
 

Experimental and computational studies of calcium-triggered transmitter release 
 
 
 
 
 
 
 
 

by 

Soyoun Cho 

BS, Seoul National University, 1997 

MS, Seoul National University, 1999 
 
 
 
 

 
 
 
 
 

Submitted to the Graduate Faculty of 

Arts and Sciences in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 
 
 

2007 

 



 ii 

UNIVERSITY OF PITTSBURGH 

SCHOOL OF ARTS AND SCIENCES 
 
 
 

 
 
 

This dissertation was presented 

 
by 

 
Soyoun Cho 

 
 
 

It was defended on 

August 2, 2007 

and approved by 

Committee Chairperson: Nathaniel N. Urban, Ph.D. 

German Barrionuevo, M.D. 

Guo-Qiang Bi, Ph.D. 

Karl Kandler, Ph.D. 

Joel R. Stiles, M.D. Ph.D. 

Harold L. Atwood, Ph.D., D.Sc., F.R.S.C. 

 Dissertation Advisor: Stephen D. Meriney, Ph.D. 

 

 



 iii 

 

Calcium influx through presynaptic calcium channels triggers transmitter release, but 

many of the details that underlie calcium-triggered secretion are not well understood. In an 

attempt to increase our understanding of this process, synaptic transmission at the frog 

neuromuscular junction has been investigated using physiological experiments and 

computational modeling. Pharmacological manipulations ((R)–roscovitine and DAP) were used 

as tools to modulate presynaptic calcium influx and study effects on transmitter release. I showed 

that (R)-roscovitine predominately slowed deactivation kinetics of calcium current (by 427%), 

and as a result, increased the integral of calcium channel current evoked by a physiological 

action potential waveform (by 44%). (R)-roscovitine also increased the quantal content of 

acetylcholine released from the motor nerve terminals (by 149%) without changing paired-pulse 

facilitation under low calcium conditions.  In contrast, exposure to 3,4-diaminopyridine (which 

affects transmitter release evoked by partially blocking potassium channels, altering the 

amplitude of the presynaptic action potential, and indirectly increasing calcium entry) increased 

paired-pulse facilitation (by 23%). In normal calcium conditions, both pharmacological 

treatments showed relatively similar effects on paired-pulse facilitation. I used a computational 

model, constrained by previous reports in the literature and my physiological measurements, to 

simulate my experimental data. This model faithfully reproduced calcium current with a single 

action potential, the average number of released synaptic vesicles, and the effects of (R)-
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roscovitine and DAP on calcium influx and vesicle release. Using this model, I made several 

predictions about the mechanisms underlying transmitter release. First, calcium ions originating 

from one or two voltage-gated calcium channels most often contributed to cause the fusion of 

each vesicle. Second, the calcium channel closest to a vesicle that fuses, provides 77% of 

calcium ions. My simulation of paired-pulse facilitation using the present model needed more 

adjustments, and in the process of adjusting the model parameters, various hypotheses that might 

explain observed short-term synaptic plasticity, including the effects of changes in buffer 

conditions, the effects of uneven calcium channel distribution, reducing terminal volume by 

adding vesicles to a storage pool, changes in the second action potential waveform, and possible 

persistent changes in vesicle release machinery were explored. 
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1.  INTRODUCTION 

1.1 OVERVIEW 

Voltage-gated calcium channels open when an action potential invades the presynaptic nerve 

terminal and depolarizes the membrane. Subsequent calcium influx through the open channel 

triggers neurotransmitter release. Presynaptic calcium influx is the critical signal that controls 

communication throughout the nervous system. Although this process has been studied for a long 

time, many details still remain unclear. Due to the importance of this basic aspect of synaptic 

physiology, the study of the calcium regulation of transmitter release remains an active research 

area. 

In this thesis, calcium regulation of transmitter release at the frog neuromuscular junction has 

been investigated using electrophysiology and computational modeling. To manipulate 

presynaptic calcium influx, two pharmacological tools were used. Previous work has shown that 

roscovitine, an inhibitor of cyclin-dependent kinase (cdk), might directly affect calcium channels 

in a cdk-independent way. Thus, I characterized the effects of roscovitine on calcium entry 

through voltage-gated calcium channels and on transmitter release. Using roscovitine as a tool, 

additional underlying mechanisms that control calcium entry, transmitter release, and short-term 

synaptic plasticity were elucidated further at the frog neuromuscular junction. The effect of 3,4-

diaminopyridine (DAP), a potassium channel blocker, was also investigated as a contrasting 
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drug. DAP increased presynaptic calcium influx indirectly by altering the action potential 

waveform and DAP has been shown to increase transmitter release in many preparations (Hue et 

al., 1976; Jankowska et al., 1977; Guerrero and Novakovic, 1980; Kim et al., 1980; Matsumoto 

and Riker, 1983; Augustine GJ, 1990; Barish et al., 1996; Seo et al., 1999; Gu et al., 2004). 

Because DAP showed similar effects on transmitter release to roscovitine at the adult frog 

neuromuscular junction, but works by different underlying mechanisms, DAP was chosen as a 

contrasting drug in this study. 

The work described in this dissertation is focused on exploring underlying mechanisms of 

neurotransmission and short-term plasticity. The physiological and theoretical questions I have 

addressed will increase our understanding of the neuromuscular junction synapse.  

1.2 CALCIUM INFLUX AND TRANSMITTER RELEASE 

1.2.1 Neurotransmitter release at the nerve terminal 

The essential role of calcium ions in triggering neurotransmitter release has been studied 

for many years (Katz and Miledi, 1965b; Dodge and Rahamimoff, 1967; Katz and Miledi, 1970). 

The influx of calcium through voltage-gated calcium channels in the presynaptic terminal is the 

transduction mechanism that links the action potential with neurotransmitter release (Augustine 

et al., 1987). As such, voltage-gated calcium channels at active zone regions of the adult frog 

nerve terminal play an important role as one of the elements of the vesicle release machinery 

(Stanley, 1997).  

Calcium entry through voltage-gated calcium channels increases the intracellular calcium 



 3 

concentration (to approximately ~10 µM) in a spatially restricted area near the intracellular face 

of the calcium channel. This area is known as a microdomain (Stanley, 1997; Llinas and Moreno, 

1998; Bertram et al., 1999; Schneggenburger and Neher, 2005). Because the calcium sensor for 

neurotransmitter release is thought to be positioned very close to these calcium channels, the 

presynaptic action potential triggers transmitter release within a millisecond (Borst and 

Sakmann, 1996). In fact, the delay between calcium influx and the fusion of synaptic vesicles 

can be as little as 60-350 µsec and this suggests that calcium ions diffuse less than 100 nm to 

trigger the exocytosis of synaptic vesicles (Llinas et al., 1981; Heidelberger et al., 1994; Sabatini 

and Regehr, 1996; Neher, 1998). Given the homeostatic calcium handling mechanisms present 

within the nerve terminal, free ionic calcium cannot diffuse great distances in this environment. 

The spatially-restricted and temporally-confined local calcium signal is thought to interact with a 

nearby vesicular membrane protein (synaptotagmin) that initiates the process that leads to the 

fusion of neurotransmitter-containing vesicles.  

The movement of vesicles through the neuron’s cytoplasm is highly regulated and most 

vesicles are not immediately available for release. Vesicles must be tethered, docked and primed 

before release occurs with action potential stimulation (Figure 1). Vesicles are thought to reside 

in distinct pools, such as the readily releasable pool and the reserve pool, though the terminology 

can be different (Zucker and Regehr, 2002; Rizzoli and Betz, 2005). Vesicles in the readily 

releasable pool seem to be docked and primed for release and immediately available upon 

stimulation. Only about 1% of all vesicles reside in the readily releasable pool (Mennerick and 

Matthews, 1996; Neves and Lagnado, 1999; Schneggenburger et al., 1999; Delgado et al., 2000; 

Rettig and Neher, 2002; Richards et al., 2003; Rizzoli and Betz, 2004). There is also a pool of 

recycling vesicles (10-20% of total vesicles) that can be quickly prepared for fusion (Rizzoli and 
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Betz, 2004, 2005). The reserve pool generally makes up about 80-90% of total vesicles. Vesicles 

in the reserve pool only can be released during intense stimulation (Neves and Lagnado, 1999; 

Delgado et al., 2000; Richards et al., 2000). In my computational model (chapter 4), each active 

zone has 26 docked and primed vesicles.  

Cytoskeletal elements, such as actin, myosin and motor proteins, play important roles in 

the transport of vesicles. The disassembly of the actin network controls the transit of vesicles 

from the reserve pool to the readily releasable pool and this process can be regulated by calcium 

and ATP (Mulholland et al., 1997; Prekeris and Terrian, 1997; Trifaro et al., 1997; Bajjalieh, 

1999; Ryan, 1999). A complex of proteins, called the “exocyst” interacts with the cytoskeleton to 

target vesicles to the active zone. Rab-3 may regulate the alignment of vesicles in the active zone 

and assist in the displacement of n-sec-1 from syntaxin (this step is often called tethering). Then, 

syntaxin and SNAP25 bind to VAMP to form the CORE complex. This step “docks” a vesicle to 

the release site, which contains the presynaptic calcium channels. Priming is a preparing step in 

which the CORE complex binds synaptotagmin (the calcium sensor) and provides a calcium-

sensitive clamp that holds vesicle back from fusion until calcium influx occurs. Calcium binding 

to synaptotagmin is thought to cause cytoplasmic domains of synaptotagmin to insert into the 

plasma membrane, promoting vesicle fusion (Martens et al., 2007). After fusion of vesicles, 

cytoplasmic NSF/α-SNAP are thought to dissociate the CORE complex so that vesicles and their 

associated membrane proteins can be recycled (see Figure 1; Bajjalieh, 1999; Chapman 2002; 

O’Conner and Lee, 2002).  

Based on its ability to bind to calcium, and to link calcium influx and vesicle fusion, the 

best candidate calcium sensor for transmitter release is synaptotagmin. Synaptotagmin is a 

vesicle membrane protein with two cytoplasmic calcium-binding motifs, called C2 domains (the 
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C2A and C2B domains; Perin et al., 1990; Geppert et al., 1991). Among 16 identified vertebrate 

isoforms, the most abundant isoform is synaptotagmin 1, which is thought to function as a 

calcium sensor regulating fast exocytosis of synaptic vesicles (Geppert et al., 1991; Brose et al., 

1992; Ullrich et al., 1994; Davis et al., 1999; Craxton, 2004; Hui et al., 2005). The functions of 

the remaining synaptotagmin isoforms are less well understood and they are differentially 

expressed in the nervous system. Despite incomplete information, synaptotagmin 2 seems 

functionally similar to synaptotagmin 1 (Sugita et al., 2002; Hui et al., 2005; Xu et al., 2007) but 

synaptotagmin 5-7, 10 appear to be related with asynchronous release of transmitter (Hui et al., 

2005). Synaptotagmin 4 is predominantly expressed postsynaptically and functions as a 

postsynaptic calcium sensor to release retrograde signals that enhance presynaptic release 

(Adolfsen et al., 2004; Yoshihara et al., 2005). 

Synaptotagmin 1 has 5 calcium binding sites; the C2A domain binds 3 calcium ions and 

the C2B domain binds 2 calcium ions (Sudhof and Rizo, 1996; Ubach et al, 1998; Fernandez et 

al., 2001) and a recent study suggests that each docked vesicle has 5 to 8 SNARE complexes and 

associated synaptotamin molecules (Han et al., 2004). Both C2 domains have low intrinsic 

affinity for calcium ions. In synaptotagmin 1, KD values for C2A are ~ 60 µM, 400 µM, and 

more than 1 mM and KD values for C2B are ~300-400 µM and ~500-600 µM (Ubach et al., 

1998; Davis et al., 1999; Fernandez et al., 2001). The affinity for calcium ions of C2 domains 

strongly increases into physiological ranges when the C2 domains bind to phospholipids in 

plasma membrane. Under these phospholipid binding conditions, the overall calcium affinity of 

the C2 domains increases up to 5000 fold (KD = 5-50 µM) because additional coordination sites 

for calcium ions are probably provided by the negatively charged phospholipid headgroups 

(Brose et al., 1992; Davletov and Sudhof, 1993; Zhang et al., 1998; Fernandez-Chacon et al., 
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2001; Gerber et al., 2002; Sugita et al., 2002). Other synaptic molecules binding with 

synaptotagmin, such as syntaxin, SNAP-25, and intracellular domains of the voltage-gated 

calcium channel, also affect calcium binding affinity of C2 domains (Chapman et al., 1995, 

1998; Li et al., 1995; Kee and Scheller, 1996; Schiavo et al., 1997). The calcium binding 

affinities described above may be relative values rather than absolute, because they depend on 

the composition of the phospholipid membranes (Zhang et al., 1998; Fernandez-Chacon et al., 

2001; Sugita et al., 2002). Depending on the exact lipid composition of the fusion sites, which is 

unclear, the real affinities may vary by a factor of 2-4 (Sugita et al., 2002). Calium binding and 

unbinding rates have been less studied than calcium binding affinity (KD value). A previous 

study (Davis et al., 1999) measured the response time of the synaptotagmin C2 domain and 

demonstrated that the synaptotagmin C2A domains could respond rapidly to both increases and 

decreases in calcium concentration; rapidly enough to fit known rates for calcium-triggered 

vesicle fusion. They also showed that calcium binding triggered synaptotagmin penetration into 

membrane, and led to simultaneous binding to the SNARE complex (Davis et al., 1999). In this 

disseration, I used predicted calcium binding and unbinding rates to synaptotagmin in modeling 

the calcium sensors on synaptic vesicles in my computational model. 
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Figure 1 The synaptic vesicle cycle. 

Protein components of the vesicle release machinery participate in the steps of docking, 

priming, fusion, endocytosis, and recycling. This thesis is focused on the calcium-dependent 

mechanisms that occur between priming and fusion. From Li and Chin (2003). 
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1.2.2 Quantitative relationship between calcium and transmitter release 

The precise order of the dependence of transmitter release on calcium concentration 

varies among different synapses and different measuring methods. However, a nonlinear 

relationship between calcium concentration and transmitter release is consistently observed 

across various synapses and species, including the squid giant synapse (Lester, 1970; Llinas et 

al., 1981; Smith et al., 1985; Augustine et al., 1985; Stanley, 1986), the crayfish neuromuscular 

junction (Dudel, 1981; Parnas et al., 1982), the calyx of Held (Barnes-Davis et al., 1995; 

Schneggenberger and Neher, 2000) and hippocampal CA3-CA1 synapses (Wu and Saggau, 

1994). The frog neuromuscular junction shows a 4th order cooperative relationship between the 

postsynaptic response, which is measured as endplate potential (EPP) amplitude, and the 

extracellular calcium concentration. That is, doubling calcium influx results in a 16-fold increase 

in transmitter release (Jenkinson, 1957; Katz and Miledi, 1965b; Dodge and Rahamimoff, 1967; 

Andreu and Barrett, 1980; Barton et al., 1983). Based on these observations, it has been inferred 

that 3 to 5 calcium ions trigger the release of a synaptic vesicle (Dodge and Rahamimoff, 1967; 

Stanley, 1986; Heidelberger et al., 1994; Bollmann et al., 2000; Schneggenberger and Neher, 

2000; Shahrezaei et al., 2006). However, this conclusion has been called into question by 

modeling work suggesting that measured calcium cooperativity for transmitter release may not 

reflect the exact number of calcium binding sites (Barton et al., 1983; Zucker et al., 1991; 

Pattillo, 2002; Pattillo et al., 2007). That is, 4 calcium-binding sites may not be sufficient to 

explain the 4th order relationship. At this point, it is probably safer to say that the non-linear 

relationship between calcium and transmitter release requires that multiple calcium ions bind to 

cause fusion, but that number might be greater than previously predicted. Though synaptotagmin 
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is the leading candidate for the calcium sensor that triggers transmitter release, synaptotagmin 

may not be the only determinant of the cooperative relationship between calcium and transmitter 

release. Manipulations of VAMP and syntaxin expression levels have also been shown to alter 

the calcium-release cooperativity (Stewart et al., 2000). These data suggest that SNARE proteins, 

as well as synaptotagmin, are important for determining the cooperative relationship between 

calcium and transmitter release. However, it may be that by altering the expression levels of 

SNARE proteins, the number of synaptotagmin molecules associated with those SNARE 

complexes has been altered. In this case, changes in cooperativity may still be governed by the 

number of synaptotagmin molecules associated with each docked vesicle. 

The number of calcium channels that contribute to the release of a single vesicle also 

seems different among various synapses (Llinas et al., 1981; Adler et al., 1991; Quastel et al., 

1992; Stanley, 1993, 1997; Borst and Sakmann, 1996; Neher, 1998; Mulligan et al., 2001; 

Fedchyshyn and Wang, 2005) but still remains unclear. The “single-channel domain” hypothesis, 

which suggests that calcium influx through a single calcium channel triggers the release of a 

vesicle, and the “overlapping domain” hypothesis, which suggests that multiple calcium channels 

contribute to the fusion of a single vesicle and overlapping calcium domains is required to trigger 

release, are competing. At the frog neuromuscular junction, a recent study showed that one or 

two calcium channels contribute to fusion of a single synaptic vesicle (Shahrezaei et al., 2006), 

which supports previous predictions (Yoshikami et al., 1989). 

Based on the non-linear dependence of transmitter release on calcium entry as well as the 

tight temporal and spatial relationship between calcium and transmitter release, even slight 

modifications of presynaptic calcium influx would be expected to significantly affect transmitter 

release. 
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1.3 VOLTAGE-GATED CALCIUM CHANNELS 

1.3.1 Classification, structures, and functions 

Voltage-gated calcium channels can be classified as high-voltage activated (HVA) or 

low-voltage activated (LVA) calcium channels (Hagiwara et al., 1975; Llinas and Yarom, 1981). 

HVA calcium channels are activated by more depolarized membrane voltages (e.g. -20 mV) and 

these channel types can be involved in the regulation of neurotransmitter release and muscle 

contraction. L-type, N-type, P/Q-type, and R-type calcium channels are included in the HVA 

class of calcium channels. In contrast, LVA calcium channels activate at more hyperpolarized 

membrane voltages  (e.g. -70 mV). LVA calcium channels (predominantly the T-type) play an 

important role in generating repetitive electrical activity (Tsien et al., 1988).  

At the adult frog neuromuscular junction, the N-type channel is thought to exclusively 

control transmitter release (Kerr and Yoshikami, 1984; Robitaille et al., 1990). In developing 

synapses of the Xenopus frog neuromuscular junction preparation, additional types of channels, 

such as L-type, may also contribute to the control of transmitter release (Yazejian et al., 1997; 

Thaler et al., 2001; Sand et al., 2001). 

Voltage-gated calcium channels are comprised of the principal pore-forming α1 subunit, 

and auxiliary subunits β, α2δ, and γ (Figure 2; Hofmann et al., 1999; Catterall, 2000; Spafford 

and Zamponi, 2003). The electrophysiological and pharmacological characteristics of calcium 

channels are determined by the pore-forming α1 subunit. The basic structure of voltage-gated 

calcium channels is homologous with voltage-gated sodium and potassium channels. In all of 

these cases, the pore-forming subunit contains 4 transmembrane domains and each domain has 6 

transmembrane segments. The fourth segment (S4), which is positively charged, works as a 
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voltage sensor (Guy and Conti, 1990; Dewaard et al., 1996) and a pore loop is created between 

the fifth (S5) and the sixth (S6) segments (Heinemann et al., 1992). Genes that code for the α1 

subunit are also used to classify channel types. The Cav1 family is composed of the various L-

type channels. Cav2.1 is P/Q-type, Cav2.2 is N-type, and Cav2.3 is the R-type calcium channel. 

T-type calcium channels are in the Cav3 family (Table 1; Ertel et al., 2000). All of the work in 

this thesis is focused on the N-type (Cav2.2) calcium channel. This channel is associated closely 

with the proteins on vesicles that regulate calcium-triggered secretion by a synaptic integration 

site on the cytoplasmic loop between domains 2 and 3 (see Figure 2).  

