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COMPLEMENTARY GROUPS OF ANTOINE’S NECKLACES

Tyler Raspat, M.S.

University of Pittsburgh, 2010

In 1921 Antoine constructed the first example of a wild Cantor set. A wild Cantor set

is a subset of Euclidean 3–space, R3, which is homeomorphic to the Cantor set but

which is not equivalent in R3 to the standard embedding of the Cantor set. Antoine’s

example is now called Antoine’s necklace.

The purpose of this thesis is in to investigate the fundamental group of the com-

plement of Antoine’s necklace and other wild Cantor sets. First, a survey of known

work on wild Cantor sets and their complementary groups is presented including:

the Wirtinger presentation for knots and links, basic results on the complementary

group of Antoine’s necklace, Sher’s theorem on canonical defining sequences for An-

toine necklaces, and Skora’s example of a wild Cantor set with trivial complementary

group. Second, a complete presentation for the complementary group of Antoine’s

necklace (and some variants) is calculated. A plausible technique to construct a

non–equivalent variant of Antoine’s necklace with isomorphic complementary group

is shown to fail. The thesis concludes with a survey of open problems on comple-

mentary groups and complements of Cantor sets embedded in Euclidean 3–space.
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1.0 PRELIMINARIES

1.1 INTRODUCTION

A central problem of topology is how a standard topological space can be embedded

within another space. For example, knots (and more generally, links) — embeddings

of a circle (respectively, of a disjoint sum of circles) into Euclidean 3–space, R3 —

have been intensively studied since the birth of topology in the late 19th century.

We have illustrated a simple knot and link in Figure 1.

Figure 1: A Trefoil Knot K and a Link L

Knots and links are studied up to equivalence: two subsets A and B of a con-

taining space X are said to be equivalent (in X) if there is a homeomorphism h of

X with itself carrying A to B, h(A) = B. Note that if A and B are equivalent (say,
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via h), then X − A and X −B are homeomorphic (via h � (X − A)).

In fact a well known theorem of Gordon and Luecke [6] states that knots are

determined by their complements, i.e, that if K and K
′

are two knots embedded in

R3, and R3−K is homeomorphic to R3−K ′ , then K and K
′
are equivalent. However

it was proven by Whitehead and illustrated in [7] that this is not in fact true for

links.

In any case, it follows that topological invariants of X − A are invariants, up to

equivalence, of the pair (X,A). For knots the fundamental group of the complement,

called the knot group, has been a widely studied invariant of the knot. These studies

are aided by the fact that there is a simple algorithm called Wirtinger’s Presentation

for computing a presentation of the knot group of a given knot. For a general pair

(X,A) let us call the fundamental group of X − A the complementary group of A

(in X).

The aim of this Thesis is to study the embeddings of Cantor sets in R3. More

precisely we compute, apparently for the first time, the fundamental group of the

complement of the Cantor subset of R3 known as Antoine’s necklace. We have

also tried to show that Antoine’s necklace and a twisted variant have isomorphic

complementary groups, with only limited success.

Recall that a Cantor set is anything homeomorphic to Cantor’s classic ‘middle

thirds’ subset of the real line. Identifying the real line with the x–axis in R3, we have

a standard embedding of a Cantor set in R3. Call this the standard Cantor set, and

any other Cantor set equivalent to it trivial. A non–trivial Cantor set in R3 is said

to be wild. It is a remarkable result of Antoine [1] that there are wild Cantor sets.

Antoine’s Cantor set is called Antoine’s necklace.

To construct an Antoine’s necklace, first let V be a solid torus embedded in R3,

and form a chain C1 of 2n solid tori in V . We call this the ‘top level’ of our con-
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struction. Then in each component of C1, construct a smaller chain of solid tori

embedded in that component in the same manner as C1 in V . Let C2 denote the

union of these smaller solid tori. This would be the ‘second level’ of the construction.

This procedure yields Figure 2:

Figure 2: Construction of Antoine’s Necklace

Now construct in each component of C2 another chain of solid tori and call their

union C3. Continue this process a countable number of times to obtain:

C1 ⊃ C2 ⊃ C3 ⊃ . . . , diam(Ci,j)→ 0, i→∞

The intersection

A =
∞⋂
i=1

Ci

is called Antoine’s Necklace. It is a non-empty compact subset of R3 homeomorphic

to the Cantor set.

Sections 1.2 to 1.6 below lay out some preliminary results on the complementary

groups of knots, and Cantor sets. This leads to the calculation that the complemen-

tary group of Antoine’s necklace is non–trivial in Theorem 1.6.1. Since the standard
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Cantor set in R3 has trivial complementary group, we see that Antoine’s necklace is

indeed wild (not equivalent to the standard Cantor set because their complements

are non–homeomorphic, because they have distinct fundamental groups). Although

this approach, through the complementary group, is now the standard way to show

that Antoine’s necklace is wild, Antoine himself gave a direct proof of wildness that

we sketch.

We also present in Section 1.8 a Cantor set, W , constructed by Skora in [9] that,

as we verify, is wild but has trivial complementary group (π(R3 −W ) = 1). Clearly,

as the standard Cantor set has trivial complementary group, Cantor sets are not

determined by their complementary groups.

All of the results mentioned above are well known. But in Sections 2.1 to 2.5

we calculate a presentation for the complementary group of Antoine’s necklace. We

have not found any reference in the literature to such a calculation. From the work

presented in the preliminaries we know that the complementary group of Antoine’s

necklace is the union of the complementary groups of the ‘levels’ going into the

construction of the necklace. Using Wirtinger’s Presentation (adapted to links) it is

straightforward to calculate the complementary group of the top level (Section 2.1).

We would then like to proceed by replacing one ring in the top level by a chain —

and then repeating, first with the remaining rings on the top level, and then down

into lower levels. To do so we have to adapt the proof of Wirtinger’s presentation

so as to calculate the complementary group of links in a solid torus (rather than in

R3). This is the most technically difficult part of the work given here. From this the

complete presentation for the complementary group of Antoine’s necklace is obtained

(Section 2.5).

We had hoped to show that Antoine’s necklace and a twisted variant have the

same complementary groups. We explain why this was plausible, and also where it

4



appears to fall down in Sections 3.1 and 3.2.

The thesis concludes with a survey of open problems arising from this work.

1.2 LINKS AND CHAINS

1.2.1 LINKS:

Our first step in the development of a presentation for a general Antoine’s necklace

is to understand the Wirtinger presentation for knots and adapt it to links. Consider

the following example:

Example: Let L be the link shown in Figure 3

Figure 3: Link L

We add a generator onto each arc in the picture. In this case, we then have two

generators, x and y. Each of these generators represents a loop in R3 −L consisting

of the oriented triangle from a fixed base point, to the tail of the generator, along

the generator to the head, and back to the base point. It follows that at each cross-

ing, there is some relation among the generators that must hold. Our crossings are

illustrated in Figure 4.
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Figure 4: Adapting the Wirtinger Presentation to Links

Therefore our relation is xy = yx. The Wirtinger Presentation tells us that the

group π(R3−L) is completely determined by these relations. Therefore π(R3−L) =

(x, y;xy = yx) = Z× Z.

