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STOCHASTIC METHODS IN MODELING THE IMMUNE RESPONSE

Saishuai Tang, PhD

University of Pittsburgh, 2010

We discuss the application of deterministic and stochastic modeling techniques to prob-

lems in immunology. First, we employ the example of a host response to influenza virus

infection to illustrate differences in the dynamical behavior of the deterministic and the

stochastic models, and employ both versions in the analysis of the role of immune response

in controlling and suppressing the infection. Second, we develop a dynamical model of vo-

cal fold inflammation and use random sampling techniques to calibrate the model against

available data.

In the stochastic model, we analyze three solution techniques - Gillespie’s stochastic sim-

ulation algorithm, numerical solution of mean extinction time through the Laplace transform

of the master equation, and approximate solution of a limiting case. Gillespie algorithm is

capable of dealing with large systems as the required memory depends linearly on number of

species, but is limited by computational time. Laplace’s method is efficient and accurate but

is limited by system size. We construct a novel combination of the two that takes advantage

of both. We also derive an approximate Markov chain of the system and analytically compute

the extinction times and probabilities in the limiting case when an infected cell generates

large number of viruses. In the analysis of the human immune response, we find that innate

response substantially reduces cell extinction probability, cellular response increases the virus

extinction probability in limiting case, and adaptive response, combined with the other two,

almost eliminates cell extinction and significantly increases virus extinction probability.

In the model of vocal fold inflammation, a four-variable ordinary differential equation
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(ODE) model is presented. The ODE model characterizes cytokine interactions in phono-

trauma and is calibrated with empirical data. Parameter values are estimated and their

probability densities are sampled using Metropolis and parallel tempering algorithms. Sen-

sitivity analysis showed that 6 of 17 parameters suffice to retain the sensitivity of the model

trajectories. The reduced parameter set is applied to individual data to be calibrated and

predict the individual outcome. The model is a part of larger study intended to find optimal

treatment strategy for phonotrauma through a personalized vocal exercise or rest program.

Keywords: Stochastic Simulation Algorithm, Gillespie’s Direct Method, Markov Chain

Analysis, Numerical and Analytical Solution of Master Equations, Extinction Proba-

bility, Mean Extinction Time, Roles of Immune Components, Influenza Virus Infection,

Vocal Fold Inflammation, Parameter Estimation and Reduction, Sensitivity Analysis,

Metropolis Sampling, Parallel Tempering, Personalized Treatment Development.

v



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 IMMUNE RESPONSE TO INFLUENZA INFECTION . . . . . . . . . 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Deterministic and Stochastic Models . . . . . . . . . . . . . . . . . . . 3

2.1.2 In-host Virus Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Basic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 ODE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2.1 Stochastic Simulation Algorithm . . . . . . . . . . . . . . . . . 12

2.2.2.2 Numerical Solution of Mean Extinction Time . . . . . . . . . 20

2.2.2.3 Combination of Gillespie and Laplace Method . . . . . . . . . 28

2.2.2.4 Approximate Solution of a Limiting Case . . . . . . . . . . . . 30

2.2.2.5 Conclusion of the Stochastic Model . . . . . . . . . . . . . . . 44

2.3 Human Immune Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.1 Systems with an Innate Immune Component . . . . . . . . . . . . . . 47

2.3.2 Systems with a Cellular Immune Component . . . . . . . . . . . . . . 51

2.3.3 Systems with Combined Innate and Cellular Immune Components . . 57

2.3.4 Systems with a Complete Immune Response . . . . . . . . . . . . . . 58

3.0 VOCAL FOLD INFLAMMATION . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Experiment, Data and ODE Model Development . . . . . . . . . . . . . . . 66

vi



3.2.1 Experiment and Treatments . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.2 Data and ODE Model Development . . . . . . . . . . . . . . . . . . . 68

3.3 ODE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.1 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.2.1 Objective Function in the Optimization . . . . . . . . . . . . . 80

3.3.2.2 Ensemble Model . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.3 Sensitivity Analysis and Parameter Reduction . . . . . . . . . . . . . 85

3.3.4 Individual Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.5 ODE Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.5.1 Ensemble Method . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.5.2 Sensitivity Analysis and Parameter Reduction . . . . . . . . . 91

3.3.5.3 Pre-inflamed Group . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3.5.4 Individual Fit and prediction . . . . . . . . . . . . . . . . . . 94

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vii



LIST OF TABLES

1 Normalized data for the spontaneous speech group . . . . . . . . . . . . . . . 75

2 Normalized data for the voice rest group . . . . . . . . . . . . . . . . . . . . . 76

3 Normalized data for the resonant voice group . . . . . . . . . . . . . . . . . . 76

4 Baseline, prior range, average and standard deviation of each parameter . . . 89

5 Parameters in red are the new optimal values of the reduced set and black are

the fixed parameters obtained from the averages of the whole parameter set

in parallel samplings. The values in the other two columns are average and

standard derivation of each parameter in parallel sampling. . . . . . . . . . . 96

viii



LIST OF FIGURES

1 Basic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Bifurcation diagram of the basic system - virus dependence on γV and n.

n = γV /aI represents the number of viruses generated by a single infected cell.

The system has different behaviors through 3 parameter regions. . . . . . . . 9

3 Bifurcation diagram of the basic system - healthy cell dependence on γV and n. 9

4 V-H-I triangular prism. The red line is the absorbing region for healthy state

and green plane is the absorbing region for dead state . . . . . . . . . . . . . 11

5 Scheme of the Gillespie’s direct method [47] . . . . . . . . . . . . . . . . . . . 14

6 Sample trajectories of the basic system obtained by the Gillespie’s direct

method. H0 = H∗ = 100, V0 = 3, I0 = 0, n = 15, Tmax = 30, number of

the trajectories=30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Trajectory comparison for ODE and stochastic models of the basic system.

Parameters are equivalent in the two models. (V0, H0, I0) = (0.03, 1, 0) in

the deterministic model and (V0, H0, I0) = (3, 100, 0) in the stochastic model.

γV = 40, n = 27, Tmax = 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Conditional mean time and probability of extinction with different maximum

simulation times, Tmax = 10, 20, 30, 40, 50, 60, H∗ = 100, V0 = 3. The x-axis

represents n values and the y-axis represents conditional mean extinction time

in the first row plots and extinction probability in the second row plots. All

the trajectories are averaged over 50,000 independent samples. . . . . . . . . 20

9 Enumerating the states on H − I plane . . . . . . . . . . . . . . . . . . . . . 21

ix



10 Probability, conditional mean, variance and coefficient of variation of virus or

cell extinction. The red line is the result of Laplace method and the blue line

is the result of Gillespie’s direct method. V0 = 1, H∗ = 25, Vmax = 181, all the

other parameters are the same as before. The x-axis is n = γV /aI . . . . . . . 27

11 A combination of Gillespie’s direct and Laplace methods. The red, dark

blue, green, light blue and pink trajectories represent (H∗, V0) = (5, 1), (10, 2),

(15, 3), (20, 4), and (25, 5) with Vmax = 181. The x-axis is n = γV /aI . Note

the logarithmic scale of the ordinate in the plots of extinction times, variances

and coefficients of variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

12 m is the initial number of viruses. 0, 1, 2, ..., m are the states representing

V = 0, 1, ...m and I = 0. m + 1 represents all states with V > m or I > 0.

The red dashed ellipse denotes the no-disease region. . . . . . . . . . . . . . . 30

13 State 1 is the initial state (V,H, I) = (1, H∗, 0), state 0 is the healthy state

(V,H, I) = (0, H∗, 0), and state 2 is the dead absorbing region I > 0 or V > 1. 33

14 State 2 is the initial state, state 0 is the healthy state, and state 3 is the dead

absorbing region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

15 m is the initial number of viruses. 0, 1, 2, ..., m are the states representing the

number of viruses and I = 0. m+ 1 represents the states when V > m or I > 0. 35

16 Conditional mean times and probabilities of extinctions in the basic system,

H∗ = 100, V0 = 3. All the trajectories are averaged over 50,000 independent

samples generated by Gillespie algorithm. The x-axis is n = γV /aI and it is in

log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

17 Systems with an innate immune component . . . . . . . . . . . . . . . . . . . 48

18 Conditional mean times and probabilities of extinctions in the system with

innate immune component. H∗ = 100, V0 = 3 and all the trajectories are

averaged over 50,000 independent samples generated by Gillespie algorithm.

The x-axis is n = γV /aI . The blue, green, and pink trajectories represent the

maximum simulation time Tmax = 20, 40 and 60, correspondingly. . . . . . . . 50

19 Systems with a cellular immune component . . . . . . . . . . . . . . . . . . . 52

x



20 Conditional mean times and probabilities of extinctions in the system with

cellular immune component. H∗ = 100, M∗ = 2, E∗ = 10, V0 = 3, and all

the trajectories are averaged over 50,000 independent samples generated by

Gillespie algorithm. The x-axis is n = γV /aI . . . . . . . . . . . . . . . . . . . 54

21 Schema of the approximate Markov chain in the system with a cellular immune

component, b′EI = bEI/E
∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

22 Systems with combined innate and cellular immune Components . . . . . . . 57

23 Conditional mean times and probabilities of extinction in system with com-

bined innate and cellular immune components. H∗ = 100, M∗ = 20,E∗ =

10,V0 = 3 and all the trajectories are averaged over 50,000 independent sam-

ples generated by Gillespie algorithm. The x-axis is n = γV /aI . . . . . . . . . 58

24 Human immunity system - combined innate, cellular and adaptive immune

components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

25 Conditional mean times and probabilities of extinction in human immunity.

H∗ = 100, M∗ = 20, E∗ = 10, P ∗ = 10, A∗ = 100, V0 = 3, and all the tra-

jectories are averaged over 50,000 independent samples generated by Gillespie

algorithm. The x-axis is n = γV /aI . The trajectories of the system with no

immune component, with innate immune component, with cellular immune

component, with the combination of innate and cellular immune components,

and with the complete immune response - the combination of innate, cellular

and adaptive immune components are in blue, green, red, pink, and black. The

purple arrow represents biologically reasonable values of n. . . . . . . . . . . 60

26 Treatment and data collection schedule. Loud phonation is performed during

0 < t < 1, clinic treatment is during 2.5 < t < 6.5, and home treatment is

during 10 < t < 14. Laryngeal secretion is collected at t = 0, 1, 6.5, 22. . . . . 67

27 Vibration and impact stress loading values for the three treatments. . . . . . 68

28 Average data of TNF, IL-1β, IL-6, and IL-10 in three treatment groups. The

first two points are averaged over all the valid data set. The bars are the

standard deviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xi



29 Valid primary collection measurements. n is the number of subjects in each

group. Four time points - baseline, after 1 hour screaming, after 4 hour clinic

treatment and 22 hours post screaming. The lines and bars represent the

average and standard deviation of each group. The highest point of IL-1β in

spontaneous group is overlapped by two measurements and so does that in

resonant voice group. The lines are the average curves and bars are standard

deviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

30 Valid primary collection measurements with outliers eliminated. n is the num-

ber of subjects in each group. Four time points - baseline, after 1 hour scream-

ing, after 4 hour clinic treatment and 22 hours post screaming. The lines and

bars represent the average and standard derivation of each group. . . . . . . 73

31 Normalized data excluding the pre-inflamed patients and outliers. n is the

number of subjects in each group. The lines and bars represent the averages

and standard derivations. The second point is averaged over all valid data. . . 75

32 Model schema that illustrates the interactions between the four variables. The

plus indicates positive feedback and minus indicate negative feedback. . . . . 77

33 Schematic representation of the Metropolis sampling algorithm. . . . . . . . . 84

34 Schematic representation of the Parallel-Tempering algorithm. . . . . . . . . 85

35 Optimal parameter fit for the model. The parameter values are showed in the

last column of Table 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

36 Marginal parameter distributions for the ensemble model. The X-axis is in

log10 scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

37 Trajectory statistics of the ensemble model. For each variable, the percentile

of the resulting distribution is shown at each time point: 95th percentile (top

green), 75th percentile (top blue), 50th percentile (red), 25th percentile (bot-

tom blue), and 5th percentile (bottom green). . . . . . . . . . . . . . . . . . . 91

38 Correlation coefficient matrix. The red color means highly positive correlated

and the blue color means highly negative correlated. . . . . . . . . . . . . . . 92

xii



39 Trajectory statistics of the ensemble model of the pre-inflamed group which

only received treatment in voice rest. For each variable the percentile of the

resulting distribution is shown at each time point: 95th percentile (top green),

75th percentile (top blue), 50th percentile (red), 25th percentile (bottom blue),

and 5th percentile (bottom green). . . . . . . . . . . . . . . . . . . . . . . . . 93

40 Optimal parameter fit and prediction for individual. The parameter values are

showed in the last column of Table 5. . . . . . . . . . . . . . . . . . . . . . . 95

xiii



PREFACE

I owe my gratitude to all the people who have made this dissertation possible and because

of whom my graduate experience has been one that I will cherish forever.

First and foremost, I would like to thank my advisor, Professor David Swigon, for his

constant support, guidance and patience to this fledgling researcher. Professor Swigon is

kind, intelligent, and is always available for help and advice. Without his extraordinary

insight and expertise, this dissertation would have been a distant dream.

I would also like to thank my research mentor, Professor Gilles Clermont, for his support,

guidance and constructive discussion along the way.

I would also like to thank my other two committee members, Professor Jonathan Ru-

bin and Professor Brent Doiron, for their suggestions and invaluable time to review this

dissertation.

It is also my pleasure to thank Dr. Nicole Yee-Key Li and Dr. Qi Mi for their contribution

and comments to my models. Especially thank Nicole, a superb biologist, for her efficient

communication, patient support to this junior mathematician.

Then, I want to express my thanks to Mr. Ranqi Zhu, my boyfriend, for his constant

encouragement and accompaniment all these years.

Last but not least, I am deeply grateful to my parents for their love, support, and allowing

me, their only child, to pursue her education thousands of miles away from home.

xiv



1.0 INTRODUCTION

In the first part of this thesis, we discuss a model of the immune response to influenza

infection. The human immune response to influenza A virus infection follows three distinct

strategies aimed at reducing the level of the virus and the amount of damage to the system

through negative feedback. The first strategy is the innate immune response, which renders

a portion of epithelial healthy cells resistant to infection. The second strategy is the cellular

immune response, which produces effector cells that destructs virus infected cells. The third

strategy is the adaptive immune response, which produces antibodies that inactivate the virus

particles. Each of the strategies represents a negative feedback on the virus production.

Mathematical modeling has proven to be a valuable tool in understanding of immune

response to influenza infection, primarily with ODE models [3, 40]. In the deterministic

model, the dynamics of the system are entirely predictable if sufficient knowledge of the

system states is given. But due to the stochastic nature of the system, this prediction might

not be true in certain situations. A stochastic model is a tool for estimating probabilistic

potential outcomes by allowing for random variation in the inputs over time. It builds

randomness into the simulation and therefore provides a better representation of real life.

This thesis is concerned with the development of a stochastic model of the immune response.

We first investigate a basic system of viral reproduction in the absence of any immune

component. We design a stochastic model of the system and compare its behavior with

a traditional ODE model. Three methods are utilized in analysis of the stochastic model:

Gillespie’s stochastic simulation algorithm [30], which is an exact procedure for simulating

the time evolution of a well-stirred chemically reacting system, solution of mean extinction

time through the Laplace transform of its master equation [67], which provides us explicit

formulas of mean extinction time, and approximate solution in the limiting case of large
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infectivity, which presents the analytical solutions when a single infected cell generates a

large number of viruses. We then extend the stochastic model to include various immune

system components. Our goal is to investigate the role of each feedback by studying its effect

on the global stochastic dynamics of the virus-cell system.

In the second part of this thesis, we discuss a model of vocal fold inflammation. When

people speak or sing, vocal folds are exposed to nearly continuous bio-mechanical stress - the

vocal folds oscillate at a relatively high frequency and typically make contact at some point

during the vibratory cycle. When the phonation conditions are phonotraumatic, increased

intra-fold contact stress associated with certain voicing patterns can result in structural dam-

age to the vocal fold mucosa [80, 37, 38]. If this condition persists without adequate rest,

the persistent stress can further lead to tissue disorganization [36]. Traditionally, behavioral

voice treatment involves complete or partial voice rest with the aim that the ensuing inflam-

matory response will subside on its own. However, recent data derived from concentrations

of inflammation mediators in laryngeal secretions suggests that some forms of vocal fold tis-

sue mobilization, i.e. resonant voice, may be able to modulate the inflammatory and healing

process [53, 51].

In this thesis, a dynamic model is developed to characterize the process of vocal fold in-

flammation after phonation loading. Ensemble modeling technique is employed to estimate

the parameter values and sample their probability densities. The number of independent

parameters of the model is reduced through sensitivity analysis. We also conduct parameter

reduction and employ the reduced model in prediction of the individual treatment outcome.

The research reported here is a part of a larger project aimed in developing tools to help

clinicians to decide which treatment benefits individual patients with acute or chronic phono-

trauma through a personalized vocal exercise or rest program.
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2.0 IMMUNE RESPONSE TO INFLUENZA INFECTION

2.1 INTRODUCTION

2.1.1 Deterministic and Stochastic Models

Systems biology employs primarily two types of models: deterministic and stochastic. In

a deterministic model, the dependent variables usually represent concentrations of cells or

chemicals and a set of ODEs or PDEs governs the evolution of the system. Such models tend

to be accurate in the limit of large system size for well-mixed conditions. In a stochastic

model, variables represent numbers of molecules or cells, and the evolution of the system is

represented by a stochastic process described by a master equation. One important difference

between the two models is the presence or absence of absorbing states. There are situations

in which the deterministic model predicts that a population approaches a positive stationary

level, while the stochastic model predicts that an extinction will occur with certainty. In

such situations, one may ask the following questions:

• How to determine the probability of extinction and characterize the time required for

the extinction?

• Does a bifurcation in the deterministic model correlate with a change in the behavior of

the stochastic model?