 

1.3.2 Channelopathy involving the voltage-gated calcium channel 

Dysfunctions of many kinds of ion channels result in diseases, also called 

channelopathies. Channelopathies involving calcium channels include Lambert Eaton 

Myasthenic syndrome (LEMS). LEMS is an autoimmune disorder of the neuromuscular junction 

characterized by a reduced number of normally functioning presynaptic calcium channels 

(Lambert et al., 1956; Flink and Atchison, 2002). Antibodies in patients with LEMS seem to 

target, among other proteins, the P/Q-type channels that trigger release at mammalian 

neuromuscular junctions (Lennon et al., 1995; Pinto et al., 2002). Patients with LEMS have 

symptoms such as skeletal muscle weakness, decreased tendon reflexes, and various 

dysautonomias. Electrophysiological studies have identified a presynaptic decrease in the quantal 

content of evoked transmitter release from presynaptic nerve terminals as the cause of skeletal 

muscle weakness (Vincent et al., 1989). Freeze fracture electron microscopy has revealed that 

the functional decrease in quantal content in this disorder is associated with a decrease in the 
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number and organization of active zone particles that are thought to include presynaptic calcium 

channels (Fukunaga et al., 1982; 1983).  The mechanism underlying the disruption of active zone 

structure and the decrease in quantal content is hypothesized to be removal of calcium channels 

from the cell membrane by antibody-mediated cross-linking of calcium channel proteins 

followed by cellular endocytosis (Lambert et al., 1988; Kim and Neher, 1988; Smith et al., 1995; 

Peers et al., 1993; Meriney et al., 1996).  

In terms of therapy, one strategy is to increase the magnitude of transmitter release with 

each action potential. Guanidine hydrochloride, that blocks selectively presynaptic potassium 

channels, broadens the presynaptic action potential, and thus increases calcium influx and 

transmitter release, is occasionally prescribed in the United States (Matthews and Wickelgren, 

1977; Anderson and Harvey, 1988).  While guanidine has been shown to be effective in treating 

LEMS, it has many side-effects (Silbert et al., 1990; Sanders, 1995; Oh et al., 1997). 

Aminopyridines (such as DAP) are also selective potassium channel blockers and have been 

used to treat LEMS. However, DAP has been shown to have side effects including fatigue and/or 

deterioration of muscle strength (Lundh et al., 1993). It is expected that a selective calcium 

channel agonist (perhaps a derivative of (R)-roscovitine), if it can be developed, might provide 

the best treatment for LEMS. In this context, some of the data in this study might be helpful in 

the exploration of potential treatment strategies for channelopathy involving voltage-gated 

calcium channels and neuromuscular weakness, including LEMS.  
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Figure 2 Structure and subunit composition of voltage-gated calcium channels.  

Voltage-gated calcium channels consist of pore-forming α1 subunit, and auxiliary 

subunits β, α2δ, and γ. The α1 subunit contains 4 transmembrane domains, and N-type calcium 

channel is tightly associated with SNARE proteins involved in vesicle fusion by their binding to 

the amino acid sequences in the cytoplasmic loop between the 3rd and 4th domain (a synaptic 

protein interaction site; synprint). Modified from Spafford and Zamponi (2003). 
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Nomenclature Primary localization Functions Specific 
blocker 

Cav1.1 Skeletal muscle 

Excitation-contraction 
coupling 
Calcium homeostasis 
Gene regulation 

Cav1.2 
Cardiac muscle 
Endocrine cells 
Neurons 

Excitation-contraction 
coupling 
Hormone secretion 
Gene regulation 

Cav1.3 Endocrine cells 
Neurons 

Hormone secretion 
Gene regulation 

Di-
hydropyridine L 

Cav1.4 Retina Tonic neurotransmitter 
release  

P/Q Cav2.1 Nerve terminals 
Dendrites ω-Agatoxin 

N Cav2.2 Nerve terminals 
Dendrites 

Neurotransmitter release 
Dendritic Ca2+ transients ω-Conotoxin 

GVIA 

HVA 

R Cav2.3 
Cell bodies 
Dendrites 
Nerve terminals 

Ca2+ dependent action 
potentials 
Neurotransmitter release 

SNX-482 

Cav3.1 
Cardiac muscle 
Skeletal muscle 
Neurons 

Cav3.2 Cardiac muscle 
Neurons 

LVA T 

Cav3.3 Neurons 

Repetitive firing 
Dendritic signaling None 

 

Table 1 Summary of voltage-gated calcium channel nomenclature, pharmacological 

blockers, distribution and functions.  

Adapted from Lacinova (2005), and Catterall (2000). 
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1.4  SHORT-TERM SYNAPTIC PLASTICITY 

Communication between cells, or synaptic transmission, is not fixed in strength. 

Physiological activity patterns lead to changes in synaptic strength at all types of synapses. Some 

synapses show increased neurotransmitter release with repeated stimulation. At other synapses, a 

reduction in neurotransmitter release occurs. These alterations in synaptic strength are often 

termed “facilitation” for increases, or “depression” for decreases. The mechanisms that underlie 

all of these processes probably occur at every synapse, but the observed behavior is a mix of the 

offsetting strengths of these influences. In general, at synapses with a high probability of release, 

depression dominates, while synapses with a low release probability tend to show facilitation 

(Thomson, 2000; Xu-Friedman and Regehr, 2004).  

While manipulating the release probability by changing the extracellular calcium 

concentration can alter the form of short-term plasticity that dominates at synapses, there are also 

physiologically relevant manipulations that can change these plastic events as well. Possible 

physiologically relevant regulation sites for short-term synaptic plasticity include changes in the 

waveform of the presynaptic action potential (Jackson et al., 1991; Borst et al., 1995; Borst and 

Sakmann, 1999; Poage and Zengel, 2002), changes in calcium influx (Borst and Sakmann, 1998; 

Cuttle et al., 1998; Forsythe et al., 1998; Patil et al., 1998), the size of readily releasable pool 

(Betz, 1970; Ryan et al., 1993; Ryan and Smith, 1995), neuromodulators (Stefani et al., 1996; 

Takahashi et al., 1996; Scanziani et al., 1997; Wang and Lambert, 2000), internal calcium 

storage within mitochondria (Magnus and Keizer, 1997; Levy et al., 2003; Talbot et al., 2003; 

Tong, 2007) , and postsynaptic receptors (Katz and Thesleff, 1957; Trussell et al., 1993). It is 

widely accepted that intra-terminal residual calcium from previous action potentials causes 

activity-dependent synaptic enhancement, though underlying mechanisms of these dynamic 
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changes in synaptic strength are not well understood. One possible mechanism for this is 

saturation of local calcium buffers during the first action potential in a pair on train (Klingauf 

and Neher, 1997; Neher, 1998; Matveev et al., 2004). In contrast, depletion of the vesicles within 

the readily releasable pool can cause synaptic depression (Betz, 1970; Glavinovic and Narahashi, 

1988; von Gersdorff and Matthews, 1997; Delgado et al., 2000).  In addition, postsynaptic 

receptors can be desensitized by long exposure to neurotransmitter and this reduces synaptic 

responses (Trussell and Fischbach, 1989; Trussell et al., 1993; Mennerick and Zorumski, 1996; 

Otis et al., 1996; Oleskevich et al., 2000) 

Many presynaptic proteins including synaptotagmin, synapsin, synaptophysin, and munc 

13-1, and native calcium binding proteins, such as frequenin, and piccolo, can influence short-

term plasticity (Rivosecchi et al., 1994; Pieribone et al., 1995; Rosahl et al., 1995; Ryan et al., 

1996; Hilfiker et al., 1998; Stevens and Wesseling, 1999; Gerber et al., 2001). Despite our 

current detailed molecular understanding of presynaptic events surrounding transmitter release, 

there is no consensus as to the molecular mechanisms that underlie any particular phase of short-

term plasticity. Most attention is focused on trying to implicate various calcium binding proteins 

found in synaptic terminals. As there are many mechanisms that may lead to short-term synaptic 

plasticity, at most synapses multiple mechanisms probably interact in complex ways to generate 

the plastic physiological patterns of synaptic transmission (Zucker and Regehr 2002). 

1.5   FROG NEUROMUSCULAR JUNCTION MODEL SYSTEM 

The frog neuromuscular junction has been studied for more than 60 years because of its 

usefulness for understanding synaptic function, and thus provides a wealth of background 
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information upon which to build. This preparation has unique presynaptic active zone structure, 

including the regularly spaced, long linear arrays of synaptic particles in the active zone (Figure 

3). Freeze fracture electron micrographs of the frog active zone are characterized by distinctive 

double rows of synaptic particles that are thought to include voltage-gated calcium channels. 

Each active zone is ~1 µm long and they are separated from one another by about 1 µm (Heuser 

et al., 1974; Lester, 1977; Pumplin et al., 1981; Robitaille et al., 1990; Cohen et al., 1991; 

Harlow et al., 2001). Confocal microscopy has demonstrated that presynaptic active zone 

proteins and postsynaptic acetylcholine receptors are colocalized very tightly (Pumplin et al., 

1981; Robitaille et al., 1990, 1993; Cohen et al., 1991).  

The frog neuromuscular junction is a fast synapse that releases acetylchoine with high 

fidelity. Though the entire nerve terminal releases more than 300 vesicles per single action 

potential, each active zone releases less than 1 vesicle in response to a single action potential. 

Therefore, strong communication between motoneurons and muscle cells results from the 

summed activity of hundreds of individual low probability active zones positioned along whole 

length of the nerve terminal. These detailed studies of neuromuscular transmission have provided 

many insights into our general understanding of central synapses. 
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Figure 3  Frog neuromuscular junction 

Top. Schematic diagram of frog neuromuscular junction and the active zones that organize the 

transmitter release machinery. Adapted from Lester (1977). Bottom. Freeze fracture electron 

micrograph of the frog neuromuscular junction. Double rows of intramembrane particles 

surround the active zone (Heuser and Reese, 1977).  
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1.6 ROSCOVITINE 

Roscovitine was originally identified as an inhibitor of cyclin-dependent kinases (cdks).  

Cdks have been shown to be important in neuronal development (Dhavan and Tsai, 2001), 

synaptic transmission (Cheng and Ip, 2003), cytoskeletal control (Smith, 2003), 

neurodegeneration (Shelton and Johnson, 2004), and cell cycle control (Murray, 2004). With 

respect to clinical use, some inhibitors of cdks affecting the cell cycle are being tested for use as 

anticancer drugs (Sausville, 2002).   

Roscovitine exists as (R)- and (S)- enantiomers, each of which can be obtained in pure 

form. Interestingly, one of these enantiomers ((R)-roscovitine) has also been shown to have other 

effects that may be cdk-independent (Yan et al., 2002; Buraei et al., 2005, 2007).  For example, 

(R)-roscovitine has been shown to act on P/Q- and N-type calcium channels altering directly 

their deactivation kinetics with fast onset of action (1~2 sec), and to increase transmitter release 

at CNS synapses (Yan et al., 2002; Tomizawa et al., 2002; Buraei et al., 2005). However, (R)-

roscovitine does not affect L-type calcium channels (Yan et al., 2002; Buraei et al., 2005, 2007).  

(R)-roscovitine appears to slow deactivation of calcium channels by binding to the open 

state of channels and decreasing transition rates between two open states (Buraei et al., 2005, 

2007). In contrast to strongly slowed deactivation, the effect of (R)-roscovitine on activation 

kinetics was small. At higher concentrations, (R)-roscovitine slowly inhibited peak currents 

activated by a step voltage command (Buraei et al., 2005). A slower time course and the 

requirement for a higher concentration suggested a separate mechanism of action than that 

mediating slow deactivation kinetics. A recent study (Buraei et al., 2007) showed that (R)-

roscovitine also slowed deactivation of expressed R-type calcium channels and inhibited 

expressed putative A-type potassium currents. Effects were also noted on delayed rectifier and 
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Shaker-type potassium currents, the Kv4.2, Kv2.1 and Kv1.3 channels. (R)-roscovitine does not 

appear to affect sodium channels (Buraei et al., 2007).  

(S)-roscovitine is also known as a cdk inhibitor, but has no acute effects on calcium 

currents or transmitter release (see section 2.3 and 3.3; Cho and Meriney, 2006); this enantiomer 

can be used as a control for calcium channel effects. Another control used in this thesis is 

olomoucine, which also inhibits cdks and has a similar structure to roscovitine (Figure 4), but has 

no effect on calcium currents or calcium-triggered transmitter release (see section 2.3 and 3.3; 

Yan et al., 2002; Buraei et al., 2005; Cho and Meriney, 2006). 

In this thesis, I have designed experimental work around the most prominent effect of 

(R)-roscovitine: slowing of deactivation kinetics of calcium channels. This drug is seen here as a 

tool to manipulate calcium channels and study subsequent effects on transmitter release. 

However, these direct effects of (R)-roscovitine on calcium channels may inspire the 

development of roscovitine derivatives that lack cdk activity, and only have actions on calcium 

channel deactivation. Unless specified, I will use the term “roscovitine” elsewhere in this 

dissertation to refer to only the (R)- enantiomer.  
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(R)-roscovitine (S)-roscovitine Olomoucine 

 

Figure 4  Structures of (R)-, (S)- roscovitine and olomoucine.
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1.7  GOALS OF THE DISSERTATION 

 

Neurotransmitter release is tightly regulated by presynaptic calcium influx through 

voltage-gated calcium channels. Using two pharmacological manipulations (roscovitine and 

DAP), the calcium regulation of transmitter release was investigated. My study consists of (1) 

clarifying the underlying mechanism of these two pharmacological treatments by recording 

calcium currents and presynaptic action potential waveforms, (2) evaluating the effects of such 

manipulations on synaptic transmission and short-term synaptic plasticity at the adult frog 

neuromuscular junction by measuring postsynaptic responses, and (3) computational modeling to 

investigate synaptic molecular mechanisms at a sub-active zone level.  

This study allowed me to understand the specific relationship between calcium entry and 

transmitter release at the synapse further and provided interesting insights into short-term 

plasticity. This work also may spark further interest in examining the possibility that roscovitine 

derivatives might be effective as potential tools to change presynaptic calcium channel function 

at the neuromuscular junction.  
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2.  ROSCOVITINE EFFECTS ON CALCIUM CHANNEL ACTIVITIES 

 

In this chapter, the effects of roscovitine on calcium currents have been characterized in frog 

motoneurons. As a comparison, the effects of 3,4-diaminopyridine (DAP), a potassium channel 

blocker, were also investigated. DAP is known to enhance transmitter release because it 

increases presynaptic calcium influx indirectly by altering the action potential waveform. The 

underlying mechanisms of these two pharmacological treatments in frog motoneurons were 

clarified by recording calcium currents and presynaptic action potential waveforms. The 

possibility that these two treatments may be effective as tools to investigate calcium entry and 

subsequent transmitter release at the frog neuromuscular junction was examined.  

2.1  INTRODUCTION 

Calcium entry through voltage-gated calcium channels in the motor nerve terminal is known 

to trigger neurotransmitter release.  Voltage-gated calcium channels have been shown to be 

localized at active zone regions of the adult frog neuromuscular junction where they play a 

critical role in regulating vesicle fusion (Robitaille et al. 1990; Cohen et al. 1991).  Among 

several types of voltage-gated calcium channels (L-, N-, P/Q-, T- and R- type), the N-type 
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channel has been shown to mediate transmitter release at the adult frog neuromuscular junction 

(Kerr & Yoshikami, 1984).  

Studying the effects of agents that directly alter presynaptic calcium channel function may 

provide insight into the details underlying calcium-triggered secretion. In addition, a specific 

agonist of an ion channel is a very useful tool for characterizing ion channels. For example, L-

type calcium channels have been investigated productively using BayK 8644, a specific agonist 

of L-type calcium channels (Brown et al., 1984; Kokubun and Reuter, 1984; Nowycky et al., 

1985; Sanguinetti et al., 1986; Fox et al., 1987; Jones and Jacobs, 1990; Bargas et al., 1994). So 

far, the absence of a similar agonist for N-type calcium channels has hampered investigation in 

this area.  

Roscovitine, an inhibitor of cyclin-dependent kinases (cdks), has been demonstrated to have 

effects that may be cdk-independent (Yan et al. 2002; Buraei et al. 2005, 2007).  Roscovitine 

appears to act directly on P/Q-type calcium channels altering their deactivation kinetics, and 

enhancing calcium tail currents following step depolarizations in neostriatal interneurons (Yan et 

al. 2002). In addition, roscovitine has also been shown to slow deactivation of expressed N-, 

P/Q-, and R- type calcium channels (but not L-type channels), and N-type channels in bullfrog 

sympathetic neurons, possibly by binding to the open state of the channel (Buraei et al. 2005, 

2007).  

Given these apparently direct effects on calcium channel function, I have examined the 

possibility that roscovitine could be used as a potential tool to study transmitter release at the 

adult frog neuromuscular junction in the later chapters of this dissertation. Initially, however, I 

have examined roscovitine effects on N-type calcium channels expressed in frog motoneurons. 

Since the adult Rana pipiens frog neuromuscular junction nerve terminal is not amenable to 
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patch directly, the cultured Xenopus motoneuron-muscle co-cultures were used to record 

presynaptic calcium currents and characterize biophysical changes in calcium currents. Xenopus 

embryos have provided a good system to study calcium currents and neuronal differentiation 

(Spitzer 1979; Barish 1991), though differences in their central role and the distribution of 

calcium channel isoforms between soma and nerve terminal have been reported (Li et al., 2001). 

This preparation, derived from 1-day old Xenopus embryos, is a co-culture of motoneurons and 

muscle cells that form natural neuromuscular synapses within 1-3 days in vitro.  

Aminopyridines, such as DAP and 4-aminopyridine, block potassium channels. DAP and 4-

aminopyridine have been shown to potentiate synaptic transmission by altering the shape of 

presynaptic action potential in many preparations (Hue et al., 1976; Jankowska et al., 1977; 

Guerrero and Novakovic, 1980; Kim et al., 1980; Matsumoto and Riker, 1983; Augustine GJ, 

1990; Barish et al., 1996; Seo et al., 1999; Gu et al., 2004). With respect to clinical use, DAP is 

well suited for treating peripheral disorders with few CNS side-effects, because it cannot cross 

the blood brain barrier. DAP has been studied as a treatment of neurological disorders including 

LEMS and amyotrophic lateral sclerosis (Murray and Newsome-Davis, 1981; Lundh et al., 1984, 

1993; McEvoy et al., 1989; Bever et al., 1990; Palace et al., 1991; Aisen et al., 1995, 1996; 

Maddison et al., 1998; Sanders et al., 2000; Tim et al., 2000).  

In my studies of roscovitine effects on cultured frog motoneuron calcium channel currents, I 

show that roscovitine slows the deactivation kinetics of presynaptic calcium channels and leads 

to an increase in total calcium entry through each open channel during an action potential 

stimulus. The effects of roscovitine on calcium entry are compared with the effects of DAP, an 

indirect manipulator of presynaptic calcium entry.  
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2.2  METHODS 

2.2.1 Cell culture of frog motoneurons and muscle cells.   

Nerve–muscle co-cultures were prepared as described previously (Yazejian et al. 1997).  

In short, stage 20-22 Xenopus laevis embryos (Nieuwkoop & Faber, 1967) were rinsed in 10% 

normal frog Ringer (NFR; in mM (1X): 116 NaCl, 1 NaHCO3, 2 KCl, 1.8 CaCl2, 1 MgCl2, 5 

HEPES, 5 glucose, pH 7.4), and the spinal cord and associated myotomes were dissected free 

and allowed to disaggregate in a Ca2+ and Mg2+-free Ringer saline (in mM: 125 NaCl, 2 KCl, 1.2 

EDTA, and 5 HEPES, pH 7.4) for 30–60 min.  Disaggregated cells were plated onto plastic 

tissue culture dishes and maintained at room temperature (22–24°C) for 2-3 days in a medium 

composed of 40% NFR and 50% L-15 (Life Technologies, Gaithersburg, MD) supplemented 

with 0.1 mg/ml insulin, 0.7 mg/ml sodium selenite, 0.6 mg/ml transferrin, 1 µM testosterone, and 

35 ng/ml brain-derived neurotrophic factor (or 20 ml/ml fetal bovine serum).  

 

2.2.2 Recording and analysis of currents through calcium channels.   

Whole-cell currents through calcium channels were recorded from Xenopus motoneuron 

somata at 2-3 days in vitro as previously described (Yazejian et al. 1997).  Briefly, perforated 

patch recordings of current through calcium channels were made with the aid of the perforating 

agent amphotericin-B.  The pipette solution consisted of (in mM): 68 CsMeSO4, 50 CsCl, 8 

MgCl2, 10 HEPES, pH 7.4.  When calcium was used as the charge carrier, the culture was bathed 

in a solution consisting of (in mM): 110 TEA-Cl, 10 NaCl, 10 CaCl2, 1 MgCl2, 5 HEPES, 2 KCl, 



 27 

3 glucose, 5 DAP, 1µM TTX, pH 7.4.  When barium was used as the charge carrier, BaCl2 

substituted for CaCl2 in equimolar amounts.  Patch pipettes (about 2 MΩ) were filled in a two-

step process:  the tip was dipped in amphotericin-free pipette saline (2-5 seconds), and the rest of 

the pipette was filled with pipette saline plus 200-300 µg/ml amphotericin-B.  Access resistances 

typically ranged from 10-20 MΩ (mean ± SEM = 15.1 ± 1.1 MΩ; predicted voltage error = 2.1 ± 

0.3 mV, n=30) and were compensated for by 80-85% (lag setting = 10 µsec). I discarded 

recordings in which measured access resistance was greater than 30 MΩ (compensated for by at 

least 80%; predicted voltage error less than 3 mV), or in which there was a change in access 

resistance of more than 5 MΩ over the course of my recording. Capacitive currents and passive 

membrane responses to voltage commands were subtracted using 4 waveforms of reverse 

polarity, each 1/4 the size of the full waveform.  Calcium currents were amplified by an 

Axopatch 200B amplifier, filtered at 5 KHz, and digitized at 10 KHz for subsequent analysis 

facilitated by pClamp 9 software (Axon Instruments, Foster City, CA).  

