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Salmonella enterica, a major causative agent of gastrointestinal illness, exhibits a host-specific 

pattern of infection, with certain serovars predominantly infecting particular hosts. Extensive 

variation is observed at the Salmonella rfb locus, which makes up serovar-defining O-antigen. 

Unlike other pathogens, this diversity cannot be explained by selective pressure from the host 

immune system. Here, I implicate the O-antigen to the physiological basis for escape from 

protozoan predators. These predators have differential feeding preferences on Salmonella and 

may be responsible for maintaining O-antigen diversity, controlling which serovars are able to 

survive predation to potentially cause disease. I demonstrated that the O-antigen plays a strong 

role in mediating predator escape and uncovered a trade-off that may exist between O-antigen 

identity and chain length regulation in response to the dual selective pressures of evading host 

intestinal predators and successful interaction with the host immune system. To complete these 

experiments, I developed two new techniques: a) genetic manipulation of non-Typhimurium 

Salmonella and b) multicolor flow cytometry for assessment of microbes in natural, complex 

environments. These results link variation at virulence loci to environmental selective pressures 

other than the host immune system and provide an explanation for the role of the rfb locus in the 

fragmented speciation process in Salmonella. 

 

 

PHYSIOLOGICAL BASIS FOR PREDATOR ESCAPE IN SALMONELLA 

Kristen A. Butela, PhD 

University of Pittsburgh, 2011 

 



 v 

TABLE OF CONTENTS 

PREFACE .............................................................................................................................. XXIII 

1.0 INTRODUCTION ........................................................................................................ 1 

1.1 FREQUENCY DEPENDENT SELECTION AND ANTIGENIC 

DIVERSITY .......................................................................................................................... 6 

1.2 CONVENTIONAL WISDOM FAILS TO EXPLAIN ANTIGENIC 

DIVERSITY IN SALMONELLA ....................................................................................... 10 

1.3 GENERATION TIME-SCALE ANTIGENIC DIVERSIFICATION .......... 13 

1.3.1 Haemophilus: extending persistence times in hosts .................................... 14 

1.3.2 Neisseria: Infecting non-naïve hosts ............................................................. 15 

1.3.3 Bacteroides: Avoiding innate immune response ......................................... 17 

1.4 MECHANISMS FOR GENERATING DIVERSITY REFLECT AN 

ORGANISM’S SELECTIVE REGIME ........................................................................... 20 

1.5 ANTIGENIC DIVERSITY IN SALMONELLA .............................................. 22 

1.5.1 Salmonella H-antigen diversity..................................................................... 22 

1.5.2 Salmonella fimbrial diversity ........................................................................ 26 

1.5.3 Salmonella O-antigen diversity..................................................................... 26 

1.6 WHY ARE DIVERSE H- AND O-ANTIGENS MAINTAINED IN 

SALMONELLA? ................................................................................................................. 30 



 vi 

1.6.1 Diversifying selection in Salmonella ............................................................. 34 

1.6.2 Differential distribution of bacterial strains ............................................... 35 

1.7 PREDATION AS A SELECTIVE FORCE .................................................... 38 

1.7.1 Ciliates: nondiscriminatory predators ......................................................... 38 

1.7.2 Bacteriophages: highly discriminatory predators ...................................... 39 

1.7.3 Amoebae: generalized yet discriminatory predators ................................. 40 

1.7.4 Salmonella most likely do not exhibit active responses to protozoan 

predation ..................................................................................................................... 40 

1.8 PREDATION-MEDIATED DIVERSITY AT THE SALMONELLA RFB 

OPERON ............................................................................................................................. 41 

1.9 GOALS OF THE DISSERTATION ................................................................ 49 

2.0 DEVELOPMENT OF BACTERIOPHAGE P1-MEDIATED GENETIC 

MANIPULATION OF NON-TYPHIMURIUM SALMONELLA .......................................... 50 

2.1 BACTERIOPHAGE-MEDIATED GENETICS IN SALMONELLA ........... 51 

2.2 MATERIALS AND METHODS ...................................................................... 54 

2.2.1 Media and growth conditions ....................................................................... 54 

2.2.2 Bacteriophage P22 and ES18 propagation and transduction .................... 55 

2.2.3 Bacteriophage P1 propagation and transduction ....................................... 56 

2.2.4 Bacteriophage P1 vir plaque assay ............................................................... 57 

2.2.5 Directed gene replacements in Salmonella enterica serovar Typhimurium 

LT2…….. .................................................................................................................... 57 

2.2.6 Technical acknowledgements ....................................................................... 59 



 vii 

2.3 P1 SENSITIVITY IS CONFERRED BY MUTATIONS IN THE GALE 

AND RFB LOCI IN SEROVAR TYPHIMURIUM LT2 ............................................... 59 

2.4 REVERSAL OF THE GALE MUTATION .................................................... 69 

2.5 THE GALE MUTATION CONFFERS SENSITIVITY TO PHAGE P1 IN 

NON-TYPHIMURIUM SALMONELLA .......................................................................... 71 

2.6 PHAGE P1 TRANSDUCES DNA AMONG TYPHIMURIUM AND NON-

TYPHIMURIUM SALMONELLA .................................................................................... 74 

2.6.1 Transduction from Typhimurium LT2 donors into non-Typhimurium 

recipients ..................................................................................................................... 74 

2.6.2 Transduction from non-Typhimurium donors into Typhimurium LT2 

recipients ..................................................................................................................... 77 

2.6.3 Transduction among non-Typhimurium donors and recipients ............... 81 

2.7 DIFFERENTIAL P1 SENSITIVITY IN GALE AND RFB MUTANTS ...... 83 

2.8 DISCUSSION AND FUTURE DIRECTIONS ............................................... 86 

3.0 O-ANTIGEN IDENTITY IS A MAJOR INFLUENCE ON SALMONELLA 

FITNESS AGAINST PROTOZOAN PREDATION ............................................................... 88 

3.1 IDENTIFICATION OF THE MAJOR SURFACE ANTIGEN AFFECTING 

SALMONELLA FITNESS AGAINST PREDATION ..................................................... 88 

3.2 MATERIALS AND METHODS ...................................................................... 89 

3.2.1 Media and growth conditions ....................................................................... 89 

3.2.2 Propagation and acid-base treatment of amoebae ..................................... 90 

3.2.3 Construction of rfb near-isogenic and near-exogenic strains .................... 91 

3.2.4 Line test competition assay and fitness calculations................................... 96 



 viii 

3.3 O-ANTIGEN IDENTITY INFLUENCES FITNESS AGAINST 

PREDATION ...................................................................................................................... 96 

3.4 DISRUPTION OF O-ANTIGEN IDENTITY ALTERS SALMONELLA 

FITNESS AGAINST PREDATION ............................................................................... 100 

3.5 O-ANTIGEN IDENTITY IS A MAJOR DETERMINANT OF FITNESS 

AGAINST PROTOZOAN PREDATION ...................................................................... 103 

4.0 NOVEL APPROACHES TO MULTICOLOR FLOW CYTOMETRY ............ 106 

4.1 USE OF FLOW CYTOMETRY IN MICROBIOLOGY............................. 111 

4.1.1 Basics of flow cytometry .............................................................................. 111 

4.1.2 Common microbiological applications for flow cytometry...................... 114 

4.1.3 Challenges of multicolor flow cytometry in microbiology ....................... 115 

4.2 MATERIALS AND METHODS .................................................................... 120 

4.2.1 Plasmids, strains and growth conditions ................................................... 120 

4.2.2 Preparation of cells for cytometric analysis .............................................. 122 

4.2.3 Flow cytometry ............................................................................................ 123 

4.2.4 Development of Ferdinand, a flow cytometry data analysis program .... 123 

4.3 ADDRESSING THE CHALLENGES OF EXPERIMENTAL DESIGN .. 123 

4.3.1 Addressing trade-offs in fluorescent protein selection ............................. 124 

4.3.2 Addressing trade-offs in fluorophore selection with appropriate optical 

filters… ...................................................................................................................... 128 

4.3.3 Addressing trade-offs in signal strength .................................................... 131 

4.4 ADDRESSING THE CHALLENGES OF DATA ACQUISITION ............ 134 

4.4.1 Growth condition optimization for cells grown on solid media .............. 134 



 ix 

4.4.2 Addressing trade-offs in growth conditions .............................................. 138 

4.5 ADDRESSING THE CHALLENGES OF DATA ANALYSIS IN 

MULTICOLOR FLOW CYTOMETRY ....................................................................... 146 

4.5.1 Addressing overlap in emissions spectra ................................................... 146 

4.5.2 Sorting fluorescent cells into classes: The failure of threshold 

methods………. ............................................................................................... …….157 

4.5.3 Z-gating: a robust approach to classification of fluorescent events ........ 161 

4.5.4 Testing the Z-gating approach ................................................................... 170 

5.0 O-ANTIGEN CHAIN LENGTH INFLUENCES SALMONELLA FITNESS 

AGAINST PROTOZOAN PREDATION .............................................................................. 172 

5.1 MATERIALS AND METHODS .................................................................... 175 

5.1.1 Media and growth conditions ..................................................................... 175 

5.1.2 Strains ........................................................................................................... 175 

5.1.3 Predation competition tests to measure fitness ......................................... 179 

5.1.4 Flow cytometry ............................................................................................ 179 

5.1.5 Calculation of fitness values........................................................................ 180 

5.1.6 Technical acknowledgements ..................................................................... 183 

5.2 THE ROLE OF O-ANTIGEN CHAIN LENGTH IN SUSCEPTIBILITY TO 

PROTOZOAN PREDATION ......................................................................................... 184 

5.2.1 Experimental variability did not explain raw strain fitness differences 189 

5.2.1.1 Gaussian distributions were appropriately fit................................ 189 

5.2.1.2 Z-scores used to assess fitness were appropriately established using 

fit of Gaussian distributions ............................................................................ 192 



 x 

5.2.1.3 Within-experiment variability was low in no predator data sets . 195 

5.2.1.4 Within-experiment variability in predator data sets is acceptable 

but varies among replicates ............................................................................ 197 

5.2.1.5 Fitness assessment using Z-scoring is robust .................................. 201 

5.2.2 Fitness hierarchy among O-antigen chain length mutants varies among 

strains and predators ............................................................................................... 204 

5.2.3 Deconvolution of genotype and fluorophore fitness ................................. 212 

5.3 REPRODUCIBILITY OF EXPERIMENTS ................................................ 235 

5.3.1 Fluorescent tag fitness is similar across replicate experiments ............... 235 

5.3.2 Within-experiment variability can result in differences in genotype fitness 

among experiments .................................................................................................. 237 

5.4 SALMONELLA FITNESS AGAINST PREDATION IS A COMPLEX 

INTERPLAY BETWEEN O-ANTIGEN IDENTITY AND CHAIN LENGTH ........ 247 

5.5 INSIGHT INTO THE MECHANISM OF PREY RECOGNITION .......... 250 

5.5.1 Different strategies of prey recognition ..................................................... 250 

5.5.2 Potential trade-offs may exist between interactions with protozoan 

predators and the host immune system .................................................................. 252 

6.0 O-ANTIGEN IDENTITY IS SUFFICIENT TO CONFER DIFFERENTIAL 

FITNESS OF SALMONELLA IN DIRECT COMPETITON AGAINST PROTOZOAN 

PREDATION............................................................................................................................. 255 

6.1 MATERIALS AND METHODS .................................................................... 256 

6.1.1 Media and growth conditions ..................................................................... 256 



 xi 

6.1.2 Strain construction of wild-type rfb near-isogenic strains for flow 

cytometry .................................................................................................................. 257 

6.1.3 Construction of natural isolate Salmonella strains for flow cytometry .. 259 

6.1.4 Competition experiments ............................................................................ 261 

6.1.5 Flow cytometry ............................................................................................ 261 

6.1.6 Technical acknowledgements ..................................................................... 262 

6.2 SALMONELLA STRAINS THAT ONLY VARY AT THE O-ANTIGEN 

EXHIBIT DIFFERENTIAL FITNESS AGAINST PROTOZOAN PREDATION IN 

DIRECT COMPETITION .............................................................................................. 262 

6.2.1 Predators directly discriminate among rfb near-isogenic strains ........... 263 

6.2.2 Relative fitness of rfb near-isogenic strains corroborated the role of O-

antigen chain length in fitness against predation .................................................. 267 

6.3 PROTOZOAN PREDATORS DISCRIMINATE AMONG SALMONELLA 

PREY LACKING THE H-ANTIGEN ............................................................................ 271 

6.4 PROTOZOAN PREDATION IS A LIKELY DRIVER OF DIVERSIFYING 

SELECTION AT THE SALMONELLA RFB LOCUS ................................................. 277 

6.5 THE O-ANTIGEN SHAPES THE PHYSIOLOGICAL BASIS FOR 

PREDATOR ESCAPE IN SALMONELLA IN VITRO AND FUTURE 

DIRECTIONS… ......................................................................................................... …..284 

7.0 DIFFERENTIAL SURVIVORSHIP OF SALMONELLA WITHIN ENTERIC 

ENVIRONMENTS ................................................................................................................... 287 

7.1 MATERIALS AND METHODS .................................................................... 288 

7.1.1 Media and growth conditions ..................................................................... 288 



 xii 

7.1.2 Strain construction ...................................................................................... 288 

7.1.3 Care of goldfish ............................................................................................ 289 

7.1.4 In vivo competition assay ............................................................................ 289 

7.2 DIFFERENTIAL SURVIVORSHIP AMONG NATURAL ISOLATES OF 

SALMONELLA IN VIVO ................................................................................................. 291 

7.3 FUTURE IN VIVO AND EX VIVO EXPERIMENTS .................................. 294 

8.0 THE SALMONELLA RFB LOCUS AS A CASE STUDY FOR FRAGMENTED 

SPECIATION IN BACTERIA ................................................................................................ 297 

BIBLIOGRAPHY ..................................................................................................................... 304 



 xiii 

 LIST OF TABLES 

 

Table 1. Classification of the genus Salmonella ............................................................................. 3 

Table 2. Strains used to examine the role of O-antigen chain length in sensitivity to 

bacteriophage P1 ........................................................................................................................... 63 

Table 3. Sensitivity to bacteriophages P22 and P1 of O-antigen chain length mutants of 

Salmonella as determined by transduction. .................................................................................. 66 

Table 4. Non-Typhimurium Salmonella galE-6866::aph strains made sensitive to bacteriophage 

P1 .................................................................................................................................................. 72 

Table 5. Constructs transduced into galE-6866::aph SARB strains using bacteriophage P1 ...... 76 

Table 6. Serovar Typhimurium LT2 strains containing the rfb loci from natural Salmonella 

isolates........................................................................................................................................... 80 

Table 7. The rfb operon was transduced among non-Typhimurium Salmonella via bacteriophage 

P1 .................................................................................................................................................. 82 

Table 8. Time of clearing of galE and rfb mutant strains of Salmonella ...................................... 85 

Table 9. Strains made near-isogenic at rfb to assess the contribution of O-antigen identity to 

Salmonella fitness against protozoan predation ............................................................................ 93 

Table 10. Strains made near-exogenic at rfb used to assess the contribution of O-antigen identity 

to Salmonella fitness against protozoan predation........................................................................ 95 



 xiv 

Table 11. Plasmids containing two fluorescent protein encoding genes used for tagging 

Salmonella cells for flow cytometric analysis ............................................................................ 122 

Table 12. Detector voltage settings for discrimination of emissions from five fluorescent proteins 

as expressed by cells grown in liquid culture ............................................................................. 132 

Table 13. Spillover coefficients for emissions from five different fluorescent proteins as 

expressed by cells grown in liquid culture .................................................................................. 133 

Table 14. Detector voltage settings for discrimination of emissions from five fluorescent proteins 

from cells grown on NM-C solid media ..................................................................................... 136 

Table 15. Spillover coefficients for the emissions of five fluorescent proteins from cells grown 

on solid NM-C media.................................................................................................................. 137 

Table 16. Amoebae successfully propagated on nutrient media for cytometry (NM-C) ............ 145 

Table 17. Compensation matrix for single fluorescent protein-tagged cells grown in liquid 

culture ......................................................................................................................................... 149 

Table 18. Compensation matrix for single fluorescent protein-tagged cells grown on solid media 

in the absence of protozoan predators ......................................................................................... 151 

Table 19. Compensation matrix for single fluorescent protein-tagged cells grown on solid media 

in the presence of protozoan predators ....................................................................................... 152 

Table 20. Compensation matrix for double-fluorescent protein tagged cells grown on solid NM-

C media obtained using Ferdinand ............................................................................................. 155 

Table 21. Compensation matrix for double-fluorescent protein tagged cells grown on solid NM-

C media obtained using Summit 4.3 ........................................................................................... 156 

Table 22. Simple threshold methods of data analysis fail to resolve single-fluorescent tag data

.................................................................................................................................................... .160 



 xv 

Table 23. Mean and deviations of curves fit to Gaussian distributions of fluorescent signals from 

Figure 23 ..................................................................................................................................... 162 

Table 24. Z-scoring methods resolve classification ambiguities encountered using traditional 

threshold scoring ......................................................................................................................... 169 

Table 25. Z-scoring methods appropriately classify events in single-color dropout mixes ....... 171 

Table 26. List of strains used to assess the contribution of O-antigen chain length to Salmonella 

fitness against predation .............................................................................................................. 176 

Table 27. Raw strain fitness values with error for fluorescently-tagged O-antigen chain-length 

derivatives of the rfb near-isogenic strain KAB082 (SARB3) against predation by Naegleria 

gruberi NL .................................................................................................................................. 188 

Table 28. Measuring robustness of curves fit to Gaussian distributions for sample data sets with 

and without predators .................................................................................................................. 191 

Table 29. Goodness-of-fit tests on a sample set of replicate no predator plates ......................... 196 

Table 30. Goodness-of-fit tests on a sample set of replicate predator plates .............................. 198 

Table 31. Raw strain fitness with deviations for O-antigen chain length variant strain competed 

against protozoan predators ........................................................................................................ 209 

Table 32. Raw strain fitness with deviations for O-antigen chain length variant strains (tag set 1) 

against protozoan predators ........................................................................................................ 215 

Table 33. Raw strain fitness with deviations for O-antigen chain length variant strains (tag set 2) 

against protozoan predators ........................................................................................................ 216 

Table 34. Raw fitness values with deviation for fluorescent proteins used to tag O-antigen chain 

length derivative strains competed against protozoan predation ................................................ 219 



 xvi 

Table 35. Pearson correlation coefficients for pairwise comparisons of fluorescent tag fitness 

across predation competition experiments .................................................................................. 224 

Table 36. Spearman rank order correlation coefficients for pairwise comparisons of fluorescent 

tag fitness across predation competition experiments ................................................................ 225 

Table 37. Raw genotype fitness with deviations for O-antigen chain length variant strains 

competed against protozoan predation........................................................................................ 228 

Table 38. Pearson correlation coefficients for pairwise comparisons of O-antigen chain length 

genotype fitness against protozoan predation ............................................................................. 231 

Table 39. Spearman rank order correlation coefficients for pairwise comparisons of O-antigen 

chain length genotype fitness against protozoan predation ........................................................ 232 

Table 40. Pearson correlation coefficients for pairwise comparisons of fluorescent tag fitness of 

three replicate experiments of O-antigen chain length derivatives of rfb near-isogenic strain 

KAB082 (SARB3) against predation by Naegleria gruberi NL. ............................................... 236 

Table 41. Spearman  rank order correlation coefficients for pairwise comparisons of fluorescent 

tag fitness in three replicate experiments of O-antigen chain length derivatives of rfb near-

isogenic strain KAB082 (SARB3) against predation by Naegleria gruberi NL. ....................... 236 

Table 42. Pearson correlation coefficients for pairwise comparisons of three replicate 

experiments of O-antigen chain length derivatives of rfb near-isogenic strain KAB082 against 

predation by Naegleria gruberi NL. ........................................................................................... 239 

Table 43. Spearman rank order correlation coefficients for pairwise comparisons of three 

replicate experiments of O-antigen chain length derivatives of rfb near-isogenic strain KAB082 

against predation by Naegleria gruberi NL. ............................................................................... 239 



 xvii 

Table 44. Goodness-of-fit tests on a set of replicate no predator plates for an aberrant 

competition experiment of O-antigen chain length derivatives of rfb near-isogenic strain 

KAB082 (iso SARB3)-Tag Set 1 vs. Naegleria gruberi NL. ..................................................... 241 

Table 45. Goodness-of-fit tests on a set of replicate no predator plates for an aberrant 

competition experiment of O-antigen chain length derivatives of rfb near-isogenic strain 

KAB082 (iso SARB3)-Tag Set 2 vs. Naegleria gruberi NL. ..................................................... 242 

Table 46. Goodness-of-fit tests on a set of replicate predator plates for an aberrant competition 

experiment of O-antigen chain length derivatives of rfb near-isogenic strain KAB082 (iso 

SARB3)-Tag Set 1 vs. Naegleria gruberi NL ............................................................................ 245 

Table 47. Goodness-of-fit tests on a set of replicate predator plates for an aberrant competition 

experiment of O-antigen chain length derivatives of rfb near-isogenic strain KAB082 (iso 

SARB3)-Tag Set 2 vs. Naegleria gruberi NL ............................................................................ 246 

Table 48. Wild-type rfb near-isogenic strains directly competed against protozoan predation to 

examine the role of O-antigen identity to fitness against predation using flow cytometry ........ 258 

Table 49. Natural isolate Salmonella strains used to examine the role of the O-antigen to fitness 

against protozoan predation ........................................................................................................ 260 

Table 50. Pearson correlation coefficients for pairwise comparisons of fluorescent tag fitness in 

competition experiments of five rfb near-isogenic strains against predation by three different 

amoebae ...................................................................................................................................... 265 

Table 51. Spearman rank order correlation coefficients for pairwise comparisons of fluorescent 

tag fitness in competition experiments of five rfb near-isogenic strains against predation by three 

different amoebae........................................................................................................................ 265 



 xviii 

Table 52. Pearson correlation coefficients for pairwise comparisons of genotype fitness in 

competition experiments of five rfb near-isogenic strains against predation by three different 

amoebae ...................................................................................................................................... 266 

Table 53. Spearman rank order correlation coefficients for pairwise comparisons of genotype 

fitness in competition experiments of five rfb near-isogenic strains against predation by three 

different amoebae........................................................................................................................ 266 

Table 54. Summary of O-antigen chain length fitness experiments and corresponding relative 

fitness of wild-type rfb near-isogenic strain against protozoan predation. ................................. 269 



 xix 

LIST OF FIGURES 

 

Figure 1. Schematic diagram of the O- and H-antigens of Salmonella .......................................... 5 

Figure 2. Frequency dependent selection........................................................................................ 8 

Figure 3. Host-serovar specificity in Salmonella .......................................................................... 12 

Figure 4. Diversity and phase variation of the Salmonella H-antigen .......................................... 24 

Figure 5. Diversity at the Salmonella rfb locus ............................................................................ 29 

Figure 6. Genetic diversity near the rfb locus in Escherichia coli................................................ 32 

Figure 7. Relative fitness of Salmonella strains against protozoan predators .............................. 45 

Figure 8. Protozoa can present uniform selective pressure on bacteria in a single environment . 47 

Figure 9. Lipopolysaccharide structure in Salmonella ................................................................. 62 

Figure 10. Conferring sensitivity to bacteriophage P1 in Salmonella .......................................... 68 

Figure 11. Repair of the galE mutation ........................................................................................ 70 

Figure 12. Codon alignment of galE from sixteen Salmonella genomes and design of primers for 

directed replacement of galE ........................................................................................................ 73 

Figure 13. Transfer of the rfb locus from a natural isolate of Salmonella into serovar 

Typhimurium LT2 ........................................................................................................................ 79 

Figure 14. Construction of rfb near-isogenic strains .................................................................... 92 



 xx 

Figure 15. Protozoan predators can discriminate among Salmonella strains that only differ at the 

rfb locus ........................................................................................................................................ 99 

Figure 16. Disruption of the rfb locus alters Salmonella fitness against protozoan predation ... 102 

Figure 17. Sample flow cytometric data output from Summit 4.3 software............................... 119 

Figure 18. Excitation spectra for six fluorescent proteins .......................................................... 126 

Figure 19. Emission spectra and optical filters for simultaneous detection of multiple fluorescent 

proteins ........................................................................................................................................ 130 

Figure 20. DsRed-Express2 expression in cells grown on solid NM-C media with 0.2% glycerol

..................................................................................................................................................... 141 

Figure 21. DsRed-Express2 expression in cells grown on solid NM-C media with 0.14% glycerol

..................................................................................................................................................... 142 

Figure 22. DsRed-Express2 expression in cells grown on solid NM-C media with 0.01% glycerol

..................................................................................................................................................... 143 

Figure 23. Histograms of compensated fluorescent signal from a mixture of five Salmonella cells 

each tagged with a unique fluorescent protein ............................................................................ 159 

Figure 24. Variation of minimum and maximum Z-scores affects the goodness-of-fit of curves fit 

to Gaussian distributions of five fluorescent signal classes as measured by χ2 p values on a 

sample data set ............................................................................................................................ 165 

Figure 25. Z-scoring values do not substantially impact measurement of fluorescent class ratios 

for a sample five-color mixture of cells ...................................................................................... 167 

Figure 26. Relative strain fitness of O-antigen chain length mutant derivatives of the rfb near-

isogenic strain KAB082 against predation by the amoeba Naegleria gruberi NL ..................... 187 



 xxi 

Figure 27. Sum of squared deviations for curves fit to Gaussian distribution of EGFP signal from 

a sample experiment set .............................................................................................................. 190 

Figure 28. Optimal curve fitting is defined by setting appropriate Z-score thresholds .............. 194 

Figure 29. Properly chosen Z-scoring values do not substantially impact relative strain fitness 

calculations for a sample competition set ................................................................................... 202 

Figure 30. Relative strain fitness for O-antigen chain length mutant derivatives of five rfb near-

isogenic strains against predation by Naegleria gruberi NL ...................................................... 206 

Figure 31. Relative strain fitness of O-antigen chain length mutant derivatives of rfb near-

isogenic strains varies against protozoan predation .................................................................... 208 

Figure 32. Comparison of relative strain fitness among reciprocal tag competition experiments 

illustrates a fluorescent tag component to strain fitness against predation ................................. 214 

Figure 33. Relative fluorescent tag fitness values are very similar across predation competition 

experiments ................................................................................................................................. 218 

Figure 34. Relative genotype fitness of O-antigen chain length variant strains differs against 

protozoan predation .................................................................................................................... 227 

Figure 35. Neighbor-joining tree of distance values of pairwise comparisons of genotype fitness 

among predation experiments ..................................................................................................... 234 

Figure 36. Relative genotype fitness of replicate competition experiments of O-antigen chain 

length derivatives of rfb near-isogenic SARB3 (KAB082) vs. Naegleria gruberi NL .............. 238 

Figure 37. Relative genotype fitness rearranged according to distance values between 

experiments reveals fitness against predation occurs along a spectrum of O-antigen identity, 

chain length, and identity of protozoan predator ........................................................................ 249 



 xxii 

Figure 38. Protozoan predators discriminate among rfb near-isogenic Salmonella prey in direct 

competition ................................................................................................................................. 264 

Figure 39. Natural isolates of Salmonella lacking the H-antigen exhibit differential fitness 

against protozoan predation ........................................................................................................ 276 

Figure 40. Salmonella strains lacking the O- and H-antigens have differential survival against 

protozoan predation. ................................................................................................................... 280 

Figure 41. Removal of the O-antigen dramatically impacts fitness against protozoan predation of 

natural Salmonella strains in which the presence of the H-antigen is experimentally controlled.

..................................................................................................................................................... 283 

Figure 42. Predator-mediated survival of Salmonella within fish .............................................. 293 

Figure 43. Divergence of chromosomal regions between Salmonella enterica and Escherichia 

coli............................................................................................................................................... 299 



 xxiii 

PREFACE 

 

Previously published material has been incorporated into this document: 

Chapter 1 

Butela, K.A. and J.G. Lawrence. (2010). Population genetics of Salmonella: Selection for 
antigenic diversity, in Bacterial Population Genetics in Infectious Disease, D.A. 
Robinson, D. Falush, and E.J. Feil, Editors. John Wiley and Sons: Hoboken, NJ. p. 287-
319. Available online. 

 

Acknowledgements: 

First and foremost, I would like to thank my dissertation advisor, Dr. Jeffery Lawrence, for 

pushing me to my absolute limits of intellectual development and never allowing me to settle for 

anything less than my absolute best work. Jeffrey provided an environment that challenged me to 

do work that changes the way people think about science. While there certainly were tough 

times, the Lawrence lab was always a place in which I could be myself. Although I will rarely 

admit it, I believe that Jeffery’s sense of appreciating the subtle joy of proving outdated ideas 

wrong through science has certainly become for me one of the more fun aspects of research. 

The broad scope of my work required a dissertation committee comprised of individuals 

with great expertise in genetics, microbiology, evolution, ecology, and immunology; thus, I must 

acknowledge the help of Dr. Graham Hatfull, Dr. Valerie Oke, Dr. Susan Kalisz, and Dr. Jay 

Carroll for all of their thoughtful advice and support throughout my graduate career. I would also 

http://onlinelibrary.wiley.com/doi/10.1002/9780470600122.ch15/summary


 xxiv 

like to acknowledge the efforts of the staff of the Department of Biological Sciences, in 

particular Cathy Barr, Natalie Marinzel, Crystal Petrone, Kathy Hoffman, Patty Henry, Lynn 

Weber, Meredith Lindelof, Deanna DeKlaven, Ellie Caligiuri, Roxanne Scarano, Hernan 

Brizuela, Dr. Eric Polinko, Pat Dean, Tom Harper, Jay Bashor, Dave Malicki, and Frank 

Vincunas, for taking care of many of the tasks that keep our department running smoothly. 

I am grateful to have worked with a great group of fellow graduate students in the Lawrence lab. 

Dr. Hans Wildschutte introduced me to the wonderful world of protozoan predation; upon 

joining the lab, Hans immediately took me under his wing and taught me everything I needed to 

know to get started on my research. Although his research centered more on computational 

biology, Dr. Adam Retchless was a source of invaluable feedback on experiments, data analysis, 

and discussion on many scientific ideas. Dr. Heather Hendrickson and Dr. Rajeev Azad, a 

previous research assistant professor in the lab, provided helpful advice on both my project and 

on my scientific career. Working with former lab manager Tom Seiflein was a lot of fun, and I 

would like to thank him for all of his support on many topics throughout my time at the 

University of Pittsburgh. 

During my time in the Lawrence lab, I worked alongside and mentored a small army of 

undergraduates and technicians who assisted me in the construction of the hundreds of 

Salmonella strains I used throughout the course of my work as well as on a myriad of small 

projects related to my dissertation research. I would like to thank Bryan Goddard, Jessica Cheek, 

Ben Cross, Mark Brown, Sarah Hainer, Nikeva Silverton, Brittany Rogers, Jessica Ravenscroft, 

and David Convissar for all of their hard work and dedication to the protozoan predation project 

and for all of their help with strain construction. I consider these individuals as fantastic 

coworkers and as good friends. Although Aletheia Atzinger and Alexis Fitzgerald joined the lab 



 xxv 

during my final semester as a graduate student, I appreciated all of their support and advice 

throughout the process of writing and defending my dissertation.  

The 3rd floor of Crawford Hall was an excellent place to work, and I would like to thank 

the labs of Dr. Roger Hendrix, Dr. Craig Peebles, and Dr. Graham Hatfull for resource sharing. 

In particular, I would like to thank Brian Firek, Dr. Welkin Pope, Dan Russell, Ching-Chung Ko, 

Jen Houtz, Andrew Hyrckowian, Charlie Bowman, Kaitlin Mitchell, Lauren Oldfield, Christina 

Ferreira, Amrita Balachandran, and Dr. Craig Peebles for all of their support and assistance. 

Also, the Biological Sciences faculty provided an intellectually challenging environment that 

broadened my horizons on work outside of my specific field.  

The Department of Biological Sciences at the University of Pittsburgh has a phenomenal 

dedication to teaching, and I received excellent training as an educator during my time here. My 

teaching mentors, Dr. Susan Godfrey and Dr. Tony Bledsoe, were excellent sources of 

information for teaching, and I thank them for their efforts. I would also like to acknowledge Dr. 

Valerie Oke, Dr. Melanie Popa, David Hornack, and Debbie Jacobs-Sera for all of their 

thoughtful assistance in my development as an educator. Additionally, some of my fondest 

memories of graduate school lie in my work with Dr. Alison Slinskey-Legg, Dr. Lew Jacobson, 

and Brian DiRienzo as part of the Outreach Program.  

As a first generation college graduate, navigating higher education was at times quite 

challenging. I am fortunate to have received excellent mentorship during my earlier education, in 

particular at Seton Hill University as an undergraduate and at the Upward Bound Program at 

California University of Pennsylvania as a high school student. I would like to thank my 

undergraduate mentors Sr. Ann Infanger, PhD and Dr. Steven Bassett for all of their support and 

encouragement throughout my undergraduate career; their efforts prepared me for success in 



 xxvi 

graduate training. I would also like to thank Mrs. Geraldine Jones, Mr. Gary Seelye, Dr. Alton 

Powe, and all of the staff of the Upward Bound Program at California University of 

Pennsylvania for their mentorship and guidance; their efforts helped me immeasurably in making 

a college education a reality.  

Finally, I would like to thank my friends and family for all of their support during the 

long, arduous process known as graduate school. Their support and encouragement certainly kept 

me sane.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

1.0  INTRODUCTION 

The Salmonellae are gram-negative, rod-shaped γ-proteobacteria. As members of the 

Enterobacteriaceae, they are related to the animal pathogens Escherichia coli, Shigella 

dysenteria, Klebsiella pneumonia and Yersinia pestis and to the plant pathogens Erwinia 

carotovora and Dickeya zeae [388]. Salmonellae are pathogens of many mammalian species, 

commonly associated with both foodborne illness and enteric fever [131]. In humans, Salmonella 

causes typhoid and paratyphoid fevers and is one of the primary causes of foodborne bacterial 

illness, resulting in at least 1.5 million cases each year [214]. Salmonellosis typically results in 

abdominal cramps, diarrhea, nausea, vomiting, and fever [131]. Symptoms occur within 6 to 72 

hours after ingestion of an infectious dose, and while most infected individuals recover after 5 to 

7 days, those with severe diarrhea may develop to life-threatening dehydration or experience 

spread of the Salmonella to the blood and other body tissues [131]. In rare cases, salmonellosis 

can lead to Reiter’s Syndrome, a condition characterized by chronic inflammation and pain in the 

joints, eyes, and urethra [78]. The financial costs of food-borne illness in humans in the United 

States caused by the six most common bacterial pathogens were estimated to be $2.9 to $6.7 

billion per year a decade ago [45], a figure that continues to rise [44]. The high prevalence and 

significant financial impact of Salmonella infection led Voetsch [370] to conclude that 

Salmonella “presents a major ongoing burden to public health.” Despite being pathogenic to 



2 

many hosts, Salmonella often adopts a commensal lifestyle in the intestines of some reptiles [39, 

51, 109], birds [136, 274] and small mammals [116, 173, 347]. 

Two species are currently recognized within the genus Salmonella: S. bongori and S. 

enterica. S. enterica is further divided into six subspecies (Table 1); warm-blooded animals are 

the primary hosts for subspecies enterica and salmae, whereas cold-blooded animals and the 

environment are reservoirs for all other subspecies [106, 183-184, 353]. The genus Salmonella is 

further divided into 2579 antigenically-distinct strains, or serovars, according to the Kauffmann-

White scheme [106]; 2557 of these serovars belong to the S. enterica group and 22 serovars from 

the S. bongori group [106]. Subspecies enterica (group I) includes the strains responsible for the 

majority of cases of mammalian illness [35]; this well-studied group contains 1531 serovars, 

although this relative over-representation may reflect the collective intense interest in 

mammalian disease more than the distribution of serovars among natural isolates. Serovars are 

defined by two major highly diverse surface molecules, the O- and H-antigens [106, 353]. While 

the term “serovar” refers to a strain of Salmonella as defined by the nature of its O- and H-

antigens, the term “serotype” refers to the antigenic formula designation assigned to particular O- 

and H-antigens [106]. For example, S. enterica serovar Cholerasuis has an O-serotype of (6,7) 

and an H-serotype of ([c]:1,5). Classifying Salmonella based on the serotypes of the O- and H-

antigens is mainly done for epidemiological purposes [125], as the identity of particular serovars 

are associated with causing disease in particular hosts [264].  
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Table 1. Classification of the genus Salmonella 

Information adapted from Tindall et al [353] and Grimont and Weill [106].  
 

Species Subspecies Serotypes 

S. bongori  22 

S. enterica enterica (I) 1531 

S. enterica salmae (II) 505 

S. enterica arizonae (IIIa) 99 

S. enterica diarizonae (IIIb) 336 

S. enterica houtenae (IV) 73 

S. enterica indica (VI) 13 
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The O-antigen is the outer-most portion of Salmonella’s lipopolysaccharide (LPS) layer 

(Figure 1); it is a constitutively-produced repeating polysaccharide unit and is the most abundant 

molecule on the cell surface [293]. The variable component of the Salmonella O-antigen 

polysaccharide is produced by the Salmonella rfb genes, which encode various sugar synthases 

and transferases that assemble the repeating polysaccharide units of the O-antigen [293]. These 

units are assembled into long chains by the Rfc O-antigen polymerase [293]. At the inner surface 

of the inner membrane, the O-antigen polysaccharide is then linked by the WaaL O-antigen 

ligase to lipid A, a core oligosaccharide that is highly conserved across enteric bacteria [123, 

293, 305]. The Wzx translocase then “flips” the entire lipopolysaccharide antigen onto the 

outside of the cell [205]. While the O-antigen may be modified, such as in the case of the 

acetylation of the Salmonella LT2 O-antigen by the unlinked oafA gene [328], variability in 

saccharide composition and linkage is conferred by variable gene content at the rfb locus.  
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Figure 1. Schematic diagram of the O- and H-antigens of Salmonella 
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The H-antigen is conferred by the filament of Salmonella’s peritrichious flagella, which 

are used for swimming. Unlike the O-antigen, the H-antigen is only expressed under certain 

environmental conditions [55]. In most serovars, phase switching occurs between one of two 

phases of the H-antigen, which are encoded by separate genes [55, 186-187]. Serovars also differ 

at other antigenic proteins not included in the classification scheme, including the major outer 

membrane porins OmpC [326], OmpD [299, 325], and PhoE [327, 336]. Porins are 

transmembrane proteins that permit the diffusion of large molecules through the cell’s outer 

membrane; they are typically highly conserved at transmembrane regions and but highly diverse 

at exposed, external loops [242-243].  

This chapter will focus on diversity at the Salmonella O-antigen. Below, I discuss how 

genetic variability at the O-antigen-encoding rfb operon cannot be explained by conventional 

models and develop a framework for the maintenance of antigenic variability in Salmonella 

populations. It is the goal of this thesis to establish a framework that explains the generation and 

maintenance of high levels of antigenic diversity within Salmonella. 

1.1 FREQUENCY DEPENDENT SELECTION AND ANTIGENIC DIVERSITY 

 An interesting property of loci encoding antigenic determinants is that many are 

hypervariable; that is, given the expectations of diversity afforded by neutral variation [165], 

chromosomal loci encoding antigens (or loci linked to those that do) are far more variable than 

one would expect. This is true for the Salmonella’s H-antigen-encoding fliC gene [213, 330-331, 

334], and the O-antigen-encoding rfb operon [40-41, 153, 188-189, 198-200, 366-367, 374, 391-

392]. For loci in many bacteria, antigenic diversity can be explained by frequency dependent 
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selection (Figure 2A; [192]). Here, the fitness contribution of any given antigen-encoding allele 

depends not only on the function of its product but on its frequency in the entire population. 

There are two general models one can consider where rarity is advantageous.  
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Figure 2. Frequency dependent selection 

A. An overview of frequency dependent selection. B. Spatial heterogeneity model for frequency 
dependent selection; here, variant daughter cells gain an advantage by being able to infect hosts 
that have been exposed to their parents’ antigens. C. Temporal heterogeneity model for 
frequency dependent selection; here, variant daughter cells persist in a single host that has begun 
to respond to their parent cells’ antigens. 
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First, the fitness of a particular antigen varies over space, or the likelihood of 

encountering a host without previous exposure to that antigen. Thus, the spatial fitness of a given 

antigen is dependent on the distribution of hosts having susceptibility to infection by cells 

expressing this antigen and the probability of encountering these hosts (Figure 2B). When an 

antigen is common in a microbial population, hosts are more likely to encounter and mount an 

immune response against this antigen. Thus, cells having common antigens are far more likely to 

encounter hosts having prior exposure to these common antigens; these hosts are considered non-

naïve to these common antigens and consequently the spatial fitness of common antigens is 

relatively low. For example, cells having common antigens are more likely to encounter hosts 

having previous exposure to these frequently occurring antigens; these hosts are considered non-

naïve for the antigen of interest. Cells having rare antigens are more likely to encounter and 

successfully infect hosts without previous exposure to these rare antigens. As these cells 

preferentially multiply, their antigenic profile becomes more common in the bacterial population, 

leading to a lower population of naïve, susceptible hosts (Figure 2B). Therefore, frequency-

dependent selection can favor pathogens that possess mechanisms to maintain population-level 

antigenic diversity over those that are unable to maintain such antigenic diversity.  

Alternatively, rare antigens can provide an advantage in fitness over time rather than over 

space on a temporal scale. Once it has successfully infected a host, a pathogen can continue to 

evade the host’s immune system to prolong the infection and increase reproductive capability 

only if it alters its antigenic profile. Pathogens that are able to switch their antigenic profile every 

few generations have a distinct advantage in prolonging infection, engaging in an “arms race” 

with the immune system of the host organism (Figure 2C). Continual presentation of the same 

antigenic profile would allow the host adaptive immune system to mount defenses against the 



10 

invading organism, whereas organisms that have the capacity to switch antigenic profiles have 

much better chances at evading the host immune system, reproducing, and maintaining the 

infection.  

Because environments are dynamic, no one antigenic profile will have a sustained high 

fitness level over both space and time [192]. Thus, traditional host-pathogen dynamics generally 

favor selection of organisms that generate heritable, random, and reversible antigenic variation. 

As discussed below, many pathogens possess molecular mechanisms which produce generation-

time-scale diversity, whereby daughter cells are often antigenically distinct from their parents. 

As a result, the population as a whole will be diverse at antigen-encoding loci as a result of 

constant change at short time scales. 

1.2 CONVENTIONAL WISDOM FAILS TO EXPLAIN ANTIGENIC DIVERSITY IN 

SALMONELLA 

Neither the spatial nor the temporal model of selection discussed in Chapter 1.1 explaining host-

pathogen interaction appear to apply to highly variable strains of Salmonella enterica. Here, 

organisms are not infected by recently unencountered serotypes, and Salmonella does not alter its 

antigenic profile during the course of infection. Rather, each host of Salmonella is infected by 

only a small subset of Salmonella serovars [264], the composition of which is specific to each 

host (Figure 3). For example, swine are commonly infected with serovar Cholerasuis, cattle with 

serovar Dublin, poultry with serovar Gallinarium, sheep by serovar Abortus-ovis, horses by 

serovar Abortus-equi, and so on (Figure 3). Beyond the sample of one outbreak, this pattern is 

consistent across both time (several decades) and space (several countries). This poorly-
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understood pattern of infection is referred to as host-serovar specificity. Both of the antigens 

used to classify serovars have been implicated in Salmonella virulence [24, 65, 107, 162, 233, 

249, 304, 350], and efforts to link Salmonella antigenic diversity to host-serovar specificity have 

mainly focused on the relationship between Salmonella and the host immune system [32, 216, 

358]. Whereas diversity at the H-antigen-encoding loci and other minor antigenic loci has been 

linked to immune system evasion [5, 18, 65, 77, 137-138, 143, 162, 244, 249, 304, 311, 378], the 

exact role of the O-antigen in determining host-serovar specificity remains unclear. Regardless 

of mechanism, any persistent relationship between O-antigen serotype and infected host belies 

explanation by frequency-dependent selection. 
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Figure 3. Host-serovar specificity in Salmonella 

The proportion of different serovars is shown for outbreaks in different mammalian hosts. Data 
adapted from Rabsch et al [264]. 
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Variability at any antigenic locus reflects the sum of selective pressures acting on it. As I 

discuss below, the nature of the variability at the Salmonella rfb locus reflects a suite of selective 

pressures experienced by this pathogen that differs from those influencing antigenic loci in other 

species. I propose an alternative mechanism explaining the maintenance of Salmonella O-antigen 

diversity that focuses on Salmonella’s lifestyle in the broader intestinal ecosystem. Here, the 

benefits of generation-time-scale constancy – that is, avoiding variability – outweigh any 

benefits of generation-time-scale diversity. As a result, frequency-dependent selection cannot be 

invoked to explain antigenic diversity in Salmonella. Rather, diversity at the population level 

must be maintained by diversifying selection acting on the different antigenic types. To outline 

this model, I begin by contrasting antigenic diversity in a number of pathogens to highlight both 

the differences between the selective regimes faced by Salmonella and other pathogens and the 

differences in the mechanisms by which diversity is generated and maintained.  

1.3 GENERATION TIME-SCALE ANTIGENIC DIVERSIFICATION 

For many pathogens, population-level diversity reflects the production of variant antigenic types 

on a generational time scale. That is, diversity at the species level results from the collection of 

highly variable cells that are produced at the cellular level. Critically, these organisms possess 

clear mechanisms that produce variant daughter cells. Three of these organisms, each possessing 

different mechanisms that reflect three different selective regimes, are discussed below. The lack 

of selective sweeps purging the variability reflects the difference in the time scales over which 

the two processes act. 
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1.3.1 Haemophilus: extending persistence times in hosts 

Pathogens may continually change surface antigens by stochastic activation or inactivation of 

constituent genes. This process is mediated by DNA polymerase slippage on repeated nucleotide 

tracts termed contingency loci [224-225]. This frequent slipped-strand mispairing may occur 

during DNA replication and repair, resulting in the insertion or deletion of a single nucleotide or 

repeated nucleotide group [225, 389]. Thus, antigenically diverse daughter cells are continually 

produced. If located within the coding sequence of a gene, these contingency loci can cause 

changes in gene expression at the translational level by changing the gene’s reading frame and 

the location of the stop codon [193]. If located within the promoter of a gene, they may alter the 

RNA polymerase binding sites or facilitate premature transcription termination [193, 389]. 

Contingency loci permit heritable, reversible, and random genotypic changes to antigen-

encoding genes, changing the expression of these genes nearly every generation [19].  

Notable contingency loci in the human commensal Haemophilus influenzae include the 

lic1, lic2, and lic3 genes responsible for the major surface antigen lipopolysaccharide (LPS) 

biosynthesis [127-128, 133-134, 281-282, 379-380]. Expression of different O-antigen serotypes 

in Haemophilus is regulated by polymerase slippage at the 5’ region of these genes, which 

contain a variable number of CAAT repeats [379-380]. Polymerase slippage at these sequence 

repeats alters the translation of lic genes by placing the genes in or out of the proper reading 

frame [379]. O-serotype variation in Haemophilus is critical for avoiding attack by the host 

adaptive immune system and maintenance of colonization within the restricted niche of the upper 

respiratory tract in individual hosts [381]. Haemophilus can also switch from commensal to 

opportunistic pathogen, causing meningitis and septicemia in infected hosts [218, 223, 403]. The 
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lifestyle switch from commensal to pathogen is dependent on O-antigen variability at both 

intrastrain [355] and interstrain [145-146] levels.  

The ability of Haemophilus to continually vary its antigenic profile through polymerase 

slippage gives it the ability to avoid recognition by the host immune system, prolonging 

colonization in one particular host. Frequency-dependent selection arising from selective 

pressure from the host immune system explains the maintenance of antigenic diversity in the 

Haemophilus population, as no one surface antigen confers a distinct temporal advantage over 

the others. When surface antigens are recognized, immune defenses are produced by the host 

organism that can eliminate Haemophilus from that host. Haemophilus has evolved contingency 

loci to vary surface antigens randomly at a high frequency, which decreases the probability of an 

effective immune system defense and prolongs the Haemophilus within-host life cycle (Figure 

2C). Thus the mechanism generating phenotypic variability provides insight into the selective 

forces acting on this species. 

1.3.2 Neisseria: Infecting non-naïve hosts 

Like Haemophilus, Neisseria meningitidis is a commensal of the human upper respiratory tract 

[48]and has the capacity to adopt a pathogenic lifestyle, causing meningitis and septicemia [47]. 

