
TIME-SYNCHRONIZED OPTICAL BURST

SWITCHING

by

Artprecha Rugsachart

B.E. in Electrical Engineering, Chulalongkorn University, 1997

M.S. in Telecommunications, University of Colorado, 2000

Submitted to the Graduate Faculty of

the School of Information Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2007

UNIVERSITY OF PITTSBURGH

SCHOOL OF INFORMATION SCIENCES

This dissertation was presented

by

Artprecha Rugsachart

It was defended on

August 1st, 2007

and approved by

Dr. Richard A. Thompson, School of Information Sciences

Dr. David Tipper, School of Information Sciences

Dr. Joseph Kabara, School of Information Sciences

Dr. Rami Melhem, Department of Computer Science

Dr. Albert P. Heberle, Department of Physics and Astronomy

Dissertation Director: Dr. Richard A. Thompson, School of Information Sciences

ii

TIME-SYNCHRONIZED OPTICAL BURST SWITCHING

Artprecha Rugsachart, PhD

University of Pittsburgh, 2007

Optical Burst Switching was recently introduced as a protocol for the next generation opti-

cal Wavelength Division Multiplexing (WDM) network. Currently, in legacy Optical Circuit

Switching over the WDM network, the highest bandwidth utilization cannot be achieved

over the network. Because of its physical complexities and many technical obstacles, the

lack of an optical buffer and the inefficiency of optical processing, Optical Packet Switching

is difficult to implement. Optical Burst Switching (OBS) is introduced as a compromised

solution between Optical Circuit Switching and Optical Packet Switching. It is designed to

solve the problems and support the unique characteristics of an optical-based network. Since

OBS works based on all-optical switching techniques, two major challenges in designing an

effective OBS system have to be taken in consideration. One of the challenges is the cost and

complexities of implementation, and another is the performance of the system in terms of

blocking probabilities. This research proposes a variation of Optical Burst Switching called

Time-Synchronized Optical Burst Switching. Time-Synchronized Optical Burst Switching

employs a synchronized timeslot-based mechanism that allows a less complex physical switch-

ing fabric to be implemented, as well as to provide an opportunity to achieve better resource

utilization in the network compared to the traditional Optical Burst Switching.

iii

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Motivation . 1

1.1.1 Optical Switching Techniques . 2

1.1.2 Optical Burst Switching (OBS) . 4

1.1.3 Design Issues for Optical Burst Switching 5

1.2 Problem Statement . 6

1.3 Research Summary . 6

1.4 Outline . 9

2.0 BACKGROUND . 10

2.1 Optical Burst Switching . 10

2.2 Asynchronous-based OBS . 11

2.2.1 Tell-And-Go protocol . 11

2.2.2 Reserve-a-Fix-Duration protocol . 12

2.3 Timeslot-based OBS . 16

2.3.1 Time Sliced OBS protocol . 16

2.3.2 Slotted OBS protocol . 17

2.4 Offset Time Management . 18

2.5 QoS and Priorities . 20

2.5.1 Offset Time Management for Supporting QoS and Priorities 20

2.6 Burst Assembly . 22

2.6.1 Burst Assembly Algorithm Constraints 24

2.6.2 Burst Assembly Algorithms . 25

iv

2.7 Physical Implementation . 26

2.7.1 Space Switching Fabric . 28

2.7.1.1 Switching Fabric Constraints 29

2.7.1.2 Examples of Switching Fabric Architecture 31

2.8 Contention Resolution . 34

2.9 Discussion . 35

3.0 TIME-SYNCHRONIZED OPTICAL BURST SWITCHING 37

3.1 Overview . 37

3.2 Physical Implementation . 41

3.2.1 Synchronization . 43

3.2.2 Space Switching Fabric . 46

3.2.3 Tunable Wavelength Converter . 48

3.2.4 Wavelength Demultiplexer/Multiplexer 49

3.2.5 Switch Control . 49

3.2.6 Optical Buffer (FDL) . 50

3.2.7 Guard Time . 51

4.0 PERFORMANCE ANALYSIS OF SYNOBS CORE NODE 54

4.1 SynOBS core node without FDL . 54

4.1.1 Reservation Algorithm . 55

4.1.2 Physical Requirements . 55

4.1.3 Blocking Analysis . 56

4.2 SynOBS core node with separated FDLs . 58

4.2.1 Reservation Algorithm . 60

4.2.2 Physical Requirements . 61

4.2.3 Blocking Analysis . 62

4.2.4 Delay Analysis . 65

4.3 SynOBS core node with shared FDLs . 69

4.3.1 Reservation Algorithm . 69

4.3.2 Physical Requirements . 70

4.3.3 Blocking Analysis . 71

v

4.3.4 Delay Analysis . 77

4.4 Comparison Among Policies . 82

4.5 Simulations . 83

4.5.1 Theoretical Analysis Validation . 84

4.5.2 Comparison with Traditional OBS . 86

4.6 SynOBS Core Node with Multiple-Length FDLs 87

4.6.1 Reservation Algorithm . 94

4.6.2 Physical Requirements . 97

4.6.3 Performance Analysis . 98

5.0 THE EFFECT OF TIMESLOT SIZE . 104

5.1 SynOBS Burst Assembly Algorithm . 105

5.1.1 Analysis of Burst Assembly Algorithm 107

5.2 Analysis of SynOBS core node with single class traffic 113

5.2.1 SynOBS core node with identical sources 116

5.2.2 SynOBS core node with un-identical sources 118

5.3 Analysis of SynOBS with multiple classes traffic 121

6.0 OPTIMIZATION IN SYNOBS NETWORK 125

6.1 Network Offered Load Minimization . 125

6.2 Weighted Burst Loss Approximation . 130

6.2.1 Weight Burst Loss Approximation in Large Network 134

6.2.2 Simulated Weight Burst Loss Approximation 137

6.3 Performance Comparison against Traditional OBS 139

7.0 CONCLUSIONS AND FUTURE WORK 141

BIBLIOGRAPHY . 146

vi

LIST OF FIGURES

1.1 Optical Burst Switching Diagram . 4

2.1 OBS Network Architecture . 10

2.2 Tell-And-Go Diagram . 12

2.3 Reserve-a-Fix-Duration Diagram . 12

2.4 Example of Control Packet Format . 13

2.5 Blocking Example of TAG . 14

2.6 Blocking Probability of RFD and TAG . 15

2.7 Time Sliced OBS network Architecture [1] 16

2.8 Example of Slotted OBS . 18

2.9 OBS Offset Time Diagram . 19

2.10 OBS Offset Time with QoS Diagram . 21

2.11 Edge OBS Switch Diagram . 23

2.12 The Fixed-Time-Min-Length burst assembly algorithm pseudo-code [2] 26

2.13 The Max-Time-Min-Max-Length burst assembly algorithm pseudo-code [2] . 27

2.14 Physical Switch Architecture . 28

2.15 LiNbO3 Switched Directional Coupler . 31

2.16 4x4 crossbar switch . 32

2.17 8x8 Benes switch . 32

2.18 4x4 Dilated Benes switch . 33

2.19 8x8 Spanke-Benes switch . 33

2.20 Physical Switching Fabric with FDL . 34

2.21 Loss example of traditional OBS . 35

vii

3.1 Time-Synchronized OBS (SynOBS) Network 38

3.2 The characteristics of different OBS protocols 39

3.3 Comparison of core node link utilization between RFD-based OBS and SynOBS 40

3.4 An example block diagram of SynOBS core node 42

3.5 An example block diagram of SynOBS timing 43

3.6 Tunable Delay Line . 44

3.7 An Example of Tunable Delay Line . 45

3.8 Comparison of required number of 2x2 switching devices in a core node . . . 47

3.9 An Example of Tunable Optical buffer . 51

4.1 Blocking probabilities of SynOBS without FDL 58

4.2 Blocking probabilities of SynOBS without FDL with large number of wavelengths 59

4.3 SynOBS core node with separated FDLs . 60

4.4 Blocking probabilities of SynOBS core node with separated FDLs 65

4.5 Delay distribution in SynOBS with separated FDLs (a) with one FDL (b) with

two FDLs . 67

4.6 Expected delay duration in SynOBS with separated FDLs 68

4.7 SynOBS core node with shared FDLs . 69

4.8 Blocking probabilities of SynOBS core node with shared FDLs 76

4.9 Burst blocking probability of unbalanced offered load SynOBS with shared FDL 77

4.10 Delay distribution in SynOBS with shared FDLs (a) with 1 FDL (b) with 2

FDLs . 81

4.11 Expected Delay SynOBS with shared FDLs 82

4.12 Burst blocking probability comparison between policies 83

4.13 Expected delay duration comparison between policies 84

4.14 Simulation network environment . 85

4.15 Comparison between mathematical analysis and simulation 85

4.16 Comparison between SynOBS and Traditional OBS 87

4.17 Example of contention resolution in SynOBS with fixed-length FDLs 88

4.18 Example of contention resolution in SynOBS with multiple-length FDLs . . . 89

4.19 Example of contention resolution in SynOBS with fixed-length FDLs 91

viii

4.20 Example of contention resolution in SynOBS with multiple-length FDLs . . . 92

4.21 Blocking probabilities in a 4-port SynOBS core node with various FDL con-

figurations . 99

4.22 Example of contention resolution in SynOBS with (a) two multiple-length

FDLs and (b) three fixed-legth one-timeslot FDLs 100

4.23 Delay through a 4-port SynOBS core node with various FDL configurations . 101

4.24 Blocking probabilities in a 4-port SynOBS core node equipped with three FDLs

and the total FDL delay duration of six timeslots 102

5.1 Illustrating timeslot size setting with a. too small timeslot size, b. reasonable

timeslot size, and c. too large timeslot size 104

5.2 Average Assembled Data Length with given Packet Arrival Rate 110

5.3 Average Assembled Data Length with given Target Timeslot Size 111

5.4 Illustrating Timeslot Utilization . 111

5.5 Average Timeslot Utilization with given Packet Arrival Rate 112

5.6 Average Timeslot Utilization with given Target Timeslot Size 113

5.7 Normalized Offered Load generated by Assembly Algorithm 115

5.8 Simulation environment . 116

5.9 Burst blocking probability with given Target Timeslot Size 117

5.10 Optimized target timeslot size with given packet arrival rate 118

5.11 Burst blocking probability with given Target Timeslot Size 119

5.12 Burst blocking probability with given Target Timeslot Size for in-indentical

sources . 120

5.13 Optimized target timeslot size for traffic with in-indentical sources 121

5.14 Burst Blocking Probability with Priority . 123

6.1 Experimental network . 126

6.2 The comparison of (a) the calculated normalized offered load, and (b) the

simulated burst blocking probability in the experimental network with balance

offered load . 127

ix

6.3 The comparison of (a) the calculated normalized offered load, and (b) the sim-

ulated burst blocking probability in the experimental network with unbalance

offered load . 128

6.4 The comparison of the weighted burst loss approximation and the simulated

burst blocking probability with balanced offered load 131

6.5 The comparison of the weighted burst loss approximation and the simulated

burst blocking probability with unbalance offered load 132

6.6 vBNS Network . 135

6.7 Weighted burst Loss Approximation vs. simulated overall burst blocking prob-

ability of vBNS network . 136

6.8 Simulated Weighted burst Loss Approximation vs. overall burst blocking prob-

ability of vBNS network . 138

6.9 SynOBS vs. Traditional OBS . 139

x

1.0 INTRODUCTION

1.1 MOTIVATION

The introduction of Wavelength Division Multiplexing (WDM) network over optical fiber

has provided opportunities to multiplex multiple data streams (wavelengths) into one single

optical fiber cable. While the current backbone Internet Protocol (IP) network operates on

a multi-layered protocol (IP/ATM/SONET/WDM), this multi-layered protocol architecture

is thought to introduce a high signaling overhead and protocol complexities in the network

with many unnecessarily overlapped functions due to the separation of each protocol layer[3].

Therefore, it is likely that the next generation of the IP backbone network will be based on

a simpler protocol architecture, which will transport IP directly over WDM [3, 4, 5], making

the network simpler, faster, and easier to manage than the existing network.

In order to implement such a next generation network, two physical switching techniques

have been studied. One is an Optical to Electrical to Optical (O/E/O) Switching, and the

other is an all-Optical switching. O/E/O switching is the physical switching architecture

used in the existing network. In O/E/O switching, incoming optical data is converted to the

electrical domain before it is stored in the switch for processing. The data then is converted

back to the optical domain for outgoing transmission. On the contrary, data in all-optical

switching is switched through the switch all optically without converting it to the electrical

domain. There are some potential benefits of all-optical switching over O/E/O switching.

First, the operation of O/E/O switching is based on a store-and-forward architecture while

all-optical switching is cut-through in nature. Therefore, O/E/O switching introduces some

transmission delays in intermediate nodes while all-optical switching does not. Second, and

the main advantage of all-optical switching, since all-optical switches simply just switch

1

data streams of light without any O/E/O conversion in intermediate nodes, any data rate

and/or protocol can be switched through the network. Thus, services and/or protocols are

transparent to the network. This gives an opportunity for providing a flexible and future

proof network [6]. However, all-optical switching still has some drawbacks when compared to

O/E/O switching. First, all-optical switching is still an emerging technology while O/E/O

switching is a proven technology, which has already been deployed in the current network

[7]. Second, optical processing (e.g. optical buffer (optical RAM), optical processor) is still

very limited in the current technology [8, 7].

As discussed above, using all-optical switching seems to be one of the most promising

solutions for the next generation backbone network [7, 6, 9]. By the advantages of bit

rate and protocol transparency, it can provide a future-proof backbone network with more

flexibility than using the current O/E/O switching. However, due to physical limitations of

the all-optical switch (e.g. the limitation of optical buffer, optical processing, and etc.), the

upper layer protocol architecture must be carefully redesigned to provide support for the

unique all-optical switching physical characteristics.

1.1.1 Optical Switching Techniques

In an all-optical switching network, several switching techniques can be compared by their

algorithms to reserve the transmission channel (wavelength). The first technique discussed

here is Optical Circuit Switching, the next is Optical Packet Switching, and the last is Optical

Burst Switching.

Optical Circuit Switching (OCS) [8] has its wavelength reservation algorithm based on

traditional circuit switching. Each transmitted wavelength is reserved for each pair of end-

to-end transmissions (optical paths). After the wavelength is reserved for the end-to-end

transmission, no other node can transmit data via this wavelength except the node that is

assigned to the wavelength. The sent data is switched through the network all-optically via

a predefined light path with possible wavelength conversion in intermediate nodes until it

reaches a pre-assigned destination. OCS is the simplest approach in the all-optical switch-

ing network when compared to the other two techniques. Because of its circuit switched

2

nature, core optical switching nodes can simply configure their switching fabric based on

the predefined light path. Although OCS is simple to implement, there are some drawbacks

due to its circuit switched characteristics. First, since the number of wavelengths is limited,

the number of nodes in the OCS is limited to some degree due to the scarcity of available

wavelengths to provide a fully meshed end-to-end connection. Second, since each end-to-end

light path (wavelength) is reserved for only one end-to-end connection, no data from other

connections can be sent over the reserved light path. Therefore, if the reserved source node

does not have data to send to the destination node, the bandwidth of the light path is wasted.

Thus, in case of bursty traffic, the OCS configuration lacks efficient statistical multiplexing

and provides poor resource and bandwidth utilization [8].

Optical Packet Switching (OPS) [8, 6, 7, 9] is similar to traditional packet switching where

each packet consist of two main parts, header and payload. A header is attached at the head

of the packet to carry signaling information such as routing information for the packet, which

is used to process and make routing decision in each intermediate node. The payload is the

data portion of the packet and is kept in the optical domain through the network and its

switches. Although OPS can provide better resource and bandwidth utilization than OCS,

physical architecture complexities prevail, particularly in implementing the system, because

of the physical limitations of the optical processing [8, 7]. The first complexity is that, in

order to provide efficient packet switching, a fast switching time is required in OPS because

the data transmission rate is very high (Gbps) compared to that of traditional IP. Second,

it is indispensable to have a method to extract the header from the incoming packet, to be

converted to the electrical domain for processing, and to re-assemble as well as realign the

regenerated header to form the outgoing packet. Finally, optical buffering (or Fiber Delay

Lines (FDLs)) or offset time between header and payload should be available to provide the

switching control enough time to process the header and preconfigure the switching matrix

before the payload arrives at the switching fabric.

Optical Burst Switching (OBS) has recently gained a considerable amount of interest

as a potential candidate for the next-generation backbone network [8, 7]. Because of the

problems inherent in OCS (poor resource and bandwidth utilization) and OPS (physical

complexities), OBS was introduced as a synergy of OCS and OPS, thereby providing better

3

resource and bandwidth utilization than OCS while being simpler to physically implement

than OPS.

1.1.2 Optical Burst Switching (OBS)

In OBS, data with the same priority and destination is aggregated into a burst at the edge

of the network. Then a control packet, which contains the burst-related routing information,

is generated and sent along a path via a separate channel from the data path (in order

to allow the data path to be kept very simple). The control channel might be one of the

predefined and dedicated wavelengths. As shown in Figure 1.1, the control packet traverses

through the network and is converted to the electrical domain in the intermediate nodes for

processing and determining the route before being forwarded. After the control packet is

sent, and after an offset time, the data burst is sent at a full-bandwidth over an available

wavelength. Data bursts are kept in the optical domain and switched — with the possibility

of wavelength conversion — through the intermediate nodes in cut-through fashion without

any O/E/O conversion. The offset time between the control packet and the associated data

burst is provided in order to allow time for intermediate switch nodes to process the control

packet, compute the route, and configure its switching fabric, which is necessary in both

space domain and wavelength domain prior to the arrival of the data burst.

Space & wavelength
 switching matrix

Switch Control
Ctrl
Pckt
 E/O

Ctrl
Pckt
O/E

Ctrl Pckt Path

Ctrl Pckt

Data Burst

Data Path

Figure 1.1: Optical Burst Switching Diagram

By using the OBS technique, the network can provide statistical multiplexing, which leads

4

to better resource and bandwidth utilization than OCS in case of bursty traffic. Because

a wavelength is reserved only when there is a burst to transmit, and will be released when

the burst transmission finishes, the wavelength would be available for other transmissions.

In addition, OBS is considered to be an easier method to implement than OPS because of

following reasons.

• Since the control packet, which is converted to the electrical domain in intermediate

nodes, is sent via a separate channel, in-band complex optical processing (e.g. optical

extraction/insertion and realignment of the header in OPS) is avoided.

• Compared to the smaller size packets in the OPS, the core switching fabric reconfiguring

rate is lower since data is aggregated into a large burst before the transmission.

1.1.3 Design Issues for Optical Burst Switching

Since OBS works based on the all-optical switching techniques, the OBS protocol must

be carefully designed in order to efficiently support the unique characteristics of all-optical

switching. Several challenges are introduced due to the physical characteristic of all-optical

switches.

• First, a physical non-blocking all-optical switching fabric is currently constructed by

interconnecting small 2x2 switching devices to form larger switching fabric. Therefore

one factor, which contributes to the cost of implementing an all-optical switching fabric,

is the number of 2x2 switching devices required in the switching fabric. The cost of

implementing a fabric is correlated to this required number of 2x2 switching devices.

Therefore it is preferred that the design of an all-optical switching fabric should require

as few 2x2 switching devices as possible [10].

• Second, in the data burst transmission, since the number of wavelengths is limited,

contention in an OBS network can occur when one or more bursts needs a wavelength in

an outgoing port while no wavelength is available (currently reserved by other bursts).

As a result, bursts maybe blocked and then dropped. This occurrence should be minimal.

5

1.2 PROBLEM STATEMENT

The objective of this dissertation is to study recent technological aspects of Optical Burst

Switching (OBS) and to redesign the OBS protocol to balance between the cost of physical

implementation against system performance.

1.3 RESEARCH SUMMARY

The objective of this study is to review and identify the deficiencies of OBS protocols already

proposed, and to redesign the OBS protocol to balance the cost of physical implementation

against system performance. According to the review of the literature, we found out that

most of the proposed OBS protocols have variable burst size with non specific burst arrival

time. This leads to the requirement that a complex wide-sense non-blocking switching fabric

be implemented in OBS nodes in order to avoid any interruption while a data burst is

being transferred through the node. In addition, most of the proposed OBS protocols also

suffer from the situation in which a burst is partially blocked. This subsequently causes an

inefficient resource utilization of the available bandwidth in the network. More details of

these issues will be discussed in chapter 2 and 3.

The main contribution of this dissertation is the proposed variation of OBS protocols,

called Time-Synchronized OBS (SynOBS). SynOBS employs a synchronized timeslot-based

mechanism in order to allow a less complex rearrangeably non-blocking switching fabric to

be implemented, as well as to provide an opportunity to achieve better resource utilization

in the network compared to the previously proposed OBS protocols. The contributions of

this dissertation are summarized as follows:

• Design the basic protocol architecture and discuss a possible implementation of the basic

physical building blocks of SynOBS networks.

• Study the physical requirements of SynOBS and compare them to those of the previously

proposed OBSs, based on the number of physical 2x2 switching devices required in the

core switching fabric.

6

• Provide a mathematical model, which is used to estimate and analyze the performance

of SynOBS (in terms of burst loss probability) based on a given network configuration

and input traffic characteristics. This mathematical model will be used to analyze simple

models of SynOBS as well as to validate the SynOBS simulation model.

• Provide a SynOBS simulation model environment, which is used to analyze the model

of the SynOBS network, where the model is too complex for mathematical analysis.

• Study the effect of timeslot size on the performance of SynOBS and provide an analytical

framework for estimating the optimized solution based on a given network configuration

and input traffic characteristics. The effect of timeslot size is a trade-off between burst

assembly time and the guard time between consecutive timeslots (SynOBS works on a

fixed size timeslot mechanism).

• Study the implementation of optical buffers and its effect on system performance and

the physical requirements of SynOBS. In OBS, the optical signal is buffered in Fiber

Delay Lines (FDL). FDLa are used to delay those incoming bursts which are currently

blocked, so they can be switched out at a later time. While more FDLs available in an

OBS node means better blocking probability, additional FDL in a core node requires

additional physical requirements in core switching fabric.

Because OBS is based on all-optical switching, and since several areas in all-optical

switching are still emerging technologies, several assumptions have been made in this dis-

sertation in order to avoid existing unclear physical problems. The work is based on the

following assumptions, some of which are peripheral issues, some of which are discussed,

some simply assumed, but none of which are the core of the dissertation.

• The tunable wavelength converter for an all-optical network has received increasing at-

tention and is currently is an active area of research [10]. Several solutions were proposed

based on different technological approaches such as Optoelectronic Conversion (the com-

bination of photodetector and tunable laser), Optical Gating Wavelength Conversion,

and Wave-Mixing Wavelength Conversion. While each approach has its own character-

istics with different advantages and limitations, a winner among them is still unclear. In

order to maintain neutrality in this dissertation, it is assumed that the provided tunable

7

wavelength converters have full capability of wavelength conversion — which means, they

are able to convert any given input data wavelength to any output data wavelength.

• In current technology, wavelength conversion is expensive. This study proceeds under

the assumption that either (i) the cost will come down in the future, or (ii) architec-

tural techniques can be applied to reduce the number of converters (not part of this

dissertation).

• Since SynOBS employs a synchronized timeslot-based technique, the required mecha-

nism, which is used to realign and synchronize incoming data, is assumed to be available.

In this document, this mechanism is referred to as the timeslot synchronizer. While it is

not the main focus of this dissertation, some of the basic ideas for implementing such a

mechanism will be briefly studied and discussed.

• Since the all-optical switching fabric switches the data in an all optical domain, the data

is kept in this domain all the way to the destination, where it would encounter atten-

uation, dispersion, and timing variation. To keep the signal within acceptable quality,

therefore some forms of optical regeneration are required. The mechanism for providing

all optical regeneration is another current active research area. Such the examples of

optical regeneration mechanism are Erbium-Doped Fiber Amplifier (EDFA), Semicon-

ductor Laser Amplifier (SLA), SOA-MZI-Based 3R Regenerator, and Black-Box Optical

Regenerator (BBOR) [11]. While the mechanism for all optical regeneration is not in the

scope of this dissertation, it is assumed to be available.

• In SynOBS, It is possible for the data to be switched in space, wavelength, or time do-

main. While a large number of all-optical switching architectures have been proposed in

the area of all-optical switching (such as SLOB, KEOPS, WASPNET, and R. A. Thomp-

son and D. K. Hunter’s three-divisional architectures [12, 6, 13]), in this dissertation, the

switching architecture used is based on the separated time/space/wavelength switching

fabric which is the most widely adopted architecture for OBS [14, 15, 1, 16]. The detailed

description of the architecture is provided in sections 2.7 and 2.8.

8

1.4 OUTLINE

The remainder of this dissertation is organized as the following. Chapter 2 presents a back-

ground and review of the available literature in the field of OBS. Several variations of OBS

protocols are presented, as well as other concerned issues in OBS, including burst assembly,

physical implementation, and contention resolution in OBS. The objective is to provide the

reader an overview of the state-of-the-art in the field, and to identify the major concern

in designing an OBS system. The research problems raised in this chapter will be used to

propose a variation of synchronized timeslot-based OBS protocol (Time-Synchronized OBS)

in Chapter 3. Chapter 4 presents the performance analysis of Time-Synchronized OBS core

node, and the performance comparison between Time-Synchronized OBS and traditional

OBS. Then the analysis of the effect of timeslot size setting to the Time-Synchronized OBS

system is presented in Chapter 5. Chapter 6 discusses the algorithm/calculation for approx-

imating the optimized solution of the time size setting in Time-Synchronized OBS network

based on the lowest overall burst blocking probability. Finally, the conclusions of the dis-

sertation and the possible further researches for Time-Synchronized OBS are discussed in

Chapter 7.

9

2.0 BACKGROUND

2.1 OPTICAL BURST SWITCHING

OBS Network

Edge OBS Node

Core OBS Node

Figure 2.1: OBS Network Architecture

In an OBS network, nodes in the network are categorized into two groups; the edge OBS

nodes and the core OBS nodes (as shown in Figure 2.1). The edge OBS nodes are located

at the edge of the OBS network to provide interconnection between the OBS network and

other networks. They are responsible for several functions.

• First, an ingress traffic classification sorts ingress traffic based on its priority and des-

tination. The data destined to the same egress edge OBS node and holding the same

priority will share the same label, which is subsequently forwarded to the burst assembly

process.

• The second function is a burst assembling process, which aggregates classified traffic into

data bursts before being sent out into the OBS network. In addition, the edge OBS

10

node assigns a label to each data burst, generates the control packet which encapsulates

control and routing information along with the data burst, and forwards the control

packet and the data burst into the OBS network.

• Finally, the edge OBS nodes are also responsible for being egress nodes for data in the

OBS network, disassembling the burst, updating each data packet individually as needed,

and forwarding data packets out of the OBS network to their final destinations.

Core OBS nodes are core switch nodes in the OBS network. Their duty is to process

incoming control packets, determine routes, forward control packets based on given routing

information, and configure a switching matrix to switch the data burst to an outgoing port

based on the given routing information from the control packet.

2.2 ASYNCHRONOUS-BASED OBS

Many OBS protocol variations have been proposed. In this document, proposed OBS proto-

cols are divided into two categories. This section describes asynchronous-based OBS, which

has continuous variable data burst size. The next section describes timeslot-based OBS,

which has discrete variable burst size based on the duration of its timeslot.

Asynchronous-based OBS protocols assume that data bursts arrive asynchronously and

that burst size varies continuously. Two asynchronous-based protocols are described here

(e.g. Just-In-Time [17], Just-Enough-Time [18]).

2.2.1 Tell-And-Go protocol

In the Tell-And-Go (TAG) based protocol [8, 17] (Just-In-Time) shown in Figure 2.2, the

process starts when a control packet is sent along the path via the control channel. After the

offset time, the data burst is sent in the indicated channel. When the data burst transmission

is finished, a burst terminator packet is sent in the control channel to indicate that the

burst transmission has finished. When the control packet arrives at an intermediate core

switch node and is processed, updated and forwarded along the path, output bandwidth

11

(wavelength and port) is reserved for the incoming data burst. While the data burst is

passing through the switch via the reserved outgoing wavelength/port, the switch waits for

the burst terminator packet from the control channel. After acquiring the burst terminator,

the output wavelength/port is released and is available for other transmissions. The burst

terminator is then forwarded along the outgoing path.

Control Pckt.

Data Burst

terminator

Control Channal

Data Channel

BW Reservation Time

Figure 2.2: Tell-And-Go Diagram

2.2.2 Reserve-a-Fix-Duration protocol

Control Pckt. (offset & burst time)

Data Burst

Control Channal

Data Channel

offsetburst time

BW Reservation Time

Figure 2.3: Reserve-a-Fix-Duration Diagram

The Reserve-a-Fix-Duration (RFD) protocol [8, 18] (Just-Enough-Time) shown in Figure

2.3 assumes that all protocol signaling is sent via the control channel. A control packet is sent

along the path via the control channel. In addition to routing information and a wavelength

ID of the incoming data burst, an offset time period and a burst duration are also included

in the control packet (as shown in Figure 2.4). After the specified offset time, the data burst

is sent in the indicated wavelength, which is specified in the control packet, without burst

12

delimiter signaling. When the control packet arrives at an intermediate core switch node

and is processed, updated and forwarded along the path, an output bandwidth (wavelength

and port) is reserved based on the given offset time and the burst duration in the control

packet for the incoming data burst.

