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This study examined cognitive relationships between the fair-share and center-of-balance 

conceptualizations of the arithmetic mean.  It also hypothesized the use of these 

conceptualizations as blending spaces for the mathematical and statistical domains within a 

proposed knowledge structure for the arithmetic mean.   

Twenty-nine undergraduate liberal arts students completed pre/post verbal protocols with 

written solutions to arithmetic mean problems.  The problems emphasized either the fair-share or 

center-of-balance conceptualization, or mathematical concepts related to the arithmetic mean.  

The participants were divided into three groups: those that received fair-share instruction, those 

that received center-of-balance instruction, and a control group.  

The data was analyzed using statistical methods, including contingency tables and 

ANCOVA, to investigate the effects fair-share and center-of-balance instruction had on 

knowledge of fair-share, center-of-balance, and mathematical concepts regarding the arithmetic 

mean.  A qualitative analysis of the verbal protocols helped explain any statistically significant 

connection between the fair-share and center-of-balance conceptualizations, or between either 

conceptualization and mathematical concepts related to the arithmetic mean.  

 Analysis of the data indicated participants increased their knowledge of the fair-share 

conceptualization after receiving instruction that was focused on center-of-balance.  Similarly, 
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participants increased their knowledge of the center-of-balance conceptualization after receiving 

instruction that was focused on fair-share.  In either case, the concept, ‘the sum of the deviations 

from the mean is zero,’ was used to transfer knowledge between the conceptualizations.     

 In addition, instruction in either the fair-share or center-of-balance conceptualization 

increased knowledge of the mathematical concepts related to the arithmetic mean.  However, 

only specific mathematical concepts were impacted by each of the conceptualizations.  

The results suggest that both the fair-share and center-of-balance conceptualizations are 

pertinent to pedagogical decisions regarding the arithmetic mean.  Furthermore, the concept, ‘the 

sum of the deviations from the mean is zero,’ is a viable cognitive connection between the fair-

share and center-of-balance conceptualizations.                    
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1.0  INTRODUCTION 

Research in mathematics education has long provided valuable descriptions of knowledge 

structures detailing mathematical understanding.  Studies have examined, for example, the 

relationships between different types of mathematical knowledge (e.g. Rittle-Johnson, Siegler, & 

Alibali, 2001; Shulman, 1986), the relationships between representations of knowledge (e.g. 

Bruner, 1964; Lesh, Post & Behr, 1987), the relationships amongst content within a 

mathematical field (e.g. McDonald, 1989), and the relationships between different constructs of a 

mathematical topic (e.g. Kieren, 1988; Williams, 1998).  Statistical concepts, such as the 

arithmetic mean, are not just subject to the four relations above; they also encompass 

relationships between mathematical content and statistical concepts.  Research to investigate 

these unique relationships is increasing because of a deliberate effort in a relatively new field of 

study, statistics education.  Because of the symbiotic relationship between the fields of 

mathematics and statistics, it is reasonable to draw on the significant insights and findings from 

the discipline of mathematics education and apply them, or at least use them as a basis, for 

research and advancement in statistics education.  A vital need in the field of statistics education 

is the refinement of existing knowledge structures that acknowledge the conceptual differences, 

yet preserve the inherent relationships between mathematics and statistics (Groth, 2007).  

Developing concept-specific knowledge structures that refine the existing discipline-level 
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frameworks can help deepen the understanding of the conceptual relationships that constitute 

knowledge of statistics. 

One area of statistical study in which better understanding of the learners’ knowledge 

could lead to innovations in the pedagogical process is the arithmetic mean.  Its seemingly 

simple tie to a standard mathematical procedure masks its statistical profundity and, ultimately, 

the misconceptions and lack of conceptual understanding many students encounter.  Its statistical 

role makes it widely used (or misused) in most academic and professional disciplines, as well as 

in everyday life.  

Previously researched knowledge models (Groth, 2007; Jones et al., 2000; Mooney, 

2002) along with past studies (e.g. Cai, 1998; Cobb & Moore, 1997, Mokros & Russell, 1995; 

Strauss & Bichler, 1988) have identified both mathematical and statistical elements of the 

arithmetic mean.  Two concepts related to the arithmetic mean, center-of-balance and fair-share, 

are connected to both its place in mathematics and its place in statistics.  The center-of-balance 

conceptualization views the arithmetic mean as the point of balance of the data (e.g. Hardiman, 

Well, & Pollatsek, 1984); while the fair-share model views the arithmetic mean as an equal 

distribution of the data (e.g. Cai & Moyer, 1995; George, 1995; Mokros & Russell, 1995).  

While past studies have identified models depicting fair-share and center-of-balance and their 

use in improving classroom instruction; they have not reported on the cognitive relationships, if 

they exist, between fair-share and center-of-balance, or the cognitive relationships of the 

mathematical and statistical elements of the arithmetic mean.  These relationships are the focus 

of this study. 
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1.1 BACKGROUND 

1.1.1 Differences between Mathematics and Statistics 

Statisticians and statistics educators have long argued that statistics is not a branch of 

mathematics, but rather a branch of science that utilizes mathematical tools, similar to economics 

and physics, to explore its own concepts (Cobb & Moore, 1997; Hand, 1998).  Mathematical 

knowledge is not the only knowledge necessary to understand statistical concepts.  Statistics is a 

discipline that involves applying statistical concepts and techniques, often distinct from those in 

mathematics, to other fields of study in order to solve real world problems.  One major difference 

between statistics and mathematics is the role of context.  In mathematics, problem context 

usually needs to be “boiled off” to get at the root of the abstract mathematical structure.  On the 

other hand, in statistics, the problem context along with the components of the application 

domain provides meaning to the data analysis (Cobb & Moore, 1997; Hand, 1998).  In statistics, 

the “data are not just numbers; they are numbers with a context” (Cobb & Moore, 1997, p. 801).  

A second dissimilarity between mathematics and statistics is their respective academic spaces.  

Statistics is a methodological discipline rather than a core substantive area like mathematics 

(Cobb & Moore, 2000).  It is an interdisciplinary science with links to many different fields of 

study and application.  A third distinction concerns the sense of variability, inference, and 

interpretation which is essential to statistical analysis but absent from mathematical principles.  

These profound differences in the disciplines suggest the knowledge needed to understand 

statistics includes both mathematical knowledge and knowledge proprietary to statistics. 

 Hand (1998) raises the question as to why statistics is taught; is it to develop students 

who can advance statistical methodology or is it to develop students who can carry out effective 
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statistical data analyses?  Because the vast majority of students learning statistics fall into the 

latter group, a joint committee of the American Statistical Association (ASA) and the 

Mathematical Association of America (MAA) contend instruction of statistics should emphasize 

statistical ideas and concepts, including the importance of data, the omnipresence of variability, 

and both the quantification and explanation of data and variability (Cobb & Moore, 1997).  Some 

confusion as to the place of statistics education arises from the fact that in K-12 education, and in 

many small colleges and universities, statistics is taught by mathematics teachers and 

mathematicians; many of whom value it as a mathematical discipline.  

1.1.2 Relationship between Mathematical and Statistical Knowledge 

Previous research in mathematics education (see e.g. Resnick, 1983; Cobb et al., 1991) has 

advocated the need for detailed cognitive models of students’ reasoning that help guide 

mathematical pedagogy.  “According to Cobb and Resnick, such cognitive models should 

incorporate key elements of a content domain and the process by which students grow in their 

understanding of the content within that domain” (Jones, Langrall, Mooney, & Thornton, 2004, 

p. 101).  The call for research-based cognitive models has been answered by cognitive 

psychologists, mathematics educators, as well as statistics educators.  

 The authors Jones et al. (2000) and Mooney (2002) indicate one of four major 

components in statistical understanding and reasoning is data analysis.  They also indicate an 

important attribute of comprehending data analysis is the cognitive relationship between 

statistical knowledge and mathematical knowledge.  The related research by Jones et al. and 

Mooney consisted of qualitative analyses of interviews based on a statistical thinking protocol.  

The protocol incorporated data exploration tasks, open-ended questions, and subsequent probes 
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to these questions.  The results of their studies indicated that understanding of statistics occurs as 

two sequential “cycles” of statistical reasoning.  The first cycle “deals with the conceptual 

development of statistical concepts, while the second cycle…deals with the application of 

statistical and mathematical concepts and procedures that have already been learned” (Jones et 

al., 2004, p. 108).  The two-cycles of development indicate the importance of cultivating a new 

statistical concept prior to advancing its mathematical basis or procedural application.  The 

significance of this result as it pertains to the specific statistical concept of the arithmetic mean 

will be noted later in chapter two.     

Groth (2007), in a research commentary on statistical knowledge needed for teaching, 

argues that it is imperative that the differences between the knowledge structures necessary for 

understanding statistics and the knowledge structures necessary for understanding mathematics 

be explicitly differentiated in order to further the research on statistical knowledge structures.  

He further contends that, although mathematical and statistical knowledge are different, 

engaging in many meaningful statistical activities involves the simultaneous activation of both 

mathematical and statistical knowledge.    

Examining previous research can both distinguish mathematical and statistical knowledge 

and provide evidence of their symbiotic relationship in statistics.  Descriptive statistics, such as 

the arithmetic mean, are fundamental concepts in statistical data analysis.  It is therefore 

reasonable to suspect components of data analysis, such as the arithmetic mean, also possess 

both mathematical and statistical attributes and the subsequent integrating cognitive links.   



6 

1.1.3 Arithmetic Mean as a Subject of Study 

The Curriculum and Evaluation Standards (1989) and Principal and Standards for School 

Mathematics (2000) documents from the National Council of Teacher of Mathematics (NCTM) 

suggest that students should have a “solid understanding” of mean as a measure of center.  The 

significant role of the arithmetic mean among averages is also supported by the American 

Mathematical Association of Two-Year Colleges’ (AMATYC) standards document, Crossroads 

(1995), the ASA endorsed, Guidelines for Assessment and Instruction in Statistics Education 

(GAISE) report (Franklin et al., 2007), as well as in other policy-making documents (e.g. Adding 

It Up: Helping Children Learn Mathematics (Kilpatrick, Swafford & Findell, 2001), Victorian 

Essential Learning Standards: Discipline Based Learning Strand Mathematics (VCAA, 2005)).  

These documents emphasize the importance of understanding measures of central tendency, 

including the arithmetic mean as the most commonly occurring measure, and its necessity in 

shaping a statistically literate society.    

Different from many of the other descriptions of average, the arithmetic mean has uses in 

statistics beyond the suggestion of central tendency.  It is utilized, for example, in calculating 

other statistics such as the standard deviation, creating formulas for distributions such as the 

Poisson and normal, finding confidence intervals, and testing hypotheses. 

The arithmetic mean can also inform or model concepts outside of statistics.  In a 

physical sense, the arithmetic mean can be thought of as a center of gravity.  From the mean of a 

data set we can think of the average distance the data points are from the mean as standard 

deviation.  The square of standard deviation (i.e. variance) is analogous to the moment of inertia 

in the physical model.  The formulas for calculation correspond exactly (N. Pfenning, personal 

communication, May 10, 2008).  The ability to mathematically model concepts in physics to 
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concepts in statistics signifies the potential significance of comprehensively understanding all 

aspects of the arithmetic mean.   

The cross-disciplinary nature of the arithmetic mean makes it conceptually constructive 

in many disciplines of study, including statistics, mathematics, and physics, and its use as a 

statistical tool makes it omnipresent in educational, vocational, and recreational settings.  The 

arithmetic mean’s diversity has fostered research aimed at finding an understanding of how 

students arrive at their knowledge base for the arithmetic mean and the instructional techniques 

that promote its conceptual learning.   

The arithmetic mean is one of many different kinds of averages used to describe the 

center or representative value of a data set.  This seemingly simple calculation is actually a 

relatively complex concept that is most often developed as an “add-them-up-and-then-divide” 

mathematical procedure, rather than as a statistically representative concept.  Developing the 

concept as a statistical representation of a data set is often encumbered by early exposure to the 

rote algorithmic procedure used to calculate the mean (Mokros & Russell, 1995; Konold & 

Higgins, 2003).  Unlike many mathematical concepts, the conceptual and procedural knowledge 

of the arithmetic mean do not seem to develop in an iterative or “hand-over-hand” manner (see 

Hiebert & Lefevre, 1986, for discussion on conceptual and procedural knowledge; and Rittle-

Johnson & Alibali, 1999, for discussion on iterative growth of knowledge).  A plausible 

explanation of this inconsistency is much of the conceptual knowledge related to the arithmetic 

mean is not purely mathematical; rather it is a combination of conceptual knowledge of 

mathematics and conceptual knowledge of statistics.    
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1.2 PURPOSE OF STUDY 

This study has a dual purpose in examining knowledge as it relates to the arithmetic mean.  First, 

it uses the existing literature as a basis to propose knowledge relationships specific to the 

arithmetic mean.  In doing so, the study addresses the concerns of Resnick (1983), Cobb et al. 

(1991), and Groth (2007) to develop cognitive models of reasoning that include research on the 

growth and development of elements within knowledge domains.  The study delineates the 

domains and identifies the concepts of fair-share and center-of-balance as cognitive blending 

spaces between the mathematical and statistical domains.  Second, the study aims to examine 

several of the previously unsubstantiated cognitive relationships that exist within the 

hypothesized knowledge structure.  In particular, this study seeks to address the cognitive link 

between the notions of fair-share and center-of-balance, and the cognitive link between these 

notions and the mathematical domain of the arithmetic mean.  

1.2.1 Research Questions 

The following research questions are designed to further the understanding of knowledge related 

to the arithmetic mean by investigating the cognitive role of the fair-share and center-of-balance 

conceptualizations. 

1) How is knowledge of fair-share and center-of-balance cognitively related to one 

another?  In particular, 
 
a) What effect does instruction of the fair-share conceptualization of the arithmetic 

mean have on knowledge of the center-of-balance conceptualization? 
 
b) What effect does instruction of the center-of-balance conceptualization of the 

arithmetic mean have on knowledge of the fair-share conceptualization? 
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2) How is knowledge of fair-share and center-of-balance cognitively related to the 

mathematical domain?  In particular, 
 

a) What effect does instruction of the fair-share conceptualization of the arithmetic 

mean have on knowledge of mathematical concepts associated with the arithmetic 

mean? 
 
b) What effect does instruction of the center-of-balance conceptualization of the 

arithmetic mean have on knowledge of mathematical concepts associated with the 

arithmetic mean? 
 
The first research question is designed to investigate any potential connection between the 

notions of fair-share and center-of-balance as they relate to the arithmetic mean.  The second 

research question focuses on the impact instruction of the fair-share or center-of-balance 

conceptualizations has on the mathematical concepts associated with the arithmetic mean.  

1.3 CONTRIBUTION TO THE DISCIPLINES 

This study contributes to the fields of mathematics education and statistics education in a number 

of ways.  First, it builds on and refines existing research aimed at modeling the development of 

statistical reasoning.  This current study refines discipline-level statistical knowledge models by 

focusing on the cognitive relationships of a specific statistical concept, the arithmetic mean.  

Understanding the dynamics of the cognitive structure of a particular statistical concept may 

better inform instructional decisions with regards to teaching the arithmetic mean. 

Second, the study examines the relationship between two representative 

conceptualizations that illustrate the arithmetic mean, fair-share and center-of-balance.  While 

particulars concerning each of these representations have been previously studied, little research 
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has examined any possible relationship or link between them (i.e. how they inform each other).  

Unfortunately, in many academic settings, particularly in colleges and universities, only a limited 

amount of time is available to develop a mathematical or statistical concept like the arithmetic 

mean.  A particular conceptualization may inform knowledge of the other and provide a more 

robust and/or efficient way of conceptualizing the abstract nature of the arithmetic mean.    

Third, the study provides insight into the connection between knowledge of mathematics 

and knowledge of statistics through the concept of the arithmetic mean.  Statistics provides 

mathematics with a basis of contextually rich real-world problems that can be used to 

contextualize the mathematics.  Conversely, mathematics is a tool utilized by statistics to 

quantify statistical concepts.  An understanding of their inter-disciplinary knowledge connections 

may advance the pedagogical symbiosis between mathematic and statistics.      

The arithmetic mean has a place in the often amalgamated fields of statistics education 

and mathematics education.  Understanding how knowledge is developed within each discipline 

and how knowledge is connected across the disciplines influences pedagogical decisions in both 

branches of learning.  By researching the knowledge relationships of the arithmetic mean, an 

interdisciplinary concept, this study adds to the literature in the fields of both mathematics 

education and statistics education        

1.4 LIMITATIONS OF STUDY 

Several limitations should be considered as they pertain to this study.  First, the sample for the 

study was chosen because the academic level of the participants was of particular interest to the 

researcher and it represented a wide range of mathematical knowledge.  The sample of students 
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enrolled in a liberal arts mathematics course at a small private university may not generalize to 

students of different ages or different academic interests.  Second, the verbal protocols, as most 

data gathering instruments, only reveal the knowledge participants select to apply to a particular 

task, not necessarily the total knowledge they possess for that concept.  The verbal protocols 

provide resonant detail regarding the knowledge used by the participants.  The small sample size 

of the protocols may not produce the typically accepted power for statistical analysis, but the 

sample size was chosen to balance the quantitative and qualitative aspects of the study.  In 

particular, the richness of the data provided by the verbal protocols should compensate for the 

statistical deficiency of the sample size.   

1.5 ORGANIZATION OF THE DISSERTATION 

This document is organized into five chapters.  Chapter one provides a motivation for the 

research, including a discussion on the relationships between mathematics and statistics, and the 

importance of the arithmetic mean as a subject of study.  The chapter then offers an overview of 

this research study, including its purpose, contribution to mathematics education and statistics 

education, limitations, and organization.  Chapter two reviews the relevant literature in order to 

accomplish the following objectives: report on the development of knowledge regarding the 

arithmetic mean, develop the knowledge elements and domains associated with the arithmetic 

mean, connect the notions of fair-share and center-of-balance to the mathematical and statistical 

domains, and communicate the pedagogical issues surrounding instruction of the arithmetic 

mean.  Chapter three considers the literature germane to the methodology and situates this study 

in those principles.  This includes an account of the demographics, instrument, and procedure 
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along with details of data collection, data coding, and data analysis.  The theoretical discussion is 

accompanied by the practical results of pilot work.  Chapter four presents the results of the 

analyzed data.  Chapter five offers a discussion of the research findings, recommendations based 

on the research findings, and areas of future study revealed by the literature review and research 

study. 
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2.0  REVIEW OF LITERATURE 

This review synthesizes the relevant literature to situate the concepts of fair-share and center-of-

balance in a knowledge structure for the arithmetic mean and investigates the relationships 

between these concepts and domains within that structure.  First, the development of knowledge 

for notions of average and the arithmetic mean is examined.  This section includes situating the 

arithmetic mean among the realm of averages and delineating its development of understanding. 

Second, the relatively complex dual nature of the arithmetic mean is presented and its 

mathematical and statistical components are expounded.  Third, a discussion defining the 

concepts of fair-share and center-of-balance and relating each concept to both mathematical and 

statistical ideas is presented.  Fourth, a knowledge structure for the arithmetic mean is 

hypothesized utilizing the existing literature base.  This includes establishing two domains of 

knowledge, mathematical and statistical, that house the concepts applicable to the arithmetic 

mean, and elaborating on how knowledge between the domains is related by the fair-share and 

center-of-balance conceptualizations.  Finally, a review of the literature examining instructional 

studies associated with the arithmetic mean is included to explore the implications that the 

knowledge structure for the arithmetic mean has on pedagogical issues.   
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2.1 DEVELOPING UNDERSTANDING OF THE ARITHMETIC MEAN  

The words average or central tendency are used in statistics to describe a single notion or 

representative value that describes the center, middle, or expected value of a larger set.  There 

are many different kinds of averages that can be properly chosen based on informed analysis of 

the data.1  

2.1.1 Averages and Their Development 

The scholastic development of average most often begins in the primary grades with the concept 

of mode, followed by midrange and median.  Studies indicate that when early primary grade 

students are first introduced to data sets they have difficulties seeing the data as a whole and 

focus on the aspects of the individual data points (Hancock, Kaput & Goldsmith, 1992).  

Similarly, Lehrer and Schauble (2000) found that students in first and second grade were largely 

unable to use classification techniques to represent groups of drawings, but students in fourth and 

fifth grade were able to appreciate the value of assigning dimensional attributes or 

representations for categorizing the drawings.  These studies indicate the idea of recognizing 

trends or representativeness of data occurs for most students around the third grade.   

It is through early life experiences that children begin to build an intuitive view of 

average based on qualitative notions of typicality or representativeness.  In third grade most 

                                                 

1 While mean, median, mode, and midrange are the most common measures of central tendency, other more 
specialized measures exist, such as: 
 Harmonic mean--used for finding “average per” 
 Geometric mean--used for finding averages of percentage, ratios, indexes, and growth rates 
 Quadratic mean--use in physical sciences and electronics. 
Many other specialized means exist to measure specific discrete data as well as measures in calculus to measure 
continuous data and functions 
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students have encountered the term “average” from experiences with grade averages or average 

temperatures (Konold & Higgins, 2003).  This intuitive sense of average is most often expressed 

as “most” or “middle,” which are ideas related to the formal averaging concepts of mode and 

median, respectively (Watson & Moritz, 2000).  At this stage of development many students 

blend notions of average to form ideal averages.  According to Konold & Higgins (2003), ideal 

averages have four properties: (a) an actual value in the data set, (b) the most frequently 

occurring value in the data set, (c) located midway between two extreme values in the data set, 

and (d) relatively close to all other values in the data set.  Two examples of ideal averages are the 

middle-clump, a cluster of values in the heart of a distribution, and the modal-clump, a central 

range of values that not only indicates central tendency, but also some sense of the data’s 

distribution (Konold et al., 2002; Russell, Schifter & Bastable, 2002).   

Interestingly, the most commonly used descriptive statistic, the arithmetic mean, is absent 

from the sense of average described by primary grade students.  Students do not make use of the 

arithmetic mean, or an intrinsic meaning of it such as fair-share or center-of-balance, until it is 

formally introduced in the fourth or fifth grade in the United States (in the sixth grade in 

Australia) and revisited each year until the eighth grade with increasing procedural complexity 

(Watson & Moritz, 2000).  The arithmetic mean may also appear in high school curricula, such 

as in a general math and algebra course.  The notion of average may also be introduced as 

centroids in a geometry course, or as means of continuous probability functions in Calculus.  As 

little as ten years ago a student’s first encounter with a traditional statistics course was in college; 

now some high schools offer statistics in their mathematics curriculum as an elective, Advanced 

Placement, or College in High School course.   
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While several notions of average are conceptually developed by students themselves at a 

relatively early age, the arithmetic mean is less transparent and the conceptual underpinnings 

necessary to sensibly use it are surprisingly difficult (Konold & Higgins, 2003).  Students 

intuitively construct a sense of mode and median before being formally introduced to the 

concepts and procedures for finding them.  Conversely, students rarely have the opportunity or 

insight to do the same with regards to the arithmetic mean.    

2.1.2 Arithmetic Mean and Its Development 

Since the arithmetic mean is an entity in statistics, it is reasonable to parallel the role of 

mathematics in statistics to the role of mathematics in the arithmetic mean.  That is, the 

arithmetic mean is a statistical concept defined outside of the field of mathematics, but which 

uses mathematics extensively in its calculation (see section 1.1).  The statistical and 

mathematical attributes of the arithmetic mean can be uniquely defined and then integrated to 

understand and thoughtfully apply the arithmetic mean.  The arithmetic mean is “a mathematical 

construction that represents certain relationships in the data” (Russell & Mokros, 1996, p. 362).  

It is a mathematical abstraction that denotes the statistical representativeness of the data. 

Given this complexity, it is not surprising that research concerning knowledge of the 

arithmetic mean has indicated that while most students beyond the fourth grade are capable of 

applying an “add-and-then-divide” procedure to find a mean, many have difficulty conceptually 

understanding what it represents (Russell & Mokros, 1996).  This difficulty in conceptually 

understanding the arithmetic mean was also found to be prevalent in middle grade students 

(Mokros & Russell, 1995; Cai, 1998; McGatha, Cobb, & McClain, 2002), and among college 

students (Pollatsek, Lima & Well, 1981; Groth & Bergner, 2006).  
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A study that investigated students’ understanding of the arithmetic mean for three 

education levels, primary, middle, and college, found improved performance with age on 

problems associated with the four component properties of the mean, but a general lack of 

understanding of the abstract and representative aspects of the mean (Leon & Zawojewski, 

1990).  The four component properties were (a) the mean is located between extreme values of a 

data set, (b) the sum of the deviations about the mean is zero, (c) a value of zero in the data set 

must be accounted for, and (d) the average value is representative of the values that were 

averaged.  Watson and Moritz (2000) conducted a longitudinal study of students in third through 

eleventh grades in order to examine the development of the idea of average.  One-hundred-and-

thirty-seven interviews were conducted to collect problem solving data.  An analysis of the data 

indicated the ability to correctly apply the arithmetic mean formula increased with grade, but the 

language students used to describe average showed little growth for the notion of 

representativeness.  Mokros and Russell (1995) used extensive task-based interviews of twenty-

one students in fourth through eighth grade.  They found most students knew the add-and-then-

divide algorithm but related it to limited context and were unable to use it in any meaningful 

way.  They further concluded that “children construct the idea of representativeness through 

many encounters with a variety of real data sets” (p. 37).   

While overall conceptual knowledge of the arithmetic mean (i.e. representing the data) is 

lacking, the research indicates that procedural knowledge of the arithmetic mean (i.e. computing 

the mean) is retained from the time it is introduced in the fourth grade until at least a student’s 

college years.  These studies indicate as age increases so does the ability to apply the arithmetic 

mean formula.  Unfortunately, any increased conceptual understanding of the arithmetic mean 

during a student’s education, unless the student is exposed to a curriculum or teacher that 
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conceptually develops the mean (see section 2.5), most likely corresponds to exposure to 

contextual situations outside of the classroom.    

The traditional instructional technique2 for teaching the arithmetic mean includes a 

simple introduction to the add-and-then-divide procedure inherent in the computational formula, 

n
x

x i∑= , and a succinct synopsis on measures of central tendency (Shaughnessy, 1992).  From 

the time arithmetic mean is introduced, students tend to use this procedure most often to find an 

average of a data set regardless of their conceptual understanding of average (Groth & Bergner, 

2006).  There is now concern that this type of rote algorithmic instruction and application early 

in a student’s development may cause a short-circuit in the student’s reasoning.  Mokros and 

Russell (1995) note, for example, that many students who had “sound informal ideas about 

average as a representative measure” may be developmentally impeded by the rote nature of the 

algorithm.  The researchers suggest students should be “pulled away” from the rote algorithm in 

order to further a learner’s understanding of average (p. 37).  Many researchers who have 

investigated student use and understanding of mean suggest that less emphasis should be placed 

on teaching procedures in the primary grades and more emphasis should be placed on developing 

the conceptual understanding of representativeness (Konold & Higgins, 2003; Mokros & 

Russell, 1995).  The notion of emphasizing the statistical conception of the arithmetic mean (i.e. 

representativeness) before applying the mathematical construct is consistent with the findings of 

Jones et al. (2000) and Mooney (2002) (see section 1.1.2).  Their findings indicated statistical 

reasoning is developed in two cycles.  The first cycle is an understanding of the statistical 

                                                 

2 Reform curricula such as Connected Mathematics and Investigations in Number, Data, and Space apply a more 
conceptual approach to developing the arithmetic mean. 
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concept; the second cycle is the application of statistical and mathematical concepts and 

procedures that have already been learned.  

The research indicates that an understanding of the arithmetic mean is best developed by 

addressing the statistical ideas associated with the arithmetic mean before presenting the 

mathematical procedures for calculating it.  It is also clear that both the statistical and 

mathematical concepts pertaining to the arithmetic mean are vital in understanding and utilizing 

it.  Because of the symbiotic relationship between statistics and mathematics, it is reasonable to 

draw upon the extensive research in mathematics education devoted to the development of 

procedural and conceptual knowledge to help explain the conceptual relationships of the 

mathematical knowledge associated with the arithmetic mean (see e.g. Hiebert & Lefevre, 1986).  

The following sections uniquely define the mathematical and statistical domains of knowledge 

associated with arithmetic mean. 