Contingency loci have been associated with the ability of Neisseria to maintain its commensal 

lifestyle, regulating many genes involved in the biosynthesis of antigens [333, 345] such as 

lipopolysaccharide [176], pili [354], opacity proteins [338], capsular polysaccharides [113, 181], 

and the PorA outer membrane protein [362]. Expression of the PorA protein, which is used to 

identify the serosubtype of Neisseria strains, is regulated by variation in the number of 

nucleotide repeats both in the promoter region and within the coding sequence of the gene. 
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Insertions or deletions caused by slipped-strand mispairing regulates PorA expression at the 

transcriptional level in the homopolymeric G-repeat region located in the promoter [361] and at 

the translational level in the homopolymeric A-repeat region located within the coding sequence 

[362]. In addition, expression of the lgtABE genes responsible for lipopolysaccharide 

biosynthesis is regulated by slipped-strand mispairing at a homopolymeric tract of G-repeats 

upstream of lgtA, the first gene of the locus [151-152].  

Antigenic diversity in the Neisseria meningitis type IV pili, a major target of the host 

immune system [47], is generated by gene conversion. The antigenic portion of the pilus is PilE, 

which consists of a conserved N-terminus and a variable C-terminus [261]. Variation at the PilE 

C-terminus arises from RecA-dependent non-reciprocal recombination between the expressed 

pilE gene and several silent pilS loci found up to hundreds of bases away from the pilE gene 

[255-256, 261]. Donation from a pilS gene to pilE is based on short sequence homology and 

occurs through several RecA-mediated crossover events between genes [172, 310]. Type IV pili 

are involved in attachment and colonization of N. meningitis to mucosal membranes [211], and 

variation in pili have been linked to changes in antibiotic resistance [204] and adhesion to host 

surfaces [104, 289, 337]. Gene conversion at the hypervariable region of pilE can be explained 

by frequency-dependent selection, as generation of novel antigenic variants is key to the ability 

of Neisseria to colonize non-naïve hosts [7].  

High rates of antigenic phase switching in Neisseria, as in the case with PorA and 

lipopolysaccharide, most likely evolved as a response to the selection pressure to establish a 

commensal relationship with non-naïve hosts [217, 306]. Neisseria is typically cleared from the 

host in a few days to several months after initial colonization [49], during which time the host 

immune system builds up a defensive response to Neisseria based on the recognition of bacterial 
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surface antigens. Phase variation of surface antigens allows Neisseria to re-establish a 

commensal relationship with non-naïve hosts that have built up adaptive immune responses from 

previous colonizations (Figure 2B). Frequency-dependent selection at the spatial level explains 

the high degree of antigenic variation maintained in the Neisseria population, as strains with 

more common antigenic profiles will encounter a greater number of non-naïve hosts. Antigenic 

phase variation allows Neisseria to continually evade host immune systems to colonize new 

hosts, regardless of the prior colonization status of the host. This is especially important given 

that Neisseria colonizes approximately 10% of the population at any given time in industrialized 

countries [91].  

Interestingly, Neisseria virulence could be viewed as a rare consequence of phase 

variation, in which a commensal switches its antigenic profile to a pathogenic form, allowing 

tissue invasion and migration of bacteria into the host bloodstream [49, 217]. Pathogenic 

Neisseria are rarely transmitted between hosts; rather, pathogenicity arises from within a 

commensal population. Therefore, the selection pressure to establish commensal colonization of 

non-naïve hosts likely drives selection for antigenic phase variation, rather than pressure on 

pathogenic forms to infect non-naïve hosts. As with Haemophilus, the mechanism for creating 

phenotypic diversity sheds light on selective forces acting on this species. 

1.3.3 Bacteroides: Avoiding innate immune response 

Bacteroides fragilis, a major gram-negative bacterial inhabitant of the human intestine [194, 

393], synthesizes a large number of phase-variable surface antigens using site-specific inversion 

[50, 180]. In this mechanism, short, inverted DNA repeats flank the invertible element, which 

typically contains a promoter for adjacent antigen-encoding genes [360]. These repeated 
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sequences are recognized and brought together in a synapse by a DNA invertase, which cleaves 

DNA through strand exchange, resulting in reciprocal recombination and inversion of the DNA 

segment flanked by the repeated sequences [360, 389]. DNA invertases belong to one of two 

classes based on the mechanism by which they cleave and ligate DNA: the serine site-specific 

recombinases (Ssr) or the tyrosine (or lambda) site-specific recombinases (Tsr) [100, 329]. 

Inversion results in changes in orientation of promoters for various genes, which in turn affects 

gene expression. Like contingency loci, invertible DNA regions produce random, heritable, and 

reversible changes in antigenic genotypes.  

B. fragilis is able to produce eight distinct capsular polysaccharides determined by the 

expression of the PSA-H loci [50, 62, 180]. Expression of each capsular polysaccharide locus, 

with the exception of PSC, is regulated by specific inversions of DNA termed fin regions [251]. 

Promoters for the capsular polysaccharide-encoding loci (except for PSC) are located in the fin 

regions immediately upstream of each locus, with transcription of each locus dependent on the 

orientation of its promoter [50, 63, 180, 251]. Inversion of fin sites mediated by the Ssr Mpi 

recombinase can switch genes on or off at random [63], and the transcriptional status of each 

promoter is independent of the expression of other capsule-encoding loci. The only exception is 

the PSC locus, which produces a default capsular polysaccharide that is thought to act as a “fail-

safe” in the event all seven other loci are turned off [63, 174]. Each B. fragilis cell has the 

capacity to express any suite of capsular polysaccharides simply based on the inversion status of 

fin regions, resulting in local host-level population antigenic diversity.  

Production of multiple surface polysaccharides has been demonstrated for the successful 

long-term colonization of the intestine by B. fragilis [63, 197]. Because the human intestinal 

ecosystem is a very dynamic and competitive environment, many factors could be responsible 
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for maintaining diverse surface antigens in B. fragilis. Avoidance of bacteriophages, adhesion to 

changing intestinal surfaces, or competition with other commensals or pathogenic bacteria could 

also be involved in the maintenance of mechanisms that permit Bacteroides to vary its surface 

antigenic profile. B. fragilis expression of PSA has also been shown to actively protect against 

intestinal colitis caused by Helicobacter hepaticus in an animal model [208], further highlighting 

the complex role antigenic phase variation plays in the lifestyle of B. fragilis. Underlying these 

complex interactions is the close association B. fragilis forms with the intestinal mucosa. 

Because Bacteroides species form a majority of the cells in the intestinal microbiota [11, 97, 

300], it is a likely target for sampling by dendritic cells which would result in IgA excretion 

targeting over-represented O-antigen epitopes [201-203]. Therefore, continual variation of 

surface antigens likely protects B. fragilis from attack by the host immune system [180]. Within-

host frequency-dependent selection may favor a diverse array of capsular polysaccharide 

production by B. fragilis, as the continual presence of a predominant polysaccharide antigen may 

result in the host immune system mounting defenses against B. fragilis and clearing it from the 

intestine.  

Many site-specific invertible regions found in bacteria, especially those of the Ssr family, 

have been imported from bacteriophages [329]. Bacteriophage P1 encodes the site-specific 

recombinase Cin, which mediates the recombination event that results in the phase-variable 

expression of tail fiber genes, altering the host range of P1 depending on which tail fibers are 

expressed [126, 141-142]. Host range of the temperate coliphage Mu is also dependent on a site-

specific recombinase, encoded by the gin gene [160, 359]. Escherichia coli contains a 

recombinase that is very similar to the gin- and cin-encoded proteins, the Pin recombinase, which 

has been shown to rescue gin mutants of Mu, that is involved in flagellar phase variation [85, 
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259]. DNA invertases can control a wide variety of phenotypes in bacteria and bacteriophages 

that are under frequency-dependent selection, including host range and antigenic variation. Thus 

this mechanism of phase variability, used by Bacteroides to provide generation-time-scale 

diversity, has the potential to be widely distributed among bacteria. 

1.4 MECHANISMS FOR GENERATING DIVERSITY REFLECT AN ORGANISM’S 

SELECTIVE REGIME 

In all of the cases discussed above, it is beneficial for cells of one antigenic type to yield 

offspring of a different antigenic type. The continual switching of surface antigens presents a 

host-pathogen “arms race,” in which antigen switching occurs in response to selective pressure 

from the host adaptive and innate immune systems. Neisseria, Haemophilus and Bacteroides 

contact the adaptive and/or innate components of the host immune system, so it is advantageous 

for these organisms to maintain molecular mechanisms that permit continual switching of surface 

antigen profiles to evade immune defenses within and among hosts. The maintenance of 

molecular mechanisms that permit frequent antigenic phase switching can allow microorganisms 

to prolong infection or colonization within an individual host and increase the likelihood of 

infecting non-naïve hosts. Frequency-dependent selection explains the maintenance of antigenic 

diversity for such organisms, as host immune responses prevent any one antigenic profile from 

dominating a population of infectious or commensal microorganisms for more than a brief period 

of time.  

When a particular surface antigen becomes common in a population, the chances that 

host immune systems mount defenses against that antigen increase. Once an immune response is 
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mounted against a particular surface antigen, cells expressing that surface antigen are more likely 

to be eliminated by the host immune system, whereas cells that have switched antigens can 

continue to evade host defenses, prolonging infection within a host or spreading to non-naïve 

hosts. Under conditions that favor frequency-dependent selection mediated by host immune 

systems, populations of microorganisms that possess the capacity to generate offspring with 

different surface antigens than parent cells have a greater survival advantage over 

microorganisms that are unable to vary cell surface antigens.  

Perhaps nowhere is this phenomenon better illustrated than with human 

immunodeficiency virus, where excess phenotypic diversity is one of the main obstacles to 

creating successful treatment methods and potential vaccines for HIV [267]. Here, the 

mechanism generating diversity is intrinsic to viral reproduction, but the concept is the same. 

HIV and other retroviruses are especially prone to mutation, as the molecular mechanisms used 

for retroviral reproduction (lack of proof-reading and short replication time) are in themselves 

are highly mutagenic [94, 268]. In addition to its high mutation rate, HIV undergoes 

approximately three recombination events per genome per replication, one of the highest 

recombination rates of all organisms [401]. In HIV, recombination typically occurs between two 

co-infecting virus particles through the actions of the viral reverse transcriptase, which can 

switch between the strands of the co-packaged viruses [268] and can occur between viruses of 

the same subtype, different subtype, or different groups [88, 148, 159, 210]. High rates of 

mutation and recombination create a virus population with high, continually-changing antigenic 

diversity which allows HIV to rapidly adapt surface antigens in response to selective pressure 

from host immune systems. HIV is able to prolong within-host infection through rapid changes 

of surface antigens and other properties, which enables it to evade host immune system defenses.  
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1.5 ANTIGENIC DIVERSITY IN SALMONELLA 

As outlined above, Salmonella serovars are classified by their two highly variable antigens, the 

O-antigen polysaccharide and the H-antigen flagellar filament. As I discuss here, the 

mechanisms producing this diversity vary greatly from the mechanisms discussed above. 

Therefore, the selective regime responsible for maintenance of that diversity must be different 

than selective pressure from the host immune system driving antigenic diversity in Neisseria, 

Haemophilus, and Bacteroides. I will use this contrast to argue that factors specific to each host 

environment must drive the maintenance of antigenic diversity within the Salmonellae. 

1.5.1 Salmonella H-antigen diversity 

The Salmonella H-antigen is conferred by flagellin, the major filament of its peritrichious 

flagellae. Unlike many constitutively-expressed antigens, flagellae are expressed only under 

certain environmental conditions. Expression of flagellin is regulated by the flagellar master 

regulator genes flhCD in response to starvation conditions when locomotion is advantageous 

[178, 395]. The FlhCD master regulatory proteins up-regulate numerous genes for the synthesis 

of the flagellum, motor proteins for flagellar rotation and the chemotaxis signal-transduction 

system which controls the direction of rotation. The flagellar filament is the final, outermost 

portion of the bacterial flagellum to be synthesized and assembled; because they form the 

exposed portion of the flagellum, Salmonella flagellins are targets of both the innate and 

adaptive host immune systems [240, 291, 294-296]. Flagellin binds Toll-like receptor 5 (TRL5), 

activating a pro-inflammatory response by the innate immune system [6, 89]. Flagellin is also 
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recognized by memory CD4+ T cells, which are involved in the clearance of Salmonella from 

infected phagocytes [24-25, 65].  

The most common form of flagellin found in Salmonella is encoded by the fliC gene, 

which is embedded within the major flagellar gene locus. The fliC alleles found in different 

serovars of Salmonella are quite diverse (Figure 4A); in E. coli (where they have been studied 

more intensively), it has been proposed that strong frequency-dependent selection leads to this 

diversity [375]. It is important to note here that the work described in this dissertation takes the 

perspective that the biology of Salmonella is at odds with the frequency-dependent selection 

model traditionally used to explain the generation and maintenance of antigenic diversity within 

Salmonella. Instead, I argue that diversifying selection mediated by intestinal protozoan 

predators is a more valid hypothesis explaining antigenic diversity, at least with respect to the O-

antigen. I discuss this hypothesis in further detail in Chapter 1.6. In addition, most Salmonella 

serovars have the capacity to produce one of two possible forms of antigenic flagellin at any one 

time, with the alternate (H2 antigen) flagellin encoding genes found in the unlinked fljBA operon 

[2-3, 158, 394]. Like the fliC gene, alleles of the fljB flagellin gene are also hypervariable [213]. 

In general, different fljB and fliC alleles are well-conserved at the 5’ and 3’ ends with 

hypervariable regions in the middle of the genes (Figure 4A and [213, 331, 375]). These regions 

correspond to the functionally constrained N- and C-termini and the antigenically-exposed 

middle domain of flagellin [213], respectively. Diversity of flagellin-encoding genes account for 

114 different serotype combinations made from 99 antigenically distinct H-antigen factors [106]. 

In a minority of serovars, plasmid-encoded elements create production of a third flagellar phase 

or influence the H1 or H2 serotypes [14, 332]. 
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Figure 4. Diversity and phase variation of the Salmonella H-antigen 

A. Diversity at the Salmonella fliC locus. B. Mechanism of phase switching at the Salmonella 
fljBA locus. Phase I flagellin is expressed from the fliC gene. C. When the hin region inverts 
between the two hix sites, Phase II flagellin is expressed from the fljB gene, while the FljA 
repressor prevents fliC expression. 
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Phase variable expression of the two flagellins is controlled by site-specific inversion of 

hin, a region of DNA most likely arising from integration of a Mu-like phage [360]; the hin 

region bears structural similarity to the fin regions of B. fragilis and the cin region of 

bacteriophage P1 [251]. Aside from the gene for the cis-acting invertase, the hin region contains 

the promoter for the fljBA operon (Figure 4BC). Under appropriate environmental conditions, 

expression of flagellae is turned on by the actions of the flagellar transcriptional regulatory 

factors FlhCD [178]. To begin, the Type III secretory system that comprises the transmembrane 

core of the flagellum is synthesized [55]. After this is complete, a flagellin gene is expressed, and 

export of the flagellin results in filament synthesis outside the cell [55]. When the hin gene is in 

one orientation (Figure 4B), the fljBA promoter is in the incorrect orientation for fljBA 

expression; the fljBA operon remains silent and the fliC gene is transcribed, thus producing the 

H1 antigen [2-3]. Stochastic expression of the hin gene results in site-specific recombination at 

the two hix sites which flank the hin gene [2, 402]. In the opposite orientation, the fljBA operon 

acquires an indirectly FlhCD-responsive promoter. FljA represses both the transcription and 

translation of the flagellin-encoding fliC gene [3, 394], while FljB encodes an alternate flagellin, 

presenting the H2 antigen (Figure 4C). Hence, switching between the H1 and H2 antigens is 

reversible, heritable, and occurs at random on a generational time scale. 

While phase switching allows two H-antigens to be variably expressed, the variable H-

antigen-encoding genes found in the Salmonella population are not variably expressed on 

generational timescales. That is, variable alleles are found in the population, but Salmonella cells 

produce daughter cells with the same two H-antigen flagellins as their parents. Moreover, the 

conservation of the central, flagellin-variable domain [213, 331, 375] suggests that mutations 

that alter the sequence of the flagellin are counter-selected, rather than placed under positive 
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selection. That is, if frequency-dependent selection acted on these proteins, one would expect an 

excess of nonsynonymous substitution in the variable domain of the flagellin gene; however, this 

is not observed. Therefore, Salmonella H-antigenic diversity has a generational-time-scale 

component in its phase switching, but population-level selection must act to maintain excess 

diversity at the constituent fliC and fljB loci. 

1.5.2 Salmonella fimbrial diversity 

Salmonella has several different types of fimbriae, which are involved in attachment of 

Salmonella to intestinal epithelia [5, 138]. Some of these adhesion factors undergo phase 

variation, although the molecular mechanism by which this is accomplished is poorly 

characterized compared to that of the H-antigen. The long polar fimbriae-encoding lpf operon 

undergoes generational time-scale, heritable phase variation and expression is required for 

Salmonella colonization of Peyer’s patches [137]. LpfA, the major subunit of long polar 

fimbriae, has been shown to elicit an antigenic response in mice [137]. Although the role of 

fimbrial diversity present in Salmonella is unclear, the capacity of Salmonella to phase-regulate 

expression of the lpf operon demonstrates that Salmonella is capable of using multiple molecular 

mechanisms of phase variation to regulate surface antigenic diversity. 

1.5.3 Salmonella O-antigen diversity 

The O-antigen, the outermost layer of the gram-negative lipopolysaccharide, is a repeating sugar 

unit found on the outside of the cell and is the most abundant cell surface molecule in Salmonella 

[293, 305]. The O-antigen is synthesized by various sugar synthases and transferases encoded by 
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the rfb genes, a cluster of genes typically 10-35 kb in length located between the gnd and galF 

genes on the Salmonella physical map [37, 209, 272]. While flanking genes are little changed 

among Salmonella serovars, the rfb operon varies widely in gene composition among Salmonella 

serovars ([270, 272-273]; Figure 5A). For example, serovars Typhi, Typhimurium and Dublin 

share a common set of genes responsible for the 4, 12 and 9, 12 serotypes (the 1 epitope is 

conferred by a prophage and the [5] epitope is conferred by an unlinked gene). Yet the rfb 

operon conferring the 3,10 serotype on serovar Welteverden has gained and lost numerous genes 

relative to serovar Typhimurium. Serovar Cholerasuis is even more extreme, having no genes in 

common with serovar Typhimurium in the rfb operon (Figure 5A). This variability in gene 

content results in varying patterns of content, linkage, and order of sugars composing the antigen 

[293]. Variation at the rfb locus arose over time by a series of horizontal gene transfer events 

[41, 67, 153, 161, 195, 200, 270, 272, 366, 373-374, 376, 391-392], where the introduced genes 

encode enzymes for the synthesis and assembly of novel sugar configurations or compositions. 

With respect to the O-antigen, the only time a cell can become antigenically distinct from its 

parent is through the acquisition and maintenance of a new rfb-like gene from another bacterium. 

Mutating the rfb locus affects the pathogenicity of Salmonella, but it is not clear why. 

Although LPS does provide a mechanism for adhesion to eukaryotic cells surfaces, SPI-1 

encoded genes are responsible for pathogenicity-specific cell adhesion. Salmonella also contains 

numerous fimbrial genes involved in many forms of adhesion [138]. Therefore, rfb-encoded 

genes likely influence the efficacy of infection via a more indirect route. Similar patterns of 

variability in rfb operon composition are seen among serovars of the closely-related species 

Escherichia coli (Figure 5B). In both cases, recombination has introduced foreign genes into the 

operon, enabling different sugars to be synthesized and novel biochemical linkages to be created 
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among these various sugars. This results in differences among O-antigenic types that reflect 

stable gene loss and gain (Figure 5C), not mutational change, slipped-strand mispairing, gene 

conversion events, or site-specific recombination in invertible segments of DNA. 
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Figure 5. Diversity at the Salmonella rfb locus 

A. Alignment of rfb operon regions of Salmonella strains. Orthologous genes are shaded with the same color. B. Alignment of rfb 
operon regions of E. coli strains. Genes with Salmonella orthologues are shown in cognate colors. C. Differences between Salmonella 
O-antigens. 
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Although the sugar synthases and transferases encoded by the rfb genes are responsible 

for the majority of the hypervariable region of the O-antigen, other genes have been shown to 

affect the serotype of the O-antigen. In serovar Typhimurium LT2, O-factor [5] is an acetylation 

of the O-antigen mediated by oafA [328], and O-factor 27 is due to wzyα1-6 [373], an O-antigen 

chain-length regulator closely linked to rfb. The O-antigen is a crucial virulence determinant and 

most likely also protects Salmonella from harsh environmental conditions such as desiccation 

[95, 350]. It is not clear what roles are played by O-antigen modifications, and the range of 

modifications catalyzed – and their distributions among strains – is not well studied.  

1.6 WHY ARE DIVERSE H- AND O-ANTIGENS MAINTAINED IN SALMONELLA?  

As is suggested by Figure 5, the phenotypic diversity of Salmonella enterica serovars results 

from the structurally distinct rfb operons they harbor, wherein non-homologous genes encode 

enzymes for the synthesis of different sugars and their attachment into structurally distinct 

polysaccharides to be placed on the exterior of the cell. Aside from the notable changes in gene 

inventory at the rfb operon, the genes flanking this locus show elevated diversity as well (Figure 

6), again suggesting that variance-purging selective sweeps do not affect this region of the 

chromosome. This phenomenon was first described in the late 1980s, when alleles of the rfb-

proximal gnd gene (see Figure 5 for location) proved far more diverse in strains of E. coli than 

alleles of other loci [80]. Unlike genes elsewhere in the Salmonella or E. coli chromosomes, 

genes flanking the rfb locus maintain very high levels of polymorphism; this increase in 

variability in the rfb region is evident when multiple genes are assessed using complete genome 

sequences (Figure 6). Rather than reflecting unusual selective regimes affecting these loci 
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directly, the excess variation has been attributed to linkage to the rfb operon [219, 239]. At loci 

unlinked to the rfb operon, beneficial alleles may arise by mutational processes. Selective sweeps 

operate to purge diverse alleles as the beneficial allele is transferred among strains by 

homologous recombination [e.g., see 108]. Such selective sweeps cannot occur in the proximity 

of the rfb operon, as recombinants with variant rfb alleles would have decreased fitness in the 

environment to which the original rfb allele was adapted. 
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Figure 6. Genetic diversity near the rfb locus in Escherichia coli 

The average divergence of synonymous sites among pairwise comparisons of genes shared 
among 16 completely sequenced E. coli genomes is plotted according to their position in the E. 
coli K12 genome. The diversity of the set of completely sequence E. coli strains enabled this 
genome-scale analysis; the poor sampling (as yet) of completely sequence Salmonella genomes 
precluded a robust analysis in that taxon at this scale. Ks = divergence at synonymous sites [196]. 
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This excess genetic variability raises an interesting conundrum. As discussed above, 

many organisms have mechanisms for producing antigenic diversity at the capsular or O-antigen 

polysaccharide using generation-time-scale mechanisms that act upon otherwise statically-

encoded information that is similar between strains. Salmonella utilizes such mechanisms to 

generate phenotypic diversity at the H-antigen and at fimbriae, where genotypically similar 

organisms can be phenotypically distinct. Yet Salmonella does not alter the O-antigen on a 

generational time scale. Thus, any model invoking frequency-dependent selection as a rapid 

response to changing environmental conditions – either to extend an infection or to infect non-

naïve hosts – cannot apply to the diversity being maintained at the O-antigen-encoding rfb 

operon.  

This is not to say that the H- and O-antigens do not experience such selective pressure. 

Like the H-antigen, the O-antigen is a target of the host innate immune system and recognized by 

the Toll-like receptor 4 (TRL4) [229, 288, 365]. The O-antigen, in complex with LPS, stimulates 

production of antibodies by the adaptive immune system, which has been shown to provide 

temporary protection against re-infection [74, 235, 280]. Because the O- and H-antigens elicit a 

host immune response, the conventional notion that frequency-dependent selective pressure from 

the immune system has been offered to explain rfb diversity. But given the lack of a mechanism 

to create generation-time-scale diversity, as well as the robust phenomenon of host/serovar 

specificity (Figure 2), the failure of many studies attempting to link O-antigen diversity to 

variations in pathogenicity and immune system evasion is not surprising [18, 32, 166, 219, 271, 

358]. 

The lack of variation-purging recombination at or near the Salmonella rfb locus suggests 

that the different diverse forms are advantageous for the strains that stably harbor them. That is, 
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there is no rfb allele that is favored by all strains of Salmonella. Whereas many bacteria employ 

mechanisms for creating generation-time-scale diversity that ensures production of antigenically 

distinct progeny, Salmonella produces daughter cells that retain phenotypic identity with their 

parents at the O-antigen even while differing at other antigens. This suggests Salmonella strains 

that differ at the O-antigen lead significantly different lifestyles wherein each different O-antigen 

form provides an advantage not realized by other strains. While this argument essentially assigns 

the different serovars to distinct niches, I do not consider these strains to be representatives of 

wholly different species. Strains of Salmonella do experience interstrain homologous 

recombination, leading to species-wide selective sweeps. These sweeps simply do not occur at 

the rfb operon. 

1.6.1 Diversifying selection in Salmonella 

I suggest that the different O-antigens stably expressed by different serovars of Salmonella 

confer advantages in different environments; thus, genetic diversity above that predicted by the 

neutral theory would reflect the action of diversifying selection rather than frequency-dependent 

selection. Here, no single allele can confer a benefit in all environments, precluding a selective 

sweep at the rfb operon. Moreover, genes closely linked to the rfb operon also fail to experience 

selective sweeps since recombination there would likely result in problematic introduction of 

less-suited genes at the rfb operon (see Figure 6). Yet recombination at unlinked loci would still 

occur, providing strains of Salmonella with the genotypic and phenotypic cohesion expected of a 

bacterial species [80]. Thus, Salmonella strains could be considered different strains of the same 

species everywhere except at the rfb operon, where they carry adaptations to distinctly different 

environments. This raises fundamental questions regarding the role of recombination in 
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providing species-level genetic cohesion in Salmonella. In viewing the loss of recombination as a 

stepwise process during bacterial speciation [182, 275-276], this model suggests that the rfb 

locus may play a pioneer role in beginning the process of lineage separation. 

The phenomenon of host-serovar specificity is consistent with this model. Unlike other 

bacterial pathogens, specific serovars of Salmonella are consistently associated with disease 

states in different host animals (Figure 2). That is, rather than requiring infecting strains present 

an O-antigen that is novel to the vertebrate host, Salmonella strains that mount successful 

infections consistently present the same antigen to particular hosts [264]. These data support the 

hypothesis that the nature of the host environment favors particular O-antigenic types of 

Salmonella. 

This model is not at odds with the observation that other intestinal bacteria – for example, 

species of Bacteroides as discussed above – gain a benefit from producing daughter cells with 

variant O-antigens. Rather, I posit that the advantage gained by Salmonella’s retention of its 

parental O-antigen outweighs any detriment this lack of variability incurs. Bacteroides is a major 

constituent of the intestinal microflora [97, 194]; therefore, it is likely to be heavily sampled by 

the host immune system resulting in targeted IgA excretion [203]. Because Salmonella is such a 

rare member of the intestinal microbiota, it would not be targeted by the immune system and 

constant switching of the O-antigen would not be advantageous. Instead, I propose that the 

particular features of its parental O-antigen would provide more direct benefits. 

1.6.2 Differential distribution of bacterial strains 

Central to this hypothesis is the supposition that Salmonella is differentially distributed in natural 

environments. Beyond the pattern of host-serovar specificity (Figure 3), data from several 
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species of intestinal bacteria indicate that genotypes are differentially distributed among host 

species. This phenomenon has been exploited for Microbial Source Tracking, whereby the 

source of fecal contamination in water is preliminarily identified by virtue of the genotypes of 

contaminating bacteria found in the water [16, 309, 324]. Common methods for MST include 

rep-PCR, pulsed-field gel electrophoresis, viral typing, antibiotic-resistance profiles or 

multilocus sequence typing [105, 118, 236]; all methods are grounded in the observation that 

genotypes of intestinal bacteria are not randomly distributed in the enteric environments of 

mammalian hosts and exploit these patterns to infer the source of water contamination.  

Differential distribution of bacteria begins at the species level, where, for example, 

genera of enteric bacteria are differentially distributed among major lineages of mammals 

showing that mammalian intestines are not all uniform environments [103]. Closely-related 

species within a genus are also differentially distributed, such as the strains of Enterococcus used 

in Microbial Source Tracking [383]; here, water being contaminated from untreated human 

waste water can be discriminated from runoff from a cattle farm by the relative abundances of 

Enterococcus strains. In addition, strains of Bacteroides have differential distribution among 

intestinal environments [61, 135, 278]. Lastly, and most importantly from my perspective, 

genotypically distinct strains within a single bacterial species can also be differentially 

distributed. For example, strains of Escherichia coli, another species widely used in Microbial 

Source Tracking [156, 266, 341], are differentially distributed among mammals, whereby 

mammals having different diets or dwelling in different environments harbor different genotype 

of E. coli [101-102]. The use of genotypic differences among bacteria found in different 

intestinal environment for Microbial Source Tracking indicates that these differences are stable, 

robust and repeatable.  
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Why do different environments favor Salmonella with different O-antigens? Although 

Salmonella is broadly noted for its pathogenic effects, it also dwells in intestinal environments as 

a harmless commensal, likely for a much greater percentage of time. For example, many captive 

reptiles asymptomatically shed Salmonella that can be transmitted to humans, especially small 

children or immunocompromised individuals, resulting in pathogenic infection [26, 58]. 

Interestingly, while the conditions in the reptile intestine favor a more commensal lifestyle for 

Salmonella, the introduction of these same cells into human intestines results in a switch to 

pathogenicity. Unlike Neisseria and Haemophilus, where the switch from commensal to 

pathogen is dependent on immune system evasion mediated by O-antigen phase variation, the 

same Salmonella cells harmlessly inhabiting reptiles cause gastroenteritis in humans without any 

change in the nature of the O-antigen. Particular O-antigens could contribute to differential 

survival in different environments independent of pathogenic behavior.  

The reasons why Salmonella can adopt a commensal lifestyle in one organism and cause 

pathogenic infection in another organism are complex. Many genes could show adaptive 

differences in response to abiotic variation among environments, such as differences in oxygen 

tension, pH, ionic strength, salinity or the availability of nutrients. Yet it is difficult to attribute 

advantages to particular O-antigens in response to such differences. A particular O-antigen could 

also provide greater competitive abilities in certain environments; for example, they may mediate 

more effective adhesion to some intestinal mucins, resulting in a greater chance for invasion of 

intestinal epithelial cells. However, adhesion to intestinal mucins is very complex and most 

likely involves many factors, and the role of differential adhesion to mucin mediated by different 

O-antigens is not particularly well-tested. In addition, Salmonella possesses several other 

mechanisms for attachment, including fimbriae [54] and SPI-1 [167], making differential mucin 
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attachment an unlikely explanation for O-antigen diversity. Lastly, different O-antigens may 

provide defense against predation in the intestine.  

1.7 PREDATION AS A SELECTIVE FORCE 

The connection between O-antigen variation and predation is clear; the O-antigen is the most 

abundant molecule on the surface of the cell, thereby being a likely ligand for predator/prey 

interactions. Many organisms are potential predators of bacteria in intestinal environments, such 

as ciliates, bacteriophages and amoebae. However, the biological characteristics of both ciliates 

and bacteriophages make them unlikely sources of predation that could drive diversity at the 

Salmonella rfb locus, whereas amoebae have the requisite characteristics of predators that can 

exert selective pressure on the O-antigen.  

1.7.1 Ciliates: nondiscriminatory predators 

Ciliates are eukaryotic organisms that commonly prey upon bacteria in a variety of ecosystems 

[10, 42, 84, 169, 352, 382]. These organisms are generally classified as nondiscriminatory 

feeders, as they will consume any bacteria that are sufficiently small enough to pass through their 

feeding comb. Thus, Salmonella susceptibility to ciliate predation should not be impacted by the 

identity of the O-antigen, as these predators are more impacted by size of prey. Previous work 

from our lab demonstrated that while the presence of the ciliate Tetrahymena pyriformis reduced 

overall numbers of antigenically distinct Salmonella serovars as expected, T. pyriformis did not 
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discriminate among these prey [387]. Thus, predation from ciliates is too nonspecific in order to 

result in selective pressure exerting diversifying selection on the Salmonella rfb locus. 

1.7.2 Bacteriophages: highly discriminatory predators 

Bacteriophages, or viruses that infect bacteria, are important predators of bacteria in many 

environments [4, 27-28, 253, 318, 400]. Bacteriophages require the presence of specific 

receptors in the outside of host bacterial cells for successful infection [140]. Phages exploit 

specific host factors for intracellular reproduction; thus, it is not surprising that phage display 

specific recognition of prey. Point mutations that abolish specific binding epitopes on attachment 

proteins strongly impact the ability of phage to recognize their bacterial hosts [96, 222, 265, 

340]. Such mutations cannot drive antigenic escape at rfb. The products encoded by the rfb 

operon are the synthases and transferases that manufacture sugars that compose the repeating O-

antigen monomer. In order for the composition of the O-antigen to be altered, any given point 

mutation must destroy the functionality of the original synthase or transferase or confer a new 

function. Point mutations are unlikely to frequently result in these significant alterations to the 

same degree that they can confer dramatic changes in the ability of a phage to bind an outer 

membrane protein receptor. Although bacteriophages can use the O-antigen as a receptor, as in 

the case of the Salmonella phage P22 [147], this relationship is extremely specific, making it 

highly unlikely that the same phage could use more than one structurally distinct O-antigen as 

receptors to recognize prey. Thus, bacteriophage predation is too specific to act on the diversity 

observed at the Salmonella rfb locus.  
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1.7.3 Amoebae: generalized yet discriminatory predators 

Amoebae are single-celled eukaryotic organisms that serve as general predators of bacteria; prey 

recognition here occurs primarily by cell-cell contact. Amoebae are abundant predators in water, 

soil, and intestinal environments [112, 283, 287]. Because phagocytotic amoebae rely on cell-cell 

contact to recognize their prey, then one would expect different serovars to be recognized with 

different efficiencies. Moreover, amoebae would be expected to be differentially distributed 

among vertebrate intestinal environments. As a result, amoebae could mediate diversifying 

selection at the O-antigen-encoding loci, allowing different serovars of Salmonella to gain fitness 

in particular environments where amoebae consume them less rapidly. 

1.7.4 Salmonella most likely do not exhibit active responses to protozoan predation 

For many reasons I posit that an active response to potential predation is not likely. Salmonella 

are non-motile in the gut, so cells do not have the capacity to swim away from predators unlike 

ciliates, which do exhibit a behavioral response to predation [177]. Bacteria do not have time to 

adapt behavioral responses to predation, as predation results in cell death. Because cell death is 

constantly occurring in the intestinal lumen, any chemical alarmone-mediated responses would 

be constitutively active independent of predation risk. The small size of bacteria prevents their 

escape by size refugia, unlike animals that can grow so large as to escape predation due to size 

[52, 228]. Defensive cell-well thickening is not seen in vegetative cells, although they are a 

feature of persistent spores; defensive structures – such as those seen in protozoa [93, 175, 384] 

or Daphnia [75], are neither evident nor thought to be effective since they would act on the 

molecular scale and do not impede chemical degradation in the food vacuole. Simply put, 
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bacteria are unable to adopt many of the strategies employed by higher organisms to escape 

predation. 

A common framework for interpreting predator-prey relationships between higher 

organisms casts predation as a barrier that must be overcome to live in a most preferred 

environment; this does not necessarily apply to bacteria. Unlike higher organisms, bacteria 

possess a remarkable degree of metabolic diversity, making survival into other environments a 

less challenging task. Additionally, bacteria can rapidly adapt to new environments through the 

acquisition of genes via horizontal transfer, which cannot be accomplished in higher organisms. 

The key to the bacterial prey-predator relationship is that successful bacteria out-compete other 

bacterial prey, which leads to a fitness advantage in the intestine. They do not avoid predation 

entirely; as long as a given Salmonella serovar is consumed by predators less efficiently than 

other serovars, the given serovar has a better chance of survival in that particular environment 

than other serovars. Therefore, predation will impact the genetic structure of species, like 

Salmonella, which is found across multiple environments, resulting in differential distribution of 

serovars across environments. 

1.8 PREDATION-MEDIATED DIVERSITY AT THE SALMONELLA RFB OPERON 

Facets of this model have been established with rigor. First, it is clear that amoebae consume 

bacteria as prey in natural environments. Not only have bactivorous amoebae been isolated from 

ground water and soil, but also from intestinal environments [387]. Amoebae within the 

intestinal lumen consume intestinal bacteria, thus limiting both bacterial growth yield and 

persistence time within the lumen of any individual host [319]. I posit that amoebae are the 
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major general predators of bacteria found in vertebrate intestines, and that the feeding 

preferences of these amoebae affect the structure of intestinal bacterial populations. 

For amoebae predators to influence the distribution of their prey, they cannot be 

randomly distributed in the environment; if they were, a prey bacterium could not persist in an 

environment where it could avoid all of the resident predators (since they would be constantly 

changing). Some survey experiments on pathogenic and commensal populations suggest that 

amoebae are not randomly distributed in the environment, with particular species of hosts 

harboring specific populations of amoebae. Differential distribution of pathogenic protozoa has 

been described for Entamoeba; E. invadens causes disease in reptiles [76], including ball pythons 

[170], whereas E. histolytica causes disease in humans [185, 262]. E. suis and E. chattoni infect 

non-human mammals, yet a related but distinct species preferentially infects birds [206]. The 

amoeba Vannella platypodia was found to infect multiple fishes [81], while Neoparamoeba 

preferentially colonizes gills [90]. The microsporidian Encephalitozoon cuniculi is a pathogen of 

rabbits and dogs, whereas E. intestinalis, E. hellem, and E. bieneusi are opportunistic pathogens 

of humans [377]. Commensal protozoa also show differential distribution among hosts. For 

example, the non-pathogenic amoeba Paravahlkampfia ustiana was isolated multiple times from 

the intestines of skinks [308]. Lastly, data collected in this laboratory show that there is 

differential distribution of Naegleria, Hartmannella, Tetramitus and Acanthamoeba among 

amphibian, fish and reptile intestinal tracts [386]. Based on this information, I conclude that the 

population of amoebae in a given host intestine is most likely stable and specific to that 

particular species of host. Therefore, when Salmonella cells enter an intestinal lumen, they are 

faced with predictable communities of amoebae that are encountered among all individuals of 

that host species.  



43 

Intestinal amoebae do not simply consume bacteria indiscriminately; rather, amoebae can 

discriminate between different bacterial strains provided as prey [387]. When presented different 

serovars of Salmonella as prey, amoebae will consistently consume one serovar more quickly 

than another, less preferred, serovar (Figure 7). In this example, the fitness of any given serovar 

is calculated relative to the group of serovars; those serovars that are eaten faster by a particular 

predator have a low relative fitness while those eaten more slowly have a higher relative fitness. 

This discrimination is evident even when amoebae are presented with both strains at the same 

time; one strain is consumed from the mixed population more quickly than its fitter competitor 

[387]. The basis for this discrimination is complex, but changes in the identity of O-antigen did 

influence predation risk [387]. Thus, I link the O-antigen to Salmonella susceptibility to 

predation. 

Not only do amoebae discriminate among prey bacteria based on the nature of the O-

antigen, different amoebae also have different feeding preferences (Figure 7). For example, 

while strain SARB36 was not readily consumed by the amoeba Naegleria gruberi strain NL, it 

was the most preferred strain when facing Naegleria strain F1-9 (Figure 7). The feeding 

preferences of amoebae shown in Figure 7 do not show any significant similarity (R=0.06, P> 

0.1) and these amoebae were isolated from different environments. This leads to the possibility 

that Salmonella serovars may experience differential survival in different environments as the 

result of their ability to avoid the resident amoeboid predators in that environment. That is, 

differential susceptibility to predation by amoebae in a given host could influence which serovars 

from the entire Salmonella population maybe best suited to survive there. Because the intestinal 

lumen of each host species harbors different populations of predators with different feeding 
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preferences, no one form of the Salmonella O-antigen can confer enhanced resistance to 

predation in all environments.  

 

 

 

 

 

 

 

 

 

 

 

 

 



45 

 

Figure 7. Relative fitness of Salmonella strains against protozoan predators 

Each amoeba was tested against 9 SARB strains. The feeding preferences of each predator were 
determined separately against 9 antigenically diverse serovars of Salmonella. The least preferred 
strain was assigned a fitness of 1.0 for each predator.  
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One prediction of this model is that unrelated predators that inhabit a single environment 

must share feeding preferences, which would allow a single serovar of Salmonella to escape 

predation by the suite of predators it would face in its preferred environment. When predators 

were isolated from the intestinal tracts of fish, their feeding preferences were significantly more 

similar than one would expect [386]. In the example shown here (Figure 8A; P < 10-5), even 

unrelated amoebae from two families isolated from the same host species shared a common set 

of feeding preferences. The similar fitness values of the 5 tested serovars against the 16 predators 

isolated from the same environment in Figure 8A stands in stark contrast to their varying fitness 

values against 6 predators from different environment shown in Figure 7 [387]. Overall, 

predators isolated from the same environment (including the intestinal tracts of goldfish, tadpole 

or turtles) shared feeding preferences (closed markers in Figure 8B), whereas those from 

different environments do not (open markers in Figure 8B).  
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Figure 8. Protozoa can present uniform selective pressure on bacteria in a single 
environment 

 
A. Fitness of Salmonella against 16 predator amoebae isolated from four separate goldfish. 
Amoebae are numbered according to the fish from which it was isolated (fish number 1, 3, 5 or 
8). B. Relationship between feeding preference and environment. Average correlation 
coefficients are calculated for feeding preferences of 2, 3 and 4 different predators; these values 
are plotted against the average similarity of their 18S rDNA genes. Data for amoebae isolated 
from different environments are shown in open gray markers, and data from amoebae from the 
same environment are shown in black and/or closed markers. 



48 

Unlike the dynamic interactions between pathogens and host immune systems that are 

observed with Neisseria and Haemophilus, Salmonella serovars face stable selective pressure 

from predation each time it encounters an individual of a particular species of host. The 

expression of an O-antigen that confers enhanced resistance to predation in that particular 

environment affords that serovar with a greater chance of survival and replication within that 

host intestine. In contrast, other serovars are more readily consumed by the resident predators, 

eliminating those serovars from the environment in a manner akin to clearance from a host of 

Neisseria or Haemophilus strains having O-antigens that are quickly recognized by a non-naïve 

immune system. 

The mechanistic basis for this congruence in feeding preference among unrelated 

amoebae isolated from the same host is not clear. Amoebae encounter two different sets of 

carbohydrates in their environment. The intestinal epithelium is covered in mucins, and binding 

to these carbohydrates allows the protozoa to remain in the lumen and avoid expulsion. The 

bacteria they consume are covered in LPS carbohydrates, and these experiments have 

demonstrated that they use the O-antigens to discriminate among prey [386-387]. Here, I propose 

a model to explain the mechanistic basis for protozoan feeding preference: intestinal amoebae 

recognize host mucins as attachment sites, and unrelated amoebae share an inclination to bind to 

the intestinal wall without trying to consume it [386]. This model proposes that amoebae bind 

differently to food than they do to intestinal mucins. If a bacterial O-antigen resembles the 

intestinal mucins of its host, it could act as molecular camouflage. This similarly would 

confound intestinal amoebae attempting to discriminate between food and housing. Such 

camouflaged bacteria would benefit from increased resistance to predation over serovars with O-
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antigens that are different from the mucins of that host. In effect, bacteria may better escape 

predation by molecular mimicry of host mucins. 

1.9 GOALS OF THE DISSERTATION 

While previous work demonstrated a connection between the O-antigen and fitness against 

predation [386-387], a clear link between rfb diversity and fitness against predation had yet to be 

established. The next steps in investigating the potential for protozoan predation to drive 

diversifying selection at the Salmonella rfb locus was to a) establish the O-antigen as the major 

surface antigen affecting fitness against predation and b) determine if protozoa can discriminate 

among Salmonella in vivo. These issues are central to the possible validation of the hypothesis 

that selective pressure from protozoan predation drives diversifying selection at the Salmonella 

rfb locus. However, the techniques required to address these questions did not exist prior to the 

work outlined here: not only was genetic manipulation of natural Salmonella strains impossible, 

but an experimental system designed to collect large amounts of data for competition tests in 

complex environments did not exist. Thus, the work presented in this dissertation developed the 

necessary techniques to more clearly establish a link between the Salmonella O-antigen and 

fitness against protozoan predation. When accomplished, this research will provide a novel 

framework for the maintenance of diversity by environmental forces other than the host immune 

system and establish a mechanism for the initiation of fragmented speciation in bacteria [182, 

275-276]. 
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2.0  DEVELOPMENT OF BACTERIOPHAGE P1-MEDIATED GENETIC 

MANIPULATION OF NON-TYPHIMURIUM SALMONELLA 

Prior research established that predators could discriminate among different bacterial prey, but it 

was not clear that the O-antigen was the moiety being used to discriminate among them [386-

387]. To establish amoebae predation as a likely source of selection for the maintenance of rfb 

diversity in Salmonella, I needed to assess the relative contribution of different antigenic 

determinates to the susceptibility of Salmonella to predation. To do this, I needed to manipulate 

the genes encoding surface antigens among natural isolates of Salmonella.  

Previous work attempting genetic manipulation of wild-type Salmonellae exploited 

naturally occurring sensitivity to bacteriophages P22 and ES18 to create near-isogenic strains of 

Salmonella that only varied at the rfb locus [387]. However, the use of these transducing 

bacteriophages was very limited due to widespread lack of host sensitivity among non-

Typhimurium Salmonella and was limited to serovars that were very similar to S. enterica 

Typhimurium [387]. Thus, this approach was woefully insufficient to investigate the full 

spectrum of antigenic diversity in Salmonella with respect to protozoan predation. Although 

molecular approaches to strain construction were considered, these methods were deemed 

impractical for my need to transfer large amounts of DNA, including the ~30 kb rfb locus, 

among strains. Instead, I explored the possibility of adapting existing bacteriophage transduction 

techniques for use in natural isolates of Salmonella. Here, I describe the development of 
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bacteriophage P1-mediated genetic manipulation in non-Typhimurium strains of Salmonella 

enterica. This approach represents a major step forward for the study of Salmonella, and the 

work I present in this chapter enabled all of the experiments described in this dissertation. 

2.1 BACTERIOPHAGE-MEDIATED GENETICS IN SALMONELLA 

Use of Salmonella as a model organism for the study of bacterial genetics, physiology and 

pathogenicity has been dramatically impacted by the relative ease of genetic manipulation 

possible in serovar Typhimurium. In particular, the laboratory serovar Typhimurium LT2 and its 

corresponding transducing bacteriophage P22 [302] have been widely used to explore the 

biology of Salmonella. Phage P22 uses the rfb-encoded O-antigen polysaccharide as an 

attachment site, and loss of the O-antigen via mutations in the rfb locus renders cells immune to 

phage P22. Successful phage P22 infection apparently requires cells to display Typhimurium-

like (1,4,[5],12) O-antigen serotypes. While temporary disabling of restriction endonucleases via 

heat-shock renders other serovars of the Typhimurium subgroup bearing this O-antigen (e.g., 

SaintPaul, Heidelberg, Paratyphi B) sensitive to P22 [83], infection does not occur in strains 

outside of the Typhimurium subgroup. Although naturally immune to phage P22, the closely 

related bacterium Escherichia coli can be rendered sensitive to phage P22 by the introduction of 

the Typhimurium rfb operon [238], forcing cells to express the proper O-antigen structure 

permissive for infection. Thus, while P22 is an effective tool for genetic manipulation of serovar 

Typhimurium, it cannot be used among natural isolates of Salmonella bearing different O-

antigens, including serovars that persistently cause disease in agriculturally important animals.  
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Bacteriophage P1 has been used extensively for the genetic manipulation of common 

laboratory strains of Escherichia coli and Klebsiella aerogenes [23, 171, 191, 207, 312-313, 343, 

346, 349, 357, 399]. Despite the close relatedness of Salmonella to E. coli and K. aerogenes, 

both laboratory and wild-type strains of Salmonella are naturally resistant to P1. However, 

mutations in the galE gene confer sensitivity to phage P1 in serovar Typhimurium LT2 [248]; 

these mutants are unable to epimerize UDP-glucose to UDP-galactose, a necessary building 

block for the lipopolysaccharide (LPS) core antigen that forms the foundation for anchoring the 

O-antigen to the outer membrane (Figure 1). UDP-galactose is also required by many serovars of 

Salmonella to initiate O-antigen biosynthesis [293]. As a result, galE mutants cannot present O-

antigens on the outside of the cell, thus exposing the membrane-proximal portion of the LPS core 

antigen. Although its exact role in determining sensitivity to phage P1 is unclear, the LPS core 

antigen influences sensitivity to phage P1 [248]. Producing phage P1 sensitivity in Salmonella 

through the galE mutation has been used to move DNA between serovar Typhimurium and E. 

coli [215, 357], and to manipulate strains of Typhimurium that are resistant to P22 [86]; 

otherwise, phage P1 has not been extensively used in Salmonella. 

