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hizophrenia is a complex and devastating psychiatric disorder that creates a substantial 

otional and economic burden on individuals with the illness, their families, and society. 

derstanding the causes and identifying the molecular alterations in the brain that underlie the 

thophysiology of core clinical features of schizophrenia are central to the development of new 

rapeutic interventions. In particular, schizophrenia is characterized by impairments in working 

mory, which are thought to result from a deficit in GABA neurotransmission in the 

rsolateral prefrontal cortex (DLPFC). Interestingly, exposure to cannabis has been associated 

th an increased risk for developing schizophrenia and cannabis use is associated with DLPFC-

ated working memory impairments similar to those observed in schizophrenia. The effects of 

nnabis are mediated by the brain cannabinoid 1 (CB1) receptor, which in the rodent, is heavily 

alized to certain inhibitory axon terminals and, when activated, inhibits GABA release. Here, 

 have investigated the anatomical distribution of the CB1 receptor in the primate brain and 

aracterized the cellular localization and synaptic targets of the CB1 receptor in the primate 

PFC. In addition, we explored the potential relationship between CB1 receptor signaling and 

ered GABA neurotransmission in schizophrenia by evaluating CB1 receptor mRNA and 

otein expression in the DLPFC of subjects with schizophrenia. We found that CB1 receptors 

 highly expressed in the primate DLPFC and that CB1 receptors are localized in the terminals 

the subtype of perisomatic-targeting GABA interneurons that contain the neuropeptide 

olecystokinin (CCK). We found that CB1 mRNA and protein are reduced in schizophrenia, 

ich may represent a compensatory mechanism to increase GABA transmission from 

risomatic-targeting CCK neurons with impaired GABA synthesis. We conclude that 

uctions in the expression of the CB1 receptor mRNA and protein in CCK neurons represent a 

vel neuropathological entity in the DLPFC of individuals with schizophrenia. These findings 

ggest a novel drug target for the treatment of cognitive dysfunction in schizophrenia. 
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1.0  GENERAL INTRODUCTION 

1.1 OVERVIEW OF SCHIZOPHRENIA 

1.1.1 The burden of schizophrenia 

Schizophrenia is a complex and devastating psychiatric disorder that affects ~1% of the 

population worldwide across countries and diverse cultures and is unbiased with respect to ethnic 

groups or genders (Bromet and Fennig, 1999; Lewis and Lieberman, 2000). The formal clinical 

onset of schizophrenia (marked by the development of psychotic episodes) typically occurs in 

late adolescence and early adulthood (Lewis and Lieberman, 2000); in males, the onset of 

clinical symptoms most frequently begins between 15 and 25 years of age, whereas in females 

symptoms typically appear between 20 and 30 years of age (Lewis, 2000). Although mild 

premorbid abnormalities including disturbances in motor, social, or cognitive functions may be 

apparent early in life that may foretell the development of schizophrenia, these disturbances do 

not place individuals outside the normal range of functioning and frequently go unnoticed (Yung 

and McGorry, 1996; McGlashan, 1996; Erlenmeyer-Kimling et al., 2000; Lewis and Lieberman, 

2000). The time course of schizophrenia following clinical onset typically involves episodes of 

remission and relapse of psychotic symptoms and a general deterioration of function during the 

first 5-10 years of the illness. Later in life clinical deterioration often plateaus and the intensity of 

positive symptoms diminishes in some individuals; however, profound and persistent functional 

impairments typically remain (Lewis and Lieberman, 2000). 

 Based on these characteristics, schizophrenia is characterized by a lifetime of disability 

and unremitting impairments in social and occupational functioning. Many individuals with 

schizophrenia will also develop comorbid mood disorders such as depression and anxiety and 5-

10% of individuals with schizophrenia will eventually commit suicide (Lewis and Lieberman, 
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2000). As a result, schizophrenia creates a substantial emotional and financial burden on the 

families of those affected (Brown et al., 1999). In addition, due to the cost of medical treatment 

and lost productivity, schizophrenia generates an enormous economic liability for society and is 

one of the most expensive disorders in medicine. Indeed, in the United States alone the direct and 

indirect costs of schizophrenia were estimated at $33 billion in 1990 (Rupp and Keith, 1993; 

Carpenter, Jr. and Buchanan, 1994; Andreasen, 1995). 

1.1.2 Etiology of schizophrenia 

The etiological factors, or causes, of schizophrenia remain largely unknown, but appear to be 

multifaceted. Family, twin, and adoption studies demonstrate that the risk of developing 

schizophrenia is directly associated with the degree of genetic relatedness to an affected 

individual (Lewis and Lieberman, 2000). For instance, the concordance of schizophrenia among 

first-degree relatives (parents and siblings) of individuals with schizophrenia ranges from 6-17%, 

whereas the concordance among monozygotic twins (who share the same genetic makeup) 

approaches 50% (Kendler, 1983; Tsuang, 2000). In addition, a number of putative susceptibility 

genes on several different chromosomes have recently been identified (Pulver, 2000; Owen et al., 

2004). However, each of these genes alone confers only a small degree of risk for schizophrenia. 

Therefore, it is likely that multiple interacting genes are necessary to impart significant 

vulnerability to the illness (Mirnics and Lewis, 2001; Harrison and Weinberger, 2005). 

 Although heritable influences represent a major etiological component of schizophrenia, 

the 50% concordance rate of schizophrenia among monozygotic twins indicates that genetic 

liability alone is not sufficient for the appearance of clinical features and suggests that other non-

genetic risk factors play a role in the etiology of schizophrenia. In line with this interpretation, a 

number of environmental insults across development have been implicated as factors that 

increase the risk of developing schizophrenia later in life (Lewis and Lieberman, 2000). These 

environmental factors range from gestational and birth complications to stressful childhood 

events and frequent cannabis use during adolescence (McDonald and Murray, 2000; Lewis and 

Lieberman, 2000). 

 Consequently, the etiology of schizophrenia appears to involve multiple “hits” consisting 

of genetic susceptibility and environmental risk factors (Bayer et al., 1999; Maynard et al., 

 2



2001). The interaction of these genetic and environmental factors during adolescence is believed 

to alter normal neurodevelopmental processes that occur before the onset of clinical features of 

the illness. The functional consequences of these disturbances manifest as the clinical syndrome 

in late adolescence or early adulthood as the affected neural networks become fully mature 

(Lewis and Lieberman, 2000; Lewis et al., 2004a). 

1.1.3 Clinical features of schizophrenia 

Schizophrenia is defined as a clinical syndrome comprised of a constellation of clinical 

symptoms classically divided into 1) positive symptoms, which reflect the presence of 

distinctively abnormal behaviors and 2) negative symptoms, which reflect the absence of certain 

normal social and interpersonal behaviors (Andreasen, 1995; Elvevag and Goldberg, 2000). 

Positive symptoms (or psychoses) include disturbances in perception, such as hallucinations that 

can arise in most sensory modalities, but are classically auditory in nature; disturbances in 

inferential thought, such as delusions that typically manifest as false beliefs of control or danger; 

and formal thought disorder, which includes the expression of disorganized speech and behavior. 

Negative symptoms typically include reduced expression of emotions (flat affect), impaired goal-

directed behaviors (avolition), and loss of pleasure in activities (anhedonia), as well as social 

withdrawal and poverty of speech (Andreasen, 1995). In addition to these cardinal signs, 

schizophrenia is also characterized by a variety of cognitive deficits, which include impairments 

in executive functions, attention, and especially working memory (see chapter 1.1.4; Elvevag 

and Goldberg, 2000). 

 Each of these symptoms is present in some subjects with schizophrenia; however, none 

are present in all subjects with the illness. Consequently, schizophrenia cannot be diagnosed by a 

unitary feature such as the appearance of psychosis, even though these symptoms typically bring 

individuals to clinical attention. The current DSM-IV (Diagnosis and Statistical Manual of 

Mental Disorders, 1994) diagnosis criteria for schizophrenia requires a deterioration in social 

and occupational functioning that results from a combination of the characteristic symptoms. 
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1.1.4 Cognitive impairments: A core feature of schizophrenia 

Often, the most remarkable clinical manifestation of schizophrenia is psychosis. However, 

substantial evidence suggests that disturbances in certain cognitive functions, such as working 

memory, represent a core feature of the illness (Elvevag and Goldberg, 2000). First, cognitive 

impairments are perhaps the most prevalent clinical feature among individuals affected with 

schizophrenia (Keefe et al., 2005). Second, cognitive abnormalities persist throughout the 

lifetime of individuals with schizophrenia without diminution and have been observed at the 

onset of the illness, prior to illness onset during adolescence, and as early as childhood (Breier et 

al., 1991; Heaton et al., 1994; Saykin et al., 1994; Davidson et al., 1999). Third, mild cognitive 

disturbances are seen in unmedicated, non-affected relatives of individuals with schizophrenia, 

indicating that cognitive impairments are not due to neuroleptic treatment, are intrinsic to the 

disease process, and reflect genetic liability (Egan et al., 2001; Sitskoorn et al., 2004). Finally, 

cognitive dysfunctions have greater detrimental effects on social and occupational abilities than 

positive symptoms and the degree and severity of cognitive dysfunction is perhaps the best 

predictor of poor long-term functional outcomes for individuals with schizophrenia (Breier et al., 

1991; Green, 1996).  

 These data converge on the interpretation that disturbances in cognitive functions are the 

most persistent and debilitating symptoms of schizophrenia. Consequently, these impairments 

represent a major factor contributing to the burden of schizophrenia by impeding the 

reintegration of individuals with the illness into society as productive members. Unfortunately, 

current pharmacological treatments for schizophrenia, while effective at suppressing psychotic 

symptoms, are for the most part, ineffective at improving cognitive functioning (Lewis and 

Gonzalez-Burgos, 2006). Therefore, the development of pharmacological agents that 

successfully improve cognitive functioning is paramount to more effectively treating the illness 

and has become a major focus of schizophrenia research (Hyman and Fenton, 2003). 
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1.2 WORKING MEMORY AND GABA: IDENTIFYING A TARGET FOR 

THERAPUETIC INTERVETION 

The development of cognitive enhancing drugs requires the identification of the 

neuropathological entity (or entities) underlying the pathophysiological processes that give rise 

to the cognitive impairments associated with schizophrenia (Lewis and Gonzalez-Burgos, 2006). 

Of the variety of cognitive impairments described in schizophrenia, working memory has been 

the focus of substantial research because it is one of the most consistently disturbed cognitive 

functions in individuals with the illness (Weinberger et al., 1986; Callicott et al., 2003). 

1.2.1 Working memory, the dorsolateral prefrontal cortex, and schizophrenia 

Working memory is defined as the ability to hold onto small bits of information over a period of 

time in order to guide future behavior. In other words, working memory is the active 

maintenance of internal contextual information that can be modified on-line, allowing it to bias 

behavior based on goals or instructions. Although working memory is a distributed process that 

involves multiple brain regions (Goldman-Rakic, 1988), the dorsolateral prefrontal cortex 

(DLPFC) has been identified as a critical node in working memory by both functional imaging 

studies in humans and electrophysiological studies in awake behaving monkeys (Funahashi et al., 

1989; Funahashi et al., 1993; Weinberger et al., 2001; Miller and Cohen, 2001). 

 Individuals with schizophrenia, when performing tasks that rely on working memory 

such as the Wisconsin Card Sort Task and N-back task, perform more poorly and exhibit reduced 

DLPFC activation (as evident from altered blood flow or glucose utilization) compared to 

normal controls (Weinberger et al., 1986; Perlstein et al., 2001). These findings have led to the 

classic hypofrontality hypothesis of schizophrenia (Weinberger et al., 2001). However, recent 

imaging studies have shown that activity in the DLPFC can be increased under circumstances in 

which individuals with schizophrenia are either slightly impaired or perform normally on 

working memory tasks, indicating that the DLPFC in these individuals operates less efficiently 

(Callicott et al., 2000; Callicott et al., 2003). Together, these data suggest that, whether subjects 

with schizophrenia show hypofrontality or hyperfrontality, the DLPFC of individuals with 

schizophrenia functions abnormally during working memory tasks. 
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1.2.2 Role of DLPFC interneurons in working memory 

In primates, working memory function depends critically on the synaptic connectivity and 

patterns of activity within the DLPFC (reviewed in Goldman-Rakic, 1995; Fuster, 2001). 

Working memory is thought to be mediated by a reverberating cortical circuit that coordinates 

the sustained activity of populations of excitatory pyramidal neurons in the DLPFC (Goldman-

Rakic, 1995). Reciprocal connections between spatially-segregated populations of DLPFC 

pyramidal cells may be a substrate for recruiting and maintaining activity of functionally-related 

populations of prefrontal neurons during working memory tasks (Lewis and Anderson, 1995). 

Indeed, ultrastructural analyses have revealed that approximately 95% of the excitatory synapses 

furnished by the long-range, horizontal axon projections of DLPFC pyramidal neurons target 

dendritic spines of other pyramidal cells (Melchitzky et al., 1998). Furthermore, the functionality 

of these connections has been confirmed in electrophysiological studies in living slice 

preparations of monkey DLPFC (Melchitzky et al., 1998). 

 Although an excitatory reverberating circuit may be necessary to maintain delay activity, 

inhibitory activity in the DLPFC furnished by GABA neurons plays two critical roles in normal 

working memory. First, GABA neurons shape and fine tune the firing of pyramidal cells during 

working memory tasks. Adjacent interneurons and pyramidal cells in the DLPFC fire selectively 

and robustly during delay periods and demonstrate isodirectional tuning during working memory 

tasks (Funahashi et al., 1993; Rao et al., 1999) and this inhibitory activity is necessary for the 

spatial tuning of neuronal responses (Sawaguchi et al., 1988; Sawaguchi et al., 1989). Indeed, 

iontophoresis of bicuculline, a GABAA receptor antagonist, into the DLPFC significantly 

increases neuronal activity at all periods during a working memory task and destroys spatial 

tuning (Rao et al., 2000). These findings suggest that inhibition serves to determine which 

DLPFC pyramidal neurons are activated (serves a spatial role) and when they are active (serves a 

temporal role) during the different phases of working memory tasks (Constantinidis et al., 2002).  

 Second, networks of chemically and electrically-coupled GABA interneurons are 

essential for the synchronization of large cell ensembles of neurons (Connors and Long, 2004) 

and for the pacing of oscillatory patterns required for working memory (Howard et al., 2003). In 

the human DLPFC, gamma oscillations (30-80 HZ) appear at the onset of, and are maintained 

during, the delay period of working memory tasks (Tallon-Baudry et al., 1998) and the power of 
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gamma band oscillations increases specifically with, and in proportion to, working memory load 

(Howard et al., 2003). In individuals with schizophrenia, deficits in cognitive control and 

working memory are associated with an impairment in phase-locking gamma band activity to 

stimulus onset and reduced frontal lobe gamma band power (Spencer et al., 2003; Cho et al., 

2006). 

1.2.3 Altered GABA neurotransmission in the DLPFC: A neuropathological entity 

underlying working memory impairments 

The above data suggest that disturbances in inhibitory neurotransmission could play a prominent 

role in DLPFC dysfunction in subjects with schizophrenia and could represent a pathological 

entity underlying working memory disturbances in affected individuals (Lewis et al., 2005). 

Consistent with this idea, in the DLPFC of subjects with schizophrenia, one of the most 

replicated findings in postmortem studies is a reduction in the expression of glutamic acid 

dexcarboxylase (GAD67) mRNA, an enzyme responsible for synthesizing GABA (Akbarian et 

al., 1995; Guidotti et al., 2000; Volk et al., 2000; Hashimoto et al., 2007; Straub et al., 2007). 

Analysis of GAD67 mRNA expression at the cellular level revealed that the density of GABA 

neurons with detectable levels of GAD67 mRNA is reduced by ~25-35% across layers 2-5 in 

subjects with schizophrenia (Akbarian et al., 1995; Volk et al., 2000). However, in the remaining 

GABA neurons with detectable GAD67 mRNA, the expression levels per neuron were unchanged 

in subjects with schizophrenia (Volk et al., 2000). Similarly, the density of neurons expressing 

detectable levels of mRNA encoding for the GABA membrane transporter (GAT1), a protein 

responsible for the reuptake of released GABA, is decreased by 21-33% in layers 1-5 and the 

expression levels of GAT1 mRNA per neuron does not differ in the same subjects with 

schizophrenia (Volk et al., 2001). These data suggest that both GABA synthesis and re-uptake 

are reduced in a subset of DLPFC inhibitory interneurons in schizophrenia. 

 In the cortex, GABA neurons are a heterogeneous group of cells comprised of distinct 

subclasses that can be distinguished by their morphology, physiological characteristics and the 

presence of calcium-binding proteins or neuropeptides (Kawaguchi and Kubota, 1997; McBain 

and Fisahn, 2001; Markram et al., 2004). The subtype(s) of GABA neurons that account for the 

reduction in GAD67 mRNA observed in subjects with schizophrenia is important to know 
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because the terminals of different classes of interneurons preferentially target different domains 

of pyramidal cells and play distinct inhibitory roles in controlling pyramidal cell activity 

(DeFelipe et al., 1989; Thomson et al., 1995; Thomson et al., 1996; Tamas et al., 1997; Xiang et 

al., 2002). 

 Convergent evidence suggests that an affected subclass of GABA neurons in the DLPFC 

of subjects with schizophrenia include parvalbumin (PV)-containing chandelier neurons that 

provide synapses exclusively onto the axon initial segment (AIS) of pyramidal neurons in 

distinct vertical arrays termed cartridges (Lewis and Lund, 1990) (Fig. 1). For instance, although 

the density of neurons with detectable levels of PV mRNA is not altered in subjects with 

schizophrenia, the level of PV mRNA expression per neuron is significantly reduced in layers 3 

and 4, but not in layer 2, 5, or 6 (Hashimoto et al., 2003). The changes in PV mRNA expression 

correlated with the decrease in the density of neurons containing detectable levels of GAD67 

mRNA in the same subjects with schizophrenia. These data suggest that GABA synthesis is 

decreased in PV-expressing neurons that also exhibit reduced PV mRNA expression (Hashimoto 

et al., 2003). Indeed, in the same subjects with schizophrenia the simultaneous detection of PV 

and GAD67 revealed that ~50% of PV mRNA expressing neurons lacked detectable levels of 

GAD67 mRNA (Hashimoto et al., 2003). In addition, the density of GAT1-immunoreactive (IR) 

cartridges were significantly reduced by ~50% in layers 3 and 4, whereas the density of GAT1 

puncta, representing axon terminals from other GABA neurons, is unaltered (Woo et al., 1998; 

Pierri et al., 1999). Finally, postsynaptic to GAT1 cartridges, the majority of GABAA receptors 

at the AIS contain the α2 subunit (Nusser et al., 1996; Loup et al., 1998) and the density of AIS 

immunoreactive for the α2 subunit is increased more than 100% in subjects with schizophrenia 

compared to control subjects (Volk et al., 2002) (Fig. 1). 

 Together, these data suggest that decreased GAD67 mRNA expression in chandelier 

neurons results in deficient inhibitory input to pyramidal neuron AIS. As a result the 

downregulation of PV and GAT1 mRNAs are interpreted to be compensatory changes in order to 

augment GABA release at the AIS. Specifically, parvalbumin is reduced in order to increase 

Ca2+ transients and promote GABA release and GAT-1 is decreased in order to prolong 

inhibitory postsynaptic currents once GABA is released. In addition, postsynaptic GABAA α2 

subunit at the AIS are upregulated to increase the efficacy of released GABA (Lewis et al., 
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2005). However, these compensatory mechanisms are inadequate to boost the amount, and 

effects, of GABA at this critical synaptic site (Lewis et al., 2005). 

 These data converge on the idea that a deficit in chandelier cell-mediated inhibition is a 

neuropathological entity in the DLPFC of subjects with schizophrenia that could be an 

underlying mechanism that produces altered gamma band power and consequently, impaired 

working memory in individuals with schizophrenia (Lewis et al., 2005). Therefore, the 

development of drugs that enhance GABA neurotransmission at the AIS could be effective at 

treating the cognitive impairments in the illness (Lewis et al., 2005). 

 These deficits in GABA neurotransmission seem to be relatively specific to parvalbumin 

neurons because most GABA neurons in the DLPFC express normal levels of GAD67 and GAT1 

mRNAs (Volk et al., 2000; Volk et al., 2001). For example, gene expression is not altered in the 

subclass of GABA neurons that target the dendrites of pyramidal cells and contain the calcium 

binding protein calretinin (Hashimoto et al., 2003; Melchitzky et al., 2005) (Fig. 1). However, 

reduced expression of GAD67 is observed across layer 2-5 in the DLPFC of subjects with 

schizophrenia and the chandelier subclass accounts only for layer 3 and 4. This suggests that 

other subclasses of GABA neurons in the superficial layers must be affected and could represent 

another neuropathological entity in subjects with schizophrenia. 
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Figure 1. Schematic summary of alterations in GABA circuitry in the dorsolateral 

prefrontal cortex of individuals with schizophrenia. Reduced levels of gene expression in 

chandelier neurons (blue) are associated with a decrease in immunoreactivity (IR) for GABA (γ-

aminobutyric acid) transporter 1 (GAT1) in the axon cartridges of these neurons and an 

upregulation of GABAA receptor α2 subunit immunoreactivity in the postsynaptic axon initial 

segment of pyramidal neurons (green). Gene expression in the calretinin (CR)-expressing 

subpopulation of GABA neurons (yellow) does not seem to be altered. GAD67, 67 kD isoform 

of glutamic acid decarboxylase; PV, parvalbumin; 1-6, layers of dorsolateral prefrontal cortex. 

(from Lewis DA, Hashimoto T, Volk DW: Cortical inhibitory neurons and schizophrenia. Nature 

Reviews Neuroscience 6:312-324, 2005.) 
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1.3 CANNABIS USE: COGNITIVE DYSFUNCTION AND ENVIRONMENTAL RISK 

FACTOR FOR SCHIZOPHRENIA 

As mentioned above (chapter 1.1.2), the development of schizophrenia appears to involve an 

interaction between a genetic predisposition for the illness and exposure to environmental risk 

factors that trigger alterations in vulnerable circuits and precipitate the clinical onset of the 

disorder (Bayer et al., 1999; Lewis and Lieberman, 2000; Maynard et al., 2001). Convergent 

lines of evidence suggest that exposure to cannabis during adolescence is such an environment 

risk factor. The following sections outline the clinical evidence suggesting a link between 

cannabis use and the later risk of developing schizophrenia. In chapter 1.4, anatomical and 

physiological data will be reviewed showing that the endocannabinoid system plays a role in 

modulating GABA neurotransmission in the DLPFC and therefore, alterations in the 

endocannabinoid system of individuals with schizophrenia could also represent 

neuropathological entities in the disorder. 

 

1.3.1 Cannabis use is associated with cognitive dysfunction 

Chronic cannabis users demonstrate marked impairments in cognitive function, including 

working memory, that are analogous to those observed in individuals with schizophrenia (Pope, 

Jr. and Yurgelun-Todd, 1996; Solowij et al., 2002). These impairments are associated with 

prolonged cannabis use, continue beyond the period of acute intoxication, and worsen with 

increasing years of use (Pope, Jr. and Yurgelun-Todd, 1996; Solowij et al., 2002). In the absence 

of intoxication, brain imaging studies have shown that long-term cannabis users exhibit altered 

patterns of DLPFC activity during both rest (Lundqvist et al., 2001) and working memory tasks 

compared to control subjects (Block et al., 2002; Kanayama et al., 2004), suggesting that the 

DLPFC operates less efficiently in these individuals. 
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 In healthy human subjects, acute exposure to cannabis produces impairments in working 

memory similar to those seen in subjects with schizophrenia (Lichtman et al., 2002; Ilan et al., 

2004; D'Souza et al., 2004). For example, exposure to delta-9-tetrahydrocannabinol (∆9-THC), 

the chief psychoactive cannabinoid in cannabis, reduces the number of correct responses 

(D'Souza et al., 2004) and impairs performance in a dose- and delay-dependent manner (Lane et 

al., 2005) in healthy subjects performing delayed match to sample tasks. In addition, healthy 

subjects perform more poorly with increasing working memory load in N-back tasks during 

acute cannabis intoxication (Ilan et al., 2004). 

 In addition to these cognitive deficits, acute cannabis intoxication has also been shown to 

produce temporary drug-induced ‘cannabis psychosis’ in some cannabis users without a history 

of schizophrenia (Arseneault et al., 2004). These psychoses appear following large doses of 

cannabis and often resemble schizophrenia-like symptoms including hallucinations, altered 

judgment, depersonalization, and paranoid psychosis (Kupfer et al., 1973; Chopra and Smith, 

1974; Leweke et al., 2004). 

1.3.2 Cannabis use is a risk factor for schizophrenia 

Convergent findings demonstrate a significant association between cannabis use and an 

increased risk of schizophrenia. For example, cannabis use by those afflicted with schizophrenia 

is associated with a poorer outcome, increased severity of symptoms, especially cognitive 

impairments, and more frequent hospitalization, suggesting that these individuals have increased 

sensitivity to the effects of cannabis (Negrete et al., 1986; Grech et al., 2005; Pencer et al., 2005; 

D'Souza et al., 2005). Furthermore, epidemiological studies have consistently reported dose-

response relationships between prior cannabis use and the later development of the illness 

(reviewed in Henquet et al., 2005b; Fergusson et al., 2006). In a follow-up study of Swedish 

conscripts, individuals with the greatest self-reported history of cannabis use by age 18 had a 6-

fold increased risk of developing schizophrenia diagnosed 15 years later, even after controlling 

for a number of other risk factors for schizophrenia (Andreasson et al., 1987). Studies in several 

other cohorts have demonstrated similar relationships between the degree of cannabis use and the 

predicted risk of developing schizophrenia (van Os et al., 2002; Zammit et al., 2002). 

Importantly, several studies have demonstrated that the association between reported cannabis 
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use and schizophrenia cannot be explained by reverse causality (van Os et al., 2002; Arseneault 

et al., 2002; Stefanis et al., 2004). For example, in a Dutch cohort, all individuals who had ever 

reported any prodromal psychotic symptoms were excluded and an association between cannabis 

use and schizophrenia in the psychosis-free group at follow-up was still evident (van Os et al., 

2002). This temporal effect between the use of cannabis and the subsequent development of 

psychosis discounts the argument that the illness causes cannabis use as an attempt at self-

medicating in order to cope with their distress (Henquet et al., 2005b). 

 Together, the above findings converge on the idea that cannabis use confers an increased 

risk of later schizophrenia. Indeed, a recent meta-analysis of prospective studies found that 

cannabis exposure nearly doubles the risk (pooled ODDS ratio of 2.1) of later developing the 

illness (Henquet et al., 2005a), a risk that matches that of the most promising reported 

susceptibility genes, and a risk factor of particular importance given the prevalence of cannabis 

use. 

1.3.3 Risk of schizophrenia is increased with cannabis use during adolescence 

Studies also indicate that the early use of cannabis during adolescence is particularly associated 

with the later development of schizophrenia. For example, even after taking into account pre-

existing symptoms and other confounding factors, young individuals who met diagnostic criteria 

for cannabis dependence disorder at age 18 had a 3.7 fold increased risk of psychosis, whereas 

the increase in risk of psychosis was only 2.3 fold in those who did not develop dependence until 

age 21 (Fergusson et al., 2003). Similarly, the initiation of cannabis use by age 15 was associated 

with a greater likelihood of developing schizophreniform disorder at age 26 than was cannabis 

use at age 18 (Arseneault et al., 2002). Finally, in individuals who develop schizophrenia, 

cannabis use during adolescence is associated with an earlier onset of first psychotic episode than 

in those who are not exposed to cannabis during this period (Veen et al., 2004; Arendt et al., 

2005; Barnes et al., 2006). 

 Together, these findings converge on the idea that cannabis use represents an 

environmental risk factor for schizophrenia because 1) the association between cannabis use and 

schizophrenia is consistent across studies (replicated effect); 2) the association cannot be 

explained by other confounding factors (specificity of effect); 3) the degree of cannabis exposure 
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is positively correlated with the risk of schizophrenia (dose-response effect); 4) the exposure to 

cannabis precedes the development of schizophrenia (temporal effect); and 5) cannabis use 

during early adolescence is associated with greater risk (developmental effect) (reviewed in 

Henquet et al., 2005b). However, it is important to note that although some subjects with 

schizophrenia have been exposed to cannabis, not all individuals who are exposed to the drug 

develop the illness. Although this suggests that cannabis exposure is neither a necessary nor a 

sufficient cause of schizophrenia, the reviewed evidence strongly implicates that exposure to 

cannabis is an environmental risk factor for schizophrenia (Henquet et al., 2005b). 

1.4 THE CANNABINOID 1 (CB1) RECEPTOR: A POTENTIAL 

PATHOPYSIOLOGICAL ENTITY IN SCHIZOPHRENIA 

1.4.1 The endocannabinoid system 

An endogenous system of cannabinoid receptors and ligands with cannabis-mimicking activity 

has recently been discovered in the mammalian brain (reviewed in Freund et al., 2003; Piomelli, 

2003). The search for the molecular constituents of this system was fueled in the late 1980’s 

following the demonstration of selective and specific binding of a radiolabelled synthetic 

derivative of ∆9-THC in brain tissue, indicating the presence of a central brain cannabinoid 

receptor (Devane et al., 1988). To date, two cannabinoid receptors, CB1 (Matsuda et al., 1990) 

and CB2 (Munro et al., 1993), have been identified and cloned. Both cannabinoid receptors are 

seven-transmembrane-domain receptors coupled to G-protein second messenger systems (Freund 

et al., 2003). Whereas the CB2 receptor is mainly expressed in the immune system, the CB1 

receptor is the principal cannabinoid receptor expressed in the brain and mediates the 

psychoactive and behavioral effects of cannabis (Freund et al., 2003). The two chief and best 

studied endocannabinoids, anandamide (Devane et al., 1992) and 2-arachidonoyl-glycerol (2-

AG) (Mechoulam et al., 1995), are lipid-based compounds that are synthesized within the plasma 

membrane of neurons in an activity dependent manner and are released extracellularly through 

passive diffusion and/or facilitated transport (Freund et al., 2003). 
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1.4.2 Anatomical distribution of CB1 receptors 

The CB1 receptor is one of the most abundant G-protein-coupled receptors expressed in the 

mammalian brain (Herkenham et al., 1990). In particular, high levels of the CB1 receptor are 

expressed in neocortical association areas such as the prefrontal cortex and the cingulate cortex 

(Herkenham et al., 1991; Matsuda et al., 1993; Glass et al., 1997), which are known to mediate 

executive functions. Other regions involved in cognitive functioning, such as the hippocampus, 

basal ganglia, and cerebellum, also express high levels of the CB1 receptor (Herkenham et al., 

1991; Matsuda et al., 1993; Glass et al., 1997). Therefore, CB1 receptors in these regions may 

mediate certain deficits in cognitive functions observed following cannabinoid administration in 

humans and animals (Winsauer et al., 1999; Schneider and Koch, 2003; D'Souza et al., 2004). 

