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A KNOWLEDGE STRUCTURE FOR THE ARITHMETIC MEAN:
RELATIONSHIPS BETWEEN STATISTICAL CONCEPTUALIZATIONS AND
MATHEMATICAL CONCEPTS
Mark A. Marnich, Ed.D.

University of Pittsburgh, 2008

This study examined cognitive relationships between the fair-share and center-of-balance
conceptualizations of the arithmetic mean. It also hypothesized the use of these
conceptualizations as blending spaces for the mathematical and statistical domains within a
proposed knowledge structure for the arithmetic mean.

Twenty-nine undergraduate liberal arts students completed pre/post verbal protocols with
written solutions to arithmetic mean problems. The problems emphasized either the fair-share or
center-of-balance conceptualization, or mathematical concepts related to the arithmetic mean.
The participants were divided into three groups: those that received fair-share instruction, those
that received center-of-balance instruction, and a control group.

The data was analyzed using statistical methods, including contingency tables and
ANCOVA, to investigate the effects fair-share and center-of-balance instruction had on
knowledge of fair-share, center-of-balance, and mathematical concepts regarding the arithmetic
mean. A qualitative analysis of the verbal protocols helped explain any statistically significant
connection between the fair-share and center-of-balance conceptualizations, or between either
conceptualization and mathematical concepts related to the arithmetic mean.

Analysis of the data indicated participants increased their knowledge of the fair-share

conceptualization after receiving instruction that was focused on center-of-balance. Similarly,
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participants increased their knowledge of the center-of-balance conceptualization after receiving
instruction that was focused on fair-share. In either case, the concept, ‘the sum of the deviations
from the mean is zero,” was used to transfer knowledge between the conceptualizations.

In addition, instruction in either the fair-share or center-of-balance conceptualization
increased knowledge of the mathematical concepts related to the arithmetic mean. However,
only specific mathematical concepts were impacted by each of the conceptualizations.

The results suggest that both the fair-share and center-of-balance conceptualizations are
pertinent to pedagogical decisions regarding the arithmetic mean. Furthermore, the concept, ‘the
sum of the deviations from the mean is zero,’ is a viable cognitive connection between the fair-

share and center-of-balance conceptualizations.
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1.0 INTRODUCTION

Research in mathematics education has long provided valuable descriptions of knowledge
structures detailing mathematical understanding. Studies have examined, for example, the
relationships between different types of mathematical knowledge (e.g. Rittle-Johnson, Siegler, &
Alibali, 2001; Shulman, 1986), the relationships between representations of knowledge (e.g.
Bruner, 1964; Lesh, Post & Behr, 1987), the relationships amongst content within a
mathematical field (e.g. McDonald, 1989), and the relationships between different constructs of a
mathematical topic (e.g. Kieren, 1988; Williams, 1998). Statistical concepts, such as the
arithmetic mean, are not just subject to the four relations above; they also encompass
relationships between mathematical content and statistical concepts. Research to investigate
these unique relationships is increasing because of a deliberate effort in a relatively new field of
study, statistics education. Because of the symbiotic relationship between the fields of
mathematics and statistics, it is reasonable to draw on the significant insights and findings from
the discipline of mathematics education and apply them, or at least use them as a basis, for
research and advancement in statistics education. A vital need in the field of statistics education
is the refinement of existing knowledge structures that acknowledge the conceptual differences,
yet preserve the inherent relationships between mathematics and statistics (Groth, 2007).

Developing concept-specific knowledge structures that refine the existing discipline-level



frameworks can help deepen the understanding of the conceptual relationships that constitute
knowledge of statistics.

One area of statistical study in which better understanding of the learners’ knowledge
could lead to innovations in the pedagogical process is the arithmetic mean. Its seemingly
simple tie to a standard mathematical procedure masks its statistical profundity and, ultimately,
the misconceptions and lack of conceptual understanding many students encounter. Its statistical
role makes it widely used (or misused) in most academic and professional disciplines, as well as
in everyday life.

Previously researched knowledge models (Groth, 2007; Jones et al., 2000; Mooney,
2002) along with past studies (e.g. Cai, 1998; Cobb & Moore, 1997, Mokros & Russell, 1995;
Strauss & Bichler, 1988) have identified both mathematical and statistical elements of the
arithmetic mean. Two concepts related to the arithmetic mean, center-of-balance and fair-share,
are connected to both its place in mathematics and its place in statistics. The center-of-balance
conceptualization views the arithmetic mean as the point of balance of the data (e.g. Hardiman,
Well, & Pollatsek, 1984); while the fair-share model views the arithmetic mean as an equal
distribution of the data (e.g. Cai & Moyer, 1995; George, 1995; Mokros & Russell, 1995).
While past studies have identified models depicting fair-share and center-of-balance and their
use in improving classroom instruction; they have not reported on the cognitive relationships, if
they exist, between fair-share and center-of-balance, or the cognitive relationships of the
mathematical and statistical elements of the arithmetic mean. These relationships are the focus

of this study.



1.1 BACKGROUND

1.1.1 Differences between Mathematics and Statistics

Statisticians and statistics educators have long argued that statistics is not a branch of
mathematics, but rather a branch of science that utilizes mathematical tools, similar to economics
and physics, to explore its own concepts (Cobb & Moore, 1997; Hand, 1998). Mathematical
knowledge is not the only knowledge necessary to understand statistical concepts. Statistics is a
discipline that involves applying statistical concepts and techniques, often distinct from those in
mathematics, to other fields of study in order to solve real world problems. One major difference
between statistics and mathematics is the role of context. In mathematics, problem context
usually needs to be “boiled off” to get at the root of the abstract mathematical structure. On the
other hand, in statistics, the problem context along with the components of the application
domain provides meaning to the data analysis (Cobb & Moore, 1997; Hand, 1998). In statistics,
the “data are not just numbers; they are numbers with a context” (Cobb & Moore, 1997, p. 801).
A second dissimilarity between mathematics and statistics is their respective academic spaces.
Statistics is a methodological discipline rather than a core substantive area like mathematics
(Cobb & Moore, 2000). It is an interdisciplinary science with links to many different fields of
study and application. A third distinction concerns the sense of variability, inference, and
interpretation which is essential to statistical analysis but absent from mathematical principles.
These profound differences in the disciplines suggest the knowledge needed to understand
statistics includes both mathematical knowledge and knowledge proprietary to statistics.

Hand (1998) raises the question as to why statistics is taught; is it to develop students

who can advance statistical methodology or is it to develop students who can carry out effective



statistical data analyses? Because the vast majority of students learning statistics fall into the
latter group, a joint committee of the American Statistical Association (ASA) and the
Mathematical Association of America (MAA) contend instruction of statistics should emphasize
statistical ideas and concepts, including the importance of data, the omnipresence of variability,
and both the quantification and explanation of data and variability (Cobb & Moore, 1997). Some
confusion as to the place of statistics education arises from the fact that in K-12 education, and in
many small colleges and universities, statistics is taught by mathematics teachers and

mathematicians; many of whom value it as a mathematical discipline.

1.1.2 Relationship between Mathematical and Statistical Knowledge

Previous research in mathematics education (see e.g. Resnick, 1983; Cobb et al., 1991) has
advocated the need for detailed cognitive models of students’ reasoning that help guide
mathematical pedagogy. “According to Cobb and Resnick, such cognitive models should
incorporate key elements of a content domain and the process by which students grow in their
understanding of the content within that domain” (Jones, Langrall, Mooney, & Thornton, 2004,
p. 101). The call for research-based cognitive models has been answered by cognitive
psychologists, mathematics educators, as well as statistics educators.

The authors Jones et al. (2000) and Mooney (2002) indicate one of four major
components in statistical understanding and reasoning is data analysis. They also indicate an
important attribute of comprehending data analysis is the cognitive relationship between
statistical knowledge and mathematical knowledge. The related research by Jones et al. and
Mooney consisted of qualitative analyses of interviews based on a statistical thinking protocol.

The protocol incorporated data exploration tasks, open-ended questions, and subsequent probes



to these questions. The results of their studies indicated that understanding of statistics occurs as
two sequential “cycles” of statistical reasoning. The first cycle “deals with the conceptual
development of statistical concepts, while the second cycle...deals with the application of
statistical and mathematical concepts and procedures that have already been learned” (Jones et
al., 2004, p. 108). The two-cycles of development indicate the importance of cultivating a new
statistical concept prior to advancing its mathematical basis or procedural application. The
significance of this result as it pertains to the specific statistical concept of the arithmetic mean
will be noted later in chapter two.

Groth (2007), in a research commentary on statistical knowledge needed for teaching,
argues that it is imperative that the differences between the knowledge structures necessary for
understanding statistics and the knowledge structures necessary for understanding mathematics
be explicitly differentiated in order to further the research on statistical knowledge structures.
He further contends that, although mathematical and statistical knowledge are different,
engaging in many meaningful statistical activities involves the simultaneous activation of both
mathematical and statistical knowledge.

Examining previous research can both distinguish mathematical and statistical knowledge
and provide evidence of their symbiotic relationship in statistics. Descriptive statistics, such as
the arithmetic mean, are fundamental concepts in statistical data analysis. It is therefore
reasonable to suspect components of data analysis, such as the arithmetic mean, also possess

both mathematical and statistical attributes and the subsequent integrating cognitive links.



1.1.3 Arithmetic Mean as a Subject of Study

The Curriculum and Evaluation Standards (1989) and Principal and Standards for School
Mathematics (2000) documents from the National Council of Teacher of Mathematics (NCTM)
suggest that students should have a “solid understanding” of mean as a measure of center. The
significant role of the arithmetic mean among averages is also supported by the American
Mathematical Association of Two-Year Colleges’ (AMATYC) standards document, Crossroads
(1995), the ASA endorsed, Guidelines for Assessment and Instruction in Statistics Education
(GAISE) report (Franklin et al., 2007), as well as in other policy-making documents (e.g. Adding
It Up: Helping Children Learn Mathematics (Kilpatrick, Swafford & Findell, 2001), Victorian
Essential Learning Standards: Discipline Based Learning Strand Mathematics (VCAA, 2005)).
These documents emphasize the importance of understanding measures of central tendency,
including the arithmetic mean as the most commonly occurring measure, and its necessity in
shaping a statistically literate society.

Different from many of the other descriptions of average, the arithmetic mean has uses in
statistics beyond the suggestion of central tendency. It is utilized, for example, in calculating
other statistics such as the standard deviation, creating formulas for distributions such as the
Poisson and normal, finding confidence intervals, and testing hypotheses.

The arithmetic mean can also inform or model concepts outside of statistics. In a
physical sense, the arithmetic mean can be thought of as a center of gravity. From the mean of a
data set we can think of the average distance the data points are from the mean as standard
deviation. The square of standard deviation (i.e. variance) is analogous to the moment of inertia
in the physical model. The formulas for calculation correspond exactly (N. Pfenning, personal

communication, May 10, 2008). The ability to mathematically model concepts in physics to



concepts in statistics signifies the potential significance of comprehensively understanding all
aspects of the arithmetic mean.

The cross-disciplinary nature of the arithmetic mean makes it conceptually constructive
in many disciplines of study, including statistics, mathematics, and physics, and its use as a
statistical tool makes it omnipresent in educational, vocational, and recreational settings. The
arithmetic mean’s diversity has fostered research aimed at finding an understanding of how
students arrive at their knowledge base for the arithmetic mean and the instructional techniques
that promote its conceptual learning.

The arithmetic mean is one of many different kinds of averages used to describe the
center or representative value of a data set. This seemingly simple calculation is actually a
relatively complex concept that is most often developed as an ‘“add-them-up-and-then-divide”
mathematical procedure, rather than as a statistically representative concept. Developing the
concept as a statistical representation of a data set is often encumbered by early exposure to the
rote algorithmic procedure used to calculate the mean (Mokros & Russell, 1995; Konold &
Higgins, 2003). Unlike many mathematical concepts, the conceptual and procedural knowledge
of the arithmetic mean do not seem to develop in an iterative or “hand-over-hand” manner (see
Hiebert & Lefevre, 1986, for discussion on conceptual and procedural knowledge; and Rittle-
Johnson & Alibali, 1999, for discussion on iterative growth of knowledge). A plausible
explanation of this inconsistency is much of the conceptual knowledge related to the arithmetic
mean is not purely mathematical; rather it is a combination of conceptual knowledge of

mathematics and conceptual knowledge of statistics.



1.2 PURPOSE OF STUDY

This study has a dual purpose in examining knowledge as it relates to the arithmetic mean. First,
it uses the existing literature as a basis to propose knowledge relationships specific to the
arithmetic mean. In doing so, the study addresses the concerns of Resnick (1983), Cobb et al.
(1991), and Groth (2007) to develop cognitive models of reasoning that include research on the
growth and development of elements within knowledge domains. The study delineates the
domains and identifies the concepts of fair-share and center-of-balance as cognitive blending
spaces between the mathematical and statistical domains. Second, the study aims to examine
several of the previously unsubstantiated cognitive relationships that exist within the
hypothesized knowledge structure. In particular, this study seeks to address the cognitive link
between the notions of fair-share and center-of-balance, and the cognitive link between these

notions and the mathematical domain of the arithmetic mean.

1.2.1 Research Questions

The following research questions are designed to further the understanding of knowledge related
to the arithmetic mean by investigating the cognitive role of the fair-share and center-of-balance
conceptualizations.

1) How is knowledge of fair-share and center-of-balance cognitively related to one

another? In particular,

a) What effect does instruction of the fair-share conceptualization of the arithmetic

mean have on knowledge of the center-of-balance conceptualization?

b) What effect does instruction of the center-of-balance conceptualization of the

arithmetic mean have on knowledge of the fair-share conceptualization?



2) How is knowledge of fair-share and center-of-balance cognitively related to the

mathematical domain? In particular,

a) What effect does instruction of the fair-share conceptualization of the arithmetic
mean have on knowledge of mathematical concepts associated with the arithmetic

mean?

b) What effect does instruction of the center-of-balance conceptualization of the
arithmetic mean have on knowledge of mathematical concepts associated with the

arithmetic mean?

The first research question is designed to investigate any potential connection between the
notions of fair-share and center-of-balance as they relate to the arithmetic mean. The second
research question focuses on the impact instruction of the fair-share or center-of-balance

conceptualizations has on the mathematical concepts associated with the arithmetic mean.

1.3 CONTRIBUTION TO THE DISCIPLINES

This study contributes to the fields of mathematics education and statistics education in a number
of ways. First, it builds on and refines existing research aimed at modeling the development of
statistical reasoning. This current study refines discipline-level statistical knowledge models by
focusing on the cognitive relationships of a specific statistical concept, the arithmetic mean.
Understanding the dynamics of the cognitive structure of a particular statistical concept may
better inform instructional decisions with regards to teaching the arithmetic mean.

Second, the study examines the relationship between two representative
conceptualizations that illustrate the arithmetic mean, fair-share and center-of-balance. While

particulars concerning each of these representations have been previously studied, little research



has examined any possible relationship or link between them (i.e. how they inform each other).
Unfortunately, in many academic settings, particularly in colleges and universities, only a limited
amount of time is available to develop a mathematical or statistical concept like the arithmetic
mean. A particular conceptualization may inform knowledge of the other and provide a more
robust and/or efficient way of conceptualizing the abstract nature of the arithmetic mean.

Third, the study provides insight into the connection between knowledge of mathematics
and knowledge of statistics through the concept of the arithmetic mean. Statistics provides
mathematics with a basis of contextually rich real-world problems that can be used to
contextualize the mathematics. Conversely, mathematics is a tool utilized by statistics to
quantify statistical concepts. An understanding of their inter-disciplinary knowledge connections
may advance the pedagogical symbiosis between mathematic and statistics.

The arithmetic mean has a place in the often amalgamated fields of statistics education
and mathematics education. Understanding how knowledge is developed within each discipline
and how knowledge is connected across the disciplines influences pedagogical decisions in both
branches of learning. By researching the knowledge relationships of the arithmetic mean, an
interdisciplinary concept, this study adds to the literature in the fields of both mathematics

education and statistics education

14 LIMITATIONS OF STUDY

Several limitations should be considered as they pertain to this study. First, the sample for the
study was chosen because the academic level of the participants was of particular interest to the

researcher and it represented a wide range of mathematical knowledge. The sample of students

10



enrolled in a liberal arts mathematics course at a small private university may not generalize to
students of different ages or different academic interests. Second, the verbal protocols, as most
data gathering instruments, only reveal the knowledge participants select to apply to a particular
task, not necessarily the total knowledge they possess for that concept. The verbal protocols
provide resonant detail regarding the knowledge used by the participants. The small sample size
of the protocols may not produce the typically accepted power for statistical analysis, but the
sample size was chosen to balance the quantitative and qualitative aspects of the study. In
particular, the richness of the data provided by the verbal protocols should compensate for the

statistical deficiency of the sample size.

1.5 ORGANIZATION OF THE DISSERTATION

This document is organized into five chapters. Chapter one provides a motivation for the
research, including a discussion on the relationships between mathematics and statistics, and the
importance of the arithmetic mean as a subject of study. The chapter then offers an overview of
this research study, including its purpose, contribution to mathematics education and statistics
education, limitations, and organization. Chapter two reviews the relevant literature in order to
accomplish the following objectives: report on the development of knowledge regarding the
arithmetic mean, develop the knowledge elements and domains associated with the arithmetic
mean, connect the notions of fair-share and center-of-balance to the mathematical and statistical
domains, and communicate the pedagogical issues surrounding instruction of the arithmetic
mean. Chapter three considers the literature germane to the methodology and situates this study

in those principles. This includes an account of the demographics, instrument, and procedure

11



along with details of data collection, data coding, and data analysis. The theoretical discussion is
accompanied by the practical results of pilot work. Chapter four presents the results of the
analyzed data. Chapter five offers a discussion of the research findings, recommendations based
on the research findings, and areas of future study revealed by the literature review and research

study.
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20 REVIEW OF LITERATURE

This review synthesizes the relevant literature to situate the concepts of fair-share and center-of-
balance in a knowledge structure for the arithmetic mean and investigates the relationships
between these concepts and domains within that structure. First, the development of knowledge
for notions of average and the arithmetic mean is examined. This section includes situating the
arithmetic mean among the realm of averages and delineating its development of understanding.
Second, the relatively complex dual nature of the arithmetic mean is presented and its
mathematical and statistical components are expounded. Third, a discussion defining the
concepts of fair-share and center-of-balance and relating each concept to both mathematical and
statistical ideas is presented. Fourth, a knowledge structure for the arithmetic mean is
hypothesized utilizing the existing literature base. This includes establishing two domains of
knowledge, mathematical and statistical, that house the concepts applicable to the arithmetic
mean, and elaborating on how knowledge between the domains is related by the fair-share and
center-of-balance conceptualizations. Finally, a review of the literature examining instructional
studies associated with the arithmetic mean is included to explore the implications that the

knowledge structure for the arithmetic mean has on pedagogical issues.
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2.1 DEVELOPING UNDERSTANDING OF THE ARITHMETIC MEAN

The words average or central tendency are used in statistics to describe a single notion or
representative value that describes the center, middle, or expected value of a larger set. There
are many different kinds of averages that can be properly chosen based on informed analysis of

the data.’

2.1.1 Averages and Their Development

The scholastic development of average most often begins in the primary grades with the concept
of mode, followed by midrange and median. Studies indicate that when early primary grade
students are first introduced to data sets they have difficulties seeing the data as a whole and
focus on the aspects of the individual data points (Hancock, Kaput & Goldsmith, 1992).
Similarly, Lehrer and Schauble (2000) found that students in first and second grade were largely
unable to use classification techniques to represent groups of drawings, but students in fourth and
fifth grade were able to appreciate the value of assigning dimensional attributes or
representations for categorizing the drawings. These studies indicate the idea of recognizing
trends or representativeness of data occurs for most students around the third grade.

It is through early life experiences that children begin to build an intuitive view of

average based on qualitative notions of typicality or representativeness. In third grade most

! While mean, median, mode, and midrange are the most common measures of central tendency, other more
specialized measures exist, such as:

Harmonic mean--used for finding “average per”

Geometric mean--used for finding averages of percentage, ratios, indexes, and growth rates

Quadratic mean--use in physical sciences and electronics.
Many other specialized means exist to measure specific discrete data as well as measures in calculus to measure
continuous data and functions
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students have encountered the term “average” from experiences with grade averages or average
temperatures (Konold & Higgins, 2003). This intuitive sense of average is most often expressed
as “most” or “middle,” which are ideas related to the formal averaging concepts of mode and
median, respectively (Watson & Moritz, 2000). At this stage of development many students
blend notions of average to form ideal averages. According to Konold & Higgins (2003), ideal
averages have four properties: (a) an actual value in the data set, (b) the most frequently
occurring value in the data set, (c¢) located midway between two extreme values in the data set,
and (d) relatively close to all other values in the data set. Two examples of ideal averages are the
middle-clump, a cluster of values in the heart of a distribution, and the modal-clump, a central
range of values that not only indicates central tendency, but also some sense of the data’s
distribution (Konold et al., 2002; Russell, Schifter & Bastable, 2002).

Interestingly, the most commonly used descriptive statistic, the arithmetic mean, is absent
from the sense of average described by primary grade students. Students do not make use of the
arithmetic mean, or an intrinsic meaning of it such as fair-share or center-of-balance, until it is
formally introduced in the fourth or fifth grade in the United States (in the sixth grade in
Australia) and revisited each year until the eighth grade with increasing procedural complexity
(Watson & Moritz, 2000). The arithmetic mean may also appear in high school curricula, such
as in a general math and algebra course. The notion of average may also be introduced as
centroids in a geometry course, or as means of continuous probability functions in Calculus. As
little as ten years ago a student’s first encounter with a traditional statistics course was in college;
now some high schools offer statistics in their mathematics curriculum as an elective, Advanced

Placement, or College in High School course.
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While several notions of average are conceptually developed by students themselves at a
relatively early age, the arithmetic mean is less transparent and the conceptual underpinnings
necessary to sensibly use it are surprisingly difficult (Konold & Higgins, 2003). Students
intuitively construct a sense of mode and median before being formally introduced to the
concepts and procedures for finding them. Conversely, students rarely have the opportunity or

insight to do the same with regards to the arithmetic mean.

2.1.2 Arithmetic Mean and Its Development

Since the arithmetic mean is an entity in statistics, it is reasonable to parallel the role of
mathematics in statistics to the role of mathematics in the arithmetic mean. That is, the
arithmetic mean is a statistical concept defined outside of the field of mathematics, but which
uses mathematics extensively in its calculation (see section 1.1). The statistical and
mathematical attributes of the arithmetic mean can be uniquely defined and then integrated to
understand and thoughtfully apply the arithmetic mean. The arithmetic mean is “a mathematical
construction that represents certain relationships in the data” (Russell & Mokros, 1996, p. 362).
It is a mathematical abstraction that denotes the statistical representativeness of the data.

Given this complexity, it is not surprising that research concerning knowledge of the
arithmetic mean has indicated that while most students beyond the fourth grade are capable of
applying an “add-and-then-divide” procedure to find a mean, many have difficulty conceptually
understanding what it represents (Russell & Mokros, 1996). This difficulty in conceptually
understanding the arithmetic mean was also found to be prevalent in middle grade students
(Mokros & Russell, 1995; Cai, 1998; McGatha, Cobb, & McClain, 2002), and among college

students (Pollatsek, Lima & Well, 1981; Groth & Bergner, 2006).
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A study that investigated students’ understanding of the arithmetic mean for three
education levels, primary, middle, and college, found improved performance with age on
problems associated with the four component properties of the mean, but a general lack of
understanding of the abstract and representative aspects of the mean (Leon & Zawojewski,
1990). The four component properties were (a) the mean is located between extreme values of a
data set, (b) the sum of the deviations about the mean is zero, (c) a value of zero in the data set
must be accounted for, and (d) the average value is representative of the values that were
averaged. Watson and Moritz (2000) conducted a longitudinal study of students in third through
eleventh grades in order to examine the development of the idea of average. One-hundred-and-
thirty-seven interviews were conducted to collect problem solving data. An analysis of the data
indicated the ability to correctly apply the arithmetic mean formula increased with grade, but the
language students used to describe average showed little growth for the notion of
representativeness. Mokros and Russell (1995) used extensive task-based interviews of twenty-
one students in fourth through eighth grade. They found most students knew the add-and-then-
divide algorithm but related it to limited context and were unable to use it in any meaningful
way. They further concluded that “children construct the idea of representativeness through
many encounters with a variety of real data sets” (p. 37).

While overall conceptual knowledge of the arithmetic mean (i.e. representing the data) is
lacking, the research indicates that procedural knowledge of the arithmetic mean (i.e. computing
the mean) is retained from the time it is introduced in the fourth grade until at least a student’s
college years. These studies indicate as age increases so does the ability to apply the arithmetic
mean formula. Unfortunately, any increased conceptual understanding of the arithmetic mean

during a student’s education, unless the student is exposed to a curriculum or teacher that
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conceptually develops the mean (see section 2.5), most likely corresponds to exposure to
contextual situations outside of the classroom.
The traditional instructional technique® for teaching the arithmetic mean includes a

simple introduction to the add-and-then-divide procedure inherent in the computational formula,

2%

, and a succinct synopsis on measures of central tendency (Shaughnessy, 1992). From

the time arithmetic mean is introduced, students tend to use this procedure most often to find an
average of a data set regardless of their conceptual understanding of average (Groth & Bergner,
2006). There is now concern that this type of rote algorithmic instruction and application early
in a student’s development may cause a short-circuit in the student’s reasoning. Mokros and
Russell (1995) note, for example, that many students who had “sound informal ideas about
average as a representative measure” may be developmentally impeded by the rote nature of the
algorithm. The researchers suggest students should be “pulled away” from the rote algorithm in
order to further a learner’s understanding of average (p. 37). Many researchers who have
investigated student use and understanding of mean suggest that less emphasis should be placed
on teaching procedures in the primary grades and more emphasis should be placed on developing
the conceptual understanding of representativeness (Konold & Higgins, 2003; Mokros &
Russell, 1995). The notion of emphasizing the statistical conception of the arithmetic mean (i.e.
representativeness) before applying the mathematical construct is consistent with the findings of
Jones et al. (2000) and Mooney (2002) (see section 1.1.2). Their findings indicated statistical

reasoning is developed in two cycles. The first cycle is an understanding of the statistical

? Reform curricula such as Connected Mathematics and Investigations in Number, Data, and Space apply a more
conceptual approach to developing the arithmetic mean.
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concept; the second cycle is the application of statistical and mathematical concepts and
procedures that have already been learned.

The research indicates that an understanding of the arithmetic mean is best developed by
addressing the statistical ideas associated with the arithmetic mean before presenting the
mathematical procedures for calculating it. It is also clear that both the statistical and
mathematical concepts pertaining to the arithmetic mean are vital in understanding and utilizing
it. Because of the symbiotic relationship between statistics and mathematics, it is reasonable to
draw upon the extensive research in mathematics education devoted to the development of
procedural and conceptual knowledge to help explain the conceptual relationships of the
mathematical knowledge associated with the arithmetic mean (see e.g. Hiebert & Lefevre, 1986).
The following sections uniquely define the mathematical and statistical domains of knowledge

associated with arithmetic mean.

22 MATHEMATICAL AND STATISTICAL KNOWLEDGE DOMAINS

Pollatsek, Lima, and Well’s (1981) interviews with seventeen undergraduate students found an
adequate schema for the arithmetic mean consists of three distinguishable types of knowledge:
(a) computational knowledge which relates to the mathematical procedures and concepts
necessary to compute the arithmetic mean, (b) functional knowledge which refers to the
arithmetic mean as a real-world concept that is representative of a data set, and (c) analog
knowledge which uses analogous concepts, in this case the arithmetic mean as a balancing point,
to translate between equations and verbal descriptions. They combined think-aloud problem

solving with follow-up interviews to gather data on arithmetic mean problems. A qualitative
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analysis of their data indicated that a lack of the arithmetic connections necessary to conceptually

understand the mean leads to an inability to solve problems not posed as rote computations.

2.2.1 Mathematical Knowledge of the Arithmetic Mean

The mathematical knowledge necessary to understand, calculate and utilize the arithmetic mean
is a subset of a student’s complete mathematical knowledge and understanding. Pollatsek, Lima,
and Well’s (1981) coined this type of knowledge related to the arithmetic mean as
computational. Each of the new procedures and concepts related to the arithmetic mean needs to
be connected to previous knowledge and properly assimilated or accommodated within the
existing web of knowledge. This new knowledge structure will allow a student to access the
necessary mathematical procedures and concepts associated with the arithmetic mean.

Two areas of mathematics are relevant to the calculations and application of the
arithmetic mean. Arithmetic is intrinsic to the mean formula and its calculation. Algebra is a
necessary component for manipulating the arithmetic mean formula as well as for solving
missing value problems. A better understanding of algebraic properties could help alleviate
many of the misconceptions about the properties of groups as they apply to the arithmetic mean.
The knowledge within each of these areas of mathematics is constructed by connecting a
network of procedures and concepts. A comprehensive mathematical understanding of the
arithmetic mean includes the interrelationships between arithmetic and algebra.

Knowledge specific to the arithmetic mean can be procedural, such as computing the
mean using a formula, defining the relevant variables, or knowing the fact that the ‘sum of the
deviations from the mean is zero.” This knowledge may also be conceptual, such as

mathematically understanding why the mean formula forces the sum of the deviations from the
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mean to be zero,” or using the properties of algebra to realize the mean is not a binary operation
and therefore does not have an identity element; so the mean is influenced by numbers other than

the average.

2.2.1.1 Mathematical Procedural Knowledge of Arithmetic Mean

The two-part definition of procedural knowledge, recognizing the correct use of syntax
and symbols along with applying rules and algorithms (Hiebert & Leferve, 1986) is easily
applicable to the arithmetic mean. The symbolic representation of arithmetic mean is universally
accepted as X or p. Further symbolic knowledge includes recognition of the variable X as
representing values of data points and n as the number of data points. The second aspect of

procedural knowledge involves the rules, algorithm, and procedures of calculating the mean.
X
This includes using the X ZZT formula or using an add-and-then-divide strategy if the symbolic

representation of the formula is not yet learned. Other procedural knowledge not directly related

to finding a value for the arithmetic mean, but necessary to further understand the mean includes

2%

n

the ability to algebraically manipulate formulae (e.g. X= can be rewritten as nX:ZXi ),

and the ability to create graphs and tables (e.g. histograms and frequency distributions).