Despite the relative paucity of use of phage P1 as compared to phage P22 in Salmonella, 

both phages have distinct advantages over one another for various types of experiments. Phage 

P22 may be directly used in serovar Typhimurium LT2, whereas phage P1 requires a mutation in 

galE for use in Salmonella that may require an additional repair step in strain construction. For 

transducing large amounts of DNA between strains, phage P1 has a clear advantage over phage 

P22, as phage P1 reliably transduces more than twice the amount of DNA than phage P22. The 

much larger capsid size of phage P1 enables the packaging of more than 100 kb of DNA in a 

transducing particle [117, 339], whereas phage P22 only encapsulates ~44 kb of DNA in 
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transducing particles [82, 150]. Thus, phage P1 is the better choice for the manipulation of large 

genomic regions, such as large pathogenicity islands like the O-antigen producing rfb locus, 

among strains. The advantage in DNA packaging of phage P1 is offset by the lower rate of 

production of transducing particles; P1 lysates contain ~0.1% transducing particles, compared to 

~40% for commonly-used terminase mutants of P22 [302]. Therefore, phage P22 is best suited 

for experiments requiring large numbers of transductants within serovar Typhimurium. Both 

phages can be useful in the genetic manipulation of Salmonella enteric Typhimurium, although 

the ease of use of phage P22 has established it as the primary tool for Salmonella genetics. 

Although phage P1 has the potential to permit the rapid, reliable transfer of large 

genomic regions among strains, the utility of phage P1 has not been examined in other, non-

Typhimurium serovars of Salmonella, likely for two reasons. First, the receptors for 

bacteriophage attachment are notoriously hypervariable and experience strong selection for 

variant forms conferring phage resistance. For example, variation in the LamB maltose receptor 

among strains of E. coli results in strain-specific resistance to phage λ [57, 130, 348]. Second, 

coimmune prophages often leave cells resistant to phages of interest, even if cells present the 

appropriate receptors for phage attachment. For these reasons, one would not expect any one 

bacteriophage to infect diverse members of any bacterial species.  

The lack of sensitivity to phage P1 among non-Typhimurium Salmonella has been 

casually attributed to these two reasons, although no direct experimental evidence suggests that 

non-Typhimurium Salmonella either lack the appropriate receptor for phage P1 attachment or 

contain coimmune prophages that confer resistance to phage P1. Phage P1 infects a wide variety 

of Gram-negative bacteria, including Salmonella’s close relatives Escherichia coli and Klebsiella 

aerogenes [191, 343]. The broad host range implies that the receptor for phage P1, likely the 
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LPS core antigen, is conserved enough within the Enterobacteriaceae to permit infection in a 

variety of hosts. Serovar Typhimurium LT2 must possess the correct receptor for phage P1 

attachment, because galE mutants of Salmonella gain sensitivity to phage P1. If such a large 

group of bacteria are able to display the receptor for phage P1, then it is highly likely that non-

Typhimurium Salmonella also possess the phage P1 receptor, which is unmasked with the use of 

galE mutations. I further discuss the nature of the receptor for phage P1 in Salmonella in 

Chapters 2.3 and 2.9. 

Second, coimmune prophages that confer resistance to phage P1 are not evident in the 

genomes of Salmonella sequenced to date [13, 38, 53, 56, 132, 149, 209, 250, 277, 351, 390], 

suggesting that coimmunity to phage P1 may not be an issue in non-Typhimurium strains. Thus, 

it is reasonable to suspect galE mutations will confer sensitivity to phage P1 in non-

Typhimurium serovars of Salmonella. In this chapter, I discuss the development of genetic 

manipulation of non-Typhimurium Salmonella using bacteriophage P1. 

2.2 MATERIALS AND METHODS 

2.2.1 Media and growth conditions 

All bacterial strains were routinely propagated overnight at 37°C in LB medium prepared as 1% 

tryptone, 0.5% yeast extract, and 0.5% NaCl; plates were made using 1.2% agar. E medium 

[371] supplemented with 0.2% glucose and carbon-free E medium (NCE; prepared as E salts 

without sodium citrate) supplemented with 10 mM MgSO4 and 0.2% galactose are the minimal 

defined media used in these experiments. Biotin and nicotinic acid were added at 0.002% and 
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0.001%, respectively. Green Indicator Plates for screening strains for the presence of P22 

lysogens were prepared as 0.8% tryptone, 0.1% yeast extract, 0.5% NaCl, 6.5 mg/mL aniline 

blue, 62.2 mg/mL alizarin yellow, 1.5% agar, and 0.84% glucose. Transducing Broth was 

prepared as LB supplemented with 1X E salts and 0.2% glucose. P1 Dilution Buffer is 0.9% 

NaCl supplemented with 5 mM CaCl2 and 10 mM MgSO4. P1 Top Agar was prepared as LB 

medium supplemented with 0.7% agar, 5 mM CaCl2, and 10 mM MgSO4. Kanamycin was used 

at 20 μg/mL for routine propagation and at 30 μg/mL for selection of directed gene knockouts, 

tetracycline at 20 μg/mL for selection of plasmid-borne markers and 10 μg/mL for selection of 

chromosomal markers, chloramphenicol at 20 μg/mL, spectinomycin at 100 μg/mL, hygromycin 

at 100 μg/mL, gentamycin at 30 μg/mL, and ampicillin at 100 μg/mL. Non-Typhimurium strains 

used in these experiments were obtained from the Salmonella Reference Collection B (SARB) 

[35]; SARB strains 1, 3, 8, and 36 were found to be defective for purine biosynthesis and require 

the addition of 0.008% guanosine to minimal media to support growth. 

2.2.2 Bacteriophage P22 and ES18 propagation and transduction 

Lysates of bacteriophages P22-HT int-205, P22-H5, and ES18 were prepared using the protocols 

of Davis et al [69] and Schmieger and Schicklmaier [303]; overnight cultures of S. enterica in 

LB broth were diluted 1:6 in Transducing Broth, and phage was added to a final titer of 108 

PFU/mL. The lysate was incubated overnight with shaking at 37°C, sterilized with chloroform, 

and stored with chloroform at 4°C. Transductions with phages P22 and ES18 were performed by 

mixing 100 µl of an overnight bacterial culture with 100 µl of phage lysate diluted to a titer of 

108 PFU/mL, incubating with shaking at 37°C for 1 hour, and plating the transduction mixture 

directly to selective media. For phage P22 transductions, selective media was supplemented with 
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10 mM EGTA as a magnesium chelator to decrease phage infection on plates. All transductants 

obtained via P22 were struck on Green Indicator Plates and assayed for sensitivity to P22-H5 in 

order to screen for the presence of P22 lysogens. For use of P22 with strains containing galE 

mutations, LB broth was supplemented with 0.2% glucose and 0.02% galactose, and all other 

growth media was supplemented with 0.02% galactose. 

2.2.3 Bacteriophage P1 propagation and transduction 

Lysates of bacteriophage P1 vir were prepared using an alteration of the protocol of Kolko et al 

[171]; overnight cultures of S. enterica galE or rfb mutant strains were diluted 1:100 in LB 

supplemented with 5 mM CaCl2 and 0.2% glucose and incubated with shaking for 30 minutes at 

37°C. Following initial incubation, P1 vir was added to a final titer of 107 PFU/mL, and the 

lysate was allowed to incubate for up to 6 hours. Lysates that cleared within 6 hours were 

sterilized by chloroform addition and stored at 4°C. Recipient cells were prepared for 

transduction as follows: grow to mid-log phase, pellet cells by centrifugation, resuspend in ¼ 

volume of P1 Dilution Buffer, and incubate on ice for 30-45 minutes. Following incubation, 100 

µl of recipient cells was added to 100 µl of P1 vir lysate at neat and 10-1 dilutions. Transduction 

mixtures were incubated with shaking at 30°C for 60 min and plated directly to the appropriate 

medium following addition of 150 µl of 1 M sodium citrate to each transduction mixture as a 

calcium chelator to reduce further infection of cells by P1 vir. 
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2.2.4 Bacteriophage P1 vir plaque assay 

Strains were assessed for sensitivity to phage P1 using two methods: lysate preparation in liquid 

media and plaque assay on solid media. Plaque assays were conducted by diluting 500 µL of 

cells grown overnight at 37°C into 5 mL LB and incubating with shaking for 60 minutes at 37°C. 

Cells were pelleted with centrifugation and resuspended in 2.5 mL P1 Dilution Buffer; 100 µL 

cells were mixed with 2.5 mL P1 Top Agar and plated to a room-temperature LB plate. P1 vir 

lysate was serially diluted to 10-8 in P1 Dilution Buffer and spotted onto plates in 10 µL aliquots; 

plates were allowed to dry at room temperature. Plaque formation was assessed after overnight 

incubation at 37°C.  

2.2.5 Directed gene replacements in Salmonella enterica serovar Typhimurium LT2 

Gene replacements followed the procedure of Murphy et al [230], Poteete and Fenton [260] and 

Datsenko and Wanner [68]. Primers were designed so that their 3’ ends were complementary to 

sequences flanking the antibiotic resistance cassettes cat (chloramphenicol), aph (kanamycin), tet 

(tetracycline), hyg (hygromycin) and 45 bases at their 5’ ends complementary to sequences 

within the S. enterica gene targeted for replacement. PCR amplification of these cassettes 

produced an antibiotic resistance gene flanked on both ends with at least 40-45 bp of sequence 

identity to the S. enterica gene of interest. Allelic replacement of genes was performed by 

electroporation of the PCR fragment into a host cell containing either pTP223 [230, 260] or 

pKD46 [68], which both contain an experimentally inducible version of the λred recombinase 

system. Wild-type or galE mutant strains containing these plasmids were used as recipient cells 
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for directed gene replacements; the galE mutant background was used to facilitate backcrossing 

of constructs to strains lacking the λred recombinase system. 

Competent host cells containing pTP223 were prepared by diluting cells 1:200 in LB 

broth containing tetracycline and 1 mM IPTG to induce the λred recombinase system and 

incubating at 37°C with shaking to late-log phase. Competent host cells containing pKD46 were 

prepared by diluting cells 1:200 in LB broth containing ampicillin and 10 mM L-arabinose to 

induce the λred recombinase system and incubating at 30°C with shaking to late-log phase. Cells 

were concentrated with centrifugation and washed at least three times with ice-cold sterile 

deionized water. Electroporation was performed by adding up to 10 μL of DNA to 40 μL 

competent cells in an electroporation cuvette with a 0.2 cm gap. 500 μL of ice-cold Transducing 

Broth was added to each cuvette after electroporation, and cuvettes were incubated on ice for at 

least 5 minutes. Electroporation mixtures were transferred to culture tubes and incubated at 37°C 

with shaking for 1-2 hours. Following recovery incubation, cells were plated directly to selective 

media and incubated overnight at 37°C. Replacement of chromosomal genes with antibiotic 

resistance cassettes was confirmed by PCR amplification of the target locus, associated 

phenotypes, and DNA sequencing when possible. For the creation of the galE-6867:aadA strain 

KAB705, primers were designed with 3’ end complementary sequence to the spectinomycin 

resistance cassette aadA and 5’ end complementary sequence to the kanamycin resistance 

cassette aph so that the resulting PCR-amplified fragment targeted the aph gene for replacement, 

simply replacing one antibiotic resistance gene for another. All constructs were backcrossed into 

the LT2 laboratory strain of S. enterica via P1 or P22 bacteriophage transduction.  
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2.2.6 Technical acknowledgements 

I designed all primers used to create and verify directed gene replacements of all strains listed in 

this chapter except ΔorgC-prgH-5800::cat and ΔrfbP-rfbB-2772::cat, which were created by 

Hans Wildschutte. Under my supervision, undergraduate researchers Ben Cross constructed 

strains KAB701-704 and Jessica Cheek constructed strain KAB705. Research technician Jessica 

Ravenscroft performed the following directed gene replacements used in the construction of 

other strains: ΔrfbP-rfbB-2773::hph, ΔnadA-0468::aph and ΔbioABCDF-1100::cat.  

2.3 P1 SENSITIVITY IS CONFERRED BY MUTATIONS IN THE GALE AND RFB 

LOCI IN SEROVAR TYPHIMURIUM LT2 

The exact identity of the receptor for phage P1 is unclear, although it has been suggested that the 

terminal glucose of the LPS core antigen is involved in phage P1 adsorption to E. coli K12 [297-

298]. Mutations in galU produce LPS core antigens depleted in glucose and result in resistance 

to phage P1 in E. coli K12 [92]. However, both mutations in either galU or galE, which causes 

the formation of galactose-depleted LPS core antigens, confer sensitivity to phage P1 in 

Salmonella enterica Typhimurium LT2 [248]. These mutations produce truncated forms of LPS 

core antigens in both E. coli and Salmonella and result in the inability to display O-antigens on 

the outside of cells (Figure 9A). It has been argued that the presence of the O-antigen causes a 

steric inhibition of phage P1 attachment to its purported polysaccharide receptor within the LPS 

core antigen in Salmonella [398]. However, it is unknown why retention of the O-antigen 

permits sensitivity to phage P1 in E. coli K12 but not in Salmonella, considering that the 
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polysaccharide structures of the E. coli and Salmonella LPS core antigens are very similar [157]. 

Although these genetic data link the LPS core antigen to phage P1 infection, it is unknown if 

these polysaccharides are actual attachment sites for phage P1. Alteration of the LPS core 

antigen could result in the formation of a structure that mimics the genuine receptor for phage P1 

present on the E. coli K12 O-antigen.  

Because the nature of the receptor for phage P1 is especially ambiguous for Salmonella, I 

investigated the role of O-antigen chain length in sensitivity to phage P1. It is possible that a less 

severe truncation of the O-antigen than what results from a galE mutation could confer 

sensitivity to phage P1 while still permitting some presentation of the O-antigen on the outside of 

cells. If cells having O-antigens shorter in length than wild-type are sensitive to phage P1, then it 

is possible to generate phage P1-sensitive strains of non-Typhimurium Salmonella without 

completely disrupting the O-antigen. Because the O-antigen is a key Salmonella pathogenicity 

factor and is crucial to my line of investigation into how surface antigens contribute to fitness 

against protozoan predation, determination of the maximum O-antigen chain length that permits 

phage P1 infection can reduce the number of steps required for genetic manipulation of my 

strains.  

I constructed a series of strains in the serovar Typhimurium LT2 background bearing O-

antigens of different lengths, and I tested the sensitivity of these strains to phages P22 and P1 by 

transducing a neutral marker unrelated to O-antigen chain length into these strains. As shown in 

Figure 9A, strains with mutations in galE and rfb completely lack the presence of an O-antigen 

on the outside of the cell, with galE strains producing a slightly truncated form of the LPS core 

antigen while rfb strains produce a fully intact core antigen. I experimentally controlled chain 

length in cells displaying O-antigens through the introduction of mutations in the O-antigen 
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chain length determining proteins Rfc, WzzB, and FepE (Figure 9B, Table 2). O-antigen chain 

length distribution is bimodal in serovars Typhimurium and Enteriditis [99, 124, 231], with the 

Rfc polymerase generating O-antigens with 1-16 repeats in length [59], upon which the WzzB 

chain length determinant adds additional monomers to the O-antigen creating antigens of 16-35 

repeats in length [17]; FepE regulates the production of O-antigens of 100+ repeats in length 

[231]. Because both donor and recipient cells are genetically identical in terms of host restriction 

systems, any differences in transduction efficiency can be attributed to differences in the ability 

of phages P1 or P22 to infect each cell type.  
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Figure 9. Lipopolysaccharide structure in Salmonella 

A. Truncations in the lipopolysaccharide core antigen conferred by galE and rfb mutations 
compared to wild type. B. O-antigen chain length mutations conferred by mutations in fepE, 
wzzB, fepE and wzzB, and rfc. Depending on expression of fepE in the ΔwzzB background, 
production of O-antigens may be biased towards very large chains (100+ monomers). 
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Table 2. Strains used to examine the role of O-antigen chain length in sensitivity to 
bacteriophage P1 

 

Strain Genotype O-antigen Chain Length 

KAB002 Wild-type 16-35; 100+ 

KAB701 wzzB-8771::aph 1-16; 100+ 

KAB702 fepE-2910::tet 16-35 

KAB703 wzzB-8771::aph fepE-2910::tet 1-16 

KAB704 rfc-1727::cat 1 

KAB030 ΔrfbP-rfbB-2772::cat None; fully intact core antigen 

KAB007 galE-6866::aph None; truncated core antigen 
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Ornellas and Stocker confirmed that bacteriophage P1 is able to infect both galE and rfb 

mutant strains of Salmonella, although infection is weaker for rfb strains than for galE strains 

[248]. I confirmed these results in my ΔrfbP-rfbB-2772::cat and galE-6866::aph strains. Next, I 

assessed the ability for bacteriophages P22 and P1 to infect O-antigen chain length mutant strains 

of Salmonella listed in Table 2 with the exception of the ΔrfbP-rfbB-2772::cat strain, which was 

omitted in these experiments, by transducing the galE-6867::aadA marker into these strains. As 

shown in Table 3, only KAB007 is sensitive to transduction by bacteriophage P1, although all 

chain length mutants with the exception of rfc-1727::cat can be transduced using bacteriophage 

P22. Complete absence of the O-antigen is required for sensitivity to phage P1 in Salmonella, as 

the one O-antigen monomer present in KAB704 (rfc-2772::cat) is sufficient to block phage P1 

infection. These data would argue against the sensitivity of wild-type strains of E. coli to phage 

P1 arising from the lack of steric hindrance of the phage P1 attachment site within the LPS core; 

rather, it seems likely that some polysaccharide portion of the E. coli K12 O-antigen itself is 

recognizable by phage P1. In Salmonella, the LPS core antigen must be completely exposed to 

permit phage P1 infection. Interestingly, both the full and truncated forms of the LPS core 

antigen resulting from the rfb and galE mutations respectively conferred sensitivity to phage P1, 

which suggests that a) removal of the O-antigen unmasks the receptor for phage P1 in 

Salmonella; and/or b) phage P1 is able to attach to different portions of the LPS core antigen.  

While the single O-antigen subunit borne by rfc mutants was sufficient to block phage P1 

attachment to Salmonella, it was insufficient to promote phage P22 attachment, as rfc mutants 

were nearly insensitive to both phages (Table 3). Although all strains having an O-antigen chain 

length greater than 1 were sensitive to phage P22, I observe a general trend towards increased 

sensitivity to phage P22 with increasing O-antigen chain lengths, with any chain length greater 
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than 16 representing maximal infectivity. The slightly reduced sensitivity of the galE mutant 

strain KAB007 was most likely due to the dependence of O-antigen production on the amount 

exogenously added galactose to growth media; thus O-antigen production in this strain should be 

considered variable. Since strains bearing partial O-antigens remain P1 resistant, I examined the 

ability of mutations that eliminated the O-antigen entirely to confer P1-sensitivity to non-

Typhimurium serovars of Salmonella enterica. 
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Table 3. Sensitivity to bacteriophages P22 and P1 of O-antigen chain length mutants of 
Salmonella as determined by transduction. 

 
Amount of countable transductants (30-300 colony forming units per plate) observed are 
indicated on a (+/-) scale in relation to the dilution of transducing bacteriophage added to cells. 
++++ = 10-2 (P22) or 10-1 (P1) phage dilution; +++ = 10-1 P22 phage dilution; -/+ = less than 30 
colonies per plate observed for undiluted P22 or P1 phage. 

 

Strain Genotype O-antigen 
Chain Length 

Sensitivity to 
Phage P22 

Sensitivity to 
Phage P1 

KAB002 Wild-type 16-35; 100+ ++++ - 

KAB701 wzzB-8771::aph 1-16; 100+ ++++ - 

KAB702 fepE-2910::tet 16-35 ++++ - 

KAB703 wzzB-8771::aph 
fepE-2910::tet 

 

1-16 +++ - 

KAB704 rfc-1727::cat 1 -/+ -/+ 

KAB007 galE-6866::aph None; truncated 
core antigen +++ ++++ 
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Although mutations in both genes conferred sensitivity to phage P1, I chose galE over rfb 

as the most appropriate candidate for use to explore the potential to permit phage P1-mediated 

genetics in non-Typhimurium Salmonella for three reasons. First, the galE gene, unlike the rfb 

locus, is well-conserved among Salmonella, which permits the design of molecular-based 

directed gene replacement strategies that should work for a large array of non-Typhimurium 

strains (Figure 10). Second, the galE mutation is easily repaired after completion of other genetic 

manipulations. Because rfb mutant strains are also sensitive to phage P1, a strain with an intact 

copy of galE and a mutant rfb locus can be used as a donor in a phage P1 transduction to repair 

the galE mutation and thus restore wild-type display of the O-antigen. This transduction is easily 

accomplished by selecting transductants with the ability to degrade galactose on minimal defined 

media. Third, I am reluctant to eliminate and restore the entire O-antigen region in wild-type 

strains, the target of my analysis, since that would increase the opportunity for unforeseen 

rearrangements to alter the phenotypes of these cells. 
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Figure 10. Conferring sensitivity to bacteriophage P1 in Salmonella 

Directed gene replacement of galE mediated by λ red recombinase activity of pTP223 [230, 260] 
or pKD46 [68]. Polymerase chain reaction is used to generate the kanamycin resistance cassette 
aph flanked with complementary sequences to the Salmonella enterica galE gene. The intact 
copy of galE is replaced with the kanamycin resistance cassette aph. Dashed lines indicate 
approximate sites of recombination. Tc = tetracycline; Kn = kanamycin; Gal- = inability to 
degrade galactose; R = resistant; S = sensitive. 
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2.4 REVERSAL OF THE GALE MUTATION 

All serovars of Salmonella must acquire a mutation in either the galE or rfb locus to permit 

sensitivity to phage P1. Once genetic manipulations have been completed, these mutations must 

be reverted in order to permit proper display of the O-antigen. I engineered a serovar 

Typhimurium LT2 donor strain KAB371, which lacks an intact rfb locus (∆rfbP-rfbB-2773::hph) 

and wherein the intact galE gene was flanked by mutations in the bio operon (ΔbioABCDF-

1100::cat) and nadA gene (nadA-0468::aph) (Figure 11). Using this strain as a donor, galE 

mutant cells can be transduced to Gal+ on minimal media lacking biotin and nicotinamide and 

containing galactose as a sole carbon source. Use of the flanking markers ΔbioABCDF-1100::cat 

and nadA-0468::aph restricts the size of the incoming DNA fragment, thereby limiting the region 

of DNA transduced among strains. Experimental limitation of the amount of DNA transduced 

among strains is crucial for use with phage P1 due to the relatively large amount of DNA 

transduced by this phage. Because genes involved in the regulation and synthesis of cell surface 

structures are linked to galE in serovar Typhimurium LT2 with respect to the transducing 

distance of phage P1, I designed KAB371 to repair the galE mutation without transferring any of 

these genes.  
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Figure 11. Repair of the galE mutation 

The donor strain KAB371 contains an intact copy of galE flanked by auxotrophic markers nadA-
0468::aph and ΔbioABCDF-1100::cat and is used to repair strains made sensitive to phage P1 
using the galE mutation. Transductants are selected for the ability to degrade galactose, 
indicating repair of the galE-6866::aph or galE-6867::aadA mutations; selection for growth in 
the absence of biotin or nicotinamide indicates limiting of the amount of transduced DNA to 
only include the region bounded by the ΔnadA and ΔbioABCDF markers. Dashed lines indicate 
approximate locations of recombination. Bio+ = able to grow on minimal media in the absence of 
biotin; NAD+ = able to grow on minimal media in the absence of nicotinamide; Gal+ = able to 
degrade galactose; P1R = resistant to phage P1, P1S = sensitive to phage P1. 
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2.5 THE GALE MUTATION CONFFERS SENSITIVITY TO PHAGE P1 IN NON-

TYPHIMURIUM SALMONELLA 

The results discussed above using serovar Typhimurium LT2 led me to investigate the capacity 

for the galE-6866::aph construct to confer sensitivity to phage P1 in non-Typhimurium strains. 

To examine this, I used λ Red-mediated directed allelic replacement [68, 230, 260] to introduce 

the galE-6866::aph construct into 13 non-Typhimurium strains from the Salmonella Reference 

Collection B (SARB) [35] (Table 4). The original galE-6866::aph construct was designed to 

target the most conserved portions of the galE locus in different Salmonella. To identify 

appropriate sequences to direct the galE deletion, the complete genome sequences for 16 strains 

of Salmonella were downloaded from NCBI [237] and the regions surrounding the gal operon 

were aligned. The galE gene was well conserved in these genomes with the exception of serovar 

Arizonae (Figure 12), which appears to have a truncated allele of galE (Figure 12A), allowing 

for the identification of two 40 bp regions that were nearly identical in all 16 strains (Figure 

12BC); these regions are contained within the PCR primers used to generate the galE-6866::aph 

gene replacement cassette.  
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Table 4. Non-Typhimurium Salmonella galE-6866::aph strains made sensitive to 
bacteriophage P1 

 

SARB Strain O-antigen Serotype 

H-antigen Serotype  
 

galE-6866::aph 
Strain H1 H2 

1 1,4,12 f,g,s -- KAB027 

2 3,10 e,h 1,6 KAB028 

3 1,4,12 l,v e,n,z15 KAB029 

8 6,7 c 1,5 KAB059 

20 8,20 g,m,s -- KAB024 

30 6,7 g,m,[p],s [1,2,7] KAB025 

34 6,8 d 1,2 KAB168 

36 6,8 e,h 1,2 KAB054 

52 1,9,12 -- -- KAB060 

54 11 r e,n,x KAB169 

55 1,4,[5],12 e,h 1,2 KAB170 

59 1,3,19 g,[s],t -- KAB055 

60 1,4,[5],12,27 d 1,2 KAB222 
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Figure 12. Codon alignment of galE from sixteen Salmonella genomes and design of primers for directed replacement of galE 

A. Diagram of Salmonella galE gene and location of primers used for directed gene replacement. Gray insert indicates length of galE 
gene from S. enterica subspecies arizonae compared to other serovars. B. Location of forward primer designed to a conserved region 
of galE. This region is missing from S. enterica subspecies arizonae. C. Location of reverse primer designed to a conserved region of 
galE.  
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The resulting collection of 13 galE-6866::aph SARB strains (Table 4) were then tested 

for sensitivity to phage P1 using plaque assays on solid media and for the ability to amplify 

phage P1 in liquid media. In all cases, the resulting strains displayed varying degrees of 

sensitivity to phage P1 in both assays.  

2.6 PHAGE P1 TRANSDUCES DNA AMONG TYPHIMURIUM AND NON-

TYPHIMURIUM SALMONELLA 

My line of investigation into the role of surface antigens in shaping Salmonella fitness against 

protozoan predation required the experimental control of genes involved in surface antigen 

regulation and biosynthesis. Thus, I needed a technical approach that permitted the movement of 

DNA to, from, and among non-Typhimurium strains.  

2.6.1 Transduction from Typhimurium LT2 donors into non-Typhimurium recipients 

I tested the ability for galE-6866::aph SARB strains to act as recipients for phage P1-mediated 

genetic manipulation by transducing them with a variety of markers from serovar Typhimurium 

LT2. This procedure had the highest likelihood of success since I only required that transducing 

particles attach to the recipient cell and inject their DNA. Due to my interest in elucidating the 

role of surface antigens to Salmonella fitness against protozoan predation, I chose several 

markers involved in the biosynthesis of these antigens, including an additional galE mutation 

bearing a different antibiotic resistance marker that permitted additional flexibility in use of 

antibiotic cassettes in constructing strains with multiple markers (galE-6867::aadA); genes 
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involved in the regulation and biosynthesis of the H-antigen (fljBA-4400::tet and flhDC-

4820::cat), and genes involved in O-antigen biosynthesis (ΔrfbP-rfbB-2772::cat and ΔrfbP-rfbB-

2773::hph). Because in vivo fitness assays require strains to be non-pathogenic, I also chose to 

manipulate the Salmonella Pathogenicity Island 1 (SPI1), a Type III secretion system required 

for virulence in host intestines [167], with the construct ΔorgC-prgH-5800::cat. 

I successfully transduced these constructs into nearly all of the galE-6866::aph SARB 

strains (Table 5), although transduction was occasionally limited due to the natural level of 

antibiotic resistance and antibiotic tolerance of some strains. In particular, I was limited in 

manipulating KAB168 (SARB34 galE-6866::aph) and KAB222 (SARB60 galE-6866::aph) due 

to natural spectinomycin resistance in both strains and tetracycline resistance in KAB222. 

Successful transduction of multiple constructs from serovar Typhimurium LT2 into a diverse 

collection of SARB strains suggests that the host restriction systems in SARB strains do not 

significantly impact transfer of LT2-derived DNA. I demonstrate here that genetic constructs can 

be easily created in the serovar Typhimurium LT2 background using well-established protocols 

[68, 230, 260] and transferred to non-Typhimurium strains via phage P1 transduction, 

eliminating the need to perform multiple directed gene knockouts in varying strain backgrounds. 
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Table 5. Constructs transduced into galE-6866::aph SARB strains using bacteriophage P1 

Y: attempted transduction; successful. N: attempted transduction; unsuccessful. ND: transduction 
not attempted. *Natural drug resistance of recipient strain prevented transduction of construct. 

 

SARB Strain galE-
6867::aadA 

fljBA-
4400::tet 

flhDC-
4820::cat 

ΔrfbP-
rfbB-

2772::cat 

ΔrfbP-
rfbB-

2773::hph 

ΔorgC-
prgH-

5800::cat 

1 KAB027 Y Y Y Y Y Y 

2 KAB028 Y Y Y Y Y ND 

3 KAB029 Y Y Y Y Y Y 

8 KAB059 Y Y Y Y Y ND 

20 KAB024 Y Y Y Y Y Y 

30 KAB025 Y Y Y Y Y Y 

34 KAB168 ND* ND Y Y ND ND 

36 KAB054 Y Y Y Y Y Y 

52 KAB060 Y Y Y Y Y ND 

54 KAB169 Y Y Y Y Y Y 

55 KAB170 Y Y Y Y Y ND 

59 KAB055 Y Y Y Y Y Y 

60 KAB222 ND* ND ND ND Y ND 
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2.6.2 Transduction from non-Typhimurium donors into Typhimurium LT2 recipients 

Next, I tested the ability of galE-6866::aph SARB strains to act as donors for phage P1 

transduction using serovar Typhimurium LT2 as a recipient. This is a more difficult test as phage 

P1 must replicate successfully in natural isolates of Salmonella, which may not harbor all 

necessary host factors required for phage replication. The rfb operon was selected as the target 

locus for transduction due to my interest in genetic manipulation of the loci responsible for 

production of surface antigens. Moreover, transducing this region requires large incoming DNA 

fragment to escape cleavage by Typhimurium’s restriction endonucleases. The rfb operons are 

hypervariable in Salmonella, so the rfb directed gene replacements were designed by directing 

the deletion between the conserved gnd and galF genes (Figure 5), replacing this region with the 

chloramphenicol resistance cassette cat. I also generated a second Rfb- construct ΔrfbP-rfbB-

2773::hph, replacing the region between the gnd and galF genes with the hygromycin resistance 

cassette hph for flexibility in creating strains with multiple directed gene replacements used for 

later experiments.  

I created the serovar Typhimurium LT2 recipient strain KAB037 (galE-6866::aph 

hisD9953::MudJ ΔrfbP-rfbB-2772::cat), transducing the region from the his operon through the 

adjacent rfb operon from galE-6866::aph SARB strains into KAB037, selecting for histidine 

prototrophy. Transductants were screened for chloramphenicol sensitivity, indicating the repair 

of the ∆rfbP-rfbB-2772::cat construct with a SARB-derived intact rfb locus (Figure 13; Table6). 

I was unable to transduce the rfb region from KAB222 (SARB60 galE-6866::aph) into KAB037, 

although KAB222 is sensitive to phage P1 and is able to grow on minimal media lacking 

histidine. The most likely explanation for the inability to recover transductants using KAB222 as 

a donor is that the hypervariable nature of the rfb locus itself prevented its transfer from SARB60 
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into serovar Typhimurium LT2. I noted that linkage between the hisD9953::MudJ and ∆rfbP-

rfbB-2772::cat markers fell into the range of 70% - 90% for most strains, corresponding to a 

physical distance of 3-10 kb, consistent with the size of the inter-operonic region in complete 

genome sequences [13, 38, 53, 56, 132, 149, 209, 250, 277, 351, 390]. Therefore, I conclude that 

restriction endonucleases are not interfering with transduction in this system; if it were, then 

cotransduction frequencies would have been far smaller than I observed. 
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Figure 13. Transfer of the rfb locus from a natural isolate of Salmonella into serovar 
Typhimurium LT2 

 
Because phage P1 is able to transduce up to ~100 kb of DNA, the H1-antigen encoding fliC gene 
may be transferred from a natural isolate of Salmonella along with the rfb locus. Dashed lines 
indicate approximate locations of recombination. Red lines indicate natural isolate DNA; black 
lines indicate serovar Typhimurium LT2 DNA. Cm = chloramphenicol; His = histidine; S= 
sensitive.  
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Table 6. Serovar Typhimurium LT2 strains containing the rfb loci from natural Salmonella 
isolates 

 

SARB Strain galE-6866::aph 
SARB strain 

 
galE-6866::aph 

SARB rfb 
LT2 background 

 

1 KAB027 KAB065 

2 KAB028 KAB062 

3 KAB029 KAB063 

8 KAB059 KAB067 

20 KAB024 KAB064 

30 KAB025 KAB043 

34 KAB168 KAB175 

36 KAB054 KAB057 

52 KAB060 KAB068 

54 KAB169 KAB176 

55 KAB170 KAB177 

59 KAB055 KAB066 

60 KAB222 Failed 

 

 

 

 

 



81 

2.6.3 Transduction among non-Typhimurium donors and recipients 

To demonstrate that effective P1 transduction in Salmonella does not require Typhimurium LT2 

as either a donor or a recipient, I moved genetic material between natural isolates, here 

transducing the rfb locus between galE::aph SARB strains. I created SARB rfb recipient strains 

(galE-6866::aph hisD9953::MudJ ΔrfbP-rfbB-2772::cat), transducing the region encompassing 

the his and rfb operons from galE-6866::aph SARB strains into the SARB rfb recipient strains 

(Table 7), again selecting for histidine prototrophy and screening for chloramphenicol 

sensitivity. Limiting the amount of DNA transduced upstream of the his operon was not 

necessary here, as I only sought to demonstrate transfer of DNA among natural isolates of 

Salmonella via phage P1 transduction. The Rfb+ phenotype was verified with antibody 

agglutination using cells grown in the presence of galactose. Therefore, I conclude that galE 

mutants of non-Typhimurium serovars of Salmonella can be readily manipulated using 

bacteriophage P1. Critically, it is not impeded by restriction endonucleases and easily moves 

more than 50 kb of DNA. 
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Table 7. The rfb operon was transduced among non-Typhimurium Salmonella via 
bacteriophage P1 

 

Donor Strain 
galE::aph 

Recipient Strain 
hisD9953::MudJ 
ΔrfbP-rfbB::cat 

O-serotype 
conversion 

KAB055 (SARB59) KAB135 (SARB20) (8,20) to (1,3,19) 

KAB029 (SARB3) KAB135 (SARB20) (8,20) to (1,4,12) 

KAB028 (SARB2) KAB137 (SARB30) (6,7) to (3,10) 

KAB059 (SARB8) KAB139 (SARB59) (1,3,19) to (6,7) 
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2.7 DIFFERENTIAL P1 SENSITIVITY IN GALE AND RFB MUTANTS 

Both the galE and rfb mutant strains possess LPS core antigens that lack the O-antigen, but as 

discussed above, there is a notable difference between the two in terms of O-antigen biosynthesis 

and display. The O-antigen is attached to the LPS core, which is in turn mounted onto the lipid A 

of the outer membrane of the Salmonella cell [293, 305]. While rfb mutants do not synthesize an 

O-antigen at all and produce fully intact LPS core antigens [305], galE mutants are able to 

synthesize O-antigens but are unable to present them on the outside of the cell, as they do not 

complete synthesis of the core antigen itself and thus lack the O-antigen attachment site [305]. 

As a result, the surfaces of these cells are subtly different: galE mutants possess a slightly 

truncated form of the LPS core antigen while rfb mutants possess a fully formed LPS core 

antigen. I have found that bacteriophage P1 behaves differently when amplified on these two 

mutants.  

Bacteriophage P1 has two different infection phases as determined by expression of 

alternative tail fiber genes. This is achieved through the cin recombinase, which catalyzes 

random inversion of the genes responsible for expression of the tail fibers, altering the host range 

of P1 depending on which tail fibers are expressed [126, 141-142]. Thus, the lysates of one phase 

will contain approximately 0.001% of particles with the alternative tail fiber phase. The low 

relative titer of the alternative phase results in several rounds of amplification when moving 

between hosts that are recognized by the alternate phage. This is most commonly characterized 

with the hosts Escherichia coli and Klebsiella aerogenes, which represent the two infection 

phases of phage P1. In practice, a lysate prepared on E. coli that is used to amplify phage P1 on 

K. aerogenes only contains an effective concentration of 104 PFU/mL of phage P1 that express 

the suite of tail fibers enabling infection of K. aerogenes, and vice versa. Because amplification 



84 

of phage P1 requires seeding host cells with a starter lysate of phage P1 at 107 PFU/mL, multiple 

rounds of amplification are required to produce phage P1 lysates when moving between 

alternative hosts such as E. coli and K. aerogenes; this process takes three successive rounds of 

amplification to produce a high-titer transducing lysate of phage P1 on its new host. 

 I noticed that phage P1 amplification specifically on the rfb mutant using phage prepared 

on a galE mutant also required several rounds of amplification to produce high titer lysates, 

consistent with infection with alternative tail fiber phases. These results suggest that one of the 

P1 tail fiber phases recognizes the outer portion of the LPS core antigen that is present in a rfb 

mutant, but which is absent from the galE mutant. If so, then the attachment site would be very 

broadly distributed, not only among strains of Salmonella but among enteric bacteria in general. 

Moreover, it would not be susceptible to rapid evolutionary change so that phage resistant forms 

with unrecognizable attachment sites would not arise rapidly. 

To examine the difference in P1 infectivity in galE and rfb mutant strains, I conducted 

reciprocal lysate amplification assays in serovar Typhimurium LT2 in which the galE-6866::aph 

(KAB007) and galE-6867::aadA (KAB705) constructs were used to seed lysates of rfb mutant 

strains, either ΔrfbP-rfbB-2772::cat (KAB030) or ΔrfbP-rfbB-2773::hph (KAB561) and vice 

versa. Similar to my previous observations in lysate production, only lysates made using the rfb 

mutant strains KAB030 and KAB561 were able to clear cultures of each other (Table 8), 

suggesting that the rfb mutant strain could represent a different infection phase of phage P1 as 

compared to the galE mutant strain. Interestingly, galE mutant strains KAB007 and KAB705 

were equally cleared by lysates produced on both galE and rfb constructs (Table 8). 
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Table 8. Time of clearing of galE and rfb mutant strains of Salmonella 

Bacteriophage P1 lysates prepared on KAB007 (galE-6866::aph), KAB705(galE-6867::aadA), 
KAB030 (ΔrfbP-rfbB-2772::cat), and KAB561 (ΔrfbP-rfbB-2773::hph) were used to seed self- 
and reciprocal lysates production. Number of + symbols indicate relative degree of clearing of 
lysate after five hours of incubation with shaking at 37°C. 

 

 Bacteriophage P1 Lysate 

Host KAB007 
galE-6866::aph 

KAB705 
galE-

6867::aadA 

KAB030 
ΔrfbP-rfbB-

2772::cat 

KAB561 
ΔrfbP-rfbB-
2773::hph 

KAB007 ++++ ++++ ++++ ++++ 

KAB705 ++++ ++++ ++++ ++++ 

KAB030 + + ++++ ++++ 

KAB561 + + ++++ ++++ 
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Although there are differences in the behavior of phage P1 when grown on galE vs. rfb 

mutant hosts, I elected to not pursue this issue in further detail for two reasons. First, I observed 

ambiguities in follow-up experiments similar to the original genetic data suggesting conflicting 

results for the identity of the receptor for phage P1 in E. coli and Salmonella, indicating that 

more sophisticated approaches are required to examine the mechanism of phage P1 adsorption to 

its hosts. Second, elucidation of the mechanism of phage P1 adsorption to Salmonella is beyond 

the scope of this dissertation. The primary goal of this chapter was to develop a genetic system 

for the manipulation of non-Typhimurium Salmonella to create strains that enable the 

quantification of the contributions to surface antigens against protozoan predation. I addressed 

the differential behavior of phage P1 when grown on different mutant Salmonella hosts here 

simply to indicate that, while phase differences do exist, P1 lysates grown on rfb strains 

effectively transduce galE mutants, thus allowing repair of these mutants following genetic 

manipulation (Figure 11).  

2.8 DISCUSSION AND FUTURE DIRECTIONS 

Here, I described a toolkit for the rapid and reversible use of bacteriophage P1 for genetic 

manipulation of natural isolates of Salmonella. Conserved oligonucleotide sequences allow for 

high-efficiency introduction of a deletion of either the galE gene or rfb operon, thus conferring 

sensitivity to phage P1 with high confidence. Because both the galE and rfb mutations confer 

phage P1 sensitivity, transduction may be used to repair the mutation used to confer phage P1 

sensitivity. The galE-6866::aph mutation confers phage P1 sensitivity in a group of SARB 

strains representing diversity within Subspecies 1 of Salmonella [35], indicating its potential for 
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broad applicability within Salmonella. One of the P1 tail fiber phases appears to recognize the 

LPS core antigen, ensuring widespread distribution of the attachment site. The ease, 

transparency, widespread distribution of receptor, robustness to variability in restriction 

endonucleases, and apparent lack of coimmune prophages makes this toolkit valuable to those 

interested in performing classical genetics in natural isolates of Salmonella. Moreover, this 

strategy will likely be useful in E. coli, wherein some strains can be made sensitive to phage P1 

in a similar way [129], and other enteric bacteria sharing the LPS core antigen.  

This toolkit provides a mechanism for easy genetic manipulation of natural isolates of 

Salmonella that has several advantages over previously described approaches. In one earlier 

approach, transient heat shock was used to briefly inactivate host restriction enzymes, increasing 

transduction efficiency in some strains previously unable to be transduced with phage P22 [83]. 

However, this method does not allow for transduction into serovars outside the Typhimurium 

subgroup, as they lack the required (1,4,[5],12) serotype for phage P22 infection. In another 

approach, E. coli was made sensitive to phage P22 via the introduction of a conjugative plasmid 

bearing the Typhimurium rfb operon [238], potentially permitting the use of phage P22 in 

otherwise resistant strains. However, this plasmid is unstable, carries a large number of foreign 

genes, and is unpredictable in its ability to confer sensitivity in other strains wherein the native 

and foreign rfb-encoded enzymes may interact to create O-antigens unrecognizable by phage 

P22. Lastly, phage P1 packages more than 100 kb of DNA, more than twice as much as phage 

P22, making it a good candidate for moving pathogenicity islands and other large regions of 

DNA that are specific to particular serovars. 
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3.0  O-ANTIGEN IDENTITY IS A MAJOR INFLUENCE ON SALMONELLA 

FITNESS AGAINST PROTOZOAN PREDATION 

I propose that rfb diversity in Salmonella is maintained by selective pressure from protozoan 

predation. In this case, I expect the rfb-produced O-antigen to have a major role in shaping the 

feeding preferences of protozoa. With respect to Salmonella, changes in O-antigen identity 

should result in major shifts in relative fitness against predation if avoiding protozoan predation 

is the primary driver of genetic diversity at the rfb locus. The experiments described in this 

chapter tested the null hypothesis that the O-antigen does not contribute to Salmonella fitness 

against predation, and thus protozoan predation is not a viable explanation for rfb diversity. 

3.1 IDENTIFICATION OF THE MAJOR SURFACE ANTIGEN AFFECTING 

SALMONELLA FITNESS AGAINST PREDATION 

While previous results showed that differences in the O-antigen are sufficient to allow amoebae 

to discriminate among Salmonella prey [387], the major antigens recognized by these predators 

was unclear. The microbiology of Salmonella – including its abundance and constitutive 

expression - suggests that the O-antigen is the major contributing factor to fitness against 

predation.  
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If O-antigen diversity in Salmonella is maintained by selective pressure from protozoan 

predation, then I would expect the rfb genes, which are responsible for production of the major 

monomeric polysaccharide O-antigen subunit [293], to have a major role in shaping Salmonella 

fitness against predation. To address this issue, I created a large series of strains that were either 

genetically near-identical except for the rfb locus (rfb near-isogenic) or genetically dissimilar 

except for the rfb locus (rfb near-exogenic). I specifically manipulated one antigen in two 

separate genetic backgrounds, affording a high degree of experimental control not present in 

previous experiments. These strains enable the performance of experiments to determine if O-

antigen identity influences protozoan predation to a sufficiently high degree that a large-scale 

experiment quantifying the relative contributions of O-antigen and H-antigen identities should be 

undertaken. If changes in O-antigen identity fail to alter protozoan feeding preferences to a 

significant degree, then predation is unlikely to play a major role in shaping rfb diversity in 

Salmonella.  

3.2 MATERIALS AND METHODS 

3.2.1 Media and growth conditions 

Amoebae were propagated at 33°C on either NM medium (15.5 mM potassium phosphate pH 

7.5; 0.2% peptone; 0.2% glucose; 2.0% agar) or NM-LG (low glucose) medium (15.5 mM 

potassium phosphate pH7.5; 0.2% peptone; 0.02% glucose; 1.5% agar) as reformulated by 

Wildschutte and Lawrence [386]. Strains were routinely propagated on LB media supplemented 

with appropriate antibiotic(s) and grown at 37°C. All antibiotics were used at concentrations 
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described in Section 2.2.1. The minimal media used were: 1X E salts [371] supplemented with 

0.2% glucose as a carbon source and 1.2% agar for plates; 1X NCE was prepared as described in 

Section 2.2.1. SARB strains 1, 3, 8, and 36 are defective for purine biosynthesis and require the 

addition of 0.008% guanosine to minimal media to support growth. 

3.2.2 Propagation and acid-base treatment of amoebae 

Amoebae propagation plates were prepared by spreading NM or NM-LG plates with 100 µL of 

an overnight culture of feeder bacteria and grown overnight at 37°C; Klebsiella aerogenes W70 

(KAB003), Escherichia coli K12 (KAB047), or Salmonella enterica serovar Typhimurium LT2 

(KAB002) were used as feeder strains. Amoebae were seeded onto the centers of feeder plates 

and grown at 33°C for 3-4 days; cysts were harvested in 2 mM Tris-Cl pH 7.6 and pelleted via 

centrifugation at 7500 rpm for 10 minutes. Cysts were exposed to an acid-base treatment to 

remove feeder bacteria. After elution from plates and pelleting, cysts were resuspended in an 

equal volume of 10 mM glycine pH 1.5 and incubated for 1 hour at room temperature. Cysts 

were recovered via centrifugation at 7500 rpm for 10 minutes and rinsed with an equal volume of 

50 mM Tris-Cl pH 9.0 followed by an additional rinse with an equal volume of 50 mM Tris-Cl 

pH 7.0. Cysts were again recovered via centrifugation at 7500 rpm for 10 minutes, resuspended 

in an equal volume of 10 mM K2HPO4 pH 12.5, and incubated for 1 hour at room temperature. 

Cysts were rinsed as described above, except the order of the Tris-Cl rinse buffers were reversed. 