1.2.2 CHAINS:

Now that we have adapted the Wirtinger Presentation to a link, we can specialize

this idea to a chain.

Consider the link C of 2n unknotted circles arranged in a chain running around

the solid torus V ∼= D2 × S1 embedded in R3 given in Figure 5. By utilizing the

same procedure as in the previous section, it is an easy exercise to show that the

Wirtinger presentation for C is:
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Figure 5: Link C of 2n circles in V

π(R3 − C) = {xi, yi, zi, wi; yixi = xiwi, yixi+1 = xi+1wi,

xiyi = yizi, xi+1yi = yizi+1, 1 ≤ i ≤ n}

These relations will play a very significant role in the presentation for the general

Antoine’s necklace.

Finally, we wish to use this result to prove an important proposition which will

eventually be the key ingredient in showing that the complementary group of An-

toine’s necklace is non-trivial.

Proposition 1.2.1. The meridian M of V is not homotopically trivial in R3−C or

in V − C; in fact, M is of infinite order in π(R3 − C).

Proof. Consider the map of π(R3 − C) onto the free group F (x, y) given by the

following:

xi → x yi → y zi → y−1xy wi → x−1yx

7



We note that this map is well defined, as the relations defined above become trivial in

the free group. Using this map, the element M = x−11 z1 is mapped to the commutator

x−1y−1xy, which is of infinite order in a free group. Therefore M is of infinite order

in π(R3 − C)

Corollary 1.2.1. The loop M is not contractible in the complement of the infinite

chain pictured in Figure 6.

Figure 6: Infinite Chain with Loop M

Proof. Suppose there were a homotopy shrinking M to a point, missing the chain.

Since the image of the homotopy is a compact set, each image hi in the homotopy

must also be contained in that compact set. Thus at some step in the process we

could construct a finite chain which missed the homotopy, contradicting the previous

proposition.

8



1.3 WHITEHEAD’S LINK

We now quickly illustrate one result of Whitehead.

If L = L1 ∪ · · · ∪ Ln is a link with n components, we say that Li is homotopi-

cally unlinked from the remaining components if there exists a homotopy ht from

Li to the constant map such that the image of ht and Li are disjoint for all t ∈ I,

j 6= i. We illustrate Whitehead’s Link in Figure 7 and show that J is homotopically

unlinked from K in Figure 8. It follows from the symmetric nature of J ∪ K that

K is homotopically unlinked from J . When the link is embedded in R3, we see that

this implies that each component of the link is contractible in the complement of the

other.

Figure 7: Whitehead’s Link

Secondly, we enclose the link J ∪K in a solid torus V (Figure 9). We then arrive

at the following result:

Proposition 1.3.1. K is not contractible in V − J .

9



Figure 8: Diagram: J is homotopically unlinked from K

Figure 9: Whitehead Link in Torus V

Proof. Let (Ṽ , p) be the universal cover of V , let J̃ = p−1(J) and let K̄ be one

component of p−1(K). A homotopy which shrinks K in V − J would lift to one

which shrinks K̄ to a point in Ṽ − J̃ . But this contradicts the previous corollary, as

K̄ and J̃ are seen to be situated as M and the infinite chain. (See Figure 10)
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Figure 10: Diagram: K is not contractible in V − J

1.4 ANTOINE’S NECKLACE

We now proceed to show that Antoine’s necklace is indeed a Cantor set. Recall

that in Section 1.2 we constructed a chain C of 2n components in a solid torus V .

To create Antoine’s necklace, we now thicken each component of C slightly to form

a chain C1 of 2n solid tori in V . In each component of C1, we construct a smaller

chain of solid tori embedded in that component in the same manner as C1 in V . Let

C2 denote the union of these smaller solid tori.

Now construct in each component of C2 another chain of solid tori and call their

union C3. Continue this process a countable number of times to obtain:

C1 ⊃ C2 ⊃ C3 ⊃ . . . , diam(Ci,j)→ 0, i→∞

The intersection

A =
∞⋂
i=1

Ci

is called Antoine’s Necklace.

Proposition 1.4.1. Antoine’s necklace is homeomorphic to a Cantor set.

Proof. We use the following characterization:

11



C is a Cantor set if and only if C is totally disconnected, compact, and perfect.

Clearly, Antoine’s necklace is totally disconnected, as there is some stage in the

construction when any two points will lie in different tori. It is compact as the

intersection of closed and bounded tori. Lastly, it is perfect, as every torus Ci contains

at least two tori inside Ci in the following stage of the construction. Therefore we

may choose, for any point x ∈ A, a sequence from A − {x} converging to x. Thus

every point in A is an accumulation point of A.

1.5 SEIFERT VAN-KAMPEN THEOREM

We mentioned briefly in the introduction that we will compute the complete pre-

sentation for a general Antoine’s necklace by first computing the group presentation

for the top level of the construction, and then adding on the subsequent levels one

torus at a time. To compute the presentation at these intermediate steps, we use the

following well known theorem.

Theorem 1.5.1. (Seifert Van-Kampen) Let X = U0∪U1, U2 = U0∩U1, where Ui are

open and path connected. Fix a base point x0 ∈ U2. Assume we know the following:

π(U0, x0) = {a1, . . . , am; r1, . . . rn}

π(U1, x0) = {b1, . . . , bp; s1, . . . sq}

Also let c1, . . . ct be generators for π(U2, x0). Then

π(X, x0) = {a1, . . . , am, b1, . . . , bp; r1, . . . rn, s1, . . . sq, u1v1−1, . . . utvt−1}

where ui (respectively vi) is the ith generator, ci, of π(U2, x0), written in terms

of a1 . . . am (respectively b1 . . . bp).

12



This theorem will be used extensively throughout this paper. We note that on

occasion we will use non-open sets in our applications of the Seifert Van-Kampen

Theorem. However, adding an ε-fringe on these sets will solve this problem without

changing the complementary groups of the sets in question.

1.6 COMPLEMENTARY GROUPS OF CANTOR SETS

As we want to show that Antoine’s necklace is a wild Cantor set, we must first show

that the standard Cantor set has trivial complementary group. From Figure 11, it

is clear that if K is the standard Cantor set embedded in R3, π(R3 −K) is trivial:

Figure 11: Standard Cantor Set has Trivial Complementary Group in R3

Indeed, it is obvious that we may simply slide any loop through the Cantor set

and then simply contract the loop away.

On the contrary, we will now follow the work done in [7] to prove that the

fundamental group of R3 − A is not trivial, hence showing A is wild. Assume the

same notation as in the previous description of Antoine’s necklace. We prove the

following:

13



Lemma 1.6.1. The induced inclusion homomorphism i? : π(∂V ) → π(V − C1) is

injective.

