
2πmkBT

h̄2

)3/2

, (1.3)

where ζ is the Riemann zeta function.

In 2D, however, the density of states is a constant, and more importantly, does not tend

to zero as E → 0,

D(E) =
Am

2πh̄2 , (1.4)

meaning that the integral does not have an upper bound for any µ < 0, i.e., the excited states

can support an arbitrarily large number of particles, thus the macroscopic occupation of the

ground state cannot be expected. Another way of saying this is that the the condensate is

unstable against thermal fluctuations.

By breaking the translational symmetry of the system, the effect of thermal fluctuations

can be reduced. In the d-dimensional case, assuming a harmonic trapping potential of

the form V (r) =
1

2
αr2 =

1

2
mω2r2, the energy eigenvalues are given by En = nh̄ω. The

degeneracy of each energy level is approximately n(d−1); thus the critical number of particles

in the excited states can be obtained by setting the chemical potential to zero, i.e.,

Ncr =
∑
n

1

eβεn − 1
≈
∫ ∞

0

xd−1 dx

eβh̄ωx − 1
=

(
kBT

h̄ω

)d ∫ ∞
0

yd−1 dy

ey − 1
=

(
kBT

h̄ω

)d
ζ(d) (1.5)

where we do not have the divergence that we encountered before [8]. The critical number

should additionally be multiplied by the degeneracy factors related to the inner structure of

particles. In the case of indirect quantum well excitons, it is equal to 4, as discussed below.

If the number of particles is higher than that given in Eq. (1.5), the extra ones must go into

the ground state.

One point that we should make here is that Eq. (1.5) simply links the critical temperature

to the critical particle number, but does not stipulate which one is the “variable”. In atomic

experiments, usually the particle number is held constant and the temperature is lowered.

In our case, we keep the temperature constant, and change the particle number, simply

by changing the power of the laser beam that creates the excitons. When doing this, we

implicitely assume that the exciton temperature does not depend on the laser power.

3



We also point out that the critical temperature at a fixed particle number and fixed

potential is inversely proportional to the square of the particle mass. This readily explains

the interest and one of the advantages of using excitons instead of atoms: the mass of an

exciton is at least 105 times smaller than that of a typical alkali atom; thus, keeping all other

conditions the same, the critical temperature is expected to be 102 higher.

We note here that in the case of strong repulsion, as in the case of coupled quantum well

excitons, the interaction between particles renormalizes the trapping potential, in extreme

cases even washing it out; thus, the estimate given above is rather crude, and warrants

refinement. We will return to this problem in Chapter 5.

It is also important to note that in the presence of a trap, the condensation happens in real

space, i.e., the ground state of the system is spatially localized. This has led several authors

to make predictions as to how the condensate should manifest itself in the luminescence

spectrum and spatial pattern [9, 10, 11, 12, 13].

As for verifying that DQW excitons fulfill the requirements listed above, we will discuss

measurements on their diffusion, thus gaining insight into the relevant scattering processes

and proving that these particles are indeed free. We can then compare the deduced scattering

times to their lifetime, and check whether they can undergo a number of collisions during their

lifetime. We have also determined the exciton temperature by measuring their distribution

function in a trap. The presence of the trap makes it also possible to measure their interaction

in a well-controlled and nearly equilibrium situation.

While the main motivation was to produce Bose-condensed excitons, the results of this

work should have applications in other problems involving double quantum well excitons.

Understanding the exciton-exciton interaction is important in non-linear optics, e.g. in AC

Stark effect [14]. If one regards an exciton as an agent of energy transport, taking one

photon from the point of its creation to the point of its decay, and this transport can be

tailored in such a way as to define the point of creation and the point of decay, exciton

transport could find important applications in optical signal processing, such as all-optical

multiplexing, optical logic operations [15], or small-aperture “waveguides” [16]. This latter

scenario would make use of the reduced wavelength of an exciton compared to that of light.

4



1.2 BASIC EXCITON PROPERTIES

1.2.1 Excitons in bulk material

The ground state of an undoped semiconductor is a completely filled valence and a completely

empty conduction band. Of course, there are many bands in a semiconductor, but only a few

are relevant at a particular energy scale, namely, the ones that can be connected by particular

- in our case, optical - excitations. The elementary excitation of such a system occurs when,

by some proper mechanism, e.g., the absorption of a photon, an electron is lifted from the

valence band into the conduction band. The empty state left behind in the valence band

is called a hole, with a positive charge. The consequence of the hole’s positive charge is a

mutual attraction between the valence band hole and the conduction band electron, which

then bind, as in the case of a hydrogen atom. This bound particle is called the exciton, and

its energy can be calculated as in the case of the hydrogen atom, with two modifications.

The first is that the electron-hole pair must be created, i.e., a valence band electron must

be given an energy equal to the band gap, and second, the Coulomb interaction is changed

due to the presence of the underlying crystal. In the case of Wannier excitons, i.e., when

the Bohr radius of the particles is much bigger than the lattice constant, the change in the

Coulomb interaction can be taken into account by introducing an effective dielectric constant

ε. Then, assuming isotropic and parabolic bands, the total energy of the exciton becomes

Eex = Egap −
e2

2aexεε0n2
+

h̄2k2

2(me +mh)
, (1.6)

where n is the principal quantum number, and the excitonic Bohr radius is given as

aex =
h̄2εε0
e2mr

(1.7)

with the reduced mass mr =
memh

me +mh

. Since we will be concerned with excitons in GaAs,

taking the value of the zero frequency dielectric constant ε ≈ 13, and the reduced mass

mr ≈ 0.2 m0 [18], where m0 is the vacuum electron mass, we arrive at the conclusion

that the exciton radius is on the order of aex ≈ 120 Å. This size is much larger than the

lattice constant aGaAs ≈ 5.65 Å; thus, we are justified in introducing the effective dielectric
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constant [17, 18, 19]. The exciton binding energy is given by the excitonic Rydberg energy

Ryex =
e2

2aexεε0
≈ 8 meV for GaAs.

The motion of the excitons can be confined to two dimensions in two dimensional quan-

tum wells. When the bulk exciton radius becomes comparable to the width of the quantum

well, the relations above will be modified. Due to the fact that the electron and hole are

closer to each other, the binding energy increases rapidly as the well width, L, is reduced, and

can be approximated by the relation Ryαex = Ry3D
ex /[1+(α−3)/2]2, where α = 3−e−L/2a3D

ex is

the effective dimension of the system [20]. As a consequence, the Bohr radius is reduced. For

a truly 2D exciton, the binding energy is four times the bulk value, while the Bohr radius is

reduced by a factor of 2 [14]. Hrivnák showed that for a wide range of practical values of the

thickness, the Bohr radius assumes the approximate functional dependence a2D
ex = (a3D

ex
2
L)1/3

[21], though it obviously fails for L→ 0.

1.2.2 The band structure of GaAs

In order to understand the properties of an exciton, we need to study the underlying band

structure and symmetries of the system. GaAs crystallizes in a zinc-blende structure in a

face-centered cubic lattice, in which each atom of one type has four nearest neighbors of the

other type located at the vertices of a tetrahedron. As a result of this configuration, GaAs

possesses Td point group symmetry [18, 22, 23], as shown in Fig. 1

At the Γ point, the valence band of bulk GaAs is made up of p-like atomic states, which

means, that taking the spin into account, the Γ point is six-fold degenerate. The atomic

states themselves possess Γ5 symmetry in Td. At the Γ point, the full symmetry of the

valence band holes is obtained by multiplying Γ5 by the irreducible representation of the

spin, i.e.,

Γh = Γ5 ⊗ Γ1/2 = Γ7 ⊕ Γ8 . (1.8)

The physical process corresponding to this splitting is the spin-orbit interaction, and results

in the two-fold degenerate Γ7 split-off, and the four-fold degenerate Γ8 band. In GaAs, the

spin-orbit splitting energy is about 340 meV, slightly changing with temperature [18].

The Γ8 band is made up of two heavy holes (Jz = ±3/2)and the two light holes
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Figure 1: The crystal structure of GaAs.

(Jz = ±1/2), with effective masses mhh,mlh. The designation heavy and light is somewhat

inaccurate, for the effective masses of the holes depend on the direction of their momentum,

and in GaAs, the light hole is heavier than the heavy hole in the [001] direction, while in

directions perpendicular to it, the opposite is the case. The hole bands are said to be warped.

This is described by the Luttinger-Kohn Hamiltonian

H =
h̄2

2m0

[
(γ1 + 5γ2/2)k2 − 2γ2(k2

xJ
2
x + k2

yJ
2
y + k2

zJ
2
z )

−4γ3{(kxky + kykx)(JxJy + JyJx) + c.p.}] , (1.9)

where γ1 ≈ 7, γ2 ≈ 2, γ3 ≈ 3 are the Luttinger parameters [18, 14], and c.p. stands for cyclic

permutation. This Hamiltonian has the two degenerate eigenvalues

E =
h̄2

2m0

[
γ1k

2 ±
√

4γ2k4 + 12(γ2
3 − γ2

2)(k2
xk

2
y + k2

xk
2
z + k2

yk
2
z)
]

(1.10)

Thus, in the [001] direction, the light and heavy hole masses are given by [24]

mlh =
m0

γ1 + 2γ2

≈ 0.09 m0 (1.11)

mhh =
m0

γ1 − 2γ2

≈ 0.3 m0 , (1.12)
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while in the [100] or [010] directions (in the plane perpendicular to [001]),

mlh =
m0

γ1 − γ2

≈ 0.2 m0 (1.13)

mhh =
m0

γ1 + γ2

≈ 0.12 m0 . (1.14)

In the cubic symmetry, the [100], [010], and [001] axes are equivalent, but the quantiza-

tion direction, [001] breaks this symmetry, because the x and y component of the angular

momentum can be 0, but the z component is always non-zero. This leads to different masses

along z and the x − y plane. Although the [100] and [010] directions are equivalent, the

effective mass of the hole is different in the [110], [11̄0], [1̄10], and [1̄1̄0] directions, which lie

in the same plane. It is then common practice to introduce an average hole mass for the

plane, taking these differences into account [25]. Then, in the plane, the average heavy hole

mass is about 0.2 m0, and the light hole mass is about 0.15 m0.

1.2.3 Excitons in quantum wells

Quantum wells are formed when a layer of semiconductor of type A is sandwiched between

two layers of semiconductor of type B. If these two types are chosen properly, the spatial

profile of the minimum of the conduction band and of the valence band will form a well for

electrons and holes in the direction perpendicular to the layers, i.e., in the growth direction.

Depending on whether the conduction band minima and valence band maxima are located

in the same or different materials, Type I and Type II can be distinguished, as shown in

Fig. 2.

The presence of confinement in one direction has fundamental consequences for the energy

spectrum of the electrons and holes. In particular, in AlGaAs/GaAs quantum wells, if the

growth direction is along the [001] crystal axis, the Td symmetry of the bulk material is

lowered to D2d. In the reduced symmetry, the original Γ8 band is split into two, with

Γ7 (heavy hole) and Γ6 (light hole) symmetries [22]. The physical process producing the

splitting is the difference in the confinement energies of the two types of holes. Assuming
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Figure 2: One dimensional potential, V (z), of the valence and conduction bands in Type I

(left) and Type II (right) double quantum wells.

infinite barriers and a quantum well thickness L, the confinement energy for the n-th confined

state is given as

Ecf =
n2h̄2π2

2mL2
. (1.15)

Thus the heavy and light hole bands become separated, since their confinement energy is

inversely proportional to the effective hole mass. (Here we have to take the hole mass relevant

to the confinement direction.) This is shown in Fig. 3

Obviously, the energetic separation of these two bands is determined by the well width,

but for a typical value L = 100 Å and [001] direction, it is approximately 40 meV; therefore,

we can neglect the light hole band at temperatures lower than about 500 K. We will be

concerned with this temperature range, and therefore consider only excitons from the heavy

hole valence band and the electrons from the conduction band.

Having obtained the electronic (Γ6) and the relevant hole (Γ7) bands, we can construct

the exciton wave function by taking the direct product of these states. Since the heavy hole

band has a total spin of 3/2, while the conduction band possesses a spin of 1/2, the resulting

excitons states will form a pair of doublets, according to the decomposition in D2d symmetry

Γ6 ⊗ Γ7 = Γ3 ⊕ Γ4 ⊕ 2Γ5 . (1.16)
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The Γ5 state is an optically active (bright) doublet, if the polarization of the electric field

is in the plane of the quantum wells, while Γ3 and Γ4 are optically inactive (dark) [26, 27].

The physical process responsible for the splitting of the four states is electron-hole exchange.

The magnitude of the splitting is around 100 µeV in three dimensions. In two dimensions,

the splitting is between 10 and 20 µeV for Type I single quantum wells [29], and is greatly

reduced due to the small overlap of the electron and hole wavefunctions in Type II quantum

wells. Van Kesteren et al. determined the splitting in Type II GaAs/AlAs quantum wells

of various thicknesses by measuring the quantum beat frequency between adjacent levels,

and found that, in a wide range, the splitting can be approximated as Esp ≈ 110 · e−d/7.5,

where the thickness, d, is measured in Å, while the energy is measured in µeV [28]. Similar

measurements for double quantum wells are still missing in the literature, but based on

their results and the small overlap of the electron and hole wavefunctions, the splitting is

certainly only a couple of µeV at most. Incidently, the bright excitons lie higher in energy,

which led Combescot et al. [30] to argue that since the ground state of the system is dark,

so would be the excitonic BEC, and this might be one reason why it has not yet been

directly observed, though several groups have presented evidence in favor of bright exciton

condensation [31, 32, 33, 34].

1.3 EXPERIMENTAL CONSIDERATIONS

1.3.1 Optical components and data acquisition

The main parts of our experimental setup are shown in Fig. 4. All experiments were con-

ducted in a Janis Vari-Temp cryostat in the low temperature regime, between 1.4 K and

about 30 K. The lower side of the range was limited by the pumping power of the available

vacuum pumps, while the higher limit is given by the finite binding energy of excitons. At

the lowest temperatures the sample was immersed in reduced vapor pressure He liquid, while

at higher temperatures it was in He vapor.

In almost all experiments, we were interested in the dynamical behavior of the system;
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Figure 3: The evolution of the band structure of GaAs at the Γ point as the symmetry of

the system is lowered. k⊥ is in the direction perpendicular to the planes, while k‖ is in the

planes.
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Figure 4: The experimental setup.
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thus we used pulsed laser sources mostly. These were mode-locked Titanium-Saphire laser, a

cavity-dumped dye laser pumped by a frequency-doubled Nd:YAG laser, or a semiconductor

diode laser. The laser pulse frequencies relevant to the experiments were of the order of

a couple of hundred kHz, i.e., successive pulses were separated in time by a couple of µs.

While the lasers are pulsed, all of them have some background light emission, and since the

background light is on all the time, this can contribute a considerable portion to the total

power. Typically, about 10% of the total power is emitted as a continuous wave background,

and the remaining 90% constitutes the pulses.

In most experiments, we tuned the laser light to the resonant energy of the quantum wells.

Excitation at energies higher than the single-well absorption line would produce excess heat

in the exciton ensemble, for excitons would be created with large kinetic energy. In the

case of the Titanium-Saphire and dye lasers, tuning was achieved by rotating an intracavity

birefringent crystal, thus changing the transmission peak of the cavity, while the diode laser

could be tuned by changing its operating temperature.

The exciton luminescence was projected onto an Acton SpectraPro 2500i imaging spec-

trometer, which preserves the spatial information along one axis, while it disperses light

along a perpendicular axis, as shown in Fig. 5. Time resolution was obtained either by

time-correlated photon counting with a Hamamatsu photomultiplier tube (PMT) or by a

time-gated image intensified LaVision NanoStar CCD camera, with the lasers supplying a

trigger signal, defining the reference point of time. The time resolution of the PMT is about

30 ps, while that of the CCD is 5 ns.

Extracting the spatial information from a measurement with the CCD is obvious, for

the detector is a plane. Our system provided a spatial resolution of about 3.3 µm per pixel.

Doing the same with the PMT is not so trivial, for the PMT is a single point device. In

order to acquire spatial information, we applied a small pinhole of size 50-100 µm on the

entrance slit of the spectrometer, thus masking the projected image and collecting light

from particular points only. Since the magnification of the imaging objective was about 4,

a pinhole of this size allows a spatial resolution of about 13 µm. By rotating the small glass

block in front of the spectrometer, we could choose the point of interest and scan across the

surface of the samples. This method is similar to that described in detail in the work of
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Figure 5: Imaging spectrometer.

Gilliland et al. [35].

1.3.2 Sample preparation

In the experiments, we used double quantum well samples, shown in Fig. 6, which have many

advantages over single quantum wells. As discussed below, the average exciton lifetime

in these structures can be as long as tens of µs, while the binding energy is not reduced

significantly. The exciton energy can conveniently be tuned by changing the bias potential.

Finally, the repulsive force between particles prevents the formation of excitonic molecules.

The double quantum well samples were grown by means of molecular beam epitaxy (MBE)

on n-doped GaAs [001] substrates with p-type capping layer by Loren Pfeiffer and Kenneth

West of Bell Labs. The quantum wells themselves were not doped.

The doping of the layers was to provide a diode-type structure, which was typically

biased in the reverse direction. The reason for this is that any current flowing through

the sample brings high energy carriers into the system, which would then impart their

kinetic energy to excitons through collisions. Moreover, the presence of free carriers screens

the Coulomb interaction, reducing excitonic lifetimes and binding energies, and finally, the

increased collision rate reduces the diffusion. In order to do away with these unwanted effects,

the outer barriers also included superlattices built up of 20 successive layers of AlAs/AlGaAs,
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Figure 6: The coupled quantum wells and the corresponding band structure. The superlattice

is made up of alternating AlAs/AlGaAs layers of thickness 60 Å.

similar to, e.g., Ref. [36]. The superlattices act as traps for the charge carriers, but are

transparent to the light resonant with the exciton energy. This reduced the dark current

passing through the double quantum wells to below 1 µA/cm2.

The GaAs quantum wells have thicknesses between 80 and 140 Å, and are always sepa-

rated by a Al0.3Ga0.7As barrier of thickness 40 Å. A typical sample and the resulting band

structure is shown in Fig. 6.

As described in Chapter 3, one trapping method is to apply inhomogeneous stress on the

samples. This requires preparation of relatively thin (100-150 µm) wafers, because standard

GaAs wafers are 500 µm thick. In order to reduce the thickness, we polished the wafers to

the desired size in a bromine-methanol solution.
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Figure 7: The band structure and the lowest-lying wavefunctions of the coupled quantum

wells. a) zero applied electric field. b) nonzero applied field.

1.4 FURTHER CONSIDERATIONS ON EXCITON PROPERTIES

In this section we briefly overview several exciton properties relevant to our experiments,

such as the energy and lifetime dependence on applied field and the lifetime as a function of

temperature.

1.4.1 Quantum confined Stark effect

When voltage is applied perpendicular to the wells (along the growth direction), the bands

tilt and the electrons and holes separate, leading to the appearance of spatially “indirect”

excitons. This is shown in Fig. 7. At the arrival of the laser pulse, electrons are excited

in both quantum wells; however, only the lowest lying indirect exciton level is favorable

energetically. Therefore, electrons move to the right, while holes move to the left. This

tunneling of electrons and holes happens in about 1 ns [37].

The tilting of the bands also results in the so-called quantum confined Stark effect,

which is the shift of the energy of the indirect exciton [38]. From the simple geometrical

picture one would expect the energy of the indirect exciton to shift linearly with the external

field. However, this is true only for high fields, because the underlying electron and hole
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wavefunctions also change, thus changing the corresponding eigenenergies.

In zero field, we have two electron and two hole wavefunctions in the lowest quantum

well bands: one is symmetric while the other one is antisymmetric. Out of these four states,

four exciton states can be created, depending on which electron is paired with which hole.