Activation kinetics of currents were measured by fitting calcium current evoked by a 

square voltage-step depolarization from -60 mV to +10 mV for 10 milliseconds with a single 

exponential function beginning at the time that current begins to flow inward and ending at the 

time of maximal current (Jones & Marks, 1989).  I measured current deactivation kinetics by 

fitting calcium current deactivation with a single exponential function beginning 100 msec after 

the peak of the tail current evoked at the end of a 10 msec voltage step from -60 mV to +10 mV. 

To prevent signal-to-noise problems from significantly complicating my measurements of the 

current integral evoked by a single action potential stimulus, I only used data from experiments 

in which peak barium currents were more than 100 pA, and in which the outward stimulus 

artifact preceding these currents was less than 30% of the peak current amplitude. 
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Action potential waveforms were recorded with the perforated patch technique as 

described above, except that K2SO4 and KCl replaced CsMeSO4 and CsCl in the pipette solution 

(in mM: 60 K2SO4, 45 KCl, 8 MgCl2, 10 HEPES, pH 7.4) and the culture was bathed in a NFR 

solution. The fast current clamp mode of the Axopatch 200B was used. 

To evaluate calcium current activation during an action potential, I used a previously 

recorded Xenopus motoneuron nerve terminal action potential (from Pattillo et al. 1999) as a 

voltage command.  In some experiments, this action potential waveform was altered 

incrementally such that the plateau phase at the peak was of different durations.  The action 

potential duration at half amplitude of such action potential waveforms was 0.75, 0.85 (control 

duration), 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 3.2, 4.2, and 5.2 msec. The peak amplitude of calcium tail 

currents evoked by such a family of voltage waveforms (normalized to the peak current recorded 

using the broadest action potential) was plotted against the duration of the action potential at half 

amplitude.  Using this approach, I determined the proportion of calcium current activated in 

response to the control action potential under different experimental conditions (see King & 

Meriney, 2005).  Because even a prolonged strong voltage depolarization does not open all 

available calcium channels at any one point in time, the proportion calculated is an overestimate 

of the percentage of channels that open.  Although this approach does not measure the 

percentage of channels that open, from this property of calcium channel function, I made relative 

comparisons for how effectively action potential stimuli activate calcium currents.  All values are 

expressed as mean ± SEM, and all tests of significance were performed using a Student’s paired t 

test. 
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2.2.3 Reagents.   

(R)-roscovitine and (S)-roscovitine were obtained from Dr. L. Meijer (Station Biologique de 

Roscoff, CNRS UPR, Roscoff cedex, Bretagne, France) or Alexis Co. (San Diego, CA, USA).  

Olomoucine was obtained from Alexis Co. (San Diego, CA, USA).  (R)-roscovitine, (S)-

roscovitine, and olomoucine were stored at -20°C as 1000X stock solutions in DMSO and all 

final concentrations were 100 µM.  All other chemicals were obtained from Sigma (St. Louis, 

MO).  3,4-diaminopyridine (DAP) was made fresh daily.  

2.3  RESULTS 

As expected based on previous reports (Yan et al. 2002; Buraei et al. 2005), the most 

prominent effect of (R)-roscovitine was to strongly slow calcium current deactivation kinetics 

evoked by square voltage steps back to -60 mV from +10 mV (tcontrol = 0.38 ± 0.10 msec; 

troscovitine = 1.44 ± 0.15 msec; 427 ± 176% average increase when calculated within each cell 

[troscovitine - tcontrol / tcontrol]; n = 5; p<0.01).  (R)-roscovitine also significantly slowed activation 

kinetics by 45.2 ± 21.9% (p<0.05; calculated within each cell; tcontrol = 1.19 ± 0.17 msec; troscovitine 

= 1.64 ± 0.20 msec; Figure 5A left panel; n = 6).  In contrast, (S)-roscovitine did not 

significantly alter calcium current deactivation kinetics after a square voltage step (3.9 ± 4.1% 

increase; Figure 5B left panel; n = 5) or activation kinetics (1.6 ± 3.4% increase; Figure 5B left 

panel; n = 5).  Similarly, olomoucine did not significantly alter calcium current deactivation 

kinetics (2.0 ± 3.7% increase; Figure 5C left panel; n = 5) or activation kinetics (5.4 ± 1.9% 

increase; Figure 5C left panel; n = 5).   
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 L-type calcium channels carry a significant percentage of the total calcium current in 

Xenopus motoneuron somata (Yazejian et al., 1997; Thaler et al., 2001; Sand et al., 2001). After 

blocking L-type calcium channels with 1 µM nitrendipine, calcium currents were significantly 

smaller, but (R)-roscovitine showed similar effects on calcium channel kinetics. Deactivation 

kinetics evoked by square voltage steps back to -60 mV from +10 mV strongly slowed (tcontrol = 

0.17 ± 0.05 msec; troscovitine = 0.69 ± 0.16 msec; 318 ± 22% average increase when calculated 

within each cell; n = 5; p<0.01). (R)-roscovitine also significantly slowed activation kinetics by 

46.8 ± 10.4% (calculated within each cell; tcontrol = 0.87 ± 0.08 msec; troscovitine = 1.25 ± 0.05 

msec; n = 5; p<0.01). Because blocking L-type calcium channels did not significantly alter the 

effects of (R)-roscovitine on calcium current kinetics in this preparation, and previous studies 

showed that (R)-roscovitine did not affect L-type calcium channels (Yan et al., 2002; Buraei et 

al., 2005), the rest of experiments were performed without nitrendipine to avoid potential signal-

to-noise problems associated with recording smaller calcium currents evoked by an action 

potential waveform.  

I also measured the integral of current through the calcium channel when evoked by a 

single action potential stimulus because this parameter might be relevant to the magnitude of 

transmitter release triggered by calcium entry in the next chapter (see section 3.3.1).  Because 

currents evoked by physiological action potential waveforms are smaller than currents evoked by 

square-step waveforms, for these experiments, I used a bath solution containing barium instead 

of calcium as the charge carrier to increase the amplitude of currents carried by the calcium 

channel.  This made analysis of these currents less sensitive to fluctuations in noise.  Using this 

approach, (R)-roscovitine had similar effects on deactivation kinetics during a square voltage 

step (380 ± 17.8% increase, n=5) and this was also clearly evident in the calcium channel current 
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evoked by single action potential waveforms (see Figure 5A, right panel).  As expected based on 

open-state binding of (R)-roscovitine to the calcium channel (see Buraei et al. 2005), a smaller 

proportion of the channels appear to demonstrate slowed deactivation when an action potential 

waveform is used to activate current as compared to when a square voltage step is used to 

activate current (compare right vs. left panel in Figure 5A).  Total current entry (integral) during 

a single action potential was significantly increased by (R)-roscovitine (44.2 ± 10.4%; Figure 5A 

right panel; n = 7; p<0.05).  In contrast, (S)-roscovitine (0.40 ± 1.9% change; Figure 5B right 

panel; n = 5) and olomoucine (2.0 ± 1.1% change; Figure 5C right panel; n = 4) did not show 

significant effects on total current entry evoked by an action potential waveform.  These effects 

were consistent with the results reported above using calcium as the charge carrier and square 

voltage steps to activate current.  

To investigate the possibility that (R)-roscovitine might increase the probability that 

calcium channels open during an action potential stimulus, I used an indirect method to 

qualitatively approach this issue.  I examined the proportion of calcium current activated by 

action potential waveforms (by measuring peak tail current amplitude) as compared with 

broadened waveforms as a measure of how effectively native action potentials activated calcium 

current in comparison with the maximal current that could be activated by a prolonged waveform 

(see King & Meriney, 2005).  The proportion of calcium current activated by a natural 

motoneuron action potential was relatively low (~0.2) as compared with the maximal current that 

could be evoked, and there was little effect of (R)-roscovitine (arrow in Figure 6A).  Although 

there was a very small decrease in the proportion of current activated by a natural nerve terminal 

motoneuron action potential, as the action potential was broadened, (R)-roscovitine further 

decreased the proportion of calcium current that was activated by these broader action potential 
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waveforms (Figure 6A).  This would be consistent with a decrease, not an increase, in the 

probability that calcium channels would be activated by action potential waveforms. This might 

be explained by the effect of (R)-roscovitine on calcium current activation kinetics that I 

observed (see Figure 6B), and have also been reported at more hyperpolarized potentials by 

Buraei et al. (2005).  In fact, using an action potential-shaped rising voltage step to +30 mV, 

there was a significant slowing of activation kinetics (by 11.6 ± 4.1%, n=6; p<0.05).  Using 

voltage steps as large as +30 mV, Buraei et al. (2005) did not report significant effects on 

activation kinetics.  The small significant effect I report may be due to differences in the 

preparation used, or due to effects of the altered rising phase of the voltage step.  The effects I 

report on activation kinetics may explain our results in Figure 6A, but appear to be minor in 

comparison with my observed effects on deactivation kinetics, which serve to increase total 

calcium entry (see Figure 5).  In contrast to the effects of (R)-roscovitine, (S)-roscovitine and 

olomoucine did not significantly alter the proportion of peak calcium current activated by action 

potential waveforms (Figure 6C and 6D).   

Finally, (R)-roscovitine effects on action potential-evoked calcium current were 

compared with the effects of 1 µM DAP.  The concentration of DAP was determined from 

preliminary studies showing that 1 µM DAP had similar potency to 100 µM (R)-roscovitine 

when tested for the effects on evoked transmitter release (see section 3.3.1). This relatively low 

concentration of DAP significantly increased by 11.9 ± 2.4% (p<0.05; n=5) the amplitude of the 

recorded motoneuron action potential (from +30 mV to +41 mV; recorded using the fast current 

clamp setting of the Axopatch 200B), without significantly broadening the action potential shape 

(see Figure 7A).  This effect on action potential peak amplitude without a change in action 

potential duration might be predicted because DAP, especially in very low concentrations, is a 
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selective blocker of transient (IA) voltage-gated potassium channels (Thompson, 1982; 

Rogawski, 1988).  In contrast, I did not detect any significant change in action potential shape 

following exposure to (R)-roscovitine (n=6).  This lack of effect of (R)-roscovitine on action 

potential shape suggests that there are no significant effects of (R)-roscovitine on sodium or 

potassium channels in my system.   

When the DAP-induced change in action potential amplitude was used to evoke calcium 

current, there was an 81.5 ± 11.7% increase in peak calcium current and an 89.8 ± 14.4% 

increase in calcium current integral (n=9; see Figure 7A).  The significant increase in calcium 

current peak amplitude and integral is expected to result in the increase in transmitter release at 

the neuromuscular junction following exposure to 1 µM DAP in the next chapter (see section 

3.3.2).  Lastly, when this DAP-altered action potential waveform was used to examine the 

proportion of calcium current activated by an action potential waveform as compared with a 

broadened waveform, DAP-altered waveforms significantly increased the proportion of calcium 

current activated at all action potential durations examined except those broader than 4 msec (see 

Figure 7B; n=8; p<0.05).     
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Figure 5 Effects of 100 µM (R)-roscovitine on calcium channel current recorded 

from the somata of cultured frog motoneurons.   

A-C. In the left column, a square-step voltage command from -60 mV to +10 mV for 10 

msec was used to activate calcium currents.  In the right column, a single action potential 
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waveform (-60 mV holding potential, peak action potential voltage of +30 mV, and a duration at 

half amplitude of 0.85 msec) was used to activate barium currents through calcium channels.  A. 

Left : (R)-roscovitine (thick trace) significantly slowed calcium current activation kinetics (by 

45.2 ± 21.9%; n=6), and strongly slowed deactivation kinetics (by 427 ± 176%; n=5; p<0.01).  

Right : (R)-roscovitine (thick trace) slowed the deactivation of current activated by an action 

potential and significantly increased total current integral by 44.2 ± 10.4% (n=7; p<0.05).  These 

effects occurred within 10 seconds of (R)-roscovitine application.  B. 100 µM (S)-roscovitine did 

not show any significant effect on calcium channel currents.  C. 100 µM olomoucine did not 

show any significant effect on calcium channel currents.  
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Figure 6 Changes in the proportion of calcium current activated following action 

potentials of various durations at half amplitude in cultured motoneurons.  

Arrows at the second point in each plot indicate the use of native action potential 

waveforms.   A. Effects of exposure to 100 µM (R)-roscovitine (filled symbols, solid line; n=8) 

in comparison with control (open symbols, dashed line).  Except the first and the last points, (R)-

roscovitine significantly decreased the proportion of current activated during a broadened action 

potential stimulus (p<0.05, Student’s paired t test).  B. Calcium current evoked by a voltage 

command that had an action potential-shaped rising phase and a plateau potential of +30 mV (the 

longest step used in the peak tail current comparisons for panels A, C and D).  Top trace: voltage 

command.  Bottom trace: control (thin trace) and (R)-roscovitine-modulated (thick trace) 
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calcium currents.  (R)-roscovitine slowed significantly activation of these currents by 11.9 ± 

2.4% (p<0.05; n=5).  C. Effects of 100 µM (S)-roscovitine (filled symbols, solid line; n=5) in 

comparison with control (open symbols, dashed line).  (S)-roscovitine did not show significant 

effects on the proportion of current activated during any waveform stimulus.  D. Effects of 100 

µM olomoucine (filled symbols, solid line; n=6) in comparison with control (open symbols, 

dashed line).  Olomoucine did not show significant effects on the proportion of current activated 

during any waveform stimulus.  
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Figure 7  1 µM DAP effects on calcium influx and the proportion of calcium current 

activated following action potentials of various durations at half amplitude in cultured 

motoneurons.  

A. Effects of 1 µM DAP on action potential amplitude (top traces) and evoked calcium 

current (bottom traces).  Top traces: 1 µM DAP (thick trace) significantly increased action 

potential amplitude (by 11.9 ± 2.4%, n=5), but not duration, as compared with control action 

potential shape (thin trace).  Bottom traces: The DAP-modulated action potential waveform, 

when used as a voltage command, significantly increased calcium current (thick trace) peak (by 

81.5 ± 11.7%) and integral (by 89.8 ± 14.4%) as compared with the calcium current evoked by a 

control action potential shape (thin trace).  B. Effects of exposure to 1 µM DAP (filled symbols, 

solid line; n=8) in comparison with control (open symbols, dashed line). Arrows at the second 

point in each plot indicate the use of native action potential waveforms. DAP significantly 

increased the proportion of calcium current activated at all waveforms examined, except those 

broader than 4 msec (p<0.05, Student’s paired t test). 
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2.4 DISCUSSION 

Presynaptic calcium entry tightly regulates synaptic transmission and slight modifications of 

calcium influx have significant influences on transmitter release. At the adult frog neuromuscular 

junction, N-type calcium channels mediate transmitter release. My findings show that (R)-

roscovitine increased total calcium entry due primarily to slowing the deactivation kinetics of 

presynaptic N-type calcium channels. Because I did not observe any significant effects of (S)-

roscovitine or olomoucine on calcium current kinetics, I hypothesize that the effects of (R)-

roscovitine are independent of cdks.  Previous work has also concluded that (R)-roscovitine 

effects on calcium current kinetics are cdk-independent (Yan et al. 2002; Buraei et al. 2005, 

2007). Along these lines, intracellular application of (R)-roscovitine has been reported not to 

show effects on calcium current kinetics (Yan et al. 2002; Buraei et al. 2005), and in cortical 

neurons deficient in p35 (a neuronal-specific activator of cdk5), (R)-roscovitine was still able to 

prolong deactivation of calcium currents in a manner similar to that found in wild-type neurons 

(Yan et al. 2002). It has been proposed that (R)-roscovitine slows deactivation of calcium 

channels by binding to the open state of channels (Buraei et al., 2005). 

The dominant effect of (R)-roscovitine was slowing deactivation kinetics of N-type calcium 

current, though there was a relatively small effect on activation kinetics, and a slower effect of 

inhibiting currents at higher concentration in paravertebral sympathetic ganglia of adult bullfrogs 

(Buraei et al., 2005). For the rest of this thesis, I will focus on this dominant effect of (R)-

roscovitine: slowed deactivation kinetics.  

The action of (R)-roscovitine is quite similar to that of BayK 8644, a L-type calcium channel 
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agonist. BayK 8644 has been used successfully to elucidate the roles of L-type calcium channel 

in physiology and pathology (Hess et al., 1984; Bean, 1985; Nilius et al., 1985; Nowycky et al., 

1985; Sturek and Hermsmeyer, 1986; Church and Stanley, 1996; Triggle, 2003; Elmslie, 2004). 

Single L-type calcium channels within the mix of various channel subtypes can be identified 

with BayK 8644, because it strongly increases the mean open time without altering the single-

channel current amplitude (Hess et al., 1984; Church and Stanley, 1996; Satoh et al., 1998). Prior 

to the discovery of (R)-roscovitine, there had been no selective agonist for N-type calcium 

channels, though antagonists are available. Using (R)-roscovitine as a tool, future work may 

include the measurement of unitary conductances for N-type calcium channel so that 

characteristics of gating in normal calcium concentrations (instead of using extremely high 

concentrations of calcium or barium as charge carrier) can be studied.  

Previous studies showed that (R)-roscovitine slowed deactivation of all CaV2 family 

channels, that is, P/Q-type (CaV2.1) and R-type (CaV2.3) as well as N-type (CaV2.2) calcium 

channels (Yan et al., 2002; Buraei et al., 2007). This is also similar to BayK 8644 effects on Ca 

V1 L-type channels, including CaV1.2, CaV1.3, and CaV1.4 (Xu and Lipscombe, 2001; Koschak 

et al., 2003). As BayK 8644 is still considered as a strong tool for L-type channels, the lack of 

differentiation among CaV2 channels will not be an obstacle to use (R)-roscovitine, because there 

are selective blockers for each CaV2 channel subtype, such as ω-Agatoxin for P/Q type, ω-

Conotoxin GVIA for N-type, and SNX-482 for R-type calcium channels. 

One potential problem related to the use of (R)-roscovitine might be its high affinity for cdks, 

though the effects on calcium channels have been proven to be cdk-independent. It is possible 

that derivatives of (R)-roscovitine could be developed in the future, which might directly and 

selectively target N-type calcium channels, and not affect cdks. These would create ideal tools 
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for research and some of these new derivatives could have potential as treatments for 

neuromuscular disorders.  

Very recently, Buraei et al. (2007) showed that (R)-roscovitine also affected some types of 

voltage-gated potassium channels in paravertebral sympathetic ganglia and in expression 

systems. Unfortunately, it is not exactly known what types of voltage-gated potassium channels 

are expressed at the frog motoneuron terminal. However, because the action potential waveform 

in frog motoneurons was not significantly altered by (R)-roscovitine, it seems unlikely that 

transmitter release effects reported in next chapter (section 3.3) are due to effects on voltage-

gated potassium channels. 

The data reported here lead me to hypothesize that the underlying mechanism of (R)-

roscovitine effects on total calcium entry is due to the large effects on deactivation kinetics. 

These effects prolong presynaptic calcium channel opening with little change in the peak number 

or fraction of calcium channels activated by an action potential. In contrast, DAP altered the 

amplitude of the action potential by blocking some voltage-gated potassium channels. At very 

low concentration (1 µM), DAP significantly increased the amplitude of action potential rather 

than broadening the width of action potential. This altered action potential waveform caused the 

increase in calcium influx observed. DAP is expected to increase the number of calcium 

channels that open with each action potential stimulus, and this is predicted to lead to an increase 

in calcium ion spatial distribution within the nerve terminal (Figure 13B).  This difference in the 

mechanism by which (R)-roscovitine and DAP increase calcium entry is likely to underlie the 

different effects of these agents on transmitter release and short-term plasticity discussed in the 

later chapters of this dissertation. In that sense, these two pharmacological treatments will 
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function as very good contrasting tools for experimental and theoretical studies of calcium-

triggered vesicle fusion. 
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3.  ROSCOVITINE EFFECTS ON TRANSMITTER RELEASE AND SHORT-TERM 

PLASTICITY 

 

In the previous chapter, the underlying mechanisms of roscovitine and DAP effects on 

calcium currents were characterized in cultured frog motoneurons. In this chapter, I have 

investigated the effects of these two pharmacological treatments on transmitter release and 

paired-pulse facilitation by measuring endplate potentials (EPPs) and miniature endplate 

potentials (mEPPs) at the adult frog neuromuscular junction. Information obtained from these 

physiological experiments will be also used to constrain parameters in the computational model 

described in next chapter, and will be interpreted using the model to extend our understanding of 

synaptic transmission.  