After final rinsing, cysts were pelleted and resuspended in 2 mM Tris-Cl pH 7.6 and enumerated 

with direct counting on a hemocytometer. Working stocks of cysts were kept at a concentration 

of 106 cysts/mL and stored at room temperature.  
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3.2.3 Construction of rfb near-isogenic and near-exogenic strains 

Strains having SARB-derived rfb loci in the LT2 chromosomal background were engineered as 

described in Chapter 2.6.2 (Figure 13) and listed in Table 6. The fliC gene encoding the 

hypervariable portion of the H-antigen is located within ~100 kb of the rfb locus [209], which 

can be co-transduced with rfb using phage P1. To limit the amount of SARB DNA transduced 

into serovar Typhimurium LT2, I twice backcrossed the SARB rfb locus into additional serovar 

Typhimurium LT2 recipient strains (Figure 14). First, the SARB-derived rfb regions from KAB 

strains (Table 6) were transduced into serovar Typhimurium LT2 strain KAB046 (galE-

6866::aph phs-209::Tn10dGn hisD9953::MudJ ∆rfbP-rfbB-2772::cat); transductants were 

selected for histidine prototrophy and were screened for sensitivity to chloramphenicol, and 

resistance to gentamycin, indicating replacement of ∆rfbP-rfbB-2772::cat while retaining LT2 

DNA upstream of the phs-209::Tn10dGn marker (Figure 14A; Table 9). The second backcross 

involved the transduction of the SARB-derived rfb regions from KAB strains (Table 9) into the 

recipient serovar Typhimurium LT2 strain KAB030 (hisD9953::MudJ ∆rfbP-rfbB-2772::cat); 

transductants were again selected for histidine prototrophy and screened for sensitivity to 

chloramphenicol and to gentamycin, demonstrating the transfer of the SARB-derived rfb region 

without encompassing the region upstream of and including the phs-209::Tn10dGn marker 

(Figure 14B; Table 9). KAB030 contains an intact copy of galE and relies strictly on ∆rfbP-rfbB-

2772::cat to confer sensitivity to phage P1, so a separate galE repair is unnecessary when using 

this strain background. Rfb+ phenotypes of resulting strains were verified with antibody 

agglutination assays, indicating the expression of SARB-derived O-antigens in the Typhimurium 

LT2 genetic background. 
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Figure 14. Construction of rfb near-isogenic strains 

A. Limitation of the amount of DNA transduced by bacteriophage P1 through the use of a 
selective marker. The rfb region from the donor strain was transferred via phage P1 transduction 
into a recipient strain containing the phs-209::Tn10dGn marker; retention of this marker limits 
transduced DNA downstream of phs. B. Final phage P1 transduction of the region limited to the 
area near and including the rfb locus into a galE+ strain. Red lines indicate SARB-derived DNA; 
black lines indicate DNA from serovar Typhimurium LT2. 
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Table 9. Strains made near-isogenic at rfb to assess the contribution of O-antigen identity 
to Salmonella fitness against protozoan predation 

 
Donor strain A: SARB strain containing the galE-6866::aph construct. Donor strain B: LT2 
strain containing a SARB-derived rfb locus and the galE-6866::aph construct. Donor strain C: 
LT2 strain containing a SARB-derived rfb locus, the phs-209::Tn10dGn construct to limit the 
amount of DNA cotransduced with rfb and the galE-6866::aph construct. ND = not determined.  

 

SARB# Donor Strain A Donor Strain B Donor Strain C rfb Near-Isogenic Strain 
LT2 Background 

1 KAB027 KAB065 KAB070 KAB080 

2 KAB028 KAB062 KAB071 KAB081 

3 KAB029 KAB063 KAB072 KAB082 

8 KAB059 KAB067 KAB073 KAB083 

20 KAB024 KAB064 KAB074 KAB084 

30 KAB025 KAB043 KAB075 Failed 

34 KAB168 KAB175 KAB183 KAB206 

36 KAB054 KAB057 KAB076 KAB085 

52 KAB060 KAB068 KAB077 KAB086 

54 KAB169 KAB176 KAB184 KAB207 

55 KAB170 KAB177 KAB185 KAB208 

59 KAB055 KAB066 KAB078 KAB087 

60 KAB222 Failed ND ND 
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To create rfb near-exogenic strains, the hisD9953::MudJ and ΔrfbP-rfbB-2772::cat 

constructs were transduced from KAB037 (galE-6866::aph hisD9953::MudJ ∆rfbP-rfbB-

2772::cat) into SARB galE-6866::aph strains (Table 10) using phage P1; transductants were 

selected for chloramphenicol resistance, demonstrating the transfer of the ΔrfbP-rfbB-2772::cat 

construct, and screened for histidine auxotrophy, indicating transfer of hisD9953::MudJ 

(resulting strains in Table 10). The rfb region from serovar Typhimurium LT2, obtained from 

KAB045 (galE-6866::aph phs-209::Tn10dGn), was transduced into the strains listed in Table X; 

transductants were selected for histidine prototrophy, signifying repair of hisD9953::MudJ, and 

screened for sensitivity to chloramphenicol and gentamycin, indicating transfer of the LT2 rfb 

operon and limiting transduced DNA to the region downstream of phs-209::Tn10dGn. Rfb+ 

phenotypes were verified by serotype agglutination assays. 
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Table 10. Strains made near-exogenic at rfb used to assess the contribution of O-antigen 
identity to Salmonella fitness against protozoan predation 

 
ND = not determined. 

 

SARB rfb Near-Exogenic Strain 
LT2 rfb Locus in SARB Strain Background 

1 ND 

2 KAB201 

3 KAB210 

8 KAB216 

20 KAB202 

34 KAB209 

36 KAB211 

52 ND 

54 ND 

55 KAB205 

59 KAB204 
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3.2.4 Line test competition assay and fitness calculations 

Line tests were modified from the original protocol of Wildschutte and Lawrence [387]. Strains 

were struck in lines approximately 30 mm in length on square 245mm x 245 mm plates of NM-

LG. To prevent cross-feeding of predators, lines were placed 30 mm apart and plates were 

partitioned into three equal sections with sterile wooden barriers embedded ~5 mm below the 

surface of the agar and extending ~5 mm above the surface of the agar. Each plate contained 3-5 

replicates of each strain; a total of three plates were tested for each set of strains per predator. 

Plates were incubated overnight at 37 A total of 104 protozoan cysts in 10 μl 0.9% NaCl were 

added to the ends of lines; plates were incubated at 34°C. Plates were photographed every six 

hours and the distance of each line consumed by predators was measured. Rates of predation 

were determined using the distance of the feeding front of predation relative to the starting point 

for each line. Rates of predation were determined in mm/hr by comparing the distance of the 

feeding front of predation relative to the starting point for each line. Regressions were calculated 

for distance of each line consumed by predators vs. time (R2 
typically > 0.95). Overall 

consumption rates were calculated as mean slopes for each strain on each individual plate and 

then averaged for that of all plates. Fitness was normalized to the value of the least-preferred 

strain.  

3.3 O-ANTIGEN IDENTITY INFLUENCES FITNESS AGAINST PREDATION 

Previous experiments using strains made near-isogenic at rfb suggested that the identity of the O-

antigen can confer fitness against predation; however the collection of strains used to test this 
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hypothesis was limited to only three strains representing two similar and one dissimilar O-

antigen serotype [387]. A more comprehensive analysis of the role of O-antigen identity in 

Salmonella fitness against predation was hindered due to the lack of genetic manipulation 

techniques for non-Typhimurium strains. I expanded upon this experiment by using the 

bacteriophage P1-mediated genetic manipulation technique described in Chapter 2 to construct a 

substantially larger set of near-isogenic rfb strains that only differ in terms of O-antigen identity. 

To this end, I created a collection of eleven rfb near-isogenic strains representing nine distinct O-

antigen serotypes representative of diversity within S. enterica Subspecies I (Table 9). This 

comprehensive strain collection allowed me to more robustly refute the null hypothesis that O-

antigen identity does not influence fitness against predation.  

If O-antigen identity is a minor contributor to fitness against predation, then the fitness of 

rfb near-isogenic strains should be very similar regardless of the predator being faced. To test 

this prediction, I assessed the fitness of these rfb near-isogenic strains against predation by three 

genetically distinct amoebae: Naegleria gruberi NL, Acanthamoeba sp. R2-1, and Tetramitus sp. 

BD1-1 [386]. The rfb near-isogenic strains do not have similar relative fitness against predation 

when challenged by any of the three amoebae (Figure 15). Fitness values ranged from 1.0 to 

0.55, indicating that the identity of the O-antigen alone increased risk to predation by two-fold. 

Given the large bacterial population sizes within the intestinal lumen, this difference in predation 

susceptibility is sufficient to drive differential survivorship of different serovars.  

Moreover, if the O-antigen did not significantly contribute to fitness, I would expect that 

the fitness values of all near-isogenic strains against all predators to have a very high degree of 

correlation, with R2 values of strain fitness between predators being very close to a value of 1. 

However, this is not the case. While I observed a moderate correlation of fitness against 
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predation between Tetramitus sp. BD1-1 and N. gruberi NL, R2 = 0.5413, the R2 values for 

fitness of all isogenic strains between two predator groups are actually negative: Acanthamoeba 

sp. R2-1 and Tetramitus sp. BD1-1 R2 = -0.3850 and Acanthamoeba sp. R2-1 and N. gruberi NL 

R2 = -0.0631. Because predators can discriminate among strains that only vary at the O-antigen 

and the fitness against predation for the rfb near-isogenic strains varied considerably among 

predators, I conclude that the O-antigen must be a major determinant of protozoan feeding 

preference. 
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Figure 15. Protozoan predators can discriminate among Salmonella strains that only differ 
at the rfb locus 

 
Relative fitness values for strains made near-isogenic at rfb against predation by three different 
amoebae. Relative fitness values were calculated by determining the rate of predation for 
multiple lines of each strain, correcting for strain growth rate and normalizing to the slowest-
consumed (most fit) strain. The strain having the highest fitness against predation was assigned a 
value of 1; the fitness values of all other strains were normalized to this value. O-antigen 
serotypes are listed in parentheses.  
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3.4 DISRUPTION OF O-ANTIGEN IDENTITY ALTERS SALMONELLA FITNESS 

AGAINST PREDATION 

The data presented above show that strains differing only at the O-antigen have different relative 

fitness against predation. Therefore, I predict that disruption of native O-antigen identity should 

alter fitness against predation. I tested the null hypothesis that disruption of O-antigen identity 

will not significantly change Salmonella fitness against predation by engineering a series of rfb 

near-exogenic strains in which the native rfb locus in SARB strains was disrupted via 

replacement with serovar Typhimurium LT2 rfb locus (Table 10). Each rfb near-exogenic strain 

and its wild-type parent SARB strain share all antigens except for the O-antigen. If O-antigen 

identity does not contribute significantly to fitness against predation, then I expect a high degree 

of correlation (R2) between the fitness of each wild-type strain and its rfb near-exogenic 

counterpart. Conversely, if the O-antigen does contribute to fitness against predation, then I 

expect a low correlation (R2) between fitness values of wild-type strains and their rfb near-

exogenic derivatives. 

I tested the fitness of wild-type SARB strains and their rfb near-exogenic counterparts 

(Table 10) against predation from N. gruberi NL, Acanthamoeba sp. R2-1, and Tetramitus sp. 

BD1-1. I observed a very low degree of correlation (R2 = 0.04, 0.52, 0.15, respectively) between 

the fitness of wild-type SARB strains and their rfb exogenic counterparts against predation by all 

three amoebae (Figure 16). This indicates that O-antigen identity, and consequently the identity 

of the rfb locus, likely plays a major role in shaping Salmonella fitness against protozoan 

predation. A caveat to this conclusions is that the common (1,4,[5],12) O-antigen introduced 

from serovar Typhimurium may be differentially modified in these strains, even though it is not 
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native to that strain background. Therefore, a more rigorous set of experiments is required to 

estimate the relative contribution of O-, H-, and other antigens to fitness against predation.  
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Figure 16. Disruption of the rfb locus alters Salmonella fitness against protozoan predation 
 

Relative fitness of rfb near-exogenic strains vs. wild-type SARB strains. Relative fitness values 
are calculated by determining the rate of predation for multiple lines of each strain, normalizing 
to the slowest-consumed strain (most fit), and correction for strain growth rate. R2 values for 
wild type fitness compared to rfb near exogenic fitness are: Tetramitus sp. BD1-1 R2 = 0.146; 
Acanthamoeba sp. R2-1 R2 = 0.5215; Naegleria gruberi NL R2 = 0.0358. 
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3.5 O-ANTIGEN IDENTITY IS A MAJOR DETERMINANT OF FITNESS AGAINST 

PROTOZOAN PREDATION 

The experiments described in this chapter establish O-antigen identity as a significant 

contributing factor to fitness against predation. The next step is to quantify the relative 

contributions of the O, H- and other surface antigens. Different protozoan predators may use the 

O-antigen to varying degrees in discrimination among prey [386], so a more comprehensive 

picture of how various protozoan predators use surface antigen identity to discriminate among 

prey must be determined. However, a more sophisticated approach than the experiments outlined 

in this chapter is required to address this question. 

For many reasons, the use of line tests is insufficient to provide the robust data needed to 

quantify the roles of surface antigens to fitness against predation. First, the line test method is 

crude, relying on optical measurement of the disappearance of lines of bacteria as a result of 

protozoan predation. Measurements are taken in millimeter increments, impeding the accuracy of 

this experimental approach, as very small observer error could result in an actual difference of a 

few million bacterial cells. Second, plate-to-plate variation can be quite high in line tests, 

potentially clouding subtle differences in fitness among strains. Although the larger plate design 

increased the number of strains tested per plate and thus was intended to decrease plate-to-plate 

variation, the new design did not result in a significant improvement in plate-to-plate variation 

and required more labor in the experimental process as compared to the original line test design. 

Third, line tests are inefficient compared to the number of data points generated with single lines 

of bacteria measured in 6-hour intervals. Unreasonably large numbers of plates need to be 

assessed with line tests in order to gather more robust data sets. Last, line tests are only indirect 

measures of competitive ability as fitness is measured in isolation; a better test would compete 
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strains having different antigenic profiles against each other directly. Line tests simply lack the 

resolution power necessary to quantify the relative fitness contributions of different surface 

antigens. 

Additionally, the genetic approaches used in this chapter do not permit the level of 

experimental control required for quantification of the contributions of the O- and H-antigens to 

fitness against predation. While the rfb near-isogenic and near-exogenic strains allowed me to 

conclude that O-antigen identity is a major factor influencing Salmonella fitness against 

predation, they are too crude to provide exact quantifications of this contribution. Simple transfer 

of the rfb locus is insufficient to accurately phenocopy parental O-antigens in different genetic 

backgrounds. Genes unlinked to the rfb locus are known to alter the structure of the O-antigen, as 

in the case with the O-antigen acetylation gene oaf [328] and the chain length regulator fepE in 

serovar Typhimurium LT2 [231]. It is impossible to definitively identify all potential loci 

unlinked to rfb that may play roles in O-antigen modification or chain length regulation among 

strains used in these experiments, as most of their genomes are not fully sequenced and the 

structures of all O-antigens are not solved. . 

I took a two-pronged approach to facilitate the identification of the major surface antigen 

impacting fitness against predation and quantify its role in shaping fitness with respect to other 

surface antigens. First, I moved away from line tests and used a new multicolor fluorescent strain 

tagging system to adapt the technique of flow cytometry, a more robust assay capable of 

generating millions of data points from a single competition plate, to assess fitness against 

predation as described in Chapter 4. Second, I used the P1-mediated genetic manipulation 

approach I described in Chapter 2 to engineer collections of SARB strains in which the presence 

and absence of the O- and H-antigens is experimentally controlled, avoiding the confounding 
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issue of accurate phenocopying of antigens in different genetic backgrounds as encountered with 

the rfb near-exogenic and near-isogenic strains identified here. The results of this new 

experimental approach are discussed in Chapters 5 and 6. 
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4.0  NOVEL APPROACHES TO MULTICOLOR FLOW CYTOMETRY  

Previous work in the Lawrence laboratory established predation as a possible mediator of 

diversifying on the Salmonella O-antigen-encoding rfb operon [386-387], and the experiments 

presented in Chapter 3 suggest that protozoan predation is influenced by the identity of the O-

antigen. To rigorously test this hypothesis, I need to evaluate the relative fitness of strains 

differing in antigenic composition when facing protozoan predators. Fitness coefficients are 

measured with high accuracy for bacterial populations grown in liquid culture [72-73, 79, 220, 

344]. Here, strains are placed in direct competition and changes in their relative numbers are 

measured over time. Selection coefficients are measured from the change in frequency over time 

as: 

 dP/dt = sP(1-P) 

where P is the proportion of the cells of interest in the population.  

It is not feasible to measure relative fitness of different Salmonella strains against predators in 

this fashion. First, amoeba predators consume prey by phagocytosis only when grown on solid 

media; in liquid culture, those amoebae which feed do so by pinocytosis [34]. Second, there is 

spatial structuring to solid media that prevents random sampling over time. Third, one cannot 

compete bacterial strains both with and without predation in the same environment.  

In order to validate the hypothesis that protozoan predation shapes Salmonella rfb 

diversity, I must demonstrate that the O-antigen is the major contributing factor influencing 
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fitness against predation. Moreover, I must also establish that differential survivorship against 

predation is influenced only by the identity of the O-antigen in natural environments beyond the 

Petri dish, such as the intestine. While the experiments to more thoroughly test this hypothesis 

are clear, the techniques and tools required to answer these questions did not exist prior to 

beginning this course of work. In Chapter 2, I discuss development of the genetic techniques that 

enable construction of non-Typhimurium Salmonella in which the presence and absence of the 

O- and H-antigens are experimentally controlled. These strains will permit the quantification of 

the O- and H-antigens to Salmonella survival against protozoan predation. Although the genetic 

techniques I developed and described in Chapter 2 enabled the ability to construct strains 

designed to assess the contributions of surface antigens to Salmonella fitness against predation, I 

did not have sufficient experimental techniques to actually use these strains in competition 

experiments. Moreover, I did not have a suitable approach to test the fitness of Salmonella 

strains in vivo. Competition tests designed to establish the major surface antigen affecting fitness 

against predation and comprehensively examine the contribution of the identity of this antigen to 

Salmonella fitness against protozoan predation in vivo requires the following aspects: 

• ability to discriminate simultaneously enough strains to reveal subtle differences 

in fitness; 

• detection of cells isolated from complex environments; 

• minimization of variation through quantitative, direct fitness assessment; 

• high-throughput collection of large data sets. 

 Previous work by others in the Lawrence laboratory developed a surrogate method for 

measuring selection coefficients involving whole plate competition assays [387]. Here, a mixture 

of cells was grown either in the presence or absence of predators. The relative abundance of each 



108 

cell type was assessed on the plate lacking predator, providing an expectation of cell frequency 

on predator-bearing plates. Deviations of observed cell frequencies from these expected values 

are direct measures of strain fitness (ws), where  

 ws = Pobserved/Pexpected  

Thus, accurate measured of fitness can be acquired if cell frequencies can be determined 

with accuracy; robust frequency data is obtained only from large sample sizes, especially when 

relative cell frequencies are low. Pairwise plate competition tests were also used to support the 

results of line tests in a more quantitative manner [387]. Here, two strains bearing different 

metabolic or antibiotic resistance phenotypes were co-plated and their fitness values in the 

presence and absence of predation was determined relative to each other. Because only two 

strains are competed simultaneously, this method will not reveal any subtle fitness differences 

among strains. To reveal subtle variation in strain fitness, a minimum of six to eight strains must 

be competed at the same time; previous approaches do not permit this level of experimental 

sophistication. To obtain such large sample sizes, I turned to flow cytometry to identify cells 

eluted from assay plates.  

I believe that the technique of flow cytometry fulfills all of the requirements I need in 

order to fully address the contributions of the O- and H-antigens to fitness against protozoan 

predation and assess bacterial survivorship in in vivo and in other biologically complex 

environments. Flow cytometers permit the high-resolution enumeration and analysis of small 

particles, from bacterial spores to whole eukaryotic cells, based on a variety of light-scattering 

and fluorescent properties, native or experimentally manipulated, of the particles themselves. 

Using flow cytometry, these properties are recorded for each individual cell passing through the 

field of detection.  



109 

Flow cytometry gathers information based on the fluorescent signals of cells; a wide 

variety of commercially available fluorescent proteins and dyes are commonly used to tag 

bacterial and eukaryotic cells for cytometric analysis [66, 70, 246]. These fluorescent tags are 

easily introduced into cells and should not alter surface antigenic profiles because they do not 

affect cellular metabolism. The large variety of fluorescent labels available and the ability of 

cytometers to detect multiple signals from these labels should permit the simultaneous 

competition of a group of strains large enough to reveal subtle differences in fitness among 

strains and representative of diversity within Subspecies I of Salmonella enterica. Additionally, 

fluorescent signals are not expected to be present at the same levels as antibiotic resistance in 

bacteria from natural environments; the large variety of fluorescent tags enables minimization or 

avoidance of confounding autofluorescence present in complex biological environments through 

careful experimental design. Flow cytometry affords a high degree of experimental flexibility for 

the simultaneous discrimination of large numbers of strains.  

Flow cytometers directly measure the properties of each single cells passing through the 

field of detection, so determination of fitness using flow cytometry meets my requirement for 

direct enumeration of cells from competition tests. Moreover, acquisition of this data is culture-

independent: I can directly count cells from mixed competition plates on a cytometer without the 

need to perform additional culturing steps as was required with pairwise plate competition tests 

as performed previously [387]. Not only does this approach save time, labor and materials, but I 

should be able to directly quantify numbers of strains present on different competition plates. 

Direct counting of Salmonella cells yields quantitative data, enabling a more rigorous test of the 

hypothesis that rfb diversity in Salmonella is shaped by protozoan predation. 
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Finally, flow cytometers enable the high-throughput acquisition of data in very 

reasonable periods of time. Most modern flow cytometers are able to collect data at a rate in the 

thousands of events per second, making possible the counting of millions of bacterial cells in just 

a few minutes of time. This scale of data throughput is impossible using culture-dependent 

methods. The data collection capacity of flow cytometers dramatically expand the statistical 

power of results, providing the level of detail required to quantify the roles of surface antigens to 

Salmonella fitness against predation. 

Although flow cytometry is a well-established technique for the analysis of single cells, 

this approach is not without significant technical challenges. Flow cytometry is most commonly 

used for the analysis of eukaryotic cells; microorganisms are much smaller and more difficult to 

detect. Use of multiple fluorescent labels is also quite frequent in flow cytometry, but the level of 

experimental complexity permitted is limited not only by the availability of lasers and optical 

filters to maximize detection and separation of fluorescent signals but also by limitations in data 

analysis. Difficulty of data analysis increases significantly with each additional fluorescent tag 

used in a given experiment. Furthermore, my research requires a more quantitative approach to 

data analysis than what is typically necessary for most common cytometry assays. 

Here, I describe the development of a multicolor flow cytometry protocol and data 

analysis tools for examination of bacteria in complex biological environments. This experimental 

system was designed in order to permit the assessment of bacterial survival in any natural 

environment from pond water to intestines. Development of this technique permitted all of the 

experiments required for assessment of the contributions of surface antigens to Salmonella 

fitness against protozoan predation as outlined in Chapters 5 and 6 as well as future experiments 

proposed in Chapter 7. 
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4.1 USE OF FLOW CYTOMETRY IN MICROBIOLOGY 

In addition to its widespread use in the field of eukaryotic cell biology, fluorescence-based flow 

cytometry is commonly used to address many issues within research and clinical microbiology. I 

discuss here the basic principles of flow cytometry, common microbiological applications for 

flow cytometry, and the current challenges in this field. 

4.1.1 Basics of flow cytometry 

While flow cytometry has been used in microbiological assays for some time, existing methods 

are insufficient to allow the degree of discrimination I require to measure relative fitness. There 

were several challenges to overcome which I describe in this chapter. I first provide an overview 

of flow cytometry to place these challenges in context. 

The technique of flow cytometry involves the measurement of the light-scattering and 

fluorescence properties of single particles, typically cells or cell-sized particles, suspended in a 

fluid; for a comprehensive review see Shapiro [316]. A flow cytometer focuses this fluid 

hydrodynamically using a sheath of buffer, producing a stream of single cells that are passed 

across a light source. Most modern flow cytometers use one or more lasers as sources of specific 

wavelengths of light. At the point of intersection with the laser beam, each particle creates a 

scattering of the light; lasers also excite any fluorescent molecules present in the particle, either 

intrinsic or experimentally introduced, resulting in emission of signal according to the spectral 

properties of each particle or fluorochrome. The scattered and emitted photons from these 

particles are passed through various optical filters to split the light into several paths, filter by 

chosen wavelengths, and channel the resulting photons into the appropriate optical detectors. 
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Optical detectors then convert these light signals into electrical pulses, which undergo a series of 

transformations that are sent to software used to visually depict and process the cytometric data.  

Critically, flow cytometers measure these optical properties as a function of each 

individual particle that passes through the beam of light. The light-scattering properties of such 

events are often used to physically characterize populations of cells. These properties include 

forward scatter (FSC) and side scatter (SSC). FSC is the scattering of light by an event in line 

with laser beam; FSC is roughly proportional to the size of an event and is often used to 

approximate cell size [226-227, 364]. As there are many other factors other than cell size that can 

influence this light scattering property, care must be taken when interpreting FSC values and 

approximating them to cell size [163, 314, 320-321]. SSC is the scattering of light by a particle 

perpendicular to the laser beam and reflects the complexity or “granularity” of the event [316]. 

Cell physiological properties such as membrane composition and organelle content influence 

SSC, and thus this parameter is often used to characterize different populations of cells in a 

sample [263, 292, 301]. A third event property, pulse width (PW), is often used to further 

characterize events although it is not a light scattering property; rather, PW reflects the “time of 

flight” of a particle, or the duration of the electric pulse produced by a particle passing through 

the laser beam [316]. PW is often used to discriminate between single particle events and 

multiple particle events; two cells stuck together produce longer PW values than single cells. 

Because many factors can influence these parameters, it is crucial that combinations of 

cytometric parameters are used to separate genuine cell events from debris and other unwanted 

populations of cells [316]. 

Flow cytometers also record the fluorescence properties of events through the use of one 

or more lasers that excite particular fluorescent dyes or proteins. Emitted signals are passed 



113 

through optical filters that separate multiple fluorescent signals and direct them to the 

appropriate detector among a fixed set of detectors on the cytometer; this is especially critical for 

experiments characterizing cells using two or more fluorescent signals in addition to light 

scattering properties. For example, proper optical filters channel fluorescent emissions from a 

cell labeled with green and red light-emitting fluorophores into the appropriate detector; “green” 

signals will only be sent to the “green” detector and not the “red” detector, and vice versa. A 

wide variety of dyes are available for measuring various properties of cellular physiology, such 

as cell viability, nucleic acid content, ion concentrations and presence of specific organelles [66]. 

Fluorescent antibodies are often used to label specific cell types in mixed populations; these are 

widely commercially available. While dyes and antibodies are used for exogenous labeling, 

endogenously expressed fluorescent proteins can be used for whole-cell labeling, highlighting 

specific cellular structures with the use of protein tags or as gene expression reporters [70, 246]. 

The use of fluorescent labels in multicolor experiments is mechanically limited by the 

wavelengths of lasers used to excite fluorophores, number of signal detectors, use of suitable 

optical filters, and overlap of emission spectra of fluorophores.  

Modern flow cytometers enable high-throughput data collection; it is reasonable to 

conduct cytometry experiments that collect millions of events from a single sample in just a few 

minutes’ time. From a microbiological perspective, this eliminates the need for culture-

dependent analysis and permits acquisition of data at a scale impossible to perform with 

microscopy or colony counting. Assessing the fitness of multiple strains against protozoan 

predation at the same time requires a high degree of statistical power, which is addressed through 

gathering considerable amounts of data. The data collection capacity of flow cytometry makes it 

ideal for use for in vivo competition tests, as detection of experimentally introduced Salmonella 
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requires the acquisition of large numbers of events due to the confounding presence of millions 

of other native bacterial cells in an intestinal sample.  

4.1.2 Common microbiological applications for flow cytometry 

The capacity for the rapid acquisition of information from single cells makes flow cytometry 

ideal for the study of microorganisms, and the analytical, culture-independent power of flow 

cytometry permits examination of microbes outside of the artificial laboratory bench 

environment. For example, Sørensen and colleagues [234, 335] used green fluorescent protein 

(GFP) as a reporter to assess horizontal transfer of a conjugative plasmid among bacteria in the 

soil. Flow cytometry of GFP-labeled Salmonella typhimurium was also used to examine the 

propensity for this bacterium to evade traditional disinfection procedures used in the preparation 

of leafy vegetables through invasion into plant tissues [98]. Survival of Escherichia coli in 

wastewater effluent and anaerobic groundwater was determined using flow cytometry [15], and 

additional work demonstrated that cytometric analysis of fluorescent-tagged E. coli was a more 

sensitive indicator than culture-dependent methods of survival in aquatic environments [190]. 

Additionally, fluorescent reporters and flow cytometry are currently being applied to diagnostic 

microbiology; for example, Piuri et al [258] and Rondon et al [286] engineered a 

fluoromycobacteriophage-based assay to examine antibiotic resistance phenotypes of 

Mycobacterium tuberculosis. Importantly, the experiments discussed above rely mostly on the 

detection of one or two colors, which is discussed in further detail in Chapter 4.1.3.  

The simultaneous use of more than two fluorochromes in microbial cytometry is 

extremely limited [114] compared to the commonality of multicolor cytometry experiments 

using eukaryotic cells in the laboratory environment [20, 119, 269]. For eukaryotic cells, well-
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developed protocols exist for the simultaneous discrimination of three [20] and four colors [119], 

and protocols using eleven [71] and seventeen [254] color tagging schemes have been proposed. 

Although multicolor flow cytometry is used with microorganisms, these experiments are 

typically performed under laboratory conditions and are limited to physiological measurements 

[315, 317, 396] or require the use of highly specific, exogenously added probes [110-111, 307]. 

Due to experimental complexity, a trade-off exists between examining microbes in natural 

environments and use of multiple fluorescent detection parameters. For my experiments 

examining the role of the O-antigen to Salmonella survival against protozoan predation, I 

required the ability to discriminate among multiple fluorescent-labeled cells acquired from 

complex environments, which to date have not been completely reconciled in the literature. To 

begin, I needed to address the challenges facing multicolor flow cytometry for the analysis of 

microbes. 

4.1.3 Challenges of multicolor flow cytometry in microbiology 

Why are microbial cytometric experiments performed in complex environment so limited when 

compared to the state of the art for experiments using eukaryotic cells? Such experiments come 

with unique considerations at each step of the experimental design, implementation, and data 

analysis and thus must be approached with care. First, appropriate fluorescent tags for 

experimentally-introduced cells must be selected based on the autofluorescence of growth media 

and other substances or microorganisms present in the natural environment. Second, analysis of 

microbes is complicated due to the presence of fine particles which can clog flow systems and 

distort signals; special sample preparation protocols must be developed and used to remove fine 

particles from microbes for cytometry, and to eliminate abiotic particle-based events from 
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collected data. Experiments conducted under laboratory conditions do not require this level of 

careful preparation. 

Use of fluorescent tags to label bacteria as opposed to eukaryotic cells is complicated by 

microbial cellular properties; the nature of the tagging method is highly dependent on the biology 

of the organism and of experimental design. Many fluorescent dyes only stain particular 

structures unique to eukaryotic cells and are thus unusable for prokaryotic cells [155]. 

Commercial availability of fluorochrome-conjugated antibodies is quite limited for microbes 

relative to those having specificity to eukaryotic cells and eukaryotic cell-specific proteins [155]. 

Moreover, antibodies must have extremely high target specificities in order to enable the 

discrimination of microbial cells having subtle differences. For example, generating antibodies to 

differentially label a series of bacterial strains varying only with respect to auxotrophies is 

impractical if not completely impossible. Interestingly, simultaneous use of more than two 

fluorescent protein tags in bacteria is relatively unexplored despite the broad appeal and 

versatility of fluorescent proteins for tagging both prokaryotic and eukaryotic cells [70, 246].  

Choice of fluorochromes for cell tagging is complicated by the mechanical limitations of 

the flow cytometer. Although a very large number of fluorescent probes with a wide variety of 

emission and excitation spectra are commercially available [66, 70, 155, 246], specific lasers are 

required to excite these proteins and appropriate optical filters must be used to enable detection 

of fluorochrome emissions. For example, the ubiquitous use of green fluorescent protein in 

microbial experiments conducted in complex environments as discussed above is not surprising, 

as GFP is maximally excited by the 488 nm laser [120-122], which is very commonly used in 

most commercially available flow cytometers. Although much more complicated fluorochrome 

tagging schemes have been developed and proposed for future consideration [71, 254], these 



117 

designs are limited in that they require extremely specific probes and specialized cytometry 

equipment and software not commonly available to most research facilities [71, 254]. Moreover, 

these complicated schemes are designed to be performed under ideal laboratory conditions, 

which is not appropriate for many microbiological experiments. 

The largest challenge facing flow cytometry is data analysis, especially that arising from 

multicolor experiments [254]. Cytometric data analysis is an extremely time-consuming process 

that is often defined by varying degrees of arbitrary interpretation; see Shapiro for a 

comprehensive review and discussion [316] on various approaches and pitfalls of cytometric data 

analysis. As an example, sample data are represented in Figure 17. Briefly, data are first 

visualized on bivariate plots (histograms or dots). Positive events, or those that comprise actual 

cells or the desired event, are identified by their FSC and SSC properties as defined by the 

investigator; additional cell-defining properties are defined as necessary (for example, a 

fluorescent signal from a cell-specific stain). This information is used to then “gate,” or define 

the region comprising positive signal. This gate can then be applied to other data plots to aid in 

data analysis. For example, the gates used to identify positive cells on the FSC and SSC detectors 

can be applied to plots of fluorescent signal distributions, resulting in display of only defined 

positive cells. 

Figure 17A depicts a bivariate dot plot of cells expressing signal on the EGFP and APC 

detectors. The issue here lies within the area of signal defined by the user that reflects cells 

positive for EGFP and APC: where should the gating be defined on this plot? Is the black circle 

gate drawn onto Figure 17A a fair representation of this data? How can positive events be 

rigorously identified? Moreover, would two different users vary in assessment of positive 

events? A histogram of fluorescent signal distribution of cells expressing EGFP is shown in 
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Figure 17B; here, where should the user define positive events? Should the entire region above a 

certain threshold, as defined by the bar labeled R1, be used to score all positive EGFP events? 

Moreover, the situation becomes even more ambiguous when examining a mixed population of 

cells as depicted in Figure 17C. Here, the SSC values of a mixed population of bacterial and 

amoebae cells are shown in a histogram. How would an investigator define bacterial cells from 

protozoal cells? Can these two populations be realistically and effectively separated using this 

parameter? 

The sample data presented in Figure 17 illustrate the often arbitrary nature of flow 

cytometric data analysis using traditional methods. While these methods are appropriate and 

statistically valid for many forms of cytometric experiments that require only qualitative data, I 

believe they are woefully insufficient to examine relative ratios of multicolor-labeled bacteria in 

complex environments. Newer computational approaches to aid in the processing of more 

quantitative data are currently being developed, but these approaches still require exhaustive 

analytical processing time as they are based on traditional approaches to data analysis [254]. In 

this chapter, I address the challenges discussed above in terms of experimental design, data 

acquisition and data analysis with sufficient rigor to make possible multicolor microbial flow 

cytometry experiments. Without the technological advances achieved in this work, future 

experiments addressing the role of protozoan predation in the maintenance of rfb diversity in 

Salmonella are impossible.  
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Figure 17. Sample flow cytometric data output from Summit 4.3 software 
 

A. Sample bivariate dot plot of bacterial cells expressing EGFP and labeled with a fluorescent 
APC-emitting dye. Black circle represents sample gate. B. Sample histogram of EGFP signal of 
bacterial cells. C. Sample histogram of side scatter (SSC) of a mixed population of bacterial and 
amoebae cells. Figures obtained using Summit 4.3 software. 
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4.2 MATERIALS AND METHODS 

4.2.1 Plasmids, strains and growth conditions 

Bacterial strains containing fluorescent plasmids were routinely propagated on LB agar and 

liquid media containing ampicillin at a final concentration of 100-200 µg/mL. Plasmids pEGFP 

[60, 122], pEYFP [247], pECFP [60, 121-122, 221, 397], and pDsRed-Express2 [342] were 

commercially obtained (Clontech, Mountain View, CA) and electroporated into Salmonella 

serovar Typhimurium LT2 using protocols discussed in Chapter 2.2.5. Plasmid pRSET/BFP 

[221] was obtained from Invitrogen (Carlsbad, CA). Plasmid pBAD-mKalama1 [1] was obtained 

from Addgene (Cambridge, MA). All PCR, restriction digests, ligations, and cloning procedures 

were performed using well-established protocols [9]. DNA modifying enzymes were obtained 

from New England Biolabs (Ipswich, MA) and Fermentas Inc. (Glen Burnie, MD). 

Plasmid pKAB2 was constructed by subcloning a fragment of the BFP gene from 

pRSET/BFP into plasmid pECFP using the multiple cloning sites contained within each plasmid; 

specifically, BsrGI ( 5' TꜜGTACA 3') and NcoI (5' CꜜCATGG 3'). Diagnostic restriction digests 

using the enzymes PvuII (5' CAGꜜCTG 3'), BsrGI, EaeI (5' YꜜGGCCR 3'), and BsgI (5' 

GTGCAG(N)16ꜜ 3') and sequencing were used to verify correct replacement off the ECFP gene 

with the BFP gene in pKAB2. Plasmid pKAB9 was constructed by subcloning a fragment of the 

mKalama1 gene into plasmid pEGFP using the BseRI (5' GAGGAG(N)10ꜜ 3') and BsrGI 

restriction sites. Verification of replacement of the EGFP fragment with the mKalama1 fragment 

was performed using diagnostic restriction digests with BstYI (5' RꜜGATCY 3') and Sau96I (5' 

GꜜGNCC 3').  
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To construct plasmids containing two fluorescent protein encoding (XFP) genes, high 

fidelity PCR was used to amplify the region encompassing the Plac promoter through the stop 

codon of EGFP, EYFP, ECFP and mKalama1 generating a fragment containing AatII (5' 

GACGTꜜC 3') and AscI (5' GGꜜCGCGCC 3') restriction sites at the 5' end and the AatII 

restriction site at the 3' end. These fragments and pEGFP, pEYFP, pECFP and pDsRed-Express2 

were cut with AatII and ligated. Desired orientation for the second site XFP as reverse in order to 

prevent transcriptional or translational bias from the first XFP; insert verification and orientation 

were determined using diagnostic restriction digests using FspI (5' TGCꜜGCA 3'). Plasmids are 

listed in Table 11. 
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Table 11. Plasmids containing two fluorescent protein encoding genes used for tagging 
Salmonella cells for flow cytometric analysis 

 

Plasmid Forward XFP Reverse XFP 

pKAB11 EGFP EYFP 

pKAB13 EGFP ECFP 

pKAB15 EGFP mKalama1 

pKAB19 EYFP ECFP 

pKAB21 EYFP mKalama1 

pKAB27 ECFP mKalama1 

pKAB35 DsRed-Express2 EGFP 

pKAB37 DsRed-Express2 EYFP 

pKAB39 DsRed-Express2 ECFP 

pKAB41 DsRed-Express2 mKalama1 
 

4.2.2 Preparation of cells for cytometric analysis 

Cells grown in liquid overnight culture were prepared for cytometric analysis with dilution to a 

final concentration of 107 cells/mL in Phosphate Buffered Saline (PBS) containing 0.02% 

Tween20 to reduce cell clumping. Cells grown on solid media were eluted from plates with PBS 

0.02% Tween20, filtered through a CellMicroSieve™ nylon mesh filter with a pore size of 5 µM 

(BioDesign of New York, Carmel, NY) to remove debris and protozoa and diluted to a final 

concentration of 107 cells/mL in PBS 0.02% Tween20. Prior to cytometric analysis, 50 nM of , 

SYTO™ 62 nucleic acid stain (Invitrogen, Carlsbad, CA) was added to samples to aid in the 

detection of bacterial cells from amoebae and debris. 
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4.2.3 Flow cytometry 

Events were acquired on a Beckman-Coulter CyAn ADP (Beckman-Coulter, Brea, CA) flow 

cytometer at a rate of <1000 events per second using a 0.3 neutral density filter. Events were 

triggered on the forward scatter parameter with a threshold of 0.8 and a gain of 30.0. Side scatter 

was measured at 659 volts with a gain of 10.0. Commercially available software (Summit 4.3, 

Dako Colorado Inc.) was used for the operation of the cytometer and to determine initial baseline 

compensation matrices.  

4.2.4 Development of Ferdinand, a flow cytometry data analysis program 

Ferdinand was developed by Dr. Jeffrey Lawrence, Department of Biological Sciences, 

University of Pittsburgh. 

4.3 ADDRESSING THE CHALLENGES OF EXPERIMENTAL DESIGN 

A Beckman-Coulter CyAn ADP cytometer at the Flow Cytometry Core Facility at the Hillman 

University of Pittsburgh Cancer Institute was made available for use with microbiological 

samples. The CyAn ADP can measure up to nine colors using three different lasers (405 nm, 488 

nm, and 635 nm) and is capable of acquiring data at rates of up to 30,000 events per second. 

Here, I discuss the strategies I used to maximize the discrimination capacity of this cytometer for 

use with multiple fluorescently tagged Salmonella cells. These modifications were required to 

enable collection of high-quality data from bacterial populations eluted from solid media. 
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4.3.1 Addressing trade-offs in fluorescent protein selection  

While a highly diverse collection of fluorescent dyes and proteins are available for cell labeling, 

use of these labels is constrained by 1) brightness of the fluorescent label in a biological context 

relative to autofluorescence; 2) availability of lasers to excite these labels; 3) use of appropriate 

filters to channel fluorescence emission signals to the appropriate detectors and eliminating 

spectral overlap onto other detectors; and 4) constraints imposed by experimental approaches. To 

examine the fitness of Salmonella strains against protozoan predation using the CyAn cytometer, 

I must address the trade-off between choosing proteins that are a) excited by the 405/488/635 nm 

lasers of the CyAn and b) suitable for use with a variety of Salmonella strains. Signals of these 

labels have sufficient strength to enable their discrimination from the autofluorescence of 

Salmonella and from each other through the use of optical filters. Also, these labels must easily 

be introduced into strains without significant genetic manipulation requiring the use of multiple 

antibiotic resistance cassettes, as I nearly exhausted the spectrum of antibiotic resistance 

cassettes in Salmonella in constructing strains in which the presence and absence of major 

surface antigens is controlled. Finally, the labels must produce signals that are able to be 

cytometrically detected in the cells grown in the presence and absence of protozoan predators for 

up to four days at 33°C.  

I investigated the practicality of a palette of six different fluorescent proteins (BFP, 

mKalama1, EGFP, EYFP, ECFP, and DsRed-Express2) for use in Salmonella based on the 

excitation wavelengths of the lasers available on the CyAn and corresponding emissions of the 

proteins. With the exception of DsRed-Express2, all of the fluorescent proteins I examined are 

structural variants of green fluorescent protein, originally isolated from the jellyfish Aequorea 

victoria [323], having enhanced expression properties and different excitation and emission 
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spectra [1, 60, 121-122, 221, 247]. DsRed-Express2 is noncytotoxic variant of the original 

Discosoma DsRed protein with a faster maturation time designed for maximal expression in 

rapidly dividing organisms [342]. Theoretically, BFP, mKalama1 and ECFP should be excited 

by the 405 nm laser while EGFP, ECFP, EYFP and DsRed-Express2 should be excited by the 

488 nm laser (Figure 18); I chose to reserve the far-red 635 nm laser for additional fluorescent 

labels to discriminate Salmonella from debris and amoebae. Note that ECFP can be excited by 

both the 405 nm and 488 nm lasers; this is discussed later. 
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Figure 18. Excitation spectra for six fluorescent proteins 

A. Excitation spectra for ECFP, EGFP, EYFP, and DsRed-Express2 by the 488 nm laser.  
B. Excitation spectra for BFP, mKalama1, and ECFP by the 405 nm laser. Figures drawn using 
the BD Fluorescence Spectrum Viewer [29]. 
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I chose vector-based labeling of Salmonella cells with these fluorescent proteins 

expressed from the lactose operon promoter Plac in the high-copy number vector backbone 

pBR322 [31]. These tagging vectors are easily introduced into cells via electroporation, and the 

high-copy number vector backbone and constitutive expression of Plac in Salmonella should 

produce large amounts of fluorescent proteins with bright signals. Additionally, the pBR322 

vector backbone carries the ampicillin resistance cassette bla for selection; ampicillin was not 

used in construction of strains used to assess fitness against predation and is compatible with my 

strain construction strategy. Use of this vector tagging system provides a large degree of 

experimental flexibility over other tagging methods. 

In my experiments, cells must be fluorescently labeled prior to their use in competition 

tests, which is easily accomplished with the use of tagging vectors, as no practical manner to 

label cells post-competition exists. Fluorescent dyes are of little use in my experiments beyond 

labeling Salmonella cells to enable their separation from debris, as cells are mostly 

physiologically identical with the exception of surface antigens. Antibodies having enough 

specificity to discriminate among my collection of antigenically-diverse non-Typhimurium 

strains do not currently exist. Generation of antibodies with fluorescent conjugates is very 

expensive and is most likely impractical given that surface antigens are often the targets of 

antibodies; the presence and absence of major Salmonella surface antigens are experimentally 

controlled in the strains used to assess fitness against predation.  

Additionally, I require stable, bright signals from the fluorescent labels used in my 

experiments. Predation competition assays require three to four days of incubation at 33°C; 

fluorescent labels must have sufficient stability to permit cytometric detection of emitted signals 

after this period of incubation. Of the proteins that produce fluorescent signal visible to the 
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human eye, I found that the signal of these proteins as emitted from cells grown in both liquid 

and solid media remains visible for several days of growth.  

I electroporated Salmonella serovar Typhimurium LT2 with the tagging vectors pEGFP, 

pEYFP, pECFP, pDsRed-Express2, Vectors pKAB2 and pKAB9 contain BFP and mKalama1 

expressed from Plac in the pBR322 vector backbone, respectively. I determined the ability to 

detect signals from these proteins using overnight cultures of these strains. I was able to discern 

bright signals from all strains except for the strain tagged with pKAB2; the expected signal from 

this protein was not visible against the background autofluorescence of Salmonella. 

Theoretically, the emission spectrum of BFP indicates that this protein should have been excited 

by the 405 nm laser (Figure 18). However, the propensity for photobleaching and low quantum 

yield of BFP as compared to EGFP [356] led me to conclude that BFP was not appropriate for 

use in my experiments, leaving a total of five single colors with potential expansion to ten 

combinations of two colors each as a strain tagging scheme. 

4.3.2 Addressing trade-offs in fluorophore selection with appropriate optical filters  

The use of multiple fluorescent tags excited by the same laser allows access to larger number of 

flow cytometers; the trade-off lies in signal discrimination. Fluorescent proteins excited from the 

same laser can often have significant overlap in their respective emission spectra, producing 

signals that “spill-over,” or register false positive signals, into other detectors [316]. Because the 

emission signals of EGFP, EYFP, ECFP, mKalama1, and DsRed-Express2 have considerable 

amounts of spectral overlap (Figure 19), it is critical that I select optical filters that carefully 

balance the direction of signals to the appropriate detectors without significantly compromising 

signal strength and introducing unwanted signal spill over onto the detectors of other 
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fluorophores. For example, I needed to select filters to channel the EGFP signal onto its detector 

that minimized unwanted spill over of the EGFP signal onto the EYFP detector while 

simultaneously maximizing the amount of genuine signal channeled onto the EGFP detector. The 

filter scheme depicted in Figure 19 satisfies these requirements. Although the emission from 

ECFP is considerably lower on the 488 nm laser (Figure 19A) than from the 405 nm laser 

(Figure 19B), the spectral overlap from the mKalama1 emission signal is too close to that of 

ECFP as excited at 405 nm; only one protein can be excited from this laser. Thus, my design 

reflects a trade-off between being able to use mKalama1 with a drastically reduced ECFP signal 

as obtained from the 488 nm laser.  
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Figure 19. Emission spectra and optical filters for simultaneous detection of multiple 
fluorescent proteins 

 
A. Emission spectra for fluorescent proteins ECFP, EGFP, EYFP, and DsRed-Express2 as 
excited by the 488 nm laser. B. Emission spectra for fluorescent proteins mKalama1 and ECFP 
as excited by the 405 nm laser. Because the emission spectra for mKalama1 has significant 
overlap with that of ECFP as excited at 405 nm, ECFP must be excited using the 488 nm laser 
despite lower emission from this laser. Optical filters highlight the area of signal emission 
transmitted to the appropriate detector and are listed at the top of each spectra. Figures drawn 
using the BD Fluorescence Spectrum Viewer [29]. 
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4.3.3 Addressing trade-offs in signal strength 

The use of selective filters to discriminate among fluorophores with similar emissions spectra 

reduces the overall signal being detected. This limitation can be addressed by increasing the 

voltage of the appropriate detector, thus making the detectors more sensitive to emitted signal. In 

essence, this produces “brighter” emission signals through enhanced sensitivity in detection. A 

trade-off is introduced, however, in that brighter detector voltages increase spillover between 

optical detectors.  