2.2 MATHEMATICAL AND STATISTICAL KNOWLEDGE DOMAINS 

Pollatsek, Lima, and Well’s (1981) interviews with seventeen undergraduate students found an 

adequate schema for the arithmetic mean consists of three distinguishable types of knowledge:  

(a) computational knowledge which relates to the mathematical procedures and concepts 

necessary to compute the arithmetic mean, (b) functional knowledge which refers to the 

arithmetic mean as a real-world concept that is representative of a data set, and (c) analog 

knowledge which uses analogous concepts, in this case the arithmetic mean as a balancing point, 

to translate between equations and verbal descriptions.  They combined think-aloud problem 

solving with follow-up interviews to gather data on arithmetic mean problems.  A qualitative 
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analysis of their data indicated that a lack of the arithmetic connections necessary to conceptually 

understand the mean leads to an inability to solve problems not posed as rote computations.  

2.2.1 Mathematical Knowledge of the Arithmetic Mean 

The mathematical knowledge necessary to understand, calculate and utilize the arithmetic mean 

is a subset of a student’s complete mathematical knowledge and understanding.  Pollatsek, Lima, 

and Well’s (1981) coined this type of knowledge related to the arithmetic mean as 

computational.  Each of the new procedures and concepts related to the arithmetic mean needs to 

be connected to previous knowledge and properly assimilated or accommodated within the 

existing web of knowledge.  This new knowledge structure will allow a student to access the 

necessary mathematical procedures and concepts associated with the arithmetic mean.   

Two areas of mathematics are relevant to the calculations and application of the 

arithmetic mean.  Arithmetic is intrinsic to the mean formula and its calculation.  Algebra is a 

necessary component for manipulating the arithmetic mean formula as well as for solving 

missing value problems.  A better understanding of algebraic properties could help alleviate 

many of the misconceptions about the properties of groups as they apply to the arithmetic mean.  

The knowledge within each of these areas of mathematics is constructed by connecting a 

network of procedures and concepts.  A comprehensive mathematical understanding of the 

arithmetic mean includes the interrelationships between arithmetic and algebra. 

Knowledge specific to the arithmetic mean can be procedural, such as computing the 

mean using a formula, defining the relevant variables, or knowing the fact that the ‘sum of the 

deviations from the mean is zero.’ This knowledge may also be conceptual, such as 

mathematically understanding why the mean formula forces the sum of the deviations from the 
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mean to be zero,3 or using the properties of algebra to realize the mean is not a binary operation 

and therefore does not have an identity element; so the mean is influenced by numbers other than 

the average.   

2.2.1.1 Mathematical Procedural Knowledge of Arithmetic Mean 

The two-part definition of procedural knowledge, recognizing the correct use of syntax 

and symbols along with applying rules and algorithms (Hiebert & Leferve, 1986) is easily 

applicable to the arithmetic mean.  The symbolic representation of arithmetic mean is universally 

accepted as x  or μ.  Further symbolic knowledge includes recognition of the variable x as 

representing values of data points and n as the number of data points.  The second aspect of 

procedural knowledge involves the rules, algorithm, and procedures of calculating the mean.  

This includes using the 
n

x
x ∑=  formula or using an add-and-then-divide strategy if the symbolic 

representation of the formula is not yet learned.  Other procedural knowledge not directly related 

to finding a value for the arithmetic mean, but necessary to further understand the mean includes 

the ability to algebraically manipulate formulae (e.g.  
n

x
x i∑=  can be rewritten as ∑= ixxn ), 

and the ability to create graphs and tables (e.g. histograms and frequency distributions). 

2.2.1.2 Mathematical Conceptual Knowledge of Arithmetic Mean 

Fully understanding the mathematical concept of the arithmetic mean, ignoring for the 

moment any statistical role such as representativeness, involves the interrelationship between 
                                                 

3  →=∑
n
x

x i →=∑ ixxn →=∑∑ ixx 0)( =−∑ ixx  
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two areas of mathematics and the concepts and procedures within those areas.  The arithmetic 

mean is rooted in arithmetic (addition, multiplication, and division) and algebra (manipulation of 

mean formula, mathematical properties of the formula, ratios, and properties of mathematical 

groups).  The mathematics as it relates to the arithmetic mean of each of these areas is described 

below. 

To understand the mathematical concept of mean it needs to be linked to knowledge of 

arithmetic operations.  One such link is a conceptual understanding of addition and division.  For 

example, 
n

x
x i∑=  means taking ∑ ix  and separating it into n equal parts of size x .  

Furthermore, it is helpful to understand the connection between addition and multiplication, (i.e. 

∑= ixxn means that if you add x  to itself n times you get the same total as summing the 

individual data points).  

Portions of algebra, such as manipulating the arithmetic mean formula or finding missing 

variables within the formula, are key components to understanding the arithmetic mean.  

Knowledge of the algebraic ideas of ratios (see section 2.3.1.1) and proportions (see section 

2.3.2.1) allows for the extension of mathematical ideas into other concepts related to the 

arithmetic mean, such as fair-share and center-of-balance.  Mevarech (1983) found that the 

algebraic properties of a mathematical group play an important role in understanding (or 

misunderstanding) the arithmetic mean.  The general binary operation of finding an arithmetic 

mean is not closed, does not follow the associative law, does not have an identity element, and its 

inverse is not its negation.  The fact that these properties hold for the integers under addition and 

the rationals under multiplication (excluding zero), but fail in the computation of the mean, is a 

change in the existing schema for students.  That is, the knowledge learned about the algebraic 

properties, either formally or informally, for addition and multiplication does not transfer to the 
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algebraic properties of the arithmetic mean.  For example, the binary operation of finding the 

arithmetic mean of two numbers, ( )
2

babaa +
=∗= , does not have an identity element.  That is, 

( ) aya ≠∗  if y is different from a .  Unfortunately, students with limited experience working with 

algebraic properties tend to over generalize these group properties and their applicability 

(Mevarech, 1983).  For example, an unsound understanding of the algebraic property of the 

identity leads to the misconception that zero can be added to a data set and the arithmetic mean 

will remain unchanged. 

The connections formed within each mathematical area (i.e. arithmetic and algebra), in 

conjunction with the connections between these mathematical areas, form the network of 

knowledge or domain that shape mathematical understanding of the arithmetic mean. 

2.2.2 Statistical Knowledge of the Arithmetic Mean 

The statistical concept of average is characterized as a representative number that summarizes a 

data set (Russell & Mokros, 1996).  Strauss and Bichler (1988) defined seven properties of the 

mean and categorized them into three aspects.4  One of those aspects was representative and is 

defined by the property, “The average value is representative of the values that were averaged” 

(Strauss & Bichler, 1988, p.66).  Unlike the other two aspects, which have mathematical 

elements, this aspect is strictly statistical in character because it is presenting a representative 

sense of the data.  Pollatsek, Lima, and Well’s (1981) describe the idea of representativeness as 

functional knowledge of the arithmetic mean, understanding “the mean is intended to be the 

quantity that best represents a set of scores” and “is an index of overall performance” (p. 199). 

                                                 

4 The three aspects are statistical, abstract, and representative.  The representative aspect is discussed here; the 
statistical and abstract aspects will be discussed in later sections.   
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The arithmetic mean is a tool that describes a data set and, as such, allows comparison 

between data sets.  The statistical nature of the arithmetic mean provides a means for drawing 

conclusions about the population or process from which the data originated (Cobb & Moore, 

1997).  The arithmetic mean is one of many averages that can alone, or in conjunction with other 

averages, be utilized to interpret the data.  The statistical concept of the arithmetic mean utilizes 

a quantitative entity to represent, locate, qualify, describe, interpret, and/or signify a data set.  A 

conceptual understanding of other areas of descriptive and inferential statistics could be valuable 

in further building a complete understanding of the arithmetic mean.  For example, 

understanding the graphical representation of data could help students visualize the arithmetic 

mean; understanding appropriate experimental design and data collection could help students 

appreciate the effects of individual data points; and inferential qualities of statistics (e.g. 

confidence intervals) could help students realize the representative nature of the arithmetic mean.  

As with the mathematical conceptual knowledge of mean, the statistical conceptual knowledge 

of mean is rich in its relationships to other statistics, data representations, and conceptual ideas.     

2.2.3  Connection between the Mathematical and Statistical Domains 

The previous sections described the distinction between the mathematical concepts and statistical 

concept of the arithmetic mean.  There is, however, a symbiotic relationship between the 

mathematics and statistics that contributes to the complete understanding of the arithmetic mean. 

To completely understand a multifaceted concept like the mean, one must understand all its 

dimensions and how they connect or interact. In the case of the arithmetic mean, which is “both 

central to statistical understanding and mathematically significant in a broader sense” (Mokros & 
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Russell, 1995), this means integrating its computation, mathematical relationships, and statistical 

aspects (Cai, 1998; Cobb & Moore, 1997).   

As discussed earlier, Strauss and Bichler (1988) referred to three aspects related to the 

arithmetic mean.  Two of these aspects, abstract and statistical, contain properties related to the 

both statistical and mathematical concepts and are provided with examples in Table 2-1 and 

Table 2-2, respectively. 

 

 

Table 2-1:  Abstract Aspects of the Arithmetic Mean 

Property Example 

The average does not necessarily equal one of the values 
that was summed. 

 
The mean of 10 and 20 is 15 (which is not one of the 
data points). 
 

The average can be a fraction that has no counterpart in 
physical reality. 

 
If an elementary school has two sections of first grade 
with 22 and 25 students in each classroom, then the 
mean number of students in each classroom is 23.5; a 
physical impossibility for an individual classroom. 
 

When one calculates the average, a value of zero, if it 
appears, must be taken into account. 

 
Five children were asked how many mathematics books 
they have in their homes.  The responses were 1, 0, 4, 2, 
and 0.  When calculating the mean the sum is not 
affected by the zero values (1+0+4+2+0 = 1+4+2), but 
zero values  must be counted as part of the divisor (n=5). 
 

Note: The properties are quoted directly from Strauss and Bichler (1988).   The examples are the author’s. 
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Table 2-2:  Statistical Aspects of the Arithmetic Mean 

Property Explanation 

The average is located between the extreme values. 
 

 
The arithmetic mean can not be located above the 
highest value or below the lowest value, and in fact can 
not equal either value unless all data points are equal. 
 

The sum of the deviations from the average is zero. 

 
The sum of the differences of the mean subtracted from 
each data point is zero. 
 

The average is influenced by values other than the 
average. 

 
Any new data point added to the original data set will 
change the mean unless the new data point equals the 
mean 
 

Note: The properties are quoted directly from Strauss and Bichler (1988).  The explanations are the author’s. 

 

 

Fully comprehending each of these properties requires a conceptual understanding of both the 

mathematical and statistical nature of the arithmetic mean.  The first two properties of the 

abstract aspect are mathematical in nature; they involve sums and fractions and are results of 

mathematical computations.  The first two properties of the abstract aspect are also statistical in 

nature; they suggest the representative quality of the arithmetic mean.  The third property of the 

abstract aspect is mathematical in nature due to the calculation involved and the identity property 

of zero with respect to addition.  It is also statistical in nature due to the sense that the mean is 

representative of all data points, not just the non-zero data points.  Each of the statistical aspects 

can be demonstrated using mathematical calculations or proofs and therefore have roots in the 

mathematical domain.  Each of the statistical aspects also helps define the arithmetic mean as a 

representative number of a data set.   

The connection of the statistical knowledge domain, the idea of representativeness, to 

mathematical knowledge is not a directly integrated relationship as each domain may reside 

independently in the general knowledge schema.  Mayer and Greeno (1972) described how 
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knowledge can be assimilated internally, such as when concepts are related in a domain, or 

externally, such as when concepts are related to ideas outside the domain.  They investigated 

structural differences in the learning outcomes when two different methods of instruction were 

used to teach the binomial distribution.  One method emphasized procedural calculation using 

the binomial formula while the second method emphasized general concepts and meaning of the 

variables.  The research found that the way new ideas were assimilated into schema depended on 

the type of instruction to which each group was exposed.  The group that focused on the formula 

connected the new knowledge to calculation techniques while the group exposed to the concepts 

of variables associated the newly learned knowledge into a more general conceptual sense.  The 

authors explained their results by describing cognitive structures as consisting of both internal 

and external connectedness:  

An interpretation of the difference in terms of the learning outcomes achieved by the 

subjects can be developed by postulating two variables in cognitive structure.  One is the 

extent to which components of a structure are integrated or connected with each other and 

could be called internal connectedness.  The other variable is the extent to which the 

components of a structure are connected or related to other elements in a subject’s 

general cognitive structure and this could be called external connectedness (Mayer & 

Greeno, 1972, p. 171).   

Applying this idea to the knowledge of the arithmetic mean, the first of these variables, 

internal connectedness, can be related to the subset of mathematical procedures, along with their 

various mathematical concepts within the mathematical domain, necessary to understand the 

mean.  The variable of external connectedness can be thought of as relating the mathematical and 

statistical domains of the arithmetic mean.  The concepts of fair-share and center-of-balance may 
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provide a cognitive bridge between the two domains.  The concepts of fair-share and center-of-

balance may be used to externally connect elements in the general cognitive structure, that is, 

mathematics to the statistical idea of representativeness.  In this sense, the concepts of fair-share 

and center-of-balance represent Pollatsek, Lima, and Well’s (1981) analog knowledge that 

translates between the mathematical and statistical descriptions of the arithmetic mean. 

2.3 FAIR-SHARE AND CENTER-OF-BALANCE  

In this section the concepts of fair-share and center-of balance will be described in three ways.  

First as individual concepts developed in the general knowledge schema, second as concepts 

related to procedures and concepts in mathematics, and third as concepts related to the statistical 

idea of representativeness.   

2.3.1 Fair-Share 

Fair-share is the equal partitioning of an object or equal distribution of objects to members of a 

group. Children learn the concept of fair-share through early social experiences, implicit ideals, 

and distributive counting.  The action of partitioning objects or sharing is developed early in a 

child’s development through experiences in social settings (Kieren, 1988).  Initial sharing of 

objects begins with a rote understanding of “half” and often does not lead to equal partitioning 

(Pothier & Sawada, 1983).   The most common and often earliest strategy for young children to 

clinically demonstrate the concept of fair sharing is dealing or systematically separating objects 

into groups without explicitly counting (Miller, 1984; Hunting & Sharply, 1988).  Davis and 

Pitkethly (1990) found dealing is an implicit sharing strategy.  Young children do not apparently 
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have a conscious awareness that it is an adequate procedure for demonstrating equal sharing and 

(those that are capable) often resort to counting as a checking procedure.  The concept of sharing 

which is evidenced early in a child’s development by allocating pieces or objects in social 

settings or in counting activities leads to an intuitive sense of fair-share.    

2.3.1.1 Fair-Share as a Mathematical Concept   

Fischbein, Deri, Nello, and Marino (1985) hypothesized that, “Each fundamental 

operation of arithmetic generally remains linked to an implicit, unconscious, and primitive 

intuitive model” (p. 4).  Fair-share is the intuitive model that underlies partitive division.  

Partitive division is characterized by an object or collection of objects being divided or 

distributed into equal portions or an equal number of subcollections.  In its most basic sense, the 

arithmetic mean is calculated by equally dividing a set of objects into a given number of subsets. 

Therefore, the arithmetic mean formula is an example of partitive division.         

Another description of the mean that utilizes the notion of fair-share is as a normalized 

ratio (Cortina, 2002).  In this case, fair-share can be used to construct units of measure (e.g. miles 

per gallon) that do not necessarily involve statistical variability or prediction but have 

mathematical relationships.  In this multiplicative conceptualization, the mean is an attribute of a 

group of data points in which an aggregate measure is created by summing all of the individual 

data point values.  If one divides this aggregate measure by the total number of individual 

measures that created it, a normalizing adjustment, a “group performance relative to the number 

of individual contributors,” is produced.  “In this sense the mean is like an average rate; the 

measure of the group contributions per contributor is conceived to be the same as the amount 

contributed by each n contributors if each were to contribute equal amounts” (Cortina, Saldanha 
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& Thompson, 1999, p. 2).  This is equivalent to the group total being equally distributed (i.e. 

shared fairly) amongst the contributors.           

2.3.1.2 Fair-Share as a Statistical Concept 

The arithmetic mean can be statistically conceived as representative by a fair-share 

model.  “The basic question underlying the fair share model is, what would be an equal share if 

all items were distributed [equally]?” (Mokros & Russell, 1995, p. 21).  The conceptualization of 

fair-share can be illustrated using a signal-in-a-noisy-process or equal-redistribution idea.  

Konold and Pollatsek (2002) argue that the arithmetic mean can be thought of as a signature-

signal and the data can be thought of as a noisy-process.  For example, the observed weights of 

an object on a scale may vary each time the object is weighed.  The variations in the 

measurements can be thought of as a noisy-process.  The true weight can be estimated by an 

arithmetic mean or signal that levels off the variation (Groth, 2005).  An illustration of this 

approach is found in Figure 2-1(a).   

A second conceptualization of the arithmetic mean as a fair-share is the equal-

redistribution model.  The data values are represented as block columns with the height of the 

columns equaling the value of each data point.  Redistributing the blocks such that all columns 

are the same height equates to allocating the total sum in the data set equally amongst each data 

point.  The new height of equal columns, or evenly distributed columns, is equivalent to the 

mean of the data set. (Van DeWalle, 2003).  This process is depicted in Figure 2-1(b). 
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Figure 2-1:  The Mean as a Fair Share 

 

 

These models help depict the concept of fair-share as it relates to the statistical concept of 

representativeness of the arithmetic mean.  Each fair-share model is an interpretation of the 

arithmetic mean as a location, description, and/or representation of the mean in relation to the 

data set. 

2.3.2 Center-of-Balance 

The concept of center-of-balance has been widely studied to mark cognitive development in 

children since Inhelder and Piaget (1958).  A balance scale, a device in which weights can be 

added to each side of a lever arm that pivots on a fulcrum, offers a diverse sequence of rules 

through which children progress.  Siegler (1976) proposed four rules to track cognitive 

development: 
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Rule I: Four and five-year-olds base predictions only on the relative weight on each side of 

the fulcrum. 
 
Rule II: Eight and nine-year-olds consider distance from the fulcrum if the weight on each 

side is equal but rely only on weight if the weights differ. 
 
Rule III: Twelve and thirteen-year-olds consider both weight and distance, but do not know 

how to resolve conflicts if weights and distances differ. 
 
Rule IV: Few children and adults rely on torques (i.e. multiplying weight by its distance). 
 

Experiments performed by Lovell (1961) and Jackson (1965), and later confirmed by 

Siegler (1976), indicated that only 20% of adults are capable of using Rule IV for center-of-

balance problems; Siegler termed performance at this level as mature.  Furthermore, Hardiman, 

Pollatsek, and Well (1986) report, “Even when provided with specific experiences intended to 

promote understanding of the concept of balance, adults do not easily derive the product-moment 

rule [torque]” (p. 64).   

The concept of center-of-balance has been widely studied and its development is well 

documented.  The concept develops in complexity of understanding through Rules I – III with 

age and experience, but does not progress to mature performance (Rule IV) without explicit 

instruction.  

2.3.2.1 Center-of-Balance as a Mathematical Concept     

The concept of center-of-balance has direct connections to procedures and concepts in 

mathematics.  Torque (Rule IV) is calculated using multiplication, addition, and vector cross 

products.  Hardiman, et al. (1986) define the mathematical calculation of center-of-balance as, 

The effectiveness of a weight in causing the [balance] beam to tip is determined by the 

product of the weight (w) and its distance from the fulcrum (d), a construct called 
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torque….If the total torque (i.e., ∑widi) associated with the weights on each side of the 

beam is the same, the beam will balance, otherwise the beam will tip to the side with the 

greater torque. (p.64) 

Siegler (1976) states, “It [balancing] is an interesting task mathematically, being related to the 

concept of proportionality” (p. 482).  Another important link between center-of-balance and 

mathematics is the notion of equality and its role in balancing weights and torques in equations 

that represent data sets and their deviations from the mean.   

2.3.2.2 Center-of-Balance as a Statistical Concept 

The arithmetic mean can be statistically conceived as representative by a center-of-

balance model.  Figure 2-2 shows how the representative nature can be demonstrated by a 

“balance” diagram or by a “block-stacking” procedure depicting center-of-balance.  The top 

picture (a) depicts the arithmetic mean as the balancing point of a scale in which the frequency 

distribution of the data points is analogous to the distribution of the weights.  The fulcrum can be 

thought of as the point that represents the entire data set.  A second approach, presented as (b) in 

the figure, uses a manipulative to build a column of blocks for each value in the data set.  The 

blocks are moved toward the center of the distribution, carefully moving an equal number of 

blocks an equal distance from each side of the hypothesized center, in order to keep the model 

balanced.  The point on which all blocks can be stacked after equal movement is the arithmetic 

mean.  It can be thought of as the point that best represents the original distribution of the data 

set.   
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Figure 2-2:  The Mean as a Center of Balance 

 

 

The balancing models help illustrate how the center-of-balance concept is related to the 

idea of representativeness.  “This conception [balance beam] should be useful because it allows 

connections to be made to general knowledge of and experience with balancing, leads to 

reasonably accurate approximations to the mean and helps make clear that it’s the relative 

frequencies of scores that are important in determining the mean (Hardiman, Well, & Pollatsek, 

1984, p. 794).  The center-of-balance models describe the arithmetic mean as a location and/or 

representation relevant to the data. 

(Aufmann,  Lockwood, Nation, & Clegg, 2007) 

(Van de Walle & Lovin, 2006) 

(b) 

(a) 
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2.3.3 Relationship between Fair-Share and Center-of-Balance 

The relationship between the fair-share and center-of-balance conceptualizations is a focus of 

this study (research question #1). Of particular interest are how the differences in the two 

conceptualizations can be cognitively integrated and how this integration manages to describe 

the statistical and mathematical nature of the arithmetic mean. 

Figure 2-3 illustrates some conceptual differences for several mathematical contexts of 

fair-share and center-of-balance in relation to the arithmetic mean. 

 

 

 Center-of-Balance Fair-Share 

Real World Situation 
Four children bring 5, 4, 2, 1 

M&M’s to school.  What is the mean 
number of M&M’s? 

Four children bring 5, 4, 2, 1 
M&M’s to school. How can the 

M&M’s be fairly shared? 

Spoken Symbol 
“I find the number that is in the 

middle or balances the number of 
M&M’s each child brought” 

“I put all the M&M’s in a pile and 
divvy-them-up equally” 

Pictures 

 
O     O     O     O 
O     O     O     O 
O     O     O     O 

 

Manipulative Model 

 

 

             
Written Symbol (5-x) + (4-x) + (2-x) + (1-x) = 0 

12 – 4x = 0 … x = 3 121245 =+++   …   3412 =÷  
 

Figure 2-3:  Examples of Differences in Center-of-Balance and Fair-Share 

 

 

3 
125 4
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Most previous research on the arithmetic mean’s relationship to fair-share and center-of-

balance reports on the effects each conceptualization has on student understanding of the 

arithmetic mean.  While the internal connections between and within the knowledge elements of 

the mathematical domain have been methodically studied (see e.g., Gray, Pinto, Pitta, & Tall, 

1999 for between; Lesh, Post & Behr, 1987 for within); currently, little research has focused on 

the links between the different conceptualizations, or the external connection between the 

conceptualizations of fair-share and center-of-balance.   

MacCullough (2007) studied how experts5 understand the arithmetic mean.  She used 

task-based interviews to determine how subjects understood and related specific problems 

associated with the arithmetic mean.  Based on her results she hypothesized how a leveling-off 

strategy could connect the notions of fair-share and center-of-balance.  

The experts understood the algorithm for arithmetic mean as a result of partitive division. 

The data values were accumulated and then shared fairly with each data point.  This was 

equated to leveling-off by suggesting that the fair sharing could be done by simply 

moving pieces of a bar graph (or numerical amounts) until every data point was the same 

value.  The activity of leveling-off allowed the experts to “visualize” the deviations from 

a proposed mean. In order to obtain balance, and thus find the arithmetic mean, the pieces 

over and the pieces under had to be equivalent. The experts implied that leveling-off 

would find a point of balance because any amount over the mean exactly matched an 

amount under the mean. In this sense, the leveling-off was the same as numerically 

                                                 

5 The experts were: a mathematics educator;  a graduate student;  a statistics educator, a statistician, and a 
mechanical engineer 
 



37 

cancelling deviations. When leveling-off to find a point of balance, the experts focused 

on the deviations from the mean and their equivalence (p. 99). 

This explanation of the external connection between fair-share and center-of-balance relies on 

two key mathematical concepts.  The first, partitive division, is a general mathematical concept 

rooted in the conceptualization of fair-share.  The second key concept is the ‘sum of the 

deviations from the mean is zero.’  In this case, the concept is being related to the of center-of-

balance conceptualization.  The relationship between fair-share and center-of-balance to these 

two concepts may indicate the external connection between fair-share and center-of-balance is 

connected through either the statistical or mathematical domains.  

2.4 A KNOWLEDGE STRUCTURE FOR THE ARITHMETIC MEAN 

The research on the development of knowledge for the arithmetic mean (see section 2.1) and the 

conceptualizations of fair-share and center-of-balance (see section 2.3) that relate mathematical 

and statistical domains (see section 2.2) can be combined to form a hypothesized structure of 

how knowledge is related for the arithmetic mean.  This is shown in Figure 2-4.  The structure 

has two knowledge domains, mathematical and statistical.  Within the mathematical domain 

there are procedures and concepts related to mathematical calculation of the arithmetic mean.  

The statistical domain is characterized by the concept of representativeness and how the 

statistical context of the data is represented by arithmetic mean.  Section 2.3.1 and section 2.3.2 

described the connections between the statistical domain and each of the conceptualizations (i.e. 

fair-share and center-of-balance) and the connections between the mathematical domain and 

each of the conceptualizations, respectively.  It is hypothesized that fair-share and center-of-
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balance conceptualizations bridge the statistical concept of representativeness to the seemingly 

unrelated mathematical procedures and concepts for calculating the arithmetic mean.  The 

conceptualizations of fair-share and center-of-balance may function as cognitive bridges between 

the statistical and mathematical domains.  As described in section 2.3.3, a focus of this study is 

the nature of the cognitive connection (if any exists) between fair-share and center-of-balance 

conceptualizations of the arithmetic mean.    

 

 

 

Figure 2-4:  Knowledge Structure of the Arithmetic Mean 

 

 

Based on previous research it can be hypothesized that knowledge within the 

mathematical domain is internally connected and most likely grows in an iterative fashion 

combining procedural and conceptual knowledge (Ambrose, Baek, & Carpenter, 2003; Rittle-
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Johnson & Alibali, 1999; Rittle-Johnson, Siegler, & Alibali, 2001).  The knowledge relating the 

statistical and mathematical domains is conceptually integrated across the disciplines and may be 

externally connected.  How students connect the concepts of fair-share and center-of-balance to 

the mathematical domain is of interest to this study (research question #2).  The following 

sections describe how relationships between disciplines or domains of knowledge interact and 

inform each other.   

2.4.1 Relating Mathematical Concepts to Concepts in Other Disciplines 

Mathematics itself is a dynamic discipline with a historic foundation and a seemingly infinite 

space for growth; it also contributes to society as a tool in numerous ancillary disciplines.  Fields 

of study such as the physical sciences, economics, engineering, computer science, and statistics, 

to name a few, heavily utilize mathematics within their discipline.  Ideally, the relationship of 

knowledge between mathematics and other disciplines should be conceptually integrated rather 

than consisting of borrowed procedures.     

In experimental physics, for example, mathematics plays an indirect procedural role of 

empirically determining facts or providing a conceptual basis for physical understanding.  For 

example, a mathematical understanding of calculus helps explain the conceptual relationship 

between acceleration, velocity, and position in mechanics.  Sauer (2000) found students who 

used mathematical modeling to conceptually construct formulas had a more flexible approach 

and a more conceptually correct view of acceleration than did students who were given the 

formulas.  Sherin (2001) proposed the following explanation of the relationship between 

mathematical concepts and concepts in physics: 
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The use of formal expressions in physics is not just a matter of the rigorous and 

routinized application of principles, followed by the formal manipulation of expressions 

to obtain an answer.  Rather, successful students learn to understand what equations say 

in a fundamental sense; they have a feel for expressions, and this guides their work.  

More specifically, students learn to understand physics equations in terms of a 

vocabulary of elements that I call symbolic forms.  Each symbolic form associates a 

simple conceptual schema with a pattern of symbols in an equation.  From the point of 

view of improving instruction, it is absolutely critical to acknowledge that physics 

expertise involves this more flexible and generative understanding of equations, and our 

instruction should be geared toward helping students acquire this understanding (p. 479). 

A study that analyzed videotapes of students solving physics problems found students with a 

contextual (physics) understanding of an equation do not only use the equation at the start of the 

problem,  but throughout the solution process, allowing for more flexible problem solving.  This 

indicates the relationship between mathematical and physics concepts is iterative during the 

problem solving process (Sherin, 2001).   