Proof. Since ∂V ∼= S1 × S1, we know that π(∂V ) ∼= Z× Z; call its generators λ and

µ. (Representing longitude and meridian respectively.) Suppose the morphism is not

injective, i.e., there exists an element of the form λrµs such that i?(λ
rµs) = 1. In

the solid torus V , the element λrµs is homotopic with λr. Therefore r must be zero.

But by Proposition 1.2.1, we also know that µ is of infinite order in π(V −C1), so it

follows that s = 0. Thus the kernel consists of exactly one element, so the morphism

is injective.

Corollary 1.6.1. For each component C1,j of C1 (j = 1, 2, . . . , 2n) the inclusion

∂C1,j ⊂ C1,j − int(C2) induces injective fundamental group homomorphisms.

Corollary 1.6.2. The inclusion homomorphism π(∂C1,j) → π(V − int(C1)) is in-

jective.

Now we have the relationships shown in Figure 12.

By the Seifert Van-Kampen Theorem, we know that if the maps π(∂C1,1) →

π(V − int(C1)) and π(∂C1,1)→ (C1,1 − int(C2)), are injective, then so are the other

two maps. Thus we can conclude that

π(V − int(C1))→ π((V − int(C1) ∪ (C1,1 − int(C2))) is injective

In other words, we have concluded that adding one component of C1 − int(C2)

to V − C1 has simply enlarged the fundamental group.

14



Figure 12: Seifert Van-Kampen Theorem

We may add each of the components in the same fashion to conclude that the

inclusion homomorphism π(V − C1)→ π(V − C2) is injective. We can also perform

a similar argument with R3 in place of V .

This argument may be applied repeatedly to show that the following inclusion

homomorphisms are injective:

π(V − C1)→ π(V − C2)→ π(V − C3)→ . . .

π(R3 − C1)→ π(R3 − C2)→ π(R3 − C3)→ . . .

Proposition 1.6.1. Each inclusion homomorphism π(R3 − Ci) → π(R3 − A) is

injective.

Proof. Assume to the contrary that there was a loop α in R3 − Ci homotopic to a

point in R3 − A. As in the proof of Corollary 1.2.1, we note that the image of the

homotopy is a compact set. Therefore if α were contractible to a point, it would

15



shrink to a point in R3 − Cj for some j > i. But since π(R3 − Ci) → π(R3 − Cj)

is injective, it follows that α must have already been trivial in R3 − Ci, i.e., the

morphism is injective.

Corollary 1.6.3. The meridian M of V is not homotopically trivial in R3 − A

Proof. Any loop in R3 − A, being compact, lies in R3 − Ci for sufficiently large i.

By Proposition 1.2.1, the meridian M is not homtopically trivial in R3 − Ci for any

i.

Because of this fact, that any loop in R3 − A lies in R3 − Ci for large enough i,

we may conclude the following:

Proposition 1.6.2. The group π(R3−A) is the infinite union of the ascending chain

of its subgroups π(R3 − C1) ⊂ π(R3 − C2) ⊂ . . .

From this we may finally arrive at our results:

Corollary 1.6.4. The group π(R3 − A) is not finitely generated.

Proof. If it were, by compactness all of the finitely many generators would lie in

R3−Ci for sufficiently large i. We would then conclude that R3−Ci were the whole

of π(R3 − A), a contradiction.

We have arrived at the following result:

16



Theorem 1.6.1. There exists a Cantor Set A, Antoine’s necklace, embedded in R3

so badly that the fundamental group of its complement (knot group) is nontrivial, and

in particular, not finitely generated. This is in stark contrast to the standard Cantor

Set, K, which when embedded in R3 has trivial knot group.

1.7 ANTOINE’S ORIGINAL PROOF

It is known that the fundamental group of the complement of a tame Cantor set

embedded in R3 is trivial, so the fact that A is wild follows immediately from our

last result. However, below we give the proof of this fact originally given by Antoine

[1].

Proposition 1.7.1. Antoine’s necklace is a wild Cantor set.

Proof. It is known that any two tame Cantor sets in R3 are equivalent. It is clear

from the above definitions that the standard Cantor set C is tame. Thus we must

only show that Antoine’s necklace, A, is not equivalent to C. It then would follow

that A is not tame. Indeed, assume to the contrary, i.e., there is a homeomorphism

h of R3 onto itself such that h(C) = A. Now let S be s sphere separating C, as in

Figure 13:

Then h(S) is also a sphere. We claim that h(S) separates A. Indeed, let C =

CI ∪ CE, where CI and CE denote the interior and exterior of S respectively. Then

h(C) = h(CI)∪h(CE) is a disjoint union of two open subsets of h(C) such that h(CI)

is interior to h(S) and h(CE) is exterior. Thus A = h(C) is separated in R3 by h(S).

But then this sphere misses all of the tori in some step of the construction of A.

17



Figure 13: Sphere S Separating Cantor Set C

We now have proven that Antoine’s necklace, A, is a wild Cantor set such that

when embedded in R3, the fundamental group of its complement is not finitely gen-

erated. We will now discuss the following example of Skora’s [9], in which a wild

Cantor set W is constructed in R3 with simply connected complement. This fully

illustrates that Cantor sets are not determined by their complements.
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1.8 THE EXAMPLE W

The example W is drawn in Figure 14.

Figure 14: Skora’s Cantor Set W

This figure shows a genus 2 handlebody S containing disjoint genus two han-

dlebodies Si in its interior. Also each S and Si has a preferred loop W , Wi on its

boundary, referred to as its waist.

Formally, we define W inductively as follows. Let H0 = S, H1 = ∪Si. Then given

HN , define HN+1 as follows. For each component S ′ of HN with waist W ′, there is

a homeomorphism

h : (S,W )→ (S ′,W ′) such that h(∪Si) = S ′ ∩HN+1

Then the images of the Wi’s will be the waists. We also choose the HN ’s so that

diam(Si)→ 0 as N →∞. Then W =
⋂
Hα.

Note: We can describe Antoine’s necklace in a similar fashion. If V is our solid

torus, and C1 is the union of all solid tori in the first step of the construction, then
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we may let f : C1 → V be a homeomorphism when restricted to any component of

C1. Then let C2 = f−1(C1) = f−2(V ), and in general, Ci = f−i(V ). Therefore the

two constructions proceed in the same manner.

Corollary 1.8.1. W is a Cantor set.

Proof. Using the characterization that C is a Cantor set if and only if C is totally

disconnected, compact, and perfect, the proof follows exactly in the same manner as

the proof outlined for Antoine’s necklace.

Theorem 1.8.1. W is wild and π(R3 −W) = 1.

Proof. To show that W is wild, it suffices to show that π(∂S) → π(S −W) is a

monomorphism. Indeed, we first recall from our previous work that given a tame

Cantor set C, π(V −C) = Z, where V is the solid torus. Thus given a solid genus two

handlebody, S, π(S−C) = F (a, b), the free group on two generators. So by showing

π(∂S) → π(S −W) is a monomorphism, we will have proven the inductive step in

the proof that π(S −W) 6= F (a, b), which in turn proves that W is not tame. The

proof of this statement itself is similar to the proof given earlier for Lemma 1.6.1.