I used cells of serovar Typhimurium LT2 strains tagged with pEGFP, pEYFP, pECFP, 

pKAB9, and pDsRed-Express2 grown in liquid overnight cultures to determine appropriate 

baseline detector voltages (Table 12). The APC detector was used to identify cells stained with 

the SYTO™ 62 nucleic acid dye and is unrelated to the fluorescent proteins used to tag cells. I 

used the principle of spillover coefficients to guide detector settings; the spillover coefficient 

reflects the spectral overlap of a fluorescent signal onto the detectors of other fluorescent signals 

that share similar emission spectra [12, 284-285]. The spillover coefficient for any given 

fluorescent signal is expressed as a percentage value reflecting the ratio of mean signal strength 

on incorrect detectors to mean signal strength on the correct detector [12, 284-285]. The spillover 

coefficient for any fluorophore should be less than 50% on the detectors specific for other 

fluorophores to ensure their optimum separation, which is what I observed (Table 13).  
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Table 12. Detector voltage settings for discrimination of emissions from five fluorescent 
proteins as expressed by cells grown in liquid culture 

 

Detector Voltage 

EGFP 600 

EYFP 573 

ECFP 625 

mKalama1 950 

DsRed-Express2 781 

APC/SYTO™ 62 950 
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Table 13. Spillover coefficients for emissions from five different fluorescent proteins as 
expressed by cells grown in liquid culture 

 

 Detector 

Signal EGFP EYFP ECFP mKalama1 DsRed-
Express2 

EGFP 1.00 0.40 0.01 0.02 0.07 

EYFP 0.39 1.00 0.00 0.00 0.23 

ECFP 0.10 0.14 1.00 0.07 0.05 

mKalama1 0.00 0.00 0.26 1.00 0.00 

DsRed-
Express2 0.02 0.09 0.00 0.01 1.00 
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4.4 ADDRESSING THE CHALLENGES OF DATA ACQUISITION 

Although I was able to select appropriate optical filters and voltage settings to permit the 

simultaneous discrimination of strong signals from five different fluorescent proteins, these 

conditions represent “ideal” signal expression. Cells used for the development of initial 

cytometer settings discussed above were grown separately overnight in well-aerated liquid 

cultures. The experimental conditions required to test fitness of Salmonella against protozoan 

predation are undoubtedly more complex than pure, saturated overnight cultures of cells. The 

competition tests proposed here involve incubating cells for several days on solid media in the 

presence and absence of amoebae, which influence signal strength. Thus, I needed to optimize 

microbiological and experimental conditions that a) permit maximal expression of fluorescent 

proteins after several days of incubation; and b) are conducive to the growth of both Salmonella 

and a diverse collection of amoebae. Additionally, I needed to further develop cytometric 

protocols and settings that maximize the cytometric discrimination capacity of cells grown under 

representative experimental conditions.  

4.4.1 Growth condition optimization for cells grown on solid media 

After baseline voltage settings were determined, modifications of these parameters were 

explored for cells used in protozoan predation competition experiments. Voltage determination 

using cells grown in liquid cultures represent optimal signal brightness; protozoan predation 

competition experiments require cells to be grown on solid media for 72-96 hours, leading to 

substantial loss in fluorescent signal brightness. Therefore, I used the voltage settings obtained 

under optimal conditions as a baseline upon which to build appropriate detection parameters for 
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experiments performed in complex environments. To explore these conditions, I grew liquid 

overnight cultures of strains of serovar Typhimurium LT2 KAB002 tagged with pDsRed-

Express2, pEGFP, pEYFP, pKAB9-mKalama1 and pECFP and diluted them in PBS to an OD600 

of ~1.00. I spread 100 µL of each strain onto NM-C plates; the centers of half of the plates were 

seeded with 104 Naegleria gruberi NL cysts. Plates were incubated for 84 hours at 33°C to 

permit predators to sweep the entire plate of bacteria, after which they were prepared for 

cytometric analysis. Because signals from cells grown on solid media for extended times were 

weaker than that of cells grown with aeration in liquid culture, I accordingly adjusted detector 

voltages (Table 14). Spillover coefficients among detectors were within appropriate ranges 

(Table 15). 
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Table 14. Detector voltage settings for discrimination of emissions from five fluorescent 
proteins from cells grown on NM-C solid media 

 

Detector Voltage 

EGFP 470 

EYFP 508 

ECFP 636 

mKalama1 880 

DsRed-Express2 565 

APC/SYTO™ 62 850 
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Table 15. Spillover coefficients for the emissions of five fluorescent proteins from cells 
grown on solid NM-C media 

 

 Detector 

Signal EGFP EYFP ECFP mKalama1 DsRed-
Express2 

EGFP 1.00 0.47 0.01 0.01 0.14 

EYFP 0.38 1.00 0.01 0.01 0.39 

ECFP 0.08 0.06 1.00 0.08 0.06 

mKalama1 0.27 0.08 0.49 1.00 0.09 

DsRed-
Express2 0.06 0.12 0.18 0.28 1.00 
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4.4.2 Addressing trade-offs in growth conditions 

While the use of fluorescent proteins avoided the tagging limitations imposed by strain-specific 

fluorescent antibodies or structure-specific dyes, fluorescent proteins require ready access to 

molecular oxygen for proper folding [356]. The requirement for access to molecular oxygen for 

fluorescent protein-tagged cells led to the introduction of an additional trade-off between media 

conditions that allow for optimal predator discrimination among prey and those that allow for 

optimal expression of fluorescent proteins.  

NM and NM-LG media were previously used to co-culture Salmonella and amoebae 

[386-387]. A variant formulation of NM containing 200 µg/mL ampicillin for vector selection 

and substituting 0.2% glycerol for glucose to permit expression of EGFP as driven by Plac was 

previously used to examine strains of Salmonella tagged with pEGFP in the presence of amoebae 

[385]. Also, the work of Wildschutte and Lawrence previously determined that the use of NM-

LG better supported growth of amoebae than NM [386]. However, none of the media 

formulations described above were designed to support intricate competition experiments 

requiring strains to express multiple fluorescent proteins and maintain the growth of natural 

isolates of amoebae. Thus, I determined the optimum growth medium formulation and cell 

density of starting inoculum to maximize fluorescent protein signals, produce uniform lawns of 

cells and support the growth of diverse amoebae.  

Using serovar Typhimurium LT2 KAB002 tagged with pDsRed-Express2 as a reporter 

strain, I first tested several formulations of growth media and density of starting inoculum for the 

ability to produce uniform lawns. I spread 100 µL of three different concentrations of an 

overnight culture onto NM 1.5% agar containing three different concentrations of glycerol. NM 

1.5% agar was supplemented with high (1X or 0.2%), medium (0.7X or 0.14%), or low (0.1X or 
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0.02%) concentrations of glycerol. Starting cell densities were measured as OD600 values of high 

(1X or ~1.4), medium (0.7X or ~1.0), or low (0.1X or ~0.2). Cells were eluted from the plate and 

analyzed on the flow cytometer to determine the strength of the fluorescent signals.  

Interestingly, I generally observed that conditions that favor bacterial cell growth (higher 

glycerol concentration and increased density of starting inoculum) tended to produce two 

populations of cells with slightly different signal strengths, indicated by deviations from a 

normal Gaussian distribution (Figures 20-22). Figure 20 depicts different cell densities of 

starting inoculum when plated to media containing high glycerol; while I observed thick, 

uniform bacterial lawns that are ideal for predation experiments, these plates contained visible 

areas of cell growth having dimmer signal than those on other areas of plates (Figure 20AB). 

When assessed by cytometry, cells grown under high glycerol conditions produced what appears 

to be two populations of cells; this is best illustrated in the “tails” at the lower end of the signal 

distribution (Figure 20AB). Cells grown under moderate glycerol concentrations tended to 

display very strong signals as visually assessed (Figure 21). However, plates with high density of 

starting inoculum also displayed visible regions on plates of cells having dimmed signal (Figure 

22A). When assessed by cytometry, cells grown under moderate glycerol concentrations 

produced signals having varying degrees of deviations from normal Gaussian distributions 

(Figure 22).  Conditions that least favor bacterial cell growth (lower glycerol concentration and 

decreased density of starting inoculum) tended to produce more uniform signal distributions 

(Figures 20-22), but a trade-off was introduced in terms of production of a uniform bacterial 

lawn suitable for protozoan predation experiments. Cells grown on low glycerol produced more 

uniform signal distributions (Figure 22), with cells grown under conditions of low glycerol and 

moderate density of starting inoculum produced the best normal Gaussian signal distribution of 
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all conditions (Figure 22B). However, these conditions also produced the most non-uniformly 

distributed lawns of bacteria; single colonies are visible in portions of the plates (Figure 22). 

Starting inoculum of low cell density across all glycerol concentrations (Figures 20C, 21C and 

22C) did not produce uniform lawns of bacteria; these lawns were very thin and often displayed 

areas of single colonies. Regardless of signal, low concentration of starting inoculum is 

inappropriate for use in predation experiments. Moderate glycerol concentration and density of 

starting inoculum appear to best address the trade-off between cell lawn uniformity and adequate 

signal strength (Figure 21B).  
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Figure 20. DsRed-Express2 expression in cells grown on solid NM-C media with 0.2% 
glycerol 

 
A. High density of starting inoculum (OD600 ~ 1.4). B. Moderate density of starting inoculum 
(OD600 ~ 1.0). C. Low density of starting inoculum (OD600 ~ 0.7). 
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Figure 21. DsRed-Express2 expression in cells grown on solid NM-C media with 0.14% 
glycerol 

 
A. High density of starting inoculum (OD600 ~ 1.4). B. Moderate density of starting inoculum 
(OD600 ~ 1.0). C. Low density of starting inoculum (OD600 ~ 0.7). 
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Figure 22. DsRed-Express2 expression in cells grown on solid NM-C media with 0.01% 
glycerol 

 
A. High density of starting inoculum (OD600 ~ 1.4). B. Moderate density of starting inoculum 
(OD600 ~ 1.0). C. Low density of starting inoculum (OD600 ~ 0.7). 
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Expression of Plac is constitutive in Salmonella; nutrient deprivation should cause 

upregulation of this promoter, resulting in greater expression of the fluorescent proteins. Thus, I 

do not think that lack of nutrients resulting from higher cell density is responsible for the 

dampened signal both visibly and cytometrically observed on plates with high glycerol 

concentration and density of starting inocula. However, the fluorescent proteins used in this 

assay require oxygen for proper folding; differences in oxygen availability in thicker cell lawns 

can explain the differences in signal strength I observed on plates with conditions favoring 

bacterial growth. Adequate predation competition experiments require bacterial cell lawns of 

uniform density and signal strength. Therefore, I developed NM-Cytometry media, or NM-C, for 

use with fluorescently-tagged cells: 15.5 mM potassium phosphate pH 7.5; 0.2% peptone; 0.1% 

glycerol; 1.5% agar). I found that using starting inoculum with OD600 values of ~1.00 on NM-C 

media produced uniform lawns without sacrificing signal quality. I was able to propagate seven 

different amoebae successfully using these growth conditions, highlighting the utility of NM-C 

media for a variety of protozoan predation experiments (Table 16). 
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Table 16. Amoebae successfully propagated on nutrient media for cytometry (NM-C) 

 

Amoeba 
 

Source 
 

Acanthamoeba polyphaga I Pondwater [387] 

  

Acanthamoeba sp. R2-1 Red-eared slider (Trachemys scripta) [386] 

  

Hartmannella sp. T3-1 Bullfrog tadpole (Rana catesbeiana) [387] 

  

Naegleria gruberi NL Laboratory strain 

  

Naegleria sp. F1-27 Goldfish (Cassius auratus auratus) [386] 

  

Tetramitus sp. BD1-1 Juvenile bearded dragon (Pogona barbata) 
[386] 

  

Tetramitus sp. F1-15 Goldfish (C. auratus auratus) [386] 
 

 

 

 

 

 

 



146 

4.5 ADDRESSING THE CHALLENGES OF DATA ANALYSIS IN MULTICOLOR 

FLOW CYTOMETRY 

Flow cytometry does not result in the unambiguous identification of different classes of cells; 

rather, the light-scattering and fluorescence properties of cells are recorded and users must 

evaluate these data to discriminate among cell- and non-cell-initiated events. A number of 

challenges were presented that are addressed herein. To accomplish this, I developed a novel 

program for the import and analysis of flow cytometric data. This program, Ferdinand, integrates 

the three tasks using cytometric data: a) the import and collation of data files generated by flow 

cytometers, b) the robust enumeration of the number and character of fluorescent cells, and c) the 

calculation of fitness values among genotypes based on these data. The sole scientific issue 

associated with the first function is that data are pooled from multiple replicate experiments so 

that the replicate number is retained; this allows the examination of variability among replicates. 

The last point will be discussed in later chapters. Here I discuss the innovations required to 

enumerate fluorescent cells accurately.  

4.5.1 Addressing overlap in emissions spectra 

The use of fluorescent proteins excited by the same laser results in substantial overlap in their 

emissions spectra. While the use of wavelength selective filters will maximize the light being 

directed to optical detectors dedicated for a specific fluorescent protein, spillover between 

detectors cannot be eliminated using filters alone as the emissions spectra of fluorescent proteins 

is quite broad (see Figure 19).  
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The problem of spectral overlap is solved with compensation, or the process of removing 

the false positive spill-over signals of other fluorescent signals from the detector of interest [12, 

284-285]. For example, I may dedicate an optical detector with a 510 ± 20 nm filter as 

registering fluorescence from EGFP; however, light from EYFP will also be captured by this 

detector. Therefore, the total signal registered on a EGFP detector reflects input from both EGFP 

and EYFP. Considering five detectors and a system of five fluorophores, I deconvolute these 

signals as: 

 R = M*A 

where R is the 1x5 matrix of raw signal detected, A is the 1x5 matrix of actual signal produced, 

and M is the 5x5 compensation matrix indicating the degree to which each fluorophore registers 

on each detector. Individual values are determined using control cultures bearing single 

fluorophores and noting the magnitude of signal on non-dedicated detectors. Compensation 

values are chosen so that signal on these detectors is less 10. I then solve for the actual signal 

produced by each fluorophore by simple linear algebra: 

 M-1*R = M-1 *M * * = A 

The process of proper signal compensation for complex cultures comprises three steps. First, a 

compensation matrix is deduced as above for cells grown in liquid media; this is the least 

complex mixture of events and allows for initial compensation values to be determined with 

accuracy.  

Cells grown overnight in liquid culture consistently yielded the strongest fluorescent 

signals relative to other growth conditions, but noise was consistently lower than that of cells 

grown on solid media for several days. Thus, a compensation matrix was produced that reflected 

these experimental conditions. Compensation values were deduced by examining cells bearing a 
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single fluorescent protein, and removing the contribution of this protein from optical detectors 

dedicated to other fluorophores (Table 17).  
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Table 17. Compensation matrix for single fluorescent protein-tagged cells grown in liquid 
culture 

 

 Signal Compensation 

Detector EGFP EYFP ECFP mKalama1 DsRed-
Express2 

EGFP 100.00 38.8 0.00 0.00 0.00 

EYFP 48.45 100.00 6.42 0.00 0.00 

ECFP 1.16 0.00 100.00 0.00 0.00 

mKalama1 0.00 0.00 0.00 100.00 0.00 

DsRed-
Express2 8.94 23.85 0.00 0.00 100.00 
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Second, this matrix is altered for use with cells grown for 72-96 hours on solid media, 

either in the presence (Table 18) or absence of predators (Table 19). Not surprisingly, 

fluorescence from these cells is weaker than that from cells grown overnight on liquid media. 

Thus, it is necessary to accordingly adjust compensation values for these experiments. The initial 

compensation matrix deduced above provides an excellent starting point; deducing a 

compensation matrix de novo using plate-generated data is difficult as the number of events 

attributable to noise is far higher, obfuscating genuine data points. 
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Table 18. Compensation matrix for single fluorescent protein-tagged cells grown on solid 
media in the absence of protozoan predators 

 

 Signal Compensation 

Detector EGFP EYFP ECFP mKalama1 DsRed-
Express2 

EGFP 100.00 43.11 0.00 0.00 0.00 

EYFP 44.26 100.00 0.00 0.00 4.30 

ECFP 3.61 0.03 100.00 71.13 1.10 

mKalama1 3.76 0.00 0.00 100.00 0.00 

DsRed-
Express2 12.85 38.16 0.00 0.00 100.00 
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Table 19. Compensation matrix for single fluorescent protein-tagged cells grown on solid 
media in the presence of protozoan predators 

 

 Signal Compensation 

Detector EGFP EYFP ECFP mKalama1 DsRed-
Express2 

EGFP 100.00 45.31 0.00 0.00 0.59 

EYFP 36.75 100.00 0.00 0.00 2.83 

ECFP 11.45 9.27 100.00 81.67 1.21 

mKalama1 11.45 6.02 0.00 100.00 1.60 

DsRed-
Express2 15.03 42.21 0.00 0.00 100.00 
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Lastly, the compensation matrix must be adjusted for use in doubly-labeled cells. After 

proper compensation, one would expect the strength of a GFP-labeled cell to be identical among 

population doubly-labeled with GFP and another fluorophore. Difference in the relative GFP 

intensity among these classes would reflect imbalances in the compensation matrix. It was at this 

step that a weakness in traditional flow cytometry methods was uncovered. Despite my best 

efforts, the compensation matrix deduced using the Summit program failed to resolve the 

individual signals in doubly-labeled cells. That is, raw signals on all five fluorescent detectors 

could not be deconvoluted reliably into only two signals from the known fluorescent proteins. 

Rather, multiple signals were predicted, which did not reflect the composition of my cells. 

This weakness is attributable to two sources. First, the compensation matrix plays the 

central role in separating raw signal captured by each detector into predicted actual originating 

from fluorescent proteins; even subtle imbalance in this matrix will lead to a failure in predicting 

genuine fluorescence. Second, there is no correction for the autofluorescence of the sample. 

Genuine signal is predicted solely from the raw signal and the compensation matrix; thus the 

relative contribution of autofluorescence varies between weak and strong raw signals. This 

variable contribution would require either separate compensation matrices for weak and strong 

signals, or correction for autofluorescence before matrix deconvolution. 

I took a more rigorous approach to the construction of the compensation matrix. First I 

examined fluorescent signal from unlabeled cells to estimate autofluorescence under each 

experimental growth condition. Next, rather than proceeding individually through each detector 

on Summit and eliminated perceived spillover, I used Ferdinand to calculate spillover directly 

after having eliminated the contribution of baseline autofluorescence (Table 20). This resulted in 

compensation matrices that were subtly different from those calculated using Summit (Table 21). 
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These small differences translated into vast improvements in the prediction of genuine signal; in 

general, fluorescent events had two major fluorescent contributors, and the fluorescence from 

other sources was minimized. 
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Table 20. Compensation matrix for double-fluorescent protein tagged cells grown on solid 
NM-C media obtained using Ferdinand 

 

 Signal Compensation 

Detector EGFP EYFP ECFP mKalama1 DsRed-
Express2 

EGFP 100.00 35.49 2.22 0.20 0.24 

EYFP 47.52 100.00 0.99 0.01 4.45 

ECFP 0.19 0.23 100.00 35.08 0.16 

mKalama1 1.51 0.77 4.70 100.00 0.00 

DsRed-
Express2 15.14 43.81 1.92 0.61 100.00 
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Table 21. Compensation matrix for double-fluorescent protein tagged cells grown on solid 
NM-C media obtained using Summit 4.3 

 

 Signal Compensation 

Detector EGFP EYFP ECFP mKalama1 DsRed-
Express2 

EGFP 100.00 42.00 0.00 0.00 0.00 

EYFP 41.00 100.00 0.00 0.00 0.00 

ECFP 0.00 0.00 100.00 40.5 0.00 

mKalama1 0.00 0.00 0.00 100.00 0.00 

DsRed-
Express2 8.50 51.20 0.00 0.00 100.00 
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4.5.2 Sorting fluorescent cells into classes: The failure of threshold methods 

Despite the care taken to increase signal strength, to isolate each fluorophore’s emissions onto 

dedicated optical detectors, to minimize spillover and to deconvolute magnitude of emitted light 

from the values recorded on detectors, the data provided from flow cytometers are not easily 

translated into unambiguous sorting of events into classes of fluorescent cells. First a great 

number of events originate from debris, including dead cells, amoebae and fragments of agar. 

These events are problematic in that they can show autofluorescence, or may contain bound 

fluorescent proteins (e.g., a protein aggregate). Others represent clumps of bacterial cells 

preventing unambiguous classification. As described above, many of these events can be 

eliminated from consideration by using spectrophotometric properties of the events, such as 

pulse width (PW), side scatter (SSC) or the amount of DNA present (measured by binding the 

SYTO™ 62 APC fluorescent stain). 

When all of these events are removed, one can then consider the strength of fluorescent 

signal present on each dedicated detector after signals have been compensated for spillover. If 

one follows conventional practice, then events registering above that of autofluorescence on 

fluorescent scales (where 104 units is the maximum possible for an optical detector) are scored as 

positive events [316]; in this case, the autofluorescence of Salmonella consistently registered 

below 10 units on all detectors. This approach is satisfactory when one is solely interested in 

presence/absence measures but is severely problematic when careful measurements of the 

relative abundance of different fluorophores are being collected. As illustrated in Figure 17 

located at the beginning of this chapter, two critical problems are illustrated in Figure 21; here, a 

mixture of five cell types – each labeled with a single, distinct fluorophore – is being analyzed. 

First, it is clear that a simple threshold does not separate clear positives from clear negatives; 
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values of compensated signal strength show a continuous range of values (Figure 21); for some 

fluorophores (e.g., ECFP in Figure 21E), signal is much closer to the arbitrary threshold of 10; 

my experimental design must accommodate situations in which fluorescent signals are weaker. 

Thus, I must have a valid way of discriminating signal within a range of values that are very 

likely to represent positive events, while in others it does not. In this example, standard threshold 

analyses failed to accurately classify collected data. Here, only single color-tagged cells were 

analyzed; threshold methods identified double and triple-color events that did not exist in this 

data set (Table 22). 
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Figure 23. Histograms of compensated fluorescent signal from a mixture of five Salmonella 
cells each tagged with a unique fluorescent protein 

 
A. EGFP. B. EYFP. C. DsRed-Express2. D. mKalama1. E. ECFP. Black curves indicate 
Gaussian distributions fit to peaks using Ferdinand. 
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Table 22. Simple threshold methods of data analysis fail to resolve single-fluorescent tag 
data 

 
G = EGFP; Y = EYFP; R = DsRed-Express2; K = mKalama1; C = ECFP. Dashed lines indicate 
the absence of event counts classified into a given fluorescent category. 

 

Category Total Replicate 
1 2 3 4 5 6 

Unclassified 77652 16196 12464 14340 14795 11848 8009 
G---- 81050 12678 18025 11891 9454 11951 17051 
-Y--- 14935 2810 2575 2340 2269 2145 2796 
--R-- 2418 386 332 365 351 361 623 
---K- 4116 452 480 655 587 697 1245 
----C 90403 13897 15515 14647 11795 14281 20268 
GY--- 6650 748 1021 1116 844 1250 1671 
G-R-- 280 60 70 35 19 46 50 
G--K- 479 68 72 85 51 73 130 
G---C 3199 647 820 455 341 414 522 
-YR-- 629 106 102 108 93 86 134 
-Y-K- 36 8 6 5 6 2 9 
-Y--C 283 64 57 44 26 39 53 
--RK- 14 3 3 1 2 3 2 
--R-C 172 43 33 23 15 21 37 
---KC 2484 247 267 342 269 399 960 
GYR-- 57 17 14 6 5 4 11 
GY-K- 81 3 9 21 7 15 26 
GY--C 14 1 3 5 2 1 2 
G-RK- 3 0 1 1 1 0 0 
G-R-C 5 2 1 1 0 1 0 
G--KC 63 5 10 9 6 12 21 
-YRK- 0 0 0 0 0 0 0 
-YR-C 3 0 0 0 1 0 2 
-Y-KC 7 1 0 1 1 3 1 
--RKC 4 0 0 2 0 1 1 
GYRK- 0 0 0 0 0 0 0 
GYR-C 0 0 0 0 0 0 0 
GY-KC 0 0 0 0 0 0 0 
G-RKC 0 0 0 0 0 0 0 
-YRKC 0 0 0 0 0 0 0 
GYRKC 0 0 0 0 0 0 0 
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4.5.3 Z-gating: a robust approach to classification of fluorescent events 

To address these issues, I took advantage of the distribution of signal strength supplied from a 

fluorescent signal source. Inspection of Figure 23 shows that variation in genuine signal strength 

follows a Gaussian distribution; weak signal events represent autofluorescent particles or signal 

from other fluorophores that has remained detectable after compensation. To estimate the 

relative abundance of different fluorophores, I estimated the mean and variance of these 

distributions (Table 23); this was accomplished by minimizing the sum of squared deviations for 

a Gaussian distribution, assessing fit across a standard window. For example, in Figure 23A, I 

optimized the curve fit between µ-0.9σ and µ+0.9σ. Because the mean and deviation of the 

curves can be derived using Ferdinand, Z-scoring thresholds can be appropriately set to permit 

rigorous examination of data, addressing the issues of data classification using bivariate gating 

discussed earlier in Chapter 4.1.3 (see Figure 17 for an example). 
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Table 23. Mean and deviations of curves fit to Gaussian distributions of fluorescent signals 
from Figure 23 

 

Peak Mean Deviation 

EGFP 2.6959 0.1917 

EYFP 2.6125 0.2230 

DsRed-Express2 2.4369 0.1862 

mKalama1 2.4128 0.3394 

ECFP 1.7359 0.2749 
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Establishment of curve fits to Gaussian distributions of fluorescent class events were used 

to establish Z-scoring thresholds used to classify genuine fluorescent events from noise. To 

identify appropriate minimum and maximum Z-scoring thresholds for data classification, I 

altered both the minimum (under constant maximum Z-score) and the maximum (under constant 

minimum Z-score) Z-score thresholds used to seed the automated curve-fitting function in 

Ferdinand and examined the p values obtained using the χ2 goodness-of-fit test along the Z-score 

explorations for a sample data set containing cells labeled with five different fluorescent proteins 

(Figure 24). The χ2 goodness-of-fit test was used to determine the statistical significance between 

the observed number of data points and that predicted by the Gaussian distribution for each 

fluorescent class. Ideally, properly-fit curves having appropriate Z-scoring thresholds will have 

χ2 p values indicating an insignificant difference between the observed number of data points and 

that predicted by the Gaussian distribution determined using Ferdinand. The fit between the 

Gaussian distribution and the underlying data was evaluated only between the minimum (Figure 

24AB) and maximum Z-values (Figure 24C).  

As shown in Figure 24A, minimum Z-score thresholds below -1.0 yielded curves having 

unacceptably low p values; goodness-of-fit χ2 p values greater than 10-3 were considered 

appropriate due to the large sample size of data classes. Figure 24B depicts a zoomed-in inset of 

Figure 24A showing the region bounded by minimum Z-scores of -3.0 to -1.0 with p values 

ranging from 0.0 to 0.1. Here, the curve fit to the ECFP fluorescent class distribution did not 

have an insignificant p value until reaching a minimum Z-score threshold of -1.0. Additionally, I 

established an appropriate maximum Z-score threshold of 1.5 for curves fit to all fluorescent 

classes (Figure 24C). Particularly for curves fit to classes EGFP and ECFP, p values dropped 

into the significant range between maximum Z-score thresholds of +1.5 and +2.0, although other 
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curves remained more stable for maximum Z-scores up to +2.5. Thus, I chose Z-scoring 

thresholds of -1.0 to +1.5 to robustly classify events into proper fluorescent classes. 
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Figure 24. Variation of minimum and maximum Z-scores affects the goodness-of-fit of 
curves fit to Gaussian distributions of five fluorescent signal classes as measured by χ2 p 
values on a sample data set 

 
Goodness-of fit χ2 p values were obtained by altering both the minimum (under constant 
maximum Z-score) and the maximum (under constant minimum Z-score) Z-score thresholds 
used to seed the automated curve-fitting function in Ferdinand. A. χ2 p values for curves varying 
the minimum Z-score threshold under constant maximum Z-score of 1.5 for a sample data set. 
Dashed line indicates area of zoom for Figure 24B. B. Inset of Figure 24A as indicated by 
dashed line. χ2 p values for curves varying the minimum Z-score threshold under constant 
maximum Z-score of 1.5 for a sample data set. C. χ2 p values for curves varying the maximum 
Z-score threshold under constant minimum Z-score of -1.0 for a sample data set.  
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Relative abundance of fluorescence classes as assessed using Z-gating thresholds 

remained stable (Figure 25AB). Here, ratios of each fluorescent class were determined varying 

the maximum Z-score while holding the minimum Z-score constant (Figure 25A) and varying 

the minimum Z-score while holding the maximum Z-score constant (Figure 25B). In both cases, 

changes in Z-gating thresholds did not substantially change the relative abundance of fluorescent 

classes. Only when Z-threshold lie at the extreme tails of the Gaussian distribution (less than -

3.0) does noise begin affect event classification. However, the DsRed-Express2 and mKalama1 

fluorescent classes were found in relatively low abundance in the data presented in Figure 25. 

For fluorescent classes containing low ratios of counts, it is extremely critical to choose proper 

Z-scoring thresholds that provide the most robust classification of data to identify the genuine 

hierarchy of fluorescent class events. Improper classification of noise events into these 

fluorescent classes may disproportionately impact classes with low counts in experiments. Thus, 

the minimum and maximum Z-score thresholds as determined in Figure 24 provide the best 

parameters for rigorous data classification. 
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Figure 25. Z-scoring values do not substantially impact measurement of fluorescent class 
ratios for a sample five-color mixture of cells 

 
A. Fluorescent class ratio as a function of maximum Z-score when minimum Z-score is held 
constant to a value of - 1.5. B. Fluorescent class ratio as a function of minimum Z-score when 
maximum Z-score is held constant to a value of +1.5.  
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After optimal fits were acquired, I determined the Z-value for each event’s signal on each 

detector and used this information to classify events on a sample five-fluorescent class data set 

(Table 24). Thus the problem of an arbitrary threshold has been eliminated by expressing the 

signal on each detector as a function of the population of positive events themselves. For cells 

bearing single fluorophores, it is classified by the strongest Z-value, assuming it exceeds a 

specified threshold. For cells bearing two fluorophores, it is classified by the two strongest Z-

scores. A single-color example is shown in Table 24; here, threshold methods failed to classify 

events that are easily assigned classes by the Z-gating approach (Table 22). 
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Table 24. Z-scoring methods resolve classification ambiguities encountered using 
traditional threshold scoring 

 
The Z-scoring approach was used to score classes of data represented in Figure 23; miscalls of 
double and triple-color events were sorted into appropriate single color classes. 

 

Class Total 
Replicate 

1 2 3 4 5 6 

Unclassified 136045 30319 25420 23245 23632 19715 13714 

G---- 54936 5054 10435 8297 5912 9082 16156 

-Y--- 12266 2040 2151 1876 1773 1763 2663 

--R-- 2009 255 270 279 271 307 627 

---K- 4517 367 439 627 510 751 1823 

----C 75264 10407 13165 12174 8842 12035 18641 
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While this approach is robust, it depends on proper fitting of the distribution of signal 

strength to a Gaussian distribution. For this to be accomplished, the data must satisfy several 

criteria. First, a large number of true positive events must be collected. Second, compensation 

must be accurate so that spillover does not occlude the distribution of true signal. Third, 

compensation matrices for doubly-labeled cells must be balanced so that the distribution of 

specific signals from different doubly-tagged cells is congruent. That is, compensation of EGFP 

signal from EGFP+ECFP and EGFP+EYFP doubly labeled cells must be balanced so that the 

mean and variance of these distributions is identical; otherwise, an accurate fit to the Gaussian 

distribution cannot be accomplished.  

4.5.4 Testing the Z-gating approach  

I tested this approach on mixtures of singly-labeled cells. Series of mixes were created which 

lacked particular fluorophores. These mixtures were analyzed and the events were sorted into 

fluorescence classes by traditional threshold means and by the Z-gating approach. As seen in 

Table 25, the Z-gating approach yielded very clean data, with very low numbers events being 

improperly placed into fluorescent classes which were not included in the experiment.  
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Table 25. Z-scoring methods appropriately classify events in single-color dropout mixes 

Single fluorescent tagged Salmonella cells were grown in overnight liquid cultures and mixed in 
approximately equal ratios to create a mixture of all five colors and mixtures in which one color 
was missing. Classifications were determined using the Z-scoring approach in Ferdinand. 

 

 
Strain Mix Counts 

All colors No EGFP No EYFP No ECFP No 
mKalama1 

No DsRed-
Express2 

EGFP 38950 1 12891 31028 18707 32771 

EYFP 7821 11612 2 6498 3492 6809 

ECFP 7574 9572 2475 0 2385 5578 

mKalama1 33289 41584 14561 23004 2 24143 

DsRed-
Express2 16724 22686 8307 12766 6284 0 
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5.0  O-ANTIGEN CHAIN LENGTH INFLUENCES SALMONELLA FITNESS 

AGAINST PROTOZOAN PREDATION 

As discussed above, previous work established that amoebae could discriminate among different 

serovars of Salmonella [387]; predators are differentially distributed in the environment [386-

387]; and predators in any given environment shared feeding preferences [386]. In addition, 

genetic variability at the Salmonella rfb locus could not be explained by conventional immune 

selection models [43]. These data establish the plausibility of amoebae predators as mediators of 

genetic diversity at the Salmonella rfb locus, but they fall short of attributing discrimination of 

Salmonella by amoebae to the O-antigen. In this chapter, I employ the techniques detailed in 

Chapter 4 to directly test if fitness against protozoan predation is influenced by O-antigen 

identity.  

Previously, significant limitations in genetic manipulation techniques prevented the 

exploration of the full scope of antigenic diversity within S. enterica Subspecies I. Thus, fitness 

against protozoan predation was only assessed for three rfb near-isogenic strains, effectively 

representing two different O-antigen serotypes, against two genetically distinct amoebae [387]. 

Although this work showed fitness differences for these near-isogenic strains against predation 

[387], the small size of the data set only enables the conclusion that prey discrimination can be 

affected by the O-antigen. Moreover, these experiments did not control for the presence or 

absence of the H-antigen. Because the H-antigen is a major Salmonella cell surface antigen, I 
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cannot discount the possibility that it may influence fitness against predation. Based on this 

information alone, I was unable to definitively conclude that the O-antigen is the major 

Salmonella cell surface antigen impacting fitness against protozoan predation.  

The crude nature of assays used previously to determine fitness against predation was 

also a significant limitation to a more comprehensive test of the protozoan predation hypothesis. 

Relative fitness hierarchies of Salmonella strains against predation had to be inferred from a 

large series of pairwise competition tests, as the methodology for assessing fitness only permitted 

simultaneous competition of two strains [387]. A more rigorous relative fitness hierarchy of 

strains can be established by performing simultaneous competitions of all strains in a given set in 

the presence and absence of amoebae predators. This approach requires gathering very large sets 

of data, given the breadth of antigenic diversity within Salmonella; line tests as performed 

previously and adapted for data collection as described in Chapter 3 are impractical for this 

purpose. Moreover, the need to compete strains at the same time requires a much more 

sophisticated approach to the tagging and discrimination of strains.  

I addressed the technical limitations of previous work by developing a genetic system for 

the manipulation of natural isolates of Salmonella described in Chapter 2, using this approach to 

construct the necessary suite of strains to establish that the O-antigen is a major influence on 

Salmonella fitness against protozoan predation as discussed in Chapter 3. To validate the 

hypothesis that the Salmonella rfb locus is under diversifying selection as mediated by the 

differential feeding preferences of grazing amoebae predators, I need to demonstrate that fitness 

changes on a two-fold gradient based on the identity of the O-antigen. However, using line tests 

to measure fitness are insufficient to address this issue; thus, I developed a new fitness assay 
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using flow cytometry as described in Chapter 4 to yield the more powerful data sets required to 

test the protozoan predation hypothesis. 

Here, I combine the technical advances described in Chapters 2 and 4 to further 

investigate the hypothesis that protozoan predation is driving diversifying selection on the 

Salmonella rfb locus. If this is true, then the O-antigen should be the major antigen contributing 

to Salmonella fitness against predation. Consequently, if the O-antigen is the major surface 

antigen affecting Salmonella fitness against predation, then strains that only vary in terms of O-

antigen chain length should be discriminated by protozoan predators. Thus, I used several of the 

rfb near-isogenic strains constructed in Chapter 3 to derive a collection of strains that only vary 

in terms of O-antigen chain length. Wild-type strains have a bimodal distribution of O-antigen 

chain lengths of 16-35 repeats and 100+ repeats [231-232]. Strains mutated at fepE display O-

antigen chain length classes of 16-35 repeats [231], while those mutated at wzzB display O-

antigen chain length classes of 1-16 repeats and 100+ repeats (potential bias for long O-antigens 

is due to variable expression of fepE) [17, 231]. Strains lacking functional forms of both the fepE 

and wzzB genes have O-antigens of 1-16 repeats [17, 231]. Mutation of the rfc gene results in the 

production of O-antigens having only one polysaccharide monomer [17]. Additional discussion 

on O-antigen biosynthesis and chain length is found in Chapters 1 and 2 and illustrated in Figure 

9. 

If the O-antigen is a major contributor to fitness against predation, then the amount of O-

antigen present on the outside surface of a cell must influence fitness against predation. Thus, I 

should observe differences in fitness against predation among strains that only vary in O-antigen 

chain length.  
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5.1 MATERIALS AND METHODS 

5.1.1 Media and growth conditions 

Bacterial strains were routinely propagated overnight at 37°C in LB broth and on agar media. 

Media was supplemented when necessary with ampicillin (200 µg/mL); chloramphenicol at 20 

μg/mL and at 10 μg/mL when used with ampicillin; kanamycin at 20 μg/mL and at 10 μg/mL 

when used with ampicillin; and tetracycline at 10 μg/mL and at 5 μg/mL when used with 

ampicillin. Amoebae used were isolated by Wildschutte and Lawrence [386] and were 

propagated according to the protocols discussed in Chapter 3.2.2. Predation competition 

experiments were conducted using NM-C media, described in Chapter 4.4.2. 

5.1.2 Strains  

Directed gene knockouts of genes involved in O-antigen polymerization (rfc) and regulation 

(wzzB and fepE) were performed as described in Chapter 2.2.5. Bacteriophage P1 was used to 

transduce these constructs into galE mutants of rfb isogenic strains (Chapters 2.2.3 and 3.2.3) 

(Table 26). Phage P1 was used to repair the galE mutation as described in Chapter 2.2.3. Strains 

were then made electrocompetent as described in Chapter 2.2.5 and transformed with plasmids 

pEGFP, pEYFP, pECFP, pDsRed-Express2, and pKAB9-mKalama1 (Chapter 4.2.1; Table 26). 
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Table 26. List of strains used to assess the contribution of O-antigen chain length to Salmonella fitness against predation 

Table continued on next page. 

 

Parent rfb Near-
Isogenic Strain 

O-
serotype 

O-antigen Chain 
Length Genotype 

Predicted 
O-antigen 

Chain Length 

Competition Series 1 Competition Series 2 

Fluorescent 
Tag Strain Fluorescent 

Tag Strain 

KAB081 
(SARB2) (3,10) Wild-type 16-35, 100+ EYFP KAB800 ECFP KAB801 

  wzzB-8771::aph 1-16, 100+ mKalama1 KAB802 EYFP KAB803 

  fepE-2910::tet 16-35 ECFP KAB804 DsRed-
Express2 KAB805 

  fepE-2910::tet wzzB-
8771::aph 1-16 DsRed-

Express2 KAB806 EGFP KAB807 

  rfc-1727::cat 1 EGFP KAB808 mKalama1 KAB809 

KAB082 
(SARB3) (1,4,12) Wild-type 16-35, 100+ EYFP KAB810 ECFP KAB811 

  wzzB-8771::aph 1-16, 100+ mKalama1 KAB812 EYFP KAB813 

  fepE-2910::tet 16-35 ECFP KAB814 DsRed-
Express2 KAB815 

  fepE-2910::tet wzzB-
8771::aph 1-16 DsRed-

Express2 KAB816 EGFP KAB817 

  rfc-1727::cat 1 EGFP KAB818 mKalama1 KAB819 
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Table 26 continued. List of strains used to assess the contribution of O-antigen chain length to Salmonella fitness against 
predation. Table continued on next page. 
 

Parent rfb Near-
Isogenic Strain 

O-
serotype 

O-antigen Chain 
Length Genotype 

Predicted 
O-antigen 

Chain Length 

Competition Series 1 Competition Series 2 

Fluorescent 
Tag Strain Fluorescent 

Tag Strain 

KAB084 
(SARB20) (8,20) Wild-type 16-35, 100+ EYFP KAB820 ECFP KAB821 

  wzzB-8771::aph 1-16, 100+ mKalama1 KAB822 EYFP KAB823 

  fepE-2910::tet 16-35 ECFP KAB824 DsRed-
Express2 KAB825 

  fepE-2910::tet wzzB-
8771::aph 1-16 DsRed-

Express2 KAB826 EGFP KAB827 

  rfc-1727::cat 1 EGFP KAB828 mKalama1 KAB829 

KAB086 
(SARB36) (6,8) Wild-type 16-35, 100+ EYFP KAB830 ECFP KAB831 

  wzzB-8771::aph 1-16, 100+ mKalama1 KAB832 DsRed-
Express2 KAB833 

  fepE-2910::tet 16-35 ECFP KAB834 EYFP KAB835 

  fepE-2910::tet wzzB-
8771::aph 1-16 DsRed-

Express2 KAB836 EGFP KAB837 

  rfc-1727::cat 1 EGFP KAB838 mKalama1 KAB839 
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Table 26 continued. List of strains used to assess the contribution of O-antigen chain length to Salmonella fitness against 
predation.  

 

Parent rfb Near-
Isogenic Strain 

O-
serotype 

O-antigen Chain 
Length Genotype 

Predicted O-
antigen Chain 

Length 

Competition Series 1 Competition Series 2 

Fluorescent 
Tag Strain Fluorescent 

Tag Strain 

KAB087 
(SARB52) (1,9,12) Wild-type 16-35, 100+ EYFP KAB840 ECFP KAB841 

  wzzB-8771::aph 1-16, 100+ mKalama1 KAB842 EYFP KAB843 

  fepE-2910::tet 16-35 ECFP KAB844 DsRed-
Express2 KAB845 

  fepE-2910::tet 
wzzB-8771::aph 1-16 DsRed-

Express2 KAB846 EGFP KAB847 

  rfc-1727::cat 1 EGFP KAB848 mKalama1 KAB849 
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5.1.3 Predation competition tests to measure fitness 

Two sets of reciprocally tagged strains were grown overnight in liquid LB supplemented with 

ampicillin at 200 µg/mL. Cells were pelleted with centrifugation and resuspended in PBS; 

following resuspension, cells were mixed in approximately equal ratios based on OD600 

measurements. OD600 measurements of final competition mixes ranged from 0.900 to 1.200; a 

100 µL aliquot of the competition mixture was spread onto NM-C plates supplemented with 

ampicillin at 200 µg/mL. For PREDATOR plates, the centers of fourteen plates were seeded with 

104 acid-base washed amoebae cysts; at least eight NO PREDATOR plates were set up for each 

experiment. Plates were incubated at 33°C for approximately 3.5 days to permit the feeding front 

of predation to reach the outer edges of the PREDATOR plates.  

A total of six NO PREDATOR and six to ten PREDATOR plates from each experiment were 

chosen for analysis. Plates were eluted with 5 mL of PBS with 0.02% Tween20 added to reduce 

cell clumping. To diminish the number of amoebae present in samples, the eluate was filtered 

through two 5 µM pore size overlayed CellMicroSieve™ biologically inert nylon mesh filters 

(Bio-Design Inc. of New York). All samples were diluted in PBS + 0.02% Tween20 to an 

approximate concentration of 107 cells/mL. 

5.1.4 Flow cytometry 

Prior to analysis, SYTO™ 62 nucleic acid dye (Invitrogen, Carlsbad, CA) was added to a final 

concentration of 50 nM to aid in the separation of Salmonella cells from debris and amoebae. 

Events were acquired on a Beckman-Coulter CyAn ADP (Beckman-Coulter) flow cytometer at a 
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rate of <1000 events per second. Filters and detector settings are listed in Chapter 4.X. 

Commercially available software (Summit 4.3, Dako Colorado Inc.) was used for the operation 

of the cytometer. Data analysis was performed using Ferdinand (developed in Chapter 4). 

5.1.5 Calculation of fitness values 

Events from replicate plates were pooled for analyses; plates which provided data that were 

significantly different from other plates’ data were discarded. Signal strength was compensated 

as described (Chapter 4) and Gaussian curves were fit to the distribution of compensated signal 

strength of each individual fluorophore (Chapter 4). Events were sorted into fluorescent cell 

classes by the Z-scoring algorithm, typically selecting events lying within 2 standard deviations 

of the mean compensated value for that fluorophore. The frequency of each cell class was 

calculated as the ratio of the observed number of cells in that class to the total number of cells in 

each fluorescent class; cells with signal strength outside the Z-scoring range were deemed 

unscored and ignored. 

As discussed above, strain fitness was calculated as the deviation in observed cell 

frequency (that on predator plates) from the expected frequency (no predator plates): 

 wS = Pobserved/Pexpected  

The fitness of any bacterial strain against predation (wS) is a function of both its genotype (wG) 

and its fluorophore (wF). The genotype affects fitness since different genotypes present different 

antigens; the fluorophore affects fitness since the longevity of the protein expression differs 

among fluorescent proteins; these differences affect one’s ability to detect them via flow 

cytometry. Since these factors are independent, I may express strain fitness as: 

 wS = wG * wF 
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Using logarithmic transformation, I can reduce a set of strain fitness values to a system of linear 

equations of the form: 

 Ln(wS) = Ln(wG) + Ln(wF) 

For clarity, I expressed log-transformed fitness values as w': 

 wS' = wG' + wF' 

To calculate both wG and wF, I performed two sets of fitness calculations; the reciprocally-tagged 

set of strains paired each genotype with a different fluorescent protein. Thus, I can eliminate 

fluorophore fitness from this system of equation by subtraction, as: 

 wS1' - wS2' = (wG1' + wF1') - (wG2' + wF1') = wG1' - wG2' 

where G1 and G2 represent the two different genotypes associated with fluorophore F1 in the 

two sets of strains. Thus the genotype fitness values can be expressed in terms of the observed 

strain fitness values as: 

 ∆W = M*WG 

where ∆W is the matrix of differences in strain fitness, WG is the matrix of genotype fitness 

values, and M is the matrix of coefficients noting the genotypes. For example: 

 

Thus, like the deconvolution of actual signal during compensation, I could solve for genotype 

fitness values (wG') by matrix inversion: 

M-1*∆W = M-1M*WG = WG 
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Two modifications made to this system of linear equation to allow deconvolution. First, 

the coefficient matrix M cannot be inverted since the array of linear equations does not have a 

unique solution. To circumvent this problem, I arbitrarily assign a fitness value of 1.0 (wG'=0) to 

one of the genotypes, thus creating a unique solution. Because fitness values are ultimately 

normalized, the results are identical regardless of which wG' value is initially set to zero. Second, 

even with this substitution, the equations often do not converge in N-dimensional space due to 

measurement error. That is, the measured strain fitness is better described as: 

 wS'= w '* wF' + ε 

where ε is measurement error. I assume equal error across all measurements and deconvolute 

genotype fitness values accordingly. 

To accommodate measurement error, this system of equations is solved by stepwise 

substitution. I may then solve for fluorophore fitness in each set of strains using their respective 

strain fitness (wS') and genotype fitness (wG') values. Final fluorophore fitness values are 

determined as the arithmetic mean of the two values. Final fitness values are determined by the 

reverse of the log transformation. 

Note that this method of calculating fitness differs from that used in other population 

genetic studies employing the simultaneous competition of strains in the same environment, such 

as a chemostat [72-73, 79, 344]. In these experiments, relative fitness of a genotype or phenotype 

is measured as a selection coefficient (s) reflecting the degree to which the fitness of one 

genotype/phenotype is less than that of a favored genotype/phenotype, where s ranges in value 

from 0 to 1, with s = 0 representing a relatively neutral genotype/phenotype ; s = -1 representing 

a beneficial genotype/phenotype and s = 1 representing complete lethality. Critically, s reflects a 

growth rate difference, as strains are competed; for example, the fitness of a mutation may be 
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evaluated by competing mutant and wild-type strains. The nature of these experiments prevents 

the direct measurement of fitness as s, as strains cannot be simultaneously competed in the 

presence and absence of protozoan predators. Thus, relative fitness must be calculated as 

differential susceptibility to predation.  

This approach to measuring fitness permits the deconvolution of genotype fitness from 

fluorescent tag fitness, although I cannot solve for any epistatic interaction between genotype 

and fluorescent tag. However, I do not have any biological evidence to suggest that epistatic 

interactions exist in my experimental design; there is no reason to suggest that the only factor 

that differs among strains, O-antigen chain length, will influence expression and folding of 

fluorescent proteins. Additionally, I must solve for fluorescent tag fitness in every experiment 

through the use of simultaneously performed reciprocal tag experiments rather than perform data 

corrections based on universal fluorescent fitness determinations from completion tests on strains 

that only vary in terms of fluorescent tag. In Chapter 4, I determined that environmental 

conditions such as cell density and nutrient concentration influence the signal from fluorescent 

proteins. Because I expect these and other environmental conditions to vary between 

experiments, I do not believe that applying a single fluorescent tag fitness correction is a fair 

analysis for the data collected here. 

5.1.6 Technical acknowledgements 

I designed all primers used to create and verify directed gene replacements of all strains listed in 

this chapter as well as engineer the rfb near-isogenic strain collection. Under my supervision, 

undergraduate researchers Ben Cross and Mark Brown constructed strains KAB800-849. 
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Ferdinand flow cytometry data analysis software was developed by Dr. Jeffrey Lawrence at the 

University of Pittsburgh.  