3.1 INTRODUCTION 

A brief, stimulus-induced calcium flux through voltage-gated calcium channels in the 

motor nerve terminal is known to trigger transmitter release. The frog neuromuscular junction is 

a synapse that transmits electrical impulses from the nerve terminal to the skeletal muscle via 

acetylcholine using fast and reliable communication between motoneurons and muscle cells. The 

N-type calcium channel is known to couple presynaptic action potential depolarization with 
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transmitter release at the adult frog neuromuscular junction (Kerr and Yoshikami, 1984; 

Robitaille et al., 1990).  

In the previous chapter (section 2.3), I showed that roscovitine increased calcium influx 

primarily by slowing deactivation of calcium channels. In contrast, DAP increased calcium 

influx by altering the action potential waveform and indirectly affecting calcium channel opening 

(see section 2.3; Cho and Meriney, 2006). Given these apparently direct effects of roscovitine on 

calcium channel function, I have examined the possibility that roscovitine could be used as a 

potential tool to study transmitter release at the adult frog neuromuscular junction. Roscovitine 

had several effects on cultured frog motoneuron calcium currents (slowed deactivation kinetics, 

slowed activation kinetics, and decreased proportion of current activated by an action potential), 

but I hypothesize that transmitter release effects of roscovitine at the nerve terminal are 

dominated by the most prominent effect: slowing of the deactivation kinetics of presynaptic N-

type calcium channels that leads to an increase in total calcium entry through each open channel 

during an action potential stimulus. In this chapter, I demonstrate that roscovitine increases the 

release of acetylcholine from the adult frog neuromuscular junction without changing paired-

pulse facilitation under low calcium conditions. In contrast, DAP also increases release, but also 

significantly increases the paired-pulse ratio under low calcium conditions. The differential 

effects of these two pharmacological treatments on paired-pulse facilitation suggest that 

roscovitine and DAP can be used as good tools to advance our understanding of the mechanisms 

of short-term plasticity. 
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3.2 METHODS 

3.2.1 Tissue preparation.   

Adult frogs (Rana pipiens) were anesthetized by immersion in 0.6% tricaine methane 

sulfonate, decapitated, and double-pithed in accordance with the University of Pittsburgh’s 

Institutional Animal Care and Use Committee.  The cutaneous pectoris nerve-muscle preparation 

was removed bilaterally and bathed in normal frog Ringer (NFR; in mM: 116 NaCl, 1 NaHCO3, 

2 KCl, 1.8 CaCl2, 1 MgCl2, 5 HEPES, 5 glucose, pH 7.3). 

 

3.2.2 Recording and analysis of transmitter release.   

Intracellular recordings from the adult frog cutaneous pectoris nerve-muscle preparation 

were performed as described previously (Meriney & Grinnell, 1991).  In brief, recordings of 

synaptic potentials were performed in NFR with 4-6 µM curare to partially block postsynaptic 

receptors and to prevent muscle contractions, or in NFR with 4µM curare and 4-5µM µ-

conotoxin PIIIA added to block selectively muscle sodium channels, or in saline containing 0.3 

mM Ca2+ and 4 mM Mg2+ to prevent contractions by reducing quantal content.  The cutaneous 

pectoris nerve was drawn into a suction electrode and stimulated with 100 µsec pulses at five-

times threshold.  Intracellular recordings of membrane potential from muscle cells were obtained 

using glass microelectrodes (20-40 MΩ) filled with 3 M potassium acetate.  Muscle cell 

penetrations were made under visual control with a long working distance water-immersion 

objective (40x; 3 mm working distance) and contrast-enhancing optics to identify individual 
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neuromuscular junctions.  Data were acquired through a Dagan BBC 700 amplifier using 

Clampex 9 software (Axon Instruments, Foster City, CA) running on a pentium-based computer.  

Off-line data analysis was performed using Clampfit 9 software.  All values are expressed as 

mean ± SEM, and all tests of significance were performed using a Student’s paired t test.  All 

control recordings were performed with 0.1% DMSO in the bath. 

 

3.2.3 Reagents 

(R)-roscovitine and (S)-roscovitine were obtained from Dr. L. Meijer (Station Biologique 

de Roscoff, CNRS UPR, Roscoff cedex, Bretagne, France) or Alexis Co. (San Diego, CA, USA).  

Olomoucine was obtained from Alexis Co. (San Diego, CA, USA).  (R)-roscovitine, (S)-

roscovitine, and olomoucine were stored at -20°C as 1000X stock solutions in DMSO and all 

final concentrations were 100 µM.  All other chemicals were obtained from Sigma (St. Louis, 

MO).  3,4-diaminopyridine (DAP) was made fresh daily.  

3.3 RESULTS 

3.3.1 Roscovitine effects on neurotransmitter release 

In order to evaluate the effects of (R)-roscovitine on neurotransmitter release at the adult 

frog neuromuscular junction, I measured endplate potentials (EPPs) and miniature EPPs 

(mEPPs) before and after the application of (R)-roscovitine. Quantal content was calculated as 
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the amplitude of EPPs (average of 80-100 sweeps) divided by the average amplitude of mEPPs.  

In 0.3 mM Ca2+ saline, (R)-roscovitine increased EPP amplitude by 125 ± 21% (Figure 8A and 

Figure 9A; n = 39 nerve terminals; p<0.01), and increased mEPP frequency by 115 ± 22% 

(Figure 9B; n = 19 nerve terminals; p<0.001).  (R)-roscovitine did not significantly change 

mEPP amplitude (Figure 9D; n = 19 nerve terminals) and thus significantly increased quantal 

content by 149 ± 29% (Figure 9C; n = 19 nerve terminals; p<0.05).  The relationship between the 

increase in EPP amplitude and the increase in quantal content mediated by (R)-roscovitine was 

quite linear (Figure 8C; n = 19 nerve terminals).  Furthermore, since there was no change in 

mEPP amplitude, these results lead to the conclusion that the effects of (R)-roscovitine on my 

measurements of neurotransmitter release are presynaptic.  To more easily observe the time-

course of (R)- roscovitine effects (as recording in low calcium saline includes a significant 

number of failures and quantal fluctuation), I recorded EPPs in normal frog Ringer (1.8 mM 

Ca2+) plus 4-6 µM curare.  Under these conditions, (R)-roscovitine increased transmitter release 

by 50.3 ± 5.4% (n = 41 nerve terminals; p<0.001; see Figure 8B).  Near maximal effects of (R)-

roscovitine were often observed within the interval between pulses (2 seconds) and this was 

consistent with what has been reported for effects on calcium current (Yan et al. 2002; Buraei et 

al. 2005). 

Because (R)-roscovitine is a well-known cdk inhibitor, I investigated whether the effect 

of (R)-roscovitine on neurotransmitter release was related to cdk activity by examining the 

effects of other structurally-related cdk inhibitors  ((S)-roscovitine and olomoucine) on 

neurotransmitter release.  (S)-roscovitine and olomoucine have similar structures to (R)-

roscovitine, but have no reported effect on calcium current kinetics or transmitter release in other 

systems (Yan et al. 2002; Buraei et al. 2005).  (S)-roscovitine did not significantly change EPP 
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amplitude (n = 23 nerve terminals), quantal content or mEPP amplitude (Figure 9; n = 19 nerve 

terminals).  Olomoucine did not significantly change quantal content (Figure 9C; n = 15 nerve 

terminals), but decreased EPP amplitude (Figure 9A; n = 21 nerve terminals; p<0.01) and mEPP 

amplitude (Figure 9D; n = 15 nerve terminals; p<0.01); an apparent mild postsynaptic effect on 

acetylcholine receptors that was only observed with this compound.  All three cdk inhibitors 

increased mEPP frequency significantly (Figure 9B; p<0.01).  The lack of similar effects of (S)-

roscovitine and olomoucine on EPP amplitude or quantal content suggest that these effects of 

(R)-roscovitine are cdk-independent. 
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Figure 8  Effects of (R)-roscovitine on EPP amplitude at the adult frog neuromuscular 

junction.   

A. Representative example of averaged EPP size before (Control; thin trace) and after (Ros; 

thick trace) exposure to 100 µM (R)-roscovitine (recorded in 0.3 mM Ca2+ saline).   

B. A representative recording of EPP amplitude plotted against time as 100 µM (R)-

roscovitine was perfused onto the neuromuscular junction (recorded with 5 µM curare in 

NFR).  Inset. Representative example of averaged EPP size before (Control; thin trace) 

and after (Ros; thick trace) exposure to 100 µM (R)-roscovitine in NFR with 5 µM 

curare.   

C. The relationship between percent increase in EPP amplitude and percent increase in 

quantal content by (R)-roscovitine (n=19 nerve terminals). 
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Figure 9 Comparison of the effects of (R)-roscovitine, (S)-roscovitine, and olomoucine on 

neurotransmitter release at the adult frog neuromuscular junction.   

A. Boxplot of the changes in EPP amplitude. (R)-roscovitine significantly increased EPP 

amplitude by 125 ± 21% (n=39 nerve terminals; *p<0.01).  Olomoucine significantly decreased 

EPP amplitude by -15.6 ± 3.3% (n=21 nerve terminals; *p<0.01) and (S)-roscovitine did not 

have significant effects (7.5 ± 12.6% increase; n=23 nerve terminals).   

B. Boxplot of the changes in mEPP frequency.  Olomoucine, (R)-roscovitine and (S)-roscovitine 

significantly increased mEPP frequency by 55 ± 11% (n=15 nerve terminals; *p<0.01), 115 ± 

22% (n=19 nerve terminals; *p<0.001), and 96 ± 19% (n=19 nerve terminals; *p<0.001) 
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respectively.   

C. Boxplot of changes in quantal content. (R)-roscovitine significantly increased quantal content 

by 149 ± 29% (n=19 nerve terminals; *p<0.05).  Olomoucine and (S)-roscovitine did not have 

significant effects (increasing by 7.1 ± 7.4% (n=15) and 15.8 ± 12.4% (n=19) respectively).   

D. Boxplot of the changes in mEPP amplitude. (R)-roscovitine and (S)-roscovitine did not show 

significant effects (changing by -5.2 ± 2.8% (n=19) and -2.4 ± 3.6% (n=19) respectively). 

Olomoucine significantly decreased mEPP amplitude by -19.8 ± 3.0% (n=15 nerve terminals; 

*p<0.001).  Asterisks indicate significant difference (Student’s paired t test). 
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3.3.2 Roscotivine effects on short-term plasticity 

Since (R)-roscovitine showed significant effects on evoked transmitter release, I 

examined its functional impact on short-term synaptic plasticity. Paired-pulse ratio was 

calculated as (the second EPP amplitude)/(the first EPP amplitude) and the second EPP 

amplitude was measured after correction based on the decay of the first EPP.  I examined the 

effect of (R)-roscovitine on the magnitude of transmitter released during paired-pulse stimuli at a 

30 msec interstimuli interval (ISI) in 0.3 mM Ca2+ saline.  Under these conditions, (R)-

roscovitine did not significantly alter the paired-pulse ratio (3.3 ± 1.6% increase; Figure 10A and 

10B; n = 13 nerve terminals).  Because I hypothesize that (R)-roscovitine has a direct action on 

presynaptic calcium channels, I compared (R)-roscovitine effects on short-term plasticity with 

another modulator of transmitter release that is known to have an indirect effect on presynaptic 

calcium channels.  For this comparison, I used DAP because this drug increases transmitter 

release by increasing action potential amplitude, and thus indirectly increasing calcium channel 

activation (see section 2.3).  Exposure to 1 µM DAP produced a similar increase in EPP 

amplitude (158 ± 48% increase; n = 6 nerve terminals) as 100 µM (R)-roscovitine.  However, in 

contrast to (R)-roscovitine, 1 µM DAP significantly increased the paired-pulse ratio in 0.3 mM 

Ca2+ saline (by 22.6 ± 7.8%; Figure 10A and 10C; n = 6 nerve terminals; p<0.05).  

I also investigated the effects of (R)-roscovitine on paired-pulse facilitation in normal 

calcium (1.8 mM Ca2+) conditions. (R)-roscovitine significantly decreased the paired-pulse ratio 

at a 30 msec ISI in 1.8 mM Ca2+ saline (by 11.2 ± 0.6%; Figure 11; n = 12 nerve terminals; 

p<0.01).  Under the same conditions, DAP also significantly decreased the paired-pulse ratio at a 

30 msec ISI (by 9.4 ± 1.4%; Figure 12; n = 14 nerve terminals; p<0.01). Thus, with a 30 msec 
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ISI stimulation, the effects of (R)-roscovitine and DAP on paired-pulse ratio were not 

significantly different.  

To examine the effects of (R)-roscovitine on paired-pulse ratio with shorter interstimulus 

interval, I used a 10 msec ISI. At this interval, (R)-roscovitine also significantly decreased the 

paired-pulse ratio in 1.8 mM Ca2+ saline (by 16.3 ± 1.3%; Figure 11; n = 8 nerve terminals; 

p<0.01).  This is a significantly larger effect than observed at 30ms ISI (p<0.01). Under the same 

conditions, DAP also significantly decreased the paired-pulse ratio (by 9.4 ± 2.1%; Figure 12; n 

= 10 nerve terminals; p<0.01) and this effect was not significantly different from that observed 

using a 30ms ISI. Thus, with a 10 msec ISI stimulation, the effects of (R)-roscovitine and DAP 

on paired-pulse ratio were in the same direction, but (R)-roscovitine effects were significantly 

larger (p<0.05). 

 



 54 

 

Figure 10 Effects of (R)-roscovitine and DAP on the paired-pulse ratio at the adult frog 

neuromuscular junction recorded in 0.3 mM Ca2+.  

(Interstimulus interval of 30 msec)   

A. Summary of the percent changes in the paired-pulse ratio following exposure to 100 µM (R)-

roscovitine or 1 µM DAP.  (R)-roscovitine did not show a significant effect on the paired-pulse 

ratio (3.3 ± 1.6% increase; n=13 nerve terminals).  DAP significantly increased the paired-pulse 

ratio by 22.6 ± 7.8% (n=6 nerve terminals; *p<0.05).   

B. A representative example of averaged EPPs during paired-pulse stimuli before (Con; thin 

trace) and after (Ros; thick trace) exposure to 100 µM (R)-roscovitine.   

C. A representative example of averaged EPPs during paired-pulse stimuli before (Con; thin 

trace) and after (DAP; thick trace) exposure to 1 µM DAP.  Asterisks indicate significant 

difference (Student’s paired t test). 
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Figure 11 The effects of (R)-roscovitine on paired-pulse ratio in 1.8mM Ca2+ 

A. (R)-roscovitine significantly decreased paired-pulse facilitation by 16.3 ± 1.3% (n=8) with 10 

msec ISI and by 11.2 ± 0.6% (n=12) with 30 msec ISI. Asterisks indicate significant difference 

(Student’s paired t test; p<0.01). 

B. A representative examples of the averaged EPPs during paired-pulse stimuli before (Con; thin 

trace) and after (Roscovitine; thick trace) exposure to 100 µM (R)-roscovitine. 



 56 

 

 

Figure 12 The effects of DAP on paired-pulse ratio in 1.8mM Ca2+ 

A. DAP significantly decreased paired-pulse facilitation by 9.4 ± 2.1% (n=10) with 10 msec ISI 

and 9.4 ± 1.4% (n=14) with 30 msec ISI. Asterisks indicate significant difference (Student’s 

paired t test; p<0.01). 

B. A representative examples of the averaged EPPs during paired-pulse stimuli before (Con; thin 

trace) and after (DAP; thick trace) exposure to 1 µM DAP.  
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3.4 DISCUSSION 

The calcium influx activated by action potentials invading the presynaptic terminal 

triggers transmitter release, and alterations in the gating of presynaptic voltage-gated calcium 

channels can result in significant changes in the magnitude of transmitter released. (R)–

roscovitine increased transmitter release at the adult frog neuromuscular junction by a 

presynaptic mechanism that likely is mediated by an increase in total calcium entry due to 

slowing of the deactivation kinetics of presynaptic N-type calcium channels. Unexpectedly, 

although (S)-roscovitine and olomoucine did not significantly alter calcium currents or evoked 

release in my experiments, the frequency of mEPPs was increased by all three agents tested ((R)-

roscovitine, (S)-roscovitine, and olomoucine).  It is possible that this effect on mEPP frequency 

is mediated by an inhibition of cdks that affects spontaneous release frequency in a manner that 

does not alter evoked release.  In this case, it appears that spontaneous and evoked release can be 

regulated independently of one another, as has also been observed after other experimental 

manipulations (see Deitcher et al. 1998; Poage et al. 1999).  

The selective effects of (R)-roscovitine at the motor nerve terminal impact upon our 

understanding of the specific relationship between calcium entry and transmitter release at the 

motor synapse.  Despite the fact that it has been known that transmitter release is triggered by 

calcium entry for more than 60 years, the specific manner in which calcium entry triggers vesicle 

fusion continues to be a topic of investigation, and may be different at each synapse.  At the adult 

frog neuromuscular junction, there are many highly organized linear active zones (Heuser et al. 

1979), and the fusion of vesicles is distributed along the length of the nerve terminal and appears 
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to occur with low probability from each active zone (D’Alonzo & Grinnell, 1985; Bennett et al. 

1986).  Using a high-resolution ‘snapshot’ imaging approach, calcium entry within adult frog 

neuromuscular junction active zones has been characterized during action potential invasion 

(Wachman et al. 2004; Luo et al. 2005).  These studies have led to the conclusion that calcium 

enters the motor nerve terminal in spatially restricted regions of the active zone and that very few 

of the many calcium channels positioned in the active zone respond when an action potential 

invades the nerve terminal.  These data are consistent with patch clamp recordings of calcium 

current activation in which an action potential waveform has been shown to be not very effective 

at gating N-type calcium channels (see Figure 6; King & Meriney, 2005).  Therefore, at the frog 

neuromuscular junction, it appears that there is a very low probability of N-type calcium channel 

opening during an action potential, and each single calcium channel opening might trigger a 

single transmitter-containing vesicle to fuse (see Yoshikami et al. 1989).  Similar conclusions 

have been drawn in several preparations using various experimental and modeling approaches 

(Llinas et al. 1981; Yoshikami et al. 1989; Augustine et al. 1991; Bertram et al. 1996; Gentile & 

Stanley, 2005; Pattillo et al. 2007).    

The data reported here lead me to hypothesize that the underlying mechanism of (R)-

roscovitine effects on transmitter release is an increase in total calcium entry at each open 

presynaptic calcium channel (due to slowed deactivation kinetics) with little change in the 

number or proportion of calcium channels that are activated in the active zone by an action 

potential. This (R)-roscovitine-mediated increased calcium influx may only locally increase 

calcium within the nano- or microdomains that are normally activated.  Therefore, (R)-

roscovitine may not lead to a significant change in the calcium ion spatial distribution within the 

nerve terminal.  In this sense, the (R)-roscovitine-mediated increases in presynaptic calcium 
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entry might remain restricted to only a few entry sites within each active zone (Figure 13).  In 

contrast, DAP is expected to increase the number of calcium channels that open with each action 

potential stimulus, and this would lead to an increase in calcium ion spatial distribution within 

the nerve terminal (Figure 13).  This difference in the mechanism by which (R)-roscovitine and 

DAP increase calcium entry likely explains the different effects of these agents on paired-pulse 

facilitation under low calcium conditions (see Figure 10).   

Because (R)-roscovitine is hypothesized not to alter the normally sparse spatial 

distribution of calcium entry within presynaptic active zones, I predict that (R)-roscovitine 

increases transmitter release by increasing the probability of vesicle fusion events from these 

very sparsely distributed calcium entry sites.  Under these conditions, during paired-pulse 

stimulation, the residual calcium that exists following the first action potential invasion of the 

nerve terminal may not overlap significantly with calcium entry sites that are recruited during a 

second action potential stimulus with short inter-stimulus interval under low calcium conditions. 

Under normal calcium conditions, more calcium ions will enter through each open calcium 

channel (as compared with low calcium conditions). This will be predicted to cause increased 

overlap of calcium entry sites. Although (R)-roscovitine does not alter the number of calcium 

channel openings per stimulus, the increased flux under normal calcium conditions may explain 

the decrease in paired-pulse facilitation observed after (R)-roscovitine treatment. In that sense, 

the effects of roscovitine and DAP on paired-pulse facilitation in normal calcium condition were 

similar, while these two drugs showed quite contrasting effects under low calcium conditions. 