 In rodents, the CB1 receptor is predominantly expressed by GABA interneurons in the 

neocortex, hippocampus, and basal nuclei of the amygdala. Indeed, in situ hybridization 

experiments in the mouse neocortex and hippocampus have demonstrated that 100% of neurons 

that express high levels of CB1 mRNA also express mRNA for the 65-kDa isoform of glutamic 

acid decarboxylase 65 (GAD65), a synthesizing enzyme of GABA (Marsicano and Lutz, 1999). 

Furthermore, dual-label in situ hybridization and dual-label electron microscopy experiments in 

the rodent neocortex, hippocampus, and amygdala revealed that the CB1 receptor is 

preferentially expressed by, and predominantly localized in, the terminals of the subtype of 

GABA basket interneurons that contain the neuropeptide cholecystokinin (CCK). In contrast, 

CB1 is not found in GABA neurons containing the calcium-binding protein parvalbumin (PV) 

(Katona et al., 1999; Marsicano and Lutz, 1999; Hajos et al., 2000a; Katona et al., 2001; Bodor 

et al., 2005). A number of physiological studies suggest that the CB1 receptor is also contained 

in excitatory pyramidal neurons (Auclair et al., 2000; Hajos et al., 2001) and recent 

immunocytochemical studies have confirmed this localization (Kawamura et al., 2006; Katona et 

al., 2006). 
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1.4.3 CB1 receptor signaling: Modulation of GABA neurotransmission and role in 

cortical circuitry 

Consistent with the cellular localization of the CB1 receptor, electrophysiological studies have 

demonstrated that CB1 agonists affect GABA neurotransmission. For instance, in in vitro slices 

of rodent neocortex, hippocampus, and amygdala, CB1 agonists inhibit the release of GABA 

from neurons and reduce the amplitude of inhibitory postsynaptic currents (Katona et al., 1999; 

Hajos et al., 2000b; Katona et al., 2001; Trettel et al., 2004; Bodor et al., 2005). Furthermore, 

systemic administration of CB1 agonists decreases GABA levels in the rat neocortex in vivo as 

measured by microdialysis (Pistis et al., 2002). The CB1 receptor is a Gi/o-coupled receptor 

(reviewed in Freund et al., 2003) and in culture has been shown to inhibit N- and P/Q-type 

voltage-dependent Ca2+ channels, and activate inwardly rectifying K+ channels (Mackie et al., 

1995; Twitchell et al., 1997; Guo and Ikeda, 2004). These data suggests that CB1 receptor 

activation prevents vesicle fusion by blocking the depolarization of, and Ca2+ influx into, 

terminals. Under physiological conditions, CB1 receptor-mediated inhibition of GABA release 

results from a direct interaction of Gi/o-protein β-γ subunits with Ca2+ channels rather than 

through negative coupling to adenylyl cyclase or activation of inwardly rectifying K+ channels 

(Wilson and Nicoll, 2002) (Fig. 2). Importantly, CB1 receptor-mediated inhibition of GABA 

release in hippocampal slices primarily involves N-type Ca2+ channels, which are expressed by 

CCK-containing neurons, and not P/Q-type Ca2+ channels, which are expressed in PV-containing 

neurons (Wilson et al., 2001). 

 In the rodent hippocampus and neocortex, endocannabinoids and CB1 receptors mediate 

a phenomenon known as depolarization-induced suppression of inhibition (DSI) (Pitler and 

Alger, 1992; Trettel et al., 2004; Bodor et al., 2005) (Fig. 2). In this phenomenon, pyramidal cell 

depolarization produces elevated intracellular Ca2+ levels, which initiates the synthesis and 

retrograde release of endocannabinoids (Freund et al., 2003). The released endocannabinoids 

bind to presynaptic CB1 receptors located on CCK terminals resulting in the reduction of 

perisomatic inhibitory input to that same pyramidal neuron (Wilson and Nicoll, 2002) (Fig. 2). 

Thus, DSI in the neocortex is a mechanism by which pyramidal neurons can self-regulate their 

perisomatic inhibitory input. 
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 This suggests a mechanism by which inhibition from CB1/CCK-containing neurons may 

serve to spatially and temporally shape and fine tune the firing of DLPFC pyramidal cells 

necessary for working memory function (Sawaguchi et al., 1988; Sawaguchi et al., 1989; Rao et 

al., 2000; Constantinidis et al., 2002). In the rodent neocortex, CB1/CCK-containing neurons are 

chemically and electrically coupled (Galarreta et al., 2004) and in the hippocampus entrain 

oscillatory patterns of rhythmic activity (Klausberger et al., 2005; Robbe et al., 2006). 

Interestingly, in the rodent hippocampus the administration of CB1 agonists reduce the power of 

gamma oscillations presumably by interrupting the temporal coordination of CB1/CCK-

containing neurons that leads to a disruption of the organization of cell assemblies (Hajos et al., 

2000b; Klausberger et al., 2005; Robbe et al., 2006). Based on these data, CB1 receptor-

mediated disruption of gamma oscillations may be an underlying mechanism of impaired 

working memory performance in both humans and animals following chronic or acute cannabis 

use (Winsauer et al., 1999; Schneider and Koch, 2003; D'Souza et al., 2004). 
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Figure 2. CB1 receptor- and endocannabinoid-mediated depolarization-induced 

suppression of inhibition (DSI). In the rodent neocortex, pyramidal neuron depolarization 

through Ca2+ channels (1) produces an increase in intracellular calcium concentration (2). 

Intracellular calcium triggers the synthesis and retrograde release of endocannabinoids (3), which 

activate CB1 receptors on presynaptic terminals of CCK-containing neurons (4). Binding of 

endocannabinoids to CB1 receptors activate G-protein β-γ subunits that inhibit N-type Ca2+ 

channels (5) and inhibit GABA release (6). 
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1.4.4 Evidence for CB1 as a potential neuropathological entity 

To summarize, in humans, 1) chronic cannabis users and acute cannabis intoxication in normal 

individuals produce impairments in working memory performance, a core feature of 

schizophrenia and 2) cannabis exposure represents a significant environmental risk factor for 

schizophrenia, especially when exposure occurs during adolescence. In rodents, the CB1 receptor 

1) is highly expressed in the prefrontal cortex, 2) is preferentially contained in a specific 

subpopulation of GABA basket interneurons that express CCK and that furnish perisomatic input 

to pyramidal neurons, 3) inhibits the release of GABA and reduces inhibitory postsynaptic 

currents upon activation, and 4) mediates network activity patterns that are necessary for 

working memory function. Consequently, alterations in the expression of the CB1 receptor might 

represent a neuropathological entity in the DLPFC of subjects with schizophrenia. 

1.5 GOALS AND RELEVANCE OF THIS DISSERTATION 

Despite the evidence implicating cannabis use as an environmental risk factor of schizophrenia 

and data from the rodent indicating that the CB1 receptor participates in circuitry that subserves 

working memory function, little is known about the anatomical distribution and localization of 

the CB1 receptor in the primate cortex or whether the expression of the CB1 receptor is altered 

in the DLPFC of individuals with schizophrenia. The research in this dissertation is aimed at 

elucidating these issues. The experimental results illuminate important functional roles of CB1 

receptors in primate DLPFC circuitry and identify novel drug targets for the treatment of 

cognitive deficits in schizophrenia. In brief, the results of the experimental chapters are outlined: 

19 



1.5.1 Immunocytochemical distribution of the cannabinoid CB1 receptor in the 

primate neocortex: A regional and laminar analysis 

In this study, we set out to characterize the anatomical distribution of the CB1 receptor in the 

brains of macaque monkeys and humans, focusing on the neocortex. The results demonstrate that 

in both monkeys and humans, CB1 receptors are preferentially contained in axons and that the 

DLPFC contains the highest density of CB1-containing axons in the neocortex. In addition, in 

the monkey neocortex, CB1 receptors are primarily contained in cells and axon terminals that 

have the morphologic features characteristic of GABA neurons. 

1.5.2 Synaptic targets of cannabinoid CB1 receptor- and cholecystokinin-

containing axon terminals in macaque monkey prefrontal cortex 

The goal of this chapter was to determine the relationship between, and synaptic targets of, CB1 

and CCK axon terminals in the monkey DLPFC. We found that, in the monkey DLPFC, a 

majority of CB1- and CCK-IR axons and axon terminals, particularly those in layer 4, are 

overlapping and arise from a common population of intrinsic interneurons. However, axons and 

terminals that colocalize CB1- and CCK-IR represent a subset of both CB1 and CCK neurons. 

The findings suggest that several classes of CB1- and/or CCK-containing neurons are present in 

monkey DLPFC and may play distinct functional roles, including perisomatic inhibition that is 

important for working memory function. 

1.5.3 Reduced CB1 receptor mRNA and protein expression in schizophrenia: 

Implications for cognitive deficits 

This series of experiments explored the potential role of the CB1 receptor in DLPFC dysfunction 

in schizophrenia by examining the expression of CB1 receptor mRNA and protein in the DLPFC 

of subjects with schizophrenia. We also examined the relationship between changes in CB1 

mRNA expression and markers of GABA neurotransmission in schizophrenia. We found that 1) 

the levels of CB1 receptor mRNA and protein are significantly reduced in the DLPFC of subjects 
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with schizophrenia; 2) these reductions cannot be explained by potential confounding factors, 

suggesting that a reduction in CB1 receptors is intrinsic to the disease process of schizophrenia; 

and 3) the observed changes in CB1 receptor mRNA expression correlated with expression 

changes in GAD67 and CCK mRNA in the same subjects with schizophrenia. 
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2.0  IMMUNOCYTOCHEMICAL DISTRIBUTION OF THE CANNABINOID CB1 

RECEPTOR IN THE PRIMATE NEOCORTEX: A REGIONAL AND LAMINAR 

ANALYSIS 

2.1 ABSTRACT 

Delta-9-tetrahydrocannabinol (∆9-THC) has profound effects on higher cognitive functions, and 

exposure to ∆9-THC has been associated with the appearance or exacerbation of the clinical 

features of schizophrenia. These actions appear to be mediated via the CB1 receptor, the 

principle cannabinoid receptor expressed in the brain. However, the distribution of the CB1 

receptor in neocortical regions of the primate brain that mediate cognitive functions is not 

known. We therefore investigated the immunocytochemical localization of the CB1 receptor in 

the brains of macaque monkeys and humans using antibodies that specifically recognize the N- 

or C-terminus of the CB1 receptor. In monkeys, intense CB1 immunoreactivity was observed 

primarily in axons and boutons. Across neocortical regions of the monkey brain, CB1-

immunoreactive (IR) axons exhibited considerable heterogeneity in density and laminar 

distribution. Neocortical association regions, such as the prefrontal and cingulate cortices, 

demonstrated a higher density, and exhibited a unique laminar pattern of CB1-IR axons, 

compared to primary sensory and motor cortices. Similar regional and laminar distributions of 

CB1-IR axons were also present in the human neocortex. CB1-IR axons had more prominent 

varicosities in human tissue, but this difference appeared to represent a postmortem effect as 

similar morphological features increased in unperfused monkey tissue as a function of 

postmortem interval. In electron microscopy studies of perfused monkey prefrontal cortex, CB1 

immunoreactivity was predominantly found in axon terminals that exclusively formed symmetric 

synapses. The high density, distinctive laminar distribution, and localization to inhibitory 

terminals of CB1 receptors in primate higher order association regions suggests that the CB1 
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receptor may play a critical role in the circuitry that subserves cognitive functions such as those 

that are disturbed in schizophrenia. 

2.2 INTRODUCTION 

Marijuana, a preparation of the hemp plant Cannabis sativa, is one of the oldest known 

recreational drugs and today, it is one of the most widely abused illicit drugs (Watson et al., 

2000). Delta-9-tetrahydrocannabinol (∆9-THC), the chief psychoactive cannabinoid in cannabis, 

has profound effects on mood and a number of cognitive functions (reviewed in Childers and 

Breivogel, 1998; Ameri, 1999). In addition, cannabis use has been associated with both an 

increased risk of, and greater symptom severity in, psychiatric disorders such as schizophrenia 

(reviewed in Smit et al., 2004; Ujike and Morita, 2004). Thus, understanding the molecular 

mechanisms by which cannabinoids elicit their effects is of substantial interest and clinical 

importance. 

 The demonstration of selective and specific binding of a radiolabelled synthetic 

derivative of ∆9-THC to brain tissue revealed the presence of a central brain cannabinoid 

receptor (designated CB1) (Devane et al., 1988). This finding led to the cloning of the brain CB1 

receptor (Matsuda et al., 1990) and the identification of a peripheral CB2 receptor (Munro et al., 

1993), both of which are G protein-coupled receptors. The discovery of the endogenous 

cannabinoids anandamide (Devane et al., 1992) and 2-arachidonoyl-glycerol (2-AG) 

(Mechoulam et al., 1995), and the development of selective synthetic ligands that bind to the two 

receptor types (Rinaldi-Carmona et al., 1994; Rinaldi-Carmona et al., 1998), soon followed. 

 Most of the physiological and behavioral effects of cannabinoids appear to be mediated 

by the CB1 receptor (Zimmer et al., 1999), which is highly expressed and widely distributed in 

the brain (Herkenham et al., 1991; Matsuda et al., 1993; Glass et al., 1997). In particular, high 

levels of the CB1 receptor are expressed in neocortical association areas such as the prefrontal 

cortex and the cingulate cortex (Herkenham et al., 1991; Matsuda et al., 1993; Glass et al., 1997), 

which are known to mediate executive functions. Other regions involved in cognitive 

functioning, such as the hippocampus, basal ganglia, and cerebellum, also express high levels of 

the CB1 receptor (Herkenham et al., 1991; Matsuda et al., 1993; Glass et al., 1997). Therefore, 
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CB1 receptors in these regions may mediate certain deficits in cognitive functions observed 

following cannabinoid administration in humans and animals (Winsauer et al., 1999; Schneider 

and Koch, 2003; D'Souza et al., 2004). 

 In rodents, the CB1 receptor is almost exclusively expressed by GABA interneurons in 

the neocortex, hippocampus, and basal nuclei of the amygdala. Indeed, in situ hybridization 

experiments in the mouse neocortex and hippocampus have demonstrated that 100% of neurons 

that express high levels of CB1 mRNA also express mRNA for the 65-kDa isoform of glutamic 

acid decarboxylase 65 (GAD65), a synthesizing enzyme of GABA (Marsicano and Lutz, 1999). 

Furthermore, dual-label in situ hybridization and dual-label electron microscopy experiments in 

the rodent neocortex, hippocampus, and amygdala revealed that the CB1 receptor is 

preferentially expressed by, and predominantly localized in, the terminals of the subtype of 

GABA basket interneurons that contain the neuropeptide cholecystokinin (CCK). In contrast, 

CB1 is not found in GABA neurons containing the calcium-binding protein parvalbumin (PV) 

(Katona et al., 1999; Marsicano and Lutz, 1999; Hajos et al., 2000b; Katona et al., 2001; Bodor 

et al., 2005). Consistent with this anatomical localization of the CB1 receptor, 

electrophysiological studies have demonstrated that CB1 agonists affect GABA 

neurotransmission. For instance, in in vitro slices of rodent neocortex, hippocampus, and 

amygdala, CB1 agonists inhibit the release of GABA from neurons and reduce the amplitude of 

inhibitory postsynaptic currents (Katona et al., 1999; Hajos et al., 2000b; Katona et al., 2001; 

Trettel et al., 2004; Bodor et al., 2005). Furthermore, systemic administration of CB1 agonists 

decreases GABA levels in the rat neocortex in vivo as measured by microdialysis (Pistis et al., 

2002). 

 Together, these observations suggest that the endogenous cannabinoid system plays an 

integral role in modulating GABA synaptic neurotransmission. However, understanding the 

involvement of CB1 receptor-mediated signaling in cognitive functions, and in the impairment of 

these abilities in schizophrenia, requires knowledge of the anatomical localization of this 

receptor in the primate neocortex, especially in areas such as the prefrontal cortex where GABA 

neurotransmission is critical for cognitive functions (Sawaguchi et al., 1988; Rao et al., 2000). 

However, in the two studies that previously investigated the immunocytochemical distribution of 

the CB1 receptor in the monkey neocortex, the antibody that was used produced a pattern of 

labeling not entirely consistent with electrophysiological and pharmacological affects of CB1 
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agonists or the anatomical localization of the CB1 receptor in rodents (Ong and Mackie, 1999; 

Lu et al., 1999). Furthermore, although the immunocytochemical localization of CB1 in CCK 

interneurons in the human hippocampus (Katona et al., 2000) and the autoradiographic 

distribution of CB1 receptor binding sites across certain human neocortical regions (Glass et al., 

1997; (Biegon and Kerman, 2001) appear to be conserved from the rodent (Herkenham et al., 

1991; Katona et al., 1999), the immunocytochemical distribution of the CB1 receptor in the 

human brain has not been examined outside of the hippocampus. Consequently, we used 

immunocytochemical techniques and antibodies that specifically recognize the N- or C-terminus 

of the CB1 receptor to examine the regional and laminar distribution of the CB1 receptor in the 

neocortex of macaque monkeys and humans. In addition, we used immunoelectron microscopy 

in order to determine the cellular localization and cell types that express the CB1 receptor in the 

monkey dorsolateral prefrontal cortex. 

2.3 MATERIALS AND METHODS 

2.3.1 Light microscopy 

2.3.1.1 Perfused monkey specimens 

Eight adult male long-tailed macaque monkeys (Macaca fascicularis) were utilized for light 

microscopy. Housing and experimental procedures were conducted in accordance with USDA 

and NIH guidelines and with approval of the University of Pittsburgh’s Institutional Animal Care 

and Use Committee. Monkeys were deeply anesthetized with ketamine hydrochloride (25 mg/kg) 

and sodium pentobarbital (30 mg/kg), intubated, mechanically ventilated with 28% O2/air, and 

perfused transcardially with ice-cold 1% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4) 

followed by 4% paraformaldehyde in phosphate buffer, as previously described (Oeth and Lewis, 

1993). Brains were immediately removed, blocked into 5-6 mm-thick coronal or sagittal blocks, 

and postfixed for 6 hours in phosphate buffered 4% paraformaldehyde at 4°C. Tissue blocks 

were subsequently immersed in cold sucrose solutions of increasing concentrations (12%, 16%, 

and 18%) and then stored at -30°C in a cryoprotectant solution containing glycerin and ethylene 
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glycol in dilute phosphate buffer. We have previously shown that this storage procedure does not 

affect immunoreactivity for a number of antigens (see Cruz et al., 2003). Tissue blocks from 

either the left or the right hemisphere were sectioned coronally or sagittally at 40 µm on a 

cryostat and every 10th section was stained for Nissl substance with thionin. 

2.3.1.2 Human autopsy subjects 

Brain specimens from six (four male and two female) human subjects (20-38 years of age; 

postmortem interval [PMI] 4.5-8.5 hours) were obtained from autopsies conducted at the 

Allegheny County Coroner’s Office, Pittsburgh, PA, following informed consent for brain 

donation from the next-of-kin. None of the subjects had a history of psychiatric or neurologic 

disorders as determined by information obtained from clinical records and a structured interview 

conducted with a surviving relative. Neuropathological examinations revealed no abnormalities 

in any subject. All procedures were performed with the approval of the University of 

Pittsburgh’s Institutional Review Board for Biomedical Research. 

 Following retrieval of brain specimens, the left hemisphere was cut into 1.0 cm coronal 

blocks, and immersed in phosphate buffered 4% paraformaldehyde for 48 hours at 4°C. Tissue 

blocks were subsequently immersed in graded sucrose solutions and stored as described above. 

Tissue blocks containing the superior frontal gyrus (dorsolateral prefrontal cortex) or the 

calcarine sulcus (primary visual cortex) were sectioned coronally as described above. 

2.3.1.3 Unperfused monkey specimens 

One adult male long-tailed macaque monkey (Macaca fascicularis) was used to investigate the 

effect of PMI on CB1 immunoreactivity. The monkey was deeply anesthetized as described 

above and the brain was immediately removed, cut into 3-5 mm-blocks, and immersed in ice-

cold 0.01 M phosphate buffered saline (PBS; pH 7.4). Following PMIs of 2, 12, 24, or 48 hours, 

adjacent tissue blocks were transferred to cold phosphate buffered 4% paraformaldehyde for 48 

hours. Tissue blocks were then immersed in sucrose solutions and stored as described above. 

Blocks containing the dorsolateral prefrontal cortex for each PMI were sectioned on a cryostat as 

described above. 
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2.3.1.4 Immunocytochemistry 

For perfused monkeys, free-floating tissue sections were thoroughly washed in 0.01 M PBS and 

then treated for 30 minutes with a blocking solution containing 0.3% Triton X-100 and 4.5% 

normal donkey (NDS) and normal human sera (NHuS) at room temperature in PBS. Tissue 

sections were subsequently incubated for 48 hours at 4°C in PBS containing 0.3% Triton X-100, 

3% NDS and NHuS, 0.05% bovine serum albumin (BSA), and an affinity-purified polyclonal 

rabbit anti-CB1 antibody raised against either the N-terminus of the human CB1 receptor 

(residues 1-99; Sigma, St. Louis, MO; diluted 1:1000), the entire C-terminus of the rat CB1 

receptor (anti-CB1-CT) (residues 401-473; diluted 1:5000), or the last 15 amino acid residues of 

the rat CB1 receptor (anti-CB1-L15) (diluted 1:5000). Both of the C-terminus antibodies were 

kindly provided by Dr. Ken Mackie (Indiana University, Bloomington, IN). Sections were then 

incubated for 1 hour in a biotinylated goat anti-rabbit IgG secondary antibody made in donkey 

(diluted 1:200; Jackson ImmunoResearch, West Grove, PA) followed by processing with the 

avidin-biotin peroxidase method (Hsu et al., 1981) using the Vectastain Avidin-Biotin Elite Kit 

(Vector Laboratories, Burlingame, CA). The immunoperoxidase reaction was visualized using 

3,3’-diaminobenzidine (DAB; Sigma, St. Louis, MO), and sections were then mounted on gel-

coated slides, and air-dried. The DAB reaction product was stabilized by serial immersions in 

osmium tetroxide (0.005%) and thiocarbohydrazide (0.5%) as previously described (Lewis et al., 

1986).  

 Human and unperfused monkey tissue sections were processed with the anti-CB1-L15 in 

the same manner except that they were initially pretreated with 1% hydrogen peroxide for 15 

minutes to remove endogenous peroxidase activity. 

2.3.1.5 Analysis of neocortical laminar patterns 

The laminar patterns of CB1 immunoreactivity observed across different neocortical regions 

were assessed using a Microcomputer Imaging Device (MCID) system (Imaging Research Inc, 

London, Ontario, Canada). Slide-mounted sections containing selected neocortical regions were 

trans-illuminated on a light box and images were captured by a video camera under precisely 

controlled conditions and digitized. Within each cytoarchitectonic region, a rectangle ~1 mm 

wide extending from pial surface to white matter was drawn and the optical density within each 

rectangle was measured. Optical density values were divided into 100 bins using Matlab 
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software (The MathWorks, Natick, Massachusetts) and normalized within each cytoarchitectonic 

region by dividing the value of each bin by the value of the maximum bin. Laminar boundaries 

were determined by calculating the percent depth of each layer in adjacent Nissl stained sections 

using the Neurolucida program (MicroBrightfield, Inc., Colchester, VT). Values from layer 1 

were not reported due to edge effects that produced high optical density values even though layer 

1 did not contain CB1-IR axons in most regions. Optical density values for each selected region 

were obtained from a single traverse from one animal each. A systematic analysis across 

multiple animals was not performed due to a lack of available tissue containing each region 

studied from every animal. However, the overall density and laminar patterns were confirmed in 

at least two animals for each region qualitatively. 

2.3.2 Electron microscopy 

2.3.2.1 Animals and tissue preparation 

For electron microscopy studies, two additional adult male long-tailed macaque monkeys 

(Macaca fascicularis) were deeply anesthetized as described above and transcardially perfused 

with room temperature 1% paraformaldehyde and 0.05% glutaraldehyde in 0.1 M phosphate 

buffer followed by 4% paraformaldehyde and 0.2% glutaraldehyde in the same buffer as 

previously reported (Melchitzky et al., 2005). Brains were immediately removed, blocked 

coronally into 5 mm-thick blocks, and postfixed for 2 hours in phosphate buffered 4% 

paraformaldehyde at 4°C. Tissue blocks were subsequently washed in 0.1 M phosphate buffer 

and blocks containing prefrontal cortex area 46 were sectioned coronally at 50 µm on a vibrating 

microtome. 

2.3.2.2 Immunocytochemistry 

Free floating tissue sections were initially treated with 1% sodium borohydride in 0.1 M 

phosphate buffer for 30 minutes followed by several washes in 0.1 M phosphate buffer to 

improve antigenicity and reduce nonspecific immunoreactivity (Sesack et al., 1998). Sections 

were incubated for 30 min in a blocking solution containing 0.2% BSA, 0.04% Triton-X 100, 3% 

NDS, and 3% NHuS in 0.01 M PBS (pH 7.4) to further reduce nonspecific labeling. Sections 

were subsequently incubated overnight in blocking solution containing the anti-CB1-CT primary 
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antibody (diluted 1:5,000). On the following day, sections were rinsed in PBS and incubated for 

1 hour in blocking solution containing a biotinylated anti-rabbit IgG secondary antibody made in 

donkey (diluted 1:200; Jackson ImmunoResearch, West Grove, PA). Following rinses in PBS, 

sections were processed with the avidin-biotin peroxidase method and visualized with DAB as 

described above. Tissue sections were then post-fixed in 2% osmium tetroxide for 1 hour in 

phosphate buffer, dehydrated in ascending alcohol solutions and embedded in Epon 812 (EM bed 

812; Electron Microscopy Sciences, Fort Washington, PA) as previously described (Sesack et al., 

1995b). 

2.3.2.3 Sampling regions and procedures 

For each animal, trapezoid blocks were cut from layer 4 of area 46 (Fig. 3A) and sectioned on a 

Reichert ultramicrotome (Nussloch, Germany) at 80 nm. Two to four ultrathin sections were 

serially collected on 200-mesh copper grids and counterstained with uranyl acetate and lead 

citrate. For each trapezoid block two to three grids, separated by at least ten grids, were 

examined. Grids were examined on an FEI Morgagni transmission microscope (Hillsboro, OR) 

and micrographs containing CB1 labeled structures were captured as digital images using an 

AMT XP-60 digital camera (Danvers, MA) and stored for later analysis. 

2.3.2.4 Identification of neuronal and synaptic elements 

Neuronal elements encountered in electron micrographs were identified according to previous 

descriptions (Peters et al., 1991). Briefly, perikarya were identified by the presence of a nucleus. 

Dendritic shafts were identified by the presence of synaptic inputs, mitochondria, microtubules, 

and neurofilaments, whereas dendritic spines were characterized by the absence of both 

organelles and microtubules. Asymmetric synapses (Gray’s Type I) were identified by the 

widening and parallel spacing of apposed plasmalemmal surfaces, the presence of a prominent 

postsynaptic density, and round small synaptic vesicles. Symmetric synapses (Gray’s type II) 

were identified by the presence of intercleft filaments, a thin postsynaptic density, and 

pleomorphic small synaptic vesicles. 
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2.3.3 Antibody specificity 

The specificity of the antibodies raised against the entire C-terminus of the rat CB1 receptor has 

been verified by several lines of evidence. First, when tested in tissue from CB1 knockout mice, 

no immunolabeling was observed (Hajos et al., 2000b; Katona et al., 2001). Second, Western 

blotting of rat brain homogenates produced bands at the predicted molecular weights based on 

the amino acid sequence of the CB1 receptor. Third, the CB1 antibody labeled ATt20 cells 

transfected with the CB1 receptor, but did not label untransfected cells (Hajos et al., 2000b; 

Katona et al., 2001). In addition, we preadsorbed the anti-CB1-CT and anti-CB1-L15 antibodies 

with 1 µg/ml of their respective cognate peptides. We also preadsorbed the anti-CB1-L15 

antibody with the anti-CB1-CT fusion peptide and visa versa (see results). 

2.3.4 Nomenclature 

Neocortical regions were identified on adjacent Nissl-stained sections based on previously 

published cytoarchitectonic and connectional analyses in the macaque monkey and the atlas of 

Paxinos et al. (2000) (for regional abbreviations see Table 1). Frontal lobe cytoarchitectonic 

delineations used the criteria and terminology of Barbas and Pandya (1989) and Carmichael and 

Price (1994). Regions of the cingulate cortex were identified following the divisions of Vogt et 

al. (1987) and Morecraft et al. (2004). In the temporal lobe, the terminology of Amaral et al. 

(1987) was used for the subregions of the entorhinal cortex, and regions of the superior temporal 

sulcus (TE and TEO) were defined according to Seltzer and Pandya (1989). The auditory regions 

in the superior temporal gyrus were identified according to the cytoarchitectonic criteria of 

Galaburda and Pandya (1983), using the updated parcellation and nomenclature of Hackett et al. 

(1998). In this nomenclature, AI and R compose the core auditory cortex, association belt 

regions are designated RM, AL, and ML, and parabelt regions are designated RP and CP. 