2.2.1.2 Mathematical Conceptual Knowledge of Arithmetic Mean
Fully understanding the mathematical concept of the arithmetic mean, ignoring for the

moment any statistical role such as representativeness, involves the interrelationship between

3 i:%—mi:in—>Zi:2xi—>2(x—xi)=o
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two areas of mathematics and the concepts and procedures within those areas. The arithmetic
mean is rooted in arithmetic (addition, multiplication, and division) and algebra (manipulation of
mean formula, mathematical properties of the formula, ratios, and properties of mathematical
groups). The mathematics as it relates to the arithmetic mean of each of these areas is described
below.

To understand the mathematical concept of mean it needs to be linked to knowledge of

arithmetic operations. One such link is a conceptual understanding of addition and division. For

QX

example, X=4=— means taking in and separating it into n equal parts of size X.
n

Furthermore, it is helpful to understand the connection between addition and multiplication, (i.e.

ni:in means that if you add X to itself n times you get the same total as summing the

individual data points).

Portions of algebra, such as manipulating the arithmetic mean formula or finding missing
variables within the formula, are key components to understanding the arithmetic mean.
Knowledge of the algebraic ideas of ratios (see section 2.3.1.1) and proportions (see section
2.3.2.1) allows for the extension of mathematical ideas into other concepts related to the
arithmetic mean, such as fair-share and center-of-balance. Mevarech (1983) found that the
algebraic properties of a mathematical group play an important role in understanding (or
misunderstanding) the arithmetic mean. The general binary operation of finding an arithmetic
mean is not closed, does not follow the associative law, does not have an identity element, and its
inverse is not its negation. The fact that these properties hold for the integers under addition and
the rationals under multiplication (excluding zero), but fail in the computation of the mean, is a
change in the existing schema for students. That is, the knowledge learned about the algebraic

properties, either formally or informally, for addition and multiplication does not transfer to the
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algebraic properties of the arithmetic mean. For example, the binary operation of finding the

(a+b)
2

arithmetic mean of two numbers, a=a*b= , does not have an identity element. That is,

(5 * y):t a if'y is different from a. Unfortunately, students with limited experience working with

algebraic properties tend to over generalize these group properties and their applicability
(Mevarech, 1983). For example, an unsound understanding of the algebraic property of the
identity leads to the misconception that zero can be added to a data set and the arithmetic mean
will remain unchanged.

The connections formed within each mathematical area (i.e. arithmetic and algebra), in
conjunction with the connections between these mathematical areas, form the network of

knowledge or domain that shape mathematical understanding of the arithmetic mean.

2.2.2 Statistical Knowledge of the Arithmetic Mean

The statistical concept of average is characterized as a representative number that summarizes a
data set (Russell & Mokros, 1996). Strauss and Bichler (1988) defined seven properties of the
mean and categorized them into three aspects.” One of those aspects was representative and is
defined by the property, “The average value is representative of the values that were averaged”
(Strauss & Bichler, 1988, p.66). Unlike the other two aspects, which have mathematical
elements, this aspect is strictly statistical in character because it is presenting a representative
sense of the data. Pollatsek, Lima, and Well’s (1981) describe the idea of representativeness as
functional knowledge of the arithmetic mean, understanding “the mean is intended to be the

quantity that best represents a set of scores” and “is an index of overall performance” (p. 199).

* The three aspects are statistical, abstract, and representative. The representative aspect is discussed here; the
statistical and abstract aspects will be discussed in later sections.
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The arithmetic mean is a tool that describes a data set and, as such, allows comparison
between data sets. The statistical nature of the arithmetic mean provides a means for drawing
conclusions about the population or process from which the data originated (Cobb & Moore,
1997). The arithmetic mean is one of many averages that can alone, or in conjunction with other
averages, be utilized to interpret the data. The statistical concept of the arithmetic mean utilizes
a quantitative entity to represent, locate, qualify, describe, interpret, and/or signify a data set. A
conceptual understanding of other areas of descriptive and inferential statistics could be valuable
in further building a complete understanding of the arithmetic mean. For example,
understanding the graphical representation of data could help students visualize the arithmetic
mean; understanding appropriate experimental design and data collection could help students
appreciate the effects of individual data points; and inferential qualities of statistics (e.g.
confidence intervals) could help students realize the representative nature of the arithmetic mean.
As with the mathematical conceptual knowledge of mean, the statistical conceptual knowledge

of mean is rich in its relationships to other statistics, data representations, and conceptual ideas.

2.2.3 Connection between the Mathematical and Statistical Domains

The previous sections described the distinction between the mathematical concepts and statistical
concept of the arithmetic mean. There is, however, a symbiotic relationship between the
mathematics and statistics that contributes to the complete understanding of the arithmetic mean.
To completely understand a multifaceted concept like the mean, one must understand all its
dimensions and how they connect or interact. In the case of the arithmetic mean, which is “both

central to statistical understanding and mathematically significant in a broader sense” (Mokros &
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Russell, 1995), this means integrating its computation, mathematical relationships, and statistical
aspects (Cai, 1998; Cobb & Moore, 1997).

As discussed earlier, Strauss and Bichler (1988) referred to three aspects related to the
arithmetic mean. Two of these aspects, abstract and statistical, contain properties related to the
both statistical and mathematical concepts and are provided with examples in Table 2-1 and

Table 2-2, respectively.

Table 2-1: Abstract Aspects of the Arithmetic Mean

Property Example

The average does not necessarily equal one of the values  The mean of 10 and 20 is 15 (which is not one of the
that was summed. data points).

If an elementary school has two sections of first grade
The average can be a fraction that has no counterpart in ~ with 22 and 25 students in each classroom, then the
physical reality. mean number of students in each classroom is 23.5; a

physical impossibility for an individual classroom.

Five children were asked how many mathematics books
they have in their homes. The responses were 1, 0, 4, 2,
and 0. When calculating the mean the sum is not
affected by the zero values (1+0+4+2+0 = 1+4+2), but
zero values must be counted as part of the divisor (n=5).

When one calculates the average, a value of zero, if it
appears, must be taken into account.

Note: The properties are quoted directly from Strauss and Bichler (1988). The examples are the author’s.
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Table 2-2: Statistical Aspects of the Arithmetic Mean

Property Explanation

The arithmetic mean can not be located above the
highest value or below the lowest value, and in fact can
not equal either value unless all data points are equal.

The average is located between the extreme values.

The sum of the differences of the mean subtracted from

The sum of the deviations from the average is zero. L
each data point is zero.

Any new data point added to the original data set will
change the mean unless the new data point equals the
mean

The average is influenced by values other than the
average.

Note: The properties are quoted directly from Strauss and Bichler (1988). The explanations are the author’s.

Fully comprehending each of these properties requires a conceptual understanding of both the
mathematical and statistical nature of the arithmetic mean. The first two properties of the
abstract aspect are mathematical in nature; they involve sums and fractions and are results of
mathematical computations. The first two properties of the abstract aspect are also statistical in
nature; they suggest the representative quality of the arithmetic mean. The third property of the
abstract aspect is mathematical in nature due to the calculation involved and the identity property
of zero with respect to addition. It is also statistical in nature due to the sense that the mean is
representative of all data points, not just the non-zero data points. Each of the statistical aspects
can be demonstrated using mathematical calculations or proofs and therefore have roots in the
mathematical domain. Each of the statistical aspects also helps define the arithmetic mean as a
representative number of a data set.

The connection of the statistical knowledge domain, the idea of representativeness, to
mathematical knowledge is not a directly integrated relationship as each domain may reside

independently in the general knowledge schema. Mayer and Greeno (1972) described how
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knowledge can be assimilated internally, such as when concepts are related in a domain, or
externally, such as when concepts are related to ideas outside the domain. They investigated
structural differences in the learning outcomes when two different methods of instruction were
used to teach the binomial distribution. One method emphasized procedural calculation using
the binomial formula while the second method emphasized general concepts and meaning of the
variables. The research found that the way new ideas were assimilated into schema depended on
the type of instruction to which each group was exposed. The group that focused on the formula
connected the new knowledge to calculation techniques while the group exposed to the concepts
of variables associated the newly learned knowledge into a more general conceptual sense. The
authors explained their results by describing cognitive structures as consisting of both internal
and external connectedness:

An interpretation of the difference in terms of the learning outcomes achieved by the

subjects can be developed by postulating two variables in cognitive structure. One is the

extent to which components of a structure are integrated or connected with each other and
could be called internal connectedness. The other variable is the extent to which the
components of a structure are connected or related to other elements in a subject’s
general cognitive structure and this could be called external connectedness (Mayer &

Greeno, 1972, p. 171).

Applying this idea to the knowledge of the arithmetic mean, the first of these variables,
internal connectedness, can be related to the subset of mathematical procedures, along with their
various mathematical concepts within the mathematical domain, necessary to understand the
mean. The variable of external connectedness can be thought of as relating the mathematical and

statistical domains of the arithmetic mean. The concepts of fair-share and center-of-balance may
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provide a cognitive bridge between the two domains. The concepts of fair-share and center-of-
balance may be used to externally connect elements in the general cognitive structure, that is,
mathematics to the statistical idea of representativeness. In this sense, the concepts of fair-share
and center-of-balance represent Pollatsek, Lima, and Well’s (1981) analog knowledge that

translates between the mathematical and statistical descriptions of the arithmetic mean.

2.3 FAIR-SHARE AND CENTER-OF-BALANCE

In this section the concepts of fair-share and center-of balance will be described in three ways.
First as individual concepts developed in the general knowledge schema, second as concepts
related to procedures and concepts in mathematics, and third as concepts related to the statistical

idea of representativeness.

2.3.1 Fair-Share

Fair-share is the equal partitioning of an object or equal distribution of objects to members of a
group. Children learn the concept of fair-share through early social experiences, implicit ideals,
and distributive counting. The action of partitioning objects or sharing is developed early in a
child’s development through experiences in social settings (Kieren, 1988). Initial sharing of
objects begins with a rote understanding of “half” and often does not lead to equal partitioning
(Pothier & Sawada, 1983). The most common and often earliest strategy for young children to
clinically demonstrate the concept of fair sharing is dealing or systematically separating objects
into groups without explicitly counting (Miller, 1984; Hunting & Sharply, 1988). Davis and

Pitkethly (1990) found dealing is an implicit sharing strategy. Young children do not apparently
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have a conscious awareness that it is an adequate procedure for demonstrating equal sharing and
(those that are capable) often resort to counting as a checking procedure. The concept of sharing
which is evidenced early in a child’s development by allocating pieces or objects in social

settings or in counting activities leads to an intuitive sense of fair-share.

2.3.1.1 Fair-Share as a Mathematical Concept

Fischbein, Deri, Nello, and Marino (1985) hypothesized that, “Each fundamental
operation of arithmetic generally remains linked to an implicit, unconscious, and primitive
intuitive model” (p. 4). Fair-share is the intuitive model that underlies partitive division.
Partitive division is characterized by an object or collection of objects being divided or
distributed into equal portions or an equal number of subcollections. In its most basic sense, the
arithmetic mean is calculated by equally dividing a set of objects into a given number of subsets.
Therefore, the arithmetic mean formula is an example of partitive division.

Another description of the mean that utilizes the notion of fair-share is as a normalized
ratio (Cortina, 2002). In this case, fair-share can be used to construct units of measure (e.g. miles
per gallon) that do not necessarily involve statistical variability or prediction but have
mathematical relationships. In this multiplicative conceptualization, the mean is an attribute of a
group of data points in which an aggregate measure is created by summing all of the individual
data point values. If one divides this aggregate measure by the total number of individual
measures that created it, a normalizing adjustment, a “group performance relative to the number
of individual contributors,” is produced. “In this sense the mean is like an average rate; the
measure of the group contributions per contributor is conceived to be the same as the amount

contributed by each n contributors if each were to contribute equal amounts” (Cortina, Saldanha
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& Thompson, 1999, p. 2). This is equivalent to the group total being equally distributed (i.e.

shared fairly) amongst the contributors.

2.3.1.2 Fair-Share as a Statistical Concept

The arithmetic mean can be statistically conceived as representative by a fair-share
model. “The basic question underlying the fair share model is, what would be an equal share if
all items were distributed [equally]?”” (Mokros & Russell, 1995, p. 21). The conceptualization of
fair-share can be illustrated using a signal-in-a-noisy-process or equal-redistribution idea.
Konold and Pollatsek (2002) argue that the arithmetic mean can be thought of as a signature-
signal and the data can be thought of as a noisy-process. For example, the observed weights of
an object on a scale may vary each time the object is weighed. The variations in the
measurements can be thought of as a noisy-process. The true weight can be estimated by an
arithmetic mean or signal that levels off the variation (Groth, 2005). An illustration of this
approach is found in Figure 2-1(a).

A second conceptualization of the arithmetic mean as a fair-share is the equal-
redistribution model. The data values are represented as block columns with the height of the
columns equaling the value of each data point. Redistributing the blocks such that all columns
are the same height equates to allocating the total sum in the data set equally amongst each data
point. The new height of equal columns, or evenly distributed columns, is equivalent to the

mean of the data set. (Van DeWalle, 2003). This process is depicted in Figure 2-1(b).
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Figure 2-1: The Mean as a Fair Share

These models help depict the concept of fair-share as it relates to the statistical concept of
representativeness of the arithmetic mean. Each fair-share model is an interpretation of the
arithmetic mean as a location, description, and/or representation of the mean in relation to the

data set.

2.3.2 Center-of-Balance

The concept of center-of-balance has been widely studied to mark cognitive development in
children since Inhelder and Piaget (1958). A balance scale, a device in which weights can be
added to each side of a lever arm that pivots on a fulcrum, offers a diverse sequence of rules
through which children progress. Siegler (1976) proposed four rules to track cognitive

development:
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Rule I:  Four and five-year-olds base predictions only on the relative weight on each side of

the fulcrum.

Rule II: Eight and nine-year-olds consider distance from the fulcrum if the weight on each

side is equal but rely only on weight if the weights differ.

Rule III: Twelve and thirteen-year-olds consider both weight and distance, but do not know

how to resolve conflicts if weights and distances differ.
Rule IV: Few children and adults rely on torques (i.e. multiplying weight by its distance).

Experiments performed by Lovell (1961) and Jackson (1965), and later confirmed by
Siegler (1976), indicated that only 20% of adults are capable of using Rule IV for center-of-
balance problems; Siegler termed performance at this level as mature. Furthermore, Hardiman,
Pollatsek, and Well (1986) report, “Even when provided with specific experiences intended to
promote understanding of the concept of balance, adults do not easily derive the product-moment
rule [torque]” (p. 64).

The concept of center-of-balance has been widely studied and its development is well
documented. The concept develops in complexity of understanding through Rules I — III with
age and experience, but does not progress to mature performance (Rule IV) without explicit

instruction.

2.3.2.1 Center-of-Balance as a Mathematical Concept
The concept of center-of-balance has direct connections to procedures and concepts in
mathematics. Torque (Rule IV) is calculated using multiplication, addition, and vector cross
products. Hardiman, et al. (1986) define the mathematical calculation of center-of-balance as,
The effectiveness of a weight in causing the [balance] beam to tip is determined by the

product of the weight (w) and its distance from the fulcrum (d), a construct called
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torque....If the total torque (i.e., > W;d;) associated with the weights on each side of the
beam is the same, the beam will balance, otherwise the beam will tip to the side with the
greater torque. (p.64)
Siegler (1976) states, “It [balancing] is an interesting task mathematically, being related to the
concept of proportionality” (p. 482). Another important link between center-of-balance and
mathematics is the notion of equality and its role in balancing weights and torques in equations

that represent data sets and their deviations from the mean.

2.3.2.2 Center-of-Balance as a Statistical Concept

The arithmetic mean can be statistically conceived as representative by a center-of-
balance model. Figure 2-2 shows how the representative nature can be demonstrated by a
“balance” diagram or by a “block-stacking” procedure depicting center-of-balance. The top
picture (a) depicts the arithmetic mean as the balancing point of a scale in which the frequency
distribution of the data points is analogous to the distribution of the weights. The fulcrum can be
thought of as the point that represents the entire data set. A second approach, presented as (b) in
the figure, uses a manipulative to build a column of blocks for each value in the data set. The
blocks are moved toward the center of the distribution, carefully moving an equal number of
blocks an equal distance from each side of the hypothesized center, in order to keep the model
balanced. The point on which all blocks can be stacked after equal movement is the arithmetic
mean. It can be thought of as the point that best represents the original distribution of the data

set.
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(Aufmann, Lockwood, Nation, & Clegg, 2007)

(b)

AP
e —_— Two points moved 1 down . ..

e
T ... are balanced by one point
. moved 2 up.

Il Il L Il Il

T 1
3 4 5 6 7 8 9 10 11 12

(Van de Walle & Lovin, 2006)

Figure 2-2: The Mean as a Center of Balance

The balancing models help illustrate how the center-of-balance concept is related to the
idea of representativeness. “This conception [balance beam] should be useful because it allows
connections to be made to general knowledge of and experience with balancing, leads to
reasonably accurate approximations to the mean and helps make clear that it’s the relative
frequencies of scores that are important in determining the mean (Hardiman, Well, & Pollatsek,
1984, p. 794). The center-of-balance models describe the arithmetic mean as a location and/or

representation relevant to the data.
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2.3.3 Relationship between Fair-Share and Center-of-Balance

The relationship between the fair-share and center-of-balance conceptualizations is a focus of
this study (research question #1). Of particular interest are how the differences in the two
conceptualizations can be cognitively integrated and how this integration manages to describe
the statistical and mathematical nature of the arithmetic mean.

Figure 2-3 illustrates some conceptual differences for several mathematical contexts of

fair-share and center-of-balance in relation to the arithmetic mean.

Center-of-Balance Fair-Share
Four children bring 5, 4, 2, 1 Four children bring 5, 4, 2, 1
Real World Situation | M&M’s to school. What is the mean M&M’s to school. How can the
number of M&M’s? M&M’s be fairly shared?

“I find the number that is in the
Spoken Symbol middle or balances the number of
M&M’s each child brought”

| AP, — B ....
514372 1 5413 21

5+4+2+1=12 ... 12+4=3

“I put all the M&M’s in a pile and
divvy-them-up equally”

42

Manipulative Model Q Q Q Q H —_ Q
5 4 A 201 ED

1 PIND
ZHPIND
S8 PIND
T PIND
ZHPIND
£ FIND
T PIND

Mt Pl

5x)+(@x)+(2x)+(1-x)=0

Written Symbol 12— 4x=0 . x=3

Figure 2-3: Examples of Differences in Center-of-Balance and Fair-Share
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Most previous research on the arithmetic mean’s relationship to fair-share and center-of-
balance reports on the effects each conceptualization has on student understanding of the
arithmetic mean. While the internal connections between and within the knowledge elements of
the mathematical domain have been methodically studied (see e.g., Gray, Pinto, Pitta, & Tall,
1999 for between; Lesh, Post & Behr, 1987 for within); currently, little research has focused on
the links between the different conceptualizations, or the external connection between the
conceptualizations of fair-share and center-of-balance.

MacCullough (2007) studied how experts’ understand the arithmetic mean. She used
task-based interviews to determine how subjects understood and related specific problems
associated with the arithmetic mean. Based on her results she hypothesized how a leveling-off
strategy could connect the notions of fair-share and center-of-balance.

The experts understood the algorithm for arithmetic mean as a result of partitive division.

The data values were accumulated and then shared fairly with each data point. This was

equated to leveling-off by suggesting that the fair sharing could be done by simply

moving pieces of a bar graph (or numerical amounts) until every data point was the same
value. The activity of leveling-off allowed the experts to “visualize” the deviations from

a proposed mean. In order to obtain balance, and thus find the arithmetic mean, the pieces

over and the pieces under had to be equivalent. The experts implied that leveling-off

would find a point of balance because any amount over the mean exactly matched an

amount under the mean. In this sense, the leveling-off was the same as numerically

5 The experts were: a mathematics educator; a graduate student; a statistics educator, a statistician, and a
mechanical engineer
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cancelling deviations. When leveling-off to find a point of balance, the experts focused

on the deviations from the mean and their equivalence (p. 99).
This explanation of the external connection between fair-share and center-of-balance relies on
two key mathematical concepts. The first, partitive division, is a general mathematical concept
rooted in the conceptualization of fair-share. The second key concept is the ‘sum of the
deviations from the mean is zero.” In this case, the concept is being related to the of center-of-
balance conceptualization. The relationship between fair-share and center-of-balance to these
two concepts may indicate the external connection between fair-share and center-of-balance is

connected through either the statistical or mathematical domains.

24 A KNOWLEDGE STRUCTURE FOR THE ARITHMETIC MEAN

The research on the development of knowledge for the arithmetic mean (see section 2.1) and the
conceptualizations of fair-share and center-of-balance (see section 2.3) that relate mathematical
and statistical domains (see section 2.2) can be combined to form a hypothesized structure of
how knowledge is related for the arithmetic mean. This is shown in Figure 2-4. The structure
has two knowledge domains, mathematical and statistical. Within the mathematical domain
there are procedures and concepts related to mathematical calculation of the arithmetic mean.
The statistical domain is characterized by the concept of representativeness and how the
statistical context of the data is represented by arithmetic mean. Section 2.3.1 and section 2.3.2
described the connections between the statistical domain and each of the conceptualizations (i.e.
fair-share and center-of-balance) and the connections between the mathematical domain and

each of the conceptualizations, respectively. It is hypothesized that fair-share and center-of-
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balance conceptualizations bridge the statistical concept of representativeness to the seemingly
unrelated mathematical procedures and concepts for calculating the arithmetic mean. The
conceptualizations of fair-share and center-of-balance may function as cognitive bridges between
the statistical and mathematical domains. As described in section 2.3.3, a focus of this study is
the nature of the cognitive connection (if any exists) between fair-share and center-of-balance

conceptualizations of the arithmetic mean.

STATISTICAL

Fair Center

of
Balance

Share

MATHEMATICAL

Figure 2-4: Knowledge Structure of the Arithmetic Mean

Based on previous research it can be hypothesized that knowledge within the
mathematical domain is internally connected and most likely grows in an iterative fashion

combining procedural and conceptual knowledge (Ambrose, Back, & Carpenter, 2003; Rittle-
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Johnson & Alibali, 1999; Rittle-Johnson, Siegler, & Alibali, 2001). The knowledge relating the
statistical and mathematical domains is conceptually integrated across the disciplines and may be
externally connected. How students connect the concepts of fair-share and center-of-balance to
the mathematical domain is of interest to this study (research question #2). The following
sections describe how relationships between disciplines or domains of knowledge interact and

inform each other.

2.4.1 Relating Mathematical Concepts to Concepts in Other Disciplines

Mathematics itself is a dynamic discipline with a historic foundation and a seemingly infinite
space for growth; it also contributes to society as a tool in numerous ancillary disciplines. Fields
of study such as the physical sciences, economics, engineering, computer science, and statistics,
to name a few, heavily utilize mathematics within their discipline. Ideally, the relationship of
knowledge between mathematics and other disciplines should be conceptually integrated rather
than consisting of borrowed procedures.

In experimental physics, for example, mathematics plays an indirect procedural role of
empirically determining facts or providing a conceptual basis for physical understanding. For
example, a mathematical understanding of calculus helps explain the conceptual relationship
between acceleration, velocity, and position in mechanics. Sauer (2000) found students who
used mathematical modeling to conceptually construct formulas had a more flexible approach
and a more conceptually correct view of acceleration than did students who were given the
formulas. Sherin (2001) proposed the following explanation of the relationship between

mathematical concepts and concepts in physics:
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The use of formal expressions in physics is not just a matter of the rigorous and
routinized application of principles, followed by the formal manipulation of expressions
to obtain an answer. Rather, successful students learn to understand what equations say
in a fundamental sense; they have a feel for expressions, and this guides their work.

More specifically, students learn to understand physics equations in terms of a

vocabulary of elements that I call symbolic forms. Each symbolic form associates a

simple conceptual schema with a pattern of symbols in an equation. From the point of

view of improving instruction, it is absolutely critical to acknowledge that physics
expertise involves this more flexible and generative understanding of equations, and our

instruction should be geared toward helping students acquire this understanding (p. 479).
A study that analyzed videotapes of students solving physics problems found students with a
contextual (physics) understanding of an equation do not only use the equation at the start of the
problem, but throughout the solution process, allowing for more flexible problem solving. This
indicates the relationship between mathematical and physics concepts is iterative during the
problem solving process (Sherin, 2001).

In statistics, mathematics is often used to assist in solving a problem, but only after
considerable statistical thinking and reasoning have been accomplished (delMas, 2004). DelMas
contends that students unable to relate statistical and mathematical reasoning resort to solutions
based on “the output of associative processes that fall short of the reflection and integration
needed for complete understanding” (p. 90). Solutions based solely on the output of associative
processes, such as procedurally computing the arithmetic mean using the mean formula, are
often unable to be related to statistical concepts, such as representativeness. On the other hand,

if the associative process is linked to a concept, and that concept is linked to a statistical idea,
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then a conceptual relationship can be built between the associative process and the statistical
idea. For example, Cortina (2002) found students improved their understanding of the arithmetic
mean when they associated the arithmetic mean formula with a ratio representing a per-one
contribution to the aggregate total of the data, a fair-share notion. As previously discussed, the
fair-share notion is linked to the statistical idea of representativeness. The linking of the
arithmetic mean formula to the notion of fair-share, followed by connecting fair-share to the idea
of representativeness, cognitively connects the mathematical notion of the arithmetic mean
formula to the statistical idea of representativeness. A caveat, Hardiman, Well, and Pollatsek
(1984) found using a balance beam analogy to represent the arithmetic mean improved a
student’s understanding of the mean, but only to the degree that the center-of-balance model and
arithmetic mean formula were conceptually understood as separate entities. Thus, the learning
that delMas describes and Cortina demonstrated is limited by the understanding of concepts
within the domains and cognitive bridges; not just by the understanding of their connection.
Therefore, the concepts inherent in the domains and cognitive bridges themselves need to be
developed for optimal understanding to emerge.

The research studies presented above indicate a more developed conceptual
understanding of the mathematical knowledge related to complementary fields leads to an
increased conceptual understanding of the knowledge within the related field (e.g. physics and
statistics). As with the iterative relationship between procedural and conceptual knowledge
(Ambrose, Baek, and Carpenter, 2003; Rittle-Johnson & Alibali, 1999; Rittle-Johnson, Siegler,
& Alibali, 2001), it can be hypothesized that not only does the related domain knowledge

coalesce as conceptual understanding of the mathematics increases, but the contextual
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representation of the mathematics within the related domain could strengthen the conceptual

understanding of the mathematics.

2.4.1.1 Cognitive Blending

Fauconnier and Turner (1998) have described the connections that conceptually integrate
domains for analogy or metaphor as cognitive blending. In cognitive blending, inputs from each
domain are connected in a blended space at various levels of abstraction to create an emergent
structure not directly available from the input domains alone. “A particular process of meaning
construction has particular input representations; during the process, inferences, emotions, and
event-integrations emerge which cannot reside in any of the inputs; they have been constructed
dynamically in a new mental space—the blended space—linked to inputs in systematic ways”
(Fauconnier & Turner, 1998, p. 135).

Bing and Redish (2007) provide examples of how cognitive blending can be used to
explain the connection between mathematical concepts and physics concepts. They analyzed
data from video tapes of physics and engineering mechanics students completing homework
problems. Evidence suggests students combined particular concepts in mathematics with
physical concepts to produce a blended space describing the concept of air drag. Figure 2-5 is a
depiction of a cognitive blend between the mathematics and physics domains for the concept of

air drag.
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Physics

Mathematics

e Positive and negative e Direction
quantities (up/down)

¢ Rules of addition, e Viscous and
subtraction, and gravitational
multiplication forces

e Algebraic symbolism e Velocity
Fandv

Cognitive Blend

e + mean upward - means downward

¢ F and v symbols carry direction
information with their sign

e F, = -bv encodes physical direction
relations via multiplication

Figure 2-5: Mathematics/Physics Blending Example

The mental space provided by the cognitive blend provides a means to achieve the
complex integration of mathematical and physical concepts. Bing and Redish (2007) found
difficulties by students in understanding the concept of air drag were not from lack of
prerequisite knowledge of mathematics or physics, but from an inappropriate integration of two
well-established mental spaces. They concluded that “awareness of a cognitive blending
framework can help instructors more readily understand how students are thinking and offer
appropriate guidance for the situation at hand” and “help researchers in providing a theoretical
framework for description of student thought and perhaps even a structure for understanding
what cues prompt students for blending in particular ways” (p. 29). Therefore a better
understanding of the blending spaces or providing mental spaces for blending to occur can help

in instruction and student understanding.

43



The next section relates how the cognitive bridges of fair-share and center-of-balance
might be used as blending spaces for the mathematical and statistical domains of the arithmetic
mean. Inputs from each domain, internally linked to the concepts of fair-share and center-of-
balance, are dynamically blended enabling a more complete understanding of the arithmetic

mean.

