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ESSAYS ON STRATEGIC INFORMATION TRANSMISSION

Kong Wah Lai, PhD

University of Pittsburgh, 2009

This dissertation consists of three chapters, each analyzes a model of strategic information trans-

mission - or cheap talk - between an expert and a decision maker. The first chapter, “Expert

Advice for Amateurs,” analyzes a model in which the expert is perfectly informed and the decision

maker partially informed. The decision maker can tell, privately, whether the state of the world is

“high” or “low.” The expert responds to this second layer of asymmetric information by providing

less informative advice. For some types of decision maker, this negative, strategic effect outweighs

the benefit of information - being informed makes them worse off. Information is always beneficial

to the decision maker only when welfare is evaluated before the realization of his type.

The second chapter, “Challenged Authority,” analyzes a model in which the expert is perfectly

informed and the decision maker is of one of two types: uninformed or partially informed. The

decision maker can reveal his private type to the expert before the expert communicates with him.

The expert is susceptible to emotion: she becomes annoyed if she believes that her authority is

challenged - when her access to information is not exclusive - and reacts to it by being less helpful to

the decision maker. The expert’s emotion affects communication. It can deter an informed decision

maker from revealing himself, who otherwise would have done so to an emotion-free expert.

The third chapter, “Uncertain Expertise,” analyzes a model in which the expert is imperfectly

informed and the decision maker, uninformed, is also uncertain about how informed the expert is.

The model, in which the expert’s private type summarizes two aspects of her information status

- her expertise and her information - can be transformed into a standard cheap-talk model with

finite types. The equilibria of the former can be analyzed via those of the latter; the second-order

imperfect information does not change the way in which strategic information transmission with

imperfectly informed expert is analyzed. In a specialized information structure, it is found that an

increase in the level of uncertainty over the expert’s expertise makes communication more difficult.
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1.0 INTRODUCTION

Different states of information typically call for different decisions to be made, and a fundamental

problem in organizing economic activities is the dispersed distribution of information among eco-

nomic agents. As Hayek [23] observed some sixty years ago, “[the economic problem of society] is a

problem of the utilization of knowledge not given to anyone in its totality.” Since then, generations

of economists have devoted their effort into studying alternative information settings that deviate

from the neoclassical paradigm in which information is assumed to be perfect. Many important

insights were obtained by analyzing various formal models where the problem of information mani-

fests as information asymmetries: one party is assumed to have perfect access to information while

no information is available to other parties.1

This simple dichotomy of information asymmetry, though facilitating a clean analysis, may not

encompass all the information problems we face today. In the lemons model of Akerlof [2], for

example, used-car owners know the exact quality of their cars whereas buyers are assumed to know

only the average in the market. The consequence of this information asymmetry is that mutually

beneficial trades may not be realized. Thanks to the advance of information technology, we now

have, for example, the CARFAX Vehicle History Report which provides access to information on

particular vehicles; the information inequality between sellers and buyers is reduced, and the result

of market collapse may no longer be prevalent in used-cars markets today.

On the other hand, acquiring information is often costly. The distribution of information among

economic agents is dictated by their relative cost of acquiring information. Information asymmetry

is simply a short-cut for studying the whole problems (Maskin and Tirole [32], p.107). When we

acknowledge the presence of costly information, we may have to take into consideration that even

the informed parties may not have perfect access to information - acquiring perfect information

will be an extremely costly enterprise.

1For the development of information economics, see, for example, the Nobel lecture by Stiglitz [47].

1



The papers in this dissertation are all motivated by the considerations above. It consists of

three chapters, each of them takes one of the simplest possible forms of information problem as

the starting point: there are two parties, one informed and one uninformed and whose interests

are misaligned; the informed party transmits information to the uninformed, who then takes an

action that affects the welfare of both. I extend on this strategic information transmission model

of Crawford and Sobel [12] by relaxing the traditional dichotomy of information asymmetry.2

In the first chapter, “Expert Advice for Amateurs,” I analyze strategic information transmission

in which the original uninformed party has partial access to information. The doctor-patient

relationship, in which the doctor is the expert with superior information or knowledge and the

patient is the decision maker who decides on what action (e.g., treatment or life-style choices) to

take, is used to illustrate the problem. The doctor is assumed to know perfectly the diagnosis

of the patient. The patient does not observe his exact diagnosis but is able to form some idea

about whether his condition is serious or not, which may be a consequence of being able to obtain

information from other sources such as the Internet.

Formally, the above is modeled as the decision maker’s ability to tell whether the state of the

world is “high” or “low,” whereas the expert observes its exact value which is a real number in the

unit interval [0, 1]. The decision maker’s definition of “high” and “low” is assumed to be unknown

to the expert - a doctor may not be able to tell readily whether, given a diagnosis, the particular

patient sitting in front of her considers his condition as serious or not. The relaxation of the

traditional dichotomy creating another layer of information asymmetry - in this case the expert’s

being uninformed about the decision maker’s definition of “high” and “low” - is indeed a recurring

theme in this dissertation.

When the decision maker has information of his own, the influences of the information provided

by the expert are attenuated: the decision maker can now compare and contrast what he knows

with what the expert tells him. I find that in response the expert provides less informative advice to

the decision maker. Given the misaligned interests between them, in order to be willing to provide

information the expert has to be given certain room to exaggerate in her advice. When she is not

as influential, she exaggerates more, and this leads to less information being transmitted.

For decision maker having access to certain information (e.g. patients with certain cutoff for

“serious” and “not serious”), this negative, strategic effect outweighs the benefit of information -

2This model is also commonly referred to as model of cheap talk because the medium through which the informed
party transmits her information - the messages - is costless that it does not affect payoffs. This is to be contrasted
with the costly signaling model pioneered by Spence [45].
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being informed makes them worse off. Information is always beneficial to the decision maker only

when welfare is evaluated before the realization of his information type. The moral for patients is

that, while the Internet as another channel of medical information is on average beneficial to them,

some of them could indeed be worse off as a result.

The second chapter, “Challenged Authority,” extends on the first chapter. The lesson from the

first chapter is that the strategic response of the expert toward an informed decision maker is neg-

ative. In practice, there could be other factors that aggravate the situation. Another consequence

of having an informed decision maker in place is that the expert no longer has exclusive access to

information. In other words, she loses her authority as being the only one who is informed, and not

all experts welcome such challenge. It is reported, for example, that some doctors are annoyed by

their “Googler-patients” and become less helpful to them.3 This chapter captures such behavioral

aspect of communication with experts when informed decision makers are involved.

I consider a model in which the decision maker is of one of two types: uninformed or partially

informed. The expert does not know whether the decision maker is informed, and here comes the

additional layer of information asymmetry. There is, however, a channel of communication available

for it: the decision maker can reveal his private type to the expert before the expert communicates

with him, a consideration that is absent in the first chapter. On the other hand, the expert is

susceptible to emotion, which is modeled via a larger extent of misaligned interests between the

parties when the expert believes that she is facing an informed decision maker.

I find that despite the expert’s different response to informed decision makers, there are scenarios

under which the informed decision maker is willing to reveal himself to the expert. However, when

the expert is emotional enough, the informed decision maker may as well pool with the uninformed

decision maker, in effect shutting off the channel of communication from the decision maker to the

expert.

The third chapter, “Uncertain Expertise,” takes a somewhat different but related direction

and is of a more methodological nature. We typically expect experts to be well informed, but,

given that acquiring information is rarely costless, it is next to impossible for them to be perfectly

informed. Doctors are certainly well-cultivated in medical knowledge, but it is an impractical task

for them to keep abreast of every new finding in the medical arena. On the other hand, there

are, in principle, an infinite number of ways in which one can be imperfectly informed. When an

imperfectly informed expert is in place, it brings in an additional layer of information asymmetry

3See the various references in Chapter 1 and Chapter 2.
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as to how, from the decision maker’s perspective, informed the expert is. This chapter studies

strategic information transmission when the decision maker is uncertain about the expert’s level of

expertise - when the two layers of information asymmetry reside on the decision maker’s side.4

In the model, the expert’s private type summarizes two aspects of her information status: her

level of expertise and what she knows about the state of the world. Utilizing the quadratic payoffs

commonly adopted in the literature, I show that the model can be transformed into a standard

model with finite type space that is much more amenable to analysis with results readily available.

Analyzing the equilibria of the standard model with one layer of information asymmetry sheds light

on the equilibria of the original model with two layers. Putting this transformation into action, I

find in a fairly general example that an increase in the level of uncertainty the decision maker faces

over the expert’s level of expertise makes communication more difficult.

4This is different from those in the first two chapters in which the information asymmetries are double-sided.

4



2.0 EXPERT ADVICE FOR AMATEURS

2.1 INTRODUCTION

With a great deal of information only a few clicks away, the boundary between experts and novices

blurs. Once the privilege of experts, specialized knowledge is now widely available on encyclo-

pedic websites and through search engines. In the medical arena, for example, websites such as

www.webmd.com have rendered patients much more informed and sophisticated than their coun-

terparts a decade ago. We can perhaps jump a step ahead by saying that novices no longer exist

today, and amateurs - those who know but do not know enough to dispense with the help from

experts - have emerged to fill the void.

Is evolving from novices into amateurs a welfare improvement for patients or other decision mak-

ers? Advocates for consumer education would respond affirmatively. The underlying proposition

of consumer education is that more information leads to better decision.1 Yet it is a well-known re-

sult in information economics that more information is not necessarily better. In the classic lemons

model of Akerlof [2], for example, information, when asymmetrically distributed, can eliminate

trades that are otherwise efficient. This chapter examines the effects of decision makers’ infor-

mation in strategic information transmission (Crawford and Sobel [12]), a setting that captures

the relationship between experts and decision makers. It addresses the questions of whether in a

strategic environment becoming an amateur improves welfare; how experts respond to informed

clients; and in what sense consumer education is beneficial when strategic elements are present. It

is documented that patient use of Internet information can worsen the physician-patient relation-

ship (e.g., Ahmad et al. [1]), and they are mostly accounted for in psychological terms.2 Another

1Ben Bernanke was quoted on the Fed Education website: “In today’s complex financial markets, financial educa-
tion is central to helping consumers make better decisions for themselves and their families.” As one of its missions,
the Bureau of Consumer Protection “empowers consumers with free information to help them exercise their rights and
spot and avoid fraud and deception”; they believe “education is the first line of defense against fraud and deception;
it can help you make well-informed decisions before you spend your money.”

2One of the most common accounts for doctors’ negative responses toward informed, sophisticated patients is that
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contribution of this chapter is to provide a rational, strategic account that complements these be-

havioral explanations; this chapter shows that adverse effects of patients’ information can also arise

under doctors’ rational behavior.3

I start with Crawford and Sobel’s [12] model (the “CS model”). There is an expert (she),

who, after privately observing the state of the world, sends a message (advice) to a decision maker

(he). “Talk is cheap” - the advice itself does not directly affect payoffs. Based on the advice, the

decision maker takes an action that affects both parties’ payoffs. Interests between the parties are

misaligned. Relative to the decision maker’s, the expert’s preferences are biased toward higher

actions. The novelty of my model - which I call the amateur model - lies in the fact that the

decision maker is an “amateur” who is partially informed. The decision maker does not directly

observe the state but can tell whether a state is “high” or “low”; his definition of “high” and “low”

is his private information and is unknown to the expert.

I utilize this setup to capture the way amateurs interpret information and advice, and this may

be illustrated with the example of patient use of Internet information. Fox [18] of the Pew Internet

& American Life Project reports that eight out of ten Internet users in the U.S., accounting for some

113 million adults, have searched for health information on the Internet; among them two-third

searched about specific diseases. These users may have access to the same information available to

the professionals (e.g., by using the Google Scholar). As amateurs, however, they typically lack the

ability to interpret the information and sort out the relevant from the irrelevant. As one doctor

puts it, “There’s so much information (as well as misinformation) in medicine - and, yes, a lot of it

can be Googled - that one major responsibility of an expert is to know what to ignore.”4 Without

such an ability, a patient who resorts to online health information may only be able to self-diagnose

roughly whether his condition could be serious (“high”) or not (“low”). Moreover, even for the

same set of information, two patients may interpret differently and arrive at different self-diagnoses.

Fox [18] reports that only one-third of the respondents mentioned their findings to the doctors;

a doctor facing a “Googler-patient” is likely to find herself offering advice in the midst of some

they feel being challenged in their authority (e.g., Murray et al. [36]).
3Cheap-talk models are commonly used to study the interactions between legislators and lobbyists (e.g. Gilligan

and Thomas [21] and Krishna and Morgan [29]) and between investors and investment advisors (e.g., Benabou and
Laroque [7] and Morgan and Stocken [35]). The questions addressed here also apply to these arenas: legislators can
now conduct their own research on the impacts of a proposed legislation without incurring a high cost; market data
and analyst reports are now widely available online for retail investors.

4This controversial Time Magazine article [22], “When the Patient Is a Googler,” was written by an orthopedist
who reported his unpleasant experience with a “Googler-patient” whom he described as “brainsucker” and eventually
decided not to treat. The article suggests that trust could be another behavioral factor behind the worsening
physician-patient relationship.
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information asymmetry as to what the patient knows. Suppose, driven by financial interests, the

doctor reports a diagnosis that is biased toward inducing the patient to take more intense and

expensive treatments than necessary.5 A patient who believes that he is seriously ill may consider

the biased diagnosis as a confirmation of his findings and proceed with an expensive treatment.

Otherwise, he may request to take a less expensive treatment or even seek a second opinion.6 For

the same piece of advice, once decision makers have information of their own, it is inevitable that

different responses will ensue.

To illustrate how different interpretations of information and advice arise in the model, suppose

there are two types of patient, A and B. The diagnosis, observed only by the doctor, is represented

by a point in [0, 1]. The patients do not directly observe the exact diagnosis, but given his (limited)

ability to interpret online health information, A will consider his condition as “not serious” when

the underlying diagnosis lies in [0, 1
3 ] and “serious” when it lies in [1

3 , 1]; B, on the other hand,

has a different interpretation: he considers [0, 2
3 ] as “not serious” and [2

3 , 1] as “serious.” Suppose

the true, exact diagnosis is 1
2 for both A and B. Then, A will consider himself “serious,” in effect

believing that his exact diagnosis can be anywhere in [1
3 , 1]; B will consider himself “not serious,”

in effect believing that his exact diagnosis lies in [0, 2
3 ].

Suppose the doctor does not fully reveal the true diagnosis.7 Instead, she provides a “vague”

advice, suggesting that the true diagnosis lies in [1
4 ,

7
12 ]; she is not telling the exact truth but is not

deceiving either because [1
4 ,

7
12 ] contains 1

2 . In light of his knowledge, A will interpret the advice

to mean that the exact diagnosis lies in [1
3 ,

7
12).8 Since B’s information is even vaguer than the

advice, he will take the advice as it is. To A, the advice is a complementary advice; it adds on

but does not replace his information. The same advice is, however, a substituting advice to B - it

substitutes what B knows. Should the doctor provide a completely vague advice that the diagnosis

can be anywhere in [0, 1], both A and B will ignore it as they both know better; the advice is a

redundant advice to them.9 Finally, suppose the doctor deceives with advice [7
8 , 1], which does not

5The supplier-induced demand hypothesis in health economics (Evans [15]) posits that doctors recommend more
health care purchases than patients would buy if they had the same information. This coincides with the expert’s
bias in cheap-talk models. See the literature review (Section 2.7) for previous work that uses cheap-talk models to
study the original neoclassical supplier-induced demand.

6Thirty percent of the respondents in Fox [18] indicated that online information led them to ask further questions
to their doctors or seek a second opinion. In an article on salon.com [40], “Is There a Doctor in the Mouse?,” the
pediatrician-author mentions that some parents refused to vaccinate their children after being exposed to stories on
autism websites about the dangers of vaccines to children.

7A biased expert in the CS model does not fully reveal her information in (any) equilibrium; such an equilibrium
property carries over to the amateur model (see Section 2.4).

8The decision maker’s “information,” “knowledge” and “interpretations” are considered synonyms.
9This “babbling advice” will also be ignored by an uninformed decision maker. While I use it as an example of
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contain the true 1
2 . While this advice will be considered by A as substituting, B can detect that

it is a false advice because it contradicts with what he knows; this represents our model analog of

“defense against fraud and deception.”

Using the CS model, which features a novice, uninformed decision maker, as the benchmark,

the first important result is that the expert in the amateur model provides less informative advice.

A highly biased expert (bias b ∈ [1
6 ,

1
4)) provides no advice useful to an amateur, whereas the same

expert will provide informative advice to a novice (an informative equilibrium exists in the CS model

whenever b < 1
4). A less biased expert (b < 1

6), who does provide useful advice to an amateur,

would have provided more informative advice had she lived in the CS model.10 The information of

some types of decision maker attenuates the expert’s influence on their actions. In response, the

expert adjusts her advice strategy. She induces the decision maker, whose type is unknown to her,

to take actions that are more biased toward her preferred ones.11 Given the misaligned interests,

this adjustment in the expert’s benefit harms the decision maker.

The result is analogous to that in Akerlof [2]. The information on what the decision maker

knows - his definition of “high” and “low” - is asymmetrically distributed between the expert and

the decision maker. The decision maker of course knows what he himself knows but the expert

only knows the probability distribution, and this creates a second layer of information asymmetry.

Consequently, “good” communication between the expert and the decision maker (in the CS model)

is superseded by “bad” communication (in the amateur model). It is reported that some doctors

become less helpful if the patient is a “Googler.”12 While there are certainly many factors behind

the doctors’ responses, this chapter provides a rational, strategic account for why doctors can

become less helpful to informed patients under asymmetric information.

Without considering the expert’s strategic response, as a decision problem under uncertainty

more information always increase expected payoff. Comparing this direct benefit of information

with the negative, strategic effect, information does improve the welfare of some decision makers,

but there are decision makers who are worse off for being informed. The evolution from novices

redundant advice, there is non-babbling advice in the amateur model that can nevertheless be redundant.
10By “more informative,” I mean precisely that a novice will benefit more from an advice that is customized for

novice than under that that is customized for amateur.
11In the followings, I shall use the plural form “decision makers” to abbreviate “types of decision maker.”
12In Fox and Fallows [19], for example, a patient responds to the survey: “.....they [doctors] became irritated with

me for having knowledge of the condition beyond what they chose to share with me.....they became defensive and
short with me when I would question.....what I had found out on my own on the Internet.” Despite the incentives to
protect their professional images, negative responses are also noted from the doctors’ side (Ahmad et al. [1]): “So, if
your patient [is] having a $15 visit, you’re not going to sit for 15 minutes going through all this [patient’s findings],
you’re going to get them out of the office.”
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into amateurs does not benefit every decision maker in a strategic environment. Nevertheless,

when payoff is evaluated before the decision maker’s type is realized, more information is always

beneficial. An implication is that advocates would always consider patient or investor education

as welfare improving; as an outside observer they by definition evaluate the benefit of information

in an ex-ante sense. To certain individuals, however, more information can indeed backfire as the

experience of the patient demonstrates.

Medical studies cited in this chapter report that patients in general consider online information

to be helpful but doctors are either neutral or negative. The results in this chapter shed light on

these apparent contrasting views: doctors are likely to evaluate the effects of online information in

terms of how it affects patients’ responses to their advice, whereas patients evaluate it in terms of

its contributions to their overall health outcomes. By assessing the extents of welfare changes, the

decision maker’s information is found to make the most difference when the expert’s bias is more

extreme. The advice of a highly biased stock broker, who always keeps an eye on commission, may

not be so useful anyway, and the investor should rely on his own for information. On the other

hand, the negative response from a barely biased (altruistic) doctor will be limited, and the patient

can benefit from more information without worrying too much about the negative, strategic effect.

On the technical side, the decision maker’s information raises the issue of how specifications of

off-equilibrium beliefs affect equilibria, a consideration absent in traditional cheap-talk models with

uninformed decision maker. After describing the model in Section 2.2, I analyze off-equilibrium

beliefs in Section 2.3. I then characterize equilibria in Section 2.4 (the general model) and Section

2.5 (the uniform-quadratic model). Section 2.6 analyzes the decision maker’s welfare.

Decision makers with access to information have yet to be substantially incorporated into cheap-

talk models. Two early exceptions were Seidmann [43] and Watson [48], followed by Olszewski [37].

With some alternations to otherwise standard cheap-talk games (e.g. different specifications of

payoffs), they show that a decision maker’s information can improve communication or even elicit

full revelation of information from the expert. This chapter shows, quite differently, that, in the

original cheap-talk model of Crawford and Sobel [12], a decision maker’s information not only

does not elicit full revelation but can indeed worsen communication. I postpone a more detailed

discussion of the related literature to Section 2.7. Section 2.8 concludes with discussions of the

results and possible extensions. All proofs in this chapter, as those in other chapters, are relegated

to the Appendix.
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2.2 THE MODEL

2.2.1 Players and payoffs

There are two players, an expert (e) and a decision maker (d). They are in a principal-agent

relationship, with the expert being the agent and the decision maker the principal. The expert is

perfectly informed about the state of the world, θ ∈ Θ ≡ [0, 1]; the state is distributed on Θ in

accordance with a common-knowledge continuous distribution F with everywhere positive density

f .13 After privately observing θ, the expert sends a message (advice) m ∈M to the decision maker,

who then takes an action a ∈ R.14

The players’ payoffs depend on states and actions: U e(a, θ, b) and Ud(a, θ). The payoff func-

tions are twice continuously differentiable and satisfy the following conditions: 1) U i11(·) < 0, 2)

U i1(a, θ, b) = 0 for some a ∈ R, and 3) U i12(·) > 0, i = e, d. The first condition guarantees that

the a that satisfies the second condition is, for a given pair (θ, b), a unique value that maximizes

U i(·). The third, a sorting condition similar to that in costly signalling models, further ensures that

the maximizing value of a, called the ideal actions of the players, is strictly increasing in θ. The

parameter b > 0 captures the bias of the expert’s preferences relative to those of the decision maker.

I impose two further assumptions that Ud(a, θ) ≡ U e(a, θ, 0) for all (a, θ) and U e13(a, θ, b) > 0 ev-

erywhere; thus, the misaligned preferences between the players are represented as: for all θ, the

ideal action of the expert, ae(θ, b), is strictly higher than that of the decision maker, ad(θ).

I shall analyze the model with the above general payoff and distribution function (the general

model). For welfare analysis, however, I shall focus on the specialization where F is uniform and

the payoff functions are in the following form:

U e(a, θ, b) ≡ −(a− (θ + b))2, (2.1)

Ud(a, θ) ≡ −(a− θ)2. (2.2)

This is the uniform-quadratic model introduced by Crawford and Sobel [12], a specialization adopted

in almost all subsequent work in cheap talk. Apart from its tractability, it offers a benchmark to

compare the results in this chapter with those in the literature. Note that, under this specialization,

13Depending on the context, I shall interchangeably refer θ as the “state” or the “type of the expert.”
14There is no restriction on M other than that it should be sufficiently large. For example, an infinite set will more

than suffice.
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the expert’s ideal action ae(θ, b) = θ + b which is higher than the patient’s a(θ) = θ exactly by the

amount of her bias b.

Remark for Physician-Patient Relationship. The state of the world, θ, can be interpreted

as a diagnosis of a certain disease, with a more serious diagnosis represented by a higher θ. It is

assumed that the doctor perfectly and privately observes the true diagnosis. She then delivers her

reported diagnosis, m, to the patient. The reported diagnosis induces the patient to take certain

action, a, which can be interpreted as a treatment or a medical procedure. Alternatively, it could

also be interpreted as a lifestyle choice the patient adopts that has health consequences for him.

Taking the first interpretation of action as an example, a higher a corresponds to a more

intense and expensive treatment. Consistent with the supplier-induced demand hypothesis in health

economics (Evans [15]), the model says that the doctor always prefers more intense treatments than

are ideal from the patient’s perspective.15 The doctor’s preferences toward more intense treatment

may reflect her cautiousness given that she does not bear the costs of the treatment. It can also be

due to her financial interests in the treatment choices. For lifestyle choice, this can be interpreted

as the doctor’s preference over more disciplined lifestyle than is deemed optimal by the patient;

doctors normally have a stricter standard than patients on what count as healthy lifestyles. In this

case, b captures the doctor’s “paternalistic bias.”

That the reported diagnosis is a “cheap talk” and cannot be verified ex post could be due to

the fact that the disease in question does not have an objective diagnosis (e.g., various emotional

problems). Likewise, there is no objective criterion to evaluate a recommendation on lifestyle choice.

Moreover, in reality, as is in the model, what the patient ultimately observes is his health outcome

(payoff) and the remedies he received; he may never be able to observe exactly the true diagnosis.

Thus, even if outcomes are bad, there is always a leeway favoring the doctors in which the patients

face some identification issue on what really went wrong.16

2.2.2 Decision maker’s information and types

The decision maker is partially informed: he does not directly observe θ but can tell whether θ

belongs to the set of “high states” or “low states”; how he defines “high” and “low” remains his

private information.17 The decision maker first privately observes a parameter t ∈ T ≡ [0, 1], called

15See Section 2.7 for a brief discussion of this major topic in health economics.
16In the model, a given pair ā, Ūd can, for example for quadratic payoffs, be associated with two different θ.
17The choice of only “high” and “low” is guided by parsimony and tractability. The analysis will become exponen-

tially complicated if only “medium” is added.
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his threshold, that is commonly known to be uniformly distributed on T , independently of θ. A

realized t ∈ (0, 1) divides Θ ≡ [0, 1] into two non-degenerate intervals, one low tl ≡ [0, t) and one

high th ≡ [t, 1]. If, for a given t, the realized state θ < t, the decision maker further receives a

private signal s = l ∈ {l, h}; he then knows that θ ∈ tl. If, on the other hand, the realized θ ≥ t,

the decision maker receives signal s = h ∈ {l, h}, and he will know that θ ∈ th. The following

summarizes the common-knowledge property of the decision maker’s signal in terms of θ and t:

s(θ|t) =


l, if θ < t,

h, if θ ≥ t.