The mean extinction time can be found if we can solve the master equations, but this is

known to be surprisingly difficult. The analysis of the mean extinction time in the context

of population class models has been discussed by several authors. Newman [67] and Nasell

[66] presented the analysis of mean extinction time of a stochastic version (logistic stochastic

model) of the Verhulst deterministic model [87] - a finite-state birth and death process

3



with an initially modest number of individuals, no immigration nor emigration, and one

absorbing state. Vellela and Qian [83] presented a model with 3 species and 3 reactions with

one absorbing state, but they enumerated the states according to one species, so it is still

equivalent to the one dimensional logistic stochastic model. Nasell [65] also presented the

mean extinction time analysis in a two-dimension model - the stochastic version of the SIR

model (a model with three classes, susceptible, infected, and recovered, in a fixed population)

and found that the mean extinction time is an exponential distribution with a finite expected

value. There are also other discussions of the mean extinction time in the stochastic SIR

and SIS (a model derived from the SIR model by simply considering that the individuals

recover with no immunity to the disease, that is, individuals are immediately susceptible

once they have recovered) models by Nasell [64], Dykman [24] and Kamenev [46]. In the

two-dimension case, most of these papers analyzed the extinction time approximately in

different parameter regions through a variety of mathematical techniques. Nasell [66] states

that it is impossible to find explicit expression for the time to extinction of a stochastic model

whose deterministic counterpart is nonlinear. Few papers discuss the extinction probability.

Herwaarden [82] derive an asymptotic expression for the disease extinction probability at

the end of a major outbreak in the two-dimension stochastic SIR model. The expression is

derived by asymptotically solving a boundary value problem on the Fokker-Planck equation

of the system.

In this thesis, we present a stochastic model derived as a model of virus dynamics in a

host individual. First, we simulate system behavior through Gillespie’s direct method, then

we derive formulas of extinction time moments through the analysis of the Laplace transform

of the master equation [67]. The Laplace transform converts the nonlinear master equation

into a system of linear algebraic equations, which we can solve numerically to get the mean

and variance of the extinction time. The model can also be approximated by a reduced

Markov chain in one dimension with two absorbing states. We derive analytical expressions

of both mean extinction time and probability of such a reduced chain.
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2.1.2 In-host Virus Dynamics

In mathematical modeling of virus dynamics, ODE models of within-host viral infections

of target cell populations were developed by Perelson and Nelson [71], Nowak and May

[69] and others [61, 68, 72]. These models were primarily derived for HIV infection, and

later applied to other viral infections [69]. They focused on the disease dynamics within

an infected individual and provided the quantitative understanding of the level of virus

production during infection [50, 72].

Leenheer and Smith [50] presented a global analysis of virus infection in an ODE model.

In the absence of any immune component, the system follows a limit cycle trajectory that

traverses through a region of almost complete absence of healthy cells, marked by a high pro-

portion of infected and damaged cells. Bifurcation analysis of a complete immune response

model, developed by Hancioglu [40], shows that the innate response, which renders a portion

of healthy cells resistant to infection, eliminates this limit cycle and, instead, causes the

system to converge to a chronic state with finite proportion of healthy and infected cells and

virus level. The cellular response, which produces effector cells to remove the virus infected

cells, lowers the magnitude of damage in the chronic state and, for some virus concentra-

tions, causes the trajectory to pass very close to the healthy state. Finally, the adaptive

response, which produces antibodies to neutralize viruses, stabilizes the healthy steady state

as a global attractor of the system. (Unpublished results of M. Goldrich and D. Swigon).

Here we analyze the role of each immune component using a stochastic model, with the

following questions in mind:

• Is any type of the immune component, by itself, able to clear virus and stabilize the

healthy state?

• Can any type of the immune component be eliminated or weakened without disrupting

the function of the immune system?

• Can any type of the immune component be enhanced and take over another type’s role?

If the answer is negative to all these questions, we must conclude that the immune

system is optimally designed for clearance of viral infection. To assess the effect of individual

components of the immune system, we shall focus on two variables - the total damage to

5



the system, expressed as the proportion of cells incapable to perform their function, and

the total amount of virus in the system. We shall also be interested in finding out how

the systemic response depends on parameters describing the strength of the virus and the

strength of each immune strategy.

2.2 BASIC SYSTEM

In the absence of immune response, the system consists of three components - the free

virus particles (V), the healthy (susceptible) cells (H) and the infected cells (I). The most

appropriate model of viral infection is a combination of a predator-prey model (with healthy

cells as a prey and virus as the predator) and SIS epidemiological model. Neither of these

models is correct in isolation. The classical predator-prey model predicts an unlimited growth

of the prey in the absence of a predator, although in reality the amount of healthy cells should

not exceed a limiting threshold. The SIS model would describe the situation in which the

rate of infection of new individuals (cells) is proportional to the amount of infected cells,

while during viral attack it should be proportional to the amount of free virus.

Healthy

H

IAV

V

Infected

I

Dead

D

Figure 1: Basic System
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2.2.1 ODE Model

ODE model based on the diagram in Figure 1 can be presented by the following system

of differential equations:

V̇ = γV I − γV HHV − aV V (2.2.1)

Ḣ = bHD(1− I −H)H − γHV V H (2.2.2)

İ = γHVHV − aII (2.2.3)

Here, the virus particles are produced in infected cells with about n = γV H/aI particles

released upon the death of a single infected cell. The virus particles infect healthy cells and

turn them into infected cell, with circa m = γV H/γHV virus particles necessary to infect a

single health cell. The virus level also naturally decreases with k = aV /γV H being the average

amount of viral particles decayed before one infected cell is produced. All the variables are

re-scaled by the homeostatic level H∗ = 1012 cells. H and I are given as proportions of H∗

and hence range from 0 to 1, and V is given as the amount of viral particles per infected

cell. The healthy cells regenerate with a rate proportional to the quantity D = 1 − I −H ,

which may be called the damage.

Equation (2.2.2) describes that the regeneration of healthy cells depends on the system

being modeled. In the case of influenza, we use the following reasoning: The cells being

infected by influenza are epithelial cells of the respiratory tract. The human body contains

regulatory mechanism that strives to maintain a homeostatic level of such cells. Both the

infected and healthy cells count toward this level and hence healthy cells will regenerate

only if the total amount is below this homeostatic level. Other possibilities include a simpler

logistic term bHD(1 − H)H or a more sophisticated bHD(1 − D − I − H)H in which dead

cells are removed at a constant rate.

The analysis of influenza in humans [40] yielded the following estimates for the parameters

of the dimensionless model: γV = 510, γV H = 1.02, aV = 1.7, bHD = 4, γHV = 0.34, aI = 1.5.

(In the stochastic model described later, we shall assume for simplicity γV H = γHV = 0.7

and hence m = 1.) These constants correspond to roughly 340 (n = γV /aI = 510/1.5 = 340)

7



virus particles released from an infected cell per day and one infected cell produced after

about 5 (k = aV /γHV = 1.7/0.34 = 5) virus particles decay.

The parameter γV describes the reproductive ability of the virus and is the main virus-

dependent parameter affecting the behavior of the system equation (2.2.1). Figure 2 and 3

show the dependence of the behavior of the system on γV .

When γV is less than the critical value γBP
V = (γV H + aV )aI/γHV , then the system has

a stable equilibrium state (V,H, I) = (0, 1, 0), which we call healthy state, and an unstable

equilibrium state (V,H, I) = (0, 0, 0), which we call dead state. When γV is above γBP
V , the

healthy state becomes unstable and the system has an additional steady state, which we call

chronic state. The chronic state is stable and is characterized by nonzero values of V and I

that depend on γV :

HC =
aV aI

γV γHV − γV HaI
(2.2.4)

VC =
bHD(1−HC)

γHV (1 + bHDHC/aI)
(2.2.5)

IC =
γHV

aI
HCVC (2.2.6)

In equation (2.2.4), γV γHV − γV HaI > γBP
V γHV − γV HaI = aV aI . Thus we have 0 <

HC < 1. When γV above γHB
V , the chronic state becomes unstable and a limit cycle appears

through a Hopf bifurcation. The limit cycle persists in the limit as γV → ∞, but approaches

exponentially close to the dead state, which remains unstable for all values γV . See the

bifurcation diagram in Figure 2 and Figure 3.
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Figure 2: Bifurcation diagram of the basic system - virus dependence on γV and n. n = γV /aI

represents the number of viruses generated by a single infected cell. The system has different

behaviors through 3 parameter regions.

BP

V
 

HBHB

V
 

V
 

0 13 27 40 53 67 n

Figure 3: Bifurcation diagram of the basic system - healthy cell dependence on γV and n.
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A standard course of infection starts in the vicinity of the healthy state with no infected or

dead cells and a small amount of the virus. We typically use (V (0), H(0), I(0)) = (0.03, 1, 0)

as the initial state in the ODE model. In the limit cycle regime, this trajectory rapidly

approaches a limit cycle that can be divided roughly into three periodically repeating parts:

(i) rapid growth of the number of infected cells and the number of viral particles until

exhaustion of healthy cells, followed by (ii) decay of infected cells with slowing production

and decay of the virus, (iii) regeneration of the healthy cells.

One important unrealistic feature of the basic ODE model is that the system is able

to make a recovery even after almost complete absence of healthy cells. This result is an

oversimplification: if we considered the cells to be a part of an organism, then the absence

of healthy cells would result in a systemic failure and death of the organism. In our case

we may pronounce the system dead if the number of healthy cells drops below a certain

threshold, say 0.1. Of course, the choice of that threshold will affect the outcome. This

problem results from the stochastic nature of the underlying problem and can be addressed

in the context, which we do below.

2.2.2 Stochastic Model

The set of interactions between free virus particles (V), the healthy (susceptible) cells (H)

and the infected cells (I) can also be written conveniently as a system of chemical reactions

that symbolically describes the interactions between the components. The reaction network

of the basic system is:

V +H
γV H−−→ I (2.2.7)

I
aI−→ nV +D (2.2.8)

V
aV−→ ∅ (2.2.9)

H +D
bHD−−→ 2H (2.2.10)

A single infected cell produces n numbers of viruses. n = γV /aI can be derived from

(2.2.1) and (2.2.3). The healthy cells regenerate with a rate proportional to the quantity

D = H∗ − I − H . These chemical reactions give rise to the system of equations (2.2.1) ∼

10



(2.2.3) under the assumption of mass-action kinetics, with one exception: for simplicity we

assume that the rate γHV is equal to γV H and hence m = 1. (Distinct values can be achieved

by adding the reaction V +H
γHV −γV H−−−−−−→ H describing inefficient infection.)

The reactions (2.2.7) ∼ (2.2.10) imply that the total number H∗ = H +D + I of cells

is invariant and hence the phase space is a semi-infinite triangular prism bounded by the

planes H = 0, I = 0, H + I = H∗, and V = 0, with D = H∗ − H − I. Both the healthy

state (V,H, I) = (0, H∗, 0) and the dead state (V,H, I) = (0, 0, 0) are absorbing states. The

dead state (0, 0, 0) lies in the invariant facet of the phase space for which H = 0 - the green

plane in Figure 4. Once a trajectory enters this facet, it will converge toward (0, 0, 0), and

this convergence will be monotonic in I . The healthy state (0, H∗, 0) lies on the invariant

line V = I = 0 , the red line in Figure 4 - once a trajectory enters this line, it will converge

toward (0, H∗, 0), and this convergence will be monotonic in H .

V

V
max

0

I

HH∗

Figure 4: V-H-I triangular prism. The red line is the absorbing region for healthy state and

green plane is the absorbing region for dead state .
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The master equation for the reactions (2.2.7) ∼ (2.2.10) is given by:

d

dt
PV,H,I(t) = γV H(H + 1)(V + 1)PV+1,H+1,I−1(t) + aI(I + 1)PV−n,H,I+1(t)

+aV (V + 1)PV+1,H,I(t) + bHD(H − 1)(H∗ −H − I + 1)PV,H−1,I(t) (2.2.11)

−(γV HHV + aII + aV V + bHDH(H∗ −H − I))PV,H,I(t)

This equation is actually a system of ordinary differential equations that describes the

occupancy probability for different states of a chemical system during a Markov process. It

is also called a Kolmogorov equation. Each molecular species in the chemical model adds a

dimension to the state space. Unfortunately, the master equation (2.2.11) is too complex to

solve explicitly. So we have solved (a) the mean and limiting extinction probability of the

system; (b) the conditional mean, variance and coefficient of variation of extinction times,

of both viruses and healthy cells through the following method:

• Exact stochastic simulation - simulate the reaction network through Gillespie’s direct

method [30, 31].

• Numerical solution of the moments of extinction times through the Laplace transform of

the master equations [67].

• Approximately analytically solution of the master equation in the limit of n → ∞.

2.2.2.1 Stochastic Simulation Algorithm The most common method for solving a

master equation in systems biology is a stochastic simulation algorithm (SSA) [30, 31, 29].

SSA is an essentially exact procedure for numerically simulating the time evolution of a well-

stirred chemically reacting system. It is derived rigorously based on the same microphysical

premise that underlies the chemical master equation [60, 32]. So it is logically equivalent

to the master equation. The simulation statistically realizes the underlying Markov pro-

cess. The trajectories of species in the model are simulated by randomly applying reactions.

Many statistical properties of the system, such as the extinction time moments, probability

distribution, etc., can be computed through SSA.

Gillespie [30] proposed two mathematically equivalent methods for implementing the

SSA, namely the direct method (DM) and the first reaction method (FRM). DM is much

12



more efficient than FRM and it the most commonly employed method. A third formulation

of SSA is the next reaction method (NRM) by Gibson and Bruck [29] published in 2000.

NRM is an extension of FRM and it is significantly faster than FRM. It is also faster than

DM under certain conditions - when many species and reaction channels are involved and

the system is loosely coupled. But this statement is argued by Cao and his co-workers [10]

who claimed that NRM was more efficient than the DM only in a very specialized class of

problems. Simulation methods that are more efficient, but not exact, have been recently

proposed, such as explicit [35, 8, 9] and implicit [75] τ -leaping method, optimized direct

method [10]. A recent paper of Gillespie [34] contains a review of the relevant work in this

fields in the past 30 years. Here, we illustrate the DM algorithm and briefly discuss the other

methods.

Suppose we have M reactions, R1, R2, ..., RM , in total. Define the following variables

at time t [30, 47].

• Cµ: the rate of reaction Rµ.

• hµ: the number of reactant combinations for reaction Rµ.

• aµdt = hµCµdt: probability that reaction Rµ occurs in the next time interval dt.

• a0dt =
∑M

µ=1 aµdt: the sum of the average probabilities that any reaction occurs in the

next time interval dt

• P0(τ): probability that no reaction occurs during (t, t + τ)

• P (τ, µ)dτ = P0(τ)hµCµdτ : probability at time t that the next reaction is Rµ and occurs

in the interval (t+ τ, t+ τ + dτ). So P (τ, µ) is the reaction probability density function.

For example, if reaction R1: A+B → AB occurs and the number of molecules A and B

are X and Y , then h1 = XY and a1 = XY C1.

Divide the time interval (t, t+ τ) into K subintervals with width ε. The probability that

none of the reactions occurs in the N subintervals is:

P0(τ) =
(
1−

M∑

i=1

hiCiε
)K

= lim
K→∞

(
1−

∑M

i=1 hiCiτ

K

)K

= e−
∑M

i=1
hiCiτ = e−a0τ (2.2.12)

Then

P (τ, µ) = P0(τ)hµCµ = e−a0τaµ = (a0e
−a0τ )

(
aτ
a0

)
= P (τ)P (µ | τ) (2.2.13)
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Here P (τ) represents when next reaction occurs and P (µ | τ) reperents which reaction

occurs. We need to generate two random numbers r1 and r2, which are uniformly distributed

on [0, 1]. Then,

e−a0τ = r1 ⇒ τ = (1/a0) ln(1/r1) (2.2.14)

and µ is the integer for which

µ−1∑

i=1

ai
a0

< r2 <

µ∑

i=1

ai
a0

(2.2.15)

Figure 5: Scheme of the Gillespie’s direct method [47]

Here is the pseudo algorithm of Gillespie’s direct method:

1. Initialization:

- Set initial numbers of molecules and time t = 0.

- Set values of Cµ for the M reactions.

2. Calculate the values of ai and a0 =
∑M

i=1 ai.

3. Generate the two uniformly distributed random numbers r1 and r2;
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- Set τ = (1/a0) ln(1/r1)

- Set µ to the integer that satisfies:
∑µ−1

i=1 ai/a0 < r2 <
∑µ

i=1 ai/a0.

4. Change the number of molecules to reflect the execution of reaction µ.

5. Increase time t by τ .

6. Return to step 2 until total simulation time t reaches target maximum time.

In each loop, DM generates two random number in equation (2.2.14) and (2.2.15). In

the algorithm of FRM, it generates a τk for each reaction channel Rk according to τk =

(1/ak) ln(1/rk), where k = 1, ...,M , and r1, ...rM are statistically independent samplings

from the unit interval. Then τ = min{τ1, ...τM} and µ is the index of themin{τ1, ...τM}. The
improvement of NRM is that NRM reuses the M−1 unused randomly generated numbers in

FRM and generates a new random number to replace the used one, then carefully updates the

system to choose the next reaction. Clever data storage structures are employed to efficiently

find τ and µ. The DM, FRM and NRM all produce exactly realizations of molecules by

generating random pairs (τ, µ) rigorously according to the joint density function (2.2.13).

The three methods can therefore be regarded as mathematically equivalent. NRM is widely

believed to be more efficient than DM because it only generates one random number per step

while DM generates two. But NRM has extra cost in its special data structures. Cao [10]

tested the two algorithms on several systems and found NRM not as efficient as DM most

of the time. Then they proposed a method called optimized direct method by re-indexing

the reaction channels in a large system. The simulation time is speeded up by 12% - 25 %

by Cao’s result.

In our model, we choose the DM implementation of the SSA to simulate our system.

All the algorithms are implemented in MATLAB 7.5.0 (R2007b). In order to speed up the

simulation, we utilize the powerful feature of matrix computation in MATLAB and wrote

the code in such a way that hundreds of independent trajectories can be simulated in a single

loop. This increased simulation speed by a factor of 10 ∼ 50 compared with a program in

which the trajectories are simulated consecutively. We have studied the system behavior

for various values of n at several different system sizes. The system with H∗ = 100 and

with initial condition (V0, H0, I0) = (0.03H∗, H∗, 0) is the most common system size we have
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studied because of its reasonable simulation time. We focus our attention on the following

characteristics of the system:

Definition 2.2.1. Conditional mean extinction time, defined as the mean cell or virus

extinction time over trajectories in which cell or virus extinction occurs.

Definition 2.2.2. Extinction probability, defined as the probability of cell or virus ex-

tinction.

Definition 2.2.3. Limiting extinction probability, defined as the limit of cell or virus

extinction probability as n → ∞.

Results: Figure 6 shows the sample trajectories of the system produced by Gillespie’s

direct method. The trajectories can be divided into three distinct types, depending on

whether they terminate in healthy state (type I), dead state (type II), or they persist without

termination (type III).