2.4.2 Using Fair-Share and Center-of-Balance for Connecting Domains

As discussed is section 2.2.3, fully comprehending all aspects of the arithmetic mean involves
connecting knowledge from mathematical and statistical domains. The conceptualizations of
fair-share and center-of-balance may provide cognitive spaces to blend procedures and concepts
from the mathematical and statistical domains. In the case of the arithmetic mean, the cognitive
spaces for blending the two domains are themselves well defined concepts (i.e. fair-share and
center-of-balance). This is different than the blending spaces the physics students in Bing and
Redish’s (2007) study specifically constructed between the physics and mathematics domains.
The advantage (or disadvantage) of using a well defined cognitive blending space versus a
constructed space has not yet been reported in current research. Results from this study may
contribute to this discourse. An example of how the concept of center-of-balance might be used
to cognitively blend knowledge from the mathematical and statistical domains is demonstrated in

Figure 2-6.
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Goal: | Relate the arithmetic mean formula to the arithmetic mean property: the sum of the deviations from the
mean is zero

Method: | Algebraically manipulate the arithmetic mean Use the notion of center-of-balance and the block-
formula to represent the property stacking technique to demonstrate the property

Actions: : 1) The arithmetic mean formula (or an example
that utilizes it) can be depicted as a block
stacking diagram

2) The blocking stacking technique portrays the
notion of center of balance

3) Center of balance can help conceptualize the
sum of the deviations from the mean is zero

Accessed
Knowledge:

STATISTICAL

Figure 2-6: Interactions of Internal/External Connections

The examples in Figure 2-6 represent plausible conceptualizations of the arithmetic mean
property, ‘the sum of the deviations from the mean is zero’ (Strauss and Bichler, 1988). The first
example utilizes an algebraic manipulation of the arithmetic mean formula to demonstrate that
the property is inherent in the formula. All of the knowledge necessary to complete the
calculation resides in the mathematical domain. There is no evidence that any idea of

representativeness would be apparent to a student exposed to this derivation. The second
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example utilizes the block-stacking technique and the notion of center-of-balance to build the
representative sense of the property; ‘the sum of the deviations from the mean is zero.” By
utilizing the concept of center-of-balance to blend mathematical and statistical domains, the
arithmetic mean property has an opportunity to be conceptualized and connected to both domains
as well as to the concept of center-of-balance.

A better understanding of the relationship and connection between the blending spaces of
fair-share and center-of-balance, and how they relate to the relevant mathematics, could help in
pedagogically presenting a comprehensive picture of the arithmetic mean. The following section
indicates how incorporating the concepts of fair-share and center-of-balance into instruction of
the arithmetic mean increases conceptual understanding and reinforces the statistical concept of

representativeness.

2.5 INSTRUCTIONAL INVESTIGATIONS

A goal of research regarding the arithmetic mean is to improve students’ understanding. A
necessary part of improving understanding is to improve the teaching of the arithmetic mean; this
entails advancing teacher understanding, teaching techniques, instructional materials, and
assessment. Improvement in statistics education parallels current efforts of reform in
mathematics education that focus on problem solving, conceptual understanding, and technology
(Garfield, 1995; Greer, 2000). Statistics also provides a vehicle to contextualize mathematics
into “real-world” situations.

Important to instruction of the arithmetic mean is presenting situations and problems that

contextually help the students conceptualize it. “The continual shuttling backwards and forwards

46



between thinking in the context sphere and statistical sphere” utilizes statistical thinking that an
expert statistician would use, and also contextually bases the results and conclusions (Wild &
Pfannkuch, 1999, p.228). This contextualization was an essential part of a study by McClain and
Cobb (2001) that found middle school students “reconceptualized their understanding of what it
means to know and do statistics” (p. 126) when given the opportunity to explain and justify their
answers within the context of the problem.

Students tend to think of the arithmetic mean as a procedure rather than a tool for data
analysis (McGatha, Cobb, & McClain, 2002). To remedy this, the researchers suggest that
instruction treat data analysis as an inquiry rather than as a procedure. “In cases where there is a
conflict between intuitive estimates and formal measures, they [students] should be encouraged
to find causes of that conflict rather than simply replacing their intuitive estimates with formal
tools that produce ‘correct’ school-sanctioned answers” (Groth, 2005, p. 14). Students develop a
more conceptually based notion of the arithmetic mean if they are permitted to make many
informal estimates based on their intuitive notion of average rather than use a formal measure,
such as the arithmetic mean formula, to calculate an answer.

Previous research indicates the nature in which a teacher presents the arithmetic mean,
mathematically and/or statistically, and the focus of connection between the mathematical and
statistical domains, fair-share or center-of-balance, impacts the outcome the instruction.
Researchers such as Mokros and Russell (1995), Pollatsek, Lima, & Well (1981), and Strauss
(1987) emphasized the mean as a balancing-point or fair-share. The conceptualization of center-
of-balance can be modeled as a balance diagram or block-stacking while the conceptualization of
fair-share can be modeled as either a signal-in-a-noisy process or block-leveling as previously

discussed (see sections 2.3.1.2 and 2.3.2.2). Hardiman et al. (1984) performed an experimental
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study in which students in two groups were given either instruction on a balance model or were
placed in a control group after having solved several mean and weighted mean problems on a
pretest. The results indicated the balance model instruction “led to better understanding of the
weighted mean” (p.799). The equal-redistribution model has also been linked to student
learning. Cai and Moyer (1995) found students use three different mathematical representations,
verbal (written words), symbolic (mathematical expressions), and pictorial (drawings) when
solving problems related to the arithmetic mean. The representations that students utilized
appeared to be directly related to their chosen solution strategy. For example, students that used
an add-and-then-divide strategy most often utilized a symbolic representation of the arithmetic
mean formula. Students that used a leveling strategy most often utilized a pictorial
representation. Students that exhibited a higher conceptual understanding of the arithmetic mean
often used multiple representation strategies in their solutions. The results of the study showed
an increase in the conceptual understanding of the mean after the open-ended problem solving
instruction. George (1995) found that students exposed to a reform curriculum that encouraged
constructing knowledge exhibited a better conceptual understanding of the mean than students
who were taught the add-and-then-divide procedure. In this case, the reform curriculum was
Visual Mathematics which introduced the mean using the equal-redistribution model. A study
presenting the fair-share conceptualization of the arithmetic mean as a signal-in-a-noisy-process
found several students utilized higher level statistical thinking in contextualizing arithmetic mean
problems using this model (Groth, 2005).

In conclusion, research studies have indicated that students’ misconceptions regarding the
mean are strong and resilient. They are not easily changed even if faced with contrary evidence

(Garfield, 1995). Effective instructional practices related to the arithmetic mean mimic the
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qualities and activities of reform mathematics teaching. Instruction that contextualizes problems
and relates the arithmetic mean to specific statistical models has led to improved student
understanding.

One question in statistics education that previous research has not answered is which
conceptualization, fair-share or center-of-balance, and which model (e.g. signal-in-a-noisy-
process, redistribution of blocks, balance beam, block-stacking) related to these concepts, is most
effective in connecting the representative nature of the arithmetic mean to its mathematical

constructs. The study described here is meant to resolve this question.

26 SUMMARY AND IMPLICATIONS OF LITERATURE

Among averages, the arithmetic mean is unique in that the conceptual basis from which it is
developed, representativeness, is not typically developed before the procedure to calculate it is
introduced. Without connections to the statistically founded concept of representativeness, one’s
knowledge of the arithmetic mean seems limited to computation of the mathematical formula;
thus allowing little or no access to mathematically and statistically rich or adaptive problems,
including those that arise in our everyday lives.

Statisticians contend that statistics is not a subfield of mathematics, but rather its own
field that utilizes mathematics, much like physics or economics. A statistician understands the
concepts of statistics and the significance of statistical thinking and uses the tools of mathematics
to solve or predict within the context of a problem. This idea suggests the need to develop a

statistical sense of the arithmetic mean before a procedural technique is introduced.
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Several studies have researched the type of knowledge, procedural or conceptual, that
students of different age groups utilize to solve arithmetic mean problems (Cai & Moyer, 1995;
Cai, Moyer & Grochowski, 1999; George, 1995; Groth, 2005; Hardiman et al. 1984). Research
in mathematics education indicates these two types of knowledge work together to form a
complete understanding of a particular topic. In terms of the arithmetic mean, procedural and
conceptual knowledge may appear to be a dichotomy, with procedural knowledge hindering the
conceptual understanding of the mean. A possible explanation to this inconsistency is that the
statistical conceptual knowledge of the arithmetic mean resides in a different domain than the
procedural and conceptual knowledge that shape its mathematical constructs. The notion of
cognitive blending may offer insight as to the growth of knowledge with respect to the arithmetic
mean.

The concepts of fair-share and center-of-balance offer a cognitive space for the blending
of the mathematical and statistical domains of knowledge intrinsic to the arithmetic mean.
Research has indicated how each concept is individually related to both the mathematical and
statistical domains, but offers little as to how the concepts of fair-share and center-of-balance are
cognitively related to each other. It is also unclear as to how understanding of statistical
concepts enhances the mathematical knowledge related to the arithmetic mean, and conversely,
how mathematical knowledge shapes the understanding of statistical concepts. While problem
solving skills and understanding of the arithmetic mean increase with age, it is uncertain if this
growth is due to a better understanding of mathematical knowledge, an increase in the
understanding of the statistical concepts, or a combination of both. A better understanding of
how mathematical and statistical knowledge relate, interact, and grow could lead to improved

pedagogy of the arithmetic mean.

50



3.0 METHODOLOGY

The goal of this study is to identify and describe the cognitive relationship between the concepts
of fair-share and center-of-balance, as well as the cognitive relationship between these
conceptualizations and the mathematical domain. These relationships were described in two
ways: (a) the extent knowledge of cognitive blending spaces, such as fair-share and center-of-
balance, affect each other and/or affect knowledge of mathematical concepts related to the
arithmetic mean; and (b) the nature of the cognitive relationships that exist between the
conceptualizations of fair-share and center-of balance, and between these conceptualizations and
the mathematical domain.

This chapter begins with a general discussion of the research design for this study.
Second, the chapter details the demographics of the participants involved in the research study.
Third, aspects of data collection, data coding, and data analysis are systematically outlined. Data
collection includes the specifics of the instrument and data gathering procedure. The section
concerning data coding reveals the mechanisms of the rubric utilized to quantify the data and the
coding scheme used to qualify the data. The final section dealing with the data, data analysis,
details the statistical testing and qualitative examination of the data. Results from a pilot study
that influenced the collection, coding, and analysis of the data are presented throughout the

chapter.
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3.1 RESEARCH DESIGN

Examining the thought and solution processes of individuals as they solve problems is an
effective method for eliciting understanding about their mathematical knowledge. Mathematical
knowledge is constructed from cognitive relationships among concepts that exist in an
individual’s knowledge schema. Using instructional interventions can impact an individual’s
mathematical knowledge by manipulating, reinforcing, or increasing existing cognitive
relationships in their knowledge schema. Comparing thought and solution processes before and
after instructional interventions can illustrate the impact the new knowledge has on the existing
knowledge schema. The changes, if any, in the knowledge schema represent the cognitive
relationships between the induced knowledge of the knowledge intervention and the existing
knowledge.

This study utilized a pre- and post- test design of randomly assigned participants
belonging to one of three groups: (a) those given access to instruction on fair-share knowledge,
(b) those given access to instruction on center-of-balance knowledge, and (c) a control group
receiving instruction on general problem solving heuristics. The methodology of protocol
analysis was used to gather, code, and analyze the data. Data collection consisted of think-aloud
verbal protocols gathered from pre- and post- tests of arithmetic mean problem solving sessions
with an instructional intervention between the two test administrations. The data was coded for
evidence of knowledge of different domains (i.e. mathematical or statistical) and different
conceptualizations (i.e. fair-share and center-of-balance) as proposed in the knowledge structure
for the arithmetic mean (see section 2.4). The coded data was analyzed using two different, but
related schemes. The first scheme used statistical analysis to quantitatively locate any significant

relationships between the concepts of fair-share and center-of-balance; along with any

52



connections between these and mathematical concepts. The second scheme included
qualitatively analyzing the data to explore any cognitive relationships identified in the initial
statistical analysis, or any cognitive relationships apparent in the verbal protocols but not
detected by the statistical analysis or in the initial pilot study. This two-scheme mixed-method
approach helped ensure thorough analysis of the data.

Mixed-method methodologies, or combining quantitative and qualitative methods, have
been used by researchers to deepen the insights from and expand the scope of their studies
(Sandelowski, 2000). Chi (1997) explains the rational for using a mixed methodology,
particularly in the case where verbal protocols are used:

There are clearly many advantages and shortcomings to both qualitative and quantitative

methods. The main advantage of qualitative research is that it can provide a richer and

deeper understanding of a situation. Moreover,...many skills are executed in a very
different way in context than in a sterile laboratory environment. However, qualitative
methods usually suffer form subjective interpretation and nonreplicability. Quantitative
methods, on the other hand, have the advantage of objectivity and replicability, but the
shortcoming is that one can only make conclusions about the specific hypothesis at hand.

Furthermore, the sterile laboratory environment of experimental studies limits the

generalization of the results to a real-world context. Clearly, there is a need to blend the

two methods in such a way to remove each method’s shortcomings. The verbal analysis
method attempts to satisfy these goals by removing subjectivity and yet maintaining the

richness of context (p. 280).

There are three primary reasons for integrating quantitative and qualitative methods in sampling,

data collection, data coding, and/or data analysis (Greene, Caracelli, & Graham, 1989):
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1) Interpretation — using qualitative data to help interpret, clarify, explain, or otherwise more

fully elaborate the results of quantitative analysis

2) Confirmation — treating qualitative and quantitative data with equal weights to achieve or

ensure corroboration of data or convergent validation

3) Development — using results from qualitative analysis to generate a hypothesis or guide
the use of additional sampling, data collection, and analysis techniques that will be

tested using quantitative methods

The mixed-methodology of this study was applied at the data coding and data analysis stages.
The data, transcripts of problem solving verbalizations and corresponding written solutions, were
quantified using a rubric for statistical analysis and qualified using a coding scheme that
identified knowledge usage. Verbal protocols with written artifacts were utilized to interpret,
clarify, explain, or otherwise more fully elaborate the results of the statistical analyses. The
verbal protocols and written artifacts supplied insight into the cognitive processes suggested by
the statistical analyses.

The quantitative and qualitative analyses were combined to answer the following research
questions:

1) How is knowledge of fair-share and center-of-balance cognitively related to one

another? In particular,

a) What effect does instruction of the fair-share conceptualization of the arithmetic

mean have on knowledge of the center-of-balance conceptualization?

b) What effect does instruction of the center-of-balance conceptualization of the

arithmetic mean have on knowledge of the fair-share conceptualization?

2) How is knowledge of fair-share and center-of-balance cognitively related to the

mathematical domain? In particular,
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a) What effect does instruction of the fair-share conceptualization of the arithmetic
mean have on knowledge of mathematical concepts associated with the arithmetic

mean?

b) What effect does instruction of the center-of-balance conceptualization of the
arithmetic mean have on knowledge of mathematical concepts associated with the

arithmetic mean?

3.2 PARTICIPANTS

Undergraduate liberal arts students tend to generate a broad range of mathematical and statistical
knowledge. A breadth of knowledge regarding the arithmetic mean was necessary in order to
answer the research questions in this study. The chosen sample population of participants was
enrolled in a liberal arts mathematics course at a small private university. The first term of the
course fulfilled the only required mathematics credits for most students enrolled (education
majors are required to take a second term). Students take the course based on their major (e.g.
education, journalism, humanities, and performing arts). Their mathematical and statistical
backgrounds varied depending on the level of mathematics achieved at the high-school level. By
design, none of the participants had previously taken a formal statistics course. One part of the
liberal arts mathematics course in which the students were enrolled is devoted to statistics, and,
in particular, one lecture focuses on measures of central tendency including the arithmetic mean;
that section, however, was not yet covered at the time of this study.

Sixty potential participants for the proposed study were enrolled in three sections of the

liberal arts mathematics course. Of that initial group, thirty-eight agreed to participate in the
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research study, and thirty were randomly selected to partake in the study. Each participant was
given a participant-number alias to identify him or her during data coding and analysis.

Previous qualitative research studies attempting to gain insight about knowledge of the
arithmetic mean have utilized similar sample sizes. These include Pollatsek, Lima & Well
(1981) who used think-aloud protocols and follow-up interviews to examine computational
versus conceptual understanding of the arithmetic mean for seventeen undergraduate students;
Mokros and Russell (1995) engaged twenty-one subjects in task-based interviews to gather data
about concepts of average; and Groth (2005) who used tasked-based clinical interviews to
investigate the “intricate thinking processes” of fifteen subjects as they solved arithmetic mean
problems. Examples of studies in mathematics education and statistics education that have
utilized the methodology of verbal protocols to elicit data, but are not specifically about the

arithmetic mean, are summarized in Table 3-1.

Table 3-1: Verbal Protocol Study Sample Sizes

Author(s) Description Sample Size

Conducted think-aloud protocols of college students
Clement, J., (1982) solving algebra word problems to find the cognitive 15
processes connected with particular misconceptions.

Used think-aloud problem solving sessions in two
studies to investigate the relationship between the
justification of a choice of solution method and the
correctness of that choice in statistical problems.

Allwood, C.M., (1990) 16 and 20

Analyzed think-aloud protocols of middle-school
Montague, M. & Applegate, B., (1993)  students solving mathematical problems to identify 30
solution methods of students with different abilities.

Investigated the cognitive validity of scientific and
Thelk, A. & Hoole, E. (2006) quantitative reasoning items using think-alouds 27
collected from first-year university students.
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The sample size for the current study was similar to the sample sizes of the eight studies
described in Table 3-1. The verbal protocols provided rich detail regarding the knowledge used
by the participants while solving the arithmetic mean problems. Although, the sample size was
not sufficient to achieve the typically accepted power for quantitative statistical analysis, it was
chosen to balance the quantitative and qualitative aspects of the study. In particular, the richness
of the data provided by the verbal protocols compensated for the statistical deficiency of the

sample size in the overall analysis.

3.3 DATACOLLECTION

This section details the procedures that were used in the collection of data. The methodology of
protocol analysis (Newell & Simon, 1972) was employed to elicit knowledge of the particular
conceptualization and domain accessed by participants while solving the arithmetic mean
problems on the instrument described in section 3.3.1. Protocol analysis uses think-aloud
sessions as a means for gathering data.

Protocol analysis is a rigorous methodology for eliciting verbal reports of thought
sequences as a valid source of data on thinking (Ericsson, 2002). The idea of protocol analysis
was first developed by Newell and Simon (1972). Ericsson and Simon (1980) first offered
substantial empirical proof of the validity of verbal think-aloud protocols as data. That is, that
verbalizing ones thoughts, without ancillary descriptions or explanations, does not alter the
cognitive sequence of thought, but engaging in specific thought activities (i.e. describing or
explaining) changes the cognitive process (Ericsson & Simon, 1993). Therefore, a key

component of protocol analysis is the subject’s ability to continually think aloud while

57



participating in a task (e.g. problem solving) focusing solely on their solution process without
being interrupted and asked to describe or explain their thoughts. Ericsson and Simon outline a
systematic method for collecting the verbal data that is reliable and valid. This includes
providing adequate instruction and practice for the participants, minimizing distractions in the
research environment, and developing a clearly focused task.

For this study, two types of data were collected: (a) verbal protocols, along with (b)
written artifacts to capture the attributes of the mathematical and statistical knowledge
demonstrated during the problem solving process. The nonverbal, or written solution,
documented the symbolic and pictorial thoughts of the participant and provided a familiar
vehicle to stimulate the problem solving process. Schoenfeld (1985) points out that the
advantage of a written artifact along with the verbal protocol in mathematical problem solving is
that the verbalization alone “rarely serves to elucidate their [participants’] workings” (p. 282).
The purpose of participant-generated verbal conceptualization during the problem solving
activity was to gather the most accurate representation of the participant’s thought process. An
important feature of protocol analysis is that, unlike a clinical interview, it is a noninterventionist
method used to eliminate the risk of altering the student’s solution path and eliminate any
potential for a researcher-participant generated training effect (Schoenfeld, 1985).

The noninterventionist data collection method of protocol analysis served as a controlled
means to elicit the thought process of the participants. It provided an unobtrusive and research-
grounded method to gather data that revealed the accessed knowledge and cognitive processes of

the participants as they solved the arithmetic mean problems.
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3.3.1 Instrument

Of principle interest in this research study was the cognitive relationship between the
conceptualizations of fair-share and center-of-balance, as well as the cognitive relationship
between these conceptualizations and the mathematical domain in a conceptually rich problem
solving environment. Thus, the tasks or problems were designed to give participants the
opportunity to demonstrate knowledge relevant to the conceptualization or domain of interest
during the solution process.

Several sources were explored in an effort to locate problems that met the above criteria.
These sources included:

1) Problems from previous research studies including:
a) Cai, Moyer, & Grochowski, 1999
b) MacCullough, 2007
c) Mevarech, 1983
d) Mokros & Russell, 1995
e) Strauss & Bichler, 1988

2) Problems from published textbooks including:
a) Aufmann, Lockwood, Nation, & Clegg, 2007
b) Freedman, Pisani, & Purves, 1998

3) Problems generated by the author for particular use in this study

4) Problems proposed by an expert in statistical education for particular use in this study

5) Problems proposed by an expert in mathematics for particular use in this study
The problems were informally piloted and responses analyzed by the author and an independent
expert in mathematics education. The problems were categorized into three groups based on the
analysis of the detailed written solutions: (a) those connected to the conceptualization of fair-

share, (b) those connected to the conceptualization of center-of-balance, and (c) those connected
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to mathematical concepts of the arithmetic mean. The three problems in each of the three
categories, fair-share, center-of-balance, and mathematical concepts of the arithmetic mean,
identified as most useful in revealing conceptual understanding were selected for use in a formal
pilot study. One purpose of the pilot study was to select the best two problems within each
category.

The pilot study adhered to the procedures for data collection, data coding, and data
analysis that were used in the current study. The solutions (i.e. verbal protocols and written
work) from the pilot study were analyzed on two dimensions:

1) Validity — The problem’s solution elicited verbal protocols that contained identifiable

knowledge segments.

2) Reliability — The problem’s predominant solution approaches included knowledge
relevant to the problem classification (i.e. fair-share, center-of-balance, or mathematical

concepts)
On the basis of the pilot, two of the three problems in each category, for a total of six, were
selected for use in the current study. These six problems are described in the subsequent sections
while Appendix A identifies all of the problems piloted that were not used in the study and a

rationale for their exclusion.

3.3.1.1 Fair-Share Problems

Fair-share problems are those tasks that were most likely to be solved using one of two
models of fair-share, redistribution or signal-in-a-noisy-process. Many fair-share problems can
be solved efficiently using the arithmetic mean formula. Such solutions could be the result of
conceptual understanding of fair-share, or it is also plausible that such solutions are indicative of

simply a procedural understanding of the arithmetic mean formula. Problems that involve
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constructing data from a given mean, rather than solving for a mean from given data, are more

statistically challenging and are more likely to elicit a conceptual solution because they

encumber the ability to simply use the arithmetic mean algorithm (Mokros & Russell, 1995;

pilot). Therefore, the fair-share problems selected for this study were missing data problems

associated with the models of redistribution and signal-in-a-noisy-process. The two problems

used in this study are shown below.

Four children each had a stack of blocks as shown below. When a fifth child sat down with her
own set of blocks the mean number of blocks the children had became seven. How many
blocks did the fifth child have?

Fair-Share
Problem 1
FS1
?
Child #1 Child #2 Child #3 Child #4 Child #5 Mean
In a chemistry lab a student weighed a specimen ten times. The results of those weighings are
presented in the chart below. The student lost the 3 and 6™ weighings of the specimen after she
calculated the mean of the ten weighings to be 3.2 as indicated by the dark line in the graph
below. What could have been the values for the 3™ and 6™ weighings if the mean is 3.2?
Fair-Share »
Problem 2 . //\
FS2 >

Weighting Number

FS1 is a task used by Cai, Moyer, and Grochowski (1999) in their research study on the

conceptual understanding of average. Results from that study indicated students either used a

block-leveling or redistribution approach based on a statistical understanding of the mean, an
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algebraic approach based on the arithmetic mean formula, or a guess-and-check strategy that was

either conceptually or procedurally based. The different approaches varied with the type of

instruction the students had previously experienced. Although the pilot work for this current

study did not focus on prior instruction, participants’ written solutions verified the three

systematic approaches to solving the problem. The problem was piloted nine times. The results,

presented in Table 3-2, show that the majority of solutions utilized, to varying degrees,

knowledge of fair-share.

Table 3-2: FS1 Pilot Solutions

and-check plan to find a

Method Number
of of Description Example
Solution Occurrences
Utilized some method of -~ -
block leveling or H | E
) redistributing the data so = =
Fair-Share 7 that each n had an equal = o
amount; more precisely 7 L
equal to the mean ) ) ) QOO
16
Utilized an algebraic %E E E ¢ E
approach to the arithmetic FEEE LR
Mathematical 2 mean formula or a guess- BT ]

solution

The results obtained by Cai et al. (1999) and this pilot indicate problem FS1 is a valid task for

obtaining data regarding knowledge utilized in solving the problem.
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FS2 is based on a signal-in-a-noisy-process task originally designed by Konold and
Pollatsek (2002) and used in a study by Groth (2005). Originally, only the line plot of all of the
data points was given and students were asked to find the mean. This original version of the
problem was piloted to ten students; seven of whom numerically translated the data into the
arithmetic mean formula inhibiting the analysis of conceptual understanding. Bar lines were
added and the students were asked to find missing data points to reduce the likelihood that it
would be solved using a procedural computation. The current format was piloted to eight

students; only one student attempted to use a formulaic procedure. The solution methods are

indicated below in Table 3-3:

Table 3-3: FS2 Pilot Solutions

Method Number
of of Description Example
Solution Occurrences
Utilized some method of
redistributing the data so /|
Fair-Share 6 that each n had an equal LI
amount; more precisely /]
equal to the mean "
Utilized a method that w ~| ha*
indicate the mean was a PR l % ER
Center-of-Balance 1 “balancing point” with j - g 8
equal amount of data above HE H % " o
and below the mean e o P OSET ww ,
L (&
FLGT I gt 2517 70 F Feo s
7
Utilized arithmetic mean P
Mathematical 1 formula to solve for missing 7 P
data points Zgrkrms 222
472
Wz
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The results obtained by Konold and Pollatsek (2002) and Groth (2005) indicate signal-in-a-
noisy-process problems, similar to FS2, are valid indicators of fair-share knowledge in arithmetic

mean problems.

3.3.1.2 Center-of Balance Problems

Center-of-balance problems are characterized by solution methods involving the idea of
balance or use of a block-stacking model. As with fair-share problems, many center-of-balance
problems can be solved effectively using the arithmetic mean formula. Again, such solutions
could indicate a conceptual understanding of center-of-balance or simply a rote understanding of
the arithmetic mean formula. Consequently, center-of-balance problems were selected after

problems in previous research studies and problems from piloted instruments were carefully

analyzed.
Center
of —
Balance Given three numbers, (a,b,c), and the mean of these numbers is X. We know that a is 3 greater
Problem 1 than X and b is 7 greater than X. How does the value of ¢ relate to X ?
CB1
Center
of As a worker in a grocery store you are asked to place price stickers on nine bags of potato chips so
Balance . 7 ;
Problem 2 that the mean price of the chips is $1.38. You can not price any bag at exactly $1.38. You also
must price one bag at $1.30 and a second bag at $1.35. Create the remaining seven price stickers
CB2

CB1 was developed by the researcher for use in this study. It was piloted twelve times
with written solutions in two separate problem solving sessions and three times using verbal

protocols. Table 3-4 details the results of the pilot work.

64




Table 3-4: CB1 Pilot Solutions

Method Number
of of Description Example
Solution Occurrences
Used some method of « b
Center-of-Balance 12 balancing or centering the c/r
data around the mean.
Used algebraic equation to
correctly solve the problem K ow Xr3axeyaral
. 1). Used nonsensical 3 A ¥
Math ! . . 6
athematica 3 arithmetic to  incorrectly 370 X ocsray

attempt the problem (2), not 3 Y= -lo

shown.

The consistency of the results in all three pilot applications suggests it is a valid task for
measuring the conceptualization of center-of-balance knowledge of the arithmetic mean.

CB2 is an amalgamation of two problems used by Mokros and Russell (1995) to study
students’ concepts of average and representativeness. One problem in their study made use of
the potato chip pricing context describe in CB2, while a second problem retained the pricing
constraints of CB2. They found solutions could be categorized into two groups: (a) those that
indicated a non-representative nature of the arithmetic mean, and (b) those that indicated the
arithmetic mean as a representative number. The non-representative nature of the arithmetic
mean was most often manifest as understanding the mean to only be an algorithmic process.
Those who saw the mean as a representative number indicated the mean as a center-of-balance or
a reasonable mathematical representation of the data set. The problem was successfully used by

Mokros and Russell to determine the knowledge used in the solution process and, therefore, is a
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valid measure of such knowledge. The problem was piloted three times using verbal protocols

and three times with detailed written solutions as shown in Table 3-5.

Table 3-5: CB2 Pilot Solutions

Method Number
of of Description Example
Solution Occurrences
Used some method of w6 s \Ww?
Center-of-Balance 4 balancing or centering the 1..35::'::

Fair-Share

Mathematical

data around the mean.

Used total sum of data
points and a redistribution to

correctly solve the problem.

Used nonsensical arithmetic
to incorrectly attempt the
problem.

