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Paleosols, or fossil soils, document past atmospheric composition, climate, and terrestrial 

landscapes and are key to understanding the composition and evolution of the Earth’s 

atmosphere and the environments in which life developed and evolved. Micromorphological, 

geochemical and isotopic studies of two Precambrian weathering profiles (Steep Rock, Canada 

and Hokkalampi, Finland) place constraints on the age of soil formation, document pedogenic 

processes and post-pedogenic alteration and metamorphism, and yield information about the 

terrestrial environment at a critical time in Earth history. The textures and geochemistry of the 

Early Proterozoic Hokkalampi paleosol and the Archean Steep Rock paleosol are consistent with 

in situ, subaerial weathering under varying soil redox conditions. The upper portion of both 

profiles have lost >40% of their iron relative to the parent material, similar to Phanerozoic 

vertisols, while retaining Fe3+/Fe2+ ratios >1.  Redistribution of phosphorus in the Steep Rock 

profile and thorium in some Hokkalampi profiles suggests that organic ligands could have 

enhanced the mobility of redox-sensitive elements.  In addition, copper mobility in the Steep 

Rock profile could indicate the presence of oxygen in the soil.  Loss of base cations in both 

paleosols is similar to modern ultisols or oxisols, which form in warm, moist environments. 

Whole rock Rb-Sr isochrons indicate that post-pedogenic potassium metasomatism affected both 

weathering profiles, and the apparent ages are consistent with the timing of regional greenschist 

metamorphic events.  Whole rock Sm-Nd isotope data demonstrate that rare earth element (REE) 
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systematics were largely unaffected by metamorphism, and that the observed mobility and 

fractionation of REE could represent a record of Precambrian weathering processes.  In the 

Hokkalampi profiles, Sm-Nd isotope data suggest that pedogenesis took place 2.35±0.19 Ga; this 

also places a minimum age for Huronian glaciation in the area.  The Sm-Nd age of 3.02±0.09 Ga 

for the Steep Rock paleosol suggests that pedogenesis occurred very soon (<60 Ma) after 

emplacement and erosional uplift of the parent granitoid.  This study demonstrates that Rb-Sr 

and Sm-Nd analysis combined with geochemical, field, and microscopic examination of 

Precambrian paleosols can help constrain the nature and timing of ancient Earth-surface 

processes.  
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1.0  INTRODUCTION 

Soils represent the interface between the atmosphere and the lithosphere.  Paleosols, preserved 

ancient soils, preserve a record of past life, climate, and landscapes on planetary surfaces. 

Paleosols (fossil soil profiles) can provide an important record of atmosphere-lithosphere 

interactions, which is necessary for accurate reconstructions of the environment in which life 

developed and evolved on Earth.  Pre-Devonian paleosols, however, are devoid of root traces or 

other overt signs of life and often affected by major post-pedogenic events that can obscure or 

obliterate the original features indicative of the terrestrial environment.  Within early Paleozoic 

and Precambrian stratigraphic sections, subaerial weathering profiles can be difficult to 

distinguish from sedimentary deposits, fault breccia, and hydrothermal alteration zones.  

Many challenges inhibit the identification and interpretation of the Precambrian soil 

record, including difficulties constraining ages, chemical overprinting, and post-depositional 

deformation and obliteration of soil textures and structures (Rye and Holland, 1998).  Due to 

successive post-pedogenic alteration events, such as burial decomposition of organic matter, 

burial gleization, burial recrystallization of iron compounds, cementation of primary porosity, 

lithostatic compaction, illitiztion of smectite, and metamorphism, Precambrian paleosols often 

lack features diagnostic of more modern soils.  Physical characteristics common in Paleozoic 

paleosols and modern soils are typically missing from Precambrian profiles; these include traces  
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of terrestrial life, distinct soil horizons, and soil structures.  Thus, geochemical trends down 

profile from a sharp erosional contact are often used to recognize Precambrian fossil soils 

(Retallack, 1997).   

To better interpret the soil record of Earth and other ancient planetary surfaces, an 

integrated approach involving field observations, micromorphological study, geochemical 

analysis, and isotopic analysis is necessary. An integrated approach to paleosol study should 

allow us to (1) identify elemental fractionation patterns due to pedogenic processes, (2) better 

constrain the age of paleosols, (3) examine hydrothermal overprinting, and (4) constrain redox 

conditions in the weathering profiles. This research focused on two Precambrian sections (in 

Hokkalampi, Finland and Steep Rock, Canada), previously identified as possible paleosols. 

Chapter 1 provides an overview of my approach to these research goals. 

Chapter 2 examines the Hokkalampi paleosol in north Karelia, Finland.  The Hokkalampi 

paleosol is of particular interest because it formed between 2.44 and 2.2 Ga (Marmo and 

Kohonen, 1992; Vuollo et al., 1992; Sturt et al., 1994), possibly during the proposed rise of 

atmospheric oxygen at ca. 2.3 Ga (>10-5 present atmospheric level, PAL) (Bekker et al., 2004).  

To better understand the diagenetic and metamorphic processes that have obscured the ancient 

soil record, I used an integrated approach involving field observations, micromorphological (soil 

texture) study, geochemical analysis, and isotopic analysis.  One of my goals was to identify 

pedogenic textures and geochemical signatures, including redox signatures that have survived 

post-weathering overprinting events.  Speciation and mobility of redox-sensitive elements such 

as iron (Fe) and cerium (Ce) in paleosols have been used to constrain the atmospheric oxygen 

(pO2) levels of the early part of Earth’s history (Zbinden et al., 1988; Feakes et al., 1989; 

Holland et al., 1989; Holland and Beukes, 1990; Kirkham and Roscoe, 1993; Holland, 1994; 
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Macfarlane et al., 1994; Ohmoto, 1996).  I also address the key question of whether pedogenic 

processes during the Precambrian were capable of mobilizing and fractionating rare earth 

elements (REE).  Pedogenic fractionation of REE leads to the possibility of achieving a 

significant spread in Sm/Nd ratios during soil formation, and thus some constraints of the timing 

of pedogenesis (Stafford et al., 2000).  Additionally, application of the Sm-Nd system in 

conjunction with the Rb-Sr isotopic system should also provide a better evaluation of element 

mobility during pedogenesis and subsequent metamorphic events. 

Chapter 3 presents a geochemical and textural study of the Steep Rock paleosol at the 

South Roberts Pit (SRP) exposure in northwestern Ontario, Canada.  Rye and Holland (1998) 

evaluated and ranked Precambrian paleosols based on textural, mineralogical, and chemical 

evidence as well as soft-sediment deformation.  In their review, the Steep Rock profile was 

categorized as a possible paleosol.  This would make it one of the oldest preserved weathering 

profiles on Earth.  The purpose of the present study is to evaluate whether or not the Steep Rock 

profile can be considered a paleosol, and to determine the extent to which it can serve as a 

dependable recorder of the Archean paleoenvironment.  This involves the acquisition and 

evaluation of new geochemical evidence of pedogenic processes in the SRP profile; (2) 

identification of sedimentary features at the unconformity indicative of subaerial weathering in 

the SRP profile;  (3) characterization of the diagenetic and hydrothermal events that altered the 

SRP profile after pedogenesis, as alteration events lead to the addition and loss of elements and 

affect paleoenvironmental interpretations; and (4) better constraints on the age of the SRP 

profile, which has implications for understanding granitoid-greenstone relationships and the 

origin of the original continental crust in the Superior Province.   



 4 

Chapter 4 focuses on the paleoenvironmental interpretation of the Steep Rock paleosols 

and a comparison with that of the Hokkalampi weathering profiles.  Because Precambrian 

paleosols lack significant effects from land plants, researchers (e.g., Holland and Zbinden, 1988; 

Pinto and Holland, 1988; Kirkham and Roscoe, 1993; Macfarlane et al., 1994; Ohmoto, 1996) 

have applied a variety of geochemical methods to interpret atmosphere-mineral interaction in 

Precambrian paleosol profiles formed under different atmospheric conditions.  This research 

builds on earlier work, including the interpretation of iron and cerium concentration variations 

within the profiles, but includes additional redox sensitive elements such as uranium (U), 

vanadium (V) and copper (Cu) to further constrain Eh-pH conditions. This will help develop a  

more accurate interpretation of the redox conditions in the fossil soil record and thus the 

paleoenvironmental record from the Archean.   
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2.0  GEOCHEMICAL EVOLUTION OF THE PROTEROZOIC HOKKALAMPI 

PALEOSOL, EASTERN FINLAND 

2.1 INTRODUCTION TO THE HOKKALAMPI PALEOSOL INVESTIGATION 

Paleosols, or fossil soils, are a document of past life, atmospheric composition, climate, and 

terrestrial landscapes.  The products of atmosphere-mineral interaction preserved in Precambrian 

weathering profiles are key to understanding the early composition and evolution of the Earth’s 

atmosphere and the environments in which life developed and evolved.  The identification and 

interpretation of this cryptic paleo-record usually hinges on the analysis of stratigraphic 

relationships and geochemical signatures.  This can be challenging owing to:  (1) the lack of 

overt signs of terrestrial life found in modern soils; (2) difficulty constraining the age of 

subaerial weathering, which typically can only be bracketed by radiometric dating of underlying, 

overlying, and/or cross-cutting igneous rocks;  (3) chemical overprinting by post-pedogenic 

events including diagenesis, hydrothermal/metamorphic alteration, and modern weathering 

processes that frequently lead to addition or loss of elements to the weathering profile; and (4) 

post-depositional deformation and obliteration of soil textures and structures (e.g., Holland and 

Zbinden, 1988; Retallack, 1992; Rye and Holland, 1998). 

Aurola (1959) recognized that certain Proterozoic aluminosilicate rocks in Karelia, 

eastern Finland, could represent clay that was recrystallized during a metamorphic event.  

Marmo (1992) established textural and geochemical evidence for a widespread paleosol in the 
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Hokkalampi area of the Koli-Kaltimo region in northern Karelia.  Here we present the results of 

an in-depth study of two Hokkalampi weathering profiles from Nuutilanvaara and 

Paukkajanvaara, Finland, interpreted to have formed under oxidizing and reducing groundwater 

conditions, respectively (Marmo, 1992).   

One goal of this study was to identify pedogenic textures and geochemical signatures, 

including redox signatures that have survived post-weathering overprinting events.  Speciation 

and mobility of redox-sensitive elements such as iron and cerium in paleosols have been used to 

constrain the atmospheric oxygen levels of the early part of Earth’s history (Zbinden et al., 1988; 

Feakes et al., 1989; Holland et al., 1989; Holland and Beukes, 1990; Holland, 1994; Macfarlane 

et al., 1994; Ohmoto, 1996; Watanabe et al., 2000; Beukes et al., 2002; Nedachi et al., 2005).  

The Hokkalampi paleosol is of particular interest because it formed between 2.44 and 2.2 Ga 

(Marmo, 1992; Vuollo et al., 1992; Sturt et al., 1994), during the proposed rise of atmospheric 

oxygen (e.g., Bekker et al., 2004).  However, based on recent analyses of multiple sulfur isotope 

ratios of Archean sedimentary rocks, Ohmoto et al. (2006) suggest that the atmospheric pO2 

history may have been more complicated than recognized by previous investigators, and that the 

atmospheric oxidation may have occurred much earlier than ~2.7 Ga ago.  Paleo-redox 

interpretations of the Hokkalampi paleosol have been difficult due to limited trace element data, 

particularly from the most heavily weathered sections.  In addition, the redox implications of iron 

data from previous studies of Hokkalampi samples are somewhat ambiguous (Marmo, 1992; 

Ohmoto, 1996; Rye, 1998).  This study integrates petrology, micromorphology, geochemistry, 

and radiogenic isotope analysis, and includes new samples from a paleosol zone in the 

Paukkajanvaara section, which is more heavily weathered than zones typically preserved in 

Precambrian profiles.  



 7 

A major goal of this study was to evaluate the use of radiogenic isotope systems for 

identifying and quantifying element mobility during pedogenesis, and for developing a 

chronology of pedogenesis and post-pedogenic processes.  Pedogenic fractionation of rare earth 

elements (REE) leads to the possibility of achieving a significant spread in Sm/Nd ratios during 

soil formation, and thus some constraints on the timing of pedogenesis through application of the 

Sm-Nd isotope system (Stafford et al., 2000).  Pedogenesis is unlikely to rigorously satisfy all 

requirements for the use of the Sm-Nd system as a geochronologic tool, particularly the 

requirement of uniform initial 143Nd/144Nd.  However, in cases where weathering leads to 

significant fractionation of Sm from Nd in different parts of a weathering profile, Sm-Nd isotope 

data might be able to constrain the timing of soil formation better than stratigraphy alone.  In 

addition, application of the more easily reset Rb-Sr isotope system can potentially provide 

information about the timing of post-pedogenic processes such as metamorphism. 

2.2 GEOLOGIC SETTING OF THE HOKKALAMPI PALEOSOL 

The Hokkalampi paleosol is one of several Paleoproterozoic weathering profiles developed on 

the western part of the Archean Karelian Craton.  During the Svecokarelian orogeny (1.9-1.8 

Ga), the Karelian Craton became part of the Fennoscandian Shield, and today it is the broadest 

section of preserved and exposed continental core on the European continent.  The Archean 

Presvecokarelidic basement rocks include wide areas of granitoids that intruded mafic 

metavolcanics and small areas of ultramafics and banded iron formations that formed between 

2.5 and 3.1 Ga (Kouvo and Tilton, 1966; Meriläinen, 1980; Simonen, 1980). 



 8 

A generalized map and stratigraphic section of the study area are shown in Figure 2.1.  

Overlying the Archean basement (in the south only) are glaciogenic sedimentary deposits of the 

Sariola Group.  These sedimentary units and the Archean basement were extensively weathered 

during an erosional event that caused much denudation and leveling of the paleolandscape.  

During this event, enormous volumes of continentally derived, supermature, first-cycle quartz 

sands were deposited across the Karelian Craton (Ojakangas, 1965; Marmo et al., 1988; 

Kohonen and Marmo, 1992; Marmo, 1992; Marmo and Ojakangas, 1998; Ojakangas et al., 

2001).  Overlying this unconformity is a sequence of sedimentary rocks (Jatuli Group) with a 

maximum thickness of 2600 m.  The laterally extensive Hokkalampi paleosol consists of 15-80 

m of aluminosilicate-rich rocks formed by intense weathering of sedimentary and basement 

rocks of the Sariola Group (Aurola, 1959; Marmo, 1992).   The paleosol grades upward from 

partially altered parent material consisting of carbonate-bearing, quartz-feldspar sericite (zone 3 

of Marmo, 1992), to a weathered zone consisting of quartz-sericite schist (zone 2 of Marmo, 

1992), to a highly weathered zone consisting of quartz kyanite andalusite schist (zone 1 of 

Marmo, 1992) truncated by an erosional boundary.  The Hokkalampi paleosol localities sampled 

for this study developed on granitoid basement, but to the south of the study area are weathering 

profiles formed on Sariola Group (Urkkavaara Formation) glaciogenic sedimentary rock (Marmo 

and Ojakangas, 1984; Marmo et al., 1988).   

The widespread weathering event that produced the Hokkalampi paleosol also produced 

weathering profiles in the youngest plutonic rock in the regional area, a 2.44 Ga gabbro in 

northeast Norway (Sturt et al., 1994; Rye and Holland, 1998).  Therefore, the oldest possible age 

for the Hokkalampi paleosol is 2.44 Ga; the youngest possible age is ~2.2 Ga, the age of the 

oldest dikes cutting across the paleosol and the overlying sedimentary rocks (Vuollo, 1991).  The  
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Figure 2.1:  Generalized geology and stratigraphy of the Hokkalampi area, eastern Finland.  Sample localities 

(Paukkajanvaara and Nuutilanvaara) are noted.  Modified from Marmo (1992). 
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region underwent greenschist metamorphism during the Svecofennian orogeny, which peaked at 

1.9 Ga (Marmo, 1992).   Paleomagnetic data place Karelia in low to intermediate latitudes 

between 2.45 and 2.15 Ga (Neuvonen et al., 1997), making lateritic-type conditions plausible in 

the Hokkalampi region.  However, it is unclear whether climatic zoning of the Paleoproterozoic 

Earth resembled that of the present day Earth. 

Based on the inferred position of the paleo-water table as well as the distribution of 

overlying pedolith-bearing sedimentary deposits, Marmo (1992) suggested the paleotopographic 

model for the Hokkalampi soils illustrated in Figure 2.2.  The weathering profiles exhibit total 

iron (FeT) loss at the top, and down-profile enrichment of FeT.  Marmo (1992) suggested that the 

Fe mobilization occurred under reducing conditions (either anoxic atmosphere or waterlogged), 

with precipitation at or near the paleo-water table.  The study also cited the presence of abundant 

Fe2+ in the topographically lower parts of the paleosol (chlorite zones) as further evidence for 

reducing conditions, but noted that an increase in Fe3+ in the lower sections of some profiles 

could reflect some oxidation.  Oxidized zones with excess Fe3+ and almost complete absence of 

Fe2+ at the top of the topographically higher, eroded profiles were interpreted as evidence of an 

increase in atmospheric oxygen just before erosion and burial of the Hokkalampi soils by the 

alluvial sediments of the Vesivaara Formation.  Sedimentary deposits immediately overlying the 

paleosol contain detrital hematite (Marmo, 1992), likely derived from the paleosol, and serve as 

additional evidence of soil formation under an oxic atmosphere.  

Marmo (1992) analyzed several cores from different parts of the Hokkalampi paleosol.  

Two cores (301 and 303) show 40% or more Fe loss at the top of the preserved section.  Another 

core (302) shows no corresponding Fe loss. Rye and Holland (1998) suggested that the most 

heavily weathered section was missing from core 302, and that interpretations of a lack of iron  
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Figure 2.2:  Working model of the paleogeography of the Hokkalampi area (from Marmo, 1992) to explain 

the chemical and sedimentary features observed in the Hokkalampi paleosol.  In this model, the more 

oxidized profiles (i.e. Nuutilanvaara) are inferred to have formed in well-drained conditions, probably in 

contact with the atmosphere.  The more reduced profiles (i.e. Paukkajanvaara) are interpreted to be 

progressively waterlogged, having formed in topographically lower areas, and they may or may not have 

been in contact with the atmosphere. 

 

mobility could be compromised as a result.  Ohmoto (1996) noted that leaching of Fe3+-rich 

minerals at low temperatures (<~300°C) requires reductive dissolution by organic acids, and 

suggested that the loss of ferric and ferrous irons from paleosols is an excellent indicator of an 

extensive development of biomass on land surface during soil formation. The Hekpoort paleosols 

in South Africa formed at about the same time and share many similarities with the Hokkalampi 

paleosols (Beukes et al., 2002).  Beukes et al. (2002) argue that the Hekpoort paleosols are 

groundwater-type paleolaterites, which are characterized by an Fe-depleted zone and an 

underlying ferric iron enriched zone.  Their model proposes the leaching of iron from soil zones 
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 by organic acids and the formation of Fe2+-rich groundwater aquifers during rainy seasons.  

Additionally, their model proposes additions of O2 molecules to the groundwater during dry 

seasons to precipitate ferric hydroxides in the groundwater table. 

We have obtained new geochemical and isotopic data from a reduced profile 

(Paukkajanvaara) and an oxidized profile (Nuutilanvaara) to better constrain the age of the 

weathering event and to assess the preservation of pedogenic signatures despite subsequent 

greenschist metamorphism.  We also explore alternate processes for major and trace element 

mobility, including leaching by organic acids and hydrothermal-metamorphic mobilization. 

2.3 METHODS IN THE HOKKALAMPI STUDY 

Drill core samples (Core 303) from the Nuutilanvaara locality were retrieved from the 

Geological Survey of Finland drill core archives.  Outcrop samples were collected during the 

summer of 2000 from the Paukkajanvaara locality using a hammer or portable saw.  The 

weathering profiles in both locations formed on Archean granitoid.  Three basement rock 

samples from the Paukkajanvaara site were obtained to determine the average composition of the 

parent material granitoid, which is relatively homogenous in the study area.   

Most samples were prepared for geochemical analyses at the University of Pittsburgh, 

with the exception of the three parent material samples, which were powdered at the Geologic 

Survey of Finland.  Whole-rock samples were crushed using a jaw crusher, powdered using a 

tungsten-carbide mixer-mill, and split to aliquots ranging from tens of milligrams to ~1 g. 
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Whole rock geochemistry was determined by ACME Analytical Laboratories, Ltd., in 

Vancouver, BC; major elements were analyzed by ICP-AES, trace elements were analyzed by 

ICP-MS, and FeO was determined by dichromate titration.   

Rubidium-strontium and samarium-neodymium chemistry were carried out under clean 

laboratory conditions at the University of Pittsburgh.  Whole rock samples of 50 to 200 mg were 

dissolved in Teflon© bombs using ultrapure hydrofluoric (HF), perchloric (HClO4), and 

hydrochloric (HCl) acids.  An aliquot of 1-5 mg was removed and spiked with a mixed 87Rb-

84Sr-147Sm-150Nd tracer solution, and rough concentrations were determined using isotope 

dilution thermal ionization mass spectrometry.  Based on these results, the remaining sample was 

spiked with mixed, isotopically pure 87Rb-84Sr and 147Sm-150Nd tracer solutions.  Following 

addition of the tracer solutions, Rb, Sr, and the REE were separated from the remaining matrix 

using cation exchange columns. Samarium and neodymium were separated from the other REE 

and each other in quartz columns containing LNSpec® resin.   