The exciton Hamiltonian is given by

Hex = H0
e +H0

h +H2D + U + Egap , (1.17)

where Egap is the gap energy, H0 is the single-particle electron or hole Hamiltonian of the

form [40]

H0
e,h = − h̄

2

2

∂

∂z

1

me,h

∂

∂z
+ V (z)− qFz , (1.18)

with m being the respective mass, V (z) the confining potential and F the external electric

field. H0 accounts for the motion along z only, thus

H2D = − h̄2

2(me +mh)

[
∂2

∂x2
+

∂2

∂y2

]
. (1.19)

Finally, U is the Coulomb potential between the two particles,

U =
e2

(x2 + y2 + (ze − zh)2)εε0
. (1.20)

While solving the full Schrödinger equation in one step is hard, we can separate the

various parts and build a variational solution from them. The eigenfunctions of H0
e and H0

h

can easily be obtained through numerical means, once the band structure and the external

field are given. Starting with ϕe(ze) and ϕh(zh) as the lowest energy eigenfunctions of the

single particle Hamiltonian, the variational wavefunction is taken as

Ψij = Nijϕ
i
e(ze)ϕ

j
h(zh) exp

[
−
√
x2 + y2 + αij(ze − zh)2

Rij

]
, (1.21)

where αij and Rij are variational parameters and Nij is a normalization constant. The

indices i, j specify which wavefunctions we used for building the variational function, i.e.,

i and j refer to whether the underlying electron and hole wavefunction are symmetric or

antisymmetric [39, 40, 41].
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Figure 8: Measured energy of the three lowest lying exciton states as a function of the applied

external field. The lines show all four states as given by the theory discussed in the text.

Solving for the variational parameters gives the eigenenergies. Fig. 8 shows the energies of

the four lowest lying exciton states in a 120-Å-thick double quantum well as a function of the

applied potential. We also show the measured energies for the same structure. However, since

the laser excitation was energetically located between the highest-lying level and the other

three, only those three lower lying levels are excited and can be detected in the luminescence.

The applied potential is not zero at zero energy shift, because of the presence of the built-in

electric field in the p-i-n structure.

The presence of the quantum confined Stark effect has a very important application in

trapping excitons. At first sight it might seem counter-intuitive to assume that excitons,

being charge neutral, can be trapped by electric field. However, as Fig. 8 shows, the exciton

energies depend on the value of the local electric field; namely, the highest field corresponds to

the lowest energy. Thus, producing a non-uniform electric field with a well-defined maximum

leads to an energy minimum. This has been utilized in various configurations [15, 42, 43, 44,

45, 46] to trap excitons, and we will come back to this point in Chapter 4.
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1.4.2 Lifetime of quantum well excitons

1.4.2.1 The role of the overlap integral As we can see in Fig. 7, as the external

electric field is increased, the electron-hole wavefunction overlap also changes. This, in turn,

determines the lifetime of excitons, because in order for the exciton to radiatively decay,

the electron must find a hole, and the probability of this happening is simply the overlap

integral. With the knowledge of the wavefunctions, we can calculate the oscillator strength

of the various pairs of states. The overlap integral of the electron and the hole is given by

fij =

∫ ∞
−∞

Ψij(xe = xh, ye = yh, ze = z, zh = z) dxdydz = Nij

∫ ∞
−∞

ϕi(z)ϕj(z) dz . (1.22)

Fig. 9 shows the lifetime of the the lowest lying exciton state in a 120-Å wide quantum

well structure as a function of the electric fields. The solid line is proportional to the inverse

of the overlap integral. The difference of a multiplicative factor between the theory and the

measurement is due to the fact that the theory does not state anything about the intrinsic

exciton lifetime, it only predicts by how much the lifetime changes as the overlap integral

changes.

Szymańska and Littlewood [47] calculated the oscillator strength based on a plane-wave

expansion, and obtained very similar results. We also note here that the dependence of the

lifetime on the electric field can find a practical application as a “photon storage” device;

photons can be stored in the indirect exciton states (high electric potential), and they can

be released by pulling the electric potential to ground. However, it should be pointed out

that this device does not preserve the polarization of photons, because the two bright and

two dark exciton states come to thermal equilibrium in a matter of a couple of hunder ps.

An experimental demonstration can be found in the work of Winbow et al. [48].

1.4.2.2 Photon emission on the light cone The external electric field is not the only

factor affecting the lifetime of excitons: when an exciton is destroyed, a photon is created.

Since momentum conservation perpendicular to the plane is relaxed, in addition to energy,

in-plane momentum must also be conserved, i.e., only particles in a small fraction of the

phase space, the so-called radiative zone, can decay by radiation.
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Figure 9: Measured lifetime of the lowest lying exciton state (points) as a function of the

applied external field, defined by the potential difference between the capping layer and the

substrate divided by their distance. The solid line is inverse of the oscillator strength given

by Eq. 1.22.
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Given that in quantum wells, excitons are confined to move in a plane, the exciton energy

is

Eex = Egap + Ecf − Eb +
h̄2k2

‖

2mex

, (1.23)

where h̄k‖ is the in-plane momentum, and Eb is the binding energy. The photon’s energy in

vacuum, i.e., after leaving the crystal, is

Eph = h̄ck = h̄c
√
k2
⊥ + k2

‖ , (1.24)

where h̄k⊥ is the out-of-plane momentum. There are many values of k⊥ satisfying this

condition, since denoting E0 = Egap + Ecf − Eb and solving Eex = Eph for k⊥ yields

k⊥ =

√√√√( 1

h̄c

)2
(
E0 +

h̄2k2
‖

2mex

)2

− k2
‖ , (1.25)

which has a real root, whenever

1

h̄c

(
E0 +

h̄2k2
‖

2mex

)
> k‖ , (1.26)

i.e., if

k‖ < k∗‖ =
cmex −

√
c2m2

ex − 2E0mex

h̄
≈ 7.6 · 104 cm−1 (1.27)

or

k‖ > k∗‖ =
cmex +

√
c2m2

ex − 2E0mex

h̄
≈ 1010 cm−1 . (1.28)

The numerical estimates were obtained using 0.2 m0 for the exciton mass, and the gap energy

Egap = 1.5 eV for E0. We can easily see that the second inequality would require k‖ to be

beyond the Brillouin zone, estimated by π/aGaAs ≈ 5.5 · 107 cm−1.

Thus, all excitons up to the energy ∆E = h̄2k∗2‖/2m ≈ 18 µeV can participate in photon

emission. The number of these excitons can be obtained from

nrc(T ) =

∫ ∆E

0

D(E)f(E) dE , (1.29)
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where D(E) is the density of states. Assuming a Boltzmannian distribution for the occupa-

tion, the total particle number is

ntot = N0

∫ ∞
0

D(E)f(E) dE . (1.30)

Now, in 2D, the density of states is constant; thus, for the fraction of optically active

particles, we get

nrc(T )

ntot
=

N0

∫ ∆E

0

D(E)e−E/kBT dE

N0

∫ ∞
0

D(E)e−E/kBT dE

= 1− e−∆E/kBT . (1.31)

When ∆E < kBT , we can expand the exponential and retain the linear term only, i.e.,

nrc(T )

ntot
= 1− e−∆E/kBT ≈ ∆E

kBT
. (1.32)

From this, the rate of change of the exciton population is

∂ntot
∂t

= −nrc(T )

τint

= −ntot∆E
τintkBT

, (1.33)

where τint is the intrinsic lifetime of excitons. Therefore, the effective lifetime is

τrad = τintkBT/∆E , (1.34)

linear in temperature.

Feldmann et al. [49, 50] noted that phonon broadening of the exciton dispersion also

plays a role in the lifetime. In practice, the exciton energies are smeared out, due to the

fact that the homogeneous linewidth is not zero at finite temperatures. This also leads to a

relaxation of the energy conservation condition, as shown in Fig. 10.

The linewidth of the excitons is given by

∆(T ) = α0 + βT , (1.35)

where α0 is the temperature independent contribution, and β ≈ 10µeV/K [49]. As shown in

the figure, now an ensemble of excitons can interact with photons. The calculation leading to
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Figure 10: The dispersion relation of the exciton and the photon. Also shown is the seg-

ment of the exciton distribution that fulfills the condition of momentum conservation. The

horizontal axis is the in-plane momentum.

the change in lifetime is very similar to what we presented above, and also gives a dependence

linear in temperature.

The lifetime as a function of temperature is shown in Fig. 11. From the figure we see that

Eq. (1.34) holds only at high temperatures, when kBT > ∆(T ), and in the lower-temperature

range the lifetime deviates from the linear relation. However, we should point out that the

reason for this might be that the exciton temperature is not equal to the bath temperature.

We will discuss this problem at length in Chapter 3.

1.5 UPPER LIMITS ON THE EXCITON DENSITY

1.5.1 Fermionic versus bosonic nature

Since excitons are composite bosons, made up of two fermions, the question naturally arises,

to what degree can these particles be treated as bosons, and what consequences it has if they

cannot.
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Figure 11: Measured lifetime of excitons in a 100-Å double quantum well structure as a

function of temperature (red dots). Also shown is the linear relation predicted by Eq. (1.34)

(straight line). The bias voltage was 0.8 V for all points.

A näıve estimate can be obtained, if we stipulate that the mean inter-particle distance

is larger than the exciton Bohr radius, i.e, for the two dimensional case,

Na2
ex/A ≤ 1 . (1.36)

If this condition is not satisfied, phase space filling occurs, and the hydrogen-like wavefunction

is no longer a proper description of the exciton.

However, in a recent paper, Combescot argues that this estimate is far too crude [51].

The argument is as follows.

For zero total momentum excitons, the creation operator is

B† =
∑
~k

φ~ka
†
~k
b†
−~k

, (1.37)

where φ~k is the Fourier transform of the ground state wave function, and a†~k and b†
−~k

are the

electron and hole creation operators. One then takes the expectation value

〈ΨN |1− [B,B†]|ΨN〉 (1.38)
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on the ΨN N -exciton state. For perfect bosons this expectation value should be zero, for the

commutator in that case is equal to 1. The expectation value can be obtained as

〈ΨN |1− [B,B†]|ΨN〉 = 2

(
1− FN+1

FN

)
, (1.39)

where the dimensionless number FN is given by

FN = 1− N(N − 1)

2

∑
~k

|φ~k|
4 (1.40)

Using the approximate wave function

|φ~k|
2 =

2πa2
ex

A

1

(1 + k2a2
ex/4)3

, (1.41)

FN can be calculated, and the condition for the deviation of the bosonic commutator to be

much less than 1 becomes

5Na2
ex/A� 1 . (1.42)

Taking the 2D exciton Bohr radius aex = 60 Å [52], this implies

n� 2 · 1011cm−2 . (1.43)
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1.5.2 Interaction

In Eq. (1.5) we obtained the critical exciton number in a simplified, non-interacting model.

Excitons will be weakly interacting if the energy associated with the interaction, is small

compared to their kinetic energy [16], i.e., if

nU ≤ h̄2/a2
ex

2mex

, (1.44)

where n is the 2D density of particles, and U is the interaction potential for hard-core bosons

[53, 54],

U =
2πh̄2

mex

1

ln(1/na2
s)
, (1.45)

where as is the s-wave scattering length. For a hard-core potential, as = aex [53], thus, when

na2
s � 1, the condition above becomes

exp(−4πa2
sn) > a2

sn , (1.46)

therefore, using exp(−4πa2
sn) ≈ 1− 4πa2

sn,

n ≤ 1

a2
s(1 + 4π)

, (1.47)

which is a more stringent requirement than the one in Eq. (1.43).

In principle, similar to the hydrogen molecule, biexcitons could form, if the interaction

between excitons is attractive. However, for indirect excitons in double quantum wells, the

interaction is entirely repulsive. We have seen that the electrons and hole are in different

layers, which means that the indirect excitons are small dipoles aligned parallel to each other.

Therefore, their interaction is always repulsive, which would not support a bound state. The

argument based on the dipole repulsion breaks down at very small quantum well separations.

As Lozovik and Berman pointed out, when the barrier between the two quantum wells is

less than about 10% of the 3D Bohr radius, the interaction can be attractive [55], and a new

bound state, the biexciton, can form.

We also point out that strong exciton-exciton interaction does not necessarily mean that

BEC cannot occur for these particles. Superconductivity is an example of Bose-Einstein

condensation in a strongly interacting system.
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1.5.3 Mott transition

Even if all electrons and holes paired up and formed excitons, at finite temperature excitons

would continuously dissociate and produce free charge carriers. However, free carriers screen

the Coulomb interaction, thus reducing the binding energy, and increasing the dissociation

rate. If the density of free carriers is high enough at the first instant, this becomes a

runaway process, and an electron-hole plasma will be left behind. This is called the ionization

catastrophe.

Snoke [56], and Crawford and Snoke [57] calculated the ionization threshold, taking the

two-dimensional screening length [58, 59]

lsc =
2εkBT

e2n
. (1.48)

The screening length determines the excitonic Rydberg through the relation

Ry(l) =

 Ry(0)

(
1− 2

1+
√

2lsc/aex

)
, lsc/aex >

1
2

0 , lsc/aex ≤ 1
2

(1.49)

where aex is the two-dimensional exciton Bohr radius. The number of excitons nex = n−ne,

where n is the total pair density, and ne is the number of electrons. These three numbers

satisfy the balance equation

n2
e + ne

(
nQ

eRy(ne,T )/kBT − 1

)
− nnQ
eRy(ne,T )/kBT − 1

= 0 , (1.50)

where nQ is a normalization constant, the effective density of states. This equation can then

be solved for ne at any given n. Aouani et al. [61] derived a similar dependence, but they

took only the approximate form of the distribution function.

Fig. 12 shows the fraction of free carriers ne as a function of the pair density with Ry =

4 meV, and at T = 15 K. The exciton radius is 120 Å. As we can see from the figure, for

low densities, the fraction of free carriers is dropping as the density is increased, but at a

well-defined density it increases very rapidly till it reaches 1. The conclusion is that the we

cannot expect the exciton density to grow indefinitely as we increase the pump power.
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Figure 12: The fraction of free carriers as a function of the pair density for two-dimensional

excitons. The temperature is 15 K. From [56].
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2.0 DIFFUSION OF EXCITONS IN A PLANE

The motion of particles, and especially, the dependence of the characteristics of the motion

on various experimental parameters, tells much about the relevant scattering processes. As

such, diffusion measurements are fundamental in understanding how an ensemble of particles

interacts with its environment.

Excitons move in semiconductors and semiconductor structures, transporting energy

from one point to another. While it seems to be a trivial problem to measure the diffusion

directly, the literature mentions mainly indirect measurements. Typical experiments with

excitons in quantum wells do not observe motion of excitons over macroscopic distances,

because the excitons have short lifetime due to close spatial wavefunction overlap and low

diffusion constant due to disorder scattering. Over the years, researchers have come up with

various ideas as to how to alleviate the difficulties associated with the small dimensions.

Using high numerical aperture microscope objectives for tight-focus excitation and detection,

Zhao et al. measured exciton diffusion of the order of several µm, over a time span of several

hundred ps to a couple of ns [62, 63, 64, 65].

Hegarty et al. [66, 67], and Oberhauser et al. [68] used a transient grating method, in

which a spatially modulated exciton population was created by two short laser pulses entering

the sample at slightly different angles. This spatial modulation acted as a diffraction grating

for a weak probe beam. As excitons begin to diffuse, the transient grating becomes washed

out, thus monitoring the diffraction intensity as a function of time made it possible to deduce

the diffusion coefficient.

Hillmer et al. [24, 69] used an opaque mask with two micrometer-sized holes to define

the excitation and detection spots, and measured the time-of-flight of excitons to determine

the diffusion coefficient. Similar measurements have been conducted by Heller et al. [70],
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and Bacher et al. [71].

As we pointed out before, in coupled quantum well systems, the exciton lifetime, τ , can

be as high as tens of µs as opposed to a couple of ns in a single quantum well; thus, taking

a typical diffusion constant D = 10 cm2/s, an average exciton moves 〈r〉 =
√
Dτ ≈ 100 µm

from its place of creation. This is only the diffusion length, however, and if we reckon that

the excitons strongly repel each other, excitons can easily move as far as a couple hundred

µm. Thus, excitonic motion can no longer be regarded as a microscopic displacement, and

the measurement of the diffusivity of the excitons and their effective mobility readily lend

themselves to time-resolved optical imaging.

Electron and exciton transport properties in quantum wells have been the subject of

a number of studies [72, 73]. In the next section we consider the scattering mechanisms

relevant to exciton diffusion, and after that we discuss experiments which indicate that at

low temperatures only one of them, interface roughness scattering, is important.

2.1 THEORETICAL PRELIMINARIES

Classically, diffusion is characterized by a diffusion constant, which is linked to the micro-

scopic parameters through

D = τsc
kBT

m
, (2.1)

where τsc is the relevant scattering time. Therefore, we have to identify the possible scattering

processes. In semiconductors, each of these processes displays a specific dependence on

several parameters.

Basu [74, 75, 76, 77, 78] calculated the scattering times for all relevant processes, assuming

that the exciton wavefunction can be described by a variational ansatz as in Eq. (1.21), and

using the various scattering potentials in Fermi’s golden rule for the transition rates. As in

Eq. (1.21), the variational parameter is denoted by αij, thus, depending on the particular

dependence on αij, different exciton states will have different scattering times. However, at

these low energies, we will only be concerned with indirect excitons with α11 in the notation
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of Chapter 1. In all cases, the quantum well width is denoted by L, while the temperature

by T .

Given the initial and final states, the transition rate can be obtained from Fermi’s golden

rule as

W (i, f) =
2π

h̄
|〈f |U |i〉|2δ(Ei − Ef ) , (2.2)

where U is the scattering potential.

As far as scattering is concerned, the exciton states are described by their in-plane

center-of-mass momentum, which we denote by ~K. (Here we implicitly assume that the

inner structure of the particles does not change during the collision, i.e., the scattering

energies are small compared to the binding energy.) This exciton state can be written as a

superposition of those electron-hole pairs which differ by ~K in momentum [79], i.e.,

| ~K〉 =
∑
~k

f(~k,~k − ~K, ~K)a†
c,~k
av,~k− ~K |vac〉 . (2.3)

Here a†
c,~k

creates an electron with wave vector ~k in the conduction band, while av,~k− ~K creates

a hole with wave vector ~k − ~K in the valence band. The prefactor f(~k,~k − ~K, ~K) is related

to the real-space envelope function via its Fourier transform,

f(~k,~k − ~K, ~K) =
1

A

∫
dxdy

∫
dze

∫
dzhF (r, ze, zh)e

i( ~Kme/M−~k)·~r , (2.4)

where ~r is the relative coordinate of the electron and the hole, A is the surface area, and

M = me +mh.

In principle, we could use the envelope function of a numerical solution. However, an-

alytical results can be obtained if we assume that the confining potential is infinitely high,

and the external electric field is zero, i.e., the electron and hole wavefunctions are simply

sines and cosines. The electric field does not change the solution considerably. We restrict

the discussion to the ground state of the exciton,

F (r, ze, zh) = Be−α11r/2 cos
(πze
L

)
cos
(πzh
L

)
, (2.5)

where B is a normalization constant, and r is the distance for the center of mass. Here we

also neglect the relative motion of the electron and hole along the growth direction, z. From
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now on, we simply take the various scattering potentials and calculate the matrix elements

in Eq. (2.2).

