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FIRING RATE ANALYSIS FOR A LINEAR INTEGRATE-AND-FIRE
NEURONAL MODEL

Ryan M. O’Grady, PhD

University of Pittsburgh, 2011

We investigate a stochastic linear integrate-and-fire (IF) neuronal model and use the corre-
sponding Fokker-Planck equation (FPE) to study the mean firing rate of a population of IF
neurons. The firing rate (or emission rate) function, v(¢), is given in terms of an eigenfunc-
tion expansion solution of the FPE. We consider two parameter regimes of current input and
prove the existence of infinitely many branches of eigenvalues and derive their asymptotic
properties. We use the eigenfunction expansion solution to prove asymptotic properties of
the firing rate function, v(t). We also perform a numerical experiment of 10,000 IF neurons
and show that our simulation is in agreement with our theoretical results. Finally, we state

several open problems for future research.
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1.0 INTRODUCTION

The purpose of this thesis is to provide mathematical analysis of the firing rate of a linear
integrate-and-fire neuronal model (1.10). In this chapter we introduce the notion of mean
firing rate of a neuron, its importance, and how it is studied mathematically. Next, goals

and mathematical results are discussed. In particular, we do the following:

1.1 This section gives a motivation of the main problem in this thesis: mean firing rate

analysis of a neuron.

1.2 This section gives a description of the important mathematical models used to study the

mean firing rate over the last 104 years.

1.3 This section introduces the two stochastic integrate-and-fire neuronal models analyzed

in this thesis. We describe the advantages and disadvantages of studying these models.

1.5 This section describes our main mathematical results. An outline is given which describes

the results proved in each chapter.

1.1 THE MEAN FIRING RATE IN NEURONS

The concept of mean firing rate in neurons has been a central focus of experimental studies
ever since the pioneering work of Adrian and Zotterman [1, 2] in 1926. These authors gave
evidence which showed how frog muscle responded to stimulation of single motor neuron
nerve fibers. The stimulation they used included the pressure on the muscle, as well as
pricking the muscle with a needle. Their recordings “showed that the firing rate of stretch

receptor neurons in the muscles is related to the force applied to the muscle” (Gerstner and



Kistler [13]). In 1928 Adrian and Bronk [3] extended the experimental techniques in [1, 2]
to record the firing rate response of skin to a stimulus of constant intensity. Due to the
ease of measuring firing rates experimentally, this method has been widely used over the last
83 years [13]. As pointed out by Gerstner and Kistler in their 2002 textbook [13], a central
modern day issue is to understand the role of mean firing rate in the mammalian brain, which
“contains more than 10'° densely packed neurons that are connected to an intricate network.
In every small volume of cortex, thousands of spikes are emitted each millisecond.” These
large scale neuronal firing properties have led to the following fundamental questions (e.g.

see Gerstner and Kistler [13], Haken [14], Tuckwell [35]):

e Question 1. What is the information contained in a spatio-temporal pattern of pulses?

e Question 2. What is the code used by the neurons to transmit the information in a

spatio-temporal pattern of pulses?
e Question 3. How might other neurons decode the signal?

e Question 4. As external observers, can we read the code and understand the message

of the neuronal activity pattern?

An important approach to answering Questions 1-4 is to investigate firing rate phenomena

in mathematical models. Below, we describe relevant models.

1.2 MATHEMATICAL MODELS

A first step in addressing the issues raised in Questions 1-4 above is to combine exper-
imental results, together with mathematical modeling, in order to understand underlying
mechanisms responsible for firing rate phenomena in neuronal settings. Thus, in this section
our goal is to give a brief description of mathematical models that have been used during

the last 100 years to understand firing rate phenomena.



1.2.1 The Integrate-and-Fire Model

One of the earliest models (e.g. see Tuckwell [35], Cronin [8]) of neuronal firing is the equation

v,
Ot = 1(t), (1.1)

where V,,,(t) and I(t) are the transmembrane voltage and current, respectively. This model,
which was proposed in 1907 by Louis Lapicque [21], results from taking the time derivative
of the law of capacitance C,,V,,(t) = Q(t). When a positive constant current [ is applied in
equation (1.1), the membrane voltage increases with time until V,,,(t7) = threshold = Vi at
a time tr. At tr a delta function spike occurs and the voltage V,,,(t) is reset to its resting
potential, V' = Vg < Vi, after which the model again determines the behavior of V,,(¢). As
the input current /() is increased the firing frequency of the neuron also increases. One way
to improve the biological accuracy of this model is to introduce a refractory period T > 0,
which limits the frequency of firing during a period of length Tk immediately following the
voltage reset after the neuron fires[35]. Thus, when T > 0, the maximum firing frequency of
the neuron is 1/7Tr. In a recent review article by Brunel and Van Rossum [6], they point out
that “the simplicity of equation (1.1) makes it one of the most popular models of neuronal
firing to this day: it has been used in computational neuroscience for both cellular and neural

networks studies, as well as in mathematical neuroscience.”

1.2.2 The Leaky Integrate-and-Fire Model

A more biologically accurate model is the leaky integrate-and-fire model (e.g. see [35]) given

by the equation
AV V(1)
Con——
i R,

= I(t). (1.2)

R,, is the membrane resistance. As with the integrate-and-fire model (1.1), the membrane
voltage increases with time until V,,,(t7) = threshold = Vi at a time tp. At t7 a delta function
spike occurs and the voltage V;,,(t) is reset to its resting potential, V' = Vg, after which the
model (1.2) again determines the behavior of V,,(%).



1.2.3 The Hodgkin-Huxley Equations: The Space Clamped Simplification

In 1952 Hodgkin and Huxley [16] introduced the following nonlinear system to model a space

clamped axon:

¥ - &[1—gNami”h(v—vNa)—gKn4<V—VK>—gl<V—vz>],
ij—r: = ap(l—=m)— Bnm,

= (L k)~ b,

Cfi—? = ap(1=n)—LBn.

Here, V' is membrane potential, and the variables m, n, and h where proposed by Hodgkin
and Huxley to control the conductance of sodium and potassium ions. The functions ay,,
B, n, Bn, an, B, in the odes for m, n, and h are assumed to be functions of V. The
Hodgkin-Huxley (HH) equations model the variations of the membrane potential and ion
conductance that occur at a fixed point of the neuron [8]. The difficulty in analytically
studying neuronal mean firing rate in the HH system is that the functions a,,, B, an, B,
Qy, Pn are transcendental [14]. Also, experimental indicates that the threshold is not well

defined, hence the maximum voltage varies during a spike [17].

1.2.4 Simplifications of the Hodgkin-Huxley Equations

The FitzHugh-Nagumo Model

To aid in the study of the HH equations, simplifications have been made [8, 14, 35]. A
fundamentally important example is the two-dimensional model developed independently

by Fitzhugh [10] and Nagumo [26] given by the system

dv 1
— = V-V -W+I
dt 3 +4
d

d—‘f = ¢o(V+a—bW),

where a, b, and ¢ are positive constants. As before, I is the membrane current and V' is the

membrane potential. The new function W is a recovery variable.



The Morris-Lecar Equations

In 1981 Morris and Lecar combined Hodgkin-Huxley and FitzHugh-Nagumo into a voltage-

gated calcium channel model with a delayed-rectifier potassium channel, represented by

dVv

- = _J T
C dt zon(‘/a w) +

d_w B ¢woo —w

d 7 (V)

where

Iion(V,w) = gcamoo(V)(V — VCa) + ng(V — VK) —+ gL(V — VL)

Other two variable models similar to the FitzHugh-Nagumo equations, and the Morris-
Lecar system, have been developed by Hindmarsh-Rose [15] in 1984, Rinzel [29] in 1985 and
Wilson [36] in 1999.

1.3 STOCHASTIC INTEGRATE-AND-FIRE MODELS

As Tuckwell [35] points out (see page 111 in Vol IT), the deterministic models discussed in Sec-
tion 1.2 are inadequate when describing firing rate behavior (and hence address Questions
1-4) for a real neuron. In particular, sequences of firing times in experimentally studied
neurons are random. This is due to thermo-molecular processes and channel noise. The
overwhelming source of randomness is from synaptic transmission (e.g. the random arrival
of synaptic events, and/or synaptic failure). This randomness in firing rate characterizes the
behavior of realistic neurons, hence realistic models should be stochastic. Stochastic firing
rate models where first introduced by Gerstein and Mandelbrot [12] in 1964, and subsequently
by Stein [32] in 1965, and Knight [18] in 1972. Fusi and Mattia [11] introduced refractory
barriers in stochastic integrate-and-fire models in 1999. Two of the most widely studied
stochastic integrate-and-fire models are known as leaky integrate-and-fire (LIF) model and
the linear integrate-and-fire (IF) model. These models, which are the focus of this thesis,

are extensions of equations (1.1) and (1.2), and are described below:



I. The stochastic linear integrate-and-fire (IF) model, which is an extension of (1.1) consists

of the stochastic differential equation (SDE)
dV = p(t)dt + o(t)dW. (1.3)

Here, the membrane potential V() satisfies V' € [V, Vr|, where V, < Vi < Vg, o(t)dW rep-
resents Brownian motion, and the function p(t) describes the input of current. The param-
eter Vp, represents the lowest possible value of transmembrane potential. For a real neuron,
Vi, &~ —85 mV, which corresponds to the reversal potential for potassium (see Section 2.2 for
further discussion). Descriptions of this model, together with the eigenfunction-eigenvalue
expansion approach to its analysis, were given by Knight [18, 19] in 1972 and 2000, and by
Mattia and Del Giudice [24] in 2002.

IT. The stochastic leaky integrate-and-fire (LIF) model, which is an extension of (1.2) consists

of the SDE
dv = (u(t) — ;) dt + o(t)dW, (1.4)

\%4

where — = is a leakage term that is not present in the IF model (1.3). A complete description

of this spiking model is given by Gerstner and Kistler [13].

1.3.1 Why study integrate-and-fire models rather than HH type models

As pointed out by Tuckwell [35], Cronin [8], Lindner [22] and Izhikevich [17], integrate-and-
fire models are not as biologically accurate as conductance based HH type models described
above in Section 1.2. The obvious question arises: why study integrate-and-fire models rather
than HH type models? Three important reasons for studying integrate-and-fire models are

the following;:

I. Computational efficiency. In 2004 Izikevich [17] published the paper “Which Model to
Use for Cortical Spiking Neurons?” in which compared the efficiency and accuracy of firing
rates in a multitude of diverse models. These include integrate-and-fire models, the Hodgkin
Huxley equations, the FitzZHugh-Nagumo system, and the Morris-Lecar model. He found

that integrate-and-fire models were computationally very efficient, whereas Hodgkin-Huxley



type systems were extremely inefficient, for recording firing rates in populations of large
numbers of neurons. For example, a 1ms simulation of an IF model requires approximately

5 flops! while a Hodgkin-Huxley simulation for 1ms requires approximately 1200 flops.

II. Applicability. Below, we describe five examples of recent studies which have successfully
made use of integrate-and-fire models to understand firing rate phenomena in biological

systems.

(A.) In 2006 Doiron, Rinzel and Reyes used a multi-layer IF model to show that interaction
between populations of spiking neurons in the cortex may depend critically on the size of the
populations. In particular, they performed a simulation of 10 layers of 500 IF neurons. Their

results agreed with experimentally observed behavior in a rat somatosensory cortex [28].

(B.) In 2008, Mullowney and Iyengar [25] studied maximum likelihood estimates of a leaky
integrate-and-fire neuron. They develop an algorithm for estimating parameters when only
the firing rate is known. Their results were in agreement with previously published theoretical

results.

(C.) In 2009 Ly and Doiron [23] used integrate-and-fire models to successfully estimate
dynamic neural response in normal sensory and motor behavior. In particular, they con-
struct an integrate-and-fire model with realistic, time varying inputs that agree with clamp

experimental data in rat somatosensory cortex [7].

(D.) In 2009, Okamoto and Fukai [27] make use of integrate-and-fire model to study neu-
ronal firing rate behavior in rat prefrontal and entorhinal cortex. Their results suggest that
populations of neurons (in various brain areas) can act like non-leaky integrate-and-fire neu-
rons at the population level. In addition, their results are in agreement with in agreement

with experimental observations.

(E.) In his 2011 PH.D. thesis, Sashi Morelli [] obtained theoretical predictions of the firing
rate of IF and LIF model neurons receiving mean or variance coded time-varying inputs.

These predictions were tested via real neurons in the somatosensory cortex of a rat.

III. Mathematical tractability. Because of the simplicity of stochastic integrate-and-

!The number of flops represents the number of floating point operations required for a simulation



fire models, they are much easier to analyze than systems of nonlinear HH conductance
type models which have large numbers of functions and constants. To study stochastic
integrate-and-fire type models, Knight [18, 19], as well as Mattia and Del Giudice [24], have
successfully made use of eigenfunction expansion methods to study solutions of the Fokker

Planck Equation (FPE) corresponding to the IF SDE (1.3):

9. __ (t)i Lo &
ot T TRy P T T Gy

p+v(t)o(V —Vg), (1.5)

where V(t) € [V, Vr], and V (t) satisfies a reflective boundary condition at V. An eigen-

function expansion solution of the FPE1.5, which has the form
p(V,t|V5,0) ZA t)eM g (V), (1.6)

has allowed these authors to successfully investigate the behavior of the firing rate (or emis-
sion rate) function
2

o® 0
v(t) = —?WP(VTJWO,O)- (1.7)

Question: What is the connection between the mean firing rate of a population
of real neurons and the mean firing rate constructed by using the eigenfunction

expansion method?

In real nervous systems neurons react to inputs from dynamic environments (e.g. sensory,
memory recall). The input statistics for a given neuron change during the course of a task.
Thus, in the context of the stochastic IF SDE equation (1.3), u(t) and/or o(t) are time
dependent quantities. A simple example illustrating this property is when the neuron input
u(t) is a step function, e.g.

0 0<t<T*=1000 msec.,

u(t) = (18)
25 t>T",

and o(t) is constant, e.g.

o(t)=1 Vit >0. (1.9)

The left panel of Figure 1 illustrates a simulation of population mean firing rate, vy(t),

for N = 10,000 neurons. Here, we assume that each neuron satisfies the initial condition



V(0) = Vg = 0. Over the subinterval 0 < ¢t < 7% = 1000 the neurons receive constant
input © = 0, and the population mean firing rate quickly relaxes to the equilibrium level
vn(00) =~ 1. When ¢ > 1000 the input discontinuously jumps to the new constant level
1 = 25. In response to this discontinuous change of input, the population mean firing rate
initially undergoes oscillations (i.e. ringing) with peaks that decrease in amplitude during a
transition period of length approximately 200 msecs. By the end of this transition interval,
the firing rate has relaxed to its equilibrium level, vy & 25. The right panel shows the
theoretical mean firing rate, v(t), resulting from the eigenfunction expansion method. During
the transition interval, [1000, 1200), the theoretical firing rate v(t) also undergoes oscillations,
with peaks that decrease to zero in amplitude as the v(t) relaxes to its equilibrium level,
v &~ 25 (see Section 5.2.2). A major thrust of this thesis is to give a firm foundation to
the use of the eigenfunction expansion to understand non equilibrium behavior of firing
rate when p and o are constant during the two subintervals [0,7%) and [T™, c0). Our study
includes the parameter regime p > 0 and o > 0, and also the regime p < 0 and o > 0.
Eigenfunction expansions have played an important rule in several of the neuronal studies
described above ( e.g. studies (A), (C) and (E)). In each application, numerical simulations
led the authors to assume, without proof, that branches of eigenvalues, and corresponding
eigenfunctions actually exist. However, to our knowledge there has been no rigorous analysis
which establishes their existence. Thus, the focus of this thesis is to rigorously establish the
existence of branches of eigenvalues and eigenfunctions. This will give a firm mathematical
foundation for using eigenvalue/eigenfunction expansions to investigate firing rate properties
in the stochastic models described above. The first step is to investigate these issues for the
IF model, for both > 0 and p < 0. It is hoped that our results will form a baseline from
which we can gain insight for future analytical studies of the more complicated LIF model.

Our approach is described below.



VN \V}
N=10000 50 6=1, o=1
6=1, o0=1
2 Mm
25 W\W—
0 e S 0 !
0 500 1000 1400 0 500 1000 1400
Vy v
50}
3 Blowup Blowup
0
t 0 t
0 250 500 750 1000 1000 1200 1400

Figure 1: Left Panel: population mean firing rate, vy(t), (see formula (5.9)) for N = 10, 000
neurons when o(t) = 1, and p(t) is the step function defined in (1.8), i.e u(t) = 0 Vt €
[0,1000), and pu(t) = 25 Vt € [1000,00). Right Panel: Theoretical mean firing rate, v(t),

of the FPE (1.5) constructed using the eigenfunction expansion method. See text.
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1.4 THE FOCUS OF THIS THESIS

In this thesis we fix p(t) and o(t) to be constant, hence the stochastic IF model (1.3) becomes

dV = pdt + odW, (1.10)
with corresponding FPE
0 0 0% 02
—p =l —_—— t)o(V — . 1.11

Interpretation of x4 and o

We now discuss the interpretation of 4 and o in equations (1.10) and (1.11). Each neuron
in a neural network has a base (or intrinsic) current J that defines its resting state [22, 35].
The neuron also receives input current from other neurons via synapses. Each synapse
is characterized as either excitatory or inhibitory depending on the electric and chemical
signal it sends to a connected neuron. The total input current to a neuron modeled by

equation (1.10) is

I =p+ o€, (1.12)

where we decompose 1 as

p= B+ fhexe + Minh- (1'13>

In equation (1.13) f is the intrinsic current characteristic of the neuron, fie,. represents the
average input current over all excitatory synapses, and p;,, represents the average input
current over all inhibitory synapses. Finally, the parameter o represents the total magnitude
of the variances of the summed input currents. Below, we describe values of u and ¢ in two
different physical settings, namely slice (i.e. “in vitro”) experiments, and living brain (i.e.

“In vivo”) experiments.
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e In vitro: In general, for slice experiments, synaptic input current is negligible. Thus,

feze = Minn = 0, and equation (1.13) reduces to

-y (1.14)

and (1.12) reduces to

I =p+o0¢. (1.15)

In equation (1.15), o > 0 represents natural fluctuations in input current due to remnant
synaptic contributions. This suggests that o is relatively small compared to in-vivo
experiments. For cortical slice experiments, an external current is often required to
force the transmembrane potential above the resting level so that the neuron fires. This
suggests that the intrinsic current, /3, is negative in equations (1.14) and (1.15). However,
a recent study of auditory cortex, (Tzounopoulos, Leao, Lie and Doiron[34] forthcoming)

have shown that there is a neuronal population for which g > 0, and also a population

for which g < 0.

e In vivo: Experimental evidence indicates that cortical neurons receive both excitable
and inhibitory synaptic inputs, and that these inputs cancel each other out, i.e. fieze +

Winn = 0[5, 20, 33]. Thus, (1.13) reduces to

=5, (1.16)

and (1.12) reduces to

[=B+0¢. (1.17)

The value of the intrinsic current, /3, in (1.16) and (1.17) could be either positive or
negative depending on the specific experimental preparation. Finally, the variances of
the intrinsic, excitable and inhibitory currents are all positive, and therefore the value of

o in (1.17) can be relatively large compared to in-vitro experiments.
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1.5 OUR MATHEMATICAL RESULTS

Mattia and Del Giudice [24] consider equations (1.10) when V;, = Vg, and derive the following

nonlinear equation for the eigenvalues of the FPE (1.11):

402 _n2) _ 212 2
R (71 7;) KVt 4 Z-’Vl’VQQU 7 (1.18)
2Vio? V7
where
Vi V
Z:,U;T_2T’ ’Y=71+i72=0_—§\/u2+2A02, (1.19)
and

ve® =~y cosh(y) + zsinh(7). (1.20)

Mattia and Del Giudice [24] make the following conjecture:

The Mattia-Del Giudice Conjecture for problem (1.18)-(1.19)-(1.20)

(a) When g > 0 the eigenvalues are complex with negative real parts, and the corresponding

eigenfunctions ‘form a complete set.’

(b) When p < 0 the eigenvalues are real and negative, and the corresponding eigenfunctions

‘form a complete set.’

Mattia and Del Giudice [24] also claim that this conjecture is true when V, < Vi (see

Section 3.4 for details).

1.5.1 Thesis Goals and Results

The main mathematical goals of this thesis are the following:
(I) Resolve the Mattia-Del Giudice conjecture.

(IT) Use the Theorems proved in part (I) to analyze the firing rate function.

Our main mathematical advances:

13



e (I) We give a rigorous proof of existence of eigenvalues of problem (1.18)-(1.19)-(1.20).
Although many authors (e.g. Knight [19], Doiron [9], Mattia and Del Giudice [24],
Cheng, Tranchina) have simulated these eigenvalues, to date there has been no rigor-
ous analysis of this fundamental problem. In Chapter 4 we investigate the Mattia-Del
Giudice eigenvalue problem and prove that infinitely many branches of solutions do exist.
Our results apply to both the p > 0 and p < 0 settings.

e (IT) We make use of the Theorems proved in part (I) to give a rigorous analysis of the

firing rate function of the IF SDE model (1.10). Chapter 5 contains all of these results.

1.5.2 Chapter Outline

Chapter 2: Comparison of the IF and LIF Models

The goal of Chapter 2 is to exhibit the difficulties in studying the LIF model, and hence
explain why we focus on the IF model. We begin by introducing the complete SDEs for both
the LIF and IF models, as well as the corresponding Fokker-Planck equation (FPE). We
follow Knight [18, 19], as well as Mattia and Del Giudice [24], and investigate the existence
of eigenfunction expansion solutions of (1.11) under appropriate boundary conditions. Next,
we derive the corresponding FPE boundary value problems for the LIF and IF models and
derive two identities involving the firing rate, v(¢). We also derive a formula for the stationary
solution (time-independent solution), ¢o(V'), of the LIF model and point out the prohibitive
difficulties of finding solutions of the eigenfunctions corresponding to non-zero eigenvalues.
A particular parameter region is considered where it is proved that the slope of the stationary
solution solution at reset changes sign exactly once as a function of the input current, pu.
Our numerical experiments lead to a conjecture on the size of this parameter region. In
Section 2.4 we investigate the existence of eigenfunction expansion solutions to the IF FPE
boundary value problem. We derive formulas for the stationary solution in two different
regimes:

—OO<VL:VR<VT and —OO<VL<VR<VT.

In both cases we derive nonlinear algebraic equations that describe the eigenvalues of the

corresponding FPE boundary value problem. Lastly, in Section 2.5 we offer a brief discussion
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on the difficulties of studying the LIF model analytically.

Chapter 3: Background Properties of the IF Model

We consider the IF model (1.10) when co < V, < Vg < Vp, V € [V, V] and p and o
constant. We follow Mattia and Del Giudice [24] and develop the FPE boundary value
problem in two cases:

VL<VR<VT and VL:VR<VT.

In the case V;, = Vi < Vp we follow Knight [19], as well as Mattia and Del Giudice [24], and
develop ODE boundary value problems for the eigenvalues of the FPE (1.11). In Section 3.4

we state the Mattia-Del Giudice conjecture in detail.

Chapter 4: Existence Theorems

This Chapter contains our main mathematical results. In particular, our goal is to determine
the behavior of solutions of the FPE (1.11) for the IF model (1.10) when V, = V5. First,
we follow Mattia and Del Giudice [24] and derive the nonlinear eigenvalue problem (1.18)-

(1.19)-(1.20). Next, we analyze this problem in three parameter regimes:

Case I, ;n > 0 : In Theorem 5 we give a rigorous proof that equation (1.20) has infinitely
many branches of solutions, and hence there exist infinitely many branches of eigenvalues.
We prove asymptotic results for the eigenvalues. In Section 4.5 we provide a partial proof of

the Mattia-Del Giudice conjecture (see Section 3.4).

Case II, y < 0 : In Theorems 8 and 9 we assume that the eigenvalues are real? and give
a rigorous proof that equation (1.20) has infinitely many branches of solutions, and hence
there exist infinitely many eigenvalues. We prove asymptotic properties of the eigenvalues

and provide a partial proof of the Mattia-Del Giudice conjecture (see Section 3.4) for u < 0.

Case III, ;= 0 : In Theorem 2 we prove that the eigenvalues are real and negative. We
also show that an eigenfunction expansion solution of the FPE boundary value problem does

not exist.

2This assumption is based upon numerical calculations and the implication that the eigenvalues are real.
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Chapter 5: Analysis of the Firing Rate Function

We begin Chapter 5 by calculating the eigenvalues of the FPE in different parameter regimes.
Next, we perform a numerical simulation of 10,000 IF neurons and compare the mean firing
rate of the population with our theoretical results from Chapter 4. We prove asymptotic

results of the theoretical mean firing rate in terms of the parameters p and o.

Chapter 6: Open Problems

For completeness we state open problems and discuss future research possibilities for the IF
and LIF models. In particular, we discuss the next step towards answering Questions 1-4

above.

Appendix : Matlab Programs

In the appendix we provide instructions and Matlab code to reproduce all the figures and

numerical experiments.
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2.0 LEAKY (LIF) AND LINEAR (IF) MODELS: A COMPARISON

In this chapter we compare the eigenvalue problem for two neuronal models: the leaky
integrate-and-fire (LIF) and the linear integrate-and-fire (IF). In particular, we do the fol-

lowing:

2.1 We state the complete SDE for the leaky integrate-and-fire (LIF) model. We then state
the associated Fokker-Planck equation (FPE) and derive the complete FPE boundary value

problem.

2.2 We state the complete SDE for the linear integrate-and-fire (IF) model. We then state

the associated FPE and derive the complete FPE boundary value problem.

2.3 We look for eigenfunction expansion solutions to the associated FPE of the LIF model.
We derive stationary solutions and investigate the behavior of these solutions both analyti-

cally, and numerically.

2.4 We look for eigenfunction expansion solutions to the associated FPE of the IF model. We
derive stationary solutions and investigate the behavior of these solutions both analytically,

and numerically.

2.5 We discuss the difficulty in studying the LIF model and point out why the IF is more
accessible for analytic results. We also discuss the difficulties that arise in giving a complete,

general analysis of the IF model.
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2.1 THE LEAKY INTEGRATE-AND-FIRE MODEL

The first model we consider is the leaky integrate-and-fire model (LIF):
Vv
dv = (,u——) dt +odW, —oo<V(0)=1V, <Vrp. (2.1)
T

It is assumed [9], [24], [19] that there exists a value Vi € (—oo, V) where Vi is a reset value

defined as follows:

if V(t7) = Vi, then V(t*) = Vg, (2.2)

where Vr is the “threshold” and where the neuron fires. The range of V/(¢) is
—oco < V(t)<Vp, ¥V t>0. (2.3)

Goals: In the remainder of this section our goals are:

2.1.1 State the Fokker-Planck Equation (FPE) for p(V,t|Vp,0), the conditional probability

density function which is used to determine the probable value of V' (¢).
2.1.2 We develop a formula for v(t), the firing rate emission function.

2.1.3 We state the full FPE boundary value problem associated with the LIF model.

2.1.1 The Fokker-Plank Equation FPE for the LIF Model

A standard approach [9], [24], [19] in determining the most probable value of V'(¢) is to make
use of the associated Fokker-Planck equation (FPE) [30]

ap 0 vV a? 9%p
S | .. TIP L u)s(V — Va). 2.4
o= (= 2) o] + T+ vl = vi (2.4)
The relevant solution of (2.4), which is used to determine the probable value of V'(¢), is
denoted by the conditional probability density function p(V,t|Vj,0). It satisfies
0
(p(V,t|VO,O), W’OG/’ t|V0,O)) — (0,0) as V — —o0, Vt >0, (2.5)

the initial condition

p(V,0[V5,0) = 6(V = Vo), (2.6)
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the absorbing condition

p(Vr, t|V5,0) =0, Vi >0, (2.7)
and the normalizing condition
Vr
/ p(V,t|Vp,0)dV =1, Vi > 0. (2.8)

Proving the existence and behavior of p(V, t|Vp,0) is a formidable analysis problem. A stan-
dard approach is to express p(V,t|V;,0) as an eigenfunction expansion. The relevant eigen-
functions satisfy an ODE boundary value problem. The difficulty in studying the resultant

ODE boundary value problem is discussed in Section 2.3. In particular, see Section 2.3.5.

2.1.2 The Firing Rate Function for the LIF Model

To develop the formula for v(t), we proceed as follows: first, an integration of (2.4) with

respect to V' from —oo to Vr, together with (2.5), (2.7) and (2.8), gives the formula

2 9
v(t):—%wp(VT,tWo,O), for all ¢ > 0. (2.9)

Next, integrate (2.4) with respect to V' from Vi — € to Vg + ¢, let € — 01, and obtain the

equivalent formula

0 9,
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2.1.3 The FPE BVP for the LIF Model

Equations (2.9) and (2.10) give two representations of v(t). Therefore, we replace the term

v(t)o(V — Vg) in (2.4) by the boundary condition

(Vr, 1|V, 0) (Vi t|Vo,0) (Vi t|Vo,0). (2.11)

9 _9 _9
v’ —av’ av’

Thus, the FPE boundary value problem for the LIF model is

)
0 o2 02

=" (=Tl + 5ok

p(V, Vo, 0), Zp(V,t|Vp,0)) = (0,0) as V — —oo, V>0

o(V, 0V, 0) = 6(V — V,

(V,0[Vo, 0) = o( 0) (2.12)
p(‘/Tat’%aO):O? vVt >0

IV p(VitVo,0)dV =1, V>0

| avP(Ve Vo, 0) = 55p(Vit 1115, 0) = gp(Vig ,#]16,0), ¥t > 0.

2.2 THE LINEAR INTEGRATE-AND-FIRE MODEL

For comparison with the LIF model we state the complete linear integrate-and-fire (IF)

SDE [9],[24],[19] problem:
dV = pdt + odW, V, <V(0) ="V, < Vp. (2.13)

where V, < Vp. The possible range of values for V;, depend critically on the choice of pu.
When p < 0 we require V7, to be finite. As we show below, this constraint is necessary
to construct a stationary solution of the FPE boundary value problem (see Section 2.4.4).
When g > 0 it is theoretically possible that V, = —oo, since a stationary solution of the FPE
problem can be constructed in this case. However, as pointed out in the introduction, the
lowest possible value of V;, for a real neuron is V;, & —85 mV. Thus, in the remainder of this

thesis we follow Mattia [24] (see p. 051917-3) and focus only on the case —oo < Vi, < V.
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The next assumption, as with the LIF model (see equation (2.2) in Section 2.1), is that there

exists Vg € (Vi, V) where Vg is a reset value defined as follows:
it V(t7) = Vg, then V(t*) = Vx. (2.14)
When V, is finite the range of V (¢) is
Ve <V() < Ve, V>0, (2.15)
and we assume reflective boundary conditions when V' (t) = V.

Goals: In the remainder of this section our goals are

2.2.1 State the associated Fokker-Planck Equation (FPE) for p(V,t|V},0), the conditional

probability density function which is used to determine the probable value of V' (t).
2.2.2 We develop a formula for v(t), the firing rate emission function for the IF model.

2.2.3 We state the full FPE boundary value problem associated with the IF model.

2.2.1 The Fokker-Plank Equation for the IF Model

The FPE associated with the IF model is given by

0 o o o
5P = HayP T 5 gyl T VOV —Va), (2.16)

where Vi, < V(t) < Vr and t > 0. Again, as with the LIF model, the solution to (2.16) is
denoted by p(V,t|Vp,0) and it satisfies the initial condition

p(V,0[Vp,0) = 6(V — Vo), (2.17)
the absorbing condition
and the normalizing condition
Vr
/ (V. tVo,0)dV = 1, Vit > 0. (2.19)
VL
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2.2.2 The Firing Rate Function for the IF Model

Exactly as in the case of the LIF model, the firing rate, v(t), satisfies two identities:

v 2 9‘,p i77 iOa y v ) .
and
9 51 R 0 51 R 0 ) . .

2.2.3 The FPE Boundary Value Problem for the IF Model

As with the LIF, the equations (2.20) and (2.21) give the boundary condition

0

0
VT7 Zf|‘/0a 0) = Wp(

Wﬁ(

Since V7, is finite, the reflecting boundary condition at V7, implies [24, 35]

2

g
0=—up(Ve,t) +

gwﬂ(vut) Vit>0, (2.23)

which we do not have in the Leaky case.

Remark: The probability current function [24, 35], S,(V,t), is given by

2

S, (Vi) = =

5 ay PV ) — pe(Vit). (2.24)

It should be noted that (2.23) is equivalent to the net flux at V, being zero, i.e.

S,(Vi,t) = 0. (2.25)
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It follows that, when V7 is finite, the complete FPE boundary value problem for the IF

model is

atp = _“avf‘)Jr 2 8\/2'0
p(V,0[V5,0) = 6(V — W)
,O(VT,tH/E),O) =0, Vt>0
(2.26)

T o(V,t|Vo, 0)dV =1, Vt>0

| ooV 1116, 0) = gp(Vig t1V5, 0) = 5(Ve , 1]V, 0), ¥t > 0.

Now that we have derived the boundary value problems for both the LIF and the IF models,

we turn our attention to their respective eigenvalue problems.

2.3 EIGENFUNCTION EXPANSION FOR THE LIF MODEL

A standard approach [9], [24], [19] to solving a FPE boundary value problem is to assume

that p(V,t|Vp,0) has an eigenfunction/eigenvalue expansion of the form

p(V, 1|V, 0) Z A (V (2.27)

n=—oo

Goals: In the remainder of this section we do the following:

2.3.1 Develop the ODE boundary value problem associated with the eigenvalues A, and

corresponding eigenfunctions ¢,.

2.3.2 Derive the stationary solution, ¢o(V'), corresponding to the eigenvalue A = 0. In

particular, we show that

Po(V) = (2.28)



where A and B are positive constants. In Figures 2 and 3 we plot ¢¢(V) in different parameter

regions.

2.3.3 We set Vg =0, V7 = 1 and study ¢;(0") as a function of 7, 0 and p. The main result,

Theorem 1, is fundamental to answering questions about the maximum value of ¢o(V').

2.3.4 We perform numerical computations to gain confidence of the results proved in Sec-

tion 2.3.3. A conjecture is made on the size of the parameter space in which Theorem 1

holds.

2.3.5 We discuss the difficulty in finding closed form expressions for the eigenfunctions ¢, (V)

when n > 0.

2.3.1 The ODE BVP for Eigenfunctions of the LIF Model

A standard approach to analyze (2.12) is to look for solutions of the form

p(V.tVp,0) = ¢(V)e. (2.29)

The first step is to replace p in (2.12) with (2.29), and obtain the ODE

o) - 5 (n=2) 6w+ 5 (2-2) o) =0, (230

with boundary conditions

(

(@(V),¢'(V)) = (0,0) as V — —o0
o(Vr) =0 (2.31)

|¢/(Ve) = 0/ (Vi) = &/ (V).

Thus, the complete boundary value problem for eigenfunctions is (2.30)-(2.31).
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2.3.2 Stationary Solution of the FPE of the LIF Model

The first step in studying (2.30) and (2.31) is to let n = 0, and to look for a stationary
solution, ¢o(V'), corresponding to the eigenvalue Ay = 0. Our goal is to show that the

stationary solution is given by

¢o(V) = (2.32)

where A and B are positive constants.

