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The roles of the Saccharomyces cerevisiae Paf1 complex in regulating transcriptional 

repression 

Elia Marie Crisucci, Ph.D. 

University of Pittsburgh, 2011 

 

The conserved Paf1 complex is important for proper gene expression in both yeast and 

humans.  The Paf1 complex has been shown to repress the transcription of numerous genes.  

However, the mechanism by which the Paf1 complex mediates transcriptional repression remains 

largely unstudied.  Here I use ARG1 as a model gene to investigate transcriptional repression by 

the Paf1 complex in Saccharomyces cerevisiae.  Interestingly, I found that Paf1 complex-

dependent histone modifications that are normally associated with active transcription are 

enriched on the ARG1 coding region and contribute to repression.  The Rtf1 subunit of the Paf1 

complex appears to mediate ARG1 repression primarily through histone H2B ubiquitylation and 

histone H3 K4 methylation.  However, Paf1 has repressive functions aside from these histone 

modifications.  Interestingly, occupancy of the activator Gcn4 is increased at the ARG1 promoter 

in paf1Δ cells, resulting in ARG1 derepression that is dependent on the histone acetyltransferase 

Gcn5 and histone H3 acetylation sites.  Together my results suggest that Paf1 mediates ARG1 

repression by preventing Gcn4 recruitment to the ARG1 promoter and subsequent histone H3 

acetylation.  I found that Paf1 does not alter nucleosome occupancy at the ARG1 promoter.  

However, I detect antisense transcription in the ARG1 promoter that positively correlates with 

ARG1 sense transcription.  Interestingly, Paf1 prevents antisense transcription from traversing 

the ARG1 promoter, representing a potential mechanism by which the Paf1 complex controls 

promoter accessibility and ultimately ARG1 expression.  Given these results, I hypothesize that 



 v 

the Paf1 complex mediates ARG1 repression partially by facilitating histone modifications that 

are refractory to ARG1 transcription and partially by inhibiting antisense transcription which 

controls promoter accessibility.  Importantly, events that I observed at my model gene, ARG1, 

are demonstrated at other Paf1 complex-repressed genes. 
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1.0  INTRODUCTION 

In eukaryotes, RNA Polymerase II (Pol II) transcription can be divided into several stages, 

including initiation, elongation, and termination.  During initiation, the transcription initiation 

machinery, which includes the multi-subunit polymerase and several general transcription 

factors, assembles at the promoter.  During elongation, multiple elongation factors associate with 

the polymerase to facilitate transcription of a chromatin template.  Finally, several transcription 

termination factors regulate termination, which leads to the release and recycling of the 

transcription machinery.  Each stage of the transcription cycle is regulated by a plethora of 

proteins to ensure proper gene expression.  Because my thesis research is focused on the 

repressive functions of the Paf1 transcription elongation complex, this chapter primarily focuses 

on the regulatory events during the elongation stage of transcription, with an emphasis on 

transcriptional repression mechanisms. 

1.1 EFFICIENT TRANSCRIPTION ELONGATION IS AN IMPORTANT 

DETERMINANT OF GENE EXPRESSION. 

During transcription initiation, the binding of the TATA-binding protein (TBP) subunit of TFIID 

to the consensus sequence TATA(A/T)A(A/T)(A/G) triggers the assembly of the pre-initiation 

complex at the promoter, which includes RNA Pol II and general transcription factors, TFIIA, 
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TFIIB, TFIID, TFIIE, TFIIF, and TFIIH (reviewed in SIKORSKI and BURATOWSKI 2009).  The 

general transcription factors position the polymerase at the transcription start site.  TFIIE and an 

ATP-dependent helicase within TFIIH unwind the DNA.   In vitro transcription of a DNA 

template by RNA Pol II minimally requires the general transcription factors (reviewed in 

SIKORSKI and BURATOWSKI 2009).  However, transcription of a chromatin template requires a 

multitude of accessory factors.  The regulation of transcription initiation is an important aspect of 

controlling gene expression and has thus been studied for many years.  More recently, the 

regulation of post-initiation stages has been shown to be equally important for ensuring proper 

gene expression.  In particular, a multitude of factors coordinate to regulate transcription 

elongation.   

In Drosophila, it has been shown that, in non-heat-shock conditions, the polymerase 

begins transcribing the HSP70 gene, but stalls about 20-40 nucleotides downstream of the 

transcription start site (GIARDINA et al. 1992; RASMUSSEN and LIS 1993; RASMUSSEN and LIS 

1995; ROUGVIE and LIS 1988).  However, RNA Pol II rapidly resumes transcription in inducing 

conditions (GIARDINA et al. 1992; RASMUSSEN and LIS 1993; RASMUSSEN and LIS 1995; 

ROUGVIE and LIS 1988).  Consequently, the promoter-proximal pausing of RNA Pol II facilities 

rapid induction of HSP70 expression.  At one time this was considered to be a unique 

phenomenon.  However, more recent analyses in multiple organisms suggest that promoter-

proximal pausing of RNA Pol II is an important regulatory mechanism at numerous genes.  

Genome-wide studies in human and Drosophila cells identified thousands of genes that exhibit 

an accumulation of RNA Pol II at their 5’ coding regions (GUENTHER et al. 2007; MUSE et al. 

2007).  Closer examinations of a subset of genes revealed that, similar to what was observed at 

HSP70, RNA Pol II had stalled during transcription elongation at a promoter-proximal region 
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30-50 nucleotides downstream of the transcription start site (GILCHRIST et al. 2008; LEE et al. 

2008b; MUSE et al. 2007).  Wide-spread pausing of RNA polymerase has also been observed in 

Saccharomyces cerevisiae, suggesting that the regulatory mechanism of promoter-proximal 

pausing is conserved throughout eukaryotes (ALEXANDER et al. 2010; RADONJIC et al. 2005).  

The paused polymerase appears to poise a gene for rapid induction.  Consistent with this idea, 

many genes exhibiting paused RNA Pol II are those that respond to environmental stimuli (MUSE 

et al. 2007) or are briefly induced during development (WANG et al. 2007; ZEITLINGER et al. 

2007).  For example, in yeast, paused polymerase is detected at the majority of genes poised for 

rapid activation upon exit from stationary phase (RADONJIC et al. 2005).  However, paused 

polymerase has also been shown to inhibit the transcription of some genes (ZEITLINGER et al. 

2007).  Additionally, polymerase pausing has been proposed to facilitate co-transcriptional 

events, such as RNA splicing (ALEXANDER et al. 2010). 

1.1.1 The release of paused and arrested RNA Pol II 

A major player in the regulation of the pausing of RNA Pol II during early elongation is the 

Negative Elongation Factor (NELF) complex.  NELF, which is absent in yeast, but conserved in 

higher eukaryotes, is composed of 4 subunits, NELF-A, B, C/D, and E (NARITA et al. 2003).  

The NELF complex inhibits elongation both in vitro (PRICE et al. 2007; RENNER et al. 2001) and 

in vivo (AIDA et al. 2006; MUSE et al. 2007; WU et al. 2005; WU et al. 2003).  Its recruitment to 

RNA Pol II requires DRB Sensitivity-Inducing Factor (DSIF) and together NELF and DSIF 

promote polymerase pausing (RENNER et al. 2001).  The mechanism by which NELF inhibits 

transcription elongation is still unclear.  However, it has been proposed that NELF may bind to 

the clamp domain of RNA Pol II, inducing changes to the active site.  This hypothesis is based 
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on the knowledge that the NELF-A subunit has similarity to a viral protein, HDAg, which binds 

RNA Pol II in this manner (YAMAGUCHI et al. 2001; YAMAGUCHI et al. 2007).  Consistent with 

this hypothesis, NELF has been shown to associate with RNA Pol II (NARITA et al. 2003).  An 

alternative hypothesis is that NELF binds the nascent mRNA as it emerges from RNA Pol II, to 

prevent further elongation.  Consistent with this idea, the NELF-E subunit contains an RNA 

recognition motif and its RNA binding activity is required for NELF to inhibit elongation in vitro 

(RAO et al. 2008; YAMAGUCHI et al. 2002). 

 Release of paused RNA Pol II into productive elongation is triggered by the 

phosphorylation of NELF and DSIF by Positive Transcription Elongation Factor b (P-TEFb) 

(IVANOV et al. 2000; KIM and SHARP 2001; PETERLIN and PRICE 2006).  This event causes the 

release of NELF from the elongation complex (IVANOV et al. 2000; KIM and SHARP 2001; 

PETERLIN and PRICE 2006).  DSIF, however, remains associated with RNA Pol II after the 

detachment of NELF (ANDRULIS et al. 2000; KAPLAN et al. 2000) and influences later events in 

elongation (WADA et al. 1998).   

P-TEFb also phosphorylates the C-terminal domain (CTD) of Rpb1, the largest subunit of 

RNA Pol II.  The RNA Pol II CTD contains a heptapeptide repeat (YSPTSPS) that is 

phosphorylated on serines at positions 2, 5, and 7 in the repeat.  Importantly, the phosphorylation 

state of the CTD changes throughout the transcription cycle and is important for recruiting the 

appropriate regulatory factors during each stage of transcription.  During initiation, the RNA Pol 

II CTD is hypophosphorylated.  Upon the transition from initiation to early elongation, the CTD 

becomes phosphorylated on serine 5 by CDK7 (Kin28 in yeast) of the general transcription 

factor TFIIH (KOMARNITSKY et al. 2000).  Phosphorylated serine 5 is recognized by the mRNA 

capping enzyme, thus coordinating mRNA 5’ end capping and early transcription elongation 
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(FABREGA et al. 2003).  In yeast, phosphorylation of serine 5 can be reversed by Ssu72 

(KRISHNAMURTHY et al. 2004) and tends to decline as elongation proceeds (Figure 1).  Later in 

the elongation stage, serine 2 of the CTD becomes phosphorylated.  Serine 2 is phosphorylated 

mainly by Ctk1 in yeast (KEOGH et al. 2003; PATTURAJAN et al. 1999) (Figure 1).  Additionally, 

in vitro evidence suggests that Bur1 may also contribute to serine 2 phosphorylation (MURRAY et 

al. 2001).  Yeast Ctk1 and Bur1 closely resemble P-TEFb in humans, which phosphorylates 

serine 2 (PRICE 2000).  Serine 2 phosphorylation promotes the recruitment of cleavage and 

polyadenylation factors, connecting the later stage of elongation with RNA 3’ end processing 

(AHN et al. 2004; NI et al. 2004).  In yeast, serine 2 is dephosphorylated by Fcp1 (KOBOR et al. 

1999).  Serine 7 in the CTD is also phosphorylated by Kin28 of TFIIH (KIM et al. 2009b).  

Patterns of serine 7 phosphorylation overlap with serine 5 across genes; however, its functions 

are not well understood (KIM et al. 2009b). 

Paused polymerases can resume transcription elongation with the help of factors such as 

P-TEFb.   However, a paused polymerase may backtrack such that the 3’ end of the nascent 

mRNA becomes misaligned with the RNA Pol II active site, resulting in polymerase arrest.  

TFIIS promotes the release of arrested polymerase by eliciting cleavage of the nascent transcript 

by the elongation complex (IZBAN and LUSE 1993; REINES et al. 1992).  Specifically, the 

transcript is cleaved in a 3’ to 5’ direction such that the RNA can realign with the RNA Pol II 

active site (IZBAN and LUSE 1993; REINES et al. 1992).  In this manner, TFIIS promotes read-

through of arrest sites, such as unusual DNA sequences and DNA-bound proteins, among others 

(KERPPOLA and KANE 1990; MOTE et al. 1994; REINES and MOTE 1993; WIND and REINES 

2000).  Importantly, TFIIS also facilitates transcription through nucleosomes.  This has been 

demonstrated by several in vitro studies (BONDARENKO et al. 2006; GUERMAH et al. 2006; HSIEH 
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et al. 2010; IZBAN and LUSE 1992; KIM et al. 2010; KIREEVA et al. 2005; UJVARI et al. 2008).  

Additionally, TFIIS has been shown to cooperate with TFIIF to facilitate nucleosome traversal in 

vivo (LUSE et al. 2011).  The effects of chromatin on transcription are discussed in more detail 

below. 

 

 

 

 

Figure 1:  The phosphorylation state of the CTD of RNA Pol II during transcription  

The C-terminal domain (CTD) of Rpb1, the largest subunit of RNA Pol II, is comprised of 26 repeats of the 

sequence YSPTSPS.  During transcription initiation, the CTD is hypophosphorylated.  Early in transcription 

elongation, serine 5 within the heptapeptide repeat is phosphorylated by Kin28 of TFIID (KOMARNITSKY et al. 

2000).  Serine 5 phosphorylation declines toward the 3’ end of the gene due to the action of the phosphatase, Ssu72 

(KRISHNAMURTHY et al. 2004).  Later in elongation, serine 2 becomes phosphorylated by Ctk1 (KEOGH et al. 2003; 

PATTURAJAN et al. 1999).  
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1.1.2 Chromatin structure inhibits transcription. 

The role of TFIIS in facilitating transcription through nucleosomes is very important, because the 

incorporation of DNA into chromatin severely inhibits transcription.  Eukaryotic DNA is highly 

compacted within the nucleus in the form of chromatin.  The basic unit of chromatin is the 

nucleosome, which consists of two of each of the four histone proteins, H2A, H2B, H3, and H4, 

in a globular arrangement, wrapped by 147 base pairs of DNA (KORNBERG 1974; LUGER et al. 

1997).  A large amount of evidence indicates that nucleosomes impede transcription elongation.  

For example, elongation efficiency is severely reduced during transcription of reconstituted 

chromatin templates compared to naked DNA in vitro (IZBAN and LUSE 1991; ORPHANIDES et al. 

1998).  Furthermore, besides RNA Pol II and the general transcription factors, additional factors 

are required to prevent nucleosome-induced pausing and promote productive elongation 

(ORPHANIDES et al. 1998).  In vivo, at yeast GAL genes, transcriptional induction is associated 

with the loss of nucleosomes in both the promoter and coding region, suggesting that efficient 

elongation requires chromatin disassembly (KRISTJUHAN and SVEJSTRUP 2004; SCHWABISH and 

STRUHL 2004).  Furthermore, transcription rates have been shown to be inversely correlated with 

nucleosome occupancy within open reading frames (ORFs) globally (LEE et al. 2004).  In fact, a 

recent study in yeast that used a deep-sequencing based method to determine the positions of all 

active RNA Pol II revealed extensive pausing and backtracking of the polymerase throughout the 

body of transcripts (CHURCHMAN and WEISSMAN 2011).  Paused polymerase was particularly 

noticeable at the positions of the first four nucleosomes, confirming that nucleosomes act as a 

barrier to transcription elongation in vivo.   
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1.2 THE FUNCTIONS OF HISTONE MODIFICATIONS AND ELONGATION 

FACTORS 

Eukaryotic cells have evolved many mechanisms to overcome the barriers imposed by chromatin 

to ensure proper gene expression, including the posttranslational modification of histone 

proteins, transcription elongation factors, histone chaperones, and chromatin remodeling 

enzymes.  Those with connections to the Paf1 complex are discussed in detail below.   

1.2.1 Histone modifications influence transcription elongation. 

Histone proteins are subject to a wide variety of posttranslational modifications, most of which 

occur on the unstructured, N-terminal tails that extend beyond the nucleosome (LUGER et al. 

1997).  Arguably, the best understood histone modifications include acetylation, ubiquitylation, 

and methylation of histone residues.  Histone acetylation occurs on multiple sites, including 

several lysines on the N-terminal tails of histone H3 and H4.  Acetylation is thought to loosen 

DNA-histone contacts by neutralizing the basic charge of the lysine.  At gene promoters, histone 

acetylation usually correlates with active transcription (POKHOLOK et al. 2005).  Histone 

acetyltransferases (HATs) and histone deaceylases (HDACs) localize to ORFs, resulting in rapid 

turnover of acetylation (CARROZZA et al. 2005; CLOSE et al. 2006; GILBERT et al. 2004; GOVIND 

et al. 2007; KEOGH et al. 2005; WANG et al. 2002).  Consistent with a positive role in 

transcription elongation, in vitro transcription reactions with purified factors requires HAT 

activity for elongation through a chromatin template (CAREY et al. 2006; GUERMAH et al. 2006).  

Furthermore, in yeast, the HAT Gcn5 has been shown to promote nucleosome eviction and 

transcription elongation through its HAT activity (GOVIND et al. 2005; GOVIND et al. 2007; 
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KRISTJUHAN and SVEJSTRUP 2004; KRISTJUHAN et al. 2002).  Additionally, a recent study using 

chemically defined nucleosome arrays demonstrated that histone acetylation interferes with the 

formation of higher order chromatin structure (FIERZ et al. 2011).   
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Figure 2:  Histone H2B monoubiquitylation and histone H3 K4, K36, and K79 methylation  

In yeast, the ubiquitin conjugating enzyme, Rad6, and the ubiquitin ligase, Bre1, monoubiquitylate histone H2B 

K123 (HWANG et al. 2003; ROBZYK et al. 2000; WOOD et al. 2003a).  Histone H2B monoubiquitylation is a 

prerequisite for di- and trimethylation of histone H3 K4 and K79 by the histone methyltransferases Set1 and Dot1, 

respectively (BRIGGS et al. 2002; DOVER et al. 2002; NG et al. 2002b; SUN and ALLIS 2002).  Histone H3 is 

methylated on K36 by the methyltransferase, Set2 (STRAHL et al. 2002).  Paf1 and Rtf1 subunits of the Paf1 

complex are required for histone H2B K123 monoubiquitylation and the downstream di- and trimethylation of 

histone H3 K4 and K79 (KROGAN et al. 2003a; NG et al. 2003a; NG et al. 2003b; WOOD et al. 2003b).  Paf1 and 

Ctr9 are required for trimethylation of K36 on histone H3 (CHU et al. 2007). 
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Mono-ubiquitylation of histone H2B on lysine (K) 123 (K120 in humans) is another 

modification that has been shown to inhibit chromatin compaction (FIERZ et al. 2011).  In yeast, 

the ubiquitin conjugase, Rad6, and the ubiquitin ligase, Bre1, are responsible for histone H2B 

ubiquitylation (HWANG et al. 2003; ROBZYK et al. 2000; WOOD et al. 2003a) (Figure 2).  Histone 

H2B ubiquitylation is found on gene promoters and coding regions (HENRY et al. 2003; KAO et 

al. 2004; XIAO et al. 2005). Interestingly, this modification has both positive and negative effects 

on transcription, which are discussed in more detail below.  Histone H2B ubiquitylation is a 

prerequisite for di- and trimethylation of histone H3 K4 and K79 by the histone 

methyltransferases Set1 and Dot1, respectively (BRIGGS et al. 2002; DOVER et al. 2002; NG et al. 

2002b; SUN and ALLIS 2002) (Figure 2).  The nature of this histone crosstalk is not completely 

understood.  However, a subunit of the Set1-containing COMPASS complex (complex proteins 

associated with Set1) has been shown to be affected by histone H2B ubiquitylation.  Cps35 (also 

called Swd2) is a COMPASS subunit that is required for histone H3 K4 di- and trimethylation 

and K79 methylation.  Histone H2B ubiquitylation is required for Cps35 to associate with the 

complex, thus connecting histone H2B ubiquitylation and histone H3 methylation on K4 and 

K79 (LEE et al. 2007).  The human homolog of Set1 is mixed lineage leukemia (MLL), which 

exists in a COMPASS-like complex and regulates the expression of developmental genes 

through histone H3 K4 methylation (reviewed in COSGROVE and PATEL 2010; SMITH et al. 

2011).  In addition to its important role in development, MLL influences the pathogenesis of a 

subset of human leukemias, as chromosomal translocations that result in oncogenic MLL-fusion 

proteins are associated with acute lymphoblastic or myelogenous leukemias (reviewed in 

COSGROVE and PATEL 2010; SMITH et al. 2011).  
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Histone H3 is also methylated on K36 by the methyltransferase, Set2 (STRAHL et al. 

2002) (Figure 2).  Both histone H3 K4 and K36 methylation occur across most genes in a distinct 

pattern that is influenced by the phosphorylation state of the RNA Pol II CTD.  Serine 5 

phosphorylation by Kin28 recruits Set1 to RNA Pol II early in elongation, resulting in a peak of 

histone H3 K4 trimethylation near promoters (NG et al. 2003b).  Just downstream, K4 

dimethylation peaks in 5’ coding regions, whereas K4 monomethylation occurs across the gene 

(LIU et al. 2005; POKHOLOK et al. 2005).  Later in elongation, serine 2 phosphorylation of the 

RNA Pol II CTD recruits Set2, resulting in histone H3 K36 methylation toward the 3’ end of the 

coding region (KROGAN et al. 2003b; LI et al. 2003; SCHAFT et al. 2003; XIAO et al. 2003) 

(Figure 3).  Interestingly, these histone modifications modulate histone acetylation through the 

recruitment of HATs and HDACs.  Histone H3 K4 trimethylation recruits the NuA3 histone 

acetyltransferase (HAT) complex, resulting in increased histone H3 K14 acetylation (MARTIN et 

al. 2006; TAVERNA et al. 2006).  Dimethylation of histone H3 K4 activates the Set3 histone 

deacetylase complex (HDAC) (GOVIND et al. 2010; KIM and BURATOWSKI 2009).  Histone H3 

K36 dimethylation promotes the activity of the Rpd3S HDAC (CARROZZA et al. 2005; KEOGH et 

al. 2005; LI et al. 2007; LI et al. 2009) (Figure 3).  Through these pathways, histone H3 

methylation restricts histone acetylation to promoters to prevent inappropriate transcription from 

cryptic start sites internal to coding regions and restore chromatin in the wake of the polymerase.   
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Figure 3. Typical distribution of histone modifications across a gene 

Serine 5 phosphorylation on the RNA Pol II CTD recruits Set1 to RNA Pol II early in elongation, resulting in a peak 

of histone H3 K4 trimethylation near promoters (NG et al. 2003b).  Just downstream, K4 dimethylation peaks in 5’ 

coding regions (LIU et al. 2005; POKHOLOK et al. 2005).  Later in elongation, serine 2 phosphorylation of the RNA 

Pol II CTD recruits Set2, resulting in histone H3 K36 methylation toward the 3’ end of the coding region (KROGAN 

et al. 2003b; LI et al. 2003; SCHAFT et al. 2003; XIAO et al. 2003).  Histone H3 K4 trimethylation recruits the NuA3 

histone acetyltransferase (HAT) complex, resulting in increased histone H3 K14 acetylation near the promoter 

(MARTIN et al. 2006; TAVERNA et al. 2006).  Within the coding region, dimethylation of histone H3 K4 activates the 

Set3 histone deacetylase complex (HDAC) (GOVIND et al. 2010; KIM and BURATOWSKI 2009).  At the 3’ coding 

region, histone H3 K36 dimethylation promotes the activity of the Rpd3S HDAC (CARROZZA et al. 2005; KEOGH et 

al. 2005; LI et al. 2007; LI et al. 2009).  Therefore, the recruitment of HDACs to coding regions restricts acetylation 

to a region near the promoter. 
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1.2.2 DSIF/Spt4-Spt5 functions during transcription elongation.  

In addition to its role in inhibiting transcription elongation in promoter-proximal regions in 

cooperation with NELF, DSIF influences later events in transcription elongation.  Spt4 and Spt5 

are yeast homologues of DSIF (HARTZOG et al. 2002).  In yeast, Spt4 and Spt5 were identified in 

a genetic screen for mutations that suppress defects in gene expression caused by promoter 

mutations (WINSTON et al. 1984).  Both yeast and human factors have been implicated in 

regulating chromatin during transcription elongation.  Biochemical experiments in yeast and 

human cells revealed that DSIF/Spt4-Spt5 interacts with RNA Pol II during elongation and has 

both positive and negative effects on elongation (BOURGEOIS et al. 2002; HARTZOG et al. 2002; 

KROGAN et al. 2002b; LINDSTROM et al. 2003).  Although the functions of DSIF/Spt4-Spt5 are 

not completely understood, several genetic interactions with elongation and chromatin-related 

factors suggest that DSIF/Spt4-Spt5 regulates transcription elongation through the modulation of 

chromatin structure.  For example, in yeast Spt4-Spt5 genetically interacts with the ATP-

dependent chromatin remodeler, Chd1 (SIMIC et al. 2003), and kinases and phosphatases that 

modify the CTD of RNA Pol II (LINDSTROM and HARTZOG 2001).  Consistent with its genetic 

interactions with CTD modifying enzymes, Spt4-Spt5 has been shown to recruit the Rpd3S 

HDAC to active genes in cooperation with CTD kinases, Kin28 and Ctk1(DROUIN et al. 2010).  

Rpd3S has been shown to prevent transcription from cryptic sites within coding region through 
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its HDAC activity (CARROZZA et al. 2005; KEOGH et al. 2005; LI et al. 2007; LI et al. 2009).  

Therefore, Spt4-Spt5 may indirectly affect chromatin by recruiting Rpd3S HDAC.  Importantly, 

Spt4-Spt5 genetically and physically interacts with the Paf1 complex, suggesting that they 

cooperate to control transcription elongation (COSTA and ARNDT 2000; SQUAZZO et al. 2002).  

Moreover, Spt5 is required for the recruitment of the Paf1 complex to the elongation complex 

and for ubiquitylation of histone H2B on K123 (LIU et al. 2009; ZHOU et al. 2009).   

1.2.3 FACT/Spt16-Pob3 functions as a histone chaperone. 

As its name implies, FACT (Facilitate Chromatin Transcription) was originally identified as a 

factor that stimulates transcription of a reconstituted chromatin template (ORPHANIDES et al. 

1998; ORPHANIDES et al. 1999).  Beyond this, many physical and genetic interactions suggest 

that FACT (Spt16-Pob3 in yeast) has important roles during transcription (COSTA and ARNDT 

2000; FORMOSA et al. 2002; ORPHANIDES et al. 1999; SIMIC et al. 2003; SQUAZZO et al. 2002).  

It is now known that FACT directly participates in the reorganization of nucleosomes within the 

ORFs of actively transcribed genes (ORPHANIDES and REINBERG 2000) and reassembles 

chromatin in the wake of RNA Pol II (FORMOSA et al. 2002; MASON and STRUHL 2003).  There 

are two current proposed models of FACT function.  In one model, FACT displaces a single 

H2A-H2B dimer to allow RNA Pol II to pass (BELOTSERKOVSKAYA et al. 2003; ORPHANIDES et 

al. 1999; REINBERG and SIMS 2006).  In support of this model, FACT binds H2A-H2B dimer in 

vitro (ORPHANIDES et al. 1999).  However, in vivo, chromatin reorganization is not associated 

with the H2A-H2B dimer loss that this model predicts (RHOADES et al. 2004; XIN et al. 2009).  

Instead, analysis of in vitro hydroxyl radical accessibility and endonuclease cleavage showed 

that FACT creates more accessibility than could be explained by the loss of an H2A-H2B dimer, 
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yet partially protects nucleosomal DNA (XIN et al. 2009).  These results have lead to the second 

model, in which FACT performs a more dramatic reorganization of the nucleosome without 

histone eviction by tethering histones to the DNA.  Future studies will likely shed more light on 

the functions of FACT.  Interestingly, FACT genetically interacts with the Paf1 complex, 

indicating cooperative functions during transcription elongation (COSTA and ARNDT 2000; 

SQUAZZO et al. 2002).  Consistent with this, Paf1 augments FACT-mediated in vitro 

transcription of a chromatin template (PAVRI et al. 2006). 

1.2.4 Chd1 is a chromatin remodeling enzyme involved in transcription elongation. 

Chd1 is a conserved ATP-dependent chromatin remodeling enzyme (STOCKDALE et al. 2006; 

TRAN et al. 2000).  It associates with regions of active transcription (SIMIC et al. 2003; STOKES et 

al. 1996) and physically interacts with DSIF/Spt4-Spt5, FACT, and the Paf1 complex (KELLEY 

et al. 1999; KROGAN et al. 2002b; SIMIC et al. 2003), pointing to an important role during 

transcription.  The mechanistic details of chromatin remodeling by Chd1 are not well 

understood.  However, Chd1 has been shown to create a chromatin structure that inhibits cryptic 

transcription initiation (QUAN and HARTZOG 2009).  Chd1 contains a chromo domain which can 

bind methylated lysines (BANNISTER et al. 2001).  It has been shown that the human homolog of 

Chd1 associates with chromatin by recognition of histone H3 K4 methylation (FLANAGAN et al. 

2005; SIMS et al. 2005), but there are differing reports as to whether this occurs in yeast 

(FLANAGAN et al. 2005; PRAY-GRANT et al. 2005; SIMS et al. 2005).  Instead, the Rtf1 subunit of 

the Paf1 complex in yeast has been shown to recruit Chd1 to chromatin (SIMIC et al. 2003).  

Additionally, the 30 N-terminal amino acids of Rtf1 have been defined as a region required for 

Chd1 interaction (WARNER et al. 2007).   
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1.3 THE PAF1 TRANSCRIPTION ELONGATION COMPLEX 

1.3.1 Identification of the Paf1 complex 

The search for accessory proteins besides general transcription factors that are required for 

transcription initiation lead to the identification of Paf1 (polymerase associated factor 1) in 

Saccharomyces cerevisiae (SHI et al. 1996; WADE et al. 1996).  As the name implies, Paf1 was 

found to associate with RNA Pol II by affinity chromatography (SHI et al. 1996).  It was 

subsequently demonstrated that Paf1 exists in a nuclear complex with Ctr9, Cdc73, Rtf1, and 

Leo1 (KROGAN et al. 2002b; MUELLER and JAEHNING 2002; SHI et al. 1997; SQUAZZO et al. 

2002).  Initial characterization of the Paf1 complex by several labs revealed phenotypes 

associated with transcriptional defects, genetic interactions with other transcription factors, and 

effects on the expression of select genes upon disruption of Paf1 complex members, implicating 

the Paf1 complex in transcriptional regulation (BETZ et al. 2002; COSTA and ARNDT 2000; 

KROGAN et al. 2002b; POKHOLOK et al. 2002; PORTER et al. 2002; SHI et al. 1997; SHI et al. 

1996; SQUAZZO et al. 2002).  Later studies demonstrated critical functions of the Paf1 complex 

during all stages of transcription and revealed Paf1 complex-dependent gene expression 

throughout the yeast genome.  Importantly, the Paf1 complex and its functions are conserved 

throughout eukaryotes and defects in the Paf1 complex are associated with human diseases.  

Since studies of the Paf1 complex in budding yeast will likely provide insight into the molecular 

basis of several human diseases, here, I review functions of the Paf1 complex in transcription 

and gene expression, primarily focusing on studies performed in Saccharomyces cerevisiae.   
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1.3.2 The association of the Paf1 complex with RNA Pol II and chromatin 

Consistent with roles during multiple stages of transcription, the Paf1 complex accompanies 

RNA Pol II during transcription from the transcription start site to the poly (A) site (KIM et al. 

2004; MAYER et al. 2010). Rtf1 and Cdc73 are required for RNA Pol II-association, because, 

although the other complex members remain associated with each other, they become dissociated 

from the polymerase and chromatin upon the loss of either subunit (MUELLER et al. 2004; 

NORDICK et al. 2008; QIU et al. 2006).  Deletion analysis used to map regions of Rtf1 required 

for chromatin association defined a central region of Rtf1 (amino acids 201 to 395), now termed 

the ORF association region (OAR) (WARNER et al. 2007).  Rtf1 has been shown to genetically 

and physically interact with Spt5, a transcription elongation factor (SQUAZZO et al. 2002).  

Interestingly, phosphorylation of Spt5 by the Bur1 kinase and its regulatory partner, Bur2, 

promotes recruitment of the Paf1 complex to chromatin (LARIBEE et al. 2005; LIU et al. 2009; 

ZHOU et al. 2009).  Therefore, the Rtf1 OAR may associate with RNA Pol II indirectly through 

an interaction with Spt5.  In contrast, recombinant Cdc73 can interact with purified RNA Pol II, 

suggesting that Cdc73 may directly contact RNA Pol II in vivo (SHI et al. 1997).  Beyond the 

interactions of Paf1 complex subunits with RNA Pol II, Leo1 has been shown to contribute to 

Paf1 complex recruitment through its RNA binding activity (DERMODY and BURATOWSKI 2010).  

Consequently, Leo1 may stabilize the association of the Paf1 complex with chromatin by 

interacting with the nascent mRNA (DERMODY and BURATOWSKI 2010).  
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1.3.3 The Paf1 complex regulates transcription elongation 

Paf1 complex subunits have been implicated in initiation by influencing DNA-binding 

specificity of TATA-binding protein (TBP) (STOLINSKI et al. 1997) and in termination and 3’ 

end formation by mediating recruitment of 3’ end processing factors (MUELLER et al. 2004; 

PENHEITER et al. 2005; SHELDON et al. 2005).  However, the Paf1 complex is currently best 

characterized for its critical roles during transcription elongation.  Several phenotypes and 

interactions initially implicated the Paf1 complex in regulating the elongation stage of 

transcription.  For example, strains lacking Paf1 complex subunits exhibit phenotypes associated 

with transcription elongation defects, such as sensitivity to 6-azauracil and mycophenolic acid 

(COSTA and ARNDT 2000; SQUAZZO et al. 2002).  Additionally, Paf1 complex members 

genetically and physically interact with elongation factors such as the Spt4-Spt5 (yDSIF) and 

Spt16-Pob3 (yFACT) complexes, suggesting that these complexes function in parallel to 

modulate transcription elongation (COSTA and ARNDT 2000; KROGAN et al. 2002b; SQUAZZO et 

al. 2002).  Further characterization of the functions of the Paf1 complex has shown that the Paf1 

complex is required for phosphorylation of serine 2 of the RNA Pol II CTD during elongation 

(MUELLER et al. 2004; NORDICK et al. 2008).  Additionally, the Rtf1 subunit associates with and 

recruits a chromatin remodeling enzyme, Chd1, to ORFs (SIMIC et al. 2003).  The Paf1 complex 

also regulates several co-transcriptional histone modifications that influence gene expression, 

including histone H2B K123 monoubiquitylation and methylation of histone H3 on K4, K36, and 

K79 (CHU et al. 2007; KROGAN et al. 2003a; NG et al. 2003a; NG et al. 2003b; WOOD et al. 

2003b).  Together, these observations suggest that the Paf1 complex influences gene expression 

through multiple functions during transcription elongation. 
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1.3.4 The Paf1 complex influences gene expression through histone H2B K123 

monoubiquitylation and histone H3 methylation on K4 and K79 

The Paf1 complex is required for several histone modifications, including histone H2B 

ubiquitylation (NG et al. 2003a; WOOD et al. 2003b).  Histone H2B is mono-ubiquitylated on 

K123 by the ubiquitin conjugase, Rad6, and the ubiquitin ligase, Bre1 (HWANG et al. 2003; 

ROBZYK et al. 2000; WOOD et al. 2003a).  Histone H2B ubiquitylation is required for di- and 

trimethylation of histone H3 K4 and K79 by the histone methyltransferases Set1 and Dot1, 

respectively (BRIGGS et al. 2002; DOVER et al. 2002; NG et al. 2002b; SUN and ALLIS 2002).  

Paf1 and Rtf1 promote histone H2B ubiquitylation by facilitating the association of Rad6 and 

Set1 with RNA Pol II during transcription elongation (KROGAN et al. 2003a; NG et al. 2003a; NG 

et al. 2003b; WOOD et al. 2003b; XIAO et al. 2005).  Consequently, the loss of Paf1 or Rtf1 

abolishes histone H2B ubiquitylation and di- and trimethylation of histone H3 on K4 and K79 

(KROGAN et al. 2003a; NG et al. 2003a; NG et al. 2003b; WOOD et al. 2003b) (Figure 2).  Since 

Paf1 is required for normal Rtf1 protein levels, Rtf1 is probably the primary subunit that 

regulates histone H2B ubiquitylation and subsequent methylation of histone H3 on K4 and K79 

(MUELLER et al. 2004).  In fact, the Arndt lab has shown that Rtf1 amino acids 62-152 are 

required for these histone modifications, leading us to define this region as the Rtf1 histone 

modification domain (HMD) (TOMSON et al. 2011b; WARNER et al. 2007).   

Histone H2B ubiquitylation and histone H3 K4 and K79 methylation are enriched on the 

coding regions of active genes, indicating that these modifications are associated with active 

transcription (BERNSTEIN et al. 2002; SANTOS-ROSA et al. 2002; XIAO et al. 2005).  Consistent 

with a positive role, histone H2B ubiquitylation has been shown to enhance the transcription 

elongation rate of a chromatin template in vitro (PAVRI et al. 2006).  In vivo, histone H2B 
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ubiquitylation facilitates transcription of galactose-inducible genes by promoting nucleosome-

reassembly in the wake of RNA Pol II in cooperation with the histone chaperone, Spt16 

(FLEMING et al. 2008).  Additionally, a recent study using chemically defined nucleosome arrays 

demonstrated that histone H2B ubiquitylation interferes with chromatin compaction, which may 

facilitate transcription (FIERZ et al. 2011).   

 Despite its connections to active transcription, histone H2B ubiquitylation also 

negatively influences transcription.  For example, histone H2B ubiquitylation and the 

downstream methylation of histone H3 on K4 and K79 regulate telomeric silencing (HUANG et 

al. 1997; KROGAN et al. 2002a; NG et al. 2003a; NG et al. 2002a; NISLOW et al. 1997; SUN and 

ALLIS 2002; VAN LEEUWEN et al. 2002).  In Saccharomyces cerevisiae, heterochromatic 

silencing occurs at three locations through similar mechanisms (APARICIO et al. 1991; KAYNE et 

al. 1988): the mating-type loci (HMR and HML) (KLAR et al. 1981; NASMYTH et al. 1981), the 

rDNA loci (BRYK et al. 1997; SMITH and BOEKE 1997), and telomeric regions (GOTTSCHLING et 

al. 1990).  Telomeric silencing is mediated by silent information regulator (Sir) proteins by 

preferentially binding to hypomethylated histones in telomeric regions (reviewed in SHAHBAZIAN 

and GRUNSTEIN 2007).  The genome-wide loss of histone H3 K4 and K79 methylation is thought 

to cause a redistribution of Sir proteins from telomeric regions, resulting in the loss of silencing 

of telomere-adjacent genes (reviewed in  RUSCHE et al. 2003).  Consequently, complete deletion 

of PAF1 or RTF1 (KROGAN et al. 2003a; NG et al. 2003a) or disruption of the Rtf1 HMD 

indirectly results in telomeric silencing defects (TOMSON et al. 2011b; WARNER et al. 2007).   

In yeast, silencing defects are often detected with a growth assay using strains in which 

URA3 is integrated at a telomere-adjacent locus.  If proper telomeric silencing occurs, the URA3 

gene is silenced.  Consequently, these cells can grow on medium containing 5-fluoroorotic acid 
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(5-FOA), which is converted to a toxin by the URA3 gene product (BOEKE et al. 1984).  

However, it has recently been shown that, in some mutants, expression of URA3 in this assay 

does not result from the loss of telomeric silencing per se, but instead from the exacerbation of 

metabolic changes induced by 5-FOA (ROSSMANN et al. 2011; TAKAHASHI et al. 2011).  

Therefore, although Paf1 complex-dependent histone modifications have been implicated in 

telomeric silencing, additional work is required to determine whether these modifications do, in 

fact, regulate natural telomeric silencing.  However, Rad6, the E2 mediating histone H2B 

ubiquitylation, is required for silencing of the natural mating-type loci, supporting a role for 

histone H2B ubiquitylation in gene silencing (HUANG et al. 1997).  Furthermore, aside from its 

potential effects on Sir protein binding, histone H2B ubiquitylation may also prevent 

heterochromatic silencing through its inhibition of chromatin compaction (FIERZ et al. 2011).   

In addition to the silencing of subtelomeric genes, microarray analysis of transcript levels 

in cells in which the histone H2B ubiquitylation site was mutated (htb1-K123R) has 

demonstrated that histone H2B ubiquitylation represses many genes throughout the genome 

(MUTIU et al. 2007).  In fact, the majority of affected genes exhibited increased expression in 

htb1-K123R cells, indicating that histone H2B ubiquitylation predominantly acts to repress 

transcription (MUTIU et al. 2007).  Consistent with repressive functions, histone H2B 

ubiquitylation has been shown to increase nucleosome stability at the promoters of repressed 

genes (CHANDRASEKHARAN et al. 2009).  Furthermore, removal of histone H2B ubiquitylation 

by the de-ubiquitylating enzyme, Ubp8, is required for full expression of a subset of inducible 

genes, including GAL1, GAL10, and SUC2 (DANIEL et al. 2004; HENRY et al. 2003; KAO et al. 

2004).  Although these observations suggest that histone H2B ubiquitylation has important 
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functions for repression of global transcription, the mechanism by which histone H2B 

ubiquitylation represses transcription is not well-understood. 

Importantly, like its yeast counterpart, the human Paf1 complex controls gene expression 

through histone H2B ubiquitylation and subsequent histone H3 methylation on K4 and K79 

(DING et al. 2009; KIM et al. 2009a; MINSKY et al. 2008; PAVRI et al. 2006; ZHU et al. 2005b).  

Furthermore, histone H2B ubiquitylation in humans also has both positive and negative effects 

on transcription.  For example, histone H2B ubiquitylation is preferentially associated with 

highly expressed genes (MINSKY et al. 2008).  In particular, histone H2B ubiquitylation has been 

shown to stimulate proper HOX gene expression in human cells (ZHU et al. 2005b) and the 

transcription of pluripotency genes in embryonic stem cells (DING et al. 2009), thus promoting 

proper development and stem cell identity, respectively.  However, de-ubiquitylation by Usp22, 

the human homolog of yeast Ubp8, inhibits heterochromatic silencing and promotes gene 

activation (ZHANG et al. 2008; ZHAO et al. 2008b).  Human Bre1/RNF20 acts as a tumor 

suppressor by promoting transcription of tumor suppressor genes and repressing proto-

oncogenes, underscoring the importance of both positive and negative gene regulation by histone 

H2B ubiquitylation (SHEMA et al. 2008). 

1.3.5 Paf1 complex-dependent histone methylation influences histone acetylation 

In addition to its regulation by histone H2B ubiquitylation, histone H3 K4 methylation 

participates in pathways of histone crosstalk that specify either histone acetylation or 

deacetylation.  Histone H3 K4 methylation recruits the NuA3 HAT complex, resulting in 

increased histone H3 K14 acetylation and gene expression (MARTIN et al. 2006; TAVERNA et al. 

2006).  Interestingly, histone H3 K4 dimethylation also lowers histone acetylation levels at the 5’ 
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ends of genes through activation of the Set3 HDAC (GOVIND et al. 2010; KIM and BURATOWSKI 

2009).  Consistent with this pathway of histone H3 K4 methylation-directed deacetylation, the 

loss of Paf1 results in increased acetylation at 5’ coding regions (CHU et al. 2007).   

In addition to methylation of K4 and K79 on histone H3, Paf1 and Ctr9 are required for 

trimethylation of K36 on histone H3 by the histone methyltransferase, Set2 (CHU et al. 2007) 

(Figure 2).  Set2 associates with the elongating form of RNA Pol II in the body of actively 

transcribed genes in a Paf1 complex-dependent manner (CHU et al. 2007; KROGAN et al. 2003b; 

XIAO et al. 2003).  Since the association of Set2 with RNA Pol II requires phosphorylation of the 

CTD on serine 2 (KIZER et al. 2005), the Paf1 complex may influence Set2 recruitment indirectly 

through its effects on CTD phosphorylation (MUELLER et al. 2004; NORDICK et al. 2008).  

Interestingly, histone H3 K36 dimethylation promotes the activity of the Rpd3S HDAC, which 

reduces histone acetylation on transcribed genes and inhibits transcription from cryptic 

promoters within coding regions (CARROZZA et al. 2005; KEOGH et al. 2005; LI et al. 2007; LI et 

al. 2009).  This pathway of methylation-driven deacetylation is thought to restore chromatin after 

passage of RNA Pol II on active genes.  Analysis of paf1Δ set2Δ double mutant strains suggests 

that Paf1 and Set2 function separately to reduce cryptic initiation and histone acetylation at 3’ 

coding regions (CHU et al. 2007).  These results may not be surprising since Paf1 is selectively 

required for histone H3 K36 trimethylation (CHU et al. 2007), yet dimethylation is sufficient for 

Rpd3 HDAC activity (LI et al. 2009).  Therefore, at 5’ coding regions, the Paf1 complex reduces 

histone acetylation, possibly through histone H3 K4 methylation-mediated deacetylation by Set3.  