In statistics, mathematics is often used to assist in solving a problem, but only after 

considerable statistical thinking and reasoning have been accomplished (delMas, 2004).  DelMas 

contends that students unable to relate statistical and mathematical reasoning resort to solutions 

based on “the output of associative processes that fall short of the reflection and integration 

needed for complete understanding” (p. 90).  Solutions based solely on the output of associative 

processes, such as procedurally computing the arithmetic mean using the mean formula, are 

often unable to be related to statistical concepts, such as representativeness.  On the other hand, 

if the associative process is linked to a concept, and that concept is linked to a statistical idea, 
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then a conceptual relationship can be built between the associative process and the statistical 

idea.  For example, Cortina (2002) found students improved their understanding of the arithmetic 

mean when they associated the arithmetic mean formula with a ratio representing a per-one 

contribution to the aggregate total of the data, a fair-share notion.  As previously discussed, the 

fair-share notion is linked to the statistical idea of representativeness.  The linking of the 

arithmetic mean formula to the notion of fair-share, followed by connecting fair-share to the idea 

of representativeness, cognitively connects the mathematical notion of the arithmetic mean 

formula to the statistical idea of representativeness.  A caveat, Hardiman, Well, and Pollatsek 

(1984) found using a balance beam analogy to represent the arithmetic mean improved a 

student’s understanding of the mean, but only to the degree that the center-of-balance model and 

arithmetic mean formula were conceptually understood as separate entities.  Thus, the learning 

that delMas describes and Cortina demonstrated is limited by the understanding of concepts 

within the domains and cognitive bridges; not just by the understanding of their connection. 

Therefore, the concepts inherent in the domains and cognitive bridges themselves need to be 

developed for optimal understanding to emerge.   

 The research studies presented above indicate a more developed conceptual 

understanding of the mathematical knowledge related to complementary fields leads to an 

increased conceptual understanding of the knowledge within the related field (e.g. physics and 

statistics).  As with the iterative relationship between procedural and conceptual knowledge 

(Ambrose, Baek, and Carpenter, 2003; Rittle-Johnson & Alibali, 1999; Rittle-Johnson, Siegler, 

& Alibali, 2001), it can be hypothesized that not only does the related domain knowledge 

coalesce as conceptual understanding of the mathematics increases, but the contextual 
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representation of the mathematics within the related domain could strengthen the conceptual 

understanding of the mathematics. 

2.4.1.1 Cognitive Blending 

Fauconnier and Turner (1998) have described the connections that conceptually integrate 

domains for analogy or metaphor as cognitive blending.  In cognitive blending, inputs from each 

domain are connected in a blended space at various levels of abstraction to create an emergent 

structure not directly available from the input domains alone.  “A particular process of meaning 

construction has particular input representations; during the process, inferences, emotions, and 

event-integrations emerge which cannot reside in any of the inputs; they have been constructed 

dynamically in a new mental space—the blended space—linked to inputs in systematic ways” 

(Fauconnier & Turner, 1998, p. 135).   

Bing and Redish (2007) provide examples of how cognitive blending can be used to 

explain the connection between mathematical concepts and physics concepts.  They analyzed 

data from video tapes of physics and engineering mechanics students completing homework 

problems.  Evidence suggests students combined particular concepts in mathematics with 

physical concepts to produce a blended space describing the concept of air drag.  Figure 2-5 is a 

depiction of a cognitive blend between the mathematics and physics domains for the concept of 

air drag. 

 

 



43 

 

Figure 2-5:  Mathematics/Physics Blending Example 

 

 

The mental space provided by the cognitive blend provides a means to achieve the 

complex integration of mathematical and physical concepts.  Bing and Redish (2007) found 

difficulties by students in understanding the concept of air drag were not from lack of 

prerequisite knowledge of mathematics or physics, but from an inappropriate integration of two 

well-established mental spaces.  They concluded that “awareness of a cognitive blending 

framework can help instructors more readily understand how students are thinking and offer 

appropriate guidance for the situation at hand” and “help researchers in providing a theoretical 

framework for description of student thought and perhaps even a structure for understanding 

what cues prompt students for blending in particular ways” (p. 29).  Therefore a better 

understanding of the blending spaces or providing mental spaces for blending to occur can help 

in instruction and student understanding. 

Mathematics
Physics 

• Direction 
(up/down) 

• Viscous and 
gravitational 
forces 

• Velocity 

Cognitive Blend 

• + mean upward     - means downward 
• F and v symbols carry direction 

information with their sign 
• Fv = -bv encodes physical direction 

relations via multiplication 

• Positive and negative 
quantities 

• Rules of addition, 
subtraction, and 
multiplication 

• Algebraic symbolism       
F and v 
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The next section relates how the cognitive bridges of fair-share and center-of-balance 

might be used as blending spaces for the mathematical and statistical domains of the arithmetic 

mean.  Inputs from each domain, internally linked to the concepts of fair-share and center-of-

balance, are dynamically blended enabling a more complete understanding of the arithmetic 

mean.  

2.4.2 Using Fair-Share and Center-of-Balance for Connecting Domains 

As discussed is section 2.2.3, fully comprehending all aspects of the arithmetic mean involves 

connecting knowledge from mathematical and statistical domains.  The conceptualizations of 

fair-share and center-of-balance may provide cognitive spaces to blend procedures and concepts 

from the mathematical and statistical domains.  In the case of the arithmetic mean, the cognitive 

spaces for blending the two domains are themselves well defined concepts (i.e. fair-share and 

center-of-balance).  This is different than the blending spaces the physics students in Bing and 

Redish’s (2007) study specifically constructed between the physics and mathematics domains.  

The advantage (or disadvantage) of using a well defined cognitive blending space versus a 

constructed space has not yet been reported in current research.  Results from this study may 

contribute to this discourse.  An example of how the concept of center-of-balance might be used 

to cognitively blend knowledge from the mathematical and statistical domains is demonstrated in 

Figure 2-6. 
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Goal: Relate the arithmetic mean formula to the arithmetic mean property: the sum of the deviations from the 
mean is zero 

Method: Algebraically manipulate the arithmetic mean 
formula to represent the property 

Use the notion of center-of-balance and the block-
stacking technique to demonstrate the property 

Actions: 
→= ∑

n

x
x i  

→=∑ ixxn  

→=∑∑ ixx  

0)( =−∑ ixx  

1) The arithmetic mean formula (or an example 
that utilizes it) can be depicted as a block 
stacking diagram 

2) The blocking stacking technique portrays the 
notion of center of balance  

3) Center of balance can help conceptualize the 
sum of the deviations from the mean is zero 

 
Accessed 

Knowledge: 

  

 

Figure 2-6:  Interactions of Internal/External Connections 

  

 

The examples in Figure 2-6 represent plausible conceptualizations of the arithmetic mean 

property, ‘the sum of the deviations from the mean is zero’ (Strauss and Bichler, 1988).  The first 

example utilizes an algebraic manipulation of the arithmetic mean formula to demonstrate that 

the property is inherent in the formula.  All of the knowledge necessary to complete the 

calculation resides in the mathematical domain.  There is no evidence that any idea of 

representativeness would be apparent to a student exposed to this derivation.  The second 
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example utilizes the block-stacking technique and the notion of center-of-balance to build the 

representative sense of the property; ‘the sum of the deviations from the mean is zero.’  By 

utilizing the concept of center-of-balance to blend mathematical and statistical domains, the 

arithmetic mean property has an opportunity to be conceptualized and connected to both domains 

as well as to the concept of center-of-balance. 

A better understanding of the relationship and connection between the blending spaces of 

fair-share and center-of-balance, and how they relate to the relevant mathematics, could help in 

pedagogically presenting a comprehensive picture of the arithmetic mean.  The following section 

indicates how incorporating the concepts of fair-share and center-of-balance into instruction of 

the arithmetic mean increases conceptual understanding and reinforces the statistical concept of 

representativeness.   

2.5 INSTRUCTIONAL INVESTIGATIONS 

A goal of research regarding the arithmetic mean is to improve students’ understanding.  A 

necessary part of improving understanding is to improve the teaching of the arithmetic mean; this 

entails advancing teacher understanding, teaching techniques, instructional materials, and 

assessment.  Improvement in statistics education parallels current efforts of reform in 

mathematics education that focus on problem solving, conceptual understanding, and technology 

(Garfield, 1995; Greer, 2000).  Statistics also provides a vehicle to contextualize mathematics 

into “real-world” situations.   

Important to instruction of the arithmetic mean is presenting situations and problems that 

contextually help the students conceptualize it.  “The continual shuttling backwards and forwards 
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between thinking in the context sphere and statistical sphere” utilizes statistical thinking that an 

expert statistician would use, and also contextually bases the results and conclusions (Wild & 

Pfannkuch, 1999, p.228).  This contextualization was an essential part of a study by McClain and 

Cobb (2001) that found middle school students “reconceptualized their understanding of what it 

means to know and do statistics” (p. 126) when given the opportunity to explain and justify their 

answers within the context of the problem.   

Students tend to think of the arithmetic mean as a procedure rather than a tool for data 

analysis (McGatha, Cobb, & McClain, 2002).  To remedy this, the researchers suggest that 

instruction treat data analysis as an inquiry rather than as a procedure.  “In cases where there is a 

conflict between intuitive estimates and formal measures, they [students] should be encouraged 

to find causes of that conflict rather than simply replacing their intuitive estimates with formal 

tools that produce ‘correct’ school-sanctioned answers” (Groth, 2005, p. 14).  Students develop a 

more conceptually based notion of the arithmetic mean if they are permitted to make many 

informal estimates based on their intuitive notion of average rather than use a formal measure, 

such as the arithmetic mean formula, to calculate an answer. 

Previous research indicates the nature in which a teacher presents the arithmetic mean, 

mathematically and/or statistically, and the focus of connection between the mathematical and 

statistical domains, fair-share or center-of-balance, impacts the outcome the instruction.  

Researchers such as Mokros and Russell (1995), Pollatsek, Lima, & Well (1981), and Strauss 

(1987) emphasized the mean as a balancing-point or fair-share.  The conceptualization of center-

of-balance can be modeled as a balance diagram or block-stacking while the conceptualization of 

fair-share can be modeled as either a signal-in-a-noisy process or block-leveling as previously 

discussed (see sections 2.3.1.2 and 2.3.2.2).  Hardiman et al. (1984) performed an experimental 
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study in which students in two groups were given either instruction on a balance model or were 

placed in a control group after having solved several mean and weighted mean problems on a 

pretest.  The results indicated the balance model instruction “led to better understanding of the 

weighted mean” (p.799).  The equal-redistribution model has also been linked to student 

learning.  Cai and Moyer (1995) found students use three different mathematical representations, 

verbal (written words), symbolic (mathematical expressions), and pictorial (drawings) when 

solving problems related to the arithmetic mean.  The representations that students utilized 

appeared to be directly related to their chosen solution strategy.  For example, students that used 

an add-and-then-divide strategy most often utilized a symbolic representation of the arithmetic 

mean formula.  Students that used a leveling strategy most often utilized a pictorial 

representation.  Students that exhibited a higher conceptual understanding of the arithmetic mean 

often used multiple representation strategies in their solutions.  The results of the study showed 

an increase in the conceptual understanding of the mean after the open-ended problem solving 

instruction.  George (1995) found that students exposed to a reform curriculum that encouraged 

constructing knowledge exhibited a better conceptual understanding of the mean than students 

who were taught the add-and-then-divide procedure.  In this case, the reform curriculum was 

Visual Mathematics which introduced the mean using the equal-redistribution model.  A study 

presenting the fair-share conceptualization of the arithmetic mean as a signal-in-a-noisy-process 

found several students utilized higher level statistical thinking in contextualizing arithmetic mean 

problems using this model (Groth, 2005).   

In conclusion, research studies have indicated that students’ misconceptions regarding the 

mean are strong and resilient.  They are not easily changed even if faced with contrary evidence 

(Garfield, 1995).  Effective instructional practices related to the arithmetic mean mimic the 
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qualities and activities of reform mathematics teaching.  Instruction that contextualizes problems 

and relates the arithmetic mean to specific statistical models has led to improved student 

understanding.    

One question in statistics education that previous research has not answered is which 

conceptualization, fair-share or center-of-balance, and which model (e.g. signal-in-a-noisy-

process, redistribution of blocks, balance beam, block-stacking) related to these concepts, is most 

effective in connecting the representative nature of the arithmetic mean to its mathematical 

constructs.  The study described here is meant to resolve this question. 

2.6 SUMMARY AND IMPLICATIONS OF LITERATURE 

Among averages, the arithmetic mean is unique in that the conceptual basis from which it is 

developed, representativeness, is not typically developed before the procedure to calculate it is 

introduced.  Without connections to the statistically founded concept of representativeness, one’s 

knowledge of the arithmetic mean seems limited to computation of the mathematical formula; 

thus allowing little or no access to mathematically and statistically rich or adaptive problems, 

including those that arise in our everyday lives.   

Statisticians contend that statistics is not a subfield of mathematics, but rather its own 

field that utilizes mathematics, much like physics or economics.  A statistician understands the 

concepts of statistics and the significance of statistical thinking and uses the tools of mathematics 

to solve or predict within the context of a problem.  This idea suggests the need to develop a 

statistical sense of the arithmetic mean before a procedural technique is introduced. 
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Several studies have researched the type of knowledge, procedural or conceptual, that 

students of different age groups utilize to solve arithmetic mean problems (Cai & Moyer, 1995; 

Cai, Moyer & Grochowski, 1999; George, 1995; Groth, 2005; Hardiman et al. 1984).  Research 

in mathematics education indicates these two types of knowledge work together to form a 

complete understanding of a particular topic.  In terms of the arithmetic mean, procedural and 

conceptual knowledge may appear to be a dichotomy, with procedural knowledge hindering the 

conceptual understanding of the mean.  A possible explanation to this inconsistency is that the 

statistical conceptual knowledge of the arithmetic mean resides in a different domain than the 

procedural and conceptual knowledge that shape its mathematical constructs.  The notion of 

cognitive blending may offer insight as to the growth of knowledge with respect to the arithmetic 

mean.  

The concepts of fair-share and center-of-balance offer a cognitive space for the blending 

of the mathematical and statistical domains of knowledge intrinsic to the arithmetic mean.  

Research has indicated how each concept is individually related to both the mathematical and 

statistical domains, but offers little as to how the concepts of fair-share and center-of-balance are 

cognitively related to each other.  It is also unclear as to how understanding of statistical 

concepts enhances the mathematical knowledge related to the arithmetic mean, and conversely, 

how mathematical knowledge shapes the understanding of statistical concepts.  While problem 

solving skills and understanding of the arithmetic mean increase with age, it is uncertain if this 

growth is due to a better understanding of mathematical knowledge, an increase in the 

understanding of the statistical concepts, or a combination of both.  A better understanding of 

how mathematical and statistical knowledge relate, interact, and grow could lead to improved 

pedagogy of the arithmetic mean.  
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3.0  METHODOLOGY 

The goal of this study is to identify and describe the cognitive relationship between the concepts 

of fair-share and center-of-balance, as well as the cognitive relationship between these 

conceptualizations and the mathematical domain.  These relationships were described in two 

ways: (a) the extent knowledge of cognitive blending spaces, such as fair-share and center-of-

balance, affect each other and/or affect knowledge of mathematical concepts related to the 

arithmetic mean; and (b) the nature of the cognitive relationships that exist between the 

conceptualizations of fair-share and center-of balance, and between these conceptualizations and 

the mathematical domain. 

This chapter begins with a general discussion of the research design for this study.  

Second, the chapter details the demographics of the participants involved in the research study.  

Third, aspects of data collection, data coding, and data analysis are systematically outlined.  Data 

collection includes the specifics of the instrument and data gathering procedure.  The section 

concerning data coding reveals the mechanisms of the rubric utilized to quantify the data and the 

coding scheme used to qualify the data.  The final section dealing with the data, data analysis, 

details the statistical testing and qualitative examination of the data.  Results from a pilot study 

that influenced the collection, coding, and analysis of the data are presented throughout the 

chapter.           
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3.1 RESEARCH DESIGN 

Examining the thought and solution processes of individuals as they solve problems is an 

effective method for eliciting understanding about their mathematical knowledge.  Mathematical 

knowledge is constructed from cognitive relationships among concepts that exist in an 

individual’s knowledge schema.  Using instructional interventions can impact an individual’s 

mathematical knowledge by manipulating, reinforcing, or increasing existing cognitive 

relationships in their knowledge schema.  Comparing thought and solution processes before and 

after instructional interventions can illustrate the impact the new knowledge has on the existing 

knowledge schema.  The changes, if any, in the knowledge schema represent the cognitive 

relationships between the induced knowledge of the knowledge intervention and the existing 

knowledge.   

This study utilized a pre- and post- test design of randomly assigned participants 

belonging to one of three groups: (a) those given access to instruction on fair-share knowledge, 

(b) those given access to instruction on center-of-balance knowledge, and (c) a control group 

receiving instruction on general problem solving heuristics.  The methodology of protocol 

analysis was used to gather, code, and analyze the data.  Data collection consisted of think-aloud 

verbal protocols gathered from pre- and post- tests of arithmetic mean problem solving sessions 

with an instructional intervention between the two test administrations.  The data was coded for 

evidence of knowledge of different domains (i.e. mathematical or statistical) and different 

conceptualizations (i.e. fair-share and center-of-balance) as proposed in the knowledge structure 

for the arithmetic mean (see section 2.4).  The coded data was analyzed using two different, but 

related schemes.  The first scheme used statistical analysis to quantitatively locate any significant 

relationships between the concepts of fair-share and center-of-balance; along with any 
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connections between these and mathematical concepts.  The second scheme included 

qualitatively analyzing the data to explore any cognitive relationships identified in the initial 

statistical analysis, or any cognitive relationships apparent in the verbal protocols but not 

detected by the statistical analysis or in the initial pilot study.  This two-scheme mixed-method 

approach helped ensure thorough analysis of the data.  

Mixed-method methodologies, or combining quantitative and qualitative methods, have 

been used by researchers to deepen the insights from and expand the scope of their studies 

(Sandelowski, 2000).  Chi (1997) explains the rational for using a mixed methodology, 

particularly in the case where verbal protocols are used: 

There are clearly many advantages and shortcomings to both qualitative and quantitative 

methods.  The main advantage of qualitative research is that it can provide a richer and 

deeper understanding of a situation.  Moreover,…many skills are executed in a very 

different way in context than in a sterile laboratory environment.  However, qualitative 

methods usually suffer form subjective interpretation and nonreplicability.  Quantitative 

methods, on the other hand, have the advantage of objectivity and replicability, but the 

shortcoming is that one can only make conclusions about the specific hypothesis at hand.  

Furthermore, the sterile laboratory environment of experimental studies limits the 

generalization of the results to a real-world context.  Clearly, there is a need to blend the 

two methods in such a way to remove each method’s shortcomings.  The verbal analysis 

method attempts to satisfy these goals by removing subjectivity and yet maintaining the 

richness of context (p. 280). 

There are three primary reasons for integrating quantitative and qualitative methods in sampling, 

data collection, data coding, and/or data analysis (Greene, Caracelli, & Graham, 1989): 
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1) Interpretation – using qualitative data to help interpret, clarify, explain, or otherwise more 

fully elaborate the results of quantitative analysis 
 
2) Confirmation – treating qualitative and quantitative data with equal weights to achieve or 

ensure corroboration of data or convergent validation 
 

3) Development – using results from qualitative analysis to generate a hypothesis or guide 

the use of additional sampling, data collection, and analysis techniques that will be 

tested using quantitative methods 
 
The mixed-methodology of this study was applied at the data coding and data analysis stages.  

The data, transcripts of problem solving verbalizations and corresponding written solutions, were 

quantified using a rubric for statistical analysis and qualified using a coding scheme that 

identified knowledge usage.  Verbal protocols with written artifacts were utilized to interpret, 

clarify, explain, or otherwise more fully elaborate the results of the statistical analyses.  The 

verbal protocols and written artifacts supplied insight into the cognitive processes suggested by 

the statistical analyses.   

The quantitative and qualitative analyses were combined to answer the following research 

questions: 

1) How is knowledge of fair-share and center-of-balance cognitively related to one 

another?  In particular, 
 

a) What effect does instruction of the fair-share conceptualization of the arithmetic 

mean have on knowledge of the center-of-balance conceptualization? 
 

b) What effect does instruction of the center-of-balance conceptualization of the 

arithmetic mean have on knowledge of the fair-share conceptualization? 
 

2) How is knowledge of fair-share and center-of-balance cognitively related to the 

mathematical domain?  In particular, 
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a) What effect does instruction of the fair-share conceptualization of the arithmetic 

mean have on knowledge of mathematical concepts associated with the arithmetic 

mean? 
 
b) What effect does instruction of the center-of-balance conceptualization of the 

arithmetic mean have on knowledge of mathematical concepts associated with the 

arithmetic mean? 

3.2 PARTICIPANTS 

Undergraduate liberal arts students tend to generate a broad range of mathematical and statistical 

knowledge.  A breadth of knowledge regarding the arithmetic mean was necessary in order to 

answer the research questions in this study.  The chosen sample population of participants was 

enrolled in a liberal arts mathematics course at a small private university.  The first term of the 

course fulfilled the only required mathematics credits for most students enrolled (education 

majors are required to take a second term).  Students take the course based on their major (e.g. 

education, journalism, humanities, and performing arts).  Their mathematical and statistical 

backgrounds varied depending on the level of mathematics achieved at the high-school level.  By 

design, none of the participants had previously taken a formal statistics course.  One part of the 

liberal arts mathematics course in which the students were enrolled is devoted to statistics, and, 

in particular, one lecture focuses on measures of central tendency including the arithmetic mean; 

that section, however, was not yet covered at the time of this study.      

Sixty potential participants for the proposed study were enrolled in three sections of the 

liberal arts mathematics course.  Of that initial group, thirty-eight agreed to participate in the 



56 

research study, and thirty were randomly selected to partake in the study.  Each participant was 

given a participant-number alias to identify him or her during data coding and analysis.   

Previous qualitative research studies attempting to gain insight about knowledge of the 

arithmetic mean have utilized similar sample sizes.  These include Pollatsek, Lima & Well 

(1981) who used think-aloud protocols and follow-up interviews to examine computational 

versus conceptual understanding of the arithmetic mean for seventeen undergraduate students; 

Mokros and Russell (1995) engaged twenty-one subjects in task-based interviews to gather data 

about concepts of average; and Groth (2005) who used tasked-based clinical interviews to 

investigate the “intricate thinking processes” of fifteen subjects as they solved arithmetic mean 

problems.  Examples of studies in mathematics education and statistics education that have 

utilized the methodology of verbal protocols to elicit data, but are not specifically about the 

arithmetic mean, are summarized in Table 3-1. 

 

 

Table 3-1:  Verbal Protocol Study Sample Sizes 

 Author(s)  Description Sample Size 

Clement, J., (1982) 

 

Conducted think-aloud protocols of college students 
solving algebra word problems to find the cognitive 
processes connected with particular misconceptions. 
 

15 

Allwood, C.M., (1990) 

 

Used think-aloud problem solving sessions in two 
studies to investigate the relationship between the 
justification of a choice of solution method and the 
correctness of that choice in statistical problems. 
 

16 and 20 

Montague, M. & Applegate, B., (1993) 

 

Analyzed think-aloud protocols of middle-school 
students solving mathematical problems to identify 
solution methods of students with different abilities. 
 

30 

Thelk, A. & Hoole, E. (2006) 

 

Investigated the cognitive validity of scientific and 
quantitative reasoning items using think-alouds 
collected from first-year university students. 
  

27 
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The sample size for the current study was similar to the sample sizes of the eight studies 

described in Table 3-1.  The verbal protocols provided rich detail regarding the knowledge used 

by the participants while solving the arithmetic mean problems.  Although, the sample size was 

not sufficient to achieve the typically accepted power for quantitative statistical analysis, it was 

chosen to balance the quantitative and qualitative aspects of the study.  In particular, the richness 

of the data provided by the verbal protocols compensated for the statistical deficiency of the 

sample size in the overall analysis.   

3.3 DATA COLLECTION 

This section details the procedures that were used in the collection of data.  The methodology of 

protocol analysis (Newell & Simon, 1972) was employed to elicit knowledge of the particular 

conceptualization and domain accessed by participants while solving the arithmetic mean 

problems on the instrument described in section 3.3.1.  Protocol analysis uses think-aloud 

sessions as a means for gathering data.  

Protocol analysis is a rigorous methodology for eliciting verbal reports of thought 

sequences as a valid source of data on thinking (Ericsson, 2002).  The idea of protocol analysis 

was first developed by Newell and Simon (1972).  Ericsson and Simon (1980) first offered 

substantial empirical proof of the validity of verbal think-aloud protocols as data.  That is, that 

verbalizing ones thoughts, without ancillary descriptions or explanations, does not alter the 

cognitive sequence of thought, but engaging in specific thought activities (i.e. describing or 

explaining) changes the cognitive process (Ericsson & Simon, 1993).  Therefore, a key 

component of protocol analysis is the subject’s ability to continually think aloud while 
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participating in a task (e.g. problem solving) focusing solely on their solution process without 

being interrupted and asked to describe or explain their thoughts.  Ericsson and Simon outline a 

systematic method for collecting the verbal data that is reliable and valid.  This includes 

providing adequate instruction and practice for the participants, minimizing distractions in the 

research environment, and developing a clearly focused task.  

For this study, two types of data were collected: (a) verbal protocols, along with (b) 

written artifacts to capture the attributes of the mathematical and statistical knowledge 

demonstrated during the problem solving process.  The nonverbal, or written solution, 

documented the symbolic and pictorial thoughts of the participant and provided a familiar 

vehicle to stimulate the problem solving process.  Schoenfeld (1985) points out that the 

advantage of a written artifact along with the verbal protocol in mathematical problem solving is 

that the verbalization alone “rarely serves to elucidate their [participants’] workings” (p. 282).  

The purpose of participant-generated verbal conceptualization during the problem solving 

activity was to gather the most accurate representation of the participant’s thought process.  An 

important feature of protocol analysis is that, unlike a clinical interview, it is a noninterventionist 

method used to eliminate the risk of altering the student’s solution path and eliminate any 

potential for a researcher-participant generated training effect (Schoenfeld, 1985).   

The noninterventionist data collection method of protocol analysis served as a controlled 

means to elicit the thought process of the participants.  It provided an unobtrusive and research-

grounded method to gather data that revealed the accessed knowledge and cognitive processes of 

the participants as they solved the arithmetic mean problems.  
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3.3.1 Instrument    

Of principle interest in this research study was the cognitive relationship between the 

conceptualizations of fair-share and center-of-balance, as well as the cognitive relationship 

between these conceptualizations and the mathematical domain in a conceptually rich problem 

solving environment.  Thus, the tasks or problems were designed to give participants the 

opportunity to demonstrate knowledge relevant to the conceptualization or domain of interest 

during the solution process.      

Several sources were explored in an effort to locate problems that met the above criteria.  

These sources included:   

1) Problems from previous research studies including: 

a) Cai, Moyer, & Grochowski, 1999 

b) MacCullough, 2007 

c) Mevarech, 1983 

d) Mokros & Russell, 1995 

e) Strauss & Bichler, 1988 

2) Problems from published textbooks including: 

a) Aufmann, Lockwood, Nation, & Clegg, 2007 

b) Freedman, Pisani, & Purves, 1998 

3) Problems generated by the author for particular use in this study 

4) Problems proposed by an expert in statistical education for particular use in this study 

5) Problems proposed by an expert in mathematics for particular use in this study 

The problems were informally piloted and responses analyzed by the author and an independent 

expert in mathematics education.  The problems were categorized into three groups based on the 

analysis of the detailed written solutions: (a) those connected to the conceptualization of fair-

share, (b) those connected to the conceptualization of center-of-balance, and (c) those connected 
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to mathematical concepts of the arithmetic mean.  The three problems in each of the three 

categories, fair-share, center-of-balance, and mathematical concepts of the arithmetic mean, 

identified as most useful in revealing conceptual understanding were selected for use in a formal 

pilot study.  One purpose of the pilot study was to select the best two problems within each 

category.   

The pilot study adhered to the procedures for data collection, data coding, and data 

analysis that were used in the current study.  The solutions (i.e. verbal protocols and written 

work) from the pilot study were analyzed on two dimensions: 

1) Validity – The problem’s solution elicited verbal protocols that contained identifiable 

knowledge segments.  
 