Divisions of the insular cortex were classified according to Mesulam and Mufson (1982). In the 

parietal post central gyrus, primary somatosensory areas 3, 1, and 2 were identified based on the 

studies of Burton et al. (1995) and Cipolloni and Pandya (1999). Regions of the posterior parietal 

cortex were defined in accordance with Cavada and Goldman-Rakic (1989) in which area 5 

corresponds to area PE and areas 7m, 7a, and 7b correspond to areas PGm, PG, and PF of 
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Pandya and Seltzer (1982), respectively. Regions of the intraparietal sulcus were designated as 

physiologically-defined areas MIP, VIP, and LIP (reviewed in Colby and Goldberg, 1999), but 

are architectonically analogous to area PEa and POa of Pandya and Seltzer (1982) and area 7ip 

of Cavada and Goldman-Rakic (1989). Visual regions of the parieto-occipital cortex (MT, MST, 

FST) were defined based on the studies of Boussaoud et al. (1990) and Lewis and Van Essen 

(2000). The laminar boundaries of area 17 were delineated based on the divisions of Fitzpatrick 

et al. (1985). The nuclear divisions of the amygdala were defined according to Amaral and 

Bassett (1989) and Pitkanen and Amaral (1998). Regions of the hippocampal formation and 

layers of the dentate gyrus and CA regions followed the terminology of Alonso and Amaral 

(1995) and Jongen-Relo et al. (1999). Cerebellar lobules and folia were defined according to the 

atlas of Madigan, Jr. and Carpenter (1971). Finally, laminar boundaries in human neocortical 

regions were identified using published cytoarchitectonic criteria (Braak, 1976; Rajkowska and 

Goldman-Rakic, 1995) (Table 1). 
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Table 1. Abbreviations 

ABmc accessory basal nucleus, 
magnocellular division  FST fundus of the superior 

temporal area  PLdg polymorphic layer of the 
dentate gyrus 

ABpc accessory basal nucleus, 
parvicellular division  G granular layer of the 

cerebellum  PN paralaminar nucleus 

AI auditory area I (core 
primary auditory)  GL granule cell layer of the 

dentate gyrus  PrS presubiculum 

AL anterior lateral auditory 
belt  GPe globus pallidus, external  ps principal sulcus 

amt anterior middle temporal 
sulcus  GPi globus pallidus, internal  Pu putamen 

as arcuate sulcus  Id insula, dysgranular  R rostral auditory area 
(core primary auditory) 

Bi basal nucleus, intermediate 
division  Ig insula, granular  rf rhinal fissure 

Bmc basal nucleus, 
magnocellular division  ips intraparietal sulcus  RM rostromedial auditory 

belt 

Bpc basal nucleus, parvicellular 
division  lf lateral fissure  RP rostral auditory parabelt 

CA1, 
CA3 fields of the hippocampus  LIP lateral intraparietal 

cortex  S subiculum 

CC corpus collosum  Ldi lateral nucleus, dorsal 
intermediate division  SII second somatosensory 

cortex 

Cd caudate nucleus  Lv lateral nucleus, ventral 
division  SL stratum lucidum 

Ce central amygdaloid nucleus  Lvi lateral nucleus, ventral 
intermediate division  SLM stratum lacunosum-

moleculare 

Cgs cingulate sulcus  M molecular layer of the 
cerebellum  SP stratum pyramidale 

Cl claustrum  Me medial amygdaloid 
nucleus  SR stratum radiatum 

COp posterior cortical nucleus  MIP medial intraparietal 
cortex  sts superior temporal sulcus 

CP caudal auditory parabelt  MLdg molecular layer of the 
dentate gyrus  TE inferotemporal cortex 

cs central sulcus  ML middle lateral auditory 
belt  TEO temporal area TE, 

occipital part 

DG dentate gyrus  OML outer molecular layer  Th thalamus 

EC
entorhinal cortex, caudal 
field   PaS parasubiculum  TPO temporal parietooccipital 

associated area in sts 

EI
entorhinal cortex, 
intermediate field   PCL pyramidal cell layer  VIP ventral intraparietal 

cortex 
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2.3.5 Photography 

Brightfield photomicrographs were obtained with a Zeiss Axiocam camera. Digital electron 

micrographs and brightfield photomontages were assembled and the brightness and contrast were 

adjusted in Adobe Photoshop. 

2.4 RESULTS 

2.4.1 Specificity of the CB1 antibodies 

The specificity of the C-terminus CB1 antibodies was tested by omission of the primary 

antibodies and by preadsorption of the anti-CB1-CT and anti-CB1-L15 antibodies with their 

respective fusion proteins. All specific immunoreactivity was eliminated in monkey tissue under 

these conditions. When the anti-CB1-L15 antibody was preadsorbed with the anti-CB1-CT 

fusion peptide, all specific immunoreactivity was eliminated. However, when the anti-CB1-CT 

antibody was preadsorbed with the anti-CB1-L15 fusion peptide, some specific labeling of axons 

remained, indicating that the overlapping but shorter anti-CB1-L15 fusion peptide contained 

some, but not all, epitopes recognized by the anti-CB1-CT antibody. Furthermore, although 

raised against different amino acid sequences of the CB1 receptor, all three antibodies produced 

identical patterns of immunoreactivity in the neocortex (Fig. 3). Specifically, each of the CB1 

antibodies labeled numerous thin, highly varicose axons with a distinctive laminar pattern of 

distribution (Fig. 3A-C). In addition, dense perisomatic arrays of labeled processes around 

unlabeled cell bodies (Fig. 3D-F) and a small number of intensely-immunoreactive cell bodies 

restricted to neocortical layers 2 and superficial 3 were observed with all three antibodies (Fig. 

3A-C). Consistent with other reports (Hajos et al., 2000b; Katona et al., 2001), the C-terminus 

antibodies (Fig. 3A, B, D, E) produced more intense immunoreactivity with a better signal-to-

noise ratio than the N-terminus antibody (Fig. 3C, F). We therefore used the C-terminus 

antibodies in our analyses. 
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Figure 3. Brightfield photomicrographs of CB1 immunoreactivity in area 46 of the monkey 

prefrontal cortex produced by the anti-CB1-CT (A, D), anti-CB1-L15 (B, E), and the N-

terminus antibodies (C, F). All 3 antibodies labeled numerous fibers that were thin and rich in 

varicosities and produced similar laminar patterns of immunoreactivity. Some labeled axons 

formed dense ‘‘baskets’’ surrounding unlabeled cell bodies (D–F). In addition, intensely labeled 

CB1-IR neurons were present in layers 2 and superficial 3 (arrows). In panels A–C numbers and 

hash marks to the left indicate the relative positions of the cortical layers, and the dashed lines 

denote the layer 6-white matter (WM) border. The trapezoid in panel A shows the approximate 

laminar location of blocks examined for electron microscopy. Scale bars = 300 µm in C (applies 

to A, B, C) and 10 µm in F (applies to D, E, F). 
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2.4.2 Distribution of CB1 immunoreactivity in monkey neocortex 

2.4.2.1 Regional densities 

The overall distribution of CB1-IR axons varied substantially across different neocortical regions 

in each of the animals examined (Table 2). Specifically, the highest densities of CB1-IR axons 

in the neocortex were present in higher order association regions, such as the prefrontal cortex, 

whereas the primary visual cortex had the lowest density of CB1-IR axons. Within the frontal 

lobe, dorsolateral prefrontal area 46, followed by dorsal area 9 and rostral area 10, contained the 

highest densities of CB1-IR axons. From these areas the density of CB1-IR axons progressively 

declined both caudally (across areas 8, 6, and 4) and ventrally (across areas 11 and 13) (Fig. 4). 

Primary motor cortex (area 4) contained the lowest overall density of CB1-IR axons in the 

frontal lobe (Table 2; Fig. 4). Regions of the cingulate cortex also expressed a high density of 

CB1-IR axons (Table 2; Fig. 5). For instance, the densities CB1-IR axons in areas 24b-d, 23b-d, 

and 31 were similar to that observed in prefrontal areas 9 and 10. However, areas 24a, 23a, 29, 

and 30 exhibited a lower density of CB1 immunoreactivity (Table 2; Fig. 5). 
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Table 2. Relative intensity of CB1 immunoreactivity in selected regions of macaque 
monkey brain 

Region Relative Density Region Relative Density 
Frontal cortex  Parietal cortex (cont.)  

Area 46 8 (Fig. 4) Area LIP 5 
Area 10 7 Area VIP 5 
Area 9 7 Areas 3, 1, 2 4 
Area 32 7 Area MT 5 
Area 8 6 Area MST 5 
Area 6 5 Area FST 5 
Area 4 4 (Fig. 4) Area SII 5 
Area 11 7 Occipital cortex  
Area 13 6 Area 18 3 
Area 14 6 Area 17 2 (Fig. 7B) 

Cingulate cortex  Amygdala  
Area 24b-d 7 Bmc 8 
Area 23b-d 7 Bi 8 
Area 31 7 ABmc 8 
Area 24a 5 Lvi 8 
Area 23a 5 ABpc 7 
Area 29 5 Bpc 7 
Area 30 5 COp 7 

Temporal cortex  Ldi 7 
Area 36 7 Lv 7 
Area TE 6 PN 7 
Area TEO 5 Ce 0 
EI 7 Me 0 
EC 7 Hippocampus  
CP 7 Dentate gyrus 8 
RM 7 CA fields 8 
RP 7 Subiculum 7 
AL 6 Basal Ganglia  
ML 6 Globus pallidus 10 (Fig. 5) 
AI 5 SNr 10 
R 5 Caudate 1 
Area Idg 6 (Fig. 5) Putamen 1 
Area Ig 5 Claustrum 6 

Parietal cortex  Thalamus 0 (Fig. 5) 
Area 7 7 Cerebellum  
Area 5 7 Molecular layer 9 
Area MIP 5 Granular layer 4 

Note: Relative density values represent qualitative assessments of the intensity of CB1 
immunoreactivity on a scale of 0-10 with 0 representing the absence of detectable CB1 
immunoreactivity and 10 representing the highest intensity of CB1 immunoreactivity. Examples 
of points along this scale are provided as follows: 0 (Fig. 5), 2 (Fig. 7B); 4 (Fig. 4); 6 (Fig. 5); 8 
(Fig. 4), 10 (Fig. 5). 
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Figure 4. Brightfield photomicrograph of a parasagittal section through macaque monkey 

frontal lobe processed for CB1 immunoreactivity. CB1-IR axon density was greatest in 

prefrontal regions such as the dorsolateral prefrontal cortex (area 46) within the principal sulcus 

(ps). The overall density of CB1-IR axons decreased and the laminar patterns changed (arrows) 

from rostral prefrontal areas to motor areas (areas 4 and 6) caudal to the arcuate sulcus (as). On 

the orbital surface, labeled axon density also decreased from dorsal (area 10) to ventral (area 13) 

regions. Scale bar = 2 mm. 
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 In the medial temporal cortex, all fields of the entorhinal cortex (EI and EC illustrated) 

and adjacent area 36 exhibited a high density of CB1-IR axons (Table 2; Figs. 5 and 10A). 

Visual area TEO in the inferior temporal cortex contained an intermediate density of CB1-IR 

axons, whereas rostral region TE (Fig. 5) contained a moderate to high CB1-IR axon density. In 

the superior temporal gyrus, auditory association areas contained a high CB1-IR axon density, 

with parabelt regions RP and CP exhibiting slightly higher CB1-IR axon densities than the 

adjacent belt regions AL and ML (Table 2; Figs. 5 and 9A). Primary auditory regions R and AI 

exhibited only an intermediate density of CB1-IR axons (Table 2; Figs. 5 and 9A). The 

dysgranular region of the insula (Idg) contained a lower density of CB1-IR axons than the 

prefrontal cortex and labeled axon density was further reduced in the granular region of the 

insula (Ig) (Table 2; Fig. 5). 

 In the post central gyrus of the parietal cortex, primary somatosensory areas 3, 1, and 2 

had a relatively low density of CB1-IR axons, similar to that observed in primary motor area 4 

(Table 2; Fig. 5). Area SII on the dorsal bank of the lateral fissure showed a slightly higher 

density of CB1-IR axons. Areas 7 and 5 of the posterior parietal cortex contained a high density 

of CB1-IR axons similar to that observed in the prefrontal cortex, whereas areas MIP, VIP, and 

LIP in the intraparietal sulcus exhibited only an intermediate expression of CB1-IR axons (Table 

2). 

 The lowest overall density of CB1-IR axons in the neocortex was present in the primary 

visual cortex (area 17), with area 18 demonstrating a slightly higher density of CB1-IR axons 

(Table 2). Higher order visual areas MT, MST, and FST demonstrated intermediate densities of 

CB1-IR axons (Table 2).  
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Figure 5. Photomicrograph of a coronal section through macaque monkey brain 

illustrating the distribution of CB1-IR axons. Association areas such as the cingulate cortex 

(area 23), insula (Ig, Idg), auditory association cortex (RP), and the entorhinal cortex (EI) had an 

overall higher density of CB1-IR axons than primary somatosensory areas (areas 3, 1, 2) and 

primary motor cortex (area 4). Also note the distinct differences in the laminar distribution of 

labeled processes at the boundaries of some cytoarchitectonic regions (arrows). In subcortical 

structures, the intensity of CB1 immunoreactivity was high in the claustrum (Cl), the basal and 

lateral nuclei of the amygdala, and both segments of the globus pallidus (GP); intermediate to 

low in the caudate (Cd) and putamen (Pu) and the central and medial nuclei of the amygdala; and 

not detectable in the thalamus (Th). Boxes indicate regions shown at higher magnification in 

Figure 11. Scale bar = 2 mm. 
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2.4.2.2 Laminar patterns 

 The laminar distribution of CB1-IR axons also varied substantially across different 

neocortical regions in each of the animals examined. Most association areas, such as the 

prefrontal cortex (Figs. 3 and 4), parietal area 7m (Fig. 6A), and cingulate areas 23b-d, 24b-d, 

and 31 (Fig. 5), had a similar laminar distribution of CB1-IR axons. For example, in prefrontal 

area 46 (Fig. 3), the density of CB1-IR axons was lowest in layer 1 and progressively increased 

from superficial to deep across layers 2 and 3. Layer 4 contained a very dense band of 

immunoreactive axons and varicosities and layer 6 contained a band of lower density. The low 

level of immunoreactivity in layer 5 sharply demarcated the borders with layers 4 and 6. The 

presence of distinct radial fibers also distinguished layers 3 and 5. The somewhat lower overall 

density of CB1-IR axons in some other association regions was due to a lower density of positive 

axons in layer 4. For instance, areas 24a (Fig. 6B) and 23a (Fig. 5) of the cingulate cortex 

showed a fairly homogenous distribution of CB1 positive axons across layers 2-6. 

 In contrast, in the EI and EC subdivisions of the entorhinal cortex (Fig. 6C), layers 2 and 

5 contained the highest density of CB1-IR axons and varicosities, and the density was lower in 

layers 3 and 6. The lower density of radially-oriented CB1-IR axons in layer 3 in EC and layers 3 

and 4 in EI highlighted distinct borders with layers 2 and 5. Layer 2 of EI contained patches of 

high and low densities of CB1-IR axons that correspond to the islands of multipolar cells 

separated by cell-sparse zones that are characteristic of this region (Fig. 5). Layer 1 of the 

entorhinal cortex contained diffuse horizontally oriented CB1-IR axons unlike other neocortical 

association regions (Fig. 6). 
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Figure 6. Brightfield photomicrographs demonstrating regional differences in the laminar 

distribution of CB1-IR axons across association cortices of monkey brain. (A) In the medial 

posterior parietal cortex (area 7m), the overall density and laminar distribution of CB1-IR axons 

were similar to those present in prefrontal area 46 (Fig. 3). (B) In contrast, area 24a of the 

cingulate cortex showed a more homogenous laminar distribution of CB1-positive axons. (C) In 

a sagittal section of the entorhinal cortex, the transition from the caudal entorhinal cortex (EC) to 

the intermediate entorhinal cortex (area EI) is marked by a decreased density of CB1-IR axons in 

the lamina dessicans, a cell-sparse layer 4 present in EI (arrow). Throughout the entorhinal 

cortex, layers 2 and 5 demonstrated the highest density of CB1-IR axons and varicosities, and 

layers 3 and 6 exhibited a lower density of CB1-IR axons. Numbers and hash marks in each 

panel indicate the relative positions of the cortical layers, and the dashed lines denote the layer 6-

white matter (WM) border. Scale bar = 300 µm in C (applies to A, B, C). 
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Figure 7. Brightfield photomicrographs demonstrating differences in density and laminar 

distribution patterns of CB1-IR axons across sensory regions. All sensory regions showed an 

overall lower density of CB1-IR axons than association regions. (A) Primary somatosensory 

cortex (area 2) contained a relatively low density of CB1-IR axons. The density of CB1- IR 

axons was similar across layers 2–3 and 5–6, and there was a paucity of labeling in layer 4. (B) 

Primary visual cortex (area 17) showed the overall lowest density of CB1-IR axons in the cortex. 

The laminar pattern of CB1-IR axons in area 17 was unique in that layers 5–6 contained the 

highest density of labeled axons and layer 4 contained no labeled axons. (C) Higher-order visual 

areas, such as area FST, contained an overall CB1-IR axon density that was lower than other 

association regions, and the laminar distribution of CB1-IR axons was homogeneous across 

layers. Numbers and hash marks to the left of each panel indicate the relative positions of the 

cortical layers, and the dashed lines denote the layer 6-white matter (WM) border. Scale bar = 

300 µm in C (applies to A, B, C). 
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The laminar pattern of CB1-IR axons was quite different in primary motor (Fig. 4) and 

somatosensory cortices (Fig. 7A), where the density of CB1-IR axons was greatest in layers 2-3 

and 5-6 and lowest in layer 4. The primary visual cortex was unique in that the highest density of 

CB1-IR axons was observed in layers 5-6, layers 1-3 exhibited diffuse horizontally oriented 

axons, and layer 4 demonstrated a complete absence of CB1-IR axons (Fig. 7B). The laminar 

distribution of CB1-IR axons in higher order visual areas such as area FST was homogeneous 

across layers (Fig. 7C). 

 These qualitative regional differences in laminar distribution of CB1 immunoreactive 

axons were confirmed by optical density measures (Fig. 8). For example, optical density across 

layers in area 46 (Fig. 8A), area 24a (Fig. 8B), area 2 (Fig. 8C), and area 17 (Fig. 8D) precisely 

matched the laminar distribution of CB1-IR axons observed in these areas qualitatively. 

 The differences in density and laminar distribution of CB1-IR axons were so striking that 

many boundaries between cytoarchitectonic regions were clearly delineated by CB1 

immunoreactivity (Fig. 9). For instance, the boundary between primary auditory cortex AI and 

the adjacent auditory association belt cortex area ML in the superior temporal gyrus was clearly 

distinguished by the appearance of a dense band of CB1 immunoreactive axons in layer 4 of ML 

(Fig. 9A). In the posterior parietal cortex, the border between area 5 and MIP could be delineated 

by the disappearance of a dense band of CB1-IR axons in layer 4 of MIP (Fig. 9B). In the visual 

cortex, the area 17/18 border was clearly identified by an increase in axon density in layers 2-4 

of area 18 (data not shown). 
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Figure 8. Plots of CB1 optical density as a function of cortical layer in 4 regions of the 

macaque monkey neocortex. Optical density values in A-D were obtained from the identical 

cortical traverses shown in Figure 3B (area 46), Figure 6B (area 24a), and Figure 7A (area 2) 

and B (area 17). For each area optical density measures were divided into 100 bins, and within 

each region optical density measures were normalized by dividing the value of each bin by the 

value of the maximum bin. Note the marked regional differences in laminar distribution patterns. 
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Figure 9. Brightfield photomicrographs illustrating shifts in CB1-IR axon density and 

laminar distribution at cytoarchitectonic boundaries. (A) CB1-IR axon density was greater in 

association auditory cortex (ML and CP) compared with primary auditory cortex (AI). Note the 

appearance of a dense band of CB1-IR axons in layer 4 at the border of AI–ML (arrow) that 

becomes even more distinct at the border of ML–CP (arrowhead). (B) In posterior parietal 

cortex, the boundary between area 5 and MIP was marked by a decrease in overall CB1-IR axon 

density and disappearance of a dense layer 4 band of CB1-IR axons (arrow). The transition 

between areas MIP and VIP was also marked by a slight decrease in overall CB1-IR axon 

density (arrowhead). Scale bars = 500 µm. 
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2.4.3 Other brain regions 

In order to place the relative density of CB1-labeled structures in the neocortex in a broader 

context, we also evaluated a sampling of other telencephalic regions. 

2.4.3.1 Hippocampal formation 

The hippocampus contained overall a high density of CB1-IR axons that was similar to the 

density of labeled axons observed in the prefrontal cortex (Table 2). A dense meshwork of 

immunolabeled beaded axons was present throughout all regions of the hippocampal formation 

(Table 2; Fig. 10). In the CA1-CA3 fields, the pyramidal cell layer (PCL) demonstrated a high 

density of CB1-IR axons that surrounded unlabeled pyramidal cells (Fig. 10A, B). The stratum 

lacunosum-moleculare (SLM) also exhibited a high density of CB1-IR axons (Table 2; Fig. 

10A, B), whereas the stratum oriens (SO) and stratum radiatum (SR) in CA1-CA3 of the 

hippocampus showed a slightly lower density of CB1-IR axons (Table 2; Fig. 10A, B). The 

stratum lucidum (SL) of the CA3 region demonstrated the lowest density of CB1-IR axons 

(Table 2; Fig. 10A, B). CB1-IR axons appeared to radiate through the SL in parallel with 

pyramidal cell dendrites, whereas in the SO, SR, and SLM regions, CB1-IR axons appeared to 

travel perpendicular to dendrites originating from pyramidal cells in the PCL (Fig. 10B). The 

subicular regions demonstrated a high density of CB1-IR axons, although the density was 

somewhat lower than that present in the CA regions (Fig. 10A). 

 The dentate gyrus (DG) was distinguished by an extremely low density of CB1 labeling 

in the granule cell layer (GL), which appeared as a prominent immunonegative strip at low 

magnification (Fig. 10A). Similar to the PCL in the CA regions, granule cells were always 

immunonegative for CB1; however, in contrast to the PCL, CB1-IR axons appeared to radiate 

through the GL without surrounding unlabeled granule cells except at the border of the 

infragranular plexus (Fig. 10C). The outer molecular layer (OML) contained a very high density 

of CB1-IR axons, whereas the molecular layer (MLdg) contained a slightly lower density of 

CB1-IR axons (Fig. 10A, C). The polymorphic layer (PLdg) had a somewhat lower density of 

CB1-IR axons compared to MLdg (Fig. 10C). 
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Figure 10. (A) Brightfield photomicrograph of a coronal section through macaque medial 

temporal lobe illustrating the distribution of CB1-IR axons in the hippocampal formation 

and adjacent entorhinal cortex (EC). A dense meshwork of CB1-IR beaded axons was 

observed throughout the entire hippocampal formation. Note the distinct laminar pattern of CB1-

IR axons in the EC compared with area 36. (B) In the CA regions of the hippocampus, the highest 

density of CB1-IR axons was located in the pyramidal cell layer (PCL) and stratum lacunosum-

moleculare (SLM) and the lowest density of CB1-IR axons was located in the stratum oriens 

(SO) stratum lucidum (SL). (C) In the dentate gyrus, the highest density of CB1-IR axons was 

observed in the outer molecular layer (OML) and infragranular plexus (arrow). The granule cell 

layer (GL) contained the lowest density of CB1-IR axons, and granule neurons were always CB1 

immunonegative. Scale bar = 1 mm in A; 150 µm in B (applies to B, C). 
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2.4.3.2 Amygdala 

The pattern of CB1 immunolabeling clearly followed the boundaries of several nuclei in the 

monkey amygdala (Figs. 5 and 11C). The most intense CB1 immunoreactivity was observed in 

the cortical-like basolateral complex (Table 2; Figs. 5 and 11C), where a dense meshwork of 

varicose axons surrounded CB1-immunonegative cell bodies (Fig. 11C). In the basolateral 

complex, the density of CB1-IR axons was greatest in the Bmc, Bi, ABmc and Lvi nuclei (Fig. 

5), whereas the more ventral and lateral ABpc, Bpc, Ldi, and Lv nuclei contained slightly fewer 

CB1-IR axons. The overall density of CB1-IR axons in the basolateral nuclei was similar to that 

observed in the prefrontal cortex (Table 2). In the striatal-like central (Ce) and medial (Me) 

nuclei of the monkey amygdala, no CB1-IR axons were evident (Table 2; Figs. 5 and 11C). In 

these nuclei, light labeling above that in the white matter was observed; however, this 

immunoreactivity was morphologically indistinct. 

2.4.3.3 Basal ganglia, cerebellum, thalamus, and claustrum 

As summarized in Table 2, CB1 immunoreactivity was present throughout the basal ganglia, but 

each nucleus exhibited a pattern of immunoreactivity that differed from other components of the 

basal ganglia and from regions of the neocortex. The caudate nucleus (Cd) and putamen (Pu) 

contained sparsely-distributed, thin, varicose, labeled processes, as well as a diffuse 

immunoreactivity that was morphologically indistinct (Table 2; Figs. 5 and 11A, B). The globus 

pallidus (GP), which exhibited the most intense CB1 immunoreactivity of the brain regions 

examined (Table 2; Figs. 5 and 11B), contained a very dense meshwork of thin, smooth, CB1-

IR processes that encircled large unstained fascicles, cell bodies, and wooly fibers (Fig. 11B). 

The substantia nigra pars reticulata (SNr) demonstrated CB1 immunoreactivity identical to that 

observed in the GP (data not shown). The thalamus (Th) appeared to be completely devoid of 

CB1-IR axons (Fig. 5). The claustrum (Cl) exhibited a high density of CB1-IR highly varicose, 

axonal processes (Table 2), similar to those present in the adjacent insular cortex (Fig. 11A). As 

in the neocortex, axons in the Cl were found to surround immunonegative cell bodies. 

 In the cerebellum, most lobules contained a high intensity of CB1 immunoreactivity with 

a distinctive laminar pattern (Fig. 12). The intensity of CB1 immunoreactivity was greatest in the 

molecular layer and lowest in the granular layer (Table 2; Fig. 12). Intense CB1 
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immunoreactivity coated the basilar portion of Purkinje cell bodies in a triangular cap-like 

fashion reminiscent of the pinceau synapses furnished by basket interneurons (Fig. 12B). 

However, Purkinje cell bodies and dendrites were always CB1 immunonegative (Fig. 12B). 

Although this pattern of CB1 immunoreactivity was present in most lobules, lobule X was 

notable for containing a very low level of CB1 immunoreactivity in the molecular layer (Fig. 

13). 
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Figure 11. Higher magnification photomicrographs of boxed regions in Figure 5 illustrating 

different patterns of CB1 immunoreactivity in subcortical structures. (A, B) 

Immunoreactivity in the putamen (Pu) was enhanced pericellularly with some evidence of 

sparsely distributed, thin, varicose processes, but most immunoreactivity was morphologically 

indistinct. Immunoreactivity in the claustrum (Cl) was localized to axon processes and boutons, 

similar to that found in the adjacent granular insular cortex (Ig). (B) The globus pallidus (GP) 

contained a very dense meshwork of thin smooth CB1-IR processes that appeared to encircle 

unstained compartments such as cell bodies and wooly fibers. (C) The basal and lateral nuclei of 

the amygdala (Bmc illustrated) contained a very dense plexus of thin varicose axons that 

surrounded unlabeled cell bodies. In contrast, the central nucleus (Ce) of the amygdala contained 

few CB1-IR axons. Scale bar = 150 µm in B (applies to A, B, C) 
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Figure 12. CB1 immunoreactivity in the monkey cerebellar cortex. (A) Low-power 

brightfield photomicrograph demonstrating intense CB1 immunoreactivity in the molecular layer 

(M) and lower CB1 immunoreactivity in the granular layer (G) of the cerebellum. (B) High-

power brightfield photomicrograph illustrating CB1 immunoreactivity in the molecular, 

Purkinje, and granule cell layers of the cerebellum. The somata and dendrites of Purkinje cells 

were always CB1 immunonegative (asterisks). Note the dense triangular, pinceau synapse-like 

immunolabeling surrounding the basal portion of Purkinje cells. Scale bars = 300 µm in A; 50 

µm in B. 
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Figure 13. Low-power brightfield photomicrograph illustrating CB1 immunoreactivity in 

the nodulus (lobule X) and uvula (lobule IX) of the cerebellum. The intensity of CB1 

immunoreactivity was very low in the molecular layer (M) of lobule X and increased caudally in 

lobule IX. Lobular differences in the granular layer (G) were much less marked. Scale bar = 1 

mm.
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2.4.4 Comparison to human neocortex 

The distribution of CB1-IR axons in the human prefrontal and primary visual cortices was very 

similar to that observed in homologous regions of the monkey neocortex with a few exceptions. 

As in the monkey, human prefrontal area 46 exhibited a much higher density of CB1-IR axons 

than primary visual cortex area 17 (Fig. 14). In the human prefrontal cortex (Fig. 14A), layer 5 

contained the lowest density of CB1-IR axons, layers 2-3 contained a moderate density of CB1-

IR axons, and layer 4 contained the highest density of CB1-IR axons, similar to that observed in 

the monkey. However, in contrast to the monkey, the density of CB1-IR in layer 6 did not appear 

to be greater than in layer 5. In human area 17 (Fig. 14B), the laminar distribution of CB1-IR 

axons was identical to the monkey. However, layers 1-3 contained a greater density of CB1-IR 

axons and layer 4 appeared to contain slightly more CB1-IR radial axons, whereas layers 5-6 

exhibited a lower density of CB1-IR axons than in the monkey (Fig. 14B). Finally, the 

morphology of CB1-IR axons in the human neocortex differed slightly from that observed in the 

monkey. In the human neocortex (Fig. 15C), the intervaricose segments of CB1-IR axons were 

less distinct and boutons appeared to be larger and swollen compared to those in the perfused 

monkey neocortex (Fig. 15A). These morphological differences appeared to reflect a 

postmortem effect. In unperfused monkey tissue with different postmortem delays before 

fixation, the intervaricose segments of CB1-IR axons became less distinct and boutons became 

more swollen with longer delays (Fig. 15B). 
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Figure 14. Brightfield photomicrographs demonstrating CB1 immunoreactivity in human 

prefrontal cortex area 46 (A) and primary visual cortex area 17 (B). The differences in 

relative density and laminar distribution between these regions were quite similar to those 

between the homologous areas in monkeys. Scale bar = 300 µm in B (applies to A, B). 
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Figure 15. High-power, brightfield photomicrographs of CB1-IR axons in layer 5 of 

monkey (A, B) and human (C) prefrontal cortex area 46 demonstrating the effect of PMI 

on axon morphology. (A) In a perfused monkey with no PMI, CB1-IR boutons are relatively 

small, and the axons have distinct intervaricose axon segments. (B) In a nonperfused monkey 

after a 24-h PMI, boutons appear larger and intervaricose axon segments less well defined. (C) 

In a 33-year-old male human subject with a PMI of 8 h, boutons appear enlarged and 

intervaricose axon segments are less distinct, similar to observations in the 24-h PMI monkey. 