The relevant scattering processes are listed as follows:

1. In the case of interface roughness scattering, fluctuations in the well width, ∆(~r), lead

to a local change of the electron and hole energies

δE(~r) =
∂E

∂L
∆(~r) =

∂

∂L
∆(~r)

π2h̄2

me,hL2
= − π2h̄2

me,hL3
∆(~r) , (2.6)

which then acts as the scattering potential. Again, this expression is valid for infinite

barrier height, and the character of the width dependence significantly changes for very

thin quantum wells, where the confinement energy is comparable to the barrier potential

[80]. The fluctuations are characterized by two quantities, their height, ∆(~r), which we

can expect to be on the order of one monolayer, and their lateral correlation length, λ,

determined by the spatial correlation as

〈∆(~r)∆(~r′)〉 = ∆2e−|~r−~r
′|2/λ2

. (2.7)

Although this correlation function does not have an established physical ground, it has

the advantage that its Fourier transform can easily be calculated [81].

Since the growth process is the same from sample to sample, we can take λ to be constant.

Then the matrix element in Eq. (2.2) becomes

|〈 ~K ′|δE(r)| ~K〉|2 =
α6

11h̄
4π5∆2λ2

L6
exp(−λ2q2/4)(γc/me − γv/mh)

2 , (2.8)

where q = | ~K| = | ~K ′|, Θ is the angle between ~K and ~K ′, and

γc,v = (α2
11 + 4α2

c,vK
2 sin2(Θ/2))−3/2 , (2.9)

The factor 1 − cos Θ expresses the fact that the probability of back scattering is larger

than that of forward scattering.

The total transition probability for ~K is obtained by summing over the final states, ~K ′,

i.e.,

1

τIR
=
π2h̄4λ2∆2Mα6

11

2L6

∫ 2π

0

dΘ(1− cos Θ)e−λ
2q2/4(γc/me − γv/mh)

2 . (2.10)
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Figure 13: The extent of the wavefunction compared to the size of constant width islands

in a single quantum well. Left hand side: the exciton samples many valleys. Right hand

side: the exciton is located in one single island. Also shown are the corresponding

schematic spectra.

This expression can be significantly simplified, if we use the parabolic dispersion relation,

and take the limit K → 0, in which case the scattering time reduces to

1

τIR
=
π5h̄4∆2λ2M

L6

(
1

me

− 1

mh

)2

(2.11)

It is important to note that depending on the ratio of the correlation length and the

exciton Bohr radius, the potential due to well-width fluctuations can present itself in two

different ways.

If the correlation length is larger than the Bohr radius, separate exciton levels will form,

as shown in Fig. 13. This usually happens if the growth process is interrupted for some

time, and atoms on the surface reach thermal equilibrium by coagulating into separate

islands [82, 83]. The signatures of the large correlation length can easily be tracked in

the luminescence spectrum, for in this case the exciton energy changes from place to

place, and in the spatially integrated spectrum several lines could be distinguished.

On the other hand, if the correlation length is smaller than the Bohr radius, then the ex-

citon wavefunction “samples” all well-widths, and only one spectral peak will be present,

inhomogeneously broadened by the well-width fluctuations. In all measurements we saw

only one peak, therefore, we can assume that the correlation length is smaller than the

Bohr radius. (See also Fig. 14.) This is also expected from the fact that the growth

process was not interrupted when the samples were fabricated.
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2. Scattering with impurities:

The scattering potential is assumed to be spherically symmetric, to have a range of r0

(which can be approximated as the lattice constant) and a strength of ∆Uc,v for the

electrons and holes, respectively. Since the range is much smaller than the quantum well

width, the potential can be assumed to be spherically symmetric. The scattering rate is

then equal to [77]

1

τIP
=

8π2Nx(1− x)r6
0(me +mh)

3h̄2L
(∆Uv −∆Uc)

2 , (2.12)

where N is the number of alloy sites per unit volume, x is the fractional alloy concentra-

tion, and me and mh are the electron and hole masses, respectively. Impurity scattering

is mainly relevant in InGaAs, AlGaAs, and doped GaAs samples [24, 77]. It still has

a small contribution in pure GaAs, since the wavefunctions penetrate into the barriers,

which are made of either AlGaAs or Al0.7Ga0.3As.

3. Acoustic phonon scattering:

With the deformation potential, Dc,v, for the electrons and holes, the scattering potential

is given as

UDP
c,v (~q) =

√
h̄q

2%uV
Dc,v , (2.13)

where % is the mass density, V is the crystal volume and u is the sound velocity of

transvers phonons, the scattering time is [74, 78]

1

τDP
=

3α6
11kBT (me +mh)

4πh̄3%u2L

∫ 2π

0

dΘ(1− cos Θ)(Dcγc −Dcγv)
2 . (2.14)

4. Piezoelectric phonon scattering:

The interaction potential is

UPZ
c,v (~q) =

e

ε

√
h̄

2%ωV
hc,v , (2.15)

where hc,v is the piezoelectric constant for the conduction and valence bands, respectively.

The scattering time becomes [74]

1

τPZ
=

e2

h̄(2πε)2

kBT

%u2

4Mα6
11

L2h̄2 I(q) , (2.16)
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where the factor I(q) involves an integral on the E = E(q) energy shell, but does not

contain T or L dependence.

5. Longitudinal optical phonon scattering: The energy of the longitudinal optical phonon

is around 35 meV, which is much higher than the exciton binding energy. Therefore,

interacting with the phonon, the exciton either dissociates into an electron-hole pair, or

evolves into an excited state, and carries away the remainder of the energy as kinetic

energy. In this regard, this process does not contribute to exciton diffusion [84, 85].

2.2 EXPERIMENTAL

Having established the characteristic dependence of the various scattering processes on the

external parameters, we now turn to the discussion of the experimental results on exciton

motion in a plane landscape. In these experiments, an external bias was applied to the

samples, and excitons were created by a pulsed laser, with a repetition period of 4 µs, which

was chosen to be at least twice as long as the exciton lifetime, so that at the arrival of the

next laser pulse, very few excitons were left over from the previous pulse.

Fig. 14 shows a composite of the time-integrated luminescence from the 100-Å well

structure, for various voltages, recorded by projecting an image of the sample onto the

entrance slit of an imaging spectrometer. These images show both the spatial and the

spectral profile of the luminescence. As we discussed in Chapter 1, as the applied voltage is

increased, the lifetime increases, and the excitons travel further.

In each of the images, there is a blue shift of the spectral position near the central

excitation spot, which is the region of highest exciton density, and the spectral position falls

as the density decreases far from the laser excitation spot. This shift comes from the repulsive

interactions of the excitons, which lead to a mean-field energy shift. We will discuss this in

great detail in Chapter 5. This strong repulsion of the excitons gives a strong pressure-driven

expansion of the exciton gas immediately after the laser pulse.

We can also measure the time evolution of the exciton motion by imaging points located

at various distances from the excitation spot. A typical set of such time-traces taken by a
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Figure 14: Composite of the time-integrated luminescence from the 100-Å well structure,

recorded with an Oriel MS257TM imaging spectrometer, for various applied voltages and

with a laser excitation power of 2.7 mW. The narrow vertical line in the center of each image

is impurity luminescence from the GaAs substrate, which is also excited by the laser. The

chevron-like cloud spreading out from the central line shows the motion of the excitons away

from the laser spot. The bright spots at the top of the images are emission from the direct

excitons.
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PMT is shown in Fig. 15. The rise time of the luminescence is longer for spots further away

from the excitation spot, consistent with the picture that the excitons move out from the

excitation spot without becoming localized.

We can quantitatively extract the diffusion constant of the excitons using the time-

resolved luminescence. Fig. 16 shows a series of spatially and temporally resolved exciton

emission profiles, which was produced by taking a set of time-traces similar to those in Fig. 15

and, at each time, ordering them according to their spatial positions. In this case the width

of the wells was 100 Å. The data in the figure are fit to Gaussian distributions. The widths

of these fits are then used to get an estimate for the diffusion coefficient.

As is well known, in the case of a purely diffusive process, the variance increases linearly

with time; in particular, for a 2D, cylindrically symmetric system, the solution of the diffusion

equation
∂n

∂t
= ∇(D∇n)− n

τ
(2.17)

is

n(r, t) =
n0t0
t0 + t

exp

(
− r2

4D(t0 + t)
− t

τ

)
, (2.18)

which implies that the variance is equal to σ2 = 2D(t0 + t). Here we implicitely assumed

that D does not depend on the spatial coordinate. In Eq. (2.17) we have also taken into

account the radiative lifetime of excitons by including the decay term on the right hand side.

We therefore determine the diffusion constant by fitting a straight line to the plotted σ2

versus time, at late times when the transport is diffusive; this slope is twice the diffusion

constant D. In the equation above, r2 = x2 + y2, n(r, t) is the density of excitons, n0 is the

initial density at r = 0, and τ is the lifetime. t0 specifies the width of the of the excitation,

assumed to be Gaussian. Note that since the diffusion equation is linear in the density, the

finite lifetime of excitons causes an overall drop in the intensity with increasing time, but

has no effect on the variance of the Gaussian fit.

A typical plot of the time-dependence of the variance-squared for the 100-Å sample is

shown in Fig. 17. Immediately after the laser pulse, the exciton cloud expands rapidly; then

at late times, the behavior becomes linear. At very late times, when the exciton density has

dropped considerably, the slope also decreases, due to localization. The initial interval can

be explained if one takes into account that following the pulse the exciton density is very
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Figure 15: Indirect exciton luminescence intensity integrated over the wavelength range 821-

825 nm, as a function of time for various points on the sample with 100 Å well width. The

curves are labeled by the distance x in the plane from the central laser spot. The average

excitation power, tuned to the indirect exciton resonance at 796 nm, was 30 µW and the

repetition period 4 µs.
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Figure 16: Expansion of the exciton cloud at different times after the excitation. In this

particular case the well-width was 100 Å. The measured luminescence intensities are nor-

malized. Also shown are the Gaussian fits with the value of the variance. The conditions

are the same as in Fig. 15.

high. This results in a pressure due to dipole-dipole repulsion between aligned excitons. This

pressure causes drift-like motion of the the excitons to move away from the excitation spot.

A secondary effect of exciton density can be the filling up of local minima by excitons [86],

which leads to a higher diffusion coefficient. At late times, after the density has dropped,

pure exciton diffusion sets in and starts to dominate. We will return to the nature of the

diffusion process in Chapter 8.

The time-dependence of the variance-squared for all four double well samples is shown in

Fig. 18. Here we can clearly see that, though all other conditions are the same, the diffusive

regimes have characteristically different slopes.

From the slopes in Fig. 18 we can determine the diffusion coefficients as discussed above.

Fig. 19 shows the results for the four double well samples. The excitation density in all cases

was kept low, in order to minimize the time in which the expansion of the exciton cloud is

nondiffusive due to high dipole-dipole pressure. The applied electric fields (7, 5.8, 3 and 2.5

V/µm for the 80, 100, 120 and 140-Å quantum wells, respectively) were selected in such a

way that the resulting lifetimes were comparable. As seen in this graph, there is an overall
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Figure 17: Measured variance-squared vs. time for the 100-Å sample, for average laser

power 30 µW and pulse period 4 µs. The straight line represents a linear fit to the measured

values in the range of 1000-3000 ns, i.e., when the expansions is purely diffusive. The shaded

regimes are the strongly driven (dark grey), the purely diffusive (light grey) and localizing

(white).
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Figure 18: Measured variance-squared vs. time for the four samples, for average laser power

30 µW and pulse period 4 µs. The straight lines represent linear fits to the measured values

in the range of 1000-3000 ns, i.e., when the expansions is purely diffusive.

increase in the diffusion coefficient as the well width is increased, consistent with a D ∼ L6

power law. This is in accordance with both previous measurements for electron transport

[72], and the theoretical considerations outlined above.

From the measured diffusion coefficients, we can also determine the characteristic scat-

tering time, τ0. In two dimensions, the diffusion coefficient is D = v̄2τ0, where v̄2 = 2kBT/m.

Hence,

τ0 =
mexD

2kBT
, (2.19)

which gives about 10 ps for the 120-Å quantum wells.

We have already pointed out that the exciton cloud does not expand indefinitely, as a

simple diffusion process would require, but at very late times (or at very low densities) the

excitons stop moving, and they appear to become localized, as indicated by the nearly-zero

diffusion at late times in Fig. 17. This conclusion is also supported by Fig. 20, from Snoke

et al. [87], where it was shown that the extent of the exciton cloud scales as the square root

of the power. This is consistent with the picture that excitons move out of the excitation
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Figure 19: Measured diffusion coefficient as a function of well-width on a log-log plot, both

for electrons [72, 88] and excitons. For comparison, also shown is the theoretical dependence,

D ∼ L6.
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Figure 20: Power dependence of the size of the exciton cloud under continuous excitation

by a laser tuned to the direct exciton resonance at 796 nm. The temperature is 1.6 K, the

well-width is 100 Å.
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3.0 TRAPPING COUPLED QUANTUM WELL EXCITONS BY STRESS

3.1 METHODS TO TRAP QW EXCITONS

As we pointed out in the introduction, trapping in two-dimensional systems is necessary

for a BEC-type phase transition. In this section we discuss various methods of producing

a macroscopic trap for quantum well excitons. We would like to mention, however, that in

many cases there are already mesoscopic traps, simply because of the imperfection of the

crystal. Several authors, e.g., Dremin et al. [36], and Yang et al. [89] used these mesoscopic

traps to break the translational invariance of the system. The problem with these methods is

that these traps are not reproducible and completely out of control as to their size or depth.

Moreover, their small size leads to a large energy separation between consecutive levels in

the trap, even comparable to the depth of the trap. In this case, however, one cannot talk

about a well-defined phase transition. Also, repulsion between excitons washes out the trap

at very low densities, as discussed below.

Up till now, five different methods have surfaced in the literature: electric field traps

[44, 45, 90, 91], stress traps [93, 94], optical traps [95], magnetic traps [92], and traps produced

by controlled well-width variations [96], which would rely on well-width dependence of the

exciton energy as discussed in the introductory chapter. This last one appears to be a

proposal only, and no experimental realizations have yet been demonstrated. Here we explain

only the second method, and defer discussing the first one till the next chapter.
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3.2 PIKUS-BIR POTENTIAL

The Hamiltonian of the hole states can be obtained by the method of invariants, after the

crystal potential is expanded in terms of the stress [97, 98], and and for a zinc-blende crystal

it takes the form

HPB = a(εxx + εyy + εzz) + 3b
[
(J2
x − J2/3)εxx + (J2

y − J2/3)εyy + (J2
z − J2/3)εzz

]
+

6d√
3

[εxy
2

(JxJy + JyJx) +
εyz
2

(JyJz + JzJy) +
εzx
2

(JzJx + JxJz)
]
, (3.1)

where Jx, Jy, Jz are the J = 3/2 angular momentum matrices. The coefficients a, b and d are

the deformation potentials.

Taking the specific form of the angular momentum matrices, we arrive at

HPB = a(εxx + εyy + εzz) + (3.2)

(3.3)

3

2



bεsh 2d(εzx − iεyz)
√

3bεyx − 2idεxy 0

2d(εzx + iεyz) −bεsh 0
√

3bεyx − 2idεxy

√
3bεyx + 2idεxy 0 −bεsh −2d(εzx − iεyz)

0
√

3bεyx + 2idεxy −2d(εzx + iεyz) bεsh


where εsh = 2εzz − εyy − εxx, and εyx = εxx − εyy.

We have to keep in mind, however, that this Hamiltonian acts on the quadruply degen-

erate (two light and two heavy holes) Γ7 states of the valence band. Therefore, since the

quantum confinement splits those four states into two doublets (the light holes and the heavy

holes), we have to take the two lowest energy eigenvectors only.

The Hamiltonian above can be diagonalized, yielding the two eigenvalues

E = a(εxx + εyy + εzz)− 3
√
b2(ε2xx + ε2yy + ε2zz − εxxεyy − εyyεzz − εxxεzz) + d2(ε2xy + ε2yz + ε2zx)

(3.4)
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for the heavy holes, and

E = a(εxx + εyy + εzz) + 3
√
b2(ε2xx + ε2yy + ε2zz − εxxεyy − εyyεzz − εxxεzz) + d2(ε2xy + ε2yz + ε2zx)

(3.5)

for the light holes. The hydrostatic term shifts both bands by the same amount, while the

shear term splits them. (In our case, this splitting is an additional term, for the bands are

already split by the quantum confinement.) The reason for this is that the hydrostatic stress

does not change the symmetry of the crystal, therefore, all bands are affected in the same

manner, while the shear stress modifies the symmetry.

In polariton experiments, it has recently been observed that the various heavy hole bands

have different deformation potentials, namely, for the same stress, the first and second heavy

hole polaritons shift by different amount [99].

The quantum confinement can be treated properly if we add Ecf
hh and Ecf

lh to the |±3/2〉,

|±1/2〉 states in the diagonal in Eq. (3.4). However, since this perturbation is present only in

the diagonal of the matrix, it simply splits the heavy hole and light hole states by Ecf
lh −E

cf
hh,

but does not change the results in Eqs. (3.4),(3.5).

What is important in our case is that the energy of the heavy hole band depends on the

local stress. Fig. 21 shows the setup to create the non-uniform stress distribution

Using the Hamiltonian in Eq. (3.1) or the eigenenergies in Eq. (3.4), we can determine

the exciton energies, if we solve for the 6 independent elements of the stress tensor. We can

obtain the strains by iteratively solving the wave equation in the steady state, i.e.,

∑
jlm

Cijlm
∂εlm
∂xj

=
1

2

∑
jlm

Cijlm

(
∂2ul

∂xj∂xm
+

∂2um
∂xj∂xl

)
= 0 , (3.6)

where Cijkl are the components of the elastic tensor [100]. The cubic GaAs has a particularly

simple tensor, with only 3 independent components [17],

Cxxxx = 1.2 · 107N/cm2, Cxxyy = 5.5 · 106N/cm2, Cyzyz = 6.0 · 106N/cm2 . (3.7)

When solving for the stresses, we have to stipulate the appropriate boundary conditions.

The experimental implementation is shown in Fig. 21, and it implies the following boundary

conditions: the displacement is zero around a circle of diameter 2 mm on both the top and
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Figure 21: Configuration to create a non-uniform stress distribution. The sample is held

between the two plates by the springs. The prism serves as a folding mirror in the setup.

the bottom of the sample, the bottom and top surfaces are free-standing, with the exception

of the point where the force is applied. These can be written out as

0 = C44εxz (3.8)

0 = C44εyz (3.9)

Fz = C12(εxx + εyy) + C11εzz , (3.10)

where the force, Fz, is zero everywhere, except for the point where it is applied. Having

specified the boundary conditions, we numerically solve for the stresses.

Fig. 22a shows the resulting hydrostatic stress and the corresponding energy landscape

through the center of the trap in the plane of the quantum wells. In principle, the constants

a, b and d could be calculated from the atomic wavefunctions, but instead of doing that, we

take the experimentally measured values a = −7 eV, b = 2 eV and d = 5.5 eV [94, 101].
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Figure 22: Numerical results for the model discussed in the text. a) The non-uniform

hydrostatic stress distribution and the corresponding trap energy in the heavy hole bands

for a 300-µm thick wafer. The arrows show the definition of the trap size, full width at

half maximum. After [94]. b) The size of the trap as a function of the wafer thickness, as

determined from the model above. The size is defined as the full width at half maximum.

After [93, 103].
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Platero and Altarelli [102] cites values of a = −6.7 eV, b = 1.7 eV and d = 4.5 eV, which

are still relatively close to those three numbers above.

Using the model above, we can also conclude that the size of the trap produced in

this way scales nearly linearly with the thickness of the wafer, as shown in Fig. 22b. This

observation was also confirmed in our experience: using a 150-µm thick wafer instead of a

300-µm wafer reduced the trap width by about a factor of two. We can understand this if we

take into account that the bottom surface is stress-free, therefore, the force applied on the

top surface must “heal” in a length scale given by thickness, and thus all spatial derivatives

change accordingly. The experimental consequence is that in order to produce steep traps,

we need to use as thin samples as possible.