I call the decision maker an amateur decision maker ; he knows less than an expert but almost

always more than an uninformed, novice decision maker.18 The set of thresholds T coupled with

the set of signals {l, h} defines the type space of the amateur decision maker, T×{l, h}, with generic

element ts. I call th a higher-interval type with threshold t as th is an interval defining what the

decision maker knows; similarly tl is called the low-interval type.

Remark for Patients’ Information. The patient searches on the Internet, gathers and in-

terprets some information he finds. The information helps but he also faces the limitation of his

amateur ability in interpreting it. He is unable to distinguish among all the potential diagnoses

θ ∈ [0, t) and therefore lumps them together under the category of “not serious.” Likewise, he

lumps all the potential diagnoses θ ∈ [t, 1] under the category of “serious.” In this context, t has

an intuitive, somewhat behavioral interpretation: a relatively high t means that the underlying

diagnosis has to be very serious in order to be considered by the patient as serious - a patient

with a high t is a “carefree” kind; on the other hand, a relatively low t means that the underlying

diagnosis will be considered by the patient as serious even if it is not that serious - a patient with

a low t is then a hypochondriac.

2.2.3 Timeline of the game

The game begins with nature drawing the threshold t and then proceeds with the realization of the

state θ and the simultaneous generation of the signal s. The two players then update their beliefs

about each other given the realized information. The decision maker updates his beliefs in terms

18The amateur knows nothing more than a novice in the measure-zero event that t = 0 or t = 1. Accordingly, a
novice can be viewed as a special type of amateurs with t = 0 or 1; the CS model can thus be viewed as a special
case of the amateur model.
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of what interval type he is; the expert updates her beliefs in terms of what type of decision maker

she could be facing.

The players then interact: the expert communicates with the decision maker by sending him

a message m. The decision maker further updates his beliefs, taking into account his previously

updated beliefs and any information contained in the message. The game ends with the decision

maker’s taking an action a and the distribution of payoffs to the players.

The followings dissect the players’ beliefs before they interact. To the decision maker, the

generation of s determines, given his realized t, whether he is a high-interval type th or a low-

interval type tl. They differ by their beliefs about θ:

φ(θ|th) =


0, for θ ∈ [0, t)

f(θ)
1−F (t) , for θ ∈ [t, 1],

and (2.3)

φ(θ|tl) =


f(θ)
F (t) , for θ ∈ [0, t),

0, for θ ∈ [t, 1].
(2.4)

In a particular instance of the game, only one kind of interval types is realized as they are

mutually exclusive. Nevertheless, the beliefs of both are relevant to the expert because she does

not observe t and s and thus does not know whether the decision maker is a high-interval or

low-interval type. In deciding what message to send, the expert takes into account the would-be

responses of all possible interval types. Since the best responses of the decision makers in turn

depend on their beliefs about θ and these beliefs differ among the decision maker’s types, to the

expert the decision maker’s types are nothing more than a bunch of beliefs-types - beliefs on what

the expert’s own type is.

If we adopt this perspective, when the expert updates her beliefs about the decision maker after

observing θ, she is in effect updating her beliefs about what the decision maker’s beliefs about her

is. In this sense, the amateur model is a model with higher-order beliefs in disguise. Classifying

into whether the decision maker she is facing is a high-interval or low-interval type (i.e., whether

the decision maker has received h or l), these updated beliefs of the expert are
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γ(th|θ) =


1
θ , for t ∈ [0, θ],

0, for t ∈ (θ, 1],
and (2.5)

γ(tl|θ) =


0, for t ∈ [0, θ]

1
1−θ , for t ∈ (θ, 1].

(2.6)

From the perspective of a type-θ expert, the probability that the decision maker has received h

or l is, respectively, θ and 1 − θ. Moreover, since a decision maker who has received h must have

threshold t ∈ [0, θ], the expert attaches positive probability to facing a high-interval type th only

for t ∈ [0, θ]. Similar reasoning applies for her beliefs about the low-interval types tl. Thus, even

though t and θ are independent, the signal s, correlated with both of them, serves as an anchor for

the expert to update his beliefs in terms of t.

2.2.4 Strategies and expert’s expected payoff

A behavior strategy of the expert, σ : Θ → ∆M , specifies the distribution of message she sends

for each θ ∈ Θ. The decision maker’s pure strategy, ρ : M × T × {l, h} → R, specifies for each

combination of received message and interval type an action he chooses to take.19 I denote Θσ(m)

to be the set of θ for which the expert sends message m with positive probability under σ, i.e.,

Θσ(m) = {θ ∈ Θ : σ(m|θ) > 0}. When there are some messages in M that are not used under σ, I

adopt the convention that Θσ(·) is an empty set for those messages.

Since the expert does not observe t, the derivation of her expected payoff before a message is

sent calls for consideration of all its possible values in [0, 1] and the corresponding interval types.

Suppose an expert of type θ sends message m′. Using the interval types as the unit of analysis,

her conditional expected payoff from sending m′ if the decision maker is a high-interval type is∫ 1
0 U

e(ρ(m′, th), θ, b)γ(th|θ)dt. Similarly, her conditional expected payoff if the decision maker is a

low-interval type is
∫ 1

0 U
e(ρ(m′, tl), θ, b)γ(tl|θ)dt.

To arrive at her unconditional expected payoff, we take an average of the conditional ones

weighted by their corresponding probabilities of occurrence, which is θ for high-interval type and

1−θ for low-interval type. Using (2.5) and (2.6) for γ(th|θ) and γ(tl|θ), the unconditional expected

19The condition Ud11(·) < 0 guarantees that only pure strategy will be adopted by the decision maker.
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payoff is then

V e(m′, θ, b) ≡
∫ θ

0
U e(ρ(m′, th), θ, b)dt+

∫ 1

θ
U e(ρ(m′, tl), θ, b)dt. (2.7)

The expert’s type divides [0, 1] into two intervals, and only one kind of interval types in each of

[0, θ] and (θ, 1] contributes to the expert’s expected payoff.

2.3 BELIEFS, ADVICE INTERPRETATIONS, AND EQUILIBRIUM

DEFINITION

The presence of an informed decision maker leads to an important difference between unused and

out-of-equilibrium messages in the amateur model. This section analyzes this issue and lays down

the equilibrium definition - perfect Bayesian equilibrium.

2.3.1 Decision maker’s beliefs after communication

The decision maker’s (post-communication) beliefs function, µ : M ×T ×{l, h} → ∆Θ, specifies for

each combination of received message and interval type a density over Θ; upon receiving an advice,

the decision maker interprets it in light of his knowledge to infer the posterior distribution of θ.

The fact that the decision maker updates his beliefs using two sources of information, one

strategic and one not, creates an important difference between unused and out-of-equilibrium mes-

sages. In the CS model (as in signalling games in general), unused messages are synonyms for

messages sent off the equilibrium paths, and vice versa.20 Since in cheap-talk games messages do

not directly affect payoffs, for every equilibrium (in which there may be unused messages) there

exists another with the same equilibrium outcome in which all messages are used.21 Insofar as

outcomes are concerned, one can therefore restrict attention to equilibria with no unused message.

Furthermore, since unused messages are the same as out-of-equilibrium messages, any specification

of off-equilibrium beliefs will have no bite in ruling out certain equilibrium outcomes.22

A common approach to focus on equilibria with no unused message, as is originally used by

Crawford and Sobel [12], is to assume that the expert adopts behavior strategy and randomizes
20In Crawford and Sobel’s [12] own words, unused messages are “signals that are not in the support of the signaling

rule used by some S[ender]-type in equilibrium.”
21Equilibrium outcomes are defined as probability distributions from states to actions.
22See, for example, the discussion in Farrell [16].
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uniformly over supports of distinct intervals that exhaust the message space. Under this strat-

egy, Bayes’s rule always applies for updating the decision maker’s beliefs. In the amateur model,

however, even if the expert adopts such a behavior strategy, there can still be out-of-equilibrium

messages; despite the fact that every message is used by some expert-type in equilibrium, there

exist cases where Bayes’s rule does not apply.

Suppose there is an informative equilibrium with no unused message such that M is partitioned

under the expert’s strategy σ into at least two distinct and exhaustive sets. Given that every

message is used and the equilibrium is informative, for every m ∈ M , Θσ(m) is a non-empty

strict subset of Θ. Since the decision maker correctly anticipates σ in equilibrium, he takes every

m ∈ M to mean that θ ∈ Θσ(m) for some θ ∈ Θ - all messages he can potentially receive means

something to him. Suppose the decision make is of type t′s so that his beliefs before communications

are φ(θ|t′s). When he receives message m′, he updates his beliefs using φ(θ|t′s) for the Bayes’s

rule: [σ(m′|θ)φ(θ|t′s)]/
∫ 1

0 σ(m′|θ′)φ(θ′|t′s)dθ′. Since there is no unused message, for all m ∈ M ,

σ(m|θ) > 0 for some θ ∈ [0, 1]; the usual scenario for Bayes’s rule to be undefined (when σ(m|θ) = 0,

and thus σ(m|θ)φ(θ|ts) = 0 for all θ ∈ [0, 1]) will never appear here given all messages are used.

However, suppose in this equilibrium there is a type-θ′ expert with θ′ ∈ t′s. She deviates

from σ by sending a message which, notwithstanding meaning something to the decision maker,

contradicts with what he knows. More precisely, suppose θ′ sends one of the used messages m′′ such

that Θσ(m′′)∩ t′s = ∅.23 In an attempt to apply the Bayes’s rule, even though φ(θ|t′s) and σ(m′′|θ)

are positive for some θ ∈ [0, 1], the decision maker will still find it not defined. This is because

φ(θ|t′s) > 0 only for θ ∈ t′s and σ(m′′|θ) > 0 only for θ ∈ Θσ(m′′); by our choice of m′′ the two

sets contain no comment element, and thus the term σ(m′′|θ)φ(θ|t′s) = 0 for all θ ∈ [0, 1]. This will

never arise in the CS model with no unused message because, using the interval-type terminology,

there is only one single type for novice which is Θ; for any used message m, Θ ∩Θσ(m) can never

be empty.

Let me summarize the discussion with the formal notion of information set. I start with the

following lemma, which is true almost by definition:

Lemma 2.1. A decision maker of type ts is in an information set unreached in equilibrium if and

only if he receives message m ∈M such that Θσ(m) ∩ ts = ∅, where σ is an equilibrium strategy.

23Let me further elaborate how this matches the plain language: type θ′ deviates by choosing this m′′ (θ′ /∈ Θσ(m′′))
such that Θσ(m′′) ∩ t′s = ∅. The intersection being empty is not due to an empty Θσ(m′′) (m′′ is a used message, it
means something to the decision maker) but because the two sets contain no common element (m′′ means something
that contradicts with what the decision maker knows).
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Lemma 2.1 provides us with a link between the notion of information set and the notations

used. Indeed, Θσ(m) ∩ ts is an information set of the decision maker. The next lemma summaries

the discussion above:

Lemma 2.2. Suppose there is an informative equilibrium in the amateur model with no unused

message. There exists deviation of the expert from this equilibrium that leaves some types of decision

maker in information sets unreached in equilibrium.

Lemma 2.1 implies that we have to consider off-equilibrium beliefs whenever there are cases

where, for some m and some ts, Θσ(m)∩ ts = ∅. Since the equilibrium concept of perfect Bayesian

equilibrium places no restriction on beliefs off the equilibrium paths, we are therefore free to specify

any beliefs in these cases. While the cases of empty Θσ(m)∩ ts arise for both unused and deviated

messages, the amateur model shares a property of the CS model that allows us to focus on the

latter for off-equilibrium beliefs:

Lemma 2.3. In the amateur model, for every equilibrium (σ, ρ, µ) there exists another equilibrium

(σ′, ρ′, µ′) with no unused message of which the equilibrium outcome is equivalent to that of (σ, ρ, µ).

Guided by Lemmas 2.1-2.3, the decision maker’s post-communication beliefs can be specified

as follows. Upon receiving m′, a type-ts decision maker updates his beliefs according to

µ̂(θ|m′, ts) =


σ(m′|θ)φ(θ|ts)∫ 1

0 σ(m′|θ′)φ(θ′|ts)dθ′
, if Θσ(m′) ∩ ts 6= ∅,

ψ(θ), if Θσ(m′) ∩ ts = ∅, Θσ(m′) 6= ∅,
(2.8)

where ψ(θ) is any arbitrary density supported on [0, 1].

2.3.2 Interpretations of advice

Switching language from “messages” to “advice,” there are four types of advice that a type of

decision maker can receive, namely, substituting advice, complementary advice, redundant advice

and false advice. Similar to messages having no intrinsic meaning in cheap-talk models, an advice

has no intrinsic type in the amateur model; the type of an advice is determined only with respect

to how it is interpreted, i.e., who is receiving it. To a decision maker, the first two types of advice

are useful whereas the latter two are not.24 Except for false advice, all three types of advice can

arise in equilibrium, and they are embodied in the case of non-empty Θσ(m′) ∩ ts in (2.8).

24In this discussion, I use “a decision maker” to abbreviate “a type of decision maker.”
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A redundant advice is received when the expert provides advice to a decision maker who knows

better than that; his updated beliefs in (2.8) reduce to his pre-communication beliefs φ(θ|ts). In

other words, the decision maker adheres to his own information in deciding what action to take

when a redundant advice is received.25 Substituting advice is received when the advice provides

more precise information that what a decision maker knows - it therefore substitutes the decision

maker’s knowledge. This manifests in (2.8) as his beliefs putting zero density on all but the support

Θσ(m′). When a complementary advice is received, neither the information provided by the expert

nor a decision maker’s information is more precise. Suppose a division manager (the expert) reports

to her CEO (the decision maker) that an investment project can be either “medium” or “high”

in terms of profitability. The CEO, however, figures out on his own that it can only be “low”

or “medium.” Neither information, {medium, high} nor {low, medium}, dominates the other, but

the inclusions of “medium” in both make them complementary. In terms of beliefs, in the case of

complementary advice, (2.8) will put positive density only on the intersection Θσ(m′)∩ ts which is

a strict subset of either Θσ(m′) or ts.

It is well known that if the expert could commit before the state realizes to reveal all his

information, both parties would be better off. Viewed in this light, it is the absence of commitment

opportunities that prevents the biased expert from fully revealing the truth. If the manager indeed

observes “medium” and includes “high” only for her own benefit, the CEO’s own information

facilitates a more effective communication because his interpretation of the manager’s {medium,

high} in light of his own {low, medium} allows him to pin down the true profitability of the project.

Finally, false advice is the same as the deviated message in Lemma 2.2. Representing the model

counterpart of guard against fraud and deception, it happens when the expert provides (false)

information that contradicts with what a decision knows. In general, we can use as in (2.8) any

arbitrary density for the decision maker’s beliefs when false advice is received, so long as it is defined

on the same support as the prior of θ, i.e., Θ. There could, however, be more to consider.

25Strictly speaking, in order to have σ(m′|θ)φ(θ|ts)/
∫ 1

0
σ(m′|θ′)φ(θ′|ts)dθ′ = φ(θ|ts) in the case of redundant

advice, we have to assume in addition that σ(m′|θ) is uniform. But regardless, the idea that the decision maker will
adhere to his own information applies.
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2.3.3 Equilibrium definition

While F is the prior distribution of the state in the model, one can argue that for a decision maker

of type ts, his prior is the same as his pre-communication beliefs φ(θ|ts).26 If one adopts this

perspective, any off-equilibrium beliefs should be supported on ts rather than on Θ. Indeed, it

is intuitively unappealing that a decision maker will be contradicting himself by putting positive

density on Θ \ ts after being deceived. While the concept of perfect Bayesian equilibrium remains

silent on what we should choose here, I let intuitiveness prevail and perform a minor refinement by

replacing ψ(θ) with ψ(θ|ts), an arbitrary density over ts, for the equilibrium definition:27

Definition 2.1 (Perfect Bayesian Equilibrium). A perfect Bayesian equilibrium of the amateur

model is a pair of strategies (σ, ρ) and a set of beliefs µ such that

1. The expert maximizes her expected payoff given the decision maker’s strategy: for all θ ∈ Θ, if

m ∈ supp[σ(·|θ)], then

m ∈ argmax
m′∈M

[∫ θ

0
U e(ρ(m′, th), θ, b)dt+

∫ 1

θ
U e(ρ(m′, tl), θ, b)dt

]
,

2. The decision maker maximizes his expected payoff given his beliefs and his interval type: for all

m ∈M and all ts, ts ∈ T × {l, h},

ρ(m, ts) = argmax
a′

∫ 1

0
Ud(a′, θ)µ(θ|m, ts)dθ, and

3. The decision maker updates his beliefs using Bayes’s rule whenever possible, taking into account

the expert’s strategy and his interval type: for all ts, ts ∈ T × {l, h},

µ(θ|m, ts) =


σ(m|θ)φ(θ|ts)∫ 1

0 σ(m|θ′)φ(θ′|ts)dθ′
, if Θσ(m) ∩ ts 6= ∅,

ψ(θ|ts), if Θσ(m) ∩ ts = ∅, Θσ(m) 6= ∅,

where ψ(θ|ts) is any density supported on ts.

26Thus, this can be considered as different decision makers having different prior beliefs about θ in the amateur
model. For information transmission models with heterogeneous priors on the senders’ side, see, for example, Spector
[44], Banerjee and Somanathan [5] and Che and Kartik [10].

27This shares the same spirit of equilibria with “support restrictions” which requires that the support of beliefs at
an information set be a subset of that at the preceding information sets. See, for example, Madrigal et al. [31] for a
discussion and Rubinstein [42] for an application.
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2.4 EQUILIBRIUM CHARACTERIZATIONS I: GENERAL MODEL

Crawford and Sobel [12] show that there is no fully separating equilibrium when the decision maker

is a novice - all equilibria are partition-equilibria in which the expert endogenously partitions [0, 1]

into a finite number of intervals and reveals limited information to the decision maker as to which

interval contains the realized state. The first characterization is that such property of equilibria is

preserved in the amateur model:

Proposition 2.1. There exists no fully separating equilibrium in the amateur model.

In a fully separating equilibrium, if there is any, the amateur’s own information becomes useless

because every equilibrium advice that he receives will substitute what he knows. The amateur will

act in the exact same way as a novice in response to a fully separating strategy. Since we do not

have fully separating equilibrium for novice, it follows that the amateur has to face the same fate.

The significance of Proposition 2.1 is two-fold. First, it demonstrates that, in contrast to

some previous work on informed decision maker in information transmission game (Seidmann [43],

Watson [48] and Olszewski [37]), the presence of an informed decision maker in the CS model does

not facilitate full revelation of information. Second, it shows that, for the characterization of the

decision maker’s best responses, it is without loss of generality to consider strategies of the expert

that partition the state space into intervals.

2.4.1 Induced actions: the decision maker’s best responses

This subsection characterizes the decision maker’s best responses when the expert adopts an “N -

step strategy.” It should be noted that we are yet to consider the equilibrium, so these strategies

are not necessarily equilibrium ones.

Suppose there is a partition of [0, 1], {θi}Ni=0, where 0 = θ0 < θ1 < · · · < θN−1 < θN = 1. The

partition divides [0, 1] into N intervals, {Ii}Ni=1, where Ii = [θi−1, θi], i = 1, . . . , N . The subset of

the partitioning elements, {θi}N−1
i=1 , are commonly called the boundary types, and I call the types

in the interior of Ii the interior types. Suppose the expert adopts the following strategy:

Definition 2.2 (N-Step Strategy). The expert partitions the message space M into N distinct

and exhaustive sets, Mi, i = 1, . . . , N . Upon observing the realization of the state, if θ ∈ Ii, the

expert randomizes uniformly over messages in Mi.
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Under this strategy, exactly N actions will be induced on a novice, one for each Mi. In the

amateur model, however, the strategy will induce an uncountable number of actions. Some decision

makers - those who interprets the expert’s advice differently in light of their information - take

different actions even when they receive the same message, and there are a continuum of them.

Accordingly, the different actions they take also form a continuum.

Some of these actions are taken under the influence of the expert (when the advice is substi-

tuting or complementary), and some of them are taken based solely on the decision maker’s own

information (when the advice is redundant or false). I call the former set of actions effectively in-

duced actions, the latter ineffectively induced actions and their union induced actions. Here comes

the operational definition of effectively induced actions:

Definition 2.3 (Effectively Induced Actions). An action a is said to be effectively induced

by message m if the decision maker updates his beliefs µ(θ|m, ts) using Bayes’s rule and there

exists θ ∈ [0, 1] such that, in the decision maker’s maximization problem of which a is the solution,

µ(θ|m, ts) 6= φ(θ, ts).

In order for an action to qualify as effectively induced, it has to be taken after Bayes’s rule is used,

which distinguishes it from actions taken after an out-of-equilibrium false advice. Furthermore,

the updating must generate beliefs that are different from the pre-communication ones, further

distinguishing it from actions taken in response to a redundant advice.28 The actions that are

taken without satisfying Definition 2.3 are ineffectively induced actions.

The following proposition characterizes the situations in which a ts will receive a substituting

or complementary advice under an N -step strategy, which lead to effectively induced actions:

Proposition 2.2 (Effectively Induced Actions). Under an N -step strategy of the expert, an

effectively induced action is induced on a high-interval type th if and only if he receives

1. a complementary advice: his threshold t ∈ Ii, i = 1, . . . , N − 1 and he receives m ∈Mi; or

2. a substituting advice: his threshold t ∈ Ii, i = 1, . . . , N − 1 and he receives m ∈Mj, i < j ≤ N .

An effectively induced action is induced on a low-interval type tl if and only if he receives

1. a complementary advice: his threshold t ∈ Ii, i = 2, . . . , N and he receives m ∈Mi; or

2. a substituting advice: his threshold t ∈ Ii, i = 2, . . . , N and he receives m ∈Mk, 1 ≤ k < i.

28The notion of effectively induced actions also allows us to define informative equilibrium alternatively as any
equilibrium where effectively induced actions are taken by some types of decision maker.
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Define

a(r, s) =


argmax

a′

∫ s
r U

d(a′, θ)f(θ)dθ, if r < s,

ad(θ), if r = s,

it is straightforward to verify under this characterization that the profile of actions effectively

induced on th, t ∈ Ii, i = 1, . . . , N − 1, is

ρ(m, th) =


a(t, θi), for m ∈Mi (complementary advice),

a(θj−1, θj), for m ∈Mj , i < j ≤ N (substituting advice);
(2.9)

and that induced on tl, t ∈ Ii, i = 2, . . . , N is

ρ(m, tl) =


a(θi−1, t), for m ∈Mi (complementary advice),

a(θk−1, θk), for m ∈Mk, 1 ≤ k < i (substituting advice).
(2.10)

The actions effectively induced by substituting advice are taken when the decision maker in-

terprets the advice as it is. Had he been a novice, he would have done the same. His information

therefore does not change his response to the advice. On the other hand, the actions effectively

induced by complementary advice are taken when the decision maker effectively combines his own

information with the advice he receives. Without any information in his hands, a novice would

have responded differently.

Ineffectively induced actions are taken when useless advice is received and ignored, either in the

process of applying the Bayes’s rule or when it is an out-of-equilibrium event. The situations that

give rise to them are the “mirror image” of those of effectively induced actions:

Proposition 2.3 (Ineffectively Induced Actions). Under an N -step strategy of the expert, an

ineffectively induced action is induced on a high-interval type th if and only if he receives

1. a redundant advice: his threshold t ∈ IN and he receives m ∈MN ;

2. a false advice: his threshold t ∈ Ii, i = 2, . . . , N , and he receives m ∈Mk, 1 ≤ k < i.

An ineffectively induced action is induced on a low-interval type tl if and only if he receives

1. a redundant advice: his threshold t ∈ I1 and he receives m ∈M1;

2. a false advice: his threshold t ∈ Ii, i = 1, . . . , N − 1, and he receives m ∈Mj, i < j ≤ N .
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The profile of actions ineffectively induced by redundant advice is

ρ(m, th) = a(t, 1), and (2.11)

ρ(m, tl) = a(0, t). (2.12)

The profile of actions induced by false advice will depend on the specifications of off-equilibrium

beliefs. Although the actions are ineffectively induced, they are so exactly because the decision

maker’s information is put into use. A novice would have followed in these cases advice that is

either deceptive or too vague. The amateur therefore benefits from his information when he takes

ineffectively induced actions.

The following property of actions induced by a particular type of expert will be useful for

considering the expert’s equilibrium strategy.

Corollary 2.1. Under an N -step strategy, every θ ∈ Ii, i = 1, . . . , N , induces a different set of

actions. Furthermore, θ ∈ Ii induce the set of actions a(θi−1, t), t ∈ Ii, if and only if she is an

interior type.

2.4.2 Existence of equilibria

In the CS model, the condition that the boundary types are indifferent between sending messages

in two adjacent message sets (e.g., θi is indifferent between Mi and Mi+1) is always sufficient

(and necessary) for the existence of informative equilibrium. Moreover, the specifications of off-

equilibrium beliefs have no impact on equilibrium whatsoever. It turns out that this is no longer

the case in the amateur model.

When the indifference condition above is satisfied, it follows immediately in the CS model that

1) every boundary type θi will (weakly) prefer sending messages in Mi over any other messages;

and 2) θ in the interior of every Ii will (strictly) prefer sending messages in Mi over any other

messages. I call the first and the second conditions the incentive-compatibility condition for the

boundary types and the interior types. When they are satisfied, no single type of the expert has

incentives to deviate from the N -step strategy - it constitutes an equilibrium.