Scale bar = 20 µm in C (applies to A, B, C). 
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2.4.5 Electron microscopy 

Electron microscopy studies were performed in layer 4 of monkey area 46 in order to assess the 

cellular distribution of the CB1 receptor (Fig. 3A). CB1 immunoreactivity was found in axon 

terminals forming symmetric synapses (Gray’s type II) (Fig. 16A). Asymmetric synapses 

(Gray’s type I), dendrites, and dendritic spines did not appear to be immunoreactive for the CB1 

receptor (Fig. 16A). When CB1 immunoreactivity was observed in cell bodies, they had the 

characteristic features of GABA neurons such as invaginated nuclei. The immunoperoxidase 

reaction product in cell somas was associated with the Golgi apparatus and endoplasmic 

reticulum, but was not found near the plasma membrane (Fig. 16B). 
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Figure 16. Electron micrographs demonstrating CB1 immunoperoxidase labeling in area 

46 of monkey prefrontal cortex. (A) CB1 immunoreactivity in an axon terminal (at) forming a 

symmetric synapse (arrow) onto an unlabeled dendrite (D). Terminals forming asymmetric 

synapses (arrowhead) were always CB1 immunonegative. (B) Low-power electron micrograph 

demonstrating CB1 labeling in the cell body of a putative GABA interneuron as evidenced by an 

invaginated (asterisk) nucleus (N). Reaction product was associated with the Golgi apparatus and 

rough endoplasmic reticulum but not found near the plasma membrane. Scale bars = 500 nm. 

59 



2.5 DISCUSSION 

The results of this study demonstrate that 1) the distribution of CB1-IR axons is heterogeneous 

across neocortical regions of the macaque monkey with regions associated with higher cognitive 

functions, such as the prefrontal cortex, containing higher densities of CB1-IR axons than 

primary motor and sensory cortices; 2) different neocortical regions exhibit distinctive laminar 

distributions of CB1-IR axons, which precisely mark the cytoarchitectonic boundaries between 

many regions; 3) the density and distribution of CB1-IR axons also differ substantially across 

other regions of the primate brain; 4) the regional and laminar distributions of CB1-IR axons in 

the human neocortex are quite similar to those in monkey, although the morphology of labeled 

axons is altered by postmortem delay and; 5) in the monkey neocortex CB1 immunoreactivity is 

primarily contained in cells and axon terminals that have the morphologic features characteristic 

of GABA neurons. 

2.5.1 Methodological considerations 

Several lines of evidence indicate that the antibodies used in this study are selective for the 

central CB1 receptor. First, three antibodies raised against different portions of the CB1 receptor 

produced identical patterns of immunoreactivity. Second, preadsorption with the cognate 

peptides eliminated specific immunoreactivity. Third, previous studies confirmed the specificity 

of the anti-CB1-CT antibody by demonstrating the elimination of immunoreactivity in CB1 

knock-out mice, the identification of bands of appropriate molecular weight in Western blot 

analysis, and the labeling of cultured cells transfected with the CB1 receptor (Hajos et al., 2000b; 

Katona et al., 2001). 

 Previous studies employing immunocytochemistry in both rat (Tsou et al., 1998) and 

monkey (Ong and Mackie, 1999; Lu et al., 1999) using antibodies raised against the first 77 N-

terminus amino acids of the CB1 receptor reported a significantly lower density and less distinct 

laminar pattern of axon labeling, and a much greater density of labeled cells including 
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interneurons and pyramidal neurons. These differences in patterns of immunoreactivity could 

reflect the phosphorylation state of the C-terminus of the CB1 receptor, which mediates CB1 

receptor internalization (Hsieh et al., 1999). As suggested by Egertová and Elphick (2000), the 

last 13 amino acids of the CB1 receptor contain six sites that, when phosphorylated, may render 

the CB1 receptor nonimmunoreactive to antibodies directed against the C-terminus. Therefore, 

internalized receptors in cell bodies may not be recognized by C-terminus antibodies. However, 

we observed immunoreactivity within cell bodies, including labeling associated with cytoplasmic 

organelles, as has been reported in rodents using the same C-terminus antibodies (Hajos et al., 

2000b; Katona et al., 2001; Bodor et al., 2005). Furthermore, in the present study we observed 

identical patterns of immunoreactivity with both C-terminus and N-terminus antibodies. 

Together, these data indicate that the C-terminus antibodies used in this study recognize CB1 

receptors whether they are inserted in the plasma membrane or internalized. 

 Some studies suggest that CB1 receptors might be present presynaptically in pyramidal 

cell axon terminals where they could affect glutamate release. For instance, low levels of CB1 

mRNA have been observed in pyramidal neurons (Marsicano and Lutz, 1999) and the 

application of CB1 agonists has been reported to reduce the amplitude of excitatory postsynaptic 

currents (Auclair et al., 2000; Hajos et al., 2001). These findings could reflect alternative splicing 

of the N-terminus CB1 receptor to form a variant of the CB1 receptor (CB1A) (Shire et al., 1995; 

Egertová and Elphick, 2000). In the proposed CB1A splice variant, the first 61 amino acids of the 

CB1 receptor are replaced by 28 amino acids that are unrelated to the full CB1 receptor. It could 

be argued that it is the CB1A splice variant that is expressed by pyramidal neurons; however, the 

C-terminus antibodies used in this study would recognize both isoforms of the CB1 receptor, yet 

only inhibitory neurons, axons, and terminals were found to contain CB1 immunoreactivity. 

Alternatively, a yet unidentified cannabinoid receptor (or receptors) might be present in 

glutamatergic neurons (Begg et al., 2005). This hypothesis is supported by findings that the 

ability of WIN 55,212-2 (a CB1 receptor agonist) to block inhibitory postsynaptic currents is 

abolished in CB1 knock-out mice, whereas its ability to prevent excitatory postsynaptic currents 

persists (Hajos et al., 2001). In addition, WIN 55,212-2 binds to tissue of CB1 knock-out mice, 

but with lower affinity than in wild type mice (Breivogel et al., 2001). 
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2.5.2 Regional and laminar distributions of CB1-containing axons 

CB1-IR axons were present throughout the monkey and human neocortex, but showed marked 

regional variations in overall densities and laminar distributions. For example, the overall density 

of CB1-IR axons was much higher in association areas, such as the prefrontal cortex, than in 

primary sensory and primary motor regions. The distribution of CB1 immunoreactivity across 

monkey neocortical regions was broadly similar to that observed in the rat with several C-

terminus antibodies (Egertová and Elphick, 2000; Hajos et al., 2000b; Katona et al., 2001; Bodor 

et al., 2005) and to the distribution of CB1 receptor binding sites (Herkenham et al., 1991). 

However, some species differences in the laminar distribution of CB1-IR axons are worth noting. 

For instance, Egertová and Elphick (2000) reported that CB1-IR axons were most densely -

localized in layers 2-3 and 6, and least dense in layer 4, of the rat frontal and cingulate cortices, 

whereas in the monkey layer 4 contained the highest density of CB1-IR axons in these regions. 

Furthermore, the dense band of CB1-IR axons in layer 5A, bordered by sparse axon labeling in 

layers 4 and 5B, in the rat somatosensory cortex (Bodor et al., 2005) differs from the relatively 

similar density of axons across layers 2-3 and 5-6 and sparse axonal labeling in layer 4 in the 

monkey primary somatosensory cortex. In contrast to the differences observed in the laminar 

distribution of CB-IR axons in the monkey and rat, the laminar distribution of CB1-IR axons 

across homologous regions of the monkey and human is nearly identical. Furthermore, the 

laminar distribution of CB1 receptor binding sites in the human revealed by autoradiography 

(Glass et al., 1997) is quite similar to that of CB1-IR axons observed here. 

 The various laminar distributions of CB1-IR axons across the monkey neocortex raise the 

question of whether some CB1-IR axons could arise from extrinsic sources. Although the band 

of CB1-IR axons in layer 4 of some regions suggests a thalamic source for these axons, the 

absence of labeling in terminals forming asymmetric synapses (this study; Katona et al., 1999; 

Hajos et al., 2000b; Katona et al., 2001; Bodor et al., 2005) and the complete absence of CB1 

immunoreactivity in the thalamus excludes this source. In contrast, the presence of CB1 

immunoreactivity in cell bodies and terminals with the morphological features of GABA neurons 

suggests that the most likely source of neocortical CB1-IR axons is intrinsic inhibitory local 

circuit interneurons. This idea is supported by a recent study demonstrating that the axons of 

intracellularly-labeled CB1-IR cells in layers 2-3 of the mouse neocortex arborized extensively 
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within layers 2-3, but also projected into layers 4-6 (Galarreta et al., 2004). Furthermore, recent 

evidence suggests that neocortical neurons containing CB1 receptors belong to the subpopulation 

of large basket GABA neurons that contain the neuropeptide CCK (Bodor et al., 2005). Indeed, 

experiments in the rodent neocortex revealed that nearly all neurons expressing high levels of 

CB1 mRNA also express CCK mRNA (Marsicano and Lutz, 1999) and that inhibitory terminals 

containing CB1 immunoreactivity also contain CCK immunoreactivity (Bodor et al., 2005). 

Furthermore, both the laminar pattern of CB1-IR neurons and axons and the perisomatic arrays 

formed by CB1-IR processes observed in this study directly match the findings of CCK-IR 

structures in monkey neocortex (Oeth and Lewis, 1990; Oeth and Lewis, 1993). 

2.5.3 Functional implications 

In the rodent, activation of CB1 receptors inhibits the release of GABA from presynaptic 

terminals and reduces GABAA receptor-mediated inhibitory postsynaptic currents in pyramidal 

neurons in the neocortex (Trettel et al., 2004; Galarreta et al., 2004; Bodor et al., 2005). 

Furthermore, the binding of endocannabinoids to CB1 receptors in vitro mediates depolarization 

suppression of inhibition (DSI) in the rodent neocortex (Trettel et al., 2004; Bodor et al., 2005). 

In this phenomenon, repetitive firing of pyramidal neurons produces elevated intracellular 

calcium levels, which initiates the synthesis and retrograde release of endocannabinoids. The 

released endocannabinoids bind to presynaptic CB1 receptors located on CCK terminals 

resulting in the reduction of proximal inhibitory input to that same pyramidal neuron (reviewed 

in Wilson and Nicoll, 2002). Thus, DSI in the neocortex is a mechanism by which pyramidal 

neurons can self-regulate their perisomatic inhibitory input. 

 These data suggest that CB1 receptors play an important role in regulating network 

activity patterns by controlling proximal inhibitory input to pyramidal neurons during prolonged 

firing. Synchronous rhythmic activity appears to arise from the coordinated firing of electrically-

coupled interneurons belonging to the same population which then entrain the spike timing of 

large cell ensembles (reviewed in Connors and Long, 2004). Although fast-spiking, 

parvalbumin-containing neurons are the major cell type necessary for rhythmically entraining 

pyramidal cells to fire in the gamma range, CB1/CCK basket neurons may be necessary for fine 

tuning network oscillations (Freund, 2003). Indeed, in the rat hippocampus CB1 agonists 
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significantly reduce the amplitude of gamma band oscillations suggesting that the activation of 

CB1 receptors disinhibit pyramidal cells and prevent them from firing in synch (Hajos et al., 

2000b).  

 These functional data in rodents, in concert with the high density of CB1-IR axons in the 

prefrontal cortex of monkeys and humans observed in this study, suggest that the 

endocannabinoid system may modulate cognitive functions, such as working memory. Indeed, in 

the human prefrontal cortex gamma band power increases directly and in proportion to working 

memory load (Howard et al., 2003), and the systemic administration of cannabinoids disrupts the 

ability to perform working memory tasks in both humans and animals (Winsauer et al., 1999; 

Schneider and Koch, 2003; D'Souza et al., 2004). This disruption in cognitive abilities following 

cannabis use might be due, at least in part, to decreased GABA transmission in the prefrontal 

cortex (Pistis et al., 2002), which is critical for performance of working memory tasks 

(Sawaguchi et al., 1988; Rao et al., 2000). Interestingly, the working memory deficits commonly 

observed in individuals with schizophrenia (Weinberger et al., 1986; Callicott et al., 2003) are 

associated with both reduced gamma band power and deficient perisomatic input to pyramidal 

neurons from parvalbumin-containing GABA neurons (Lewis et al., 2005). Thus, activation of 

CB1 receptors through the use of exogenous cannabinoids could result in an additional deficit in 

perisomatic GABA input to pyramidal neurons in individuals with schizophrenia by inhibiting 

GABA release from CCK basket interneurons. Future studies investigating the physiological role 

of CB1 receptors in the monkey prefrontal cortex, and of the integrity of the CB1 in the 

prefrontal cortex of individuals with schizophrenia, may provide critical insight into the role of 

exogenous cannabinoids and CB1 receptors in the cognitive deficits associated with 

schizophrenia. 
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3.0  SYNAPTIC TARTGETS OF CB1- AND CHOLECYSTOKININ-CONTAINING 

AXON TERMINALS IN MACAQUE MONKEY PREFRONTAL CORTEX 

3.1 ABSTRACT 

Exposure to cannabis impairs certain cognitive functions reliant on the circuitry of the 

dorsolateral prefrontal cortex (DLPFC), including working memory, and is a risk factor for the 

development of schizophrenia. The actions of cannabis are mediated via the brain cannabinoid 1 

(CB1) receptor, which in rodents is heavily localized to the axon terminals of the subpopulation 

of GABA basket neurons that contain cholecystokinin (CCK). However, neither the relationship 

of the CB1 receptor to CCK-containing interneurons, nor the postsynaptic targets of CB1 and 

CCK axon terminals, have been examined in primate DLPFC, a region that contains high levels 

of both CB1- and CCK-immunoreactive (IR) axons. Therefore, we compared the synaptic type 

and postsynaptic targets of CB1- and CCK-IR axon terminals in macaque monkey DLPFC. At 

the light microscopic level, CB1- and CCK-IR axons exhibited a similar laminar distribution, 

with the greatest density present in layer 4. Dual-label experiments showed that CB1 and CCK 

immunoreactivities were extensively, but not completely, colocalized. At the electron 

microscopic level, all synapses formed by CB1-IR axon terminals were symmetric, whereas 

CCK-labeled axon terminals formed both symmetric (88%) and asymmetric (12%) synapses. 

The primary postsynaptic target of both CB1- and CCK-IR axon terminals forming symmetric 

synapses was dendritic shafts (81-88%). The synaptic targets of CB1- and CCK-IR axon 

terminals were similar in layer 4, but differed in layers 2-superficial 3, where 11% of CCK-IR 

terminals, but no CB1-IR terminals formed synaptic contacts with cell bodies. Thus, in the 

monkey DLPFC, CB1 and CCK are colocalized in a subset of GABA neurons that principally 

target dendrites. These findings provide an anatomical substrate for the impaired function of the 

DLPFC associated with cannabis use.  
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3.2 INTRODUCTION 

In both humans and animals, exposure to marijuana and other forms of cannabis produces 

impairments in complex cognitive functions including those subserved by the dorsolateral 

prefrontal cortex (DLPFC), such as working memory (Winsauer et al., 1999; Schneider and 

Koch, 2003; D'Souza et al., 2004). In addition, cannabis use during adolescence increases the 

risk of developing schizophrenia (Henquet et al., 2005a; Fergusson et al., 2006), a disorder 

characterized by both dysfunction of the DLPFC and working memory impairments (Lewis et 

al., 2005). The effects of cannabis are mediated by the cannabinoid CB1 receptor, the principal 

cannabinoid receptor in the brain (Freund et al., 2003), which in the primate neocortex is most 

heavily expressed in the DLPFC (Eggan and Lewis, 2007). 

 In primates, working memory function depends critically on the synaptic connectivity 

and patterns of activity within the DLPFC (reviewed in Goldman-Rakic, 1995; Fuster, 2001). In 

particular, networks of interconnected GABA interneurons are essential for the synchronization 

of large cell ensembles of neurons (Connors and Long, 2004) and the pacing of oscillatory 

patterns required for working memory (Howard et al., 2003). Consistent with these findings, 

working memory performance in monkeys is disrupted by GABAA receptor antagonists injected 

into the DLPFC (Sawaguchi et al., 1988; Rao et al., 2000). 

 In the rodent neocortex, the CB1 receptor is heavily expressed by, and localized in the 

terminals of, the subtype of GABA basket interneurons that contain the neuropeptide 

cholecystokinin (CCK), but is not present in GABA basket neurons that contain the calcium 

binding protein parvalbumin (PV) (Marsicano and Lutz, 1999; Bodor et al., 2005). In line with 

this anatomical localization, activation of CB1 receptors by either exogenous or endogenous 

cannabinoids inhibits the release of GABA from CCK terminals and strongly suppresses GABAA 

receptor-mediated inhibitory postsynaptic currents in pyramidal neurons (Trettel et al., 2004; 

Galarreta et al., 2004; Bodor et al., 2005). Furthermore, CB1/CCK-containing neurons are 

electrically coupled in the neocortex (Galarreta et al., 2004) and in the hippocampus entrain 

oscillatory patterns of activity which are disrupted following administration of CB1 agonists 

(Klausberger et al., 2005; Robbe et al., 2006). 

 In concert, these data suggest that CB1 receptors may play an important role in regulating 

network activity in the primate DLPFC by controlling proximal inhibitory input to pyramidal 
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neurons; consequently, CB1 receptor alterations in the DLPFC in schizophrenia might contribute 

to the working memory impairments in the illness. However, the relationship between, and 

synaptic targets of, CB1 and CCK axon terminals has not been examined in the primate DLPFC. 

Consequently, in this study we used immunocytochemistry and light and electron microscopy to 

1) determine whether CB1 and CCK are co-localized in cell bodies and axon terminals, 2) 

identify the type(s) of synapses formed by, and the synaptic targets of, CB1- and CCK-

immunoreactive (IR) axon terminals, and 3) determine whether these targets differ as a function 

of cortical layer in monkey DLPFC area 46. 

3.3 MATERIALS AND METHODS 

3.3.1 Light Microscopy 

3.3.1.1 Animals and Tissue Preparation 

For light microscopy studies, four adult, male long-tailed macaque monkeys (Macaca 

fascicularis) were utilized. Monkeys were deeply anesthetized with 25 mg/kg ketamine 

hydrochloride and 30 mg/kg sodium pentobarbital and then perfused transcardially with ice-cold 

1% paraformaldehyde in 0.1 M phosphate buffer (PB; pH 7.4) followed by 4% 

paraformaldehyde in PB, as previously described (Oeth and Lewis, 1993). Brains were 

immediately removed and coronal blocks (5-6 mm-thick) were postfixed in phosphate-buffered 

4% paraformaldehyde at 4°C for 6 hours. Tissue blocks were subsequently cryoprotected and 

then stored at -30°C as previously described (Oeth and Lewis, 1993). We have previously shown 

that immunoreactivity for a number of antigens are unaffected by this storage procedure (Cruz et 

al., 2003). Coronal blocks containing DLPFC area 46 from either the left or the right hemisphere 

were sectioned at 40 µm on a cryostat and every 10th section was stained for Nissl substance with 

thionin. 

 Housing and experimental procedures were conducted in accordance with guidelines set 

by the United States Department of Agriculture and the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals and with approval of the University of Pittsburgh’s 
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Institutional Animal Care and Use Committee. All efforts were made to minimize the number of 

animals used and their suffering. 

3.3.1.2 Immunocytochemistry and dual label immunofluorescence  

For standard single-label immunocytochemistry, free-floating coronal tissue sections were 

washed several times in 0.01 M phosphate-buffered saline (PBS; pH 7.4) and then incubated in 

blocking solution containing 3% Triton X-100, and 4.5% normal donkey sera (NDS) and normal 

human sera (NHuS; Jackson ImmunoResearch, West Grove, PA) in PBS for 30 min to reduce 

background. Tissue sections were then incubated in a PBS solution containing 0.3% Triton-X, 

3% NDS and NHuS, 0.05% bovine serum albumin (BSA; Jackson), and either an affinity-

purified polyclonal rabbit anti-CB1 antibody raised against the last 15 amino acid residues of the 

rat CB1 receptor (diluted 1:5000), an affinity-purified polyclonal guinea pig anti-CB1 antibody 

raised against the entire C-terminus of the rat CB1 receptor (diluted 1:4000; both CB1 antibodies 

were generously provided by Dr. Ken Mackie, Indiana University, Bloomington, IN), or a 

monoclonal mouse anti-CCK antibody raised against gastrin (diluted 1:4000; antibody #9303 

provided by the CURE Digestive Diseases Research Center, Antibody/RIA Core, Los Angeles, 

CA, NIH Grant DK41301). Sections were subsequently washed in PBS and incubated in either a 

biotinylated donkey anti-rabbit or anti-mouse IgG secondary antibody (diluted 1:200; Jackson) 

solution containing 0.3% Triton-X and 3% NDS and NHuS in PBS for 1 hour. Sections were 

washed in PBS and then processed with the avidin-biotin-peroxidase method (Hsu et al., 1981) 

using the Vectastain Avidin-Biotin Elite Kit (Vector Laboratories, Burlingame, CA) and the 

immunoperoxidase reaction was visualized using 3,3’-diaminobenzidine (DAB; 0.005%; Sigma, 

St. Louis, MO). Sections were subsequently mounted on gel-coated slides, air dried, and 

immersed serially in osmium tetroxide (0.005%) and thiocarbohydrazide (0.5%) to stabilize the 

DAB reaction product (Lewis et al., 1986). All incubations and washes were performed on a 

shaker at room temperature (RT) except for the primary antibody incubation.  

 For dual-label immunofluorescence experiments, free floating coronal tissue sections 

were washed in PBS and then pretreated in a blocking solution containing 0.3% Triton X-100, 

5% normal goat serum (NGS) and NHuS, 1% BSA, 0.1% glycine, and 0.1% lysine in PBS (used 

in all antibody solutions) at RT for 3 hours to reduce background. Sections were then incubated 

at 4°C for 48 hours in the same blocking solution containing the guinea pig anti-CB1 antibody 
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(diluted 1:3000) and either the monoclonal mouse anti-CCK antibody (diluted 1:2000) or a 

monoclonal mouse IgG1 antibody against PV (diluted 1:8000; Swant, Bellinzona, Switzerland). 

Sections were then washed in PBS and incubated for 24 hours in blocking solution containing an 

anti-guinea pig Alexa 633 secondary antibody to visualize the CB1 antibody and an anti-mouse 

Alexa 488 secondary antibody (both raised in goat; diluted 1:500; Invitrogen, Carlsbad, 

California) to visualize the CCK and PV antibodies. Sections were subsequently washed in PBS, 

mounted on gel-coated slides, and coverslipped with Vectashield (Vector). 

 Fluorescent images were collected on an Olympus BX51 microscope fitted with an 

Olympus DSU spinning disk confocal (Olympus America Inc., Melville, NY), a Hamamatsu 

C4742-98 CCD camera (Hamamatsu Corporation, Bridgewater, NJ), and a Ludl motorized XYZ 

stage (LEP Ltd., Hawthorne, NY). Data was captured using a 60X 1.4 NA plan apochromat 

objective or a 40X 1.3 plan fluorite objective and was deconvolved using Intelligent Imaging 

Innovations’ constrained iterative algorithm in Slidebook 4.2 (Denver, CO). Images are projected 

images of 20-30 sequential confocal slices taken 0.22-0.5 µm apart. 

3.3.2 Electron Microscopy 

3.3.2.1 Animals and Tissue Preparation 

For electron microscopy studies, three additional adult male long-tailed macaque monkeys (M. 

fascicularis) were perfused as described above except that the perfusate was room temperature 

1% paraformaldehyde and 0.05% glutaraldehyde in 0.1 M PB followed by 4% paraformaldehyde 

and 0.2% glutaraldehyde in 0.1 M PB as previously reported (Melchitzky et al., 2005; Eggan and 

Lewis, 2007). Brains were immediately removed and coronal blocks (5-mm-thick) were 

immersed in phosphate buffered 4% paraformaldehyde at 4°C for 2 hours. Coronal tissue blocks 

containing DLPFC area 46 were washed several times in 0.1 M PB and sectioned at 50 µm on a 

vibrating microtome. 

3.3.2.2 Immunocytochemistry 

To improve antigenicity and reduce nonspecific immunoreactivity, free-floating tissue sections 

containing DLPFC area 46 were initially treated with 1% sodium borohydride in 0.1 M PB for 

30 min, washed extensively in 0.1 M PB, and then incubated in a blocking solution containing 
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0.2% BSA, 0.04% Triton X-100, 3% NDS, and 3% NHuS in 0.01 M PBS for 30 min as 

previously described (Sesack et al., 1998; Eggan and Lewis, 2007). Sections from each animal 

were subsequently incubated overnight in blocking solution containing either the rabbit anti-CB1 

(diluted 1:5000) or the monoclonal mouse anti-CCK antibody (diluted 1:2000 or 1:1500). On the 

following day, sections were rinsed in PBS and incubated for 1 h in blocking solution containing 

either a biotinylated anti-rabbit or anti-mouse IgG secondary antibody made in donkey (diluted 

1:200; Jackson). Following rinses in PBS, sections were processed with the avidin-biotin-

peroxidase method and visualized with DAB as described earlier, postfixed in 2% osmium 

tetroxide for 1 h and embedded in Epon 812 (EM bed 812; Electron Microscopy Sciences, Fort 

Washington, PA) as previously described (Sesack et al., 1995b; Melchitzky et al., 2005). 

3.3.2.3 Sampling Regions and Procedures 

For each animal and each primary antibody condition, separate trapezoid blocks from two tissue 

sections were cut from layers 2-superficial 3 (2-3s) and layer 4 in DLPFC area 46 (Fig. 17A). 

Trapezoid blocks were sectioned on a Reichert ultramicrotome (Nussloch, Germany) at 80 nm 

and two to four ultrathin sections were serially collected on 200- or 400-mesh copper grids and 

counterstained with uranyl acetate and lead citrate. For each trapezoid block 1-2 grids, separated 

by at least 10 grids, were examined on a FEI Morgagni transmission microscope (Hillsboro, 

OR). One section per grid was arbitrarily chosen as the starting point for analysis and within 

each selected section all CB1- or CCK-labeled structures were captured and stored for later 

analysis. All labeled axon terminals were identified, photographed at X22,000, and classified 

according to their synaptic specialization and appositional or postsynaptic target. 

3.3.2.4 Identification of Neuronal and Synaptic Elements 

Neuronal elements encountered in electron micrographs were identified according to previous 

descriptions (Peters et al., 1991). Axon terminals were identified by the presence of small 

vesicles and often contained mitochondria. Axon terminals forming asymmetric synapses 

(Gray’s type I) were distinguished by the widening and parallel spacing of apposed 

plasmalemmal surfaces and small round synaptic vesicles. In addition, asymmetric synapses 

were identified by the presence of a prominent postsynaptic density. In contrast, axon terminals 

forming symmetric synapses (Gray’s type II) were identified by the presence of intercleft 
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filaments, pleomorphic small synaptic vesicles, and a thin postsynaptic density. The presence of 

a nucleus identified somata. Dendritic shafts were identified by the presence of postsynaptic 

specializations, mitochondria, microtubules, and neurofilaments. Dendritic spines were 

characterized by the absence of both organelles and microtubules. 

3.3.3 Antibody Specificity 

The specificity of the rabbit anti-CB1 antibody has been previously demonstrated by several 

lines of evidence including preadsorption experiments, Western blot analysis, and testing in 

tissue from CB1 knockout mice (see Eggan and Lewis, 2007). The specificity of the guinea pig 

anti-CB1 antibody has also been determined by testing in tissue from CB1 knockout mice (Ken 

Mackie, personal communication). The mouse monoclonal anti-CCK antibody was raised against 

gastrin, but recognizes CCK due to a homologous terminal pentapeptide shared by gastrin and 

CCK. Gastrin is not present in the neocortex (Rehfeld, 1978; Geola et al., 1981); thus, only CCK 

was detected in this study. The specificity of the anti-CCK antibody has been demonstrated by its 

high affinity for the CCK peptide (ID50 = 30-70 pM; Kovacs et al., 1989), by preadsorption 

experiments in monkey tissue (Oeth and Lewis, 1990), and by experiments in which an excess of 

antigen added to the incubation serum produced no labeling (Hefft and Jonas, 2005). The 

specificity of the PV antibody has been previously demonstrated (Celio et al., 1988) and has 

been used in multiple studies (Melchitzky et al., 1999; DeFelipe et al., 1999; Cruz et al., 2003). 

3.3.4 Statistical Analyses 

Individual 2x3 or 2x2 χ2 analyses were performed to compare laminar differences in the relative 

proportions of postsynaptic targets of CB1- or CCK-IR axon terminals forming symmetric 

synapses or appositions. Individual 2x3 or 2x2 χ2 analyses were also performed to compare the 

differences in the relative proportions of postsynaptic targets of CB1- and CCK-IR postsynaptic 

targets within layers. 

71 



3.3.5 Photography 

The brightfield photomicrographs presented were obtained with a Zeiss Axiocam camera. Digital 

electron micrographs images were captured using an AMT XP-60 digital camera (Danvers, MA). 

Brightfield photomontages and digital electron micrographs were assembled, and the brightness 

and contrast were adjusted in Adobe Photoshop. Immunofluorescent images were obtained and 

assembled as described earlier. 

