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Abstract 

 Dendritic cells (DC) are professional antigen presenting cells that can prime naïve T 

cells to elicit immunity or tolerance.  The ability to regulate immunity or tolerance is governed by 

the “type” of polarization state of activated T cells. T-bet has been identified as the master 

regulator of Type 1 polarization in T cells, and its expression is essential for immunity. 

Interestingly, T-bet is also expressed in DC and its abolishment has been shown to impair Type-

1 T cell responses in limited studies.  Conversely, Foxp3 expression in T regulatory cells 

engenders a tolerogenic phenotype that can suppress T cell responses (as well as DC induction 

of immunity). Foxp3 expression in non-T cell subsets, such as adenocarinoma, has also shown 

immunosuppressive characteristics in the tumor microenvironment and draining lymph nodes.  

Therefore, I examined the role of T-bet or Foxp3 expression in the DC in modulating T cell 

responses. T cells were primed with T-bet expressing DC (DC.T-bet) or Foxp3 expressing DC 

(DC.Foxp3) and responses were thoroughly investigated.  DC.T-bet potently primed naïve T 

cells towards Type 1 immunity, inducing 2-3 fold increased levels of T-bet, IFNγ, CXCR3, and 

Granzyme-B.  Little-to-no changes were found in DC costimulatory molecule expression, 

however, DC were completely impaired in production of pro-inflammatory and Type-1-inducing 

cytokines.  We confirmed cytokine-independent Type 1 polarization of T cells via neutralization 

studies. In analogous studies, Foxp3 ectopic expression in DC was found to restrain Type 1 and 

17 polarized T cell responses while concomitantly generate CD4+Foxp3+CD25+ T regulatory 

cell subsets that co-expressed high levels of CTLA-4, CD25, NRP-1 and GITR.  These in vitro 

generated T regulatory cells (by DC.Foxp3 and not control DC) suppressed both naïve and 



 iv

memory CD8+ T cell proliferation and IFNγ production.  Neutralizing agents confirmed that the 

tryptophan catabolizing enzyme-IDO and the immunosuppressive cytokine TGFβ were partially 

dependent for both suppressing Type 1 T cell responses and generating functionally 

suppressive Tregs. In summation, this work shows that T-bet and Foxp3 expression in DC play 

similar roles to expression in T cells by governing immunity or tolerance, respectively.  
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INTRODUCTION 

 

 Dendritic cells (DC) are professional antigen presenting cells that sit at the interface of 

orchestrating immunity or tolerance (1-3). Investigations targeting DC immunobiology have 

delineated that the combination of antigen presentation quantity and quality, coupled with co-

stimulatory or co-inhibitory molecules, and the specific cytokine and/or soluble factor profile can 

generate a variable array of T cell responses (4-8).  These T cell responses, whether they be 

cell-mediated (Type-1, Th17 or Treg) or humoral (Type-2) can effectively and efficiently remove 

pathogens, or conversely, induce tolerance (i.e. T regulatory subsets) to mitigate effector T cell 

responses (9-14).  In essence, it was identification of transcription factors linked to the 

commitment, or polarization, of these T cell cohorts that helped solidify the functional 

differences and underlying mechanism(s) that discriminate these specific T cell subsets (9; 14-

16). Interestingly, these transcription factors can directly, or indirectly, suppress the expression 

of other T cell subset transcription factors to enforce functional polarity.  For example, T-bet, 

which is associated with Type-1 polarized T cell responses, was found to antagonize GATA-3, 

the Type-2 polarizing transcription factor, to drive T cells towards a strict IFNγ+IL-4- cytokine 

production profile associated with host protection against viral pathogens and cancer cells (17-

20).  In the absence of T-bet, GATA-3 function is unopposed, yielding T cells obliged towards 

TH2 commitment (IL-4+IFNγ- cytokine profile), to yield host protection against bacteria and multi-

cellular pathogens (14; 20).  Similarly, it was found that Foxp3, the principle transcription factor 

for T regulatory cells, and RORγt, the master regulator of TH17 responses, functioned in a 

mutually exclusive manner.  These factors directly antagonize each other’s expression and\or 

ability to operate as transcription factors (21-23).  While the functional correlates of these 

transactivator proteins has become well-established in T cells, their roles and the roles of similar 

proteins in alternate immune cells that are capable of exhibiting differential states of functional 

polarization (such as DC) remains poorly understood. A report by the Glimcher group has 
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shown that deletion of T-bet expression in DC lead to impairment of Type-1 T cell responses, as 

measured by reduced IFNγ production from wild-type responder T cells (24).  Additionally, 

Foxp3 expression in pancreatic carcinoma cells has recently been associated with  

immunosuppression (25).  

 Given the importance of Type-1 immunity to cancer immunotherapy and anergy/Treg-

type T cell responses in the setting of allograft transplant retention, these reports led me to 

question two things. First, could overexpression of T-bet in DC engender protective Type-1 T 

cell responses (i.e. engineering of Type-1-polarized DC)? Secondly, could DC engineered to 

express Foxp3 become regulatory DC that neutralize Type-1 immunity and\or expand T 

regulatory cell subsets, plausibly benefitting the autoimmunity and tissue transplantation fields? 

Ultimately, I believe that the investigation of (these T cell-associated) transcription factors in DC 

may help to elucidate variable and\or additional signals involved in corollary T cell polarization.  

Furthermore, if successful, these ex vivo modified DC may provide valuable immunotherapeutic 

tools to generate antigen-specific and\or global immunity in the fields of cancer and infectious 

disease or tolerance in the fields of transplantation and autoimmunity. 
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1.1 T cells 

 

 T cells are integral components of the adaptive immune system, serving as principle 

eradicators of cellular pathogens. Such protection is afforded by both direct, cytolytic effector 

functions mediated by T cells, and by the indirect action of T cell produced-cytokines that exert 

anti-proliferative or pro-apoptotic pressure on invading pathogens.  In most cases, T cell 

recognition of pathogens occurs via the interaction of the T cell receptor (TCR; along with the 

CD4 or CD8 co-receptors) with MHC (or HLA) complexes on host cells that contain pathogen-

derived peptide sequences (3; 9; 26; 27). A diverse T cell repertoire can be mobilized against 

MHC-presented, pathogen-derived peptides due to the variable combinations of alpha and beta 

TCR chains that function as a unit in binding to the MHC/peptide complex (28; 29).  Thymic 

(central) tolerance mechanisms removes most high-avidity, auto(self)-reactive T cell clones 

(negative selection), while sustaining only those T cell clones capable of recognizing self-MHC 

complexes to a limited, non-pathogenic level (i.e. positive selection) (30; 31). Once T cells enter 

the peripheral circulation and encounter a “cognate” antigen via their TCR complex, rapid 

clonotypic proliferation can occur, after which the expanded T cell population undergoes 

contraction and establishes a small cohort of “memory” T cells (4; 27; 32).  Such memory T cells 

may then rapidly expand and acquire effector function in response to antigen restimulation, 

serving to protect the host against secondary infections or transformed cells (33; 34).    

 A further level of refinement associated with T cell responses is reflected in the ability of 

these T cells to become functionally committed to one (of at least) four distinct polarization 

states: Type-1 (CD4+ T helper (TH) 1 cells; CD8+ cytotoxic T lymphocytes (CTL)) (35; 36), Type-

2 (CD4+ TH2) (36; 37), Type-17 (CD4+ TH17) (12), and T regulatory (Tregs) cell subsets (13).  

Although cytokine profile is predominately used to identify the differing T cell functional subsets 

(Table 1), these functions have more recently been affiliated with the “up-stream” restricted use 

of transcription factors T-bet (Type-1) (38; 39), GATA-3 (Type-2) (12), RORγt (Type-17) (16), 
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and Foxp3 (Tregs) (13). Memory T cells developed under polarizing conditions tend to retain 

their specific polarized states, and have long been considered unable to be reprogrammed (or 

repolarized) to an alternate polarization state (33). Most recently, however, this concept has 

been called into question (40; 41). 

Type Transcription 
Factor

Cytokine Profile Additional 
Associated 
Markers

Type 1 T-bet IFNγ CXCR3, IL-12Rβ2

Type 2 GATA-3 IL-4, IL-5, IL-13 IL-4R

Type 17 RORγt IL-17 CCR6, IL-23R

Tregs Foxp3 IL-35 CXCR4, CD25, 
CTLA-4, 
Neuropilin-1, 
GITR, OX40

Table 1. Cytokine, master transcriptional regulator, and additional-associated markers 
associated with polarization states of CD4+ T cells

 

 Regardless, antigen-specific T cells respond appropriately to rechallenge by invading 

pathogens and altered host somatic cells (infected or mutated). For example, viral or bacterial 

infection of host cells allows for presentation of foreign peptides via MHC class I or II molecules 

to which both Type-1 polarized CD8+ effector and CD4+ T cells can be primed against. 

Alternatively, the presence of free circulating bacteria can be eradicated by the effective 

reciprocal cross-talk of Type-2 polarized TH cells (TH2), antigen presenting cells (APC) and B 

cells to produce antibodies, and cytokines or Type-17 polarized TH cells (TH17) that can 

effectively mobilize/recruit neutrophils and macrophages that mediate the eradication of 

invading pathogenic organisms.  Although confounding at first, T regulatory cells have been 
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shown to play important roles by prevention of exacerbated immune responses that can lead to 

pathological conditions if left unregulated (in a state of chronic antigenic stimulation).   

   

1.1.1 T-bet and Immunity 

 

 T-bet is the hallmark transcription factor for Type 1 immunity, expressed in both CD8+ 

effector and CD4+ helper T cell subsets (38; 42; 43). T-bet expression in T cells induces IFNγ 

expression, among other Type 1-associated functions, as well as is induced\regulated by IFNγ, 

which acts through the IFNγ receptor-STAT1 signaling cascade to further promote T-bet 

expression (17; 44). Also of note, IL-12p70, a potent Type-1 polarizing cytokine which acts 

through the IL-12 receptor-STAT4 signaling cascade, does not induce T-bet expression directly  

(17). Further evidence suggests that TH1 cell fate is determined prior to IL-12 signaling, and still 

occurs in STAT4-defecient mice (17; 45-48), whereas STAT1 knockout model systems are 

deficient in TH1 programming (49). Murine T cells deficient in T-bet expression exhibit poor TH1 

functionality, and are characterized by impaired IFNγ production, impaired production of 

Granzyme-B and perforin, and poor mobilization to sites of infection due to loss of the 

chemokine receptor CXCR3 (19; 46; 50-52).  Furthermore, ectopic (transgene) expression of T-

bet in naïve CD4+ T cells or TH2 polarized cells convey unto these T cells the phenotypic 

characteristics of Type-1 immune cells (i.e. expression of high levels of IFNγ and a concomitant 

abolishment of IL-4 production by acting on GATA-3 functioning(18; 19; 53). These works have 

established T-bet as the principle transcription factor for driving T cells towards Type-1 

immunity.  However, additional work has shown that T-bet can regulate Type-1 immunity in  

non-T cell lineages, including natural killer (NK)(54), natural killer T (NKT) (55), and dendritic 

cells (DC) (24; 56), questioning whether T-bet serves a pleiotropic Type 1 immunity-governor in 

immune cells.   
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1.1.2 Foxp3 and Tolerance 

 

 Foxp3 transcription is essential to the generation of regulatory T cells (57).  Although 

Foxp3 expression is ubiquitous, its absence in T cells leads to exacerbated T cell responses 

that mediate autoimmunity and other pathological disorders (58; 59). Foxp3 expression in T 

cells engenders potent suppression of both naïve and memory T cell proliferation and effector 

functions (60). Overexpression of Foxp3 in naïve CD4+ T cells or pre-committed TH1 cells 

converts these subsets into T regulatory cells that expressed high levels of IL-2 receptor alpha 

chain (CD25), cytotoxic T lymphocyte antigen-4 (CTLA-4) and Neuropilin-1 (NRP1), among 

other proteins, and these genetically-engineered T cells suppress T effector cell function and 

proliferation (61; 62).   However, Treg subsets have also been identified that can exert 

immunosuppressive effects even though they fail to express Foxp3; these subsets remain 

comparatively poorly-defined (63). Alternatively, the existence of the CD8+Foxp3+ Treg subset 

has been recently revitalized (64-67), suggesting that both CD4+ and CD8+ T  cell subsets can 

contribute to tolerance using a range of mechanisms associated with  immunosuppression.  

 Of further interest, cancer cells have been recently shown to overexpress Foxp3 in the 

tumor microenvironment.  These Foxp3 expressing cancer cells elicit potent suppression of 

infiltrating T effector cell functions and proliferation (25). Thus it remains formally possible that 

the immunosuppressive functions linked to Foxp3 may be the result of its expression in a myriad 

of cell types, including immune privileged tissues, fetal tissues, and myeloid cell subsets, such 

as macrophages or DC.  
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1.2 CD8+ and CD4+ Effector T cells 

 

 CD8+ T effector (cytotoxic T lymphocytes; CTL) cells are MHC class I-restricted T cell 

subsets that are capable of mediating potent cell-cell contact-dependent destruction of target 

cells and secreting Type-1-associated, inflammatory cytokines/chemokines. The CD8 co-

receptor molecule, on the surface of these T cell subsets, interacts directly with the alpha-3 

domain of the MHC class I heavy chain expressed by APC or target cells, fortifying the signal 

strength of TCR-MHC interactions and lowering the activation threshold for responder T cells in 

response to cognate antigen (68; 69). In the absence of CD8, the ability of CTL to interact with 

the MHC class I/peptide complexes on the surface of target cells is critically hindered (68). MHC 

class I is ubiquitously present on all cells of a given individual, with the exception of certain 

tissues found in immune privileged sites and low levels observed on red blood cells (70).  All 

somatic cells appear competent to process and present antigenic-peptide, whether self or 

foreign, in the context of MHC class I molecules; thus allowing recognition and sampling 

engagement of CD8+ effector T cells with the vast majority of self cells (69).  Upon specific 

recognition, CD8+ T cell clones may proliferate, and acquire effector functions/molecules (i.e. 

perforin, granzyme, IFNγ, TNF-a, Fas (CD95), TRAIL, among others; (68)).  Indeed, 

abolishment of one or more of these factors impairs CD8+ T effector cell-mediated clearance of 

pathogen-infected or transformed cells.   

 CD4+ T cells are termed helper cells because they assist in modulating corollary CD8+ T 

cell response or B-cell production of antibodies (71).  T helper (TH) cell subsets have also been 

shown to license DC to promote, or suppress, various T cell polarizing states (72).  For 

example, TH1 cells can license DC to polarize CD8+ T effector cells into CTL through 

upregulation of CD40, a surface bound-molecule that interacts with CD40 ligand present on 

activated T cells  (73-75).  Alternatively, TH2 cells have been shown to form a bridge between B 

cells and DC to augment effective activation and effector function of B cells, including antibody 
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isotype switching and the release of pro-inflammatory cytokines (76). Finally, newly-described 

TH17 cells, seem to bridge the innate and adaptive arms of the immune system by effectively 

activating and mobilizing innate immune cells (i.e. predominately neutrophils) to mediate 

clearance of extracellular pathogens (12). 

 Similar to the importance of memory CD8+ T cells, memory CD4+ T cells are also 

important for rapidly mounting immunity upon subsequent exposures of a given antigen (77).  

Memory T cells are not as reliant on survival or homeostatic factors (vs. naïve T cells) and can 

rapidly expand (vs. naïve T cells) to protect the host against subsequent infection(s) (78). 

 

 

1.3 T regulatory cell subsets 

 

 T regulatory cell subsets (Tregs) were originally identified as a small subset of T cells 

normally present at approximately 5-10% of total T cells and constitutively expressing CD25, the 

IL-2 receptor alpha chain (79; 80).  Such Tregs are naturally selected during their thymic 

development, and thus termed natural Tregs. Alternatively, naïve T cells induced in the 

periphery upon antigen exposure towards T regulatory fate are preferentially termed peripheral 

Tregs.  

 Subsequent works identified that Foxp3 was the master regulator of the T regulatory cell 

phenotype, regulating high level expression of CD25, CTLA-4, and neuropilin-1 (NRP1), as well 

as complexing with various histone deacetylases (HDAC) and transcription factors to control the 

immunosuppressive functions of T cells (61; 81).  Foxp3+CD25+ Tregs are the predominant form 

of regulatory T cell found in the body, with more recent references made to a minority population 

of CD8+ Treg cells (64).  Treg generation is rigidly dependent on the presence of TGFβ during 

naïve T cell priming (82).  As TGFβ is not generally expressed by DC, it is believed the lymph 

node tissues and activated T cells contribute the major levels of TGFβ; thereby playing a part in 
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the regulation of T cell polarization in tandem with DC (83). The presence of IL-6 or IL-21 have 

been shown to counteract the role of Treg onset, enforcing conversion of naïve T cells instead 

into TH17 subsets (84; 85). This further confirms the mutual exclusivity of the Treg vs. Th17 

polarization states, and allows for finely-tuned/-balanced immunity based on 

microenvironmental cues.  

 T regulatory cells are potent suppressors of both T effector proliferation and effector 

functions, such as expression of IFNγ, in a predominantly cell-contact-dependent manner (86).  

A more limited literature suggests that T regulatory cells secrete  soluble suppressive factors 

(87).  Host absence of T regulatory cells, as modeled in mice deficient in Foxp3 expression, 

leads to extensive (auto)immune pathology in association with uncontrolled T cell proliferation 

and inflammatory T cell effector functions (58; 88).  Conversely, adoptive transfer of ex vivo 

developed Treg cells in the context of autoimmunity and transplant models leads to amelioration 

of immune pathology (89). 

 

 

 

1.4 Dendritic Cells 

 

 Dendritic cells (DC) are specialized antigen presenting cells that are responsible for the 

priming (activation and polarization) of specific T cells.  This role is dependent upon DC 

presentation of peptides within their cell-surface MHC class I or II molecules (to CD8+ or CD4+ 

T cells, respectively), levels of expressed co-stimulatory vs. co-inhibitory molecules, and the 

array of cytokines an chemokines elaborated by DC at the time of cognate DC-T cell interaction  

(2; 3; 90; 91). Absence or functional incompetence of DC leads to severely impaired T cell 

responses, as well as, to perturbed B cell, NK, and alternate innate immune cell functions; 

highlighting the importance of DC in orchestrating immune responses (91; 92).  DC are localized 
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in tissues and act as sentinel scavengers that continuously uptake, process, and present self 

and foreign antigens to T cells (90; 93).  Tissue DC are specialized to traffic from peripheral 

sites to draining lymph nodes, through both the lymphatics and the blood, with intent to present 

antigens to nodal (largely naïve) T cells (4). DC themselves do not discriminate between foreign 

vs. self peptides, but rather leave this distinction up to the thymically-trained T cells, that then 

respond “appropriately” to a given antigenic peptide epitope.   