In the amateur model, however, even if the following set of equations that characterize the

indifference condition holds:

V e(Mi, θi, b) = V e(Mi+1, θi, b), i = 1, . . . , N − 1, θ0 = 0, θN = 1, (2.13)
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depending on the specification of off-equilibrium beliefs, the incentive-compatibility conditions may

not be satisfied; there could be a benefit of “lying” by providing false advice in the amateur model.

Suppose the expert’s strategy is of three steps, i.e., N = 3, and it satisfies the indifference

condition. Consider boundary type θ1 in this proposed equilibrium (Figure 2.1).29 If the realized

θ equals θ1, then all high-interval types of decision maker will have t ≤ θ1 and all low-interval

types will have t > θ1. If θ1 sends m ∈ M1 as is prescribed by the strategy, indicating to the

decision maker that θ ∈ [0, θ1], then all high-interval types will take action a(t, θ1), t ∈ [0, θ1], and

all low-interval types will take action a(0, θ1) (the second line in Figure 2.1). These actions are all

effectively induced. Given that θ1 satisfies the indifference condition, she will be indifferent between

inducing these actions and those induced by m ∈ M2, which are a(θ1, θ2) and a(θ1, t), t ∈ (θ1, θ2]

(not shown in the figure).
Deviation

Proposed Equilibrium

t

t

0 θ1 θ2 1
θ

θM1 M3

high-interval types’
thresholds

low-interval types’
thresholds

actions
induced: a(θ2, 1) a? a(θ2, t)

high-interval types’
thresholds

low-interval types’
thresholds

actions
induced: a(t, θ1) a(0, θ1)

Figure 2.1: Incentives for deviations

Now, suppose the expert deviates from the strategy: she provides a false advice by sending

m ∈ M3, in effect telling the decision maker that θ ∈ [θ2, 1]. All high-interval types will take
29There is benefit of lying for boundary types whenever N ≥ 3. The benefit of lying also arises for interior types,

which makes the indifference condition not always sufficient even for two-step equilibria. Indeed, in the CS model,
incentive compatibility for the interior types is a consequence of that for the boundary types, and, as will be discussed
below, this is also not true in the amateur model.
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a(θ2, 1) and all low-interval types with t ∈ [θ2, 1] will take a(θ2, t). These decision makers are not

able to detect that the advice is false and are effectively induced to take actions. To the expert,

these actions induced by the false advice are less favorable than those induced by M1 (or M2)

because they are positioned farther away from her ideal action.

However, to the low-interval types with t ∈ [θ1, θ2), the false advice can be detected because

it contradicts with their information. To decide what action to take, ineffectively induced in this

case, the off-equilibrium beliefs ψ(θ|tl) come into play. Without any restriction, one can come up

with beliefs so that these decision makers will take an action that is closer to (or even the same as)

the expert’s ideal action than a(0, θ1) effectively induced in the proposed equilibrium. This creates

a benefit of lying that is absent in the CS model. In equilibrium with more steps, it is conceivable

that such benefit of lying can outweigh the cost of inducing unfavorable actions on some types of

decision makers. Some types of expert may therefore have incentive to deviate from the strategy

that satisfies the indifference condition. In effect, the expert lies on purpose so that some types of

decision maker will take actions on their own, and the actions are favorable to her, yielding her a

higher expected payoff.

The above suggests that the existence of informative equilibria not only depends on whether

the bias of the expert allows the indifference condition to hold, but also hinges on the specifications

of off-equilibrium beliefs. I denote ψ to be the set of off-equilibrium beliefs of all interval types

of decision maker: ψ ≡
⋃
{t,s}∈T×{l,h} ψ(θ|ts). The following proposition states that there is a set

of off-equilibrium beliefs that, coupled with a mild assumption on the expert’s payoff function,

guarantees the sufficiency of the indifference condition:

Proposition 2.4. There exists a set of off-equilibrium beliefs ψ∗ such that, provided U e12(·) is

sufficiently large, the boundary types {θi}N−1
i=1 that satisfy (2.13) always constitute an equilibrium

in the general model.

Proposition 2.4 in effect provides two additional sufficient conditions for the existence of equi-

libria; they are far from being necessary. The off-equilibrium beliefs ψ∗ adopted in the proposition

is roughly as follows. The decision maker divides Θ ≡ [0, 1] into different sets that coincide with

the partition under the expert’s N -step strategy. If his threshold t ∈ (θi, θi+1), upon receiving a

false advice a high-interval incarnation of him will believe that θ is distributed on [t, θi+1) and a

low-interval incarnation will believe that θ is distributed on (θi, t). In other words, the decision

maker’s beliefs are contingent on the expert’s strategy. The (correct in equilibrium) anticipation
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of σ is thus not only used by the decision maker to form his beliefs on the equilibrium paths using

Bayes’s rule but also to form his off-equilibrium beliefs.

As mentioned above, there are two incentive compatibility conditions behind the existence of

equilibrium. The off-equilibrium beliefs specified in the proposition are sufficient for the condition

to hold for the boundary types. However, since the interior types induce a set of actions not

induced by the boundary types (Corollary 2.1), a sufficiently large U e12(·) comes into the picture

to guarantee that incentive compatibility also holds for them. Figure 2.2 illustrates the rationale

behind with an example of two-step equilibrium.

t

t

t

t

θ
0 1θ1

boundary type

interior type

M1

M2

M1

M2

a(t, θ1) a(θ1, 1)

a(θ1, 1) a(θ1, t)

a(t, θ1) a(0, t) a(θ1, 1)

a(θ1, 1) ∗a(0, t) a(θ1, t)

θ

Figure 2.2: Actions induced by boundary and interior types

Given that the indifference condition holds, the boundary type θ1’s expected payoff from the

profile of actions a(0, θ1) and a(t, θ1), t ∈ [0, θ1], is the same from that from a(θ1, 1) and a(θ1, t),

t ∈ (θ1, 1] (the two upper lines). Consider the actions induced when the interior type θ sends

messages in M1 and M2. If we compare the profile of actions in the lower pair of lines with those

in the upper pair, we can see that they are the same except for t ∈ (θ, θ1). While θ1 gives no false

advice when she sends messages in either M1 and M2, there is one when θ sends m ∈ M2. The

specification of ψ∗, which allows incentive compatibility to hold for θ1, (ineffectively) induce the

action a(0, t) (with asterisk) for the interior type if she sends messages in M2, which is the same

as the action effectively induced by m ∈M1.
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If we could fix the profile of actions for θ1 and decrease θ1 to θ, the sorting condition would have

guaranteed that θ strictly prefers to send messages in M1 over M2. However, when the expert’s

type changes, the profile of actions also changes, and, for t ∈ (θ, θ1), θ is indeed indifferent between

M1 and M2. Thus, for incentive compatibility to hold, we have to ensure that θ prefers M1 enough

for t /∈ (θ, θ1) so as to balance against her indifference for t ∈ (θ, θ1), and for this a sufficiently large

U e12(·) is required.

A large U e12(·) means that the ideal action of a higher θ is sufficiently higher than that of a

lower θ. This additional restriction is nothing but a strengthening of the already existing sorting

condition. It is satisfied by the quadratic payoffs (2.1) and (2.2) in the uniform-quadratic model

(in which U e12(·) = 2). Thus, as the practice in most literature goes, the restriction does not impose

too much of a limitation. Let me turn to the uniform-quadratic model now.

2.5 EQUILIBRIUM CHARACTERIZATIONS II: UNIFORM-QUADRATIC

MODEL

In the uniform-quadratic model of Crawford and Sobel [12], the indifference condition reduces to

a second-order linear difference equation. The availability of explicit solutions for linear difference

equations allows a complete characterization of the relationship between the extent of information

transmitted by the expert (N) and her level of bias (b). In the amateur model, however, the different

specification of the expert’s expected payoff turns the indifference condition into a non-linear second-

order difference equation, which in general has no explicit solution.30 For explicit results on how

b relates to the properties of equilibria, I shall therefore provide a complete characterization only

for two-step equilibria, in which the non-linear difference equation reduces to a solvable single

equation.31

The off-equilibrium beliefs ψ∗ in Proposition 2.4 have a special property in a two-step equi-

librium. Under the prescription of ψ∗, when a false advice is received the decision maker’s off-

equilibrium beliefs are the same as his pre-communication beliefs. Thus, there is a consistency in

how the decision maker behaves when he ignores the advice of the expert: regardless of whether

the advice received is redundant or false, the decision maker relies on his own knowledge to take

30For conciseness, in this section I shall refer the uniform-quadratic specialization of the amateur model as simply
the amateur model. The same applies for the uniform-quadratic specialization of the CS model.

31For the same reason of intractability, the welfare analysis in the next section will also focus on two-step equilibria.
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the best decision he can.

The following characterizes the relationship between the existence of two-step (and thus infor-

mative) equilibria and the expert’s bias:

Proposition 2.5. In the amateur model, an informative equilibrium exists if and only if b < 1
6 .

When b ≥ 1
6 , what we are left with in the amateur model are the so-called “babbling equilibria”

in which any advice from the expert is redundant. It is interesting to note that in the CS model,

b has to be smaller than 1
4 in order for an informative equilibrium to exist, and for b ∈ ( 1

12 ,
1
4) the

only informative equilibria are two-step (for the results that follow, a superscript “cs” will be added

for the corresponding notations in CS model).32 Incorporating this into Proposition 2.5 gives the

following observations:

Corollary 2.2. For b ∈ [1
6 ,

1
4), an expert provides informative advice to a novice decision maker

but babbles if the decision make is an amateur. For b ∈ ( 1
12 ,

1
6), in which the most informative

equilibria in both models have two steps, the boundary type in the amateur model θ1(b) < θcs1 (b).

Furthermore, for b ∈ ( 1
12 ,

1
6), the difference θcs1 (b)− θ1(b) = b.

Corollary 2.2 substantiates the claim that the expert responds strategically to her client’s knowl-

edge. More importantly, she responds in a negative way. When her bias is relatively high but not

high enough for her to babble to a novice, she nevertheless babbles to an amateur. Even for lower

level of bias so that she does provide informative advice to the amateur, her advice for the amateur

will be less informative than that for a novice, in the sense that novices will prefer to make deci-

sion under the advice customized for them rather than that for the amateurs. Disentangling the

contribution of the advice, the expert contributes less to an amateur’s payoff than to a novice’s,

and such a negative differential aggravates as the expert becomes more biased.

The information of some types of decision maker attenuates the influence of the expert on their

actions. This change is, on average, unfavorable to the expert. To redeem the loss within the

confine of her attenuated influence, she adjusts her strategy by providing less informative advice.

Given the conflict of interests between the expert and the decision maker, such an adjustment in

the expert’s benefit harms the decision maker.

A more detailed explanation on why the expert adjusts her strategy in this way can be seen

with the aid of Figure 2.3. The decision maker’s threshold is measured vertically and the state

horizontally. Consider first the CS model (Figure 2.3a). While the novice decision maker in

32There are also only two-step equilibria in the amateur model for b in this range.
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Figure 2.3: Profile of induced actions

the CS model has only one single type, we can consider him as also having a threshold t but

without an access to the signal s. In other words, we can imagine there is also a continuum of

(single-dimensional) types for the novice decision maker, but since t by itself does not provide any

information, all types of novice behave the same. Suppose the equilibrium boundary type in the CS

model is θcs1 . The expert sends m1 for θ ∈ [0, θcs1 ] and m2 for θ ∈ [θcs1 , 1].33 Without any information

on the decision maker’s side, m1 then induces a single action θcs1
2 and m2 induces θcs1 +1

2 . Since θcs1

is an equilibrium boundary type, the expert will be indifferent between inducing these two actions.

Consider next the amateur model (Figure 2.3b). Suppose the boundary type in the amateur

model, θ1, sets out to coincide with θcs1 ; she also sends m1 for θ ∈ [0, θ1(= θcs1 )] and m2 for

θ ∈ [θ1(= θcs1 ), 1]. Note first that there are two sets of amateur decision makers that θ1 will

never face, namely, tl with t < θ1 and th with t ≥ θ1 (the two gray triangles ABE and EHJ).

Among the remaining types (represented by the area in white), some of them the expert has full

influence (the two white rectangles BCDE and θ1EJH) and some of them on which her influence

is attenuated (the two white triangles AEθ1 and EDH). Comparing the resulting induced actions

shown in Figure 2.3b with those in Figure 2.3a, we can see that under m1 some decision makers

33For illustrative purpose, I assume that the expert does not randomize and uses pure strategy.
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take θ1
2 = θcs1

2 and some take t+θ1
2 ≥ θcs1

2 , t ∈ [0, θ1]. Accordingly, insofar as payoff-relevant actions

are concerned, m1 induce on average action higher than θcs1
2 in the amateur model. To maintain the

indifference, a force is created pushing θ1 above θcs1 . Applying a similar exercise to the rectangle

θ1DHK on the right, one can see that there is another force pulling θ1 below θcs1 since some decision

makers will take θ1+t
2 ≤ θ1+1

2 , t ∈ (θ1, 1]. The final position of θ1 (i.e. the equilibrium θ1) depends

on the relative strength of these two forces. Should b approaches zero so that θcs1 approaches 1
2 , the

two sides will tend to be symmetric. The two opposing forces will then balance out at θ1 = θcs1 ;

θcs will indeed be the equilibrium boundary type in the amateur model.34 However, for b > 0 so

that θcs1 < 1
2 as in the figures, the pulling force will be stronger than the pushing force. Thus, θcs1

cannot be the equilibrium boundary type in the amateur model, and the net pulling force renders

θ1 lower than θcs1 . This also demonstrates why the distance between θcs1 and θ1 increases with b.

An implication from this discussion is that the decision maker’s information per se does not

detriment his relationship with the expert - it only detriments his relationship with a biased expert;

when interests are perfectly assigned, the expert will behave the same regardless of whether she

faces a novice or an amateur.

Example 2.1: Three-Step Equilibria

Suppose b = 1
15 . The boundary types in the three-step equilibrium of the amateur model are

{θ̄1, θ̄2} = {0.011, 0.307}.35 The boundary types in the CS model are {θ̄cs1 , θ̄cs2 } = {0.067, 0.4}.

Thus, for a given b and N = N cs = 3, we have an order on the corresponding boundary types for

amateur and novice: θ̄1 < θ̄cs1 and θ̄2 < θ̄cs2 . The distances between them are θ̄cs1 − θ̄1 = 0.056 and

θ̄cs2 − θ̄2 = 0.093.

Next, consider a lower level of bias b = 1
20 . The boundary types in the amateur model are {θ̂1, θ̂2} =

{0.09, 0.404} and those in the CS model are {θ̂cs1 , θ̂cs2 } = {0.133, 0.467}. The distances between

them are: θ̂cs1 − θ̄1 = 0.043 and θ̂cs2 − θ̄2 = 0.063. Comparing with the first example, the change in

the distances between the boundary types is consistent with Corollary 2.2 where they are strictly

increasing in b.

34When b approaches zero, there are other equilibria in the CS model that have more steps, and the two-step
equilibria is considered “implausible” because they are Pareto-dominated. I use them here just for an illustration.

35The numbers are approximations. All calculations in the examples can be found in the Appendix.
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2.6 DECISION MAKER’S WELFARE

Several results so far provide fragmented pictures on how the decision maker’s information relates

to his welfare. Results in previous section suggest that, for a given piece of advice, different types of

decision maker are impacted differently. Furthermore, the expert responds to the decision maker’s

knowledge in a way unfavorable to him. These are all due to the change in the strategic interaction

between the parties. There is another piece of fragment, non-strategic in nature and opposing the

above effect, that has not been considered: the welfare improvement due directly to the fact that

the decision maker knows better as in the case when he makes decisions alone without help from

the expert.

In this section, I weave all these fragments together and attempt to answer the main question of

whether the evolution from novice to amateur is a welfare improving change for the decision maker.

I shall restrict attention to two-step (and babbling) equilibria in the uniform-quadratic model. The

decision maker’s ex-ante expected payoff in two-step equilibria in the uniform-quadratic case of the

CS model will be used as the yardstick of welfare comparisons. As such, the following analysis will

be based on the cases where b ∈ ( 1
12 ,

1
4) so that N ≤ 2 in both models. As in the last section, an

example pertaining to three-step equilibrium will also be given.

2.6.1 Stages of evaluating payoffs

The presence of two-sided private information entails an additional consideration regarding the

stages of evaluating welfare. According to Holmström and Myerson [24], an ex-ante stage is a time

interval in a model where no agent has received any private information, whereas in an interim stage

every agent has received his private information but does not know that of the others. Applying

this to the amateur model, it is obvious that the game is in an ex-ante stage before the realizations

of t and θ, whereas after the expert knows her type and the decision maker knows his interval type,

the game enters into an interim stage. If we are using the perspective that the interval type is a

private signal of the decision maker that are determined simultaneously by t and θ, this will be the

end of the story.

It will also be of interest to the welfare analysis, however, to consider a lapse between the

realizations of t and θ, in particular when t is realized prior to θ. This is so because this represents an

interesting situation where the decision maker has acquired a capacity to interpret information but
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not yet make an interpretation. A health-conscious person, who otherwise is completely healthy at

the moment, may devote time and effort into studying the characteristics of several serious diseases

just to save it for a rainy day. Similarly, an old-school CEO may decide to study an M.B.A. and

develop general skills in evaluating investment projects so that in the future he will not be misled

anymore by his staff graduated from top business schools. The welfare of them after they have

acquired such abilities is to be evaluated in a time interval after t but before θ is realized.

However, according to Holmström and Myerson’s [24] definition, when only t is realized, the

game is still in an ex-ante stage because the other agent in the model - the expert - has yet to receive

her private information, and thus not everyone in the model is privately informed. To distinguish

this from the ex-ante stage before the realization of t, we need to invent some terminology: I shall

call the time interval between the realizations of t and θ the post-t ex-ante stage.36 Naturally,

before t (and θ) is realized, it will called the pre-t ex-ante stage. Figure 2.4 visualizes the timeline

under this new terminology.
A. The CS Model

nature draws θ expert sends m decision maker takes action a

ex-ante stage interim stage

B. The Amateur Model

Expert’s Perspective

Decision Maker’s Perspective

nature draws t nature draws θ
s is generated

expert sends m decision maker takes action a

ex-ante stage interim stage

pre-t post-t

ex-ante stage interim stage

Figure 2.4: Stages of evaluating welfare

Finally, a few notations are in order before we delve into the analysis. I shall use W cs(b)

to denote the expected payoff of the decision maker in the CS model when he interacts with an
36Since I always use ex-ante expected payoffs, pre-t or post-t, as the criterion to evaluate welfare, I omit “ex-ante”

from this point on when I refer to the expected payoffs.
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expert with bias b. Similar notations apply to the amateur model except for the use of t in the

subscript indicating whether the expected payoffs are post-t or not. In particular, W (b) is the pre-t

expected payoff of an amateur decision maker who interacts with an expert with bias b, and Wt(b)

is the post-t counterpart of it. Note that W cs(b) will be the benchmark for evaluating whether an

amateur decision maker is better off, regardless of whether the subject of comparison is pre-t or

post-t (compare A. and B. in Figure 2.4).

2.6.2 Payoff comparisons

There are two opposing forces that contribute to the changes in the expected payoff of an amateur

relative to a novice. Since decision makers with different thresholds interpret differently when

information is realized or received, decision makers with different t should experience different

levels of welfare changes compared to W cs(b), and it is conceivable that one of the forces may

dominate the other for different cases. The following proposition indicates that this is indeed the

case:

Proposition 2.6. Consider two separate cases in the post-t ex-ante stage:

1. Suppose b ∈ [1
6 ,

1
4) so that θ1 = 0. There exist 0 < t < t < 1 such that, compared to his novice

counterpart, an amateur is better off if and only if his threshold t ∈ [t, t].

2. Suppose b ∈ ( 1
12 ,

1
6) so that θ1 > 0,

i. for t ∈ (θ1, 1], there exist θ1 < t′ < t
′
< 1 such that an amateur is better off if and only if

his threshold t ∈ [t′, t′], and

ii. for t ∈ [0, θ1], the amateur is always worse off.

When b ∈ [1
6 ,

1
4), the only equilibrium in the amateur model is babbling, while there are still two-

step equilibria in the CS model. The welfare comparison in this case thus boils down to comparing

the partition provided endogenously by the expert in the CS model and the partition generated

exogenously by the decision maker’s thresholds in the amateur model. In the uniform-quadratic

setup, if an arbitrary interval in [0, 1] is to be divided into two sub-intervals, the expected payoff

(conditioned on θ lying within the interval) is a concave function of the dividing point, with the

maximum achieved at the mid-point of the interval, which, in this case, is 1
2 . Since the endogenous

θcs1 < 1
2 in the CS model, the decision maker in the amateur model is better off if and only if his t

is closer to 1
2 than θcs1 does, and this defines the interval [t, t] = [1

2 − 2b, 1
2 + 2b]. Note also that this
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implies as the expert becomes more biased, this interval will be enlarged so that “more” decision

makers will be better off.

The intuition behind case (2) is essentially the same, but now we are comparing partition with

one element in the CS model (θcs1 ) and partition with two elements in the amateur model, the

exogenous t and the endogenous θ1. By just comparing θcs1 and θ1, the amateur is always worse off.

But with the addition of t, cases vary. For t ∈ (θ1, 1] in (2i), to compensate for the loss in payoff due

to a lower θ1, t must lie in a close-enough neighborhood of the mid-point, θ1+1
2 , before an amateur

can be better off. For t outside this range, however, the loss outweighs the gain, rendering these

unlucky decision makers worse off even though they have a partition with one more element under

their belts.37 For t ∈ [0, θ1] in (2ii), since 0 and θ1 are close to each other, even when the decision

maker’s own information is most useful - when t lies squarely on the mid-point θ1
2 - it is not useful

enough to counter the unfavorable response of the expert. As a result, all amateur decision makers

with t in this range are worse off.

Despite the above, the following result offers a positive outlook when we “take an average”

across these ts:

Proposition 2.7. In the pre-t ex-ante stage, an amateur decision maker is always better off.

Furthermore, the welfare improvement of an amateur relative to a novice, W (b) − W cs(b), first

decreases and then increases as the expert becomes more biased.

Thus, while some decision makers are better off and some are worse off, the cases of payoff

improvement dominate the cases of reduction so that on average the decision maker’s information

pays off. As to why the welfare improvement is non-monotone in b, first note that a higher level

of bias drives both θ1 and θcs1 down so that the expected payoffs of both amateur and novice

decrease. Initially, the negative impact on the amateur is relatively larger because, as b increases,

θcs1 (b) − θ1(b) increases as well (Corollary 2.2), and thus the dominance of the amateur’s payoff

over that of the novice diminishes, explaining the decreasing W (b) −W cs(b). However, this only

applies for b < 1
6 ; when b eventually reaches 1

6 so that θ1 reaches 0, any further increases in b has no

marginal impact on the amateur, and his payoff will be independent of b from that point on. For

the novice, however, because θcs1 (1
6) > θ1(1

6) = 0, when b reaches and goes beyond 1
6 , it still keeps

driving down θcs1 , and thus the dominance of the amateur’s payoff increases back as θcs1 (b)− θ1(b)

decreases for b ∈ (1
6 ,

1
4).38

37The exact values of the ts that define the intervals can be found in the Appendix.
38While our focus is for b ∈ ( 1

12
, 1

4
), it is obvious from the above that when b ≥ 1

4
, the dominance of the amateur’s
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Example 2.2: Payoff Comparisons in Three-Step Equilibrium

I shall demonstrate in this example the case where b = 1
15 . Recall from Example 2.1 that the

boundary types in the three-step equilibrium in the amateur model are {θ̄1, θ̄2} = {0.011, 0.307}.

Given that b = 1
15 , the decision maker’s expected payoff in the CS model is W cs( 1

15) = −0.021111.

Thus, an amateur decision maker is better off if and only if his expected payoff exceeds or equal to

−0.021111.

It turns out, in the post-t ex-ante stage, all amateur decision makers with t ∈ [0, θ̄2] are worse off

compared to their novice counterparts. For t ∈ [θ̄2, 1], some of them are better off and some of them

worse off. In particular, only those decision makers with t ∈ [0.390136, 0.916973] are better off. On

the other hand, the decision maker is always better off in the pre-t ex-ante stage; the amateur’s

pre-t expected payoff is −0.019959 > −0.021111. The example demonstrates that the results for

two-step equilibria carry over to three-step equilibrium.

2.7 RELATED LITERATURE

Among the papers which show that the decision maker’s information can contribute to better

communication, Seidmann [43] considers a model in which all expert’s types share a common

preference ordering over the decision maker’s actions.39 He shows with examples that, when the

decision maker has private information, communications can be informative even though all expert’s

types prefer a particular action. Given the decision maker’s information, messages can induce

distributions of actions not ordered by stochastic dominance. This upsets the expert types’ common

preference ordering over individual actions and renders sorting possible in equilibrium.

Watson [48] considers a model where the expert only cares about the decision maker’s actions.

He shows that the correlation between the expert’s types and the decision maker’s types creates

an incentive for full revelation of information - after observing her own type, the expert figures out

from the correlation that the decision maker’s information, when combined with a true report from

her, will induce him to take an action that is favorable to her.

Olszewski [37] considers a model in which the expert wants to be perceived as honest in front

payoff will be independent of b because then we are simply comparing a novice and an amateur both making decision
on their own.