Following DAP treatment, the large increase in the spatial distribution of calcium entry 

would lead to significant overlap in residual calcium between two action potential stimuli with 

short inter-stimulus interval.  Under low calcium conditions, there is no vesicle depletion, so the 
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DAP-mediated increase in residual calcium at many release sites leads to increased paired-pulse 

facilitation of transmitter release.  In normal levels of extracellular calcium where vesicle 

depletion contributes to the measured effects of paired-pulse stimuli, the effects of DAP are 

expected to be a balance between the effects of increased residual calcium and decreased vesicle 

availability. As a result, DAP leads to decreased paired-pulse facilitation under normal calcium 

conditions because the increased vesicle depletion dominates and overshadows the facilitation 

due to residual calcium. Previous studies have also reported reduced paired-pulse facilitation 

after DAP treatment (Thomsen & Wilson, 1983; Baker and Marion, 2002).   

Lastly, the direct effects of (R)-roscovitine on presynaptic calcium channels at the motor 

nerve terminal may prompt future investigations into the therapeutic potential of related 

compounds.  Treatment of neuromuscular disorders, such as Lambert-Eaton Myasthenic 

Syndrome might be improved by the use of a compound that has a direct agonist effect on 

presynaptic calcium channels. This concept will be discussed further in the general discussion 

(see section 5.2). It is possible that agents, which can directly and selectively target presynaptic 

calcium channels, and prolong deactivation kinetics, would have useful therapeutic actions with 

fewer side effects. 
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Figure 13 Schematic diagram of calcium entry and vesicle release with a single action 

potential before (control) and after roscovitine and DAP treatment.   

A. Electron micrograph (×120000) of frog neuromuscular junction in control (left) and after 

treatment with 4-aminopyridine (right). From Heuser and Reese (1977).  
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B. Diagram of active zone comparable to electron micrograph of frog neuromuscular junction in 

A. Comparison of calcium entry and vesicle fusion of control and after roscovitine and DAP 

treatment.  
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4.  COMPUTATIONAL MODELING OF THE ADULT FROG NEUROMUSCULAR 

JUNCTION 

 

In previous chapters, I have described the use of roscovitine and DAP as experimental agents 

to manipulate calcium entry and transmitter release. The goal of this work is to increase our 

understanding of the mechanisms that underlie calcium-triggered vesicle fusion. To aid in this 

endeavor, I have added the use of microphysiological computational modeling. This computer 

modeling approach employs three-dimensional stochastic simulations of calcium influx, 

diffusion, and molecular interactions using Monte Carlo methods to simulate the 

MCell/DReAMM microphysiological environment (Stiles and Bartol, 2000; Stiles et al., 2001; 

Pattillo, 2002). “MCell” (www.mcell.psc.edu) is the Monte Carlo simulator of cellular 

microphysiology that was used in this thesis to simulate realistic three-dimensional reactions 

within the active zone of the frog neuromuscular junction at a molecular level. DReAMM 

(Design, Render, and Animate MCell Models, www.mcell.psc.edu/DReAMM) was used for 

visualization of data. 
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4.1  INTRODUCTION 

4.1.1 Overview of Monte Carlo simulation of cellular microphysiology 

Computational approaches can explore synaptic transmission beyond the temporal and 

spatial limitations of physiological experiments. Traditionally, simulations of diffusion and 

interaction of molecules can be based on one of two general numerical paradigms, Continuum 

(e.g. finite element) or Monte Carlo methods. Continuum methods employ a set of differential 

equations and predict the average behavior of the model, but stochastic variability is ignored 

(Smart and McCammon, 1998). In contrast to the Continuum approach, Monte Carlo methods 

use random numbers and probabilities to predict individual molecular interactions for each 

molecule in the simulation. This stochastic variability is likely to be important as it may reflect 

the variability of biologic interactions in nature. Monte Carlo methods can be used to simulate 

diffusion of individual molecules with random walk movements, which approximate real 

Brownian motion. Reaction transitions such as ligand binding and unbinding can be simulated 

using random numbers that test each possibility against a corresponding Monte Carlo 

probability. Furthermore, diffusion and molecular reactions are simulated in three-dimensional 

space.  

 

4.1.2 MCell input and output files 

Simulation components, such as molecules, channels, and surfaces, are specified using 

the Model Description Language (MDL), a simple programming language. Input files define 
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simulation objects and environments, duration of each simulation time-step, and the number of 

time-steps. When a simulation is started, MDL input files are read, global conditions are 

initialized, and then time-step iterations begin. Each MCell simulation also uses a seed value for 

generation of random numbers. Random numbers generated by any computer are actually 

“pseudorandom”, because they are calculated using an algorithm that produces a deterministic 

set of values based on the input seed value. Different seeds produce different streams of values. 

In MCell, the random number generator uses a 64-bit algorithm similar to that employed for 

high-level computer encryption, and in practical terms can use an effectively unlimited number 

of seed values, and for each seed can generate an effectively unlimited number of pseudorandom 

values without repeating the sequence (Stiles and Bartol, 2000; Stiles et al., 2001; Pattillo, 2002). 

In this thesis, the averages of outputs from 1000 to 10000 different seeds for simulations are 

shown.  

Within a MCell simulation, cellular surfaces are composed of triangulated meshes. 

Meshes can be characterized as “reflective”, “absorptive” or “transparent” with respect to 

diffusing molecules. For example, to simulate an impermeable membrane, the characteristics of 

individual triangles of a surface are made reflective to diffusing molecules. Molecules can 

diffuse and react in solution and on membranes. The distance traveled during each time step 

depends on the molecule’s diffusion coefficient and the time step for the simulation. Molecules 

on membranes cover patches of the surface area, and can be associated with reaction 

mechanisms to simulate events such as ligand binding and unbinding. The positions or densities 

of surface molecules are specified in input MDL files, and can be manually or randomly placed. 

On the same polygon mesh, different types of molecules can exist and function, for example, as 

receptors, channels or pumps. Reaction mechanisms in MDL files can specify directionality with 
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respect to a surface. With this feature, a molecule that binds a ligand on one side of a surface can 

unbind it on the other side and thus can function as a transporter. Rate constants of reaction 

mechanisms are also defined in input MDL files and are converted into Monte Carlo 

probabilities when the simulation is initialized. MCell carrys out all types of transitions and 

interactions stochastically and thus simulates microphysiology with variability (Stiles and Bartol, 

2000; Stiles et al., 2001; Pattillo, 2002).  

It is possible to track each event in a simulation, because diffusion and reaction occur at a 

molecule-by-molecule level in a Monte Carlo simulation. Simulations can generate both reaction 

data output (that counts reactions and molecules, etc) and visualization data (positions and states 

of meshes and molecules). The desired output is specified in MDL files (Stiles and Bartol, 2000; 

Stiles et al., 2001; Pattillo, 2002). 

 

4.1.3 Three dimensional model of a frog neuromuscular junction active zone 

Morphological data at the electron micrograph level are required to generate realistic 

three-dimensional microphysiological environments. The frog neuromuscular junction has 

unique presynaptic active zone structure, including the regularly spaced, long linear arrays of 

synaptic particles in the active zone. This model synaptic system has been investigated for many 

years and a wealth of morphological and physiological data are available. Figure 14 shows a 

comparison of the structure of a frog neuromuscular junction and the MCell model. A single 

active zone includes two double rows of membrane proteins (some of which are calcium 

channels) and docked vesicles. In this dissertation, the model of a single active zone was used for 

all simulations. In the future, this approach using a multiple active zone model can be extended 
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for studying complex forms of plasticity. Figure 14B shows a model with 8 active zones. Figure 

14C is a view from inside the nerve terminal and it shows some of the components of the model, 

including free calcium ions (yellow), buffer-bound calcium ions (purple), and docked synaptic 

vesicles (blue spheres). 

Dimensions, topology, and the number of docked synaptic vesicles within the simulated 

active zone are based on averages of previous studies (Figure 14D; Heuser et al., 1979; Pumplin 

et al., 1981; Herrera et al., 1985; Pawson et al., 1998a, 1998b). The distance between Schwann 

cell finger-like intrusions, which wrap around the terminal, and the mean distance between active 

zones is 1.13 µm. The mean of terminal width is 1.52 µm. The mean length of the active zone is 

980 nm and the width of the active zone is 60 nm. Docked vesicles are placed on either side of a 

shallow groove that contains presynaptic membrane particles including voltage-gated calcium 

channels (Figure 14E and 14F). Presynaptic membrane particles are positioned on the edges of a 

groove with a depth of 10 nm. The active zone model has 26 docked vesicles in double rows and 

each vesicle is placed 70 nm away from the center of the active zone and 5 nm above the 

membrane.  The diameter of each vesicle is 50 nm. The average distance between a docked 

synaptic vesicle and voltage-gated calcium channel is ~40 nm. 

Based on the results of calcium imaging experiments at the frog active zone, Wachman et 

al. (2004) hypothesized that the number of voltage-gated calcium channels is similar to the 

number of synaptic vesicles at the adult frog neuromuscular junction. This imaging work 

proposed that only a small portion of the ~200 synaptic particles might be voltage-gated calcium 

channels. Based on these conclusions, in this dissertation, a 1:1 ratio was used for voltage-gated 

calcium channels and synaptic vesicles.  
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Calcium ions and calcium buffers as well as voltage-gated calcium channels and synaptic 

vesicles are major components of the model. Figure 15 shows a DReAMM image view from 

within the synaptic cleft that depicts different states of voltage-gated calcium channels (black 

and white cylinders), docked synaptic vesicles (blue spheres), calcium-bound sensors on vesicles 

(red), unbound calcium sensors on vesicles (dark blue), free calcium ions (yellow), and buffer-

bound calcium (purple). Calcium buffer sites are present throughout the space of the nerve 

terminal. Triangulated mesh structures of presynaptic membrane are shown in Figure 15 as wire 

frames.  

All kinetic parameters of the model components are constrained by physiological and 

biochemical data. In this dissertation, simulation parameters including the calcium ion diffusion 

constant, calcium-binding affinity of calcium sensors on the synaptic vesicles, the duration of the 

simulation time-step, and the number of time-steps, were used as described in Pattillo (2002) and 

Pattillo et al. (2007), which showed that this model can reproduce multiple sets of experimental 

data from the adult frog neuromuscular junction. Synaptotagmin 1 functions as the model for the 

calcium sensor; its calcium binding rate was set at 1.0 x 108 M-1sec-1, and its unbinding rate was 

set at 6000 sec-1 (Kd = 60 µM; Davis et al., 1999). The total concentration of calcium buffer was 

set at 2 mM; this corresponds to approximately 1.1 million buffer sites within a single active 

zone model. The calcium-binding rate for these buffer sites was set to 1.0 x 108 M-1sec-1, with a 

calcium-unbinding rate of 1.0 x 104 sec-1 (Winslow et al., 1994; Xu et al., 1997; Yazejian et al., 

2000). The diffusion constant of calcium ions was set to 6 x 10-6 cm2sec-1 (Hodgkin and Keynes, 

1957). These initial parameters were used in most simulations performed in this dissertation, 

except in cases where I manipulated some kinetic parameters to test mechanistic hypotheses 

related to short-term synaptic plasticity. 
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Figure 14 Multiple views of active zone model. 

A. Schematic views of increasing magnification illustrating the structure of a neuromuscular 

junction and the active zones contained therein. B and C show two views of an in silico model 

during a simulation. The in silico model includes eight active zones, the opposing post-synaptic 

membrane, and the synaptic space. C depicts a view from inside the nerve terminal, and shows 

two rows with 13 synaptic vesicles each (blue spheres) at the edges of a central groove. These 

images also show free calcium ions (yellow spheres) and buffer bound calcium (purple spheres). 

D. Oblique three dimensional view of active zone model. E. Details of top view including 

vesicles and calcium channels. F. Side view of active zone model including vesicles and 

presynaptic membranes. The topology, dimensions, and number of synaptic vesicles were based 

on published averages. The volume of the model shown in D was approximately 0.9 µm3, the 

distance between the double rows of voltage-gated calcium channel locations was 60 nm, and the 

depth of the active zone groove was 10 nm.  Two rows of 13 synaptic vesicles (50 nm diameter) 

were 70 nm from the active zone center, with 5 nm separating synaptic vesicles from terminal 

membrane. Panel A was adapted from Lester (1977). 
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Figure 15 Close-up view from within the synaptic cleft 

It showed synaptic vesicles (blue spheres), unbound calcium sensors on vesicles (dark blue), 

calcium-bound sensors (red), free calcium ions (yellow), and buffer-bound calcium (purple), 

closed calcium channels (black), and open calcium channels (white). Calcium sensors on 

synaptic vesicles were modeled on synaptotagmin C(2) domains. Presynaptic membranes were 

composed of triangular meshes. 



 72 

4.1.4  Temporal and spatial resolution of the active zone model 

The active zone model must encompass physiologically relevant maximal and minimal 

scales of time and space. Minimal spatial scales include the small distance between a docked 

synaptic vesicle and a voltage-gated calcium channel (~40 nm) with the corresponding diffusion 

time for free calcium (of order 1 µsec). The maximum scales are defined by the length of the 

active zone (on the order of 1 µm) and the synaptic delay (of order 1 msec) with the 

corresponding diffusion distance (of order 1 µm). Therefore, in the simulations of the active zone 

model, the time scales are between µsec and msec, and the space scales are between nm and µm.  

In MCell simulations, the Monte Carlo probabilities and the average random walk step 

length for diffusing molecules determine the numerical accuracy. Small time-steps in these 

simulations produce small step lengths and probabilities of interactions. These smaller 

probabilities and step lengths yield high accuracy. Therefore, in this dissertation, the time step 

for any simulations was set to 10 nsec to achieve high accuracy. Under these conditions, further 

reduction of the time step had no significant impact on simulation results. 

 

4.1.5 Excessive number of calcium binding sites on each vesicle 

As mentioned in the general introduction (section 1.2.2), the amount of transmitter 

released per action potential increases supralinearly, approximately as the fourth power of the 

extracellular calcium concentration (Jenkinson, 1957; Katz and Miledi, 1965b; Dodge and 

Rahamimoff, 1967; Andreu and Barrett, 1980; Barton et al., 1983). This had previously been 
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interpreted to reflect the presence of four calcium binding sites on each synaptic vesicle. 

However, Han et al. (2004) showed that each docked synaptic vesicle has up to 8 SNARE 

complexes. Assuming that each of these SNARE complexes is associated with a synaptotagmin 

molecule (the strong candidate for the calcium sensor), I hypothesized that there may be 8 

synaptotagmin molecules per vesicle. Because each synaptotagmin molecule can bind 5 calcium 

ions (Sudhof and Rizo, 1996; Ubach et al., 1998; Earles et al., 2001; Fernandez et al., 2001; 

Chapman, 2002), it is possible that each synaptic vesicle has up to 40 calcium binding sites. 

Currently, the number of calcium binding sites and the number of calcium-bound sites required 

to cause vesicle fusion is still debated.  

An excessive number of calcium binding sites can provide high sensitivity of vesicle 

release to calcium. It is possible that excessive calcium binding sites may play an important role 

in synaptic plasticity. Previous work (Pattillo, 2002; Pattillo et al., 2007) to develop the active 

zone model of the frog neuromuscular junction started with 4 calcium binding sites on synaptic 

vesicles, based on the experimental fourth order cooperative relationship between calcium 

concentration and transmitter release (Jenkinson, 1957; Katz and Miledi, 1965b; Dodge and 

Rahamimoff, 1967; Andreu and Barrett, 1980; Barton et al., 1983). However, simulations using 

4 calcium binding sites per vesicle produced very few vesicle fusion events and could not 

generate the fourth order cooperative relationship between calcium concentration and transmitter 

release. This insensitivity was overcome by increasing calcium binding sites on synaptic 

vesicles. Previous work (Pattillo et al., 2007) using a model with 40 calcium binding sites per 

synaptic vesicle reproduced prominent experimental data, including the fourth order 

releationship between transmitter release and calcium concentration and the average probability 

of release. In those studies, simultaneous calcium binding of 6 to 8 out of 40 sites triggered 
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vesicle fusion. In this dissertation, 40 calcium binding sites per synaptic vesicle were used in all 

simulations and two sets of binding schemes (independent or cooperative binding) required to 

trigger vesicle fusion were applied (see details in section 4.2.4; Figure 17). The simulated 

number of released vesicles using these binding schemes was compared with experimentally 

determined number of vesicles released per action potential (see section 4.3.1). 

4.2 METHODS 

4.2.1 Tissue preparation.   

Adult frogs (Rana pipiens) were anesthetized by immersion in 0.6% tricaine methane 

sulfonate, decapitated, and double-pithed in accordance with the University of Pittsburgh’s 

Institutional Animal Care and Use Committee.  The cutaneous pectoris nerve-muscle preparation 

was removed bilaterally and bathed in normal frog Ringer (NFR; in mM: 116 NaCl, 1 NaHCO3, 

2 KCl, 1.8 CaCl2, 1 MgCl2, 5 HEPES, 5 glucose, pH 7.3).  

 

4.2.2 Confocal microscopy 

Postsynaptic acetylcholine receptors of the cutaneous pectoris nerve-muscle preparation were 

stained with 2 µg/ml Alexa Fluor 594 conjugated α-bungarotoxin (BTX). The cutaneous pectoris 

nerve-muscle preparation was also stained with 2 mg/ml peanut agglutinin (PNA) to identify the 

position of the nerve terminal by staining the extracellular matrix of the Schwann cell. After 
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staining, the preparation was fixed with 4% paraformaldehyde. Preparations were mounted in 

Mowiol on glass slides. The preparations were imaged using an Olympus Fluoview FV 1000 

confocal microscope with an oil immersion objective (60X). Images were taken with a 0.5 µm Z-

stack through the entire neuromuscular junction and the brightest projections of all image stacks 

were made in order to resolve the postsynaptic receptor fold pattern and count the number of the 

active zones per nerve terminal. 

 

4.2.3 Two-electrode voltage clamp experiments 

Postsynaptic end-plate currents (EPCs) were recorded using the two-electrode voltage-clamp 

technique (Takeuchi and Takeuchi, 1959; Giniatullin et al., 1997, 2005). The resistances of 

intracellular electrodes were 3-5 MΩ when filled with 2.5 M KCl. EPCs and mEPCs were 

digitized at 5 kHz. Clamping speed was measured using a square step command (from 0 mV to -

5 mV for 10 msec) and the clamp time constant (τ) was required to be less than 100 µsec. The 

holding potential was kept at -80 mV. In normal frog Ringer (1.8 mM Ca2+), the quantal content 

was calculated by dividing the EPC area by the mEPC area. EPC area was corrected by 

considering driving force (DF = membrane potential - EqAch) and voltage error (VE) (EPC-80 mV 

= EPCmeasured x (DF/(DF-VE)), because voltage clamping was determined not to be perfect due to 

the very large size of muscle cells and EPC events. For these calculations, equilibrium potential 

of the acetylcholine receptor channel (EqAch) was set to 0 mV (Mallart et al., 1976; Peper et al., 

1982). So, driving force was the actual membrane potential. To prevent muscle contractions, the 

cutaneous pectoris nerve-muscle preparation was bathed in 4-5 µM µ-conotoxin PIIIA (a 

selective, irreversible skeletal muscle sodium channel blocker) for 30 minutes and prior to 
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recording, and then the preparation was rinsed in NFR solution. The use of µ-conotoxin PIIIA 

prevents the muscle from contracting in normal calcium, while allowing the recording of 

spontaneous release (mEPCs). 

 

4.2.4 Modeling of calcium channel activity and vesicle release 

To simulate calcium influx, a calcium channel gating model (which reflects changes in 

membrane potential during an action potential) was determined  (Figure 16). My model had 4 

closed states and 2 open states under control and DAP conditions. To model roscovitine effects, 

there were 5 closed states and 4 open states. “R”states such as RO1, RO2, and RC4 were used to 

represent roscovitine bound states (Figure 16). This model was modified from Buraei et al. 

(2005), which simulated roscovitine effects on calcium currents in Bullfrog sympathetic neurons. 

My model was modified to fit the effects of both roscovitine and DAP on both calcium currents 

and vesicle release. Rate constants (kx) were calculated from equation 1 using the rate parameters 

shown in Figure 16.  

equation 1: kx = Axexp((V-Cx)zxF/RT) 

(Ax: rate constant at the characteristic voltage (Cx); zx: charge moved; R: gas 

constant; T: absolute temperature; F: Faraday’s constant) 

 

Reversal potential for calcium was modeled at +50 mV and the single channel 

conductance used was 2.4 pS in 2 mM [Ca2+]o. Each open calcium channel emitted calcium ions 

according to Poisson probabilities calculated from the single channel conductance and driving 
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force. For example, each open state emitted an average of 800 ions/msec when the membrane 

potential was -60 mV (Church and Stanley, 1996).  