For small values of n, essentially all trajectories are of type I. At some intermediate values

of n, roughly corresponding to the values of γBP
V < γV < γHB

V , almost all the trajectories

are type III. At large values of n, most trajectories are of type II . Once a typical trajectory

visits the neighborhood of the invariant facet H = 0 before visiting the neighborhood of the

line V = I = 0, it is likely to be captured by the dead state.

In Figure 6, the initial number of healthy cells, viruses, and infected cells are H0 = H∗ =

100, V0 = 3, and I0 = 0. The other parameters are n = γV /aI = 15 and maximum simulation

time Tmax = 30. The reaction rates used in the simulation are referred from Hancioglu’s

paper [40], aI = 1.5, aV = 1.7, γV H = 0.7/H∗, bHD = 4/H∗ (Some of the parameters are

adjusted by the homeostatic level in our Gillespie algorithm).
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Figure 6: Sample trajectories of the basic system obtained by the Gillespie’s direct method.

H0 = H∗ = 100, V0 = 3, I0 = 0, n = 15, Tmax = 30, number of the trajectories=30.

For comparison, we have run the ODE model and Gillespie simulation together by using

the same parameter values (see Figure 7). We set γV = 40, so n = γV /aI = 27, and
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Tmax = 30. The trajectories of ODE model are showed in the first row subplots. We can see

the limit cycles in the H − V and I − V planes. Healthy cells H are always able to recover

from an almost complete absence. The trajectories in the second row are derived from a

single simulation using Gillespie’s direct method. We can see that when healthy cells drop

below a certain level, they try to recover, but after small excursion they go to extinction at

t ≈ 6. After healthy cell extinction, the infected cell is extinct at t ≈ 7, and then followed

the virus extinction at t ≈ 8. The green dots in the plots are where the first extinction -

healthy cell extinction in this sample - occurs.
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Figure 7: Trajectory comparison for ODE and stochastic models of the basic system. Pa-

rameters are equivalent in the two models. (V0, H0, I0) = (0.03, 1, 0) in the deterministic

model and (V0, H0, I0) = (3, 100, 0) in the stochastic model. γV = 40, n = 27, Tmax = 30.
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In Figure 8, we plot the conditional mean extinction times and extinction probabilities

as functions of n. As we mentioned before, the stochastic model shows three kinds of

behavior in the different parameter regions. When n < 6, no cell extinction occurs. When

6 ≤ n < 11, a few cell extinctions occurs and the conditional mean time of cell extinction

increases dramatically. When 11 ≤ n < 25, the cell extinction probability increases fast to a

limiting probability PC = 0.64, and remains at that level as n → ∞. At the same time, the

conditional mean cell extinction time gradually decreases to a certain level. For the viruses,

it has an almost complete extinction with probability 1 when n is small, decreases fast when

n < 10, and gradually decreases to a limiting probability PV = 0.36 when n > 10. The

conditional mean virus extinction time has a peak at around n = 5, where the cell extinction

starts to appear, and then it decreases fast at 5 ≤ n < 10 and reach a limiting extinction

time when n > 25.

We have examined the effect of simulation time on the results when Tmax = 10, 20, 30, 40, 50, 60,

and define the non-extinction as neither cell nor virus extinction occurs when the simu-

lation time reaches Tmax. In Figure 8, the trajectories of conditional extinction time and

extinction probability at different Tmax are the same before the bifurcation and at the lim-

iting case. The larger Tmax, the faster the system reaches the limiting or stable level. As

expected, the peaks of the cell and virus conditional extinction time always occur at the

same n intervals and become higher as we increase the simulation time. According to Figure

8, it appears that there might be an explosion of the extinction time at some certain values

of n. Below we verify that such an explosion does not happen, i.e., the mean extinction time

is finite, using the Laplace transform method.
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Figure 8: Conditional mean time and probability of extinction with different maximum

simulation times, Tmax = 10, 20, 30, 40, 50, 60, H∗ = 100, V0 = 3. The x-axis represents n

values and the y-axis represents conditional mean extinction time in the first row plots and

extinction probability in the second row plots. All the trajectories are averaged over 50,000

independent samples.

2.2.2.2 Numerical Solution of Mean Extinction Time The master equation for the

system (2.2.7)-(2.2.10) was given in (2.2.11). It is too complex to be solved analytically, but

it can be solved numerically if the state space is truncated at an upper limit of the copy

number in each species. In fact, since the total number of cells is limited by H∗, one only

needs to truncate the number of virus particles. An artificial boundary condition P (x, t) = 0

is usually added at xi > xmax for a sufficiently large xmax > 0 to obtain a finite computational

domain.
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Figure 9: Enumerating the states on H − I plane

We truncate the state space at an upper limit Vmax of the copy number of viruses.

Variables H , I, D are bounded by the equation H + I +D = H∗. The remaining problem

would be how to enumerate all the states in the truncated system. Figure 9 shows our

method to enumerate the states on H − I plane. We are going to enumerate all the states

H − I plane by H − I plane according to different number of viruses. We start at the H − I

plane with V = 0. The dead state (V,H, I) = (0, 0, 0) is the first state, (V,H, I) = (0, 0, 1)

is the second state, then (V,H, I) = (0, 0, 2) is the third state and so on. The healthy

state (V,H, I) = (0, H∗, 0) is the last state on the first plane (V = 0). Then we continue

enumerating on the second H − I plane with V = 1, and then the third plane with V = 2

till V = Vmax. The total number of states is:

N = (H∗ + 1)(H∗ + 2)(Vmax + 1)/2 (2.2.16)
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If we take H∗ = 100, Vmax = 600, the system size is approximately 3 × 106. It is still

so large that it is not possible to solve the master equation using numerical ODE solvers.

Fortunately, there is a way to compute exactly the mean extinction time and other moments

by using Laplace transform of the master equation [67].

Here is how we implement the method for our model. First, each Pi corresponds to a

PV,H,I with V , H , I being a certain number. P1, P2, P3, ..., PTotalPoint denote the probability

at each state. PH , PD are the total probabilities of states in healthy absorbing region

(V = I = 0, H > 0, red line in Figure 4) and dead absorbing region (H = 0, green plane in

Figure 4). So we have:

PH =

H∗∑

H=1

P0,H,0 (2.2.17)

PD =
Vmax∑

V=0

H∗∑

I=0

PV,0,I (2.2.18)

The probability for the system to go to healthy absorbing states in a small time interval

δt is PH(t+ δt)−PH(t). Shrinking this time interval to zero, we have the distribution of the

extinction time:

dPH

dt
= lim

δt→0

PH(t + δt)− PH(t)

δt
(2.2.19)

From (2.2.11), we know

H∗∑

H=1

dP0,H,0

dt
=

H∗∑

H=1

(
aV P1,H,0(t) + bHD(H − 1)(H∗ −H + 1)P0,H−1,0(t)

−(bHDH(H∗ −H))P0,H,0(t)
)

(2.2.20)

=

H∗∑

H=1

aV P1,H,0(t) (2.2.21)

Thus the distribution of the virus extinction is simply:

dPH

dt
=

H∗∑

H=1

aV P1,H,0(t) (2.2.22)
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So the moments of the virus extinction time are obtained via

〈TV
n〉 = av

∞∫

0

tn
( H∗∑

H=1

P1,H,0(t)
)
dt (2.2.23)

Similarly, the distribution of the cell extinction is

dPD

dt
=

Vmax∑

V=1

H∗−1∑

I=0

γV HV PV,1,I(t) (2.2.24)

The moments of the cell extinction time are obtained via

〈TC
n〉 = γV H

∞∫

0

tn
( Vmax∑

V=1

H∗−1∑

I=0

V PV,1,I(t)
)
dt (2.2.25)

The Laplace transform of function P (t) is defined via

P̂ (s) =

∫ ∞

0

e−stP (t)dt (2.2.26)

and the transform of the derivative P ′(t) by

∫ ∞

0−
e−stP ′(t)dt = s

∫ ∞

0−
e−stP (t)dt− P (0) (2.2.27)

The derivative of P̂ (s) with respect to s can be related to P (t) by

dnP̂ (s)

dsn
=

∫ ∞

0

(−t)ne−stP (t)dt (2.2.28)

Thus, can rewrite the moments equations in the following way:

〈TV
n〉 = (−1)naV

H∗∑

H=1

dnP̂1,H,0(s)

dsn

∣∣∣∣
s=0

(2.2.29)

〈TC
n〉 = (−1)nγV H

Vmax∑

V=1

H∗−1∑

I=0

V
dnP̂V,1,I(s)

dsn

∣∣∣∣
s=0

(2.2.30)

Now we are almost ready to calculate the moments of extinction times. The difficulty

of solving the master equation is the huge system size of (2.2.11). Our plan is to transform

the master equation (2.2.11) into a linear system through its Laplace transform, then solve

the linear system, and substitute the solutions in to equations (2.2.29) and (2.2.30) to get

the values of moments generating function. Apply (2.2.26) and (2.2.27) to the right and left
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sides of (2.2.11) separately. The Laplace transform of the master equation (2.2.11) is the

following system of algebraic equations:

sP̂V,H,I(s)− PV,H,I(0) = γV H(H + 1)(V + 1)P̂V+1,H+1,I−1(s) + aI(I + 1)P̂V−n,H,I+1(s)

+aV (V + 1)P̂V+1,H,I(s) + bHD(H − 1)(H∗ −H − I + 1)P̂V,H−1,I(s)

−(γV HHV + aII + aV V + bHDH(H∗ −H − I))P̂V,H,I(s)

(2.2.31)

Equation (2.2.31) is a linear system for any value of s. Let’s set s = 0 and denote it as

the following.

B0 = AP̂V,H,I(0) (2.2.32)

The initial condition of (2.2.32) is PV0,H∗,0(0) = 1 and PV,H,I(0) = 0 for all other states.

B0 = −PV,H,I(0) and A is the coefficient matrix of the right hand side of the system(2.2.31).

Equations (2.2.29) and (2.2.30) tell us that the moments of the extinction time depend on

the derivatives of the P̂V,H,I functions. By taking the derivative of (2.2.31) with respect to

s we obtain

P̂V,H,I(s) + s
dP̂V,H,I(s)

ds
= γV H(H + 1)(V + 1)

dP̂V+1,H+1,I−1(s)

ds
+ aI(I + 1)

dP̂V−n,H,I+1(s)

ds

+aV (V + 1)
dP̂V+1,H,I(s)

ds
+ bHD(H − 1)(H∗ −H − I + 1)

dP̂V,H−1,I(s)

ds

−(γV HHV + aII + aV V + bHDH(H∗ −H − I))
dP̂V,H,I(s)

ds

(2.2.33)

Set s = 0, equation (2.2.33) becomes a linear system again. Let us denote it as

B1 = A
dP̂V,H,I(0)

ds
(2.2.34)

Where B1 = P̂V,H,I(0), which can be solved from the linear system (2.2.32). By repeating

the above process one can obtain higher moments.

The results can be summarized in the following algorithm:
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1. Solve the linear system (2.2.32) to get P̂V,H,I(0) .

2. Substitute the solutions of (2.2.32) into (2.2.34), and solve the system to get
dP̂V,H,I(s)

ds
.

3. Calculate the mean extinction time of virus through formula (2.2.29) by setting n = 1,

〈TV 〉 = −aV

H∗∑

H=1

dP̂1,H,0(0)

ds

∣∣∣∣
s=0

(2.2.35)

4. Calculate the mean extinction time of cell through formula (2.2.30) by setting n = 1,

〈TC〉 = −γV H

Vmax∑

V=1

H∗−1∑

I=0

V
dP̂V,1,I(s)

ds

∣∣∣∣
s=0

(2.2.36)

To calculate the second moments, take the second derivative of equation (2.2.31) and

set s = 0, we get

B2 = A
d2P̂V,H,I(0)

ds2
(2.2.37)

Where B2 = 2
dP̂V,H,I(0)

ds
, which is solved from the linear system (2.2.34). Similarly, solv-

ing the linear system (2.2.37) to get
d2P̂V,H,I(0)

ds2
and substitute the solution back to formula

(2.2.29) and (2.2.30) by setting n = 2 to get the second moments of the extinction times.

The variance of the extinction times is given by

V arV = 〈TV
2〉 − 〈TV 〉2 (2.2.38)

V arC = 〈TC
2〉 − 〈TC〉2 (2.2.39)

and the coefficient of variation is given by

ρV =

√
〈TV

2〉 − 〈TV 〉2
〈TV 〉

(2.2.40)

ρC =

√
〈TC

2〉 − 〈TC〉2
〈TC〉

(2.2.41)

To calculate the higher moments of extinction, we just need to continue taking derivatives

of (2.2.31) and solving the new linear system by substituting solutions from the previous

step.

We have mentioned before that the main advantage of the Laplace transform method

is to convert the nonlinear master equation into a linear system of algebraic equations.

Unfortunately, if we take H∗ = 100, Vmax = 600, the system size is approximately 3 × 106.
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Because of limited computer memory, we were not able to handle a system size as large as

3×106. We have explored several ways to improve the computational efficiency. Suppose the

system that we are going to solve is B̄ = Āx̄. First, Ā is a sparse matrix in our model. We

reorder the Ā by Cuthill-McKee ordering [15] - a permutation such that Ā tends to have its

nonzero elements closer to the diagonal. This reordering is very helpful in LU factorization.

We then use B = Ax to denote the new system. We divide the matrix A into 4 sub-matrices

with the same size, B into 2 vectors with same length and so does x. Then we have:


 B1

B2


 =


 A11 A12

A21 A22




 x1

x2


 (2.2.42)

That is

B1 = A11x1 + A12x2 (2.2.43)

B2 = A21x1 + A22x2 (2.2.44)

One can solve for x1 using

(A−1
12 A11 − A−1

22 A21)x1 = (A−1
12 B1 − A−1

22 B2) (2.2.45)

then substitute x1 into (2.2.43) and solve for x2. Each of the matrices in question has a lower

size than the original matrix A and hence they all fit in the computer memory. We apply

LU factorization whenever necessary into the intermediate matrices in above procedure.

This method help in improving the upper limit on the size of a solvable linear system in

MATLAB. It requires less memory when dealing with the inverse of these sub-matrices than

a full matrix. In the end, the largest size of the system that we were capable to solve was

H∗ = 25, Vmax = 181, corresponding to a total of 63882 states in the system.

Figure 10 shows the result of Laplace method. We have also applied the same parameter

set to Gillespie algorithm and plot the results of these two methods together. Notice that

equation (2.2.29) and (2.2.30) are formulas of mean extinction times. But what we have

calculated in the Gillespie’s direct method is the conditional mean extinction times. So we

need to apply the probability values at each n values derived from Gillespis algorithm to

(2.2.29) and (2.2.30) to get the conditional mean extinction time.
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Figure 10: Probability, conditional mean, variance and coefficient of variation of virus or cell

extinction. The red line is the result of Laplace method and the blue line is the result of

Gillespie’s direct method. V0 = 1, H∗ = 25, Vmax = 181, all the other parameters are the

same as before. The x-axis is n = γV /aI .

This Laplace method only gives us the moments of the extinction times, not extinction

probabilities. The two plots in the first column in Figure 10 are the probabilities of virus

and cell extinction computed by the Gillespie’s method. The plots in the second column are

the conditional mean extinction times of the virus and cell. As we have pointed out before,

because of the limited simulation time, the peak in the Gillespie’s method is not accurate.

The plots in the third and forth column are the variance and coefficient of variation of virus

and cell. The y-axis of the plots are in log scale except ones in the first column. We see

that for n < 10, Laplace method generates much higher peaks than the Gillespie’s direct

method. When n > 10, the two methods coincide for the conditional mean extinction time
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of virus and have similar trajectories for the variance and coefficient of variation of virus

extinction. Because cell extinction is very sensitive to Vmax, the results of the two methods

for cell extinction time are similar only at some intermediate interval of n values.

From the computational side, Laplace method is faster than Gillespie’s direct method.

But the Gillespie’s method works better in the case of cell extinction than Laplace method

does, especially at high values of n where trajectories make excursions to high values of V .

When increased the system size, the variance of cell extinction in Laplace method became

negative at some values of n which implies that the system size has become to large to be

accurately computed by Laplace method. So Laplace method is accurate and efficient when

H∗ and n are small.

In summary, Gillespie’s direct method is limited by the simulation time and Laplace

method is limited by the system size, especially the cutoff value of Vmax. In order to take

the advantage of both methods, we combine the two methods to apply at different values of

H∗ and n.

2.2.2.3 Combination of Gillespie and Laplace Method In last section, we men-

tioned that the Laplace method is more efficient and accurate at small system size and when

n is small while Gillespie’s method is more accurate for large n. Figure 11 shows the result

of the combination of the two methods.
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Figure 11: A combination of Gillespie’s direct and Laplace methods. The red, dark blue,

green, light blue and pink trajectories represent (H∗, V0) = (5, 1), (10, 2), (15, 3), (20, 4), and

(25, 5) with Vmax = 181. The x-axis is n = γV /aI . Note the logarithmic scale of the ordinate

in the plots of extinction times, variances and coefficients of variation.

We have studied the dependence of extinction times on system size by using the follow-

ing values, (H∗, V0) = (5, 1), (10, 2), (15, 3), (20, 4), (25, 5). Vmax was fixed at 181. Figure

11 shows how the system size effect the results. The limiting probability of virus extinc-

tion decreases as we increase the system size while the limiting probability of cell extinction

increases.

In both Gillespie’s and Laplace’s methods, we find that the conditional extinction times

of both virus and cells grow exponentially with the system size. One dimensional models

studies by Nasell [66] and Vellela [83] agree with this result. In our model, the coefficient of

variation of virus extinction increases with the system sizes and reaches the maximum value
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at some intermediated n values. Newman [67] states in a one dimensional birth-death model

that the coefficient of variation is found to have a maximum value when the death and birth

rates are close in the value. These paper all discuss the extinction time in three parameter

regions: long, intermediate long and short extinction time. The second region is a transition

region between the other two.

2.2.2.4 Approximate Solution of a Limiting Case Recall from Figure 6 that there

is a special subset of trajectories which are of short duration and in which the number of

viruses never increases. In this section, we will show that these trajectories have the same

probability of occurrence independent of n and can be interpreted as no-disease trajectories.

We analyze them analytically using a corresponding Markov Chain.

n
 

V
a

VH
!

2
V
a

2
VH
! ( 1)

VH
m !"

   

VH
m!

