Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

Precambrian Paleosols as Indicators of Paleoenvironments on the Early Earth

Stafford, Sherry L. (2007) Precambrian Paleosols as Indicators of Paleoenvironments on the Early Earth. Doctoral Dissertation, University of Pittsburgh. (Unpublished)

Primary Text

Download (7MB) | Preview


Paleosols, or fossil soils, document past atmospheric composition, climate, and terrestrial landscapes and are key to understanding the composition and evolution of the Earth's atmosphere and the environments in which life developed and evolved. Micromorphological, geochemical and isotopic studies of two Precambrian weathering profiles (Steep Rock, Canada and Hokkalampi, Finland) place constraints on the age of soil formation, document pedogenic processes and post-pedogenic alteration and metamorphism, and yield information about the terrestrial environment at a critical time in Earth history. The textures and geochemistry of the Early Proterozoic Hokkalampi paleosol and the Archean Steep Rock paleosol are consistent with in situ, subaerial weathering under varying soil redox conditions. The upper portion of both profiles have lost greater than 40% of their iron relative to the parent material, similar to Phanerozoic vertisols, while retaining Fe3+/Fe2+ ratios greater than 1. Redistribution of phosphorus in the Steep Rock profile and thorium in some Hokkalampi profiles suggests that organic ligands could have enhanced the mobility of redox-sensitive elements. In addition, copper mobility in the Steep Rock profile could indicate the presence of oxygen in the soil. Loss of base cations in both paleosols is similar to modern ultisols or oxisols, which form in warm, moist environments. Whole rock Rb-Sr isochrons indicate that post-pedogenic potassium metasomatism affected both weathering profiles, and the apparent ages are consistent with the timing of regional greenschist metamorphic events. Whole rock Sm-Nd isotope data demonstrate that rare earth element (REE) systematics were largely unaffected by metamorphism, and that the observed mobility and fractionation of REE could represent a record of Precambrian weathering processes. In the Hokkalampi profiles, Sm-Nd isotope data suggest that pedogenesis took place 2.35±0.19 Ga; this also places a minimum age for Huronian glaciation in the area. The Sm-Nd age of 3.02±0.09 Ga for the Steep Rock paleosol suggests that pedogenesis occurred very soon (less than 60 Ma) after emplacement and erosional uplift of the parent granitoid. This study demonstrates that Rb-Sr and Sm-Nd analysis combined with geochemical, field, and microscopic examination of Precambrian paleosols can help constrain the nature and timing of ancient Earth-surface processes.


Social Networking:
Share |


Item Type: University of Pittsburgh ETD
Status: Unpublished
CreatorsEmailPitt UsernameORCID
Stafford, Sherry,, sherry_lynn_stafford@yahoo.comSLSST52
ETD Committee:
TitleMemberEmail AddressPitt UsernameORCID
Committee ChairCapo, Rosemary Crcapo@pitt.eduRCAPO
Committee MemberStewart, Brian bstewart@pitt.eduBSTEWART
Committee MemberJones, Charles Ecejones@pitt.eduCEJONES
Committee MemberLidiak, Edward Gegl@pitt.eduEGL
Committee MemberOhmoto,
Date: 27 September 2007
Date Type: Completion
Defense Date: 12 July 2005
Approval Date: 27 September 2007
Submission Date: 9 August 2007
Access Restriction: 5 year -- Restrict access to University of Pittsburgh for a period of 5 years.
Institution: University of Pittsburgh
Schools and Programs: Dietrich School of Arts and Sciences > Geology and Planetary Science
Degree: PhD - Doctor of Philosophy
Thesis Type: Doctoral Dissertation
Refereed: Yes
Uncontrolled Keywords: Hokkalampi; paleosols; pO2; Precambrian; Steep Rock
Other ID:, etd-08092007-085938
Date Deposited: 10 Nov 2011 19:58
Last Modified: 15 Nov 2016 13:48


Monthly Views for the past 3 years

Plum Analytics

Actions (login required)

View Item View Item