Rate constants were determined by comparing modeling and experimental results related 

to calcium channel open probability, the time-course of calcium currents activated by an action 

potential and a step voltage command, and changes in calcium current integral after roscovitine 

or DAP treatments. In these studies, the calcium channel opening probability was defined as the 

average probability that a channel would be expected to open during a single action potential 

stimulation. The value used for these modeling simulations (0.14) was based on estimates 

derived from patch clamp and imaging results (Wachman et al., 2004; King and Meriney, 2005; 

Luo et al., 2005) 

Vesicle release was determined by either an independent-simultaneous calcium binding 

scheme or a cooperative-simultaneous calcium binding scheme (Pattillo, 2002; Pattillo et al., 

2007). Simultaneous binding of 8 calcium ions among any of the 40 calcium binding sites on 

synaptic vesicles was required for vesicle release by the independent-simultaneous calcium 

binding scheme (Figure 17A). Alternatively, because previous work (Earles et al., 2001) 

suggested that at least two sites on an individual synaptotagmin molecule needed to be occupied 

to trigger vesicle fusion, a cooperative scheme was tested. In my cooperative-simultaneous 

scheme, the 40 calcium binding sites on each synaptic vesicle were subdivided into 8 subgroups 

of 5 binding sites, because each synaptotagmin molecule has 5 calcium binding sites (see section 

1.2.1; Sudhof and Rizo, 1996; Ubach et al, 1998; Fernandez et al., 2001). If more than 3 of the 8 

subgroups bound more than 2 calcium ions, that is, more than 6 simultaneous calcium ions 

bound in total, those vesicles were considered “released” by the cooperative-simultaneous 
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calcium binding scheme (Figure 17B). The release probability of each vesicle was calculated by 

counting the number of released vesicles and dividing by the total number of trials. 

The original calcium channel gating model (Buraei et al., 2005) was designed to model 

calcium current kinetics without regard for probability of vesicle release. Without modification, 

this original calcium channel gating model (Buraei et al., 2005) showed unreasonably high 

probability of vesicle release during an action potential. After modification, my calcium channel 

gating model (Figure 16) was able to simulate presynaptic calcium influx and vesicle release 

with a single action potential before and after pharmacological treatments at the adult frog 

neuromuscular junction (see section 4.3.2 and 4.3.3).  
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A z 

k12 4500 0.9 

k21 1700 -0.9 

k23 3600 0.9 

k32 1700 -0.9 

k34 900 0.3 

k43 12000 -0.3 

k45 10000 0.3 

k54 3000 -0.3 

k46 2[R] 0 

k64 2000 0 

k57 2[R] 0 

k75 200 0 

k67 10000 0.3 

k76 300 -0.3 
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Figure 16 Calcium channel gating model and rate parameters.  

A(s-1) is the rate constant at the characteristic voltage (10 mV) and z is the charge moved. 

The units of A for k46 and k57 are µM-1s-1. [R] is the roscovitine concentration (µM).  
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Figure 17 Vesicle release schemes.  

(Green circles: calcium-bound binding sites on one synaptic vesicle; Open circles: unbound 

calcium binding sites)  

A. The independent- simultaneous calcium binding scheme. 8 calcium bindings (green) among 

40 calcium binding sites per synaptic vesicle triggers vesicle release.  

B. The cooperative-simultaneous calcium binding scheme. 40 calcium binding sites on the 

vesicle are divided into 8 subgroups. More than 3 of the 8 subgroups with more than 2 calcium 

ions bound in each (in total, simultaneous binding of more than 6 calcium ions) triggers vesicle 

release. Using this scheme, only one calcium binding within a group of 5 binding sites will not 

contribute to trigger vesicle fusion. 
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4.2.5 Simulation and data analysis 

MCell 3.0 (www.mcell.psc.edu) software was used for simulation. Individual simulations 

create outcomes depending on the seed value used to generate random numbers. A simulation 

initiated using a particular seed value is comparable to a single experimental trial. Each job ran 

1000 to 10000 simulations on a single processor of a High Performance Computing platform at 

the Pittsburgh Supercomputing Center, jonas.psc.edu, with 128, 1.15 GHz Alpha EV7 processors 

and 256 Gigabytes of shared random access memory.  

Approximately 1800 files were generated by each simulation and each set of simulations 

produced ~300 gigabytes of raw data. Data were analyzed with C-shell, PERL scripts, standard 

UNIX commands, python and ruby files. DReAMM (www.mcell.psc.edu/DReAMM) was used 

for visualization of data.  

4.3  RESULTS 

4.3.1 Physiology and anatomy of the adult frog neuromuscular junction  

The number of active zones per nerve terminal at the adult frog neuromuscular junction 

was counted from confocal images (Figure 18). The average from 27 nerve terminals was 

682±65 (range: 181-1420; Figure 19).   

To calculate how many vesicles are released by a single action potential from each active 

zone, I measured the quantal content in low calcium (0.3 mM Ca2+) and normal calcium (1.8 mM 
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Ca2+) conditions. In 0.3 mM Ca2+, the quantal content was calculated by EPP amplitude/mEPP 

amplitude. The average EPP amplitude was 0.23±0.03 mV and the average mEPP amplitude was 

0.29±0.02 mV (n=36 nerve terminals). Under these low calcium conditions, the average quantal 

content was 0.90±0.12 (0.1-3.4; n=36 nerve terminal). To avoid the complication of nonlinear 

summation when measuring very large EPPs in normal (1.8 mM) extracellular calcium, EPCs 

and mEPCs were measured in 1.8 mM Ca2+ condition using the two-electrode voltage clamp 

technique (Figure 20). In these experiments, the average EPC amplitude was 1.79±0.11 µA 

(n=35 nerve terminals) and the average mEPC amplitude was 4.49±0.22 nA (n=35 nerve 

terminals). The quantal content was calculated by integrating the total charge of the EPC and 

dividing the total charge of the mEPC. Total charge was used in these measurements in normal 

calcium because EPCs were very large and generated by the fusion of hundreds of vesicles that 

were not expected to be precisely synchronous (see Figure 23). Under these conditions 

measurements of total charge was expected to be more accurate than measurements of peak 

amplitude. The average quantal content under normal calcium conditions was 351±31 (range: 

102-960; n=35 nerve terminal; Figure 21). From these data, the number of vesicles released per 

active zone per single action potential was calculated to be 0.0013 in 0.3 mM Ca2+, and 0.52 in 

1.8 mM Ca2+. These data were used to constrain the MCell computational model output. 



 84 

 

Figure 18 Projections of confocal image stacks of a frog neuromuscular junction. 

Red (left) and white (right) is alexa-594-α-bungarotoxin, which labels postsynaptic nicotinic 

acetylcholine receptors. Green (left) is FITC-peanut agglutinin, which shows nerve terminal 

areas by staining the nerve terminal extracellular matrix. Insets: magnified images showing 

detail of the banding patterns characteristic of stained acetylcholine receptors. 
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Figure 19 Frequency distribution for the number of active zones per nerve terminal. 

(n=27 nerve terminals) 
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Figure 20 Two-electrode voltage clamp recordings of EPCs and mEPCs 

EPCs (average of 20 responses) and mEPCs (average of more than 300 responses) at a 

sample neuromuscular synapse. 
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Figure 21 Frequency distribution for quantal content per nerve terminal per single action 

potential in 1.8 mM Ca2+  

(n=36 nerve terminals). 
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4.3.2 Modeling of calcium influx  

 The MCell model simulated diffusion of calcium ions and binding to physiologically 

relevant molecules in a spatially realistic model active zone of the adult frog neuromuscular 

junction. Computational investigation of calcium dynamics and neurotransmitter release began 

with simulation of presynaptic calcium currents. Using the kinetic scheme described above 

(Figure 16), the MCell model reproduced physiologically recorded calcium currents (Figure 22). 

Simulated calcium currents with an action potential and square step voltage command (from -60 

mV to +10 mV, 10 msec) showed comparable currents to the experimentally recorded calcium 

currents (Figure 22A). To achieve these results, the simulated opening probability of calcium 

channels was set to 0.14, which fits the range of experimental data (Wachman et al., 2004; King 

and Meriney, 2005; Luo et al., 2005). This suggests that 3 to 4 voltage-gated calcium channels 

per active zone may be opened by a single action potential. As expected from their underlying 

mechanisms, roscovitine did not alter the channel opening probability (0.14), but DAP increased 

channel opening probability by 57.1% to 0.22. The model also predicted the effects of 

roscovitine and DAP on calcium influx very well in comparison with experimental data (Figure 

22D). In simulations, roscovitine increased total calcium influx by 43.9% and DAP increased 

total calcium influx by 58.8% (Figure 22). Simulated DAP effects on total calcium entry (58.8% 

increase) were smaller than experimentally measured effects (89.8% increase). This may be due 

to differences in the measured effects of DAP on action potentials of Xenopus motoneuron 

somata used for these simulations, as compared with effects that may be slightly different at 

adult Rana pipiens motor nerve terminals. Since we cannot record from these adult motor nerve 

terminals, this remains as unknown. 
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 Modeling Experiments 

Roscovitine 43.9% 44.2% 

DAP 58.8% 89.8% 
 

Figure 22 MCell simulated presynaptic calcium currents.  
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A. MCell model reproduced calcium currents under control conditions with an action potential 

stimulation (left) and with a step voltage command from -60 mV to +10 mV for 10 msec (right). 

Experimentally recorded currents are black and simulated currents are blue. 

B. MCell model simulated calcium currents using an action potential (left) and a step voltage 

command from -60 mV to +10 mV for 10 msec (right), before (black) and after roscovitine (red). 

The simulated effects were compared with physiological effects shown in Chapter 1, Figure 5A 

and Figure 6E. 

C. MCell model reproduced effects of DAP on calcium influx. 1 µM DAP effects were modeled 

with a10% increased amplitude of the action potential as determined experimentally in current 

clamp recordings from frog motoneuron somata (green; see section 2.3, Cho and Meriney, 2006). 

D. Comparison of experimental and simulated drug effects on calcium influx. Each number 

shows the increased percentages of calcium influx after drug treatments. 
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4.3.3 Modeling of vesicle release during a single action potential 

After fitting presynaptic calcium influx, vesicle release events were simulated. To 

quantify vesicle release events, two binding schemes were considered as possible vesicle fusion 

mechanisms (see section 4.2.4; Pattillo, 2002; Pattillo et al., 2007). Using these approaches, 

under control conditions, 0.62 vesicle fusion events were predicted to be released during a single 

action potential with the independent-simultaneous calcium binding scheme, and 0.54 vesicle 

fusion events were predicted to be released with the cooperative-simultaneous calcium binding 

scheme (1.8 mM Ca2+, 3000 seeds). This simulated probability of vesicle fusion from each active 

zone was comparable to the value I measured physiologically (0.52) and was also similar to the 

probability predicted in previous studies (D’Alonzo and Grinnell, 1985; Meriney et al., 1996; 

Macleod et al., 1999; Poage and Meriney, 2002). In 0.3 mM Ca2+, the MCell simulated 

probability of vesicle release was 0.0003 (10000 seeds). In comparison with my experimental 

value (0.0013), it seemed reasonable, though more simulations (seeds) may be necessary to 

determine this value more conclusively, because release rates are so low.  

The effects of roscovitine and DAP on transmitter release were also reproduced with my 

MCell model. In 1.8 mM Ca2+, roscovitine increased vesicle release by 77.9% (1.09 vesicles 

released per active zone per action potential) and DAP increased vesicle release by 82.6% (1.12 

vesicles released per active zone per action potential) in simulations using the independent-

simultaneous calcium binding scheme. Using the cooperative-simultaneous calcium binding 

scheme, roscovitine increased vesicle release by 67.6% (0.92 vesicles released per active zone 

per action potential) and DAP increased vesicle release by 74.9% (0.96 vesicles released per 

active zone per action potential) in normal calcium condition. Under the low calcium modeling 



 92 

condition (0.3 mM Ca2+), roscovitine increased release by 66.7% (0.0005 vesicles released per 

active zone per action potential) and DAP did not change vesicle release (0.0003 vesicles 

released per active zone per action potential; 10000 seeds). Again, more numbers of simulations 

may be necessary to determine accurately the drug effects in this low calcium condition more 

conclusively.  Overall, the modeling data fits well experimental data, and these results are 

summarized in Table 2.  

The temporal distribution of vesicle release events was also faithfully reproduced by my 

MCell model in comparison with reported data (Figure 23; Katz and Miledi, 1965a). Katz and 

Miledi (1965a) measured synaptic delay as the time interval between the peak of the externally 

recorded presynaptic spike and the beginning of the focal response at the postsynaptic 

membrane. Simulated synaptic delay was calculated as the peak of presynaptic action potential 

and the vesicle release time. The most frequent synaptic delay was 0.9 msec (Katz and Miledi, 

1965a). The average of simulated synaptic delay was around 1 msec.  

After confirming that my model could reproduce physiological data triggered by a single 

action potential, several questions that cannot be addressed by physiological experiments were 

investigated in the model environment. Figure 24 shows how many voltage-gated calcium 

channels contribute calcium ions to each vesicle fusion event. Under control conditions, most 

vesicle fusion events were triggered by the calcium ions originating from one (44.0%) or two 

(39.1%) channels. Sometimes, calcium ions from three channels (12.8%) triggered vesicle fusion 

and a small fraction of events were triggered by calcium from four or more calcium channels (4 

channels: 3.69%; 5 channels: 0.37%). In summary, the average number of calcium channels that 

contributed calcium ions to each vesicle fusion event was 1.77±0.02 under control conditions. In 

comparison with this control condition, roscovitine did not significantly alter the calcium 
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channel contribution to vesicle fusion. After roscovitine treatment, one (44.1%) or two calcium 

channels (39.4%) still triggered most vesicle fusion events. 12.9% of vesicle fusion events were 

triggered by calcium ions from three calcium channels and a small fraction (4 channels: 3.27%; 5 

channels: 0.33%) were triggered by calcium ions coming from four or more calcium channels. 

After treatment with roscovitine, the average number of calcium channels that contributed 

calcium ions to each vesicle fusion event was 1.76±0.03.  

In contrast, DAP showed quite a different pattern of calcium channel contribution to 

vesicle fusion. The average number of calcium channels that contributed calcium ions to each 

vesicle fusion event was significantly increased to 2.10±0.03 after DAP treatment (p<0.001). 

Fewer vesicle fusion events were triggered by one calcium channel opening (28.6%), and two 

calcium channels showed a similar contribution (42.4%). However, many more events were 

triggered by three calcium channel openings after DAP treatment (20.9%). Furthermore, there 

was an increase in the number of events triggered by 4 or more channel openings (8.09%). This 

is more than twofold the percentage under control or roscovitine conditions.  

The next question I addressed using the MCell model was how far calcium ions traveled 

from voltage-gated calcium channels to trigger vesicle fusion. Figure 25 shows the average 

percentage of vesicle bound calcium ions that originate from each calcium channel in the active 

zone. As expected, calcium channels closest to a particular vesicle (~40 nm apart) most 

frequently contributed ions for the fusion of that vesicle (Ves) under all conditions (control: 

77.6%; roscovitine: 74.9%; DAP: 73.1%). Neighboring calcium channels showed minor 

contributions (Figure 25; Group 1), and those calcium channels farther away rarely contributed 

(Figure 25; Group 2). Results are summarized in the table at the bottom of Figure 25. This 

suggests that the closest calcium channel to the vesicle contributes most strongly to the each 
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fusion event, though neighboring channels can also contribute. In comparison with control, 

roscovitine and DAP showed similar effects, although the two drugs slightly decreased the 

contribution of the closest calcium channel, and increased the contribution from channels other 

than the closest channel (Figure 25; Groups 1 and 2).  
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  Modeling Experiments 

1.8 mM Ca2+ 0.54 0.52 Control vesicle release per active zone 

per single action potential 0.3 mM Ca2+ 0.0003 0.0013 

Roscovitine 67.6% 60.1% Drug effects on neurotransmitter 

release in 1.8 mM Ca2+ (% increases) DAP 74.9% 79.8% 

 

Table 2 MCell simulation reproduced transmitter release by single action potential.  

The average number of vesicle fusion events was predicted with cooperative-simultaneous 

calcium binding scheme. 
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Figure 23 Comparison of MCell simulated variability in control synaptic delay with 

experimental measurements.  

Simulated data (1628 fusion events; Red filled columns) and experimental data (open bins) from 

Katz and Miledi (1965a) are vertically scaled to match amplitudes. 
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Figure 24 The percentage of vesicle fusion events triggered by calcium ions originating 

from the indicated numbers of calcium channels in the active zone.  

1 calcium channel (grey), 2 (green), 3(dark blue), 4 (dark yellow), 5 (pink) or 6 (red) calcium 

channels contributed to release events under control, roscovitine and DAP conditions. 
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 control roscovitine DAP 

Closest channel 77.6% 74.9% 73.1% 

Group 1 (blue) 14.3% 15.6% 16.2% 

Group 2 (green) 8.1% 9.5% 10.7% 

 

Figure 25 Relative location of calcium channel contribution to vesicle release. 

Black circles show the locations of synaptic vesicles and red, blue and green circles 

indicate voltage-gated calcium channels. “Ves” indicates specific fused vesicle and the number 

in each circle shows the fraction of trials for which calcium channel in the active zone 

contributed calcium ions that bound to the indicated vesicle (“Ves” vesicle) to trigger vesicle 

fusion. “Etc” indicates the calcium channels located farther in the same active zone than 

channels showing in the charts. Relative contributions are summarized in the table. Neighboring 

calcium channels (except the closest one) of  “Ves” vesicle are group 1 (blue) and calcium 

channels other than the closest and neighboring calcium channels are group 2 (green). 
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4.3.4 MCell simulation of paired-pulse stimulation at the frog neuromuscular junction 

Next, I used MCell simulations to address effects of paired-pulse facilitation. To avoid 

confusion and to see the effects of adjustments more clearly, the paired-pulse ratio using the 

cooperative-simultaneous calcium binding scheme will be described here. With respect to these 

paired-pulse ratio manipulations, the independent-simultaneous calcium binding scheme showed 

similar results to the cooperative-simultaneous scheme. In all cases, the paired-pulse ratio is 

defined as (the number of vesicles released by the second action potential)/(the number of vesicle 

released by the first action potential). 

Without any modification, the basic MCell model used to simulate single action potential 

evoked release resulted in a paired-pulse ratio (10 msec interstimulus interval) of 1.0 under 

normal calcium condition (1.8 mM Ca2+). In other words, the MCell model did not show any 

difference in the magnitude of released transmitter between the two stimuli. This is in constrast 

to experimental data that showed a paired-pulse ratio of 1.6, which meant that the second 

response was enhanced by 60% (see section 3.3.2). Furthermore, using my basic model 

conditions, roscovitine decreased the paired-pulse ratio by 7% and DAP decreased the paired-

pulse ratio by 4%. Though control model did not show facilitation, the modeled effects of the 

two drugs on paired-pulse ratio demonstrated a decrease, similar to experimental data 

(roscovitine: 16.3 ± 1.3% decrease; DAP: 9.4 ± 2.1% decrease). 

Thus, modification of some parameters in the model was done in an attempt to 

investigate their influence on paired-pulse facilitation, and in an attempt to fit experimental data 

more closely. This included changing the calcium buffer capacity, the calcium ion diffusion rate, 

more realistic and sophisticated changes in active zone geometry, alterations in the second action 
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potential waveform, reducing the effective volume of the nerve terminal by adding a storage pool 

of vesicles, altering calcium ion binding affinity to calcium sensors on synaptic vesicles, and 

considering possible conformational changes in SNARE complexes that might result from 

calcium binding. Though these modifications were not necessary for my model to fit the 

experimental data during a single action potential, the possibility that such sophisticated 

adjustments in the model might be required to simulate paired-pulse results was investigated. 

These modifications, and the resulting paired-pulse ratio using a 10 msec interstimulus interval, 

are summarized in Table 3. Furthermore, a description of the effects of each manipulation is 

given below. 

 

Calcium buffer 

First, the calcium buffering conditions were altered. In an attempt to increase paired-pulse 

facilitation, I wanted to increase free calcium ion concentration. Therefore, the only 

manipulations that I performed were those hypothesized to attain this goal. Though decreasing 

buffer concentration increased facilitation slightly, it did not show strong effects on the paired-

pulse ratio (from 1.0 into 1.03 with 25% decrease in buffer concentration; from 1.0 into 1.07 

with 50% decrease in buffer concentration). The effects of changing calcium unbinding rates 

from the buffer were also investigated.  Increasing this unbinding rate also increased facilitation 

slightly (from 1.0 into 1.06 with 50% increase of unbinding rate).  Furthermore, alterations in 

buffer concentration and calcium unbinding rates did not show synergistic effects.  