V
ma( 1)

V
m a"

n
 

   

No disease

Figure 12: m is the initial number of viruses. 0, 1, 2, ..., m are the states representing

V = 0, 1, ...m and I = 0. m+ 1 represents all states with V > m or I > 0. The red dashed

ellipse denotes the no-disease region.

In Figure 12, numbers 0, 1, 2, ...,m represent the states (V,H, I) = (0, H∗, 0), ..., (m,H∗, 0)

of the system. Thus, the state 0 represents the healthy state. The state m+ 1 is outside of

the no-disease region with I > 0 or V > m (assume m < n). The only way for the system

to leave the no-disease region and enter state m + 1 is when reaction V + H → I occurs.

The only channel for the system to go from state m+ 1 back to no-disease region is that it

goes to state m first. Let’s denote this returning probability as ρn. State m has I = 0. So

I → nV +D must occur with probability 1 if the system is to go from m+ 1 back to state
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m. Once I → nV + D occurs, the system has ≥ n number of viruses, the probability for

these viruses to decay to number m is Pm+1−to−m =
(

aV
aV +γV H

)n−m

. So ρn ≤ Pm+1−to−m. As

n becomes large, we have:

0 ≤ lim
n→∞

ρn ≤ lim
n→∞

(
aV

aV + γV H

)n−m

= 0 (2.2.46)

Therefore, as n → ∞, and limn→∞ ρn = 0, the basic system behaves as the Markov chain

in Figure 12. In the other word, as n → ∞ the basic system will either stay in the no -disease

region, and converge to the healthy state, or it will leave the no-disease region and never

return to healthy state, as m + 1 becomes an absorbing state. The master equation of this

reduced model is below:

dPm+1

dt
= γV HP1 + 2γV HP2 + 3γV HP3 + · · ·+mγV HPm

dP0

dt
= aV P1

dP1

dt
= −(aV + γV H)P1 + 2aV P2

dP2

dt
= −2(aV + γV H)P2 + 3aV P3

... (2.2.47)

dPm−1

dt
= −(m− 1)(aV + γV H)Pm−1 +maV Pm

dPm

dt
= −m(av + γV H)Pm

We have employed two methods to solve the system (2.2.47).

Method 1: The Embedded Markov Chain

If the states of a Markov process are discrete and the process may change state at any

point in time, we say that the process is a continuous-time Markov chain (CTMC). If the

transitions between states is independent of time, it is called a homogeneous, continuous-

time Markov chain. Let q̄ij be the rate at which transitions occur from stat i to state j.

When the CTMC is homogeneous, the transition rates q̄ij are independent of time and the

matrix of transition rates can be written as Q̄. When discussing the Gillespie algorithm,

we have shown that the time spent by the system in any state is exponentially distributed.
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In a state i, the parameter of the exponential distribution of the sojourn time is given by

−q̄ii =
∑

j 6=i q̄ij. If we ignore the time actually spent in any state and consider only the

transitions made by the system, we may define a new, discrete-time, Markov chain called

the embedded Markov chain (EMC). Many of the properties of a CTMC can be deduced

from its corresponding EMC. For example, a CTMC is irreducible if and only if its EMC

is irreducible and a single state is recurrent in a CTMC if and only if it is recurrent in its

EMC [78].

For a CTMC the one step transition probabilities of its corresponding EMC, denoted by

qi,j, are given by

qij =
q̄ij∑
j 6=i q̄ij

, j 6= i

= 0, i = j (2.2.48)

Let Q denote the transition probability matrix of the EMC. All elements in Q satisfy

0 ≤ qij ≤ 1 and
∑

i,j 6=i qij = 1 for all i. Thus Q possesses the characteristics of a transition

probability matrix for a discrete-time Markov chain [78]. So the limiting probability can be

found as

P = lim
n→∞

P0Q
n (2.2.49)

where P0 is the initial probability distribution.

We shall use the EMC to find the limiting probability of virus extinction. Let’s start

with examples in which the initial number of viruses is 1 and 2.
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Case 1: m = 1
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2

V
a

VH
 

Figure 13: State 1 is the initial state (V,H, I) = (1, H∗, 0), state 0 is the healthy state

(V,H, I) = (0, H∗, 0), and state 2 is the dead absorbing region I > 0 or V > 1.

State 2 represents the absorbing region outside of the no-disease region. State 0 is the

healthy state with (V,H, I) = (0, H∗, 0). State 1 is the initial state with (V,H, I) = (1, H∗, 0).

We shall reorder the states as (2, 0, 1) so that we can get the transition rate matrix in a good

permutation for computation, i.e., P = (P2, P0, P1). The transition probability matrix is:

Q1 =




1 0 0

0 1 0

γV H

aV +γV H

aV
aV +γV H

0


 (2.2.50)

and the initial state P (0) = (0, 0, 1). If we take Q1 squared, we find:

Q2
1 =

1

(aV + γV H)2




aV + γV H 0 0

0 aV + γV H 0

γV H aV 0




2

= Q1 (2.2.51)

Hence

Ql
1 = Ql−1

1 = . . . = Q2
1 = Q1, l ≥ 1 (2.2.52)

So

P (0)Ql
1 = (0, 0, 1)Q1 =

(
1− aV

aV + γV H

,
aV

aV + γV H

, 0

)
, l ≥ 1 (2.2.53)
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is the stationary state, which means that by the end the system has a probability of 1− aV
aV +γV H

to be a dead state and a probability of aV
aV +γV H

to be a healthy state if the initial number of

viruses is 1.

Case 2: m = 2
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Figure 14: State 2 is the initial state, state 0 is the healthy state, and state 3 is the dead

absorbing region.

Let P = (P3, P0, P1, P2). The transition probability matrix is:

Q2 =




1 0 0 0

0 1 0 0

γV H

aV +γV H

aV
aV +γV H

0 0

γV H

aV +γV H
0 aV

aV +γV H
0




(2.2.54)

and the initial state P (0) = (0, 0, 0, 1).

Calculate Q2 square,

Q2
2 =




1 0 0 0

0 1 0 0

1− aV
aV +γV H

aV
aV +γV H

0 0

1−
(

aV
aV +γV H

)2 (
aV

aV +γV H

)2
0 0




(2.2.55)

Calculation of Q3
2, reveals that Q

3
2 = Q2

2. Hence,

Ql
2 = Ql−1

2 = . . . = Q2
2, l ≥ 2 (2.2.56)
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So

P (0)Ql
2 = (0, 0, 0, 1)Q2

2 =

(
1− a2V

(aV + γV H)2
,

a2V
(aV + γV H)2

, 0

)
, l ≥ 2 (2.2.57)

is the stationary state, which means that by the end the system has a probability of 1 −
(

aV
aV +γV H

)2
to be a dead state and a probability of

(
aV

aV +γV H

)2
to be a healthy state if the

initial number of viruses is 2.
On the basis of these two examples, we can deduce a general result.
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Figure 15: m is the initial number of viruses. 0, 1, 2, ..., m are the states representing the

number of viruses and I = 0. m+ 1 represents the states when V > m or I > 0.

Theorem 2.2.1. If the initial number of viruses is m and V + H
γV H−−→ I occurs, specifi-

cally when n → ∞, the system (2.2.47) has a stationary state with the probability of virus

extinction

PH =
( aV
aV + γV H

)m
(2.2.58)

and the probability of cell extinction

PD = 1−
( aV
aV + γV H

)m
(2.2.59)

The transition probability matrix Qm has the property

Ql
m = Ql−1

m = . . . = Qm+1
m = Qm

m, l ≥ m (2.2.60)
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where

Qm
m =




1 0 0 · · · 0 0

0 1 0 · · · 0 0

1− aV
aV +γV H

aV
aV +γV H

0 · · · 0 0

1−
(

aV
aV +γV H

)2 (
aV

aV +γV H

)2

0 · · · 0 0
...

...
...

... 0 0

1−
(

aV
aV +γV H

)m−1 (
aV

aV +γV H

)m−1

0 · · · 0 0

1−
(

aV
aV +γV H

)m (
aV

aV +γV H

)m

0 · · · 0 0




(2.2.61)

Proof. We have verified this result for m = 1, 2. For m ≥ 3, we prove the result using

induction. Suppose it is true when V0 = m − 1, let’s consider the case of V0 = m. The

transition probability matrix Qm is a (m+ 2)× (m+ 2) matrix:

Qm =




1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

γV H

aV +γV H

aV
aV +γV H

0 · · · 0 0 0

γV H

aV +γV H
0 aV

aV +γV H
· · · 0 0 0

...
...

...
... 0 0 0

γV H

aV +γV H
0 0 · · · aV

aV +γV H
0 0

γV H

aV +γV H
0 0 · · · 0 aV

aV +γV H
0




(2.2.62)

Divide matrix Qm into four sub-matrices,

Qm =


 A B

C D


 (2.2.63)

where A is a (m + 1) × (m + 1) matrix composed by the intersection of the first

m + 1 rows and m + 1 columns of Qm. B is a (m + 1) × 1 zero column vector. C =(
γV H

aV +γV H
, 0, 0, · · · , aV

aV +γV H

)
with size 1 × (m + 1). D is a 1 × 1 zero matrix. From the

construction of Qm, we can see that A = Qm−1. Then

Q2
m =


 A B

C D





 A B

C D


 =


 A2 0

CA 0




36



Q3
m =


 A2 0

CA 0





 A B

C D


 =


 A3 0

CA2 0




. . . (2.2.64)

Qm
m =


 Am−1 0

CAm−1 0





 A B

C D


 =


 Am 0

CAm−1 0




We have A = Qm−1, so Am = Qm
m−1 = Qm−1

m−1 = Am−1, which is known by induction.

Thus

CAm−1 =

(
γV H

aV + γV H

, 0, 0, · · · , aV
aV + γV H

)
Qm−1

m−1

=

(
1−

( aV
aV + γV H

)m

,
( aV
aV + γV H

)m

, 0, · · · , 0
)

(2.2.65)

Substitute equation (2.2.65) into equation (2.2.64), we getQm
m equals what we have stated

in (2.2.61). Hence the system has a stationary state with the probability PH =
(

aV
aV +γV H

)m

of virus extinction and the probability PD = 1−
(

aV
aV +γV H

)m
of cell extinction.

Method 2: Direct solution of master equation for the reduced system

We have also found the analytical solution of the master equation for the reduced system.

As before, we start with examples in which the initial number of viruses is 1, 2, and 3.

Case 1: m = 1 The system (2.2.47) becomes:

dP2

dt
= γV HP1

dP0

dt
= aV P1 (2.2.66)

dP1

dt
= −(aV + γV H)P1

Let P = (P2, P0, P1)
T , then P (0) = (0, 0, 1)T . The eigenvalues of the coefficient matrix on

the right hand side of (2.2.66) are λ1 = 0, λ2 = 0 and λ3 = −(γV H + aV ). The associate

eigenvectors are v1 = (1, 0, 0)T , v2 = (0, 1, 0)T , and v3 =
(

−γV H

av+γV H
, −aV
av+γV H

, 1
)T

. So the

solution of (2.2.66) can be written as

P (t) = c1v1 + c2v2 + c3e
−(aV +γV H )tv3 (2.2.67)
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Apply the initial condition to solve c1, c2 and c3. We get

c1 =
γV H

aV + γV H

, c2 =
aV

aV + γV H

, c3 = 1 (2.2.68)

So the solution of (2.2.66) is

P2(t) =
γV H

aV + γV H

(
1− e−(aV +γV H )t

)

P0(t) =
aV

aV + γV H

(
1− e−(aV +γV H )t

)
(2.2.69)

P1(t) = e−(aV +γV H )t

As time t approaches infinity, we have

P limit
2 = 1− aV

aV + γV H

, P limit
0 =

aV
aV + γV H

, P limit
3 = 0 (2.2.70)

The above results agree with the results obtained using EMC. Since we have analytically

solved the system, we can calculate the conditional mean extinction time of virus. Let ∆P0

be the probability change of P0 in a small time interval, thus ∆P0 = (aV P1)∆t. P limit
0 ,

the normalized factor, is the limiting probability that the system ends at healthy state, in

the other word, virus go extinction. So the conditional mean virus extinction time can be

calculated in the following way:

〈tV 〉 =
1

P limit
0

∑
t(∆P0) =

(
aV

aV + γV H

)−1 ∫ ∞

0

t(aV P1)dt

= (aV + γV H)

∫ ∞

0

te−(aV +γV H)tdt (2.2.71)

=
1

aV + γV H

The variance of conditional virus extinction time is

varV = 〈t2V 〉 − 〈tV 〉2 =
1

(aV + γV H)2
(2.2.72)

Case 2: m = 2 The system (2.2.47) becomes:

dP3

dt
= γV HP1 + 2γV HP2

dP0

dt
= aV P1 (2.2.73)
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dP1

dt
= 2aV P2 − (aV + γV H)P1

dP2

dt
= −2(aV + γV H)P2

Let P = (P3, P0, P1, P2)
T , then P (0) = (0, 0, 0, 1)T . The eigenvalues of the coefficient

matrix on the right hand side of (2.2.73) are λ1 = 0, λ2 = 0 and λ3 = −(aV + γV H),

λ4 = −2(aV + γV H). The associate eigenvectors are v1 = (1, 0, 0, 0)T , v2 = (0, 1, 0, 0)T , and

v3 =
(

−γV H

aV +γV H
, −aV
av+γV H

, 1
)T

, v4 =
(

−γ2

V H

(aV +γV H)2
,

−a2
V

(av+γV H )2
, −2aV
aV +γV H

)T

. Similarly as we did in

(2.2.66), by applying the initial condition, (2.2.73) can be solved as

P3(t) = c1 + c3
−γV H

aV + γV H

e−(aV +γV H )t + c4
−γV H

2

(aV + γV H)
2 e

−2(aV +γV H )t

P0(t) = c2 + c3
−aV

aV + γV H

e−(aV +γV H )t + c4
−aV

2

(aV + γV H)
2 e

−2(aV +γV H )t

P1(t) = c3e
−(aV +γV H )t + c4

−2aV
aV + γV H

e−2(aV +γV H )t (2.2.74)

P2(t) = c4e
−2(aV +γV H )t

where the values of the coefficients are

c1 = 1−
(

aV
aV + γV H

)2

, c2 =

(
aV

aV + γV H

)2

,

c3 =
2aV

aV + γV H

, c4 = 1 (2.2.75)

As time t approaches infinity, we have

P limit
3 = c1 = 1−

(
aV

aV + γV H

)2

P limit
0 = c2 =

(
aV

aV + γV H

)2

(2.2.76)

P limit
1 = P limit

2 = 0

Then the conditional virus extinction time is

〈tV 〉 =
∑

t(∆P0)/P
limit
0

=

(
aV

aV + γV H

)−2 ∫ ∞

0

t(aV P1)dt
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=

(
aV + γV H

aV

)2 ∫ ∞

0

t

(
2aV

aV + γV H

e−(aV +γV H )t − 2aV
aV + γV H

e−2(aV +γV H )t

)
dt

=
3

2(aV + γV H)
(2.2.77)

The variance of conditional virus extinction time is

varV = 〈t2V 〉 − 〈tV 〉2 =
5

4(aV + γV H)2
(2.2.78)

Case 3: m = 3 The system (2.2.47) becomes:

dP4

dt
= γV HP1 + 2γV HP2 + 3γV HP3

dP0

dt
= aV P1

dP1

dt
= 2aV P2 − (aV + γV H)P1

dP2

dt
= 3aV P3 − 2(aV + γV H)P2 (2.2.79)

dP3

dt
= −3(aV + γV H)P3

The initial condition is P (0) = (0, 0, 0, 1)T . Similarly, we solve this system by finding its

eigenvalues and associated eigenvectors of the coefficient matrix. The solution is below:

P4(t) = 1− P0(t)− P1(t)− P2(t)− P3(t)

P0(t) =
a3V

(aV + γV H)3
(
1− e−(aV +γV H )t

)3

P1(t) =
3a2V e

−(aV +γV H )t

(aV + γV H)2
(
1− e−(aV +γV H)t

)2
(2.2.80)

P2(t) =
3aV e

−2(aV +γV H )t

aV + γV H

(
1− e−(aV +γV H )t

)

P3(t) = e−3(aV +γV H )t

As time t approaches infinity, we have

P limit
4 = 1−

(
aV

aV + γV H

)3

, P limit
0 =

(
aV

aV + γV H

)3

(2.2.81)

P limit
1 = P limit

2 = P limit
3 = 0
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Then the conditional virus extinction time is

〈tV 〉 =
∑

t(∆P0)/P
limit
0 =

(
aV

aV + γV H

)−3 ∫ ∞

0

t(aV P1)dt =
11

6(aV + γV H)
(2.2.82)

The variance of conditional virus extinction time is

varV = 〈t2V 〉 − 〈tV 〉2 =
49

36(aV + γV H)2
(2.2.83)

After these examples, we are ready to formulate the general result:

General Case: The initial number of virus is m. Let P = (Pm+1, P0, P1, . . . , Pm)
T be

the probability of state m+ 1, 0, 1, ..., m.

Theorem 2.2.2. When the initial condition of the system (2.2.47) is P (0) = (0, 0, . . . , 0, 1)T

with size 1× (m+ 2), the solution of (2.2.47) is:

Pk(t) =
Ck

ma
m−k
V

(aV + γV H)m−k
e−k(aV +γV H )t(1− e−(aV +γV H )t)m−k, k = 0, 1, ..., m

Pm+1t = 1−
m∑

k=0

Pk(t) (2.2.84)

where Ck
m = m!

(m−k)!k!
. The conditional mean virus extinction time is given by

〈tV 〉 =
1

(aV + γV H)

∑m

i=1

1

i
(2.2.85)

and the variance of conditional virus extinction time is given by

varV =
1

(aV + γV H)2

∑m

i=1

1

i2
(2.2.86)
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Proof. The result can be proven by direct substitution. When k = 0,

Ṗ0(t) =

(
amV

(aV + γV H)m
(1− e−(aV +γV H )t)m

)′

=
amV

(aV + γV H)m−1
me−(aV +γV H)t(1− e(−aV +γV H )t)m−1

= aV P1(t) (2.2.87)

When k = 1, 2, ..., m− 1,

Ṗk(t) =

(
Ck

ma
m−k
V

(aV + γV H)m−k
e−k(aV +γV H )t(1− e−(aV +γV H )t)m−k

)′

=
Ck

ma
m−k
V

(aV + γV H)m−k
(aV + γV H)e

−k(aV +γV H )t
(
−k(1 − e−(aV +γV H )t)m−k

)

+
Ck

ma
m−k
V

(aV + γV H)m−k
(aV + γV H)e

−k(aV +γV H )t(m− k)e−(aV +γV H )t(1− e−(aV +γV H )t)m−k−1

= −k(aV + γV H)Pk(t) +
Ck

ma
m−k
V (m− k)

(aV + γV H)m−k−1
e−(k+1)(aV +γV H )t(1− e−(aV +γV H )t)m−k−1

= −k(aV + γV H)Pk(t) + (k + 1)aV Pk+1(t) (2.2.88)

When k = m,

Ṗm(t) =
(
e−m(aV +γV H )t

)′
= −m(aV + γV H)Pm(t) (2.2.89)

Hence formulas in (2.2.84) give the solution of (2.2.47).