However, at 3’ coding regions, the Paf1 complex reduces acetylation through a mechanism that 

is parallel to the established Set2-Rpd3 pathway.  
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 Given its essential roles in modulating several histone modifications, the Paf1 complex 

likely regulates gene expression by promoting histone modifications.  However, while genome-

wide analysis identifies numerous genes that require the Paf1 complex for proper expression 

(PENHEITER et al. 2005), only a subset of Paf1 complex-responsive genes exhibit altered 

expression in the absence of these same histone modifications (MUTIU et al. 2007).  Therefore, 

the Paf1 complex likely has roles aside from facilitating histone modifications that control gene 

expression.  Consistent with this hypothesis, the human Paf1 complex has recently been shown 

to stimulate in vitro transcription of a chromatin template independently of histone modifications 

(KIM et al. 2010).  Further investigation is required to elucidate critical histone modification-

independent functions of the Paf1 complex.  

1.3.6 The Paf1 complex coordinates transcription with termination and 3’ end processing 

In addition to its critical functions during transcription elongation, the Paf1 complex is important 

for proper transcription termination (SHELDON et al. 2005) and RNA 3’ end formation (MUELLER 

et al. 2004; NORDICK et al. 2008; PENHEITER et al. 2005).  The loss of Paf1 complex members 

results in shorter poly(A) tail lengths (MUELLER et al. 2004).  Additionally, the Paf1 complex has 

been shown to modulate expression of a subset of genes, not by regulating elongation, but by 

controlling poly(A) site usage (PENHEITER et al. 2005).  Specifically, the loss of Paf1 results in 

the read-through of poly(A) sites, producing 3’-extended transcripts that are subject to nonsense-

mediated decay (PENHEITER et al. 2005).  Termination and 3’ end processing defects that occur 

in the absence of Paf1 can be attributed to the reduced recruitment of 3’ end processing factors to 

chromatin.  In the absence of Paf1 complex members, altered poly(A) site usage is associated 

with reduced chromatin association of the cleavage and polyadenylation factor, Pcf11 (MUELLER 
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et al. 2004).  Additionally, Cft1, another 3’ end processing factor, associates with RNA Pol II in 

a Paf1 complex-dependent manner (NORDICK et al. 2008).  The recruitment of cleavage and 

polyadenylation factors to RNA Pol II and chromatin requires the serine 2-phosphorylated form 

of the RNA Pol II CTD (AHN et al. 2004; LICATALOSI et al. 2002).  Therefore, the Paf1 complex 

may regulate the recruitment of 3’ end processing factors indirectly through its effects on CTD 

phosphorylation.  However, direct interactions between the Paf1 complex and 3’ end processing 

factors have been demonstrated in yeast and humans (NORDICK et al. 2008; ROZENBLATT-ROSEN 

et al. 2009).  Therefore, the Paf1 complex may recruit 3’ end processing factors through a 

mechanism that does not rely on RNA Pol II CTD phosphorylation.  Consistent with a 

mechanism that is independent of CTD phosphorylation, it has recently been shown that the 

human Paf1 complex is required for activator-stimulated mRNA polyadenylation (NAGAIKE et 

al. 2011).   

Together, these observations suggest that the Paf1 complex plays an important role in 

coordinating transcription with 3’ end processing.  Given that the Paf1 complex is required for 

the recruitment of 3’ end processing factors to chromatin (MUELLER et al. 2004; NORDICK et al. 

2008), yet it dissociates from RNA Pol II shortly after the poly (A) site has been transcribed 

(KIM et al. 2004; MAYER et al. 2010), the Paf1 complex may participate in an exchange of 

elongation factors for 3’ end processing factors during transcription termination.  Consistent with 

this hypothesis, when dissociated from chromatin, the Paf1 complex associates with RNA 

processing factors (NORDICK et al. 2008).  However, the exact mechanism by which the Paf1 

complex regulates termination and 3’ end processing of polyadenylated transcripts remains 

unclear.   
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The Paf1 complex is also required for proper termination and 3’ end formation of non-

polyadenylated transcripts (SHELDON et al. 2005).  The loss of Paf1 complex members or Paf1 

complex-dependent histone modifications results in 3’-extended non-polyadenylated small 

nucleolar RNAs (snoRNAs) (SHELDON et al. 2005; TOMSON et al. 2011b).  snoRNA termination 

defects in the absence of Paf1 complex members are associated with reduced recruitment of the 

3’ end processing factor, Nrd1 (SHELDON et al. 2005).  Therefore, similar to its effects on the 

termination of polyadenylated transcripts, the Paf1 complex may mediate snoRNA termination 

by promoting recruitment of 3’ end processing factors.  Interestingly, it has recently been shown 

that the termination function of the Paf1 complex can be inhibited through an interaction with an 

activator (KIM and LEVIN 2011).  Specifically, a physical interaction between Mpk1 MAPK and 

Paf1 prevents premature termination by inhibiting recruitment of the Sen1-Nrd1-Nab3 complex 

(KIM and LEVIN 2011).  However, the mechanism by which the Paf1 complex recruits 3’ end 

processing factors for termination remains to be revealed.  Additionally, disruption of the Rtf1 

HMD results in snoRNA termination defects, implicating histone H2B ubiquitylation in the 

regulation transcription termination (TOMSON et al. 2011b).  Interestingly, nucleosome depletion 

in terminator regions has been shown to require Pol II transcription (FAN et al. 2010).  Therefore, 

aside from facilitating recruitment of 3’ end processing factors, the Paf1 complex may promote 

proper transcription termination through histone H2B ubiquitylation and its effects on chromatin 

structure (CHANDRASEKHARAN et al. 2009; FIERZ et al. 2011).   

The prevalence of Paf1 complex-dependent termination and 3’ end formation throughout 

the genome has not yet been assessed.  However, given the important roles of transcription 

termination, which include regulating transcript stability and RNA Pol II recycling (reviewed in 

GILMOUR and FAN 2008; KUEHNER et al. 2011; RICHARD and MANLEY 2009; ROSONINA et al. 
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2006), Paf1 complex-dependent termination may have wide-spread effects on gene expression.  

Importantly, the functions of the Paf1 complex in regulating termination and 3’ end formation 

are conserved from yeast to humans, as the human Paf1 complex also promotes proper RNA 3’ 

end formation (NAGAIKE et al. 2011; ROZENBLATT-ROSEN et al. 2009). 

1.3.7 The Paf1 complex has essential functions in metazoans 

As mentioned above, the critical functions of the Paf1 complex, including RNA Pol II-

association (ROZENBLATT-ROSEN et al. 2005) and roles in transcription elongation (CHEN et al. 

2009; KIM et al. 2010), histone modifications (DING et al. 2009; KIM et al. 2009a; ROZENBLATT-

ROSEN et al. 2009; ZHU et al. 2005b), and RNA 3’ end formation (NAGAIKE et al. 2011; 

ROZENBLATT-ROSEN et al. 2009), are conserved between yeast and humans.  However, there are 

some differences in complex composition in yeast and higher eukaryotes.  In humans, the Paf1 

complex is minimally composed of Paf1, Ctr9, Cdc73, Leo1, and the higher eukaryote-specific 

subunit, Ski8, which is involved in mRNA surveillance (ROZENBLATT-ROSEN et al. 2005; YART 

et al. 2005; ZHU et al. 2005a).  A few reports differ on whether human Rtf1 is absent from 

(ROZENBLATT-ROSEN et al. 2005; YART et al. 2005; ZHU et al. 2005b) or present in (KIM et al. 

2010) the human complex.  Therefore, human Rtf1 appears to be less stably associated with the 

Paf1 complex.  Consistent with this, Rtf1 is not stably associated with the Drosophila  Paf1 

complex (ADELMAN et al. 2006).  However, despite its less stable association with the Paf1 

complex, human Rtf1 still influences gene expression (DING et al. 2009; MUNTEAN et al. 2010).   

Additionally, the Paf1 complex has evolved critical roles in important signal transduction 

pathways in higher eukaryotes.  Rtf1 regulates the transcription of Notch target genes in 

Drosophila and zebrafish  (ADELMAN et al. 2006; AKANUMA et al. 2007; TENNEY et al. 2006).  
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The human and Drosophila homologs of Cdc73, Hyrax and Parafibromin, respectively, bind 

directly to β-catenin/Armadillo for proper transcription of Wnt/Wg target genes (MOSIMANN et 

al. 2006).  Furthermore, human Paf1 complex subunits modulate the transcription of HOX genes 

(ZHU et al. 2005b), interleukin-6 responsive inflammatory genes (YOUN et al. 2007), and 

pluripotency genes (DING et al. 2009).  Beyond these important functions, members of the 

human Paf1 complex have been implicated in cancer.  Pancreatic differentiation factor 2/Paf1 is 

overexpressed in pancreatic cancer cell lines and overexpression in cell culture results in 

transformation (MONIAUX et al. 2006).  Additionally, the gene encoding human Paf1 is amplified 

in many cancers, including breast and uterine cancers (HESELMEYER et al. 1997; KALLIONIEMI et 

al. 1994).  Furthermore, parafibromin/Cdc73 is a tumor suppressor encoded by HRPT2, a gene 

that is mutated in hyperparathyroidism-jaw tumor syndrome (BRADLEY et al. 2006; CARPTEN et 

al. 2002; HOWELL et al. 2003).  Given the conservation of the multiple functions of the Paf1 

complex from yeast to humans, cumulatively, these observations indicate that the study of the 

Paf1 complex in yeast may elucidate the underlying mechanisms of several human diseases. 

1.4 MECHANISMS OF GENE REPRESSION 

Transcriptional repression can be accomplished through a wide variety of mechanisms.  

Transcriptional repressors may counteract gene activation by inhibiting the activator, interfering 

with assembly of the transcription machinery, or by establishing a repressive chromatin structure.  

Additionally, repressors can perform these functions directly or indirectly by recruiting co-

repressors.  In addition to the actions of repressors and co-repressor proteins, the transcription of 

non-coding RNA can effectively regulate gene expression.  The multiple ways in which 
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repressors, co-repressors, and the transcription of non-coding RNA can mediate gene repression 

are discussed below. 

1.4.1 Gene-specific transcriptional repressors 

DNA-binding transcriptional activators are critical for recruiting TBP and the pre-initiation 

complex for transcription, often by creating an accessible chromatin environment at a gene’s 

promoter.  Repressors, therefore, promote repression by opposing the actions of the activator, 

which can be accomplished in many ways.  For example, repressors can modulate expression or 

localization of an activator.  In yeast, Pho80-Pho85 represses phosphate-responsive genes by 

phosphorylating the activator, Pho4, resulting in its relocalization to the cytosol (KAFFMAN et al. 

1994; O'NEILL et al. 1996).  Srb10, a subunit of the Mediator complex, promotes repression of 

Gcn4-regulated genes by phosphorylating Gcn4, targeting it for ubiquitylation and degradation 

(CHI et al. 2001).  Similar mechanisms are employed in higher eukaryotes as well.  For example, 

Mdm2 ubiquitylates the tumor suppressor p53, marking it for nuclear export and degradation 

(FUCHS et al. 1998; INOUE et al. 2001).  Alternatively, repressors can inhibit the association of 

activators with general transcription factors.  For example, in yeast, Gal80 prevents the activation 

of galactose metabolic genes by binding to the activator, Gal4, preventing association of the 

transcription machinery (MA and PTASHNE 1987; SALMERON et al. 1990).  Therefore, through 

specific interactions with certain activators, repressors can strongly repress transcription in a 

gene-specific manner.   

In addition to eliciting repression by altering activator binding, repressors can promote 

repression by binding to DNA elements within the promoters of their target genes.  For example, 

in Drosophila, the repressor Engrailed competes with the activator, Fushi tarazu, for a common 
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promoter binding site (JAYNES and O'FARRELL 1988).  Therefore, binding of the repressor to the 

promoter interferes with activator binding.  Alternatively, repressors can prevent TBP binding or 

inhibit the assembly of the pre-initiation complex.  For example, LBP-1 inhibits binding of 

TBP/TFIID on the long terminal repeats of HIV (KATO et al. 1991).  Additionally, Drosophila 

even-skipped (AUSTIN and BIGGIN 1995; HAN and MANLEY 1993) and kruppel (AUBLE et al. 

1997; LICHT et al. 1994; SAUER et al. 1995) inhibit the assembly of the pre-initiation complex at 

specific genes involved in development. 

1.4.2 General transcriptional repressors 

In addition to gene-specific repressors, some repressors have a more global role by controlling 

TBP function at many genes.  TBP binds to the minor groove of DNA, which provides limited 

sequence specificity.  Consequently, TBP has a high affinity for non-specific DNA (COLEMAN et 

al. 1995).  Therefore, not surprisingly, the interaction of TBP with DNA must be tightly 

regulated.  Mot1 (modifier of transcription 1) is a conserved ATPase that regulates TBP-DNA 

binding (EISEN et al. 1995).  In yeast, Mot1 is essential for viability (DAVIS et al. 1992).  The N-

terminal 800 residues of Mot1 are both necessary and sufficient for TBP-binding (ADAMKEWICZ 

et al. 2000; AUBLE et al. 1997).  The last C-terminal residues contain the ATPase domain 

(AUBLE et al. 1997).  Mot1 was also identified as Bur3 in a genetic screen for mutations that 

promote transcription of a SUC2 allele that lacks an upstream activating sequence (UAS) 

(PRELICH 1997; PRELICH and WINSTON 1993).  Interestingly, Mot1 has both positive and 

negative effects on the transcription of numerous genes (ANDRAU et al. 2002; DASGUPTA et al. 

2002; GEISBERG et al. 2002).  Its negative influence on transcription can be explained by its 

ability to use ATP-hydrolysis to remove TBP from promoter DNA (AUBLE et al. 1994; SPROUSE 
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et al. 2008a; VAN WERVEN et al. 2009).  Conversely, Mot1 is thought to promote transcription by 

facilitating productive TBP-binding through the removal of non-specifically bound TBP.  

Consistent with this idea, a recent genome-wide analysis of TBP binding showed that expression 

of a Mot1 mutant lacking the Mot1 ATPase domain using a transient replacement strategy 

resulted in dramatic redistribution of TBP (VENTERS et al. 2011).  Therefore, Mot1 may be 

important for placing Mot1 at promoters that are otherwise less preferred by TBP.  Additionally, 

even within the same promoter, Mot1 is important for establishing the correct orientation of TBP 

binding.  For example, Mot1 promotes transcription of URA3 by removing a non-productive 

TBP bound in the reverse orientation (SPROUSE et al. 2008b).  The detection of unstable 

transcripts produced in the opposite direction and multiple TBP sites at many promoters, 

suggests that promoters are inherently bidirectional in yeast (NEIL et al. 2009; XU et al. 2009) 

and humans cells (CORE et al. 2008; DENISSOV et al. 2007; HE et al. 2008; PREKER et al. 2008).  

Therefore, Mot1 may play an important wide-spread role in establishing productive transcription 

by regulating TBP binding.   

Mot1 functionally interacts with another factor that regulates TBP binding, NC2.  NC2 is 

composed of 2 subunits each of Dr1 and Drap1, which interact via a histone fold-like domain 

(GOPPELT et al. 1996; INOSTROZA et al. 1992; YEUNG et al. 1997).  Like Mot1, Drap1 was also 

identified in a search for mutations that bypassed the requirement for the UAS in SUC2 

transcription (PRELICH 1997).  Therefore, the gene encoding Drap1 is also known as BUR6 

(Bypass UAS Requirement 6).  NC2 interacts physically with TBP in vitro and genetically in 

vivo (CANG et al. 1999).  Its colocalization with Mot1 and TBP suggests that NC2 cooperates 

with Mot1 to regulate transcription (DASGUPTA et al. 2002; GEISBERG et al. 2001; GEISBERG et 

al. 2002; GEISBERG and STRUHL 2004; VAN WERVEN et al. 2008; ZANTON and PUGH 2006).  In 
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fact, Mot1 and NC2 physically interact, further supporting cooperative function (KLEJMAN et al. 

2004).  NC2 does not alter TBP-DNA binding, however.  Instead, it prevents TFIIA and TFIIB 

from associating with the TBP-DNA complex (GOPPELT et al. 1996; KIM et al. 1995).  Similar to 

NC2, the NOT complex prevents assembly of the pre-initiation complex.  The NOT complex 

consists of Not1, Not2, Not3, Not4, Not5, Caf1, and Ccr4 (BAI et al. 1999; COLLART and 

STRUHL 1994; LIU et al. 1998).  The NOT complex prevents recruitment of the RNA Pol II 

holoenzyme by preventing the interaction between Spt3 and DNA-bound TBP (reviewed in 

HAMPSEY 1998).   

1.4.3 Corepressors 

Corepressors do not bind to DNA themselves, but associate with DNA-binding repressors to 

promote transcriptional repression.  Often, corepressors are recruited to genes by a wide-variety 

of DNA-binding repressors, allowing then to have wide-spread repressive effects.  Additionally, 

corepressors recruit additional protein complexes that have repressive functions, including 

histone modifying enzymes and chromatin remodelers.  One of the first corepressor complexes 

identified, Tup1-Ssn6, exhibits all of these features that are critical to corepressor function.  

Tup1-Ssn6 was shown to be necessary for repression of mating type a-specific genes by the 

DNA binding repressor complex α2-Mcm1 in Saccharomyces cerevisiae (KELEHER et al. 1992).  

In addition to the repression of a-specific genes, genome-wide expression studies indicated that 

Tup1-Ssn6 is required for the repression of more than 180 genes in yeast (GREEN and JOHNSON 

2004; SMITH and JOHNSON 2000).  Tup1-Ssn6 is recruited to genes by a variety of gene-specific 

DNA binding repressors, including Mig1, which regulates glucose-repressed genes (NEHLIN et 

al. 1991), Crt1, which represses DNA-damage response genes (HUANG et al. 1998), and Rox1, 
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which represses anaerobic response genes (BALASUBRAMANIAN et al. 1993).  Tup1-Ssn6 consists 

of 3 or 4 molecules of Tup1 and 1 of Ssn6 (also called Cyc8).  Tup1 contains an N-terminal 

helical region (JABET et al. 2000) and a C-terminal region containing 7 WD40 repeats that fold 

into a seven-bladed propeller which is important for interacting with repressors (GREEN and 

JOHNSON 2005; SPRAGUE et al. 2000).  Ssn6 contains 10 tetratricopeptide repeats (TPRs) 

(SCHULTZ et al. 1990).  Different TPRs are required for the repression of certain genes 

(TZAMARIAS and STRUHL 1995) and for interaction with different HDACs (DAVIE et al. 2003; 

DAVIE et al. 2002).  Therefore, the multiple sites of interaction allow Tup1-Ssn6 to coordinate 

with a variety of binding partners to elicit gene-specific repression.   

Once recruited to genes, Tup1-Ssn6 mediates repression through interactions with 

components of the transcription machinery and regulation of chromatin structure.  Mediator is a 

multi-subunit complex that has multiple roles in transcription, including facilitating assembly of 

the transcription machinery during initiation and mediating interactions between gene-specific 

regulators and RNA Pol II (reviewed in SIKORSKI and BURATOWSKI 2009).  Tup1-Ssn6 is 

thought to repress transcription by interfering with mediator-activator interactions.  For example, 

for the repression of some genes, Tup1-Ssn6 has been shown to bind and sequester Srb7, a 

subunit of mediator (GROMOLLER and LEHMING 2000).  Since the association of Srb7 with 

mediator is required for activation, the interaction of Srb7 with Tup1-Ssn6 prevents 

transcriptional activation (GROMOLLER and LEHMING 2000).   

Tup1-Ssn6 also promotes transcriptional repression through effects on histone 

acetylation.  Tup1 preferentially interacts with hypoacetylated histone H3 and H4 via its helical 

N-terminal region and this interaction is required for repression of many genes (EDMONDSON et 

al. 1996).  Additionally, Tup1-Ssn6 physically interacts with multiple HDACs, including Rpd3, 
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Hos1, and Hos2 (DAVIE et al. 2003).  Therefore, Tup1-Ssn6 mediates repression through the 

recruitment of HDACs.  In accordance with this idea, Tup1-Ssn6 localizes to regions of 

hypoacetylated chromatin (BONE and ROTH 2001; DAVIE et al. 2002).  Furthermore, the 

combined loss of Rpd3, Hos1, and Hos2 result in the derepression of several Tup1-Ssn6-

repressed genes (DAVIE et al. 2003; DAVIE et al. 2002; WATSON et al. 2000).  Consistent with its 

role in chromatin regulation, Tup1-Ssn6 also appears to contribute to nucleosome repositioning 

at some promoters in cooperation with the ISW2 chromatin remodeler (ZHANG and REESE 2004).  

Interestingly, Tup1-Ssn6 also has a less-understood role in gene activation through the 

recruitment of SAGA, the Gcn5-containing HAT complex, and the Swi/Snf chromatin remodeler 

(PAPAMICHOS-CHRONAKIS et al. 2002; PROFT and STRUHL 2002).   

Although Tup1 and Ssn6 have no sequence homologs in higher eukaryotes, homologs 

exist in Schizosaccharomyces pombe and Caenorhabditis elegans.  Importantly, structurally and 

functionally related corepressors are found in higher eukaryotes (reviewed in COUREY and JIA 

2001), including Drosophila Groucho and mammalian Transducin beta-like and transducin beta-

like related (TBL/TBLR) proteins.  Groucho plays an important role in many developmental 

processes, including sex determination, pattern formation, and eye development.  TBL/TBLR 

proteins function with a wide variety of mammalian repressors.  Both Groucho and TBL/TBLR 

proteins have protein domains with similar structure and function as Tup1, including a 

glutamine-rich N-terminal tetramerization domain (LI 2000) and a C-terminal propeller structure 

consisting of WD repeat domains (PICKLES et al. 2002).  Additionally, both Groucho and 

TBL/TBLR bind histones and interact with HDACs, suggesting that they mediate repression by 

regulating chromatin structure similar to Tup1-Ssn6 (BRANTJES et al. 2001; CHEN et al. 1999; 



 36 

EDMONDSON et al. 1996; FLORES-SAAIB and COUREY 2000; PALAPARTI et al. 1997; YOON et al. 

2003a).   

1.4.4 Regulation of gene expression by non-coding RNAs 

Recently developed technologies, such as high-density microarrays and high-throughput 

sequencing, have revealed that the eukaryotic transcriptome is much more complex than 

previously thought.  In addition to genome-wide chromatin immunoprecipitation (ChIP) analyses 

unexpectedly localizing RNA Pol II to intergenic regions (STEINMETZ et al. 2006), genome-wide 

transcription analyses discovered that up to 85% of the yeast genome is transcribed (DAVID et al. 

2006; NAGALAKSHMI et al. 2008).  Similar results were obtained with multiple organisms, 

including humans (FEJES-TOTH et al. 2009; KIM et al. 2005b).  Non-coding RNAs (ncRNAs) 

account for a large portion of the transcription observed (DAVID et al. 2006; FEJES-TOTH et al. 

2009; NAGALAKSHMI et al. 2008).  Interestingly, many ncRNAs arise from start sites within 

intergenic regions and overlap with coding genes.  Furthermore, the majority of ncRNAs 

divergently arise from the promoters of coding genes, demonstrating the bidirectional nature of 

promoters in yeast and higher eukaryotes (NEIL et al. 2009; XU et al. 2009).    

In human cells, ncRNAs can be categorized based on their location.  Many of the 

ncRNAs observed were identified as promoter-associated short or long RNAs (PASRs and 

PALRs) (FEJES-TOTH et al. 2009; KAPRANOV et al. 2007).  Most promoter-associated ncRNAs 

are transcribed in the same direction as overlapping coding regions.  Others, however, arise from 

start sites within the 3’ untranslated regions (UTR) of coding genes and are designated termini-

associated short RNAs (TASRs) (FEJES-TOTH et al. 2009; KAPRANOV et al. 2007).  Promoter-
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associated ncRNAs are most prevalent, accounting for nearly 20% of all sequences (FEJES-

TOTH et al. 2009).  Importantly, given the wide-spread overlap with coding genes, ncRNAs 

clearly have the potential to regulate gene expression.   

1.4.4.1 SUTs and CUTs 

In yeast, ncRNAs can be divided into two groups based on their stability.  Stable unannotated 

transcripts (SUTs) are detected in wild-type strains (NEIL et al. 2009; XU et al. 2009).  Cryptic 

unstable transcripts (CUTs), which are degraded by the nuclear exosome, can be observed in 

strains lacking Rrp6, the catalytic subunit of the exosome (NEIL et al. 2009; XU et al. 2009).  

CUT RNA biogenesis has been somewhat defined.  Transcription termination of CUTs requires 

Nab3 and Nrd1, which also direct termination of non-polyadenylated transcripts (ARIGO et al. 

2006; THIEBAUT et al. 2006).  Interestingly, Nab3 and Nrd1 recruit the TRAMP polyadenylation 

complex to CUTs (THIEBAUT et al. 2006).  Polyadenylation by TRAMP appears to target CUTs 

for 3’ to 5’ degradation by the nuclear exosome (LACAVA et al. 2005; VANACOVA et al. 2005; 

WYERS et al. 2005).  Additionally, many CUTs are subject to decapping and 5’ to 3’ cytoplasmic 

decay by Xrn1 (LEE et al. 2008a; THOMPSON and PARKER 2007).   

SUTs and CUTs can overlap coding regions in either the sense or antisense direction 

(NEIL et al. 2009; XU et al. 2009).  SUTs and CUTs account for about 12% of transcripts in yeast 

(XU et al. 2009).  Approximately 70% of SUTs and CUTs in yeast exhibit a transcription start 

site that is located within the 5’ nucleosome free region within a gene’s promoter (MAVRICH et 

al. 2008; NEIL et al. 2009; XU et al. 2009).  Of these, the majority are divergently transcribed 

relative to the mRNA (NEIL et al. 2009; XU et al. 2009).  Almost 30% of SUTs and CUTs arise 

from the 3’ nucleosome free region of a gene (MAVRICH et al. 2008; NEIL et al. 2009; XU et al. 



 38 

2009).  The majority of these transcripts are transcribed in the antisense direction relative to the 

mRNA (NEIL et al. 2009; XU et al. 2009).   

1.4.4.2 ncRNAs in X-inactivation  

While the pervasiveness of regulatory ncRNAs is not known, close examination of a growing 

number of genes indicates that ncRNAs have an important role in regulating gene expression at a 

subset of loci.  X-inactivation by Xist may be one of the best understood examples of gene 

regulation by ncRNAs.  Xist RNA is transcribed from the X-inactivation center on the inactive X 

chromosome (BROCKDORFF et al. 1992; BROWN et al. 1992) (Figure 4A).  It mediates repression 

by coating the inactive X chromosome and recruiting the Polycomb repressive complex 2 

(PRC2), which methylates histone H3 K27, a repressive chromatin mark (CLEMSON et al. 1996; 

MARAHRENS et al. 1997; PENNY et al. 1996).  Repeat A (RepA) is another ncRNA that is 

transcribed from the 5’ region of Xist in the same direction.  RepA recruits PRC2 to the X-

inactivation center to induce transcription of Xist and promote X-inactivation (ZHAO et al. 

2008a) (Figure 4A).  However, on the active X chromosome, transcription of Tsix, a ncRNA in 

the opposite orientation as Xist, prevents transcription of Xist (LEE 2000; LEE et al. 1999; LEE 

and LU 1999; LUIKENHUIS et al. 2001; SADO et al. 2001) (Figure 4A).  Therefore, transcription 

of Tsix in the antisense direction inhibits transcription of Xist.  Tsix transcription is also 

regulated by another ncRNA, Xite, which acts as an enhancer to increase Tsix transcription on 

the active X chromosome (OGAWA and LEE 2003; STAVROPOULOS et al. 2005).  This complex 

network of regulatory ncRNAs is not completely understood.  However, the regulation of 

overlapping transcripts and the recruitment of chromatin-related factors by ncRNAs are events 

that have also been observed in yeast.   
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Figure 4:  Schematic of several loci with ncRNAs that regulate gene expression 

Diagram of genes and/or ncRNAs transcribed from the X-inactivation center (A), the SER3 locus (B), the FLO11 

locus, and the IME4 locus (D).  Genes are represented by colored blocks.  ncRNAs are represented by labeled 

arrows.  In (D), the grey bar represents a binding site for the a1/α2 repressor.    
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1.4.4.3 ncRNAs transcribed in the sense direction relative to overlapping genes 

Several examples of regulation of gene expression by ncRNAs have been described in yeast.  

Probably the best characterized example is the repression of SRG1 by SER3.  SRG1 is a ncRNA 

whose transcription start site lies upstream of SER3, a gene involved in serine biosynthesis 

(Figure 4B).  Unlike Xist and Tsix, SRG1 and SER3 are transcribed in the same direction, such 

that SRG1 overlaps with the SER3 promoter (MARTENS et al. 2004; THOMPSON and PARKER 

2007) (Figure 4B).  SRG1 transcription is required for repression of SER3 (MARTENS et al. 2004; 

MARTENS et al. 2005).  The ncRNA product does not mediate repression.  However, the act of 

transcribing SRG1 promotes repression through a transcriptional interference mechanism that 

prevents activator binding (MARTENS et al. 2004; MARTENS et al. 2005).  Interestingly, SRG1 

transcription maintains nucleosome occupancy over the SER3 promoter in a manner that is 

dependent on the chromatin reassembly factors, FACT and Spt6 (HAINER et al. 2011).  

Therefore, the transcription of a ncRNA obstructs activator binding by establishing a repressive 

chromatin environment at the promoter of a coding gene.    

FLO11 is also regulated by the transcription of a ncRNA.  This discovery was prompted, 

partly, by the finding that an HDAC, Rpd3L, promotes FLO11 gene expression (BUMGARNER et 

al. 2009).  Since histone deacetylation is generally associated with transcriptional repression, it 

was predicted that Rpd3L might promote FLO11 expression indirectly by inhibiting an 

interfering ncRNA.  However, like SER3, FLO11 is repressed by a ncRNA through 

transcriptional interference (BUMGARNER et al. 2009).  The transcription start site for the 

ncRNA, ICR1, lies upstream of FLO11 and both FLO11 and ICR1 are expressed from the same 

strand (BUMGARNER et al. 2009) (Figure 4C).  Interestingly, ICR1 is also regulated by a ncRNA 
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(BUMGARNER et al. 2009).  PWR1 encodes a ncRNA that overlaps with ICR1 in the antisense 

orientation relative to ICR1 and represses ICR1 transcription (BUMGARNER et al. 2009) (Figure 

4C).  It appears that Rpd3L HDAC promotes recruitment of an activator, Flo8. Flo8 induces 

transcription of PWR1, which, in turn, inhibits ICR1 transcription, relieving transcriptional 

interference of FLO11 (BUMGARNER et al. 2009).   

1.4.4.4 ncRNAs transcribed in the antisense direction relative to overlapping genes 

IME4 regulates entry into meiosis in diploid yeast cells.  At the IME4 locus, a ncRNA, RME2, is 

transcribed in the antisense direction relative to IME4 (Figure 4D).  RME2 is repressed by a1/α2, 

which binds to a conserved site located downstream of the IME4 ORF (HONGAY et al. 2006) 

(Figure 4D).  Increased RME2 transcription is associated with low IME4 transcription and vice 

versa (HONGAY et al. 2006).  The anti-correlation between sense and antisense expression and 

the fact that RME2 traverses the IME4 coding region and promoter suggested a transcriptional 

interference mechanism of repression.  However, it has recently been shown that antisense 

transcription across the IME4 promoter is not required for IME4 repression (GELFAND et al. 

2011).  Instead, regions within the IME4 coding region are required to confer repression by 

RME2 (GELFAND et al. 2011).  It is now proposed that transcription of RME2 does not prevent 

initiation of IME4 transcription, but does prevent production of full length IME4 mRNA.   

Additionally, the transcription of antisense ncRNAs can regulate gene expression by 

modulating the chromatin environment.  For example, antisense transcription at the GAL10 locus 

leads to repression by recruiting the histone H3 K36 methyltransferase, Set2, and subsequent 

HDAC activity (HOUSELEY et al. 2008).  Alternatively, antisense transcription has also been 

shown to positively regulate gene expression.  For example, antisense transcription at PHO5 has 

been shown to promote transcriptional activation by stimulating chromatin remodeling at the 
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promoter and promote recruitment of the transcription machinery (UHLER et al. 2007).  These 

observations indicate that ncRNAs have both positive and negative effects on the expression of 

numerous genes, through multiple mechanisms. Therefore, transcription factors that modulate 

the transcription of ncRNAs may have dramatic and wide-spread effects on gene expression. 

1.5 ARG1 AS A MODEL GENE FOR TRANSCRIPTIONAL STUDIES 

The ARG1 gene encodes argininosuccinate synthetase, an enzyme required for arginine 

biosynthesis.  ARG1 transcription is subject to arginine repression and general amino acid 

control, and has therefore served as a model gene for the study of transcriptional regulation by 

these pathways.  Additionally, ARG1 has been used to examine how co-activators, chromatin 

remodeling enzymes, and histone modifying enzymes contribute to gene activation in inducing 

conditions.  However, much less is known about how ARG1 transcription is repressed in non-

inducing conditions.  Importantly, ARG1 was identified by microarray analysis to be a gene 

negatively regulated by Ctr9 (Kathryn Sheldon and Karen Arndt, unpublished data) and Paf1 in 

rich media (PENHEITER et al. 2005).  With my thesis work, I aim to elucidate the role of the Paf1 

complex in transcriptional repression in yeast.  To this end, ARG1 serves as a model locus of 

Paf1 complex-dependent transcriptional repression.   

1.5.1 ARG1 transcription is regulated by several trans-acting factors 

Arginine metabolism is highly regulated by environmental signals (reviewed in MESSENGUY and 

DUBOIS 2000).  ARG1 is an arginine anabolic gene that, along with ARG3 and ARG4, is required 
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for the conversion of ornithine to arginine.  To ensure appropriate arginine biosynthesis, ARG1 

transcription is regulated by several trans-acting factors that respond to the availability of 

arginine and other amino acids.  In the presence of arginine, the ArgR/Mcm1 complex, 

consisting of Arg80, Arg81, Arg82, and Mcm1, binds to arginine control (ARC) elements in the 

ARG1 promoter and represses ARG1 transcription (AMAR et al. 2000; BECHET et al. 1970; 

CRABEEL et al. 1995; CRABEEL et al. 1990; DELFORGE et al. 1975; DUBOIS et al. 1987; EL 

BAKKOURY et al. 2000; QIU et al. 1990).  In conditions of nutrient starvation, Gcn4 activates 

ARG1 transcription by binding to sites within the ARG1 promoter (DELFORGE et al. 1975; 

HINNEBUSCH 1986).  In addition to ARC elements and Gcn4-binding sites, the ARG1 promoter 

contains a binding site for the general transcription activator, Abf1 (CRABEEL et al. 1995; 

CRABEEL et al. 1988).  Although, very little is known about the role of Abf1 in ARG1 activation, 

at other genes it has been shown to promote gene expression by altering chromatin structure 

(GANAPATHI et al. 2011; LASCARIS et al. 2000; YARRAGUDI et al. 2004).   

1.5.2 Transcriptional activation of ARG1 

In response to starvation for any amino acid, Gcn4 is induced at the translation level and 

activates the transcription of amino acid biosynthetic genes, including ARG1 (reviewed in 

HINNEBUSCH 2005).  Upon binding to the ARG1 promoter, Gcn4 quickly recruits several co-

activators, including SRB/Mediator complex, the HAT-containing complex SAGA, and the 

chromatin remodeling complexes, SWI/SNF and RSC (SWANSON et al. 2003).  While the 

SRB/Mediator complex appears to be recruited independently of other co-activators, RSC is 

required for SAGA recruitment, and SAGA is required for SWI/SNF recruitment (GOVIND et al. 

2005; YOON et al. 2003b).  However, all co-activators stimulate the recruitment of TBP and 
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RNA Pol II and chromatin immunoprecipitation analyses indicate that all co-activators are 

recruited at a similar time following gene induction (GOVIND et al. 2005; QIU et al. 2004).  ChIP 

experiments indicate that Gcn5, the HAT component of SAGA, promotes histone H3 acetylation 

and nucleosome eviction in the ARG1 promoter (GOVIND et al. 2010; GOVIND et al. 2007).  

However, multiple HDACs, including Rpd3, Hos3, Hos2, and Hda1, prevent an increase in 

histone acetylation at the 3’ end of ARG1 (GOVIND et al. 2010; GOVIND et al. 2007).  

Interestingly, in inducing conditions, Gcn4 constitutively recruits two subunits of the 

ArgR/Mcm1 repressor complex, Arg80 and Mcm1, to facilitate swift repression upon the 

availability of arginine (YOON et al. 2004).  Furthermore, Gcn4 and these subunits of the 

ArgR/Mcm1 repressor complex stimulate each other’s binding to the ARG1 promoter (HONG and 

YOON 2011; YOON and HINNEBUSCH 2009).  However, the complete ArgR/Mcm1 repressor 

complex only assembles in the presence of arginine. 

1.5.3 Transcriptional repression of ARG1 

In the presence of arginine, ArgR/Mcm1 complex induces transcription of arginine catabolic 

genes, CAR1 and CAR2, and represses transcription of four anabolic genes, ARG5,6, ARG3, 

ARG8, and ARG1 (reviewed in MESSENGUY and DUBOIS 2000).  Of the four subunits of the 

ArgR/Mcm1 repressor complex, Arg80 and Arg81 are specific regulators, while Mcm1 and 

Arg82 are pleiotropic factors, as they are also involved in mating and sporulation (DUBOIS et al. 

1987; DUBOIS and MESSENGUY 1994; ELBLE and TYE 1991).  Arg82 also has inositol 

polyphosphate multikinase activity; however, this function is not required for ARG1 repression 

(ODOM et al. 2000; SAIARDI et al. 2000; SAIARDI et al. 1999).  Arg82 functions in the 

ArgR/Mcm1 complex by binding to and stabilizing Arg80 and Mcm1 (EL BAKKOURY et al. 
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2000).  Mutational analysis suggests that the N-terminal region of Arg81 binds to arginine 

(AMAR et al. 2000), which stimulates binding of Arg81, along with Arg80 and Mcm1, to ARC 

elements within the ARG1promoter (DUBOIS and MESSENGUY 1991).  However, little is known 

about the downstream effects of the assembly of the ArgR/Mcm1 repressor complex.   

Besides the ArgR/Mcm1, several chromatin-related factors have been implicated in 

ARG1 repression.  Paradoxically, some of the factors required for ARG1 repression in rich 

media, such as the SRB/Mediator, SAGA, SWI/SNF, and RSC complexes, also promote ARG1 

expression in inducing conditions (RICCI et al. 2002; SWANSON et al. 2003).  However, neither 

their positive nor their negative roles in ARG1 transcription have been well-defined.  

Interestingly, histone H2B ubiquitylation also appears to have opposing regulatory roles in 

repressing and inducing condtions.  Specifically, the loss of histone H2B ubiquitylation results in 

ARG1 derepression in non-inducing conditions and reduced transcription in inducing conditions, 

suggesting that the correct balance of histone H2B ubiquitylation is required for proper ARG1 

expression (LEE et al. 2005; MUTIU et al. 2007; TURNER et al. 2002).  However, the mechanistic 

details of how histone H2B ubiquitylation modulates ARG1 expression are still unknown.   

1.6 THESIS AIMS 

The conserved Paf1 complex, consisting of Paf1, Rtf1, Ctr9, Cdc73, and Leo1 subunits, is 

important for proper gene expression in eukaryotes.  The Paf1 complex has both positive and 

negative effects on transcription.  The Paf1 complex has been shown to positively influence 

transcription by modulating several histone modifications.  However, the mechanism by which 

the Paf1 complex mediates transcriptional repression is unknown.  The goal of my thesis 
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research was to elucidate mechanisms by which the Paf1 complex mediates transcriptional 

repression in Saccharomyces cerevisiae.  I used a well-characterized gene, ARG1, as a model 

gene of Paf1 complex-dependent repression to answer several critical questions.  For example, is 

the Paf1 complex a direct or indirect repressor of transcription?  Are there similarities between 

positive and negative regulation by the Paf1 complex?  More specifically, do known functions of 

the Paf1 complex contribute to repression?  Conversely, does the Paf1 complex have previously 

unrecognized functions that contribute to repression?  And finally, how does the Paf1 complex 

affect transcription throughout the yeast genome?  Fortunately, I was able to address all of these 

questions with my thesis research.   

Interestingly, I found that Paf1 complex-dependent histone modifications that are 

normally associated with active transcription are enriched on the ARG1 coding region and 

contribute to repression.  Analyses focusing on the Rtf1 subunit of the Paf1 complex indicate that 

Rtf1 mediates ARG1 repression primarily through histone H2B ubiquitylation and histone H3 K4 

methylation.  However, Paf1 has repressive functions aside from these histone modifications.  To 

further understand the repressive functions of Paf1, I examined the combinatorial effects of 

multiple gene deletions on ARG1 expression.  These analyses suggest that Paf1 functions 

independently of the gene-specific repressor complex, the ArgR/Mcm1 complex.  However, Paf1 

mediates ARG1 repression partially through the gene-specific activator, Gcn4.  Additionally, 

several genetic and biochemical analyses suggest that Paf1 mediates ARG1 repression by 

preventing Gcn4 recruitment to the ARG1 promoter and subsequent histone H3 acetylation.   

Additionally, I found that Paf1 does not alter nucleosome occupancy at the ARG1 

promoter.  However, Paf1 appears to prevent antisense transcription from traversing the ARG1 

promoter, which may influence Gcn4 recruitment and ARG1 expression.  Importantly, events 



 47 

that I observed at my model gene, ARG1, occur at other Paf1 complex-repressed genes, 

suggesting that the Paf1 complex promotes transcriptional repression of a subset of genes 

through similar mechanisms.   

Beyond examining specific Paf1 complex-repressed genes, I used high density tiled 

microarray analysis to investigate Paf1 complex-dependent transcription throughout the yeast 

genome.  The high resolution data confirmed that numerous genes require the Paf1 complex for 

proper expression and revealed wide-spread transcription termination defects.  Cumulatively, my 

thesis research is the first detailed investigation into the repressive functions of the Paf1 complex 

and provides insight into the multiple functions of the Paf1 complex.  Additionally, my studies of 

the yeast Paf1 complex will provide insights into the analogous human complex, which has 

multiple connections to human health.   
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2.0  THE PAF1 COMPLEX REPRESSES ARG1 TRANSCRIPTION IN 

SACCHAROMYCES CEREVISIAE BY PROMOTING HISTONE MODIFICATIONS 

2.1 INTRODUCTION 

The organization of eukaryotic DNA into chromatin presents a significant obstacle to 

transcription by RNA polymerase II (Pol II).  To allow proper gene expression, a multitude of 

accessory factors associate with RNA Pol II to facilitate transcription of a chromatin template.  A 

conserved, multifunctional protein complex that enables proper RNA Pol II transcription is the 

Paf1 complex.  In Saccharomyces cerevisiae, the Paf1 complex consists of Paf1, Ctr9, Cdc73, 

Rtf1, and Leo1 (KROGAN et al. 2002b; MUELLER and JAEHNING 2002; SHI et al. 1997; SQUAZZO 

et al. 2002).  Many physical and genetic interactions and phenotypes implicate the Paf1 complex 

in regulating the elongation stage of transcription.  Specifically, strains lacking Paf1 complex 

members exhibit phenotypes associated with transcription elongation defects, such as sensitivity 

to 6-azauracil and mycophenolic acid (COSTA and ARNDT 2000; SQUAZZO et al. 2002).  During 

transcription elongation, the Paf1 complex associates with RNA Pol II on open reading frames 

(ORFs) (KROGAN et al. 2002b; POKHOLOK et al. 2002) where it orchestrates modifications to the 

chromatin template (CHU et al. 2007; KROGAN et al. 2003a; NG et al. 2003a; NG et al. 2003b; 

WOOD et al. 2003b) and influences the phosphorylation state of the RNA Pol II carboxy-terminal 

domain (CTD) (MUELLER et al. 2004; NORDICK et al. 2008).  In addition, the Paf1 complex 
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genetically and physically interacts with elongation factors such as the Spt4-Spt5 (yDSIF) and 

Spt16-Pob3 (yFACT) complexes, suggesting coordinated functions of these elongation factors 

during transcription (COSTA and ARNDT 2000; KROGAN et al. 2002b; SQUAZZO et al. 2002).  