To see that π(R3 −W) = 1, it suffices to show how one loop is shrunk. We first

note that the linking of the Si’s shown in the diagram above does not affect our

computation, as the links are still genus two handlebodies.

Then every meridian of a component S ′ of some HN is homotopic in R3 −W to

the waist of S ′. And each waist of a component of HN is homotopic in R3 −W to

a waist of a component of HN−1. The waist of H0 is null homotopic in R3 −W. By

induction, it follows that π(R3 −W) = 1. (See Figure 15.)
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Figure 15: π(R3 −W) = 1

1.9 SHER’S THEOREM

Lastly, we note the following theorem of Sher, stated in [8].

Theorem 1.9.1. Two Antoine’s necklaces, A =
∞⋂
i=1

Ti and B =
∞⋂
i=1

Ri, are equiva-

lently embedded in R3 if they always have the same number of refining tori, and they

link in the same way. That is, there is a homeomorphism h : R3 → R3 such that

h(Ti) = Ri for all i.

In the section of this thesis involving the twisted variant mentioned earlier, we

will come back to this result.
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2.0 GROUP PRESENTATIONS FOR ANTOINE’S NECKLACES

2.1 THE CASE N=4: THE TOP LEVEL

Our goal is to write a group presentation for a general Antoine’s necklace with n tori

in each refining step. To simplify the matter, we will first compute the presentation

for an Antoine’s necklace with n = 4 refining tori in each step, and generalize our

results.

We will now change our notation slightly. We will use the notation C〈i〉, i ∈

{1, . . . 4} to represent one of the four tori on the first level of the construction. When

we move to the second level of the construction, the torus D〈i,j〉, i, j ∈ {1, . . . 4} will

represent the jth torus in the ith original torus. In other words, D〈1,2〉 represents the

second torus inside of the torus C〈1〉. We will utilize a similar notation for generators.

Thus on our top level of the construction, our generators will have the notation x〈i〉

and y〈i〉, i ∈ {1, . . . 4}. When we move to the second level of our construction, the

generators x〈i,j〉 and y〈i,j〉 will correspond to the torus D〈i,j〉, etc.

So let C〈1〉, C〈2〉, C〈3〉 and C〈4〉 represent the first four tori in our necklace. Now

we want to write the presentation for the top level of our construction, i.e., we want
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the presentation for:

R3 −
⋃
i

(intC〈i〉)

From our preliminary work, we know that a chain of four tori should have 8

generators and relations. We illustrate this in Figure 16. (Note: The inside tori are

drawn as circles for the sake of simplicity.)

Figure 16: The Case n = 4

From Figure 16 we see that the 8 generators are x〈1〉, y〈1〉, . . . x〈4〉, y〈4〉. Using the

Wirtinger presentation defined in our preliminaries, we can determine that the 8

relations are the following:

y〈2〉x〈1〉 = x〈1〉x〈2〉, x〈1〉y〈2〉 = y〈2〉y〈1〉, x〈3〉y〈2〉 = y〈2〉y〈3〉, y〈2〉x〈3〉 = x〈3〉x〈2〉

y〈4〉x〈3〉 = x〈3〉x〈4〉, x〈3〉y〈4〉 = y〈4〉y〈3〉, x〈1〉y〈4〉 = y〈4〉y〈1〉, y〈4〉x〈1〉 = x〈1〉x〈4〉

Let us call these relations w〈1〉, w〈2〉, . . . w〈8〉. So we have:
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π(R3 −
⋃
i

(intC〈i〉)) = {x〈1〉, y〈1〉, . . . x〈4〉, y〈4〉;w〈1〉 . . . w〈8〉}

2.2 ADAPTING THE WIRTINGER PRESENTATION FOR A

TORUS

In order to continue computing the presentation of the Antoine’s necklace with 4

refining tori in each step, we need to compute π(C〈1〉−
⋃
j

(intD〈1,j〉)) and then apply

the Seifert Van-Kampen Theorem. To do this, we need to adapt the proof of the

Wirtinger presentation, as we are now working inside of the solid torus. We will

prove that the group π(C〈1〉 − K), where K is a chain, can be presented using the

Wirtinger presentation. We illustrate our situation in Figure 17.

Figure 17: Generators in the Torus C〈1〉
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We note that the generator z〈1〉 is trivial on the top level (z〈1〉 = 1) and is therefore

not included in the presentation given in Section 2.1. However, inside the solid torus

drawn in Figure 17, the longitude is no longer trivial, and thus we must add a new

generator, z〈1,1〉. Similarly, inside the torus C〈2〉 we would have to add the generator

z〈1,2〉, while if we moved down a level, the torus D〈1,2〉 would have a generator z〈1,1,2〉,

and so on.

Using Figure 17, we will adapt the proof given in [7] to prove Theorem 2.2.1.

Theorem 2.2.1. The group π(C〈1〉−K) is generated by the x〈1,i〉, y〈1,i〉, z〈1,1〉 and has

presentation

π(C〈1〉 −K) = {x〈1,1〉, y〈1,1〉, . . . x〈1,4〉, y〈1,4〉, z〈1,1〉;w〈1,1〉, . . . w〈1,8〉}

Note: The notation w〈1,i〉, i ∈ {1, . . . 8} refers to the 8 standard relations listed in

Section 2.1, but down one level, inside of the torus C〈1〉. Then the notation w〈1,2,i〉,

i ∈ {1, . . . 8} would describe the 8 standard relations down two levels, inside of the

torus D〈1,2〉, etc.

Proof. Let C〈1〉 be embedded in the plane such that our chain K lies in the plane

P = {z = 0}, except where it dips down by an epsilon distance at each crossing. In

order to apply the Seifert Van-Kampen Theorem, we want to break C〈1〉−K into 10

pieces, A, B1, . . . B8, and C.

Let A = ({z ≥ −ε} ∩ C〈1〉) − K. Then the lower boundary of A is the plane

P ′ = {z = −ε} with 8 line segments, β1, . . . β8 removed. Let B1 be a solid rectangular

box whose top fits on P ′ and surrounds βi. But we will remove βi itself from Bi, and

add an arc from the top to our base point, *, missing K. Finally, we let C be the

closure of everything below A ∪B1 ∪ · · · ∪B8.
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First we note that π(A) is the free group generated by x〈1,1〉, y〈1,1〉, . . . x〈1,4〉, y〈1,4〉, z〈1,1〉,

as there is a deformation retract from A to a bouquet of circles. Thus

π(A) = {x〈1,1〉, y〈1,1〉, . . . x〈1,4〉, y〈1,4〉, z〈1,1〉; }

Now we adjoin B1 to A. B1 itself is simply connected, and B1 ∩A is a rectangle

minus β1, plus the arc to *, so π(B1 ∩A) is infinite cyclic, with generator w〈1,1〉. We

illustrate this in Figure 18:

Figure 18: B1 ∩ A

We see that writing w〈1,1〉 in terms of the generators of A gives us the relation

y〈1,2〉x〈1,1〉x〈1,2〉
−1x〈1,1〉

−1 = 1

.