IS NP o BLE = 3

13305021292 [ IR b Y
-t e
-5/ o
.71 Vi v
ey s
CHy]
_S.[_o
q.17
1.38
A3 L35=q:=15
.80

\S cenly

3.3.1.3 Mathematical Concept Problems

Mathematical concept problems were developed to

mathematical concepts integral to the arithmetic mean.

elicit knowledge of particular

The mathematical concept problems

attempt to capture participants’ use of mathematical concepts while solving problems about the

arithmetic mean.
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Mathematical
Concept . .
What value can be added to a data set so that the arithmetic mean of the data set does not change?
Problem 1
Why?
MC1
Mathematical
Concept . . .
The mean of five numbers is 20. The sum of four of these numbers is 75. What is the value of the
Problem 2
fifth number?
MC2

MCI1 was piloted on two informal pilot instruments and in the pilot study. Results from
all three pilots indicated participants were most successful when their mathematical solutions
were guided by the statistical conceptualization of center-of-balance. Results from the pilot
study for MC2 indicated participants were more successful in conceptually developing a solution
if they couched the mathematics within the statistical conceptualizations of fair-share. Table 3-6

summarizes the results of the pilot work for the mathematical concept problems.
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Table 3-6: MC Pilot Solutions

Method Examples
of Description
Solution MC1 MC2
MCI: Stated the middle number was
the answer and used inductive () X+ytzra:Th
. edrdag o 2.5
reasoning to show proof. ~ G
Mathematical
MC2: Unsuccessfully used the 51 s X+yr2rasb=20
arithmetic mean formula to find the 3 3 5
missing data point.
O
. , . RO A
MC2: Used notion of fair-share to ~0 G }\»
Mathematical calculate total sum was 100. 1o example <. s (,,' :
Fair-Share ~ Subtracted total sum of four numbers to P o ot
find the fifth. \-
Mathematical MCI1: Used center-of-balance example
Center to illustrate one could add the mean 10 example
of multiple times to a data set and not 17294 B P
Balance change the mean E
s I
MCI1: Struggled to use an example
based on center-of-balance to illustrate g\=
the mean was the answer. Used a
second fair-share strategy to effectively ~ . g
Mathematical ~demonstrate inductive proof. ~
Mixed 5 (8
FS and CB -

MC?2: Used notion of fair-share to
create a data set. Used notion of
center-of-balance to center data round
the mean.
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3.3.1.4 Assignment of Problems

Problem order was assigned to the pretest and posttest by purposeful random selection.
The first problem participants solved was randomly selected from the two problems of the same
statistical conceptualization (i.e. fair-share or center-of-balance) as their respective instruction.
A problem based on the conceptualization respective to instruction was chosen first to precipitate
use of that knowledge in the problem solving process. The next three problems alternated
between the two statistical conceptualizations to minimize direct carry-over solution strategies.
The last two problems on the instruments were randomly ordered mathematical concept
problems. The mathematical concept problems were offered last to facilitate the possibility of
multiple conceptualizations within their solutions. The identical pretest and posttest were
administered to all participants in the fair-share and center-of-balance instructional groups. The
control group randomly received one of the two, fair-share instructional group’s or center-of-
balance instructional group’s, versions of the instrument. Table 3-7 summarizes the order of

problems based on instructional groups.

Table 3-7: Assignment of Problems

Fair-Share Group Center-of-Balance Group
FS1 CB1
CBI1 FS2
FS2 CB2
CB2 FS1
MC2 MC2
MCI1 MCl1
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These six problems were selected because their constructs compelled participants to
utilize knowledge from a particular knowledge domain, mathematical or statistical, or from a
particular conceptualization, fair-share or center-of-balance. The pilot work revealed various
correct approaches to solving the problems along with many incorrect paths or ill-conceived
starting points. It also suggested that participants who understood the representative nature of
the arithmetic mean were able to use the conceptualizations of fair-share and center-of-balance
or mathematical concepts related to these conceptualizations to create solutions with varying

representations.

3.3.2 Procedure

In this study each participant completed a pretest consisting of a think-aloud problem solving
session of the tasks on the instrument described in section 3.3.1. Next, approximately two weeks
later, each participant was randomly assigned to one of three instructional treatment groups, fair-
share, center-of-balance, or control. The fair-share group received individual instruction
associated with fair-share knowledge and related mathematical concepts integral to the
arithmetic mean. Similarly, the second instructional group, center-of balance, received
individual instruction associated with center-of-balance knowledge and related mathematical
concepts as they pertain to the arithmetic mean. The control group received individual
instruction of general problem solving heuristics. Last, within one week of exposure to the
instruction, each participant completed a posttest think-aloud problem solving session identical
to the pretest. Twenty-nine of the thirty initially chosen participants completed all three phases
of the study: pretest, instruction, and posttest. Figure 3-1 depicts the general model of the

research design and procedure.
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29 Participants

Random Assignment
10 Participants 10 Participants 9 Participants
Pretest Pretest Pretest
Six Questions Six Questions Six Questions
Two each for Knowledge of Two each for Knowledge of Two each for Knowledge of
Fair-Share Fair-Share Fair-Share
Center-of-Balance Center-of-Balance Center-of-Balance
and and and
Mathematical Concepts Mathematical Concepts Mathematical Concepts

Fair-Share
Instruction

Center-of-Balance
Instruction

Control
Instruction

10 Participants 10 Participants 9 Participants
Posttest Posttest Posttest
Six Questions Six Questions Six Questions
Two each for Knowledge of Two each for Knowledge of Two each for Knowledge of
Fair-Share Fair-Share Fair-Share
Center-of-Balance Center-of-Balance Center-of-Balance
and and and
Mathematical Concepts Mathematical Concepts Mathematical Concepts

Figure 3-1: Research Design

3.3.2.1 Verbal Protocol Pretest and Posttest

Participants completed a short training session to become familiar with the necessary
elements of the study and think-aloud protocols. The training session included an introduction to
the study, explanation of the consent form, and instructions regarding think-aloud problem
solving. The specific instructions consisted of a prepared account of how to think aloud without

explaining thoughts (see Appendix B.1) (Ericsson & Simon, 1993). The participants practiced

71



with three carefully chosen warm-up exercises to acclimate themselves to the verbal protocol
process without producing a practice effect (see Appendix B.2) (Ericsson & Simon, 1993).
During the warm-up exercises the participants were advised if they were not verbalizing and/or if
their verbalizations were not relating to their thought process and were asked to make
appropriate adjustments to their verbal reporting. Ericsson and Simon (1993) found, “it is very
rare that subjects do not spontaneously verbalize in a normal fashion after a couple of practice
problems” (p. 377) and “[warm-up tasks]...eliminate silence due to misunderstanding of
instruction to think aloud” and “give subjects practice in expressing thoughts directly without
explaining or interrelating the information” (p. 257).

The pretest problems were individually administered to students immediately after they
completed the training session. Each student met in an empty conference room and was seated
in front of and not facing the examiner (Ericsson & Simon, 1993). The students were reread the
instructions from the training session on proper think-aloud procedures and were asked if they
had any further questions. The sessions were audio recorded for analysis and transcription. The
problem solving activities were not timed and students were encouraged to work until they
reached a solution or could make no further progress on a particular problem. The only
communication with the examiner during actual problem solving was a reminder to “keep
talking” if the student was silent for more than five seconds (Ericsson & Simon, 1993; Montague
& Applegate, 1993). The procedures for the posttest were the same as those of the pretest

sessions.

3.3.2.2 Knowledge Instruction Modules
Three instruction modules (IMs), (a) knowledge of fair-share with related mathematical

concepts, (b) knowledge of center-of-balance with related mathematical concepts, and (c) a
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general problem solving module were created for use in this study. The purpose of the IMs was
to increase the knowledge of a particular conceptualization of the arithmetic mean (i.e. fair-share
or center-of-balance) and to relate that conceptualization to mathematical concepts, such as ‘the
sum of the deviations from the mean is zero.” The modules were accessed and completed by the
participants using the Blackboard online learning system. Each participant was given access to
one module and progress toward completion of the module was tracked by the researcher using
the capabilities of the Blackboard system. Each IM utilized several teaching strategies and
multiple modes of content presentation to broaden its capacity to reach diversified learning styles
and ability levels. Appendix C offers the general composition of the knowledge instruction
modules.

The fair-share module was developed to introduce the arithmetic mean as an equal
allocation of data and relate it to the mathematical property proposed by Strauss and Bichler
(1988), the sum of the deviations of the data from the mean is zero. The module utilized notes
and examples that accompanied interactive exercises and video segments of instruction of the
fair-share conceptualization.

The center-of-balance module emphasized the arithmetic mean as the balancing point of a
data set. The module was similar to the fair-share module in that it utilized interactive
instruction, multiple exercises, and video clips of the arithmetic mean being taught as a center-
of-balance. The module related the center-of-balance conceptualization to equalizing data above
and below the mean (i.e. a model depicting the sum of the deviation of the data from the mean is
Zero).

The control module focused on general mathematical problem solving skills. The content

was based on Polya’s (1957) How to Solve It four steps of problem solving: understand the
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problem, devise a plan, carry out the plan, and look back and check answer. The module
covered different problem solving strategies, such as inductive reasoning, trial-and-error,
illustration, and related problems. The learning material for the module was taken from the
liberal arts mathematical course text.

The instruction modules were designed to simulate the level and amount of instruction
typically devoted to the arithmetic mean in a liberal arts mathematics course. The students in a
liberal arts mathematics course have varying degrees of prior knowledge in mathematics, and, in
particular, knowledge concerning the arithmetic mean. Therefore, discrete data sets are often
used as examples to conceptually develop the notion of the arithmetic mean. Typically, one
lecture, or one-and-a-half hours, is reserved for teaching statistical measures of center (i.e. mean,
median, and mode). Most often, homework problems are assigned and discussed in a subsequent
class. The presentation of the notes and the video segments of the IMs corresponded to a
conventional lecture in a traditional classroom; the examples in the IMs were typical of class
examples, and the interactive exercises characterized homework problems and feedback. The
level of instruction, discrete examples that are accessible by varying skill levels, and the amount
of time, a portion of one lecture, aligned the instruction modules with typical instruction

regarding the arithmetic mean in a liberal arts mathematics course.

3.3.3 Data Collection Summary

The participants for this study were university students enrolled in a liberal arts mathematics
course. Twenty-nine participants completed a three phase data collection process: pretest,
instruction, and posttest. Pre-session training instructed participants on the think-aloud problem

solving method. The data collected from the pretest included verbal protocols along with written
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solutions to the six arithmetic mean problems. The participants were randomly divided into
three groups; each receiving an instructional module in either fair-share or center-of-balance, or
participating in a control group. Following the instruction, participants completed a posttest with
identical problems to those on the pretest to preserve validity and reliability. A control group
was utilized to manage any perceived learning effect. The collected verbal protocols of the

pretest and posttest were fully transcribed and organized in preparation for data coding.

3.4 DATA CODING

Chi (1997) offered a practical guide to quantifying verbal data. She described four functional
steps that can be applied to transforming evidence of knowledge in the verbal protocols into
appropriate numerical scores based on a specified rubric. These steps for coding the data are:

1) Searching and segmenting the protocols

2) Developing a coding scheme and formalism (rubric)

3) Operationalizing evidence in coded protocols to the formalism

4) Depicting or summarizing the data
This section will delineate the methods used in the current study to achieve the proposed list of
functional steps.

The transcribed protocols were searched for occurrences of mathematical and statistical
knowledge and segmented between shifts in knowledge domains or conceptualizations. Each
segment depicted the qualities of an individually represented concept or multiple concepts that
occured simultaneously or were conceivably integrated within or across domains. The segment

may have been either correct or based on false beliefs and represented a single mathematical or
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statistical concept or an integrated group of concepts, regardless of the length of verbalization
that generated it. Each of the six problems for each participant was individually searched and
segmented.

The coding scheme used in this study was developed to correspond to the proposed
knowledge structure offered in section 2.4. Chi reports that knowledge data is best coded as the
elements or nodes of a predetermined network. The codes depicted in Table 3-8 were developed

to represent the various domains and concepts of knowledge related to the arithmetic mean.

Table 3-8: Coding Scheme

Domain Conceptualization
S — statistical

FS — fair-share
CB — center-of-balance
M — mathematical

Each segment in the verbal protocols was coded with a domain and/or conceptualization symbol
to demonstrate a participant accessed or utilized that knowledge in the problem solving process.
Appendix D gives three examples of searched and coded protocols from the pilot study.

The coded protocols were utilized in both the quantitative and qualitative aspects of the
study. They helped categorize the knowledge that was scored for quantitative analysis and
identified segments of knowledge that were compared in the qualitative analysis.

Operationalizing evidence in the verbal protocols consisted of assigning an appropriate
numeric score based on a descriptive rubric. A scoring rubric was developed for each class of

problem (i.e fair-share, center-of-balance, and mathematical concepts). The rubrics scored
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participant responses on a discrete scale of zero to three (0-3). A “zero” score was given if a
participant failed to attempt a solution or did not include any mathematically or statistically
sound knowledge in their solution. A “three” score represented sound use of mathematical
and/or statistical knowledge that signified a conceptually correct solution. The score was based
only on the level of knowledge demonstrated of a particular type for a particular class of
problem,; that is, only fair-share knowledge was scored for fair-share problems, and only center-
of-balance knowledge was scored for center-of-balance problems. If a participant used a viable
method to solve a problem that did not correspond with the classification of the problem, a “no-
score” was given to that problem and the viable method used to solve the problem was noted for
further analysis. For each score, each rubric has a description of the knowledge as well as
example solutions that correspond to that score.

Table 3-9 is the mathematical concept rubric. It was adapted from the general scoring
rubric developed for assessing QCAI (QUASAR Cognitive Assessment Instrument) tasks (Lane,
1993). The general scoring rubric includes knowledge of mathematical concepts and the
integration of those concepts into other models or elements. For the purposes of this study the
integration of mathematical knowledge may have been with other mathematical concepts or with

the conceptualizations of fair-share and center-of-balance.
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Table 3-9: Mathematical Concepts Rubric

Score Description Example Example
Shows understanding of the problem’s
mathematical concepts and principles; and Used center-of-balance example Used notion of center-of-
executes algorithms completely or at worst (o ilustrate one could add the balance to center data around
with minor errors. mean multiple times and to a the mean.
May use relevant information of a formal or  §a¢a set and not change the mean
informal nature; identifies all the important
3 elements of the problem and shows W
understanding of the relationships between 5 -
them; reflects an appropriate and systematic
strategy for solving the problem; and gives
evidence of a solution process, and solution 1234 g 5
process is at worst nearly complete and E 07
systematic.
Correctly used inductive Unsuccessfully used the
Shows understanding of some of the example}sl to demonstrate point. ?,nglglletlc mean (fi"imm?‘ t?
problem’s mathematical concepts and Could not generalize work to all bmt - N tmltss(llng a atpom ’
principles; and may contain serious cases of the mean and states the o ustrated corree
. : X algebraic notation and the
computational errors. answer is the “middle” number | .4 e blem to
) Identifies some important elements of the of a data set. the arith pt p p 1
problems but shows only limited . ¢ arthmefic mean tormuia.
understanding of the relationships between "l';i’“‘ 2 as X+ytzva:T75
them; and gives some evidence of a solution
process, but solution process may be
incomplete or somewhat unsystematic. L’%" L Xeyr2eanb=20
5
Shows very limited understanding of the Used inductive example to
problem’s mathematical concepts and illustrate the mean of a group of
principles; may misuse or fail to use numbers, added zero to the data lustrated relevance of
mathematical terms; and may make major set and used the same calculation arithmetic mean formula to the
computational errors. to erroneously calculate the problem but showed no
May attempt to use irrelevant outside same mean. understanding of how to use it
1 information; fails to identify important ! to solve the problem.
elements or places too much emphasis on ) .
unimportant elements; may reflect an = 0 R L
inappropriate strategy for solving the 3 T 5 i
problem; solution process may be missing, 0 o
difficult to identify, or completely Elis
unsystematic.
Shows no .understanding of thg problem’s Eﬁ;&e;ﬁt&?ﬁg:gean Writes down the arithmetic
mathematical concepts and prmmples. connection to the problem or mean formula but not in terms
May attempt to use mel.e vant out side progress toward a solution of values in the problem.
0 information; fails to indicate which elements

of the problem are appropriate; copies part of
the problem, but without attempting a
solution.

What value can be adkded 0o 2 data set so dhat the aritsmetic mean of the data set does not
change?
Lo f = I S
Se6+d <14 _gn
2 ]
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Table 3-10 and Table 3-11 show the fair-share and center-of-balance rubrics,
respectively. They were developed as specializations of the general scoring rubric (Lane, 1993)
based on analysis of pilot work and pilot study problems. The descriptions of knowledge were
devised based on the range of knowledge demonstrated in the pilot problems. The score
indicates not only the correctness, but the understanding of the respective statistical
conceptualization. That is, not only was there a viable solution, but that solution was found
using sound mathematical and statistical concepts. Therefore, a rubric score was based on two
elements: (a) whether a particular statistical conceptualization of the arithmetic mean was used in

the solution and (b) the soundness of the mathematics and statistics utilized in the solution.
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Table 3-10: Fair-Share Rubric

Score Description Example Example
Removed blocks from stack with Redistributed the values above the
more than the mean. Adds blocks to .
mean line to the values below the
stacks less than the mean to equal the .
Makes use of knowledge of line so that each bar was the same
. . o mean. Places the mean number of .
fair-share in a statistically and A height. Checks work.
. blocks in child 5 stack. Counts —
mathematically sound :
3 added blocks 0 f
approach to a complete ~ i B il
solution with or without E E -~ | |I ¥ D A
arithmetic errors — = —i Ininl -‘ (] iaiy
—1 1 i "4 0'REY B'E'R .
SIREES =
| — )
6
i Redistributed the values above the
Remm;led b:IOCkS from stack Ylt}li mean line to the values below the
more than the mean. Adds blocks to line so that each bar is the same
Makes some use of knowledge stacks less than the mean to equl the cight. Failed to account for the
of fair-share in a statistically mean. Counts added blocks failing value distributed to the number three
and mathematically sound to add the mean pumber Qf blocks weighing and answers the two
2 approach toward a solution but that W(ﬂd remain for child 5. missing values must equal the mean.
deviates from conceptual —
soundness or is unable to - iy - ,._1_,1_]
complete a solution. g o i! o |F o -
= - W] i
PKILF 5 NEEVS & BLOCKS | | .I._ __1_'_1__. il
Used blocks in the stack representing ~ Made all the bars representing data
the mean along with blocks in the points the same height but unequal to
Indicates knowledge of the other stacks to find an estimated new  the mean. —
| concept of fair-share but does  mean.
not apply it or grossly L N\
misapplies it to a solution. a8 \jv’}__ ek §
SEEE
Used formula to add each value and
b Cindicat Added the number of blocks of the ~ the missing two values. Incorrectly
mzf}?elllr?atlirclailca (fraslgtisticall first four children and the mean, leldeS.’!"y’f'w;«- ppet 332 PR
0 Y Y 943+7+5+8=32. Divides the result S A

sound knowledge in the
solution.

by 5 to get answer. (Cai et al., 1999)

EGTIEE
i
Zpevrevg ~FE

#F
LA

#Z

Makes use of a viable method
to solve the problem that does
not include knowledge of fair-
share.

Used algebraic equation to solve the
problem after counting blocks to get
data values.

3208 cp=g
Ehalag
S
anu,'p:ﬂbo
¥ =g

Balanced each value above the mean
with a value below the mean.

Answers balance weighing numbers
two and four.
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Table 3-11: Center-of-Balance Rubric

Score Description Example Example
Drew blocks to represent bags.
Assigned given values of $1.30 and
. $1.35 with $1.38 (the mean) as the
Pléced a thfee units and b SCVGI‘I middle. Filled in values for
units from X on a balance drawing. remaining blocks that balance on
Makes use of knowledge of Indicated ¢ must equal the comb_ined each side of $1.38. Made a
Cfl};etr'_()fl_lbala?jce ina distance a and b are away from X correction to the $1.38 block since
statistically an but on the other side of the fulcrum. that value can not be used. Checked
3 mathematically sound work.
approach to a complete ' N, e,
solution with or without 3 T PR -
arithmetic errors .,
(0 16 \_
_ Recognized $1.38 is the mean.
Makes some use of knowledge Drew a number h_ne and correctly Compensated for the given values of
of center-of-balance in a placed a, b, and X in their relative $1.30 and $1.35 on the opposite side
statistically and places. Illustrated ¢ must be on the Of the mean. Continued process
) mathematically sound Opposite side of a and b but Only Wlth other Values, but was unable. to
approach toward a solution but  referred to C as having a value less adjust for the constraint of not using
deviates from conceptual than )_( ) $1.38. _
soundness or is unable to N b l_%,/\iﬁl—\,wmé
complete a solution. cir MR S 138 sl
RENVC LS
Drew a number line with a and b Stated $1.38 needs to be the middle
three and seven units respectively number. Randomly picks numbers
. from X. Incorrectly placed ¢ on the higher and lower than $1.38 so that
Indlcati:s lf(nm\;ledg; S flthe number line between a and b there are an equal npmber of
1 concept of center-of-balance believing this “balanced” the numbers are each side of $1.38.
but does not apply it or grossly .30 ) 3g -
. . . problem. v L 139
misapplies it to a solution. L .35 i
1.9 '
X )
q C b 7 & l,Lr}
fmean Y2,
Does not indicate any AQQed three and seven together. Fgund median of grven numbgrs.
. . Divided sum by ten. Picked $1.35 and divides by nine.
mathematically or statistically
0 sound knowledoe in the V\ Presented answer as $.15 per bag.
) & ol (Mokros & Russell, 1995)
solution. A\

Makes use of a viable method
to solve the problem that does
not include knowledge of
center-of-balance

Used algebraic equation to solve the
problem.
K = ZF3 477 LA
3 A= X3
R |

3% Mo *XY a X € TraY

Found the total cost of nine bags of
chips. Subtracted $1.30 and 1.35.
Found seven bags that add to the
remaining total.

1558021292 L A7
1 dav

BRI Nd =
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Participants’ written work and verbal protocol for each problem were examined
holistically for use of a particular knowledge and for level of understanding of that knowledge.
This was then compared with the descriptions of knowledge that corresponded to scoring levels
delineated in the respective rubrics.

A scoring bundle for each participant was created to efficiently depict and summarize the
data. The bundle included a scoring sheet for each of the participant’s protocols (see Appendix
E.1). The scoring sheet included a side-by-side comparison of the pre- and post- test coded
verbal protocols, the rubric score for each problem, and comments by the researcher and coder
for use in qualitative analysis. Each participant was assigned three scores for the pretest
problems corresponding to the three knowledge types, fair-share, center-of-balance, and
mathematical concepts. The scores were calculated by finding the mean score of the two
problems of each knowledge type on the pretest. The same process was used to find three scores
corresponding to the same knowledge types on the posttest. Figure 3-2 shows how the

quantitative scores for each participant were summarized.

Participant #

Pretest Gain Posttest
Problem Knowledge Problem Score Average Score Average Score Problem Problem Knowledge
FS1 FS1
Fair Share Fair Share
FS2 FS2
Center CB1 CB1 Center
of of
Balance CB2 CB2 Balance
Mathematical MCI MClI Mathematical
Concepts MC2 MC2 Concepts

Figure 3-2: Participant Scoring Summary
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The depiction and summary of the scores in these formats logically arranged the data for
statistical analysis.

The procedure for coding and scoring the knowledge demonstrated in the verbal
protocols adhered to guidelines Chi (1997) prescribed. Previous research studies that utilized
these procedures (Chi & VanLehn, 1991; Griel, 1996; Montague & Applegate, 1993) indicated
the method was a reliable and valid process for coding verbal protocols. Furthermore, inter-rater
agreement was calculated for both the coding and scoring to verify reliability of the coded and

scored protocols. The next section details the results of the inter-rater reliability comparisons.

3.4.1 Inter-rater Reliability

The participants’ protocols (i.e. transcripts and written work) were coded anonymously with
respect to pretest, posttest, and instructional group. Two coders, the author and an experienced
educator with a graduate degree in mathematics and science education specializing in
assessment, independently coded the pilot study protocols. Prior to coding, the coder was
instructed in the coding process. This training included reading chapters 1-3 of this document,
discussing the proposed knowledge structure for the arithmetic mean with the author, reviewing
examples of protocols from the pilot study, and understanding the coding scheme and scoring
rubrics. The author and coder first scored fifteen protocols from the pilot study. Initial inter-
rater reliability was 62% for coding the predominant type of knowledge each protocol utilized
and 73.3% (11/15) for scoring the protocols. Subsequent discussion of the proposed knowledge
structure for the arithmetic mean’s domains and a reevaluation of the protocols enabled the
coders to agree on 88% of the coded segments and 93.3% (14/15) of the rubric scores. Another

fifteen protocols of the pilot study were then independently coded and scored. The second
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examination resulted in reliabilities for 70% of knowledge used in each protocol and 80.0%
(12/15) for rubric scores. Further discussion of the rubric scores resulted in 100% agreement
between the two coders. A third set of eight protocols were coded, and reliabilities of 87.5% for
coded segments and 87.5% (7/8) for rubric scores were achieved. See Appendix E.2 for
completed scoring sheets from the pilot study that correspond to several of the examples
displayed in the rubric Table 3-9, Table 3-10, and Table 3-11. The highlighted areas of the
protocols signify key phrases or words that were used to differentiate the conceptualizations of

fair-share and center-of-balance.

3.5 DATA ANALYSIS

This section describes the ways in which the data from the coded protocols was analyzed. First,
the scores from pretest and posttest data were used to quantitatively examine any statistically
significant connection between the conceptualizations of fair-share and center-of-balance, and
any connection between mathematical concepts and the two conceptualizations of the arithmetic
mean. Second, a qualitative analysis of the verbal protocols was conducted to describe any
cognitive connection between fair-share and center-of-balance, and between these

conceptualizations and the mathematical domain.

3.5.1 Quantitative Statistical Analysis

Two different statistical tools were used to quantitatively analyze the data. Contingency tables
and the statistical model of analysis of covariance were employed to describe and analyze

various aspects of the coded data. Examining the results of each statistical tool, independently
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and jointly, provided insight into the interactions and connections of the conceptualizations and
domains proposed in the knowledge structure for the arithmetic mean. The two statistical tools,
which examined the data from two perspectives, within each knowledge instruction group and
between the knowledge instruction groups, provided adequate insight to answer the proposed

research questions.

3.5.1.1 Association Study within Groups

A contingency table is a two-dimensional table (in the case of this study) in which each
observation is classified on the basis of two variables simultaneously (Howell, 2002).
Contingency tables are often used to simplify data by converting quantitative variables to
categorical ones (N. Pfenning, personal communication, June 10, 2008).

This study examined whether instruction of one conceptualization of the arithmetic mean
(i.e. fair-share and center-of-balance) affected knowledge of the other conceptualization. The
participants were categorized with a “Yes” if they increased their score from the pretest to the
posttest for a particular problem group that measured a specific knowledge (i.e. fair-share or
center-of-balance), or a “No” if they did not. Within each instructional group (i.e. fair-share,
center-of-balance) the data was arranged to denote gains in knowledge as demonstrated by
increased problem scores. A 2x2 contingency table for relevant comparisons in each instruction
group was reported and discussed.

Figure 3-3 depicts the contingency table for each instruction group. Each table compared
several possible combinations within each group. The actual number of participants and
corresponding percentage for each category were reported within each cell. The contingency

tables indicated if a change in knowledge for one conceptualization, either fair-share or center-
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of-balance, of the arithmetic mean was related to a change in knowledge of the other

conceptualization.
Fair-Share Instruction Group Center-of-Balance Instruction Group
CB Knowledge FS Knowledge

Increase NO YES Increase NO YES

g S

33 NO B NO

XY XY

& YES 8 YES

Figure 3-3: Contingency Tables

3.5.1.2 Comparison Study between Groups

Analysis of covariance (ANCOVA) is a statistical model developed by Sir Ronald Fisher
in 1932 based on the precepts of the analysis of variance (ANOVA) model he created in 1925.
Like the ANOVA, the ANCOVA offers a less likely chance of obtaining a type I error and
incorrectly rejecting a true null hypothesis compared to performing multiple independent t-tests
on more than two group means. The major difference between the two models is the addition of
the covariate variable as a statistical control, thus combining ANOVA with regression analysis
(Glass & Hopkins, 1996). “The covariate is defined as a source of variation not controlled for in
the design of the experiment, but the researcher believes to affect the dependant variable. The

covariate is used to statistically adjust the dependant variable” (Lomax, 2007, p. 84). The
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adjustment is made to the group means of the dependant variable, thus reducing statistical error.
In the analysis of covariance, the group means of the covariant, as well as the linear relationship
between the covariant and dependent variable are taken into account during the statistical
analysis (Lomax, 2007). ANCOVA is an ANOVA on the statistically adjusted means. The price
of using an ANCOVA compared to an ANOVA is the loss of one degree of freedom for each
covariate; this results in more difficulty finding a significant test statistic. The appropriate use of
analysis provides an economical method of comparing multiple group means. The analysis of
covariance also allows for multiple comparison procedures for pairs of group means within the
original larger group of means. Formulating the multiple comparisons within the presence of the
ANCOVA helps to better control the power of the test and account for possible errors. In this
study, the importance of the null hypothesis (group means for a particular type of knowledge are
the same) for the omnibus F-test that examines all possible comparisons of the ANCOVA was
simply a channel to perform the planned multiple comparison contrasts of more substantive
interest.

In this study, the analysis of covariance compared posttest scores between the instruction
groups. Differences between groups with instruction in knowledge of different statistical
conceptualizations of the arithmetic mean were of particular interest in gaining insight about the
cognitive relationship between the different conceptualizations and between the
conceptualizations and mathematical concepts. The scores from the fair-share problems of the
participants of the fair-share instruction group were compared to the fair-share problem scores of
the participants in the center-of-balance instruction group and to the fair-share problem scores of
the participants in the control group using an ANCOVA. A second and third ANCOVA were

computed to perform a similar analysis on the scores from the center-of-balance problems and
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the scores from the mathematical concept problems. The following three hypotheses were tested
where the posttest scores are denoted as FS for fair-share problems, CB for center-of-balance
problems, and MC for mathematical concept problems; and the instructional groups are denoted
as FSI for fair-share instruction, CBI for center-of-balance instruction, and CON for the control

group instruction:

Ho: FSps1 = FScpi = FScon Ho: CBrs1 = CBcai = CBcon Ho: MCrs1 = MCcpi = MCcon
H,: not all means are equal H,: not all means are equal H,: not all means are equal

For example, the first hypothesis tested the posttest scores of the fair-share problems across the
three instructional groups, fair-share instruction, center-of-balance instruction, and control
instruction. The second and third hypotheses followed a similar format but with center-of-
balance and mathematical concept problems, respectively.

The pretest scores for each type of problem were used as the covariant for each analysis
of covariance; that is, fair-share pretest problem scores were used as the covariant for the
ANCOVA testing the hypothesis involving fair-share posttest scores, center-of-balance pretest
problem scores were used as the covariant for the ANCOVA testing the hypothesis involving
center-of-balance posttest scores, and mathematical concept pretest problem scores were used as
the covariant for the ANCOVA testing the hypothesis involving mathematical concept posttest
scores.