To find the solution ¢y(V') we first set A = 0 in (2.30) and obtain

- % KM - ;) gbo]/ - 0. (2.33)

First, we focus on the interval Vg < V' < Vp. From (2.33) it follows that
, 2 V
. - — =C. 2.34
G- (n-—)o=C (2:34)

Since ¢o(Vr) = 0 it follows that ¢ (Vr) = C. Integration of (2.34) from V' to Vi, along with
60(V) = 0, yields

2 V1o )2
do(V) = —Ce a2 (n=%) / e (=) de, Vi <V < Vp (2.35)
14

To solve (2.33) for V' < Vg, we integrate (2.33) from —oo to V. The condition
<¢(V)7¢/(V>> - (0,0) as V — —oo
yields a first order ODE with solution
T V)2
¢0<V) = Aech?( 77) , V < VR. (236)

For the solution to be continuous at Vg it must be that ¢o(Vy) = ¢o(Vy ). That is,

Vp

—C’B:AwhereB:/ e
\%

(+-2)" 4z € R. (2.37)

QM‘ 3
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Therefore,

Ae==5) v <,
¢o(V) = (2.38)

%e_a%( %) ‘YT ez (1=%) dov, Vp <V < Vp.

To solve for A recall the normality condition, f_vzo ¢o(V)dV =1, [30]. Thus,

1

- - 2.39
L+ 51 (2.39)

where

Ve )
11:/ e 2 (=%) gV and (2.40)

Vi > (Voo
122/ 6_02(“_‘:)/ 72 (1=%)" gz av. (2.41)
0

Finally, a straightforward calculation shows that the jump condition ¢'(Vy) = ¢'(V4) —
¢' (V) is satisfied. Therefore, the stationary solution is given by (2.38)-(2.39)-(2.40)-(2.41).

In Figures 2 and 3 we plot the stationary solution given by (2.38)-(2.39)-(2.40)-(2.41) for

two different parameter sets.

The Most Probable Value of V(t): Recall that V(¢) is the membrane potential of a
neuron and that p(V,¢|Vp,0) is used to find the probable value of V(). If the real part of

the eigenvalues, A,, of the FPE are negative, then

p(V, t|Vp, 0) )+ A(V)eM G, (V) = do(V) as t— oo (2.42)

n#0
Thus, the most probable value of V (t) is given by critical V,,;; where ¢o(V') achieves a
maximum. The numerical simulations (See Figures 2 and 3) provide evidence that V. is a

decreasing function of p.

Remark: The leaky integrate-and-fire (LIF) ODE boundary value problem (2.30)-(2.31) is
especially difficult to solve when n # 0. The analytic difficulty is due to the presence
of the “leaky term” —Y¢/(V) in equation (2.30). To our knowledge there are no proofs

of the existence of closed form solutions for ¢,(V), n > 1.
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Figure 2: Stationary solutions for the LIF model defined by (2.38)-(2.39)-(2.40)-(2.41). Pa-
rameters: 7 =1, Vg =0, 0 = 0 = 1 and p decreases from p = 2 (upper left) to u = —0.5
(lower right). The value V' = V|, where the peak occurs is a continuous function of p. We
think that V,, = —oo as t —+ —oo and V,, — 0 as u — oo. See Listing .7 in Appendix A.1
for the Matlab code.
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Figure 3: (Stationary solutions for the LIF model defined by (2.38)-(2.39)-(2.40)-(2.41).
Parameters: 7 =20, Vg =0, § = 0 = 1 and p decreases from p = 2 (upper left) to p = —0.5
(lower right). The value V' = V|, where the peak occurs is a continuous function of p. We
think that V,, = —oo as t —+ —oo and V,, — 0 as u — oo. See Listing .7 in Appendix A.1
for the Matlab code.
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2.3.3 Behavior of the Stationary Solution of the LIF

In this section we study the behavior of the solution (2.38)-(2.39)-(2.40)-(2.41). Notice
that (see Figures 2 and 3), for fixed 7 and o, ¢{,(0") changes sign as p decreases from 2 to

0. In what follows we will prove the following

Theorem 1. Let Vg = 0 and Vi = 1. Then, there exists a neighborhood U in the (1,0) plane,
and a unique p* € (0,1), such that (1,1) € U and ¢p(07) = 0 when p = p*. Furthermore,
there exists a unique

p(r,0) € CH(U,R) (2.43)
such that ¢y(0%) = 0 when p = p*(r, 1) for all (r,0) € U. In particular, ¢p(0%) > 0 when
> and ¢(0%) < 0 when p < p*.

Proof. We prove Theorem 1 in the following four steps:
Step I. Fix 7 = 1 = 0. Prove that there exists 1 and py such that ¢p(07) < 0 when p = 11y
and ¢,(0%) > 0 when u = po.

Step II. Show that ¢(0") is a continuous function of u. Therefore, by Step I, the interme-
diate value theorem guarantees u* € (1, p2) such that ¢,(0") = 0 provided pu = p*.

Step III. Prove that p* is unique.

Step IV. Use the implicit function theorem to show that the unique p* exists in a neigh-

borhood Uof 7 =1, 0 = 1.

Proof of Step I. Fix 7 = ¢ = 1 and assume that 0 < V' < 1. It follows from (2.38) that

A - AP
Po(V) = —€°2(M‘:)2/ e do, (2.44)
B 1%
and thus
A2 v\ _- 2 (1 o ey
o (V) = o {_2 (M B _) o~ (=) / ez W=2)% qp — 1} ) (2.45)
o T \%
The function of importance is
A 2 T ! T zy2
o) (0" = = [g_l;e—”z/ ez W) g — 1] : (2.46)
0



Recall that A and B are positive constants. To study equation (2.46) we set

1
F(u,7,0)= 0—56_7 ez =D dy. (2.47)
0

To complete Step I we prove two technical lemmas.

Lemma 1. Let =0 =1 and = 0. Then ¢,(07) < 0.

Proof. A direct evaluation of (2.47) gives F'(0,1,1) = 0. Combine (2.46) with the fact that
A >0 and B > 0 to obtain the desired result. O

Lemma 2. Let =0 =1 and p = 1. Then ¢,(07) > 0.

Proof. 1t is enough to show that F(1,1,1) > 1. We produce two proofs.

Proof 1: Notice that
2 1
F(1,1,1) = —/ =% dy. (2.48)
0

e

By Jensen’s inequality we have that

2 ! 2
F(1,1,1) > —exp (/ (1—2)? d:z:) =23 > 1. (2.49)
0

e

Proof 2: A change of variable shows that
! 2
F(1,1,1) = 26_1/ eV dy. (2.50)
0

It follows that

2 1 y4
F(1,1,1) >—/ <1+y2+—) dy

e Jo 2

2 1+1+ 1

e 3 10

243

=—— 1 2.51
c10 > b (2.51)

as claimed. 0
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This completes the proof of Step 1.

Proof of Step II. Notice that F'is the product of three continuous functions and hence con-
tinuous on [0, 00) X (0,00) x R. An application of the intermediate value theorem, combined

with Lemmas 1 and 2, proves the following

Lemma 3. Let 7 = 0 = 1. Then there exists u* € (0,1) such that F(u*,1,1) = 1. In
particular,

oo(07) =0 when p=p*. (2.52)
Proof of Step III. We show that p* is unique:

Lemma 4. Let 7 = 0 = 1. Then there exists a unique p* € (0,1) such that F(p*,1,1) = 1. In
particular, ¢5(07) = 0 when p = p*. Furthermore, for u > p*, ¢4(0%7) > 0 while ¢{(07) < 0
for p € (0, ).

Proof. We set G(z) = F(z,1,1) and show that if there exists * > 0 such that G(z*) = 1,
then G'(z*) > 0. Thus, once F' crosses the line F' =1 it can not cross the line F' = 1 again.

This implies that ¢5(07) = 0 only once. To complete the proof of Lemma 4 we need two

lemmas.

Lemma 5. The function H(z) = 1 — 22%e'=%® on RT obtains a minimum at x = 1 and

H(1) > 0.

Proof. First notice that H(0) = 1 = H(o0). Since H'(z) = 4z(x—1)(1—e72), it follows that
H achieves a minimum at z = 1. As H(1) =1 — 2 < H(0) we conclude that H is bounded

below 1 — % O
Lemma 6. Let 7 =0 =1 and p > 0. Also, suppose that G(z) = 1. Then, G'(z) > 0.
Proof. A differentiation of (2.47), with 7 = 1 = o, shows that G satisfies the ODE
/ F —p2 [ (u-1)2 2
G = — —2uG —2ue™* [e“ —e”]. (2.53)
i

Suppose that G(x) = F(x,1,1) = 1. An application of Lemma 5 gives the desired result:

G =—(1—-2p%"?) > 0. (2.54)

=~

31



This completes the proof of Lemma 6.

]

It follows that there exists a unique p* € (0,1) such that ¢{(07) =0 when p = p*. Further-

more, if 0 < p < p*, then ¢5(07) < 0. If > p*, then ¢;(0") > 0. This completes the proof

of Lemma 4.

This completes the Proof of Step III.

]

Proof of Step IV. Thus far, we have shown that there exists a unique p* € (0, 1) such that

F(p*,1,1) = 1. It remains to show that %F(u*, 1,1) # 0. Notice that

0 1 2
@F(/”%Ta U) :;F(MvTa U) - %F(M77—7 J)

It follows from Lemma 5 that

0 1 .
P, 1,1) =—F (i, 1,1) = 207 F(u', 1, 1) = 2" (0737 — 1)
L

o
:i* — 2/1/*6(172“*)
1 *
= (—2(u2)*e(1_2“ )) > 0.

The implicit function theorem applies: there exists a neighborhood U of (1,1) in the (7,0)

plane, and a continuously differentiable function u*(7, o) € C*(U,R) such that
F(u*(r,0),1,0) = 1.

This completes the proof of Step IV as well as the proof of Theorem 1.

Question: How large is the neighborhood U?

To investigate this question we perform a numerical experiment.
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2.3.4 Numerical Exploration of the Neighborhood U

In this section we use a numerical experiments to investigate the neighborhood U. These

experiments lead us to make the following conjecture:

Conjecture: Let Vg = 0 and Vi = 1. Then, for each 7 > 0 and ¢ > 0 we conjecture
that there is a unique p* > 0 such that ¢y(0") = 0. In fact, ¢4(07) > 0 when p > p* and
®p(07) < 0 when p < p*.

The Mathematical Setting: To verify this conjecture numerically, we need to analyze the
equation

F(u*(r,0),7,0) = 1. (2.56)

That is, for a given parameter set (7,0), a solution p*(7,0) of (2.56) gives a p value such
that ¢4(0%) = 0. We claim that a solution p*(7,0) of (2.56) is unique for each ¢ > 0 and
7 > 0. To check this claim numerically we develop an algorithm to compute p*(7,0) as a
function of 7 when o is fixed, and also as a function of ¢ when 7 is fixed. For this, we

differentiate (2.56) with respect to both 7 and ¢ and obtain the two ODES

dy* F. dp* F,
-7 d =7 2.57
i F, % 4o " F, (2.57)
In particular,
OF _p(L _2wr) _2wr [6712(%—2“*) - 1} , (2.58)
ol * o? o?

oF _ . (2(“*)27 _ l) LT Ku _ 1) e (-2u) _ u*] , (2.59)

o3 o

0o T
OF L V70 S W A W e 1, ()
G (N VAP I A 1 € T I . 2.60
or (27’ o2 026 pot T + o2 ( )
The Numerical Experiment First, fix 7 = 1 and solve the equation d—ﬁ = —g—z with initial

value (o,u) = Ay = (1,.743622). The next step is to choose a ¢ value. In particular, we
chose 0 = 2.5 and 0 = 5. These ¢ values correspond to the points A;, A; and Az in Figure 4.

We start by fixing o = 1 and solve the equation % = —Z£= with initial point A;. Perform a

ar — ~ F,

similar computation with o = 2.5 and ¢ = 5. In all three cases the results imply that p*(7)
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exists throughout U (see Figure 4). The numerical code to perform this computation and
reproduce Figure 4 can be found in Listing 7?7 in the Appendix . We plot these solutions
below. It appears, see Figure 4, that the solutions exist for each 7 > 0 and ¢ > 0. That is,
the neighborhood U is actually all of the first quadrant: U = (0, 00) x (0, c0).

Open Problem: It remains to prove that U = (0, 00) x (0, c0).

2.3.5 The Difficulty in the LIF Eigenvalue Problem

As we pointed out at the end of Section 2.3.2, to our knowledge there are no rigorous proofs
of the existence of eigenvalues, and corresponding eigenfunctions, for problem (2.30)-(2.31)
when n > 1. What makes this problem mathematically formidable is the presence
of the “leaky” term —Y¢'(V) in (2.30). However, Apfaltrer, Ly and Tranchina [4]
have performed extensive numerical calculations of the eigenvalues and eigenfunctions for a

problem which is equivalent to (2.30)-(2.31).

2.4 THE EIGENFUNCTION EXPANSION FOR THE IF MODEL

A standard approach [9], [24], [19] to solving a FPE boundary value problem is to assume

that p(V,t|V4,0) has an eigenfunction/eigenvalue expansion of the form
p(V, |Vp, 0) ZA Ant, (2.61)

Goals: In the remainder of this section we consider the following:

2.4.1 Develop the ODE boundary value problem associated with the eigenvalues A, and

corresponding eigenfunctions ¢,,.

2.4.2 We consider the eigenvalue problem in the case —oo < Vi, = Vg. In particular, we
derive the nonlinear algebra equation that describes the eigenvalues. We also compute the

eigenfunctions and plot the stationary solution for different parameter values (see Figure 5).

34



V1
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A
. A, 2.5 2
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Blowup
0.74
O0 1 10 T Oo 0.12 T
* *
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25
12.5
13 Blowup
11.5
A —
2 o=2.5 A2 o=2.5
Oo 1 10 T 0.5 1 T

Figure 4: Top Left: With 7 held at the constant value 7 = 1, the solid curve is the solution,
w (o), of % = —% through the point A; = (1,.74), i.e. the initial value is p*(1) = 0.74
Top Right: The first components of A; = (1,.74), Ay = (2.5,13.2) and A3 = (5,77.5) are
the o values corresponding to 7 = 1. Thus, the (7,0) values (1,1), (1,2.5) and (1,5) are
graphed on the vertical line 7 = 1 in the (7, 0) plane. Second Row, Left: With ¢ held at

the constant value o = 1, the solid curve is the solution, p*(7), of %’;7* = —g—; corresponding

to Ay = (1,.74), i.e. the initial value is p*(1) = .74 Third Row, Left: With o held at the

constant value o = 2.5, the solid curve is the solution, p*(7), of % = —?—; corresponding

to As = (2.5,13.2), i.e. the initial value is p*(1) = 13.2 Middle and Bottom Right: The
graphs are blowups of solutions in the left panels. See Listing .10 in the Section A.2 for the

code.
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2.4.3 We consider the eigenvalue problem in the case —co < Vi < V. In particular, we
derive the eigenfunctions and the nonlinear algebra equations that describe the eigenvalues.
Next, we set Viz = 0 and let V;, — V', and show the resulting equation for the eigenvalues is
in agreement with the results of Section 2.4.3. Lastly, we derive the stationary solution, i.e.
the eigenfunction corresponding to the eigenvalue A = 0 and plot this function for different

parameter values (see Figure 6).

2.4.4 We show that a stationary solution for the IF can not be constructed when p < 0 and

VL = —OQ.

2.4.1 The ODE BVP for Eigenfunctions of the IF Model

Recall that the full FPE boundary value problem for the IF model is given by (2.26). Here
V(t) is constrained to lie in a finite interval [V, V7|, where —oo < V, < Vi <V, and with
a reflecting boundary condition when V(t) = V;. Analogous to the Leaky case, i.e. LIF

model, we search for solutions to (2.26) of the form
p(V,t) = o(V)e. (2.62)
Place (2.62) into (2.26) and obtain the ODE

o'y~ gy - 2y =0, (2.63)

o? o?
with boundary conditions

(

po(Vy) — Z¢' (V) =0
¢(Vr) =0

¢'(Vr) =¢'(Vg) = ¢'(Vy)
Lo(Vi) = 6(Viy)-

(2.64)

Remark: When 7 = oo, equation (2.30) formally reduces to the eigenvalue ODE for the IF
problem, namely
2\

o2

o'(v) - L)

o2

(V) =0, (2.65)

in agreement with (2.63).
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2.4.2 ODE Eigenvalue Problem for the Case V}, =V

We first consider the special case where V;, = Vg = 0 < Vi = 0. In this case the eigenvalue

problem becomes
§
¢// _ 2p ¢/ _ (27_;\ =0

o2

#(6) = 0
|4/(6) = 9/(0) - %0(0).

(2.66)

Remark: Notice that the jump condition ¢/(Vr) = ¢'(V) — ¢/(Vj; ) has changed in this

case.

We show why. For V, < Vi < Vi we recall that u¢(Vy) — %2¢’(VL) = 0. Letting V, — V,

it follows that

0.2

po(Vir) — 56 (Vi) = 0.
Under the assumption that ¢ is continuous it follows that
_ 2
¢ (Vi) = —50(V) = 0.
Combine this with the jump condition ¢'(Vr) = ¢'(V7) — ¢/ (V5 ) so that

8 (Ve) = 6 (Vid) = oV

Thus, in the special case —oo < Vi, = Vg =0 < Vp = 0, we have that

as claimed.
Goals: We prove the following properties:

I. The eigenvalues of (2.66) are given by the equation
ve* =~y cosh(y) + zsinh(y),

where

0 0
= andyzﬁ\/,u?—k%\cﬂ

o2
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as claimed by Mattia and Del Giudice [24]. We show (see Section 4.5) that the only real
solutions of (2.71) are v = 0,+z, and that these gamma values correspond to the trivial

eigenfunction ¢, (V') = 0.

II. In the special case, = 0, the eigenfunction corresponding to the eigenvalue A = 0 is

given by
2

$o(V)=5(0-V), 0<V<é (2.73)

ITI. The eigenfunction ¢o(V'), corresponding to the eigenvalue A = 0, is given by

¢o(V) = Cy (1 — exp [WD : (2.74)

where Cj is a normalizing constant.

Proof of I: We derive (2.71). A standard approach is to look for solutions to (2.66) of the

form

mV

o(V) =€ . (2.75)

Put (2.75) into (2.63) and obtain the algebra equation

0 (2.76)

with solution

m=— =% = [+ 202, (2.77)

Set
16 0
2= and v = ;\/,uQ + 2)\o2. (2.78)

It follows that the general solution to (2.63) is

¢(V) = exp [%} (01 exp {%} + coexp {—%}) : (2.79)

Next, apply the boundary condition ¢(f) = 0 to obtain

cy = —cre?. (2.80)
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Combining (2.79) with (2.80) yields
% Vv %
o(V) =exp [%] <01 exp {771 + e exp {—77])
zV YV YV
=C1exp | - | exp [v] |exp 5 | Texp |7 + v

orero [ ] son [ 101

0
Note that
¢'(0) = _CAgez, (2.81)
¢'(0) = —c,\g sinh(y) — c,\% cosh(7v), (2.82)
and
#'(0) = ¢y sinh(”y)i—'[;. (2.83)

The identities (2.81)-(2.82)-(2.83), combined with the boundary condition ¢'(6) = ¢'(0) —
i—‘éqb(()) yield the desired result:

ve* =~y cosh(y) + zsinh(y). (2.84)
This completes the proof of 1.

Proof of II: Set ;1 = A = 0 so that the ODE boundary value problem (2.66) becomes

¢// — 0
$(0) =0 and [J (V)dV =1 (2.85)
¢'(0) = ¢'(0).

\

The general solution of (2.85) is given by
po(V)=C1V +Cy, 0<V <0, (2.86)

Apply the boundary condition ¢'(6) = ¢'(0) and the normalizing condition fog p(V)ydv =1

to (2.85) and obtain
2

d(V)=750-V), 0<V<h (2.87)
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This completes the proof of II.

Proof of I1I: To find ¢o(V') we set A = 0in (2.66) and obtain the appropriate ODE boundary

boundary value problem

(

¢// o %(b/ -0
$(0) =0 and [ p(V)dV =1 (2.88)

¢'(0) = ¢'(0) — 25¢(0).

\

The boundary condition ¢(f) = 0 implies that the ¢ — i—ggb’ = 0 has the general solution

1%
¢o(V) = Cexp [i—gLV] /9 exp {—i—ﬁ;x} dx. (2.89)

Integrate (2.89) to obtain

do(V) = Cy (1 — exp {ﬂ]) . (2.90)
The normality condition, fog ¢o = 1, implies that
o’ 5 -1
Co = [ﬂ (2z—1+e )} . (2.91)

A routine calculation shows that all boundary conditions in (2.88) are satisfied by ¢o(V).

Remark: An application of L’Hospital’s rule shows that

lim ¢o(V) = = (0—V), 0<V <0 (2.92)

u—0t 0?2
in agreement with (2.87).

In Figure (5) below we plot ¢o(V') for different values of p. In each case 0 = 1 and 0 = 1.
This completes the proof of II1.
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Figure 5: Stationary solutions for the IF model with parameters V, = Vp =0,0 =0 =1
and p decreases from p = 2 (upper left) to p = —2 (lower right). As p passes through 0 from
above, the concavity changes because of the no flux boundary condition: pug(V7,)— "72@25’ (V) =

0. See Listing .8 in the Appendix for the Matlab code.
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2.4.3 The Eigenvalue Problem for the IF in the General Case

We examine the IF eigenvalue problem for the case —oo < Vi, < Vg < Vp = 6. In this case,
the appropriate ODE boundary value problem is

(
o' =% —Bo=0

(Vi) = 5 ¢'(Vi) =0
¢(0) =0 (2.93)
¢(0) = &' (Vi) = ¢/ (Vi)

| ¢(Vi) = o(Vi).

Goals: Our goal is to prove the following properties:

I. The solution to (2.93) is given by

Dye [BelV-V0)3 4oV LV <V < Vg,
V) = . (2.94)
Cye% sinh [@}  Va<V <0,
where D, and C) are normalizing constants.

II. In the special case where Vi = 0, the algebra equations that determine the eigenvalues

are
Chsinh(y) = Dy [%e_% + e%]
—C\je* = % [z sinh(y) — 7 cosh(¥)]
v, o (2.95)
— % [z (Ze’T + 6T> + (%e’T - eTﬂ
\D)\Ig + C)\[4 =1
where
* 2 [B (V-vp)2 —(V=Vvp)%
Iy= [ eo |—eV o te Lo | dV, (2.96)
v A
and
0
o —
L= / ¢’ sinh {%1 av. (2.97)
0
III. In the special case where Vi = 0, (2.95) reduces to
ve* =~y cosh(y) + zsinh(y). (2.98)
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as Vi, — 0.

IV. When Vi = 0, the stationary solution to (2.93) is

C(1—e%* e%v, Vi <V < Vg
oo(V) = ( ) (2.99)

2

C(e%v—e%), Ve <V <6.

where C' is a normalizing constant.
Proof of I: We prove (2.94). We consider Vi < V' < 6. Here, the argument is identical to
that of Section (see Section 2.4.2). It follows that

(O -=V)

o(V) = Cye™@ sinh [ 7

} L V<V <0 (2.100)

Next, consider the interval V;, <V < V. We search for solutions of the form

=~

(V) =MV (2.101)

in which case we have the algebra problem

M? =0. (2.102)

It follows that

where

m:,u_Gj: i

e (1?4 202

=zt

as in Section2.4.2. Thus, we have the relationship

<<

MV = em (2.103)
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implying that the algebra problem is precisely the same as the case V, = Vi in Section 2.4.2.

Therefore,

v
]
)

G(V) = Cre T 4+ CoetM7 |V, <V < V.

Apply the boundary condition ug(Vy) — %QQS’ (V1) = 0 to obtain

B
Cl == CQZG_QW%
where
7 (2 + 1) 7 (z =)

Next, combine (2.104) and (2.105). It follows that

v [B . )
¢<V) = D)\eTV [ZQ(V—VL)Q + 6—(V—VL)9:| 7 VL <V < VR.

In summary, we combine (2.100) and (2.107) to obtain the desired result:

DAG% [%e(V—VL)% + 6_(V_VL)%:| , VL <V< VR?
(V) =

C’,\e% sinh [@} , VR<V <4.

This completes the proof of 1.

(2.104)

(2.105)

(2.106)

(2.107)

(2.108)

Proof of II: We assume that Vi = 0. The continuity condition, ¢(0%) = ¢(0~), applied

to (2.108) implies that

B
Chsinh(v) = D, [Ze_vg7 + e‘?}

Combine the reset condition, ¢'(f) = ¢'(0%) — ¢'(07), with (2.108)
—C’A%ez :% [z sinh(y) — 7 cosh(v)]
Dif (Bt %) (Bt
VG e 7 3¢ e
Equation (2.109), applied to (2.110), yields

_ngez :% [z sinh(y) = cosh(y)]

D B v o
— gC’,\ sinh(y) — TXV (—e_VIé — evg) :
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which simplifies to

B Yy Y
Cye* = C) cosh(y) + D, (Zevﬁ _ eV§> )

It remains to consider the constants C'y and Dy. The normality condition, f‘i 10}

that
DI;+Cy\I, =1
where
0 zZV B Ial Ial
I3 —/ eo [—e(V_VL)G —i—e_(V_VL)@] dV,
v A
and

0 —
1, :/ ¢’ sinh {W} dV.
0

Thus, the equations (2.109), (2.110) and (2.112) determine the eigenvalues, A, :

(
Vi~

C)\ Sinh(’y) = D, [%ef% + QT}

—ChJer = % [z sinh(y) — ~y cosh(v)]

_ Dy B —YLv Vi~ B —YLv Vv
0[2<Aee+ee +yl|ze °? e e

\DA[3 +Ch\Iy = 1.

This completes the proof of II.

Proof of ITI: Note that (2.115) reduces to
Cysinh(y) = Dy [§ + 1]
) —ChZe* = £ [zsinh(y) — v cosh(7)]

B G+ (- 1)

(Oxls =1

as Vi, — 07. Put the first equality in (2.116) into the second equality so that

—Cy e :% [z sinh () — 7 cosh(7)]

0
Sl () (0]
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= 1, implies

(2.112)

(2.113)

(2.114)

(2.115)

(2.116)

(2.117)

(2.118)



That is,

B+ A
ve* = — zsinh(y) + 7 cosh(y) + sinh(7y) [Z + ’YB —_F A}
B+ A}

"B_A

=~ cosh(7y) + sinh(7) [

=7 cosh(7) + sinh(7) { —]

yo?

=y cosh(y) + zsinh(y),

since z = g—;’. We remark that this is consistent with the previous case, V;, = Vg = 0. This

completes the proof of I11.

Proof of TV: We look for the stationary solutions corresponding, i.e. the eigenfunction
corresponding to A =0 :

/! 2
¢ — U—g”gb = 0. (2.119)

For Vg <V < 6 the argument is identical to that of the previous section. It follows that

(V) =Ae*V + B, Vp<V <0 (2.120)

It remains to consider the regime of V, <V < Vi. An integration of (2.119) from Vj to V'
along with the condition ¢(Vy) — %gzﬁ(VL) = 0 yields the ODE

w / —2u
<¢e*%v) = De otV (2.121)

Integration of (2.121) from Vi, to V yields the solution
¢ (V) = D+ NeaV. (2.122)

The continuity condition at Vi gives D=B. The jump condition ¢(0) = ¢o(Va) — ¢6(Vy )
implies that
N=A <1 - e%9> . (2.123)

It follows that the stationary solution of (2.93) when Vi = 0 is

C(1=e™) eV, Vi<V <Vg
Go(V) =

o (2.124)
C(ea2 —602), V<V <0
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where C' is a normalizing constant.

Figure (6) below plots (2.124) for different values of u. The completes the proof of IV.

2.4.4 The Stationary Solution when V; = —oc0

In this section we assume that V;, = —oo, u < 0, and prove that a stationary solution of the

FPE boundary value problem corresponding to the IF model does not exist. Thus, when

investigating the IF model we require

—OO<VL§VR<VT.

(2.125)

Recall from Section 2.2.3 that the stationary solution of the FPE boundary value problem

is a solution of

2 2
—HgpP+ Fap =0,
p(VT) =0, Vt>0,

[T p(VYdV =1, Vt,>0

o0

2o(Vr) = Zp(Vi) = Zp(Vy), Vt>0,

(p(V),p(V)) = (0,0) as V — —o0.

\

First, notice that
o? 0?
(V) + EWP(V) =0

_MWP

is equivalent to

(2.126)

(2.127)

(2.128)

for some real number C;. Suppose that —oco < V < Vg, and let V' — —o0 in (2.128) to find

that C7 = 0. Thus,

2

o® 0

The general solution of (2.129) is

(2.129)

(2.130)



¢ ¢
° IF _ ° =
_ _ M=2 M=1
—2—VL<VR—O
1 1
0.5 0.5
S 1 0 R, S——= 1 0 1y
(pO (po
u=0.5 u=0
1 1
0.5 / 05
S 1 0 1 v S 1 0 1y
(po (pO
p=-0.5 p=—2
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0.5 0.5
0 S~
-3 -2 -1 0 1 v -3 -2 -1 0 RV

Figure 6: Stationary solutions for the IF with parameters: V, = =2, Vx =0,0 =0 =1 and u
decreases from p = 2 (upper left) to u = —2 (lower right). As u passes through 0 from above,
the concavity changes because of the no flux boundary condition: p¢(Vy) — %ngﬁ’ (Vi) =0.
See Listing .7 in the Appendix for the Matlab code.
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Recall that p < 0. Thus
lim p(V) = oo, (2.131)

V——00

contradicting the boundary condition
(p(V),p(V)) = (0,0) as V — —o0. (2.132)

We conclude that a stationary solution of the FPE corresponding to the IF model does not

exist when p < 0 and V, = —o0.

2.5 CONCLUSION AND OPEN PROBLEM

As previously noted the LIF model is more biologically reasonable when compared to the
IF model. However, the LIF model presents many challenges when attempting rigorous
analysis. As we noted in Section (2.3.5) the primary analytic difficulty, due to the presence
of the term —¥¢/(V) in the ODE (2.30) makes analytic treatment very difficult. This term

is present even when we assume that p = 0.

Open Problem: It remains an open problem to give a rigorous proof of the existence
of branches of eigenvalues of the FPE corresponding to the LIF model. A first step is to
prove the existence of the first eigenvalue (i.e. the ‘dominate’ eigenvalue), and corresponding
eigenfunction for problem (2.30)-(2.31), for both x> 0 and p < 0. The resolution of this
problem will allow us to begin the construction of an eigenfunction expansion for firing
rate for the LIF model. To our knowledge there are no rigorous results for this challenging

problem.

In this thesis, our focus is on the IF model, which is more analytically tractable than the
LIF equation. In studying the IF model we have found that the general IF eigenvalue
problem also presents significant challenges. As was shown in (2.95), the eigenvalues for
the IF problem are given by three nonlinear algebra equations. In Chapter 4 we begin our
analytic treatment of the IF model by assuming that V;, = Vg = 0 < V. As we will see
in Chapter (4), proving the existence of eigenvalues under these particular assumptions is

easier, but still highly non trivial.
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3.0 BACKGROUND PROPERTIES OF THE IF MODEL WHEN V, = Vj

In this chapter we follow [9],[24],[19] and develop appropriate mathematical properties that
will be used in the remainder of this thesis to analyze the linear integrate and fire (IF)) model.

In particular, we focus on the case
VL:VR:O, VT:0>O (31)

and do the following:

3.1 We state the Fokker-Planck equation (FPE) partial differential equation (PDE) that is
associated with the IF model when (3.1) holds:

(
8tp = _“avp"' 2 av2p

p(V,0[V5,0) = 6(V = W)
p(0,t|V5,0) =0, for all t >0
—up(0,tV5,0) + % dvp(O t[V5,0) =0, for all t >0

fo (V,t|Vh,0)dV =1, for allt >0

kaivp(e,tﬂ/o,()) = 2 p(0F,t|Vp,0) — Zp(0,t|Vp, 0), for all ¢ > 0.
3.2 We define the operator L and its adjoint operator L. We develop ODE eigenvalue
boundary value problems associated with L and L*.

3.3 We construct an eigenfunction expansion solution for the ODE eigenvalue boundary value
problems developed in Section 3.2. In particular, we make use of eigenfunctions {¢,} and

{1} of the operators L and L™, respectively, to construct the probability density function

p(V,1V5,0) an (Vo)u(V (3.3)
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3.4 We state a conjecture by Mattia and Guidice [24] regarding the eigenvalues of the

operator L.

3.1 THE LINEAR INTEGRATE AND FIRE (IF) FPE BOUNDARY VALUE
PROBLEM

We follow a two step procedure:
Step 1. We assume that V, < Vg =0 < 6 and develop the FPE boundary value problem.
Step 2. We let V, — Vz = 0 in the FPE boundary value problem developed in Step 1,

and dereive the FPE boundary value problem when V;, = Vi = 0.

Step 1. The IF stochastic differential equation (SDE) [24],[19] is
dV = pdt + odW, Vi <V(0) =V < Vg (3.4)

where —oco <V, < Vi, W is a Brownian motion, and V' (¢) represents the membrane potential
of a neuron. Throughout, we assume that the input u, and the variation o, are constant,
independent of ¢. (see Mattia [24] for a discussion of the general case p = p(t) and o = o (t)).
If V(t) = Vr, the neuron is assumed to fire, and immediately thereafter the membrane

potential is reset to a resting value Vi € (Vr,, Vr) as follows:
it V(t7) = Vg, then V(t") = Vx. (3.5)

The range of V (t) is
Vi <V(t) < Vp, forallt > 0. (3.6)

Finally, it is assumed that V (¢) satisfies a reflective boundary condition when V' (t) = V..

Remark: For convenience we adopt subscript notation for partial derivative, e.g.
5P = Pr-
The corresponding FPE PDE [9] for the IF model is

0 0 0% 02

ot = _MW,O + 7mp + l/(t)(;(v — VR) (37)
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The function v(¢) in (3.7) is the firing rate, or emission rate function. The appropriate solu-
tion of the FPE PDE (3.7), which corresponds to the IF SDE model (3.4), is the conditional
probability p(V,t|, Vp,0). It satisfies the initial condition

p(V.0[Vo,0) = 6(V — Vi), (3.8)
the absorbing boundary condition
p(0,t[Vo,0) =0, for all t >0, (3.9)
the normalizing condition

6
/ p(VA|Ve, 0)dV = 1, for all ¢ > 0, (3.10)
|47

and the reflective boundary condition

2

—up(Vy, t|Vo,0) + %%p(VL,t\Vb, 0) =0, for all ¢ > 0. (3.11)

We assume that p(V,t|Vj,0) is a continous function of V, ¢ and Vj, and that %p(v, |V, 0)

and -2 p(V,t[Vp,0) are piecewise continuous functions.

FPE Boundary Value Problem: To develop the FPE boundary value problem, the first

step is to develop two identities involving the firing rate function v(t).

