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INCREASED RESPONSE VARIABILITY AND ATTENTIONAL LAPSES AFTER 
CHRONIC COCAINE SELF-ADMINISTRATION 

Adam Olsen, MS 

University of Pittsburgh 2009 

In humans, cocaine use has long been associated with poor attentional control and decreased 

efficiency in goal-oriented behavior. Animal models of these stereotypic drug effects, however, 

have thus far failed to produce quantifiable data sets in part because of a lack of species 

differences and analysis techniques. Recent work (Hervey et al. 2006) has successfully 

quantified attentional lapses in disorders such as ADHD through the analysis of response time 

variations in simple tasks, but this analysis has yet to be applied to the drug abuse scenario. To 

determine the effects of chronic cocaine administration on response time variability, 14 rhesus 

macaque monkeys (8 cocaine administering and 6 performance-matched controls) were 

subjected to a 50 trial simple attention task. This task was performed W-F prior to cocaine self-

administration sessions in the test group. Treatment groups were compared to both each other 

and to baseline task sessions recorded prior to beginning the administration paradigm. In addition 

to typical measures of variability, an ex-Gaussian response time analysis was performed to 

quantify the contribution of attentional lapses to overall variability. The cocaine-administering 

group had a significantly higher response time standard deviation than their pre-administration 

sessions (p<0.05).  No difference was observed between pre- and post-administration sessions 

for the control group. When ex-Gaussian methods were applied to the response time datasets, no 

differences were observed between groups in the normal mean (mu), suggesting that the 

variability increase in the cocaine group was due to an increased skew in the right tail of the 

response time distribution.  Indeed, the cocaine group showed a significant increase in the value 

of tau(exponential value representing the distribution tail magnitude) post-administration versus 

tau pre-administration (p<0.05). These data suggest that cocaine administration leads to 

increased behavioral variability in simple response time tasks, and that this variability increase is 

primarily due to the prevalence of abnormally long responses. Similar results have been 

demonstrated in clinical disorders such as ADHD, suggesting both the relevance of the primate 

model in studies of attentional processing and the possible similarity in affected brain regions or 

transmitter systems.  
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1.0 INTRODUCTION 

 

Cocaine use continues to be a significant societal and economic cost throughout the world today 

(Substance Abuse and Mental Health Services Administration, 2008). Paramount to examining 

the addictive nature of this drug and its potent reinforcing effects on behavior is determining the 

cognitive deficits that are associated with its use. While many different cognitive impairments 

have been observed in cocaine users, attentional deficits are among the most consistently found. 

It is also quite possible that the specific impairments in attentional control are responsible for 

performance decreases observed in other cognitive tasks (Jovanovski et al., 2005).  These clinical 

studies, however, suffer because of confounding factors such as preexisting conditions, poly-

drug use, and inconsistent dosing. Given that the effects of cocaine are dose-related (Bolla et al., 

1999), we have chosen to examine attentional control in a primate model of cocaine self-

administration where many of these clinical confounds can be avoided.  

In recent years, the analysis of response times has emerged as a valuable tool in 

identifying the cognitive impairments associated with many clinical conditions. Contrary to 

many previous studies that have focused on the mean response time of a clinical population for 

analysis of dysfunction, measures of intra-individual response time variability have become 

valuable diagnostic tools (Hervey et al., 2006). Of particular interest are disorders that are 

typically characterized by inconsistent responding throughout the course of a particular task, 

such as Attention-Deficit/Hyperactivity Disorder, or ADHD (Leth-Steensen et al., 2000; Klein et 

al., 2006).  As early as 1999, Douglas found increased response time variability in ADHD 

subjects and postulated that this variability must be related to the lack of attentional control that 

defines this disorder. 

While standard measures of variability, such as response time standard deviation, have 

been used for characterizing clinical populations, more extensive methods of analysis have been 

developed. Response time standard deviation, by itself, can be limited as an indicator of the trial-

by-trial changes in response time that underlie intra-individual variability because the overall 

shape of the response time distribution is ignored (Castellanos and Tannock, 2002). For this 

reason, studies have begun to examine response time data using the theoretical construct known 
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as the ex-Gaussian response time distribution to more finely examine intra-individual variability 

(eg. Leth-Steensen et al, 2000; Douglas, 1999).  