 DC are equipped to provide support for the activation, proliferation, and polarization of 

responder T cells based on cues contributed within the tissue environment in which antigen has 

been acquired. DC express Toll like-receptors (TLR), as well as other “danger” recognizing 

sensors, that can readily engage foreign particles and antigens, such as peptidoglycan present 

on the surface of bacteria, double stranded RNA present in viruses, and foreign DNA 

sequences (differentially methylated CpG strands) (90; 94).  Other “danger” signals to DC 

include pro-inflammatory molecules elaborated by damaged tissues, such as IFNα, IL-1β or 

TNFα, or elevated levels of free ATP, among others (90). The triggering of these TLRs or other 

danger sensors on DC promotes their maturation, leading to DC upregulation of pMHC 

complexes on their cell surface (i.e. signal 1), elevation in levels of costimulatory molecules, 

such as B7.1 (CD80) and B7.2 (CD86) (i.e. signal 2), and typically robust production of 

polarizing cytokines, such as IL-12, IL-6, and\or IL-23, to name a few (i.e. signal 3 (2; 4)). 

Receipt of danger signals also coordinately alters the expression of chemokine receptors on 

DC, allowing them to exit peripheral tissue sites and home to the tissue-draining lymph nodes, 

where a concentrated pool of naïve T cell responders may be found (2; 36). The DC phenotypic 

transformation from peripheral (resting, immature) to transport-competent (mature), ensures the 

acquisition of a balanced level of signals 1-3 to prompt an appropriately polarized and 

“addressed” cohort of responder T cells that are then competent to return to tissue sites of 

antigenic “insult” and to mediate requisite effector functions within that site to resolve any 

condition of “danger” (1).  
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1.4.1 Type 1 polarized DC subsets 

 

 Type 1 polarized T cell responses appear optimally developed by stimulation with DC 

subsets that exhibit elevated levels of signals 1-3, specifically increased expression of MHC 

class I/II molecules, B7 family member costimulatory molecules and expression of IL-12 family 

member cytokines (36; 95-97).  Absence of one or more of these signals has been shown to 

limit Type 1 polarized T cell responses.  pMHC complexes, along with high levels of 

costimulatory and adhesion molecules, increases the contact duration of T cells, specifically 

naïve T cells, with DC to facilitate immunity (32; 98; 99).  Therefore, it is of no surprise that DC 

that have not been activated to become mature (i.e.  immature, resting) are poor stimulators of 

T cell responses. These immature DC, instead, induce states of T cell anergy or apoptosis, or 

selectively promote T regulatory cells (100).  Type 1 polarized DC are optimized in their capacity 

to produce high levels of the hallmark Type-1 inducible factor IL-12p70 (36; 95).  Exogenous 

addition of IL-12p70 with anti-CD3, which acts as a mitogenic agonist of the TCR receptor, 

mimicking TCR:pMHC engagement, plus anti-CD28, which acts as an agonist of the 

costimulatory receptor on T cells, mimicking B7.1 or B7.2 engagement with CD28, potently 

primes T cells towards Type 1 polarization (101). These T cells express elevated levels of T-bet, 

granzyme-B (in CD8+ T effectors), CXCR3, and the IL-12 receptor (IL-12R) high affinity β2 

chain.  DC-produced IL-12p70 then further reinforces Type 1 responses by signaling through 

the IL-12Rβ1β2 heterodimeric receptor complex via STAT4 activation and reinforcement of IFNγ 

expression.  Such committed Type 1 polarized T cells express little-to-no IL-4, GATA-3, IL-10, 

or Foxp3, and exhibit potent anti-tumor and anti-viral effector function.   
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 Although IL-12p70, and related IL-12 family members IL-23 and IL-27, have been shown 

to augment Type 1 polarized T cell states, additional studies demonstrate the clear importance 

of signal 1 and signal 2 in polarizing T cells.  Indeed, high levels of costimulatory molecules on 

DC, such as B7.1, or cell adhesion molecules, such as ICAM-1, have been shown to gear early 

activated T cells towards Type 1 immunity, independent of IL-12 family member cytokine 

provision (102-104).  Several studies have also shown that the strength of TCR:pMHC 

interactions, along with increased engagement of T cell and DC through adhesion molecule 

upregulation, can directly dictate the magnitude of Type 1 polarized T cell responses (105). 

Therefore, the plasticity of DC, with regard to the provision of signals 1-3 to T cells, dictates not 

only responder T cell quantity, but also, T cell quality (based on polarization state, resistance to 

apoptosis, etc,). 

 

 

1.4.2 Tolerogenic DC subsets 

 

 DC can induce tolerance, as opposed to immunity, in responder T cells (106). These DC 

subsets, so-called tolerogenic DC, are more prevalent in the tumor-bearing host and may aid in 

the progression of cancer by dampening immune surveillance. Studies have revealed that the 

very plastic nature of DC allows for cues within the tissue microenvironment to condition DC in a 

manner that dictates the quality of corollary T responses evoked in tissue-draining lymph nodes. 

For instance, the demand of the tumorogenic program to repair, regenerate, and grow 

mandates pro-inflammatory responses be restrained suggests the need to modulate DC to skew 

towards tolerance to aid in suppression of immune responses. In particular, “tolerogenic” DC 

express low levels of pMHC complexes, elevated co-inhibitory molecule expression (such as 

B7H1 (programmed death ligand-1 (PDL1)) or B7-DC), and\or reduced levels of Type 1 

polarizing cytokines (such as IL-12 family members) and increased production of 
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immunosuppressive cytokines (such as IL-10, VEGF, and\or TGFβ (8)). Tolerogenic DC may 

also express high levels of the tryptophan catabolizing enzyme, indoleamine-2,3-dioxygenase 

(IDO), which degrades free tryptophan and “starves” responder T cells of an essential amino 

acid (107; 108).  This commonly results in increased Fas/Fas-L-dependent T cell apoptosis (8; 

108).  The use of tolerogenic DC in vivo could ultimately provide a means to promote specific 

immune tolerance in order to treat clinical conditions associated with states of exacerbated, or 

uncontrolled inflammatory-type immune responses, such as autoimmunity and allograft 

rejection. Further characterization and study of the interplay between the microenvironment and 

DC may lead to a better understanding of how tolerogenic DC are “born” and how such 

conditions may be manipulated in vivo or in vitro to better define treatment regimens for patients 

where tolerogenic DC are desired or not. 

 

 

 

1.5 Dendritic Cell based-Vaccines 

 

 Dendritic cell (DC) based-vaccines are believed to hold translational promise as “biologic 

adjuvants” for eliciting Ag-specific immunity or tolerance (109).  Several factors make DC 

attractive immunotherapeutic agents, including (but not limited to): DC are the principle APC 

that induce T cell responses, they are abundant (as monocytes precursors isolated from blood) 

and easily differentiated ex vivo, and they can be matured into a Type 1- or tolerogenic-DC 

through modulation with TLR agonists, cytokines, or genetic reprogramming (110).  More 

appropriately, ex vivo-modified DC can be used to expand Type 1 polarized antigen-specific T 

cell responses towards immunity or tolerance in vivo (110; 111).  
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1.5.1 Cancer Immunotherapy 

 

 Transformed and virally-infected human cells presented a unique cohort of antigenic 

peptides on their cell surfaces in the context of MHC (called Human Leukocyte Antigens (HLA) 

in humans) class I and II molecules.  In the case of cancer cells, a tumor-associated antigen 

may reflect a normal “self” protein that is grossly over-expressed when compared with normal 

tissue, or it could reflect a neo-antigen that is generated via genetic mutation or the awakening 

of a normally silent gene product due to hypomethylation of tumor cell DNA (as in the case of 

cancer-testis antigens, etc.) (112).  While drawing significant enthusiasm for their performance, 

clinical trials using vaccines based on such antigens have, thus far, proven rather disappointing 

in yielding objective clinical responses (OCR).  Current limitations may include the type of DC 

accessed by the vaccine in vivo, the low avidity of the responder T cell pools that cannot directly 

recognize tumor cells, the inappropriate polarization of the responder T cell pool, the inability of 

vaccine-induced T cells to traffic into tumor sites in vivo, and the poor survival of DC and/or 

vaccine-induced T cells within the tumor-bearing host, among others.    

 DC-based vaccines provide an alternative means by which to effectively prime 

therapeutic anti-tumor antigen-specific T cells in vivo. In such a paradigm, DC can be developed 

ex vivo to attain a strict, committed Type-1 polarization state, before being loaded with tumor 

antigens or being injected into tumor lesions, where these APC may capture and process tumor 

antigens into MHC–presented peptides. Consequent trafficking of ex vivo or in vivo loaded DC 

to the draining lymph nodes (DLN) would allow for the activation and development of Type-1, 

anti-tumor T cells that could mediate superior therapeutic effects (113). While current DC-based 

cancer vaccines have yielded only modest successes (114), the likelihood of beneficial outcome 

might be further enhanced if the conditioned DC used in the vaccine promoted Type-1 T cell 

responses that were refractory to tumor-associated immune deviation and which were 

enhanced in their tropism into the tumor afflicted tissues.   
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 It is also important to note that cancer cells are not homogenous in their expression of 

either target antigens or MHC class I/II molecules, making it somewhat unrealistic for T cell 

responses to be curative in many cases. However, since Type-1 DC can also be potent 

stimulators of innate effector cells, such as NK cells, that may actually recognize MHC-loss 

tumors better than their MHC+ counterparts, such vaccine approaches may still have a fighting 

chance in patients harboring MHC-loss tumors (113).  The trick, of course, then becomes how 

to generate ex vivo DC that are committed to induce strong, long-lived Type-1 polarization in 

responder innate and adaptive immune cells. 

 

 

 

1.5.2 Quest for Tolerance in Autoimmunity and Transplantation 

 

 Autoimmunity and transplant rejection are undesirable pathological conditions 

orchestrated primarily by DC, T cells and B cells (115; 116).  In the case of autoimmunity, self 

reactive-T cells or B cells can attack normal cells of the body in an antigen-specific manner.  

These events are mishaps by the body to which self is recognized mistakenly as non-self.  In 

the case of transplantation, reactive T cells to non-foreign tissue are a natural, but undesirable 

outcome.  In such case, the allogenic MHC alleles represent strong immunogens for both CD4+ 

and CD8+ host T cell recognition of grafted tissues. Even in the face of extensive tissue type 

matching, shared HLA alleles may present so-called “minor histocompatibility” antigenic 

peptides that prompt host immunity against grafts (116). In cases of both autoimmunity and 

transplantation, T or B cells elicit undesirable immune responses.  In vitro (mouse and human) 

and in vivo (human) experiments using tolerogenic DC have shown that vaccine-suppressed T 

and B cell responses yield reduced tissue-specific damage (autoimmune models) and increased 

graft survival (transplant models) (8; 89; 117-120). 
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1.6. Basis for this Project 

 

 The molecular cloning of transactivator molecules, such as T-bet and Foxp3, has 

allowed for the performance of mechanistic studies designed to dissect their roles in T cell 

functional programming.  Given the increasing sense that such factors dictate polarized states in 

non-T cells, including members of the innate system (DC and NK cells), as well as, cancer cells, 

etc., I chose to investigate whether the enforced expression of T-bet or Foxp3 cDNA in human 

DC conferred Type-1 vs. regulatory capacity on these APC, respectively.  This was a logical 

endeavor in my mind as both T-bet and Foxp3 are potent transcription factors that can complex 

with histone acetylases and deactylases, bind numerous promoter and repressor gene 

segments, and regulate several downstream cascade of proteins that would be presumed to 

impact DC phenotype and function (15; 121-123). The engineering of DC with T-bet cDNA 

serves both a basic and translational immunology project, since T-bet can be expressed 

naturally by at least a minor subset of DC (in association with Type-1 immunity) and expression 

of T-bet in engineered DC might yield a therapeutic modality to enforce protective Type-1 

immunity that would not be easily silenced in the tumor microenvironment (due to T-bet 

transcription being driven-off a non-genomic promoter). While natural Foxp3 expression has yet 

to be reported in DC, we have anecdotal data that CD11c+ DC may express Foxp3 within 

progressively-growing murine tumor lesions, suggesting the association of Foxp3+ DC with 

immunosuppression.  This supports the potential basic and translational aspects for studying 

DC engineered with Foxp3 cDNA to understand mechanisms of action (that might be 

antagonized in cancer therapies) or for application in the settings of autoimmune disease and 

allograft rejection, where antigen-specific immune tolerance is a major goal.    
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1.7  Summary 

 

 Expanding on the work performed by the Glimcher group, I evaluated the role of T-bet 

expression in DC (DC.T-bet); characterizing the DC.T-bet phenotype, engendered T cell 

responses, and mechanisms of Type 1 immunity induced in responder T cells upon priming by 

DC.T-bet.  To achieve this, DC were transduced with an adenoviral vector encoding human T-

bet and subsequently evaluated for phenotypic alterations and ability to promote T cell 

responses, using superantigen and antigen-specific model systems. Both systems showed 

DC.T-bet induction of enhanced Type 1 immunity from responding naïve, but not memory, T 

cells. Strikingly, the ability of DC.T-bet to induce Type 1 immunity in T cells was not dependent 

on IL-12 or IFNγ production. While the specific mechanism of action remains unresolved, further 

studies can be built upon this foundation, including molecular analyses of Type 1 polarization 

states imparted in DC.T-bet, analyses of the in vivo efficacy of DC.T-bet-based vaccines in 

promoting protective/therapeutic anti-tumor immunity, and proteomic/genomic and signal 

transduction analyses to identify downstream molecules linked to the mechanisms of action for 

DC.T-bet in preferentially promoting Type-1 T cell responses.   

 Analogous to the T-bet studies, I investigated the role of Foxp3 expression in DC.    In a 

manner complementary to that for the field of tumor immunology, the autoimmunity and 

transplant fields have shifted their approaches towards the harnessing of tolerogenic DC as an 

immunotherapy modality. I investigated the role of Foxp3 expressing DC (DC.Foxp3) to yield a 

tolerogenic DC capable of silencing Type-1 immunity while concomitantly fostering Treg 

responses in vitro.  Unlike the DC.T-bet studies, I was able to implicate both IDO and TGFβ as 

partial mediators of immunosuppression associated with DC.Foxp3-based stimulation of naïve T 

cells. My data provide a solid foundation for future in vivo studies designed to assess the ability 



18 

of ex vivo DC.Foxp3 to prevent or ameliorate autoimmune pathology and/or prolong allograft 

tissue survival. Furthermore, this work opens the door for further investigation of the impact of 

natural, endogenous expression of Foxp3 or other FOX -related family members (i.e. Foxo3) on 

DC functional polarity and corollary immune responses to these APC.  
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Preface Chapter 2 

 

 Using an adenoviral vector to transduce human T-bet into monocyte-derived DC, I 

characterized the phenotype of these DC and investigated the functional polarization and 

mechanisms of Type 1 induced immunity in responding T cells in vitro.  The predominant work 

of these studies used the non-specific superantigen model system, which bridges MHC class II 

molecules to the TCR of subsets of CD8 or CD4 T cells to mimic signal 1, in order to evaluate T 

cell responses. Here, I showed that DC.T-bet induces potent Type 1 immunity in T cells as 

characterized by both Type-1 associated surface molecule expression and elevated production 

of the hallmark Type 1 cytokine IFN-γ in T cells.  We used multiple assays to ensure the Type 1 

induction was induced by DC.T-bet into T cells, which included cell sorting, single cell-analysis 

by flow cytometry, and immunohistochemical analyses. Furthermore, to investigate the 

mechanisms of Type 1 immunity, we utilized neutralization studies of costimulatory and 

cytokines, and further identified that Type 1 polarization was induced via an IL-12- and IFNγ-

independent mechanism.  Finally, to show that this was not an artifact of the superantigen 

model, and to show the potential utility of DC.T-bet in anti-tumor vaccines, we tested the ability 

peptide-pulsed DC.T-bet to prime anti-melanoma CD8 T cells isolated from normal, healthy 

donors in vitro.  The results of the antigen-specific studies parallel the superantigen model 

system, showing that DC.T-bet induces superior (tumor) antigen-specific Type 1 immunity, 

supporting the translation of DC.T-bet as a potential cancer vaccine component. 
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2. Enforced T-bet expression in DC induces IL-12- and IFNγ- independent Type-1 T cell 
responses and concomitantly suppresses TH2 and T regulatory subsets 
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All results reported in this data were obtained by Michael W. Lipscomb.  Christina Goldbach 

performed immunohistochemical and imaging analysis of T-bet expression in DC. JLT cloned 

hT-bet and generated the Ad.hT-bet vector used to infect human DC. 
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2.1. Abstract 

 

T-bet has been well-characterized as an important transcription factor required for Type-1-

polarized responses in TH1, CD8+ T, and natural killer cells.  Additionally, T-bet expression in 

myeloid cells, specifically dendritic cells (DC), appears important in the ability of these antigen-

presenting cells (APC) to promote such Type-1 immune responses.  In this study, we 

investigated the regulation of Type-1 polarized responses in T cells by DC ectopically 

(over)expressing T-bet (DC.T-bet) after transduction with a recombinant adenovirus encoding 

full-length human T-bet. Naïve T cells primed by DC.T-bet (vs. control DC) produced more IFNγ 

and less IL-4 in both the CD4+ and CD8+ T cell responder subsets, while simultaneously 

restraining frequencies of CD4+CD25+Foxp3+ T regulatory cells. Somewhat counter-intuitively, 

DC.T-bet production of IL-12 family member cytokines (i.e. IL-12p70, IL-23 and IL-27) and TNFα 

were completely abolished, suggesting that promotion of Type-1 immunity functions 

independently of these inflammatory cytokines.  IL-12 independence in DC.T-bet function was 

confirmed using neutralization antibodies to IL-12p70, which had no effect on the Type-1 

polarization of T cell responders. Our preliminary data also suggests that DC.T-bet suppresses 

Type-2 T cells and Foxp3+ Treg differentiation from naive T cells, making these cells attractive 

adjuvants for clinic translation in the setting of cancer or chronic infectious disease 
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2.2 Introduction 

 

DC are antigen-presenting cells with a unique and indispensable ability to induce primary T, B, 

and NK cell immune responses. However, the complexity and plasticity of DC are governed by 

different microenvironmental conditions that can induce contrasting states of immunity and 

tolerance (3; 91; 124). T cell priming involves the interaction of peptide-loaded major 

histocompatibility complexes (MHC) expressed by DC with the Ag-specific T cell receptor (TCR) 

on the T cell surface.  Costimulatory molecule and cytokine signaling govern polarization and 

maintenance of T cell proliferation and differentiation, induction of effector and/or helper 

functions, and generation of memory T cell pools (27; 125; 126). The functional polarization of 

specific T cells is dictated, in large part, by the profile of cytokines produced by DC upon their 

engagement with T cells; although limited data also argues for the involvement of co-stimulatory 

molecules in polarizing responses (91).  