3.4 RESULTS 

3.4.1 General observations 

CB1 immunoreactivity was localized to a small number of somata of non-pyramidal neurons that 

were most frequently present in layers 2-3s. A small number of CB1- immunoreactive (IR) non-

pyramidal neurons were observed in layers deep 3 and 6. CB1-IR neurons had either a vertically 

oriented oval cell body or a large multipolar somal morphology (Fig. 17D). CB1 

immunoreactivity produced a distinctive laminar pattern of intensely labeled numerous axons 

that were thin and rich in varicosities. Layer 1 contained few CB1-IR axons, the density of CB1-

IR axons increased across layers 2-3, layer 4 contained the highest density of CB1-IR axons and 

varicosities, and layer 6 contained a moderate density of CB1-IR axons. Layer 5 contained the 

lowest density of CB1-IR axons, which distinctly marked the borders with layers 4 and 6. Layers 

deep 3 and 5 were unique in that they contained distinct bundles or fascicles of radial 

immunoreactive axons (Fig 17A). From layers deep 3 to 4 these fascicles were associated with 

putative pyramidal neuron apical dendrites then diverged and formed dense “baskets” around 

unlabeled cell bodies (Fig. 17C). These perisomatic arrays of CB1-IR axons were also found 

surrounding unlabeled putative non-pyramidal cell bodies, based on their small size and round 

shape, and around CB1-IR neurons (Fig. 17D). 

 The mouse anti-CCK antibody labeled non-pyramidal cell bodies, dendrites, and thin, 

highly varicose axons (Fig. 17B, E, F) as described previously (Oeth and Lewis, 1990; Oeth and 
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Lewis, 1993). The density of CCK-IR neurons was highest in layers 2-3s; however, scattered 

CCK-labeled neurons were observed across all cortical layers (Fig. 17B). Consistent with 

previous reports (Oeth and Lewis, 1990; Oeth and Lewis, 1993; Kawaguchi and Kubota, 1997), 

many CCK-IR neurons were vertically-oriented, oval, large, and multipolar (Fig. 17B, F). The 

laminar distribution of CCK-IR axons and varicosities exhibited a distinct laminar pattern very 

similar to that of CB1-IR axons and varicosities. The density of CCK-IR axons and varicosities 

was lowest in layer 1. In contrast, layers 2-3s contained a moderate density of CCK-IR axons and 

varicosities and layers 4 and 6 contained dense bands CCK-IR axons and varicosities. Layers 3 

and 5 contained low densities of CCK-IR axons and varicosities and contained distinct radially 

traversing axons similar to that described for CB1-IR axons; however, these axons were less 

prominent and did not form fascicles (Fig. 17B). Unlike CB1-IR axons, the intervaricose 

segments of CCK-IR axons were less distinct and CCK immunoreactivity was predominantly 

contained in axon varicosities (Fig. 17E). However, similar to CB1-IR axons, CCK-IR axons 

were found to form perisomatic arrays around putative pyramidal (Fig. 17E) and non-pyramidal 

cell bodies. 
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Figure 17. Brightfield photomicrographs of immunoreactivity produced by the guinea pig 

anti-CB1-CT and mouse anti-CCK antibodies in area 46 of monkey DLPFC. Both CB1 (A, 

C, D) and CCK (B, E, F) antibodies labeled numerous fibers that were thin and rich in 

varicosities distributed with similar laminar patterns (A, B). Both CB1- and CCK-labeled 

neurons were most frequently present in layers 2 and superficial 3 (A, B). CB1- and CCK-IR 

neurons were often large and multipolar in shape (D, F). Some CB1- and CCK-labeled axons 

formed “baskets” surrounding unlabeled cell bodies (C, E). In panels A and B numbers and hash 

marks to the left indicate the relative positions of the cortical layers, and the dashed lines denote 

the layer 6-white matter (WM) border. The trapezoids in panel A show the approximate laminar 

location of blocks examined for electron microscopy. Scale bars = 300 µm in B (applies to A, B) 

and 10 µm in F (applies to D, E, F). 
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3.4.2 Analysis of dual-labeled tissue 

CB1 and CCK immunoreactivities were colocalized in many profiles in DLPFC area 46 (Fig. 

18). In layers 2-3s, most CB1-IR neurons were also CCK-IR (Fig. 18A-C), but some CCK-IR 

neurons were CB1 immunonegative. In addition, there was a high degree of colocalization of 

CB1 and CCK immunoreactivity in axon varicosities (Fig. 18A-C). CB1/CCK-IR axons 

frequently formed perisomatic baskets around unlabeled putative pyramidal and small, round 

putative non-pyramidal cell bodies that had the morphologic shape and appearance of pyramidal 

or nonpyramidal neurons (data not shown). Perisomatic appositions were also found surrounding 

CB1/CCK dual-labeled neurons (Fig. 18). 

 In contrast, no colocalization was found for CB1 and PV immunoreactivity (Fig. 19). All 

CB1-IR cells were PV immunonegative and all PV-IR cells were CB1 immunonegative (Fig 19). 

Furthermore, axons and varicosities were always single-labeled for either CB1 or PV, even at the 

border of layers 3 and 4 where the density of both CB1- and PV-IR axons is highest in monkey 

area 46 (Fig 19A-C). However, CB1- and PV-IR single-labeled axons formed baskets around the 

same unlabeled cell bodies. 
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Figure 18. Fluorescent photomicrographs of CB1 and CCK immunoreactivity in area 46 of 

monkey DLPFC. (A) CB1-IR neuron and axons labeled with Alexa 633 (red). (B) CCK-IR 

neuron and axons labeled with Alexa 488 (green). (C) Overlay of panels A and B showing the 

colocalization (yellow) of CB1 and CCK in the same cell (asterisk) and in a subpopulation of 

axons and boutons (arrows). Note single-labeled axons and boutons for each protein are also 

present. Scale bar = 10 µm in C (applies to A, B, C). 

 

 

 
 

Figure 19. Fluorescent photomicrographs of CB1 and PV immunoreactivity in area 46 of 

monkey DLPFC. (A) CB1-IR neuron and axons labeled with Alexa 633 (red). (B) PV-IR 

neuron and axons labeled with Alexa 488 (green). (C) Overlay of panels A and B showing an 

absence of colocalization of CB1 and CCK immunoreactivity. Asterisk denotes an unlabeled 

pyramidal cell body receiving single-labeled CB1- and PV-IR perisomatic appositions. Scale bar 

= 10 µm in C (applies to A, B, C). 

76 



3.4.3 Synapses formed by and postsynaptic targets of CB1- or CCK-IR axon 

terminals 

Of 111 CB1-IR axon terminals with an identifiable synaptic specialization, 100% formed classic 

symmetric synapses onto small and large unlabeled dendritic shafts (Fig. 20A, D), dendritic 

spines (Fig. 20C), or somata. Some dendritic shafts that were contacted by CB1-IR axon 

terminals exhibited morphologic characteristics of interneuron dendrites, such as a varicose 

shape and a high density of synapses (McGuire et al., 1991; Smiley and Goldman-Rakic, 1993; 

Sesack et al., 1995a); however, most contacted dendritic shafts were cut in cross-section, 

precluding the identification of the origin of the neuron type (pyramidal versus nonpyramidal). In 

addition, a small number of CB1-IR axon terminals were found forming symmetric synapses 

onto CB1-IR dendrites (Fig 20B). Occasionally, CB1-IR axons were observed forming basket-

like appositions around unlabeled cell bodies (Fig. 20E). 

 Of 95 CCK-IR axon terminals with identifiable synaptic specializations, 88% (n = 84) 

formed symmetric synapses onto large and small unlabeled dendritic shafts (Fig. 21A, B), 

dendritic spines (Fig. 21C), or somata (Fig. 21D). Some dendritic shafts contacted by CCK-IR 

axon terminals were varicose in shape and received other synaptic inputs (Fig. 21A). The 

remaining 12% (n = 11) of CCK-IR axon terminals formed classic asymmetric synapses 

primarily onto spines (Fig. 22B) and to a lesser extent onto unlabeled dendritic shafts (Fig. 22A). 
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Figure 20. Electron micrographs of CB1-IR axon terminals forming symmetric synapses in 

area 46 of monkey DLPFC. (A, D) CB1-IR axon terminals (CB1t) form symmetric synapses 

(arrows) onto small and large unlabeled dendritic shafts (ud). (B) CB1-IR axon terminal (CB1t) 

forms a symmetric synapse (arrow) onto a CB1-labeled dendritic shaft (CBd). Reaction product 

in dendrites (asterisk) was associated with microtubules. (C) A CB1t forms a symmetric synapse 

onto an unlabeled dendritic spine (us). (E) Low power electron micrograph demonstrating a 

CB1-IR axon forming “basket-like” appositions (white arrows) around an unlabeled cell body 

(ad = apical dendrite, n = nucleus). Scale bars = 500 nm in A-D and 2 µm in E. 
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Table 3. Synaptic and appositional targets of CB1-IR axon terminals in layer 2-superficial 
3 and layer 4 of monkey DLPFC area 46 

 Layers 2-
superficial 3 

Layer 4 Statistical 
Results 

Number (%) of axon terminals forming 
symmetric synapses onto: 

   

Dendritic shafts 49 (88%) 48 (87%) 
Somata 0 (0%) 2 (4%) 
Dendritic spines 7 (12%) 5 (9%) 

χ2 = 2.34 
p = 0.311 

Number (%) of axon terminals apposed to:    
Dendritic shafts 199 (90%) 100 (85%) 
Somata 7 (3%) 12 (10%) 
Dendritic spines 16 (7%) 6 (5%) 

χ2 = 7.53 
p = 0.023 

 
 
Table 4. Synaptic and appositional targets of CCK-IR axon terminals in layer 2-superficial 
3 and layer 4 of monkey DLPFC area 46 

 Layers 2-
superficial 3 

Layer 4 Statistical 
Results 

Number (%) of axon terminals forming 
symmetric synapses onto: 

   

Dendritic shafts 21 (81%) 48 (83%) 
Somata 3 (11%) 2 (3%) 
Dendritic spines 2 (8%) 8 (14%) 

χ2 = 2.54 
p = 0.280 

Number (%) of axon terminals apposed to:    
Dendritic shafts 58 (85%) 97 (83%) 
Somata 4 (6%) 9 (8%) 
Dendritic spines 6 (9%) 11 (9%) 

χ2 = 0.245 
p = 0.885 

 
 
Table 5. Comparison of the synaptic targets of CB1- and CCK-IR axon terminals in layers 
2-superficial 3 and layer 4 of monkey DLPFC area 46 
 Dendritic 

Shafts 
Somata Dendritic 

Spines 
Statistical 
Results 

Layers 2-superficial 3     
Number (%) of CB1-IR axon 
terminals  

49 (88%) 0 (0%) 7 (12%) 

Number (%) of CCK-IR axon 
terminals 

21 (81%) 3 (11%) 2 (8%) 

χ2 = 6.93 
p = 0.031 

Layer 4     
Number (%) CB1-IR axon 
terminals 

48 (87%) 2 (4%) 5 (9%) 

Number (%) CCK-IR axon 
terminals 

48 (83%) 2 (3%) 8 (14%) 

χ2 = 0.56 
p = 0.755 

 

79 



3.4.4 Laminar analysis of CB1- or CCK-IR axon terminal postsynaptic targets 

No significant laminar differences were present in the postsynaptic targets of CB1-IR terminals 

that had an identifiable synaptic specialization (Table 3; Fig. 23A). In both layers 2-3s and layer 

4, the majority of symmetric synapses were onto dendritic shafts (88% and 87%, respectively). 

In addition, the smaller proportions of symmetric synapses onto dendritic spines and somata 

were similar in both layers (Table 3; Fig. 23A). Consistent with these observations, most CB1-

IR axon terminals without identifiable synapses were in apposition to dendritic shafts in both 

layer 2-3s (90%) and layer 4 (85%). However, the proportion of appositions to somata in layer 4 

(10%) was greater than in layers 2-3s (3%). This difference was confirmed by χ2 analysis, which 

revealed a significant difference in the postsynaptic targets of CB1-IR axon terminal appositions 

by layer (χ2 = 7.53, P = 0.023, df = 2; Table 3).  

 CCK-IR terminals showed no significant differences in postsynaptic targets by layer 

(Table 4; Fig. 23B). The major postsynaptic target of CCK-IR axon terminals forming 

symmetric synapses was dendritic shafts in both layers 2-3s (81%) and layer 4 (83%). Likewise, 

CCK-IR axon terminal appositions were also predominantly with dendritic shafts in both layers 

(Table 4). 

 The postsynaptic targets of CB1- and CCK-IR symmetric synapses revealed no 

significant difference in layer 4 (Table 5). In contrast, the postsynaptic targets of CB1- and 

CCK-IR symmetric synapses in layers 2-3s were significantly different (χ2 = 6.93, P = 0.031, df 

= 2; Table 5). 2x2 χ2 analyses revealed that this difference was due to a larger proportion of 

CCK-IR symmetric synapses targeting somata (11%) than CB1-IR symmetric synapses (0%).
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Figure 21. Electron micrographs of CCK-IR axon terminals forming symmetric synapses 

in area 46 of monkey DLPFC. (A, B) A CCK-IR axon terminal (CCKt) forms a symmetric 

synapse (arrow) onto an unlabeled dendritic shaft (ud). Note that the dendritic shaft in (A) is 

varicose in shape and receives a synaptic input from another, unlabeled axon terminal (ut; 

arrow), which are morphologic characteristics of GABA neuron dendrites. (C) A CCKt forms a 

symmetric synapse onto a dendritic unlabeled spine (us). (D) A CCKt forms a symmetric 

synapse (arrow) onto an unlabeled soma (n = nucleus). Scale bars = 500 nm in all panels. 
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Figure 22. Electron micrographs of CCK-IR axon terminals forming asymmetric synapses 

in area 46 of monkey DLPFC. (A) A CCK-IR axon terminal (CCKt) forms an asymmetric 

synapse (arrowhead) onto an unlabeled dendritic shaft (ud). (B) A CCKt forms an asymmetric 

synapse (arrowhead) onto an unlabeled dendritic spine (us). Scale bar = 500 nm in B (applies to 

A, B). 

 

 

 

 

 

 
 

Figure 23. Synaptic targets of CB1- or CCK-IR axon terminals in area 46 of monkey 

DLPFC. Percentages of CB1- (A) or CCK-IR (B) axon terminals that form symmetric synapses 

onto unlabeled dendritic shafts, somata or dendritic spines in layers 2-3s or layer 4.  
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3.5 DISCUSSION 

The results of this study demonstrate that in the macaque monkey DLPFC 1) the laminar 

distributions of CB1- and CCK-IR neurons and axons are very similar; 2) CB1 and CCK 

immunoreactivities are colocalized in neurons, axons, and axon terminals although structures 

single-labeled for each protein are also present; 3) CB1-IR axon terminals exclusively form 

symmetric synapses, whereas CCK-IR axon terminals form both symmetric and asymmetric 

synapses; 4) the majority of both CB1- and CCK-IR axon terminals forming symmetric synapses 

contact dendritic shafts; and 5) the synaptic targets of CB1- and CCK-IR axon terminals are 

similar in layer 4 but different in layers 2-3s, where CCK-IR terminals are more likely to contact 

cell bodies and less likely to contact spines than are CB1-IR terminals. 

3.5.1 Sources of CB1- and CCK-IR axon terminals 

The source of the axons containing both CB1 and CCK is most likely intrinsic inhibitory 

interneurons. This idea is supported by the presence of CB1 and CCK immunoreactivities in 

somata and terminals with the morphological features of GABA neurons and the observed 

colocalization of CB1 and CCK in neurons in layers 2-3s. In addition, the monkey and human 

DLPFC contain high densities of CB1 and CCK mRNA-expressing neurons, especially in layers 

2-superficial 3 (Hashimoto et al., 2007; Eggan et al., 2007). Furthermore, in the rodent neocortex 

all neurons expressing high levels of CB1 also express the mRNA for glutamic acid 

decarboxylase-65 (GAD65), a synthesizing enzyme of GABA (Marsicano and Lutz, 1999). In the 

monkey DLPFC, layers 2-3s contain the highest density of CB1- and CCK-IR neurons and a 

moderate density of axons and terminals, whereas layer 4 contains a high density of CB1 and 

CCK-IR axons and terminals but few immunoreactive neurons (this study). This disproportionate 

distribution of immunoreactive neurons and axons is explained by previous studies in the 

monkey DLPFC demonstrating that the axons of CCK-containing neurons in layers 2-3s project 

radially into, and collateralize within, layer 4 (Oeth and Lewis, 1990; Lund and Lewis, 1993; 
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Oeth and Lewis, 1993). Furthermore, in the mouse neocortex intracellularly filled CB1/CCK-

containing neurons in superficial layers project to and arborize within layer 4 (Galarreta et al., 

2004). Thus, the presence of interneurons in layer 2-3s that express both CB1 and CCK could 

account for the high degree of colocalization and the similar postsynaptic targets of CB1- and 

CCK-IR axon terminals observed in layer 4. 

 In the rodent neocortex, two distinct populations of CCK-containing cells have been 

identified: Small bipolar CCK-IR neurons frequently contain calretinin (CR), whereas the less 

common, large, multipolar CCK-IR neurons lack this calcium binding protein (Kubota and 

Kawaguchi, 1997; Kawaguchi and Kondo, 2002). In addition, CB1-IR neurons in the rat cortex 

are either large and contain CCK or small and contain the calcium binding protein calbindin 

(Bodor et al., 2005). Based upon these findings, the CCK-positive, CB1-negative axons and 

terminals observed in the monkey DLPFC in this study likely arise from CR-containing GABA 

neurons, whereas the CCK-negative, CB1-positive axons and terminals likely arise from 

calbindin-containing GABA neurons. These different sources of CB1 and CCK-IR axons may 

account for the different synaptic targets of CB1- and CCK-IR axons in layers 2-3s. 

 However, the single-labeled CCK and CB1-containing axons and terminals could also 

arise from extrinsic sources. For instance, anterograde tract-tracing studies have shown that 

GABA-containing neurons in the rodent ventral mesencephalon innervate layers 5-6 of the 

prefrontal cortex (Carr and Sesack, 2000), and retrograde tract-tracing studies in the monkey 

demonstrated that CCK neurons in the ventral mesencephalon project to the DLPFC (Oeth and 

Lewis, 1992). However, the termination pattern of these axons in layers 5-6 does not explain the 

difference in postsynaptic targets of CCK and CB1 terminals in layers 2-3s. Recently, CB1 

immunoreactivity was demonstrated in norepinephrine-containing axons in the rodent cortex 

(Oropeza et al., 2007) suggesting that CB1-IR axons in layers 2-3s could arise from the locus 

coeruleus. Although this source cannot be excluded, in the monkey DLPFC dopamine-β-

hydroxylase-containing terminals form both symmetric and asymmetric synapses (Aoki et al., 

1998), whereas CB1 terminals were only found to form symmetric synapses. Furthermore, the 

distribution of dopamine-β-hydroxylase-containing axons in the primate DLPFC does not match 

the laminar pattern observed for CB1-containing axons (Lewis and Morrison, 1989; Gaspar et 

al., 1989).  
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 The CCK-IR terminals forming asymmetric synapses could arise from several sources. 

For instance, CCK-IR asymmetric synapses could arise from intrinsic nonpyramidal neurons that 

do not utilize GABA. Indeed, about 5-10% of CCK-IR neurons in the monkey cortex do not 

exhibit immunoreactivity for GAD, a synthesizing enzyme of GABA (Hendry et al., 1984). 

Interestingly, in both the rodent and cat all CCK-IR neurons are GABA or GAD 

immunoreactive, suggesting that non-GABA-containing CCK-IR terminals forming asymmetric 

synapses is a unique feature of primate cortical circuitry (Hendry et al., 1984; Kubota and 

Kawaguchi, 1997). Consistent with the idea of an intrinsic source of CCK-IR asymmetric 

terminals, 29% of CR-containing axon terminals form asymmetric synapses and 23% of CR-IR 

neurons do not contain GABA in the monkey DLPFC (Melchitzky et al., 2005). Thus, CCK 

asymmetric synapses could arise from non-GABA-containing CR-IR neurons. Alternatively, 

CCK-IR asymmetric synapses could arise from subcortical structures, such as the thalamus 

and/or amygdala. Projections from the mediodorsal thalamus terminate in layers deep 3 and 4, 

whereas projection neurons in the basolateral complex of the amygdala innervate layers 2-3s of 

the monkey DLPFC (Porrino et al., 1981; Amaral and Price, 1984; Giguere and Goldman-Rakic, 

1988; McDonald, 1992; Erickson and Lewis, 2004). Although neurons in these structures 

express CCK mRNA (Schiffmann and Vanderhaeghen, 1991; Marsicano and Lutz, 1999), the 

lack of CCK immunoreactivity in projection neurons, even after injections of colchicine, 

excludes these sources (Oeth and Lewis, 1990; Mascagni and McDonald, 2003). Similarly, 

asymmetric synapses could arise from cortical pyramidal neurons known to express CCK mRNA 

in rat (Schiffmann and Vanderhaeghen, 1991) and human (Hashimoto et al., 2007) cortex; 

however, cortical pyramidal neurons are not observed to be immunoreactive for CCK and are 

therefore an unlikely source of CCK-IR asymmetric synapses. Thus, our data are consistent with 

the idea that CCK-IR asymmetric synapses in the monkey DLPFC arise from a subpopulation of 

non-GABA-containing CR-IR intrinsic interneurons. 

3.5.2 Functional significance 

The axon terminals that contain both CB1 and CCK are likely to represent basket neurons that 

innervate the cell bodies and proximal dendrites of pyramidal neurons, and thus are positioned to 

powerfully regulate pyramidal neuron output. Indeed, in rat neocortical slices CB1 receptor 
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activation reduces GABAA receptor-mediated inhibitory postsynaptic currents in pyramidal 

neurons by presynaptically inhibiting GABA release (Trettel et al., 2004; Galarreta et al., 2004; 

Bodor et al., 2005) and perisomatic inhibition is more susceptible to CB1 agonists than dendritic 

inhibition (Trettel et al., 2004). In addition, in rat hippocampal and neocortical slices, the 

transient suppression of GABA-mediated IPSCs and strength of perisomatic inhibition following 

pyramidal cell depolarization [i.e., depolarization induced-suppression of inhibition (DSI)] is 

meditated by CB1 receptor activation (Pitler and Alger, 1992; Trettel et al., 2004; Bodor et al., 

2005). 

 This suggests a mechanism by which inhibition from CB1/CCK-containing neurons may 

serve to regulate network activity that is necessary during working memory tasks (Sawaguchi et 

al., 1988; Sawaguchi et al., 1989; Rao et al., 2000; Constantinidis et al., 2002). Indeed, in the 

rodent hippocampus and neocortex CB1/CCK-containing neurons are chemically and electrically 

coupled (Galarreta et al., 2004) and in the hippocampus entrain oscillatory patterns of rhythmic 

activity (Klausberger et al., 2005; Robbe et al., 2006). Furthermore, in rat hippocampal slices the 

application of CB1 agonists reduces the power of gamma oscillations by disinhibiting pyramidal 

neurons (Hajos et al., 2000b; Klausberger et al., 2005; Robbe et al., 2006). The ability of CB1 

activation to disrupt gamma oscillations may be the underlying mechanism by which the 

systemic administration of cannabinoids disrupts the ability to perform working memory tasks in 

both humans and animals (Winsauer et al., 1999; Schneider and Koch, 2003; D'Souza et al., 

2004). 

 In the monkey and human DLPFC, pyramidal neurons receive convergent perisomatic 

input from PV-containing basket and chandelier neurons and CB1/CCK-containg basket 

neurons. In the rodent these convergent sources of perisomatic inhibition have been shown to 

play specific roles in shaping network activity. For example, CB1/CCK-containing and PV-

containing neurons fire at different phases of network oscillations (Klausberger et al., 2005), 

generate temporally distinct epoch of somatic inhibition (Glickfeld and Scanziani, 2006), and 

play complementary roles in regulating gamma band oscillations (Hajos et al., 2000b). In the 

monkey DLPFC, PV- and GABA transporter (GAT) 1-IR axon cartridges of chandelier neurons 

undergo considerable changes during postnatal development, with these changes particularly 

marked during adolescence (Condé et al., 1996; Erickson and Lewis, 2002; Cruz et al., 2003). 

These developmental changes in PV- and GAT-1 cartridges are thought to reflect the maturation 
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of chandelier neurons’ regulation of pyramidal cell output. Because stimulation of the CB1 

receptor strongly suppresses the GABA inputs to pyramidal neurons from CCK-containing 

basket neurons, cannabis use during adolescence may alter the balance between the CB1/CCK-

containing and PV-containing inhibitory inputs to the perisomatic region of DLPFC pyramidal 

neurons; this imbalance during a sensitive period may disrupt the developmental trajectories of 

these GABA inputs (Chattopadhyaya et al., 2007), producing persistent circuitry alterations that 

impair the mechanisms of neural synchrony required for the maturation of working memory 

performance. 
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4.0  ALTERED CB1 RECEPTOR mRNA AND PROTEIN EXPRESSION IN 

SCHIZOPHRENIA: IMPLICATIONS FOR COGNITIVE DEFICITS 

4.1 ABSTRACT 

Cannabis use is associated with both impaired cognitive functions, including working memory, 

and an increased risk of schizophrenia. In addition, schizophrenia is characterized by 

impairments in working memory that are due, at least in part, to reduced GABA 

neurotransmission in the dorsolateral prefrontal cortex (DLPFC). The cannabinoid 1 (CB1) 

receptor is highly expressed in the DLPFC, is contained in the axon terminals of a subpopulation 

of perisomatic-targeting GABA neurons, and when activated, inhibits the release of GABA. In 

order to determine the potential relationship between CB1 receptor signaling and altered GABA 

neurotransmission in schizophrenia, we evaluated CB1 receptor mRNA and protein expression in 

the DLPFC from 23 matched pairs of schizophrenia and control subjects. CB1 mRNA levels, 

assessed by in situ hybridization, were significantly 15% lower in the subjects with 

schizophrenia. Similarly, CB1 protein, assessed by radioimmunocytochemistry and standard 

immunocytochemistry, was significantly decreased by 12% and 14%, respectively. CB1 mRNA 

expression was not changed in the DLPFC of monkeys chronically exposed to haloperidol or 

olanzapine, and neither CB1 mRNA or protein levels were affected by potential confounding 

factors in the subjects with schizophrenia. Finally, changes in CB1 mRNA levels were 

significantly correlated with changes in GAD67 mRNA levels in the same subjects with 

schizophrenia. Reduced CB1 mRNA and protein in schizophrenia may represent a compensatory 

mechanism to increase GABA transmission from perisomatic-targeting interneurons with 

impaired GABA synthesis. These findings suggest a novel drug target for the treatment of 

cognitive dysfunction in schizophrenia. 
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4.2 INTRODUCTION 

The following convergent findings from epidemiological studies suggest that cannabis use 

represents an environmental risk factor for schizophrenia: 1) the association between cannabis 

use and schizophrenia is consistent across studies (replicated effect); 2) the association cannot be 

explained by other confounding factors (specificity of effect); 3) the degree of cannabis exposure 

is positively correlated with the risk of schizophrenia (dose-response effect); 4) the exposure to 

cannabis precedes the development of schizophrenia (temporal effect); and 5) cannabis use 

during early adolescence is associated with greater risk (developmental effect) (reviewed in 

Henquet et al., 2005b). In addition, chronic cannabis users exhibit marked disturbances in 

cognitive functions, such as working memory (Solowij et al., 2002), that are severe and 

persistent in schizophrenia (Elvevag and Goldberg, 2000).  

Working memory processes are particularly dependent on the circuitry of the dorsolateral 

prefrontal cortex (DLPFC) and alterations in this brain region appear to contribute to working 

memory impairments in schizophrenia (Weinberger et al., 2001). In particular, GABA 

neurotransmission within the DLPFC is critical for normal working memory function 

(Sawaguchi et al., 1988; Rao et al., 2000) and reductions in markers of GABA neurotransmission 

have been consistently identified in the DLPFC of subjects with schizophrenia (Lewis et al., 

2005). Interestingly, the CB1 cannabinoid receptor, the principal cannabinoid receptor in the 

brain, is highly expressed in the primate DLPFC and is contained in the axon terminals of a 

specific subpopulation of GABA interneurons that express the neuropeptide cholecystokinin 

(CCK) and that furnish perisomatic inputs to pyramidal neurons (Bodor et al., 2005; Eggan and 

Lewis, 2007). Activation of CB1 receptors inhibits the release of GABA and reduces inhibitory 

postsynaptic currents (Freund et al., 2003). Thus, CB1 receptors play an important role in 

regulating network activity patterns by controlling proximal inhibitory input to pyramidal 

neurons. 

 In concert, the evidence that cannabis use is a risk factor for schizophrenia, that cannabis 

use impairs working memory function, and that the CB1 receptor modulates GABA 

neurotransmission suggests that alterations in the expression of CB1 receptors in the DLPFC 

might be involved in the pathophysiology of working memory dysfunction in schizophrenia. In 

order to test this hypothesis, we used in situ hybridization and immunocytochemical techniques 
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to 1) assess the expression of CB1 receptor mRNA and protein in the DLPFC of subjects with 

schizophrenia, 2) determine the effects of potential confounds on measures of CB1 receptors, 

and 3) examine the relationship between these measures and markers of GABA 

neurotransmission in schizophrenia. 

4.3 MATERIALS AND METHODS 

4.3.1 Human subjects 

Following informed consent for brain donation from the next-of-kin and using procedures 

approved by the University of Pittsburgh’s Committee for Research Involving the Dead and 

Institutional Review Board for Biomedical Research, brain specimens from 23 normal control 

human subjects and 23 subjects with schizophrenia were obtained from autopsies conducted at 

the Allegheny County Medical Examiner’s Office, Pittsburgh, PA. Each subject with 

schizophrenia was matched for sex, and as closely as possible for age and postmortem interval 

(PMI), with one control subject (Table 6). Subject groups (see Table 6) did not differ in mean 

age (t(22) = 0.16; p = 0.88), PMI (t(22) = 0.22; p = 0.83), RNA integrity number [RIN; assessed by 

Agilent Bioanalyzer (t(22) = 1.84; p = 0.08)], or tissue storage time (t(22) = -0.96; p = 0.35). Mean 

± SD brain pH also did not differ (t(22) = 0.62; p = 0.54), between schizophrenia (6.8 ± 0.30) and 

control (6.9 ± 0.20) subjects. Because our brain specimens were obtained from a community-

based subject population, most subjects (21 control subjects and 18 subjects with schizophrenia) 

died suddenly outside of a hospital setting. 