The ex-Gaussian analysis of response time distributions makes the assumption that the 

histogram of a subject’s response time dataset can be decomposed into two components 

(Burbeck and Luce, 1982). The breakdown into these components, referred to as mu (µ) and tau 

(τ) assumes that response time distributions consist of independent types of responses (and 

therefore two separate cognitive processes). The µ value provides the Gaussian or normal mean 

of the response time distribution, which is essentially the mean value when the distribution is 

assumed to be normal and the right-tail has been removed. The τ value represents the exponential 

component of the ex-Gaussian distribution that exists once the normal component (µ) has been 

removed. The overall ex-Gaussian distribution can therefore be considered as an algebraic 

addition of µ + τ (Heathcote et al., 1991).  These analyses have shown that the τ value, 

theoretically indicative of the prevalence of abnormally long response times (or attentional 

lapses) has a large effect on the shape of a response time distribution and therefore contributes 

substantially to the standard deviation of a response time dataset (Hervey et al., 2006).  

There are many parallels that can be drawn between the deficits observed in ADHD 

populations and those seen in chronic cocaine studies. A review by Castellanos and Tannock 

(2002) cited both increased impacts of delay on reward-related behavior and deficits in working 

memory in ADHD populations. These results been observed in our laboratory in rhesus macaque 

monkeys after chronic cocaine self-administration as well as in human cocaine users by other 

laboratories (Hester and Garavan, 2008). Common brain areas, such as the ventrolateral 

prefrontal cortex, anterior cingulate, and “default-mode” circuitry have also been implicated in 

deficits in both ADHD populations and chronic cocaine users (Rubia et al., 2009; Clare Kelly et 

al., 2008; Liu et al., 2007).  

To our knowledge, there is no published work detailing intra-individual/ex-Gaussian 

response time analysis after chronic cocaine use in either humans or non-human primates. The 

goal of this study was to examine response variability and the prevalence of attentional lapses 

after chronic cocaine self-administration in a cohort of rhesus macaque monkeys. Performing 

such a study in the primate model is unique and also advantageous due to the absence of 
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confounds such as poly-drug exposure, inconsistent dosage, and preexisting traits that confound 

studies in human cocaine addicts.  

 

2.0 METHODS AND MATERIALS 

The present study used 14(8 cocaine animals and 6 controls) adult male Rhesus macaque 

monkeys with no previous drug exposure other than as necessary for routine veterinary purposes. 

For all behavioral procedures including cognitive testing and cocaine self-administration, 

animals were restrained in primate chairs (Primate Products, Redwood City, CA) using standard 

pole-and-collar methods. All animals in this study had a vascular access port placed mid-scapula 

from which a catheter extended subcutaneously to an internal jugular vein (Bradberry et al. 

2000). All procedures were in accord with the NIH Guide for the Care and Use of Laboratory 

Animals and the Institutional Care and Use Committee at the University of Pittsburgh(NIH 

publication no 86-23, revised 1987). 

 

2.1 TOUCH SCREEN FAMILIARIZATION AND WATER REGUALATION 

After an initial training period where water rewards were given for touching paper stimuli, the 

animals performed a series of tasks of gradually increasing difficulty (large, stationary stimuli to 

smaller, randomly placed stimuli) on 15” touch screen computer monitors. For each of these 

tasks, reward contingencies were set so that touch-screen interaction provided at least 50% of an 

animal’s daily water requirement; animals were also required to meet certain performance 

criteria before progressing to the next task in the familiarization sequence. The monitors used for 

these tasks (Elo systems CarollTouch) utilized infrared sensor grids to record touches, and were 

mounted in sound-attenuating chambers (Eckel Industries, Ontario, Canada model AB4240) 

fitted with 40W houselights. The E-prime software package (Psychology Software Tools, 

Pittsburgh, PA) was employed for all tasks in this study (training, Response-Time task, and Self-

Administration) and was programmed to play white noise (approx. 60 dB) during cognitive 

testing.  
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Animals performed tasks for water rewards 5 days per week (Monday through Friday) 

with ad lib water over the weekend. On Tuesday through Friday afternoons, animals were 

supplemented with water to maintain adequate physiological needs (25 mL/kg/day).  