Rubidium was loaded on a single rhenium filament and its concentration determined by 

isotope dilution on a Finnigan MAT 262 thermal ionization mass spectrometer (TIMS) at the 

University of Pittsburgh.  Strontium (~250 ng) was loaded on a single Re filament with Ta-oxide 

powder, and the concentration and isotope composition were determined simultaneously by 

TIMS.  For each sample, 100 ratios were measured at an intensity of 2-4 x 10-11 amperes (A), 

and mass fractionation was corrected using an exponential law with 86Sr/88Sr = 0.1194.  Ratios of 

87Rb/86Sr are good to ≤1% of the measured value.  Strontium standard SRM 987 was run 

continually throughout the measurement period, and all measured 87Sr/86Sr ratios are consistent 

with SRM 987 = 0.71024. 
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Both neodymium and samarium were loaded on double Re filaments.  Concentrations of 

Sm were determined by isotope dilution, and the concentration and isotopic composition of Nd 

were determined simultaneously by TIMS, with 100 ratios measured at an intensity of 0.5-2 x 10-

11 A.  143Nd/144Nd ratios were corrected for mass fractionation using an exponential law and 

normalizing to 146Nd/144Nd = 0.724134.  The maximum uncertainty in the 147Sm/144Nd 

measurements is 0.2% of the measured value.  The University of Pittsburgh value for chondritic 

143Nd/144Nd is 0.511847, based on multiple analyses of the La Jolla Nd standard.  The reported 

uncertainties for all isotope analyses (87Sr/86Sr and 143Nd/144Nd) reflect both in-run and external 

reproducibility. 

2.4 HOKKALAMPI RESULTS 

2.4.1 Petrology of the Hokkalampi Profiles 

2.4.1.1 Mineralogy and Micromorphology of Pedogenesis 

Both the Paukkajanvaara (“reduced”) and Nuutilanvaara (“oxidized”) sections exhibit a 

gradational increase in weathering upward from the parent granitoid.  The lowermost sections 

(zone 3 of Marmo, 1992) of both profiles contain granitic rock fragments with primary quartz 

and twinned plagioclase grains (e.g., PK 43, 14 m depth; Figure 2.3c).  These lithorelicts (sensu 

Brewer, 1976, p. 146) are surrounded by a matrix of finer-grained quartz and secondary sericite 

and carbonate; grain boundaries contact sporadically (agglomeroplasmic microfabric, sensu 

Brewer, 1976, p. 170).  Minerals most susceptible to chemical weathering (plagioclase, biotite,  
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Figure 2.3:  Photomicrographs of weathering and post-pedogenic alteration textures in the Hokkalampi 

paleosol:  (1) Paukkajanvaara profile- (a) Quartz grain coated by sericite, (likely replacement for kaolinite) 

cutan and indicative of in situ weathering (highly weathered, zone 1; PK 36); (b) Recrystallized quartz 

floating in fine-grained sericite matrix (agglomeroplasmic microfabric) and overprinted by metamorphic 

foliation (moderately weathered, zone 2; PK 30); (c) Island of granitoid (upper part of photograph) 

surrounded by matrix of sericite, carbonate and quartz with sporadically touching grains (intertexic 

microfabric) (partially weathered, zone 3; PK 43).  (2) Nuutilanvaara profile- (d) Quartz grains coated by 

ferrans (iron oxide cutans), which could indicate exposure to oxygen prior to burial and are indicative of in 

situ weathering (moderately weathered, zone 2: N 66.5).  Depths (m) below the unconformity are shown. 
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potassium feldspar) are mottled and contain pits filled with sericite and carbonate.  Sericite is 

likely a metamorphic replacement for kaolinite, a common 1:1 product of subaerial weathering 

(Delvigne, 1998).  Alteration apparently initiated in mineral fractures and progressively widened 

outward, leaving islands of protolith surrounded by matrix.  In both profiles, zone 3 (which 

corresponds to a weathered C soil horizon) transitions upward to one with textures more 

indicative of B horizon pedogenic processes (zone 2 of Marmo, 1992). Here rare remnant 

plagioclase and potassium feldspar grains are intensely altered, although resistant quartz grains 

show no signs of chemical attack (e.g., PK 30, depth= 6.4 m; Figure 2.3b; corresponding to 

lower B horizons).  Clumps and accordion shapes of sericite could reflect the flocculation and 

swelling of clay minerals prior to metamorphism.  An increase in sericite (presumed to be 

metamorphically altered clay) and chloritized, exfoliating biotite is correlated with increased 

chemical weathering intensity up profile.  Quartz grains are recrystallized, occur mainly in 

pockets and stringers, and are occasionally coated by sericite grains (agglomeroplasmic fabric; 

possibly metamorphosed argillans (clay cutans); e.g., PK 36, 2.0 m depth; Figure 2.3a) or 

ferrans (iron oxyhydroxide cutans; e.g., N 66.5, 2.0m depth; Figure 2.3d).  Iron oxide coatings 

are found in soils and paleosols in which Fe has been mobilized and deposited locally (Delvigne, 

1998).  The ferrans found at the top of the Nuutilanvaara profile could indicate exposure to 

oxygen prior to burial by overlying sediment (Jackson and Sherman, 1953); these are observed in 

early Paleozoic paleosols (e.g., Capo, 1993). 

Where weathering is most intense (zone 1 of Marmo, 1992; absent in the Nuutilanvaara 

profile), even quartz exhibits pitting and corrosion.  Quartz grains are isolated and surrounded by 

fine-grained matrix (porphyroskelic microfabric, sensu Brewer, 1976, p. 170).  This zone 

corresponds to an upper B soil horizon.  The presence of embayed grains, mineral coatings, 
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spalling grains and intertextic, agglomeroplasmic and porphyroskelic microfabrics throughout 

the two profiles are indicative of in situ changes due to pedogenesis, preserved even after 

metamorphism.  

2.4.1.2 Post-Pedogenic Alteration Fabrics 

The minerals and textures preserved in both profiles are consistent with subaerial weathering 

that was followed by a greenschist metamorphic event that produced schistosity.  The present 

mineral assemblage is likely the result of the alteration of primary minerals such as biotite to 

chlorite and iron oxides, and the recrystallization of weathering products, such as kaolinite to 

sericite.  Microcrystalline quartz and epidote or carbonate produced by the breakdown of 

plagioclase during weathering apparently remained intact during metamorphism.  Larger grains 

of primary quartz survived and preserve spalling and evidence of dissolution.  Most of the 

sericite appears to have formed synmetamorphically, as it follows the foliation direction.  

However, some may have formed pre-metamorphically, as evidenced by its crenulated texture 

(e.g., Philpotts, 1989).  Chloritized biotite appears to be both prograde and retrograde, as some of 

the grains cut across the schistose fabric.  From the bottom to the top of each profile, there is a 

general increase in schistosity, quartz recrystallization, and amount of strained quartz.  This 

could be the result of weathering-induced porosity, which would enhance fluid flow in the upper, 

more pedogenically altered portions of the profiles relative to the parent granitoid during 

metamorphism. 



 18 

2.4.2 Major and Trace Element Concentrations in the Hokkalampi Profiles 

2.4.2.1 Major Elements in the Hokkalampi Profiles 

Bulk-sample elemental data are summarized in Table 2.1.  Major elements are reported as 

oxides, with the partitioning between FeO and Fe2O3 based on the dichromate titration.  In soils 

and paleosols, elemental data are generally normalized to a relatively immobile element, such as 

aluminum (Al), titanium (Ti), zirconium (Zr), niobium (Nb) or hafnium (Hf), to account for 

volume changes during weathering and for concentration or dilution due to gain and loss of other  

 

Table 2.1:  Whole rock major element concentrations (in wt%) of Hokkalampi samples. 

Sample Name Depth (m) SiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O TiO2 P2O5 Cr2O3 LOIb Totalc Ctotal Stotal

Paukkajanvaara
00 PK 42 -1.0 71.8 16.37 1.36 0.4 0.02 1.04 0.27 3.52 3.52 0.26 0.06 0.001 2.2 100.8 0.03 <0.01
00 PK 39 0.3 76.5 17.18 0.03 0.1 <0.01 0.02 0.01 0.05 1.14 0.14 <0.01 0.001 5.1 100.2 0.01 <0.01
00 PK 38 0.6 74.7 18.34 0.15 0.1 <0.01 0.02 0.01 0.13 1.80 0.45 0.02 0.003 4.7 100.4 0.04 <0.01
00 PK 37 1.0 75.6 18.44 0.13 0.1 <0.01 0.01 0.01 0.10 1.24 0.32 <0.01 0.001 4.3 100.2 0.03 0.02
00 PK 36 2.0 76.8 18.19 0.11 0.1 <0.01 0.01 0.04 0.06 1.19 0.19 0.05 <0.001 3.3 100.0 0.07 0.02
00 PK 41 3.0 75.9 17.92 0.09 0.1 <0.01 0.01 0.02 0.10 1.64 0.27 0.02 <0.001 4.0 100.1 0.02 0.01
00 PK 40 3.4 75.7 17.93 0.05 0.1 <0.01 0.04 0.04 0.15 1.79 0.63 0.04 0.016 3.4 99.9 <0.01 0.01
00 PK 33 3.7 75.9 16.79 0.19 <0.1 <0.01 0.03 0.02 0.24 3.26 0.27 <0.01 0.005 3.1 99.8 <0.01 0.01
00 PK 32 4.9 75.2 17.12 0.49 0.1 <0.01 0.14 0.07 0.25 4.74 0.39 0.04 0.006 2.6 101.2 0.05 0.02
00 PK 31 5.4 76.1 15.91 0.42 0.1 <0.01 0.15 0.10 0.28 4.49 0.30 0.06 <0.001 2.3 100.2 0.03 0.01
00 PK 30 6.4 77.5 15.37 0.27 0.1 <0.01 0.12 0.08 0.23 4.34 0.26 0.05 <0.001 2.2 100.5 0.01 <0.01
00 PK 22 10.0 77.1 13.26 1.70 0.1 0.01 0.95 0.03 0.14 4.89 0.15 <0.01 <0.001 1.5 99.9 0.01 0.01
00 PK 43 14.0 76.0 13.71 0.67 0.5 0.02 1.11 0.17 5.18 1.96 0.10 <0.01 <0.001 0.3 99.8 0.02 0.02
Nuutilanvaara
R303 N 59.0 -1.0 83.9 10.69 0.78 0.2 <0.01 0.13 0.02 0.17 2.64 0.24 <0.01 0.006 1.7 100.5 0.02 <0.01
R303 N 66.5 2.0 60.2 23.78 2.41 0.1 <0.01 0.47 0.44 0.45 8.00 1.01 0.31 0.001 2.4 99.6 <0.01 0.01
R303 N 70.3 5.8 72.1 13.89 0.98 0.5 0.02 0.62 2.94 2.30 2.94 0.11 0.05 <0.001 4.0 100.4 0.57 0.03
R303 N 76.5 11.0 75.4 12.95 1.00 0.6 0.02 0.71 1.60 2.26 2.99 0.14 0.05 <0.001 2.2 99.9 0.32 0.01
R303 N 80.1 15.0 68.7 15.66 1.71 1.5 0.02 1.43 1.08 0.42 5.26 0.29 0.16 0.006 3.4 99.7 0.17 0.03
Parent Material
Parent 1A >15.0 71.5 15.56 1.05 0.6 0.02 1.64 0.30 4.63 2.68 0.22 0.06 n/a 1.5 99.7 0.01 <.01
Parent 2 >15.0 74.5 14.27 1.07 0.4 0.02 1.12 0.24 4.17 2.55 0.13 0.02 n/a 1.3 99.8 0.04 0.01
Parent 4 >15.0 71.1 16.05 1.30 0.4 0.01 0.86 0.53 4.53 2.86 0.43 0.17 n/a 1.4 99.6 0.05 <.01
 Average Parent
(1A, 2, 4) >15.0 72.4 15.29 1.14 0.5 0.02 1.21 0.36 4.44 2.70 0.26 0.08 n/a 1.4 99.7 0.03 n/a
a ACME Analytical Laboratories LTD.; Method:  LiBO2 Fusion, Analysis by ICP-ES.  FeO by dichromate titration.  Total C and S measured by LECOØ CNS Analyzer.
bLOI = loss on ignition
cTotal includes LOI; excludes Ctotal and Stotal.
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elements during weathering processes (Chadwick et al., 1990).  These elements are typically 

chosen for normalization purposes according to criteria such as abundance, homogeneity of 

distribution, and relative chemical immobility (Rye and Holland, 1998; Driese et al., 2000; Kurtz 

et al., 2000).   For the Hokkalampi profile samples, only the ratio of Ti/Nb varies by less than 

40% from the granitoid parent material in either profile (Figure 2.4a), consistent with the 

distribution of immobile elements in modern soil profiles (Maynard, 1992).  The other normally 

immobile elements measured in this study (Al and Zr) vary from the parent material by >40%  

 

 

Figure 2.4:  Variation of Ti with Nb and Zr for the Nuutilanvaara and Paukkajanvaara sections of the 

Hokkalampi paleosol.   

 

when plotted against each other or against Ti and Nb (e.g., Zr vs. Ti, Figure 2.4b).  The 

Variation in Zr/Ti ratios probably reflects the heterogeneity of parental rocks, rather than the 

dissolution/reprecipitation of Zr.  Therefore, we use Ti for normalization of elemental data due to 
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its abundance (relative to Nb) and relatively homogeneous distribution throughout both profiles. 

The Ti/Nb ratios in the conglomerate overlying the paleosol were also within 40% of the parent, 

suggesting that the conglomerate could be derived from reworked paleosol material and 

granitoid, as suggested by Marmo (1992).  The relative gain or loss of an element in a 

weathering profile can be calculated by comparing element/Ti ratios of the profile to that of the 

parent material.  This mass balance is expressed by 100[(RW-RP)/RP], where RW is the ratio of an 

element to Ti in the weathered sample and RP is the ratio of the element to Ti in the unweathered 

parent (Nesbitt, 1979; Nesbitt and Markovics, 1997).  Elemental ratios from the Paukkajanvaara 

and Nuutilanvaara profiles and the overlying conglomerate (containing transported paleosol) of 

the Hokkalampi area show significant differences from the underlying granitoid (Figure 2.5).   

Most samples from the moderate to highly weathered portions of the paleosol (zones 1 

and 2) of both profiles, as well as the conglomerate above both profiles, show significant 

depletion of the mobile elements calcium (Ca), magnesium (Mg), and sodium (Na) relative to 

parent material (Figure 2.5).  This loss of base cations from both weathering profiles is typical 

for intensively weathered soils and paleosols (e.g., Nesbitt et al., 1980; Rainbird et al., 1990; 

Nesbitt and Markovics, 1997; Panahi et al., 2000; Chadwick et al., 2003).  Concentrations of Ca 

and Mg increase significantly in the lower portions (zone 3) of both profiles.  In particular, the 

extreme enrichment of Ca in zone 3 of the Nuutilanvaara profile (to nearly 2000% of the parent 

value) suggests accumulation of pedogenic carbonate.  Potassium (K) deviates from the trend of 

the other alkalis and the alkaline earth metals in that it is significantly enriched relative to the 

parent through most of the profile (Figure 2.5).  This kind of enrichment is not expected from 

pedogenic processes, and it suggests later addition of K to the profile, either through diagenesis 

or metamorphism/metasomatism.  
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Figure 2.5:  Percent deviation of major elements (Ti-normalized) from parent granitoid with depth in the 

Paukkajanvaara and Nuutilanvaara profiles.  Note that Ca is off-scale in the Nuutilanvaara profile, reaching 

+1853% at 5.8 m and +735% at 11 m depth. 
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Variation of Ti-normalized total Fe (FeT), Fe2+, and Fe3+ from average parent material 

with depth for both profiles is shown in Figure 2.6.  In the Paukkajanvaara profile, FeT is 

significantly depleted (-96%) in zone 1, but increases in zone 2 and exhibits enrichment over 

parent of up to +95% in zone 3.  Fe3+ shows more enrichment than Fe2+ in the mid to lower 

profile, reaching enrichments as high as +159% relative to parent material at the base of zone 2.  

At the bottom of the profile, Fe2+ is more enriched (+187%) than Fe3+ (+54%).  At the top of the 

Nuutilanvaara profile, which represents the lower part of zone 2 (moderately weathered), FeT is 

depleted by 60% compared to the parent granitoid.  FeT increases to +122% over parent in zone 

3.  In this zone, Fe2+ is more enriched than Fe3+ (up to +197% compared to up to +105%).  In the  

sedimentary deposits immediately overlying the profiles, thought to represent paleosol-derived 

material (Marmo, 1992), Fe3+ is less depleted than Fe2+, and in fact shows a slight enrichment 

over the Paukkajanvaara profile (+19%). 

2.4.2.2 Trace Elements in the Hokkalampi Profiles 

Rare earth element (REE) and selected trace element data are reported in Table 2.2.  

Chondrite-normalized REE plots for samples from each profile, along with the range in parent 

material, are presented in Figure 2.7.  Different samples of parent material (shaded region) vary 

in their REE concentrations by as much as a factor of ~24, but all show the strong enrichment in 

light rare earth elements (LREE: La to Sm) relative to chondrites expected from a granitic parent 

lithology (Figure 2.7a,b).  Paleosol samples from the Paukkajanvaara profile (Figure 2.7a) 

generally fall in the range of parent material values, although they show considerably more 

variation in LREE than in the heavy rare earth elements (HREE:  Gd to Lu), with some LREE 

falling below the lowest parent concentrations measured.  In contrast, most of the weathered 

samples from the Nuutilanvaara profile (Figure 2.7b) tend to have relatively high HREE  
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Figure 2.6:  Percent deviation of Ti-normalized FeT, Fe2+ and Fe3+ from parent granitoid (calculated as 

100[Fesample/Feparent - 1]) with depth in the Paukkajanvaara and Nuutilanvaara profiles. 
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Table 2.2:  Whole rock analysis of trace elements for the Hokkalampi paleosol. 

Sample Name Nb Zr U Th Rb La Ce Pr Nd Sm Eu Gd Dy Er Yb Lu

Paukkajanvaara
00 PK 42 4.3 106 4.4 0.7 139 1.3 5.7 0.54 2.8 0.6 0.33 0.97 0.50 0.32 0.26 0.08
00 PK 39 1.5 191 1.6 4.2 31.0 17.7 30 2.65 9.5 0.8 0.17 0.40 0.44 0.28 0.48 0.10
00 PK 38 5.0 156 0.7 4.5 48.9 33.2 54.3 5.16 15.6 1.4 0.39 0.90 0.30 0.19 0.24 0.05
00 PK 37 3.0 144 1.0 4.1 33.0 19.9 31.7 2.89 7.8 0.7 0.19 0.61 0.63 0.45 0.48 0.09
00 PK 36 2.8 70 0.6 15.7 30.3 102 220 27.3 110 15.8 3.32 6.48 1.16 0.19 0.34 0.03
00 PK 41 2.7 111 1.3 0.7 40.1 31 56.8 6.05 22.9 2.6 0.57 0.91 0.58 0.32 0.41 0.09
00 PK 40 7.8 184 1.5 8.3 44.3 125 246 25.7 85.5 10.1 2.22 4.26 2.68 1.50 1.41 0.22
00 PK 33 3.1 86 1.0 0.9 75.3 19.7 30.8 3.35 12.5 1.7 0.56 1.10 0.92 0.51 0.41 0.06
00 PK 32 5.4 94 2.8 3.9 117 55.6 110 13.6 52.3 7.0 1.01 3.15 0.81 0.17 0.29 0.03
00 PK 31 3.3 35 1.0 1.7 107 5.5 12.7 1.46 6.3 1.0 0.15 1.27 0.70 0.39 0.27 0.04
00 PK 30 2.9 94 3.0 0.9 98.8 2.5 4.8 0.47 2.0 0.4 <.05 0.80 0.48 0.20 0.24 0.03
00 PK 22 1.5 94 7.9 0.8 159 1.5 3.9 0.62 3.4 1.0 0.00 0.64 0.32 0.18 0.20 0.03
00 PK 43 1.1 67 3.6 0.4 74.4 7.2 20.6 2.13 8.6 1.3 0.40 0.68 0.44 0.23 0.22 0.03
Nuutilanvaara
R303 N 59.0 3.3 206 1.2 20.0 97.4 28.3 55.6 6.13 19.8 3.3 0.56 2.66 1.54 0.82 0.69 0.12
R303 N 66.5 10.6 346 2.4 40.3 258 86.9 143 24.3 96.6 18.6 3.06 15.09 12.68 7.08 4.83 0.65
R303 N 70.3 1.8 83 1.0 11.3 126 26.9 49.4 5.35 16.3 2.5 0.59 1.52 1.15 0.50 0.39 0.07
R303 N 76.5 1.6 95 0.6 1.8 123 9.1 16.8 1.88 6.8 1.1 0.27 0.65 0.55 0.35 0.39 0.05
R303 N 80.1 4.7 237 4.0 31.6 211 85.3 171 18.4 64.3 10.6 2.56 6.53 4.77 2.25 1.67 0.21
Parent Material
Parent 1A 2.3 100 1.2 2.5 112 11.2 32.4 3.22 12.4 1.6 0.40 0.98 0.50 0.24 0.26 0.04
Parent 2 1.5 60 0.7 0.7 99.1 5.7 10.7 1.02 3.70 0.5 0.28 0.31 0.15 0.08 0.13 0.02
Parent 4 5.8 286 4.8 33.2 111 87.2 247 23.9 87 11.1 2.66 5.30 2.39 0.86 0.92 0.11
AVG PARENT
(1a, 2, 4) 3.2 149 2.2 12.1 108 34.7 96.6 9.39 34.4 4.4 1.11 2.20 1.01 0.39 0.44 0.06
a ACME Analytical Laboratories LTD.; Method:  LiBO2 fusion, analysis by ICP-MS
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Figure 2.7:  Normalized rare earth element concentrations for Hokkalampi samples.  Shaded areas reflect the 

range of parent material values.  (a) REE concentrations of the Paukkajanvaara samples normalized to 

chondrites.  (b) REE concentrations of the Nuutilanvaar Nuutilanvaara samples normalized to chondrites.  