Type-1 DC (DC1) activate and polarize αβ-T, macrophages, NK, NKT, and γδ-T cells into 

Type-1 effector cells that are competent to mediate the clearance of viral infected- and 

transformed cells, as well as some extracellular parasites (36; 127). Activation of Type-1 T cells 

is marked by the distinct upregulation of functional IL-12 receptor (IL-12R), accumulation of 

cytolytic granules (Granzyme-B and Perforin), increased IFNγ and decreased IL-10 and IL-4 

cytokine production, and increased expression of the CXCR3 and CCR5 chemokine receptors; 

all of which are important for effective T cell-mediated clearance of pathogens (127).  

Additionally, bi-directional crosstalk between CD8+ T cells or NK cells may reinforce Type-1 

responses by effectively allowing DC to further promote Type-1 polarized T cell responses 

(128).  

T-bet has been identified as the master regulator of TH1 commitment in CD4+ T cells and, 

most recently, a major transcriptional regulator of NK and CD8+ T cell cytokine, cytolytic and 

migratory functions (35; 38; 39; 54; 55). T-bet acts as a transcription activator for inducing 
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secretion of IFNγ, suppressing IL-4, promoting CXCR3 expression, and upregulation of the IL-

12 receptor β2 chain (IL-12Rβ2) in T cells, NK, NKT and γδ-T cells (38; 52).  The ability of any 

of these cell types to assume functional Type-1 polarization is impaired in mice deficient in T-bet 

(39; 123; 129). Interestingly, T-bet has been shown to bind the same subset of promoter regions 

in B, NK, and T cells, albeit with reported differential gene regulation (39; 123; 129). Studies 

assessing T-bet expression in DC have demonstrated that DC production of IFNγ correlated 

directly with levels of T-bet expressed in these cells (24).  Lack of T-bet expression did not 

impair the maturation of bone marrow-derived or splenic DC, but this deficiency did impair the 

ability of DC to activate TH1 responses in vivo (24). Additionally, Wang et al. found that T-bet 

expression in DC regulated inflammatory cytokines and chemokines production, including IL-1 

and MIP-1α (130).  Notably, the Glimcher group showed that T-bet expression in DC directly 

correlated with TNFα production and the development of ulcerative colitis in murine models 

(131).  These findings support a hypothesis that T-bet expression in DC is crucial for the 

development of Type-1 cell-mediated immunity, although its mechanism of action remains 

poorly illuminated. 

The unique ability of DC to induce and sustain primary immune responses makes them 

optimal candidates for vaccination protocols (91; 111). DC vaccinations continue to appear safe 

and although limited clinical responses have been achieved, the optimal type of DC for 

vaccination still remains to be determined. Challenges include making DC noncompliant to the 

negative influences of the tumor microenvironment; i.e. retaining Ag-presenting function and 

Type-1 polarization (3). Therefore, the generation of a “rigid” DC that mediates sustained 

immunostimulatory functions by expressing high Type-1 differentiating costimulatory molecules 

and cytokines appears critical to the optimal priming and maintenance of effector T cells 

exhibiting potent anti-tumor reactivity (109).  Furthermore, the reduction and/or absence of 

regulatory costimulatory molecules and cytokines would also be preferred in order to avoid the 

development of immune tolerance and/or the induction of Treg cells. The successful completion 
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of these studies may define a novel format of functionally “locked”’ DC for use in vaccines 

designed to promote therapeutically meaningful Type 1 immunity. 
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2.3   Materials and Methods 

 

2.3.1 Adenovirus and Construct 

Human T-bet (hT-bet) was PCR cloned from peripheral blood lymphocytes using the following 

primers: hT-bet: Fwd 5’-GTCGACGACGGCTACGGGAAGGTG-3’, Rev 5’-

GGATCCTTAGTCGGTGTCCTCCAACC-3’. The product was then digested with the restriction 

enzymes SalI and BamHI and the 1.7Kb fragment containing full-length hT-bet was ligated into 

the adenoviral-Cre-Lox (Adlox) vector. After sequence validation, recombinant adenoviruses 

were generated by co-transfection of Adlox.hT-bet and helper virus DNA into the adenoviral 

packaging cell line CRE8. The harvested recombinant adenoviral hT-bet (AdhT-bet) was 

purified by cesium chloride density-gradient centrifugation and subsequent dialysis before 

storage in 3% threoalose at -80oC. Titers of viral particles were estimated by optical density. The 

mock (empty) adenoviral vector Adψ5 was used as a negative control. Immature DC were 

transduced on day 5 of culture at an MOI of 300. Briefly, DC were transduced for 2h at RT, 

washed twice, and resuspended in AIM-V media (Life Technologies, Inc., Grand Island, NY) 

supplemented with rhIL-4 (20 ng/ml, Peprotech, Rocky Hill, NJ) and rhGM-CSF (1000 U/ml; 

Leukine; Amgen Inc., Thousand Oaks, CA) before being incubated for an additional 48h at 37oC 

under 5% CO2 tension. Transduction efficiency was 63 ± 18% for all experiments (n = 13) as 

determined by intracellular staining for T-bet monitored by flow cytometry. 

 

2.3.2. Isolation of donor Dendritic and T cells 

DC (> 95% CD11c+CD14-) were generated from plastic-adherent monocytes isolated from the 

peripheral blood of normal donors and patients with melanoma, with donor consent under IRB-

approved protocols, as previously described (132). Non-adherent cells, enriched in T cells, were 

collected and stored at -80oC for 5-7 days during the DC culture period. After thawing, naïve or 

memory T cells were negatively-isolated using CD45RO or CD45RA MACSTM microbeads 



26 

(Miltenyi Biotec, Auburn, CA), respectively, per the manufacturer’s protocols, yielding cell 

populations of > 98% purity. CD4pos or CD8pos naïve or memory T cell subsets were further 

isolated by positive-selection using specific MACSTM microbeads. 

 

2.3.3   Dendritic and T cell coculture studies; superantigen (SEB) model 

Naïve or memory T cells were plated with SEB pulsed-DC.T-bet or control DC at an E:T ratio of 

1:10 in TcMEM. Supernatant of DC-T cell cocultures were collected on day 3 and analyzed for 

IFN-γ production by ELISA. Additionally, on day 3, CD4pos T cells were separated from DC by 

MACSTM. Total RNA was isolated for RT-PCR analysis or T cells were co-stained with mAbs to 

CD4, CD212 and T-bet for flow cytometric analysis. In additional studies, naïve or memory T 

cells cultured with SEB pulsed-DC.T-bet or control DC were restimulated on day 5 with DC.T-

bet or control DC supplemented with 20 U/ml of rhIL-2 (Peprotech) and 5 ng/ml of rhIL-7 

(Sigma-Aldrich). T cells were replenished with TcMEM supplemented with IL-2 and IL-7 every 

other day.  On days 12 or 14, cells were collected and assayed for cytokine (IFN-γ, IL-4, and IL-

10), cell surface (CXCR3), and intracellular (Foxp3 and Granzyme-B) protein expression by flow 

cytometry. To evaluate intracellular cytokine expression, cells were stimulated with PMA (1 

μg/ml; Sigma-Aldrich) and Ionomycin (10 ng/ml; Sigma-Aldrich) for 4h, with 2 μM monensin 

(Sigma-Aldrich) added over the final 2h of culture.  For CFSE proliferation assays, Sorted 

CD45ROneg (naïve) or CD45RAneg (memory) T cells were labeled with 1.5 μM of CFSE (Sigma-

Aldrich) in PBS for 15 minutes at 37oC. T cells were then washed twice and resuspended in 

TcMEM for 30 min at 37oC. 1 x 105 T cells were added to DC in a final concentration of 100 U/ml 

of rhIL-2 (Peprotech) in TcMEM. Responder T cells were evaluated on day 3 for CFSE dilution 

by three-color flow cytometry performed on CSFE-labeled cell using IFNγ and CD3 mAbs. 
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2.3.4. Antigen Specific T cell studies 

Following monocyte separation, non-adherent cells were isolated from PBMC and 

cryopreserved until needed. DC.T-bet or control DC were prepared as afore mentioned. Prior to 

coculture with T cells, DC were pulsed with tumor antigenic class I A2-restricted peptides: 

gp100 (209–217), Tyrosinase (368–376D), or EphA2 (288-296) for 3 h at 37oC in AIM-V 

medium (GIBCO-Invitrogen, Carlsbad, CA).  Naïve CD8 T cells were isolated by first depleting 

the memory subsets using CD45RO microbeads (Miltenyi; MACSTM) and further positively 

selected for CD8+ T cell subsets using the respected CD8 microbeads (Miltenyi).  DC.T-bet or 

control DC were plated with autologous CD8+ T cells at a 1:10 in T cell medium containing 

5ng/ml of IL-7.  After 7 days, T cells were restimulated with either the respected DC.T-bet or 

control DC, immature DC, or irradiated (at 5000 rads) PBMC supplemented with 20 U/ml of IL-2 

and 5ng/ml of IL-7 for an additional 7 days prior to analysis of antigen-specific T cell responses. 

 

2.3.5. Readout Assays 

 

2.3.5.1. ELISPOT 

On day 14 of antigen specific-T cell assays, the frequencies of peptide-specific CD8+ T cell 

responders were measured using anti-human IFN-γ ELISPOT assays, as previously described. 

CD8+ T cells were added to ELISPOT wells at a 5:1 ratio of T cell to antigen presenting cell, to 

which we used T2 immortalized cell line, which expresses class I A2 and class II DR4 MHC 

molecules. EphA2, gp100, or Tyrosinase peptides, as afore mentioned, were added at a final 

concentration of 10 μg/ml. ELISPOT plates were incubated at 37oC for 24h prior to development 

and evaluation using an ImmunoSpot automatic plate reader (Cellular Technology Ltd., 

Cleveland, OH), as previously reported. The number of peptide-specific CD8+ T cell responders 

were statistically compared to the background number of IFNγ spots produced by T cells in 
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response to APCs pulsed with HIV peptides. Positive control wells contained T cells and 10 

μg/ml phytohemagglutinin (PHA; Sigma-Aldrich).  

 

2.3.5.2. Flow Cytometry and Immunohistochemical Analysis 

For cell surface staining using flow cytometry, cells were collected and re-suspended at 2 x 105 

cells/100 μl in 96-well V-bottom plates in PBS with 2% BSA and 0.2% NaN3 (FACS buffer), then 

washed twice before blocking in 3% human serum. Antibody staining was performed for 30 

minutes at 4oC at a dilution of 1:20, after which, cells were either analyzed by flow cytometry or 

resuspended in Fix/Perm buffer (eBioscience) for subsequent intracellular staining. Briefly, for 

intracellular staining, cells were washed in 1X permeabilization buffer (eBioscience) prior to 

blocking with 10% human serum for 10 minutes at 4oC. Antibody staining was performed at 4oC 

for 45-60 minutes. Cells were then washed twice in 1X permeabilization buffer, resuspended in 

FACS buffer, and analyzed by flow cytometry. For immunofluorescence microscopy, 1 x 105 DC 

were cytospun, fixed onto slides and co-stained with anti-T-bet (Santa Cruz Biotechnologies), 

nuclear dye (DAPI), and rhodamine phalloidin. Fluorescence images were then captured using 

an Olympus BX51 microscope (Olympus America, Melville, NY). 

 

2.3.5.3.    Reverse Transcriptase-PCR 

For mRNA analysis, DC were harvested on day 2 (48h post-transduction) and MACSTM isolated 

naïve or memory CD4pos T cells were harvested on day 3 after initial priming by DC. RNA was 

isolated with Trizol (Inivitrogen, Carlsbad, CA). Reverse transcription was performed using 

MuLV reverse transcriptase (Applied Biosystems, Carlsbad, CA) and Random Hexamers 

(Applied Biosystems). Semi-quantitative PCR was used to amplify cDNA for expression of gene-

specific products. Specific primers were used for IL-12p35, IL-12/23p40, IL-23p19, IL-27p28, IL-

27pEBI-3, IL-15, IL-18, IL-10, TGFβ, IFN-α, and IFN-γ as previously described(132). Additional 

primer sequences included: T-bet: Fwd 5’-CCACCAGCCACTACAGGATG-3’ and Rev 5’-
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GGACGCCCCCTTGTTGTTT-3’; GATA-3: Fwd 5’-GTGCTTTTTAACATCGACGGTC-3’ and Rev 

5’- AGGGGCTGAGATTCCAGGG-3’; Foxp3: Fwd 5’-GCACCTTCCCAAATCCCAGT-3’ and Rev 

5’-TAGGGTTGGAACACCTGCTG-3’; and RORγt: Fwd 5’-AAATCTGTGGGGACAAGTCG-3’ 

and Rev 5’-TGAGGGTATCTGCTCCTTGG-3’. β-actin primers were used as an internal positive 

control (132). 

 

2.3.5.4. Western Blotting 

DC were harvested 24h after adenoviral transduction.  Total cellular protein was collected at 1 x 

105 DC per 50µl as lysate prior to subjection onto SDS-PAGE.  The gel was next transferred 

onto a nitrocellulose blot, prior to staining with primary antibodies to T-bet, Bcl-xL, Bcl-2, Mcl-1 

or Survivin (Santa Cruz Biotechnologies) overnight. After washing in 5% PBS\Tween, blots were 

stained with secondary antibodies for 1 hour conjugated to horse radish-peroxidase (HRP) and 

subsequently assessed.  β-actin levels were analyzed by treating the blots with 2% NaN3 

(Sodium Azide) for 1 h in the presence of primary Abs to β-actin generated from different 

species as the primary Abs of the protein of interest (i.e. T-bet, Bcl-xL, Bcl-2, Mcl-1 or Survivn) 

analyzed.  After overnight incubation, blots were washed and stained with secondary Abs 

conjugated to HRP and analyzed. 

 

2.3.5.5. Neutralization Studies 

Neutralizing anti-hIL-12p70 polyclonal Ab (pAb; R&D Systems), anti-hIL-12Rβ2 pAb (R&D 

Systems) anti-hIFNγ pAb (R&D Systems), anti-hIFNγR1 pAb (R&D Systems), anti-hIL-23 pAb 

(R&D Systems), anti-IL-27R pAb (TCCR/WSX-1; R&D Systems), and anti-CD27 pAb (R&D 

Systems) were used at a final concentration of 10 μg/ml. Additionally, Notch-Fc was used at a 

final concentration of 10μg/ml. Briefly, DC.T-bet or control DC were plated with naïve or memory 

T cells at a DC:T cell ratio of 1:10 in triplicate in 96-flat bottom plates in the presence or 
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absence of blocking Abs. On day 3, cell-free supernatants were collected and evaluated using 

IFN-γ ELISA.  
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2.4. Results 

 

2.4.1. Phenotype of T-bet expressing DC (DC.T-bet) 

 

 Human DC were generated from monocytes via culture in rhIL-4 and rhGM-CSF for 5 

days prior to being transduced with recombinant adenovirus encoding human T-bet (DC.T-bet) 

or control Ad.ψ5 (DC.ψ5) for a subsequent 48h period. DC generated under known Type-1 

polarizing conditions were also assessed for endogenous T-bet expression. Harvested DC was 

analyzed for T-bet mRNA (via reverse transcriptase-PCR; Fig. 1A) and protein expression (via 

western blot and flow cytometry; Fig. 1B and 1C). As shown in Fig. 1A, T-bet expression in 

untreated immature DC (DC.null) and DC.ψ5 was very low (at both the transcript and protein 

levels), with modest expression levels augmented by culture with inflammatory cytokines (i.e. 