2) Reliability – The problem’s predominant solution approaches included knowledge 

relevant to the problem classification (i.e. fair-share, center-of-balance, or mathematical 

concepts) 
 

On the basis of the pilot, two of the three problems in each category, for a total of six, were 

selected for use in the current study.  These six problems are described in the subsequent sections 

while Appendix A identifies all of the problems piloted that were not used in the study and a 

rationale for their exclusion. 

3.3.1.1 Fair-Share Problems 

Fair-share problems are those tasks that were most likely to be solved using one of two 

models of fair-share, redistribution or signal-in-a-noisy-process.  Many fair-share problems can 

be solved efficiently using the arithmetic mean formula.  Such solutions could be the result of 

conceptual understanding of fair-share, or it is also plausible that such solutions are indicative of 

simply a procedural understanding of the arithmetic mean formula.  Problems that involve 
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constructing data from a given mean, rather than solving for a mean from given data, are more 

statistically challenging and are more likely to elicit a conceptual solution because they 

encumber the ability to simply use the arithmetic mean algorithm (Mokros & Russell, 1995; 

pilot).  Therefore, the fair-share problems selected for this study were missing data problems 

associated with the models of redistribution and signal-in-a-noisy-process.  The two problems 

used in this study are shown below.  

 

Fair-Share 
Problem 1 

 
FS1 

Four children each had a stack of blocks as shown below.  When a fifth child sat down with her 
own set of blocks the mean number of blocks the children had became seven.  How many 
blocks did the fifth child have? 

?
Child #1 Child #2 Child #3 Child #4 Child #5 Mean  

Fair-Share 
Problem 2 

 
FS2  

In a chemistry lab a student weighed a specimen ten times.  The results of those weighings are 
presented in the chart below.  The student lost the 3rd and 6th weighings of the specimen after she 
calculated the mean of the ten weighings to be 3.2 as indicated by the dark line in the graph 
below.  What could have been the values for the 3rd and 6th weighings if the mean is 3.2? 

Weight of Specimen

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Weighting Number

W
ei

gh
t

 
 

FS1 is a task used by Cai, Moyer, and Grochowski (1999) in their research study on the 

conceptual understanding of average.  Results from that study indicated students either used a 

block-leveling or redistribution approach based on a statistical understanding of the mean, an 
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algebraic approach based on the arithmetic mean formula, or a guess-and-check strategy that was 

either conceptually or procedurally based.  The different approaches varied with the type of 

instruction the students had previously experienced.  Although the pilot work for this current 

study did not focus on prior instruction, participants’ written solutions verified the three 

systematic approaches to solving the problem.  The problem was piloted nine times.  The results, 

presented in Table 3-2, show that the majority of solutions utilized, to varying degrees, 

knowledge of fair-share. 

 

 

Table 3-2:  FS1 Pilot Solutions 

Method 
of 

Solution 

Number 
of 

Occurrences 
Description Example 

Fair-Share 7 

 
 
Utilized some method of  
block leveling or 
redistributing the data so 
that each n had an equal 
amount; more precisely 
equal to the mean 
 
 

 

Mathematical 2 

 
 
Utilized an algebraic 
approach to the arithmetic 
mean formula or a guess-
and-check plan to find a 
solution 
 
  

 

 

The results obtained by Cai et al. (1999) and this pilot indicate problem FS1 is a valid task for 

obtaining data regarding knowledge utilized in solving the problem.   
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FS2 is based on a signal-in-a-noisy-process task originally designed by Konold and 

Pollatsek (2002) and used in a study by Groth (2005).  Originally, only the line plot of all of the 

data points was given and students were asked to find the mean. This original version of the 

problem was piloted to ten students; seven of whom numerically translated the data into the 

arithmetic mean formula inhibiting the analysis of conceptual understanding.  Bar lines were 

added and the students were asked to find missing data points to reduce the likelihood that it 

would be solved using a procedural computation.  The current format was piloted to eight 

students; only one student attempted to use a formulaic procedure.  The solution methods are 

indicated below in Table 3-3:     

 

 

Table 3-3:  FS2 Pilot Solutions 

Method 
of 

Solution 

Number 
of 

Occurrences 
Description Example 

Fair-Share 6 

 
 
Utilized some method of 
redistributing the data so 
that each n had an equal 
amount; more precisely 
equal to the mean 
 
 

 

Center-of-Balance 1 

 
 
Utilized a method that 
indicate the mean was a 
“balancing point” with 
equal amount of data above 
and below the mean 
 
  

Mathematical 1 

 
 
Utilized arithmetic mean 
formula to solve for missing 
data points 
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The results obtained by Konold and Pollatsek (2002) and Groth (2005) indicate signal-in-a-

noisy-process problems, similar to FS2, are valid indicators of fair-share knowledge in arithmetic 

mean problems.  

3.3.1.2 Center-of Balance Problems 

Center-of-balance problems are characterized by solution methods involving the idea of 

balance or use of a block-stacking model.  As with fair-share problems, many center-of-balance 

problems can be solved effectively using the arithmetic mean formula.  Again, such solutions 

could indicate a conceptual understanding of center-of-balance or simply a rote understanding of 

the arithmetic mean formula.  Consequently, center-of-balance problems were selected after 

problems in previous research studies and problems from piloted instruments were carefully 

analyzed.     

 
Center  

of 
Balance 

Problem 1 
 

CB1 

Given three numbers, (a,b,c), and the mean of these numbers is x .  We know that a is 3 greater 

than x  and b is 7 greater than x .  How does the value of c relate to x ? 

Center  
of 

Balance 
Problem 2 

 
CB2 

As a worker in a grocery store you are asked to place price stickers on nine bags of potato chips so 
that the mean price of the chips is $1.38.  You can not price any bag at exactly $1.38.  You also 
must price one bag at $1.30 and a second bag at $1.35.  Create the remaining seven price stickers 

 

CB1 was developed by the researcher for use in this study.  It was piloted twelve times 

with written solutions in two separate problem solving sessions and three times using verbal 

protocols.  Table 3-4 details the results of the pilot work. 
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Table 3-4:  CB1 Pilot Solutions 

Method 
of 

Solution 

Number 
of 

Occurrences 
Description Example 

Center-of-Balance 12 

 
 
Used some method of 
balancing or centering the 
data around the mean. 
 
 

 

Mathematical 3 

 
 
Used algebraic equation to 
correctly solve the problem 
(1).  Used nonsensical  
arithmetic to incorrectly 
attempt the problem (2), not 
shown. 
 
 

 

 

 

The consistency of the results in all three pilot applications suggests it is a valid task for 

measuring the conceptualization of center-of-balance knowledge of the arithmetic mean. 

CB2 is an amalgamation of two problems used by Mokros and Russell (1995) to study 

students’ concepts of average and representativeness.  One problem in their study made use of 

the potato chip pricing context describe in CB2, while a second problem retained the pricing 

constraints of CB2.  They found solutions could be categorized into two groups: (a) those that 

indicated a non-representative nature of the arithmetic mean, and (b) those that indicated the 

arithmetic mean as a representative number.  The non-representative nature of the arithmetic 

mean was most often manifest as understanding the mean to only be an algorithmic process.  

Those who saw the mean as a representative number indicated the mean as a center-of-balance or 

a reasonable mathematical representation of the data set.  The problem was successfully used by 

Mokros and Russell to determine the knowledge used in the solution process and, therefore, is a 
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valid measure of such knowledge.  The problem was piloted three times using verbal protocols 

and three times with detailed written solutions as shown in Table 3-5. 

 

 

Table 3-5:  CB2 Pilot Solutions 

Method 
of 

Solution 

Number 
of 

Occurrences 
Description Example 

Center-of-Balance 4 

 
 
Used some method of 
balancing or centering the 
data around the mean. 
 
 

 

Fair-Share 1 

 
 
Used total sum of data 
points and a redistribution to 
correctly solve the problem.  
 
  

Mathematical 1 

 
 
Used nonsensical arithmetic 
to incorrectly attempt the 
problem. 
 
 

 

 

 

3.3.1.3 Mathematical Concept Problems 

Mathematical concept problems were developed to elicit knowledge of particular 

mathematical concepts integral to the arithmetic mean.  The mathematical concept problems 

attempt to capture participants’ use of mathematical concepts while solving problems about the 

arithmetic mean.     
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Mathematical 
Concept 

Problem 1 
 

MC1 

What value can be added to a data set so that the arithmetic mean of the data set does not change? 
Why? 

Mathematical 
Concept 

Problem 2 
 

MC2 

The mean of five numbers is 20.  The sum of four of these numbers is 75.  What is the value of the 
fifth number? 

 

 MC1 was piloted on two informal pilot instruments and in the pilot study.  Results from 

all three pilots indicated participants were most successful when their mathematical solutions 

were guided by the statistical conceptualization of center-of-balance.  Results from the pilot 

study for MC2 indicated participants were more successful in conceptually developing a solution 

if they couched the mathematics within the statistical conceptualizations of fair-share.  Table 3-6 

summarizes the results of the pilot work for the mathematical concept problems.     
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Table 3-6:  MC Pilot Solutions 

Examples Method 
of 

Solution 
Description MC1 MC2 

Mathematical 

 
 
MC1: Stated the middle number was 
the answer and used inductive 
reasoning to show proof. 
 
 
MC2:  Unsuccessfully used the 
arithmetic mean formula to find the 
missing data point. 
 
 

  

Mathematical 
Fair-Share  

 
 
MC2: Used notion of fair-share to 
calculate total sum was 100.  
Subtracted total sum of four numbers to 
find the fifth.  
 
 

no example 

 

Mathematical 
Center 

of  
Balance 

 
 
MC1:  Used center-of-balance example 
to illustrate one could add the mean 
multiple times to a data set and not 
change the mean 
 
 

 

no example 

Mathematical 
Mixed 

FS and CB 

 
 
MC1:  Struggled to use an example 
based on center-of-balance to illustrate 
the mean was the answer.  Used a 
second fair-share strategy to effectively 
demonstrate inductive proof. 
 
 
MC2:  Used notion of fair-share to 
create a data set.  Used notion of 
center-of-balance to center data round 
the mean. 
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3.3.1.4 Assignment of Problems    

Problem order was assigned to the pretest and posttest by purposeful random selection.  

The first problem participants solved was randomly selected from the two problems of the same 

statistical conceptualization (i.e. fair-share or center-of-balance) as their respective instruction.  

A problem based on the conceptualization respective to instruction was chosen first to precipitate 

use of that knowledge in the problem solving process. The next three problems alternated 

between the two statistical conceptualizations to minimize direct carry-over solution strategies.  

The last two problems on the instruments were randomly ordered mathematical concept 

problems.  The mathematical concept problems were offered last to facilitate the possibility of 

multiple conceptualizations within their solutions.  The identical pretest and posttest were 

administered to all participants in the fair-share and center-of-balance instructional groups.  The 

control group randomly received one of the two, fair-share instructional group’s or center-of-

balance instructional group’s, versions of the instrument.  Table 3-7 summarizes the order of 

problems based on instructional groups. 

 

 

Table 3-7:  Assignment of Problems 

Fair-Share Group  Center-of-Balance Group 

FS1  CB1 
CB1  FS2 
FS2  CB2 
CB2  FS1 
MC2  MC2 
MC1  MC1 
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These six problems were selected because their constructs compelled participants to 

utilize knowledge from a particular knowledge domain, mathematical or statistical, or from a 

particular conceptualization, fair-share or center-of-balance. The pilot work revealed various 

correct approaches to solving the problems along with many incorrect paths or ill-conceived 

starting points.  It also suggested that participants who understood the representative nature of 

the arithmetic mean were able to use the conceptualizations of fair-share and center-of-balance 

or mathematical concepts related to these conceptualizations to create solutions with varying 

representations.     

3.3.2 Procedure 

In this study each participant completed a pretest consisting of a think-aloud problem solving 

session of the tasks on the instrument described in section 3.3.1.  Next, approximately two weeks 

later, each participant was randomly assigned to one of three instructional treatment groups, fair-

share, center-of-balance, or control.  The fair-share group received individual instruction 

associated with fair-share knowledge and related mathematical concepts integral to the 

arithmetic mean.  Similarly, the second instructional group, center-of balance, received 

individual instruction associated with center-of-balance knowledge and related mathematical 

concepts as they pertain to the arithmetic mean.  The control group received individual 

instruction of general problem solving heuristics.  Last, within one week of exposure to the 

instruction, each participant completed a posttest think-aloud problem solving session identical 

to the pretest.  Twenty-nine of the thirty initially chosen participants completed all three phases 

of the study: pretest, instruction, and posttest.  Figure 3-1 depicts the general model of the 

research design and procedure. 
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Figure 3-1:  Research Design 

 

 

3.3.2.1 Verbal Protocol Pretest and Posttest 

Participants completed a short training session to become familiar with the necessary 

elements of the study and think-aloud protocols.  The training session included an introduction to 

the study, explanation of the consent form, and instructions regarding think-aloud problem 

solving.  The specific instructions consisted of a prepared account of how to think aloud without 

explaining thoughts (see Appendix B.1) (Ericsson & Simon, 1993).  The participants practiced 

29 Participants 

Fair-Share 
Instruction 
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Instruction 

Control 
Instruction 

10 Participants 
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and 
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Center-of-Balance 
and 

Mathematical Concepts 

10 Participants 
 

Pretest 
Six Questions 

Two each for Knowledge of 
Fair-Share 

Center-of-Balance 
and 

Mathematical Concepts

9 Participants 
 

Pretest 
Six Questions 
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Fair-Share 

Center-of-Balance 
and 

Mathematical Concepts
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with three carefully chosen warm-up exercises to acclimate themselves to the verbal protocol 

process without producing a practice effect (see Appendix B.2) (Ericsson & Simon, 1993).  

During the warm-up exercises the participants were advised if they were not verbalizing and/or if 

their verbalizations were not relating to their thought process and were asked to make 

appropriate adjustments to their verbal reporting.  Ericsson and Simon (1993) found, “it is very 

rare that subjects do not spontaneously verbalize in a normal fashion after a couple of practice 

problems” (p. 377) and “[warm-up tasks]…eliminate silence due to misunderstanding of 

instruction to think aloud” and “give subjects practice in expressing thoughts directly without 

explaining or interrelating the information” (p. 257).     

The pretest problems were individually administered to students immediately after they 

completed the training session.  Each student met in an empty conference room and was seated 

in front of and not facing the examiner (Ericsson & Simon, 1993).  The students were reread the 

instructions from the training session on proper think-aloud procedures and were asked if they 

had any further questions.  The sessions were audio recorded for analysis and transcription.  The 

problem solving activities were not timed and students were encouraged to work until they 

reached a solution or could make no further progress on a particular problem.  The only 

communication with the examiner during actual problem solving was a reminder to “keep 

talking” if the student was silent for more than five seconds (Ericsson & Simon, 1993; Montague 

& Applegate, 1993).  The procedures for the posttest were the same as those of the pretest 

sessions.   

3.3.2.2 Knowledge Instruction Modules 

Three instruction modules (IMs), (a) knowledge of fair-share with related mathematical 

concepts, (b) knowledge of center-of-balance with related mathematical concepts, and (c) a 
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general problem solving module were created for use in this study.  The purpose of the IMs was 

to increase the knowledge of a particular conceptualization of the arithmetic mean (i.e. fair-share 

or center-of-balance) and to relate that conceptualization to mathematical concepts, such as ‘the 

sum of the deviations from the mean is zero.’  The modules were accessed and completed by the 

participants using the Blackboard online learning system.  Each participant was given access to 

one module and progress toward completion of the module was tracked by the researcher using 

the capabilities of the Blackboard system.  Each IM utilized several teaching strategies and 

multiple modes of content presentation to broaden its capacity to reach diversified learning styles 

and ability levels.  Appendix C offers the general composition of the knowledge instruction 

modules.    

 The fair-share module was developed to introduce the arithmetic mean as an equal 

allocation of data and relate it to the mathematical property proposed by Strauss and Bichler 

(1988), the sum of the deviations of the data from the mean is zero.  The module utilized notes 

and examples that accompanied interactive exercises and video segments of instruction of the 

fair-share conceptualization.   

 The center-of-balance module emphasized the arithmetic mean as the balancing point of a 

data set.  The module was similar to the fair-share module in that it utilized interactive 

instruction, multiple exercises, and video clips of the arithmetic mean being taught as a center-

of-balance.  The module related the center-of-balance conceptualization to equalizing data above 

and below the mean (i.e. a model depicting the sum of the deviation of the data from the mean is 

zero).   

The control module focused on general mathematical problem solving skills.  The content 

was based on Polya’s (1957) How to Solve It four steps of problem solving: understand the 
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problem, devise a plan, carry out the plan, and look back and check answer.  The module 

covered different problem solving strategies, such as inductive reasoning, trial-and-error, 

illustration, and related problems.  The learning material for the module was taken from the 

liberal arts mathematical course text.           

The instruction modules were designed to simulate the level and amount of instruction 

typically devoted to the arithmetic mean in a liberal arts mathematics course.  The students in a 

liberal arts mathematics course have varying degrees of prior knowledge in mathematics, and, in 

particular, knowledge concerning the arithmetic mean.  Therefore, discrete data sets are often 

used as examples to conceptually develop the notion of the arithmetic mean.  Typically, one 

lecture, or one-and-a-half hours, is reserved for teaching statistical measures of center (i.e. mean, 

median, and mode).  Most often, homework problems are assigned and discussed in a subsequent 

class.  The presentation of the notes and the video segments of the IMs corresponded to a 

conventional lecture in a traditional classroom; the examples in the IMs were typical of class 

examples, and the interactive exercises characterized homework problems and feedback.  The 

level of instruction, discrete examples that are accessible by varying skill levels, and the amount 

of time, a portion of one lecture, aligned the instruction modules with typical instruction 

regarding the arithmetic mean in a liberal arts mathematics course.        

3.3.3 Data Collection Summary 

The participants for this study were university students enrolled in a liberal arts mathematics 

course.  Twenty-nine participants completed a three phase data collection process: pretest, 

instruction, and posttest.  Pre-session training instructed participants on the think-aloud problem 

solving method.  The data collected from the pretest included verbal protocols along with written 
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solutions to the six arithmetic mean problems.  The participants were randomly divided into 

three groups; each receiving an instructional module in either fair-share or center-of-balance, or 

participating in a control group.  Following the instruction, participants completed a posttest with 

identical problems to those on the pretest to preserve validity and reliability.  A control group 

was utilized to manage any perceived learning effect.  The collected verbal protocols of the 

pretest and posttest were fully transcribed and organized in preparation for data coding.      

3.4 DATA CODING 

Chi (1997) offered a practical guide to quantifying verbal data.  She described four functional 

steps that can be applied to transforming evidence of knowledge in the verbal protocols into 

appropriate numerical scores based on a specified rubric. These steps for coding the data are: 

1) Searching and segmenting the protocols 

2) Developing a coding scheme and formalism (rubric) 

3) Operationalizing evidence in coded protocols to the formalism 

4) Depicting or summarizing the data 

This section will delineate the methods used in the current study to achieve the proposed list of 

functional steps. 

The transcribed protocols were searched for occurrences of mathematical and statistical 

knowledge and segmented between shifts in knowledge domains or conceptualizations.  Each 

segment depicted the qualities of an individually represented concept or multiple concepts that 

occured simultaneously or were conceivably integrated within or across domains.  The segment 

may have been either correct or based on false beliefs and represented a single mathematical or 
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statistical concept or an integrated group of concepts, regardless of the length of verbalization 

that generated it.  Each of the six problems for each participant was individually searched and 

segmented.  

 The coding scheme used in this study was developed to correspond to the proposed 

knowledge structure offered in section 2.4.  Chi reports that knowledge data is best coded as the 

elements or nodes of a predetermined network.  The codes depicted in Table 3-8 were developed 

to represent the various domains and concepts of knowledge related to the arithmetic mean.  

 

 

Table 3-8:  Coding Scheme 

Domain  Conceptualization 
S → statistical   
  FS → fair-share 
  CB → center-of-balance 
M → mathematical   

 

 

Each segment in the verbal protocols was coded with a domain and/or conceptualization symbol 

to demonstrate a participant accessed or utilized that knowledge in the problem solving process.  

Appendix D gives three examples of searched and coded protocols from the pilot study.  

The coded protocols were utilized in both the quantitative and qualitative aspects of the 

study.  They helped categorize the knowledge that was scored for quantitative analysis and 

identified segments of knowledge that were compared in the qualitative analysis. 

Operationalizing evidence in the verbal protocols consisted of assigning an appropriate 

numeric score based on a descriptive rubric.  A scoring rubric was developed for each class of 

problem (i.e fair-share, center-of-balance, and mathematical concepts).  The rubrics scored 



77 

participant responses on a discrete scale of zero to three (0-3).  A “zero” score was given if a 

participant failed to attempt a solution or did not include any mathematically or statistically 

sound knowledge in their solution.  A “three” score represented sound use of mathematical 

and/or statistical knowledge that signified a conceptually correct solution.  The score was based 

only on the level of knowledge demonstrated of a particular type for a particular class of 

problem; that is, only fair-share knowledge was scored for fair-share problems, and only center-

of-balance knowledge was scored for center-of-balance problems.  If a participant used a viable 

method to solve a problem that did not correspond with the classification of the problem, a “no-

score” was given to that problem and the viable method used to solve the problem was noted for 

further analysis.  For each score, each rubric has a description of the knowledge as well as 

example solutions that correspond to that score.   

Table 3-9 is the mathematical concept rubric.  It was adapted from the general scoring 

rubric developed for assessing QCAI (QUASAR Cognitive Assessment Instrument) tasks (Lane, 

1993).  The general scoring rubric includes knowledge of mathematical concepts and the 

integration of those concepts into other models or elements.  For the purposes of this study the 

integration of mathematical knowledge may have been with other mathematical concepts or with 

the conceptualizations of fair-share and center-of-balance. 
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Table 3-9:  Mathematical Concepts Rubric 

Score Description Example Example 

3 

 
Shows understanding of the problem’s 
mathematical concepts and principles; and 
executes algorithms completely or at worst 
with minor errors. 
May use relevant information of a formal or 
informal nature; identifies all the important 
elements of the problem and shows 
understanding of the relationships between 
them; reflects an appropriate and systematic 
strategy for solving the problem; and gives 
evidence of a solution process, and solution 
process is  at worst nearly complete and 
systematic. 
 

Used center-of-balance example 
to illustrate one could add the 
mean multiple times and to a 
data set and not change the mean 
 
 

 

Used notion of center-of-
balance to center data around 
the mean. 
 
 

 

2 

 
Shows understanding of some of the 
problem’s mathematical concepts and 
principles; and may contain serious 
computational errors.  
Identifies some important elements of the 
problems but shows only limited 
understanding of the relationships between 
them; and gives some evidence of a solution 
process, but solution process may be 
incomplete or somewhat unsystematic. 
 

Correctly used inductive 
examples to demonstrate point.  
Could not generalize work to all 
cases of the mean and states the 
answer is the “middle” number 
of a data set. 

 

Unsuccessfully used the 
arithmetic mean formula to 
find the missing data point, 
but illustrated correct 
algebraic notation and the 
relationship of the problem to 
the arithmetic mean formula. 

 

1 

 
Shows very limited understanding of the 
problem’s mathematical concepts and 
principles; may misuse or fail to use 
mathematical terms; and may make major 
computational errors. 
May attempt to use irrelevant outside 
information; fails to identify important 
elements or places too much emphasis on 
unimportant elements; may reflect an 
inappropriate strategy for solving the 
problem; solution process may be missing, 
difficult to identify, or completely 
unsystematic. 
 

Used inductive example to 
illustrate the mean of a group of 
numbers, added zero to the data 
set and used the same calculation 
to erroneously calculate the 
same mean. 

 

Illustrated relevance of 
arithmetic mean formula to the 
problem but showed no 
understanding of how to use it 
to solve the problem. 
 

 

0 

 
Shows no understanding of the problem’s 
mathematical concepts and principles. 
May attempt to use irrelevant outside 
information; fails to indicate which elements 
of the problem are appropriate; copies part of 
the problem, but without attempting a 
solution. 
 

Uses the arithmetic mean 
formula but makes no 
connection to the problem or 
progress toward a solution 
 

 

Writes down the arithmetic 
mean formula but not in terms 
of values in the problem. 
 

 

(adapted from Lane, 1993) 
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Table 3-10 and Table 3-11 show the fair-share and center-of-balance rubrics, 

respectively.  They were developed as specializations of the general scoring rubric (Lane, 1993) 

based on analysis of pilot work and pilot study problems.  The descriptions of knowledge were 

devised based on the range of knowledge demonstrated in the pilot problems.  The score 

indicates not only the correctness, but the understanding of the respective statistical 

conceptualization.  That is, not only was there a viable solution, but that solution was found 

using sound mathematical and statistical concepts.  Therefore, a rubric score was based on two 

elements: (a) whether a particular statistical conceptualization of the arithmetic mean was used in 

the solution and (b) the soundness of the mathematics and statistics utilized in the solution. 
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Table 3-10:  Fair-Share Rubric 

Score Description Example Example 

3 

Makes use of knowledge of 
fair-share in a statistically and 
mathematically sound 
approach to a complete 
solution with or without 
arithmetic errors 

Removed blocks from stack with 
more than the mean.  Adds blocks to 
stacks less than the mean to equal the 
mean.  Places the mean number of 
blocks in child 5 stack.  Counts 
added blocks  

 

Redistributed the values above the 
mean line to the values below the 
line so that each bar was the same 
height. Checks work. 

  
 

2 

Makes some use of knowledge 
of fair-share in a statistically 
and mathematically sound 
approach toward a solution but 
deviates from conceptual 
soundness or is unable to 
complete a solution. 

Removed blocks from stack with 
more than the mean.  Adds blocks to 
stacks less than the mean to equal the 
mean.  Counts added blocks failing 
to add the mean number of blocks 
that would remain for child 5.   

 

Redistributed the values above the 
mean line to the values below the 
line so that each bar is the same 
height.  Failed to account for the 
value distributed to the number three 
weighing and answers the two 
missing values must equal the mean. 

 

1 

Indicates knowledge of the 
concept of fair-share but does 
not apply it or grossly 
misapplies it to a solution.   

Used blocks in the stack representing 
the mean along with blocks in the 
other stacks to find an estimated new 
mean. 

 

Made all the bars representing data 
points the same height but unequal to 
the mean. 

 

0 

Does not indicate any 
mathematically or statistically 
sound knowledge in the 
solution. 

Added the number of blocks of the 
first four children and the mean, 
9+3+7+5+8=32.  Divides the result 
by 5 to get answer. (Cai et al., 1999) 
 

Used formula to add each value and 
the missing two values.  Incorrectly 
divides. 

 

 –    

Makes use of a viable method 
to solve the problem that does 
not include knowledge of fair-
share.  

Used algebraic equation to solve the 
problem after counting blocks to get 
data values. 

 

Balanced each value above the mean 
with a value below the mean.  
Answers balance weighing numbers 
two and four. 
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Table 3-11:  Center-of-Balance Rubric 

Score Description Example Example 

3 

Makes use of knowledge of 
center-of-balance in a 
statistically and 
mathematically sound 
approach to a complete 
solution with or without 
arithmetic errors 

Placed a three units and b seven 
units from x  on a balance drawing.  
Indicated c must equal the combined 

distance a and b are away from x  
but on the other side of the fulcrum.   

 

Drew blocks to represent bags. 
Assigned given values of $1.30 and 
$1.35 with $1.38 (the mean) as the 
middle.  Filled in values for 
remaining blocks that balance on 
each side of $1.38.  Made a 
correction to the $1.38 block since 
that value can not be used.  Checked 
work. 

 

2 

Makes some use of knowledge 
of center-of-balance in a 
statistically and 
mathematically sound 
approach toward a solution but 
deviates from conceptual 
soundness or is unable to 
complete a solution. 

Drew a number line and correctly 
placed a, b, and x  in their relative 
places.  Illustrated c must be on the 
opposite side of a and b but only 
referred to c as having a value less 

than x . 

 

Recognized $1.38 is the mean. 
Compensated for the given values of 
$1.30 and $1.35 on the opposite side 
of the mean.  Continued process 
with other values, but was unable to 
adjust for the constraint of not using 
$1.38. 

 

1 

Indicates knowledge of the 
concept of center-of-balance 
but does not apply it or grossly 
misapplies it to a solution.   

Drew a number line with a and b 
three and seven units respectively 
from x .  Incorrectly placed c on the 
number line between a and b 
believing this “balanced” the 
problem. 

 

Stated $1.38 needs to be the middle 
number.  Randomly picks numbers 
higher and lower than $1.38 so that 
there are an equal number of 
numbers are each side of $1.38. 

 

0 

Does not indicate any 
mathematically or statistically 
sound knowledge in the 
solution. 

Added three and seven together.  
Divided sum by ten. 