Therefore this relation is exactly w〈1,1〉, which is what we claimed. Now applying

the Seifert Van-Kampen Theorem, we have:

π(A ∪B1) = {x〈1,1〉, y〈1,1〉, . . . x〈1,4〉, y〈1,4〉, z〈1,1〉;w〈1,1〉}
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By a similar argument, we may adjoin B2, B3, . . . B8 and get

π(A ∪B1 ∪ · · · ∪B8) = {x〈1,1〉, y〈1,1〉, . . . x〈1,4〉, y〈1,4〉, z〈1,1〉;w〈1,1〉, . . . w〈1,8〉}

Lastly, we defined C as the closure of everything below A∪B1∪. . . B8, plus an arc

to *. Thus it is clear that C has only one generator, the longitude z〈1,1〉. Therefore

π(C) = 〈z〈1,1〉〉.

Furthermore, as (A ∪ B1 ∪ · · · ∪ B8) ∩ C retracts onto the circle, it also follows

that

π((A ∪B1 ∪ · · · ∪B8) ∩ C) = 〈z〈1,1〉〉

Thus applying the Seifert Van-Kampen Theorem a final time allows us to arrive

at the desired conclusion, i.e,

π(A ∪B1 ∪ · · · ∪B8 ∪ C) = π(C〈1〉 −K) =

{x〈1,1〉, y〈1,1〉, . . . x〈1,4〉, y〈1,4〉, z〈1,1〉;w〈1,1〉, . . . w〈1,8〉}

Thus we have determined that

π(C〈1〉 −
⋃
j

(intD〈1,j〉)) = {x〈1,1〉, y〈1,1〉, . . . x〈1,4〉, y〈1,4〉, z〈1,1〉;w〈1,1〉, . . . w〈1,8〉}
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2.3 THE CASE N=4: THE SECOND LEVEL

Now that we have determined that we may use the Wirtinger presentation inside

of the solid torus, we may begin applying the Seifert Van-Kampen Theorem in an

attempt to compute the presentation for the Antoine’s necklace with 4 refining tori

in each step. Let U1 = R3 −
⋃
i

(intC〈i〉) and let V1 = C〈1〉 −
⋃
j

(intD〈1,j〉). Then we

know that

π(U1) = π(R3 −
⋃
i

(intC〈i〉)) = {x〈1〉, y〈1〉, . . . x〈4〉, y〈4〉;w〈1〉 . . . w〈8〉}

π(V1) = π(C〈1〉 −
⋃
j

(intD〈1,j〉)) = {x〈1,1〉, y〈1,1〉, . . . x〈1,4〉, y〈1,4〉, z〈1,1〉;w〈1,1〉, . . . w〈1,8〉}

It follows that U1∩V1 is the surface of the torus C〈1〉, i.e, the hollow torus S1×S1.

We know that U1∩V1 has two generators, the meridian v〈1,1〉, and the longitude, which

we will again call z〈1,1〉. We must represent each of these generators in terms of both

the generators for U1 and the generators for V1. Figure 19 and Figure 20 represent

these computations:

From these pictures, we determine that in U1, v〈1,1〉 = x〈1〉
−1, while in V1, v〈1,1〉 =

x〈1,1〉
−1y〈1,1〉. On the other hand, when it comes to the longitude, in U1, z〈1,1〉 =

y〈2〉y〈4〉
−1, and in V1, z〈1,1〉 = z〈1,1〉.

Therefore a final application of the Seifert Van-Kampen Theorem gives us that

π(U1 ∪ V1) = {x〈1〉, y〈1〉, . . . x〈4〉, y〈4〉, x〈1,1〉, y〈1,1〉, . . . x〈1,4〉, y〈1,4〉, z〈1,1〉;

w〈1〉 . . . w〈8〉, w〈1,1〉, . . . w〈1,8〉, x〈1〉
−1 = x〈1,1〉

−1y〈1,1〉, z〈1,1〉 = y〈2〉y〈4〉
−1}
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Figure 19: Representing Meridian in Generators for U1 and V1

Figure 20: Representing Longitude in Generators for U1 and V1

Now we can use the same process as above to attach the other tori on the same

level, C〈2〉, C〈3〉, and C〈4〉.

So let V2 = C〈2〉 −
⋃
j

(intD〈2,j〉). We want to compute the fundamental group

of U1 ∪ V1 ∪ V2. To do so, we need to use Seifert Van-Kampen again. We know

the presentations for π(U1 ∪ V1) and π(V2). Thus we simply need to compute the
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fundamental group of

(U1 ∪ V1) ∩ V2.

We know that (U1 ∪ V1) ∩ V2 = (U1 ∩ V2) ∪ (V1 ∩ V2). Then V1 and V2 don’t

intersect at all, so V1∩V2 = ∅ Further, computing the presentation for U1∩V2 differs

only slightly from the computation we did previously for U1 ∩V1. Therefore we have

the following:

π(U1 ∪ V1 ∪ V2) = {x〈1〉, y〈1〉, . . . x〈4〉, y〈4〉, x〈1,1〉, y〈1,1〉, . . . x〈1,4〉, y〈1,4〉, z〈1,1〉,

x〈2,1〉, y〈2,1〉, . . . x〈2,4〉, y〈2,4〉, z〈1,2〉;

w〈1〉 . . . w〈8〉, w〈1,1〉, . . . w〈1,8〉, w〈2,1〉, . . . w〈2,8〉,

x〈1〉
−1 = x〈1,1〉

−1y〈1,1〉, z〈1,1〉 = y〈2〉y〈4〉
−1,

x〈2〉
−1 = x〈2,1〉

−1y〈2,1〉, z〈1,2〉 = y〈3〉y〈1〉
−1}

Thus if we let V3 = C〈3〉 −
⋃
j

(intD〈3,j〉) and V4 = C〈4〉 −
⋃
j

(intD〈4,j〉), we can

add the remaining tori on the first level of the construction. Following the argument

outlined above, we have the following presentation:
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π(U1 ∪ V1 ∪ V2 ∪ V3 ∪ V4) = {x〈1〉, y〈1〉, . . . x〈4〉, y〈4〉, x〈1,1〉, y〈1,1〉, . . . x〈1,4〉, y〈1,4〉, z〈1,1〉,

x〈2,1〉, y〈2,1〉, . . . x〈2,4〉, y〈2,4〉, z〈1,2〉,

x〈3,1〉, y〈3,1〉, . . . x〈3,4〉, y〈3,4〉, z〈1,3〉,

x〈4,1〉, y〈4,1〉, . . . x〈4,4〉, y〈4,4〉, z〈1,4〉;

w〈1〉 . . . w〈8〉, w〈1,1〉, . . . w〈1,8〉, w〈2,1〉, . . . w〈2,8〉,

w〈3,1〉 . . . w〈3,8〉, w〈4,1〉, . . . w〈4,8〉,

x〈1〉
−1 = x〈1,1〉

−1y〈1,1〉, z〈1,1〉 = y〈2〉y〈4〉
−1,

x〈2〉
−1 = x〈2,1〉

−1y〈2,1〉, z〈1,2〉 = y〈3〉y〈1〉
−1,

x〈3〉
−1 = x〈3,1〉

−1y〈3,1〉, z〈1,3〉 = y〈4〉y〈2〉
−1,

x〈4〉
−1 = x〈4,1〉

−1y〈4,1〉, z〈1,4〉 = y〈1〉y〈3〉
−1}

2.4 THE CASE N=4: THE REMAINING LEVELS

Now we want to proceed to add the tori in the remaining levels of the construction.