(c) REE concentrations of the Paukkajanvaara samples normalized to average parent material.  (d) REE 

concentrations of the Nuutilanvaara samples normalized to average parent material.  Depths below the 

unconformity for each sample are noted on the left side of each plot. 
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contents and LREE patterns subparallel to those of the parent material samples.  Two samples 

show measurable Ce anomalies (Figure 2.7a, b): Sample 00 PK 42 from the conglomerate 

overlying the Paukkajanvaara profile (positive anomaly), and Sample R303 N 66.5 from 2 m 

below the unconformity in the Nuutilanvaara profile (negative anomaly). 

To facilitate comparison of weathered samples to the parent material, we plot the paleosol 

REE normalized to both the immobile element Ti and the average parent material REE (Figure 

2.7c, d).  This not only allows evaluation of weathering effects on REE patterns, but also allows 

us to quantify absolute gain or loss of REE during soil development.  When normalized to Ti, the 

maximum spread in parent material REE concentrations decreases by about a factor of three.  As 

shown in Figure 2.7c, most of the weathered Paukkajanvaara profile samples fall below the 

average parent material value, and are indicative of leaching of REE. In some cases LREE in 

some cases show a greater depletion than HREE.  These patterns indicate that fluids leached rare 

earth elements in many parts of the profile.  In contrast, the REE patterns from the Nuutilanvaara 

profile (Figure 2.7d) straddle the parent material values, with enrichment in HREE suggesting 

some accumulation of REE in the profile.  Nearly all parent-normalized REE patterns show a 

small negative Ce anomaly.  This reflects a small positive Ce anomaly measured in the parent 

material, rather than pedogenic depletion of Ce. 

2.4.3 Radiogenic Isotopes in the Hokkalampi Profiles 

Results from Rb-Sr and Sm-Nd analyses of selected samples from the Paukkajanvaara and 

Nuutilanvaara profiles are presented in Table 2.3.  The data show a significant spread in the 

87Rb/86Sr (2.7 to 38.4) and present-day (measured) 87Sr/86Sr (0.7870 to 1.6946).  The 147Sm/144Nd 

values range between 0.0725 and 0.1761, commensurate with the various degrees of LREE  
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Table 2.3:  Rb-Sr and Sm-Nd data for the Hokkalampi paleosol.  Concentrations (by isotope dilution TIMS) 

are in ppm. 

Sample Name Rb Sr Sm Nd

Paukkajanvaara
00 PK 40 3.4 44.2 47.2 9.7 81.0 2.73 0.787029 ± 11 0.0725 -41.79 ± 0.27 -4.07 ± 0.32
00 PK 33 3.7 76.5 22.9 1.9 12.8 9.85 0.913362 ± 15 0.0894 -37.43 ± 0.31 -4.85 ± 0.37
00 PK 22 10.0 161.5 13.4 0.9 3.0 38.4 1.694540 ± 27 0.1761 -10.98 ± 0.31 -4.75 ± 0.42
00 PK 43 14.0 79.1 42.0 1.1 6.5 5.55 0.876046 ± 12 0.1021 -34.05 ± 0.33 -5.33 ± 0.40
Nuutilanvaara
R303 N 66.5 2.0 247.7 72.3 16.5 87.7 10.2 0.980635 ± 18 0.1137 -28.45 ± 0.31 -3.23 ± 0.38
R303 N 76.5 11.0 122.3 87.5 0.9 5.8 4.10 0.832192 ± 12 0.0988 -35.62 ± 0.27 -5.89 ± 0.33
R303 N 80.1 15.0 212.0 53.2 10.3 60.9 11.9 1.020872 ± 74 0.1019 -33.41 ± 0.29 -4.63 ± 0.36
aChondritic 143Nd/144Nd(0)= 0.511847
b Corrected to an age of 2.35 Ga ago (see Section 5.1.1 ).

Depth (m) 87Rb/86Sr 87Sr/86Sr(0) 147Sm/144Nd εNd(0)a εNd(T)b

 

 

enrichment observed in the samples (Figure 2.7a, b).  The neodymium isotope ratio calculated 

for any time in the past (time T in years before present) is presented in equation 2.1 using the 

standard ε notation: 

  
εNd (T) =104

143 Nd/144Ndsample (T)
143 Nd/144NdCHUR(T)

−1
  

   
   
   

  

  
  
  
                                   (2.1) 

 

where CHUR is the chondritic meteorite value.  Present-day (measured) values, εNd(0), for the 

paleosol samples range from -11.0 to -41.8 (Table 2.3), reflecting the age and wide range in 

Sm/Nd of different portions of the weathering profile.   
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2.5 DISCUSSION OF HOKKALAMPI DATA 

2.5.1 Chronology of Pedogenesis and Post-Pedogenic Processes of the Hokkalampi 

Paleosol 

2.5.1.1 Dating Soil Formation with the Sm-Nd Isotope System 

Application of the Sm-Nd isotopic system to Precambrian paleosols provides possible temporal 

constraints on soil formation and a better evaluation of element mobility during pedogenesis.  

The nuclide 147Sm decays to 143Nd with a half-life of 106 Ga, allowing this system to be used for 

geochronology, primarily of igneous rocks.  Pedogenesis is unlikely to rigorously satisfy the 

requirements for the Sm-Nd geochronologic system particularly due to the requirement of 

uniform initial 143Nd/144Nd.  However, pedogenic fractionation of REE (as discussed in the last 

section) leads to the possibility of achieving a significant spread in Sm/Nd ratios during soil  

formation, and this may constrain the timing of pedogenesis.  In addition, any initial 143Nd/144Nd 

variations in the soil profile can provide information about pre-weathering processes and 

possible multiple sources of profile parent material. 

In order to track possible variations in εNd(T) of the soil, we require an age to which the 

Nd isotope values can be corrected for decay of 147Sm.  Cross-cutting relations show that the 

Hokkalampi paleosol formed between 2.2 Ga (overlying sedimentary rock cut by dikes; Marmo, 

1992; Vuollo et al., 1992) and 2.44 Ga ago (gabbro cut by weathering event; (Sturt et al., 1994), 

a ~240 Ma window that allows for considerable variation in initial εNd values.  If the parent 

material for the paleosol was relatively isotopically homogeneous at the time of soil formation, 

and pedogenesis resulted in significant fractionation of Sm from Nd, then the possibility exists to 
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use the Sm-Nd data to better constrain the time of soil formation.  In Figure 2.8, we plot the Sm-

Nd data from both profiles in an isochron diagram and use the least squares regression method  

and error analysis of York (1969) to calculate an age.  Provided the above conditions were met, 

the apparent isochron gives the time of soil formation as 2.35 ± 0.19 Ga (2σ).  As can be seen, 

much of the spread in the isochron is created by one sample, 00-PK-22.  Even when this point is 

excluded, the data yield an identical age but with a larger uncertainty (2.35 ± 0.49 Ga).   

When corrected to this apparent age, εNd(T) values from both profiles range from -3.2 to 

-5.9, with a mean of -4.7 (Table 2.3).  This is consistent with a parent granodiorite derived from 

a depleted mantle source 300-600 Ma before pedogenesis (i.e., 2.7-3.0 Ga ago).  While this 

“age” does not necessarily narrow down the time frame of pedogenesis within its 95% 

confidence interval, it does fall in the center of the geologically allowable interval for 

Hokkalampi pedogenesis, suggesting that pedogenic REE fractionation could be the primary 

cause of the spread in Sm/Nd.  Moreover, it opens up the possibility that the Sm-Nd system 

could be used elsewhere for paleosol geochronology in the Precambrian, particularly for those 

paleosol profiles with more uniform parent material. 

In Figure 2.9, we present a schematic model for the Sm-Nd evolution of the Hokkalampi 

paleosol and its granitoid parent.  In this model, the granitoid is derived from depleted mantle 

2.85 Ga ago, with an initial εNd of +3, which is reasonably close to the mantle evolution curves 

of DePaolo (1981) and Goldstein et al. (1984).  Whole rock samples of the granitoid (shaded 

region between 2.85 and 2.35 Ga) evolve within a very restricted range of values, based on 

parent material Sm/Nd ratios measured in this study.  However, individual minerals within the 

granitoid, while starting out with identical εNd(T) values, are expected to diverge widely over the 

~500 Ma between granitoid crystallization and Hokkalampi pedogenesis.  Evolution curves for  
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Figure 2.8:  143Nd/144Nd variation with 147Sm/144Nd for Paukkajanvaara and the Nuutilanvaara sections of the 

Hokkalampi paleosol.  The combined data plotted form an apparent isochron reflecting a model age of 2.35 ± 

0.19 Ga ago (2σ). 
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Figure 2.9:  Schematic model of Sm-Nd evolution for the Nuutilanvaara and Paukkajanvaara sections of the 

Hokkalampi paleosol.  In this model, the granitoid is derived from depleted mantle 2.85 Ga ago, with an 

initial εNd of +3.  Whole rock samples of the granitoid (shaded region between 2.85 and 2.35 Ga) evolve 

within a very restricted range of values, based on parent material Sm/Nd ratios measured in this study.  

Evolution curves for zircon (zr), hornblende (hb), titanite (ti), plagioclase (pl) and allanite (al) are shown 

based on Sm/Nd ratios of minerals in a granodiorite from the Peninsular Ranges Batholith (Gromet and 

Silver, 1983).  Pedogenesis at ~2.35 Ga partially homogenizes the granitoid, and subsequent evolution paths of 

the profile.  Whole-rock samples fall within the shaded region, based on data from this study. 
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zircon (zr), hornblende (hb), titanite (ti), plagioclase (pl) and allanite (al) are shown in Figure 

2.9, based on Sm/Nd ratios of minerals in a granodiorite from the Peninsular Ranges Batholith 

(Gromet and Silver, 1983).  During soil formation at ~2.35 Ga, the rare earth elements (including 

Sm and Nd) are mobilized throughout the profile, and redistribution of Nd from selective mineral 

weathering leads to increased isotopic heterogeneity in bulk samples of weathered material.  

Weathering-induced REE fractionation also creates a greater spread in bulk-rock Sm/Nd than 

was present in unweathered granodiorite.  Therefore, subsequent to pedogenesis, the εNd 

trajectories of bulk paleosol samples diverge significantly from that of the parent, leading to the 

large range in measured εNd values in the paleosol. 

The self-consistent model presented in Figure 2.9 suggests that nearly all of the REE 

fractionation in Hokkalampi paleosol samples could have taken place during formation of the 

Paleoproterozoic weathering profile, rather than during later greenschist facies metamorphism or  

more recent exposure at the Earth’s surface.  This contrasts with the results of Macfarlane et al. 

(1994), who suggested that the Sm-Nd systematics of a paleosol developed on the ~2.8 Ga Mt. 

Roe basalt were disturbed by intense metasomatism at 2.1 Ga.  In this event, hydrothermal fluids 

apparently channeled through the weathered zone of the basalt protolith, and severe alkali 

depletion was observed (Macfarlane and Holland, 1991; Macfarlane et al., 1994).  While the 

Hokkalampi paleosol shows some degree of alkali metasomatism, the Nd isotope systematics 

from this study suggest that its REE fractionations reflect Precambrian weathering processes. 
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2.5.1.2 Rb-Sr Constraints on Post-Pedogenic Metamorphism of the Hokkalampi 

Paleosol 

The rubidium-strontium system, in which the nuclide 87Rb decays to 87Sr with a half-life of 

48.8 Ga, has long been used for geochronology of igneous rocks.  It is well known, however, that 

the Rb-Sr systematics of igneous rocks are easily disturbed or reset by weathering and 

metamorphic processes due to the relatively high mobility of Rb (an alkali element) and Sr (an 

alkaline earth element).  This propensity for resetting makes the Rb-Sr system potentially 

attractive for examining the timing of pedogenesis and/or later metamorphic disturbances of 

paleosols.  Macfarlane and Holland (1991) found that the Rb-Sr system produced a precise “age” 

for the Mt. Roe weathering profile that was coincident with post-pedogenic metamorphism and 

metasomatism. 

The Rb-Sr isotope data from the Hokkalampi paleosol (Table 2.3) form a linear array on 

an isochron diagram (Figure 2.10).  When all samples are used in the calculation, the “isochron” 

yields an age of 1.75 ± 0.28 Ga (calculated after the method of (York, 1969); if sample 00-PK-33 

is excluded (outlier on Figure 2.10), the calculated age is 1.82 ± 0.15 Ga.  In either case, the 

Hokkalampi Rb-Sr data clearly indicate a disturbance to the Rb-Sr system well after 

pedogenesis.  The most likely culprit is the regional greenschist-grade metamorphism associated 

with the Svecofennian Orogenic event that reached its peak around 1.9 Ga ago (Marmo, 1992), 

but continued until about 1.77 Ga (Kouvo and Tilton, 1966; Kuovo et al., 1983; Wilson et al., 

1985; Patchett et al., 1987; Huhma et al., 1990).  In this case, the Rb-Sr system might be dating 

the waning phase of this metamorphic event.  Similar metamorphic resetting of the Rb-Sr system 

at this time is observed in granitoids and gneisses in eastern Finland (Vidal et al., 1980; Martin, 

1989). 
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Figure 2.10:  Variation of 87Sr/86Sr with 87Rb/86Sr for the Nuutilanvaara (open circles) and Paukkajanvaara 

sections (closed squares) of the Hokkalampi paleosol. These data form a linear array on an isochron diagram 

(solid line).  When all samples are used in the calculation, the “isochron” points to an age of 1.75 ± 0.28 Ga; if 

sample outlier 00-PK-33 is excluded, the calculated age is 1.82 ± 0.15 Ga (dashed line).  
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The observed resetting of the Rb-Sr system requires at least limited exchange of Sr on a 

scale of meters, which could have been aided by fluid flow accompanying metamorphism.  In 

addition, it is likely that Rb was selectively added to portions of both profiles during K-

metasomatism, which could significantly increase the spread in Rb/Sr ratios.  This is 

demonstrated by a comparison of Ti-normalized Rb and K concentrations in both profiles 

(expressed as % deviation from parent material, Figure 2.11).  A regression through all data 

from both profiles (solid line) yields a significant correlation with r2 = 0.91, and the 

Nuutilanvaara data alone (dashed line) yield a nearly perfect correlation (r2 = 0.9996 ≈ 1.00).  

The observed correlations strongly suggest that K-metasomatism was synchronous with regional 

metamorphism at 1.9-1.8 Ga.  

2.5.2 Element Mobility During Weathering and Metamorphism of the Hokkalampi 

Paleosol 

2.5.2.1 Major Element Weathering Trends and K Addition 

Contrasting patterns of element depletion between the two profiles (Figure 2.5) suggest that 

either the Paukkajanvaara profile is more strongly developed than the Nuutilanvaara profile, or 

an intensely weathered section at the top of the Nuutilanvaara profile was eroded away.  

Geographic relationships (Marmo, 1992) and chemical similarity of the overlying sedimentary 

deposits at the Paukkajanvaara location to the Nuutilanvaara profile support the latter.  In either 

case, the preservation of a highly weathered section in the Paukkajanvaara profile provides an 

opportunity to study chemical mobility, including redox element mobility, during Proterozoic 

soil formation. 
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Figure 2.11:  Variation of K/Ti (% deviation from parent) with Rb/Ti (% deviation from parent) for the 

Paukkajanvaara profile (closed squares) and the Nuutilanvaara profile (open circles).  The observed 

correlation strongly suggests that Rb was mobilized and transported into the profile during K-metasomatism. 
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Nesbitt and Young (1984; 1989) compared thermodynamic and mass balance models for 

granite weathering to modern granite soil profiles on A-CN-K (Al2O3-CaOsil+Na2O-K2O) 

diagrams, where CaOsil represents the CaO only in silicate minerals.  The Hokkalampi paleosol 

data are plotted on such a diagram in Figure 2.12, with CaO corrected for carbonate by assuming 

that all carbon, (Ctotal) is in the form of carbonate, and corrected for Ca-phosphate using P2O5.  

The arrowed path indicates the typical trend for chemical alteration of granite, reflecting 

weathering initially dominated by plagioclase and then by potassium feldspar, resulting in 

alteration to kaolinite.  On average, the Paukkajanvaara profile (closed squares) exhibits a higher 

degree of weathering (i.e., samples that plot closer to the Al2O3 corner) than the Nuutilanvaara 

profile (open circles).  While the Hokkalampi samples show a general trend of decreasing Ca, 

Na, and K from the parent material as seen in modern weathering profiles, they are displaced 

toward more potassium-rich values relative to the normal weathering trend (Figure 2.12).  This 

can also be seen in Figure 2.5, where K shows less depletion than other mobile elements (e.g., 

Ca, Mg, Na) in the heavily weathered zone (zone 1) of the Paukkajanvaara profile, and it is in 

fact enriched in portions of zones 2 and 3 of the Hokkalampi profiles.  The observed trend cannot 

be explained as simple residual enrichment of K during weathering, as this would require 

preferential removal of Al relative to K during the early stages of pedogenesis, which is unlikely.  

The data suggest K addition some time after pedogenesis, either during diagenesis or during a 

later metamorphic/metasomatic event.  Circulating groundwaters rich in K could have converted 

pedogenic kaolinite to illite (e.g., Gay and Grandstaff, 1980; Holland et al., 1989; Rainbird et al., 

1990), while metasomatic fluids would have added additional K at temperatures sufficiently high 

to recrystallize illite into sericite.  This recrystallization most likely took place pre- and syn-

metamorphically, based on the alteration textures of sericite (see section 2.4.1.2).  As discussed  
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Figure 2.12:  A-CN-K diagram showing an idealized model for modern granitic weathering compared to the 

weathering trend for the Hokkalampi paleosol.  The arrows indicate the typical trend for chemical alteration 

of granite reflecting weathering of plagioclase and potassium feldspar to kaolinite.  On average, the 

Paukkajanvaara profile (closed squares) exhibits more advanced weathering (i.e. samples that plot closer to 

the Al2O3 corner) than does the Nuutilanvaara profile (open circles).  While the Hokkalampi samples exhibit 

decreases in Ca, Na, and K as seen in modern weathering profiles developed on granite, they are clearly 

displaced toward more potassium-rich values.  This implies K addition some time after pedogenesis. 
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previously, the apparent metamorphic Rb-Sr age for the paleosol (Figure 2.10) coupled with the 

strong correlation of Ti-normalized Rb and K (Figure 2.11) argue strongly that the excess K was 

added to the profile during metamorphism. 

2.5.2.2 REE Mobility During Hokkalampi Profile Development 

Previous studies have shown that REE can be mobilized and fractionated during pedogenesis 

(Balashov et al., 1964; Nesbitt, 1979; Schau and Henderson, 1983; Banfield and Eggleton, 1989; 

Braun et al., 1990; Price et al., 1991; Mongelli, 1993; Macfarlane et al., 1994; Nesbitt and 

Markovics, 1997; Aubert et al., 2001).  This is particularly true under tropical conditions, such as 

those that produce bauxite, where chemical weathering is intense (Kimberley and Grandstaff, 

1986).  Paleosols formed in the Archean and Paleoproterozoic undoubtedly formed under very 

different conditions than modern soils.  Vegetation was absent on the terrestrial surface, and the 

extent of biological activity, most likely in the form of microbial mats, is unknown (e.g., Rye, 

1998; Rye and Holland, 2000; Watanabe et al., 2000).  A key question is to what extent soil-

forming processes in the Precambrian were capable of mobilizing and fractionating REE.  

However, a potential confounding factor is the effect of metamorphism on REE distribution in a 

paleo-profile.  While most studies suggest that the rare earth elements remain relatively 

immobile on a whole-rock scale during metamorphism, based on the systematics of the Sm-Nd 

isotope system (Hamilton et al., 1979; Jahn et al., 1982; Farmer and DePaolo, 1987; Stewart and 

DePaolo, 1996), rare earth element patterns in some Archean and Paleoproterozoic volcanic 

rocks in eastern Finland show evidence of disturbance during ca. 1.8-1.9 Ga metamorphism 

(Huhma et al., 1990; Gruau et al., 1992).  The Sm-Nd isotope data discussed earlier (see section  
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2.5.1.1) strongly suggest that the REE patterns displayed by the Hokkalampi paleosol samples 

are representative of weathering remobilization during pedogenesis and were not substantially 

affected by later metamorphism. 

In both Hokkalampi soil profiles, it appears that weathering and soil development have 

led to mobilization of rare earth elements, with gains and losses in total REE, as well as 

significant fractionation of the REE patterns (Figure 2.7).  In general, the REE budgets of 

granitoid rocks tend to be controlled by REE-rich accessory minerals such as apatite, allanite, 

titanite (sphene) and/or zircon (Gromet and Silver, 1983; Condie et al., 1995).  While there is no 

unique set of weathering patterns that can explain up-profile enrichment of LREE, selective 

weathering of one or more accessory phases is a possibility, along with preferential capture of 

LREE by secondary minerals.  For example, titanite is generally LREE-depleted relative to its 

igneous parent and this mineral can dominate the REE budget of granitoids (Gromet and Silver, 

1983).  In the ~3 Ga Steep Rock paleosol, Canada, which has developed on granodiorite parent 

material, the REE appear to be closely associated with a Ti-rich phase, most likely titanite or its 

weathering products (Macpherson et al., 2000).  Alteration of titanite to a Ti-oxide with 

concomitant release of its REE could explain the trend in the Paukkajanvaara profile.  Titanite is 

thought to weather readily in soils (Condie et al., 1995; Lång, 2000; Singh and Rajamani, 2001; 

Girty et al., 2003), and the REE released by weathering near the top of the profile would be 

subject to the greatest flux of soil water, enhancing its removal.  Another possibility for LREE 

enrichment near the top of the profile would be capture of weathering-released LREE by 

adsorption onto oxy-hydroxides or clay minerals (Nesbitt, 1979; Schau and Henderson, 1983; 

Öhlander et al., 1996) or by incorporation into precipitated LREE phosphates.  There is, 

however, no apparent correlation between P2O5 content and La/Sm ratios. 
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In the Nuutilanvaara profile, the modest (to nonexistent) LREE losses, gains in HREE, 

and limited La/Sm variations (Figure 2.7d) most likely reflect limited REE mobility (including 

REE accumulation from above) during weathering in an unsaturated, and possibly oxygenated, 

soil profile.  The upper portions of the Nuutilanvaara profile, where the strongest weathering and 

REE fractionation might be expected, have apparently been physically removed by erosion 

(Marmo, 1992).  Because plagioclase commonly displays a strong positive Eu anomaly (Eu 

concentration elevated significantly above its neighbors in a normalized REE pattern), 

weathering and removal of plagioclase REE can result in negative Eu anomalies in the bulk 

residual soil.  Negative Eu anomalies corresponding to low total REE at 5-10 m depth in the 

Paukkajanvaara profile (Figure 2.7c, Table 2.2) suggest significant removal of plagioclase (and 

other REE-bearing phases) at this level, possibly related to leaching by groundwaters.  The 

Nuutilanvaara profile shows no such REE-depleted zone, strengthening the argument that it 

remained above the water table during its formation. 