First Firing Rate Identity: We begin by integrating (3.7) from V =V, to V = Vr to

obtain
0 0 0.2 0
/pt<v,t|vo,0>dv - —u/ o (VotlVo,0)dV + 2 [ o (V. 1]Ve, 0) v
%3 1% 2 \%5
0
o) [ 8V = Vg)dV. (3.12)
1%5

Since p(V, t|Vj, 0) is assumed to be continuous we can interchange the integral and derivative.
Thus, upon applying the normalizing condition (3.10) to (3.12), we have that

6 2 0
0 = <u | orlVetlVo0)aV + 2 [ Vil 0)dv
VL VL
0
ou(t) [ 8V = Vi)av. (3.13)

VL
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By the definition of (V') we have that féL (V= Vg)dV =1 and (3.13) becomes

6 2 0
0=u [ o VetlVo0)aV + 5 [ prv(VitVa0)av + o) (3.14)
Vi, %3

Evaluate the integrals in (3.14), and apply (3.9), (3.11), to obtain the firing rate formula

)
V(t) = —J——Vp(VT,tH/O,O), for all ¢ > 0. (3.15)

Second Firing Rate Identity: Integrate (3.7) from V =Vz —eto V =Vz +¢€:

Vr+e Vr+e

[ a0 = < [ v oav
VR—E VR—E
0.2 Vir+e

+ — pvv(v,tl%,())dv
2 VR—e
VR+E

o) / 5(V — Vi) dV. (3.16)

Vr—e

Evaluating the three integrals in the right hand side of (3.16) gives

Vr+e
[ aVlve,0dv = < olVit €tlVa,0) = plVi + .11V, 0)
Vr—e

2

g
+ 7 (pV(p(VR + E,t‘%,()) - p(VR + 67t‘%70))

+
<

(). (3.17)

Recall that p is assumed to be continuous while py is piecewise continuous. Interchange the

integral with derivative, and let ¢ — 0" to obtain

o (0 0 _
v(t) = -5 (Wp(vg,t\%,O) — WP(VR ,t\%,O)) for all ¢ > 0. (3.18)
Equating (3.15) and (3.18) gives the identity
(0, 1]V, 0) = 2 p (Vi Vi 0) — 2 p(Vig 1]V, 0), for all £ > 0 (3.19)
avp ) 0 - 8Vp R 0 8‘/,0 R 0 ) . .
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We remove the term v(t)5(V — V) in (3.7) and impose the condition (3.19). The FPE

boundary value problem becomes

5ip = ~HEP T S ap
p(V,0[V5,0) = 6(V = W)
p(0,t|V5,0) =0, for all t >0
(3.20)
—up(VL, t|Vo,0) + 22 2p(Vi,, t[Vp,0) =0, for all ¢t >0

fv (V,t|Vo,0)dV =1, Vt>0

Ka—vp(é’,tﬂ/o,(]) = 2 (Vi t1V5,0) — 2 p(Vyz , t|Vp,0), for all ¢ > 0.

Step 2. We now fix Vg = 0 and let V, — V., ie. Vi, — 07. As p is assumed continu-

ous, (3.11) reduces to

2

5 Wp(o_,tﬂ/o,()) =0, forallt >0, V;, =0. (3.21)

Next, combine (3.19) with (3.21) to obtain

0

2
el 0%, t[Vp, 0) — ‘;p(o,m,m, for all ¢ > 0. (3.22)

0,11V0,0) =

Thus, when V;, = Vp =0 < Vp = 60, the FPE boundary value problem for the IF model is

)
§ip = ~HP T Fap

p(V,0[Vo,0) = 6(V — Vo)

g 2(0,t|Vh,0) =0, forallt >0 (3.23)

fo (V,t|Vo,0)dV =1, Vt>0

570, 11V0,0) = 55:p(0%,1[V5,0) — (07, #{V5,0), for all > 0.
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3.2 THE OPERATORS L AND Lt WHEN V;, = Vi = 0.

A standard approach [9],[24],[19] to solve the FPE boundary value problem (3.23) is to
assume that

p(V,t, Vo, 0) = > Aupa(V3 1), (3.24)

where
pu(V,t) = (V)M (3.25)

Substitution of (3.25) into (3.23) gives the ODE boundary value problem

Ap(V) = —pug' (V) + G ¢"(V)
$(6) =0 (3.26)

() = ¢'(07) — Zo(0).

\

The linear Operator L : Define the linear operator

L : C*([0,d]) — C((0,0)) (3.27)
by
0 o? 02
Therefore
2
L(9) = —nd' + ¢, 6 € C*((0,0]). (3:29)

The appropriate solution of (3.26) is an eigenpair, (¢, \), of the operator L.

The Adjoint Operator L™ : First, introduce the inner product

0
(¥, 9) :/0 p(V)o(V)dV € R. (3.30)
Define the linear operator
“:.C2(10,6]) > C((0,0)) (3.31)
by
(L*, ) = (v, Lo). (3.32)
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For each eigenfunction ¢, and associated eigenvalue A, there exist corresponding eigenfunc-
tions, v, and eigenvalues ( of L. The boundary value problem satisfied by (V) (see Mattia
and Del Giudice [24], page 051917-3) is

¥(0) =(0) (3.33)

It follows from (3.29), (3.32) and (3.33) (see Mattia and Del Giudice [24], page 051917-3)
that

o o 9?
B
LT = Y + 5 EVER (3.34)
Therefore
2
! g 1
L) = p + T, p € CX(,0). (3.35)

Remark: Why L is not Hermitian. Mattia and Del Giudice [24] point out that L is not
Hermitian. We give a brief explanation why this is so. First, it follows from (3.34) that

0 o? 0?

L'=Lt=p— 4+ — ——.
v T2 ave

(3.36)

This, together with (3.28), implies that L* # L, i.e. L is not Hermitian. Since L is not Her-
mitian, Mattia and Del Giudice [24] also point out that one can not immediately claim that
the eigenfunctions of L form a complete basis for the range of L. However, they conjecture
that the eigenfunctions of L do form a complete basis. Much of their analysis assumes that

this conjecture is true.

Orthonormal Properties: Mattia and Del Giudice [24] (see page 051917-4) show that,
“under the completeness assumption of the eigenfunctions of the Fokker-Planck operator,”
(i) the operators L and L™ have the same eigenvalues, and

(ii) eigenfunctions ¢(V') and (V') corresponding to eigenvalues A and 3 satisfy

(W (V),6(V)) =0, if A # 6, (3.37)
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(w<v)> ¢(V)> =1, it A= 4. (338)

Mattia and Del Giudice [24] (see page 051917-4) also show that “If A, is an eigenvalue,
also Af is an eigenvalue, with eigenfunction |¢} > (< ¥%|),” and that “we set A_, = A\
and consequently |¢_,, >= |¢* >, so that the sums over the spectrum of the Fokker-Planck

operator range over all the integer numbers.”

3.3 THE EIGENFUNCTION EXPANSION WHEN V; = Vg

Assume that a solution of the FPE boundary value problem (3.23) is of the form (3.24), i.e

p(V.t,[Vp,0) ZAncbn (3.39)

We need to prove that
A, = ¢(V), for all n. (3.40)

The first step in proving (3.40) is to multiply (3.39) on both sides by ¥, (V') to obtain
Ue(V)p(Vot, Vo, 0) = (V) Y | Anghn (V)M (3.41)
Formally, upon an integration of (3.41), we have that
/ be(V)p(Vit, [V, 0)dV = (A et t/ D (V)i (V )dV) (3.42)
Apply the orthonormal conditions (3.37) and (3.38) to (3.42):
/ U(V)p(V,t, Vo, 0)dV = Agetst. (3.43)
The identity (3.43) holds for all ¢ > 0. In particular, it holds when ¢ = 0 :
/ Ye(V)p(V,0, Vo, 0) dV = Ay. (3.44)
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Apply the initial condition, p(V,0,|V5,0) = 6(V — V4), to (3.44) and obtain
Uk(Vo) = Ag. (3.45)

This completes the proof of (3.40).

From (3.39) and (3.40) we conclude that
p(V, 1|V, 0) an Vo)n (V). (3.46)

This completes the derivation of (3.39)-(3.40).

3.4 THE MATTIA-DEL GIUDICE CONJECTURE

Mattia and Del Giudice [24] (see page ) make the following conjecture describing the nature

of the eigenvalues of L when V}, = Vg :

I. When p > 0 the eigenfunctions of L ‘form a complete set’, and the corresponding eigen-

values are complex with negative real parts.

II. When g < 0 the eigenfunctions of L ‘form a complete set’, and the corresponding

eigenvalues are real and negative.
Mattia and Del Giudice [24] also claim that this conjecture is true when Vi < V.

For a partial proof of this conjecture when V;, = Vi and p > 0 see Theorems 12 and 13

in Section 4.5. For a partial proof when V; = Vi and p < 0 see Section 4.6.
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4.0 THE MAIN RESULTS: EXISTENCE OF EIGENVALUES WHEN
Ve = Vg

This chapter contains the main mathematical results of this thesis. In particular, we have

the following:

4.1 We develop the eigenvalue problem associated with the Fokker Planck boundary value
problem when —oo < Vi = Vi < Vp = 6. Next, we derive the nonlinear equation whose

solutions are eigenvalues of the Fokker Planck boundary value problem when —oco < Vj =

VR<VT:¢9.

4.2 We investigate the FPE boundary value problem when g = 0 and —oco < Vp, = Vi <
Vr = 6. We prove that there infinitely many real, negative eigenvalues. We derive formulas
for the eigenvalues and eigenfunctions and show that there is no eigenfunction expansion

solution of the FPE boundary value.

4.3 We investigate the FPE boundary value problem when 4 > 0 and —co <V, = Vi <
Vr = 6. A proof of the existence of infinitely many branches of eigenvalues is given. Asymp-

totic properties of these branches are derived as p — 0.

4.4 We investigate the FPE boundary value problem when y < 0 and —oco <V, = Vi <
Vr = 6. A proof of the existence of infinitely many branches of eigenvalues is given. Asymp-

totic properties of these branches are derived as y — 0 and p — oo.

4.5 A partial proof of the Mattia-Del Giudice conjecture is given when p > 0.

4.6 A partial proof of the Mattia-Del Giudice conjecture is given when p < 0.

29



4.1 EIGENVALUE STRUCTURE OF THE IF WHEN V; = Vj

The goal in this section is to develop the nonlinear equation whose solutions are eigenvalues
of the Fokker Planck boundary value problem associated with the IF model. The resulting
eigenvalue problem will be referred to in subsequent sections, namely Sections 4.2,4.3 and 4.4.

We develop this problem in three steps:

4.1.1 First, we recall the Fokker Planck boundary value problem in the case —oo < V <
Vr < Vp = 0. Next, we let V;, — V' and develop the Fokker Planck boundary value problem

when —co <V, = Ve < Vpr = 6.

4.1.2 Second, we develop the eigenvalue problem associated with the Fokker Planck bound-

ary value problem when —oo <V, = Vi < Vp = 6.

4.1.3 Third, we derive the nonlinear equation whose solutions are eigenvalues of the Fokker

Planck boundary value problem when —oco <V, = Vi < Vp = 6.

4.1.4 The eigenfunctions ¢, of L and 1, of LT are derived.

4.1.1 The Fokker Planck Problem When —oco <V, =Vz <0

In this section we develop the Fokker Planck equation (FPE) boundary value problem when
—o00 < Vi = Vg < 6. The first step is to recall from Chapter 2 that the complete FPE
boundary value problem for the IF model when —oo < Vi, < Vg < Vp = 6 is given by the

partial differential equation

) o2 2
—p(V, t|V5,0) = —pu——p(V, t|Vp, 0 ——p(V, t|Vp,0 4.1
atp( ) | 05 ) ;uav ( ) | 0 )+ 28V2p( ) | 05 ) ( )
with initial condition
absorbing condition
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reflective boundary condition

o 0
Vi, t) — ——=——p(V,t), Yt>0 4.4
,LL/)( L, ) 92 avp( L, )7 = Y ( )
normalizing condition
Vr
/ p(V,t|V5,0)dV =1, Vt >0, (4.5)
Vr
and jump condition
B N o
WP(VTJWO,O) = WP(VR ,tV0,0) — Wp(VR , 1V, 0), Vt>0. (4.6)

When V;, — Vj; it was shown in Section 2.4.2 that the jump condition, i.e. equation (4.6),

reduces to

9] 9] o

4.1.2 The Eigenvalue Problem When V; = Vj

In this subsection we assume that —oo < V, = Vg < Vp = 6. Our goal is to derive the
eigenvalue boundary value problem coresponding to the Fokker Planck problem (4.1)-(4.2)-
(4.3)-(4.4)-(4.5)-(4.7).

The first step in solving problem (4.1)-(4.2)-(4.3)-(4.4)-(4.5)-(4.7) is to investigate the exis-
tence of a solution p(V,t|Vp,0) of equation (4.1) of the form

p(V.tVo,0) = o(V)e. (4.8)

Substitution of (4.8) into (4.1), (4.3), (4.4) and (4.7) gives the ODE boundary value problem

21 2A

¢"(V) ¢'(V) — —o(V) =0, (4.9)

o2

with absorbing condition

¢(0) =0, (4.10)



reflective boundary condition

uo(0) — -6/(0) =0, (4.11)
and jump condition
2
¢'(6) = ¢/(0) = 56(0). (4.12)

4.1.3 The Nonlinear Eigenvalue Equation

In this section we analyize problem (4.9)-(4.10)-(4.11)-(4.12) and derive the nonlinear equa-
tion that determines the eigenvalues A. Although the derivation was originally given by
Mattia [24], here we give the details for completeness. In particular, we show that the
eigenvalues are determined by

ot (V% - 7%) — p20? 2.717202

\ =
20202 e

(4.13)

where

ve* =~y cosh(y) + zsinh(y), (4.14)

and

6 6
z= % and v = </ 1?2 + 2\o% (4.15)

o?
Derivation of (4.13)-(4.14)-(4.15).

We follow Mattia [24] and look for solutions to problem (4.9)-(4.12) of the form

mV

o(V)=e?o, m real (4.16)

Substitute (4.16) into (4.9) and obtain

= 0. (4.17)
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Solve (4.17) for m and obtain

0 0
Tnzggigg/ﬂ+2xﬂ. (4.18)
Next, set

1 and = 9\/ 2+ 2)\0? 4.19
="—gandy=— e+ 2X0=. (4.19)

The general solution of (4.9) is

v

o(V) =exp {%] (cl exp [%} + coexp {—%}) . (4.20)

Substituting (4.20) into the absorbing condition, ¢(f) = 0, gives

ey = —cye?. (4.21)

Next, combine (4.21) and (4.20) and obtain

2V

S(V) = ¢1 exp {7} exp ] [exp {% - 71 ~ exp [ - %H | (4.92)

The identity (4.21) applied to (4.22) gives

o(V) = crexp [%] sinh {@} ) (4.23)
where ¢y = —2¢ exp(7). It follows from (4.23) that
#(0) = cysinh(7y), (4.24)
d@)z—w%f, (4.25)
and
¢'(0) = —c,\E sinh(7y) — c,\z cosh(7). (4.26)

0 0
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Lastly, combine (4.24), (4.25) and (4.26) with the jump condition ¢/(6) = ¢/(0) — 24¢(0) to

obtain the nonlinear eigenvalue equation

ve* = vy cosh(y) + zsinh(y). (4.27)

4.1.4 The Eigenfunctions ¢, of L and v, of L™

The eigenfunctions ¢, (V) and adjoint eigenfunctions v, (V) are needed to construct the
mean firing rate generated by an eigenfunction expansion. In this section we derive the

eigenfunctions ¢, (V) and adjoint eigenfunctions ¢, (V') for n # 0. In particular, we show

that
and
1% 7 inh (X
(V) =€ (7 cosh <8V) + zsinh <8V>> ; (4.29)
where
c - 22 (4.30)

0(z cosh(y) + (72 — z) sinh(7))

Derivation of (4.28)-(4.29)-(4.30): The eigenfunctions (4.28) were derived in Section 2.4.
Therefore, it remains to derive the eigenfunctions corrresponding to the boundary value

problem 4.31. Recall from Section 3.2 the appropriate boundary value problem is

(V) = ! (V) + G (V)
¥(0) = () (4.31)
v/(0) =0.

We follow Mattia and Del Giudice [24] and assume that

n(V) =evV. (4.32)
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Thus, the general solution of S¢(V) = uy' (V) + %21/1”(‘/) is

(V) = eV (01€%V + C’ge%v> . (4.33)

where

ve* =~y cosh(y) + zsinh(y), (4.34)

and

116 0
2= and v = ;\/,lﬂ + 2)\o2. (4.35)

The boundary condition 1(0) = ¢(#) implies that

zZ+y

C, = : 4.36
V= (4.30)
Thus, equation (4.33) may be expressed as
20 =z 1 0l 1 -
(V) = 5 _QzeTV (5(2 +7)er” + 5(7 - z)eﬂv) . (4.37)

A rearrangment of the terms in (4.37), combined with standard identities for cosh and sinh,

gives

(V) = jfzeezv <fy cosh <%V) + zsinh (%V)) : (4.38)

It remains to determine the constant C5. To this end recall the orthonormal properties from

Chapter 3:

(¢n7 ¢m) = Opm- (439)

Suppress Cy in C), and note that, since (¢, ¢,) = 1, it follows after an integration that

2z
Cn = 0(zv cosh(vy) + (7% — z) sinh(7))’ (4.40)
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4.2 EIGENVALUES FOR THE IF MODEL WHEN p =0

In this chapter we set ;4 = 0 in the IF model and compute the associated eigenvalues and
eigenfunctions. We then investigate whether the associated Fokker Planck solution exists as

a series expansion of eigenfunctions and eigenvalues. In particular we do the following
4.2.1 First, we recall the eigenvalue problem developed in Chapter 3.

4.2.2 We state and prove our main result, namely, that the Fokker-Planck boundary value

problem does not have an eigenfunction expansion solution when p = 0.

4.2.1 The ODE Boundary Value Problem

Recall from Chapter 3 that the ODE boundary value problem for the eigenvalues is given
by

§ ¢(6) =0 (4.41)

¢'(0) = ¢/(0) — 26(0)

\
where

£(6) = (V) + Z0"(V). (1.42)

Set ;4 = 0 and obtain the ODE boundary value problem

0.2

5425”(‘/) =Xp(V), 0<V <#, (4.43)
»(0) =0, (4.44)

and
¢'(0) = ¢'(0). (4.45)

Similarly, the associated adjoint ODE boundary value problem is given by (see Chapter 3
for details) is given by

—"(V) = p(V), 0 <V <6, (4.46)
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¥(0) = (0) (4.47)
and

and /(0) = 0. (4.48)

We follow Mattia [24] (see Chapter 3) and impose the orthogonality condition

Remark: Below, we show that property (4.49) fails to hold when we assume that prob-
lem (4.43)-(4.44)-(4.45) has an eigenfunction expansion type solution.

4.2.2 The Main Theoretical Result

We investigate the existence of a solution of problem (4.43)-(4.44)-(4.45) which can be written

as a series of eigenfunctions ¢, and eigenvalues \,

p(V, t|Vp, 0) ZA et (V (4.50)

In Theorem 2 we investigate key properties of the eigenvalues and eigenfunctions associated
with problem (4.43)-(4.44)-(4.45) and the adjoint problem (4.46)-(4.47)-(4.48). In particular,

we show how these properties lead to the non existence of a solution of the form (4.50).

Theorem 2. Let § > 0 and o > 0. The following are true:

(A.) Suppose that when A = 0. Then ¢o(V) = %(6 — V) and ¢o(V) = 1.

(B.) Forn > 1, the eigenvalues of (4.43)-(4.44)-(4.45) are A\, = 2"29# with eigenfunc-
tions

6 (V) = sin (anV> (4.51)
(C.) Forn > 1, the eigenvalues of (4.46)-(4.47)-(4.48) are A = _2020# with eigenfunc-
tions

Un(V) = cos (Q”Tﬂv) . (4.52)
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(D.) Whenn > 1:
0 0 0
t/)¢ndV€:O,t/‘¢%dV€:0,andt/‘¢nwndV’:(l (4.53)
0 0 0

(E.) Forn>0, A, = ¢,(Vy) = cos (Z”T’TVO) )
(F.) A solution to problem (4.43)-(4.44)-(4.45), of the form (4.50), does not exist.
Proof of A. When A = 0 equation (4.43) reduces to

¢" =0, (4.54)

with general solution

do(V) = CLV + Cs. (4.55)

The boundary conditions (4.44) and (4.45), combined with (4.55) give

2
Nz
Next, let A = 0 and note that equation (4.46) reduces to

¢o(V') O—V), 0<V <. (4.56)

W' =0, (4.57)

with general solution is

Yo(V) = D\V + Ds. (4.58)

Substitute the boundary conditions (4.47) and (4.48) and obtain

Po(V)=1,0<V <9, (4.59)

This completes the proof of Part A.

Proof of B. We assume that A # 0 and show that the eigenvalues of the ODE problem (4.43)-
(4.44)-(4.45) are real and negative. The proof of this requires three Lemmas.
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Lemma 7. Suppose that ¢ is a solution of the ODE problem (4.43)-(4.44)-(4.45). Then

6(0) = 0.

Proof. First, multiply (4.43) by ¢’ :
2\
¢/¢/l__2¢/¢:0.
o

Integration of (4.61) shows that there is a real constant C' such that

n2
%—%¢2:O,O<V<9.

It follows from (4.44) that ¢(#) = 0. This fact, combined with (4.62) gives

112
SOF e,
Thus, (4.62) may be rewritten as
LA i)y
5 — ;Qb = 9 , 0<V <4.

Lastly, combine boundary condition (4.45), i.e. ¢'(0) = ¢'(6), with (4.64) and obtain

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

Since A # 0 it follows that ¢(0) = 0, as claimed. This completes the proof of Lemma 7. [

We now show that A is real.

Lemma 8. The eigenvalues of the ODE problem (4.43)-(4.44)-(4.45) are real.
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Proof. For contradiction assume that A = x + iy is complex. Then

2\

and
_ 2\ -
o

Next, multiply (4.66) by ¢ and multiply (4.67) by ¢. Thus,

_ 2N\ _
¢¢" — 506 =0 (4.68)

and

S
63" — 3—2@ 0. (4.69)

Subtracting (4.69) from (4.68) yields

@6 -0y = 22N o5 (.70

An integration of (4.70) from 0 to #, combined with equation (4.44) and Lemma 7, imply

Y 0
el i)} (Aaz ) /O ¢b = 0. (4.71)

A non trivial eigenfunction, ¢, is not identically zero. Thus, foe $¢ > 0. It follows that A =

that

A
i.e. A is real. This completes the proof of Lemma 8. m

Next, we prove that the eigenvalues are negative.

Lemma 9. The non zero eigenvalues of the ODE problem (4.43)-(4.44)-(4.45) are negative.

Proof. For contradiction suppose that A > 0 and that ¢ is an associated non trivial eigen-

function. Then (4.43) is equivalent to
¢" =1’ =0,0<V <0, (4.72)
where r = 3—’2\ > 0.
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The general solution of (4.72) is
d(V) = Ere”Y 4 Eye ™. (4.73)
The boundary condition (4.44), i.e. ¢(0) = 0, implies that E} = —FE5 and thus

d(V) = Ee” — EeV. (4.74)

The boundary condition ¢(f) = 0 implies that

Ei (e —e ) =0. (4.75)

Since (67'9 — e*re) > 0 when r > 0, it follows from (4.75) that E; = 0. In turn, this implies
that ¢ = 0 for all V, a contradiction of our assumption that ¢ is a non trivial eigenfunction.

]

Summary: Lemmas 7-8-9 imply that the non zero eigenvalues of the ODE problem (4.43)-

(4.44)-(4.45) are real and negative. It remains to find their exact values.

Suppose that B > 0 and 2 = —B?. Then the general solution of
¢" + B*¢ =0 (4.76)
is
d(V) = Cycos(BV) + Cysin(BV). (4.77)
The condition ¢(0) = 0 implies that C; = 0 so that (4.77) becomes
o(V) = Cysin(BV). (4.78)
The condition ¢'(6) = ¢’(0) implies that
cos(BO) = 1. (4.79)

71



It follows from (4.79), and the fact that B > 0, that B = 22® n > 1. Therefore, the

0

eigenvalues are

with corresponding eigenfunctions

. [ 2nT
¢n = sin (TV) :

(4.80)

(4.81)

Proof of C. First, we consider (4.46) when X\ # 0 and show that the eigenvalues of the ODE

problem (4.46)-(4.47)-(4.47) are real and negative. The proof of this requires three Lemmas.

Remark: For notational convenience we set o = A for the remainder of this proof.

Lemma 10. Let ¢ solve the ODE problem (4.46)-(4.47)-(4.47). Then
W) = 0.
Proof. First, multiply (4.46) by ¢’ :
2
1/}/¢// _ _Ozzwlw — 0
o
Integration of (4.83) shows that there is a real constant C' such that
n2
%}—%WZQO<V<a
o

Recall from (4.48) that ¢'(0) = 0. This, combined with (4.84) gives

o

Thus, (4.84) becomes
[7/)/]2 > 2 X9
5 021/) = ng (0), 0 <V <0.
Lastly, apply the boundary condition (4.47), i.e. ¥(0) = v(6), to (4.86) and obtain
vOr
5 :

It follows that v/(0) = 0, as claimed. This completes the proof of Lemma 10.
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Next, we show that the eigenvalues of (4.46)-(4.47)-(4.47) are real.

Lemma 11. The eigenvalues of the ODE problem (4.46)-(4.47)-(4.47) are real.

Proof. For contradiction assume that o = x 4 1y is complex. Then

2
w// _ _(;w — 0
g
and
W/ . 2_?& — O
o

Multiply (4.88) by v and multiply (4.89) by . Thus,

_ Qv
by — S5y =0
g
and

W — 22 = 0.
g
Subtracting (4.91) from (4.90) yields
_ L, 2(a—a) -
(v’ ) = 20Ty

An integration of (4.92) from 0 to #, combined with (4.48) and (4.82), gives

2(a—a) (7 -
T/o Y =0.

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

A non trivial eigenfunction, v, is not identically zero. Thus, foe Ynp > 0. It follows that

o = @, i.e. a is real. This completes the proof of Lemma 11.

Lastly, we prove the following Lemma:

]

Lemma 12. The non zero eigenvalues of the ODE problem (4.46)-(4.47)-(4.47) are negative.
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Proof. For contradiction suppose that @ > 0 and that 1 is an associated non trivial eigen-

function. Then (4.46) is equivalent to
' —r*p=0,0<V <0, (4.94)

where r = /2% > 0. The general solution of (4.94) has the form ¢(V) = Fie" + Fye V.
The boundary condition ¢'(0) = 0 implies that F} = F, so that

Y(V) = Fe™V + FreV. (4.95)
The boundary condition ¢’(f) = 0 implies that
Eyr (e —e) =0. (4.96)

Since (6”9 — 6*7"9) > 0 when r > 0, it follows from (4.96) that F; = 0. In turn, this implies
that ¢ = 0 for all V| a contradiction of our assumption that v is a non trivial eigenfunction.

]

The previous three Lemmas imply that the non zero eigenvalues of the ODE problem (4.46)-

(4.47)-(4.47) are real and negative. It remains to find their exact values.

Suppose that B > 0 and i—o‘ = —B2. Then the general solution of
V"' 4+ B*) =0 (4.97)
has the form
(V) = Gy cos(BV) + Gysin(BV). (4.98)
The condition ¢’(0) = 0 implies that Gy = 0 so that (4.98) becomes
(V) = Gy cos(BV). (4.99)
The condition ¥(6) = ¢ (0) implies that
cos(BO) = 1. (4.100)
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It follows from (4.100), and the fact that B > 0, that B = 2”7”, n > 1. Therefore, the

eigenvalues are

N ™
A, =y, = =l (4.101)
with corresponding eigenfunctions
2nm
Yy, = cos TV (4.102)

Proof of D. Let n > 1 and notice that a straight forward calculation gives

/cbn )dV = /sm( 7 v) dV =0,

/1/% V)dV = /cos(e‘/)dV:O.
9 0
/0 G0 (V)0 (V) dV = /0 sin (%TWV) cos <2nT7TV) dVv = 0.

Proof of E. Recall that we are assuming that a solution to problem (4.43)-(4.44)-(4.45)

and

Finally,

exists, and has the form

p(V, 1|V, 0) ZA Mo, (V), forallt > 0,0 <V < 6. (4.103)

To prove property V., we need to find the values of the coefficients on the right side of
(4.103). For this, a standard approach is to multiply (4.103) by ¥, :

Y (V)p(V, £|Vi, 0) ZA M, (V) (V), for all £ > 0. (4.104)
A formal integration of (4.104) yields
/ U (V)p(V, t|Viy,0)dV = A, for all t > 0. (4.105)
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Let ¢t = 0 and recall the requirement that p(V, 0[Vp,0) = §(V —V4). Then (4.105) reduces to
0
/ V(V)O(V = Vo)dV = Ay, m = 0. (4.106)
0

Combining (4.106) with (4.52) gives

2mm

A = U (Vo) = cos ( Vo) , m>0. (4.107)

This completes the proof of Part E.

Proof of F. We show that a solution to problem (4.43)-(4.44)-(4.45) of the form (4.50) does
not exist. By Part A and Part E, (4.50) becomes

2 - At 2nm . [ 2nm
p(V, t|Vp,0) = ﬁ(ﬁ -V)+ Ze cos (TVO) sin (TV) for all ¢ > 0. (4.108)

n=1

When ¢ = 0, equation (4.108) reduces to

2 - 2nm . [ 2nm

Substituting the requirement that p(V,0[V;,0) = 6(V — V}) into (4.109) gives
SOV Vi = 20 -1+ eos (270 ) sin (227V) o< v <6 (4.110)
0) — 02 2 COS 0 0o]S 0 s ~ S 0. .

Now, let V' = 0. Then (4.110) reduces to

5(—Vp) = g (A111)

Alternatively, let V = 2. Then (4.110) reduces to
7 1
ol=—-W)=- 4.112
(5-%) =3 (@112

Properties (4.111) and (4.112) contradict the fact that the delta function can have at most
one non zero value. Thus, we conclude that problem (4.43)-(4.44)-(4.45) does not have an

eigenfunction expansion solution of the form (4.50). This completes the proof of Part F

The proof of Theorem 2 is now complete.
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4.3 EIGENVALUES FOR THE IF MODEL WHEN Z = 5—2 >0

In this section we fix > 0 in the IF model and analytically investigate properties of the
eigenvalues of the associated Fokker Planck equation (FPE). Recall from Section 4.1 that,
to compute the eigenvalues, A\, we set z = 5—2, where # > 0 and ¢ > 0 are fixed, and solve

the nonlinear algebraic equation
ve* =~y cosh(y) + zsinh(y), (4.113)

where

6 6
c=" 20 and Y=mtive =5V +2X0% (4.114)
o

o2

It follows from (4.114) that the eigenvalues are given by

\ o' (0 —3) — 1*0? N 2.717202
20252 g2

(4.115)

The remainder of this section consists of Subsections 4.3.1-4.3.5, which focus on the following

issues:
4.3.1 We develop non linear algebraic equations for v; and .

4.3.2 Using the non linear algebra equations derived in Subsection 4.3.1, we develop ODEs
for 7, and 79. The solutions of these ODEs will, because of equation (4.115), generate

corresponding branches of eigenvalues.

4.3.3 For small, fixed z > 0, we prove the existence of infinitely many initial values for the

(71,72) ODEs developed in Subsection 4.3.2.

4.3.4 We prove that, corresponding to the infinitely many initial values proved in Subsec-
tion 4.3.3, there are infinitely many distinct solutions, (77'(z),75(2)), n > 1, of the ODEs
developed in Subsection 4.3.2. In turn, these solutions generate infinitely many branches of

eigenvalues, A\"(z) = A7(z) + iA5(z), n > 1, of the form given in (4.115).

4.3.5 We analyze the asymptotic behavior, as z — 07, of the eigenvalues \"(z).
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4.3.1 The Nonlinear Algebraic Equations for 7, and v,

Assume that v = 71 + i7y2. Then (4.113) becomes

(71 +iv2)e® = 71 [cosh(71) cosh(ivyy) + sinh(yy) sinh(i7s)]
+ 75 [cosh(v1 ) cosh(ivs) + sinh(vq) sinh(ivs)] (4.116)

+ z [sinh(7;) cosh(iy2) 4 cosh(v;) sinh(ivs)] .

Note that cosh(iz) = cos(z) and sinh(iz) = isin(z). Separating real and imaginary parts

in (4.116) and obtain the two algebraic equations

~yr€* — 71 cosh(71) cos(ys) + 72 sinh(7;) sin(,) — z sinh(7;) cos(vs) = 0, (4.117)

o€ — 1 sinh(7y) sin(y2) — 72 cosh(y1) cos(y2) — z cosh(v7) sin(7,) = 0. (4.118)

We keep 0 > 0 and 6 > 0 fixed, and vary p > 0. Thus, we assume that z = g—‘; > () varies
only with x> 0. Our goal is to make use of the implicit function theorem to solve (4.117)-

(4.118) for real functions 7;(z) and ~5(z). The first step is to define functions f (71,2, 2)

and g(v1,72,2) by

f =me® — v cosh(vy) cos(y2) + 72 sinh(y ) sin(vy2) — zsinh(7y) cos(72), (4.119)

g = 72€” — 1 sinh(7y) sin(y2) — 72 cosh(7y1) cos(y2) — z cosh(vr) sin(7z). (4.120)

To use the implicit function theorem we must find a solution (77, 7z, Z), which satisfies

f(n, 72, 2) = 0, (4.121)
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4.3.2 ODEs for v, and 7,

Our approach to proving the existence of infinitely many branches of solutions of the non-

linear algebra problem

f(v1,72,2) =0, (4.123)

9(11,72,2) =0, (4.124)

is to develop ODEs for v;(z) and 72(z). The first step is to differentiate (4.123) and (4.124)

with respect to z :

Of dyi  Of dva | OF _

oy dz | Oy dz | 0z 0 (4.125)
dg dy1 09 dy2  Og
Oy dz Oy, dz 9.7 0 (4.126)
Solving for v{(z) and 74(z) gives the system
dvy 1 (0f0f 999y
dz J <871 0z 0y 0z)’ (4.127)
dvo 1 (0g9f 0Of dg
dz J (371 0z 0 0z)’ (4.128)
with initial values
M(2) =71 and 1(2) = 7, (4.129)
where
) ()
J=(=—] +|=— ) , 4.130
(a% oab! ( )
0 :
8_£ = y1€° — sinh(7y) cos(72), (4.131)
0 :
a—i = ype® — cosh(y) sin(s), (4.132)
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of _ e + 7z cosh(7yy) sin(s) — (1 4 z) cosh(v;) cos(y2) — 71 sinh(71) cos(y2),  (4.133)

om
0
% = 71 cosh(vy) sin(7y,) + (1 + 2) sinh(;) sin(7,) + 72 sinh (1) cos(72), (4.134)
2
0 . . . :
% = —m; cosh(77) sin(y2) — (1 + 2) sinh(;) sin(72) — Y2 sinh (1) cos(72), (4.135)
1
and
0
% = € + 1 sinh (1) cos(y2) — (1 + z) cosh(71) cos(vs) + 2 cosh(yy ) sin(vs).  (4.136)
2

Below, in Theorem 3, we show that there are infinitely many solutions of the algebra prob-
lem (4.123)-(4.124), each of which provides the initial values, at an appropriately chosen z,
for the ODE initial value problem (4.127)-(4.128)-(4.129). We will prove below, see subsec-
tion 4.3.4, that equations (4.125)-(4.126) can be solved for 1 (z) and ~5(z).