 

2.2 COCAINE AND WATER SELF-ADMINISTRATION 

Both cocaine and water self-administration took place 4 days per week (Tuesday through 

Friday). As previously stated, the self-administration procedures used the same chamber setup as 

the cognitive testing. The visual presentation of the administration program was identical for 

both cocaine and control groups, however there were differences in total administrations, inter-

infusion interval, and touches to reward. Briefly, animals were presented with a stimulus (not 

used in any other task) and were required to repeatedly touch the stimulus until a reward was 

administered. After a reward was administered, there was an inter-infusion interval set so that 

control and cocaine animals spent approximately the same amount of time on the self-

administration program.  

For the cocaine group (n=8), animals were trained to self-administer cocaine in stages 

progressing according to the schedule in Table 1. The reason for the gradual increase in unit dose 

was to avoid any aversion due to the lack of familiarity with the drug experience. 
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Unit Dose Fixed Ratio Inter-infusion 

Interval (minutes) 

# of Sessions 

0.1 mg/kg 3 5 3 

0.2 mg/kg 3 5 5 

0.35 mg/kg 8 5 3 

0.35 mg/kg 10 5 4 

0.5 mg/kg 15 10 4 

0.5 mg/kg 20 10  

Table 2.1.Cocaine infusions were administered as injections of cocaine solution directly into the 

implanted vascular access port of each animal. All infusions were automatically administered by 

the E-Prime self-administration program using parallel port output to syringe pumps (MED 

Associates, Georgia, Vermont).  

 

Animals in the control group (n=6) were taught to self-administer water using the 

schedule in Table 2. Variables such as water amount, inter-infusion interval, and fixed ratio were 

adjusted so that animals would complete the administration program while having a similar 

number of total screen touches and program duration to the cocaine group.  
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H2O per 

infusion 

# of Infusions Fixed Ratio Inter-infusion 

Interval 

(minutes) 

# of Sessions 

1 mL/kg 6 3 5 2 

1 mL/kg 6 3 2.5 4 

1 mL/kg 6 5 2.5 2 

1 mL/kg 6 8 3.3 3 

1 mL/kg 6 10 3.3 8 

0.33 mL/kg 18 10 3.3 4 

0.66 mL/kg 18 10 3.3  

Table 2.2. Water infusions were administered through sipper tubes mounted to the primate 

chairs. All infusions were automatically administered by the E-Prime self-administration 

program using parallel port output to gravity fed liquid reward dispensers mounted above the 

testing chambers (Crist Instrument Co., Hagerstown, Maryland).  

 

2.3 RESPONSE TIME TASK 

The task used in this study was a simple stimulus response program in which animals were 

rewarded with water (through a sipper tube) for touching a single stimulus when it appeared on 

the screen. In each of the 50 trials per task session, a square stimulus of random size ranging 

from 0.5” to 1.0” on each side was presented in a random position on the touch-screen monitor. 

Correct responses resulted in a water reward of 0.15 mL/kg; there was no reward for incorrect 

responses. After each response (either correct or incorrect), there was a 2-second inter-trial 

interval before the start of the next trial. There was no limit set for how long an animal could 
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take to respond on a particular trial, however all responses longer than 5s were excluded in this 

study due to a presumed lack of engagement in the task. 