Appropriate transcription by RNA Pol II depends on the dynamic regulation of chromatin 

structure, which is modulated by histone modifications.  Members of the Paf1 complex are 

required for the establishment of several histone modifications that are associated with active 

genes.  Specifically, Paf1 and Ctr9 are required for histone H3 lysine (K) 36 trimethylation by 

the histone methyltransferase Set2 (CHU et al. 2007), and Paf1 and Rtf1 are needed for 

methylation of histone H3 K4 and K79 by the histone methyltransferases Set1 and Dot1, 

respectively (KROGAN et al. 2003a; NG et al. 2003a; NG et al. 2003b).  Di- and trimethylation of 

histone H3 K4 and K79 is dependent on the mono-ubiquitylation of histone H2B K123 by the 

ubiquitin conjugating enzyme Rad6 and the ubiquitin ligase Bre1 (BRIGGS et al. 2002; SUN and 

ALLIS 2002).  Because Paf1 and Rtf1 are also required for histone H2B ubiquitylation, the Paf1 

complex most likely regulates histone H3 K4 and K79 methylation indirectly through histone 

H2B ubiquitylation (NG et al. 2003a; WOOD et al. 2003b).  Both histone H3 K4 methylation and 

H2B ubiquitylation correlate with active transcription.  These modifications are enriched on the 

coding regions of active genes (BERNSTEIN et al. 2002; SANTOS-ROSA et al. 2002; XIAO et al. 

2005) and the necessary histone modifying enzymes are recruited to active genes in a Paf1 

complex-dependent manner (KROGAN et al. 2003a; NG et al. 2003b; XIAO et al. 2005).  

Importantly, Rad6 and Bre1 are evolutionarily conserved and the interconnections between the 

Paf1 complex, histone H2B ubiquitylation, and gene expression observed in yeast extend to other 

eukaryotes, including humans (ZHU et al. 2005b).   
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Due to its multiple roles during transcription elongation, it is not surprising that the Paf1 

complex is required for the proper expression of many genes (PENHEITER et al. 2005).  However, 

it is unclear how the Paf1 complex regulates the expression of most genes or whether the 

complex employs similar mechanisms to effect gene activation and repression.  To investigate 

the repressive function of the Paf1 complex, I focused on ARG1, a gene whose expression is 

negatively regulated by Paf1 (PENHEITER et al. 2005) and whose cis- and trans-regulatory factors 

are well characterized.  ARG1 transcription is repressed by the ArgR/Mcm1 complex in rich 

media (AMAR et al. 2000; BECHET et al. 1970; CRABEEL et al. 1995; CRABEEL et al. 1990; 

DELFORGE et al. 1975; DUBOIS et al. 1987; EL BAKKOURY et al. 2000; QIU et al. 1990) and 

induced by Gcn4 in conditions of amino acid starvation (DELFORGE et al. 1975; HINNEBUSCH 

1986).  Interestingly, although histone H2B ubiquitylation is generally associated with active 

transcription, this modification has been implicated in ARG1 repression.  Deletion of RAD6, 

mutation of the Rad6 ubiquitin conjugation site, or mutation of histone H2B K123 results in 

derepression of an ARG1-lacZ reporter construct (TURNER et al. 2002).  Consistent with these 

observations, both gene-specific and genome-wide studies found increased ARG1 expression in 

htb1-K123R cells (LEE et al. 2005; MUTIU et al. 2007; ZHANG et al. 2005b).  Therefore, it is 

possible that the Paf1 complex may promote transcriptional activation and repression through the 

very same histone modifications.  However, it is unknown whether the Paf1 complex or Paf1 

complex-dependent modifications are enriched at repressed loci such as ARG1 or contribute to 

their repression.  Therefore, I investigated the role of the Paf1 complex in transcriptional 

repression, with a particular focus on characterizing the contributions of Paf1 complex-

dependent histone modifications to repression.  My results indicate that the Paf1 complex 

associates with and determines the histone modification state at ARG1 under repressing 



 51 

conditions, that Rtf1-dependent histone H2B ubiquitylation can both activate and repress 

transcription, and that Paf1 has roles in ARG1 repression beyond its known roles in facilitating 

histone modifications.  

2.2 MATERIALS AND METHODS 

2.2.1 Yeast Strains and Media 

Rich (YPD) and synthetic complete (SC) media were prepared as described (ROSE 1990).  Yeast 

strains used in these studies are isogenic with FY2, a GAL2+ derivative of S288C, and listed in 

Table 1 (WINSTON et al. 1995).  Because certain cellular auxotrophies influence the level of 

ARG1 repression (E. Crisucci and K. Arndt, unpublished observations), experiments were 

performed with prototrophic strains where possible.  Mating types of prototrophic strains were 

assigned through visual examination of mating with MATa and MATα tester strains.  Gene 

disruptions were created through PCR-mediated gene replacement via transformation and/or 

mating, sporulation, and tetrad dissection and confirmed by PCR or Southern analysis (AUSUBEL 

1988; ROSE 1990).  PCR fragments for gene replacement with KanMX were generated by 

amplification of the KanMX cassette on pRS400 (BRACHMANN et al. 1998).  Strains containing 

an integrated copy of htb1-K123R as the only source of H2B, were constructed and verified as 

described (TOMSON et al. 2011b).  Strains containing rtf1 internal deletion mutations were 

created through a two-step gene replacement method in which constructs encoding the N-

terminally triple HA-tagged Rtf1 derivatives were integrated to replace endogenous RTF1 

(ROTHSTEIN 1991).  Comparisons between strains expressing HA-tagged and untagged Rtf1 
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derivatives revealed that the HA tag did not alter Rtf1 function or interfere with ARG1 

repression.  A yeast strain containing an integrated, tagged copy of RPB1, RPB1-

13xMYC::KanMX, was constructed as previously described and generously provided by Joe 

Martens (HAINER et al. 2011).    

2.2.2  Northern Analysis 

Unless stated otherwise, 10 μg of total RNA, isolated from cells grown in YPD at 30°C to a 

density of 1-2 x 107 cells/ml, were subjected to Northern analysis with random-prime-labeled, 

PCR-amplified DNA probes for ARG1 (+34 to +1201), SNZ1 (+79 to +890), GAP1 (+133 to 

+1213), and SCR1 (-242 to +283) as described previously (SWANSON et al. 1991).  Signals were 

quantified using phosphorimager and ImageQuant software.  ARG1 signals were normalized to 

the loading control SCR1.  To facilitate comparisons between samples and avoid introducing 

errors from the very low ARG1 transcript levels in wild-type strains, normalized ARG1 transcript 

levels in experimental samples are presented relative to normalized ARG1 transcript levels in an 

arg80∆ control strain, which was processed in parallel.  The normalized ARG1 transcript levels 

in arg80∆ samples (not shown) were set equal to one.  Relative signals for at least three 

independent samples were averaged and plotted with standard deviation.  

2.2.3 Western Analysis 

Whole cell extracts were prepared by a rapid boiling method as described (STOLINSKI et al. 

1997).  Briefly, cells were grown in YPD to a density of approximately 4x107 cells/ml.  1.5 ml 

culture was harvested by centrifugation and resuspended in 20 μl sample buffer (80mM Tris pH 
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6.8, 2% SDS, 1% beta-mercaptoethanol, 10% glycerol, 2mM phenylmethanesulfonylfluoride 

(PMSF), and 0.1% bromophenol blue), and immediately boiled for 2 min at 100°C.  After glass 

bead lysis, an additional 80 μl sample buffer was added, and 20 μl of this lysate were separated 

on a SDS-10% polyacrylamide gel.  Membranes were probed with a 1:2,500 dilution of anti-HA 

antibody (Roche #11666606001), followed by a 1:5,000 dilution of sheep anti-mouse 

horseradish peroxidase-coupled secondary antibody (GE Healthcare).  As a loading control, 

membranes were probed with a 1:100,000 dilution of anti-glucose-6-phosphate dehydrogenase 

antibody (G6PDH, Sigma A9521), followed by a 1:5,000 dilution of donkey anti-rabbit 

horseradish peroxidase-coupled secondary antibody (GE Healthcare). 

2.2.4 Chromatin Immunoprecipitation Assays 

Cells were grown in YPD to a density of ~1 x 107 cell/ml and harvested or washed and 

resuspended in minimal media and incubated for an additional 30 minutes.  Chromatin was 

prepared as described previously (SHIRRA et al. 2005).  Sonicated chromatin was incubated with 

antibodies at 4°C overnight.  Agarose-conjugated anti-HA (Santa Cruz Biotechnology sc-7392 

AC) or anti-MYC (Santa Cruz Biotechnology sc-40 AC) was used to precipitate HA-Paf1 or 

Rpb1-Myc, respectively.  Polyclonal anti-Rtf1 antibody (SQUAZZO et al. 2002), anti-H3 trimethyl 

K36 (Abcam ab9050), anti-H3 trimethyl K4 (Active Motif 39159), anti-H3 dimethyl K4 

(Millipore 07-030), or anti-H3 (Abcam ab1791), followed by incubation with protein A-coupled 

Sepharose beads (GE Healthcare 17-5280-01), were used to precipitate Rtf1 or the appropriate 

histone protein.  Precipitated DNA was purified using PCR purification columns (Qiagen).  For 

HA-Paf1 and Rtf1 ChIP assays, two dilutions of input and immunoprecipitated (IP) DNA from 

three independent chromatin preparations were amplified by PCR in the presence of [α-
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32P]dATP.  PCR products were separated on 6% native polyacrylamide gels and signals were 

quantified using a phosphorimager and ImageQuant software.  After signals were multiplied by 

their dilution factor, the average input was divided by the average IP signal.  IP/input signals for 

ARG1 were normalized to a subtelomeric control region on chromosome VI (VOGELAUER et al. 

2000).  For ChIP assays examining histone modification levels, immunoprecipitated DNA from 

three independent chromatin preparations was used in quantitative real-time PCR with SYBR 

green detection (Fermentas).  IP/input values for the histone modifications were normalized to 

those for total histone H3.  Error bars represent standard error of the mean.                

2.3 RESULTS 

2.3.1 Members of the Paf1 complex repress ARG1 transcription.   

The Paf1 complex was first implicated in ARG1 repression by microarray analyses investigating 

changes in gene expression in paf1∆ cells (PENHEITER et al. 2005).  To determine if other 

members of the Paf1 complex are required for ARG1 repression in rich media (YPD), ARG1 

transcript levels were examined by Northern analysis in wild-type strains and strains lacking 

individual members of the Paf1 complex (Figure 5A and B).  Early in our analysis, I discovered 

that certain cellular auxotrophies influence the degree of ARG1 repression in otherwise wild-type 

cells, even when grown in rich media (data not shown).  Therefore, to eliminate any effects of 

auxotrophies on my measurements, I analyzed ARG1 transcript levels in prototrophic strains 

wherever possible.  Under these conditions, wild-type cells had very low ARG1 transcript levels 

(Figure 5A and B).  In contrast, strains lacking Paf1, Ctr9, Cdc73, or Rtf1 exhibited high levels 
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of ARG1 expression relative to the isogenic wild-type control strain.  Of these strains, paf1∆ and 

ctr9∆ mutants were most defective in ARG1 repression.   These results indicate that although 

Leo1 does not appear to have a very significant role, Paf1, Ctr9, and to a lesser extent Cdc73 and 

Rtf1 each contribute to ARG1 repression in nutrient-rich conditions. 

To determine if the repressive functions of the Paf1 complex are specific to nutrient-rich 

conditions or if the Paf1 complex also negatively regulates ARG1 expression in nutrient-limiting 

conditions, when ARG1 is activated, I examined the effects of deleting Paf1 complex members 

on ARG1 transcript levels in minimal media.  First, I examined the timing of ARG1 induction in 

wild-type cells and found that ARG1 expression was fully induced 30 minutes after the cells 

were transferred to minimal media from rich media (Figure 5C).  Consequently, I measured 

ARG1 expression in Paf1 complex mutant strains that were grown in YPD and shifted to minimal 

media for 30 minutes.  I found that deletion of genes encoding Paf1 complex members resulted 

in slightly higher ARG1 expression in inducing conditions (Figure 5D and E).  Consistent with 

my results, it was shown previously that paf1∆ strains exhibit more ARG1 expression than wild-

type cells when ARG1 transcription is induced with sulfometuron methyl (SM), which increases 

cellular levels of the ARG1 activator Gcn4 (SWANSON et al. 2003).  SM functions by inhibiting 

acetolactase synthase, an enzyme that catalyzes the first common step in leucine, isoleucine, and 

valine biosynthesis (LAROSSA and SCHLOSS 1984).  The resulting amino acid deficiencies 

derepress translation of GCN4 (HINNEBUSCH 2005).  These results suggest that the Paf1 complex 

acts as a transcriptional repressor of ARG1 in both repressing and inducing conditions.  
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Figure 5:  Members of the Paf1 complex are required for repression of ARG1 in both repressing and 

inducing conditions. 

Representative Northern analysis (A) and quantitation (B) of ARG1 transcript levels in wild-type (KY1699), paf1∆ 

(KY1700), ctr9∆ (KY1705), cdc73∆ (KY1706), rtf1∆ (KY1704), and leo1∆ (KY1805) strains.  SCR1 serves as a 

loading control.  Transcript levels were quantified and normalized to the levels detected in an arg80Δ (KY1709) 

control strain (not shown) as described in Materials and Methods.  Values shown are the means of three independent 
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experiments.  Error bars represent one standard deviation of the mean.  (C) Northern analysis of ARG1 transcript 

levels in cells shifted from YPD to minimal media for various times.  Wild-type (KY1699) cells were grown to log 

phase in YPD, washed in water, resuspended in minimal media, and harvested at various time points.  

Representative Northern analysis (D) and quantitation (E) of ARG1 transcript levels in wild-type (KY1699), paf1∆ 

(KY1700), ctr9∆ (KY1705), cdc73∆ (KY1706), rtf1∆ (KY1704), and leo1∆ (KY1805) strains that were grown to 

log phase in YPD then shifted to minimal media for 30 minutes prior to harvesting for RNA.  Relative signal in 

wild-type cells was set equal to one.  The means of three independent experiments are shown.  Error bars represent 

one standard deviation of the mean. 

 

 

 

2.3.2 Paf1 and Rtf1 are present at ARG1 in repressing conditions.   

While it is known that the Paf1 complex associates with RNA Pol II during transcription 

elongation (KROGAN et al. 2002b; POKHOLOK et al. 2002), it is unclear whether the Paf1 

complex localizes to repressed genes.  Therefore, I examined whether the Paf1 complex localizes 

to ARG1 in repressing conditions by performing chromatin immunoprecipitation (ChIP) analysis 

using PCR primers that amplify the promoter, 5’, middle, and 3’ coding region of ARG1 (Figure 

6A).  Relative to the untagged control strain, I reproducibly detected a low level of HA-Paf1 

occupancy at the ARG1 coding region in repressing conditions (Figure 6B).  Rtf1 occupancy, 

detected with polyclonal antisera against Rtf1, mirrored that of HA-Paf1 and was enriched over 

an rtf1∆ control strain (Figure 6C).  These results indicate that members of the Paf1 complex 

localize to the ARG1 coding region in repressing conditions.  When cells were shifted to minimal 

media, HA-Paf1 and Rtf1 occupancy increased across the ARG1 coding region indicating that, 
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similar to other active genes, Paf1 complex occupancy correlates with gene expression levels at 

ARG1 (Figure 6B and C) (MAYER et al. 2010). 

Since the Paf1 complex associates with RNA Pol II during transcription elongation 

(KROGAN et al. 2002b; POKHOLOK et al. 2002), Paf1 complex occupancy correlates with RNA 

Pol II levels on active genes (MAYER et al. 2010).  To determine whether Paf1 complex 

occupancy also correlates with RNA Pol II occupancy on a Paf1 complex-repressed gene, ChIP 

analysis was performed to examine Rpb1-Myc levels at ARG1 in strains grown in repressing or 

inducing conditions (Figure 6D).  In repressing conditions, Rpb1-Myc was enriched at the ARG1 

promoter and coding region compared to the untagged control strain, indicating that low levels of 

RNA Pol II are present at ARG1 in repressing conditions (Figure 6D).  This is consistent with my 

finding that long exposures of Northern blots revealed low levels of ARG1 transcription in wild-

type cells grown in rich media (data not shown).  As expected, Rpb1-Myc occupancy increased 

across the ARG1 coding region when cells were shifted to minimal media (Figure 6D).  

Therefore, similar to its association with activated genes, the Paf1 complex likely associates with 

ARG1 through its interaction with RNA Pol II even under repressing conditions.   
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Figure 6:  The Paf1 complex localizes to the ARG1 promoter and coding region in repressing 

conditions. 

(A)  Locations of PCR products used for ChIP analysis of the ARG1 locus.  (B) ChIP analysis of HA-Paf1 

occupancy at promoter (P), 5’, middle (M), and 3’ regions of ARG1 in cells expressing HA-tagged Paf1 (KY1721) 

or untagged Paf1 (KY1699) grown in rich media (YPD) or shifted to minimal media for 30 minutes (Minimal).  (C) 

ChIP analysis of Rtf1 association with ARG1 in wild-type (KY1699) and rtf1∆ (KY1704) strains grown in rich 

media (YPD) or shifted to minimal media for 30 minutes (Minimal).  (D) ChIP analysis of Rpb1-Myc occupancy at 

the ARG1 locus in an untagged control strain (KY1699) and cells expressing Myc-tagged Rpb1 (KY1302) grown in 



 60 

YPD or shifted to minimal media for 30 minutes.  ChIP data were quantified and normalized as described in 

Materials and Methods.  Shown are the means of three independent experiments.  Error bars represent standard error 

of the mean.   

 

 

2.3.3 Histone H3 methylation contributes to Paf1 complex-mediated ARG1 repression. 

The presence of the Paf1 complex at the ARG1 locus in repressing conditions suggests that the 

Paf1 complex may regulate the histone modification state at ARG1 under these conditions.  To 

determine if histone H3 methylation is present at the promoter, 5’, middle, or 3’ coding region of 

ARG1 in repressing conditions, I performed ChIP assays using antibodies that detect histone H3 

K4 trimethylation, H3 K4 dimethylation, and H3 K36 trimethylation.  While total histone H3 

levels were similar in all strains examined (Figure 7D), changes in the histone modification 

pattern at the ARG1 locus were detected in the absence of Paf1 complex members.  Specifically, 

both histone H3 K4 di- and trimethylation marks were detected in wild-type strains at all four 

regions examined but were lost in strains deleted for Paf1, Rtf1, or Set1 (Figure 7A and B).  

Similarly, whereas histone H3 K36 trimethylation was detected at all four locations in the wild-

type strain, H3 K36 trimethylation was undetectable in the paf1∆ and set2∆ strains (Figure 7C).  

Furthermore, histone H3 K36 trimethylation was specifically reduced at the promoter in the 

absence of Rtf1 (Figure 7C).  These results indicate that the histone H3 K4 and K36 methylation 

marks are present at the ARG1 locus in repressing conditions in a Paf1 complex-dependent 

manner. 
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To determine to what extent Paf1 complex-dependent histone H3 methylation is required 

for ARG1 repression, I performed Northern analysis of ARG1 transcript levels in strains lacking 

Set1, Set2, or Dot1.  While previous work showed that deletion of SET2 or DOT1 caused 

increased expression of an ARG1-lacZ reporter construct (MUTIU et al. 2007), these mutations 

did not lead to a change in repression of the native ARG1 gene that was statistically different 

from wild-type (Figure 7E and F).  The differing results may be due to increased sensitivity of 

the ARG1 expression reporter or the presence of auxotrophies in the previously analyzed strains.  

In contrast, set1∆ strains exhibited an increase in ARG1 expression (Figure 7E and F).  This 

result is consistent with the finding that loss of Bre2 or Swd3, components of the Set1-containing 

COMPASS complex, results in increased expression of an ARG1-lacZ reporter construct (MUTIU 

et al. 2007).  However the increase in endogenous ARG1 transcript levels in set1∆ cells was not 

as high as in paf1∆ cells (Figure 7E and F).  Together these results suggest that none of the 

methyltransferases examined individually are as important for ARG1 repression as Paf1.  Since 

the Paf1 complex is important for multiple methylation marks, I tested whether the combined 

loss of multiple methyltransferases might derepress ARG1 to the same degree as deleting PAF1.  

Surprisingly, no combination of double or triple mutations caused any more than a ~2.6-fold 

increase in ARG1 transcript levels, whereas deletion of PAF1 resulted in a ~12 fold increase in 

ARG1 transcript levels (Figure 7E and F).  Together, these results demonstrate that Paf1-

dependent histone H3 K4 and K36 methylation are present at ARG1 in repressing conditions and 

histone H3 K4 methylation contributes to ARG1 repression; however the Paf1 subunit has 

repressive functions in addition to facilitating histone H3 methylation.   
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Figure 7:  Paf1 complex-dependent histone modifications are present at ARG1 in repressing 

conditions and contribute to transcriptional repression. 

Paf1 complex-dependent histone modifications are present at ARG1 in repressing conditions and contribute to 

transcriptional repression.  ChIP analysis of relative H3 K4 trimethylation (me3) (A), H3 K4 dimethylation (me2) 

(B), H3 K36 me3 (C), and total H3 (D) levels in wild-type (KY1699), paf1∆ (KY1700), rtf1∆ (KY1704), set1∆ 

(KY1755), and set2∆ (KY1716) strains.  ChIP data were quantified and normalized as described in Materials and 

Methods.  Histone H3 K4 me3, K4 me2, and K36 me3 levels are presented relative to total H3 levels.  The means of 

three independent experiments are shown.  Error bars represent standard error of the mean.  Representative Northern 

analysis (E) and quantitation (F) of ARG1 mRNA levels in wild-type (KY1699), set1∆ (KY1715), set2∆ (KY1716), 

dot1∆ (KY1717), set1∆ set2∆ (KY1821), set1∆ dot1∆ (KY1826), set2∆ dot1∆ (KY1832), and set1∆ set2∆ dot1∆ 

(KY1847) strains.  Values shown are the means of three independent experiments, quantified and normalized to the 

levels detected in an arg80Δ (KY1709) control strain (not shown) as described in Materials and Methods.  Error bars 
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represent one standard deviation of the mean.  The y axis was cropped to allow for comparisons between lower 

values.  The value for paf1∆ is indicated above the appropriate bar.   

 

 

 

 

2.3.4 Rtf1 represses ARG1 by promoting histone modifications.   

My results demonstrate that histone H3 K4 methylation is present at ARG1 in cells grown in rich 

media and can contribute to ARG1 repression.  Because histone H3 K4 methylation is dependent 

on histone H2B ubiquitylation (SUN and ALLIS 2002; WOOD et al. 2003b), I tested whether the 

Paf1 complex mediates ARG1 repression by promoting histone H2B K123 ubiquitylation.  

Indeed, as previously reported, I found that rad6∆ and bre1∆ strains and strains in which the 

histone H2B ubiquitylation site is mutated (htb1-K123R) exhibited ARG1 derepression (Figure 

8A and B) (HOSSAIN et al. 2009; LEE et al. 2005; MUTIU et al. 2007; TURNER et al. 2002; ZHANG 

et al. 2005b).  Note that rad6∆ cells exhibited higher levels of ARG1 derepression than either 

bre1∆ or htb1-K123R strains.  These results are consistent with reports that Rad6 may function 

with another ubiquitin ligase that is required for ARG1 repression and further suggest that Rad6 

has additional targets important for ARG1 repression (TURNER et al. 2002).  Together, these 

results suggest that histone H2B ubiquitylation and downstream histone H3 K4 methylation are 

important for ARG1 repression.  The Arndt lab previously identified a region within Rtf1 that is 

essential for these histone modifications (WARNER et al. 2007); therefore, I decided to further 

examine the role of Rtf1 in ARG1 repression. 
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In addition to defining the region of Rtf1 required for histone modifications, the Arndt 

lab assigned other Rtf1 functions, including ORF association, Paf1 complex assembly, and 

interaction with the chromatin remodeling factor Chd1, to specific regions of the Rtf1 protein 

using deletion analysis (WARNER et al. 2007).  To determine which region and thus which 

function of Rtf1 is important for ARG1 repression, ARG1 transcript levels were examined in rtf1 

deletion strains that define different functional classes (Figure 9C-E).  Mutations were chosen 

because they delete a region of Rtf1 with a known function (rtf1 Δ1, Δ3, Δ5, Δ7, Δ12, and Δ13) 

or because they cause a phenotype that indicates a defect in transcription (rtf1 Δ5).  While 

Western analysis confirmed that the internal Rtf1 deletion mutant proteins were expressed to 

similar levels as full-length Rtf1 (Figure 8D), Northern analysis indicated that the internal rtf1 

deletions had differential effects on ARG1 transcript levels.  Deletion of Rtf1 region 1 (amino 

acids 3-30), which is required for an interaction between Rtf1 and Chd1 (WARNER et al. 2007), 

did not cause ARG1 derepression, suggesting that Rtf1-dependent recruitment of Chd1 is not 

required for ARG1 repression (Figure 8E and F).  Consistent with this result, a chd1∆ mutation 

did not alter ARG1 repression (data not shown).  Similarly, cells lacking Rtf1 region 7 (amino 

acids 251-300), which is required for the association of Rtf1 with ORFs (WARNER et al. 2007), 

showed only a slight increase in ARG1 transcription under repressing conditions (Figure 8E and 

F).  This result suggests that stable association with the ARG1 coding region may not be required 

for full repression of ARG1 by Rtf1.  Furthermore, deletion of Rtf1 regions 12 (amino acids 491-

535) or 13 (536-558), which are required for the interaction between Rtf1 and other Paf1 

complex members, Paf1 and Ctr9 (WARNER et al. 2007), did not result in ARG1 derepression, 

suggesting that a stable interaction between Rtf1 and other Paf1 complex members is not 

required for ARG1 repression (Figure 8E and F). 



 65 

 

Figure 8:  Rtf1 mediates ARG1 repression primarily through histone H2B ubiquitylation. 

Representative Northern analysis (A) and quantitation (B) measuring ARG1 transcript levels in wild-type (KY1698), 

htb-K123R (KY1732), rad6∆ (KY1711), and bre1∆ (KY1713) strains.  The y axis was shortened to facilitate 

comparison between lower values.  The value for rad6∆ is indicated above the bar.  (C) Schematic of the 13 regions 

of Rtf1 defined by internal deletion mutations and their associated function (62).  In grey are regions that were 

examined for effects on ARG1 repression.  (D) Western analysis of wild type and mutant Rtf1 protein levels using 

an anti-HA antibody in strains expressing untagged Rtf1 (KY1698), HA-Rtf1 (KY2082), HA-rtf1∆1 (KY1722), 

HA-rtf1∆3 (KY1723), HA-rtf1∆4 (KY1724), HA-rtf1∆5 (KY1980), HA-rtf1∆7 (KY1725), HA-rtf1∆12 (KY1726), 

or HA-rtf1∆13 (KY1727).  G6PDH serves as a loading control.  Note that a faster-migrating band observed for HA-

rtf1∆4 is likely a degradation product, which has been reproducibly observed with several forms of Rtf1 (TOMSON et 

al. 2011b; WARNER et al. 2007).  Representative Northern analysis (E) and quantitation (F) of relative ARG1 
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transcript levels in wild-type (KY1698), rtf1∆ (KY1703), HA-rtf1∆1 (KY1722), HA-rtf1∆3 (KY1723), HA-rtf1∆4 

(KY1724), HA-rtf1∆5 (KY1980), HA-rtf1∆7 (KY1725), HA-rtf1∆12 (KY1726), and HA-rtf1∆13 (KY1727) strains.  

The means of three independent experiments are shown, quantified and normalized to the levels detected in an 

arg80Δ (KY1709) control strain (not shown) as described in Materials and Methods.  Error bars represent one 

standard deviation of the mean.  (G) Western analysis of wild type and mutant Rtf1 protein levels using an anti-HA 

antibody in strains expressing untagged Rtf1 (KY1698), HA-Rtf1 (KY2082), HA-rtf1-102-104A (KY1981), HA-

rtf1-E104K (KY1982), HA-rtf1-108-110A (KY1983), and HA-rtf1-F80V, F123S (KY1984).  G6PDH serves as a 

loading control.  The faster-migrating band for HA-rtf1-102-104A and HA-rtf1-108-110A has been previously 

observed and is likely a product of proteolysis (TOMSON et al. 2011b; WARNER et al. 2007).  Representative 

Northern analysis (H) and quantitation (I) of relative ARG1 transcript levels in wild-type (KY1698), rtf1∆ 

(KY1703), HA-rtf1-102-104A (KY1981), HA-rtf1-E104K (KY1982), HA-rtf1-108-110A (KY1983), and HA-rtf1-

F80V, F123S (KY1984) strains.  Graphs depict the means of three independent experiments, quantified and 

normalized to the levels detected in an arg80Δ (KY1709) control strain (not shown) as described in Materials and 

Methods.  Error bars represent one standard deviation of the mean. 

 

 

 

Rtf1 regions 3 (amino acids 62-109) and 4 (amino acids 112-152) are required for Rtf1-

dependent histone modifications, leading us to define these regions collectively as the Rtf1 

histone modification domain (HMD) (TOMSON et al. 2011b; WARNER et al. 2007).  Interestingly, 

deletion of Rtf1 region 3 or 4 resulted in significant ARG1 derepression (Figure 8E and F).  

Furthermore, disruption of the Rtf1 HMD derepressed ARG1 to the same degree as completely 

deleting the RTF1 gene, suggesting that Rtf1 mediates ARG1 repression primarily through 

promoting histone modifications (Figure 8E and F).  The Arndt lab recently identified a set of 

specific amino acid substitutions within the Rtf1 HMD that impair its histone modification 

functions (TOMSON et al. 2011b).  Therefore, I examined whether these substitutions, which 
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greatly diminish histone H2B K123 ubiquitylation, also result in ARG1 derepression.  While 

Western analysis demonstrated that wild-type Rtf1 and Rtf1 point mutant proteins were 

expressed to similar levels (Figure 8G), cells expressing the Rtf1 point mutants, Rtf1-102-104A, 

Rtf1-E104K, Rtf1-108-110A, and Rtf1-F80V, F123S, exhibited ARG1 derepression similar to 

strains lacking Rtf1 entirely (Figure 8H and I).  My results strongly suggest that Rtf1 mediates 

ARG1 repression by promoting histone H2B ubiquitylation and subsequent H3 K4 methylation. 

Complete deletion of RTF1 causes a suppressor-of-Ty (Spt-) phenotype, indicating that 

deletion of RTF1 suppresses defects in transcription caused by the insertion of Ty transposons or 

their long terminal repeats within the promoters or 5’ ends of genes (STOLINSKI et al. 1997).  

Strains lacking any of Rtf1 regions 3-9 (spanning amino acids 62-395) individually have an Spt- 

phenotype suggesting that regions 3-9 are each important for transcriptional regulation (WARNER 

et al. 2007).  Of these regions, only region 5 has yet to be assigned a specific function.  I found 

that rtf1Δ5 strains exhibited levels of ARG1 derepression that were higher than an rtf1Δ strain 

(Figure 8E and F), indicating that region 5 may have a negative effect on the function of the rest 

of the protein.  Interestingly, although region 5 is not required for histone modifications, 

secondary structure predictions performed by the VanDemark lab suggest that a portion of Rtf1 

region 5 may fold as a domain proximal to the HMD.  Furthermore, a portion of region 5 confers 

RNA binding activity to HMD-containing fragments of Rtf1 (Anthony Piro, unpublished data).  

Therefore, RNA binding by Rtf1 may play a role in ARG1 repression.  Future analysis of this 

region may reveal new insights on the regulation or functions of the Paf1 complex. 
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2.3.5 Histone H2B K123 is required for full derepression in paf1∆ cells.   

My results suggest that Rtf1 mediates ARG1 repression primarily through histone H2B 

ubiquitylation and H3 K4 methylation.  To test this hypothesis, I examined the effect of mutating 

the histone H2B ubiquitylation site, alone or in combination with deletion of RTF1.  I found that 

rtf1Δ and rtf1Δ htb1-K123R cells had similar levels of ARG1 derepression (Fig. 5A and B), 

consistent with Rtf1 and histone H2B ubiquitylation functioning in the same pathway for ARG1 

repression.  However, rtf1∆ cells reproducibly showed significantly lower levels of ARG1 

derepression than paf1∆ cells, suggesting that Paf1 has repressive functions aside from its role in 

promoting histone H2B ubiquitylation (Figure 5A and B).  To test whether Paf1 and H2B 

ubiquitylation have independent roles in ARG1 repression, I performed Northern analysis on 

paf1∆ htb1-K123R double mutant cells.  If Paf1 and H2B ubiquitylation have completely 

independent effects on ARG1 repression, paf1Δ htb1-K123R double mutant strains should exhibit 

an elevated level of ARG1 derepression compared to paf1∆ and htb1-K123R single mutant 

strains.  In contrast to this prediction, htb1-K123R significantly reduced the level of ARG1 

derepression in paf1∆ cells (Figure 9C and D).  This result suggests that histone H2B 

ubiquitylation is required for full ARG1 derepression in paf1∆ cells and argues that this 

modification can have both positive and negative effects on the same gene.  
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Figure 9:  ARG1 derepression in paf1∆ cells partially requires histone H2B ubiquitylation. 

Representative Northern analysis (A) and quantitation (B) examining ARG1 transcript levels in wild-type (KY1699), 

rtf1∆ (KY1703), rtf1∆ htb1-K123R (KY2074), and htb1-K123R (KY1732) strains.  Representative Northern analysis 

(C) and quantitation (D) examining ARG1 transcript levels in wild-type (KY1699), paf1∆ (KY1700), paf1∆ htb1-

K123R (KY1731), and htb1-K123R (KY1732) strains.  The means of three independent experiments are shown, 

quantified and normalized to the levels detected in an arg80Δ (KY1709) control strain (not shown) as described in 

Materials and Methods.  Error bars represent one standard deviation of the mean.   
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2.3.6 The Paf1 complex uses similar mechanisms to repress other genes.   

To determine if the manner in which the Paf1 complex mediates repression of ARG1 extends to 

other genes, I examined the effects of deleting PAF1 and RTF1 on the expression of SNZ1 and 

GAP1, which encode a protein involved in vitamin B biosynthesis and a general amino acid 

permease, respectively.  I chose to examine these genes because, like ARG1, GAP1 and SNZ1 

have been shown by genome-wide expression studies to be derepressed in paf1∆ and htb1-

K123R strains (MUTIU et al. 2007; PENHEITER et al. 2005; ZHANG et al. 2005b).  Using Northern 

analysis, I found that SNZ1 and GAP1 were repressed in wild-type cells and derepressed in the 

absence of Paf1 or Rtf1 (Figure 10A).  Similar to ARG1, paf1∆ cells exhibited higher 

derepression of these genes than rtf1∆ cells, suggesting that Paf1 and Rtf1 may function in a 

similar manner at all three genes.  

To further test the requirements for SNZ1 and GAP1 repression, I performed Northern 

analyses of these genes in strains expressing the rtf1 internal deletion mutations.  I found that the 

expression profile of SNZ1 mirrored that of ARG1 with rtf1∆3, rtf1∆4 and rtf1∆5 cells exhibiting 

high levels of SNZ1 derepression (Figure 10B).  Consistent with a requirement for the Rtf1 HMD 

in repressing SNZ1 transcription, rtf1 point mutations within the HMD-coding region also caused 

SNZ1 derepression (Figure 10C).  Furthermore, the levels of SNZ1 derepression that occurred in 

these mutants closely mimicked the effects I observed at ARG1 (Figure 8H and I), with rtf1-102-

104A cells exhibiting the least dramatic derepression and rtf1-F80V, F123S cells exhibiting the 

most dramatic derepression (Figure 10C).  

Similar to both ARG1 and SNZ1, repression of GAP1 requires a functional Rtf1 HMD, as 

rtf1∆4 cells or strains expressing the rtf1 HMD point mutations showed significant derepression 

of GAP1 (Figure 10D and E).  However, unlike ARG1 and SNZ1, high levels of GAP1 
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derepression did not occur in rtf1∆3 or rtf1∆5, suggesting that Rtf1 regions 3 and 4 are not 

equivalent in all cases (Figure 10D and E).  Furthermore, while amino acid substitutions within 

the HMD resulted in GAP1 derepression, the relative levels of derepression caused by these 

substitutions differed from those observed at ARG1 and SNZ1.  Specifically, rtf1-102-104A cells 

exhibited a high level of GAP1 derepression and rtf1-F80V, F123S cells exhibited a low level of 

GAP1 derepression (Figure 10E).  While the differences between GAP1 and the other genes 

examined will likely enrich further studies of the functions of the Paf1 complex, the overall 

similarities point toward a common mechanism of gene repression by the Paf1 complex in which 

Rtf1-dependent histone modifications play a prominent role. 
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Figure 10:  The Paf1 complex has similar repression mechanisms at other genes. 

Northern analysis of SNZ1 and GAP1 transcript levels in wild-type (KY1699), paf1∆ (KY1700), and rtf1∆ 

(KY1704) strains.  Northern analysis of SNZ1 (B and C) or GAP1 (D and E) in wild-type (KY1698), rtf1∆ 

(KY1703), HA-rtf1∆1 (KY1722), HA-rtf1∆3 (KY1723), HA-rtf1∆4 (KY1724), HA-rtf1∆5 (KY1980), HA-rtf1∆7 

(KY1725), HA-rtf1∆12 (KY1726), HA-rtf1-102-104A (KY1981), HA-rtf1-E104K (KY1982), HA-rtf1-108-110A 

(KY1983), and HA-rtf1-F80V, F123S (KY1984) strains.  Northern blots are representative of at least two 

independent experiments. 
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2.4 DISCUSSION 

In this study, I investigate the mechanisms by which the yeast Paf1 complex negatively regulates 

transcription, using the well-characterized ARG1 gene as a framework for my studies.  While 

genome-wide expression patterns indicate that the repressive effects of the Paf1 complex are 

widespread (PENHEITER et al. 2005), an analysis of how the Paf1 complex mediates gene 

repression has not been previously described.  Here, I report that the Paf1, Rtf1, Ctr9, and Cdc73 

subunits of the Paf1 complex contribute to ARG1 repression.  Consistent with a direct repressive 

role, the Paf1 complex is present at the ARG1 coding region when cells are grown in conditions 

that strongly repress ARG1 transcription.  Under these conditions, histone modifications 

primarily controlled by Rtf1 are present at ARG1 and contribute to repression.  Interestingly, 

Paf1 appears to have repressive functions beyond its role in mediating known Paf1 complex-

dependent histone modifications.  Finally, an analysis of two additional genes, SNZ1 and GAP1, 

indicates that the characteristics of Paf1 complex-mediated transcriptional repression observed at 

ARG1 extend to other genes. 

The correlation between Paf1 complex occupancy and gene activity (MAYER et al. 2010) 

raises the question of how the Paf1 complex is recruited to a gene in repressing conditions.  My 

data indicate a modest but significant occupancy of both the Paf1 complex and RNA Pol II at the 

ARG1 coding region in nutrient-rich media.  In these conditions, a very low level of 

transcriptional activity can be detected by my Northern blot assays.  Therefore, consistent with 

its known association with RNA Pol II during transcription elongation (KROGAN et al. 2002b; 

POKHOLOK et al. 2002), I hypothesize that the low levels of transcription occurring in repressing 

conditions are sufficient to result in enrichment of the Paf1 complex across the ARG1 locus.  

Interestingly, an antisense transcript traversing the ARG1 coding region was detected by 
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Steinmetz and coworkers (DAVID et al. 2006; XU et al. 2009), raising the possibility that 

antisense transcription could contribute to RNA Pol II occupancy at ARG1.  Consistent with 

transcriptional activity in the antisense direction, histone H3 K4 methylation and K36 

methylation at ARG1 were highest at 3’ and 5’ locations, respectively, a histone methylation 

pattern that is opposite of the typical distribution (KIZER et al. 2005; KROGAN et al. 2003a; 

KROGAN et al. 2003b; LI et al. 2003; NG et al. 2003b; SCHAFT et al. 2003; XIAO et al. 2003).  A 

reversed histone modification pattern has been observed at GAL10 (HOUSELEY et al. 2008), one 

of several genes recently shown to be regulated by antisense transcription (HONGAY et al. 2006; 

HOUSELEY et al. 2008; UHLER et al. 2007; XU et al. 2011).  Whether the Paf1 complex and its 

associated histone modifications repress ARG1 expression by impacting antisense transcription at 

the ARG1 locus remains to be determined. 

In accordance with the localization of the Paf1 complex to ARG1 in repressing 

conditions, ChIP analysis demonstrated that histone H3 K4 and K36 methylation are 

significantly enriched at ARG1 in a Paf1 complex-dependent manner.  Both histone H3 K4 and 

K36 methylation have been shown to impact the levels of histone acetylation on genes through 

several established pathways of histone crosstalk.  In one well-studied pathway, histone H3 K36 

dimethylation is required for the activity of the Rpd3S histone deacetylase complex (HDAC), 

which reduces histone acetylation on transcribed genes and inhibits transcription from cryptic 

promoters within coding regions (CARROZZA et al. 2005; KEOGH et al. 2005; LI et al. 2007; LI et 

al. 2009).  I found that eliminating histone H3 K36 methylation by deleting SET2 had little 

impact on ARG1 expression in repressing conditions, suggesting that Set2-dependent histone 

deacetylation is unlikely to be involved in maintaining ARG1 repression.  I also found no 



 75 

indications that the histone H3 K79 methyltransferase, Dot1, plays an important role in ARG1 

repression. 

In contrast to the effects of deleting SET2 and DOT1, deletion of SET1, the gene 

encoding the histone H3 K4 methyltransferase, caused a significant reduction in ARG1 

repression.  Interestingly, histone H3 K4 methylation has been implicated in pathways that direct 

either the acetylation or deacetylation of histones.  By recruiting the NuA3 histone 

acetyltransferase (HAT) complex, histone H3 K4 methylation increases histone H3 K14 

acetylation levels and gene activation (MARTIN et al. 2006; TAVERNA et al. 2006).  By activating 

the Set3 HDAC, histone H3 K4 dimethylation lowers histone acetylation levels at the 5’ ends of 

genes (GOVIND et al. 2010; KIM and BURATOWSKI 2009).  Because histone deacetylation has 

well-established links to gene repression, including the silencing of genes near telomeres 

(reviewed in reference SHAHBAZIAN and GRUNSTEIN 2007), it is possible that histone 

deacetylation driven by histone H3 K4 methylation and the Set3 HDAC could be involved in 

repressing ARG1 and other loci.  However, I did not observe a loss of ARG1 repression in set3Δ 

cells (data not shown).  Therefore, although I cannot rule out the possibility that histone H3 K4 

methylation leads to the recruitment of other HDACs, I currently have no experimental support 

for a model in which this modification represses ARG1 through activation of the Set3 complex. 

Because Rtf1 is essential for histone H3 K4 di- and trimethylation, I chose to investigate 

further the role of this Paf1 complex subunit in gene repression.  The Arndt lab previously 

showed that disruption of the Rtf1 HMD, either through deletion or substitution of conserved 

residues, dramatically reduces global levels of histone H2B K123 ubiquitylation and histone H3 

K4 tri- and dimethylation (TOMSON et al. 2011b; WARNER et al. 2007).  Because these same rtf1 

mutations alleviate ARG1 repression to approximately the same degree as an rtf1 null allele, I 
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conclude that Rtf1 mediates ARG1 repression primarily through its histone modification 

functions.  In support of this idea, a comparison of rtf1∆ cells and rtf1∆ htb1-K123R cells 

revealed approximately the same levels of ARG1 depression, strongly suggesting that Rtf1 and 

histone H2B ubiquitylation function in the same pathway for ARG1 repression.  Therefore, I 

conclude that Rtf1 mediates repression by promoting histone H2B ubiquitylation and 

downstream H3 K4 methylation.  Similar effects of the rtf1 mutations were obtained for two 

other genes, SNZ1 and GAP1, suggesting that Rtf1 can repress a subset of genes through similar 

mechanisms.    

Microarray analysis of transcript levels in htb1-K123R cells revealed that the majority of 

affected genes exhibited increased expression, indicating that the repressive functions of histone 

H2B ubiquitylation are required at many genes (MUTIU et al. 2007).  Providing a possible 

mechanism for gene repression by H2B K123 ubiquitylation, a study revealed that this 

modification enhances nucleosome stability at the promoters of repressed genes 

(CHANDRASEKHARAN et al. 2009).  Although I did not detect a reduction in histone H3 

occupancy at the ARG1 promoter or coding region in rtf1∆ cells, it remains possible that my 

ChIP assays lacked the sensitivity to detect subtle changes in nucleosome stability.  In addition to 

its role in nucleosome stability, histone H2B ubiquitylation is required for proper telomeric 

silencing (HUANG et al. 1997; SUN and ALLIS 2002).  Consequently, complete deletion of RTF1 

(KROGAN et al. 2003a; NG et al. 2003a) or disruption of the Rtf1 HMD results in telomeric 

silencing defects (TOMSON et al. 2011b; WARNER et al. 2007).  The genome-wide loss of histone 

H3 K4 and K79 methylation in these cells has been proposed to cause a redistribution of 

telomeric silencing factors from their normal sites of action (reviewed in reference RUSCHE et al. 
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2003).  Whether similar mechanisms can influence the occupancy of regulatory factors at genes 

such as ARG1 remains to be determined.   