4.3.3 Infinitely Many Initial Values for the (v;,7,) ODEs.

This entire subsection is devoted to proving the existence of infinitely many solutions of
(4.123)-(4.124), each of which is an initial value for the ODE initial value problem (4.127)-
(4.128)-(4.129). We do this in

Theorem 3. Let Z > 0 and n > 1, and define

7 (2) =1n (ez + Ve — 1) : (4.137)
For sufficiently small Z > 0 and € > 0, there is at least one solution (Y1,72,2) of (4.123)-
(4.124), where (1,72) lies in a rectangle

B, C (evz,7;(2)) x <2n7r, 2nm + g) . (4.138)

Remarks: (i) The specific definition of B,, is given below in equation (4.142) in the proof
of Theorem 3. (ii) Each solution (71, 7,) is an initial value, at z = Zz, for the ODE prob-
lem (4.127)-(4.128)-(4.129).
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4.3.3.1 Outline of the Proof of Theorem 3 Step I. Let Z > 0 and n > 1 be fixed,

and define the rectangle B,, (see Figure 7).

Step II. Use the implicit function theorem to show that there is a C! function v, =
v2(71) such that (y1,72(y1)) defines a continuous curve C,, C B, with the property that
f(y1,72(m), 2) = 0 everywhere on C,,. We prove that C,, begins on the right edge of B,

enters the interior of B,,, and exits along a point (71, 72) € 'y, ULy, (see Figure 7).

Step III. Evaluate g(v1,72(7),2) along the curve C,. Show that g(y1,72(71),2) changes
sign along C,,. This implies that g(v1,72(71),2) = 0 at some point (7y1,72(71)) € Cy. In
particular, we prove that g(v;,72(71),2) < 0 at the point where C,, intersects the right edge
of B, and that g(y1,72(71),2) > 0 along I'y,, UTy,,. Thus, g(y1,72(71), 2) > 0 at the first
point where C), leaves B,. An application of the intermediate value theorem shows that

9(71,72(71), 2) = 0 at some point (71,72(71)) € Cn (see Figure 7).

4.3.3.2 Proof of Theorem 3. We begin Step I with the construction of the rectangle
B,,. Assume throughout that z > 0 and n > 1 are fixed. Recall from equation (4.120) that

Taking the inverse hyperbolic cosine yields

v = =In (ez + Ve?? — 1) . (4.139)

o z
2nm+x”

Next, consider the function I,,(x) = tan(x)

Lemma 13. Let 2 > 0 and n > 1 be fized. Then l,(z) = 0 has a unique solution in (0,7/2).

Proof. A calulation shows that

z

I (z) = sec*(x) + nr )

(4.140)

It follows that [, is strictly increasing. Since lim, /- I,(z) = oo there exists § > 0 such
that [,(x) > 0 for z € (7/2 — §,7/2). Since [,(0) < 0, the intermediate value theorem

guarantees a unique root of l,(z) = 0 in (0,7/2). O
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: r2,n :
A @2)F - - - ----
r1,n n r3.n
\(v;,v; )
2nm f--- -
! FCan !

eVz v’ V1

1

Figure 7: The rectangle B, = (ev/z,7}) x (2n7,2n7 + A,(2)) in the (71,72) plane. Here,
zZ = 5—2 > 0 is fixed, € is small, and 7; = In (ez + m) . The three curves represent the
possible behavior of the curve C,, generated by the C' function v,(7;) that passes through
the point (77, 74). By the implicit function theorem C), enters B, at the point (v;,75) and
continues through B,,, exiting along one of the other three sides. Along each of the three
curves we prove that f(v1,72(71),2) = 0. Secondly, at the right endpoint of each curve we
show that g(vf,75,2) < 0. Finally, we prove that g(v1,72(71),2) > 0 at the point where

each of the three curves exit B,,. Thus, there is an interior point, (71, v2(7), Z), on C,, where

f(7,7%(7), 2) = g(71,72(7), 2) = 0.
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To define B,, we need

Definition 1. Let Z > 0 and n > 1 be fized. Then A,(Z) is the unique number in (0,7/2)

such that
z
tan(A,(2)) = ————. 4.141
w(A,(2)) = D (1.141)
We are now ready to define the sets B,.
Definition 2. Let Z > 0 and n > 1 be fized, and let 0 < € < \/1/2. We define
By = Bezn = (eVZ,7]) X (2nm, 207 + A,(2)) (4.142)

The boundary of B,, consists of four sides (see Figure 7):

={(71,72) € R*| 7 = V7, 2n7r§72§2n7r+An(2)}

11,7%2) € R? |91 = 9%, 2nm < 5 < 2nw + An(é)}

(
(
(
(

I ={ )
Lop { Y1,72) € R*|0 < 1 < AF, 72:2n7r~|—An(2)}
I, ={ )
Cyn :{ Y1,72) ER?|0 <y <A, 72 = 2n7r}

This completes the construction of B,,.

Existence of a C' function ,(71).

The next step is to show the existence of a C! function 72(y;) that generates a curve C,, C B,,.

We do this in Lemma 14.

Lemma 14. Fiz Z > 0 and n > 1. For sufficiently small 3 > 0, there exists a C' function

Y2(71) such that f(y1,72(m),2) = 0 for all v € [y — B,77]. Furthermore, v2(71) continues
to exist for vy <7 — B until (y1,72(n)) exits B, at a point (1,72) € I'1,, UL y,.

Proof. Notice that f(y1,72,2) is C' by definition. Also, recall that T's,, forms the right
side of B,,. We need to show that there exists (77,75) € I's, such that f(v{,73,2) = 0. A

calculation shows that

f(7f,2nm, z) = 77 (€® — cosh(77)) — Zsinh(7f) = —Zsinh(y}) < 0. (4.143)
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Simlarly,

FOvs,2nm + An(2), 2) =vie® (1 — cos(A,(2))) (4.144)
+ sinh(y]) [(2nm + A, (2)) sin(A,(Z)) — Z cos(A,(2))] -

Applying the definition of A, (z), (see Definition 1 above), it follows that

f(vs,2nm + A, (2), 2) = v7e” (1 — cos(An(2))) > 0. (4.145)

By the intermediate value theorem there exists 75 € (2n7, 2nm + A, (Z)) such that (77, 75) €
Is, and f(v1,7,%2) = 0. To use the implicit function theorem we need only show that

[ (71,75, 2) # 0. A differentiation of (4.119) with respect to v, shows that

fro (1173, 2) =71 cosh(y7) sin(73) (4.146)

+sinh(y7) [sin(v3) + 75 cos(73) + Zsin(v3)]

Since v5 € (2nm,2nm + A, (2)) C (2nm,2nm + 7/2), both terms in (4.146) are positive and
therefore the implicit function theorem guarantees a neighborhood (vf — 3,~7 + ) where

v2(71) exists as a C! function.

Next, we show that f.,(71,72,2) > 0 for all (y1,72) € B,. A calculation shows that

Jro (715,72, 2) = 71 cosh(y1) sin(y2) + (1 + 2) sinh(y;) sin(7y2) + Y2 sinh(yy) cos(ys).  (4.147)

Since all three terms are positive for (y1,72) € [ev/Z,7f] % [2nm, 2n7 + A, (2)] we conclude
that

Jra(71,72,2) >0

on the closure of B,,. This property, together with the implicit function theorem, guarantees

that (1) continues to exist for v; <~ — § until (71, 72(71)) exits B,, at a point (71,72) €
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Iy, Ul ULy ,. Finally, we eliminate the possibilty that (vi,72) € I'y,,. For this, it suffices
to prove that
f(71,72,2) >0 forall (y1,72) € Fap. (4.148)

Let (71,72) € 'y Then

(71,72, 2) = y1€” — 1 cosh(v;) cos(An(2)) + (2nm + A, (Z)) sinh(~) sin(A,,(2)).

— zsinh(y1) cos(A4,(2)) (4.149)

By the definition of A,(z) we have that

f(71,72,2) =n€® — 71 cosh(v1) cos(An(Z))

>v1e” — ~; cosh (7).

Since cosh is an increasing function, we apply the definition of 77 and obtain

f(71,72,2) > 71 (cosh(vy) — cosh(y1)) > 0 for all (y1,72) € I'ap (4.150)

as claimed. This completes the proof of Lemma 14. O]

Summary: We have now completed Step II. That is, we have shown how to use the implicit
function theorem to prove that there is a C* function v = ~2(71) such that (y1,v2(71)) defines
a continuous curve C,, C B, with the property that f(v1,72(71),2) = 0 everywhere on C,,.
We have proved that C, begins on the right edge of B, enters the interior of B,,, and exits
along one of the edges, I' ,,, or I'y,,, of B,, (see Figure 7).

We now proceed with Step IIT of the proof of Theorem 3 and show that g(y1,72,2) = 0 at
a point (71,72(71)) € C,. We first evaluate g(v1, 72, Z) along the boundary of B,,.

Analysis of g(v1,7,2) on the boundary of B,.

We need the following two technical lemmas:
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Lemma 15. Let Z > 0 and n > 1 be fized, and let (v1,72) € B,. Then

167 — 71 cosh (1) cos(y2) > 0. (4.151)

Proof. Recall that cosh is an increasing function. Thus,

cosh(v1) cos(7a) < cosh(v;) < cosh(vy) = €. (4.152)

Multiply (4.152) by 71 and obtain (4.151). O

Lemma 16. Let z > 0 andn > 1 be fized, and let (y1,72) € B,,. Suppose that f(~1,72,2) = 0.
Then

Y2 8in(y2) — Z cos(va) < 0. (4.153)

Proof. For contradiction assume that

Yo sin(y2) — Z cos(y2) > 0. (4.154)

A rearrangement of equation (4.119) gives

f(71,72, 2) = 116" — 71 cosh(y1) cos(72) + sinh(y1) [y2 sin(y2) — Z cos(72)] - (4.155)

Set f = 0 and note that sinh(y;) > 0 on (ey/Z,7;). Lemma 15, together with (4.154) gives

0 =y1€* — 71 cosh (1) cos(y2) + sinh(7yy) [y2 sin(y2) — Z cos(7z)]

>y1€° — 1 cosh (1) cos(v2) > 0,

which is a contradiction. This completes the proof of Lemma 16. O
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We now determine the sign of g(7y1,72(71), Z) on the right boundary of B,,.

Analysis of g(11,7(1), 7) on Ty,

Below, in Lemma 17 we prove that g(y1,72,2) < 0 for each (y1,72) € I3, provided
f(71,72,2) = 0 and Z > 0 is sufficiently small.

Lemma 17. Let n > 1. There exists a value 6; > 0 such that, if 0 < Z < 01, then the

following property holds:

Zf (71772) € FS,n and f(7177275) =0 then 9(’71a72, 2) < 0. (4156)
In particular, g(+},72(7}), %) < 0.

The proof of Lemma 17 requires four lemmas, Lemmas 18-21.

Lemma 18. Fiz Z > 0 and n > 1. If (71,72) € B, then

G272 (717 Y2, 2) > 0. (4.157)

Proof. A differentiation of (4.120) gives

Grome = €+ sinh (1) sin(y2) 4+ cosh(71) [(2 + 2) sin(y2) + 72 cos(12)] - (4.158)

Note that sin(y2) > 0 and cos(y2) > 0 when v, € [2nm,2n7 + A,,(Z)]. Thus, the last two
terms in (4.158) are nonnegative on B,. From this, and the fact that e* > 0, it follows

that (4.158) reduces to g,,,, > 0, as claimed. O

Remark: Recall that to prove Theorem 3 we must show the existence of only one solution
(71, T2, 2) to (4.123)-(4.124). As we mentioned at the beginning of this section, to find this
solution we must put restrictions on the size of z. That is, some proofs hold only when z is

sufficiently small.

The next goal is to show that g,,(7{,72,2) < 0 on I's ,,. This is done in Lemma 17. Both
the statement and proof of Lemma 17 require the next three technical lemmas which place

a restriction on the size of z.
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Lemma 19. There exists 6 > 0 such that

e +Ver—1—eV">0 forall 0<z<d. (4.159)

Proof. Let z > 0 and consider the C! function H(z) = e* + ve* — 1 — eV?. By Taylor’s

theorem, there exist functions ¢;(2), g2(2), g3(2) such that

q1(2)

VE

e(2) — 0 and qi}?

— 0, —0, as z—0, (4.160)

and

H) =1+z2+q(z)+V1+22 —(z) —1— [1+\/E+§+q3(z)]

= g +qu(2) + V22 — @2(2) — Vz — gs(2). (4.161)

It follows from (4.161) that there is d; > 0 such that, if 0 < z < §, then

Vz | q(?) 3 (2) q3(2)
H(z) = —_— 2——=—-1-— > 0. 4.162
(2) \/2{ 2 T T . NG (4.162)
O
Lemma 20. Let 0 < zZ < §; where 01 satisfies Lemma 19. Then
VZ <y =In(e” + Ve —1). (4.163)
Proof. By the definition of 4}, the inequality v/Z < 7} is equivalent to
VZ < In(e” + Ve — 1), (4.164)
Recall that e” is an increasing function. Thus, (4.164) is equivalent to
eV: < ef Ve — 1. (4.165)

Let 0 < Z < §;. Then, (4.165) is a true statement by Lemma 19. Thus, vz < 75, as

claimed. 0
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We can now prove

Lemma 21. Let 0 < Z < 0y where &y satisfies Lemma 19 and let n > 1. If (77,72) € s,
and f(ﬁ)/ika Y25 2) = 07 then

9y (V1 72,2) < 0. (4.166)

Proof. First notice that f(7],72,2Z) = 0 implies that

y1€® — 75 cosh () cos(y2) = Zsinh()) cos(ye) — 2 sinh(v]) sin(7z). (4.167)

Multiply g,, by 74, and combine with (4.167), to obtain

9 (5,72, 2) = (2 = (47)?) sinh(7}) cos(y2) — 72 sinh(7}) sin(y2)

+ 77 cosh(77) [y2 sin(7y2) — Z cos(va)] - (4.168)

By Lemma 20, 77 > /Z so that the first term of (4.168) is negative. The third term of (4.168)
is also negative because of Lemma 16. Since the second term of (4.168) is always negative

on B, we have that g.,(vf, 72, %) < 0. O

Lemma 21 implies the desired result regarding the sign of g(71,72,2) on I's .

Proof of Lemma 17

Let 0 < Z < 0; where 0; satisfies Lemma 19. Observe that

97 (1, 2nm, 2) = =77 sinh(77) — Z cosh(vy) < 0. (4.169)

By Lemma 21, g(~;, 72, Z) is decreasing. This completes the proof of Lemma 17.

We now continue with the completion of Step III of the proof of Theorem 3. In Lemma 17

we proved that

9(11572(11), 2) <0. (4.170)
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By Lemma 14, the curve C,,, generated by 72(71) exits B,, at some point (71, 72) € 'y, ULy .

It remains to show that g(7i,72,Z) > 0. First, we consider the case where (71, v2) € Iyp.

Analysis of g(71,72,2) on I'y,,.

We consider the case where (), exits B,, along I'y,,. We prove the following

Lemma 22. Let 2 >0 and n > 1. If (71,72) € T4, then

9(71,72,2) > 0. (4.171)

In particular, if C, ezits B, at a point (V1,72) = (V1,72(71)) € Lan, then 42 = 2nmw and

g(7,2nm, z) > 0. (4.172)

Proof. By definition, e* = cosh(v7) > cosh(v;). Therefore,

g(71,2nm, z) = 2nm (e* — cosh(v1)) > 0. (4.173)

From this, and the definition of B,, it follows that if C,, exits B,, at a point (71,72) € [yn,

then 75 = 72(71) = 2n7 and

9(71,72(71), 2) > 0. (4.174)

This completes the proof of Lemma 22. O

Lastly, we consider the possibility that C,, exits B, at a point (71,72) € I'1 .

Analysis of g(v1,72,%) on 'y,
We consider the case that C), exits B,, at a point (71, 72) € I'1,,. We prove
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Lemma 23. Let z > 0 and n > 1. There exists a value 64 > 0 such that, if 0 < Z < d4 and

(71,72) € 'y, then
9(71,72,2) > 0. (4.175)

In particular, if C,, exits B, at a point (V1,72) = (1,72(71)) € T'1n, then
9(V1, 72, 2) > 0. (4.176)

The proof of Lemma 23 requires the following technical result:

Lemma 24. Fix Z > 0 and n > 1. There exists a value 65 > 0 such that, if 0 < Z < do, then

e* — % <e€ﬁ + e‘fﬁ>

1
> —. 4.177
z 2 ( )
Proof. Let
ef — 3 (ee*/E + e‘€ﬁ>
m(z) = . . (4.178)
Z
By Taylor’s theorem there exist functions ¢;(z) and go(z) such that
45 L sz 0 i=12 (4.179)
Z
and
_ 1 _ _ 1 _ €z — &z _
m(z) = [1+2+a(3) -5 1+E\/2+7+1—6\/2+7+q2(z) . (4.180)
By (4.179), there exists a value do > 0 such that when 0 < zZ < 5, we have
e qz) € e q@(z) €
—7< 5 <7 and 1< <7
Thus, if 0 < Z < 9,
_ @(2) € @)
=1 _ = _
m(z) * Z 2 z
e & €
1o — — — — =
SR
=1-€>0. (4.181)
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Proof of Lemma 23.

Fix 0 < Z < 05 where J, satisfies Lemma 24 and suppose that (v1,72) € I'1,. It follows that

9(1.72, ) = 72¢ — ev/Zsinh(eV/Z) sin(72)
— 5 cosh(ev/Z) cos(y2) — Z cosh(ev/Z) sin(v;)

Note that —sin(x) > —1 and — cos(z) > —1. Thus,
9(71, 72, Z) > 7ae” — eV/Zsinh(ey/Z) — 5 cosh(ey/Z) — Z cosh(ev/Z).

The definition of the hyperbolic cosine, and a rearrangment of terms, yields

sinh(ey/z)

_ 1 - _
g(717727 5) Z Y2 |:ez — 5 (66\/; —+ eeﬁ)] — 6227 — ZCOSh(E\/E).

z

Factor out z and obtain

z 1 eVz —eVZ
( > 7 | _5("3[*6 f) psinh(ev/z)
,V9,2) 2> Z — ———=
g\, 72 V2 > e\/?

— cosh(ey/Z)

By Lemma 24, it follows that

9,72, 2) > Z {72% - 62%\;%/;) — Cosh(e\/z)} .

Since 21 < 2nm < 7, it follows that

g(y1,72,2) > 2 {w — 62% - COSh(E\/;)] :

Note that
sinh(ey/Z)
eVz

Thus, there is a d3 > 0 such that 0 < ey/Z < §5 implies

— 1 and cosh(ev/z) — 1 as z — 0.

,sinh(ey/z) -
—e¢———= —cosh > 0.
T—€ Vs cosh(ev/z)
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Let §4 = min(ds, ‘2—5) and suppose that 0 < zZ < d4. Then,

9(m,72,2) >0 (4.189)

as desired. This completes the proof of Lemma 23.

Summary and Conclusion

Let 6 = min(6;,d4). Let 0 < 2 < §,n>1and 0 < € < 4/1/2. By Lemma 14 there exists
Y2(1) € C* ([ev/Z,71]) such that 12(y1) € [2nm, 2nm 4 A,(Z)) and

f(y,72(n), 2) = 0. (4.190)

An important consequence of Lemma 14 is that v9(71) generates a curve C,, C B,, that enters
B, at (77,7s) € I's,, and exists B,, at a point (71,72) € I'1,, UT'4,. In Lemmas 17,22,23
we showed that g(v5,v3) < 0 while g(¥1,72,2) > 0. Since g(71, 72, 2) is continous in each
variable, the intermediate value theorem guarantees a point (71,72) = (71, 72(71)) € B, with
the property that

f(7,%,2) =0 and g(71,72,2) = 0. (4.191)
Furthermore, for each n > 1, the solution (71,72), at z = Z, of the non linear algebra
problem (4.123)-(4.124) is an initial value for the ODE problem (4.127)-(4.128)-(4.129).
This completes the proof of Theorem 3.

4.3.4 Infinitely many C'((0,00)) solutions of the ODEs.

In this section we address the issue raised at the beginning of Section 4.3.2. That is, we
prove the existence of infinitely many branches of functions, 77 (z) and v5(z), which satisfy,

for each n > 1,

F(11(2),75(2),2) =0 and g¢(71(2),75(2),2) =0, for all z > 0. (4.192)

Remark: For the remainder of this section the superscpript n denotes the solu-
tion corresponding to the natural number n > 1.

We prove the following result:
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Theorem 4. Fiz 0 < z < 6§, where § satisfies Theorem 3, and n > 1. Let J denote the

Jacobian matriz of F' = (f,g). There are functions

71 (2) € CH((0,00)) and 73 (2) € C((0,00)) (4.193)
with initial values
(11'(2),72(2)) = (31,13 € Bn, (4.194)
such that
fOn'(2),72(2),2) =0 and g(77'(2),73(2),2) = 0, for all z >0, (4.195)
and
(7'(2),75(2)) € Dyp(2) for all z > 0, (4.196)
where (see Figure 8)
Dy, (2) = (0,77(2)) x (2nm, 2nm + A, (2)). (4.197)
Furthermore, ) )
_(9f dg
Det(J) = (67?) + (67?) >0, for all z >0, (4.198)
dy 1 of df  9g 9g
iz = Detl)) (87{‘ 9 oy oz) for all z > 0, (4.199)
and
dvy 1 dg Gf_ of Og
i: ~ Detl]) (87? 9 9yaz) for all z > 0. (4.200)

A direct, and important, consequence of Theorem 4 is the existence of infinitely many

branches of eigenvalues:

Theorem 5. For each n > 1, let (7] (z),75(2)) solve Theorem 4. The corresponding eigen-

values are given by

4 ny2 _ n\2\ _ 202 nmn 2
N(2) = Ni(2) +iMn(z) = 2 (1) = (2)7) — L s

S o (4.201)

and are continuously differentiable for z € (0, 00).
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Figure 8: Left Panel: D, (z) is the rectangle defined in (4.197). As z increases or decreases,
the size of D,,(z) increases or decreases. Lemma 27 proves that the large dot, which represents
(71(2), 75 (2)), is contained in the interior of D,,(z) for all z > 0. Right Panel: As z increases

and decreases the green dot generates the curve in the (7},7%) plane.

The proof of Theorem 5 follows directly from formula (4.115) and Theorem 4. The proof
of Theorem 4 requires Lemmas 25, 26 and 27, together with an application of the implicit

function theorem. We prove Theorem 4 immediately following the proof of Lemma 27.
The first step is to let J denote the Jacobian matrix in the statement of Theorem 4. In
Lemma 25 we prove that the determinant of J is nonzero at the point (77,72, 2).

Lemma 25. Let 0 < z < 0, where 0 satisifies Theorem 3, and n > 1. Suppose that (7}, %) €
B, then

af\° [ 99\
Det(J) = —f—( ) >0, forall z € (0,9). 4.202
) (3%‘) o 9:9) (4-202)
Proof. Note that

or  of
J=| o 2% |, (4.203)

99 9g
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Figure 9: Top Left: The function 5 (z) for n = 1, n = 2 and n = 3 (solid blue curves).

Top Right: The function 75 (2) for n = 1 and n = 2 (solid blue curves). The functions

A (z) and Ay(z) are represented by the dotted red lines. Bottom Left: The function 7}(z)

for n = 1 and n = 2. Bottom Right: The function 75 (z) plotted against 77'(z) when n = 1.

To reproduce the figures see Section A.3
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A calculation shows that

of 9y
oy 0y 75 2kt (4204

2 2
Thus, Det(J) = (a_;;) + (;;—%L) where

B,
87]; = —(1+ z) cosh(77') cos(v3) — 71 sinh(77) cos(v3) + 73 cosh(y1) sin(y3) + €* (4.205)
1
and
5,
a,ygn = (1+ 2) sinh(77) sin(73) 477 cosh(y1) sin(73) + 75 sinh (7)) cos(rz).  (4.206)
1

Notice that all three terms in (4.206) are nonnegative since 74 € (2nm, 2nm + A, (2)). Since

all three can not be 0 for the same 77 and v} we conclude that 51_9? > 0. Furthermore,

Det(.J) > 0. m

An important consequence of Lemma 25 is the following

Lemma 26. Fiz 0 < zZ < 0, where § satisfies Theorem 3, and n > 1. Then, there exists

p > 0 and functions v} (z) € C'((z — p, 2+ p)) and v5(z) € C'((z — p, z2 + p)) where

f1'(2),73(2),2) = g(1'(2),72(2),2) = 0, forall z € (z—p, Z+ p). (4.207)

Furthermore, the functions v}(z) and ~v5(z) are determined by the equations

dyviy 1 of dg  dg Of

dz  Det(J) (87? Dz Oy 82) (4.208)
and

dvy 1 dg 8f_ af Og

dz  Det(J) (87{1 Jz OV oz) (4:209)
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Proof. By Theorem 3 there exist (7}',7%) € B, such that (4.191) holds. A differentiation
of (4.191) with respect to z yields

of dyi | Of dyy  Of
= = 4.21
oy dz Oy dz * 0z 0 (4:210)

dg dyy | 0Og dvyy | Og
— =0. 4.211
ovp dz Oy dz * 0z ( )

By Lemma 25, we can solve (4.210) and (4.211) for ‘Z’—f and ﬁ—f and obtain equations (4.208)-

(4.208). By the implicit function thereom, there exists p > 0 such that
1) € CU((2 = p, 2+ p) and A4(2) € C(( — p, 5+ p).

]

It remains to prove that 7}'(z) € C((0,0)) and v (z) € C!((0,00)). We need the following

Lemma 27. Let 0 < zZ < 0, where  satisfies Theorem 3, and n > 1. Then
0 <7 (z) <71 (2) for all z € (0,00), (4.212)

and

2nm < vy (2) < 2nm 4+ A,(2) for all z € (0, 00). (4.213)
Proof. By Theorem 3, (7{(%),7%5(2)) € (0,77 (2)) x (2nm, 2nm + A, (2)). Recall that
D, (2z) = (0,7(2)) x (2nm, 2nm + An(2)). (4.214)

For contradiction, assume that there exists 8 > 0 such that

(11 (8),75(8)) € 9D (B) (4.215)

and

F(VT(B),72(8),8) =0 =g (B),%(B),B)- (4.216)

There are sixteen cases to consider:
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Case la: There exists 0 < # < z such that
(7 (2),75(2)) € D, for all z € (3, 2), (4.217)

and (4.215) is given by
(11'(8),73(8)) = (0, 2nT + An(B)). (4.218)

Notice that

9(1(8),75(8), B) =(2n7 + Au(8))e” — (2nm + A (B)) cos(An(B)) — Bsin(A,(5))
> (2nm + An(ﬁ»eﬂ — (2nm + An(B)) — BAL(B)
> A,(B) (e’ — (1+8)) >0,

contradicting (4.216). We conclude that (4.217) and (4.218) cannot hold.

Case 1b: There exists 0 < z < /3 such that
(71(2),75(2)) € D, for all z € (2, ), (4.219)

and (4.215) is given by
(71 (B), 73 (B)) = (0, 2nm + Ap(B)). (4.220)

Notice that

91 (8),75(8), B) =(2nm + Au(B))e” — (2nm + A,(B)) cos(An(8)) — Bsin(Au(5))
> (2nm + An(ﬂ))eﬁ — (2nm + An(B)) — BAL(B)
> 4u(8) (¢ = (14 8)) > 0,

contradicting (4.216). We conclude that (4.219) and (4.220) cannot hold.
Case 2a: There exists 0 < 8 < Z such that
(1(2),75(2)) € D, for all z € (3, 2) (4.221)
and (4.215) is given by
(11'(8),72 () = (0,73 (8)), 72 (B) € (2nm, 2n7 + An(6)). (4.222)
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Notice that

91 (B), 75 (B), B) =75 (B)e” — 75 (B) cos(74(B8)) — Bsin(v5(8))
> 95(8)e” —15(B)) — 815 (B)
>5(8) (¢ — (14 8)) >0,

contradicting (4.216). We conclude that (4.221) and (4.222) cannot hold.

Case 2b: There exists 0 < § < z such that
(77(2),75 (2)) € Dy, for all z € (5, 2)
and (4.215) is given by
(17(8),72(8)) = (0,73(8)), 72 (B) € (2nm, 2n7 + An(B)).

Notice that

91 (B8), 75 (B), B) =75 (B)e” — 75 (8) cos(75(B8)) — Bsin(v5(8))
>3 (B)e” = 45(B)) — B3 (B)
>3(8) (e’ = (14 8)) >0,

contradicting (4.216). We conclude that (4.223) and (4.224) cannot hold.
Case 3a: There exists 0 < 8 < Z such that
(77(2),75 (2)) € Dy, for all z € (8, 2)

and (4.215) is given by
(77 (8), 72 () = (0, 2nm).

Notice that

971 (B), 75 (B), B) =2nme’ — 2nx

=2nm (eﬁ — 1) > 0,
contradicting (4.216). We conclude that (4.225) and (4.226) cannot hold.
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Case 2b: There exists 0 < # < z such that

(77 (2),72(2)) € Dy for all z € (8, 2)

and (4.215) is given by
(77 (8), 72 () = (0, 2nm).

Notice that

971 (B), 75 (B), B) =2nme’ — 2nx

=2nm (eﬁ — 1) > 0,

contradicting (4.216). We conclude that (4.227) and (4.228) cannot hold.

Case 4a: There exists 0 < § < z such that

(7 (2),75(2)) € D, for all z € (B, 2)

and (4.215) is given by

(11 (B),72(B)) = (1 (B), 2nm), 7' (B) € (0,77(8)).

Recall that
¢ — cosh(y1(8)) > 0 since 77 (8) € (0,77(8)).

Therefore,

917 (8),75(B), B) =2nme” — 2nm cosh(1(5))

=2nm (eﬁ — cosh(71(8))) > 0,

contradicting (4.216). We conclude that (4.229) and (4.230) cannot hold.

Case 4b: There exists 0 < § < z such that

((2),75(2)) € D, for all z € (8, 2)

and (4.215) is given by
(77(8),7% (8)) = (0, 2nm).
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Recall that
¢ — cosh(y;(8)) > 0 since 77 (8) € (0,77(8)). (4.234)

Therefore,

9(1'(8),72(B), B) =2nme” — 2nm cosh(v1(B))
=2nm (eﬁ — cosh(+7(B))) >0,

contradicting (4.216). We conclude that (4.232) and (4.233) cannot hold.
Case 5a: There exists 0 < 8 < z such that
(71(2),75(2)) € D, for all z € (53, z) (4.235)

and (4.215) is given by
(' (8):12(8)) = (1 (B), 2n7). (4.236)

Recall from Lemma 17 that g(v;(2),75(2),2) < 0forall z > 0 and 7§ (2) € [2n7, 2nm+A,(2)],
contradicting (4.216). We conclude that (4.235) and (4.236) cannot hold.

Case 5b: There exists 0 < § < z such that
(V'(2),75(2)) € D, for all z € (3, 2) (4.237)

and (4.215) is given by
(' (8),72(8)) = (1 (B), 2n7). (4.238)

Recall from Lemma 17 that g(77(2),7%(2), z) < 0for all z > 0 and 75 (2) € [2n7, 2nw+A,(2)],
contradicting (4.216). We conclude that (4.237) and (4.238) cannot hold.

Case 6a: There exists 0 < 3 < Z such that
(V7(2),72(2)) € D,, for all z € (8, ) (4.239)
and (4.215) is given by
(1'(8),72(8)) = (4 (8),72(8)) 75 (B) € (2nm, 2nm + A, (2)). (4.240)
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Recall from Lemma 17 that (77 (2),7%(2), z) < 0for all z > 0 and 75 (2) € [2n7, 2n7+A,(2)],
contradicting (4.216). We conclude that (4.239) and (4.240) cannot hold.

Case 6b: There exists 0 < § < z such that
(Y2(2),72(2)) € Dy, for all z € (8, 2) (4.241)
and (4.215) is given by
(11 (8): %% (B)) = (11(B), %5 (B)) 73 (B) € (2nm, 2nT 4 An(Z)). (4.242)

Recall from Lemma 17 that g(7;(2),74(2), z) < Oforall z > 0 and 7§ (2) € [2n7, 2n7+A,.(2)],
contradicting (4.216). We conclude that (4.241) and (4.242) cannot hold.

Case Ta: There exists 0 < 8 < z such that

(71(2),75(2)) € D, for all z € (5, z) (4.243)
and (4.215) is given by

(7(8), 72 (B)) = (71 (B), 2nm + An(2)) (4.244)

Recall from Lemma 17 that g(v;(2),75(2),2) < 0forall z > 0 and 7§ (z) € [2n7, 2nm+A,(2)],
contradicting (4.216). We conclude that (4.243) and (4.244) cannot hold.

Case 7Tb: There exists 0 < # < z such that
((2),75(2)) € D, for all z € (8, 2) (4.245)
and (4.215) is given by
(71 (8),73 () = (71(B), 2n7 + An(2)). (4.246)

Recall from Lemma 17 that (75 (2),74(2), z) < 0for all z > 0 and 75 (2) € [2n7, 2nw+A,.(2)],
contradicting (4.216). We conclude that (4.245) and (4.246) cannot hold.

Case 8a: There exists 0 < # < Z such that

(71(2),75(2)) € D, for all z € (f, 2), (4.247)
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and (4.215) is given by
(7'(6),72 (8)) = (11 (8), 2nm + An(5)), 1'(B) € (0,71(8))- (4.248)

Recall from the definition of A, (z) that
(2nm + An(2))sin(A,(2)) — B cos(A,(2)) = 0. (4.249)
Therefore,

FOR(B),73(8), B) =71 (B)e” — 7' (B) cosh(77 (B)) cos(A,(B))
+sinh(71'(8)) [(2nm + An(2)) sin(An(2)) — f cos(An(2))]
= 1(8) [¢” — cosh(7](B)) cos(An(2))]
> 1 (B) (¢ = cosh(7}'(8))) > 0,

contradicting (4.216). We conclude that (4.247) and (4.248) cannot hold.

Case 8b: There exists 0 < z < 8 such that
(71(2),75(2)) € D, for all z € (z, ), (4.250)

and (4.215) is given by
(77 (8), 72 (8)) = (0, 2nm + An(5)). (4.251)

Recall from the definition of A, (z) that
(2nm + A,(2)) sin(A,(2)) — B cos(A,(z)) = 0. (4.252)
Therefore,

FOR(B),73(8), B) =7 (B)e” — 11 (B) cosh(77 (B)) cos(A,(B))
+sinh(71'(8)) [(2nm + An(2)) sin(An(2)) — f cos(An(2))]
= 1(8) [¢” — cosh(7](B)) cos(An(2))]
> 1 (B) (¢ = cosh(77'(8))) > 0,

contradicting (4.216). We conclude that (4.250) and (4.251) cannot hold. O
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We can now complete the proof of Theorem 4.

Proof of Theorem 4. First, note that the Jacobian of F' = (f, g) is

of  of
J=| o 9% | (4.253)
99 99
oy oy
A calculation shows that
0 0 0 0
S 09 g 9F _ 90 (4.254)
oy Oy o3 Oy

2 2
Thus, Det(J) = (ai—’;) + (;T%) where

0 . )
(97{‘ = —(1 + 2) cosh(n7) cos(vy) — 1 sinh(47) cos(v4) + 74 cosh(~7) sin(vy) + € (4.255)
1
and
0 ) ) ) )
879” = (1+ 2z)sinh(77) sin(73) 47 cosh(y1) sin(73) + 75 sinh(77') cos(vz).  (4.256)
1

By Lemma 27, 7 € (0,77) and 7§ € (2nm,2nm + A, (2)). It follows that all three terms
in (4.256) are positive and furthermore, Det(.JJ) > 0. An application of the implicit function

theorem shows that

(z) € CH(0,00)) and 74 (z) € C'((0,00)) (4.257)

with (4.199) and (4.200) holding for all z > 0. (See Section 4.3.2 for the derivation.) This

completes the proof of Theorem 4.
Next, we study the functions ~](z) and 74 (z) when z > 0 is near zero.
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4.3.5 Properties of \}(2) and \}(z) as 2 = & — 0F

In this section we investigate the behavior of the eigenvalues, A7(z) and A\j(2), as z = Z—f —

0", where

niy iy - OO0 = (08)%) — w?6* | Aiapo?
Az) = AT (2) +iA5(z) = ! 202022 + 2 0; .