 For each subject, consensus DSM-IV (Diagnosis and Statistical Manual of Mental 

Disorders, 1994) diagnoses were made by an independent committee of experienced research 

clinicians based on information obtained from clinical records and a structured interview 

conducted with a surviving relative. The diagnostic procedures revealed a history of post-

traumatic stress disorder in one control subject (987) that was in remission at time of death. In 

the schizophrenia group, eight subjects met criteria for schizoaffective disorder, five subjects 

died by suicide, and fifteen subjects had a history of substance (including alcohol) abuse or 

dependence disorder, although only nine met criteria at time of death (Table 6). Seven subjects 
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with schizophrenia had a history of cannabis use (581, 587, 787, 829, 878, 722, and 930); three 

of these met criteria for abuse or dependence at time of death (787, 722, and 930) and one (829) 

had a history of abuse in remission at time of death. Toxicology revealed positive plasma alcohol 

levels (0.01 – 0.09%) in two control subjects (516 and 685) and one subject with schizophrenia 

(656). No other substances of abuse, including ∆9-THC, were detected in any of the subjects. 

Four subjects with schizophrenia (537, 622, 829, and 621) were off antipsychotic medications for 

9.6 months, 1.2 months, unknown, and 8.5 years prior to the time of death, respectively. The 

mean (± SD) age of illness onset in the schizophrenia group was 25.1 (± 8.1) years of age and the 

average duration of illness was 23.3 (± 13.3) years. 

 Neuropathological examinations revealed an acute infarction limited to the distribution of 

the inferior branch of the right middle cerebral artery in schizophrenia subject 622 and a previous 

infarction in the inferior aspect of the frontal lobe in schizophrenia subject 781. DLPFC area 9 

appeared unaffected by these infarcts in both cases. Other brain disorders and abnormalities were 

excluded in each subject on the basis of both clinical and neuropathological criteria.  

 The 23 pairs of schizophrenia and matched control subjects used in this study (Table 6) 

were used in a previous study of GAD67 and CCK mRNA expression in DLPFC area 9 

(Hashimoto et al., 2005; Hashimoto et al., 2007). 

91 



92 

Table 6. Characteristics of subjects 
 Control Subjects  Schizophrenia Subjects 
Pair      Case Sex/race Age PMIa RIN Storage 

Timeb
Cause of deathc Case DSM IV diagnosis Sex/race Age PMI

a
RIN Storage 

timeb
Cause of deathc History of 

cannabis use 

1*               592 M/B 41 22.1 9.0 120.3 ASCVD  533 Chronic undifferentiated
schizophrenia 

M/W 40 29.1 8.4 130.1 Accidental
asphyxiation 

None 

2*          

          

                

               

             

                

                

                  

               

        

                

               

                

         

              

         
                 

                 

            

                 

                

                 

                 

567 F/W 46 15.0 8.9 124.3 Mitral Valve
prolapse 

537 Schizoaffective disorderd F/W 37 14.5 8.6 129.4 Suicide by hanging None 

3* 516 M/B 20 14.0 8.4 131.9 Homicide by gun 
shot 

547 Schizoaffective disorder M/B 27 16.5 7.4 128.0 Heat Stroke None

4* 630 M/W 65 21.2 9.0 114.4 ASCVD  566 Chronic undifferentiated
schizophreniae

M/W 63 18.3 8.0 124.7 ASCVD None

5* 604 M/W 39 19.3 8.6 118.0 Hypoplastic
coronary artery 

 

581 Chronic paranoid
schizophreniaef,g

M/W 46 28.1 7.9 122.5 Accidental combined
drug overdose 

 Use 

6* 546 F/W 37 23.5 8.6 128.3 ASCVD  587 Chronic undifferentiated
schizophreniae

F/B 38 17.8 9.0 121.1 Myocardial
hypertrophy 

 

Use 

7* 551 M/W 61 16.4 8.3 127.1 Cardiac
Tamponade 

625 Chronic disorganized
schizophreniah

M/B 49 23.5 7.6 115.0 ASCVD None

8* 685 M/W 56 14.5 8.1 107.4 Hypoplastic
coronary artery 

622 Chronic undifferentiated
schizophreniad

M/W 58 18.9 7.4 115.2 Right MCA
infarction 

None 

9* 681 M/W 51 11.6 8.9 108.0 Hypertrophic
cardio-myopathy 

 

640 Chronic paranoid
schizophrenia 

M/W 49 5.2 8.4 113.1 Pulmonary embolism None

10 806 M/W 57 24.0 7.8 86.5 Pulmonary
thromboembolism 

 

665 Chronic paranoid
schizophreniaf

M/B 59 28.1 9.2 110.6 Intestinal
hemorrhage 

None 

11 822 M/B 28 25.3 8.5 83.9 ASCVD  787 Schizoaffective disorderi M/B 27 19.2 8.4 90.1 Suicide by gun shot Abuse & 
Dependence 

12* 727 M/B 19 7.0 9.2 101.0 Trauma  829 Schizoaffective
disorderd,f,j

M/W 25 5.0 9.3 81.8 Suicide by drug
overdose 

Abuse in 
remission 

 13 871 M/W 28 16.5 8.5 73.3 Trauma  878 Disorganized
schizophreniaf

M/W 33 10.8 8.9 72.3 Myocardial fibrosis Use

14* 575 F/B 55 11.3 9.6 123.0 ASCVD  517 Disorganized
schizophreniaf

F/W 48 3.7 9.3 131.7 Intracerebral
hemorrhage 

None 

15 700 M/W 42 26.1 8.7 105.1 ASCVD  539 Schizoaffective disorderk M/W 50 40.5 8.1 129.2 Suicide by combined 
drug overdose 

 

None 

16 988 M/W 82 22.5 8.4 51.9 Trauma  621 Chronic undifferentiated
schizophreniad

M/W 83 16.0 8.7 115.5 Accidental
asphyxiation 

None 

17 686 F/W 52 22.6 8.5 107.1 ASCVD  656 Schizoaffective disorderf F/B 47 20.1 9.2 111.3 Suicide by gun shot None 
18 634 M/W 52 16.2 8.5 113.8 ASCVD  722 Chronic undifferentiated

schizophreniaj,l
M/B 45 9.1 9.2 101.4 Upper GI bleeding Abuse

19 852 M/W 54 8.0 9.1 76.3 Cardiac
tamponade 

 

781 Schizoaffective disorderk M/B 52 8.0 7.7 91.3 Peritonitis None

20* 987m F/W 65 21.5 9.1 51.9 ASCVD  802 Schizoaffective disorderf,l F/W 63 29.0 9.2 87.1 Right ventricular
dysplasia 

None 

21 818 F/W 67 24.0 8.4 85.0 Anaphylactic
reaction 

917 Chronic undifferentiated
schizophrenia 

F/W 71 23.8 7.0 65.1 ASCVD None

22 857 M/W 48 16.6 8.9 75.1 ASCVD  930 Disorganized
schizophreniaj,k

M/W 47 15.3 8.2 61.7 ASCVD Abuse

23 739 M/W 40 15.8 8.4 100.1 ASCVD   933 Disorganized
schizophrenia 
 

M/W 44 8.3 8.1 61.1 Myocarditis None

Mean 48.0 18.0 8.7 100.6 47.9 17.8 8.4 104.8

  SD   15.5 5.5 0.4 23.5           14.1 9.3 0.7 23.6     
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aPMI indicates postmortem interval in hours; bstorage time (months) at -80°C; cASCVD indicates arteriosclerotic cardiovascular disease; dsubjects with schizophrenia off 
antipsychotic medications at time of death; ealcohol abuse, in remission at time of death; falcohol dependence, current at time of death; gother substance abuse, current at time of 
death; halcohol abuse, current at time of death; iother substance dependence, current at time of death; jother substance abuse, in remission at time of death; kalcohol dependence, in 
remission at time of death; lother substance dependence, in remission at time of death; mHistory of post-traumatic stress disorder, in remission 39 years at time of death. *Subject 
pairs used in immunocytochemistry experiments. 
 



4.3.2 In situ hybridization 

Tissue preparation. The right prefrontal cortex of each subject was blocked coronally, 

immediately frozen in isopentane on dry ice, and stored at -80°C. Serial tissue sections 

containing the superior frontal gyrus were cut on a cryostat at 20 µm, thaw mounted on Supra-

frost slides (VWR Scientific, West Chester, PA, USA), and stored at -80°C until processed for in 

situ hybridization. Published cytoarchitectonic criteria (Rajkowska and Goldman-Rakic, 1995) 

were used to identify the location of DLPFC area 9 in Nissl-stained sections as previously 

described (Glantz et al., 2000; Volk et al., 2000). For each subject pair, three sections separated 

by at least 320 µm were chosen with the rostrocaudal locations matched. A total of six in situ 

hybridization runs were performed, with one section from a given pair processed side-by-side in 

a single run. 

 Generation of riboprobes. Templates for the synthesis of riboprobes against human CB1 

receptor mRNA were generated by PCR. A 714 base pair fragment corresponding to bases 435-

1148 of the human CNR1 gene (Genbank accession number NM_033181) was amplified with 

specific primer sets. Nucleotide sequencing revealed 100% homology for the amplified fragment 

to a previously reported sequence. The fragment was subcloned into the plasmid pSTBlue-1 

(Novagen, Madison, WI). Sense and antisense riboprobes were generated by in vitro 

transcription in the presence of 35S-CTP using T7 or SP6 RNA polymerase, respectively, 

followed by digestion with DNaseI. The riboprobes were purified by centrifugation through 

RNeasy mini spin columns (Qiagen, Balencia, CA) and the length was reduced to approximately 

100 bp by alkaline hydrolysis to increase the effectiveness of tissue penetration. 

 In situ hybridization. Hybridization procedures were performed as previously described 

(Hashimoto et al., 2003). Briefly, following fixation with 4% paraformaldehyde in 0.1 M 

phosphate buffered saline (PBS), sections were acetylated with 0.25% acetic anhydrate in 0.1 M 

triethanolamine/0.9% NaCl for 10 min, dehydrated through a graded ethanol series, and defatted 

in chloroform for 10 min. Sections were then hybridized with 35S-labeled riboprobes (1 X 107 

cpm/ml) in a standard hybridization buffer at 56°C for 16 hours. Sections were subsequently 

washed in a solution containing 0.3 M NaCl, 20 mM Tris-HCl, pH 8.0, 1 mM EDTA, pH 8.0, 

and 50% formamide at 63°C, treated with RNase A at 37°C, and washed in 0.1 x SSC at 66°C. 
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Sections were then dehydrated through a graded ethanol series, air-dried, and exposed to BioMax 

MR film (Eastman Kodak, Rochester, NY) for three days. After exposure to film, sections were 

coated with NTB2 emulsion (Eastman Kodak, Rochester, NY) using a mechanical dipper (Auto-

dip Emulsion Coater, Ted Pella, Redding, CA), exposed for ~12 days at 4°C, developed with D-

19 (Eastman Kodak, Rochester, NY), and counterstained with cresyl violet as previously 

described (Hashimoto et al., 2003). 

 Quantification of CB1 mRNA expression levels. CB1 mRNA expression levels were 

quantified using a Microcomputer Imaging Device (MCID) system (Imaging Research Inc, 

London, ON, Canada) without knowledge of diagnosis or subject number by random coding of 

film autoradiographs. Film autoradiographs were trans-illuminated on a light box, and images 

were captured by a video camera and digitized under precisely controlled conditions. Images of 

hybridized tissue sections were captured and superimposed on corresponding autoradiographic 

film images in order delineate the pial surface and gray and white matter borders. Contours in 

DLPFC area 9 were drawn around the full cortical thickness where the gray matter was cut 

perpendicular to the pial surface. Optical density (OD) was measured in those contours drawn 

and expressed as nanoCuries per gram tissue by reference to radioactive carbon-14 standards 

(American Radiolabeled Chemicals, St. Louis, MO) exposed on the same film. The mean (± SD) 

total area sampled per subject was 385 (± 140) mm2 for control subjects and 354 (± 112) mm2 for 

subjects with schizophrenia. 

 To determine differences in CB1 mRNA expression across lamina, OD was measured in 

~1-mm-wide cortical traverses extending from the pial surface to the white matter. Three cortical 

traverses per section (nine traverses per subject) were placed in locations where the tissue section 

was cut perpendicular to the pial surface as determined by the presence of pyramidal neurons 

with vertically oriented apical dendrites in adjacent Nissl-stained sections. Within each traverse, 

the OD in each layer was determined by dividing the total cortical thickness from the pial surface 

to white matter into zones of 1-10, 10-30, 30-50, 50-60, 60-80, and 80-100% approximating 

layers 1, 2-superficial 3 (3s), deep 3 (3d), 4, 5, and 6, respectively (Pierri et al., 1999). All 

cortical and laminar gray matter OD values were corrected by subtracting background OD values 

obtained from the white matter of each subject. 
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4.3.3 Radioimmunocytochemistry 

Human fresh frozen tissue sections adjacent to those processed for in situ hybridization were 

processed for radioimmunocytochemistry (RICC). A total of 2 radioimmunocytochemistry runs 

were performed, with one section from a given pair processed side-by-side in a single run. Slides 

were immersed in 4% paraformaldehyde diluted in 0.1 M phosphate-buffered saline (PBS; pH 

7.4) for 1 hour followed by three 10 minute washes in 0.01 M PBS. Following fixation, slides 

were incubated in a blocking solution containing 0.3% Triton-X, 4% normal donkey (NDS) and 

human (NHuS) sera (Jackson ImmunoResearch, West Grove, PA), and 1% bovine serum 

albumin (BSA; Jackson) in PBS for 1 hour to reduce non-specific binding. Slides were then 

placed in humidified boxes, and ~300 µl of blocking solution containing an affinity-purified 

polyclonal rabbit anti-CB1 antibody raised against the last 15 amino acids residues of the C-

terminus of the rat CB1 receptor (anti-CB1-L15; diluted 1:5000; kindly provided by Dr. Ken 

Mackie, Indiana University, Bloomington, IN) was pipetted onto each section. The specificity of 

this antibody has been previously demonstrated by multiple lines of evidence including western 

blot analysis, preadsorption studies, and testing in knockout animals (see Eggan and Lewis, 

2007). Sections were incubated for 48 hours at 4ºC. After 24 hours the primary antibody solution 

covering each section was removed and fresh primary antibody solution applied. Slides were 

then removed from the humidified boxes and rinsed three times for five minutes in PBS. Each 

section was subsequently covered with ~300 µl of secondary antibody solution containing a 35S-

labeled donkey anti-rabbit IgG secondary antibody (0.5 µCi/ml; GE Healthcare Bio-Sciences 

Corp, Piscataway, NJ), 0.3% Triton-X, and 4% NDS and NHuS in PBS and incubated for 2 

hours at room temperature (RT) in humidified boxes. Slides were then washed three times for 15 

minutes in PBS, rinsed with MilliQ H2O to remove salt, air dried, and exposed to BioMax MR 

film (Eastman Kodak) for three days. 

 Quantification of CB1 radioimmunoreactivity levels. OD values of CB1 

radioimmunoreactivity were measured as described above. Contours were drawn as close as 

possible to the same locations in DLPFC area 9 quantified for CB1 mRNA expression. The mean 

(± SD) total area sampled per subject was 70 (± 35) mm2 for control subjects and 75 (± 32) mm2 

for subjects with schizophrenia. All cortical gray matter OD values were corrected by subtracting 

background OD values obtained from the white matter of each subject. 
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4.3.4 Immunocytochemistry 

Tissue preparation. The fresh left hemisphere of 12 of the 23 subject pairs (Table 6) was cut into 

1.0-cm thick coronal blocks and immersed in phosphate-buffered (0.1 M; pH 7.4) 4% 

paraformaldehyde for 48 hours at 4 ºC, cryoprotected and then stored in a solution containing 

glycerin and ethylene glycol in dilute phosphate buffer at -30ºC. Immunoreactivity for a number 

antigens has been demonstrated to be unaffected by this storage procedure (see Cruz et al., 

2003). Coronal tissue blocks containing the DLPFC at the level of the superior frontal gyrus 

were serially sectioned at 40 µm on a cryostat. Every 10th section was stained for Nissl substance 

with thionin to identify DLPFC area 9 as described above. For each subject pair, two sections 

separated by at least 400 µm were chosen with the rostrocaudal locations matched as closely as 

possible. A total of four immunocytochemistry runs were performed, with one section from a 

given pair processed side-by-side in a single run. 

 Immunocytochemistry. Free-floating tissue sections were processed for CB1 

immunoreactivity using a previously described protocol (Eggan and Lewis, 2007). Briefly, tissue 

sections were pretreated with 1% hydrogen peroxide for 15 min to remove endogenous 

peroxidase activity, immersed in a blocking solution to reduce background, and subsequently 

incubated in a PBS solution containing 0.3% Triton-X, 3% NDS and NHuS, 0.05% BSA 

(Jackson), and the polyclonal rabbit anti-CB1-L15 antibody (diluted 1:6500) at 4ºC for 48 hours. 

Sections were then incubated in a biotinylated donkey anti-rabbit IgG secondary antibody 

(diluted 1:200; Jackson), processed with the avidin-biotin-peroxidase method (Hsu et al., 1981) 

using the Vectastain Avidin-Biotin Elite Kit (Vector Laboratories, Burlingame, CA) and the 

immunoperoxidase reaction was visualized using 3,3’-diaminobenzidine (DAB; 0.005%; Sigma, 

St. Louis, MO). Sections were subsequently mounted on gel-coated slides, air dried, and 

immersed serially in osmium tetroxide (0.005%) and thiocarbohydrazide (0.5%) to stabilize the 

DAB reaction product (Lewis et al., 1986). 

 Quantification of CB1 immunoreactivity. Levels of CB1 immunoreactivity in DLPFC 

area 9 of subject pairs was assessed using a MCID system and were expressed as relative optical 

density. Slid-mounted sections were illuminated on a microscope (Leitz Diaplan, Germany) and 

images were captured at a magnification of 2.6X by a video camera under precisely controlled 

conditions and digitized. This method produced higher magnification and better image resolution 
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than the light box method utilized for film autoradiograms described above. Relative OD values 

of CB1 immunoreactivity were measured within three cortical traverses per section (six traverses 

per subject) as described above. Relative OD values for the entire cortex of each subject were 

calculated by averaging the OD values of the six traverses. The OD in each cortical layer was 

determined as described above with a modification. The highest density of CB1-IR axons 

precisely marks the cytoarchitectonic boundaries between layers 2-4 and 4-6 (Eggan and Lewis, 

2007). Therefore, for every traverse, the data were aligned so that the peak OD value of each 

traverse corresponded to the zone representing the middle of layer 4. The mean (± SD) total area 

sampled per subject was 15 (± 1) mm2 for control subjects and 15 (± 1) mm2 for subjects with 

schizophrenia. All cortical and laminar gray matter OD values were corrected by subtracting 

background OD values obtained from the white matter of each subject. 

4.3.5 Antipsychotic-exposed monkeys  

In order to evaluate the potential effects of long-term exposure to antipsychotic medications on 

CB1 mRNA expression levels, 18 experimentally naïve, young adult (4.5-5.3 years of age), 

male, long-tailed macaque monkeys (Macaca fascicularis) were arbitrarily divided into three 

groups and trained to take pellets containing either haloperidol, olanzapine, or sham orally twice 

daily (Dorph-Petersen et al., 2005). The total daily dose of haloperidol (38-32 mg) and 

olanzapine (11.0-13.2 mg) per animal was titrated to achieve trough plasma drug levels 

equivalent to the therapeutic range (~1.5 ng/ml for haloperidol and ~15 ng/ml for olanzapine) for 

the treatment of schizophrenia in humans (Nyberg et al., 1995; Kapur et al., 1997; Kapur et al., 

1998; Kapur et al., 1999). Following chronic drug exposure for 17-27 months, animals were 

grouped into triads according to body weight and euthanized by an overdose of pentobarbital (50 

mg/kg). Brains were immediately removed, and the right hemisphere was blocked into ~5 mm-

thick coronal slabs and frozen, and then blocks containing the middle one-third of the principal 

sulcus were serially sectioned on a cryostat at 16 µm, thaw mounted on Supra-frost slides (VWR 

Scientific, West Chester, PA, USA), and stored at -80°C. For each triad, two sections from each 

animal spaced by 224 µm were processed for in situ hybridization as described above. A total of 

two in situ hybridization runs were performed, with one section from a given triad processed 

side-by-side in a single run. The OD of CB1 mRNA expression was assessed in contours 
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encompassing the gray matter between the cingulate and principal sulci, which includes DLPFC 

areas 9 and 46. The mean (± SD) total area sampled per animal was 49 (± 8) mm2 for sham, 49 

(± 9) mm2 for haloperidol, and 47 (± 10) mm2 for olanzapine exposed monkeys. All cortical gray 

matter OD values were corrected by subtracting background OD values obtained from the white 

matter of each animal. All housing and experimental procedures were conducted in accordance 

with USDA and NIH guidelines and with approval of the University of Pittsburgh’s Institutional 

Animal Care and Use Committee. 

4.3.6 Statistical analyses 

Analysis of covariance (ANCOVA) models were performed to test the effect of diagnosis on 

each OD measure using averaged values across all sections from each subject. In the first 

ANCOVA model, OD was entered as the dependent variable and diagnostic group as the main 

effect. Subject pair was entered as a blocking effect to reflect the matching of individual subject 

pairs for sex, age, and PMI. In analyses of mRNA OD, RIN values and tissue storage time were 

entered as covariates because RIN reflects mRNA integrity (Stan et al., 2006) and storage time 

may affect mRNA preservation. In analyses of radioimmunoreactivity and immunoreactivity OD 

values, storage time was entered as a covariate because this variable has been reported to affect 

the density of CB1 radioligand binding (Mato and Pazos, 2004). Because using subject pair as a 

blocking effect may be considered an attempt to balance the two diagnostic groups with regard to 

the experimental factors instead of a true statistical paired design, a second ANCOVA model 

was performed to validate the first model. The second ANCOVA model used a main effect of 

diagnostic group and sex, age, PMI, RIN (in analyses of mRNA OD values only), and storage 

time as covariates. As a covariate, tissue storage time was never observed to have a significant 

effect and was therefore excluded in the reported analyses. Both ANCOVA models produced 

similar results for diagnostic group effect. We therefore report the results from the first model 

using pair as a blocking factor to reflect the matching of individual subject pairs for sex, age, and 

PMI in both cortical and laminar analyses.  

 The potential influence of confounding variables (sex, a diagnosis of schizoaffective 

disorder, suicide, use of antidepressant medication at time of death, a diagnosis of substance 

abuse/dependence at time of death, or a history of cannabis use/abuse) on the within-pair 
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differences in OD values were assessed by two-sample t-test analyses. A one-way analysis of 

variance (ANOVA) model with optical density as the dependent variable and drug group as the 

main effect was used for comparison of CB1 mRNA expression levels in the DLPFC of sham-, 

haloperidol-, and olanzapine- exposed monkeys. All statistics were performed using SPSS (SPSS 

Inc., Chicago, IL). 

4.3.7 Photography 

Darkfield and brightfield photomicrographs were obtained with a Zeiss Axiocam camera and the 

brightness and contrast were adjusted in Adobe Photoshop. Pseudocolor autoradiograms were 

generated using the MCID system. All photomicrographs and pseudocolor autoradiograms were 

assembled in Adobe Photoshop. 

4.4 RESULTS 

4.4.1 Analysis of CB1 mRNA expression by in situ hybridization 

Specificity of riboprobe and expression pattern of CB1 mRNA in human DLPFC. The specificity 

of the riboprobe for CB1 mRNA was confirmed by several observations. First, in emulsion-

dipped tissue sections, dense silver grain clusters were present over Nissl-stained neuronal nuclei 

of medium size, presumably inhibitory neurons, whereas very low levels of silver grains 

appeared over large, presumably pyramidal, neuronal nuclei as previously reported in rodent 

cortex (Marsicano and Lutz, 1999). Silver grain clusters were not present over glial cells 

identified by small, intensely Nissl-stained, nuclei (Fig 24C). Second, the distribution of labeled 

neurons was consistent with previously reported laminar locations of CB1 mRNA-expressing 

cells in the human prefrontal cortex (Westlake et al., 1994; Wang et al., 2003) and of CB1-

immunoreactive cell bodies in monkey and human DLPFC (Eggan and Lewis, 2007). 

Specifically, the density of CB1 mRNA-positive neurons was highest in layers 2-3s, lowest in 

deep layer 3, and intermediate in layers 4, 5, and 6 (Fig 24B). Layer 1 did not exhibit CB1 
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mRNA-positive cell bodies. Third, specificity was confirmed by an absence of signal above 

background in tissue sections hybridized with the sense riboprobe for CB1 mRNA (data not 

shown). 

 Expression of CB1 mRNA in area 9 of subjects with schizophrenia and control subjects. 

In film autoradiograms, levels of CB1 mRNA expression appeared to be reduced in DLPFC area 

9 of subjects with schizophrenia compared to matched control subjects (Fig. 25). Indeed, 

quantitative measures made through the entire cortical gray matter revealed that the subject with 

schizophrenia had lower OD measures in 18 of the 23 pairs (Fig. 26A). Comparison of film OD 

measures between the subject groups revealed that the mean (± SD) level of CB1 mRNA 

expression was significantly (F(1,21) = 8.9; p = 0.007) reduced by 14.8% in subjects with 

schizophrenia (105.4 ± 24.3 nCi/g) compared to the matched control subjects (123.8 ± 17.2 

nCi/g) (Fig. 26A). 

 Laminar expression of CB1 mRNA in area 9 of subjects with schizophrenia and control 

subjects. In order to determine if the reduction in CB1 mRNA expression observed in subjects 

with schizophrenia was selective for specific layers, we evaluated the film OD for CB1 mRNA 

in each cortical layer (Fig. 26B, C). The pattern of OD values across cortical layers was similar 

between the schizophrenia and control groups; however, the OD values for the schizophrenia 

group were lower in all layers compared to the control group (Fig. 26B). Analysis of each layer 

revealed that CB1 mRNA expression was significantly reduced in the schizophrenia group by 

15.9% (F(1,21) = 8.5; p = 0.008) in layers 2-3s, 15.5% (F(1,21) = 10.2; p = 0.004) in layer 5, and 

17.7% (F(1,21) = 6.8; p = 0.017) in layer 6 (Fig. 26C). 
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Figure 24. Distribution of silver grain clusters representing CB1 mRNA-positive neurons. 

(A) Brightfield photomicrograph of a representative traverse from a Nissl-stained section of a 

control subject. (B) Darkfield photomicrograph of an adjacent emulsion-dipped section 

illustrating silver grain accumulation over neuronal nuclei of CB1 mRNA-positive neurons. Note 

that the density of CB1 mRNA-positive neurons appears greatest in layers 2-superficial 3 and 

that cells in these layers express very high levels of CB1 mRNA. (C) Representative high-power 

brightfield photomicrograph illustrating silver grain accumulation around neuronal nuclei. 

Numbers and hash marks in A indicate the relative positions of the cortical layers, and the 

dashed lines denote the layer 6-white matter (WM) border. Scale bar = 300 µm in B (applies to 

A, B) and 30 µm in C. 
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Figure 25. Representative film autoradiograms illustrating the expression of CB1 mRNA in 

DLPFC area 9 of a control subject (A) and a matched subject with schizophrenia (B) (pair 

5; see Table 6). The density of hybridization signal is presented in pseudocolor according to the 

calibration bar to the left. CB1 receptor mRNA was expressed across layers 2-6, with the highest 

expression in layers 2 and superficial 3. Expression levels of CB1 mRNA in the schizophrenia 

subject (B) appear lower than in the matched control subject (A). Solid and broken lines denote 

the pial surface and the gray matter-white matter (WM) border, respectively. Numbers and hash 

marks to the left indicate the relative positions of the cortical layers. Scale bar (1 mm) in B 

applies to both panels. 
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Figure 26. Lower CB1 mRNA expression in DLPFC area 9 of subjects with schizophrenia. 

(A) Comparison of the cortical expression levels of CB1 mRNA by film optical density in 

matched pairs of control subjects (filled circles) and subjects with schizophrenia (open circles). 

CB1 mRNA expression was lower in the subject with schizophrenia in 18 of the 23 pairs. Mean 

values for each subject group are indicated by horizontal bars. (B) Plot of mean CB1 mRNA 

optical density across cortical layers from the pial surface to the white matter border (WM) in 

control and schizophrenia groups. The distinctive laminar pattern of CB1 mRNA expression was 

similar between the schizophrenia and controls groups; however, the optical density values for 

the schizophrenia group were lower across all layers. (C) Comparison of mean (± SD) film 

optical density for CB1 mRNA expression in each cortical layer between control and 

schizophrenia groups. **p < 0.008; *p < 0.02. 
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 Analysis of potential confounding factors. The observed within-pair percent differences 

in CB1 mRNA in the subjects with schizophrenia compared to their matched controls did not 

differ as a function of sex, a diagnosis of schizoaffective disorder, suicide, use of antidepressant 

medication at time of death, a diagnosis of substance abuse/dependence at time of death, or a 

history of cannabis use/abuse (all t(21) < 1.70; all p > 0.105; Fig. 27). 

 In order to test the potential effect of antipsychotic medications on the expression of CB1 

mRNA, we evaluated film OD values in DLPFC areas 9 and 46 of monkeys chronically exposed 

to haloperidol, olanzapine, or sham (Fig. 28). In these monkeys, the laminar distribution of CB1 

mRNA expression in all three groups matched the pattern observed in humans (Fig. 28A-C). 

Mean OD (± SD) of CB1 mRNA did not differ (F(2,15) = p = 0.313) between the haloperidol 

(184.6 ± 13.3 nCi/g), olanzapine (199.1 ± 16.0 nCi/g), and sham (192.1 ± 18.2 nCi/g) groups 

(Fig. 28D). 
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Figure 27. The effects of confounding factors on differences in CB1 mRNA expression in 

subjects with schizophrenia. Mean (± SD) percent difference from control subjects for CB1 

mRNA expression within subject pairs grouped by potential confounding factors in the subjects 

with schizophrenia. Neither sex, a diagnosis of schizoaffective disorder, suicide, use of 

antidepressant medication at time of death, a diagnosis of substance abuse/dependence at time of 

death, nor a history of cannabis use/abuse significantly affected the expression changes in CB1 

mRNA expression. Numbers in bars indicate the number of pairs for each category. 
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Figure 28. Representative film autoradiograms illustrating the expression of CB1 mRNA in 

the DLPFC of sham- (A), haloperidol- (B), and olanzapine- (C) exposed monkeys used to 

mimic the clinical treatment of individuals with schizophrenia. The density of hybridization 

signal is presented in pseudocolor according to the calibration bar to the left. CB1 mRNA 

expression was assessed between the cingulate sulcus (cs) and the principal sulcus (ps). Solid 

and broken lines denote the pial surface and the gray matter-white matter border, respectively. 