2.5.3 Mobilization of Redox-Sensitive Elements 

2.5.3.1 Iron Mobility 

The Fe loss in portions of the Hokkalampi profiles (Figure 2.6) is much higher than the ≤50% 

average loss for Paleozoic and younger profiles (Driese, 2004) and is similar to the >75% Fe loss 

seen in the upper portion of the 2.3 Ga Hekpoort paleosol, although Driese (2004) notes that the 

calculated Fe loss is much lower in the Hekpoort paleosol if saprolitic basalt is assumed to be its 

parent material.  The trend of iron loss in the upper part of the Hokkalampi profiles and FeT gain 

in the lower part could be due to leaching of Fe under reducing conditions and movement of Fe 

through the soil profile, followed by deposition at or near the weathering front or the paleo-water 
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table.  Subsequent deposition of Fe near the weathering front could be due to:  (1) an increase in 

cation exchange capacity with the increase of 2:1 clays deeper in the soil profile; (2) an increase 

in pH due to weathering of feldspars, which produces alkalinity; and/or (3) a decrease in the 

leaching capacity as inorganic and/or organic acids are naturally neutralized or diluted (Nesbitt, 

1979).   

However, iron mobility does not necessarily imply that pedogenesis took place under 

anoxic atmospheric conditions; Driese (2004) documented pedogenic translocation of Fe, with 

associated depletion and enrichment, in both modern and paleo-vertisols.  Waterlogged 

conditions could reduce and mobilize Fe despite an oxygenated atmosphere.  Experimental 

studies by Neaman et al. (2005) indicate that organic ligands could also play a significant role in 

the mobility of Fe and other redox elements in soil.  Both of these mechanisms (waterlogged 

conditions and organic ligands) require that sufficient organic matter was present in the 

terrestrial environment to produce reducing solutions and/or organic ligands, which is still an 

open question (e.g., Ohmoto, 1996; Holland and Rye, 1997; Gutzmer and Beukes, 1998; Rye and 

Holland, 2000; Watanabe et al., 2000).  There has been no experimental verification that 

reductive dissolution of ferric (hydr)oxides can take place in the absence of organic matter at 

temperatures below ~250°C.   

Reductive dissolution of ferric oxides/hydroxides may take place by H2-rich 

hydrothermal fluids that are ≥ ~250°C (Ohmoto, 1996).  Some redistribution of Fe in the 

Hokkalampi profiles may have occurred due to the same metamorphic fluids that reset the Rb-Sr 

system during the Svecofennian Orogeny (see section 2.5.1.2).  Figure 2.13 illustrates a strong 

correlation between Ti-normalized FeT and Ti-normalized Rb, expressed as percent deviation 

from parent granitoid for the Paukkajanvaara (solid squares) and Nuutilanvaara (solid circles)  
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Figure 2.13:  Ti-normalized FeT and Ti-normalized Rb, expressed as percent deviation from parent granitoid 

for the Paukkajanvaara (solid squares) and Nuutilanvaara (solid circles) profiles.  The solid line (r2 = 0.92) is 

the best fit for the combined Paukkajanvaara and Nuutilanvaara FeT data; the dashed line (r2 = 0.93) is the 

best-fit line for the combined Paukkajanvaara and Nuutilanvaara Fe3+ data.  Enrichments of Ti-normalized 

Fe3+ over parent granitoid (noted by “ped”) imply oxidation of Fe during the pedogenic stage.   

 

 

 



 44 

profiles.  This correlation suggests that metamorphic fluids affected the distribution of FeT in the 

Hokkalampi profiles.  However, metamorphic fluids are reducing in nature (e.g., Ohmoto and 

Kerrick, 1977).  Therefore, it is unlikely that the enrichments in Fe3+ observed in both profiles 

were caused by deposition of Fe3+ or by oxidation of existing Fe2+ during metamorphism.  The 

enrichments of Ti-normalized Fe3+ shown in Figure 2.13 (noted by ”ped”) must have been 

during the pedogenic stage.   

At the top of the eroded Nuutilanvaara profile (zone 2) and in the (paleosol-derived) 

conglomerate overlying both profiles, Fe3+ is less depleted than Fe2+ (Figure 2.6).  This suggests 

that pedoliths within the conglomerate overlying the Hokkalampi paleosol formed under 

oxidizing conditions (Figure 2.2), as suggested by Marmo  (1992). 

2.5.3.2 Uranium and Thorium Variations in the Hokkalampi Profiles 

Studies of modern weathering profiles show that Th is relatively immobile (Braun et al., 1990), 

although it may be mobilized by organic acid-rich fluids (Langmuir, 1997).  At Earth surface 

conditions, uranium dissolves in solution when U4+ is oxidized to U6+ (Brookins, 1988).  Figure 

2.14 shows deviations of Ti-normalized U and Th from the parent material as a function of depth 

in the profile.  Thorium is significantly depleted throughout most of the Paukkajanvaara profile, 

with only one sample showing enrichment relative to the parent material.  Ratios of Th/Ti vary to 

a greater extent in the Nuutilanvaara profile, ranging from significant depletion to ~150% 

enrichment.  The evident mobility of Th suggests the involvement of fluids rich in organic acids  

during or after pedogenesis.  However, we note that Th/Ti ratios vary by an order of magnitude 

in the different parent material samples, raising the possibility that Th was not distributed 

uniformly throughout the profile prior to weathering.   

 



 45 

 

Figure 2.14:  Percent deviation of Ti-normalized U (open squares) and Th (closed circles) from parent 

granitoid with depth for the Paukkajanvaara and Nuutilanvaara profiles. 
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Uranium is depleted through most of zone 1 and the upper half of zone 2 in the 

Paukkajanvaara profile, and it shows significant enrichment at the top and especially the bottom 

of the profile (Figure 2.14).  In the Nuutilanvaara profile, U varies from somewhat depleted to 

somewhat enriched.  The pattern in the Paukkajanvaara profile is consistent with mobilization of 

U in the middle to upper portions of the profile by oxygen-rich ground or soil waters, and 

redeposition of U under reducing conditions at greater depth.  The pattern of strong U 

enrichment at the base of the Paukkajanvaara profile mirrors that of Fe3+ (Figure 2.6), which 

suggests that U might have been fixed at this level through adsorption by ferric hydroxides 

(Ulrich et al., 2006).  A possible correlation of Ti-normalized U and Rb concentrations (Figure 

2.15) suggests an alternate explanation of uranium mobilization and deposition during the 

apparent metamorphic event that led to potassium enrichment in the profile. 

2.5.3.3 Cerium Anomalies 

   Anomalous concentrations of cerium in soil profiles are significant because these anomalies 

only develop under oxygenated conditions where Ce3+ can transform to the highly immobile 

Ce4+.  Positive Ce anomalies develop when REE other than Ce are partially removed by 

weathering, leaving behind a Ce-enriched residuum; negative Ce anomalies form in those 

regions of the profile where REE have accumulated from an overlying oxygenated zone.  Small 

positive anomalies can be seen in the Paukkajanvaara profile (Figure 2.7a) from a sample at 14 

m depth and the overlying conglomerate.  A small negative anomaly is apparent in the 

Nuutilanvaara profile at 2 m depth (Figure 2.7b).  However, we caution that positive Ce 

anomalies are observed in two of the three parent material samples used to determine the average 

parent material composition, suggesting limited post-pedogenic mobility of REE in these 

samples.  This is the likely reason that most of the parent-normalized profile samples appear to  
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Figure 2.15:  Correlation of Ti-normalized U with Ti-normalized Rb, expressed as % deviations from the 

parent granitoid.  The solid line (r2 = 0.91) is the best fit for the combined Paukkajanvaara data; the dashed 

line (r2 = 0.25) is the best-fit line for the Nuutilanvaara data. 
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have small negative anomalies (Figure 2.7c,d).  Given this observation, it would be tenuous to 

ascribe the small Ce anomalies in either profile to weathering and soil development under 

oxygenated conditions.  With the possible exception of the samples noted above, it appears that 

the REE were mobilized primarily during movement of reducing fluids during pedogenesis of 

the Hokkalampi paleosol.  

2.5.3.4 Redox Model for the Development of the Hokkalampi Paleosols 

Data from the redox-sensitive elements, taken together, suggest that the Hokkalampi paleosols 

developed under conditions that alternated locally between oxic and reducing.  During the 

formation of lateritic soils, the soil water chemistry most likely fluctuated seasonally: organic 

acid-rich and reducing during wet seasons, and oxic during dry season (i.e., O2-diffusion through 

the unsaturated soil zone).  Organic-rich water moving through the subsurface under saturated 

conditions was responsible for mobilization of rare earth elements and perhaps thorium.  As 

suggested for the Hekpoort paleosol (Beukes et al., 2002), iron was mobilized at the mid-levels 

of the paleosols deposited at depth as Fe2+.  During the dry seasons, a portion of this Fe was 

fixed as Fe3+ by oxic soil/ground waters.  Some leaching of uranium at shallow to middle levels 

in the profile by these oxic waters may also have taken place, with subsequent adsorption at 

depth by Fe hydroxides.  This model would suggest that the Paukkajanvaara profile at one time 

had an oxidized upper zone (analogous to the Hekpoort paleosol; Beukes et al., 2002) that was 

subsequently eroded away.  It is not clear to what extent organic acid-rich waters interacted with 

the Nuutilanvaara profile, as only the lower portions of the profile are preserved.  The smaller 

degree of Fe depletion in that profile suggests that it was better drained, which is consistent with 

the paleotopographic model of Marmo (1992, Fig. 2).  
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Some redistribution of redox-sensitive elements could have taken place during 

metamorphism, rather than pedogenesis.  If the metamorphic fluids were at temperatures >200°C 

(which is likely, given the apparent resetting of the Rb-Sr system), U could have been 

transported as well as Fe2+.  Because of the reducing nature of most metamorphic fluids (e.g., 

Ohmoto and Kerrick, 1977) it is unlikely that the enrichments in Fe3+ observed at the base of 

both profiles were caused by deposition of Fe3+ or by oxidation of existing Fe2+ during 

metamorphism. 

2.6 CONCLUSIONS TO HOKKALAMPI STUDY 

Micromorphologic textures and geochemical signatures in two weathering profiles from the 

Hokkalampi region, Finland, are consistent with intense subaerial weathering in a humid, 

tropical climate (e.g. ultisol- to oxisol-forming conditions), followed by potassium 

metasomatism and greenschist metamorphism.  The geochronological constraints afforded by the 

Sm-Nd and Rb-Sr systems present a consistent scenario for the formation and subsequent 

evolution of the Hokkalampi paleosol.  Between 3.1 and 2.44 Ga ago, granitoid plutons intruded 

mafic volcanics to form the Presvecokarelidic Shield area of eastern Finland.  These plutons 

were unroofed and exposed to subaerial conditions that produced a large sequence of sediments 

and weathering products, including the Hokkalampi paleosol.     

Both the Nuutilanvaara and the Paukkajanvaara profiles contain clear micromorphologic 

evidence of soil-forming processes and a general trend of increasing degree of weathering 

toward the paleo-surface.  Under warm, low-latitude climate conditions and an atmosphere richer 

in carbon dioxide, weathering probably could progress quickly on the barren landscape.  Ca- and 
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Na-rich plagioclase weathered first, followed by biotite and K-feldspar.  Over time, the profiles 

became more kaolinite-rich; acid leaching in the upper portions of the soil mobilized cations 

such as Na, K, Ca, Mg, Al, and Fe as well as the HREE down-profile. Intense chemical 

weathering leached SiO2; embayed textures in primary quartz grains are consistent with the 

mobility of SiO2.  TiO2, and Nb were relatively immobile.  Cations and HREE were precipitated 

as secondary minerals such as oxy-hydroxides and phosphates in the lower, less weathered 

section of the profiles. 

 The weathering profile from the Nuutilanvaara region shows evidence of developing 

under unsaturated, possibly oxidized conditions, whereas significant element depletions (Fe, 

LREE) from the Paukkajanvaara profile suggest formation in a (periodically?) saturated and/or 

organic-rich zone, consistent with the model proposed by Marmo (1992).  Pedogenic processes 

in the Paukkajanvaara profile led to mobilization of rare earth elements (REE) with gains and 

losses in total REE, as well as significant REE fractionation, comparable to that seen in modern 

soil profiles.  The Nuutilanvaara profile exhibits modest changes in the REE budget; however, 

the most heavily weathered portions of this profile were probably removed by erosion.  

Pedogenic fractionation of REE produced a wide range of Sm/Nd ratios at different depths 

within each profile.  When plotted on an isochron diagram, these samples produce an apparent 

isochron yielding an age of 2.35±0.19 Ga, which falls within the expected time period for 

pedogenesis of this profile.  We suggest that Paleoproterozoic weathering processes effectively 

reset the Sm-Nd system, and that REE mobility has been minimal since that time.  Preserved Ce 

anomalies indicate that the atmosphere had enough oxygen to oxidize Ce sometime between the 

apparent age of pedogenesis (~2.35 Ga) and the age of the dikes cross-cutting the paleosol and  
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the overlying sediment (2.2 Ga).  As the thickness of the overlying sedimentary deposits is quite 

substantial, an oxidizing atmosphere probably existed closer to the model age of pedogenesis 

(~2.35 Ga).   

Whole rock Rb-Sr data from samples throughout the profile yield an apparent age of ~1.8 

Ga, which most likely reflects a regional greenschist grade metamorphic event that is thought to 

have peaked around 1.9 Ga.  Correlation of Rb and K concentrations suggests that K-

metasomatism of the profile occurred during the waning stages of this metamorphic event, which 

transformed illite into sericite.  Metamorphism affected the more permeable upper sections of the 

paleosol to a greater extent than the lower, less weathered sections, as evidenced by the texture, 

mineralogy, and chemistry of the samples.  While certain alkali elements and possibly Sr and Ca 

were mobilized during metamorphism, the Sm-Nd data gathered so far clearly indicate that the 

REE systematics were largely unaffected, and that they are a reliable record of the Precambrian 

weathering processes.  This study suggests that REE, Rb-Sr and Sm-Nd studies of Precambrian 

paleosols can assist in constraining the age of pedogenesis, and in evaluating the mobility of 

selected elements during and after formation of a weathering profile.  
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3.0  GEOCHEMICAL AND TEXTURAL INVESTIGATION OF THE ARCHEAN 

STEEP ROCK PALEOSOL, SOUTH ROBERTS PIT, ONTARIO, CANADA 

3.1 INTRODUCTION TO THE STEEP ROCK PALEOSOL INVESTIGATION 

Paleosols in the Steep Rock area (Ontario, Canada) are significant because they could preserve a 

paleoenvironmental record of a key part of the Archean, and help constrain age relationships 

between granitoids and greenstones in the Superior Province.  Jolliffe (1966) interpreted the 

granitoid-greenstone contact at Steep Rock as an unconformity, although other studies suggested 

that the contact represents an intrusive or faulted relationship (Tanton, 1927; Hicks, 1950; 

Shklanka, 1972).  Schau and Henderson (1983) described an apparent paleosol that developed on 

the ~3 Ga granodiorite phase of the Marmion Complex in the Steep Rock area (Caland Pit).  In a 

later study of the Steep Rock Group, which is stratigraphically above the Marmion Complex, 

Wilks and Nisbet (1988) also concluded that the Marmion Complex-greenstone contact was 

unconformable and presented evidence for a paleosol exposed at South Roberts Pit that 

developed on the tonalitic phase of the Marmion Complex. 

Rye and Holland (1998) evaluated and ranked Precambrian paleosols based on textural, 

mineralogical, and chemical evidence as well as soft-sediment deformation (e.g. rip-up clasts).  

In their review, the Steep Rock profiles at the Caland and South Roberts Pits were only 
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considered “possible” paleosols, primarily because both the Caland and South Roberts Pit 

profiles lacked sufficient textural evidence, and the SRP profile lacked chemical data. 

This study combines micromorphologic examination with major and trace element data, 

including the rare earth elements (REE), and radiogenic isotope analysis for the Steep Rock SRP 

profile.  The goals of this study are: (1) to provide and evaluate geochemical evidence of 

pedogenic processes; (2) to identify sedimentary features at the unconformity indicative of 

subaerial weathering;  (3) to characterize the diagenetic and hydrothermal events that could have 

altered the apparent profile subsequent to exposure at the Earth’s surface; (4) to compare the 

geochemistry of two synchronous weathering profiles (SRP and CP) developed on different 

parent materials; and (5) to better constrain the age of the unconformity, which has implications 

for understanding the granitoid-greenstone relationships and the origin of the original continental 

crust in the Superior Province.   

3.2 BACKGROUND OF THE STEEP ROCK STUDY 

3.2.1 Geologic Setting of the Steep Rock Profiles 

The Steep Rock profiles formed on the Marmion Complex, an Archean granitoid unit located in 

the western Superior Province, Wabigoon Subprovince (Figure 3.1).  The unconformities at both 

South Roberts Pit (SRP) and Caland Pit (CP) are directly overlain by a clastic unit comprising a 

basal metaconglomerate to sandstone (Wagita Formation), a carbonate platform succession of 

limestones and dolostones (Mosher Carbonate), a highly altered iron ore zone (Jolliffe Ore 

Zone), a series of volcanics (Dismal Ashrock), and a sequence of metavolcanics/metasediments  
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Figure 3.1:  Location of Steep Rock Lake, Superior Province, Canadian Shield (modified from Schau and 

Henderson, 1983) and the geologic setting of the Steep Rock Lake paleosols, Wabigoon subprovince, Ontario 

(modified from Tomlinson et al., 1999). 
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(Witch Bay Formation).  These units are collectively referred to as the Steep Rock Group 

(Figures 3.2 and 3.3) (Jolliffe, 1966; Wilks and Nisbet, 1988; Kusky and Hudleston, 1999) and 

are thought to represent a portion of an Archean greenstone belt (Tomlinson et al., 1999).   

The Marmion Complex at South Roberts Pit has a generally tonalitic composition, 

although it exhibits some compositional heterogeneity (Schau and Henderson, 1983; Wilks and 

Nisbet, 1988).  Davis and Jackson (1988) obtained U-Pb zircon ages up to 3003±5 Ma from the 

tonalite, which they interpreted as the age of emplacement of the Marmion Complex.  In work on 

nearby units, they found evidence for a regional metamorphic event at about 2700 Ma.  

Discordant titanite U-Pb ages of 2809 Ma from the Marmion complex (Davis and Jackson, 1988)  

suggest an even earlier disturbance.  Titanites yielding U-Pb ages of 2950 Ma could represent 

hydrothermal deposition concurrent with the formation of the Jolliffe Ore Zone (reported by 

Tomlinson et al., 1999, as D. Davis, personal communication); if this is the case, then (1) the 

Marmion Complex crystallized, (2) the unconformity developed, and (3) the Steep Rock Group 

was deposited in a ~50 Ma window between  3003 and 2950 Ma ago. 

3.2.2 REE Mobility during Soil Formation 

While the rare earth elements are considered relatively immobile under earth surface conditions, 

REE redistribution can occur during weathering and soil formation due to alteration of primary 

minerals, formation of secondary minerals, and transport of REE to other parts of the profile.  

Nesbitt (1979) demonstrated that subaerial weathering in a granodiorite produced significant 

fractionation in the REE patterns, ranging from enrichment of heavy rare earth elements (HREE) 

in incipient and moderately altered rocks, to HREE depletion in heavily weathered rock.  

Subsequent studies of modern weathering profiles and paleosols have shown that certain REE  
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Figure 3.2:  Generalized stratigraphy of Steep Rock Group (modified from Wilks and Nesbit, 1988). 
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Figure 3.3:  Map of Steep Rock area showing the location of South Roberts Pit (SRP) and Caland Pit (CP) 

(modified from Wilks and Nesbit, 1988). 
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are mobilized to variable extents when their host mineral is dissolved or altered to a secondary 

phase (Topp et al., 1984; Middelburg et al., 1988; Macfarlane et al., 1994; Condie et al., 1995; 

Öhlander et al., 1996; Panahi et al., 2000; Sharma and Rajamani, 2000) and that the redox 

conditions of soil solution could play an important role in pedogenic REE mobility (Duddy, 

1980; Braun et al., 1990).  Because REE concentrations and patterns vary greatly among 

different minerals, weathering redistribution of REE can have widely varying effects in different 

profiles formed on different parent materials and under different conditions.  In many cases, trace 

minerals (e.g., apatite, monazite, sphene, or zircon) control the overall REE content of the rock 

or soil, and different solubilities under earth-surface conditions can lead to a wide variety of REE 

patterns in the weathering products (e.g., Harlavan and Erel, 2002) .  For obtaining a Sm-Nd age 

of weathering, the important factor is that weathering processes can fractionate the Sm/Nd ratio 

of the parent rock. 