Following the three analyses of covariance, multiple comparisons for specific pairs of

problem means were analyzed. In particular, the following hypotheses were tested:
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ANCOVA Paired Means Hypotheses

Ho: FScri = FScon

Fair-Share
Ha: FScgi > FScon

Ho: CBgsi = CBcon

Center-of-Balance
H,: CBgsi > CBcon

Ho: MCrgsi = MCcgi
Ha: MCrst # MCcpi

Ho: MCgsi = MCcon

Mathematical Concepts
p H,: MCrsi > MCcon

Ho: MCcpi = MCcon
Ha: MCcgi > MCcon

The top two hypotheses were used to answer research question #1 pertaining to the effect each
statistical knowledge conceptualization (i.e. fair-share and center-of-balance) has on the other.
These hypotheses were designed to test if knowledge of one statistical conceptualization impacts
knowledge of the other conceptualization. The bottom three hypotheses were used to answer
research question #2 pertaining to the effect knowledge of each statistical conceptualization has
on knowledge of the mathematical concepts related to the arithmetic mean. These hypotheses
were designed to compare the effect instruction of fair-share or center-of-balance has on
knowledge of the mathematical concepts by comparing posttest scores of mathematical concept
problems for each pair of instructional groups. Given that only one a-priori comparison was
made from the fair-share and center-of-balance ANCOVA’s, the most powerful multiple
comparison procedure was a t-test with pooled variances. The final ANCOVA, mathematical
concepts, produced three a-priori comparisons. The conservative Bonferroni t (Dunn’s test) was

chosen to control the overall familywise error rate for these paired means.
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3.5.2 Qualitative Analysis

The verbal protocols and corresponding written problem solutions were qualitatively analyzed in
order to interpret, clarify, explain, or otherwise more fully elaborate the results of the statistical
analyses. Qualitative analysis of the verbalizations illustrated the nature in which fair-share and
center-of-balance were cognitively connected to each other or to the mathematical knowledge
domain.

Two areas of interest were identified for qualitative analysis based on results of the pilot
study and of previous research (MacCullough, 2007).

1) Qualitatively examining solutions in which participants utilized or connected both
statistical conceptualizations of the arithmetic mean, fair-share and center-of-balance, in

the problem solving process.

2) Qualitatively investigating connections or relationships of the statistical

conceptualizations with mathematical concepts.

Of particular interest was any verbal protocol pertaining to the above described areas that could
be reasonably associated with a change in knowledge signified by the statistical analysis. The
following two paragraphs provide more detail of the analysis for the two areas of interest
identified above.

Instances in verbal protocols that displayed use of both statistical conceptualizations of
the arithmetic mean were identified and used to provide descriptions of changes, if any, in
participants’ knowledge. The protocols and written work were examined for evidence of the
cognitive relationship participants exhibited, either implicitly or explicitly, between fair-share
and center-of-balance. Figure 3-4 illustrates two examples from the pilot study in which a

participant utilized knowledge of both conceptualizations to work toward a solution.
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Protocol #1 Code Protocol #2 Code
JO: Let’s see if the sum of these four numbers, umm,
four of these numbers. Ok. Let’s draw five blanks.
JO: Well my first guess is zero but does that count as a The mean equals 20. The sum of four of thoge
value? Probably not. M numbc?rs equals seventy-five. So that means if the | S-CB
mean is twenty some number have to be less than
twenty so some will have to be greater than
twenty.
JO: Oh I know what value can be added on, the value of JO:  If the sum of four of those numbers is seventy-five
the mean. So if your mean is six (writes down 6 then would the fifth number be less than or greater
and circles it) and you add that mean on again you than twenty. Let’s see. Let’s take some numbers. M-FS
are still going to get a mean of six. Ok, let me do Twenty, twenty and twenty is sixty, plus to get to
one to make sure. seventy-five you would need a fifteen.
JO: Puta five on either side (of the circled six), a four
on either side, a,‘ three on each side, anfi a'two and JO:  So that means, let’s see, so if you have three
stop there. Let’s make sure the mean is SIX (_adds twenties and then a fifteen is five less then twenty,
the numbers’) Twenty-nine, that d(_)es not d’1v1de then a fifth number needs to be five more than
evlenly. Let.s .add a one on each side, that’s better, S-CB twenty, needs to be twenty-five. Because, it would | M-CB
thlrty—two divided by eleven. Uh, that does not M-CB all even out, because twenty-five is five more than
wor,k cither. , M twenty and fifteen is five less than twenty and you
JO: Lpt s find a number that works equally. Let’s get want them to all even out to twenty.
rid of some of these numbers, too many numbers.
(counts numbers) Nine, I don’t like nine. )
JO: Let’s do it differently. Put a six in the middle, a two K JO:  Let’s see if that works... (adds numbers and
MM: Keep talking divides) The value of the fifth number would be M
JO: Ok, That is not going to work. Fourteen divided by twenty-five.
five, let’s do fifteen divided by six. No. Uh, I do not y
want to do it that way. Z
0 20 206 =70
JO: Ok, let’s start an easier way. — _ = "_”
JO: Six times three is eighteen so let’s do three numbers
equaling six. (writes down 2, 3, 2) Oh, wait, they
have to equal eighteen. Three number equaling M-FS
eighteen, let’s do six, a six, no let’s do a five M
(counts to figure out the seven), and a seven. That
equals eighteen divided by three, the average equals .
six. So now I have my three numbers. e
JO: Now the mean can be added, now add another six /‘,/'* e e T A
in...twenty-four divided by four is six. So yes, you M . NG D - 0
can add the mean back in so that the data set, I P
mean the mean does not change.
JO: Why does that work. Let me draw a picture. Draw
five cubes, seven cubes, and six cubes. In order to
make those even we would have to take one from SFS
the seven to the six, no, over to the five. All piles M

will be six. So by adding another pile of six we
would not have to move any cubes to make it equal.

They will all be six.
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Figure 3-4: Two Conceptualizations in Solution
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In the first example the participant mistakenly uses the algebraic identity property. She
next attempts to use the center-of-balance conceptualization to solve the problem. She correctly
identifies the arithmetic mean as a representative number of the data set signified by the point
that balances the data set, but misapply the mathematics of the concept while building the data
set. Finally, the participant incorporates the conceptualization of fair-share to mathematically
build the data set and then to understand the arithmetic mean represents a fair-share allocation of
the data. It was the knowledge of the center-of-balance conceptualization that allowed the
participant to access the problem; and knowledge of the fair-share conceptualization that allowed
the participant to correct mathematical misconceptions. In this case, the participant used both
fair-share and center-of-balance conceptualizations, but not necessarily harmoniously in the
solution process.

In the second example the participant uses an amalgamation of both statistical
conceptualizations in the solution process. She first understands the mean to represent the
balancing point of the data; second, she builds a feasible data set using the conceptualization of
fair-share; finally, she finds the missing data point using the conceptualization of center-of-
balance.

In both examples, knowledge of the two statistical conceptualizations interacted to
ultimately reach a solution. In the first example the interaction was as two discrete solution
attempts; in the second example the interaction was part of a continuous solution process.

A second area of qualitative investigation focused on the relationships each
conceptualization had to mathematical concepts regarding the arithmetic mean. In particular,
any mathematical concept associated to the arithmetic mean that is related to both the fair-share

and center-of-balance conceptualizations. These relationships were examined to explain or
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describe any changes in knowledge signified by the statistical analysis.

The relationships

between the statistical conceptualizations and mathematical concepts were also analyzed as a

cognitive link or path between the conceptualizations of fair-share and center-of-balance as

proposed by MacCullough (2007). Examples from the pilot study are presented in Figure 3-5

Protocol #3 Code Protocol #4 Code

SC: Whoa! (pause) I guess all the graphs should be this SC: Uh, lets see — I got a $1.38 here, um, $1.30 here,

line (referring to the bars and the dark line and um, wait, well I guess it fits in here. (See

representing the mean) drawing) M
(pause) (pause)
MM: Keep Talking MM: Keep talking
SC: Let me work with what I got here. SC: Well now I need two higher — this one is eight
(SC starts to draw arrows from above the dark line to (referring to $1.30) so that’s uh, $1.46, and this one

existing bars below the dark line) is five (referring to $1.35), no three, that’s $1.41.
SC: These two (#2) will even out this one (#9). This SC: How many do I need? Nine

one (#7) will even out this one (#4) and one of SC: So lets see, um $1.37 and $1.39 (draws in two

these (#8) can go here (#10). values) S-CB
SC: Now what? S-FS SC: $1.36 and $1.40 (draws in two values) M-CB
MM: Talk about your thoughts M SC: Uh, I already used $1.35 so lets do $1.34 and this M

SC: Uh, Uh, I am thinking

MM: Verbalize those thoughts

SC: 1 got an extra one (referring to #8) I can put here at
number three.

(pause)

SC: Oh, each of these (#3 and #9) should be four high
(referring to the gridlines)

(pause)

MM: Keep Talking

SC: Four each (referring to the heights of bar #3 and
bar #6)

one would be uh, that’s four, so $1.42. (draws in
two values)

SC: How many is that (counts values) Eleven. Oh. Uh.
Take these away (scratches out $1.35 and $1.42)

SC: Do you want me to rewrite them?

MM: Work until you are finished.

SC: T’ll make this a little neater (rewrites numbers in a
list)

SC: Done.

WeigRi s Bpprimn
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Figure 3-5: Relating Statistical Conceptualizations and Mathematical Concepts in Solution

In protocol #3 the participant uses a fair-share conceptualization as indicated by the

phrase “all the graphs should be this line.’

b

He then proceed to use the concept ‘the sum of the




deviations from the mean is zero’ to carry out a solution to the problem. In the fourth protocol,
the same participant uses a center-of-balance conceptualization and the concept ‘the sum of the
deviations from the mean is zero’ to solve the problem. The participant cognitively connected
fair-share and center-of-balance to the same concept, ‘the sum of the deviations from the mean is

zero’

3.5.3 Data Analysis Summary

The analyses in this study mixed quantitative and qualitative methodologies to identify,
substantiate, and more fully describe students’ knowledge of fair-share and center-of-balance,
and utilized qualitative methods to link these to the mathematical domain of the arithmetic mean.
The complete analysis advanced understanding of the cognitive relationships among the

conceptualizations and domains of the proposed knowledge structure for the arithmetic mean.

3.6 SUMMARY OF METHODS

The intention of this study was to identify and describe the cognitive relationships between fair-
share and center-of-balance as well as the cognitive relationships between these
conceptualizations and the mathematical domain of the arithmetic mean. Participants were
randomly assigned to one of three groups: (a) instruction of fair-share knowledge, (b) instruction
of center-of-balance knowledge, and (c¢) a control group receiving instruction of general problem
solving methods. The methodology of protocol analysis was used to collect, code, and analyze
the data. The data was collected via think-aloud verbal protocols and written solutions to

arithmetic mean problems. There was a pre- and post- problem solving session with an
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instructional intervention between the two instruments. The data was coded with a rubric score
indicating knowledge of a particular conceptualization (i.e. fair-share and center-of-balance) or
knowledge of mathematical concepts. The data was also qualitatively coded to indicate the
relationship fair-share and center-of-balance have with the mathematical and statistical domains.
The coded data was analyzed using two different methodologies. The first method used
statistical analysis to locate any significant relationship between the statistical conceptualizations
of fair-share and center-of-balance along with any connections between these and mathematical
concepts. The second method included qualitatively analyzing the data to explore solutions in
which participants utilized or connected the conceptualizations of the arithmetic mean, fair-share
and center-of-balance, or connected either conceptualization with the mathematical and/or

statistical domains. The next chapter, chapter four, presents the results of this study.
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4.0 RESULTS

The results of the study are reported in this chapter and are organized into three sections. The
first, section 4.1, summarizes the general characteristics of the pretest data. The second and third
sections, 4.2 and 4.3, each correspond to one of the two research questions investigated in this
study. Section 4.2 describes the cognitive relationship between the fair-share and center-of-
balance conceptualizations of the arithmetic mean. Section 4.3 focuses on the relationship
between each conceptualization and the mathematical concepts related to the arithmetic mean.
In each section, the results of a statistical analysis comparing the relevant posttest scores to a
control group are reported, and verbal protocols and written solutions to these problems are

examined to further describe the nature of the relationships.

41  GENERAL CHARACTERISTICS OF PRETEST DATA

The purpose of this study was to identify and describe any relationship between: (a) the
conceptualizations of fair-share and center-of-balance and (b) these conceptualizations and
mathematical concepts. Participants completed pre- and post- problem solving sessions and
were exposed to one of three instructional interventions, instruction of fair-share knowledge,
instruction of center-of-balance knowledge, or instruction of general problem solving methods

that was used as a control. The data consisted of think-aloud verbal protocols and written
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solutions to arithmetic mean problems. The data was coded with a rubric score that indicated
knowledge of a particular conceptualization (i.e. fair-share and center-of-balance) or knowledge
of mathematical concepts based on a score of zero to three. Mathematically sound solutions that
did not use either conceptualization were coded as a “no-score.” Qualitative coding was used to
indicate if knowledge of any conceptualization, fair-share and/or center-of-balance, was accessed
during the solution process.

Table 4-1 depicts the distribution of scores for each of the two fair-share (FS), center-of-
balance (CB), and mathematical concept (MC) pretest problems®:
FS1: Four children each had a stack of blocks as shown below. When a fifth child sat down

with her own set of blocks the mean number of blocks the children had became seven.
How many blocks did the fifth child have?

?

Child #1 Child #2 Child #3 Child #4 Child #5 Mean

FS2: In a chemistry lab a student weighed a specimen ten times. The results of those
weighings are presented in the chart below. The student lost the 3™ and 6™ weighings
of the specimen after she calculated the mean of the ten weighings to be 3.2 as
indicated by the dark line in the graph below. What could have been the values for the
3 and 6™ weighings if the mean is 3.2?

Weight of Specimen

% Note: The same problems were used on the pretest and posttest.
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CBI1: Given three numbers, (a,b,c), and the mean of these numbers is X. We know that a is 3
greater than X and b is 7 greater than X. How does the value of ¢ relate to X ?

CB2:  As a worker in a grocery store you are asked to place price stickers on nine bags of
potato chips so that the mean price of the chips is $1.38. You can not price any bag at
exactly $1.38. You also must price one bag at $1.30 and a second bag at $1.35. Create

the remaining seven price stickers.

MC1: What value can be added to a data set so that the arithmetic mean of the data set does
not change? Why?

MC2: The mean of five numbers is 20. The sum of four of these numbers is 75. What is the
value of the fifth number?

The table indicates the number of participants receiving a given rubric score and the overall

mean for each problem.

Table 4-1: Distribution of Scores for Pretest Data

Score
Problem 3 2 1 0 - Mean
FS1 19 5 2 1 2 2.6
FS2 11 6 8 2 2 2.0
CB1 3 2 10 9 5 1.0
CB2 6 2 4 3 14 1.7
MC1 9 5 4 10 1 L.5
MC2 18 3 2 6 0 2.1

Note. A no-score, indicated by “-”, was not included in the calculation of the means. n =29 for
each problem.

Three anomalies were identified in the pretest scores resulting in further qualitative

investigation of the verbal protocols and written solutions. First, the overall means of the data

98



seemed to indicate participants had more difficulty solving the center-of-balance problems than
they did solving the fair-share problems. Although, it should be noted that participants receiving
a no-score correctly solved the problem using an alternative method (i.e. method that did not use
fair-share knowledge for fair-share problems or center-of-balance knowledge for center-of-
balance problems) but did not count in the calculation of the overall mean. The second
discrepancy was an inordinate number of ‘zeros’ for problems CB1 and MC1 when compared to
‘zero’ scores on the other problems. In both cases, the ‘zero’ scores accounted for approximately
one-third of the total number of scores on each problem. Third, there were a large number of
participants that used an alternative method to solve problem CB2. Nearly half of the responses
did not utilize center-of-balance knowledge in the solution. Examining the coded protocols
revealed that use/misuse of the arithmetic mean formula was prevalent in solutions linked to all
three anomalies. Table 4-2 indicates the overall correct or incorrect use of the arithmetic mean

formula in all solution attempts for each of the problems on the pretest.

Table 4-2: Use of the Arithmetic Mean Formula in Pretest Problems

Applied the Arithmetic Mean Formula

Problem Appropriately Inappropriately Total
FS1 21 3 24
FS2 11 9 20
CB1 5 5 10
CB2 14 1 15
MC1 2 8 10
MC2 15 6 21

Note: n = 29 for each problem
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The remainder of this section further explains how the characteristics of a particular
conceptualization (i.e. fair-share or center-of-balance) and/or construct of particular problems
affected the role of the arithmetic mean formula.

The discrepancies in the pretest data seem to be related to the propensity of participants
to utilize the arithmetic mean formula. Approximately 75% (41 out of 54) of the solutions that
used a fair-share conceptualization to solve a fair-share problem suggested some application of
the arithmetic mean formula as an integral part of the solution. Conversely, solutions that
utilized the center-of-balance conceptualization for center-of-balance problems used the
arithmetic mean formula as a final check of the solution and not as an integral part of the solution
process. Most all of the alternative methods of solution (i.e. solutions that did not use fair-share
knowledge for fair-share problems or center-of-balance knowledge for center-of-balance
problems) employed the arithmetic mean formula. The ability to more readily apply the
arithmetic mean formula to fair-share problems as opposed to center-of-balance problems may
account for the higher scores on fair-share problems. The following example is a typical
protocol that used the arithmetic mean formula in a fair-share problem. In this case, the
participant used the arithmetic mean formula as a means for calculating the total sum of all data
points. The underlined text represents use of the arithmetic mean formula and the highlighted

text indicates use of fair-share knowledge.
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Pretest FS2
P6: Ok, so first let me get the numbers off of this graph (writes down values of each weighing)
Ok, so the total for the known weighing is (uses calculator) 25.7.

P6: Ok, now I need the total sum of all the weights of the specimens. I know the mean is found by
dividing the total weight by the number of specimens so I can find the total weight by multiplying
the mean by the number of specimens.

P6:  We could possibly infer that all the specimens are equal and weigh 3.2 pounds.

P6: Ok, now to find the weight of the last two specimens subtract the total weight of the known
specimens from the 32. That leaves 6.3. One could be higher than that other but if all the weight
belonged to one specimen it can weigh no more than 6.3.

2, 5 HE3 HA 3N #37 pU3) #5133
% 1o (7 WF 33 HE3g Ha:3.0 H0OVBA

25 Total for trown weghngss as-

23320
- 5.1
——

b3

For problem MCI1 there seemed to be a link between using the arithmetic mean formula
and the excessive number of ‘zero’ scores. The arithmetic mean formula was not a conducive
solution strategy based on the construction of the problem. Similarly, participants found it
difficult to apply the formula to the relational data in problem CB1 and were unable to solve the
problem using an alternative method to center-of-balance. In contrast, participants’ tendency to
correctly use the arithmetic mean formula for problem CB2 indicated it was more applicable to
the numeric data. Therefore, a preponderance of ‘no-scores’ were given for a viable alternative
method of solution for problem CB2 not involving the center-of-balance conceptualization. The
example protocols below illustrate the typical use (or misuse) of the arithmetic mean formula for
problems MC1, CBI1, and CB2. The underlined text represents use of the arithmetic mean

formula.
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Pretest MC1

P13: Yea, the number that, take a data set like 3, 4, 5, 6. Add them together equals 18 divide by 4
gives 4.5.

P13: Basically if you add 1 to that, 19 divided by 5 equals, no. Add 2 maybe, umm, 20 divided by 5
equal 4. Try 3...

R: Keep talking

P13: Yea, so take a number equal to or less than the first number and the mean is not going to change
much. So 1, 2, or 3 would work. By adding 4 or lower wouldn’t change the mean that much.
Basically the number would stay the same

- |
3,4, 05 ¢ ——ff =Y.
) 2,003 y
Pretest CB1

P29: Three numbers, A, B, and C equal the mean x with a little line over it. So A plus B plus C
divided by three equals x. A is three greater than x and B is seven greater than x, umm.

R: Keep talking

P29: Well three plus seven is ten so_A plus B plus C divided by three might equal 10. So if x with the
little line is ten then A can be 13 and B can be 17. Now, how would I solve that?

R:  Keep talking.

P29: Tam not good at this kind of math. I like the more abstract stuff.

P29: Do over, maybe 20 will work. A plus B plus C divided by three equals 20. A would be 23 and B

would be 27 plus C divided by 3 equals 20. I think, no this isn’t right I just can’t do the math.
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Pretest CB2
P12: First I’ll set up the equation. The variables a, b, ¢, d, and e can represent the five numbers.
Divide those by five to get the mean, uh, which is 20.

P12: Multiply each side by five which gives us the sum of the variables is now 100. So I’ll write that.

P12: Now guess-and-check. I don’t know why but I will try counting by fives. I think the 100 and 20
are screaming five at me.

R: Keep talking.

P12: I am just adding every five numbers in my head, I think the second set I thought of will work.
10 plus 15 plus 20 plus 25 plus 30 equals 100. This will only work if four of these equal seventy-
five. Give me a second to check this out.

P12: Ok, 10 plus 15 plus 25 plus 30 equals seventy-five. So the value that I did not use, 20, is the fifth
number. I don’t know if that is what you wanted. I kind of got lucky guessing the numbers.
Cibrcadte
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To summarize, the degree to which each pretest problem’s construct afforded participants
use of the arithmetic mean formula was linked to the problem’s scoring. Problems FS1, FS2,
CB2, and MC2 were more easily adapted into formula based solutions. Most often the solution
was based on the fair-share notion that the sum of the data points is equivalent to the sum of the
data points if they were all equal to the mean. In contrast, problems CB1 and MC1 were not
easily adapted into a formulaic response. The few participants who scored highly on these

problems were able to utilize a center-of-balance approach in their solution method.
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42 FAIR-SHARE AND CENTER-OF-BALANCE RELATIONSHIP

In this section the results pertaining to research question #1 are examined:

1) How is knowledge of fair-share and center-of-balance cognitively related to one

another? In particular,

a) What effect does instruction of the fair-share conceptualization of the arithmetic

mean have on knowledge of the center-of-balance conceptualization?

b) What effect does instruction of the center-of-balance conceptualization of the

arithmetic mean have on knowledge of the fair-share conceptualization?

To answer these questions, written solutions and verbal protocols of pre- and post- test arithmetic
mean problems were analyzed both quantitatively and qualitatively to identify how increased
knowledge of one conceptualization affected knowledge of the other. The results of these
analyses are organized into four parts. First, the results of statistical analyses are reported. Next,
two sections explain and otherwise more fully elaborate the statistical analyses of both parts a)
and b) for research question #1. Finally, the results of the previous sections are integrated to
illustrate the nature of any relationship between the fair-share and center-of-balance

conceptualizations

4.2.1 Hypothesis Testing for Research Question #1

The pretest and posttest problem scores served as an indicator of participants’ knowledge as it
related to either fair-share or center-of-balance with respect to the arithmetic mean. Each
problem received a score of zero to three or no-score based on the use and level of understanding
of a particular knowledge (i.e. fair-share or center-of-balance) as defined by the rubrics described

is section 3.4. An ANCOVA model was used to compare the average posttest scores using the
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pretest scores as a covariate. Table 4-3 shows the adjusted means for the posttest problems of

each group for both the fair-share and center-of-balance problems.

Table 4-3: Adjusted Means for Fair-Share and Center-of-Balance Problems

Fair-Share Problems Center-of-Balance Problems
Instruction Group Mean? Standard Error Mean® Standard Error
Fair-Share 2.70 127 2.06 239
Center-of-Balance 2.73 126 1.86 237
Control 2.41 133 1.32 267

*Pretest covariant mean = 2.28. °Pretest covariant mean = 1.22.

Results of the preplanned comparison t-test between the fair-share group’s center-of-
balance mean score (2.06) and the control group’s center-of-balance mean score (1.32) indicated
the means were significantly different, t(21) = 2.085; p = .026 (one-tailed). These results
indicate center-of-balance problem scores increase with instruction that is focused on the fair-
share conceptualization of the arithmetic mean. Similarly, results of the preplanned comparison
t-test between the center-of-balance group’s fair-share mean score (2.73) and the control group’s
fair-share mean score (2.41) indicated the means were significantly different, t(25) = 1.747; p =
0.043 (one-tailed). These results indicate fair-share problem scores increase with instruction that

is focused on the center-of-balance conceptualization of the arithmetic mean.
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4.2.2 Tabular Depiction of Increased Knowledge

Table 4-4 depicts the association between increased scores in fair-share knowledge and center-

of-balance knowledge for the group of participants that received fair-share instruction.

Table 4-4: Association of Scores for Fair-Share Instruction Group

CB Knowledge

Increase NO YES TOTAL
o 2 2 4
g| NO (20%) (20%) (40%)
2
<
2 4 6
Q| YES (20%) (40%) (60%)
4 6 10
TOTAL  (4004) (60%) (100%)

Note: FS denotes fair-share. CB denotes center-of-balance. n=10

Sixty percent (6 out of 10) of the participants receiving fair-share instruction improved their
center-of-balance score average. Four participants improved both their CB knowledge and FS
knowledge after exposure to fair-share instruction. Two participants improved their CB
knowledge, but not their FS knowledge; they had scored highly on the pretest for fair-share

problems allowing little or no room for improvement on the posttest.

Table 4-5 depicts the association between increased scores in center-of-balance
knowledge and fair-share knowledge for the group of participants that received center-of-balance

instruction.
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Table 4-5: Association of Scores for Center-of-Balance Instruction Group

FS Knowledge

Increase NO YES TOTAL
S 3 2 5
g| NO (10%) (40%) (50%)
3
<
] 4 5

m
S| YES | (30 (20%) (50%)
4 6 10
TOTAL  4000) (60%) (100%)

Note: FS denotes fair-share. CB denotes center-of-balance. n= 10

Sixty percent (6 out of 10) of the participants receiving center-of-balance instruction improved
their fair-share score average. Four participants improved both their FS knowledge and CB
knowledge after exposure to center-of-balance instruction. The two participants who improved
their FS knowledge but not their CB knowledge after exposure to center-of-balance instruction
used a feasible method of solution on both the pretest and posttest for the center-of-balance
problems that did not involve CB knowledge.

The next two sections describe the nature of the increases in knowledge found by the
above statistical analyses. Individual problem protocols were coded and analyzed for evidence

of fair-share and/or center-of-balance knowledge.

4.2.3 Fair-Share Instruction Impacting Center-of-Balance Knowledge

This section explores the solution protocols of the two center-of-balance problems for any
connection to the fair-share conceptualization. Of the six participants who improved their

center-of-balance knowledge, three improved only on problem CBI1, two improved only on
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problem CB2, and one participant improved on both problems. These seven protocols were
qualitatively examined for evidence of fair-share knowledge influencing center-of-balance
problem solutions. The impact of the fair-share instruction on center-of-balance knowledge was
discernable in five of the seven protocols. The remaining two protocols did not reveal what
knowledge of fair-share led to the change in center-of-balance knowledge.

The two solution protocols that did not produce evidence of knowledge transfer
originated only in problem CB1. For example, P4y (participant #4 from the fair-share instruction
group), who was unable to solve the problem on the pretest, suggested some knowledge of

center-of-balance solving the same problem on the posttest. The response centered around the

fact that C at least had to be less than X, but the nature of this change in knowledge between the
pretest and posttest was not apparent from the verbal protocol (no written solution was
provided). The following comparison from the pretest and posttest protocols indicates the

increase in knowledge (bold segments indicate center-of-balance knowledge and ‘R’ denotes the

researcher).
Pretest CB1 Posttest CB1
P4: 1 do not know even where to start this problem | P4: Ok, both these numbers are less than the mean,
(pause) wait no b is bigger. No, ok they are both bigger.
So if these are bigger then this other one has
R:  Keep talking to be smaller.
(pause)

P4:  Knowing that they are bigger or smaller does not
help if I don’t know what the mean is. I can’t | R: Keep talking
answer the question without knowing X.

P4:  Well, if I don’t know what a and b are I can’t
find ¢. I don’t know, but ¢ has to be smaller
than the mean. It’s, it’s all I can really tell
without knowing the mean.

The five protocols that showed evidence of adapting fair-share knowledge into center-of-
balance problems stemmed from both problems CB1 and CB2. In each of the five protocols

there was an indication that knowledge learned in the fair-share instruction was transferred to the
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center-of-balance problems. More specifically, the property ‘the sum of the deviations from the
arithmetic mean is zero’ appeared in the posttest protocols. The following protocols and written
work point to the transfer of this knowledge learned in the fair-share context into each of the two
center-of-balance problems.

In the first example, P24 referenced the idea of equal deviations above and below the
mean in the posttest protocol, a concept that provided a viable approach to solve the problem not
evident in the pretest protocol. While her instruction presented the ‘sum of the deviations from
the mean is zero’ property, it was in the context of fair-share allocations (see Appendix C.1).
Although with some hesitation, she correctly transferred the property from fair-share and applied

it to the center-of-balance conceptualization.
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Pretest CB1

Posttest CB1

P24:

P24:

P24:

I am going to write the variable into the mean
formula. What else do I know? Umm, I know a
is 3 greater than X and X plus 7 is equal to b.

Ok, what is the value of ¢c. I am stuck so let me
plug in some values for the variables. 1 for a, 2
for b, and 3 for ¢. Soif I add 7 to 1 I can find out
what b is. T guess first I need to make 3 greater
then x so that’s 4. Wait, oh I’'m so confused.
(pause)

Keep talking
I do not know what I am doing. I’m just going to

guess that ¢ has to be less than x if x is already
three bigger.

P24:

P24:

Ok, so we can say that a plus b plus ¢ divided by
3 will be x. Ok, and we know that a is greater
than x and b is 7 greater than X so that would
mean X plus 7 equal b and how does the value of
c relate to X. Yea, uh I have no idea. I don’t
know.