Control PacketSyncGuard time

CoSWavelength ID Offset timeLabel Burst time CRCTTL

20bit 16bit16bit 8bit8bit8bit4bit

Guard time

Data BurstSyncGuard time Guard time

72bit

Example of Data Burst format

Figure 2.4: Example of Control Packet Format

Because the core OBS nodes have information in advance about the exact time when

the data burst will arrive and finish from the control packet, an indicated wavelength can

be reserved for exactly the duration of data burst. For the core OBS node, the acquired

information provides an opportunity to manage its resources more effectively than those in

the TAG protocols [8]. Consider the TAG protocol, as shown in Figure 2.5, in which two

bursts arrive at the same switch and are destined to the same outgoing port, which currently

has only one available outgoing wavelength. Suppose the control packet belonging to the

second burst arrives and finishes processing before the first data burst transmission finishes.

The second data burst would be blocked because the switch cannot reserve the wavelength

still occupied by the first data burst, even though the actual second data burst arrives after

the first data burst transmission finishes. However, for the RFD, as soon as the control

packet of the second burst arrives and is processed, given the information from the control

packet, the core OBS node recognizes exactly when the second data burst will arrive as well

as when the first data burst will finish on the basis of the information given in its control

packet. Consequently, the switch recognizes that the second data burst would not be blocked

by the first data burst and enables it to be served, reserving the wavelength for the second

data burst without blocking it.

13

Switch

Figure 2.5: Blocking Example of TAG

In order to analyze the difference of the performance between the TAG and the RFD-

based protocols in terms of burst blocking probability, the Erlang B formula (M/M/k/k)

was used in the OBS queuing model [19, 20]. In the equation, k represents the number of

output wavelengths (servers in Erlang B) available and A represents the average offered load

given to the switch. Then Pb represents the blocking probability. [19]

Pb =
(Ak/k!)∑k
i=0(A

i/i!)
(2.1)

The characteristics of the model include the Poisson arrival, exponential distribution of

burst length, and fixed number of outgoing wavelengths (servers). A burst is blocked if all

outgoing wavelengths are currently reserved.

For the RFD protocol, since the bandwidth reservation is exactly the same as the burst

duration (Tb, the time duration between the burst arrival and burst transmission finishing),

the blocking probability of the RFD-based protocol (Pb(RFD)), with the average burst arrival

rate λ, is [19]

Pb(RFD) =
(A(RFD)

k/k!)∑k
i=0(A(RFD)

i/i!)
(2.2)

where,

A(RFD) = λ× Tb(avg) (2.3)

In the TAG-based protocol, the wavelength is reserved immediately after a control packet

is received, and is held until the burst transmission finishes. Therefore, the average wave-

14

length reservation time is equal to the average burst transmission time plus the average

offset time between the control packet and the data burst arrival (Toff(avg)). The blocking

probability of the TAG-based protocol (Pb(TAG)) is [19]

Pb(TAG) =
(A(TAG)

k/k!)∑k
i=0(A(TAG)

i/i!)
(2.4)

where,

A(TAG) = λ× (Tb(avg) + Toff(avg)) (2.5)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

!2

10
!1

10
0

Blocking probability of RFD and TAG, Wavelengths 5, Offered load 0.5

Mean offset time / mean burst transmission time

B
lo

c
k
in

g
 p

ro
b

a
b

ili
ty

RFD traffic

TAG traffic

Figure 2.6: Blocking Probability of RFD and TAG

Based on equations 2.2 and 2.4, with 0.5 offered load per wavelength and 5 wavelengths,

Figure 2.6 compares the blocking probabilities of the RFD-based protocol against the TAG-

based protocol. It indicates that the scaled offset time does not affect on the blocking

probability in the RFD-based protocol. On the contrary, in the TAG-based protocol, the

longer the offset time, the higher the blocking probability. Utilizing efficient bandwidth

management, the RFD-based protocol can attain better performance than the TAG-based

protocol.

Compared to the TAG-based protocol, the drawback of the RFD is that more complex

channel scheduling is vital to provide better resource management. However, present process-

15

ing power enables handling the complex channel scheduling introduced by the RFD-based

protocol [8], thus suggesting the use of the RFD-based protocol as the protocol solution for

OBS networks.

2.3 TIMESLOT-BASED OBS

Among those proposed OBS protocol variations, asynchronous OBS protocols were extended

to synchronous timeslot-based OBS. In timeslot-based OBS, the data channel is divided into

timeslots. Incoming data streams from different input ports must be realigned to the slot

boundaries to maintain synchronization prior to entering the switching fabric. One of the

advantages of timeslot-based OBS is that it allows a burst to be reserved on a timeslot basis

instead of unpredictable continuous time as in asynchronous-based OBS. Thus, this should

allow a more predictable/manageable switching schedule, and should reduce the complexity

of wavelength reservation processing.

2.3.1 Time Sliced OBS protocol

Contents in a
data burst

Figure 2.7: Time Sliced OBS network Architecture [1]

16

One of proposed variants of timeslot-based OBS is Time Sliced Optical Burst Switching

(TSOBS) [1] shown in Figure 2.7, which replaces switching in the wavelength domain with

switching in the time domain. Like traditional optical burst switching, TSOBS separates

burst control information from burst data. Specifically, Control packets are transmitted on

dedicated control wavelengths on outgoing links. This wavelength is converted to the electri-

cal domain at each intermediate node for control packet processing, while all other remaining

data wavelengths are kept in the optical domain and switched through each intermediate

node in optical form.

With Optical Time Slot Interchangers (OTSI), Time-Division Multiplexing (TDM) is

used in TSOBS to carry information as well as to resolve the contention resolution in the

data wavelength. The data stream consists of a repeating frame structure which is sub-

divided into fixed-size timeslots. The repeating sequence of timeslots at a fixed position

within successive frames is called as a channel. The information carried in the control

packet consist of destination address information, the incoming data wavelength, the data

channel used by the arriving data burst, the offset information, and the length of the data

burst. The offset information identifies the frame in which the data channel starts containing

the data, and the length identifies the number of frames in which the data channel is used

by the arriving burst.

2.3.2 Slotted OBS protocol

In slotted OBS [21] shown in Figure 2.8, the control and data wavelengths are divided into

fixed size timeslots. Each of the control slots is further divided into several fixed size control

packet slots. A data burst in slotted OBS can be loaded into single or multiple number of

data timeslots. Data burst reservation is based on timeslot ID and the number of requested

timeslots.

When a data burst in slotted OBS is generated and ready for transmission, first the

control packet is transmitted in one of the available control timeslots. Then after the offset

time, at the start of data timeslot, the data burst is transmitted with the discrete size of a

multiple numbers of data timeslots. The major difference between TSOBS and slotted OBS

17

Core
Switching

Fabric

Slotted OBS node

time slot alignments
burst 2

burst 1

burst 2

burst 1
burst 1

Figure 2.8: Example of Slotted OBS

is that, TSOBS is based on TDM channeling to carry information in data wavelength and

assumes that there is no wavelength conversion in any intermediate nodes. On the contrary,

slotted OBS assumes that wavelength conversion in the intermediate nodes is possible.

2.4 OFFSET TIME MANAGEMENT

Offset time is the time duration between the start of the control packet transmission and

the start of the data burst transmission. It is used for allowing the control packet to be

processed in an intermediate node before the data burst arrives.

Each time a control packet passes an intermediate node, it is converted to the electrical

domain, stored, and processed before being updated and forwarded to the next node. This

processing causes a delay at the intermediate node. On the other hand, the data burst simply

cuts through the intermediate node without any delay. Therefore, each time a control packet

and a data burst pass through an intermediate node, the offset time decreases because of

the control packet processing delay, as shown in Figure 2.9. If the RFD protocol has been

applied, the offset time field in the control packet must be updated in every intermediate

node.

18

OBS Time Diagram

Figure 2.9: OBS Offset Time Diagram

From Figure 2.9, let

Toff (i) = Offset time advertised from node i

N = the number of hops

Tctx = transmission time of control packet

Tpi = control packet processing time at node i

Tg = guard time

Then,

Toff (0) = (N × Tctx) +
n∑
i=0

(Tpi) + Tg (2.6)

Since the delay occurs in each intermediate node, the offset time advertised from node i

(Toff(i)) is

Toff (i) = Toff (i− 1)− (Tctx + Tpi) (2.7)

The Time-To-Live (TTL) field in the control packet is used for limiting the number of

intermediate hops in the network, and avoiding an infinite loop in the network. The TTL

field is a tool for determining the maximum number of intermediate transmission hops in an

19

OBS network. Therefore,

Toff (0) = (TTL× (Tctx + T̄p)) + Tg (2.8)

Where, T̄p = Average processing time in every node

2.5 QOS AND PRIORITIES

To support various types of service —voice, data, video, etc.— in the next generation net-

works, Quality of Service (QoS) support in core networks is inevitable. Because of the lack

of optical buffers, existing priority schemes no longer apply to OBS. Therefore, a new mecha-

nism has been proposed to support different QoS priorities in the RFD-based OBS protocol.

Bursts are classified into multiple classes, and the differentiation of a class burst priority

is based on the probability of a blocked burst —the higher priority class burst has a lower

probability of being blocked.

2.5.1 Offset Time Management for Supporting QoS and Priorities

The main idea for providing class differentiation is based on providing more offset time for

the higher priority bursts [22, 20]. A control packet that reaches an intermediate node first

has the right to reserve the output wavelength first. Therefore, the longer the offset time,

the higher the probability of successfully reserving wavelength. The longer offset time allows

the wavelength of the data burst to be reserved earlier.

In Figure 2.10, traffic priorities in an OBS system consist of two classes: class-1 and

class-2 traffic. Bursts with the higher priority belong to class-1 traffic and should not be

blocked by the class-2 lower priority bursts. Therefore, in order to ensure class separation

between class-1 and class-2 traffic, the arriving offset time (Toff) should be

Toff (class(1)) ≥ Toff (class(2)) + Tb(class(2))

20

Switch

Class 1 Toff

Class 2 ToffClass 2 Tb

* class 1 has higher priority than class 2

Figure 2.10: OBS Offset Time with QoS Diagram

As we can see from Figure 2.10, if the above condition is satisfied, then it is unlikely that

a class-1 burst is blocked by a class-2 burst. When a control packet of a class-1 burst arrives,

the output wavelength is reserved for the class-1 data burst without any blocking from the

class-2 burst because all the currently reserved class-2 bursts will have finished before the

arrival of the class-1 data burst. On the contrary, a class-2 burst tends to be blocked by

a class-1 burst because, by the time the control packet of the class-2 burst arrives, with

its shorter offset time, the output wavelength has already been reserved by the previously

arriving class-1 control packet. Therefore, if the traffic consists of N classes, where the class-

1 has the highest priority and the class-N has the lowest priority, according to the above

discussion

Toff (class(i)) ≥ Toff (class(i+ 1)) + Tb(class(i+ 1)) (2.9)

Toff (a, b) represents an offset time of class b burst advertised from node a.

This is combined with utilizing the TTL field for limiting the maximum number of

intermediate hops in the OBS network, this combination is summarized in the equation:

Toff (0, i) = [TTL× (Tctx + T̄p) + Tg] + [Tb + Toff (0, i+ 1)]

Toff (0, N) = [TTL× (Tctx + T̄p) + Tg] (2.10)

21

Toff (0, i) = [(N − i+ 1)× (TTL× (Tctx + T̄p) + Tg)] + [Tb × (N − i)] (2.11)

According the above QoS mechanism, the higher priority means longer delay, because

longer offset times cause the data burst to wait in the edge OBS node for its offset time

period before the burst can be sent out. Normally these high priority bursts may belong

to the traffic that is sensitive to overall delay performance, such as interactive applications

and voice. However, the mechanism is based on the assumption that the line speed of each

wavelength is considerably high (e.g. 10 Gbps) when compared to the average burst size.

Continuing, if the size of the control packets is 1000 bytes, Then Tctx = 0.8 usec. In addition,

assume that Tp is 0.8 usec (same as Tctx) that the average burst size is 1 Mbyte, causing Tb

≈ 0.8 msec, and that the guard time is 5 times of Tctx, which is 4 usec. Suppose there are 5

QoS classes and TTL = 10, then from (2.11), the offset time delay for the highest priority

class-1 is around 3.48 msec. However, a delay of one extra offset time is not significant to

most delay sensible applications (≈ 30 msec for voice). Therefore, it is likely that the extra

offset time caused by the mechanism would have little affect on overall delay performance.

2.6 BURST ASSEMBLY

In an OBS network, data is transmitted in the form of a burst. Incoming data (e.g. IP

packets) is assembled to form a data burst at the ingress edge OBS node before it is sent

into the OBS network. Figure 2.11 demonstrates a simple architecture of an edge OBS node.

When ingress traffic arrives at the edge OBS node, the traffic first passes through a classifier.

The classifier is responsible for classifying incoming traffic based on its priority and its egress

edge OBS node. Then, the classifier forwards the classified traffic to an appropriate queue,

based on the type of data priority and the destination edge OBS node. The traffic with the

same priority and destination is queued up and assembled together to form the data burst in

the queue. As soon as the data burst is ready, a control packet is generated and sent via the

22

Switch Control
Unit (SCU)

Optical Cross
Connect
(OXC)

Edge Switch

Classifier

Wavelength
demodulator

Burst
Deassembler

Ctrl.
Pckt.
Gen.

Wavelength
modulator

Figure 2.11: Edge OBS Switch Diagram

control wavelength to the attached core OBS switch. After the offset time, the data burst is

sent over the designated wavelength.

Assembling the incoming data into a burst before sending out to the network helps

reduce processing overhead in the core network, since the core data transmission rate is very

high. If data is processed on a packet-by-packet basis, a high performance processing will be

required, including a higher switch transition rate in the core OBS switch fabric. Therefore,

by assembling data into the burst, there is only one control packet per multiple data packets,

reducing control packet processing load in the core OBS node as well as the transition rate

in the core switching fabric. However, because the incoming data must be queued up in

the edge OBS node to form the burst before it is sent out, this causes assembly delay with

each individual packet. This increases the end-to-end delay and the delay jitter, which are

critical in some applications. Therefore, careful design of the burst assembly algorithm plays

a vital role to provide efficient algorithms while still satisfying each individual application

constraint.

23

2.6.1 Burst Assembly Algorithm Constraints

In order to provide efficient burst assembly algorithms in the edge OBS nodes, generally

there are two constraints for the algorithms to consider. The first is a timing constraint,

which is related to assembly time Ta. The assembly time is equivalent to the time the last

packet of the burst arrives T (last) minus the time the first packet arrives T (first).

Ta = T (last)− T (first) (2.12)

This assembly time causes extra end-to-end delay to the traffic. Let Toff be the offset

time between a control packet and its corresponding data burst, then, the delay time of the

first packet in the burst, Tdelay(first), is

Tdelay(first) = Ta + Toff (2.13)

And the delay time of the last packet in the burst, Tdelay(last), is

Tdelay(last) = Toff (2.14)

Therefore, the delay jitter Tj introduced by the burst assembly is

Tj = Tdelay(first)− Tdelay(last)

Tj = Ta + Toff − Toff

Tj = Ta (2.15)

As shown above, both the extra end-to-end delay and the delay jitter introduced by

burst assembly are directly proportional to assembly time Ta. Because these critical QoS

parameters must be bounded in some applications (e.g. real-time applications, voice), careful

design of the assembly algorithms is required in order to limit burst assembly time and not

produce much extra delay and delay jitter.

24

The second constraint for the burst assembly algorithms is the burst size constraint,

which is related to burst transmission time Tb, where

Tb = BurstSize/LinkSpeed (2.16)

Ttrans is the transition time for the core OBS switch fabric to change and reconfigure its

switching stage. During the transition stage, the burst arriving at the specific output wave-

length will be blocked. Therefore, the achievable wavelength utilization for each wavelength

is

LinkUtilization = Tb/(Tb + Ttrans) (2.17)

The above equation shows that a smaller burst size results in lower wavelength utiliza-

tion, resulting in poor usage of the network resource. In addition, with a smaller burst,

more control packets are generated based on the same amount of data, thus requiring more

processing time in the core OBS nodes. Therefore, according to the above discussion, burst

assembly algorithms should create reasonably sized bursts to avoid high processing in the

core OBS nodes and to achieve better resource utilization.

2.6.2 Burst Assembly Algorithms

The Fixed-Time-Min-Length Burst Assembly Algorithm [2] uses a fixed assembly

time T as its criteria. In addition to this timing criteria, the size of each data burst is required

to be larger than minimum length b, otherwise, padding would be added to the data burst.

In general, the fixed assembly time is set based on the QoS criteria to limit the delay and

delay jitter of data packets within QoS range. The details of this burst assembly algorithm

are shown in Figure 2.12.

The Max-Time-Min-Max-Length Burst Assembly Algorithm [2] is based on the

constraints concerning limited timing and burst size. The algorithm uses the maximum

assembly time T as its primary criteria. In addition to the specified minimum burst length

b, it also allows a burst to be sent out as soon as the burst length reaches or exceeds a

given maximum burst length B in order to decrease the delay of an individual packet and

25

Event:: a packet arrvies

 if (timer t is not started){
 restart timer t;
 }
 update buffer_size;

Event:: timer t = T

 if (buffer_size >= b){
 schedule the data burst to be sent out;
 } else {
 increase data size to b with padding;
 schedule the data burst to be sent out;
 }
 stop timer t;
 reset buffer_size;

Figure 2.12: The Fixed-Time-Min-Length burst assembly algorithm pseudo-code [2]

to prevent the creation of an oversize burst from dominating bandwidth. A burst is sent out

when the size of assembling burst exceeds the maximum burst size B or when a timer has

expired, whichever happens first. The details of the algorithm are shown in Figure 2.13.

2.7 PHYSICAL IMPLEMENTATION

As shown in Figure 2.14, having arrived at a node in the control wavelength, the control

packet goes through an O/E converter. After conversion to the electrical domain by the O/E

converter, the control packet is forwarded to the switch control for route processing. Based on

information obtained from the control packet (source/destinaltion addresses, incoming data

port/wavelength, offset time, and data burst duration), the route is calculated by switch

control, and the preferred outgoing port is acquired. The switch control then performs a

resource reservation algorithm to identify an available outgoing wavelength (in the outgoing

port) for the incoming data burst. The identified outgoing wavelength/port is then reserved,

and the switching schedule for the switching fabric is updated. Then the processed control

packet is modified by switch control as needed, and forwarded to an E/O converter, where

26

Event:: a packet arrvies

 if (timer t is not started){
 restart timer t;
 }
 update buffer_size;
 if (buffer_size >= B){
 schedule the data burst to be sent out;
 stop timer t;
 reset buffer_size;
 }

Event:: timer t = T

 if (buffer_size >= b){
 schedule the data burst to be sent out;
 } else {
 increase data size to b with padding;
 schedule the data burst to be sent out;
 }
 stop timer t;
 reset buffer_size;

Figure 2.13: The Max-Time-Min-Max-Length burst assembly algorithm pseudo-code [2]

it is converted back to the optical domain and passed to the output interface.

In general, the architecture of a full space/wavelength capable switching fabric of a

core OBS node consists of three main components — wavelength multiplexer/demultiplexer,

tunable wavelength converter, and space switching fabric. Figure 2.14 also illustrates a

physical switch architecture of a core OBS node. An incoming WDM signal passes through

the wavelength demultiplexer (which could be implemented from either grating demultiplexer

or phase array wavelength demultiplexer [10]). While the demultiplexed control wavelength

is forwarded to the O/E converter for control packet processing, the demultiplexed data

wavelengths are forwarded to the space switching fabric. The space switching fabric switches

the data signal to its designated outgoing channel based on predetermined switching schedule

provided by switch control. The data signal then passes through the tunable wavelength

converters, where the signal is converted to its designated outgoing wavelength before being

forwarded through the wavelength multiplexer and emerging at the outgoing port.

Tunable wavelength converters for all-optical networks have received increasing atten-

tion and become an active area of research recently [10, 23]. Generally, there are three basic

27

Switch Control
Ctrl
Pckt
 E/O

Ctrl
Pckt
O/E

Ctrl Pckt Path

Ctrl Pckt

Data Burst

Data Path
Space Switch Fabric

Tunable Wavelength Converters

Figure 2.14: Physical Switch Architecture

mechanisms for wavelength conversion — Optoelectronic Conversion, Optical Gating Wave-

length Conversion, and Wave-Mixing Wavelength Conversion. Although these technologies

are still far from being mature, this research assumes that the provided tunable wavelength

converters have full capability of wavelength conversion — which means, they are able to

convert any given input data wavelength to any output data wavelength.

2.7.1 Space Switching Fabric

All-optical switching fabrics allow switching directly in the optical domain, avoiding the

need for O/E/O conversions. Most solutions for all-optical switching are still under study.

Following are several optical switching technologies which are currently available [16].

1) Opto-mechanical Switches: Opto-mechanical technology was the first commercially

available for optical switching. In optomechanical switches, the switching function is per-

formed by some mechanical means. Such an example of these technologies is microelectrome-

chanical system (MEMS) devices. Mechanical switches have switching speed in the order of

a few milliseconds, which may not be acceptable for OBS applications.

28

2) Electro-optic Switches: A 2x2 electrooptic switch uses a directional coupler whose

coupling ratio is changed by varying the refractive index of the material in the coupling

region. One commonly used material is lithium niobate (LiNbO3). A switch is constructed

on a lithium niobate waveguide. An electrical voltage applied to the electrodes changes

the substrate’s index of refraction. The change in the index of refraction manipulates the

light through the appropriate waveguide path to the desired port. An electrooptic switch

is capable of changing its state extremely rapidly, typically in less than a nanosecond. This

switching time limit is determined by the capacitance of the electrode configuration. Larger

switches can be constructed by integrating several 2x2 switches on a single substrate.

3) Thermo-optic Switches: The operation of these devices is based on the thermo-optic

effect. It consists in the variation of the refractive index of a dielectric material, due to

temperature variation of the material itself.

4) Semiconductor Optical Amplifier Switches: Semiconductor optical amplifiers (SOAs)

are versatile devices that are used for many purposes in optical networks. An SOA can be

used as an ON-OFF switch by varying the bias voltage. If the bias voltage is reduced, no

population inversion is achieved, and the device absorbs input signals. If the bias voltage

is present, it amplifies the input signals. Larger switches can be fabricated by integrating

SOAs with passive couplers.

2.7.1.1 Switching Fabric Constraints To design a large space switching fabric, there

are several factors affecting overall implementation cost and performance, which have to be

taken into account. These factors are the following [10].

1) Switching time: One of the most important factors to be considered for switching

fabrics is switching time. Switching time is the time a switch needs for changing its switching

state. Different switching technologies have different switching time varying from an order of

few milliseconds (MEMS) to less than a nanosecond (Lithium Niobate Switched Directional

Coupler). Different applications have different switching time requirements.

2) Crosstalk: Crosstalk is an undesired leakage of an attenuated version of the signal that

emerges at the unintended outgoing port. It is the ratio of the power at a specific output

port from its intended input port to the power from all other input ports.

29

3) Loss Uniformity: A switching fabric may have different losses for different combi-

nations of input and output ports. This situation might become more significant in larger

switching fabrics. The measure of loss uniformity might be obtained by considering the

minimum and maximum number of 2x2 switching devices in the optical path, for different

input and output combinations. It is preferred that these numbers should vary as little as

possible.

4) Number of 2x2 switching devices required: Because large optical switching fabrics are

made by interconnecting a number of 2x2 switching devices together, and that the cost of

implementing switching fabrics is correlated to the number of 2x2 switching devices required.

Therefore it is preferred that the design of large switching fabric should require as few 2x2

switching devices as possible.

5) Number of Crossovers: Large switching fabrics are sometimes fabricated by integrating

2x2 switching devices on a single substrate (e.g. lithium niobate directional coupler switches

[23]). Unlike integrated electronic circuits (ICs), where various components are made at

multiple layers in which those interconnections between layers are possible, in integrated

optics all these interconnections must be made in a single layer by means of waveguides.

If these interconnection paths are crossed, power loss and crosstalk might be introduced.

Therefore it is desirable that crossed interconnection paths are minimized, or completely

eliminated.

6) Blocking Characteristic: Normally switching fabrics function are categorized into two

types — nonblocking and blocking. A switch is said to be nonblocking if an unused input

port can be connected to any unused output port; otherwise, it is said to be blocking. In

the application of OBS, a nonblocking switch is normally required. However, nonblocking

switching fabrics are further categorized based on their properties. A switch is said to

be wide-sense nonblocking if any unused input can be connected to any unused output,

without requiring any existing connections to be rerouted. On the contrary, a switch is

said to be rearrangeably nonblocking if any unused input can be connected to any unused

output, but may require some (or all) of its existing connections to be rerouted. Normally,

while rearrangeably nonblocking architectures require fewer 2x2 switching devices, the main

drawback of rearrangeably nonblocking architecture is that many applications will not allow

30

existing connections to be disrupted to accommodate a new connection. Such an example

of these applications are the OBS protocols previously discussed in section 2.2 due to their

nature of their asynchronous burst arrival and variable burst size.

V bar V cross

Figure 2.15: LiNbO3 Switched Directional Coupler

2.7.1.2 Examples of Switching Fabric Architecture An optical space switching fab-

ric can be implemented by interconnecting fast 2x2 switching devices (the beta element) to

form a larger fabric. Such an example of the 2x2 switching device is Lithium Niobate

Switched Directional Coupler (SDC) [23]. Based on the voltage applied to the SDC, the

switch can be set to either the BAR state or the CROSS state as shown in Figure 2.15, the

BAR state represents the state in which the signals emerge from output ports on the same

physical channel as their respective input ports, and the CROSS state represents the state

in which the input signals cross over to their opposite physical channels. Following are some

of the examples of switching fabric architecture:

The crossbar architecture [10] is an example of wide-sense nonblocking architecture. In

general, an NxN crossbar is formed by using N2 2x2 switching devices. Figure 2.16 illustrates

an example of 4x4 crossbar switch. Generally, to connect input i to output j, the path taken

traverses the 2x2 switching devices in row i until it reaches column j, and then traverses

the 2x2 switching devices in column j until it reaches output j. One of the advantages of

a crossbar is that there are no crossovers in the architecture. However, loss uniformity (for

NxN crossbar, the shortest path length is 1 and the longest path is 2N − 1), is one of the

main drawbacks of this architecture.

The Benes architecture [10, 23] is a rearrangeably nonblocking architecture. It is one

of the most efficient switching fabric architecture in terms of the number of 2x2 switching

31

In 1

In 4

In 3

In 2

Out 1 Out 4Out 3Out 2

Figure 2.16: 4x4 crossbar switch

devices required. In general, an NxN Benes switch is formed by using (N/2)(2log2N−1) 2x2

switching devices (where N is a power of 2). An example of an 8x8 Benes fabric is illustrated

in Figure 2.17. The loss is the same in every path through the switch (each path passes

through (2log2N − 1) 2x2 switching devices). The drawbacks of the Benes architecture are

that a number of crossovers are required and it is not wide-sense nonblocking.

The Dilated Benes architecture [23] is a modified version of the Benes architecture in

order to solve Litium Niobate’s crosstalk problem. In Dilated Benes architecture shown

Figure 2.17: 8x8 Benes switch

32

Figure 2.18: 4x4 Dilated Benes switch

as a 4x4 in Figure 2.18, any path from a given input port to a given output port can be

configured in such the way that it passes through the internal 2x2 bata elements without

any other paths sharing the same 2x2 switching devices. An NxN Dilated Benes switch is

formed by using 2Nlog2N 2x2 switching devices (where N is a power of 2), and each path

in the architecture passes through 2log2N 2x2 switching devices.

Figure 2.19: 8x8 Spanke-Benes switch

The Spanke-Benes architecture [10] is another example of rearrangeably nonblocking

architecture. It is a compromise between the crossbar and the Benes architectures, which

requires N(N−1)/2 2x2 switching devices in order to form an NxN switch. The shortest path

length is N/2 and the longest is N . An example of an 8x8 Spanke-Benes switch is illustrated

in Figure 2.19. While no crossovers are required in this architecture, its drawbacks are that

33

it is not wide-sense nonblocking and the loss is not uniform.

2.8 CONTENTION RESOLUTION

In data burst transmission, since the number of available wavelengths is limited, contention

in an OBS network can occur when one or more bursts needs to reserve a wavelength in

an outgoing port while no wavelength is available. As a result, bursts maybe blocked and

then dropped. OBS utilizes Fiber Delay Lines (FDLs) as optical buffers in an intermediate

node to avoid burst dropping. If a burst is blocked, a switch reserves a wavelength in a FDL

and switches the burst to the FDL to buffer the data burst temporarily until the outgoing

wavelength is available. However, since the FDLs are just simple optical cables, they have

discrete delay times based on the FDLs length.