In addition to its repressive role, histone H2B K123 also positively regulates ARG1 

expression under certain circumstances.  For example, derepression of ARG1 in a paf1∆ strain is 

partially suppressed by the htb1-K123R substitution (Figure 9).  The histone H2B K123 residue 

itself may be important for full ARG1 derepression in paf1Δ cells through effects on nucleosome 

structure.  Alternatively, the finding of an effect of htb1-K123R in a paf1Δ cells suggests that in 

paf1Δ cells, a low level of histone H2B ubiquitylation occurs that is required for full levels of 

ARG1 derepression.  In support of this idea, a bre1Δ mutation also partially suppresses ARG1 

transcription in paf1Δ strains (data not shown).  Another possibility is that histone H2B 

ubiquitylation and subsequent deubiquitylation, which is important for full expression of 

inducible genes, such as GAL1 and SUC2 (DANIEL et al. 2004; HENRY et al. 2003; KAO et al. 

2004), may be required for full ARG1 expression in the absence of Paf1.  Consistent with this 

possibility, the loss of Ubp8, which deubiquitylates histone H2B, somewhat reduces ARG1 

expression in inducing conditions (LEE et al. 2005).  Histone H2B ubiquitylation in humans has 

also been shown to have both positive and negative influences on transcription.  For example, 

histone H2B ubiquitylation facilitates transcription elongation in vitro (PAVRI et al. 2006) and 

preferentially associates with sites of active transcription in vivo (MINSKY et al. 2008).  

However, removal of histone H2B ubiquitylation by Usp22, the human homolog of Ubp8, 

inhibits heterochromatic silencing and facilitates gene activation (ZHANG et al. 2008; ZHAO et al. 

2008b).  Importantly, histone H2B ubiquitylation in human cells promotes transcription of tumor 

suppressor genes and represses several proto-oncogenes, indicating that both the negative and 
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positive transcriptional effects of histone H2B ubiquitylation are critical for cancer prevention 

(SHEMA et al. 2008). 

In contrast to my observations on histone modifications, my data do not indicate strong 

repressive roles for other Rtf1 functions, including Chd1 interaction, ORF association, and Paf1 

complex association.  In agreement with previous studies (MUELLER et al. 2004; WARNER et al. 

2007), these observations suggest that members of the Paf1 complex retain some functionality 

when their stable interactions with each other or elongating RNA Pol II are disrupted.  Differing 

reports on whether human Rtf1 is absent from (ROZENBLATT-ROSEN et al. 2005; YART et al. 

2005; ZHU et al. 2005b) or present in (KIM et al. 2010) the human Paf1 complex has lead to the 

conclusion that, like Drosophila Rtf1 (ADELMAN et al. 2006), human Rtf1 is a less stably 

associated member of the complex.  However, despite its less stable association with the Paf1 

complex, human Rtf1 retains its effects on gene expression (DING et al. 2009; MUNTEAN et al. 

2010).  Therefore, it may not be surprising that, in yeast, repression of a subset of genes by Rtf1 

does not require stable association with other Paf1 complex members.   

While Rtf1 mediates repression primarily through histone H2B ubiquitylation and its 

downstream modifications, my results suggest that Paf1 has repressive functions aside from 

histone H2B ubiquitylation and other known Paf1-dependent histone modifications.  As most 

known roles for the Paf1 complex are intimately connected to histone modifications (reviewed in 

JAEHNING 2010), it will be important to explore histone modification-independent functions of 

the complex.  Interestingly, in a recent study, the human Paf1 complex was shown to stimulate in 

vitro transcription of a chromatin template independently of histone modifications (KIM et al. 

2010).  The extensive functional conservation between the yeast and human Paf1 complexes 

(reviewed in JAEHNING 2010) strongly suggests that mechanistic studies of Paf1 complex-
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mediated gene repression in yeast will yield insights on the human complex, defects in which are 

associated with cancers (reviewed in CHAUDHARY et al. 2007) and the loss of stem cell identity 

(DING et al. 2009). 
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Table 1:  S. cerevisiae strains used in Chapter 2 

 

Strain Genotype 
KY1302  MATα RPB1-13xMYC::KanMX 
KY1698  MATa 
KY1699  MATα 
KY1700  MATα paf1∆::KanMX  
KY1703  MATa rtf1∆::KanMX 
KY1704  MATα rtf1∆::KanMX 
KY1705  MATa ctr9∆::KanMX 
KY1706  MATα cdc73∆::KanMX 
KY1709  MATα arg80∆::KanMX 
KY1711  MATa rad6∆::KanMX 
KY1713  MATa bre1∆::KanMX 
KY1714  MATa bre1∆::KanMX ura3∆0 
KY1715  MATa set1∆::KanMX 
KY1716  MATa set2∆::KanMX 
KY1717  MATa dot1∆::KanMX 
KY1721  MATα 3xHA-PAF1 
KY1722  MATa 3xHA-rtf1∆1 
KY1723  MATa 3xHA-rtf1∆3                                            
KY1724  MATa 3xHA-rtf1∆4                                            
KY1725  MATα 3xHA-rtf1∆7                                            
KY1726  MATa 3xHA-rtf1∆12                                            
KY1727  MATa 3xHA-rtf1∆13                                            
KY1731  MATα HTA1-htb1-K123R (hta2-htb2)∆::KanMX paf1∆::KanMX   
KY1732  MATα HTA1-htb1-K123R (hta2-htb2)∆::KanMX ura3∆0  
KY1755  MATα set1∆::KanMX 
KY1805  MATα leo1∆::KanMX 
KY1821  MATa set1∆::KanMX  set2∆::KanMX 
KY1826  MATα set1∆::KanMX  dot1∆::KanMX 
KY1832  MATα set2∆::KanMX  dot1∆::KanMX 
KY1847  MATa set1∆::KanMX  set2∆::KanMX dot1∆::KanMX 
KY1980  MATa 3xHA-rtf1∆5                                            
KY1981  MATa 3xHA-rtf1-102-104A                                            
KY1982  MATα 3xHA-rtf1-E104K 
KY1983  MATa 3xHA-rtf1-108-110A                                            
KY1984  MATa 3xHA-rtf1-F80V, F123S 
KY2074  MATa HTA1-htb1-K123R (hta2-htb2)∆::KanMX rtf1∆::KanMX 
KY2082  MATα 3xHA-RTF1 leu2∆1 trp1∆63 lys2-128δ ura3-52   
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3.0  PAF1 INHIBITS GCN4 RECRUITMENT AND ANTISENSE TRANSCRIPTION 

AT THE PROMOTERS OF REPRESSED GENES. 

3.1 INTRODUCTION 

Eukaryotic organisms employ several mechanisms to repress gene expression.  In one 

mechanism, DNA binding transcriptional repressors recruit co-repressors that inhibit the basal 

transcriptional machinery, interfere with activator binding, or recruit histone modifying proteins, 

such as histone deacetylase complexes (HDACs) (reviewed in PAYANKAULAM et al. 2010).  The 

removal of histone acetylation by HDACs is associated with transcriptional repression.  For 

example, in Saccharomyces cerevisiae, histone deacetylation by Sir2 mediates the silencing of 

telomere-adjacent genes (reviewed in  SHAHBAZIAN and GRUNSTEIN 2007).  Additionally, 

histone deacetylation by the Rpd3S complex prevents aberrant transcription initiation from 

cryptic sites within coding regions (CARROZZA et al. 2005; KEOGH et al. 2005; LI et al. 2007; LI 

et al. 2009).  Furthermore, the recruitment and/or activity of HDAC complexes has been shown 

to be regulated by histone methylation in various histone crosstalk pathways.  Specifically, 

histone H3 lysine (K) 36 dimethylation is required for the activity of the Rpd3S complex 

(CARROZZA et al. 2005; KEOGH et al. 2005; LI et al. 2007; LI et al. 2009).  Additionally, histone 

H3 K4 dimethylation activates the Set3 HDAC, which reduces acetylation levels at the 5’ ends of 

genes (GOVIND et al. 2010; KIM and BURATOWSKI 2009).  
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More recently, antisense transcription has been shown to repress transcription.  For 

example, antisense transcription across the IME4 promoter inhibits IME4 expression through a 

transcription-interference mechanism (HONGAY et al. 2006).  Additionally, antisense 

transcription can mediate repression by recruiting histone modifying enzymes that create a 

repressive chromatin structure.  For example, antisense transcription at the GAL10 locus 

promotes repression by recruiting Set2, the histone H3 K36 methyltransferase, and subsequent 

histone deacetylase (HDAC) activity (HOUSELEY et al. 2008).  Interestingly, antisense 

transcription has also been shown to positively regulate gene expression.  For example, antisense 

transcription at PHO5 stimulates transcriptional activation by promoting chromatin remodeling 

and RNA Pol II recruitment at the promoter (UHLER et al. 2007). 

Through microarray studies, the Paf1 complex, which consists of Paf1, Ctr9, Cdc73, 

Rtf1, and Leo1 in yeast (KROGAN et al. 2002b; MUELLER and JAEHNING 2002; SHI et al. 1997; 

SQUAZZO et al. 2002), was also found to play a role in transcriptional repression.  How the Paf1 

complex functions in gene repression is of great interest because of the many connections 

between this complex and human disease (reviewed in CHAUDHARY et al. 2007; MONIAUX et al. 

2006; NEWEY et al. 2009).  The Paf1 complex associates with RNA polymerase II (Pol II) on 

open reading frames (ORFs) during transcription elongation (KROGAN et al. 2002b; MAYER et al. 

2010; POKHOLOK et al. 2002; WADE et al. 1996) and regulates the phosphorylation state of the 

RNA Pol II carboxy-terminal domain (CTD) (MUELLER et al. 2004; NORDICK et al. 2008).  In 

addition to its functions during transcription elongation, the Paf1 complex is important for proper 

transcription termination and RNA 3’ end formation (MUELLER et al. 2004; PENHEITER et al. 

2005; SHELDON et al. 2005).  Importantly, like the yeast Paf1 complex, the human Paf1 complex 

associates with RNA Pol II on actively transcribed genes (ROZENBLATT-ROSEN et al. 2005), 
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promotes proper RNA 3’ end formation (NAGAIKE et al. 2011; ROZENBLATT-ROSEN et al. 2009), 

and facilitates transcription elongation of a chromatin template (CHEN et al. 2009; KIM et al. 

2010), indicating that the functions of the Paf1 complex are conserved throughout eukaryotes. 

The Paf1 complex is also required for several histone modifications (CHU et al. 2007; 

KROGAN et al. 2003a; NG et al. 2003a; NG et al. 2003b; WOOD et al. 2003b).  The Arndt has 

previously shown that Paf1 inhibits histone acetylation on the coding region of active genes 

(CHU et al. 2007).  Additionally, Paf1 and Rtf1 are required for ubiquitylation of histone H2B 

(LARIBEE et al. 2005; WOOD et al. 2003b; XIAO et al. 2005) and the subsequent methylation of 

histone H3 K4 and K79 (BRIGGS et al. 2002; KROGAN et al. 2003a; NG et al. 2003a; NG et al. 

2003b; SUN and ALLIS 2002).  Furthermore, Paf1 and Ctr9 are required for histone H3 K36 

trimethylation (CHU et al. 2007).  As in yeast, the human Paf1 complex is required for these 

same histone modifications (DING et al. 2009; KIM et al. 2009a; ROZENBLATT-ROSEN et al. 

2009; ZHU et al. 2005b), which control the expression of many genes, including HOX genes 

(ZHU et al. 2005b) and genes that maintain embryonic stem cell identity (DING et al. 2009).  

Therefore, the important roles of the Paf1 complex in transcription may explain its connections 

to human diseases, such as pancreatic, breast, and renal cancer, among others (reviewed in  

CHAUDHARY et al. 2007; MONIAUX et al. 2006; NEWEY et al. 2009).   

My thesis work aims to understand the role of the Paf1 complex in transcriptional 

repression in yeast.  To this end, ARG1, which encodes arginosuccinate synthetase, an enzyme 

required for arginine biosynthesis, serves as a model locus of Paf1 complex-dependent 

transcriptional repression.  ARG1 is a valuable model gene because its transcription is modulated 

by well-characterized pathways, including arginine repression and general amino acid control 

pathways, mediated by the ArgR/Mcm1 complex and Gcn4, respectively.  The ArgR/Mcm1 
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complex, consisting of Arg80, Arg81, Arg82, and Mcm1, binds to arginine control elements in 

the ARG1 promoter and represses ARG1 transcription in the presence of arginine (AMAR et al. 

2000; BECHET et al. 1970; CRABEEL et al. 1995; CRABEEL et al. 1990; DELFORGE et al. 1975; 

DUBOIS et al. 1987; EL BAKKOURY et al. 2000; QIU et al. 1990).  In conditions of nutrient 

starvation, Gcn4 activates ARG1 transcription by binding to sites within the ARG1 promoter 

(DELFORGE et al. 1975; HINNEBUSCH 1986).   

ARG1 was identified by microarray analysis to be a gene negatively regulated by Paf1 in 

rich media (PENHEITER et al. 2005).  I have since found that, in addition to Paf1, other members 

of the Paf1 complex, including Ctr9, and to a lesser extent, Rtf1 and Cdc73, contribute to ARG1 

repression (CRISUCCI and ARNDT 2011).  Furthermore, I have demonstrated that, while Rtf1 

mediates ARG1 repression by promoting histone H2B ubiquitylation and subsequent H3 K4 

methylation, Paf1 appears to have repressive functions apart from these histone modifications 

(CRISUCCI and ARNDT 2011).  Therefore, in this chapter, I focus my investigation on the Paf1 

subunit of the complex.  I found that ARG1 derepression in paf1Δ cells partially requires the 

ARG1 coding region.  Paf1 mediates ARG1 repression independently of the ArgR/Mcm1 

complex.  In contrast, the ARG1 derepression that occurs in paf1Δ strains is associated with 

increased promoter occupancy of the activator Gcn4, resulting in ARG1 derepression in a manner 

that is partially dependent on Gcn4, the histone acetyltransferase Gcn5, and histone H3 

acetylation sites.  Interestingly, I detect antisense transcription at the ARG1 locus that traverses 

the ARG1 promoter in paf1Δ cells.  Since this antisense transcription positively correlates with 

ARG1 sense transcription, it may regulate ARG1 sense transcription by increasing promoter 

accessibility for ARG1 activators. 
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3.2 MATERIALS AND METHODS 

3.2.1 Yeast Strains and Media  

Rich (YPD) and synthetic complete (SC) media were prepared as described (ROSE 1990).  Where 

indicated, sulfometuron methyl (SM) was added to SC media lacking isoleucine and valine (SC-

ILV) at a final concentration of 0.6 μg/ml.  Yeast strains used in these studies are isogenic with 

FY2, a GAL2+ derivative of S288C, and listed in Table 1 (WINSTON et al. 1995).  Strains 

containing ARG80-13xMYC::HIS3, ARG81-13xMYC::HIS3, and ARG82-13xMYC::HIS3 were 

derived from matings between paf1Δ::KanMX cells and strains previously described and 

generously provided by Alan Hinnebusch (YOON et al. 2004).  Histone H3 and H4 mutant strains 

were derived from matings between paf1Δ::KanMX cells and strains constructed and generously 

provided by Jef Boeke (DAI et al. 2008).  Gene deletions and insertions were created by 

transforming diploid yeast strains with the appropriate PCR fragment (AUSUBEL 1988; ROSE 

1990).  Following sporulation and tetrad dissection, genotypes were confirmed by PCR analysis 

(AUSUBEL 1988; ROSE 1990).  The NatMX cassette on pAG25 was amplified by PCR for gene 

replacement with NatMX (GOLDSTEIN and MCCUSKER 1999).  To generate gcn4Δ::KanMX 

strains, the gcn4Δ::KanMX locus in the yeast deletion collection was amplified by PCR as 

described (SHIRRA et al. 2008; WINZELER et al. 1999).  All other PCR fragments for gene 

replacement with KanMX were generated by PCR amplification of the KanMX cassette on 

pRS400 (BRACHMANN et al. 1998).   

To generate strains in which a complete ARG1 gene, with its 5’ and 3’ regulatory 

sequences, was inserted at the LYP1 locus in the opposite orientation of LYP1, genomic DNA 

was used as a template in PCR reactions to amplify ARG1 (-497 to +1553 relative to the 
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translation start site), using primers that permitted replacement of the LYP1 locus (-44 to +2035) 

(Figure 11).  To generate strains in which the ARG1 promoter and coding region were integrated 

at the LYP1 locus in the same orientation as LYP1, ARG1 (-497 to +1263) was amplified by PCR 

with primers that permitted replacement of LYP1 (-290 to +1836), such that the ARG1 promoter 

and coding region were adjacent to the LYP1 3’ UTR (Figure 21).  For strains in which the LYP1 

promoter, coding region, and 3’ UTR were replaced with those of ARG1 in the same orientation, 

ARG1 (-497 to +1553) was amplified by PCR to allow replacement of LYP1 (-290 to +2059) 

(Figure 21).  PCR products were transformed into arg1Δ::NatMX haploid strains.  Transformants 

were selected on SC medium lacking arginine (SC-R) and proper integration was confirmed 

using PCR analysis and resistance to thialysine.  The resulting strains were mated to 

paf1Δ::KanMX strains to obtain lyp1Δ::ARG 1 arg1Δ::NatMX paf1Δ::KanMX.   

To create strains containing the HIS3 coding region under the control of the ARG1 

promoter and 3’ UTR, the HIS3 coding region (+1 to +663) was amplified from wild-type 

genomic DNA with primers that permitted replacement of the ARG1 coding region with that of 

HIS3.   The purified PCR product was transformed into a his3Δ::NatMX haploid strain.  

Transformants were selected on SC medium lacking histidine (SC-H).  The resulting strain was 

mated to paf1Δ::KanMX strains to obtain ARG1p-HIS31-663  his3Δ::NatMX paf1Δ::KanMX 

strains. 

To generate strains containing HIS3 and its 3’ UTR under the control of the ARG1 

promoter, HIS3 (+1 to +822) was amplified by PCR with primers that permitted replacement of 

the ARG1 coding region and 3’ UTR (+1 to +1449) with that of HIS3.  The PCR product was 

transformed into a his3Δ200 haploid strain in which PET56 was integrated at the LEU2 locus, to 

prevent petite formation.  Transformants were selected on SC-H medium.  Integration was 
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confirmed by PCR analysis.  The resulting strains were mated with his3Δ::NatMX strains to 

obtain ARG1p-HIS31-822 his3Δ::NatMX strains.   

Strains containing a terminator element integrated in the antisense direction in the ARG1 

coding region were generated using pDW1, a plasmid generously provided by Joe Martens.  

Plasmid pDW1 served as a template in PCR reactions to amplify a DNA fragment containing 

URA3 flanked by HIS3 terminator elements.  The primers used in the PCR reactions introduced 

sequences that permitted integration of the HIS3 terminator at ARG1 position +420 relative to the 

translation start site.  The resulting PCR fragment was transformed into ura3Δ0 haploid strains.  

Transformants were selected on SC medium lacking uracil (SC-U).  Transformants were spread 

on medium containing 5-floroorotic acid to counter-select against URA3.  Strains that lost URA3 

but retained one integrated terminator element were identified and confirmed by PCR analysis.      

A strain containing a temperature sensitive mutation in the gene encoding the largest 

subunit of RNA polymerase II, rpb1-1, was generously provided by Fred Winston and was 

crossed by a paf1Δ::KanMX strain to generate an rpb1-1 paf1Δ::KanMX strain (NONET et al. 

1987).  Strains were transformed with a URA3-marked vector that expressed a triple HA-tagged 

form of Paf1 or an empty vector, pRS316.  To analyze mRNA stability, strains were grown at 

25°C in SC-U media to a cell density of 1-2x107 cells/ml.  Each culture was diluted with an 

equal volume of SC-U media that was pre-warmed to 49°C and immediately shifted to 37°C.  

Cells were harvested for RNA isolation at various time points. 

3.2.2 Northern Analysis 

Total RNA was isolated from cells grown in YPD at 30°C to a density of 1-2 x 107 cells/ml.  

Unless otherwise stated, 10 μg of total RNA was subjected to Northern analysis with random-



 88 

prime-labeled DNA probes for ARG1 (+34 to +1201), HIS3 (-27 to +376) and SCR1 (-242 to 

+283) as described previously (SWANSON et al. 1991).  A phosphoimager and ImageQuant 

software were used to quantify signals.  ARG1 or HIS3 signals were normalized to SCR1, which 

serves as a loading control.  The relative ARG1 signal in arg80Δ samples (not always shown), 

which were grown and processed in parallel with experimental samples, was set equal to one.  

The relative HIS3 signal in wild-type samples was set equal to one.  Quantitations of Northern 

analyses represent the mean of at least three independent experiments.  Error bars represent 

standard deviation of the mean. 

3.2.3 Chromatin Immunoprecipitation Assays 

YPD cultures were grown to a cell density of 1-2 x 107 cell/ml and harvested for the isolation of 

chromatin as described (SHIRRA et al. 2005).  Immunoprecipitation (IP) of sonicated chromatin 

was performed as described previously (SHIRRA et al. 2005).  Agarose-conjugated anti-HA 

(Santa Cruz Biotechnology) was used to IP a C-terminally triple HA-tagged form of Gcn4.  

Agarose-conjugated anti-MYC (Santa Cruz Biotechnology) was used to IP a C-terminally 

13xMYC-tagged form of Arg80, Arg81, or Arg82.  Anti-diacetyl H3 (Millipore, 06-599) or anti-

H3 (Abcam ab1791), followed by incubation with protein A-coupled  Sepharose beads (GE 

Healthcare, 17-5280-01) were used to IP the appropriate histone proteins.  Input and IP DNA 

were used as templates in quantitative PCR reactions containing [α-32P]dATP.  After PCR 

products were resolved on 6% native polyacrylamide gels, and signals were quantified using a 

phosphorimager and ImageQuant software.  For analysis of epitope-tagged protein occupancy at 

ARG1, IP/input signals for ARG1 were normalized to a subtelomeric control region on 

chromosome VI, where, as expected, no occupancy was observed (VOGELAUER et al. 2000).  For 
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analysis of histone acetylation levels at ARG1, acetylated histone H3 levels were normalized to 

total H3 levels.  The means of three independent experiments were plotted with standard error. 

3.2.4 β-Galactosidase Assays 

ura3Δ0 strains were transformed with p180 or p227, which express Gcn4-LacZ or a 

constitutively expressed Gcn4-LacZ, respectively (HINNEBUSCH 1985; MUELLER and 

HINNEBUSCH 1986).  Extracts were prepared and β-galactosidase assays were performed and 

quantified as previously described (ROSE and BOTSTEIN 1983).     

3.2.5 Nucleosome Scanning Assays 

Cells were grown to a density of 2 x 107 cells/ml in YPD or SC-ILV with 0.6 μg/ml 

sulfometuron methyl (SM) or DMSO as a control.  Nucleosome scanning assays were performed 

as described (HAINER et al. 2011).  Control genomic DNA and mononucleosomal DNA, which 

was generated by digestion with micrococcal nuclease (MNase), was used as a template in real-

time PCR using SYBR Green (Fermentas) detection.  PCR primers were designed to tile a region 

containing the ARG1 promoter, from the translation stop codon of GPD2 to approximately 500 

bases into the ARG1 coding region.  PCR amplicons were approximately 100 base pairs in length 

with approximately 70 base pairs of overlap with neighboring amplicons.  ARG1 signals were 

normalized to a well-positioned nucleosome in the GAL1-10 promoter, GAL NB (BRICKNER et 

al. 2007; HAINER et al. 2011; LOHR 1984).  Nucleosome scanning assay results were plotted as 

the relative MNase protection for at least three independent experiments.  Error bars represent 

standard deviation of the mean.    
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3.2.6 Western Analysis 

Whole cell extracts were prepared from cells grown in YPD to a density of approximately 4 x107 

cells/ml as described previously (SHIRRA et al. 2005).  50 μg of extract were separated on a 15% 

SDS-polyacrylamide gel and transferred to a nitrocellulose membrane.  To examine levels of 

MYC-tagged proteins, membranes were incubated with a 1:1000 dilution of anti-MYC primary 

antibody (Santa Cruz, sc-40) followed by a 1:5000 dilution of sheep anti-mouse horseradish 

peroxidase (HRP)-coupled IgG secondary antibody (GE Healthcare, NA931).  A 1:2000 dilution 

of anti-Sse1 antiserum, generously provided by Jeff Brodsky (GOECKELER et al. 2002), followed 

by a 1:5000 dilution of sheep anti-rabbit HRP-coupled IgG secondary antibody (GE Healthcare, 

NA934) was used to probe for the loading control, Sse1.  Alternatively, membranes were probed 

with a 1:100,000 dilution of anti-glucose-6-phosphate dehydrogenase antibody (G6PDH, Sigma 

A9521), followed by a 1:5,000 dilution of donkey anti-rabbit horseradish peroxidase-coupled 

secondary antibody (GE Healthcare) as a loading control.   

3.2.7 Strand-Specific Reverse Transcription (RT) PCR 

Strand-Specific RT-PCR was performed as described (PEROCCHI et al. 2007).  Briefly, total 

RNA was DNase-treated with TURBO DNase I (Ambion) at 37°C for 30 minutes and purified 

with the QIAGEN RNeasy clean-up kit.  2 μg RNA was used in a strand-specific cDNA 

synthesis reaction with SuperScript II RT (Invitrogen) or a no RT control reaction, both of which 

contained a primer against the transcript of interest and a primer against the ACT1 mRNA, as 

described (PEROCCHI et al. 2007).  0.5 to 5 μl of the cDNA synthesis or no RT control reaction 

was PCR amplified with GoTaq Polymerase (Promega).  PCR conditions were as follows:  94°C 
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for 3 minutes followed by a sequence of 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 

1 minute, which was repeated 24 times, followed by incubation at 72°C for 10 minutes.   

3.2.8 RNA 3’ End Mapping 

cDNA corresponding to antisense transcripts detected at the ARG1 locus was prepared using 

FirstChoice RNA Ligase Mediated-Rapid Amplification of cDNA Ends (RLM-RACE) kit 

(Applied Biosystems) according to the manufacturer’s protocol.  Briefly, total RNA from wild-

type and paf1Δ cells was used in reverse transcription reactions containing a 3’ RACE adapter 

provided by the manufacturer.  The 3’ RACE adapter contains a defined sequence upstream of 

T12, which anneals to poly(A) tails.  After reverse transcription, two sequential PCR reactions 

were performed using nested primers that were complementary to the antisense transcript and the 

3’ RACE adapter sequence.  For the first PCR reaction (outer PCR), the mRNA-specific primer 

was designed to anneal to the antisense strand at position +505 relative to the ARG1 translation 

start site.  The second PCR reaction (inner PCR) was performed with a primer that was designed 

to anneal to the antisense strand at position ARG1 +470.  Nested PCR primers complementary to 

the 3’ RACE adapter were provided by the manufacturer.  The resulting cDNA was inserted into 

a cloning vector using TOPO TA Cloning Kit (Invitrogen) and transformed into One Shot MAX 

Efficiency DH5αT1R E. coli (Invitrogen).  Plasmid DNA was isolated from the transformed 

bacteria using the Qiagen mini-prep kit.  Plasmid inserts were examined by sequence analysis.   
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3.3 RESULTS 

3.3.1 Transcriptional read-through of the GPD2 terminator is not the cause of ARG1 

derepression in paf1∆.   

I have previously demonstrated that Rtf1 mediates ARG1 repression through histone H2B 

ubiquitylation and histone H4 methylation (CRISUCCI and ARNDT 2011).  However, in the 

absence of Paf1, the high level of ARG1 mRNA is only partly explained by the loss of histone 

modifications (CRISUCCI and ARNDT 2011).  Therefore, Paf1 has repressive functions aside from 

these histone modifications.  Interestingly, widespread transcriptional defects, such as cryptic 

initiation within coding regions and transcriptional read-through, occur in the absence of Paf1 

(CHU et al. 2007, Chapter 4; SHELDON et al. 2005; TOMSON et al. 2011b).  Therefore, it is 

possible that such defects could indirectly result in ARG1 derepression.  For example, 

transcriptional read-through of the upstream GPD2 terminator might regulate ARG1 expression 

through a transcriptional interference mechanism in a manner similar to that occurring at the 

native SER3 locus (MARTENS et al. 2004).  To determine whether ARG1 repression involved the 

upstream GPD2 gene, ARG1 was moved to a different chromosomal location, divorcing it from 

possible transcriptional read-through of GPD2.  Specifically, a chromosomal region containing 

ARG1 and its 5’ and 3’ regulatory sequences (-497 to +1553) was inserted at the LYP1 locus in 

an orientation opposite to that of LYP1 (Figure 11A).  Northern analysis was performed to 

examine ARG1 expression in PAF1 or paf1Δ cells in which the only copy of ARG1 was 

expressed from its endogenous locus or the LYP1 locus.  I found that in the presence of Paf1, 

ARG1 transcript levels were similarly repressed at either chromosomal location (Figure 11A and 

B).  Additionally, deletion of PAF1 resulted in similar levels of ARG1 derepression at both 



 93 

locations (Figure 11A and B).  These results suggest that ARG1 expression is not influenced by 

the upstream gene, GPD2.  Additionally, these results define a chromosomal region that retains 

Paf1-mediated ARG1 repression: -497 to +1553. 

 

 

Figure 11:  ARG1 retains Paf1-mediated repression when expressed from an ectopic chromosomal 

location. 

(A) Schematic of the boundaries of the ARG1 locus integrated at the LYP1 locus.  In arg1Δ::NatMX strains, ARG1 -

497 to +1553 (relative to the translation start site) was integrated at the LYP1 locus, replacing LYP1 -44 to +2035 in 

the opposite direction as described in Materials and Methods.  Representative Northern analysis (B) and quantitation 

(C) of ARG1 transcript levels in wild-type (KY1698) and paf1Δ (KY1700) cells in which ARG1 is expressed from 

its endogenous location or wild-type (KY1734) and paf1Δ (KY1735) cells in which the only copy of ARG1 is 

integrated at the LYP1 locus (lyp1Δ::ARG1).  SCR1 serves as a loading control.  Transcript levels were quantified 

and normalized to the levels detected in an arg80Δ (KY1709) control strain (not shown) as described in Materials 

and Methods.  Values shown are the means of three independent experiments.  Error bars represent one standard 

deviation of the mean. 
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3.3.2 The ARG1 coding region is required for the full derepression that occurs in the 

absence of Paf1. 

To further localize regions of the ARG1 locus that confer Paf1-mediated repression, I constructed 

strains in which the ARG1 coding region was replaced with that of HIS3, leaving the ARG1 

promoter and 3’ untranslated region (UTR) intact (Figure 12A).  I then examined HIS3 transcript 

levels by Northern analysis in strains containing HIS3 at its endogenous location or integrated at 

the ARG1 locus (ARG1p-HIS3).  Native HIS3 was expressed in wild-type cells, with a slight 

reduction or increase in native HIS3 levels observed in the absence of Paf1 or Rtf1, respectively 

(Figure 12B and C).  However, when the HIS3 coding region was under the control of the ARG1 

promoter, HIS3 was repressed in wild-type cells and derepressed in the absence of Paf1 and Rtf1 

(Figure 12B and D).  Because the HIS3 coding region behaved similarly to the ARG1 coding 

region when under the control of the ARG1 promoter and 3’ UTR, my results suggest that the 

mechanism of Paf1-mediated repression of ARG1 is partially independent of the coding region.  

However, transcript levels from the native ARG1 gene increase more than 10-fold in paf1Δ cells 

and approximately 4-fold in rtf1Δ cells (CRISUCCI and ARNDT 2011), but both paf1Δ and rtf1Δ 

cells showed an approximately 3-fold increase in ARG1p-HIS3 expression (Figure 12B and D).  

Since the loss of Paf1 results in less derepression when the ARG1 coding region is replaced that 

that of HIS3, these results suggest that the ARG1 coding region is required for the full 

derepression observed in paf1Δ cells.  To determine whether the increased ARG1p-HIS3 

expression in paf1Δ cells is dependent on Gcn4, a transcriptional activator of ARG1, I examined 

ARG1p-HIS3 transcript levels in gcn4Δ and paf1Δ gcn4Δ cells.  As expected, HIS3 transcription 

was reduced in gcn4Δ cells (Figure 12B and D).  Interestingly, HIS3 was derepressed to similar 

levels in both paf1Δ and paf1Δ gcn4Δ cells (Figure 12B and D), indicating that when HIS3 is 
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under the control of the ARG1 promoter, derepression of HIS3 in the absence of Paf1 is 

independent of Gcn4.  Together, these results suggest that Paf1 has some repressive functions 

that require the ARG1 coding region and some that may require the ARG1 promoter or 3’ UTR.  

Furthermore, the repressive functions that do not require the ARG1 coding region are not 

dependent on Gcn4.   

Together, these results suggest that, in addition to having coding-region specific 

functions, Paf1 has some repressive functions conferred by the ARG1 promoter and/or 3’ UTR.  

To determine whether the ARG1 3’ UTR is required for regulation by Paf1, I replaced the ARG1 

coding region and 3’ UTR with that of HIS3 and examined HIS3 transcript levels by Northern 

analysis in the presence or absence of Paf1 (Figure 12B and E).  Surprisingly, in wild-type cells, 

ARG1p-HIS3, now with the HIS3 3’ UTR, was expressed at higher levels than ARG1p-HIS3 

fused to the ARG1 3’ UTR (Figure 12B and E).  Therefore, replacing the ARG1 3’ UTR with the 

HIS3 3’ UTR resulted in increased transcript levels, possibly by conferring increased mRNA 

stability.  Importantly, despite the increased expression conferred by the HIS3 3’ UTR, deletion 

of PAF1 resulted in additional derepression, indicating that some repressive functions of Paf1 are 

independent of the ARG1 3’ UTR (Figure 12B and E).  Therefore, these results suggest that the 

ARG1 3’ UTR is not required for ARG1p-HIS3 repression by Paf1 and additionally suggest that 

Paf1 has repressive functions at the ARG1 promoter.       
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Figure 12:  The ARG1 coding region is required for the full derepression that occurs in paf1Δ cells. 

(A) A representation of ARG1p-HIS3 where the ARG1 coding region or coding region and 3’ UTR was replaced 

with that of HIS3 as described in Materials and Methods.  (B) A representative Northern blot examining HIS3 

mRNA levels when expressed from the endogenous HIS3 chromosomal location in wild-type (KY1699), paf1∆ 

(KY1700), and rtf1Δ (KY1703) cells, when HIS3 is fused to the ARG1 promoter (ARG1p-HIS3) in wild-type 

(KY1736), paf1∆ (KY1737), rtf1Δ (KY2175), gcn4Δ (KY1739), and paf1Δ gcn4Δ (KY1740) cells, and when the 

HIS3 coding region and 3’ UTR are fused to the ARG1 promoter in wild-type (KY1871) and paf1Δ (KY1874) cells.  

(C) Quantitation of HIS3 transcript levels in wild-type (KY1699), paf1∆ (KY1700), and rtf1Δ (KY1703) cells in 

which HIS3 is expressed from its normal chromosomal location.  (D) Quantitation of HIS3 transcript levels in wild-

type (KY1736), paf1∆ (KY1737), rtf1Δ (KY2175), gcn4Δ (KY1739), and paf1Δ gcn4Δ (KY1740) cells, in which 

the HIS3 coding region is under the control of the ARG1 promoter (ARG1p-HIS3).  (E) Quantitation of HIS3 

transcript levels in wild-type (KY1871) and paf1Δ (KY1874) cells in which the HIS3 coding region and 3’ UTR are 

under the control of the ARG1 promoter.  (C-E) Transcript levels were quantified and normalized to the levels 
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detected in a wild-type (KY1699) strain as described in Materials and Methods.  The means of three independent 

experiments are shown.  Error bars represent one standard deviation of the mean.  Note that different Y-axes were 

used to facilitate comparison between samples. 

 

 

3.3.3 ARG1 repression by Paf1 is independent of the gene-specific repressor Arg80. 

My results suggest that Paf1 has repressive functions conferred by the ARG1 promoter.  

Therefore, I next turned to examining whether there are Paf1-dependent changes that occur at the 

ARG1 promoter.  I hypothesized that Paf1 might mediate ARG1 repression by facilitating 

promoter-association of the repressor, Arg80.  Therefore, I performed chromatin 

immunoprecipitation (ChIP) analysis of Arg80 recruitment using strains expressing Myc-tagged 

Arg80 or an untagged control strain, to ask whether Arg80 occupancy at the ARG1 promoter is 

influenced by Paf1.  Unexpectedly, I found that Arg80 occupancy at the ARG1 promoter was 

increased in paf1Δ strains, suggesting that Paf1 actually inhibits promoter-association of Arg80 

(Figure 13A).  To determine if Gcn4 also influences Arg80 occupancy at the ARG1 promoter, I 

examined Arg80 enrichment at the ARG1 promoter in strains lacking Gcn4.  However, deletion 

of GCN4 did not have additional effects on Arg80 occupancy, suggesting that in repressing 

conditions Gcn4 does not regulate Arg80 recruitment (Figure 13A). 

The increased Arg80 occupancy observed in paf1Δ cells was not due to increased protein 

levels.  Western analysis of Myc-tagged Arg80 protein levels indicated that deletion of PAF1 

had no effect on Arg80 expression (Figure 13B).  Additionally, Western analysis of Myc-tagged 

Arg81 and Arg82 protein levels indicated that the loss of Paf1 resulted in only a slight increase 
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in Arg81and Arg82 protein levels (Figure 13C).  Furthermore, despite increased Arg80 promoter 

occupancy, significant ARG1 derepression occurs in paf1Δ strains, suggesting that a functional 

repressor complex does not assemble at the ARG1 promoter in these conditions.   

To test genetically if Paf1 mediates ARG1 repression in the same pathway as Arg80, I 

examined ARG1 mRNA levels by Northern analysis in single and double mutant strains grown in 

rich media.  As expected, deletion of PAF1 or ARG80 individually resulted in ARG1 

derepression (Figure 13D and E).  Interestingly, ARG1 transcript levels in paf1Δ arg80Δ strains 

were higher than in either single deletion strain, suggesting that Paf1 and Arg80 function in 

independent pathways for ARG1 repression (Figure 13D and E).  Together, these observations 

suggest that, although Paf1 inhibits promoter-association of Arg80, Paf1 mediates ARG1 

repression independently of Arg80. 
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Figure 13:  Regulation of ARG1 expression by Paf1 is independent of the gene-specific repressor 

Arg80. 

(A) ChIP analysis of Arg80 binding to the ARG1 promoter in wild-type (KA119), paf1∆ (KA116), paf1∆ gcn4∆ 

(KA118), and gcn4∆ (KA117) strains expressing MYC-tagged Arg80 and an untagged control strain (KY1728).  

PCR primers used in ChIP analysis amplified the ARG1 promoter region (-450 to -200 relative to the translation start 

site).  ChIP signals were quantified and normalized as described in Materials and Methods.  Shown are the means of 

three independent experiments.  Error bars represent standard error of the mean.  (B)  Western analysis of Arg80 

protein levels in wild-type (OKA127) and paf1∆ (OKA145) strains containing MYC-tagged Arg80 compared to 

loading control Sse1.  (C) Western analysis of Arg81 and Arg82 protein levels in an untagged control strain 
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(KY1699), PAF1 (KA139) and paf1Δ (KA142) cells expressing MYC-tagged Arg81, and PAF1 (KA143) and paf1Δ 

(KA146) cells expressing MYC-tagged Arg82.  G6PDH serves as a loading control.  Representative Northern 

analysis (D) and quantitation (E) of ARG1 transcript levels in paf1∆ (KY1702), paf1∆ arg80∆ (KY1720), and 

arg80∆ (KY1709) strains.  SCR1 serves as loading control.  Transcript levels were quantified and normalized to the 

levels detected in an arg80Δ (KY1709) strain as described in Materials and Methods.  The means of three 

independent experiments are shown.  Error bars represent one standard deviation of the mean.    

 

 

 

3.3.4 Paf1 inhibits promoter-association of Gcn4 in repressing conditions. 

My data suggest that Paf1 does not mediate ARG1 repression indirectly through the repressor 

Arg80.  However, Paf1 might mediate ARG1 repression by inhibiting the activator, Gcn4.  To 

determine whether Paf1 influences recruitment of Gcn4 to the ARG1 promoter, I performed ChIP 

analyses using strains expressing HA-tagged Gcn4 or an untagged control strain.  Gcn4 protein is 

expressed at very low levels in cells grown in rich media, but ChIP analysis was sensitive 

enough to detect HA-tagged Gcn4 at the ARG1 promoter in repressing conditions (Figure 14A).  

Interestingly, like Arg80, Gcn4 occupancy was modestly increased in paf1Δ strains, suggesting 

that Paf1 inhibits recruitment of Gcn4 to the ARG1 promoter in repressing conditions (Figure 

14A).  It is also not known whether Arg80 impacts Gcn4 promoter-occupancy in repressing 

conditions.  Therefore, I examined HA-Gcn4 occupancy in arg80Δ strains.  Gcn4 occupancy was 

also increased in arg80Δ strains, suggesting that both Paf1 and Arg80 inhibit Gcn4 recruitment 

to the ARG1 promoter (Figure 14A).  If Paf1 and Arg80 function independently to inhibit Gcn4 

recruitment to the ARG1 promoter, I would expect that the loss of both Paf1 and Arg80 would 



 101 

result in a higher increase in Gcn4 recruitment than the loss of either protein individually.  

Indeed, paf1Δ arg80Δ strains exhibited higher Gcn4 occupancy than either single mutant strain, 

suggesting that Paf1 and Arg80 independently inhibit the association of Gcn4 with the ARG1 

promoter (Figure 14A).  These results show that that, in paf1Δ strains, ARG1 expression is 

associated with increased promoter-association of Gcn4 and further support the conclusion that 

Paf1 functions independently of Arg80. 

The increased Gcn4 occupancy at the ARG1 promoter in paf1Δ strains could be due to an 

increase in Gcn4 protein levels.  However, Gcn4 protein levels are so low in cells grown in rich 

media that they are undetectable by Western analysis in both wild-type and paf1Δ cells (data not 

shown).  Therefore, I examined Gcn4 expression in other ways.  First, I used plasmid-expressed 

GCN4-lacz fusion constructs to examine Gcn4 expression by measuring β-galactosidase activity.  

Interestingly, I detected increased β-galactosidase activity in paf1Δ cells (Figure 14B).  These 

results could indicate that Paf1 inhibits GCN4 transcription or translation.  Therefore, to 

determine if Paf1 inhibits Gcn4 translation, I examined β-galactosidase activity in wild-type and 

paf1Δ cells expressing a constitutive GCN4-lacz fusion construct, in which translational 

regulation was eliminated by deletion of several upstream regulatory micro-ORFs (Gcn4c) 

(MUELLER and HINNEBUSCH 1986).  With cells expressing the constitutive GCN4-lacz, I also 

detected increased β-galactosidase activity in paf1Δ cells compared to wild-type cells (Figure 

14C).  Since increased GCN4-lacz expression occured in paf1Δ cells, even in the absence of 

translational control, these results would suggest that Paf1 increases Gcn4 expression, not by 

inhibiting translation, but by repressing GCN4 transcription.  However, strand-specific RT-PCR 

indicated that Paf1 has no effect on transcription of endogenous GCN4 (Figure 14D).  I predict 

that Paf1 may regulate GCN4-lacz expression by regulating plasmid copy number or by 
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influencing protein stability.  Therefore, I currently have no conclusive evidence to suggest that 

Paf1 regulates promoter-occupancy of Gcn4 at ARG1 by modulating Gcn4 expression.   
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Figure 14:  Paf1 inhibits recruitment of Gcn4 to the ARG1 promoter in repressing conditions. 

(A) ChIP analysis of Gcn4 occupancy at the ARG1 promoter in wild-type (KY1728), paf1∆ (KA116), paf1∆ arg80∆ 

(KY1730), and arg80∆ (KY1729) strains expressing HA-tagged Gcn4 and untagged Gcn4 (KA119).  PCR primers 

used in ChIP analysis amplified the ARG1 promoter region (-450 to -200 relative to the translation start site).  ChIP 

signals were quantified and normalized as described in Materials and Methods.  Shown are the means of three 

independent experiments.  Error bars represent standard error.  The y-axis was truncated to facilitate comparison of 

lower values.  The value for paf1∆ arg80∆ is indicated above the bar.  (B) Quantitation of β-galactosidase activity in 

wild-type (ECY155) and paf1Δ (ECY410) cells transformed with a plasmid expressing GCN4-lacZ (p180).  (C) 

Quantitation of β-galactosidase activity in wild-type (ECY155) and paf1Δ (ECY410) cells transformed with a 

plasmid expressing constitutive GCN4-lacZ (Gcn4c) (p227).  (D) Strand-specific RT-PCR examining GCN4 

transcript levels in wild-type (KY1699) and paf1Δ (KY1700) cells.  4 μl of no RT reactions (-) and 0.5 μl, 2 μl, and 
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4 μl volumes of undiluted or 1:2 cDNA were used in PCR reactions to amplify GCN4 and ACT1, respectively.  