 

Found median of given numbers.  
Picked $1.35 and divides by nine.  
Presented answer as $.15 per bag.  
(Mokros & Russell, 1995) 

 

 –    

Makes use of a viable method 
to solve the problem that does 
not include knowledge of 
center-of-balance 

Used algebraic equation to solve the 
problem. 

Found the total cost of nine bags of 
chips.  Subtracted $1.30 and 1.35.  
Found seven bags that add to the 
remaining total. 
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Participants’ written work and verbal protocol for each problem were examined 

holistically for use of a particular knowledge and for level of understanding of that knowledge.  

This was then compared with the descriptions of knowledge that corresponded to scoring levels 

delineated in the respective rubrics. 

A scoring bundle for each participant was created to efficiently depict and summarize the 

data.  The bundle included a scoring sheet for each of the participant’s protocols (see Appendix 

E.1).  The scoring sheet included a side-by-side comparison of the pre- and post- test coded 

verbal protocols, the rubric score for each problem, and comments by the researcher and coder 

for use in qualitative analysis.  Each participant was assigned three scores for the pretest 

problems corresponding to the three knowledge types, fair-share, center-of-balance, and 

mathematical concepts.  The scores were calculated by finding the mean score of the two 

problems of each knowledge type on the pretest.  The same process was used to find three scores 

corresponding to the same knowledge types on the posttest.  Figure 3-2 shows how the 

quantitative scores for each participant were summarized. 

 

 

Participant # 
Pretest Posttest 

Problem Knowledge Problem Score Average 
Gain 
Score Average Score Problem Problem Knowledge 

FS1   FS1 
Fair Share 

FS2  
   

 FS2 
Fair Share 

CB1   CB1 Center 
of 

Balance CB2  
   

 CB2 

Center 
of 

Balance 
MC1   MC1 Mathematical 

Concepts MC2  
   

 MC2 
Mathematical 

Concepts 

 
Figure 3-2:  Participant Scoring Summary 
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The depiction and summary of the scores in these formats logically arranged the data for 

statistical analysis.   

The procedure for coding and scoring the knowledge demonstrated in the verbal 

protocols adhered to guidelines Chi (1997) prescribed.  Previous research studies that utilized 

these procedures (Chi & VanLehn, 1991; Griel, 1996; Montague & Applegate, 1993) indicated 

the method was a reliable and valid process for coding verbal protocols.  Furthermore, inter-rater 

agreement was calculated for both the coding and scoring to verify reliability of the coded and 

scored protocols.  The next section details the results of the inter-rater reliability comparisons.       

3.4.1 Inter-rater Reliability 

The participants’ protocols (i.e. transcripts and written work) were coded anonymously with 

respect to pretest, posttest, and instructional group.  Two coders, the author and an experienced 

educator with a graduate degree in mathematics and science education specializing in 

assessment, independently coded the pilot study protocols.  Prior to coding, the coder was 

instructed in the coding process.  This training included reading chapters 1-3 of this document, 

discussing the proposed knowledge structure for the arithmetic mean with the author, reviewing 

examples of protocols from the pilot study, and understanding the coding scheme and scoring 

rubrics.  The author and coder first scored fifteen protocols from the pilot study.  Initial inter-

rater reliability was 62% for coding the predominant type of knowledge each protocol utilized 

and 73.3% (11/15) for scoring the protocols.  Subsequent discussion of the proposed knowledge 

structure for the arithmetic mean’s domains and a reevaluation of the protocols enabled the 

coders to agree on 88% of the coded segments and 93.3% (14/15) of the rubric scores.  Another 

fifteen protocols of the pilot study were then independently coded and scored.  The second 
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examination resulted in reliabilities for 70% of knowledge used in each protocol and 80.0% 

(12/15) for rubric scores.  Further discussion of the rubric scores resulted in 100% agreement 

between the two coders.  A third set of eight protocols were coded, and reliabilities of 87.5% for 

coded segments and 87.5% (7/8) for rubric scores were achieved.  See Appendix E.2 for 

completed scoring sheets from the pilot study that correspond to several of the examples 

displayed in the rubric Table 3-9, Table 3-10, and Table 3-11.  The highlighted areas of the 

protocols signify key phrases or words that were used to differentiate the conceptualizations of 

fair-share and center-of-balance.   

3.5 DATA ANALYSIS 

This section describes the ways in which the data from the coded protocols was analyzed.  First, 

the scores from pretest and posttest data were used to quantitatively examine any statistically 

significant connection between the conceptualizations of fair-share and center-of-balance, and 

any connection between mathematical concepts and the two conceptualizations of the arithmetic 

mean.  Second, a qualitative analysis of the verbal protocols was conducted to describe any 

cognitive connection between fair-share and center-of-balance, and between these 

conceptualizations and the mathematical domain.    

3.5.1 Quantitative Statistical Analysis 

Two different statistical tools were used to quantitatively analyze the data.  Contingency tables 

and the statistical model of analysis of covariance were employed to describe and analyze 

various aspects of the coded data.  Examining the results of each statistical tool, independently 



85 

and jointly, provided insight into the interactions and connections of the conceptualizations and 

domains proposed in the knowledge structure for the arithmetic mean.  The two statistical tools, 

which examined the data from two perspectives, within each knowledge instruction group and 

between the knowledge instruction groups, provided adequate insight to answer the proposed 

research questions.   

3.5.1.1 Association Study within Groups 

A contingency table is a two-dimensional table (in the case of this study) in which each 

observation is classified on the basis of two variables simultaneously (Howell, 2002).  

Contingency tables are often used to simplify data by converting quantitative variables to 

categorical ones (N. Pfenning, personal communication, June 10, 2008). 

This study examined whether instruction of one conceptualization of the arithmetic mean 

(i.e. fair-share and center-of-balance) affected knowledge of the other conceptualization.   The 

participants were categorized with a “Yes” if they increased their score from the pretest to the 

posttest for a particular problem group that measured a specific knowledge (i.e. fair-share or 

center-of-balance), or a “No” if they did not.  Within each instructional group (i.e. fair-share, 

center-of-balance) the data was arranged to denote gains in knowledge as demonstrated by 

increased problem scores.  A 2x2 contingency table for relevant comparisons in each instruction 

group was reported and discussed.   

Figure 3-3 depicts the contingency table for each instruction group.  Each table compared 

several possible combinations within each group.  The actual number of participants and 

corresponding percentage for each category were reported within each cell.   The contingency 

tables indicated if a change in knowledge for one conceptualization, either fair-share or center-
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of-balance, of the arithmetic mean was related to a change in knowledge of the other 

conceptualization.   

 

 

Fair-Share Instruction Group  Center-of-Balance Instruction Group 
       
  CB Knowledge    FS Knowledge 
 Increase NO YES   Increase NO YES 

NO 
   

NO   

FS
 K

no
w

le
dg

e 

YES 
   

C
B

 K
no

w
le

dg
e 

YES   

 
Figure 3-3:  Contingency Tables 

 

 

3.5.1.2 Comparison Study between Groups 

Analysis of covariance (ANCOVA) is a statistical model developed by Sir Ronald Fisher 

in 1932 based on the precepts of the analysis of variance (ANOVA) model he created in 1925.  

Like the ANOVA, the ANCOVA offers a less likely chance of obtaining a type I error and 

incorrectly rejecting a true null hypothesis compared to performing multiple independent t-tests 

on more than two group means.  The major difference between the two models is the addition of 

the covariate variable as a statistical control, thus combining ANOVA with regression analysis 

(Glass & Hopkins, 1996).  “The covariate is defined as a source of variation not controlled for in 

the design of the experiment, but the researcher believes to affect the dependant variable.  The 

covariate is used to statistically adjust the dependant variable” (Lomax, 2007, p. 84).  The 
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adjustment is made to the group means of the dependant variable, thus reducing statistical error.  

In the analysis of covariance, the group means of the covariant, as well as the linear relationship 

between the covariant and dependent variable are taken into account during the statistical 

analysis (Lomax, 2007).  ANCOVA is an ANOVA on the statistically adjusted means.  The price 

of using an ANCOVA compared to an ANOVA is the loss of one degree of freedom for each 

covariate; this results in more difficulty finding a significant test statistic.  The appropriate use of 

analysis provides an economical method of comparing multiple group means.  The analysis of 

covariance also allows for multiple comparison procedures for pairs of group means within the 

original larger group of means. Formulating the multiple comparisons within the presence of the 

ANCOVA helps to better control the power of the test and account for possible errors.  In this 

study, the importance of the null hypothesis (group means for a particular type of knowledge are 

the same) for the omnibus F-test that examines all possible comparisons of the ANCOVA was 

simply a channel to perform the planned multiple comparison contrasts of more substantive 

interest.   

In this study, the analysis of covariance compared posttest scores between the instruction 

groups.  Differences between groups with instruction in knowledge of different statistical 

conceptualizations of the arithmetic mean were of particular interest in gaining insight about the 

cognitive relationship between the different conceptualizations and between the 

conceptualizations and mathematical concepts.  The scores from the fair-share problems of the 

participants of the fair-share instruction group were compared to the fair-share problem scores of 

the participants in the center-of-balance instruction group and to the fair-share problem scores of 

the participants in the control group using an ANCOVA.  A second and third ANCOVA were 

computed to perform a similar analysis on the scores from the center-of-balance problems and 
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the scores from the mathematical concept problems.  The following three hypotheses were tested 

where the posttest scores are denoted as FS for fair-share problems, CB for center-of-balance 

problems, and MC for mathematical concept problems; and the instructional groups are denoted 

as FSI for fair-share instruction, CBI for center-of-balance instruction, and CON for the control 

group instruction: 

 
H0: FSFSI = FSCBI = FSCON 
Ha: not all means are equal 

H0: CBFSI = CBCBI = CBCON 
Ha: not all means are equal 

H0: MCFSI = MCCBI = MCCON 
Ha: not all means are equal 

  

For example, the first hypothesis tested the posttest scores of the fair-share problems across the 

three instructional groups, fair-share instruction, center-of-balance instruction, and control 

instruction.  The second and third hypotheses followed a similar format but with center-of-

balance and mathematical concept problems, respectively.     

The pretest scores for each type of problem were used as the covariant for each analysis 

of covariance; that is, fair-share pretest problem scores were used as the covariant for the 

ANCOVA testing the hypothesis involving fair-share posttest scores, center-of-balance pretest 

problem scores were used as the covariant for the ANCOVA testing the hypothesis involving 

center-of-balance posttest scores, and mathematical concept pretest problem scores were used as 

the covariant for the ANCOVA testing the hypothesis involving mathematical concept posttest 

scores.   

Following the three analyses of covariance, multiple comparisons for specific pairs of 

problem means were analyzed.  In particular, the following hypotheses were tested: 
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ANCOVA Paired Means Hypotheses 

Fair-Share 

  
 H0:  FSCBI = FSCON 
 Ha:  FSCBI > FSCON 
 

Center-of-Balance 

 
H0:  CBFSI = CBCON 
Ha:  CBFSI > CBCON 

 

Mathematical Concepts 

  
 H0:  MCFSI = MCCBI 
 Ha:  MCFSI ≠ MCCBI 

 

 H0:  MCFSI = MCCON 
 Ha:  MCFSI > MCCON 

 

 H0:  MCCBI = MCCON 
 Ha:  MCCBI > MCCON 
 

 

The top two hypotheses were used to answer research question #1 pertaining to the effect each 

statistical knowledge conceptualization (i.e. fair-share and center-of-balance) has on the other.  

These hypotheses were designed to test if knowledge of one statistical conceptualization impacts 

knowledge of the other conceptualization.  The bottom three hypotheses were used to answer 

research question #2 pertaining to the effect knowledge of each statistical conceptualization has 

on knowledge of the mathematical concepts related to the arithmetic mean.  These hypotheses 

were designed to compare the effect instruction of fair-share or center-of-balance has on 

knowledge of the mathematical concepts by comparing posttest scores of mathematical concept 

problems for each pair of instructional groups.  Given that only one a-priori comparison was 

made from the fair-share and center-of-balance ANCOVA’s, the most powerful multiple 

comparison procedure was a t-test with pooled variances.  The final ANCOVA, mathematical 

concepts, produced three a-priori comparisons.  The conservative Bonferroni t (Dunn’s test) was 

chosen to control the overall familywise error rate for these paired means.  
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3.5.2 Qualitative Analysis 

The verbal protocols and corresponding written problem solutions were qualitatively analyzed in 

order to interpret, clarify, explain, or otherwise more fully elaborate the results of the statistical 

analyses.  Qualitative analysis of the verbalizations illustrated the nature in which fair-share and 

center-of-balance were cognitively connected to each other or to the mathematical knowledge 

domain.  

 Two areas of interest were identified for qualitative analysis based on results of the pilot 

study and of previous research (MacCullough, 2007).   

1) Qualitatively examining solutions in which participants utilized or connected both 

statistical conceptualizations of the arithmetic mean, fair-share and center-of-balance, in 

the problem solving process. 
 

2) Qualitatively investigating connections or relationships of the statistical 

conceptualizations with mathematical concepts.   
 
Of particular interest was any verbal protocol pertaining to the above described areas that could 

be reasonably associated with a change in knowledge signified by the statistical analysis.  The 

following two paragraphs provide more detail of the analysis for the two areas of interest 

identified above. 

 Instances in verbal protocols that displayed use of both statistical conceptualizations of 

the arithmetic mean were identified and used to provide descriptions of changes, if any, in 

participants’ knowledge.  The protocols and written work were examined for evidence of the 

cognitive relationship participants exhibited, either implicitly or explicitly, between fair-share 

and center-of-balance.  Figure 3-4 illustrates two examples from the pilot study in which a 

participant utilized knowledge of both conceptualizations to work toward a solution.   
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Figure 3-4:  Two Conceptualizations in Solution 

 

Protocol #1 Code Protocol #2 Code 

JO: Well my first guess is zero but does that count as a 
value? Probably not. M 

JO: Let’s see if the sum of these four numbers, umm, 
four of these numbers.  Ok. Let’s draw five blanks.  
The mean equals 20.  The sum of four of those 
numbers equals seventy-five.  So that means if the 
mean is twenty some number have to be less than 
twenty so some will have to be greater than 
twenty. 

S-CB 

JO: If the sum of four of those numbers is seventy-five 
then would the fifth number be less than or greater 
than twenty.  Let’s see.  Let’s take some numbers.  
Twenty, twenty and twenty is sixty, plus to get to 
seventy-five you would need a fifteen. 

M-FS 

JO: So that means, let’s see, so if you have three 
twenties and then a fifteen is five less then twenty, 
then a fifth number needs to be five more than 
twenty, needs to be twenty-five.  Because, it would 
all even out, because twenty-five is five more than 
twenty and fifteen is five less than twenty and you 
want them to all even out to twenty. 

M-CB 

JO: Let’s see if that works… (adds numbers and 
divides) The value of the fifth number would be 
twenty-five. 

M 

JO: Oh I know what value can be added on, the value of 
the mean.  So if your mean is six (writes down 6 
and circles it) and you add that mean on again you 
are still going to get a mean of six.  Ok, let me do 
one to make sure. 

JO: Put a five on either side (of the circled six), a four 
on either side, a three on each side, and a two and 
stop there.  Let’s make sure the mean is six (adds 
the numbers) Twenty-nine, that does not divide 
evenly.  Let’s add a one on each side, that’s better, 
thirty-two divided by eleven. Uh, that does not 
work either. 

JO: Let’s find a number that works equally.  Let’s get 
rid of some of these numbers, too many numbers.  
(counts numbers) Nine, I don’t like nine.   

JO: Let’s do it differently.  Put a six in the middle, a two h
MM: Keep talking  
JO: Ok, That is not going to work. Fourteen divided by 

five, let’s do fifteen divided by six. No. Uh, I do not 
want to do it that way. 

 

S-CB 
M-CB 
M 

JO: Ok, let’s start an easier way. 
JO: Six times three is eighteen so let’s do three numbers 

equaling six. (writes down 2, 3, 2)  Oh, wait, they 
have to equal eighteen.  Three number equaling 
eighteen, let’s do six, a six, no let’s do a five 
(counts to figure out the seven), and a seven.  That 
equals eighteen divided by three, the average equals 
six.  So now I have my three numbers. 

M-FS 
M 

JO: Now the mean can be added, now add another six 
in…twenty-four divided by four is six.  So yes, you 
can add the mean back in so that the data set, I 
mean the mean does not change. 

M 

JO: Why does that work.  Let me draw a picture.  Draw 
five cubes, seven cubes, and six cubes.  In order to 
make those even we would have to take one from 
the seven to the six, no, over to the five.  All piles 
will be six.  So by adding another pile of six we 
would not have to move any cubes to make it equal.  
They will all be six. 

S-FS 
M 
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In the first example the participant mistakenly uses the algebraic identity property.  She 

next attempts to use the center-of-balance conceptualization to solve the problem.  She correctly 

identifies the arithmetic mean as a representative number of the data set signified by the point 

that balances the data set, but misapply the mathematics of the concept while building the data 

set.  Finally, the participant incorporates the conceptualization of fair-share to mathematically 

build the data set and then to understand the arithmetic mean represents a fair-share allocation of 

the data.  It was the knowledge of the center-of-balance conceptualization that allowed the 

participant to access the problem; and knowledge of the fair-share conceptualization that allowed 

the participant to correct mathematical misconceptions.  In this case, the participant used both 

fair-share and center-of-balance conceptualizations, but not necessarily harmoniously in the 

solution process. 

In the second example the participant uses an amalgamation of both statistical 

conceptualizations in the solution process.  She first understands the mean to represent the 

balancing point of the data; second, she builds a feasible data set using the conceptualization of 

fair-share; finally, she finds the missing data point using the conceptualization of center-of-

balance.   

In both examples, knowledge of the two statistical conceptualizations interacted to 

ultimately reach a solution.  In the first example the interaction was as two discrete solution 

attempts; in the second example the interaction was part of a continuous solution process.       

A second area of qualitative investigation focused on the relationships each 

conceptualization had to mathematical concepts regarding the arithmetic mean.  In particular, 

any mathematical concept associated to the arithmetic mean that is related to both the fair-share 

and center-of-balance conceptualizations.  These relationships were examined to explain or 
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describe any changes in knowledge signified by the statistical analysis.  The relationships 

between the statistical conceptualizations and mathematical concepts were also analyzed as a 

cognitive link or path between the conceptualizations of fair-share and center-of-balance as 

proposed by MacCullough (2007).  Examples from the pilot study are presented in Figure 3-5 

 

 

 
Figure 3-5:  Relating Statistical Conceptualizations and Mathematical Concepts in Solution 

 

 

In protocol #3 the participant uses a fair-share conceptualization as indicated by the 

phrase “all the graphs should be this line.”  He then proceed to use the concept ‘the sum of the 

Protocol #3 Code Protocol #4 Code 
SC: Uh, lets see – I got a $1.38 here, um, $1.30 here, 

and um, wait, well I guess it fits in here. (see 
drawing) 

(pause) 
MM: Keep talking 

M 

SC: Well now I need two higher – this one is eight 
(referring to $1.30) so that’s uh, $1.46, and this one 
is five (referring to $1.35), no three, that’s $1.41. 

SC:  How many do I need?  Nine 
SC: So lets see, um $1.37 and $1.39 (draws in two 

values) 
SC: $1.36 and $1.40 (draws in two values) 
SC: Uh, I already used $1.35 so lets do $1.34 and this 

one would be uh, that’s four, so $1.42. (draws in 
two values) 

SC: How many is that (counts values) Eleven. Oh.  Uh. 
Take these away (scratches out $1.35 and $1.42) 

 

S-CB 
M-CB 
M 

SC: Whoa! (pause) I guess all the graphs should be this 
line (referring to the bars and the dark line 
representing the mean) 

(pause) 
MM: Keep Talking 
SC: Let me work with what I got here.   
(SC starts to draw arrows from above the dark line to 

existing bars below the dark line) 
SC: These two (#2) will even out this one (#9).   This 

one (#7) will even out this one (#4) and one of 
these (#8) can go here (#10). 

SC: Now what? 
MM: Talk about your thoughts 
SC: Uh, Uh, I am thinking 
MM: Verbalize those thoughts 
SC: I got an extra one (referring to #8) I can put here at 

number three.   
(pause) 
SC: Oh, each of these (#3 and #9) should be four high 

(referring to the gridlines) 
(pause) 
MM: Keep Talking 
SC: Four each (referring to the heights of bar #3 and 

bar #6) 

S-FS 
M 

SC: Do you want me to rewrite them?  
MM: Work until you are finished. 
SC: I’ll make this a little neater (rewrites numbers in a 

list) 
SC: Done. 
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deviations from the mean is zero’ to carry out a solution to the problem.  In the fourth protocol, 

the same participant uses a center-of-balance conceptualization and the concept ‘the sum of the 

deviations from the mean is zero’ to solve the problem.  The participant cognitively connected 

fair-share and center-of-balance to the same concept, ‘the sum of the deviations from the mean is 

zero’    

3.5.3 Data Analysis Summary 

The analyses in this study mixed quantitative and qualitative methodologies to identify, 

substantiate, and more fully describe students’ knowledge of fair-share and center-of-balance, 

and utilized qualitative methods to link these to the mathematical domain of the arithmetic mean.  

The complete analysis advanced understanding of the cognitive relationships among the 

conceptualizations and domains of the proposed knowledge structure for the arithmetic mean.  

3.6 SUMMARY OF METHODS 

The intention of this study was to identify and describe the cognitive relationships between fair-

share and center-of-balance as well as the cognitive relationships between these 

conceptualizations and the mathematical domain of the arithmetic mean.  Participants were 

randomly assigned to one of three groups: (a) instruction of fair-share knowledge, (b) instruction 

of center-of-balance knowledge, and (c) a control group receiving instruction of general problem 

solving methods.  The methodology of protocol analysis was used to collect, code, and analyze 

the data.  The data was collected via think-aloud verbal protocols and written solutions to 

arithmetic mean problems.  There was a pre- and post- problem solving session with an 
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instructional intervention between the two instruments.  The data was coded with a rubric score 

indicating knowledge of a particular conceptualization (i.e. fair-share and center-of-balance) or 

knowledge of mathematical concepts. The data was also qualitatively coded to indicate the 

relationship fair-share and center-of-balance have with the mathematical and statistical domains.  

The coded data was analyzed using two different methodologies.  The first method used 

statistical analysis to locate any significant relationship between the statistical conceptualizations 

of fair-share and center-of-balance along with any connections between these and mathematical 

concepts.  The second method included qualitatively analyzing the data to explore solutions in 

which participants utilized or connected the conceptualizations of the arithmetic mean, fair-share 

and center-of-balance, or connected either conceptualization with the mathematical and/or 

statistical domains.  The next chapter, chapter four, presents the results of this study. 
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4.0  RESULTS 

The results of the study are reported in this chapter and are organized into three sections.  The 

first, section 4.1, summarizes the general characteristics of the pretest data. The second and third 

sections, 4.2 and 4.3, each correspond to one of the two research questions investigated in this 

study.  Section 4.2 describes the cognitive relationship between the fair-share and center-of-

balance conceptualizations of the arithmetic mean.  Section 4.3 focuses on the relationship 

between each conceptualization and the mathematical concepts related to the arithmetic mean.  

In each section, the results of a statistical analysis comparing the relevant posttest scores to a 

control group are reported, and verbal protocols and written solutions to these problems are 

examined to further describe the nature of the relationships.      

4.1 GENERAL CHARACTERISTICS OF PRETEST DATA  

The purpose of this study was to identify and describe any relationship between: (a) the 

conceptualizations of fair-share and center-of-balance and (b) these conceptualizations and 

mathematical concepts.  Participants completed pre- and post- problem solving sessions and 

were exposed to one of three instructional interventions, instruction of fair-share knowledge, 

instruction of center-of-balance knowledge, or instruction of general problem solving methods 

that was used as a control.  The data consisted of think-aloud verbal protocols and written 
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solutions to arithmetic mean problems.  The data was coded with a rubric score that indicated 

knowledge of a particular conceptualization (i.e. fair-share and center-of-balance) or knowledge 

of mathematical concepts based on a score of zero to three. Mathematically sound solutions that 

did not use either conceptualization were coded as a “no-score.”  Qualitative coding was used to 

indicate if knowledge of any conceptualization, fair-share and/or center-of-balance, was accessed 

during the solution process.   

Table 4-1 depicts the distribution of scores for each of the two fair-share (FS), center-of-

balance (CB), and mathematical concept (MC) pretest problems6: 

FS1: Four children each had a stack of blocks as shown below.  When a fifth child sat down 
with her own set of blocks the mean number of blocks the children had became seven.  
How many blocks did the fifth child have? 

?
Child #1 Child #2 Child #3 Child #4 Child #5 Mean  

 
FS2: In a chemistry lab a student weighed a specimen ten times.  The results of those 

weighings are presented in the chart below.  The student lost the 3rd and 6th weighings 
of the specimen after she calculated the mean of the ten weighings to be 3.2 as 
indicated by the dark line in the graph below.  What could have been the values for the 
3rd and 6th weighings if the mean is 3.2? 

Weight of Specimen

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Weighting Number

W
ei

gh
t

 
 
                                                 

6  Note:  The same problems were used on the pretest and posttest. 
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CB1: Given three numbers, (a,b,c), and the mean of these numbers is x .  We know that a is 3 
greater than x  and b is 7 greater than x .  How does the value of c relate to x ? 

 
CB2: As a worker in a grocery store you are asked to place price stickers on nine bags of 

potato chips so that the mean price of the chips is $1.38.  You can not price any bag at 
exactly $1.38.  You also must price one bag at $1.30 and a second bag at $1.35.  Create 
the remaining seven price stickers. 

 
MC1: What value can be added to a data set so that the arithmetic mean of the data set does 

not change? Why? 
 
MC2: The mean of five numbers is 20.  The sum of four of these numbers is 75.  What is the 

value of the fifth number? 
 
The table indicates the number of participants receiving a given rubric score and the overall 

mean for each problem.   

 

 

Table 4-1:  Distribution of Scores for Pretest Data 

 Score  

Problem 3 2 1 0 - Mean 

FS1 19 5 2 1 2 2.6 

FS2 11 6 8 2 2 2.0 

CB1 3 2 10 9 5 1.0 

CB2 6 2 4 3 14 1.7 

MC1 9 5 4 10 1 1.5 

MC2 18 3 2 6 0 2.1 

Note. A no-score, indicated by “-”, was not included in the calculation of the means.  n = 29 for 
each problem.   

 

 

 Three anomalies were identified in the pretest scores resulting in further qualitative 

investigation of the verbal protocols and written solutions.  First, the overall means of the data 
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seemed to indicate participants had more difficulty solving the center-of-balance problems than 

they did solving the fair-share problems.  Although, it should be noted that participants receiving 

a no-score correctly solved the problem using an alternative method (i.e. method that did not use 

fair-share knowledge for fair-share problems or center-of-balance knowledge for center-of-

balance problems) but did not count in the calculation of the overall mean.  The second 

discrepancy was an inordinate number of ‘zeros’ for problems CB1 and MC1 when compared to 

‘zero’ scores on the other problems.  In both cases, the ‘zero’ scores accounted for approximately 

one-third of the total number of scores on each problem.  Third, there were a large number of 

participants that used an alternative method to solve problem CB2.  Nearly half of the responses 

did not utilize center-of-balance knowledge in the solution.  Examining the coded protocols 

revealed that use/misuse of the arithmetic mean formula was prevalent in solutions linked to all 

three anomalies.  Table 4-2 indicates the overall correct or incorrect use of the arithmetic mean 

formula in all solution attempts for each of the problems on the pretest.   

 

 

Table 4-2:  Use of the Arithmetic Mean Formula in Pretest Problems 

 
Applied the Arithmetic Mean Formula 

Problem Appropriately Inappropriately Total 
FS1 21 3 24 

FS2 11 9 20 

CB1 5 5 10 

CB2 14 1 15 

MC1 2 8 10 

MC2 15 6 21 

Note: n = 29 for each problem 
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The remainder of this section further explains how the characteristics of a particular 

conceptualization (i.e. fair-share or center-of-balance) and/or construct of particular problems 

affected the role of the arithmetic mean formula.  