(4.258)

Therefore, we first study the functions v} (z) and 7% (z) as z — 0%. Our first of two results

in this subsection is

Theorem 6. (Behavior of 7} (z) and 5 (z) as z — 0%.) Let z > 0 and n > 1. Let 7} (=)
and v§(z) satisfy Theorem 4. Then (see Figures 8-9)

Tim (47(2),78 (=) = (0,20), (1.259)
and
1
0< 2" 0N <A (0T) = —. 4.260
<5 (0%) < A (0) = 5 (1.260)

Theorem 7. (Behavior of \'(z) = \/(2) +iA\j(z) as z — 0".) Let z > 0 and n > 1. Let

Yi(z) and v3(z) satisfy Theorem 4. Then (see Figures 8-9-10) the eigenvalues

_ (1) = (08)°) = 20 Ao’

A(z) = AT(2) +iA5(2) 50207 0 (4.261)
satisfy
. n n 20%n?m?
tin 0246 = (<27 50) (426
Let € > 0 satisfy Theorem 3. If z > 0 is sufficiently small, then
Ciny/z < Ay (2) < Cony/z and (Ny)'(0%) = oo, (4.263)
where
2emo? 302
C) = 0 and Cy = E(Zlﬁ +7/n). (4.264)

Remark: Note that inequality (4.263) explains the gap between each branch of A} (z) (see
Figure 10, right panel).

The proofs of Theorems 6 and 7 make use of the following three technical results:

Lemma 28. Let 2 >0 and n > 1. Then 0 < A, (2) < /z.
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Figure 10: Left: The function A?(z) for n = 1, n = 2 and n = 3. The dotted lines represent
the values —2n?72. Right: The function A\j(z) for n = 1,42 and n = £3. To reproduce

the figures see Section A.3.

Proof. For contradiction, assume that A,(z) > 4/z and consider the function G(z) =

sin(z)(2nm + ) — z cos(z). By the definition of A, (z) it follows that
G(A,(2)) =0. (4.265)
However,

G(An(2)) =sin(A,(2))(2nm + An(2)) — z cos(A,(2))
=cos(A,(2)) [tan(A,(2))(2nT + A, (2)) — 2].

Recall that tan(z) > 2 when x > 0. Thus, tan(A4,(z)) > A,(z) and
G(A,(2)) > cos(An(2)) [An(2)2nm + A, (2)z — 2]. (4.266)
If A,(2) > +/z and 2n7m > 27 we have that
G(A,(2)) > 2m/zcos(an(2)) > 0, (4.267)
contradicting (4.265). We conclude that 0 < A, (2) < /z. O
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Next, we prove a result regarding the derivative of A, (z2).

Lemma 29. Let z > 0 and n > 1. Then

1
lim A —. 4.2
e nlz) = 2nm (4.268)
Proof. By definition, A, (z) satisfies
z
tan (4, (2)) = —— 4.269
an (An(2)) 2nm + A, (2) ( )
Differentiate (4.269) with respect to z and solve for A/ (z) to obtain
2 A
Al (z) = nm + An(2) (4.270)

(2nm 4+ An(2)) sec? (An(2)) + 2

Notice that lim, ,o+ A,(2) = 0 by Lemma 28. Therefore, upon taking limits, equation (4.270)

reduces to
1
lim A’ — 4.271
zg(I)l+ ( ) 2nm ( )
as claimed. n
Lemma 30. There exists o > 0 such that
7i2) < = for all 0 < z < a. (4.272)

NEE

Proof. Recall that 7 (z) = In (e* + v/e2* — 1) . An application of L'Hospital’s rule shows that

7 (2)
lim = V2. 4.273
Zi)0+ \/_ \/_ ( )
Note that \/z < 2. Thus, there exists o > 0 such that
1)l <33 forallo< 2 < a (4.274)
vz 2 ’
Rearranging the terms in (4.274) gives the desired result. O
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Proof of Theorem 6.

First, we prove (4.259). Recall from Lemma 27 that
0 < '(2) <71 (2) and 2n7m < 75(2) < 2nm + A, (2), for all z > 0.
Combine the first part of (4.275) with the definiton of 7{(z) and obtain
0 <~™(2) < i (2) = In(e* + Ve — 1), for all z > 0.
Combinine the second part of (4.275) with Lemma 28 to get
2nm < y5(2) < 2nm + An(2) < 2nm + /2, for all z > 0.

Let z — 0" in both (4.276) and (4.277) to obtain (4.259), namely
(31(07).33(0%)) = lim (47(2). % (2)) = (0.20).

Next, we prove (4.260). Let z > 0. It then follows from (4.275) and (4.278) that

_ B =07 ) =2 Au()

z z z

0

Letting z — 07 in (4.279) gives

z—0t z z—0t Z

By Lemma 28, A,,(0%) = 0. This, combined with Lemma 29 and (4.280) gives

1
0<~5'(0%) <A(0F) = Gy

as claimed. This completes the proof of Theorem 6.

Proof of Theorem 7. First, we prove (4.262). Recall from (4.261) that

4 n\2 __ n\2) __ 292 NN 2
A= Xi(z) 4 ixn(z) = ZL0) 26(2122)) F +ﬂlg§".

(4.275)

(4.276)

(4.277)

(4.278)

(4.279)

(4.280)

(4.281)

(4.282)

Let z — 0% in (4.282) and apply (4.259) to obtain (4.262). To prove 4.263 recall from (4.282)

that

nn ~2
n N
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Combine (4.283) with Lemma 27 and obtain

ea?2nm 2nm + A, (2)

0—2\/2 < A(2) < 7 v (2), for all z > 0. (4.284)

By Lemma 30 there exists a > 0 such that

22 AL 5(2 A,
co’2nm _ 2(z)< (2nm + A, (2))

02 NE 262

By Lemma 28, A, (z) < y/z. This, combined with (4.285), gives

, forall 0 < z < a. (4.285)

22 5(2
eaezmr\/z < Aj(z) < (W;T—;—\/E), for all 0 < z < a. (4.286)

This completes the proof of Theorem 7.

4.4 EIGENVALUES FOR THE IF MODEL WHEN Z = g—‘j <0

In this chapter we fix z = 0’*—2 < 0 in the IF model and analytically investigate properties
of the associated eigenvalues. Recall from Section 4.1 that, to compute the eigenvalues, we

need to solve the system

ve* =~y cosh(y) + zsinh(y), (4.287)
where
6 . 0
z:% <0 and 7:71—1—272:;\//12—1—2)\02. (4.288)

We assume that # > 0 and o > 0. It follows from (4.288) that the eigenvalues A have the

form

ot (Vi —3) — 1?0 a0’
A= Y i (4.289)

In Section 4.4.1 below we state and prove four theorems which describe the existence and
asymptotic behavior of the eigenvalues. In Theorem 8 we assume that 7 is real (i.e. 72 =0
in (4.288)) and prove that there are precisely two eigenvalues, A = 0 and A = —-QULQQ. In

Theorem 9 we assume that « is purely imaginary (i.e. 73 = 0 in (4.288)) and prove that

there are infinitely many branches of real, negative eigenvalues. Theorems 10 and 11 are
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devoted to proving the asymptotic behavior of the eigenvalues as z — 0~ and z — oo,

respectively

Remark: The Open Problem When 2 = 5—2 < 0.

It remains a challenging open problem to prove whether complex eigenvalues
A=A+ iAo (4.290)

exist when z = g—;‘ < 0. Numerical evidence (Mattia [24]) suggests that the eigenvalues are

real and non positive, i.e. Ay <0 and Ay =0, when z = {;—2 < 0.

4.4.1 Existence and Asymptotic Behavior When 2z = 0&2 <0

Here, our goal is to consider the general setting, and give a rigorous proof of the existence
of infinitely many branches of eigenvalues of the form (4.289) when p < 0 (see Figure 11,
left column). Below, in Theorems 8-11, we analyze the existence and behavior of 7, and the

associated eigenvalues, as z = g—i < 0 varies, and prove the following:

Theorem 8. (Existence When 2 = g—ﬁ < 0 and 7 is Real)
Let v = v + iy be real, i.e. v9 = 0. For each fixed z < 0, (4.287) has precisely three real
solutions, v1 = £z and v, = 0. That is, there are three real eigenvalues of the form

o't — p**

A p—
20202

(4.291)

and are given by

2

A=0 and =1 (4.292)

202
Theorem 9. (Existence When z = 5—2 < 0 and 7 is Imaginary) Let v = v + iy, be
purely imaginary, i.e. 3 = 0. Then, for each fizred z < 0, equation (4.287) has infinitely

many solutions of the form

vy =iy (2) and v =ivy*(z) for n>1, (4.293)
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where
15" (2), 137 (2) € C'((=00,0)),
with
vt € ((2n — 1), 2nm),

and

52 € (2nm, (2n + 1/2)7).

The eigenvalues corresponding to v (z) and v5*(z) are real and have the forms

o? o?

nl nl 2 2 n2 n2 2 2
V) = TGE )+ 2) and X2(2) = ~ T (52(2)° + 7).
Equation (4.287) has no solution in the interval [(2n + 1/2) 7, (2n + 1)7].

Theorem 10. (Asymptotic Behavior of 75?(2) and \"?(z))
For each z < 0, the C* function v52(2) satisfies

Y2 (z) = 2nm as z— 07,

V23(z) = 2nm as z — —o0.

The corresponding eigenvalues \"?(z) = —W € C! satisfy

N'2(2) = =2(n7m)? as 2 — 07,

and

N'2(z) = —00 as z — —o0.

112

(4.294)

(4.295)

(4.296)

(4.297)

(4.298)

(4.299)

(4.300)

(4.301)



Theorem 11. (Asymptotic Behavior of 77!(z) and \"(2))

For each z < 0, the C' function v3'(z) satisfies

Yo (z) = 2nm as z— 07, (4.302)
Yol (z) = (2n — D71 as z — —o0. (4.303)
The corresponding eigenvalues \"!(z) = —W € C! satisfy
N(2) = —2(n7m)? as z— 07, (4.304)
and
N z) = —00 as 2z — —o0. (4.305)

Remark: The above asymptotic properties of ¥4 (2), 7542(z), A"(z) and A\"?(z) are illus-
trated in the left column of Figure 11.

4.4.1.1 Proof of Theorem 8. We assume that v = 7, + i, is real, hence v, = 0, and
(4.287) reduces to
y1€* = 71 cosh(y1) + zsinh(y). (4.306)

To prove Theorem 8 we study the function

H(z,7v) = me* — v cosh(v;) — zsinh(vyy). (4.307)

A direct evaluation shows that H(z,—z) = H(2,0) = H(z,z) = 0. We claim that v, = +=z
or 71 = 0 are the only real solutions of H(z,v;) = 0. To prove this, first note that for each
fixed z, H(z,71) is an odd function of ;. Therefore, we concentrate on the positive v; axis

and show that there is exactly one real zero of H(z,7;) = 0 other than v; = 0.

To prove that H(z,7;) has a unique positive zero, namely vy; = —z, we make use of four

technical results, Lemmas 31-34.

Lemma 31. The function f(x) = e* — (1 4 x) is positive for all x # 0.
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Figure 11: In all plots the parameter values are 0 = # = 1 and V;, = Vg = 0. Top Left:
The functions va!(z),va2(2),73%(z), and ~32(z). The dotted lines represent integer multiples
of 7. Top Right: The function F(—5,7,). The four green dots in both left and right
figures represent the first four solutions of F(—5,7v,) = 0. Bottom Left: The functions
AML(2), M2(2), A2Y(2) and A?2(z). This plot precisely matches the results of Mattia [24], page
66, figure 2. Botttom Right: The functions F'(—1,72) and F(—8,72).
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Proof. Notice that f'(x) = e* — 1 so that f has a minimum at x = 0. Since f’ > 0 for x > 0
and f" < 0 for x < 0 it follows that f > 0 for each x # 0. n

Lemma 32. For each fized z, H,,(z,0) > 0.

Proof. Since H.,, (z,71) = €* — cosh(y1) — 71 sinh(y1) — 2 cosh(y1) it follows from Lemma 31
that
H, (2,0)=e*— (1+2) >0, (4.308)

as desired. O

Remarks: (i) It follows from Lemma 32 and the fact that H(z,0) = 0 that H(z,v,) > 0 for
small v; > 0.

(ii) Below we let H.,, (z,m1) = g—ﬁ(zm) and H,, ., (z,m1) = 8 (z )-

Next, fix z < 0 and suppose that there is more than one v; > 0 such that H(z,v;) = 0.
Denote the smallest non zero positive root of H(z,v;) = 0 by 7. We claim that 7 is in fact
the only root. Since H(z,7v) >0 Vv € (0,%), it follows that H,,(z,7) < 0. We first show
that H,, (z,%) <O0.

Lemma 33. For each fized z <0, H,,(z,7) <0.

Proof. For contradiction, suppose that H., (z,7) = H(z,7) = 0. A calculation shows that
Hoy (2,7) = — sinh(3)(2 + 2) — 7 cosh(7) < 0 (4:309)

since 4 > 0. This implies that there exists a § > 0 such that H, (z,71) > 0 for all v €
[% — 0,%). Therefore,

H(z,m) / (z,z)dr <0V €[7—46,7), (4.310)

contradicting the fact that H(z,v1) > 0Vy € [7—0,7). We conclude that H.,,(z,7) < 0. O

To show that this root is unique we assume that there exists a positive root larger than 7.

We show that this is impossible.

Lemma 34. For each fized z < 0, 7 is the largest positive root.
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Proof. Because of Lemma 33, there exists an ¢ > 0 such that H(z,v;) < 0 for each v, €
(71,71 + €]. Thus, if there is a root of H(z,v;) = 0 that is larger than 7, then there is a
v* > 4 such that

H(z,v*) <0, H,(z,7")=0and H,,,(2,7") > 0. (4.311)

As in the proof of Lemma (33), it follows that H, ., (2,7*) < 0. This contradicts (4.311),
hence there is no root of H(z,v;) = 0 larger than 7. O

We conclude from Lemmas 31-34 that there is at most one positive root of H(z,v1) = 0
provided z < 0. Since H(z,—z) = 0, we conclude that v; = —z is the only positive root of

H(z,7) = 0. This completes the proof of Theorem (8).

4.4.1.2 Proof of Theorem 9. We assume that v = i75. Then (4.287) reduces to
Y2€% = Y2 cos(7ya) + zsin(7ys). (4.312)
We study the function
F(z,72) = 72€® — yo cos(2) — zsin(7s). (4.313)

Let n > 1 and consider the interval (2nm, (2n + 1/2)7). The first result (see Lemma 35) we

prove is that F(z,72) = 0 has a unique solution in (2n, (2n + 3)7) for each fixed z < 0.
Lemma 35. Let 2 < 0 and n > 1. Then F(z,7) = 0 has a unique solution in (2nm, (2n +
$)m). We denote this root by ~s = 75%(z). Furthermore,
715%(2) € C'((=00,0)) (4.314)
and
2nm < v4%(2) < (2n + 1/2)m. (4.315)
The corresponding eigenvalues \"%(z) satisfy

(152(2))* + 2*
2

N2 (z) = — € C*((—o0,0)). (4.316)
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Proof. The first step is to show that the solution exists. As in the previous section, we
note that F(z,72) is an odd function of 7 for each fixed z < 0. We complete the proof of

Lemma 35 with the aide of two technical results, Lemmas 36-37.

Lemma 36. Let z < 0 and n > 1. Then there exists a ¢ € (2nw, (2n + 1/2)7) such that
F(z,¢) =0.

Proof. A calculation shows that
F(z,2n7m) =2nm(e®* — 1) <0 (4.317)
and
F(z,2n+1/2)7) = 2n+ 1/2) me* — 2 > 0. (4.318)

Since F'(z,72) is continous the intermediate value theorem guarantees a root ¢ € (2,27 +

. O

2

We now show that this solution is unique.

Lemma 37. For each z < 0 the ¢, satisfying F(z,c,) = 0 is unique on [2nm, (2n + 1/2)7].

Proof. It is enough to show that F.,(z,72) > 0 on [2nm, (2n + 1/2)7] . Observe that cos(y) >
0 and sin(y2) > 0 on (2n, (2n + 3)7). We first let 4o € (2nm, (2n + 1/2)7) and consider

three cases.

1. 241 < 0: Thus,
F.,(2z,72) = € —cos(72)(1 + 2) + v sin(y2) > 0 (4.319)

as desired.

2. 241> 0: Then —cos(72)(1 + 2) > —(1 + 2). Thus,

Fy,(2,72) =€* — cos(2) (1 + 2) + 72 8in(72)

>e® — (14 2) 4 Y2 sin(7y2).
This, together with Lemma (31), imply that F.,(z,v2) > 0.

117



3. z = —1: When z = —1 it follows that
F,, = €* 4 v2sin(y) > 0. (4.320)
Since F,, > 0 on (2n7, (2n + 1) ) we conclude that the root is unique. O

We let 752(z) denote the unique root of F(z,7) = 0 in (2nm, (2n + 1) 7).

This completes the proof of Lemma 35. O]

Next, we show that there is no root in the interval [(2n + %) T, (2n + 1)7r} . This property

follows immediately from the following lemma.

Lemma 38. For each fized z <0, F(z,72) > 0 on [(2n+ 1) 7, (2n + 1)7] .

Proof. Let z < 0. At the left and right endpoints of [(Qn + %) m, (2n + 1)7r} , observe that
1 1
F (z, (Qn + 5) 7T> = (Zn + 5) me® —z > 0, (4.321)

F(z,2n+1)m) = (2n+ 1)m(e* + 1) > 0. (4.322)

and

Next, recall that cos(y2) < 0 and sin(y2) > 0 on ((2n + 1) 7, (2n + 1)m). Therefore,
F(z,72) = 726 — 72 cos(y2) — zsin(y2) > 0 (4.323)

when z < 0 and 7 € ((2n+ 3) 7, (2n + 1)7). O

This completes the proof that there is no solution of F(z,72) = 0 when z < 0, n > 1 and

Y2 € [(271 + %) 7, (2n + l)ﬂ )

We now turn our attention to proving the existence and uniqueness properties of 4. For
this, we fix z < 0 and n > 1, and analyze properties of the function F(z,7;) when vy €

((2n — 1), 2nm). First, we observe that, if z < 0 and n > 1, then
F(z,2n—1)m) = (2n — )m(e* + 1) > 0, (4.324)

and

F(z,2nm) =2nm(e” — 1) < 0. (4.325)
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From (4.324)-(4.325) and the intermediate value theorem we immediately obtain the follow-

ing result:

Lemma 39. Let z < 0 and n > 1. Then there ezists at least one solution of F(z,72) =0 in
((2n — )7, 2nm).

Our goal is to prove the following lemma:

Lemma 40. Let z < 0 and n > 1. Then F(z,7) = 0 has a unique solution in ((2n —

1), 2nm). We denoted this solution by ¥4 (z). Furthermore,
%5 (2) € C1((—0,0)) (4.326)
and
(2n — )7 < 3'(2) < 2n7. (4.327)

The corresponding eigenvalues \"'(z) satisfy

A (z) = —w € CY((~o0,0)). (4.328)

Proof. We consider two regimes of z values:
Regime I. —0c0 < 2z < —2.

Regime II. -2 < 2z < 0.

Regime I. We assume that z < —2 is fixed, and that n > 1. We prove three technical

results. First, a direct calculation leads to

Lemma 41. Let z < =2 and n > 1. Then
Flz,2n—1m)=02n—1D7n(e*+1) >0 and F,(z,2n—1)m) =e*+1+2<0. (4.329)

Next, we focus on the interval 5 € [(2n — 1/2)m, 2n7] when n > 1. Again, a direct calculation

gives

Lemma 42. Let z < —2 andn > 1. Then
Fopn(2,72) = sin(72)(2 + 2) + 72 cos(72) > 0 (4.330)

when v € [(2n — 1/2)7, 2n7] .
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Lemma 43. Let 2 < —2 and n > 1. Then F.,(z,72) <0 on [(2n — )7, (2n — 1/2)7].

Proof. A calculation shows that

F.,(z,72) =e* — cos(72)(1 + 2) + Y sin(7z) (4.331)

< 1+ cos(y2) + Y2 sin(7ys).

The function h(72) = 1 4 cos(y2) + Y2 sin(7s) satisfies h((2n — 1)7) = 0 and hA'(7y2) < 0 for

72 € ((2n — 1)m, (2n — 1)7) . Thus,
F.,(z,72) <0 forall v € [(2n—1)m, (2n —1/2)n]. (4.332)

]

Below, in Lemma 44 we make use of Lemmas 41-43 to show that there is a unique value
v € ((2n — 1)m, 2nm) where F,,(z,7*) = 0. Lemma 43 implies that F'(z,7;) is strictly
decreasing on [(2n — 1), (2n — 1/2)7) when z < —2.

Lemma 44. Let z < —2 and n > 1. Then there exists a unique v* € ((2n — 1/2)7, 2nm)

such that F.,(z,~v*) = 0. In particular,
F’Y2(ZJI7/2) <0 fO’I” V2 € [(2n - 1)7.‘-77*)7 (4333)

and

F.,(z,72) >0 for v € (v*,2nn]. (4.334)
Proof. Recall, from Lemma 41 that
F,(z,2n—1)mr)=€e"+142<0. (4.335)
At the right endpoint a calculation shows that
F.,(z,2nm) =€ — (1+2) > 0. (4.336)

It follows from (4.335)-(4.336) and the intermediate value theorem that there is at least one
solution of F,,(z,72) = 0 on the interval ((2n — 1)m,2nm). We claim that there is exactly
one such solution, and that it lies in ((2n—1/2)7, 2nm). These properties follow immediately

from Lemmas 42-43. This completes the proof of Lemma 44. O

120



We are now ready to prove our main result for Regime 1.

Lemma 45. Let z < =2 and n > 1, and let v* € ((2n — 1/2)7,2n7) denote the unique
value such that F,,(z,7*) = 0. Then there is a unique v5*(z) € ((2n — 1), 2n7) such that
F(z,v3%(z)) = 0. Furthermore, v3'(z) € C*((—o0, —2]),
n * d n
vot(z) € (2n — 1), v*) and E%l(z) > 0. (4.337)

Proof. Lemma 44 implies that
F(z,72) < F(z,2nm) <0 for ~, € [y",2n7]. (4.338)
Thus, the unique solution 75'(2) of F(z,v2) = 0 must satisfy
vot(z) € ((2n — 1), v*) forall z < —2. (4.339)
Lemma 44 guarantees that 21 (2) is unique because

F.,(z,72) <0 forall v e ((2n—1)m,~v"). (4.340)

Thus,
F.

Y2

(z,79%(2)) < 0 forall z < —2. (4.341)

It follows from (4.341) and the implicit function theorem that

ot(z) € CH((—o0, —2)). (4.342)

Next, a direct calculation shows that
F.(2,75(2)) = w1 (2)e* —sin(73(2)) > 0 for all 2z < —2. (4.343)
Finally, a differentiation of F(z,v51(2)) = 0 shows that

F. (2,75 (2)) + Fw(z,vgl(z)%vgl(z) =0 forall z<-2. (4.344)

Combining (4.341), (4.343) and (4.344) gives

_ —F(z4%'(2)

=" O = E i)

>0 forall z < -2 (4.345)
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This concludes the analysis of 7#!(z) in Regime 1: z € (—o0, —2].

Regime II: z € (—2,0). We assume that z € (—2,0) is fixed, and that n > 1. Our goal
is to complete the proof of Lemma 40 in this regime. That is, it remains to be proved that

there is exactly one solution of F(z,72) = 0, denoted by v5(2), in ((2n — 1)7,2n7) when
z € (_270)7 and 731(2) < Cl((_270))

The first step is to consider n > 3 and show that there is no solution of F(z,7,) = 0 on the
interval ((2n — 1)7, (2n — 1/2)m). The proof of this requires Lemmas 46 and 47

In the following Lemma we determine the values of F'(z,7:) at the left and right endpoints

of the v, interval [(2n — 1)m, (2n — 1/2)].

Lemma 46. Let z € (—2,0) and n > 3. Then
F(z,(2n— 1)) = (2n— D7m(e* +1) > 0, (4.346)

and

F(z,(2n —1/2)7) > 0. (4.347)

Proof. Property (4.346) follows immediately from (4.313). To verify (4.347) we combine the
assumption that n > 3 with (4.313). Then,

F(z,(2n—1/2)7) =(2n — 1/2)me” + z (4.348)
S 117, n
—e +z
-2

11
27”@—2 —92>0.

]

Next, we show that F'(z,72) is concave down when 7, € [(2n — 1)7, (2n — 1/2)]. It should
be noted that this property holds for each n > 1.

Lemma 47. Let z € (—2,0) and n > 1. Then
F ., (2,72) <0 forall v e [(2n—1)r, (2n—1/2)7]. (4.349)
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Proof. Two differentiations of equation (4.313) give

Fypy (2,72) = sin(72) (2 + 2) + 72 cos(72). (4.350)
Since sin(z) < 0 and cos(z) < 0 on [(2n — 1), (2n — 1/2)7] the result follows. O

In the next Lemma we make use of Lemmas 46 and 47 to prove that F'(z,72) > 0 on the

entire interval [(2n — 1)m, (2n — 1/2)7] when z € (=2,0) and n > 3 :
Lemma 48. Let z € (—=2,0) and n > 3. Then F(z,72) >0 on [(2n — 1), (2n — 1/2)7].
Proof. Suppose for contradiction that F(z,4) < 0 at some 4 € ((2n — 1)m, (2n — 1/2)7).

This, and Lemma 46 imply that there exists a point v2 = 5 € ((2n — 1)7, (2n — 1/2))

where F'(z,72) attains a minimum. As F'(z,7;) is C* it follows that

Fiys(2,8) 2 0. (4.351)
However, Lemma 47 implies that

Fyya (2, 8) <0, (4.352)
which contradicts (4.351). This completes the proof of Lemma 48. O

We have now proved the following: F'(z,72) = 0 does not have a solution on the interval
[(2n — 1), (2n — 1/2)7] when z € (—2,0) and n > 3. Below, in Lemma 52, we prove that

F(z,72) = 0 has a unique solution in [(2n — 1/2)m, 2n7] for each z € (—2,0) when n > 3.

The proof of Lemma 52 requires three Lemmas. First, recall from (4.324) that

F(z,2nm) =2nm(e®* —1) <0 forall z € (—=2,0). (4.353)

This fact, along with Lemma 46 and the intermediate value theorem, yield the following
result:
Lemma 49. Let z € (—2,0) and n > 3. Then there exists at least one solution of F(z,72) =

0 in ((2n — 1/2)m, 2nr).
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It remains to shows that there is exactly one such root. We prove this claim in the next

three Lemmas.

Lemma 50. Let z € (—2,0) and n > 3. Then

Fprorn (2,72) >0 for all v € [(2n — 1/2)7, 2n7]. (4.354)

Proof. Three differentiations of equation (4.313) give

F72W2’Y2(Z7 Y2) = €0s(72)(3 + 2) — Y2 sin(72). (4.355)

Property (4.354) follows from (4.355) together with the observations that cos(xz) > 0 and
sin(z) < 0on [(2n — 1/2)7, 2n7]. O

Lemma 51. Let z € (—2,0) and n > 3. Then there is a unique solution to F,,,(z,v2) =0
on ((2n —1/2)m, 2nm).

Proof. Recall from Lemma 47 that

Py (2,72) = sin(1)(2 + 2) + 3 cos() (4.356)
so that
Fop(z,2n—=1/2)1) = —(24+2) <0 (4.357)
and
F.,,(2,2nm) =3+ 2> 0. (4.358)

Existence is guaranteed by the intermediate value theorem. To prove uniqueness we appeal
to the third derivative. By Lemma 50 it follows that F.,.,(2,72) is increasing in ;. We
conclude that there is a unique solution of F.,.,(z,72) = 0 on ((2n — 1/2), 2nr). O

We are now ready to show that F'(z,72) = 0 has a unique root in ((2n — 1/2)m, 2nr).

Lemma 52. Let z € (—2,0) and n > 3. Then there is a unique a € ((2n—1/2)7,2nm) such
that
F(z,a) =0. (4.359)
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Proof. We have already shown that a root v2 = a of F(z,72) = 0 exists. Recall that
F(z,2n—1/2)7) >0, F,(2,(2n—1/2)1) <0 (4.360)

and

F(z,2nm) <0, F,(z 2nm) > 0. (4.361)

Now suppose that there exist two distinct roots 7o = a; and 75 = ay with

(2n —1/2)7 < a1 < ag < 2n. (4.362)
From this supposition and (4.360)-(4.361) we may conclude that

F(z,a1) =0, F,(z,01) <0, (4.363)

and

F(z,00) =0, F,(z,09)>0. (4.364)

Furthermore, we conclude from Lemmas 50 and 51 that F,,.,(z,72) has at most one zero
on [(2n — 1/2)m, 2nr] . In turn, this property implies that F,(z, 7) has at most one zero on

[(2n — 1/2)m, 2n7] . Therefore, we conclude that

Fo,(z,a1) <0 or F,(z,a) > 0. (4.365)

It follows from (4.360) and (4.361), and (4.363)-(4.364)-(4.365), that F'(z,72) has at least
two distinct minima and one maximum on ((2n — 1/2)w, 2n7). Hence there would exist two
points 1 and (3, where

F72’YQ (Zv BZ) = 07 1= 17 2. (4366)

As this contradicts Lemma 51 the proof is complete. n

Remark: It follows from Lemma 52 that for each z € (—2,0) and n > 3 there is a unique

solution, 751(2), of the equation F(z,7,) = 0.

It remains to show that 43*(z) € C'((—2,0)) for n > 3. This property follows immediately

from the implicit function theorem if we prove that

E,(z,72)) #0 2 € (-2,0), n>3. (4.367)
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Lemma 53. Let z € (—2,0) and n > 3. Then
Fly(2,73'(2)) <0

Proof. Recall that

F(z,(2n —1/2)7) >0 and F(z,2nm) < 0.

From (4.369) and the uniqueness of 74!(z) we conclude that

F(z,7%) >0 Vv € [(2n—1/2)7,75"(2)) and F(z,75'(2)) = 0.

Therefore

FVQ(ZJ’}/?) <0.

For contradiction suppose that there exists a z € (—2,0) such that

(2,75 (2)) = 0.

Then it must be true that

Fﬁ’z’Yz('z?f}/gl(z)) 2 0.

It follows from Lemma 50 that

Fpnpn(2,72) > 0 for all 2 € [75'(2), 2n] .

Combining (4.373) and (4.374) gives
E
It follows from (4.372) and (4.375) that

F,,(z,72) > 0 for all 35 € [v3'(2), 2n7] .

Yoma(2:72) > 0 for all 5 € [v5'(2), 2n7] .

(4.368)

(4.369)

(4.370)

(4.371)

(4.372)

(4.373)

(4.374)

(4.375)

(4.376)

It follows from (4.370) and (4.376) that F'(z,2nm) > 0, contradicting (4.369). We conclude

that F.,(z,75%(2)) < 0. This completes the proof of the Lemma.
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Summary: To this point we have proven the following about Regime 2: For z € (—2,0)

and n > 3 we have proved that there exists 751 (z) € C'((—2,0)) such that
F(z,75'(2)) =0, (4.377)

and

v (z) € ((2n — 1/2)7, 2n7) . (4.378)

To finish the analyis of 43!(z), it remains to consider the cases n = 1 and n = 2, and show
that 42'(z) is unique, and that v51(z) € C'((—2,0)). Thus, in the remainder of this proof

we keep z € (—2,0) fixed, and vary s.

The first step is to recall from Lemma 39 that at least one solution of F(z,72) = 0 exists in
the interval ((2n — 1)m, 2nm) for each n > 1. We denote the smallest root by 72 = 735. Note
that

F(z,(2n—1/2)7) = (2n — 1/2)7e* + z. (4.379)

When n = 1,2 the sign of F(z,(2n — 1/2)m) can be positive or negative, depending on the
value of z. Lemma 47 shows that F(z,7,) is positive at v = (2n — 1)7, and concave down
on [(2n — 1)m, (2n — 1/2)x]. This property, together with (4.379), allow us to determine the

location of the smallest solution of F'(z,7,) =0 on ((2n — 1)m, 2nm) :
(i) If F(z,(2n —1/2)7) > 0, then 75 € ((2n — 1/2)7, 2nm).
(i) If F(z,(2n —1/2)m) =0, then 5 = (2n — 1/2)7.
(iii) If F(z,(2n —1/2)7) <0, then v5 € ((2n — 1)m, (2n — 1/2)7).
We now prove that v; is the only solution in ((2n — 1)7, 2nm).
Lemma 54. Let z € (—2,0) and n = 1,2. Then the equation F(z,72) = 0 has a unique

solution, Yy (2), in ((2n — 1)7, 2nT).

Proof. In cases (i) and (ii), where F(z, (2n — 1/2)7) > 0, the proofs are identical to the

proof of Lemma 52. We thus focus on case (iii). This and Lemma 41 imply that

F(z,(2n—1/2)7) <0 and F,,(z,(2n —1/2)mr) < 0. (4.380)
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For contradiction, suppose that there is a second value, vo = a € ((2n — 1)7, 2n7), such that

F(z,a) = 0. By choosing « to be the first such value greater than ~;, we conclude that

F(z,a) =0 and F,,(z,a) > 0.

(4.381)

It follows from (4.380) and the fact that F'(z,2) is concave down on [(2n — 1), (2n — 1/2)7]

that

Yo < (2n—1/2)1 < a.

(4.382)

The definition of «, together with (4.380), imply that F(z,72) attains a relative minimum

at some point in ((2n — 1/2)m, ). Thus, there exists a point 5 € ((2n — 1/2)7, «) such that

F’Yﬂz(z?ﬁ) Z 0

It follows from equation (4.383) and Lemma (50) that

Fopnn(2,72) > 0 for all v € (5, 2n7].

Finally, from (4.381) and (4.384) we conclude that

F(z,2nm) > 0,

which contradicts the fact that F(z,2n7) < 0. This completes the proof.

It remains to prove that

75" (2) € CH((=2,0))
when n = 1, 2. We consider two cases:

L. 81 (2) > (2n — 1/2)7.

2. 9 (z) < (2n —1/2)m.
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The details for case 1 are exactly the same as those given in the proof of Lemma 53. For

case 2 we note that the definition of v2!(z) implies that

F(z,7%2) >0 Ve [2n—1)m57(2) s F(2,75(2) =0 (4.387)
and
P95 (2)) < 0. (4.388)

Suppose that F.,(z,75'(z)) = 0. Then the fact that F.,,.,(z,75'(z)) < 0 implies that

F(z,72) < 0 on an interval of the form (74!(z) — €,7%4'(z)), contradicting (4.387).