We know that there are four tori inside of the torus C〈1〉, D〈1,1〉, D〈1,2〉, D〈1,3〉 and

D〈1,4〉. We will use the methods outlined in the previous sections to illustrate how

to add on

W1 = D〈1,1〉 −
⋃
k

(intE〈1,1,k〉)

We want to compute the fundamental group of

U1 ∪ V1 ∪ V2 ∪ V3 ∪ V4 ∪W1
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Again we will use the Seifert Van-Kampen Theorem. We have already computed

the presentation for π(U1 ∪ V1 ∪ V2 ∪ V3 ∪ V4). We also know the presentation for

π(W1). Thus as before, we must compute the fundamental group of the intersection

of the two sets, the set

(U1 ∪ V1 ∪ V2 ∪ V3 ∪ V4) ∩W1.

However, we know that this is equivalent to computing the fundamental group

of:

(U1 ∩W1) ∪ (V1 ∩W1) ∪ (V2 ∩W1) ∪ (V3 ∩W1) ∪ (V4 ∩W1)

Luckily, these sets are all empty with the exception of V1 ∩W1. This intersection is

exactly the surface of the solid torus D〈1,1〉.

We know from our previous work that the surface of the solid torus has two

generators: the meridian and the longitude. If we draw the diagrams for the meridian

and longitude down one level on our presentation, we can use the same logic as before

to write the generators for V1 ∩W1 in terms of the generators of V1 and W1. We

obtain the following:

x−1〈1,1〉 = x−1〈1,1,1〉y〈1,1,1〉, z〈1,1,1〉 = y〈1,2〉y
−1
〈1,4〉

Therefore our new presentation becomes the following:
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π(U1 ∪ V1 ∪ V2 ∪ V3 ∪ V4 ∪W1) = {x〈1〉, y〈1〉, . . . x〈4〉, y〈4〉,

x〈1,1〉, y〈1,1〉, . . . x〈1,4〉, y〈1,4〉, z〈1,1〉,

x〈2,1〉, y〈2,1〉, . . . x〈2,4〉, y〈2,4〉, z〈1,2〉,

x〈3,1〉, y〈3,1〉, . . . x〈3,4〉y〈3,4〉, z〈1,3〉,

x〈4,1〉, y〈4,1〉, . . . x〈4,4〉, y〈4,4〉, z〈1,4〉,

x〈1,1,1〉, y〈1,1,1〉, . . . x〈1,1,4〉, y〈1,1,4〉, z〈1,1,1〉;

w〈1〉, . . . w〈8〉, w〈1,1〉, . . . w〈1,8〉, w〈2,1〉, . . . w〈2,8〉,

w〈3,1〉, . . . w〈3,8〉, w〈4,1〉, . . . w〈4,8〉, w〈1,1,1〉, . . . w〈1,1,8〉

x〈1〉
−1 = x〈1,1〉

−1y〈1,1〉, z〈1,1〉 = y〈2〉y〈4〉
−1,

x〈2〉
−1 = x〈2,1〉

−1y〈2,1〉, z〈1,2〉 = y〈3〉y〈1〉
−1,

x〈3〉
−1 = x〈3,1〉

−1y〈3,1〉, z〈1,3〉 = y〈4〉y〈2〉
−1,

x〈4〉
−1 = x〈4,1〉

−1y〈4,1〉, z〈1,4〉 = y〈1〉y〈3〉
−1,

x−1〈1,1〉 = x−1〈1,1,1〉y〈1,1,1〉, z〈1,1,1〉 = y〈1,2〉y
−1
〈1,4〉}

By extending this same procedure, we can write the general presentation for an

Antoine’s necklace with n = 4 refining tori in each step. We have:
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π(R3 − A) = {x〈1〉, y〈1〉, . . . x〈4〉, y〈4〉, x〈1,1〉, y〈1,1〉, . . . x〈1,4〉, y〈1,4〉, z〈1,1〉,

x〈2,1〉, y〈2,1〉, . . . x〈2,4〉, y〈2,4〉, z〈1,2〉,

x〈3,1〉, y〈3,1〉, . . . x〈3,4〉y〈3,4〉, z〈1,3〉,

x〈4,1〉, y〈4,1〉, . . . x〈4,4〉, y〈4,4〉, z〈1,4〉,

x〈1,1,1〉, y〈1,1,1〉, . . . x〈1,1,4〉, y〈1,1,4〉, z〈1,1,1〉,

x〈1,2,1〉, y〈1,2,1〉, . . . x〈1,2,4〉, y〈1,2,4〉, z〈1,1,2〉, . . .

x〈2,1,1〉, y〈2,1,1〉, . . . x〈2,1,4〉, y〈2,1,4〉, z〈1,2,1〉, . . .

x〈4,1,1〉, y〈4,1,1〉, . . . x〈4,1,4〉, y〈4,1,4〉, z〈1,4,1〉, . . .

x〈4,4,1〉, y〈4,4,1〉, . . . x〈4,4,4〉, y〈4,4,4〉, z〈1,4,4〉,

x〈1,1,1,1〉, y〈1,1,1,1〉, . . . x〈1,1,1,4〉, y〈1,1,1,4〉, z〈1,1,1,1〉, . . .

x〈4,4,4,1〉, y〈4,4,4,1〉, . . . x〈4,4,4,4〉, y〈4,4,4,4〉, z〈1,4,4,4〉, . . . ;
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w〈1〉, . . . w〈8〉, w〈1,1〉, . . . w〈1,8〉, w〈2,1〉, . . . w〈2,8〉,

w〈3,1〉, . . . w〈3,8〉, w〈4,1〉, . . . w〈4,8〉, w〈1,1,1〉, . . . w〈1,1,8〉,

w〈1,2,1〉, . . . w〈1,2,8〉, . . . w〈2,1,1〉, . . . w〈2,1,8〉, . . .

w〈4,1,1〉, . . . w〈4,1,8〉, . . . w〈4,4,1〉, . . . w〈4,4,8〉,

w〈1,1,1,1〉, . . . w〈1,1,1,8〉, . . . w〈4,4,4,1〉, . . . w〈4,4,4,8〉, . . .

x〈2〉
−1 = x〈2,1〉

−1y〈2,1〉, z〈1,2〉 = y〈3〉y〈1〉
−1,

x〈3〉
−1 = x〈3,1〉

−1y〈3,1〉, z〈1,3〉 = y〈4〉y〈2〉
−1,

x〈4〉
−1 = x〈4,1〉

−1y〈4,1〉, z〈1,4〉 = y〈1〉y〈3〉
−1,

x−1〈1,1〉 = x−1〈1,1,1〉y〈1,1,1〉, z〈1,1,1〉 = y〈1,2〉y
−1
〈1,4〉,

x−1〈1,2〉 = x−1〈1,2,1〉y〈1,2,1〉, z〈1,1,2〉 = y〈1,3〉y
−1
〈1,1〉, . . .

x−1〈2,1〉 = x−1〈2,1,1〉y〈2,1,1〉, z〈1,2,1〉 = y〈2,2〉y
−1
〈2,4〉 . . .

x−1〈4,1〉 = x−1〈4,1,1〉y〈4,1,1〉, z〈1,4,1〉 = y〈4,2〉y
−1
〈4,4〉, . . .