The discrepancies in the pretest data seem to be related to the propensity of participants 

to utilize the arithmetic mean formula.  Approximately 75% (41 out of 54) of the solutions that 

used a fair-share conceptualization to solve a fair-share problem suggested some application of 

the arithmetic mean formula as an integral part of the solution.  Conversely, solutions that 

utilized the center-of-balance conceptualization for center-of-balance problems used the 

arithmetic mean formula as a final check of the solution and not as an integral part of the solution 

process. Most all of the alternative methods of solution (i.e. solutions that did not use fair-share 

knowledge for fair-share problems or center-of-balance knowledge for center-of-balance 

problems) employed the arithmetic mean formula.  The ability to more readily apply the 

arithmetic mean formula to fair-share problems as opposed to center-of-balance problems may 

account for the higher scores on fair-share problems.  The following example is a typical 

protocol that used the arithmetic mean formula in a fair-share problem.  In this case, the 

participant used the arithmetic mean formula as a means for calculating the total sum of all data 

points.  The underlined text represents use of the arithmetic mean formula and the highlighted 

text indicates use of fair-share knowledge.   
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Pretest  FS2  
P6: Ok, so first let me get the numbers off of this graph (writes down values of each weighing) 
 Ok, so the total for the known weighing is (uses calculator) 25.7. 
 
P6: Ok, now I need the total sum of all the weights of the specimens.  I know the mean is found by 

dividing the total weight by the number of specimens so I can find the total weight by multiplying 
the mean by the number of specimens.   

 
P6: We could possibly infer that all the specimens are equal and weigh 3.2 pounds. 
 
P6: Ok, now to find the weight of the last two specimens subtract the total weight of the known 

specimens from the 32.  That leaves 6.3.   One could be higher than that other but if all the weight 
belonged to one specimen it can weigh no more than 6.3. 

 
 

For problem MC1 there seemed to be a link between using the arithmetic mean formula 

and the excessive number of ‘zero’ scores.  The arithmetic mean formula was not a conducive 

solution strategy based on the construction of the problem.  Similarly, participants found it 

difficult to apply the formula to the relational data in problem CB1 and were unable to solve the 

problem using an alternative method to center-of-balance.  In contrast, participants’ tendency to 

correctly use the arithmetic mean formula for problem CB2 indicated it was more applicable to 

the numeric data.  Therefore, a preponderance of ‘no-scores’ were given for a viable alternative 

method of solution for problem CB2 not involving the center-of-balance conceptualization.  The 

example protocols below illustrate the typical use (or misuse) of the arithmetic mean formula for 

problems MC1, CB1, and CB2.  The underlined text represents use of the arithmetic mean 

formula.        
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Pretest  MC1 
P13: Yea, the number that, take a data set like 3, 4, 5, 6.  Add them together equals 18 divide by 4 

gives 4.5. 
 
P13: Basically if you add 1 to that, 19 divided by 5 equals, no.  Add 2 maybe, umm, 20 divided by 5 

equal 4.  Try 3…  
 
R: Keep talking 
 
P13: Yea, so take a number equal to or less than the first number and the mean is not going to change 

much.  So 1, 2, or 3 would work.  By adding 4 or lower wouldn’t change the mean that much.  
Basically the number would stay the same 

 
 

 

Pretest  CB1 
P29: Three numbers, A, B, and C equal the mean x with a little line over it.  So A plus B plus C 

divided by three equals x.  A is three greater than x and B is seven greater than x, umm. 
 
R: Keep talking 
 
P29: Well three plus seven is ten so A plus B plus C divided by three might equal 10.  So if x with the 

little line is ten then A can be 13 and B can be 17.  Now, how would I solve that?  
 
R: Keep talking. 
 
P29: I am not good at this kind of math.  I like the more abstract stuff. 
 
P29: Do over, maybe 20 will work.  A plus B plus C divided by three equals 20.  A would be 23 and B 

would be 27 plus C divided by 3 equals 20.  I think, no this isn’t right I just can’t do the math.   

 
 

 



103 

Pretest  CB2  
P12: First I’ll set up the equation.  The variables a, b, c, d, and e can represent the five numbers.  

Divide those by five to get the mean, uh, which is 20. 
 
P12: Multiply each side by five which gives us the sum of the variables is now 100.  So I’ll write that.   
 
P12: Now guess-and-check.  I don’t know why but I will try counting by fives.  I think the 100 and 20 

are screaming five at me.   
 
R:  Keep talking. 
 
P12: I am just adding every five numbers in my head, I think the second set I thought of will work.   

10 plus 15 plus 20 plus 25 plus 30 equals 100.  This will only work if four of these equal seventy-
five.  Give me a second to check this out. 

 
P12: Ok, 10 plus 15 plus 25 plus 30 equals seventy-five.  So the value that I did not use, 20, is the fifth 

number.  I don’t know if that is what you wanted.  I kind of got lucky guessing the numbers. 

 
 

To summarize, the degree to which each pretest problem’s construct afforded participants 

use of the arithmetic mean formula was linked to the problem’s scoring.  Problems FS1, FS2, 

CB2, and MC2 were more easily adapted into formula based solutions.  Most often the solution 

was based on the fair-share notion that the sum of the data points is equivalent to the sum of the 

data points if they were all equal to the mean.  In contrast, problems CB1 and MC1 were not 

easily adapted into a formulaic response.  The few participants who scored highly on these 

problems were able to utilize a center-of-balance approach in their solution method.          
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4.2 FAIR-SHARE AND CENTER-OF-BALANCE RELATIONSHIP  

In this section the results pertaining to research question #1 are examined: 

1) How is knowledge of fair-share and center-of-balance cognitively related to one 

another?  In particular, 
 

a) What effect does instruction of the fair-share conceptualization of the arithmetic 

mean have on knowledge of the center-of-balance conceptualization? 
 

b) What effect does instruction of the center-of-balance conceptualization of the 

arithmetic mean have on knowledge of the fair-share conceptualization? 
 

To answer these questions, written solutions and verbal protocols of pre- and post- test arithmetic 

mean problems were analyzed both quantitatively and qualitatively to identify how increased 

knowledge of one conceptualization affected knowledge of the other.  The results of these 

analyses are organized into four parts.  First, the results of statistical analyses are reported.  Next, 

two sections explain and otherwise more fully elaborate the statistical analyses of both parts a) 

and b) for research question #1.  Finally, the results of the previous sections are integrated to 

illustrate the nature of any relationship between the fair-share and center-of-balance 

conceptualizations      

4.2.1 Hypothesis Testing for Research Question #1 

The pretest and posttest problem scores served as an indicator of participants’ knowledge as it 

related to either fair-share or center-of-balance with respect to the arithmetic mean.  Each 

problem received a score of zero to three or no-score based on the use and level of understanding 

of a particular knowledge (i.e. fair-share or center-of-balance) as defined by the rubrics described 

is section 3.4.  An ANCOVA model was used to compare the average posttest scores using the 
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pretest scores as a covariate.  Table 4-3 shows the adjusted means for the posttest problems of 

each group for both the fair-share and center-of-balance problems. 

 

 

Table 4-3:  Adjusted Means for Fair-Share and Center-of-Balance Problems 

 Fair-Share Problems 
 

Center-of-Balance Problems 

Instruction Group Meana Standard Error  Meanb Standard Error 

Fair-Share 2.70 .127  2.06 .239 

Center-of-Balance 2.73 .126  1.86 .237 

Control 2.41 .133  1.32 .267 
aPretest covariant mean = 2.28.  bPretest covariant mean = 1.22. 

 

 

Results of the preplanned comparison t-test between the fair-share group’s center-of-

balance mean score (2.06) and the control group’s center-of-balance mean score (1.32) indicated 

the means were significantly different, t(21) = 2.085; p = .026 (one-tailed).  These results 

indicate center-of-balance problem scores increase with instruction that is focused on the fair-

share conceptualization of the arithmetic mean.  Similarly, results of the preplanned comparison 

t-test between the center-of-balance group’s fair-share mean score (2.73) and the control group’s 

fair-share mean score (2.41) indicated the means were significantly different, t(25) = 1.747; p = 

0.043 (one-tailed).  These results indicate fair-share problem scores increase with instruction that 

is focused on the center-of-balance conceptualization of the arithmetic mean. 
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4.2.2 Tabular Depiction of Increased Knowledge  

Table 4-4 depicts the association between increased scores in fair-share knowledge and center-

of-balance knowledge for the group of participants that received fair-share instruction.   

 

 

Table 4-4:  Association of Scores for Fair-Share Instruction Group 

   
CB Knowledge 

 

 Increase NO YES TOTAL 

NO 2 
(20%) 

2 
(20%) 

4 
(40%) 

FS
 K

no
w

le
dg

e 

YES 2 
(20%) 

4 
(40%) 

6 
(60%) 

 TOTAL 4 
(40%) 

6 
(60%) 

10 
(100%) 

Note:  FS denotes fair-share.  CB denotes center-of-balance.  n = 10 

 

 

Sixty percent (6 out of 10) of the participants receiving fair-share instruction improved their 

center-of-balance score average. Four participants improved both their CB knowledge and FS 

knowledge after exposure to fair-share instruction.  Two participants improved their CB 

knowledge, but not their FS knowledge; they had scored highly on the pretest for fair-share 

problems allowing little or no room for improvement on the posttest. 

 Table 4-5 depicts the association between increased scores in center-of-balance 

knowledge and fair-share knowledge for the group of participants that received center-of-balance 

instruction.   
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Table 4-5:  Association of Scores for Center-of-Balance Instruction Group 

   
FS Knowledge 

 

 Increase NO YES TOTAL 

NO 3 
(10%) 

2 
(40%) 

5 
(50%) 

C
B

 K
no

w
le

dg
e 

YES 1 
(30%) 

4 
(20%) 

5 
(50%) 

 TOTAL 4 
(40%) 

6 
(60%) 

10 
(100%) 

Note:  FS denotes fair-share.  CB denotes center-of-balance.  n = 10 

 

 

Sixty percent (6 out of 10) of the participants receiving center-of-balance instruction improved 

their fair-share score average.  Four participants improved both their FS knowledge and CB 

knowledge after exposure to center-of-balance instruction.  The two participants who improved 

their FS knowledge but not their CB knowledge after exposure to center-of-balance instruction 

used a feasible method of solution on both the pretest and posttest for the center-of-balance 

problems that did not involve CB knowledge. 

The next two sections describe the nature of the increases in knowledge found by the 

above statistical analyses.  Individual problem protocols were coded and analyzed for evidence 

of fair-share and/or center-of-balance knowledge.   

4.2.3 Fair-Share Instruction Impacting Center-of-Balance Knowledge  

This section explores the solution protocols of the two center-of-balance problems for any 

connection to the fair-share conceptualization.  Of the six participants who improved their 

center-of-balance knowledge, three improved only on problem CB1, two improved only on 
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problem CB2, and one participant improved on both problems.  These seven protocols were 

qualitatively examined for evidence of fair-share knowledge influencing center-of-balance 

problem solutions.  The impact of the fair-share instruction on center-of-balance knowledge was 

discernable in five of the seven protocols.  The remaining two protocols did not reveal what 

knowledge of fair-share led to the change in center-of-balance knowledge. 

The two solution protocols that did not produce evidence of knowledge transfer 

originated only in problem CB1.  For example, P4fs (participant #4 from the fair-share instruction 

group), who was unable to solve the problem on the pretest, suggested some knowledge of 

center-of-balance solving the same problem on the posttest.   The response centered around the 

fact that c at least had to be less than x , but the nature of this change in knowledge between the 

pretest and posttest was not apparent from the verbal protocol (no written solution was 

provided).  The following comparison from the pretest and posttest protocols indicates the 

increase in knowledge (bold segments indicate center-of-balance knowledge and ‘R’ denotes the 

researcher). 

Pretest  CB1 Posttest  CB1 
P4: I do not know even where to start this problem 

(pause) 
 
R: Keep talking 
 
P4: Knowing that they are bigger or smaller does not 

help if I don’t know what the mean is.  I can’t 
answer the question without knowing x. 

P4: Ok, both these numbers are less than the mean, 
wait no b is bigger.  No, ok they are both bigger.  
So if these are bigger then this other one has 
to be smaller.  

 (pause) 
 
R: Keep talking 
 
P4: Well, if I don’t know what a and b are I can’t 

find c.  I don’t know, but c has to be smaller 
than the mean.  It’s, it’s all I can really tell 
without knowing the mean. 

 

The five protocols that showed evidence of adapting fair-share knowledge into center-of-

balance problems stemmed from both problems CB1 and CB2.  In each of the five protocols 

there was an indication that knowledge learned in the fair-share instruction was transferred to the 
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center-of-balance problems.  More specifically, the property ‘the sum of the deviations from the 

arithmetic mean is zero’ appeared in the posttest protocols.  The following protocols and written 

work point to the transfer of this knowledge learned in the fair-share context into each of the two 

center-of-balance problems. 

In the first example, P24fs referenced the idea of equal deviations above and below the 

mean in the posttest protocol, a concept that provided a viable approach to solve the problem not 

evident in the pretest protocol.  While her instruction presented the ‘sum of the deviations from 

the mean is zero’ property, it was in the context of fair-share allocations (see Appendix C.1).  

Although with some hesitation, she correctly transferred the property from fair-share and applied 

it to the center-of-balance conceptualization. 
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Pretest  CB1 Posttest  CB1 
P24: I am going to write the variable into the mean 

formula.  What else do I know?  Umm, I know a 
is 3 greater than x and x plus 7 is equal to b.  

 
P24: Ok, what is the value of c.  I am stuck so let me 

plug in some values for the variables.  1 for a, 2 
for b, and 3 for c. So if I add 7 to 1 I can find out 
what b is.  I guess first I need to make 3 greater 
then x so that’s 4.  Wait, oh I’m so confused. 
(pause) 

 
R: Keep talking 
 
P24: I do not know what I am doing.  I’m just going to 

guess that c has to be less than x if x is already 
three bigger. 

P24: Ok, so we can say that a plus b plus c divided by 
3 will be x. Ok, and we know that a is greater 
than x and b is 7 greater than x so that would 
mean x plus 7 equal b and how does the value of 
c relate to x. Yea, uh I have no idea.  I don’t 
know.  

 
P24: I guess if the mean is x, well I’ll draw a line, like 

a number line graph so maybe I can use that to 
figure this out somehow.  So a, one of the 
numbers is plus 3 and the other is plus 7; so 
together they would be plus 10.  So on the left 
side you have to make it equal to keep the 
mean at x so it would be minus 10.  So that 
keeps it even with x in the middle.  So I guess I 
can say c is equal to 10 minus, no 10 less than x.  
That is kind of what it was like on the online 
module, if a and b are 10 greater than x then c 
would have to be 10 less than x.  That’s all I 
can do with this. 

 
 

 

The three participants who improved on problem CB2 also used the property, ‘the sum of 

the deviations from the mean is zero’, to transfer their fair-share instruction to the center-of-

balance problem.  The next protocol characterized two of the three participant’s responses.  In 

this case the participant, P14fs, was unable to solve the problem on the pretest using a guess-and-

check method that adjusted the data points based on the calculated mean; then correctly and 

efficiently solved the problem on the posttest using the center-of-balance conceptualization.  He 



111 

used the two given amounts, $1.30 and $1.35, as the only data points below the mean and adjusts 

the seven missing values above the mean to equalize the deviations. 

Pretest  CB2 Posttest  CB2 
P14: I know that the average is found by adding up all 

the values and dividing by the number that you 
have.  In this case I am going to need nine 
numbers, uh, I already have two. (pause) 

 
R: Keep talking 
 
P14: I’ll just pick numbers in a reasonable range of 

$1.38 without using $1.38.  
 (writes down the two given values and seven 

values; uses calculator to find the mean) 
 
P14: $1.51, that is way too high so I’ll tone down the 

higher numbers I used. 
 (writes down the two given values and seven 

values; uses calculator to find the mean) 
 
P14: Almost, too low.  I’ll try again with slightly 

higher numbers. 
 (writes down the two given values and seven 

values; uses calculator to find the mean) 
 
P14: So they still need to be a little higher, I would just 

keep going until I get $1.38.  You get the idea. 

P14: So the mean is $1.38 and I can’t use $1.38 and I 
got $1.30 and a $1.35 and I need seven more 
so...(draws seven blank lines)  

 
P14: So, if the average is $1.38 then I need the same 

above the mean that is below $1.38.  I already 
have two numbers below the mean so I need 
numbers bigger than the mean. 

 (writes down $1.39 in each of the blanks)   
 
R: Keep talking 
 
P14: See if $1.39 works.  So we have 8 and 3 below 

the mean which is 11, right, yea, and (counts 
one for each $1.39) seven above the mean.  
Oh, that is not enough, we need a lot larger 
numbers.  So let’s change these last four to 
$1.40; that will give us four more. (counts the 
deviations above the mean)  That is eleven on 
both sides of the mean so that should be right. 

 
P14: Let me check by dividing 
 (uses calculator to check solution) 

 

 

 

The next protocol, from participant P1fs, also shows how the property, ‘the sum of the 

deviations from the mean is zero,’ was transferred from fair-share instruction to a center-of-

balance problem.  The property, learned in the context of the fair-share conceptualization, was 

utilized to correct a misconception the participant had concerning the arithmetic mean as a 
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center-of-balance.  In the pretest protocol, P1fs mistakenly “balanced” the mean in the center of 

the data as a median, based on number of data points above and below the mean; rather than as 

the arithmetic mean, based on the deviations above and below the mean.  In the posttest protocol, 

he corrected his initial error remembering his mistake on the pretest, “The number line thingy 

was right but not counting spaces messed me up.” 

Pretest  CB2 Posttest  CB2 
P1: So a $1.38 is the average so it, like on a number 

line, could be in the middle.  So I will draw that 
here.  These two numbers, the $1.30 and $1.35 go 
on this side of the average. 

 
P1: Now what do I need to do? (pause) 
 
R: Keep talking 
 
P1: Well, I’m just going to pick some numbers 

between $1.30 and say, umm, well that is eight 
below so let’s do $1.46. 

 (writes down numbers) 
 
P1: Ok, now, umm, no we have two numbers already 

so I only need seven. (erases two numbers) 
 
P1: Ok, how do these fit in? 
 (places numbers on the number line) 
 
R: Keep talking  
 
P1: That is not going to work, I have too many 

numbers below the mean.  Just change one of 
these to a bigger than average number and it 
should work. 

 
P1: Wait, we have to use $1.38 or it won’t work.  I do 

not think it can be done without using $1.38. 

P1: Oh yea, last time I really messed this up.  The 
number line thingy was right but not counting 
spaces messed me up.  So let’s try it again.   

 
P1: $1.38 in the middle, $1.30 here, and $1.35 

here.  Now I’ll do it right this time.  I have to 
count the spaces between these and the 
average.  So $1.30 is (counts to eight) 8 less, 
meaning we need one 8 more.  $1.35 is 3 less 
so $1.41 is three more.  Ok, that takes care of 
four of them. (pause) 

 
R: Keep talking 
 
P1: I guess I can make the rest up, right? 
 
R: I can’t help you. 
 
P1: Well I’ll make it easy, $1.37 and 1.39 and 

another $1.37 and $1.39.  That’s nine. 
(mistakenly counts the $1.38) 
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Thirteen of the 20 protocols (2 problems for each of 10 participants) demonstrated no 

indication of change in center-of-balance knowledge between the pretest and posttest.  Over half 

(7 out of 13) of these were correctly solved on the pretest either with a solution based on the 

center-of-balance conceptualization or with a solution based on an alternative method.  In each 

of these cases the posttest protocol mirrored the solution on the pretest problem.7  The remaining 

six protocols equally exhibited little or no center-of-balance knowledge on either the pretest or 

posttest.  

To summarize this section, significant differences in center-of-balance knowledge were 

observed between participants given fair-share instruction and a control group.  The nature of the 

increase in knowledge appeared to stem from the ability to transfer knowledge gained in fair-

share instruction to center-of-balance problems. The concept, ‘the sum of the deviations from the 

mean is zero,’ was perceptible in every protocol that indicated evidence of fair-share knowledge 

impacting center-of-balance knowledge. 

4.2.4 Center-of-Balance Instruction Impacting Fair-Share Knowledge  

This section explores the solution protocols of the two fair-share problems for any connection to 

the center-of-balance conceptualization.  Of the six participants who improved their fair-share 

knowledge, three improved only on problem FS1, two improved only on problem FS2, and no 

participant improved on both problems.8  The five protocols that showed improved scores could 

be categorized into two groupings based on what seemed to be associated with that 

improvement: (a) those who initially failed to consider all data points on the pretest, but included 
                                                 

7 In one case, not counted in the 13 referenced here, a participant used a viable alternative method for the pretest and 
then a correct center-of-balance method on the posttest.  See P14fs protocol in this section. 
8 One participant used a viable method on the posttest that did not utilize fair-share knowledge for a problem scored 
a one on the pretest; thus their overall average increased for the two problems without increasing any one score. 



114 

all data points on the posttest and (b) those that used knowledge of deviations from the mean on 

the posttest. 

 A common improvement on both center-of-balance problems after fair-share instruction 

was the inclusion of all data points when determining the mean.  Initially, three participants 

failed to account for all the data in their solution strategies.  The pretest protocol below illustrates 

how participant P13cb failed to include the missing data point in the denominator when 

calculating the mean of all data points.  On the posttest, P13cb added to the pretest protocol by 

including the missing data point in the total.  P13cb realized the sum of the given data points is 

equivalent to the sum if each child had the mean number of blocks.  The highlighted areas 

indicate use of fair-share knowledge. 

Pretest  FS1 Posttest  FS1 
P13: I am going to take the four children and write 

down the number (counts each stack and writes 
down the numbers, counts seven for the third 
child but writes down 3)  I know the mean is 
seven.  If I add the four original children I get 20 
divided by the original amount four is five. 

 
P13: Basically, to get a mean of five I would need to 

add in another five.  It’s like five plus five, five 
times.  Child five equals five 

P13: Child #1 nine blocks, child #2 three blocks, child 
#3 seven, child #4 five and the mean is seven.     

 
P13: If I add the numbers I know and divide by the 

number of kids I will reach the original average.  
Ok that’s 9 + 3 + 7 + 5 = 24 divided by 4 = 6.  

 
P13: I know the total amount of blocks I need is 35.  

You want me to explain that. 
 
R: Yes  
 
P13: Basically, the total equal five times the mean 

since the total divided by the number of kids 
equal seven.  So five times seven is 35. 

 
P13: Yea, I need 11 more blocks so 24 + 11 = 35 

divided by 5 = 7.  Child five has 11 blocks. 
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A second grouping of protocols also revealed evidence that center-of-balance instruction 

helped increase knowledge on fair-share problems.  Three of the five protocols that demonstrated 

an increase in fair-share knowledge included use of the property, ‘the sum of the deviations from 

the arithmetic mean is zero,’ in the posttest but not in the pretest.  In the example below, P27cb 

unsuccessfully used a formula-based guess-and-check method on the pretest; then successfully 

incorporated the idea of equal deviations from the mean in the posttest protocol. In this case, the 

concept, ‘the sum of the deviations from the arithmetic mean is zero,’ was learned as it related to 

center-of-balance (see Appendix C.2).  P27cb successfully adapted knowledge of this concept 

from center-of-balance instruction and applied it as a fair-share conceptualization.  
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Pretest  FS1 Posttest  FS1 
P27: Child #1 has nine blocks, child #2 has three 

blocks, child #3 has seven blocks, child #4 has 
five blocks, and the mean has seven blocks.  If I 
add these up (the first four children)…24.  The 
mean equals six. 

 (pause) 
 
R: Keep talking. 
 
P27: I am going to pick random numbers to see if they 

will fit and end up with a total mean to be seven.   
 Six would give me 30 divided by five is six. No.  

(erases work) 
 
R: Please do not erase any work. 
 
P27: If I add eight… that’s 32 divided by five…6.4.  

I’ll try nine. Can I use my calculator? 
 
R: Yes, but keep talking. 
 
P27: That’s 33 divided by five…6.6.  Maybe 10. 
 34 divided by 5…6.8. 
 
P27:  Nine or ten will work if I round to seven. 

P27: Child #1 has nine blocks, child #2 has three 
blocks, child #3 has seven blocks, and child #4 
has five blocks.  If I add the four children’s 
blocks up I get 24 and the mean for these four 
would be six.  

 
R: Keep talking 
 
P27: But the sixth child is unknown and the mean all 

together is seven so the six doesn’t work. 
 
R: Keep talking   
 
P27: That means the mean, huh, of the first four is one 

less than the all together mean. 
 
R: Keep talking 
 
P27: So I need to add one to each of their means.  

That’s four all together and… the mean of child 
#5 would be seven.  Should I add those?  So four 
plus seven is 11.   

 
P27: So 24 plus 11 is 35 divided by five 

children…and that equals 11. 

 

 

 

 

 One protocol had both of the characteristics evidenced in improved fair-share problems in 

the center-of-balance instruction group.  That is, it failed to consider all the data points in the 

pretest and used knowledge of deviations from the mean on the posttest.  In this example, it is 

clear that knowledge pertaining to the center-of-balance conceptualization of the arithmetic mean 
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(indicated by bold in the posttest protocol) was used in conjunction with fair-share knowledge 

(indicated by highlight in the pretest and posttest protocols) to reach a viable solution.   

Pretest  FS1 Posttest  FS1 
P17: There are five children and the mean is seven.  I 

do not exactly remember what the mean is but I 
think that it is the numbers combined and divided 
by the number. (pause) 

 
R: Keep talking. 
 
P17: So child three has seven blocks, the same number 

as the mean. If everyone had seven then I think 
the mean should be seven.  Well, I guess they 
don’t and that is why you gave us the problem. 

 
P17: I think I can make the ones that are not seven, 

child #1, child #2, and let’s see, child #4 average 
seven and that would work.  I don’t know what 
else to do so I’ll do that.  I got three kids so 21 
divided by three will give me the seven.  Nine 
plus three plus seven plus five equals 24.  Umm, 
wait, oh, I don’t need the seven.  So that’s 
seventeen.  

 (mentally adds 9+3+5) 
 So I need four more to get 21.  I think child #5 

might have 4 blocks. 

P17: Well I look at the blocks and I see that child #1 
has nine blocks, child #2 has three, child #3 has 
seven, child 4 has five, and child #6 is blank and 
we I need a mean of seven.  So the problem is 
how many blocks does he have to make the mean 
seven, so… 

 
P17: Well, child #3 has seven blocks and that is the 

same as the mean.  Looking at my numbers I see 
two odd numbers, the three and the five that are 
less then the seven and one odd number that is 
bigger, the nine.  So there is a pattern, every two 
odd numbers less than and bigger than the mean.  
The pattern says that child #5 should have 11 
blocks. 

 
P17: So everything has to be like they were all seven.  

The seven is seven.  Now, umm… 
 (pause) 
 
P17: If I combine these two (nine and five) I get 14 

divided by two is seven so good.  Now combine 
these two (three and eleven), 14 again.   

 
P17: So let me just make sure (uses formula to check) 

 
 

 

 
 

 
 

Eleven of the 20 protocols (2 problems for each of 10 participants) did not demonstrate 

any indication of change in fair-share knowledge after center-of-balance instruction.  Over 80% 

(9 out of 11) of these protocols were correctly solved on the pretest either with a solution based 

on the fair-share conceptualization or with a solution based on an alternative method.  In each of 
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these cases the posttest protocol closely resembled the solution on the pretest.  In two other 

protocols, problem FS1 was correctly solved on the pretest with an alternative method (an 

algebraic approach based on the arithmetic mean formula and the missing data point as a 

variable), and then with a correct center-of-balance conceptualization on the posttest.  

Conversely, in one case, problem FS2 was successfully solved using a center-of-balance 

conceptualization on the pretest and then with an alternative method (an algebraic approach) on 

the posttest.   

To summarize this section, significant differences in fair-share knowledge were observed 

between participants given center-of-balance instruction and a control group.   The nature of the 

increase in fair-share knowledge after the center-of-balance instruction was characterized by two 

themes: (a) an understanding that all data points, including the missing data points, were relevant 

and (b) the ability to adapt knowledge concerning deviations from the mean gained in center-of-

balance instruction to fair-share problems. Every protocol that indicated center-of-balance 

knowledge impacted fair-share knowledge included one or both of these themes. 

4.2.5 Integration of Fair-Share and Center-of-Balance Results 

Rarely did participants directly use the specific fair-share or center-of-balance knowledge that 

they learned in the instructional modules on posttest problems of the other conceptualization.  

For example, participants did not apply a balance model learned in the center-of-balance 

instruction to a fair-share posttest problem; nor did they apply reallocation of the original data set 

learned in the fair-share instruction to solve center-of-balance problems.  Rather, they used a 

manifestation of that knowledge signified by the concept, ‘the sum of the deviations from the 

arithmetic mean is zero.’  Participants were able to transfer knowledge of this concept learned in 
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a fair-share context to center-of-balance problems, and similarly, transfer knowledge of this 

concept learned in a center-of-balance context to fair-share problems.   