We mention here that dynamic stress has previously been used for trapping excitons. In

those cases, the elastic deformation is produced by standing or traveling acoustic waves, and

the antinodes of the wave act as the potential minimum or maximum [104, 105, 106, 107, 108].

3.2.1 Experimental configuration

Fig. 21 shows the experimental configuration to create a non-uniform stress distribution in

DQW systems. The wafer is clamped between two metal plates, both having a small (2

mm in diameter) hole in it. The sample is pressed from the substrate’s side by a moveable

sharp pin. Since the bottom surface (the side of the quantum wells) of the wafer is free, this

force bends the wafer, creating a lateral expansion in it. The samples were mounted at room

temperature, while the experiments were conducted at cryogenic temperatures. In order to

avoid the creation of unwanted stresses due to the difference in the thermal contraction of the

various materials involved, we always used spring mounts, as shown in the figure. The fact

that without applied stress the exciton energies did not change from place to place proves

that in this way we could avoid introducing stresses related to thermal contractions.

In Fig. 23 the resulting exciton trap can be seen. Also shown is a parabolic fit through

the center of the trap, and the corresponding spring constant, α = 42 eV/cm2. This value of

the spring constant was typical in these experiments. The parabolic approximation is valid

over a range of ±150 µm from the center.
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Figure 23: The potential trap created by the non-uniform stress distribution as measured by

the spectral position of the indirect excitonic luminescence. The laser, tuned to the stress-

free direct exciton resonance, was defocused and the excitation intensity was low, 1 mW

continuous wave, so that the whole wafer was illuminated and the local density was low,

thus the renormalization of the potential by exciton-exciton interaction can be neglected.
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3.3 MEASURING THE TEMPERATURE OF EXCITONS

First, we describe experiments on measuring the exciton temperature directly, and we re-

turn to the problem of exciton-exciton interaction in Chapter 5. These measurements have

fundamental importance, for in the literature, experimenters typically assume that the ex-

citons reach the lattice temperature, but have no direct evidence for this [31]. In principle,

the spectrum of the luminescence can be used, but this involves the assumption that the

radiation probability is energy-independent in the relevant energy range [109, 125].

In this section we assume that we are far from quantum degeneracy, i.e., the exciton

ensemble is described by the classical distribution

n(~r, ~p) = N0e
−β(V (~r)+~p2/2m) , (3.11)

where V (~r) is the (possibly renormalized) trapping potential, and ~p is the center-of-mass

momentum of the particles. In principle, we can deduce the temperature by measuring only

in half of the phase space, i.e., integrate over either the momenta or the coordinate, and

measure the particle distribution of n(~r) or n(~p).

This is common practice in atomic physics [2, 3], where measuring the exact shape of

the trap is difficult, and it is better to measure the momentum distribution instead. This

is done in a time-of-flight configuration: the trapping potential is switched off, and the

absorption image of the ensemble is taken as a function of time. From the time evolution of

the spatial distribution of the absorption strength the momentum distribution can then be

reconstructed. It is important to point out that this measurement is destructive in the sense

that for each snapshot a new ensemble has to be created under the exact same conditions,

because by taking the image the distribution function of the system is altered.

In semiconductors with a strong phonon-assisted photon emission process (e.g., Cu2O), it

is possible to extract the temperature from the line shape of the phonon-assisted luminescence

line, even without a trap [110, 111].

The presence of a well-controlled and measurable trapping potential makes it possible

to measure the temperature of the ensemble through its spatial distribution function, or in

other words, integrate over the momenta.

50



In our case, the luminescence intensity is proportional to the local exciton density. Taking

the distribution function from Eq. (3.11) and integrating over the momenta, the measured

intensity at position ~r is given by

I(~r) = I0

∫
[~p]

d~pe−β(p2/2m)e−βV (~r) = Ĩ0e
−βV (~r)

∫
[~p]

d~pe−β(p2/2m) , (3.12)

where we denoted the momentum component of the phase space of optically active excitons

by [~p]. What is important here is that the momenta can be separated from the spatial

variables. In equilibrium, one thus expects the cloud profile to be given by

n(r) = n0(T ) exp

[
−
(

1
2
αr2 + V [n(r)]

)
kBT

]
, (3.13)

where 1
2
αr2 is the harmonic approximation of the externally applied potential, and V [n(r)]

is the energy due to the exciton-exciton interaction. When the density is low, the term

renormalizing the external potential will drop out, and the spatial profile will be a simple

Gaussian, with width given by the temperature and the force constant of the harmonic

potential. Equating the measured spatial distribution with Eq. (3.13), i.e.,

exp

[
− r2

2σ2

]
= exp

[
−1

2

αr2

kBT

]
, (3.14)

we arrive at a simple relationship between the size of the cloud and the temperature,

Teff =
ασ2

kB
, (3.15)

where σ is the variance of the Gaussian profile which is the best fit.

As we did in Chapter 2, in the case of free diffusion, we can plot the size of the exciton

cloud as a function of time. Fig. 24 shows the width of the spatial profile as a function of

time for various temperatures and excitation powers. We also show a typical spatial profile

long after the excitation in order to justify the Gaussian fits.

We can deduce a number of things from Fig. 24. First, initially the expansion is fast,

as in the case of the plane diffusion, but then the restoring force of the trap starts to drive

particles back towards the center. The expansion is faster for higher temperatures, in accord

with the fact that in that case the diffusion coefficient is higher. Moreover, the expansion is
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Figure 24: Time evolution of the spatial profile of the luminescence for T = 1.6 K and T = 6

K, and P0 = 100 µW. The inset shows a typical profile long after the excitation. The inset

also indicates the instrumental resolution. The 100-ns-long laser excitation takes place at

t = 200 ns.
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faster for higher excitation powers, in accord with the fact that in that case the number of

excitons, and hence, the repulsive force exerted on them is larger.

We can use the measured σ to determine the effective temperature as we outlined in

Eq. (3.15). This is shown in Fig. 25

As we have pointed out in Chapter 1, the radiative lifetime of the particles is proportional

to the inverse of the temperature. This provides us with an additional tool to check for

consistency. In Fig. 25 we also plotted the temperature deduced from time evolution of

the total intensity. The time evolution of the number of particles in the trap obeys the

differential equation
dN

dt
= −A N

T (t)
. (3.16)

The factor A depends on the applied external field, as discussed in Chapter 1.

Initially, excitons possess some excess energy, due to the fact that the direct-indirect

conversion brings particles to an energetically lower lying state, and some time is needed to

emit phonons to release the energy difference. If we assume that the temperature decays

exponentially as

T (t) = Tb + (T0 − Tb)e−t/τc , (3.17)

where Tb and T0 are the bath and initial temperature, respectively, then the resulting differ-

ential equation becomes separable and can be integrated as

N(t) = N0 exp

[
−A

∫ t

0

dt′

Tb + (T0 − Tb)e−t′/τc

]
. (3.18)

This expression can then be used to fit the time evolution of the total intensity. In Fig. 25,

the parameters are Tb = 1.6 K, T0 = 5 K, and τc = 190 ns.

The fact that the decay of the excitons at late times is single exponential as shown in

Fig. 25, also confirms two claims. The first is that we see exciton decay, and not emission

from an electron-hole plasma: in the latter case, in order to radiate, an electron must find a

hole, therefore, the decay rate is proportional to the product of the electron and hole number,

while in the first case, an electron is annihilated with its own hole, therefore, the radiation

intensity is proportional to the number of particle pairs, i.e., excitons. The plasma-type

recombination is relevant in luminescence ring experiments [112, 113, 114, 115, 116, 117].
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Figure 25: Red circles: width of the exciton cloud in the trap as a function of time, from

Gaussian fits to the spatial profile at all times, given as an effective temperature as discussed

in the text. The excitation power was 100 µW. Green circles: total luminescence intensity for

the same data, integrated spatially and spectrally (right axis). Solid black line: a straight-line

fit to the late time-intensity data. The data before 0.3 µs are obscured by bright substrate

luminescence, during the 100-ns laser pulse. Blue line: the temperature of the exciton gas

as a function of time, deduced from a fit to the intensity vs. time data and using Eq. (3.15).
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Second, the single exponential decay also implies that there is no density-dependent Auger

recombination as seen, e.g., for excitons in Cu2O [118, 119, 120].

Naively, one would expect that the temperature of the exciton gas determined this way

should equilibrate at the lattice temperature of 1.6 K. As seen in Fig. 25, however, at

long times after the laser pulse, the excitons at low density reach a cloud size which stays

constant in time, even as their density drops, indicating thermal equilibrium, but the effective

temperature deduced from the cloud size is 6.6 K, not 1.6 K.

We note here that the solution Eq. (3.18) is still valid if we change the parameters as

Tb → 6.6 K, T0 → 10 K and A → 1.6A/6.6. With the new parameters, Eq. (3.18) fits the

measured intensity equally well.

One might guess that perhaps the excitons at these late times have a temperature well

above 1.6 K, due to lack of thermalization. There are several arguments against this, how-

ever. First, although the lattice will be heated by the the laser pulse, the total energy

deposited is so low, and the time constant for cooling so fast, that the increase of lattice

temperature above 1.6 K is a few Kelvin at most. Because we used a 100 ns laser pulse, two-

photon absorption is negligible. The excess energy per photon was 45 meV in the resonant

excitation of the direct, single-quantum-well exciton. Knowing the heat capacity of GaAs,

C ≈ 10−5 J/g/K [18], the laser light absorption length of approximately 1 µm [18, 19], and

the excitation area of (30µm)2, for 100 µW average laser power, one can easily estimate

the maximum temperature as 9 K. The excess heat quickly diffuses away from the 1 µm

region of absorption. Taking t = 100 ns, the heat diffusion coefficient Dh > 1000 cm2/s, the

diffusion length is ` =
√
Dht = 10−2 cm = 100 µm, which also means that the temperature

maximum with respect to the background also drops a hundredfold, at least. Even if we

take into account that at the He-GaAs interface only longitudinal phonons can propagate

into the liquid, this could not cause more than a threefold increase in the cool-down time

[121]. This conclusion can also be confirmed by the numerical solution for the heat diffusion,

as shown in Fig. 26, where we applied the most conservative numbers for the heat diffusion

coefficient, 1000 cm2/s, and the heat capacity, 10−5 J/g/K.

Since the lattice itself cools down to the temperature of the He in a matter of a couple of

ns, we have to look for other possible mechanisms for the discrepancy between the effective
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Figure 26: Time evolution of the temperature of the lattice after a laser excitation that

would bring the temperature maximum to about 18 K. The distance is measured from the

surface of the sample, i.e., the laser beam penetrates the wafer from the left.

exciton temperature and that of the background.

The time scale for thermalization of the exciton gas to the lattice, by phonon emission,

is well known for excitons in quantum wells; recent calculations [86], which have been repro-

duced for our experimental conditions using the methods described in earlier work [122]. As

seen in Fig. 27, the time to reach just a few percent higher than the lattice temperature is

just a few nanoseconds. To reach temperatures below 1 K can take much longer, hundreds

of nanoseconds [86], but still less than our many-microsecond lifetimes. These simulations

are in agreement with the experimental result, shown in Fig. 25, that the lifetime of the

excitons does not change after the first 500 nanoseconds or so [49].

It might be possible that the time to reach spatial equilibrium is simply much longer

than what we can measure, thus we would deduce a false temperature from the cloud size.

We can, however, estimate the timescale of spatial equilibration.

We know that the excitons are free to move in the trap at these temperatures because

experiments without an externally-applied trap show diffusion of the excitons at these den-
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Figure 27: Time evolution of the temperature of excitons. The bath temperature is 1.2 K,

and we assume an initial exciton temperature of 10 K. From [124].

sities and temperatures [123]. Solving the simple diffusion equation with the drift force of

the trap, α~r,
∂n

∂t
= ∇ · (D~∇n) +

τ0

mx

∇ · (α~rn) , (3.19)

with the initial condition n(r) = n0 exp(−r2/2σ2
i ), yields the solution

n(r) = n0

exp

(
− r2

2(σ2
f−(σ2

f−σ
2
i ) exp(− 2tατ0

m
)

)
2π(σ2

f − (σ2
f − σ2

i ) exp(−2tατ0
m

))
. (3.20)

Hence, the characteristic time for the equilibration is

τ =
m

2ατ0

=
kBT

2αD
. (3.21)

Substituting α = 40 eV/cm2, D = 0.74 cm2/s and T = 1.6K yields τ ≈ 1.5 µs, consistent

with Fig. 25. Moreover, since we create the excitons in the center of the trap at t = 0, lack

of equilibration in this case would give a false low temperature, not too high a temperature,

because the cloud would be smaller than the equilibrium size.
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The natural time scales of the system all indicate that the gas of excitons should be in

equilibrium at the lattice temperature. We therefore must consider the possibility of a heat

source. There are two possible sources. First, we must consider the possibility that leakage

light from the laser heats the exciton ensemble. Although the excitons are created by a pulsed

laser, a continuous wave (cw) component, even if it is small, acts as a continuous source of

excitons with excess energy ∼ 40 meV, since the laser creates direct, single-quantum-well,

excitons which must convert down into spatially indirect excitons in the double quantum well

structure. In order to ascertain whether this is the case, we sent the laser light through an

acousto-optic modulator (AOM) and repeated the measurements with different duty cycles,

to allow different amounts of the cw light between the laser pulses to pass through to the

sample. If leakage light between the pulses were responsible for the heating, then the two

duty cycles would give different time evolutions of the cloud size. As Fig. 28 shows, there is

no discernible difference between the two cases.
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Figure 28: Time evolution of the cloud size expressed as the effective temperature for two

different duty cycles of the AOM cell. Full red circles: 10%, blue open squares: 80%. The

inset shows the actual band structure, and demonstrates how an electron tunnelling through

the 500-Å barrier separating the superlattices from the quantum wells can have energies up

to 400 meV with respect to the ground state of a quantum well exciton.
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The other possibility is that current through the sample heats the excitons. The current

density through the sample was on the order of 1 µA/cm2. While this value seems to be

rather low, we have to keep in mind that an electron that tunnels into the quantum wells

comes with an excess energy of about 300-400 meV, as illustrated in the inset of Fig. 28. If

these hot electrons can spend enough time in the quantum wells, then we cannot rule out

the possibility that this leads to elevated temperatures. If we imagine a small population of

hot carriers nhot added to a cold population of thermalized excitons ncold, the new effective

temperature will be approximately (kBThotnhot + kBTcoldncold)/(nhot + ncold). In the low

density case of Fig. 29, we estimate that the cold exciton densities are a few times 109 cm−2.

If the tunneling current remains hot for 1 ns, then a current of 1 µA/cm2 corresponds to

a density in the quantum wells of about 104 cm−2. For 400 meV excess energy per carrier,

this is marginally enough to raise the cold exciton temperature by a few tenths of a degree.

This is a very approximate estimate, however, and therefore we cannot rule out that current

plays a role in heating the exciton gas.

We note that if current does play a role in heating the excitons, its effect will be much less

at higher excitation densities, since the tunneling current is roughly constant, and therefore

the ratio of these hot carriers to the total population will decrease and become negligible

when the generated exciton density is higher, in the range 1010 cm−2.

Third, it might be possible that excitons, initially pushed high in the trap by the strong

exciton-exciton interaction, become localized when their density drops below a certain thresh-

old value. This would also be consistent with Fig. 17. In any case, it seems that one cannot

simply assume that the exciton temperature, defined by the spatial equilibrium of particles,

is equal to the lattice temperature below 5 Kelvin. We point out, that on a much shorter time

scale (13 ns), based on the spectrum of the luminescence, Gorbunov et al. [125] also mea-

sured an exciton temperature higher (around 5 Kelvin) than that of the lattice (2 Kelvin).

While in their case, the temperature seemed to converge to 5 K, due to the high repetition

rate of their laser, it is not clear whether the excitons would cool down to 2 Kelvin given

long enough time, or this is indeed their final temperature.
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Figure 29: Measured effective temperature as a function of bath temperature. The solid

straight line is the bath temperature. The errors are estimated from the uncertainty in

determining the spring constant of the trapping potential. The instrumental resolution

given in the inset of Fig. 24 was deconvolved assuming simple quadrature.
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4.0 ELECTRIC FIELD TRAPS FOR EXCITONS

In Chapter 1, we pointed out that the energy of indirect excitons depends on the magnitude

of the electric field, and in particular, the energy minimum is located at points of high field.

This means that if an electric field has an in-plane maximum, excitons can be expected to

accumulate there and become trapped. This is counter-intuitive to some extent, for excitons

are charge-neutral particles, therefore, they do not react to an electric field. However, what

plays a role here is not the field itself, but its variation in space, the gradient.

We also pointed out, that as the electric field increases, so does the lifetime, which

means that in such a trap excitons do not have a single lifetime, but live long at the low-

energy points, and annihilate more quickly at the high-energy points. This is analogous to

evaporative cooling in atomic condensates: the high-energy particles are removed from the

system through recombination. On the other hand, due to this anisotropy in the lifetime,

the analysis and interpretation of experimental data is more difficult.

4.1 TRAPPING CONFIGURATIONS

Contrary to the stress trapping method, which is quite unique and in this form is used

only in our group, electrostatic traps are very popular, and many configurations have been

developed over the years. In all cases, the inhomogeneous electric field is produced by a flat

conducting surface on one side of the coupled quantum wells, and a gate on the other side,

held at a potential different from that of the flat surface.

In the simplest case, the gate can be a single tip, as in Gorbunov and Timofeev [45, 126].

In this case, the front side of the sample was conducting, while the back side was insulating.
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A small AFM tip at the back side was then held at a potential higher than the front side.

The inhomogeneous electric field between the tip and the front side produces a V-shaped

exciton potential with a size determined by the thickness of the sample and the size of the

tip. The same group used traps created by the electric field around the edge of a circular

and a metallic aperture. This configuration has the advantage that the field of view is clear,

but on the other hand, the potential minimum is not at the center of the trap.

Hammack et al. [44] produced a transparent gate structure with a set of concentric

circles on the front side of the sample, as shown in Fig. 30(c). The potential of the circles

could individually be set. This means that by changing the relative voltages on the circles,

various trap-shapes could be realized. The trap size in these experiments was in the order of

a couple µm. Zimmermann et al. used the same principle, with the exception that the gates

on the front side were arranged in a configuration of two interleaving combs [128, 129].

High et al. [15] took this approach one step further by dynamically modulating the trap:

by pulling one of the electrodes to a potential lower than its vicinity, they created a barrier

which could be switched on or off. In the presence of the barrier, excitons are prevented

from flowing from one place to another. This produces an “excitonic transistor” where the

control signal is electronic.

Gärtner et al. [42] used the resistance of the front side gate to produce the gradient: hold-

ing the two ends of the front side gate at different voltages, a potential gradient is produced,

in which excitons created on the high energy (low potential) side roll down. Fig. 30(d). In

this case, one of the technical limitations is the maximum current that the front side gate

can support: the potential difference between the two ends cannot be raised indefinitely,

because the induced current would heat the sample, amongst other things.

The same group has successfully used a field-effect structure, which was produced by

sandwiching a SiO2 layer between the surface of the GaAs heterostructure and a semitrans-

parent metallic top gate [43]. They showed that excitons were trapped at the perimeter of the

structure, and explained the trapping mechanism by a combination of the quantum confined

Stark effect and local field enhancement. In this case, however, the trap was one-dimensional,

in the sense that in one direction possessed a spring constant of about 10 keV/cm2, while in

the other it was flat.
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Figure 30: Various electric field trapping scenarios. a) Trap by Gorbunov et al. [45]. b)

Trap by Gorbunov et al. [125]. c) Trap by Hammack et al. [44]. d) Trap by Gärtner et al.

[42]. e) Trap by Gärtner et al. [43].
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4.2 LIMITATIONS OF ELECTRIC TRAPS

At first, it seems that electric field traps could be very flexible, both in terms of their shapes

and their depths, for the shapes can relatively easily be reconfigured by applying different

gate configurations, and the depth (and consequently, the apparent spring constant) can be

as high as desired. First, even with the most careful design of the sample, a small leakage

current will always be present. This current increases very rapidly as the bias potential is

increased.