, x−1〈4,4〉 = x−1〈4,4,1〉y〈4,4,1〉, z〈1,4,4〉 = y〈4,1〉y
−1
〈4,3〉,

x−1〈1,1,1〉 = x−1〈1,1,1,1〉y〈1,1,1,1〉, z〈1,1,1,1〉 = y〈1,1,2〉y
−1
〈1,1,4〉, . . .

x−1〈4,4,4〉 = x−1〈4,4,4,1〉y〈4,4,4,1〉, z〈1,4,4,4〉 = y〈4,4,1〉y
−1
〈4,4,3〉, . . . }

Now our goal is to find a way to condense and simplify this presentation.

We recall from earlier that the 8 relations on the top level, w〈1〉, . . . w〈8〉, are given

by the relations listed here:

y〈2〉x〈1〉 = x〈1〉x〈2〉, x〈1〉y〈2〉 = y〈2〉y〈1〉, x〈3〉y〈2〉 = y〈2〉y〈3〉, y〈2〉x〈3〉 = x〈3〉x〈2〉

y〈4〉x〈3〉 = x〈3〉x〈4〉, x〈3〉y〈4〉 = y〈4〉y〈3〉, x〈1〉y〈4〉 = y〈4〉y〈1〉, y〈4〉x〈1〉 = x〈1〉x〈4〉
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We can now write a general form for these relations on any level of our presen-

tation. We note that from here on we use the notation:

αn = 〈α1, α2, . . . , αn〉, αi ∈ {1, . . . 4}

We also use the convention that α0 = 〈〉. We have:

w〈αn−1,1〉 : y〈αn−1,2〉x〈αn−1,1〉 = x〈αn−1,1〉x〈αn−1,2〉, αi ∈ {1, . . . 4}, n ∈ N

w〈αn−1,2〉 : x〈αn−1,1〉y〈αn−1,2〉 = y〈αn−1,2〉y〈αn−1,1〉, αi ∈ {1, . . . 4}, n ∈ N

w〈αn−1,3〉 : x〈αn−1,3〉y〈αn−1,2〉 = y〈αn−1,2〉y〈αn−1,3〉, αi ∈ {1, . . . 4}, n ∈ N

w〈αn−1,4〉 : y〈αn−1,2〉x〈αn−1,3〉 = x〈αn−1,3〉x〈αn−1,2〉, αi ∈ {1, . . . 4}, n ∈ N

w〈αn−1,5〉 : y〈αn−1,4〉x〈αn−1,3〉 = x〈αn−1,3〉x〈αn−1,4〉, αi ∈ {1, . . . 4}, n ∈ N

w〈αn−1,6〉 : x〈αn−1,3〉y〈αn−1,4〉 = y〈αn−1,4〉y〈αn−1,3〉, αi ∈ {1, . . . 4}, n ∈ N

w〈αn−1,7〉 : x〈αn−1,1〉y〈αn−1,4〉 = y〈αn−1,4〉y〈αn−1,1〉, αi ∈ {1, . . . 4}, n ∈ N

w〈αn−1,8〉 : y〈αn−1,4〉x〈αn−1,1〉 = x〈αn−1,1〉x〈αn−1,4〉, αi ∈ {1, . . . 4}, n ∈ N

With this notation in place, we will lastly consider the relations that connect the

levels together. We can again write a general form for the relations that connect the

levels together, which we will call c and d:

c〈αn−1〉 : x−1〈αn−1〉 = x−1〈αn−1,1〉y〈αn−1,1〉, αi ∈ {1, . . . 4}, n ∈ N

Lastly we define the relation d.

d〈αn−1〉 : z〈1,αn−1〉 = y〈αn−2,αn−1+1(mod4)〉y
−1
〈αn−2,αn−1−1(mod4)〉, αi ∈ {1, . . . 4}, n ∈ N
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With this notation we can now give the presentation in a much more compact

form. Therefore the presentation for the Antoine’s necklace becomes:

π(R3 − A) = {x〈αn〉, y〈αn〉, z〈1,αn−1〉 : αi ∈ {1, . . . , 4}, ∀n ∈ N; z〈1〉 = 1,

w〈αn−1,β〉, c〈αn−1〉, d〈αn−1〉 : αi ∈ {1, . . . , 4}, β ∈ {1, . . . , 8} ∀n ∈ N}

2.5 THE GENERAL CASE

We know from our preliminary work that a chain of 2m tori should have 4m gener-

ators and 4m relations. Using this fact, we can generalize the presentation above to

give a presentation for an Antoine’s necklace with 2m refining tori on each level. We

have:

π(R3 − A) = {x〈αn〉, y〈αn〉, z〈1,αn−1〉 : αi ∈ {1, . . . , 2m}, ∀n ∈ N; z〈1〉 = 1,

w〈αn−1,β〉, c〈αn−1〉, d〈αn−1〉 : αi ∈ {1, . . . , 2m}, β ∈ {1, . . . , 4m} ∀n ∈ N}
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3.0 THE TWISTED VARIANT

3.1 CONSTRUCTION AND PROPERTIES

As mentioned in the introduction, our goal was to compare the presentation given

for the Antoine’s necklace listed above with a twisted variant. In this variant, we

give one of the refining tori a double twist, as shown in Figure 21:

Figure 21: The Double Twist

Here we have taken the Antoine’s necklace with 4 refining tori on each level that

we worked with in the past, and added the double twist to the torus D〈1,1〉 on the

second level of the construction. Because of this extra twist, we have introduced
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another set of generators. Now the torus D〈1,1〉 has the four generators:

x
′

〈1,1〉, y
′

〈1,1〉, x
′′

〈1,1〉, y
′′

〈1,1〉

Therefore our relations will change slightly as well. We note that the 8 rela-

tions on the second level inside the torus C〈1〉 in the standard Antoine’s necklace,

w〈1,1〉, . . . w〈1,8〉, are given by:

y〈1,2〉x〈1,1〉 = x〈1,1〉x〈1,2〉, x〈1,1〉y〈1,2〉 = y〈1,2〉y〈1,1〉,

x〈1,3〉y〈1,2〉 = y〈1,2〉y〈1,3〉, y〈1,2〉x〈1,3〉 = x〈1,3〉x〈1,2〉

y〈1,4〉x〈1,3〉 = x〈1,3〉x〈1,4〉, x〈1,3〉y〈1,4〉 = y〈1,4〉y〈1,3〉,

x〈1,1〉y〈1,4〉 = y〈1,4〉y〈1,1〉, y〈1,4〉x〈1,1〉 = x〈1,1〉x〈1,4〉

Our new relations now become:

y〈1,2〉x
′′

〈1,1〉 = x
′′

〈1,1〉x〈1,2〉, x
′′

〈1,1〉y〈1,2〉 = y〈1,2〉y
′′

〈1,1〉,

x〈1,3〉y〈1,2〉 = y〈1,2〉y〈1,3〉, y〈1,2〉x〈1,3〉 = x〈1,3〉x〈1,2〉

y〈1,4〉x〈1,3〉 = x〈1,3〉x〈1,4〉, x〈1,3〉y〈1,4〉 = y〈1,4〉y〈1,3〉,

x
′

〈1,1〉y〈1,4〉 = y〈1,4〉y
′

〈1,1〉, y〈1,4〉x
′

〈1,1〉 = x
′

〈1,1〉x〈1,4〉

Here we will denote the different relations by w
′

〈1,i〉. We will also have a ninth

and tenth relation occurring at the twists in the twisted torus. These relations are

the following:
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x
′

〈1,1〉y
′′

〈1,1〉 = y
′

〈1,1〉x
′

〈1,1〉

y
′′

〈1,1〉x
′

〈1,1〉 = x
′′

〈1,1〉y
′′

〈1,1〉

So we can compare this new variant to the original case. We recall that the

presentation of the second level of the construction inside the torus C〈1〉 was originally

given by:

π(C〈1〉 −
⋃
j

(intD〈1,j〉)) = {x〈1,1〉, y〈1,1〉, . . . x〈1,4〉, y〈1,4〉, z〈1,1〉;w〈1,1〉, . . . w〈1,8〉}

Now after giving a double twist to the torus D〈1,1〉, we have:

π(C〈1〉 −
⋃
j

(intD
′

〈1,j〉)) = {x′〈1,1〉, y
′

〈1,1〉, x
′′

〈1,1〉, y
′′

〈1,1〉, x〈1,2〉, y〈1,2〉, . . . x〈1,4〉, y〈1,4〉, z〈1,1〉;

w
′

〈1,1〉, w
′

〈1,2〉, w〈1,3〉 . . . w〈1,6〉, w
′

〈1,7〉, w
′

〈1,8〉,

x
′

〈1,1〉y
′′

〈1,1〉 = y
′

〈1,1〉x
′

〈1,1〉, y
′′

〈1,1〉x
′

〈1,1〉 = x
′′

〈1,1〉y
′′

〈1,1〉}

3.2 COMPARING PRESENTATIONS

Despite looking markedly different, we can actually show that these presentations are

isomorphic. To do so, we fix a homeomorphism, h, from C〈1〉 to itself. We illustrate

the homeomorphism in Figure 22.
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Figure 22: The Homeomorphism Between the Torus C〈1〉 and Itself

Since the homeomorphism h carries
⋃
j

(intD〈1,j〉) to the twisted variant, it follows

that C〈1〉 −
⋃
j

(intD〈1,j〉) and C〈1〉 −
⋃
j

(intD
′

〈1,j〉) are homeomorphic via h̃ = h |

(C〈1〉 −
⋃
j

(intD〈1,j〉))

In turn, this induces an isomorphism of fundamental groups.

h̃∗ : π(C〈1〉 −
⋃
j

(intD〈1,j〉))→ π(C〈1〉 −
⋃
j

(intD
′

〈1,j〉))

given by h̃∗([f ]) = [h ◦ f ]

We can actually explicitly say what the induced morphism h̃∗ does in terms of

the known presentation. It is obvious from Figure 22 that

h̃∗(x〈1,i〉) = x〈1,i〉, i 6= 1 h̃∗(y〈1,i〉) = y〈1,i〉, i 6= 1

Therefore we have to check only a few cases. It is easy to check the following

computations:
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h̃∗(z〈1,1〉) = z〈1,1〉x
′

〈1,1〉
−1
y
′

〈1,1〉

h̃∗(x〈1,1〉) = y
′′

〈1,1〉
−1
x
′′

〈1,1〉

h̃∗(y〈1,1〉) = x
′

〈1,1〉y
′′

〈1,1〉

Therefore, on one level of the construction, we can show that the original An-

toine’s necklace and the twisted variant actually have isometric complementary

groups.

Unfortunately, when we proceed to try to use the Seifert Van-Kampen Theorem

to add on additional levels in the construction, we run into some trouble. If U1

represents the top level of the twisted Antoine necklace construction, and V1 repre-

sents one of the sets of tori on the second tier, then to compute the presentation for

U1 ∪ V1, we must first determine the generators for U1 ∩ V1 and write them in terms

of the generators of both U1 and V1. As above, we determine that U1 ∩ V1 has two

generators: a meridian and a longitude. It is in the computation of the longitude

that we encounter a problem.

From Figure 23 we can see that by writing the longitude in terms of the generators

for both the top and second tier, we would have the relation

z〈1,1,1〉 = y〈1,2〉(x
′

〈1,1〉)
−1y−1〈1,4〉(y

′′

〈1,1〉)
−1

Clearly this relation differs from the relations obtained from adjoining levels in

the construction of the standard Antoine’s necklace. We therefore know that the two

variations are actually inequivalent.
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Figure 23: Tracing the Longitude in the Double Twist
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4.0 OPEN PROBLEMS

Many open problems surround Cantor sets in R3, their complements and comple-

mentary groups. We consider a few of particular interest.

Complements Determine? Does the complement (up to homeomorphism) of a

Cantor set in R3, determine the Cantor set (up to equivalence)?

The corresponding question for knots has a positive answer (Cameron & Luecke).

But the proof techniques don’t transfer to Cantor sets. For links the answer is

negative. But again the examples of Whitehead and others don’t help with

Cantor sets. In particular, the complement of a link has ‘large holes’ around

which things can be moved. This is not true for Cantor sets.

Complementary Groups Determine? Skora’s example of a wild Cantor set with

simply connected complement shows that the complementary group of a Cantor

set does not determine the Cantor set. What if we restrict to certain classes of

Cantor sets? For example, Antoine necklace type Cantor sets?

Are there two Antoine type necklaces with isomorphic complementary groups?

Complementary Groups Say What? In general, what can we determine about

a Cantor set from its complementary group? More particularly, what about

Antoine necklaces?
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From the complementary group, is it possible to determine the number of rings

in the top level? Lower levels? Whether any ring is twisted?

Other Invariants Perhaps the complementary group is not powerful enough to

distinguish Antoine necklaces. What might work instead?

Can Antoine type Cantor sets be classified by knot/link invariants like the Jones

polynomial? What about more geometric invariants?
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