39In the literature, the expert is commonly referred as the “sender” and the decision maker the “receiver.” I shall
adhere to the terminology of “expert” and “decision maker” in this literature review.
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of an informed decision maker. Olszewski provides conditions on the information structure so that

full revelation is the unique equilibrium, provided the expert’s concern to be perceived as honest is

strong enough. The decision maker’s information therefore serves as a solution for multiplicity of

equilibria commonly encountered in cheap-talk models.

A message in my model also induces a distribution of actions across the decision maker’s types.

But I show that in the original cheap-talk model of Crawford and Sobel [12], in which different

types of expert exhibit different preferences over the decision maker’s actions (i.e., the sorting

condition is in place), the decision maker’s information worsen communications, let alone achieving

full revelation.

The paper that is closest to this chapter is Chen [11]. We both consider an informed decision

maker in an otherwise standard CS model. Chen focuses on the possibility for the decision maker

to communicate with the expert in the first round about what he knows. Chen shows that the

decision maker cannot credibly communicate his information to the expert. She also shows that

when, as in my model, the decision maker’s information remains private, non-monotonic equilibria

can arise. The welfare of an informed decision maker is, however, not explicitly considered in her

paper.

The structures of the signals represent another difference. In Chen’s model, the decision maker’s

information pertains to a binary signal about the state of the world that satisfies the monotone

likelihood ratio. On the other hand, the decision maker in my model can receive a continuum of

signals. Most importantly, the decision maker’s information in my model can confer on him an

ability to detect whether a message is a deception or not. Such an ability to verify messages calls

for the consideration of out-of-equilibrium (but used) messages which, to the best of my knowledge,

do not appear in other cheap-talk models.

For that reason, this chapter is also related to the literature on verifiable messages or persuasion

game (e.g., Milgrom and Roberts [34]). In this literature, messages being verifiable is an exogenous

assumption imposed, whereas in my model verification of messages arise endogenously although it

does not in equilibrium. In a sense, the amateur model can be viewed as a middle ground between

these models and the pure cheap-talk models.

This chapter is also related to cheap-talk models with two senders. The receiver in these models

has two sources of information, both of them strategic in nature, and it is found that the addition

of one more sender can sometimes improve communications. For example, Krishna and Morgan

[28] shows that when the interests of the two senders oppose, it will be beneficial to have both of
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them in place. There are also two sources of information in the amateur model, but one of them is

replaced with non-strategic information access by the receiver himself. The results here therefore

indicate that an additional source of information is not always useful. When it is not obtained from

strategic sources, it can indeed worsen rather than improve communications.

In terms of applications in the doctor-patient relationship, the use of cheap-talk models centers

around an important topic in health economics arisen under “physician agency” - the supplier-

induced demand in which “the physician influences a patient’s demand for care against the physi-

cian’s interpretation of the best interest of the patient” (McGuire [33]). Dranove [14] was among the

first to characterize the original neoclassical view of supplier-induced demand in terms of strategic

interaction between doctors and patients under information asymmetry. Calcott [9] and De Jaegher

and Jegers [13] explicitly use cheap-talk models to characterize the supplier-induced demand and

study its properties.

Kőszegi [26][27] studies another aspect of doctor-patient relationship - the “emotional agency.”

In his cheap-talk model (he also considers another setting in which the “talk” can be verified), the

doctor’s reported diagnosis not only affects the patient’s decision-making but also has emotional

implications on him. To isolate the emotional concern from conflict of interests, Kőszegi shows that

when a completely altruistic doctor takes into account the emotional effect of her reported diagnosis,

the doctor tends to provide advice that is skewed toward “good news.” My interpretations of the

model in terms of doctor-patient relationship is largely the same as those in his papers.

2.8 CONCLUDING REMARKS

This chapter answers the question of how the information of a decision maker, who interacts with

a biased expert, affects the decision outcomes. The question is asked in an apt time: recent

developments in the Internet (e.g. information sharing as part of the Web 2.0) have created a

group of amateurs who have access to specialized knowledge once available only to experts. Simply

put, the analysis indicates that this development does not benefit every decision maker involved.

When an amateur makes decision not just on his own but by consulting an expert, being informed

could backfire: the expert responds strategically to the information asymmetry as to what her

client knows and, as a result, provides less informative advice.

For some decision makers whose information is not that useful, this negative, strategic effect
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could outweigh the benefit of being informed, rendering them worse off by becoming an amateur.

And the opposite side is that, in the case where an amateur enjoys a welfare improvement, it is the

direct benefit of information that is playing the role. However, even taking into consideration the

strategic behavior of experts, as providing an channel for patients or investors to obtain information,

the Internet always contributes to their welfare: it is shown in this chapter that an amateur

decision maker is always better off only in an ex-ante sense before his information is realized. The

subtlety is that after a decision maker utilizes the “channel for information” and obtains certain

knowledge from it, the fact that he has consulted the Internet before meeting with an expert does

not necessarily guarantee that his final decision outcome will be improved.

Despite this qualification on the effects of decision makers’ information, there is, however,

no paradox in why the advocates for consumer education always argue that education improves

welfare: as outside observers, they by definition can only evaluate its effects ex-ante. Amateurs’ non-

monotonic welfare improvement with respect to the expert’s bias further suggests that educating

the decision makers is more beneficial when the expert’s bias is more extreme. This result is

indeed quite intuitive: a more biased investment advisor may not be so helpful anyway, so the

investor benefits by relying on his own for information; an altruistic doctor may not respond too

negatively to an informed patient, and the patient can benefit from his own use of information

without worrying too much about the negative, strategic effect.

The additional layer of information asymmetry worsens the communication between the expert

and the decision maker, and a “redistribution effect” on welfare is created in which some decision

makers are worse off due to the presence of others. As is the case for other instances of information

asymmetry, some agents may have incentives to distinguish themselves from others. In the present

context, some decision makers may even choose to be uninformed if they are given a choice and

can credibly signal to the expert about it. A natural extension will be to provide an opportunity

for the decision maker to talk to the expert before the expert offers advice, allowing the decision

maker to reveal how much or whether he knows.40

Stigler was perhaps the first to formally consider information in economic models. In his

classic paper on the economics of information (Stigler [46]), information (search) costs are explicitly

considered. Later on until recently, costs of information were largely ignored in the profession.41

40Chen [11] considers this possibility. She shows that under the signal structure in her model the decision maker
cannot credibly reveal his information to the expert.

41For recent work on costly information acquisitions, see, for example, Bergemann and Välimäki [8] for efficient
mechanism design and Persico [41] for committee design.
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To study the economic consequences of diverse distributions of information among different parties,

a “shortcut” was made (Maskin and Tirole [32], p.107): one party is often assumed to have some

information that is not available to the others - the asymmetry of information is exogenously

imposed. When costs of information are present, as is the case in reality, such a dichotomy may

no longer be appropriate; the information possed by different individuals should then be modeled

in relative terms in reference to their different costs of acquiring information. While this paper

does not explicitly consider information costs, it examines an environment in which information is

distributed among the parties not in an all-or-nothing manner. I believe that the framework studied

here will be useful for further studying the endogenization of information status of the players in

models of strategic information transmission.
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3.0 CHALLENGED AUTHORITY

3.1 INTRODUCTION

Knowledge and authority often go hand in hand. When a person is said to be an authority in certain

subject, we take it to mean that he or she has a superior knowledge in the area - and vice versa.

Not only is access to specialized knowledge a privilege of experts, but the professionals also carry

the authority that comes with it. With the wide availability of information nowadays, however,

experts’ access to specialized knowledge is no longer exclusive. Consequently, their authority may be

shaken or challenged. Not every authority welcomes challenges. In the doctor-patient relationship,

for instance, it is documented that some doctors are annoyed by the “Googler-patients” (e.g.,

Ahmad et al. [1] and Murray et al. [36]).1 Some of them may even become less helpful to their

savvy clients.2

How an expert’s aversion to dealing with informed clients affect the communication between

the parties? This chapter attempts to analyze formally this aspect of communication with experts,

extending on the strategic information transmission model of Crawford and Sobel’s [12] (the “CS

model”).

“Knowledge” in the model refers to knowledge about the state of the world, represented by a

random variable in the unit interval [0, 1]. There are two players: an expert (she) and a decision

maker (he). The expert is the authority: she has perfect knowledge about the state of the world

in that she observes perfectly the realized random variable. The decision maker, who is to take an

action that affects the payoffs of both parties, is of one of two types: uninformed or informed. The

uninformed type knows nothing about the state except that it is uniformly distributed on [0, 1].

The unit interval [0, 1] is divided for the informed type into two half intervals, [0, 1
2) and [1

2 , 1]; the

1See also Haig [22] for a first-hand report from a doctor who is annoyed by his Googler-patient.
2For example, the following response is noted from a doctor (Ahmad et al. [1]): “They’re coming back [with

Internet information]. It requires a little looking into. If you are tired, of course, you’ll probably just fire them...if
they’re really belligerent.” See also fn. 12 of Chapter 2.

40



informed decision maker has partial knowledge about the state in that he is able to tell whether it

lies in [0, 1
2) or [1

2 , 1]. The decision maker’s type is unknown to the expert, and her prior beliefs are

that the two types are equally likely.

The expert and the decision maker have to coordinate on what action to take in each possible

state of the world. The coordination is achieved through two rounds of communication. In the

first round, the decision maker reports to the expert about his information type, i.e., whether he is

informed or not. The decision maker’s report is costless: the report itself does not affect his payoff

nor that of the expert. It is typically not an easy task for an ignorant person to pretend, in front of

experts, to be sophisticated. To capture this, the decision maker’s report is assumed to be partially

verifiable in which only the informed decision maker can report that he is informed. In the second

round of communication, the expert advices the decision maker about the state of the world. She

sends a costless, cheap-talk message to the decision maker, after which the decision maker takes an

action.

The extent of coordination is limited by the misaligned interests between the parties. Relative

to the decision maker’s, the expert’s preferences are biased toward higher actions. Crawford and

Sobel [12] show that the larger is this bias, the “less helpful” the expert is to the decision maker

in the sense that the expert provides less informative advice. I leverage on this interpretation to

model how the expert becomes annoyed when she believes that her authority is challenged - when

she is not the only one who has knowledge about the state - and responds to it by becoming less

helpful. The expert’s bias consists of two components: her normal bias and her emotional bias.

The former can be considered as the same as that in the CS model. The latter is a new component

in this model, and its magnitude depends on the expert’s beliefs about whether the decision maker

is informed: the more likely that she believes the decision maker is informed, the larger is her

emotional bias. Since then the expert’s payoffs depend on beliefs, the present model - which I

call the authority model - is an instance of psychological games (e.g., Geanakoplos et al. [20] and

Battigalli and Dufwenberg [6]).

I first analyze the continuation games after the expert receives the decision maker’s report.

The continuation games begin with the expert’s posterior beliefs about whether the decision maker

is informed, and there are three cases that are of particular interests: when the expert’s beliefs

about the presence of informed decision maker are 0, 1
2 and 1. When, in the first case, the expert

believes that the decision maker is uninformed, the continuation game reduces to the CS model.

Suppressing, for comparison purposes, the expert’s emotion so that her bias only consists of the
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normal bias, I find, using the first case of beliefs or the CS model as the benchmark, that more

closely aligned interests between the parties are required for effective communication when the

expert believes that the probability of facing an informed decision maker is 1
2 or 1. Furthermore,

among these two cases, a lower level of bias is required for the existence of informative equilibria

when the expert is certain that she faces an informed decision maker than when her beliefs coincide

with the prior of 1
2 .

The expert, with preferences biased toward higher actions, has to be allowed in equilibrium to

exaggerate in her advice in order to be willing to provide information. When the expert believes that

she is facing an informed decision maker, she knows that there is less room for her to exaggerate

that will not be ignored, because the decision maker will compare and contrast what he knows

with what he is told. Accordingly, for a range of bias in which the expert provides information

to an uninformed decision maker, she will not provide any information when she is certain that

the decision maker is informed. When the expert believes that an informed and an uninformed

decision makers are equally likely, compared to facing entirely an informed decision maker she has,

in expectation, more room for exaggeration - thus the less stringent requirement on the bias in this

case.

Restricting, for simplicity, attention to the levels of (normal) bias so that the most informative

equilibria in the first case of continuation games (the CS model) are of two-step, I find that there

exists a range of normal bias in which the informed decision maker reveals himself to an emotion-

free expert. However, such range is a strict subset of the range in which an emotion-free expert

provides useful information to him. Thus, even though an emotion-free expert is willing to provide

informative advice, the informed decision maker may not want to reveal himself. For normal bias

in this range, the information provided by the emotion-free expert to the informed decision maker

is in the form of partitioning each of [0, 1
2) and [1

2 , 1] into two steps. If, on the other hand, the

expert believes she faces an uninformed decision maker, she partitions the whole [0, 1] into two

steps. Despite the four steps in total in the former, they are so uneven that an informed decision

maker prefers the latter.

The emotion of an expert can deter the informed decision maker from revealing himself who

otherwise would have done so to an emotion-free expert. This happens when the expert’s emotional

bias is sensitive enough to her beliefs that she faces an informed decision maker. Naturally, in

order for the informed decision maker to be willing to reveal himself, a higher normal bias should

be accompanied by a less sensitive emotion.
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The exposition of the rest of the chapter is as follows. Section 3.2 lays down the authority

model. Section 3.3 provides the equilibrium analysis. Section 3.4 contains the literature review.

Section 3.5 concludes.

3.2 THE MODEL

3.2.1 Players and information

There are two players: an expert (e) and a decision maker (d). The expert privately observes the

state of the world, θ ∈ Θ ≡ [0, 1], commonly known to be distributed uniformly on the support.3

The decision maker does not observe θ, but, depending on his information type, k, he may have

some knowledge about it. The decision maker’s information type is a binary variable: k takes

on value of 0 if the decision maker is uninformed and value of 1 if he is informed. The expert’s

prior beliefs, which are common knowledge, are that an informed type and an uninformed type are

equally likely.

The decision maker’s information type stipulates what he could possibly know about θ. In the

event that he is uninformed, the decision maker knows nothing but that θ is uniformly distributed

on [0, 1]. If, on the other hand, he is informed, the decision maker will be able to tell whether

the realized θ lies in (or, more precisely, is distributed uniformly on) [0, 1
2) or [1

2 , 1]. This possible

knowledge of the decision maker is represented by his interval types, s ∈ T ≡ {o, l, h}, where

o = [0, 1], l = [0, 1
2) and h = [1

2 , 1]. It will be convenient to define a mapping between information

types and interval types, g : {0, 1} → T , as follows:

g(k) =


{o}, if k = 0,

{l, h}, if k = 1.

I assume that the realization of k precedes that of θ, upon which, for k = 1, s is determined by

the position of θ in relation to 1
2 .4

3As in Chapter 2, I shall interchangeably refer θ as the “state” or the “type of the expert.”
4The uninformed type (k = 0) uniquely determines the interval type, o, without regard to the realization of θ.

43



3.2.2 Communication and beliefs

The players interact through communication with costless messages. The communication begins

with the decision maker’s reporting his information type, which is followed by the realization of the

state. Since the realization of θ further determines the decision maker’s interval type, the above

timing implies that the decision maker reports before he observes his interval type. After receiving

the decision maker’s report and observing θ, the expert gives an advice to the decision maker by

sending a message.

Since the decision maker’s reports and the expert’s messages are costless, the only effect of

them is to influence the opponent’s beliefs. The rest of the session analyzes the beliefs that they

generate for each player. I begin with the decision maker’s reports, which, while being costless, are

not cheap-talk messages.

3.2.2.1 The decision maker’s reports The decision maker sends a report r ∈ {r0, r1} with

literal meaning about his information type, where r0 stands for “uninformed” and r1 stands for

“informed.” I impose a partial verifiability constraint on the decision maker’s reports: the set of

report(s) available to information type k, r(k), is

r(k) =


{r0}, if k = 0,

{r0, r1}, if k = 1.
(3.1)

The partial verifiability constraint stipulates that only an informed decision maker can report that

he is informed. And he has the option not to reveal it. This captures that it is typically not an

easy task for an uninformed individual to claim, in front of experts, that he is informed.5 On the

other hand, the right to remain silence makes it relatively easy for an informed individual to make

the claim that he is ignorant. Of course, such a claim lacks credibility, but that is an equilibrium

issue.6

A reporting rule of the decision maker, α : {0, 1} → ∆{r0, r1} such that supp(α(·|k)) ∈ r(k),

k = 0, 1, specifies a probability of each report that he sends for each of his information type, subject

to the partial verifiability constraint (3.1). The decision maker’s report may influence the expert’s

beliefs about his information type. But since the expert observes θ - and thus whether it is above
5Even though the informed decision maker in the model reports before observing his interval type, we can imagine

that he can credibly certify his access to information.
6This partial verifiability constraint is the same as that adopted for the sender (expert) in Austen-Smith [4]. See

the literature review in Section 3.4.
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or below 1
2 - she will be able to form her beliefs directly on the interval types of the decision maker.

Before communicating with the decision maker, the expert’s beliefs about the interval types can be

summarized as follows:

γ(o|θ) =
1
2
, (3.2)

γ(l|θ) =


0, if θ ≥ 1

2

1
2 , if θ < 1

2 ,

and (3.3)

γ(h|θ) =


1
2 , if θ ≥ 1

2 ,

0, if θ < 1
2 .

(3.4)

Upon receiving r, the expert updates on these beliefs. Her beliefs function, τ : Θ×{r0, r1} → ∆T ,

specifies for each combination of the state and the received report a probability over the interval

types {o, l, h}. When the expert receives a report that is sent by some k, her beliefs function is

defined as follows:

τ(s|θ, r) =
γ(s|θ)α(r|g−1(s))∑

s′∈T
γ(s′|θ)α(r|g−1(s′))

. (3.5)

Suppose the informed type sends r1 with probability one. Then, α(r1|g−1(h)) = α(r1|g−1(l)) =

α(r1|1) = 1, and α(r1|g−1(o)) = α(r1|0) = 0. Depending on whether θ is above or below 1
2 , the

expert then assigns probability one to either l or h, and this is accounted for by γ(s|θ) in (3.3) and

(3.4).7

3.2.2.2 The expert’s advice After receiving the decision maker’s report, the expert provides

an advice to the decision maker by sending a cheap-talk message m ∈ M . Her behavior strategy,

σ : Θ×{r0, r1} → ∆M , specifies the distribution of message she sends for each combination of the

state and the received report. I denote Θσ(m) to be the set of θ for which the expert sends message

m with positive probability under σ, i.e., Θσ(m) = {θ ∈ Θ : σ(m|θ, r) > 0}. When there are some

messages in M that are not used under σ, I adopt the convention that Θσ(·) is an empty set for

those messages.

7Note that this conclusion is drawn by applying Bayes’s rule for r1 that is sent in an equilibrium. However, given
the partial verifiability constraint, when r1 is received as an out-of-equilibrium report, any reasonable off-equilibrium
beliefs require the same conclusion. I shall adopt such off-equilibrium beliefs for r1 for the expert.
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Upon receiving a message from the expert, the decision maker updates his beliefs about θ.

Contingent on his interval type, he uses one of the following beliefs (conditional densities) as the

input for his update:

φ(θ|o) = 1, for θ ∈ [0, 1], (3.6)

φ(θ|l) =


2, for θ ∈ [0, 1

2),

0, for θ ∈ [1
2 , 1],

and (3.7)

φ(θ|h) =


0, for θ ∈ [0, 1

2)

2, for θ ∈ [1
2 , 1].

(3.8)

The decision maker’s beliefs function, µ : M × T × {r0, r1} → ∆Θ, specifies for each combination

of received message, his interval type and his report sent in the first round of communication a

density over Θ, and it is defined as follows:

µ(θ|m, s, r) =


σ(m|θ,r)φ(θ|s)∫ 1

0 σ(m|θ′,r)φ(θ′|s)dθ′
, if Θσ(m) ∩ s 6= ∅,

ψ(θ|s), if Θσ(m) ∩ s = ∅, Θσ(m) 6= ∅,
(3.9)

where ψ(θ|s) is any arbitrary density supported on s. The beliefs function embodies the beliefs

that an interval type can hold after receiving four types of advice, namely, substituting advice,

complementary advice, redundant advice and false advice.8 When the decision maker receives

message that does not contradict with his knowledge about θ, i.e., the message is not a false advice

(or Θσ(m) ∩ s 6= ∅), he updates his beliefs using Bayes’s rule. Otherwise when a false advice is

received, there is no restriction on what the decision maker’s beliefs should be, except that it has

to be supported only on s.

For notational clarity, I use ψ(s) to denote the off-equilibrium beliefs, arising only under false

advice, of interval type s. And I denote the off-equilibrium beliefs of both interval types by ψ ≡

ψ(l) ∪ ψ(h).

3.2.3 Actions and payoffs

After receiving the expert’s advice, the decision maker ends the game by taking an action a ∈ R.

His action rule, ρ : M × T × {r0, r1} → R, specifies for each combination of received message, his
8See Chapter 2 for a detailed discussion about these advice types.
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interval type and his sent report an action he takes.9 And the decision maker’s reporting rule and

action rule constitute his strategy.

The action (and the state) directly affects the players’ payoffs, which are in the form of quadratic

loss function:

U e(a, θ, b(τ̂)) ≡ −(a− (θ + b(τ̂))2, (3.10)

Ud(a, θ) ≡ −(a− θ)2. (3.11)

These payoff functions, commonly adopted in the literature of cheap talk, capture the misaligned

interests between the parties: if the decision maker could observe θ, his ideal action, which gives

him the highest payoff of zero, would be ad(θ) = θ; for the same θ, however, the expert’s ideal

action will be ae(θ, b(τ̂)) = θ + b(τ̂).

The term b(τ̂) is referred to as the bias of the expert. Crawford and Sobel [12] show that the

larger is the expert’s bias, the “less helpful” the expert is to the decision maker in the sense that the

expert provides less informative advice. I leverage on this interpretation to model how an expert

becomes less helpful to an informed decision maker. The expert’s bias b(τ̂) has two components

and is assumed to take the following linear form: b(τ̂) = b0 + b1τ̂ . The first component, b0 > 0,

is referred to as the expert’s normal bias; it can be considered as the same as those in standard

models.

The second component, b1τ̂ , which is beliefs-dependent, represents the expert’s emotional bias,

where τ̂ is her beliefs that the decision maker is informed.10 The coefficient 0 ≤ b1 ≤ 1 - the

expert’s emotional index - quantifies the expert’s susceptibility to being annoyed by informed

decision makers and becoming less helpful to them. Thus, the more likely that the expert believes

the decision maker is informed, the larger is her emotional bias. When b1 = 0, the expert in

question is emotion-free.

3.2.4 Equilibrium definition

The informed type (k = 1) can always send r0 that he is uninformed, and he is willing to reveal

himself truthfully only if it brings him a higher expected payoff. No such consideration is required

for the uninformed type (k = 0) because, under the partial verifiability constraint, the uninformed

9That Ud11(·) < 0 guarantees that the decision maker will not randomize in his action.
10Thus, before any communication, τ̂ = 1

2
, and after receiving the decision maker’s report τ̂ = τ(l|θ, r) + τ(h|θ, r).
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type is restrained from misreporting his type. Accordingly, the equilibrium definition needs only

to cater for the reporting rule of the informed type. The expected payoff of an informed type who

reports r is

V d(r, 1|σ) ≡
∫ t

0

(∫
M
Ud(ρ(m, l, r), θ)σ(m|θ, r)dm

)
dθ

+
∫ 1

t

(∫
M
Ud(ρ(m,h, r), θ)σ(m|θ, r)dm

)
dθ.

(3.12)

I adopt perfect Bayesian equilibrium as the equilibrium definition:

Definition 3.1 (Perfect Bayesian Equilibrium). A perfect Bayesian equilibrium is a pair of

strategies (σ, (α, ρ)) and two sets of beliefs (τ, µ) such that

1. the informed decision maker chooses his reporting rule to maximize V d(r, 1|σ) given the expert’s

strategy: if r ∈ supp(α(·|1)), then

r ∈ argmax
r′∈{r0,r1}

V d(r, 1|σ),

2. the expert maximizes her expected payoff given her beliefs and the decision maker’s action rule:

for all θ ∈ Θ and all r ∈ {r0, r1}, if m ∈ supp(σ(·|θ, r)), then

m ∈ argmax
m′∈M

∑
s∈T

τ(s|θ, r)U e(ρ(m′, s, r), θ, b(τ̂)),

3. the expert updates her beliefs using Bayes’s rule whenever possible, taking into account the

decision maker’s reporting rule and her type: for all r ∈ {r0, r1} and all θ ∈ Θ, τ(s|θ, r) is

defined as in (3.5) whenever it is so defined,

4. the decision maker maximizes his expected payoff given his beliefs: for all m ∈ M , all s ∈ T

and each r ∈ {r0, r1} sent,

ρ(m, s, r) = argmax
a′

∫ 1

0
Ud(a′, θ)µ(θ|m, s, r)dθ, and

5. the decision maker updates his beliefs using Bayes’s rule whenever possible, taking into account

the expert’s strategy and his interval type: for all m ∈M , all s ∈ T and each r ∈ {r0, r1} sent,

µ(θ|m, s, r) is defined as in (3.9).
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3.3 EQUILIBRIUM ANALYSIS

3.3.1 The continuation games

In the spirit of backward induction, I first analyze the continuation games after the expert receives

the decision maker’s report. The continuation games start with the expert’s posterior beliefs that

the decision maker is informed with probability τ̂ . I provide the restrictions on the expert’s bias

for the existence of informative equilibria in the continuation games. For expositional purpose, the

continuation games are categorized into two classes, when τ̂ < 1 and when τ̂ = 1. The former

will be relevant for analyzing the entire game when the expert receives r0, whereas the latter will

be relevant when the expert receives r1. In the followings, without further qualifications, that an

equilibrium exists means that there exist some (but not all) off-equilibrium beliefs that support the

equilibrium.