IFN-α, IFN-γ, TNF-α for DCα1; (95)); IL-12 for DC-IL12 (133); IFN-γ for DC-LPS/IFN-γ, TLR 

ligands (poly I:C for DC1α; LPS for DC-LPS/IFN-γ), a macrocyclic lactone known to mature DC 

(bryostatin-1 for DC-BS1; (134)), or infection with AdhT-bet, which yielded a DC population that 

was approximately 70% T-bet positive (Fig. 1C). Notably, confocal immunofluorescence 

microscopy analyses revealed that T-bet was expressed predominantly in the nucleus of DC.T-

bet cells (Fig. 1D).  
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 Confirming the protein presence and localization of T-bet to the nucleus of DC, we next 

evaluated changes in co-stimulatory molecule and cytokine profiles as a consequence of 

downstream signaling by T-bet expression in DC.  Flow cytometric analysis, via co-staining of T-

bet with variable co-stimulatory\inhibitory molecules, revealed little-to-no changes in mean 

fluorescent intensity (MFI) levels compared to backbone transduced DC (DC.ψ5) or non-

transduced DC (Fig. 2A).  Although we found T-bet positive DC to express elevated levels of 

CD11c, CD80, CD86, and ICAM-1, within the transduced cohort, subsequent analysis with 

adenoviral GFP revealed no marked differences (data not shown), suggesting that the actual 

adenoviral vector was selective in infection of DC within a cohort.  Analysis of mRNA 

transcriptional profile revealed little to no changes in the IL-12 family of cytokines, including the 

shared IL-12\23p40, IL-12p35, IL-23p19, and IL-27 EBI3 subunits (Fig. 2B).  However, we 

found IL-27p28 subunits to be restrained in expression, suggesting that IL-27 protein expression 

would be abolished. We did not find DC.T-bet to express IFNγ as investigated at the mRNA 



33 

(Fig. 2B) or protein level (data not shown). Additionally, evaluation of IL-10, TGFβ, IL-18, and 

IL-15 revealed no differences between the control DC and DC.T-bet (Fi.g 2B).  However, 

evaluation of protein expression varied greatly from observed mRNA transcription. DC.T-bet 

had completely abolished expression of IL-12p70, IL-23p19, and TNFα, which are Type 1 and 

Type 17-differentiating and supporting cytokines for T cells polarization (Fig. 2C). Additionally, 

we found IL-10 and IL-6 to also be completely abolished in DC.T-bet (data not shown).  It has 

been reported that cytokines, most notably IL-2, IFNγ, and TNFα in T cells, are regulated post-

transcriptionally through various mechanisms, including mRNA degradation, protein recruitment 

for silencing, and destabilization (135), suggesting a potential mechanism of cytokine regulation 

in DC.T-bet at the transcription level.  Finally, evaluation of survival and anti-apoptotic proteins 

associated with DC by western blot revealed no significant changes in DC.T-bet compared to 

control DC (Fig. 2D).  
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2.4.2. Early Type 1 T cell responses induced by DC.T-bet 

 

 Differential DC.T-bet expression of cytokines did suggest that the shape of the T cell 

response may be modulated. To investigate T cell responses, I chose to use the superantigen 

model, employing staphylococcus enterotoxin B fragment, to bridge the MHC of DC.T-bet or 

control DC and the TCR of responding T cells.  This bypassed the necessity for antigen 

specificity, allowing the differential expression of costimulatory, adhesion, and accessory 

molecules, along with cytokine profile expression, to dictate T cell responses.  Furthermore, 

work by Kalinski et al and Kapsenberg, among others, have shown that the SEB-superantigen 
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model, under low doses, is unable to skew T cell responses; thereby acting solely as a bypass 

bridge to initial signal 1 of MHC:TCR engagement (136; 137).  Briefly, DC.T-bet or control DC 

was pulsed with 1 ng/ml of SEB in AIM-V medium in 37oC for 3 h.  Autologous T cells were 

isolated from non-adherent PBMC using MACSTM isolation.  Naïve T cells were attained by 

depleting memory cell subsets using CD45RO microbeads, whereas memory T cells were 

isolated by depleting naïve cell subsets with the CD45RA microbeads.  The choice for depletion 

was to allow further positive isolation of naïve or memory CD4+ or CD8+ T cell populations.  

DC.T-bet or control DC and naïve or memory T cells were plated in a 96-Flat bottom plate at a 

ratio of 1:10, respectively, in T cell medium.  Harvest of supernatant on day 3 revealed a 4 fold 

increase in IFNγ in the naïve (CD45RO depleted) T cell subsets, but no change in the memory 

subsets (Fig. 3A).  It is important to note again that DC.T-bet showed no differential expression 

of IFNγ mRNA transcription as assessed by RT-PCR (Fig. 2B), nor presence of IFNγ protein 

expression by ELISA, even after treatment with TLR or CD40 agonists (data not shown). I next 

wanted to evaluate additional early T cell polarization by assessing “master” T helper subset 

transcriptional factors.  DC.T-bet or control DC were cultured with naïve CD4+ 

(CD45ROnegCD4+; MACSTM isolation of CD4 positive cells from depleted CD45ROneg group) T 

cell subsets for 3 days.  Total cells were collected and further purified by using CD3 microbead 

isolation via MACSTM.  Greater than 98% of isolated cells were CD3+CD4+ T cells (data not 

shown).  RNA was extracted from these purified CD3+CD4+ T helper cell subsets and analyzed 

for expression of the polarizing transcription factors: T-bet (TH1), GATA-3 (TH2), RORγt (TH17), 

and Foxp3 (T regulatory).   DC.T-bet expanded T cells had much higher levels of T-bet with a 

concomitant decrease in GATA-3 and RORγt compared to control DC expanded T cells (Fig. 

3B).  I confirmed greater T-bet expression on the protein level in DC.T-bet primed naïve T cells 

by performing flow cytometry analysis, gating on CD4+ T cell subsets co-stained with T-bet and 

IL-12Rβ2 expression (data not shown).   Also of interest, we found an increase in cluster size 

of DC.T-bet primed T cells compared to control DC primed T cells (Fig. 3C).  Recent literature 
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has shown that T cell clusters are important for paracrine secretion and signaling of IL-2 to 

promote Type 1 polarization and T cell responses (138).   

 

Furthermore, it was to be delineated whether DC.T-bet induced higher levels of IFNγ production 

or, alternatively, expanded a greater pool of IFNγ producing cells by enhancing proliferation 

status.  CFSE-labeled naïve or memory T cells were cultured with DC.T-bet or control DC for 3 

days, prior to co-staining cells with IFNγ to directly assess proliferation of responding T cells co-

expressing IFNγ. Initial priming of naïve T cells with DC.T-bet did not yield a greater proliferation 

advantage compared to control DC expanded T cells (Fig. 3D). However, it was clear that 

DC.T-bet expanding T cells had both higher frequency and MFI levels of IFNγ production, 

suggesting that a greater proportion of T cells in the initial culture were enforced to express 

higher levels of IFNγ (Fig. 3D and Fig. 4).  As to be expected, memory T cells were unable to 
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be repolarized to a greater proportion of IFNγ producing cells.  Not surprising, Foxp3 level of 

expression didn’t change at the day 3 time point (Fig. 3D and Fig 4), corroborating recent 

findings that Foxp3 expression is an early T cell activation marker (139).  However, at day 5, 

Foxp3 expression in DC.T-bet primed naïve T cells began to diverge from control DC primed 

and proliferating T cells as assessed by co-staining Foxp3 versus CFSE dilution (Fig. 4).  These 

data sets led us to question the effect that DC.T-bet has on T cell polarization, and whether 

there was a concomitant increase in Type 1 and reduction in IL-4+ TH2 and Foxp3+ Treg 

subsets. 
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2.4.3. Concomitant induction of Type 1 and suppression of Type 2 and T regulatory cells 
 

 Early T cell responses showed that DC.T-bet primed naïve T cells elicited potent 

induction of IFNγ production, with associated increases in T-bet expression with concomitant 

decreases in GATA-3 (mRNA) and Foxp3 (protein; day 5 analysis).  However, functional 

differentiation, or polarization, of T cells is generally evaluated after additional restimulation and 

evaluation post-14 days after primary stimulation. Furthermore, rigid cytokine profile and 

additional Type 1-associated markers and effector functions, including chemokine receptors, 

such as CXCR3 (Type 1-associated) or CCR4 (Type 2-associated), late antigen receptors, such 
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as VLA-4 (Type 1-associated), and effector molecules, such as granzyme-B, Fas-ligand and 

perforin (Type 1-associated) can arise at later time points.   In these series of studies, DC.T-bet 

or control DC were co-cultured with naïve or memory T cells for 5 days, prior to restimulation 

with respected SEB pulsed-DC supplemented with IL-2 and IL-7.  T cell cytokine profiles were 

evaluated by ELISA and flow cytometry on days 7 and 14 upon PMA and Ionomycin 

restimulation in the presence of Monensin, an inhibitor of cellular secretion. For non-cytokine 

profiles (such as surface-bound proteins or intracellular granules), T cells were analyzed by flow 

cytometry on days 14 or 21. Flow cytometry was performed by co-staining and gating on CD8 or 

CD4 T cell subsets from bulk naïve (CD45ROneg) or memory (CD45RAneg) and staining for 

cytokines or cell surface molecules. In analogous studies, naïve or memory T cells were further 

isolated for CD4+ or CD8+ T cell subsets to assess the direct effect of DC.T-bet on each cell 

subset.    DC.T-bet increased the frequency of IFNγ producing CD45ROnegCD4+ T cells as early 

as day 7 and on day 14 (Fig. 5A), while concomitantly decreasing IL-4, IL-17A and IL-10 

production (Fig. 5A).  DC.T-bet also augmented CD8+ T cell IFNγ, CXCR3 and Granzyme-B 

production from naïve precursors (Fig. 5B).  Finally, DC.T-bet skewed T cells away from T 

regulatory phenotype, as indicative of the restrained IL-10 production (indicative of Tr1-like 

cells) and CD4+CD25+Foxp3+ T regulatory cell subsets (Fig. 5C). Cumulatively, these data sets 

show that DC.T-bet enforced a Type 1 polarization that overrides induction of Type-2 or T 

regulatory phenotypes.  

 

2.4.4 Antigen specific-Type 1 polarization 

 

 My studies with DC.T-bet up to this point have used an artificial system to engage 

TCR:MHC for priming responder T cells.  Although the superantigen system has been shown to 

be unbiased, and I have included DC.null and DC.ψ5 expanded T cells as internal controls in all 

experiments, it was left to be seen if DC.T-bet can impart Type 1 polarization using cognate 
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MHC:peptide engagement of responding naïve T cells via TCR recognition and activation. 

Briefly, DC.T-bet or control DC were pulsed for 3h in 37°C with gp100, tyrosinase, and EphA2 

HLA-A2 class (MHC Class I) restricted peptides.  DC were then washed twice and plated with 

autologous naïve CD8+ T cell (CD45RO depleted CD8 positive isolated) at a ratio of 1:10 in T 

cell medium supplemented with IL-7.  7 days later, T cells were restimulated with either peptide 

pulsed (respected)-DC.T-bet or -control DC, peptide pulsed-immature DC, or peptide pulsed-

irradiated bulk PBMC supplemented with IL-2 and IL-7. On day 14, T cells were collected and 

plated in triplicate with HLA-A2+DR4+ restricted-T2 cell (a cell line abolished in ability of TAP1, 

and thus unable to process and present antigen) in presence of individual peptides for gp100, 

EphA2, or HIV (negative control) peptides onto an anti-IFNγ stained nitrocellulose 96-flat bottom 

plate (Millipore) in AIM-V for ELISPOT analysis or in a 96-Flat bottom plate (non-coated, non-

stained) for collection of supernatant for ELISA. 24h later, the nitrocellulose plate was 

developed for ELISPOT analysis and the frequency of spots was detected using Immunospot 

detection analysis.  DC.T-bet induced both a higher frequency and antigen-specific T cell 

subsets primed against EphA2 and gp100 upon restimulation with DC.T-bet, iDC, or irradiated 

PBMC, compared to control DC expanded T cells (Fig. 6A). After 3 days of culture in the non-

coated, non-stained plate, supernatant was collected and analyzed for IFNγ expression by 

ELISA.  DC.T-bet antigen-specific responding T cells showed higher levels of total IFNγ 

production upon stimulation with specific peptide, paralleling ELISPOT data sets (Fig 6B).  

Analogously, DC.T-bet or control DC primed T cells, on day 14, were restimulated with T2 cells 

pulsed with gp100, Tyrosinase, MART-1, or EphA2 for 24 h, with the final 6 h of culture 

supplemented with 2 µM of monensin. T cells were collected and co-stained with respected 

tetramer and ant-IFNγ, prior to flow cytometric analysis. DC.T-bet produced a two fold increase 

in the frequency and MFI of IFNγ in both MART-1 and EphA2 antigen-specific CD8+ T cell 

responders (Fig. 6C). Thus DC.T-bet primes a greater proportion of naïve CD8 T cells to 
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become IFNγ producers in an antigen specific manner, analogous to the data achieved using 

the superantigen model system. 

 

 

2.4.5. IL-12-and IFNγ-Independent Type 1 Polarization of T cells 

  

 After confirming DC.T-bet induction of Type 1 polarization, both in the superantigen and 

antigen-specific model systems, I next set to identify the mechanisms that impart Type 1 

polarization to responding T cells. Initial TCR:MHC engagement along with costimulatory 

molecule signaling, such as CD80 or CD86 engagement with cognate CD28 (or CTLA-4) 

receptor, is critical for full T cell activation (9).  However, the presence (or absence) of polarizing 
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cytokines, such as IL-12, IFNγ, IL-27, IL-6, IL-10 and\or TGFβ dictate the polarization state (of 

specific T helper differentiation) in responding naïve T cells (9). Confounding, the primary 

candidates such as IL-12p70, IL-27, and IFNγ (Fig 2B and 2C) expression were absent in 

DC.T-bet. This led me to question whether DC.T-bet produces a novel cytokine that functions as 

a potent Type 1 inducing trans factor.  To test this, I performed transwell studies.  Briefly, 5 x 105 

DC.T-bet or control DC were co-cultured in the bottom chamber of a transwell plate for 24h with 

1 x 106 naïve T cells in the upper chamber. 1 x 105 non-transduced SEB pulsed-DC (or 

bystander DC) or 1 x 105 anti-CD3\CD28 microbeads (dynabeads; Invitrogen) were added to the 

top chamber as stimulating agents. Even with five times the number of DC.T-bet to bystander 

DC, DC.T-bet was unable to induce T cells towards Type 1 immunity when separated by a 

transwell (Fig 7A). These results suggested that DC.T-bet does not impart Type 1 induction via 

distal, or trans, mechanisms.  
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 Neutralizing Abs were used to confirm that the polarizing cytokines, IL-12, IL-23, IL-27 

were not involved in DC.T-bet induction of Type-1 immunity. Other novel cis acting mechanisms 

of Type 1 induction in T cells that act independent of IL-12 have been shown, including CD27-

CD70 engagement (140) or delta like-4 (DLL4) engagement with cognate notch ligand (141).  

Neutralization of the CD27 receptor and addition of the notch-Fc ligand to block CD27-CD70 

and DLL4-Notch engagement, respectively, was unable to alleviate Type 1 polarization induced 

by DC.T-bet in responding naïve T cells (Fig 7B).  Although T-bet expression in T cells is IL-12 

Figure 7.  DC.T-bet primes Type 1 polarized T cells via IL-12- and IFN- independent 
mechanisms. (A) DC.T-bet or control DC were plated in the bottom chamber of a transwell plate for 
24 h prior to addition of (non-transduced immature DC pulsed with SEB and naïve T cells.  After 48h, 
supernatant was collected and analyzed for IFNγ production. (B-C) DC.T-bet or control DC were 
cocultured with naïve or memory T cell at a 1:10 ratio for 3 days in the presence or absence of 
indicated neutralizing Abs. (D) DC.T-bet or control DC primed T cells in presence of IgG controls,  
anti-IL-12p70 + anti-IL-12Rβ2 (αIL-12) or anti-IFNγ and anti-IFNγR1 were evaluated for intracelular
IFNγ expression on day 14, after restimulation on day 5 with respected DC supplemented with IL-2 
and IL-7

A B

C D

A
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independent, its expression is STAT1 dependent upon engagement of IFNγ-IFNγR\STAT1 

and\or TCR:MHC signaling.  Early data sets show that DC.T-bet induced-higher levels of T-bet 

and IL-12Rβ2 expression in responding naïve T cells compared to controls (Fig 3C), however 

we were unsure if this upregulation and production of IFNγ was dependent on initial IFNγ 

signaling via STAT1.  Therefore, I neutralized interactions of IFNγ-IFNγ receptor by addition of 

anti-IFNγR1, which did not disrupt the ability of DC.T-bet to promote Type 1 polarization (Fig. 

7C and 7D).  Interestingly, this also suggest that the autocrine feedback signaling of IFNγ 

receptor by activated T cells may not be necessary to promote Type 1 polarization, but that 

DC.T-bet guidance directed T cells towards Type 1 (including upregulation of T-bet in T cells) 

polarization in an IFNγ- and IL-12-independent mechanism.  Because of the redundancies and 

complexities of IFNγ-IFNγR signaling and T-bet, additional studies will need to be performed to 

highlight the role of IFNγ in DC.T-bet priming of naïve T cell responses. 
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2.5. Discussion 

Previous studies using T-bet knockout DC to prime wild type T cells showed an impaired 

Type 1 immune response, principally measured by IFNγ, in an in vivo mouse model (24). In 

another study, TLR stimulation, primarily by CpG, to induce full activation and induction of Type 

1 immunity was impaired in T-bet knockout-DC (56). This suggested that natural, endogenous 

expression of T-bet in dendritic cells played a significant role in modulating Type 1 polarized T 

cell responses.  In these studies, I investigated T-bet’s role in human DC by ectopically 

overexpressing T-bet via an expression vector and assessed T cell response in vitro.  

 T-bet transduction into DC via adenoviral vectors yielded an efficiency of 66-80% T-bet+ 

DC within the transduced cohort.  In assessing the DC phenotype, little-to-no observable 

changes in costimulatory molecules were identified; however the cytokine profile expressed by 

DC.T-bet would have suggested impaired Type 1 immunity, as the IL-12 family related cytokines 

(IL-12p70, IL-23, and IL-27) were all abolished.  Utilizing multiple TLR agonists and CD40 

agonists, which have shown in vitro the ability to rapidly produce inflammatory cytokines in DC, 

achieved little-to-no expression of IL-12 family-related cytokines.  However, more confounding 

was that the mRNA expression levels didn’t correlate directly to protein secretion levels, 

suggesting that T-bet expression in DC may promote post-transcriptional or translational 

modification of cytokines, as has been shown in previous studies (135). Notably, post-

transcriptional regulation of cytokines has been well documented within T cells and shown that 

activation under different polarizing cues can induce various mechanisms of post-transcriptional 

regulation. Additional, albeit less examined, roles of post-transcriptional regulation have also 

been highlighted in DC (142). Alternatively, the inconsistency (predominately in analysis of 

mRNA expression) could be a result of the heterogeneous makeup of T-bet expressing and 

non-Tbet expressing DC within the evaluated transduced DC.T-bet cohort (i.e. approximately 

60% of DC expressed T-bet). Therefore, future studies isolating for a pure population of T-bet 

positive DC should be utilized to improve the consistency in DC phenotype studies. It also 
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should be noted that mRNA expression profile represents a snapshot in time of the dynamic 

kinetic events of cytokine transcription, translation, and secretion in DC.  ELISA analysis 

represents the culmination of captured cytokine over time. mRNA analysis of p35 expression in 

DC.LPS represents 24h post stimulation, and its lower levels most likely represent the 

exhaustion and\or induction of negative feedback mechanisms to turn off p35 mRNA expression 

at the time point evaluated. Other indexes, such as IL-27p28, EBI3, IL-p12p40, and IL-10 serves 

as additional internal controls to which we could compare DC.T-bet to TLR-stimulated DC (i.e. 