The conditional virus mean extinction time can be deduced as follows:

〈tV 〉 =
1

P limit
0

∫ ∞

0

t(aV P1)dt

=

(
aV + γV H

aV

)m ∫ ∞

0

taV
mam−1

V e−(aV +γV H )t

(aV + γV H)m−1

(
1− e−(aV +γV H)t

)m−1
dt

= m

∫ ∞

0

t(aV + γV H)e
−(aV +γV H)t

(
1− e−(aV +γV H )t

)m−1
dt

= t
(
1− e−(aV +γV H )t

)m ∣∣∣
∞

t=0
−
∫ ∞

0

(
1− e−(aV +γV H )t

)m
dt

=

∫ ∞

0

dt−
∫ ∞

0

(
1− e−(aV +γV H)t

)m
dt

=

∫ ∞

0

dt−
∫ ∞

0

((
1− e−(aV +γV H )t

)m−1 −
(
1− e−(aV +γV H )t

)m−1
e−(aV +γV H )t

)
dt

=

∫ ∞

0

dt+
1

m(aV + γV H)
−

∫ ∞

0

(
1− e−(aV +γV H)t

)m−1
dt
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...

=
1

(aV + γV H)

(
1

m
+

1

m− 1
+ . . .+

1

2

)
+

∫ ∞

0

dt−
∫ ∞

0

(
1− e−(aV +γV H )t

)
dt

=
1

(aV + γV H)

(
1

m
+

1

m− 1
+ . . .+

1

2

)
+

∫ ∞

0

e−(aV +γV H)tdt

=
1

(aV + γV H)

(
1

m
+

1

m− 1
+ . . .+

1

2
+ 1

)

=
1

(aV + γV H)

∑m

i=1

1

i
(2.2.90)

The formula for the second moments of conditional virus extinction time is:

〈
t2V
〉

=
1

P limit
0

∫ ∞

0

t2(aV P1)dt

=

(
aV + γV H

aV

)m ∫ ∞

0

t2aV
mam−1

V e−(aV +γV H )t

(aV + γV H)m−1

(
1− e−(aV +γV H )t

)m−1
dt

= m

∫ ∞

0

t2(aV + γV H)e
−(aV +γV H )t

(
1− e−(aV +γV H)t

)m−1
dt

= t2
(
1− e−(aV +γV H )t

)m ∣∣∣
∞

t=0
−

∫ ∞

0

2t
(
1− e−(aV +γV H )t

)m
dt

=

∫ ∞

0

2tdt−
∫ ∞

0

2t
(
1− e−(aV +γV H )

)m−1
dt+

∫ ∞

0

2te−(aV +γV H )t
(
1− e−(aV +γV H )t

)m−1
dt

...

=

∫ ∞

0

2tdt−
∫ ∞

0

2t
(
1− e−(aV +γV H )t

∑m−1

i=0

(
1− e−(aV +γV H)t

)i)
dt

=
∑m−1

i=0

∫ ∞

0

2te−(aV +γV H )t
(
1− e−(aV +γV H )t

)i
dt

=
∑m

i=1

2

i(aV + γV H)

(∫ ∞

0

dt−
∫ ∞

0

(
1− e−(aV +γV H )t

)i
dt

)
by (2.2.85)

=
2

(aV + γV H)2

∑m

i=1

1

i

∑i

k=1

1

k
(2.2.91)

Thus the variance of the conditional virus extinction time is:

varV =
〈
t2V
〉
− 〈tV 〉2

=
2

(aV + γV H)2

∑m

i=1

1

i

∑i

k=1

1

k
−

(
1

(aV + γV H)

∑m

i=1

1

i

)2

=
1

(aV + γV H)2

∑m

i=1

1

i2
(2.2.92)
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Recall that the Gillespie’s direct method computes the probabilities and conditional mean

time of extinction numerically when n is large. If we take V0 = 3, the trajectories using the

Gillespie algorithm reveal that the limits of virus and cell extinction probabilities are 0.36

and 0.64 and the limit of conditional mean virus extinction time is 0.76, see Figure 8. Let’s

substitute parameter values into the equation (2.2.84) and let t → ∞. We obtain the mean

extinction probabilities of virus and cell:

P limit
0 =

(
1.7

1.7 + 0.7

)3

= 0.36, P limit
4 = 1− P limit

0 = 0.64 (2.2.93)

We can also substitute the parameters in equation (2.2.85) of mean virus extinction time:

〈tV 〉 =
1

(1.7 + 0.7)

(
1

3
+

1

2
+ 1

)
= 0.76 (2.2.94)

We can see that all these values agree with the numerical results. In Figure 10 shows

the variance when V0 = 1. By applying formula (2.2.86), we have varV = 1/2.42 = 0.17, the

same as the variance in Gilliespie’s, while the variance in Laplace’s is a little smaller. This

verifies that Gillespie’s algorithm is more accurate than Laplace’s method when n is large

since (2.2.86) is based on the assumption that n is large.

Formula (2.2.85) and (2.2.86) of the mean and variance of virus extinction time in the ap-

proximate model are similar to the formulas in the standard birth-death model in Newman’s

paper [67].

2.2.2.5 Conclusion of the Stochastic Model In the ODE model, Figure 2 and 3

have showed that the system has three different parameter regions. The stable healthy

state (V,H, I) = (0, 1, 0) becomes unstable and an additional steady state - chronic state,

appears at n ≈ 5. Then the steady chronic state becomes unstable and the a limit cycle

appears through a Hopf bifurcation at n ≈ 23. The stochastic model also has 3 parameter

regions. When n < 6, the virus has an extinction probability 1. That probability decreases

monotonically when 6 ≤ n < 25, and then it reaches a limiting value at n ≈ 25.

We have explored three methods of analysis of the stochastic model: by simulation of the

trajectories by the algorithm of Gillespie’s direct method, by solving mean extinction times

through Laplace transform of the master equation, and by generating formulas for limiting
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probability of healthy and dead states and the moments of virus extinction time using a

reduced Markov chain.

Gillespie’s direct method is capable of dealing with large systems as the required com-

puter memory depends linearly on number of species. Its disadvantage is that many tra-

jectories do not converge to absorbing states and long time simulations are needed for an

accurate estimation of extinction times. The Laplace method is fast and accurate. But it

can be used only when the system size is small. It requires more memory than Gillespie

algorithm when dealing with the same system. The size of the truncated master equation

suffers from an exponential growth for an increasing number of chemical species. Elf [26]

states that when number of reactions is large, there is no other alternative than a Monte

Carlo method.

Other method in the field of stochastic modeling utilizes approximation of the master

equations by a continuous Fokker-Planck equation (FPE), which is a partial differential equa-

tion in time and N-dimensional space. FPE is well suited for problems in low dimensions

especially if high accuracy is desirable. But it is only applicable to problem with few molec-

ular species. Sjoberg [77] states that FPE is less accurate than Gillespie’s direct method

when the species number is greater than 2. Doering [21] found FPE approximation is valid

only near the threshold. Other approximation methods, i.e. chemical Langevin equation,

are discussed by Gillespie [33].
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2.3 HUMAN IMMUNE RESPONSE

The analysis of the basic system in the previous section shows that in the absence of

any immune response, an infected organism is able to recover only for extremely inefficient

viruses. The two other possible outcomes are rapid convergent to a dead state and a persis-

tent infection for weak viruses that will approach the dead state eventually. In this section,

we show that the immune response makes the disease manageable by:

• isolating the system trajectories from the states that lead to the absorbtion in the dead

state

• lowering the total damage to the system,

• shortening the duration of infection (i.e., shortening the mean time of virus extinction),

• increasing the virus extinction probability.

As we mentioned earlier, the immune response to influenza virus has three components:

innate, cellular, and adaptive [3, 42]. The innate immune component is localized in the

place of infection and is primarily mediated by macrophages and infected cells producing

interferons which make susceptible cells resistant to infection. In cellular immune component,

signals about the presence of the virus are carried to lymph nodes by antigen presenting cells.

Effectors cells pick up on that signal, mature, and migrate to the site of infection, where

they neutralize infected cells. In the adaptive immune component, antigens are carried to

bone marrow where they are recognized by B-cells. These mature into plasma cells which

produce antibody specific to the antigen. The antibodies help to neutralize virus and offer

protection from future infection by this same virus. We shall explore the role of each negative

feedback separately and in combination with the others mathematically. Figure 16 shows

mean extinction times and probabilities in the basic system by the algorithm of Gillespie’s

direct method. Because the system’s behavior changes qualitatively between n = 6 and 8,

we call n∗ = 6 a bifurcation of the system. For n ≤ n∗ the virus extinction probability is 1

and the cell extinction probability is 0, i.e., virus extinction is assured.
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Figure 16: Conditional mean times and probabilities of extinctions in the basic system,

H∗ = 100, V0 = 3. All the trajectories are averaged over 50,000 independent samples

generated by Gillespie algorithm. The x-axis is n = γV /aI and it is in log scale.

2.3.1 Systems with an Innate Immune Component

The term innate immune component describes a nonspecific response of the organism to a

viral infection that is generally mediated by α and β interferon molecules produced by antigen

presenting cells which detect the presence of the virus in the system. Interferons interact with

the healthy cells and convert them into a resistant state, thereby preventing the virus from

spreading efficiently. Mathematically, the innate immune component provides a negative

feedback that lowers the virus level. To model the innate response discussed in Hancioglu’s

paper [40], we assumed the presence of three additional components to the system: the

activated antigen presenting cells (M) , the interferon (I), and the resistant cells (R). (Here
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we modify the model in Hancioglu’s paper [40] by assuming that the interferon molecules are

generated solely by infected cells, without any contribution from antigen presenting cells.)

The scheme of the corresponding modified system is:

Resistant

RR
Interferon

F

H lthHealthy

H

IAV

V

Infected

I

Dead

DD

Figure 17: Systems with an innate immune component

The reaction network of the innate immune component is:

V +H
γV H−−→ I

I
aI−→ nV +D

V
aV−→ ∅

H +D
bHD−−→ 2H

I
bF−→ I + F (2.3.1)

H + F
bFH−−→ R (2.3.2)

F
aF−→ ∅ (2.3.3)

R
aR−→ H (2.3.4)

The presence of resistant cells gives rise to new terms in the equation for healthy cells

corresponding to the reproduction of resistant cells, loss of resistance, and conversion of
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healthy cells into resistant ones. Antigen presenting cells are simulated by the damage (i.e.,

dead remnants of infected cells, D = 1 − I − R − H), and produce interferon. Interferon

molecules interact with healthy cells and convert them into a resistant state. Resistant cells

naturally loose resistance and also can reproduce to give rise to healthy cells.

The analysis of influenza A infection in humans [40] yielded the following estimates for

the additional parameters. F is re-scaled by 1700 and some other parameters are adjusted

by the homeostatic level in our Gillespie algorithm: bF = 125, bFH = 17/H∗, aF = 8,

aR = 1. The healthy absorbing state of the system is (V,H, I, R, F ) = (0, H∗, 0, 0, 0) and

dead absorbing state is (V,H, I, R, F ) = (0, 0, 0, 0, 0).

Recall in the basic ODE system, there is a limit cycle as γV increases. The presence

of the innate immune component preserves the structure of the basic diagram (i.e. healthy

state stable for small γV , then branching into a chronic state) with the exception of missing

limit cycle. This implies that innate immune component stabilizes the chronic state for large

values of γV . (Marissa Goldrich and David Swigon, unpublished result.)
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Figure 18: Conditional mean times and probabilities of extinctions in the system with innate

immune component. H∗ = 100, V0 = 3 and all the trajectories are averaged over 50,000

independent samples generated by Gillespie algorithm. The x-axis is n = γV /aI . The blue,

green, and pink trajectories represent the maximum simulation time Tmax = 20, 40 and 60,

correspondingly.

Figure 18 is generated by the Gillespie algorithm with H∗ = 100 and V0 = 3 (Laplace

transform method is not applicable to the analysis of the system due to its size.) Compared

with the basic system, the innate immune component results in a large increase in n∗. The

bifurcation occurs at n∗ = 120 with the innate immune component included. In basic

system, the virus extinction probability reaches the limiting probability when n > 25 while

with the innate immune component, it doesn’t reach the limit until n > 103. In the plots of

conditional mean virus extinction time and probability, we notice that both curves rebound

when n > 200. This is because what we calculate is the conditional mean extinction time.
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When 10 < n < 200, a large part of the simulated trajectories are of type III (no-extinction

category), corresponding to a chronic infection. Those type III trajectories lead to an under-

estimation of the conditional mean extinction time. If we run the simulation long enough,

we expect these type III trajectories to end in either virus extinction or cell extinction. We

have run the trajectories with the maximum simulation time Tmax = 20, 40, and 60. Figure

18 shows that the longer maximum simulation time results a higher peak of the conditional

mean extinction time. Ideally, the curve of virus extinction probability should decrease

monotonically until it reaches the limiting probability. When n is between 20 to 120, the

two flat lines in virus extinction time and probability are equal to the limiting extinction time

tV = 0.76 and probability PV = 0.36, respectively. The reduced Markov chain in limiting

case of innate component is the same as that of the basic system. The limiting extinction

probabilities here are also: 0.64 for cell extinction and 0.36 for the virus extinction.

2.3.2 Systems with a Cellular Immune Component

The cellular immune component refers to the mechanism of a specific response in which

infected cells are neutralized by the action of effector cells (usually CTL’s or natural killer

cells). This mechanism reduces the source of new virus particles and hence constitutes

another form of a negative feedback. The additional components of the system are antigen

presenting cells (M) and effector cells (E). The scheme of this system is:
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Figure 19: Systems with a cellular immune component

The reaction network of the cellular immune component is:

V +H
γV H−−→ I

I
aI−→ nV +D

V
aV−→ ∅

H +D
bHD−−→ 2H

D +N
bMD−−→ D +M (2.3.5)

M
aM−−→ N (2.3.6)

M
bEM−−→ M + E (2.3.7)

E + I
bEI−−→ D (2.3.8)

∅
bE−→ E (2.3.9)

E
aE−→ ∅ (2.3.10)
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Antigen presenting cells are stimulated by the damage (i.e., dead remnants of infected

cells, here D = 1−I−H ), the production of effector cells is controlled by the APCs and the

effector cells interact with the infected cells and neutralize them, with p = (bIEH
∗)/(bEIE

∗)

the average amount of infected cells destroyed by one effector cell. Reaction (2.3.9) and

(2.3.10) correspond to a homeostatic maintenance effect by which the organism strives to

maintain the population of effector cells at a homeostatic level. Effector cell E is re-scaled as

the multiple of the homeostatic level E∗ = 6× 107. The analysis of influenza A infection in

Hancioglu’s paper [40] yielded the following estimates for the additional parameters (some

of the parameters are adjusted by the homeostatic level in our Gillespie algorithm): bMD =

2/H∗, aM = 0.5, bEM = 8.3E∗/M∗, bEI = 4.72/H∗, bE = 0.4H∗, 0.4. The healthy state

of the system is (V,H, I,N,M,E) = (0, H∗, 0,M∗, 0, E∗) and dead absorbing states are

(V,H, I,N,M,E) = (0, 0, 0, ND,MD,ED).

Figure 20 is generated by the Gillespie algorithm with H∗ = 100, M∗ = 20, E∗ = 10

and V0 = 3. The system with cellular immune component has the bifurcation at n∗ = 10

while the basic system has n∗ = 6. The virus extinction time reaches the limit when n = 50

in this system compared with n = 12 in basic system. It seems cellular immune component

doesn’t have much improvement at these two n values compared with the innate immune

component. Its most important advantage is that the limiting probability of virus extinction

is increased from 0.36 to 0.47, and correspondingly, the limiting probability of cell extinction

is decreased from 0.64 to 0.53.
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Figure 20: Conditional mean times and probabilities of extinctions in the system with cellular

immune component. H∗ = 100, M∗ = 2, E∗ = 10, V0 = 3, and all the trajectories are

averaged over 50,000 independent samples generated by Gillespie algorithm. The x-axis is

n = γV /aI .

We have constructed an approximate Markov Chain to derive the limiting probability of

this system - with cellular immune component.
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Figure 21: Schema of the approximate Markov chain in the system with a cellular immune

component, b′EI = bEI/E
∗.

Figure 21 is the simplified Markov chain of the system with a cellular immune component.

Recall in the approximate model of the basic system, if n is large, once the reaction V +

H
γV H−−→ I occurs, then the system enters the dead absorbing region. We shall use the same

approximation here. The difference is that in the system with cellular immune component,

the infected cell can be cleared by E+I
bEI−−→ D. So there is two ways to approach the healthy

state - from state (V, I) = (1, 0) and state (V, I) = (0, 1). Enumerate all the states in the
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Figure 21 and find the limit of the transition matrix. The limiting probability of absorbing

states are solved through the embedded method [78], which we have discussed in the basic

system.

Theorem 2.3.1. In the system with a cellular immune component, when n → ∞, the

limiting probability PH of the healthy state and the limiting probability PD of the dead state

are

PH =

(
aIaV + b′EI(aV + γV H)

aI(aV + γV H) + b′EI(aV + γV H)

)V0

(2.3.11)

PD = 1− PH (2.3.12)

where b′EI = bEI/E
∗.