3.3.1.1 Expert’s posterior beliefs: τ̂ < 1 The following proposition stipulates the restric-

tions on the expert’s bias so that the least informative equilibrium - two-step equilibrium in which

[0, 1] is endogenously partitioned into two intervals - exists.

Proposition 3.1. Suppose τ̂ < 1. An informative equilibrium exists in the continuation game if

and only if b(τ̂) < 4−3τ̂
16−8τ̂ .

When τ̂ = 0, the continuation game reduces to the CS model. The proposition then reproduces

the result that there is informative equilibrium if and only if the (normal) bias is strictly less than
1
4 . The continuation games in which τ̂ > 0 differ fundamentally from the CS model in that off-

equilibrium beliefs (of the decision maker) can have an impact on equilibria. Even when all available

messages are used in equilibrium, which is assumed in this chapter and implicit in Definition 3.1,

there still exist cases where off-equilibrium beliefs arise, and whether a particular strategy profile

constitutes an equilibrium could depend on these beliefs.11

Consider a benchmark among the cases where τ̂ > 0. Suppose that the opportunity for the

decision maker to reveal his type is absent. Then, the expert’s beliefs coincide with the prior

that the informed and uninformed types are equally likely. With the right specification of off-

equilibrium beliefs, there is an informative equilibrium in the continuation game if and only if

b(1
2) < 5

24 . Proposition 3.1 can be applied to τ̂ = 1 to find the corresponding restriction on bias.

11See Chapter 2 for the details of a related analysis.
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However, there are more to consider when the expert is certain to face an informed decision maker,

and a separate treatment is called for.

3.3.1.2 Expert’s posterior beliefs: τ̂ = 1 When the expert believes that she faces an in-

formed decision maker with probability one, she knows that the influence of her advice can never

cross the threshold 1
2 . If, for example, the expert sends a message revealing that θ ∈ [1

3 ,
2
3 ], the

beliefs that this message can generate on the informed decision maker will either be that θ ∈ [1
3 ,

1
2)

(when the decision maker is of interval-type l) or θ ∈ [1
2 ,

2
3) (when the decision maker is of interval-

type h). Accordingly, when τ̂ = 1, the continuation game can be considered as a CS model with

two truncated state spaces, [0, 1
2) and [1

2 , 1], and the expert’s strategy consists of partitioning each

of the half intervals.

Since this is different from the traditional way in which the expert partitions the state space,

a detailed treatment is in order. Suppose [0, 1
2 ] is partitioned by {θ̄i}N0

i=0, where 0 = θ̄0 < θ̄1 · · · <

θ̄N0−1 < θ̄N0 = 1
2 , and [1

2 , 1] is partitioned by {θ̂i}N1
i=0, where 1

2 = θ̂0 < θ̂1 · · · < θ̂N1−1 < θ̂N1 = 1.

The partition {θ̄i}N0
i=0 divides [0, 1

2 ] into N0 intervals, {Īi}N0
i=1, where Īi = [θ̄i−1, θ̄i], and {θ̂i}N1

i=0

divides [1
2 , 1] into N1 intervals, {Îi}N1

i=1, where Îi = [θ̂i−1, θ̂i]. Suppose the expert partitions the

message space M into two distinct and exhaustive sets, M̄ and M̂ , which are further partitioned,

respectively, into N0 distinct and exhaustive sets, M̄i, i = 1, . . . , N0, and into N1 distinct and

exhaustive sets, M̂i, i = 1, . . . , N1. Upon observing the realization of the state, if θ ∈ Īi (θ ∈ Îi),

the expert randomizes uniformly over messages in M̄i (M̂i). Thus, under this strategy, the expert

has a separate contingent plan for each of the half intervals. I call such strategy the standard

strategy of the expert.

If N0 ≥ 2, the equilibrium is said to be informative for l. Similarly, if N1 ≥ 2, it is informative

for h. The following proposition stipulates the restriction on the expert’s bias for which we have

an informative equilibrium when τ̂ = 1.

Proposition 3.2. Suppose τ̂ = 1. There exist in the continuation game equilibria informative for

both or either one of l and h if and only if b(1) < 1
8 .

To gain some perspective on the different restrictions on bias in the continuation games, consider

an emotion-free expert. When the expert is devoid of emotion, her bias only has one component:

the normal bias b0. Comparing then the restrictions on bias - bias that is independent of the

expert’s beliefs - for informative equilibria when τ̂ = 0, τ̂ = 1
2 and τ̂ = 1, we arrive at the following
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observations:

1. when b0 ∈ [1
8 ,

5
24), an expert who is certain that she faces an informed decision maker babbles,

whereas an expert believing that she faces an informed decision maker with probability 1
2 or 0

provides informative advice; and

2. when b0 ∈ [ 5
24 ,

1
4), even the expert who believes that she faces an informed decision maker with

probability 1
2 babbles.

The threshold in the CS model remains that, when b0 ≥ 1
4 , no informative advice is provided

for any beliefs of the expert. The expert, with preferences biased toward higher actions, has to

be allowed in equilibrium to exaggerate in order to be willing to provide information. When the

expert believes that she is facing an informed decision maker, she understands, as mentioned above,

that her influence does not cross 1
2 . This means that there is less room for her to exaggerate that

will not be ignored by the decision maker. Accordingly, for a range of bias (b0 ∈ [1
8 ,

1
4)) that the

expert is willing to provide information to an uninformed decision maker, not as much room for

exaggeration when the decision maker is informed, she babbles. When the expert believes that

an informed and an uninformed decision makers are equally likely, compared to facing entirely an

informed decision maker she has, in expectation, more room for exaggeration; thus, for b0 ≥ 1
8 , so

long as it is less than 5
24 , an informative equilibrium can be sustained.

Under the standard strategy, the expert has her contingent plan separately for each of the

truncated state spaces. The two truncated state spaces, however, are not completely independent

of each other: the possibility of sending false advice - when the information provided by the expert

contradicts with what the decision maker knows - and the off-equilibrium beliefs that it generates

link them together. Suppose, for some realized θ ∈ [0, 1
2), the expert deviates from a standard

strategy by sending a message that is reserved for θ ∈ [1
2 , 1], i.e., some m ∈ M̂ . Since the decision

maker knows that θ ∈ [0, 1
2), the message m ∈ M̂ contradicts his knowledge - it is a false advice to

him. Whether a particular standard strategy constitutes an equilibrium depends in part on how

the decision maker responds to false advice of this sort.

It turns out that, if the expert shares messages for the two truncated state space, there could

be equilibrium that is free of any consideration of off-equilibrium beliefs. The sharing of messages

can eliminate the possibility that the decision maker will receive false advice. And message sharing

is defined as follows:

Definition 3.2 (Message Sharing). A strategy of the expert is message sharing if there exists an
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Īi (or Îi) such that, upon observing θ ∈ Īi (θ ∈ Îi), the expert randomizes uniformly over M̄i ∪ M̂j

(M̂i ∪ M̄j) for some M̂j ⊂ M̂ (M̄j ⊂ M̄).

Definition 3.3 (Strict Message Sharing). A strategy of the expert is strict message sharing if

N0 = N1 and, upon observing θ ∈ Īi ∪ Îi, the expert randomizes uniformly over M̄i ∪ M̂i for all

i = 1, . . . , N0.

If an equilibrium is constituted by a (strict) message-sharing strategy, the equilibrium is referred

as (strict) message sharing. On the other hand, an equilibrium is a ψ-robust equilibrium if it does

not depend on the off-equilibrium beliefs of both interval types. If it does not depend on the off-

equilibrium beliefs of interval-type s, it is called a ψ(s)-robust equilibrium. The following proposition

states the beliefs-free properties of message-sharing equilibrium:

Proposition 3.3. If an equilibrium informative for both l and h is strict message sharing, then

it is ψ-robust. If, for s = l, h, an equilibrium informative only for s is message sharing, then it is

ψ(s)-robust.

I illustrate (strict) message-sharing with two examples. In both examples, I assume that b(1) =
1
10 so that the requirement for informative equilibria is satisfied. I begin with an equilibrium that

is informative for both l and h:

Example 3.1

Suppose the expert partitions M into M̄ and M̂ . The former is further partitioned into M̄1 and

M̄2 and the latter into M̂1 and M̂2. Using the indifference condition to solve for the boundary

types, who are indifferent between sending messages in two adjacent message sets, we have, for

b(1) = 1
10 , the boundary type in l = [0, 1

2) equal to 1
20 and the boundary type in h = [1

2 , 1] equal

to 11
20 . Accordingly, we have Ī1 = [0, 1

20), Ī2 = [ 1
20 ,

1
2), Î1 = [1

2 ,
11
20) and Î2 = [11

20 , 1]. Suppose,

for θ ∈ Ī1 ∪ Î1, the expert randomizes uniformly over M̄1 ∪ M̂1, and, for θ ∈ Ī2 ∪ Î2, the expert

randomizes uniformly over M̄2 ∪ M̂2.

When interval-type l receives m ∈ M̄1 ∪ M̂1, given his own knowledge he will only cater for the

possibility that θ ∈ Ī1 and take action a = 1
40 . Similarly, he will take action a = 11

40 for m ∈ M̄2∪M̂2.

By the same token, interval-type h will take action a = 21
40 for m ∈ M̄1∪M̂1 and take action a = 31

40

for m ∈ M̄2 ∪ M̂2.

The message space M is effectively partitioned into two distinct and exhaustive sets, and the expert

is able to induce four different actions with them because a message can be interpreted differently

by l and h. More importantly, the sets of messages used by θ ∈ l are exactly the same as those
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used by θ ∈ h. When, for example, a θ ∈ l deviates to send a message used by another θ ∈ h, under

strict message-sharing that message is used by another θ ∈ l. Thus, there is no message left that

can generate off-equilibrium beliefs. By the indifference condition for the boundary type in l, the

θ under consideration has then no incentive to deviate to send any message that is not prescribed

to him.12

Example 3.2

Suppose the expert provides informative advice for l but babbles for h. The partition of l remains

the same: Ī1 = [0, 1
20) and Ī2 = [ 1

20 ,
1
2), and the expert partitions M̄ into M̄1 and M̄2 but keeps

M̂ intact. Suppose, for θ ∈ Ī1 ∪ h, the expert randomizes uniformly over M̄1 ∪ M̂ . For θ ∈ Ī2, the

expert randomizes uniformly over the remaining set of messages: M̄2.

When interval-type l receives m ∈ M̄1 ∪ M̂ , he will, as in Example 3.1, take action a = 1
40 . And

upon receiving m ∈ M̄2, he will take action a = 11
40 . On the other hand, interval-type h will take

action a = 3
4 for m ∈ M̄1 ∪ M̂ .

Similar to that in Example 3.1, there is “no room” for any θ ∈ l to deviate because every message

used by θ ∈ l is also used by θ ∈ h. However, M̄2 is not used by any θ ∈ h; when a θ ∈ h sends

m ∈ M̄2, h’s action will depend on what his off-equilibrium beliefs, ψ(h), are. If, for example, h

adheres to his pre-communication beliefs, the above constitutes an equilibrium. Otherwise, there

may exist a θ ∈ h who, by sending m ∈ M̄2, receives a higher payoff than that in the proposed

equilibrium. Thus, under message-sharing that is not strict, the equilibrium is robust to the off-

equilibrium beliefs of only one interval type.

Note that message-sharing equilibrium is to be distinguished from non-monotone equilibrium

in, for example, Krishna and Morgan [30]. Equilibrium is referred as non-monotone when higher

expert’s types induce lower actions. Such a property on outcome does not exist in message-sharing

equilibrium. The monotone outcome maintains in the authority model in that higher types induce

higher actions. The expert includes in the messages some information that she knows will be

ignored; it has no effect on the outcome and is included only for the sake of beliefs-free equilibrium.

The property of strict message-sharing may act as a selection criterion. There are three infor-

mative equilibria in Proposition 3.3: one informative for both l and h and one each for l and h.

And there is always an equilibrium in which the expert babbles for both l and h. While there is

12According to Definition 3.3 the sharing of messages is symmetric across the half intervals: Îi shares messages in
M̂i ∪ M̄i with Īi. It should be clear from this example that this is not necessary for Proposition 3.3. The proposition
is stated in this manner only for expositional convenience. So long as one interval in l shares messages with a unique
interval in h and vice versa, the result holds.
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no criterion to favor the most informative equilibrium over the babbling equilibrium, among the

three informative equilibria, only the most informative is robust to any off-equilibrium beliefs of

both interval types.

3.3.2 Decision maker’s report strategy

This subsection analyzes the report strategy of the decision maker. In particular, I examine under

what circumstances an informed decision maker will, in equilibrium, report his information type

truthfully. The focus of the analysis is not to provide a complete characterization but to illustrate

the underlying force at work.

This caveat generates several restrictions on the following analysis. First of all, to keep the

analysis as simple as possible, I focus on the case where the normal bias b0 ∈ ( 1
12 ,

1
4). For a normal

bias in this range, the most informative equilibria in the continuation game with τ̂ = 0 is of two-

step. In the continuation game with τ̂ = 1, when b0 ∈ ( 1
12 ,

1
8) the most informative equilibria is of

two-step for each of the half intervals. I also restrict attention, for a given bias level, to the most

informative equilibria in the respective continuation games so that, as points of reference for the

decision maker, he “gets the most out of his reporting strategy.”

An informed decision maker is willing to distinguish himself only if doing so brings him a higher

expected payoff. And the source of a higher expected payoff comes from that the expert may provide

more information to an informed decision maker. According to Proposition 3.2, for b0 ∈ [1
8 ,

1
4),

even an emotion-free expert provides no useful information to an informed decision maker; being

identified as informed is completely counter-productive for eliciting useful advice from the expert,

and the informed decision maker will not reveal himself. Even when b0 < 1
8 so that an emotion-free

expert does provide informative advice to an informed decision maker in a “four-step” partition of

[0, 1] (two for each of the half intervals), the decision maker does not necessarily prefer it over a

two-step partition reserved for his uninformed incarnation. And the consideration of the expert’s

emotion could further discourage the informed decision maker from distinguishing himself:

Proposition 3.4. For b0 ∈ ( 1
12 ,

1
8(
√

3 − 1)], an informed decision maker reveals his information

type truthfully to an emotion-free expert but not to an expert whose emotional index b1 > β(b0),

where β(b0) is strictly decreasing in b0 with β(1
8(
√

3− 1)) = 0.

Despite that an informed decision maker can elicit a “four-step” partition from the expert, the

partition is so uneven that, in terms of expected payoff, it could be dominated by the two-step one.
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For the former to dominate in the case of an emotion-free expert, the normal bias has to be down

to 1
8(
√

3− 1). And this does not guarantee that the informed decision maker will report truthfully

if the expert is emotional enough. Naturally, a higher normal bias has to be accompanied by a

lower emotional index in order for the informed decision maker to identify himself.

When the normal bias is slightly lower than 1
12 , the most informative equilibria in the contin-

uation game with τ̂ = 0 will have three steps, whereas that in the continuation game with τ̂ = 1

will maintain its four steps in total even for an emotion-free expert. It is conceivable that, for

normal bias lying below the range considered above, the informed decision maker may prefer not

to identify himself. While I do not provide an analysis here, this suggests that truthful reporting

by the informed decision maker may be non-monotone in the expert’s bias; lower bias does not

necessarily implies that the informed decision maker is more willing to distinguish himself. The

exact value of the bias is of more importance.

Admittedly, the results above depend on the specification of the model; had, for example, the

decision maker been informed differently, the results might well be different. The objective of

this exercise is, however, to demonstrate with a formal model that an expert’s aversion to dealing

with an informed decision maker can detriment the communication between the parties. It not

only discourages the decision maker from communicating with the expert, but it also can deter

the expert from offering useful advice; even when the informed decision maker pools with the

uninformed in their reporting (when, for example, b0 > 1
8(
√

3− 1)), a corollary of Proposition 3.1

is that an expert averse enough to dealing with informed decision maker will simply refuse to help

the decision maker.

3.4 RELATED LITERATURE

This chapter extends Crawford and Sobel [12] on two fronts. First, the decision maker has his

own private type and is given an opportunity to communicate that with the expert. Second, the

interaction between the parties take into consideration the behavioral element that the expert may

be annoyed by an informed decision maker. Some of the previous literature in line with these

extensions, in particular the first, has been reviewed in Chapter 2. Here, I focus on other work that

has not been cited.

Papers that consider multi-round communication include but not limited to Aumann and Hart
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[3] and Krishna and Morgan [30]. In Aummann and Hart, the players can talk as long as they

want. They show that such a long conversation can improve communication outcomes. In Krishna

and Morgan, the decision maker has no private information, and the purpose of the back-and-forth

communication is more a coordination device for improving the communication from the expert to

the decision maker.

The communication protocol of the decision maker in this chapter - the partial verification

constraint - is the same as that in Austen-Smith [4]. In his paper, however, the constraint is imposed

on the expert who may be uninformed and whose decision to become informed is endogenous. He

shows that the possibility that the expert is uninformed can improve communication outcomes.

The payoff of the expert in the authority model depends on beliefs. Ottaviani and Sørensen [38]

[39] study a cheap-talk model in which the expert also has beliefs-dependent payoff. The expert’s

payoff in their model depends on the decision maker’s beliefs about the expert’s ability - motivated

as her reputation. They show that such a reputational concern doest not lead to full information

revelation by the expert.

3.5 CONCLUDING REMARKS

In this chapter, I provide a simple framework to study an alternative aspect of the relationship

between experts and decision makers. The expert in my model feels annoyed if her authority is

challenged - when she is not the only one who is informed - and reacts to an informed decision

maker by becoming less helpful. I model this via the bias of the expert: her bias consists of two

components, her normal bias and her emotional bias, and the latter is increasing in her beliefs about

whether the decision maker is informed. I find that the emotion of an expert can deter an informed

decision maker from revealing himself who otherwise would have done so to an emotion-free expert.

This could have policy implications on the training of professionals such as doctors. The preva-

lence of amateurs, whose presence may challenge the authority of experts, is an irreversible trend.

Experts may have to undergo a new set of lessons on how to deal with their informed clients, both

professionally and emotionally. While there may be some intrinsic conflict of interests between the

parties - the normal bias - that cannot be easily altered, resources directed to alleviate the conflicts

that have emotional roots - the emotional index - may prove to be rewarding.

The results in this chapter are derived under a specific kind of information of the decision maker:
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an even partition of the state space. A more general framework, in which the threshold can be

different values in the unit interval, allows us to address how decision maker interprets information.

A higher threshold, for example, can represent a decision maker who is more “conservative”; news

have to be very good in order to be considered as “good news.” On the other hand, a more

“aggressive” decision maker may have a lower threshold. An interesting extension will be to study

how a decision maker’s behavioral altitude toward information interacts with the emotional aspect

of the expert in affecting communication, in particular the decision maker’s report strategy.
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4.0 UNCERTAIN EXPERTISE

4.1 INTRODUCTION

Decision makers, who may lack the relevant information for deciding what action to take, turn

to experts for advice. Patients consult doctors; investors seek advice from investment advisors;

and legislators hold hearings with expert committees. These experts, while having the expertise

that defines themselves, are by no means omniscient - compared to the decision makers, experts

have better knowledge, but they are typically not perfectly informed. A medical practitioner, for

example, is certainly well cultivated in her professional knowledge, but it is impractical for her to

keep abreast of every single frontier findings that may be relevant to her role as a medical advice

provider.

Unlike the case of perfect information in which there is only one kind of it, there could, in

principle, be an infinite number of ways in which one can be imperfectly informed. Any useful

information falling short of perfect information, be it more or less, all falls under the rubrics

of imperfect information. Given the intangible nature of knowledge or information that precise

certifications are usually not available, a natural consequence of experts being imperfectly informed

is that decision makers may face some uncertainty over the experts’ levels of expertise. Out of the

many different kinds of imperfect information, a decision maker, more often than not, is imperfectly

informed about which particular one the expert is equipped with. Such a second-order imperfect

information is, I believe, a prevalent aspect of communication between experts and decision makers

in real life.

This chapter proposes a tractable framework that can be used to analyze strategic information

transmission (Crawford and Sobel [12]) with second-order imperfect information. Its objective is

not to provide a complete analysis but to demonstrate that the same method of analysis in the

literature of optimal information control (Ivanov [25] and Fischer and Stocken [17]) - when the
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decision maker knows or has control over the expert’s imperfect information - can be employed to

analyze the situations when the decision maker does not have such information.

There are two players: an expert (she) and a decision maker (he). The biased expert sends

a cheap-talk message to the decision maker after observing, imperfectly, the state of the world,

represented by a random variable drawn from the unit interval [0, 1]. Upon receiving the message,

the decision maker, who does not observe the state, takes an action that affects the payoffs of both.

The expert is imperfectly informed in that, from her perspective, the unit interval is partitioned

into a finite set of non-degenerate intervals. She never observes the state itself but knows which

interval contains the realized state. This interval becomes her interval type.

From the vantage point of the decision maker, the expert’s partition is stochastic: the decision

maker holds beliefs about but does not know exactly what the expert’s partition is. The decision

maker’s uncertainty over the expert’s expertise is thus captured by the expert’s expertise type: the

expert’s partition becomes her private type where a finer partition corresponds to a higher level of

expertise. I call this model the uncertain expertise model. The introduction of a second type for

the expert - which captures the additional layer of information asymmetry the decision maker faces

- is where the uncertain expertise model departs from those in the optimal information control

literature.

Ivanov [25] shows explicitly that, when payoffs are quadratic and the expert knows that the state

lies within an interval, only the conditional mean of the state is relevant for the expert’s behavior.

Leveraging on this observation, I transform the uncertain expertise model, in which the expert has

two types, into one that is more amenable to analysis. In fact, with finitely many potential levels

of expertise, the transformed model is the same as the Crawford and Sobel’s [12] model (the “CS

model”) except that the transformed model has a finite type space. The equilibrium analysis of

the transformed model, with results readily available, sheds light on the equilibrium properties of

the uncertain expertise model.

To illustrate the essence of the transformation, suppose the state is uniformly distributed on

[0, 1], and the expert has two equally likely levels of expertise: one in which she is uninformed -

the unit interval remains intact - and one in which [0, 1] is divided into [0, 1
2 ] and [1

2 , 1].1 An expert

who knows, for example, that the state lies within [0, 1
2 ] behaves, under quadratic payoffs, as if she

knew the state is 1
4 . Applying this observation to the other two intervals, the above information

1Throughout the chapter, I shall consider all intervals partitioned as closed intervals even though, for example,
we can have here [0, 1

2
) and [ 1

2
, 1].
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structure can then be transformed into one in which the expert’s type space is {1
4 ,

1
2 ,

3
4} with

probability {1
4 ,

1
2 ,

1
4}. Suppose the decision maker is to take an action that matches her expectation

about the state. When, for example, the decision maker receives a message sent exclusively by

the transformed type 1
4 , he takes action 1

4 . On the other hand, when he receives a message sent

exclusively by interval type [0, 1
2 ], he takes an action believing that the state is uniformly distributed

on [0, 1
2 ]. The resulting action is again 1

4 , the expected value of the state given his beliefs. If an

expert in the transformed model who knows that the state is 1
4 is willing to send such a message,

the same behavior will be expected from an expert in the uncertain expertise model who believes

that the state lies within [0, 1
2 ].

Several properties of the equilibria of the uncertain expertise model are obtained from those

of the transformed model. For example, Ivanov [25] and Fischer and Stocken [17] show that in a

model in which the decision maker knows how imperfectly informed the expert is - a model that

also yields a CS model with finite types - full revelation of information is possible. Such property

carries over to the uncertain expertise model when the expert has finitely many potential levels of

expertise. The introduction of uncertainty over the expert’s level of expertise, which supposedly

widens the information gap between the expert and the decision maker, does not by itself eliminate

the possibility of full communication.

Yet, a larger set of potential levels of expertise does restrict such possibility. In a fairly general

example of information structure, I show that the larger the set of potential levels of expertise,

the smaller the expert’s bias has to be in order to have full revelation of information to take

place. A larger set of potential levels of expertise implies that there is a large number of types in

the transformed model. Accordingly, more restrictions are in place for the absence of profitable

deviations from a full-revelation equilibrium. If we relate the number of potential levels of expertise

to the uncertainty faced by the decision maker, with a larger number associated with higher level

of uncertainty, this suggests that, despite the possibility of full revelation, more uncertainty does

make full communication more difficult. Finally, without any claim on generality, I demonstrate

with a simple example that the communication-improvement result in the optimal information

control literature may not be robust to a slight introduction of uncertainty over the expert’s level

of expertise.

The exposition of the rest of the chapter is as follows. Section 4.2 lays down the uncertain

expertise model. Section 4.3 describes how the model can be transformed into a CS model with

finite type space. Section 4.4 illustrates how the transformation allows us to study the equilibrium
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properties of the uncertain expertise model. Section 4.5 contains a brief literature review. Section

4.6 concludes.

4.2 THE MODEL

4.2.1 Players

There are two players: an expert (e) and a decision maker (d). They are in a principal-agent

relationship: the decision maker relies on the expert, who has access to information, for advice on

what action, a ∈ R, to take.

There is a state of the world, θ ∈ Θ ≡ [0, 1], commonly known to be uniformly distributed. The

maximization of payoffs calls for different actions to be taken under different states of the world.