Space Switch Fabric

FDL

Tunable Wavelength Converters

Figure 2.20: Physical Switching Fabric with FDL

Figure 2.20 show a configuration of a physical switching fabric in a OBS core node with

a feedback FDL as an optical buffer. When an incoming data burst is blocked it is delayed in

the FDL while being fed back to the input stage of the space switching fabric. Using WDM

in the FDL can increase the capacity of the FDL buffer. From a technological point of view,

attenuation in FDL buffers can be compensated by amplifiers dedicated to and exactly tuned

to the attenuation of the FDL delay. However, bursts going through the FDL repeatedly

34

accumulate noise, which limits the possible number of recirculations [24].

2.9 DISCUSSION

Traditional OBS protocols, like RFD, assume that data bursts arrive asynchronously, at the

time a burst arrives and the core switching fabric reconfigures to deflect the incoming burst

to an outgoing wavelength/port, there might be some other bursts that are currently being

transited through the fabric. To avoid any data loss during switching fabric reconfiguration,

a complicated wide-sense non-blocking optical switching fabric must be implemented [23].

The need of wide-sense non-blocking switching fabric rather than the rearrangeably non-

blocking switching fabric in the core OBS node results in the need for a larger number of

2x2 switching devices in the switching fabric, which implies a higher cost of implementation.

Notice that, in Slotted OBS [21], a wide-sense non-blocking switching fabric is also needed

to be implemented in its core OBS node. This is because the burst duration in slotted OBS

consists of several timeslots, and it is possible that data bursts may arrive while there are

other data bursts currently switched through the core OBS node.

Switch

Blocked
Duration

Loss
Duration

X
Blocked burst

Switch

FDL Duration

Loss
Duration

Figure 2.21: Loss example of traditional OBS

Consider when an intermediate node has no means to buffer optical data. If two or more

bursts compete for an outgoing wavelength, since burst arrival is asynchronous, a situation

might occur when a burst is partially blocked. This subsequently causes the entire content of

35

the blocked burst to be dropped, which results in inefficient resource utilization of outgoing

wavelengths. While a partial-burst-drop protocol has been proposed [25], it requires that the

node must send control packets to notify down-stream nodes about the partial drop. This

introduces additional traffic in the control wavelength and more complicated wavelength

scheduling in the core nodes. Alternatively, the intermediate node can use fiber delay-lines

(FDLs) as optical buffers. Now, when two arriving bursts compete for an outgoing wave-

length, the first burst successfully reserves its outgoing wavelength while the second burst is

deflected to the FDL. Since the FDL is a simple optical fiber attached to the core node, its

delay duration is fixed by its length. Even if the first burst finishes quickly, the second burst

is delayed by the FDL’s entire duration before it is forwarded to the outgoing wavelength,

delaying the blocked burst more than necessary and inefficiently utilizing the outgoing wave-

length. Observing from an old problem, ALOHA’s [26, 27] Medium Access Control (MAC)

protocol was improved by synchronizing the timeslots — called Slotted-ALOHA. Likewise,

by employing a synchronized timeslot-based mechanism to OBS, similar improvement should

be achieved. As discussed earlier, some asynchronous OBS protocols have been extended to

Synchronous OBS. However, in Slotted OBS [21], which loads a burst into multiple times-

lots, bursts can still be partially blocked because any of the burst’s reserved timeslots can be

blocked. Another proposed synchronized OBS protocol, Time Sliced Optical Burst Switch-

ing [1], performs switching in the time domain rather than the wavelength domain by using

Optical Time Slot Interchange (OTSI). This dissertation will extend this concept beyond

just using timeslot interchange to avoid wavelength conversion. It will demonstrate that

timeslot-based OBS, in addition, can improve the cost of implementation, where wavelength

conversion is available.

36

3.0 TIME-SYNCHRONIZED OPTICAL BURST SWITCHING

This dissertation proposes a variation of synchronized timeslot-based OBS, which is referred

to as Time-Synchronized Optical Burst Switching (SynOBS). The SynOBS protocol is pro-

posed with two main considerations in mind. First, it allows a less complex optical switching

fabric to be employed in the core OBS node rather than the more complex switching fabric

required in traditional OBSs, and second, it utilizes the timeslot-based mechanism in order

to achieve better performance than those in traditional OBSs.

3.1 OVERVIEW

In SynOBS, like traditional OBSs, data with the same priority and destination is aggregated

into a burst at the edge of the network. Then a control packet, which contains the burst-

related routing information, is generated and sent along a path via a separate channel from

the data path (in order to allow the data path to be kept very simple). The control channel

is one of the predefined and dedicated wavelengths. The control packet traverses through the

network and is converted to the electrical domain in the intermediate nodes for processing

and determining the route before being forwarded. When the control packet is sent, after an

offset time, the data burst would be sent at a full-bandwidth over an available wavelength.

Data bursts are kept in the optical domain and switched through the intermediate nodes in

cut-through fashion without any O/E/O conversion. The offset time between the control

packet and the associated data burst is provided in order to allow time for intermediate

switch nodes to process the control packet, compute the route, and configure its switching

fabric (which is established in both the space domain and wavelength domain) prior to the

37

arrival of the data burst. However, while traditional OBSs, like RFD, assume that data

bursts arrive asynchronously, and burst size varies, the data burst in SynOBS has fixed size.

Each data wavelength in SynOBS is divided into fixed-duration timeslots. Each timeslot

can hold just exactly one burst. The timeslots are sent out immediately after each other,

forming a data burst stream. This stream of data bursts looks like a stream of fixed-length

timeslots with/without a data burst inside each timeslot. Figure 3.1 illustrates an example

block diagram of a SynOBS network. The data bursts are transported through the network

by the streams of fixed-size timeslots in data wavelengths.

Ts

SynOBS Network

SynOBS Core Node SynOBS Edge Node Timeslot with Data Burst Empty Timeslot

Figure 3.1: Time-Synchronized OBS (SynOBS) Network

By employing this fixed sized burst/timeslot-based mechanism, several advantages over

traditional OBS can be achieved.

• By synchronizing incoming SynOBS data bursts into timeslots, the optical switching fab-

ric in each core node reconfigures its connection pattern only during the transition period

between consecutive timeslots. Since no data is transited through the switching fabric

during this synchronized reconfiguration period, a simpler rearrangeably non-blocking

switching fabric can be implemented in the core OBS node [23], compared to the wide-

38

RFD TSOBS Slotted OBS SynOBS

Mode of operation Asynchronous

Synchronous

TDM channeling-

based

Synchronous

Timeslot-based

Synchronous

Timeslot-based

Burst size
Variable

Continuous

Variable

Discrete

Variable

Discrete
Fixed

Contention

resolution
Time/wavelength Time Time/wavelength Time/wavelength

Switching fabric Crossbar Crossbar Crossbar
Benes/Spanke-

Benes

Figure 3.2: The characteristics of different OBS protocols

sense non-blocking switching fabric required in traditional OBS. This requires fewer 2x2

switching devices in the core switching fabric, which implies a lower cost of implemen-

tation. Notice that, while Slotted OBS [21] also employs a synchronized timeslot-based

mechanism, it cannot have a rearrangeably non-blocking switching fabric in the core

OBS node because a data burst may occupy several timeslots. For Slotted OBS to

have a rearrangeably-nonblocking fabric, every data burst would have to last exactly one

timeslot. In this case, Slotted OBS is transformed to be SynOBS.

• For a core SynOBS node without FDL as optical buffers, slotted fixed-sized bursts from

different input ports are aligned and synchronized with each other by the timeslot syn-

chronizers. When multiple incoming data bursts compete for an outgoing wavelength,

one of the bursts may successfully reserve the outgoing wavelength while the others are

blocked. Since the entire duration of the blocked bursts are overlapped with the success-

ful burst, the blocked bursts are not partially blocked as in RFD-based protocols. This

improves resource utilization in outgoing wavelengths compared to the traditional OBS.

Figure 3.3 shows the relation between the core node link utilization and its offered load,

39

0

20

40

60

80

100

0 20 40 60 80 100

Offered load (%)

Li
n

k
 U

ti
li

za
ti

o
n

 (
%

)

RFD OBS
SynOBS

10 wavelengths

Figure 3.3: Comparison of core node link utilization between RFD-based OBS and SynOBS

as obtained from simulations. Link utilization is measured at the core node output port.

The simulated network has two source edge OBS nodes, one sink edge OBS node, and

a core OBS node. Data bursts are generated in the two source edge OBS nodes with

exponential inter-arrival time. Bursts are then sent to the sink edge OBS node through

the core OBS node. In this core OBS node, incoming data bursts compete for access on

a wavelength in the outgoing link to the sink edge OBS node. If a burst is blocked, it is

dropped. The simulation provides ten wavelengths for data transmission without FDLs

employed in the core node. SynOBS bursts have fixed length, but the burst length in

traditional OBS is exponentially distributed. The traffic has been generated to the core

node according to the given offered load.

As offered load increases, link utilization also increases almost linearly in both traditional

OBS and SynOBS. When offered load reaches about 50%, the slope of both link utiliza-

tion graphs starts to decrease because of the increasing rate of burst drops in the core

node. This descent is seen to be more rapid with traditional OBS than with SynOBS,

which results in increasing difference at even higher offered loads. The simulation shows

a promising improvement of SynOBS over traditional OBS, where SynOBS always has

lower burst drop probability than traditional OBS in every given offered load.

40

• In SynOBS, since the incoming bursts are synchronized with others within timeslots,

when contention occurs, any delay needed is always exactly an integer number of timeslots

with no unpredictable amount of delay (as occurs in traditional OBS). So, the FDL length

is set to provide the delay necessary for the blocked burst to be deposited in some later

timeslot, without any lost duration between the two bursts. This allows an opportunity

to achieve still better resource utilization/efficiency compared to traditional OBS.

• In addition, similar to Slotted OBS, employing fixed-sized burst/timeslot based OBS

should allow a more predictable/manageable switching schedule, and should reduce the

complexity of wavelength reservation processing [21].

3.2 PHYSICAL IMPLEMENTATION

This section provides a general discussion of the physical implementation of a SynOBS node.

Although this issue is not the main focus of this dissertation, some of the basic ideas are

briefly studied and discussed.

SynOBS core nodes are the core switch nodes in the SynOBS network. Their duty is to

process incoming control packets, determine and reserve an outgoing port/wavelength/timeslot

for the incoming data burst, update and forward control packets to the outgoing port based

on given routing information, and schedule and configure the space switching fabric as

well as tunable wavelength converters to switch the data bursts to their proper outgoing

ports/wavelengths during each timeslot duration.

Figure 3.4 shows an example block diagram of a SynOBS core node. Incoming data

bursts arrive at a core node as a stream of fixed-size timeslots in each data port/wavelength.

The incoming data streams in each incoming port then pass through a timeslot synchronizer.

The timeslot synchronizers are responsible for realigning and synchronizing incoming data

streams among different input ports. After passing through timeslot synchronizers, the

data streams are wavelength demultiplexed by the wavelength demultiplexer. Emerging

from wavelength demultiplexer, different data streams in different wavelengths are physically

separated by optical fibers. Then, the data streams are passed through the Wavelength Delay

41

Timeslot Synchronizer

Switch
Control E/O

Space Switch Fabric

O/E

Input ports Output ports

Optical Buffer

Tunable Wavelength Converters

Wavelength
Multiplexer

Wavelength
Demultiplexer

Wavelength delay variation
compesator

Figure 3.4: An example block diagram of SynOBS core node

Variation Compensators which are responsible for realigning the out-of-phase data streams

among different data wavelengths due to the propagation delay variation among different

data wavelengths.

While the data in the control wavelength is O/E converted into the electrical domain

and forwarded to switch control for processing, the data streams in data wavelength are

forwarded to the space switching fabric. The space switching fabric switches the incoming

data to their designated outgoing channel all optically based on the predetermined switching

schedule provided by switch control. Since all incoming data streams are synchronized at

this stage, the space switching fabric only needs to reconfigure its connection pattern dur-

ing the transition between timeslots. Exiting from the space switching fabric, the outgoing

data bursts are converted to their designated outgoing wavelengths by the tunable wave-

length converters before being passed through a wavelength multiplexer and emerging at the

outgoing ports.

Note that, while the data wavelengths in SynOBS are divided into timeslots, the control

wavelength is not. In addition, the size of control packets is much smaller than the timeslot

size. A control packet can be sent out to its outgoing port anytime except for the times at the

42

start of each timeslot. This time is reserved for the synchronization signal (shown as spikes

on the control channels in Figure 3.5) which is used by SynOBS nodes for synchronization

purposes.

3.2.1 Synchronization

In timeslot-based OBS, a mechanism to realign and synchronize incoming data streams from

different incoming ports and wavelengths is mandatory. For SynOBS, timeslot synchronizers

and wavelength delay variation compensators are used to synchronize these incoming data

streams. The timeslot synchronizers are responsible for realigning the different incoming

data streams from different incoming ports that arrive out of phase compared to each other.

Additionally, out-of-phase data streams among different data wavelengths on the same in-

coming port (caused by variation of each stream’s speed at different wavelengths) can be

realigned by wavelength delay variation compensators.

Control Channel

Space Switching
Fabric

Timeslot
Synchronizer

Wavelength
Demultiplexer

Wavelength delay variation
compesator

Figure 3.5: An example block diagram of SynOBS timing

Figure 3.5 illustrates a timing example of the incoming data streams arriving at a SynOBS

core node. When the data streams arrive at a node (the left most part of the Figure),they

are out of phase across different input ports and across different wavelengths on the same

incoming port. Based on the synchronization signal given in the control channel (synchro-

nization pluses), the core node adjusts the delay duration of the timeslot synchronizers to

delay and synchronize the incoming data streams from different incoming ports with its in-

43

ternal reference clock. However, within the same incoming port, the incoming data streams

from different data wavelengths are still not synchronized with each other. When the data

streams emerge from wavelength demultiplexer and each individual data wavelength passes

through the wavelength delay variation compensator, the wavelength delay variation com-

pensators then realign the data streams from different incoming data wavelengths. At this

stage, all the data streams from different incoming port/wavelength are all synchronized

before being forwarded to the space switching fabrics.

Although, the Wavelength Delay Variation Compensator can be implemented by fixed-

length delay lines (ignoring any small changes in delay variation among different wave-

lengths), the timeslot synchronizer cannot. In optical fiber, the refractive index changes as a

function of temperature by ≈ 0.000012 /◦C for single-mode fiber at 1550 nm [28]. Thus, the

propagation speed of the lightwave in the optical fiber varies according to the temperature.

In addition, in the case that the SynOBS network is implemented with various timeslot size

(timeslot size can be dynamically adjusted according to current traffic characteristic), to syn-

chronize data from different incoming ports, the needed amount of the delay is also varied.

As a result, the implementation mechanisms of the timeslot synchronizer have to be able

to support such a diverse delay in order to synchronize data streams coming from different

input ports. One example of such a mechanism employs tunable delay lines as illustrated in

Figure 3.6 [14].

T/2 T/4 T/2
k−1 T/2

k

Figure 3.6: Tunable Delay Line

The tunable delay line shown in Figure 3.6 can be viewed as a system consisting of k

stages. The delay of the incoming signal can be adjusted to any value from 0 to T (1− 2−k)

with a step size of T/2k. To be able to realign the incoming traffic for the entire duration

of the timeslot, the value T can be considered as the timeslot duration. Then the tunable

delay line can adjust the delay to any value within the timeslot duration within an error of

44

T/2k, which the guard time between timeslots has to cover. The more the number of stages

k are used, the more accuracy can be achieved.

T/8T/4T/2 T/16

Figure 3.7: An Example of Tunable Delay Line

For example a 4-stage tunable delay line consists of fiber delay lines with delay values of

T/2, T/4, T/8, and T/16. In this case, the delay of an incoming signal can be adjusted to

any value from 0 to 15T/16. Suppose the incoming signal has to be delayed for the duration

of 13T/16. This can be done by configuring the tunable delay line to let the signal passes

through the T/2, T/4, and T/16 delay lines (as shown in Figure 3.7). By using a tunable

delay line, the incoming signal can be delayed to any value within the duration of a timeslot.

The more the number of stages used, the more precision can be achieved.

Consider a SynOBS system which has its maximum possible timeslot duration of Ts. In

this case, it is necessary for the timeslot synchronizer to be able to realign an incoming data

stream to any value from 0 to Ts. Assuming that there is a requirement for the timeslot

synchronizer to realign an incoming data stream with the accuracy of A or better, then the

required number of stages S in the tunable delay line is:

S = dlog2(Ts/A)e (3.1)

And the number of 2x2 switching devices (Nsyn) required in a timeslot synchronizer is:

Nsyn = S + 1 = dlog2(Ts/A)e+ 1 (3.2)

For example, suppose a SynOBS system has its maximum possible timeslot duration of

Ts, and it is required that the timeslot synchronizer has to be able to realign an incoming

data stream to the accuracy of one hundredth of a timeslot time (Ts/100). In this case the

required number of 2x2 switching devices in each timeslot synchronizer is dlog2100e+ 1 = 8.

45

3.2.2 Space Switching Fabric

As discussed earlier in section 2.7, an optical switching fabric can be implemented by inter-

connecting fast 2x2 switching devices (e.g. Lithium Niobate Switched Directional Coupler)

to form a larger fabric. Because of its synchronized nature, SynOBS allows the use of less

complicated rearrangeably nonblocking switching fabric rather than wide-sense nonblocking

fabric required in traditional OBS.

Exacerbating Lithium Niobate’s already bad crosstalk problem, data streams arrive over

various wavelengths at the SynOBS switching fabric and a Lithium Niobate Switched Di-

rectional Coupler’s switching voltage is wavelength dependent [29]. Dealing with this even

worse crosstalk problem strongly suggests using the Dilated Benes architecture [23] in the

fabric. In the Dilated Benes architecture, no two data paths share the same 2x2 switch-

ing device, and each of the 2x2 switching devices has only zero or one data stream passing

through it. If dilation is insufficient for dealing with the wavelength variation, it is possible

to control the switching voltages based on the previously known wavelength of the incoming

data burst and it’s path through the switching fabric. This way the proper voltage could

be determined and applied to each of the path’s 2x2 switching devices during each timeslot

duration.

Consider a core node with L input/output ports, where each port has W data wave-

lengths, and no FDLs are implemented. From section 2.7.1.2, for a SynOBS core node with

the Dilated Benes architecture, the required number of 2x2 switching devices in the fabric

is (NBenes):

NBenes = 2 · 2dlog2(WL)e · log2(2
dlog2(WL)e) (3.3)

Note that the number of ports in the Dilated Benes switching fabric need to be a power of

two, therefore the number of ports (N) in calculation discussed in section 2.7.1.2 is replaced

by 2dlog2(WL)e as shown in the above equation.

Compared this to the traditional OBS with the wide-sense nonblocking cross bar archi-

46

tecture [10], where the required number of 2x2 switching devices in the fabric is (Ncross):

Ncross = (WL)2 (3.4)

Taking into consideration that SynOBS requires a timeslot synchronizer in each of its

input ports, the total required number of 2x2 switching devices in a SynOBS core node is:

NsynOBS = L(dlog2(Ts/A)e+ 1) +

(
2 · 2dlog2(WL)e · log2(2

dlog2(WL)e)

)
(3.5)

Since the traditional OBS does not require timeslot synchronizer, the total required

number of 2x2 switching devices in the traditional OBS core node is:

NtradOBS = (WL)2 (3.6)

0

400

800

1200

1600

3 4 5 6 7 8

Number of input/output links

Re
qu

ire
d

2x
2

be
ta

 s
wi

tc
hi

ng
 d

ev
ice

s SynOBS
Traditional OBS

Figure 3.8: Comparison of required number of 2x2 switching devices in a core node

According to the studies discussed previously, under the assumption that the system

has five data wavelengths, and the required accuracy of timeslot synchronizer in SynOBS is

one hundredth of the maximum timeslot duration, Figure 3.8 illustrates a comparison of the

required number of 2x2 switching devices in a core node between SynOBS and traditional

OBS. As the number of links connected to a core node increase, both the required number

of 2x2 switching devices for SynOBS and for traditioanl OBS increase as well. However the

47

required numbers in traditional OBS is almost always greater than those in SynOBS. This

implies that implementation of a SynOBS core node is cheaper and more scalable than a

traditional OBS core node.

3.2.3 Tunable Wavelength Converter

The tunable wavelength converter is responsible for converting the wavelength of the in-

coming data burst to its designated outgoing wavelength before the burst is sent out to

the outgoing port. As discussed earlier in section 2.7, the tunable wavelength converter for

all-optical network has received increasing attention and become an active area of research

recently [10, 23]. The three basic mechanisms for wavelength conversion include Optoelec-

tronic Conversion, Optical Gating Wavelength Conversion, and Wave-Mixing Wavelength

Conversion. Although these technologies are still far from being mature, this research as-

sumes that the provided tunable wavelength converters have full capability of wavelength

conversion — which means, they can convert any given input data wavelength to any output

data wavelength. One simple example of such a full capability of wavelength conversion is

the pair of a photodetector and a tunable laser.

In a SynOBS core node, the number of tunable wavelength converters (Nwlc) is

Nwlc = (L+ F) ·W (3.7)

where, L is the number of outgoing ports, F is the number of optical buffers in the node,

and W is the number of available data wavelengths. For example, in Figure 3.4, the SynOBS

core node has two input/output port pairs, one optical buffer, and two data wavelengths;

thus, the number of tunable wavelength converters in this node is six.

In order to reduce the number of required tunable wavelength converters in a SynOBS

node, several shared tunable wavelength converters mechanisms have been proposed [30, 31].

The basic idea of shared tunable wavelength converter mechanisms is basically to share a

pool of tunable wavelength converters among the outgoing wavelength/port pairs in the

node. However, this is not the focus of this dissertation, and for the sake of simplicity,

it is assumed that a dedicated tunable wavelength converter is provided for each outgoing

48

wavelength/port pair without sharing.

3.2.4 Wavelength Demultiplexer/Multiplexer

Wavelength demultiplexers in a SynOBS core node are responsible for demultiplexing and

separating the incoming WDM data streams. While the demultiplexed control wavelength

is forwarded to the O/E converter for control packet processing, the demultiplexed data

wavelengths are forwarded to the space switching fabric. On the other hand, wavelength

multiplexers are responsible for multiplexing the data streams on different outgoing wave-

lengths that are going out to the same output port. Wavelength demultiplexer/multiplexers

could be implemented from either grating demultiplexer or phase array wavelength demulti-

plexer [10]). The multiplexer could be a simple optical combiner if the power budget allows

that much loss.

In a SynOBS core node, the number of required wavelength demultiplexer/multiplexer

pairs is equal to the number of incoming/outgoing port pairs plus the number of optical

buffers (FDLs) in the node (Nmux = L + F). For example, in Figure 3.4, the SynOBS

core node has two input/output port pairs and one optical buffer, therefore the number of

wavelength demultiplexer/multiplexer pairs required in this node is three (two plus one).

3.2.5 Switch Control

In the control wavelength, the data stream is converted into the electrical domain in order

to process the information in the control packets. After a control packet is converted to

electrical domain, it is then forwarded to switch control. The switch control acts as a

central brain of the SynOBS core node, where it reads the information given in the incoming

control packet, including: the incoming port, the incoming data wavelength, the incoming

timeslot, and the burst destination. The switch control then determines the outgoing port,

outgoing wavelength, and the outgoing timeslot for the incoming data burst based on the

information given from the control packet and the node’s current resource reservation. After

the outgoing port/wavelength/timeslot has been determined, the switch control reserves

this outgoing resource (as well as any optical buffer, that may be needed) and schedules the

49

space switching fabric and the tunable wavelength converter according to the reservation.

Besides, the switch control also updates the control packet associated with the data burst

and forwards it to the outgoing port in the control wavelength via E/O conversion.

The detailed resource reservation algorithm for the switch control will be further dis-

cussed in chapter 4.

3.2.6 Optical Buffer (FDL)

It is optional that a SynOBS core node be equipped with feedback Fiber Delay Lines (FDLs)

for buffering its data bursts. These feedback FDLs work as optical buffers in the core node

by forming a feedback delay-loop from the outgoing side back to the incoming side of the

switching fabric [24]. Whenever a data burst is buffered (delayed) in the core node, the

switching fabric switches the incoming data burst to an FDL. The burst is then buffered

in this FDL for the duration of the FDL’s length before it arrives at the FDL’s other end

on the incoming side of the switching fabric. Thereafter, this burst is either switched out

to its intended outgoing port or switched back to an FDL again if it needs to be buffered

for a longer period of time. As SynOBS operates upon a synchronized timeslot basis, the

delay needed will be the multiple number of timeslots and an FDL’s length can be set in

accordance with the delay duration of the multiple number of timeslots in order to delay the

blocked burst to other upcoming timeslots.

If the SynOBS network has fixed timeslot duration, the optical buffer can be made from

the fixed-length FDL which has its delay duration according to its configuration (the multiple

numbers of timeslots). However, if the network has variable timeslot duration, the optical

buffer must then be able to adjust itself to such variable timeslot duration configurable in

the network. Again, this can be done by utilizing the tunable delay line (discussed in section

3.2.1).

Consider a SynOBS system that uses tunable delay lines and has variable timeslot du-

ration between Tmin and Tmax. Recall that the possible number of timeslot size settings can

be any number in the order of 2k (where k is the number of stages in tunable delay line).

Let Tdiff be the difference between maximum timeslot size and minimum timeslot size

50

or

Tdiff = Tmax − Tmin (3.8)

k stages Tunable Delay LineFixed Length
Delay Line

Tdiff (1 + 1

2k)

4

Tdiff (1 + 1

2k)

2

Tdiff (1 + 1

2k)

2k−1

Tdiff (1 + 1

2k)

2kTmin

Figure 3.9: An Example of Tunable Optical buffer

Figure 3.9 illustrates an example of an optical buffer that has delay duration from Tmin

to Tmax and has 2k possible number of variations with
Tdiff (1+ 1

2k
)

2k
step size. As shown in the

figure, the optical buffer consists of a fixed delay line with the duration of Tmin and a k-stage

tunable delay line (whose delay value can vary from 0 to Tdiff). With this configuration, the

number of required 2x2 switching devices in each optical buffer is k + 1.

Note that this variation of timeslot duration is consistent across the entire SynOBS

network in order to maintain overall network synchronization. Additionally, if the delay in

the optical buffer is set to be n times the timeslot duration, the optical buffer can then be

implemented by using n times the delay duration of every delay line discussed above.

3.2.7 Guard Time

In SynOBS, guard time is the duration between every consecutive data burst timeslot. Dur-

ing this duration, no data is allowed to be transmitted. This guard time duration is used

to allow time needed by the optical switching fabric in the intermediate node to reconfigure

its switching fabric (Tfabric) before the next data bursts arrive during the next timeslot. In

addition, although the mechanisms for maintaining timeslot synchronization in the SynOBS

have been proposed and discussed in section 3.2.1, the imperfection of the timeslot syn-

chronization mechanisms is still inevitable. Consequently, in order to avoid any data loss

in a core node caused by synchronization errors, the guard time has to be large enough

51

to cover these synchronization errors among different incoming data streams to the node.

These synchronization errors include the errors caused by the imperfection of the timeslot

synchronizers (ETS), the imperfection of wavelength delay variation compensators (EWC),

and other miscellaneous errors (Emisc) caused by other causes that have not been discussed

in this dissertation (e.g. temperature-dependent delay variation in optical fiber, core node

internal reference clock error, etc.).

Hence, in order to ensure that there will be no data loss resulting from the timeslot syn-

chronization errors during the switching fabric reconfiguration, the guard time duration (Tg)

must then be equal to or greater than the combination of the switching fabric reconfiguration

duration and all the timeslot synchronization errors, or

Tg ≥ (Tfabric + ETS + EWC + Emisc) (3.9)

For example, assume that the switching fabrics used in the core node are based on the

extremely fast Electro-optic Switches (Tfabric ≈ 1 nsec). Then, further assume that the

maximum timeslot size setting is 200 µsec (≈ 250 1000-byte IP packets in a 10 Gbps link)

and the timeslot synchronizers is set with the accuracy of one one-hundredth of the maximum

timeslot size. Under these assumptions, the errors caused by timeslot synchronizer (ETS) is

2 µsec.

The errors resulting from imperfect wavelength delay variation compensators can also

be explained by example. Assume the SynOBS WDM system uses the 1550 nm operating

region, with an estimated usable spectral band of 120 nm [32]. The refractive index varies

by wavelength around 0.0006 in single-mode fiber [28]. Assume the data bursts traverse the

fiber with a maximum distance about 5000 km (the approximate distance from the west cost

to the east coast of the United States). Based on these factors, without the delay variation

compensator, the maximum synchronization errors caused by wavelength delay variation is

approximately 10 µsec = 0.0006×5000×103

3×108 .

Assuming the wavelength delay variation compensators can compensate about 60 percent

of the overall wavelength delay variation, then the synchronization errors caused by the

chromatic dispersion (EWC) reduce to approximately 4 µsec. Allowing another 1 µsec for

miscellaneous errors (Emisc), the guard time (Tg) of the synOBS system must be equal to or

52

greater than 7 µsec as a result.

53

4.0 PERFORMANCE ANALYSIS OF SYNOBS CORE NODE

This chapter discusses the performance analysis of a SynOBS core node with several FDL

reservation mechanisms. Discussion begins with the performance analysis of a SynOBS core

node with no FDLs provided, Then the chapter analyzes a SynOBS core node in which FDLs

are available as optical buffers including SynOBS with separated FDLs and SynOBS with

Shared FDLs [33]. The end of the chapter analyzes SynOBS with multiple length FDLs.