Examples of using both center-of-balance and fair-share knowledge in the same problem 

occurred in only three protocols.  In each case, the protocols indicated use of both fair-share and 

center-of-balance knowledge integrally connected in the solution process.  The previously 

presented posttest protocol of P17cb is one such case.  The statement, “So everything has to be 

like they were all seven” indicated a fair-share conceptualization of the data.  Next, P17cb used 

this idea to balance the data points, “Seven is seven.  If I combine these two (nine and five) I get 

14, divided by two is seven, so good.  Now combine these two (three and eleven), 14 again.”  A 

second protocol (from problem FS2) that exemplified a relationship between fair-share and 

center-of-balance utilized an identically successful method of solution on both the pretest and 

posttest.  Initially, P15cb thought of the aggregate total of all data points, a fair-share 

conceptualization, and related this knowledge to deviations from the mean.  “Well, the values of 

the 3rd and 6th weighing would need to make the total value 32.  They can be more or less than 

the mean, which ever they need to be to make the distance equal.”  P15cb then took the concept 

of deviations from the mean and transferred it to a center-of-balance conceptualization.  “I am 

going to figure out how much I have more than the mean and how much less.  When I add those 

up I know the positives and negatives should balance out.”  The problem was solved within the 

context of center-of-balance and then transferred back to fair-share to check the solution. “See it 

that all adds up to 32…and 32 divided by 10 equals 3.2.”  Knowledge pertaining to the center-of-

balance conceptualization of the arithmetic mean is indicated by bold and knowledge pertaining 

to the fair-share conceptualization is indicated by highlight. 



120 

FS2 
P15: Well, the values of the 3rd and 6th weighing would need to make the total value 32.  They can be 

more or less than the mean, which ever they need to be to make the distance equal.  They might 
also be the mean, let’s see. 

 
P15: I am going to figure out how much I have more than the mean and how much less.  When I 

add those up I know the positives and negatives should balance out.  If they don’t then #3 or 
#6 will make it work.   

 
P15: #1 and #5 are the mean so they don’t count.  This one is +.2, this is +.1, and this is +.2 (referring 

to weighings #2, #7, and #8).  And down here it’s .1 less, .2 less and .1 less (referring to 
weighings #4, #9, and #10)  So the value greater than is .5 and the value less than is .4. 

 
P15: So I know that, umm, #3 and #6 added together need to be .1 less than the mean so that it all 

works out.  So value #3 could be .1 less and value #6 could be exactly the average.  You could 
also change it so that any combination is .1 less than the average 

 
P15: See it that all adds up to 32…and 32 divided by 10 equals 3.2 

 
 

The same participant, P15cb, who used both center-of-balance and fair-share knowledge in a fair-

share problem also utilized both knowledges in a center-of-balance problem.  The participant 

used the same solution process for both the pretest and the posttest for problem CB2.  P15cb first 

used fair-share knowledge to note that all nine bags would total $12.42, and that $9.77 was the 

total of the remaining seven bags once the two known prices were subtracted.  He then used 

center-of-balance knowledge to calculate several of the remaining unknown prices by picking 

values equal distant above and below the mean.  Finally, the last price was found by calculating 

what remained of the total. 
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CB2 
P15: In order for the average value to be $1.38 the price of all the potato chips if I add them has to be 

the mean times nine.  So that is $12.42. 
 
P15: I know I have these two, $1.30 and $1.35, (uses calculator) $2.65.  So the total of all the values of 

the chips minus those two, (uses calculator) $9.77. 
 
P15: I am going to choose numbers on either side of $1.38 to make it easy to figure out the mean.  

$1.39 and $1.37; $1.40 and $1.36; $1.41 and $1.35.   
 
P15: Altogether that is, (uses calculator) $8.28.  The $1.30 and $1.35 make it, (uses calculator) $10.93. 
 
P15: $12.42 minus $10.93, (uses calculator) $1.49 for the last bag. 

 
 

A common solution structure emerged from each of the three cases that integrated both 

conceptualizations into one protocol.  The participants first framed the solution within the 

context of the fair-share conceptualization.  In the first case, P17cb used fair-share to note the 

mean would remain at seven if all the data points were equal to seven.  In the second and third 

cases, P15cb used fair-share to find aggregate totals to form a basis for the solutions.  Once the 

problems were framed within the fair-share conceptualization the participants then used the idea 

of center-of-balance to carry out the solution process.  P17cb (case #1 above) balanced pairs of 

data points around the mean for problem FS1.  Similarly, P15cb (case #3 above) balanced pairs of 

data points to solve problem CB2.  A slightly different center-of-balance approach was employed 

by P15cb to solve problem FS2 (case #2 above).  In this case, the amassed deviations above and 



122 

below the mean were first calculated, and then the missing data points were chosen to balance 

the entire data set.       

While most evidence indicates participants did not directly apply learned knowledge of 

the fair-share or center-of-balance conceptualization into posttest problems based on the opposite 

conceptualization (cf. P17cb); evidence does indicate knowledge learned in one conceptualization 

was transferred to the other.  In particular, knowledge that the ‘sum of the deviations from the 

arithmetic mean is zero’ appeared in the posttest protocols for both the fair-share and center-of-

balance instructional groups.  About sixty-six percent (8 out of 12) of the participants that 

showed improved scores transferred knowledge of this idea learned in one context (i.e. fair-share 

or center-of-balance) to the other.   

4.3 CONCEPTUALIZATIONS AND MATHEMATICAL CONCEPTS 

In this section the results pertaining to research question #2 are examined: 

2) How is knowledge of fair-share and center-of-balance cognitively related to the 

mathematical domain?  In particular, 
 
a) What effect does instruction of the fair-share conceptualization of the arithmetic 

mean have on knowledge of mathematical concepts associated with the arithmetic 

mean? 
 

b) What effect does instruction of the center-of-balance conceptualization of the 

arithmetic mean have on knowledge of mathematical concepts associated with the 

arithmetic mean? 
 
To answer these questions, written solutions and verbal protocols of pre- and post- test arithmetic 

mean problems were analyzed both quantitatively and qualitatively in order to identify how 
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increased knowledge of fair-share or center-of-balance affected knowledge of particular 

mathematical concepts related to the arithmetic mean.  The results of these analyses are 

organized into four sections.  First, the results of statistical analysis are reported.  The next two 

sections detail how each conceptualization impacts mathematical concept knowledge.  Last, the 

nature of the relationships between the conceptualizations of fair-share and center-of-balance and 

the mathematical concepts related to the arithmetic mean are summarized.     

4.3.1 Hypothesis Testing for Research Question #2 

The pretest and posttest scores for the mathematical concept problems served as an indicator of 

participants’ capacity to integrate mathematical knowledge with other mathematical concepts or 

with the conceptualizations of fair-share and center-of-balance.  Each problem received a score 

of zero to three based on its correctness and use of sound mathematical ideas, or “no-score” if the 

correct solution path was ambiguous.  An ANCOVA model was used to compare the average 

posttest scores using the pretest scores as a covariate.  Three hypotheses were tested based on the 

mathematical concept problems’ posttest scores: (a) differences between mathematical concept 

posttest scores for the group that received fair-share instruction and the group that received 

center-of-balance instruction, (b) differences in mathematical concept posttest scores between 

the group that received fair-share instruction and a control group, and (c) differences in 

mathematical concept posttest scores between the group that received center-of-balance 

instruction and a control group.  Table 4-6 shows the adjusted means for the mathematical 

concept posttest problems of each group. 
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Table 4-6:  Adjusted Means for Mathematical Concept Problems 

 Mathematical Concept Problems 

Instruction Group Meana Standard Error 

Fair-Share 2.35 .167 

Center-of-Balance 2.52 .166 

Control 1.92 .176 
aPretest covariant mean = 1.83 

 

 

Results of the Bonferroni t (Dunn’s test) between the fair-share group’s mathematical 

concept mean score (2.35) and center-of-balance group’s mathematical concept mean score 

(2.52) indicated the means were not significantly different, t’(25) = 0.72; p ≈ 1.00.  Results of the 

Bonferroni t-test between the fair-share group’s mathematical concept mean score (2.35) and the 

control group’s mathematical concept mean score (1.92) indicated the means were not 

significantly different, t’(25) = 1.86; p = .13 (one-tailed). Results of the Bonferroni t-test 

between the center-of-balance group’s mathematical concept mean score (2.52) and the control 

group’s mathematical concept mean score (1.92) indicated the means were significantly 

different, t’(25) = 2.58; p = .029 (one-tailed).  This result indicates mathematical concept scores 

increase with instruction that is focused on the center-of-balance conceptualization of the 

arithmetic mean.  The following sections describe the nature of the results found by the above 

statistical analysis.   

4.3.2 Fair-Share Instruction Impacting Mathematical Concepts 

This section explores the solution protocols of the two mathematical concept problems for any 

connection to the fair-share conceptualization.  Fifty percent (5 out of 10) of the participants in 
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the fair-share group advanced their mathematical concept knowledge after fair-share based 

instruction.  Each of the five participants improved their score on one of the two mathematical 

concept problems.  Therefore, twenty-five percent (5 out of 20) of the scores for the 

mathematical concept posttest problems were improved upon from the pretest.  Of the remaining 

fifteen scores, ten were perfect (i.e. rubric score of 3 out of 3) on the pretest and posttest meaning 

there was no potential for improvement.  Hence, fifty percent (5 out of 10) of the problems that 

had “improvable” scores on the pretest were bettered on the posttest.  Of these, two 

improvements were on problem MC1 and the remaining three improvements were on problem 

MC2. 

 The protocols of both participants in the fair-share group who increased their score on 

MC1 did not indicate what new knowledge was responsible for the change.  In one case, the 

participant confidently and matter-of-factly stated the correct solution on the posttest after 

providing a hesitant and incomplete solution of the pretest.  Below is an example of that pretest 

and posttest protocol. 

Pretest  MC1 Posttest  MC1 
P26: I don’t know.  It would depend on the data set.  

Every data set would be different. 
P26: The mean, yea, the arithmetic mean.  I’ll write it 

out. 
 
 
 

 
 

The three participants who increased their scores for problem MC2 each provided 

protocols that revealed the knowledge they used to solve the problems.  One of them was unable 

to solve the problem on the pretest using a guess-and-check method, but correctly solved the 

problem on the posttest using an algebraic approach based solely on the arithmetic mean 
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formula.  There was no evidence of fair-share knowledge in the solution.  The remaining two 

participants utilized fair-share knowledge in the posttest that was not evident in the pretest.  In 

the following protocol, P18fs struggled toward a solution on the pretest using the arithmetic mean 

formula.  On the posttest, she used the sense of fair-share to find the aggregate total of all five 

data points and then subtracted the sum of the first four to calculate the fifth data point.  The 

addition of fair-share knowledge into the problem solution on the posttest provided a solution 

path that was more coherent and mathematically sound then the chaotic nature of the pretest 

solution.   

Pretest  MC2 Posttest  MC2 
P18: To find the mean of the first four numbers I will 

divide by four. (pause) 
  
 
R: Keep talking. 
 
P18: Eighteen point seven five.  Then 18.75 plus 75 

equals (uses calculator) is 93.75. 93.75 divided 
by 5 is 18.75, huh. (pause) 

 
R: Keep talking. 
 
P18: Ok, if the mean is 20…75 plus 20 is 95. 95 

divided by 5 is 19. (pause) 
 
R: Keep talking. 
 
P18: 75 plus 75 is 150.  150 divided by 5 is 30.  75 

plus 30 is 105 divided by 5 is 21. 
 
P18:  So it is between twenty and thirty. 

P18: Ok, five numbers and the mean is twenty so 
20x5 = 100 which is the total of all five numbers 
with the missing one. 

 
P18: The total minus the four that we know will give 

us the missing number. 100-25 = 75.  That has to 
be the missing number. 

 

 
 

 
 

Of the ten perfect scores on the pretest, four were scored on problem MC1 and six were 

scored on problem MC2.   The correct solutions for problem MC1 fit into one of two categories: 

induction (3) or center-of-balance (1).  There was no evidence of fair-share knowledge in any 
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solution for problem MC1 in the fair-share group.  The correct solutions for problem MC2 fit 

into one of two categories: fair-share (4) or algebraic (2).  Each of the four fair-share based 

solutions was similar to P18fs’s posttest protocol previously presented. 

To summarize this section, no significant difference in mathematical concept knowledge 

was statistically calculated between participants given fair-share instruction and a control group.  

However, several protocols, particularly those of problem MC2, did suggest using knowledge of 

the fair-share conceptualization lead to a correct solution or improved scores. 

4.3.3 Center-of-Balance Instruction Impacting Mathematical Concepts 

This section explores the solution protocols of the two mathematical concept problems for any 

connection to the center-of-balance conceptualization.  Eighty percent (8 out of 10) of the 

participants in the center-of-balance group advanced their mathematical concept knowledge after 

center-of-balance based instruction.  Four of the participants improved only on problem MC1, 

three participants improved only on MC2, and one participant improved on both problems.  

Therefore, forty-five percent (9 out of 20) of the scores for the mathematical concept posttest 

problems were improved upon from the pretest.  Of the remaining eleven scores, nine were 

perfect (i.e. rubric score of 3 out of 3) on the pretest and posttest meaning there was no potential 

for improvement.  Hence, about eighty-two percent (9 out of 11) of the mathematical concept 

problems that had “improvable” scores on the pretest were bettered on the posttest after center-

of-balance instruction.   

One of the five participants that improved on problem MC1 offered no indication as to 

why their answers differed on the pretest and posttest.  A second participant used an algebraic 

method based on the arithmetic mean formula to improve his initial incorrect logic.  P3cb 
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incorrectly answered zero on the pretest.  He erroneously assigned the algebraic properties of 

zero in addition and multiplication to the arithmetic mean.  On the posttest, he used algebra and 

the arithmetic mean formula to first disprove his initial answer and then found the correct 

solution, but only for his arbitrary data set.  He never stated that the solution was the mean for all 

data sets. 

Pretest  MC1 Posttest  MC1 
P3: The number zero can be added to the data set and 

the mean will not change.    
 
P3: It will not change because zero is almost like an 

invisible number.  Whether you multiply or add 
zero to other numbers you will either get zero or 
the number that you are adding the number zero 
with.   

 
 

P3: Zero can be added to the data set not to change 
the mean. 

 
P3: I will give an example. One, two, three, four, 

five.  These numbers add up to 15 which divided 
by five is three 

 
P3: 15 plus x can be divided by three, no divided by 

six, will equal three. 
 
P3: Let x equal zero.  No. uh, wait, no. (pause) 
 
R: Keep talking 
 
P3: Solve the equation for x. (algebraically solves 

equation) umm, three. 
 
P3: Zero does not work.  The answer is three. 

 
 
 

 
 

The remaining three participants who improved on problem MC1 indicated new use or 

improved use of the center-of-balance conceptualization from the pretest to the posttest.  For 

example, P17cb did not have a strategy to solve the problem on the pretest but used a center-of-

balance approach on the posttest to correctly solve the problem.  On the posttest she constructed 

a data set on a number line with an arbitrary mean (five) using center-of-balance to maintain the 

mean.  She then pointed out, “the only way to add one dot and not make it uneven is to put the 
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dot on the mean.”  In this case, the center-of-balance conceptualization was utilized to set-up a 

strategy and to deduce a valid solution. 

Pretest  MC1 Posttest  MC1 
P17: I’m not sure what the data set is.  It would depend 

of what the data set looked like.  I could use the 
equation to find the answer if there was data. 
(pause)  

 
R: Keep talking. 
 
P17: Like I said, I could try a bunch of numbers to see 

what worked if I had the data set. (pause)  
 
R: Keep talking. 
 
P17: Should I make one up. 
 
R: Do what you need to answer the question. 
 
P17: It wouldn’t help since it would change for every 

group.  It is different for every group 

P17: We did the module online so I figure I can use 
that to solve this problem.  Since I did this 
problem last I realize that you can set up a 
balance line to show the answer. (draws 
number line) 

 
P17: Suppose the mean is five, I’ll put three dots, no 

two, on the five.  Now if I put one on the three 
I put one on the seven.  I can also put another 
on the seven, but instead of the three I can put 
two on the four to make it even.  And I’ll put 
one on the eight and on the two. 

 
P17: (adds the numbers) So that’s 45 dots divided by 

nine is five, good. 
 
P17: Now, the only way to add one dot and not 

make it uneven is to put the dot on the mean. 
(redraws number line with another dot on the 
five) 

 
P17: (adds the numbers) 50 dots.  This time divided 

by ten and my mean is still five. 
 

 
 
 

 
 

 

Problem MC2 had four improved scores.  Of these, two participants modified a fair-share 

approach to solving the problem, one participant successfully used an algebraic approach, and 

one participant used a center-of-balance approach.  P28cb used the arithmetic mean formula on 
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four data points and was unable to find a successful solution strategy on the pretest.  On the 

posttest, she again used the arithmetic mean formula but this time combined it with a balance 

model.  P28cb applied knowledge learned regarding the center-of-balance conceptualization, 

along with her initial strategy that focused on the arithmetic mean formula, to further her ability 

to solve the problem. 

Pretest  MC2 Posttest  MC2 
P28: The mean of the numbers is 75 divided 4 equal 

18.75.  That is close enough to 20 to be part of the 
data set. 

 
 

P28: The mean is in the middle.  Twenty.  Four 
numbers equal 75.  75 divided by 4 is 18.75.  
Four of them. 

 
P28: On the other side of twenty I need four more.  

(uses calculator).  20 minus 18.75 equal 1.25 
times 4 equal 5 plus 20 equal 25.  (draws four 
slashes above 25) 

 
P28: Twenty-five will work 

 

 

 

 
 

To summarize this section, the difference in means between the center-of-balance group’s 

mathematical concept score and the control group’s mathematical concept was significant.  

About forty-four percent (4 out of 9) of score improvements on the mathematical concept 

problems were associated with increased center-of-balance knowledge.  Center-of-balance 

knowledge appeared in fifty percent (5 out of 10) of the CB1 posttest protocols and in ten 

percent (1 out of 10) of the CB2 posttest protocols. 

4.3.4 Mathematical Concepts Related to Specific Conceptualizations 

Statistical hypothesis testing (see section 4.3.1) suggested there was no difference in 

mathematical concept posttest scores for participants that received fair-share instruction 
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compared to participants that received center-of-balance instruction.  A qualitative examination 

of the coded data revealed each mathematical concept problem, MC1 and MC2, was primarily 

solved using a particular conceptualization.  That is, solutions for MC1 tended to utilize the 

center-of-balance conceptualization and solutions for MC2 tended to utilize the fair-share 

conceptualization.  Table 4-7 denotes the posttest solution methods for participants in the fair-

share and center-of-balance groups combined.   

 

 

Table 4-7:  Posttest Solution Methods for Mathematical Concept Problems 

 Method of Solution 

Problem Fair-Share Center-of-Balance Alternativea Undeterminedb 

MC1 0 7 7 6 

MC2 12 1 5 2 

Note:  No problem had evidence of both conceptualizations 
aPrimarily inductive argument for MC1 and primarily algebraic solution using arithmetic mean formula for MC2. 
bIncludes unsubstantiated solutions and unsolved problems 

 

 

 The evidence suggests that mathematical concepts of the arithmetic mean, at least the two 

offered by problems MC1 and MC2, may be cognitively connected to a specific 

conceptualization of the arithmetic mean (i.e. fair-share or center-of-balance).  Participants who 

gained fair-share knowledge were unable to adapt it to problem MC1, but readily used the new 

knowledge in problem MC2.  Conversely, participants who gained center-of-balance knowledge 

readily adapted it to problem MC1, but in only one case used it to solve problem MC2.   
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5.0  DISCUSSION 

The relatively simple calculation for quantifying the arithmetic mean can obscure its connection 

to other knowledge spaces that help cultivate its understanding.  Two such knowledge spaces, the 

notions of fair-share and center-of-balance, were the focus of this investigation.  Research 

indicates most students view the arithmetic mean as a procedure (McGatha, Cobb, & McClain, 

2002), and often do not understand it as a fair-share distribution of the data (Mokros & Russell, 

1995) or as the center-of-balance of the data set (Hardiman et al., 1984).  Furthermore, 

articulating a connection between the conceptualizations of fair-share and center-of-balance is 

often difficult even for those with advanced understanding in statistics (MacCullough, 2007).  

Linking the two conceptualizations of the arithmetic mean with each other and with 

mathematical concepts connects these fragments of knowledge and thus constructs a web of 

understanding for the arithmetic mean.  The purpose of this study was to explore how liberal arts 

university students connect the different conceptualizations of the arithmetic mean (i.e. fair-share 

and center-of-balance) to one another and to related mathematical concepts.   

This discussion is presented in three parts.  First, the results of the study are explained 

and situated within the existing literature base.  Next, implications of the findings and 

recommendations, particularly as they relate to pedagogy, are discussed.  Finally, directions for 

future reach are offered. 
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5.1 EXPLANATION AND SITUATING OF RESULTS 

The results of this study show that increased knowledge of the fair-share conceptualization of the 

arithmetic mean improved knowledge of the center-of-balance conceptualization as ascertained 

via problem solving.  Similarly, increased knowledge of the center-of-balance conceptualization 

of the arithmetic mean improved knowledge of the fair-share conceptualization.  Also, increased 

knowledge of either the fair-share or center-of-balance conceptualization advanced 

understanding of the mathematical concepts associated with the arithmetic mean.  However, 

increased knowledge of each conceptualization distinctively affected specific mathematical 

concepts.  

5.1.1 Initial Knowledge and Use of the Conceptualizations 

Prior research has indicated students’ primary solution strategies for arithmetic mean problems 

are based on the arithmetic mean formula (Cai, 1998; Groth, 2005; Groth & Bergner, 2006; 

Mokros & Russell, 1995).  The current study confirmed this prior result.  An examination of 

participants’ written solutions on the pretest revealed a preponderant use of the arithmetic mean 

formula even in cases where its use was inappropriate or unfounded.  For example, several 

participants attempted to solve problems FS2 and CB2 by means of the arithmetic mean formula.  

The resulting insufficient systems of equations, 2.3
10

1.30.34.33.32.31.34.32.3
=

+++++++++ yx  for 

FS2 and 38.1$
9

35.1$30.1$
=

++++++++ zyxwvut for CB2, could not be solved for the missing 

variables.  Use of the arithmetic mean formula in problems that culminated in a correct solution 

or a mathematically sound solution attempt did not reveal what conceptual knowledge 
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participants had regarding the arithmetic mean.  However, similar to results of prior research 

(e.g. Cai, 1998; Groth & Bergner, 2006; McGatha, Cobb, & McClain, 2002; Mokros & Russell, 

1995; Pollatsek, Lima & Well, 1981), evidence indicated many participants did not have 

methods of solution based on a conceptual understanding of the arithmetic mean for problems 

that were not suitably solved with the arithmetic mean formula or for situations where 

participants were unable to utilize the formula to construct a solution.  In particular, the 

conceptualization of center-of-balance as it relates to the arithmetic mean seemed to be absent or 

minimally connected for most participants.  This is not surprising; the relationship between the 

center-of-balance conceptualization and the arithmetic mean formula is rooted in the physical 

concept of center-of-mass; a more difficult and, most likely, unfamiliar concept to the 

participants in this study.  In contrast, the conceptualization of fair-share appeared to be 

somewhat developed, at least in the sense of how it related to the arithmetic mean formula, for 

most participants even prior to instruction.  The protocols showed participants were able to relate 

the concept of partitive division to the arithmetic mean formula, or algebraically manipulate the 

arithmetic mean formula to calculate the total amount for the entire data set and share it equally 

amongst the data points.  

Participants were more successful solving fair-share problems than they were solving 

center-of-balance problems.  This difference can be explained by combining the results from this 

study and from previous research with the knowledge structure proposed in section 2.4.  The 

knowledge structure linked the mathematical domain and the statistical domain of the arithmetic 

mean to the conceptualizations of fair-share and center-of-balance as cognitive blending spaces. 

The relative strength of the connections between domains and conceptualizations may account 

for the difference in difficulty of fair-share and center-of-balance problems. 
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Evidence in the protocols indicates a strong relationship between the fair-share 

conceptualization and the mathematical domain.  This was evident through the successful use of 

partitive division to represent the total accumulation being equally shared among all data points 

or through the successful use of the normalized ratio (Cortina, 2002) to represent the arithmetic 

mean is a suitable surrogate for each value in the data set in problems FS1 and FS2.  The success 

most participants accomplished on problem MC2, a mathematical concept problem most often 

solved using some sense of fair-share, is further evidence of a strong relationship between the 

fair-share conceptualization and the mathematical domain. 

The link between the center-of-balance conceptualization and the mathematical domain 

is, in contrast, a weak relationship within the proposed knowledge structure.  The weak 

relationship was indicated in the protocols by the low scores on problem CB1, the minimal use 

of center-of-balance knowledge on problem CB2, and the low scores on problem MC1, a 

mathematical concept problem linked to center-of-balance knowledge.  The general concept of 

center-of-balance, particularly the mathematical concepts relating it to center-of-mass, is only 

partially understood even at adulthood (Hardiman, Pollatsek, & Well, 1986; Jackson, 1965; 

Lovell, 1961; Siegler, 1976).  Therefore, using it to model a different concept, such as the 

arithmetic mean, proves to be challenging.  “Using one poorly understood set of ideas—the 

physical relationship of weights and distance—may not help students understand another set of 

difficult ideas—the numerical relationship between the mean and the data” (Russell & Mokros, 

1996, p. 361). 

Prior research (e.g. Cai, 1998; Groth & Bergner, 2006; McGatha, Cobb, & McClain, 

2002; Mokros & Russell, 1995; Pollatsek, Lima & Well, 1981), as well as the results of this 

study, indicate the overall knowledge of the statistical domain, or the idea that the arithmetic 
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mean is representative, is weak among most students.  It is therefore not surprising to find the 

connection between the statistical domain and the conceptualizations of fair-share and center-of-

balance are not soundly developed in most participants.  However, a few participants used the 

conceptualizations of fair-share and/or center-of-balance to describe the arithmetic mean as 

representative of the data set.  In particular, those participants who made use of the center-of-

balance conceptualization most often related it to the statistical domain.  

 

 

 
 

Figure 5-1:  Recap of Knowledge Structure of the Arithmetic Mean 

 

 

To summarize, most participants summoned knowledge of the connection between the 

fair-share conceptualization and the mathematical domain, namely partitive division, and used it 

to successfully solve problems.  The reasons the participants were more successful in solving 

fair-share problems as opposed to center-of-balance problems were twofold. First, the only 

strong connection identified within the structure, Figure 5-1, was between the fair-share 
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conceptualization and the mathematical domain.  Thus, participants were better equipped with 

the knowledge and mathematical tools to solve fair-share related problems.  Second, as discussed 

in section 2.3, the intricacies and nature of the blending spaces themselves are inherently 

different.  The general concept of fair-share is understood at a very early age and its 

mathematical model, partitive division, is relatively simple.  On the other hand, the mathematical 

model relating center-of-balance to the arithmetic mean (i.e. torque and center-of-mass) is 

comparatively difficult. 

5.1.2 Connecting the Conceptualizations 

There are two important reasons for cognitively connecting the fair-share and center-of-balance 

conceptualizations of the arithmetic mean.  First, an important component of understanding the 

arithmetic mean is justifying in one’s mind how two seemingly different conceptualizations (i.e. 

fair-share and center-of-balance) can describe the same concept.  It is difficult to fathom a 

connection between the notions of fair-share and center-of-balance in the general knowledge 

schema outside the context of the arithmetic mean.  Finding harmony between the 

conceptualizations may help solidify understanding of the arithmetic mean.  Second, as 

previously discussed, access to knowledge of center-of-balance as it relates to the arithmetic 

mean is impeded on two fronts: (a) its mathematical context is rooted in the difficult concepts of 

torque and center-of-mass, and (b) the inadequate understanding students have of the statistical 

context of the arithmetic mean. Cognitively connecting the fair-share conceptualization to the 

center-of-balance conceptualization within the context of the arithmetic mean may provide an 

alternate and more explicit path to the concept of balance. 
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MacCullough (2007) found experts thought of the connection between fair-share and 

center-of-balance as a leveling-off conception.  Figure 5-2 depicts how the experts “visualized” 

the process for both the fair-share and center-of-balance conceptualizations.   

 

 

 
Figure 5-2:  Fair-Share and Center-of-Balance as Leveling-off  

 

 

“They [the experts] moved seamlessly between the two conceptions [fair-share and center-of-

balance] using the conception with which it was easiest to work in the given task.” 