The payoffs of the players are in the form of quadratic loss function:

U e(a, θ, b) ≡ −(a− (θ + b))2, (4.1)

Ud(a, θ) ≡ −(a− θ)2. (4.2)

Had both players observed θ perfectly, the expert would have preferred the decision maker to

take action ae(θ, b) = θ + b, whereas the decision maker would have preferred ad(θ) = θ. These

ideal actions maximize the respective payoffs of the players, which are zero for the quadratic loss

functions. For each θ, the ideal action of the expert exceeds that of the decision maker by b > 0; this

captures the misaligned interests between the parties, and b is referred as the bias of the expert.

Note also that the ideal actions are strictly increasing in θ, a consequence of that U i12(·) > 0,

i = e, d, which is a sorting condition similar to that in costly signalling models.

4.2.2 Information structure and expected payoffs

The expert sends a message m ∈ M to the decision maker after obtaining her information about

θ. The expert does not observe θ directly. Her information status is summarized in her expertise

type and her interval type. The former refers to a partition of the state space [0, 1]. That the

expert’s partition is her private type captures the decision maker’s uncertainty over the expert’s

level of expertise. The expert’s interval type refers to an interval from her partition that contains
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the realized θ, and the expert’s information about θ is limited to knowing that it is uniformly

distributed on that interval.

Formally, a partition of [0, 1] is a finite set of points P ≡ {ti}ni=0, where 0 = t0 < t1 < · · · <

tn = 1. A partition P divides [0, 1] into a finite set of disjoint and exhaustive, non-degenerate

intervals ΩP ≡ {ωi}ni=1, where ωi = [ti−1, ti]. From the perspective of the decision maker, the

expert’s partition P - her expertise type - is a draw from a total of K partitions, {Pk}Kk=1. And

the decision maker’s beliefs are represented by a commonly known probability on {Pk}Kk=1, p. The

set of K partitions has the property that Pk+1 is strictly finer than Pk, and a partition P is said

to be strictly finer than P ′ if the latter is a strict subset of the former. A finer partition allows

the expert to distinguish among a larger set of different realizations of θ, taken to represent that

the expert in question has a higher level of expertise. And the above taken together captures the

decision maker’s uncertainty over what level of expertise the expert is equipped with. After nature

sets off the game by drawing the expertise type, P, it moves again by drawing θ ∈ [0, 1] from the

uniform distribution. To the expert, this second move of nature is equivalent to drawing a ω ∈ ΩP

- the ω that contains the realized θ. This ω becomes the expert’s interval type.

In the above formulation, nature moves twice. Alternatively, and as a precursor of the trans-

formation of the model, we can consider nature as moving just once, drawing for the expert

a unique interval ωki from all intervals in all K partitions, Ω ≡ {ΩPk}Kk=1, with probability

qki ≡ Pr(ωki ) = pk(tki − tki−1), where pk ≡ Pr(Pk).2 Viewed in this light, the expertise type

and the interval type can be subsumed into a single expertise-interval type. The type space of the

expert is then Ω, with common prior probability q. In the analysis that follows, I shall adopt this

perspective, and the pair (Ω, q) is called an information structure of the uncertain expertise model.

Since the expert does not observe θ, unlike that in the CS model the expert’s payoff in (4.1) is

not directly relevant to her behavior. I call the payoffs in (4.1) and (4.2) the players’ state-payoff

functions. The behavior of the expert is instead governed by the maximization of her type-payoff

function, measuring her expected payoff conditioned on her imperfect information about θ:

U e(a, b|ω) ≡ E[U e(a, θ, b)|θ ∈ ω]. (4.3)

2Indexing an interval by a pair (k, i) (i.e., ωki is interval i from partition k) allows us to distinguish two intervals
from different partitions even when they have the same end points.
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It will be convenient to also define type-payoff function for the decision maker:

Ud(a|ω) = E[Ud(a, θ)|θ ∈ ω]. (4.4)

4.2.3 Strategies and equilibrium definition

In the uncertain expertise model, a behavior strategy of the expert, α : Ω → ∆M , specifies the

distribution of message she sends for each ω ∈ Ω. The decision maker’s pure strategy, β : M → R,

specifies for each message he receives an action he chooses to take.3 His beliefs function, ν : M →

∆Ω, specifies for each message he receives a probability over Ω. The equilibrium definition is the

perfect Bayesian equilibrium:

Definition 4.1 (Perfect Bayesian Equilibrium: The Uncertain Expertise Model). A

perfect Bayesian equilibrium of the uncertain expertise model is a pair of strategies (α, β) and a set

of beliefs ν such that

1. the expert maximizes her payoff given the decision maker’s strategy: for all ω ∈ Ω, if m ∈

supp[α(·|ω)], then

m ∈ argmax
m′∈M

U e(β(m), b|ω),

2. the decision maker maximizes his payoff given his beliefs: for all m ∈M ,

β(m) = argmax
a′∈R

∑
ω∈Ω

Ud(a|ω)ν(ω|m), and

3. the decision maker updates his beliefs using Bayes’s rule whenever possible, taking into account

the expert’s strategy:

ν(ω|m) =
q(ω)α(m|ω)∑

ω′∈Ω

q(ω′)α(m|ω′)
.

The expert induces the decision maker to take certain actions with her messages. An action a

is said to be induced by ω if
∫
Mα(a) α(m|ω)dm > 0, where Mα(a) ≡ {m ∈ M : β(m) = a}, the set

of messages such that the decision maker best responds by taking action a upon receiving any of

it. If
∫
Mα(a) α(m|ω)dm = 1, ω is said to purely induce a.

3That Ud11(·) < 0 guarantees that only pure strategy will be used by the decision maker.
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4.3 THE TRANSFORMED MODEL

Implicit in considering Ω, the set of all intervals in all partitions, as the expert’s type space is that

her partition is not directly relevant for her strategies. Since it is the intervals, not the partitions,

that are the expert’s information sets, this is indeed consistent with the familiar notion that, in

games with incomplete information, a strategy is a mapping from information sets to action space

(message space for the expert). The analysis of the uncertain expertise model cannot, however,

be performed as it is on Ω. The elements in Ω, being a set of intervals from different partitions,

have no order relation. The properties of the state-payoff functions (4.1) and (4.2), including

the indispensable sorting condition, are not preserved by the type-payoff functions (4.3) and (4.4)

defined on Ω. To work around this, I leverage on a property of the quadratic payoffs to transform

the model into one that is amenable to analysis.

4.3.1 Model transformation

Consider interval i from partition k, ωki . Given that the state-payoff functions are quadratic, the

expected payoff conditioned on θ ∈ ωki - i.e., the type-payoff functions (4.3) and (4.4) - can be

decomposed into two components:

U e(a, b|ωki ) ≡ U e(a, t̄ki , b)− L(ωki ), (4.5)

Ud(a|ωki ) ≡ Ud(a, t̄ki )− L(ωki ), (4.6)

where t̄ki ≡ E(θ|θ ∈ ωki ) =
tki−1+tki

2 is the conditional mean of θ, and L(ωki ) ≡ V ar(θ|θ ∈ ωki ) =
(tki−tki−1)2

12 is the conditional variance.4 Under quadratic payoffs, an expert who believes that θ is

distributed uniformly on ωki has an expected payoff that is equal to that of an expert who believes

that θ = t̄ki , minus a positive term that is independent of a. It follows that an a that maximizes

U e(a, b|ωki ) will also maximize U e(a, t̄ki , b); an expert of type ωki will behave as if she knew that the

state is t̄ki .

A similar argument for the decision maker reveals that, for understanding equilibrium behavior

in the uncertain expertise model, we can reuse the state-payoff functions U e(a, ·, b) and Ud(a, ·),
4Ivanov [25] utilizes this decomposition to analyze the case when the decision maker has control over - and thus

knows - how imperfectly informed the expert is. Also, note that the decomposition only requires that the state-payoffs
are quadratic; even though the above expressions for conditional mean and conditional variance are derived based on
uniformly distributed θ, it is not necessary for the decomposition.
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with the types being conditional means derived from the expertise-interval types. Thus, define a

function, τ : Ω → [0, 1], such that, for all ω ∈ Ω, τ(ω) = E(θ|θ ∈ ω). For a given Ω, T ≡ τ(Ω) is

the derived type space, and the probability on T is g ≡ q ◦ τ−1, where τ−1 is the inverse imagine

of τ .5 With a slight abuse of notations, I recycle to use t to denote a generic element of T . The

main message of this chapter is that the transformed model with payoffs U e(a, ·, b) and Ud(a, ·) and

information structure (T, g) provides a convenient venue to study the equilibrium properties of the

uncertain expertise model. The transformed model, taken on its own, is nothing but a CS model

with finite type space. The next subsection establishes formally the relationship between the two

models.

4.3.2 Equivalence

I begin by defining the strategies and equilibrium of the transformed model. A behavior strategy

of the expert in the transformed model, σ : T → ∆M , specifies the distribution of message she

sends for each t ∈ T . The decision maker’s pure strategy, ρ : M → R, specifies for each message he

receives an action he chooses to take. His beliefs function, µ : M → ∆T , specifies for each message

he receives a probability over T . An equilibrium of the transformed model is defined as:

Definition 4.2 (Perfect Bayesian Equilibrium: The Transformed Model). A perfect

Bayesian equilibrium of the transformed model is a pair of strategies (σ, ρ) and a set of beliefs µ

such that

1. the expert maximizes her payoff given the decision maker’s strategy: for all t ∈ T , if m ∈

supp[σ(·|t)], then

m ∈ argmax
m′∈M

U e(ρ(m), t, b),

2. the decision maker maximizes his payoff given his beliefs:

ρ(m) = argmax
a′∈R

∑
t∈T

Ud(a, t)µ(t|m), and

3. the decision maker updates his beliefs using Bayes’s rule whenever possible, taking into account

the expert’s strategy:

µ(t|m) =
g(t)σ(m|t)∑

t′∈T
g(t′)σ(m|t′)

.

5In general, τ−1 is not an inverse function because there may exist two intervals, each from different partitions,
that have the same conditional mean.

65



Induced actions and purely induced actions are defined similarly as in the uncertain expertise

model. For an illustration of how the two models relate, consider first the following example, a

more elaborate version of that in the Introduction:

Example 4.1

Suppose there are two equally likely partitions: one in which [0, 1] is intact, and one in which [0, 1]

is divided into [0, 1
2 ] and [1

2 , 1]. The transformation of this information structure is depicted in

Figure 4.1. Suppose, in an equilibrium of the transformed model, t1 = 1
4 sends m1, t2 = 1

2 sends

m2 and t3 = 3
4 sends m3. The actions induced are then a1 = 1

4 for m1, a2 = 1
2 for m2 and a3 = 3

4

for m3.

0 1

0 1
2

1

Ω

0 1
4

1
2

3
4

1
T

Figure 4.1: Transformation

Suppose, in the uncertain expertise model, the expert adopts the following strategy. Type [0, 1
2 ]

sends m′1, type [0, 1] sends m′2 and type [1
2 , 1] sends m′3. Upon receiving m′1, since the message

is sent exclusively by an expert who has information that θ is uniformly distributed on [0, 1
2 ], the

decision maker updates his beliefs accordingly and takes action a = 1
4 . Similarly, he takes a = 1

2

for m′2 and a = 3
4 for m′3. Now, since the preference of type [0, 1

2 ] is the same as the preference of

type t1 = 1
4 in the transformed model, that it is consistent with equilibrium for t1 = 1

4 to send m1

and induce 1
4 implies that type [0, 1

2 ] is willing to send m′1 and induce the same action. The same is

true for types [0, 1] and [1
2 , 1]. And the strategy proposed for the expert in the uncertain expertise

model indeed constitutes an equilibrium, in which the set of induced actions is the same as that in
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the transformed model.

The following proposition summarizes the essence of the above example:

Proposition 4.1. Suppose, in the transformed model, (T, g) = (τ(Ω), q ◦τ−1). For any equilibrium

in the transformed model in which the set of actions A is induced, there exists an equilibrium in

the uncertain expertise model with information structure (Ω, q) in which the same set of actions A

is induced. Furthermore, ω ∈ Ω induces a′ if and only if τ(ω) = t, where t is an element of the set

that induces a′ in the transformed model.

In Ivanov [25], the analysis of strategic information transmission in which the decision maker

has control over - and thus is informed of - the expert’s information structure is conducted via a CS

model with finite type space, which the transformed model is one of its kind. The presence of second-

order imperfect information, when the decision maker faces an additional layer of information

asymmetry on how informed the expert is, therefore does not impose a fundamental change in

analyzing the game.

4.4 EQUILIBRIUM ANALYSIS: AN ILLUSTRATION OF THE

TRANSFORMATION

The equilibrium analysis in this section consists of two parts. The objective is not to provide a

complete analysis of any information structure in the uncertain expertise model but to illustrate how

analyzing the transformed model sheds light on the equilibrium properties of the uncertain expertise

model. In the first part, I adopt Ivanov’s [25] characterization of induced actions and discuss the

meaning for the uncertain expertise model. In the second part, I characterize the relationship

between the expert’s bias and the existence of informative equilibria in the transformed model. It

provides a routine to solve for the requirement on the expert’s bias for informative equilibria. It

will then be applied to analyze a special case of information structure in the uncertain expertise

model. A simple example illustrating how the communication-improvement result in Ivanov [25]

may be sensitive to the introduction of uncertainty over the expert’s expertise is also in order.
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4.4.1 Induced actions

The transformed model is not a standalone object but derived from the uncertain expertise model

with an underlying information structure. In the followings, I shall, however, assume otherwise. The

analysis will proceed with an arbitrary information structure (T, g) for the transformed model, with

the only restriction that T is finite; if certain properties hold for arbitrary information structures,

it will also hold for the subset that is derived from the uncertain expertise model.

Induced actions in the transformed satisfy the following properties:

Proposition 4.2 (Ivanov [25]). In any equilibrium of the transformed model, the set of induced

actions, A, is finite. Furthermore, it satisfies the following properties:

1. If type t induces two actions ai and aj, then either i = j − 1 or i = j + 1;

2. The highest type, max{T}, purely induces the highest action, max{A};

3. If type t induces action a, then any type t′ < t does not induce any action a′ > a and any type

t′′ > t does not induce any action a′′ < a;

4. If types t′ and t′′, t′ < t′′, induce action a, then any t such that t′ < t < t′′ purely induce a; and

5. If type ti induces actions ai and ai+1, then ti+1 induces ai+1.

Any partition in the uncertain expertise model divides [0, 1] into a finite number of intervals.

When there are finitely many potential levels of expertise or, equivalently, the number of partitions

is finite, the finiteness of the set of induced actions implies that full revelation of information can be

achieved for the right level of expert’s bias. The decision maker’s uncertainty over the expert’s level

of expertise - an additional layer of information asymmetry imposed on the decision maker - does

not by itself eliminate the possibility of full revelation. Note also that in the uncertain expertise

model, full revelation of information is not necessarily the same as full separation; there may exist

two types whose images under τ are the same. Full revelation only requires that each ω ∈ Ω and

its “equivalents,” i.e., ω′ ∈ Ω such that τ(ω′) = τ(ω), send a distinct message.6 Nevertheless, it is

a full revelation of information in the sense that the expert reveals all information she has about θ.

The properties of the induced actions in the transformed model generate some intuitive observa-

tions for the uncertain expertise model. Property 2, for example, says that the highest action must

be recommended by the expert with the highest level of expertise. And any expert with a lower

level of expertise who ever recommends the highest action must share some common information

6For convenience, I shall assume in the followings that the expert does not mix over messages.
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with the “most knowledgable” expert. Given that the expert with the highest level of expertise has

the finest partition, the highest type in the transformed model - the type who induces the highest

action - must be derived from the highest interval in this partition. If this highest interval in the

finest partition has some equivalents in other less fine partitions, these equivalents will also induce

the highest action.

Despite the monotonicity in Property 3, an expert with, for example, a higher level of expertise

can recommend actions that are lower than the lowest action recommended by an expert with a

lower level of expertise. When under no circumstance will an expert with certain level of expertise

be “decisive” over recommending the highest action, Property 5 suggests that an expert with a

higher level of expertise will be able to “make up her mind.” If ti, indifferent between inducing the

highest and the next highest actions, is derived from the highest interval of a partition, then ti+1

must come from a finer partition.

4.4.2 Informative equilibria

Suppose there are N elements in the type space of the transformed model: T = {t1, . . . , tN}. In

equilibrium, whether these types pool with some others or each sends a distinct message depends on

the relative magnitudes the expert’s bias and how far the types lie apart. This subsection examines

this relationship.

Property 4 of Proposition 4.2 suggests that any types that pool with each other in equilibrium

must be in consecutive orders. Denote the set of consecutive types who send message m by T (m).

When H distinct messages are to be sent, H ≤ N , there will be H sets of such types: T ≡

{T (m1), T (m2), . . . , T (mH)}. Note that when H = N in equilibrium, each of these sets will be a

singleton, and there is a full-revelation equilibrium.

Fix a strategy for the expert in the transformed model such that we have T ≡ {T (m1), T (m2),

. . . , T (mH)}. When the decision maker receives message mi, his best response is to take action

a(T (mi)) =
∑

t∈T (mi)

[
g(t)∑

t′∈T (mi)
g(t′)

]
t.

For the strategy to constitute an equilibrium, no type in T (mi) should have incentive to send mj ,

j 6= i. In other words, no type in T (mi) should strictly prefer a(T (mj)) over a(T (mi)). Property

3 of Proposition 4.2 suggests, however, that there is no need to check for profitable deviations for

every single t ∈ T (mi): when the highest and the lowest types in T (mi) prefers to send mi, the
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rest in the set will exhibit the same preference. Denote ti = max{T (mi)} and ti = min{T (mi)}.

In order for ti to prefer sending mi over mi+1, we need, under quadratic payoffs,

ti + b ≤ a(T (mi)) + a(T (mi+1))
2

. (4.7)

Similarly, in order for ti+1 to prefer sending mi+1 over mi, we need

ti+1 + b ≥ a(T (mi)) + a(T (mi+1))
2

. (4.8)

Combining (4.7) and (4.8) - and note that they have to hold for all i = 1, 2, . . . ,H − 1 - gives

the following restriction on b for the existence of (informative) equilibria in the transformed model:

Proposition 4.3. For any finite T in the transformed model, a collection of sets of types, T =

{T (m1), T (m2), ..., T (mH)}, where all t ∈ T (mi) send message mi, i = 1, 2, ...,H, constitutes an

equilibrium if and only if

max
i=1,...,H−1

(
a(T (mi)) + a(T (mi+1))

2
− ti+1

)
≤ b ≤ min

i=1,...,H−1

(
a(T (mi)) + a(T (mi+1))

2
− ti

)
. (4.9)

Proposition 4.3 provides a routine to solve for the restriction on b for informative equilibria.

As an illustration, suppose the uncertain expertise model has the following information structure,

which I call the uniform uncertain expertise: there are K partitions in which the first partition keeps

the unit interval intact, the second divides [0, 1] into two equal intervals, the third into four equal

intervals and so forth so that the Kth partition divides [0, 1] into 2K−1 intervals. The realization of

each of these partitions is equally likely. Under this set of partitions, Ω consists of a set of intervals

each of which has no equivalent, and the type space of the transformed model has 2K − 1 elements.

Note that the information structure underlying Example 4.1 is a special case of uniform uncertain

expertise when K = 2.

I focus on the existence of a full-revelation equilibrium. In such an equilibrium, H = |T | =

2K−1. Since every T (mi) is a singleton, ti = ti = ti for all i = 1, 2, . . . ,H. Upon receiving message

mi, the decision maker best responds by taking action a = ti. Given that ti+ti+1

2 < ti+1 and that

b > 0, only the inequalities on the right in (4.9) need to be observed. Moreover, under the uniform

uncertain expertise, the distances between two consecutive transformed types are uniform; if the

inequality holds for i, it will also hold for j 6= i, and we can dispense with the min operator. This

gives:
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Corollary 4.1. There exists a full-revelation equilibrium under uniform uncertain expertise if and

only if b ≤ 1
2K+1 .

The full-revelation equilibrium in Example 4.1 thus requires that b ≤ 1
8 . If we vary K as a

comparative statics, the above suggests that as the expert has a larger set of potential levels of

expertise, a smaller bias is required for full-revelation equilibrium to exist. A larger set of potential

levels of expertise implies that there is a larger number of types in the transformed model. Given

that the distances between the consecutive types are uniform, they shrink when there are more

types. Accordingly, a smaller b is required for the absence of profitable deviation. If we relate the

decision maker’s uncertainty over the expert’s level of expertise to K so that when K increases there

is a higher level of uncertainty, Corollary 4.1 suggests that an increase in the level of uncertainty

makes full communication more difficult. When in the limit K approaches infinity, the expert will

begin withholding information.

It may be constructive to compare the scenario when the decision maker knows, as in the

optimal information control literature, how informed the expert is with that when uncertainty is

present. Ivanov [25] shows that, when b = 1
4 so that only babbling equilibria exist in the CS model,

there exists informative equilibrium if the expert is imperfectly informed. In particular, informative

communication can achieved when the expert’s partition divides [0, 1] into two uniform intervals,

and this is controlled by and thus known to the decision maker. This can also be seen from applying

Proposition 3. When types [0, 1
2 ] and [1

2 , 1] each sends a distinct message, the induced actions are
1
4 and 3

4 . In order for the lower transformed type t = 1
4 to prefer action 1

4 over action 3
4 , we need

b ≤ 1
2(1

4 + 3
4) − 1

4 = 1
4 . Consider, however, the following example in which some uncertainty over

the expert’s expertise is introduced:

Example 4.2

Suppose b = 1
4 , and the decision maker can largely control the expert’s information structure

as above, but with a small probability ε the expert is uninformed. The transformed types are

the same as those in Example 1: t1 = 1
4 , t2 = 1

2 and t3 = 3
4 . But their probabilities are different:

g(t1) = g(t3) = 1
2(1−ε) and g(t2) = ε. It is obvious that there cannot be full-revelation equilibrium.

It should also be immediately clear that there cannot be an equilibrium in which t1 pools with

t2, and t3 sends a distinct message; the inclusion of t2 only slightly increases the lower induced

actions, but its presence imposes a more stringent restriction for the absence of profitable deviations.

Since pooling types must be in consecutive order, the only remaining candidate for informative

equilibrium is that t1 sends a distinct message and t2 pools with t3. The corresponding induced
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actions will then be 1
4 and 3+ε

4+4ε . For this to constitute an equilibrium, we require b ≤ 1
2(1

4 + 3+ε
4+4ε)−

1
4 = 1

4+4ε . Thus, no matter how small ε is, so long as it is positive we are left with babbling

equilibrium for b = 1
4 .

While the example is by no means general, it demonstrates that the optimal information struc-

ture of the expert might be sensitive to the introduction of uncertainty over the expert’s expertise

or when the decision maker’s control over the expert’s information structure is not perfect.

4.5 RELATED LITERATURE

The optimal information control literature, repeatedly referred to in this chapter, focuses on how

varying the quality of the expert’s information may improve communication. This chapter, moti-

vated by studying an aspect of communication with experts in real life, does not fall under this

line of enquiry. Nevertheless, it is closely related to this literature because our information struc-

ture - partitional information - is the same as that used by the authors to model the quality of

information. Fischer and Stocken [17] show that a less than perfect quality of expert’s information,

represented by a partition of the state space, can improve communication. Ivanov [25] extends

their results in a more general setting and poses the question as a problem of organizational design,

comparing information control with delegation.

As for previous work that addresses uncertainty over how informed the expert is, Austen-Smith

[4] studies a cheap-talk game in which the sender (the expert) makes a private decision, before

communicating with the receiver (the decision maker), on whether to acquire (perfect) information

or not. He shows that the receiver’s uncertainty over the binary information status of the sender can

improve communication. Apart from his different information structure, he also allows the sender

to send a separate message on her information status, which is not considered in this chapter.

In a different line of enquiry, Ottaviani and Sørensen [38] [39] consider strategic information

transmission in which the expertise of the expert depends on her private ability type, which implies

that the decision maker in their models is also uninformed about the expert’s level of expertise.

They focus on how the expert’s concern for reputation, as being conceived as having a high ability,

affects communication.
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4.6 CONCLUDING REMARKS

In this chapter, I demonstrate that the same techniques for analyzing communication with expert

who is known to be imperfectly informed can be applied to analyze the situations when the decision

maker is uncertain about how informed the expert is. Leveraging on the quadratic payoffs commonly

adopted in the cheap-talk literature, I show that the presence of second-order imperfect information

does not change the fundamental way in which the game is analyzed.

Utilizing this finding, I show in a fairly general example that an increase in the level of uncer-

tainty over the expert’s level of expertise makes communication more difficult between the parties,

even though full revelation of information is a possibility. I provide an example demonstrating that

the optimal information structure in the literature of optimal information control may be sensitive

to the introduction of a slight uncertainty over the expert’s information structure. To investigate

the extent of generality of this observation is, I believe, an interesting direction to extend this work.

73



APPENDIX

PROOFS

Proof of Lemma 2.1. For all m sent on the equilibrium paths, by definition Θσ(m) contains the

realized θ. Furthermore, if the decision maker is of type ts, the realized θ ∈ ts. Thus, for any

message m that ts receives in information sets reached in equilibrium, Θσ(m) and ts contain at

least one common element: the realized θ. Conversely, if Θσ(m) and ts contain some common

elements, then in equilibrium ts receives m with positive probability. The lemma is phrased in the

negative of the above.