Note that the analysis provided in this chaper is based on the assumption that each data

burst has one hundred percent timeslot utilization (a data burst is fitted into a timeslot

without any void filling).

Similar to the performance analysis of the Asynchronous Transfer Mode (ATM), using a

discrete-time Markov model [34, 35, 36], SynOBS’s timeslot operation can also be analyzed

by utilizing the discrete-time Markov model. Contrary to ATM, the SynOBS system utilizes

Wavelength Division Multiplexing with several data channels (data wavelengths) available

for the outgoing data bursts (there is only one channel in ATM) in each of the outgoing

ports (and each of the FDLs) of the SynOBS core node.

4.1 SYNOBS CORE NODE WITHOUT FDL

First, a simple model of SynOBS, in which its core node doesn’t have FDLs as optical buffers,

is investigated. Consider an incoming data burst that arrives at a SynOBS core node that

has no FDLs. If all the outgoing wavelengths are already reserved, then this burst would have

to be dropped because there is no output wavelength available during the burst’s arriving

timeslot and there is no optical buffer where the blocked burst could be buffered and delayed

54

for later timeslot.

4.1.1 Reservation Algorithm

When a control packet arrives at a core node via the control channel, first the control packet is

received and processed. After the information is retrieved from the control packet (incoming

data burst wavelength, timeslot, destination, etc.), the node’s routing algorithm determines

the appropriate outgoing port. Similar to the offset-time-based RFD potocols [18, 8], this

routing algorithm then searches for a wavelength in the outgoing port that will be available

during the incoming burst’s timeslot. If an available wavelength is found, it is reserved

for the incoming data burst and the core switching fabric’s connection schedule is updated.

However, if no wavelength is available, the incoming data burst will be blocked and dropped.

The reservation algorithm’s pseudo-code for a SynOBS core node without FDLs is shown in

Algorithm 4.1.1.

Algorithm 4.1.1: ProcessControlPacket(ControPacket)

read Control Packet for incoming wavelength (Win), timeslot (Tin), and destination
lookup Routing Table for outgoing port (Pout)
search for available wavelength (Wout) in Pout during T in
if (Wout is found)

then

reserve (Pout, Wout) for incoming data burst during T in
schedule switching fabric according to reservation
update and send control packet to outgoing port Pout

else
{
comment: Burst dropped

4.1.2 Physical Requirements

This section analyzes the physical requirements of a SynOBS core node without FDLs. The

analysis is based on total number of required 2x2 switching devices in the core SynOBS

node, the total delay duration of FDLs used, and the total number of tunable wavelength

converters.

55

Consider a core node with L input/output ports, where each port has W data wave-

lengths, and no FDLs are implemented as optical buffers. Assuming the Dilated Benes

architecture is used in the space switching fabric, the required number of 2x2 switching

devices in the fabric is (NBenes):

NBenes = 2 · 2dlog2(WL)e · log2(2
dlog2(WL)e) (4.1)

In addition, the SynOBS system with variable timeslot size requires a timeslot synchro-

nizer in each of the input ports, as described in Section 3.2.2. Then, the total required

number of 2x2 switching devices in a SynOBS core node is:

N2x2switches = L(dlog2(T/A)e+ 1) + 2 · 2dlog2(WL)e · log2(2
dlog2(WL)e) (4.2)

Where, Ts is the maximum possible timeslot duration, and A is an accuracy requirement

of the timeslot synchronizers.

Since there are no FDLs used as optical buffers in the core node, FDLs are only required

in timeslot synchronizers and wavelength delay variation compensators. Assuming that

the amount of delay required in wavelength delay variation compensator is much smaller

than the maximum possible timeslot duration, the number of FDLs in the delay variation

compensators is negligible compared to the number in the timeslot synchronizers. Therefore,

the number of delay-duration FDLs’ required is Tmax · L.

With no optical buffers in the core node, the number of Tunable Wavelength Converters

(Nwlc) is

Nwlc = L ·W (4.3)

Where W is the number of available data wavelengths.

4.1.3 Blocking Analysis

In SynOBS without FDLs, since no FDLs are available for data bursts to be buffered in

the core nodes, blocking occurs whenever the number of data bursts scheduled to arrive at

an outgoing port at the start of the same timeslot is greater than the number of outgoing

56

wavelengths at this outgoing port. Assume the number of data bursts arriving at an outgoing

port during a given timeslot is Poisson distributed [37] with mean λ. Then, the probability

that n bursts arrive at the start of a timeslot is:

In =
λne−λ

n!
(4.4)

The maximum number of data bursts that could be successfully sent to an outgoing port

during some timeslot equals the number of outgoing wavelengths. Therefore, with W data

wavelengths available per outgoing link and n arrivals at the timeslot, the number of blocked

bursts (nblock|n) is:

nblock|n =

 n−W if n > W

0 if n ≤ W
(4.5)

Then, the expected number of blocked bursts (E[nblock]) during a timeslot is obtained

by:

E[nblock] =
∞∑
0

(In ∗ nblock|n)

=
∞∑

n=W+1

[(n−W)
λne−λ

n!
] (4.6)

Since the average number of data bursts arriving at a timeslot is λ, the probability that

a data burst will be blocked (Pb) is calculated by:

Pb =
E[nblock]

λ

=

∑∞
n=W+1[(n−W)λ

ne−λ

n!
]

λ
(4.7)

Figure 4.1 and 4.2 show the performance of blocking probability in a SynOBS core node

without FDLs with respect to its offered load and the number of outgoing wavelengths. The

offered load is set according to the total outgoing throughput. For example, if the number

of outgoing wavelengths is W and offered load is O, then the average number of arrivals per

57

timeslot λ is (W ∗O). Notice from the graphs that, as the number of the available wavelengths

increases, even at the same offered load, the blocking probability decreases. This shows that

data bursts are served more effectively, when there are more outgoing servers (wavelengths)

in the system.

Figure 4.1: Blocking probabilities of SynOBS without FDL

4.2 SYNOBS CORE NODE WITH SEPARATED FDLS

In a SynOBS core node with separated FDLs, each outgoing port has its own set of dedicated

feedback FDLs for buffering its data bursts. These feedback FDLs work as data buffers in

the core node by forming a feedback delay-loop from the outgoing side back to the incoming

side of the switching fabric [24]. Whenever a data burst must be buffered (delayed) in the

core node, the switching fabric switches the incoming data burst to a FDL. The burst is

then buffered in this FDL for the duration of the FDL’s length before it arrives at the FDL’s

other end on the incoming side of the switching fabric. This burst is then either switched

58

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

!20

10
!18

10
!16

10
!14

10
!12

10
!10

10
!8

10
!6

10
!4

10
!2

10
0

Blocking VS. Offered Load in SynOBS with large available wavelengths

B
lo

c
k
in

g
 P

ro
b

a
b

ili
ry

Offered Load

W = 25

W = 50

W = 100

W = 200

W = 400

Figure 4.2: Blocking probabilities of SynOBS without FDL with large number of wavelengths

out to its intended outgoing port, or switched back to the FDL again if it must be buffered

for a longer duration of time.

Figure 4.3 shows an example of a SynOBS core node with separated FDLs. Each of the

FDLs is reserved for data bursts, which belong to a specific outgoing port and cannot be

shared by other data bursts, which are destined to other outgoing ports. Consider a data

burst that arrives at the core node when all the outgoing wavelengths are already reserved

during this arriving burst’s timeslot. This blocked burst would be buffered in one of the FDLs

assigned to the burst’s destination outgoing port while waiting for an available wavelength

in some later timeslot. The FDL delay length is set to the duration of one timeslot, chosen

to delay a burst for the duration of exactly one timeslot. When a data burst must be delayed

for a multiple number of timeslots, the burst is recirculated in the FDL until an outgoing

wavelength is available.

59

Core Node

FDL for port B

A

B

FDL for port A

Figure 4.3: SynOBS core node with separated FDLs

4.2.1 Reservation Algorithm

When a control packet arrives at a core node in the control channel, first the control packet

is received and processed. After the information is retrieved from the control packet, the

routing algorithm determines the outgoing port. The algorithm subsequently searches for an

available wavelength in the outgoing port during the incoming burst timeslot. If a wavelength

is available, it is reserved for the incoming data burst and the core switching fabric’s con-

nection schedule is updated. However, if no wavelength is available, the algorithm searches

for an available wavelength in the FDLs assigned to the outgoing port. If no wavelength

is available in any assigned FDL, the burst is blocked. If a wavelength is available, the

algorithm looks in its outgoing port reservation schedule, and reserves the nearest available

timeslot/wavelength in the outgoing port. The algorithm reserves the available FDL wave-

length in order to buffer the data burst until it is sent to the outgoing port. The reservation

algorithm pseudo-code for SynOBS core node with separated FDLs is shown in Algorithm

4.2.1.

60

Algorithm 4.2.1: ProcessControlPacket(ControPacket)

read Control Packet for incoming wavelength (Win), timeslot (Tin), and destination
lookup Routing Table for outgoing port (Pout)
search for available wavelength (Wout) in Pout during T in
if (Wout is found)

then

reserve (Pout, Wout) for incoming data burst during T in
schedule switching fabric according to reservation
update and send control packet to outgoing port Pout

else



search available wavelengths (Wfdl) in every FDL belonging to Pout
if (Wfdl is found)

then



Tavai← nearest available timslot in Pout
Wout← available wavelength in Pout during Tavai
reserve (Pout, Wout) during Tavai
reserve timeslots in Wfdl from Tin to Tvai− 1
schedule switching fabric according to reservations
update and send control packet to outgoing port Pout

else
{
comment: Burst dropped

4.2.2 Physical Requirements

This section analyzes the physical requirements of a SynOBS core node with separated

FDLs. The analysis determines the total number of required 2x2 switching devices in the

core SynOBS node, the total delay duration of FDLs used, and the total number of tunable

wavelength converters.

Consider a core node with L input (output) ports, where each port has W data wave-

lengths, and there are Fsep FDLs available for each output port. Assuming the Dilated Benes

architecture is used in the space switching fabric, the required number of 2x2 switching de-

vices in the fabric is (NBenes):

NBenes = 2 · 2dlog2(W (L+LFsep))e · log2(2
dlog2(W (L+LFsep))e) (4.8)

Furthermore, since a SynOBS system with variable timeslot size requires a timeslot

synchronizer in each of the input ports, as described in Section 3.2.1, then the required

number of 2x2 switching devices in each timeslot synchronizer is

Nsyn = L(dlog2(Ts/A)e+ 1) (4.9)

61

Where, Ts is a maximum possible timeslot duration, and A is an accuracy required of

timeslot synchronizers.

If the optical buffers vary their delay duration between Tmin, and Tmax with 2k variations,

then, as described in Section 3.2.6, the number of 2x2 switching devices required in each

optical buffer (Nbuffer) is

Nbuffer = k + 1 (4.10)

Therefore, the total number of 2x2 switching devices required in a SynOBS core node

with separated FDLs (N2x2switches) is

N2x2switches = NBenes + LNsyn + LFsepNbuffer (4.11)

Since there are Fsep FDLs (each with a length of one timeslot) used as optical buffers

for each outgoing port, FDLs in the core node are required in timeslot synchronizers, optical

buffers, and wavelength delay variation compensators. Again, assuming that the number

of FDLs in the delay variation compensators is negligible, then the total number of delay

duration FDLs (TFDL) required in the core node is

TFDL = Tmax(L(Fsep + 1)) (4.12)

Also, the number of Tunable Wavelength Converter (Nwlc) is

Nwlc = W (L(Fsep + 1)) (4.13)

Where W is the number of available data wavelengths.

4.2.3 Blocking Analysis

In order to analyze a SynOBS core node with separated FDLs, an outgoing port was modeled

as a time-slotted queuing system, where jobs (data bursts) arrive at the start of a timeslot,

are served during the timeslot, and finish and leave the system at the end of the timeslot.

The available number of servers that can concurrently serve jobs during a timeslot equals

62

the number of outgoing data wavelengths (W). Whenever all servers are busy, an incoming

data burst is queued up in a FDL, whose maximum queue size is B = W ∗ F , where F is

number of FDLs per outgoing port. Since the system is timeslot-based, this analysis uses

the discrete-time Markov model [37].

As in a SynOBS core node without FDLs, assume that the number of data bursts arriving

at an outgoing port during some timeslot is Poisson distributed [37] with mean λ. Then, the

probability that n bursts arrive at a timeslot is:

In =
λne−λ

n!
(4.14)

In order to model this system, we define a chain state S for the discrete-time Markov

system as the number of data bursts currently in the system, where the value of state S

varies from 0, when the system contains no data bursts, to the maximum possible number

in the system (M = W (F + 1)). Then, the transition probability matrix P is created, where

the probability of moving from state i to state j (Pij) is calculated by:

Pij =



Ij if i ≤ W , j < W (F + 1)

I(j−(i−W)) if i > W , j ≥ (i−W) , j < W (F + 1)

0 if i > W , j ≤ (i−W) , j < W (F + 1)

∑∞
n=W (F+1)(In) if i ≤ W , j = W (F + 1)

∑∞
n=j−(i−W)(In) if i > W , j ≥ (i−W) , j = W (F + 1)

(4.15)

After the transition probability matrix is obtained, we can solve for the steady-state

probability vector π using the equations [37]:

π = πP and
M∑
S=0

(πS) = 1 (4.16)

Let the steady-state probability of being in state S be πS. Then, given that the system

is currently in state S, and with a arrivals during a timeslot, the number of blocked bursts

63

(n
(S,a)
block) is:

n
(S,a)
block =



0 if a ≤M − (S −W) , S > W

a− (M − (S −W)) if a > M − (S −W) , S > W

0 if a ≤M , S ≤ W

a−M if a > M , S ≤ W

(4.17)

Then, the expected number of blocked bursts during a timeslot (E[nblock]|(S)), given the

system is currently in state S, can be calculated by:

E[nblock]|(S) =
∞∑
a=0

(Ia ∗ n(S,a)
block)

=


∑∞

a=M−(S−W)(a+ S −M −W)λ
ae−λ

a!
if S > W

∑∞
a=M(a−M)λ

ae−λ

a!
otherwise

(4.18)

Then, the expected number of blocked bursts in all states (E[nblock]) during a timeslot

is:

E[nblock] =
M∑
S=0

[πS ∗ (E[nblock]|(S))] (4.19)

Therefore, the probability that a burst will be blocked (Pb) is:

Pb =
E[nblock]

λ

=

∑M
S=0[πS ∗ (E[nblock]|(S))]

λ
(4.20)

Figure 4.4 shows the blocking performance in a SynOBS core node with separated FDLs

with respect to the offered load. The graph shows results for a different number of FDLs per

64

output port, illustrated with five wavelengths per output link. From this figure, we see that,

as we increase the number of FDLs per node, the blocking probabilities decrease, because

more buffers are available per outgoing port. Also notice that when the number of FDLs per

port is zero, the result shown is exactly the same as the result obtained for the SynOBS core

node without FDLs because, when no FDLs are available, the algorithm for a SynOBS core

node with separated FDLs works exactly the same as that for a SynOBS core node without

FDLs.

Figure 4.4: Blocking probabilities of SynOBS core node with separated FDLs

4.2.4 Delay Analysis

Suppose the system is in state S at the end of the same timeslot. Consider the following

point in time: (1) immediately after the bursts that are currently served by outgoing ports

have departed, but (2) before incoming bursts are admitted to the system. At this time, the

number of bursts in the system is:

ndeparted|S =

 S −W if S > W

0 otherwise
(4.21)

65

Let nddelay|(S, a) be the number of the incoming data bursts that will be delayed in the

core node for the duration of d timeslots (d can vary from 0 to F), given that the system is

currently in state S, and there are a arrivals during a timeslot. Then,

nddelay|(S, a) =



0 if ndeparted|S ≥ (d+ 1)W , or ndeparted|S + a ≤ d ·W

(ndeparted|S + a− (d ·W))

if ndeparted|S < (d+ 1)W , ndeparted|S + a > d ·W , ndeparted|S ≤ d ·W ,

and d ·W ≤ ndeparted|S + a ≤ (d+ 1)W

W if ndeparted|S < (d+ 1)W , ndeparted|S + a > d ·W , ndeparted|S ≤ d ·W ,

and ndeparted|S + a > (d+ 1)W

a if ndeparted|S < (d+ 1)W , ndeparted|S + a > d ·W , ndeparted|S > d ·W ,

and d ·W ≤ ndeparted|S + a ≤ (d+ 1)W

(d+ 1)W − ndeparted|S

if ndeparted|S < (d+ 1)W , ndeparted|S + a > d ·W , ndeparted|S > d ·W ,

and ndeparted|S + a > (d+ 1)W

(4.22)

After that, we can calculate the expected number of the incoming data bursts that will

be delayed in the core node for the duration of d timeslots, given that the system is currently

in state S, (E[nddelay]|(S)) by

E[nddelay]|(S) =
∞∑
a=0

(nddelay|(S, a) · Ia) (4.23)

where, Ia is the probability that there are a bursts arrive at a timeslot.

66

Based on that, the expected number of the incoming data bursts during a timeslot that

will be delayed in the core node for the duration of d timeslots (E[nddelay]) is

E[nddelay] =
M∑
S=0

(E[nddelay]|(S) · πS) (4.24)

Where, M = W (F + 1) is maximum possible number in the system, and πS is the

steady-state probability of being in state S.

Finally, the probability that an incoming data burst will be delayed in the core node for

the duration of d timeslots (P d
delay) is

P d
delay =

E[nddelay]

λ
(4.25)

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Delay 0

Delay 1

Block

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Delay 0

Delay 1

Delay 2

Block

(a) (b)
Offered Load

De
la

y
Pr

ob
ab

ilit
ie

s

Offered Load

Figure 4.5: Delay distribution in SynOBS with separated FDLs (a) with one FDL (b) with

two FDLs

Figure 4.5 shows the delay distribution in SynOBS core node with separated FDLs.

The graphs show the result (a) with one FDL per outgoing ink and (b) with two FDLs

per outgoing link illustrated with five wavelengths per output link. From the Figure, at low

offered load, since there are small number of data bursts competing for outgoing wavelengths

and it is less likely that data bursts needed to be delayed in an FDL, the probability of

no delay in the core node is almost one, whereas the probability to be delayed is almost

zero. As the offered load increases, it is more likely that data bursts are competing for

outgoing wavelengths. As a result, the probability that a data burst is delayed increases

67

while the probability of no delay decreases. At a higher offered load, it is more likely that

the wavelengths in the FDLs are all reserved, which causes the data bursts to be blocked.

Thus, the burst blocking probability is more noticable, and increases as the offered load

increases.

We can calculate the expected delay duration (in timeslots), given that a data burst will

not be blocked, by

ExpectedDelay =

∑F
d=0(P

d
delay · d)∑F

d=0 P
d
delay

(4.26)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 FDL

2 FDLs

Offered Load

Ex
pe

ct
ed

 D
el

ay
 (i

n
tim

es
lo

ts
)

Figure 4.6: Expected delay duration in SynOBS with separated FDLs

Figure 4.6 presents the expected delay duration (in number of timeslots) in a SynOBS

core node with separated FDLs, as a function of offered load. The graph shows the results

for one FDL per output link and two FDLs per output link, illustrated with five wavelengths

per output link. At low offered load, most of the data bursts need not to be delayed in the

FDLs; therefore, the expected delay is almost zero. However, as the offered load increases,

it is more likely that an incoming data burst must be delayed in the FDLs, resulting in the

increase in the expected delay duration.

As shown in the graph, the number of available FDLs increases (in this case, from one

FDL to two FDLs), the expected delay duration in the core node increases whereas the burst

blocking probability decreases (shown in Figure 4.4). This is an expected trade-off between

the burst blocking probability and the expected delay duration in the core node. Although,

68

employing more FDLs as optical buffers in the core node improves the performance in terms

of burst blocking probability, the performance in terms of the expected delay duration in the

core node gets worse.

4.3 SYNOBS CORE NODE WITH SHARED FDLS

Core Node

FDLs for ports A & B

A

B

Figure 4.7: SynOBS core node with shared FDLs

A SynOBS core node with shared FDLs is a modified version of the SynOBS core node

with separated FDLs. The shared-FDL version is similar to the separated-FDL version,

in that a blocked burst is buffered in a feedback FDL to delay the burst and wait for an

available wavelength in the outgoing port. However, where each separated-FDL outgoing

port has its own set of dedicated FDLs for buffering its own bursts, FDLs in a SynOBS core

node with shared FDLs can be used for any bursts, which are destined to any outgoing port.

FDLs acts as a single pool of buffers that all the outgoing ports share for any burst that

must be reserved and buffered. A simple block diagram of SynOBS core node with shared

FDLs is shown in Figure 4.7.

4.3.1 Reservation Algorithm

The reservation algorithm pseudo-code for SynOBS core node with shared FDLs is shown

in Algorithm 4.3.1.

69

Algorithm 4.3.1: ProcessControlPacket(ControPacket)

read Control Packet for incoming wavelength (Win), timeslot (Tin), and destination
lookup Routing Table for outgoing port (Pout)
search for available wavelength (Wout) in Pout during T in
if (Wout is found)

then

reserve (Pout, Wout) for incoming data burst during T in
schedule switching fabric according to reservation
update and send control packet to outgoing port Pout

else



search available wavelength (Wfdl) in every shared FDLs in the node
if (Wfdl is found)

then



Tavai← nearest available timslot in Pout
Wout← available wavelength in Pout during Tavai
reserve (Pout, Wout) during Tavai
reserve timeslots in Wfdl from Tin to Tvai− 1
schedule switching fabric according to reservations
update and send control packet to outgoing port Pout

else
{
comment: Burst dropped

4.3.2 Physical Requirements

This section analyzes the physical requirements of a SynOBS core node with shared FDLs;

providing the total number of required 2x2 switching devices in the core SynOBS node, the

total delay duration of FDLs used, and the total number of tunable wavelength converters.

Consider a core node with L input (output) ports, where each port has W data wave-

lengths, and are Fshared FDLs available in the node. Assuming the Dilated Benes architecture

is used in the space switching fabric, the required number of 2x2 switching devices in the

fabric is (NBenes):

NBenes = 2 · 2dlog2(W (L+Fshared))e · log2(2
dlog2(W (L+Fshared))e) (4.27)

Again, a SynOBS system with a variable timeslot size requires a timeslot synchronizer

in each of the input ports. The required number of 2x2 switching devices in each timeslot

synchronizer is

Nsyn = L(dlog2(T/A)e+ 1) (4.28)

70

Where, Ts is the maximum possible timeslot duration, and A is an accuracy requirement

of timeslot synchronizers.

With 2k possible variations in each optical buffer, the number of 2x2 switching devices

required in each optical buffer (Nbuffer) is

Nbuffer = k + 1 (4.29)

Therefore, the total number of 2x2 switching devices required in a SynOBS core node

with separated FDLs (N2x2switches) is

N2x2switches = NBenes + LNsyn + FsharedNbuffer (4.30)

Since there are Fshared FDLs (each has a length of one timeslot) used as optical buffers

in the node, FDLs in the core node are required in timeslot synchronizers, optical buffers,

and wavelength delay variation compensators. Again, assuming that the number of FDLs in

the delay variation compensators is negligible, the resulting total amount delay duration of

FDLs (TFDL) required in the core node is

TFDL = Tmax(Fshared + L) (4.31)

Where Tmax maximum timeslot duration.

Also, the number of Tunable Wavelength Converter (Nwlc) is

Nwlc = W (Fshared + L) (4.32)

Where W is the number of available data wavelengths.

4.3.3 Blocking Analysis

In a SynOBS core node with shared FDLs, since the output ports share the same pool of

FDLs for buffering their data bursts, we cannot consider each outgoing port as a single

queuing system. The model used must include all outgoing ports and their shared pool of

FDLs as one system. So, the states of the discrete-time Markov model are represented by

71

S = (s[1], s[2], ..., s[N]), where s[i] is the number of data bursts currently in the system that

are destined to port i.

Let N represent the number of outgoing ports, F represent the number of shared FDLs

in the core node, and W represent the number of data wavelengths. Then, s[i] varies from 0

to (W +B), where B is total number of channels available in the FDLs (B = F ∗W). The

maximum number channels in the entire system is W (N + F).

Let λi be the arrival rate at outgoing port i, and I in be the probability of n arrivals at

outgoing port i during a timeslot. Then:

I in =
λni e

−λi

n!
(4.33)

Notice that state S = (s[1], s[2], ..., s[N]) exists when∑N
i=1 f

[i] ≤ B. Then, f [i], the current number of bursts in the FDLs which are destined to

port i, is:

f [i] =

 s[i] −W if s[i] > W

0 otherwise
(4.34)

Suppose the system is in state S = (s[1], s[2], ..., s[N]) at the end of same timeslot. Consider

the point in time: (1) immediately after the bursts that are currently served by outgoing

ports have departed, but (2) before incoming bursts are admitted to the system. At this

time, the number of bursts in the system that are destined to port i is:

n
[i]|S
departed =

 s[i] −W if s[i] > W

0 otherwise
(4.35)

And, the number that are in the pool of FDLs is:

f
[i]|S
departed =

 n
[i]|S
departed −W if n

[i]|S
departed > W

0 otherwise
(4.36)

So, the number of empty FDLs, which are currently available for incoming bursts, is:

BS
available = B −

N∑
i=1

f
[i]|S
departed (4.37)

72

Let S+ = (s
[1]
+ , s

[2]
+ , ..., s

[N]
+) represent the next state to which the current state S transits.

Then, at the end of this transition, the number of bursts in the FDL pool corresponding to

each port i is:

f
[i]|S+

end =

 s
[i]
+ −W if s

[i]
+ > W

0 otherwise
(4.38)

And, the total number of bursts in the FDL pool during this state is:

f
[total]|S+

end =
N∑
i=1

f
[i]|S+

end (4.39)

A transition probability matrix P is used to solve for the steady-state probability vector

π — as in (4.16), where the probability of moving from state (s[1], s[2], ..., s[N]) to state

(s
[1]
+ , s

[2]
+ , ..., s

[N]
+) is:

P
(s[1],s[2],...,s[N])(s

[1]
+ ,s

[2]
+ ,...,s

[N]
+)

= P(S,S+) =



0 if any s
[i]
+ < s[i] −W , or f

[total]|S+

end > B

∏N
i=0 I

i

(s
[i]
+−n

[i]|S
departed)

if f
[total]|S+

end < B , all s
[i]
+ ≥ s[i] −W

∑en
(S,S+)

1

a1=st
(S,S+)

1

..
∑en

(S,S+)

N

aN=st
(S,S+)

N

(
h
(S,a1)
1

r
(S,S+)

1

)···(
h
(S,aN)
N

r
(S,S+)

N

)

(
PN
i=1

h
(S,ai)
iPN

i=1
r
(S,S+)

i

)
I1
a1
· ·INaN

if f
[total]|S+

end = B , all s
[i]
+ ≥ s[i] −W

(4.40)

where,

st
(S,S+)
i = s

[i]
+ − n

[i]|S
departed (4.41)

73

en
(S,S+)
i =

 s
[i]
+ − n

[i]|S
departed if s

[i]
+ < W

∞ otherwise
(4.42)

h
(S,a)
i =



0 if s
[i]
+ < W

a if s
[i]
+ ≥ W , n

[i]|S
departed ≥ W

a− (W − n[i]|S
departed) if s

[i]
+ ≥ W , n

[i]|S
departed < W

(4.43)

r
(S,S+)
i =



0 if s
[i]
+ < W

s
[i]
+ − n

[i]|S
departed if s

[i]
+ ≥ W , n

[i]|S
departed ≥ W

s
[i]
+ −W if s

[i]
+ ≥ W , n

[i]|S
departed < W

(4.44)

Immediately after bursts depart from the server, the number of incoming bursts that

correspond to each outgoing port is (a1, a2, ..., aN) = A, where ai represents the number

of arrivals for port i. So, the number of incoming bursts destined to port i that must be

buffered in the FDL pool is:

n
[i]|(S,A)
toFDL =



ai if n
[i]|S
departed ≥ W

ai − (W − n[i]|S
departed) if n

[i]|S
departed < W , ai > W − n[i]|S

departed

0 if n
[i]|S
departed < W , ai ≤ W − n[i]|S

departed

(4.45)

Then, the total number of incoming bursts that must be buffered in the FDL pool is:

n
[total]|(S,A)
toFDL =

N∑
i=1

n
[i]|(S,A)
toFDL (4.46)

74

If the system is currently in state S = (s[1], s[2], ..., s[N]) and the number of bursts arriving

at each outgoing port is (a1, a2, ..., aN) = A, then the number of blocked bursts is:

n
(S,A)
block =


n

[total]|(S,A)
toFDL −BS

available if n
[total]|(S,A)
toFDL > BS

available

0 otherwise

(4.47)

So, if the system is in state S = (s[1], s[2], ..., s[N]), the expected number of blocked bursts

during the next transition is:

E[nblock]|(S) =
∞∑
a1=0

∞∑
a2=0

...