This concludes the analysis of 73!(2) in Regime II: z € (—2,0). The proof of Lemma 40 is

now complete. O

Theorem 9 follows from Lemmas 35, 40

4.4.1.3 Proof of Theorem 10. Recall from Lemma 35 in Part II that 43%(z) €
C'((—00,0)) for each n > 1 and

2nm < v32(2) < (2n +1/2)7 Vz < 0. (4.389)

The proofs of (4.298)-(4.299) require the next three technical Lemmas.

Lemma 55. There exists z* < 0 such that
1+ 2z —cos (2 |Z|> >0 when z*<z<0. (4.390)

Proof. First, notice that (4.390) is equivalent to proving g(x) > 0 where

g(z) =1—xz —cos (2y/z), x>0. (4.391)
We claim that there exists § > 0 such that g(z) > 0 for z € (0,6). Indeed,

sin (24/7)

4.392
>0 (4.392)

gd(x)=—-1+
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so that

g (0) =lim ¢'(z) = 1.

z—0

(4.393)

As ¢g(0) = 0 it follows that g(xz) > 0 on (0,0). Therefore, there exists z* < 0 such that

1+z—cos<2 ]z\>>0forz*<z<0.

Lemma 56. There exists z1 < 0 such that

(2o + 55 o= (7)
2nm + — e*—cos| —
] E

Proof. Elementary calculus shows that

2 2
lim (2717? + 3i> [ez — cos <3i)} = —2n.
2——00 |2| |2

It follows that there exists z; < 0 such that

3\ [ . 3
2nm+— ) |e®* —cos | — + 2nm
2] 2|

for z < z;. Rearranging the terms completes the proof of the lemma.

2

<7T
2

Lemma 57. There exists zo < 0 such that

. (371'2) 6
sin | — | > — when z < z,.
|| 2]

s
> —2nm — — when z < z1.

]

(4.394)

(4.395)

(4.396)

(4.397)

Proof. Recall that sin(z) > %x for z € (0, %) . Since lim,_, % = 0, there exists a zo < 0

such that % € (0, %) when z < 25. Therefore,

. RY 2 (32 6
sin| — | >— | — — when z < z9 < 0.

CANET VA
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We now have the necessary tools to prove Theorem 10.

Proof of Theorem 10. First, we prove (4.298). Recall that
F(z,2nm) <0 when z<0 and n > 1. (4.399)
Next, we claim that there exists a z* < 0 such that
F(z,2nm +2+/]z]) >0 when 2" <z<0 and n > 1. (4.400)

A calculation shows that

F(z,2nm +2V/]2]) = <2n7r + ZM) :ez — cos (2 |z])] — zsin (2 |z])
> <2n7r + 2\/H> :ez — cos (2 |z|>]
> <2n7r + 2\/m> :1 + z — cos <2 |z|>}

where the last inequality follows from Lemma 31. By Lemma 55 it follows that F(z, 2nm +
2./|z|) > 0 for 2* < z < 0. Since v4?(z) is continous and unique, it follows from (4.399) and
(4.400) that

2nm < V5% (2) < 2nm + 24/|2| when 2z <z < 0. (4.401)
Property (4.298) follows immediately from (4.401).

It remains to prove (4.299). First, we claim that there exists z* < 0 such that

2

3
F(z,2nm + ﬁ) >0 when z < 2" and n > 1. (4.402)
z

By Lemmas 56 and 57 there exists a z < 0 such that

2 2 3 2 3 2
F <z, oI + 3i) - (2n7r n 3i> {ez — cos <l>} — zsin (l) (4.403)
2| 2| |2 2|
3m2N\ [ . 3 . (3n*
=(2nr+— ) |6 —cos | — || + |z|sin | —
2] 2| |2

6 7
>—2w—z+|z\—ﬁz—w>0v2'<z.
2 E
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Since 742(2) is continous and unique, it follows from (4.399) and (4.403) that

32

2nm + <75%(z) < 2nm when z <z and n> 1. (4.404)

E

Property (4.299) follows from (4.404). This completes the proof of properties (4.298) and
(4.299) in Theorem 10.

A fundamentally important consequence of property (4.298) in Theorem 10 is that we can

now prove the limiting asymptotic result given in (4.300) regarding the eigenvalues \"%(z) :

(2nm)?

)\n2 -
() -2

as z— 07, (4.405)
It follows from (4.297) that

(52(2) + 22

N2 (z) = — when 2z <0 and n> 1. (4.406)

Applying property (4.298) in Theorem 10 to (4.406) gives (4.405). Lastly, property (4.301)
follows from (4.299) and (4.406).

This completes the proof of Theorem 8.

4.4.1.4 Proof of Theorem 11. Recall from Lemma 40 in Part IT above that v5'(z) €
C!'((—00,0)) for each n > 1 and

(2n — ) < 451(2) < 2nm ¥z < 0. (4.407)

We begin with the proof of (4.302). Recall that
F(z,2nm) <0 when z<0 and n > 1. (4.408)
Next, we claim that there exists a z* < 0 such that

F(z,2nm —24/]z]) >0 when z*<z<0 and n> 1. (4.409)
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A calculation shows that

F(z,2nm —24/]z]) = <2n7r -2 ]z|> :ez — cos <2 |z|>} — zsin <2 |z|>

><2n7r—2 yz|> :ez—cos<2 m)}

> <2n7r 9 yz|> :1 42— cos (2 yz\)}

where the last inequality follows from Lemma 31. Notice that (2nm — 2

z — 07. Therefore, there exists Z < 0 such that

2nm —24/|z| >0 when 2 < z <O0.

By Lemma 55 there exists 2% < 0 such that
1+z—cos<2\/\z\) >0 when z¥ <z <0.
Then, if 2* = Min(|2|, |2#]), it follows from (4.410) and (4.411) that

F(z,2nm —24/|z|) >0 when 2" <z<0 and n > 1.

|z|]) — 2nm as

(4.410)

(4.411)

(4.412)

Since v51(2) is continous and unique, it follows from (4.408) and (4.412) that

2nm — 24/ |2| < v5H(2) < 2nm when 2 < 2 < 0.
Property (4.302) follows immediately from (4.413).
It remains to prove (4.303). We first prove two technical Lemmas.

Lemma 58. Fizn > 1. Then there exists z3 < 0 such that

_ [ 2nm? dnm
—sin| — ) < _ﬂ when z < zs.
z

Proof. Fix n > 1. Recall that —sin(x) < —%x for x € (O, g) . Since lim,_,

exists a z3 < 0 such that % € (0,%) when z < z3. Therefore,

. [ 2nm? 2 [ 2nm? dnm
—sin| — | < —— = — when 2z < 23 < 0.

T\ 7] ||
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2
2”7” = 0, there

(4.415)
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Lemma 59. Fizn > 1. Then there exists a z4 < 0 such that

2nm? . 2nm?
(2n —1)m+ —— ) |€* + cos
2] 2]

Proof. Elementary calculus shows that

lim <(2n — )+ Q%T) {ez + cos <2”—7T2>} =2(2n — ).

Z—r—00

8nm — 37

5 when z < zy4.

It follows that there exists z, < 0 such that
2nm? 2nm?
‘((271 —1)m+ |m’T > {(f + cos ( ’mlr )] —2(2n — U)w
z z

Rearranging the terms we have that

for z < z4.

2

2 2nm? &nm — 3
(o= 1m 4 27 oo (2)] < 5 20 = S0
z

E 2

when z < z4.
We now prove (4.303). Recall that
F(z,(2n— 1)) >0 when z<0 and n > 1.
Next, we claim that there exists a z* < 0 such that
2n > .
F z,(2n—1)7r+T <0 when z<2"<0 and n>1.
z

A calculation shows that

2n? 2n? 2nm?
F(z, (2n —1)m + ﬁr ) = ((2n—1)7r+ |m’T ) {ezjtcos( TT )] + zsin
z z 2

2n? 2nm?
= ((Qn— m + ﬁr ) [ez—i—cos( ’m‘r )] — |z| sin
z z

By Lemmas 58 and 59 there exists z* < 0 such that

4 3
— |7 U7~ 2T When z< 2
2] 2

2nm? —
F(z,(2n—1)7r+ mr) Snm — 37

E 2

and (4.421) follows.
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Since v41(2) is continuous and unique, it follows from (4.420) and (4.421) that

2 2
2n—17r<7”12<2n—17r+ﬂ when 2z < z* <0 4.423
’ 2|
z

Property (4.303) follows immediately from (4.423).

A fundamentally important consequence of property (4.302) in Theorem 11 is that we can

now prove the limiting asymptotic result given in (4.304) regarding the eigenvalues \"!(z) :
NH2) = —2(nm)? as z — 0. (4.424)

It follows from (4.297) that
N(z) = —

when z <0 and n > 1. (4.425)

Applying property (4.302) in Theorem 11 to (4.425) gives (4.424). Lastly, property (4.305)
follows from (4.303) and (4.425).

This completes the proof of Theorem 11.

4.5 PARTIAL PROOF OF THE MATTIA-DEL GIUDICE CONJECTURE
WHEN 4 > 0

In this section we provide a partial proof of the Mattia-Del Giudice Conjecture (see 3.4)
when g > 0 and V;, = Vg in the IF model. First, recall from Section 4.1 that the eigenvalues
associated with the FPE for the IF model are given by

ot (Vi —3) — 120> im0’

A= T +1 PR (4.426)
where v, and 7, satisfy
. 0
Y=ty = F\/ ,u2 + 2)\0’2, (4427)
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and v = 7y, + iy, satisfies the algebraic equation

ve* = ycosh(y) + zsinh(y), z == > 0. (4.428)

The remainder of this section addresses the following:

4.5.1 In Theorem 12 we prove that all eigenvalues satisfying problem (4.426)-(4.427)-(4.428)

must be complex.

4.5.2 We consider the branches of eigenvalues, \"(11), whose existence was proved in Theo-
rem 5 (see Section 4.3). In Theorem 13 we prove that

4072 , o

A" h - —
Re(A"(un)) < 0w en()<,u<ln(2)n VL

n#0. (4.429)

4.5.3 We state open problems that remain regarding the Mattia-Del Giudice conjecture.

4.5.1 All Eigenvalues are Complex When p > 0

In this section we investigate solutions of problem (4.426)-(4.427)-(4.428) describing the
eigenvalues of the FPE corresponding to the IF model when p > 0, 0 > 0, V, = Vi and
Vr=6>0.

Our goal is to prove

Theorem 12. Let X\ satisfy (4.426)-(4.427)-(4.428). Then each X is complex.
Proof. Assume that X is given by (4.426) and is real, i.e.

71720'2
02

i — 0. (4.430)

There are three cases to consider:
Case I: v; =9, = 0.
Case II: v; = 0,7, # 0.

Case I1I: v, = 0v; # 0.
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Case I. Assume that 74 = 79 = 0. Then v = 0 is a solution of equation (4.428). Set
7 =72 = 0 in (4.426), and therefore

2

1
A= ——. 4.431

52 (4.431)

We claim that the eigenfunction corresponding to A = —é'fT—QQ is identically zero. The first step

in proving this claim is to recall from Chapter 3 (see Section 3.2) that the corresponding

eigenvalue problem is
A(V) = —pdf (V) + 50" (V)
¢(0) =0 (4.432)

¢ (0) = ¢'(0) — %¢(0).

\

Assume that A = —% and obtain the boundary value problem

(

—456(V) = —pd/ (V) + G 0"(V)
1 0(0) =0 (4.433)

¢'(0) = ¢'(0) — %6(0).

\

To show that the only solution of the boundary value problem (4.433) is the trivial solution
¢ = 0 first note that

12 o2
~Lo(V) = (V) + T (V) (4.434)
is equivalent to
2
#V) - B W)+ Doy =0 (1.435)

The general solution of equation (4.435) is
(V) = Cre2" + CuVen2". (4.436)
The condition ¢(¢) = 0 implies that

Cy = —Cyf. (4.437)
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Thus, C; = 0 < Cy =0, in which case ¢(V') = 0 for all V. Assume that C; # 0 and Cy # 0.
Next, a differentiation of (4.436) gives

£
2

qb'(V) = 01 %SULQV + 0260 v + CQ%V@ULQV. (4438)

Combine (4.436)-(4.437)-(4.438) with the boundary condition ¢'(8) = ¢'(0) — 24¢(0), and

g

obtain
0
F=z41, 2= >0 (4.439)
o
However, a routine calculation shows that
e=z+1<2=0. (4.440)

Under the assumption that z > 0, we conclude that C; = Cy = 0, and therefore ¢(V') = 0 for

all V. To summarize, if v; = 72 = 0, there exist no non zero eigenvalues satisfying (4.426)-

(4.427)-(4.428). This completes the analysis of Case I.

Case II. Assume that 3 = 0 and 75 # 0. Then v = i,, and (4.428) reduces to
iee® = iy cosh(ive) + zsinh(ivs)
= 479 cos(Y2) + 1z sin(yz) (4.441)

Consider the function

F(z,72) = 726 — vaco8(72) — zsin(y), z >0, 72 # 0. (4.442)

Our goal is to show that F(z,72) # 0 when z > 0 and 2 # 0. The following two lemmas

will play a key role in proving this claim.

Lemma 60. Let F(z,72) be given by (4.442). Then

V2(1 —cos(12)) = 0, 72 >0
F(0,7) =14 ’ ’ (4.443)

Y2(1 = cos(2)) <0, v <O0.

Proof. The result follows from a direct calculation of F'(0,72) and the inequality —1 <
cos(yq) < 1. O
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Lemma 61. Let F(z,7,) be given by (4.442). Then

Y2 — sin(y2) >0, 72 >0
F.(0,72) = (4.444)

V2 — Sil’l(’}/Q) < 07 2 < 0.

Furthermore, for z > 0,

Y2e* —sin(yz) > 0, 72 >0
F.(z,7%) = (4.445)

y2e* —sin(y2) < 0, 72 < 0.

Proof. Property (4.444) follows from the well-known fact that

x —sin(x) >0, >0 (4.446)

and

xr —sin(z) <0, z <O0. (4.447)

To prove (4.445) first consider the case v, > 0 and note by (4.446) that vy, > sin(vs). It
follows that

F.(z,7) = 712€° — sin(y2) > 1(e* — 1) > 0. (4.448)

Next, assume that 75 < 0 and apply (4.447), i.e. 72 < sin(7,). Then

F.(2,72) = 72€* —sin(y) < 72(e* —1) <0 (4.449)

as desired. This completes the proof of Lemma 61. O
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We now show that v, = 0 is the only solution of F(z,72) = 0 for z = 2‘—2 > (. Fix 75 > 0. By

the fundamental theorem of calculus we have that
F(z,%) = F(0,7%) + /Z F.(t,%)dt, z>0. (4.450)
0
By Lemma 60 it follows that
Pz %) > / R dt 2> 0. (4.451)
0
Combine Lemma 61 with (4.451) and conclude that
F(z,9%) > /O F.(t,7%)dt >0, z > 0. (4.452)

A similar argument shows that F'(z,72) < 0 for each z > 0 and 5 < 0. This concludes the
proof that F'(z,72) # 0 when z > 0 and 7, # 0.

It follows that, if 3 = 0 and ~5 # 0, there are no non zero eigenvalues satisfying (4.426)-
(4.427)-(4.428). This completes Case II.

Case III. Assume that 75 = 0 and 77 # 0. Then v = v;, and (4.428) reduces to
~y1€* = 71 cosh(y1) — zsinh(7y7). (4.453)
We look for (z,v;) satisfying (4.453) by studying the function
H(z,7) = me* — 1 cosh(y;) — zsinh(7yy). (4.454)
A direct evaluation of (4.454) shows that

H(z,£2) =0. (4.455)

We prove that v; = £z are the only solutions when z > 0. The proof of this requires two

lemmas:
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Lemma 62. Let H(z,7v,) be given by (4.454). Then,
H(0,7) <0 and H,(0,7v1) < 0 for all v1 > 0,

and

H(0,71) >0 and H,(0,71) > 0 for all v, < 0.

Proof. A straighforward calculation gives

7(1 = cosh(y1)) <0, 11 >0
H(Oavl) =
7(1 = cosh(y1)) >0, n <0.

Lemma 63. Let H(z,v,) be given by (4.454). Then

y1e® <0, 1 <0
sz<2771> ==
T11€e* >0, 11 > 0.

Proof. The result follows from a direct calculation.

(4.456)

(4.457)

(4.458)

(4.459)

]

We now complete the proof that v, = 4z are the only solutions of H(z,~;) = 0 when ; # 0.

Assume that 74 =7 > 0. Lemma 4.457 implies that

H(0,7%) < 0.

Define
2" = sup{z|H(z,7%) <0, forall z € [0, 2]}

Because H(7,7) = 0 we conclude that 0 < z* < 7. From (4.461) it follows that

H(z",7) =0 and H,(z",7) > 0.

By the fundamental theorem of calculus

H.(z,7) = H.(z*,7) +/ H..(t,7)dt, forall z > z*.
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By (4.462),
H.(z,7) > / H..(t,7)dt for all z > 2" (4.464)

Lemma 63, along with (4.464) gives
H.(z,7) > / H..(t,7)dt > 0, for all z > z*. (4.465)

We conclude that H(z,7) > 0 for all z > z*. Therefore, z* is the only solution of H(z,7) = 0.
Since H(7,7) = 0 it must be the case that z* =7 and the proof of Case III when v, > 0
is complete. A similar argument shows that the only negative solution of H(z,v;) = 0 is

Y1 = —%.
Remark: The eigenvalues corresponding to 7, =0, 73 = £=z.

Assume that 75 = 0 and ; = 2. Then equation (4.426) reduces to
A=0. (4.466)

Therefore, there is no nonzero eigenvalue, A, satisfying (4.426)-(4.427)-(4.428). This com-
pletes Case III and the proof of Theorem 12. n

4.5.2 The Real Parts of the Eigenvalues are Negative

In this section we consider the branches of eigenvalues proved in Theorem 5 and prove the
following:

Theorem 13. Let n # 0 be an integer, and let \" () satisfy Theorem 5. Then

40 , o3

Ok (4.467)

Re(A") <0 when 0 < p <
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Proof. Recall from Lemma 27 (see Section 4.3) that v"(z) = ~{'(2) + iv5(z) satisfies

0<7 <~ =In(e*+Ve?* —1), 2> 0, (4.468)
and
2nm <y < 2nm+7/2. (4.469)

Next, recall from (4.426) that

ot (0 —3) — 1?0

Re(\") = T (4.470)
Applying the inequalities (4.468) and (4.469) to (4.470) gives
ol (’Y% . 722) _ M292 _ e ((ln(ez + m))2 _ 4n27r2) _ M292 e
20252 20%52 ' (4.471)
Note that ve?* — 1 < e* when z > 0. Therefore, by (4.470) and (4.471), we have
o 0 ([In(2e7)]? — 4n?7?) — p26?
Re(\") < T . (4.472)
Expand the term [In(2¢7)]? and obtain
ot (In(2)? +2In(2)z + 22 — 4n?m?) — p26?
Re(\") < Y : (4.473)
Set z = g—g’ in (4.473) to obtain
o 02In(2)? po 2n2rio?
The right hand side of (4.474) is negative when
402 , o
- —. 4.4
0<u<1n(2)n 5 (4.475)
This completes the proof of Theorem 13. O

4.5.3 Open Problem: Real parts of the Eigenvalues are Negative

Suppose that A = \; +i)\y is an eigenvalue satisfying (4.426)-(4.427)-(4.428). Prove that the

corresponding eigenfunctions form a complete set, and that

6
Re(A) < 0 for all z = % > 0. (4.476)
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4.6 PARTIAL PROOF OF THE MATTIA-DEL GIUDICE CONJECTURE
WHEN 4 < 0

In this section we give a partial proof of the Mattia-Del Giudice Conjecture (see 3.4) when
1 < 0and Vy, = Vg in the IF model. Recall from Section 4.1 that the eigenvalues associated
with the FPE for the IF model are given by

o' (7 —73) — p*0* | yyeo’
A= T i, (4.477)
where v, and v, satisfy
0
Y=m+iv = 5V + 2002, (4.478)

o2

and v = 7, + 17, satisfies the algebraic equation
. : b
ve® = v cosh(y) + zsinh(y), 2 == > 0. (4.479)

In this section we address the following:

4.6.1 We consider the branches of eigenvalues proved in Theorem 9 and give a partial proof

of the Mattia-Del Giudice Conjecture (see 3.4) when p < 0 and V,, = Vg in the IF model.

4.6.2 We state an open problem regarding the Mattia-Del Giudice Conjecture.

4.6.1 Eigenvalues are Negative when v; =0

We consider the branches of eigenvalues proved in Theorem 9 and prove the following

Theorem 14. Let n # 0 be an integer, and let X (u) and \"%(u) satisfy Theorem 9. Then
N () <0 and A" () <0, p<0, n#0. (4.480)

Proof. Recall that in Theorem 9 we assume A"* and A"? are real and set v; = 0. Thus, (4.477)

reduces to
4

o
90242 (
A similar argument shows that A\"? < 0, u < 0. This completes the proof of Theorem 14. [

A= v+ 1?6%) <0, p<0. (4.481)
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4.6.2 Open Problem: The Eigenvalues are Real and Negative
Suppose that A = \; +i)\, is an eigenvalue satisfying (4.477)-(4.478)-(4.479). Prove that the
corresponding eigenfunctions form a complete set, and that A is real with

0
A<Oforall z=" <o. (4.482)

o2
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5.0 THE FIRING RATE

In this chapter we make use of the eigenvalues and eigenfunctions whose existence was
proved in Chapter 4 to study the firing rate function corresponding to the IF model when
Vp =Vg =0and Vr =60 > 0. In particular, we set ;> 0 and do the following:

5.1 The eigenvalues are explicitly calculated and the theoretical firing rate function is gen-
erated by an eigenfunction expansion. Next, a numerical simulation of the population firing
rate is performed. Upon comparison, one sees that the numerical simulation is in agreement

with theoretical results of Chapter 4.

5.2 Asymptotic properties of the firing rate function are developed. Relative error is intro-

duced and a numerical experiment is performed to illustrate the relative error.

5.1 NUMERICAL SIMULATIONS FOR IF WHEN x> 0

In this section our primary goal is to compute the firing rate function v(¢) when p > 0.
For this computation we make use of the eigenvalue structure of the IF model to generate
the eigenfunction expansion representation for the Fokker Planck PDE. This will give us
confidence in our theoretical predictions. Throughout, we follow Mattia [24], and keep 6 and

o fixed at the values § = ¢ = 1. In particular, we do the following:

5.1.1 We numerically compute the eigenvalues, denoted by \;, when p > 0. In Tables 2, 4, 6, 8

below we list the first ten eigenvalues when = 20,5,1 and .1

5.1.2 We use the computed values to determine, and plot (see Figure 12), the correspond-

ing neuronal firing rate functions, v(t). Next (see Figure 14), we simulate a population of
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N = 10000 IF neurons and plot the population firing rate. In Figure 14 we compare the
population (i.e. N is finite) firing rate with the theoretical (i.e. N = co) firing rate.

5.1.1 Numerical Computation of the Eigenvalues.

Recall from Section 4.1.3 that the eigenvalues A satisfy
~ve® = 7 cosh(y) + zsinh(vy), (5.1)

where

0 0
2= <0 and Y=mtine = VP A+ 2M02 (5.2)
o

o2
We use Matlab (see Section A.4 for details) to do the following computations: First, we

compute y; and 7,. Then, using (5.2), we compute the eigenvalues

2 22
A= Re(N) +iIm(A) = 22— 4 iy (5.3)

To compute ~; and 7y, replace v with v; + iy in (5.1). Separating real and imaginary parts,

we have two non linear functions

F(v1,72,2) = 716" — 71 cosh(v1) cos(7y2) + Y2 sinh (1) sin(vy2) — 2 sinh (1) cos(72)

and

G(71, 72, 2) = 726 — y1 sinh (1) sin(y2) — ¥2 cosh (1) cos(7y2) — z cosh () sin(7s).

Thus, to find v, and ~,, we solve the system

F(Vh V25 Z) =0

G(W/lv Y2, Z) =0.

To solve this system we use Matlab solver fsolve. Tables 2, 4, 6 and 8 below give the v and

A values when = 20, 5, 1,0.1 For a discussion of these tables see Section 5.1.1.1.
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5.1.1.1 Remarks About the Eigenvalue Tables

e The left two columns of Table 1 represent the first 10 values of v = 1 +1i7,, where v, and
72 are the simulated solutions of the equations F'(vy1,72) = 0, G(y1,72) = 0. The right
two columns of Table 1 are the values of F/(71,72) and G(71,72). The number of zeros
to the right of the decimal point in the F' and G evaluations increases as u decreases
to zero (see Tables 3,5,7 below). This suggests an improvement in numerical error as
decreases. Table 2 gives the real and imaginary parts of the eigenvalues corresponding

to the v values in Table 1.

e The left two columns of Table 3 represent the first 10 values of v = v, +17,, where v, and
72 are the simulated solutions of the equations F'(y1,72) = 0, G(y1,72) = 0. The right
two columns of Table 3 are the values of F(y1,72) and G(71,72). The number of zeros
to the right of the decimal point in the F' and G evaluations increases as p decreases to
zero (see Tables 1, 5, 7). Again, this suggests an improvement in numerical error as
decreases. Table 4 gives the real and imaginary parts of the eigenvalues corresponding

to the v values in Table 3. These results match the results of Mattia [24] (Fig. 1, p. 12).

e The left two columns of Table 5 represent the first 10 values of v = v, +17,, where v; and
72 are the simulated solutions of the equations F'(y1,72) = 0, G(y1,72) = 0. The right
two columns of Table 5 are the values of F(y1,72) and G(71,72). The number of zeros
to the right of the decimal point in the F' and G evaluations increases as p decreases to
zero (see Tables 1,3,7 ). This suggests an improvement in numerical error as p decreases.
Table 6 gives the real and imaginary parts of the eigenvalues corresponding to the ~

values in Table 5. These results match the results of Mattia [24] (Fig. 1, p. 12).

e The left two columns of Table 7 represent the first 10 values of v = 1 +17,, where v; and
72 are the simulated solutions of the equations F'(y1,72) = 0, G(y1,72) = 0. The right
two columns of Table 7 are the values of F'(y1,72) and G(71,72). The number of zeros
to the right of the decimal point in the F' and G evaluations increases as p decreases
to zero (see Tables 1,3,5 above). This suggests an improvement in numerical error as p
decreases. Table 8 gives the real and imaginary parts of the eigenvalues corresponding

to the 7 values in Table 7. These results match the results of Mattia [24] (Fig. 1, p. 12).
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5.1.2 The Firing Rate Function

In this section we use the first four eigenvalues computed in Section 5.1.1 to approximate the
theoretical firing rate function (see Figures 12 and 14). For this, recall from Section 2.2.2

that the theoretical firing rate (see Mattia [24] pp. 051917-3, equation 2.6) is given by

2

v(t) = =pv (6,1]V,0). (5.4)

where

p(V, [V, 0) Z% et (V). (5.5)

The eigenfunctions ¢, (V) and 1, (V) above where developed in Chapter 4.1.4. Below, in
Figure 12, we plot v(t) for four different values of u. For instructions on reproducing these

plots see Section A.5.

5.1.2.1 Numerical Simulation of a Population of IF neurons To perform a nu-

merical simulation first recall that an IF neuron is modeled by the SDE

dV = pdt + odW, V, <V(0) =V, < Vr. (5.6)
where oo < Vj, < V. There exists a reset value Vg € (V, V) when the neuron fires:
if V(t7) = Vp, then V(") = Vx. (5.7)
The range of V (t) is
Vi <V(t)<Vp, Vit>0, (5.8)

and we assume reflective boundary conditions when V (t) = V.

Computation of the Firing Rate

For a finite number N of IF neurons, we follow Mattia [24], and define the population firing

rate vy(t) by

. N(t,t+ At)
wv(t) = Jim = (5.9)

where N(t,t + At) is the number of times the neurons fire in the time interval (¢,¢ + At).
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The precise instructions to duplicate the simulation and Figure 14 can be found in Sec-

tion A.5.2 in the Appendix .

5.2 FIRING RATE ANALYSIS WHEN x>0

In this chapter we investigate asymptotic properties of the firing rate function generated by
an eigenfunction expansion of solutions of the FPE (i.e. the Fokker Planck equation), when

@ > 0. In particular we do the following:

5.2.1 We develop the theoretical firing rate function v(t) generated by an eigenfunction
expansion of solutions of the FPE problem when g > 0, ¢ > 0 and Vr = 6 > 0. Using the

resultant formula for v(t), we show that

v(oo) = lim v(t) = C = {0—2 <@ —1+ 62f£)1 o (5.10)

t—00 2u \ o

5.2.2 We prove Theorem 15, which describes asymptotic formulas for the following:
(i) v(o0) when p > 0 is fixed and o — 0.
(ii) v(c0) when o > 0 is fixed and p — 0%,

5.2.3 We provide a numerical calculation to illustrate the relative error between C' and the

formulas provided in Theorem 15.

5.2.1 The Firing Rate function generated by the FPE.

Recall from Chapter 2 that the theoretical firing rate (see Mattia [24] pp. 051917-3, equation
2.6) is given by
2
o

where p(V,t|Vj,0) is assumed to have the eigenfunction expansion

p(V, 1V5,0) = do(v) + > thn(Vo)eX ' dn (V). (5.12)
n#0
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A differentiation of (5.12) gives

pv(0.41Vo,0) = ¢6(0) + Y v (Vo)e ' e, (0).
n#0

Thus, combining (5.11) and (5.13) gives

) = % <¢>’o<e> + anwo)e%;w)) .

n#0

In Section 4.3 we proved that the n'® eigenvalue, A", is complex and of the form
A=A+, n>1
where A7 < 0 and A} # 0. We also proved that
AT =2" n>1.
These properties, combined with (5.14), imply that

v(00) = lim v(t) = —%QS'O(Q).

t—o0

It was shown in Chapter 2 that

where

o? (2ubf IY7AN
T

Remark: This formula for C' was previously developed by Mattia [24].

Next, a differentiation of 5.18 yields

(V) = —2 S
0
Thus, since z = 5—2, it follows that
2C' 2
h0) = —2—=—-=C
gbO( ) /«60 0_2

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)



5.2.2 Asymptotic Results for the Firing Rate Function

Below, in Theorem 15 we prove asymptotic formulae for v(oo). The statement of Theorem 15

requires the following definition for asymptotic limit:

f(z) ~g(x) as =z — a <= lim /@) = 1. (5.23)

z—a g(z)
Theorem 15. Let C' be defined as in (5.22), i.e.

v(co) = C = {"—2 <M —l+e 9)]_1. (5.24)

22

(i) Let p> 0. Then

2
M g +
~—= (14— . 2
C 9<+2M9> as 0 —0 (5.25)
(ii) Let 0 > 0. Then
o? 26
~—=|14+-— * 5.26
C 92(4—302) as p—0 (5.26)

Proof. We begin by proving (5.25). A direct computation shows that

e e (1 1
11}1’(1)1 o 1 o2 = 11H1+ 2 2#0 —2u6/0?
o pl4gs om0t o 1+ Z 2u9 —1+e

. 216 1
g 1m .
o0+ \ 14+ 2‘220 2uf — o2 + g2e—210/0?

This completes the proof of (5.25).

To prove (5.26) first apply L’Hospital’s rule twice and obtain

1m 'u2 = lim 211
pu—0+ QULQH — 1+ e—2ub/o? ‘uﬁoﬁ- 29 22 e—2u0/a?
2
= lim 25—
pu—0t ?6_2“0/0
4
o
=502 (5.27)
Note that
o 1+28 ot \1+28 ) \ 22 14 c20/0° | '

152



Finally, combine (5.27) and (5.28), and obtain

co* 1 202 o
lm ———=—-1-— =1. 5.29
ug& o2 14+ ?)ULS ot 262 ( )
This completes the proof of Theorem 15. O]

5.2.3 Relative Error Between Theoretical and Numerical Values of v(c0)

In this section we investigate the relative error between C' and the approximations described
in Theorem 15. The relative error between C' and the approximation 4 (1 + %) is given

by

o5 (1+59))

Relative Error = ] (5.30)
Similarly, the relative error between C' and the approximation ‘;—2 (1 + %Z) is given by
-5 0+3
Relative Error = . (5.31)

|C]

Below, in Table 5.2.3 we compute the relative errors, (5.30) and (5.31), for the numerical

results in Figure 12, that was completed in Section 5.1.

5.3 FIRING RATE WHEN x(7) IS A STEP FUNCTION

In real nervous systems neurons react to inputs from dynamic environments (e.g. sensory,
memory recall). The input statistics for a given neuron change during the course of a task.
Thus, in the context of the stochastic IF SDE

dV = pdt + odW, (5.32)

153



w(t) and/or o(t) are time dependent quantities. A simple example illustrating this property

is when the neuron input p(t) is a step function, e.g.

0 0<t<T*=1000 msec.,
pu(t) = (5.33)
25 t>T",

and o(t) is constant, e.g.

o(t)=1 Vt > 0. (5.34)

In this section we assume that p(t) is of the form (5.33) and o(¢) = 1 and perform two tasks.

I. Determine the theoretical firing rate in terms of an eigenfunction expansion solution of

the corresponding FPE.

II. Next, we simulate a population of 10000 IF neurons and determine the population mean

firing rate, and we see that the theory and simulation are in agreement.

5.3.1 Theoretical Firing rate

Recall that V;, = Vg = 0 and Vr = 6. Since p(t) is constant on the intervals [0, 1000] and
(1000, 00) we apply the results of Chapter 4. Thus, on the interval (1000, 00), p = 25 and it
follows that

p(V, 1|V, 0) Z Ao, (V), t> 1000. (5.35)

It was shown in Section 4.2 that there is no eigenfunction expansion solution for p(V,t|V4, 0)
when p = 0. Under the assumption that p(V,¢|Vp,0) relaxes to its stationary solution for

large t we set

p(V,t|Vp, 0) = o (9 V), 0<t<1000. (5.36)
Therefore,
Z(0—V), 0<t <1000,
p(V,t|Vp,0) = (5.37)
S A0 g (1) ¢ > 1000.
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The constants A,, are determined so that p(V,t|V;,0) is continuous at ¢ = 1000 :

2 [e.9]
2O =V)= > Apu(V). (5.38)

n=—oo

Recall that the functions ¢, (V') satisfy the orthonormal condition

4 1, m=n,
| ontVyvmvyav - (5.30)
0 0, m #n.

Mulitply each side of (5.38) by 1,,(V), integrate, and apply (5.39) to obtain
2
A, = / 20—V (V) V. (5.40)
0

5.3.2 Population Firng Rate

The left panel of Figure 15 illustrates a simulation of population mean firing rate, vy(t),
for N = 10,000 neurons. Here, we assume that each neuron satisfies the initial condition
V(0) = Vg = 0. Over the subinterval 0 < ¢t < 7" = 1000 the neurons receive constant
input © = 0, and the population mean firing rate quickly relaxes to the equilibrium level
vn(oo) = 1. When ¢ > 1000 the input discontinuously jumps to the new constant level
1 = 25. In response to this discontinuous change of input, the population mean firing rate
initially undergoes oscillations (i.e. ringing) with peaks that decrease in amplitude during a
transition period of length approximately 200 msecs. By the end of this transition interval,
the firing rate has relaxed to its equilibrium level, vy & 25. The right panel shows the
theoretical mean firing rate, v(t), resulting from the eigenfunction expansion method. During
the transition interval, [1000, 1200), the theoretical firing rate v(t) also undergoes oscillations,
with peaks that decrease to zero in amplitude as the v(t) relaxes to its equilibrium level,
v ~ 25 (see Section 5.2.2). A major thrust of this thesis is to give a firm foundation to the use
of the eigenfunction expansion to understand non equilibrium behavior of firing rate when g
and o are constant during the two subintervals [0, 7*) and [T, 00). Our study includes the

parameter regime p > 0 and o > 0, and also the regime p < 0 and o > 0.
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5.4 PROOF THAT E ([un(T) — v(T))?) ~ 400 N >> 1.