Representative Northern analysis (C) and quantitation (D) of ARG1 transcript levels in wild-type (KY1699), paf1∆ 

(KY1702), paf1∆ gcn4∆ (KY1719), and gcn4∆ (KY1708) strains.  Transcript levels were quantified and normalized 

as described in Materials and Methods.  Shown are the means of three independent experiments.  Error bars 

represent one standard deviation.   

 

 

 

3.3.5 The derepression of native ARG1 in paf1Δ cells is partially Gcn4-dependent. 

In paf1Δ cells ARG1 derepression is associated with increased promoter occupancy of Gcn4, 

which may contribute to increased ARG1 transcription.  I found that the low level of HIS3 

derepression that occurs in paf1Δ cells when the HIS3 coding region is fused to the ARG1 

promoter and 3’ UTR is not dependent on Gcn4.  However, I wanted to examine whether the 

additional repressive functions conferred by the ARG1 coding region are Gcn4-dependent.  

Therefore, I examined transcript levels of native ARG1 in the absence of Paf1 and/or Gcn4.  I 

found that ARG1 mRNA levels in paf1Δ gcn4Δ strains were reduced compared to paf1Δ strains, 

suggesting that the ARG1 derepression that occurs in the absence of Paf1 is highly Gcn4-

dependent (Figure 14E and F).  However, ARG1 transcript levels in paf1Δ gcn4Δ cells were still 

higher than in wild-type cells (Figure 14E and F), supporting my conclusion that Paf1 has both 

Gcn4-dependent and –independent roles.  Furthermore, the fact that the ARG1 derepression that 

occurs in paf1Δ cells was suppressed by deletion of GCN4, supports the idea that Paf1 mediates 

ARG1 repression partially by inhibiting recruitment and/or activity of the activator, Gcn4.      
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3.3.6 Paf1 does not regulate ARG1 expression by regulating mRNA stability. 

Thus far, my results suggest that Paf1 mediates ARG1 repression partially through a Gcn4-

dependent mechanism that requires the ARG1 promoter and coding region and partially through 

an additional Gcn4-independent mechanism at the ARG1 promoter.  I hypothesized that Paf1 

regulates ARG1 expression at the level of transcription, given the important roles described for 

the Paf1 complex in this process.  However, a post-transcriptional role has not been investigated.  

For example, Paf1 could reduce ARG1 expression by promoting mRNA instability.  Therefore, to 

determine if Paf1 affects ARG1 mRNA stability, I examined ARG1 transcript levels in strains 

expressing a temperature sensitive version of RPB1, the gene encoding the largest subunit of 

RNA Pol II.  Specifically, rpb1-1 cells were harvested for RNA isolation and Northern analysis 

at several time points after shifting cultures to the restrictive temperature.  Interestingly, ARG1 

mRNA was actually lost at a quicker rate in paf1Δ strains than in strains expressing Paf1, 

indicating that paf1Δ cells have increased ARG1 expression despite reduced ARG1 mRNA 

stability (Figure 15A and B).  Consistent with these results, deletion of PAF1 has been shown to 

alter poly(A) tail length and poly(A) site usage, sometimes generating transcripts that are subject 

to nonsense-mediated decay (MUELLER et al. 2004; PENHEITER et al. 2005).  Since Paf1 appears 

to promote ARG1 mRNA stability, these results do not support a post-transcriptional role for 

Paf1 in repressing ARG1 expression. 
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Figure 15:  ARG1 mRNA stability in the presence and absence of Paf1. 

(A) Representative Northern analysis examining ARG1 mRNA levels in paf1∆ (KY2026) (top panels) and rpb1-1 

paf1∆ (KA155) strains (bottom panels) containing a plasmid expressing HA-Paf1 (pRS316-HA-Paf1) or empty 

vector (pRS316).  Cultures grown in SC media lacking uracil at 30°C, diluted with an equal volume of pre-warmed 

media, and immediately shifted to 37°C.  Cells were harvested for RNA immediately prior to and at several time 

points after temperature shift.  30 μg RNA was analyzed for cells expressing HA-Paf1 due to the low expression of 

ARG1 in these cells, while only 10 μg RNA was analyzed for cells lacking Paf1. (E) Quantitation of relative ARG1 

transcript levels.  Results are representative of two independent experiments.  For each strain, transcript levels prior 

to temperature shift were set equal to one. 
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3.3.7 Histone H3 acetylation is required for the derepression that occurs in the absence of 

Paf1. 

Since my results suggest that Paf1 does not regulate ARG1 expression by promoting mRNA 

instability, I returned to examining transcriptional regulation of ARG1 by Paf1.  I have shown 

that the increase in ARG1 transcription in paf1Δ strains is associated with increased Gcn4 

occupancy at the ARG1 promoter.  One possible explanation for this correlation could be that in 

paf1Δ cells, the ARG1 promoter adopts a histone modification state that allows increased binding 

of trans-acting factors.  Since I have shown that Paf1 mediates ARG1 repression in a partially 

Gcn4-dependent manner, I chose to examine the role of histone acetylation, which is regulated 

by both Paf1 and Gcn4, in modulating ARG1 transcription.  The Prelich and Arndt labs 

previously showed that Paf1 inhibits histone acetylation in the coding region of active genes 

(CHU et al. 2007).  In contrast, Gcn4 has been shown to promote histone acetylation by recruiting 

the histone acetyltransferase (HAT) Gcn5 to the promoter of Gcn4-activated genes (GOVIND et 

al. 2005; KUO et al. 2000).  Therefore, I hypothesized that Paf1 might oppose the actions of 

Gcn4, thus promoting ARG1 repression by preventing histone acetylation by Gcn5. 

Regulation of ARG1 transcription by Gcn5 is complex, however, as Gcn5 has both 

positive and negative effects on ARG1 transcription.  Specifically, in inducing conditions, Gcn5 

promotes ARG1 activation by promoting histone acetylation and recruitment of SWI/SNF, TBP, 

and RNA Pol II (GOVIND et al. 2005; GOVIND et al. 2007; KUO et al. 1996; KUO et al. 2000; QIU 

et al. 2004; SWANSON et al. 2003).  However, in repressing conditions, Gcn5 promotes ARG1 

repression through a less-understood mechanism that requires its acetyltransferase activity (RICCI 

et al. 2002). To determine if the ARG1 derepression in paf1Δ strains requires Gcn5, I examined 

the combinatorial effect of Paf1 and Gcn5 on ARG1 expression by Northern analysis.  Consistent 
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with their known role in ARG1 repression, both paf1Δ and gcn5Δ cells exhibited ARG1 

derepression (Figure 16A).  Furthermore, ARG1 transcript levels in paf1Δ gcn5Δ double mutant 

strains were higher than in wild-type strains, suggesting that Paf1 and Gcn5 have some 

overlapping repressive functions (Figure 16A).  However, paf1Δ gcn5Δ strains exhibited less 

derepression than either single mutant strain, suggesting that the full level of derepression that 

occurs in the absence of Paf1 requires Gcn5 and vice versa (Figure 16A). 

The fact that Gcn5 is required for full ARG1 derepression in paf1Δ strains is consistent 

with the hypothesis that in paf1Δ strains, increased recruitment of Gcn4 results in increased 

histone acetylation by Gcn5 and ultimately ARG1 derepression.  Therefore, I performed ChIP 

analysis to determine if Paf1 affects histone H3 acetylation levels at ARG1.  I found that 

although gcn5Δ strains exhibited reduced histone H3 acetylation at the ARG1 promoter and 

coding region, paf1Δ strains exhibited histone H3 acetylation levels similar to wild-type strains, 

indicating that Paf1 has no effect on histone H3 acetylation levels at ARG1 (Figure 16B).  

However, this may not be surprising, because it has been shown that the action of several histone 

deacetylases (HDACs) prevents an increase in histone acetylation upon transcriptional induction 

(GOVIND et al. 2007).  

Because HDACs may oppose increases in histone acetylation caused by the deletion of 

PAF1, I chose to determine if Gcn5 acetylation sites on histone H3 are required for proper ARG1 

expression by examining ARG1 transcript levels in strains in which Gcn5-target lysines in 

histone H3 were changed to alanine.   ARG1 transcript levels in strains expressing histone H3 

mutant proteins, H3-K9A, H3-K14A, and H3-K4, 9, 14, 16A, were similar to wild-type histone 

H3 strains, suggesting that the acetylation of these histone H3 residues is not required for ARG1 

repression (Figure 16C).  Interestingly, these histone H3 substitutions partially restored 
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repression in paf1Δ strains, suggesting that the full ARG1 expression that occurs in the absence 

of Paf1 requires histone H3 acetylation (Figure 16C).  Mutation of histone H4 acetylation sites 

did not restore repression in paf1Δ strains (Figure 16D), suggesting that the ARG1 derepression 

in paf1Δ cells requires histone H3 acetylation but not histone H4 acetylation.   
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Figure 16:  Mutation of histone H3 acetylation sites partially restores ARG1 repression in the absence 

of Paf1. 

(A) Quantitation of Northern analysis of relative ARG1 expression in wild-type (KY205), paf1∆ (KY803), paf1∆ 

gcn5∆ (KY1348), and gcn5∆ (KY1343) strains.  Transcript levels were quantified and normalized as described in 

Materials and Methods.  Shown are the means of three independent experiments.  Error bars represent one standard 

deviation.  (B) ChIP analysis of Acetyl H3 relative to total H3 levels in wild-type (KY1699), paf1∆ (KY1700), and 

gcn5∆ (KY1741-43) strains.  ChIP signals were quantified and normalized as described in Materials and Methods.  
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Shown are the means of three independent experiments.  Error bars represent standard error.  (C) Representative 

Northern analysis (top) and quantitation (bottom)  of ARG1 transcript levels in wild-type (KA120), H3 K9A 

(KA122), H3 K14A (KA124), H3 K4, 9, 14, 18A (KA126), paf1∆ (KA121), paf1∆ H3 K9A (KA123), paf1∆ H3 

K14A (KA125), and paf1∆ H3 K4, 9, 14, 18A (KA127) strains.  (D) Representative Northern analysis (top) and 

quantitation (bottom) of ARG1 transcript levels in wild-type (KA128), H4 K12A (KA130), H4 K16A (KA132), H4 

K5, 8, 12, 16A (KA134), paf1∆ (KA129), paf1∆ H4 K12A (KA131), paf1∆ H4 K16A (KA133), and paf1∆ H4 K5, 8, 

12, 16A (KA135) strains.  Transcript levels in (C and D) were quantified and normalized as described in Materials 

and Methods.  Shown are the means of three independent experiments.  Error bars represent one standard deviation.    

 

 

3.3.8 Deletion of PAF1 does not alter nucleosome occupancy at the ARG1 promoter and 

5’ coding region. 

Histone H3 acetylation by Gcn5 has been shown to result in nucleosome eviction (GOVIND et al. 

2007).  Furthermore, Gcn4 has been shown to recruit several co-activators to the ARG1 

promoter, including SWI/SNF and RSC chromatin remodeling complexes (SWANSON et al. 

2003).  Since ARG1 derepression in paf1Δ cells partially requires Gcn4, Gcn5, and histone H3 

acetylation sites, I examined the possibility that Paf1 regulates nucleosome occupancy at the 

ARG1 promoter.  Furthermore, ARG1 is a well-studied model gene, yet little is known about its 

chromatin structure in repressing and activating conditions.  To examine the chromatin structure 

of the ARG1 promoter, I performed nucleosome scanning assays using PCR primers that tile 

across the ARG1 promoter and 5’ coding region. 

To examine changes in nucleosome occupancy that occur upon transcriptional induction, 

wild-type strains were grown to log phase in SC-ILV media and treated with sulfometuron 
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methyl (SM), which increases cellular levels of Gcn4 (HINNEBUSCH 1988), or mock-treated with 

DMSO for two hours.  In mock-treated wild-type strains, the nucleosome scanning assay 

revealed a region of low relative MNase protection in the ARG1 promoter, flanked by several 

peaks of high MNase protection (Figure 17A).  These results suggest that the ARG1 regulatory 

elements are located within a nucleosome-free region, which is surrounded by several well-

positioned nucleosomes.  Notably, these results also match well with genome-wide analyses of 

nucleosome occupancy in wild-type cells (JIANG and PUGH 2009).  The peaks of MNase 

protection were reduced in wild-type strains treated with SM, suggesting that transcriptional 

induction is associated with reduced nucleosome occupancy at the ARG1 promoter (Figure 17A).  

Furthermore, these results define the nucleosome architecture at the ARG1 promoter and 5’ 

coding region in repressing and inducing conditions and confirm that the assay can detect 

changes in nucleosome occupancy that occur with transcriptional induction.  

To determine whether Paf1 influences nucleosome occupancy at the ARG1 promoter and 

5’ coding region in repressing conditions, wild-type and paf1Δ strains were grown to log phase 

in YPD and harvested for the nucleosome scanning assay.  The relative MNase protection profile 

for wild-type cells grown in YPD (Figure 17B) was nearly identical to wild-type cells grown in 

SC-ILV media (Figure 17B).  Interestingly, although loss of Paf1 results in derepression of 

ARG1, the relative MNase protection profile in paf1Δ strains closely resembled that of wild-type, 

except that a very slight reduction in occupancy and forward-shifting of the nucleosome 

positioned over the TATA element occurs in paf1Δ cells (Figure 17B).  Consistent with these 

results, ChIP analysis detected similar levels of histone H3 levels in wild-type and paf1Δ cells at 

the ARG1 promoter and coding region (CRISUCCI and ARNDT 2011).  Together, these results 

suggest that Paf1 does not dramatically affect nucleosome occupancy at the ARG1 promoter or 5’ 
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region.  Furthermore, my results suggest that a significant level of ARG1 expression can occur 

without changes in nucleosome occupancy.  
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Figure 17:  Loss of Paf1 does not significantly alter nucleosome occupancy at the ARG1 promoter 

and 5’ coding region. 

(A) Nucleosome scanning assay examining nucleosome occupancy at the ARG1 promoter and 5’ region in wild-type 

strains in repressing and inducing conditions.  Wild-type (KY1699) cells were grown to log phase in SC-ILV media 

and treated with 0.6 μg/ml SM or mock-treated with DMSO for two hours prior to crosslinking.  Mononucleosomal 

DNA was prepared and subjected to real-time PCR analysis using primers that tile a chromosomal region containing 
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the ARG1 promoter.  The midpoint position of each PCR fragment relative to the translation start site is plotted on 

the X-axis.  Relative MNase protection is plotted on the Y-axis.  Bottom left: Schematic representation of predicted 

nucleosome occupancy.  Shaded circles represent potential nucleosomes.  Bottom right: Representative Northern 

blot examining ARG1 transcript levels in strains harvested for RNA prior to crosslinking.  (B) Nucleosome 

occupancy at the ARG1 promoter region in wild-type (KY1699) and paf1∆ (KY1700 and KY1701) strains grown in 

YPD.  Samples were processed and relative MNase protection calculated as in (A).  Bottom left: Schematic 

representation of predicted nucleosome occupancy.  Bottom right: Representative Northern analysis of ARG1 

mRNA levels immediately prior to crosslinking. 

 

 

 

3.3.9 Paf1 prevents antisense transcription from traversing the ARG1 promoter. 

Histone H3 K4 methylation is usually highest at 5’ coding regions (KROGAN et al. 2003a; NG et 

al. 2003b), while K36 methylation is generally highest at 3’ coding regions (KIZER et al. 2005; 

KROGAN et al. 2003b; LI et al. 2003; SCHAFT et al. 2003; XIAO et al. 2003).  However, I 

previously examined enrichment of these modifications at the ARG1 locus and observed a 

reversed histone modification pattern (CRISUCCI and ARNDT 2011).  I hypothesized that, similar 

to what has been described at GAL10 (HOUSELEY et al. 2008), antisense transcription at the 

ARG1 locus could contribute to the reversed pattern of histone modifications.  Interestingly, 

previous genome-wide studies reported antisense transcripts arising from the ARG1 3’ UTR and 

traversing the coding region in wild-type cells (DAVID et al. 2006; XU et al. 2009).  As of yet, it 

is not clear if antisense transcripts have any effect on the expression of ARG1.  However, based 
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on results described earlier in this chapter, I hypothesized that Paf1 might regulate antisense 

transcription at or near the ARG1 promoter, which could, in turn, alter Gcn4 occupancy. 

To both confirm the presence of antisense transcription at the ARG1 locus and to 

determine whether it is regulated by Paf1, I performed strand-specific cDNA synthesis followed 

by PCR.  As expected, a cDNA synthesis primer complementary to the ARG1 mRNA detects the 

derepression of ARG1 sense transcription that occurs in paf1Δ strains (Figure 18A and B).  To 

detect antisense transcripts at the ARG1 locus, I used several different cDNA synthesis primers 

within the promoter and coding region (Figure 18A and C).  Using cDNA synthesis primers 

downstream of the ARG1 transcription start site (primers E and F), I detected antisense 

transcription that traverses the ARG1 coding region in both wild-type and paf1Δ strains at similar 

levels (Figure 18A and C).  This confirms that antisense transcription traverses the ARG1 coding 

region, but suggests that levels of antisense transcription across the ARG1 coding region are not 

regulated by Paf1.  However, using cDNA synthesis primers upstream of the ARG1 transcription 

start site (primers A-D), I found very low levels of antisense transcription within the ARG1 

promoter in wild-type cells (Figure 18A and C).  Interestingly, antisense transcription within the 

ARG1 promoter was dramatically increased in paf1Δ cells, suggesting that Paf1 prevents 

antisense transcription within the ARG1 promoter (Figure 18A and C).   

 

 

 

 

 



 117 

 

Figure 18:  Paf1 inhibits antisense transcription across the ARG1 promoter. 

(A) Picture showing the locations of primers used in cDNA synthesis (arrows) and PCR (bar) for strand-specific RT-

PCR.  (B) Strand-specific RT-PCR examining ARG1 sense transcription in wild-type (KY1699) and paf1∆ 

(KY1700) strains.  3 μl of no RT reactions (-) and 1 μl and 3 μl volumes of 1:2 cDNA were used in PCR reactions to 

amplify ARG1 and ACT1.  Results shown are representative of more than three independent experiments.  (C) 

Strand-specific RT-PCR examining antisense transcription within the ARG1 promoter and coding region in wild-

type (KY1699) and paf1∆ (KY1700) strains.  cDNA synthesis primers used are noted above wild-type and paf1Δ 

samples and correspond to those depicted in (A).  3 μl of no RT reactions (-) and 1 and 3 μl or 1 μl, 2 μl, and 3 μl 

volumes of undiluted or 1:2 cDNA were used in PCR reactions to amplify ARG1 and ACT1, respectively.  Reactions 

with cDNA synthesis primers A, C, D, and F were performed only once.  Results shown for cDNA synthesis primer 

E are representative of two independent experiments.  Results shown with cDNA synthesis primer B are 

representative of more than 3 independent experiments.   
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3.3.10 3’ end mapping of antisense transcripts at the ARG1 locus. 

Levels of antisense transcription occurring within the ARG1 coding region do not increase in the 

absence of Paf1.  However, Paf1 appears to prevent antisense transcription from traversing the 

promoter.  Therefore, I predicted that 3’-extended antisense transcripts occur in paf1Δ cells.  To 

map the 3’ ends of antisense transcripts occurring in wild-type and paf1Δ cells, I performed 3’ 

RACE.  In 3’ RACE, the antisense transcripts were copied into cDNA in a poly(A)-dependent 

manner.  The resulting cDNA was cloned into a bacterial vector and transformed into E. coli.  

After isolation from bacteria, the vector inserts were examined by sequence analysis.  17 wild-

type and 20 paf1Δ clones were analyzed.  Multiple 3’ ends were detected by this method (Figure 

19, Table 2).  In wild-type cells, 7 out of 17 clones exhibited 3’ ends located at +352 relative to 

the ARG1 translation start site (Figure 19, Table 2).  An additional 3 clones exhibited 3’ ends 

located at +335 or +424.  The remaining 7 clones exhibited 3’ ends at -65, -66, or -69, which is 

very close to the ARG1 sense transcription start site (-72) (Figure 19, Table 2).  Therefore, in 

wild-type cells, slightly more than half of the antisense transcripts detected terminate upstream of 

the ARG1 translation start site (ATG) at a location within the ARG1 coding region.  The 

remaining antisense transcripts traversed the ATG and terminated immediately before the ARG1 

transcription start site.  Interestingly, in paf1Δ samples, all 20 clones examined exhibited 3’ ends 

located close to the ARG1 transcription start site (-49, -64, -65, -66, -67, -69).  Therefore, this 

analysis indicates that while shorter and longer antisense transcripts occur in wild-type cells, 

deletion of Paf1 results in an increase in longer antisense transcripts that terminate very close to 

the ARG1 transcription start site.  These results are consistent with my hypothesis that Paf1 

prevents the occurrence of antisense transcripts that extend beyond the ARG1 coding region.  

However, antisense transcripts traversing the cis-elements within the ARG1 promoter, which 
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were detected by strand-specific RT-PCR, were not detected by 3’ RACE.  Because 3’ RACE 

specifically detects polyadenylated transcripts, the longer antisense transcripts traversing the 

ARG1 cis-elements may be non-polyadenylated.   

 

 

 

 

Figure 19:  Mapping 3’ ends of antisense transcripts at the ARG1 locus in wild-type and paf1Δ cells. 

Schematic of 3’ RACE results.  Shown are the locations of the mRNA-specific nested RACE primers.  Blue arrows 

depict sequencing results for 17 cDNA clones from wild-type samples.  Red arrows depict sequencing results for 17 

cDNA clones from paf1Δ samples.  3’ end positions are indicated on the left of each arrow.  The number of clones 

with the corresponding 3’ end position is indicated on the right of each arrow.  The thickness of each arrow is 

relative to the number of clones with the corresponding 3’ end position.  3’ RACE results are also listed in Table 2.   
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3.3.11 Integration of a transcription terminator in the ARG1 coding region in the antisense 

orientation did not block antisense transcription. 

My results suggest that both polyadenylated and non-polyadenylated antisense transcripts occur 

at ARG1.  Furthermore, in paf1Δ cells, there is an increase in 3’-extended antisense transcripts 

that may influence ARG1 sense expression.  To determine if the antisense transcription traversing 

the ARG1 promoter in paf1Δ cells influences ARG1 sense transcription, I inserted the HIS3 

terminator element into the ARG1 coding region in the antisense direction, in an attempt to 

terminate antisense transcription (Figure 20A).  The terminator element had no effect on ARG1 

sense transcription, as strand-specific RT-PCR analysis demonstrated that ARG1 transcription is 

repressed in the presence of Paf1 and derepressed in the absence of Paf1 in strains containing the 

terminator inserted in the ARG1 coding region (Figure 20B).  Surprisingly, strand-specific RT-

PCR with cDNA synthesis primers within the promoter (primer B) and ORF (primer F), 

indicated that the terminator element did not successfully terminate antisense transcription 

(Figure 20C).   
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Figure 20:  Integration of a terminator element does not terminate antisense transcription at ARG1. 

(A) Schematic of the location of the terminator element inserted in the ARG1 coding region in the antisense 

direction as described in Materials and Methods.  (B) Strand-specific RT-PCR examining ARG1 sense transcription 

in wild-type (KY2144) and paf1∆ (KY2147) strains containing a terminator element integrated in the ARG1 coding 

region.  3 μl of no RT reactions (-) and 1 μl and 3 μl volumes of 1:2 cDNA were used in PCR reactions to amplify 

ARG1 and ACT1.  This experiment was performed only once.  (C) Strand-specific RT-PCR examining antisense 

transcription in wild-type (KY2144) and paf1∆ (KY2147) strains containing a terminator element integrated in the 

ARG1 coding region. cDNA synthesis primers used are noted above wild-type and paf1Δ samples and correspond to 

those depicted in (Fig. 8A).  5 μl of no RT reactions (-) and 2 and 5 μl cDNA were used in PCR reactions to amplify 

ARG1.  3 μl of no RT reactions (-) and 1 μl and 3 μl volumes of 1:2 cDNA were used in PCR reactions to amplify 

ACT1.  This experiment was performed only once.   
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3.3.12 The ARG1 3’ UTR is not required for antisense transcription. 

Because integration of a strong, defined terminator element failed to terminate the antisense 

transcription at the ARG1 locus, I decided to block the antisense transcript by eliminating the 

antisense transcript start site.  Previous genome-wide studies identified antisense transcripts 

arising from the ARG1 3’ UTR in wild-type cells (DAVID et al. 2006; XU et al. 2009).  Therefore, 

I decided to move the ARG1 promoter and coding region to the LYP1 locus, this time in the same 

direction as LYP1.  In this way, the ARG1 promoter and coding region were fused to the LYP1 3’ 

UTR, which does not contain known start sites for antisense transcripts (DAVID et al. 2006; XU 

et al. 2009) (Figure 21A).  As a control, I created a strain in which the ARG1 promoter, coding 

region, and 3’ UTR were integrated at the LYP1 locus (Figure 21A).  Therefore, I would expect 

to detect the antisense transcript when the ARG1 3’ UTR, but not the LYP1 3’ UTR, is adjacent 

to the ARG1 promoter and coding region.  Surprisingly, strand-specific RT-PCR using primers 

within the coding region (primer F) detected antisense transcription in both wild-type and paf1Δ 

cells when the ARG1 promoter and coding region were adjacent to both the ARG1 and LYP1 3’ 

UTR (Figure 21C).  Furthermore, antisense transcription occurred within the ARG1 promoter, 

with increased antisense transcription in paf1Δ cells, regardless of the 3’ UTR (Figure 21C).  

Additionally, the LYP1 3’ UTR had no effect on ARG1 sense transcription (Figure 21B).  Since 

replacing the ARG1 3’ UTR with that of LYP1 did not eliminate antisense transcription across 

the ARG1 promoter and coding region, I was not able to examine the effect of antisense 

transcription on ARG1 sense transcription.  These results suggest that antisense transcription may 

arise from start sites within the ARG1 coding region.   
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Figure 21:  The ARG1 3’ UTR is not required for antisense transcription.  (A)  Schematic of the 

ARG1 regions integrated at the LYP1 locus in the same orientation as LYP1. 

To fuse the ARG1 promoter and coding region with the LYP1 3’ UTR, ARG1 -497 to +1263 was integrated at LYP1 

-290 to +1836.  As a control, the ARG1 promoter, coding region, and 3’ UTR (ARG1 -497 to +1553) was integrated 

at LYP1 -290 to +2059.  Methods of strain construction are described in Materials and Methods.  (B) Strand-specific 

RT-PCR examining ARG1 sense (B) and antisense (C) transcription in wild-type (KY2112) and paf1∆ (KY2115) 

cells in which the ARG1 promoter and coding region are fused to the LYP1 3’ UTR and wild-type (KY2118) and 

paf1∆ (KY2121) cells in which the ARG1 promoter, coding region, and 3’ UTR are integrated at the LYP1 locus.  

cDNA synthesis primers used are noted above wild-type and paf1Δ samples and correspond to those depicted in 

(Fig. 8A).  For analysis of ARG1 sense transcription, 3 μl of no RT reactions (-) and 1 μl and 3 μl volumes of 1:2 

cDNA were used in PCR reactions to amplify ARG1.  For analysis of antisense transcription, 6 μl of no RT reactions 

(-) and 2 μl and 6 μl volumes of cDNA were used in PCR reactions to amplify ARG1.  3 μl of no RT reactions (-) 

and 1 μl and 3 μl volumes of 1:2 cDNA were used in PCR reactions to amplify ACT.  This experiment was 

performed only once.   
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3.3.13 Antisense transcription across the ARG1 promoter positively correlates with ARG1 

sense transcription. 

My results suggest that antisense transcription at the ARG1 locus may arise from start sites 

within the ARG1 coding region, yet integration of a terminator element in the ARG1 coding 

region failed to terminate antisense transcription.  Therefore, I decided to begin investigating a 

potential regulatory role for antisense transcription at the ARG1 promoter by determining if 

antisense transcription positively or negatively correlates with ARG1 sense transcription.  To 

determine the correlation between ARG1 sense and antisense transcription, I performed strand-

specific RT-PCR with RNA isolated from wild-type cells grown in repressing and activating 

conditions.  ARG1 induction upon SM treatment resulted in increased ARG1 mRNA levels as 

expected (Figure 22A).  Interestingly, SM treatment also resulted in increased antisense 

transcription across the ARG1 promoter (Figure 22B).  The positive correlation between ARG1 

sense and antisense transcription may indicate that antisense transcription promotes ARG1 sense 

transcription.  Alternatively, antisense transcription may be a result of ARG1 sense transcription.      
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Figure 22:  Antisense transcription traversing the ARG1 promoter positively correlates with ARG1 

sense transcription in wild-type cells. 

Strand-specific RT-PCR examining ARG1 sense (A) and antisense (B) transcription in wild-type (KY1699) strains 

grown in SC-ILV media and mock-treated with DMSO  or treated for two hours with 0.6 μg/ml sulfometuron 

methyl (+SM).  cDNA synthesis primers used are noted above samples and correspond to those depicted in (Fig. 

8A).  For analysis of ARG1 sense transcription, 3 μl of no RT reactions (-) and 1 μl and 3 μl volumes of 1:2 cDNA 

were used in PCR reactions to amplify ARG1 and ACT1.  For analysis of antisense transcription, 3 μl of no RT 

reactions (-) and 1 μl and 3 μl volumes of undiluted cDNA were used in PCR reactions to amplify ARG1 and 3 μl of 

no RT reactions (-) and 1 μl and 3 μl volumes of 1:2 cDNA were used in PCR reactions to amplify ACT.  This 

experiment was performed only once.   

 

 

 

To determine if other mutations that cause ARG1 sense derepression besides paf1Δ also 

cause an increase in antisense transcription across the ARG1 promoter, I performed strand-

specific RT-PCR examining ARG1 sense and antisense transcript levels in several mutant strains 

that I have previously found to result in various levels of ARG1 derepression, including htb1-

K123R, arg80Δ, rtf1Δ, gcn5Δ, set1Δ, and set2Δ (CRISUCCI and ARNDT 2011).  For all mutant 

strains examined, increased ARG1 sense transcription was accompanied by an increase in 

antisense transcription across the ARG1 promoter (Figure 23A-C).  Although I have not 
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quantified these results, it appears that in these mutants, antisense transcription increases 

proportionally to the increase in sense transcription.  These results support my finding that 

antisense transcription traversing the ARG1 promoter positively correlates with ARG1 sense 

transcription.  Interestingly, deletion of PAF1 and ARG80, which resulted in increased Gcn4 

binding at the ARG1 promoter (Figure 23A and C), caused the highest levels of antisense 

transcription across the ARG1 promoter (Figure 14A).      

 

 

 

 

Figure 23:  Antisense transcription traversing the ARG1 promoter positively correlates with ARG1 

sense transcription in mutant cells. 

(A) Strand-specific RT-PCR examining ARG1 sense and antisense transcription in wild-type (KY1699), paf1Δ 

(KY1700), and htb1-K123R (KY1732) strains.  (B) Analysis of ARG1 sense and antisense transcription in wild-type 

(KY1699) and arg80Δ (KY1709) cells by strand-specific RT-PCR.  (C) Strand-specific RT-PCR examining ARG1 
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sense and antisense transcription in wild-type (KY1699), rtf1Δ (KY1704), gcn5Δ (KY1743), set1Δ (KY1755), and 

set2Δ (KY1716) cells.  (A-C) cDNA synthesis primer B (Fig. 8A) was used in cDNA synthesis reactions to detect 

antisense transcription traversing the ARG1 promoter.  For analysis of ARG1 sense transcription, 3 μl of no RT 

reactions (-) and 1 μl and 3 μl volumes of 1:2 cDNA were used in PCR reactions to amplify ARG1 and ACT1.  For 

analysis of antisense transcription, 3 μl of no RT reactions (-) and 1 μl and 3 μl volumes of undiluted cDNA were 

used in PCR reactions to amplify ARG1 and 3 μl of no RT reactions (-) and 1 μl and 3 μl volumes of 1:2 cDNA were 

used in PCR reactions to amplify ACT.  This experiment was performed only once.   

 

 

 

3.3.14 Paf1 inhibits antisense transcription and Gcn4 recruitment at the promoters of 

other Paf1-repressed genes. 

I have found that, in the absence of Paf1, increased antisense transcription and Gcn4 recruitment 

at the ARG1 promoter is accompanied by ARG1 derepression, suggesting that Paf1 mediates 

ARG1 repression by inhibiting Gcn4 recruitment and antisense transcription.  To determine if 

similar events occur at other Paf1-repressed genes, I examined antisense transcription and 

activator recruitment at the promoters of two Gcn4-regulated genes, ARG3 and SNZ1, which 

have been shown by microarray analyses to be negatively regulated by Paf1 (PENHEITER et al. 

2005).  As expected, strand-specific RT-PCR analysis detected increased SNZ1 and ARG3 sense 

transcription in paf1Δ cells (Figure 24A and B).  Interestingly, similar to ARG1, there is 

increased antisense transcription across the Gcn4 binding sites within the SNZ1 and ARG3 

promoters in paf1Δ cells (Figure 24A and B).  To determine if antisense transcription across the 

SNZ1 and ARG3 promoters is associated with increased Gcn4 occupancy, I performed ChIP 
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analyses using strains expressing HA-tagged Gcn4 or an untagged control strain.  At the SNZ1 

promoter, Gcn4 was not detected in either wild-type or paf1Δ strains at levels above the 

untagged control strain (Figure 24C).  However, Gcn4 could be detected at the ARG3 promoter 

in wild-type cells at levels higher than the untagged control (Figure 24D).  Interestingly, deletion 

of PAF1 resulted in increased Gcn4 occupancy at the ARG3 promoter (Figure 24D).  Therefore, 

similar to what I observed at the ARG1 gene, deletion of PAF1 resulted in increased SNZ1 and 

ARG3 sense transcription and increased antisense transcription traversing Gcn4 binding sites 

within the promoter.  Additionally, at ARG1 and ARG3, this is accompanied by increased Gcn4 

recruitment to the promoter.  These results suggest that Paf1 may repress ARG1, ARG3, and 

SNZ1 by inhibiting antisense transcription and/or Gcn4-recruitment at promoters.   
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Figure 24:  Paf1 inhibits antisense transcription and Gcn4 recruitment at the promoters of other 

Paf1-repressed genes. 

(A) Strand-specific RT-PCR examining SNZ1 sense transcription and antisense transcription across the promoter in 

wild-type (KY1699) and paf1Δ (KY1700) strains.  4 μl of no RT reactions (-) and 0.5 μl, 2 μl, and 4 μl volumes of 

undiluted or 1:2 cDNA were used in PCR reactions to examine SNZ1 sense and ACT1, respectively.  8 μl of no RT 

reactions (-) and 2 μl, 4 μl, and 8 μl volumes of undiluted cDNA were used in PCR reactions to examine SNZ1 

antisense transcript levels.  The data shown are representative of two independent experiments.  (B) Strand-specific 

RT-PCR examining ARG3 sense transcription and antisense transcription across the promoter in wild-type 

(KY1699) and paf1Δ (KY1700) strains.  6 μl of no RT reactions (-) and 1 μl, 3 μl, and 6 μl volumes of 1:2 cDNA 

were used in PCR reactions to examine ARG3 sense and ACT1.  The same volumes of undiluted no RT reactions and 

cDNA were used in PCR reactions to examine ARG3 antisense.  The data shown are representative of two 

independent experiments.  ChIP analysis of HA-Gcn4 occupancy at the SNZ1 (C) and ARG3 (D) promoter in wild-

type (OKA178) and paf1Δ (OKA193) cells expressing HA-Gcn4 and a strain expressing untagged Gcn4 (OKA192).  

PCR primers used in ChIP analysis amplified SNZ1 -325 to -222 and ARG3 -371 to -242, relative to their translation 

start site.  ChIP signals were quantified and normalized as described in Materials and Methods.  Shown are the 

means of three independent experiments.  Error bars represent standard error.  
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3.4 DISCUSSION 

Here I report the detailed investigation of transcriptional repression by Paf1, using the model 

gene, ARG1.   My results define regions of the ARG1 locus that confer Paf1-mediated repression.  

Specifically, I found that ARG1 expression is not influenced by the upstream gene, GPD2.  

Furthermore, the derepression that occurs in the absence of Paf1 partially requires the ARG1 

coding region.  Additionally, Paf1 mediates ARG1 repression independently of the ArgR/Mcm1 

repressor complex.  Interestingly, at the ARG1 promoter, Gcn4 occupancy is increased in paf1Δ 

cells, resulting in ARG1 derepression that is partially suppressed by deletion of GCN4 or GCN5, 

or mutation of histone H3 acetylation sites.  Together my results support a model in which Paf1 

mediates ARG1 repression by preventing Gcn4 recruitment to the ARG1 promoter and 

subsequent histone H3 acetylation.  Interestingly, I found that Paf1 prevents antisense 

transcription, which positively correlates with ARG1 sense transcription, from traversing the 

ARG1 promoter, representing a potential mechanism by which the Paf1 complex controls 

promoter accessibility and ultimately ARG1 expression.   

While investigating the effect of Paf1 on promoter occupancy of Gcn4 and Arg80, I also 

examined how Gcn4 affects Arg80 binding and vice versa.  In repressing conditions I found that 

deletion of GCN4 had no effect on Arg80 occupancy at the ARG1 promoter.  Additionally, I 

found that deletion of ARG80 resulted in increased Gcn4 recruitment, suggesting that Arg80 

inhibits Gcn4 recruitment in repressing conditions, possibly to prevent inappropriate gene 
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activation.  These observations in repressing conditions are the opposite of observations made in 

inducing conditions, in which Gcn4 and the ArgR/Mcm1 complex reciprocally stimulate each 

other’s promoter-binding (YOON et al. 2004; YOON and HINNEBUSCH 2009).  Specifically, in 

inducing conditions, Gcn4 promoter-binding is augmented by Mcm1 binding and Gcn4 

constitutively recruits a Mcm1/Arg80 heterodimer (YOON et al. 2004).  Excess arginine 

stimulates recruitment of Arg81 and Arg82, resulting in the assembly of a functional repressor 

complex (YOON et al. 2004).  In this manner, ARG1 activation by Gcn4 is quickly abrogated 

upon the addition of excess arginine.  My results suggest that once repressive conditions are 

established, Arg80 inhibits Gcn4 recruitment.           

By examining ARG1 expression when integrated at an ectopic chromosomal location, I 

have defined a region of the ARG1 locus that retains Paf1-mediated repression.  Within this 

region, I examined whether the ARG1 coding region and/or 3’ UTR is required for regulation by 

Paf1.  By replacing the ARG1 coding region with that of HIS3, I found that the derepression 

observed in the absence of Paf1 partially requires the ARG1 coding region.  Interestingly, the 

derepression that does not require the ARG1 coding region is also independent of Gcn4.  

However, derepression of native ARG1 in paf1Δ cells is partially Gcn4-dependent.  Together, 

these results suggest that Paf1 has Gcn4-independent functions that do not specifically require 

the ARG1 coding region and Gcn4-dependent roles that are conferred by the ARG1 coding 

region.  I previously demonstrated that Paf1mediates ARG1 repression partially by promoting 

histone modifications and partially through another mechanism.  Because Gcn4 has not been 

shown to influence Paf1-dependent histone modifications, this may be the Gcn4-independent 

function of Paf1.  My results suggest that antisense transcription that traverses the ARG1 
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promoter in the absence of Paf1 arises from start sites within the ARG1 coding region.  

Therefore, Gcn4-dependent functions of Paf1 may include inhibiting antisense transcription.              

ARG1 derepression in paf1Δ cells is associated with increased promoter occupancy of 

Gcn4.  Additionally, the ARG1 derepression that occurs in the absence of Paf1 is suppressed by 

deletion of GCN5 or mutation of histone H3 acetylation sites.  In activating conditions, Gcn4 

recruits several co-activators to the ARG1 promoter, including the HAT complex SAGA 

(SWANSON et al. 2003).  The catalytic subunit of the SAGA complex, Gcn5, acetylates lysine 14 

and other residues on histone H3 (GRANT et al. 1997; KUO et al. 1996). Together with SWI/SNF 

and RSC, SAGA promotes TBP- and RNA Pol II-recruitment and subsequent transcription 

elongation (GOVIND et al. 2005; KUO et al. 2000; SWANSON et al. 2003).  Therefore, by reducing 

Gcn4 occupancy at the ARG1 promoter, Paf1 may inhibit a previously defined pathway in which 

Gcn4 recruits Gcn5, resulting in histone H3 acetylation and ARG1 expression.  

In addition to its role in promoting ARG1 expression during transcriptional activation, 

Gcn5 is also required for ARG1 repression in rich media in a manner that is dependent on its 

acetyltransferase activity (RICCI et al. 2002).  Interestingly, in the presence of Paf1, mutation of 

histone H3 acetylation sites did not result in ARG1 derepression, suggesting that acetylation of 

the histone H3 residues is not required for ARG1 repression.  Therefore, Gcn5 may acetylate 

another histone residue or a non-histone protein that is required for ARG1 repression.  For 

example, Gcn5 has been shown to inhibit chromatin remodeling by the RSC complex by 

acetylating K25 of the Rsc4 subunit (VANDEMARK et al. 2007). Since RSC subunits have been 

shown to contribute to ARG1 repression (SWANSON et al. 2003), Gcn5 may mediate ARG1 

repression by acetylating Rsc4.  
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The unexpected patterns of histone modifications previously observed at ARG1 lead us to 

investigate the possibility of antisense transcription at the ARG1 locus (CRISUCCI and ARNDT 

2011).  In accordance with genome-wide studies reporting antisense transcripts arising from the 

ARG1 3’ UTR and traversing the coding region in wild-type cells (DAVID et al. 2006; XU et al. 

2009), I detected antisense transcripts crossing the ARG1 coding region.  Therefore, the histone 

modifications observed at the ARG1 locus may be laid down co-transcriptionally during 

antisense transcription; however, basal levels of ARG1 sense transcription may also contribute to 

the histone modification pattern observed at ARG1.  Additionally, although genome-wide 

analyses identified antisense transcripts arising from the ARG1 3’ UTR (DAVID et al. 2006; XU 

et al. 2009), replacement of the ARG1 3’ UTR did not eliminate antisense transcription.  

Therefore, antisense transcription may be capable of arising from multiple start sites within the 

ARG1 3’ UTR and coding region.      

Interestingly, Paf1 appears to prevent antisense transcription from traversing the ARG1 

promoter.  Since I found that antisense transcription across the ARG1 promoter positively 

correlates with ARG1 sense transcription, it is possible that Paf1 represses ARG1 by preventing 

antisense transcription across the promoter.  Since I was unable to block antisense transcription 

at the ARG1 locus by inserting a strong defined terminator sequence within the ARG1 coding 

region, I have not yet been able to directly test this hypothesis.  While antisense transcription has 

been shown to negatively regulate the transcription of coding genes (HONGAY et al. 2006; 

HOUSELEY et al. 2008; XU et al. 2011), it can also positively regulate gene expression.  For 

example, antisense transcription at PHO5 has been shown to promote transcriptional activation 

by stimulating chromatin remodeling at the promoter and subsequent RNA Pol II recruitment 

(UHLER et al. 2007).  Since I found that antisense transcription across the ARG1 promoter 
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positively correlates with ARG1 sense transcription and Gcn4 occupancy, I hypothesize that, 

similar to PHO5, antisense transcription may support promoter accessibility at ARG1, which 

could result in increased recruitment of Gcn4 and RNA Pol II in paf1Δ strains.  Unlike PHO5, I 

did not observe chromatin remodeling in the absence of Paf1.  Therefore, antisense transcription 

may promote Gcn4 recruitment by another method, such as histone modifications.  Alternatively, 

ARG1 sense transcription may promote antisense transcription in the absence of Paf1.  In this 

case, antisense transcription may not influence sense transcription or may participate in a feed 

forward mechanism to subsequently promote sense transcription.     

It would also be interesting to understand how Paf1 prevents antisense transcription from 

traversing the ARG1 promoter and whether this function of Paf1 is connected to known roles in 

transcription termination.  The Paf1 complex has been shown to be important for proper 

transcription termination of both polyadenylated and non-polyadenylated transcripts.  