∞∑
aN=0

(
n

(S,A)
block I

1
a1
I2
a2
· · · INaN

)
(4.48)

And, the total expected number of blocked bursts in the system during each timeslot is:

E[nblock] =
∑

(all S)

(
πS · E[nblock]|(S)

)
(4.49)

Then, the probability that an arriving burst will be blocked (Pb) is obtained by:

Pb =
E[nblock]∑N

i=1 λi
(4.50)

Figure 4.8 illustrates the blocking performance with respect to the offered load in a

SynOBS core node with shared FDLs, for various numbers of shared FDLs in the core

node. Again, the result is shown for five wavelengths per output link. Similarly to the

previous result of the SynOBS core node with separated FDLs, when the number of shared

FDLs is zero, the outcome is also exactly the same as the result obtained from a SynOBS

core node without FDLs. Reasonably, this occurs because, when no FDL is available in a

SynOBS core node with shared FDLs, its algorithm works exactly like that in a SynOBS core

node without FDLs. When the number of shared FDLs increases, the blocking probability

decreases because more optical buffers are available to handle the blocked traffic.

Figure 4.9 shows the result of calculating the burst blocking probability of a SynOBS

core node with shared FDLs with unbalanced offered load. In the core node, there are

75

Figure 4.8: Blocking probabilities of SynOBS core node with shared FDLs

two output ports and one shared FDL. Also, there are two data wavelengths in each of the

output ports. According to the calculation, the offered load given to one of the output ports

(outgoing port 1) is fixed at 0.75 (compared to the outgoing port capacity), while the offered

load given the other output port (outgoing port 2) is varied from 0.75 to 1.25. As illustrated

in the graph, at the same given offered load between port 1 and port 2 (at offered load of

0.75), the blocking probability of port 1 and port 2 is the same. This is because at the

same offered load, there is equal traffic from port 1 and port 2 that competes for the shared

FDL. Thus, as the offered load given to port 2 increases, its burst blocking probability also

increases. On the contrary, as the given offered load in port 1 is fixed at 0.75, its blocking

probability increases following an increasing offered load given to port 2. This is because

when the offered load given to port 2 increases, more traffic for port 2 must be buffered in

the FDL. This causes more FDL spaces (that are shared by both ports) occupied by port 2

traffic, and less free FDL spaces available for port 1. Accordingly, the blocking probability

of port 1 bursts increases even if its offered load remains the same.

The above example shows that a SynOBS core node with shared FDLs can effectively uti-

76

1 2 3 4 5 6 7 8 9 10 11
0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53
Blocking VS. Offered Load in SynOBS with shared output FDLs (5 Wavelengths)

B
lo

c
k
in

g
 P

ro
b
a

b
ili

ty

Offered Load
0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25

Outgoing port 1

Outgoing port 2

Overall Traffic

1 shared FDL, 2 wavelengths
outgoing port 1 offered load = 0.75 of output port capacity

outgoing port 2 offered load (compared to outgoging port capacity)

Figure 4.9: Burst blocking probability of unbalanced offered load SynOBS with shared FDL

lize the available FDLs in the core node. However, if the given offered loads are unbalanced,

this may result in the unfair FDL utilization among the output ports, where the traffic from

the output port with higher offered load tends to over utilize the shared FDLs, compared

with the traffic from the output port with lower offered load. Therefore, like Asynchronous

Transfer mode (ATM) that also utilizes a shared buffer mechanism [38, 39, 40], the FDL

reservation algorithm for SynOBS with shared FDLs has to be carefully designed in order

to avoid such a problem; this is one of the problems that has to be considered in further

research.

4.3.4 Delay Analysis

Assume the system is in state S = (s[1], s[2], ..., s[N]) at the end of same timeslot. More

precisely, consider point in time: (1) immediately after the bursts that are currently served

by outgoing ports have departed, but (2) before incoming bursts are admitted to the system.

At this time, n
[i]|S
departed is the number of bursts in system that are destined to port i, as

given in equation 4.35. In addition, the number of bursts arriving at each outgoing port is

(a1, a2, ..., aN) = A. Then n
[i]|(S,A)
toFDL , which is the number of incoming bursts destined to port

77

i that must be buffered in the FDL pool is given in equation 4.45.

Let n
(i,d)
delay|(S,A) be the expected number of the incoming data bursts destined for out-

going port i that will be delayed in the core node for the duration of d timeslots, given that

the system is currently in state S with A arrivals during a timeslot.

If there is no incoming data bursts are blocked during the next incoming timeslot (n
(S,A)
block =

0 in equation 4.47), then n
(i,d)
delay|(S,A) is:

n
(i,d)
delay|(S,A) =



0 if n
[i]
departed|S ≥ (d+ 1)W , or n

[i]
departed|S + ai ≤ d ·W

(n
[i]
departed|S + ai − (d ·W))

if n
[i]
departed|S < (d+ 1)W , n

[i]
departed|S + ai > d ·W , n

[i]
departed|S ≤ d ·W ,

and d ·W ≤ n
[i]
departed|S + ai ≤ (d+ 1)W

W if n
[i]
departed|S < (d+ 1)W , n

[i]
departed|S + ai > d ·W , n

[i]
departed|S ≤ d ·W ,

and n
[i]
departed|S + ai > (d+ 1)W

ai if n
[i]
departed|S < (d+ 1)W , n

[i]
departed|S + ai > d ·W , n

[i]
departed|S > d ·W ,

and d ·W ≤ n
[i]
departed|S + ai ≤ (d+ 1)W

(d+ 1)W − n[i]
departed|S

if n
[i]
departed|S < (d+ 1)W , n

[i]
departed|S + ai > d ·W , n

[i]
departed|S > d ·W ,

and n
[i]
departed|S + ai > (d+ 1)W if n

(S,A)
block = 0

(4.51)

if n
(S,A)
block = 0

In the case that some of the incoming data bursts will be blocked during the next incoming

78

timeslot (n
(S,A)
block > 0 in equation 4.47), then n

(i,d)
delay|(S,A) is

n
(i,d)
delay|(S,A) =

n
[1]|(S,A)
toFDL∑
k1=0

n
[2]|(S,A)
toFDL∑
k2=0

...

n
[n]|(S,A)
toFDL∑
kN=0

(
P(k1,k2,...,kN) · l(i,d)

)
if n

(S,A)
block > 0 (4.52)

where,

P(k1,k2,...,kn) =



(n
[1]|(S,A)
toFDL
k1

)(n
[2]|(S,A)
toFDL
k2

)···(n
[N]|(S,A)
toFDL
kN

)

(
n
[T]|(S,A)
toFDL

BS
available

)
if
∑n

i=1 ki = BS
available

0 otherwise

(4.53)

and,

l(i,d) =



0 if n
[i]
departed|S ≥ (d+ 1)W , or n

[i]
departed|S + bi ≤ d ·W

(n
[i]
departed|S + bi − (d ·W))

if n
[i]
departed|S < (d+ 1)W , n

[i]
departed|S + bi > d ·W , n

[i]
departed|S ≤ d ·W ,

and d ·W ≤ n
[i]
departed|S + bi ≤ (d+ 1)W

W if n
[i]
departed|S < (d+ 1)W , n

[i]
departed|S + bi > d ·W , n

[i]
departed|S ≤ d ·W ,

and n
[i]
departed|S + bi > (d+ 1)W

bi if n
[i]
departed|S < (d+ 1)W , n

[i]
departed|S + bi > d ·W , n

[i]
departed|S > d ·W ,

and d ·W ≤ n
[i]
departed|S + bi ≤ (d+ 1)W

(d+ 1)W − n[i]
departed|S

if n
[i]
departed|S < (d+ 1)W , n

[i]
departed|S + bi > d ·W , n

[i]
departed|S > d ·W ,

and n
[i]
departed|S + bi > (d+ 1)W

(4.54)

79

where,

bi = ai − (n
[i]
toFDL|(S,A)− ki) (4.55)

As a result, we can calculate the expected number of the incoming data bursts destined

for port i that will be delayed in the core node for a duration of d timeslots, given that the

system is currently in state S, (E[n
(i,d)
delay]|(S)) by

E[n
(i,d)
delay]|(S) =

∞∑
a1=0

∞∑
a2=0

...
∞∑

aN=0

(
(n

(i,d)
delay|(S,A))I1

a1
I2
a2
· · · INaN

)
(4.56)

Where I iai is the probability that there are ai bursts arriving for outgoing port i during

a timeslot.

Based on this equation, the expected number of the incoming data bursts during a

timeslot destined for port i that will be delayed in the core node for a duration of d timeslots

(E[n
(i,d)
delay]) is

E[n
(i,d)
delay] =

∑
all S

(
E[n

(i,d)
delay]|(S) · πS

)
(4.57)

Therefore, the probability of an incoming data burst destined for port i that will be

delayed in the core node for a duration of d timeslots (P
(i,d)
delay) is

P
(i,d)
delay =

E[n
(i,d)
delay]

λi
(4.58)

Finally, the probability of an incoming data burst will be delayed in the core node for

the duration of d timeslots (P d
delay) is

P d
delay =

∑N
i=1E[n

(i,d)
delay]∑N

i=1 λi
(4.59)

Figure 4.10 shows the delay distribution in a SynOBS core node with shared FDLs. The

graphs present results for (a) one shared FDL and (b) two shared FDLs, illustrated with five

wavelengths per output link with two outgoing ports. Similarly to the result of a SynOBS

core node with separated FDLs, at low offered load, the probability of no delay in the core

node is almost one while the probability to be delayed is almost zero. When the offered

80

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Delay 0

Delay 1

Delay 2

Blocked

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Delay 0

Delay 1

Blocked

(a) (b)
Offered Load

De
la

y
Pr

ob
ab

ilit
ie

s

Offered Load

Figure 4.10: Delay distribution in SynOBS with shared FDLs (a) with 1 FDL (b) with 2

FDLs

load increases, the probability that a data burst is delayed increases, as the probability of

no delay decreases.

Consequently, we can calculate the expected delay duration (in timeslots), given that a

data burst will not be blocked, by

ExpectedDelay =

∑F
d=0(P

d
delay · d)∑F

d=0 P
d
delay

(4.60)

Figure 4.11 shows the expected delay duration (in number of timeslots) in a SynOBS

core node with shared FDLs with respect to the given offered load, illustrated with five

wavelengths per output link with two outgoing ports. Similarly to the result obtained from

synOBS core node with separated FDLs, at a low offered load, the expected delay is almost

zero. As the offered load increases, the expected delay duration also increases. Moreover, as

the number of available FDLs increases, although, the burst blocking probability decreases,

the expected delay duration in the core node increases.

81

0

0.4

0.8

1.2

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 FDL

2 FDLs

4 FDLs

Offered Load

Ex
pe

ct
ed

 D
el

ay
 (i

n
tim

es
lo

ts
)

Figure 4.11: Expected Delay SynOBS with shared FDLs

4.4 COMPARISON AMONG POLICIES

Figure 4.12 compares the three different policies, all based on five data wavelengths per

output port and two outgoing ports per node. These results are based on two shared FDLs

in a SynOBS node with shared FDLs, and one FDL per outgoing port in a SynOBS with

separated FDLs. So, the separated-FDLs and shared-FDL policies are compared under the

same physical requirements (two outgoing ports and two FDLs per node).

Since SynOBS with no FDLs has no buffering capability, it shows the worst results. The

figure shows that using FDLs in the core node helps reduce the blocking probability. Since it

achieves better FDL utilization, the result for SynOBS with shared FDLs is better than that

for SynOBS with separated FDLs. This is because the FDLs are shared by every output

ports in SynOBS with shared FDLs, but not in SynOBS with separated FDLs.

Figure 4.13 shows the comparison between a SynOBS core node with separated FDLs

and a SynOBS core node with shared FDLs in term of the expected delay duration in the core

node. As illustrated in the graph, at the same offered load, SynOBS with shared FDLs has

higher expected delay duration compared to SynOBS with separated FDLs because of the

higher FDL utilization of SynOBS with shared FDLs. Although, SynOBS with shared FDLs

provides better blocking probability than that with separated FDLs, the higher expected

82

Figure 4.12: Burst blocking probability comparison between policies

delay in SynOBS with shared FDLs occurs.

4.5 SIMULATIONS

In the preliminary work of this dissertation, a simulation environment of SynOBS has been

provided in order to serve as a tool for studying and analyzing the SynOBS network. This

simulation environment was implemented based on CSIM simulation language. The simula-

tion model has been validated by comparing its simulation results with the results obtained

by theoretical analysis. In addition, the simulation model environment for traditional OBS

has also been provided. This traditional OBS simulation model environment is used to

compare the performance of traditional OBS against SynOBS.

Note that, for every simulation results presented in this dissertation, they are shown

by using the average values, each calculated from 30 independent simulation runs, with the

83

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Separated FDL with 1 FDL/port

Shared FDL with 2 FDLs, 2 ports

Offered Load

Ex
pe

ct
ed

 D
el

ay
 (i

n
tim

es
lo

ts
)

Figure 4.13: Expected delay duration comparison between policies

error bars of 95 percent confidence interval of the simulation mean.

4.5.1 Theoretical Analysis Validation

In order to validate the simulation model, which has been created, the results obtained from

the model are compared with the results from theoretical analysis.

Figure 4.14 shows the block diagram of the simulated network, which consists of six

edge-OBS nodes, and one core-OBS node (C1). Four of the edge-OBS nodes, E1-E4, act

as traffic sources, while the other two, E5 and E6, are traffic sinks. Traffic generated from

node E1 and E2 is sent through the core node, destined to node E5. And, traffic from E3

and E4 is also sent through the core node, but destined to node E6. Thus, the core node’s

outgoing port that is connected to node E5 receives its traffic from nodes E1 and E2, and

the outgoing port that is connected to node E6 receives its traffic from nodes E3 and E4.

Data bursts are generated in source edge-OBS nodes with an exponential inter-arrival

time corresponding to a given offered load. These bursts queue up in source edge-OBS nodes

and are scheduled to be sent out to the core node at the start of the nearest subsequent

timeslot. Source edge-OBS nodes are also responsible for: (1) generating a control packet

associated with each data burst, and (2) forwarding it to the core-OBS node with the duration

84

E1

E2

E3

E5

E6

E4

C1

Figure 4.14: Simulation network environment

of the offset time prior to transmitting the data burst. When the core node receives the

control packet, it performs the reservation algorithm as discussed in previous sections, and

it forwards the data out to their destination nodes.

0.00001

0.0001

0.001

0.01

0.1

1
10 20 30 40 50 60 70 80 90 100

Offered load

B
lo

ck
in

g
pr

ob
ab

ili
ty

sim shared FDL
calc shared FDL
sim sep. FDL
calc sep. Fdl
sim no FDL
calc no FDL

(a) (b)

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load

E
x
p
e
ct

e
d
 d

e
la

y
 (

in
 t

im
e
sl

o
ts

)

Calc Separated FDL

Calc Shared FDL
Sim Separated FDL

Sim Shared FDL

Figure 4.15: Comparison between mathematical analysis and simulation

Figure 4.15 compares the simulation models to the mathematical analysis. The offered

load shown in the graph is the offered load with respect to the output port’s throughput.

Again, simulations are based on five wavelengths per output port. In the graph, solid lines

represent results from simulations and dotted lines represent results from calculations. The

figures show that results from simulations and result from calculations are closely matched for

85

each type of reservation algorithm, confirming and validating the simulation model created

for this research.

4.5.2 Comparison with Traditional OBS

Simulations also compare the proposed SynOBS protocols with the traditional OBS protocol.

In the simulation of traditional OBS, data bursts are created with exponential inter-arrival

time, burst length is also exponentially distributed, and FDL delay duration is set to the

average of burst size. As soon as a burst is generated in a source edge OBS node, a control

packet associated with the data burst is immediately generated and sent out through the

outgoing port. The data burst follows, after its offset time. When a control packet arrives

at the core node and the information contained in the packet is read, the core node performs

wavelength reservation by selecting the latest available unused wavelength for each arriving

data burst [41]. Similar to SynOBS, if FDLs are equipped and an outgoing wavelength is

not available, it tries to reserve an available FDL and the burst is recirculated in the FDL

until the output wavelength is available. The FDL reservation algorithm depends on types

of the reservation algorithms used similar to those in SynOBS (separated or shared FDLs).

The network used in simulating the traditional OBS is the same as the network used

in the previous section (figure 4.14), with four source edge-OBS nodes, two sink edge-OBS

nodes, and one core-OBS node. The number of data wavelengths available in an outgoing

port is also five. Figure 4.16 compares simulation results for SynOBS against traditional

OBS with FDL reservation algorithms as discussed in this paper. The solid lines represent

the results from SynOBS and dotted lines represent results from traditional OBS. Simulation

results show that, because of its synchronous nature, SynOBS always has better blocking

probability than traditional OBS regardless of which FDL reservation algorithm is used.

Under high offered load, using FDLs in the core OBS node is seen to have significantly

improved performance over traditional OBS. However, little difference is observed between

SynOBS with separated FDLs and SynOBS with shared FDLs.

Comparing traditional OBS with SynOBS without FDLs, the SynOBS results show some

improvement over traditional OBS. While both traditional OBS and SynOBS achieve perfor-

86

0.0001

0.001

0.01

0.1

1
10 20 30 40 50 60 70 80 90 100

Offered load

B
lo

ck
in

g
pr

ob
ab

ili
ty

Syn shared FDL
Syn sep. FDL
Syn no FDL
Trad. shared FDL
Trad. sep. FDL
Trad. no FDL

Figure 4.16: Comparison between SynOBS and Traditional OBS

mance improvement when FDLs are equipped, a large improvement is observed in SynOBS

with separated FDLs, and even greater with shared FDLs.

4.6 SYNOBS CORE NODE WITH MULTIPLE-LENGTH FDLS

In a SynOBS core node with single-length FDLs (as in previous section), a burst can be

delayed for multiple timeslots by recirculating the burst within the FDL for multiple times.

However, this means an FDL will be reserved by a single burst for multiple timeslots. In

addition, a single-length FDL can carry only one data burst at a time, as opposed to a

multiple-length FDL, which can carry multiple data bursts at a time (as long as they reserve

the FDL during different timeslots). Therefore, it might be more efficient to employ multiple-

length FDLs in the SynOBS core node. Accordingly, this section provides an analysis of

SynOBS core node with the assumption that multiple-length FDLs (in which the lengths are

multiple number of timeslots) are used in the core node.

87

Core
Switching

Fabric

Core
Switching

Fabric

Core
Switching

Fabric

Core
Switching

Fabric

Core
Switching

Fabric

X

Figure 4.17: Example of contention resolution in SynOBS with fixed-length FDLs

Figure 4.17 shows an example of contention resolution in a SynOBS core node that

equipped with two fixed-length feedback delay loops. These loops are used as optical buffers,

each of which has delay of one timeslot. In this example, the node has three input ports

delivering data to a single output port, and it is assumed that there is only one data wave-

length available in the outgoing port. At the starting point (the upper left picture in the

Figure), three data bursts (blue, green, and red) arrive at node from three of the input

ports followed by two data bursts (orange, and black) in two of the input ports in the next

timeslot. During this first timeslot, the first three data bursts have to contend with each

other for the outgoing wavelength. While one of the three data bursts is able to reserve the

outgoing wavelength (the blue burst), the other two have to be delayed in the FDLs during

this timeslot, one with the duration of one timeslot (the green burst) and another one with

the duration of two timeslots (the red burst).

After that, in the second timeslot, the blue burst transmission is finished, and the outgo-

ing wavelength is available for the green burst to be sent out. However, the red burst must

still be delayed in the FDL and waits to be sent out during the next timeslot; therefore, the

red burst is recirculated in the same FDL for another timeslot. Because one of the FDLs is

still in use by the red burst, there is only one FDL left allow one of the two incoming data

88

bursts to be delayed in the remaining FDL (the black burst), while the other one is blocked

and dropped (the orange burst).

In the third timeslot, the green burst transmission is finished, and the outgoing wave-

length is available for the red burst to be sent out but the black burst still must be recirculated

in an FDL and waits to be sent out during the next timeslot. Finally during the forth times-

lot, the red burst transmission is finished, and the outgoing wavelength is available for the

black burst to be sent out. At this point, in both of the FDLs, the core nodes are empty

and available all over again.

Core
Switching

Fabric

Core
Switching

Fabric

Core
Switching

Fabric

Core
Switching

Fabric

Core
Switching

Fabric

Core
Switching

Fabric

Figure 4.18: Example of contention resolution in SynOBS with multiple-length FDLs

Now, consider Figure 4.18. This Figure shows a similar core node configuration as in

Figure 4.17 discussed earlier, where there are three input ports sending data to a single

output port with one data wavelength available. Also, at the starting point (the upper left

picture in the Figure), the same set of data bursts arrive at the core node (three data bursts

(blue, green, and red) followed by two data bursts (orange, and black) in the next timeslot).

According to this Figure, what differs from the core node previously discussed in Figure

4.17 is that this time the core node is equipped with multiple-length feedback delay loops

(optical buffers), one with the delay duration of one timeslot, and another one with the delay

duration of two timeslots. Again, during the first timeslot, the first three data bursts have

89

to contend with each other for the outgoing wavelength. While one of the three data bursts

is able to reserve the outgoing wavelength (the blue burst), the other two have to be delayed

in the FDLs during this timeslot. The single timeslot delayed data burst (the green burst)

is then forwareded to the single delay duration FDL, while the other data burst (the red

burst) is forwarded to the FDL which has delay duration of two timeslots.

In the second timeslot, the blue burst transmission is finished and the outgoing wave-

length is available for the green burst to be sent out. At this stage, the red burst is finished

from the first delay duration and continues to be delayed in the second duration of the

two-timslot FDL, and the first duration of the two-timeslot FDL is now available for one of

the incoming data bursts. Since the red burst still has to be delayed in the FDL and waits

to be sent out during the next timeslot, the red burst is recirculated in the same FDL for

another timeslot. Since one of the FDLs is still in use by the red burst, there is only one

FDL left that each of the two incoming data bursts will be able to reserve and be delayed in

the remaining FDL (the black burst), while another one will have to be blocked and dropped

(the orange burst). Since the red burst is still waiting to be sent to the outgoing wavelength

during the next timeslot, one of the incoming data burst will have to be delayed in the FDLs

for a duration of two timeslots (the black burst) and and another one for three timeslots (the

orange burst). So, the black burst is forwarded to the first delay duration of the two-timeslot

FDL and the orange burst is forwarded to one-timeslot FDL.

In the third timeslot, the green burst transmission is finished, and the outgoing wave-

length is available for the red burst to be sent out. The black burst continues to be delayed

in the second duration of the two-timeslot FDL. Since the orange burst must still be de-

layed in the FDLs for two more timeslots, it is transferred from the one-timeslot FDL to

the first duration of the two-timeslot FDL. At this time, the one timeslot FDL is empty

and available for other incoming burst (if there is any). During the fourth timeslot, the red

burst transmission is finished, and the outgoing wavelength is available for the black burst

to be sent out while the orange burst continues to be delayed in the second duration of the

two-timeslot FDL and waits to be sent out during the next timeslot. Finally, during the fifth

timeslot, the black burst transmission is finished and the outgoing wavelength is available

for the orange burst to be sent out. At this point, in both of the FDLs, the core nodes are

90

empty and available again.

From the discussion above, we can see that, compared to the fixed-length one-timeslot

FDL configuration, the use of multiple-length FDLs can reduce the chance of a data burst to

be dropped (the orange burst). This is because multiple-length FDLs allow more data bursts

to be delayed in the core node than does the fixed-length one-timeslot FDL configuration,

while the number of FDLs in the core node remains the same. With the same number of

FDLs in the core node (two FDLs in the above discussions), the required number of 2x2

switching devices and the required number of tunable wavelength converters are identical

in both configurations. The only physical difference between the fixed-length one-timeslot

FDL configuration and the multiple-length FDL configuration discussed above is the total

length of the FDLs in the core node, where the total delay duration is two timeslots in the

illustrated fixed-length one-timeslot FDLs configuration and three timeslots in the illustrated

multiple-length FDL configuration.

Core
Switching

Fabric

Core
Switching

Fabric

Core
Switching

Fabric

Figure 4.19: Example of contention resolution in SynOBS with fixed-length FDLs

Now consider Figure 4.19, which presents a SynOBS core node that is equipped with

two fixed-length feedback delay loops with delay of one timeslot each. This figure shows

four input ports for sending data to two output ports. Assume only one data wavelength is

available. From the Figure, at the starting point (the upper left picture in the Figure), there

are four data bursts (blue, green, red, and black) arriving at the node at four of the input

ports. Two of the data bursts (blue, and green) are destined to the upper output port, while

the other two data bursts (red, and black) are destined to the lower one. During the first

91

timeslot, two of the incoming data bursts (blue, and green) have to compete with each other

for the outgoing wavelength in the upper output port, at the same time, the other two data

bursts (red, and black) have to compete for the outgoing wavelength in the lower port. In

this case, if the blue burst and the red burst successfully reserve their outgoing wavelengths,

they are forwarded to their respective outgoing ports; but the other two (green, and black)

are delayed in each of the two available FDLs to be sent out in next timeslot. Subsequently,

in the second timeslot, the blue burst and the red burst transmissions are completed, and

the outgoing wavelengths are available for the green and the black burst to be sent out. We

see that, after being delayed in FDLs, the green burst and the black one are delivered to

their outgoing ports immediately after the blue and the red burst, without any unnecessary

delay duration between the bursts.

Core
Switching

Fabric

Core
Switching

Fabric

Core
Switching

Fabric

Core
Switching

Fabric

Figure 4.20: Example of contention resolution in SynOBS with multiple-length FDLs

Now, look at Figure 4.20, which illustrates a SynOBS core node equipped with two

multiple-length feedback delay loops, one with delay of one timeslot and the other with two

timeslots. Again, there are four input ports sending data to two of the output ports, and it

is also assumed that there is only one data wavelength available. At the starting points (the

upper left picture in the Figure), four data bursts (blue, green, red, and black) arrive at the

node at four input ports. Two of the data bursts (blue, and green) are destined to the upper

output port while the other two data bursts (red, and black) are destined to the lower one.

During the first timeslot, two of the incoming data bursts (blue, and green) have to

compete with each other for the outgoing wavelength in the upper output port and the other

92

two data bursts (red, and black) have to compete for the outgoing wavelength in the lower

port. The blue burst and the red burst successfully reserve their outgoing wavelengths and

they are forwarded to their outgoing ports, but the other two (green, and black) have to be

delayed in the FDLs in order to be sent out in next timeslot. Both the green burst and the

black burst need to be delayed in FDLs and wait for their respective outgoing wavelengths

for only one timeslot. Since there is only one FDL that has a delay duration of one timeslot,

the other FDL has to be delayed for two timeslots. In order to avoid dropping a burst,

one of the data bursts has to be forwarded to the two-timeslot FDL. In this case, the black

burst succesfully reserves the one-timeslot FDL while the green burst has to be delayed in

the two-timeslot FDL. In this case, at the second timeslot, the blue burst and the red burst

transmissions are finished, and the outgoing wavelengths are available for the green and

the black burst to be sent out. Finishing its delay duration in its FDL, the black burst is

forwarded out to its outgoing port immediately after the red burst. But, since the green

burst is delayed in the two-timeslot FDL, it must continue being delayed in the FDL for

another timeslot before it can be sent out to the outgoing wavelength in the next timeslot

even though the required wavelength was available.

The discussions above show that, although using multiple-length FDLs configuration can

reduce the chance of a data burst to be dropped, in some cases, some data bursts may have

to be delayed in the FDLs with an unnecessarily longer duration. This is due to the fact

that the combinations in the delay durations of the available FDLs may not exactly match

the needed delay duration of an incoming data burst, causing the data burst to be delayed

longer. In the fixed-length one-timeslot FDL configuration, where every FDL has a length of

one timeslot, whenever an FDL is available for an incoming data burst, the data burst can

always be delayed in this FDL for the exact duration that the data burst needs. This can

be done by keep recirculating in the FDL with the same number of cycles as the number of

timeslots needed to be delayed.

93

4.6.1 Reservation Algorithm

This section describes the reservation algorithm which is used for analysis of SynOBS core

node with multiple-length FDLs.

Algorithm 4.6.1 shows the pseudo-code of a resource reservation algorithm for a Syn-

OBS code node with multiple-length FDLs. Initially, as a control packet arrives at a core

node in the control channel, the control packet is received and processed. After the infor-

mation is retrieved from the control packet, the routing algorithm determines the outgoing

port. The algorithm subsequently searches for an available wavelength in the outgoing port

during the incoming burst’s timeslot. If a wavelength is available, it is reserved for the

incoming data burst and then the core switching fabric connection schedule is updated.

However, if no wavelength is available, the algorithm then determines the nearest available

wavelength and timeslot in the outgoing port. After that, the algorithm invokes function

RecursiveFDLSearch() in order to search if there is any FDL combination that can delay

the data burst to the available outgoing timeslot. After the function RecursiveFDLSearch()

performs its FDL search, it returns with three possible state.

• First, if the search is successful (FoundMatch), the algorithm then reserves this outgoing

wavelength/timeslot and these FDLs in order to buffer the data burst until it is sent to

the outgoing port.

• Second, if the search fails, but there is an available combination of FDLs that delays the

data burst past that of the available outgoing timeslot (FDLTooLong), the algorithm will

check whether there is an available wavelength at the outgoing port during the timeslot

in which the burst will come out of the FDLs. If so, at this timeslot, the algorithm will

reserve this outgoing wavelength as well as these FDLs in order to buffer the data burst

until it is sent to the outgoing port during this available timeslot. On the other hand,

in the case that the outgoing port is not available, the algorithm will then determine

the next upcoming timeslot that has an available wavelength in its outgoing port, and

repeat RecursiveFDLSearch().