Proof of Lemma 2.2. Suppose there is an informative equilibrium with no unused message under

equilibrium strategy σ so that Θσ(m) is a strict non-empty subset of Θ for all m ∈ M . Consider

an arbitrary m ∈M . Suppose the realized state θ′ /∈ Θσ(m) but the expert sends m for θ′; Θσ(m)

being a strict subset of Θ ensures we can find such θ′. There exists ts such that θ′ ∈ ts and

ts ∈ Θ \ Θσ(m): if θ′ > sup Θσ(m), choose a th with t ∈ (sup Θσ(m), θ′), and if θ′ < inf Θσ(m)

choose a tl with t ∈ (θ′, inf Θσ(m)); Θσ(m) being non-empty ensures that sup Θσ(m) and inf Θσ(m)

are well-defined. When the chosen ts receives m, because Θσ(m) ∩ ts = ∅, he will, by Lemma 2.1,

be in an information set unreached in equilibrium even though m is a used message.

Proof of Lemma 2.3. Consider an equilibrium (σ, ρ, µ). There may exist unused messages in

this equilibrium; denote the set of unused messages by M0. Now, construct another equilibrium

(σ′, ρ′, µ′) that has the same equilibrium outcome as (σ, ρ, µ). Consider an arbitrary message

m′ ∈ M \ M0 that is sent under σ, and denote the resulting set of induced actions by A(m′).

Note that since different types of decision maker may take different actions upon receiving the
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same message, A(m′) can be a non-singleton set and it also contains actions taken in pursuance

of out-of-equilibrium messages. Suppose the expert is prescribed to randomizes under σ′ over the

support M0∪{m′} such that every m ∈M0∪{m′} is used with positive probability. Upon receiving

any message m′′ ∈ M0 ∪ {m′}, every type of decision maker takes action that is the same as the

response to m′; thus A(m′′) ≡ A(m′). Given this, it is a best response for the expert to adopt

the strategy σ′, and (σ′, ρ′, µ′) is an equilibrium that has the same outcome as (σ, ρ, µ) but every

message in M is used with positive probability.

Proof of Proposition 2.1. Suppose, in the amateur model, σ is a fully separating strategy. Upon

receiving m ∈ M , regardless of his interval type the decision maker’s updated beliefs are always

1 at the θ for which m is sent. Thus, all types of decision maker will take the same action upon

receiving m, and the expert’s expected payoff in (2.7) becomes V e(m, θ, b) =
∫ 1

0 U
e(ρ(m), θ, b)dt =

U e(ρ(m), θ, b) where ρ(m) = ρ(m, th) = ρ(m, tl) for all t ∈ [0, 1]. Hence, an amateur model with

fully separating strategy reduces to a CS model with fully separating strategy. The fact that a fully

separating strategy cannot constitute an equilibrium in the CS model rules out such possibility for

the amateur model. Note that for this proof there is no need to consider off-equilibrium beliefs

because there are incentives for deviations even along the paths occurring under σ in the proposed

fully separating equilibrium.

Proof of Proposition 2.2. I begin by substantiating conditions 1 and 2 and appeal to Definition

2.3 for whether an action is effectively induced or not. Consider first the high-interval types.

Suppose t ∈ Ii, i = 1, . . . , N − 1, and th receives m ∈Mj , j ≤ N , indicating that θ ∈ [θj−1, θj ]. For

j = i, th’s updated beliefs under Bayes’s rule are µ(θ|m, th) = f(θ)/[
∫ θi
t f(θ′)dθ′] for θ ∈ [t, θi] and

zero elsewhere. For j > i, his updated beliefs are µ(θ|m, th) = f(θ)/[
∫ θj
θj−1

f(θ′)dθ′] for θ ∈ [θj−1, θj ]

and zero elsewhere. In both cases, it is obvious that there exists θ such that µ(θ|m, th) 6= φ(θ|th).

Thus, if a th with t ∈ Ii, i = 1, . . . , N − 1, receives m ∈Mj , i ≤ j ≤ N , he will take an action that

is effectively induced.

For the converse, I shall prove with contradiction. First of all, suppose t ∈ IN , and th receives

m ∈MN . His updated belief µ(θ|m, th) = f(θ)/[
∫ 1
t f(θ′)dθ′] for [t, 1] and zero elsewhere, and this is

equivalent to φ(θ|th) for all θ ∈ [0, 1]. Thus, the action taken by th with t ∈ IN cannot be effectively

induced. Next, suppose t ∈ Ii, i = 1, . . . , N − 1, and th receives m ∈ Mj , j < i. It is obvious that
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for j < i, Θσ(m) ∩ th = ∅, and thus by Lemma 2.1 Bayes’s rule cannot be applied in updating his

beliefs. Thus, for all messages m ∈ Mj , j < i, an effectively induced action cannot be induced on

a th with t ∈ Ii.

Consider next the low-interval types. Suppose t ∈ Ii, i = 2, . . . , N , and tl receives m ∈ Mk,

k ≥ 1, indicating that θ ∈ [θk−1, θk]. For k = i, tl’s updated beliefs under Bayes’s rule are

µ(θ|m, tl) = f(θ)/[
∫ t
θi−1

f(θ′)dθ′] for θ ∈ [θi−1, t) and zero elsewhere. For k < i, his updated beliefs

are µ(θ|m, tl) = f(θ)/(
∫ θk
θk−1

f(θ′)dθ′] for θ ∈ [θk−1, θk) and zero elsewhere. There exists θ such that

µ(θ|m, tl) 6= φ(θ|tl) in both cases. Thus, if a tl with t ∈ Ii, i = 2, . . . , N , receives message m ∈Mk,

1 ≤ k ≤ i, he will take an action that is effectively induced.

For the converse, suppose first that t ∈ I1, and tl receives m ∈ M1. His updated beliefs are

µ(θ|m, tl) = f(θ)/(
∫ t

0 f(θ′)dθ′) for θ ∈ [0, t) and zero elsewhere, and this is equivalent to φ(θ|tl) for

all θ ∈ [0, 1]. Thus, the action taken by tl with t ∈ I1 cannot be effectively induced. Next, suppose

t ∈ Ii, i = 2, . . . , N , and tl receives message m ∈ Mk, k > i. Since for k > i, Θσ(m) ∩ tl = ∅,

Bayes’s cannot be used. Thus, for all messages m ∈Mk, k > i, an effectively induced action cannot

be induced on a tl with t ∈ Ii.

Proof of Proposition 2.3. Since there are only two types of induced actions, effectively induced

and ineffectively induced, and they are mutually exclusive, conditions 1 and 2 follow directly from

the proof of conditions 1 and 2 in Proposition 2.2 where necessities in Proposition 2.2 become

sufficiencies in this proposition, and vice versa.

Proof of Corollary 2.1. Consider two arbitrary types θ′ < θ′′ in Ii, i = 1, . . . , N , who send

m ∈Mi under the prescribed N -step strategy. First note that, for decision makers with t ∈ (θ′, θ′′),

they are tl if the realized expert’s type is θ′ and they are th if the realized expert’s type is θ′′. It then

follows directly from Propositions 2.2 and 2.3 that the actions induced on these decision makers

by θ′ are different from those induced by θ′′. Suppose that θ′′ = θi. Note that, for decision makers

with t ∈ Ii, they are all th if θi is the realized expert’s type. Thus, the actions induced on tl for

t ∈ Ii, a(θi−1, t), will not be induced by θi, whereas they are induced by θ′ on tl for t ∈ (θ′, θi) ⊂ Ii

with a complementary advice.

Proof of Proposition 2.4. The outline of the proof is as follows. First of all, I shall construct
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ψ∗ and state the cases of the expert’s payoff V e(m, θ, b) under ψ∗. I shall then show that, if ψ = ψ∗

and U e12(·) is sufficiently large, then (2.13) is sufficient for the following to always hold in the general

model: for all θ ∈ [θi−1, θi],

V e(Mi, θ, b) = max
j
V e(Mj , θ, b), i, j = 1, . . . , N. (A.1)

The set of off-equilibrium beliefs ψ∗ is constructed as follows. Suppose there exists a monotone

solution, {θ1, . . . , θN−1} ⊂ (θ0, θN ) ≡ (0, 1), to (2.13) (which will be shown below), if a high-interval

type th with t ∈ (θi, θi+1), i = 0, . . . , N−1, detects a false advice, his beliefs are that θ is distributed

on [t, θi+1) with density f(θ)
F (t+θi+1)−F (t) and zero elsewhere; if a low-interval type tl with t ∈ (θi, θi+1)

detects a false advice, his beliefs are that θ is distributed on (θi, t) with density f(θ)
F (t)−F (t−θi) and zero

elsewhere. Using Propositions 2.2 and 2.3 and ψ∗, the profile of expected payoffs of θ ∈ [θi−1, θi] is

V e(m, θ, b) =



∫ θk−1

0
U e(a(θk−1, θk), θ, b)dt

+
i−1∑

r=k−1

∫ θr+1

θr

U e(a(t, θr+1), θ, b)dt

+
∫ θ

θi

U e(a(t, θi+1), θ, b)dt

+
∫ 1

θ
U e(a(θk−1, θk), θ, b)dt,

if m ∈Mk, 1 ≤ k < i,

∫ θi−1

0
U e(a(θi−1, θi), θ, b)dt

+
∫ θ

θi−1

U e(a(t, θi), θ, b)dt

+
∫ θi

θ
U e(a(θi−1, t), θ, b)dt

+
∫ 1

θi

U e(a(θi−1, θi), θ, b)dt,

if m ∈Mi,

∫ θ

0
U e(a(θj−1, θj), θ, b)dt

+
∫ θi

θ
U e(a(θi−1, t), θ, b)dt

+
j−1∑
r=i

∫ θr+1

θr

U e(a(θr, t), θ, b)dt

+
∫ 1

θj

U e(a(θj−1, θj), θ, b)dt,

if m ∈Mj , i < j ≤ N.

(A.2)

Using the second and the third cases in (A.2), the expected payoff for θi to send m ∈ Mi and
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m ∈Mi+1 are, respectively,

∫ θi−1

0
U e(a(θi−1, θi), θi, b)dt+

∫ θi

θi−1

U e(a(t, θi), θi, b)dt+
∫ 1

θi

U e(a(θi−1, θi), θi, b)dt (A.3)∫ θi

0
U e(a(θi, θi+1), θi, b)dt+

∫ θi+1

θi

U e(a(θi, t), θi, b)dt+
∫ 1

θi+1

U e(a(θi, θi+1), θi, b)dt. (A.4)

Thus, the indifference condition (2.13) becomes the following second-order difference equation:

V (θi−1, θi, θi+1, b) ≡
∫ θi−1

0
[U e(a(θi, θi+1), θi, b)− U e(a(θi−1, θi), θi, b)]dt

+
∫ θi

θi−1

[U e(a(θi, θi+1), θi, b)− U e(a(t, θi), θi, b)]dt

+
∫ θi+1

θi

[U e(a(θi, t), θi, b)− U e(a(θi−1, θi), θi, b)]dt

+
∫ 1

θi+1

[U e(a(θi, θi+1), θi, b)− U e(a(θi−1, θi), θi, b)]dt = 0,

(A.5)

i = 1, . . . , N − 1, θ0 = 0, θN = 1. Suppose there is a strictly increasing partition, θ0, . . . , θi, that

satisfies (A.5). Note that for θi−1 and θi from the partition,

∂V e(θi−1, θi, θ
′, b)

∂θ′
=
∫ θi

0
U e1 (a(θi, θ′), θi, b)

[
∂a(θi, θ′)
∂θ′

]
dt

+
∫ 1

θ′
U e1 (a(θi, θ′), θi, b)

[
∂a(θi, θ′)
∂θ′

]
dt.

(A.6)

Since U e11(·) < 0 and a(·, ·) is strictly increasing in the second argument, it is clear from (A.6) that

V (θi−1, θi, θi+1, b) strictly decreases eventually for θ′ ≥ θi. Given that V (θi−1, θi, θi, b) > 0, the

continuity of V (θi−1, θi, θ
′, b) in θ′ (followed from the continuities of U e(·) and a(·)) implies that

there exists a unique θi+1 > θi that satisfies (A.5).

Turning to incentive compatibility, I begin by showing that (A.1) holds for θi, i = 1, . . . , N − 1,

that satisfy (A.5). If N = 2, there exists no other set of messages that θi can send so that (A.1)

is satisfied vacuously. So, consider N ≥ 3. Suppose θi sends message m ∈ Mi+n, 2 ≤ n ≤ N − i.

Then, from the third case in (A.2) her expected payoff is

∫ θi

0
U e(a(θi+n−1, θi+n), θi, b)dt+

i+n−2∑
r=i

∫ θr+1

θr

U e(a(θr, t), θi, b)dt

+
∫ θi+n

θi+n−1

U e(a(θi+n−1, t), θi, b)dt+
∫ 1

θi+n

U e(a(θi+n−1, θi+n), θi, b)dt.

(A.7)
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Subtracting (A.7) from (A.4), we have

D1 =
∫ θi

0
[U e(a(θi, θi+1), θi, b)− U e(a(θi+n−1, θi+n), θi, b)]dt

+
∫ θi+1

θi

[U e(a(θi, t), θi, b)− U e(θi, t), θi, b)]dt

+
i+n−2∑
r=i+1

∫ θr+1

θr

[U e(a(θi, θi+1), θi, b)− U e(a(θr, t), θi, b)]dt

+
∫ θi+n

θi+n−1

[U e(a(θi, θi+1), θi, b)− U e(a(θi+n−1, t), θi, b)]dt

+
∫ 1

θi+n

[U e(a(θi, θi+1), θi, b)− U e(a(θi+n−1, θi+n), θi, b)]dt.

Note that (A.5) implies that the expert’s ideal action ae(θi, b) ∈ (a(θi−1, θi), a(θi, θi+1)). Since

a(θi+n−1, θi+n) > a(θi, θi+1), we have a(θi+n−1, t) > a(θi, θi+1) for t ∈ (θi+n−1, θi+n), and a(θj , t) >

a(θi, θi+1) for t ∈ (θj , θj+1), j = i+1, . . . , i+n−2, given U e11(·) < 0 and the maximum of U e(a, θi, b)

is achieved for a ∈ (a(θi−1, θi), a(θi, θi+1)), the first, third, fourth and fifth terms are positive. Also,

the second term vanishes. Thus, D1 > 0.

Next, suppose θi sends m ∈ Mi−η, 1 ≤ η ≤ i − 1. From the first case in (A.2), her expected

payoff is

∫ θi−η−1

0
U e(a(θi−η−1, θi−η), θi, b)dt+

∫ θi−η

θi−η−1

U e(a(t, θi−η), θi, b)dt

+
i−1∑
r=i−η

∫ θr+1

θr

U e(a(t, θr+1), θi, b)dt+
∫ 1

θi

U e(a(θi−η−1, θi−η), θi, b)dt.
(A.8)

Subtracting (A.8) from (A.4), we have

D2 =
∫ θi−η−1

0
[U e(a(θi−1, θi), θi, b)− U e(a(θi−η−1, θi−η), θi, b)]dt

+
∫ θi−η

θi−η−1

[U e(a(θi−1, θi), θi, b)− U e(a(t, θi−η), θi, b)]dt

+
i−2∑
r=i−η

∫ θr+1

θr

[U e(a(θi−1, θi), θi, b)− U e(a(t, θr+1), θi, b)]dt

+
∫ θi

θi−1

[U e(a(t, θi), θi, b)− U e(a(t, θi), θi, b)]dt

+
∫ 1

θi

[U e(a(θi−1, θi), θi, b)− U e(a(θi−η−1, θi−η), θi, b)]dt.
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Similar to the above, since a(θi−1, θi) > a(θi−η−1, θi−η), a(θi−1, θi) > a(t, θi−η) for t ∈ (θi−η−1, θi−η),

and a(θi−1, θi) > a(t, θj+1), for t ∈ (θj , θj+1), j = i − η, . . . , i − 2, the first, second, third and fifth

terms are positive, while the fourth term vanishes. Thus, D2 > 0. That D1 > 0 and D2 > 0 imply

that (A.1) holds for θi, i = 1, . . . , N − 1.

I show next that given (A.5) and for sufficiently large U e12(·), all θ ∈ (θi−1, θi) prefer sending m ∈

Mi over m ∈ Mi+1, and all θ ∈ (θi, θi+1) prefer sending m ∈ Mi+1 over m ∈ Mi, i = 1, . . . , N − 1,

so that (A.1) holds for all interior θ. Consider an arbitrary θ ∈ (θi−1, θi). From the third case in

(A.2), her expected payoff from sending m ∈Mi+1 is

∫ θ

0
U e(a(θi, θi+1), θi, b)dt+

∫ θi

θ
U e(a(θi−1, t), θi, b)dt

+
∫ θi+1

θi

U e(a(θi, t), θi, b)dt+
∫ 1

θi+1

U e(a(θi, θi+1), θi, b)dt.
(A.9)

Subtracting his expected payoff from sending m ∈Mi in (A.2) from (A.9), we have

D3 =
∫ θi−1

0
[U e(a(θi, θi+1), θ, b)− U e(a(θi−1, θi), θ, b)]dt

+
∫ θ

θi−1

[U e(a(θi, θi+1), θ, b)− U e(a(t, θi), θ, b)]dt

+
∫ θi

θ
[U e(a(θi−1, t), θ, b)− U e(a(θi−1, t), θ, b)]dt

+
∫ θi+1

θi

[U e(a(θi, t), θ, b)− U e(a(θi−1, θi), θ, b)]dt

+
∫ 1

θi+1

[U e(a(θi, θi+1), θ, b)− U e(a(θi−1, θi), θ, b)]dt.

(A.10)

Differentiating D3 with respect to θ gives

∂D3

∂θ
=
∫ θi−1

0

∂[U e(a(θi, θi+1), θ, b)− U e(a(θi−1, θi), θ, b)]
∂θ

dt

+
∫ θ

θi−1

∂[U e(a(θi, θi+1), θ, b)− U e(a(t, θi), θ, b)]
∂θ

dt

+
∫ θi+1

θi

∂[U e(a(θi, t), θ, b)− U e(a(θi−1, θi), θ, b)]
∂θ

dt

+
∫ 1

θi+1

∂[U e(a(θi, θi+1), θ, b)− U e(a(θi−1, θi), θ, b)]
∂θ

dt

+ [U e(a(θi, θi+1), θ, b)− U e(a(θ, θi), θ, b)]θ.
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Since a(θi, θi+1) > a(θi−1, θi), a(θi, θi+1) > a(t, θi) for t ∈ (θi−1, θ), and a(θi, t) > a(θi−1, θi) for

t ∈ (θi, θi+1), U e12(·) > 0 implies that the first four terms are positive. The last term, derived under

Leibniz rule that θ is in the range of integration of the second term in (A.10), is, however, negative.

Thus, when θ decreases from θi, there are negative effects on D3 from the first four term and a

positive effect from the last term. However, if U e12(·) is sufficiently large at θ, the negative effects

outweighs the positive effect. Thus, a sufficiently large U e12(·) guarantees, given (A.5), D3 ≤ 0 for

θ. Take the minimum value of U e12(·) that satisfies this to be c↑θ. Note that c↑θ is finite.

Consider next an arbitrary θ ∈ (θi, θi+1). From the first case in (A.2), her expected payoff from

sending m ∈Mi is

∫ θi−1

0
U e(a(θi−1, θi), θ, b)dt+

∫ θi

θi−1

U e(a(t, θi), θ, b)dt

+
∫ θ

θi

U e(a(t, θi+1), θ, b)dt+
∫ 1

θ
U e(a(θi−1, θi), θ, b)dt.

(A.11)

Subtracting (A.11) from the expected payoff from sending m ∈Mi+1 in (A.2), we have

D4 =
∫ θi−1

0
[U e(a(θi, θi+1), θ, b)− U e(a(θi−1, θi), θ, b)]dt

+
∫ θi

θi−1

[U e(a(θi, θi+1), θ, b)− U e(a(t, θi), θ, b)]dt

+
∫ θ

θi

[U e(a(t, θi+1), θ, b)− U e(a(t, θi+1), θ, b)]dt

+
∫ θi+1

θ
[U e(a(θi, t), θ, b)− U e(a(θi−1, θi), θ, b)]dt

+
∫ 1

θi+1

[U e(a(θi, θi+1), θ, b)− U e(a(θi−1, θi), θ, b)]dt.

(A.12)

Differentiating D4 with respect to θ gives

∂D4

∂θ
=
∫ θi−1

0

∂[U e(a(θi, θi+1), θ, b)− U e(a(θi−1, θi), θ, b)]
∂θ

dt

+
∫ θi

θi−1

∂[U e(a(θi, θi+1), θ, b)− U e(a(t, θi), θ, b)]
∂θ

dt

+
∫ θi+1

θ

∂[U e(a(θi, t), θ, b)− U e(a(θi−1, θi), θ, b)]
∂θ

dt

+
∫ 1

θi+1

∂[U e(a(θi, θi+1), θ, b)− U e(a(θi−1, θi), θ, b)]
∂θ

dt

− [U e(a(θi, θ), θ, b)− U e(a(θi−1, θi), θ, b)]θ.

81



Since a(θi, θi+1) > a(θi−1, θi), a(θi, θi+1) > a(t, θi) for t ∈ (θi−1, θ), and a(θi, t) > a(θi−1, θi) for

t ∈ (θi, θi+1), U e12(·) > 0 implies that the first four terms are positive. While the last term is

negative, similar to the above, if U e12(·) is sufficiently large at θ, the positive effects on D4 from the

first four terms outweigh the negative effect from the last term; thus, for sufficiently large U e12(·),

(A.5) implies D4 ≥ 0. Take the minimum value of U e12(·) that satisfies this to be c↓θ. Similarly, c↓θ

is finite. Let c∗↓ = max1≤i≤N−1(supθ∈[0,1] c
↓
θ). Further let c∗ = max{c∗↑, c∗↓}. For sufficiently large

U e12(·) such that U e12(·) ≥ c∗, (A.1) holds for all interior θ.

Proof of Proposition 2.5. First, note that in a two-step equilibrium of the uniform-quadratic

model, the profile of effectively induced actions is

ρ(m, th) =


t+θ1

2 , for t ∈ I1 and m ∈M1,

θ1+1
2 , for t ∈ I1 and m ∈M2,

and

ρ(m, tl) =


θ1
2 , for t ∈ I2 and m ∈M1,

θ1+t
2 , for t ∈ I2 and m ∈M2,

and that of ineffectively induced action is

ρ(m, th) =
t+ 1

2
, for t ∈ I2 and m ∈M1 or m ∈M2, and

ρ(m, tl) =
t

2
, for t ∈ I1 and m ∈M or m ∈M2.

Using these induced actions, the only equation in the indifference condition becomes

∫ θ1

0

([
t+ θ1

2
− (θ1 + b)

]2

−
[
θ1 + 1

2
− (θ1 + b)

]2)
dt

+
∫ 1

θ1

([
θ1

2
− (θ1 + b)

]2

−
[
θ1 + t

2
− (θ1 + b)

]2)
dt = 0.

(A.13)

Solving (A.13) for θ1 gives θ1 = 1
2(1− 6b). An informative equilibrium requires θ1 > 0, and this is

satisfied if and only if b < 1
6 .

I verify in the followings that so long as (A.13) is satisfied, it is a best response for all interior θ

to follow the strategy. Subtracting, for θ ∈ [0, θ1), the expected payoff from sending m ∈M1 from

that from sending m ∈M2, we have, after imposing the equilibrium condition θ1 = 1
2(1− 6b),
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D5 =
θ(27θ − 10θ2 − 3) + b(9 + 96θ − 30θ2) + 36b2(4− 3θ)− 324b3 − 4

24
.

I show that D5 ≤ 0 for all (θ, b) ∈ [0, 1
2(1− 6b)]× (0, 1

6). Differentiating D5 with respect to θ twice,

we have ∂2D5
∂θ2

= 9−10(b+θ)
4 > 0 for (θ, b) ∈ [0, 1

2(1 − 6b)] × (0, 1
6). Thus, D5 is convex in θ for all

b ∈ (0, 1
6). If the value of D5 at the boundaries of [0, 1

2(1 − 6b)] is non-positive for all b ∈ (0, 1
6),

then D5 ≤ 0 for all (θ, b) ∈ [0, 1
2(1 − 6b)] × (0, 1

6). By the indifference condition, D5 = 0 when

θ = 1
2(1− 6b). When θ = 0, D5 = (1+6b)(33b−54b2−4)

24 , and this can easily be verified to be negative

for all b ∈ (0, 1
6).

Next, subtracting, for θ ∈ [θ1, 1], the expected payoff from sending m ∈ M1 from that from

sending m ∈M2, we have

D6 =
(1− θ)[10θ2 + 7θ + 30b(1 + θ)− 5] + (1− 6b)[9θ + 3b(5 + 6θ) + 54b2 − 5]

24
.

I show that D6 ≥ 0 for all (θ, b) ∈ [1
2(1− 6b), 1]× (0, 1

6). Differentiating D6 with respect to θ twice,

we have ∂2D6
∂θ2

= 1−10(b+θ)
4 < 0 for (θ, b) ∈ [1

2(1 − 6b), 1] × (0, 1
6). Thus, D6 is concave in θ for all

b ∈ (0, 1
6). If the value of D6 at the boundaries of [1

2(1 − 6b), 1] is non-negative for all b ∈ (0, 1
6),

then D6 ≥ 0 for all (θ, b) ∈ [1
2(1 − 6b), 1] × (0, 1

6). By the indifference condition, D6 = 0 when

θ = 1
2(1 − 6b). When θ = 1, D6 = (1−6b)(33b+54b2+4)

24 , and this can easily be verified to be positive

for all b ∈ (0, 1
6).

Proof of Corollary 2.2. Note that in two-step equilibria of CS model’s uniform-quadratic case,

θcs1 = 1
2(1− 4b). The results follow directly by comparing this with θ1 = 1

2(1− 6b).