3.2.3 Sm-Nd Geochronology Applied to the Steep Rock Profiles 

Absolute ages of rocks are obtained by quantifying the natural decay of a radioactive parent 

nuclide into a stable daughter nuclide.  In order to obtain the age of a rock using the isochron 

method for a particular parent-daughter decay system, the following is required: (1) the half-life 

of the parent-daughter decay system must be appropriate for the age of the rock; (2) the parent 

and daughter nuclides must be present in quantities sufficient for accurate measurement by 

existing technology; (3) the daughter element must have been isotopically homogenized in the 

rock (at the scale of measurement) when it formed; (4) there must be a spread in the parent: 

daughter ratio among phases (minerals or whole rock samples) of the rock unit to be dated; and 

(5) parent and daughter elements must not have been substantially disturbed thereafter.  
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The Sm-Nd geochronologic system is most commonly used for igneous rocks, which are 

likely to be isotopically homogeneous at the time of their formation, and which have different, 

separable phases (minerals) with different Sm/Nd ratios that can be used to generate isochrons.  

In the Sm-Nd system, the parent 147Sm undergoes alpha decay to 143Nd with a half-life of 106 

billion years (Ga).  Both the parent and daughter are rare earth elements (REE), a group of 

elements (57La to 71Lu) whose members generally behave in a geochemically coherent fashion 

and are considered relatively immobile during metamorphism and low-temperature alteration.  

However, recent work has suggested that weathering and diagenesis can affect the distribution of 

REE in rocks at or near the earth’s surface.  This can lead to problems when trying to “see 

through” low-temperature events or recent weathering, but it can also create opportunities for 

using Sm-Nd as a geochronometer of earth surface processes.  In order for the Sm-Nd system to 

be used successfully to date the time of soil formation in a paleosol, pedogenic processes must be 

capable of creating a spread in Sm/Nd ratios in different parts of a soil profile. 

3.3 METHODS USED IN THE STEEP ROCK INVESTIGATION 

3.3.1 Sampling and Sample Preparation of Steep Rock Samples 

Samples from the apparent paleosol at South Roberts Pit (SRP), overlying sediments of the Steep 

Rock group, and the parent tonalite were collected during a field excursion in 1999.  Figure 3.4 

shows a schematic geologic column with the stratigraphic position of the samples collected from 

the weathering profile and the overlying Wagita Formation conglomerate.   Samples were ~0.5 

kg in size; the samples were cut in the lab and oriented thin sections were prepared.  Rock chips  
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Figure 3.4:  Schematic profile of the South Roberts Pit (SRP) paleosol showing sample locations. 
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free of modern weathering rinds were segregated and ground to a fine powder in a tungsten-

carbide ball mill.  Splits of ~20 g were set aside for major and trace element analysis, and smaller 

splits of ~300 mg were set aside for isotopic analysis.   

3.3.2 Major and Trace Element Geochemistry of Steep Rock Samples 

Major and trace element data for whole rock samples were measured by Activation Laboratories 

Ltd., in Ontario, Canada. Whole rock powders were dissolved by LiBO2 fusion; major elements  

were analyzed by ICP-OES and trace elements were analyzed by ICP-MS.  FeO was determined 

by dichromite titration. 

3.3.3 Sm-Nd Geochemistry of Steep Rock Samples 

Radiogenic isotope chemistry (Rb-Sr and Sm-Nd) was carried out at the University of Pittsburgh 

under clean laboratory conditions.  A portion of the whole rock powder splits (50 to 200 mg) was 

dissolved in Teflon© bombs using ultrapure acids including hydrofluoric (HF), perchloric 

(HClO4) and hydrochloric (HCl).  An aliquot of 1-5 mg was removed and spiked with a mixed 

87Rb-84Sr-147Sm-150Nd tracer solution, and rough concentrations were determined using isotope 

dilution thermal ionization mass spectrometry.  Based on these results, the remaining sample was 

spiked with mixed, isotopically pure 87Rb-84Sr and 147Sm-150Nd tracer solutions.  Following 

addition of the tracer solutions, Rb, Sr, and the REE were separated from the remaining matrix 

using cation exchange columns. Samarium and neodymium were separated from the other REE 

and each other in quartz columns loaded with LNSpec® resin.   
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Rubidium was loaded on a single rhenium filament and its concentration determined by 

isotope dilution on a Finnigan MAT 262 thermal ionization mass spectrometer (TIMS) at the 

University of Pittsburgh.  About 250 ng of Sr was loaded on a single Re filament with Ta-oxide 

powder, and the concentration and isotope composition were determined simultaneously by 

TIMS.  For each sample, 100 ratios were measured at an intensity of 2-4 x 10-11 A, and mass 

fractionation was corrected using an exponential law with 86Sr/88Sr = 0.1194.  The average value 

for 87Sr/86Sr of SRM 987 over the time period of these analyses is 0.71024.  Both Nd and Sm 

were loaded on double Re filaments.  Concentrations of Sm were determined by isotope dilution, 

and the concentration and isotopic composition of Nd were determined simultaneously by TIMS, 

with 100 ratios measured at a 144Nd beam intensity of 0.5-2 x 10-11 A.  143Nd/144Nd ratios were 

corrected for mass fractionation using an exponential law and normalizing to 146Nd/144Nd = 

0.724134.  The University of Pittsburgh value for chondritic 143Nd/144Nd is 0.511847. 

3.4 MINERALOGY AND MORPHOLOGY OF STEEP ROCK SAMPLES 

3.4.1 Macromorphology of the SRP Profile 

The South Roberts Pit profile formed on tonalitic rock. The parent material (sample SR 42) is 

black and white with pink and green mottles.  The profile (samples SR 32 to 28) is relatively thin 

(~3m) compared to some paleosols and consists of increasingly altered tonalitic material grading 

into pistachio green (5G 7/1) rock with up to 35% quartz and a gritty, talc-like sheen.  Quartz 

stringers and buff-colored wispy lineations are apparent on fresh surfaces.  The weathered 

section lacks sedimentary bedding.  It is directly overlain by a poorly sorted sandstone (Wagita 
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Formation) with >75% quartz.  The yellow (10Y 8/2) sandstone (SR 27 to 25) contains some 

dark green (5G 4/2) apparent hydrothermal zones, which contain concentrated stringers of 

choritized biotite and opaques (mainly pyrite with some ilmenite).  The sandstone is ~0.2 m thick 

in the sampled section, gradually lightens in color and becomes more calcareous upward.  

Directly above the sandstone is a dark blue-gray to blue gray carbonate sequence (5PB 4/1 to 

5PB 6/1) (Mosher Carbonate, SR 24 to 21).  The basal carbonate has lineations with minor 

chloritized biotite and opaques (pyrite).  The pyrite in the carbonate is mostly associated with 

 black stringers, which appear to be organic material.  The carbonate continues up to 500 meters 

above the sampled section and contains stromatolite forms ranging from Stratifera-like to 

hemispherical (Wilks and Nisbet, 1988). 

3.4.2 Mineralogy and Micromorphology of SRP Samples 

The parent tonalite (SR 42) has a relatively homogeneous texture and is composed of 

interlocking grains (average size ~1 mm) of plagioclase (~55%), quartz (~35%), biotite (9%) and 

accessory minerals (~1%) including ilmenite, paragonite, titanite, epidote and apatite.  

Plagioclase in the sampled parent rock is ~30-40% altered to sericite (Figure 3.5a) and biotite is 

partially altered to chlorite.  

Moving upward in the outcrop, the plagioclase in sample SR 32 shows a mottled 

appearance and is more altered to sericite (up to 50%; likely a metamorphic alteration of 2˚ 

smectite).  Leucoxene (a fine grained alteration product of ilmenite and titanite) appears as white 

mottles (~1mm) in reflected light.  Shadowy grain boundaries and twinning are still apparent in 

the remnant plagioclase grains (Figure 3.5b).  The lower profile displays an intertexic texture 

(from Stoops and Jongerius, 1975), with grain boundaries touching and clay forming between  
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Figure 3.5:  (a-f)  Photomicrographs of the SRP profile.  XP= crossed polars and PP= plain polars.  Scale is on 

each photograph. (a) tonalite parent (SR-42); (b) remnant twinned plagioclase in paleosol (SR-29); (c) 

weathered biotite in paleosol (SR-29); (d) embayed quartz in paleosol (SR-28); (e) spalling quarts grain in 

paleosol (SR-28); (f) soft sediment deformation at unconformity (SR-27).  Photomicrographs of the SRP 

profile.  XP= crossed polars and PP= plain polars.  Scale is on each photograph.   
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Figure 3.5 (cont’d):  (g-i)  (g) rip up clast with feldspar in the Wagita conglomerate (SR-27); (h) cutan of clay 

and iron oxide (post-pedogenic alteration of iron hydroxide) surrounding recrystallized quartz in Wagita 

conglomerate (SR-26); (i) spalled quartz grains (SR-24, with gypsum plate) in Wagita Conglomerate; (j) 

carbonate replacing clay in spalled quartz grain in Wagita Conglomerate (SR-25); (k) post pedogenic pyrite 

in Wagita Conglomerate (SR-26); (l) opaque minerals including pyrite and ilmenite in vein cutting Wagita 

conglomerate (SR-26). 
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some grains.  Plagioclase boundaries decrease upward and are rare at the top of the profile (SR 

31 to SR 29), as the samples become increasingly matrix-supported (agglomeroplasmic texture).  

Sericite increases up the profile to the unconformity, eventually forming a massive felt-like 

texture near the unconformity.  The brown wispy lineations apparent in hand sample (SR 32 to 

SR 28) are weathered and chloritized biotites mixed with leucoxene (Figure 3.5c).  As a crystal 

of biotite weathers to clay (kaolinite or smectite), it takes on a bloated appearance, expanding 

and splitting into sub-parallel layers (Folk and Patton, 1982; Capo, 1994).  If the biotite weathers  

to smectite, the Fe content is generally accommodated in the smectite structure (Delvigne, 1998); 

if the biotite weathers to kaolinite, the Fe content is typically associated with iron oxide or 

secondary chlorite (Delvigne, 1998).  In the Steep Rock samples, the Fe may be related to 

smectite and/or chlorite. 

Dissolution textures found at the top of the profile include pitted and corroded quartz 

grains (SR 28; Figure 3.5d).  Corroded and dissolved quartz has been documented in modern 

soils (Delvigne, 1998).  Spalling of quartz mineral grains is also apparent at the top of the profile 

(SR 29; Figure 3.5e).  Spalling is typically associated with biotite or clay expansion during 

weathering as in the Cambrian Squaw Creek paleosol (Capo, 1994).  It may be caused by 

differential thermal expansion or preferential fracturing along weak cleavage planes (Begle, 

1978).  Preservation of delicate spalled grain textures probably indicates that weathered material 

has not undergone significant post-pedogenic sedimentary transport. 

The boundary between the SRP profile and the overlying Wagita sandstone is very 

apparent in thin section (SR 27; Figure 3.5f).  Along this boundary, quartz grains from the 

overlying sandstone appear to sink into the “softer” weathering profile.  Paleosol clasts 

composed of feldspar grains altered to sericite (some with remnant twinning) and sericite (altered 



 67 

smectite) are encased in the overlying sandstone (SR 27; Figure 3.5g).  These rip-up clasts 

indicate erosion and entrainment of soil material into the transgressing sands.  Rip-up clasts are 

considered an important identification criterion for paleosols (Retallack, 1988; Gall, 1992; Rye 

and Holland, 1998). 

Some quartz grains just above the unconformity are coated with sericite and remnant clay 

indicative of in situ weathering and minimal transport during deposition of the overlying 

sandstone (SR 26; Figure 3.5h).  Other quartz grains have been split apart by the expansion of  

clay (e.g., smectite, now altered to sericite) grains during weathering (SR 24; Figure 3.5i) as 

discussed earlier.  Some of the expansion features in the quartz grains are now filled by 

carbonate (SR 25; Figure 3.5j).  These features, combined with the geochemical trends 

discussed below, confirm that the profile exposed at South Roberts Pit is indeed a paleosol. 

Spalling quartz, rip-up clasts and cutans (sensu Brewer, 1964) indicate that the sandstone 

overlying the SRP profile was at least partially derived from the underlying paleosol.  Some of 

the cutans and spalling quartz preserved in the sandstone may also have formed after chunks of 

paleosol were transported a short distance and mixed with fluvial or nearshore deposits.  The 

minerals in these deposits, which were most likely exposed to atmospheric process at least 

intermittently, would have continued to weather.  Wilks and Nesbit (1988) concluded from the 

paleotopography of the unconformity that the Steep Rock depositional environment was most 

likely a mature erosional surface with no strong relief change.  This strengthens the argument 

that transportation of eroded paleosol was most likely proximal.  Eventually, the nearby sea 

transgressed, inundating and burying the newly formed soils and covering them with a carbonate 

platform.  The carbonate mineralogy present in the sandstone (SR 27 to SR 25; increasing up 

from ~10% to 50%) was most likely introduced during the formation the carbonate platform or 
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during burial and diagenesis of the sandstone.  Changes in mineralogy and micromorphology up 

the SRP profile are consistent with in situ subaerial weathering followed by erosion, 

transgression, and carbonate deposition.   

3.4.3 Post-pedogenic Alteration Fabrics in SRP Samples 

In the parent tonalite (SR 42), biotite is partially chloritized, even in the freshest samples; 

chlorite is present as green mottles. Rare 1 mm diameter pink mottles in the parent material are 

probably paragonite.  The trend of the paragonite, parallel with the metamorphic grain, suggests 

that it formed syn-metamorphically.  During regional metamorphic events, platy minerals 

generally form normal to directed stress resulting in schistosity (Philpotts, 1989).  Within the 

SRP, biotite is ~50% altered to chlorite; chloritization gives the profile its characteristic green 

color.  Sericite is likely a metamorphic alteration of smectite produced from the weathering of 

plagioclase. It increases upward, ultimately forming a felted texture.  Quartz at the base of the 

SRP is recrystallized into weakly developed stringers (2- 10 mm long) with slightly strained 

extinction. Quartz grains are increasingly strained and recrystallized up the profile.  This, and the 

presence of muscovite as the unconformity is approached (SR 30 to SR 28), could be due to 

increased porosity at the top of the preserved profile (upper C horizon/lower B horizon?), which 

would have enhanced interaction with hydrothermal fluids.   

Minor (1-4 mm diam.) carbonate veins cut both the tonalite and the apparent paleosol.  

Larger (up to 1 cm diam.) dark green to brown veins cut across the overlying sandstone and 

carbonate.  The minerals include pyrite, chlorite and microcrystalline quartz and minor ilmenite 

(Figure 3.5k-l).  Some of the pyrite grains are euhedral, while others appear hollow and altered, 

possibly indicative of more than one thermal event that affecting the profile or the alteration of 
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sedimentary pyrite produced in localized reducing conditions related to organic material.  The 

minerals and textures preserved in the Steep Rock profile are consistent with subaerial 

weathering followed by hydrothermal/greenschist grade metamorphic event(s).   

3.5 GEOCHEMISTRY OF THE SRP PROFILE 

3.5.1 Major Element Geochemistry of the SRP Profile 

To account for concentration or dilution due to volume changes during pedogenesis, data were 

normalized to a relatively immobile element (see Nesbitt, 1979; see Chadwick et al., 1990; Kurtz 

et al., 2001).  Titanium (Ti) is commonly used to normalize geochemical data in paleosols.  

However, in a study by Stone et al. (1992) of Precambrian geology in the Steep Rock area, Ti 

showed a relatively heterogeneous distribution in the tonalitic parent whole rock samples; TiO2 

concentrations ranged between 0.14% and 0.88% (see Table 3.1).  In addition, Macpherson et al. 

(2000) found that in the SRP samples hafnium (Hf), tantalum (Ta), and zirconium (Zr), 

sometimes used to normalize paleosol data, co-reside with Ti in the accessory mineral titanite .  

For the SRP whole rock samples, aluminum (Al) was chosen for normalization because of its 

abundance and relatively homogeneous distribution throughout the profile compared to these 

other immobile elements.   

Whole rock elemental data are reported in Table 3.2.  The percent change of elements in 

the SRP profile and the overlying sandstone, normalized to Al and to parent tonalite 

(parent=100), is shown in Figure 3.6.  Sandstone samples are shown to illustrate the distinct 

change in rock chemistry above the unconformity. 
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Table 3.1:  Whole rock geochemical statistics for the "old" tonalite (1b) (Stone et al., 1992) 

Oxide (%) Minimum Maximum Median Mean Std dev. 
SiO2 57.3 73.4 71.4 68.42 5.78 
TiO2 0.14 0.88 0.26 0.34 0.22 
Al2O3 12.8 17.1 15.0 14.96 1.35 
Fe2O3 0.3 4.1 0.5 1.05 1.12 
FeO 0.0 4.2 1.7 2.08 1.31 
MnO 0.02 0.11 0.05 0.06 0.03 
MgO 0.40 4.03 0.85 1.47 1.31 
CaO 0.37 7.46 2.63 3.17 2.03 
Na2O 1.59 5.90 4.40 4.33 1.16 
K2O 0.26 3.56 1.27 1.29 0.88 
P2O5 0.04 0.28 0.08 0.11 0.08 
H20 0.6 2.4 1.1 1.22 0.64 
CO2 0.0 4.5 0.4 0.86 1.33 

S 0.00 0.03 0.00 0.00 0.01 
 

 

 

Table 3.2:  Whole rock major element analysis of Steep Rock paleosol samples and parent tonalite. 

  Depth Weight %   
Sample (cm) SiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O TiO2 P2O5 LOI Total CIA 

Conglomerate                            
99-SR-26  35 74.19 3.57 0.84 1.94 0.236 3.39 5.90 0.06 0.98 0.246 0.02 8.81 100.18 - 
99-SR-27 10 80.91 3.36 1.91 1.33 0.201 1.79 4.37 0.03 0.76 0.256 0.02 5.39 100.33 - 
Paleosol                
99-SR-28 0 69.83 17.81 1.14 0.43 0.010 0.94 0.08 0.08 6.25 0.160 0.02 2.77 99.52 75 
99-SR-29 -20 70.16 17.70 1.04 0.45 0.006 0.96 0.07 0.07 6.33 0.758 0.05 2.61 100.20 75 
99-SR-30 -90 68.20 18.81 0.97 0.69 0.008 0.95 0.18 0.08 6.76 0.433 0.07 3.06 100.21 75 
99-SR-31 -170 68.09 18.73 0.98 0.62 0.010 0.88 0.41 0.12 6.43 0.784 0.04 3.31 100.40 74 
99-SR-32 -320 59.93 22.24 1.57 0.98 0.012 1.17 0.62 0.24 8.62 0.598 0.06 3.99 100.03 72 
Parent Material                           
99-SR-42 -450 69.75 14.14 1.16 1.62 0.041 0.99 2.57 1.46 4.09 0.215 0.08 4.20 100.32 59 
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Figure 3.6:  Aluminum-normalized percent variation in major elements relative to parent material (parent = 

100) for the Steep Rock Paleosol. 

 

The slight depletion of silicon (Si) (average loss of 27%) suggests dissolution of quartz 

and the breakdown of plagioclase during weathering and/or hydrothermal activity.  The large 

increase (~300%) in silicon just above the unconformity is due to the change from matrix-

supported soil to quartz grain supported sandstone.  The profile shows significant depletion of 

alkali and alkaline earth elements including calcium (Ca; up to 98%) and sodium (Na; up to 

96%) relative to parent material.  The decrease in Ca and Na upward reflects increasing loss of 

plagioclase feldspar.  The upper horizons of modern soils are often affected by leaching agents, 

which can be inorganic (e.g. carbonic acid) or organic (e.g. humic or fulvic acid).  The acidity 

increases the mobility of cations (Nesbitt et al., 1980).  Additionally, in well-developed soils, the 

presence of low cation exchange capacity 1:1 clays such as kaolinite inhibits retention of cations 

(Nesbitt et al., 1980).  Although only the lowermost part of the SRP profile is preserved, the 
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pervasive gradational loss of base cations suggests that the profile represents a soil developed in 

an area with high chemical weathering rates.  The loss of base cations in the SRP profile is 

typical in modern ultisols, soils that form in warm, moist environments conducive to chemical 

weathering.   

However, some base cations are relatively less depleted.  Magnesium (Mg), which is only 

slightly depleted (<35%), was most likely incorporated in the smectite structure (Rye and 

Holland, 1998); potassium (K) is enriched.  Both were likely affected by post-pedogenic 

alteration, and the overall geochemical trends are consistent with in situ subaerial weathering 

followed by greenschist metamorphism. 

Sharma and Rajamani (2000) plotted weathering trends for tonalites and granites on A-

CN-K (Al2O3-CaOsilicate+Na2O-K2O) diagrams, where CaOsilicate represents only the Ca in silicate 

minerals (Figure 3.7).  The solid line indicates the typical trend for chemical alteration of 

granitoid, which reflects weathering of plagioclase and then K-bearing phases (K-spar, illite, and 

muscovite) and finally results in alteration to kaolinite.  The weathering trend for the Steep Rock 

profile is defined in Figure 3.7 by open squares.  The parent tonalite is plotted as a closed 

square.  While the Steep Rock samples exhibit decreases in Ca and Na as seen in the early stages 

of modern weathering of granitoid profiles, the samples are clearly shifted toward more 

potassium-rich values.  This implies K addition after pedogenic processes, which is discussed in 

the following section. 
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Figure 3.7:  ACNK diagram showing parent tonalite (closed square), and paleosol (open squares) samples for 

SRP profile.  The black arrows indicate a typical weathering trend for tonalite.  Note the offset of the SRP 

profile towards K. 