I guess if the mean is X, well I’ll draw a line, like
a number line graph so maybe I can use that to
figure this out somehow. So a, one of the
numbers is plus 3 and the other is plus 7; so
together they would be plus 10. So on the left
side you have to make it equal to keep the
mean at x so it would be minus 10. So that
keeps it even with x in the middle. So I guess I
can say C is equal to 10 minus, no 10 less than x.
That is kind of what it was like on the online
module, if a and b are 10 greater than x then ¢
would have to be 10 less than x. That’s all I
can do with this.
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The three participants who improved on problem CB2 also used the property, ‘the sum of

the deviations from the mean is zero’, to transfer their fair-share instruction to the center-of-

balance problem. The next protocol characterized two of the three participant’s responses. In

this case the participant, P14, was unable to solve the problem on the pretest using a guess-and-

check method that adjusted the data points based on the calculated mean; then correctly and

efficiently solved the problem on the posttest using the center-of-balance conceptualization. He
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used the two given amounts, $1.30 and $1.35, as the only data points below the mean and adjusts

the seven missing values above the mean to equalize the deviations.

Pretest CB2

Posttest CB2

P14:

P14:

P14:

P14:

P14:

I know that the average is found by adding up all
the values and dividing by the number that you
have. In this case I am going to need nine
numbers, uh, I already have two. (pause)

Keep talking

I’ll just pick numbers in a reasonable range of
$1.38 without using $1.38.

(writes down the two given values and seven
values; uses calculator to find the mean)

$1.51, that is way too high so I’ll tone down the
higher numbers I used.

(writes down the two given values and seven
values; uses calculator to find the mean)

Almost, too low.
higher numbers.
(writes down the two given values and seven
values; uses calculator to find the mean)

I’ll try again with slightly

So they still need to be a little higher, I would just
keep going until I get $1.38. You get the idea.

P14: So the mean is $1.38 and I can’t use $1.38 and 1
got $1.30 and a $1.35 and I need seven more
so...(draws seven blank lines)

P14: So, if the average is $1.38 then | need the same
above the mean that is below $1.38. | already
have two numbers below the mean so | need
numbers bigger than the mean.

(writes down $1.39 in each of the blanks)
R:  Keep talking
P14: See if $1.39 works. So we have 8 and 3 below
the mean which is 11, right, yea, and (counts
one for each $1.39) seven above the mean.
Oh, that is not enough, we need a lot larger
numbers. So let’s change these last four to
$1.40; that will give us four more. (counts the
deviations above the mean) That is eleven on
both sides of the mean so that should be right.
P14: Let me check by dividing
(uses calculator to check solution)
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The next protocol, from participant Plg, also shows how the property, ‘the sum of the

deviations from the mean is zero,” was transferred from fair-share instruction to a center-of-

balance problem. The property, learned in the context of the fair-share conceptualization, was

utilized to correct a misconception the participant had concerning the arithmetic mean as a
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center-of-balance. In the pretest protocol, Pl mistakenly “balanced” the mean in the center of

the data as a median, based on number of data points above and below the mean; rather than as

the arithmetic mean, based on the deviations above and below the mean. In the posttest protocol,

he corrected his initial error remembering his mistake on the pretest, “The number line thingy

was right but not counting spaces messed me up.”

Pretest CB2

Posttest CB2

P1: Soa$1.38 is the average so it, like on anumber | P1:  Oh yea, last time I really messed this up. The
line, could be in the middle. So I will draw that number line thingy was right but not counting
here. These two numbers, the $1.30 and $1.35 go spaces messed me up. So let’s try it again.
on this side of the average.

P1: $1.38 in the middle, $1.30 here, and $1.35

Pl: Now what do I need to do? (pause) here. Now I’ll do it right this time. | have to

count the spaces between these and the

R:  Keep talking average. So $1.30 is (counts to eight) 8 less,

meaning we need one 8 more. $1.35 is 3 less

P1:  Well, I’'m just going to pick some numbers so $1.41 is three more. Ok, that takes care of
between $1.30 and say, umm, well that is eight four of them. (pause)
below so let’s do $1.46.

(writes down numbers) R: Keep talking

P1: Ok, now, umm, no we have two numbers already | P1: I guess I can make the rest up, right?
so I only need seven. (erases two numbers)

R: I can’t help you.

P1: Ok, how do these fit in?

(places numbers on the number line) P1:  Well I’'ll make it easy, $1.37 and 1.39 and
another $1.37 and $1.39.  That’s nine.

R:  Keep talking (mistakenly counts the $1.38)

P1: That is not going to work, | have too many
numbers below the mean. Just change one of
these to a bigger than average number and it
should work.

P1: Wait, we have to use $1.38 or it won’t work. I do
not think it can be done without using $1.38.
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Thirteen of the 20 protocols (2 problems for each of 10 participants) demonstrated no
indication of change in center-of-balance knowledge between the pretest and posttest. Over half
(7 out of 13) of these were correctly solved on the pretest either with a solution based on the
center-of-balance conceptualization or with a solution based on an alternative method. In each
of these cases the posttest protocol mirrored the solution on the pretest problem.” The remaining
six protocols equally exhibited little or no center-of-balance knowledge on either the pretest or
posttest.

To summarize this section, significant differences in center-of-balance knowledge were
observed between participants given fair-share instruction and a control group. The nature of the
increase in knowledge appeared to stem from the ability to transfer knowledge gained in fair-
share instruction to center-of-balance problems. The concept, ‘the sum of the deviations from the
mean is zero,” was perceptible in every protocol that indicated evidence of fair-share knowledge

impacting center-of-balance knowledge.

4.2.4 Center-of-Balance Instruction Impacting Fair-Share Knowledge

This section explores the solution protocols of the two fair-share problems for any connection to
the center-of-balance conceptualization. Of the six participants who improved their fair-share
knowledge, three improved only on problem FS1, two improved only on problem FS2, and no
participant improved on both problems.® The five protocols that showed improved scores could
be categorized into two groupings based on what seemed to be associated with that

improvement: (a) those who initially failed to consider all data points on the pretest, but included

" In one case, not counted in the 13 referenced here, a participant used a viable alternative method for the pretest and
then a correct center-of-balance method on the posttest. See P14 protocol in this section.

¥ One participant used a viable method on the posttest that did not utilize fair-share knowledge for a problem scored
a one on the pretest; thus their overall average increased for the two problems without increasing any one score.

113



all data points on the posttest and (b) those that used knowledge of deviations from the mean on
the posttest.

A common improvement on both center-of-balance problems after fair-share instruction
was the inclusion of all data points when determining the mean. Initially, three participants
failed to account for all the data in their solution strategies. The pretest protocol below illustrates
how participant P13, failed to include the missing data point in the denominator when
calculating the mean of all data points. On the posttest, P13, added to the pretest protocol by
including the missing data point in the total. P13, realized the sum of the given data points is
equivalent to the sum if each child had the mean number of blocks. The highlighted areas

indicate use of fair-share knowledge.

Pretest FS1 Posttest FS1
P13: I am going to take the four children and write | P13: Child #1 nine blocks, child #2 three blocks, child
down the number (counts each stack and writes #3 seven, child #4 five and the mean is seven.

down the numbers, counts seven for the third
child but writes down 3) I know the mean is | P13: If I add the numbers I know and divide by the
seven. IfI add the four original children I get 20 number of kids I will reach the original average.
divided by the original amount four is five. Ok that’s 9 + 3 + 7+ 5 =24 divided by 4 = 6.

P13: Basically, to get a mean of five I would need to | P13: I know the total amount of blocks I need is 35.
add in another five. It’s like five plus five, five You want me to explain that.
times. Child five equals five
R: Yes

P13: Basically, the total equal five times the mean
since the total divided by the number of kids
equal seven. So five times seven is 35.

P13: Yea, I need 11 more blocks so 24 + 11 = 35
divided by 5 =7. Child five has 11 blocks.
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A second grouping of protocols also revealed evidence that center-of-balance instruction
helped increase knowledge on fair-share problems. Three of the five protocols that demonstrated
an increase in fair-share knowledge included use of the property, ‘the sum of the deviations from
the arithmetic mean is zero,” in the posttest but not in the pretest. In the example below, P27,
unsuccessfully used a formula-based guess-and-check method on the pretest; then successfully
incorporated the idea of equal deviations from the mean in the posttest protocol. In this case, the
concept, ‘the sum of the deviations from the arithmetic mean is zero,” was learned as it related to
center-of-balance (see Appendix C.2). P27 successfully adapted knowledge of this concept

from center-of-balance instruction and applied it as a fair-share conceptualization.
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Pretest FS1

Posttest FS1

P27:

P27:

P27:

P27:

P27

Child #1 has nine blocks, child #2 has three
blocks, child #3 has seven blocks, child #4 has
five blocks, and the mean has seven blocks. If I
add these up (the first four children)...24. The
mean equals six.

(pause)

Keep talking.

I am going to pick random numbers to see if they
will fit and end up with a total mean to be seven.
Six would give me 30 divided by five is six. No.
(erases work)

Please do not erase any work.

If T add eight... that’s 32 divided by five...6.4.
I’ll try nine. Can I use my calculator?

Yes, but keep talking.

That’s 33 divided by five...6.6. Maybe 10.
34 divided by 5...6.8.

: Nine or ten will work if I round to seven.

P27:

P27:

P27:

P27:

P27:

Child #1 has nine blocks, child #2 has three
blocks, child #3 has seven blocks, and child #4
has five blocks. If I add the four children’s
blocks up I get 24 and the mean for these four
would be six.

Keep talking

But the sixth child is unknown and the mean all
together is seven so the six doesn’t work.

Keep talking

That means the mean, huh, of the first four is one
less than the all together mean.

Keep talking

So I need to add one to each of their means.
That’s four all together and... the mean of child
#5 would be seven. Should I add those? So four
plus seven is 11.

So 24 plus 11 is 35 divided by five
children...and that equals 11.

?
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One protocol had both of the characteristics evidenced in improved fair-share problems in

the center-of-balance instruction group. That is, it failed to consider all the data points in the

pretest and used knowledge of deviations from the mean on the posttest. In this example, it is

clear that knowledge pertaining to the center-of-balance conceptualization of the arithmetic mean
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(indicated by bold in the posttest protocol) was used in conjunction with fair-share knowledge

(indicated by highlight in the pretest and posttest protocols) to reach a viable solution.

Pretest FS1

Posttest FS1

P17:

P17:

P17:

There are five children and the mean is seven. I
do not exactly remember what the mean is but I
think that it is the numbers combined and divided
by the number. (pause)

Keep talking.

So child three has seven blocks, the same number
as the mean. If everyone had seven then I think
the mean should be seven. Well, I guess they
don’t and that is why you gave us the problem.

I think I can make the ones that are not seven,
child #1, child #2, and let’s see, child #4 average
seven and that would work. I don’t know what
else to do so I’ll do that. I got three kids so 21
divided by three will give me the seven. Nine
plus three plus seven plus five equals 24. Umm,
wait, oh, I don’t need the seven. So that’s
seventeen.

(mentally adds 9+3+5)

So I need four more to get 21. I think child #5
might have 4 blocks.

P17:

P17:

P17:

P17:

P17:

Well I look at the blocks and I see that child #1
has nine blocks, child #2 has three, child #3 has
seven, child 4 has five, and child #6 is blank and
we I need a mean of seven. So the problem is
how many blocks does he have to make the mean
seven, SO...

Well, child #3 has seven blocks and that is the
same as the mean. Looking at my numbers I see
two odd numbers, the three and the five that are
less then the seven and one odd number that is
bigger, the nine. So there is a pattern, every two
odd numbers less than and bigger than the mean.
The pattern says that child #5 should have 11
blocks.

So everything has to be like they were all seven.
The seven is seven. Now, umm...
(pause)

If 1 combine these two (nine and five) I get 14
divided by two is seven so good. Now combine
these two (three and eleven), 14 again.

So let me just make sure (uses formula to check)
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Eleven of the 20 protocols (2 problems for each of 10 participants) did not demonstrate

any indication of change in fair-share knowledge after center-of-balance instruction. Over 80%

(9 out of 11) of these protocols were correctly solved on the pretest either with a solution based

on the fair-share conceptualization or with a solution based on an alternative method. In each of

117



these cases the posttest protocol closely resembled the solution on the pretest. In two other
protocols, problem FS1 was correctly solved on the pretest with an alternative method (an
algebraic approach based on the arithmetic mean formula and the missing data point as a
variable), and then with a correct center-of-balance conceptualization on the posttest.
Conversely, in one case, problem FS2 was successfully solved using a center-of-balance
conceptualization on the pretest and then with an alternative method (an algebraic approach) on
the posttest.

To summarize this section, significant differences in fair-share knowledge were observed
between participants given center-of-balance instruction and a control group. The nature of the
increase in fair-share knowledge after the center-of-balance instruction was characterized by two
themes: (a) an understanding that all data points, including the missing data points, were relevant
and (b) the ability to adapt knowledge concerning deviations from the mean gained in center-of-
balance instruction to fair-share problems. Every protocol that indicated center-of-balance

knowledge impacted fair-share knowledge included one or both of these themes.

4.2.5 Integration of Fair-Share and Center-of-Balance Results

Rarely did participants directly use the specific fair-share or center-of-balance knowledge that
they learned in the instructional modules on posttest problems of the other conceptualization.
For example, participants did not apply a balance model learned in the center-of-balance
instruction to a fair-share posttest problem; nor did they apply reallocation of the original data set
learned in the fair-share instruction to solve center-of-balance problems. Rather, they used a
manifestation of that knowledge signified by the concept, ‘the sum of the deviations from the

arithmetic mean is zero.” Participants were able to transfer knowledge of this concept learned in
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a fair-share context to center-of-balance problems, and similarly, transfer knowledge of this
concept learned in a center-of-balance context to fair-share problems.

Examples of using both center-of-balance and fair-share knowledge in the same problem
occurred in only three protocols. In each case, the protocols indicated use of both fair-share and
center-of-balance knowledge integrally connected in the solution process. The previously
presented posttest protocol of P17, is one such case. The statement, “So everything has to be
like they were all seven” indicated a fair-share conceptualization of the data. Next, P17, used
this idea to balance the data points, “Seven is seven. If I combine these two (nine and five) I get
14, divided by two is seven, so good. Now combine these two (three and eleven), 14 again.” A
second protocol (from problem FS2) that exemplified a relationship between fair-share and
center-of-balance utilized an identically successful method of solution on both the pretest and
posttest.  Initially, P15., thought of the aggregate total of all data points, a fair-share
conceptualization, and related this knowledge to deviations from the mean. “Well, the values of
the 3" and 6™ weighing would need to make the total value 32. They can be more or less than
the mean, which ever they need to be to make the distance equal.” P15, then took the concept
of deviations from the mean and transferred it to a center-of-balance conceptualization. “I am
going to figure out how much I have more than the mean and how much less. When I add those
up I know the positives and negatives should balance out.” The problem was solved within the
context of center-of-balance and then transferred back to fair-share to check the solution. “See it
that all adds up to 32...and 32 divided by 10 equals 3.2.” Knowledge pertaining to the center-of-
balance conceptualization of the arithmetic mean is indicated by bold and knowledge pertaining

to the fair-share conceptualization is indicated by highlight.

119



FS2

P15:

P15:

P15:

P15:

P15:

Well, the values of the 3™ and 6™ weighing would need to make the total value 32. They can be
more or less than the mean, which ever they need to be to make the distance equal. They might
also be the mean, let’s see.

I am going to figure out how much | have more than the mean and how much less. When |
add those up | know the positives and negatives should balance out. If they don’t then #3 or
#6 will make it work.

#1 and #5 are the mean so they don’t count. This one is +.2, this is +.1, and this is +.2 (referring
to weighings #2, #7, and #8). And down here it’s .1 less, .2 less and .1 less (referring to
weighings #4, #9, and #10) So the value greater than is .5 and the value less than is .4.

So I know that, umm, #3 and #6 added together need to be .1 less than the mean so that it all
works out. So value #3 could be .1 less and value #6 could be exactly the average. You could

also change it so that any combination is .1 less than the average

See it that all adds up to 32...and 32 divided by 10 equals 3.2

The same participant, P15.,, who used both center-of-balance and fair-share knowledge in a fair-
share problem also utilized both knowledges in a center-of-balance problem. The participant
used the same solution process for both the pretest and the posttest for problem CB2. P15, first
used fair-share knowledge to note that all nine bags would total $12.42, and that $9.77 was the
total of the remaining seven bags once the two known prices were subtracted. He then used
center-of-balance knowledge to calculate several of the remaining unknown prices by picking

values equal distant above and below the mean. Finally, the last price was found by calculating
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what remained of the total.
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CB2

P15:

P15:

P15:

P15:

P15:

In order for the average value to be $1.38 the price of all the potato chips if I add them has to be
the mean times nine. So that is $12.42.

I know I have these two, $1.30 and $1.35, (uses calculator) $2.65. So the total of all the values of
the chips minus those two, (uses calculator) $9.77.

I am going to choose numbers on either side of $1.38 to make it easy to figure out the mean.
$1.39 and $1.37; $1.40 and $1.36; $1.41 and $1.35.

Altogether that is, (uses calculator) $8.28. The $1.30 and $1.35 make it, (uses calculator) $10.93.

$12.42 minus $10.93, (uses calculator) $1.49 for the last bag.

A common solution structure emerged from each of the three cases that integrated both
conceptualizations into one protocol.
context of the fair-share conceptualization. In the first case, P17 used fair-share to note the
mean would remain at seven if all the data points were equal to seven. In the second and third
cases, P15, used fair-share to find aggregate totals to form a basis for the solutions. Once the
problems were framed within the fair-share conceptualization the participants then used the idea
of center-of-balance to carry out the solution process. P17, (case #1 above) balanced pairs of
data points around the mean for problem FS1. Similarly, P15, (case #3 above) balanced pairs of
data points to solve problem CB2. A slightly different center-of-balance approach was employed

by P15 to solve problem FS2 (case #2 above). In this case, the amassed deviations above and
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below the mean were first calculated, and then the missing data points were chosen to balance
the entire data set.

While most evidence indicates participants did not directly apply learned knowledge of
the fair-share or center-of-balance conceptualization into posttest problems based on the opposite
conceptualization (cf. P17.); evidence does indicate knowledge learned in one conceptualization
was transferred to the other. In particular, knowledge that the ‘sum of the deviations from the
arithmetic mean is zero’ appeared in the posttest protocols for both the fair-share and center-of-
balance instructional groups. About sixty-six percent (8 out of 12) of the participants that
showed improved scores transferred knowledge of this idea learned in one context (i.e. fair-share

or center-of-balance) to the other.

43  CONCEPTUALIZATIONS AND MATHEMATICAL CONCEPTS

In this section the results pertaining to research question #2 are examined:

2) How is knowledge of fair-share and center-of-balance cognitively related to the

mathematical domain? In particular,

a) What effect does instruction of the fair-share conceptualization of the arithmetic
mean have on knowledge of mathematical concepts associated with the arithmetic

mean?

b) What effect does instruction of the center-of-balance conceptualization of the
arithmetic mean have on knowledge of mathematical concepts associated with the

arithmetic mean?
To answer these questions, written solutions and verbal protocols of pre- and post- test arithmetic

mean problems were analyzed both quantitatively and qualitatively in order to identify how

122



increased knowledge of fair-share or center-of-balance affected knowledge of particular
mathematical concepts related to the arithmetic mean. The results of these analyses are
organized into four sections. First, the results of statistical analysis are reported. The next two
sections detail how each conceptualization impacts mathematical concept knowledge. Last, the
nature of the relationships between the conceptualizations of fair-share and center-of-balance and

the mathematical concepts related to the arithmetic mean are summarized.

4.3.1 Hypothesis Testing for Research Question #2

The pretest and posttest scores for the mathematical concept problems served as an indicator of
participants’ capacity to integrate mathematical knowledge with other mathematical concepts or
with the conceptualizations of fair-share and center-of-balance. Each problem received a score
of zero to three based on its correctness and use of sound mathematical ideas, or “no-score” if the
correct solution path was ambiguous. An ANCOVA model was used to compare the average
posttest scores using the pretest scores as a covariate. Three hypotheses were tested based on the
mathematical concept problems’ posttest scores: (a) differences between mathematical concept
posttest scores for the group that received fair-share instruction and the group that received
center-of-balance instruction, (b) differences in mathematical concept posttest scores between
the group that received fair-share instruction and a control group, and (c) differences in
mathematical concept posttest scores between the group that received center-of-balance
instruction and a control group. Table 4-6 shows the adjusted means for the mathematical

concept posttest problems of each group.
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Table 4-6: Adjusted Means for Mathematical Concept Problems

Mathematical Concept Problems

Instruction Group Mean? Standard Error
Fair-Share 2.35 167
Center-of-Balance 2.52 .166
Control 1.92 .176

*Pretest covariant mean = 1.83

Results of the Bonferroni t (Dunn’s test) between the fair-share group’s mathematical
concept mean score (2.35) and center-of-balance group’s mathematical concept mean score
(2.52) indicated the means were not significantly different, t’(25) = 0.72; p = 1.00. Results of the
Bonferroni t-test between the fair-share group’s mathematical concept mean score (2.35) and the
control group’s mathematical concept mean score (1.92) indicated the means were not
significantly different, t’(25) = 1.86; p = .13 (one-tailed). Results of the Bonferroni t-test
between the center-of-balance group’s mathematical concept mean score (2.52) and the control
group’s mathematical concept mean score (1.92) indicated the means were significantly
different, t’(25) = 2.58; p = .029 (one-tailed). This result indicates mathematical concept scores
increase with instruction that is focused on the center-of-balance conceptualization of the
arithmetic mean. The following sections describe the nature of the results found by the above

statistical analysis.

4.3.2 Fair-Share Instruction Impacting Mathematical Concepts

This section explores the solution protocols of the two mathematical concept problems for any

connection to the fair-share conceptualization. Fifty percent (5 out of 10) of the participants in
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the fair-share group advanced their mathematical concept knowledge after fair-share based
instruction. Each of the five participants improved their score on one of the two mathematical
concept problems. Therefore, twenty-five percent (5 out of 20) of the scores for the
mathematical concept posttest problems were improved upon from the pretest. Of the remaining
fifteen scores, ten were perfect (i.e. rubric score of 3 out of 3) on the pretest and posttest meaning
there was no potential for improvement. Hence, fifty percent (5 out of 10) of the problems that
had “improvable” scores on the pretest were bettered on the posttest. Of these, two
improvements were on problem MCI1 and the remaining three improvements were on problem
MC2.

The protocols of both participants in the fair-share group who increased their score on
MCI1 did not indicate what new knowledge was responsible for the change. In one case, the
participant confidently and matter-of-factly stated the correct solution on the posttest after
providing a hesitant and incomplete solution of the pretest. Below is an example of that pretest

and posttest protocol.

Pretest MC1 Posttest MC1
P26: Idon’t know. It would depend on the data set. | P26: The mean, yea, the arithmetic mean. I’ll write it
Every data set would be different. out.
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The three participants who increased their scores for problem MC2 each provided
protocols that revealed the knowledge they used to solve the problems. One of them was unable
to solve the problem on the pretest using a guess-and-check method, but correctly solved the

problem on the posttest using an algebraic approach based solely on the arithmetic mean
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formula. There was no evidence of fair-share knowledge in the solution. The remaining two

participants utilized fair-share knowledge in the posttest that was not evident in the pretest. In

the following protocol, P18y struggled toward a solution on the pretest using the arithmetic mean

formula. On the posttest, she used the sense of fair-share to find the aggregate total of all five

data points and then subtracted the sum of the first four to calculate the fifth data point. The

addition of fair-share knowledge into the problem solution on the posttest provided a solution

path that was more coherent and mathematically sound then the chaotic nature of the pretest

solution.
Pretest MC2 Posttest MC2
P18: To find the mean of the first four numbers I will | P18: Ok, five numbers and the mean is twenty so
divide by four. (pause) 20x5 = 100 which is the total of all five numbers
with the missing one.
R: Keep talking. P18: The total minus the four that we know will give
us the missing number. 100-25 = 75. That has to
P18: Eighteen point seven five. Then 18.75 plus 75 be the missing number.
equals (uses calculator) is 93.75. 93.75 divided
by 5 is 18.75, huh. (pause)
R: Keep talking.
P18: Ok, if the mean is 20...75 plus 20 is 95. 95
divided by 5 is 19. (pause)
R:  Keep talking.
P18: 75 plus 75 is 150. 150 divided by 5 is 30. 75
plus 30 is 105 divided by 5 is 21.
P18: So it is between twenty and thirty.

15-4-18.75
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Of the ten perfect scores on the pretest, four were scored on problem MC1 and six were

scored on problem MC2. The correct solutions for problem MCI1 fit into one of two categories:

induction (3) or center-of-balance (1). There was no evidence of fair-share knowledge in any

126



solution for problem MC1 in the fair-share group. The correct solutions for problem MC2 fit
into one of two categories: fair-share (4) or algebraic (2). Each of the four fair-share based
solutions was similar to P18g’s posttest protocol previously presented.

To summarize this section, no significant difference in mathematical concept knowledge
was statistically calculated between participants given fair-share instruction and a control group.
However, several protocols, particularly those of problem MC2, did suggest using knowledge of

the fair-share conceptualization lead to a correct solution or improved scores.

4.3.3 Center-of-Balance Instruction Impacting Mathematical Concepts

This section explores the solution protocols of the two mathematical concept problems for any
connection to the center-of-balance conceptualization. Eighty percent (8 out of 10) of the
participants in the center-of-balance group advanced their mathematical concept knowledge after
center-of-balance based instruction. Four of the participants improved only on problem MCI,
three participants improved only on MC2, and one participant improved on both problems.
Therefore, forty-five percent (9 out of 20) of the scores for the mathematical concept posttest
problems were improved upon from the pretest. Of the remaining eleven scores, nine were
perfect (i.e. rubric score of 3 out of 3) on the pretest and posttest meaning there was no potential
for improvement. Hence, about eighty-two percent (9 out of 11) of the mathematical concept
problems that had “improvable” scores on the pretest were bettered on the posttest after center-
of-balance instruction.

One of the five participants that improved on problem MC1 offered no indication as to
why their answers differed on the pretest and posttest. A second participant used an algebraic

method based on the arithmetic mean formula to improve his initial incorrect logic. P3
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incorrectly answered zero on the pretest. He erroneously assigned the algebraic properties of

zero in addition and multiplication to the arithmetic mean. On the posttest, he used algebra and

the arithmetic mean formula to first disprove his initial answer and then found the correct

solution, but only for his arbitrary data set. He never stated that the solution was the mean for all

data sets.

Pretest MC1

Posttest MC1

P3: The number zero can be added to the data set and
the mean will not change.

P3: It will not change because zero is almost like an
invisible number. Whether you multiply or add
zero to other numbers you will either get zero or
the number that you are adding the number zero
with.

P3:

P3:

P3:

P3:

P3:

P3:

Zero can be added to the data set not to change
the mean.

I will give an example. One, two, three, four,
five. These numbers add up to 15 which divided
by five is three

15 plus x can be divided by three, no divided by
six, will equal three.

Let x equal zero. No. uh, wait, no. (pause)
Keep talking

Solve the equation for x. (algebraically solves
equation) umm, three.

Zero does not work. The answer is three.
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The remaining three participants who improved on problem MC1 indicated new use or

improved use of the center-of-balance conceptualization from the pretest to the posttest. For

example, P17, did not have a strategy to solve the problem on the pretest but used a center-of-

balance approach on the posttest to correctly solve the problem. On the posttest she constructed

a data set on a number line with an arbitrary mean (five) using center-of-balance to maintain the

mean. She then pointed out, “the only way to add one dot and not make it uneven is to put the
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dot on the mean.” In this case, the center-of-balance conceptualization was utilized to set-up a

strategy and to deduce a valid solution.

Pretest MC1

Posttest MC1

P17:

P17:

P17:

P17:

I’m not sure what the data set is. It would depend
of what the data set looked like. I could use the
equation to find the answer if there was data.
(pause)

Keep talking.

Like I said, I could try a bunch of numbers to see
what worked if I had the data set. (pause)

Keep talking.
Should I make one up.
Do what you need to answer the question.

It wouldn’t help since it would change for every
group. It is different for every group

P17:

P17:

P17:

P17:

P17:

We did the module online so I figure I can use
that to solve this problem. Since I did this
problem last I realize that you can set up a
balance line to show the answer. (draws
number line)

Suppose the mean is five, I’ll put three dots, no
two, on the five. Now if | put one on the three
I put one on the seven. | can also put another
on the seven, but instead of the three | can put
two on the four to make it even. And I’ll put
one on the eight and on the two.

(adds the numbers) So that’s 45 dots divided by
nine is five, good.

Now, the only way to add one dot and not
make it uneven is to put the dot on the mean.
(redraws number line with another dot on the
five)

(adds the numbers) 50 dots. This time divided
by ten and my mean is still five.
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Problem MC2 had four improved scores. Of these, two participants modified a fair-share

approach to solving the problem, one participant successfully used an algebraic approach, and

one participant used a center-of-balance approach. P28, used the arithmetic mean formula on
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four data points and was unable to find a successful solution strategy on the pretest. On the
posttest, she again used the arithmetic mean formula but this time combined it with a balance
model. P28 applied knowledge learned regarding the center-of-balance conceptualization,
along with her initial strategy that focused on the arithmetic mean formula, to further her ability

to solve the problem.

Pretest MC2 Posttest MC2
P28: The mean of the numbers is 75 divided 4 equal | P28: The mean is in the middle. Twenty. Four
18.75. That is close enough to 20 to be part of the numbers equal 75. 75 divided by 4 is 18.75.
data set. Four of them.

P28: On the other side of twenty | need four more.
(uses calculator). 20 minus 18.75 equal 1.25
times 4 equal 5 plus 20 equal 25. (draws four
slashes above 25)

P28: Twenty-five will work
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4 -_:)8"73 S >

To summarize this section, the difference in means between the center-of-balance group’s
mathematical concept score and the control group’s mathematical concept was significant.
About forty-four percent (4 out of 9) of score improvements on the mathematical concept
problems were associated with increased center-of-balance knowledge. Center-of-balance
knowledge appeared in fifty percent (5 out of 10) of the CB1 posttest protocols and in ten

percent (1 out of 10) of the CB2 posttest protocols.