• Third, if the search is unsuccessful, and also there is no FDL configuration that can

delay the data burst longer than the available outgoing timeslot, the node cannot buffer

94

this databurst to wait for available outgoing wavelength. Therefore, this burst will be

blocked and dropped.

Algorithm 4.6.1: ProcessControlPacket(ControPacket)

read Control Packet for incoming wavelength (Win), timeslot (Tin), and destination
lookup Routing Table for outgoing port (Pout)
search for available wavelength (Wout) in Pout during T in
if (Wout is found)

then

reserve (Pout, Wout) for incoming data burst during T in
schedule switching fabric according to reservation
update and send control packet to outgoing port Pout

else



Tavai← nearest available timslot in Pout
Wout← available wavelength in Pout during Tavai
while (1)

do



SearchResult← RecursiveFDLSearch(Tin, Tavai, BlankFDLList,
&ReturnFDLList)

if (SearchResult == FoundMatch)

then


reserve (Pout, Wout) during Tavai
ReserveFDL(ReturnFDLList)
schedule switching fabric according to reservations
update and send control packet to outgoing port Pout
break (while loop)

else if (SearchResult == FDLTooLong)

then



Tfdl← Tin + ReturnFDLList.TotalLength
search for available wavelength (Wout) in Pout during Tfdl
if (Wout is found)

then


reserve (Pout, Wout) during Tfdl
ReserveFDL(ReturnFDLList)
schedule switching fabric according to reservations
update and send control packet to outgoing port Pout
break (while loop)

else
{

Tavai← nearest available timslot in Pout after Tfdl
Wout← available wavelength in Pout during Tavai

else

{
comment: Burst dropped

break (while loop)

95

Algorithm 4.6.2: RecursiveFDLSearch(CurrentT imeslot, ExpectedT imeslot,
CurrentFDLList, ∗ReturnFDLList)

TempFDLList← CurrentFDLList
TempFDLList2← CurrentFDLList
SearchResult← NoFDLAvailable
for all available FDLs in CurrentT imeslot, start with longest FDL

do



NewTimeslot ← CurrentT imeslot + FDLLength
add FDL to TempFDLList
if (NewTimeslot < ExpectedTimeslot)

then



comment: Recursively search for FDL

RecursiveResult← RecursiveFDLSearch(NewTimeslot,
ExpectedT imeslot, TempFDLList, &TempFDLList2)

if (RecursiveResult == FDLTooLong)

then



if (SearchResult == NoFDLAvailable)

then
{

SearchResult← FDLTooLong
ReturnFDLList← TempFDLList2

else if (SearchResult == FDLTooLong)

then
{
if (ReturnFDLList.TotalLength > TempFDLList2.TotalLength)
then ReturnFDLList← TempFDLList2

else if (RecursiveResult == FoundMatch)

then
{

ReturnFDLList← TempFDLList2
return (FoundMatch)

else if (NewTimeslot > ExpectedTimeslot)

then



if (SearchResult == NoFDLAvailable)

then
{

SearchResult← FDLTooLong
ReturnFDLList← TempFDLList

else if (SearchResult == FDLTooLong)

then
{
if (ReturnFDLList.TotalLength > TempFDLList.TotalLength)
then ReturnFDLList← TempFDLList

else if (NewTimeslot == ExpectedTimeslot)

then
{

ReturnFDLList← TempFDLList
return (FoundMatch)

return (SearchResult)

The function RecursiveFDLSearch() is a recursive function that used to find the

combination of available FDLs that can be used to delay the incoming data burst until

ExpectedT imeslot, given in input arguments. The algorithm recursively looks through each

combination of available FDLs until a matched combination with the lowest number of re-

circulations is found. The function then returns FoundMatch, with the FDL combination

result in output argument ReturnFDLList. However, if the matched combination is not

available, it then provides the combination of available FDLs that can delay the incom-

ing data burst longer than, but closest to, ExpectedT imeslot. Then the algorithm returns

FDLTooLong, with the FDL combination result in the output argument ReturnFDLList.

96

In the worst case, if there is no available FDL combination that can delay the data burst

until ExpectedT imeslot or later than ExpectedT imeslot, then the algorithm returns with

NoFDLAvailable. The pseudo-code of the function RecursiveFDLSearch() is shown in

Algorithm 4.6.2.

4.6.2 Physical Requirements

This section provides the physical requirement analysis of a SynOBS core node with multiple-

length FDLs based on the total number of required 2x2 switching devices in the core SynOBS

node, the total delay duration of FDLs used, and the total number of tunable wavelength

converters.

Consider a core node with L input (output) ports, where each port has W data wave-

lengths, and F FDLs available in the node. Assuming the Dilated Benes architecture is used

in the space switching fabric, the required number of 2x2 switching devices in the fabric is

(NBenes):

NBenes = 2 · 2dlog2(W (L+F))e · log2(2
dlog2(W (L+F))e) (4.61)

Again, a SynOBS system with variable timeslot size requires a timeslot synchronizer in

each of the input ports. The required number of 2x2 switching devices in each timeslot

synchronizer is

Nsyn = L(dlog2(Ts/A)e+ 1) (4.62)

Where, Ts is the maximum possible timeslot duration, and A is accuracy requirement of

timeslot synchronizers.

The number (Nbuffer) of 2x2 switching devices required in an optical buffer with 2k

variations is:

Nbuffer = k + 1 (4.63)

97

So, the total number of 2x2 switching devices required in a SynOBS core node with

separated FDLs (N2x2switches) is

N2x2switches = NBenes + LNsyn + FNbuffer (4.64)

Since there are F FDLs used as optical buffers in the node, FDLs in the core node are

required in timeslot synchronizers, optical buffers, and wavelength delay variation compen-

sators. Then, again assuming that the amount of delay in the delay variation compensators

is negligible, the resulting total delay duration of FDLs (TFDL) required in the core node is

TFDL = Tmax(
F∑
i=1

(Di) + L) (4.65)

Where, Di is the delay duration (in number of timeslots) of the ith optical buffer, and

Tmax is the maximum timeslot duration.

Also, the number of Tunable Wavelength Converters (Nwlc) is

Nwlc = W (F + L) (4.66)

Where W is the number of available data wavelengths.

4.6.3 Performance Analysis

Figure 4.21 shows the blocking performance with respect to the offered load of a SynOBS core

node with various FDL configurations. In the simulation, the SynOBS core node has four

output ports, and each output port has five data wavelengths. Four FDL configurations are

shown: a SynOBS core node with two fixed-length one-timeslot FDLs, a SynOBS core node

with two multiple-length FDLs (one timeslot, and two timeslots), a SynOBS core node with

three fixed-length one-timeslot FDLs, and a SynOBS core node with three multiple-length

FDLs (one timeslot, two timeslots, and three timeslots). From the graph, the performance

of the SynOBS core node equipped with three FDLs is better than a SynOBS core node

equipped with two FDLs. In addition, with both two-FDLs or three-FDLs equipped in the

core node, the performance of multiple-length FDL configurations are better than that of

98

0.0001

0.001

0.01

0.1
0.6 0.7 0.8 0.9 1

Offered Load

Bl
oc

kin
g

Pr
ob

ab
ilit

y

FDL 1,1

FDL 1,2

FDL 1,1,1

FDL 1,2,3

Figure 4.21: Blocking probabilities in a 4-port SynOBS core node with various FDL config-

urations

fixed-length one-timeslot configurations. As discussed earlier, this is due to the fact that the

multiple-length FDL configuration allows more data bursts to be delayed in the core node

than does the fixed-length one-timeslot FDL configuration.

Compare a SynOBS core node with two multiple-length FDLs (one timeslot and two

timeslots) against a SynOBS core node with three fixed-length one-timeslot FDLs. While

both configurations have the same amount of total FDL’s delay duration and buffer capacity

(three timeslots), the SynOBS core node with three fixed-length one-timeslot FDLs has

better performance than the SynOBS core node with two multiple-length FDLs in term of

burst blocking probability. However the three-FDLs configuration requires a higher number

of 2x2 beta switching devices and tunable wavelength converters compared with the two-

FDLs configuration. Figure 4.22 illustrates an example case on how a SynOBS core node

with three fixed-length one-timeslot FDLs can achieve better burst blocking probability than

a SynOBS core node with two multiple-length FDLs.

Figure 4.23 shows the delay performance with respect to offered load of a SynOBS core

node with various FDL configurations. Accordingly, the graph shows simulation results

from a SynOBS core node with four output ports, where each output port has five data

99

Core
Switching

Fabric

Core
Switching

Fabric

Core
Switching

Fabric

Core
Switching

Fabric

X

Core
Switching

Fabric

Core
Switching

Fabric

Core
Switching

Fabric

Core
Switching

Fabric

Core
Switching

Fabric

(a)

(b)

Figure 4.22: Example of contention resolution in SynOBS with (a) two multiple-length FDLs

and (b) three fixed-legth one-timeslot FDLs

100

0

0.4

0.8

1.2

1.6

0.2 0.4 0.6 0.8 1

Offered Load

Av
er

ag
e

De
la

y
(T

im
es

lo
ts

)

FDL 1,1

FDL 1,2

FDL 1,1,1

FDL 1,2,3

Figure 4.23: Delay through a 4-port SynOBS core node with various FDL configurations

wavelengths. Similar to Figure 4.21, four FDL configurations are presented, for: a SynOBS

core node with two fixed-length one-timeslot FDLs, a SynOBS core node with two multiple-

length FDLs (one timeslot, and two timeslots), a SynOBS core node with three fixed-length

one-timeslot FDLs, and a SynOBS core node with three multiple-length FDLs (one timeslot,

two timeslots, and three timeslots). From the graph, the delay performance of a SynOBS

core node equipped with two FDLs is better than that of a SynOBS core node equipped

with three FDLs. And, with both two FDLs or three FDLs equipped in the core node, the

delay performance of multiple-length FDL configurations are worse than that of fixed-length

one-timeslot configurations. As discussed earlier, in some cases of multiple-length FDL

configurations, some data bursts may have to be delayed in the FDLs with an unnecessarily

longer duration.

Figure 4.24 compares the blocking performance with respect to offered load of a SynOBS

core with different FDL configurations. Each of the configurations has exactly the same

physical requirements because they are all equipped with three FDLs and the total FDL

delay duration is six timeslots. Three combinations of FDL configurations are illustrated:

with delay duration of 1-1-4 timeslots, 1-2-3 timeslots, and 2-2-2 timeslots. Among these

101

0.0001

0.001

0.01

0.1
0.7 0.8 0.9 1

Offered Load

Bl
oc

kin
g

Pr
ob

ab
ilit

ie
s

FDL 1,1,4
FDL 1,2,3
FDL 2,2,2

Figure 4.24: Blocking probabilities in a 4-port SynOBS core node equipped with three FDLs

and the total FDL delay duration of six timeslots

three configurations, the 1-2-3 timeslot configuration has the best blocking performance. If

a data burst must be delayed in the core node, the 1-2-3 timeslot configuration can provide

more possible delay duration combinations than the 2-2-2 timeslot configuration. The 1-2-3

configuration can provide delay durations of 1, 2, 3, 4, 5, and 6 timeslots, while the 2-2-2

configuration can provide delay durations of 2, 4, and 6 timeslots. A greater number of

possible delay durations can better support the variety of delay durations needed by the

data burst, which results in a better blocking probability.

102

1-1-4 configuration 1-2-3 configuration

FDL num. FDL FDL num. FDL

Delay combination recirculation combination recirculation

1 1 1 1 1

2 1,1 2 2 1

3 1,1,1 3 3 1

4 4 1 3,1 2

5 4,1 2 3,2 2

6 4,1,1 3 3,2,1 3

Average 2 Average 1.67

Although the 1-1-4 configuration can provide the same possible delay durations as the 1-2-

3 configuration, the table above shows that the average number of FDL recirculations needed

to provide each delay duration combination is higher in the 1-1-4 configuration. This means,

on average, each time a data burst is delayed in the core node, the 1-1-4 configuration requires

more FDL recirculations than does the 1-2-3 configuration. Thus, more FDL resources are

consumed in the 1-1-4 configuration so fewer FDL resources are left available for other data

bursts. This results in worse blocking performance in the 1-1-4 configurations than in the

1-2-3 configurations. The detailed effect of various FDL configurations on the blocking

performance of a SynOBS core node is a subjected of further research.

103

5.0 THE EFFECT OF TIMESLOT SIZE

While employing the synchronized timeslot based mechanism in SynOBS provides an oppor-

tunity to achieve better resource utilization than traditional OBS, such a system must be

carefully designed in order to achieve the best performance possible.

TgTgTgTgTgTs Tg Ts Ts Ts Ts Ts

a.

TgTgTg Ts TsTs

b.

guard timedata empty slot void filling

Ts Tg Ts Tg Ts Tg Ts Tg Ts Tg Ts Tg Ts Tg Ts Tg Ts Tg Ts Tg

c.

Figure 5.1: Illustrating timeslot size setting with a. too small timeslot size, b. reasonable

timeslot size, and c. too large timeslot size

Consider a SynOBS system with large timeslot size. Since a data burst is generated

in the edge OBS node by aggregating incoming traffic into the burst, the burst assembly

time is limited if the timeslot size is set to be too large because burst assembly may finish by

reaching its assembly time constraint without reaching the desired timeslot size. In this case,

104

many of the data bursts are partially filled in their timeslots, and thus, resource utilization

is wasted. This wasted resource, caused by under-utilized burst assembly algorithm in the

edge SynOBS nodes, causes an unnecessarily large percentage of data bursts to be reserved,

which results in higher blocking probabilities in the core SynOBS nodes.

Now consider a SynOBS system with small timeslot size. In this case, most of the

assembled data bursts reach the desired timeslot size before their assembly time constraint

expires, and most of the timeslots are filled. However, resource utilization is compromised by

the guard time between the timeslots because the smaller the timeslot size, the more often

the guard time occurs in the data channel. Since data cannot be transmitted during the

guard time, this results in a loss of resource utilization and available bandwidth for the data

traffic, which subsequently causes the burst blocking probabilities to be increased. Figure

5.1 illustrates examples with a small timeslot setting, a reasonable timeslot setting, and a

large timeslot setting.

The effect of timeslot size setting results from the trade-off between the burst assembly

time constraint and the duration of guard time between each consecutive timeslot. This

happens because the SynOBS is based on a fixed-size timeslot mechanism. This disserta-

tion investigates the effect on timeslot size setting on the performance of SynOBS in order

to provide an analytical framework for estimating the optimized solution, based on given

network configuration and input traffic characteristic, which has been presented in [42].

5.1 SYNOBS BURST ASSEMBLY ALGORITHM

In SynOBS, since each data burst is fit into a timeslot before being sent out to the outgoing

data wavelength, each data bursts size is limited by the duration of the timeslot. Because

the burst assembly algorithm for SynOBS has to assemble incoming data packets into a

burst with length less than or equal to the timeslot duration, a simple modified version of

the Max-Time-Max-Length [2] burst assembly algorithm is used as the model for the burst

assembly algorithm in SynOBS. The algorithm uses the maximum assembly time (T) and

the target burst size (L) as its criteria for assembling a data burst. It works by assembling

105

incoming data packets to form a data burst until one of its criteria is met — a data burst

is scheduled to be sent out when the size of assembling burst equals or exceeds the target

burst size or when a timer has expired, which ever happens first.

Consider a SynOBS system with timeslot duration Ts and transmission rate in the data

wavelengths R. The maximum burst size possible Lmax is calculated by:

Lmax = Ts ×R (5.1)

In order to utilize the available bandwidth in a timeslot as effectively as possible, a data

burst should fill the timeslot as much as possible; otherwise the empty space in the timeslot

will be wasted. With this consideration, the target burst size B used by the assembly algo-

rithm should be as close to Bmax as possible. However, in order to avoid packet segmentation

in the last incoming packet — which happens if the total size of the assembling burst to

become larger than Lmax — the target burst size used by the assembly algorithm is:

L = Lmax − p (5.2)

where p is the size of the largest incoming data packet possible (1500 bytes for IP). Thus:

L = (Ts ×R)− p (5.3)

Pseudo-code for a SynOBS assembly algorithm is shown in Algorithm 5.1.1 and 5.1.2.

Algorithm 5.1.1: AssembleArrivingPacket(packet)

if (assembling timer is not started)
then restart assembly timer

assemble incoming packet
update buffer size
if (buffer size ≥ L)

then

schedule assembled data burst to be sent out
stop assembly timer
reset buffer size

106

Algorithm 5.1.2: EventTimerExpired()

schedule assembled data burst to be sent out
stop assembly timer
reset buffer size

5.1.1 Analysis of Burst Assembly Algorithm

This section provides an analysis of the burst assembly algorithm discussed in previous

section. The purpose of this study is to analyze the characteristic of the assembled burst

based on the given input traffic (data packets), guard time between timeslots, and the

assembly algorithm constraints (Ts and L). The resulting assembled burst characteristic will

be used to analyze the effect of the burst size setting in later sections.

Let d(t) be the probability distribution of incoming data packet duration (packet length).

Since the probability distribution of the sum of independent random variables is the convo-

lution of each of their distributions, or

pdf(A+B)(t) = pdfA(t) ∗ pdfB(t) (5.4)

let dn(t) be the probability distribution of the sum of the durations of n data packets,

where

dn(t) = d(t) ∗ d(t) ∗ d(t) ∗ . . . , n times, where 1 ≤ n ≤ ∞ (5.5)

Therefore, the assembled data burst from n data packets will have a distribution of

dn(t). However, this is true only when there is no limited target burst size (L). Since the

assembled data size is limited by the target burst size L, burst assembly will stop as soon

as as it reaches this target burst size. Any other incoming packets, which arrive during the

remaining assembly time constraint T , will be assembled as another new data burst. So,

given that there are n packets during assembly time T duration, then the average data burst

duration (AvgBurstLength|n) is

107

AvgBurstLength|n =

∫ L

0

t · dn(t) dt+ (L+ φn)

∫ ∞
L

dn(t) dt

=

∫ L

0

t · dn(t) dt+ (L+ φn)
(
1−

∫ L

0

dn(t) dt
)

(5.6)

where φn is an average length of assembled data burst portion that exceeds the target

timeslot size L, given that n packets arrive during assembly time T , or

φn =

∑n
i=1

[∫ L
0

(
di−1(l) ·

∫∞
L−l

(
d1(x) · (x+ l − L)

)
dx

)
dl

]
1−

∫ L
0
dn(t) dt

(5.7)

If the probability that there are n arrivals during an assembly time constraint duration

T is P(n) then, the average assembled data burst length is calculated by following equation.

AvgBurstLength =
∞∑
n=0

{
P (n)

[
AvgBurstLength|(n+ 1)

]}
=

∞∑
n=0

{
P (n)

[∫ L

0

t · dn+1(t) dt+ (L+ φn+1)

∫ ∞
L

dn+1(t) dt

]}
=

∞∑
n=0

{
P (n)

[∫ L

0

t · dn+1(t) dt+ (L+ φn+1)
(
1−

∫ L

0

dn+1(t) dt
)]}
(5.8)

Notice that AvgBurstLength|(n + 1) is used instead of AvgBurstLength|n. This is

because there is one packet at burst assembling start time, and there are n arrivals during

time constraint T .

Assuming that packet arrival is Poisson distributed with rate λ and that packet duration

is exponentially distributed with average length l = 1/µ, then

P (n) =
e−λT (λT)n

n!
(5.9)

108

By the memoryless property of the exponential distribution, the average length of the

assembled data burst portion that exceeds the target timeslot size, given that n packets

arrive during assembly time T , is φn = 1/µ [37].

Since the Erlang distribution is the distribution of the sum of n independent identi-

cally distributed random variables each having an exponential distribution [37], equation 5.5

becomes:

dn(t) =
µnt(n−1)e−µt

(n− 1)!
(5.10)

and,

∫ ∞
L

dn(t) dt = e−µL
(n−1∑

i=0

(µL)i

i!

)
(5.11)

From equation 5.8, the average assembled data burst length can be calculated by

AvgBurstLength =
∞∑
n=0

{
e−λT (λT)n

n!

[∫ L

0

(µn+1tn+1e−µt

n!

)
dt+ (L+

1

µ
) · e−µL(

n∑
i=0

(µL)i

i!
)

]}
=

∞∑
n=0

{
e−λT (λT)n

n!

[
µn+1

n!

∫ L

0

(tn+1e−µt) dt+ (L+
1

µ
) · e−µL(

n∑
i=0

(µL)i

i!
)

]}
(5.12)

Figure 5.2 illustrates the average assembled data length that is generated by the assem-

bly algorithm with respect to the incoming packet arrival rate. The graph results from a

calculation with an average data packet length of 0.8 µsec and 1 msec burst assembly time

constraint. Several timeslot size settings are shown in the graph, including 10, 30, 50, 70,

and 90 µsec. In every timeslot size setting, the figure shows that, as the packet arrival

rate increases, the average assembled data length increases as well. At a low packet arrival

rate, the average assembled data lengths are the same among different timeslot size settings,

and increase almost linearly according to the given arrival rate. However, at the higher

packet arrival rate, the average assembled data length begins to saturate. This is caused by

the timeslot size limit, where the smaller timeslot size setting begins to saturate first, and

109

0

20

40

60

80

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Packet Arrival Rate (packets/usec)

A
ve

ra
g
e

A
ss

em
b
le

d
 D

at
a

Le
n
g
th

 (
u
se

c)

L = 10 usec
L = 30 usec
L = 50 usec
L = 70 usec
L = 90 usec

Average Packet length 0.8 usec, Assembly Time Constraint 1 msec

Figure 5.2: Average Assembled Data Length with given Packet Arrival Rate

the saturated value of these average assembled data lengths comply with their timeslot size

setting.

Figure 5.3 illustrates the average assembled data length from the assembly algorithm

with respect to the target timeslot size. Again, the graph is the result of a calculation

with an average data packet length of 0.8 µsec and 1 msec burst assembly time constraint.

Several packet arrival rates are shown in the graph, including 0.01, 0.03, 0.05, 0.07, and 0.09

packets/µsec. In every packet arrival rate, the figure shows that, as the target timeslot size

increases, the average assembled data length also increases. When the target timeslot size is

small, the average assembled data lengths are the same among different timeslot size settings

and also increase almost linearly according to the target timeslot size. Similar to Figure 5.2,

at the larger target timeslot size, the average assembled data length begins to saturate

starting with the lowest packet arrival rate. This occurs because from the corresponding

packet arrival rate and its limited assembly time constraint cause the data burst assembly

to finish before the assembled data length reaching the target timesot size.

Because of the timeslot-based approach used in SynOBS, the burst transmission duration

consists of the timeslot duration (Ts) and a guard time (Tg) as shown in Figure 5.4. So, the

110

0

20

40

60

80

5 25 45 65 85

Target Timeslot Size (usec)

A
ve

ra
g
e

A
ss

em
b
le

d
 D

at
a

Le
n
g
th

 (
u
se

c)

lambda = 0.01 packets/usec
lambda = 0.03 packets/usec
lambda = 0.05 packets/usec
lambda = 0.07 packets/usec
lambda = 0.09 packets/usec

Average Packet length 0.8 usec, Assembly Time Constraint 1 msec

Figure 5.3: Average Assembled Data Length with given Target Timeslot Size

average timeslot utilization can be calculated by

TimeSlotUtilization =
AvgBurstLength

Ts + Tg
(5.13)

Figure 5.5 illustrates the average timeslot utilization with respect to the incoming packet

arrival rate. This graph is also the outcome of a calculation with an averrage data packet

length of 0.8 µsec, 1 msec burst assembly time constraint, and 7 µsec guard time (see section

3.2.7). Several timeslot size settings are also shown in the graph, including 10, 30, 50, 70,

and 90 µsec. At a low packet arrival rate, a larger timeslot size setting has lower average

Ts

Data
Tg

Entire Slot Dutation Entire Slot DutationEntire Slot Dutation

Figure 5.4: Illustrating Timeslot Utilization

111

0

0.2

0.4

0.6

0.8

1

0.01 0.03 0.05 0.07 0.09

Packet Arrival Rate (packets/usec)

A
ve

ra
g
e

T
im

es
lo

t
U

ti
liz

at
io

n

L = 10 usec

L = 30 usec

L = 50 usec

L = 70 usec

L = 90 usec

Average Packet length 0.8 usec, Assembly Time Constraint 1 msec, guardtime 7 usec

Figure 5.5: Average Timeslot Utilization with given Packet Arrival Rate

timeslot utilization, which is caused by larger void filling in the larger timeslot size setting.

As the packet arrival rate increases, the timeslot utilization increases due to the increased

average assembled data length. However, because of the limited timeslot size, the average

timeslot utilization begins to saturate at the higher packet arrival rate. A smaller timeslot

size setting begins to saturate first, with lower average timeslot utilization, while the average

timeslot utilization for larger timeslot size setting still increases. The saturated value of the

average timeslot utilization is determined by the ratio between timeslot duration and the

timeslot duration plus guard time (Ts
Ts+Tg

).

Figure 5.6 illustrates the average timeslot utilization with respect to the target timeslot

size. The graph shows results from a calculation (solid lines) and simulation (dotted lines)

with an average data packet length of 0.8 µsec, 1 msec burst assembly time constraint,

and 7 µsec guard time. Several packet arrival rates are shown in the graph, including

0.01, 0.03, 0.05, 0.07, and 0.09 packets/µsec. According to the graph, at a small target

timeslot size, the average timeslot utilization increases as the target timeslot size increases

because the assembly algorithm is capable of filling up most of the timeslots. As timeslot

112

0

0.2

0.4

0.6

0.8

1

5 25 45 65 85

Target Timeslot Size (usec)

A
ve

ra
g
e

T
im

es
lo

t
U

ti
liz

at
io

n

Calculation

Simulation

Lambda = 0.01 (packets/usec)

Lambda = 0.09

Lambda = 0.03

Lambda = 0.05

Lambda = 0.07

Average Packet length 0.8 usec, Assembly Time Constraint 1 msec, guardtime 7 usec

Figure 5.6: Average Timeslot Utilization with given Target Timeslot Size

size increases, timeslot utilization increases until it reaches the point where the maximum

timeslot utilization is obtained. Again, the utilization decreases as the target timeslot size

increases because there is increasing chance that the burst assembly algorithm may not be

able to fill up the timeslots. More void filling in timeslots result in lower timeslot utilization.

Additionally, the Figure suggests that different packet arrival rates have different optimal

target timeslot sizes. Higher packet arrival rate results in larger optimal target timeslot size

because, at the higher packet arrival rate, the assembly algorithm is more likely to be able

to assemble larger data bursts before its assembly time constraint expires.

5.2 ANALYSIS OF SYNOBS CORE NODE WITH SINGLE CLASS

TRAFFIC

This section provides the analysis of the overall performance within a given core SynOBS

node based on various timeslot size settings. In this section, the assumption is made that

there is only one class of traffic. This assumption is made in order to gain basic understanding

113

of the effect of the timeslot size setting on the performance of a core OBS node without

discriminating among different classes of traffic.

First, the effect of timeslot size is analyzed by calculating the data burst rate generated

by the assembly algorithm, where the data burst rate is

RA =
AvgPacketRate× AvgPacketLength

AvgBurstLength
(5.14)

Then, the available capacity per wavelength (Cwavelength) (bursts/sec or timeslots/sec)

Cwavelength =
1

Ts + Tg
(5.15)

and the total link capacity (Clink) (bursts/sec or timeslots/sec) is

Clink = W × Cwavelength =
W

Ts + Tg
(5.16)

where W represents the number of available data wavelengths in a link.

Let ϕ be the normalized offered load defined as the ratio between the given data burst

rate and the capacity of one wavelength, or the average number of data bursts generated

generated by an assembly algorithm during one timeslot. ϕ is calculated by

ϕ =
RA

Cwavelength
= RA(Ts + Tg) (5.17)

Figure 5.7 illustrates the normalized offered load generated by an assembly algorithm as

a function of the target timeslot size. The graph is the result of a calculation with average

data packet length of 0.8 µsec, 1 msec burst assembly time constraint, and 7 µsec guard

time. Several packet arrival rates are shown in the graph, including 0.03, 0.05, 0.07, and 0.09

packets/µsec. According to the graph, at small target timeslot size setting, the normalized

offered load decreases as the target timeslot size increases. As the target timeslot size keeps

increasing, the decreasing rate of the normalized offered load reduces. Until it reaches the

point where the minimum normalized offered load is obtained, the normalized offered load

increases as the target timeslot size increases. Notice that the normalized offered load has

an opposite result compared to an average timeslot utilization given in Figure 5.6. While

average timeslot utilization increases, the normalized offered load decreases, and vice versa.

114

0

0.05

0.1

0.15

10 20 30 40 50 60 70 80 90 100

Target Timeslot Size (usec)

G
en

er
at

ed
 O

ff
er

ed
 L

o
ad

 i
n
 e

ac
h
 A

ss
em

b
le

r
(E

rl
an

g
)

Lambda 0.03 packet/usec
Lambda 0.05 packet/usec
Lambda 0.07 packet/usec
Lambda 0.09 packet/usec

Average Packet length 0.8 usec, Assembly Time Constraint 1 msec, Guard Time 7 usec

Figure 5.7: Normalized Offered Load generated by Assembly Algorithm

Also, the target timeslot sizes in which the maximum average timeslot utilization and the

minimum normalized offered load are achieved, are the same. This is because the normalized

offered load is inversely proportional to average timeslot utilization.