5.2 THE ROLE OF O-ANTIGEN CHAIN LENGTH IN SUSCEPTIBILITY TO 

PROTOZOAN PREDATION 

To test the hypothesis that amoebae recognize bacterial prey through interaction with their O-

antigens, I engineered a series of rfb near-isogenic strains of Salmonella that only varied in terms 

of O-antigen chain length (Table 26). As discussed in Chapter 2, wild-type strains have bimodal 

classes of O-antigen chain lengths, and mutant derivatives typically have much shorter chains. I 

predict that altering the chain length of the O-antigen will influence Salmonella fitness against 

predation. Critically, the nature of this influence should depend on the identity of the O-antigen 

monomers and the predator being examined. Several models can be used to explain the 

relationship between protozoan feeding preference and O-antigen identity.  

First, feeding preference may simply depend on how well the predator is able to bind the 

O-antigen, with most preferred strains representing O-antigens that are tightly bound by 

predators and least preferred strains representing more weakly bound O-antigens. In this case, 

shortening the length of the O-antigen should provide less substrate for amoebae binding, and 

thus I would expect universally shortening the amount of O-antigen present on the outside of the 

cell independent of antigen identity should increase fitness against predation. Second, the O-

antigen may be used by predators to actively indicate a food source; in this case, most preferred 

strains display O-antigens that predators recognize as “food” while least preferred strains display 

O-antigens that predators are less able to recognize as “food.” If this model is true, then I would 
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expect that shortening O-antigen chain length of highly preferred strains would increase fitness. 

Shortening the O-antigen chain length of lesser preferred strains may slightly improve or have no 

significant impact on fitness against predation depending on the nature of the relationship 

between amoebae and the O-antigen. Third, certain O-antigens may be actively avoided by 

predators; in this case, least preferred strains may possess O-antigens that amoebae avoid or 

recognize as “non-food.” If this model is true, then I would expect that shortening the O-antigen 

chain length of least preferred strains would actually decrease fitness against predation, as the 

cell would essentially lose the benefit of displaying an O-antigen that confers protection against 

predation. Conversely, any fitness effect of shortening the chain length of most preferred strains 

should be more complex depending on the nature of the predator-O-antigen relationship. It is 

important to note here that I did not expect one simple model to completely explain the 

relationship between amoebae and the Salmonella O-antigen. These experiments are intended to 

further test the hypothesis that selective pressure from protozoan predation drives diversifying 

selection at the Salmonella rfb locus as well as to further investigate the mechanism of how 

protozoan predators interact with the Salmonella O-antigen.  

To test these predictions, the series of rfb near-isogenic strains of Salmonella that only 

varied in terms of O-antigen chain length was challenged with the amoebae Naegleria gruberi 

NL, Acanthamoeba sp. R2-1, and Tetramitus sp. BD1-1. Competition experiments were 

performed by mixing fluorescently-tagged derivatives of the series of chain-length mutants and 

growing them in the presence or absence of predators. Relative cell abundance was measured by 

flow cytometry as described in Chapter 4. 

The results of one experiment are shown in Figure 26. Here, mutant derivatives of 

Salmonella enterica Typhimurium LT2 which a) bear the O-antigen region from SARB3 (1,4,12) 
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and b) have a series of mutations altering the length of this antigen are competed in the presence 

and absence of the predator Naegleria gruberi NL. Relative fitness of the strains is calculated by 

changes in relative abundance between no-predator and predator plates. The relative fitness 

among the strains varied significantly; when normalizing to a fitness of 1.0, the least-preferred 

strain was consumed approximately three-fold faster than the most-preferred strain, yielding a 

normalized strain fitness (wS) of 0.328. Additionally, error for fitness measurements were 

considerably low, with error rates typically less than 5.0% (Table 27); indicating the robustness 

of fitness. 
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Figure 26. Relative strain fitness of O-antigen chain length mutant derivatives of the rfb 
near-isogenic strain KAB082 against predation by the amoeba Naegleria gruberi NL 

 
O-antigen chain length derivatives of the rfb near-isogenic strain KAB082 containing the rfb 
region from SARB3 [O-serotype (1,4,12)] were fluorescently tagged and competed in the 
presence and absence of predation by the laboratory strain of the amoeba Naegleria gruberi NL. 
Fitness was calculated as the deviation in observed cell frequency (that on predator plates) from 
the expected frequency (no predator plates). The strain having the highest raw fitness was 
assigned a value of 1; the fitness values of all other strains were normalized to this value. 
Fluorescent tag identity is shown in parentheses. Predicted O-antigen chain length is depicted in 
brackets.  
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Table 27. Raw strain fitness values with error for fluorescently-tagged O-antigen chain-
length derivatives of the rfb near-isogenic strain KAB082 (SARB3) against predation by 
Naegleria gruberi NL 

 
O-antigen chain length derivatives of the rfb near-isogenic strain KAB082 containing the rfb 
region from SARB3 [O-serotype (1,4,12)] were fluorescently tagged and competed in the 
presence and absence of predation by the laboratory strain of the amoeba Naegleria gruberi NL. 
Fitness was calculated as the deviation in observed cell frequency (that on predator plates) from 
the expected frequency (no predator plates). Raw strain fitness and error were determined using 
bootstrapping with 1000 iterations. 

 

Strain Genotype Tag 
Predicted O-

antigen Chain 
Length 

Raw 
Strain 
Fitness 

Error Percent 
Error 

KAB800 Wild type EYFP 16-35, 100+ 0.6813 0.0162 2.38 

KAB802 wzzB-8771::aph mKalama1 1-16, 100+ 1.8173 0.0537 2.95 

KAB804 fepE-2910::tet ECFP 16-35 1.4339 0.0391 2.72 

KAB806 fepE-2910::tet          
wzzB-8771::aph 

DsRed-
Express2 1-16 0.5966 0.0145 2.43 

KAB808 rfc-1727::cat EGFP 1 1.6433 0.0457 2.78 
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5.2.1 Experimental variability did not explain raw strain fitness differences 

Fitness estimates require precise estimates of cell numbers, and flow cytometry offers only 

indirect measures of relative cell abundance. To address possible experimental sources of error, I 

assessed the robustness of my measures. 

5.2.1.1  Gaussian distributions were appropriately fit 

The distribution of signal strength was fit to a Gaussian distribution; this allowed for the 

separation of signal from noise and enabled precise counting of positive events. To determine if 

these fits were robust, I measured the sum of squared deviations (SSD) between the observed 

number of data points and that predicted by the Gaussian distribution for each fluorescent class. 

For example, Figure 27 depicts several improperly-fit curves along with the properly-fit curve 

(depicted in black) to the Gaussian distribution for EGFP fluorescent signal from a sample set of 

plates. For the majority of curves, the SSD values were less than 1.0, indicating optimal fits of 

the curves to actual data (Table 28). Additionally, the χ2 goodness-of-fit was used to determine 

the statistical significance between the observed number of data points and that predicted by the 

Gaussian distribution for each fluorescent class (Table 28). Here, I consider any p value at the 

10-3 level and above to indicate properly fit curves due to the large sample size of some 

fluorescent classes. No significant skew or kurtosis was observed within the Z-scoring range 

(apparent skew is attributable to residual spillover and autofluorescence). Thus, differences in 

strain fitness cannot be explained by improper classification resulting from poor curve fitting.  
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Figure 27. Sum of squared deviations for curves fit to Gaussian distribution of EGFP signal 
from a sample experiment set 

 
A series of Gaussian curves were properly fit (shown in black) and improperly fit (blue, purple, 
and red curves) to a distribution of EGFP signal in Ferdinand. Improperly fit curves have sum of 
squared deviations (SSD) values higher than 1.0.  
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Table 28. Measuring robustness of curves fit to Gaussian distributions for sample data sets 
with and without predators 

 
The sum of squared deviations (SSD) was measured between the observed number of data points 
in a given Ferdinand file and that predicted by the Gaussian distribution fit to each fluorescent 
class. In most cases, curves were fit to obtain SSD values less than 1.0. The corresponding χ2 
values are also reported; in almost all cases, data were not significantly different from normal.  

 

Gaussian Distribution 

Experimental Condition 

No Predator Predator 

χ2 P value χ2 P value 

EGFP 43.479 0.003 26.292 0.29 

EYFP 81.743 0.003 24.683 0.59 

CFP 17.969 0.30 5.212 0.92 

mKalama1 51.026 0.23 13.404 0.94 

DsRed-Express2 62.444 0.06 27.978 0.79 
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5.2.1.2 Z-scores used to assess fitness were appropriately established using fit of Gaussian 

distributions  

Because the curves fit to the Gaussian distribution of fluorescent signal classes were robust, I 

used curve-fitting properties to determine the Z-scoring thresholds that permitted separation of 

genuine fluorescent signal from noise. In this way, I was able to set scoring thresholds that 

enabled precise counting of positive events. Here, choice of appropriate Z-scoring thresholds in 

curve measurements are critical for excluding noise events, including those arising from 

autofluorescence or spill-over from other fluorescent signals, from events arising from the 

specific fluorophores that defined each Gaussian distribution. Fluorescent signal distributions 

typically varied in both signal strength and in proximity of genuine signal to noise events in both 

no predator and predator experimental conditions. Therefore, certain fluorescent signal classes 

are more susceptible to inappropriate inclusion of noise events than others, depending on the 

nature of the fluorophore and experimental condition. In these experiments, it is critical that 

noise events are not classified as genuine fluorescent signal in order to accurately determine 

ratios of fluorescent events on each plate within each data set, as inclusion of noise events would 

have resulted in improper fitness determinations. 

To identify appropriate minimum and maximum Z-scoring thresholds for data 

classification, I altered both the minimum (under constant maximum Z-score) and the maximum 

(under constant minimum Z-score) Z-score thresholds used to seed the automated curve-fitting 

function in Ferdinand and examined the p values obtained using the χ2 goodness-of-fit test along 

the Z-score explorations (Figure 28). Here, the fit between the Gaussian distribution and the 

underlying data was evaluated only between the minimum and maximum Z-values. Goodness-

of-fit χ2 p values greater than 10-3 were considered appropriate due to the large sample size of 
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most fluorescent classes. Significant p values indicated that the Gaussian distribution was not a 

good fit to the observed data. I expected to reject Gaussian distributions when the range over 

which they are being evaluated included significant numbers of noise events. As shown in Figure 

28A, curves fit for ECFP below a minimum Z-score of -1.0 on no predator plates showed 

inappropriately low p values, which indicated curves fit below this value were significantly 

different than predicted. Therefore, accurate proportions of fluorescent events would include 

excessive noise events for ECFP if those events having Z-scores lower than -1.0 were included. 

It is not surprising that fits to the observed ECFP signal reached its noise fluorophore threshold 

first, as ECFP signal is the weakest among those examined in these experiments (see Chapter 4.3 

and Figure 19 for additional discussion). Additionally, curves fit above a maximum Z-score 

threshold of 1.5 also yielded unacceptably low p values (Figure 28B); above that point, the 

EGFP curve failed to conform to the observed data. Similar results were observed using predator 

plates, with a minimum Z-score of -1.0 (Figure 28C) and maximum Z-score of +1.5 (Figure 

28D) yielding p values above 10-3. Although a general trend was observed towards increasing p 

values towards higher minimum Z-scores and lower maximum Z-scores, I chose Z-score cutoff 

values of -1.0 to +1.5 to define the region of all Gaussian distributions containing positive signal. 

Here, using inappropriately high minimum Z-scores and low maximum Z-scores would have 

resulted in decreasing overall numbers of events, thus increasing stochasticity in fluorescent 

class ratio determination. Thus, although this approach did not count all positive events of each 

fluorescent class, it defined a region of all Gaussian distributions which minimized the 

probability of including noise events from each fluorescent class while maximizing the numbers 

of positively-scored events to avoid excessive stochasticity.  
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Figure 28. Optimal curve fitting is defined by setting appropriate Z-score thresholds 

Variation of minimum and maximum Z-score thresholds affects the goodness-of-fit of curves fit 
to Gaussian distributions of five fluorescent signal classes as measured by χ2 p values for sample 
no predator and predator data sets. Goodness-of fit χ2 p values were obtained by altering both the 
minimum (under constant maximum Z-score) and the maximum (under constant minimum Z-
score) Z-score thresholds used to seed the automated curve-fitting function in Ferdinand. A. χ2 p 
values for curves varying the minimum Z-score threshold under constant maximum Z-score of 
1.5 for a sample no predator plate data set. B. χ2 p values for curves varying the maximum Z-
score threshold under constant minimum Z-score of -1.0 for a sample no predator plate data set. 
C. χ2 p values for curves varying the minimum Z-score threshold under constant maximum Z-
score of 1.5 for a sample predator plate data set. D. χ2 p values for curves varying the maximum 
Z-score threshold under constant minimum Z-score of -1.0 for a sample predator plate data set. 
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5.2.1.3 Within-experiment variability was low in no predator data sets 

Experimental replication was achieved by collecting data from 6 – 10 replicate plates for each 

experimental class (plates with or without predators). To examine variability between replicates, 

I calculated the sum of squared deviations (SSD) of the observed abundance of each fluorescent 

class to that expected given the mean proportion of each fluorescent class for a given experiment. 

For competition tests performed in the absence of amoebae predators, SSD values were very low 

(Table 29), indicating a robust level of within-experiment replication for this set. Significance 

was assessed by χ2 tests with N-1 degrees of freedom where N is the number of data points being 

fit.  
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Table 29. Goodness-of-fit tests on a sample set of replicate no predator plates 

Experimental variability was assessed based on the sums of squared deviations (SSD) of the 
counts of fluorescent classes of each replicate plate from that expected from of the entire 
population of plates. In the majority of cases, SSD values were less than 0.050, indicating low 
levels of within-experiment variability among plates without protozoan predators. 

 

Replicate 1 2 3 4 5 6 

1 0.000 0.010 0.001 0.002 0.002 0.006 

2 --- 0.000 0.006 0.005 0.003 0.001 

3 --- --- 0.000 0.001 0.001 0.002 

4 --- --- --- 0.000 0.001 0.002 

5 --- --- --- --- 0.000 0.001 

6 --- --- --- --- --- 0.000 
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5.2.1.4 Within-experiment variability in predator data sets is acceptable but varies among 

replicates 

For competition tests performed in the presence of amoebae predators, SSD values were also 

acceptably low, albeit higher than those observed on completion plates lacking protozoan 

predators (Table 30). Plates having significantly aberrant SSD values from other plates in a given 

experiment were commonly observed for plates containing predators, as shown in Table 30, but 

were very rarely observed for plates lacking predators, as shown in Table 29. For no predator 

plates, within-experiment variability most likely arises from environmental conditions that 

differentially impact the growth of bacterial strains among plates and experimental handling and 

processing procedures. In this case, low within-experiment variability indicates that these effects 

are minimal for plates lacking predators. However, a higher degree of within-experiment 

variability among predator plates was frequently observed in these experiments. In this case, I 

attribute this observation to varying rates of predation among plates containing amoebae 

predators. 
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Table 30. Goodness-of-fit tests on a sample set of replicate predator plates 

Experimental variability was assessed based on the sums of squared deviations (SSD) of the 
counts of fluorescent classes of each replicate plate from that expected from of the entire 
population of plates. Shaded regions indicate unacceptably high SSD values; this replicate was 
eliminated from the data set. Generally, plates having a majority of SSD values above 0.05 were 
discarded from data sets; removal of these aberrant plates tended to improve overall SSD values 
for other plates as atypical data were removed from population summaries. 

 

Replicate 1 2 3 4 5 6 

1 0.000 0.003 0.009 0.028 0.020 0.184 

2 --- 0.000 0.003 0.042 0.015 0.218 

3 --- --- 0.000 0.051 0.015 0.244 

4 --- --- --- 0.000 0.091 0.073 

5 --- --- --- --- 0.000 0.314 

6 --- --- --- --- --- 0.000 
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It is impossible to ensure identical rates of predation on plates within an experiment, 

because any environmental condition that can locally vary among plates, such as humidity, 

nutrient availability and bacterial cell density, impacts the rate of predation. As amoebae 

predators consume the lawn of bacteria outward from the center of the plate, the ratio of cells 

present on the entire plate change. Thus, I expect the ratio of cells recovered from whole plates 

to differ as predation occurs over time, with plates containing more uneaten bacteria due to 

slower rates of predation reflect the “expected” ratio of cells rather than the “observed” ratio of 

cells. Because environmental conditions vary among plates, I do not expect the rate of predation 

to be identical for all plates in a given experiment.  

Ideally, differences in the rates of predation among plates could be mitigated by 

incubating all plates in a given experiment for a sufficiently long enough time to ensure that each 

plate has been completely swept by the protozoan predators. Under the environmental conditions 

used in these experiments, I typically observed completion of predation to vary between 60 and 

96 hours of incubation, with predation on most plates finishing between 72 and 84 hours of 

incubation. However, I encountered an experimental trade-off between permitting predators to 

fully sweep the lawn of bacteria and obtaining sufficiently strong fluorescent signal from tagged 

bacterial cells. As discussed in Chapter 4, a trade-off exists in growth conditions that permit 

maximum fluorescent signal and those that favor development of uniform bacterial cell lawns; 

thus I optimized growth conditions that best reconciled these two variables at the expense of 

each other. Not surprisingly, a similar trade-off exists between maximum fluorescent signal and 

incubation time.  

Although large numbers of bacterial cells are present on plates post-exposure to 

predation, these cells cannot be counted unless they emit fluorescent signals within the range of 



200 

detection of the flow cytometer. As discussed in Chapter 4, levels of excitation and emission for 

each fluorescent protein used in the multicolor tagging scheme vary considerably; thus, it is 

critical that experimental conditions favor fluorescent detection in order to maximize the 

probability of detecting all fluorescent signals. In practice, the ability to detect fluorescent 

signals decayed over increasing incubation times; plates incubated for 96 hours tended to 

produce very few detectable fluorescent counts relative to plates incubated for less time. 

Therefore, I chose an incubation time of 72-84 hours as a compromise between being able to 

collect sufficiently bright enough fluorescent signals to enable maximal detection of bacterial 

cells while allowing predation to complete on the majority of plates in any given data set. 

Additionally, I chose to expand my sample of predator replicate plates relative to no predator 

replicate plates to allow for the collection of and subsequent removal of plates with highly 

aberrant SSD values. 

Higher between-replicate variability is expected as the predator population on some 

plates may not have finished reducing the prey population to sufficiently low numbers to induce 

predator encystation; if true, the post-predation populations of prey cells would coexist with pre-

predation populations, altering the relative abundance of the fluorescent classes. If protozoan 

predators have not completely swept a plate of bacterial cells, then I do not expect the ratios of 

fluorescent classes on that plate to be representative of a plate fully exposed to predation. Thus, 

these plates cannot be included in the final data analysis. When plates with such highly-aberrant 

sets of cell abundances were detected, they were discarded from the analysis. Although 

increasing the environmental complexity of plates via addition of amoebae increases the 

variability of within-experiment replicate samples, I find these SSD values indicate that total 

within-experiment variation alone cannot account for the differences in strain fitness I observed 
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for the O-antigen chain length mutant collection (see below). Additionally, effects of high 

within-experiment variability are further discussed in Chapter 5.3. 

5.2.1.5 Fitness assessment using Z-scoring is robust 

Relative cell abundances were determined using the Z-scoring approach (Chapter 4), which 

effectively eliminates both noise and variability introduced by the arbitrary placement of a signal 

threshold between fluorescent and non-fluorescent events. For any one experiment, variability in 

cell abundances as a function of Z-value threshold was minimal (Figure 25, Chapter 4). 

However, such modest variation may have impacts on relative fitness, and moreover, more 

stringent Z-scoring thresholds may be required in order to separate genuine counts of particular 

fluorescent signals having low signal from noise, spill-over, and autofluorescence. To determine 

if the inferred fitness hierarchy varies as a function of the Z-value thresholds used, I examined 

the effects of altering Z-score cutoff values in assessing fitness. As illustrated in Figure 29A, 

relative fitness among strains is not substantially impacted by alteration of the maximum Z-score 

cutoff values used to determine fitness when the minimum Z-score is held constant. However, 

alteration of the minimum Z-score threshold does significantly impact fitness hierarchies at 

scores of -5.0 to -1.5, as shown in Figure 29B.  
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Figure 29. Properly chosen Z-scoring values do not substantially impact relative strain 
fitness calculations for a sample competition set 

 
A. Relative strain fitness as a function of maximum Z-score when minimum Z-score is held 
constant to a value of - 1.5. B. Relative strain fitness as a function of minimum Z-score when 
maximum Z-score is held constant to a value of +1.5.  
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Most notably, the strains wzzB-8771::aph (mKalama1) and fepE-2910::tet wzzB-

8771::aph (DsRed-Express2) were most susceptible to significant changes in fitness hierarchy 

between minimum Z-score thresholds of -5.0 to -1.5 when the maximum Z-score threshold was 

kept constant at 1.5. These strains were tagged with the two fluorescent proteins (mKalama1 and 

DsRed-Express2) having the lowest fluorescent signal strength relative to other fluorescent 

proteins, as shown in Chapter 4 (Figure 23). Additionally, I consistently observed large fractions 

of autofluorescence and spill-over signal from other detectors in the mKalama1 and DsRed-

Express2 detectors, especially for no predator plate samples. For these two strains, using too low 

minimum Z-score thresholds inappropriately classify noise events lying outside of the Gaussian 

distribution as genuine signal, which significantly impacts fitness calculations. Thus, the 

minimum Z-score threshold must be selected with caution as to avoid assigning noise events to a 

particular fluorescent class.  

To minimize the effect of noise such as autofluorescence and spill-over in analyzing 

fitness data, I chose to calculate fitness using Z-score thresholds of -1.0 and +1.5. While this 

range does not include the entirety of events within each fluorescent class, it strongly decreases 

the likelihood of assigning a noise event to a true fluorescent class. Setting appropriate Z-scoring 

thresholds, especially the minimum Z-score value, effectively minimizes the effect of noise on 

fitness data. Importantly, fitness hierarchies did not change along the Z-scoring threshold I chose 

to analyze competition data. Taken together, the robust curve-fitting, low within-experiment 

variability, and Z-scoring thresholds used to measure fitness indicate that my approach to fitness 

determination is sufficient to rigorously examine strain fitness against protozoan predation.  
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5.2.2 Fitness hierarchy among O-antigen chain length mutants varies among strains and 

predators 

Predators may discriminate among O-antigen chain-length variants of Salmonella for mundane 

reasons. For example, the O-antigen may occlude the preferred receptor, and thus the different 

mutants conceal the preferred receptor to varying degrees. Alternatively, the different chain 

lengths may provide resistance to degradation within feeding vacuoles, leading to differential 

survivorship following expulsion of spent feeding vacuoles by the predator. In these cases, I 

would expect the fitness hierarchy seen in Figure 26 to be shared among strains varying in O-

antigen identity. However, if O-antigen identity influences predator choice, then this hierarchy 

should differ between different combinations of predator and prey. 

To test this hypothesis, the fitness hierarchy among O-antigen chain length mutant 

derivatives of the SARB3 rfb near-isogenic strain KAB082 against predation by the amoeba N. 

gruberi NL was compared to other rfb near-isogenic prey having different O-serotypes. 

Critically, these strains only differ from each other in terms of O-antigen identity and chain 

length; all other physiological attributes and cell surface structures are identical. Thus, if 

discrimination among a given collection of strains is observed, then I am able to conclude that 

any observed differences in fitness against predation can be attributed to the O-antigen. As 

observed for five different O-serotypes, O-antigen chain length mutants do not have identical 

fitness against predation by N. gruberi NL (Figure 30). Although overall fitness patterns are 

similar, the hierarchies of relative fitness against predation for all five O-serotype chain length 

variant strain sets are not completely identical. These data indicate that predator discrimination 

of O-antigen chain length variants of Salmonella is not simply due to differential digestion or 

occlusion of preferred receptors, rather, the differences in relative fitness here indicate that O-
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antigen identity influences predator choice among strains differing only in terms of O-antigen 

chain length. 
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Figure 30. Relative strain fitness for O-antigen chain length mutant derivatives of five rfb 
near-isogenic strains against predation by Naegleria gruberi NL 

 
O-antigen chain length mutants of rfb near-isogenic strains were competed in the presence and 
absence of predation by the laboratory strain of the amoeba predator Naegleria gruberi NL. For 
each experiment, the strain having the greatest raw fitness against predation was assigned a value 
of 1; the fitness values of all other strains in that experiment were normalized to this value. Raw 
strain fitness was calculated as the deviation in observed cell frequency (that on predator plates) 
from the expected frequency (no predator plates). O-serotypes are listed in parentheses 
underneath strain designations along the X-axis. Fluorescent tag identity is shown in parentheses 
next to the strain legend. Predicted O-antigen chain length classes are depicted in brackets. 
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To determine if discrimination of Salmonella based on O-antigen chain length is a 

general property of amoebae and not just unique to the NL laboratory strain of N. gruberi, I 

competed the variant O-antigen chain length strain collection derivatives of rfb near-isogenic 

strains of SARB2 (KAB081), SARB3 (KAB082), and SARB20 (KAB084) against predation by 

two genetically unrelated amoebae Tetramitus sp. BD1-1 and Acanthamoeba sp. R2-1. If O-

antigen identity truly influences Salmonella survival against protozoan predation, then I should 

observe differences in relative fitness against predation for different O-serotypes competed 

against different protozoan predators. If discrimination among strains is not a result of O-antigen 

identity but instead due to the possibilities discussed above, then I should not observe differences 

in strain relative fitness against predation by different amoebae. 

Figure 31 depicts the relative fitness of all O-serotype chain length derivative strains 

against predation by N. gruberi NL, Tetramitus sp. BD1-1, and Acanthamoeba sp. R2-1; relative 

fitness of strains changes based on both the identity of the O-antigen and the identity of the 

protozoan predator. Measurement of raw strain fitness against predation is robust, as confirmed 

with very low deviations observed when events were randomly sampled from the population of 

experimental data with bootstrapping at 1000 iterations (Table 31). 
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Figure 31. Relative strain fitness of O-antigen chain length mutant derivatives of rfb near-isogenic strains varies against 
protozoan predation 

 
O-antigen chain length mutants of rfb near-isogenic strains were competed in the presence and absence of predation by three different 
protozoan predators. For each experiment, the strain having the greatest raw fitness against predation was assigned a value of 1; the 
fitness values of all other strains in that experiment were normalized to this value. Raw strain fitness was calculated as the deviation in 
observed cell frequency (that on predator plates) from the expected frequency (no predator plates). Fluorescent tag identity is shown in 
parentheses, and predicted O-antigen chain length classes are shown in brackets. 
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Table 31. Raw strain fitness with deviations for O-antigen chain length variant strain competed against protozoan predators 

Values were obtained by bootstrapping events sampled from the total population with replacement with 1000 recalculations. Table 
continued on next page. 

 

Strain Tag 

iso SARB2 vs. 
Tetramitus sp. BD1-1 

iso SARB3 vs. 
Tetramitus sp. BD1-1 

iso SARB20 vs. 
Tetramitus sp. BD1-1 

iso SARB2 vs. 
Acanthamoeba sp. 

R2-1 
Raw 

Fitness Deviation Raw 
Fitness Deviation Raw 

Fitness Deviation Raw 
Fitness Deviation 

Wild-Type EYFP 0.8692 0.0145 0.2856 0.0423 0.7486 0.0078 1.1362 0.044 

wzzB-8771::aph mKalama1 11.6389 0.4155 1.4987 0.0669 10.0324 0.1833 3.872 0.0746 

fepE-2910::tet ECFP 0.3298 0.0134 0.1602 0.0064 0.3474 0.0079 0.1015 0.0011 

fepE-2910::tet 
wzzB-8771::aph 

DsRed-
Express2 2.8443 0.1765 0.8171 0.0326 5.602 0.1982 1.8404 0.0368 

rfc-1727::cat EGFP 0.818 0.0738 1.4724 0.0068 0.4665 0.0304 3.5392 0.0367 
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Table 31 continued. Raw strain fitness with deviations for O-antigen chain length variant strain competed against protozoan 
predators. 

 
Values were obtained by bootstrapping events sampled from the total population with replacement with 1000 recalculations. Table 
continued on next page. 

 

Strain Tag 

iso SARB3 vs. 
Acanthamoeba sp. 

R2-1 

iso SARB20 vs. 
Acanthamoeba sp. 

R2-1 

iso SARB2 vs. 
Naegleria gruberi NL 

iso SARB3 replicate 
1 vs. 

Naegleria gruberi NL 
Raw 

Fitness Deviation Raw 
Fitness Deviation Raw 

Fitness Deviation Raw 
Fitness Deviation 

Wild-Type EYFP 1.8732 0.0166 0.5295 0.0044 1.836 0.0238 0.7812 0.0206 

wzzB-8771::aph mKalama1 1.6192 0.0263 4.274 0.0543 18.4366 1.0333 7.526 0.3812 

fepE-2910::tet ECFP 0.8818 0.0076 0.2383 0.0029 0.4406 0.0048 0.629 0.0038 

fepE-2910::tet 
wzzB-8771::aph 

DsRed-
Express2 2.033 0.0511 2.6536 0.0844 3.4812 0.1457 3.8162 0.1447 

rfc-1727::cat EGFP 0.7708 0.0034 1.5896 0.0085 0.7136 0.0105 1.8855 0.0152 
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Table 31 continued. Raw strain fitness with deviations for O-antigen chain length variant strain competed against protozoan 
predators 

  
Values were obtained by bootstrapping events sampled from the total population with replacement with 1000 recalculations. 

 

Strain Tag 

iso SARB3 replicate 
2 vs. 

Naegleria gruberi NL 

iso SARB20 vs. 
Naegleria gruberi NL 

iso SARB36 vs. 
Naegleria gruberi NL 

iso SARB52 vs. 
Naegleria gruberi NL 

Raw 
Fitness Deviation Raw 

Fitness Deviation Raw 
Fitness Deviation Raw 

Fitness Deviation 

Wild-Type EYFP 0.0683 0.0098 0.982 0.0077 1.0553 0.0071 0.9036 0.0078 

wzzB-8771::aph mKalama1 15.89 0.685 7.8169 0.1863 6.8882 0.1368 1.6572 0.0413 

fepE-2910::tet ECFP 0.9377 0.0051 0.204 0.0036 0.4523 0.0048 1.2428 0.1267 

fepE-2910::tet 
wzzB-8771::aph 

DsRed-
Express2 2.452 0.0733 2.862 0.0811 1.8177 0.0751 0.4056 0.0213 

rfc-1727::cat EGFP 0.8874 0.0071 1.0796 0.0139 0.6024 0.0135 1.06 0.0014 
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Thus, predator choice of prey is influenced by O-antigen identity and is most likely a 

general property of amoebae. Although I demonstrated the role played by O-antigen identity in 

shaping Salmonella fitness against predation, these strain fitness values cannot be used to deduce 

the relationship between O-antigen chain length, identity, and fitness against protozoan 

predation. However, I cannot address the nature of the predator-prey interaction using these data 

alone because differences in strain fitness in these assays reflect two influences: differences in 

chromosomal genotype and differences in the fluorescent tag. I previously observed differences 

in my ability to detect the signals of certain fluorescent proteins, especially mKalama1 and 

DsRed-Express2, over time. Because flow cytometry only permits the enumeration of cells that 

fluoresce, I do not expect that the inferred fitness of strains will be independent of the fluorescent 

protein used to detect it. To examine different models of predator-prey interaction, I needed to 

deconvolute the fitness contributions of genotype and fluorophore, as discussed below. 

5.2.3 Deconvolution of genotype and fluorophore fitness 

The experimental design described above does not allow for separation of fitness contributions 

from genotype and fluorophore; there are only 5 experimental strain fitness (wS) values 

calculated, and ten variables affecting them: five genotype fitness (wG) and five fluorophore 

fitness (wF) values. To separate the contributions of differences in genotype and fluorophore to 

strain fitness, I conducted reciprocal tag assays in which each genotypically-distinct strain was 

marked with two different fluorescent proteins; the two reciprocally-tagged sets of strains were 

simultaneously competed in the presence and absence of amoebae. These set of ten observed 

strain fitness values will allow for deconvolution of genotype fitness and fluorophore fitness.  
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When the hierarchies of strain fitness values inferred from each set of strains are 

compared (Figure 32), it is not surprising that relative fitness is not a simple function of either 

underlying chromosomal genotype or underlying fluorophore. That is, the most-fit strain in each 

set of strains does not necessarily share genotype or fluorophore, as its overall fitness in this 

assay depends upon both. This is not due to error, as deviations for raw strain fitness values in 

both tag sets (Tables 32 and 33) are very low. Thus, I proceeded to deconvolute strain fitness 

into its components of genotype fitness (wG) and fluorescent tag fitness (wF). Positing that these 

fitness contributions were independent, I log-transformed wS so that log strain fitness (wS') could 

be expressed as the sum of log genotype fitness (wG') and log fluorophore fitness (wF'). Final 

values were calculated as described in the Methods section. 
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Figure 32. Comparison of relative strain fitness among reciprocal tag competition 
experiments illustrates a fluorescent tag component to strain fitness against predation 

 
Because strain fitness values are not identical among reciprocally tagged experiments, strain 
fitness must be deconvoluted into component genotype and fluorescent tag fitness values. Raw 
strain fitness was calculated as the deviation in observed cell frequency (that on predator plates) 
from the expected frequency (no predator plates). Fluorescent tag identities are shown in 
parentheses, and predicted O-antigen chain length classes are listed in brackets. A. Relative 
strain fitness for reciprocally tagged O-antigen chain length mutant derivatives of rfb near-
isogenic strain SARB2 vs. Tetramitus sp. BD1-1. B. Relative strain fitness for reciprocally 
tagged O-antigen chain length mutant derivatives of rfb near-isogenic strain SARB3 vs. 
Naegleria gruberi NL. C. Relative strain fitness for reciprocally tagged O-antigen chain length 
mutant derivatives of rfb near-isogenic strain SARB20 vs. Acanthamoeba sp. R2-1.  
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Table 32. Raw strain fitness with deviations for O-antigen chain length variant strains (tag 
set 1) against protozoan predators 

 
Values were obtained by bootstrapping events sampled from the total population with 
replacement with 1000 recalculations. 

 

Strain Tag 

iso SARB2 vs. 
Tetramitus sp. BD1-

1 

iso SARB3 
replicate 1 vs. 

Naegleria gruberi 
NL 

iso SARB20 vs. 
Acanthamoeba sp. 

R2-1 

Raw 
Fitness Deviation Raw 

Fitness Deviation Raw 
Fitness Deviation 

Wild-Type EYFP 0.8692 0.0145 0.7812 0.0206 0.5295 0.0044 

wzzB-
8771::aph mKalama1 11.6389 0.4155 7.526 0.3812 4.274 0.0543 

fepE-
2910::tet ECFP 0.3289 0.0134 0.629 0.0038 0.2383 0.0029 

fepE-
2910::tet 

wzzB-
8771::aph 

DsRed-
Express2 2.8472 0.1765 3.8162 0.1447 2.6536 0.0844 

rfc-1727::cat EGFP 0.8186 0.0738 1.8855 0.0152 1.5896 0.0085 
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Table 33. Raw strain fitness with deviations for O-antigen chain length variant strains (tag 
set 2) against protozoan predators 

 
Values were obtained by bootstrapping events sampled from the total population with 
replacement with 1000 recalculations. 

 

Strain Tag 

iso SARB2 vs. 
Tetramitus sp. BD1-1 

iso SARB3 
replicate 1 vs. 

Naegleria gruberi 
NL 

iso SARB20 vs. 
Acanthamoeba sp. 

R2-1 

Raw 
Fitness Deviation Raw 

Fitness Deviation Raw 
Fitness Deviation 

Wild-Type ECFP 0.1445 0.0074 0.3959 0.0046 0.2968 0.0034 

wzzB-
8771::aph EYFP 0.8417 0.0242 2.7604 0.0567 0.3485 0.0109 

fepE-
2910::tet 

DsRed-
Express2 1.9907 0.1667 12.15 0.5241 10.6362 0.3803 

fepE-
2910::tet 

wzzB-
8771::aph 

EGFP 1.8224 0.0231 0.9069 0.0042 0.908 0.0029 

rfc-
1727::cat mKalama1 370.4569 100.6973 9.0159 0.2978 46.1962 1.7967 
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To begin, I assessed the variability in fluorescent tag fitness values across experiments. I 

would predict that fitness differences should be modest, affected by differences in incubation 

temperature and the availability of oxygen and nutrients. As expected, these values were 

relatively similar across experiments, with EGFP, EYFP and ECFP showing similar values, and 

DsRed-Express2 and mKalama1 being more distinct (Figure 33). Additionally, deviations from 

deconvoluted raw fluorescent tag fitness are very low as determined by bootstrapping 

experimental data at 1000 iterations (Table 34). Detectable emission signal of fluorescent 

proteins requires proper protein structure; signal depends on chromophore structure [1, 60, 64, 

120-122, 144, 221, 247, 342, 356, 372, 397]. Fluorescent protein stability can be highly 

susceptible to environmental conditions, such as the availability of molecular oxygen required 

for proper folding or photobleaching from excessive light exposure [1, 121, 356]. Additionally, 

the fluorescent proteins used to tag strains in these experiments also vary in quantum yield, or 

the ratio of emitted photons to absorbed photons; this property is often used to approximate the 

efficiency of a particular fluorescent protein [1, 66, 70, 122, 155, 246, 342]. Essentially, these 

fluorescent proteins also vary in the amount of emitted fluorescent signal in relation to the 

wavelength of light used to excite them. Simply put, a detection bias may exist in strains tagged 

with a certain fluorescent protein. Thus, it is not surprising that the inherent variability in the 

physical properties among different fluorescent proteins combined with my experiment-specific 

detection parameters resulted in differences in the ability to detect signals from certain 

fluorophores, resulting in a fluorescent tag fitness component to observed raw strain fitness. 

 

 



218 

 

Figure 33. Relative fluorescent tag fitness values are very similar across predation competition experiments 

O-antigen chain length mutants of rfb near-isogenic strains were competed in the presence and absence of predation by three different 
protozoan predators. Raw fluorescent tag fitness values were deconvoluted from raw strain fitness values, which were calculated as 
the deviation in observed cell frequency (that on predator plates) from the expected frequency (no predator plates). For each 
experiment, the fluorescent tag having the greatest fitness contribution was assigned a value of 1; the fitness values of all other tags in 
that experiment were normalized to this value.  
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Table 34. Raw fitness values with deviation for fluorescent proteins used to tag O-antigen chain length derivative strains 
competed against protozoan predation 

 
Values were obtained by bootstrapping events sampled from the total population with replacement with 1000 recalculations. Table 
continued on next page. 

 

Fluorescent Tag 

iso SARB2 vs. 
Tetramitus sp. BD1-1 

iso SARB3 vs. 
Tetramitus sp. BD1-1 

iso SARB20 vs. 
Tetramitus sp. BD1-1 

iso SARB2 vs. 
Acanthamoeba sp. R2-1 

Raw Fitness Deviation Raw Fitness Deviation Raw Fitness Deviation Raw Fitness Deviation 

EGFP 0.191 0.0283 0.3128 0.0114 0.9894 0.0423 2.019 0.0264 

EYFP 1.8484 0.0445 0.2677 0.0204 0.4276 0.0377 0.6075 0.0118 

ECFP 0.1671 0.0102 0.2324 0.0142 0.3038 0.0184 0.1724 0.003 

mKalama1 47.0146 3.5468 2.7022 0.1438 12.1255 0.8943 4.4746 0.1128 

DsRed-Express2 0.5483 0.0624 1.1634 0.0588 8.576 0.3798 6.7712 0.1165 
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Table 34 continued. Raw fitness values with deviation for fluorescent proteins used to tag O-antigen chain length derivative 
strains competed against protozoan predation 

 
Values were obtained by bootstrapping events sampled from the total population with replacement with 1000 recalculations. Table 
continued on next page. 

 

Fluorescent Tag 

iso SARB3 vs. 
Acanthamoeba sp. R2-1 

iso SARB20 vs. 
Acanthamoeba sp. R2-1 

iso SARB2 vs. 
Naegleria gruberi NL 

iso SARB3 replicate 1 vs. 
Naegleria gruberi NL 

Raw Fitness Deviation Raw Fitness Deviation Raw Fitness Deviation Raw Fitness Deviation 

EGFP 0.6435 0.0091 0.8193 0.0188 0.361 0.0167 1.3337 0.032 

EYFP 1.001 0.0121 0.5824 0.0131 2.0706 0.0489 1.3328 0.0367 

ECFP 0.379 0.0063 0.1788 0.0041 0.6167 0.0138 0.5099 0.012 

mKalama1 4.8973 0.0574 13.0408 0.2499 29.9177 1.3635 4.8139 0.1581 

DsRed-Express2 2.7245 0.0587 4.3718 0.1146 3.1716 0.1392 7.435 0.2145 
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Table 34 continued. Raw fitness values with deviation for fluorescent proteins used to tag O-antigen chain length derivative 
strains competed against protozoan predation. 

 
Values were obtained by bootstrapping events sampled from the total population with replacement with 1000 recalculations. 

 

Fluorescent Tag 

iso SARB3 replicate 2 vs. 
Naegleria gruberi NL 

iso SARB20 vs. 
Naegleria gruberi NL 

iso SARB52 vs. 
Naegleria gruberi NL 

Raw Fitness Deviation Raw Fitness Deviation Raw Fitness Deviation 

EGFP 0.7668 0.0324 0.4119 0.0208 0.8037 0.0112 

EYFP 0.162 0.0148 2.0339 0.0329 0.5302 0.0238 

ECFP 1.5488 0.0441 0.23 0.0062 0.284 0.0189 

mKalama1 4.8127 0.3323 15.1397 0.5809 2.2972 0.0624 

DsRed-Express2 3.1537 0.0859 1.2225 0.0625 2.1916 0.1049 

 

 



222 

In Chapter 4, I discussed optimization of experimental conditions that addressed 

significant trade-offs between obtaining strong fluorescent signal and a) among use of various 

filters and excitation lasers to allow the simultaneous use of multiple fluorescent proteins; b) 

growth conditions that favored maximal signal and supported the growth of both bacteria and 

amoebae; and c) incubating plates for a sufficiently long duration as to enable maximal exposure 

to protozoan predation. Thus, it is not surprising that the identity of a fluorescent tag influences 

its ability to be detected under these experimental conditions, given the varying intrinsic 

properties of the fluorescent proteins themselves, experimental conditions that compromise 

among many factors that influence signal strength, and environmental conditions that vary 

among experiments. Here, fluorescent tag fitness refers to the ability to detect a given 

fluorescent-tagged strain rather than the effect that a fluorescent tag has on a strain’s 

susceptibility to predation. Critically, these experiments depend on the ability to detect 

fluorescently-labeled bacterial cells; I can only count cells that display detectable fluorescent 

signal based on the mechanical limitations of the flow cytometer and the stringent detection 

parameters used to enable the simultaneous use of five single fluorescent proteins. Thus, any 

factor that influences the ability to detect a fluorescent protein in a given experimental condition 

will influence the fitness of the tagged strain. 

For this approach, it is more crucial for these fluorescent tag fitness values to be 

relatively constant among experiments to further support the validity of experimental design. 

Accordingly, the Pearson correlation coefficients between experiments are highly similar, with 

an average Pearson r = 0.8051 (Table 35). While the Pearson r reflects the similarity in 

magnitude of fluorescent tag fitness among experiments, this does not necessarily reflect the 

similarity in hierarchy of fluorescent tag fitness among experiments. To further examine this 
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issue, I analyzed the correlation of fluorescent tag fitness between experiments using the 

Spearman rank order correlation, which measures the similarity in rank of fitness values among 

experiments and is less sensitive to large outlier data points than the Pearson correlation. Similar 

to what I observed with the Pearson correlation coefficients, the Spearman rank order correlation 

coefficients between experiments are very high (Table 36), with the average Spearman r = 

0.7673. Therefore, I conclude that both the experimental design and data analyses are robust, as 

such high correlation in final fitness values would not be possible by chance alone. 
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Table 35. Pearson correlation coefficients for pairwise comparisons of fluorescent tag fitness across predation competition 
experiments 

 
Shaded regions indicate Pearson correlation coefficients equal to or greater than 0.5; darker regions indicate greater correlations. 
Average Pearson correlation coefficient for all pairwise comparisons is 0.8051. 

 

Experiment 

Tetramitus sp. BD1-1 Acanthamoeba sp. R2-1 Naegleria gruberi NL 

iso 
SARB2 

iso 
SARB2 

iso 
SARB2 

iso 
SARB2 

iso 
SARB3 

iso 
SARB20 

iso 
SARB2 

iso 
SARB3 

(1) 

iso 
SARB3 

(2) 

iso 
SARB20 

iso 
SARB52 

Tetramitus sp. 
BD1-1 

iso 
SARB2 1 0.9289 0.7723 0.329 0.8769 0.9495 0.9968 0.3263 0.7955 0.9966 0.628 

iso 
SARB3 0.9289 1 0.9526 0.6497 0.987 0.998 0.9536 0.6497 0.9402 0.9332 0.8665 

iso 
SARB20 0.7723 0.9526 1 0.8438 0.9746 0.9323 0.8176 0.8481 0.9571 0.7836 0.971 

Acanthamoeba 
sp. R2-1 

iso 
SARB2 0.329 0.6497 0.8438 1 0.7236 0.6067 0.3951 0.9821 0.7357 0.3478 0.9405 

iso 
SARB3 0.8769 0.987 0.9746 0.7236 1 0.9791 0.9116 0.7376 0.9249 0.8928 0.9137 

iso 
SARB20 0.9495 0.998 0.9323 0.6067 0.9791 1 0.9696 0.604 0.9216 0.9529 0.8386 

Naegleria 
gruberi 

NL 

iso 
SARB2 0.9968 0.9536 0.8176 0.3951 0.9116 0.9696 1 0.3978 0.8311 0.9968 0.6822 

iso 
SARB3 

 
0.3263 0.6497 0.8481 0.9821 0.7376 0.604 0.3978 1 0.7373 0.3544 0.9303 

iso 
SARB3 

 
0.7955 0.9402 0.9571 0.7357 0.9249 0.9216 0.8311 0.7373 1 0.7869 0.8817 

iso 
SARB20 0.9966 0.9332 0.7836 0.3478 0.8928 0.9529 0.9968 0.3544 0.7869 1 0.6455 

iso 
SARB52 0.628 0.8665 0.971 0.9405 0.9137 0.8386 0.6822 0.9303 0.8817 0.6455 1 
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Table 36. Spearman rank order correlation coefficients for pairwise comparisons of fluorescent tag fitness across predation 
competition experiments 

 
Shaded regions indicate Spearman rank order correlation coefficients equal to or greater than 0.5; darker regions indicate greater 
correlations. Average Spearman rank correlation coefficient for all pairwise comparisons is 0.7673. 

 

Experiment 

Tetramitus sp. BD1-1 Acanthamoeba sp. R2-1 Naegleria gruberi NL 

iso 
SARB2 

iso 
SARB3 

iso 
SARB20 

iso 
SARB2 

iso 
SARB3 

iso 
SARB20 

iso 
SARB2 

iso 
SARB3 

(1) 

iso 
SARB3 

(2) 

iso 
SARB20 

iso 
SARB52 

Tetramitus sp. 
BD1-1 

iso 
SARB2 1 0.7 0.7 0.5 0.9 0.7 0.8 0.5 0.3 1 0.7 

iso 
SARB3 0.7 1 1 0.9 0.9 1 0.7 0.9 0.7 0.7 1 

iso 
SARB20 0.7 1 1 0.9 0.9 1 0.7 0.9 0.7 0.7 1 

Acanthamoeba 
sp. R2-1 

iso 
SARB2 0.5 0.9 0.9 1 0.8 0.9 0.6 1 0.6 0.5 0.9 

iso 
SARB3 0.9 0.9 0.9 0.8 1 0.9 0.9 0.8 0.6 0.9 0.9 

iso 
SARB20 0.7 1 1 0.9 0.9 1 0.7 0.9 0.7 0.7 1 

Naegleria 
gruberi 

NL 

iso 
SARB2 0.8 0.7 0.7 0.6 0.9 0.7 1 0.6 0.7 0.8 0.7 

iso 
SARB3 

 
0.5 0.9 0.9 1 0.8 0.9 0.6 1 0.6 0.5 0.9 

iso 
SARB3 

 
0.3 0.7 0.7 0.6 0.6 0.7 0.7 0.6 1 0.3 0.7 

iso 
SARB20 1 0.7 0.7 0.5 0.9 0.7 0.8 0.5 0.3 1 0.7 

iso 
SARB52 0.7 1 1 0.9 0.9 1 0.7 0.9 0.7 0.7 1 
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In contrast, genotype fitness varied substantially between experiments (Figure 34) with 

very low error (Table 37). Notably, the variation in genotype fitness was far greater than the 

variation in fluorophore fitness; whereas the average Pearson r for fluorescent tag fitness across 

all experiments was measured at 0.8051, the average Pearson r for genotype fitness across all 

experiments was measured at 0.0889 (Table 38). An identical trend was observed using the 

Spearman rank order correlation coefficient; the Spearman r for fluorescent tag fitness across all 

experiments was measured at 0.7673 while the Spearman r for genotype fitness across all 

experiments was 0.0764 (Table 39). While greatest fluorophore fitness was conferred 

consistently by either mKalama1 or DsRed-Express2, no genotype was consistently beneficial; 

each of the five genotypes conferred greatest fitness in at least one experiment (Figure 34). 