More importantly, however, the in-plane component of the electric field pulls the electrons

and holes in opposite directions, which, in turn, leads to the ionization of excitons [127, 128].

In a couple of papers, Rapaport et al. [90, 130] pointed out that ionization poses a severe

limitation on the applicability of deep electrostatic traps.

The maximum density of excitons that a trap can support is determined by the repulsion

between the particles and the depth of the trap. Treating the repulsion in the mean-field

approximation, the energy shift due to exciton-exciton repulsion is

∆E = γnex , (4.1)

where γ is a constant, which can be measured or derived from first principles. (We will

return to this point in Chapter 5.) Therefore, in order to facilitate more particles, and beat

their repulsion, the depth trap must be increased. On the other hand, the increase in the

required electric field ionizes the particles, thus reducing the trap lifetime. The lifetime as

a function of the exciton density is shown in Fig. 31a. The density was deduced from the

depth of the trap and the value of γ = 1.5 · 10−10 meV cm2, which is a typical value for

a 100-Å double quantum well [9, 90]. The three aspect ratios are given by the distance

between the substrate and the quantum wells divided by the distance between the substrate

and the capping layer, as in Fig. 31b.

From Fig. 31a, we can see that as the density is increased, the trap lifetime drops very

rapidly, almost exponentially. At a density of about 3 · 1010 cm−2, even in the best trap

(z/l = 0.2) the lifetime is less than 1 µs. Based on the measurements in Chapter 3, excitons
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Figure 31: Left hand side: Theoretical prediction for the lifetime of excitons as a function

of the exciton density for three different aspect ratios of the trap. After [130]. Right hand

side: The schematics of the trap used in the experiments (a), and the microscope image of

the front side gate with a diameter of 50 µm. The small wire is for biasing the gate, and has

a width of about 2 µm.
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need about this much time to come to equilibrium, which means that an equilibrium gas

with a density higher than 3 · 1010 cm−2 is not feasible in these kinds of traps.

4.3 BACK-SIDE BIASSED TRAPS

From the optical point of view, applying a trap from the back side of the sample seems

simpler, for in this case the field of view is not obstructed. We, therefore, tried this method

first.

In order to produce a reasonably sized trap (less than a hundred µm in diameter), two

requirements must be fulfilled. The first is that the pin be this large at most, and the

second is that the pin be very close (some tens of µm) to the front side (the location of the

quantum wells) of the sample. This also means that the wafer must be either very thin, or

an appropriate hole must be “drilled” to accommodate the pin.

Our first attempt was to etch the pin into the wafer, i.e., to etch a very long and narrow

hole, and metalize its surface. We used a plasma ion etcher at Cornell University’s Nanofab-

rication Facility, which also means that various preparation steps needed to be completed,

such as, coating the wafer with photoresist, baking it, placing a Cr mask on it, lifting off the

uncovered photoresist and loading it into a etching chamber. Given the temperature range

of these steps, and the difficulties in the handling of the sample, this also implies that only

relatively thick (∼ 200 µm) and rigid wafers could be used. In turn, this means that the hole

had to be deep and have a large aspect ratio. As it turned out, the depth posed the most

serious difficulty, for at least, two reasons. One is that etching takes a long time, during

which the mask needs to remain resistive. A 2-µm thick Cr mask with a 200-µm hole could

withstand the etching process for about 40-60 minutes, during which the the hole reached a

depth of about 15 µm. The thickness of the mask cannot be increased indefinitely, because

the strain that builds up between the bottom and the top surface during the evaporation

peels off the Cr layer, if its thickness is beyond some threshold value. The 2 µm value quoted

above is about the largest thickness that we could grow without peel-off.

Since we could not succeed with the Cr mask, we tried to create a very rudimentary
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Figure 32: The depth of the hole as a function of time, left axis, solid circles. The solid green

line is a ∼
√
t dependence. Also shown is the deduced etching rate (blue curve) on the right

axis. The mask had a 1.5-mm diameter hole on it.

mask by attaching a stainless steel washer with a small hole on it to the sample. Even with

this, the etching speed becomes prohibitively low at larger depths, as shown in Fig. 32. With

the original Cr mask with the 200-µm hole, in the same amount of time, we could etch a

15-20 µm deep hole. From these results, it became clear that a completely different approach

should be taken for any chance of success.

In addition to the low speed, the profile of the cavity was far from satisfactory, as can be

seen in Fig. 33. The irregularities and bumps grew larger and larger as time wore on, and

we could not produce a hole with smooth bottom. Therefore, we have concluded that this

method is not suitable for producing the an electrostatic trap.

4.3.1 Thin-wafer samples

Our second attempt was to use a very thin wafer, with all the difficulties associated with

handling. However, it turned out that this task is not impossible, and we could etch, handle

and mount a wafer of thickness between 5 and 10 µm. The wafer was then placed on an

indium-tin-oxide coated glass, which served as one of the electrodes, and was biased by a
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Figure 33: Profile of the hole produced by reactive plasma etching with a stainless steel

mask. The etching time was 60 minutes. The profile was taken with a mechanical profiler

of tip size 40 µm, which also determines the spatial resolution.

small, electrolytically etched pin from the back side. The diameter of the pin was around

15 µm. Fig. 34 shows the outline of the trap when a small bias potential is applied between

the front side and the pin.

This method also had problems: since the preparation takes place at room temperature,

while the experiments are done at He temperatures, the samples cannot be glued to the glass

plate, it can only rest on it. However, these very thin wafers tend to bend and lose contact

with the glass. Also, the very small force exerted by the pin when touching the sample was

enough to break it.

Thus, although we could demonstrate a proof of principle, and show that an electro-

static trap can be created in this way, we did not conduct more measurements with this

configuration.
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Figure 34: Outline of a trap produced on a thin-wafer sample, in a configuration similar to

that in Fig. 30 a). The laser was scanned through the center of the trap while the integration

took place.

4.4 FRONT-SIDE BIASED TRAPS

In collaboration with Gang Chen and Ronen Rapaport of Bell Labs, we conducted experi-

ments on an electrostatic trap which was patterned on the front side, as shown in Fig. 31b. A

semitransparent TiO disc-shaped gate was used to produce a cylindrical trap of size 20− 80

µm in diameter with a flat bottom. This geometry has the advantage that since the field is

constant almost throughout the trap, ionization takes place only at the edges. However, the

ionization is strong at the edges, thus leading to a “leaky” trap [46, 90, 131].

Since the trap size was rather small (30-80 µm), and close to the spatial resolution of

our imaging system (∼ 13 µm), in order to verify trapping, we measured the shift of the

spectral peak of the luminescence as a function of continuous pumping power. This is shown

in Fig. 35. For comparison, we also show the exciton density when the sample is biassed

uniformly, i.e., when no trapping potential is present. The exciton density is determined

from the shift divided by γ, as in Eq. (4.1).
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Figure 35: The exciton density as a function of the pump power for three different trap sizes,

and the flat potential. The temperature was 2 K. From [90].

There are two things that we can conclude from this figure. First, the traps indeed

confine the exciton gas, because the density achieved is higher in all three traps than in the

trapless case. Second, for the smaller trap the confinement is stronger, because for the same

excitation power, the exciton density is higher in a smaller trap.

The dynamics of the exciton gas can be measured in the same way as in Chapters 2

and 3, i.e., by time-resolving the luminescence at various points on the sample. Fig. 36

shows the spatial distribution of excitons in an 80-µm trap for three different times after a

2-ps excitation. The trap was biased at 6 V, which resulted in a trap of about 30 meV in

depth. As in the case of the stress trap, excitons move away from the excitation spot very

quickly, and after about 500 ns, the distribution is flat, indicating that equilibrium has been

achieved. We note that this time for the equilibration is of the same order of magnitude as

in the stress traps.

Thermal equilibrium after the first 500 ns is also supported by the time evolution of the

spectrally integrated intensity at the center of the trap, as shown in Fig. 37. Initially, the

intensity drops very fast, because excitons move away from the center. Later, however, when
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Figure 36: The exciton density as a function of spatial position for three different times.

The vertical lines indicate the boundaries of the trap. The temperature was 2 K. From [90].

the intensity distribution is flat,the time trace becomes single exponential. As we discussed

in Chapter 1, this indicates that the exciton gas has a well-defined temperature. Also, the

lifetime that we can deduce from this plot is comparable to the lifetime of a uniformly biassed

sample at the same potential, which indicates that particles do not leak out of the trap at

the boundaries and the exciton ionization is not too significant.

Cheng and Rapaport also demonstrated the possibility of dynamic modulation of this

trap at a frequency of about 100 kHz: changing the bias voltage moves excitons spectrally,

at the same time, reduces their lifetime. Thus, particles can be removed from the trap at

will [131]. The same idea has been utilized in “exciton-transistors” in the work High et al.

[15]. The maximum of the modulation speed is determined by the capacitance and resistance

of the sample, and is not related to excitonic properties, and with proper design, it can be

increased significantly.

These results show that electric means can indeed be used to trap excitons and confine

them in a small area for times up to a couple of µs. In fact, the depth of these traps is

comparable to or even exceeds that of the stress traps. However, since exciton ionization
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Figure 37: Time evolution of the spectrally integrated intensity at the center of the trap.

The temperature was 2 K. From [90].

due to the in-plane component of the electric field reduces the exciton lifetime, these traps

have a severe limitation. This might be the reason why we have not observed signatures of

quantum degeneracy in such traps.
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5.0 THE ROLE OF INTERACTION

5.1 REPULSIVE INTERACTION BETWEEN EXCITONS

The description of exciton-exciton interaction is a long-standing theoretical problem, and

based on the literature, it still seems far from being settled [9, 140, 141, 142, 143]. This is

mainly due to the fact that the bosonic commutation relation is not strictly obeyed, and

various approximations must be implemented in order to render the problem tractable. In

the case of atoms, the nuclei can be treated as infinitely heavy compared to the electrons,

and nucleus exchange can be neglected. For excitons, the picture is completely different: the

constituents, the electrons and holes, have comparable masses, and exchange must be taken

into account not only between electrons-electrons and holes-holes, but in a complete model,

even between electrons and holes.

From the experimental point of view, the calibration of the absolute exciton density is

a difficult problem: not only have we got to know the electron-hole creation accurately, but

also the rate of formation of excitons, and in the case of coupled quantum well excitons, even

the conversion rate from the direct to the indirect state. Estimates for all these processes

carry a large margin of error. In the literature, there have been attempts to calibrate the

absolute exciton density by measuring the transition rates of various excitonic levels. This

method, however, also has its limitations. First, the energy difference between two exciton

levels is, at least, in the case of GaAs quantum well excitons, of the order of a couple of meV,

which implies that THz techniques must be applied. Second, in order for this method to

reliably work, these excitonic levels must be well separated from each other, other absorbing

states, and their environment, which is not a trivial requirement [144].

On the other hand, being able to trap excitons in a harmonic potential also means that
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we have a way of studying their interactions under controlled conditions, since the exciton-

exciton interactions determine the spectral energy shifts of their luminescence. The physical

origin of the repulsive interaction comes from two sources, the Coulomb interaction between

the constituents and phase-space filling. As for the latter one, as the density is increased,

and the interparticle spacing becomes comparable to the Bohr radius, the fermionic structure

of excitons can no longer be neglected. To the Coulomb interaction, an intuitive, though

somewhat inaccurate meaning can be attached. We have seen in Chapter 1 that indirect

excitons are dipoles aligned along the growth direction, with electrons and holes residing in

different quantum wells. In the mean-field approximation, this repulsion results in an energy

shift which is proportional to the exciton density,

∆E = γnex =
4πed

ε
nex , (5.1)

where d is the dipole moment of the exciton, and can be taken as the distance between the

centers of the two quantum wells multiplied by the electric charge [9]. This is sometimes

referred to as the capacitor formula [86, 96, 131], because as excitons become aligned under

the influence of the external electric field, the relative position of electrons and holes tends

to cancel the external field, and this cancellation is proportional to the number of charges

accumulated in the two quantum wells, just as it would happen in a parallel-plate capacitor,

as shown in Fig. 38.

Figure 38: The cancellation of the external electric field due to the presence of aligned

dipoles.
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On one hand, the presence of repulsive interaction prevents the formation of biexcitons,

which, at least, when searching for BEC, would be a limiting factor. Molecule formation,

which is the analogue of biexciton formation, is a known problem in hydrogenic BEC exper-

iments, where it is overcome by polarizing the spin of H atoms: two H atoms with the same

spin cannot lower their energy by forming a molecule [132]. On the other hand, however, this

repulsion is not always advantageous, since it reduces the strength of the trapping potential.

Fig. 39 shows the profile of the trap as the excitation intensity is turned up. The laser was

defocused, so that the whole trap was illuminated. As seen in this figure, the trap becomes

shallower as the density increases.
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Figure 39: Renormalization of the trapping potential in a 100-Å double quantum well due

to exciton-exciton repulsion: the trap is flattened as the number of excitons is increased. In

this case, a defocused, continuous wave diode laser tuned to the stress-free single exciton

resonance at 796 nm was used to excite the sample.

In this chapter first we discuss experiments that we conducted in order to gain some

insight into the nature of exciton-exciton interactions, and in the second part, we consider a

simple model to explain the experimental results.
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5.2 EXPERIMENTAL

Instead of measuring the renormalization of the trap by exciting the sample by a continuous

laser beam and changing the laser power, we can take advantage of the fact that the lifetime

of the excitons is finite. If pulsed excitation is applied, the exciton population changes be-

tween pulses, simply because the recombination of particles removes them from the system.

Beyond the convenience, dynamically measuring the luminescence spectra has an experi-

mental advantage over the continuous measurement. During the excitation, free carriers

are also created, which, in turn, produce a DC photo-current. However, this photo-current

contributes to the electric field across the sample, and thus, to the energy of the indirect

excitons. Changing the excitation power changes the photo-current and the energy shift

associated with it. On the other hand, in the dynamic measurement, the photo-current and

the related energy shift are the same for all exciton densities, because the fall time of the

photo-current is much longer than the time between consecutive pulses. This means that

any energy shift in the measured luminescence is a result of exciton-exciton interaction.

Since the exciton population evolves between pulses, we can thus expect any density-

dependent effect to show a dynamic behavior. This is indeed the case, as we can see it in

Fig. 40, where we plot the luminescence intensity as a function of both space and energy,

as taken by a time-gated CCD camera. The gating time was equal to about 1/20 of the

lifetime, i.e., 200 ns for an exciton lifetime of about 4 µs. By adhering to such short gating

times, we can avoid non-physical broadening in the measured luminescence, since the exciton

population does not change by more than 5% during the integration window.

At the initial moment, excitons are located at the point of excitation, with high density.

As time goes on, their density drops both because of recombination, and because they move

away from the excitation spot, and tend to fill up the trap according to the equilibrium

distribution Eq. (3.13). (The excitation spot is smaller than the size dictated by Eq. (3.13).)

Fig. 41 shows the spectrum of the luminescence at the center of the trap integrated over an

area of radius 10 µm, as shown in Fig. 40 for three different times after the excitation. These

spectra are taken from Fig. 40, and their height is proportional to the absolute intensity. We

can clearly see both the red shift at late times and the spectral narrowing of the luminescence.
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Figure 40: Luminescence in the trap at three instants in time, after a short excitation pulse.

The red lines show the trap without renormalization. Time is measured from the beginning

of the laser pulse, and the bath temperature is 8 Kelvin. The long vertical line on the

right-most figure is the substrate luminescence excited by the very weak laser light between

pulses. The spatial integration range for the spectra in Fig. 41 is between -10 and 10 µm.

Also, the spectra are not entirely symmetric, and have a low-energy tail, which is probably

due to localized states.

In order to extract quantitative information, we applied the fitting function

f(E) = A exp

[
(E − E0)2

2c2(1 + dE)

]
, (5.2)

where we introduced d as an asymmetry factor. This function fits the spectra reasonably for

all times, and its width can be expressed analytically as

∆ = 2c
√

ln 2
√

ln 2c2d2 + 2E0d+ 2 . (5.3)

First, we will explain how the absolute exciton density can be estimated using spectra

similar to those in Fig. 41. As discussed in Chapters 1 and 3, after the exciton cloud reaches

its final temperature, the luminescence intensity can be used as a measure of the exciton

density. We have also shown that there is no reason to assume that the exciton cloud would

cool for longer than about 500 ns. Therefore, after the initial 500 ns, we can make a direct link
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Figure 41: Luminescence spectra at the center of the trap for the same conditions as in

Fig. 40. Also shown are the spectral resolution, and the fitting functions, Eq. (5.2).

between the exciton density and the luminescence blue shift, E0, in the fitting function. Such

a plot is given in Fig. 42. Initially, the dependence is double-valued, which is a consequence

of the early rise-time of the luminescence intensity in Fig. 25. Then the relationship becomes

linear over a wide density range. The linearity indicates that we are dealing with excitonic

and not free carrier luminescence, because in the latter case the intensity is proportional

to the square of the particle density [50, 133, 134]. This measurement was taken with the

photomultiplier tube, and the measurement point, the center of the trap, was defined with

the help of a small pin-hole, as discussed in Chapter 2.

If we could give a rough estimate for the number of created excitons for a given laser

pulse energy, we could deduce the repulsion coefficient in Eq. (4.1).

We have got to take into account the following factors:

1. Direct-to-indirect exciton conversion efficiency. Under the conditions that we used, it was

around 40%, which can be inferred from the relative intensities of the temporally, spatially

and spectrally integrated luminescence of the direct and indirect excitons. Obviously, this
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Figure 42: Energy shift at the center of the trap as a function of total luminescence intensity

measured at the same point. Time flows from right to left (decreasing luminescence inten-

sity). The initial curvature on the right hand side of the graph can be attributed to the

non-monotonic behavior of the intensity at early times. The conditions are the same as in

the case of Fig. 25.

number cannot be exact, for we cannot account for processes that turn direct excitons

into particles that do not radiate at the indirect energy.

2. The difference in the refractive index of He liquid/vapor and GaAs, which can be ap-

proximated as

R =
(n− 1)2

(n+ 1)2
≈ 0.29 , (5.4)

for the refractive index of GaAs at λ = 800 nm is n = 3.4 [18, 19].

3. Reflections and losses on optical elements and cryostat windows. This could be measured

simply by comparing the power of a laser source before and after it passes through the

elements in question, and it turned out to be around 60%.

4. Excitonic absorption length of quantum wells. For this we take the value from Young

et al. [136], who measured this by comparing the transmitted power of the excitation
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laser tuned to the excitonic absorption with and without quantum wells. The absorption

length for the direct exciton transition is 1.65 µm−1 [136, 137], and the energy is absorbed

in the combined thickness of the two quantum wells, which is, in the present case, 200

Å.

5. Absorption of light in the barrier. The quantum wells are separated from the outside

world by a superlattice and a 1000-Å barrier. (C.f. Fig. 6.) The superlattice is designed

to be transparent for λ > 760 nm, while the barrier has an attenuation length of about

1 µm [18, 19]. Therefore, the barrier reduces the light intensity by approx. 10%.

Putting everything together, one photon creates approximately

0.71 · 0.4 · 0.02

1.65
· 0.4 · 0.9 = 0.003

↑ ↑ ↑ ↑ ↑

Reflection conversion well− abs. optics GaAs barriers

indirect excitons on average.

With these numbers, we get an absolute exciton density of about 1.3 · 109 cm−2 for the

leftmost point in Fig. 42, which implies a value of γ ≈ 0.9 · 10−10 meV cm2. Given the large

uncertainties in the experimental estimate of the density, this value of γ is in reasonable

agreement with the theoretical predictions of γ ≈ 1.5 · 10−10 meV cm2 of [9, 140]. We note

here that Schindler and Zimmermann have recently revised this number [142, 143], claiming

that it is probably reduced by a factor of about 8 due to exciton-exciton anticorrelation.