With N data sources, the normalized offered load (ϕi) generated by each traffic source i

is calculated by using equation 5.17. Then, total normalized offered load generated from all

data sources (ϕtotal) is

ϕtotal =
N∑
i=1

ϕi (5.18)

After the total normalized offered load (ϕtotal) is obtained, then burst blocking probability

is calculated using the calculation provided in Chapter 4, which in the case of W available

data wavelengths and no FDLs, is

Pb(ϕtotal) =

∑∞
n=W+1

[
(n−W)

ϕntotale
−ϕtotal

n!

]
ϕtotal

(5.19)

A simple network environment (shown in Figure 5.8) has been used to analyze the effect

of timeslot size on the burst blocking probability. This network consists of two core SynOBS

nodes that are directly connected to each other. Each of the core SynOBS nodes is also

115

1.
.

2.
.

10.
.

.

.

.

1 .
.

2 .
.

10 .
.

.

.

.

5 wavelengths

N destinationsN Sources

Sources Destinations

Figure 5.8: Simulation environment

connected to 10 edge SynOBS nodes. The total of N data sources are connected (evenly

distributed) to edge SynOBS nodes on the left side, while N data destinations are connected

to edge SynOBS nodes which connect to another core SynOBS node on the right side. Each

of the data sources generates data to one of the traffic destinations, forming data flows

between the two core SynOBS nodes.

5.2.1 SynOBS core node with identical sources

Figure 5.9 shows the results from calculation and simulations on the network configuration

shown in Figure 5.8. In both the calculation and simulation, it is assumed that the data

packets’ inter-arrival times are exponentially distributed according to the given packet arrival

rate, and that the packet data length is also exponentially distributed with the average of

0.8 µsec, the assembly time constraint of 1 msec, and there is 7 µsec guard time between

each consecutive data bursts. In the simulation, when a data packet is generated in a

data source, first the data packet is forwarded to the burst assembly algorithm. The burst

assembly algorithm assembles the data packet and forms a data burst. The resulting data

116

0

0.2

0.4

0.6

10 20 30 40 50 60 70 80 90 100

Target Timeslot Size (usec)

B
u
rs

t
B
lo

ck
in

g
 P

ro
b
ab

ili
ty

Sim 0.03 packets/usec
Sim 0.05 packets/usec
Sim 0.07 packets/usec
Sim 0.09 packets/usec
Calc 0.03 packets/usec
Calc 0.05 packets/usec
Calc 0.07 packets/usec
Calc 0.09 packets/usec

Average Packet length 0.8 usec, Assembly Time Constraint 1 msec, Guard Time 7 usec

Figure 5.9: Burst blocking probability with given Target Timeslot Size

burst is then forwarded to the edge SynOBS node where it waits to be transmitted to its

destination in the next available timeslot.

With one hundred sources, the results from several packet arrival rates are provided.

According to the graph, at a small timeslot size, the burst blocking probability decreases

as the timeslot size increases. As the timeslot size keeps increasing, the rate of the burst

blocking probability decreases until it reaches the point where the minimum burst blocking

probability is obtained. After that, the burst blocking probability increases as the timeslot

size increases. The minimum burst blocking probability and the minimum normalized offered

load are achieved at the same timeslot size. This shows that the normalized offered load

directly effects burst blocking probability.

Figure 5.10 shows the optimized target timeslot size setting at a given packet arrival

rate. The optimal timeslot size setting is the point where the target timeslot size setting

results in the minimum burst blocking probability, which is the point where the target

timeslot size minimizes the total normalized offered load given to the core node. The Figure

suggests that, as the packet arrival rate increases, the optimized target timeslot size also

increases, and almost linearly. This is because at the higher packet arrival rate, the assembly

algorithm will be able to assemble larger data bursts before its assembly time constraint

expires. Consequently, the algorithm is more likely to fill up a larger target timeslot size

117

10

30

50

70

0.02 0.04 0.06 0.08

Arriaval rate (packets/usec)

O
p
ti
m

iz
ed

 t
im

es
lo

t
si

ze

Average Packet length 0.8 usec, Assembly Time Constraint 1 msec, Guard Time 7 usec

Figure 5.10: Optimized target timeslot size with given packet arrival rate

setting, resulting in the larger optimized target timeslot size when packet arrival rate is

higher.

Figure 5.11 also shows the results from simulations in term of burst blocking probability

based on the given target timeslot size. However, under the same simulation environment

configuration as shown in Figure 5.8, the figure shows the results with fixed packet arrival

rate of 0.07 packets/µsec, with varying numbers of the traffic sources in the simulations,

including 20, 40, 60, 80, and 100 traffic sources. While changing the amount of traffic (which

results in changing link offered load), the burst blocking probability changes. More traffic

sources (more offered load) result in higher burst blocking probability. However, the target

timeslot size, in which the minimum burst blocking probability is achieved, is identical,

regardless of how many traffic sources exist. This implies that changing offered load by

means of changing the number of traffic sources has no effect on the optimum timeslot size

setting.

5.2.2 SynOBS core node with un-identical sources

Practically, in real network operation, it is inevitable that several streams of traffic passing

through a core node come from different sources and that they would have different char-

118

0

0.2

0.4

0.6

10 20 30 40 50 60 70 80 90 100

Target Timeslot Size (usec)

B
u
rs

t
B
lo

ck
in

g
 P

ro
b
ab

ili
ty

Average Packet length 0.8 usec, Assembly Time Constraint 1 msec, Guard Time 7 usec

0

0.2

0.4

0.6

10 20 30 40 50 60 70 80 90 100

Target Timeslot Size (usec)

B
u
rs

t
B
lo

c
k
in

g
 P

ro
b
a
b
il
it
y

20 sources

40 sources

60 sources

80 sources

100 sources

Average Packet length 0.8 usec, Assembly Time Constraint 1 msec, Guard Time 7 usec

Calculation
Simulation

Figure 5.11: Burst blocking probability with given Target Timeslot Size

acteristics (e.g. different offered load). Accordingly, this section provides the performance

analysis of a SynOBS core node based on the assumption that traffic from different sources

has different traffic characteristics.

Figure 5.12 shows the results from calculation and simulations for burst blocking prob-

ability with given target timeslot size, for the network configuration shown in Figure 5.8.

With one hundred sources, the results from different packet arrival rate combinations are

provided, including ten of 0.09 packets/µsec and ninety of 0.05 packets/µsec sources, twenty

of 0.09 packets/µsec and eighty of 0.05 packets/µsec sources, thirty of 0.09 packets/µsec

and seventy of 0.05 packets/µsec sources, and so on to ninety of 0.09 packets/µsec and ten

of 0.05 packets/µsec sources.

According to the Figure, as the number of sources with arrival rate 0.09 packets/µsec

increases (sources with 0.05 packets/µsec decrease), the overall burst blocking probability

increases. This is because the overall offered load increases with increasing traffic inten-

sive sources (0.09 packets/µsec), which subsequently results in higher burst blocking prob-

ability. Interestingly, the Figure shows that, as the number of sources with arrival rate

0.09 packets/µsec increases (sources with 0.05 packets/µsec decrease), the optimized target

timeslot size (the target timeslot size which results in the lowest burst blocking probability)

119

0.1

0.3

0.5

0.7

10 20 30 40 50 60 70 80 90 100

Taget time slot size (usec)

B
u
rs

t
b
lo

ci
n
g
 p

ro
b
ab

ili
ti
es

Cal 10:0.09, 90:0.05
Cal 30:0.09, 70:0.05
Cal 50:0.09, 50:0.05
Cal 70:0.09, 30:0.05
Cal 90:0.09, 10:0.05
Sim 10:0.09, 90:0.05
Sim 30:0.09, 70:0.05
Sim 50:0.09, 50:0.05
Sim 70:0.09, 30:0.05
Sim 90:0.09, 10:0.05

Figure 5.12: Burst blocking probability with given Target Timeslot Size for in-indentical

sources

increases as well.

At ten of 0.09 packets/µsec and ninety of 0.05 packets/µsec sources, most of the gen-

erated traffic is dominated by data bursts from 0.05 packets/µsec sources. This results in

the optimum target timeslot size near the point where 0.05 packets/µsec sources is opti-

mized. As the number of sources with arrival rate 0.09 packets/µsec increases (sources with

0.05 packets/µsec decrease), then the increasing traffic from 0.09 packets/µsec sources gains

more and more dominance in the overall traffic, and the optimized target timeslot size tends

to increase towards the point where 0.09 packets/µsec sources is optimized.

The resulting optimized target timeslot size (as shown in Figure 5.13) in un-identical

sources is the combination resulting from offered load from different data sources with dif-

ferent offered load, which has it’s own optimized timeslot size.

120

30

40

50

60

70

0 20 40 60 80 100

number of sources which have packet arrival rate 0.09 packets/usec

O
p
ti
m

iz
ed

 T
ar

g
et

 T
im

es
lo

t
S
iz

e

number of sources which have packet arrival rate 0.05 packets/usec

020406080100

Average Packet length 0.8 usec, Assembly Time Constraint 1 msec, Guard Time 7 usec

Figure 5.13: Optimized target timeslot size for traffic with in-indentical sources

5.3 ANALYSIS OF SYNOBS WITH MULTIPLE CLASSES TRAFFIC

In the next generation of the core network, the ability to support different classes of traffic

is inevitable. This section analyzes the effect of employing an offset time-based priority

mechanism on the performance of a SynOBS core node.

For OBS, existing priority schemes are no longer applied. As discussed in section 2.5,

an offset time-based priority mechanism has been proposed [22, 20] to support different QoS

priorities in the RFD-based OBS protocol. The algorithm works by providing more offset

time between the control packet and its corresponding data burst to the higher priority data

burst where, the longer the offset time, the higher the probability of successfully reserving

a wavelength. As long as sufficient offset time is provided to high-priority data bursts, the

total class separation between high-priority data bursts and low-priority data bursts can be

achieved (a high-priority data burst would never be blocked by a low-priority data burst).

To analyze the effect of timeslot size on SynOBS with multiple classes of traffic, we

follow the mathematical analysis of burst blocking probability in a single node RFD-based

OBS switch [20, 19], which was studied based on the M/M/k/k (Erlang B) queuing model.

121

However, instead of using the Erlang B queuing model where data burst inter-arrival time

and data burst duration are exponentially distributed, the SynOBS queuing analysis uses

the discrete-time Markov model discussed in section 4.

In this analysis, first, the effective offered load (ϕi) given by each data source i (Si) is

provided using calculations discussed in section 5.2. Then, given that the data sources that

generate traffic to the SynOBS core node are divided into two groups, one with high priority

(Gpri0) and the other one with low priority (Gpri1), the total offered load that belongs to

high-priority traffic (ϕpri0) is

ϕpri0 =
∑

∀ Si ∈ Gpri0

ϕi (5.20)

and the total offered load that belongs to low-priority traffic given to the SynOBS core node

(ϕpri1) is

ϕpri1 =
∑

∀ Si ∈ Gpri1

ϕi (5.21)

Then, the total offered load given to the SynOBS core node (ϕtotal) is

ϕtotal =
∑
∀ Si

ϕi = ϕpri0 + ϕpri1 (5.22)

After taking the total offered load in to the SynOBS core node, the total burst blocking

probability (Pbtotal) is obtained by the calculations discussed in chapter 4.

Pbtotal = Pb(ϕtotal) (5.23)

In two priority classes system, by employing the previously discussed rule of the offset

time setup in (2.10),(2.11) for ensuring the class separation, it is unlikely for a higher priority

burst to be blocked by a lower one. If the high-priority burst has an absolute priority over the

lower one, the the calculations disscussed in chapter 4 can be used to calculate the blocking

probability of a high-priority burst (Pbpri0) [20],

Pbpri0 = Pb(ϕpri0) (5.24)

122

The blocking probability of the low-priority burst Pb(pri1) can be calculated based on the

conservation law [20], where

Pbpri1 =
Pbtotalϕtotal − Pbpri0ϕpri0

ϕpri1
(5.25)

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

Target timeslot size (usec)

B
u
rs

t
B
lo

ck
in

g
 P

ro
b
ab

ili
ti
es

Priority 0, Sim
Priotity 1, Sim
Overall, Sim
Priority 0, Calc
Priority 1, Calc
Overall, Calc

Figure 5.14: Burst Blocking Probability with Priority

Figure 5.14 shows the results from calculation and simulations in term of burst blocking

probability with given target timeslot size, based on the network configuration shown in

Figure 5.8. With the total of a hundred data sources, fifty of them are the traffic sources

with high priority (priority 0) and another 50 are data sources with low priority (priority

1) traffic. The packet arrival rate of sources with high priority is 0.05 packets/µsec, and

0.09 packets/µsec for sources with low priority. As the result, the performance in terms of

burst blocking probability of high-priority traffic is always better than low-priority traffic.

This is because high-priority traffic has never been blocked by the lower one. But, the

low-priority traffic will be blocked by high-priority traffic if the contention between different

classes of traffic occurs. In addition, the optimized target timeslot size for high-priority

traffic is different from that of the overall traffic because optimized target timeslot size of

high-priority traffic depends on the offered load of high-priority sources whereas overall traffic

123

blocking probability depends on the combined effect of offered load of high and low priority

sources, respectively. The timeslot size setting can be choosen either by the optimizing the

performace of high-priority traffic or the performance of overall traffic depending on the

network operator’s decision.

124

6.0 OPTIMIZATION IN SYNOBS NETWORK

Since in an OBS network, there are numbers of network nodes and links which consist of

multiple connections/data streams through the network and that different connections/data

streams might have different optimized burst size. This chapter discusses the calculation for

approximating the optimized solution of the timeslot size setting based on the lowest burst

blocking probability for the SynOBS network considering that there are multiple switches

(as well as connections/data streams) in the network.

6.1 NETWORK OFFERED LOAD MINIMIZATION

In order to optimize the timeslot size setting in the SynOBS network, we initially consider the

minimized nomalized offered load (bursts/timeslot) given to the entire network (the timeslot

size setting which results in the minimum nomalized offered load).

Extend the normalized offered load (ϕ) generated by a data source given in equation

5.17, the normalized offered load given to the entire network can be calculated by

ϕnetwork =
S∑
i=1

ϕi (6.1)

where S is the total number of data sources in the entire network.

Figure 6.1 shows a network configuration that is used to study the effect of timeslot size

in the SynOBS network. As shown in the Figure, the network consists of five core nodes

(labeled as 1 to 5), four groups of data sources (labeled as A to D); each of which consists of

ten data sources, and four groups of data sinks (labeled as E to H). Group A data sources

125

2

1

3

4

5

10 edge nodes

A

B

C

D

E

F

G

H

core node

Figure 6.1: Experimental network

send their data to group E data sinks via node 2 and 4. Group B data sources send their

data to group F via node 1, 2, and 4. Group C send data to group G via node 1, 3, and 4.

And finally, group D data sources send data to group H via node 3 and 5.

Figure 6.2 shows the comparison results of (a) the calculated normalized offered load

given to the network, and (b) the simulated burst blocking probability based on given target

timeslot size setting. The results are from the network shown in Figure 6.1. Each of the

data sources in the network has a packet arrival rate of 0.075 packets/µsec. The number

of available data wavelengths is five. There are no FDLs available as an optical buffer in

each core node. When a data packet is generated, it is then assembled to form a data burst

according the algorithm as discussed in Section 5.1. When the burst is assembled, the created

data burst is sent out to its destination via core nodes as discussed earlier.

According to the graph, at a small target timeslot size setting, the normalized network

offered load decreases as the target timeslot size increases. As the target timeslot size keeps

increasing, the decreasing rate of the normalized offered load decreases. Until it reaches

126

0.001

0.01

0.1
10 20 30 40 50 60 70 80 90 100

Target timeslot size (usec)

Bu
rs

t b
lo

ck
in

g
pr

ob
ab

ilit
y

2

3

4

5

10 20 30 40 50 60 70 80 90 100

Target timeslot size (usec)

Ne
tw

or
k

of
fe

re
d

lo
ad

 (b
ur

st
s/

tim
es

lo
t)

(a)

(b)

Figure 6.2: The comparison of (a) the calculated normalized offered load, and (b) the simu-

lated burst blocking probability in the experimental network with balance offered load

127

the point where the minimum normalized offered load is obtained, then the normalized

offered load increases as the target timeslot size increases. As the normalized network offered

load decreases, the simulation’s blocking probability also decreases, because of lower traffic

through the network. Moreover, the increase in normalized network offered load results in

a higher blocking probability as well. Both the normalized network offered load and the

blocking probability reach their minimum points around the same target timeslot size. In

this case, target timeslot size is optimized to minimize the normalized network offered load,

and we can effectively predict the target timeslot size that gives the lowest burst blocking

probability.

0.001

0.01

0.1
10 20 30 40 50 60 70 80 90 100

Target timeslot size (usec)

Bu
rs

t b
lo

ck
in

g
pr

ob
ab

ilit
y

2

3

4

5

10 20 30 40 50 60 70 80 90 100

Target timeslot size (usec)

Ne
tw

or
k

of
fe

re
d

lo
ad

 (b
ur

st
s/

tim
es

lo
t)

(a)

(b)

Figure 6.3: The comparison of (a) the calculated normalized offered load, and (b) the simu-

lated burst blocking probability in the experimental network with unbalance offered load

128

Figure 6.3 shows the comparison results of the (a) calculated normalized offered load

given to the network, and the (b) simulated burst blocking probability based on a given

target timeslot size setting from the same network shown in Figure 6.1. This time, each of

the data sources in group A and group B has a packet arrival rate of 0.05 packets/µsec, while

the data sources in group C and group D has a packet arrival rate of 0.10 packets/µsec, thus

creating an unbalance offered load to the studied network, where core node 2 and core node

4 receive less offered load than core node 3 and core node 5.

Again, according to the graph, at a small target timeslot size setting, the normalized

network offered load and burst blocking probability decrease as the target timeslot size

increases. As the target timeslot size keeps increasing, the decreasing rate of the normalized

offered load and burst blocking probability decreases. Until they reach their minimum points,

then the normalized offered load and burst blocking probability increase as the target timeslot

size increases. However, in this case, the target timeslot size where the minimum network

normalized offered load is obtained is smaller than the one where the lowest burst blocking

probability is obtained. This is because the unbalanced offered load was given in the different

network core nodes. In this case, nodes 3 and 5 (which receive traffic from data sources with

higher packet arrival rate) receive more offered load than nodes 2 and 4 which results in more

burst blocking in node 3 than node 2. Therefore, to reduce the burst blocking probability in

the network, the timeslot size setting has to be adjusted to the given offered load in the more

congested node as represented by the group C and group D data sources (0.10 packets/µsec).

Consequently, the timeslot size setting that results in the lowest burst blocking probability

is higher than the timeslot slot size setting where the the lowest network normalized offered

load is obtained.

The discussion above shows that the timeslot size setting in which the minimum network

normalized offered load is obtained may not result in timeslot size setting where the lowest

burst blocking probability is achieved. Thus, optimizing timeslot size setting by minimizing

the network normalized offered load can not be effectively used as the tool to determine the

optimized target timeslot size setting that results in lowest burst blocking probability in the

network.

129

6.2 WEIGHTED BURST LOSS APPROXIMATION

This section discusses a calculation called the Weighted Burst Loss Approximation [42],

which is used for approximating the optimized target timeslot size —the target timeslot size

setting which results in the lowest overall burst blocking probability— for a SynOBS network.

At first we must calculate the overall offered load given to the network, the approximate

offered load given to each link, and the approximate burst blocking probability in each link.

Then the calculation weighs the approximate burst loss probability in each network link by

the given offered load based on the specified timeslot size. The estimated optimal overall

timeslot size is determined by the lowest result of this approximation.

In order to estimate the optimal timeslot size in the network, first, the data burst offered

load (ϕisource) created by each data source i is calculated using equations discussed in Chapter

4.

Let set S be the set of data sources in the network, and set L be the set of links in the

network. In addition, we define the set Sj ⊆ S as the set of data sources that utilizes link j

(their traffic is sent through link j).

Then the total offered load given to the network (ϕnetwork) is

ϕnetwork =
∑
i∈S

ϕisource (6.2)

Next, the offered load given to each link j (ϕjlink), where j ∈ L, is approximated as the

summation of the offered load from every data source that utilizes that link.

ϕjlink =
∑
i∈Sj

ϕisource (6.3)

After that, the approximate burst blocking probability in each link (P j
blink

) is calculated

using the calculation discussed in Chapter 4. Based on that, the approximate weighted burst

loss probability is calculated by

∑
j∈L(P j

blink
× ϕjlink)

ϕnetwork
(6.4)

130

The approximate weighted burst loss probability is a calculation that is used to approx-

imate overall burst blocking probability in the SynOBS network based on different timeslot

size settings. The calculation works by weighting burst blocking probability in each link

with its given offered load (P j
blink
× ϕjlink), which results in the approximate burst blocking

rate in each link. Then, by summing up the approximate burst blocking rate from every

link (
∑

j∈L(P j
blink
× ϕjlink)), the approximate overall weighted burst blocking rate in the net-

work is obtained. Then the overall approximate burst blocking probability in the network

is calculated by dividing approximate overall burst blocking rate with the calculated overall

offered load given to the network (
P
j∈L(P jblink

×ϕjlink)
ϕnetwork

).

Finally, the optimized target timeslot size is approximated at the target time timeslot

size that minimizes the approximate weighted burst loss probability.

0.001

0.01

0.1
10 20 30 40 50 60 70 80 90 100

Target timeslot size (usec)

Bu
rs

t b
lo

ck
in

g
pr

ob
ab

ilit
y

WBL Approx.
Simulation

Figure 6.4: The comparison of the weighted burst loss approximation and the simulated

burst blocking probability with balanced offered load

Figure 6.4 shows the comparison results of the calculated weighted burst loss approx-

imation (solid line), and the simulated burst blocking probability (dotted line) based on

given target timeslot size setting. The results are from the network shown in Figure 6.1

in which each of the data sources in the network has the same packet arrival rate of 0.075

packets/µsec as discussed in Figure 6.2.

In relation to the result discussed in Figure 6.2, from the graph, at small target times-

131

lot size setting, the calculated weighted burst loss approximation decreases as the target

timeslot size increases. As the target timeslot size keeps increasing, the decreasing rate of

the calculated weighted burst loss approximation decreases. Until it reaches the minimum

point, then the calculated weighted burst loss approximation increases as the target timeslot

size increases. From the figure, similar to the result discussed in Figure 6.2, both the calcu-

lated weighted burst loss approximation and the blocking probability reach their minimum

points around the same target timeslot size. As a result, in this case, target timeslot size

is optimized by minimizing the calculated weighted burst loss approximation, and we can

effectively predict the target timeslot size that results in lowest burst blocking probability.

0.0001

0.001

0.01

0.1
10 20 30 40 50 60 70 80 90 100

Target timeslot size (usec)

Bu
rs

t b
lo

ck
in

g
pr

ob
ab

ilit
y

WBL Approx.
Simulation

0.001

0.01

0.1
10 20 30 40 50 60 70 80 90 100

Target timeslot size (usec)

Bu
rs

t b
lo

ck
in

g
pr

ob
ab

ilit
y

WBL Approx.
Simulation

(a)

(b)

Figure 6.5: The comparison of the weighted burst loss approximation and the simulated

burst blocking probability with unbalance offered load

Figure 6.5 shows the comparison of results of the calculated weighted burst loss approx-

132

imation and the simulated burst blocking probability based on given target timeslot size

setting from the network which is identical to the network shown in Figure 6.1. As previ-

ously discussed Figure 6.3, this time, each of the data sources in group A and group B has

the packet arrival rate of 0.05 packets/µsec, whereas each of the data sources in group C

and group D has the packet arrival rate of 0.10 packets/µsec, creating an unbalanced offered

load to the studied network, where core node 2 and core node 4 receive less offered load than

core node 3 and core node 5.

Figure 6.5 (a) shows the results in which there are no FDLs used as optical buffers in

any core node. Again, according to the graph, at a small target timeslot size setting, the

calculated weighted burst loss approximation and burst blocking probability decrease as the

target timeslot size increases. As the target timeslot size keeps increasing, the decreasing rate

of the calculated weighted burst loss approximation and burst blocking probability decreases.

Until they reach their minimum points, then the calculated weighted burst loss approxima-

tion and burst blocking probability increase as the target timeslot size increases. However,

compared to the network offered load minimization, the weighted burst loss approxima-

tion follows the burst blocking probability more effectively, where the minimum calculated

weighted burst loss approximation is around the same target timeslot size where the burst

blocking probability reaches its minimum. This is because, in the calculation of weighted

burst loss approximation, not only the overall network normalized offered load minimization

is taken in to account, but each individual core node burst blocking probability based on its

given normalized offered load has also been taken into consideration.

As discussed earlier, Figure 6.5 shows the simulation of unbalanced offered load given

to the different core nodes. In this case, core node 5 receives the highest amount of the

offered load (from 20 data sources, each with the packet arrival rate of 0.10 packets/µsec),

thus, creating a bottleneck in the network at link 3-5, where most of the data bursts are

dropped. It is possible that FDLs can be installed in the bottleneck (congested) node in

order to reduce the burst blocking probability.

Figure 6.5 (b) shows the result of the network with the same offered load as in Figure 6.5

(a). However, in this case, core node 3 (the bottleneck node) is equipped with one shared

FDL with delay duration of one timeslot. As we can see from the Figure, the overall burst

133

blocking probability is reduced compared to the result when node 3 has no FDLs installed. In

addition, the timeslot size setting in which the lowest burst blocking probability is obtained

becomes smaller than when there are no FDLs available in the node. This is because, when

there is an FDL available for buffering data bursts in the bottleneck node (node 3), the

burst blocking in the bottleneck node is greatly reduced. Since the ratio of blocked data

bursts in the bottleneck node to overall network blocked data bursts is greatly reduced, the

ratio of blocked data bursts in node 2 to overall blocked data bursts in the network becomes

more significant. Because node 2 receives the traffic from 20 data sources, each with the

packet arrival rate of 0.05 packets/µsec, as opposed to the 0.10 packets/µsec given to node

3, the timeslot size setting, in which the lowest burst blocking probability is obtained, is

moved toward the optimizing point of the packet arrival rate of node 2 data sources (0.05

packets/µsec).

As we can see from the Figure, as the node configurations in the network have been

changed, the result from the calculated weighted burst loss approximation closely follows

the change of the simulated burst blocking probability in the network. This is because

each of the individual network node configurations has also been considered in the weight

burst loss approximation calculation, where, with the same offered load, the different node

configurations result in the different burst blocking probability in the node. Therefore,

this shows that, in addition to the ability to adapt to the unbalance offered load given to

different nodes in the network, the weighted burst loss approximation is also able to adapt

to the different individual node configurations in the network.

6.2.1 Weight Burst Loss Approximation in Large Network

In this study, the vBNS network topology [43] (shown in Figure 6.6) has been used as the

studied network. The vBNS network topology has twelve core nodes, geographically located

in different cities across the United States. If the network used SynOBS, then, with each of

the core nodes, there would be one edge node, which is co-located and directly connected to

it. These edge nodes act as a traffic sources and traffic sinks to/from the SynOBS network.

Let’s provide full connectivity, with two classes of traffic between every pair of edge nodes.

134

74

9

10

116

12

1

2

3

5

8

Figure 6.6: vBNS Network

So, each edge node would have twenty two data sources: eleven of them generate high

priority traffic to each other node and another eleven generate low priority traffic. In this

study, packet inter-arrival time in each data source is randomly selected around an average

of 0.05 packet/usec for high priority traffic and 0.09 packet/usec for low priority traffic (with

variation of 0.04 and 0.08 packet/usec respectively). After a packet is generated by the data

source, the packet is then assembled (using algorithm discussed in section 5.1) to form a

data burst in the edge OBS node before it is sent out to its destination. The path to the

destination for each data burst is selected based on the shortest path algorithm.

Figure 6.7 shows the results of the calculated approximate weighted burst loss probability

and the simulated overall burst loss probability on the vBNS network configuration discussed

earlier. It is assumed that packet data length is exponentially distributed with an average

of 0.8 µsec, the assembly time is 1 msec, and the guard time is 7 µsec.

As shown in the graph, at small target timeslot size, both the approximate weighted

burst loss and the burst blocking probability decrease as the timeslot size increases. As the

timeslot size keeps increasing, the overall decreasing rate in both graphs decreases until they

reach the point where the minimum results are obtained. Then, both graphs increase as the

135

0

0.05

0.1

0.15

0.2

0.25

10 20 30 40 50 60 70 80 90 100

Target timeslot size (usec)

Bu
rs

t b
lo

ck
in

g
pr

ob
ab

ilit
y

Simulation
WBL Approx.

Figure 6.7: Weighted burst Loss Approximation vs. simulated overall burst blocking proba-

bility of vBNS network

timeslot size increases. Note that the minimum approximate weighted burst loss and the

minimum burst blocking probability are achieved around the same optimal value of timeslot

size. This shows that the weighted burst loss approximation can effectively approximate the

optimal timeslot size for a large SynOBS network.