Because fluorescent tag fitness remains relatively constant between experiments independent of 

strain genotype and predator identity, I can conclude that the variability in genotype fitness does 

not reflect stochastic variation; rather, the differences I observed in genotype fitness reflect a 

complex interplay between the contributions of O-antigen identity and chain length to 

Salmonella fitness against predation. This supports the hypothesis that differences in relative 

strains fitness among different predator-prey combinations reflected differences in how the 

predator interacted with the prey, rather than differences in fluorophore survivability in the 

experiment. The robustness of these differences was supported by bootstrapping, where events 

were sampled from the total population with replacement; relative abundances and strain fitness 

values were recalculated 1000 times (Table 37). 
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Figure 34. Relative genotype fitness of O-antigen chain length variant strains differs against protozoan predation 

O-antigen chain length mutants of rfb near-isogenic strains were competed in the presence and absence of predation by three different 
protozoan predators. Raw genotype fitness values were deconvoluted from raw strain fitness values, which were calculated as the 
deviation in observed cell frequency (that on predator plates) from the expected frequency (no predator plates). For each experiment, 
the genotype having the greatest fitness contribution was assigned a value of 1; the fitness values of all other tags in that experiment 
were normalized to this value. 
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Table 37. Raw genotype fitness with deviations for O-antigen chain length variant strains competed against protozoan 
predation 

 
Values were obtained by bootstrapping events sampled from the total population with replacement with 1000 recalculations. Table 
continued on next page. 

 

Genotype 

iso SARB2 vs. 
Tetramitus sp. BD1-1 

iso SARB3 vs. 
Tetramitus sp. BD1-1 

iso SARB20 vs. 
Tetramitus sp. BD1-1 

iso SARB2 vs. 
Acanthamoeba sp. R2-1 

Raw Fitness Deviation Raw Fitness Deviation Raw Fitness Deviation Raw Fitness Deviation 

Wild-Type 0.6676 0.0225 1.2437 0.0862 2.2081 0.1591 2.8576 0.0492 

wzzB-8771::aph 0.3515 0.0126 0.6464 0.0427 1.0435 0.0733 1.322 0.0282 

fepE-2910::tet 2.8023 0.2626 0.8033 0.0391 1.4421 0.0742 0.8993 0.0163 

fepE-2910::tet 
wzzB-8771::aph 7.3652 1.0747 0.8185 0.0325 0.8239 0.0324 0.4152 0.0052 

rfc-1727::cat 6.0816 1.1184 5.486 0.2431 0.5947 0.0265 2.678 0.0461 
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Table 37 continued. Raw genotype fitness with deviations for O-antigen chain length variant strains competed against 
protozoan predation 

 
Values were obtained by bootstrapping events sampled from the total population with replacement with 1000 recalculations. Table 
continued on next page. 
 

Genotype 

iso SARB3 vs. 
Acanthamoeba sp. R2-1 

iso SARB20 vs. 
Acanthamoeba sp. R2-1 

iso SARB2 vs. 
Naegleria gruberi NL 

iso SARB3 replicate 1 vs. 
Naegleria gruberi NL 

Raw Fitness Deviation Raw Fitness Deviation Raw Fitness Deviation Raw Fitness Deviation 

Wild-Type 2.3069 0.0333 1.2845 0.0274 0.9869 0.0204 0.6813 0.0162 

wzzB-8771::aph 0.4076 0.0035 0.4631 0.0072 0.6862 0.02 1.8173 0.0537 

fepE-2910::tet 2.8684 0.0565 1.8827 0.049 0.7955 0.0239 1.4339 0.0391 

fepE-2910::tet 
wzzB-8771::aph 0.9199 0.0151 0.8576 0.0206 1.2223 0.0572 0.5966 0.0145 

rfc-1727::cat 1.4765 0.0197 2.7413 0.0653 2.2013 0.1065 1.6433 0.0457 
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Table 37 continued. Raw genotype fitness with deviations for O-antigen chain length variant strains competed against 
protozoan predation 

 
Values were obtained by bootstrapping events sampled from the total population with replacement with 1000 recalculations. 
 

Genotype 

iso SARB3 replicate 2 vs. 
Naegleria gruberi NL 

iso SARB20 vs. 
Naegleria gruberi NL 

iso SARB52 vs. 
Naegleria gruberi NL 

Raw Fitness Deviation Raw Fitness Deviation Raw Fitness Deviation 

Wild-Type 0.5479 0.0217 0.5739 0.0088 2.8503 0.1711 

wzzB-8771::aph 4.269 0.3701 0.6138 0.0149 1.2066 0.0476 

fepE-2910::tet 0.7828 0.0145 1.0547 0.0356 7.3815 0.4088 

fepE-2910::tet 
wzzB-8771::aph 1.0053 0.0349 2.7829 0.1422 0.3096 0.0053 

rfc-1727::cat 1.4964 0.0895 3.1158 0.1698 2.2059 0.0411 
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Table 38. Pearson correlation coefficients for pairwise comparisons of O-antigen chain length genotype fitness against 
protozoan predation 

 
Darker red colors indicate greater negative Pearson correlation coefficients; darker blue colors indicate greater positive Pearson 
correlation coefficients. Average Pearson correlation coefficient = 0.0889. 

 

Experiment 
BD1-1 

 iso 
SARB2 

NL 
 iso 

SARB20 

NL 
 iso 

SARB2 

BD1-1 
 iso 

SARB3 

R2-1  
iso 

SARB20 

R2-1 
 iso 

SARB2 

NL iso 
SARB3 

(1) 

NL iso 
SARB3 

(2) 

R2-1  
iso 

SARB3 

NL  
iso 

SARB52 

BD1-1  
iso 

SARB20 
BD1-1  

iso SARB2 1 0.9593 0.6732 0.4433 0.3811 -0.2904 -0.256 -0.3852 -0.1644 -0.2748 -0.6917 
NL  

iso SARB20 0.9593 1 0.8373 0.6568 0.4928 -0.0764 -0.0911 -0.264 -0.2509 -0.3593 -0.7653 
NL 

 iso SARB 2 0.6732 0.8373 1 0.9505 0.7574 0.4612 0.0975 -0.2521 -0.0783 -0.2536 -0.5491 
BD1-1 

 iso SARB3 0.4433 0.6568 0.9505 1 0.8272 0.6065 0.3374 -0.1171 -0.0084 -0.1083 -0.4729 
R2-1 

 iso SARB20   0.3811 0.4928 0.7574 0.8272 1 0.478 0.253 -0.4761 0.5166 0.4345 -0.2054 
R2-1 

 iso SARB2 -0.2904 -0.0764 0.4612 0.6065 0.478 1 0.0817 -0.1367 0.2313 -0.0293 0.3386 
NL iso 

SARB3 (1) -0.256 -0.0911 0.0975 0.3374 0.253 0.0817 1 0.6768 -0.2002 0.2116 -0.4278 
NL iso 

SARB3 (2) -0.3852 -0.264 -0.2521 -0.1171 -0.4761 -0.1367 0.6768 1 -0.746 -0.3904 -0.3611 
R2-1  

iso SARB3 -0.1644 -0.2509 -0.0783 -0.0084 0.5166 0.2313 -0.2002 -0.746 1 0.8674 0.6062 
NL 

 iso SARB52 -0.2748 -0.3593 -0.2536 -0.1083 0.4345 -0.0293 0.2116 -0.3904 0.8674 1 0.3913 
BD1-1 

 iso SARB20 -0.6917 -0.7653 -0.5491 -0.4729 -0.2054 0.3386 -0.4278 -0.3611 0.6062 0.3913 1 
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Table 39. Spearman rank order correlation coefficients for pairwise comparisons of O-antigen chain length genotype fitness 
against protozoan predation 

 
Darker red colors indicate greater negative Spearman rank order correlation coefficients; darker blue colors indicate greater positive 
Spearman rank order correlation coefficients. Average Spearman rank order correlation coefficient = 0.0764. 

 

Experiment 
BD1-1 

iso 
SARB2 

NL 
iso 

SARB20 

NL 
iso 

SARB2 

BD1-1 
iso 

SARB3 

R2-1 
iso 

SARB20 

R2-1 
 iso 

SARB2 

NL iso 
SARB3 

(1) 

NL iso 
SARB3 

(2) 

R2-1 
iso 

SARB3 

NL 
iso 

SARB52 

BD1-1 
iso 

SARB20 
BD1-1 

 iso SARB2 1 0.8 0.8 0.5 0.4 -0.5 -0.6 -0.1 0.1 -0.3 -0.6 
NL  

iso SARB20 0.8 1 0.7 0.4 0.5 -0.4 0 0.4 -0.1 -0.3 -0.9 
NL  

iso SARB 2 0.8 0.7 1 0.9 0.6 0.1 -0.4 -0.1 0.1 -0.2 -0.6 
BD1-1  

iso SARB3 0.5 0.4 0.9 1 0.7 0.5 -0.3 -0.3 0.3 0.1 -0.3 
R2-1  

iso SARB20 0.4 0.5 0.6 0.7 1 0.3 0 -0.3 0.7 0.6 -0.2 
R2-1 

 iso SARB2 -0.5 -0.4 0.1 0.5 0.3 1 0.3 -0.2 0.2 0.4 0.3 
NL iso 

SARB3 (1) -0.6 0 -0.4 -0.3 0 0.3 1 0.7 -0.3 0.1 -0.2 
NL iso 

SARB3 (2) -0.1 0.4 -0.1 -0.3 -0.3 -0.2 0.7 1 -0.8 -0.6 -0.7 
R2-1  

iso SARB3 0.1 -0.1 0.1 0.3 0.7 0.2 -0.3 -0.8 1 0.9 0.5 
NL 

 iso SARB52 -0.3 -0.3 -0.2 0.1 0.6 0.4 0.1 -0.6 0.9 1 0.6 
BD1-1 

 iso SARB20 -0.6 -0.9 -0.6 -0.3 -0.2 0.3 -0.2 -0.7 0.5 0.6 1 
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The Pearson correlation coefficients (Table 38) and Spearman rank order correlation 

coefficients (Table 39) for pairwise comparisons of genotype fitness between experiments listed 

present a continuum of fitness relationships. This is to be expected if different genotypes are 

preferred to different degrees by individual predators. At extreme ends of this spectrum, I see 

what appears to be two broad classes of predator-strain experiments. To examine this issue 

further, I calculated the distance values for pairwise genotype fitness values between 

experiments and used these to construct a distance tree using the neighbor-joining method [290]. 

As shown in Figure 35, genotypes can be sorted into several classes; fitness hierarchies within 

these clusters show patters that are generally similar to each other but differ from those in the 

other class. Here, clustering depends on both the identity of the O-antigen and of the predator; 

neither all experiments of any given rfb near-isogenic strain set nor all experiments of any given 

predator cluster together. Critically, replicate competition experiments of rfb near-isogenic O-

antigen chain length variant sets SARB3 vs. N. gruberi NL cluster together, suggesting the 

repeatability of this experimental approach. These patterns suggest that predators are recognizing 

prey not only as a function of the length of their O-antigens but also as a function of their 

identities. 
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Figure 35. Neighbor-joining tree of distance values of pairwise comparisons of genotype 
fitness among predation experiments 
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5.3 REPRODUCIBILITY OF EXPERIMENTS 

To examine data reproducibility, I performed three replicate experiments competing the O-

antigen chain length derivative series from rfb near-isogenic SARB3 against predation by N. 

gruberi NL. These experiments were conducted at different times and utilized independent 

preparations of overnight bacterial cultures and growth media. Amoebae cysts used in these 

experiments were from the same cyst preparation but were stored for different amounts of time. 

5.3.1 Fluorescent tag fitness is similar across replicate experiments 

As expected, fluorescent tag fitness was very similar across experiments, with the average 

Pearson r = 0.7082 (Table 40) and Spearman rank order r = 0.6667 (Table 41). These values are 

very similar to the average fluorescent tag fitness across all experiments (Tables 35 and 36). 

Although environmental conditions that influence fluorescent tag fitness, such as humidity, 

temperature, and bacterial cell lawn density, vary between experiments, global fluorescent tag 

fitness did not appear to significantly change between experiments. Therefore, I again conclude 

that differences in fluorescent tag fitness were insufficient to explain the differences observed in 

fitness of strains in these predation competition tests. Additionally, the approach used to 

deconvolute fluorescent fitness from raw strain fitness is robust. 
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Table 40. Pearson correlation coefficients for pairwise comparisons of fluorescent tag 
fitness of three replicate experiments of O-antigen chain length derivatives of rfb near-
isogenic strain KAB082 (SARB3) against predation by Naegleria gruberi NL 

 
Darker blue colors indicate higher degrees of correlation. Average Pearson r = 0.7082. 

 

Replicate 1 2 3 

1 1 0.7373 0.5732 

2 0.7373 1 0.8142 

3 0.5732 0.8142 1 

 

 

 

 

 

 

Table 41. Spearman rank order correlation coefficients for pairwise comparisons of 
fluorescent tag fitness in three replicate experiments of O-antigen chain length derivatives 
of rfb near-isogenic strain KAB082 (SARB3) against predation by Naegleria gruberi NL 

 
Darker blue colors indicate higher degrees of correlation. Average Spearman r = 0.6667. 
 

Replicate 1 2 3 

1 1 0.6 0.8 

2 0.6 1 0.6 

3 0.8 0.6 1 
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5.3.2 Within-experiment variability can result in differences in genotype fitness among 

experiments 

While fluorescent tag fitness did not significantly differ among replicate experiments, only the 

first two replicate experiments produced similar genotype fitness values and clustered with each 

other (Figures 34-35 and Tables 42-43). The third replicate experiment produced genotype 

fitness values that were different from the two other replicates. Genotype fitness between 

replicate experiments 1 and 2 were very similar (Pearson r = 0.6768 and Spearman r = 0.7). 

Correlations in genotype fitness were nearly identical to those observed for fluorescent tag 

fitness (Tables 40 and 41). Because both fluorescent tag and genotype fitness values did not 

differ substantially differ between experiments 1 and 2, I believe that the experimental 

techniques described in this chapter are robust. 

While the fluorescent tag fitness of experimental replicate 3 are highly correlated to those 

of experimental replicates 1 and 2, the genotype fitness of this replicate differ greatly from both 

other replicates (Figure 36 and Tables 42-43). Replicate 3 showed overall negative correlation 

coefficients when compared to replicates 1 and 2, with Pearson r = -0.362 and Spearman r = -

0.45, indicating that the genotype fitness hierarchies are substantially different between these two 

data sets. 
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Figure 36. Relative genotype fitness of replicate competition experiments of O-antigen 
chain length derivatives of rfb near-isogenic SARB3 (KAB082) vs. Naegleria gruberi NL 

 
Raw genotype fitness values were deconvoluted from raw strain fitness values, which were 
calculated as the deviation in observed cell frequency (that on predator plates) from the expected 
frequency (no predator plates). For each experiment, the genotype having the greatest fitness 
contribution was assigned a value of 1; the fitness values of all other genotypes in that 
experiment were normalized to this value. For experiments 1 vs. 2, Pearson r = 0.6768 and 
Spearman r = 0.7. For experiments 1 and 2 vs. experiment 3, Pearson r = -0.362 and Spearman r 
= -0.45. Predicted O-antigen chain length classes are shown in brackets. Fitness values were 
supported by bootstrapping events sampled from the total population with replacement with 1000 
recalculations. 
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Table 42. Pearson correlation coefficients for pairwise comparisons of three replicate 
experiments of O-antigen chain length derivatives of rfb near-isogenic strain KAB082 
against predation by Naegleria gruberi NL 

 
Darker red colors indicate greater negative Pearson correlation coefficients; darker blue colors 
indicate greater positive Pearson correlation coefficients.  
 

Replicate 1 2 3 

1 1 0.6768 -0.326 

2 0.6768 1 -0.398 

3 -0.326 -0.398 1 

 

 

 

 

 

Table 43. Spearman rank order correlation coefficients for pairwise comparisons of three 
replicate experiments of O-antigen chain length derivatives of rfb near-isogenic strain 
KAB082 against predation by Naegleria gruberi NL 

 
Darker red colors indicate greater negative Spearman rank order correlation coefficients; darker 
blue colors indicate greater positive Spearman rank order correlation coefficients. 

 

Replicate 1 2 3 

1 1 0.7 -0.2 

2 0.7 1 -0.7 

3 -0.2 -0.7 1 
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As discussed above, problematic calculation of fluorescent tag fitness cannot explain the 

differences observed in genotype fitness in replicate experiment 3 as compared to other replicate 

experiments. Rather, the similarity in fluorescent tag fitness indicated that the data collection and 

fitness deconvolution were themselves robust; it is only the resulting genotypic fitness values 

that are questionable. These fitness values were supported by bootstrapping with random 

resampling of 1000 events within the data population. As discussed in Chapter 5.2.1.2, within-

experiment variability tended to be relatively low among plates without predators. Not 

surprisingly, this is also true for replicate experiment 3. Goodness-of-fit tests reveal that within-

experiment variability among no predator plates in competition tag set 1 (Table 44) and 

competition tag set 2 (Table 45) are acceptably low and comparable to other experiments. Thus, 

within-experiment variability in no predator plates also cannot explain the aberrant genotype 

fitness values observed for replicate experiment 3 compared to those obtained for replicate 

experiments 1 and 2. 
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Table 44. Goodness-of-fit tests on a set of replicate no predator plates for an aberrant 
competition experiment of O-antigen chain length derivatives of rfb near-isogenic strain 
KAB082 (iso SARB3)-Tag Set 1 vs. Naegleria gruberi NL 

 
Experimental variability was assessed based on the sums of squared deviations (SSD) of the 
counts of fluorescent classes of each replicate plate from that expected from of the entire 
population of plates. Similar to other experiments, no predator plates had acceptably low SSD 
values (< 0.050), indicating a low degree of within-experiment variation for this set of plates. 

 

Replicate 1 2 3 4 5 6 

1 0.000 0.003 0.004 0.004 0.043 0.020 

2 --- 0.000 0.000 0.000 0.025 0.009 

3 --- --- 0.000 0.001 0.021 0.009 

4 --- --- --- 0.000 0.024 0.007 

5 --- --- --- --- 0.000 0.013 

6 --- --- --- --- --- 0.000 

 

 

 

 

 

 

 

 

 

 

 



242 

Table 45. Goodness-of-fit tests on a set of replicate no predator plates for an aberrant 
competition experiment of O-antigen chain length derivatives of rfb near-isogenic strain 
KAB082 (iso SARB3)-Tag Set 2 vs. Naegleria gruberi NL 

 
Experimental variability was assessed based on the sums of squared deviations (SSD) of the 
counts of fluorescent classes of each replicate plate from that expected from of the entire 
population of plates. Similar to other experiments, no predator plates had acceptably low SSD 
values (< 0.050), indicating a low degree of within-experiment variation for this set of plates. 
 

Replicate 1 2 3 4 5 6 

1 0.000 0.000 0.003 0.007 0.005 0.002 

2 --- 0.000 0.003 0.009 0.007 0.004 

3 --- --- 0.000 0.004 0.002 0.001 

4 --- --- --- 0.000 0.001 0.004 

5 --- --- --- --- 0.000 0.001 

6 --- --- --- --- --- 0.000 
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Differences in genotype fitness would be expected if the predator plates from replicate 

experiment 3 were harvested before predation was completed for most of the plates in this 

experiment. In many experiments discussed in this chapter, it was common to remove a few 

replicate plates from the predator plate data set due to high SSD values between plates. 

Typically, removal of these aberrant plates resulted in overall improvement of SSD values 

between remaining plates, yielding acceptably low within-experiment variation in the remaining 

predator plate data set. As discussed in Chapter 5.2.1.3, I expected a few aberrant plates to exist 

in each predator data set, as the experimental design used here represents a compromise between 

obtaining maximal fluorescent signal from Salmonella cells and incubating plates for a long 

enough time to allow completion of predation on all plates in the experiment. Because rates of 

predation differed among plates due to local environmental variability, it is impossible to 

optimize experimental conditions that ensured completion of predation on plates without 

sacrificing fluorescent signal strength. 

Consistent with this scenario, predator plates in both tag sets in experimental replicate 3 

showed little consistency between replicates, as evidenced by high SSD values between plates 

(Tables 46 and 47). Unlike what I observed in the majority of other predator data sets, removal 

of aberrant plates did not improve the SSD values between remaining replicate plates for either 

competition tag set. Because within-experiment variability was acceptably low for the no 

predator plates in this experiment, the genotype fitness differences observed for replicate 

experiment 3 are most likely due to high within-experiment variability in predator plates. 

Although data was collected from this experiment in the same time window as other 

experiments, the predator plates in this experiment may have been harvested too early if the 

environmental conditions in this experiment resulted in slower rates of predation compared to 
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other experiments. Moreover, using cysts stored for longer periods of time may result in slower 

rates predator germination, as the amoebae cysts used to inoculate predator plates in this 

experiment were approximately three weeks older than the cysts used to inoculate prior replicate 

experiments. In these experiments, predators are seeded in the center of plates and move outward 

to consume lawns of Salmonella cells. If plates were incubated for too little time, the amoebae 

predators may not have completely migrated to all portions of the plates. These plates may have 

contained regions of Salmonella cells that were unexposed or underexposed to predation; the 

ratios of cells on these plates may have been more similar to those of plates without predators 

than those containing predators. While a time-course predation assay would reveal changes of 

ratios of strains over time as more cells are exposed to amoebae predators, such an approach is 

impossible using mixed competition tests on solid media. Thus, I relied on the SSD values 

between replicate plates to discard plates from experiments that most likely represented plates 

not completely exposed to predation.  
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Table 46. Goodness-of-fit tests on a set of replicate predator plates for an aberrant 
competition experiment of O-antigen chain length derivatives of rfb near-isogenic strain 
KAB082 (iso SARB3)-Tag Set 1 vs. Naegleria gruberi NL 

 
Experimental variability was assessed based on the sums of squared deviations (SSD) of the 
counts of fluorescent classes of each replicate plate from that expected from of the entire 
population of plates. Shaded regions indicate unacceptably high SSD values. Unlike other 
experiments, removal of aberrant plates did not improve overall SSD values of other plates. 

 

Replicate 1 2 3 4 5 6 7 8 9 10 

1 0.000 0.057 0.072 0.098 0.208 0.314 0.218 0.135 0.248 0.158 

2 --- 0.000 0.029 0.094 0.065 0.179 0.104 0.027 0.123 0.048 

3 --- --- 0.000 0.052 0.058 0.129 0.070 0.028 0.106 0.089 

4 --- --- --- 0.000 0.120 0.185 0.053 0.074 0.076 0.125 

5 --- --- --- --- 0.000 0.049 0.046 0.017 0.080 0.096 

6 --- --- --- --- --- 0.000 0.119 0.109 0.194 0.274 

7 --- --- --- --- --- --- 0.000 0.032 0.011 0.08 

8 --- --- --- --- --- --- --- 0.000 0.049 0.039 

9 --- --- --- --- --- --- --- --- 0.000 0.058 

10 --- --- --- --- --- --- --- --- --- 0.000 
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Table 47. Goodness-of-fit tests on a set of replicate predator plates for an aberrant 
competition experiment of O-antigen chain length derivatives of rfb near-isogenic strain 
KAB082 (iso SARB3)-Tag Set 2 vs. Naegleria gruberi NL 

 
Experimental variability was assessed based on the sums of squared deviations (SSD) of the 
counts of fluorescent classes of each replicate plate from that expected from of the entire 
population of plates. Shaded regions indicate unacceptably high SSD values. Unlike other 
experiments, removal of aberrant plates did not improve overall SSD values of other plates. 

 

Replicate 1 2 3 4 5 6 7 8 9 10 

1 0.000 0.095 0.049 0.044 0.016 0.030 0.023 0.014 0.066 0.043 

2 --- 0.000 0.242 0.041 0.074 0.036 0.063 0.082 0.240 0.017 

3 --- --- 0.000 0.124 0.110 0.130 0.131 0.091 0.053 0.142 

4 --- --- --- 0.000 0.068 0.015 0.044 0.058 0.152 0.007 

5 --- --- --- --- 0.000 0.035 0.016 0.011 0.102 0.050 

6 --- --- --- --- --- 0.000 0.011 0.021 0.110 0.013 

7 --- --- --- --- --- 0.011 0.000 0.008 0.097 0.038 

8 --- --- --- --- --- --- --- 0.000 0.056 0.050 

9 --- --- --- --- --- --- --- --- 0.000 0.162 

10 --- --- --- --- --- --- --- --- --- 0.000 
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These data highlight a critically important point: assessing the variability between plates 

is critical in providing confidence of the collected data. It was only through the lack of plate 

replication that I was able to reject the suspect experiments from the final data set. The aberrant 

genotype fitness values observed in the third replicate data set only served to confirm its 

unsuitability. 

5.4 SALMONELLA FITNESS AGAINST PREDATION IS A COMPLEX INTERPLAY 

BETWEEN O-ANTIGEN IDENTITY AND CHAIN LENGTH 

The results presented in this chapter demonstrate that predators can discriminate among 

Salmonella prey that only vary in terms of O-antigen chain length, providing additional support 

for the hypothesis that protozoan predation may drive diversifying selection at the Salmonella rfb 

locus. Here, I demonstrated that protozoan predators are able to discriminate among prey that 

only vary in terms of the chain length of the rfb product, the O-antigen. Thus, the O-antigen must 

play a strong role in shaping predator choice among prey; if not, I would have observed little if 

any fitness differences against predation among the rfb near-isogenic strain collection of O-

antigen chain length mutants. However, O-antigen chain length was not the sole factor affecting 

prey choice, as the results presented in Chapter 3 show that O-antigen identity also influenced 

Salmonella fitness against protozoan predation. 

Interestingly, fitness against predation occurred along a gradient of chain length, O-

antigen identity, and the identity of the protozoan predator. Comparing the Pearson and 

Spearman rank order correlation coefficients of pairwise comparisons of genotype fitness values 

between experiments yielded two general clusters of experiments varying both in rfb identity of 
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prey and protozoan predator (Tables 38 and 39). Additionally, a distance tree of genotype fitness 

values obtained using the neighbor-joining method [290] revealed that fitness is a complex 

interaction between prey O-antigen identity and chain length and the identity of the predator 

amoeba (Figure 35).  

While shorter O-antigens confer higher fitness against predation in some predator-strain 

competition experiments, longer O-antigens confer higher fitness in others; this is at odds with 

the “strength of binding” model explaining the relationship between the O-antigen and protozoan 

predators briefly discussed earlier. Because I did not observe that universally shortening O-

antigens increased fitness against predation, I conclude that feeding preference most likely did 

not simply depend on how well a predator is able to bind the O-antigen.  

For a given set of chain length mutant strains, the relationship of O-antigen chain length 

to fitness against predation occurs along a gradient depending on the identity of the O-antigen 

and of the protozoan predator (Figure 37). Here, strains having the highest relative fitness against 

predation for predator-strain experiments 1-5 represent the shortest chain length derivative 

classes tested: fepE-2910::tet wzzB-8771::aph (1-16 repeats) for experiment 1 and rfc-1727::cat 

(1 repeat) for experiments 2-5. The strain with the highest fitness varied substantially among the 

remaining predator-strain experiments, with each genotype representing the most fit strain at 

least once. Although I demonstrated that the nature of the O-antigen (chain length and identity) 

impact fitness against predation, I do not expect fitness to change on a linear fashion depending 

on chain length; shorter is not necessarily better in all circumstances. The relationship between 

O-antigen chain length and fitness against predation may be complicated by the potential 

unmasking of alternative receptors used for prey recognition in strains with shorter O-antigen 

chain lengths. 
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Figure 37. Relative genotype fitness rearranged according to distance values between experiments reveals fitness against 
predation occurs along a spectrum of O-antigen identity, chain length, and identity of protozoan predator 

 
Raw genotype fitness values were deconvoluted from raw strain fitness values, which were calculated as the deviation in observed cell 
frequency (that on predator plates) from the expected frequency (no predator plates). For each experiment, the genotype having the 
greatest fitness contribution was assigned a value of 1; the fitness values of all other genotypes in that experiment were normalized to 
this value. Predicted O-antigen chain length classes are shown in brackets. Fitness values were supported by bootstrapping events 
sampled from the total population with replacement with 1000 recalculations. 1 = iso SARB2 vs. Tetramitus sp. BD1-1; 2 = iso 
SARB20 series vs. Naegleria gruberi NL; 3 = iso SARB2 series vs. N. gruberi NL; 4 = iso SARB3 vs. Tetramitus sp. BD1-1; 5 = iso 
SARB20 series vs. Acanthamoeba sp. R2-1; 6 = iso SARB2 series vs. Acanthamoeba sp. R2-1; 7 = iso SARB3 series (replicate 1) vs. 
Naegleria gruberi NL; 8 = iso SARB3 series (replicate 2) vs. N. gruberi NL; 9 = iso SARB3 series vs. Acanthamoeba sp. R2-1; 10 = 
iso SARB52 vs. N. gruberi NL; 11 = iso SARB20 series vs. Tetramitus sp. BD1-1. 
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5.5 INSIGHT INTO THE MECHANISM OF PREY RECOGNITION 

If protozoan predation drives diversifying selection at the Salmonella rfb locus, then the O-

antigen must be mechanistically involved in prey choice. Although I demonstrated here and in 

Chapter 3 that the O-antigen is a major contributing factor to prey fitness against predation, the 

mechanism by which amoebae discriminate among Salmonella prey is unknown. The data 

presented in this chapter may provide some insight into the mechanism by which protozoan 

predators recognize prey. 

5.5.1 Different strategies of prey recognition 

 Prey choice could simply be a function of how well an amoeba bind to a given O-antigen. In this 

model, strains that have O-antigens more strongly bound by amoebae will be more readily 

consumed than strains that have O-antigens more weakly bound by amoebae; hence strongly-

bound strains will have lower relative fitness against predation than would more weakly-bound 

strains. If this is true, I would expect that shortening the chain length of strongly-bound O-

antigens would have a dramatic impact on fitness against predation. In contrast, shortening the 

chain length of weakly-bound O-antigens would have little if any impact on fitness against 

predation; the removal of an already poorly recognized antigen should not impact fitness. In no 

case would shorter antigens lead to an increase in predation. However, the fitness hierarchies of 

O-antigen chain length mutant strains determined here reject this model (Figures 35 and 37). 

First, relative fitness among strains always differed, with a majority of experiments having two-
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fold or greater fitness difference between the least and most fit strain (Figure 37). More 

importantly, there were many cases where shorter O-antigen chains led to increased predation. 

 These experiments suggest an alternative model of prey choice. Different amoebae 

isolated from the same environment share similar feeding preferences independent of predator 

relatedness [386], suggesting that environmental pressures on amoebae predators themselves 

may be influencing prey choice. This is not unexpected, as amoebae recognize and bind to the 

intestine surface; however, unlike binding to bacterial prey, amoebae do not attempt to 

phagocytose the intestinal epithelium. I posit that strong selective pressure should exist on native 

gut amoebae to avoid grazing upon host intestinal mucins, the bound polysaccharide that serves 

as a lubricant for the passage of material through the intestinal lumen [22, 154, 212, 252, 279]. If 

amoebae recognize intestinal mucins for adhesion to their environment, one would expect 

unrelated predators living in the same intestinal environment to share similar recognition 

properties. As a result, these amoebae may consume bacterial prey more slowly if those prey 

resemble the intestinal mucins through molecular mimicry. Here, the O-antigens that confer the 

highest fitness against predation are those that most resemble the mucins of their native intestinal 

environment. In this case, shorter O-antigens may not confer a benefit and may in fact result in 

reduced fitness against predation, as the cell loses its molecular camouflage. Shortening these O-

antigens may expose alternative epitopes used by predators to recognize prey, resulting in less 

concealment of the cells in the environment. O-antigens that do not resemble host mucins may 

have an increased risk of predation simply because they do not blend in with the intestinal 

environment; here, shorter chain lengths may or may not confer a fitness advantage. Again, 

fitness against predation according to this model will occur along a gradient depending on how 

much O-antigen structures differ from host mucins. 
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The molecular mimicry model fits well with the hypothesis that rfb diversity in 

Salmonella is a result of diversifying selective pressure arising from grazing intestinal protozoa. 

For Salmonella to survive and replicate within a host intestine, it must first avoid being 

consumed by native gut amoebae. The population of native amoebae in a given host intestine are 

presumably adapted to the environmental conditions within that particular gut; it is reasonable to 

propose that the population of amoebae in a host intestine may generally avoid grazing upon the 

intestinal mucins present in that environment. Thus, the Salmonella serovars that have a high 

fitness in a given host may do so because their O-antigens conceal these cells against the 

background of the host intestinal mucins, making them less susceptible to predation than other 

serovars with different O-antigens. Because populations of amoebae are adapted for the 

conditions within each host’s intestine, an O-antigen that provides a high degree of protection 

from predation in one gut environment may provide little or no protection against predation in 

another gut environment in which the nature of the intestinal mucins differ. 

5.5.2 Potential trade-offs may exist between interactions with protozoan predators and 

the host immune system 

Although my experiments on O-antigen chain length further point to the role of the O-antigen to 

fitness against protozoan predation, the question remains as to why Salmonella produce O-

antigens of varying chain length. O-antigen chain length has been most extensively studied in 

Salmonella using serovars Typhimurium and Enteriditis; chain length is bimodal in wild type 

strains of these serovars [231-233]. Salmonella strains lacking appropriate O-antigen chain 

length are impaired in several critical steps in pathogenicity: complement resistance [107], cell 

invasion [233], and cell adhesion [241]. The presence of longer O-antigen chains, as mediated by 
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FepE and WzzB, are required for full virulence in the mouse model of infection, as cells mutated 

for both fepE and wzzB produce shorter, random-length O-antigen chains, have enhanced 

susceptibility to complement, and are more attenuated in the mouse model of infection [231]. 

Susceptibility to uptake by host phagocytic cells has also been associated with O-antigen chain 

length. In one study, Salmonella Typhimurium cells having longer O-antigens displayed reduced 

uptake by RAW264.7 macrophages [233], suggesting that longer O-antigens may help protect 

Salmonella from the actions of the host innate immune system. 

This information led me to posit that a trade-off may occur between having protection 

against harsh environmental conditions and successfully invading cells (long O-antigens) and 

avoiding detection by protozoa/immune system molecules (short O-antigens to avoid many 

predators), with the chain-length distribution observed in Salmonella reflecting a balance 

between multiple selective pressures.  

If a given serovar of Salmonella were always found in its preferred environment and if 

my hypothesis is true, then longer O-antigens would be favored for both predator evasion and 

successful interaction with the host immune system. Although longer antigens may protect 

Salmonella in some environments via molecular mimicry, Salmonella is not always found in an 

ideal environment. For example, serovar Dublin is more likely to cause disease in cattle than in 

chickens. However, it is unreasonable to propose that serovar Dublin only encounters the 

intestinal environment of cattle. When serovar Dublin passes through an intestinal tract of a 

different host, it may have reduced fitness against the native intestinal protozoa of this new host 

relative to those of cattle intestines. In this case, a stochastic distribution of varying O-antigen 

chain lengths may serve as a trade-off among selective pressures arising from the need to avoid 

protozoan predation, invade intestinal epithelial cells, and evade the host immune system 
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defenses during intracellular replication. While longer O-antigens better allow Salmonella cells 

to escape immune system defenses and survive harsh environmental conditions, they may also 

serve as targets for protozoan predators if the identity of that O-antigen confers a low fitness 

against predation. 
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6.0  O-ANTIGEN IDENTITY IS SUFFICIENT TO CONFER DIFFERENTIAL 

FITNESS OF SALMONELLA IN DIRECT COMPETITON AGAINST PROTOZOAN 

PREDATION 

The results presented in Chapters 3 and 5 provided two lines of evidence that the O-antigen plays 

a major role in shaping Salmonella fitness against protozoan predation, a requisite to support the 

hypothesis explaining the maintenance of rfb diversity in Salmonella. In Chapter 3, I 

demonstrated that a) disruption of the O-antigen impacts fitness against predation; and b) 

protozoan predators discriminate among Salmonella strains that only vary at the O-antigen (rfb 

near-isogenic strains). Furthermore, I presented experiments in Chapter 5 which suggested that 

fitness against protozoan predation is a complex interaction between O-antigen chain length and 

identity. As discussed in Chapter 4, I developed significant technical improvements to 

competition tests using flow cytometry that permitted the direct competition of multiple strains 

in the presence and absence of predation, an approach that was used for all experiments in 

Chapter 5.  

Critically, the experiments in Chapters 3 and 5 are not without limitations. First, the rfb 

near-isogenic strains were competed against predation in an indirect manner in Chapter 3. 

Second, while strains were competed directly in the presence and absence of amoebae in Chapter 

5, neither these strains nor the strains used in Chapter 3 control for the variable presence of the 

H-antigen. Moreover, no previous experiment addressing Salmonella fitness against protozoan 
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predation utilized strains in which the presence or absence of the H-antigen was experimentally 

controlled [386-387]. Because the H-antigen is a major hypervariable cell surface antigen, its 

presence/absence must be controlled for in order to definitively establish the O-antigen as the 

major antigen shaping fitness against protozoan predation. To address these issues, I must a) 

directly compete a collection of rfb near-isogenic strains having wild-type O-antigen chain 

lengths against predation; and b) examine the fitness against predation of natural isolates of 

Salmonella in which the presence and absence of the O-antigen can be experimentally controlled. 

Here, I more rigorously examine the role of the O-antigen to Salmonella fitness against 

protozoan predation. Based on information presented in Chapters 3 and 5, I expect that O-antigen 

identity is sufficient to confer differential survivorship of Salmonella against protozoan predation 

irrespective of H-antigen identity. 

6.1 MATERIALS AND METHODS 

6.1.1 Media and growth conditions 

All bacterial strains were routinely propagated as described in Chapter 2.2.1. When used alone, 

kanamycin was used at 20 μg/mL, tetracycline at 10 μg/mL, chloramphenicol at 20 μg/mL, 

spectinomycin at 250 μg/mL, hygromycin at 150 μg/mL, and ampicillin at 100 μg/mL. When 

used with multiple antibiotics, kanamycin was used at 10 μg/mL, tetracycline at 2.5 μg/mL, 

chloramphenicol at 10 μg/mL, spectinomycin at 100 μg/mL, hygromycin at 50 μg/mL, and 

ampicillin at 100 μg/mL. Non-Typhimurium strains used in these experiments were obtained 

from the Salmonella Reference Collection B (SARB) [35]; SARB strains 1, 3, 8, and 36 were 
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found to be defective for purine biosynthesis and require the addition of 0.008% guanosine to 

minimal media to support growth. Predation competition experiments were conducted using 

NM-C media, described in Chapter 4.4.2. 

6.1.2 Strain construction of wild-type rfb near-isogenic strains for flow cytometry 

Strains near-isogenic at rfb were constructed as described in Chapter 3.2.3 and were 

electroporated with single fluorescent protein tagging plasmids listed in Table 26 according to 

the methods described in Chapter 2.2.5. O-serotypes were verified by serotype agglutination. 

Strains are listed in Table 48. 
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Table 48. Wild-type rfb near-isogenic strains directly competed against protozoan 
predation to examine the role of O-antigen identity to fitness against predation using flow 
cytometry 

 

Strain SARB Parental Strain O-serotype Fluorescent Tag 

KAB750 SARB2 (3,10) pEGFP 
KAB751   pDsRed-Express2 
KAB752 SARB3 (1,4,12) pEYFP 
KAB753   pKAB9 (mKalama1) 
KAB754 SARB20 (8,20) pECFP 
KAB755   pEYFP 
KAB756 SARB36 (6,8) pKAB9 (mKalama1) 
KAB757   pEGFP 
KAB758 SARB52 (1,9,12) pDsRed-Express2 
KAB759   pECFP 
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6.1.3 Construction of natural isolate Salmonella strains for flow cytometry 

Bacteriophage P1 was used to engineer galE-6867::aadA derivatives of SARB strains that 

contained the markers flhDC-4820::cat and fljBA-4400::tet. The flhDC-4820::cat construct 

obliterates cellular control of the H-antigen through replacement of the flagellar master regulator 

[178]. To engineer strains for future experiments on the role of the H-antigen on fitness against 

predation, I introduced the fljBA-4400::tet construct into SARB recipient cells, removing 

flagellar phase variation in cells and forcing default flagellar production to the H1 antigen [3, 33, 

115, 179, 394]. H-serotypic diversity is greatest for the fliC-encoded H1 antigen [213], and not 

all serovars display a serotype for the H2 antigen [106]. The ΔrfbP-rfbB-2773::hph construct was 

also introduced into strains in order to remove the presence of the O-antigen. The galE-

6867::aadA marker was repaired using the strategy outlined in Chapter 2.4. Finally, each strain 

was electroporated with two different double fluorescent protein tagging vectors (created in 

Chapter 4.2.1). Derivatives of SARB1 containing the constructs fljBA-4400::tet flhDC-4820::cat 

and ΔrfbP-rfbB-2773::hph were created and tagged with appropriate vectors, but these strains 

were extremely sick in the presence of ampicillin and unable to grow on NM-C media; thus, 

these strains were eliminated from my experiments. Strains are listed in Table 49.  
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Table 49. Natural isolate Salmonella strains used to examine the role of the O-antigen to 
fitness against protozoan predation 

 
Serotype key: underlining indicates phage conversion; brackets indicate variable expression.  

 

SARB 
 

Serotype Genotype Strain Tagging Vector 
O-antigen H1-antigen 

2 3,10 e,h 
fljBA-4400::tet flhDC-4820::cat KAB446 pKAB13 

KAB448 pKAB21 
fljBA-4400::tet flhDC-4820::cat 

ΔrfbP-rfbB-2773::hph 
KAB499 pKAB39 
KAB500 pKAB35 

3 1,4,12 l,v 

fljBA-4400::tet flhDC-4820::cat 
 

KAB449 pKAB15 
KAB450 pKAB37 

fljBA-4400::tet flhDC-4820::cat 
ΔrfbP-rfbB-2773::hph 

KAB501 pKAB15 
KAB503 pKAB39 

8 6,7 c 

fljBA-4400::tet flhDC-4820::cat 
 

KAB452 pKAB19 
KAB453 pKAB35 

fljBA-4400::tet flhDC-4820::cat 
ΔrfbP-rfbB-2773::hph 

KAB504 pKAB19 
KAB506 pKAB41 

20 8,20 g,m,s 

fljBA-4400::tet flhDC-4820::cat 
 

KAB456 pKAB27 
KAB457 pKAB39 

fljBA-4400::tet flhDC-4820::cat 
ΔrfbP-rfbB-2773::hph 

KAB507 pKAB21 
KAB509 pKAB37 

30 6,7 g,m,[p],s 

fljBA-4400::tet flhDC-4820::cat 
 

KAB459 pKAB21 
KAB460 pKAB11 

fljBA-4400::tet flhDC-4820::cat 
ΔrfbP-rfbB-2773::hph 

KAB512 pKAB11 
KAB511 pKAB21 

36 6,8 e,h 

fljBA-4400::tet flhDC-4820::cat 
 

KAB461 pKAB35 
KAB462 pKAB19 

fljBA-4400::tet flhDC-4820::cat 
ΔrfbP-rfbB-2773::hph 

KAB513 pKAB35 
KAB515 pKAB13 

54 11 r 

fljBA-4400::tet flhDC-4820::cat 
 

KAB464 pKAB37 
KAB465 pKAB15 

fljBA-4400::tet flhDC-4820::cat 
ΔrfbP-rfbB-2773::hph 

KAB516 pKAB37 
KAB518 pKAB19 

55 1,4,[5],12 e,h 

fljBA-4400::tet flhDC-4820::cat 
 

KAB467 pKAB39 
KAB468 pKAB13 

fljBA-4400::tet flhDC-4820::cat 
ΔrfbP-rfbB-2773::hph 

KAB520 pKAB13 
KAB521 pKAB15 

59 1,3,19 g,[s],t 

fljBA-4400::tet flhDC-4820::cat 
 

KAB471 pKAB11 
KAB472 pKAB27 

fljBA-4400::tet flhDC-4820::cat 
ΔrfbP-rfbB-2773::hph 

KAB522 pKAB41 
KAB523 pKAB11 
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6.1.4 Competition experiments 

Two sets of reciprocally tagged strains were grown overnight in liquid LB supplemented with 

ampicillin at 100 µg/mL. Cells were pelleted with centrifugation and resuspended in PBS; 

following resuspension, cells were mixed in approximately equal ratios based on OD600 

measurements. OD600 measurements of final competition mixes ranged from 0.900 to 1.200; a 

100 µL aliquot of the competition mixture was spread onto NM-C plates supplemented with 

ampicillin at 100 µg/mL. For PREDATOR plates, the centers of fourteen plates were seeded with 

104 acid-base washed amoebae cysts; at least eight NO PREDATOR plates were set up for each 

experiment. Plates were incubated at 33°C for approximately 3.5 days to permit the feeding front 

of predation to reach the outer edges of the PREDATOR plates.  

A total of six NO PREDATOR and six to ten PREDATOR plates from each experiment were 

chosen for analysis. Plates were eluted with 5 mL of PBS with 0.02% Tween20 added to reduce 

cell clumping. To diminish the number of amoebae present in samples, the eluate was filtered 

through two 5 µM pore size overlayed CellMicroSieve™ biologically inert nylon mesh filters 

(Bio-Design Inc. of New York). All samples were diluted in PBS + 0.02% Tween20 to an 

approximate concentration of 107 cells/mL. 

6.1.5 Flow cytometry 

Prior to analysis, SYTO™ 62 nucleic acid dye (Invitrogen, Carlsbad, CA) was added to a final 

concentration of 50 nM to aid in the separation of Salmonella cells from debris and amoebae. 

Events were acquired on a Beckman-Coulter CyAn ADP (Beckman-Coulter) flow cytometer at a 

rate of <1000 events per second. Filters and detector settings are listed in Chapter 4. 
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Commercially available software (Summit 4.3, Dako Colorado Inc.) was used for the operation 

of the cytometer. Data analysis was performed using Ferdinand (developed by Dr. Jeffery 

Lawrence as discussed in Chapter 4). 

6.1.6 Technical acknowledgements 

Strains listed in Table 48 were electroporated with fluorescent tagging plasmids under my 

supervision by undergraduate researchers Ben Cross and Mark Brown. I designed the primers 

used for directed gene replacement of constructs fljBA-4400::tet and flhDC-4820::cat; 

replacements were performed collaboratively by participants of the 2007 Gene Team at the 

University of Pittsburgh. Ferdinand was developed by Dr. Jeffrey Lawrence at the University of 

Pittsburgh. 

6.2 SALMONELLA STRAINS THAT ONLY VARY AT THE O-ANTIGEN EXHIBIT 

DIFFERENTIAL FITNESS AGAINST PROTOZOAN PREDATION IN DIRECT 

COMPETITION 

In Chapter 3.3 (Figure 15), I engineered a series of rfb near-isogenic strains of Salmonella that 

only varied at the O-antigen and competed these strains against three genetically distinct 

amoebae. While these experiments highlighted a relationship between O-antigen identity and 

fitness against predation, they relied on fitness assessment under conditions of indirect 

competition and measured using the crude method of line tests. Additionally, the work presented 

in Chapter 5 suggested that fitness against predation is a combinatorial interaction between O-
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antigen chain length and identity, but I did not examine the fitness of the wild-type rfb near-

isogenic strains against each other. Using the techniques developed in Chapters 4 and 5, I 

revisited the role of O-antigen identity in shaping fitness against protozoan predation as 

described below.  