Scale bar (1 mm) in C applies to all panels. (D) Comparison of CB1 mRNA expression levels by 

film optical density in the DLPFC of sham- (S), haloperidol- (H), and olanzapine- (O) exposed 

monkeys. Hash bars equal group means. 
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4.4.2 Analysis of CB1 protein expression by radioimmunocytochemistry 

Expression of CB1 radioimmunoreactivity in area 9 of subjects with schizophrenia and control 

subjects. Qualitative examination of film autoradiograms revealed a laminar pattern of CB1 

radioimmunoreactivity identical to that of CB1-immunoreactive (IR) axons previously reported 

in human DLPFC (Eggan and Lewis, 2007). Specifically, the density of CB1 

radioimmunoreactivity progressively increased across layers 2 and 3, and layer 4 contained a 

very dense band of radioimmunoreactivity. The lowest density of CB1 radioimmunoreactivity in 

layer 5 sharply demarcated the border with layer 4. Layer 6 contained a density of CB1 

radioimmunoreactivity similar to that in layers 2-3s (Fig. 29A). 

 Levels of CB1 radioimmunoreactivity appeared to be reduced in subjects with 

schizophrenia compared to matched control subjects (Fig. 29). Indeed, quantitative measures 

made through the entire cortical gray matter revealed that the subject with schizophrenia had 

lower OD measures in 20 of 23 pairs (Fig. 30A). The mean (± SD) level of CB1 

radioimmunoreactivity was significantly (F(1,21) = 8.8; p = 0.007) 11.6% lower in subjects with 

schizophrenia (192.4 ± 57.4 nCi/g) compared to matched control subjects (217.6 ± 70.1 nCi/g) 

(Fig. 30A). The within-pair percent change in CB1 radioimmunoreactivity in the subjects with 

schizophrenia strongly correlated with the within-pair percent change in CB1 mRNA expression 

(Fig. 30B). 

 Analysis of potential confounding factors. The observed within-pair percent differences 

in CB1 radioimmunoreactivity did not differ as a function of sex, a diagnosis of schizoaffective 

disorder, suicide, use of antidepressant medication at time of death, a diagnosis of substance 

abuse/dependence at time of death (all t(21) < 1.57; all p > 0.131), or a history of cannabis 

use/abuse (t(7) = 0.54; p = 0.605) in the subjects with schizophrenia (Fig. 31). 
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Figure 29. Representative film autoradiograms illustrating the expression of CB1 

radioimmunoreactivity in DLPFC area 9 of a control subject (A) and a matched subject 

with schizophrenia (B) (pair 8; see Table 6). The density of radioimmunoreactivity signal is 

presented in pseudocolor according to the calibration bar to the left. CB1 radioimmunoreactivity 

was expressed across all layers, with the highest expression in layer 4. The level of CB1 

radioimmunoreactivity in the schizophrenia subject (B) appeared lower than in the matched 

control subject (A). Solid and broken lines denote the pial surface and the gray matter-white 

matter border, respectively. Numbers and hash marks to the left indicate the relative positions of 

the cortical layers. Scale bar (500 µm) in B applies to both panels. 
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Figure 30. Reduced CB1 radioimmunoreactivity in DLPFC area 9 of subjects with 

schizophrenia. (A) Comparison of the cortical levels of CB1 radioimmunoreactivity by film 

optical density in matched pairs of control subjects (filled circles) and subjects with 

schizophrenia (open circles). CB1 radioimmunoreactivity was reduced in the subject with 

schizophrenia in 20 of the 23 pairs. Mean values for each subject group are indicated by 

horizontal bars. (B) The within-pair percent change in CB1 radioimmunoreactivity strongly 

correlated with the within-pair percent difference in CB1 mRNA expression. 
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Figure 31. The effects of confounding factors on the changes in CB1 radioimmunoreactivity 

in subjects with schizophrenia. Mean (± SD) percent difference from control subjects for CB1 

radioimmunoreactivity within subject pairs grouped by potential confounding factors in the 

subjects with schizophrenia. Neither sex, a diagnosis of schizoaffective disorder, suicide, use of 

antidepressant medication at time of death, a diagnosis of substance abuse/dependence at time of 

death, nor a history of cannabis use/abuse significantly affected the expression changes in CB1 

radioimmunoreactivity. Numbers in bars indicate the number of pairs for each category. 
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4.4.3 Analysis of CB1 protein expression by immunocytochemistry 

Expression of CB1 immunoreactivity in area 9 of subjects with schizophrenia and control 

subjects. In order to confirm the observed decrease in CB1 protein by 

radioimmunocytochemistry and to assess the potential affect of laterality, we performed standard 

immunocytochemistry in the fixed left hemisphere of 12 of the 23 subject pairs. In both control 

subjects and subjects with schizophrenia, intense CB1 immunoreactivity was observed primarily 

in axons and boutons as previously described (Eggan and Lewis, 2007). The laminar pattern of 

CB1-immunoreactive (IR) axons was identical to the pattern of CB1 radioimmunoreactivity 

described above (Fig. 32). 

 The overall density of CB1-IR axons appeared to be reduced in the subjects with 

schizophrenia compared to matched control subjects (Fig. 32). Indeed, quantitative measures 

made through the entire cortical gray matter revealed that the subject with schizophrenia had 

lower OD measures in 10 of 12 pairs (Fig. 33A). The mean OD (± SD) level of CB1 

immunoreactivity was significantly (F(1,11) = 6.6; p = 0.026) reduced by 13.9% in subjects with 

schizophrenia (0.230 ± 0.045) compared with matched control subjects (0.198 ± 0.023; Fig. 

33A).  

 Laminar density of CB1-IR axons in area 9 of subjects with schizophrenia and control 

subjects. In order to determine if the reduction in CB1 immunocytochemistry observed in 

subjects with schizophrenia was selective for specific layers, we evaluated the relative OD of 

CB1 immunoreactivity in each cortical layer (Fig. 33B, C). Laminar analysis was performed in 

tissue processed for standard immunocytochemistry because this method preserves axon 

morphology and produced better resolution of cytoarchitectonically-defined laminar boundaries. 

The pattern of OD values across cortical layers was similar between the schizophrenia and 

control groups; however, the OD values for the schizophrenia group were lower across all layers 

compared to the control group (Fig. 33B). Analysis of each layer revealed that CB1 

immunoreactivity was significantly reduced in the schizophrenia group by 15.2% (F(1,11) = 6.7; p 

= 0.026) in layer 3d, 16.9% (F(1,11) = 6.8; p = 0.025) in layer 4, and 17.5% (F(1,11) = 12.4; p = 

0.005) in layer 6 (Fig. 33C). 
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 Analysis of potential confounding factors. The observed within-pair percent differences 

in CB1 immunoreactivity in the subjects with schizophrenia compared to their matched controls 

did not differ as a function of sex, a diagnosis of schizoaffective disorder, suicide, use of 

antidepressant medication at time of death, a diagnosis of substance abuse/dependence at time of 

death (all t(11) < 1.27; all p > 0.232), or a history of cannabis use/abuse (t(8) = -0.06; p = 0.957) 

(data not shown). 
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Figure 32. Brightfield photomicrographs demonstrating the density and laminar pattern of 

CB1 immunoreactivity in DLPFC area 9 of a control subject (A) and a matched subject 

with schizophrenia (B) (pair 4; see Table 6). Intense CB1 immunoreactivity was observed 

primarily in axons and boutons (C, D). The density of CB1-IR axons and varicosities appeared to 

be decreased in the subject with schizophrenia (B, D) compared to the matched control (A, C). 

Numbers and hash marks to the left indicate the relative positions of the cortical layers, and the 

dashed lines denote the layer 6-white matter (WM) border. Asterisk denote the same blood 

vessel in A, C and B, D. Scale bars = 300 µm in B (applies to A, B) and 50 µm in D (applies to 

C, D). 
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Figure 33. Reduced CB1 immunoreactivity in DLPFC area 9 of subjects with 

schizophrenia. (A) Comparison of the cortical relative optical density levels of CB1 

immunoreactivity in matched pairs of control subjects (filled circles) and subjects with 

schizophrenia (open circles). Mean values for each subject group are indicated by horizontal 

bars. (B) Plot of the relative optical density of CB1 immunoreactivity across cortical layers from 

the pial surface to the white matter border (WM) in control (filled circles) and schizophrenia 

(open circles) groups. The distinctive laminar pattern of CB1 immunoreactivity was similar 

between the schizophrenia and control groups; however, the relative optical density levels of 

CB1 immunoreactivity for the schizophrenia group were reduced across all layers compared to 

the control group. (C) Comparison of mean (± SD) relative optical density of CB1 

immunoreactivity in each cortical layer between control (closed bars) and schizophrenia (open 

bars) groups. **p = 0.005; *p < 0.03. 
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4.4.4 Correlation of altered CB1 mRNA expression with changes in other GABA 

related transcripts 

In a previous study, we found that the expression of GAD67 and CCK mRNAs were significantly 

reduced in DLPFC area 9 in the same cohort of subjects used in this study (Hashimoto et al., 

2007). In addition, the within-pair percent changes in GAD67 and CCK mRNAs in the subjects 

with schizophrenia were significantly correlated (r = 0.81; p < 0.001) suggesting that CCK-

containing neurons exhibit a deficit in GABA synthesis (Hashimoto et al., 2007). Given that CB1 

mRNA is highly expressed by CCK interneurons in the neocortex, the observed changes in CB1 

mRNA were hypothesized to be associated with changes in these GABA-related mRNA levels; 

consistent with this prediction the within-pair percent change in CB1 mRNA expression was 

significantly correlated with the within-pair percent changes in GAD67 mRNA (r = 0.64, p = 

0.001) and CCK mRNA (r = 0.68; p < 0.001) expression levels (Fig. 34). 
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Figure 34. Correlation analyses between the differences in CB1 mRNA and GAD67 or CCK 

mRNA expression across subject pairs. The within-pair percent difference in CB1 mRNA 

expression is plotted against those for GAD67 (A) or CCK (B) mRNA expression (from 

Hashimoto et al., 2007) for the 23 subject pairs. Changes in CB1 mRNA expression significantly 

correlated with changes in GAD67 and CCK mRNA expression across the 23 subject pairs. 
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4.5 DISCUSSION 

In order to explore the potential role of the CB1 receptor in DLPFC dysfunction in 

schizophrenia, we examined the expression of CB1 receptor mRNA and protein. We found that 

1) the levels of CB1 receptor mRNA and protein are significantly reduced in the DLPFC of 

subjects with schizophrenia; 2) these reductions cannot be explained by potential confounding 

factors, suggesting that a reduction in CB1 receptors is intrinsic to the disease process of 

schizophrenia; and 3) the observed changes in CB1 receptor mRNA expression correlated with 

expression changes in GAD67 and CCK mRNA in the same subjects with schizophrenia, 

suggesting that downregulation of the CB1 receptor may be a compensatory response to 

impaired GABA neurotransmission in CCK-containing neurons. 

 Several lines of evidence indicate that the observed reductions in CB1 mRNA and protein 

expression were not a consequence of factors frequently associated with schizophrenia. First, 

CB1 mRNA expression was not altered in the DLPFC of monkeys chronically exposed to typical 

or atypical antipsychotics in a manner that mimics the clinical treatment of schizophrenia (Fig. 

28). Consistent with these observations, the four subjects with schizophrenia (537, 622, 829, and 

621) who were not receiving antipsychotic medications at the time of death showed decreased 

expression of CB1 mRNA or protein compared to their matched controls. 

 Second, it is unlikely that comorbid substance use contributed to the reductions in CB1 

mRNA and protein. Neither a diagnosis of substance abuse and/or dependence present at the 

time of death, nor a history of cannabis use, accounted for the group differences in CB1 mRNA 

or protein expression (Figs. 27, 31). In addition, the two control subjects (516 and 685) who had 

positive plasma alcohol levels at the time of death had higher expression levels of both CB1 

mRNA and protein than their matched controls. Consistent with these observations, rodent 

studies demonstrated that substances of abuse do not affect CB1 mRNA expression or CB1 

binding in the neocortex [with the exception of cocaine, which only affected CB1 mRNA levels 

(Gonzalez et al., 2002; Ortiz et al., 2004)] and that chronic exposure to CB1 agonists does not 

alter CB1 mRNA expression (Romero et al., 1998; Garcia-Gil et al., 1999). 
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 Third, the observed reductions in CB1 mRNA and protein expression did not appear to be 

associated with the use of antidepressant medication at the time of death, death by suicide, or a 

diagnosis of schizoaffective disorder (Fig. 27, 31). 

 Finally, the levels of some mRNA species may be affected by premortem agonal state 

events associated with hypoxia and acidosis (Stan et al., 2006). An accurate indicator of mRNA 

quality is the RIN value: RIN values >7.0 represent high RNA quality and all subjects had a RIN 

value greater than 7.0. Furthermore, the RIN values did not differ between the subject groups. In 

addition, in the same subjects used in this study the expression of other transcripts was not 

altered in schizophrenia (Hashimoto et al., 2003; Hashimoto et al., 2005; Hashimoto et al., 

2007), confirming that the observed reductions in CB1 mRNA are not attributable to a general 

deterioration of mRNA integrity in the subjects with schizophrenia. 

 In contrast to our findings of reduced levels of CB1 receptor mRNA and protein 

increased binding of the CB1 agonist [3H]CP-55940 was reported in the DLPFC (Dean et al., 

2001) and posterior cingulate cortex (Newell et al., 2006) of subjects with schizophrenia. 

Increased binding of the CB1 receptor antagonist [3H]SR141716 was also reported in the anterior 

cingulate cortex of subjects with schizophrenia (Zavitsanou et al., 2004). The apparent 

discrepancy between these findings and those of the present study may be due to the fact that the 

radioligands used in these studies bind receptors other than CB1. CP-55940 is known to be a 

non-specific CB1 agonist, and SR141716 has functional effects in CB1 knockout mice 

suggesting that it binds receptors other than the CB1 receptor (Breivogel et al., 2001; Hajos et 

al., 2001). Therefore, the increased binding of radioligands in subjects with schizophrenia in 

these studies may represent binding to receptors other than CB1. This argument is strengthened 

by the fact that the laminar patterns of radioligand binding described in these studies did not 

match the laminar distribution of CB1-IR axons and varicosities in the same regions of monkey 

and human brains (Eggan and Lewis, 2007). 

 Disturbances in inhibitory neurotransmission appear to play a prominent role in the 

dysfunction of the DLPFC of subjects with schizophrenia (Lewis et al., 2005). Indeed, in 

postmortem studies one of the most consistent findings is a ~25-35% reduction in the expression 

of GAD67 mRNA, across layers 2-5 in the DLPFC of subjects with schizophrenia (Akbarian et 

al., 1995; Guidotti et al., 2000; Volk et al., 2000; Straub et al., 2007). Parvalbumin-containing 

interneurons appear to account for the decreased GAD67 mRNA expression in layers 3 and 4 

119 



(Hashimoto et al., 2003), and the results of the present study suggest that CB1/CCK containing 

neurons may contribute to the GAD67 mRNA deficit in layers 2-superficial 3. Specifically, in the 

primate DLPFC, the highest densities of both CB1- and CCK-positive neurons are found in these 

layers and both CB1- and CCK-positive axon terminals densely innervate layer 4 (Oeth and 

Lewis, 1990; Eggan et al., 2007). In addition, these two proteins are colocalized in terminals that 

furnish perisomatic inputs to pyramidal neurons (Marsicano and Lutz, 1999; Galarreta et al., 

2004; Bodor et al., 2005). Thus, the finding in the present study of reduced CB1 mRNA in layers 

2-superfical 3, reduced CB1 immunoreactivity in layer 4, and correlated changes in CB1, CCK 

and GAD67 mRNAs in schizophrenia converge on the interpretation that GABA 

neurotransmission is altered in the subset of CB1/CCK-containing GABA neurons that project 

from the superficial to middle cortical layers.  

 How might these disturbances be related to the working memory impairments associated 

with DLPFC dysfunction in schizophrenia? In the human DLPFC, the power of gamma band 

oscillations (30-80 HZ) increases specifically with, and in proportion to, working memory load 

(Howard et al., 2003), and impairments in cognitive control and working memory in individuals 

with schizophrenia are associated with reduced frontal lobe gamma band power (Cho et al., 

2006). GABA neurotransmission in the DLPFC is essential for both working memory 

performance (Sawaguchi et al., 1988; Rao et al., 2000) and oscillatory activity (Glickfeld and 

Scanziani, 2006). Interestingly, in line with the anatomical localization of CB1 receptors to 

CCK-containing neuron axon terminals, activation of CB1 receptors inhibits GABA release from 

these terminals and strongly suppresses GABAA receptor-mediated inhibitory postsynaptic 

currents in pyramidal neurons (Trettel et al., 2004; Galarreta et al., 2004; Bacci et al., 2004; 

Bodor et al., 2005). Indeed, the acute activation of CB1 receptors with exogenous cannabinoids 

decreases the power of gamma oscillations presumably by disrupting the synchronous firing of 

pyramidal neurons (Hajos et al., 2000b; Robbe et al., 2006). Thus, the disruption of gamma 

oscillations by CB1 receptor activation may explain the impairments in working memory 

performance in both humans and animals following systemic administration of cannabinoids 

(Winsauer et al., 1999; Schneider and Koch, 2003; D'Souza et al., 2004).  

 Based on these observations, the down regulation of CB1 receptor mRNA and protein in 

schizophrenia may be considered a compensatory response to a deficit of GABA synthesis in 

CCK-containing neurons. That is, a lower density of CB1 receptors could, by reducing the 
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endocannabinoid-mediated block of GABA release from the perisomatic inhibitory terminals of 

CB1/CCK containing interneurons, contribute to a partial normalization of gamma band power 

and working memory function. This interpretation implies that cannabis exposure in vulnerable 

individuals would impair this compensatory response, providing a potential mechanism linking 

cannabis exposure with an increased risk for the cognitive impairments of schizophrenia. 

 This interpretation also suggests possible novel molecular targets for treating the 

cognitive deficits in schizophrenia. For instance, CB1 receptor antagonists would be predicted to 

augment the intrinsic compensatory down-regulation of CB1 receptor expression, further limit 

the endocannabinoid-mediated suppression of GABA release from CB1/CCK containing 

terminals, and enhance the ability of CCK basket neurons to synchronize pyramidal neurons in 

gamma oscillations. In addition, at least in the hippocampus, GABAA receptors containing the α2 

subunit are selectively located on pyramidal cell bodies post-synaptic to CB1/CCK-containing 

terminals (Nyiri et al., 2001). Thus, positive allosteric modulators of the benzodiazepine binding 

site with selectivity for GABAA receptors containing the α2 subunit would be predicted to 

increase the efficacy of GABA released from CB1/CCK-containing terminals, and might be 

synergistic with the proposed effects of such agents at augmenting the input from parvalbumin-

containing chandelier neurons to the axon initial segment of pyramidal neurons (Lewis et al., 

2004b; Volk and Lewis, 2005). Together, such agents might enhance the synchronization of 

pyramidal neuron activity by restoring normal levels of perisomatic GABA input to pyramidal 

neurons. 
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5.0  GENERAL DISCUSSION 

In this dissertation, we were drawn to the potential relationship between the endocannabinoid 

system and schizophrenia on the basis of epidemiological evidence indicating that exposure to 

cannabis represents a significant risk factor for the development of the illness. Furthermore, data 

in the rodent demonstrated that the CB1 receptor is expressed by CCK basket neurons, that 

activation of this receptor strongly modulates GABA neurotransmission, and that the CB1 

receptor mediates network activity that is necessary for working memory, all of which are known 

to be dysfunctional in subjects with schizophrenia. The main conclusion was that correlated 

changes in CB1, CCK and GAD67 mRNAs suggest that GABA neurotransmission is altered in 

the subset of CB1/CCK-containing GABA neurons within the DLPFC of subjects with 

schizophrenia (Fig. 35). We posited that the CB1/CCK-containing GABA neurons may account 

for the GABA neurons in layers 2-superficial 3 that exhibit reduced GAD67 mRNA expression 

(see chapter 1.2.3). We interpret the data to indicate that, in schizophrenia, a down regulation of 

CB1 receptor mRNA and protein may be a compensatory response to a deficit in GABA 

synthesis in order to increase GABA release from the perisomatic inhibitory terminals of 

CB1/CCK containing interneurons. Furthermore, since CB1/CCK-containing basket neurons 

appear to play a critical role in regulating the synchronization of pyramidal neuron firing during 

working memory, these findings suggest that the alterations in CB1/CCK-containing basket 

neurons in schizophrenia represent a neuropathological entity that gives rise to the 

pathophysiology of altered gamma oscillations and the clinical feature of impaired working 

memory. 

 Previous postmortem investigations indicate that the chandelier class of GABA neurons 

exhibit reduced GABA synthesis and down regulate PV and GAT1 and upregulate the GABAA 

α2 subunit as compensatory responses  (Lewis et al., 2005) (chapter 1.2.3; Fig. 35). Together, 

these data and the data of this dissertation suggest that pyramidal neurons that receive convergent 
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perisomatic input from PV-containing chandelier neurons and CB1/CCK-containg basket 

neurons are likely to be severely dysregulated in subjects with schizophrenia (Fig. 35). 

 In the following discussion, I will address some caveats and confounds not addressed in 

individual data chapters. I will explore the role of cannabis use and reductions in CB1 receptor 

expression in the disease process of schizophrenia by constructing a cascade of events model that 

incorporates previous findings in the illness and the findings of this dissertation (Fig. 36). 

Finally, I will present a proposal for a therapeutic intervention strategy, and end with a brief 

discussion of important future directions. 
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Figure 35. Schematic summary of alterations in perisomatic GABA circuitry in the 

dorsolateral prefrontal cortex of individuals with schizophrenia. CCK-containing large 

basket neurons (red) represent a separate, but convergent, source of perisomatic inhibition from 

PV-containing neurons. CCK-containing basket neurons exhibit reduced levels of CB1, CCK, 

and GAD  mRNAs and these reduced levels of gene expression are associated with a decrease 

in CB1 immunoreactivity. Reduced levels of gene expression in chandelier neurons (blue) are 

associated with a decrease in immunoreactivity  for GABA (γ-aminobutyric acid) transporter 1 

(GAT1) in the axon cartridges of these neurons and an upregulation of GABA  receptor α  

subunit immunoreactivity in the postsynaptic axon initial segment of pyramidal neurons (green). 

Gene expression in the calretinin (CR)-expressing subpopulation of GABA neurons (yellow) 

does not seem to be altered. CB1, cannabinoid 1 receptor; CCK, cholecystokinin; GAD , 67 kD 

isoform of glutamic acid decarboxylase; PV, parvalbumin; 1-6, layers of dorsolateral prefrontal 

cortex.
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5.1 CAVEATS AND CONFOUNDS 

In chapters 2 and 3 we demonstrated that CB1 immunoreactivity is extensively found in a 

subset of CCK-containing neurons and axons and that CB1-IR axon terminals exclusively form 

symmetric synapses. These findings are consistent with previous immunocytochemical 

experiments (Katona et al., 1999; Katona et al., 2000; Hajos et al., 2000a; Bodor et al., 2005) and 

the known physiological effects of CB1 receptors on GABA release and participation in DSI in 

the neocortex (Trettel et al., 2004; Bodor et al., 2005). However, in contrast to our findings, 

several studies suggest that CB1 receptors might be located presynaptically in pyramidal cell 

axon terminals in the neocortex where they could modulate excitatory transmission (Auclair et 

al., 2000; Hajos et al., 2001). For instance, the application of CB1 receptor agonists has been 

shown to reduce the amplitude of excitatory postsynaptic potentials and endogenous 

cannabinoids have been reported to mediate depolarization-induced suppression of excitation 

(DSE) (reviewed in Chevaleyre et al., 2006). In addition, low levels of CB1 mRNA expression 

have been observed in pyramidal neurons (Marsicano and Lutz, 1999; chapter 4 of this 

dissertation). Until recently, the physiological effects of CB1 receptor activation on glutamate 

transmission and mRNA findings were unsubstantiated by anatomical investigations utilizing 

immunocytochemistry. However, two recent studies using a well characterized and specific 

rabbit anti-CB1 antibody raised against the C-terminus (amino acid residues 443-473) of the rat 

CB1 receptor reported asymmetric synapses formed by CB1-IR axon terminals in the rat 

hippocampus, suggesting that CB1 receptors are located in excitatory terminals that release 

glutamate (Kawamura et al., 2006; Katona et al., 2006). This discrepancy is not likely to be due 

to antibody specificity because the anti-CB1 antibodies utilized in the experiments of this 

dissertation were shown to meet the “gold standards” of antibody specificity in chapter 2, (Saper 

and Sawchenko, 2003; Saper, 2005). In addition to the arguments presented in chapter 2.5.1, the 

apparent discrepancy between these findings and those of chapter 3 may be due to the fact that 

pyramidal neurons selectively express a CB1 receptor-interacting protein (CRIP1B), which 

putatively binds to the last nine amino acids of CB1 receptor C-terminus (Niehaus et al., 2004). 

This CB1 receptor-interacting protein may mask the epitope of the CB1 receptor that the rabbit 
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anti-CB1-L14 antibody recognizes and may have rendered CB1 receptors in asymmetric 

synapses nonimmunoreactive to the antibody used in our studies. However, the rabbit anti-CB1-

CT antibody recognizes the entire C-terminus of the CB1 receptor and was not found to label 

asymmetric synapses in chapter 2 or in other reports in rodent (Hajos et al., 2000b; Katona et al., 

2001; Bodor et al., 2005). A more likely explanation is that the expression of CB1 receptors in 

excitatory terminals is below the threshold of immunocytochemical detection with the rabbit 

anti-CB1-L14 antibody. Consistent with this idea, Kawamura and colleagues (2006) using semi-

quantitative immunogold electron microscopy, found that in the hippocampus and cerebellum, 

the density of CB1 receptors in inhibitory synapses was 20- to 30-fold higher in inhibitory 

terminals than in excitatory terminals. Furthermore, electrophysiological studies have revealed a 

substantial difference in the sensitivity of CB1 receptors in inhibiting the release of 

neurotransmitter from inhibitory verses excitatory terminals; i.e. the concentration of CB1 

receptor agonist necessary for 50% suppression of neurotransmitter release from excitatory 

terminals is on the order of 30 times higher than the concentration necessary to affect release 

from inhibitory terminals (Ohno-Shosaku et al., 2002). 

 In chapter 3, several factors may have contributed to an underestimation of the number 

of immunoreactive profiles. First, the fixatives used during animal perfusion are necessary for 

ultrastructural preservation may reduce immunoreactivity. This was apparent in tissue processed 

for CB1 immunoperoxidase labeling, where the density of labeled axons was noticeably reduced 

compared to tissue prepared for light microscopy. The procedure of processing tissue for electron 

microscopy investigation requires a low concentration of detergent in order to maintain 

membrane integrity, which may reduce antibody penetration into the tissue. Decreased 

penetration of primary and secondary antibodies may result in an increase in false negatives in 

labeled tissue. However, although these issues may decrease the incidence of labeled structures it 

should not affect the proportional frequency of labeled terminals. 

 In chapter 4, we argued that the subset of CB1/CCK-containing GABA neurons is 

altered in schizophrenia and that these neurons account for the observed reduced expression of 

CB1 mRNA and protein in the DLPFC of subjects with the illness. One caveat to this 

interpretation is that the reduction in CB1 mRNA expression could be partially due to reductions 

in pyramidal neurons. In chapter 4 we used riboprobes because they are more specific than 

oligonucleotide probes. However, use of riboprobes requires treatment with RNase, which 
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reduces cellular morphology in cresyl violet counterstaining precluding the definitive 

identification of interneurons and pyramidal neurons. However, we found that changes in CB1 

mRNA expression correlated with changes in CB1 radioimmunoreactivity (Fig. 30; chapter 

4.4.2). As described above, given that our antibody appears to selectively label CB1 receptors in 

inhibitory axons, these data suggest that the reductions in CB1 radioimmunoreactivity and 

immunoreactivity in subjects with schizophrenia reported in chapter 4 are likely to reflect 

specific decreases in the expression of CB1 receptor protein in inhibitory neurons and axons 

terminals rather than in pyramidal neurons and axons. Given the high correlation of changes in 

CB1 mRNA with changes in GAD67 and CCK mRNAs, the observed changes in CB1 are 

unlikely due to decreased CB1 mRNA in pyramidal cells, although this possibility cannot be 

completely ruled out. 

5.2 UNDERSTANDING THE DISEASE PROCESS OF SCHIZOPHRENIA: AN 

UPDATE 

Once neuropathological entities in schizophrenia have been identified it must be determined how 

those alterations fit in to the cascade of the disease process. That is, is an alteration a potential 

causal factor, a deleterious consequence of an upstream factor, or a compensatory response? 

Understanding where observed abnormalities fit in to this cascade is important for the 

development of therapeutic interventions because those alterations that are most proximal to the 

pathophysiology (reduced gamma oscillations; see chapter 1.2) that give rise to the clinical 

symptoms are often the most effective targets for treating the illness. 

 In chapter 1.2.3 I reviewed previous findings indicating that reductions in PV and GAT1 

proteins in chandelier neuron cartridges and increases in the GABAA receptor α2 at the axon 

initial segment represent neuropathological entities in the DLPFC of subjects with schizophrenia. 

In this dissertation, we identified reductions in the expression of the CB1 receptor mRNA and 

protein in CCK neurons as a novel neuropathological entity in the DLPFC of individuals with 

schizophrenia. We have argued that these alterations represent a compensatory response to 

reduced GAD67 mRNA expression. Here, I will provide evidence for these interpretations by 

constructing a cascade of events model incorporating the alterations observed in PV-containing 
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chandelier and CB1/CCK-containing neurons into the cascade of the disease process (Fig. 36). I 

will show that these two separate disease process pathways converge on a common 

pathophysiology that gives rise to working memory impairments, a core clinical feature of 

schizophrenia (Fig. 36). 