Proof. This can be proved using the embedded Marko Chain method [78], similarly as we

did in Theorem 2.2.1.
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2.3.3 Systems with Combined Innate and Cellular Immune Components
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Figure 22: Systems with combined innate and cellular immune Components

The combination of innate and cellular immune components leads to postponement of the

bifurcation to larger value of n and an increase in the virus extinction probability (see Figure

23). The bifurcation occurs at n∗ = 200. The rebound in the virus extinction probability

remains because of the limited simulation time. If we run the simulation long enough, the

chronic states will terminate primarily in the dead state. The curve of the virus extinction

probability should decrease smoothly to the limiting probability. The system has a healthy

state at (V,H, I, R, F,N,M,E) = (0, H∗, 0, 0, 0,M∗, 0, E∗) and dead absorbing states that

satisfy (V,H, I, R, F,N,M,E) = (0, 0, 0, 0, 0, ND,MD,ED). The reduced Markov chain in

limiting case here is the same as the one in the system with only cellular immune response

with limiting probabilities of cell extinction PC = 0.53 and virus extinction PV = 0.47.
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Figure 23: Conditional mean times and probabilities of extinction in system with combined

innate and cellular immune components. H∗ = 100, M∗ = 20,E∗ = 10,V0 = 3 and all the

trajectories are averaged over 50,000 independent samples generated by Gillespie algorithm.

The x-axis is n = γV /aI .

2.3.4 Systems with a Complete Immune Response

In this section, we consider the combination of all the three immune components. The

effect of adaptive immune component on the stability of the healthy state in the ODE model

was discussed at length in Hancioglu’s paper [40]. For completeness, adaptive immune

component helps in clearing the infection by producing antibodies that neutralize the virus

particles by rendering them unable to infect healthy cells. The antibodies are produced by

plasma cells, production of which is stimulated by APCs. The new components of the system

are plasma cells (P) and antibodies (A).
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Figure 24: Human immunity system - combined innate, cellular and adaptive immune com-

ponents

The new reactions added here are:

M
bPM−−→ M + P (2.3.13)

∅
a′P−→ P (2.3.14)

P
aP−→ ∅ (2.3.15)

P
bPA−−→ P + A (2.3.16)

V + A
γAV−−→ ∅ (2.3.17)

A
aA−→ ∅ (2.3.18)

The production of plasma cells is stimulated by activated macrophages and the produc-

tion of antibodies is stimulated by plasma cells. Antibodies remove viruses and have natural

decays. The parameter corresponded to antigenic compatibility of antigenic compatibility

of antibodies is assumed to be constant. The parameter values are again estimated from
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Hancioglu’s paper [40]. We have adjusted some values by the homeostatic level in our Gille-

spie algorithm: bPM = 11.5P ∗/M∗, a′P = 0.4P ∗, aP = 0.4, bPA = 0.043A∗/P ∗, γV A =

14.6/H∗, aA = 0.043. The system has a healthy state at (V,H, I, R, F,N,M,E, P, A) =

(0, H∗, 0, 0, 0,M∗, 0, E∗, P ∗, A∗) and dead absorbing states (V,H, I, R, F,N,M,E, P, A) =

(0, 0, 0, 0, 0, ND,MD,ED, PD,AD).
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Figure 25: Conditional mean times and probabilities of extinction in human immunity.

H∗ = 100, M∗ = 20, E∗ = 10, P ∗ = 10, A∗ = 100, V0 = 3, and all the trajectories are

averaged over 50,000 independent samples generated by Gillespie algorithm. The x-axis is

n = γV /aI . The trajectories of the system with no immune component, with innate immune

component, with cellular immune component, with the combination of innate and cellular

immune components, and with the complete immune response - the combination of innate,

cellular and adaptive immune components are in blue, green, red, pink, and black. The

purple arrow represents biologically reasonable values of n.

60



Figure 25 summarizes the earlier graphs and adds the plots for the combined response.

The bifurcation occurs at n∗ ≈ 300 for the black curve. The purple arrow at the bottom of

each plot represents biologically reasonable reproduction numbers for viruses. All three types

of immune components are essential. In the basic system (blue lines in Figure 25), healthy

cells go extinct at small number of n and the organism dies. The innate (green) immune com-

ponent substantially reduces cell extinction probability when n < 200 and promotes chronic

disease. The cellular (red) immune component increases the virus extinction probability at

any n numbers. Then the combination of two (pink) almost eliminate cell extinction and

significantly increase virus extinction rate. The adaptive immune component aids in virus

clearance and prevents infection altogether. The conditional mean virus extinction time is

shortened substantially. The probability of virus extinction is above 90% across the range

of n. The probability of cell extinction is nonzero only for n above 103. The combination

of the three immune component (black) makes the human body almost invulnerable under

virus attack unless a large number of viruses can be generated from a single infected cell.

Theorem 2.3.2. In the system with innate, cellular and adaptive immune components, when

n → ∞, the limiting probability PH of the healthy state and the limiting probability PD of

the dead state are

PH =

(
(aV + γAVA

∗)aI + (aV + γAVA
∗ + γV H)b

′
EI

(aV + γAVA∗ + γV H)(aI + b′EI)

)V0

(2.3.19)

PD = 1− PH (2.3.20)

where b′EI = bEI/E
∗.

Proof. This can be proved through the embedded method [78], which we have discussed in

the basic system.
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3.0 VOCAL FOLD INFLAMMATION

3.1 INTRODUCTION

Human vocal folds are located in the larynx. When air stream from the lungs passes

through the vocal folds, they will be set into oscillation and produce a periodic train of air

pulses. That is how sound is produced. If the vocal folds are stressed or traumatized by

noxious stimuli, the tissue properties of the vocal folds will be altered and the vocal fold

oscillation will be disturbed, result in an altered voice quality, i.e., a voice disorder [51].

Phonotrauma

Voice disorders appear to be the most common communication disorders across the hu-

man lifespan [74]. In most cases, these disorders are not ”cosmetic”. They can produce

substantial negative effects on quality of life in affected individuals as well as substantial

negative economic impact on society [86]. A common cause of voice disorder is phono-

trauma, which is a vocal fold injury associated with phonation (i.e., voice production).

When people speak or sing, the vocal folds oscillate at a relatively high frequency. Typi-

cally, the vocal folds make contact at some point during the vibratory cycle. The associated

motions generate various types of bio-mechanical forces within the oscillating vocal fold tis-

sues [37, 38, 43, 80]. Although micro-injury likely occurs within the tissue every day, injury

may or may not be functionally relevant, depending on the magnitude of the injury and the

host’s requirement for an intact voice. Specifically, under conditions of typical voice use,

the tissues are generally competent to withstand the bio-mechanical forces physiologically,

probably with relatively minor and transient local inflammatory responses. In such cases,

the levels of tissue injury are sufficiently microscopic to be regenerated intrinsically without

a full scale inflammatory or wound healing response. On the other hand, when phonation
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conditions are frankly phonotraumatic, the associated bio-mechanical forces are sufficiently

large to cause substantial cell death and macroscopic tissue damage. If such conditions per-

sist without adequate rest, damaged tissue does not have time needed to repair [81]. As a

result, benign lesions at the mid-membranous vocal folds may develop, leading to dysphonia

and voice-related changes in quality of life [58].

Therapeutic management of phonotrauma may involve medical or sometimes surgical

intervention. However, behavioral voice therapy is generally considered central to any treat-

ment program, and is usually preferred as the first-line approach [6, 14, 44]. Unfortunately,

strong scientific evidence is still lacking regarding the effectiveness and efficacy of voice ther-

apy for phonotrauma. One of the research obstacles is that the underlying mechanism of

inflammation and healing underlying phonotrauma is highly complex. Common research

approaches, such as randomized clinical trials, are not sufficient to capture the dynamics of

the disease and its response to treatments [51]. In this study, a systems biology approach

utilizing computational modeling was used to simulate acute phonotrauma and its response

to behavioral treatments.

Development of mathematical models of inflammation and healing

Inflammation and healing, which are innate tissue responses to mechanical stress/ trauma,

are regulated by a complex dynamic system. A modeling approach, which combines empiri-

cal, mathematical and computational tools, was taken to study the biological complexity of

this dynamic system.

Computational agent-based models (ABMs) were developed to quantitatively character-

ize multiple cellular and molecular interactions around inflammation and healing. Initially,

the ABMs of the vocal fold injury were specified to the setting of phonotrauma, a bio-

mechanical injury owing to phonation. These models allowed for tests of various hypotheti-

cal effects of motion-based treatments in individuals with acute phonotrauma [53, 51]. The

phonotrauma ABMs were calibrated and validated with empirical data of a panel of inflam-

matory mediators, obtained from laryngeal secretions in individuals following experimentally

induced phonotrauma and a randomly assigned motion-based treatment. In addition, an

ABM of surgically induced vocal fold trauma was developed and subsequently calibrated to

empirical data of inflammatory mediators and extracellular matrix substances from rat stud-
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ies [51]. In general, ABM simulations reproduced and predicted trajectories of inflammatory

mediators and extracellular matrix as seen in empirical data of phonotrauma and surgical

vocal fold trauma. The simulation results illustrated a spectrum of inflammatory responses

to phonotrauma, surgical trauma and motion-based treatments.

In addition to the use of ABMs for simulating vocal fold injuries [53, 51], the parallel

development of an ordinary differential equation (ODE) model for phonotrauma was pur-

sued in the interest of cross-platform comparison of results [52]. A rudimentary ODE was

developed using the module of system dynamics included in the Netlogo platform (Center

for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston,

IL). To test the validity of our agent-based model of phonotrauma, ”model docking” was

used. ”Model docking” is a well-vetted validation strategy based on a comparison of pre-

dictions from different models across an array of user input data. The finding of similar

predictions in agent-based and equation-based models would increase confidence in the un-

derlying assumptions made in the previous ABM. In this comparison study, the ABM and

ODE model predicted similar cellular and molecular patterns for inflammatory and wound

healing responses under small initial damage. However, the models’ results diverged in their

predictions of inflammatory and wound healing responses for a large initial insult. The other

limitation was that the module of system dynamics in Netlogo was just released at the time

of the project. The module was limited for conventional mathematical analysis, such as,

parameter fitting and sensitivity tests.

Therefore, in the current study, we adopted the well-established MATLAB platform to

rigorously pursue the development of ODE models in simulating inflammation and healing in

the setting of vocal folds. Acute inflammation has been simulated by equation-based model-

ing [12, 18, 48, 76]. Kumar et al. [48] reported a three-variable ordinary differential equation

model of acute inflammation. The model consists of a pathogen and two inflammatory me-

diators. In the model, an infectious agent triggered an early inflammatory mediator to kill

the pathogen and later another inflammatory mediator was triggered to further exacerbate

inflammation. The model was able to reproduce the health state and various negative states

as observed in severely infected patients. Their simulation results also point out that the

clinical presentations of severe infection arise from diverse underlying physiological states
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and thus different therapeutic approaches are required.

Later, a study Reynolds et al. [76] reported a four-variable model of acute inflamma-

tion. This model is expanded from Kumar et al.’s [48] model by incorporating an anti-

inflammatory mediator in the system. The anti-inflammatory mediator in the model has

the functions of (1) inhibiting the build-up of pro-inflammatory mediator and the tissue

damage, and (2) promoting further production of anti-inflammatory mediator. Their simu-

lation results suggest that the rates of dynamic anti-inflammatory response may be modified

therapeutically to yield optimal healing outcome after pathogenic infection.

Day et al. [18] used the same four-variable model of acute inflammatory response to

explore the effects of repeated administration of endotoxin (bacterial lipopolysaccharide) on

the system. Their model was capable to display the clinical scenarios of endotoxin tolerance

and potentiation from a single parameter set with repeated endotoxin challenges. This

finding suggests that various biological responses (endotoxin tolerance and potentiation)

to repeated bacterial infection are dynamic manifestations of a unified acute inflammatory

response.

Along the line of this research, a study reported the work of calibrating an acute inflam-

matory model to experimental data in mice with endotoxemia, surgical trauma or surgical

trauma followed by hemorrhage [12]. The model was capable to predict a dose range of

endotoxin leading to death of mice, despite being calibrated on data from non-lethal inflam-

matory insults. The most current model was calibrated to simulate acute inflammation in

mice, swine and human in order to scale up the model to the whole-patient level [88].

Lastly, an equation-based model was developed to demonstrate the application of inflam-

mation modeling for in silico clinical trial [13]. The model was set up to create a population

of 1,000 synthetic ”patients” with different clinical profiles. Then, these ”patients” were sub-

mitted to one of three types of anti-sepsis therapy (anti-tumor necrosis factor neutralizing

antibodies). Their simulation results suggest that anti-tumor necrosis factor therapy can be

both effective and harmful to the patients, depending on the dose and duration of treatment

as well as the patient’s clinical profiles.

That said these models focused on the inflammation ensued from either bacterial infec-

tion or surgical trauma. In this study, we developed a new inflammation and healing model
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to simulate early acute inflammatory responses (up to 24 hrs post phonotrauma) with input

variables describing the vocal loading conditions and develop tools that will allow this model

to effectively assimilate experimental data. We fitted the model against available experi-

mental data and conducted parameter sensitivity analysis. We investigated the parameter

space through metropolis sampling and parallel sampling method. Our goal is to develop a

method for proposing a patient specific vocal exercise and rest schedule that optimizes tissue

healing in cases of both acute and chronic phonotrauma.

3.2 EXPERIMENT, DATA AND ODE MODEL DEVELOPMENT

3.2.1 Experiment and Treatments

Data from 9 patients, six females (21-46 years old) and three males (21-49 years old),

were collected in a study involving one hour loud phonation followed by a 4-hour treatment

of three types: voice rest, spontaneous speech and resonant voice (roughly, classical singing)

[53, 51]. One female subject received all three treatments, randomly ordered without re-

placement on different days by separated intervals ranging from 1-6 months. All the other 8

subjects participated in only one treatment. After the treatment at clinic, all subjects were

discharged to home with instructions to continue their corresponding treatment in somewhat

less intense cycles for resonant voice and spontaneous speech conditions. Laryngeal secre-

tions are collected at 4 different times: at baseline, immediately after vocal loading, after

the 4-hour clinic treatment and 24 hours post-baseline.

The detail time schedule of the whole experiment is shown in Figure 26. Patients arrived

the clinic in the morning, and started laryngeal secretion baseline collection. Patients took

1 hour rest and then started the vocal loading, which has three consecutive cycles, each

involving 15 minutes of loud phonation followed by 5 minutes of silence, for a total of 60

minutes. We assign the time when patients started vocal loading as time t = 0. Right after

the vocal folding, time t = 1, laryngeal secretions are collected again and patients took 1

hour rest. Then the patients are randomly assigned to one of the three treatments: voice
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rest, spontaneous speech or resonant voice. At time t = 2.5, each subject started their own

treatment for 4 hours at the clinic. After the 4-hour treatment, laryngeal secretions were

collected and patients took a rest. Then they went home at t = 7.75. At 10 < t < 14,

patients were instructed to continue their corresponding treatment at home and then went

to bed after the treatment. They came back to the clinic next morning at t = 22.

t= 2,!patients!come!to!the!clinic;!start!to!baseline!collection

t=0,!finish!baseline!collection;!start!1!hr!loud!phonation

t=1,!stop!scream;!collect!secretion;!rest!!

t=2.5,!start!the!randomly!assigned!treatment

t=6.5,!finish!the!treatment;!collect!secretion;!rest

t=7.75,!patient!are!discharged!home

t=10,!begin!home!treatment

t=14 finish home treatment; go to sleept=14,!finish!home!treatment;!go!to!sleep!

t=22,!come!back!to!the!clinic;!collect!the!secretion

Figure 26: Treatment and data collection schedule. Loud phonation is performed during

0 < t < 1, clinic treatment is during 2.5 < t < 6.5, and home treatment is during 10 < t < 14.

Laryngeal secretion is collected at t = 0, 1, 6.5, 22.

The three treatment modalities can be considered on a continuum of tissue mobilization

magnitude and intra-vocal fold impact stress magnitude. Voice rest has no mobilization

or impact stress, spontaneous speech has normal to large magnitude mobilization but po-
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tentially greater impact stress [73, 84], and resonant voice has normal to large magnitude

but relatively low impact stress [73, 84]. It is believed that resonant voice treatment might

result in a mostly anti-inflammatory response and therefore favors recovery from intense

pro-inflammatory stimuli.
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Figure 27: Vibration and impact stress loading values for the three treatments.

3.2.2 Data and ODE Model Development

Three subjects’ data is excluded because of their thick secretions that are too viscous

to pipette. One subject took all three treatments, thus we have nine valid treatment data

trails. The spontaneous speech group has two subjects, the voice rest group has three, and

the resonant voice has the left three. Figure 29 shows the average data of each treatment

before exclusion of outliers. The first two collections are averaged over all valid data trails

because the subjects are subject to the same conditions before they received their personal

treatment. We have the measurements of TNF, IL-1β, IL-6, and IL-10.
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Figure 28: Average data of TNF, IL-1β, IL-6, and IL-10 in three treatment groups. The first

two points are averaged over all the valid data set. The bars are the standard deviations.

In the early stage of the research, we developed the following model:

Σ =
D + αMIL1IL1

1 + αM(D + αMIL1IL1)
(3.2.1)

dD

dt
= M + αDI1I + αDI2DI − µDD (3.2.2)

dM

dt
= Σ−

(
1 +

αMTGF1TGF

1 + αMTGF2TGF

)(
IL10

1 + αMIL10IL10

)
µMM (3.2.3)

dIL1

dt
=

αIL1MM(1 + αIL1sΣ)

1 + αIL1IL10IL10
− µIL1IL1 (3.2.4)

dIL6

dt
=

αIL6MM

(1 + αIL6IL10IL10)
+

(
aIL6FF +

αIL6F1V F

1 + αIL6F2V

)

(
1 +

αIL6IL11IL1

1 + αIL6IL12IL1

)
− µIL6IL6 (3.2.5)

dIL10

dt
=

αIL10MM (1 + αIL10V V )

1 + αIL10IL10IL10
− µIL10IL10 (3.2.6)

dTGF

dt
= αTGFMM +

αTGFFF

1 + αTGFIL1IL1
− µTGFTGF (3.2.7)
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dF

dt
= αF

(
1 +

αFIL11IL1

1 + αFIL12IL1

)(
1 +

αFTGF1TGF

1 + αFTGF2TGF

)
− µFF (3.2.8)

dC

dt
= αCFF

(
1 +

αCTGF1TGF

1 + αCTGF2TGF

)
− µCC (3.2.9)

The model contains accounts for inflammation and healing processes. Two variables in

the model describe the input vocal loading conditions: impact stress (I) and vibratory stress

(V). The impact stress describes the magnitude of impact force exerted by one vocal fold

on the other during strong phonation and is the primary source of damage in the system.

[85]. The vibratory stress is generated by the vibration of vocal fold at any intensity and it

simulates the production of cytokines by macrophages in the vocal fold [49]. Vibratory stress

(V) and impact stress (I) are time-dependent variables according to the treatment schedule.