In this section our goal is to obtain, under reasonable assumptions on a population of neurons,

the following approximation:

E ([vn(t) = v(t)]?) = K&, N >>1. (5.41)

Proof of (5.41): Fix N >> 1 and consider a population of N neurons with uncorrelated

input. For each i € [1, N], define

X;(t) = the number of spikes emitted by the ith cell in (0,¢). (5.42)

Set

AXi(t) = Xi(t + At) — X;(t), (5.43)

and note that

AX;(t) = the number of spikes emitted by the ith cell in the interval (¢,t + At). (5.44)

Fix t > 0, and let At > 0 be small. Assume that each AX;(¢) is a Poisson random variable

with parameter v(t), which is essentially constant for large t. Then

E(Ai(t) = v(t)At = Var (AXi(t)), 1<i<AN. (5.45)

An application of the Central Limit Theorem gives

N
D (AXi(1) = Nu(H)At = \/v(t)NAIN(0,1), N >> 1. (5.46)
=1
Mutiply (5.46) by +x; to obtain
L i AX(0) - vt) ~ | 2 N0,1), N>>1 (5.47)
NAL &7 TV NAE T ' '
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Recall that

N(tt+At) SN (AX(t))

A VA Y
It follows from (5.47) and (5.48) that
v(t)
vn(t) —v(t) ~ N AL N(0,1), N >>1.

Recall that E(N(0,1)) = 0. Therefore,
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Table 1: v =y +1iv when pu=20,0=0=1.

N V2 F(%, 72) G(Vh 72)

20.0472  6.4344  0.000003814697  0.000004291534
20.1347 12.8242 -0.000008583064 -0.000003814697
20.2334 19.1633 -0.000029563903 -0.000001907348
20.3219 25.4668  0.000004291534 -0.000026702880
20.3943  31.7497 -0.000032424926  0.000005722045
20.4515 38.0220 -0.000048637390  0.000026702880
20.4962 44.2896 -0.000061988830 0.000003814697
20.5311 50.5556  0.000030517578  -0.000049591064
20.5586 56.8215, 0.000031471252  0.000034332275
20.5805 63.0882, 0.000064849853 -0.000045776367
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Table 2: A = Re(A) +ilm(A) when p=20,0=0=1.

Re(A) Im(\)
-19.755 128.993
-79.526 258.214

-178.920 387.742
-317.788 517.535
-496.057 647.515
-713.706 777.611
-970.739 907.772
-1267.170 1037.967
-1603.014 1168.176
-1978.283 1298.388




Table 3: v =y +1i72 when pu=50=0=1.

g V2 F(v1,7) G(71,72)
2.3346  6.6063 -0.000000000000 -0.000000000000
2.5307 12.8469 0.000000000078  0.000000000077
5.6095 19.0715  0.000000000000  -0.000000000007
5.6458 25.3117 -0.000000000005 -0.000000000001
2.6648 31.5644  0.000000000001  -0.000000000002
5.6758 37.8254  0.000000000009 0
5.6827 44.0920  0.000000000003  -0.000000000003
2.6874 50.3623  0.000000000005  0.000000000002
5.6906 56.6352 -0.000000000025  0.000000000003
5.6929 62.9101 -0.000000000007 0
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Table 4: A = Re(\) +ilm(\) when pu=5,0=0=1.

Re(A) Im(\)
-20.092 35.242
-79.727 71.053

-178.628 106.983
-316.904 142.905
-494.612 178.807
-711.776 214.692
-968.406 250.566
-1264.508 286.431
-1600.084 322.289
-1975.136 358.144
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Table 5: v =1 +1i72 when pu=10=0=1.

TN

Y2

F(Vh%)

G(’YD 72)

1.6207
1.6547
1.6620
1.6647
1.6659
1.6666
1.6670
1.6673
1.6675
1.6676

6.4243
12.6438
18.9022
25.1725
31.4478
37.7257
44.0051
50.2855
56.5664
62.8479

0.000000016769
0.000000000000
-0.000000000000
0.000000000000
-0.000000000000
-0.000000000000
0.000000000000
0.000000000000
0.000000000000
0.000000000000

0.000000033862
0
0.000000000000
0.000000000000
0.000000000000
-0.000000000000
0.000000000000
-0.000000000000
0.000000000000
-0.000000000000
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Table 6: A = Re(\) +ilm(\) when p=1,0=0=1.

Re(A) Im(\)
-19.822 10.412
-79.064 20.922

-177.766 31.416
-315.943 41.905
-493.597 52.390
-710.728 62.875
-967.338 73.358
-1263.427 83.842
-1598.993 94.324
-1974.038 104.807
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Table 7: v =y +1i72 when u=0.1,0 =0 =1.

4!

V2

F(’ylv 72)

G(%, 72)

0.4532
0.4543
0.4545
0.4546
0.4546
0.4546
0.4546
0.4546
0.4546
0.4546

6.2989
12.5743
18.8548
25.1367
31.4191
37.7017
43.9845
50.2674
56.5504
62.8334

0.000000000000
0.000000000000
0.000000000000
0.000000000000
0.000000000000
0.000000000000
0.000000000000
0.000000000000
0.000000000000
0.000000000000

0.000000000000
0.000000000000
0.000000000000
0.000000000000
0.000000000000
0.000000000000
0.000000000001
0.000000000001
0.000000000002
0.000000000002
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Table 8: A = Re(\) +ilm(\) when p=0.1,0 =0 = 1.

Re(A) Im(\)
-0.019 0.002
-0.078 0.005
-0.177 0.008
-0.315 0.011
-0.493 0.014
-0.710 0.017
-0.967 0.019
-1.263 0.022
-1.598 0.025
-1.973 0.028

165



pu=20, 6=1, o=1 M =5, 6=1, o=1

40 V(00)=20.5128 40i V(0)=5.5555

20.5§--

0
0 100 200 300 t 200 300 t
Vv V
u=1,6=1, o=1 u=0.1, 6=1, o=1
40 V(0)=1.7616 1 40 v(0)=1.0678
20 1 20
0 100 200 300 t 0 100 200 300 t

Figure 12: Graphs of the firing rate function v(t) generated by the Fokker Planck eigen-
function expansion method when § = 0 = 1, and u decreases from p = 20 (upper left) to
i = 0.1 (lower right). Theory (see Section 5.2) shows that v(t) — C as t — oo, where
the formula for C, the normalizing constant for the eigenfunction ¢o(V'), is given in (see
Section 5.2). When p is large relative to o, e.g. when p = 20 and ¢ = 1, note that
v(o) =C =& (1 + 5‘—/;) = 20.5 This reflects the fact that, when p is large relative to o,
the main contribution to v(oco) is the input p, while a much lesser contribution is due to the
noise term, 0. When p is small relative to o, e.g. when ¢ = 0.1 and o = 1, we find that
C= g—; (1 + QT“@) = 1.06 This reflects the fact that, when p is small relative to o, the main

contribution to v(c0) is o, while the input plays a lesser role.
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0 100 200 300 () 0 100 200 300 ()

Figure 13: Left Panel: Plot of the population firing rate vy (¢) with N = 10000 simulated IF
neurons all with paremeters = 25 and o = 1, where V(0) = 0, V, = Vg =0and Vp = 0 = 1.
Right Panel: The theoretical (i.e. N = 00) firing rate v(t) (red) plotted together with the
population (i.e. N = 10000) firing rate vy(t) (blue). Again, the paremeters are p = 25 and
o =1 =20. Listing .23 in Section A.5 provides the Matlab code to produce both figures.
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\Y} \Y}
=5
45 45 H
0=1, o=1
30 30}
15 15
0 0
0 100 200 300 ¢ (ms) 0 100 200 300 ¢ (ms)
\Y} \Y)
45 =1 ; 45 h=0.1
0=1, o=1 0=1, o=1
30} 30}
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S - —
olL - o|k .
0 100 200 300 ¢ (ms) 0

100 200 300 {(mg)

Figure 14: Graphs of the theoretical firing rate function v(t) generated by the Fokker Planck
eigenfunction expansion method (blue) and the population firing rate function vy () (red)
when N = 10000, # = o = 1, and p decreases from p = 20 (upper left) to p = 0.1 (lower
right). Listing .23 in Section A.5 provides the Matlab code to produce the figures.
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Table 9: Parameters: ¢ = 6 = 1. The Left Panel shows the relative error given by equa-
tion (5.30). The error becomes worse as p decreases and gets closer to 0. The Right Panel
shows the relative error given by equation (5.31). The error becomes smaller as p decreases

below, and away from, o.

C i | Relative Error C i | Relative Error
20.513 | 20 0.0006 1.762 | 1 0.0541
5.556 5 0.0101 1.067 | 0.1 0.0003
v v(t)
N1 N=10000
6=1, 0=1 6=1, 0=1
AA
25 Mm 25 J\
0] s : 0);
0 500 1500 t 0 500 1500 t

Figure 15: Left Panel: population mean firing rate, vy(t), (see formula (5.9)) for N =
10,000 neurons when o(t) = 1, and u(t) is the step function defined in (1.8), i.e u(t) =
0 Vt € [0,1000), and pu(t) = 25 Vt € [1000, 00). Right Panel: Theoretical mean firing rate,

v(t), of the FPE (1.5) constructed using the eigenfunction expansion method. See text.
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6.0 OPEN PROBLEMS AND FUTURE RESEARCH

In this thesis we investigated the Mattia-Del Giudice conjecture for the IF firing rate model.
We proved the existence of infinitely many branches of eigenvalues when g > 0 and p < 0.
These results allowed us to derive eigenfunction expansions which give reasonble approxima-
tions for the firing rate. However, there were fundamentally important components of the
Mattia-Del Giudice conjecture that we were unable to prove. These will provide a starting
point for future research, both for the IF and LIF models. Below, we state open problems

for both models.

6.1 OPEN PROBLEM 1: EXTREMUM PROPERTIES OF THE
STATIONARY SOLUTION FOR THE LIF FPE

In Theorem 1 it was proved that there exists an open neighborhood U C R x R such that
(1,1) € U, and a function p*(7,0) such that

w(r,0) € CH(U,R). (6.1)

Furthermore, for each (7,0) € U, there is a unique value, p*(7,0), such that ¢;(07) = 0
when p = p*. The importance of this result is as follows: To our knowledge, it is an open
problem to give a rigorous proof establishing extremum properties of the stationary solution.
I believe the key to locating the critical points where ¢o(V') achieves a maximum value is
understanding the sign of ¢f,(0") as a function of u, 7, and . Since p(V, |V, 0) — Cdo(V)

as t — 00, for some constant C| the results of Theorem 1 provide a starting point for locating
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the most probable value of V() as t — oo, and also the behavior of the firing rate, v(t), as

t — o0.

Numerical experiments suggest that U = R x R. Proving this conjecture may provide insight

towards a complete analysis of the stationary solution for the LIF model.

6.2 OPEN PROBLEM 2: EXISTENCE OF EIGENVALUES AND
EIGENFUNCTIONS FOR THE LIF FPE

It remains an open problem to give a rigorous proof of the existence of branches of eigenvalues

of the FPE corresponding to the LIF model. A first step is to prove the existence of the

first eigenvalue (i.e. the ‘dominate’ eigenvalue), and corresponding eigenfunction, for both

u > 0 and g < 0. The resolution of this problem will allow us to begin the construction of

an eigenfunction expansion for firing rate for the LIF model. To our knowledge there are no

rigorous results for this challenging problem.

6.3 OPEN PROBLEM 3: RESOLUTION OF THE MATTIA-DEL GIUDICE

CONJECTURE FOR THE IF MODEL

In Sections 4.5 and 4.6 partial proofs of the Mattia-Del Giudice conjecture were given. Recall

that the eigenvalues are given by

Ao OOf = 0g) e 120"
260%0 62

where v, and 7, satisfy

. 0
Y=+ iy = 5V A+ 2A0?,
o

and v = v, + 17, satisfies the algebraic equation

ve* = ycosh(y) + zsinh(y), z == > 0.
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To our knowledge it is an open problem to give a rigorous proof of the following:

Suppose that A = A; + i)y is an eigenvalue satisfying (6.2)-(6.3)-(6.4). Prove that the

corresponding eigenfunctions form a complete set, and that

Re(A) < 0 for all z = 1o > 0. (6.5)

o2
Suppose that A = A + i)y is an eigenvalue satisfying (6.2)-(6.3)-(6.4). Prove that the

corresponding eigenfunctions form a complete set, and that A is real with

9
A< 0forall 2="2 <o (6.6)

g2
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APPENDIX

NUMERICAL CODES

In this chapter we provide the Matlab code that was used to compute all the figures and
numerical experiments in this thesis. For ease of use, the code is ready to be copied and

pasted.

A.1 REPRODUCING THE PLOTS OF THE STATIONARY SOLUTIONS
FOR THE LIF AND IF

How to reproduce Figures 2 and 3

To reproduce Figures 2 and 3 recall that the stationary solution, ¢o(V), of the FPE corre-
sponding to the LIF is given by (see equation 2.38 in Chapter 2)

A=)y oy,
Po(V) = (:1)

%6_72(“_¥) ‘YT ez (1=%) do, Vp <V < V.

where A and B are constants. The first step is to define the function files statsol_funl.m,

statsol_fun2.m and statsol_fun3.m in Matlab.

Listing .1: Function file for Figures 2 and 3

function B=statsol_funl (var ,mu,tau,sigma)
B=exp(tau./(sigma."2).x(mu—(var./tau))."2);
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Listing .2: Function file for Figures 2 and 3

% statsol_fun2 .m

% Goal: Define one of the three functions for the LIF stationary solution

function y=statsol_fun2(v,x,mu,tau,sigma)

y=exp(—tau./(sigma."2).*%(mu—(v./tau)). 2).%...
exp(tau./(sigma."2).%(mu—(x./tau))." 2);

Listing .3: Function file for Figures 2 and 3

% statsol_fun3 .m

% Goal: Define one of the three functions for the LIF stationary solution
function B=statsol_fun3 (v,mu,tau,sigma)
B=exp(—tau./(sigma."2).x(mu—(v./tau)). 2);

Secondly, calculate the constants A and B with Statsol_LIF_constants.m and save the data.

Listing .4: File for calculating the constants

% Statsol_lif_constants .m
% Goal: Find Constants A and B for the stationary solution of the LIF.
% This file calls the functions statsol_funl.m, statsol_fun2.m and
% statsol_fun3.m The Vectors A and B are called by the file
% Statsol _LIF .m
format long
% Set the parameters
mu=[2,1,0.50,0,—.5, —2];
sigma=1; theta=1; tau=1; VR=0;
z=mu.* theta./(sigma."2); inf=-100;
% Set the solution vectors
A=zeros (1,6); B=zeros(1,6);
Il=zeros (1,6);12=zeros (1,6);
% Set the lower bound of integration
bounds=Q(s) s;
% Compute the constants A and B
for k=1:6
B(k)=quad(’statsol_funl’ ,VR,theta ,[] ,[] ,mu(k),tau,sigma);
I1 (k)=quad(’statsol_fun3’,inf ,VR,[] ,[] ,mu(k),tau,sigma );
2 (k)=quad2d (Q(v,x) statsol_fun2(v,x,mu(k),tau...
,sigma) , VR, theta ,bounds, theta);
end

CheckB=B;
CheckA=1./(11+4(1./B).*x12);
% Save the data
save Statsol_constant_A .dat —ascii CheckA
save Statsol_constant_B.dat —ascii CheckB

Thirdly, define the ode file Statsol_L1F _ode.m and solver phi_plus_LIF.m
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Listing .5: ODE for Figures 2 and 3

% Statsol _LIF _ode.m

% Goal: Compute phi_0 when VSVR for LIF stat sol

function phiprime = Statsol_LIF _ode (v, phi,mu,sigma,tau,A,B);
phiprime = (2./(sigma.”2)).*phi.*(mu—v./tau)—A./B;

Listing .6: Function to solve the ODE and save the data

% phi_plus_LIF .m
% Goal: Solve the the right hand side of the LIF stat sol, phi_ 0"+
tic
% Set the parameters
mu=[2,1,0.50,0,—.5,—2];
sigma=1; theta=1; tau=1; VR=0; inf=-10;
% Load the constants from Statsol_lif_constants.m
load Statsol_constant_A .dat
load Statsol_constant_B.dat
A=Statsol_constant_A ;
B=Statsol_constant_B;
span=theta:—0.01:VR;
SS=size (span);
t=linspace (theta ,VR,SS(2));
sol=zeros (SS(2),7);
sol (:,1)=t;
for k=1:6
[v,phi]=o0de45 (Q(v,phi)Statsol _LIF _ode (v, phi,mu(k),sigma ,...
tau ,A(k),B(k)),span,0);
for m=1:SS(2)
sol (m,k+1)=phi(m);

end
end
soldata=sol;
% Save the data for export to Statsol LIF.m
save Statsol_phi_right.dat —ascii soldata

toc

Lastly, run the file Statsol_LIF.m to reproduce Figures 2 and 3:

Listing .7: Master file for Figures 2 and 3

% Statsol _LIF .m
% 3—15—11

107/ T T O O O B I B I
L2 E O B

|
L

1 1 1
UL
% Goal: plot stationary solution for the LIF
B B
% This file calls the functions statsol_funl.m, statsol_fun2.m and

% statsol_fun3 .m, the files Statsol_LIF_constants.m and phi_plus_LIF .m
% It also uses the ode file Statsol_LIF_ode.m

tic
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% Set the parameters

mu=[2,1,0.50,0,—.5,—2];

% REMARIE

% If you change a mu value in this file you must

% mu in the files phi_plus_.LIF.m and Statsol_LIF _constants.m
%

sigma=1; theta=1; tau=1; VR=0; inf=-5;

z=mu.x theta./(sigma."2);
% Load the

normalizing
load Statsol_constant_A .
load Statsol_constant_B.

A=Statsol_constant_A ;
B=Statsol_constant_B;
of phi_o™+
load Statsol_phi_right.dat

% Load

sol=Statsol_phi_right;

%

o
%

for n=1:6
phi_1(n
figure (n)
plot (t1,phi_1(n,:), ’linewidth’ ,4
hold on
plot (sol(:,1),s0l(:,n+1),
hold on
plot ([0,0],[0,2], '~
hold off
set (gca, 'XTick’, —4:2
set (geca, ’YTick’, 0:1:1, fontsize’
set (geca, ’linewidth’ 3.5
text (—4.8,1.2, ’\phi.o”’
text (1.75,—.1,’'V’ [’ fontsize’
if n==
text (.75,1.1,[ \mu.=’
text (.75,.94, "\tau=1",
elseif n==
text (—3.3,1.05, 'LIF ",
text (—3.5,.89,’VR=0",
text (. 75,1.1,[ \mu_=",
text (.75,.94, "\tau=1",
else
text (.25,1.1,[ \mu_=",
text (.25,.94, \tau=1",
end
axis([—4 2 0 1.2]);
grid off;
checkint (n)=trapz (fliplr (sol(:,
trapz (t1,phi-1(n,:));
end
check=checkint’
% Save the plots

Set

Plot

the

the

the

values

vector

clf

to check
checkint=zeros (1,6);
Solutions phi_0
tl1=linspace (inf ,VR,1000);
phi_l=zeros (6,length (t1));

constants
dat
dat

from

phi_plus_LIF

normality

5);

"linewidth’ ;4.5);

k’, linewidth’,3);

:0,’ fontsize’ ;30);

, num2str (mu(n))]

;30);
, 'fontsize’ ,;30);

, fontsize’ ,35);

,35);

"fontsize’,30)

"fontsize’
"fontsize

num25tr(mu(
"fontsize’

num?2str (mu(n))]

35);
’ 30
n
30

"fontsize’,30)

),
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fliplr (sol (:

from Statsol_lif_constants

1M

also change

,i)=A(n).xstatsol_fun3d (tl ,mu(n),tau,sigma);

, "fontsize’ ;30);

30):
))], fontsize’ ,30);
)

, "fontsize’  30);

,n+1)7))+...

_test

.1m



% print —f1 —depsc2 stat_sol_leaky_mu2_taul.eps

% print —f2 —depsc2 stat_sol_leaky_mul_taul.eps

% print —f3 —depsc2 stat_sol_leaky_muhalf_taul.eps

% print —f4 —depsc2 stat_sol_leaky_muO_taul.eps

% print —f5 —depsc2 stat_sol_leaky_muneghalf_taul .eps
% print —f6 —depsc2 stat_sol_leaky_muneg2_taul .eps
toc

How to reproduce Figure 5

Figure 5 corresponds to the stationary solution of the FPE corresponding to the IF model

when —oo < Vp = Vi < Vi given by

bo(V) = Co (1 —exp [ﬂb | (2)

where Cj is a normalizing constant. To reproduce Figure 5 refer to the Matlab code in

Listing .8 below.

Listing .8: Matlab code for Figure 5
% Statsol_VLeqVR_IF .m

% 3—-27-11

107/ T T T T O O O A O B O I |
V2 HNE I A I O |

%Goal: Plot stationary solution for IF when V_L=V_R

OZ | v
orrrrrrrrrrrrrrrrr+rr++r+ + +rrr+r+rr+rr&r&r&r&r&rr T
clf

% Set the parameters
mu=[-2,-.5,0.0001,.5,1,2];
sigma=1; theta=1; %V T=theta
VL=0; VR=0; z=mu.xtheta./(sigma."2);
% Set the normalizing constant
terml=2.x(mu.* theta./(sigma."2))—14+exp(—2.%(mu.+theta./(sigma."2)));
term2=((sigma.*xsigma)./(2.+mu)).*terml ;
C=1./term2;
% Set the domains
V =VR:.001: theta;
phi=zeros (length (V) ,6);
% Set the vector to check normality
checkint=zeros (1,6);
for k=1:6
% Define the functions
phi(:,k) =C(k).*(1—exp(—2.%xz(k).*(theta—V)./theta));
% Plot the solution
if k==3

figure (k);

plot (V,phi(:,k),’ linewidth’ ,4.5);

hold on
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plot ([0,0],[—.5,4.5],’k’, linewidth’ ,3);
hold off
axis([—2 2 0 4]);
grid off;
set (geca, 'XTick’, —2:1:1, fontsize’ ,30);
set (geca, ’YTick’, 0:1.5:4, fontsize’ ,30);
set (geca, ’linewidth’ 3.5, fontsize’ ,30);
text (.7,3.3,\mu.=0", fontsize’ ,35);
text (—2.5,3.8,’\phi_o’, fontsize’ ,35);
text (1.8, —.26,’V’ ’fontsize’ ,35);
else

figure (k);

plot (V,phi(:,k), linewidth’ ,4.5);

hold on

plot ([0,0],[—.5,4.5],’k’, linewidth’ ,3);

hold off

axis([—2 2 0 4]);

grid off;

set (geca, 'XTick’, —2:1:1, fontsize’ ,30);

set (geca, 'YTick’, 0:1.5:4, fontsize’ ,30);

set (gea, ’linewidth’ 3.5, fontsize’ ,30);

text (.5,3.3,[ \mu.=", num2str(mu(k))], fontsize’,35);

text (—2.5,3.8, ’\phi.o’, fontsize’ ,35);

text (1.8,—.26,’V’, fontsize’ ,35);

if k==6
text (—1.3,3.3,’IF’ ,’fontsize’ ,35);
text(—1.7,2.7, V.L=V.R=0", fontsize ' ,30);
end

end
% check that the functions integrate to 1
checkint (k)=trapz (V,phi(:,k));
end
check=checkint’
% Save the plots
% print f1 —depsc
% print —f2 —depsc
% print —f3 —depsc
% print —f4 —depsc
% print —f5 —depsc

statsol_VLeqVR_mu_neg2.eps
statsol_VLeqVR_mu_neghalf.eps
statsol_VLeqVR_mu_0.eps
statsol_VLeqVR_mu_half.eps
statsol_VLeqVR_mu_1.eps
statsol_VLeqVR_mu_2.eps

DN NN DN

% print —f6 —depsc

How to reproduce Figure 6

Figure 6 corresponds to the stationary solution of the FPE corresponding to the IF model

when —oo <V < Vi < Vi given by



where C' is a normalizing constant. To reproduce Figure 6 refer to the Matlab code in

Listing .9 below.

Listing .9: Matlab code for Figure 6

%Statsol _VLlessVR_IF
Y%3—27—11
%Goal: Plot stationary solution for IF when V_L<V_R

71 | I I [
O T T

clf

% Set the parameters
mu=|-2,-.5,0.00001,.5,1,2];

sigma=1; theta 1; /<\ T=theta=1
VL=-2; VR=0; z=mu.xtheta./(sigma."2);
% Compute the normalizing constant
terml=(l—exp(2.%z)).*((sigma. A2) /(2.%mu));

term2=exp ((2.*mu.*VR)./(sigma."2)) —exp ((2.+*mu.xVL)./(sigma."2));
term3=exp (2.%z)—exp ((2.*mu.*VR)./(sigma."2));

termd=exp (2.%z).x(theta—VR);
Ctestl=terml.xterm2+term3.x(sigma."2)./(2.+*mu)—termd;
=(1./Ctestl);

% The normalizing constant found via———

% Mathematica solve command
C2=[0.00136692,0.232402,—-20000.1,—-0.402295,—-0.136415,—0.0183171];

% Check the two methods agree

C_Check=C-C2;

% Set the domains

V1 = VL:.001:VR; V2 = VR:.001:theta;

yl=zeros (length (V1) ,6); y2=zeros(length(V2),6);

% Set the vector to check normality

checkint=zeros (1,6);

for k=1:6

% Define the functions

y1(:,k) =C(k).x(1—exp(2.*xmu(k)./...
(blgma 2).xtheta)).xexp(2.+mu(k)./(sigma"2).%xV1l);

v2(:,k) =C(k).x(exp(2.xmu(k).xV2./...
(sigma”2))—exp (2.xmu(k).*theta./(sigma~2)));
figure (k)
plot (V1,y1(:,k), ’linewidth’ ,4.5);
hold on
plot (V2,y2(:,k), linewidth’ ,4.5);
hold on
plot ([0,0],[0,2], =k’ , ’linewidth’ ,3);
hold off

set (gca, 'XTick’, —4:2:0, fontsize’ ,30);
set (geca, ’YTick’, 0:1:1, fontsize’ ,30);
set (geca, ’linewidth’ 3.5, fontsize’ ,30);
text (—3.6,1.9, ’\phi_o’, fontsize’ ,35);
text (1.8,—.15,’V’ ’fontsize’ ,35);
if k==

text (.6,1.6, \mu.=0",  fontsize’ ,30);
elseif k==6
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text (—2.,1.7,’IF’ " fontsize’ ,35);

text (—2.7,1.4,’-2=V_L<V_R=0",’ fontsize’ ,30);

text (.4,1.6,[ \mu.=", num2str(mu(k))], fontsize’ ,30);
else

text (.4,1.6,[ \mu.=", num2str(mu(k))], fontsize’ ,30);
end
axis([-3 2 0 2]);
grid off;

checkint (k)=trapz (V1,y1(:,k))+trapz(V2,y2(:,k));
end
check=checkint’

A.2 NUMERICAL INVESTIGATION OF THE NEIGHBORHOOD U

In this section we provide the code to reproduce Figure 4. First, Run the ODE file u_star.ode
in XXP and save the data. Next, export the data to Matlab and plot the simulated solution.

Listing .10: XPP code to Investigate the Neighborhood U

#Ryan O’ Grady 3—-6—2010

#This ode file is used to investigate the solution mu”=x

#when sigma=1 and tau is positive.

#we wish to know if this solution fails to exist.

#Here tau is the variable and hence tau=t.

#Use numeric solver to find init.

#we use init U=.743622, start =1, dt =-0.001 and .0001, total 1

#we use init U=13.20207, for sigma=2.5

#Run the ode and save the data for export to matlab.

p sigma=2.5

#init U=0.743622

init U=13.20207

#Terml is F_tau

term1=1/(2xt)—(U/(sigmax*sigma))*exp (1/(sigmaxsigma)*(1/t—2«U))x* (U+1/t)

#term2 is F_mu

term2=1/U-2xt+«U/(sigma=*sigma) —...
2xt%U/(sigmaxsigma )*(exp (1/(sigmaxsigma ) (1/t—2%U))—1)

U= —(terml)/(term2)

#aux fun=t*U

d
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A.3 THE FUNCTIONS ~(Z) AND \(2)

In this section we provide the instructions for reproducing Figures 9 and 10.

How to reproduce Figure 9

First, write the the function file i f_fandg_2.m and the file i f_gammaofz_startingpoint.m
to find initial values for the ODEs.

Listing .11: Function file for Figure 9
% if _fandg_2 .m
% The functions f and g used to calculate the evalues of the IF
function FF=if_fandg_2 (gamma,z);
Tl=gamma (1).*exp (z)—gamma(1l).x* cosh (gamma (1
T2=gamma(2).*sinh (gamma(1)).* sin (gamma(2))
T3=z*sinh (gamma(1)).x cos (gamma(2));
T4=gamma (2).*exp (z)—gamma(1).* sinh (gamma(1
T5=gamma (2).* cosh (gamma(1)).* cos (gamma(2))
T6=z+cosh (gamma(1)).*sin (gamma(2));
FF=[T14+T2-T3; T4-T5-T6];

)).* cos (gamma(2));

)).#sin (gamma(2));

Listing .12: Initial value solver

% if_gammaofz_startingpoint .m

% Goal: To find a starting point for odes gammal(z)
% and gamma2(z) when z is small. This file requires the
% function file if_fandg_2 .m

% This starting is used in the ode file

% if_gammal_and_gamma2.ode in XPP

format long

z=.1;

gl=log (exp(z)+sqrt (exp(2xz)—1));

% Make sure to check the n!!l!IIIIrrIEIIIIEII
n=1;

% Make a starting guess at the solution

x0 = [gl; 2xnxpi]l;

% Option to display output

options=optimset (’Display’, off ’);

% Use the built in Newton solver

[x,fval] = fsolve(@if_fandg_2 ,x0,options ,z);
% DEfine the solution vector

solution=x

% Check the solution is a solution
matlabscheck=fval

% Double Check the solution is a solution
mycheck=if_fandg_2 (solution ,z)
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Next, write the ode files i f_g1_g2_zpos.ode and An_ofz.ode to be used in XPP.

Listing .13: ODE file for A,

# if_gl_g2 _zpos.ode

# Goal: to plot the functions gammal(z) and gamma2(z)
# when z>0.

# Define the ODES

Fterml=exp (t)+gamma2x*cosh (gammal )* sin (gamma2)
Fterm2=cos (gamma2)

Fterm3=(14+t)# cosh (gammal)+gammal*sinh (gammal )
F_gammal=Fterml—Fterm2«Fterm3

Fterm4=gammal+cosh (gammal ) sin (gamma2)

Ftermb=sinh (gammal)

Fterm6=gamma2* cos (gamma2)+(1+t )* sin (gamma2)
F_gamma2=Fterm4+Ftermb5*Fterm6

F3=sinh (gammal )* cos (gamma2)-+exp ( t ) *gammal
G_gammal=F _gamma?2

G_gamma2=F _gammal

G3=—cosh (gammal )* sin (gamma2)+exp ( t ) *gamma2
Jac=F_gammal*F_gammal+F _gamma2+F_gamma?2
gammal’=(F_gamma2*+G3—G_gamma2xF3) / Jac
gamma2’=(G_gammal *F3—F_gammal*G3)/ Jac

# Get the starting point from if_gammaofz_startingpoint.m
# Run the solver both forward and backward. Save the data
# for export to Matlab.