 

3.5.2 Diagenetic, Metasomatic/Metamorphic and Hydrothermal Alteration of the SRP 

Post-depositional potassium addition can result in a change in mineralogy from smectite to illitic, 

chloritic and/or sericitic phases, or to potassic feldspar (for examples see Gay and Grandstaff, 
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1980; Feakes et al., 1989; Holland et al., 1989; Rainbird et al., 1990).  Schmitt (1999) suggested 

that kaolinite and K-feldspar are unstable in near-surface environments when water is present, 

and re-equilibrate over time to form assemblages of K-feldspar + muscovite or muscovite + 

kaolinite.  Nesbitt and Young (1984; 1989) theorized that K leached from surface soils provides 

the source of potassium during late diagenesis.  Rainbird et al. (1990) suggested that K addition 

occurs in buried soils in subsiding basins where continental groundwaters have high K/Na ratios.  

Archean continental crust, which mainly consists of komatiite, tholeiitic basalt, and 

tonalite, is relatively K depleted (Condie, 1981).  Tonalite, in particular, is thought to have 

formed in granitoid-greenstone terranes by partial melting of amphibolite or similar K-poor rocks 

during collapse of rift-generated greenstone belts or subduction of mafic ocean crust.  K-granites 

in Late Archean terranes typically occur post-tectonically and are related to long periods of 

cooling during magmatism and deformation when only small melts are generated through partial 

melting (Condie, 1981).  Thus potassium addition in the SRP paleosol was most likely due to 

post-pedogenic K-metasomatism.  Hydrothermal fluids would have added additional K at 

temperatures sufficiently high to recrystallize kaolinite or smectite produced during weathering 

into sericite or even paragonite.  This metasomatic event could have been related to the 2.95 Ga 

hydrothermal event concurrent with the formation of the Jolliffe Ore Zone (reported by 

Tomlinson et al., 1999, as D. Davis, personal communication), but was most likely during the 

regional greenschist metamorphic event that took place ~2.7 Ga (Davis and Jackson, 1988) 

related to the Kenoran orogenic event. 

Although Mg typically behaves as Ca in weathering profiles (leached in humid 

environments with high chemical weathering rates or retained in dry climates with low chemical 

weathering rates), Mg is less depleted in the Steep Rock profile than Ca.  Mg is a common 
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constituent in chlorite.  Low-grade metamorphic events associated with Mg and Fe addition can 

convert clays like smectite (R0.33Al2Si4O10(OH)2•H2O where R= Na+, K+ Mg2+, or Ca2+) to 

chlorite (Mg, Fe2+, Fe3+)AlSi3O10.  The geochemical trends in the SRP profile are consistent with 

subaerial weathering followed by K-metasomatism and/or greenschist metamorphism. 

3.5.3 Chemical Index of Alteration 

The chemical index of alteration (CIA= 100•Al2O3/[Al2O3+CaOsilicate+Na2O+K2O], all in moles) 

measures the breakdown of feldspar and mica and the loss of base cations during weathering 

(Nesbitt, 1979; Schau and Henderson, 1983; Öhlander et al., 1996).  A complicating factor in 

calculating the CIA is the addition of potassium to the Steep Rock profile after soil forming 

processes.  A K correction was made to adjust the values for post-pedogenic K added to the 

profile using the following formula:  K2Ocorr= [m.Al2O3 +m..(CaOsilicate+Na2O)]/(1-m) where m= 

K2O/(Al2O3+CaOsilicate+Na2O+K2O) for the parent material (Panahi et al., 2000) and 

CaOsilicate=CaO corrected for apatite using CaOsilicate=mole CaO-[3.3.mole P2O5] (Deer et al., 

1966).  

The CIAK increases from 59 to 75% upward from the tonalitic parent to the unconformity 

(Figure 3.8).  Although the spread of CIAK values is not large, the general increase in the CIAK 

values from the partially altered parent tonalite at the bottom of the profiles through the 

weathering profiles to the erosional contact (at 0 meters) reflects the increase in weathering with 

the progressive breakdown of feldspars and mica to clays. The values are consistent with parent  
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Figure 3.8:  K-corrected CIA weathering index for the SRP profile.  Parent tonalite=closed square and 

soil=open square. 

 

tonalite grading into a partially altered soil or “C” horizon or lower “B” horizon (equivalent to 

Zone 2 of  Marmo and Kohonen, 1992; CIA >70 and <80).  The lack of CIAK values of greater 

than 80% suggests either an immature soil or that the more weathered horizons (i.e. “A” and 

most of “B” horizon; equivalent to Zone 1 of Marmo and Kohonen, 1992; CIA≥80) found in 

modern, well developed soils were mostly eroded away.  
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3.5.4 Iron Mobility in the SRP Profile 

Variation of Al-normalized total Fe (FeT), Fe2+, and Fe3+ from the parent tonalite (p=0) with 

depth for the SRP paleosol is shown in Figure 3.9a.  FeT loss ranges from 43 to 58%.  Fe3+ 

shows less depletion (up to 37%) than Fe2+ (up to 79%).  Like the SRP paleosol, the CP profile 

(developed on granodiorite) also exhibits Fe3+ values greater than Fe2+ (Schau and Henderson, 

1983) (Figure 3.9b).  However, Fe3+ shows relative enrichment compared to the parent and total 

Fe increases (72%) in the middle of the profile. Fe loss occurs only at the top of the profile.  

The FeT loss at the top of the preserved Steep Rock profiles is slightly more than the FeT 

loss of modern and paleosols, which is ≤50% (Driese, 2004).  Only the bottom parts of the Steep 

Rock profiles are preserved; FeT loss may have been higher in the unpreserved upper horizons of 

the paleosols.  Loss of FeT is prevalent at the top of pre-2.2 Ga paleosols and has been suggested 

as evidence for a reducing atmosphere (Holland, 1984; Holland et al., 1989; Kirkham and 

Roscoe, 1993).  Fe loss at the top of the profiles with FeT gain in the lower part of the profiles 

could be due to leaching of Fe under reducing conditions (local or global) and movement of Fe 

through the soil profile followed by deposition at or near a weathering front or the paleo-water 

table.   

Iron movement does not require an anoxic atmosphere; Driese (2004) documented 

translocation of Fe within modern and Paleozoic paleo-vertisol profiles despite forming under 

oxygenated conditions. Waterlogged conditions in modern soils are also capable of reducing and 

moving Fe despite an oxygen-rich atmosphere (Dia et al., 2000).  Alternatively, the experimental 

work by Neaman et al. (2005) shows that organic ligands can also mobilize redox elements such 

as Fe in soil environments.  Subsequent deposition of Fe near the weathering front could be due 

to: (1) an increase in cation exchange capacity associated with an increase of 2:1 clays deeper in  
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Figure 3.9:  Aluminum-normalized percent variation in FeT, Fe2+, and Fe3+ relative to parent material (parent 

= 100) for the SRP and CP profile. 
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the soil profile; (2) a decrease in the leaching capacity as inorganic and/or organic acids are 

naturally neutralized or diluted; or (3) an increase in pH due to weathering of feldspars, which 

produces alkalinity (Nesbitt et al., 1980).  In addition, the evaluation of Fe3+ relative to Fe2+ has 

resulted in alternative interpretations for Fe loss in paleosols, such as oxidation followed by 

alteration due to reductive fluids (mixed-type paleosol; Ohmoto, 1996).   

Relative to average parent material, both Steep Rock weathering profiles show an 

increase in normalized Fe3+ down profile.  Schau and Henderson (1983) interpreted the 

enrichment of Fe3+ in the middle of the CP profile as an indication that there was enough pO2 to 

oxidize Fe, but qualified the interpretation as a local phenomenon and not necessarily an 

indication of atmospheric conditions during the Archean.  The profiles also have a Fe3+/Fe2+ ratio 

of >1.  The loss of FeT coupled with amounts of Fe3+ greater than Fe2+ in both Steep Rock 

paleosols could indicate that the soils interacted with oxidizing fluids to form Fe hydroxides, but 

were stripped of Fe by syn-pedogenic organic fluids or during post-pedogenic alteration by 

hydrothermal fluids (Ohmoto, 1996), resulting in a Fe3+/Fe2+ ratio of >1 (Figure 3.10).   

3.5.5 REE Patterns in the SRP Profile 

Rare earth element data are reported in Table 3.3.  Chondrite-normalized plots for SRP paleosol 

samples are presented in Figure 3.11a.  The parent rock (SR42; 450 cm) shows enrichment in 

light rare earth elements (LREE: La to Sm), which is expected for a tonalite (Condie, 1981).  

Paleosol REE patterns are subparallel to the parent material and show considerable variation in 

LREE above and below the parent, but retain the LREE-enriched, flat heavy rare earth (HREE: 

Gd to Lu) trend of the tonalite.   
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Figure 3.10:  Aluminum-normalized Fe2+ vs. Fe3+ for the SRP and CP profile showing that the Fe3+ /Fe2+ >1. 

 

 

Table 3.3:  Whole rock analysis of trace elements for the Steep Rock paleosol. 

    ppm 
Sample 
Name 

Depth 
(m) La Ce Pr Nd Sm Eu Gd Dy Er Yb Lu 

Conglomerate            
99-SR-26  35 6.4 11.3 1.1 4.4 0.8 0.26 0.80 0.90 0.60 0.09 0.08 
99-SR-27 10 6.8 11.9 1.2 5.0 1.0 0.35 1.00 1.00 0.60 0.60 0.10 
Paleosol             
99-SR-28 0 2.9 6.0 0.6 2.7 0.6 0.14 0.60 0.50 0.30 0.40 0.07 
99-SR-29 -20 9.9 19.2 2.1 9.2 1.8 0.45 1.60 1.10 0.60 0.40 0.06 
99-SR-30 -90 12.3 24.4 2.4 9.3 1.6 0.52 1.20 0.80 0.50 0.50 0.08 
99-SR-31 -170 13.7 26.0 3.0 12.3 2.6 0.69 2.00 1.20 0.50 0.40 BDL 
99-SR-32 -320 3.7 7.1 0.8 3.5 0.7 0.29 0.80 0.70 0.40 0.30 BDL 
Parent Material            
99-SR-42 -450 9.2 17.0 1.6 5.8 0.9 0.33 0.80 0.70 0.50 0.50 0.08 
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Figure 3.11:  (a) REE plot of SRP normalized to chondrite.  (b) REE plot of the SRP samples normalized to 

average parent material (=1).  Depths below the unconformity for each sample are noted on the left side of 

each plot. 
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To determine the weathering effects on the REE patterns and to quantify absolute gain or 

loss of REE during pedogenesis, REE abundances were normalized to both Al (a relatively 

immobile element) and the parent tonalite (Figure 3.11b).  There is no correlation between depth 

in the profile and overall REE enrichment or depletion relative to the parent tonalite.  Instead 

there is an overall pattern of increasing LREE (La-Sm), decreasing HREE (Gd-Lu), and negative 

Eu anomalies.  Europium is associated with plagioclase, which is abundant in the parent tonalite; 

weathering-related removal of plagioclase could produce a negative anomaly (Lipin and McKay, 

1989).  REE budgets of granitoid rocks tend to be controlled by REE-rich accessory minerals 

such as apatite, allanite, titanite (sphene) and/or zircon (e.g., Gromet and Silver, 1983; Condie et 

al., 1995).  In the Steep Rock profile, common accessory phases are titanite and ilmenite, which 

are generally LREE-depleted relative to its igneous parent (Gromet and Silver, 1983).  Both can 

weather readily in soils to secondary minerals such as leucoxene (Condie et al., 1995; Lång, 

2000; Singh and Rajamani, 2001; Girty et al., 2003).  Peaked middle REE (MREE) patterns may 

be related to preferential complexation of MREE with Fe oxy-hydroxides.  A study by Negrel et 

al., (2000) documented preferential MREE enrichment on Fe oxide coated sediment in the Loire 

River.  The slight HREE depletion may be due to the weathering of biotite, which is HREE-

enriched relative to the parent (Condie et al., 1995). 

3.5.6 Cerium (Ce) Anomalies in the SRP Profile 

Anomalous concentrations of cerium in soil profiles are significant because these anomalies only 

develop under oxidizing conditions where Ce3+ can transform to highly immobile Ce4+ (Lipin 

and McKay, 1989).  Positive Ce anomalies develop when REE other than Ce are partially 

removed by weathering, leaving behind a Ce-enriched residuum; negative Ce anomalies form in 
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the regions of the profile where REE have accumulated from an overlying oxidized zone.  Only 

two slightly negative Ce anomalies (calculated as Ce/Ce*=[Ce]N,C/([La]N,C[Pr]N,C)0.5, where the 

subscript “N,C” denotes normalization to chondrites) occur in the SRP profile (samples -170 and 

-320 cm) (Figure 3.11a).  Because the zone where these samples occur is not enriched in REE, 

the negative anomalies are probably not significant.  The absence of a significant Ce anomaly 

does not require pedogenesis under an anoxic atmosphere; modern soils, especially waterlogged 

profiles, formed under oxygenated atmospheric conditions frequently lack Ce anomalies (Braun 

et al., 1990; Dia et al., 2000).  This suggests that there could have been sufficient oxygen to 

oxidize Fe, but not Ce (see section 4.4.2). 

3.5.7 Radiogenic Isotope Systems Applied to the SRP Profile 

3.5.7.1 Samarium-Neodymium Isotope Systematics in Soil 

Once the Sm-Nd system has been fractionated by weathering or pedogenesis, it must resist 

further alteration in order to provide a useful age.  Sedimentary processes such as diagenesis can 

result in REE fractionation and partial or complete resetting of the Sm-Nd system (McDaniel et 

al., 1994; Ohr et al., 1994; Schaltegger et al., 1994; Bouch et al., 1995; Bouch et al., 2002; 

Ehrenberg and Nadeau, 2002; Uysal and Golding, 2003).  However, burial and diagenesis of a 

soil profile occurs over a geologically short period following pedogenesis, and so should not 

significantly shift the age of an Archean paleosol.  On the other hand, metamorphism can occur 

millions or billions of years later, and thus has the potential to overprint the soil formation age.  

The Sm-Nd system has long been recognized for its relative (although not universal) resistance 

to metamorphic resetting - this makes it one of the more useful systems for developing 

Precambrian chronology.  High grade thermal metamorphism can have the effect of 
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redistributing Sm and Nd among minerals at a 10-3-10-2 m scale (Gromet and Silver, 1983), but is 

less likely to redistribute the REE among different lithologic units at a cm-scale, as demonstrated 

by Nd isotope studies of Precambrian layered mafic intrusions that have suffered significant 

metamorphism (DePaolo and Wasserburg, 1979; Lambert, 1994; Stewart and DePaolo, 1996).  

Even when metamorphism is accompanied by fluid flow, the REE can remain relatively 

immobile at the scale of >10-1 m, although this may not always be the case (e.g.,  Alibert and 

McCulloch, 1993; Macfarlane et al., 1994). 

3.5.7.2 Sm-Nd Isotope Systematics in the SRP Profile 

The ten whole-rock samples analyzed for Sm-Nd (including two dissolutions of parent rock 99-

SR-42 (see Table 3.4) show a strong correlation (r2 = 0.998) on an isochron diagram (Figure 

3.12).  A standard linear correlation after York (1969) yields an age of 3018±90 Ma.  This age is 

indistinguishable from that of the Marmion Complex on which the profile formed and suggests 

either that weathering took place very soon (less than ~60 my.) after emplacement of the 

intrusive complex or that the Sm-Nd systematics were only slightly affected on a hand-sample 

scale by weathering processes.  These data also show that the REE systematics were impervious 

to the ~2.7 Ga greenschist metamorphic event (Davis and Jackson, 1988). 

3.5.7.3 Rubidium-Strontium Isotope Systematics in Soil 

The rubidium-strontium system, in which the nuclide 87Rb decays to 87Sr with a half-life of 

48.8 Ga, has long been used for geochronology of igneous rocks.  It is well known, however, that 

the Rb-Sr systematics of igneous rocks are easily disturbed or reset by weathering and 

metamorphic processes due to the relatively high mobility of Rb (an alkali element) and Sr (an 

alkaline earth element).  This propensity for resetting makes the Rb-Sr system potentially  
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Table 3.4:  Nd isotope values for the Steep Rock paleosol. 

Sample Name Depth 
(m) 

Sm 
(ppm) 

Nd 
(ppm) 

147Sm/144Nda 143Nd/144Nd(0)b εNd(T)c 

Conglomerate                     
99-SR-26  35 0.6 3.3 0.1157 0.510300 ± 0.000008 1.33 ± 0.248 
99-SR-27 10 0.8 3.9 0.1220 0.510436 ± 0.000008 1.54 ± 0.253 
Paleosol           

99-SR-28 0 0.4 1.9 0.1290 0.510475 ± 0.000011 
-

0.44 ± 0.318 
99-SR-29 -20 1.4 7.0 0.1238 0.510486 ± 0.000009 1.81 ± 0.274 
99-SR-30 -90 1.1 6.6 0.0997 0.509993 ± 0.000007 1.57 ± 0.216 
99-SR-31 -170 2.3 11.2 0.1226 0.510461 ± 0.000007 1.79 ± 0.234 
99-SR-32 -320 0.7 3.0 0.1310 0.510596 ± 0.000007 1.15 ± 0.241 
Parent Material          
99-SR-42 -450 1.2 3.7 0.1973 0.511934 ± 0.000009 1.48 ± 0.332 
99-SR-42 D2 -450 1.2 3.7 0.1966 0.511948 ± 0.000014 2.03 ± 0.430 
99-SR-44 -450 1.3 4.0 0.1893 0.511765 ± 0.000009 1.29 ± 0.326 
a uncertainty estimated at 0.2% of the measured value      
b Uncertainty equals 2s  analytical error       
c Chondrite 143Nd/144Nd(0)= 0.511847, 147Sm/144Nd=0.1967      

 
 

 

Figure 3.12:  143Nd/144Nd variation with 147Sm/144Nd for the SRP paleosol.  The combined data plotted form an 

apparent isochron reflecting a model age of 3.018 ± 0.90 Ga ago (2σ) for the apparent age of pedogenesis. 
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attractive for examining the timing of pedogenesis and/or later metamorphic disturbances of 

paleosols.  Macfarlane and Holland (1991) found that the Rb-Sr system produced a precise “age” 

for the Mt. Roe weathering profile that was coincident with post-pedogenic metamorphism. 

3.5.7.4 Rb-Sr Systematics in the SRP Profile 

Results from Rb-Sr analyses of selected samples from the SRP are shown in Table 3.5.  The 

data show 87Rb/86Sr ranging from 0.0881 to 67.5426, with a corresponding spread in 87Sr/86Sr 

from 0.70535 to 2.97665.  We plot the data on an isochron diagram to determine if it yields a 

meaningful age (Figure 3.13).    When all samples are used in the calculation, the isochron 

yields an age of 3.139 ± 0.421 Ga (calculated after the method of York, 1969).  This age is 

greater than the age of the parent tonalite and clearly indicates that the Rb-Sr data was disturbed 

during one or more events.  The most likely culprit is the regional greenschist-grade 

metamorphism associated with the Kenoran Orogenic event that reached its peak ~2.7 Ga ago. 

The observed disturbance of the Rb-Sr system requires at least limited exchange of Sr on 

a scale of meters, which could have been aided by fluid flow accompanying metamorphism. 

However, in contrast to observations in the Hokkalampi paleosol, it is clear that the Rb-Sr 

system was not completely reset by these events.  In addition, it is likely that Rb was selectively 

added to portions of the SRP profile during K-metasomatism, which could significantly increase 

the spread in Rb/Sr ratios.  This demonstrated by a comparison of Rb and K2O concentrations 

(Figure 3.14).   
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Table 3.5:  Sr isotope values for the Steep Rock paleosol. 

Sample Name Depth 
(m) 

Rb 
(ppm) 

Sr 
(ppm) 

87Rb 86Sr 87Rb/86Sra 87Sr/86Sr(0)b 

Conglomerate          
99-SR-26  35 17.8 26.1 58.2 29.2 1.99 0.775756 ± 10 
99-SR-27 10 13.9 11.4 45.2 12.7 3.56 0.833517 ± 10 
Paleosol          
99-SR-28 0 9.6 5.7 242.6 5.3 45.66 2.903914 ± 26 
99-SR-28B 0 76.1 5.9 247.8 5.5 45.46 2.891265 ± 29 
99-SR-29 -20 109.7 5.7 357.5 5.3 67.54 2.976653 ± 24 
99-SR-30 -90 62.5 6.6 203.7 6.2 33.03 2.769972 ± 75 
99-SR-31 -170 85.4 6.9 278.2 6.5 42.49 2.550068 ± 36 
99-SR-32 -320 99.5 10.9 324.2 10.8 29.96 2.061469 ± 39 
Parent 
Material          
99-SR-42 -450 25.3 409.1 82.3 460.5 0.18 0.708075 ± 9 
99-SR-42B -450 23.0 408.0 74.8 459.3 0.16 0.708027 ± 13 
99-SR-44 -450 21.1 693.9 68.8 781.2 0.09 0.705316 ± 12 
a Estimated uncertainty 2% of measured value (SR 28=10%) 
b Uncertainty equals 2s  analytical error and is shown as last two decimal places 

  

 

 

Figure 3.13:  Variation of 87Sr/86Sr with 87Rb/86Sr for the SRP paleosol. These data form a linear array on an 

isochron diagram.  When all samples are used in the calculation, the isochron points to an age of 3.139 ± 0.421 

Ga indicating that the Rb-Sr system has been disturbed.
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Figure 3.14:  Variation of K2O (wt %) with Rb (ppm) for the parent tonalite (closed circles) and the SRP 

profile (open circles).  The observed correlation strongly suggests that K-metasomatism was synchronous 

with regional metamorphism at ~2.7-2.5 Ga. 