DC.LPS). DC.LPS consistently produced high levels of IL-12p70 when assayed by ELISA over 

a 24h stimulation period, similar to control DC (data not shown).  

 Although cytokines presented by APC and in the local microenvironment have been 

shown to be responsible for T cell differentiation, non-cytokine mediated factors have also been 

identified.  Most notably, DC and T cells have been shown to modulate the balance between 

immunity and regulation (or tolerance) by the length of these interactions in the lymph nodes 

(98; 143). Notably, studies have come to show that DC dictate the polarization state of T cells 

prior to cytokine secretion (i.e prior to IL-12-STAT4 signaling; (45)). Not surprising, as T-bet 

absence in DC was shown to impair Type 1 polarized T cell responses in the mouse model, I 

found that DC.T-bet induced a significant, up to four-fold, increase in IFNγ production from 

responding naïve, but not memory, T cells. However, I was unsure whether this was due to a 

greater conversion of naïve T cells towards the Type 1 polarized state or whether DC.T-bet 

increased the level of proliferation of Type 1 T cells. DC.T-bet converted a greater proportion of 

T cells expanded from the naïve pool to IFNγ+ T cells, as assessed by proliferation versus IFNγ 

production, paralleling published reports that T-bet deficient DC did not affect\alter the 

proliferation profile\potential of responding T cells (24). Flow cytometric analysis of CFSE vs. 

IFNγ represents a snapshot in time, whereas ELISA data represents the culmination of changes 

over time.  Memory T cells, as defined, responded much early to DC stimulation for secretion of 

IFNγ.  Naïve cells, however, required differentiation and polarization prior to secretory release of 
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cytokines.  The data presented is a snapshot of the optimal time for IFNγ against CFSE dilution 

for naïve responding T cells, whereas we consistently found memory T cell to have an optimal 

snapshot at day 1-2 (data not shown) and an appearance  of less production of IFNγ at day 3 

(Figures 3 and 4). Concomitantly, DC.T-bet also restrained Foxp3 expression in responding T 

cells, which was observable beginning at the day 5 time point, suggesting that there was a 

reciprocal impairment in selection for T regulatory subsets.  Although Foxp3 is indeed co-

expressed, as a marker for activation, in T cells primed by DC.T-bet and control DC, we 

continually found that Fox3 expression began to drop more pronounced in DC.T-bet primed 

compared to control DC primed T cells.  This may reflect the speculation in recent literatures 

that different Foxp3 isoforms can contribute different activation and suppressive cues. DC.T-bet 

may then be able to more profoundly skew against the suppressive isoforms of Foxp3 to which 

our Ab (PCH101; eBioscience) identifies (22; 144). Continued investigation of early T cell 

responses after priming by DC.T-bet or control DC further revealed that the transcription factor 

T-bet was upregulated in naïve primed T cells by DC.T-bet (DC.T-bet was removed from 

responding T cells by MACS isolation of CD3+ T cells; yielding 99% purity for CD3+CD4+ T cells. 

This was further evaluated by flow cytometry, gating on the CD3+CD4+ T cell population and co-

staining with anti-T-bet and anti-IL-12Rβ2; yielding a 4 fold increase in T-bet and IL-12Rβ2 over 

control DC expanded naïve T cells. All experiments were performed with at least three different 

donors in at least three independent experiments to which the trends were always similar in the 

ability of DC.T-bet to induce Type 1 polarization in early responding T cells.  

 The next series of studies established the commitment profile of DC.T-bet primed naïve 

or memory T cells.  As T cells require strong activation signals to fully commit towards 

differentiation, or polarization, I assessed T cell responses after 14 days, with restimulation of 

DC.T-bet or control DC on day 5 supplemented with IL-2 and IL-7. Evaluating both the CD4+ 

and CD8+ naïve and memory pools, DC.T-bet was found to induce potent Type 1 polarization in 

only responding naïve T cells by additionally upregulating Type 1-associated effector molecules, 
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including IL-12Rβ1β2, CXCR3 (chemokine receptor important for trafficking into sites of 

inflammation) and Granzyme-B (in CD8+ T cells) in addition to IFNγ, as assessed on the single 

cell level by flow. Furthermore, this response came with a concomitant mutual skew away from 

the IL-4+IFNγ T helper cell subsets (TH2 cells), were there was a consistent reduction in the 

frequency of IL-4 producing cells in responding naïve T cells.  Because CFSE proliferation 

assays revealed no significant changes in expansion between DC.T-bet or control DC primed T 

cells, we concluded that DC.T-bet was indeed biasing a greater proportion of naïve T cells 

towards the Type 1 fate upon initial priming and away from CD25+Foxp3+ T regulatory cells.  

Additionally, IL-10 production (potentially from CD8+ T effector cells, TH1 or Tr1-like cells) was 

restrained.  Thus T-bet expression in DC conferred a bias towards Type 1 immunity against 

Type 2 or T regulatory T cell subsets in responding naïve, but not memory, CD4+ and CD8+ T 

cells. For polarization studies, all experiments were performed with at least three different 

donors in at least three independent experiments of CD45ROneg and CD45ROnegCD4+ or 

CD45ROnegCD8+ isolated cell subsets, to which the trends were always similar in the ability of 

DC.T-bet to induce Type 1 polarization.  Differences in total expression of cytokines and surface 

markers varied by donor, but DC.T-bet was always found to significantly increase the production 

of Type 1 and restrain Type 2 and Treg phenotypes compared to control DC expanded T cells.  

 DC.T-bet priming of antigen specific T cell responses led to analogous results to the 

superantigen model system, yielding a three to four fold increase in IFNγ producing CD8+ 

effector T cells primed from an autologous naïve pool as assessed by both ELISPOT (and 

ELISA) and Flow cytometric analysis. Furthermore, the induction of Type 1 immunity was not 

induced in a “bystander” fashion, as restimulation with non-specific peptides (HIV) yielded no 

measurable IFNγ producing spots or detectable levels of IFNγ by ELISA in DC.T-bet or control 

DC expanded CD8+ T cells.  Thus DC.T-bet induction of Type 1 polarized T cells, similar to the 

evaluation of OVA-specific responding T cells in the mouse model performed by the Glimcher 
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group, functioned in an antigen-specific fashion that increased the level of IFNγ producing CD8+ 

T cells (albeit their system assessed CD4+ TH subsets).   

 Confirming that DC.T-bet induction of Type 1 polarization is not an artifact of the 

superantigen model system but is applicably seen in an antigen-specific model system, it 

remained to be uncovered the novel mechanisms that induced Type 1 polarization in DC.T-bet. 

Likely candidates weren’t readily obvious for DC.T-bet induction of Type 1 immunity, as early 

studies showed abolished IL-12 family member cytokines, no IFNγ production, nor inflammatory 

cytokines, such as TNFα or IL-6. This compounded with little-to-no changes in survival (as 

assessed by pro- anti-apopotic protein expression and Annexin-V staining) or costimulatory 

molecules, made the investigation of the mechanisms of this Type 1 polarization novel.  Using 

the transwell system, we confirmed that DC.T-bet exerted its Type 1 induction in a contact, or 

possibly proximity, dependent fashion, as there were no changes between responding T cells 

primed by DC.T-bet or control DC when separated.  Further confirmation of IL-12 family-

independency was achieved by using neutralizing Abs to IL-12p70, IL-12Rβ2, IL-23p19, or IL-27 
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receptor. In additional studies, DC.T-bet compared to αDC1 (132) in ability to prime IFNγ from 

responder naïve.  However, in the presence of neutralizing Abs to IL-12p70, αDC1 induction of 

IFNγ from responder T cells was reduced by > 50%, whereas DC.T-bet was reduced by < 5% 

(data not shown). This confirmed that DC.T-bet functioned in an IL-12 independent method 

and that the neutralizing Ab was functional. I also evaluated other literature noted IL-12 

independent mechanisms of Type 1 polarization, in blocking CD27-CD70 interactions and 

notch-delta like-4 (DLL4) engagement to which DC.T-bet induction of Type 1 polarization was 

also independent of these mechanisms.  Neutralization of IFNγ and the IFNγ receptor (IFNγR1), 

which has been shown to induce endogenous T-bet expression in T cells, via STAT1-dependent 

signaling, did not alleviate Type 1 polarization.  Thus blocking IL-12p70 and IL-12Rβ2 or IFNγ 

and IFNγ receptor were unable to dampen the ability of DC.T-bet to induce Type 1 polarization 

in responding naïve T cells.  Whether STAT4 or STAT1 are activated and translocated remains 

to be addressed, but it should be noted that studies have shown STAT1-independent pathways 

as important for regulation of antiviral immunity (145; 146). This corroborates studies by the 

Glimcher group showing the important of T-bet for viral responses via CpG signaling in DC (56). 

This is consistent with literature reports, that have shown that T-bet in T cells is induced prior to 

IL-12 (i.e. in an IL-12 independent fashion) via interaction with cognate DC (45).  Thus, as DC 

are not principle producers of IFNγ, it can be reasoned that DC, which may be polarized, can 

regulate Type 1 polarization in responding cognate T cells through TCR:MHC engagement 

coupled with costimulatory and\or adhesion molecules (independent of cytokine). These may 

include enhanced LFA-1:ICAM-1 engagement to maintain long-term DC contacts via adhesion 

for costimulatory signaling and effectively stabilizing the supramolcular activation cluster 

(SMAC) (143; 147), constitutive expression of B7 costimulatory molecules (i.e. unable to be 

downregulated due to constitutive signaling by T-bet in DC) that could enhance the ability of DC 

to reorient cytokine receptor inclusion and\or actin rearragement to deliver Type 1 signaling 
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cues (148), and\or expression of novel cell-cell (or proximal) molecular interactions to enforce 

Type 1 polarization all within the context of the immune synapse (Figure 8).   

  Because of the heterogeneous population of DC.T-bet, the necessity to move into the 

mouse model and develop a bicistronic GFP reporter (human and mouse) T-bet adenoviral 

vector is best suited for further mechanistic evaluation of DC.T-bet.  Murine models would allow 

use of distinct knockout systems to critically evaluate mechanisms of DC.T-bet mediated 

polarization of T cells, beyond the use of neutralizing antibodies, siRNA, or other limited knock-

down studies that can be achieved (and be recapitulated) in human model systems.  GFP 

reporter T-bet vector will provide a way to sort for positive T-bet DC within the transduced 

cohort, allowing for pure populations for proteomic or microarray analysis.  Investigation of the 

mechanisms may yield new novel approaches to induction of Type 1 immunity, possibly at the 

level of DC-T cell interface during priming, whether this may be contributed to adhesion, 

accessory, or, costimulatory molecules remains to be seen. However, the therapeutic potential 

of DC.T-bet is potent; as it requires limited ex vivo manipulation to promote IL-12- and IFNγ-

independent potent Type 1 polarized immune responses. 
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Preface Chapter 3 

 

 The quest for tolerance in both the autoimmunity and transplant settings is dependent on 

the specific suppression of unwarranted or autoreactive T cell immunopathology.  With the 

identification of Foxp3+ T regulatory (Tregs) cell subsets and tolerogenic DC, which can either 

induce Tregs or create a hyporesponsive atmosphere, the field has shifted to harness 

immunotherapeutic agents to alleviate pathologic inflammatory disease states.  Interestingly, 

DC, the principle APC which have been associated with T cell immunity, are once again at the 

forefront as prime APC capable of generating a tolerogenic or suppressive environment based 

on conditioning that allows them to directly suppress T effector cells and indirectly foster the 

development of Tregs that serve as immune suppressors.   

 The goal of this project was to investigate the potential of Foxp3, the master regulator of 

the suppressive functions associated with Treg, to promote the establishment of tolerogenic DC 

after delivery of Foxp3 (via adenoviral vector encoding hFoxp3) into human monocyte-derived 

DC.   
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3. Enforced expression of Foxp3 in DC generates tolerance by both expanding 

functional T regulatory cell subsets and directly inducing hyporesponsiveness in 

T effector cells. 

 

Lipscomb MW1,2, Goldbach CJ3, Watkins SC3, Taylor JL1, Wesa AK1,2, Storkus WJ1,2. 
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All data and results reported in this study were obtained by Michael W. Lipscomb.  Christina 

Goldbach performed immunohistochemical analysis for identification of Foxp3 expression in DC. 

JLT cloned hFoxp3 and generated the rAd.hFoxp3 vector used to infect human DC. 

 



54 

3.1. Abstract 

 

Recently, Foxp3 expression and associated suppressive mechanisms have been identified 

outside the previous localized T lymphocyte population and into endothelial and epithelial cells.  

This, coupled with the quest for a potent tolerogenic dendritic cell for immunotherapy, led to the 

investigation of Foxp3 expression in DC, as a potential modulator of DC induced-T cell 

responses.  Enforced expression of Foxp3 into monocyte-derived DC engendered a potent 

tolerogenic DC (DC.Foxp3) that markedly suppressed proliferation of both autologous and 

allogenic naïve T cells. Furthermore, DC.Foxp3 restrained Type 1 polarization (as measured by 

IFNγ, CXCR3, T-bet, and Granzyme-B) and effector functions in both CD8+ and CD4+ 

responding naïve T cells. Reciprocally, IL-4 producing-TH2 cell were preferentially selected for, 

yielding a 4-fold increase in IL-4+IFNγ- T cells compared to control DC primed naïve T cells. 

Concomitantly, we saw as much as a five-fold increase in the frequency of CD4+CD25+Foxp3+ 

Tregs that co-expressed CTLA-4, GITR, and Neuropilin-1. DC.Foxp3 expanded Tregs were 

potent suppressors of responding T cell proliferation and production of IFNγ.  Furthermore, we 

found IL-17A and RORγt expression restrained.  Investigation of the mechanisms revealed that 

both IDO and TGFβ partly played roles in governing suppression, whereas DC.Foxp3 mediated 

suppression was not dependent on PD-L1, IL-10, or Fas. Interestingly, the phenotype of these 

Foxp3 expressing DC resulted in complete abolishment of the cytokines IL-12p70, IL-23, IL-6, 

and IL-10 as assessed on the protein level. These results identify a potent tolerogenic-

engineered DC that restrains Type 1 and 17 T effector functions and in tandem increases the 

frequency of functional suppressive CD25+Foxp3+ Tregs and IL-4 producing-TH2 cells.   
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3.2. Introduction 

 

Autoimmunity and transplantation rejection are pathological disorders characterized by 

undesirable or unwarranted cellular and/or antibody-mediated tissue destruction and/or disorder 

(149).  Briefly, autoimmune responses are characterized by the adaptive arms autoreactivity 

against self antigens leading to inflammatory injury or disruption of physiological processes, with 

chronic activity leading to exacerbated tissue destruction and systemic disorders (150). 

Autologous antigen-specific T cells (autoAg) that are Type 1 and/or Type 17 polarized CD4+ T 

cells, TH1 and TH17, respectively, are the primary mediators of immunopathology (151; 152).  

They mediate immunity by upregulation of IFNγ and/or IL-17 and activation and mobilization of 

CD8+ cytotoxic T lymphocytes (CTL) and innate immune cells, such as neutrophils and 

macrophages (151; 153-155). Transplant graft rejection, although a normal process of non-self 

recognition, is an unwanted T cell alloreactive response primarily orchestrated by CD4+ T helper 

cell subsets leading to cellular-mediated tissue destruction of the graft. A larger scale model of 

transplant disease is seen in graft versus host disease (GVHD), which is characterized by 

alloreactive response of donor transferred T cells to recipient tissues via recognition of foreign 

MHC molecules and/or minor histocompatibility alloantigens (MinHC; (156)).  Additionally, T 

helper cells are required for initiation/augmentation of B cell auto- and alloantibody responses 

that contribute to autoimmune responses, hyper acute graft rejection, and chronic transplant 

diseases (157). In both settings, experimental evidence has shown that T cell responses, 

specifically CD4+ T helper responses, are the principle mediators causing pathological disease 

or disorders (158-160)   

Effective immunotherapeutic treatments for transplantation and autoimmunity are dependent 

on the ability to inhibit and/or ablate antigen-specific donor and host tissue destruction by 

immune cells (161-163). Antigen-specific tolerance would effectively allow virally infected and 

transformed cells and extracellular pathogen clearance, while maintaining tolerance to 
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endogenous or transplanted normal tissues (162). Both transplant and autoimmunity fields have 

begun to realize the potential of dendritic cells (DC) as clinical adjuvants or vaccines. Originally 

herald as inducers of antigen-specific T cell responses, DC are also potent suppressors of 

immunity by inducing T cell tolerance (3; 90; 100; 158; 164). Tolerogenic DC can directly 

restrain Type 1 and Type 17 T cell polarized responses and/or indirectly differentiate naïve T 

cells into Foxp3+ T regulatory (Tregs) or IL-10+Foxp3- T regulatory-1 cells (Tr1; (100; 119; 120; 

165-169)). Furthermore, Tregs were able to in turn re-condition “normal” DC to tolerogenic 

status to induce Tr1-like cells from T effector cells (170; 171).  It is still unclear exactly what cis 

and/or trans molecular factors define tolerogenic DC subsets that can confer inhibition of 

effector T cell responses and\or expand IL-10+Tr1-like and Foxp3+Treg subsets.  However, 

shifting polarizing stimuli towards negative costimulatory molecules and immunosuppressive 

cytokines have been shown to be important in peripheral tolerance (8; 36; 106; 126; 172).   

Directly restraining Type 1 and Type 17 responses is largely dependent on DC signaling, as 

well as microenvironmental cues, during DC-T cell interaction.  IL-12 family members have been 

shown to be indispensable in augmenting both auto- and alloreactive T cell responses (1; 27; 

172).  Specifically, IL-12p70 and IL-27 induce Type 1 polarization, whereas IL-23 production 

modulates TH17 cell survival and effector functions (173; 174)..  Clear evidence has additionally 

shown that DC can also expand Foxp3+ and IL-10+ regulatory T cell subsets from naïve T cells 

(165; 168).  The role of Tregs as suppressors of immunity has been well characterized and 

shown to be indispensable for peripheral tolerance, effectively controlling immunopathological 

events in both autoimmunity and allograft rejection (143; 175; 176). 