The variable (D) represents damaged or dead cells. Macrophages (M) destroy the healthy

cells and dominate in the early stage of inflammation. IL-1β (IL1) is pro-inflammatory

cytokine [20] that is produced by the macrophages [19, 20] and is the most important cytokine

for macrophage activation [59]. In the model, the damage and IL-1β form a pro-inflammatory

signal Σ, which stimulates macrophage activation. IL-1β is inhibited by anti-inflammatory

cytokine IL-10 (IL10) [59, 4, 79]. IL-6 (IL6) is another inflammatory mediator that is

produced by macrophages [56] and fibroblasts in response to IL-1β [22]. and is inhibited by

IL-10 [59, 79]. IL-10 is the main anti-inflammatory cytokine [1], which is also produced by

macrophages [11], and inhibits its own production to a lesser degree than it inhibits other

processes [17, 63]. TGF-β (TGF) is also an anti-inflammatory cytokine [1, 45], that is

produced by macrophages and fibroblasts [45]. Exposure of vocal fold fibroblasts to IL-1β

down-regulates TGF-β [54]. IL-10 and TGF-β deactivate macrophages [4, 5, 59]. Fibroblasts

(F) are important sources of anti-inflammatories and their proliferation is stimulated by IL-

1β and TGF-β [2, 23, 45]. Fibroblast population increases more than 1/3 under the influence

of TGF-β [57]. Collagen (C) plays critical role in tissue development and repair [70] and it

is mainly produced by fibroblast and TGF-β [7, 23, 55, 57].

The model (3.2.1)-(3.2.9) contains 8 variables and 40 parameters. Ideally, we would like

to estimate the parameters and expect the model effectively assimilate all the experimental

data. The difficulty here is that we only have valid data of IL-1β, IL-6 and IL-10 at 4 time
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points. In view of the limited available data, our model has too many degrees of freedom to

be fitted.

In order to avoid overfitting, we reduced our model to a four-variable model. Since

variables IL6, TGF, F and C are essentially decoupled from the others and not supported

by data, we eliminate them from the model. The reduced ODE model is shown here

Σ =
αM1(D + αMIL1IL1)

1 + αM2(D + αMIL1IL1)
(3.2.10)

dD

dt
= αDMM + αDI1I + αDI2DI − µDD (3.2.11)

dM

dt
= Σ− IL10

1 + αMIL10IL10
µMM (3.2.12)

dIL1

dt
=

αIL1MM(1 + αIL1sΣ)(1 + αIL1V V )

1 + αIL1IL10IL10
− µIL1IL1 (3.2.13)

dIL10

dt
=

αIL10MM(1 + αIL10V V )

1 + αIL10IL10IL10
− µIL10IL10 (3.2.14)

The reduced model was capable of explaining the data within the standard deviation.

We have explored the whole parameter space using the parallel sampling method, finished

the sensitivity analysis and parameter reduction, and fitted the reduced parameter set to

the data from individual patients. Although results were numerically acceptable, we were

concerned with the extensive variability observed between individuals. Should we just simply

take average data (naive pooling) of them and fit them despite the huge standard deviations?

For example, the peak of IL-10 in resonant voice group is pushed by a singe point, which is

out the plot because of its large value (> 2400). We also observed that some of the patients

have a high baseline and should be considered as pre-inflamed. It did not appear suitable to

take average over these pre-inflamed patients together with others.

To address these concerns, we went back and carefully reviewed the experimental data.

Each secretion collection of a single patient is measured twice. The primary measurements

show that two patients in the voice rest group have a high initial value of IL-1β, between

500 ng/ml to 1100 ng/ml. These two should be separated as an additional group called voice

rest pre-inflamed group. Thus, we have three subjects in the spontaneous speech group, two
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in the voice rest group, two in the voice rest pre-inflamed group and three in the resonant

group. All the primary collection measures are depicted in Figure 29.
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Figure 29: Valid primary collection measurements. n is the number of subjects in each group.

Four time points - baseline, after 1 hour screaming, after 4 hour clinic treatment and 22 hours

post screaming. The lines and bars represent the average and standard deviation of each

group. The highest point of IL-1β in spontaneous group is overlapped by two measurements

and so does that in resonant voice group. The lines are the average curves and bars are

standard deviations.

In Figure 29, every dot represents the measurement of each subject’s primary collection

at 4 time points. The highest point of IL-1β in the spontaneous group is overlapped by

two measurements and as is the case in the resonant voice group. In the spontaneous

speech treatment group, one IL-10 point (> 1200) is significantly higher than the other
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measurements (< 400) at the same time point. So we treated this measurement as an

outlier. IL-10 data in the voice rest pre-inflamed group has an outlier with value greater

than 1000 while all the other data at that time is below 200. In the data of IL-10 in the

resonant group, there is one point at t = 6.5 that not visible in the plot because it is greater

than 5,000 and one of its baseline is greater than 1000 while all the others are below 350.

These two measurements should also be treated as outliers.

Figure 30 plots all the primary measurements without outliers.
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Figure 30: Valid primary collection measurements with outliers eliminated. n is the number

of subjects in each group. Four time points - baseline, after 1 hour screaming, after 4 hour

clinic treatment and 22 hours post screaming. The lines and bars represent the average and

standard derivation of each group.

After excluding outliers, the large standard derivations are still troublesome. The average
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baseline in voice rest treatment group is almost double of those of the other two groups. But

we expect the same baselines for the three groups since we are dealing with the average data.

Therefore we need to normalize each data set individually. Each individual baseline has two

measurements, so the normalized factor is the average of the two. We shall fit the reduced

model to all treatment groups except the pre-inflamed group.

In Figure 30, before normalization, IL-1β peaks higher and later in spontaneous speech

group than the other two groups and it decreases faster with resonant voice than with voice

rest. The trajectories of IL-10 in the spontaneous speech group and resonant voice group are

almost the same and that in voice rest group never peaks - it decreases first and remains flat

all the time. In Figure 31, after normalization, we can see that IL-1β trajectories in each

group behave similarly as before, but the trajectory of IL-10 in spontaneous speech peaks

higher than in resonant voice at t = 22, and that in resonant voice IL-10 also has a small

peak. The normalized data set is more reasonable in a biological sense. The final normalized

data are in Table 1, 2, and 3.

Resonant has higher magnitude of vibration stress loading and lower magnitude of impact

stress loading than spontaneous. The IL-10 equation (3.2.14) mainly depends on IL-10 itself

and the vibration stress. It is hard for (3.2.14) to predict similar IL-10 trajectories of

spontaneous and resonant groups at the same time because of their different input vibration

stresses. Thus we updated our model again.
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Figure 31: Normalized data excluding the pre-inflamed patients and outliers. n is the number

of subjects in each group. The lines and bars represent the averages and standard derivations.

The second point is averaged over all valid data.

Time (hour) P (average) P (stand deviation) A (average) A (stand deviation)

0 1.00 0.34 1.00 0.14

1 1.03 0.65 1.14 0.68

6.5 1.91 1.41 1.64 0.66

22 8.07 5.16 2.61 1.78

Table 1: Normalized data for the spontaneous speech group
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Time (hour) P (average) P (stand deviation) A (average) A (stand deviation)

0 1.00 0.03 1.00 0.50

1 1.03 0.65 1.14 0.68

6.5 3.09 0.55 0.64 0.07

22 1.68 0.30 0.66 0.14

Table 2: Normalized data for the voice rest group

Time (hour) P (average) P (stand deviation) A (average) A (stand deviation)

0 1.00 0.17 1.00 0.11

1 1.03 0.65 1.14 0.68

6.5 4.17 3.52 1.22 0.39

22 0.62 0.39 2.01 1.69

Table 3: Normalized data for the resonant voice group

3.3 ODE MODEL

Because of the limited available data, we designed a reduced model that contains four

state variables representing the amount of tissue damage (D), activated inflammatory cells

(M), pro-inflammatory cytokines (P) and anti-inflammatory cytokines (A). The inflamma-

tory cells are represent macrophages, neutrophils or natural killer cells, pro-inflammatory

cytokines represent, for example, TNF-α or IL-1β, and the anti-inflammatory cytokines

represent IL-10. The influence diagram for the model is shown in Figure 32 .
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Figure 32: Model schema that illustrates the interactions between the four variables. The

plus indicates positive feedback and minus indicate negative feedback.

The model equations are here:

dD

dt
= αDII −

P 2

α2
DP + P 2

µDD (3.3.1)

dM

dt
= αMD(D + βP )− ε+ A

1 + αMAA
µMM (3.3.2)

dP

dt
=

αPMM(1 + αPV V )

1 + αAA2
(1 + αPDD)− µPP (3.3.3)

dA

dt
=

αAMM(1 + αPV V )

1 + (αA/γ)A2

P 2

α2
AP + P 2

− µAA (3.3.4)

Tissue damage (D) is primarily created by impact stress (I) in the vocal fold [37, 38].

Experimental data show that the inflammatory response is mild. Therefore we neglect

secondary damage creation due to the presence of neutrophils that is prominent in some

published models of sepsis [48]. On the contrary, we assume that mild inflammation has a

beneficial effect of acceleration of healing of the damage, represented by a saturating term.

D together with pro-inflammatory cytokines (P) stimulates the activation of macrophages

(M) [59, 4, 79]. D also stimulates the production of P by M [19, 20]. M produce anti-

inflammatory cytokine (A) [11], that result in M deactivation [4, 5, 59] and inhibition of the

77



M production of P [4, 79]. A also inhibits its own production a lesser degree than it inhibits

the production of P [17, 63], so the γ in equation (3.3.4) should be greater than one. The

production of A is stimulated by the presence of P through a sigmoidal function.

The prescribed dependence of V and I on time is determined by the experimental loading

schedule for the insult and the various treatments. In particular, we assume the loaded

impact stress I during the first hour screaming is 5 and the vibration stress V during that

period is 0. We take the values of vibratory stress during the spontaneous speech, voice rest

and resonant voice, respectively, to be 0, 0, and 1. Similarly, the values of impact stress

during those treatments were taken to be 1, 0 and 0 [85, 53]. The treatment duration is

between time 2.5h to 6.5h at the clinic and between 10h and 14h at patients’ home. The

values of model parameters were kept the same for all treatments.

3.3.1 Stability Analysis

In the absence of external input (i.e., if V and I are zero) and for small values of ε,

the ODE system has an unstable equilibrium at (D,M,P,A) = (0, 0, 0, 0) and a stable

equilibrium at (D,M,P,A) = (0, M̄ , P̄ , Ā), for which P̄ and Ā are close to 1.

Steady state values of the system are solutions of the following system of equations:

0 =
P 2

α2
DP + P 2

µDD (3.3.5)

0 = αMD(D + βP )− ε+ A

1 + αMAA
µMM (3.3.6)

0 =
αPMM

1 + αAA2
(1 + αPDD)− µPP (3.3.7)

0 =
αAMM

1 + (αA/γ)A2

P 2

α2
AP + P 2

− µAA (3.3.8)

Equation (3.3.5) implies that P = 0 or D = 0. If P = 0, then the remaining equations

imply that M = 0, A = 0, and D = 0 and hence there is a zero equilibrium of the system

(D,M,P,A) = (0, 0, 0, 0). This equilibrium is unstable.

If D = 0, then M , P and A obey the following system:

0 = αMDβP − ε+ A

1 + αMAA
µMM (3.3.9)
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0 =
αPMM

1 + αAA2
− µPP (3.3.10)

0 =
αAMM

1 + (αA/γ)A2

P 2

α2
AP + P 2

− µAA (3.3.11)

Equations (3.3.9) and (3.3.10) imply that the equilibrium value of A is equal to a root of the

following equation.

(ε+ A)(1 + αAA
2)− αMDβαPM

µMµP

(1 + αMAA) = 0 (3.3.12)

or

αAA
3 + εαAA

2 +

(
1− αMDβαPMαMA

µMµP

)
A+

(
ε− αMDβαPM

µMµP

)
= 0 (3.3.13)

According to the Routh criterion the number of non-negative roots is equal to the number

of sign changes in the left column of the array




αA 1− αMDβαPMαMA

µMµP

εαA ε− αMDβαPM

µMµP

αAαMDβαPM

µMµP

(
1−εαAαMA

εαA

)
0

αAαMDβαPM

µMµP

(
1−εαAαMA

εαA

)(
ε− αMDβαPM

µMµP

)
0




(3.3.14)

If ε is small enough, more precisely, if ε < min
(

1
αAαMA

, αMDβαPM

µMµP

)
, then the array has

precisely one change in sign, as the first three entries are positive and the last is negative.

Hence there is one positive solution for A. Equations (3.3.9) and (3.3.10) imply that M and

P have the same sign in equilibrium and (3.3.11) implies that M and A have the same sign.

Thus, for small ε there is a single positive equilibrium (D,M,P,A) = (0, M̄ , P̄ , Ā), which is

linearly stable.
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3.3.2 Parameter Estimation

Parameter values were estimated using both traditional maximum likelihood optimiza-

tion and also using a novel method of ensemble modeling. Traditional parameter fitting

methodology is based on the assumption that all experimental subjects can be described by

the same set of parameters and that random noise leads to differences between the measured

values of state variables. By taking averages over multiple subjects, one can recover the

true value of the variable and then optimize the parameters of the model so that the model

predicts the true values.

3.3.2.1 Objective Function in the Optimization The first step of model fitting is to

optimize parameter values over all three treatment scenarios simultaneously. The objective

function F reflects the difference between model prediction and the available data. Two

versions were considered - one in which the mean square differences were weighted by the

variance of the data and another in which all data were taken with equal weights. Calibration

with the first choice of function led to an unresponsive model with flat configurations, which

is why we gave preference to the second choice:

The objective function used in the optimization is constructed in the following way:

F =

3∑

j=1

4∑

i=1

(
yPij − ỹPij

)2
+

3∑

j=1

4∑

i=1

(
yAij − ỹAij

)2
+

3∑

j=1

(M0,j −M0)
2

+
3∑

j=1

(
Dmax,j −D

)2
+

3∑

j=1

(Dend,j)
2 (3.3.15)

In the objective function (3.3.15) the index j represents the summation over the data in

three treatments and the index i represents summation over the four time points. yPi and

yAi are the simulated data computed from the trajectory of the model, while ỹPi and ỹAi are

observed data from the experiment - the normalized data that we discussed in last section.

Since we have normalized the data by individual baseline, the starting values of P and A

are 1. Similarly, M also has an initial baseline to start with, which we define as M0 with

value 1. The initial value of damage is 0. As additional heuristic criteria we have included

the final value of the damage Dend,j (assumed to be zero as in a successful healing process)
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and the maximum value of the damage Dmax,j to be an arbitrary value D in order to fix the

scale of that variable. The value D is assumed to be the same over different treatments as

the treatments are not expected to add additional damage to the system after the first hour.

To find the set of parameters that minimize (3.3.15) we use an iterative optimization

algorithm. For each set of parameters, we find the corresponding equilibrium value and then

use it as the initial value for integration of the system. The resulting trajectory is the used to

compute yPi and yAi . This way we can make sure that the optimal model has an equilibrium

point close to the homeostatic level. The data used for fitting are shown in Table 1, 2, and

3.

3.3.2.2 Ensemble Model Ensemble modeling replaces a traditional, uniquely parame-

terized model with an ensemble of models that vary in parameter values and possibly the

model structure. Each model in the ensemble is assigned a probability value that correlates

with the likelihood that the model agrees with given data and heuristic constraints. In this

way the ensemble of models summarizes uncertainties in parameter values, sensitivity of the

model, and the completeness of the data in a single distribution.

One way to interpret the ensemble model is by treating it as a representation of popu-

lation heterogeneity of parameter values, i.e., the fact that parameters may be distinct for

different individuals in the population.

The main benefit of ensemble model is that any predictions made using the model is

probabilistic, resulting from all models compatible with the data but with larger weight

coming from more accurate models. Therefore, for each such a prediction one can determine

the interval of confidence.

The idea of ensemble modeling was first introduced in weather prediction but has recently

been applied also to biological models. The most common ensemble modeling method con-

structs the ensemble by fixing the structure of the model (i.e., the set of differential equations

and definitions of the parameters) and then computes the probability density ρ(α) of a pa-

rameter set α with the likelihood L(α) of observing the data with that model. The likelihood

function depends on the amount and quality of experimental data. The probability density

is computed using Bayesian approach as ρ(α) = Q−1L(α)θ(α), where Q =
∫
L(α)θ(α)dα is
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a normalizing constant and θ(α) is the prior distribution containing information about the

range of parameter values that is biologically acceptable. Here we sample Gibbs-Boltzman

distribution ρ(α) = exp(−βF (α)), where F (α) is the objective function corresponding to

the parameter set α and β is the reciprocal of temperature value T. We choose θ(α) for

each parameter to be a uniform distribution roughly between 1/20 and 20 times the baseline

value. Table 4 shows the baseline, prior range, and the average and standard deviation for

each parameter. We choose αi to represent the logarithm of the value of the correspond-

ing parameter (i.e., α1 = logαDI , α2 = log µD) rather than the parameter itself for several

reasons: (i) trajectories of a system of ODEs are sensitive to relative, rather than absolute

changes in parameters, (ii) the parameters are always positive and (iii) we wish to avoid

biasing the sample toward large values of the parameters. This choice does not affect the

principles of the ensemble modeling, only the sampling metric on the parameter space.

More discussion about ensemble methods can be found in Hancioglu’s PhD thesis [39].

Metropolis Sampling

The easiest way to represent the distribution ρ(α) is by a sample of points α1,..., αM

distributed according to ρ(α). The sample can be used to estimate the ensemble average of

any trajectory-dependent quantity H as

< H > ∼= M−1
∑M

i=1
H(x(t;αi,x0)) (3.3.16)

The percentile value PX(H) of any trajectory-dependent quantity H can be found as the

smallest number that is larger than X% of values H(x(t;αi,x0)), i = 1, ...,M .

The Metropolis-Hastings Markov Chain (MHMC) sampling algorithm is a Monte Carlo

method for finding a sample α1,..., αM for any distribution defined as ρ(α) = exp(−βE(α))

[62, 41]. The original MHMC method samples the distribution at a fixed value of β by

proposing, at every step k, a random perturbation ᾱ of the current parameter set αk and

accepting this perturbed set as the next set in the sample, i.e., αk+1, with the probability

P = min{1, exp
(
−β

(
E(ᾱ)−E(αk)

))
}. If ᾱ is rejected then αk+1 is set equal to αk. In

other words, if the proposed move is associated with a reduction of the objective function,

thus a likelihood ratio > 1, the move is accepted. Yet, if the likelihood ratio is < 1, there

is still a probability < 1 that the move is accepted, allowing the possibility of the chain to
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escape local minima. The resulting sequence αk is a Markov Chain that has a stationary

probability distribution that converges to ρ(α) in the limit of large k.