Cocaine and control groups differed in their daily schedule in terms of when the response 

time task was administered in relation to the daily self-administration session. To avoid 

introducing any confounds due to acute drug effects on task performance, the cocaine group 

received the response time task prior to the self-administration session. The control group, that 

also received water rewards self-administration sessions, received the response time task after 

the water self-administration was completed. This schedule was adopted to ensure that animals 

would not receive a quantity of water during the response time task that would interfere with 

their engagement in the water self-administration task. For long term equivalency between the 

control and experimental groups, it was important that animals in both groups engage in 

equivalent amount of responses on the touch screen task used to self-administer either water or 

cocaine. This arrangement served as a conservative control, because the net effect predicted 

would be that the cocaine group would be more motivated for the water reward since they had 

not received any water yet that day, while the control group would be less motivated because 

they had just engaged in the self-administration task. A figure of RT task accuracy is presented 

in the results section to illustrate that the control group remained actively engaged in the RT task 

even after receiving water during self-administration.  

The baseline pre-(water or cocaine) self-administration response task sessions for all 

animals were given after animals had already performed a delayed match-to-sample working 

memory task. This schedule was in place so that performance on the more challenging working 

memory task was not affected by water acquired during response task performance. As indicated 

by Figure 7, animals achieved accuracy averages of 65% or above and were therefore 

sufficiently engaged in the task.  
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2.4 DATA ANALYSIS 

For all analyses in the present study, 10 RT task sessions from immediately before the self-

administration period began were compared to the first 25 sessions of the task during the self-

administration period. The first session analyzed occurred 24 hours after the first administration 

of cocaine, and all other sessions occurred 24 hours post-administration. Response times were 

defined as the time interval from stimulus presentation to screen touch.  

For all statistical analyses, task response times were excluded if they were either <200 ms 

or >5000 ms. The presumption was that the short RTs indicated anticipatory responses rather 

than a response to stimulus presentation, and the long RTs indicated a lack of engagement. One-

way ANOVAs were performed to compare means of 10 pre-administration sessions with 25 

post-administration sessions (SigmaStat version 3.5, Systat Software). Values for one session of 

one cocaine group animal were excluded due to abnormally poor session performance, being 

defined as sessions with a mean response time greater than 2 standard deviations from the 

subject’s mean for all other sessions. All tests were 2 sided with an alpha level = 0.05. 

Calculation of all ex-Gaussian parameters was performed using MATLAB software (The 

Mathworks) and was based on procedures proposed by Lacouture and Cousineau, 2008. Briefly, 

this method of ex-Gaussian probability distrubution fitting uses the Fminsearch function of 

MATLAB to determine the ex-Gaussian parameters of maximum likelihood. This method 

employs the MATLAB Simplex search algorithm to search for the best fitting probability density 

function for a particular distribution dataset. To avoid potential search errors (such as local 

minima producing erroneous search parameters), starting point estimates were first calculate to 

narrow the search field. Much of this procedure is detailed in Lacouture and Cousineau, 2008, 

but procedural changes were made for input and output specific to our task data.  
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3.0 RESULTS 

 

3.1 STANDARD MEASURES OF MEAN AND STANDARD DEVIATION 

Although there appeared to be a slight increase in cocaine group mean response time following 

self-administration when compared to group pre-administration values, a one-way ANOVA on 

subject means revealed that this difference was not significant (pre-admin mean: 629±45, post-

admin mean: 864±135, F=3.4, p=0.09). No difference was observed in control group mean 

response time between pre-administration and post-administration sessions (pre-admin mean: 

572±31, post-admin mean: 667±57). No difference was observed between cocaine and control 

groups prior to self-administration.  

 

Mean RT pre- vs. post- by Group
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Figure 3.1. Neither group showed a significant change in mean response time following self-

administration. 
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Analysis of pre- and post-administration response time standard deviation revealed that 

the cocaine group exhibited significantly greater response time standard deviation during the 

drug administration period (pre-admin SD: 448 ±56, post-admin SD: 716±120, F=4.7, p<0.05), 

whereas no differences were observed in the control group (pre-admin SD: 384±55, post-admin 

SD: 487±86). No difference was observed between cocaine and control groups prior to self-

administration. 
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Figure 3.2. Cocaine group displayed increased response time standard deviation following 

chronic cocaine self-administration 
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3.2 EX-GAUSSIAN PARAMETERS OF INTRA-INDIVIDUAL RESPONSE TIME 

Analyses were performed to extract individual animal ex-Gaussian parameters for both mu and 

tau to further examine the differences in response time variability that were observed.  