Specifically, the loss of Paf1 results in altered polyadenylation site utilization and enrichment of 

3’ extended transcripts (PENHEITER et al. 2005).  Additionally, the Arndt lab has previously 

shown that deletion of PAF1 results in small nucleolar RNAs (snoRNAs) with extended 3’ ends 

(SHELDON et al. 2005).  Therefore, the Paf1 complex could prevent antisense transcription from 

traversing the ARG1 promoter by promoting proper termination of the antisense transcripts at the 

ARG1 locus.  Consistent with this hypothesis, a combination of 3’ RACE and strand-specific RT-

PCR identified longer polyadenylated and presumably non-polyadenylated transcripts in paf1Δ 

cells.  Finally, since the conserved Paf1 complex is important for human health, additional 

studies of the multiple functions of the Paf1 complex in yeast may explain some of its roles in 

transcription and disease in higher eukaryotes.   
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Table 2:  3' RACE Results 

 

 WT paf1Δ 
 Number of Clones 3’ End Position Number of Clones 3’ End Position 
 2 -69 3 -49 
 4 -66 1 -64 
 1 -65 1 -65 
 1 335 4 -66 
 7 352 7 -67 
 2 424 4 -69 

Total Clones 17  20  
 

 

Table 3:  S. cerevisiae strains used in Chapter 3. 

 

Strain Genotype 
ECY155  MATa ura3∆0 
ECY410  MATa ura3∆0 paf1∆::KanMX 
KA117  MATa ARG80-13xMYC::HIS3 gcn4∆::KanMX his3∆0  
KA118  MATa ARG80-13xMYC::HIS3 paf1∆::KanMX gcn4∆::KanMX his3∆0  
KA119  MATa ARG80-13xMYC::HIS3  his3∆0 
KA120  MATα (hht2-hhf2)::HHTS-URA3/HHFS (hht1-hhf1)∆::NatMX ura3-52 
KA121  MATα (hht2-hhf2)::HHTS-URA3/HHFS (hht1-hhf1)∆::NatMX  paf1∆::KanMX ura3∆0 
KA122  MATa (hht2-hhf2)::hhts K9A-URA3/HHFS (hht1-hhf1)∆::NatMX  ura3∆0 
KA123  MATa (hht2-hhf2)::hhts K9A-URA3/HHFS (hht1-hhf1)∆::NatMX  paf1∆::KanMX ura3∆0 
KA124  MATα (hht2-hhf2)::hhts K14A-URA3/HHFS (hht1-hhf1)∆::NatMX  ura3∆0 
KA125  MATα (hht2-hhf2)::hhts K14A-URA3/HHFS (hht1-hhf1)∆::NatMX  paf1∆::KanMX ura3-52 
KA126  MATα (hht2-hhf2)::hhts K4,9,14,18A-URA3/HHFS (hht1-hhf1)∆::NatMX ura3-52 
KA127  MATα (hht2-hhf2)::hhts K4,9,14,18A-URA3/HHFS (hht1-hhf1)∆::NatMX paf1∆::KanMX ura3-52  
KA128  MATα (hht2-hhf2)::HHTS/HHFS-URA3 (hht1-hhf1)∆::NatMX ura3-52 
KA129  MATα (hht2-hhf2)::HHTS/HHFS-URA3 (hht1-hhf1)∆::NatMX  paf1∆::KanMX ura3-52 
KA130  MATα (hht2-hhf2)::HHTS/hhfs K12A-URA3 (hht1-hhf1)∆::NatMX ura3-52 
KA131 MATα (hht2-hhf2)::HHTS/hhfs K12A-URA3 (hht1-hhf1)∆::NatMX  paf1∆::KanMX ura3∆0 
KA132 MATa (hht2-hhf2)::HHTS/hhfs K16A-URA3 (hht1-hhf1)∆::NatMX ura3∆0 
KA133 MATa (hht2-hhf2)::HHTS/hhfs K16A-URA3 (hht1-hhf1)∆::NatMX  paf1∆::KanMX ura3∆0 
KA134 MATα (hht2-hhf2)::HHTS/hhfs K5,8,12,16R-URA3 (hht1-hhf1)∆::NatMX ura3-52 
KA135 MATa (hht2-hhf2)::HHTS/hhfs K5,8,12,16R-URA3 (hht1-hhf1)∆::NatMX paf1∆::KanMX ura3∆0  
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KA139  MATa ARG81-13xMYC::HIS3 his3∆1 
KA142  MATa ARG81-13xMYC::HIS3 paf1∆::KanMX his3∆1 
KA143  MATa ARG82-13xMYC::HIS3 his3∆1 
KA146  MATα ARG82-13xMYC::HIS3 paf1∆::KanMX his3∆1 
KA155  MAT? rpb1-1  paf1∆::KanMX ura3-52   
KY803 MATα his3∆200 lys2-173R2 leu2∆(0 or 1) ura3(∆0 or 52) 
KY1343 MATα gcn5∆::HIS3 his3∆200 leu2∆1 ura3-52 trp1∆63 
KY1348 MATα gcn5∆::HIS3 paf1∆::URA3 his3∆200 leu2∆1 ura3-52 
KY1698 MATa 
KY1699 MATα 
KY1700 MATα paf1∆::KanMX 
KY1702 MATa paf1∆::KanMX leu2Δ0 ura3Δ0 
KY1703 MATa rtf1∆::KanMX 
KY1704 MATα rtf1∆::KanMX 
KY1708 MATα gcn4∆::KanMX 
KY1709 MATα arg80∆::KanMX 
KY1716 MATa set2∆::KanMX 
KY1719 MATα paf1∆::KanMX gcn4∆::KanMX 
KY1720 MATa paf1∆::KanMX arg80∆::KanMX 
KY1728 MATα GCN4-3xHA::KanMX 
KY1729 MATa GCN4-3xHA::KanMX arg80∆::KanMX 
KY1730 MATa GCN4-3xHA::KanMX paf1∆::KanMX arg80∆::KanMX 
KY1732 MATα HTA1-htb1-K123R (hta2-htb2)∆::KanMX ura3∆0 
KY1734 MATa (lyp1 -44-2035)Δ::ARG1-497-1533 arg1∆::NatMX 
KY1735 MATa (lyp1 -44-2035) Δ::ARG1-497-1533 arg1∆::NatMX paf1∆::KanMX 
KY1736 MATα ARG1p-HIS31-663  his3Δ::NatMX  
KY1737 MATa ARG1p-HIS31-663  his3Δ::NatMX paf1Δ::KanMX 
KY1739 MATa ARG1p-HIS31-663  his3Δ::NatMX gcn4Δ::KanMX ura3-52 
KY1740 MATa ARG1p-HIS31-663  his3Δ::NatMX gcn4Δ::KanMX paf1Δ::KanMX ura3-52 
KY1741 MATa gcn5∆::KanMX 
KY1743 MATα gcn5∆::KanMX 
KY1755 MATα set1∆::KanMX 
KY1871 MATa ARG1p-HIS31 -822 his3Δ::NatMX 
KY1874 MATa ARG1p-HIS31 -822 his3Δ::NatMX paf1Δ::KanMX 
KY2026 MATa paf1∆::KanMX ura3-52 
KY2112 MATa (lyp1-290-1836)Δ::ARG1-497-1263 arg1∆::NatMX 
KY2115 MATa (lyp1-290-1836)Δ::ARG1-497-1263 arg1∆::NatMX paf1Δ::KanMX 
KY2118 MATα (lyp1-290-2059)Δ::ARG1-497-1553 arg1∆::NatMX 
KY2121 MATα (lyp1-290 -2059)Δ::ARG1-497-1553 arg1∆::NatMX paf1Δ::KanMX 
KY2144 MATa ARG1::HIS3-T antisense 420 ura3Δ0 
KY2147 MATa ARG1::HIS3-T antisense 420 paf1Δ::KanMX ura3Δ0 
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OKA127 MATa ARG80-13xMYC::HIS3 his3∆0 leu2∆0 ura3∆0 met15∆ 
OKA145 MATa ARG80-13xMYC::HIS3 paf1Δ::KanMX his3∆0 leu2∆0 ura3∆0 met15∆ 
OKA178 MATa ARG80-13xMYC::HIS3 GCN4-3xHA::KanMX his3∆0 
OKA192 MATa ARG80-13xMYC::HIS3 his3∆0 
OKA193 MATa ARG80-13xMYC::HIS3 GCN4-3xHA::KanMX paf1∆::KanMX his3∆0 
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4.0  IDENTIFICATION OF TRANSCRIPTIONAL DEFECTS IN PAF1Δ CELLS 

USING STRAND-SPECIFIC HIGH DENSITY TILING MICROARRAYS 

4.1 INTRODUCTION 

Transcription termination plays important roles in regulating gene expression by promoting RNA 

Pol II recycling, preventing transcriptional interference of downstream promoters, and 

influencing transcript stability (reviewed in references GILMOUR and FAN 2008; KUEHNER et al. 

2011; RICHARD and MANLEY 2009; ROSONINA et al. 2006).  In addition to its functions during 

transcription elongation, the Paf1 complex is important for proper transcription termination 

(SHELDON et al. 2005) and RNA 3’ end formation in yeast (MUELLER et al. 2004; NORDICK et al. 

2008; PENHEITER et al. 2005).  The loss of Paf1 complex members or Paf1 complex-dependent 

histone modifications results in 3’-extended small nucleolar RNAs (snoRNAs) (SHELDON et al. 

2005; TOMSON et al. 2011b).  Furthermore, loss of Paf1 complex members results in reduced 

RNA Pol II-association of Cft1, a cleavage and polyadenylation factor (NORDICK et al. 2008), 

and altered poly(A) tail length and polyadenylation site usage, sometimes generating transcripts 

that are subject to nonsense-mediated decay (MUELLER et al. 2004; NORDICK et al. 2008; 

PENHEITER et al. 2005).  Therefore, the Paf1 complex likely plays a critical role in coordinating 

transcription with transcription termination and 3’ end processing.  Importantly, the human Paf1 

complex also promotes proper RNA 3’ end formation (NAGAIKE et al. 2011; ROZENBLATT-
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ROSEN et al. 2009), indicating that the functions of the Paf1 complex in regulating 3’ end 

formation are conserved throughout eukaryotes.   

Non-coding transcription is also becoming increasingly recognized as a powerful 

regulator of gene expression.  Such transcription can negatively regulate the transcription of 

coding genes.  For example, transcription across promoters has been shown to inhibit 

transcription of coding genes through a transcription-interference mechanism in which the act of 

transcription prevents activator binding.  Such inhibitory non-coding transcripts have been 

identified both in the sense direction at SER3 and FLO11 (BUMGARNER et al. 2009; MARTENS et 

al. 2004; MARTENS et al. 2005) and in the antisense direction at IME4 (HONGAY et al. 2006).   

Additionally, antisense transcription can cause repression of coding transcripts by creating a 

repressive chromatin environment.  For example, antisense transcription at the GAL11 locus 

leads to repression by recruiting the histone H3 K36 methyltransferase, Set2, and subsequent 

histone deacetylase (HDAC) activity (HOUSELEY et al. 2008).  Alternatively, antisense 

transcription has also been shown to positively regulate transcription of coding mRNAs.  For 

example, antisense transcription at PHO5 has been shown to promote transcriptional activation 

by stimulating chromatin remodeling at the promoter and subsequent RNA Pol II recruitment 

(UHLER et al. 2007). 

A previous genome-wide study investigated changes in gene expression that occur in the 

absence of Paf1 (PENHEITER et al. 2005).  However, the microarrays used in this study contained 

approximately 16 probes internal to each open reading frame (ORF) (PENHEITER et al. 2005) 

and, therefore, would not directly detect changes in transcription termination, polyadenylation 

site usage, or changes in transcription of novel non-coding RNAs.  Therefore, to uncover such 

transcriptional defects that occur in the absence of Paf1throughout the yeast genome, I initiated a 
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project that involved the use of strand-specific high-density tiling microarray analyses.  These 

arrays contained 6.5 million probes tiling the yeast genome that provided strand-specific 

transcript levels with 8 nucleotide resolution.  In addition to identifying individual genes whose 

proper transcription requires Paf1, the high resolution and strand-specific data allowed us to 

appreciate changes in termination, polyadenylation site usage, and non-coding transcription that 

occur in the absence of Paf1.    

4.2 MATERIALS AND METHODS 

4.2.1 Sample preparation 

100 ml cultures grown to a cell density of 1-2x107 cell/ml were harvested for RNA preparation 

by hot phenol total RNA extraction as previously described (SCHMITT et al. 1990).  100 μg total 

RNA was DNase-treated for 30 min at 37°C with DNase I (GE Healthcare).  DNase-treated RNA 

was purified using the RNeasy Mini Kit with modifications to the protocol designed to facilitate 

purification of small transcripts as described (JUNEAU et al. 2007). 25 μg purified, DNase-treated 

RNA was used in cDNA synthesis reactions containing SuperScript II Reverse Transcriptase 

(Invitrogen #18064-014), random hexamers, oligo (dT), and dNTPs as described (JUNEAU et al. 

2007).  The resulting cDNA was purified using the protocol and buffers from the QIAquick 

Nucleotide Removal Kit (Qiagen #28304) with the columns from the MinElute Reaction 

Cleanup Kit (Qiagen #28204) (JUNEAU et al. 2007).   
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4.2.2 Microarray Hybridization and Analysis 

Three independent cDNA samples prepared from wild-type and paf1Δ cells were mailed to our 

collaborator, Corey Nislow at the University of Toronto, for additional processing and 

hybridization to strand-specific high-density microarrays.  The arrays contain 6.5 million probes 

that tile each strand of the Saccharomyces cerevisiae genome, providing strand-specific genome-

wide transcript levels with 8 nucleotide resolution (DAVID et al. 2006).  Each sample was 

hybridized separately, each yielding a separate Affymetrix CEL file containing the intensity 

values for each probe.  CEL files were processed by Kara Juneau and Curtis Palm at Stanford 

University, using Affymetrix Tiling Array Software (TAS).  The resulting data are an average of 

three paf1Δ vs. wild-type comparisons.  Curtis Palm determined intervals of significance, which 

are continuous regions with significant relative signal as determined by several criteria, including 

threshold, p value, minimum run, and maximum gap.  Curtis Palm determined the threshold 

value based on changes in expression observed at known Paf1-regulated loci.  Probes with 

relative intensities with p values of 0.1 or less were included in intervals.  The minimum run 

required to specify an interval was 75 nucleotides.  The maximum gap allowed in an interval was 

50 nucleotides.  Intervals were determined irrespective of open reading frame or gene structure.  

The data were binned by Kyle Tsui and Lawrence Heilser, who provided us with 80 bins of data 

internal to each ORF and 80 bins, each 10 nucleotides in length, for 800 nucleotides both 

upstream and downstream of each ORF   
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4.3 RESULTS 

4.3.1 Identification of Paf1-regulated genes 

To uncover transcriptional defects that occur in the absence of Paf1, I prepared cDNA for 

hybridization to high resolution microarrays.  Specifically, I extracted total RNA from three 

independently grown wild-type and paf1Δ cultures, which, after DNase treatment, I used in 

cDNA synthesis reactions using both oligo (dT) and random hexamers.  Our collaborator, Dr. 

Corey Nislow, hybridized the cDNA symples to the arrays and performed the initial data 

analysis, providing us with the average log2 ratio signal intensity in paf1Δ relative to wild-type 

cells for 6.5 million probes that tile the yeast genome.  Given this large data set, one can examine 

the relative intensity for each probe individually or divide the data into bins to extract specific 

information.  For example, to examine changes in transcription within coding regions of genes, 

the signals for probes internal to coding regions were divided into 80 bins of variable length, 

relative to the length of the ORF.  Brett Tomson converted the log2 intensity to raw intensity for 

each internal bin and calculated the mean and median ratio of paf1Δ intensity relative to wild-

type for each ORF, retaining strand-specificity.  Therefore, by calculating the mean and median 

relative intensity across 80 bins for each ORF, we identified genes whose expression was altered 

in paf1Δ cells.  We obtained the mean and median signal for 6609 open reading frames (ORFs).  

From this data set, mitochondrial genes and dubious ORFs were eliminated.  Of the remaining 

5824 ORFs, 1090 genes exhibited a two-fold or more change in transcription.  Given that 19% of 

genes examined showed Paf1-dependent expression, Paf1 proves to be an important regulator of 

gene expression throughout the genome.  Of the Paf1-dependent genes, 880 genes (15%) 

exhibited a two-fold or more reduction in transcript levels (Table 4) and 210 genes (4%) 
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exhibited a two-fold or more increase in transcript levels (Table 5) (Figure 25) in paf1Δ cells. 

Therefore, while Paf1 appears to function predominantly as a positive transcriptional regulator, 

Paf1 also has important repressive roles at numerous genes.   

 

 

 

Figure 25:  Changes in transcription in paf1Δ cells. 

Pie chart depicting the number of genes whose expression increases 2-fold or more (> 2x increase), decreases 2-fold 

or more (> 2x decrease), or changes less than 2 fold (< 2x change) in the absence of Paf1.  Values indicate the 

number and percentage of genes with the appropriate change in transcription. 

 

 

 

Importantly, the array data match well with my analyses of gene expression by other 

methods, such as Northern analysis and RT-PCR.  For example, the array data indicated that 

ARG1, GAP1, SNZ1, and ARG3 were derepressed in the absence of Paf1 (Figure 26A-D).  I 

performed Northern analysis and/or RT-PCR to examine expression of each of these genes and 

found that ARG1 (Figure 26A), GAP1 (Figure 26B), SNZ1 (Figure 26C), and ARG3 (Figure 
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26D), were, in fact, derepressed in paf1Δ cells.  Additionally, as part of her rotation project, 

Sarah Hainer performed Northern analysis or RT-PCR to examine expression of five genes 

identified in our arrays as Paf1-activated (YTP1, AGP2, HBT1, NCA3, and SNO1) and six genes 

identified as Paf1-repressed (ATF2, YOR356W, YOL057W, CWP1, GDT1, and HEM15) (data not 

shown).  The expression changes that she observed by these methods correlated well with those 

indicated by our arrays.  Together, these results suggest that our array data accurately report 

transcription in wild-type and paf1Δ cells and have identified many Paf1-regulated genes.  
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Figure 26:  Integrated Genome Browser snapshots of high density microarray data at the ARG1 

(A), GAP1 (B), SNZ1 (C), and ARG3 (D) locus.  Dark green bars represent coding regions.  Red line represents 

transcript levels in wild-type cells.  Blue line represents transcript levels in paf1Δ cells.  Yellow bars depict the log2 

ratio of paf1Δ relative to wild-type.  Light green bars indicate intervals of significance as described in Materials and 

Methods.  Genes and the associated data for the Watson and Crick strand are shown above and below chromosomal 

coordinates, respectively. 
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4.3.2 Overlap between Paf1- and Gcn4-regulated genes 

The goal of my thesis has been to elucidate mechanisms by which the Paf1 complex mediates 

transcriptional repression.  To do this, I have used ARG1 as a model gene.  Interestingly, I found 

that Paf1 inhibits recruitment of the gene-specific activator, Gcn4, to the ARG1 promoter (Figure 

14A).  Furthermore, the ARG1 derepression that occurs in the absence of Paf1 is Gcn4-dependent 

(Figure 14E and F).  Therefore, I hypothesize that Paf1 may mediate ARG1 repression by 

inhibiting Gcn4, which raises the possibility that Paf1 might regulate other Gcn4-activated genes 

through a similar mechanism.  Therefore, now that we have indentified numerous additional 

Paf1-repressed genes (Table 5), I decided to ask whether other Paf1-repressed genes are also 

Gcn4-activated. 

If Paf1 regulates Gcn4-activated genes through a common mechanism, then I would 

expect many Paf1-repressed genes to also be Gcn4-activated, and vice versa.  Therefore, I 

compared genes identified by our microarray analyses to be negatively regulated by Paf1 with 

two published data sets of Gcn4-regulated genes.  The first data set includes 80 targets of Gcn4 

binding (POKHOLOK et al. 2005).  These genes exhibit Gcn4-dependent expression in nutrient 

limiting conditions, contain a conserved Gcn4 binding site in their promoter, and their promoters 

are bound by Gcn4 in vitro (POKHOLOK et al. 2005).  The second data set includes 126 Gcn4-

activated genes, which were considered Gcn4-activated if their expression was decreased at least 

1.5 fold in the absence of Gcn4 (HUGHES et al. 2000).  I found that 7 of the 80 targets of Gcn4 

binding were amongst the 210 Paf1-repressed genes (Figure 27A).  These results indicate that 

although other genes besides ARG1 are regulated by both Paf1 and Gcn4, relatively few Paf1-

repressed genes are also targets of Gcn4 binding.  Consistent with these results, I found that of 

the 126 Gcn4-activated genes, only 20 were amongst the 210 Paf1-repressed genes (Figure 27B).  
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For comparison, I examined the overlap between Paf1-activated genes and the two data sets of 

Gcn4-regulated genes.  I found that of the 880 Paf1-activated genes, 19 are targets of Gcn4 

binding and 19 are activated by Gcn4, indicating that approximately 2% of Paf1-activated genes 

are also Gcn4-activated (Figure 27C and D).  Together, these results suggest that, while Paf1 

may inhibit the action of Gcn4 at ARG1, this is likely not a common mechanism of gene 

regulation by Paf1.   

 

 

 

 

Figure 27:  Comparison of Paf1-regulated and Gcn4-activated genes 

Overlap of Paf1-repressed genes with known targets of Gcn4 binding (A) and Gcn4-activated genes (B).  Overlap of 

Paf1-activated genes with known targets of Gcn4 binding (C) and Gcn4-activated genes (D). 
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4.3.3 Identification of Paf1-regulated antisense transcription 

Given the widespread roles of the Paf1 complex in the regulation of transcription, I predicted that 

the Paf1 complex may regulate transcription of non-coding RNAs.  Since genome-wide studies 

have identified an antisense transcript at the ARG1 locus, my model locus of Paf1-dependent 

repression (DAVID et al. 2006; XU et al. 2009), I was particularly interested in determining 

whether antisense transcription occurs at other Paf1-regulated genes and whether Paf1 influences 

such transcription.  At my model gene, ARG1, visual inspection of the array data using Integrated 

Genome Browser (NICOL et al. 2009) revealed that deletion of PAF1 resulted in an increase in 

both sense and antisense transcription (Figure 18C).  Since antisense transcription positively 

correlates with sense transcription, it is possible that antisense transcription facilitates sense 

transcription.  Therefore, Paf1 could inhibit sense transcription indirectly by inhibiting antisense 

transcription at the ARG1 locus.  While I performed experiments to examine this hypothesis 

(Chapter 2), I also predicted that if Paf1 does mediate gene repression by inhibiting antisense, I 

would expect other Paf1-repressed genes to exhibit Paf1-repressed antisense transcription.   

To determine whether Paf1-regulated genes are associated with Paf1-regulated antisense 

transcription, Brett Tomson calculated the mean and median relative probe intensity for both the 

sense and antisense strands for probes internal to coding regions.  We found that of the 210 genes 

that displayed a 2-fold or more increase in sense expression in paf1Δ cells, 57 (27%) also 

exhibited a 2-fold or more increase in antisense transcription and 6 (3%) exhibited a 2-fold or 

more decrease in antisense transcription (Figure 28A).  These results indicate that a large 

proportion of Paf1-repressed genes also have Paf1-repressed antisense transcription.  In 

comparison, of the 880 genes whose expression was decreased 2-fold or more in the absence of 

Paf1, 62 (7%) displayed a 2-fold or more decrease in antisense transcription, and only 3 (0.3%) 
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had a 2-fold or more decrease in antisense transcription (Figure 28B).  These data indicate that 

Paf1-dependent changes in antisense transcription usually positively correlate with changes in 

sense transcription.  In particular, the yeast genome contains numerous loci at which Paf1 

represses both sense and antisense transcription. 

 

 

 

 

Figure 28:  Changes in antisense transcription associated with Paf1-regulated genes 

(A) Pie chart depicting the number of Paf1-regulated genes (as indicated by a 2-fold or more increase in sense 

transcription in paf1Δ cells) that are associated with antisense transcription that increases 2-fold or more (> 2x 

increase), decreases 2-fold or more (> 2x decrease), or exhibits a less than 2-fold change in paf1Δ cells (< 2x 

change).  Values indicate the number and percentage of Paf1-repressed genes with the appropriate change in 

antisense transcription.  (B) Pie chart depicting the number of Paf1-activated genes (as indicated by at least a 2-fold 

decrease in sense transcription in paf1Δ cells) that are associated with antisense transcription that increases 2-fold or 

more (> 2x increase), decreases 2-fold or more (> 2x decrease), or exhibits a less than 2 fold change in paf1Δ cells 

(< 2x change).  Values indicate the number and percentage of Paf1-activated genes with the appropriate change in 

antisense transcription. 
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Despite our promising results, it has subsequently been demonstrated that some antisense 

transcripts detected by microarray analyses may be artifacts caused by spurious second-strand 

cDNA synthesis during reverse transcription reactions (PEROCCHI et al. 2007).  Therefore, our 

array data may be an overrepresentation of Paf1-regulated antisense transcription.  To begin 

examining this possibility, I performed strand-specific RT-PCR, a method which has been used 

to distinguish between real antisense transcripts and artifacts (PEROCCHI et al. 2007).  I examined 

ARG1 and SNZ1, whose mean and median relative probe intensity showed a more than 2-fold 

increase in both sense and antisense transcription in paf1Δ cells (Figure 26A and Table 6).  

Additionally, I examined ARG3, a gene that did not meet our strict criteria, because, although 

sense transcription increased more than 2-fold in paf1Δ cells (13.82 mean, 6.58 median), the 

median antisense change was just under a 2-fold increase (mean 2.81, median 1.95).  However, 

we felt that since the mean relative probe intensity increased more than 2-fold and the median 

relative intensity was just below our cut-off value, ARG3 transcriptional changes could be 

verified.  Interestingly, my results using strand-specific RT-PCR matched well with our array 

results.  As expected, strand-specific RT-PCR detected an increase in sense transcription in 

paf1Δ cells at all three loci.  Interestingly, this method also detected an increase in antisense 

transcription over the promoters of ARG1, SNZ1, and ARG3 in paf1Δ cells (Figures 18B, 24A 

and 24B), suggesting that antisense transcription detected at these genes is not an artifact of 

second-strand cDNA synthesis.  Additionally, antisense artifacts resulting from second-strand 

cDNA synthesis would be expected to increase proportionally to increases in sense expression.  

However, despite the increase in ARG1 sense transcription in paf1Δ cells, antisense transcription 

within the ARG1 coding region does not increase in paf1Δ cells (Figure 18B), further supporting 
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my conclusion that antisense transcription at ARG1 is not an artifact.  Therefore, while the 

antisense transcription detected by our microarray analysis requires additional verification, these 

results suggest that antisense transcripts detected at these loci are not artifacts of second-strand 

cDNA synthesis.  

4.3.4 Identification of snoRNA transcription termination defects in paf1Δ cells 

The Arndt lab previously identified a role for the Paf1 complex in proper transcription 

termination and 3’ end formation of snoRNAs (SHELDON et al. 2005).  In the absence of Paf1, 

snoRNAs SNR13 and SNR47 exhibit extended 3’ ends due to reduced recruitment of Nrd1, a 3’ 

end processing factor (SHELDON et al. 2005).  Given the high resolution of the array data, I 

predicted that termination defects at other snoRNA genes could be detected.  But first, I visually 

examined the array data to determine whether this method revealed readthrough of the 

transcription termination site that was previously identified at SNR13 and SNR47 by Northern 

analysis (SHELDON et al. 2005).  At both loci, there appears to be increased transcription 

downstream of the ORF in the absence of Paf1, indicative of termination defects (Figure 29A 

and B).  However, the effect is more pronounced at SNR47, where in paf1Δ cells there is 

increased transcription beyond the SNR47 termination site, which continues into the downstream 

gene (Figure 29A and B).  While the results at SNR13 are more subtle, the results at SNR47 

match well with previously published Northern analyses detecting a 3’-extended transcript that 

continues into the downstream gene (SHELDON et al. 2005).  Therefore, although the array data 

may not detect subtle termination defects, the arrays do detect more robust or more highly 

expressed 3’-extended transcripts at loci such as SNR47.   

 



 152 

 

 

Figure 29:  Integrated Genome Browser snapshots of high density microarray data at the SNR13 and 

SNR47 loci 

Integrated Genome Browser snapshots of high density microarray data at the SNR13 (A) and SNR47 (B) loci.  Dark 

green bars represent coding regions.  Red line represents transcript levels in wild-type cells.  Blue line represents 

transcript levels in paf1Δ cells.  Yellow bars depict the log2 ratio of paf1Δ relative to wild-type.  Genes and the 

associated data for the Watson and Crick strands are shown above and below chromosomal coordinates, 

respectively. 
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To identify additional snoRNA genes whose proper transcription requires Paf1, we used 

data that was binned in increments of 10 nucleotides downstream of each ORF.  Brett Tomson 

calculated the mean and median paf1Δ/wild-type probe intensity for 20 bins (200 nucleotides) 

downstream of each snoRNA ORF.  With this analysis, Brett was able to identify snoRNA genes 

with extended 3’ ends, likely resulting from readthrough of the transcription termination signals 

in the absence of Paf1.  She found that, of 75 snoRNA genes not located within introns, 17 

(23%) exhibited at least a 2-fold average increase in transcription within 200 bases downstream 

of the gene (Table 7).  Additionally, 2 of 8 snoRNA genes located in introns, SNR191 and 

SNR54, showed a 2-fold or more increase in transcription within 150 bases downstream in paf1Δ 

cells.  Of the two previously identified snoRNAs whose termination requires the Paf1 complex, 

SNR47, but not SNR13, showed at least a 2-fold increase in transcription within the downstream 

200 nucleotides (Table 7).  Therefore, while analysis of the array data in this manner may not 

identify subtle snoRNA transcription termination defects in the absence of Paf1, we were able to 

identify several novel snoRNA genes with strong Paf1-dependent effects on transcription 

termination.  These newly identified genes will be analyzed by Brett Tomson as she uncovers the 

mechanism by which the Paf1 complex mediates transcription termination of snoRNAs.      

4.4 DISCUSSION 

Here, we used high-resolution strand-specific microarray analyses to examine genome-wide 

transcriptional defects that occur in the absence of Paf1.  In addition to identifying numerous 

genes whose proper transcription requires Paf1, we investigated the overlap between Paf1- and 
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Gcn4-regulated genes, uncovered a potential role of Paf1 in regulating antisense transcription, 

and revealed a genome-wide role for Paf1 in the transcription termination of snoRNAs.  

Together, our results report the first detailed investigation of transcriptional defects that occur 

genome-wide in the absence of Paf1. 

Our data indicate that a large portion of the yeast genome requires Paf1 for proper 

expression, indicating that the Paf1 complex has wide-spread effects on gene expression.  

Consistent with these results, strains lacking Paf1 complex members exhibit phenotypes 

associated with transcriptional defects, such as sensitivity to 6-azauracil and mycophenolic acid 

(COSTA and ARNDT 2000; SQUAZZO et al. 2002).  Of the more than 1000 genes that exhibited a 

2-fold or more change in expression in paf1Δ cells, most were positively regulated by Paf1, 

indicating that predominant function of the Paf1 complex is to promote transcription.  These 

results are not surprising, because the Paf1 complex is well-characterized as a positive regulator 

of transcription.  The Paf1 complex associates with RNA Pol II on ORFs during transcription 

elongation (KROGAN et al. 2002b; POKHOLOK et al. 2002).  Additionally, members of the Paf1 

complex are required for histone modifications that are associated with active transcription.  For 

example, Paf1 and Rtf1 are required for histone H2B ubiquitylation (LARIBEE et al. 2005; WOOD 

et al. 2003b; XIAO et al. 2005) and histone H3 K4 methylation (BRIGGS et al. 2002; KROGAN et 

al. 2003a; NG et al. 2003a; NG et al. 2003b; SUN and ALLIS 2002), histone modifications that are 

enriched on the coding regions of active genes (BERNSTEIN et al. 2002; SANTOS-ROSA et al. 

2002; XIAO et al. 2005).   

Although the majority of Paf1-regulated genes are activated by Paf1, we identified 

numerous genes that require Paf1 for transcriptional repression, indicating that the Paf1 complex 

has both positive and negative effects on transcription.  The repressive functions of the Paf1 



 155 

complex are not completely understood.  However, I have shown that Paf1-dependent histone 

modifications localize to Paf1-repressed genes, such as ARG1, GAP1, and SNZ1, and contribute 

to repression (CRISUCCI and ARNDT 2011), indicating that Paf1-dependent histone modifications 

have both positive and negative effects at different genes.  Additionally, Paf1 has repressive 

functions aside from mediating histone modifications (CRISUCCI and ARNDT 2011).  Future 

studies are required to uncover the repressive functions of the Paf1 complex.  At ARG1, I found 

that Paf1 inhibits recruitment of the activator, Gcn4, and antisense transcription across the ARG1 

promoter.  Therefore, I hypothesized that the Paf1 complex may regulate many other genes by 

inhibiting Gcn4-recruitment.  However, I found that only 3-10% of Paf1-repressed genes are also 

Gcn4-regulated.  This is only a small proportion, considering that ~ 30% of genes repressed by 

Snf1, a known repressor of Gcn4 target genes, are also Gcn4-regulated (SHIRRA et al. 2008).  

Therefore, inhibition of Gcn4 recruitment by Paf1 is probably not a wide-spread mechanism of 

transcriptional repression.   

Interestingly, we found that 27% of Paf1-repressed genes are associated with Paf1-

repressed antisense transcription.  It is possible that Paf1 represses sense transcription indirectly 

by repressing antisense transcription.  Alternatively, antisense transcription may result from 

increased sense transcription.  I attempted to examine these possibilities by using a strong 

defined terminator to block antisense transcription at the ARG1 locus.  However, antisense 

transcription failed to terminate.  Therefore, additional experiments, such as identifying and 

mutating antisense transcript promoter elements, are required to determine the relationship 

between sense and antisense transcription.   

Additionally, since performing our microarray studies, it has been shown that antisense 

artifacts in microarray analyses can result from second-strand cDNA synthesis (PEROCCHI et al. 
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2007).  Actinomycin D added to cDNA synthesis reactions has been shown to prevent antisense 

artifacts (PEROCCHI et al. 2007).  Specifically, actinomycin D prevents second-strand synthesis 

by binding single- or double-stranded DNA (GOLDBERG et al. 1962), inhibiting DNA-dependent 

but not RNA-dependent DNA synthesis (MULLER et al. 1971; RUPRECHT et al. 1973).  After 

learning of these potential experimental artifacts, I examined antisense transcription at several 

genes using strand-specific RT-PCR, a method that has been used to distinguish between real 

antisense transcripts and artifacts (PEROCCHI et al. 2007).  The array data indicated that ARG1 

and SNZ1 exhibited a 2-fold or more increase in antisense transcription in paf1Δ cells and a 

slightly more subtle increase in antisense transcription in paf1Δ cells at ARG3.  I did detect an 

increase in antisense transcription in paf1Δ cells at ARG1, SNZ1, and ARG3 with strand-specific 

RT-PCR, indicating that antisense transcripts detected at these loci are not experimental artifacts.  

However, there were inconsistencies with the 5’ and 3’ boundaries predicted by the two methods.  

For example, while the array data showed an increase in antisense transcription within the coding 

regions of ARG1, SNZ1, and ARG3 in paf1Δ cells, RT-PCR detected an increase in antisense 

transcription in paf1Δ cells in the promoters of these genes.  Additionally, while the array data 

showed that antisense transcription arises from the ARG1 3’ UTR, antisense transcription was 

still detected by RT-PCR analysis using a strain in which the ARG1 promoter and coding region 

were fused to the 3’ UTR of a heterologous gene.  This may indicate that antisense transcription 

detected by the microarrays in the ARG1 3’ UTR is the result of experimental artifacts or, 

alternatively, that antisense transcription arises from multiple start sites within the 3’ coding 

region and 3’ UTR.  Therefore, in addition to verifying antisense transcription by strand-specific 

RT-PCR, analysis of specific antisense transcripts may require mapping of both the 5’ and 3’ 

ends.  In the future, to investigate genome-wide effects of the Paf1 complex on antisense 
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transcription, we will perform high-density tiling array analyses with cDNA prepared in the 

presence of actinomycin D to prevent antisense artifacts.   

In addition to performing the cDNA synthesis for microarray analyses in the presence of 

actinomycin D, we plan to examine antisense transcription in the absence of both Paf1 and Trf4.  

Trf4 is a non-canonical poly(A) polymerase that stimulates RNA degradation by the nuclear 

exosome through its polyadenylation activity (DAVIS and ARES 2006; KADABA et al. 2004; 

LACAVA et al. 2005; VANACOVA et al. 2005; WYERS et al. 2005).  Trf4 substrates include rRNA 

and snoRNA precursors, hypomodified tRNAs, and cryptic unstable transcripts (CUTs) (DAVIS 

and ARES 2006; KADABA et al. 2004; LACAVA et al. 2005; VANACOVA et al. 2005; WYERS et al. 

2005).  Importantly, CUTs are non-coding RNAs 200-600 nucleotides in length that are often 

transcribed from intergenic regions (NEIL et al. 2009; WYERS et al. 2005) and have been shown 

to regulate expression of overlapping genes.  For example, SRG1 encodes a CUT that represses 

SER3 expression through transcriptional interference (MARTENS et al. 2005).  In contrast, 

stabilization of antisense CUTs at the PHO84 locus results in PHO84 repression by targeting 

Hda1, a histone deacetylase, to the PHO84 promoter (CAMBLONG et al. 2007).  Interestingly, 

genome-wide analysis of CUT expression indicates that numerous CUTs overlap with coding 

genes and may potentially regulate their expression (NEIL et al. 2009).  Therefore, given the 

important roles of the Paf1 complex in transcription, we hypothesize that the Paf1 complex may 

regulate expression of coding genes indirectly by modulating CUT transcription and aim to 

identify Paf1 complex-dependent changes in CUT expression by performing microarray analyses 

in the absence of Trf4.  

In addition to our investigation of Paf1-dependent changes in antisense transcription, we 

were also interested in the role of the Paf1 complex in transcription termination of snoRNAs.  
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The Arndt lab previously identified a role for the Paf1 complex in termination of SNR13 and 

SNR47 (SHELDON et al. 2005).  However, we were interested in using our high resolution array 

data to uncover additional Paf1-regulated snoRNA genes.  We found that 23% of snoRNAs 

exhibited at least a 2-fold increase in transcription within 150-200 nucleotides downstream in the 

absence of Paf1, indicative of 3’-extended transcripts resulting from readthrough of the 

transcription termination signal.  Although we will verify these results by Northern analysis, the 

fact that our analysis identified SNR47, a snoRNA gene that was previously shown to require the 

Paf1 complex for proper transcription termination (SHELDON et al. 2005), supports the validity of 

our results.  However, the analysis of our array data by this method revealed only a subtle effect 

on termination of another known Paf1 complex-regulated snoRNA gene, SNR13 (SHELDON et al. 

2005), suggesting that additional snoRNA genes may require the Paf1 complex for proper 

transcription termination.   

Together our results suggest that the Paf1 complex mediates proper transcription 

termination at multiple snoRNA genes.  However, the mechanisms by which the Paf1 complex 

promotes proper termination remain unclear.  The Paf1 complex associates with RNA Pol II on 

ORFs from transcription start site to the poly(A) site (KIM et al. 2004; MAYER et al. 2010).  

Additionally, when dissociated from chromatin, the Paf1 complex associates with RNA 

processing factors (NORDICK et al. 2008).  Therefore, the Paf1 complex may be involved in the 

exchange of transcription elongation factors for transcription termination and 3’ end processing 

factors.  Consistent with this hypothesis, the Paf1 complex promotes recruitment of the 3’ end 

processing factor, Nrd1, to SNR47 (SHELDON et al. 2005).  Additionally, histone H2B 

ubiquitylation has been implicated in regulating transcription termination (TOMSON et al. 2011b).  

Therefore, the Paf1 complex may promote proper transcription termination through histone H2B 
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ubiquitylation and its effects on chromatin structure (CHANDRASEKHARAN et al. 2009).  