6.2.1 Predators directly discriminate among rfb near-isogenic strains 

Although I previously demonstrated that amoebae can discriminate among strains that only vary 

at the O-antigen in Chapter 3.3, an argument could be made that these results were impacted by 

the intrinsic crude nature of line tests and the fact that strains were indirectly competed. To 

address these issues, I directly competed five rfb near-isogenic strains representing five distinct 

O-serotypes against predation (Table 48) against predation by three genetically distinct amoebae: 

Naegleria gruberi NL, Acanthamoeba sp. R2-1, and Tetramitus BD1-1. Fitness was assessed 

using the flow cytometry protocols discussed in Chapters 4 and 5. As shown in Figure 38, 

relative fitness of each rfb near-isogenic strain varies substantially among the three protozoan 

predators, with fitness differences between the most fit and least fit strains occurring along a 

range from at least a two-fold minimum difference and ten-fold maximum difference. Not 

surprisingly, fluorescent tag fitness among experiments displays a similar level of robustness as 

to the data presented in Chapter 5. Here, fluorescent tag fitness values are very similar among 

experiments, with the average Pearson r = 0.9702 (Table 50) and Spearman r = 0.7333 (Table 

51). Genotype fitness values show greater differences than fluorescent tag fitness, with the 

average Pearson r = 0.1540 (Table 52) and Spearman r = 0.2333 (Table 53). All fitness values 

were supported by bootstrapping the entire data population at 1000 recalculations.  
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Figure 38. Protozoan predators discriminate among rfb near-isogenic Salmonella prey in 
direct competition 

 
Raw genotype fitness values were deconvoluted from raw strain fitness values, which were 
calculated as the deviation in observed cell frequency (that on predator plates) from the expected 
frequency (no predator plates). For each experiment, the genotype having the greatest fitness 
contribution was assigned a value of 1; the fitness values of all other genotypes in that 
experiment were normalized to this value. O-serotypes are shown in parentheses. Fitness values 
were supported by bootstrapping events sampled from the total population with replacement with 
1000 recalculations.  
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Table 50. Pearson correlation coefficients for pairwise comparisons of fluorescent tag 
fitness in competition experiments of five rfb near-isogenic strains against predation by 
three different amoebae 

 
Darker blue colors indicate strength of correlation. Average Pearson r = 0.9702. 

 

 Tetramitus sp. BD1-1 Acanthamoeba sp. 
 R2-1 Naegleria gruberi NL 

Tetramitus sp. BD1-1 1 0.9748 0.9893 

Acanthamoeba sp. 
 R2-1 0.9748 1 0.9466 

Naegleria gruberi NL 0.9893 0.9466 1 

 
 

 

 

 

 

 

Table 51. Spearman rank order correlation coefficients for pairwise comparisons of 
fluorescent tag fitness in competition experiments of five rfb near-isogenic strains against 
predation by three different amoebae 

 
Darker blue colors indicate strength of correlation. Average Spearman r = 0.7333. 

 

 Tetramitus sp. BD1-1 Acanthamoeba sp. 
R2-1 Naegleria gruberi NL 

Tetramitus sp. BD1-1 1 0.9 0.6 

Acanthamoeba sp. 
R2-1 0.9 1 0.7 

Naegleria gruberi NL 0.6 0.7 1 
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Table 52. Pearson correlation coefficients for pairwise comparisons of genotype fitness in 
competition experiments of five rfb near-isogenic strains against predation by three 
different amoebae 

 
Darker red colors indicate greater negative Pearson correlation coefficients; darker blue colors 
indicate greater positive Pearson correlation coefficients. Average Pearson r = 0.1540. 
 

 Tetramitus sp. BD1-1 Acanthamoeba sp. 
R2-1 Naegleria gruberi NL 

Tetramitus sp. BD1-1 1 0.0292 -0.1769 

Acanthamoeba sp. 
R2-1 0.0292 1 0.6098 

Naegleria gruberi NL -0.1769 0.6098 1 

 

 

 

 

 

Table 53. Spearman rank order correlation coefficients for pairwise comparisons of 
genotype fitness in competition experiments of five rfb near-isogenic strains against 
predation by three different amoebae 

 
Darker blue colors indicate greater positive Spearman rank order correlation coefficients. 
Average Spearman r = 0.2333. 

 

 Tetramitus sp. BD1-1 Acanthamoeba sp. 
R2-1 Naegleria gruberi NL 

Tetramitus sp. BD1-1 1 0.4 0 

Acanthamoeba sp. 
R2-1 0.4 1 0.3 

Naegleria gruberi NL 0 0.3 1 
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If the O-antigen does not significantly contribute to fitness, I would expect that the fitness 

values of all rfb near-isogenic strains against all predators to have a very high degree of 

correlation, with correlation values of strain fitness between predators being very close to a value 

of 1. However, this is not the case as shown with both the Pearson correlation (Table 52) and the 

Spearman rank order correlation (Table 53). The information presented here allow me to 

reinforce the conclusions presented in Chapter 3 without most of the caveats used in previous 

fitness assays: because predators can discriminate among strains that only vary at the O-antigen 

and the fitness against predation for the rfb near-isogenic strains varied considerably among 

predators, the O-antigen must be a major determinant of protozoan feeding preference. 

Moreover, the experiments presented here address one of the major weaknesses of the rfb near-

isogenic strain competitions presented in Chapter 3. Here, these strains were competed directly 

using a more sensitive method of fitness determination than line tests. Critically, these data 

indicate that amoebae can discriminate among strains that only vary at the O-antigen when 

strains were competed directly, further bolstering the arguments set forth in Chapter 3.3 through 

the use of more rigorous approaches to examine fitness against predation. 

6.2.2 Relative fitness of rfb near-isogenic strains corroborated the role of O-antigen chain 

length in fitness against predation 

The data discussed above support the observation I made in Chapter 5 indicating a link between 

O-antigen identity and chain length to fitness against protozoan predation and provide more 

robust evidence supporting the conclusion I drew in Chapter 3 that amoebae can discriminate 

among strains that only vary at the O-antigen by directly competing strains against protozoan 

predators. These same experiments can be used to examine the hypothesis that the O-antigen acts 
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as a molecular mimic of host intestinal mucins, potentially camouflaging Salmonella cells with 

particular O-antigens in the intestinal environment. For a given set of chain length mutant strains, 

the relationship of O-antigen chain length to fitness against predation occurred along a gradient 

depending on the identity of the O-antigen and of the protozoan predator (Figures 34 and 35). 

Although the results presented in Chapter 5 suggested that the nature of the O-antigen (chain 

length and identity) impact fitness against predation, I did not expect fitness to change on a linear 

fashion depending on chain length; a particular chain length class should not be necessarily more 

fit against predation in all experimental circumstances.  

The relationship between O-antigen chain length and fitness against predation may be 

complicated by the potential unmasking of alternative receptors used for prey recognition in 

strains with shorter O-antigen chain lengths. Additionally, I did not expect rfb near-isogenic 

strains to display accurate phenocopies of parental O-antigens, as loci located outside of rfb may 

influence O-antigen identity (see Chapter 3 for further discussion). Table 54 presents two 

examples of the relationship between O-antigen chain length (from experiments discussed in 

Chapter 5) and identity (Chapter 6.2.1) for three different protozoan predators. 

 

 

 

 

 

 

 

 



269 

Table 54. Summary of O-antigen chain length fitness experiments and corresponding 
relative fitness of wild-type rfb near-isogenic strain against protozoan predation. 

 

rfb Near-
Isogenic 
Strain Predator 

Highest Relative Fitness in Chain 
Length Experiments:  

Relative Fitness 
When Competed 

Against Wild-Type 
rfb Near-Isogenic 

Strains 

Genotype Predicted O-antigen 
Chain Length 

isoSARB2 Tetramitus sp. 
BD1-1 

fepE-2910::tet 
wzzB-8771::aph 1-16 Moderate 

 Acanthamoeba 
sp. R2-1 Wild-Type 16-35; 100+ Moderate 

 Naegleria 
gruberi NL rfc-2771::cat 1 Moderate 

isoSARB3 Tetramitus sp. 
BD1-1 rfc-2771::cat 1 Low 

 Acanthamoeba 
sp. R2-1 fepE-2910::tet 16-35 Low 

 Naegleria 
gruberi NL wzzB-8771::aph 16-35; bias towards 

100+ High 
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Interestingly, the wild-type rfb near-isogenic strain derivative of SARB2 (strains 

KAB750-51) have a moderate relative fitness against predation against Tetramitus sp. BD1-1, 

Acanthamoeba sp. R2-1, and N. gruberi NL; however, both shorter and longer O-antigen chain 

length genotypes had the highest relative fitness against predation when competed against other 

O-antigen chain length derivatives. This further highlights the complex interaction between O-

antigen chain length and identity in shaping Salmonella fitness against predation. Here, if fitness 

against predation was simply a function of general strength of binding of predators to O-

antigens, I would have expected that universally shorter O-antigens would have higher fitness 

against predation regardless of the fitness of the wild-type parent strain, and this is not the case 

with derivatives of rfb near-isogenic strain SARB2. 

The wild-type rfb near-isogenic strain derivative of SARB3 (KAB752-53) have a low 

relative fitness against predation by both Tetramitus sp. BD1-1 and Acanthamoeba R2-1; 

genotypes having shorter O-antigen chain lengths than wild-type had the highest relative fitness 

in the chain length experiments. However, the opposite was observed for predation by N. gruberi 

NL: the wild-type strain had a high fitness against predation, and the wzzB-8771::aph genotype 

was most fit relative to other chain length classes against predation by this amoeba. In this case, 

the wzzB-8771::aph strain may exhibit a bias towards the 100+ O-antigen chain length class 

[231-232]. Thus, the data presented here suggest that this O-antigen identity may be avoided by 

N. gruberi NL, as the wild-type strain derivative had a relatively high fitness against predation 

when competed against strains only differing at the O-antigen and a longer O-antigen chain 

length class had the highest fitness against predation relative to strains only differing in O-

antigen chain length. 
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As illustrated in Chapter 5, differences in O-antigen chain length are sufficient to enable 

differential survivorship against protozoan predation. As shown in these experiments, differences 

in O-antigen identity are also sufficient to permit differential fitness against protozoan predation. 

Critically, both of these experiments were conducted using direct strain competition, eliminating 

the explanation that the fitness differences observed in Chapter 3.3 were due to other factors such 

as varying environmental conditions between replicate line test plates or factors impacting strain-

to-strain competition. Taken together, these data would argue for a very strong role played by the 

O-antigen, and hence the rfb locus, in shaping fitness against protozoan predation, more 

confidently supporting the hypothesis that predation from grazing amoebae drives diversifying 

selection at the Salmonella rfb locus. Moreover, I provide further evidence here to support the 

hypothesis that the O-antigen serves as a type of molecular camouflage against host intestinal 

mucins; protozoan predators avoid grazing upon bacterial cells that display polysaccharide 

antigens that resemble the host environment. 

6.3 PROTOZOAN PREDATORS DISCRIMINATE AMONG SALMONELLA PREY 

LACKING THE H-ANTIGEN 

As discussed above, protozoan predators discriminate among strains that only vary at the rfb 

locus in direct competition, strongly suggesting that O-antigen identity is sufficient to permit 

differential susceptibility to protozoan predation in Salmonella. However, these experiments 

raise the fundamental question of how the O-antigen contributes to fitness against predation 

when it is presented in the context of the full spectrum of naturally-occurring surface antigen 

diversity of wild Salmonella isolates. Not only do natural Salmonella strains differ at the O-
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antigen, they also differ at the H-antigen and potentially at hundreds of other cell surface 

antigens (see Chapter 1.5 for additional discussion). I first addressed this issue in Chapter 3.2 

using the rfb near-exogenic strain collection, in which the rfb loci of strains from the SARB 

collection were replaced with that of the laboratory strain Typhimurium LT2, and indirectly 

competed these strains against protozoan predation. These results showed that disrupting the 

native rfb locus in the context of all other strain-specific Salmonella surface antigens led to 

dramatic changes in fitness against protozoan predation, highlighting the strong role played by 

the O-antigen in shaping differential survivorship against predation. However, this technical 

approach had two important caveats: a) indirect competition; and b) lack of experimental control 

of the H-antigen.  

I address these caveats here using more sophisticated technical approaches in both 

assessment of fitness against predation and in strain construction. First, all competitions were 

performed directly using flow cytometry; double fluorescent-protein tagging vectors permitted 

the simultaneous competition of up to ten strains. Second, I introduced several key directed gene 

replacements into the SARB strains that permitted the experimental control of the H-antigen 

flagella. As discussed in Chapter 1.5.1, the H-antigen flagellae comprise the other hypervariable 

surface antigen in the Salmonellae. I did not control for the presence of H-antigen expression nor 

the random H-antigen phase variation known to occur in Salmonella in previous experiments, 

and it is possible that variability in environmental conditions among experiments could have 

fostered expression of H-antigens in some experiments but not in others, confounding results.  

To deal with the H-antigen issue, I used the genetic techniques described in Chapter 2 to 

engineer a series of natural isolates of Salmonella that lack the ability to produce either phase of 

the H-antigen via introduction of the flhDC-4820::cat construct. The flhDC operon serves as the 
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flagellar master regulator, which is transcribed in response to certain environmental conditions 

and regulates the transcription of the flagellar biosynthesis operons; see Chapter 1.5.1 for a brief 

review on flagellar biosynthesis. Because these cells lacked the ability to transcribe flagellar 

biosynthesis genes, the H-antigen was absent from these cells under the environmental 

conditions of the experiments outlined in this section.  

If the O-antigen strongly contributes to differential survivorship of Salmonella against 

grazing amoebae, then I expect natural strains lacking the H-antigen to have differential fitness 

against protozoan predation. To eliminate the H-antigen as a potential variable explaining 

discrimination of Salmonella prey by protozoan predators, I tested the fitness of nine different 

Salmonella strains lacking the ability to produce an H-antigen (Table 49) against predation by 

three different amoebae: Naegleria gruberi NL, Acanthamoeba polyphaga I, and Hartmannella 

sp. T3-1 using simultaneous competition assays and measured strain abundance in the presence 

and absence of predators using flow cytometry. If the O-antigen is a major contributing factor to 

prey recognition, then I should observe discrimination among O+ H- prey. In the unlikely case 

that the H-antigen is the primary surface antigen impacting fitness against predation, then I 

should observe a lack of discrimination among these genetically altered Salmonella prey, or the 

degree of discrimination will be far smaller than that observed for strains bearing H-antigens. 

Fitness was examined in the same manner as experiments described in Chapters 5 and 

6.1, except that positive events were defined as those having positive signal for two different 

fluorescent signals. Curves were fit to Gaussian distributions of fluorescent signals defined by 

the unique signal distributions of single double-labeled cells grown under identical experimental 

conditions. For example, to define events labeled with both EYFP and ECFP, curves were fit to 

the Gaussian distribution of events having positive EYFP signal that also had positive ECFP 
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signal and vice versa. Although I examined derivatives of SARB1 in prior work, derivatives of 

SARB1 were eliminated from the this strain set due to extremely low tolerance of ampicillin at 

concentrations required for maintenance of the tagging vector.  

Here, I present strain fitness values rather than their deconvoluted components of 

genotype and fluorescent tag fitness values for several important reasons. First, the 

deconvolution process perpetuated artifactual error in cases when strain counts were low, which I 

observed in various experiments. Here, while the variety of genetic mutations in the natural 

isolate strains used here provided a much more rigorous level of experimental control of surface 

antigen presentation, they also resulted in some strain growth defects in the presence of antibiotic 

selection. I observed varying levels of sickness among strains grown under the required amount 

of antibiotic selection required for maintenance of the fluorescent tagging vectors, which led to 

underrepresentation of various strains in no predator and predator competition plates due to poor 

antibiotic tolerance. Low numbers of certain strains would perpetuate error in the deconvolution 

process, which could significantly impact genotype and fluorescent tag fitness values due to this 

artifact. Second, the goal of these experiments is to determine if predators discriminate among 

natural Salmonella prey lacking the H-antigen; I am only interested in determining if 

discrimination occurs, not the exact hierarchies of the strain fitness values. Third, I am less 

concerned about fluorescent tag fitness here than in previous work, as I already demonstrated in 

Chapters 5 and 6.2 that fluorescent tag fitness values are strongly consistent among experiments. 

For these reasons, the presentation of strain fitness against predation provides the most 

straightforward approach to examining the question if natural Salmonella strains lacking H-

antigens have differential fitness against protozoan predation. 
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Figure 38 depicts the relative log strain fitness of the O+ H- strain collection against 

predation from three different amoebae. Consistent with all previous observations, all amoebae 

tested were able to discriminate among natural isolates of Salmonella lacking the H-antigen. If 

the O-antigen plays a stronger role in shaping fitness against predation than the H-antigen, then 

strains lacking the H-antigen should exhibit differential survivorship against protozoan 

predation. Conversely, if the H-antigen is the major cell surface antigen shaping fitness against 

predation, then its removal should result in reduced differential survivorship against protozoan 

predation. As shown in Figure 38, N. gruberi NL, A. polyphaga I, and Hartmannella sp. T3-1 all 

discriminated among strains of Salmonella lacking the H-antigen. Moreover, fitness differences 

were so extreme in some cases that I transformed these values to logarithmic values to simplify 

data presentation. Because amoebae discriminate among natural Salmonella prey lacking the H-

antigen, I conclude that the O-antigen is a major surface antigen affecting fitness against 

predation.  
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Figure 39. Natural isolates of Salmonella lacking the H-antigen exhibit differential fitness 
against protozoan predation 
 
Strain fitness was calculated as the deviation in observed cell frequency (that on predator plates) 
from the expected frequency (no predator plates). Strain fitness values were log transformed for 
ease of presentation, as fitness differences were observed on the hundred- to thousand-fold scale. 
For each experiment, the strain having the greatest log fitness value was assigned a value of 1; all 
other strains were normalized to this value. O-serotypes are listed in parentheses; fluorescent 
tagging vectors are listed in brackets. Fitness values were supported by bootstrapping events 
sampled from the total population with replacement with 1000 recalculations. Descriptions of 
tagging vectors are listed in Table 11. 
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These experiments provide the most rigorous evidence to date that the O-antigen plays a 

very strong role in shaping Salmonella fitness against protozoan predation, supporting the 

hypothesis that rfb diversity in Salmonella is driven by diversifying selection from protozoan 

predators. Critically, this approach advances beyond other experiments presented previously by 

others [386-387] or in this dissertation because the variable presence of the H-antigen was 

directly addressed. Moreover, strains were competed directly, eliminating the possibilities that 

environmental conditions or intrastrain competition elements contributed to fitness in a greater 

manner than did the identity of the O-antigen.  

6.4 PROTOZOAN PREDATION IS A LIKELY DRIVER OF DIVERSIFYING 

SELECTION AT THE SALMONELLA RFB LOCUS 

If the O-antigen is a strong contributor to Salmonella fitness against predation, then its disruption 

should strongly impact the fitness against predation of any given strain. This issue was tested in 

Chapter 3.2, albeit using the crude approaches of line tests to measure fitness and the rfb near-

exogenic strains, which consisted of a collection of natural isolates of Salmonella containing the 

rfb locus derived from serovar Typhimurium LT2. Using these data, I concluded that the O-

antigen must play a major role in shaping fitness against protozoan predation because the fitness 

of wild-type natural Salmonella isolates differed widely from that of the rfb near-exogenic 

counterparts against predation by three different amoebae. However, this approach again suffers 

the caveats that a) competition was performed indirectly; b) the H-antigen was not 

experimentally controlled; and c) differences in the O-antigen among the rfb near-exogenic 
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strains series may exist due to inaccurate phenocopying of the LT2-derived rfb locus in non-

Typhimurium genetic backgrounds. 

Here, I directly address the fundamental weaknesses of experiments using the rfb near-

exogenic strain collection in three major ways. First, strains were competed directly using flow 

cytometry to enumerate strains competed in the presence and absence of protozoan predators as 

discussed in Chapter 6.2. Second, I engineered natural isolate derivatives of Salmonella lacking 

the genes required to manufacture the H-antigen, thus placing the absence of this antigen under 

strict experimental control. Third, rather than creating a series of strains all having the same rfb 

locus, I removed the O-antigen entirely from a collection of SARB strains also lacking the H-

antigen; phenocopying of an antigen using genes from another strain was not an issue in these 

new strains lacking both the major Salmonella cell surface antigens. In this case, I removed the 

major surface antigen conferring fitness against protozoan predation, permitting exposure of a 

wide variety of other surface antigens that vary among strains. Here, it is possible that removal of 

these antigens will unmask alternative receptors recognized by protozoan predators. Thus, I do 

not expect that fitness will remain stable among all strains lacking an O-antigen, although the 

degree to which strains are discriminated is unclear. 

Using this more robust approach, I competed nine different Salmonella strains lacking 

both the O- and H-antigens against predation by three genetically distinct amoebae: N. gruberi 

NL, A. polyphaga I, and Hartmannella sp. T3-1 and compared the measured strain fitness values 

to those of the O+ H- strains (Figure 40). Again, fitness values were log transformed and 

normalized to aid in data presentation of widely differing fitness values within the same 

experiment. All predators discriminated among the O- H- strain series, and fitness hierarchies 

changed between the O+ H- and O- H- strain series to different degrees, allowing me to deduce 
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that the O-antigen strongly shapes fitness against protozoan predation. These data provide more 

robust support for the hypothesis that Salmonella rfb diversity is driven by diversifying selection 

from protozoan predation using an approach free of the major caveats of the data discussed in 

Chapter 3. 
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Figure 40. Salmonella strains lacking the O- and H-antigens have differential survival 
against protozoan predation. 

 
Strain fitness was calculated as the deviation in observed cell frequency (that on predator plates) 
from the expected frequency (no predator plates). Strain fitness values were log transformed for 
ease of presentation, as fitness differences were observed on the hundred- to thousand-fold scale. 
For each experiment, the strain having the greatest log fitness value was assigned a value of 1; all 
other strains were normalized to this value. O-serotypes are listed in parentheses; fluorescent 
tagging vectors are listed in brackets. Fitness values were supported by bootstrapping events 
sampled from the total population with replacement with 1000 recalculations. 
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Interestingly, the O- H- strain series showed a similar overall degree of difference 

between the most fit and least fit strains for all amoebae tested (Figure 40).  Here, it appears that 

protozoan predators are able to discriminate among Salmonella prey lacking both the major cell 

surface antigens. Two models can be used to explain this observation. First, removal of the O-

antigen may result in the unmasking of alternate receptors used by amoebae to recognize food, 

and these receptors are not normally used in food recognition due to steric masking by the large 

O-antigen. Second, these receptors could be used to varying degrees to recognize prey in the 

presence of the O-antigen, but these contributions are extremely minor in light of the very strong 

role played by the O-antigen in shaping fitness against predation. Here, removal of the O-antigen 

may simply highlight the contributions of other cell surface antigens to prey choice. Because 

Salmonella strains potentially differ at hundreds of antigenically distinct outer membrane 

proteins (see Chapter 1.5 for further discussion), it is not surprising that strains lacking both the 

major cell surface antigens did not impact the ability of amoebae to differentially discriminate 

among Salmonella prey. However, in this case, the mechanism by which amoebae recognize 

Salmonella prey lacking the major cell surface antigens is unclear. 

To examine the significance of difference between fitness hierarchies of O+ H- and O- H- 

Salmonella prey, I plotted relative log strain fitness of O+ H- strains vs. relative log strain fitness 

of O- H- strains and determined the correlation values (R2) values of fitness hierarchies (Figure 

41). For all three amoebae tested, prey is selected entirely differently when the O-antigen is 

absent, and this difference in prey selection occurs along a gradient of magnitude. Both N. 

gruberi NL (R2 = 0.1443) and A .polyphaga I (R2 = 0.0011) select prey entirely differently when 

the O-antigen is absent. However, Hartmannella sp. T3-1 displays a much lower degree of 

difference of prey selection in the absence of the O-antigen (R2 = 0.4887). These data would 
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argue that different amoebae may use the O-antigen to varying degrees in prey selection, a trend 

that I also observed for the data presented in Chapter 3.2.   
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Figure 41. Removal of the O-antigen dramatically impacts fitness against protozoan 
predation of natural Salmonella strains in which the presence of the H-antigen is 
experimentally controlled. 

 
Strain fitness was calculated as the deviation in observed cell frequency (that on predator plates) 
from the expected frequency (no predator plates). Strain fitness values were log transformed for 
ease of presentation, as fitness differences were observed on the hundred- to thousand-fold scale. 
For each experiment, the strain having the greatest log fitness value was assigned a value of 1; all 
other strains were normalized to this value. Fitness values were supported by bootstrapping 
events sampled from the total population with replacement with 1000 recalculations. 
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While the R2 value for fitness of O+ H- vs. O- H- strains appears relatively low for 

Hartmannella sp. T3-1 when compared to those of N. gruberi NL and A. polyphaga I, this value 

still indicates a major contribution of the O-antigen to fitness against predation. The O-antigen is 

likely responsible for roughly 50% of the observed fitness against predation for serovars 

competed against this particular amoeba in light of the fact hundreds of other outer membrane 

surface antigens present in Salmonella may be used by Hartmannella sp. T3-1 in prey selection. 

Both the data presented here and in Chapter 3.2 suggest that the O-antigen is the major surface 

antigen imparting fitness against protozoan predation, although the degree of this contribution is 

dependent on the genotype of the protozoan predator. Although fitness is a complex interaction 

between Salmonella prey and amoebae predators, the O-antigen is the major element defining 

this predator-prey relationship.  

6.5 THE O-ANTIGEN SHAPES THE PHYSIOLOGICAL BASIS FOR PREDATOR 

ESCAPE IN SALMONELLA IN VITRO AND FUTURE DIRECTIONS 

Here, I demonstrated with a high degree of rigor three key elements that support the hypothesis 

that the O-antigen plays a strong role in the physiological basis of predator escape. First, O-

antigen identity is sufficient to cause differential survivorship against protozoan predation. 

Second, O-antigen identity in the absence of any contribution from the H-antigen impacts 

Salmonella fitness against protozoan predation. Third, removal of the O-antigen dramatically 

impacts Salmonella fitness against predation. Given the results presented in this chapter and in 

all previous chapters in this dissertation, I conclude with confidence that the O-antigen is the 

major cell surface antigen contributing to Salmonella fitness against protozoan predation in vitro.  
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Additionally, the experiments presented here and in Chapter 5 shed light upon the mechanistic 

basis for prey recognition by protozoan predators, with the fitness of any given serovar being 

dependent upon O-antigen identity and the degree to which the particular predator uses the O-

antigen in prey recognition. 

Although absence of the H-antigen is not sufficient to eliminate discrimination of natural 

isolates of Salmonella by protozoan predators, the possibility remains that the H-antigen may 

play some role in shaping fitness against predation, albeit a potentially weaker role than that 

played by the O-antigen. Additionally, these experiments cannot rule out any synergistic effect 

between the O- and H-antigens in mediating predation escape in Salmonella. To address these 

issues, I designed a series of double-fluorescent protein tagging vectors containing flhDC under 

an arabinose-inducible promoter derived from pBAD24 [164]. Introduction of these vectors into 

the O+ and O- strains listed in Table 49 will yield a collection of strains in which the presence of 

the hypervariable fliC-encoded H1-antigen is experimentally controlled. Further competition 

assays using the H+ collection of strains will yield additional information on the role of the H-

antigen alone and any synergistic relationships of the O- and H-antigens to predation escape in 

Salmonella. 

These results provide compelling evidence that predation escape in Salmonella is 

mediated by the O-antigen, but all results presented up to this point were obtained from in vitro 

experiments. The next step in elucidating the physiological basis of Salmonella predator escape 

was to move beyond laboratory-controlled in vitro experiments using cultivable protozoa to 

determine if the presence of amoebae predators in can mediate Salmonella survival in natural 

intestinal environments. If protozoan predation truly drives diversifying selection at the 
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Salmonella rfb locus, then discrimination of prey based solely on the O-antigen must occur in 

vivo. I explored this issue further in Chapter 7. 
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7.0  DIFFERENTIAL SURVIVORSHIP OF SALMONELLA WITHIN ENTERIC 

ENVIRONMENTS 

I demonstrated in Chapters 3, 5, and 6 that protozoan predators discriminate among Salmonella 

based on a complex interaction between O-antigen identity and chain length, suggesting that the 

O-antigen plays a major role in shaping Salmonella fitness against protozoan predation. 

Collectively, these data provide further support for the hypothesis that protozoan predators are 

driving diversifying selection at the Salmonella rfb locus. However, these experiments were all 

performed in vitro; for this hypothesis to be true, predators must discriminate among Salmonella 

prey based on the O-antigen in vivo. Regardless of how compelling laboratory competition 

experiments are, they still examine predator-prey interactions in an isolated, artificial 

environment. Thus, the next step in establishing protozoan predation as a selective force driving 

diversifying selection at the Salmonella rfb locus is to move beyond in vitro assays and compete 

bacteria within their native, enteric environment. Results from Wildschutte and Lawrence [386] 

established that predators isolated from the same environment share feeding preferences, 

suggesting that antigenically distinct Salmonella may experience differential survivorship when 

facing multiple predators. However, these experiments examined only cultivated predators.  

Here, I discuss a preliminary in vivo competition experiment and future in vivo and ex 

vivo experiments designed to test my hypothesis. I chose the goldfish Cassius auratus auratus as 

a model in vivo system for two main reasons: a) I was confident that goldfish intestines are hardy 
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reservoirs of protozoa, as were successful at isolating amoebae from goldfish in many previous 

experiments [386] and b) goldfish are easily reared in the research laboratory setting and have 

regular eating habits, allowing ready manipulation of their enteric flora and fauna.  

7.1 MATERIALS AND METHODS 

7.1.1 Media and growth conditions 

Bacteria were routinely propagated according to the protocols described in Chapter 2.2.1. 

Zeomycin was used at a final concentration of 100 µg/mL. Gentamycin was used at a final 

concentration of 50 µg/mL. No carbon source E media (or NCE media, derivative of E salts 

[371] lacking carbon source) was prepared with 0.2% galactose supplemented with 0.1 mM 

IPTG and 40 µg/mL XGAL. 

7.1.2 Strain construction 

Using the protocol described in Chapter 2.2.3, bacteriophage P1 was used to transduce the 

following markers into galE-6866::aph strains of SARB20 and 30: ΔorgC-prgH-5801::EYFP-

zeo; phs-209::Tn10dGn and pdu-219::Tn10dCm. The construct pdu-214::Tn10dTc was 

transduced into the SARB30 derivative strain KAB146 to serve as a tagging marker to permit 

culture-based differentiation from the SARB20 derivative KAB144. 
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7.1.3 Care of goldfish 

Sixteen goldfish (Cassius auratus auratus) were obtained from Carolina Biological Supply; fish 

were divided into two groups of eight and added to one of two 15 gallon tanks. Two liters of 

water were exchanged between tanks daily; 10% of water was changed daily per tank. Fish were 

offered NutraFin® Max Goldfish Medium-Size Pellet Food (Rolf C. Hagen, Inc.) twice daily. 

Tank temperature was gradually raised to 30°C in both tanks in 0.5°C increments every 48 hours. 

Fish were acclimated to laboratory conditions approximately one month prior to 

experimentation. A protocol for proper care and use of goldfish was filed and approved with the 

University of Pittsburgh, Division of Laboratory Animal Resources (protocols 1005246, 

0705497, and 0705498). 

7.1.4 In vivo competition assay 

Strains KAB144 and KAB146 were grown to approximately equal OD600 values in 5 mL LB 

broth supplemented with gentamycin and zeomycin. Cells were concentrated with centrifugation 

and rinsed twice with 0.9% NaCl; final volume for each culture was 1 mL. Cells were mixed 

together and added to a petri dish containing 2.0 g of NutraFin® Max Goldfish Medium-Size 

Pellet Food (Rolf C. Hagen, Inc.); pellets were allowed to completely soak up bacteria. Eight 

hours prior to inoculation of fish with bacteria, one tank (NO PREDATOR) was treated with 500 mg 

of metronidazole to reduce the number of protozoa. This tank was dosed every eight hours with 

500 mg of metronidazole throughout the entire experiment. The other tank (PREDATOR) was 

untreated with antiprotozoal medication. Approximate strain concentration in inoculum was 

determined by serial dilution and replica printing for antibiotic resistance phenotypes.  
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In twelve hour intervals until 48 hours post inoculation, two fish per tank were removed 

and placed in separate beakers of water. Fish were euthanized with the addition of approximately 

0.5 g of the aquatic anesthetic tricaine (ethyl 3-aminobenzoate methanesulfonate salt); to ensure 

complete euthanization, fish were dissected approximately five minutes after cessation of 

breathing and swimming behavior. Intestines were removed from fish by making a small cut 

~0.5 cm behind the gill on the ventral side and cutting along the ventral side to the anus. Care 

was taken to avoid rupture of the intestines during dissection.  

Following dissection, the intestines of each fish were placed in separate sterile petri 

dishes to permit sectioning of intestines and removal of intestinal contents, which were 

resuspended in 1 mL of 0.9% NaCl and transferred to sterile microcentrifuge tubes. To separate 

bacteria from larger cells and debris, intestinal contents were spun for 20 minutes at 2000 rpm at 

room temperature; supernatant was serially diluted in 0.9% NaCl to 10-12. To enumerate 

experimentally introduced Salmonella, dilutions 100 to 10-6 were plated to LB Zeo100 Gn50; to 

enumerate all bacteria, dilutions 100 to 10-12 were plated to LB. All plates were incubated 

overnight at 30°C. 

Following incubation, colony forming units on all plates were counted. LB Zeo100 Gn50 

plates were replica printed to NCE galactose XGAL IPTG, LB Zeo100 Gn50, LB Cm20, LB Tc20, 

and LB. Replica print plates were incubated overnight at 37°C and colony forming units were 

enumerated. The expected phenotypes for experimentally introduced Salmonella are: galactose+, 

β-galactosidase-, zeomycinR, gentamycinR, chloramphenicolR, and depending on tag of strain, 

tetracyclineR. For further validation, subsets of colony forming units scored positive for 

experimentally introduced Salmonella were subjected to colony PCR verification for the 

presence of the ΔorgC-prgH-5801::EYFP-zeo construct. 
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7.2 DIFFERENTIAL SURVIVORSHIP AMONG NATURAL ISOLATES OF 

SALMONELLA IN VIVO 

To investigate the feasibility of using goldfish as a model host for competition experiments, I 

constructed two differentially-tagged Salmonella SARB strains using bacteriophage P1 

transduction. Here, I do not want experimentally introduced strains to invade and replicate within 

host cells; I was only investigating the potential for these strains to exhibit differential survival in 

fish intestines in the presence and absence of native host protozoa. Thus, both strains were 

rendered nonpathogenic by the addition of ΔorgC-prgH-5801::EYFP-zeo, a directed gene 

replacement of Salmonella pathogenicity island I with the zeomycin resistance cassette and the 

EYFP gene. To ensure discrimination of Salmonella among bacteria native to the goldfish 

intestine, I added the markers phs-209::Tn10dGn and pdu-219::Tn10dCm, which confer 

resistance to both gentamycin and chloramphenicol to experimental strains KAB144 (SARB20 

derivative) and KAB146 (SARB30 derivative). Finally, KAB146 contains the marker pdu-

214::Tn10dTc, tagging this strain with tetracycline, enabling its discrimination from KAB144. 

While these strains harbored a fluorescent tag, I did not enumerate strains using flow 

cytometry. Because the Salmonella introduced represent a minor constituent of the enteric 

environment, strains introduced experimentally must be recovered by affinity separation using an 

antibody recognizing the enteric core antigen. However, the effects of O-antigen identity in 

modulating the efficacy of this antibody are still being explored. To remove this variable, I chose 

to select for strains based on a combination of antibiotic tags and validate their identity using 

biotypic markers. 

These strains were competed in goldfish intestines in the presence and absence of 

protozoa via treatment with the antiprotozoal drug metronidazole (Figure 36). The percentage of 
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the SARB30 derivative strain KAB146 of total recovered experimental strains did not 

significantly differ between that of the initial inoculum and in fish treated with metronidazole 

(NO PREDATOR), suggesting no net change between the introduced and recovered strains between 

these two groups. However, I did observe a significant (P < 0.05, t-test) decrease in the 

percentage of KAB146 recovered from fish untreated with metronidazole (PREDATOR group); 

while Salmonella bacteria recovered from the inoculum and NO PREDATOR groups consisted of 

55-60% KAB146, total Salmonella recovered from the PREDATOR group contained 

approximately 35% KAB146. This suggests that the presence of protozoa mediated differential 

survivorship of KAB146 (SARB30) relative to KAB144 (SARB20) in this experiment. Thus, I 

conclude that protozoan predators may influence Salmonella survival in vivo. 
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Figure 42. Predator-mediated survival of Salmonella within fish 
 

Derivatives of two antigenically-distinct serovars of Salmonella, SARB20 (8,20:g,m,s:--) and 
SARB30 (6,7:g,m,[p],s:[1,2,7]) were introduced into goldfish. The proportion of the SARB30 
derivative was assessed in the food inoculums and in the intestinal contents of metronidazole-
treated and untreated goldfish after 24-48 hours incubation. Antigenic serotypes are listed as 
(O:H1:H2). 
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7.3 FUTURE IN VIVO AND EX VIVO EXPERIMENTS 

The work presented here point to the feasibility of performing in vivo Salmonella competition 

tests to further test the link between protozoan predation and diversity at the rfb locus. Although 

I demonstrated here that protozoan predators can discriminate among natural isolates of 

Salmonella in vivo, these experiments need to be much more carefully controlled. The strains 

used here are natural isolates of Salmonella; they vary at many other loci that can affect in vivo 

survival. A more thoroughly controlled experiment should compete strains that vary only at the 

O-antigen; thus the rfb near-isogenic strains constructed in Chapter 3 should be used in order to 

assess the contribution to Salmonella fitness against protozoan predation in vivo. If differential 

survival is mediated by the O-antigen, then I should observe discrimination of the rfb near-

isogenic strain collection in in vivo experiments. Additionally, the full spectrum of O-antigenic 

diversity must be examined in future in vivo experiments. The approach of antibiotic cassette 

tagging of strains to discriminate among strains as used here is too crude to examine more than a 

few strains. Therefore, the flow cytometry technique I developed in Chapter 4 can be adapted for 

use in in vivo competition experiments of up to ten different strains simultaneously. In this way, I 

can rapidly assess the contribution of the O-antigen to survival against predation in a natural 

environment with data of greater statistical power. 

Although I chose goldfish due to their ease in experimental manipulation, they are not 

natural hosts of Salmonella. Use of hosts in future experiments should be selected with care, as 

animals must be untreated with any type of antibiotic medication, as these treatments disrupt the 

native flora of the host.  
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To overcome these issues, I propose conducting ex vivo experiments using the intestines 

of animals already euthanized for other purposes, including agriculture, research, or personal 

game hunting. Because no husbandry of animals is required, I will not require any special animal 

housing for ex vivo experiments; intestines will be harvested as soon as possible following 

euthanization, kept at constant appropriate temperature, and sectioned off for use in competition 

experiments. Salmonella cells will be prepared and injected into sealed sections of intestine, 

allowing the conduction of several experiments using the same intestinal material. Bacterial 

survivorship will be assessed using flow cytometry. Animals obtained through personal game 

hunting are essentially wild-caught; these animals should have no prior exposure to antibiotic 

agents. Using this approach, I can test a large number of variables in animal hosts that may 

influence Salmonella survival against protozoan predation under many conditions that may affect 

the population of predators in host intestines, including diet, geographic location, developmental 

stage, and season of capture. 

The work presented in this dissertation addresses many of the challenges in examining 

differential survival of Salmonella as mediated by protozoan predators in natural intestinal 

environments. In Chapter 3, I developed the series of rfb near-isogenic strains that permit 

assessment of role of only the O-antigen to fitness against protozoan predation in natural 

environments. In Chapter 4, I discuss the implementation of multicolor flow cytometry for use in 

assessing the fitness of many Salmonella strains simultaneously, permitting the high-throughput 

collection of data representative of the full spectrum antigenic diversity within Salmonella 

subspecies I. Here, I demonstrate the feasibility of in vivo experiments and address the potential 

for protozoan predators to discriminate among antigenically distinct serovars in vivo. 

Additionally, this system makes possible carefully controlled in vivo and ex vivo experiments 
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designed to more rigorously test my hypothesis that protozoan predation drives diversifying 

selection at the Salmonella rfb locus. Importantly, these experiments were previously impossible 

without the technical advances developed in this dissertation. 
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8.0  THE SALMONELLA RFB LOCUS AS A CASE STUDY FOR FRAGMENTED 

SPECIATION IN BACTERIA 

In this dissertation, I elucidated the physiological basis for predator escape in Salmonella 

enterica, where predator recognition of prey is strongly influenced by the identity of the O-

antigen as well as its chain length. As a result, the differential distribution of predators within the 

environment [386] provides sufficiently strong selection to maintain diversifying selection on the 

rfb genes. This prediction was validated upon competition of antigenically-distinct strains of 

Salmonella within an enteric environment. 

However, the term “diversifying selection” is somewhat misleading in this case. It is 

typically applied to cases where variant alleles are maintained within a species because distinct 

alleles are favored under different environments (Chapter 1). This would be true if one 

considered Salmonella enterica to be a single, cohesive species. This view has been challenged 

[275-276], and evidence has been offered that the speciation process is more complex in bacteria, 

where gene exchange – the hallmark process conferring genotypic similarity among conspecific 

organisms by purging variant alleles – operates independently at different genes. From this 

perspective, this work uses the rfb locus as a case study of the fragmented speciation model 

[275]. Unlike eukaryotic speciation in which the entire genome of a given organism is 

reproductively isolated from those of other species, bacterial speciation occurs at a locus-by-

locus level within the genome. Genetic information is transferred among bacteria in small 
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fragments via horizontal transfer; common methods by which this is achieved include 

conjugation, transformation, and transduction. According to the fragmented speciation model, 

bacteria can readily exchange genetic information at some loci but not at others; recombination is 

blocked at loci that contribute to ecological differentiation between donor and recipient cells but 

can freely occur at loci uninvolved in these processes.  

The work of Retchless and Lawrence [275] identified the rfb locus as one of the first loci 

separating Salmonella and Escherichia from the last common ancestor (Figure 37). Here, the 

relative divergence between orthologous genes is plotted as a function of their location along the 

inferred ancestral chromosome. Regions that are more divergent than average ceased to 

experience diversity-purging recombination between lineages at a point early in their separation. 

The rfb locus is found in one of the most divergent regions of the genome, suggesting that it was 

among the first loci to become genetically isolated in these nascent species (Figure 37, 

highlighted in blue). Loci specific to Salmonella pathogenicity, such as SPI1 and SPI2 [30, 167-

168, 245, 322], were acquired later during the separation of Salmonella and Escherichia (Figure 

37, highlighted in red), suggesting that pathogenicity itself was not the ecological change 

motivating speciation. As expected, excess polymorphism and variation is observed at the region 

including and flanking the rfb locus of Salmonella and Escherichia [37, 40-41, 200, 219, 239, 

366, 374, 391-392] when compared with genes located elsewhere in the Salmonella and 

Escherichia genomes. My own, more extensive analysis shows that variation within species is 

also much higher than expected in the rfb region (Figures 5 and 6). Thus, variability near the rfb 

loci appears to be unaffected by diversity-purging selective sweeps, presumably because 

recombinants with variant rfb alleles would have decreased fitness in the environment to which 

the original rfb allele was adapted. 
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Figure 43. Divergence of chromosomal regions between Salmonella enterica and 
Escherichia coli 

 
Relative divergence time for orthologous genes was plotted against chromosomal position in the 
E. coli K12-MG1655 genome averaged across a seven-gene window. Genes shared between S. 
enterica and E. coli are shown in italics. Figure from Retchless and Lawrence [275]; available 
online. Reprinted with permission from AAAS. 
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Because Salmonella is a pathogen, diversity at the rfb locus has been casually attributed 

to selective pressure arising from host immune systems. Selective pressure from host immune 

systems does significantly shape O-antigen diversity in organisms that have the capacity to alter 

O-antigen identity on a generational time scale, such as Neisseria and Haemophilus; see Chapter 

1 for a complete discussion. However, expression of the Salmonella O-antigen is stable and is 

used as a serological characteristic by which strains are identified for epidemiologic purposes 

[166, 264]. Additionally, Salmonella interacts with the host immune system at a fundamentally 

different way than pathogens that contact the adaptive immune system directly, like Neisseria 

and Haemophilus [7-8, 19, 21, 24-25, 36, 46, 65, 87, 89, 131, 134, 139, 166, 223, 257, 291, 363, 

368-369, 374]. Thus, I do not believe that the biology of Salmonella reflects that of an organism 

in which the rfb locus experiences selective pressure directly arising from the host immune 

system.  

What ecological selective pressures could be acting on the rfb locus, contributing to 

Salmonella’s separation from Escherichia and hypervariability of this locus within the 

Salmonellae? This question was first addressed by the work of Wildschutte et al [387] and 

Wildschutte and Lawrence [386]. First, protozoan predators can discriminate among natural 

isolates of Salmonella [387]. Second, different environments contain different amoebae [386-

387]. Third, predators isolated from the same environment can present a uniform selective 

pressure upon Salmonella [386]. While this work suggests that selective pressure from grazing 

intestinal protozoa fulfills the requirements for a hypothesis explaining the maintenance of 

diversifying selection at the Salmonella rfb locus, it stopped short of definitively establishing a 

relationship between the O-antigen and Salmonella fitness against predation. 
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This dissertation provides a more definitive link between protozoan predation and 

fragmented speciation at the rfb locus by implicating the O-antigen in the physiological 

mechanism of predator escape in Salmonella. Moreover, predators can discriminate among 

natural isolates of Salmonella in vivo, further highlighting the likelihood that protozoan predation 

in host intestines drives diversifying selection at rfb. Because the O-antigen is involved in prey 

choice, selective pressure from protozoan predation can serve as the ecological selective pressure 

blocking recombination at rfb, thus leading to the differentiation of Salmonella from Escherichia 

and eventually, all Salmonella serovars from each other. According to this model, recombination 

at the rfb locus is highly disfavored due to the important ecological role played by the rfb gene 

product, the O-antigen, in shaping Salmonella fitness against protozoan predation. For example, 

transfer of the rfb genes from serovar Dublin into serovar Gallinarium will most likely not result 

in enhanced fitness against predation by the resident amoebae in the intestines of chickens; it is 

much more likely that the resulting O-antigen from such a transfer will make this strain more 

susceptible to predation in this environment. If O-antigens do act as a type of mimicry of host 

intestinal mucins as discussed in Chapter 5, effectively imparting molecular camouflage upon 

serovars bearing particular O-antigens, then alteration of this structure should be highly 

disfavored among strains.  

From an ecological perspective, in order for a Salmonella serovar to succeed in a given 

host intestinal environment, it must a) possess an O-antigen that maximizes the ability to escape 

predation from native gut amoebae; b) successfully evade host immune system defenses in order 

to invade and replicate within host cells; and c) survive in transient environments encountered 

between host to host transmission. Because Salmonella must first escape protozoan predation 

before having the opportunity to interact with the host immune system, I can consider the rfb 
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locus as one of the founding loci that began the fragmented speciation process. Once a strain 

acquires a rfb locus that confers an O-antigen permitting maximal predator escape in a given 

environment, then recombination is disfavored at this locus. Thus, selection on O-antigen 

identity provides a form of “post-mating” genetic isolation, whereby recombinants are disfavored 

and removed from the population. Next, it may go on to acquire other specific loci that enable 

adaptation to a particular environment via horizontal gene transfer, such as pathogenicity islands; 

thus recombination is further blocked at these loci. The lack of recombination allows for the 

accumulation of mutations that differentiate the two lineages; these sequence differences provide 

a robust “pre-mating” barrier to recombination as mismatch correction systems prevent the 

initiation of recombination events. As this process continues over time, speciation occurs in a 

fragmented manner throughout the genome as recombination becomes more and more disfavored 

at loci that confer specific adaptation to particular ecological niches. 

In addition to presenting the rfb locus as a case study for the fragmented speciation 

model, this dissertation produced two crucial technological advances for the study of microbial 

population genetics: genetic manipulation of non-Typhimurium Salmonella and multicolor flow 

cytometry for assessment of microbes in complex environments. These developments make 

possible future experiments to more rigorously examine the capacity for protozoan predators to 

discriminate among Salmonella strains in vivo based solely on the identity of the O-antigen. 

These approaches also enable other microbial population genetic studies in a wide variety of 

organisms in complex environments.  

Although my research provides a critical link between O-antigen diversity in Salmonella 

and fitness against protozoan grazing, the lifestyle of Salmonella constrains the general 

application of this information to microbes as a whole. Salmonella is primarily a mammalian 
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intestinal pathogen [131, 264], and as such, its lifestyle is mainly constrained to intimate 

relationships with individual hosts and their immune systems. Therefore, experiments using 

Salmonella as a model organism cannot entirely eliminate the confounding variable of 

pathogenicity from the environmental factors shaping O-antigen diversity. The observation that 

amoebae are able to discriminate among Salmonella based on surface antigens could be due to 

direct selective pressure from grazing by intestinal protozoa as I hypothesized, an indirect 

consequence of selection arising from the host immune system, or a more complicated 

combination of these direct and indirect sources of selection.  

Therefore, new model organisms, preferably non-pathogenic and/or non-host-associated, 

need to be studied in order to link microbial antigenic diversity with the ubiquitous presence of 

grazing protozoa in nature. The approaches developed in this dissertation permit a more rigorous, 

and previously unattainable, examination of how changes at both the environmental and genetic 

levels impact microbial survival in natural settings, potentially explaining the observation that 

particular bacterial species occupy certain environmental niches but not others. Additionally, my 

work provides a technological framework that enhances the capacity for identifying the 

physiological and ecological attributes that drive fragmented speciation in bacteria.     
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