The calculated µ, or Gaussian mean, values showed that individual animals in the cocaine 

group did not significantly differ from pre- to post-administration. Interestingly, there was 

somewhat of a decrease in cocaine group mean µ values after cocaine self-administration, 

however a one-way ANOVA on subject means revealed that this difference was not significant 

(pre-admin µ: 299±31, post-admin µ: 234±23, p=0.09). No difference was observed in the 

control group (pre-admin µ: 272±48, post-admin µ: 330±9). There was no difference observed 

between cocaine and control groups prior to self-administration. 
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Mu Pre- vs. Post- by Group
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Figure 3.3. Neither the cocaine nor the control group showed any significant difference in the 

extracted normal mean value (mu) of response time distributions after the onset of cocaine self-

administration 

 

The value of τ, or the exponential value indicative of the contribution of the right-tail of 

the RT distribution, showed a significant increase in the cocaine group after chronic drug self-

administration (pre-admin τ: 339 ±49, post-admin τ: 633±135, F=4.8, p<0.05). No difference 

was observed in the control group (pre-admin τ: 289 ±42, post-admin τ: 312±55). There was no 

difference observed between cocaine and control groups prior to self-administration. 
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Tau Pre- vs. Post- by Group
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Figure 3.4. The cocaine group showed a significant increase in tau values after the onset of drug 

administration, indicating a greater skew in animal response time distributions.  

 

To provide a general summary of the results observed, figures 3.5 and 3.6 show 

histograms and distribution curves for pooled data of all responses. Figure 5 shows histograms of 

all group responses both pre- and post-administration and the ex-gaussian probability 

distributions that were created using these data. One noticeable aspect of the cocaine post-

administration figure is the increased number of responses along the entire 5000 ms axis, thus 

creating the elongated tail that can be seen in the ex-Gaussian probability curve. For a more 

direct pre-/post- visual comparison (without the effects of different numbers of sessions) 

probability density ex-Gaussian distributions are plotted in figure 3.6. The control plots are very 

similar, while the elongated tail (increased τ) and shorter peak probability response time 

(decreased µ) can be seen in the cocaine group plots.  
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Figure 3.5. Histograms of all responses both pre-administration (A,C) and post-administration 

(B,D). Panel B shows the increased skew and number of abnormally slow responses following 

cocaine self-administration 
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Figure 3.6.  Best-fit ex-Gaussian response time distributions for both cocaine and control 

groups, pre- and post-administration. Panel A shows the change distribution shape after chronic 

cocaine self-administration. 

 

Accuracy values were calculated to illustrate that, although the control group received 

daily water prior to performing the RT task, the group suffered from no lack of motivation as no 

difference was observed in accuracy from pre-administration to post-administration sessions 

(pre-admin accuracy: 0.70 ±0.05, post-admin accuracy: 0.66±0.07). The cocaine group did show 

a significant decrease in accuracy following cocaine self-administration (pre-admin accuracy: 

0.69 ±0.06, post-admin accuracy: 0.48±0.08, F=4.9, p<0.05). No difference was observed 

between cocaine and control groups prior to self-administration. 
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3.3 OTHER ANALYSES 

 

RT Task Accuracy Pre- vs. Post- by Group
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Figure 3.7. Only the cocaine group, whose daily water came solely from the RT task, showed a 

decrease in accuracy following self-administration 

 

An analysis of correct only responses shows an increased tau in cocaine animals after self-

administration, but this increase is not significant (pre-admin τ: 281 ±38, post-admin τ: 400±74, 

p<0.17).  This measure may not be representative because of the small number of correct touches 

for cocaine animals, and future analysis of a greater number of sessions will be more definitive. 