In our case, we define the objective function (3.3.15) as an energy function E and sample

Gibbs-Boltzmann distribution through ρ(α) = exp (−βE(α)). The algorithm starts at some

random initial guess of parameters, and then let these parameters jump to its neighborhood.

Calculate the energy function of the two parameters set. If the new energy is smaller than the

old one, then the new parameter set is accepted with probability 1, otherwise it is accepted

with a probability, which is equal to the log likelihood ratio. A random number is generated

from the uniform distribution on zero to one each step and compared with the log likelihood

ratio. If the number is greater than that ratio, then the move is accepted, otherwise, it is

rejected. When the number of sampling steps goes to infinity, the probability of parameters

values converges to an equilibrium probability distribution, which is independent of the initial

parameter values [27].

The algorithm is below [39]:

• Construct the energy function E.

• Start at some random initial guess of parameter set α1 and calculate the value of the

energy function E as E1 at α1.

• Generate a new parameter set ᾱ through the formula ᾱ = α1exp (−εrn). ε is a constant

associated with the temperature T = 1/β, rn is a rand number generated by the standard

normal distribution.

• Calculate the energyEb at ᾱ and accept ᾱ with a probability of P = min (1, exp (−β(Eb − E1))).

• If Y is accepted, then assign α2 = ᾱ and E2 = Eb, else α2 = α1 and E2 = E1.

• Repeat from step 3. Adjust the ε value to get the acceptance rate around 30%.
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Figure 33: Schematic representation of the Metropolis sampling algorithm.

Parallel Tempering

Unlike Metropolis sampling, which is consisted of a single Markov chain at one partic-

ular temperature value, parallel tempering algorithm generates multiple versions αk,i of the

Markov Chain evaluated at different temperature values (i.e., different β). At high tempera-

ture (low β), the parameters have a bigger step size so that they can explore a larger region

of the phase space. At low temperature, the parameters are more precisely sampled in a local

region [25]. Every once in a while the parameter sets αk,i and αk,i+1 in two neighboring values

βi and βi+1 are swapped with probability P = min{1, exp([βi − βi+1][E(αk,i)−E(αk,i+1)])}.
Therefore, using parallel tempering the algorithm can explore larger phase space and con-

verge faster to a stationary probability distribution by improving chain mixing.

We construct 4 replicas with β1, β2, β3 and β4 equals to 1, 0.5, 0.25 and 0.125, respectively.

Optimal convergence of parallel tempering MHMC is achieved if the acceptance ratio (i.e,

the ratio of accepted to proposed sets) has a specified value. Rathore et al. suggested that

the optimal acceptance ration of each replica is 20% to yield the best performance, Kone

et al. suggested this ratio to be 23% [25], while Feller W. suggested it in the range of 30%

to 40% [27]. In our simulation, the accepted ratios of each replica are 30.2%, 30.6%, 30.9%

and 31.3%. The ε values, a measure of the proposed steps in the procedure are chosen as

0.071, 0.108, 0.162 and 0.249 of each replica. The chain with β = 1 provides the Boltzmann

sample. The swapping acceptance rate between replica 1 & 2, 2 & 3, 3 & 4 are 26.0%, 28.3%,

37.5%.

The algorithm we use is as follows:
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• Construct 4 replicas by using Metropolis sampling based on different temperature values.

• Run the basic Metropolis algorithm for each replica five steps. Five is chosen to give a

reasonable swapping rate, therefore to provide a good mixing.

• Perform swaps between adjacent replicas with a probability of P = min{1, exp([βi −
βi+1][E(αk,i)− E(αk,i+1)])}, where βi > βi+1

• Repeat from step 2.
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Figure 34: Schematic representation of the Parallel-Tempering algorithm.

3.3.3 Sensitivity Analysis and Parameter Reduction

The sensitivity analysis reveals the robustness of the model by exploring to which pa-

rameters the trajectory of system is most sensitive. One can use the results to reduce the

number of parameters in the model.

The model (3.3.1) ∼ (3.3.4) has 4 equations with 4 states (D,M,P,A) and 17 parameters

(θ). Since we only have data of P and A, so we only consider sensitivities at those two

equations. The 2×17 sensitivity matrix S = (sij) is defined below. The sensitivity coefficients

sij are calculated from the difference of nominal and perturbed solutions [16].

sij(t) =
∂xi(t)

∂θj
=

xi(θj +∆θj , t)− xi(θj , t)

∆θj
(3.3.17)
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Here i ∈ [1, 2] and j ∈ [1, 17]. Since the states and parameters have different magnitudes,

in order to facilitate the comparison of parameter sensitivities, we normalized sij in the

following way [16]:

s̄ij =
∂xi(t)

∂θj

θj
xi

(3.3.18)

Calculate the normalized sensitivity matrix S̄(t) at 4 data points. The matrix G is con-

structed in the following way:

G =




S̄(t1)

S̄(t2)

S̄(t3)

S̄(t4)




(3.3.19)

We calculate the G matrices over 2,000 parameter samples evenly chosen from samples

generated by parallel tempering and take the average over all these G matrices to get a new

matrix G =
∑n

i=1Gi. Then calculate the covariance matrix C, where C(i, j) is the covariance

of the ith and jth column of Ḡ. By sorting the diagonal elements of matrix C, we can find

the most to least sensitive parameters. Since some of the parameters are highly correlated,

we need to check the covariance coefficient matrix R, which R(i, j) = C(i,j)√
C(i,i)C(i,j)

. If some

pair of the parameters are highly correlated with each other, then we only need to pick one

of them. Here is the algorithm to pick the reduced parameter set.

• Calculate the sensitivity matrices G over the parameter sets got from parallel tempering.

• Calculate the averaged sensitivity matrix G =
∑n

i=1Gi.

• Calculate the covariance matrix C of Ḡ and sort the diagonal elements of C. Then we

have the sensitive parameters in order.

• Start from the most sensitive parameter i, and check its covariance coefficients R(i, j)

with others. Exclude the parameters which are highly correlated with i. And then repeat

this procedure to the next sensitive parameter if it has not been excluded yet.

3.3.4 Individual Fit

In the sensitivity analysis, we determine parameters to which the model is the most

sensitive. We perform parameter fitting for individuals by minimize the objective function
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over the sensitive parameters while fixing the other parameters at the average values of the

marginal distributions obtained from parallel sampling.

3.3.5 ODE Model Results

All the numerical results are simulated in MATLAB 7.5.0 (R2007b). The collected data

are shown in Figure 30 after elimination of outliers (defined as isolated values outside of

3 standard deviations for each data point). The lines and bars represent the average and

standard derivation of each group.

From the data one can see that IL-10 is quite flat during the observation period of any

group. Since the baseline values varied over an order of magnitude, we re-normalized the

data by dividing data for each subject by that subjects average base-line values (at the first

time point). Normalized data are shown in Figure 31. In that figure, the average at the

first and second time points is averaged over all patient data at that time point because

all patients to the same conditions up to the point, no matter which treatment group they

belong to.

There are statistically significant differences between the trajectory of spontaneous speech

and the trajectories of the other two treatments. Much less difference can be observed

between voice rest and resonant voice treatment. Spontaneous speech appears to lead to

a high level of inflammation at the end of the 24hr period. Voice rest and resonant voice

treatments have IL1-β levels that peak in the middle of the treatment period and then return

to the baseline by 24hr. The peak for resonant voice is slightly larger but with larger variance

as well. IL-10 levels rise during treatment phase for both spontaneous speech and resonant

voice treatments but not for voice rest treatment.

To explain the data we hypothesize that spontaneous speech increases damage in the sys-

tem by producing moderate levels of impact stress. The additional damage leads to increased

levels of pro-inflammatories for that treatment. We further hypothesize that resonant voice

produces large amount of vibratory stress that increases the production of both inflamma-

tory cytokines by macrophages. We have utilized these hypotheses in the construction of

the model and then set out to validate those hypotheses by fitting the model to the data.

87



The optimal parameter fit, based on minimization of the objective function (3.3.15), can

be seen in Figure 35. The last column of Table 4 shows the parameter values represented

in that figure. The trajectory of the system fits most of the data points. The exception is

the level of IL-10 in the voice-rest treatment case that is predicted 3 times larger than the

experimental values. The trajectory for macrophages is compatible with mild inflammation,

resulting in up to 3 fold activation of macrophages (for spontaneous speech). The trajectory

for damage is almost identical for voice rest and resonant voice treatments.
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Figure 35: Optimal parameter fit for the model. The parameter values are showed in the

last column of Table 4.

3.3.5.1 Ensemble Method Table 4 shows the baseline, prior range, average and stan-
dard deviation for each parameter.
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No Parameter Baseline Range Average SD Sample

1 αDI 0.86 0.043 ∼ 17.2 0.7631 0.1172 0.8420

2 αDP 0.53 0.0265 ∼ 10.6 0.3194 0.3974 0.1338

3 µD 0.18 0.009 ∼ 3.6 0.133 0.0681 0.1555

4 αMD 0.05 0.0025 ∼ 1 0.0566 0.0943 0.0339

5 β 1.8 0.01 ∼ 10 2.5262 2.5955 5.4937

6 ε 0.1 0.005 ∼ 1 0.1239 0.1537 0.0069

7 αMA 3.4 0.17 ∼ 68 11.7458 15.6568 6.6537

8 µM 0.3 0.015 ∼ 6 0.3912 0.7383 1.2744

9 αPM 0.17 0.085 ∼ 3.4 0.4534 0.5541 0.1988

10 αPD 1.3 0.065 ∼ 26 4.8495 4.3919 1.6785

11 αPV 1 0.05 ∼ 20 0.8571 0.8845 0.5789

12 αA 1.5 0.075 ∼ 30 8.0904 8.2102 1.6323

13 µP 0.14 0.025 ∼ 0.5 0.1037 0.0628 0.0896

14 αAM 0.1 0.025 ∼ 10 1.7211 2.0583 0.1735

15 γ 4 1 ∼ 10 2.9009 2.0393 1.7598

16 αAP 2.7 0.2 ∼ 4 0.4386 0.2520 0.2022

17 µA 0.1 0.05 ∼ 1 0.2909 0.2524 0.0682

Table 4: Baseline, prior range, average and standard deviation of each parameter

We have performed 4 distinct runs starting from randomly initial parameter values by

the Metropolis Monte Carlo algorithm. The length of each run is 320,000, 320,000, 320,000

and 90,000 after discarding the initial points (burn-in-period) from each run. In order to

lower the autocorrelation, the samples are stored every 5th point. The convergence of each

run is tested using Gelman and Rubin diagnostic [28], which calculates a potential scale

reduction factor associated with each parameter. That factor values in our model are all

below 1.01 which is within the confidence interval.

We have combined all stored samples of 210,000 points for further analysis. Marginal
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parameter distributions are shown in Figure 36. 14 parameters have peaks within the prior

distribution range, while the remaining distributions are skewed.
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Figure 36: Marginal parameter distributions for the ensemble model. The X-axis is in log10

scale.

The trajectory statistics for the ensemble model is shown in Figure 37 as not as individual

trajectories, but as percentile levels of the distribution of the variable versus time. For

example, if the 75th percentile curve of A has value A0 at time t0, then 75% of all trajectories

in the ensemble have A(t0) 6 A0. As see in Figure 37, the variances in the values of both

pro- and anti-inflammatories are approximately constant in time. The large increase in the

variance of M is a result of having no constraint on the maximum value of M. Again, the

distributions reflect the inability of the model to capture the decrease in IL-10 for the voice
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rest treatment.
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Figure 37: Trajectory statistics of the ensemble model. For each variable, the percentile

of the resulting distribution is shown at each time point: 95th percentile (top green), 75th

percentile (top blue), 50th percentile (red), 25th percentile (bottom blue), and 5th percentile

(bottom green).

3.3.5.2 Sensitivity Analysis and Parameter Reduction By sorting the diagonal

elements of the covariance matrix C of Ḡ, we have the most to the least sensitive parameter

in the following order: 1, 9, 3, 17, 14, 10, 13, 4, 15, 12, 5, 8, 7, 16, 2, 11, 6. We assume that

two parameters are highly correlated if their absolute value of the covariance coefficient is

great than 0.95. Parameter 1 is the most sensitive one - it is highly correlated with 9 and
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10; go to the next most sensitive parameter - 3 is highly correlated with 2 and 13; go to next

sensitive parameter - 17 is highly correlated with 14, 15, and 16; then parameter 4 is highly

correlated with parameter 5 and 12; then parameter 8 is highly correlated with 8; and 11 is

not highly correlated with any of the others. So the reduced parameter set are: 1, 3, 4, 8, 11

and 17, corresponding to αDI , µD, αMD, µM , αPV and µA. We have also tried the singular

value decomposition to calculate the sensitivities, but it doesn’t perform as good as this one.

The sensitivity-dependent correlation matrix correlation containing the correlation coef-

ficients of the 17 parameters is in Figure 38. Red represents positive highly correlated, blue

represents negative highly correlated, and the other colors are the intermediate ones.
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Figure 38: Correlation coefficient matrix. The red color means highly positive correlated

and the blue color means highly negative correlated.
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3.3.5.3 Pre-inflamed Group We mentioned before that there are two patients who

received the treatment in voice rest having high initial value of IL-1β. These two patients

are defined as pre-inflamed ones. The baseline values of IL-1β and IL-10 are normalized by

the average of other two patients’ baselines in voice rest group. The initial value of this

group is (D,M,P,A) = (0, 1, 11.33, 0.76). The full parameter sets got from the sampling

method above are applied to the pre-inflamed group. We also run the statistical trajectories

of this group.
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Figure 39: Trajectory statistics of the ensemble model of the pre-inflamed group which only

received treatment in voice rest. For each variable the percentile of the resulting distribution

is shown at each time point: 95th percentile (top green), 75th percentile (top blue), 50th

percentile (red), 25th percentile (bottom blue), and 5th percentile (bottom green).
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The two patients in the pre-inflamed group received the treatment of voice rest. Data

points of IL-1β and IL-10 in Figure 39 are all measured under the treatment of voice rest. The

damage behaviors of the pre-inflamed patients are almost the same as those of the normal

patients. Thus we could see that pre-inflammation would not cause extra damage during

the phonation loading. The magnitudes of macrophage, IL-1β and IL-10 in pre-inflamed

patients are much higher than the normal patients in corresponding treatment group. IL-1β

has small peak in spontaneous and decreases almost consistently in the other two treatments.

The IL-10 increases in all three treatments and peaks at similar levels. From the statistical

trajectory, we can see that the best therapy to heal from vocal fold inflammation for those

pre-inflamed people is also voice rest or treatment in resonant voice.

3.3.5.4 Individual Fit and prediction There is one special subject who receives the

3 different treatments at different time. We fit this one through the reduced parameter set.

We only input the data of first three time points and try to predict the last one. Figure 40

shows one of the optimal fits.
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Figure 40: Optimal parameter fit and prediction for individual. The parameter values are

showed in the last column of Table 5.

In spontaneous, the model tries to predict the peak of IL-1β. The predicted peak time

is right but the magnitude is not as high as the real data. Though the second point of

IL-10 is not assimilated in the model, but the peak of IL-10 is predicted. In voice rest, the

model assimilates the first three data points of IL-1β very well and the prediction of the

fourth agrees with the real data point. For the IL-10, again, the model hasn’t captured the

decrease of IL-10. In the resonant voice, the model’s assimilation and prediction of IL-1β is

not perfect, but acceptable. Then again, the decrease of IL-10 is not captured.

Parameter values in Figure 40 are showed in the last column of Table 5. Parameters in red

are the new optimal values of the reduced set and black are the fixed less sensitive parameters
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obtained from the average in parallel samplings. Table 5 also lists the average and standard

derivation of parameters in parallel sampling. We can see except one parameter αPV , all the

other new optimal parameter values are within the standard derivation of the average values

in the full model. αPV is an exception might because this parameter characterizes the effect

vibration stress in pro- and anti-inflammatories. Each individual may react quite differently

to a same treatment therapy.

No Parameter Average SD Optimal

1 αDI 0.7631 0.1172 0.9474

2 αDP 0.3194 0.3974 0.3194

3 µD 0.133 0.0681 0.1213

4 αMD 0.0566 0.0943 0.0288

5 β 2.5262 2.5955 2.5262

6 ε 0.1239 0.1537 0.1239

7 αMA 11.7458 15.6568 11.7458

8 µM 0.3912 0.7383 0.3479

9 αPM 0.4534 0.5541 0.4534

10 αPD 4.8495 4.3919 4.8495

11 αPV 0.8571 0.8845 8.1921

12 αA 8.0904 8.2102 8.0904

13 µP 0.1037 0.0628 0.1037

14 αAM 1.7211 2.0583 1.7211

15 γ 2.9009 2.0393 2.9009

16 αAP 0.4386 0.2520 0.4386

17 µA 0.2909 0.2524 0.0953

Table 5: Parameters in red are the new optimal values of the reduced set and black are the

fixed parameters obtained from the averages of the whole parameter set in parallel samplings.

The values in the other two columns are average and standard derivation of each parameter

in parallel sampling.
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3.4 CONCLUSION

We have employed mathematical modeling to explain differences in trajectories of pa-

tients with vocal fold inflammation subject to individualized treatments. We have designed

an ensemble model representing the parameter variability of the patient population and

found that it mostly agrees with the data. We conducted the sensitivity analysis in order

to find the global and local parameters and then fix the global parameters and optimize the

local ones for individuals. The model was not very successful in fitting to individual patients

trajectories.

The first limitation of this model is that it is simplified to only 4 variables. More com-

plex models can be constructed, but ultimately, the limited data set and the high variance

restricted our ability to fit such models. The inclusion of the fibroblast and collagen into

the model will result in a better understanding of the healing process. The second limita-

tion of the current model is its simplified account of the loading conditions, represented by

vibratory or impact stress variables. We need to have a more qualitative understanding of

the magnitude and effect of the two stresses. The third limitation is the fact that since our

reduction methods resulted in missing IL-10 trajectories, rather than isolated data points,

it might be more appropriate to adopt global methods, rather than local methods in this

situation. Such methods typically results is less parsimonious reduction in the number of

parameters and thus greater ability to fit data.

Our future goal is to develop a method for proposing a patient specific vocal exercise

schedule or rest program that optimizes tissue healing in cases of both acute and chronic

phonotrauma.
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