3.6 CONCLUSIONS TO STEEP ROCK STUDY 

The textures and geochemistry of the South Roberts Pit profile are consistent with in situ, 

subaerial weathering followed by potassium metasomatism and greenschist metamorphism.  

There is an increase in the degree of weathering from the tonalite toward the unconformity.  

Weathering of plagioclase, biotite, ilmenite, titanite, epidote, and apatite likely produced clays 

such as kaolinite/smectite (now altered to sericite and paragonite) and leucoxene.  
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Micromorphologic evidence of soil forming processes including intertexic and 

agglomeroplasmic fabric, spalling quartz grains, and clay cutans.  At the unconformity, rip-up 

clasts are present.  

Loss of base cations indicates that the soil formed in a warm, moist environment 

conducive to chemical weathering. Pedogenic processes led to slight mobilization of REE with 

slight fractionation similar to newly developed modern soils.   A ratio of Fe3+ /Fe2+ >1 suggests 

oxygenated soil conditions.  However, the lack of Ce anomalies indicates that there was not 

enough oxygen in the soil to oxidize Ce.  A low CIAK and only small changes in the overall REE 

budget indicate that either the profile was not well developed or that the most heavily weathered 

sections were eroded away.   

Fractionation of Sm/Nd apparently caused by pedogenic processes produced a slight 

spread in Sm/Nd ratios; the samples form an isochron with an apparent age of 3.018 ± 0.090 Ga.  

This age is indistinguishable from that of the Marmion Complex on which the profile formed, 

and suggests that either weathering took place very soon (less than ~60 my.) after emplacement 

of the complex, or that the Sm-Nd systematics were only slightly affected on a hand-sample 

scale by weathering processes.  Rb-Sr systematics for the Steep Rock paleosol were clearly 

disturbed.  Correlation of Rb and K indicate that K-metasomatism most likely occurred during 

the metamorphic event transforming 2:1 clays (smectite) to sericite and even paragonite.  Sm-Nd 

data indicate that the REE were not mobilized to a significant degree after pedogenesis despite 

metamorphism, while Rb-Sr data indicate that elements such as Rb, Sr, Ca, and K were most 

likely mobilized during metamorphism.  This study suggests that REE, as well as Rb-Sr and Sm-

Nd studies of paleosols can help constrain the age of pedogenesis, evaluate the pedogenic and 

post-pedogenic mobility of elements, and help to constrain soil redox conditions.  
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4.0  PALEOENVIRONMENTAL INVESTIGATION OF THE STEEP ROCK 

PALEOSOL AND COMPARISON WITH THE HOKKALAMPI PALEOSOL 

4.1 INTRODUCTION TO PALEOENVIRONMENTAL INVESTIGATION 

Soils represent the interface between the atmosphere, lithosphere, hydrosphere, and biosphere.  

Paleosols, or fossil soils, document past life, climate and terrestrial landscapes.  Ancient soils 

also preserve products of atmospheric-mineral interaction.  This record is key to understanding 

the early composition and evolution of the Earth’s atmosphere and the environments in which 

life developed and evolved.   

Because Precambrian (>542 Ma ago) soil profiles lack significant effects from land 

plants, researchers (e.g., Holland and Zbinden, 1988; Pinto and Holland, 1988; Kirkham and 

Roscoe, 1993; Macfarlane et al., 1994; Ohmoto, 1996) have applied a variety of geochemical 

methods, such as the mobility of the redox-sensitive elements Fe and Ce, to interpret 

atmosphere-mineral interaction in paleosol profiles that may have formed under different 

atmospheric conditions than exist today.  Holland (1984; 1988) used geochemical data to 

calculate the ratio of oxygen demand to acid demand or “R-Value”, where R= (Do2)/(Dco2)= 

(∆MFeO)/8[∆MCaO+∆MMgO+∆MNa2O+∆MK2O+∆MMnO].  The R values for paleosols formed over 

Earth’s history were divided into two categories:  (1) paleosols >2.2 Ga in age, which show Fe 

loss, and (2) paleosols <2.2 Ga in age, which do not show significant Fe loss.  In this model, the 
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loss of Fe in weathering profiles is attributed to a reducing atmosphere (Holland, 1984; Holland 

and Zbinden, 1988).  The resulting Cloud-Walker-Kasting-Holland model theorizes that pO2 

increased from 10-13 of present atmospheric level (PAL) to greater than 15% of the PAL between 

2.2 Ga and 1.9 Ga (Bekker et al., 2004).  However, reductive fluids, which are capable of 

forming even under an O2-rich atmosphere, can also cause Fe transport (Ohmoto, 1996).  To 

constrain the processes involved in Fe mobility, Ohmoto (1996) made a comparison of Fe3+ to 

Fe2+ in paleosols.  In this model, the reductive loss of Fe is attributed to hydrothermal fluids 

and/or leaching by organic acids.  The resulting Dimroth–Ohmoto model theorizes that pO2 has 

remained essentially constant (within 50% of PAL) since at least 4 Ga ago. 

Recent isotopic and microfossil evidence points to microbial life in Archean paleosols 

(Horodyski and Knauth, 1994; Rye and Holland, 2000; Watanabe et al., 2000).  This strengthens 

the argument that organic ligands, which are secreted by microbes to obtain nutrients, (Jones, 

1998) may have increased redox element mobility in Archean paleosols.  Experimental study of 

element mobility enhanced by ligands in basalt has also been documented (Neaman et al., 2005).  

In recent studies of Precambrian paleosols where Al is relatively immobile (Holland and Rye, 

1997; Ohmoto, 1997; Beukes et al., 2002; Yang et al., 2002), the mobility of Fe has been 

attributed to either an anoxic atmosphere or ligand-enhanced dissolution of Fe by microbes.  

Because microbes use ligands to release oxidized Fe in modern soils, the possibility exists that 

this process may have affected Fe and other redox element concentrations in Archean paleosols. 

My research builds on earlier work, including Fe and Ce data, but includes additional 

redox-sensitive elements (U, V, and Cu) to further constrain Eh-pH conditions in the Steep Rock 

paleosol exposed at South Roberts Pit (SRP), one of the oldest weathering profiles preserved on 
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Earth.  Comparisons are made with Steep Rock paleosol exposed at Caland Pit (CP) (see Schau 

and Henderson, 1983).  This research considers the possibility of ligand-enhanced dissolution of  

redox elements based on experimental study (e.g., Neaman et al., 2005).    This will lead to a 

more accurate interpretation of the redox conditions in the fossil soil record, which has 

implications for understanding the Archean paleoenvironmental record.   

4.2 BACKGROUND TO PALEOENVIRONMENTAL STUDY 

4.2.1 Geologic Setting and Profile Description of the Steep Rock Paleosols 

The Steep Rock paleosols formed on the Marmion Complex, an Archean granitoid unit located 

in the western Ontario, Canada (see Figure 3.3).  The paleosol is directly overlain by a clastic 

unit comprising a basal metaconglomerate to sandstone (Wagita Formation), a carbonate 

platform succession of limestones and dolostones (Mosher Carbonate), a highly altered iron ore 

zone (Jolliffe Ore Zone), a series of volcanics (Dismal Ashrock) and 

metavolcanic/metasediments (Witch Bay).  These units are collectively referred to as the Steep 

Rock Group (see Figure 3.2) (Jolliffe, 1966; Wilks and Nisbet, 1988; Kusky and Hudleston, 

1999) and are thought to represent a portion of an Archean greenstone belt (Tomlinson et al., 

1999).  The Marmion Complex at South Roberts pit has a generally tonalitic composition, 

although the weathering profile exposed at Caland Pit developed on granodiorite (Schau and 

Henderson, 1983).  The Sm-Nd isotope data from samples taken at South Roberts Pit form an 

apparent isochron with an age of 3018 ± 90 Ma ago for pedogenesis (see section 3.5.7.2).  Only  
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the lowermost parts of the soil profiles are preserved.  They consist of quartz grains and remnant 

plagioclase and biotite in a matrix of chlorite, clay (kaolinite and smectite, altered to sericite), 

with minor epidote, apatite, muscovite, titanite, and ilmenite. 

4.2.2 Archean Rain Chemistry 

The mobility of most redox element species is determined by the pH and Eh of the system.  

Therefore, constraints must be placed on the pH of rainfall interacting in the model of the 

Marmion Complex tonalite weathering to the Steep Rock soil.  The pH of rainfall is a function of 

atmospheric CO2 (pCO2) and how efficiently CO2 dissolves in water (Drever, 1997; Ohmoto, 

1999; Watanabe et al., 2004).  Equations (4.1) and (4.2) show the relationship between pCO2 and 

rainwater to form carbonic acid (H2CO3) and how the dissociation of H2CO3 affects pH 

(expressed as the -log[H+]): 

 

CO2(g)+H20(l)=H2CO3(aq)      (4.1) 

H2CO3(aq)=H++HCO3
-      (4.2) 

 

The equilibrium constants for Equations (4.1; KCO2) and (4.2; KH2CO3) are expressed by 

the following reactions: 

 

LogmCO2(aq), initial=logK CO2+logpCO2      (4.3) 

pH=-0.5(logKCO2+logK H2CO3+logpCO2)    (4.4) 

 



 94 

The activity for pCO2 for Equation (4.3) and (4.4) must be estimated.  The estimate 

should be consistent with the relative immobility of Al in the Steep Rock paleosol and many 

other Precambrian paleosols (i.e. pH> 4 assuming an activity for Al of 10-4, a temperature of 

25°C, and 1 bar of atmospheric pressure) (Brookins, 1988).  Estimates of pCO2 vary depending 

on assumed methane (CH4) levels in the models for the Archean atmosphere and range between 

10 times present atmospheric level (PAL; 10-3.5) (Rye et al., 1995; Pavlov et al., 2001) if ~100 

ppmv of CH4 was present (Kasting, 2001) to 1000 PAL if no CH4 is present (Kasting, 1987).  

For comparison to previous studies of redox mobility in paleosols, we will assume a modern 

pCO2 of ~0.0003 atm (Neaman et al., 2005), which is similar to today and results in a rainwater 

pH of 5.6.  We also consider a pCO2 100 PAL, which results in a rainwater pH of 4.66 (Ohmoto 

et al., 2004; Watanabe et al., 2004). 

4.3 METHODS USED IN PALEOENVIRONMENTAL STUDY 

Samples from the South Roberts pit paleosol, overlying sediments of the Steep Rock group, and 

parent tonalite were collected during a field excursion in 1999.  Figure 3.4 shows a schematic 

geologic column with the stratigraphic position of the samples collected from the weathering 

profile and the overlying Wagita formation conglomerate.   Samples were ~0.5 kg in size; the 

samples were cut in the lab and oriented thin sections were prepared.  Rock chips free of 

(modern) weathering rinds were segregated and ground to a fine powder in a tungsten-carbide 

ball mill.  Splits of ~20 g were set aside for major and trace element analysis, and smaller splits 

of ~300 mg were set aside for isotopic analysis.  Major and trace element data for whole rock 

samples were measured by Activation Laboratories Ltd., in Ontario, Canada. Whole rock 
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powders were dissolved by LiBO2 fusion; major elements were analyzed by ICP-OES and trace 

elements were analyzed by ICP-MS.  FeO was determined by dichromite titration.  Geochemical 

data were normalized to a relatively immobile element, aluminum (Al), to account for 

concentration or dilution due to volume changes during pedogenesis (Nesbitt, 1979; Chadwick et 

al., 1990; Kurtz et al., 2001).  Aluminum was chosen for normalization because of its abundance 

and relatively homogeneous distribution throughout the profile compared to other immobile 

elements (see section 3.5.1).  For comparison, the Caland Pit profile data (Schau and Henderson, 

1983) were also normalized to Al. 

4.4 REDOX ELEMENT MOBILITY 

4.4.1 Iron Mobility 

Variation of Al-normalized total Fe (FeT), Fe2+, and Fe3+ from the parent tonalite with depth for 

the SRP paleosol is presented in Table 4.1 and shown in Figure 3.9.   FeT loss ranges from 43 to 

58%.  Fe3+ shows less depletion (up to 37%) than Fe2+ (up to 79%).  Data for the Steep Rock 

paleosol that formed on granodiorite (CP profile) are presented in Table 4.2 and shown in 

Figure 3.9.  Like the SRP profile, the CP profile also exhibits Fe3+ values greater than Fe2+ 

(Schau and Henderson, 1983).  However, Fe3+ shows relative enrichment compared to the parent 

and FeT increases (72%) in the middle of the profile.  Only the bottom parts of the Steep Rock 

profiles are preserved (see section 3.5.3); FeT loss may have been higher in the unpreserved 

upper horizons of the paleosols.   
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Table 4.1:  Whole Rock Data for the South Roberts Pit Steep Rock Paleosol. 

Sample Depth ppma   
Name (cm) Al Fe3+ Fe2+ FeT P Cu U V Ce/Ce* 

Conglomerate          
99-SR-26  35 18890 5875 15080 20955 87 37 0.4 43 1.01 
99-SR-27 10 17779 13359 10338 23697 87 101 0.4 62 1.00 
Paleosol           
99-SR-28 0 94238 7974 3342 11316 87 <1 0.2 51 1.06 
99-SR-29 -20 93656 7274 3498 10772 218 <1 0.2 231 1.01 
99-SR-30 -90 99529 6784 5363 12148 306 <1 0.3 56 1.08 
99-SR-31 -170 99106 6854 4819 11674 175 15 0.4 205 0.97 
99-SR-32 -320 117679 10981 7618 18599 262 11 0.3 104 0.97 
Parent Tonalite          
99-SR-42 -450 74819 8113 12592 20706 349 63 0.3 36 1.06 
aActavation Laboratories LTD; Method-LiBO2 Fusion, Analysis by ICP-ES.  FeO by dichromate titration. 

 
 

 

Table 4.2:  Whole Rock Data for the Caland Pit Steep Rock Paleosol. 

Sample Depth Below ppma 

Name Contact (cm) Al Fe3+ Fe2+ FeT P Cu V 

Conglomerate         
3-11 35 23282 5595 777 6373 0 14 20 
3-10 15 12170 4197 0 4197 0 7 20 
3-9 2 25927 9093 2332 11425 0 54 31 

Paleosol         
3-8 -3 121171 1399 2332 3731 0 5 63 
3-7 -7 122758 2098 0 2098 0 5 53 
3-6 -14 116938 5595 0 5595 0 5 67 
3-5 -35 91010 18185 4664 22849 0 5 41 
3-4 -70 85190 7694 777 8471 0 5 31 
3-3 -70 89423 8393 0 8393 0 5 34 

Granodiorite         
Avg (3-1 and 3.2) -100 80692 2448 9328 11776 175 7 296 
afrom Schau and Henderson (1983)       
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Loss of FeT is prevalent at the top of pre-2.2 Ga paleosols and has been suggested as 

evidence for a reducing atmosphere (i.e. Holland, 1984; Kirkham and Roscoe, 1993; Holland, 

1994).  However, relative to average parent material, both weathering profiles show an increase 

in normalized Fe3+ down profile.  The profiles also have a Fe3+/Fe2+ ratio of >1.  The evaluation 

of Fe3+ relative to Fe2+ has resulted in alternative interpretations for Fe loss in paleosols, such as 

oxidation followed by alteration due to reductive fluids (mixed-type paleosol; Ohmoto, 1996).  

The loss of FeT coupled with amounts of Fe3+ greater than Fe2+ in both Steep Rock paleosols 

could indicate that the soils interacted with oxidizing fluids to form Fe oxy-hydroxides, but were 

stripped of Fe during pedogenesis by organic acids (if microbes were present) or by post-

pedogenic alteration (hydrothermal fluids), resulting in a Fe3+/Fe2+ ratio of >1. 

Driese (2004) has documented translocation of 10-50% of Fe within modern and 

Paleozoic paleo-vertisols profiles despite forming in oxygenated conditions.  Experimental work 

by Neaman et al. (2005) shows that organic ligands can mobilize redox elements such as Fe in 

soil forming on basalt.  Waterlogged conditions in modern soils are also capable of reducing and 

moving Fe despite an oxygen-rich atmosphere (Dia et al., 2000). 

To further explore Fe mobility in the Steep Rock paleosol profiles, the Eh values required 

to oxidize Fe were calculated for assumed pH values of 4.66 and 5.6.   The Eh-pH diagram for 

the Fe-C -O-H system is shown in Figure 4.1.  For Figure 4.1, activities assumed for dissolved 

species include Fe=10-6 and C=10-3.  Temperature is assumed to be 25°C and pressure to be 1 

bar.  Fe3+ solid phases are assumed to be goethite and magnetite (Brookins, 1988).  For modeling 

purposes, the phase boundary between the Fe2+ and Fe3+ can be calculated by the dissociation 

equation (4.5) and the equilibrium equation (4.6): 



 98 

 

Figure 4.1:  Eh-pH diagram for the Fe-C-O-H system.  Activities assumed for dissolved species include Fe=10-

6 and C=10-3.  Temperature is assumed to be 25°C, and pressure is assumed to be 1 bar.  Fe3+ solid phases are 

assumed to be goethite and magnetite (from Brookins, 1988) 

 



 99 

Fe(OH)3 (c) + 3H+ + e- → Fe2+(aq) + 3 H20    (4.5) 

logK=log [Fe2+] + 3pH + pe      (4.6) 

 

The activity for Fe2+ is assumed to be 1.79 x 10-7 mol/L, which is the typical 

concentration of Fe in natural waters (Hem, 1985).  The value for K=2.89 x 10-16 calculated 

using thermodynamic data from Wagman et al. (1982).  If pH is assumed to be equal to 4.66, 

then the calculated phase change between Fe3+ and Fe2+ will take place at Eh= 0.545 based on 

equation (4.6).  If pH is assumed to be 5.6, then the calculated phase change will take place at 

Eh=0.379.  

The Fe3+/Fe2+ > 1 and loss of FeT in both profiles points to a fluctuating Eh, which as 

stated above, could be caused by waterlogged conditions (at least seasonally) or organic material, 

as in modern soils.  To further constrain redox conditions in the Steep Rock paleosols, other 

redox elements were considered. 

4.4.2 Cerium Mobility 

Anomalous concentrations of cerium in soil profiles are significant because these anomalies only 

develop under oxidizing conditions where Ce3+ can transform to highly immobile Ce4+ (Lipin 

and McKay, 1989).  Positive Ce anomalies develop when REE other than Ce are partially 

removed by weathering, leaving behind a Ce-enriched residuum; negative Ce anomalies form in 

the regions of the profile where REE have accumulated from an overlying oxidized zone.   

No significant Ce anomalies (calculated as Ce/Ce*=[Ce]N,C/([La]N,C[Pr]N,C)0.5, where the 

subscript “N,C” denotes normalization to chondrites) are apparent in the SRP profile (see Table 

4.1).  Slight negative anomalies (0.97) occur in the samples 170 and 320 cm below the 
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unconformity.  Because the zones where these samples occur are not enriched in REE, the 

negative anomalies are probably not significant.  The CP profile, developed on granodiorite, also 

lacks significant Ce anomalies (Schau and Henderson, 1983).   

Positive Ce anomalies have been reported in modern soils on various types of parent 

rocks (e.g., Nesbitt, 1979; e.g., Braun et al., 1990; Marsh, 1991). Braun et al. (1990) found 

positive Ce anomalies in chondrite-normalized samples in the heavily weathered interval of a 

saprolite derived from syenite.  The Ce enriched layer was beneath a zone of iron oxide 

accumulation.  The less-weathered parent rocks did not contain any Ce anomalies.  Marsh (1991) 

reported positive Ce anomalies in a highly weathered section of an oxidized soil developed on 

dolerite in South Africa.  Less weathered rocks in the profile were relatively depleted in Ce.  

Nesbitt (1979) described the weathering of the Torrongo granodiorite in southeastern Australia.  

This study proposed a model where aggressive CO2-rich rainwater and organic acids weather 

REE into solution.  As the acid-rich water flow downward through the weathering profile, the pH 

increases.  The REE come out of solution, and are contained within the weathering profile. 

However, not all modern profiles (formed under an oxygen-rich atmosphere) contain Ce 

anomalies.  Dia et al. (2000) documented the lack of Ce anomalies in a waterlogged profile 

containing organic-rich waters, and the study showed that Ce may complex with organic colloids 

in groundwaters draining from wetland soils, masking the seasonal oxidation events of the 

wetland.   

As stated above, the absence of a significant Ce anomaly does not require pedogenesis 

under an anoxic atmosphere, as modern soils, especially waterlogged profiles, forming under 

oxygenated atmospheric conditions frequently lack Ce anomalies (Braun et al., 1990; Dia et al., 
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2000).  Lack of Ce anomalies in some modern soils suggests that there could have been 

sufficient oxygen to oxidize Fe in the Steep Rock profiles, but not Ce in the Steep Rock profiles.   

To further explore Ce mobility in the Steep Rock paleosol profiles, the Eh values 

required to oxidize Ce were calculated for assumed pH values of 4.66 and 5.6.   An Eh-pH 

diagram for the Ce-C-S-O-H system is shown in Figure 4.2.  In Figure 4.2, activities assumed 

for dissolved species include Ce=10-8, -6 and C=10-3.  Temperature is assumed to be 25°C and 

pressure to be 1 bar (Brookins, 1988).  For modeling purposes, the phase boundary between the 

Ce3+ and Ce4+ can be calculated by equation (4.7) and the equilibrium equation (4.8): 

 

  Ce3+(aq) + 2H2O → 4H+ + CeO2(c) + 3H20 + e-   (4.7) 

logK= -log [Ce3+] - 4pH - pe      (4.8) 

 

The activity for Ce3+ is assumed to be 1.00 x 10-7 mol/L, which is the maximum 

concentration of Ce3+ in natural waters (McLennan, 1989).  The value for K=2.93 x 10-22 

calculated using thermodynamic data from Schumm et al. (1973) and Smith and Martell (1976).  