This result does suggest that animals respond correctly after a large number of attentional lapses, 

and furthermore confirms that these lapses are not due to poor motivation, otherwise a smaller 

proportion of attentional lapses would occur prior to correct responses. No difference was 

observed in the control group.  
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Tau Pre- vs. Post-: Correct Responses Only
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Figure 3.8.  Tau values calculated for correct trials only in both treatment groups, pre- and post- 

administration. 

 

Another area of interest in this study was to determine if subjects displayed any 

variability increase in spatial responding, in addition to the increased temporal response time 

variability previously discussed. Although animals did show a decrease in accuracy following 

cocaine self-administration, there is no evidence of any motivational deficits (no change in 

overall response time, and potentially faster response times in the absence of attentional lapses). 

Any observed increases in miss distance therefore may be related to disruptions in sensorimotor 

processing as a result of chronic cocaine exposure. Analysis of miss distance showed a 

nonsignificant increase in the cocaine post-administration group (pre-admin distance: 126 ±25, 

post-admin distance: 183±22, p<0.09). No difference was observed in the control group.  
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Figure 3.9. Analysis of mean distance to stimulus center on incorrect trials in all groups. The 

cocaine post-administration shows a nonsignificant increase in miss distances despite having no 

indication of any motivational deficits.  

 

4.0 DISCUSSION 

The goals of this study were to determine, using a simple response time task, if rhesus macaque 

monkeys showed increases in intra-subject variability after chronic cocaine self-administration. 

Additionally, we sought to determine if any potential change in response variability could be 

attributed to a particular ex-Gaussian component of the distribution. The main findings that 

emerged from this analysis were: (1) animals became more variable in their responding after 

chronic cocaine self-administration; (2) animals exhibited a greater number of abnormally long 

response times after chronic cocaine self-administration. In all analyses performed during this 

study, a control group of n=6 that self-administered water served to show that the observed 

results were not a result of the self-administration procedure by itself.  
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The finding that cocaine exposure resulted in an increase in overall response time 

variability was significant for several reasons. One clear advantage of the primate model 

compared with clinical studies is that drug intake can be monitored extremely closely. For all of 

the post-administration sessions in this study, approximately 24 hours had elapsed since the last 

cocaine administration, eliminating the possibility that acute drug effects had an influence on the 

observed response time variability. This finding also suggests cocaine use may have 

consequences in common with clinical disorders such as ADHD and autism where increased 

response variability has been illustrated (Johnson et al., 2007; Di Martino et al., 2008). 

Ex-Gaussian analysis of response time distributions revealed that animals exhibited a 

significantly higher number of abnormally long response times after exposure to cocaine. The 

significantly higher value of τ indicates that response time distributions of the cocaine group 

were much more skewed after the self-administration procedure began. The impact of this skew 

can be appreciated in the context of both standard mean response time and the normal mean. 

Upon examination of mean response time, it appears that animals respond more slowly after 

exposure to cocaine. The calculation of µ indicates that, while not attaining statistical 

significance, the Gaussian mean response time decreased after cocaine exposure. Taken together, 

these findings illustrate the large impact that intermittent abnormally long response times have 

on a subject’s overall response time distribution, and that these responses likely account for the 

finding of increased overall variability after cocaine exposure.  

Increased τ values, although theoretical in their conceptualization, are often considered to 

represent attentional lapses that result in more positively skewed response time distributions 

(Leth-Steensen et al., 2000). While cocaine use has long been associated with deficits in tasks 

such as those involving discrimination learning (Jentsch et al., 2002; Liu et al., 2007), attentional 

testing has thus far been inconsistent in task structure and may suffer from the potential 

confounds of clinical testing (Jovanovski et al., 2005; Colzato et al., 2009). Our finding of 

increased lapses in attention after cocaine exposure brings into context a variety of recent 

imaging literature that examines these lapses in human subjects. 
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Imaging studies of attentional lapses in both clinical populations and healthy subjects have 

implicated brain regions such as the prefrontal cortex, cingulate, and regions of the temporal lobe 

(Clare Kelly et al., 2008; Weissman et al., 2006). While the activity changes in these areas that 

are responsible for attentional lapses are still debatable, evidence from our laboratory and others 

have indicated cocaine-related deficits on tasks thought to involve the same or related circuitry 

(Li et al., 2006;Beveridge et al., 2006; Liu et al., 2007, Goldstein et al., 2007). Given that 

disorders characterized by attention deficits are thought to involve the same neurotransmitter 

systems that are affected by cocaine exposure, the present study supports the notion that there 

may be some similar cognitive impairment involved in these two conditions.  