 

Calcium diffusion 

The effect of altering the modeled calcium diffusion coefficient was investigated.  
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Vesicle release was quite sensitive to changes in the calcium diffusion coefficient, but the first 

and the second responses were similarly affected with no significant change in the paired-pulse 

ratio. 

 

Active zone geometry  

 The effects of changing the geometry of the active zone and nerve terminal were tested.  

First, the effect of different calcium channel distributions was examined.  Originally, all of the 

channels were distributed evenly, one to one with docked vesicles. Clustering of the channels 

near some vesicles, and not others (total 32 channels), increased both the first and the second 

responses without increasing facilitation.  

Next, a pool of storage vesicles was added inside the nerve terminal to limit calcium 

diffusion space. Previously, the terminal was empty except for the vesicles docked to the active 

zone. These storage vesicles were modeled to fill much of the nerve terminal space. Their 

surfaces were modeled to reflect calcium ions, and they could not be triggered to fuse. These 

extra vesicles increased paired-pulse ratio from 1.0 into 1.16.  

 

Calcium affinity of sensors for release 

 I also examined whether changes in the calcium affinity for binding to sensors that trigger 

vesicle release would have effects on paired-pulse facilitation.  For this initial test, I changed all 

of the modeled vesicle sensors uniformly using many values derived from published reports.  

Higher affinity sensors strongly increased release during the first pulse, but did not enhance 

paired-pulse facilitation. Along this line, in future work a model in which some of the sensors are 

changed to high affinity, while others maintain a low affinity for calcium binding will be tested. 



 103 

 

Changes in action potential shape 

According to previous studies, the shape of the action potentials can be altered during 

repetitive stimulation (Jackson et al., 1991; Borst et al., 1995; Borst and Sakmann, 1996, 1999; 

Geiger and Jonas, 2000; Poage and Zengel, 2002).  To address this, I modified the falling phase 

of the second action potential in the pair by broadening its width at half-peak amplitude. Figure 

26 shows the action potential waveforms used for the action potential broadening manipulations. 

Increasing the second action potential width by 10% (from 0.84 msec to 0.924 msec) increased 

the paired-pulse ratio to 1.32. A 20% broadening in width (from 0.84 msec to 1.008 msec) 

increased the paired-pulse ratio to 1.39, and 30% broadening in width (from 0.84 msec to 1.092 

msec) increased the paired-pulse ratio to 1.44.  I also tested the effects of broadening the action 

potential width by extending the falling phase at a time point after the half-amplitude time point, 

but this was not as effective as broadening at half-peak amplitude.  

 

Combined effects of action potential broadening and the addition of a storage pool of 

vesicles 

 When I increased action potential duration by 10% in the presence of a storage pool of 

vesicles, paired-pulse ratio increased to 1.39.  When a 20% broadening of action potential 

duration was added to the storage pool of vesicles, the paired-pulse ratio increased to 1.48.  

Lastly, when a 30% broadening of action potential duration was added to the storage pool of 

vesicles, the paired-pulse ratio increased to 1.63.  Although this matched closely the expected 

physiological measurement of paired pulse facilitation, a 30% broadening of the action potential 

duration seemed rather extreme. Therefore, in an attempt to avoid extreme broadening of the 
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action potential, a combination that included mild broadening of the action potential, decreasing 

buffer concentration, and a storage pool of vesicles was tested. In comparison with action 

potential broadening plus a storage vesicle pool, the additional manipulation of decreasing buffer 

concentration did not show any additive effects. It increased the first response similarly to the 

second response.  

 To examine the effects of roscovitine and DAP again under these modified model 

conditions, I tested drug effects using the combination of action potential broadening with a 

storage pool of vesicles. With a 10% broadening of action potential duration and the storage pool 

of vesicles, the paired-pulse ratio after roscovitine was decreased by 7.9%, and the paired-pulse 

ratio after DAP was decreased by 18.7%. After roscovitine, the paired-pulse ratio with 20% 

broadened action potential plus a storage pool of vesicles was decreased by 5.4% and with 30% 

broadened action potential was decreased by 8.0%. In the case of DAP, the paired-pulse ratio 

with 20% broadened action potential plus a storage pool of vesicles was decreased by 14.9% and 

with 30% broadened action potential was decreased by 16.7%. Thus, after modifying modeling 

conditions so that the control paired-pulse ratio could be observed, both drugs continued to show 

qualitatively accurate effects. 

 

Conformational changes of SNARE complex 

 When calcium ions bind vesicles, this can trigger vesicle fusion, or fusion may not occur 

and these calcium ions can unbind from the vesicle in the model. Once calcium ions unbind from 

the vesicle, the unbound calcium binding sites on the vesicle go back to the states that existed 

before calcium binding. However, a recent study (Martens et al., 2007) showed that 

synaptotagmin-1 triggered vesicle fusion by buckling of the plasma membrane together with the 
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zippering of SNARE complexes. Therefore, it is possible that the first action potential may 

trigger calcium entry that imparts some conformational changes in vesicle release machinery that 

may be maintained even after calcium ions unbind from vesicle binding sites.  

This possibility has been investigated in my MCell model. Because vesicle release may 

require calcium binding of at least two sites on an individual synaptotagmin molecule (Earles et 

al., 2001), two (scheme 1) or four (scheme 2) simultaneous calcium bindings in the same 

subgroup of 5 calcium binding sites on the vesicle during the first action potential was considered 

to be a SNARE complex in which conformation was altered and maintained until the next action 

potential in the pair (Figure 27). With this altered SNARE complex, fewer calcium-binding events 

were required during the second action potential to trigger vesicle release. Under both of these 

modified conditions (scheme 1 and scheme 2), 6 simultaneously cooperative calcium bindings in 

total were required to trigger vesicle release.  

In scheme 1,when two simultaneous calcium bindings occurred in one subgroup during 

the first action potential, four additional simultaneous calcium bindings in two subgroups during 

the second action potential were required to trigger vesicle fusion (Figure 27). Using scheme 1 in 

my model, the paired-pulse ratio was 1.53. In scheme 2, when four simultaneous calcium 

bindings in two subgroups occurred during the first action potential, only two additional calcium 

bindings in one subgroup during the second action potential were required to trigger vesicle 

fusion (Figure 27). Using scheme 2 in my model, the paired-pulse ratio was 1.64. Therefore, both 

schemes produced comparable paired-pulse facilitation to my experimental data. This is 

intriguing and future work can investigate this manipulation further.
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Figure 26 The action potential waveforms used for the action potential broadening 

manipulations. 
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Figure 27 Vesicle release schemes for persistent conformational change of SNARE 

complexes. 

Scheme 1: 2 calcium bindings (within one group of 5) during the first action potential result in a 

persistent conformational change of these SNARE complexes, and this change is maintained for 

the second action potential. During the second action potential, 4 additional calcium bindings 

(within 2 groups of 5) are required to trigger vesicle fusion. 

Scheme 2: 4 calcium bindings (within 2 groups of 5) during the first action potential result in a 

persistent conformational change of these SNARE complexes and during the second action 

potential, 2 additional calcium bindings (within a group of 5) are required to vesicle fusion. 
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(Green: calcium-occupied binding sites in the same subgroup; Yellow: calcium binding sites that 

calcium ions used to be bound to during the first action potential which have altered the 

conformation of the SNARE complex; Blue: one bound calcium (within a subgroup of 5 binding 

sites) which cannot evoke a conformational change, and cannot affect vesicle fusion during the 

second action potential) 
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Manipulations Paired-pulse ratio 

Basic Model 1.0 

Decreasing buffer concentration (25%) 1.03 

Increasing buffer off-rate (50%) 1.06 

Decreasing buffer off-rate (10%) 0.99 

Decreasing buffer conc. + increasing off-rate 0.93 

Channel cluster (6 calcium channels more) 0.97 

Decreasing calcium diffusion constant (1/3) 0.98 

Adding storage pool of vesicles 1.16 

10% broadening of action potential 1.32 

20% broadening of action potential 1.39 

30% broadening of action potential 1.44 

10% broadening of action potential + a storage pool of vesicles 1.39 

20% broadening of action potential + a storage pool of vesicles 1.48 

30% broadening of action potential + a storage pool of vesicles 1.62 

Persistent Ca-dependent changes in SNARE (scheme 1) 1.53 

Persistent Ca-dependent changes in SNARE (scheme 2) 1.64 

 

Table 3 Manipulations of active zone parameters and their resulting paired-pulse ratio. 

(with 10 msec interstimulus interval in normal calcium condition (1.8 mM Ca2+)) 
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4.4 DISCUSSION 

The molecular events that underlie synaptic transmission are very complex. As computer 

hardware and software advancements have been made, quantitative modeling of highly realistic 

reconstructed synapses has become possible, and this approach is expected to yield profound 

insights into our understanding of the nervous system. While simple equation-based approaches 

predict directly the average behavior of the system under one condition, Monte Carlo methods 

can provide realistic three-dimensional simulation with stochastic variability and dynamics that 

reflect small numbers of reactants in small spaces; a property critical to nervous system function. 

The availability of physiological and morphological data is a prerequisite for realistic 

reconstruction and modeling of the synapse. In that sense, the adult frog neuromuscular junction 

is ideally suited for this type of computer modeling.  

Though the past literature of the frog neuromuscular junction provides a wealth of 

background information, I needed more precise physiological and anatomical information related 

to transmitter release per active zone during a single action potential in order to simulate more 

accurately spatially realistic microphysiology at this synapse. Although there were incidental 

reports that turned out to be similar to my data, their approaches were quite different from my 

experimental conditions, and it was not always possible to determine experimental details. 

Therefore, I counted the number of active zones per nerve terminal and measured quantal content 

per active zone during a single action potential at the adult frog neuromuscular junction. 

Previous measurements of quantal content were performed in different muscle preparations, or 

using cut-muscle methods to prevent muscle contractions at various holding potentials (Katz and 

Miledi, 1979; Giniatullin et al., 1997, 2005). Here, I measured quantal content from the 

cutaneous-pectoris nerve-muscle preparation in normal calcium (1.8 mM Ca2+), in attempt to 
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obtain accurate estimates for my experimental conditions. Surprisingly, my measured quantal 

content (average = 351, range 102-960, n=35) was quite similar to Katz and Miledi’s estimate. 

Their average quantal content at 19-20 °C was 390 (n=18 fibers; range: 80 and 900), though they 

used the frog sartorius muscle with focal stimulation at a preterminal node of Ranvier, and their 

clamping methods were not explained (Katz and Miledi, 1979).  

In contrast to previous modeling studies (Bennett et al., 2000a, 2000b; Glavinovic and 

Rabie, 2001; Shahrezaei and Delaney 2004, Shahrezaei et al., 2006), the active zone model in 

this study used a spatially realistic active zone ultrastructure and stochastic methods to simulate 

action potential-dependent calcium channel gating, calcium ion permeation, and calcium binding 

and unbinding from buffer molecules and synaptic vesicles. The fourth-order relationship 

between extracellular calcium concentration and transmitter release (Jenkinson, 1957; Katz and 

Miledi, 1965b; Dodge and Rahamimoff, 1967; Andreu and Barrett, 1980; Barton et al., 1983) 

had lead to the hypothesis that approximately four calcium binding sites per synaptic vesicle may 

exist. From this prevailing conceptual view, earlier models of transmitter release used four or 

five binding sites per synaptic vesicle (Bennett et al., 2000a, 2000b; Glavinovic and Rabie, 2001; 

Meinrenken et al., 2002; Shahrezaei and Delaney 2004). These modeling studies were also 

distinct from my work in that they performed various combinations of deterministic or mixed 

deterministic-Monte Calro methods, simplified calcium current waveforms and/or a small value 

for free calcium mobility. To accurately predict calcium dynamics using a very small absolute 

number of calcium ions in a temporally and spatially restricted environment such as an active 

zone, full Monte Carlo simulation algorithms and stochastic calcium influx using spatially 

realistic active zone structure is critical (Pattillo et al., 2007). In a previous study using this 

approach (Pattillo et al., 2007), simulations with 4-6 calcium binding sites per synaptic vesicle 
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showed very low calcium sensitivity and could not reproduce basic experimental observations (in 

particular, the 4th order relationship between calcium concentration and transmitter release, and 

physiological levels of vesicle fusion). Using only 4-6 calcium binding sites per vesicle, calcium 

sensitivity could be increased by extreme changes in model parameters (such as 4-fold increase 

of the numbers of voltage-gated calcium channels in the active zone, or a 20-fold decrease in the 

calcium diffusion constant), but these conflicted with experimental constraints (Pattillo et al., 

2007). An alternative method to increase calcium sensitivity was to use more calcium binding 

sites per synaptic vesicle. Using an approach with 40 calcium binding sites per vesicle, Pattillo et 

al. (2007) could reproduce basic experimental data including the fourth order relationship 

between calcium and vesicle release, the temporal distribution of vesicle release events evoked 

by single action potentials, and the average probability of release under normal physiological 

conditions. Previously published experimental data supported the presence of excess calcium 

binding sites per vesicle, because each vesicle has been shown to have up to 8 synaptotagmin-

associated SNARE complexes (Han et al., 2004), and each synaptotagmin molecule can bind up 

to 5 calcium ions (Sudhof and Rizo, 1996; Ubach et al., 1998; Earles et al., 2001; Fernandez et 

al., 2001; Chapman, 2002). Vesicle fusion schemes, such as independent-simultaneous or 

cooperative-simultaneous calcium binding schemes (see section 4.2.4) were evaluated by 

determining whether the model showed proper calcium sensitivity and was able to reproduce 

physiological levels of transmitter release.  

As mentioned in the introduction (see section 4.1), the dimensions and geometry of the 

active zone, the initial parameters of model components, and the vesicle fusion schemes in this 

study were adapted from previous work (Pattillo et al., 2007), though they used a different 

calcium channel gating model. In this study, under normal calcium conditions, simulated data, 
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including calcium current during a single action potential, roscovitine and DAP effects on 

calcium influx, the average number of released synaptic vesicles, roscovitine and DAP effects on 

vesicle release, and synaptic delay were quite comparable with physiological data. Under low 

calcium conditions, control vesicle release appeared to be modeled faithfully, though the effects 

of roscovitine and DAP could not be reliably determined. 

 

How many voltage-gated calcium channels contribute calcium ions to the release of a 

synaptic vesicle after a single action potential?  

The number of calcium channels contributing calcium ions to vesicle fusion is still debated. 

Different types of synapses have shown different cooperativity and even the same synapse shows 

changes during development. For example, channel cooperativity at the calyx of Held synapse is 

diminished during development (Borst and Sakmann, 1996; Fedchyshyn and Wang, 2005). My 

model suggested that calcium ions originating from 1 or 2 (average = 1.77) voltage-gated 

calcium channels triggered the release of most vesicles by an action potential under control 

conditions at the frog neuromuscular junction. This is consistent with previous studies suggesting 

that calcium influx through single calcium channels (Stanley, 1993) or a few channels triggers 

fusion of each synaptic vesicle (Llinas et al., 1981; Yoshikami et al., 1989; Quastel et al., 1992; 

Bertram et al., 1996; Augustine, 2001; Mulligan et al., 2001; Wachman et al., 2004; Sharezaei et 

al., 2006) and contrasts with other studies concluding that multiple calcium channels need to 

open to trigger a single vesicle fusion event (Zucker and Fogelson, 1986; Borst and Sakmann, 

1996; Meinrenken et al., 2002).  

It is hard to examine the calcium channel contribution to vesicle fusion directly in 

physiological experiments because of the temporal and spatial limitations of these measurements. 
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However, indirect tests to measure the relationship between imaged calcium entry and measured 

effects on transmitter release at the adult frog neuromuscular junction, as calcium channels are 

gradually blocked (using varing concentrations of ω-conotoxin GVIA), have provided supportive 

evidence (Luo, King and Meriney, unpublished observations). This approach has revealed a 

slope in the relationship between changes in calcium entry and transmitter release of 1.72. If a 

slope of 1.0 had been observed, these data would lead to the conclusion that only one calcium 

channel opened for each vesicle fusion event. At the other extreme, if a slope of 4.0 had been 

observed, one could conclude that a large number of calcium channels opened to trigger each 

vesicle fusion event. In this case, the 4th order dependence of transmitter release on calcium is 

observed. In contrast, these data (a slope of 1.72) suggest that only a few calcium channels 

contribute to each vesicle fusion event. These physiological observations are in good agreement 

with my modeling results. 

While roscovitine did not alter the number of calcium channels that trigger fusion, there were 

changes after DAP treatment (Figure10). This likely results from differences in the underlying 

mechanisms of these two pharmacological treatments. Roscovitine slows deactivation kinetics of 

open calcium channels without changing opening probability. In contrast, 1 µM DAP alters 

action potential amplitude by blocking potassium channels and thereby increases the number of 

calcium channel openings during the altered action potential. Under these conditions, more 

vesicles were triggered for fusion by calcium ions originating from multiple calcium channels in 

the active zone after DAP treatment. 
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How far do calcium ions travel to trigger the fusion of a synaptic vesicle?  

This question is hard to address with physiological experiments. In contrast, MCell modeling 

is well suited to address this issue. My modeling data conclude that the closest calcium channel 

predominately (77.6% in control) contributes to the fusion of each vesicle, though other 

neighboring calcium channels still show mild (22.4% in control) contributions (Figure 25). It 

appears that calcium ions bind buffers instead of diffusing long distances to bind distant vesicles. 

Furthermore, because my simulated opening probability for the calcium channel was set at 0.14 

(and this is consistent with low probabilities (10-30%) from previous studies (Bertram et al., 

1996; Poage and Meriney, 2002; Wachman et al., 2004; King and Meriney, 2005), it is unlikely 

that too many neighboring channels would open anyway. In this sense, when a calcium channel 

does open, it strongly contributes to potential fusion of the closest vesicle. 

 

Paired-pulse facilitation 

My MCell model reproduced faithfully single action potential evoked release and the effects 

of roscovitine and DAP on calcium influx and transmitter release. However, my basic model 

required more sophisticated modifications to simulate paired-pulse facilitation accurately. The 

process of adjusting the model to reproduce paired-pulse facilitation provided insights into the 

potential sub-active zone mechanisms that may underlie these measured effects. Along these 

lines, most of the tested modifications affected basal synaptic transmission directly, but did not 

alter paired-pulse facilitation much because they altered both the first and the second responses 

similarly.  

To explain facilitation, the residual calcium hypothesis has been widely accepted at the 

majority of synapses (Katz and Miledi, 1968; Magleby and Zengel, 1982). In this view, calcium 
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ions remain within the nerve terminal after the first action potential and enhance transmitter 

release during the second action potential. Numerous studies have supported this hypothesis. 

Presynaptic calcium concentrations have been shown to be elevated during facilitation at many 

central and peripheral synapses (Charlton et al., 1982; Delaney and Tank, 1994; Regehr et al., 

1994; Brain and Bennett, 1995, 1997; Atluri and Regehr, 1996; Feller et al., 1996; Lin et al., 

1998; Kreitzer and Regehr, 2000). Experimentally, the activation of a caged calcium chelator has 

been shown to rapidly eliminate synaptic facilitation (Kamiya and Zucker, 1994). Conversely, 

intracellular calcium release by photolysis of a presynaptic caged calcium chelator can cause 

facilitation at the crayfish neuromuscular junction (Kamiya and Zucker, 1994). Synaptic 

facilitation has also been reduced by presynaptic loading of exogenous calcium buffers such as 

EGTA and BAPTA (Hochner et al., 1991; Tanabe and Kijima, 1992; Van der Kloot and Molgo, 

1993; Regehr et al., 1994; Atluri and Regehr, 1996; Feller et al., 1996; Rozov et al., 2001) or by 

presynaptic injection of calcium buffers into the terminal (Swandulla et al., 1991; Jiang and 

Abrams, 1998; Tang et al., 2000). All of these observations have supported the concept that 

residual calcium following the first action potential in a pair leads to measured facilitation in 

transmitter release. 

Despite wide support for the residual calcium hypothesis, there are other possible 

mechanisms of facilitation, such as broadening of presynaptic action potentials or changes in 

presynaptic calcium entry, though various preparations have shown different results. During 

trains of stimuli, facilitation of the voltage-gated calcium channel has been observed at the calyx 

of Held (however, this mechanism did not dominate the overall plasticity because synaptic 

depression was observed; Borst and Sakmann, 1998; Cuttle et al., 1998). In hippocampal 

neurons, G-protein mediated calcium channel inhibition can be relieved by action potential trains 
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resulting in increased calcium influx through P/Q-type calcium channels, and this can cause 

facilitation (Brody and Yue, 2000a). Alternatively, at the crayfish neuromuscular junction 

(Wright et al., 1996) and at the parallel fiber synapses in the cerebellum (Silver et al., 1998; 

Kreitzer and Regehr, 2000), changes in presynaptic calcium currents were shown not to be 

important for facilitation.  