4.3.4 Mathematical Concepts Related to Specific Conceptualizations

Statistical hypothesis testing (see section 4.3.1) suggested there was no difference in

mathematical concept posttest scores for participants that received fair-share instruction
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compared to participants that received center-of-balance instruction. A qualitative examination
of the coded data revealed each mathematical concept problem, MC1 and MC2, was primarily
solved using a particular conceptualization. That is, solutions for MC1 tended to utilize the
center-of-balance conceptualization and solutions for MC2 tended to utilize the fair-share
conceptualization. Table 4-7 denotes the posttest solution methods for participants in the fair-

share and center-of-balance groups combined.

Table 4-7: Posttest Solution Methods for Mathematical Concept Problems

Method of Solution
Problem Fair-Share Center-of-Balance Alternative? Undetermined®
MC1 0 7 7 6
MC2 12 1 5 2

Note: No problem had evidence of both conceptualizations
*Primarily inductive argument for MC1 and primarily algebraic solution using arithmetic mean formula for MC2.
"Includes unsubstantiated solutions and unsolved problems

The evidence suggests that mathematical concepts of the arithmetic mean, at least the two
offered by problems MCI1 and MC2, may be cognitively connected to a specific
conceptualization of the arithmetic mean (i.e. fair-share or center-of-balance). Participants who
gained fair-share knowledge were unable to adapt it to problem MC1, but readily used the new
knowledge in problem MC2. Conversely, participants who gained center-of-balance knowledge

readily adapted it to problem MC1, but in only one case used it to solve problem MC2.
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5.0 DISCUSSION

The relatively simple calculation for quantifying the arithmetic mean can obscure its connection
to other knowledge spaces that help cultivate its understanding. Two such knowledge spaces, the
notions of fair-share and center-of-balance, were the focus of this investigation. Research
indicates most students view the arithmetic mean as a procedure (McGatha, Cobb, & McClain,
2002), and often do not understand it as a fair-share distribution of the data (Mokros & Russell,
1995) or as the center-of-balance of the data set (Hardiman et al., 1984). Furthermore,
articulating a connection between the conceptualizations of fair-share and center-of-balance is
often difficult even for those with advanced understanding in statistics (MacCullough, 2007).
Linking the two conceptualizations of the arithmetic mean with each other and with
mathematical concepts connects these fragments of knowledge and thus constructs a web of
understanding for the arithmetic mean. The purpose of this study was to explore how liberal arts
university students connect the different conceptualizations of the arithmetic mean (i.e. fair-share
and center-of-balance) to one another and to related mathematical concepts.

This discussion is presented in three parts. First, the results of the study are explained
and situated within the existing literature base. Next, implications of the findings and
recommendations, particularly as they relate to pedagogy, are discussed. Finally, directions for

future reach are offered.
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5.1  EXPLANATION AND SITUATING OF RESULTS

The results of this study show that increased knowledge of the fair-share conceptualization of the
arithmetic mean improved knowledge of the center-of-balance conceptualization as ascertained
via problem solving. Similarly, increased knowledge of the center-of-balance conceptualization
of the arithmetic mean improved knowledge of the fair-share conceptualization. Also, increased
knowledge of either the fair-share or center-of-balance conceptualization advanced
understanding of the mathematical concepts associated with the arithmetic mean. However,
increased knowledge of each conceptualization distinctively affected specific mathematical

concepts.

5.1.1 Initial Knowledge and Use of the Conceptualizations

Prior research has indicated students’ primary solution strategies for arithmetic mean problems
are based on the arithmetic mean formula (Cai, 1998; Groth, 2005; Groth & Bergner, 2006;
Mokros & Russell, 1995). The current study confirmed this prior result. An examination of
participants’ written solutions on the pretest revealed a preponderant use of the arithmetic mean
formula even in cases where its use was inappropriate or unfounded. For example, several
participants attempted to solve problems FS2 and CB2 by means of the arithmetic mean formula.

32+34+x+3.1+32+y+3.3+3.4+3.0+3.1
10

The resulting insufficient systems of equations, =3.2 for

d $1.30+$1.35+t+U+V+WH+X+Y+2Z
9

FS2 an =$1.38 for CB2, could not be solved for the missing

variables. Use of the arithmetic mean formula in problems that culminated in a correct solution

or a mathematically sound solution attempt did not reveal what conceptual knowledge
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participants had regarding the arithmetic mean. However, similar to results of prior research
(e.g. Cai, 1998; Groth & Bergner, 2006; McGatha, Cobb, & McClain, 2002; Mokros & Russell,
1995; Pollatsek, Lima & Well, 1981), evidence indicated many participants did not have
methods of solution based on a conceptual understanding of the arithmetic mean for problems
that were not suitably solved with the arithmetic mean formula or for situations where
participants were unable to utilize the formula to construct a solution. In particular, the
conceptualization of center-of-balance as it relates to the arithmetic mean seemed to be absent or
minimally connected for most participants. This is not surprising; the relationship between the
center-of-balance conceptualization and the arithmetic mean formula is rooted in the physical
concept of center-of-mass; a more difficult and, most likely, unfamiliar concept to the
participants in this study. In contrast, the conceptualization of fair-share appeared to be
somewhat developed, at least in the sense of how it related to the arithmetic mean formula, for
most participants even prior to instruction. The protocols showed participants were able to relate
the concept of partitive division to the arithmetic mean formula, or algebraically manipulate the
arithmetic mean formula to calculate the total amount for the entire data set and share it equally
amongst the data points.

Participants were more successful solving fair-share problems than they were solving
center-of-balance problems. This difference can be explained by combining the results from this
study and from previous research with the knowledge structure proposed in section 2.4. The
knowledge structure linked the mathematical domain and the statistical domain of the arithmetic
mean to the conceptualizations of fair-share and center-of-balance as cognitive blending spaces.
The relative strength of the connections between domains and conceptualizations may account

for the difference in difficulty of fair-share and center-of-balance problems.
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Evidence in the protocols indicates a strong relationship between the fair-share
conceptualization and the mathematical domain. This was evident through the successful use of
partitive division to represent the total accumulation being equally shared among all data points
or through the successful use of the normalized ratio (Cortina, 2002) to represent the arithmetic
mean is a suitable surrogate for each value in the data set in problems FS1 and FS2. The success
most participants accomplished on problem MC2, a mathematical concept problem most often
solved using some sense of fair-share, is further evidence of a strong relationship between the
fair-share conceptualization and the mathematical domain.

The link between the center-of-balance conceptualization and the mathematical domain
is, in contrast, a weak relationship within the proposed knowledge structure. The weak
relationship was indicated in the protocols by the low scores on problem CB1, the minimal use
of center-of-balance knowledge on problem CB2, and the low scores on problem MCI, a
mathematical concept problem linked to center-of-balance knowledge. The general concept of
center-of-balance, particularly the mathematical concepts relating it to center-of-mass, is only
partially understood even at adulthood (Hardiman, Pollatsek, & Well, 1986; Jackson, 1965;
Lovell, 1961; Siegler, 1976). Therefore, using it to model a different concept, such as the
arithmetic mean, proves to be challenging. “Using one poorly understood set of ideas—the
physical relationship of weights and distance—may not help students understand another set of
difficult ideas—the numerical relationship between the mean and the data” (Russell & Mokros,
1996, p. 361).

Prior research (e.g. Cai, 1998; Groth & Bergner, 2006; McGatha, Cobb, & McClain,
2002; Mokros & Russell, 1995; Pollatsek, Lima & Well, 1981), as well as the results of this

study, indicate the overall knowledge of the statistical domain, or the idea that the arithmetic
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mean is representative, is weak among most students. It is therefore not surprising to find the
connection between the statistical domain and the conceptualizations of fair-share and center-of-
balance are not soundly developed in most participants. However, a few participants used the
conceptualizations of fair-share and/or center-of-balance to describe the arithmetic mean as
representative of the data set. In particular, those participants who made use of the center-of-

balance conceptualization most often related it to the statistical domain.

STATISTICAL

Weaker Weaker

Cognitive Connection Cognitive Connection

Balance

Strongest Weakest

MATHEMATICAL

Cognitive Connection Cognitive Connection

Figure 5-1: Recap of Knowledge Structure of the Arithmetic Mean

To summarize, most participants summoned knowledge of the connection between the
fair-share conceptualization and the mathematical domain, namely partitive division, and used it
to successfully solve problems. The reasons the participants were more successful in solving
fair-share problems as opposed to center-of-balance problems were twofold. First, the only

strong connection identified within the structure, Figure 5-1, was between the fair-share
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conceptualization and the mathematical domain. Thus, participants were better equipped with
the knowledge and mathematical tools to solve fair-share related problems. Second, as discussed
in section 2.3, the intricacies and nature of the blending spaces themselves are inherently
different. The general concept of fair-share is understood at a very early age and its
mathematical model, partitive division, is relatively simple. On the other hand, the mathematical
model relating center-of-balance to the arithmetic mean (i.e. torque and center-of-mass) is

comparatively difficult.

5.1.2 Connecting the Conceptualizations

There are two important reasons for cognitively connecting the fair-share and center-of-balance
conceptualizations of the arithmetic mean. First, an important component of understanding the
arithmetic mean is justifying in one’s mind how two seemingly different conceptualizations (i.e.
fair-share and center-of-balance) can describe the same concept. It is difficult to fathom a
connection between the notions of fair-share and center-of-balance in the general knowledge
schema outside the context of the arithmetic mean. Finding harmony between the
conceptualizations may help solidify understanding of the arithmetic mean. Second, as
previously discussed, access to knowledge of center-of-balance as it relates to the arithmetic
mean is impeded on two fronts: (a) its mathematical context is rooted in the difficult concepts of
torque and center-of-mass, and (b) the inadequate understanding students have of the statistical
context of the arithmetic mean. Cognitively connecting the fair-share conceptualization to the
center-of-balance conceptualization within the context of the arithmetic mean may provide an

alternate and more explicit path to the concept of balance.
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MacCullough (2007) found experts thought of the connection between fair-share and
center-of-balance as a leveling-off conception. Figure 5-2 depicts how the experts “visualized”

the process for both the fair-share and center-of-balance conceptualizations.
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(Van de Walle & Lovin, 2006)

Figure 5-2: Fair-Share and Center-of-Balance as Leveling-off

“They [the experts] moved seamlessly between the two conceptions [fair-share and center-of-
balance] using the conception with which it was easiest to work in the given task.”
(MacCullough, 2007, p. 100). The participants in the current study used the notion ‘the sum of
the deviations from the mean is zero’ to transfer knowledge from one conceptualization to the
next. The two relationships (i.e. leveling-off and sum of the deviations from the mean is zero)
essentially model the same concept, but they define the connection between fair-share and

center-of-balance from two different domains (i.e. statistical and mathematical). Experts view
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the mean as a statistically representative quantity. The experts could visualize how the leveling-
off process both equally distributes and balances the data. In contrast, the majority of
participants in the current study lacked knowledge of the statistically representative notion and
had only a mathematical perspective of the arithmetic mean. Therefore, the connection between
fair-share and center-of-balance manifest as one of Strauss and Bichler’s (1988) mathematical

properties of the mean, the sum of the deviations from the mean is zero.

5.1.2.1 Hypothesized Connection between the Conceptualizations

It is not surprising that the participants focused on the concept, ‘the sum of the deviations
from the mean is zero,” in the posttest solutions as it was an integral part of the instruction for
both the fair-share and center-of-balance group. What is noteworthy, however, is the transfer of
newly learned knowledge into problems that centered on a different conceptualization.
Participants seldom used the explicit fair-share or center-of-balance knowledge that they learned
in the instructional modules on posttest problems of the other conceptualization. That is,
participants did not employ a balance model learned in the center-of-balance module to solve a
fair-share posttest problem; nor did they redistribute the original data set as learned in the fair-
share module to solve a center-of-balance posttest problem. Rather, they took a concept learned
in the context of each conceptualization, ‘the sum of the deviations from the arithmetic mean is
zero,” and transferred it to the other conceptualization. The following is a hypothesis of how
participants may have transferred the ‘sum of the deviations from the mean is zero’ concept
between the fair-share and center-of-balance conceptualizations.

Within a knowledge structure, the existence and strength of connections between
concepts and/or schema have limitations. One factor that determines how vast the connections

are is the generality in which a concept is learned (J. Greeno personal communication, July 15,
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2008). In the case of this study, learning from a specific instruction module (i.e. fair-share or
center-of-balance) had to be general enough to transfer into the other conceptualization. The
concept, ‘the sum of the deviations from the mean is zero,” was a general idea learned in the
more specific context of either fair-share or center-of-balance. This concept is not limited to
connections to only one conceptualization; rather, it can be generalized to both. In other words,
the form of the schema for the concept did not require all the qualities of a specific
conceptualization to activate use of the concept. The protocols indicated that some participants
certainly related the center-of-balance conceptualization to equal deviations from the mean.
They were able to equally “balance” the differences above and below the mean. The protocols
also indicated some participants related the fair-share conceptualization to deviations from the
mean. These participants saw the arithmetic mean as having a property of the data or
distribution that shared the “extra” data equally. That is, data points not equal to the mean had to
“give” or “receive” data such that all data was shared equally. The ability to generalize the ‘sum
of the deviations from the mean is zero’ concept afforded participants the opportunity to transfer

the knowledge between the fair-share and center-of-balance conceptualizations.

5.1.3 Importance of Both Conceptualizations

While results from research question #1 indicated certain knowledge (e.g. sum of the deviations
from the mean is zero) can be transferred from one conceptualization (i.e. fair-share or center-of-
balance) to the other; results from research question #2 indicated that knowledge of only one
conceptualization may not be sufficient to solve all arithmetic mean problems, and therefore does

not offer a complete understanding of the arithmetic mean. A holistic understanding of the
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arithmetic mean includes relying on both blending spaces (i.e. fair-share and center-of-balance)
to connect the statistical and mathematical knowledge domains.

The mathematical concept problems, MC1 and MC2, were each almost exclusively
solved using one of the conceptualizations, center-of-balance or fair-share, respectively. The
mathematical concept in problem MCI1 characterized two of Strauss and Bichler’s (1988)
mathematical properties of the arithmetic mean: (a) when one calculates the average, a value of
zero, if it appears, must be taken into account, and (b) the average is influenced by values other
than the average. One of two general solution strategies stood out in the majority of protocols:
(a) an inductive method based solely on the arithmetic mean formula, or (b) a depiction of the
arithmetic mean as the center-of-balance. The fair-share conceptualization of the arithmetic
mean was not perceptible in any of the posttest protocols for problem MC1. Although it is
possible to illustrate the two mathematical properties relevant to problem MCI1 as a fair-share
conceptualization; participants in this study considered these properties applicable to the center-
of-balance conceptualization regardless of the focus of their instruction (i.e. fair-share or center-
of-balance).

The mathematical nature of problem MC2 corresponded to Cortina’s (2002) view of the
arithmetic mean as a normalized ratio. In this case, the arithmetic mean is described as an
attribute of a group of data points in which an aggregate measure is created by summing all of
the individual data point values. This notion, although plausibly depicted as center-of-balance, is
predominately a fair-share perspective of the arithmetic mean. Consequently, participants in this
study, except in one case, used a fair-share conceptualization to conceive of a solution to the

problem.
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The results from the mathematical concept problems indicate there are properties and
attributes of the arithmetic mean that are perceived by students as a particular conceptualization
(i.e. fair-share or center-of-balance). Increasing knowledge of both conceptualizations may
permit students access to awareness of particular properties and attributes of the arithmetic mean
not readily recognized through knowledge of only one conceptualization. Results from prior
research studies revealed increased knowledge of the fair-share conceptualization led to a more
conceptual understanding of the arithmetic mean as representative of a data set (Cai & Moyer,
1995; George, 1995; Groth; 2005). Similar results were demonstrated in research that focused
on the center-of-balance conceptualization of the arithmetic mean (Hardiman et al., 1984).
These results, along with the results of the current study, indicate increased knowledge through
instruction of both conceptualizations, including cognitively connecting the two
conceptualizations through the concept ‘the sum of the deviations from the mean is zero,” could

provide a more comprehensive understanding of the arithmetic mean.

5.2 IMPLICATIONS AND RECOMMENDATIONS

It has been suggested that the ideal scaffold for learning statistical concepts such as the
arithmetic mean is to first develop its statistical sense, in the case of the arithmetic mean—
representativeness, and then connect this conceptual understanding to the governing
mathematical aspects (Jones et al., 2004; Konold & Higgins, 2003; Mokros & Russell, 1995).
MacCullough’s hypothesis as to how the experts in her study acquired their knowledge of the
arithmetic mean seemed to follow this learning process (see MacCullough, 2007, pp. 100-102).

It is clear that many participants in the current study had a narrow perspective of the knowledge
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that constitutes the arithmetic mean. Their perspective was a mathematically based fair-share
point of view derived from the arithmetic mean formula, not from a developed sense of the
arithmetic mean as representative of the data set. It is highly likely that the participants
developed their mathematical knowledge of the arithmetic mean absent from the statistical sense
of representativeness. In doing so, new knowledge related to the arithmetic mean was, if
possible, connected to the arithmetic mean formula, or otherwise undesirably situated as an
unconnected fragment in the knowledge schema.

Curricula and instruction that only present the arithmetic mean as a formulaic procedure
or do not conceptually develop the arithmetic mean using both conceptualizations (i.e. fair-share
and center-of-balance) may lack opportunities for students to make relevant cognitive
connections between the conceptualizations, and between the conceptualizations and
mathematical concepts. Huberty, Dresden, and Bak (1993) in their study on the dimensions of
statistical knowledge suggest:

Students have a relatively poor grasp of the conceptual understanding of statistics, it is

especially recommended that instructors encourage students to think in terms of multiple

ideas and connections among them (i.e., to develop conceptual understandings from their
studies). Making connections between ideas and skills may provide the foundation for
richer understanding and greater ability to make use of statistical methods in the future

(p- 531).

Providing curricula and instruction that encourage the use of both the fair-share and center-of-
balance conceptualizations as blending spaces provides the opportunity for students to think of
the arithmetic mean in terms of multiple ideas. Connecting mathematical concepts through one

or both conceptualizations provides the blending spaces necessary to relate the statistically
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conceptual ideas to the mathematical concepts and skills that constitute the arithmetic mean; thus
providing the foundation for richer understanding.

Several reform mathematics curricula construct a conceptual sense of the arithmetic
mean. Curricula such as Connected Mathematics and Investigations in Number, Data, and
Space, for example, offer students the opportunity to build a representative sense of the
arithmetic mean as a statistical element by working with and manipulating data sets. Previous
researchers investigating the development of knowledge in statistics (Jones et al., 2000; Mooney,
2002), and in particular the arithmetic mean (Konold & Higgins, 2003; Mokros & Russell,
1995), have concluded that the conceptual underpinnings of statistical ideas like the arithmetic
mean need to be developed before the procedures for their calculations are introduced. Without
conceptual underpinnings, the formula to calculate the arithmetic mean becomes the prevailing
sense of average for many students and grows only in procedural complexity (Groth & Bergner,
2006; Leon & Zawojewski, 1990; Watson & Moritz, 2000). The predominance of the
participants in this study to use the arithmetic mean formula, particularly when it was used
ineffectively or inappropriately, may indicate that they learned the arithmetic mean as a
procedural formula with little, if any, conceptual basis. Garfield (1995) asserted that “students’
misconceptions are often strong and resilient—they are slow to change even when students are
confronted with evidence that their beliefs are incorrect” (p. 32). Evidence from this study
verified the statement and, in fact, it showed increased conceptual knowledge of the arithmetic
mean does little to affect the procedural solution strategies of students without misconceptions.
First, a few students who incorrectly solved problems using the arithmetic mean formula on the
pretest used the same incorrect or incomplete method on the posttest regardless of the

instruction. Second, there were only three cases in which students who correctly used an
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alternative method of solution (e.g. the arithmetic mean formula) on the pretest changed their
method of solution to one that utilized either the fair-share or center-of balance conceptualization
on the posttest. Participants’ connection to the formula proved to be incredibly strong for both
those that used it inappropriately and for those that used it effectively.

Instructors, therefore, have a difficult task when reliance on the arithmetic mean formula
takes root before conceptual understanding of the arithmetic mean is established. Establishing or
advancing the statistical sense (i.e. representativeness) of the arithmetic mean may be inhibited
by the procedural nature of the arithmetic mean formula. Instruction focusing on ‘the sum of the
deviations from the mean is zero’ may be the key to linking the mathematical and statistical
aspects along with the fair-share and center-of-balance conceptualizations of the arithmetic

mean.

5.2.1 Using the ‘Sum of the Deviations from the Mean is Zero’

The findings of this research study indicate the importance of one of Strauss and Bichler’s
(1988) fundamental properties of the arithmetic mean, ‘the sum of the deviations from the mean
is zero.” The instruction modules utilized in this study did not explicitly relate the fair-share and
center-of-balance conceptualizations; yet, participants were able to use the property to solve
problems that focused on a different conceptualization from which their instruction had initially
connected the property. One might expect then, that instruction focused on both
conceptualizations, particularly a connection between the conceptualizations (e.g. the sum of the
deviations from the mean is zero), would have an even greater impact on students’ conceptual
understanding of the arithmetic mean. Approaches to instruction that contain this focus are

described in this section.
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As previously noted, MacCullough, (2007) found experts used the leveling-off strategy to
connect the conceptualizations of fair-share and center-of-balance. The leveling-off idea can be
used as a visual model to relate the ‘sum of the deviations from the mean is zero’ in both
conceptualizations. Van de Walle and Lovin (2006) recommend the following exercise to
connect the models of the two conceptualizations.

Give the students (or have them create) two different graphical representations of the
same data (i.e. (a) bar graph for fair-share and (b) frequency distribution for center-of-balance) as
depicted in Figure 5-3. Instruct the students to level the bars in (a) by only moving one cube at a
time from a longer bar to a shorter bar. Each time they move a cube off of a bar in (a), the cube
denoting that bar in (b) must be moved one deviation to the left. At the same time, the cube in
(b) denoting the bar on which the cube in (a) was added must be moved one deviation to the
right. The movements illustrate how deviations from the mean are related in both the fair-share
and center-of-balance models. The exercise also emphasizes the notion that the arithmetic mean
is representative of the data set, not just a mathematical calculation. The instruction relates the
mathematical concept, ‘the sum of the deviations from the mean is zero,” valued by the sample
population of this study, to the leveling-off visualization that experts used to equate the two

conceptualizations.
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Figure 5-3: Graphical Representations of Conceptualizations

A second instructional plan that would construct a connection between the fair-share and
center-of-balance conceptualizations was offered by J. Greeno (personal communication, July
15, 2008). Similar to the instruction modules used in this study, initial instruction would center

on one conceptualization guided by the concept, ‘the sum of the deviations from the mean is
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zero.” A preliminary assessment, consisting of problems similar to the fair-share and center-of-
balance problems in this study, would be given that offered problems related to both
conceptualizations. Results from this study indicate at least some students would transfer
knowledge from the initial instruction to the problems on the assessment related to the other
conceptualization. An orchestrated class discussion of the assessment would draw upon the
solutions of students who transferred knowledge between the conceptualizations. The discussion
would exemplify the connection between the conceptualizations and construct the relationship
between fair-share and center-of-balance.

These examples of instruction, or instruction similar to it, link the fair-share and center-
of-balance conceptualizations. The generalized concept, ‘the sum of the deviations from the
mean is zero,” which permeates both conceptualizations, is used as a cognitive bridge between
them. The instruction emphasizes knowledge of the arithmetic mean from the perspective of
both conceptualizations; thus expanding the blending space for students to connect the

mathematical and statistical domains.

5.3 CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

The results of this study are significant for several reasons. First, participants in this study used
the concept ‘the sum of the deviations from the mean is zero’ to connect the fair-share and
center-of-balance conceptualizations of the arithmetic mean. The concept was transferred bi-
directionally; that is, the concept was transferred in an almost equal number of cases from fair-
share to center-of-balance and from center-of-balance to fair-share. Neither conceptualization

seemed to be more effective than the other in promoting transfer of knowledge. The focus of this
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study was not on instruction, but the results suggest the cognitive link between the
conceptualizations may be pedagogically significant. Future research should examine the extent
to which instruction linking both conceptualizations improves students’ understanding of the
arithmetic mean. In particular, does this type of instruction lead to a better understanding of the
arithmetic mean as statistically representative of a data set?

Second, participants’ protocols indicated knowledge of each conceptualization was
important in solving problems related to specific mathematical properties of the arithmetic mean.
Therefore, knowledge of only one conceptualization, either fair-share or center-of-balance, does
not sufficiently portray all aspects of the arithmetic mean. The weight each conceptualization
merits during instruction might be an area of future investigation. Given the restricted time
frame in most curricula; is there an optimum distribution of resources spent individually
characterizing and/or collectively relating the conceptualizations?

Third, the arithmetic mean has uses in statistics beyond the suggestion of central
tendency. Future research could relate how knowledge of a particular conceptualization of the
arithmetic mean, (i.e. fair-share or center-of-balance) affects knowledge of other concepts in
statistics, such as variance and distributions.

Fourth, this study proposed a knowledge structure for the arithmetic mean. Within the
structure, the conceptualizations of fair-share and center-of-balance acted as blending-spaces
combining ideas cultivated in the mathematical and statistical domains that compose the
knowledge of the arithmetic mean. Future studies should refine the knowledge structure and
further define where particular concepts related to the arithmetic mean fit and interact within the

structure.
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In summary, this study has provided data as to how the fair-share and center-of-balance
conceptualizations interact with each other and inform mathematical concepts in the context of
the arithmetic mean. In a theoretical sense, the interactions cognitively connect the blending-
spaces proposed in the knowledge structure for the arithmetic mean. In a practical sense, these
interactions may signify strategies for improving student understanding of the arithmetic mean
by focusing instruction on the concept, ‘the sum of the deviation from the mean is zero,” to

connect the fair-share and center-of-balance conceptualizations.
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APPENDIX A

PROBLEMS FROM PILOTED INSTRUMENTS NOT INCLUDED IN STUDY

Attempted
Measure

Source

Statement of Problem

Reason for Exclusion

Fair-Share

(Strauss & Bichler, 1988)

For a class party, Ruth brought 5 pieces of
candy, Yael brought 10 pieces of candy, Nadav
brought 20 pieces of candy, and Ami brought
25. Can you tell me in one number how many
pieces of candy each child brought? How did
you decide on that number?

The solution too often used only the
arithmetic mean  formula  without
evidence of conceptual understanding or
underlying knowledge.

Fair-Share

(Strauss & Bichler, 1988)

We took some numbers and added them up.
Before we added them, the largest number we
had was 5. Afterwards, we divide up the added
numbers equally, and we ended up with six. Do
you think this could happen?

The problem was often misconceived or
too often answered without written
artifact or complete verbalization of
thoughts.

Fair-Share

Expert in statistics education

Three children went on an Easter egg hunt. John
found 9 eggs, Betty found 5 eggs, and Ty found
4 eggs. If the total eggs were going to be
divided so each child received an equal number,
how many eggs would each child get?

The problem was too often solved using
only the arithmetic mean formula without
evidence of conceptual understanding or
underlying knowledge.
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Attempted
Measure

Source

Statement of Problem

Problem Analysis

Center of
Balance

(Aufmann, Lockwood, Nation, & Clegg, 2007)

Author

If one number in a data set is changed, will it
necessarily change the mean of the set?
Explain.

If two numbers in a data set are changed, will
it necessarily change the mean of the set?
Explain.

The first part of the problem was too
often answered “yes” or “no” without
explanation or, if prompted, ability to
explain. The second part of the problem
seemed to encourage a quick response
without thorough consideration.

Center of
Balance

(Cai, Moyer, & Grochowski, 1999).

We took a survey of the family size of ten
different families. The average (mean) family
size for these ten families was 4. What could
the family sizes of each of these ten families
be?

The problem was too often answered
without written artifact or complete
verbalization of thoughts.

Center of
Balance

(Freedman, Pisani, & Purves, 1998)

Author

Ten people in a room have a mean height of 5
feet 6 inches. An 11" person enters the room,
what height would they be if the mean height
was now 5 feet 7 inches?

Ten people in a class have a mean height of 5
feet 6 inches. An 11™ person enters the room,
what height would they be if the mean height
of all people remains at 5 feet 6 inches?

The first part of the problem encouraged
use of the arithmetic mean formula. This
seems to have influenced the plan of
solution for the second part of the
problem as most solvers attempted to use
the formula without revealing conceptual
understanding or accessed knowledge.
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Attempted
Measure

Source

Statement of Problem

Problem Analysis

Mathematical
Concept

(MacCullough, 2007).

My sister and I went for a drive and decided we
would share the driving time equally. For the
first 4 hours of the journey my sister drove
70mph. I drove a bit slower for the second four
hours and averaged 50mph. What was the
average speed for the entire trip? Would this be
different if we drove 70mph and 50mph
respectfully but instead of splitting the driving
by hours (time), we divided the trip into two
halves by miles (distance)?

The knowledge evidenced in solving the
problem showed no relationship to the
conceptualizations of fair-share or center-
of-balance and therefore transfer of
knowledge from those statistical concepts
to the mathematical concepts of this
problem was unlikely at best.

Mathematical
Concept

(Strauss & Bichler, 1988)

Children brought cookies to a party they were
having. Some children brought many and some
brought few. The children who brought many
gave some to those who brought few until
everyone had the same number of cookies. Was
the number of cookies given by those who
brought many more than, the same as, or less
than the number of cookies received by those
who brought few? Why?

The problem was often misunderstood
and therefore solutions were ill-conceived
or did not relate to the concepts of fair-
share or center-of-balance.

Mathematical
Concept

(Mevarech, 1983)

The mean number of units produced by 100
workers at factory A is 52.6. The mean number
of units produced by 50 workers at factory B is
31.8. The two factories merged together, what
is the mean number of units produced by all
workers in the merged factory?