In terms of the neurotransmitter systems involved in ADHD and cocaine addiction, there 

are both similarities and differences. ADHD has been thought of as a condition that almost 

exclusively involves dopaminergic neurotransmission. This hypothesis has been recently 

supported by human PET studies that found reduced striatal dopamine but not serotonin reuptake 

(Hesse et al., 2009). Cocaine exposure is also thought to exert its reinforcing effects by blocking 

dopamine reuptake (Volkow et al., 1997; Nader et al., 2002), but also binds to both serotonin and 

norepinephrine reuptake transporters (Bennett et al., 1995). Both the discriminative stimulus 

effects of cocaine and stress-induced reinstatement have been significantly altered by specific 

pharmacological manipulations norepinephrine transmission (Spealman, 1995; Platt et al., 2007; 

Kleven and Koek, 1998). It is unclear which transmitter system is responsible for the deficits in 

attention that have been observed in chronic cocaine users, and further studies are required to 

determine if ADHD and cocaine abuse alter the attention system through common mechanisms.  

In discussing some potential mechanisms for the attentional deficits observed in this 

study, the temporal relationship of testing and self-administration is important. In this particular 

model of cognitive testing, all measure of performance were acquired 24 hours after cocaine self-

administration. In such a testing regime, it is possible that subjects are experiencing the same low 

levels of norepinephrine and dopamine that are though to cause attentional lapses in ADHD 

populations.  After just 5 days of cocaine administration, increased trafficking of norepinephrine 

transporters has been observed, presumably due to increased autoreceptor activation (Beveridge 

et al., 2005).  If the subjects in our study are experiencing increased trafficking of reuptake 

transporters, it is possible that they are experiencing below baseline monoamine transmission 24 
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hours after cocaine administration.  Although through a different mechanism, this scenario would 

produce ADHD-like neurotransmission 24 hours after the last administration of cocaine under 

chronic conditions.  

Another potential mechanism deals with the growing field of research involving the so-

called “default mode network” that is actively suppressed during task performance. Several 

studies have found that inability to suppress the default mode network or dysregulation of the 

network with its antiphase “task positive” regions result in attentional lapses and response 

variability (Weissman et al., 2006; Kelly et al., 2008).  These studies suggest that dysregulation 

of brain activity and/or transmitter systems may have a greater impact on attention than 

directional shifts. A more recent study, however, has found that decreased dopamine specifically 

leads to attentional lapses by interrupting the suppression of the default mode network during 

tasks involving visuospatial attention (Tomasi et al., 2009).  This is in agreement with the 

timeline mentioned above in that chronic cocaine users are experiencing decreased 

neurotransmission (through reuptake transporter upregulation) 24 hours after cocaine 

administration.  

 

4.1 FUTURE DIRECTIONS 

The present study found significant effects of chronic cocaine use on response variability 

and attention despite using relatively simple cognitive test. Observing such results in a stimulus-

response task has illustrated the robust deficits associated with chronic cocaine use. We have 

also determined that the impairments in attention associated with cocaine are not due to acute 

drug effects or preexisting conditions. Among the potential future directions of the laboratory are 

to continue examining the impact of cocaine administration on attention after a longer self-

administration period and perhaps with a more widely used sustained attention task. The 

laboratory currently uses procedures such as microdialysis and electrophysiological recording 

that will potentially be used to further investigate the neurobiology of attention deficits following 

chronic cocaine self-administration.  
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