In vivo, Foxp3+Tregs act directly to restrain T effector functions, by mechanisms that are still 

being delineated, and indirectly through re-conditioning dendritic cells to limit the priming of 

autoreactive T cells, ultimately restraining and/or skewing T cell differentiation, acquisition, 

and/or elicitation of effector functions (143; 176; 177). Additionally, IL-10+Tr1 cells also have 

been shown to directly and indirectly, through DC modulation, repress T cell expansion and 
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functions by inhibiting DC antigen presentation, maturation, and ability to prime Type 1 polarized 

T cell responses (118; 120; 165; 172). Furthermore, high levels of IL-10 expression by DC, often 

engendered by maturation in presence of IL-10, has been shown to generate both Foxp3+Tregs 

and IL-10+Tr1 cells (100; 118). The reciprocal interplay between Tregs/Tr1-like cells and DC 

have been shown to be important in induction and maintenance of tolerance both in vivo and in 

vitro (167; 178). Thus, the generation of tolerogenic DC that can skew T cells away from Type 1 

and Type 17 differentiation towards Foxp3+Tregs and/or Tr1-like cells are valuable therapeutic 

tools that can perturb autoimmune- and transplant graft rejection-associated pathologies. 

Since its discovery, the role of Foxp3 in T cells has been explored and acknowledged to 

play potent suppressive roles in restraining immunopathogenic events in both autoimmunity and 

transplantation (58-61; 151; 179).  Mice absent of Foxp3 develop severe pathogenic 

autoimmune diseases (180).  Recently, expression of Foxp3 in adenocarinoma epithelial cells 

conferred immunosuppressive roles that effectively ablated T cell responses (25).  Finally, the 

role of FOX-related family of proteins has also been shown to modulate immunity in the myeloid 

lineage, specifically DC. Foxo3 deficiency in DC was found to confer proliferation advantage in 

responding T cells, suggesting that Foxo3 acted to perturb the magnitude of T cell immune 

responses (181). Currently, there is no literature governing the potential role of Foxp3 in DC, 

however, we hypothesized that Foxp3 may act as a universal suppressor of immune functions, 

and may confer potent tolerogenic properties in dendritic cells.   
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3.3. Materials and Methods 

 

3.3.1. Adenovirus Construct 

 Human Foxp3 (hFoxp3) was cloned from human peripheral blood lymphocytes using 

PCR amplification.  The product was then digested with restriction enzymes and ligated into an 

adenoviral-Cre-Lox (Adlox) plasmid vector. Recombinant adenoviruses were generated by co-

transfection of the hFoxp3 Adlox with helper virus DNA into the adenoviral packaging cell line 

CRE8 that expresses Cre recombinase. Recombinant adenoviral vectors were propagated on 

CRE8 cells, purified by cesium chloride density-gradient centrifugation and subsequent dialysis, 

before storage in 3% threalose at -80C. Titers of viral particles were determined by optical 

densitometry. The mock adenoviral vector Adψ5 was used as control. All experiments used a 

multiplicity of infection (MOI) at 600. 

 

3.3.2. Isolation of normal donor DC and T cells 

Human peripheral blood monocytes (PBMC) were isolated from heparinized human 

peripheral blood by Ficoll density gradient centrifugation, allowed to adhere for 1 hour, washed 

extensively, and supplemented with 20ng/ml of IL-4 (Peprotech) and 103 units/ml of GM-CSF 

(Leukotriene) in AIM-V for 5 or 6 days.  Greater than 95% of cells were CD11c+CD14- (immature 

DC). Naïve or memory T cells were isolated by depletion of CD45RO+ or CD45RA+ cells from 

PBLs, respectively, using MACSTM microbeads (Miltenyi). Subsequent positive selection for 

CD4+ or CD8+ T cells was performed on depleted naïve (CD45RO-) or memory (CD45RA-) T 

cells.  Flow cytometric analysis for purity of naïve or memory CD4+ or CD8+ T cells was:  

CD4+CD45RA+ ≥ 98%, CD8+CD45RA+ ≥ 98%, CD4+CD45RO+ ≥ 97% and CD8+CD45RO+ ≥ 

98%.  
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3.3.3. DC and T cell coculture; autologous vs. allogenic responses 

3.3.3.1 CFSE Proliferation Assays 

Autologous (pulsed with staphylococcus enterotoxin B (SEB; Sigma) at 1ng/ml for 3hrs 

in 37C to bridge the TCR:MHC engagement of responding T cells) or allogenic DC.Foxp3 or 

control DC were cultured with naïve or memory T cells at a ratio of 1:10, respectively.  1 x 105 T 

cells, labeled with 0.5μM of CFSE, were cocultured with DC in a final concentration of 100U/ml 

of rhIL-2 (Peprotech) in TcMEM for 3 days, prior to flow cytometric analysis. 

 

3.3.3.2. T cell Stimulation Assays 

T cells were plated with SEB pulsed-autologous or allogenic-DC.Foxp3 or control DC at 

a DC:T cell ratio of 1:10.  T cells were restimulated with respected DC on day 5 and 

supplemented with 20u/ml of rhIL-2 (Peprotech) and 5ng/ml of rhIL-7 (Sigma).  T cells were 

supplemented with IL-2 and IL-7 every other day for an additional 7-9 days (for cytokine 

analysis) or 15 days (for Foxp3, CTLA-4, GITR, NRP-1 and CD25 expression).  Cells were 

collected and evaluated for cytokine, surface, and intracellular protein expression by flow 

cytometry.  To evaluate cytokine expression, cells were stimulated with PMA (1μg/ml) and 

Ionomycin (10ng/ml) for 4 hours with 2nM of monensin (Sigma) added for the final 2 hours of 

culture.   

 

3.3.3.3. Treg suppression of T cell proliferation and IFNγ production 

  CD25+ DC.Foxp3 or control DC expanded autologous or allogenic CD4+ T cells, isolated 

by MACSTM on day 21, were co-cultured with CFSE labeled naïve or memory CD8+ responder T 

cells (MACSTM isolated) at a ratio of 1:10, respectively in presence of 100 U/ml of IL-2 onto 

plates pre-coated overnight with 10μg/ml of anti-CD3/CD28 or ant-CD3. Cells were assessed for 

CFSE dilution on day 4 by flow cytometry.  For suppression of effector functions, CD8+ naïve or 

memory T cells were activated with anti-CD3/CD28 dynabeads (Invitrogen) in presence of 103 
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U/ml of and 50ng/ml of IL-12 for 8 days. CD25+ DC.Foxp3 expanded or control DC expanded 

CD4+ T cells were then cocultured with these CD8+ T cells in the presence of PMA/Ionomycin 

and 2μM of Monensin for 4hrs, prior to harvesting cells and co-staining with anti-CD3 and IFNγ.  

 

3.3.4. Readout Assays 

 

3.3.4.1. Flow cytometry and Immunohistochemical Analysis 

For cell surface staining using flow cytometry, cells were collected and re-suspended at 2 x 105 

cells/100 μl in 96-well V-bottom plates in PBS with 2% BSA and 0.2% NaN3 (FACS buffer), then 

washed twice before blocking in 3% human serum. Antibody staining was performed for 30 

minutes at 4oC at a dilution of 1:20, after which, cells were either analyzed by flow cytometry or 

resuspended in Fix/Perm buffer (eBioscience) for subsequent intracellular staining. Briefly, for 

intracellular staining, cells were washed twice in 1X permeabilization buffer (eBioscience) prior 

to blocking with 10% human serum for 10 minutes at 4oC. Antibody staining was performed at 

4oC for 45-60 minutes. Cells were then washed twice in 1X permeabilization buffer, 

resuspended in FACS buffer, and analyzed by flow cytometry. For immunofluorescence 

microscopy, 1 x 105 DC were cytospun, fixed onto slides and co-stained with anti-T-bet (Santa 

Cruz), nuclear dye (DAPI), and rhodamine phalloidin. Fluorescence images were then captured 

using an Olympus BX51 microscope (Olympus America, Melville, NY). 

 

3.3.4.2. Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) 

For mRNA analysis, DC were harvested on day 2 (48h post-transduction) and MACSTM isolated 

naïve or memory CD4pos T cells were harvested on day 3 after initial priming by DC. RNA was 

isolated with Trizol (Inivitrogen, Carlsbad, CA). Reverse transcription was performed using 

MuLV reverse transcriptase (Applied Biosystems, Carlsbad, CA) and Random Hexamers 

(Applied Biosystems). Semi-quantitative PCR was used to amplify cDNA for expression of gene-
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specific products. Specific primers were used for IL-12p35, IL-12/23p40, IL-23p19, IL-27p28, IL-

27pEBI-3, IL-15, IL-18, IL-10, TGFβ, IFN-α, and IFN-γ as previously described(132). Additional 

primer sequences included: T-bet: Fwd 5’-CCACCAGCCACTACAGGATG-3’ and Rev 5’-

GGACGCCCCCTTGTTGTTT-3’; GATA-3: Fwd 5’-GTGCTTTTTAACATCGACGGTC-3’ and Rev 

5’- AGGGGCTGAGATTCCAGGG-3’; Foxp3: Fwd 5’-GCACCTTCCCAAATCCCAGT-3’ and Rev 

5’-TAGGGTTGGAACACCTGCTG-3’; and RORγt: Fwd 5’-AAATCTGTGGGGACAAGTCG-3’ 

and Rev 5’-TGAGGGTATCTGCTCCTTGG-3’. β-actin primers were used as an internal positive 

control (132). 

 

3.3.5 Neutralization Studies 

Neutralizing anti-CD95 polyclonal Ab (pAb; Raybiotech), anti-TGFβ pAb (R&D Systems) 

anti-hIL-10 pAb (R&D Systems), and anti-hGITR pAb (Biolegend), were used at a final 

concentration of 10 μg/ml. Additionally, D-, L-, and DL-1 methyl-Tryptophan (Sigma) was used 

at a final concentration of 250nM. Briefly, DC.Foxp3 or control DC were plated with naïve or 

memory T cells at a DC:T cell ratio of 1:10 in triplicate in 96-flat bottom plates in the presence or 

absence of neutralizing antibodies\reagents. On day 3, cell-free supernatants were collected 

and evaluated using IFN-γ ELISA.  Alternatively, cells were cultured for a total of 14 days in the 

presence of neutralizing antibodies\reagents, with restimulation on day 5 with DC supplemented 

with IL-2 and IL-7.  Neutralizing antibodies\reagents were supplemented every other day at the 

dictated concentration.  T cells were restimulated with PMA\Ionomycin, prior to analysis by flow 

cytometry for IFNγ production. 
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3.4. Results 

 

3.4.1. Phenotype of Foxp3 expressing DC 

 

 Adenoviral encoding human Foxp3 was transduced into monocyte-derived DC for 48 h 

prior to analysis of phenotype and Foxp3 expression in DC. Foxp3 expressing DC (DC.Foxp3) 

transduction efficiency was evaluated by flow cytometry and found to be greater than 50% on 

average CD11c+Foxp3+, whereas the control DC, which contained non-transduced DC (DC.null) 

or DC transduced with the empty adenoviral backbone (DC.ψ5), contained no Foxp3 co-

expression (Fig 9A). Annexin-V staining was additionally performed 48 h after transduction to 

confirm that ectopic Foxp3 expression in DC was non-toxic (Fig 9B).  Fluorescent staining of 

DC.Foxp3 or control DC revealed that Foxp3 localizes to the nucleus in transduced cohort (Fig 

9C). This data identifies that Foxp3 expressing DC are viable and that Foxp3 localizes to the 

nucleus. 
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3.4.2. Modulation of cytokine profile in Foxp3 expressing DC 

 

 Peripheral Blood Monocytes (PBMC) monocytes were cultured with IL-4 and GM-CSF, 

prior to transduction with mock or hFoxp3 vectors.  Additional control groups included 

monocytes cultured with IL-4 and GM-CSF in the presence of TGFβ (DC.TGFβ) or IL-10 (DC.IL-

10).  All DC subsets were CD11c+CD14--.  Widescreen mRNA analysis revealed that DC.Foxp3 

had decreased levels of the shared IL-12\23 p40 subunit, IL-12p35 (IL-12α), IL-27p28 subunit 

(Fig 10A and 10B). Addition of TGFβ (DC-TGFβ), IL-10 (DC-IL-10), or VEGF (data not shown) 

throughout the immature DC generation phase did not induce Foxp3 expression (Fig 10B). 

Interestingly, a small appreciative increase was seen in IL-9 and a concomitant reduction in 

VEGFR2 mRNA expression.  DC.Foxp3 was impaired in soluble secretion of IL-12p70, IL-6, and 

IL-23p19, (as well as IL-1β and TNFα (data not shown)) cytokines important in the generation 

or maintenance of Type 1 or Type 17 T helper cell differentiation, respectively (Fig 10C).  

Interestingly, IL-6 abolished protein expression did not correlate directly with mRNA expression 

levels, suggesting that DC.Foxp3 may exert post-transcriptional regulation of cytokine 

production (Fig. 10A and 10C).  Densitometer analysis revealed that no significant differences 

between TGFβ band expression in DC.Foxp3 compared to control DC (data not shown). There 

were no significant changes in co-stimulatory molecule expression (data not shown). 
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3.4.3. Impairment of early T cell responses 

 

 Significant changes in DC.Foxp3 cytokine profile prompted investigation of T cell 

responses.  Briefly, DC.Foxp3 or control DC were cultured with autologous or allogenic naïve or 

memory T cell subsets at a ratio of 1:10, respectively.  For autologous studies, DC.Foxp3 or 

control DC were pulsed with 1ng/ml of the superantigen SEB for 3h prior to culturing with T 

cells.  DC.Foxp3 had less total expanded naïve, but not memory, T cells than control DC primed 

naïve T cells (Fig 11A).  Further investigation revealed that DC.Foxp3 generated much fewer 

total T cells per round of replication than in control DC expanded T cells (Fig 11B).  In each 
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round of replication, there was no increased fold in expansion, unlike what was seen in control 

DC expanded naïve T cells.  This prompted investigation of measuring cell death.  Thus, 

DC.Foxp3 or control DC expanded T cells were evaluated on day 5 for apoptosis and cell death 

by co-staining with Annexin-V and phosphotidol inositol (PI).  DC.Foxp3 expanded naïve CD4+ 

T cell subsets had a 3-5 fold increase in levels of apoptosis compared to control DC expanded 

naïve CD4+ T cell subsets (Fig 11C). There was a little-to-no difference in apoptotic levels of 

naïve CD8+ T cells primed by DC.Foxp3 or control DC (data not shown).   Identifying that 

DC.Foxp3 was inducing apoptosis in naïve CD4+ responding T cells, we next performed mRNA 

expression analysis of T cell differentiation transcription factors, which included T-bet (TH1), 

GATA-3 (TH2), RORγt (TH17), and Foxp3 (T regulatory) in the CD4+ T helper subsets.   To 

ensure pure population of CD4+ T cells, MACS microbeads were used to isolate CD3+CD4+ cell 

subsets from the negative selection, yielding > 99% purity of CD4+CD3+ T cell subsets.  

Analysis of transcription factors revealed a significant increase in the ratio of GATA-3 to T-bet 

and Foxp3 to RORγt (Fig 11D).  This suggested the TH1 and TH17 subsets were preferentially 

induced to cell death by DC.Foxp3.  
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3.4.4. Suppression of Type 1 and Type 17 T cell responses 

 

Further analysis of Type 1 and 17 polarization was evaluated upon fully committed and 

differentiated T cell subsets.  Briefly, DC.Foxp3 or control DC were cocultured with autologous 

or allogenic naïve or memory T cells for 14 days, with restimulation of T cells with respected DC 

supplemented with IL-2 and IL-7 on day 5.  T cells were isolated and co-stained with CD4 or 

CD8 and assessed for T cell phenotypes.  For cytokine evaluation, T cells were stimulated with 

PMA\Ionomycin for 4h, with monensin added into the culture for the final 2h. DC.Foxp3 

expanded autologous and allogenic naïve CD4 and CD8 T cells were restrained in production of 

Figure 11.  Impairment of early T cells by Foxp3 expressing DC. DC.Foxp3 or control DC were cultured with 
autologous or allogenic naïve or memory T cells at a 1:10 DC:T cell ratio.  (A) T cells were counted on day 14. (B) 
T cells were stained with CFSE prior to culture with DC cohorts and assessed by flow cytometry on day 4. (C) 
CD4+ T cells were stained with Annexin-V and phosphatidyl inositol (PI) after 4 days of culture with DC prior to 
flow analysis.  (D, E) T cells were cultured with DC for 3 days prior to isolation of T cells by CD3 microbeads using 
MACSTM.  Total RNA was extracted and subjected to RT-PCR 

A B C

D E
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the Type 1 associated cytokine IFNγ with a concomitant increase in IL-4 production, indicative 

of TH2 subsets, compared to control DC expanded naïve T cells (Fig. 12A).  This may suggest 

that these TH2 cell subsets were under less influence of apoptosis by DC.Foxp3, and that TH1 

cells were the principle targets of DC.Foxp3 direct (or indirect) induction of apoptosis.  Again, 

supporting the mRNA expression profile of CD4+ T cells, DC.Foxp3 impaired IL-17 production 

from (TH17) subsets, most notably identified in the allogenic setting (Fig. 12B). Increased IL-10 

production was observed in CD4+ and CD8+ T cells from the naïve pool primed by DC.Foxp3 

compared to control DC, which was further corroborated by ELISA analysis (Fig. 12C and data 

not shown). Further investigation of Type 1 associated markers revealed that DC.Foxp3 

restrained CXCR3 expression, which is associated with T cell trafficking to sites of inflammation, 

in naïve CD4 and CD8 T cells, of both the autologous and allogenic settings (Fig. 12D).  
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3.4.5. DC.Foxp3 expands CD4+CD25+Foxp3+ T regulatory cells 

 

 Mutual exclusion of Foxp3+ T regulatory cell subsets and TH17 subsets has been 

Identified and shown in both the mouse and human systems (21; 23; 151). Therefore, I next 

investigated whether depressed TH17 generation was due to preferential selection of Foxp3+ T 

regulatory cell subsets.  Briefly, DC.Foxp3 or control DC were cultured with naïve or memory 

Figure 12. DC.Foxp3 skews functional polarization of T cells. Naïve or memory autologous or allogenic 
T cells were cultured with DC.Foxp3 or control DC for 14 days, with restimulation on day 5 with respected 
DC supplemented with IL-2 and IL-7.  (A-C) T cells were restimulated with PMA\Ionomycin for 4h with 
monensin added the final 2h of culture and subsequently stained with antibodies to IFNγ and IL-4, or IL-
17A or IL-10.  (D) T cells were co-stained with anti-CXCR3.