This, however, would mean that the absolute exciton density corresponding to the same

shift should be 8 times higher. The only place where we could have missed a factor of 8

is the absorption length of the quantum wells, which, instead of 1.65 µm, should then be

around 200 nm. While this is not impossible that it is indeed 200 nm, the fact that it is so

different from the established value in [136, 137] makes it somewhat untenable.

5.3 LINE BROADENING

The interaction of excitons presents itself not only in the shift of the luminescence energy, but

also in its width: the very interaction that is responsible for the correction of the energy is

80



also responsible for the increased collision rate that, in turn, leads to an increased linewidth.

This is what would make the link between the shift and the broadening important from

the theoretical point of view, because a complete theory should be capable of predicting the

relationship of both from the same principles, without any reference to the absolute densities.

Looking back at Fig. 40, we can see that as time goes on, or as the density of the

exciton cloud drops, the luminescence line becomes sharper. In order to quantitatively

assess this behavior, we determined the spectral width as defined in Eq. (5.2), and took

the instrumental resolution into account. In principle, we could de-convolve the measured

spectrum with the instrumental resolution, which could be defined as the spectrum of a very

narrow spectral standard. Instead of doing this, we will assume that both the true spectrum

and the instrumental resolution can be described by Gaussians functions of widths σ1 and σ2,

respectively. With these, the measured spectrum would have a width of σmeas =
√
σ2

1 + σ2
2,

i.e., the true line width can be obtained as σ1 =
√
σ2
meas − σ2

2. σ2 is mainly determined by

the slit openings of the spectrometer, and in the present experiments, it was about 0.1 meV.

We plot σ1 as a function of the energy shift, or, in terms of the fit parameters, ∆ vs. E0,

where we now measure E0 from the energy at zero density, or the intercept on the energy

(vertical) axis in Fig. 42. This line is shown in Fig. 43 for a high and a low temperature case.

The dependence of the width on the shift could always be fitted by a straight line, with a

well-defined slope, i.e., the line width is given by

∆ = δ(T )(E − E(nex = 0)) + ∆0 = δ(t)E0 + ∆0 . (5.5)

In Fig. 43, for the low temperature case, the linewidth seems to come to a constant value at

very low shift. We take this constant to be the inhomogeneous broadening due to disorder.

Homogeneous broadening owing to phonon scattering is negligible at these low temperatures

[49, 138, 139]. We excluded those points from the linear fits. Apart from those points, the

straight lines belonging to different temperatures clearly have different slopes.

These slopes, δ, are summarized in Fig. 44 for a temperature range of 2-20 Kelvin.

Surprisingly, even at the lowest temperatures, the slope takes on a positive value, and by

extrapolation, we would get a value of about 0.2 for the T=0 case.
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Figure 43: Line broadening as a function of line shift for the 120-Å double quantum well at

3 K and 16 Kelvin. The errorbars were determined from the errors in the fits.
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We can qualitatively explain the behavior above if we calculate the energy shifts and

the broadening of the luminescence as a function of temperature. We shall consider only

exciton-exciton interaction. At higher temperatures, when, e.g., optical phonons are ther-

mally excited, this description would obviously break down. However, the activation energy

of optical phonons in GaAs is around 35 meV [18], or about 400 Kelvin, which is much higher

than the energy range we are interested in. According to an experimental study by Gopal

et al. [145], interaction with optical phonons should not be relevant below 50-60 Kelvin.

From the work of Rudin and Reinecke [146] we can also conclude that for a wide range of

quantum well width, the interaction with acoustic phonons results in a line-broadening of

about 1-3 µeV/K. This is also consistent with the findings of Feldmann et al. [49]. Nor do

we consider scattering with impurities and quantum well width fluctuations, because as we

deduced in Eq. (2.19), the characteristic scattering time for these quantum wells is around

10 ps, which would result in a broadening of about 0.06 meV, which is much smaller than

the one measured here.

We also have to point out that the blue shift that we measure could, in principle, also be

related to a change in the binding energy of excitons. Indeed, Aouani et al. [61] deduced how

the presence of an electron-hole plasma affects the binding energy. However, if the change in

the binding energy were relevant in our case, then it would also affect the exciton lifetime,

and we would not measure a single exponential decay as in Fig. 25. Therefore, we can rule

out this possibility.

5.4 THEORETICAL CONSIDERATIONS

To calculate the scattering rate for exciton-exciton interaction, we denote the momentum of

the in-coming particles by ~k1 and ~k2, while that of the out-going particles by ~k3 and ~k4. We

will assume that the two-body potential depends on the absolute value of the momentum

transfer, |~k1−~k3|. (Momentum conservation ensures that the momentum transfer for particles
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2 and 4 is the same.) Then the two-body interaction takes the form

U =
1

L2

∑
~k1,~k2,~k3,~k4

U~k1,~k2,~k3,~k4a
†
~k4
a†~k3
a~k2a~k1 =

1

L2

∑
~k1,~k2,~k3,~k4

U(|~k1 − ~k3|)a†~k4a
†
~k3
a~k2a~k1 . (5.6)

If we assume that the state of the system without interaction is adequately described by

the Fock vector

|i〉 = | . . . N~k1
. . . N~k2

. . . N~k3
. . . N~k4

. . . 〉 , (5.7)

then treating the interaction as a perturbation leads to the renormalization of the eigenen-

ergies [59]. In Eq. (5.7) N~k1
is the number of particles in the state discribed by the wave

vector ~k1. In first order, the interaction potential leads to the perturbation energy

∆(1) = 〈i|U |i〉 , (5.8)

while the next order is

∆(2) = P

(∑
m

|〈m|U |i〉|2

Ei − Em

)
, (5.9)

and

Γ(2) = π
∑
m

|〈m|U |i〉|2δ(Ei − Em) , (5.10)

where P stands for the principal value, and m runs through the intermediate states. ∆(1)

and ∆(2) are the real energy shifts, while Γ(2) is the imaginary part of the energy, which leads

to line broadening.

In all three cases, we have to evaluate matrix elements of the form 〈m|U |i〉. Moreover,

we are interested in the shift and broadening of one particular exciton state, which we will

denote by ~k1. Since this is our initial or final state, we will not integrate over it.

Taking the Fock state in Eq. (5.7), the action of a†~k4
a†~k3
a~k2a~k1 on this state is

a†~k4
a†~k3
a~k2a~k1 | . . . N~k1

. . . N~k2
. . . N~k3

. . . N~k4
. . . 〉 (5.11)

=
√
N~k1

√
N~k2

√
1 +N~k3

√
1 +N~k4

| . . . N~k1
− 1 . . . N~k2

− 1 . . . N~k3
+ 1 . . . N~k4

+ 1 . . . 〉 ,

except for the case when ~k1 = ~k3 or ~k1 = ~k4. Since this state is multiplied by 〈m|, and the

Fock states are orthonormal, 〈m|a†~k4a
†
~k3
a~k2a~k1|i〉 6= 0 only if

〈m| = 〈. . . N~k1
− 1 . . . N~k2

− 1 . . . N~k3
+ 1 . . . N~k4

+ 1 . . . | , (5.12)
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i.e., the action of a†~k4
a†~k3
a~k2a~k1 on |i〉 fixes 〈m|.

When calculating the perturbed energies, for the sake of simplicity, we will assume a

parabolic and isotropic dispersion relation, thus the occupation numbers f(~k) = N~k can be

simplified as f(~k) = f(k2). We will also use the abbreviation g(k) = 1 + f(k).

Let us begin with the calculation of the first order shift. In this case we do not sum over

the intermediate states, and we also have the restriction 〈m| = 〈i|. This means that the

creation and destruction operators must be paired in the potential, namely, either ~k1 = ~k3

and ~k2 = ~k4, or ~k1 = ~k4 and ~k2 = ~k3. We can also drop the condition on momentum

conservation, for ~k1 + ~k2 = ~k3 + ~k4 is automatically satisfied in this case. Finally, when the

creation operators act on a state, a particle with that particular wave vector has already

been removed, i.e., the prefactor of the creation operator is not
√

1 +N , but simply
√
N .

Therefore, the first order shift in the total energy can be calculated as

∆
(1)
~k1

=
1

L2

∑
~k2,~k3,~k4

U(|~k1 − ~k3|)〈i|a†~k4a
†
~k3
a~k2a~k1|i〉

=
1

L2

∑
~k2,~k3,~k4

U(|~k1 − ~k3|)
√
N~k1

√
N~k2

√
N~k3

√
N~k4

(
δ~k1,~k3δ~k2,~k4 + δ~k1,~k4δ~k2,~k3

)
=

1

L2

(
L

2π

)2

N~k1

{
U(0)

∫
d~k2N~k2

+

∫
d~k2N~k2

U(|~k1 − ~k2|)
}

=
N~k1

4π2

{
U(0)N +

∫
d~k2N~k2

U(|~k1 − ~k2|)
}

(5.13)

This is the total energy change in first order, where the second term is the bosonic

exchange term. If we want to calculate the shift in the luminescence energy, we need the

energy change per particle. Therefore, the shift in the emission energy is

∆Ek1 =
∆

(1)
k1

Nk1

= U(0)n+
1

4π2

∫
d~k2N~k2

U(|~k1 − ~k2|) , (5.14)

which is linear in the total particle density, n. We also notice that this correction to the

energy is independent of the temperature, if the scattering potential is independent of the

momentum transfer, |~k1 − ~k2|, in which case it reduces to

∆Ek1 = 2U(0)n . (5.15)
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We now calculate the line broadening given by Eq. (5.10). With the assumption on the

dispersion relation, the delta function in energy can be replaced by a delta function in the

square of the absolute value of the vectors. Hence, the integrand in Eq. (5.10) takes on the

form

S(~k1, ~k2, ~k3, ~k4) =
U2(|~k1 − ~k3|)

L4

(
L

2π

)4

δ(~k1 + ~k2 − ~k3 − ~k4)δ(k2
1 + k2

2 − k2
3 − k2

4)

×f(k2
1)f(k2

2)g(k2
3)g(k2

4) . (5.16)

First, we take advantage of the delta function of the momentum to eliminate ~k4, thus an

integration over ~k4 results in

∫
d~k4S(~k1, ~k2, ~k3, ~k4) = U2(|~k1 − ~k3|)

(
1

2π

)4

δ(k2
1 + k2

2 − k2
3 − |~k1 + ~k2 − ~k3|2)

×f(k2
1)f(k2

2)g(k2
3)g(|~k1 + ~k2 − ~k3|2) . (5.17)

We now define ~k′ = ~k1 − ~k3, i.e., by denoting the angle between ~k2 and ~k′ by ϑ2, we get

|~k1 + ~k2 − ~k3|2 = |~k′ + ~k2|2 = k′2 + k2
2 + 2k′k2 cosϑ2 . (5.18)

We define ϑ3 in a similar fashion, as the angle between ~k1 and ~k3. Thus, an integration over

~k2 yields

∫
d~k2d~k4S(~k1, ~k2, ~k3, ~k4) = U2(k′)

(
1

2π

)4 ∫
d~k2δ(k

2
1 + k2

2 − k2
3 − |~k′ + ~k2|2)

×f(k2
1)f(k2

2)g(k2
3)g(|~k′ + ~k2|2)

= U2(k′)

(
1

2π

)4 ∫
k2dk2dϑ2δ(k

2
1 − k2

3 − k′2 − 2k′k2 cosϑ2)

×f(k2
1)f(k2

2)g(k2
3)g(|~k′ + ~k2|2) .

We integrate over ϑ2 first to eliminate the Dirac delta by making use of the identity∫
dy h(y)δ(l(y)) =

∑
i

h(yi)

|l′(yi)|
, (5.19)
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where the summation runs over the roots of l(y). Substituting l(ϑ2) = k2
1 − k2

3 − k′2 −

2k′k2 cosϑ2, and using sin(cos−1(x)) = ±
√

1− x2, we arrive at∫ 2π

0

dϑ2δ(k
2
1 − k2

3 − k′2 − 2k′k2 cosϑ2) =
2

2k′k2

√
1−

(
k2
1−k2

3−k′2

2k′k2

)2
(5.20)

where the factor of 2 comes from the summation over the two roots of the cosine. When

evaluating the Dirac delta, we also need to guarantee that we have roots; this gives a condition

on the length of ~k2, because we demand

|k2
1 − k2

3 − k′2| < 2k′k2 , (5.21)

which, after solving for k2, can be cast as

k2 > max

(
k2

1 − k2
3 − k′2

2k′
,
k2

3 − k2
1 + k′2

2k′

)
= Kmin . (5.22)

Thus the integration over ~k2 results in∫
d~k2d~k4S(~k1, ~k2, ~k3, ~k4) =

(
1

2π

)4

U2(|~k1 − ~k3|2)

∫ ∞
Kmin

dk2
f(k2

1)f(k2
2)g(k2

3)g(k2
1 + k2

2 − k2
3)

k′
√

1−
(
k2
1−k2

3−k′2

2k2k′

)2
.(5.23)

Since we still need to integrate over ~k3, the scattering integral becomes

S(~k1) =

(
1

2π

)4 ∫ 2π

0

dϑ3

∫ ∞
0

k3dk3U
2(|~k1 − ~k3|)

∫ ∞
Kmin

dk2f(k2
1)f(k2

2)g(k2
3)

× g(k2
1 + k2

2 − k2
3)

k′
√

1− k2
3(k1 cosϑ3−k3)2

k2
2(k2

1+k2
3−2k1k3 cosϑ3)

. (5.24)

Assuming that the distribution function is classical, i.e., g(k2) can be replaced by 1, leads

to

Γ
(2)
~k1,out

=
2m

h̄2

1

16π3

∫ 2π

0

dϑ3

∫ ∞
0

k3dk3U
2(|~k1 − ~k3|)

∫ ∞
Kmin

dk2
f(k2

1)f(k2
2)

k′
√

1− k2
3(k1 cosϑ3−k3)2

k2
2(k2

1+k2
3−2k1k3 cosϑ3)

.

(5.25)

This expression gives the rate of scattering out of state ~k1, since the initial state was ~k1.

In order to calculate the total scattering rate, we have to account for processes that have ~k1

as their final state. Instead of calculating the integral for the scattering in, we can note that
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in thermal equilibrium, the two scattering rates should be equal to each other, and thus the

total scattering rate is then obtained as the sum of these two, i.e.,

Γ
(2)
1 = 2Γ

(2)
~k1,out

. (5.26)

The second order shift is given by Eq. (5.9). The only differences between this term

and Eq. (5.10) are the energy denominator and the absence of the restriction on energy

conservation. (In fact, the energy denominator plays a role very similar to that of the Dirac

delta.) The energy denominator can be obtained if we reckon that, with respect to the initial

state |i〉, in the intermediate state 〈m| we have one more particle at momentum ~k3 and ~k4,

and one less particle at momentum ~k1 and ~k2, respectively. Therefore,

Ei − Em =
h̄2

2m
(k2

1 + k2
2 − k2

3 − k2
4) . (5.27)

Using this expression for the denominator, ∆
(2)
k1

can be calculated in the same way as

Γ
(2)
k1

. First, we define ~k′ = ~k1 − ~k3, and integrate over ~k4. Hence,

∆
(2)
k1

=
2m

h̄2

(
1

2π

)4 ∫
d~k3

∫
d~k2

∫
d~k4

U2(|~k1 − ~k3|)f(k2
1)f(k2

2)

k2
1 + k2

2 − k2
3 − k2

4

δ(~k1 + ~k2 − ~k3 − ~k4)

=
2m

h̄2

(
1

2π

)4 ∫
d~k3

∫
d~k2

U2(|~k1 − ~k3|)f(k2
1)f(k2

2)

k2
1 + k2

2 − k2
3 − |~k′ + ~k2|2

=
2m

h̄2

(
1

2π

)4 ∫
d~k3

∫
k2dk2

∫
dϑ2

U2(|~k1 − ~k3|)f(k2
1)f(k2

2)

k2
1 − k2

3 − k′2 − 2k′k2 cosϑ2

(5.28)

where ϑ2 is the angle between ~k′ and ~k2

We perform the integration over ϑ2 first. The integral has the form∫ 2π

0

dϑ

A+B cosϑ
, (5.29)

which can be evaluated by the method of residues. First, we introduce the new variable

z = eiθ, and integrate on the unit circle as∫ 2π

0

dθ

A+B cos θ
=

∮
|z|=1

dz

i(zA+Bz2/2−B/2)
=

∮
|z|=1

2dz

iB(z − z1)(z − z2)
, (5.30)
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Figure 45: The location of the two poles for |A| > B (left), and for |A| < B (right). Also

shown is the integration contour for both cases.

with

z1 = i

√
A2 −B2 − A

B
and z2 = −i

√
A2 −B2 + A

B
(5.31)

In the case |A| > B, the integrand has a pole at z1 and another one at z2. Only z1 is

inside the unit circle, and thus the integral is

∮
|z|=1

1

iB/2(z − z1)(z − z2)
= 2πiResz=z1

2

iB(z − z1)(z − z2)
=

4π

B(z2 − z1)
=

2π√
A2 −B2

.

(5.32)

Obviously, if A < 0, then the integral is negative, while for A > 0 it is positive.

When, on the other hand, |A| < B, the poles are located at z1 = −(
√
B2 − A2 − iA)/B

and z2 = (
√
B2 − A2− iA)/B, both on the unit circle. We can, therefore, cut them out, and

integrate along a small arc of radius ε at the two poles, and then take the ε → 0 limit, as

shown in Fig. 45. For any ε > 0, the integral evaluates to zero, for there are no singularities

enclosed. Therefore, in the case |A| < B, the integral is zero. It should be emphasized

that cutting out the singularities on the unit circle is nothing else but the meaning of the

principal value integral in Eq. (5.9).

The condition A > B translates to

k2
1 − k2

3 − k′2

2k′
> k2 (5.33)
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while −A > B is equivalent to
k2

3 + k′2 − k2
1

2k′
> k2 . (5.34)

Substituting the value of A and B into Eq. (5.28) gives

∆
(2)
k1

=
2m

h̄2

f(k2
1)

8π3

∫
d~k3U

2(|~k1 − ~k3|)
∫ Kmin

0

dk2
f(k2

2)sgn(k2
1 − k2

3 − k′2)

k′
√

k2
3(k1 cosϑ3−k3)2

k2
2(k2

1+k2
3−2k1k3 cosϑ3)

− 1
, (5.35)

where sgn(x) is the sign of x, and Kmin was defined in Eq. (5.22).

The first and second order shifts and the broadening in Eqs. (5.14), (5.25), (5.35) do not

have a temperature dependence for U=constant, as can be shown on dimensional grounds.

5.4.1 Numerical considerations

The integrals in Eqs. (5.14), (5.25), (5.35) do not lend themselves to analytical evaluation;

therefore, we have to calculate them numerically. We then must define infinity and the bin

size. It seems plausible to choose the maximum length of the wave vector, kmax, to coincide

with ten times the thermal energy, in which case, the occupation number drops to about

10−5 at the upper bound, and to choose the minimum length of the wave vector, kmin, to be

equal to the inverse of the size of the system. 1 cm for the size is a good order-of-magnitude

definition, given that in most cases the wafer was about 5 mm by 5 mm.

The functions under the integrals change rapidly in the vicinity of the limit, Kmin. There-

fore, we can cut out this point, and integrate between Kmin ± kmin and the other limit. In

order to account for the rapid change, we adjust the mesh size, and sum over intervals

of kmin, (1 + ε)kmin, (1 + ε)2kmin, (1 + ε)3kmin . . . as we move farther from the singularity.