If pH is assumed to be equal to 4.66, then the phase change between Ce3+ and Ce4+ will take 

place at Eh= 0.585 based on equation (4.8).  If pH is assumed to be 5.6, then the calculated phase 

change will take place at Eh=0.348.    Note that for a pH of 5.6, the Eh value required to oxidize 

Ce is less than the value required to oxidize Fe (Eh=0.379, see section 4.4.1).  This contradicts 

the paleosol data.  The data exhibit apparent enrichment of Fe, followed by mobility of Fe and 

mobility of Ce (i.e. no significant Ce anomalies).  However, a pH of 5.6 is possible if Ce 

complexes with organics, causing it to be mobile despite oxidation and masking any possible Ce 

anomaly formation. 
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Figure 4.2:  Flow chart summarizing possible cases of Fe and Ce mobility in soils and the possible 

interpretations. 

 

Figure 4.3 summarizes possible Fe and Ce mobility cases and the possible 

interpretations.  In modern laterite soils (e.g., Braun et al., 1990), Ce anomalies are associated 

with the Fe-rich crust; when Fe is immobile, Ce is immobile. A positive Ce anomaly occurs in 

the REE depleted zone directly underneath the Fe layer; a negative Ce anomaly occurs in the 

REE enriched zone below the depleted zone with the positive Ce anomaly (Nesbitt, 1979; Braun 

et al., 1990; Marsh, 1991).  When Fe is mobile, Ce may or may not be mobile.  If both Fe and Ce 

are mobile, it may be due to anoxic soil conditions (i.e. waterlogged or organic ligands) or to  
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Figure 4.3:  Eh-pH diagram for the Ce-C-S-O-H system.  Activities assumed for dissolved species include 

Ce=10-8, -6 and C=10-3.  Temperature is assumed to be 25°C, and pressure is assumed to be 1 bar (from 

Brookins, 1988). 
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anoxic atmospheric conditions (Ohmoto, 1996; Holland and Rye, 1997; Ohmoto, 1997; Dia et 

al., 2000; Beukes et al., 2002; Yang et al., 2002; Driese, 2004; Neaman et al., 2005).  If Fe is 

mobile, Fe3+/Fe2+ >1, and Ce is not mobile, then soil development most likely took place in an 

oxic atmosphere and at least a seasonally oxic soil atmosphere.  Soil formation was probably 

followed by post-pedogenic alteration with reduced hydrothermal (Ohmoto, 1996).  To further 

constrain soil and atmospheric conditions during the formation of the Steep Rock paleosols 

profiles, P was used as a proxy for the presence of organic ligands (i.e., Neaman et al., 2005). 

4.4.3 Proxy for Organic Ligands in Paleosols 

To determine if the Steep Rock paleosols may have contained organic ligands capable of 

enhancing redox element movement, a proxy for organic ligands was used.  Neaman et al. (2005) 

carried out an experimental study on element mobility patterns in basalt with and without ligands 

and with and without oxygen.  They proposed phosphorus (P) as a proxy for organic ligands, as 

P mobility was minor in organic ligand-free conditions with or without oxygen.  Their study is 

based on the assumption that rainfall is less than the topsoil pore volume as indicated by the 

relative immobility of Al.  This is important because controls in the study suggested that apatite 

can be weathered in high rainfall conditions, which would deplete P levels by rainfall rather than 

by ligand activity.  Braun et al. (1990) documented apatite weathering during modern laterite 

development under high rainfall conditions. 

Phosphorus data for the Steep Rock paleosols are shown in Table 4.1 and 4.2.  The 

mobility of P for the SRP and CP profiles relative to parent material in both profiles is shown in 

Figure 4.4.  Phosphorus is depleted by up to 80% at the top of the SRP profile and 100% 

throughout the CP profile.  Phosphorus mobility in the Steep Rock paleosols suggests that  
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Figure 4.4:  Percent variation of P (Al-normalized) from parent material in the SRP and CP profiles.  Parent 

material =0. 
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organic ligands may have been present and that they could have affected redox mobility.  If there 

was enough oxygen to oxidize Fe2+ to Fe3+, which seems likely based on Fe3+/Fe2+ ratios >1, the 

presence of organics could explain the loss of FeT from both profiles as well as the lack of Ce 

anomalies. 

4.4.4 Copper Mobility 

Phosphorus mobility itself is not an indicator of redox conditions, as P is mobile with ligands and 

with or without oxygen (Neaman et al., 2005).  Alternatively, Cu can be used.   Neaman et al. 

(2005) documented the mobility of Cu solely as a function of oxygen and not ligands.  Variation 

of Al-normalized Cu from the parent tonalite with depth for the SRP paleosol is presented in 

Table 4.1 and shown in Figure 4.5.   Cu loss ranges from 112% at the top of the profile to 89% 

at the bottom.  Data for the CP profile is presented in Table 4.2 and shown in Figure 4.5.  Cu 

loss ranges from 52% at the top of the profile to 36% at the bottom of the profile.  Because Cu 

mobility is most likely due to the oxygen content of the soil, and not the ligand content (Neaman 

et al., 2005), Cu should be useful in estimating a minimum Eh for the atmosphere.  Soils are 

generally more reduced than the atmosphere if they contain organic material, thus calculations 

would reflect a lower limit of atmospheric oxygen. 

To further constrain the Eh conditions in the Steep Rock paleosol profiles, the Eh values 

required to oxidize Cu were calculated for assumed pH values of 4.66 and 5.6.   The Eh-pH 

diagram for the Cu-C-S-O-H system is shown in Figure 4.6; no Cu+ field is present because Cu+ 

ions typically disproportionate yielding Cu0 and Cu2+ (Hem, 1985).  In Figure 4.6, activities 

assumed for dissolved species include Cu=10 -6 and S=10-3, and C=10-1,-3.  Temperature is  
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Figure 4.5:  Percent variation of Cu (Al-normalized) from parent material in the SRP and CP profiles.  

Parent material =0. 
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Figure 4.6:  Eh-pH diagram for the Cu-C-S-O-H system.  Activities assumed for dissolved species include 

Cu=10-6 and S=10-3, and C=10-1,-3.  Temperature is assumed to be 25°C, and pressure is assumed to be 1 bar 

(from Brookins, 1988). 
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assumed to be 25°C and pressure to be 1 bar (Brookins, 1988).  For an assumed pH of 4.66, the 

phase boundary between the Cu and Cu2+ can be calculated by equation (4.9) and the equilibrium 

equation (4.10): 

 

      Cu(s) → Cu2+(aq) + 2e-          (4.9) 

  logK= -log [Cu2+] - pe      (4.10) 

 

The activity for Cu2+ is assumed to be 1.57 x 10-7 mol/L, which is the common 

concentration of Cu2+ in modern river waters (Turekian, 1969).  The value for K=3.39 x 10-12 

calculated using thermodynamic data from Wagman et al. (1982).  At a pH of 4.66, the 

calculated phase change between Cu and Cu2+ will take place at Eh= 0.138 based on equation 

(4.10).   

If pH is assumed to be 5.6, the phase boundary between the Cu and Cu2+ can be 

calculated by equation (4.11) and the equilibrium equation (4.12): 

 

Cu2O(s) + 2H+ → 2Cu2+(aq) +  H2O + 2e-    (4.11) 

logK= 2log [Cu2+] - 2pe + 2pH     (4.12) 

 

The activity for Cu2+ is assumed to be 1.57 x 10-7 mol/L, which is the common 

concentration of Cu2+ in modern river waters (Turekian, 1969).  The value for K=9.4 x 10-8 

calculated using thermodynamic data from Wagman et al. (1982).  At a pH of 5.6, the calculated 

phase change between Cu and Cu2+ will take place at Eh= 0.136 based on equation (4.12).  The  
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mobility of Cu suggests that the soil contained some oxygen.  To further constrain the Eh and pH 

of the Steep Rock soil environment, we analyzed uranium (U), which has been used as a 

paleoenvironmental indicator in the Archean. 

4.4.5 Uranium Mobility 

Detrital uraninite has been used by many authors as evidence that the Earth’s atmosphere was 

reducing prior to 2.2 Ga (Robinson and Spooner, 1984; Robb and Meyer, 1995; Buick and 

Rasmussen, 1998; Law et al., 2003).  It is considered a paleoenvironmental indicator because 

when it is oxidized from U 4+ to U 6+ it becomes mobile as uranyl complexes or uranyl carbonate 

complexes (Brookins, 1988).  No data for the CP profile are available (Schau and Henderson, 

1983).  Whole rock U data for the SRP profile are shown in Table 4.1; Al-normalized U data 

compared to parent tonalite are shown in Figure 4.7.  U is depleted (up to 45 %) in the soil 

profile compared to the parent tonalite, consistent with at least slightly oxidizing conditions.  

However, U movement has been attributed to diagenesis of uranium-bearing minerals in a study 

by Robinson and Spooner (1984).  Uranium disturbance is suggested in the Steep Rock profile 

by discordant titanite U-Pb ages of 2809 Ma from the 3003 Ma Marmion complex (Davis and 

Jackson, 1988).  Titanites yielding U-Pb ages of 2950 Ma have been reported as representing 

hydrothermal deposition concurrent with the formation of the Jolliffe Ore Zone (reported by 

Tomlinson et al., 1999, as D. Davis, personal communication).  

Assuming no disturbance of U during hydrothermal events, Eh constraints can be placed 

on the soil redox conditions.  The Eh-pH diagram for the U-C-O-H system with the Fe-S-O-H 

system superimposed is shown in Figure 4.8.  In Figure 4.8, activities assumed for dissolved 

species include U=10 -6, -8, -10 and S=10-3, Fe=10-6and C=10-3.  Temperature is assumed to be  
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Figure 4.7:  Percent variation of U (Al-normalized) from parent in the SRP profile.  Parent material =0. 

 

 

Figure 4.8:  Eh-pH diagram for the U-C-O-H system with the Fe-S-O-H system superimposed.  Activities 

assumed for dissolved species include U=10 -6, -8, -10 and S=10-3, Fe=10-6 and C=10-3.  Temperature is assumed 

to be 25°C, and pressure is assumed to be 1 bar (from 
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25°C and pressure to be 1 bar (Brookins, 1988).  For an assumed pH of 4.66, the phase boundary 

between the UO2 and UO22+ can be calculated by equation (4.13) and the equilibrium equation 

(4.14): 

 

UO2(s) → UO2
2+(aq) + 2e-      (4.13) 

logK= log [UO2
2+] - 2pe      (4.14) 

 

The activity for UO2
2+ is assumed to be 2.10 x 10-8 mol/L, which is the average 

concentration of U in modern natural waters (Hem, 1985).  The value for K=1.27 x 10-14 

calculated using thermodynamic data from OECD (1985).  At a pH of 4.66, the calculated phase 

change between UO2
 and UO2

2+ will take place at Eh= 0.184 based on equation (4.14).   

For an assumed pH of 5.6, the oxidized ion of U is UO2(CO3)2
2-.  The phase boundary 

between the UO2 and UO2(CO3)2
2- can be calculated by equation (4.15) and the equilibrium 

equation (4.16): 

 

UO2(s) + 3HCO3
- → UO2(CO3)2

2-(aq) + 2e- + 2H+   (4.15) 

logK= log [UO2(CO3)2
2-] – 2pH - 2pe +6    (4.16) 

 

The activity for UO2(CO3)2
2- is assumed to be 2.10 x 10-8 mol/L, which is the average 

concentration of U in natural waters (Hem, 1985).  The value for K=2.06 x 10-18 calculated using 

thermodynamic data from OECD (1985).  At a pH of 5.6, the calculated phase change between  
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UO2
 and UO2(CO3)2

2- will take place at Eh= 0.142 based on equation (4.16).  If the mobility of U 

is only due to pedogenic processes and not diagenetic/hydrothermal processes, then calculated 

Eh data suggests a slightly oxidizing soil atmosphere. 

4.4.6 Vanadium Mobility 

Most vanadium (V) species are mobile.  However, V2O4 and V2O3 are oxidized solid species that 

occur in the middle pH ranges.  Most modern soils form between a pH of 4.5 and 9 (Brady and 

Weil, 1999).  Whole rock V data for the SRP profile are shown in Table 4.1; Al-normalized V 

data for the SRP profile compared to parent tonalite are shown in Figure 4.9.  V is enriched by a 

factor of 12 to 412%.  Vanadium data for the CP profile are shown in Table 4.2; Al-normalized 

V data for the CP profile compared to parent granodiorite are shown in Figure 4.9.  V in the CP 

profile is depleted 84-90% relative to its parent.   

The Eh-pH diagram for the V-O-H system is shown in Figure 4.10.  In Figure 4.10, 

activities assumed for dissolved species include V=10-6.  Temperature is assumed to be 25°C and 

pressure to be 1 bar (Brookins, 1988).  For an assumed pH of 4.66, the phase boundary between 

the V2O3 and VO2+ can be calculated by equation (4.17) and equilibrium equation (4.18): 

 

V2O3(s) + 2H+ → 2VO2+(aq) + H2O + 2e-    (4.17) 

logK=2log [VO2+] - 2pe + 2pH     (4.18) 

 

The activity for VO2+ is assumed to be 9.8 x 10-8 mol/L, which is the average 

concentration of V in modern natural waters (Hem, 1985).  The value for K=2.32 x 10-2.  K was 
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Figure 4.9:  Percent variation of V (Al-normalized) from parent material in the SRP and CP profiles.  Parent 

material =0.
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Figure 4.10:  The Eh-pH diagram for the V-O-H system is shown.  Activities assumed for dissolved species 

include V=10-6.  Temperature is assumed to be 25°C, and pressure is assumed to be 1 bar (from Brookins, 

1988). 



 116 

calculated using thermodynamic data from Wagman et al. (1982).  At a pH of 4.66, the 

calculated phase change between V2O3
 and VO2+ will take place at Eh= -0.091 based on equation 

(4.18).  For an assumed pH of 5.6, the phase boundary between the V2O4 and H2VO4
- can be 

calculated by equation (4.19) and the equilibrium equation (4.20): 

 

  V2O4(s) + 4H2O → 2H2VO4
-(aq) + 2e- + 4H+   (4.19) 

logK=2 log [H2VO4
-] – 4pH - 2pe     (4.20) 

 

The activity for H2VO2
- is assumed to be 9.8 x 10-8 mol/L, which is the average 

concentration of V in modern natural waters (Hem, 1985).  The value for K=3.48 x 10-40 

calculated using thermodynamic data from Wagman et al. (1982).  At a pH of 5.6, the calculated 

phase change between V2O4
 and H2VO4

- will take place at Eh= 0.090 based on equation (4.20). 

The mobility of V in the CP profile suggests an oxidizing soil environment.  This is 

consistent with the pronounced enrichment of Fe3+ of up to 1000% relative to parent in the 

middle of the profile.  The retention of V in the SRP profile could indicate that the SRP profile 

was more affected by organic ligands, which reduced oxygen levels and created a slightly 

oxygenated to reducing environment, making V stable at moderate pH.  However, this does not 

explain the Fe3+ /Fe2+ >1 for this profile.  An alternative explanation for V retention in the SRP is 

the incorporation of V into clay structures.  Preliminary laser ablation data of the SRP samples 

indicates that V is associated with leucoxene, a Ti-oxide alteration product of titanite and 

ilmenite (Macpherson et al., 2000).  Vanadium may remain in the clay structure under slightly 

oxidizing conditions.  Brookins (1976; 1977; 1979; 1984) studied the incorporation of U and V 

into clays in Grants Mineral Belt, New Mexico.  Uranium and vanadium were incorporated into 
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clays at the same time; however, U became mobile with an increase in Eh, whereas V remained 

in the clay structures despite oxygen levels.  The studies suggested that segregation of U from V 

can occur during weathering.  Further study is needed to distinguish the difference between V-

bearing phases in the SRP and CP profiles and how mineralogy may affect V mobility.  A 

summary of possible Eh constraints constructed for the Steep Rock paleosols based on model 

assumptions is shown in Table 4.3.   

 

Table 4.3:  Summary of redox element Eh indicators for the Steep Rock Paleosol. 

  Species Present Species Eh (min or max)   
Species SRP CP for model with pH = 4.66 Comment 

Fe2+(aq) Yes Yes Eh < 0.545 
Fe3+(s) Yes Yes Eh > 0.545 ] Varying Redox? 

Ce4+(s) No No Eh > 0.585 Maximum Eh? 
Cu2+(aq) Yes Yes Eh > 0.138 Minimum Eh? 

UO2
2+(aq) Yes?* Yes?* Eh > 0.184 *Hydrothrmal? 

VO2+(aq) No?** Yes Eh > -0.09 **Held in Clay? 
     

      Species Eh (min or max)   
Species SRP CP for model with pH = 5.6 Comment 

Fe2+(aq) Yes Yes Eh < 0.379 
Fe3+(s) Yes Yes Eh > 0.379 ] Varying Redox? 

Ce4+(s) No No Eh > 0.348 Below Fe3+? 
Cu2+(aq) Yes Yes Eh > 0.137  

UO2(CO3)2
2-(aq) Yes?* Yes?* Eh > 0.142 *Hydrothrmal? 

H2VO4
-(aq) No?** Yes Eh > 0.090 **Held in Clay? 
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4.5 REDOX CONDITIONS DURING STEEP ROCK PEDOGENESIS 

Based on estimates of pCO2 in the Archean atmosphere and modern concentrations of redox 

metals in the hydrosphere, a preliminary model for Steep Rock soil Eh indicates at least enough 

oxygen to oxidize Fe and Cu but not enough to oxidize Ce.  However, initial evidence of 

microbial activity based on the mobility of P suggests that Ce could have complexed with 

organic material, which could mask Ce anomalies.  Organic ligands may have also caused 

variability in Fe redox states.  Copper mobility is independent of organic ligands, based on 

experimental data by Neaman et al. (2005), making it a possible indicator of the minimum Eh of 

soil conditions.   Uranium concentrations were only slightly depleted, indicating either slightly 

oxidizing soil conditions or the addition of U during hydrothermal alteration of the SRP profile.  

Different V behavior in the SRP and CP profiles may suggest that V was incorporated into clay 

structures in the SRP profile.   

Paleosol data are consistent with modeled Eh values when a pH of 4.66 is assumed.  

Model results using pH=5.6 yield conditions with enough oxygen to oxidize Ce, but not Fe, 

which is inconsistent with the paleosol Fe and Ce data.  Preliminary estimates for minimum and 

maximum soil Eh values of 0.137 and 0.585, respectively, were calculated using an assumed pH 

of 4.66.  Although many assumptions go into redox modeling for paleosols, this study 

demonstrates the advantages for using several redox elements for constraining the soil 

environment in the Archean.  To improve this model, mineral phases in the paleosol need to be 

better constrained, and additional tracers for soil microbes are needed.  
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4.6 COMPARISON BETWEEN THE STEEP ROCK AND HOKKALAMPI 

PALEOSOLS  

Despite chemical overprinting by thermal events, both the ~3.0 Ga Steep Rock paleosol 

(northwest Ontario) and ~2.3 Ga Hokkalampi paleosol (eastern Finland) contain clear 

micromorphologic textures that are evidence of soil-forming processes and a general trend of 

increased weathering toward the paleo-surface (Stafford et al., 1999; Stafford et al., 2000).  

Whole rock Rb-Sr ages and secondary mineral assemblages (e.g., white mica and chlorite) are 

consistent with intense subaerial weathering followed by regional greenschist metamorphism 

(Stafford et al., 1999; Stafford et al., 2000).  This likely resulted in post-pedogenic changes in 

the concentrations of alkali and alkaline earth element such as potassium, calcium and strontium. 

However, Sm-Nd isotope systematics for both paleosols suggest that REE concentrations were 

largely unaffected by regional metamorphism. 

Terrestrial conditions recorded by the Hokkalampi paleosol during the proposed rise of 

atmospheric oxygen (e.g., Bekker et al., 2004) ranged from oxidized to reduced.  Hokkalampi 

soil formation was most likely affected by seasonal fluctuations as in modern lateritic soils:  

organic acid-rich and reducing during wet seasons, and oxic during dry season (i.e., O2-diffusion 

through the unsaturated soil zone).  Organic-rich water moving through the subsurface under 

saturated conditions was responsible for mobilization of rare earth elements and perhaps 

thorium.  As suggested for the Hekpoort paleosol (Beukes et al., 2002), iron was mobilized at the 

mid-levels of the paleosols deposited at depth as Fe2+.  During the dry seasons, a portion of this 

Fe was fixed as Fe3+ by oxic soil/ground waters (Fe3+/Fe2+>1).  Some leaching of uranium at 

shallow to middle levels in the profile by these oxic waters may also have taken place, with  
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subsequent adsorption at depth by Fe hydroxides.  This model would suggest that the reduced 

Hokkalampi profile at one time had an oxidized upper zone (analogous to the Hekpoort paleosol; 

Beukes et al., 2002) that was subsequently eroded away.   

The SRP/CP Steep Rock profiles and the reduced section of the Hokkalampi paleosol 

exhibit similar characteristics including:  (1) FeT loss at the top of the profiles; (2) Fe3+/Fe2+>1; 

(3) minor to absent Ce anomalies; (4) mobility of U; and (5) evidence of organic material. (i.e., 

mobility of P or Th).  The shared characteristics of the Hokkalampi paleosol, which formed 

during the proposed rise of oxygen (e.g., Bekker et al., 2004) and the much older Steep Rock 

paleosol (Sm-Nd isotope model age of 3018±90 Ma) are consistent with, but do not require, a 

model of significant atmospheric pO2 levels as early as 3.0 Ga ago. 
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