Calculation for Example 2.1. I shall demonstrate for the case of b = 1
15 ; the case of b = 1

20 ,

which is almost the same, will be skipped. The objective of this calculation is to solve the following

simultaneous equations for 0 < θ1 < θ2 < 1:
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∫ θ1

0

([
t+ θ1

2
−
(
θ1 +

1
15

)]2

−
[
θ1 + θ2

2
−
(
θ1 +

1
15

)]2)
dt

+
∫ θ2

θ1

([
θ1

2
−
(
θ1 +

1
15

)]2

−
[
θ1 + t

2
−
(
θ1 +

1
15

)]2)
dt

+
∫ 1

θ2

([
θ1

2
−
(
θ1 +

1
15

)]2

−
[
θ1 + θ2

2
−
(
θ1 +

1
15

)]2)
dt = 0;

(A.14)

∫ θ1

0

([
θ1 + θ2

2
−
(
θ2 +

1
15

)]2

−
[
θ2 + 1

2
−
(
θ2 +

1
15

)]2)
dt

+
∫ θ2

θ1

([
t+ θ2

2
−
(
θ2 +

1
15

)]2

−
[
θ2 + 1

2
−
(
θ2 +

1
15

)]2)
dt

+
∫ 1

θ2

([
θ1 + θ2

2
−
(
θ2 +

1
15

)]2

−
[
θ2 + t

2
−
(
θ2 +

1
15

)]2)
dt = 0,

(A.15)

and, given the solution, verify that incentive compatibility is satisfied for all interior types.

There is more than one solution to these equations, and the only one that satisfies 0 < θ1 <

θ2 < 1 is θ̄1 = 0.011122 and θ̄2 = 0.307109. Subtracting, for θ ∈ [0, θ̄1), the expected payoff from

sending m ∈M1 from that from sending m ∈M2 gives D7 = −0.002871+0.255076θ+0.276556θ2−

0.416667θ3, and it is straightforward to verify that ∂D7/∂θ > 0 for θ ∈ [0, θ̄1) so that, given, (A.14),

D7 ≤ 0 for θ in this range. Subtracting, for θ ∈ [θ̄1, θ̄2) the expected payoff from sending m ∈ M2

from that from sending m ∈ M3 gives D8 = −0.119569 + 0.099639θ + 1.22834θ2 − 1.41667θ3, and

it can be shown that ∂D8/∂θ > 0 for θ ∈ [θ̄1, θ̄2) so that, given, (A.15), D8 ≤ 0 for θ in this range.

Next, subtracting, for θ ∈ [θ̄2, 1], the expected payoff from sending m ∈ M2 from that from

sending m ∈ M3 gives D9 = −0.222724 + 0.74777θ + 0.054566θ2 − 0.41667θ3. While the second

derivative ∂2D9/∂θ
2 < 0 for θ ∈ [θ̄2, 1], it can easily be verified that D9 ≥ 0 for θ = θ̄2 and

θ = 1. Thus, D9 ≥ 0 for all θ ∈ [θ̄2, 1]. Finally, subtracting, for θ ∈ [θ̄1, θ̄2), the expected payoff

from sending m ∈ M1 from that from sending m ∈ M2 gives D10 = −0.002924 + 0.263305θ −

0.0305528θ2 − 0.416667θ3, and it can be shown that ∂D10/∂θ > 0 for θ ∈ [θ̄1, θ̄2) so that, given,

(A.14), D10 ≥ 0 for θ in this range. Hence, incentive compatibility is satisfied for all interior θ.

Proof of Proposition 2.7. First of all, the novice decision maker’s expected payoff in the CS

model is

W cs(b) = − 1
12Ics(b)2

− b2(Ics(b)2 − 1)
3

, (A.16)
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where Ics(b) is, for a given b, the highest number of intervals partitioned by the expert. Since

Ics(b) = 2 for b ∈ ( 1
12 ,

1
4), the expected payoff of the novice is W cs(b) = − 1

48 − b
2.

In the amateur model, the decision maker’s expected payoff if his t ∈ (θ1, 1] is

Wt(b) =
∫ θ1

0
−
(
θ1

2
− θ
)2

dθ +
∫ t

θ1

−
(
θ1 + t

2
− θ
)2

dθ +
∫ 1

t
−
(
t+ 1

2
− θ
)2

dθ. (A.17)

First, consider case (1). When θ1 = 0, the first term (A.17) vanishes, and, after integration, the

expected payoff becomes Wt(b) = − 1
12(3t2 − 3t+ 1). Thus, the amateur is better off if and only if

Wt(b)−W cs(b) = − 1
12(3t2 − 3t+ 1)− (− 1

48 − b
2) ≥ 0 or t ∈ [t, t] = [1

2 − 2b, 1
2 + 2b].

Consider next case (2i). When θ1 > 0 and if t ∈ (θ1, 1], using the equilibrium condition that

θ1 = 1
2(1− 6b), the expected payoff in (A.17) becomes Wt(b) = − 1

48 − b
2 +A(t, b), where

A(t, b) =
t(3− 2t) + 12bt(1− t) + 4b2(4− 9t)− 1

16
.

Thus, an amateur is better off if and only if A(t, b) ≥ 0. Note that since for all b ∈ ( 1
12 ,

1
6),

A(1
2(1 − 6b), b) = A(1, b) = −5b2

4 < 0, ∂2A(t,b)
∂t2

< 0, and Amax(b) = maxt′∈[ 1
2

(1−6b),1]A(t′, b) =
1+18b−52b2−216b3

128 > 0, solving the equation A(t, b) = 0 shows that A(t, b) ≥ 0 if and only if t ∈ [t′, t′],

where

t′ =
3 + 12b− 36b2 −

√
1 + 24b+ 56b2 − 96b3 + 1296b4

4(1 + 6b)
>

1
2

(1− 6b), and

t
′ =

3 + 12b− 36b2 +
√

1 + 24b+ 56b2 − 96b3 + 1296b4

4(1 + 6b)
< 1,

Finally, consider case (2ii). If t ∈ [0, θ1], θ1 > 0, the amateur’s expected payoff is

Wt(b) =
∫ t

0
−
(
t

2
− θ
)2

dθ +
∫ θ1

t
−
(
θ1 + t

2
− θ
)2

dθ +
∫ 1

θ1

−
(
θ1 + 1

2
− θ
)2

dθ

= − 1
48
− b2 +B(t, b),

(A.18)

where

B(t, b) =
t(1− 2t)− 12bt(1− t)− 4b2(5− 9t)

16
.

An amateur is therefore better off if and only if B(t, b) ≥ 0. Note that similar to the above,

B(0, b) = B(1
2(1− 6b), b) = −5b2

4 < 0 and ∂2B(t,b)
∂t2

< 0 for b ∈ ( 1
24 ,

1
6). However, it can shown that,
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for b ∈ ( 1
12 ,

1
6), Bmax(b) = maxt′∈[0, 1

2
(1−6b)]B(t′, b) = 1−18b−52b2−216b3

128 < 0. Thus, every threshold

t ∈ [0, 1
2(1− 6b)] is strictly worse off.

Proof of Proposition 2.8. Consider first the case where b ∈ [1
6 ,

1
4). Integrating, with respect to

t, Wt(b) = − 1
12(3t2 − 3t + 1) gives the pre-t expected payoff W (b) = − 1

24 . Thus, an amateur is

better off if and only if W (b) ≥ W cs(b) or b ≥ 1
4
√

3
, which is satisfied for b ∈ [1

6 ,
1
4). Furthermore,

it is straightforward to check that ∂[W (b)−W cs(b)]
∂b > 0 for b in this range.

For b ∈ ( 1
12 ,

1
6), integrating (A.17) and (A.18) with respect to t in the respective ranges and

summing them up gives W (b) = −1+72b2−432b4

64 . It is straightforward to check that W (b) ≥W cs(b)

for all b ∈ ( 1
12 ,

1
6). Differentiating [W (b)−W cs(b)] with respect to b gives

∂[W (b)−W cs(b)]
∂b

= − 1
64

(144b− 1728b3) + 2b.

Since the second partial derivative ∂2[W (b)−W cs(b)]
∂b = 162b > 0 for b > 0, solving the first-order

condition gives the minimizing value bmin = 1
6
√

3
∈ ( 1

12 ,
1
6). Thus, the welfare improvement decreases

and then increases for b in this range. Note also that −1+72b2−432b4

64 = − 1
24 for b = 1

6 . Hence,

W (b)−W cs(b) is continuous and decreases and then increases in b for b ∈ ( 1
12 ,

1
4).

Calculation for Example 2.2. First, recall from Example 2.1 that, when b = 1
15 , the boundary

types in the three-step equilibrium in the amateur model are {θ̄1, θ̄2} = {0.011122, 0.307109}.

Also, when b = 1
15 , the equilibrium in the CS model with the highest number of steps is three-step

equilibrium. Accordingly, by substituting Ics = 3 and b = 1
15 into (A.16), the novice’s expected

payoff is W cs( 1
15) = −0.021111.

Thus, for t ∈ [0, θ̄1], the amateur is better off if and only if

Wt

(
1
15

)
−W cs

(
1
15

)
=
∫ t

0
−
(
t

2
− θ
)2

dθ +
∫ θ̄1

t
−
(
t+ θ̄1

2
− θ
)2

dθ

+
∫ θ̄2

θ̄1

−
(
θ̄1 + θ̄2

2
− θ
)2

dθ +
∫ 1

θ̄2

−
(
θ̄2 + 1

2
− θ
)2

dθ

+ 0.021111

= − t
3

12
+ 0.083333(t− 0.011122)(t2 − 0.022244t+ 0.000124)

− 0.008771 ≥ 0.

(A.19)
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However, since ∂2[Wt(
1
15

)−W cs( 1
15

)]

∂t2
< 0 for t ∈ [0, θ̄1] and the maximum of Wt( 1

15) −W cs( 1
15) for

t ∈ [0, θ̄1], [Wt( 1
15) −W cs( 1

15)]|t=0.00561 = −0.008771 < 0, (A.19) cannot be satisfied, and thus the

amateur is worse off.

Consider next t ∈ (θ̄1, θ̄2]. The amateur is better off if and only if

Wt

(
1
15

)
−W cs

(
1
15

)
=
∫ θ̄1

0
−
(
θ̄1

2
− θ
)2

dθ +
∫ t

θ̄1

−
(
θ̄1 + t

2
− θ
)2

dθ

+
∫ θ̄2

t
−
(
t+ θ̄2

2
− θ
)2

dθ +
∫ 1

θ̄2

−
(
θ̄2 + 1

2
− θ
)2

dθ

+ 0.021111

= t3−0.073997t2 + 0.023548t− 0.009024 ≥ 0.

(A.20)

Similar to the above, ∂
2[Wt(

1
15

)−W cs( 1
15

)]

∂t2
< 0 for t ∈ (θ̄1, θ̄2], and the maximum of Wt( 1

15)−W cs( 1
15)

for t ∈ (θ̄1, θ̄2], [Wt( 1
15) −W cs( 1

15)]|t=0.159116 = −0.007151 < 0. Thus, (A.20) cannot be satisfied,

and the amateur is worse off.

For t ∈ (θ̄2, 1], the amateur is better off if and only if

Wt

(
1
15

)
−W cs

(
1
15

)
=
∫ θ̄1

0
−
(
θ̄1

2
− θ
)2

dθ +
∫ θ̄2

θ̄1

−
(
θ̄1 + θ̄2

2
− θ
)2

dθ

+
∫ t

θ̄2

−
(
θ̄2 + t

2
− θ
)2

dθ +
∫ 1

t
−
(
t+ 1

2
− θ
)2

dθ

+ 0.021111

= −(1− t)3

12
− 0.083333(t− 0.307111)

× (t2 − 0.614216t+ 0.094315) + 0.018950 ≥ 0.

(A.21)

Note that ∂2[Wt(
1
15

)−W cs( 1
15

)]

∂t2
< 0 for t ∈ (θ̄2, 1], but the maximum of Wt( 1

15)−W cs( 1
15) for t ∈ (θ̄2, 1],

[Wt( 1
15)−W cs( 1

15)]|t=0.653555 = 0.012020 > 0. Solving the equation Wt( 1
15)−W cs( 1

15) = 0 in (A.21)

gives that the amateur is better off if and only if his threshold t ∈ [0.390136, 0.916973].

Finally, the pre-t expected payoff of the amateur, derived by integrating the expressions in

(A.19)-(A.21) with respect to t in their respective ranges and then summing them up, is W ( 1
15) =

−0.019959 > −0.021111. Thus, in the pre-t ex-ante stage, the amateur decision maker is always

better off.
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Proof of Proposition 3.1. It suffices to focus on two-step equilibria. Suppose the boundary type

θ′ < 1
2 . Then, the indifference condition is

−
[
θ′

2
− (θ′ + b(τ̂))

]2

= −τ̂
[
θ′ + 1

2

2
− (θ′ + b(τ̂))

]2

− (1− τ̂)
[
θ′ + 1

2
− (θ′ + b(τ̂))

]2

. (A.22)

Solving (A.22) gives θ′ = 3τ̂−8b(τ̂)(τ̂−2)−4
4(τ̂−2) . Thus, given 0 ≤ τ̂ ≤ 1, θ′ > 0 if and only if b(τ̂) < 4−3τ̂

16−8τ̂ .

Suppose the boundary type θ′ > 1
2 . Then, the indifference condition is

−τ̂
[ 1

2 + θ′

2
− (θ′ + b(τ̂))

]2

− (1− τ̂)
[
θ′

2
− (θ′ + b(τ̂))

]2

= −
[
θ′ + 1

2
− (θ′ + b(τ̂))

]2

. (A.23)

Solving (A.23) gives θ′ = τ̂−8b(τ̂)(τ̂−2)−4
4(τ̂−2) . Thus, given 0 ≤ τ̂ ≤ 1, θ′ > 1

2 if and only if b(τ̂) < τ̂
16−8τ̂ .

Since 4−3τ̂
16−8τ̂ ≥

τ̂
16−8τ̂ for 0 ≤ τ̂ ≤ 1, 4−3τ̂

16−8τ̂ is the maximum threshold. This proves the necessity.

For sufficiency, it suffices to focus on the case where θ′ < 1
2 . Suppose interval-type h holds off-

equilibrium beliefs that coincide with his pre-communication beliefs. Then, it is obvious that h has

no incentive to send a false advice. And note that interval-type l will not receive a false advice

given θ′ < 1
2 .

Proof of Proposition 3.2. For equilibria informative for both l and h, it suffices to focus on

equilibria in which there are two steps in each of [0, 1
2) and [1

2 , 1]. Consider an arbitrary real

interval [t0, t1]. Partitioning [t0, t1] by θ′, the indifference condition is

−
[
t0 + θ′

2
− (θ′ + b(1))

]2

= −
[
θ′ + t1

2
− (θ′ + b(1))

]2

. (A.24)

Solving (A.24) gives θ′ = 1
2(t0 + t1 − 4b(1)). Thus, θ′ > t0 if and only if b(1) < 1

4(t1 − t0). Since

the length of the half-intervals is 1
2 , there are two steps in each of them, with the corresponding

boundary types θ̄1 = 1
4 − 2b(1) and θ̂1 = 3

4 − 2b(1), if and only if b(1) < 1
8 . This proves the

necessity. For sufficiency, suppose interval-type l holds off-equilibrium beliefs that θ is distributed

uniformly over [0, 1
4 − 2b(1)], and h holds off-equilibrium beliefs that θ is distributed uniformly

over [1
2 ,

3
4 − 2b(1)]. Then, it is obvious that neither l nor h has a strict incentive to send a false

advice because then the off-equilibrium actions coincide with the equilibrium ones. The proof for

equilibria informative only for one of the interval types follows straightforwardly.
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Proof of Proposition 3.3. For every strict message-sharing equilibrium to be ψ-robust, note

that, if the expert’s strategy in question is strict message sharing, then, for all m ∈ M and all

s = l, h, Θσ(m) ∩ s 6= ∅. The proof for equilibria informative for either one of l and h is similar.

Proof of Proposition 3.4. The proof is by construction. Suppose α(1) = r1. Upon observing

r1, the expert starts the continuation game with τ̂ = 1. From the proof of Proposition 3.2, the

boundary types in the expert’s equilibrium partition are θ̄1 = 1
4 − 2b(1) and θ̂1 = 3

4 − 2b(1), where

b(1) = b0+b1. An informed decision maker’s expected payoff from this partition, which is equivalent

to his expected payoff from sending r = r1, is V d(r1, 1|σ) = − 1
192 − (b0 + b1)2.

On the other hand, upon receiving r0, the expert starts the continuation game with τ̂ = 0, which

is equivalent to the CS model. The boundary type in the CS model is θ1 = 1
2(1 − 4b(0)), where

b(0) = b0. An informed decision maker’s expected payoff from this partition, which is equivalent

to his expected payoff from deviating to send r = r0, is V d(r0, 1|σ) = − 1
48(1− 6b0(1− 4b0)).

For the informed decision maker to have incentive to report his type, we need V d(r1, 1|σ) ≥

V d(r0, 1|σ), which holds for b0 ∈ ( 1
12 ,

1
8(
√

3− 1)] and b1 ≤ β(b0) ≡ 1
8

√
1− 8b0(1− 4b0)− b0.

Proof of Proposition 4.1. Suppose there is an equilibrium of the transformed model with in-

formation structure (T, g) = (τ(Ω), q ◦ τ−1) in which the set of actions A is induced. Denote the

set of types that induces a ∈ A by T (a). Note that all t ∈ T (a) sends message m ∈ Mσ(a)

in the equilibrium. Construct an equilibrium for the uncertain expertise model with informa-

tion structure (Ω, q) as follows. Denote the set of ω ∈ Ω such that τ(ω) = t′ ∈ T by Ω(t′).

Consider an arbitrary a′ ∈ A. Suppose, in the uncertain expertise model, all ω ∈ {Ω(t) :

t ∈ T (a′)} send message m ∈ Mσ(a′), which is available to them. Upon receiving any message

m′ ∈Mσ(a′), the decision maker in the uncertain expertise model updates his beliefs in such a way

that
∑

ω∈Ω(t) ν(ω|m′) ≡ µ(t|m′). Thus,
∑

ω∈Ω U
d(a|ω)ν(ω|m′) is equivalent to

∑
t∈T U

d(a, t)µ(t|m′)

minus a positive term that is independent of a; that a′ = argmaxa∈R
∑

t∈T U
d(a, t)µ(t|m′) implies

a′ = argmaxa∈R
∑

ω∈Ω U
d(a|ω)ν(ω|m′), and a′ is induced by ω ∈ {Ω(t) : t ∈ T (a′)} in the uncertain

expertise model. Suppose the above applies to all a ∈ A. Given that U e(a, b|ω) is equivalent to

U e(a, t, b) minus a positive term independent of a, that in the transformed model, for all t ∈ T (a′),

U e(a′, t, b) ≥ U e(a, t, b) for all a ∈ A, a 6= a′ implies that in the uncertain expertise model, for all

ω ∈ {Ω(t) : t ∈ T (a′)}, U e(a′, b|ω) ≥ U e(a, b|ω) for all a ∈ A, a 6= a′; thus, it is a best response
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for the expert in the uncertain expertise model to do what is prescribed as above. Note that by

definition there does not exist ω ∈ Ω such that τ(ω) 6= t for some t ∈ T ; an equilibrium of the

uncertain expertise model is thus constructed in which the exact same A is induced.

Necessity in the last statement of the proposition holds in the above construction. For suffi-

ciency, suppose there exists an ω, τ(ω) /∈ T (a′), that induces a′ in the above constructed equilibrium.

This implies that there exist a t /∈ T (a′) that induces a′ in the equilibrium of the transformed model,

a contradiction.

Proof of Proposition 4.2. The proof is essentially the same as those of Lemma 1 and Lemma

8 of Ivanov [25]. For completeness, I reproduce the proofs here. I start with the finiteness of A.

Suppose a and a′, a < a′, are two induced actions in an equilibrium of the transformed model. This

implies that there exist a t ∈ T and a t′ ∈ T that induce, respectively, a and a′. To these two types,

U e(a, t) ≥ U e(a′, t) and U e(a′, t′) ≥ U e(a, t′); since b is irrelevant for the arguments in this proof,

for clarity I suppress it in the expert’s payoff function. Given that U e(·, ·) is continuous, this implies

that there exists a θ̄ ∈ [0, 1] such that U e(a, θ̄) = U e(a′, θ̄). Define ai(θ̄) ≡ argmaxa′∈R U i(a, θ̄),

i = e, d. That U e11 < 0 implies that a < ae(θ̄) < a′. I show that a is not induced by any t′′ < θ̄.

Note that, under the sorting condition, for t′′ > θ̄, U e(a′, t′′)−U e(a, t′′) > U e(a′, θ̄)−U e(a, θ̄) = 0,

implying that U e(a′, t′′) > U e(a, t′′). Thus, any t′′ > θ̄ does not induce a. Similarly, it can be shown

that a′ is not induced by any t′′ < θ̄. This implies that, for all t > θ̄, σ(m|t) = 0 a.e. on Mσ(a),

and, for all t < θ̄, σ(m|t) = 0 a.e. on Mσ(a′). Next, I show that a ≤ ad(θ̄). Suppose not. Then,

given that ad(·) is strictly increasing, for any t′′ < θ̄, ad(t′′) < ad(θ̄) < a. Since Ud11 < 0 and, by

definition, Ud(ad(θ̄), θ̄) > Ud(a, θ̄), Ud(ad(θ̄), t) > Ud(a, t) for all t ≤ θ̄. Given that σ(·|t) = 0 a.e.

on Mσ(a) for t > θ̄, for m ∈Mσ(a), it follows that

∑
t∈T

(
g(t)σ(m|t)∑

t′∈T g(t′)σ(m|t′)

)
Ud(ad(θ̄), t) >

∑
t∈T

(
(g(t)σ(m|t)∑

t′∈T (g(t′)σ(m|t′)

)
Ud(a, t),

and this contradicts that a is the decision maker’s best response to m. Similarly, it can be shown

that ad(θ̄) ≤ a′. Thus, we have a < ae(θ̄) < a′ and a ≤ ad(θ̄) ≤ a′. Since ae(θ) > ad(θ) for all

θ ∈ [0, 1], the two inequalities imply that there exists an ε > 0 such that a′ − a ≥ ε. Since the set

of actions induced in equilibrium is bounded by ad(0) and ad(1), it follows that the set of actions

induced in equilibrium is finite.

I proceed to prove the five properties of the induced actions. For Property 1, suppose, on the
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contrary, that t induces ai and aj where j ≥ i+2. This implies that U e(ai, t) = U e(aj , t) ≥ U e(ak, t)

for all a ∈ A. Since ai+1 = λai + (1− λ)aj for some λ ∈ (0, 1), that U e11 < 0 yields a contradiction

that U e(ai+1) > λU e(ai, t) + (1− λ)U e(aj , t) = U e(ai, t).

For Property 2, note that given ρ(m) =
∑

t∈T

(
g(t)σ(m|t)∑

t′∈T g(t
′)σ(m|t′)

)
t, t1 ≤ ρ(m) ≤ max{T} for

all m ∈ M . In other words, max{A} ≤ max{T} < max{T} + b. Since U e(a,max{T}) is strictly

increasing for a ≤ max{T}+ b, U e(max{A},max{T}) > U e(a,max{T}) for all a ∈ A, and max{T}

purely induces max{A}.

For Property 3, suppose, on the contrary, that t induces a, and there exists t′ < t that induces

a′ > a. This implies that U e(a, t) ≥ U e(a′, t) and U e(a′, t′) ≥ U e(a, t′). The two inequalities further

imply that U e(a′, t′) − U e(a, t′) ≥ 0 ≥ U e(a′, t) − U e(a, t). This contradicts the sorting condition

that U e12 > 0.

For Property 4, note that, if t′ and t′′, t′ < t′′, induce a, then, by Property 3, any t such that

t′ < t < t′′ does not induce a′ > a or a′′ < a. This implies t purely induces a.

Finally, for Property 5, suppose, on the contrary that ti induces ai and ai+1, but ti+1 does not

induce ai+1. By Property 3, any t < ti does not induce ai+1, and ti+1 does not induce ai. Thus,

by assumption, ti+1 induces some a > ai+1. Applying Property 3 again implies that any t > ti+1

does not induce ai+1. Invoking the assumption again implies that any t > ti does not induce ai+1.

Thus, any t 6= ti does not induce ai+1, and this implies that ai+1 = ti. Since ti induces both ai

and ai+1 which implies that U e(ai, ti) = U e(ai+1, ti), ai < ti + b < ai+1. Given b > 0, this yields a

contradiction that ti > ti + b.

Proof of Proposition 4.3. In the main text.

Proof of Corollary 4.1. Under uniform uncertain expertise, the type space of the uncertain

expertise model is Ω ≡ {{[ n−1
2i−1 ,

n
2i−1 ]}2i−1

n=1}Ki=1. Applying the function τ to Ω gives the type space

of the transformed model:

T ≡ τ(Ω) ≡
{

2n− 1
2i

∣∣∣∣n = 1, ..., 2i−1; i = 1, ...,K
}

≡
{

(2n− 1)2K−i

2K

∣∣∣∣n = 1, ..., 2i−1; i = 1, ...,K
}

≡
{

i

2K

∣∣∣∣i = 1, ..., 2K − 1
}
.
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In a full-revelation equilibrium of the transformed model, ti = ti = ti = a(T (mi)) = i
2K

.

Since a(T (mi))+a(T (mi+1))
2 − ti+1 = 2i+1

2K+1 − i+1
2K

< 0 and a(T (mi))+a(T (mi+1))
2 − ti = 1

2K+1 for all

i = 1, 2, . . . ,H − 1, that b > 0 implies that the inequality (4.9) reduces to b ≤ 1
2K+1 .
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