In this way we add numbers that are of the same order of magnitude. Once the integra-

tion over k2 is performed, the other three variables are regular, and we do not expect any

numerical difficulties, thus we can take an equidistant mesh in the angles (in all cases di-

viding the total angle by a number between 100 and 200 worked), and a mesh increasing as

kmin, (1+ε)kmin, (1+ε)2kmin, (1+ε)3kmin . . . for k3. This means that 1+ε ≈ exp(ln(kmax/n)),

where n is the number of mesh points.

In order to ascertain that the numerical results are consistent, we compared the values

of the integrals as the number of mesh points is increased by a factor of 10. The convergence
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Figure 46: The convergence of the two integrals in Eqs. (5.25),(5.35) as the number of mesh

points is increased. The angular resolution was fixed at π/50, and the units are
2m

h̄2

ũ2

8π3
nex.

at T = 2 K is shown in Fig. 46. The division in angle was 100. We see that at around 250,

δ2 becomes flat, and even around 400 divisions, the deviation of γ2 from the limiting value

is less than a percent.

5.4.2 Numerical results

First we define the functions δ1(~k1, T ), δ2(~k1, T ) and γ2(~k1, T ) as

δ1(~k1, T ) =

∫
d~k2N~k2

|~k1 − ~k2|η , (5.36)

δ2(~k1, T ) =

∫ 2π

0

dϑ3

∫ ∞
0

k3dk3|~k1 − ~k3|2η
∫ Kmin

0

dk2
f(k2

2)sgn(k2
1 − k2

3 − k′2)

k′
√

k2
3(k1 cosϑ3−k3)2

k2
2(k2

1+k2
3−2k1k3 cosϑ3)

− 1
, (5.37)

and

γ2(~k1, T ) =

∫ 2π

0

dϑ3

∫ ∞
0

k3dk3|~k1 − ~k3|2η
∫ ∞
Kmin

dk2
f(k2

1)f(k2
2)

k′
√

1− k2
3(k1 cosϑ3−k3)2

k2
2(k2

1+k2
3−2k1k3 cosϑ3)

, (5.38)
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where the scattering potential is equal to U(k) = ũkη. With these, the shifts and broadening

are given by

∆1 =
ũ

4π2
δ1(~k1, T ) , (5.39)

∆(2) =
2m

h̄2

ũ2

8π3
δ2(~k1, T ) , (5.40)

Γ(2) =
2m

h̄2

ũ2

8π3
γ2(~k1, T ) . (5.41)

We still need to specify the scattering potentials. We will study the case U ∼
√
k, be-

cause, based on the work of Schindler and Zimmermann, this dependence seems to be physi-

cally justified [143]. The theory for the scattering potential is based on a Heitler-London-type

symmetrized two-exciton wavefunction. As they pointed out, a standard Hartree-Fock ap-

proach, which uses an incorrect normalization of the wavefunctions, would overestimate the

strength of the scattering potential. Having obtained the two-body interaction, they use it

in a T-matrix, which accounts for the self-energy and the bosonic direct and exchange terms.

This calculation gives U(k) ∼
√
k, which in real space would give the expected U(r) ∼ 1/r3

behavior for large r. The scattering amplitude as a function of momentum with a fit to

∼
√
k is shown in Fig. 47.

In their many-body theory, Schindler and Zimmermann deduce the temperature depen-

dence of the shift and broadening of the perturbation energies, which is shown in Fig.48 for

the case of a 120-Å double quantum well. The figure gives the relative weight of the real

and imaginary parts, in units of the energy given by the capacitor formula in Eq. (5.1). It

is important to point out that, since this theory gives only a correction to capacitor formula

in the form of a multiplicative factor, both the energy shift and the broadening are linear in

the exciton density.

Using these results, we can plot the ratio of the broadening to the shift (essentially the

slope in Fig.44), which is shown in Fig.49. As can be seen, the instead of increasing, the

slope decreases as the temperature increases. We will return to the possible reasons behind

this.

Having discussed the theoretical results in [143], we now turn to the simple second-order

perturbation theory outline at the beginning of this section. First, we plot δ2(~k1 → 0, T )
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Figure 47: Real part of the total scattering amplitude as a function of momentum (solid red

line). Also shown is a fit to
√
k (green dashed line). From [143].

and γ2(~k1 → 0, T ) in Fig. 50 as a function of temperature. The coefficient in the real part,

δ2(T ), is always negative. We can understand this, if we recall that that integral depends on

the sign of the quantity k1 cosϑ3− k3, which is almost always negative, therefore, we expect

that the integral is negative.

In Eq. (5.41) ũ and U(0) play the role of the fitting parameters. We see that the broad-

ening is linear in the density, as is the blue shift. Thus, with a proper ũ and U(0), the

broadening vs. blue shift can be fitted, and it gives a linear relation, as in Fig. 43. However,

what would give a stricter condition for ũ and U(0) is the temperature dependence of the

broadening vs. blue shift curves in Fig. 44.

In the next figure, Fig. 51, we plot the ratio of Γ2(0, T ) and ∆1(0, T ) + ∆(2)(0, T ), given

by

δ(T ) =
Γ(2)

∆1 + ∆(2)
=

2m
h̄2

ũ
2π
γ2(~k1, T )

δ1(~k1, T ) + 2m
h̄2

ũ
2π
δ2(~k1, T )

. (5.42)

The value of 2m
h̄2

ũ
2π

for the best fit is 1.3 · 10−4
√

cm, which corresponds to ũ = 1.55 · 10−15

meVcm5/2. While the trend is obtained correctly, the theory does not fit the experimental
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Figure 48: Real (solid red line) and imaginary (dashed blue line) part of the energy correction

as a function of temperature. The unit of the energy is
4πed

ε
nex, where nex is the exciton

density. From [143].

points accurately. We cannot increase the slope of the curve any further by making ũ larger,

because δ1 does not depend on ũ, but the second factor in the denominator does, and it is

negative, which means that for large ũ the denominator switches sign. In other words, the

slope of the curve in Fig. 51 will become negative as we pass through a singularity when

we increase ũ. This value of ũ is about 10 times larger than the value of Schindler and

Zimmermann, ũ = 1.5 · 10−16 meVcm5/2.

As we have seen above, the full many-body theory fails to account for the increasing slope,

and the simple second-order theory gives too small an interaction potential. One possible

reason is that in both cases, the handling of the integration cut-off is somewhat arbitrary.

For the broadening it is not necessarily a problem, because in Eq. (5.25), the integration is

between Kmin and ∞, but the integrand is weighed by the occupation number f(k2
2), which

very rapidly tends to zero. Therefore, changing the upper limit of the integral to 10kBT

from∞ does not make any measurable difference. In other words, a reasonable upper bound

can be assigned to the value of k3, because the integration over k2 automatically provides
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Figure 49: Slope of the broadening vs. shift curves as a function of temperature, as predicted

by the theory in [143].

with a cut-off.

However, for the second order shift in Eq. (5.28) or in Eq. (5.35) does not have such a

cut-off. If we fix the value of ~k1 and ~k2 in Eq. (5.28), the integrand in ~k3 is proportional

to U2(|~k1 − ~k3|)/k2
3, if k3 is large compared to k1 and k2. This, in turn, results in an

integrand in k3, which is proportional to U2(|~k1 − ~k3|)/k3, because the infinitesimal element

~k3 = 2πk3 dk3. For U(|~k1 − ~k3|) =constant, the integral will have a logarithmic singularity,

while for U(|~k1 − ~k3|) ∼ |~k1 − ~k3|η, the integral is proportional to k2η
3 , i.e., very strongly

depends on the exact value of the upper bound. In physical terms, the difference between

the second order shift and the broadening is that for the broadening, we have to satisfy

energy conservation (c.f. Eq. (5.10), while for the the shift, the Dirac delta is replaced by

the factor (Ei − Ef )−1, which allows processes that violate energy conservation.

With this simple theory we could qualitatively explain why the luminescence line be-

comes broader as the density is increased, and in particular, it also demonstrates that the

broadening coefficient does not tend to zero as the temperature diminishes, however, it does

not give very good fits over all temperatures. This is the result of the simple premises; if
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√
k.

The units are arbitrary.

we could derive the scattering amplitude U(~k1, ~k2, ~k3, ~k4) from first principles, and applied

it instead of the simplistic approach that we discussed, the theory would be more accurate

[147, 148]. As we pointed out above, in order for this perturbation approach to work, a

cut-off must be defined, and if the proper potential provides us with this physical cut-off,

then we expect better results. Also, we have treated only second order corrections, or, in

other words, we summed over the simple loops only, and it might very well be the case

that higher-order diagrams give significant corrections. Moreover, one might argue that the

treatment of the temperature is not quite justified in this way, and that we should not use

a zero-temperature perturbation theory for a finite-temperature system. We could then use

a finite-temperature Green function method [149]. However, this is beyond the scope of this

thesis.
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Figure 51: Line-broadening as a function of temperature as predicted by the theory above.

The solid green is the theoretical dependence with U ∼
√
k, while the red points are the

experimental data from Fig. 44. The dashed curve is the theoretical dependence with U ∼ k.
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6.0 QUANTUM WELL EXCITONS AT HIGH STRESS

In the introduction we pointed out that in these double quantum wells, the ground state of

the excitons is dark (i.e., not coupled to light), and if a condensate is formed, it is expected to

lead to a dark or reduced intensity region, where the ground state wave function is localized

[30]. In this chapter we present preliminary data that seem to support the interpretation of

a dark condensate.

6.1 BROKEN-SYMMETRY LUMINESCENCE AT HIGH STRESS

In this chapter, we will describe and analyze the excitonic luminescence at high stress,

when the trapping potential is steep. We can also recall from the introduction that the

threshold density for BEC, at least in the non-interacting case, is inversely proportional

to the spring constant of the potential. Therefore, a steep trap favors a lower excitation

density. In all experiments discussed here, we used a 120-Å double quantum well; however,

these phenomena have been observed in 100-Å and 140-Å samples as well.

As the stressing force is increased, the depth of the trap increases, while its lateral

size does not change considerably. This means that the trap becomes steeper and steeper.

However, the depth of the trap cannot be increased indefinitely, and at a certain stress value,

a sudden change occurs in the nature of the luminescence. This is shown in Fig. 52. When

the stress is released, the luminescence recovers its original profile.

The spatial distribution at high stress has a four-fold symmetry in the diamond-shaped

central region, and a two-fold symmetry in the two distinct lobes. The two-fold symmetry

is already present in the low-stress case, because the luminescence profile is narrower along
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Figure 52: The profile of the trapping potential through its center at low stress (top left)

and the corresponding spatial distribution (bottom left). On the right a similar profile and

spatial distribution are shown for high stress. The small arrows indicate the direction of the

[110] crystal axis.
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the [110] crystal axis: the trapping potential seems to be stronger in one direction than in

the one perpendicular to it. The breaking of the symmetry is not related to an imaging

problem in the system, because if the sample is rotated along the [001] axis by a certain

amount, the image of the spatial distribution is rotated in the same fashion. The strong

axis of the trap is always perpendicular to the [110] crystal axis. One explanation of the

two-fold symmetry might be that for technical reasons, the growth direction is not strictly

parallel to the [001] crystal axis, but tilted by about 1◦ [88]. This is done on purpose, so

that during the growth process there is a preferred orientation of the Ga/As atoms being

deposited, because the atoms land on a set of terraces of planes perpendicular to [001]. If

before the growth process the crystal is cleaved strictly perpendicular to [001], the atomic

layers cannot assume an ordered state and the quality of the quantum wells will be poor,

with large well-width fluctuations.

6.2 POSSIBLE REASONS FOR THE REDUCED LUMINESCENCE

INTENSITY

The fact that at a particular point in space very reduced or no luminescence can be detected,

does not necessarily mean that we have produced an excitonic condensate. Therefore, we

have to inspect all possibilities carefully.

From the operational point of view, there are at least four possibilities that would explain

the reduced luminescence intensity.

1. The first is that for some reason, not related to BEC, photon emission is inhibited at the

place of high stress. Such could be a “break-down” of the crystal, i.e., if the deformation is

so high that the crystal structure and symmetry completely changes and photon emission

becomes prohibited.

2. The second is that the region of diminished luminescence acts as a sink for excitons, in

which they disappear without a trace. This could be a very deep potential well, into

which particles can fall. (In order to refute this scenario, we do not have to specify what

would create such a deep potential well.)
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3. The third possibility is that this region acts as a potential barrier, which the particles

cannot scale, but flow around it.

4. And finally, this could be a puddle of dark excitons, either condensed into their ground

state or occupying thermally excited states.

In the following, we will discuss the experiments we have conducted to confirm or refute

the various possibilities. These are not all imaginable possibilities, and in order to prove

that we have a BEC of excitons, further tests must be conducted. At this point, we can only

rule out the first 3 options, but we do not have an unequivocal evidence for excitonic BEC,

which would be the subject of future work.

6.2.1 Why not a structural change?

The first option can be ruled out by noting three features of the luminescence. The first is

that any change in the crystal symmetry should be abrupt: the crystal either possesses a

particular symmetry or it does not, but one would not expect a state in-between. Therefore,

the intensity distribution should have a sharp cut-off at the boundary. But according to

Fig. 53, the transition is not sharp.

We can also point out that the size of the reduced luminescence region depends on the

excitation intensity, as it can be seen in Fig. 53. The only variable is the excitation power,

all other parameters are kept constant. In order to exclude any stray light, the luminescence

intensity was integrated between 1200 and 7900 ns after the beginning of the laser pulse (1000

ns long with a repetition period of 8000 ns), and a narrow band band-pass filter with a center

wavelength of 820 nm and a full width of 10 nm was placed in front of the spectrometer [153].

The bias voltage was set to a value that resulted in an indirect exciton wavelength of 820 nm.

The gating of the CCD removes the main laser pulse from the signal, while the band-pass

filter prevents any background light from reaching the detector. As we can see in this figure,

as the excitation intensity is reduced, the gap between the two luminescence peaks closes,

and at the lowest power, it completely disappears. This, again, does not support the notion

of any structural change in the crystal.

Finally, according to Fig. 54, the size of the hole depends on the applied external electric
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Figure 53: The dependence of the size of the reduced luminescence region on the excitation

intensity. The spatial profiles are taken along a horizontal line across the center of the trap.

All intensities are normalized to 1 at their respective maximum.

potential. The straight line fit through the maximum of the profiles has a slope different from

infinity, which means that the size of the hole increases with the electric field. Keeping in

mind that with increasing external potential the lifetime of excitons increases (C.f. Fig. 9),

this also indicates that the more particles we have in the trap, the bigger the hole grows.

6.2.2 Why not a sink of particles?

This possibility is the easiest to rule out, if we observe that a sink takes particles out of

the system, and therefore, it reduces the lifetime as deduced from the time dependence of

the luminescence intensity. We therefore conducted a measurement in which excitons were

created on the high side of the stress well, and the time evolution of the luminescence was

measured in two cases: once when the stress was high enough to produce the black hole,

and once when the stress was reduced to a value just before the appearance of the black

hole, but all other conditions, such as excitation power and wavelength, temperature and
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Figure 54: The dependence of the size of the reduced luminescence region on the applied

electric field. The intensity is integrated spectrally over a range of about 7.5 meV. Also

shown is a straight line fit through the maximum of the profiles.

bias voltage were kept the same. Contrary to the expected behavior of a sink, the lifetime

slightly increases as the stress is increased beyond the appearance of the black hole, as shown

in Fig. 55. This would be consistent with the particles being in a dark state, and slowly

converting into bright ones.

Also, when particles are created on the side of the trap, they proceed downwards, but

when they reach the vicinity of the hole, they seem to flow around it, as shown in the

time evolution of the luminescence in Fig. 56. In this case, the narrow-band filter was not

used, and the substrate luminescence at the laser spot can be seen as a small, bright spot.

Interestingly, even though excitons are created on the right hand side of the line separating

the two lobes, they flow around or through the center, and appear on the left hand side.

Finally, bright excitons can be created even when the laser is moved to the center of the

trap, where the hole is. They do not appear till they cover some distance from the center.

All this indicates that we are dealing with a type of barrier at the center, and not a sink.
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Figure 55: Comparison of the lifetime of excitons in two different cases: once with moderate

stress, when the trap is uniform (solid red circles), and once with high stress, when the trap

shows a black hole at the center (open blue circles).
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Figure 56: Time sequence of bright excitons flowing around the hole. The spontaneous light

of the laser was not filtered spectrally, and it shows up as a small, bright spot on the pictures.
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6.2.3 Why not a structural barrier?

The case of a structural barrier can be discarded on the same ground as that of structural

change in the symmetry: the size shows a very clear power dependence, which indicates that

the size is related to the very particles that are created by the light.

At this point, we are left with the fourth possibility, namely, that dark particles of some

kind play a role.

6.2.4 Power dependence and temperature dependence

We also investigated the temperature and power dependence of the reduced luminescence

region. By changing the temperature, we could introduce changes in the applied stress, for

the thermal expansion coefficients of the various parts in our apparatus can be different,

resulting in a different thermal expansion as the temperature is changed. To avoid this, we

re-applied the stress after changing the temperature. In order to produce the same stress at

a different temperature, we measured the compression of the spring from the point when the

pin touched down on the sample. (This point can easily be identified, because both the pin

and the substrate are conducting, and we only need to prove that we have electrical contact

between two points.) In this particular case, the compression was 60 µm, although, without

the knowledge of the Hooke constant of the spring, it is only a reference number, indicating

that we have the same external stress.

Fig. 57 shows how the character of the reduced luminescence region depends on tempera-

ture. The pulsed diode laser is tuned to the direct resonance at 808 nm, and the luminescence

is integrated over time, except for the period when the laser pulse is on. Spectral filtering

is applied as well. As seen, at high temperatures, the luminescence originates from a single

region, and as the temperature is lowered, two lobes develop. At the same time, the differ-

ence between the intensity minimum and maxima along either a vertical or a horizontal cut

becomes deeper.

The size of the hole also depends on the excitation power, which, again, points to a

underlying reason different from a structural transition. This is shown in Fig. 58 where the

temperature was fixed at 2 K, and the bias of the diode laser tuned to the direct exciton
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Figure 57: The temperature dependence of the luminescence when the applied stress is high.

The laser is gated and all light outside of the range of interest is spectrally filtered. The

excitation power is 400 µW.

resonance at 808 nm was turned up to increase the excitation power.

On one hand, at high temperatures the modulation decreases, while on the other hand,

increasing the pump power develops higher modulation. We can, therefore, try to find the

critical power for each temperature at which the modulation in the intensity distribution

appears. The results for two fixed stresses are summarized in Fig. 59. At each temperature

and stress, the pump power was increased till an intensity dip appeared at the center of the

luminescence. The excitation was continuous, except for a short time when the integration

was done. The error bars were deduced as the difference between the highest power without

the dip and the lowest power with the dip. Since this definition is subjective to some degree,

these are only indicative values.

When interpreting the results, we have to keep in mind that, as the temperature is

increased, the lifetime of excitons becomes longer (C.f. Fig. 11.). Since here we have an

almost continuous excitation, this also means that at higher temperatures we have more

particles for the same pump power, for in the steady state, the radiative recombination keeps

106



245 µW

200 µm

100 µW 50 µW

25 µW 12 µW 6 µW

3 µW 1.5 µW 0.5 µW

(a)

-500 -400 -300 -200 -100  0  100  200  300  400  500

In
te

ns
ity

 [a
.u

.]

Position [µm]

245 µW

100 µW

50 µW

25 µW

12 µW

6 µW

3 µW

1.5 µW

0.5 µW

(b)

Figure 58: The power dependence of the luminescence when the applied stress is high.