The shape of the presynaptic action potential plays a critical role in determining timing and 

strength of synaptic transmission (Augustine, 1990; Sabatini and Regehr, 1999). Previous studies 

demonstrated short-term broadening of the presynaptic action potential during repetitive 

stimulation (Jackson et al., 1991; Borst et al., 1995; Borst and Sakmann, 1996, 1999; Geiger and 

Jonas, 2000; Poage and Zengel, 2002). In particular, Poage and Zengel (2002) measured the 

shapes of presynaptic action potentials in the chick ciliary ganglion using paired-pulse stimuli 

with a 50 msec interstimulus interval. They observed that the second action potential was 

identical in the rising phase, peak and early falling phase, followed by a slightly slower 

repolarization as compared with the first action potential waveform. This altered second action 

potential waveform significantly increased total calcium influx (5.0 ± 1.3%). Conversely, at 

some synapses, decreases in presynaptic action potential amplitudes or durations have been 

shown to contribute to synaptic depression (Parker, 1995; Brody and Yue, 2000b). In contrast, 

modulation of the presynaptic action potential waveform was shown not to contribute to 

facilitation at the crayfish neuromuscular junction. Even when the second action potential was of 

shorter duration than the first action potential, facilitation at the crayfish neuromuscular junction 

was still observed (Vyshedskiy et al., 2000). Therefore, although there are some reports of 

additional mechanisms that may contribute to short-term plasticity, there is some disagreement 

between preparations. 
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The manipulations that increased paired-pulse ratio in my model included reduction in 

terminal volume by addition of a storage pool of vesicles, broadening the second action potential 

in the pair, and considering potential long-lasting conformational changes in the calcium-trigger 

for release. 

The reduction in terminal volume by addition of a storage pool of vesicles is expected to 

confine calcium ions to the area around a docked vesicle by filling intraterminal space. Previous 

studies showed that only 1-2% of all vesicles are docked in the so called “readily releasable 

pool”, while most vesicles reside in the recycling pool (10-20%) or reserve pool (80-90%). These 

vesicles are scattered in the terminal spatially (Rizzoli and Betz, 2004, 2005). In that sense, 

adding a storage pool of vesicles makes the model more realistic. Under these conditions, when 

the second action potential invades the nerve terminal, residual calcium may be more prominent 

in the local active zone area.  

My simulations with broadened second action potential waveforms can show similar paired-

pulse facilitation to the measured experimental value, but this required a 30% broadening of the 

action potential duration which I consider to be rather extreme. Though direct recordings of 

presynaptic action potentials at the adult frog neuromuscular junction are not amenable, 

extracellular recordings might be useful to investigate whether the first and the second action 

potential waveforms are different during paired stimulation.  In an attempt to avoid extreme 

action potential broadening in my model, other factors and combinations of adjustments need to 

be investigated.  

One possibility that also reproduced physiological observations was a model for persistent 

conformational changes in SNARE complexes after calcium binding during the first action 

potential. This is related to a very recent study (Martens et al., 2007) suggesting that membrane 
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curvature is induced by calcium binding to synaptotagmin-1. My preliminary simulations 

showed this modification could reproduce experimental paired-pulse facilitation. This 

preliminary test did not include time-dependent decay of conformational changes, but this should 

be considered in future evaluations of this manipulation. Along this line, a model in which some 

of the sensors are high affinity, and others are low affinity, should also be tested.  An averaged 

calcium binding affinity for all calcium sensors on vesicles is used currently in my model, and 

this matches with the known biochemical characteristics of synaptotagmin (Ubach et al., 1998; 

Davis et al., 1999; Fernandez et al., 2001). However, it is possible that using both high and low 

affinity calcium sensors may help to simulate paired-pulse facilitation more accurately, though I 

have shown that it is not necessary for the simulation of release triggered by a single action 

potential. 

Another factor to be considered is intracellular calcium storage. One possible storage site that 

may affect short-term plasticity could be mitochondria. Previous studies have shown that 

calcium release from mitochondria can affect posttetanic potentiation and long-term synaptic 

plasticity. Mitochondrial influences on paired-pulse facilitation were not studied, and the time 

scale of calcium uptake and release from mitochondria might be rather slow to be relevant to 

paired-pulse facilitation (Magnus and Keizer, 1997; Levy et al., 2003; Talbot et al., 2003; Tong, 

2007).  

In this dissertation, simulations with paired-pulse stimuli were performed using a single 

active zone. Though a previous study showed that reflected calcium ions from the lateral walls of 

a single active zone model did not significantly contribute to release (Shahrezaei et al., 2006), 

and alteration from absorptive endcaps into reflective endcaps in my model did not affect vesicle 

release by a single action potential, it is possible that calcium ions traveling from neighboring 
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active zones may play a role in building up residual calcium during long interstimulus intervals. 

In my simulations, calcium ions that are reflected from the boundaries, called ‘endcaps’, are 

modeled as calcium ions entering from a neighboring active zone. However, a future model with 

multiple active zones may help to elucidate possible complex mechanisms that regulate short-

term synaptic plasticity.  

 

In summary, my present MCell model simulated synchronous calcium-triggered vesicle 

release during a single action potential very accurately. Using this model, I was able to predict 

calcium channel stochiometric interactions with vesicles, and effects of two drugs that alter 

calcium influx. These studies increased our understanding of calcium-triggered vesicle fusion. 

My simulation of paired-pulse facilitation using this model needed more adjustments to predict 

accurately paired-pulse facilitation experimental observations. In the process of adjusting my 

present model, various aspects of short-term synaptic plasticity were explored. More 

investigations are required using this model to evaluate the effects of roscovitine and DAP on 

paired-pulse facilitation. A combination of multiple factors may be necessary to explain 

physiological observations.  
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5.  GENERAL DISCUSSION 

 

Synaptic transmission at the neuromuscular junction is tightly regulated by calcium 

influx through voltage-gated calcium channels. The frog neuromuscular junction is a very useful 

model system to study synaptic transmission in general and neuromuscular transmission 

specifically. In this dissertation, I have used roscovitine as a tool to study presynaptic function. 

The effects of roscovitine and DAP, a comparison drug, on presynaptic calcium influx and 

transmitter release were characterized at the frog neuromuscular junction. Results of 

experimental and computational studies provided a deeper understanding of calcium-triggered 

transmitter release and paired-pulse facilitation.  

5.1 ROSCOVITINE, AS A NOVEL TOOL TO STUDY PRESYNAPTIC CALCIUM 

CHANNELS AND SYNAPTIC TRANSMISSION 

Roscovitine increased presynaptic calcium influx by prolonging deactivation kinetics of N-

type calcium currents, and as a result increased transmitter release at the adult frog 

neuromuscular junction. The action of roscovitine on N-type calcium channels is similar to the 

effect of BayK 8644 on L-type calcium channels. BayK 8644 has played an important role in 

studying the function, gating properties and permeation of L-type calcium channels (Nilius et al., 
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1985; Nowycky et al., 1985; Sturek and Hermsmeyer, 1986; Elmslie, 2004). Because no specific 

agonist is available for N-type calcium channels, roscovitine will provide an opportunity to 

investigate N-type calcium channels and synaptic function further. In this dissertation, whole-cell 

patch clamp recordings were used to study effects of roscovitine, but a complete characterization 

of roscovitine effects at the single channel level will be necessary in the future. 

To function as a more valuable research tool targeting N-type calcium channels selectively, 

roscovitine needs to be improved. First, roscovitine currently also functions as a cyclin 

dependent kinase (cdk) inhibitor, though the effects of roscovitine on calcium channels are direct 

and cdk-independent (Yan et al., 2002; Buraei et al., 2005, Cho and Meriney, 2006). 

Unexpectedly, my data showed that all tested cdk inhibitors (olomoucine, (S)-roscovitine, and 

(R)-roscovitine) increased mEPP frequency significantly (see section 3.3.1; Cho and Meriney, 

2006). This suggests that the observed increases in mEPP frequency may not be mediated by 

changes in calcium channel function. Therefore, the possibility that inhibition of cdks in a 

presynaptic nerve terminal may cause changes in mEPP frequency cannot be completely ruled 

out. This non-specific effect on mEPP frequency did not impede my investigation described in 

this dissertation because the effects on calcium channel activity and evoked transmitter release 

were controlled for using other related cdk inhibitors. However, it would be ideal to identify a 

derivative of roscovitine that only has effects on calcium channels without influencing cdks. In 

fact, these studies are under way in our laboratory in collaboration with Dr. Meijer (Station 

Biologique de Roscoff, CNRS UPR, Roscoff cedex, Bretagne, France).  

Second, roscovitine can affect all types of Cav2 channels (N-, P/Q- and R-type channels). 

Because specific blockers of each Cav2 channel subtype are available, one can still study effects 

of roscovitine on selective Cav2 subtypes. Furthermore, in a recent study, Buraei et al. (2007) 
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showed that some types of potassium channels were also affected by roscovitine. In that sense, a 

roscovitine derivative that has selectivity for subtypes of calcium channels would be desirable. 

5.2    ROSCOVITINE EFFECTS ON CAV2 CHANNELS ARE REMINISCENT OF 

BAYK 8644 EFFECTS ON CAV1 CHANNELS. 

With respect to dihydropyridine (DHP), including BayK 8644, binding to L-type channels, 

the specific amino acid sequence important in binding in the α1 subunit has been mapped. Site 

directed mutation has revealed not only the essential amino acid binding sequence, but 

substitutions have conferred DHP binding to Cav2 type channels (Hockerman et al., 1997; 

Peterson et al., 1997; Sinnegger et al., 1997; Yamaguchi et al., 2000, 2003). In a similar way, the 

roscovitine binding site on Cav2 calcium channel subtypes should be identified in future. Using 

experiments that focus on the structure-activity relationship, derivatives of roscovitine targeting 

only certain type of calcium channels can be developed. 

If, and when, a crystal structure can be solved for Cav1 and Cav2 channels, as has recently 

been published for some types of potassium channels (Cabral et al., 1998; Doyle et al., 1998; 

Jiang et al., 2002, 2003; Long et al., 2005), one will be able to use molecular modeling 

approaches to investigate the mechanisms that lead to DHP action as antagonists ((R)-(+)-BayK 

8644) or agonists ((S)-(-)-BayK 8644). Using this wealth of information on BayK 8644 action on 

Cav1 channels, contrasting effects of roscovitine enantiomers ((R)- and (S)-roscovitine) on Cav2 

channels can be explored further. I hypothesize that this study might reveal the subtle differences 

that exist to create agonist vs antagonist effects and to generate calcium channel subtype 

specificity. This information is predicted to be of value in future drug development. 
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5.3 CLINICAL ASPECTS REGARDING NEUROMUSCULAR WEAKNESS 

The generation of highly selective roscovitine derivatives will also be essential in the 

evaluation of these chemicals as treatments for neuromuscular disease, as the current non-

selective drugs have some side effects. Lambert-Eaton Myasthenic Syndrome (LEMS) is an 

autoimmune disorder that is characterized by a decrease in the number of presynaptic calcium 

channels (Lambert et al., 1956; Elmqvist et al., 1968; O’Neill et al., 1988; Vincent et al., 1989). 

Currently, potassium channel blockers, such as guanidine hydrochloride, 4-aminopyridine, and 

DAP, are recommended as treatments. They increase the magnitude of transmitter released with 

each action potential, but they also lead to a variety of clinical side effects (Oh and Kim 1973; 

Matthews and Wickelgren, 1977; Anderson and Harvey, 1988; Silbert et al., 1990; Sanders, 

1995; Molgo and Guglielmi, 1996; Oh et al., 1997; Sanders et al., 2000). This may result from 

the significant reduction in paired-pulse facilitation caused by large increases in basal 

transmission at the nerve terminal (Thomsen and Wilson, 1983), and/or the effects on axonal 

potassium channels that limit the frequencies at which nerves can conduct (Miralles and Solsona, 

1998). 

Instead of indirectly increasing calcium influx by potassium channel blockers, drugs that 

directly target calcium channel might become better treatments for LEMS with fewer side 

effects. In most clinical trials for LEMS, 10-20 mg of DAP is administered 3 times per day, 

which leads to serum levels that have been measured as about 1 µM (Aisen et al., 1995). 

Therefore, using DAP 1 µM as a comparison drug in this dissertation was also clinically 

relevant.  
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5.4 GLYCEROTOXIN  

Although not part of my thesis work, I did perform some experiments examining the effects 

of another novel calcium channel modulator: glycerotoxin. Glycerotoxin is a 320 kD protein, 

isolated as a fraction from the venom of a marine worm (Glycera convoluta). Glycerotoxin was 

known to enhance spontaneous release of transmitter and increase quantal content of evoked 

transmitter release, possibly by increasing the open probability of N-type calcium channels 

(Meunier et al., 2002). I performed patch clamp recordings of calcium current in cultured 

Xenopus motoneurons and showed that 1 µg/ml glycerotoxin increased peak amplitude of 

calcium current evoked by an action potential by 41% (n=2) without altering deactivation 

kinetics of calcium currents. Total calcium entry increased by 37% (n=2; Figure 28). Though 

glycerotoxin has not been well characterized and it is not commercially available, it might be 

interesting to compare the effects of roscovitine and glycerotoxin as both of these agents appear 

to directly target presynaptic calcium channels, increasing calcium entry and transmitter release 

by apparently different mechanisms. 

Considering potential treatment strategies for the disease LEMS, it is important to study these 

novel agents that directly alter presynaptic calcium influx and transmitter release with the hope 

that they might reverse neuromuscular weakness while maintaining aspects of short-term 

synaptic plasticity that are important for normal synaptic function. In frogs, a partial blockade of 

transmitter release at the neuromuscular junction using ω-conotoxin GVIA, a specific and 

irreversible N-type calcium channel blocker, mimics the LEMS condition by the functional 

removal of a subset of presynaptic calcium channels. In mice, one could use passive transfer of 

the disease by injecting immunoglobulin from LEMS patients, and evaluate effects of novel 
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drugs. Using these models, the ability of roscovitine, DAP and glycerotoxin to reverse muscle 

weakness can be evaluated.  

5.5 COMPLEMENTARY EXPERIMENTAL AND COMPUTATIONAL STUDIES OF 

THE SYNAPSE 

I have investigated presynaptic calcium influx, calcium-triggered transmitter release and 

short-term plasticity at the frog neuromuscular junction using both physiological experiments 

and computational modeling in a complementary way. First, I characterized the underlying 

mechanisms of pharmacological tools by recording effects on calcium currents and presynaptic 

action potentials (section 2). Next I examined effects of two pharmacological agents on 

transmitter release using single action potentials and paired-pulse stimuli (section 3). These 

physiological data provided important constraints for my computational model. Using these 

approaches, I interpreted physiological data and tested hypotheses related to the sub-active zone 

mechanisms that control vesicle fusion (section 4). This is the first modeling approach to 

simulate the effects of pharmacological tools on calcium currents and vesicle release using a 

spatially realistic three dimensional active zone model. 

For comparison with modeling data, calcium currents and action potential waveforms were 

recorded from Xenopus motoneuron somata, since the adult Rana pipiens frog motor nerve 

terminal is not amenable to direct patch clamp study. Though the use of recordings from the 

somata of cultured frog motoneurons provided a good preparation with which to characterize 

underlying mechanisms of drugs, it is also possible to record directly from cultured motor nerve 

terminals in this preparation. The use of these Xenopus presynaptic varicosities, instead of 
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somata, might be useful for future work as they might provide a more appropriate synaptic model 

preparation. This cultured synaptic preparation, derived from 1-day old Xenopus embryos, is a 

natural neuromuscular synapse that forms within 1-3 days in vitro. Cultured synapses exhibit 

physiological and morphological properties that parallel closely their developing counterparts in 

vivo (Kullberg et al., 1977; Weldon and Cohen, 1979). Within hours of contact, synapses exhibit 

spontaneous and evoked acetylcholine release, membrane ‘thickenings’, clouds of presynaptic 

vesicles, and a postsynaptic aggregation of acetylcholine receptors (Anderson et al., 1977; 

Weldon and Cohen, 1979; Nakajima et al., 1980; Cohen and Weldon, 1980; Kidokoro et al., 

1980; Kidokoro and Yeh, 1982; Takahashi et al., 1987; Buchanan et al., 1989; Evers et al., 

1989). While I believe that my use of the soma was effective, it is possible that there are 

differences that may exist if studied at the Xenopus cultured varicosity. These could be 

investigated in future work. 

Because roscovitine did not significantly alter the shape of the action potential at the frog 

motoneuron somata, I considered that the recently reported roscovitine effects on potassium 

channels (Buraei et al., 2007) would not impair my investigations described in this dissertation. 

However, it might be useful to confirm whether roscovitine alters action potential shape using 

recordings of action potentials at cultured Xenopus neuromuscular varicosities, or at the adult 

frog neuromuscular junction by extracellular recordings.  

The present model does not include vesicle recycling because the timing of endocytosis and 

refilling is too slow to affect vesicle release by a single action potential, or by paired-pulse 

stimuli of 10 to 30 msec interstimulus interval (Gundelfinger et al., 2003; Sudhof, 2004). At the 

Calyx of Held, kiss and run endocytosis time constants for a single spontaneous vesicle release 

event was ~60 msec, and was even longer (110 msec) after single action potential, or following 
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low-frequency stimulation (Sun et al., 2002). In general, the time constant for vesicle recycling 

gradually increased as the frequency of stimulation became higher (Sun et al., 2002). At the 

ribbon synapses of retinal bipolar cells (von Gersdorff and Matthews, 1994; Neves and Lagnado, 

1999; Neves et al., 2001) or inner ear hair cells (Beutner et al., 2001), rapid endocytosis has been 

reported to have a ~1 sec time constant.  

Overall, under normal calcium conditions, my model predicted presynaptic calcium influx 

and transmitter release by a single action potential very well. However, it was hard to evaluate 

experimental effects under low calcium conditions even running simulations using 10000 seeds. 

These simulations did not appear to run enough seeds to observe reliable model results because 

the probability of a vesicle fusion event was so low that often less than 5 occurred in 10000 runs. 

Furthermore, as discussed in section 4, more sophisticated adjustments will be necessary to 

simulate paired-pulse facilitation. 

Regarding short-term synaptic plasticity, every synapse experiences a combination of 

facilitation and depression influences with repetitive stimulation. Facilitation results from 

buffered residual calcium lingering for ~100 msec after a nerve stimulation. Vesicle depletion at 

release sites is thought to be the most prominent cause of depression. My model incorporates 

both features, though in its present state it did not demonstrate physiological levels of 

facilitation. With regard to depression, my model predicted that the control probability of vesicle 

release by the first action potential in a pair was 0.54, and about 2% of the vesicle release events 

predicted to occur during the second action potential would be prevented because of vesicle 

depletion. In other words, in 1000 simulations, 540 vesicles were released by the first action 

potential and during the second action potential, 11 vesicles could not be released because those 

sites were used during the first stimulation. With only vesicle depletion, the paired-pulse ratio 
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using a 10 msec interstimulus interval should be 0.98 ((540-11)/540). However, my model 

predicted a paired-pulse ratio of 1.0. This suggests that residual calcium-mediated facilitation 

must have provided equal and opposite compensation so that the paired-pulse ratio increased 

from 0.98 to 1.0. However, in my simulations the residual calcium has not been measured 

directly. 

As expected, differential adjustments affecting only the response during the second action 

potential in a pair, such as action potential broadening and possible conformational changes of 

SNARE complex, were more effective at eliciting significant facilitation than changes in global 

model conditions, which generally affected both responses (such as changes in kinetic 

parameters or active zone geometry). If I adapted other differential manipulations including the 

presence of local buffer saturation, as used in previous modeling studies (Klingauf and Neher, 

1997; Neher, 1998; Matveev et al., 2004), I could demonstrate enormous facilitation. Thus, one 

can generate very large facilitation effects with selective adjustments either between stimuli, or 

during only the second action potential in a pair. In this dissertation, I focused on testing 

adjustments based on published physiological or biochemical data to evaluate a potential effect 

on facilitation. However, using this approach, it was not easy to demonstrate facilitation at 

experimentally determined levels. My modeling approach of paired-pulse facilitation in this 

dissertation is novel because it is the first to evaluate short-term plasticity with a spatially 

realistic active zone model, in contrast with previous models using numerical equations. Though 

my basic model requires more adjustments to accurately predict physiological levels of 

facilitation, I expect it could simulate experimental paired-pulse facilitation with the inclusion of 

additional factors, and testing combinational manipulations. For these further adjustments, the 
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tested manipulations and resulting effects shown in this dissertation will provide a framework 

and fundamental information. 
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Figure 28 Effect of 1 µg/ml glycerotoxin on calcium currents.  

Glycerotoxin (red) increased peak current amplitude by 41% and increased total calcium 

entry by 37% without altering deactivation of calcium current in cultured Xenopus 

motoneurons. 
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