Importantly, since the role of the Paf1 complex in regulating both histone H2B ubiquitylation 

and transcription termination and 3’ end formation is conserved to humans (NAGAIKE et al. 2011; 

ROZENBLATT-ROSEN et al. 2009; ZHU et al. 2005b), studies of this role in yeast will provide 

insight into important functions of the Paf1 complex in higher eukaryotes as well.   
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Table 4:  Genes with at least a 2-fold 

decrease in expression in paf1Δ samples 

 

 
Mean Median 

CWP1 0.0276845 0.0194193 
PAF1 0.1412462 0.0340056 
PHM6 0.0689984 0.0376281 
ATF2 0.0851525 0.0552353 
SPL2 0.4884391 0.0870203 
YLR040C 0.109791 0.087718 
ALT2 0.1264654 0.0968843 
MNN1 0.1357889 0.0986687 
ERD1 0.1155193 0.0994294 
FRE4 0.2158443 0.0998498 
YOL014W 0.1003965 0.102559 
YNR014W 0.1943399 0.1128453 
EST3 0.2277194 0.1251943 
PHO89 0.1251306 0.1273785 
MGA1 0.2313617 0.1273993 
TPO1 0.1717414 0.1300621 
QDR2 0.1571988 0.1335271 
YLR042C 0.1494841 0.1359078 
EHT1 0.1495972 0.136154 
HEM15 0.135667 0.1367979 
ALF1 0.2385248 0.1369215 
YOR356W 0.1776411 0.1372791 
BNA1 0.2060632 0.1380601 
ARR2 0.2095388 0.1406382 
TPO4 0.2186965 0.1446031 
PHO11 0.1484395 0.1447219 
YGL159W 0.2052221 0.1456527 
PHO12 0.1471803 0.1468982 
PNS1 0.2384121 0.151841 
SCM4 0.1602893 0.1529968 
YJR116W 0.2069322 0.1535924 
YJL107C 0.3299057 0.1542742 
YPL014W 0.1486509 0.1547438 
TIR1 0.1919615 0.1551239 

TNA1 0.156275 0.156412 
YAR066W 0.200734 0.1577907 
YHL015W-A 0.2733172 0.1585328 
ILV3 0.1664586 0.1621337 
GLT1 0.1626287 0.1636398 
YHB1 0.1610815 0.1638088 
IZH2 0.181694 0.1647138 
HXT1 0.1869366 0.168269 
SYC1 0.2647023 0.169457 
YHR214W 0.21264 0.1712034 
IZH4 0.2277966 0.1722555 
BNA5 0.2129141 0.1730214 
CYC1 0.1839164 0.1735152 
LEU1 0.17445 0.1743968 
AGA2 0.1831127 0.1750497 
YDL241W 0.193182 0.1771138 
SPC1 0.1962725 0.178301 
SUR1 0.1971178 0.1787454 
KAP122 0.1783154 0.1789604 
GDT1 0.1752983 0.1836867 
YPL279C 0.2028003 0.1849074 
ELO1 0.1736951 0.1853367 
STP4 0.2226153 0.186007 
GRX8 0.3068276 0.1860536 
RPI1 0.2156256 0.1864631 
YOR390W 0.1846687 0.1880227 
STE14 0.2122454 0.1882508 
KEI1 0.1877955 0.1887758 
ZRT2 0.2079439 0.1924463 
CYB5 0.1908644 0.1933469 
RCE1 0.2880789 0.1957069 
YBR196C-A 0.3842997 0.1982854 
YPR003C 0.33732 0.2008458 
HO 0.2555478 0.2012813 
CLN1 0.254092 0.201834 
SFK1 0.2269646 0.2037569 
MET6 0.2027162 0.2040621 
FSH1 0.211805 0.20447 
BNA6 0.2302409 0.2062215 



 161 

SEC59 0.2313272 0.2100992 
PHO5 0.2531908 0.2124548 
SEC22 0.2339079 0.2153912 
YIL082W 0.2117133 0.2163617 
YOX1 0.2336315 0.2164717 
MFA2 0.2356084 0.2192411 
FAR1 0.2227809 0.2201143 
LOT5 0.242447 0.220118 
COS9 0.3284335 0.2202987 
PCL1 0.3398363 0.2206543 
YEA4 0.2856524 0.2207443 
MDN1 0.2592024 0.2215697 
YPR116W 0.3216364 0.2232069 
HSP30 0.2487605 0.2235175 
YER156C 0.2143831 0.224037 
SST2 0.2149167 0.2279353 
NRM1 0.2712633 0.2286857 
BTT1 0.3255846 0.2324715 
ERG7 0.223209 0.2332668 
PPT1 0.2302479 0.2346698 
GPI12 0.3037369 0.235337 
HTB2 0.2473297 0.2353616 
FUR1 0.2479482 0.2356319 
CLN2 0.2396925 0.2360347 
CIN1 0.3002986 0.2360702 
FUS1 0.3090978 0.2367076 
UTR2 0.2337254 0.2376166 
YHR045W 0.2365853 0.2378036 
NMA1 0.244844 0.239952 
RAS1 0.2373103 0.2400333 
FZF1 0.3779679 0.2401741 
LYS4 0.223822 0.241143 
PEX32 0.311213 0.241496 
YLR036C 0.3054706 0.2416298 
YOR316C-A 0.3798508 0.2416906 
YJR124C 0.2389941 0.241934 
YER071C 0.298633 0.2420245 
YHR100C 0.2556756 0.2421246 
SPE3 0.2436254 0.2434973 

COX4 0.2817591 0.2440385 
PRM7 0.2835404 0.2450741 
ARO4 0.2511278 0.2460324 
YDR132C 0.4074667 0.2465182 
FCY21 0.2757269 0.246747 
YMR130W 0.3481095 0.2473929 
CHA1 0.2441055 0.2474145 
FEN1 0.2535741 0.2479499 
TOS2 0.2903647 0.2486621 
YBR220C 0.2502607 0.2495598 
GDE1 0.2853529 0.2496323 
MET22 0.240026 0.2496724 
COS10 0.2910361 0.2514451 
YPS3 0.2686691 0.2527684 
NRK1 0.4761937 0.2539043 
YBR196C-B 0.3029127 0.2540645 
PAC1 0.3816495 0.2545596 
FSF1 0.2392422 0.2552996 
IZH1 0.2544628 0.2566465 
YDR531W 0.2568528 0.2573123 
GWT1 0.2949378 0.2582889 
HUT1 0.277619 0.2584565 
YBR219C 0.3749193 0.2585975 
CSI2 0.2646807 0.2594686 
LEU9 0.2575325 0.2597981 
YKE4 0.2840537 0.2639506 
APT1 0.2626636 0.2657515 
SLP1 0.3351809 0.2665079 
SAM1 0.2678084 0.2667843 
TSC10 0.2927507 0.2667898 
NNT1 0.2995285 0.2669935 
RKI1 0.2742159 0.2677934 
BAT1 0.2698431 0.2696951 
YAR028W 0.3491465 0.2703775 
ERV15 0.2371965 0.2706143 
ARB1 0.2746416 0.2717304 
PEX31 0.3132192 0.2718504 
DIC1 0.3067513 0.2721131 
AIF1 0.2948321 0.2723192 
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HEM13 0.2817795 0.2726453 
CLB1 0.4033262 0.2735365 
OAC1 0.2823719 0.2742091 
MDE1 0.2701561 0.277065 
BAR1 0.2827246 0.2785072 
MMF1 0.2777725 0.2791495 
YPL245W 0.306075 0.2794509 
YNR061C 0.2883613 0.2795364 
GAT2 0.3177453 0.2797672 
FUS3 0.275832 0.2810107 
PTI1 0.3455491 0.2815244 
YCL047C 0.4592248 0.281735 
POP5 0.3028704 0.2821928 
YLR413W 0.2782782 0.2823966 
LSM2 0.2928684 0.2827373 
FMP42 0.2833381 0.2829727 
ALD5 0.2657011 0.283627 
YKL027W 0.3259125 0.2849538 
POP8 0.3370326 0.285239 
AGA1 0.2842295 0.2855531 
YPR147C 0.3024059 0.2862239 
HMS2 0.2728383 0.2866602 
GGC1 0.299122 0.2866995 
SAM2 0.2852748 0.2870034 
HMG1 0.2861342 0.2876417 
BNA4 0.4609369 0.2890157 
YMR259C 0.3033824 0.2909808 
HXT4 0.3712479 0.2915342 
COG2 0.4873299 0.2916154 
SUT1 0.4297516 0.2926271 
YNL108C 0.359491 0.2932931 
AAH1 0.2953568 0.2937087 
CST26 0.2839648 0.2946723 
EPT1 0.2927464 0.2947018 
PLB2 0.3104273 0.2954825 
HTA1 0.3033046 0.2957985 
VHS1 0.273432 0.2959668 
PMI40 0.2953379 0.2979668 
VTC3 0.2957263 0.2983065 

ERG28 0.3158406 0.2990994 
RMA1 0.4383593 0.2993206 
HIS1 0.293993 0.2996004 
YHR020W 0.3027558 0.2999506 
ERG5 0.2994896 0.3008408 
YEH1 0.2951851 0.3018062 
NRT1 0.3156155 0.3036455 
TEC1 0.3064984 0.3038333 
GNA1 0.3445516 0.3045935 
OST6 0.3159629 0.3046453 
HSD1 0.3129315 0.3050277 
YLR073C 0.3156501 0.3056671 
TCB2 0.3147161 0.3061979 
HEM3 0.293732 0.3068578 
ASP1 0.3073935 0.3084055 
YOL057W 0.2905938 0.3088083 
SCW10 0.3090441 0.3094568 
GPI14 0.2994006 0.3095179 
MIS1 0.3174202 0.3095286 
SRL1 0.3104772 0.3097236 
ERG24 0.3156553 0.3098015 
SPE2 0.3173947 0.3100742 
SER33 0.4674648 0.3101049 
YML018C 0.316628 0.3108218 
YPR063C 0.3225297 0.3108928 
VCX1 0.2961439 0.3109271 
CIN2 0.3353855 0.3110647 
CCP1 0.3166894 0.3118437 
YNL058C 0.306033 0.3123615 
YJL193W 0.3589765 0.313828 
ECM17 0.3318398 0.3140614 
GUK1 0.3201192 0.3146687 
MVB12 0.3250182 0.3148939 
MAL13 0.4353186 0.315167 
YGR031W 0.4399178 0.3155959 
MMP1 0.2979845 0.3161888 
TRM8 0.3272276 0.3169414 
ALG8 0.3180805 0.3170867 
YCL049C 0.4049861 0.3176105 
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HTA2 0.3245377 0.3177728 
RGD2 0.3725083 0.3180912 
SUR4 0.3098605 0.3186904 
UTP20 0.3276665 0.3187053 
FSH3 0.5003877 0.3194841 
SVL3 0.3215366 0.3198713 
YBL029C-A 0.3406953 0.3212919 
DAD3 0.4213625 0.3216099 
AFG2 0.3549013 0.3225205 
ABF1 0.3188424 0.3232045 
YIP3 0.3252131 0.3238245 
YAH1 0.3535515 0.3245756 
CIS3 0.3722841 0.3245863 
STE12 0.3253736 0.3246088 
REX2 0.3322943 0.3247877 
YOL159C 0.4967577 0.3249185 
COX6 0.3210771 0.3253287 
SIZ1 0.3817122 0.325547 
YGK3 0.3670661 0.3255516 
GRE2 0.3171516 0.325899 
GPI8 0.3349582 0.3265693 
HMF1 0.3290881 0.3273351 
ERG10 0.330559 0.3275976 
CCC1 0.354794 0.3280325 
PCM1 0.3193008 0.3281837 
YVC1 0.3742057 0.3282799 
YLR317W 0.4448664 0.3287243 
YOR296W 0.4154452 0.3293544 
ERG26 0.334844 0.3297701 
DFR1 0.4644012 0.3302697 
YDR352W 0.3159295 0.3304003 
IME1 0.4860354 0.3306994 
YMR122W-A 0.3294363 0.3308318 
URH1 0.3299284 0.3311474 
SCS7 0.3481549 0.3313211 
NHP6A 0.3116081 0.3315351 
YGL101W 0.3323491 0.3315958 
GTR2 0.4187188 0.3316944 
YDL038C 0.3260542 0.3317728 

SIM1 0.328209 0.3319842 
YNL010W 0.3342008 0.3334635 
RLI1 0.3388752 0.3335579 
FRS2 0.3225385 0.3335731 
TPO2 0.3412951 0.3340118 
AGE1 0.3526841 0.3341429 
RPB7 0.3344054 0.3342331 
VTC2 0.32259 0.3344571 
SMP3 0.3473975 0.3345283 
YDR210W 0.3401766 0.3346825 
YLR285C-A 0.3694316 0.3350913 
PAU18 0.3292873 0.3361319 
CYT1 0.3936162 0.3361688 
AAC3 0.4001589 0.3364553 
YGL194C-A 0.4743868 0.3365027 
STE23 0.309278 0.3366625 
ERG12 0.3368142 0.3370585 
YOR385W 0.3326137 0.3374658 
ARR1 0.3956126 0.3376143 
RPB8 0.3442264 0.3376663 
LAG2 0.4834488 0.3380187 
ANT1 0.3287867 0.3381235 
FMP37 0.3159113 0.3383332 
IMD2 0.3321413 0.3383584 
BUD16 0.3565465 0.3393544 
AML1 0.3324044 0.3399461 
POS5 0.3888473 0.340174 
IMD1 0.3738297 0.3403923 
COX8 0.3458603 0.3408345 
RPS14B 0.4137012 0.3417907 
YKL069W 0.3982203 0.341834 
LDB17 0.4040324 0.3418743 
GTT3 0.345975 0.3421636 
YML082W 0.3767052 0.3426077 
YCR090C 0.4128795 0.3427643 
GPI10 0.4546454 0.3428309 
YUR1 0.4418834 0.3432163 
SMF1 0.3367971 0.3433761 
SAS3 0.3947657 0.3435484 
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HEK2 0.3408912 0.3435613 
GAS3 0.345329 0.3436457 
UBP8 0.3396456 0.3438622 
ACB1 0.3396171 0.3439554 
RAM2 0.3322391 0.3441704 
YMC1 0.3777615 0.3447205 
THI22 0.4281509 0.344907 
GCN1 0.3511883 0.3451065 
PHS1 0.3447449 0.3461104 
ARG80 0.3955717 0.3461257 
YNL300W 0.3607353 0.3464486 
YNL097C-B 0.4044267 0.3476402 
YGR210C 0.3462759 0.3479822 
MRF1 0.4652197 0.3481703 
YPR071W 0.3643777 0.3482918 
SAM4 0.336023 0.3483387 
TVP38 0.3651926 0.3485784 
BOR1 0.4400389 0.3486905 
PGM1 0.3452941 0.3491218 
SPE4 0.3810866 0.349158 
EOS1 0.329499 0.3499349 
PSE1 0.3573024 0.3500247 
RPL9A 0.365184 0.3508953 
YDR307W 0.3546151 0.351439 
YDL085C-A 0.3938704 0.3515815 
GPI2 0.4322388 0.3521384 
YDL160C-A 0.4009186 0.3524707 
FUN26 0.3680858 0.352918 
BNA7 0.3721866 0.3555699 
ECM3 0.3465288 0.3559352 
TRX1 0.345451 0.3561055 
MKC7 0.3696064 0.3565366 
CAX4 0.4410691 0.3580334 
RNR1 0.3588505 0.358173 
YMR321C 0.3674727 0.3585225 
LYS5 0.4891634 0.3586956 
ERG11 0.3576955 0.3596875 
CLU1 0.3569176 0.3597382 
YNL193W 0.5037779 0.3598962 

FLD1 0.4231845 0.3599473 
TUB4 0.4007296 0.3600865 
ERG2 0.3639718 0.3601858 
GPX2 0.3556237 0.3601925 
PAU20 0.4972724 0.3605072 
RHR2 0.3935682 0.361119 
RPL26A 0.3993745 0.3611742 
DPM1 0.3633965 0.3615997 
SVS1 0.3460075 0.3624613 
ALG14 0.3871506 0.3624616 
HOM2 0.3648265 0.3625839 
YLR118C 0.3797547 0.3627873 
PSA1 0.3665732 0.3630802 
MAK3 0.4690111 0.363492 
SKI8 0.3754976 0.3637478 
PRS1 0.3597489 0.3641329 
LAA1 0.3827566 0.3641896 
YOR051C 0.3605392 0.3644426 
RPS21A 0.3838668 0.365413 
RPL27B 0.3806329 0.3658549 
OLE1 0.3607376 0.3659694 
POR2 0.3345927 0.3663939 
PRS3 0.3429026 0.3666347 
VPS28 0.5045003 0.3674678 
POA1 0.4569587 0.3674685 
RAM1 0.426984 0.3676238 
VTC1 0.3802188 0.3682524 
FAS1 0.3683849 0.3684735 
YKL033W-A 0.3452979 0.3686691 
RIB4 0.3800497 0.3697689 
CSR1 0.3781203 0.3701019 
PRS4 0.3651866 0.3702621 
YPR157W 0.4910722 0.3711944 
SUM1 0.3555076 0.3716898 
COX7 0.3455482 0.3719017 
SMM1 0.3831481 0.3738911 
INP52 0.4402673 0.3739924 
HFI1 0.452266 0.3740143 
DUT1 0.3707051 0.3744503 
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YDR341C 0.3831342 0.3746544 
LIA1 0.3627152 0.3751817 
UBP5 0.4035837 0.3752467 
ATR1 0.495184 0.3753518 
LAC1 0.3645922 0.376922 
RKR1 0.3711158 0.3785951 
MST28 0.4978139 0.3786301 
KAP95 0.3640392 0.3790027 
URA7 0.3782356 0.3791118 
RAP1 0.373723 0.3795133 
CBP4 0.4785247 0.3797846 
ITR2 0.3639749 0.380103 
RPS27A 0.3709149 0.3803651 
YDL206W 0.4556911 0.3805047 
DPH2 0.3685873 0.3805064 
OLA1 0.3670625 0.3805235 
RPL33B 0.4009244 0.3806728 
OAR1 0.4459168 0.3808504 
RPS16B 0.3773294 0.3809922 
CDC6 0.413195 0.3810514 
STE2 0.3901694 0.3813446 
STE6 0.3769969 0.3814831 
MRI1 0.3806514 0.3827276 
HNM1 0.378002 0.382907 
YLR137W 0.4643226 0.3829598 
AXL2 0.3742129 0.3834269 
RPC34 0.3889392 0.383437 
UPS1 0.4059957 0.3834512 
POL5 0.3791464 0.3835722 
IPT1 0.3892027 0.3836536 
CNA1 0.4044681 0.3840991 
ALG7 0.390725 0.3848941 
SNU13 0.3917328 0.3850734 
RPS7B 0.409343 0.3863276 
AIM29 0.3722564 0.3868421 
YIL064W 0.4007213 0.3869393 
URK1 0.3842238 0.3878872 
CTR86 0.4500514 0.3879878 
MFA1 0.3714503 0.3880283 

YPR1 0.3567686 0.3888034 
VRG4 0.3843251 0.3888342 
YNR048W 0.4474399 0.3888678 
SPT14 0.4610666 0.3889207 
MOT3 0.4257575 0.3889922 
NSR1 0.3888954 0.3891588 
YAR075W 0.3759147 0.3894113 
AIM1 0.3713901 0.3897867 
DOT1 0.5048121 0.3900382 
ISC1 0.4470212 0.3904954 
TOS1 0.3857853 0.3905198 
VBA4 0.3982554 0.390834 
SHO1 0.3668884 0.3912262 
SIR2 0.4172289 0.3913673 
SLS1 0.4197083 0.3921956 
SUN4 0.3955385 0.3929746 
LSM5 0.3672972 0.3934794 
MTO1 0.4935978 0.3935361 
SFG1 0.3663514 0.3937531 
YGL039W 0.4122699 0.3941925 
IMD3 0.4053538 0.3943175 
IGO2 0.4295338 0.3945965 
UTP10 0.3905792 0.3946444 
ILV5 0.3926278 0.3947612 
MAE1 0.3931047 0.3951218 
ADE8 0.3795718 0.3957276 
ELP2 0.3872411 0.3958744 
SPT4 0.3867453 0.3965136 
GPI11 0.4475695 0.3965235 
RPE1 0.4057734 0.3970907 
NGL1 0.4916326 0.3983924 
YDL211C 0.4850783 0.3984203 
GOT1 0.3951283 0.3984323 
HTB1 0.4010834 0.3990773 
RSC3 0.3838694 0.3993262 
ATO3 0.4087994 0.3995991 
PAU4 0.3800041 0.3996438 
RIB3 0.3896993 0.4004726 
HSL7 0.3904178 0.4005647 
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TIM18 0.4463786 0.4009063 
EMP70 0.3967502 0.4009519 
AMD1 0.3953453 0.4010466 
YCL021W-A 0.4088474 0.4015783 
HIS6 0.4223142 0.4017257 
SDO1 0.4596254 0.4018802 
YOR164C 0.4093564 0.4019287 
EFR3 0.397668 0.4021321 
MSC7 0.4141542 0.4021448 
ECM40 0.4532509 0.4030974 
RIM1 0.4024312 0.4032128 
CTF19 0.4856059 0.4033566 
PAP2 0.4833983 0.4033843 
PRS5 0.4002107 0.4037173 
TVP15 0.4858665 0.4043523 
AAT1 0.3962814 0.4048892 
HOG1 0.4065496 0.4049424 
HMO1 0.4112162 0.4049701 
GRX4 0.3881582 0.405047 
HRK1 0.4306757 0.4056065 
HIS2 0.4062212 0.4056594 
PAU10 0.4392928 0.4059752 
RPL34A 0.4170683 0.4063862 
PRY2 0.4192822 0.4066163 
MNT3 0.4200038 0.4068917 
TOM7 0.4239857 0.4071588 
GIC1 0.3831366 0.4072451 
SEC14 0.3925951 0.4074097 
DOT6 0.4051473 0.4083889 
NOP1 0.4420433 0.4087045 
TED1 0.4051528 0.4087662 
ADO1 0.408757 0.4092328 
YOL092W 0.417551 0.410007 
SUR7 0.4090755 0.4102476 
SUR2 0.4319758 0.4110942 
MNL1 0.3970632 0.4111906 
RBL2 0.4198715 0.4112844 
EXG2 0.405035 0.4114128 
PHA2 0.5032638 0.4117268 

TPO3 0.3947978 0.4117637 
SEC53 0.4216096 0.4117681 
WSC2 0.41584 0.4117996 
TYW3 0.4917095 0.4119499 
RPL31B 0.4175941 0.4120107 
FAU1 0.4213372 0.4123984 
YMR209C 0.4176171 0.4134419 
SAH1 0.4244953 0.4134481 
CWP2 0.4259248 0.4139323 
PTC2 0.4177713 0.4141068 
HPT1 0.408331 0.4143955 
YBL028C 0.3836617 0.4144052 
STO1 0.4310564 0.4147232 
NKP2 0.4589536 0.4148093 
YFH1 0.4927266 0.415496 
MHP1 0.4165477 0.4156721 
PHO13 0.4121977 0.4157345 
OSH2 0.4103819 0.4157517 
BCK1 0.4045505 0.4162496 
ATG5 0.4650359 0.4163787 
GPA1 0.4898416 0.4164877 
SDH3 0.4107061 0.4166458 
VBA1 0.4093053 0.4167109 
RPA135 0.4169995 0.4167878 
RPL13A 0.409576 0.4172961 
FAS2 0.4125122 0.4174167 
REV1 0.4606179 0.4176167 
ECM9 0.4235712 0.4181198 
MES1 0.4115569 0.4184033 
GPI18 0.5020085 0.418442 
EGT2 0.4136832 0.4187415 
PAU8 0.4337337 0.4187913 
YBR238C 0.406817 0.4188044 
PCT1 0.4754527 0.4191267 
YOR291W 0.4542498 0.4192253 
ALD6 0.422095 0.4193267 
SPI1 0.4879205 0.4196176 
CAF40 0.4109729 0.4196912 
RFC5 0.4780033 0.4200625 
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EXG1 0.4165456 0.4203571 
RPL22A 0.4257276 0.420662 
RSN1 0.4130641 0.4207145 
ILM1 0.4218145 0.4210805 
LAG1 0.4328141 0.4211599 
NTF2 0.4148838 0.4212193 
RPL8A 0.4199223 0.4223699 
YGR149W 0.49259 0.4225312 
NIS1 0.4272403 0.4226985 
RPL21A 0.4380963 0.4227275 
ALE1 0.4300072 0.4229993 
APT2 0.4209553 0.4234067 
DIA1 0.4250087 0.4235873 
SAT4 0.4251052 0.4236368 
PFA4 0.4786806 0.4237038 
ATG27 0.4040154 0.4237821 
RPO31 0.4209658 0.4242097 
ERP3 0.4540971 0.4247501 
TAZ1 0.4565143 0.4247554 
YIH1 0.4174074 0.4247801 
ECM22 0.4958408 0.4250523 
PUF4 0.432576 0.4254068 
FMP41 0.4143216 0.4255627 
GPD1 0.4127203 0.4264257 
FPR4 0.4245934 0.4267921 
HOT13 0.4378382 0.4272739 
TRM3 0.4377015 0.4272767 
TGL5 0.4028045 0.4280487 
SOL3 0.4258621 0.4281848 
ARO3 0.4274097 0.428237 
TMN3 0.432396 0.4282566 
PTK1 0.4915546 0.4282915 
YJR054W 0.4709944 0.4283323 
YCP4 0.4238781 0.4286923 
DPP1 0.4239184 0.4293418 
OST5 0.4446828 0.4293551 
SCW11 0.4351105 0.4293954 
PAU6 0.4246409 0.4295853 
DSE2 0.4245081 0.4298731 

SNF4 0.4461794 0.429947 
APS2 0.4524247 0.4300809 
YER010C 0.4330496 0.4301874 
HMG2 0.4203025 0.4313456 
VPS66 0.4226815 0.4315902 
RPS29A 0.444156 0.4317695 
SLT2 0.4427095 0.4323129 
TFB2 0.4757281 0.4326298 
NIT3 0.4209813 0.4329947 
GRH1 0.437498 0.4330067 
ADE13 0.4311985 0.4330118 
RPL36A 0.4116324 0.433213 
ATP20 0.437628 0.4332715 
TRM82 0.4373149 0.4333555 
SOH1 0.4437324 0.4337022 
ALG2 0.467762 0.4338952 
ALG6 0.4363441 0.4344004 
GAR1 0.4486699 0.435194 
LRC2 0.4741931 0.4352839 
KES1 0.4300938 0.4354858 
YHL008C 0.4937974 0.4355504 
CLB2 0.4312225 0.4358826 
ANB1 0.5005031 0.4360907 
RRP42 0.3991592 0.4361753 
UTP22 0.4330879 0.4362179 
DED81 0.4429414 0.4362519 
RPS28B 0.4277562 0.4364636 
RPS9A 0.4654613 0.4366386 
STH1 0.4395418 0.4366391 
VTC4 0.4441164 0.4366832 
TMA108 0.4509389 0.4369891 
YEA6 0.4706289 0.437062 
RPL20A 0.448093 0.4371903 
CPT1 0.4731699 0.4374068 
ERP6 0.467183 0.437446 
MCD4 0.4368007 0.4375058 
YGL036W 0.4164047 0.4376058 
MET13 0.461449 0.4376081 
ATM1 0.4199564 0.4376608 
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KEL3 0.4531397 0.4378394 
BSC1 0.4659086 0.4379131 
CPR3 0.4368689 0.4379158 
TIF6 0.4379317 0.4380009 
GCD7 0.4423691 0.4381098 
PAN6 0.4303102 0.4385006 
AVT5 0.4393719 0.4385189 
RRP8 0.4617571 0.4387821 
NSG1 0.4474171 0.438894 
GCD1 0.4446986 0.4390921 
RPL18B 0.4519712 0.4394624 
HAP4 0.460455 0.4397008 
USO1 0.4263749 0.4398056 
ARK1 0.4682736 0.4402163 
RPS21B 0.4737109 0.4404575 
TMS1 0.4340532 0.4404777 
SWD2 0.4528674 0.440546 
GAL80 0.4215076 0.440763 
SLD5 0.480411 0.4409563 
SXM1 0.4339865 0.4411856 
YPR013C 0.4351936 0.442311 
FCP1 0.451875 0.4424965 
SAD1 0.4736291 0.4426124 
YBR242W 0.4496795 0.4434342 
NIP7 0.4294932 0.4434931 
KTR1 0.4447211 0.4435811 
YMR148W 0.4650022 0.4436977 
YCL002C 0.474065 0.4437027 
YHL039W 0.4305673 0.4441324 
CDC4 0.4218328 0.444294 
RPS18B 0.456121 0.4453432 
YLR099W-A 0.4752623 0.4453701 
SMX2 0.4321613 0.4454535 
RPL43B 0.4636869 0.445582 
PDR12 0.4570097 0.4460804 
RPL16A 0.4557566 0.4464591 
PMT5 0.4668844 0.4465333 
SFT2 0.4521052 0.446746 
YKR070W 0.4663228 0.4477448 

AKR2 0.4651817 0.4478138 
YSY6 0.4550571 0.4479839 
FSH2 0.4647199 0.4480685 
SCP160 0.443373 0.4481383 
ATP17 0.4398004 0.4482804 
LOS1 0.5027257 0.4483571 
RPL18A 0.4609494 0.4485995 
YNL035C 0.4541786 0.4487688 
ERG4 0.4518133 0.4488003 
SCY1 0.4860129 0.4489164 
NTE1 0.4503564 0.4490989 
PKR1 0.446831 0.4494679 
YPD1 0.4396939 0.4494793 
HOM3 0.4373003 0.4498203 
SAS5 0.4179012 0.4499928 
MNN2 0.4408805 0.4508343 
TYW1 0.4526965 0.4508669 
ACS2 0.441013 0.4512031 
RKM1 0.4562464 0.4512277 
PHO91 0.4577447 0.4512443 
RPS18A 0.4452681 0.4512666 
YNR021W 0.4502942 0.4516419 
CHS7 0.4476278 0.451983 
PNP1 0.463167 0.4521669 
RPS9B 0.4614158 0.4521792 
RPS22A 0.4382443 0.4521897 
YHR032W 0.4489909 0.452267 
PHO84 0.4529356 0.4523663 
BEM2 0.4542347 0.452609 
RPL6B 0.4646239 0.4527386 
PHO81 0.4587544 0.4528464 
NUP159 0.442134 0.4529474 
RPS7A 0.4639369 0.4532043 
ACC1 0.4501337 0.4534766 
BDH1 0.4423651 0.4535364 
RTN1 0.4548119 0.4539054 
YCR043C 0.4615641 0.4539406 
NOP7 0.448889 0.4543365 
YDR541C 0.4635511 0.4544359 
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DAK1 0.469835 0.4545229 
GUA1 0.4577315 0.4547827 
GEF1 0.4919969 0.454808 
TSC3 0.4823391 0.4548481 
PAB1 0.4498306 0.4548804 
WSC3 0.4793051 0.455493 
RTT10 0.4838577 0.4555293 
COR1 0.4591648 0.4556273 
NIP1 0.4629731 0.4556865 
GCN3 0.4965429 0.4560346 
TRM112 0.4708191 0.4561341 
YLR466C-B 0.4564884 0.4562553 
LDB16 0.4745156 0.4562927 
YMR155W 0.4746449 0.4563414 
LCB3 0.4541843 0.4564708 
EGD1 0.4584756 0.4565991 
YHR113W 0.4583579 0.4569788 
ERG8 0.4336582 0.4571514 
PHO8 0.4579106 0.4572103 
KGD1 0.4531386 0.4572594 
HGH1 0.4656439 0.4575452 
NPY1 0.4542963 0.4575597 
HCM1 0.4327611 0.4578244 
PSD1 0.4447183 0.4583098 
SML1 0.4632215 0.4584801 
RPL21B 0.4541345 0.4588093 
PMT3 0.4659019 0.4588207 
SRP40 0.4696601 0.4589354 
RPL12A 0.4711169 0.4590342 
INP53 0.4774237 0.4592421 
ARO1 0.4577242 0.4592853 
YIP1 0.4835014 0.4593324 
RPL7B 0.4761332 0.4595077 
YMR310C 0.4420319 0.459799 
HEM1 0.4657364 0.4599028 
SBH2 0.4606304 0.4600056 
GAS1 0.4549298 0.4602299 
POL30 0.4519556 0.4603804 
RPL26B 0.4554427 0.4605618 

RPL33A 0.4794188 0.4609794 
SGE1 0.4702471 0.4612326 
RAX1 0.4619269 0.4619219 
CHS3 0.4570383 0.4620568 
ERG1 0.4595111 0.4622247 
ASI1 0.4824285 0.4624121 
URA5 0.4752444 0.4625792 
NOP9 0.4690804 0.4630292 
RPS16A 0.4477634 0.4631313 
PIR1 0.5046733 0.4631858 
DIE2 0.4581352 0.4632198 
VAS1 0.4678024 0.4635225 
YOR342C 0.4620302 0.4635294 
RFT1 0.4774448 0.4636445 
RPS19A 0.4651316 0.4638463 
MNN5 0.4756835 0.4640123 
YLR194C 0.4539789 0.4646298 
SVP26 0.461474 0.4648645 
DUG2 0.4867965 0.4653557 
ACO2 0.4924236 0.4657733 
ASH1 0.4681718 0.4660989 
WRS1 0.4630715 0.4662681 
ERV14 0.4805557 0.4664713 
RPL14B 0.5018914 0.4670043 
RFC4 0.4830479 0.4670852 
SYS1 0.4685371 0.4671166 
VMA5 0.4698942 0.467623 
YEL007W 0.4884343 0.4676803 
ECM33 0.4784267 0.4682741 
THR1 0.4603865 0.4685064 
PMT4 0.4746176 0.4685447 
RPL27A 0.4766745 0.4690239 
PCL2 0.4830651 0.469107 
SHE2 0.5067064 0.4694195 
LSG1 0.477696 0.4694732 
RPL7A 0.4645772 0.470022 
ORM1 0.4555315 0.4706549 
CHS1 0.4586234 0.4708796 
PMD1 0.5011916 0.4713447 
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KTR3 0.456018 0.4714501 
ADD66 0.4997563 0.4715671 
RPS11B 0.4775724 0.4718281 
DDP1 0.4575656 0.4724205 
RPL6A 0.4962531 0.4728321 
ADE5,7 0.4715983 0.472935 
GMH1 0.4668002 0.4733622 
VMA9 0.4785847 0.4734493 
TBF1 0.4641474 0.4740549 
MET17 0.4641541 0.4740874 
OTU1 0.4946063 0.4744238 
AFG1 0.455973 0.4747309 
TIF4631 0.4705696 0.4755179 
DBP3 0.4622908 0.4758577 
REB1 0.4602914 0.4762133 
CPR5 0.4801533 0.4765744 
CWH41 0.485561 0.4769018 
RET2 0.4821778 0.4770513 
PEX2 0.4633455 0.4772052 
RPL34B 0.476773 0.4774219 
UTR4 0.4622241 0.4776105 
COG1 0.4770072 0.4778229 
SCS2 0.4845449 0.4780726 
RPS24B 0.5007784 0.4783151 
RPL14A 0.4983811 0.4796321 
CRH1 0.485102 0.4797884 
QCR8 0.4880829 0.4798848 
RPS11A 0.5004478 0.4800146 
RPA190 0.4823566 0.480733 
SEC7 0.4821798 0.4810464 
RER1 0.4894063 0.4814007 
GIS2 0.4819285 0.48151 
RPL16B 0.504692 0.4816087 
MRS3 0.4836475 0.4817593 
PMT1 0.4802685 0.4819713 
LAS21 0.4853395 0.4823514 
RPS0A 0.4871379 0.4826221 
MPD1 0.4852304 0.4826692 
TRZ1 0.4840373 0.482681 

FAA4 0.4895356 0.4828555 
LEU4 0.4790477 0.4832329 
KRE27 0.4943362 0.4832383 
ORM2 0.4858213 0.4832435 
RRP5 0.4856031 0.483379 
URB2 0.4884205 0.4837229 
TMA19 0.490883 0.4837723 
RNR2 0.4846058 0.4840307 
ERP4 0.4916645 0.4840719 
YHR078W 0.4823711 0.4851821 
MID1 0.486631 0.485498 
RPS2 0.5062868 0.4856318 
COX5A 0.4784618 0.4856582 
CMK2 0.4891345 0.4859698 
YHR175W-A 0.4882798 0.4861668 
ARO2 0.482775 0.4862402 
LRC1 0.5040619 0.4865479 
YLR342W-A 0.4449526 0.4865586 
YGR035W-A 0.460374 0.4866387 
RPS26B 0.4654814 0.4868773 
RPL36B 0.4810615 0.4874903 
RPL20B 0.4916371 0.4875966 
RPL8B 0.4746629 0.4879403 
BLM10 0.4815797 0.4888318 
HTZ1 0.4953201 0.4891719 
RPL17B 0.4959537 0.4898459 
RPS3 0.4927777 0.4900817 
HAS1 0.5052765 0.4905168 
IRC21 0.4934668 0.4908083 
RPL29 0.4859097 0.4909509 
ERI1 0.4845532 0.4912684 
AST1 0.486676 0.491349 
ADK1 0.4872068 0.4915423 
RPS14A 0.5016199 0.492083 
SUP45 0.4817769 0.4923916 
RPL23A 0.4938049 0.493675 
DYN2 0.5020944 0.4938712 
STT4 0.4896448 0.4941468 
RSP5 0.4941224 0.4943716 



 171 

HHT2 0.5056277 0.4945883 
URB1 0.5057695 0.4950262 
YKL215C 0.479265 0.4952145 
CLA4 0.5062269 0.4953385 
TMA7 0.4739332 0.495577 
TUB2 0.5009129 0.4963189 
HHF2 0.5035001 0.4963272 
AVT1 0.4844744 0.4964476 
SSH1 0.5000507 0.4966168 
RPL42B 0.4842137 0.4966801 
RPL13B 0.5021062 0.4968802 
CBF5 0.4974996 0.4970558 
DSE1 0.4939589 0.4972757 
MVD1 0.4878789 0.4973979 
SAN1 0.4846829 0.4974329 
HEM12 0.5001099 0.4978953 
YCR024C-B 0.4928656 0.498269 
GDS1 0.5014768 0.498275 
IRC22 0.4984242 0.4987666 
KAP123 0.5023901 0.4992161 
CDC42 0.4918415 0.5008609 
UBC9 0.4986912 0.5008915 
VNX1 0.5017304 0.5019131 
YGR203W 0.4724045 0.5023768 
TCB3 0.4985425 0.5024617 
GSH2 0.5010269 0.5035297 
KRE33 0.4945982 0.5036318 
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Table 5:  Genes with at least a 2-fold 

increase in expression in paf1Δ samples 

 

 
Mean Median 

DDR2 138.31699 46.04513 
NCA3 33.225957 25.714021 
SNZ1 35.067324 19.271385 
PUT1 23.224952 14.530925 
DUR3 20.178639 12.672053 
BOP2 18.429691 11.65312 
HSP12 38.871708 11.592689 
HSP26 15.222772 11.249152 
YJL133C-A 12.209236 10.701516 
GAP1 15.166057 10.699591 
ARG1 12.518081 9.7348137 
YDR042C 14.130253 9.1070049 
AMS1 11.791441 8.6086927 
SPG4 9.6018859 8.4637089 
FMP23 18.212573 8.2459106 
PDH1 8.7906547 7.6177654 
YOR338W 12.886853 7.4962453 
MOH1 11.809309 7.4892781 
FIT1 15.691019 7.442703 
YKR104W 11.093183 7.3058085 
SNO1 17.567334 7.202236 
YJR005C-A 10.905793 6.7535061 
ARG3 13.819376 6.5752781 
NFT1 9.149295 6.2542708 
GSC2 6.3315013 6.242731 
YLR149C 8.408691 6.1709539 
TMT1 7.8750407 5.6344007 
ARN1 6.1032578 5.5232879 
YTP1 12.211515 5.514506 
HXK1 9.4971127 5.486294 
FIT3 5.7066994 5.4846008 
MEP2 10.061923 5.469235 
FIT2 6.3147652 5.301455 
GPH1 8.4628101 5.2832653 

AGP2 9.3182783 4.9839788 
NCE103 4.9840503 4.9548079 
BIO5 8.8969086 4.8593282 
YGP1 5.0122531 4.8012264 
SER3 5.2381874 4.6784904 
XBP1 7.4894595 4.6538404 
YBL048W 18.653788 4.5153881 
TMA10 7.1532913 4.4544995 
DAN1 8.5148917 4.4246676 
HSP78 5.5698621 4.3800949 
MSC1 8.2483889 4.3649036 
VID24 5.3421683 4.272981 
CRC1 6.1807535 4.2723088 
REC104 7.6202022 4.1884119 
YNR064C 7.0934888 4.1720999 
YGR066C 4.9376413 4.118305 
QNQ1 6.5343183 4.117359 
ARN2 4.22117 4.1080765 
HMX1 5.1123691 4.0387771 
YJR151W-A 4.594219 3.8919593 
RTN2 7.8541578 3.8899906 
TIS11 3.8775429 3.8405724 
GLC3 5.7912028 3.8170847 
YHR007C-A 6.6398984 3.7851225 
ZRT1 3.6604026 3.5972667 
YLR346C 6.6046424 3.5859097 
YHL048C-A 5.8620725 3.4802236 
HPF1 3.5268772 3.4281138 
AGP1 3.6538503 3.4164468 
VHT1 3.6763914 3.3996846 
CCC2 4.0998303 3.3878412 
YDL159C-B 4.663435 3.3494655 
YER039C-A 4.1154066 3.3219331 
YMR196W 5.0823834 3.2621066 
CIT2 3.1481988 3.1868975 
LAP4 3.8118158 3.1690258 
HBT1 4.5028108 3.1239502 
YNL018C 3.8294331 3.0955017 
HBN1 5.1082514 3.0846118 
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YMR090W 7.3607522 3.0643528 
SPS19 5.0186973 3.0551178 
GCY1 5.4912184 3.0432511 
YNL162W-A 4.5593539 3.0368443 
PCA1 3.8577185 3.0230353 
SAG1 3.6371191 3.0107068 
UBI4 2.9796257 2.9874982 
GOR1 5.1633078 2.9871839 
YHR212W-A 7.4876201 2.9855913 
YPL056C 4.6474027 2.9593325 
NQM1 5.2715403 2.9401299 
YLL053C 4.3308016 2.9322267 
UBC8 5.5716397 2.9296466 
YNL034W 3.8912194 2.9138372 
FMP45 4.5113419 2.8998138 
GSP2 2.9633722 2.8845957 
GAD1 4.0540435 2.876031 
YPL135C-A 5.2431158 2.8710929 
ARO10 4.4959031 2.8709022 
YKL071W 4.0608739 2.8457111 
ADR1 3.68638 2.8093319 
PRY1 2.9932988 2.8001234 
GAC1 3.8811518 2.7827099 
YNL019C 6.0915676 2.7591051 
GTO3 4.781657 2.7492945 
ERR2 4.6954942 2.7421263 
YFL041W-A 4.8747225 2.7146878 
YNR062C 6.6946945 2.7137778 
GCV1 3.0243097 2.7136885 
OPI3 2.8063588 2.7078353 
YLR162W-A 3.4903943 2.696821 
AIM30 4.2629805 2.6626172 
GDH2 3.0079121 2.6291931 
GTT2 4.1667084 2.6084631 
UGA1 3.1591785 2.6007533 
PRB1 2.6791671 2.5891479 
YHR159W 3.7969809 2.5837856 
YOR062C 4.6746638 2.5813058 
GPG1 4.527712 2.5810594 

PEX21 4.2684361 2.5809575 
YPL205C 3.9237796 2.5478323 
FMP40 3.7925087 2.5450737 
SLF1 3.0771681 2.5345567 
YFL054C 4.3350591 2.5242257 
UIP4 4.6301137 2.5235787 
TAR1 10.646738 2.5186081 
SHY1 3.4573669 2.5017694 
VMR1 2.6162073 2.497355 
UGA2 5.6018433 2.4914812 
ERR1 5.1617793 2.4912791 
YIR014W 4.7124553 2.4784734 
ALD4 2.7186473 2.4776522 
YLR154C-H 2.862514 2.4761166 
YGL117W 4.6943457 2.4708334 
RAD34 4.2043374 2.4610549 
GDB1 2.9102455 2.4570973 
RTS3 7.8926552 2.4533238 
FRE3 3.0167088 2.4530066 
ATG3 3.4957632 2.4523643 
GPM2 5.0486291 2.4511391 
CIT1 2.4637186 2.4413557 
ATG8 3.217515 2.4411901 
STB2 3.4019413 2.4366993 
BSC4 3.941631 2.4339845 
TSL1 2.8452971 2.4269097 
IRC15 4.2747104 2.4263088 
ATG9 3.0099995 2.4213345 
YOR389W 3.4586808 2.4189314 
AQY2 5.4269439 2.4188694 
MRPS17 3.8156229 2.4058428 
STF1 4.2755917 2.3968077 
PUG1 3.9367526 2.3949463 
YAT2 3.0592724 2.3921762 
YOR381W-A 2.9308089 2.3910981 
GRE1 4.6334924 2.3901443 
NDE2 3.0600755 2.3786066 
PGM2 3.8670329 2.3744017 
YOR059C 3.2750997 2.3588835 
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YKL100W-A 3.8725653 2.3553912 
BIO3 3.4505177 2.3391833 
YKL070W 3.2812326 2.3370862 
LIN1 4.0657558 2.3311686 
YIL169C 2.5538143 2.324625 
ECM13 3.3880968 2.320223 
RIM8 2.8055877 2.3174904 
SAW1 3.2496478 2.3013074 
NTH1 2.6066364 2.2994305 
EMP46 3.9611436 2.2952805 
NTG1 3.1161343 2.2927277 
ERR3 4.5716276 2.2894245 
MEP1 3.900857 2.2836222 
RAD26 2.9399384 2.2655819 
DLD1 2.9430055 2.2590314 
CYB2 2.9351542 2.2512314 
SPG5 2.3486275 2.2420535 
FRE5 3.3390642 2.2354836 
FRE2 3.2224619 2.2280311 
CIS1 2.6959422 2.2034235 
BAT2 2.2366618 2.1968164 
RMD6 3.5812521 2.196033 
FMP16 4.8545288 2.1829413 
YOR072W-B 5.8795071 2.177849 
YOR020W-A 2.3430543 2.1743486 
FET5 2.2612086 2.1629999 
GDH3 4.0406395 2.1541461 
HSP32 2.7053519 2.144927 
DAS1 2.2204371 2.1251482 
YIR021W-A 2.588517 2.124716 

FMP46 2.2415187 2.1234301 
YKL151C 3.1472755 2.1230992 
SIT1 2.1750787 2.1213435 
YGR110W 3.4089735 2.1206411 
YOL131W 2.5782685 2.1163624 
YKR011C 2.6987109 2.1154905 
YNR073C 3.5196715 2.1154611 
PKP1 3.1761737 2.096655 
SKS1 2.9285955 2.0951028 
YFR026C 3.7580766 2.0943795 
YKL133C 3.0841337 2.0918017 
YPL277C 2.8340073 2.0906763 
GSY2 2.3643764 2.0891603 
YCL048W-A 4.9175206 2.0864206 
SGA1 4.6547419 2.0783328 
SUE1 3.6065823 2.0667573 
GIP1 2.9249061 2.0611763 
SIP18 3.1209377 2.0588535 
ATG11 2.5092949 2.0532223 
YER053C-A 2.8079373 2.0474375 
PDR10 2.696969 2.036653 
MPM1 2.9587711 2.0221513 
NTR2 5.0276437 2.0217209 
YPS5 3.9589012 2.0165057 
YDR034W-B 3.0928237 2.016048 
ACS1 3.4421275 2.0110886 
RPM2 2.5873943 2.0096479 
YMR105W-
A 2.8066023 2.0068415 
YGL235W 3.8090614 1.995993 
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Table 6:  Genes with both antisense and sense transcription that increases 2-fold or more in paf1Δ 

samples 

 

 
Sense Antisense 

 
Mean Median Mean Median 

SNZ1 35.0673 19.271385 24.4578 17.8892 
BIO5 8.89691 4.8593282 25.9281 14.1525 
ARN1 6.10326 5.5232879 18.1717 9.58563 
FIT1 15.691 7.442703 17.1243 8.47485 
GSC2 6.3315 6.242731 11.1761 8.30162 
FIT3 5.7067 5.4846008 37.7441 7.77783 
SER3 5.23819 4.6784904 9.13471 6.60349 
HXK1 9.49711 5.486294 12.1304 6.21254 
UBI4 2.97963 2.9874982 9.8144 6.12185 
ARN2 4.22117 4.1080765 9.13247 6.06205 
VID24 5.34217 4.272981 9.45838 5.97539 
NCE103 4.98405 4.9548079 8.04875 5.82293 
GAP1 15.1661 10.699591 8.67477 5.77226 
CIT1 2.46372 2.4413557 6.78752 5.40284 
ZRT1 3.6604 3.5972667 6.70324 5.09684 
CCC2 4.09983 3.3878412 6.10174 4.53803 
ATG8 3.21751 2.4411901 5.60537 4.35804 
CIT2 3.1482 3.1868975 7.19608 4.21616 
TIS11 3.87754 3.8405724 5.76307 3.94378 
AGP2 9.31828 4.9839788 7.23619 3.69733 
VHT1 3.67639 3.3996846 7.21619 3.68972 
FIT2 6.31477 5.301455 13.0138 3.62395 
PRY1 2.9933 2.8001234 5.22176 3.61219 
PCA1 3.85772 3.0230353 5.10096 3.58492 
LIN1 4.06576 2.3311686 5.84167 3.56112 
BAT2 2.23666 2.1968164 5.26854 3.34669 
SAG1 3.63712 3.0107068 5.97305 3.31909 
FET5 2.26121 2.1629999 3.81419 3.20513 
ARG1 12.5181 9.7348137 4.50007 3.13606 
GDH2 3.00791 2.6291931 4.09426 3.11973 
OPI3 2.80636 2.7078353 5.05556 3.03051 
VMR1 2.61621 2.497355 4.47797 3.01966 
GCV1 3.02431 2.7136885 6.07017 2.96037 
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ALD4 2.71865 2.4776522 3.84931 2.85332 
YGP1 5.01225 4.8012264 3.97525 2.83087 
SIT1 2.17508 2.1213435 3.11609 2.8305 
YKR104W 11.0932 7.3058085 4.90479 2.79279 
PRB1 2.67917 2.5891479 4.40813 2.78586 
DAS1 2.22044 2.1251482 4.18573 2.70718 
YJL133C-A 12.2092 10.701516 5.02354 2.69861 
TSL1 2.8453 2.4269097 3.47295 2.67098 
YOR072W-B 5.87951 2.177849 3.3548 2.55611 
ADR1 3.68638 2.8093319 3.54746 2.52455 
UGA1 3.15918 2.6007533 4.35325 2.52042 
YHR159W 3.79698 2.5837856 3.22359 2.51946 
AGP1 3.65385 3.4164468 4.45427 2.47097 
GSP2 2.96337 2.8845957 3.79007 2.38103 
SPG5 2.34863 2.2420535 3.6919 2.30831 
NFT1 9.1493 6.2542708 3.73107 2.2696 
SKS1 2.9286 2.0951028 3.73765 2.25729 
FRE3 3.01671 2.4530066 3.05838 2.15067 
HSP78 5.56986 4.3800949 4.31024 2.12667 
BSC4 3.94163 2.4339845 2.82425 2.08866 
MEP2 10.0619 5.469235 2.86143 2.08457 
YER053C-A 2.80794 2.0474375 1.9998 2.08089 
YOR059C 3.2751 2.3588835 3.00299 2.08012 
ERR1 5.16178 2.4912791 2.96796 2.00714 
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Table 7:  snoRNAs exhibiting Paf1-dependent termination 

 

 
Mean 

SNR48 8.60394 
SNR71 6.28089 
SNR161 4.7699 
SNR45 4.31242 
SNR60 3.85685 
SNR6 3.78078 
SNR81 3.75334 
SNR85 3.52054 
SNR64 3.05996 
SNR32 2.89057 
SNR79 2.82628 
SNR47 2.32781 
SNR53 2.30485 
SNR42 2.29291 
SNR33 2.1752 
SNR56 2.1287 
SNR7-L 1.95333 
SNR7-S 1.9113 

 

 

Table 8:  S. cerevisiae strains used in Chapter 4 

 

Strain Genotype 
ECY151   MATa leu2∆0 ura3∆03 
ECY58    MATa paf1∆::KanMX leu2∆0 ura3∆03 
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5.0  CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 CONCLUSIONS 

The Paf1 complex is a conserved transcription elongation complex that is required for proper 

gene expression.  The Saccharomyces cerevisiae genome contains numerous Paf1 complex-

activated genes and those that require the Paf1 complex for repression (PENHEITER et al. 2005).  