The laser is gated and all light outside of the range of interest is spectrally filtered. The

temperature is 2 K. a) shows the direct images, while the profiles in b) were taken along a

horizontal line through the center of the trap.
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Figure 60: Intensity distribution of exciton luminescence when the polarizer is at −45◦ (left)

and +45◦ with respect to the vertical direction. The small arrows show the orientation of

the polarizer. The laser is gated and all light outside of the range of interest is spectrally

filtered. The excitation power is 430 µW.

balance with the pumping. Denoting the generation term by G, the differential equation for

the exciton population is

0 =
∂n

∂t
= − n

τ(T )
+G , (6.1)

i.e., n = Gτ(T ). Assuming that the lifetime is linear in the temperature as in Eq. (1.32)

and in Fig. 11, we can adjust the number of particles accordingly. This adjustment is also

shown in Fig. 59. For comparison, we also plot
√
n, which, according to Eq. (1.5), would be

the expected dependence in the non-interacting case.

6.2.5 Polarization of the luminescence

In Fig. 60 we show the intensity distribution for two settings of a polarizer in front of the

spectrometer. These two distributions, taken at an angle of −π/4 and +π/4 with respect

to the vertical, clearly show dependence on polarization, for in one case (left hand side) the

intensity maximum is located at the top-right and bottom-left directions, while in the other

(right hand side), they are flipped to the other side.
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Figure 61: Intensity of a non-polarized white light source as a function of the polarizer angle.

When interpreting these intensity plots, we have to be more careful, though, because the

spectrometer contains a diffraction grating, therefore, it acts as a polarizer itself [154]. This

means that we have to adjust the intensities accordingly, where the normalization function

can be obtained by measuring the intensity of a non-polarized light source, as the polarizer is

turned. This is shown in Fig. 61. It is clear that the spectrometer has a strong polarization

dependence, and that we have to normalize the measured intensities with this function.

With this normalization, the intensities of points A and B in Fig. 60 are plotted as the

polarizer is turned over an angle of π. In Fig. 62, we can see that the luminescence at those

two points is indeed polarized in different directions.

These results can be made more quantitative, if we assume that the intensity changes as

I(φ) = I0 sin2(φ+ φ0) + Ibg , (6.2)

where Ibg is the “background” intensity, I0 is the modulation, and φ0 is the direction of the

polarizer. A fit to this function is also shown in Fig. 62. With the parameters above, the

visibility is defined as I0/(I0 + Ibg), which coincides with the standard definition (Imax −
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Figure 62: Intensity at point A (open circles) and B (solid circles) in Fig. 60, as the polarizer

is turned through an angle of π. The inherent polarization of the spectrometer is already

factored out using the results of Fig. 61. Also shown are fits to the function in Eq. (6.2).

The laser is gated and all light outside of the range of interest is spectrally filtered. The

excitation power is 430 µW, and the contours show the total intensity.

Imin)/(Imax + Imin).

A complete map of the polarization can be seen in Fig. 63 for two cases. The right

hand side of the figure shows the case, when the stress is relatively low, and the intensity

distribution is uniform, while the left hand side gives the polarization, when the stress is high

and the luminescence from the central region is inhibited. The direction of the polarization

axis was deduced from fits to the function in Eq. (6.2), and their length is proportional

to the visibility defined above. In order to relate the polarization to the position of the

exciton distribution, we also plot the topographic levels of the luminescence at the angle of

maximum transmittance. This is simply equal to the modulation in Eq. (6.2). From the

figure, both the relative modulation and the direction of the polarization changes when the

stress is increased. We should point out here that Fig. 62 shows the corrected intensities,

i.e., the polarization of the spectrometer is factored out, while in Fig. 60 gives the raw data,

without any correction. This is why the polarization shift in Fig. 62 is not π/2, as it would

be inferred from Fig. 60 alone.
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Figure 63: Polarization map of the luminescence for high (left) and for low stress (right). The

direction of the vectors gives the polarization direction, while the length is proportional to the

visibility. The topographic contour lines are the levels of the intensity at the corresponding

polarization maximum, i.e., the value of I0 in Eq. (6.2).

The polarization of the light emission in itself is not very surprising, and it has been

observed in papers where the propagation of light in the plane of the quantum wells was

studied [155, 156], although in our case the ligth propagates in a direction perpendicular to

the quantum wells. The change in polarization can be attributed to the fact that, as stress

is applied, the symmetry of the crystal changes, which leads to a splitting of the two bright

states. When kBT is smaller than this splitting, the two states will have unequal occupation.

6.3 THEORETICAL CONSIDERATIONS

We can try to model some of the experimental findings without any reference to a condensate,

in fact, assuming that the gas is in the classical regime.

We will presume that we have a dark and a bright exciton population, and that they are

energetically separated. Due to the interaction between particles, the potential is renormal-
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ized. The renormalization is proportional to the total number of particles, i.e., we have to

consider both populations for both potentials. Therefore, we can write

Ṽb(r) = Vb + γ(nb(r) + nd(r)) (6.3)

Ṽd(r) = Vd + γ(nb(r) + nd(r)) , (6.4)

where Vb,d(r) are the external trapping potentials for the bright and dark excitons, respec-

tively, and nb,d(r) are the bright and dark exciton distributions. The repulsion coefficients,

γ, can be different in the two cases, although we will only investigate the simple case when

it is the same for both types of particles.

Then we also assume that the distributions follow the Boltzmann statistics, i.e.,

nb(r) = Ae−βṼb(r) = Ae−β(Vb(r)+γ(nb(r)+nd(r))) (6.5)

nd(r) = Ae−βṼd(r) = Ae−β(Vd(r)+γ(nb(r)+nd(r))) . (6.6)

By dividing the two equations, we get

nb(r) = nd(r)e
−β(Vb(r)−Vd(r)) , (6.7)

which we can substitute into the equation for nd(r), to obtain

nd(r) = A exp
[
−β(Vd(r) + nd(r)γ(1 + e−β(Vb(r)−Vd(r)))

]
= A exp [−β(Vd(r) + nd(r)g(r))]

(6.8)

with the definition

g(r) = γ(1 + e−β(Vb(r)−Vd(r))) (6.9)

Eq. (6.8) is a self-consistency equation for nd(r) (and thus, for nb(r)), which we solve

numerically for various values of A.

For the potential, we will take two Gaussians with the same width, and for numerical

reasons, we define them as

Vb(r) = V 0
d + Vsp − V 0

b exp(−x2/2σ2) (6.10)

Vd(r) = V 0
d (1− exp(−x2/2σ2)) . (6.11)
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This guarantees that they have a splitting as the position tends to infinity, as we would

expect for the stress-free case from the theoretical considerations in Chapter 1.

Fig. 64 shows the numerical solution for the exciton distributions with a splitting of 1

meV at two temperatures, 2 and 8 K, respectively. In both cases, the particle number is 105

and γ = 0.01 meVµm2. At low temperature, the distribution of the bright excitons has a

pronounced minimum at the center, which disappears as the temperature is raised. This can

be understood, if we notice that, as the temperature becomes comparable to the splitting,

the thermodynamic difference between the two kinds of excitons disappears.

We can also demonstrate that this model would, at least qualitatively, account for the

power dependence of the luminescence intensity. In Fig. 65 we plot the numerical solution

for two densities, different by a factor of 10, while keeping all other parameters constant.

These results assume a classical distribution of excitons. To get distributions which look

like the data, very large splitting (1 meV) must be chosen, which, in turn, implies very few

excitons in bright states. This suggests that Bose degenerate statistics should be taken into

account. Of course, the model could be refined in a number of ways. E.g., it is not a trivial

question whether the interaction potential between the different exciton species can be taken

as equal. We do not account for the two-fold symmetry in the luminescence either, as we

have not said anything about the polarization.
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Figure 64: The distribution of the dark (purple) and bright (dark blue) excitons in a renor-

malized trap. The bare trap is shown in green for the dark excitons and in red for the bright

excitons, while black is the renormalized trap for the dark excitons and light blue for the

bright excitons. The low-temperature case is on the left, while the right hand side shows

the high temperature distributions. In a), the bright exciton density is multiplied by 20 for

clarity.
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Figure 65: The distribution of the dark (purple) and bright (dark blue) excitons in a renor-

malized trap for the low density (left) and high density (right). The bare trap is shown in

green for the dark excitons and in red for the bright excitons, while black is the renormalized

trap for the dark excitons and light blue for the bright excitons. In a), the bright exciton

density is multiplied by 100, while in b) by 20 for clarity.
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7.0 CONCLUDING REMARKS

The motivation of this work was to study exciton dynamics and interaction in coupled quan-

tum well systems. The bosonic nature of excitons naturally lends them to investigations

related to Bose-Einstein condensation. We have pointed out that the question of equilib-

rium excitonic BEC is still not settled, neither theoretically, nor experimentally. From the

theoretical point of view, the exact form of the exciton-exciton interaction is still debated,

while on the experimental side, it is not clear what exactly the signatures of an excitonic

BEC would be. On the other hand, even without proving or disproving an excitonic BEC, we

have established major milestones, such as the fact that excitons move freely in the quantum

wells and that they can be trapped, and we have discussed two trapping methods at length.

We also studied their interaction under controlled conditions and pointed out what would

require further theoretical work to understand the findings.

In the last part of the thesis, we discussed recent, and not yet explained results on exciton

luminescence at high stress. We cannot rule out the possibility that these might be a dark

condensate, and there are a few facts in favor of this argument. This certainly poses both

theoretical and experimental challenges for the years to come: the interaction of a dark

condensate and the surrounding bright exciton population must be understood; if this is

indeed a condensate, then proper a test must be developed to prove it.

It is not trivial to prove anything about an invisible object in an optical measurement,

and there seems to be no other method of accessing excitons but optical. All is not lost,

however. Applying an in-plane magnetic field (Voigt configuration) mixes the bright and

dark excitons, thus providing an indicator for the dark population [157, 158]. This is a

standard measurement in quantum dots [159].

Superfluidity of excitonic bilayer systems in an in-plane magnetic field has been predicted
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in the work of Balatsky et al. [160]. We have demonstrated that these coupled quantum

wells are indeed clean in terms of excitonic transport, thus they would provide an excellent

test bed for those ideas.
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APPENDIX

MODELLING EXCITONS IN QUANTUM WELLS

In this appendix we discuss a model to account for the experimental findings in Chapters

2 and 3, and in the final part, we show how the interaction of particles modifies the simple

condition Eq. (1.5) for excitonic BEC.

A.1 DIFFUSION IN A PLANE POTENTIAL

In Chapter 2, we pointed out that excitons move in the plane of the quantum wells in

a diffusive process. Therefore, our starting point will be a diffusion equation. However, in

addition to a standard diffusion equation, several other factors have to be taken into account.

1. First, excitons have a finite lifetime, therefore, in the equation describing the population

evolution we will have a term which is equal to the local density, n(~r), divided by the

radiative lifetime, τ ..

2. Excitons also repel each other. We can model this as a potential generated by the

particles, and in the first approximation, we take the potential to be linear in the density.

We have shown in Chapter 5 that this linear approximation is a valid one over a wide

range of particle densities, and deviations from the linear dependence can be expected

at high densities only. All the diffusion measurements were conducted at low densities.
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Writing the generated potential as

U(~r) = γn(~r) , (.1)

the resulting force is

~F (~r) = −γ∇n(~r) . (.2)

3. Finally, excitons are generated, which adds a generation term, G(t), to the diffusion

equation.

With these considerations, the exciton population obeys the equation [124, 131]

∂n(~r)

∂t
= ∇(D∇n(~r)) +

τ0

m
∇(γn(~r)∇n(~r))− n(~r)

τ
+G(t) , (.3)

where τ0 is the scattering time [59]. The term ∇(γn(~r)∇n(~r)) is the dipole current due to

the potential generated by the interaction of excitons.

We have not yet specified the diffusion constant, D. According to a couple of papers by

Ivanov [86, 152], the overlap of the wavefunctions of particles modifies the diffusion constant,

and then it will be related to the mobility, µ, through the equation

µ = D
eT0/T − 1

kBT0

, (.4)

where T0 = (2πh̄2n(~r))/(kBgm) is the degeneracy temperature with an exciton degeneracy

of g = 4 in our case. It is worth noting that in the high temperature case, when T � T0, we

recover the usual Einstein relation,

µ =
D

kBT
. (.5)

This happens in the temperature range where quantum mechanical effects are not important.

Moreover, the diffusion constant, D, is the result of all the relevant scattering mecha-

nisms, which are exciton-exciton scattering at high density (Dx), interface roughness scat-

tering (DRS) at low density, and exciton-phonon scattering, which is the slowest of all. Thus

the diffusion constant is given by D = 1/(1/Dx + 1/DRS), and takes the limiting values

D = Dx for high, and D = DRS for low density, neglecting the exciton-phonon scattering.

Since we were interested in the late-time behavior, we do not derive Dx.
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Figure 66: Time-evolution of the square of the size of the exciton cloud as predicted by the

model above. All parameters are estimated from experimental results.

Fig. 66 shows the square of the variance of the numerical solution of Eq. (.3) with initial

and boundary conditions consistent with the experiments, i.e., the generation term is

G(~r, t)∆t =

 1011 exp(−r2/sσ2) 1/cm2 , t = 0

0 , t 6= 0
(.6)

where σ = 15 µm is a typical value from experiments, c.f. Fig. 15, and an initial density of

1011 1/cm2 corresponds to an excitation power of about 60 µW at 4 µs repetition rate. ∆t

is the time step in the numerical integration. The limiting values of the diffusion coefficient

are 0.24, 0.74, 2.08, and 9.04 cm2/s for the four quantum wells.

Initially, when the density is high and localization effects are not relevant, the importance

of the repulsion can be measured by the ratio of the diffusion current to the dipole current,

ζ =
Jdp
JD

=
nγeT0/T − 1

kBT0

. (.7)

When ζ ≥ 1, the expansion of the exciton cloud is driven by the repulsive forces, and for

ζ ≤ 1 the expansion is diffusive. Initially, the value of ζ is of the order of a couple of hundred.
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This explains the very fast initial rise time in Fig. 16. As the exciton cloud increases in size

and the density drops, ζ tends to zero, and pure diffusion sets in.

We mentioned in Chapter 3 that the temperature of the exciton gas changes in time,

and initially it is much higher than that of the lattice. This affects both the lifetime and

the diffusion constant. Rapaport et al. [131] and Hammack et al. [95] refined this model by

accounting for the change in temperature, but the character of the time evolution does not

change considerably, and the main conclusions are the same.

Since in the low-density case the diffusion coefficient becomes a constant, in order to

account for the localization at very late time or very low densities, we have to modify the

model above. We opted for the simplest solution, inserting a threshold density for diffusion,

i.e., setting D = 0, if n(~r) < n0. Physically, this would correspond to the picture that there

is a given number of small traps, which inhibit the movement of particles, but they can

accommodate only a finite number of excitons, because as the particle number is increased

in these local minima, the inter-particle repulsion renormalizes the traps, and this prevents

newer and newer particles from becoming trapped.

Fig. 67 shows how the introduction of the threshold density changes the late-time behav-

ior of the excitonic expansion. Apart from the relatively sharp transition between the two

regions, the solution indeed reproduces the experimental results.

A.2 DIFFUSION IN A STRESS TRAP

The only place where the presence of the trap modifies the model above is in the drift term

in Eq. (.3), where we have to add the external potential, which we can take in the form

U(~r) = αr2/2. All other terms are unaffected. Solving for this case gives results similar to

that in Fig. 68. It is important to note here that the size dictated by the spring constant

and the bath temperature would be σ2 ≈ 600 µm2 in this case, while the calculated size is

around σ2 ≈ 1800 µm2. Therefore, we can account for the apparent high temperature in

this model.

Fig. 69 shows the effective temperature given in Eq. (3.15) as a function of the exciton
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Figure 67: Time-evolution of the square of the size of the exciton cloud with a low threshold
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Figure 68: Time-evolution of the square of the size of the exciton cloud with a low threshold

density, n0 = 108 cm−2, and a spring constant of 30 eV/cm2. The bath temperature is 2

Kelvin.
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Figure 69: The temperature determined from the size of exciton cloud as a function of the

bath temperature. The threshold density is n0 = 108 cm−2. Also plotted is the linear relation

giving the bath temperature.

temperature. As the bath temperature is increased, the two temperatures seem to converge

to the same value.

We can understand this behavior in the following way: when created, excitons repel each

other, and are pushed high in the external potential. When the density drops, some of them

become localized at those high potential value points, and cannot obey the restoring force

of the trap. This is more apparent at low temperatures, where the final size is smaller.

A.3 BOSE-EINSTEIN CONDENSATION OF STRONGLY INTERACTING

PARTICLES

In the introductory chapter we derived a relation for the critical number of particles in a

harmonic potential. There we assumed that the interaction is weak, and the presence of

particles does not modify the trap itself. However, in Chapter 5, we have seen that the
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trap is significantly modified as the density increases. Therefore, it is an important question

to ask what particle density or distribution a particular trap can support without being

completely destroyed, and what effect it has on the critical number.

What makes the problem at hand difficult is the vast separation of energy scales that

we have to consider. In a typical, not renormalized trap, the harmonic oscillator levels are

∆E = h̄ω0 = h̄
√
α/mex ≈ 0.3 µeV apart. (As the trap becomes renormalized, ω0 tends to

0.) At the same time, the temperature is of the order T ≈ 2 K, i.e., roughly 100 µeV. This

also means that a semiclassical approach can be applied, including many excited harmonic

oscillator states. Finally, the interaction changes the shape of the trap, and lifts its bottom

by several meV.

The effect of interaction on the condensate has long been studied theoretically [150],

and is described by the Gross-Pitaevskii equation. In that case, the renormalization of

the external potential is taken into account by adding a term which is proportional to the

square of the ground state wavefunction. We will use the same idea. The difference is that

here we have to consider many states, because the thermal energy is large compared to the

oscillator energies. With this modification, as in the case of the Gross-Pitaevskii equation,

the potential is written as

V (~r) = V0(~r) +
∑
α

|Ψα(~r)|2

eβ(εα−µ) − 1
, (.8)

where the chemical potential is fixed by the condition

N =
∑
α

1

eβ(εα−µ) − 1
(.9)

and εα is the energy eigenvalue belonging to the Ψα eigenstate. The particle density is simply

the sum of the expectation values of the field operators,

n(~r) = g
∑
α

|Ψ(~r)α|2

eβ(εα−µ) − 1
(.10)

Here we explicitly take the degeneracy of each state into account in the prefactor g.
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Figure 70: The renormalization of the potential at low (left) and high (right) densities. The

green lines give the external potential, while the read lines are the renormalized potentials.

The short red lines show the corresponding chemical potential.

In order to simplify the situation, we take a semiclassical approach, and for the various ~k

states we use plane waves which are local, i.e., which are zero whenever the potential energy

exceeds the eigenvalue ε~k [9, 151]. Therefore, the particle density can then be expressed as

n(~r) = −nthln
(
1− e−β(V (~r)−µ)

)
, (.11)

where nth = gm/(2πh̄β). Eqs. (.8),(.9) and (.11) determine the particle distribution and the

chemical potential for any given N and external potential V (~r).

Figs. 70a,70b show the solution for the renormalized trapping potential at low and at

high density, as given by the model discussed above. The repulsion coefficient was equal to

the measured value γ = 1.5 · 1010 meV cm2, and the number of particles is N = 105 and

N = 107, respectively, while the external temperature is 2 Kelvin.

Fig. 71 shows the dependence of the chemical potential and the renormalization of the

trap at its center as a function of the total number of particles. What we see is that both the

chemical potential and the external potential increase as we place more and more particles

in the trap. Bose-Einstein condensation would set in when those two energies are equal.
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Figure 71: The renormalization of the potential and the chemical potential as a function of

the total particle number in the trap.

According to the figure, this should happen somewhere around N = 107, or in terms of the

blue-shift, somewhere around 3 meV. Although, we have seen such high shifts, we have not

observed signatures of BEC. It might mean that the condensation happened in a dark state

as discussed in previous chapters, or that we have tried to stretch this model well beyond its

validity range.
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