The knowledge evidenced in solving the
problem showed no relationship to the
conceptualizations of fair-share or center-
of-balance and therefore transfer of
knowledge from those statistical concepts
to the mathematical concepts of this
problem was unlikely at best.
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APPENDIX B

PROTOCOL ANALYSIS TRAINING SESSION

B.1 INSTRUCTIONS

In this experiment I am interested in what you think when you solve problems related to
the arithmetic mean. In order to do this I am going to ask you to think aloud as you write
solutions to problems given. What I mean by think-aloud is that I want you to tell me everything
you are thinking from the time you first see the problem until you finish solving it. I would like
you to talk aloud constantly from the time I present you each problem until you have given your
final answer. I do not want you to try to plan out what you are going to say or try to explain to
me what you are saying. Just act as if you are alone in the room speaking to yourself. It is most
important that you keep talking. If you are silent for any long period of time I will ask you to
talk. Do you understand what I want you to do?

(Ericson & Simon, 1993)

The following problems are about the arithmetic mean. Each of them can be solved
correctly and efficiently using several different approaches or techniques. You can use any
method or combination of techniques you wish as you solve each of the problems.

(Ericson & Simon, 1993)
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B.2 WARM-UP EXERCISES

Multiply these two numbers using your paper and pencil and tell me what you are thinking as
your work toward the answer.

24 x36=

Think aloud, telling me everything you are thinking as you solve this problem. You may use
your pencil and paper if you wish:

How many windows are in your parent’s house?

In solving this task you should think aloud. If I remind you to do so during the process please
immediately verbalize what you are thinking.

Generate as many words as possible using the letters “ONDTERH”

(Ericson & Simon, 1993)
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APPENDIX C

KNOWLEDGE INSTRUCTION MODULES
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C.1 FAIR-SHARE AND RELATED MATHEMATICAL CONCEPTS

Fair-5Share Knowledge Intervention

Objective: Smdents will be able to:
1. utihze knowledge of far-share to selve anithmetic mean problems
2. relate knowledge of fair-share to mathematical concepts of the arthmetic mean.

Materials:
Access code to Blackboard online leaming system

Introduction:
Participants asked to write down their own defimition of the anifhmetic mean
Participants are asked to compare their defimition of the mean with the following
description of the mean:

The arithrnetic mean is 8 quanticy (wuanber) that is stanstically represantanve of 2o entire data set
Concepmally this qguantity can be thonght of as a fair-share distibudon or center-of-balance of the
data set.

Participants will be informed they are going to study the mean as a fair-share distribution.

Procedure:
Participants will complete the mteractive lesson meluding notes, problems, selutions, and
video. (Annenberg Media, 2002)

Fart A
Fair Allocations

|The tarm Everage is & popular one; it is often used, and often usad incorrectly.

Wthough there are dilfarent typas of averages, the typical definition of the word "average” when talking aboul &
lisk of numbars = “what vou gel when vou add gl the numbers and than divide by how many numbers you havea ™
IThia statement dedcribes how vou caleulate the erithmetic mean, or Bverags. But knowing how o calculate a
maan doesn't necessarily tell yvou what it represants.

Let's begin our exploration of the mean: Using your 45 coins, create 9 stacks of several sizes. You must use all 45
joming, and ab legst 1 coin must be in asch of the 9 stacks, IS fine o have the samea number of caing in multiple
latecks,

Here is one possible arrangement, or allecation, of the 45 codns:

-sEceEsEe

Problem Al SOLUTION

Fecord the number of coins in each of your 9 stacks. What is the maan number of coins in the 9 stacks?

Problam A2 SOLUTION

|Creabe & second allocation of the 45 coins inte 9 stacks.
8. Record the number of ceins in each of your 8 stacks, and determine the mean for this new allocation.
b. Why is the mean of this allocation equal bo the mean of the first allocation?

€. Describe two things that you could do bo this allocation that weuld change the mean number of coins in the
Stacks.
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Problam A3 SOLUTION

Create a third allocation of the 45 coins into 9 stacks in a special way:

# First take a coin from the pile of 45 and put it in the first stack.

#® Than take ancther coin from the pile and put it in the s=cond stack,

# Continue in this way until you have 9 stacks with 1 coin each, and 3& coins remaining.

# Take a coin from the pile of 36 and put it in the first stack.

# Then take ancther coin from the pilz and put it in the second stack.

#® Continue in this fashion until all of the remaining coins have been usad.

a. Mow record the number of coins in each of your 8 stacks, and determine the mean for this new allocation.
b. What sbservations can you make about the mean in this special allocation?

This method produces what is called a fair or egual-share allocation. Each stack, in fact, contains the averags
Inumber of coins. You might think of this as a fair allocation of tha 45 coins among 9 people: Each parson gets the
lsame number of coins.

K T [+ [+ 3 K g [ [

SSSESEEesE

' !

Video Segment

[m this video segment, Professor Kader asks participants to create
PLAY! snap-cube representations of the number of pecple in their families.

He then asks them to find a wav of finding the mean without using

zalculation. Watch this segment for an exploration of the mean.

PLAY VIDEO |

Howe does the mean relate to the fair allocation of the data?

Part B:
Deviations from the Mean

1 3 4 5 5 5 F 7

~ssSssEEE

2 #L 43

Remember that the total of the excesses above the mean must equal the total of the deficits below the mean. In
this case, each adds up to 7.

If you denote the values of excesses as positive numbers and deficits as negative numbers, then the total of the
excesses st

(+2) + (+2) + (+3) = +7
The total of the deficits is:

(-4) +(-2) + (-1) =7
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Statisticians refer to these excesses and deficits as deviations from the mean. For

this allocation, the deviations from the mean are recorded in the table below. Number of  Deviation
Coins in from the
Maote that the deviations always sum to 0 because the total excesses [positive Stack Mean
deviations) must be the same as the total deficits {negative daviations).
1 -4
3 -2
4 =il
3 (1]
3 L1}
3 L1}
7 +2
7 +2
a8 +3
+
43 (1]

Problem D1

Here is ancther allocation of our 435 coins divided into 9 stacks:
Number of  Deviation

Coins in from the
B e % Stack Mean
o o (O == 2
csc=EE8EE
3 Z 2 1 1 o+l +3 43 3

b. Complete the following table of deviations:

IR

3
5
8
8 +3
Y=
45 (]

When the positive and nagative deviations are added together, the total is ahways 0. This property illustrates
ancthar way to interprat the mean,
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Participants will complete the following activities using linking blocks and/or small Posi-
irnotes.

Exercise A (Van de Walle & Lovin, 2008)
Use the linking blocks to create a bar graph representing the prices of the following toys:

Item Price &
Foothall 38 ==
Dall §12 - S
Tump rope $3 — %
Car 35 e |
Game 47 ' i
Top $1 ' - =0

i h At M pARE: ms oS

Pedistribute the linking blocks m the graph to represent the cost of the tovs in they were all the same price

assuming the total for all the toys remains the same.

This eaima rites razrranged intn squsl 2Rcks
Thair hesight k= the mean vaks of the bars B

S
i ST

How does the number of blocks before the redismibution compare to the number of blocks after

the redizribution?

Exercise B (Uccellini, 1996)

Srx chuldren counted the number of chocolate bare that they won at the school fair. They had wen 2. 3, 2,
6.3, and 3 respectively. What 15 the mean mumber of chocolate bars they had won?
Use the Post-it notes to create a bar graph representing how many checolate bars each student had won.

_Ciup

Carmen
Pat

My
Laam
Sheia
Nicky

__ CHocowmBass

anen an

-“-I L
T
L

|
RN SR ERNE BN

Eedistribute the Post-if notes i the graph to represent the mumber of chocolate bars if each child would
have had needed to win if they all won the same amount and the total did not change .
Hint: Use two post if notes to represent each chocolate bar.

CHuD

Cuocciate Bars

Carmen
Fat

Ny
Luan
Sheilu

Nieky

On the original graph draw a lme that represents the mean
How do the mmmber of data pomnts above the line compare with the number of empty paces balow

the line?

I
N -

J
ZJ
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Exercise C (Uccellini, 1998)
Six children were asked how many brother and sisters they had, and the following data were colleted form
the children, 2, 1,0, 3, 6, 1. What is the mean number of brother and sisters of these children?
Use the Post-if notes to create a bar graph representing how many siblings each student has.
Redistribute the Post-if notes in the graph to represent the number of siblings if each child would have 1f
they all had the same number of siblmgs and the total did not change.
STUDENT  SIBLINGS

Ashley 7Y
Brooks 5
Dvame £ 81
e 99
Loise ‘f 2
MMartin ? ?

How 15 this problem different from the last two?
How can we resolve the 13sue?
What does this say about the mean?

Closure:

Redistributing data in a data set (without adding or subtracting data points of data) so that each
data point has an equal allocation or fair-share of the data 15 equivalent to vsing the anthmetic
mean formula to find the value of the mean.
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Cz2

CENTER-OF-BALANCE AND RELATED MATHEMATICAL CONCEPTS

Center-of-Balance Knowledge Intervention

Objective: Smdents will be able to:
1. ufilize knowledge of center-of-balance to solve arithmetic mean problems
2. relate knowledge of center-of-balance to mathematical concepts of the arithmetic mean.

hfaterials:
Access code to Blackbeard online leaming system

Introduction:

Participants asked to write down their own defimition of the arifhmetic mean.

Participants are asked to compare therr defimtion of the mean with the following

description of the mean:
The arithmetic mean is a quantiny (manber) that is stanstcally representatve of ao entire data set.
Concepmally this quantty can be thonght of a5 2 fair-share distnbution or centar-of-balance of the
data st

Participants will be informed they are gomng to study the mean as a center of balance of the

data set.

Procedure:
Participants will complete the mteractive lesson mncluding notes, problems, selutions, and
video. (Annenberg Media, 2002)

Fart A:
Line Plots

[Suppoge you have nine stacks of coing a8 shown bedow. I vou reshulfle vour stacks of coins just & bit, vou can create
lime plat representation that carmesgonds to the number of coing in esch of the nine stacks, which will allow vou ta
lexplore an interpretation af the meaan.

ITa do this yoursalf, create a line plot on your paper, fcross the bottom of the page, draw a horizental line with 10
vertical tick marks numberad from 1 to 10 (placed far enough apart for an adhesive dot or note to fit between each ).
Your numbar line should look: like this:

[Set up your 45 colng in this orderad sllocation:

r k 4 5 ¥ G

w&ﬁ@ﬁ@@@%

Mow arrange the stacks of coing on the paper above the number that cormesgonds to the height of each stack, like this:

co==EE
1 ] [ [ |

]

I |
2 5 & ¥ B B mW

Note that the Z stacks of size 4 and the 2 stacks of size 6 are placed above the same number.

Ta Tarm vour line plot, replace aach of the stacks with an adhesive daot or noba. You should now have & lne plot that
loaks like this:
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a 1

Each dot in the line plot correspends to a stack of that specified size.

The following Interactive Illustration recaps the transition from physical stacks of coins to a graphical line plot
representation of the stacks.

Problem C1
Use the method dascribed above to create a line plot for the following allocation of 45 coins:

3 L & 5 5 [ & &

cseSsSESE

Problem C2
Create a line plot for this allocation of 45 coins:

i

2 3 & 5 5 5 g 7 &R

cssEsl

Problem C3
Creatz a line plat for this allocation of 45 coins:

% 3 5 5 5 5 5 5 5

SESEESEEEE
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Video Segment

[n this video sagment, participants compare their crdered stacks of snap-cubes to
3 line plot of the same data. Watch this seqgment after complating Problems ¢:1-
3 to observe the transition from a physical representation of the data to a

graphical representation.

What is one stack of snap-cubes equivalent to on the line plot of the data?

Part B:
[Balancing Excesses and Deficits

In the previous examples, you explored line plot represantations for sets of 45 coins, each in 9 stacks. For sach

llocation the maan was 5 coins, Now let's use these line plot representations to explore ancther way to interprat the
maan.

Problem C4 SOLUTION

Here is a lineg plot correspending to an allocation of 45 coins in 9 stacks:

&

6 IJI. { l; I-"IJ 'I\I} i L } I\ } I’I'
L] L] L] L] L] L] L] L] L] L]
1 2 3 4 5 & % § & W

From this line plot, we can s=2e that there are 3 stacks containing exactly 5 coins each, and 1 stack containing &
coins, The maximum number of coins in a stack is 8, and the minimum is 2.

Rearrange the nine dots to form a line plet with each of thase requirements:

a. Form a different line plot with 2 mean equal to 5,

b. Form a line plot with a mean equal to 5 that has exactly 2 stacks of 5 coins,
€. Form a line plet with a mean equal to 5 but 3 median not aqual to 5.

d. Form a line plot with 2 mean equal te 5 that has no S-coin stacks.

e. Form a line plot with a mean squal to 5 that has two 5-coin stacks, 4 stacks with more than 5 coins, and 3
stacks with fewer than 5 coins.

f. Form a line plot with a mean equal to 5 that has two S5-coin stacks, 5 stacks with more than 5 coins, and 2
stacks with fewer than 5 coins.

g. Form a line plet with a mean equal to 5 that has two S5-coin stacks, two 10-coin stacks, and 5 stacks with
fewar than 5 coins,

@ —P Don't forget that the mean must always be equal to 3. If vou move 2 dot to the night, it will
increase the mean. Each time vou move a dot to the right, vou mmst balance this by moving
another dot an equal distance to the left. Also. keep in mind that each dot represents a stack of
comns, and that by moving the pesition of the dot, you change the mumber of coins in the stack.
The total number of coms must remain 43,

Fieaardless of the strateay vou usad in Problem C4, vou must end up with an arranaement in which the sum of the
19 values is equal to 45, Lat's look at one possible strategy more closely. For the sake of simplicity, we will bagin with
the line plot that corresponds to the center of balance, 9 stacks of 5 coins each:
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T T T T 1 T 1
1T & 2 4 B &8 ¥ B 53 10

For this line plot, the sum is 45 and the mean is 5.

If wwa change one of the stacks of 5 coins to a stack of &, the sum will increasa by +2 to 428 and the mean will
ncrease by +3/9 to 3 3/9. The line plot now locks like this:

L

o
|'l. J':
|' _.\'I
|'_'-__'|
o
) o)
" " " " " " " " L]
I 5 5 ] T B a3 (1]

SOLUTION

Problem C5

Heow could you changs ancther stack of 5 coins to resat the mean to 52

SOLUTION

Problem C6

I you could change the value of more than one stack, could you sclve Preblem C5 ancther way?

SOLUTION

Now suppose that we chanage one of the stacks of 5 to a stack of 1, which reduces the total by 4. Here is the
resulting line plot:

Problem C7

(]
o [ B )
1 ] L] L] L] L] L] L] L] L]
1 = e 4 5 [ * & L 1]
-4 Z -1 13

Describe at least three different ways to return the mean to 5.

SOLUTION

Applying the strateqy vou developed in Problems C3-C7, revisit the allocations vou worked with in Problem C4, Yoy
should bagin with the center of balance of the 45 coins: that is, 9 dots at the mean of 5. Try to come up with
answers for the questions below that are different from the ones you found in Problem C4.

Problem C8
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Form a line plot with a mean equal to 5 that has exactly 2 stacks of 5 ceins,
b. Form a line plot with 2 mean equal to 5 but a median not equal to 5.
c. Form a line plot with 2 mean equal to 5 that has no S-coin stacks.

d. Form a line plot with 3 mean equal to 5 that has two S-coin stacks, 4 stacks with more than 5 coins,
and 3 stacks with fewer than 5 coins.

a. Form a line plot with 2 mean equal to 5 that has two S-coin stacks, 5 stacks with more than 3 coins,
and 2 stacks with fewer than 5 coins.

f. Form a line plot with @ mean equal to 5 that has two S-coin stacks, bwio 10-coin stacks, and 5 stacks
with fewer than 3 coins.

We ara now going to explore a new way to consider excesses and deficits. Let's lock at ancther line plot:

et

Cx D @ 2 %
L] L] L] L] L] L] L] L] L]
1 & F 4 5 F s T MW
-4 -2 [} w2 +3
'

Problem D2

Create a line plot with these deviations from the mean

it
u

(-4), (-2 (-2), (-1), (@) (F1], (+2), (£3) (+4)

Create a line plot with these deviations from the mean = 5

(=43, (=23, (-2}, (-1), (0}, (+1), (+2). [+2), (+4)

Problam D3

Problem D4

L

Create a line plot with thess daviations from the mean = 5, and specify a set of four remaining valuas:

-4), (-3), (-3), (1), (-1)

Problem D35 SOLUTION

Howe would the line plots vou created in Problams D2-D4 change if you ware told that the mean was &
instead of 57
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Participants will complete the following activities using small Posi-if notes and/or paper
and pencil

Exercise A (Van de Walle & Lovin, 2008)

Use the Post-it notes to create a line plot representing the prices of the following toys:

Item Price
Foothall %8
Dioll %10
Jump rope 32
Car 36
Game 38
Top $2

Move the Pore-it notes in the plot to represent the mean cost of the toys.

How does the number of blocks before the rearrangmng compare to the number of blecks after the
rearanging’

Exercise B (Uccellini, 1996)
Use a number line to find the mean or balancing point of the following data (3, 4, 8,7, 2, 6)

x

b

Jli'l.f M M
& a4

+
3 6 Ta o

J#3vinG LeBed=i

How does this value compare to the value you would find using the arithmetic mean formula?

Closure:
When the positive and negative deviations are added together, the total is alwavs 0. This
property illustrates another way to interpret the mean: The mean is the balance point of the

distribution when represented in a line plot, since the total deviation above the mean must equal
the total deviation below the mean.
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C.3 GENERAL PROBLEM SOLVING CONTROL

Chapter 1: Problem Solving and Critical Thinking

Section 3: Problem Solving

Blitzer, R. (2008). Thinking Mathematically. Upper Saddle River, NJ: Pearson Education Inc.
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APPENDIX D

EXAMPLES OF PROTOCOLS FROM PILOT STUDY

Example #1
Constituent Knowledge Piece Code Explanation
JO: Ok, so I am trying to find number three and number six. Counts data points and refers to
Hum, so there is one, so one, two, so I am going to have to | M-FS | arithmetic operations associated with
divide by ten since there are ten. the mean formula
JO: Or what I can do, maybe this would be easier. If I take, let’s
say, I take two blocks from number eight and put them
down on number nine. Those two would be even. If I take Uses the statistical conceptualization
one block from number seven and put it over on number ten, of fair-share, signified by the block-
those two would be even. So they would all be at 3.2. If I leveling strategy, the mean is
take one block from this number two and put it down on S-FS represented by the blocks when the
number four, then we would only be left with one block M data are distributed equally to each
above the line. So that means for number three, let’s try point.
this, that means only draw up to 3.1 and number six would The arithmetic operations of addition
go all the way up to 3.2; because then, for number three you and subtraction aid in the block-
take the one block above the line and bring it down onto of leveling strategy.
number three. So that means every single one would be
even with the line
JO: So let’s see if that really works though (talks through adding . .
all the numbers and dividing by 10 to get 3.2). Oh that will | M [{feskthe arithmetic mean formula to
work. So number three is 3.1 and number six is 3.2 check answet.
byt 4 e S
2 e ‘0
2.\ o
% /s
N Wz e
. 2.7 Lo
S S
- fi ,[) :
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Example #2

Constituent Knowledge Piece Code Explanation
RK:Three greater, ok I am going to write down that (writes Uses algebraic symbols to represent
a=3>x) Ok, b is, b is seven greater (writes b=7>x). How | M the mathematical relationship
does the value of C relate to x? between the knowns and unknowns.
RK: Well, if x is the mean, ¢ has to compensate for a and b. Uses the notion of center-of-balance,
Umm, since a and b are greater than X, obviously ¢ has to be signified by “compensate,” to signify
lower than X and equal, equal part of what a and b are S-CB the mean is representative of the data.
greater. So a and b add up to ten more than X. That would M-CB Uses the mathematical properties of

make c ten less than X. center of balance to find the mean.
Uses the arithmetic operations of
addition and subtraction to employ
the center-of-balance strategy.

RK:I’m going to make sure my mind is not playing tricks on me.
I am going to substitute in a number. We’ll say X is 12. Ok,
so that would make me, a is 15, b would be 19 and ¢ would | M
be 2. So we have 15 plus 19 plus 12 is let’s see...36.
Divide by three is, let’s see...12.

Uses algebraic substitution and
arithmetic to check solution.

5
VT
2
PO
26
LIS =3 7% =
WX
G -
-G LA

<

Given three numbers, (a,,c), and the mean of these number is x. We know that a is 2
greater than x and b is 7 greater than x. How does the value of ¢ relate to x 7

C_:'\D(-?(
(= £—1\0
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Example #3

Constituent Knowledge Piece Code Explanation

JO: Well my first guess is zero but does that count as a value? M Transfers the identity element of
Probably not. addition to the arithmetic mean.

JO: Oh I know what value can be added on, the value of the
mean. So if your mean is six (writes down 6 and circles it)
and you add that mean on again you are still going to get a
mean of six. Ok, let me do one to make sure.

JO: Put a five on either side (of the circled six), a four on either
side, a three on each side, and a two and stop there. Let’s Uses the idea of center-of-balance to
make sure the mean is six (adds the numbers) Twenty-nine, represent the mean as the balancing
that does not divide evenly. Let’s add a one on each side, point of the data.
that’s better, thirty-two divided by eleven. Uh, that does not S-CB Misuses the mathematical sense of
work either. M-CB center of balance by placing equal

JO: Let’s find a number that works equally. Let’s get rid of M number on each side of the mean
some of these numbers, too many numbers. (counts rather than equal deviations.
numbers) Nine, I don’t like nine. Uses arithmetic mean formula to

JO: Let’s do it differently. Put a six in the middle, a two here, calculate the mean of several groups
and a two here, and a two there, and a two there. (See 22622 of numbers.
representation) (pause)

MM: Keep talking

JO: Ok, That is not going to work. Fourteen divided by five,
let’s do fifteen divided by six. No, uh, I do not want to do it
that way.

JO: Ok, let’s start an easier way.

JO: Six times three is eighteen so let’s do three numbers
equaling six. (writes down 2, 3, 2) Oh, wait, they have to M-FS Uses the idea fair-share (partiive
equal eighteen. Three number equaling eighteen, let’s do M division) to note the total sum of
six, a six, no let’s do a five (counts to figure out the seven), three values equal to the mean.
and a seven. That equals eighteen divided by three, the
average equals six. So now I have my three numbers.

JO: Now the mean can be added, now add another six
in...twenty-four divided by four is six. So yes, you can add M Adds and divides using arithmetic
the mean back in so that the data set, I mean the mean does mean formula.
not change.

JO: Why does that work. Let me draw a picture. Draw five Begins to think about and ultimately
cubes, seven cubes, and six cubes. In order to make those solve the problem using fair-share to
even we would have to take one from the seven to the six, | S-FS represent the mean as noted by the
no, over to the five. All piles will be six. So by adding | M phrase “make those even.”

another pile of six we would not have to move any cubes to
make it equal. They will all be six.

Adds and subtracts from piles of
blocks.

What value can be pdded 1o a data set 50 thar the adthmense mean of the data et does nisg

change? Why?

=
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APPENDIX E

EXAMPLES OF SCORING SHEET

E.1 SCORING SHEET

[ Fertizipant [ 1[= L1 [Pretiem [ ]
Tod Fracezr Froozal Cod Frartear Fromca T
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£
H
1

1 LE
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E.2

PILOT STUDY SCORING SHEETS

[_Participamt [SC. | [ Growp [C% ] Problem | F% )
Pretest Protocal Code | Postiest Protocol Code Code

SC: Well Fienow i the end everyone has to have SC Ok, well iFthe mearis in the middle T seed

celght and right now there are... the same amount sbove and below it?

{peniese s SO counts the blocks af Child 81, | 5C: Soone, two, three, four feounts Blocks)

Child 82, Child #3, and Child §4) | boxes bigger than the mean.

Twenty-four - what are they - blocks, and T got i SC: One, two below the mean.

five kids i SC:  Four bigger and two smaller. . um, I need

{ipanse) i two more smaller, (draws two block in C)

MM-  Keep Talking ! 8C:  C equals two

SC: Let me draw the kids (SC draws five cireles) |

One, two, three, four, five. S-FS i S-CB

SC: 1am going to give the fweaty-five, no it's M-FS M-CB

twenty-four, what are they?— blocks, to these F

five kids

{pamse a5 SC draws lines ko represent the

Blocks in each of the circles) |

MM:  Keep Talking

8C: Let me finish this freferring fo drawing lines)

8C: 1 can give the first three kids there eight blocks,

g0 the last twn kids need their eight blocks. T
am sixieen short so he needs o bring sixieen
blocks. That is my answer. {
n

: s S _{[ = ‘

xr { |

E B ]

®e00 | =
!
§
£ -

3% — 0 1 2 @) i =0 1 2 3 ;
|
|
1

Coudy locks inshea) o% spoces E
orly s Thae ¥ B :

E

|

|
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[ purtieppanr | 3o | [ Growp T ] [ Problem | F-4,2 |
Frogest Fragocal Courdw Foatinst Proiocol o

B el oy st sk i orevo Bl does that count T Bo of e mezan |8 five sty st Saoaghn i that

ana volue? Frobably not M o amg cither going o gt oo or yoe ane | M
o get e mesn.

K Oh | know whai value con be added on, the Lt e make my own cada sel. So if B 15 the
vilie of @ mean.  Sa if pour mesa i six mesn lew pul & ain ssd say sght So let's see
(urdlan dowm & andd cirefer i) and you add that that's foarrteen shive, m below let's put a fine,
TRGAE Gf GERIN Yeil are il going o §1a mein o fowr, & fowr, 50 tha's foosams three jGi)
of mx, O, Tel me do one o make ye fwlve, anther fror, wil thil's S mech, we

H: Pui m free oo either skde (' the eivoled sigf, a anly need fourizen so bow showt & bwa.
fine on eliber sde, a thiee on sk Gde, and a 0 Ok, so there’s oy dale set. Let's subirael. 5o
twn and siop thers, Let's mako sure the mean five mius four is one frepastr e fimezl
b oEx oy the Aumbers) Twesty-sing, thal asd five mim thees & twa, Bl Beee 51 you
dory nol divide evemly, Let™s add 2 one on subiact this from the mein you would ped a
each side, thai's betier, ihisiy-two divided by negative number. So five minus sx & minus
elewen, 17, that dics ol wek sither, one sl five misus cight yuo gel negalive

M Let's find & mamber that works equally. Let's ikree.

Bt rd of same of these sumbers, 106 oy MY 8o sbove the mean you would beve, usm, 4
rumbers. [rouwr symborsy Mine, [ don't like el of negative four above dhe mean. Below
ne. S-CB he mecan pou would have s O fed s m0l | scp

M Lat's oo it differently, Pt a six in the middls, | M-CB might M-CB
2w here, and & two here, and o twe there, and | M e M
& ban dhere, furw 181D reproenizstionf MB:  Focplalking

(paucse)

My k, That iz noé going i work. Fourieen
divided by flve, lers do fiteen divided by six
Mo, Uk, T da nof wamt o g i ihag way.

0 (e, 'y staart an easler way.

¥ Six Gmics Bree # cghtern @ bl & theee
mambers equaling six. fwees dowa 2 8 3
O, wealt, they huve 1o oqual sghieen. Theee
rember apelbng sighteen, |et's do sx, 2 5ix, 0o
lets do a five frouwe o fgare ot e soom),
and & geven. That sqeals sighteen divided hy
thres, the average equals six. 50 mow [ bave
iy three sumbers.

Ik Mosw the mesan com be added, mow add another
Eix in,. twenty-four dvided by [ iz =2, So
s, Fou can odd e mean baok in so thal e
itz gt | inzin e mean dock nol chanpe,

10 Why does sat work, Lot me dovw 3 picture,
Direw five cubes, seven cobes, and six cubes.
In ardder 4o miake Bose even we weuld ke 1o
ke oo from the seves do the six, ne, over io
the Fre All pilles will be six. 5o By adding
anather pile of six we would not bave fo move
oy enbes o ke 0 equal. They will all e
.

S-FS
M
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I Well 1 loorw thal is not sight, @ does ned ssle

e

JO: Lest me try i ks
rypresen dta)

0 5o if the mean is flve we bive o siv sed a four
sndl an cighl and a, gh, e, Wail, what ] wes
thinking up bere. Fooget thet

wry. fdraws el A
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LT IR NP T A
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I0r Lt me drorw the lina. 17 wo move these blocks
weound lke befiore, dese dree here, dii e
heri, we get all stacks equial, foe, right

10 Mow loi me add the ones belew fadbracer and
addii that’s Far and the one's above
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| Participanr | | [ Gromp ] | [ Prabiem | |
FPretest Protocol Code FPosttest Protocol Code
I0: Lat's see if the s of these four mumbers, I Ok, so the sum of three of these numbers is 20.
nmum, fiour of these mumbers. Ok, Let’s draw Let"s just take thirty and thirty and thrry.
five blanks. The mesn equals 20. The sum of Ji: The mean of the four munbers is thaty, ob, so
four of those munbers equals seventy-five. So S-CB the value of fhe fourh muwber would be, uk, | M-FS
the mean is rwventy some munber thirty becanse they would zll be the szmes.
JOr is that dght thirty, sixty, ninety one fwenty,
five then wonld the fifih munber be less than divided by four, is thirty.
or greater than raventy. Let's see. Let’s mka M-FS JOr Yea zo it the mean, in arder for the mean o be M
some muvbers. Twenty, twenty and mwenty is thirty they all bave to be equal, so the last
sixfy, plus 1o Zet o seventy-five you would vunber would have to be thirty.
need a fifteen.
IZ: 5o that means, let's ses, so 1f vou have three
twenties and then a fifteen is five less then
mwenty, then 2 fifih munber neads o be five
more than twenfy, needs to be twenmv-five. M-CB
Becanse, it would a1l even out, becanse
mwventy-five is five more than twenty and
fifteen 15 five less than rwenty and vou wan:
them to all even out to twenty.
TO: Lat's see if that works... fodds mowbers and
drvides) Tha value of the fifth munber wonld M
be menty-five
i ' F
B T _
£ : i ' -
tF — ¥ v Ii.'_\'\\'
£E — 0 1 2 (3 58 — 0 1 2 [3]
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