A B

DC
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autologous or allogenic T cells for a total of 21 days, with restimulation by respected DC on day 

5 supplemented with IL-2 and IL-7.  T cells were then co-stained with antibodies to CD4, CD25 

and Foxp3 and assessed by flow cytometry.  DC.Foxp3 selected for a 5 to 10-fold increase in 

CD4+CD25+Foxp3+ T cells from naïve, but not memory, precursors compared to control DC 

expanded naïve T cells (Fig 13A). DC.Foxp3, but not control DC, naïve primed CD4+ T cells co-

expressed elevated levels of CD25, CTLA-4, GITR, and Neuropilin-1 (NRP-1; Fig 13B).  

Interestingly, although Foxp3 was found in the control DC expanded naïve T cells, its 

expression did not co-express with CTLA-4, GITR or NRP-1, suggesting that Foxp3 expression 

in these T cells was not an indicator of T regulatory cells (Fig 13B). Bulk CD45ROneg naïve T 

cells were used as detailed in afore mentioned studies, with T cells gated on (for flow cytometry) 

or isolated (for PCR or protein levels) for CD4+ T cells. To confirm DC.Foxp3 direct modulation 

of CD4+ (or CD8+ T cells), naïve CD4+ or CD8+ T cells were isolated by depleting memory T 

cells using CD45RO microbeads and subsequently isolating CD4 or CD8 positive cells from the 

depleted group using specific microbeads. Flow cytometry was performed to identify the purity 

of each fraction, to which we generated >99% CD45RA+CD4+ or CD45RA+CD8+ allogenic cohort 

to culture with DC.Foxp3 or control DC (Fig 13C). Studies revealed analogous results to the 

bulk naïve studies, where DC.Foxp3 expanded a 5-10 fold increase in CD4+CD25+Foxp3+ T 

regulatory cells (Fig 13D) and suppressed CD8+ T effector function (data not shown), as 

assessed by reduction in Granzyme-B, compared to control DC expanded T cells. 
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3.4.6. DC.Foxp3 expands functionally suppressive CD4+CD25+Foxp3+ Tregs 

 

 The next series of studies were designed to investigate XiTreg ability to suppress T cell 

proliferation and effector responses.  Briefly, autologous or allogenic naïve CD45ROnegCD4+ T 

cells were cultured with DC.Foxp3 or control DC for 21 days, with restimulation on day 5 with 

respected DC supplemented with IL-2 and IL-7.  On day 21, CD25+ T cells were isolated using 

CD25 microbeads (miltenyi; MACSTM).  Naïve or memory CD8+ T cells, originating from the 
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same donor as autologous DC, were isolated by depletion of CD45RO or CD45RA, 

respectively. Subsequently, CD8+ T cells were isolated from the depleted fraction to yield 

CD45ROnegCD8+ or CD45RAnegCD8+ T cells (Fig. 13C).  Next, XiTreg or control DC expanded 

and isolated CD4+CD25+ T cells were plates at a 1:10 ratio with naïve or memory CD8+ T cells 

in the presence of anti-CD3\CD28 (mitogen stimulating) microbeads (dynabeads, Invitrogen; 

Fig. 14A). This method allowed for gating of CD8+ fraction of T cells for changes in proliferation 

and effector functions via flow cytometric analysis.  The ratio of CD4+CD25+ T cells to CD8+ T 

cells was approximately 1:8 in the control DC expanded CD4+CD25+ T cells and 1:16 for 

XiTregs (Fig 14B). Greater than 95% of CD4+ T cells plates with the CD8+ T cells co-expressed 
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CD25 (Fig 14B).   After 3 days in culture, it was apparent by light microscope imaging that 

XiTreg, both derived from autologous and allogenic naïve CD4+ T cells, impaired cluster 

formation (Fig 15A), suggesting that these (Xi)Tregs limited T cell activation. Labeling of the 

CD8+ (naïve or memory) T cells with CFSE identified that the CD4+CD25+ T cells expanded 

from the DC.Foxp3 (XiTregs) culture greatly suppressed proliferation of naïve and memory 

CD8+ T cells compared to control DC CD4+CD25+ T cells (Fig 15B). Next, to assess restrained 

T effector functions, CD8+ T cells, of the same donor as the autologous DC, were stimulated 

with anti-CD3\CD28 microbeads in the presence of IL-12p70, IFNγ, and anti-IL-4 for 10 days.  

Cells were washed thoroughly, counted and plated at a 10:1 ratio with DC.Foxp3 or control DC 

expanded CD4+CD25+ T cells, respectively, in the presence of anti-CD3\CD28 microbeads for 

6h in the presence of 2 µM monensin. XiTreg suppressed IFNγ production by 60% of 

autologous and 90% of allogenic CD8+ T effector cells (Fig 15C).  

 



73 

 

3.4.7. CD8+ T cells are hyporesponsive 

 

DC.Foxp3 directly suppressed CD45ROnegCD8+ T cells in the absence of CD4+ T cells, showing 

that the DC.Foxp3 did not work solely through the generation of Tregs to suppress CD8+ T cell 

responses (Fig 12D and data not shown). Thus, it remained to be seen if DC.Foxp3 induced 

hyporesponsiveness in CD8+ T cells or if DC.Foxp3 generated CD8+ T suppressor cells.  

Although still unclear, some evidence has been published that CD8+ T suppressor cells can 

mediate direct suppression of T cell responses, co-express Foxp3, CTLA-4, GITR, and are 

absent of the CD28 costimulatory molecule (64; 67; 182).  Briefly, DC.Foxp3 or control DC were 
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cultured with autologous or allogenic CD45ROnegCD8+ T cells, restimulated on day 5 with 

respected DC in the presence of IL-2 and IL-7.  Cells were harvested on day 21 and co-stained 

with antibodies to CD8, CD25, GITR, CTLA-4, CD28, and Foxp3.  DC.Foxp3 primed CD8+ T 

cells from naïve, not memory, pools were diminished in CD25 expression, giving a strong 

reason as to why these Tregs had reduced proliferation responses and less total CD8+ T cell 

numbers (Fig. 16A, 16B and data not shown). Foxp3 expression was not found in any of the 

CD8+ T cell groups primed by DC.Foxp3 or control DC (data not shown).  Interestingly, GITR 

expression was also restrained in DC.Foxp3 expanded CD8+ T cells (Fig. 16B).  We ruled out 

the possibility that all these cells were dying, as staining of CD8+ T cells expanded by DC.Foxp3 

had no changes in Annexin-V vs. PI levels upon flow cytometric analysis (data not shown), 

unlike what was observed in CD4+ responder T cells (Fig. 11B).  CD28 or CTLA-4 had no 

changes in expression level between DC.Foxp3 or control DC stimulated groups (Fig 16C).  

Collectively, the data purposes that DC.Foxp3 does not induce CD8+ T suppressor cells, but 

rather generates hyporesponsive CD8+ T cell subsets that lack the high affinity IL-2Rα chain 

necessary for proliferative responses. 
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3.4.8. Role of IDO and TGFβ in DC.Foxp3 induced tolerance. 
 

To identify whether DC.Foxp3 mediated-immunosuppression was soluble or cell-contact, we 

first performed transwell studies. DC.Foxp3 plated in the lower chamber of a transwell plate was 

unable to suppress IFNγ production from activated responding naïve T cells in the upper 

chamber, as compared to control DC (data not shown), suggesting that DC.Foxp3 exerted 

immunosuppression via a direct cell-cell contact or close proximity mediated-mechanism(s). 

Next, a panel of inhibitory antibodies and agents were supplemented in cultures of DC.Foxp3 or 
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control DC with naïve (CD45ROneg) CD4+ T cells, which included antibodies to TGFβ, IL-10, 

CD95 (Fas), programmed death ligand-1 (PDL1; B7H1), glucocorticoid-induced tumor necrosis 

factor receptor (GITR), and the neutralizing agent 1-methyl-tryptophan (1MT) that inhibits 

Indoleamine 2,3-dioxygenase (IDO) activity.  DC.Foxp3 immunosuppressive functions were 

alleviated upon addition of anti-TGFβ or 1MT as indexed by total T cell count (Fig 17A) and 

Annexin-V+ CD4+ T cells  on day 5 (Fig 17B).  DC.Foxp3 suppression mediated by IDO and 

TGFβ were confirmed in dose response experiments to which IFNγ production was restored 

(Fig 17C) and the CD25 (IL2Rα), as an index to Tregs, was concomitantly restrained (Fig 17D).  
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CD25 (IL-2Rα) in these studies is an index (marker) for frequency of Tregs and not of activation, 

as T cells were assessed at a resting point over 15 days after last antigenic stimulation with 

DC.Foxp3 or control DC. Expression of IDO1 and IDO2, Neuropilin-1 (183) and the TGFβ-

associated proteins Latency Associated Peptide (LAP) and Furin revealed no increased levels 

compared to control DC (data not shown).  Lack of functional conversion of L-tryptophan into 

kynurenine assessed by high performance liquid chromatography (HPLC) corroborated lack of 

DC.Foxp3 expression of IDO (data not shown).  

 

3.4.9. DC.Foxp3 induces a state of hyporesponsiveness 

 

In previous studies, T cells primed by DC.Foxp3 were restimulated with DC.Foxp3 on day 5, 

supplemented with IL-2 and IL-7. However, it remained to be identified whether these initial 

DC.Foxp3 primed T cell effector functions could be recovered upon restimulation with “normal” 

DC (non-gene modified immature DC). Briefly, DC.Foxp3 or control DC (donor A) was cultured 

with bulk naïve T cells (CD45ROneg; donor B). After 7 days, T cells were collected and kept as 

bulk (labeled CD45ROneg; indicating that the cells were initially stimulated from naïve 

precursors) or collected and further isolated by sorting for populations of CD4+ or CD8+ T cell 

subsets. T cells (CD45ROneg, CD45ROnegCD4+, or CD45ROnegCD8+) were then counted and 

replated at 10:1 ratio to be restimulated with “normal” DC from initial donor (donor A) or a third, 

unrelated, donor (donor C).  After an additional 7-9 days (on day 14-16), total T cells numbers 

were 5 fold less if initially primed by DC.Foxp3 compared to control DC (Fig 198). Additionally, 

supernatant collected 3-5 days after restimulation with donor A or donor C “normal” DC resulted 

in impaired IFNγ production from the initially primed DC.Foxp3 T cells (Fig 18B). To accurately 

depict the frequency of responding T cells to produce IFNγ, we used intracellular staining after 

stimulation with PMA\Ionomycin in the presence of monensin to detect cytokine production in 
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the CD4+ or CD8+ cohorts on day 14.  In both the CD4+ and the CD8+ (where the CD8+ group is 

represented as CD4neg in flow diagrams),  T cells initially primed by DC.Foxp3 were unable to 

produce IFNγ production upon recall after restimulation with “normal DC”, showing that initial 

priming by DC.Foxp3 induced a long-lasting state of hyporesponsiveness in T cells (Fig 18C). 
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3.5. Discussion 

 

In this study, I examined the role of ectopic Foxp3 expression in monocyte-derived DC and 

evaluation of T cell responses as an index to potential immunoregulatory potential of the gene-

modified DC. The impact of FOX family transcription factors in suppressing the immune system 

has been attributed to the lymphocyte (13), epithelial (25), and myeloid, specifically DC (181), 

lineages.  Foxp3 expression has correlated directly with immune suppression and\or evasion in 

lymphocyte and epithelial cells; however, its expression in myeloid cells has yet to be 

uncovered.  Interestingly, another member of the FOX family, Foxo3, has been shown to 

modulate DC towards a prototypical tolerogenic state by impairing cytokine production and 

regulating the magnitude of T cell responses (181).   

Ectopic Foxp3 expression in DC (DC.Foxp3) impaired expansion of both autologous and 

allogenic naïve, but not memory, CD4+ and CD8+ T cells. Furthermore, DC.Foxp3 was found to 

have differential mechanisms of immunosuppression on CD4+ vs. CD8+ T cell subsets. 

Specifically, DC.Foxp3 expanded T cells proliferated as many rounds as control DC expanded T 

cells, however, upon each subsequent division, there was no net increase in T cell number, 

suggesting that at each division round a proportion of T cells underwent apoptosis (or necrosis). 

I confirmed that there was higher cell death induced in predominately the naïve CD4+, as 

opposed to the CD8+, T cell subsets, suggesting that DC.Foxp3 does impart some element of 

selectivity in T helper cell populations. Alternatively, due to the heterogeneous population of 

Foxp3 expressing and non-expressing DC in the Adenoviral Foxp3 transduced cohort, it could 

be argued that the small proliferating cells are promoted by the non-expressing Foxp3-DC 

subsets.  Further evaluation of DC.Foxp3 expanded naïve T cells revealed that Type 1, as 

assessed by IFNγ, T-bet, CXCR3, and Granzyme-B expression, and Type 17, as measured by 

IL-17A and RORγt expression, were restrained. It can be partially attributed to the lack of 

(polarizing) cytokine support, as DC.Foxp3 had abolished production of the cytokines IL-12p70, 



80 

IL-23, IL-6 and absence of the transcript to IL-27p28, lead to impaired Type 1 and 17 effector 

functions. Interestingly, IL-10 expression by DC.Foxp3, which suppresses Type 1 T cell 

responses by inhibiting proliferation and expression of IL-2, IFNγ, TNFα, IL-4, and IL-5 (184), 

was completely restrained. I reasoned that DC.Foxp3 may shut down IL-10 to prevent complete 

inhibition of T cell responses to allow for selective expansion and\or retention of differentiated 

CD25+Foxp3+ T cells and TH2 from naïve T cell precursors. The mutual exclusion of the TH1-TH2  

(18; 49) program in T helper subsets was further supported by increased frequency of IL-4 from 

DC.Foxp3 over control DC expanded T cells from the naïve precursors.  Alternatively, this 

increased frequency of IL-4 positive cells could be due to specific TH1 subsets undergoing 

selective apoptosis, whereas TH2 subsets were spared; although there is currently no known 

mechanism for DC selective- or modulated-apoptosis of TH1 over TH2 cells.  

DC.Foxp3 supported the selected generation (or retention) of CD4+CD25+Foxp3+ T cells 

(as much as 10-fold) compared to control DC. There is a very low probability that Foxp3 is 

inadvertently transduced into T cells. Aside from extensive washing and isolation of DC prior to 

adenoviral transduction, naïve T lymphocytes do not express the required coxsackie\adenovirus 

receptor necessary for adenovirus cellular-mediated entry (185; 186). Furthermore, memory T 

cell subsets primed by DC.Foxp3 or control DC were unaltered in any indexed profile. DC.Foxp3 

was unable to induce T suppressor cells from the CD8+ naïve or memory T cell pools, or 

register any elevated levels of Foxp3. In turn, DC.Foxp3 repressed expression of CD25 (IL-2Rα) 

and GITR compared to control DC expanded CD8+ T cell subsets, suggesting that DC.Foxp3 

mediated CD8+ T cell suppression in part by regulating responses to IL-2 via downregulation of 

the IL-2Rα chain.  

Recently, early activated and proliferating human T cells have been shown to express 

Foxp3 concomitantly with CD25 chain (139; 187). My data showed that DC.Foxp3, but not 

control DC, expanded CD4+CD25+Foxp3+ T cells co-expressed T regulatory-associated 

membrane-bound molecules CTLA-4 (188), GITR (189), and Neuropilin-1 (190) on day 21, over 
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15 days after last antigenic stimulation. Finally, DC.Foxp3 expanded CD4+CD25+Foxp3+ T cell 

were functionally competent in their ability to suppress responding (CD8+) T cell proliferation 

and effector functions; proper evaluation of suppressive responses were assured by isolating 

DC.Foxp3 or control DC expanded CD25+ cells generated from the naïve precursors on day 21 

(15 days after last stimulation) and using only CD8+ T cells as readouts. Limited studies were 

performed using TGFβ or IL-10 culturing with GM-CSF and IL-4 during the 5-6 day monocyte 

differentiation into iDC. Culturing of these naïve T cell with these DC led to marginal skewing of 

Type 1 towards Tr1-like or TH2 responses (data not shown). However, with the identification of 

Foxo3 in DC as a modulator of T cell responses, future studies will want to compare and 

contrast the differential roles of Foxo3 to Foxp3 in DC as a governer to T cell responses. 