#gammal (0)=.4532754622
#gamma2 (0)=6.298935755
#
# n=2
#
#gammal (0)=.45434214488
#gamma2 (0)=12.574307449
#
# n=3
#
# gammal (0)=.454542329200
# gamma2(0)=18.8548548743
#
# For a small starting point
#
# This time I used n=1 and starting point z=0.0000001
#gammal (0)=.000447213603066

#gamma2(0)=6.283185307179586

#
# n=—1 starting point z=0.1
#
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gammal (0)=.4532754622
gamma2(0)=—6.298935755
done

Listing .14: ODE file for A,

# An_ofz.ode

# Goal: numerically solve the ode for A.n(z)
# which is used when studying the eigenvalues
# of the FPE of IF.

par n=1

term1=2xnx%pi+An

term2=termlxtermlx(1/cos (An))+t
An’=terml/term2

An(0)=0

done

Upon solving the two ODEs in XPP save and export the data to Matlab. Run the file

1f_gammal_and_gamma2_of z_plots.m to reproduce Figure 9

Listing .15: Master file for Figure 9

% if_gammal_and_gamma?2 _ofz_plots.m
|
I

107/ T T I T

I |
/0 T T

}\\\\\\\\
) for z>0
I e e
iles

[ o o o o B B HH
% Goal: plot the functions gamma_1(z) and gamma_2(z
B B e S LN st -
% This file calls the data simulated with the XPP f
% An_ofz.ode and if_gammal_and_gamma?2.ode
clf
% Load the data for n=I
load if_gammaofz_f.dat; load if_gammaofz_b.dat
% Load the data for n=2
load if_gammaofz_f n2.dat; load if_gammaofz_b_n2.dat
% Load the data for n=3
load if_gammaofz_f n3.dat; load if_gammaofz_b_n3.dat
% Load the data for A_1(z)
load if_A _nofz.dat
% Rename the data for clarity
soll _f=if _ gammaofz_f; sol2_b=if_gammaofz_b; soll_f_n2=if_ gammaofz_f n2;
sol2_b_n2=if gammaofz_b_n2; soll_f n3=if gammaofz_f n3;
sol2_b_n3=if_gammaofz_b_n3; A n=if_A _nofz;

% Plot the function gamma 2(z) for n=1,2,3

figure (1)

plot (soll_f(:,1),s0ll1_f(:,3),’b’, linewidth’ ,3); hold on
plot(sol2_b(:,1),s012_b(:,3),’b’, linewidth’ ,3); hold on
plot(soll_f_.n2(:,1),s0ll_f.n2(:,3),’b’, linewidth’,3); hold on
plot (sol2_b_n2(:,1),s0l2_.b_n2(:,3),’b’, linewidth’,3); hold on
plot (soll_f_n3(:,1),s0ll_f.n3(:,3),’b’, linewidth’ ,3); hold on
plot (sol2_b_n3(:,1),s0l2_.b_n3(:,3),’b’, linewidth’ ,3); hold on
plot ([0 120],[2+1xpi 2x1xpi], —k’, linewidth’,3); hold on
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plot ([0 120],[2%2xpi 2x2xpi]|, —k’, ’linewidth’ ,3);hold on

plot ([0 120],[2%1xpit+pi/2 2x1xpi+pi/2],—k’, linewidth’,3); hold on
plot ([0 120],[2%2xpit+pi/2 2%2xpi+pi/2],—k’, linewidth’,3); hold on
plot ([0 120],[2*3xpi 2%3xpi], —k’, linewidth’,3); hold on

plot ([0 120],[2%3*pit+pi/2 2%3xpi+pi/2],’—k’, linewidth’,3); hold on
axis ([0 20 5 Txpi+.8]); hold on

set (gca, 'xtick” ,[0 5 15], fontsize’ ,25); hold on

text (—1.9,23, \gamma_2’, fontsize ’ ,30); hold on

set (gea, ’ytick’ ,[0 25], fontsize’,25); hold on

text (19,4.2,’z’, fontsize’ ,30); hold on

text (16.5 2*p1+2 6, ’5\p1/2’ "fontsize’,25); hold on
text (16.5,4%pi+2.6,’9\pi/2’, fontsize’,25); hold on
text (—2. 3,2*pi—.2,’2\pi’,’fontsize’730); hold on
text (—2.3,2%2xpi —.2,’4\pi’, fontsize’ ,30); hold on
text (—2.3,2%3+pi—.2,°6\pi’, fontsize’ ,30); hold on
text (8,2xpi+2.6,’n=1", fontsize’ ,30); hold on

text (8,4%xpi+2.6, n=2", fontsize’ ,30); hold on

text (8,6xpi+2.6, n=3", fontsize’,30); hold on
set (gca, 'linewidth’,3.5, "fontsize’ ,30); hold off

% Plot the function gamma_2(z) for n=1 and A_1(z)

figure (2)

plot (soll_f(:,1),s0l1_f(:,3),’b’, linewidth’,3); hold on

plot (sol2_b (:,1),s0l2_b (:,3), 7b’,’linewidth’,?;); hold on

plot (soll_f_n2(:,1), soll,f,n2( ,3),’b’7, ’linewidth’ ,3); hold on
plot (sol2_b_n2(:,1),s0l2_-b_n2(:,3),’b’, linewidth’ ,3); hold on
plot (soll_f_.n3(:,1),s0ll_f.n3(:,3),’b’, linewidth’,3); hold on
plot (sol2_b_n3(:,1),s0l2_.b_n3(:,3),’b’, linewidth’ ,3); hold on
plot (An(:, ),A,n( 2)4+2xpi, =1, linewidth’,3); hold on

plot (An(: 1)7A,n(:72)+2*2*p1,’——r’,’linewidth’ 3); hold on
plot([O 120],[2*1*pi 2x1xpi], ’—k’,’linewidth’,3); hold on
plot ([0 120],[2%2xpi 2*2*pi],’——k’,’linewidth’ 3); hold on
plot ([0 120],[2%1xpi+pi/2 2*1*pi+pi/2},’——k’,’llnewidth’ ,3); hold on
plot ([0 120],[2%2xpi+pi/2 2%2xpi+pi/2],’—k’, linewidth’,3); hold on
plot ([0 120],[2%3xpi 2%3xpi],’ ’—k’,’linewidth’ ,3); hold on
plot ([0 120],[2%3xpit+pi/2 2%3xpi+pi/2],—k’, linewidth’,3); hold on
axis ([0 22 5 5xpi]); hold on

set (geca, 'xtick’,[0 5 15], fontsize’,25); hold on

set (gea, 'ytick’ [0 25], fontsize’ ,25); hold on

text (—2.4,2«pi+.1,’2\pi’, fontsize’ ,30); hold on

text (—2.4 2*2*p1+ 1, 4\p1’,’fontsize ’,30); hold on

text (—1.8,pi+.1, \pi’ "fontsize’,30); hold on

text (17.7 2*p1—|—2 3, ’5\p1/2’ "fontsize’,25); hold on

text (17.7,4%pi+2.3,’9\pi/2’, fontsize’ ,25); hold on

text (—2.3,15. 5 \gammaj’ "fontsize’,30); hold on

text (21,4.35, ,"fontsize’,30); hold on

text (8. 5 2*p1—|—2 3 'n=1", fontsize’ ,30); hold on

text (8.5 4*p1—|—2.3, 'n=2",’fontsize’ ,;30); hold on

set (geca, 'linewidth’ 3.5, fontsize ’ ,30); hold off

% Plot the function gamma_l(z) for n=1,2

figure (3)

plot (sol2_b (:,1),s012_b(:,2), linewidth’,3); hold on
plot (soll_f(:,1),s0ll1_f(:,2), linewidth’ ,3); hold on

(
plot(soll_f_.n2(:,1),s0ll_f.n2(:,2),’—r1’, linewidth’,3); hold on
plot(sol2_b_n2(:,1),s0l2_.b.n2(:,2),’—r1’, linewidth’,3); hold on
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axis ([0 1 0 2]); hold on

text (.95, —.1,"2z", fontsize’ ,30); hold on
text (.22,1,’n=1", fontsize’ ,32); hold on
text (.6,.96, n=2","fontsize’ ,32); hold on

text (—.074,1.9, \gamma_1’,’  fontsize’ ,30); hold on

set (gea, 'xtick’ [0 .25 .75], fontsize’,25); hold on

set (gea, 'ytick’,[0 1], fontsize’,25); hold on

set (gca, 'linewidth’,3.5, "fontsize’ ,30); hold off

% Plot gamma_1(z) against gamma_2(z)

figure (4)

plot (sol2_b (:,2),s0l12_b(:,3), linewidth’ ,3); hold on

plot (soll_f(:,2),s0l1_f(:,3), linewidth’,3); hold on

plot ([0 120],[2%1xpi 2x1xpi],’ ’—k’,’linewidth’,3); hold on

axis ([0 25 5.5 7]); hold on

set (geca, 'xtick’,[0 10 20],’ fontsize’,25); hold on

set (gea, 'ytick’ [0 10], fontsize’ ,25); hold on

text (23,5.4, " \gamma_1’, fontsize’ ,30); hold on

text (—2.2,7, \gamma_2’,’fontsize’,30); hold on

text (—2.3,2xpi, 2\pi’, fontsize’,25); hold on

text (17.5,2%pi+1.1,’A_1(z)’, fontsize’,25); hold on

text (10,2xpi+1.8,’n=1", fontsize’ ,35); hold on

set (geca, 'linewidth’ 3.5, fontsize’ ,30); hold on

plot ([3 3],[2*pi+.25 2%pi+.25], 0g’, linewidth’ ,9); hold on
set (gca, 'linewidth’ ,3.5, "fontsize’ ;30); hold off

% Save the plots

% print —f1 —depsc:
% print —f2 —depsc
% print —f3 —depsc
% print —f4 —depsc

¢
¢

2_ofz.eps
2_ofz_andA _n.eps

oe @

_ofz .eps

0}

¢

NN DN DN

1
1_v_g2_ofz.eps

0

How to reproduce Figure 10

Run the ode file if_gl_g2_zpos.ode (see Listing .13) in XPP and export the saved data to
the Matlab file i f lambdal_and_lambda2_of z_plots.m found below in Listing .16.

Listing .16: Master file for Figure 10

07

7% if_lambdal_and_lambda2_ofz_plots.m

% Goal: Use the gamma data simulated

% with the xpp file if_gl_g2_zpos.ode

% to plot the functions lambda_1(z)

% and lambda_2(z)

% Clear any current figures

clf

% Load the data for n=I

load if_gammaofz_f.dat; load if_gammaofz_b.dat

% Load the data for n=2

load if_gammaofz_f n2.dat; load if_gammaofz_b_n2.dat
% Load the data for n=3

load if_gammaofz_f n3.dat; load if_gammaofz_b_n3.dat
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load if_A_nofz.dat

gamma_f nl=if_gammaofz_f; gamma_b_nl=if_ gammaofz_b;
gamma_f n2=if gammaofz_f n2; gamma b n2=if gammaofz_b_n2;

gamma_f n3=if_gammaofz_f n3; gamma_ b n3=if gammaofz_b_n3;
A n=if_A _nofz;

theta=1; sigma=1; mu=1; z=muxtheta /(sigma"~2);

terml=sigma "4x(gamma_f nl(:,2)."2 —gamma_fnl(:,3).72) —...
sigma “4.xgamma_f nl (:,1)."2;
lambda_f_nl_r=terml/(2«theta"2xsigma"2);

term2=sigma "4 (gamma_b_nl(:,2)."2 —gamma_bnl(:,3).72) —...
sigma “4.xgamma_b_nl (:,1)."2;
lambda_b_nl_r=term2/(2xtheta "2xsigma "~2);

term3=sigma "4x(gamma_f n2(:,2)."2 —gamma_fn2(:,3)."2) —...
sigma “4.xgamma_f n2 (:,1)."2;
lambda_f_ n2_r=term3/(2xtheta "2xsigma " 2);

term4=sigma " 4% (gamma_b_n2(:,2)."2 —gamma_b.n2(:,3).72) —...
sigma “4.xgamma_b_n2 (:,1)."2;
lambda_b_n2_r=term4 /(2«theta " 2xsigma "2);

termb=sigma "4x(gamma_f n3(:,2)."2 —gamma_f n3(:,3).72) —...
sigma “4.xgamma_f n3 (:,1)."2;
lambda_f_n3_r=term5/(2«theta"2xsigma " 2);

term6=sigma "4 (gamma_b_n3(:,2)."2 —gamma_bn3(:,3).72) —...
sigma “4.xgamma_b n3 (:,1)."2;
lambda_b_n3_r=term6/(2+xtheta " 2xsigma "2);

figure (1)

plot (gamma_f nl(:,1),lambda_f_nl_r,’b’, ’linewidth’ ,4); hold on

plot (gamma_b_nl(:,1),lambda_b_nl_r,’b’, ’linewidth’ ,4); hold on

plot (gamma_f n2 (:,1),lambda_f n2_r,’k’,’linewidth’ ,4); hold on

plot (gamma_b_n2(:,1),lambda_-b_.n2_r,’k’,’linewidth’ ,4); hold on

plot (gamma_f n3(:,1),lambda_f_-n3_r,’g’, linewidth’ ,;4); hold on

plot (gamma bn3(:,1),lambda_b_n3_r,’g’, ’linewidth’ ,4); hold on
plot([=5 5],[— 2*1*piA2 —2x1xpi~“2],’—k’, ’linewidth’,3); hold on
plot ([—=5 5],[—2%2"2%xpi"2 —2%2"2xpi~2],’—k’, ’linewidth’,3); hold on
plot ([— 5 5],[—2%3"2%pi"2 —2%3"2xpi~2],’—k’,’linewidth’ ,3); hold on

set (gea, 'xtick’,[0 2 4], fontsize’ ,20); hold on

set (gea, 'ytick ’,[—200 —150 —100 —50 0], fontsize’ ,20); hold on
text (4.7,—263,z , fontsize’ ,30); hold on

text (—.47,41,’\lambda_1’, fontsize ’ ,30); hold on

set (geca, ’linewidth’ 3.5, fontsize’ ,30); hold on

axis ([0 5 —250 50]); hold off

lambda_f_nl_im=gamma_f nl(:,2).xgamma_fnl (:,3);

lambda_b_nl_im=gamma_b_nl (:,2).xgamma_b.nl(:,3);
lambda_f_n2_im=gamma_f n2(:,2).xgamma_fn2 (:,3);
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lambda_b_n2_im=gamma_b_n2 (:,2).xgamma_b.n2(:,3);
lambda_f_n3_im=gamma_f n3 (:,2).xgamma_fn3 (:,3);
lambda_b_n3_im=gamma_b_n3 (:,2).xgamma_bn3(:,3);

figure (2)

plot (gamma_f nl(:,1),lambda_f_.nl_im ,’b’, ’linewidth’  3);
plot (gamma_b_nl(:,1),lambda_b_nl_im,’b’,’linewidth’  3);
plot (gamma_f n2(:,1),lambda_f n2_im,’k’,’linewidth’ ,3);
plot (gamma_bn2(:,1),lambda_b_n2_im,’k’,’linewidth’ ,3);
plot (gamma_f n3 (:,1),lambda_f_ n3_im ,’g’, linewidth’ ,3);
plot (gamma_b n3(:,1),lambda_b_n3_im,’g’, linewidth’ 3);
plot (gamma_f nl(:,1), —lambda_f.nl_im,’b’,’linewidth’ ,3
plot (gamma_b_nl(:,1), —lambda_b_nl_im,’b’,’linewidth’ ,3
plot (gamma_f n2(:,1),—lambda_f n2_im,’k’,’linewidth’ ,3
plot (gamma_b n2(:,1), —lambda_b_n2_im, 'k’ ’linewidth’ ,3
plot (gamma_f n3(:,1), —lambda_f n3_im,’g’, linewidth’ ,3
plot (gamma bn3(:,1),—lambda_b_n3_im,’g’, ’linewidth’ 3
plot ([=5 0],[0 0],’k’,’linewidth’ 4);

text(37 —132,’z’ , fontsize ’ ,30);

set (gea, "xtick ’,[-5 0 5], fontsize’ ,20);

set (gea, ytick ’,[—=100 =50 0 50 100], fontsize’ ,15);

set (geca, ’linewidth’ 3.5, fontsize’ ,30);

title (’Im(\lambda(z))’);

axis ([-5 5 —120 120]); hold off

load IF_muneg_gammal.dat; load IF_muneg_gammal_.dat
load IF_muneg_gamma2.dat; load IF_muneg_gamma?2_.dat
load IF_muneg_gammad.dat; load IF_muneg_gamma3d_.dat
load IF_muneg_gammad4.dat; load IF_muneg_gammad_.dat
p=IF_muneg_gammal; n=IF_muneg_gammal_;
=IF_muneg_gamma?2; r=IF_muneg_gamma2_;
s=IF_muneg_gammad; t=IF_muneg_gammad_;
u=IF_muneg_gammad4; v=IF_muneg_gammad4._;

size(p);

yl=—/P(:,2).*p(:,2)+p(:,1).xp(:,1))./2;
y2=—(mn(:,2).*n(:,2)4+n(:,1).%n(:,1))./2;

y3__(Q(: 72)~*Q( 32)+Q(: al)'*q(: ’1))'/2;

yd=—(r (:,2).xv(:,2)+r (:,1).%xr (:,1))./2;
yo=—(s(:,2).%s(:,2)+s(:,1).xs(:,1))./2;

yo=—(t (:,2). %t (:,2)+t(:,1).xt(:,1))./2;
yr=—(u(:,2).%u(:,2)+u(:,1).xu(:,1))./2;
y8=—(v(:,2).xv(:,2)+v(:,1).xv(:,1))./2;

figure (3)

plot (gamma_f nl(:,1),lambda_f nl_r,’b’, linewidth’  4);
plot (gamma_b_nl(:,1),lambda_b_.nl_r,’b’, ’linewidth’  4);
plot (gamma_f n2(:,1),lambda_f_-n2_r,’k’,’linewidth’ ,4);
plot (gamma_bn2(:,1),lambda_b_n2_r,’k’,’linewidth’ ,4);
plot (gamma_f n3 (:,1),lambda_f n3_r,’g’, linewidth’ ,4);
plot (gamma_b_n3(:,1),lambda_b_n3_r,’g’, linewidth’ ,4);
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plot(p(:,1),yl,’b’,’linewidth’ ,3.5);

plot(n(:,1),y2,’b’, ’linewidth’ ,3.5);

plot (q(:,1),y3,’b’, linewidth’ ,3.5);

plot (r(:,1),y4,’b’, linewidth’ ,3.5);

plot(s(:,1),y5,’k’, linewidth’ ,3.5);

plot (t(:,1),y6,’k’, linewidth’ ,3.5);

plot (u(:,1),y7,’k’,’linewidth’ ,3.5);

plot (v(:,1),y8,’k’, linewidth’ ,3.5);

plot ([=5 5],[—2*1xpi"2 —2«1*pi~2],’—r’ ', linewidth’ ,2.5);
plot ([=5 5],[—2%2"2xpi"2 —2%2"2xpi 2], ’—r’, linewidth’ ,2.5);
plot ([-5 5],[—2%3"2%xpi"2 —2%3"2%pi 2], ’—r1’, linewidth’ ,3);
set (gea, 'xtick’,[—=5 0 5], fontsize’ ,20);

set (gca, 'ytick’,[—100 =50 0], fontsize’ ,20);
text (3.7,—122,z, fontsize’ ,30);

%otext (—5.47,0,’\lambda_1",  fontsize ’,30);
set (geca, ’linewidth’ 3.5, fontsize’ ,30);
title (’Re(\lambda(z))’);
axis([-5 5 —115 0]); hold off

Y%print —f1 —depsc2 lambda_real_z_pos.eps
Y%print —f2 —depsc2 lambda_im_z_pos.eps
print —f2 —depsc2 def_1.eps

print —f3 —depsc2 def_2.eps

A.4 CALCULATING THE EIGENVALUES FOR THE FPE OF THE IF
MODEL

First, define the function file nonlinear_FandG_if.m which defines the nonlinear algebra
problem (F,G) = (0,0). Next, run the Matlab file gamma_and_evalues_IF.m to calculate
the v and A values listed in Tables 1-8.

Listing .17: M-file for calculating the Eigenvalues

% gamma_and_evalues_IF .m
% Goal: Calculate the gamma values (and hence evalues) of the IF when
% V_IL=VR=0 and V_T=theta.

OZ 11111 I e e L1
AVJ I I I rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrd L

tic % Set the timer
mu=0.001; theta=1; sigma=5; % Set parameters
zl=muxtheta /(sigmax*sigma ); % Set z for gamma”star
gstar=log (exp(zl)+sqrt (exp(2*xzl)—1)); bttt
gammalold=gstar ; % Set Initial guesses
Y%gammalold=0 % if mu<0

gamma2old=6.4; B e e I B % IR
Y%gammaZ2o0ld=3.3 % if mu<0
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numberofeigenvalues=10; % How many eigenvalues do we

% Set the solution matrices.

old=zeros (numberofeigenvalues ,5);

gammavalues=zeros (numberofeigenvalues ,4);

newsol=zeros (1,2);

% Set initialize Guesses

old (1,2)=gammalold; old(1,3)=gamma2old;

gammalold=old (1,2); gamma2old(1,3)=o0ld (1,3);

for i=l:numberofeigenvalues

myf_1=0@(gamma)nonlinear _FandG_IF (gamma,mu, theta ,sigma );
options=optimset (’Display’, off ’);

sol=fsolve (myf_1,[gammalold gamma2old],options);

% Check we actually found a solution

Check=nonlinear FandG_IF ([sol (1) sol(2)],mu,theta ,hsigma);
gammavalues(i,1)=so0l (1);

gammavalues (i,2)=s0l(2);
gammavalues (i,3)=Check (1);
gammavalues (i,4)=Check (2);

gammalold=sol (1);
% gamma2old=sol (2)+6.4;
gamma2old=sol (2)+pi; % if mu<0
% Save the gamma values in the matrix old
old (i,1)=mu;
old(i,2)=sol(1);
old (i,3)=s0l(2);
%check error
old (i,4)=Check (1);
old (i,5)=Check (2);
end
old; gammavalues;
% Define the gamma values
gammadata=[gammavalues (: ,1) gammavalues (:,2)]
% Save the gamma values
save gammavalues_mupt001_sigmad.dat —ascii gammadata
% Calculate the real parts of the eigenvalues

want

terml=sigma " (4).%(old (:,2).%x0ld(:,2) —old (:,3).%x0ld (:,3))...

—muxmuxthetaxtheta ;
term2=2xthetaxthetaxsigmax*xsigma;
lambdareal=terml./term2;

% Calculate the imaginary parts
term3=o0ld (:,2).%o0ld (:,3).+sigmas*sigma;
lambdaim=term3 /(thetaxtheta);
% Define the matrix of eigenvalues
eigenvalues=[lambdareal lambdaim |
% Save the eigenvalues
save evalues_mupt001_sigmab.dat —ascii eigenvalues
toc
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A.5 THE FIRING RATE FUNCTION

In this section we provide Matlab code to plot the theoretical firing rate and the population

firing rate.

A.5.1 Calculating the Theoretical Firing Rate, v(t)

To reproduce Figure 12 five programs are needed. First we need three function files (see

Listings .18-.19-.20).

Listing .18: Function file for the Eigenfunction ¢/,(V)

% phiprime_general .m

% This function file is used in the file theory_firingrate_IF .m
% to determine the value of the derivative of the

% eigenfunction phi_n.

function y=phiprime_general (v,gammaval,mu,sigma,theta)

% Define z

z=mu.* theta./(sigma.*xsigma);

% Begin defining phi_n

terml=exp(z.xv./theta);

term2=(z./theta).*sinh (gammaval.*(theta—v)./theta);
term3=(gammaval./theta).x cosh (gammaval.x(theta—v)./theta);
% Define the constant c_lambda

term4=gammaval.*z.* cosh (gammaval ) ;

termb5=(gammaval . * gammaval—z ). sinh (gammaval ) ;

term6=theta .x (term4+term5);

csublambda=2.xgammaval./term6 ;
y=(csublambda).xterml.x(term2—term3);

Listing .19: Function file for the Eigenfunction ¢} (V')

% phizeroprime_general .m

% This function file is used in the file theory_firingrate_IF .m

% to determine the value of the derivative of the

% eigenfunction phi_zero.

function y=phizeroprime_general (v,mu,sigma, theta)

% Define z

z=mu.* theta./(sigma.+sigma);

% Define the constant

coef=(sigma.xsigma)./(2.*mu.*mu);

cl=coef .*(2.+*mu.xtheta./(sigma.*xsigma)—1....
+exp(—2.xmu.x theta./(sigma.xsigma)));

cAA=1./cl;
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term1000= —2.x(cAA./(sigma.*xsigma)).*xexp(—2.%xz.*(theta—v)./theta);
y=term1000;

Listing .20: Function file for the Eigenfunction ¢ (V)

% psi_general.m

% This function file is used in the file theory_firingrate_ IF .m
% to determine the value of the of the function psi_n.

function y=psi_general (v,gammaval,mu,sigma, theta)

% Define z

z=mu.* theta./(sigma.*xsigma);

terml=exp(—z.*v./theta);

termA=sinh (gammaval.xv./theta);

termB=cosh (gammaval.xv./theta );

y=terml .*(gammaval.xtermB+z.*termA );

Next, export the eigenvalue data saved in Listing .17 to the following code:

Listing .21: Driver for Figure 12

% theory_firingrate_IF .m

% Goal: Calculate the theoretical firing rate nu(t) of the IF neuron
% when V_L=V_R=0. This program calls data from gamma_and_evalues_IF .m
% It uses the function files phizeroprime_general .m,

% phiprime_general .m and psi_general.m

0

I v |
orrrrrrrrrrrrrrrrrrrrrrrrrrrr+~-rr-rrrrrrrrrrrrrr e T

clf % Clear all figures and values
tic % Set the timer
Y%——— Load the gamma and lambda value:

load gammavalues.mupt05_sigmab . dat
load evalues_mupt05_sigmab.dat
gammavalll=gammavalues_mupt05_sigmab ;
lambdavaluesll=evalues_mupt05_sigmab;
% Define the vectors of real parts of gamma/lamba
realgamma=gammavalll (: ;1); reallambda=lambdavaluesll (:,1);
% Define the vectors of imaginary parts of gamma/lambda
imaggamma=gammavalll (: ,2); imaglambda=lambdavaluesll (:,2);
% Define the vector of complex gamma values.
gammavals=gammavalll (:,1)+1ixgammavalll (:,2);
gammavals_conj=gammavalll(:,1) —1ixgammavalll (:,2);
% Define the vector of complex lambda values.
lambdavals=lambdavalues11 (:,1)4+1ixlambdavaluesll (:,2)
lambdavals_conj=lambdavaluesll (:,1) —1ixlambdavaluesll

7(:72);

Y6

t=0:.0001:100; % Set the domain of nu(t).

mu=.05; % Set the correct mu, theta and sigma values.
sigma=5; theta=1; v0=0;

V4 Define nu(t)

% Set the first term in the firing rate: —sigma”2/2
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terml=—(sigmaxsigma)/2;
% The first term in the expansion
term2=phizeroprime_general (theta ,mu,sigma,theta);
% Check that our limiting value is correct
prediction=termlxterm2
B=prediction;
% The first term in the expansion (and conj)
term3=exp (lambdavals_conj (1)*t )*...

phiprime_general (theta ,gammavals_conj (1) ,mu,sigma,theta );
term4=exp (lambdavals (1)t )x...

phiprime_general (theta ,gammavals (1) ,mu,sigma , theta );
termb=psi_general (v0,gammavals (1) ,mu,sigma,theta);
term6=psi_general (v0, gammavals_conj (1) ,mu,sigma ,theta);

% The second term in the expansion (and conj)
term31l=exp (lambdavals_conj (2)*t )*...

phiprime_general (theta ,gammavals_conj(2) ,mu,sigma, theta);
term4l=exp (lambdavals (2)*t )x*...

phiprime_general (theta ,gammavals(2) ,mu,sigma , theta );
termbl=psi_general (v0,gammavals(2) ,mu,sigma , theta);
term6l=psi_general (v0,gammavals_conj(2) ,mu,sigma ,theta );

% The third term in the expansion (and conj)
term32=exp (lambdavals_conj (3)*t )*...

phiprime_general (theta ,gammavals_conj(3) ,mu,sigma,theta );
term42=exp (lambdavals (3)*xt )x...

phiprime_general (theta ,gammavals(3) ,mu, sigma , theta );
termb52=psi_general (v0,gammavals(3) ,mu,sigma, theta);
term62=psi_general (v0,gammavals_conj(3) ,mu,sigma ,theta );

% The fourth term in the expansion (and conj)
term33=exp (lambdavals_conj(4)xt )*...
phiprime_general (theta ,gammavals_conj(4) ,mu,sigma,theta);
term43=exp (lambdavals (4)*xt ) ...
phiprime_general (1,gammavals (4) ,mu,sigma , theta );
termb3=psi_general (v0,gammavals(4) ,mu,sigma ,theta);
term63=psi_general (v0,gammavals_conj(4) ,mu,sigma ,theta );
% Define the firing rate nu(t)
nu=terml % (term2+term3*term6+term4xtermb+...
term31lxterm61l4+term4l+xtermd51 +...
term32xterm62+term42xtermd2 + ...
term33*xterm63+term43«termb53);
% This expansion is for the first four eigenvalues.
% This works but it is too long to put in.
% Need a more effecient way to enter the functions.

% Save the function nu(t) for each mu.

Sol_data=[1000%t; nu];

Y%save theory_firing_rate_mu_20.dat —ascii Sol_data

%save theory_firing_rate_mu_5.dat —ascii Sol_data

Y%save theory_firing_rate_mu_1.dat ascii Sol_data

Y%save theory_firing_rate_mu_ptl.dat —ascii Sol_data

Y%save theory_firing_rate_mu_25_sigma_10.dat —ascii Sol_data
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%save theory_firing rate_mu_ptl_sigma_5.dat —ascii Sol_data

Yob+H+HH++++Plot the firing rat ettt
figure (1)

plot (Sol_data (1,:),Sol_data(2,:), linewidth’,4.5); hold on
plot (Sol_data(1,:),0%Sol_data(1,:)+B,’—k’,’linewidth’ ,3.5);
set (gea, "ytick ’,[0 20 40 60], fontsize’,25)

set (gca, 'xtick’,[0 100 200 300], fontsize’ ,25)

text (—25,58,’\nu’, fontsize’ ,30);

text (150,50, \mu.=0.1,_.\theta=1,_.\sigma=5’ ,’fontsize’ ,25);
text (380,—7,’t’, fontsize’ ,30);

text (150,40, "\nu(\infty)=" num2str(B)], 'fontsize’ ,25);

set (geca, 'linewidth’ ,3.5, "fontsize’ ,30);

axis ([0 400 —2 60]);

hold off
%print —f1 —depsc2 theory_fr_mupl.eps
toc

A.5.2 Simulation of the Population Firing Rate

To simulate a population of N IF neurons and calculate the population run the Matlab file
pop_firingrate_I F.m below.

Caution: The simulation of 10000 neurons requires roughly 50 minutes.

Listing .22: Driver to Compute the Population Firing Rate

% pop_firingrate_if.m
% Goal: To calculate the population firing rate for N IF

% meurons. In particular, we use this file to plot the
% population firing rate and the theoretical firing rate
% on the same axis. This is similar to Figure 2 of Mattia

clf % Clear all figures

% Set the timer (for a population of 10000 neurons
% it takes rougly 60 minutes to compute)
tic

neurons=10; % Set the number of neurons
delta= 0.001; % Set the value delta t
h=delta /100; % Set the step size

V.T=1; % Set the threshold value V_.T=theta where a spike occurs
V_0=0; % Set the initial condition V_0=V(0)

V_L=0; % Set the reflective boundary V_L

V_R=0; % Set the reset value VR

mu=-—1; % Set the parameters mu and sigma

sigma=3>; % Initialize the number of spikes for the population
numberofspikes=0; % Initialize the number of spikes per mneuron
count=0; % Initialize the inital TOTAL spike count

secs =.0; % How many seconds to simulate

IT=secs /h; % Set the number of iterations for the Euler method.
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times=linspace (0,secs ,secs/h+1); % Set the vector of times for which
% the SDE is solved.

V=zeros (1l,secs/h); % Set the solution vector V(t).

spiketimes =[]; % Set the vector whose entries are the spike times.

% Find the equilibrium value
terml=—(sigmaxsigma)/2;
% The first term in the expansion
term2=phizeroprime_general (V.T,mu,sigma ,V.T);
% Check that our limiting value is correct
nu_infinity=termls*term?2
% Use Forward Euler to simulate a population of neurons
for i=1l:neurons
for k=1:11

V(k+1)=V(k)+hsmutsigmaxsqrt (h)*randn;

if (V(k+1)<V_L)

V(k+1)=VR;
end;
if (V(k+1)>V.T)
V(k)=V_T;
V(k+1)=VR;

spiketimes=[spiketimes times(k)];
count=count+1;
numberofspikes=numberofspikes+1;
end ;
end;
end;
spiketimes=spiketimes;
numberofspikes=count % Print the number of spikes for the population.
% We need to find the number of spikes in each
% subinterval (t,t+h). Recall that
% n(t,t+h)=number of spikes in (t,t+h).
subints=secs/delta; % Set the number of subintervals.
values=zeros (1,subints); % Set the vector that shows the number of
% spikes in each of the subintervals.
% Count the number of spikes in each subinterval.
for m=1:subints
for n=1:numberofspikes
count_1=0;
if ((m—1)xdelta < spiketimes(n));
count_l=count_1+1;
end ;
if (spiketimes (n)>msdelta)
count_l=count_1 —1;
end ;
values (m)=values (m)+count_1;
end
end
values ;
% Check that the number of spikes in each sub—
% interval add up to the total number of spikes.
this_better_be_zero=sum(values)—numberofspikes % you should get 0
% Define the population firing rate function.
num _firingrate=values /(neuronsxdelta);
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% Define the vector of times to plot against the
% population firing rate function.
times_l=linspace (0,secs ,secs/delta);

% Multiply the domain by 1000 to get ms
Sol_data=[1000%times_1; num_firingrate ];

% A
% Save the data to plot with theoretical.
% A
% Make sure the correct mu is used!!!!!!
e e A o O O O O
% save pop_firing_rate_mu_20.dat —ascii Sol_data

% save pop_firing_rate_mu_5.dat —ascii Sol_data

% save pop_firing_rate_mu_1.dat —ascii Sol_data

% save pop_firing_rate_mu_ptl.dat —ascii Sol_data

% save pop_firing_rate_mu_25_sigma_10.dat —ascii Sol_data
% save pop_firing_rate_mu_ptl_sigma_5.dat —ascii Sol_data
% save pop_firing_rate_mu_negl_sigma_1.dat —ascii Sol_data

% save pop_firing_rate_mu_negl_sigma_5.dat —ascii Sol_data
R R R N R AR R N RN

% Plot the population firing rate.

% S S S e e e A |
Jrrrrrrrrrrrrrrrrrrrr+rrrrr&r&r&

figure (1)

% Multiply the domain by 1000 to use ms
plot (1000*times_1 ,num_firingrate)

%axis ([0 secs*x1000 —2 60])

load pop_firing rate_mu_negl_sigma_5.dat
pfr=pop_firing_rate_mu_negl_sigma_5;

figure (2)

plot (pfr(1,:),pfr(2,:), linewidth’,3.5);hold on
axis ([0 40 —2 35]);hold off

toc

How to Reproduce Figure 13: First, use Listing .17 to calculate the eigenvalues and store

the data. Then run the Matlab file I F'_firingrate_pop_theory.m below.

Listing .23: Driver to Plot Population and Theoretical Firing Rate

% IF _firingrate_pop_theory .m

tic; clf

% Load population and theory data.

load pop-_firing_rate_mu_ptl_sigma_5.dat

load theory_firing_rate_mu_ptl_sigma_5.dat

load pop_firing_rate_mu_20.dat; load theory_firing rate_mu_20.dat
load pop-_firing_rate_mu_5.dat; load theory_firing_rate_mu_5.dat
load pop_firing_rate_mu_1.dat; load theory_firing_rate_mu_1.dat
load pop_firing_rate_mu_ptl.dat; load theory_firing_rate_mu_ptl.dat

% Rename the data.
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p20=pop-_firing_rate_mu_20 ’; t20=theory_firing_rate_mu_20 ’;
pb=pop_firing_rate_mu-5 ’; tb5=theory_firing rate_mu.5 ’;
pl=pop_firing_rate_mu_1’; tl=theory_firing_rate_ mu_1 ’;
ppl=pop_firing_rate_mu_ptl ’; tpl=theory_firing_rate_mu_ptl ’;
pnp=pop_firing_rate_mu_ptl_sigma_5 ’;
pnt=theory_firing_rate_mu_ptl_sigma_b ’;

% Define the Matices p and t whose columns are the data
p=[p20(:,1),p20(:,2),p5(:,2),p ( 2),ppl(:,2)];
€=[£20 (: 1) 1620 (: 12) 45 (:2) 61 (:.2) tpl (+,2)]:

% Set the vector ()f mu values fm labeling the plots

=[20,5,1,0.1];
% Plot the functions
for k=1:4

figure (k)

plot(p(:,1),p(:,k+1),’r’, linewidth’ ,;4.5); hold on
plot (t(:,1),t(:,k+1), linewidth’ ,4.5); hold on
set (gca, ’hnewidth’ ,3.5, "fontsize’ ,25);
set (gea, 'ytick ’,[0 15 30 45], fontsize’,25)
set (geca, 'xtick’,[0 100 200 300], fontsize’ ,25)
text (—30,58, ’\nu’, fontsize’ ,25);

text (150,50 [ \mu=" num2str(mu(k))], fontsize’ ,35);
text (145, 40 M\theta 1,.\sigma=1", fontsize’ ,35);
text (350, — to(ms)’, fontsize’ ,25);

axis ([0 400 —5 60])

end

figure (5)

plot (punp(:,1),pnp(:,2),’r’, ’linewidth’ ,4.5); hold on
plot (pnt(:,1),pnt(:,2), linewidth’,4.5); hold on

set (gca, 'linewidth’,3.5, fontsize’ ,25);

set (geca, "ytick’,[0 10 20], fontsize’ ,25)

set (gea, 'xtick’ [0 10 20 30], fontsize’ ,25)

text (—3,29, ’\nu’ ,'fontsize’ ,25);

text (15,15, \mu 0.1, fontsize’ ,35);

text(14 5 10 M\thetazl,g\sigma=5’,’fontsize’735);
text (35 to(ms)’, fontsize’ ,25);

axis ([0 40 "5 30])

% Save the plots

%print —f1 —depsc2 if_firingrate_both_mu_20.eps
Y%print —f2 —depsc2 if_firingrate_both_mu_5.eps
%print —f3 —depsc
%print —f4 —depsc

Y%print —f5 —depsc

DN DN DN

if_firingrate_both_mu_1.eps
if firingrate_both_mu_ptl.eps

(NI )

if_firingrate_both_mu_ptl_sigma_5.eps

toc
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