However, it can be seen that the calculated value of weighted burst loss approximation

always over-estimates the burst blocking probability obtained from simulation. This is caused

by several reasons. First, in each link, the simulated offered load should be lower than the

approximate offered load from calculation because some data bursts in the simulation might

be dropped before they arrive at the link. Second, the approximate burst blocking probability

in each link is calculated based on an assumption that the number of data bursts arriving

at each link during a given timeslot is Poisson distributed. However, the burst arrivals are

the result of the burst assembly algorithm which assembles incoming data packets to form

a data burst. Therefore, although the arrival of data packets is Poisson distributed, the

bursts that come out of the assembly algorithm are not. Third, since the data bursts have

136

to traverse through multiple hops in the network, the burst blocking in previous links might

have the effect of smoothing out the burst arrivals in later links. While the Weighted Burst

Loss Approximation is not suitable for predicting the actual burst blocking probability in

SynOBS network, it can effectively predict the optimized target timeslot size where the

minimum burst blocking probability is achieved.

In this dissertation, in addition to the network configuration discussed above, several

network configurations, along with different given network offered load patterns have been

tested to confirm the effectiveness of Weighted Burst Loss Approximation for approximating

the optimal timeslot size setting in SynOBS network.

6.2.2 Simulated Weight Burst Loss Approximation

In the SynOBS network with adaptive timeslot size implemented (the timeslot size set-

ting can be dynamically changed according to current network condition), the real-time

approximation of the optimized timeslot size is neccesary. Since there are different FDL

configurations in a core node, some of the FDL configurations might not be suitable for the

real-time calculation of the node’s burst blocking probability used in the weighted burst loss

approximation. For example, some of these FDL configurations might include the SynOBS

core node with shared FDLs that have large number of ports and FDLs. This results in large

number (hundreds) of states in the discrete-time Markov model (discussed in Chapter 4), in

which lots of computational power and computational time are required. Another example

is a SynOBS core node equipped with different multiple-length FDLs (discussed in section

4.6), which in this case, the mathematical formulation of the burst blocking probability in

the core node might be too complicated to analyze.

To overcome the difficulty discussed above, each individual node burst blocking proba-

bility used by the weighted burst loss approximation can be pre-calculated or pre-simulated

based on various offered loads given to the node. Then these predetermined individual node

blocking probabilities are stored in a central database. During the realtime network oper-

ation, based on each of the node configurations in the network and the calculated offered

load, their pre-calculated/simulated burst blocking probability can be retrieved from the

137

database and used to calculate the overall network weighted burst loss probability in order

to approximate the optimum timeslot size.

0.0001

0.001

0.01

0.1
10 20 30 40 50 60 70 80 90 100

Target timeslot size (usec)

B
u
rs

t
b
lo

ck
in

g
 p

ro
b
ab

ili
ty

WBL Approx.
Simulation

Figure 6.8: Simulated Weighted burst Loss Approximation vs. overall burst blocking prob-

ability of vBNS network

Figure 6.8 shows the result of the simulated weighted burst loss approximation and the

simulated bursted blocking probability. The graph is the outcome from the same vBNS

network, in which each of the traffic sources has the same packet arrival rate as discussed in

section 6.2.1. However, this time, each of the core nodes in the network is equipped with a

shared one-timeslot FDL for buffering their data burst. In this case, each core node burst

blocking probability, which is used for the weighted burst loss approximation calculation,

was obtained from simulations. As shown in the graph, the minimum approximate weighted

burst loss and the minimum burst blocking probability are achieved around the same optimal

value of the timeslot size. This shows that the simulated weighted burst loss approximation

can still be used as a tool to approximate the optimal timeslot size for a large SynOBS

network.

138

0.02

0.06

0.1

10 20 30 40 50 60 70 80 90 100

Target timeslot size (usec)

Bu
rs

t b
lo

ck
in

g
pr

ob
ab

ilit
y

SynOBS
Traditional OBS

Figure 6.9: SynOBS vs. Traditional OBS

6.3 PERFORMANCE COMPARISON AGAINST TRADITIONAL OBS

Figure 6.9 shows the result of traditional RFD-based OBS obtained from simulation for com-

paring with SynOBS. In traditional RFD-based OBS, the burst assembly algorithm works

based only on time constraint, regardless of burst size constraint. This is because, in tradi-

tional RFD-based OBS, the data burst size can vary without any timslot size limit required

in SynOBS. Therefore, the burst assembly algorithm in simulated traditional RFD-based

OBS operates by continuing to assemble its data burst until the time constraint expires

without any size limit. The resulting data burst size from the assembly algorithm varies

according to the exact assembled data size without any void filling. However, in the sim-

ulation of traditional RFD-based OBS, the guard time between consecutive data bursts is

still required in order to allow time for switching fabric reconfiguration. According to the

simulation result in Figure 6.9, since there is no timeslot size limit in traditional RFD-based

OBS, the blocking probability is fixed at 0.0666. Around its optimal timeslot size setting,

the performance (in terms of burst blocking probability) of SynOBS is better than Tra-

139

ditional RFD-based OBS. However, with poor timeslot size setting, where it is set to be

either too large or too small, the performace of SynOBS can degrade until its performance

becomes worsen than traditional RFD-based OBS because this poor timeslot size setting

results in poor resource utilization in SynOBS. As a result, this analysis shows that timeslot

size setting in SynOBS networks must be carefully designed in order to gain the advantage of

the synchronized timeslot-based approach and obtain better performance in terms of burst

blocking probability over the traditional asynchronous RFD-based OBS.

140

7.0 CONCLUSIONS AND FUTURE WORK

This dissertation provides comprehensive studies of a synchronized timeslot-based OBS,

which is referred to as Time-Synchronized Optical Burst Switching (SynOBS). The SynOBS

protocol is proposed with two main considerations in mind. First, it allows a less complex

optical switching fabric to be employed in the core OBS nodes rather than the more com-

plex switching fabric required in traditional OBSs. Second, it utilizes the timeslot-based

mechanism in order to achieve better performance than that of traditional OBSs.

Although they are not the main focus of this dissertation, some of the basic physical

implementation ideas of a SynOBS node have been briefly studied and discussed. One of

the important aspects of SynOBS that is different from the traditional OBS is synchro-

nization, where the mechanism of realigning and synchronizing incoming data streams from

different incoming ports and wavelengths is mandatory. For SynOBS, timeslot synchroniz-

ers and wavelength delay variation compensators are used to synchronize these incoming

data streams. The timeslot synchronizers are responsible for realigning the different incom-

ing data streams from different incoming ports that arrive out of phase compared to each

other. In addition, due to the variation of the wave’s speed among different wavelengths, the

wavelength delay variation compensators are used to realign these out-of-phase data streams

among different data wavelengths within the same incoming port.

In this dissertation, the performance analysis of a SynOBS core node with several FDL

reservation mechanisms is discussed, including the performance analysis of a SynOBS core

node without FDLs, a SynOBS core node with separated FDLs, SynOBS core node with

Shared FDLs, and later, a SynOBS core node with multiple-length FDLs. Regarding the

results from our study, while simulations comparing SynOBS and traditional OBS shows

promising results for SynOBS over traditional OBS in every reservation algorithm, SynOBS

141

with shared FDLs promises better performance for overall burst-drop probability, as com-

pared to SynOBS with separated FDLs. Furthermore, because the multiple-length FDL

configuration provides a greater variety of possible delay durations and allows more data

bursts to be delayed in the core node, the blocking performance of multiple-length FDL

configurations are better than that of the fixed length one timeslot configurations.

While employing a synchronized timeslot based mechanism in SynOBS provides an op-

portunity to achieve better resource utilization than traditional OBS, such a system has

to be carefully designed in order to achieve the best performance possible. The effect of

timeslot size setting causes a trade-off between the burst assembly time constraint and the

duration of guard time between each consecutive timeslot, basically because the SynOBS is

based on fixed size timeslot mechanism. This study shows that the timeslot size setting in

SynOBS networks must be carefully chosen in order to achieve the best timeslot utilization

as possible, which subsequently results in a better burst blocking probability in the network.

In order to optimize the timeslot size setting in a SynOBS network, first the minimized

normalized offered load (bursts/timeslot) given to the entire network (the timeslot size setting

in which results in the minimum nomalized offered load) is considered. Due to the unbalanced

offered load given to the different network core nodes, the timeslot size setting in which the

minimum network normalized offered load is obtained may not result in timeslot size setting

where the lowest burst blocking probability is achieved. Thus, optimizing timeslot size

setting by minimizing the network normalized offered load can not be effectively used as the

tool to determine the optimized target timeslot size setting that results in the lowest burst

blocking probability in the network.

Then, an analytical framework called the Weighted Burst Loss Approximation which

can effectively approximate the optimal timeslot size —the target timeslot size setting in

which results in the lowest overall burst blocking probability— for a SynOBS network has

been discussed. In the Weighted Burst Loss Approximation, initially, the overall offered load

given to the network, the approximate offered load given to each link, and the approximate

burst blocking probability in each link are obtained (either by calculation or simulation).

Subsequently, the analysis weighs the approximate burst loss probability in each network

link by the given offered load based on the given timeslot size. The approximate optimized

142

overall timeslot size is determined by the lowest result of this approximation. Although the

Weighted Burst Loss Approximation is not suitable for predicting the actual burst blocking

probability in a SynOBS network, it can effectively estimate the optimal timeslot size where

the minimum burst blocking probability can be achieved.

Finally, the performance comparison (in terms of burst blocking probability) between

SynOBS and traditional RFD-based OBS in a large network has been provided in this

dissertation. According to the result, the performance of SynOBS with the near-optimal

timeslot size setting is better than the Traditional RFD-based OBS. However, with poor

timeslot size setting (too large or too small size setting), the performace of SynOBS can

become worse than the traditional OBS because this inappropriate timeslot size setting

results in poor resource utilization in SynOBS. In conclusion, the timeslot size in the SynOBS

network has to be chosen in order to gain the advantage of the synchronized timeslot-based

approach and obtain better performance in terms of burst blocking probability over the

traditional asynchronous RFD-based OBS.

While many aspects of the SynOBS have been discussed and studied thoroughly in

this dissertation, in order to gain better understanding and achieve better performance in

SynOBS networks, several issues remain to be studied. This further research includes:

• The fairness issue in SynOBS core node with shared FDLs:

As discussed earlier in this dissertation, while a SynOBS core node with shared FDLs can

effectively utilize the available FDLs in a core node, unbalanced offered loads may result

in an unfair FDL utilization among the output ports, where the traffic from the output

port with higher given offered load tends to over utilize the shared FDLs, compared

with the traffic from the output port with lower given offered load. Therefore, the FDL

reservation algorithm for SynOBS with shared FDLs has to be carefully redesigned in

order to avoid such a problem.

• The detailed analysis of SynOBS core node with multiple length FDLs:

This dissertation has discussed the possible advantages of employing multiple length

FDLs over fixed length one timeslot FDLs in the core node. Some of its aspects have

been discussed, including cost analysis and FDL reservation algorithm, as well as several

FDL configurations (using simulation). However, in order to gain better understanding

143

about the effect of different FDL configurations to their blocking performances, detailed

analysis of SynOBS core nodes with multiple length FDLs should be studied in further

research.

• The improvement of the weighted burst loss approximation:

Although, currently, the weighted burst loss approximation algorithm can effectively

approximate the optimal timeslot size setting in the SynOBS network, as discuss earlier,

the weight burst loss approximation can not be effectively used for predicting the actual

burst blocking probability in SynOBS network. In order to predict more accurate burst

blocking probability (which in turn, provides an even more accurate optimal timeslot size

approximation), several aspects have to be taken into the calculation. These include, but

not limited to, a more accurate approximate link offered load, considering burst loss in the

intermediate node, using the more appropriate burst arrival process (Poisson is currently

assumed), and analyzing the burst smoothing effect of burst arrivals after traversing

through multiple hops in the network.

• The weighted packet loss approximation:

In this dissertation, the optimal timeslot size is assumed as the timeslot size at which

the lowest burst blocking probability in the SynOBS network is obtained (the weighted

burst loss approximation). However, since a data burst is a result of the assembled

data packets that have the same destination and priority, and since the number of data

packets in each of the data burst can be varied, the timeslot size that results in the

lowest burst blocking probability may not cause the lowest packet loss in the network.

In further research, the extension of the weighted burst loss approximation should also

be considered and studied. Despite assuming that the lowest burst blocking probability

is the optimal timeslot size, further analysis should be extended by assuming that the

timeslot size in which the lowest end to end packet loss probability is obtained as the

optimal timeslot size.

• The detailed study of possible physical implementation of SynOBS system:

Although some discussion of the possible physical implementation of the SynOBS sys-

tem has been provided in this dissertation, the detailed characteristics of every physical

element still have to be taken into consideration for the detailed system design. For

144

example, some of the physical elements (e.g. Erbium-Doped Fiber Amplifiers) require

constant presence of signal for them to operate normally and the presence of guard-time

and void filling might cause some of these physical elements to not work properly. This

problem (as well as other possible physical limitations) has to be considered in further

research.

145

BIBLIOGRAPHY

[1] J. Ramamirtham and J. Turner. Time sliced optical burst switching. In Proceedings of
INFOCOMM, 3:2030–2038, 2003.

[2] X. Yu, Y. Chen, and C. Qiao. A study of traffic statistic of assembled burst traf-
fic in optical burst switched networks. SPIE Optical Networking and Communication
Conference (OptiComm) 2002, 2002.

[3] A. Banerjee, J. Drake, J. P. Lang, and B. Turner. Optical packet switching in core
networks: Between vision and reality. IEEE Communications Magazine, pages 60–65,
September 2002.

[4] C. Qiao. Labeled optical burst switching for ip-over-wdm integration. IEEE Commu-
nications Magazine, pages 104–114, September 2000.

[5] J. S. Turner. Terabit burst switching. Tech, Rep. WUCS-97-49, December 1997.

[6] D. K. Hunter and I. Andonovic. Approaches to optical internet packet switching. IEEE
Communications Magazine, pages 116–122, September 2000.

[7] T. S. El-Baweb and J. Shin. Optical packet switching in core networks: Between vision
and reality. IEEE Communications Magazine, pages 60–65, September 2002.

[8] C. Qiao and M. Yoo. Choices, feature and issue in optical burst switching. Optical
Network Magazine 1, pages 36–44, April 2000.

[9] L. Xu, H. G. Perros, and G. Rouskas. Techniques for optical packet switching and optical
burst switching. IEEE Communications Magazine, pages 136–142, January 2001.

[10] R. Ramaswani and K. N. Sivarajan. Optical Networks: A Practical Perspective. Morgan
Kaufman Publishers Inc., 1998.

[11] I. Kaminow and T. Li. Optical fiber Telecommunications IVA, Components. Academic
Press.

[12] D. Hunter, D.Cornwell, T. H. Gilfedder, A. Franzen, and I. Andonovic. Slob: A switch
with large optical buffers for packet switching. Journal of Lightwave Technology, 16(10),
October 1998.

146

[13] R. A. Thompson and D. K. Hunter. Elementary photonic switching modules in three
devisions. IEEE Journal on Selected Areas in Communications, 14(2), February 1996.

[14] A. Pattavina. Architectures and performance of optical packet switching nodes for ip
networks. Journal of Lightwave Technology, 23(3), 2005.

[15] S. Bjornstad, M. Nord, and C. M. Gauger. Optical burst and packet switching: Node
and network design, contention resolution and quality of service. Telecommunications,
2003. ConTEL 2003. Proceedings of the 7th International Conference, 2:775– 782, June
2003.

[16] G. I. Papadimitriou, C. Papazoglou, and A. S. Promportsis. Optical switching: Switch
fabrics, techniques, and architectures. Journal of Lightwave Technology, 21(2), Febuary
2003.

[17] J.Y. Wei and R.I. McFarland. Just-in-time signaling for wdm optical burst switching
networks. Journal of Lightwave Technology, December 2000.

[18] M. Yoo and C. Qiao. Just-enough-time (jet): A high speed protocol for bursty traffic
in optical networks. In proceeding of IEEE/LEOS Conf. on Technologies For a Global
Information Infrastructure, August 1997.

[19] K. Dolzer, C. Gauger, J. Spath, and S. Bodamer. Evaluation of reservation mechanisms
for optical burst switching. AEU Int. J. Electron. Commun., 55(1), 2001.

[20] H. L. Vu and M Zukerman. Blocking probability for priority classes in optical burst
switching networks. IEEE Communications Letters, 6(5):214–216, May 2002.

[21] F. Farahmand, V. M. Vokkarane, and J. P. Jue. Practical priority contention resolution
for slotted optical burst switching networks. at the first WOBS.

[22] M. Yoo, C. Qiao, and S. Dixit. Qos performance of optical burst switching in ip-over-
wdm networks. IEEE Journal on Selected Areas in Communications, October 2000.

[23] R. A. Thompson. Telephone Switching Systems. Artech House Inc.

[24] C. M. Gauger. Dimensioning of fdl buffers for optical burst switching nodes. Proceedings
of the 6th IFIP Working Conference on Optical Network Design and Modeling (ONDM
2002), February 2002.

[25] V. M. Vokkarane, J. P. Jue, and S. Sitaraman. Burst segmentation: An approch for
reducing paket loss in optical burst switched networks. UTD Technical Report UTDCS-
20-01, September 2001.

[26] N. Abramson. The aloha system — another alternative for computer communications.
AFIPS Conference Proceedings, 36, 295–298 1970.

147

[27] L. Roberts. Aloha packet system with and without slots and capture. Stanford Research
Institute, Advanced Research Projects work Information Center, 1972.

[28] M. R. Vastag. Answers to your question, corning incorporated,
http://www.corning.com/opticalfiber/guidelines magazine/archived issues/
winter 2001/r3521.pdf.

[29] S. Shaari and K. Kandiah. Beam propagation method study of wavelength dependent in-
directional coupler switch. Semiconductor Electronics, 1998. Proceedings. ICSE apos;98.
1998 IEEE International Conference, pages 223–228, 1998.

[30] A. Pattavina, M. Rebughini, and A. Sipone. Performance of awg-based optical nodes
with shared tunable wavelength converters. In Proceedings of Global Telecommunications
Conference, 2005. GLOBECOM ’05. IEEE, December 2005.

[31] V. Eramo and M. Listanti. Packet loss in a bufferless optical wdm switch employing
shared tuneable wavelength converters. J. Lightwave Technol., 18:1818–1833, December
2000.

[32] G. Keiser. Optical Communications Essentials. McGraw-Hill.

[33] A. Rugsachart and R. A. Thompson. An analysis of time-synchronized optical burst
switching. 2006 Workshop on High Performance Switching and Routing, June 2006.

[34] Hou T.-C. and Wong A.K. Queueing analysis for atm switching of mixed continuous-
bit-rate and bursty traffic. INFOCOM ’90 Proceedings, IEEE, June 1990.

[35] Ng C.H., Zhang L., Cheng T.H., and Tan C.H. Cell loss probability of a finite atm
buffer queue. Communications, IEE Proceedings, Febuary 1999.

[36] J. Kim and C. Jun. An exact performance analysis of an atm multiplexer loaded with
heterogeneous on-off sources. ATM (ICATM 2001) and High Speed Intelligent Internet
Symposium, 2001. Joint 4th IEEE International Conference, April 2001.

[37] D. Gross and C. M. Harris. Fundamentals of Queueing Theory -3rd edition. Probability
and Statistics. Wiley.

[38] N. Endo, T. Ohuchi, T. Kozaki, H. Kuwahara, and M. Mori. Traffic characteristics
evaluation of a shared buffer atm switch. Global Telecommunications Conference, 1990,
and Exhibition. ’Communications: Connecting the Future’, GLOBECOM ’90., IEEE,
3:1913–1918, Dec 1990.

[39] F. Kamoun and L. Kleinrock. Analysis of shared finite storage in a computer network
node environment under general traffic conditions. IEEE Transactions on Communica-
tions, 28(7), July 1980.

148

[40] A.E. Eckberg and T.-C. Hou. Effects of output buffer sharing on buffer requirements
in an atdmpacket switching. INFOCOM ’88. Networks: Evolution or Revolution? Pro-
ceedings. Seventh Annual Joint Conference of the IEEE Computer and Communcations
Societies., IEEE, (459-466), March 1988.

[41] Y. Xiong, M. Vandenhoute, and H. C. Cankaya. Control archtecutre in optical burst
swtiched wdm networks. IEEE JSAC, 18(10):1838–1851, October 2000.

[42] A. Rugsachart and R. A. Thompson. Optimal timeslot size for synchronous optical
burst switching. In International Workshop on Optical Burst/Packet Switching, Fourth
International Conference on Broadband Communications, Networks, and System (IEEE
BROADNETS 2007), September 2007.

[43] http://www.it.northwestern.edu/metrochicago/intro.htm. June 2007.

149

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	1.1. Optical Burst Switching Diagram
	2.1. OBS Network Architecture
	2.2. Tell-And-Go Diagram
	2.3. Reserve-a-Fix-Duration Diagram
	2.4. Example of Control Packet Format
	2.5. Blocking Example of TAG
	2.6. Blocking Probability of RFD and TAG
	2.7. Time Sliced OBS network Architecture tsobs
	2.8. Example of Slotted OBS
	2.9. OBS Offset Time Diagram
	2.10. OBS Offset Time with QoS Diagram
	2.11. Edge OBS Switch Diagram
	2.12. The Fixed-Time-Min-Length burst assembly algorithm pseudo-code assembly
	2.13. The Max-Time-Min-Max-Length burst assembly algorithm pseudo-code assembly
	2.14. Physical Switch Architecture
	2.15. LiNbO3 Switched Directional Coupler
	2.16. 4x4 crossbar switch
	2.17. 8x8 Benes switch
	2.18. 4x4 Dilated Benes switch
	2.19. 8x8 Spanke-Benes switch
	2.20. Physical Switching Fabric with FDL
	2.21. Loss example of traditional OBS
	3.1. Time-Synchronized OBS (SynOBS) Network
	3.2. The characteristics of different OBS protocols
	3.3. Comparison of core node link utilization between RFD-based OBS and SynOBS
	3.4. An example block diagram of SynOBS core node
	3.5. An example block diagram of SynOBS timing
	3.6. Tunable Delay Line
	3.7. An Example of Tunable Delay Line
	3.8. Comparison of required number of 2x2 switching devices in a core node
	3.9. An Example of Tunable Optical buffer
	4.1. Blocking probabilities of SynOBS without FDL
	4.2. Blocking probabilities of SynOBS without FDL with large number of wavelengths
	4.3. SynOBS core node with separated FDLs
	4.4. Blocking probabilities of SynOBS core node with separated FDLs
	4.5. Delay distribution in SynOBS with separated FDLs (a) with one FDL (b) with two FDLs
	4.6. Expected delay duration in SynOBS with separated FDLs
	4.7. SynOBS core node with shared FDLs
	4.8. Blocking probabilities of SynOBS core node with shared FDLs
	4.9. Burst blocking probability of unbalanced offered load SynOBS with shared FDL
	4.10. Delay distribution in SynOBS with shared FDLs (a) with 1 FDL (b) with 2 FDLs
	4.11. Expected Delay SynOBS with shared FDLs
	4.12. Burst blocking probability comparison between policies
	4.13. Expected delay duration comparison between policies
	4.14. Simulation network environment
	4.15. Comparison between mathematical analysis and simulation
	4.16. Comparison between SynOBS and Traditional OBS
	4.17. Example of contention resolution in SynOBS with fixed-length FDLs
	4.18. Example of contention resolution in SynOBS with multiple-length FDLs
	4.19. Example of contention resolution in SynOBS with fixed-length FDLs
	4.20. Example of contention resolution in SynOBS with multiple-length FDLs
	4.21. Blocking probabilities in a 4-port SynOBS core node with various FDL configurations
	4.22. Example of contention resolution in SynOBS with (a) two multiple-length FDLs and (b) three fixed-legth one-timeslot FDLs
	4.23. Delay through a 4-port SynOBS core node with various FDL configurations
	4.24. Blocking probabilities in a 4-port SynOBS core node equipped with three FDLs and the total FDL delay duration of six timeslots
	5.1. Illustrating timeslot size setting with a. too small timeslot size, b. reasonable timeslot size, and c. too large timeslot size
	5.2. Average Assembled Data Length with given Packet Arrival Rate
	5.3. Average Assembled Data Length with given Target Timeslot Size
	5.4. Illustrating Timeslot Utilization
	5.5. Average Timeslot Utilization with given Packet Arrival Rate
	5.6. Average Timeslot Utilization with given Target Timeslot Size
	5.7. Normalized Offered Load generated by Assembly Algorithm
	5.8. Simulation environment
	5.9. Burst blocking probability with given Target Timeslot Size
	5.10. Optimized target timeslot size with given packet arrival rate
	5.11. Burst blocking probability with given Target Timeslot Size
	5.12. Burst blocking probability with given Target Timeslot Size for in-indentical sources
	5.13. Optimized target timeslot size for traffic with in-indentical sources
	5.14. Burst Blocking Probability with Priority
	6.1. Experimental network
	6.2. The comparison of (a) the calculated normalized offered load, and (b) the simulated burst blocking probability in the experimental network with balance offered load
	6.3. The comparison of (a) the calculated normalized offered load, and (b) the simulated burst blocking probability in the experimental network with unbalance offered load
	6.4. The comparison of the weighted burst loss approximation and the simulated burst blocking probability with balanced offered load
	6.5. The comparison of the weighted burst loss approximation and the simulated burst blocking probability with unbalance offered load
	6.6. vBNS Network
	6.7. Weighted burst Loss Approximation vs. simulated overall burst blocking probability of vBNS network
	6.8. Simulated Weighted burst Loss Approximation vs. overall burst blocking probability of vBNS network
	6.9. SynOBS vs. Traditional OBS

	1.0 INTRODUCTION
	1.1 Motivation
	1.1.1 Optical Switching Techniques
	1.1.2 Optical Burst Switching (OBS)
	1.1.3 Design Issues for Optical Burst Switching

	1.2 Problem Statement
	1.3 Research Summary
	1.4 Outline

	2.0 BACKGROUND
	2.1 Optical Burst Switching
	2.2 Asynchronous-based OBS
	2.2.1 Tell-And-Go protocol
	2.2.2 Reserve-a-Fix-Duration protocol

	2.3 Timeslot-based OBS
	2.3.1 Time Sliced OBS protocol
	2.3.2 Slotted OBS protocol

	2.4 Offset Time Management
	2.5 QoS and Priorities
	2.5.1 Offset Time Management for Supporting QoS and Priorities

	2.6 Burst Assembly
	2.6.1 Burst Assembly Algorithm Constraints
	2.6.2 Burst Assembly Algorithms

	2.7 Physical Implementation
	2.7.1 Space Switching Fabric
	2.7.1.1 Switching Fabric Constraints
	2.7.1.2 Examples of Switching Fabric Architecture

	2.8 Contention Resolution
	2.9 Discussion

	3.0 TIME-SYNCHRONIZED OPTICAL BURST SWITCHING
	3.1 Overview
	3.2 Physical Implementation
	3.2.1 Synchronization
	3.2.2 Space Switching Fabric
	3.2.3 Tunable Wavelength Converter
	3.2.4 Wavelength Demultiplexer/Multiplexer
	3.2.5 Switch Control
	3.2.6 Optical Buffer (FDL)
	3.2.7 Guard Time

	4.0 PERFORMANCE ANALYSIS OF SYNOBS CORE NODE
	4.1 SynOBS core node without FDL
	4.1.1 Reservation Algorithm
	4.1.2 Physical Requirements
	4.1.3 Blocking Analysis

	4.2 SynOBS core node with separated FDLs
	4.2.1 Reservation Algorithm
	4.2.2 Physical Requirements
	4.2.3 Blocking Analysis
	4.2.4 Delay Analysis

	4.3 SynOBS core node with shared FDLs
	4.3.1 Reservation Algorithm
	4.3.2 Physical Requirements
	4.3.3 Blocking Analysis
	4.3.4 Delay Analysis

	4.4 Comparison Among Policies
	4.5 Simulations
	4.5.1 Theoretical Analysis Validation
	4.5.2 Comparison with Traditional OBS

	4.6 SynOBS Core Node with Multiple-Length FDLs
	4.6.1 Reservation Algorithm
	4.6.2 Physical Requirements
	4.6.3 Performance Analysis

	5.0 THE EFFECT OF TIMESLOT SIZE
	5.1 SynOBS Burst Assembly Algorithm
	5.1.1 Analysis of Burst Assembly Algorithm

	5.2 Analysis of SynOBS core node with single class traffic
	5.2.1 SynOBS core node with identical sources
	5.2.2 SynOBS core node with un-identical sources

	5.3 Analysis of SynOBS with multiple classes traffic

	6.0 OPTIMIZATION IN SYNOBS NETWORK
	6.1 Network Offered Load Minimization
	6.2 Weighted Burst Loss Approximation
	6.2.1 Weight Burst Loss Approximation in Large Network
	6.2.2 Simulated Weight Burst Loss Approximation

	6.3 Performance Comparison against Traditional OBS

	7.0 CONCLUSIONS AND FUTURE WORK
	BIBLIOGRAPHY