Many of the known functions of the Paf1 complex are associated with its role as a positive 

transcriptional regulator.  For example, the Paf1 complex stimulates transcription of a chromatin 

template in vitro (PAVRI et al. 2006).  In vivo, the Paf1 complex is enriched on actively 

transcribed coding regions (KROGAN et al. 2002b; MAYER et al. 2010; POKHOLOK et al. 2002; 

WADE et al. 1996) and is required for histone modifications that are associated with active 

transcription (CHU et al. 2007; KROGAN et al. 2003a; NG et al. 2003a; NG et al. 2003b; WOOD et 

al. 2003b).  However, the role of the Paf1 complex as a negative regulator of gene expression has 

remained largely unstudied.  Therefore, my thesis work is the first examination of the repressive 

functions of the Paf1 complex.   

Since very little is known about the repressive role of the Paf1 complex, I decided to 

perform a detailed analysis of a model locus of Paf1 complex-dependent repression.  It was 

previously shown by a genome-wide expression study that ARG1 requires Paf1 for repression.  

However, I confirmed these results using Northern analysis and determined that other members 
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of the Paf1 complex also contribute to ARG1 repression.  Specifically, Paf1 and Ctr9, and to a 

lesser extent, Rtf1 and Cdc73, are required for ARG1 repression.  Using ARG1 as a model gene, I 

determined which previously known roles of the Paf1 complex contribute to ARG1 repression, 

examined the effects of the Paf1 complex on gene-specific regulatory proteins, and analyzed the 

effect of the Paf1 complex on the chromatin environment at the ARG1 locus.  Additionally, my 

results have implicated the Paf1 complex in the transcription of non-coding RNAs.  Importantly, 

I observed similar effects of the Paf1 complex at other genes, suggesting that the Paf1 complex 

mediates repression of a subset of genes through similar mechanisms.  Finally, I obtained a high-

resolution view of Paf1-dependent transcription across the entire yeast genome using high-

density tiling microarray analysis. 

5.1.1 Genome-wide analysis of Paf1-dependent transcription using high-resolution 

microarrays 

In collaboration with Corey Nislow (University of Toronto), I initiated a project that involved the 

use of high-resolution microarrays to examine transcriptional changes observed in the absence of 

Paf1.  Data analysis by Brett Tomson and members of the Nislow lab enabled the identification 

of many genes that require the Paf1 complex for proper expression.  Paf1 appears to function 

predominantly as a positive regulator of transcription, however many genes require Paf1 for 

repression.  We also found that Paf1 appears to regulate antisense transcription at several genes.  

Furthermore, we revealed a genome-wide role for Paf1 in the transcription termination of 

snoRNAs.  These data will likely prove useful for future analyses of the roles of the Paf1 

complex in regulating the transcription of both coding and non-coding RNAs. 
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5.1.2 The role of the nascent RNA in regulating gene expression 

Transcription is tightly coupled to RNA biogenesis, as proteins involved in 5’ capping, splicing, 

and 3’ end formation are recruited to the nascent RNA in a co-transcriptional manner (reviewed 

in RONDON et al. 2010).  Along with RNA processing factors, a host of other proteins associate 

with the nascent RNA to protect it from degradation and facilitate nuclear export, forming a 

messenger ribonucleoparticle (mRNP) (reviewed in RONDON et al. 2010).  Not only does 

transcription stimulate mRNP formation, but mRNP formation regulates transcription through a 

feedback mechanism (reviewed in RONDON et al. 2010).  For example, mutations in the 

THO/TREX complex, which regulates mRNP biogenesis, cause defects in mRNP formation that 

are associated with impaired transcription elongation (CHAVEZ and AGUILERA 1997; MASON and 

STRUHL 2005; RONDON et al. 2003).  The reduced transcription elongation in these mutants may 

be explained by the increased formation of R-loops, which are DNA:RNA hybrids formed 

between the DNA template strand and the nascent RNA (GOMEZ-GONZALEZ and AGUILERA 

2007; HUERTAS and AGUILERA 2003).  R-loops have been shown to impede transcription 

elongation by inhibiting the passage of the polymerase (BENTIN et al. 2005; TOUS and AGUILERA 

2007).  Additionally, it has been proposed that the malformation of mRNPs may block 

transcription by the preventing release of the polymerase or by triggering RNA quality control 

pathways (reviewed in RONDON et al. 2010).  While it is not completely understood how 

malformed mRNPs are recognized, changes in transcript polyadenylation may be indicative of 

defects in mRNP biogenesis, as defects in mRNP formation have been shown to result in 

extended poly(A) tails (HILLEREN and PARKER 2001; JENSEN et al. 2001).   

Interestingly, the Paf1 complex plays roles in RNA biogenesis which could implicate it in 

mRNP formation.  For example, yeast strains lacking Paf1 complex members exhibit altered 
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poly(A) tail length and reduced recruitment of 3’ end formation factors (MUELLER et al. 2004; 

PENHEITER et al. 2005; SHELDON et al. 2005; TOMSON et al. 2011a).  Furthermore, members of 

the Paf1 complex exhibit RNA binding activity (DERMODY and BURATOWSKI 2010).  Finally, 

Paf1 was found to genetically and physically interact with Hpr1, a component of the THO 

complex, suggesting that the two complexes may have overlapping functions (SHI et al. 1996).  

While further work is required to determine whether the Paf1 complex plays a critical role in 

mRNP biogenesis, it is interesting to speculate that, if so, the Paf1 complex could regulate 

transcription indirectly by influencing mRNP formation. 

5.1.3 The Paf1 complex mediates ARG1 repression in cis. 

Several lines of evidence suggest that the Paf1 complex may be a direct repressor of ARG1 

transcription.  First, analysis of ARG1 expression in single and double mutant strains suggested 

that the Paf1 complex mediates ARG1 repression independently of the gene-specific repressor, 

Arg80.  Paf1 also had no effect on Arg80 protein levels and had only minor influence on the 

expression of other members of the ArgR/Mcm1 repressor complex.  Therefore, it is unlikely 

that the Paf1 complex mediates ARG1 repression indirectly through the ArgR/Mcm1 repressor 

complex.  Furthermore, ChIP analysis detected the Paf1 complex on the ARG1 coding region, 

which is consistent with a direct repressive function.   

ChIP analysis also detected low levels of RNA Pol II at the ARG1 promoter and coding 

region, possibly due to low levels of ARG1 sense and/or antisense transcription that occurs in 

rich media.  As expected, in inducing conditions, RNA Pol II levels increased across the ARG1 

coding region.  Interestingly, at the promoter, RNA Pol II levels were unexpectedly high, 

especially in repressing conditions.  These results may be indicative of a paused polymerase at a 
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promoter-proximal region.  Only low levels of Paf1 and Rtf1 were observed at the ARG1 

promoter, suggesting that the majority of the polymerase at the promoter is not associated with 

the Paf1 complex.  Conversely, the RNA Pol II levels observed at 5’, middle, and 3’ coding 

regions of ARG1 in both repressing and inducing conditions appear to be associated with similar 

levels of Paf1 complex, suggesting that the majority of the polymerase within the coding region 

is associated with the Paf1 complex.  These results may indicate that the Paf1 complex facilitates 

promoter escape or the release of paused polymerase at the 5’ coding region.   

5.1.4 Paf1 complex-dependent histone modifications are enriched at the ARG1 locus and 

contribute to repression. 

The Paf1 complex is required for the methylation of several residues on histone H3 (K4, K36, 

and K79) (CHU et al. 2007; KROGAN et al. 2003a; NG et al. 2003a; NG et al. 2003b; WOOD et al. 

2003b).  To determine whether the Paf1 complex mediates ARG1 repression by promoting 

histone H3 methylation, I examined ARG1 transcript levels in the absence of Set1, Set2, and 

Dot1, the histone H3 K4, K36, and K79 methyltransferases, respectively.  I found that Set1, but 

not Set2 or Dot1, was required for ARG1 repression, implicating histone H3 K4 methylation in 

ARG1 repression.  However, histone H3 K4 methylation is often associated with actively 

transcribed regions.  Therefore, I performed ChIP analysis to determine whether histone H3 K4 

di- and trimethylation is enriched at the ARG1 locus.  Indeed, histone H3 K4 di- and 

trimethylation were detected at the ARG1 promoter and coding region, suggesting that histone 

H3 methylation is present at ARG1 in repressing conditions and contributes to ARG1 repression.   

Histone H3 K4 di- and trimethylation occur downstream of histone H2B K123 

monoubiquitylation by Rad6 and Bre1.  Therefore, I asked whether the upstream mark is 
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required for ARG1 repression.  The loss of histone H2B ubiquitylation upon deletion of RAD6 or 

BRE1 or mutation of the ubiquitylation site (htb1-K123R) resulted in ARG1 derepression.  

Therefore, the Paf1 complex mediates ARG1 derepression through histone H2B ubiquitylation 

and downstream H3 K4 methylation.  Consistent with these results, the analysis of several Rtf1 

mutant strains indicated that the Rtf1 histone modification domain is required for ARG1 

repression.   

However, the loss of histone H2B ubiquitylation and H3 K4 methylation cannot entirely 

explain the derepression that occurs in paf1Δ cells, because deletion of PAF1 resulted in higher 

levels of ARG1 mRNA than deletion of SET1 or BRE1 or the htb1-K123R mutation.  Analysis of 

ARG1 transcript levels in htb1-K123R and htb1-K123R rtf1Δ cells, however, suggested that Rtf1 

mediates repression in the same pathway as histone H2B ubiquitylation.  Therefore, while Rtf1 

mediates ARG1 repression primarily through histone H2B ubiquitylation and H3 K4 methylation, 

Paf1 mediates ARG1 repression partially through histone modifications and partially through 

another mechanism.  Importantly, analysis of several mutant strains revealed similar effects on 

the expression of ARG1, GAP1, and SNZ1, pointing toward similar mechanisms of repression at 

all three loci.    

5.1.5 Paf1 complex subunits differentially contribute to ARG1 repression. 

My detailed analysis of the role of Paf1 and Rtf1 in ARG1 repression raises the question of why 

different Paf1 complex subunits are required to different degrees for ARG1 repression.  I found 

that deletion of RTF1 or CDC73 results in a similar level of ARG1 derepression.  Interestingly, it 

has been shown that Rtf1 protein levels are reduced in the absence of Cdc73 (MUELLER et al. 

2004; SQUAZZO et al. 2002).  Therefore, the ARG1 derepression observed in cdc73Δ cells may be 
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due to the reduced abundance of Rtf1.  Deletion of PAF1 or CTR9 results in a similar level of 

ARG1 derepression that is a higher level of derepression than observed in rtf1Δ or cdc73Δ cells.  

Both Paf1 and Ctr9 are required for proper Rtf1 protein levels (MUELLER et al. 2004; SQUAZZO 

et al. 2002).  Therefore, a portion of the ARG1 derepression that occurs in paf1Δ or ctr9Δ cells is 

likely due to a reduction in Rtf1 protein levels.  Additionally, the loss of Paf1 results in reduced 

Ctr9 protein levels and vise versa.  Therefore, individual deletion of PAF1 or CTR9 cannot 

distinguish between the functions of Paf1 and Ctr9.  Similar interdependencies have been 

observed in the human Paf1 complex.  Specifically, loss of human Ctr9, Cdc73, or the subunit 

specific to the human complex, Ski8, results in reduced Paf1 and Leo1 protein levels (LIN et al. 

2008; ZHU et al. 2005a).   

While the interdependencies among Paf1 complex members may explain some of my 

results obtained in strains lacking individual complex members, it is intriguing that the 

requirement for these complex members for ARG1 repression mirrors their requirement for 

snoRNA termination.  Specifically, as for ARG1 repression, Paf1 and Ctr9, and to a lesser extent, 

Rtf1 and Cdc73 are required for proper snoRNA termination (SHELDON et al. 2005).  

Furthermore, of the Rtf1 point mutant strains examined for their effects on ARG1 repression and 

snoRNA termination, rtf1-F80V, F123S cells exhibit the strongest defect in both functions 

(TOMSON et al. 2011a).  As this rtf1 mutant strain lacks histone H2B ubiquitylation, it appears 

that histone H2B ubiquitylation is critical for both processes (TOMSON et al. 2011a).  Consistent 

with this idea, the loss of the histone H2B ubiquitylating enzymes, Rad6 or Bre1, or mutation of 

the ubiquitylation site (htb1-K123R) results in aberrant snoRNA termination (TOMSON et al. 

2011a).  It would be interesting to understand how histone H2B ubiquitylation is involved in 

mediating each of these processes.  Importantly, these observations suggest that as we further 
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elucidate the roles of the Paf1 complex in ARG1 repression, we may also gain insight into its 

functions in transcription termination. 

5.1.6 Paf1 inhibits recruitment of Gcn4 to the ARG1 promoter. 

To further define the role of Paf1 in ARG1 repression, I asked whether Paf1 influenced 

recruitment of Gcn4 or Arg80 to the ARG1 promoter.  ChIP analysis of Gcn4 occupancy at the 

ARG1 promoter revealed that Gcn4 occupancy was increased in paf1Δ cells, suggesting that Paf1 

inhibits recruitment of Gcn4 to the promoter.  Although ARG1 derepression in the absence of 

Paf1 was associated with an approximately 2-fold increase in Gcn4 recruitment, it is not clear 

whether this modest increase in recruitment is sufficient to stimulate the high increase in ARG1 

expression observed.  Arg80 also inhibited recruitment of Gcn4 to the promoter.  However, 

analysis of Gcn4 occupancy in paf1Δ arg80Δ cells indicated that Paf1 and Arg80 independently 

inhibit Gcn4 recruitment to the ARG1 promoter, further confirming that Paf1 and Arg80 make 

separate contributions to ARG1 repression.  Importantly, I found that Gcn4 is required for the full 

level of ARG1 derepression that occurs in paf1Δ cells.  Together, these results suggest that Paf1 

mediates repression partially by inhibiting recruitment of Gcn4 to the ARG1 promoter and 

partially through a Gcn4-independent mechanism.   

Interestingly, I also found that Paf1 inhibits recruitment of Arg80 to the ARG1 promoter.  

Several lines of evidence suggest that Paf1 functions separately from Arg80 in the repression of 

ARG1.  Furthermore, Gcn4 did not influence Arg80 recruitment.  Therefore, I hypothesize that 

the increased recruitment of Arg80 in paf1Δ cells may be the result of a more accessible 

chromatin environment at the ARG1 promoter under these conditions.  It may not be surprising 

that Paf1 mediates ARG1 repression independently of Arg80, considering the differences 
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between their mechanisms of repression.  Arg80 mediates repression by interacting with DNA 

binding sites in the ARG1 promoter as part of the ArgR/Mcm1 repressor complex (AMAR et al. 

2000; BECHET et al. 1970; CRABEEL et al. 1995; CRABEEL et al. 1990; DELFORGE et al. 1975; 

DUBOIS et al. 1987; EL BAKKOURY et al. 2000; QIU et al. 1990).  While the mechanistic details 

of gene repression by the ArgR/Mcm1 complex are not known, other DNA binding 

transcriptional repressors recruit co-repressors that inhibit the basal transcriptional machinery, 

interfere with activator binding, or recruit histone modifying proteins (reviewed in 

PAYANKAULAM et al. 2010).  In contrast, Paf1 has not been shown to exhibit specific DNA-

binding activity, but instead associates with RNA Pol II during transcription elongation 

(KROGAN et al. 2002b; MAYER et al. 2010; POKHOLOK et al. 2002; WADE et al. 1996) and 

regulates histone modifications (CHU et al. 2007; KROGAN et al. 2003a; NG et al. 2003a; NG et 

al. 2003b; WOOD et al. 2003b) and transcription termination (MUELLER et al. 2004; PENHEITER 

et al. 2005; SHELDON et al. 2005; TOMSON et al. 2011a).  Therefore, Paf1 regulates transcription 

through more general mechanisms.  Consistent with this idea, while Arg80 represses 

transcription of four arginine biosynthesis genes as part of the ArgR/Mcm1 complex (reviewed 

in MESSENGUY and DUBOIS 2000), myself and others have demonstrated that Paf1 represses 

several hundred genes throughout the yeast genome (PENHEITER et al. 2005).   

5.1.7 The loss of histone H3 acetylation partially suppresses ARG1 derepression in paf1Δ 

cells. 

The loss of Paf1 appears to make the ARG1 promoter more accessible to Gcn4.  Given the 

connection between the Paf1 complex and chromatin, I hypothesized that, to prevent Gcn4 

binding at the ARG1 promoter, Paf1 may establish a “closed” chromatin environment.  
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Therefore, I performed a nucleosome scanning assay to examine nucleosome occupancy at the 

ARG1 promoter and 5’ region.  I found that in wild-type cells, the cis-elements in the ARG1 

promoter are located within a nucleosome-depleted region and flanked by several well-

positioned nucleosomes.  Importantly, these data match well with genome-wide studies of 

nucleosome occupancy (JIANG and PUGH 2009).  Induction of ARG1 expression in wild-type 

cells resulted in a dramatic reduction in nucleosome occupancy at the ARG1 promoter and early 

5’ region.  However, deletion of PAF1 did not result in reduced nucleosome occupancy.  The 

only change observed in paf1Δ cells was a very slight forward-shifting of the nucleosome 

immediately downstream of the cis-elements.  This minor change in nucleosome occupancy is 

unlikely to account for the increase in ARG1 mRNA observed in paf1Δ cells.  Consistent with 

these results, ChIP analysis of total histone H3 levels did not detect a decrease in histone H3 

levels in paf1Δ cells.  These results indicate that Paf1 does not regulate nucleosome occupancy at 

the ARG1 promoter or 5’ region.  Additionally, these results indicate that derepression in paf1Δ 

cells can occur in the absence of nucleosome eviction.   

Besides nucleosome eviction, histone acetylation also allows the polymerase to pass 

through nucleosomes.  Therefore, I examined the possibility that Paf1 established ARG1 

repression by preventing histone acetylation.  Consistent with this hypothesis, Gcn4 has been 

shown to recruit the histone acetyltransferase (HAT), Gcn5, to promote transcription of Gcn4-

regulated genes (GOVIND et al. 2005; KUO et al. 2000).  Conversely, the Arndt lab previously 

demonstrated that the Paf1 complex inhibits acetylation on the coding region of active genes 

(CHU et al. 2007).  Furthermore, I performed a few key experiments to suggest that the Paf1 

complex could mediate repression by inhibiting histone acetylation at ARG1.  For example, 

ARG1 derepression in paf1Δ cells is partially suppressed by deletion of GCN5.  Additionally, 
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substitution mutation of lysines on histone H3 that are acetylated by Gcn5 also partially restored 

ARG1 repression in paf1Δ cells.  However, ChIP analysis did not detect the increase in 

acetylation at ARG1 in paf1Δ cells that is predicted by this hypothesis.  Several histone 

deacetylase (HDAC) complexes have been shown to maintain low histone acetylation at the 

ARG1 locus.  Therefore, the actions of HDACs may oppose increases in histone H3 acetylation.  

Alternatively, ARG1 depression may not require an increase in acetylation per se.  Instead, 

derepression may be facilitated by the rapid turnover of histone acetylation by rounds of 

acetylation and deacetylation.   

5.1.8 Antisense transcription occurs at the ARG1 locus. 

Histone modifications occur in distinct patterns at most genes.  Histone H3 K4 trimethylation is 

usually highest at 5’ coding regions (KROGAN et al. 2003a; NG et al. 2003b), while H3 K36 

trimethylation is generally highest at 3’ coding regions (KIZER et al. 2005; KROGAN et al. 2003b; 

LI et al. 2003; SCHAFT et al. 2003; XIAO et al. 2003).  However, the histone modification pattern 

detected at ARG1 is opposite of the expected pattern.  A similar phenomenon had been observed 

at the GAL10 locus, where, in repressing conditions, histone H3 K4 methylation was 

unexpectedly enriched at the GAL10 3’ coding region (HOUSELEY et al. 2008).  It was 

determined that the inverted pattern of histone H3 K4 methylation was established by a non-

coding RNA transcribed from the opposite strand, in the antisense direction relative to GAL10 

(HOUSELEY et al. 2008).  Therefore, I hypothesized that antisense transcription at the ARG1 

locus could contribute to the reversed pattern of histone modifications.  To examine this 

possibility, I performed strand-specific RT-PCR.  Interestingly, I did detect antisense 

transcription that traversed the ARG1 coding region, similar to what has been detected by global 
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transcription analyses (DAVID et al. 2006; XU et al. 2009).  After using several cDNA synthesis 

primers located within the ARG1 promoter and 5’ coding region, it appears that antisense 

transcription traverses the ARG1 coding region at similar levels in wild-type and paf1Δ cells.  

However, antisense transcription that traverses the promoter was more prominent in the absence 

of Paf1, suggesting that Paf1 prevents antisense transcription from traversing the ARG1 promote.   

3’ RACE was performed to map the 3’ end of the antisense transcripts at ARG1.  Similar 

to what I observed with RT-PCR, 3’ RACE detected an increase in 3’ extended transcripts in 

paf1Δ cells.  However, the longest transcripts did not reach the cis-elements, but instead 

terminated near the ARG1 transcription start site.  Since 3’ RACE specifically detects 

polyadenylated transcripts, these results may indicated that a mixture of shorter polyadenylated 

and longer non-polyadenylated antisense transcripts occur at the ARG1 locus and the loss of Paf1 

results in an increase in longer transcripts.   

Interestingly, antisense transcription traversing the ARG1 promoter correlated with ARG1 

sense transcription.  Therefore, I hypothesized that antisense transcription across the ARG1 

promoter may facilitate Gcn4 promoter-association.  To examine this possibility, I integrated a 

terminator element in the antisense direction, hoping to terminate antisense transcription before it 

reached the ARG1 promoter.  However, the terminator failed to terminate antisense transcription.  

Therefore, I instead attempted to eliminate the antisense transcription start site, which was 

predicted by global transcription analyses to be located within the ARG1 3’ UTR (DAVID et al. 

2006; XU et al. 2009).  To this end, I integrated the ARG1 promoter and coding region at the 

LYP1 locus, such that the ARG1 promoter and coding region were fused to the LYP1 3’ UTR.  I 

chose the LYP1 3’ UTR because no antisense transcripts have been observed at this locus (DAVID 

et al. 2006; XU et al. 2009).  As a control, I integrated the ARG1 promoter, coding region, and 3’ 
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UTR at the LYP1 locus to account for any change in expression that may occur simply due to the 

change in chromosomal context.  However, antisense transcription was still observed when the 

ARG1 promoter and coding region were fused to the LYP1 3’ UTR.  Furthermore, increased 

ARG1 mRNA levels were detected in paf1Δ cells, regardless of whether the ARG1 promoter and 

coding region were fused to the ARG1 or LYP1 3’ UTR.  These results suggest that the antisense 

transcripts observed at the ARG1 locus do not arise from start sites within the 3’ UTR, but 

instead from start sites within the ARG1 coding region.   

5.1.9 Defining the regions of the ARG1 locus required for Paf1-mediated repression 

I next asked whether the ARG1 coding region is required for ARG1 repression by Paf1.  To do 

this, I replaced the ARG1 coding region with that of HIS3, such that the HIS3 coding region was 

fused to the ARG1 promoter and 3’ UTR.  This chimeric gene was regulated similarly to ARG1, 

in that it was repressed in wild-type cells and derepressed in the absence of Paf1 or Rtf1.  

However, the level of derepression that occurred in the absence of Paf1 was lower than what was 

observed with native ARG1, suggesting that Paf1-mediated repression partially requires the 

ARG1 coding region.  Furthermore, the low level of derepression observed in paf1Δ cells was 

independent of Gcn4.  Therefore, the Gcn4-dependent functions of Paf1 require the ARG1 

coding region.  Additionally, preliminary results indicated that, as expected, replacement of the 

ARG1 coding region with the HIS3 coding region eliminated antisense transcription (data not 

shown).  Therefore, my results indicate that antisense transcription is required for the full 

derepression that occurs in the absence of Paf1. 

To confirm that the ARG1 3’ UTR is not required for Paf1-mediated repression, I 

replaced the ARG1 coding region and 3’ UTR with that of HIS3, such that the ARG1 promoter 
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was fused to the HIS3 coding region and 3’ UTR.  The HIS3 3’ UTR appeared to confer 

increased expression in wild-type cells, possibly due to an increase in mRNA stability.  

However, similar to the previous construct, deletion of PAF1 resulted in an increase in 

expression, but lower than the fold increase observed with native ARG1.  These results confirm 

that the ARG1 coding region is partially required for Paf1-mediated repression and further 

confirm that the ARG1 3’ UTR is not required for Paf1-mediated repression.   

5.1.10 Working Model of ARG1 repression by the Paf1 complex 

The repression of ARG1 by the Paf1 complex is surprisingly complex.  The Rtf1 subunit appears 

to mediate repression primarily by promoting histone H2B ubiquitylation and histone H3 K4 

methylation.  However, Paf1 appears to have roles beyond these histone modifications, which 

include inhibiting the recruitment of Gcn4 to the ARG1 promoter.  Paf1 also appears to inhibit 

histone H3 acetylation by Gcn5.  Furthermore, Paf1 prevents antisense transcription from 

traversing the promoter, which positively influences ARG1 sense transcription (Figure 30A).   

Given these results, I hypothesize that in wild-type cells, the Paf1 complex promotes 

histone H2B ubiquitylation and H3 K4 methylation, which represses ARG1 sense transcription.  

Also, the antisense transcript terminates upstream of the ARG1 promoter (Figure 30B).  

However, in paf1Δ cells, the repressive histone modifications are lost, causing a minor increase 

in ARG1 transcription.  Transcription through the ARG1 3’ coding region alters chromatin in 

such a way that promotes increased transcription of long antisense transcripts that traverse the 

ARG1 promoter.  Antisense transcription across the ARG1 promoter enhances recruitment of 

Gcn4.  Gcn4 recruits the co-activator, Gcn5, which acetylates histone H3 in nucleosomes across 
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the ARG1 locus, further promoting ARG1 sense transcription (Figure 30C).  The positive 

influence of sense and antisense may continue through a feed-forward mechanism. 
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Figure 30:  Working Model of Paf1 complex-mediated ARG1 repression 

 

 

 

5.2 FUTURE DIRECTIONS 

Although my thesis work has made significant progress toward understanding the repressive 

functions of the Paf1 complex, many important questions remain.  For example, my model 

makes the prediction that, as previously reported, Gcn4 recruits Gcn5, resulting in histone H3 

acetylation.  This prediction is easily testable by performing ChIP analysis using epitope-tagged 
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Gcn5.  I would expect increased Gcn5 recruitment to ARG1 in the absence of Paf1 in a Gcn4-

dependent manner.   

Another prediction of my model is that antisense transcription across the ARG1 promoter 

enhances Gcn4 recruitment.  Alternatively, increased Gcn4 recruitment may be due to the loss of 

Paf1-dependent histone modifications.  This can be examined by performing ChIP analysis of 

Gcn4 in strains in which antisense transcription has been eliminated by replacing the ARG1 

coding region with that of HIS3.  If antisense transcription enhances Gcn4 recruitment in paf1Δ 

cells, then paf1Δ cells should not exhibit increased Gcn4 recruitment in the absence of antisense 

transcription.  If increased Gcn4 recruitment still occurs in paf1Δ cells, then it is likely due to the 

loss of histone modifications.  If so, one would also expect to observe increased Gcn4 

recruitment at the promoter of native ARG1 in rtf1Δ cells.  Along those lines, it would be 

interesting to know whether over-expression of Rtf1 in paf1Δ cells restores histone 

modifications.  If so, it would help distinguish between the multiple roles of Paf1. 

It would also be important to map the 5’ and 3’ ends of the antisense transcript(s) at the 

ARG1 locus.  Although I performed 3’ RACE to determine the 3’ end of antisense transcripts at 

the ARG1 locus, this method requires a poly(A) tail.  RT-PCR detected longer transcripts than 

were identified by 3’ RACE, suggesting that the longer transcripts may not be polyadenylated.  

Therefore, RNase protection assays could be performed to determine the 3’ end of antisense 

transcripts in wild-type and paf1Δ cells.  Additionally, high resolution microarray analysis in 

stabilizing conditions would provide similar information on a genome-wide scale.   

Furthermore, genome-wide studies predicted that the 5’ end of the antisense transcript 

was located within the ARG1 3’ UTR.  However, my results demonstrated that replacement of 

the ARG1 3’ UTR with that of LYP1 did not eliminate antisense transcription.  This may mean 
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that antisense transcripts arise from multiple start sites within the ARG1 3’ coding region and 3’ 

UTR.  Therefore, 5’ RACE or primer extension could be used to determine the location of the 

transcription start sites in both wild-type and paf1Δ cells.  This would also determine whether the 

same start site(s) are used in the presence and absence of Paf1.  Antisense transcription could 

then be eliminated by deletion of small regions containing the transcription start site, which 

would enable me to study the effects of antisense transcription in the context of a relatively intact 

ARG1 coding region.   

It would also be interesting to determine why there is increased antisense transcription 

across the ARG1 promoter in paf1Δ cells.  The loss of Paf1 results in read-through of the 

antisense transcript termination site, resulting in a 3’-extended transcript.  This possibility is 

intriguing considering the Paf1 complex and histone H2B ubiquitylation have been implicated in 

regulating termination of both polyadenylated and non-polyadenylated transcripts (MUELLER et 

al. 2004; PENHEITER et al. 2005; SHELDON et al. 2005; TOMSON et al. 2011b).  Conditional 

mutant forms of termination and 3’ end formation factors, such as Nab3, Nrd1, or Pcf11, could 

be used to test this hypothesis.   

It would also be interesting to examine whether the general repressor complex Tup1-Ssn6 

is involved in Paf1-mediated ARG1 repression.  Tup1-Ssn6 was found to promote the binding of 

Gcn4 to the ARG1 promoter in inducing conditions (KIM et al. 2005a).  Interestingly, Tup1-Ssn6 

was found to associate with both the ARG1 promoter and the 3’ coding region (KIM et al. 2005a).  

It was proposed that the localization of Tup1-Ssn6 to the 3’ coding region was indicative of a 

potential role in transcription elongation (KIM et al. 2005a).  However, in light of my results 

indicating that antisense transcription arises from the ARG1 3’ coding region in wild-type cells in 

inducing conditions, Tup1-Ssn6 may influence antisense transcription.  Interestingly, Ssn6 
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interacts with Set2 (TRIPIC et al. 2006), the histone H3 K36 methyltransferase, which could help 

recruit Tup1-Ssn6 to ARG1.  Also, Tup1-Ssn6 has been shown to recruit HAT complexes to 

genes, including the Gcn5-containing SAGA complex (PROFT and STRUHL 2002).  Alternatively, 

Ssn6 interacts with Rpd3 and Hos2 (DAVIE et al. 2003; DAVIE et al. 2002), HDACs that have 

been shown to deacetylate histones within the ARG1 ORF(GOVIND et al. 2010).  The interaction 

with both HATs and HDACs could allow Tup1-Ssn6 to effectively manage acetylation levels at 

the ARG1 locus.  It would be interesting to examine whether the derepression that occurs in 

paf1Δ cells requires Tup1-Ssn6, whether Paf1inhibits its recruitment, and whether its recruitment 

to the ARG1 3’ coding region requires antisense transcription. 

Finally, I have performed high-density microarray analysis to examine Paf1-dependent 

transcription and identified numerous genes that require the Paf1 complex for proper expression 

and proper transcription termination.  However, given the Paf1-repressed antisense transcription 

that I observed at ARG1, ARG3, and SNZ1, it would be useful to perform a genome-wide 

analysis to examine expression of SUTs and CUTs.  Therefore, the Arndt lab plans to repeat the 

high-density microarray analysis, with modifications to enhance accurate detection of SUTs and 

CUTs.  Such modifications include the addition of antinomycin D to cDNA synthesis reactions 

to prevent antisense artifacts resulting from second strand synthesis.  Additionally, including 

samples prepared from strains deleted for PAF1 and RRP6 or TRF4 could enable the detection of 

CUTs.   

Cumulatively, my thesis work has revealed a complex mechanism of repression by the 

Paf1 complex.  I’ve found that Paf1 complex-dependent histone modifications that are normally 

found at sites of active transcription are enriched at ARG1 and contribute to repression.  

Additionally, to my knowledge, ARG1 and PHO5 are the only yeast genes that have been shown 
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to be positively regulated by antisense transcription (UHLER et al. 2007).  However, while 

antisense transcription at the PHO5 locus promotes gene expression by stimulating nucleosome 

eviction (UHLER et al. 2007), my results suggest that antisense transcription facilitates ARG1 

expression through a unique feed-forward mechanism that does not require dramatic changes in 

chromatin structure.  Beyond my progress, many interesting questions remain.  Therefore, my 

work will serve as a foundation for future studies.   
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6.0  APPENDIX 

THE ROLE OF RKR1 IN UBIQUITYLATION OF HISTONE H2A.Z 

RKR1 was originally identified as a gene whose mutation causes synthetic lethality with the loss 

of Rtf1, suggesting that Rkr1 and Rtf1 have a common function in the cell (BRAUN et al. 2007).  

Loss of Rkr1 results in inositol auxotrophy and telomeric silencing defects (BRAUN et al. 2007), 

which are phenotypes associated with transcriptional defects.  Furthermore, deletion of Rkr1 

causes synthetic sickness with mutations that abolish histone H2B ubiquitylation (BRAUN et al. 

2007).  RKR1 encodes a protein with a C-terminal RING domain (BRAUN et al. 2007).  RING 

domain-containing proteins often mediate ubiquitylation (LORICK et al. 1999).  Indeed, Rkr1 has 

in vitro ubiquitin-protein ligase activity.  Together these observations suggest that Rkr1 regulates 

chromatin structure and transcription, likely through protein ubiquitylation.   

However, the target of Rkr1 ubiquitylation is unknown.  Therefore, to identify other 

transcription-related factors that genetically interact with Rkr1, Epistatic miniarray analysis (E-

MAP) was performed in collaboration with Nevan Krogan at the University of California, San 

Francisco.  For this analysis, a rkr1Δ strain was crossed with approximately 380 strains deleted 

for genes encoding transcription-related proteins.  Double mutants were generated and assayed 

for growth, revealing cases of synthetic sickness or lethality.  Furthermore, the genetic 
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interaction profile of Rkr1 was compared to other factors and the data were clustered to identify 

functional groups.  Importantly, the genetic interaction profile of Rkr1 clustered with that of 

seven subunits of the Swr1 complex (VPS71, VPS72, SWC5, SWC3, ARP6, SWR1, HTZ1), an 

ATP-dependent chromatin remodeling complex that deposits the histone variant H2A.Z into 

chromatin (GUILLEMETTE et al. 2005; RAISNER et al. 2005).   

H2A.Z, or Htz1 in yeast, is found at heterochromatic boundaries, such as near telomeres 

and flanking the silent HMR mating-type locus, where it prevents the spread of heterochromatin 

(MENEGHINI et al. 2003; ZHANG et al. 2004).  Htz1 is also found at promoters throughout the 

genome (GUILLEMETTE et al. 2005; LI et al. 2005; RAISNER et al. 2005; ZHANG et al. 2005a).  

Specifically, Htz1-containing nucleosomes often flank a nucleosome-free region that contains 

the transcription start site (RAISNER et al. 2005).  Proper transcriptional induction appears to 

require Htz1 (GUILLEMETTE et al. 2005; LI et al. 2005; ZHANG et al. 2005a).  Importantly, a 

portion of histone H2A.Z is monoubiquitylated in mammalian cells.  In mammalian cells, H2A.Z 

is excluded from constitutive pericentric heterochromatin, but is associated with facultative 

heterochromatin, such as the inactive X chromosome, and euchromatin.  The inactive X-

chromosome is enriched for monoubiquitylated H2A.Z, indicating that monoubiquitylation of 

H2A.Z distinguishes its association with facultative heterochromatin or euchromatin 

(SARCINELLA et al. 2007).   

To examine ubiquitylation of Htz1 in yeast, RKR1 and rkr1Δ strains were transformed 

with an overexpression plasmid expressing FLAG-tagged Htz1 (pMB82) and a plasmid 

expressing copper-inducible HIS-tagged (pUb221) or untagged ubiquitin (pUb175).  

Ubiquitylation assays to examine Htz1 ubiquitylation were performed as previously described 

(MURATANI et al. 2005).  Briefly, cell lysates were prepared from induced cultures in denaturing 



 200 

buffer to prevent protein de-ubiquitylation.  Ubiquitylated proteins were purified by Ni-NTA 

chromatography, resolved by SDS-PAGE, and subjected to Western analysis with an antibody 

against the FLAG tag.  Polyubiquitylation of FLAG-Htz1 can be seen as a ladder in the RKR1 

strain, but is reduced in the rkr1Δ strain (Figure 31A), indicating that in these conditions, Rkr1 is 

important for polyubiquitylation of Htz1 in yeast.   

Additionally, I examined Htz1 ubiquitylation in strains expressing plasmid-encoded HA-

tagged forms of Rkr1.  Rkr1-C1508A contains a mutation in the C-terminal RING domain that 

abolishes in vitro ubiquitin-protein ligase activity (BRAUN et al. 2007) and Rkr1ΔN2-227 contains 

an N-terminal deletion generated by Anthony Piro.  As expected, Htz1 ubiquitylation is reduced 

in strains expressing Rkr1-C1508A, indicating that the ubiquitin-protein ligase activity of Rkr1 is 

required for Htz1 ubiquitylation (Figure 31B).  Interestingly, Htz1 ubiquitylation if also reduced 

in strains expressing Rkr1ΔN2-227 , indicating that N-terminus of Rkr1 is required for Htz1 

ubiquitylation (Figure 31B).  Since Rkr1ΔN2-227 is expressed to similar levels as wild-type Rkr1 

(Figure 31B), this result may indicate that the N-terminus of Rkr1 is required for substrate 

recognition. 

These experiments indicate that overexpression of Htz1 results in Htz1 polyubiquitylation 

in yeast in a Rkr1-dependent manner.  I also performed ubiquitylation assays in strains 

expressing integrated FLAG-HTZ1.  Although I could detect expression of Rkr1 and Htz1, I was 

unable to detect polyubiquitylation of Htz1 (data not shown).  Kristin Klucevsek has also 

obtained similar results more recently.  Therefore, Rkr1-dependent ubiquitylation of Htz1 may 

only occur when Htz1 is overexpressed.  Additionally, since the FLAG epitope contains multiple 

lysines, FLAG-Htz1 contains several additional potential ubiquitylation sites compared to 

untagged Htz1.  Therefore, it is possible that the FLAG epitope contributes to Htz1 
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ubiquitylation.  Consistent with this idea, Rkr1 has recently been implicated in the degradation of 

nonstop proteins (BENGTSON and JOAZEIRO 2010; WILSON et al. 2007), which lack a stop codon 

and contain a poly-lysine track because the ribosome reads into the poly(A) tail of the nonstop 

transcript (reviewed in reference WAGNER and LYKKE-ANDERSEN 2002).  Future work will likely 

elucidate the fascinating functions of Rkr1. 
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Figure 31:  Rkr1 is required for polyubiquitylation of everexpressed Htz1. 

(A) htz1Δ (KY1403) and htz1Δ rkr1Δ (KY1415) strains were transformed with a plasmid expressing FLAG-Htz1 

(pMB82) and a plasmid expressing HIS-tagged ubiquitin (pUb221) or untagged ubiquitin (pUb175).  Ubiquitylation 

assays were performed as described above.  Ubiquitylated protein was purified using a Ni column.  Anti-FLAG M2 

(Sigma) antibody (1:1000) and sheep anti-mouse horseradish peroxidase-coupled secondary antibody (1:5000) (GE 

Healthcare) were used to detect FLAG-Htz1 in the Ni column eluate and total protein.  (B) htz1Δ rkr1Δ (KY1415) 

cells were transformed with a plasmid expressing HA-Rkr1 (pAP2), HA-Rkr1 C1508A (pAP3), HA-Rkr1ΔN 

(pAP4), or empty vector (pRS313), in addition to a plasmid expressing FLAG-Htz1 (pMB82) and a plasmid 

expressing HIS-tagged ubiquitin (pUb221) or untagged ubiquitin (pUb175).  Ubiquitylated protein was purified 

using a Ni column.  Anti-FLAG M2 antibody(Sigma)  (1:1000) and sheep anti-mouse horseradish peroxidase-

coupled secondary antibody (1:5000) (GE Healthcare) were used to detect FLAG-Htz1 in the Ni column eluate and 

total protein.  Additionally, anti-HA (Roche) antibody (1:1000) and sheep anti-mouse horseradish peroxidase-

coupled secondary antibody (1:5000) (GE Healthcare) were used to detect HA-tagged wild-type Rkr1 or mutant rkr1 

in total protein.   
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Table 9:  S. cerevisiae strains used in this appendix 

 

Strain Genotype 
KY1403  MATα htz1∆::KanMX his3∆200 lys2∆0 leu2∆0 ura3∆0 
KY1415  MATa htz1∆::KanMX rkr1∆::KanMX his3∆200 leu2∆0 ura3∆0 trp1∆63 
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