5.2.1 Etiopathogenetic mechanisms underlying reduced GAD67 

The importance of the observed changes in PV-containing chandelier and CB1/CCK-containing 

neurons and the validity of our interpretations would be strengthened by showing that they can 

be the consequence of upstream causal factors. Here, I will discuss a couple possibilities, 

although there are many plausible mechanisms. 

5.2.1.1 Evidence for the involvement of reduced excitatory transmission in schizophrenia 

Altered glutamate neurotransmission has been implicated in the pathophysiology of 

schizophrenia (reviewed in Moghaddam, 2003; Konradi and Heckers, 2003). Specifically, 

clinical observations suggest the involvement of a deficit in glutamate-meditated excitatory 

transmission via the NMDA receptor in the disorder (Moghaddam, 2003; Konradi and Heckers, 

2003). For example, NMDA receptor antagonists such as the psychotomimetic drug 

phencyclidine (PCP) or ketamine produce schizophrenia-like symptoms in healthy individuals 

and exacerbate both positive and negative symptoms in individuals with schizophrenia 

(Moghaddam, 2003; Konradi and Heckers, 2003). Furthermore, subanesthetic doses of ketamine 

produce cognitive impairments in healthy individuals (Krystal et al., 1994), systemic 

administration of NMDA antagonists impairs working memory in rats (Verma and Moghaddam, 

1996), and perfusion of an NMDA receptor blocker in the DLPFC disrupts working memory 

function in macaque monkeys (Dudkin et al., 2001). These data converge on the idea that 

NMDA receptor hypofunction could contribute to the pathophysiology of schizophrenia. 

 In addition to these clinical observations, postmortem studies have reported significant 

alterations in glutamate receptor binding, as well as changes in transcription and protein 

expression that result in alterations in the composition of NMDA receptor subunits across a 

number of brain regions in schizophrenia, including the DLPFC (Konradi and Heckers, 2003). 

These changes are modest in magnitude and not consistently replicated making it difficult to 
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draw conclusions about NMDA receptor hypofunction based on these data alone (Konradi and 

Heckers, 2003). However, NMDA receptor hypofunction does not necessarily have to result 

from reduced levels of NMDA receptors. For example, recently identified gene variants that 

have been associated with an increased risk for schizophrenia can influence the function of 

modulatory sites on the NMDA receptor or proteins that regulate NMDA intracellular signal 

transduction pathways (Moghaddam, 2003; Harrison and Weinberger, 2005). Consistent with 

this interpretation, variants in the gene for neuregulin 1 (NRG1) have been implicated as a 

susceptibility gene in schizophrenia (Stefansson et al., 2002) and can reduce NMDA receptor 

activation through interactions with erbB4 receptors in the DLPFC of subjects with 

schizophrenia (Hahn et al., 2006). 

 Reduced excitatory transmission can be an independent neuropathology in schizophrenia 

that underlies cognitive impairments in the illness (Moghaddam, 2003). However, reduced 

excitatory transmission can also be linked to the observed reductions in the expression of 

GABA-related markers discussed in chapter 1.2.3 and chapter 4. For instance, the expression of 

GAD67 is activity dependent suggesting that the observed reductions in this transcript in 

schizophrenia could be secondary to reduced excitatory drive to GABA neurons in the DLPFC 

(Jones, 1997) (Fig. 36). Consistent with this idea, neonatal lesions of the ventral hippocampus, 

which furnish excitatory inputs to the prefrontal cortex, produce deficits in GAD67 mRNA in the 

adult rat prefrontal cortex (Lipska et al., 2003). In addition, blockade of NMDA receptors with 

the antagonist MK-801 results in decreased mRNA expression levels of GAD67 in the cortex of 

rats (Paulson et al., 2003). Furthermore, monocular deprivation induced by intravitreal injections 

of tetrodotoxin produce reductions in GAD67 mRNA in the lateral geniculate nucleus and visual 

cortex of macaque monkeys (Huntsman et al., 1995). These data suggest that NMDA 

hypofunction could be a potential upstream causal factor of the observed reductions in the 

expression of GAD67 mRNA in subjects with schizophrenia (Fig. 36). 

 Interestingly, excitatory transmission does not appear to affect all GABA neuron 

subtypes equally. For instance, several lines of evidence suggest that PV-containing GABA 

neurons are more sensitive to NMDA hypofunction than calretinin-containing GABA neurons. 

First, in both the rat hippocampus and monkey DLPFC, PV-containing GABA neurons receive a 

significantly greater number of excitatory inputs than calretinin-containing GABA neurons 

(Gulyas et al., 1999; Melchitzky and Lewis, 2003). Second, 50-90% of PV-containing GABA 
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neurons are immunoreactive for the NMDAR1 subunit, whereas <10% of calretinin-containing 

neurons express detectable levels of this subunit in the primate cortex (Huntley et al., 1994; 

Huntley et al., 1997). Third, chronic administration of PCP produced a 25% reduction in the 

level of PV mRNA expression per neuron, but did not change the density of PV mRNA positive 

neurons in the rat prefrontal cortex (Cochran et al., 2003). Interestingly, this finding is strikingly 

reminiscent of the pattern observed in the DLPFC of subjects with schizophrenia (described in 

chapter 1.2.3). Fourth, application of ketamine, at sublethal concentrations, induced a decrease 

in PV and GAD67 immunoreactivity in cultured PV-containing interneurons that was mediated 

by NR2A-containing receptors (Kinney et al., 2006). Together, these data converge on the idea 

that the observed reductions in GAD67 mRNA in PV-containing GABA neurons in subjects with 

schizophrenia could be a consequence of an upstream reduction in signaling through NMDA 

receptors (Fig. 36).  

 It is less clear if the alterations observed in CB1/CCK GABA neurons in subjects with 

schizophrenia could result from NMDA hypofunction (Fig. 36). However, several studies 

suggest that CB1/CCK-containing GABA neurons may be sensitive to reduced excitatory 

neurotransmission. For instance, although CCK-containing neurons receive less total synaptic 

input than PV-containing neurons, 64% of the synapses they receive are excitatory, suggesting 

that CCK-containing receive considerable excitatory drive (Matyas et al., 2004). In addition, the 

release of CCK-like immunoreactivity from rat cortical synaptosomes is elicited by NMDA and 

increases in a concentration-dependent manner (Paudice et al., 1998). In addition, injections of 

MK-801 produces significant reductions in CCK mRNA expression and peptide in the frontal 

cortex and hippocampus of rats (Arif et al., 2006). Unfortunately, the effect of NMDA 

antagonists on the expression of GAD67 and CB1 mRNA in CCK-containing neurons has not 

been investigated. However, these findings suggest that the observed reductions in the expression 

of GAD67 mRNA and CCK mRNA in subjects with schizophrenia could be a consequence of 

NMDA receptor hypofunction. Consistent with this interpretation, the density of GAD67 mRNA-

containing neurons expressing the NR2A subunit of the NMDA receptor was reported to be 

significantly decreased in layer 2 of the anterior cingulate cortex in subjects with schizophrenia 

(Woo et al., 2004). Interestingly, layer 2 contains a high density of CCK and CB1 mRNA 

expressing neurons and CB1 mRNA was found to be significantly decreased in this layer 

(chapter 4). 
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5.2.1.2 Evidence for the involvement of reduced neurotrophin signaling in schizophrenia 

Reduced signaling through the tyrosine kinase TrkB receptor has also been implicated as an 

upstream causal factor of the observed reductions in the expression of GABA-related markers 

(Hashimoto et al., 2005; Lewis et al., 2005) (Fig. 36). Signaling mediated by brain-derived 

neurotrophic factor (BDNF) and TrkB regulates the functional and morphological development 

of cultured hippocampal GABA neurons (Yamada et al., 2002; Kohara et al., 2003). In addition, 

BDNF-TrkB signaling induces the expression of GAD67, GAT1, and PV mRNAs (Huang et al., 

1999; Yamada et al., 2002). This neurotrophic signaling pathway may be selective for specific 

GABA neuron subtypes because TrkB is expressed in PV-containing GABA neurons, but not 

calretinin-containing GABA neurons (Cellerino et al., 1996; Gorba and Wahle, 1999). These 

data suggest that disturbances in BDNF-TrkB signaling might contribute to the observed 

alterations in GABA-related markers in the DLPFC of subjects with schizophrenia. Indeed, 

levels of both BDNF and TrkB mRNA expression are reduced in the DLPFC of subjects with 

schizophrenia (Weickert et al., 2003; Hashimoto et al., 2005). 

 A direct causal relationship between reduced BDNF-TrkB signaling and changes in 

GABA-related markers was demonstrated in a proof-of-principal experiment using genetically 

engineered mice (Hashimoto et al., 2005). Specifically, TrkB hypomorphic mice that exhibited a 

42% decrease in TrkB mRNA expression demonstrated 25% and 40% reductions in GAD67 and 

PV mRNAs, respectively, and no change in the expression of calretinin mRNA in the prefrontal 

cortex (Hashimoto et al., 2005). In addition, the density of GAD67 neurons was reduced, but the 

expression level of GAD67 per neuron was unchanged (Hashimoto et al., 2005). These patterns 

replicate those observed in schizophrenia. Furthermore, BDNF knockout mice did not show 

alterations in GAD67 or PV mRNA expression. These data converge on the idea that a deficiency 

in TrkB signaling is a pathogenetic mechanism that can cause reduced GAD67 mRNA expression 

in the PV expressing GABA neurons (Fig. 36). 

 Currently, there is no direct evidence indicating whether reductions in TrkB signaling 

might affect expression levels of CB1 or CCK mRNA. However, immature CB1/CCK-

containing neurons from the fetal rat cortex express TrkB and signaling mediated by BDNF 

regulates the morphological development of these neurons (Berghuis et al., 2005; Berghuis et al., 

2007). These data suggest that a reduction in TrkB could cause a reduction in GAD67 mRNA 
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expression and possibly reductions CCK and CB1 mRNAs (Fig. 36). However, these cause-and-

effect relationships remain to be tested. 

5.2.1.3 Cannabis exposure during adolescence: Pushing the system over the edge? 

Cannabis exposure is one environmental factor that has been implicated as a risk factor for the 

development of schizophrenia (chapter 1.3) (McDonald and Murray, 2000) (Fig. 36). The use of 

cannabis is first initiated by most individuals during the adolescent ages of 12-17 (Gfroerer and 

Epstein, 1999), a time period during which the DLPFC undergoes significant refinements (Lewis 

et al., 2004a) and may be particularly vulnerable to environmental insults. Indeed, chronic 

administration of ∆9-THC, the chief psychoactive cannabinoid in cannabis, to peripubertal but 

not adult rats produces long-lasting deficits in various memory tasks, even after sustained drug-

free intervals (Schneider and Koch, 2003). In humans, cannabis use during adolescence is 

associated with more severe cognitive deficits compared to first use later in life (Ehrenreich et 

al., 1999; Pope, Jr. et al., 2003). 

 During adolescence, the development of perisomatic GABA inputs to DLPFC pyramidal 

cells appears to play an important role in the emergence of DLFPC circuitry in mediating 

working memory processes. For instance, GABA markers undergo considerable changes during 

postnatal development, with these changes particularly marked during adolescence (Condé et al., 

1996; Erickson and Lewis, 2002; Cruz et al., 2003). In particular, during early postnatal 

development (birth to 3 months), chandelier cell axon cartridges immunoreactive for GAT1 or 

PV and AIS immunoreactive for the α2 subunit of the GABAA receptor demonstrate distinct 

densities and trajectories of change (Cruz et al., 2003). However, these pre- and postsynaptic 

markers of GABA all exhibit similar significant declines in density from approximately 15 

months to 42 months of age, the time period associated with adolescence in monkeys, before 

attaining adult levels (Cruz et al., 2003). The developmental changes in PV and GAT1 cartridges 

likely occur to allow chandelier neurons to maintain a proper regulatory role on pyramidal cell 

output. Indeed, this coordinated developmental change in GABA inputs to pyramidal cells in the 

DLPFC during adolescence correlates with increased involvement of the DLPFC in working 

memory tasks. Thus, developmental refinements of GABA markers during adolescence appear to 

be directly involved in the maturation of functional properties of the DLPFC that contribute to 
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working memory, such as gamma band synchrony (Yordanova et al., 2002; Vreugdenhil et al., 

2003). 

 The development of GABA inhibitory circuitry is known to be shaped by neural activity 

(Chattopadhyaya et al., 2007). However, the maturation of perisomatic synapses during 

adolescence has recently been shown to require GABA signaling for shaping GABA circuits 

(Chattopadhyaya et al., 2007). Specifically, a reduction in GAD67-mediated GABA synthesis and 

signaling during adolescence significantly reduced the maturation of perisomatic synapses in the 

visual cortex (Chattopadhyaya et al., 2007). In the monkey DLPFC, pyramidal neurons receive 

convergent perisomatic input from PV-containing basket and chandelier neurons and CB1/CCK-

containg basket neurons (chapter 3). These convergent sources of perisomatic inhibition have 

been shown to play specific roles in shaping network activity in the rodent. For example, 

CB1/CCK-containing and PV-containing neurons fire at different phases of network oscillations 

(Klausberger et al., 2005), generate temporally distinct epochs of somatic inhibition (Glickfeld 

and Scanziani, 2006), and play complementary roles in regulating gamma band oscillations 

(Hajos et al., 2000b). Thus, because stimulation of the CB1 receptor strongly suppresses the 

GABA inputs to pyramidal neurons from CCK-containing basket neurons, cannabis use during 

adolescence may alter the balance between the CB1/CCK-containing and PV-containing 

inhibitory inputs to the perisomatic region of DLPFC pyramidal neurons; this imbalance during a 

sensitive period may disrupt the developmental trajectories of these GABA inputs, producing 

persistent circuitry alterations that impair the mechanisms of neural synchrony required for the 

maturation of working memory performance. 

5.2.2 Putting the pieces together: Convergent pathways onto a common 

pathophysiology 

As summarized in Figure 36, the data reviewed above converge on the interpretation that 

different upstream causes, including genetic risk variants, NMDA receptor hypofunction, and 

reduced signaling through the TrkB receptors, converge through a variety of mechanisms to 

produce a functional decrease in the expression of GAD67 mRNA in PV- and CCK-containing 

GABA neurons. As a consequence, PV- and CCK-containing neurons exhibit deficient GABA 

synthesis. Thus, GABA signaling via GABAA α2 receptors at pyramidal neuron axon initial 
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segments from PV-containing chandelier and at pyramidal neuron cell bodies from CCK-

containing basket neurons is deficient. Cannabis use may precipitate the onset of schizophrenia 

by disrupting the developmental trajectories of PV-containing inhibitory inputs to the 

perisomatic region of DLPFC pyramidal neurons and/or compound the deficit in perisomatic 

GABA signaling by activating CB1 receptors on the terminals of CCK-containing basket 

neurons. Decreased GABA neurotransmission from these two separate neuron types converge to 

produce a reduction in gamma oscillations, which gives rise to impairments in working memory, 

despite apparent compensatory responses, which include a decrease in the levels of presynaptic 

GAT1 and PV, upregulation of postsynaptic GABAA α2 at pyramidal cell AIS, and decreased 

CB1 receptors in the terminals of CCK-containing neurons. 

 It should be noted that other pathways might participate in the proposed cascade of events 

model. For instance, given the evidence that CB1 receptors are expressed by pyramidal neurons 

and have been shown to inhibit glutamate release (Marsicano and Lutz, 1999; Auclair et al., 

2000; Hajos et al., 2001; Kawamura et al., 2006; Katona et al., 2006), a possible hypothesis is 

that cannabis exposure could directly produce a reduction in excitatory transmission (Fig. 36). 

Interestingly, a recent study demonstrated that mice hypomorphic for the Nrg1 gene were more 

susceptible to the effects of cannabis exposure than wild type mice in a number of behavioral 

tests (Boucher et al., 2007). These findings provide evidence for a possible gene x environment 

interaction. Although this interaction is possible, a reduction in excitatory drive via CB1 receptor 

activation on excitatory terminals would, in the proposed model, produce a downstream decrease 

in GAD67 mRNA expression (Fig. 36). This interpretation suggests that cannabis exposure could 

produce a reduction in perisomatic inhibition from CB1/CCK-continaing neurons both directly 

by activating CB1 receptors and indirectly by producing a reduction in GAD67 mRNA 

expression through decreased excitatory transmission. 

 It could be argued that the reductions in CB1 mRNA and protein expression in subjects 

with schizophrenia might result directly from cannabis exposure. In rats, chronic exposure to 

CB1 agonists decreases CB1 radioligand binding in the cortex (Romero et al., 1998; Garcia-Gil 

et al., 1999). However, in these same studies CB1 mRNA expression was unaltered (Romero et 

al., 1998; Garcia-Gil et al., 1999). Consistent with these observations, in chapter 4 the observed 

within-pair percent differences in CB1 mRNA expression in the subjects with schizophrenia did 

not differ as a function of a history of cannabis use/abuse (Fig. 36). In addition, the within-pair 
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percent differences in CB1 radioimmunoreactivity and immunoreactivity did not differ between 

subjects with schizophrenia with or without a history of cannabis use (Fig. 36). These data 

indicate that decreased mRNA expression levels are unlikely to result directly from cannabis 

exposure. 
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Figure 36. Hypothetical model illustrating potential cascade of events of the disease process 

in schizophrenia. According to this model, a set of genetic liabilities and environmental risk 

factors produce reduced GABA signaling from two distinct subclasses of GABA neurons. 

Despite apparent compensatory responses, deficient perisomatic GABA transmission from these 

two neuron types to pyramidal cells converge to produce a reduction in gamma oscillations, 

which gives rise to impairments in working memory. 
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5.3 A NOVEL TREATMENT INTERVENTION FOR COGNITIVE DYSFUNCTION 

IN SCHIZOPHRENIA 

Developing more effective pharmacological treatments for schizophrenia requires a better 

knowledge and understanding of the underlying disease process(es) of the illness. Specifically, 

development of new therapeutic interventions in schizophrenia requires the identification of 

neuropathological entities that alter the brain’s normal circuitry giving rise to a pathophysiology 

that emerges as a clinical feature in the illness (chapter 1.2). The findings discussed above 

indicate that GABA transmission from PV-containing and CB1/CCK-containing neurons is 

deficient in subjects with schizophrenia. Therefore, augmenting GABA transmission from these 

neurons would be an effective treatment intervention. As suggested in Figures 36 and 37 the 

CB1 receptor and the GABAA α2 subunit are two potential molecular targets for treating 

cognitive deficits associated with schizophrenia. Specifically, drugs that have antagonistic 

activity on CB1 receptors could block the activation of CB1 receptors and limit the 

endocannabinoid-mediated suppression of GABA release from CB1/CCK containing terminals 

(Fig. 37). As a result, GABA release from CB1/CCK-containing terminals would be enhanced, 

but only when CB1/CCK-containing neurons are active. In addition, at least in the hippocampus, 

GABAA receptors containing the α2 subunit are selectively located on pyramidal cell bodies post-

synaptic to CB1/CCK-containing terminals (Nyiri et al., 2001) (Fig. 37). Thus, positive allosteric 

modulators of the benzodiazepine binding site with selectivity for GABAA receptors containing 

the α2 subunit would be predicted to increase the efficacy of GABA released from CB1/CCK-

containing terminals. GABAA receptors containing the α2 subunit are also heavily expressed on 

the AIS of pyramidal neurons opposed to the terminals of PV-containing chandelier neurons 

(Fig. 37). These data suggest that a GABAA α2 agonist would also increase the efficacy of 

GABA released from PV-containing chandelier neurons at the AIS (Lewis et al., 2004b; Volk 

and Lewis, 2005) (Fig. 37). Together, such agents might enhance the synchronization of 

pyramidal neuron activity by restoring normal levels of perisomatic GABA input to pyramidal 

neurons. 
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 To date, only one clinical trial has examined the efficacy of the CB1 receptor antagonist 

Rimonabant in the treatment of subjects with schizophrenia (Meltzer et al., 2004). The results of 

this study did not show any significant improvement in the psychotic symptoms of subjects with 

schizophrenia who received the drug (Meltzer et al., 2004). However, the dose of the CB1 

antagonist was not titrated in this study. Furthermore, the efficacy of Rimonabant on specific 

cognitive measures, such was working memory tests, were not assessed. However, the negative 

effect may emphasize the need to use a drug cocktail in order to significantly improve the 

functioning of individuals with schizophrenia. 
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Figure 37. A novel pathophysiologically based intervention for the treatment of 

schizophrenia. A CB1 receptor antagonist would augment the intrinsic compensatory down-

regulation of CB1 receptor expression, further limit the endocannabinoid-mediated suppression 

of GABA release from CB1/CCK containing terminals, and enhance the ability of CCK basket 

neurons (red) to synchronize pyramidal neurons (green) in gamma oscillations. In addition, 

positive allosteric modulators of the benzodiazepine binding site with selectivity for GABAA 

receptors containing the α2 subunit would increase the efficacy of GABA released from 

CB1/CCK-containing terminals, and would act synergistically at inputs from PV-containing 

chandelier neurons (blue) to the axon initial segment of pyramidal neurons. Together, this drug 

cocktail might enhance the synchronization of pyramidal neuron activity by restoring normal 

levels of perisomatic GABA input to pyramidal neurons. PV-containing basket neurons (orange) 

would not be affected by these agents because these neurons do not contain CB1 receptors and 

GABAA receptors containing the α1 subunit are selectively located on pyramidal cell bodies 

postsynaptic to these neurons. 
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5.4 FUTURE DIRECTIONS 

5.4.1 Extending CB1 studies in schizophrenia 

5.4.1.1 Are changes in CB1 expression regionally and disease specific? 

If an observed neuropathological entity is common to all psychiatric disorders, and not specific 

to the disease process of schizophrenia, then a drug targeting it may have limited efficacy at 

ameliorating a clinical symptom specific to schizophrenia. Therefore, knowing whether an 

observed neuropathological entity is specific to schizophrenia is important in the ability to 

evaluate its usefulness as a molecular target for therapeutic intervention. In this regard, we have 

initiated a project in which we will assess CB1 protein expression in subjects with schizophrenia 

individually matched to one normal control subject and one subject with major depressive 

disorder (MDD), in order to assess whether individuals with other psychiatric disorders show 

similar changes in CB1 protein. Increased CB1 radioligand binding and protein levels (assessed 

by Western blot) have been reported in the prefrontal cortex of alcoholic and depressed suicide 

victims, suggesting that the reduction in CB1 in schizophrenia could be specific to the disease 

process of schizophrenia (Hungund et al., 2004; Vinod et al., 2005). 

 In addition, it is important to know whether the observed decrease in CB1 receptor 

expression is restricted to the DLPFC, or if this disturbance is distributed across other cortical 

regions that have been implicated in other aspects schizophrenia. For example, reductions in 

GAD67 mRNA expression have been observed in the anterior cingulate cortex of subjects with 

schizophrenia (reviewed in Woo et al., 2004; Akbarian and Huang, 2006). In this regard, we plan 

to measure CB1 immunoreactivity in the anterior cingulate cortex of subjects with schizophrenia 

in the same study in which we will address disease specificity. 
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5.4.2 Beyond CB1: Investigating other components of the endocannabinoid system 

in Schizophrenia 

This dissertation focused on the role of the CB1 receptor in primate DLFC circuitry and 

schizophrenia. There are many other components of the endocannabinoid system that may be 

altered in the illness and additional experiments may be performed to further elucidate the role 

the endogenous cannabinoid system may play in the pathophysiology of schizophrenia (Fig. 38). 

It could be hypothesized that other components of the endocannabinoid system could be altered 

to limit the endocannabinoid-mediated suppression of GABA in schizophrenia to compensate for 

a deficit in GABA synthesis. For instance, in the cascade of endocannabinoid signaling (Fig. 38), 

a number of molecules could be downregulated in order to limit the production of the 

endocannabinoid 2-AG. Attractive candidates include phospholipase C beta (PLβ; isoform 1) and 

diacylglycerol lipase (DAGL) (Fig. 38). Additionally, monoglyceride lipase (MGLL), the 

enzyme that metabolizes 2-AG (Dinh et al., 2002), could be selectively upregulated to decrease 

the amount of available 2-AG that could bind to and activate CB1 receptors (Fig. 38). Studies 

assessing whether the mRNA and protein expression of these molecules would aid our 

understanding of how the endocannabinoid system may be altered in schizophrenia. 
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Figure 38. The endocannabinoid system. In addition to depolarization through Ca2+ channels, 

the synthesis of 2-AG is regulated by activation of group I metabotropic receptors (mGluR 1 and 

5). Activation of mGluR1/5 increases the activity of PLCβ1, which synthesizes diacylglycerol 

(DAG). DAG is subsequently converted to 2-AG by DAGL. Presynaptically, 2-AG is 

metabolized by MGLL. These markers of endocannabinoid signaling could be altered in 

schizophrenia to limit endocannabinoid-mediated inhibition of GABA release. 

142 



5.4.3 Proof of principle experiments 

5.4.3.1 The effects of CB1 agonists on monkey DLPFC activity 

In this dissertation, we have argued that, within the context of DLPFC circuitry, CB1 receptors 

play an important role in regulating DLPFC activity and, consequently working memory, by 

controlling proximal inhibitory input to pyramidal neurons. It is known that systemic 

administration of cannabinoids causes deficits in working memory (Winsauer et al., 1999; 

Schneider and Koch, 2003; D'Souza et al., 2004); however, little is known about the direct 

influence of the CB1 receptor activation on prefrontal function. It has been suggested that the 

delay activity of DLPFC neurons during a memory task is the neural correlate of working 

memory. Furthermore, inhibitory activity has been shown to be necessary for the spatial tuning 

of neuronal responses spatial tuning of neurons during a delay task. The effects of CB1 ligands 

on neuronal delay activity and spatial tuning have not yet been investigated. Therefore, 

experiments designed to determine the physiological effects of CB1 receptors on neural activity 

in the DLPFC of awake behaving monkeys performing a working memory task would greatly 

advance our understanding of the critical physiological role that the CB1 receptor play in 

mediating working memory.  

5.4.3.2 Determining a cause-and-effect relationships 

In this dissertation we interpreted a reduction in CB1 mRNA expression to be a compensatory 

response to an upstream reduction in GAD67 mRNA. This interpretation was supported by 

correlation analysis; however, correlation analyses do not show a causal relationship. Therefore, 

our interpretation would be greatly strengthened by showing that reduced GAD67 mRNA 

expression could directly cause a reduction in CB1 mRNA expression. Genetically engineered 

mice and/or in vivo viral vector-mediated RNA silencing techniques are powerful tools that 

could be used to address whether an upstream reduction in GAD67 mRNA could cause reduced 

CB1 mRNA expression. These tools could also be used to address relationships between CB1 

expression and the pathways discussed in chapter 5.2. 
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5.5 CONCLUSIONS 

In the 1950’s, the serendipitous discovery of the antipsychotic effects of chlorpromazine 

(Thorazine) revolutionized the treatment of schizophrenia (Lopez-Munoz et al., 2005). Since 

then, new antipsychotic medications with improved efficacy and reduced side-effects have been 

introduced. However, the development of new drugs that significantly improve cognitive 

performance has been lacking (Lewis and Gonzalez-Burgos, 2006). The research in this 

dissertation has identified the CB1 receptor as a potential therapeutic target for improving 

cognitive functions. It was proposed that a combination of a CB1 antagonist and a GABAA α2 

agonist might significantly improve perisomatic inhibitory input to DLPFC pyramidal neurons 

thereby improving DLPFC function and ameliorating working memory impairments in 

individuals with schizophrenia. If the proposed therapeutic intervention proves effective, the 

quality of life of many individuals with schizophrenia could improve significantly. However, 

there is much research to be performed and many questions to be answered concerning the 

relationship between the endocannabinoid system and schizophrenia. The future is exciting. 

 

In brief summary, the main findings from each chapter of this dissertation were: 

• Chapter 2: The results of this study demonstrate that 1) the distribution of CB1-IR axons 

is heterogeneous across neocortical regions of the macaque monkey with regions 

associated with higher cognitive functions, such as the prefrontal cortex, containing 

higher densities of CB1-IR axons than primary motor and sensory cortices; 2) different 

neocortical regions exhibit distinctive laminar distributions of CB1-IR axons, which 

precisely mark the cytoarchitectonic boundaries between many regions; 3) the density 

and distribution of CB1-IR axons also differ substantially across other regions of the 

primate brain; 4) the regional and laminar distributions of CB1-IR axons in the human 

neocortex are quite similar to those in monkey, although the morphology of labeled axons 

is altered by postmortem delay and; 5) in the monkey neocortex CB1 immunoreactivity is 

primarily contained in cells and axon terminals that have the morphologic features 

characteristic of GABA neurons. 

• Chapter 3: The results of this study demonstrate that in the macaque monkey DLPFC 1) 

the laminar distributions of CB1- and CCK-IR neurons and axons are very similar; 2) 
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CB1 and CCK immunoreactivities are colocalized in neurons, axons, and axon terminals 

although structures single-labeled for each protein are also present; 3) CB1-IR axon 

terminals exclusively form symmetric synapses, whereas CCK-IR axon terminals form 

both symmetric and asymmetric synapses; 4) the majority of both CB1- and CCK-IR 

axon terminals forming symmetric synapses contact dendritic shafts; and 5) the synaptic 

targets of CB1- and CCK-IR axon terminals are similar in layer 4 but different in layers 

2-3s, where CCK-IR terminals are more likely to contact cell bodies and less likely to 

contact spines than are CB1-IR terminals. 

• Chapter 4: In order to explore the potential role of the CB1 receptor in DLPFC 

dysfunction in schizophrenia, we examined the expression of CB1 receptor mRNA and 

protein. We found that 1) the levels of CB1 receptor mRNA and protein are significantly 

reduced in the DLPFC of subjects with schizophrenia; 2) these reductions cannot be 

explained by potential confounding factors, suggesting that a reduction in CB1 receptors 

is intrinsic to the disease process of schizophrenia; and 3) the observed changes in CB1 

receptor mRNA expression correlated with expression changes in GAD67 and CCK 

mRNA in the same subjects with schizophrenia, suggesting that downregulation of the 

CB1 receptor may be a compensatory response to impaired GABA neurotransmission in 

CCK-containing neurons. 
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