Transwell studies revealed that DC.Foxp3 suppression of Type 1 was dependent on cell-

to-cell contact (or close proximity). Further investigation of mechanisms exerted by DC.Foxp3 to 

suppress Type 1 CD4+ T cell responses and concomitantly induce functional CD4+CD25+Foxp3+ 

T regulatory cells revealed roles for IDO and TGFβ. I found no increased protein or direct 

functional activity of IDO1 or IDO2 as assayed by western blot and HPLC from DC.Foxp3 

compared to control DC, suggesting that DC.Foxp3 may impart early activated naïve T cells to 

act back on the DC (both DC.Foxp3 and neighboring DC) to induce IDO, possibly through 

CTLA-4:B7.2 engagement. Thus, it can by hypothesized that DC.Foxp3 utilizes other 

mechanism(s) to expand Tregs, which then functionally act back to perpetuate tolerance by 

inducing IDO in neighboring DC to aid in suppression of T cell responses. Thus, a proposed 

mechanisms may be that DC.Foxp3 exert early properties on responding naïve T cells that 

ensure skewing away from immunity and towards tolerance, in part by inducing T cells to 

provide TGFβ for support of Tregs, which may then act back on DC to induce IDO to impair 

Type 1 polarized responses and further support generation of Tregs (Fig 19). 
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It remains to be resolved what additional mechanisms of regulation Foxp3 exerts in DC; 

as well as how those translate into induction of Tregs and\or suppression of Type 1 polarized 

responses. However, identification of Foxo3 transcription factor expression in DC does lead us 

to believe that other FOX family members may play supportive roles in regulating DC mediated-

immune tolerance. Additionally, Foxp3 complexing with other transcription factors in the 

lymphocyte lineage, including histone deacetylases and methylases, may provide a foothold for 

investigation into FOX roles in DC as modulators of T cell responses. Translationally, this data 

supports a strong candidate DC based-vaccine for both autoimmunity and transplant clinical 

settings, to which a pleiotropic cycle results were Type 1 T cell responses are restrained and 

Tregs are generated. 
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GENERAL DISCUSSION 

 

T cell polarization state, which is mainly attributed to the CD4+ T cell helper lineage, is 

primarily identified by the strict cytokine profile of differentiate T cells, with regulation at the 

epigenetic level.  T helper (TH) subsets currently consist of IFNγ (TH1,), IL-4 (TH2), or IL-17 

(TH17) polarization types (191).  CD8+ T cell subsets, or cytotoxic T lymphocytes (CTL), are the 

principle mediators of direct cytolytic activity and are predominately associated with Type 1 

polarization, as they predominately secrete IFNγ. Polarization states are additionally reflected in 

other membrane-bound and cytokine profiles that aid in T cell specific induction of humoral or 

cell-mediated immunity.  For example, CTL express Granzyme-B and perforin for antigen-

specific targeted release of cytotoxic granules, and both TH1 and CTL express CXCR3 for 

trafficking to sites of inflammation (192). Alternatively, TH2 cells express little or no CXCR3, and 

are notably retained in the lymph nodes to prime B cell responses (77; 193), whereas TH17 

subsets have been shown to co-express CCR6 associated with their ability to home into 

intestine and associated lymphoid tissue (194). Immunosuppressive T helper subsets have 

been clearly identified, designated T regulatory cell subsets (Tregs), which have been shown to 

exert immunosuppression in a both cell-contact and cytokine mediated manner (87; 195). These 

cells have also been shown to co-express high levels of the cell surface molecules CD25, 

CTLA-4, GITR, and Neuropilin-1, each of which has been shown to play a distinct, yet possibly 

synergistic role, in suppressing immune responses (190; 195-197). However, it was the 

identification of the master regulators of the T helper subsets that clarified the rigid 

differentiation or polarization of T cells.  Expression of T-bet (TH1, CTL), GATA-3 (TH2), RORγt 

(TH17), and Foxp3 (Tregs) by polarized subsets of T cells have recently been described (14; 21; 

57; 198).  Most interestingly, these transcriptional factors appear functionally antagonistic in a 



84 

given T cell clone. Hence, T-bet antagonizes GATA-3 expression (18), impairing TH2 responses 

and reinforcing Type-1 immunity, and the absence of T-bet, allows GATA-3 expression to go 

unopposed, and yields a Type-2 functional program (14).  Similar antagonizing is seen and has 

helped clarify the mutual exclusivity between TH17 and Tregs subsets, where Foxp3 

antagonizes RORγt expression (21). 

As interesting as this is, it is critical to remember that important role played by polarized 

DC in orchestrating corollary T cell polarization. In such a fashion, micro-environmental cues 

that serve to shape DC polarity in the periphery may be imparted upon responder T cells in 

tissue-draining lymphoid organs (36; 90; 94; 158; 168; 169; 199; 200). Glimcher et al (24) was 

the first to show that absence of T-bet expression in DC led to impaired Type-1 T cell 

responses, as indexed by IFNγ expression, but that T cell proliferation was largely unaffected.  

Follow up studies by the Glimcher group and others have confirmed that both conventional and 

monocyte-derived DC endogenously express T-bet. These published and preliminary studies 

prompted me to evaluate the impact of ectopically overexpressing T-bet in DC on consequent T 

cell responses. Similarly, even though no published reports exist to support the natural 

expression of Foxp3 by DC, unpublished anecdotal data from a mouse tumor model suggested 

that CD11c+ DC within the tumor microenvironment may express Foxp3, suggesting the 

physiologic relevance of studying Foxp3 expression in DC (Storkus et al, unpublished data). If 

validated, both DC.T-bet and DC.Foxp3 would have clear translational value for the 

development of vaccines targeting either the augmentation or eradication of Type-1 immune 

responses, respectively.   

Adenoviral insertion of T-bet into DC (DC.T-bet) yielded little-to-no changes in any 

costimulatory molecules evaluated; however, these DC were impaired in their ability to produce 

the cytokines IL-12, IL-23, IL-27, and TNFα, which are key mediators of Type 1 polarization in 

responder naïve and/or memory T cells.  Nevertheless, naïve T cells primed using DC.T-bet 
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exhibited an average 3-fold increase in their levels of IFNγ produced when compared to control 

DC primed T cells.  Light microscopy images showed significant increases in the microcluster 

sizes formed between DC.T-bet and proliferating naïve, but not memory, T cell responders as 

early as day 3 in culture, suggesting that the dynamic interplay between DC.T-bet and T cells 

might be reinforced at the immunological synapse level. It is important to note that there were 

no differences in performed assays and results generated upon DC.T-bet and control DC 

primed memory T cells (i.e., DC.T-bet did not repoloarize or reprogram memory T cells). Further 

investigation revealed that the T-bet transcription factor was increased in responder naive T 

cells, concomitant with decreased GATA-3 expression by day 3 of DC.T-bet-T cell cultures. This 

bias in transactivator protein expression by responder T cells was recapitulated in the balance 

of T cell elaborated cytokines, with increased IFNγ production, and restrained IL-4 and IL-10 

expression. Interestingly, IL-17 expression from responder T cell, despite RT-PCR data 

suggesting that changes in T cell expressed RORγt were marginal, was increased. As Foxp3 

antagonizes the RORγt induction of T cells, I believe this is a by-product of DC.T-bet restraining 

Foxp3 expression in T cells, allowing for existing levels of RORγt to function unopposed in 

DC.T-bet-driven T cells. Notably, IL-17-producing responder T cells did not co-produce IFNγ 

(i.e. IFNγ+IL-17+ double positive T cells), suggesting that DC.T-bet did not promote the cross-

conversion of Type 1 cells into TH17 cells, or vice versa (16; 201). 

Reiner et al first showed that Type 1 polarization, as indexed by T-bet, was instigated 

prior to IL-12/IL-12R engagement in T cells (45). My data sets suggests that DC.T-bet induces 

an IL-12-independent Type 1 polarization in T cells, as DC.T-bet were unable to produce IL-12 

(or any cytokine investigated) upon TLR or CD40 engagement.  Use of neutralizing antibodies 

to IL-12, IL-23, or IL-27 confirmed that DC.T-bet induces elevated levels of IFNγ in responding 

naïve T cells.  Furthermore, usage of antibodies to block the IFNγR1 failed to impair DC.T-bet 

induction of Type 1 polarization in T cells, suggesting that DC.T-bet did not rely on the autocrine 
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feedback of IFNγ production by activated T cells to drive Type 1 polarization. Several other 

reports have suggested IL-12 independent mechanisms of Type 1 polarization engendered in T 

cells by DC, which included both delta like 4 (DLL4) engagement with notch ligands and CD70 

engagement with CD27 on responding T cells.  Blockade of these factors also did not alleviate 

DC.T-bet induction of Type 1 polarized responses.  My studies thus propose a novel 

mechanism(s) by which transgene T-bet drives DC to induce Type 1 T cell polarization, further 

reinforcing work by the Reiner group that additional mechanism(s) prior to IL-12 secretion and 

IFNγ feedback (for stabilization of the Type 1 profile) are critical for Type 1 T cell induction. 

Furthermore the ability to break operational tolerance in CD8+ T cells reactive against 

melanoma-associated antigens using DC.T-bet-based stimulation may have translational merit 

in the development of melanoma vaccines for clinical application. 

Although thoroughly investigated, I have been unable to as yet identify the specific 

mechanism(s) exerted by DC.T-bet in driving Type-1 T cell polarization. I have, however, ruled 

out many contenders. Transwell assays suggest that DC.T-bet exerts its Type 1 inducing 

function in a cell-cell contact-dependent manner or that this effect requires the close proximity of 

DC.T-bet and T cells in order to occur.   There were no significant changes in levels of known 

co-stimulatory or co-inhibitory molecules expressed by DC.T-bet vs. control DC, nor differences 

in CD70 or DLL4 expression that have previously been linked to IL-12-independent promotion of 

Type-1 immunity by DC. Although, in regards to costimulatory molecules, it could be that they 

remain constitutively. Hence, the logical suspects have failed to be incriminated in my studies 

thus far, and this may warrant the prospective use of microarray/proteomic analyses to define 

molecular differences downstream of T-bet in DC that are required for the observed DC.T-bet 

functional attributes. The dependency of DC.T-bet function on the identified candidates would 

then need to be confirmed via the use of Ab-blocking or mRNA knock-down in vitro 

experiments, or the development and use of specific knockout mouse models.  
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In complementary studies, I investigated the potential ability of Foxp3 gene insertion to 

yield regulatory DC. Despite the lack of publications documenting endogenous Foxp3 in DC, 

one recent report by Dejean et al that showed absence of Foxo3, another member of the FOX-

related family of transcription factors, conferred sustained T cell immune responses (181). 

Additionally, previous unpublished data generated in the CMS4 tumor model in Balb/c mice (by 

Dr. Aklile Berhanu while a GSR in the Storkus laboratory) suggested that a subset of CD11c+ 

DC in the tumor microenvironment co-expressed Foxp3 protein based on immunofluorescence 

microscopy analyses. Since DC in the progressive tumor microenvironment have been typically 

shown to be regulatory APC, this provided some degree of confidence that DC.Foxp3 could 

represent regulatory DC; also highlighting the translational relevance in the autoimmunity and 

transplant settings.  

Autoimmunity is characterized by aberrant, autoreactive T cells that cause pathology by 

targeting host tissues for destruction.  Transplantation, similarly, is plagued by undesirable 

alloreactive T cells that target the recipient grafts for rejection. Numerous studies have shown 

that immunosuppressive strategies that limit T effector cell responses and\or expand the 

population of T regulatory cell subsets can control both auto- and alloreactive responses. More 

interestingly, it has been shown that modulation of DC ex vivo or in vivo can skew their 

polarization state to a more suppressive, regulatory fate that can effectively limit T effector cell 

responses and\or induce T regulatory cells (106). It was the goal of this secondary project to 

assess if DC.Foxp3 are indeed tolerogenic (regulatory) DC.  

Priming of naïve, but not memory, T cells with Foxp3 expressing DC (DC.Foxp3) led to 

impaired early T cell responses.  More importantly, restrained T cell responses were observed 

in both the autologous (using superantigen model system) and allogenic (different donor T cells 

to DC), suggesting that DC.Foxp3 could provide therapy benefits in both the autoimmunity and 

transplant settings. Interestingly, total T cell numbers resulting from stimulation with DC.Foxp3 
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were limited, which was partially attributed to restrained T cell proliferation and the selective 

apoptosis of Type-1 polarized CD4+ T helper subsets in these assays. This suggested that 

DC.Foxp3 preferentially selected against Type 1 polarization in the CD4+ T helper subset of 

responder T cells. There was much less of a pronounced affect on CD8+ T cells activated using 

DC.Foxp3, suggesting that suppression of proliferation was a principle mechanism underlying 

restrained CTL development guided by DC.Foxp3.  Analysis of polarized T cells expanded from 

the naïve pool by DC.Foxp3 revealed a dramatic impairment of Type 1-associated IFNγ, 

CXCR3, and Granzyme-B gene product expression, with a concomitant increase in Type 2-

associated IL-4 production. T cell cytokine profiles corroborated early transcription factor profile 

analysis, and also highlighted the slight decrease in IL-17 production (TH17 subsets) that was 

not as dominant when screening for comparative levels of RORγt mRNA using RT-PCR.  These 

data sets clearly show that DC.Foxp3 effectively restrains T effector Type 1 and Type 17 cell 

responses. 

My studies revealed the DC.Foxp3 (vs. control DC) preferentially expand and 

differentiate functionally-suppressive, Foxp3+Tregs that co-expressed CD25, CTLA-4, GITR, 

and Neuropilin-1.  I took numerous steps to ensure the quality of the results, in particular by 

evaluating T cells for Foxp3 expression over 15 days after last stimulation, to alleviate concerns 

that Foxp3 is transiently expressed and carried through the activation states of human T cells 

(and that only Tregs, upon T cell rest, maintain elevated levels of Foxp3). Furthermore, the fact 

that these T cells coexpressed Foxp3+CD25high along with CTLA-4, GITR, and Neuropilin-1 

suggested that these were classical Treg.  After performing suppressor functional studies, I 

concluded that these resultant T cells were indeed inducible (Foxp3+) Tregs.  Identification of 

Foxp3+Tregs activated by DC.Foxp3 from the CD4+ naïve pool led me to next investigate 

whether these APC could also develop Foxp3+CD8+ T suppressor (regulatory) cells in vitro.  

Some reports suggest that CD8+ T cell suppressor cells also co-express CTLA-4, GITR, and 
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CD25, but are deficient in expression of CD28 (64). However, DC.Foxp3 primed naïve CD8+ T 

cells did not express higher levels of Foxp3, CD25, CTLA-4, or GITR compared to controls. 

Alternatively, CD25 and GITR expression in DC.Foxp3 primed CD8+ T cells was suppressed 

compared to control DC expanded CD8+ T cells. It can be hypothesized that absence of the IL-

2Rα chain constrains CD8+ T effector responses, and also argues why DC.Foxp3 may not need 

to depend on differential apoptosis as a mechanism to suppress CD8+ T effector cells.  Whereas 

in the case of CD4+ T cells, DC.Foxp3 utilizes apoptosis to selectively weed out TH1 and TH17 

responses, allowing TH2 and Tregs to persist/expand. Additionally, GITR signaling on CD8+ T 

cells has been shown to induce potent T effector functions, effectively overcoming immune 

tolerance in the cancer settings (202; 203). Furthermore, DC.Foxp3 induces CD4+Foxp3+ Tregs 

cells in the absence of CD8+ T cells and can conversely impair CD8+ T cells in the absence of 

Tregs, suggesting that direct mechanisms are employed by DC.Foxp3 to restrain CD4+ or CD8+ 

T cells. 

IDO and TGFβ (based on neutralization/blocking studies) play prominent roles in 

DC.Foxp3-associated regulatory functions. Investigation of DC.Foxp3 for direct expression 

suggested that Foxp3 did not directly induce IDO or TGFβ.  IDO is produced primarily by DC, 

playing important roles in limiting immune responses by starving T effector cells of free 

tryptophan(108), whereas TGFβ is primarily expressed by T cells (as well as supporting 

mesenchymal\stromal and epithelial cells in draining lymph nodes). I hypothesized that 

DC.Foxp3 primed early activated T cells to secrete TGFβ to aid in Treg generation and impair 

Type 1 (IFNγ) responses.  Concomitantly, these early activated T cells were engendered by 

DC.Foxp3 to, possibly through CTLA-4:B7 engagement (107), upregulate IDO expression. The 

culmination of these studies proposes that DC.Fop3 skews naïve T cells towards Tregs, and 

away from Type 1 T effector cells, to effectively suppress immune responses, to which these 

early activated T cells are promoted to secrete TGFβ to reinforce Treg generation and engage 
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B7 molecules on DC in order to induce IDO-mediated suppression of T effector cells and 

support of Tregs.  Additionally, the phenotype of DC.Foxp3 expanded Tregs also suggests that 

CD25 acts as a cytokine sink for free IL-2, leading to IL-2 starvation of T effector cells, and 

Neuropilin-1 serves to allow Tregs to outcompete naïve or activated T cells for access DC, 

thereby limiting effector functions.   In the case of CD8+ T cells cultured with DC.Foxp3, 

antagonism of IDO, and to a lesser extent, TGFβ, served to mitigate the function of regulatory 

aspects of DC.Foxp3.  I believe this again contributes to the dynamic interplay at the 

immunological synapse between DC.Foxp3 and responding T cells that acts back on DC to 

invoke multiple mechanisms to suppress T effector responses. A simple model system using 

Foxp3 knockout mice would remove T regulatory cell subsets from the equation, allowing us to 

identify what DC.Foxp3 does directly without T regulatory cell subsets.  Additionally, IDO 

knockout DC and TGFβ knockout DC and\or T cells would help to identify the importance of one 

or the other molecule to DC.Foxp3-associated function(s). 

Future studies utilizing knockout studies and expression vectors in mouse model 

systems will help to characterize the roles of T-bet and Foxp3 in DC, in both regulating T 

effector and T regulatory cell responses. Additionally, given the pleiotropic and redundant 

biology of transcription factors, large scale phenotypic analysis will be required to accurately 

identify changes in DC, including microarray and proteomic analysis.  These studies will 

undoubtedly reveal novel mechanism(s) of action for transgene-altered DC function(s). I believe 

that these results will ultimately highlight the intricacies and importance of early events occurring 

within the DC-T cell immunological synapse that serve to enforce corollary T cell functional 

polarization.  I believe DC may then subsequently respond to T cell-delivered signals by 

expressing cytokines that support polarized T cell differentiation process after DC-T cell 

disassociation. Such DC-produced factors would remain in the local microenvironment. This 

makes conceptual sense, as it allows T cells to continue their differentiation process while not 
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occupying a “docking” spot on the DC surface, thus allowing for access of alternate naïve T 

cells.  

Beyond the confines of basic science, both of these systems define novel and potentially 

powerful immunotherapeutic DC-based vaccines.  The necessity to induce antigen-specific, or 

polyclonal suppression in the case of allograft rejection, is best engendered by DC, the principle 

orchestrators of immunity.  Ex vivo modulation of these DC to overexpress T-bet or Foxp3 and 

adoptive transfer will in turn perpetuate desirable T cell responses in the cancer/infectious 

disease vs. autoimmunity/transplant settings. The prospective use of murine model systems will 

highlight the pre-clinical efficacy of these vaccines, for which preliminary data already appears 

favorable in the case of a DC.T-bet model system.   
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