(MacCullough, 2007, p. 100).  The participants in the current study used the notion ‘the sum of 

the deviations from the mean is zero’ to transfer knowledge from one conceptualization to the 

next.  The two relationships (i.e. leveling-off and sum of the deviations from the mean is zero) 

essentially model the same concept, but they define the connection between fair-share and 

center-of-balance from two different domains (i.e. statistical and mathematical).  Experts view 

Fair-Share 

Center-of-Balance 

(Van de Walle & Lovin, 2006) 
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the mean as a statistically representative quantity.  The experts could visualize how the leveling-

off process both equally distributes and balances the data.  In contrast, the majority of 

participants in the current study lacked knowledge of the statistically representative notion and 

had only a mathematical perspective of the arithmetic mean.  Therefore, the connection between 

fair-share and center-of-balance manifest as one of Strauss and Bichler’s (1988) mathematical 

properties of the mean, the sum of the deviations from the mean is zero.   

5.1.2.1 Hypothesized Connection between the Conceptualizations 

It is not surprising that the participants focused on the concept, ‘the sum of the deviations 

from the mean is zero,’ in the posttest solutions as it was an integral part of the instruction for 

both the fair-share and center-of-balance group.  What is noteworthy, however, is the transfer of 

newly learned knowledge into problems that centered on a different conceptualization.  

Participants seldom used the explicit fair-share or center-of-balance knowledge that they learned 

in the instructional modules on posttest problems of the other conceptualization.  That is, 

participants did not employ a balance model learned in the center-of-balance module to solve a 

fair-share posttest problem; nor did they redistribute the original data set as learned in the fair-

share module to solve a center-of-balance posttest problem.  Rather, they took a concept learned 

in the context of each conceptualization, ‘the sum of the deviations from the arithmetic mean is 

zero,’ and transferred it to the other conceptualization.  The following is a hypothesis of how 

participants may have transferred the ‘sum of the deviations from the mean is zero’ concept 

between the fair-share and center-of-balance conceptualizations.  

Within a knowledge structure, the existence and strength of connections between 

concepts and/or schema have limitations.  One factor that determines how vast the connections 

are is the generality in which a concept is learned (J. Greeno personal communication, July 15, 
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2008).  In the case of this study, learning from a specific instruction module (i.e. fair-share or 

center-of-balance) had to be general enough to transfer into the other conceptualization.  The 

concept, ‘the sum of the deviations from the mean is zero,’ was a general idea learned in the 

more specific context of either fair-share or center-of-balance. This concept is not limited to 

connections to only one conceptualization; rather, it can be generalized to both.  In other words, 

the form of the schema for the concept did not require all the qualities of a specific 

conceptualization to activate use of the concept.  The protocols indicated that some participants 

certainly related the center-of-balance conceptualization to equal deviations from the mean.  

They were able to equally “balance” the differences above and below the mean.  The protocols 

also indicated some participants related the fair-share conceptualization to deviations from the 

mean.  These participants saw the arithmetic mean as having a property of the data or 

distribution that shared the “extra” data equally.  That is, data points not equal to the mean had to 

“give” or “receive” data such that all data was shared equally.  The ability to generalize the ‘sum 

of the deviations from the mean is zero’ concept afforded participants the opportunity to transfer 

the knowledge between the fair-share and center-of-balance conceptualizations.  

5.1.3 Importance of Both Conceptualizations  

While results from research question #1 indicated certain knowledge (e.g. sum of the deviations 

from the mean is zero) can be transferred from one conceptualization (i.e. fair-share or center-of-

balance) to the other; results from research question #2 indicated that knowledge of only one 

conceptualization may not be sufficient to solve all arithmetic mean problems, and therefore does 

not offer a complete understanding of the arithmetic mean.  A holistic understanding of the 
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arithmetic mean includes relying on both blending spaces (i.e. fair-share and center-of-balance) 

to connect the statistical and mathematical knowledge domains.  

The mathematical concept problems, MC1 and MC2, were each almost exclusively 

solved using one of the conceptualizations, center-of-balance or fair-share, respectively.  The 

mathematical concept in problem MC1 characterized two of Strauss and Bichler’s (1988) 

mathematical properties of the arithmetic mean: (a) when one calculates the average, a value of 

zero, if it appears, must be taken into account, and (b) the average is influenced by values other 

than the average.  One of two general solution strategies stood out in the majority of protocols: 

(a) an inductive method based solely on the arithmetic mean formula, or (b) a depiction of the 

arithmetic mean as the center-of-balance.  The fair-share conceptualization of the arithmetic 

mean was not perceptible in any of the posttest protocols for problem MC1.  Although it is 

possible to illustrate the two mathematical properties relevant to problem MC1 as a fair-share 

conceptualization; participants in this study considered these properties applicable to the center-

of-balance conceptualization regardless of the focus of their instruction (i.e. fair-share or center-

of-balance).   

The mathematical nature of problem MC2 corresponded to Cortina’s (2002) view of the 

arithmetic mean as a normalized ratio.  In this case, the arithmetic mean is described as an 

attribute of a group of data points in which an aggregate measure is created by summing all of 

the individual data point values.  This notion, although plausibly depicted as center-of-balance, is 

predominately a fair-share perspective of the arithmetic mean.  Consequently, participants in this 

study, except in one case, used a fair-share conceptualization to conceive of a solution to the 

problem.     



142 

The results from the mathematical concept problems indicate there are properties and 

attributes of the arithmetic mean that are perceived by students as a particular conceptualization 

(i.e. fair-share or center-of-balance).  Increasing knowledge of both conceptualizations may 

permit students access to awareness of particular properties and attributes of the arithmetic mean 

not readily recognized through knowledge of only one conceptualization.  Results from prior 

research studies revealed increased knowledge of the fair-share conceptualization led to a more 

conceptual understanding of the arithmetic mean as representative of a data set (Cai & Moyer, 

1995; George, 1995; Groth; 2005).  Similar results were demonstrated in research that focused 

on the center-of-balance conceptualization of the arithmetic mean (Hardiman et al., 1984).  

These results, along with the results of the current study, indicate increased knowledge through 

instruction of both conceptualizations, including cognitively connecting the two 

conceptualizations through the concept ‘the sum of the deviations from the mean is zero,’ could 

provide a more comprehensive understanding of the arithmetic mean. 

5.2 IMPLICATIONS AND RECOMMENDATIONS  

It has been suggested that the ideal scaffold for learning statistical concepts such as the 

arithmetic mean is to first develop its statistical sense, in the case of the arithmetic mean—

representativeness, and then connect this conceptual understanding to the governing 

mathematical aspects (Jones et al., 2004; Konold & Higgins, 2003; Mokros & Russell, 1995).  

MacCullough’s hypothesis as to how the experts in her study acquired their knowledge of the 

arithmetic mean seemed to follow this learning process (see MacCullough, 2007, pp. 100-102).  

It is clear that many participants in the current study had a narrow perspective of the knowledge 
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that constitutes the arithmetic mean.  Their perspective was a mathematically based fair-share 

point of view derived from the arithmetic mean formula, not from a developed sense of the 

arithmetic mean as representative of the data set.  It is highly likely that the participants 

developed their mathematical knowledge of the arithmetic mean absent from the statistical sense 

of representativeness.  In doing so, new knowledge related to the arithmetic mean was, if 

possible, connected to the arithmetic mean formula, or otherwise undesirably situated as an 

unconnected fragment in the knowledge schema.  

Curricula and instruction that only present the arithmetic mean as a formulaic procedure 

or do not conceptually develop the arithmetic mean using both conceptualizations (i.e. fair-share 

and center-of-balance) may lack opportunities for students to make relevant cognitive 

connections between the conceptualizations, and between the conceptualizations and 

mathematical concepts.  Huberty, Dresden, and Bak (1993) in their study on the dimensions of 

statistical knowledge suggest: 

Students have a relatively poor grasp of the conceptual understanding of statistics, it is 

especially recommended that instructors encourage students to think in terms of multiple 

ideas and connections among them (i.e., to develop conceptual understandings from their 

studies).  Making connections between ideas and skills may provide the foundation for 

richer understanding and greater ability to make use of statistical methods in the future 

(p. 531).   

Providing curricula and instruction that encourage the use of both the fair-share and center-of-

balance conceptualizations as blending spaces provides the opportunity for students to think of 

the arithmetic mean in terms of multiple ideas.  Connecting mathematical concepts through one 

or both conceptualizations provides the blending spaces necessary to relate the statistically 
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conceptual ideas to the mathematical concepts and skills that constitute the arithmetic mean; thus 

providing the foundation for richer understanding.    

Several reform mathematics curricula construct a conceptual sense of the arithmetic 

mean.  Curricula such as Connected Mathematics and Investigations in Number, Data, and 

Space, for example, offer students the opportunity to build a representative sense of the 

arithmetic mean as a statistical element by working with and manipulating data sets.  Previous 

researchers investigating the development of knowledge in statistics (Jones et al., 2000; Mooney, 

2002), and in particular the arithmetic mean (Konold & Higgins, 2003; Mokros & Russell, 

1995), have concluded that the conceptual underpinnings of statistical ideas like the arithmetic 

mean need to be developed before the procedures for their calculations are introduced.  Without 

conceptual underpinnings, the formula to calculate the arithmetic mean becomes the prevailing 

sense of average for many students and grows only in procedural complexity (Groth & Bergner, 

2006; Leon & Zawojewski, 1990; Watson & Moritz, 2000).  The predominance of the 

participants in this study to use the arithmetic mean formula, particularly when it was used 

ineffectively or inappropriately, may indicate that they learned the arithmetic mean as a 

procedural formula with little, if any, conceptual basis.  Garfield (1995) asserted that “students’ 

misconceptions are often strong and resilient—they are slow to change even when students are 

confronted with evidence that their beliefs are incorrect” (p. 32).  Evidence from this study 

verified the statement and, in fact, it showed increased conceptual knowledge of the arithmetic 

mean does little to affect the procedural solution strategies of students without misconceptions.  

First, a few students who incorrectly solved problems using the arithmetic mean formula on the 

pretest used the same incorrect or incomplete method on the posttest regardless of the 

instruction.  Second, there were only three cases in which students who correctly used an 
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alternative method of solution (e.g. the arithmetic mean formula) on the pretest changed their 

method of solution to one that utilized either the fair-share or center-of balance conceptualization 

on the posttest.  Participants’ connection to the formula proved to be incredibly strong for both 

those that used it inappropriately and for those that used it effectively. 

 Instructors, therefore, have a difficult task when reliance on the arithmetic mean formula 

takes root before conceptual understanding of the arithmetic mean is established.  Establishing or 

advancing the statistical sense (i.e. representativeness) of the arithmetic mean may be inhibited 

by the procedural nature of the arithmetic mean formula.  Instruction focusing on ‘the sum of the 

deviations from the mean is zero’ may be the key to linking the mathematical and statistical 

aspects along with the fair-share and center-of-balance conceptualizations of the arithmetic 

mean. 

5.2.1 Using the ‘Sum of the Deviations from the Mean is Zero’ 

The findings of this research study indicate the importance of one of Strauss and Bichler’s 

(1988) fundamental properties of the arithmetic mean, ‘the sum of the deviations from the mean 

is zero.’  The instruction modules utilized in this study did not explicitly relate the fair-share and 

center-of-balance conceptualizations; yet, participants were able to use the property to solve 

problems that focused on a different conceptualization from which their instruction had initially 

connected the property.  One might expect then, that instruction focused on both 

conceptualizations, particularly a connection between the conceptualizations (e.g. the sum of the 

deviations from the mean is zero), would have an even greater impact on students’ conceptual 

understanding of the arithmetic mean.  Approaches to instruction that contain this focus are 

described in this section. 
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As previously noted, MacCullough, (2007) found experts used the leveling-off strategy to 

connect the conceptualizations of fair-share and center-of-balance.  The leveling-off idea can be 

used as a visual model to relate the ‘sum of the deviations from the mean is zero’ in both 

conceptualizations.  Van de Walle and Lovin (2006) recommend the following exercise to 

connect the models of the two conceptualizations. 

Give the students (or have them create) two different graphical representations of the 

same data (i.e. (a) bar graph for fair-share and (b) frequency distribution for center-of-balance) as 

depicted in Figure 5-3.  Instruct the students to level the bars in (a) by only moving one cube at a 

time from a longer bar to a shorter bar.  Each time they move a cube off of a bar in (a), the cube 

denoting that bar in (b) must be moved one deviation to the left.  At the same time, the cube in 

(b) denoting the bar on which the cube in (a) was added must be moved one deviation to the 

right.  The movements illustrate how deviations from the mean are related in both the fair-share 

and center-of-balance models.  The exercise also emphasizes the notion that the arithmetic mean 

is representative of the data set, not just a mathematical calculation.  The instruction relates the 

mathematical concept, ‘the sum of the deviations from the mean is zero,’ valued by the sample 

population of this study, to the leveling-off visualization that experts used to equate the two 

conceptualizations. 
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Figure 5-3:  Graphical Representations of Conceptualizations 

 

 

 A second instructional plan that would construct a connection between the fair-share and 

center-of-balance conceptualizations was offered by J. Greeno (personal communication, July 
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0

1

2

3

4

5

6

7

Smiths Johnsons Williams Browns Jones

Family

# 
of

 C
hi

ld
re

n

0

1

0 1 2 3 4 5 6 7

# of Children

Jones SmithsWilliamsBrow nsJohnsons

(a) 

(b) 



148 

zero.’  A preliminary assessment, consisting of problems similar to the fair-share and center-of-

balance problems in this study, would be given that offered problems related to both 

conceptualizations.  Results from this study indicate at least some students would transfer 

knowledge from the initial instruction to the problems on the assessment related to the other 

conceptualization.  An orchestrated class discussion of the assessment would draw upon the 

solutions of students who transferred knowledge between the conceptualizations.  The discussion 

would exemplify the connection between the conceptualizations and construct the relationship 

between fair-share and center-of-balance.      

These examples of instruction, or instruction similar to it, link the fair-share and center-

of-balance conceptualizations.  The generalized concept, ‘the sum of the deviations from the 

mean is zero,’ which permeates both conceptualizations, is used as a cognitive bridge between 

them.  The instruction emphasizes knowledge of the arithmetic mean from the perspective of 

both conceptualizations; thus expanding the blending space for students to connect the 

mathematical and statistical domains.     

5.3 CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

The results of this study are significant for several reasons.  First, participants in this study used 

the concept ‘the sum of the deviations from the mean is zero’ to connect the fair-share and 

center-of-balance conceptualizations of the arithmetic mean.  The concept was transferred bi-

directionally; that is, the concept was transferred in an almost equal number of cases from fair-

share to center-of-balance and from center-of-balance to fair-share.  Neither conceptualization 

seemed to be more effective than the other in promoting transfer of knowledge.  The focus of this 
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study was not on instruction, but the results suggest the cognitive link between the 

conceptualizations may be pedagogically significant.  Future research should examine the extent 

to which instruction linking both conceptualizations improves students’ understanding of the 

arithmetic mean.  In particular, does this type of instruction lead to a better understanding of the 

arithmetic mean as statistically representative of a data set?    

 Second, participants’ protocols indicated knowledge of each conceptualization was 

important in solving problems related to specific mathematical properties of the arithmetic mean.  

Therefore, knowledge of only one conceptualization, either fair-share or center-of-balance, does 

not sufficiently portray all aspects of the arithmetic mean.  The weight each conceptualization 

merits during instruction might be an area of future investigation.  Given the restricted time 

frame in most curricula; is there an optimum distribution of resources spent individually 

characterizing and/or collectively relating the conceptualizations?    

Third, the arithmetic mean has uses in statistics beyond the suggestion of central 

tendency.  Future research could relate how knowledge of a particular conceptualization of the 

arithmetic mean, (i.e. fair-share or center-of-balance) affects knowledge of other concepts in 

statistics, such as variance and distributions.   

Fourth, this study proposed a knowledge structure for the arithmetic mean.  Within the 

structure, the conceptualizations of fair-share and center-of-balance acted as blending-spaces 

combining ideas cultivated in the mathematical and statistical domains that compose the 

knowledge of the arithmetic mean.  Future studies should refine the knowledge structure and 

further define where particular concepts related to the arithmetic mean fit and interact within the 

structure. 
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In summary, this study has provided data as to how the fair-share and center-of-balance 

conceptualizations interact with each other and inform mathematical concepts in the context of 

the arithmetic mean.  In a theoretical sense, the interactions cognitively connect the blending-

spaces proposed in the knowledge structure for the arithmetic mean.  In a practical sense, these 

interactions may signify strategies for improving student understanding of the arithmetic mean 

by focusing instruction on the concept, ‘the sum of the deviation from the mean is zero,’ to 

connect the fair-share and center-of-balance conceptualizations.        
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APPENDIX A 

PROBLEMS FROM PILOTED INSTRUMENTS NOT INCLUDED IN STUDY 

Attempted 
Measure Source Statement of Problem Reason for Exclusion 

Fair-Share (Strauss & Bichler, 1988) 

For a class party, Ruth brought 5 pieces of 
candy, Yael brought 10 pieces of candy, Nadav 
brought 20 pieces of candy, and Ami brought 
25.  Can you tell me in one number how many 
pieces of candy each child brought?  How did 
you decide on that number?   

The solution too often used only the 
arithmetic mean formula without 
evidence of conceptual understanding or 
underlying knowledge. 

Fair-Share (Strauss & Bichler, 1988) 

We took some numbers and added them up.  
Before we added them, the largest number we 
had was 5.  Afterwards, we divide up the added 
numbers equally, and we ended up with six.  Do 
you think this could happen? 

The problem was often misconceived or 
too often answered without written 
artifact or complete verbalization of 
thoughts. 

Fair-Share Expert in statistics education 

Three children went on an Easter egg hunt.  John 
found 9 eggs, Betty found 5 eggs, and Ty found 
4 eggs.  If the total eggs were going to be 
divided so each child received an equal number, 
how many eggs would each child get? 

The problem was too often solved using 
only the arithmetic mean formula without 
evidence of conceptual understanding or 
underlying knowledge. 

continued 
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Attempted 
Measure Source Statement of Problem Problem Analysis 

Center of 
Balance 

(Aufmann, Lockwood, Nation, & Clegg, 2007) 
 
 
 

Author 

If one number in a data set is changed, will it 
necessarily change the mean of the set? 
Explain.  
 
If two numbers in a data set are changed, will 
it necessarily change the mean of the set? 
Explain. 

The first part of the problem was too 
often answered “yes” or “no” without 
explanation or, if prompted, ability to 
explain.  The second part of the problem 
seemed to encourage a quick response 
without thorough consideration. 

Center of 
Balance (Cai, Moyer, & Grochowski, 1999). 

We took a survey of the family size of ten 
different families. The average (mean) family 
size for these ten families was 4.  What could 
the family sizes of each of these ten families 
be?   

The problem was too often answered 
without written artifact or complete 
verbalization of thoughts. 

Center of 
Balance 

(Freedman, Pisani, & Purves, 1998) 
 
 
 
 

Author 

Ten people in a room have a mean height of 5 
feet 6 inches.  An 11th person enters the room, 
what height would they be if the mean height 
was now 5 feet 7 inches?  

 
Ten people in a class have a mean height of 5 
feet 6 inches.  An 11th person enters the room, 
what height would they be if the mean height 
of all people remains at 5 feet 6 inches? 

The first part of the problem encouraged 
use of the arithmetic mean formula.  This 
seems to have influenced the plan of 
solution for the second part of the 
problem as most solvers attempted to use 
the formula without revealing conceptual 
understanding or accessed knowledge. 

continued 
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Attempted 
Measure Source Statement of Problem Problem Analysis 

Mathematical 
Concept (MacCullough, 2007). 

My sister and I went for a drive and decided we 
would share the driving time equally.  For the 
first 4 hours of the journey my sister drove 
70mph.  I drove a bit slower for the second four 
hours and averaged 50mph.  What was the 
average speed for the entire trip?  Would this be 
different if we drove 70mph and 50mph 
respectfully but instead of splitting the driving 
by hours (time), we divided the trip into two 
halves by miles (distance)?   

The knowledge evidenced in solving the 
problem showed no relationship to the 
conceptualizations of fair-share or center-
of-balance and therefore transfer of 
knowledge from those statistical concepts 
to the mathematical concepts of this 
problem was unlikely at best. 

Mathematical 
Concept (Strauss & Bichler, 1988) 

Children brought cookies to a party they were 
having.  Some children brought many and some 
brought few.  The children who brought many 
gave some to those who brought few until 
everyone had the same number of cookies.  Was 
the number of cookies given by those who 
brought many more than, the same as, or less 
than the number of cookies received by those 
who brought few? Why? 

The problem was often misunderstood 
and therefore solutions were ill-conceived 
or did not relate to the concepts of fair-
share or center-of-balance.  

Mathematical 
Concept (Mevarech, 1983) 

The mean number of units produced by 100 
workers at factory A is 52.6.  The mean number 
of units produced by 50 workers at factory B is 
31.8.  The two factories merged together, what 
is the mean number of units produced by all 
workers in the merged factory? 

The knowledge evidenced in solving the 
problem showed no relationship to the 
conceptualizations of fair-share or center-
of-balance and therefore transfer of 
knowledge from those statistical concepts 
to the mathematical concepts of this 
problem was unlikely at best. 
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APPENDIX B 

PROTOCOL ANALYSIS TRAINING SESSION 

B.1 INSTRUCTIONS 

In this experiment I am interested in what you think when you solve problems related to 

the arithmetic mean.  In order to do this I am going to ask you to think aloud as you write 

solutions to problems given.  What I mean by think-aloud is that I want you to tell me everything 

you are thinking from the time you first see the problem until you finish solving it.  I would like 

you to talk aloud constantly from the time I present you each problem until you have given your 

final answer.  I do not want you to try to plan out what you are going to say or try to explain to 

me what you are saying.  Just act as if you are alone in the room speaking to yourself.  It is most 

important that you keep talking.  If you are silent for any long period of time I will ask you to 

talk.  Do you understand what I want you to do?  

(Ericson & Simon, 1993) 

 

The following problems are about the arithmetic mean.  Each of them can be solved 

correctly and efficiently using several different approaches or techniques.  You can use any 

method or combination of techniques you wish as you solve each of the problems. 

(Ericson & Simon, 1993) 
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B.2 WARM-UP EXERCISES 

Multiply these two numbers using your paper and pencil and tell me what you are thinking as 

your work toward the answer. 

24 x 36 = 

 

 

Think aloud, telling me everything you are thinking as you solve this problem. You may use 

your pencil and paper if you wish: 

 How many windows are in your parent’s house? 

 

 

In solving this task you should think aloud. If I remind you to do so during the process please 

immediately verbalize what you are thinking. 

Generate as many words as possible using the letters “ONDTERH” 

 

 

 

(Ericson & Simon, 1993) 
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APPENDIX C 

KNOWLEDGE INSTRUCTION MODULES 
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C.1 FAIR-SHARE AND RELATED MATHEMATICAL CONCEPTS 
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C.2 CENTER-OF-BALANCE AND RELATED MATHEMATICAL CONCEPTS 
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C.3 GENERAL PROBLEM SOLVING CONTROL 

Chapter 1:  Problem Solving and Critical Thinking 

Section 3:  Problem Solving 

 

Blitzer, R. (2008). Thinking Mathematically. Upper Saddle River, NJ: Pearson Education Inc. 
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APPENDIX D 

EXAMPLES OF PROTOCOLS FROM PILOT STUDY 

Example #1 
Constituent Knowledge Piece Code Explanation 

JO: Ok, so I am trying to find number three and number six.  
Hum, so there is one, so one, two, so I am going to have to 
divide by ten since there are ten. 

M-FS 
Counts data points and refers to 
arithmetic operations associated with 
the mean formula 

JO: Or what I can do, maybe this would be easier. If I take, let’s 
say, I take two blocks from number eight and put them 
down on number nine.  Those two would be even.  If I take 
one block from number seven and put it over on number ten, 
those two would be even.  So they would all be at 3.2.  If I 
take one block from this number two and put it down on 
number four, then we would only be left with one block 
above the line.  So that means for number three, let’s try 
this, that means only draw up to 3.1 and number six would 
go all the way up to 3.2; because then, for number three you 
take the one block above the line and bring it down onto of 
number three.   So that means every single one would be 
even with the line 

 
S-FS 
M 
 

Uses the statistical conceptualization 
of fair-share, signified by the block-
leveling strategy, the mean is 
represented by the blocks when the 
data are distributed equally to each 
point.   
The arithmetic operations of addition 
and subtraction aid in the block-
leveling strategy. 

JO: So let’s see if that really works though (talks through adding 
all the numbers and dividing by 10 to get 3.2).  Oh that will 
work.  So number three is 3.1 and number six is 3.2 

M Uses the arithmetic mean formula to 
check answer. 
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Example #2 
Constituent Knowledge Piece Code Explanation 

RK: Three greater, ok I am going to write down that (writes 
a=3>x) Ok, b is, b is seven greater (writes b=7>x).  How 
does the value of c relate to x? 

M 
Uses algebraic symbols to represent 
the mathematical relationship 
between the knowns and unknowns. 

RK: Well, if x is the mean, c has to compensate for a and b.  
Umm, since a and b are greater than x, obviously c has to be 
lower than x and equal, equal part of what a and b are 
greater.  So a and b add up to ten more than x.  That would 
make c ten less than x. 

S-CB 
M-CB 
M 

Uses the notion of center-of-balance, 
signified by “compensate,” to signify 
the mean is representative of the data. 
Uses the mathematical properties of 
center of balance to find the mean.   
Uses the arithmetic operations of 
addition and subtraction to employ 
the center-of-balance strategy. 

RK: I’m going to make sure my mind is not playing tricks on me.  
I am going to substitute in a number.  We’ll say x is 12.  Ok, 
so that would make me, a is 15, b would be 19 and c would 
be 2.  So we have 15 plus 19 plus 12 is let’s see…36.  
Divide by three is, let’s see…12. 

M Uses algebraic substitution and 
arithmetic to check solution. 
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Example #3 
Constituent Knowledge Piece Code Explanation 

JO: Well my first guess is zero but does that count as a value? 
Probably not. M Transfers the identity element of 

addition to the arithmetic mean.   
JO: Oh I know what value can be added on, the value of the 

mean.  So if your mean is six (writes down 6 and circles it) 
and you add that mean on again you are still going to get a 
mean of six.  Ok, let me do one to make sure. 

JO: Put a five on either side (of the circled six), a four on either 
side, a three on each side, and a two and stop there.  Let’s 
make sure the mean is six (adds the numbers) Twenty-nine, 
that does not divide evenly.  Let’s add a one on each side, 
that’s better, thirty-two divided by eleven. Uh, that does not 
work either. 

JO: Let’s find a number that works equally.  Let’s get rid of 
some of these numbers, too many numbers.  (counts 
numbers) Nine, I don’t like nine.   

JO: Let’s do it differently.  Put a six in the middle, a two here, 
and a two here, and a two there, and a two there. (see 22622 
representation) (pause) 

MM: Keep talking  
JO: Ok, That is not going to work. Fourteen divided by five, 

let’s do fifteen divided by six. No, uh, I do not want to do it 
that way. 

S-CB 
M-CB 
M 

Uses the idea of center-of-balance to 
represent the mean as the balancing 
point of the data. 
Misuses the mathematical sense of 
center of balance by placing equal 
number on each side of the mean 
rather than equal deviations.   
Uses arithmetic mean formula to 
calculate the mean of several groups 
of numbers.  

JO: Ok, let’s start an easier way. 
JO: Six times three is eighteen so let’s do three numbers 

equaling six. (writes down 2, 3, 2)  Oh, wait, they have to 
equal eighteen.  Three number equaling eighteen, let’s do 
six, a six, no let’s do a five (counts to figure out the seven), 
and a seven.  That equals eighteen divided by three, the 
average equals six.  So now I have my three numbers. 

M-FS 
M 

Uses the idea fair-share (partiive 
division) to note the total sum of 
three values equal to the mean. 

JO: Now the mean can be added, now add another six 
in…twenty-four divided by four is six.  So yes, you can add 
the mean back in so that the data set, I mean the mean does 
not change. 

M Adds and divides using arithmetic 
mean formula. 

JO: Why does that work.  Let me draw a picture.  Draw five 
cubes, seven cubes, and six cubes.  In order to make those 
even we would have to take one from the seven to the six, 
no, over to the five.  All piles will be six.  So by adding 
another pile of six we would not have to move any cubes to 
make it equal.  They will all be six. 

S-FS 
M 

Begins to think about and ultimately 
solve the problem using fair-share to 
represent the mean as noted by the 
phrase “make those even.” 
Adds and subtracts from piles of 
blocks. 

 



172 

APPENDIX E 

EXAMPLES OF SCORING SHEET 

E.1 SCORING SHEET 
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E.2 PILOT STUDY SCORING SHEETS 
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